
Program Product

SH20-9002-2

Customer Information
Control SystemNirtual
Storage (CICSNS)
Systeml Application
Design Guide
Program Numbers S740-XX1 (CICS/OS/VS)

S746-XX3 (CICS/DOS/VS)

Third Edit.ion (July 1975)

This is a reprint of SH20-9002-1 incorporating changes released
in the fol.lowing Technical Newsletter:

SN20-9089 (dated May 22, 1975)

This edition applies to Version 1, Modification Level 1, Release 1,
of the program product Customer Information Control System/Virtual
Storage (CICS/VS), program numbers 5740-XX1 and 5746-XX3, and to all
subsequent: versions and modifications until otherwise indicated in
new editions or technical newsletters.

Informaticm in this publication is subject to significant change.
Any such (:hanges will be published in new editions or technical
newslettel:s. Before using this publication, consult the latest
IBM System/360 and System/370 Bibliography, GA22-6822, and the
technical newsletters that amend the bibliography, to learn which
editions iwd technical newsletters are applicable and current.

Requests jEor copies of IBM publications :should be made to the
IBM branch office that serves you.

A form fOlt:' readers' comments has been provided at the back of
this publication. If the form has been removed, address comments
to IBM United Kingdom Laboratories Ltd., Publications Department,
Hursley Pi3.rk, Winchester, Hampshire, S021 2JN, England. Comments
become th4~ property of IBM.

C Copyright International Business Machines Corporation 1973, 1975

PREFACE

This publication provides the system analyst and system administrator
with guidelines which assist in the design of online applications to
run under the control of CICS/DOS/VS or CICS/OS/VS, here~after referred
to as CICS/VS or simply CICS. It assumes that the readE!r is familar
with the CICS/VS General Information Manual (GIM). The GIM provides
an introduction to the CICS/VS facilities, using several applicat~on
examples to highlight the various facilities which theSE! applications
demand of CICS/VS. These applications are then develope!d further in
this publication.

The ·publication is directed mainly towards the inexpe!rienced CICS
user, and assumes no prior CICS knowledge apart fram that presented in
the CICS/vS General Information Manual.

It presents separate chapters, covering the following design topics:

• Introduction to Systems Design
• Program Design
• Data Communication Design
• Data Management Design
• Data Base Design
• Advanced Features
• Performance Considerations
• Recovery and Restart
• Testing and Integration
• Cutover and Follow-up
• Application Design

Each chapter is presented in a tutorial fashion, generally first
with an outline of various CICS/VS facilities relevant to that chapter,
followed by specific design techniques utilizing those facilities.

To enable experienced CICS users to concentrate only on these CICS/VS
facilities which differ from previous versions of CICS, each chapter
commences with a reading guide identifying only those topics which may
need to be read by experienced users.

To enable the publication to be subsequently used for reference
purposes, various CICS/VS facilities relevant to several areas of design
are identified in those areas. However, whenever a CICS./VS facility
is discussed, cross-reference is made to the section of the publication
which describes that facility in more detail.

RELATED PUBLICATIONS

VTAM

Introduction to ~

DOS/VS Data Management Guide

OS/VS VSAM Planning Guide

GC21-6981

GC33-5312

GC26-3799

Preface i

CICS/VS

Adv'anced Communication Guide

~llica tion Programmer's Reference Manual

System Programmer's Referenc~ Manual

Terminal Operator's Guide

System Administrator's Guide

OpE!rations Guide (CICS/DOS/VS)

opE!rations Guide (CICS/OS/vS)

Subset User's Guide (CICS/DOS/vS)

Ref:erence Summary: Master Terminal
0pE!rator

Reference Summary: Program Debugging

DL/I !>OS/VS

System/APplication Design Guide

General Information Manual

~)lication Programming Reference Manual

DLI'I Bridge General Informat:ion Manual

IMS/VS

System/Application Design Guide

~eneral Information Manual

System programming Referenc~ Manual

~)lication Programming Reference Manual

Utilities Reference Manual

General Information Manual

Video/370

General Information Manual

ii CICS.lVS System/Application Design Guide

SH20-9049

SH20-9003

SH20-9004

SH20-9005

SH20-9006

SH20-9012

SH20-9011

SH12 ... 5404

SX26-3700

SX26-3101

SH12-5413

GH20-1246

SH12-5100

GH12- 51 06

SH20-9025

GH20-1260

SH20-9027

SH20-9026

SH20- 9029

GH20-1251

SC27-6960

CICS Productivity Aids

Installed User Programs

CICS Online Test/Debug Program
DeSCriPtion operations Manual

CICS/COBOL Call Interface Program
Description Operations Manual

Field Developed Programs

CICS Dynamic Map Program Description
Operations Manual.

CICS Performance Analyzer Program
Description operations Manual

CICS/3270 Simulator Program Description
Operations Manual

SH20-1258

SH20-1359

SB21-1075

SB21-1181

SB21-1036

Preface iii

Chapter 1. Introduction to Online System Design
system Design in the IRplementation Phase.
The Need for Good System Design.

Turnaround or Response Time.
User Acceptance.
Resource utilization

Design strategy.
structured System Design
Application Design

Chapter 2. CICS/VS Program Design
CICS/DOS/VS Subset Option.
CICS/DOS/VS starter System •
Modular Programming.

Batch Environment.
CICS/VS Online Environment
virtual Storage Environment.

High Level Languages
Tabular Structures
structured programming

Traditional Program Development.
Top-Down Programming

structured Programming with CICS/VS.
Application Functions.

Message Routing.
Terminal Paging.
Terminal Device Independence
Extended 3270 Support.
Input Formatting •
Tabl E; Search
Field Verify/Edit.
Bit Planipula tion
Phonetic Conversion.
weighted Retrieval •
Asynchronous Transaction Processing (ATP).

QUasi-Reentrant Programming.
Task Initiation.

Transaction Codes.
Automatic Task Initiation.
Interval Control
Task Control

PrograDl Control.
Transfer Control to Program (ICTL)
Link to Program (LINK)
Load Program (LOAD).
Delete Program (DELETE).
Return from program (RETURN)
Abnormally Terminate Program (ABEND)
Abnormal Termination Exit (SETIIT)

Program Error Recovery
Program Error Processing •
Program Error Program.

Chapter 3. CICS/VS Data Communications Design
Basic Happing Support.

BMS Haps
Terminal Device Independence

Input Messages •
output Messages.

iv CICS/VS System/Application Design Guide

1
1
2
2
2
2
3
3

10

13
13
14
14
14
14
15
15
15
17
18
19
21
21
22
22
22
23
23
23
23
23
24
24
24
25
26
27
27
27
27
27
27
28
28
28
29
29
29
29
30
30

31
31
33
33
35
35

Terminal Paging.
Terminal Paging status •

Message Routing.
Message Delivery •
Message switching Transaction (CMSG)

CICS/VS Terminal Control and BMS •
CPU Console as a CICS/DOS/VS Terminal.
Basic Telecommunication Access Method (BTAM)
Basic Graphic Access Metbod (BGAM)
Telecommunication Access Method (BTAM)
virtual Telecommunication Access Method (VTAM)

Synchronous Data Link Control (SDLq
VTAM Network •

Use of VTAM by CICS/VS •
CICS/VS Session Types.
Establishing CICS/VS Sessions with VTAM.
Terminal Control Communication Using VTAft.
Basic Mapping Support Communication with VTAM.
Terminal Device Independence with VTAM and BTAM.
Terminal Paging Using VTAM •
Message Routing and Message Switching Using VTAM •

Conversational Applications.
Task Initiation.
Input Transaction Design •
Transaction Editing.
Error correction •
output Formatting.

Batch Applications •
Asynchronous Transaction Processing.
General Batch Processing •

Terminal Error Recovery.
Terminal Abnormal Condition Program (TACP)
Terminal Errcr program •
Node Abnormal Condition Frogram (NACP)
Node Error Program (NEP)
Message Logging.

Security Design.
CICS/VS Operator Security.
Security Enhancements.
Operator Error statistics.

Priority processing.
Task priority.
Change Priority.

Chapter 4. CICS/VS Data Management Design •
Application Requirements •

Work File Capability •
CICS/VS Temporary storage Management •

Temporary storage Usage.
Data Identification.
Use of Dynamic storage by Temporary storage.
Accessing Records in Temporary Storage •
Temporary storage Recovery •
Selection of Temporary Storage or Transaction Work

CICS/VS Transient Data •
Transient Data Usage •
Extrapartition Transient Data.
Intrapartiticn Transient Data.
Intrapartition Queue Usage •
Reusable Intrapartition Queues •
Indirect Destinations.

Chapter 5. CICS/VS Data BasE Design •
Application Requirements of Data Bases •

Data Base Definition •

35
37
37
38
39
40
41
41
42
42
42
43
44
45
45
52
53
54
56
57
57
58
58
61
66
70
72 . 73
73
74 . ' 75
75
76
77
77
78
78
79
81
83
83
60
85

87
87
87
88
88
89
91
91
92

Area. 93
94
94
95
97
98

105
106

111
112
112

Contents v

Manufacturing Industry •
Banking Industry
Insurance Industry •
Medical Industry •
Pharmaceutical Industry.
Distribution Industry.
Law Enforcement Industry •
utilities Industry
Data Base Implementation for Applications.

Data Base Support for CICS/VS.
CICS/VS File Control (151M, DAM, VSA~)

Direct Access.
Sequential Access (Browsing)
Record Identification.
Indirect Access.
Segmented Records.
Advantages of segmented Records.
CICS/VS File control Design Considerations •
Recovery Considerations.

DL/I Products.
DL/I ENTRY
DL/I DOS/VS.
IMS/VS OL/I.
DL/I Access from CICS/VS

Introduction to DL/I •
Advantages of DL/I •
Segment Design •
Data Independence.
Logical Data structures.
Data Base Access Calls •
Data Base Organization and Access !ethods.
Logical structure Design •
Updates, Additions, and Deletions.
Logical Relationships.
secondary Indexing •
Data Base utilities.
Data Base Recovery •
DL/I Log •
DL/I Data Base Design.

Data Base Selecticn Criteria •

Chapter 6. CICS/VS Advanced Features.
Task Control •
Interval Control •

Chapter 7. CICS/VS Perforaance Considerations.
Design Criteria.
Application Design •
Message Design
Program Design •
Data Base Design •
Dynamic storage.
Multitasking •
Priority processing.
System Administration functions.
CICS/DOS/VS Subset Option. •
Virtual. storage considerations • •
CICS/OS/VS - 3850 Mass Storage S:ystem Operation.
Performance Evaluation •

Chapter S:.
Recovery
Recovery
Recovery
Recovery

CICS/VS Recovery and Restart •
and Restart Overview.
from Prcgraa Errors and lbends.
from Terminal I/O Errors.
from Disk I/O Errors.

vi CICS/VS System Application Design Guide

•

114
115
117
118
119
120
121
123
124
126
127
127
135
1,40
144
153
165
166
167
168
168
169
169
169
169
173
174
176
177
180
181
182
186
187
189
190
190
191
192
192

197
197
198

201
201
201
201
201
202
202
203
204
205
208
208
215
219

221
221
222
223
223

Recovery froll Device Failure • • • • • 223
Termination of CICS/VS System. • • • • • • 223
Reestablishment of CICS/VS System. • • 224
Temporary storage Recovery • • • • • • 224
Transient Data Recovery. • • • • • • • • • • • • • • • • • 225
Recording CICS/VS File Centrol Data Set Modifications. • • 225
CICS/VS File Centrol Data set Backout. • • 225
Transaction Restart on System Restart. • • 226
System Recovery prcgrall (SBP). • • • • • • • • • • 228

Program Check Interception in SRP. • • • 228
CICS/VS partition/Region ABEND • • • 229
System Recovery Table. • • • • • • • • • • • 229
Frogram Control ABEND Reguests • • • 230
Program-Level ABEND Exit Routine • • 230
Program Error program. • • • • • 231
PCT/PPT Disable and Enable • • • 233
Dynamic Task Backout • • • • • • 233
Program Eackup • • • • • • • • • • • • • 235
Dump Data Set. • • • • • • • • • • • 236
Online program Maintenance • • • • • • • • • • • 237

Keypointing of CICS/VS • • • • • • 237
System Warm Keypcints. • • • • • • • • • 238
System Activity Keypoints. • • • • • • • • 238
Logical Task Synchronization • • • • • • 239
Protected Resources. • • 240
Protected ftessages • • • • • • • • • • • 242

CICS/VS Termination. • • • • • • • • • 244
Controlled Shutdown. • • • • • • • • • • • 244
Abnormal Terllination • • • • • • • 245
Uncontrolled Shutdown. • • 246

CICS/VS Initialization • • • • • • • • • • • 247
Complete Cold Start. • • • • • • 247
Complete Warm Start. • • • • • • • • • • • • 247
Partial Warm Start • • • • • • • 247
Emergency Restart. • • • • • • 248
System Failure during Emergency Restart. • • 255

Data Base Recovery • • • • • • • • • • 256
CICS/VS File control Recovery. • • • • • • • • 256

Read-Only Data Sets. • • • • • • • • • • • • 257
Update, Deletion, and Addition to Data Sets. • ••••• 257
Journaling • • • • • • • • • • • • • 258
Preparation of User Journals • • • • • • • • 260
Data Set Backout • • • • • • • •• 261

Online DL/I Data Base Backout. • • • • 264
DL/I Logging Using CICS/VS System Log. • • • • • • • 264
DL/I Termination Activity. • • • • • • • • • 264
DL/I Data Base Backout Druing CICS/VS Emergency Restart. • • 264
Online DL/I ENTRY Data Base Eackout Technique. • • • • • 265
DL/I ENTRY Segment Scheduling •••••••••••••••• 265

Temporary Storage Recovery • • • •.• • • • • • • • • • • • • • 266
Temporary Storage Recovery after Ccntrolled shutdown • • • • 266
Temporary Storage Recovery after Uncontrolled Shutdown • • • 267
User Recovery of Temporary Storage Using Dynamic storage • • 267

Transient Data Recovery. • • • • • • • • • • • 269
Intrapartition Data Set Recovery after Controlled
Shutdown. • • • • • •• • • • • • • • • • • •

Intrapartition Data Set Recovery after Uncontrolled
Shutdown. • • • • • • • ••.• • • ••

Extrapartition Data Set Becovery
Use of Journal Contrel for Seguential Data Sets.
Indirect Destinations. • • • •

DUllp Data Set Recovery • • • • • • • •
crcs/vs Program Library Recovery • • •
Transaction Recovery and Restart • • • • • • • • •

Recovery of ftessages Associated with VTAft Terainals.

• 269

• • 270
• • 271
• • 276

278
• 278
• 279

279
• • 279

Contents vii

Recovery of Messages Associated with BTAM Terminals.
Transaction Restart (BTAM and VTAM Terminals).
Terminal Operator Restart.

Terminal Error Recovery.
Terminal Backup.
Terminal Reconfiguration

Device Recovery.
Extrapartition Device Failure.
Batch DL/I Data Base REcovEry.

Batch DL/I System Log.
DL/I REcovery utilities.

Backup Design.
Backup Procedures.
Fallback DEsign.

cutover Design •

Chapter 9. CICS/VS Testing and Integration.
Tracing and Debugging.

single-Thread Testing.
Multithread Testing.

System 'Test.
Topdown Testing.

Chapter 10. CICS/VS Cutover and Fellow Up •
cutover.

Terminal Operator Training •
Master Terminal Operator Training.
System Operator Training •

Followu'P •

Chapter 11. CICS/VS Application Design.
Manufacturing Industry •

Production Order and status Reporting System
Data Sets.
Onlinl9 Programs.
Offline programs •
Data Base Support Selection.

Banking Industry
Savings Bank and MortgagE Loan System.
Data Sets.
Onlinl9 Programs.
Offliine programs

custome:r Informaticn System (Customer Inf()rmation File).
Data sets.
Onlin l9 Programs.
DataBase Support Selection.

Insurance Industry •
Policy Information System.
Data Sets.
Online Programs.

New-Business Policy Entry System
Data sets.
Onlin,e Programs.
Data 'Base Support Selection.

Medical Industry •
Patient Information SystEm •
Data Sets.
Onlin l9 Programs.
Data Base Support Selection.

Pharmaceutical Industry.

viii

Pharmaceutical Order Entry System.
Data Sets.
Online Programs.
Offline Programs •
Data Base Support Selection.

CICS/VS System Application Design Guide

280
282

• 282
283
283
283
284
285
285
286
287
289
290
290
290

293
293
294
295
295
295

297
297
297
298
298
298

301
301
302
303

• 304
304
305
307
307
309
310
313
314
315
316
317
319
319
321
323
324
325
326
326
328
329
330
330
331
333
333
334
336
337

• 337

Distritution Industry.
Order Entry and Invoicing System
Data Sets.
Online Programs.
Retail Store System.
Data Base Support Selection.

Law Enforcement Industry •
Police Information Systeu.
Data Sets.
Online Programs.
Data Base Support Selection.

utilities Industry
Customer Infcrmation System.
Data Sets.
Online Programs.
Data Base Support Selection.

338
338
339
341
342
343
343
343
345
345
347
348
348
349
351
352

contents ix

This chapter presents an cverview of CICS/VS system design, and
introduces inforaaticn ccvered in more detail in later chapters of this
publication.

The installation of an online system involves a number of activities.
These include, but are not limited to:

• Feasibility study

• System design of online applications

• Application programming

• Program testing

• Documentation

• System testing

• Training

• Installation of equipment

• cutover to online application

• Follcwup of system

The purpose of this publicaticn is to discuss only one activity of
those detailed atove, namely, ~~!!§~§ De§ig~ ~! ~~l!»§ !EEli~1!2D§'
because of the effect of system design on the overall success or failure
of the installation. O~line system design is presented in the same
sequence as would be covered in real-life. The various factors to
consider during each steF of the design process are identified in terms
of the application requirements. some design factors and application
requirements are satisfied by ClCS/VS-provided support. These
facilities are explicitly defined and identified.

Many applications will not require additional user-developed support
beyond that provided by ClCS/VS. However, online applications may
exhibit unique requirements, for example, high online system
availability beyond the standard provided by CICS/VS. This publication
presents these additional sUFPort requirements, eutlines suggested
design solutions, and discusses some of the Fotential preblem areas
that should be ccnsidered by the user.

To utilize ClCS/VS facilities efficiently and satisfy various design
requirements, it is important that the system designer be aware of the
manner in which ClCS/VS iaplements these facilities. Thisinformation
is presented at the conceptual level, assuming there is no prior
knowledge beyond that covered in the ~I&~L!~ §~p~rA! lD!2I!sti2D Manual.
More detail can also be obtained, if necessary, ty referring to other
CICS/VS documentation.

Chapter 1. Introducticn to Online systems Design 1

The design of any system, whether it be a batch processing system
or an online system, is a cCRFlex and involved procedure. A "cookbook"
approach to system design cannot be followed because of the variety of
ways the same application may be igplemented in different organizations.
Eowever, guidelines can te reccmaended which direct the designer to
consider those functions or requirements which exist in the design of
most online systems.

TURNAROUND OR RESPONSE TIME

The effect of poor system design in a batch processing environment
increases the tctal ~rocessing time of applications, with consequent
delays in turnaround time befcre results of that processing are
available. with an infreguently run batch application, the effect of
poor system design on the installaticn may not be great. However, with
frequently run batch processing aF~lications, poor system design and
long run times may impact the ability of the installation to provide
adequate turnaround for that and other applicaticns. This will Frobably
necessitate a change in the system design of the offending application.

In an online environment, the effect of poor system design is often
immediately apparent, generally through the cnline system providing
unacceptable response tiaes for the Farticular applications concerned.
The definition of an "acceptable resFonse time" is generally very
application-dependent. Fer exam~le, in an online order entry
application, where the terminal cperator takes an order from a customer
directly over the teleFhcne, any response time that keeps that customer
waiting unnecessarily can be regarded as unacceptable.

WITHOUT DOUET, THE SINGlE MOST I8FOETANT FACTOR IN ONLINE PERFORMANCE
IS TEE SYSTEM DESIGN OF THE CNLIN! AFPLICATICNS~

USER ACClPTANCE

A factor that can affect the acceFtability of an online application
is the way in whjch it aeets the needs of the users of that application.
It is pointless for the user to design a system that provides fast
response time if the information provided cannot be used. In this
regard, measured by the usability of the system, an unusable system is
thereforE! a "poor performance" system.

RESOURCE UTILIZATION

A final factor to consider is the utilization ef resources such as
the CPU Frccessing capability, CFU storage, and inFut/outFut devices.
An onlinE: system which unnecessarily uses so much CPU processing
capability, or storage, or so many input/output devices that it impacts
the ability cf the installaticn to carry out other processing in other
partitions or regions may be a "~oor performance" system.

Thus, poor system design can have a significant impact on:

• Custcmer ser~ice (because of Fcor response time)

• Application usability

• Installation processing caFatility

2 CICS/VS System/Application Iesign Guide

Once the system designer realizes that poor design can result in
the opposite of the desired cbjectives being met, he is well on the
way to producing a well designed system.

Generally, online systems cannot be designed in isolaticn. To ensure
that the foregoing objectives are Det, it is important that a design
grcuF comprise people with kncwledge of:

• Application reguire.ents

• CICS/VS facilities

• Installation reguirements

Usually, the optimum size for the design grouF is three or four.
Fewer than this number increases the probability that bad design
decisions can slip through, while many more than four may affect the
productivity of the design group as a whole.

The system design phase is an iterative process. Based on the
decisions taken at one stage of the design, it may be necessary to
change decisions which were Dade earlier in another area of the design.
This change may in turn affect other decisions. Thus, the design group
must be flexible in its aFFrcach and be prepared during the design
phase to change its decisicns if necessary. However, once the system
design has been completed, it should bE frozen at that point, and not
changed unless serious errors or omissions are found which will affect
the ability of the system to run effectively.

During implementaticn of the design, there is always the temptation
to incorForate improvements from an application point of view. While
each improvement may not represent a great deal cf extra implementation
effort, all ef these impreve.ents Day affect the project completion
date. Also, the effect of these iDprovements on the overall system
performance must be evaluated. The danger is that this evaluation may
not be carried out for those changes introduced after the system design
phase has been ccmpleted.

These changes or enhancements must be controlled. The best way of
achieving this ccntrol may bE to incorporate all of these enhancements
in a later versicn of the cnline aFplication or system. These
enhancements beccme a project in their own right, and must therefore
go through the system design phase befcre implementation. In this way
their effect on system performance can be readily evaluated.

A structured approach to system design is possible, and such a
structurEd approach should direct the design group to consider all of
those areas of the online system which may require decisions to be
taken. This structured desigD apFroach is ill~strated in Figure 1-1.
This figure also illustrates some of the topics Fresented in this
publication, and the description cf each topic following the figure
Frovides an overview of this publication.

STRUCTURED SYSTE! DESIG6

A~~li~s!iQn ~~§igB

The starting point for online system design is the application
design. The initial application design steps require that the
objectives to be achieved by an cnline application be defined and the

Chapter 1. Introducticn to Online systems Design 3

requirements of the users of that apFlication be identified. A broad
system flow of the 8Fplicaticn is then developed as part of the initial
design. 'fhis system. flew and apFlication design are an extremely
important part o~ the overall design process, since thEY define the
interface between the ter.inal use]: and the computer. Unless the online
application meets the require.ents of its users, it is destined to
fail.

The online application shculd te designed initially to identify the
broad inFut, processing, and outFut requirements ef the application.
The need for conversational and/er batch data transmission between the
terminals and the CPU can be identified. the terminal outFut
requirements of the application can be determined, after which the
broad processing logic and data set accessing necessary to produce that
output can be designed. At this stage, the input data required for
that processing and output can also be defined.

I
Data
Communication
Design

I
I I

Program
Data
Management

Design
Design

I
.L I

I T .m.,,,,,y Transient
Storage Data

Applicati(
Design

Recovery
And Resta
Design

~ EN
/1
TRY

Figure 1-1. structured Systems tesign

DL/I
Products

DL/I
DOSIVS

Data Base
Design

File
Control

DL/I
I MSIVS

The result of this apFlication design phase is a broad system
flowchart shOVing, in aPF1ication terms only, the flow of information
to and from terminals, the bread Frocessing te be carried out by the
CPU, and the file accessing necessary to allow that processing. ligures
1~2 and 1-3 illustrate two types of flcvcharts, bcth representing the
system flow of an Order Entry a~d Invoicing application in the
Distribution industry.

With the troad application design mapped out, design of transactions
to be initiated from terainals and the responses tc be sent back to
the terainals can be developed. Alec, during this phase the editing
and validation of input messages can be defined in more detail.

Consideration should be given to the design of security procedures
and the handling of high pricrity transactions. The effect of

4 CICS/VS System/Application tesign Guide

unrecoverable terminal and line errors should be considered, together
with approaches which may be used to provide a co •• unications backup
capability (if required) to enable the online applications to continue
to function, if possible, in the event of a co •• unjcations equipment
lIIalfunction.

After determining systelll flow and broad processing to be carried
out by the CPU, this processing sheuld now be trcken down into
particular functions. Par exaaple, the initial function on receiving
a terminal transaction weuld be that of editing or validation.

Figure 1-2.

APPLICATION PROCESSING

1. Access Customer Record.

2. Display Name and Address.

3. Generate Order-In-Progress
Data Set.

4. Access Product Record.

5. Update Order-In-Progress
Record.

6. Display Order Quantity
Accepted.

7. Record Back Order Quantity,
If Necessary.

B. Update Product Inventory
With Accepted Quantity.

9. Access Order-In-Progress
Data Set.

10. Place In Warehouse Location
Sequence.

11. Transmit Packing Slip.

12. Extend Invoice.

13. Transmit Invoice.

14. Access Product Record.

15. Update Product Inventory
With Received Quantity.

Order Entry atd Invoicing Function tiagram

Chapter 1. Introduction to Online Systeas Design 5

This validation may require access tc various data sets. Following
validation~ it may be necessary to retrieve information from other data
sets fer processing, follcwed by possible updating of those data sets.
Finally, it would te necessary tc Frepare a respense to te sent to the
terminal.

The processing for each type ef transaction in the apFlication should
te broken down into logical secticns in this Danner. These logical
sections may subsequently tecome separate CICS/VS application program
modules, or can te incorForated into one module. Figure 1-q illustrates
the various modules in the program design for the Order Entry and
Invoicing applicatien shewn in Figures 1-2 and 1-3.

Note that the separate prcgrams and broad processing required,
developed in Figure 1-4 from the flowchart in Figure 1-3, are described
as part of the function diagram in Figure 1-2. In effect, the first
three boxes in Figure 1-2 define the three separate programs in Figure
1-4.

A point to consider when defining program modules is the frequency
of use of different modules. For ExamFle, excepticn routines cr error
routines which are infrequently used should teo separated from the more
frequently used main processing modules. In this way Frogram design
and subsequent iuplementation will be able tc take best advantage of
the dynamic storage capatilitie~ of CICS/VS and the virtual storage
capatilities of DOS/VS, CS/VS1~ or CS/VS2.

Application ~rograms can te ceded in Assembler Language, INS COBOL,
or PL/I. The user can select the most appropriate language for ea~h
program. Prcgrams written in one language can pass control to programs
written in any other language.

Application requirements for thE temporary storage of information
and the gueuing cf inforDaticn should te defined. CICS/VS Temporary
storage management provides a "scratchpad" capability and allows
information to te stored temlorarily in main storage or, alternatively,
on secondary storage.

The queuing, or sequential data set requirements, of the application
can te defined. The need to pass information through sequential files
to and from the CICS/VS partition and other batch Fartitions or regions
using the CICS/VS Transient Data management facility can also be
determined, together with tread recovery procedures.

The nEed for the application Frcgrams to pass small seguential queues·
of information between eaoh ether in the CICS/VS partition using CICS/VS
Transient Data can be determined.

Particular application data baSE characteristics and requirements
are considered when selecting the best data base support. This can be
based on CICS/VS File Control facilities or on one of the DL/I products.

6 CICS/VS system/Application Iesign Guide

SYSTEM FLOW

Order Entry

Customer
Data Set

Orders
Data Set

Edit
Customer
Details

Edit Check
Stock Avail.
And Update

Place In Whse
Location
Seq & Entend
Invoice

End Of Order Packing
Slip

DESCRIPTION

Order Entry

Enter customer number and customer reference number.

Validate customer number and extract credit limit.

If an error is found, display error message back at terminal.

Display customer name, address, ship-to-address and credit limit.

Enter product number and quantity for each line item.

Validate product number against product data set. Determine
current stock availability, and update product data set.

If insufficient stock, indicate quantity on-hand. Then allow operator
to either order available quantity, cancel item, or cancel order;

If not end of order, read next line item from order terminal.

Sequence products in order to warehouse loacation sequence. Extend
invoice. Write order to orders data set.

Transmit packing slip ans invoice to terminal in warehouse.

Figure 1-3. Order Entry aDd InvciciDg Flowchart

Chapter 1. Introducticn to Online Systems Design 7

ORDER ENTRY

(~:a,t_o_;;_;_r_--Ji

Orders
Data Set

SYSTEM FLOW

Edit
Customer
Details

Edit Check
Stock Avail.
And Update

Place In Whse
Location
Seq & Extend
Invoice

Invoice

Packing
Slip

Order
Start
Program

Order
Detail
Program

Order
Finish
Program

PROGRAM

ORDER START PROGRAM

Accept customer details and edit to
commence order.

ORDER DETAI L PROGRAM

Accept product order, edit, and update
product data set.

ORDER FINISH PROGRAM

Complete order, put orders* in
warehouse location sequence, extend
invoice, log order to orders data set
for audit, and transmit packing slip
and invoice to warehouse printer.

*Note: Standard batch sort is not used; products
are placed in location slots in storage
table, to carry out sequencing,

Figure 1--4. Order Entry aId Invcicing Program Design

8 CICS/VS Syste8/Application Cesi9D Guide

Factors to be considered in this decision include the need to access
the data base from both online a.~~lication prograas and batch processing
programs, and the number cf ways in which infcrmation is to be
retrieved, such as by the use of different record keys (for example,
part numter or part name in an inventory control applicaticn). Further
factors in this decision are the numter of times certain information
occurs in each rEcord, and the a.cunt cf information which may be absent
in seme records, yet present in ethers.

After selecting the a~proIriate data base sup~crt, the structure of
the data base is designed, and hew that data can te retrieved from
application programs is defined. Figure 1-5 shows the design of a DL/I
logical structure fer the Crder Entry application discussed above.
(This logical structure is diSCUSSEd in "Distribution Industry" in
Chapter 11.)

The effect of various errer or system failure situations on the
integrity of the data base is considered, and a data base recovery and
backup aFproach (if required) is defined.

I
I

---ITEM
~

I

INFORMATION WAREHOUSE
~

CONTAINS CONTAINS

- PRICE PER UNIT (SALES) - WAREHOUSE NO.
- DATE OF LAST CHANGE o NO. OF ITEMS IN STOCK
- UNIT OF ITEM • STOCK LOCATION
- TURNOVER LAST YEAR • REORDER POINT
- TURNOVER Y.T.D.

CONTAINS - ITEM NUM
- ITEM NAM

I
I

-
SUPPLIER

~

CONTAINS

- SUPPLIER NO.

BER
E

o PRICE PER UNIT (PURCHASE)
o UNIT OF ITEM
o DELIVERY TIME
• QUALITY INDEX
• DELIVERY INDEX
• PURCHASE Y.T.D.
o SUPPLIER INFORMATION

Figure 1-5. Order Entry Application Data Base Design

R~~12~!~D~~ ~~§ig!~g!i~n§

The designed system is starting te take shape. The extent to which
the application objectives and rEquirements are ~et by the designed
system must be evaluated. The petential Ferformance of the system must
be evaluated to identify areas where improvement can be made if
necessary.

Chapter 1. Introduction to Online Systems Design 9

Performance evaluation may include one, or both, of:

• Simulation techniques

• Benchmark technigues

Based on this performance evaluaticn, changes in the system design
may be considered, with possible iteration through the above steps.

1§£Ql§I~ ~nd ~~§!jI!

The success of an online system is dependent cn its availability.
Procedures must te designed fcr tackup in the event of failure of
varicus components of the system, and for recovery and restart following
abnormal termination of the system.

I.§stin,g j!1l9 lJl!§.9IJ!i2Jl

The a~ount and ty~e of testing to be carried out should be broadly
defined as part of system design, together with the way in which the
varieus online a~plications are tc be integrated.

It is important to define the procedures to be followed fer training
of terminal operators, system administrators, and all personnel involved
in the cutover and subseguent operation of the system. The procedures
to be used for cutover Dust be fully defined to ensure smooth transition
to the new online system.

The logical starting ~oint for online system design is the broad
system flow design of the applications to be implemented. In the normal
design phase of an online system, the design team would com.ence with
application design. However, 'in the presentation of topics in this
publication, application design will be left until the various CICS/VS
facilities and design techniques have been discussed. In this way,
application design in a number of industries can te described more
effectively, indicating hew specific CICS/VS facilities can be utilized
for different applications. Using these application design gUidelines,
the design team may wish te use the larious techniques described as a
starting point for their own applications. The apFlications discussed
in Chapter 11 of this publication are those introduced in the
"ftanagement Overview" section of tlbe ~E~Ll~ §§nUY Inf2.LU!i!;U! l!AW!al
(GIft). The applications described in the GIft are:

• Jj!nYiJ~!Y'iD9 1Jlgj§!'~
- Production Order and Status Reporting System

• J§Dk!ng l~g~!,~
- Savings Eank and !ortgage Loan System
- Customer Infermation System (often called

customer Information Pile)

• lli~JD~§ lDgj~!.~
- policy Information System
- New-Business Policy Entry System

10 CICS/VS System/Application Design Guide

• l!gi~gl l~g~§!.l
- Patient Informaticn System

• RbgImg~§y!icgl lDg]§SII
- Pharmaceutical Crder Entry System

• ~§~ j~!~.~§!~~! l»g~!~l
- Police Information System

• ~i§!.i~]!iQn lng]§!~~
- Order Entry aId Invoicing System

• ~!iliti~§ lng]stIl
- Customer Infcrmaticn System

The reader may wish to refer to these application descriptions from
time to time as he reads this ~~~Ll~ ~1§!§!LjRR1!£!ti2n n§§ign gyid~.

Deferring the applicaticn design now until Chapter 11 in this
publication. the next design topic is that of Prcgram Design.

Chapter 1. Introducticn to Online Systems Design 11

CHAPTER 1. CICS/VS PROGRAM DESIGN

Chapter 2 presents Program Design in a tutorial manner. Experienced
CICS users may wish to omit most of this chapter. However, it is
strongly recommended that such users still read the following topics:

• CICS/OOS/vS Subset option

• Virtual Storage Environment

• Tabular structures

• structured Programming

• Application Built-in Functions

• Program Error Recovery

CICS/VS is a transaction-oriented DB/DC system which uses the
techniques of:

• Multitasking

• Quasi-reentrant programming

• Dynamic storage allocation

These techniques are described in the CICS/VS General Information
Manual. The design of applicaticn programs to take advantage of them
for efficient online operation will now be discussed. In this
discussion, the facilities available to the system design team are
outlined first, followed by a discussion of the various program services
provided by CICS/vS. The design facilities available for use are:

• CICS/DOS/vS Subset Option

• Modular programming

• High-level languages

• Tabular structures

• structured programming

• Application functions

CICS/DOS/VS SUBSET OPTION

Facilities are provided to generate a subset of CICS/DOS/VS for new
CICS/DOS/vS users. It is easy to install and is fully compatible with
the complete CICS/DOS/VS system. No changes need be made to application
programs when the user generates a complete CICS/DOS/VS system. The
subset option identifiesCICS/VS facilities which may be utilized by
a CICS/VS user with limited CPU Storage. See "CICS/DOS/VS Subset
Option" in Chapter 7 for additional information.

Chapter 2. CICS/VS Program Design 13

CICS/DOS/VS STARTER SYSTEM

A set of object modules, generated using the subset option of
CICS/DOS.fVS, is supplied with the CICS/DOS/VS system. The starter
system includes precompiled sample application programs and predefined
tables, and need only be link-edited into a OOS/VS core image library
before UBe.

INSTALLA~rION AND USE

The UBer can install the Fregenerated CICS/DOS/VS system as described
above, and expand it as his needs dictate. CICS/VS facilities which
are not part of the subset oFtion can be generated when required to
support advanced CICS/VS capabilities. These can be achieved by
regenera1t:.ing only those CICS/vS management modules and table options
required to support the advanced capabilities.

The subset option is described in the Subset User's Guide (OOS)
SH 12-540 I~.

MODULAR JROGRAMMING

BATCH ENVIRONMENT

Moduliir programming techniques in a batch environment may involve
the consolidation of similar progI.·am functions in one program module.
For example, the main execution code used may be incorporated in one
module, '~hile exception rout ines may be in another modul e and error
routines in other modules. In this way, modular programming enables
sections of the program to be written by programmers at different times.
Apart from the advantage of distributing the program workload across
several people, another advantage of modular programming is that it
generally makes the application program logically easier to follow for
someone '~ho is unfamiliar with it.

CICS/vS ONLINE ENVIRONMENT

CICS/VS is oriented around the concept of modular programming.
Transactions received from terminals are analogous to transaction cards
read froIn a card reader. A transaction code defines the format and
processing required for an online transaction, in the same manner as
a card code defines the format and processing of a card.

This 1:ransaction code identifies the CICS/VS application program
that will process the transaction. The use of such modular programming
techniquE~s is an integral part of CICS/vS and enables large programs
to be broken into smaller logical modules. However, program size and
CICS/vS address space availability should be balanced with the
additional overheads involved in passing control between many small
modules.

When a transaction is received from a terminal, only that program
code relE~vant to the processing of that transaction need be loaded into
storage, if it is not already present. As modules tend to be smaller
than complete programs, more application program modules may reside in
a given address space than may full programs. This enables one copy
of each of many different modules to be currently resident in the
CICS/VS dynamic storage area. A high degree of multitasking may
thereforE~ be achieved within a limited storage size.

'4 CICS/vS System/Applica tion Design Guide

VIRTUAL STORAGE ENVIEONMENi

using the modular programming techniques discussed above, a CICS/VS
application program .odule should include code which is relevant to
the processing of the specific transaction.

From the system design point of view, the design team should specify
the various application Frograms which are to be written to implement
the particular aFplicaticn. They should also idEntify th6se application
functions (and hence program coding) which willke frequently used by
transactions, and those which will be infrequently used. In this way,
the design team is able tc broadly specify the modular program structure
of the application, and define the necessary application programs.

The various aFplicaticn programs executing concurrently in the
CICS/VS partition, and the demands made by them for CICS/VS servicEs
and resources, ccntribute to the total "working set" of CICS/VS. This
term is used in a virtual stcrage environment to describe that part of
a program which is active over a specific period of time. The CICS/VS
working set is influenced hy the sizes of the various concurrently
executing application prcgrams, the online transaction load and its
use of various application prcgrams, and the degree of multitasking
permitted by the CICS/VS master terminal operator. Techniques for
varying the working set are discussed in "CICS/VS Working Set" in
Chapter 7.

CICS/VS accepts applicaticn programs written in Assembler Language,
American National Standard (ANS) COBOL, or PL/I OptimiziDg CODFiler
for DOS/VS, OS/VS1, or OS/VS2. In addition, application programs may
be compiled with the PL/I F compiler for OS/VS1 cr OS/VS2.

CICS/VS is basically table driven. Tables define the terminal
network configuration, data set and data hase specifications, online
transaction details, application programs, and output message
destination information. Since CICS/VS is written as a generalized
program and is table-oriented, the unique requirements of an
installation can be tailored by sFecifying thcse requirements in the
various CICS/VS tables. CICS/VS uses the tabular information in a
direct manner to cODFlete the particular functions required. In the
event of the installation characteristics changing (such as the addition
of more terminals, or extra data sets for example), that change in the
installation require.ents can be incorporated into the system by
modifying and reassembling the relevant tables.

The tabular structure of CICS/VS is one of the main factors which
enables fast implementation and easy installation growth--two of the
significant advantages of CICS/VS.

This same tabular structure concept can be extended to application
programs. An example of a tabular structure application is a savings
hank and mortgage lean system in the banking industry. Figure 11-7
illustrates a typical savings bank and mortgage loan system.

This application is characterized by a large nu.ber of transaction
types with similar transacticn fcrmats, similar processing, and similar
output formats. certainly, unique modules may be written to accept
each different transacticn, process that ~nformation, and send back an
output response. However, the overall IC9ic in the separate aodules
is basically identical, with differences appearing only in the

Chapter 2. CICS/VS Frogram Design 15

particular input and output formats. In some caSES certain information
is processed by addition (a deposit transaction amount to be added to
the current balance), and in ether cases by subtraction (a withdrawal
transaction amount to be subtracted frcm the current balance). It is
expensive in the initial a~plicaticn programming and subsequent
maintenance to write separate programs for these various similar
transactions.

In this banking application, a generalized application program may
be written utilizing a tabular structure. A numter of application
tables wculd be requ~red in this environment. These are illustrated
in Pigure 2-1, and are listed and discussed below:

• Input format table

• Processing rEquirements table

• Output format tatle

Alternatively, the information described in these tables may be
consolidated into one cCB~csite table.

On receipt of a transactien from a terminal, that transaction type
(Bank Trancode) may be identified in the input fermat table. switches
in this tablE specify the locaticn of information within the
transaction. This informaticn is used together with information
obtained from the precessing requirements table which is also accessed
based on the transaction type (Bank Trancode). Fer that transaction
type, the processing require.ents tatle entry may indicate certain
fields of the transactien are to be edited based u~on specific editing
criteria, and fiElds are tc be added to or subtracted froa specific
applicaticn counters.

Based on the particular transaction type, the relevant entry in the
output format tatle may specify the Exact locatien in the eutput message
into which certain fields are to be inserted. Besponses may then be
sent back to the terminal to update the custome~'s bank passbook based
upon the particular input transactien entered.

Use of tabular structurES results in less programming effort. Only
one generalized application ~rogram is written, determining the editing
and processing required cf transactiens by means of various switches
in the relevant tables.

However, the power of this pregram design approach beco.es more
apparent when it is necessarl to mcdify the application req~irements.
Typically such application modification may require considerable
recoding and testing if a tabular structure is not used. In this
environment, the relevant tatle Entry may be quickly and easily changed
to reflect a changed input fermat, changed processing requirements, or
a changed output format. In many cases, no modification of the -
generalized application Frogram is rEquired.

The net effect is greater resFonsiveness to the application needs
of user departments, as well as the needs of the ccmpany's customers.

The IBft 3600 Finance Communication System, a banking system, consists
of an IBft 3601 programmatle controller and several terminals. Some of
the functions perfcrmed ty the previeusly descrited tables may be
executed in the 3601 contrcller. For example, the terminal input
message Day be cenverted to a standard format input message by the 3601
controller for transmission to CICS/VS with precessing requirement
switches inccrporatEd in the input message. Similarly, a standard
format output response may be transmitted by CICS/VS back to the

16 CICS/VS System/Application DeSign Guide

controller, which performs any uniquE foraatting ~Equi~ed by the
response and transmits it to the c~iginating terminal.

INPUT

~ I :':~:nal I
Input Format Table

Bank TRANCODE -----
Input
Format
Specifications

Processing
Requirements
Table

Bank TRANCODE

Processing
Specifications

Output Format Table

Bank TRANCODE

APPLICATION PROGRAM PROCESSING

L-..L..-_----"-...> 1. Receive input message from teller
terminal.

2. Use banking trancode in message to
r--..-----. > locate entry in input format table.

"..--~_---,..,........> 3. Format input message based on input
format table specs.

L-...I-__ > 4. Use banking trancode to locate entry
in processing re·Quirements table.

.---.-__ > 5. Process input message based on pro·
cessing table specs.

>
6. Using banking TRANCODE to locate entry

in output format table.

OUTPUT

1 Amount I MiSC·1 ~~n~~l

1<

Update (
Banking
Data Sets

>

1<

Output
Format
Specifications

> 7. Prepare output message based on
.---.-----,.v"" output table specs. L-...L. __ -"'-> ~~dit Il Date Illcode I;] Amount Irlll Bal·l

no Is 18'1 181 161 91 arlce

Figure 2-1.

8. Transmit output message to teller
terminal.

Tabular Program structure in Banking

Teller
Terminal

Passbook

Using this aPFroach, the tabular structure concept described in
Figu~e 2-1 can also te aFplied tc the application programming performed
in the 3601. The functicns cutlined in steps 1 through 4 and 6 through
8 in Figure 2-1 are then executed by the 3601 and only step 5 is
executed by the eIeS/VS apFlication program. See "Virtual
Telecommunications Access !ethod" in Chapter 3 fer additional
information regarding 3600/CICS/VS oFeration.

structured programming is a modular prog~amming technique which has
been developed tc Fermit easier integration cf modules into a working
program. It is sometimes ~eferrEd to as "top-down prograaming," and
provides a useful toel fcr centrel and development of large programming
projects. The fcllowing remarks serve to introduce the concept of
top-down programming.

Chapter 2. CICS/VS Frogram Design 17

TRADITIONAl FROGEA! DEV!LOFMENT

Traditionally, some programs have been developed from the bottom
up, as illustrated in Figure 2-2. That is to say, each routine or
module has been designed and written, then these Dodules have been
combined, or integrated, tc Froduce a working program. programs at
the lowest level are combined by integrating them with a Frogram at a
higher level, which calls them.

Thus a large program is built up from separate .odules, with the
lowest level of modules combined first, and then the successively higher
levels of modules until eventually the entire prcgram, with all of its
mo~ules, has been integrated. If thE system design has been well done,
and all of the linkages and interfaces have been fully designed,
documented, and completely adhered to by all programmers, a working
program results.

However, as is often the case, each programmer's understanding of
the way in which his modules fit into the total Frcject may be slightly
different. These differences are cften reflected in errors in the
module interfaces. These errors are not determined until integration
cr system test, and may involve ccnsiderable mcdification to enable
the entire program to be built up.

A further problem that arises with the traditional "bottom up"
develoFment of mcdules is that of testing. To test a lower level
module, a test driver invariably has to be develcped. The function of
this driver is tc present to the .cdule to be tested the same interface
which will be presented ty the higher level module which will eventually
call that lower level Bodule. Thus, the testing of these lower level
modules can require considerable additional work on the part of the
Frogrammer in develoFing test vehicles.

In addition, in testing higher level modules, changes may have to
be made to lower level modulES bEcause of errors identified or interface

Order [

Imple~ntation Module Module [MO~"" Module Module
1 2 4 5

1 I I I

Level*

I I
Module [MO~"" Module

7 8

I 1

[M.'OUO' Module
* Levell = Highest Level

Level 3 = Lowest Level

Figure 2-2. Traditicnal Frogram Develcpment

18 CICS/VS System/ApFlication Design Guide

changes. Consequently, the lower level changes must be fully tested
before testing can continue with the higher level module.

TOP-DOWN PROGBAM!ING

Top-dcwn programming a~treaches the problem of program development
in a different way. The highest level module is defined and coded
first, including the necessary linkages to lower level modules.
However, these lower level modules are not developed at this time.
Instead, a general "dumay" test module is used in Flace of the lower
level modules. The high level module links to this test module in
place of lower level modules which are yet to be written. The dummy
test module notes the fact that control was passed to this module from
the higher level module (perhaps by a test output message, or a dump,
for exam~le), and then returns centrol to the higher level module.

It is not until the high level module has been tested that coding
commences on the next lewer Bodules. At this time, the interface
between the higher level and lower level modules has been completely
defined, coded, and tested. Furthermore, the higher level module now
becomes a test driver for thE lower level modules.

As each low level module is ceded, it replaces the common dummy test
module which was used in the higher Rodule testing. When the higher
module passes control to this low level test module, the only functions
which have to be tested are the functiens re~resented by that low level
module.

This testing continues, with trogressively lewer level modules being
integrated into the total trcgraa structure in this way, until the
entire program has been developed and tested. TOF-down programming is
illustrated in Figure 2-3.

A~!A~!AgS§ 2! l~l=~~!~ i's~'!!!i~~
The advantages offered by this technique over traditional "bottom-up"

programming are:

• Chief Programmer Operatien

Top-down programming lends itself to the chief programaer method
of program develepment. This aethod involves an experienced (or
"chief") programmer, who definES the overall logic flow of the
program by developing the highEst level modules, and leaving the
lower level modules to leSS-Experienced prograamers. In this way,
the controlling high· level modules benefit from the skill of the
chief programmer, resulting in better overall control of the total
program develop.ent to ensure that processing objectives and
performance requirements are mEt.

• Module Developuent IndepEndence

Modules can be coded and tested from the highest level down to the
lowest level without consideration for the progress of other modules
at the same level. For exam tIe, developing a Frogram from the
bottom up generally requires all of the lower level modules to be
coded and available before integration with the higher modules can
be achieved.

Chapter 2. CICS/VS Frogram Design 19

ORDER
OF

IMPLEMENTATION

I
Module

4

I
Module

1

I

Main-line
Module

Module
2

I
Module Module

5 6

Figure 2-3. Tcp-Dcwn prcgra. DeveloF.ent

• Bodule Testing Independence

1

Module
3

I
I

Module
7

I
Module

8

* Level 1 = Highest Level
Level 3 = Lowest Level

Because higher level modules are coded and tested before lower
level modules, the testing of these lower level modules is not
dependent upon code which may not have been written at that time.
The familiar problem of the testing of the lower level module being
held up because the higher level module which called it (or
alternatively a test driver in its place) was not ready, is now
not !:ignificant •

• EasiEr Evaluation of Testing Progress

The ~rogress of testing can be mcre readily evaluated using the
top-down programming approach. As testing descends to lower level
modules, the probability of errors detected in these lower level
modules affecting already tested higher level modules is much less.
However, with bottom-up frogra.ming, a problem area encountered
during integration fro. lower level modules up to higher level
modules may reguire considerable medification of the lover level
modules to ensure that the interface reguireaents are met.

Furthermore, the amount of testing necessary fer integration or
system test is variable and difficult to predict. All too often,
communication between meabers of a project is such that each
programmer has a slightly different view of the function and
integration of his module into the overall program. This
misunderstanding dces not generally become apparent until testing
and integration are well advanced. lith top-dcwn programming, all
interfaces are fully defined, coded, and tested before coding starts
on lower level modules.

20 eIeS/VS system/Application Design Guide

LEVEL*

2

ij
3

• Programmer Besource flexitility

with the top-down technique, if a particular program falls behind
schedule, ether Frograaming resources can support the coding of
lower level moduleS while the original program.er continues with
his higher level module.

The system design technique described in this publication is also
a top-down des~gn technique. As shown in Figure 1-1, systems design
occurs at the highest level first by broadly defining the application
requirements in terms of the input, general processing required, and
the output. This highest level application design then allows the
design team to descend to a lower level data com.unication design to
define input and output, program design to define .processing, and data
base design. Furthermore, within these functions are additional levels,
each level taking the design to a greater depth of detail.

The CICS/VS program structure accommodates the top-down programming
technique. A terminal transaction initiates an application program,
which can be regarded as being at the highest level. This program can
utilize a module at a lover level to carry out the necessary editing,
another module tc carry out the processing required by the transaction,
and still ancther to prepare the output response.

Each of these lcwerlevel modules can be written separately, but
does not have to be availatle before testing starts. For example, the
editing 80dule can be tested without the processing or output module
being ready. Instead, du.my mcdules can be used in their places to
indicate that control did pass frOB the higher level module to the
prOCEssing and output modules. In the editing module, control can pass
to lower level modules in the event cf errors. Again, these error
modules are not coded until the editing module has been tested.

In this way, development cf the CICS/VS application program proceeds
from the top down. Top-down programming definitely offers the most
advantages fer ccmplex programs. In this case, the number of functions
to be coded and tested aay be sufficiently coaplex that the development
of the applicaticn program is a aajor task.

Lower level modules need not necessarily te separate CICS/VS
application p-rograms. Instead, the technique of tcp·down programming
can te used in a single CICS/VS application program, with the aain-line
of the program teing the highest level. This may call various
subroutines. These subroutines aay te replaced during testing with a
dummy subroutine to iaplement the top-down approach. An exaaple would
be the use of the PEBPOB! verb in COBOL to execute a number of "dummy"
paragraphs. The actual paragraphs may be incorporated in the program
at a later time, when the main lcgic flow of the program has been fully
tested. This technique allows easier initial testing, without having
to test cut all prcgram logic right from the start of testing.

The use of ctCS/VS as the DB/DC system represents the start of a
top-down program.ing teChnique. CICS/VS is the aain controlling
routine, which in turn calls a number of modules at a lower level--that
is, the application programs.

In designing an online apFlication to execute under control of
CICS/VS, the design team should te aware of those application functions
offered ty CICS/VS. Seme of these are referred to as built-in CICS/VS

Chapter 2. CICS/VS prograa Design 21

functions, while other functions (such as message routing, terminal
paging, and device independence) use ClCS/VS basic mapping support
(BMS). Consequently, these functiens can only be used with terminals
supported by BMS. These application functions provide the facilities
listed in Figure 2-4. They are summarized here, and described in detail
in Chapter 3 unless stated otherwise.

MESSAGE l;OUTING

CICS/VS provides an cFtio~al aessage routing and broadcasting
capability_ This enables any terminal to transmit messages to other
EMS-supported terminals in the system, either im.ediately, or at some
future time, provided that all affected terminals are of a type
supportecl by basic mapping support. While message routing may have
relevanc~: in specific apFlication design, it is particularly important
in enatling the master terminal cperator, who has the overall
responsibility fer centrel of the enline applications, to communicate
with each terminal operator.

TERMINAL FAGING

The t,:rminal Faging facility cf CICS/VS enables application programs
to develop information to be presented to BMS-supported terminals as
a series of pages. However, the sequence of these pages requested by
the terminal operator is net impcrtant to the application program.
CICS/VS-provided terminal eperatcr commands enable the operator to
reguest the dis~lay of pages in any seguence desired.

,--
TERMINAL

3210 INPUT
I:RMINAL DEVICE EXTENDED FDRMAT-
IGING INDEPEND- SUPPORT TING

ENCE

-

MESSAJ r:
ROUTI:J L TABLE

SEARCH

FIELD
VERIFYI
EDIT

BIT
MANIPU-
LATION

PHONETIC
CONVER- WEIGHTED

SION RETRIEVAL
ATP

SUPPORTED BY
BASIC MAPPING
SUPPORT, FOR USE IN
DATA COMMUNICATION

USED FOR DATA
COMMUNICATION

USED FOR
PROCESSING

USED FOR
DATASET
ACCESSING

USED FOR
BATCH DATA
ENTRY

Figure 2-4. ClCS/iS Application Euilt-in Functions

TERMINAL DEVICE INDEFENDENCE

CICS/VS terminal device independence enables transactions to be
entered from any BMS-suEFerted terminal type, and Fresents those
transactions to the application Fregram in a standard form. The output
response developed by the apFlica1:ion Fregram can be presented in
standard form to CICS/VS, which then prepares it fer transmission to

22 CleS/VS system/Application Design Guide

the relevant BMS-supported terminal. The application Frogram is
relieved of most consideraticns regarding device-dependent requirements
for terminals. It can accept inFut frcm any BMS-supported terminal in
the network and prepare terminal outFut as a seriEs of lines regardless
of the particular terminal tjFe tc be used.

EXTENDED 3270 SUPPORT

This added support enables the design of input transactions to take
advantage of the 3270 Pregram Attention (PA) or Frogram Function (PF)
keys to initiate transactiens. This enables frequently used
transactions to be initiated by cne key depressicn, instead of the use
of a transaction code which normally is from one to four characters
long.

In addition, a sFecific PA or PF key can be defined as a 3270 PRINT
key. DeFression of this key enables the contents of the 3270 screen
to be printed on the first available printer ide~tified for this
purpose. The 3270 selector light Fen can aleo be used to initiate
transactions.

INFUt FOEMATTING

This CICS/VS built-in function enables infut transactions to be
entered in a variety of formats. They are converted to a standard
format for presentation to aFplicaticn programs fcr processing. This
can enable applicatien Frcgrams tc be developed relatively independent
of the way in which specific transactions are entered at a terminal.

TABLE SEARCH

This built-in function enables a table of infcrmation to be readily
searched to extract the apFrcpriate value from that table based upon
a search argument. The table search can be either a sequential or a
binary search.

FIELD VERIFY/EDIT

Editing macro instructions are Frovided bj this CICS/VS built-in
functicn to enable the ccntents of a field to be examined for:

• All numeric (0 tc 9)

• All alphabetic (A to Z, er blanks)

• All packed decimal (CO~PUTATIONAl-3 in American National Standard
(ANS) COBOL or FIXED tECIMAL in FL/I)

User routines can be e~ecuted in the event that characters other
than those specified for a field are present.

A macro instruction is also provided to edit nonnumeric information
from a field (for e~ample, part number 119-445/B) and present the
remaining numeric characters in EECDIC.

BIT MANIPULATION

The ability to test the status of individual bits, and to turn bits
cn or off, is prcvided thrcugh the use of ClCS/VS macro instructions
for Asse.bler, Pl/I, and CCBCL. This built-in function is especially

Chapter 2. Cles/VS Program Design 23

useful in COBOL, which does not have a standard bit maniFulation
capability.

PHONETIC CONVERSION

This built-in function enables misspelled names to be used as keys
to access data sets. The name is converted to a standard key based
upon the phonetic sound ef the naDe. For example, the names Smith,
Smyth, Suythe, and Smiths result in the phonetic code S530.

This is particularly useful for identification ef names, such as in
a police inferDaticn system, custcDer information systems in banking,
insurance and medical aFplications, or product names in order entry
applications.

A phonetic conversion subroutine is also Frovided for use by batch
~rograms executing in partitions other than the ene containing CICS/VS.
This subroutine can be used for batch programs executed under the
control of DOS/VS, OS/V51, or OS/V52.

Refer to "Reccrd Identificaticn" in Chapter 5 fer a more detailed
discussicn of phenetic ccnversion.

WEIGHTED RETRIEVAL

This powertul built-in functien provides ClCS/VS applicaticn programs
with the ability to search part, or all, of a specified VSAM data set,
and retrieve infcrmation fro~ that data set based upon user-specified
selection criteria. Furthermore, records satisfying the criteria are
indicated as relevant only if they fall between user-specified limits.
The records that fall between the specified limits are then presented
to the applicatien Frograw, ~ith these records best satisfying the
criteria presented first, followed by records satisfying the criteria
least.

This function is useful for the design and development of query
applications. Queries can be designed based upon the selection of
information meeting fixed criteria sFecified in a program.
Alternatively, the design team can define user transactions and programs
which permit terminal operatcrs to sFecify the relevant selection
criteria" or selection limits, tc permit "ad-hoc" queries to be entered
by terminal operators. Refer to "ieighted Retrieval" in Chapter 5 for
more detail and for specific applicaticn examples of the use of this
function~

ASYNCHRONOUS TRANSACTION PEOCESSING (ATP)

This is not a built-in functien, but is supplied by CICS/VS to
provide a batch data collection capability, oriented to high-volume
data transmission frcm remote batch terminals. Specifically, this
function enables batches of data tc be entered froI remote terminals
and queued by CICS/VS for Frccessing. On receipt of the entire batch,
CICS/VS initiates the processing of that batch while the terminal is
able to transmit further batches to the system.

MEssages describing any errors detected during application-Frogram
processing of the batch are queued by CICS/VS. These error messages
are transmitted back to the remote terminal on reguest, to permit batch
error correction and resubuission cf corrections if required. Refer
to "Asynchronous Transaction processing" in Chapter 3 for more detail.

24 CICS/VS system/Application Design Guide

For efficient utilizatien of storage, CICS/VS ensures (unless
requested otherwisE) that cnly ODe copy of a Frogram will reside in
the dynamic storage area. All tasks requiring the use of that program
are able to execute that program concurrently.

In order to achieve a high degree of multitasking, CICS/VS supports
quasi-reentrancy. This allows several tasks to utilize the same section
of COdE over the same period of time. However, it differs from fully
reentrant programming in that control is only ~assed from one task to
another when the active task issues a CICS/VS macrc instruction.
control will not pass from one task to another on an I/O interrupt,
for Exam~le, as is the case in a DOS/VS or as/vs multitasking
environment. CICS/VS provides a quasi-reentrant capability for
Assembler, ANS COBOL, and PL/I.

Infcrmation unique to the Frocessing of a transaction (such as the
terminal input area, file I/e areas, or work areas) is separated from
the body of the application Frogram. Instead of these areas residing
within the program, they are allccated from dynamic storage. ihe
execution of each separate transaction in a multitasking envircnment
is contrelled by a task centrel area (TCA) that contains address
pointers and other vital information for that particular transaction
(task). Because the inferaation uni9ue to a task is separated from
the main body of a program, the Frogram can be used concurrently by
several tasks. ihe access methods are incorporated within the CICS/VS
nucleus, and exception or error routines are included in other Cles/vs
application programs. Figure 2-5 shews the concept of quasi-reentrant
programming. This figure is discussed in the ~!~~L!~ §~D~I5!
lDfo~ms!j~D ~gnysl.

Chapter 2. CICS/VS program Design 25

I III PUT APPLICATION TASK PROCESSING OUTPUT
'-'

.--'
CICSIVS CICSIVS Nucleus
Nucleus \

_. "--- Access Methods

Access

~ Dynamic Storage Area
Methods

~ -- -
Dynamic Storage Area 1. Locate Terminal Input Work

......... ':> Area . Area Task 1 ---
~ ~o"ol Task 1

2. Allocate Work Area. Area)
Control 3. Allocate File Input Area.
Area J 4. Get File Record. -----'> ..----- Terminal ! F". T,",

Terminal , Input /

Table Terminal

I Input Appli·

Terminal ~
~I

cation

Appli· Input A
cation Work

'\ '> As For Task 1. Then: Area Task2 Code
A Control 5. Free Terminal Input Area.

) Code Area
Task 2 6. Process File Input Record.
Control 7. Free File Input Area. L"" Area)

'> Terminal ,---- Table

Terminal
Table

I
Terminal
Input -

- ~
~-. ,-

Task 3
':> 1. Locate Terminal Input '> File

Area. Input Task 3
Control Control
Area

~
2. Allocate File Input Area.

Area

~ Appli 3. Get File Record.

cation ,---- 4. Allocate File Input Area. ,----
B Terminal 5. Get File Record. File Terminal

Appli-

Table Table
cation

6. Allocate Terminal Output Input
Code I Area. B

Terminal 7. Set Up Terminal Response. o T"m'o,' Code
Input 8. Send Respon.H. Input

I L_
Terminal

-- Output

0---._-----------

Figure 2--5. Quasi-Reentrant Programaing and ftultitasking

There are several methods utilized by CICS/VS tc initiate tasks.
These arE briefly outlined here, but discussed in .ore detail in later
sections of this publicaticn.

26 CICS/VS System/Application Design Guide

TRANSACTION CODES

CICS/VS examines a transaction code receivEd as part of a terminal
message, to identify the particular transaction involved. This
transaction code must occu~y the first one to four characters of the
transaction invocation messagE. An inFut messagE is considered a
transaction invocation when it occurs and no task is active on the
terminal. This transaction code is validated by CICS/VS against a
program control table (ECT). If the specific transaction code exists
in that table, the transaction is assumed to be a valid one, and the
transaction is passed te that prcgram identified in the relevant PCT
entry, for processing (see "Task Initiation" in Chapter 3 for more
detail).

The 3270 enables transactions to be initiated by thE use of a program
Attention (PA) key, FrograD Functicn (El) key, or selector light pen.

AUTOMATIC TASK INITIATION

Automatic task initiation invelves the queuing cf transactions on
disk using eICS/VS transient data management. A number of transactions
may be queued based upon a s~ecific trigger level. When the numter of
transactions queued reaches this trigger level, CICS/VS automatically
utilizes a specified transaction code for that queue to initiate a task
and allow those queued transactions to bE processed by a specific
program. (See "Intrapartiticn Queue Usage" in Chapter 4.)

INTERVAL CONTROL

CICS/VS enablES a task to be initiated using a specified transaction
code at some future time, based upon time of day or on elapsed time.
Data may be passed to that future task for use in Frocessing when it
has been initiated. (See Chapter 6.)

TASK CeNTRaL

,A task can be explicitly initiated from a eICS/VS application program
by the use of the CICS/VS task centrol ATTACH macro instruction. This
macro instruction specifies the transaction code tc be used to id_ntify
the program which will precess the transaction. (See Chapter 6.)

A program may pass control to other programs in a variety of ways.
These are illustrated in Figure 2-6 and described briefly below. See
the ~~L!~ ARR1i~s!io~ i.~XA~§'!§ E§!~~ ~s~YA1, SH20-9003, for
additional information.

TRANSFER CONTROL TC FROGEI! (XCTL)

This Dacro instruction (XCTL) enables one application program
(referred to as the calling program) to pa$s contrel to another
application program (referred to as the called program). Control is
not returned to the calling Frogram cn completion of execution of the
called program.

Chapter 2. CICS/VS Program Design 27

CICSIVS
Nucleus

link A

Program
A

XCTLB

Program
B

link C

Return

Program
C

link D

Return

Figure 2-6. CICS/VS program Contrel Pacilities

LINK TO FBOGBA~ (LINK)

Program
D

Load E Program
E

Process

Delete E

Return

This lacro instruction specifies the name of an application program
to be executed. ~he calling program passes contrel to the called
program. On com~letion of ellecuti,cn, control is returned to the calling
program, to the statement following the LINK.

LOAD PEOGBA! (LOJD)

This macro instruction enables a program, identified by name, to be
loaded into storage. BOleger, centrel is not ~assed to that program
for execution, but is returned to the statement following the LOAD
macro iustruction. The lOAD macro instruction can be used to load
application programs, which may subsequently be linked to or transferred
to. Alternatively, this maClO instruction aay be used to load tables
of inforDlation.

DELETE PFOGBJ! (IELET~)

Normally, on completion of execution of a task, all storage utilized
by that task is auto.atically freed and made available for use in

28 CICS/VS system/Application Design Guide

processing other transactions. Active programs tEing used by tasks
will continue to reside in storagE. If, however, the storage occupied
by an inactive program is re9uired fer some other Executing task, that
storage will be freed. WhEn a program is loaded, its sterage can be
automatically freed if it is currently inactive, allowing another task
to use that storage.

Alternatively, the LOID macro instruction can s~ecify that the
storage is not te bE freed, tut that the program is to remain resident
in storage even though inactive, fer perfermance reasons.

The DELETE macro instruction is used to deletE such a resident
program at a point which will enable its storage te be utilized for
other functions.

RETUEN PEO! FBCGFA! (EETORN)

The Program Control RETURN macro instruction enables a program to
return centrel to a higher level pregram, that program can be either
another application program cr CICS/'S if the RETURN is issued by the
application program at the highest lEvel. The RETURN indicates that
the relevant program bas new completEd processing. At task completion,
CICS/VS frees all of the storage asscciated with the task, such as
terminal I/O areas, file I/O arEas, and file work areas, and eventually
also frees the storage occupied ty the task control area. Optionally,
a transaction code may bE specified in the RETURN macro instruction.
The transaction code is used with the next input message from the same
terminal that originated this coapleted task.

ABNORMALLY TERMIN~TE PROGEAM (ABEND)

This .acro instruction enables a program to immediately terminate
execution of a task, with an optional dump if required. In conjunction
with the optional operator signon facility (see Chapter 3), the ABlND
macro instruction can be used to develop operator error statistics.

ABNORMAL TER!INATION !XIT (SETXI!)

This macro instruction enables a task to activate, deactivate, or
reestablish a pregraa-previded exit routine to be executed in event of
abnormal termination of the task. This exit routine can be utilized
either on CICS/VS abnormal task termination, or ty termination through
the use of the ABEND macro instruction by the task.

An abnormal terminaticn exit routine is used to complete urgent
processing by a task for reccvery purposes, or it may attempt recovery
of the particular error condition itself. Refer tc "Program Error
Recovery" in the following sEctien fer more detail.

CICS/'S features facilities fer detection of pregram error
situations, and protection of the online system frem the effect of
these errors. If a program-check error is detected in an application
program, CICS/VS will attempt to atnormally terminate that task while
still permitting other tasks to continue processing.

Chapter 2. CICS/VS Program Design 29

FROGRA~ ERROR PROCESSING

CICS/VS enables an application pregIam to indicate, through the use
ef the program centrcl SETXI~ macro instruction, that control is to be
passed tc a specified routine in the program in the event of a program
error, or to another program. This routine (or Fregram) .ay attempt
recovery of the error situatien, record certain critical information
necessary to the application befer,: the error program is abnormally
terminated, er ignore the errer situation and continue program
processing.

FROGEA~ EBROE PRCGEA~

In the event that a prcgram errcr requires abnormal termination of
a task, the terminal operator who invoked the transaction to be
abnormally terminated will be notified of this fact by CICS/VS, if
a~~ropriaite. CICS/VS passEs centrel tc a prcgram error program (PEP),
after all SETXIT processing has teen completed for the task and the
decision bas been Dade tc ~erDit the abnormal termination to continue.
This PEP is a user-written rcutinE, given centrol through a LINK from
the CICS/VS abnermal conditicn pregram (ACP), which enables the user
to perform installation-level abncrmal termination action.

SETXIT program processing and PEP are described further in'"System
Recovery Program" in ChaFter 8. These facilities can be used to provide
program tackup capability for online a~plications.

30 CleS/Vs System/Application Design Guide

This chapter presents Data Communications Design in a tutorial
fashion. Experienced CICS users may wish to omit reading much of this
chapter. It is suggested, however, that such users should read the
following topics:

• Terminal device independence

• Terminal paging

• ~essage routing

• Virtual Telecommunications Access Method (VTAM)

• Task initiation

• Input transaction design

• Field verify/edit

• Table search

These topics describe changed, er new, facilities which were not
available in previous versions of CleS.

-----------~-~---~---~-~~---~-----~-~--~----~~--~--------~-~--.~-----~-

The Data Communications design has a significant effect on the
success er failure of the overall preject. It is in this area that
the interface bEtween the user and the computer is defined. This
definition should be oriented toward satisfying the requirements of
the user and the applicaticn, while still presenting information to
the computer in a suitable form for processing.

Before discussing various Data Communications design approaches, it
is important that the reader understand the following CleS/Vs support
and telecommunications access method facilities which will aid him in
his design:

• Basic mapping support

• Terminal device independence

• Terminal paging

• Message routing

• Virtual Telecommunications Access Method (VTAM)

with these features available to the system designer, various
approaches fer ccnversational CICS/VS applications and batch CICS/VS
applications can be considered.

The basic mapping support function (BMS) enables the application
program to have access to input data, and prepare output data for
transmission to terminals, without regard to the physical location of

Chapter 3. CICS/VS Data Communications Design 31

the data in the terminal message. Additional infcrmation reqarding
tasie ma~ping su~pcrt can be found in the ~!~~L!~ !2pli~Atio~
FIQg.~gm.!!L~f.!.§ Re!~~§1!~~ !!l!llY.Al, SB20-9003.

B~S uses "maps" to descrile the input for.at cf data received from
terminals, and (if necessary) to describe the format of output data to
be transmitted tc terminals. These maps are defined by the user
(generally the system prcgraamer) and are separately assembled and
cataloged into the CICS/VS prcgram library for retrieval when needed
by application programs.

The applicaticn program accesses data from in~ut messages, and
prepares data for cutput res~onses, by field rather than by location
of that information in the terminal message. Consequently, the
application becomes less dependent on the actual message format. This
format independence is one of the most significant advantages of BMS.
Changes to message fcrmats tc meet various aFplication requirements
can te readily applied, by mcdifying only the EMS maps describing those
affected formats, reassembling the., and cataloging the changed maps
to the Cles/vs program library. All programs using these map'p reflect
the changed formats without modification of the prcgram~. However,
recompilation of the programs might be necessary. In this manner, the
installation will be more responsive to applicaticn nee~s. The use of
EMS ty applicaticn ~rcgrams is illustrated in Figure 3-1.

EMS MAFS

An in~ut map can specify data in an input message which is relevant
to a particular program and ignore other data in the input. Several
programs can then operate on the same input message format, using a
unique map for each ~rograD. In addition, constant (or descriptive)
information, if desired, can te defined in an output map and be
automatically incorporated by BMS in an output message.

Basic mapping support provides the following services:

• Terminal device independence

• ~erminal paging

• Message routing

Because Basic Mapping SUPFcrt remcves the need for the apFlication
programmer to code Dcst terminal device-dependent support in his
programs, programs can be written withcut regard to the input or output
device used fer transmission of Dessages to those terminals supported
by BMS. BMS accepts input mEssages and transmits cutput messages to
and from the devices below (see Figure 3-2).

• 1050 Data communication System

• 2740 Communications Terminal, ~cdels 1 and 2

• 2741 Communications ~erminal

• 2110 Data Ccmmunication SystED

• 2780 Data Transmission Terminal

• 2980 General Banking System (keyboard and printer only)

32 CICS/VS System/Application Design Guide

• 3270 Information Display System

• Teletype Terminals

• communicatins Magnetic Card SELECTEIC (!)
6610, used as a 2741

Typewriter (CMCST) Model

CICS/VS AND APPLICATION
INPUT PROGRAM PROCESSING OUTPUT

I Terminal Input I
BMS 1. Application program issues >
Input CICS/VS BMS in macro instruc·
Map tion, specifying relevant input

MAP, to initiate terminal input.
Alternatively, BMS MAP macro
instruction is issued by appli·

/ Input

cation program, specifying
Input Message

~~>
relevant input MAP to be used

Message A BI C
for task initiation message.

2. BMS issues terminal control
get macro to read message, if
application program issued BMS
in macro instruction.

3. BMS extracts defined fields
from input message. > Formatted Message:--1

AlB -l--'c
Application

4. BMS positions fields in standard

~ /
Program

format message.

5. Program access fields using
input MAP structure or DSECT. => Application

(
Output Map Progri:lm
Structure Or
DSECT

~nL I I Terminal Output

I
Input Map

~
Structure Or

6. Application program prepares
DSECT

Formatted Message output in standard format,

E 1 F I G H
using output MAP structure
or DSECT.

7. Program issues BMS output
macro, specifying output MAP

~ and also fields to be included

BMS in output message from MAP.

Output 8. BMS extracts fields and sets I Output Message I Map up output message, including

I I I I I H I fields contained in MAP, if "> D E F G
specified by program. i 9. BMS issues terminal control
put macro to write message.

=>
Output
Message

Figure 3-1. CICS/VS Basic Sapping Support (BSS)

Chapter 3. CICS/VS Data Communications Design 33

INPUT

r---

• 1050

• 2740

cJ • 2741
~I"""" • TWX

• 2980 Keyboard/Printer
• CMCST

• 2700

c:5D • 2780
• 3600 ----• 3650

• 3780
Communication Systems

0 • 3270 ----
Displays

• Card

Cd] Reader
~I"""" • Line

Printer

Seqtl Unit Record

cD • Disk
........

• Tape
~-

Seqtl Unit Record

CICSNS AND APPLICATION
PROGRAM PROCESSING

Input

1. BMS removes device-

1""> dependent code from
input message.

2. I nputmessage is pre-
sented to program
as if read from card.

Output

3. Application pro-
gram prepares out-
put message as if to
be output on line
printer.

4. Program inserts op-
ional new line
characters (X'15') in
output, if desired.

5. Program issues BMS
output request.

6. BMS sets up new ter·
minal line for each
new line character
specified.

7. BMS breaks lines
greater than ter-
minal line length
specified, into sep-
arate lines.

8. Device-dependent
code (carriage
return, idles) in-

~>

~>

~>

~>

serted by BMS.

w> 9. Output message
then transmitted
to terminal

OUTPUT

• 1050

cJ • 2740

• 2471

• TWX
Keyboard/Printer • 2980

• CMCST

g • 2770
• 2780 • 3600

• 3650 • 3780

Communication systems

0 • 3270

Displays

Cd]
• Card

Reader

• Line
Printer

Seqtl Unit Record

cD • Disk
• Tape

Seqtl Unit Record

...... -D-e-v-ic-e.-d-e-pe-n-d·-e-n-t -CO-d-e-' -m-a-y-be-r-em-o-ve-d-··-by-p-ro-g-r-a:-x ... :-e:-:-I.::'::t7::::~~:UC~::~-h;~360: bef::n-s-m-i-SSion to CICSfVS. :: I
For the 3600 and 3650, input mapping requests are ignored. .

-------,_._."--, ,----,
Figure 3-2. CICS/VS Terainal Device Independence

• 3780 comaunication Systea

• 360~ Finance Ccmmunicaticn SysteD (BMS input requests are ignored)

• 3650 Retail stcre System

Furthermore, the following seguential devices can be used to simulate
online terminals, and transmit simulated terminal messages to and from
the systelo:

34 CICS/VS System/Application Design Guide

• Card reader/line printer

• Tape drives

• Disk drives

INPUT MESSAGES

ClCS/1S accepts input messages frem any of the above devices and,
using the input map specified by the application program, converts the
input message into a fixed fermat message, as specified ty that map.
Device-dependent characteristics in the input message are removed, and
the appropriate fields are selected from the message and inserted in
fixed locations in the mapped message.

In the case of the 3600, device-dependent characteristics in the
input message are removed ty the 3601 Controller and the input message
is formatted for CICS/VS applicatien program processing before
transmission to ClCS/VS. Consequently, BMS input mapping requests
associated with 3600 input messages are ignored, and the data received
from the 3600 is passed to the CICS/VS applicaticn program without
change. See "Basic Mapping Suppcrt Using VTAM" for additional
information.

OUTPUT MESSAGES

output messages fer transaissicn to terminals can be prepared without
the control characters required for field positicning, or line
separation. output Dessages can be Fresented to CICS/VS as a data
stream. Optionally, the application program can insert new line (X'1S')
characters in the output data stream if required.

CICS/1S device-independent sUFPcrt divides the data stream into
lines no longer than those defined for the particular terminal. If
new-line characters appear occasionally in the data stream to further
define line lengths, they are honored. CICS/VS inserts the appropriate
leading characters, carriage returns, and idle characters, and truncates
trailing blanks from each line.

Terminal device independence permits an application program to be
independent of the terminal type (or types) in the installation, and
can provide for support of mixed terminal types ty the same program.
This allows the use of backup ter.inals of a different type, or
changeover of hard-copy terminals to display terminals when transaction
volumes warrant the change, with little or no additional programming
eff~rt. It also reduces the amount cf program maintenance necessary
when changes are made in the terminal devices used by online programs,
and permits increased growth flexitility in the installation.

Terminal device independence is the only EMS support available with
the subset option of CICS/DOS/VS. Terminal paging and message routing
are not supported. (See "CICS/DOS/VS Subset Option" in Chapter 7.)

Terminal paging is an additional feature that extends the
capatilities of terminal device indeFendence. The application
programmer can prepare mere output than can be conveniently or
physically displayed at the receiving terminal. That output can be
presented by CICS/VS as a series of pages. CICS/VS identifies and
saves each page of infor.aticn prepared by the application program.

Chapter 3. CICS/1S Data Communications Design 35

INPUT

["'';''.'0 Program

J

~
Page 3

Page 2

Page 1

• Page Forward

• Page Back
Paging

• Skip Pages Command
Forward

• Skip Pages
Backward

• Page Next

T,m,,,,,, (• Page Previous

• Page Current Storage
• Terminate An

Purge Pages

• Copy Page

• Query Page ID

.>

LlJF>
-;:::>

--- '-- '--",>

ClCSIVS AND APPLICATION
PROGRAM PROCESSING

1. Applicatic,n program
presents output pages
in normal application
sequen, e.

2. CICS/vS write pages to
temporary storage.

Request Pagi;'g Status

3. Terminal operator
enters page commands
requesting pages in
desired sequence.

4. CICS/vS retrieves each
page requested. and
transmits it to the
terminal.

Automatic Paging StatuI

5. CICS/VS retrieves each
page in same sequence
prepared by program
and transmits it
automatiocally to
the terminal when
able to rE:ceive it.

Figure 3-3. CICS/VS Terminal Paging

OUTPUT

(Temporary
=> Storage

~
-- ,-- I Page 1

Page 3

~> L_
Page
Display

The terminal operator can thEn rEtriEve this output as a nuaber of
pages in any ordEr; tbat is, in the erder tbey were prepared, ~r by
skipping forward or backward in the output page seguence.

CICS/VS provides a seriEs of pa9ing co •• ands which can be used by
the terminal operator to selEct Iages for display in whichever sequence
he desirEs (see Figure 3-3).

Terminal paging also provides the atility to co.bine several small
sections of data inte cne pa9E which is then sent to the t~rminal.
This is referred to as "page building" and enablEs the application
programmEr to prEpare his output independent of the physical output
capability of the terminal.

Terminal paging further relieves the application programaer of the
need to ccncern himself with the p~esentation of infor.ation in a form

36 CICS/VS systea/Application Design Guide

suitable for display at the appropriate terminal, or with presentation
of that information to the terminal in the sequence requested by the
terminal operator. The ap~licaticn ~rogram.er can nov prepare a series
of pages of information, on the assumption that the terainaloperator
may wish to examine all of that information, and then present those
pages directly to CICS/VS. Ne further programming is necessary to
handle the selection of ~ages for display at the terminal. Page
selection is made by the terminal operator, using the CICS/VS paging
commands.

This will simplify program development of conversational applications
and consequently increase prcgra.mer productivity and decrease the
amount of future program maintenance necessary.

It is important that the system designer recognize that terminal
pages are saved ty CICS/VS in temporary storage. Temporary storage
may be supported in main storage alone, or on auxiliary storage using
VSAM; both will increase the demands for real stcrage during execution.
Using VSAM on a CPU with limited real storage available for virtual
storage paging may increase ~aging and therefore influence online
performance. Refer to Chapter 1 for recommended ainimum CPU sizes when
VSAM is used. Terminal ~aging is not supported by the subset option
of CICS/tOS/VS. (See "CICS/DOS/VS Subset Option.")

TERMINAL PAGING STATUS

Terminal paging is particularly oriented toward display terminals.
However, it can also be used for hard-copy terminals. A terminal can
be defined as having a "reguest ~aging" status or an "automatic paging"
status.

Display terminals must use a request paging status, while hard-copy
terminals can use either request ~aging or automatic paging status.
Request paging status enables pages to be displayed at the terminal on
request by the terminal operator, whe can specify the sequence of pages
to be displayed based upon his requirements.

Automatic paging status, such as normally used for a hard-copy
terminal, causes CICS/VS tc automatically output the next page of
information on completion ef a previcus page. In this way, all
information is presented tc the hard-copy terminal in a continuous
output stream. If required, an automatic paging terminal may be changed
to request paging status by either the terminal operator or the
application program, enabling only those pages to be printed which are
of significance to the terminal cperator. Similarly, the terminal
operator or the application program can change request paging status
to automatic paging for all terminals except display terminals.

Other terminal status specificaticns can also be used to indicate
whether a terminal automatically receives messages sent from the CPU
or from cther terminals. This is discussed under "Terminal Status" in
Chapter 4. Additional infcrmaticn on terminal paging can be found in
the ~lCSL!~ ABB!j~§!i2D fI2g1~!!§I!§ jef§I~~§ ~~~s!, SH20-9003.

Message routing directs messages to one or more terminals in the
system, either by use of the message switching transaction, CMSG,
supplied by CICS/VS, or by the E!S ROUTE macro instruction. In this
context, the term "message switching" refers to the use of CMSG. The
term "message routing" refers to the use of the EMS ROUTE macro
instruction. (The CMSG transaction itself uses the services of the
EMS BOUTE macro instructicn.)

Chapter 3. CICS/VS Data Communications Design 31

The CMSG transaction is entered by a terminal operator together with
a message to be directed tc ancthel= terminal, or to several terminals
identifiecl by the terminal oFera tor.. (This is discussed further in
"Message switching Transactien (C!!SG)" later in this chapter.)

The message routing macro instruction permits an application program
to send messages to one or mere terminals not in direct centrol of the
transaction. Message routing uses EMS, and saves messages in temporary
storage to be automatically sent to the specified destination terminals
if the status of those tEruinals allcws for reception of the messages
(refer to "Terminal Status" in ChaptEr 4). If a terminal is not
immediatEly eligible to receive the message, CICS/VS preserves it in
tempoary storage until such time as a change in terminal status allo.s
it to be sent, cr a user-sFecified period of timE elaFses, whichever
occurs first (see Figure 3-4). The message to te delivered is separated
into a message for each terminal type that will receive it. Each
separate terminal-type message is saved in tempoary storage, together
with a destination terminal list fer that particular terminal type.

In addition, an applicaticn Frogram can prepare pages of information
to be transmitted to terminals, using EMS and the terminal paging
facilities as described above. These Fages can te routed to one or
more terminals or operators, through the use of the BMS ROOTE macro
instruction.

MESSAGE DELIVERY

The application programmer spEcifies the identification of the
terminal (or terminals) to receivE the message, and, optionally, can
also specify a time when the message is to be delivered. If the message
cannot be delivered either iaaediately or at the sFecified future time,
CICS/VS retains the message fcr a user-specified period of time. If
it still <:annot be dElivered, CICS/VS notifies the originating terminal
or an alternative terminal sFecified when the original message was
entered.

CICS/VS allows messagEs to be dirEcted, not only to specific
terminals v but also to sFecific operators or operator classes. In this
way, sensitive security information will only te delivered to those
operators authorized to receive it. It is retained in temporary storage
until the specified operaters sign on to the specified terminals, and
only then will relevant messages te dElivered.

If a message is to be sEnt to a specified operator without
identifying a terminal, that operator must already be signed on when
the message is first presented te CICS/VS to establish the terminal
identificatien tc be used. If a message is sent to a specific operator
and terminal, and that operator can never use that terminal (because
of geographic location, for exam FIe), the message will be accepted by
CICS/VS but may never be dEliverEd. This is noted by CICS/VS upon
expiratien of thE specified time within which the message must be
delivered ..

Terminals in the IBM 3600 PinancE Communicatien System are identified
by a lcgical device code (tDC). Me_sages from CICS/VS are received by
the appropriate 3601 application program which represents the specified
terminal ID and controls the devices attached to the 3601. The message
from CIeS/VS identifies the IDC (SFecified by the application
programmer) that is to rEceive the messagE; it is the responsibility
of the 3601 application Fregram to ensure that the message is delivered
to the device indicated ty the LDC. Logical device codes are described
in detail in "Basic !apping Suppert Osing VTAM" in this chapter.

38 CICS/VS System/Application Design Guide

INPUT

Initiate Message Routing Operation

Tape
Display ~

iSk 1-

K""""dlP';&
Card

Originator (Terminal Or
Program I Specifies:

• Destination Terminal(sl
• Destination Operator(s)
• Delivery Time
• Notification Terminal
• Message To Be Sent

1
Temporary (
Storage

\

Disk

1

>

>

CICS/VS PROCESSING

1. CICS/VS accepts message
switching transaction
from terminal, or BMS
route macro instruction
from application
program.

2. Message is written to
temporary storage.

3. I f message is to be de·
I ivered later, interval
control task initiation
is specified for required
time(s).

4. When delivery time is
reached, message is
read from temporary
storage and sent to
specified terminal(s)
or operatods). I fable
to receive message.

>

>

OUTPUT

Temporary (
Storage

< D"k (

~"b:::;:""~
Line Printer I

Tape ~
Destination
Terminallsl
Or Operator(s)

(
\

Display

Tape Keyboard/Printer

Line Printer

5. If terminal(s) or oper·
ator(s) is unable to reo
ceive message after de­
fined delivery delay
period, origin'ating (or
notification) terminal
is notified.

~
iSk l~_

r--..-----......,/"> Display Tape

Line
Printer Keyboard/Printer

Destination Terminallsl
Or Operator(s) Unable
To Receive

Originating (Or Notificationl
Terminal

Figure 3-4. CICS/VS ftessage Bouting

MESSAGE SWITCHING TRANSACTION (CMSG)

CICS/VS provides the message switching transaction CftSG for
transmission of information between terminals. Pigure 3-4 shows the
use of this transaction.

The availability of the message routing feature in CICS/VS provides
a valuable capability fer coamunication of information, not only tEtween
terminals to satisfy application reguirements, but also for better
control cf the online applications by the master terminal cperator or
supervisory terminal operators. These operators may broadcast messages
to all terminals under their control informing them of cErtain
significant information.

CICS/VS message routine utili2Es temporary storage, which will use
VSAft if auxiliary storagE residence cf messages is desired. Message
routing and message switchin9 are not supported by the subset option
of CICS/DOS/VS. (See tlCICS/DOS/VS Subset Option" in Chapter 7.)

Additional information abcut basic aapping sUfpcrt can be found
the CItSL!~ A~R!i~~~i2D !!9gXjm~§!!§ Eef~!~DS~ a~YA!' SH20-9003.
logical device codes are described in more detail in the ~~Ll~
A.QvanSfji.Q ~Q.mlQYDi~!!i2D§ 1iyjg!, SH20-9049.

Chapter 3. CICS/VS Data Communications Design

in
3600

39

CICS/VS application programs can communicate directly ~ith terminals,
using:

• Basic mapping support ~~S) macro instructions

• Terminal control macro instructions

BMS enables application programs to request terminal input or output,
using the DFBBftS macro instructicn:.

• For input (TYPE=IN or ~AF)

• For output (TYPE=OUT)

• For terminal paging (TYPE=TEXTELD, PAGEBLD or FAGEOUT)

• For message routing (TYPE=BOUTB)

Terminal control enables Frograms to request additional functions
by using application programmer tPfiTC macro instructions to:

• Write data to a terminal (TYFE=WEITE or TYPE=FUT)

• Eead data from a terminal (TIPE=BEAD or TYPE=GET)

• Synchlconize terminal I/O with processing (TYPE=WAIT)

• Transmit a page of data ahd read reply (TYPE=PAGE)

• Transmit to the buffer of a banking terminal (TYPE=CBUFF)

• Test for the presence of a banking passbook (TYPE=PASSEK)

• Beset a line (TYFE=RESET)

• Disconnect a switched line (TYFE=DISCONNECT)

• Erase and write data to a visual display (TYFE=(ERASE,iBITE»

• Specify the last outFut message to a VTAft-suppcrted terminal
(TYPE:=LA ST)

In addition, the system programmer may USE the following DFBTC macro
instruct ilons to:

• Change the status of a terminal (CTYFE=STATUS)

• Loca t4a a terllinal entry in the TCT (CTYPE=LOCATE)

• Check the results of a previcus STATUS or LOCATE request (CTYPE=CBECK)

These macro instructions are described briefly in "Terminal Control
Using VTAI!" and in acre detail in the g~L!~ ~j!g f~.91U!!I!§
~~!!I~D~§ A!DY~l, SH20-9004.

The particular communication macro instructions used in programming
are not significant to the fcllowing discussion of data communication
design. However, if BftS is not used, the following facilities canDot
be provided by CICS/iS:

40 CICS/iS System/Application Design Guide

• Terminal format independence

• Terminal device independence

• Terminal paging

• Message routing

3270 BMS can be specified during system generation to provide
compatibility with previous versions of CICS. Terminal device
independence, terminal paging, and message routing need not be
specified. However, if they are specified, they require that temporary
storage (and also VSAM) be used.

BMS and terminal control macro instructions can be used in the same
application program, if required. Refer to the CICS/VS Application
Programmer's Referen~ Manual for further information.

CPU CONSOLE AS ~ CICS/DOS/VS TERMINAL

CICS/DOS/VS allows the CPU printer keyboard or display console to
be used as a CICS/DOS/VS terminal. Users with only remote terminals
may enter master terminal operator, system administration, and CICS/VS
application transactions at the CPU, thereby isolating these activities
from any network considerations. See the Subset User's Guide (DOS),
SH12-5404 for additional information about this feature.

BASIC TELECOMMUNICATIONS ACCESS METHOD (BTAM)

The Basic Telecommunications Access Method (BTAM) is used by CICS/VS
to support a wide variety of terminals. These include the following:

• 1050 Data Communication System

• 2260 Display Station

• 2265 Display Station

• 2740 Communication Terminal

• 2741 Communication Terminal

• Communicating Magnetic Card SELECTRIC ~ Typewriter (CMCST) Model 6610,
used as a 2741

• 7770 Audio Response Unit

• TWX Common Carrier Teletypewriter Exchange Terminal Station (Model 33/35)

• 2770 Data Communication System

• 2780 Data Transmission Terminal

• 2980 General Banking Terminal System

• 3270 Information Display System

• 3735 Programmable Buffered Terminal

• 3740 Data Entry System

• 3780 Data Communications Terminal

Chapter 3. CICS/VS Data Communications Design 41

• system/3

• system/7

• System/310

• 3161 Communications Terminal (using 2140/2741 Compatibility Feature)

• 3170 Data Communications System (using 2170 Compatibility Feature)

See the CICS/VS System Programmer's Reference Manual for additional
information concerning components supported and features required for
these terminals.

The subset option of CICS/DOS/VB uses BTAM to support the following
terminals:

• 3270 Informa tion Display System (local and remote)

• 2140 Communication Terminal

• 2141 Communication Terminal

See the Subset User's Guide (DO~ for additional information.

BASIC GRAPHICS ACCESS METHOD (BGAM)

The Basic Graphics Access Method (BGAM) is used by CICS/OS/VS only.
It supports the local connection of the 2260 Display Station.

TEI,ECOMMUNICATIONS ACCESS METHOD crCAM)

CICS/OS/vS provides an interface to the Telecommunications Access
Method (TeAM). This interface enables CICS/OS/VS to run with other
TCAM appl.ications under a common TCAM environment, or under TCAM through
a VTAM-controlled terminal environment.

CICS/VS accepts data streams from TCAM-supported terminals which
can be edited in the message handler portion of the TCAM message control
program (MCP) to appear as EBCDI C or 3270 da ta strea ms.

With the exception of 1110 and 3210/2260 compatibility support, the
TCAM support provided in CICS/OS Standard Version 2.3 (Program Number
5136-XX1) is upward compatible to the CICS/OS/VS TCAM interface. See
the £!£§ ~eneral Information Manual, GH20-1028 (for information
regarding CICS/OS STANDARD Version 2.3, Program Number 5134-XX7) and
the OS TCAM programmer's Guide and Reference Manual, GC30-2024, for
information regarding the terminals supported.

other IrCAM-supported terminal s, which were not supported by CICS/OS
STANDARD Version 2.3, are supported as data streams which are
terminal-'type transparent to CICS/OS/vS.

TCAM i:9 an optional access method which may be used alone, or in
combination with other access methods supported by CICS/OS/VS. When
communica'ting with terminals attached to 3704 or 3705 Communications
Controllers in NCP mode, TCAM must communicate through VTAM.

42 CIC13/VS System/Applica tion DE~sign Guide

The virtual Telecommunications Access Method (VTAM) is used by
CICS/VS to support a numter cf programmable terminal systems. These
terminal systems enable programming tasks (such as transaction editing,
validation, and formatting) relevant to a remote location to be carried
out in programmatle control units at the remote location. The
programmable control units can o~erate either online to a CPU, or
offline in a standalone mode. Operating offline, many of the control
units can permit terminal operation to continue independent of
availability of the main CFU or associated communication links.
Terminal transa~tions cab te recorded on disk storage (whicb is part
of the programmatle centrol unit) for later transmission when CPU
communication is available. Disk storage also enatles selected
application data sets te be stored in the programmable control unit
for direct reference by ap~licatien ~rograms executed in the control
uDit on tehalf of terminals.

This concept ef "distributed function" enhances performance and
permits cost efficiencies to be realized in the areas of data
transmission, system availability and configuratier, and application
flexibility.

The Network Control System (NCS), which may be used by CICS/DOS/VS,
provides a subset of the support available with 1TAK. Refer to "Related
Publications" in the Preface for NCS publications.

SYNCHRONOUS DATA LINK CCNTEOI (StLC)

Purther efficiency in data transmission and data integrity is
realized through the use of synchronous data link control (SDLC) data
transmission. stLC allows data to be transmitted in full-duplex mode
(transmitted simultaneously in both directions along a communications
line). VTAM supports both StLC and full-duplex transmission.

A significant feature offered by SDLC is data integrity. Eoth VTAM
and the control unit can check fer error-free transmission of data and
can reguest retransmission if an error is detected. Each transmission
between VTAM and a programma tIe control unit is assigned a sequence
number. Messages lost, because cf cemponent or ccmmunication failures,
are easily detected and the lost data recovered. If recovery is not
possible at the time of detection, the end component (VTAM or the
control unit) requesting recovery can switch to an alternate processing
mode.

If communication is lost tetween the CPU and the control unit, the
control unit may switch to offline mode. Transactions entered from
the attached terminals are processed by referencing data sets stored
on the disk storage in the ccntrcller. The transactions can be stored
on the disk for later batch transmission to the CPO when ccmmunications
are restored.

Message recovery and resynchronization are handled auto.atically by
VTAM and the ~ontroller. Either end of the link can transmit a command
to test the sequence nuabers ef the last transmitted aessages and to
set the sequence numbers to reflect the status of the CPU and control
unit. If this operation determines that messages were lost,
resynchronization is accomplished ty retransmitting the lost messages
from copies stered on the disk storage.

See l]~ ~~D~l!l.ml.Q'y§ ~.9!.9 lillls 5;"Il.u~: .§iuul 1n!2lll tiop ,
GA27-3093, for additional information concerning StLC.

Chapter 3. CICS/VS Data Communications Design 43

CICS/VS uses VTAM and SDLC to sup~o~t the following programmable
cont~ol unit terminal systems:

• IBM 3600 Finance Communication System

• IBM 3650 Retail Store System

• IBM 3790 Communications System

See "CICS/VS Session Types" fox additional info~mation about these
systems, and see ~1~~!~ §~!i~ 1!2S~lmi!!§ iii!!§n~! A!D»Al SH20-9004,
for features sUPForted er reguirEd by CICS/VS. '

VTAM NETtiOEK

The V1AM netwcrk consists of the follcwing comFonents:

• communications ccnt~clle~s

• communication lines

• prog~ammable terminal systems

These components are ccnt~ollEd by the following prog~ams:

• CPU Frogram CVTAM apFlicatioD F~eg~am)

• Network Contrel Fregra. (NCP)--This program resides
in the communication controller.

• Function program or application FIogra8 block (AP)-­
This program resides i~ the ~rcg~a.mable control unit.

CICS/VS support of BTAM, EGA!, 1CAM, and V!AM can co~reside in the
CICS/VS Fartition/region.

~2mmYn!~§.!ion§ ~~DlI~llj'§

VTAM uses the IEM 3704/37C5 Ccmmun1cations controllers to enable
pa~t of the telecommunications processing to be aoved out of the central
computer and inte the netwcrk. 'lhe 3604/3705 control the flow of
inforaation between VTA! and terminals through use of a network control
program (NCP). The 3704/3705 and its NCF support a variety of ~emote
terminals. An NCP can be generated to handle lines in either n~twork
control mode (for VTAM-suPFo~ted terminals), in emulation mode (for
BTAM-supported terminals), or in toth modes. An NCP genE~ated with
both functions is called an NCP with partitioned emulation programming
(PEP) extension. This permits bcth VTAM- and ETAM-supported terminals
to communicate with application Frog~ams (such as CICS/VS) through one
3704/370~i.

Functions provided by the 3704/37C5 include:

• line control

• dynamic buffering

• deleting and inserting line control characters

• translating character codes

• handling recoverable errors

44 CICS/VS system/Application Desigm Guide

• detecting permanent line errcrs

• gathering line statistics

• activating and deactivating lines and closing down the network

By performing these functions, the 3704/3705 and NCP conserve central
computing resources. See lB!12~~~!i~D 12 !h~ IBM 37~! ~~ ~1~~
~I!Ynic~tioD§ ~sD1IR!1~1, GA27-3051, for additional information.

~hAl~g j~§QY~~§

VTAM permits its network resources to be shared among the various
VTAM applicaticn ~rcgraDs being executed in separate partitions/regions
in the CFU. One VTAM application ~rogram may be CICS/VS, which uses
VTAM to establish communication tetween CICS/VS application programs
and terminals, and another program could be IMS/VS operating in a
different partition/regicn.

VTAM controls the use of ~aths through the 3704/3705, communication
lines, and programmatle controllers so that several applications may
communicate with different terminals on a single line. Also, the
terminals on the same line may co.municate with any of the application
programs using ViAM. Thus, cne terminal on the line may be
communicating with CICS/VS, while anotber terminal on the same line is
communicating with IMS/VS. However, once a terminal begins to
communicate with a VTAM application program, that terminal cannot
communicate with another ViA! apFlication program until tbe first
program breaks its logical connection and releases the terminal. While
connected to CICS/VS, the terminal may, of course, enter transactions
to initiate different CICS/VS application programs.

for further information on VTAM, refer to l~!l~~Y'1i2~ 12 ITAM,
GC27-6987, and 11JI ~~D~.i!s IDg I1~DniDS' GC27-6998.

CICS/VS use~ VTAM to communicate with the following terminal systems:

• 3600 finance Communicaticn System

• 3650 Betail Store system

• 3790 Communication Systes

These terminal systems bave "intelligent" capabilities and use a
programmable contrcller tc direct the operation of a number of attached
terminals. The controller ccmmunicates with VTAM, which directs traffic
between CICS/VS and the controller. The 3601, 3E51, and 3791 are the
controllers for the 3600, 36~0, and 3790 systems respectively.

A logical connection is established bEtween CICS/VS and a controller
program. The ccntrcller program and its associated terminals, is called
a logical unit. The VTAM connection with a logical unit is regarded
by CICS/VS as similar to a physical connection with ETAM-supported
terminals. The CICS/VS terminal control table (iC~ is used to define
the status of each VTAM logical connection. A 4-character terminal
identification is used to idEntify each particular TCT terminal entry,
and hence identifies the lcgical unit.

Chapter 3. CICS/VS Data Communications Design 45

CICS/VS SESSION TYPES

CICS/VS sUPForts several different logical connections (called
sessions) with the 3600, 3650, and 3790.

~ 600 ~§!HiiQ!l§

A 3600 session is established between eICS/VS and a 3600 application
program tlcck (AF) in the 36C1 ccntrcller. The AF is regarded by
CICS/VS as a logical unit, referred to by its terminal identification
in the TeT. The AP, in turn, controls the operation of one or several
of the following terminals attached to the 3601:

• IBM ~1604 Keyboard Display

• IBM ~1610 Document Printer

• IBM ~1611 Passbook Printe I

• IBM ~1612 Passbook and Document Frinter

• IBM ~1618 Administrative line Frinter

• IBM ~1614 Consumer Transaction Facility

The 3Ei14 may also be attached directly to a 3704/3705 and is then
regarded as a separate logical unit. As many as 96 terminals may be
attached to a 3601. Disk stcrage in the 3601 cor.tains 288,000 bytes
of storage which permits Dultipregrammed execution of several APs.
Each AP may control several terminals. Individual terminals are
transparent to CICS/VS and it is the r~sponsibilitJ of the AP to
interpret specific requests from the terminals, communicate them to
CICS/VS, interpret the output from CICS/VS, and direct it to the
appropriate ter.inal.

CICS/VS communicates directly with an IP as a separate logical unit,
and is unaware of the operation of other APs in the 3601. The other
APs may }:e commun1cating with CleS/VS as other logical units, or with
other VTAM application programs (such as IMS/VS).

3600 sessions permit the following eleS/VS services to be supported.

• Operator signon

• Basic mapping sUFPort

• Terminal paging

• Message routing and Dessage switching

• Automatic task initiation

• Master terminal operatcr functions

• supervisory terminal operator functions

• Message recovery and resynchronization

Befer to 1!l!.ggY~iDg !D~ 1~~ ~~~~ lin!D~ CO~aYn!C~tiQD 31§1§!,
GI22-276 1" for further infor.atien on 3600 units and features, and to
the ~1~~~!1~ Jg!!!l~§g ~Q!!~ni~l!i~B §~i~, 5820-9049, for information
on the support of the 3600 by CleS/VS.

46 CleS/VS systeD/Application Design Guide

J.§~Q ~§§si2!l~

The 3E51 store ccntrcller is a ~rcgra •• able centrol unit to which
as many as 191 terminals may be attached for use in a retail store
environment. The terminals are:

• IBM 3653 Point of Sale Terminal

• IBM 3215 Display Station

• IBM 3284 Printer

• IBM 3657 Ticket unit

• IBM 3659 Remote Communications unit

(Befer to I~~ ~~~~ i§isil §121J §~§1!. lD!~~!s!i~n, GA27-3075, for
further information on 3650 units and features.)

The 3657 and 3659 are nct directly used by CICS/VS, but are· used by
the 3651. The 3651 controller ccntains up to 9.3 million bytes of disk
storage and function programs (PEs) which control the operation of the
various terminals attached tc the 3651. CICS/VS ccm.unicates with the
FP and is not aware of individual terminals. It is th~ responsibility
of the pp to interFret specific reguests from the terminals, select a
relevant session type for co •• unication to CICS/1S, interpret the output
from CICS/VS, and direct it tc the a~propriate terminal. The different
session types which may te selected are:

• 3215 host conversational session

• 3653 host conversaticnal sessicn

• Pipeline session

• Application ~rogram session

3215 Host conversational Session: This session Fer.its a 3275 to enter
transactions to be transmitted to CICS/VS and to initiate CICS/VS
application programs similar to transaction entry fro. BT1M-supported
terminals. A number of 3275 host conversational sessions can be defined
in the 3651 (less than or equal to the number of 3275s).

The 3215 terminal operator reguests the 3651 ccntroller to connect
him to an availatle 3275 hest conversational sessicn. It is then the
responsibility of the 3651 to establish the logical connection (session)
between the 3215 and CICS/1S. The session is allocated an available
terminal entry in the TCT and is kncwn to CICS/VS by the~elevant TCT
terminal identification.

3275 host conversational sessions permit the following CICS/VS
services tc te sup~orted.

• Operator signon

• Easic mapping support

• Terminal paging

• Message routing and message switching

• Automatic task initiation

Chapter 3. CICS/VS Data Communications Design 47

• Master terminal cperatcr functicns

• Su~ervisory terminal e{erator functions

The following service is not sUFPcrted:

• Message recovery and resynchronization

3275 host cenversational sessions are the only 3650 sessions which
permit B~S maps to be stored on disk in the 3651 instead of in the cpu.
CICS/VS transmits the unformatted output data, plus the map name, to
the 3651, which inserts deviee-deFendent characters and, using the
specification in the map, formats the output fer display cn the 3275.
See "Basic MapFing Support ccmmunication using V~AM" for further
details.

3653 Host Conversational Session: This session Fermits a 3653 to enter
transactions to te transmitted tc CICS/VS, and to initiate CICS/VS
application programs in a manner similar to that used for 3275 host
conversational sessions. A number of 3653 hest ccnversational sessions
can te defined in the 3651 (less than cr equal te the number of 3653s).

The 3E53 terminal operator requests the 3651 stere controller to
connect bim to an available 3653 best conversaticnal session. This
connectic:n, and allocaticn of an available terminal entry in the TCT,
is performed by the 3651 in a manner similar to that used for 3275 host
conversational sessiens. The session is then identified to CICS/VS by
the relevant TCT terminal identificaticn.

3653 host conversational sessions permit the fcllowing CICS/VS
service to be sUFPorted:

• Easic ma~ping sUFPort

The following services are net sUFPorted:

• O~erator signon

• Automatic task initiation

• Terminal paging

• Message routing and message switching

• Master terminal cperatcr functiens

• Supervisory terminal oFerator functions

• Message recovery and resynchronization

Pipeline Session: One pipeline session may be established in a 3651
to support multiple 3653 terminals. The purpose of this session is to
support loinimum delay transactions from 3653 terminals, such as a credit
status check and update prior to initiating a particular customer
transact:ion, or adjustment of a custemer's credit status cn cancellation
of a credit transaction.

CICS/1S permits a number ef TCT entries to be specified as belonging
to the pipeline session. ihese are used as a FocI of entries to permit
multiple tasks to be initiated fer different 3653s using the pipeline
session. A separate pocl cf TCT entries can be specified for each
3651, or all TCT entries can be combined in a single Fool to service
all 3651 pipeline sessicns.

48 CICS/VS System/Ap~lication £esign Guide

The TCT pools represent a number of user-specified tasks to be run.
CICS/VS passes an input transaction from a pipeline session to one of
the available TCT entries in the pool for that session. This permits
the processing of a number of credit transactions to be multitasked
for optimum response.

To identify the 3653 initiating pipeline transaction, the 3651
transmits a terminal identification to CICS/VS at the beginning ot the
input transaction. This is not used by CICS/VS, but is passed to the
CICS/VS application prograre. The program may use the identification
to maintain audit trails or statistics. The only change to data that
can be made is to the status byte. All other data must be returned
unchanged.

Pipeline sessions permit the following CICS/VS service to be
supported:

• Basic mapping support

The following services are not supported:

• Operator signon

• Terminal paging

• Message routing and message switching

• Automatic task initiation

• Master terminal operator functions

• supervisory terminal operator functions

• Message recovery and resynchronization

The following restrictions apply for pipeline sessions:

• CICS/VS logging is not performed.

• Only one input message and one output message are supported
for each task.

• Each input message results in the initiation of a new task.

• A pipeline session can only be initiated by the 3651.

• A conversational transaction cannot use a pipeline session.

• The transaction code to initiate a task is defined in the TCT
when it is generated. The input message is not examined for a
transaction code.

• Unique operator identification is not associated with the TCT
entry used by a task.

• Request volume that exceeds the user specified number of concurrent
attached tasks is not queued within the system.

To meet the rapid response needed for credit transactions, the
pipeline session provides fast throughput for a specific transaction
type. In addition, the user can specify to the 3651 a time value at
which the 3651 will use an alternate user-defined procedure for
responding to these transactions.

Chapter 3. CICS/VS Data Communications Design q9

A,pplication Program Sessions: This session (also referred to as an
Interpret:er session) results in communication between crcs/vs
application programs and specific application programs in the 3651.
rrhe appli.cation program session is primarily intended for the
noninteractive data transfer of application-oriented information such
as:

• ~ransaction log from 3651 disk to the CPU

• Inventory receipts file from 3651 to CPU

• Batch store messages and reports from the CPU to 3651

• TickE!t data to be used in the preparation of magnetic
stripe tickets on the 3651

In most cases, where CICS/vS is involved with application programs
in the 3651, the logical terminal in the 3651 is disk. In some
applications, disk serves as an intermediate or staging area between
the CICS/VS application program and the ultimate destination. This
usage is not detected by CICS/VS.

Application program sessions may be initiated either by CICS/VS or
by the 3651 controller. When initiated by CICS/VS, the CICS/VS
application program issues a terminal control PROGRAM macro instruction
to identify the particular 3651 application program with which it wishes
to communicate. This 3651 program may then exchange data with the
CICS/VS program or may perform some function independent of CICS/VS as
specified by the user.

Anothf~r possibility is to initiate the session from the 3651
controller. This type of session occurs as the result of a user-written
program :requesting (through the RCP interpreter) to establish a session
with the host.

Application program sessions permit the following CICS/VS service
t,o be sUI::ported:

• Basic mapping support

The following services are not supported:

• Operator signon

• Terminal paging

• Message routing and switching

• Automatic task initiation

• Master terminal operator functions

• supervisory terminal operator functions

• Message recovery and resynchronization

Multiple input and output messages may be transmitted between CICS/VS
and 3651 application programs.

See the CICS/VS Advanced Communication Guide, SH20-9049, for further
information on the use of the 3650 by CICS/vS.

50 CICS/VS system/Application Design Guide

3790 Sessions

The 3791 controller is a programmable control unit, to which up to
16 terminals and 2 line printers may be attached. It is used in a
general-purpose data collection environment by many types of industries.
~he terminals are:

• IBM 3793 Keyboard Printer

• IBM 3277 Display Station

• IBM 2741 Communications Terminal

• IBM Line Printer

• IBM 3792 Auxiliary Control unit, remotely located
from the 3791, to which may be attached 3793 or 3277
terminals, and one additional line printer.

The 3791 Controller contains a diskette and up to 27.5 million bytes
of disk storage. Operation of the various terminals attached to the
3791 is controlled by the 3790 function programs.

A 3790 terminal operator can select an appropriate 3790 program to
accept data entered at the terminal, edit it, and store it on disk for
later transmission to the cpu. General-purpose data entry editing
carried out by the 3790 program ensures that:

• Alphabetic fields contain only alphabetic characters,
and numeric fields contain only numeric characters

• Fixed-length fields contain the required number of characters

• Variable-length fields do not violate the minimum or maximum
length specified

• Required fields are not omitted

• self-check digits are valid

• Numeric fields fall within a specified value range

• Field values are valid based upon application criteria
such as a field's relationship to other fields, or to
data held in tables or stored on 3791 disk data sets

• Field values are valid based upon the existence of required 3791
disk data set records, or the status of a particular data set
record. For example, the 3790 program can ensure that an inventory
update that reduces "quantity on hand" does not produce a negative
quantity.

The 3790 can operate coropletely offline, accepting and editing data
from terminals, and storing it on disk for later batch transmission to
the cpu. It can also operate online to the CPU, establishing sessions
between CICS/VS and 3790 FPs, which edit terminal input, pass input to
CICS/VS for further processing, and accept output from CICS/VS to direct
to the te'rminal. The 3790 is suited for remote offices where the
functions of data entry, data inquiry, calculation, and document
preparation are required.

Refer to An Introduction to the IBM 3790 Communication System,
GA27-2767, for further information on 3190 units and features.

Chapter 3. CICS/VS Data Communications Design 51

CICS/VS application programs communicate with 3790 function programs,
~nd do not support or directly interact with terminals controlled by
thE' 3790 programs. CICS/VS is not aware of any other function programs
which may be concurrently executing in the 3790. These FPs may each
separately establish sessions with CICS/VS, or with other VTAM
npplication programs (such as IMS/VS) •

.3790 Host Inquiry Session: This session permits a 3790 FP to accept
t.ransactions from the terminals i"t controls and transmit those
transactions to CICS/VS. Each host inquiry session is allocated the
specific terminal identification of its TCT entry. Any number of
CICS/VS transactions can be transmitted during a session, and each
transaction can involve several input and output messages.

3790 host inquiry sessions permit the following CICS/VS services to
he supported.

• operator signon

The following services are not supported:

• Terminal paging

• Message routing and message switching

• Automatic task initiation

• Master terminal operator functions

• supervisory terminal operator functions

• Message recovery and resynchronization

• Basic mapping support

The following restrictions apply to 3790 host inquiry sessions.

• TheFP must initiate the session. The 3790 cannot accept
unsolicited output from CICS/vS.

• The .FP must start the exchange of data with a CICS/VS transaction
by issuing a PUT, and must issue a GET to receive the last output
from the CICS/VS transaction.

• The lmaximum input message is 240 bytes. However, several input
messages can be transmitted by the FP and be concatenated by the
CICS.IVS application program (through user programming) for input
qrea"ter than 240 characters.

• The :~P is responsible for the unchaining of chained output.

Refer to the CICS/VS Advanced Communication Guide, SH20-9049, for
further information on the use of the 3790 by CICS/vS.

ESTABLISHING CICS/VS SESSIONS WITH VTAM

sessions between CICS/VS and VTAM can generally be initiated either
from the CPU or from the logical unit. However, the 3790 must initiate
a session with the cPU. It cannot accept a session initiated by the
cPU.

cPU s4?ssions are initiated by:

• CICS/vS automatically at CICS/VS initialization time

52 CICS/vS System/Application Design Guide

• VTAM system operato~ te.quest

• CICS/vS master termin~l cperator request

• CICS/vS to automatically initiate a task for
a logical unit

Logical units initiate sessions by:

• the remote controller automatically at controller
initialization time

• the remote controller on terminal operator request

When a connection is established, CICS/vS allocates the logical
connection (and hence the logical unit) to a relevant TCT terminal
entry. The logical unit may then transmit transactions to CICS/VS for
processing. These transactions result in the initiation of CICS/VS
application programs the same as for BTAM-supported terminals. Refer
to the CICS/VS Advanced Communication Guide, SH20-90Q9, for further
details on establishing connections. -----

CICS/VS application programs communicate with logical units by means
of terminal control or basic mapping support.

TERMINAL CONTROL COMMUNICATION USING VTAM

Each of the basic terminal control operations, READ, GET, WRITE,
PUT, WAIT, SAVE, and CONV~RSE, is available for cOItmunication with
VTAM-supported terminals.' ERASE, when used to erase the display screen
of a 3604 attached to a 3600, can only be specified using BMS.

Terminal I/O Overlap

VTAM permits terminal' I/O operations to proceed concurrently with
application program processing. This enables terminal I/O to be
overlapped with CICS/VS application program processing. The CICS/VS
application programmer can specify whether a terminal control request
is to be initiated immediately to communicate with a VTAM-supported
terminal while application program processing continues. The programmer
can check for completion of the request at a later time by iSSuing the
terminal control WAIT macro instruction.

Alternatively, the programmer may specify that a terminal control
request is not to be initiated immediately, but is to be delayed until
the program issues a terminal control WAIT macro instruction, passes
through a user-defined synchronization point, or terminates. Delayed
initiation of VTAM terminal control requests provides compatibility
with the manner in which BTAM-supported terminals are controlled.
Further, it can ensure that no output is transmitted to a logical unit
until the task which generated that output is no longer vulnerable to
backout in the event of a system failure. (See "Deferred Output
Integrity" in Chapter 8.)

Full-Duplex Transmission

VTAM supports full-duplex transmission of data between the CPU and
logical units. Thus, input and output may be proceeding concurrently
on the same line, to different controllers multi-dropped on that line.
CICS/VS enables the application program to request terminal input when

Chapter 3. CICS/VS Data Communications Design 53

needed, and to direct terminal output to the relevant terminal or
logical unit when processed (halt-duplex processing).

Although CICS/VS application program~ process in ~ half-duplex mode,
for optimum line efficiency d?ta can stl.ll ~e ~ransml.tted by VTAM in
full-duplex mode. Logical unl.ts may transm1t l.nput to CICS/VS
application programs on an anticipatory basis. V~AM queues this input
until the relevant CICS/VS application program issues a terminal control
FEAD or GET macro instruction. The input message has already reached
the CPU, and is then presented to the application program to satisfy
the request.

Function !"1anagement geader

output messages transmitted by terminal contrel to particular
VTAM-supported terminals require certain information within thE~ message
to identify the disposition of the output by the logical uni1;:. This
information is called a function management header (FMH) and c<:mprises
the first part of the output message. It is 3 bytes long for the 3600,
and is of variable length, 6 bytes or greater for the 3650. The FMH
comprises at least a length byte, a message· description byte, and a
logical dE!vice code byte. When used for communication with a 3275 host
conversational session in a 3650 it may also contain a BMS map name,

The message description byte indicates to the logical unit whether
the output. message was generated by CICS/VS itself or by a CICS/VS
application program. It also identifies whether the output message
has already been formatted (either by BMS or the CICS/VS app1i,cation
program) and contains device-dependent characters. The logical unit
can deliver the formatted message to the relevant device with no further
processing, if required.

The logical device code (LDC) in the FMH identities the description
of the output by the logical unit. (See "Basic Mapping Support
communication using VTAM" in this chapter, for additional information
about LDCs.)

It is the responsibility of the CICS/VS application program to insert
the appropriate FMH for the logical unit at the beginning of the output
message. See the CICS/VS Advanced communication Guide, and the CICS/vS
App1icatiOll Programmer's Reference Manual for further details.

SysteIll Proqrarnme.r MacrQ Instruction~

Additional terminal control macro instructions are available for
use by the CICS/VS system programmer. These enable t.he status of a
terminal to be changed in the TCT, or a specific terminal entry to be
located in the TcT, using the terminal control STATUS and LOCATE macro
instructions respectively. The result of these operations can be
checked using the terminal control CHECK macl."O instruction.

The STA'I'US, LOCATE, and CHECK terminal control macro instructions
are intendE~d primarily to be used by the system programmer in the
network error program (NEP). The NEP enables the system progranuner to
attempt recovery of error exception conditions encountered with
transmission to VTAM-supported terminals.

See the CICS/VS Advanced Communication Guide and the CICS/VS System
Progranuner's Reference Manual, for further details on these system
progranuner macro instructions.

54 CICS/VS System/Application Design Guide

BASIC MAPPING SUPPORT COMMUNICATION WITH VTAM

The benefits of format (mapping) and terminal device independence
offered by BMS to BTAM-supported terminals are also available to
VTAM-supported terminals.

Input Mapping

BMS performs input mapping for the 3650 system (3653, 3270HC), but
does not perform input mapping for the 3600 or 3790 system. The 3601
application program associated with the logical unit is responsible
for removing device-dependent characters from the terminal input
message, It is also responsible for formatting input data prior to its
transmission to CICS/VS. EMS MAP macro instructions are ignored, and
the input data is passed to the CICS/VS application program without
change.

BMS IN macro instructions result in BMS issuing a terminal control
GET macro for the application program. The received input data is not
mapped and is passed to the application program ~ithout change.

The application program may use the built-in function INFORMAT macro
instruction to locate delimiters inserted in the input message by the
3601. (see "Input Transaction Design" in this chapter for additional
information.)

BMS Output Mapping

BMS performs output mapping for VTAM-supported terminals (except
for 3790). Device-dependent characters are inserted into output
messages by BMS based upon the characteristics of the device intended
to receive the output. BMS constructs and inserts the function
management header (FMH) into the output message prior to issuing
terminal control output requests on 'behalf of the CICS/VS application
program. The FMH has the same format as described in "Terminal Control
Communications using VTAM." The message description byte is set up by
BMS to define a formatted output message. The CICS/VS application
program identifies the output device to BMS for VTAM-supported terminals
by means of the logical device code (LDC). The LDC is used by BMS to
identify the page size and device type. BMS inserts the LDC in the
FMH prior to requesting terminal control output. The CICS/VS
application program is relieved of the responsibility of constructing
the FMH. This permits programs to be written independent of particular
terminal characteristics.

Logical Device Code Uses

The LDC may be used to identify, to BMS and the APB, any 3600 device
(except the 3614) attached to a 3600 work station with an appropriate
page size. BMS uses the map specified by the application program to
format the 3604 output data. It inserts the device-dependent characters
into the output stream to ensure that the data is displayed as specified
by the map. The LDC is also inserted into the output stream for
transmission to the 3601. On receipt of the data, the 3601 application
program determines (from the LDC) which device is to receive the output.

In addition to identifying specific devices and their associated
page size, the LDC can also communicate other information to the
controller application program. For example, the LDC may identify a
specific preprinted form number to receive the output on a specific
printer, or on any printer available to that logical unit. The LDC
may also be interpreted by the logical unit as a request to turn on

Chapter 3. CICS/VS Data Communications Design 55

(or off) particular terminal indicator lights, transmit data accumulated
on disk during offline. operation to the CPU, or change processing modes
(for example, change to after-hours processing operation) •

~he LDC is used by the CICS/VS application program to communicate
logical disposition of output to the logical unit, and can represent
any logical meaning useful to the installation's purpose.

CICS/VS permits the use of as many as 255 different logical device
codes. E:ach may have a di ff erent weaning, dependent upon the pa rticular
controllE~r applica tion program interpretation.

Map Residence in controllers

Some VTAM-supported controllers, such as the 3651, permit formats
t.O residE! outside the CPU on di sk in the controller for 3275 host
conversational sessions. A EMS output request from a CICS/VS
applicati.on program results in transmission of the output data (without
mapping) and the format name in the FMH, to the remote controller. The
controllE!r retrieves the specified format from the 3651 disk, and writes
it to thE! screen on the relevant 3275 attached to the 3651. Thus, CPU
processing is reduced, and additional flexibility is available to the
installa t:ion to tailor a general purpose map to specific 3650 systems
in individua 1 retail stores.

EMS Al any! Indi ca tor

~he CICS/VS application program, using EMS, can request that an
alarm indicator be turned on at the terminal upon receipt of the output
message. This alarm indication is transmitted by EMS to the logical
unit by means of the function management header (FMH). The logical
unit responds to this request by turning on an appropriate indicator
light on the terminal that is to receive the output.

EMS I/O Overlap

The CICS/VS application program can request that a BMS operation,
and the associated terminal I/O, be initiated immediately.
Alternati.vely, the program can request that the BMS operation be delayed
until a WAIT macro instruction is executed, the program passes through
a user-dE~fined synchronization point, or the program terminates. This
immediatE~, or delayed, request is specified as part of the BMS macro
instruction in the manner described in "Terminal Control Communication
using VT]~." It has the same purpose as for terminal control: to
provide compatibility with BTAM operation and to improve output message
integrity.

TERMINAL DEVICE INDEPENDENCE WITH VTAM AND BTAM

The use of BMS permits CICS/VS application programs to be written
independEmt of the particular terminal to be used. For VTAM-supported
terminals, default options provide compatibility with BTAM supported
terminal operation. For example, the default option (unless specified
otherwisE~) is to delay the initiation of terminal I/O until the
application program issues a WAIT macro instruction, passes through a
user-defined synchronization point, or terminates.

If a]~DC is not specified in a BMS request to VTAM-supported
terminals, a default value is used. This can be specified when the
TCT is gE~nerated as a unique value for a specific TCT entry, for a
group of entries, or for all entries in the TCT. If, however, a LDC

56 CICS/VS system/Application DeSign Guide

is specified in a BMS request to BTAM-supported terminals, it is
ignored.

BMS requests which specify 3270 attribute characterists can be used
with VTAM supported terminals. In this case, the 3270 attribute
information is ignored. The same function may be specified either in
the particular map associated with the VTAM-supported terminal, or in
the program in the remote controller which receives the output.

For these reasons CICS/VS application programs can be written to
communicate with a variety of BTAM- and VTAM-supported terminals.
Unique device characteristics may be specified in a map generated
specifically for a terminal to achieve a general format function
required by the CICS/VS application program. The CICS/VS application
program identifies a map name in its BMS request; BMS appends to that
map name a character which identifies the particular terminal type
which is communicating with the program. BMS then retrieves the unique
device-dependent map for that terminal type and uses it to format the
terminal data.

Consequently, existing BTAM-supported terminals may be used to test
CICS/VS application programs intended primarily for operation with
VTAM-supported terminals before the installation of the VTAM terminals.
Alternatively, sequential terminals, such as card reader / line printer,
disk, or tape, may be used for testing. However, testing must model
the operation of remote controller programs. For example, input must
be presented to CICS/VS in exactly the same format as would be presented
by the remote controller. Output must be accepted from CICS/VS as
presented to the remote controlle~. In the case of input mapping for
testing for the 3600, the mapped input from BTAM-supported or sequential
terminals must be the same as presented by the 3601. This is necessary
because mapping with actual 3600 input is ignored, and the input data
is presented to the application program without change.

Testing is limited to those operations which can be performed by
the relevant testing terminal, or which can be preplanned in the test
input. BTAM-supported and sequential terminals are unable to exercise
the same data handling and processing capability possible with remote
controllers.

TERMINAL PAGING USING VTAM

Some sessions established with remote controllers support terminal
paging. (See "CICS/VS Session Types.") The CICS/VS application program
can build pages to be associated with specific logical device codes
used by a logical unit. BMS separately controls the page construction
for each LDC, and then makes available all pages built for each LDC
used by the logical unit.

The terminal operator at the remote controller can request that
pages associated with a particular LDC for that logical unit be
displayed. (See Figure 3-3 for terminal paging commands.) The
appropriate LDC pages desired can be requested by appending the LDC to
the terminal paging command; all LDC pages can then be displayed on
request. However, any LDC pages which have not been viewed will be
lost when the terminal operator requests purging of pages associated
with the logical unit.

MESSAGE ROUTING AND MESSAGE SWITCHING USING VTAM

Some sessions established with remote controllers support both
message routing and message switching. (See "CICS/vS Session Types. It)
Pages, built by CICS/VS application programs or by terminal operators,

Chapter 3. CICS/VS Data Communications Design 57

can be associated with particular logical device codes for transmission
to one, or a group, of logical units. The only restriction is that
the same LDC be associated with all logical units in a message routing
or switching request.

Pages delivered to the specified logical units can be viewed by the
terminal operator using the appropriate LDC appended to the terminal
paging commands as described for "Terminal Paging using VTAM" in this
chapter.

The basic concepts and facilities of:

• Basic mapping support

• Terminal device independence

• Terminal paging

• Message routing

• Virtual Telecommunications Access Method (VTAM)

have now been outlined. The remainder of this chapter describes
techniquE~s for using these CICS/VS facilities in data communications
design.

The effectiveness of an online application depends to a large degree
on man-machine communications. The computer is a tool used to achieve
+he objeetives of the online application. To ensure success of online
applications, the computer must provide the user with information to
enable him to carry out his function effectively.

Data communication design represents the interface between the
application and the machine. This is particularly true for
conversa ~tional application design.

At all times during conversational message design, the system
designer must keep in mind that the main objective of an online
application is to assist the terminal operator. ThUS, message formats
should b49 designed to make the terminal operator's job easier. For
example, input message formats generally should not be deSigned as
fixed-fo:rmat messages as for a card, but should enable the terminal
operator to enter information in a variable-length format. CICS/VS
can convert the variable-length input message into a fixed-length format
for processing of the application program, as discussed below.

Also, if the task response time for a terminal operator is limited,
the oper;ator should be inforrred of the interval in which he is expected
to respond.

TASK INI'TIATION

CICS/VS determines whether an input message received from a terminal
satisfies an outstanding read request placed for that terminal by a
currently executing program. If no application is currently active
for the 'terminal which originated the input transaction, a task is
initiated to process it.

58 CICS/vS system/Application DeSign Guide

Task initiation refers to the identification of a particular input
transaction, the program to be used, and the creation of a task to
process the transaction. Transaction identification can be achieved
in several ways, as shown in Figure 3-5.

Chapter 3. CICS/VS Data Communications Design 58.1

INPUT

• Transaction Code
(1·4 Chars)

• Temporary
Transaction Code

• Permanent
Transaction Code

• Program Attention
(PA) Key

• Program Function
(PF) Key

• Selector Light Pen

Program
Control
Table
(PCT)

CICSNS PROCESSING

1. Use permanent
transaction code
if specified in TCT
during SYSGEN

2. Use temporary
transaction code
if specified in TCT
by prior program.

3. Use PA, PF or
light pen as
transaction
code, if utilized
by terminal
operator

4. Use first 1 through 4
characters of input
message as trans·
action code.

5. Scan PCT for
transaction code
as identified in
steps 1 through 4
above.

6. If found, deter·
mine relevant
program.

7. Allocate TCA,
load program if
not in storage,
aM transfer
control.

Extended Description

.,. Only one of steps 1 through 4 is used to identify the
iii transaction code.

figure 3-5. Task Initiation

OUTPUT

Appli·
cation
Program

The first one to four chaxacters ef a ter.inal message, deli.ited
by a defined character, arE used as a transaction code. Valid
transaction code delimitEr characters are the field name start character
or field separator character (both of which can te defined in the system
initialization table), and any cede with a hex value less than or egual
to X'40'. The transaction cede is used to search the prcgram control
table (PCT) to identify that transaction code. Cn locating the
appropriate entry in the PCT with thE samE transaction code, the namE
of the program to be first used to pxocess the transaction is obtained.
CICS/VS then creates a task ccntrel area (TCI) to control thE processing
of the transaction by the prcgram. The PCT can also identify the size
of a transaction work area (~WA) to be appended to the TCA and used as
a program work area during processing.

The program na.e identified in thE PCT entry is located by CICS/VS
using an address pointer in the ~CT Fointing to the relevant program
entry in the processing program tatle WPT)~ The PPT entry for that
program indicates the language in which it was written (Assembler,
COBOL, or PL/I), the size of the pxograa in bytes, whether it is
presently in CICS/VS address space and if so, the nu.ber of other tasks
concurrently using it, and the lccation of the program on the CICS/VS
prograa library on disk. If the program is not already in CICS/VS
address space, it is loaded from the program library and control 1s
passed to it to process thE transaction.

ChaptEr 3. CICS/VS Data Co.munications Design 59

J~lQ A!!jmti~211 112 1!!D.§Jcti2J1 !ii!i.!ti~D

In the case of the 3210 Information Display System, each of the
three PrcgraD Attention (PA) cr twelve Program Punction (pr) keys or
the selector light pen can bE defined in the PCT tc initiate specified
programs.. By prEssing the relevant PA or PP key, or by selecting a
pen-detectable field with the selectcr light pen, the appropriate
program is initiated. This is equivalent to entering a transaction
code of from one to four characters.

The use of the selector light pen for transaction initiation is
discussed in more detail in UMultiple Choice Pormat" later in this
chapter.

On completing the processing cf an input transaction, an application
program optionally may identify thE transaction code to be used with
the next input sent fro II tha t terminal. 'l'he next input need not be
preceded by any transaction code, or PA or pp' key, or be selected by
the light: pen.

This ~rogram-identified transaction code is referred to as a
temporary transaction code, and is specified in the program control
RETURN macro instruction prier te termination of a task associated with
that terminal. This temporary transaction code is used, with the next
input from the terminal, to identify a program to be used to process
that input. Any PA, Pl, light pen, or transacticn code in the input
is ignored. After use, the temperary transaction code is removed, and
must be reestablished by a subsequent RETURN macro instruction, if it
is to be used with further input from the terminal. Therefore, an
application program can transllit a response to a terminal requesting
further informatien from the operator. The next transaction code to
be used is set by the prcgraa so that, when the requested. information
is supplied by the operator, the program to process that inf~rmation
will automatically be initiated.

A permanent transaction code can te defined for any CICS/VS terminal,
at the time the CICS/VS terminal control table (TCT) is generated.
This is particularly useful for those terminals lIhich, by the nature
of their device characteristics, are unable to start an input
transaction with a valid transaction identification. In this case,
every input message is initially passed to the saae application program,
which is related to the permanently defined transaction code for that
terminal. This application program Examines the input to determine
the processing required, and identifies subsequent application programs
which operate on that transaction. The permanent transaction code. is
used with any input message froa a terainal which does not satisfy a
pending read request issued by a program. It also overrides any PA,
PF, selector light pen, or transaction code used in that aessage. A
temporarytran~action code cannot he used with a terminal utilizing a
permanent transaction code. certain tTAB sessions established for the
3650 or 3790 require that a permanent transaction code be specified in
the relevant TCT entries for the sessions. (See "CICS/VS Session Types"
in this chapter.)

60 CICS/VS system/Application Design Guide

INPUT TRANSACTION DESIGN

The following design techniques for input messages may be used for
terminals attached directly to CleS/VS or for terminals attached to
programmable ccntrollers such as the 3601, 3651, and 3791.

The fixed-format technique relates to the design of input messages
such that each field of informaticn occupies a fixed location in the
input message (see Figure 3-6). While this is the normal technique
for design of transactions entered from cards, it is not generally
suitable for conversational applications. While a fixed message format
makes it easy for the application program to extract information from
the message for ~rocessing, this technique makes it more difficult for
the terminal operator to enter that information, and is subject to
operator error.

The variable-format technique is similar to the fixed-format
technique previously described, exceFt that required fields need not
always be located in the same positions in the input message (see Figure
3-6). Fields are identified by their relative positions within the
message as for fixed-format messages, tut each field is separated from
ethers by a delimiter character or characters. Possible delimiter
characters are the blank, slash (/), equal (=), comma (,), or dash (-).
Using delimiters, the terminal operator can enter information in the
required sequence, without ccncern for the actual physical location of
fields within the message.

CICS/VS provides a built-in function, which uses an input formatting
macre instruction to ccnvert this variable-format message into a
fixed-format message for processing by the application program. Pields
are located in the input message based upon the field separator
character, which is a delimiter character defined ty the user at CICS/'S
system initialization time. TheSE fields are inserted by CICS/VS in
the appropriate locations in the converted fixed-format message based
upon the requirements of the application program. Befer to the ~~
!REli£~!iQn R~Qg~ABB~~§ I§!§.~DS§ ~§nY§l, SH20-9003, for aore details.

Consequently, the terminal operatcr can enter the required
information in the specified sequence, without ccncern for the actual
physical location of that information in the message transmitted to
the cPU. The input message is converted to fixed format and presented
to the applicaticn program as if it had been entered by the terminal
operator as a fixed-format message. This enables the terminal operator
to enter the input message in variable format suitable to him, yet-be
presented to the program in fixed format for easy processing.

Chapter 3. CICS/VS Data Communications Design 61

I 1362.st'J I JON ES.s.s.s~~~~~.s~.s~~ I JA I 314-AZ I

---------------'

FORMAT ENTERED AT TERMINAL

(t'J IS BLANK)

~US:CT. CUSTOMER NAME \INITS\CUST. I FORMAT PRESENTED TO PROGRAM
NO. REF. NO.

------~--~--~

FIXED-FORMAT MESSAGE

-----------------------~

FORMAT ENTERED AT TERMINAL

COMMA IS FIELD SEPARATOR
CHARACTER (MAY ALSO USE
~,./ -)

~UST·I CUSTOMER NAME AFTER PROCESSING BY CICS!VS
NO. INPUT FORMATTING MACRO

______ --'_---..JL--__ ----' INSTRUCTION

VARIABLE-FORMAT MESSAGE

,--------------------'"'"'

I NO=1362,IN=JA,NM=JONES,RF=314-AZ I
FORMAT ENTERED AT TERMINAL

EQUAL SIGN IS FIELD NAME
CHARACTER
COMMA IS FIELD SEPARATOR
CHARACTER

[]ECUST. CUSTOMER NAME AFTER PROCESSING BY CICS!VS
NO. INPUT FORMATTING MACRO

- __ . ______ -L-_-'-___ INSTRUCTION

KEYWORD-FORMAT MESSAGE

Figure 3-Ei. Fixed-, Variatle-, and Keyword-Format Input Messages

This tE!chDic;Jue can be usee wi th CICS/VS application programs designed
to process input from the 3600 Finance Communicatien System. EMS does
not map input data from a 3601 ccntroller, but passes it to the
applicatic)D {:rogram wi thcut change. (See "Basic Mapping Support using
VTAM.") Therefore, the 3601 Contreller can format the input message
prior to transmission to CICS/VS fer processing ty the CICS/VS
application program by using the built-in function INFORMAT macro
instruction. This formatting involves insertion (by the 3601 AF) of
delimiter characters in a variable fermat message entered from terminals
attached to the 3601. The same delimiter characters defined by the
user at CICS/VS system initialization time shoule also be used by the
appropriate 3601 APs which prepare the input for transmission to
CICS/VS.

62 CICS/VS System/Application Design Guide

This format is similar to the variable-format Dessage described
above, except that each field is preceded by a field name start
character (defined at system initialization time) and a unique keyword.
The keywcrds and fields can be variable format. Eecause each field is
identified by its appropriate keyword, the sequence of fields in the
input message may vary.

The terminal eperator enters information in variable format, in the
sequence which is best suited to his requirements. The CICS/VS input
formatting macro instruction locates each field based on its keywQrd
and positions that field in a fixed-format message presented to the
application program. If a particular keyword is emitted, that field
is left blank in the converted fixed-format message.

Both variable-format and keyword-format information can be included
in an input message. The eICS/VS input formatting macro instruction
can process both input techniques as part of the same message.

Figure 3-6 illustrates typical fixed-, variable-, and keyword-format
ipput messages.

Keyword-format messages offer maximum flexibility to the terminal
operator, not only in the positicning ef informaticn in the message,
but also in the sequencing of information in the message. However,
the information can still be presented to the application program in
fixed format for processing.

A disadvantage for the terminal operator, however, is that he must
accurately key in additienal infcrBation, namely, the keyword for each
input field. This additional keying takes time and is vulnerable to
error, although it provides positive identification of each field.
Because this keyword fermat permits a number of input fields to be
present or absent, depending upon the characteristics of the
application, it could in some instances result in less keying than for
variable-format messages.

The keyword format technique can also be used for input from a 3601
controller, as described in "variable Format Messages." The additional
keying overheads of the keywcrd format technique are a consideration
with input from 3601 controllers. The terminal eperator can enter
input to the 3601 in any cenvenient format. The 3601 AP can then insert
the necessary keywords and delimiter characters before transmission to
CICS/VS.

lill=in=!h~~lgD~§ l~~~!

This message format acccmBodates the inexperienced terminal operator.
It involves the display of descriptive informaticn identifying each
field to be entered, as illustrated in Figure 3-7, and applies mainly
to display terminals.

The most useful approach is to display an image of the information
normally provided on the input dccuments used by the application. For
example, an image of a product order form Bay be displayed for an order
entry application. The terminal operator, using the description
preceding each field, enters the Iequired information. In the case of
the 3270, only medified fields, such as that infcrmationentered from
the keyborad, will be transmitted to the computer. The descriptive
information is net transmitted, unless specified by the application
prcgram for identificaticn purposes. Each input field transmitted from
a 3270 is identified by its kuffer address. This buffer address is

Chapter 3. CICS/VS Data Communications Design 63

WORK ORDER REQUEST FORM - FILL IN BLANKS

WORK ORDER NUMBER: 1 23466 I MONTH: [2J DAY: ~J YEAR: ~ HOUR: [!2J MIN: ~

DEPT.NO.:~ DEPT. NAME: 1 MAINTENANCE] PROJECT NO.: 13090 I ACCT. NO.: ~

lONE: [!::] AREA: G:=J PRIORITY: ~ TYPE: 0 EQUIPMENT NO.: 1 _2_13_3_---1

EQUIPME~n NAME: I BOILER FEED PUMP - UNIT NO.2

STATUS:[~ REQUESTER: 1 J. JONES :- J EXTENSION: ~

WORK ORIOER TITLE: 1 BOILER FEED PUMP MAINTENCE

WORK REC}UEST: [YOILER FEED PUMP NO.2 LEAKING EXCESSIV~LY I
C .----.----~------===:J

HARD COpy REQD.: W

,---_____ ,. ____ , ___ ~ ________J

Figure 3-~1. Fill-in-the-Blanks Input Message Format

used by tasic mapping support (BMS), in conjunction with the input map
defined for the transaction, to idEntify each input field and map the
input message into a fixed-fcrmat message. Figure 3-7 illustrates a
typical fill-in-the-blanks input message format.

An example of the use of this technique is found in the Dispiay
Management Systea II (prcgra8 numbers 5736-XC4 for DOS/VS, and 5736-XC4
for OS/iS). RefEr to "Belated Publications" in thE ~reface for relevant
DMS II publicaticns.

~.Yl!iJ21~ !;ho i~~ l.Q~'!!.5l!

This fc)rmat USES the cptional selector light pen on the 3210
Information Display System and involves the display of a number of
pen-detectable fi-elds. These fields present a series of multiple
choices, one or several of which can be selected by the terminal
operator by placing the light pen to the pen-detectable fields to be
selected.

The output response froa a previous application program may define
certain fields displayed on the 3270 screen as pen-detectable. Such
pen-detectable fields are identified by a guestion mark, "greater than"
(» symbel, or blank character at the start of the field. A
pen-detectable field with its first character blank is referred to as
an "imm~diate" field.

64 CleS/Vs system/Application Design Guide

The appropriate choicES are made by the operator, by simply touching
the light pen to the relevant fields. A guestion mark is changed to
a "greater than" (» sign to signify selection of that field. The
greater-than character is changed tack to a gUEsticn mark if the field
is selected by the light pen a second time, to indicate that the
previous selection of that field is to be ignored. Selection of an
immediate field (first character blank) results in the transmission of
a message to the cpu. This message contains only the buffer addresses
of fields selected by the ~en and changed to a greater-than character.

The attention ID (AID) character transmitted from the terminal on
selection of an immediate field is used to locate the PCT entry for
immediate pen-detectable fields, and to transfer control to a common
user-written program. This ~rogram examines the tuffer addresses
representing selected fields, and interprets these selections through
the last BMS map used with that terminal. When designing pen-detectable
screen formats, each screen format to be supported by this common
program should be identified.

Another technigue for multiple cheice input is for the application
program to list (or display) several choices, identifying each choice
by number. The terminal elerator maj then select an appropriate
response by keying in its identifying number.

Figure 3-8. Multiple Choice Input Message Fermat

Selection of multiple choice fields can be used by unskilled terminal
operators in user deFartoents, te enter information for online

Chapter 3. CICS/VS Data Communications Design 65

applications. Figure 3-8 illustrates a typical multiple choice input
message format using pen-detectable fields.

Any of these transaction formats may be used for terainals which
communicate with eleS/YS either dil:ectly or through programmable
ccntrollers.

TRANSACTION EDITING

After defining the aethods to be used for transaction initiation
and designing the input message formats, the editing and validation to
te perfor~ed on the message ty the CtU or programmable controller must
te definet:!.

with the combination of Bes and the eleS/YS input formatting macro
instruction, the applicaticn program is presented with an input message
in a defined fixed format. The editing to be done by the application
program is application-dependent; Figure 3-9 suggests sOlie of the
techniques available. Seme of these editing techniques are supported
by eleS/YS built-in functicns, while others aust te supported by
user-written routines.

--_._----------_._ _- ----

1362, JONES, JA, 314-AZ, 843.21
6148, SMITH, HW, 031492, 6332.50
3882, BROWN, AA, 1131,28.00
5199, WILSON, JJ, 00316, 93998.60

TOTALS 101202.31

TRANSACTION EDITING TECHNIQUES

• FIELD VERIFY/I:DIP-
- ALL ALPHAISETIC (A-Z)
- ALL NUMEf1:IC (0-9)
- ALL PACKEI) DECIMAL

• CHECK DIGIT
-MODULUS 10
-MODULUS 11

• HASH OR CONTIFlOL TOTALS

• ZERO PROOF TOTALS

• LIMIT RANGE

• TABLE SEARCH"
-BINARY
- SEQUENTIAl.

• REASONABLENESS CHECK
• DATA seT CHECK

• SIGHT VERI FICATION

• KEY VERIFICATION

"'CICStvS MACR:O INSTRUCTIONS AVAILABLE FOR APPLICATION! PROGRAM USE

Figure 3-9. Transaction Bditing Techniques

Built-in functions are not supported by the subset option of
eleS/DOS/"S. (See "eleS/DeS/VS Subset option" in Chapter 7.)

66 eleS/VS system/Application Design Guide

Many of these techniques may te iaplemented by the user in
programmable centrcllers tc ~rovide for detection and correction of
invalid data before transmission to the cpu. Editing of data at the
time of initial entry at the source permits: earlier detection of
errors, more efficient data transmission, and reduced cpu processing.
with the offline capability cf ETAM ~ufPorted prograDmable controllers
such as the 3735, 3740, and lTAM supported programaatle ccntrollers
such as the 3600, 3650, and 3790, data entry application availability
is enhanced. Data may be edited and cellected offline on disk storage
for later transmission to CICS/VS. Only validated data need be
transmitted to the cpu. Thi~ data may be transmitted at line speed,
resulting in significant time and cost savings.

crcs/vs provides editing macrc instructions as built-in functions
to enable the centents of a data field tc be verified as either
alphabetic or numeric. On determining the contents of the data field,
CICS/VS tranches to the ap~rcpriate routine in the application program.
Any field may be checked fer the fcllowing:

• Entirely alphabetic (blanks, or A to Z)

• Entirely EECtlC numeric (0 tc 9)

• Entirely packed decimal ~OMEUTATICNAL-3 in ANS COEOl or FIXED
DECI eAL in PI/I)

If alphabetic characters have teen entered inte a data field that
must be all numeric, the CICS/VS field verify function enables control
to be passed to a user-specified routine. Usually an error message is
sent to the terminal operator notifying him that ncnnumeric data was
entered in the particular field.

The crcs/vs field edit fUDction allows the application program to
present a field centaining BECDle numbers intermixed with ether values
(for example, part number 119-445/E) to CICS/VS, and receive a result
with all nonnumeric characters remeved. The result can be in EBCDIC
decimal format. In effect, this function is the reverse of editing
(that is, a de-edit cperation) that is performed en a field for output.
See the ~1~~L!~ J~~li£~!i2~ fIsg!~!!~!§ ~§!~I§Df~ ~~Y~l, SH20-9003,
for additional information.

Numeric fields may be checked by user-written routines for validity,
ty means of a check digit apFended to the end of the field. Modulus
10 or Modulus 11 check digit editing is provided by the user program
to verify the correctness cf a field or to identify errors. This
technique can be used for an identification field such as a part number.
When the number is first assigned, a user pregram computes the revelant
check digit and appends it tc the identification number. The check
digit is then considered an integral part of the number, and can be
used to check the accuracy of the entered number whenever that number
is referenced.

contrcl totals can be developed by user programming of specified
fields in a number of transactions. Contrel totals can also be
developed for a batch of transactions and co_pared by the user program
against similar control or hash totals developed manually prior to
entry of the batch into the system. If the program-developed and

Chapter 3. CICS/VS Data Communications Design 67

manually developed totals do not agree, the particular error or errors
can te located by comparing the information entered in that field with
the origine original source inforDation for each transaction in the
batch.

!!~2 ~Qj~ ~2!~1§

Generally, zero proof tctals operate on a numter of data fields
within one transaction. !hese fields are added and subtracted together
according to the requirements of the application. A nonzero result
indicates an error in one cr several of the fields. !his editing
technique may be supported by uSEr-written reutinEs.

!his technique checks that the value in a data field lies tetween
certain application-dependent limits. A field lying outside those
limits is identified as an error. The user is resFonsible for
developing this Editing sUFPcrt.

Iul.§ Sej~ch

!his editing techniquE USES the data field contents to locate a
similar entry in an application-depEndent table. If the exact field
contents cannot te located in the table, an error is indicated. A
substitute value can be presented to the applicaticn program, if
required.

CICS/VS provides a tatle search built-in functien to assist
application programs in utilizing tables for transaction editing or
processing. Either a sequential or a binary table search may be
specified. Refer to the ~1&~!~ JRR1!cotion f.QSX~.~.!§ l!fe,e~
ManUAl, SH20-9003, for more information.

B ej§Qlllll!.!l!§§ ~u~1s

!he program applies various legical tests (prcvided by user-written
routines) to the ccntents cf a data field, to determine the
reasonableness of that informatien as related to the particular
application. If the contents of the field have not met the application
criteria, it is identified as having an error. For examFle, the program
may examine a prcduct number entered as part of an order en~ry input
message, .in relation to the quantity of that product ordered. The
application may require that certain products only be ordered in
particular quantities. An ordered quantity outside that defined for
the predu<ct would then be regarded as an error.

]jta ~! ~~he~1s

This editing technique is similar in concept to the tatle search
technique previo~sly described, tut is far more eztensive and
comprehensive. It requires user-written routines to satisfy the unique
application editing requirements. Information. in the input transaction
is used by the applicaticn program to access a data set related to that
transaction. Information in that data set record is then used to
validate other infer.atien in the transaction. lor eza.ple, an
application might require a custc.er's nu.ber and name to be entered.
The custoller nUlIter is used by the application program to access the
relevant 4customer record, and the name in the reccrd is compared with

68 CICS/VS syste./Application Design Guide

the name in the input transaction to determine that the correct customer
number was entered with the custcmer name.

Depending upon the disk capacity and capability of the programmable
controller, application data sets or subset infor.atioD may be stored
on disk in a remcte ccntrcller. The 3601 controller permits up to
288,000 bytes of data to be stored on disk. The 3651 and 3791
controllers support as many as 9.3 million and 27.5 million bytes of
disk storage respectively. This permits some data set validation of
input to be carried out in the remote controller before transmission
to the CFU.

Sight verification can te used by the terainal cperator in
conjunction with data set checking as described abeve. In this
instance, information from the input transaction is used to retrieve
a relevant data set record. Infermation in that record is then
transmitted back to the terminal fer sight verification by the terminal
operator. For exaDple, in an order entry application, the customer
number entered at the start of an crder can be used to access the
relevant customer record. The customer name and address are then
displayed at the terminal for confirmation against the actual name and
address ef the persen placing the crder.

A less effective editing technique is the sight verification of
keyed information against the source information, Frier to transmitting
the keyed transaction into the cemputer. This teChnique is subject to
error and is completely dependent upon the accuracy and
conscientiousness of the terDinal eperator.

certain data fields cannot be edited by any of the techniques
described above. An exaaple of such data fields can be sales amounts
relating to products, or dellar amounts to be entEred. While control
or hash totals can be develoFed across a series cf transactions to
identify an error, the applicatien could require acre coaplete checking
than centrol totals alone. !ey verification refers to the double keying
of specified fields at different times. This must be supported by
user-written routines. The first entry of the field is saved by the
computer and compared against the second entry of that field at a later
time. If both entries disagree, one or both of the fields are in error
and correction is necessary~

Many of the editing techniques previously described can be
implemented not cnly in eICS/VS, but also in programmable controllers
such as the 3135, 3740, 3600, 3650, or 3790. The 3740 and 3190 are
specifically designed for data entry and editing applications for many
different industries.

These editing techniques may te integrated directly into CICS/VS
application programs, or may be carried out in a prior data entry step.
This step may be accomplished offline for later batch transmission to
CICS/VS. Alternatively, it aay be carried out online to CICS/VS with
terminals such as the 3210, ty using Video/370 (Prcgram number 5736-EC3
under DOS/VS, or 5734-EC5 under OS/VS). Eefer te "Related Publications"
in the Preface fer relevant Videc/370 publications.

Chapter 3. CICS/VS Data Communications Design 69

EREOE COEEECTION

This section identifies scme technigues which may be utilized by
the system design team fc~ error correction. Identification (through
editing) of a transaction errer tc te corrected ty the terminal operator
can either be made:

1) on the first occurrence of an error in the message, or

2) after the entire message has teen edited and all errors have
belen detected.

In conversational applications, the terminal operator should
generally be notified by the applicaticn program cf any errors
immediately after the inFut transaction has been edited. The error
message should be concise and meaningful, and should identify the
particular field or fields iI er~or, the nature cf the error, and the
actien required ty the terminal cperator. The operator should be given
the opportunity to obtain more information describing the particular
type of error detected if he needs it.

The following types cf errcr Ressages may be used, depending upon
the reguirements 01 the apFlication:

• Error number

• Frror number and text

• Abbreviated text, with a user-written HELP facility

An error number enables the errer tc be uniquely identified.
Additional information describing the cause ef the error may be provided
in Terminal Operating Procedures documentaticn for the application.
The user-written HELF facility enables the terminal operator to obtain
more detailed information (that would otherwise te included in an
operating procedures manual) , by a sFecial inquiry request~ng the
computer to provide the necessary detail. This technique has the
advantage of keeping the mcst current operating procedures available
to all terminal operators. It reduces the user's cost of developing,
distributing, and maintaining written information cn operating
Frocedures for terminal operators. However, it has the disadvantage
that it is utilizing available ccmputer resources to provide information
which can alternatively te dccumented in an operating procedures manual.

CICS/VS-generated system errcr messages to be transmitted to the
3600 consist of only the CICS/VS errer messages and numbers documented
in the ~1~~!~ ~§§§~S§§ §D9 ~Qde§ ~~~yal, SH20-900E. The 3601 AF must
recognize the error numbers and insert the necessary text tefore
transmission to the terminal operator. Additional information can be
found in the CICS/VS Advanced ~unication Guide; SH20-9049J

The information which should te provided in documentation detailing
an error includes:

• Error number and error message

70 CICS/VS system/Application Design Guide

• Cause of the errcr

• operator correction

This documentation of errcr messages should be made available online
or incorporated into the user's terminal operating procedures
documentation. other required dccumentation should include CICS/VS
terminal operating procedures and CICS/VS-supplied terminal transactions
and error messages. See the ~~~~Ll~ !§§§~S~§ ~!~ QQde§ ~anual,
SH20-9008, and the ~IC~Ll~ !~.!i~ll ~R§X~!2~!§ §Yi~, SH20-9005 for
additional information on error messagEs.

EXI2I Fi!l~ ~QI~s~!i2D

To use terminal operator time most effectively, the aPFlication
should be so designEd that the o~erator is required to enter only the
field or fields in error. ThE o~Erator should not be required to
reenter the entire input transaction.

For example, in the case cf the entry of new-tusiness insurance
policies that can apFroach 1000 characters in an input transaction, it
would be unwise to require the entire 1000 charactErs be reentered if
Qne field was in error.

HoweVEr, in an crder entry ap~lication, the infcrmation entered for
each line item ordered is generally cnly Froduct number and quantity.
Detection of an invalid product numbEr could require the reentry not
only of the corrEct product number, tut also of the quantity. Figure
3-10 illustrates an Error field corrEction procedure which may be
utilized by applicaticn ~rcgrams.

INPUT APPLICATION PROGRAM PROCESSING OUTPUT

Enter 1. Receive input message from > Input terminal.
Message

2. Edit input message and send error Display
message back to terminal. > Error

Message

3. Write original input message to T.m,",,,, (temporary storage. :> Storage

Enter
Correct > Field 4. Receive corrected field from

terminal.

(5. Retrieve original input message
Temporary > from temporary storage.
Storage

6. Combine corrected field with
original input message.

7. Re·edit input message, and process >
if no error.

I Edited Input Message I

Figure 3-10. Error Field Correction

ChaptEr 3. CICS/VS Data Communications Design 71

.Y§.§ Q! ~§"I!.£Q'!;li.I ~!Q~~!

If the terminal operator is required to input only the field in
error, the applicaticn program must sale the valid sections of the
input transaction. Temporary storage enables application programs to
save data either in dynamic storagE or on disk, identifying the data
uniquely for later retrieval by the same program cr another prcgram.
As the ter.minal operator may take some time to enter the necessary
correction, the valid part of the input transaction should normally be
stored in temporary storage cn disk, rather than in dynamic storage.
Dynamic storage may then be utilized more efficiently fOl other
purposes.

When transmitting an error message to a terminal, the application
program may set a temporary transaction code (see "Task Initiation" in
this chapter). Using this, when the cerrected field is retransmitted
from the terminal, a unique correction program may be initiated, based
on the temporary transactien code, requiring no further action by the
terminal operator other than correction of the field.

The user's correction program retrieves from temporary storage the
transaction that was originally entered by the terminal operator. The
corrected field is then inserted in place of the error field, and the
entire transaction is rEedited te determine whether the correction is
valid, and that no ether errers have been introduced. In the event of
other errors being detected, further error messages are sent to the
terminal operator.

The error correction prccess may be iterative until the input
transaction has teen completely validated. In the event that the
terminal cperator is unatle to correct the transaction, he should be
allowed to enter a unique code (such as "CANCEL") instead of the
corrected field, indicating that this error transaction is to te
ignored. The transaction will then need to te ccmpletely reentered at
a later time.

OUTPUT FORMA~TING

The actual format of output responses is application-dependent.
However, a number of guidelines Day prove useful here.

The output response is the main interface between the online
application, under the centrel of the computer, and the terminal user.
Accordingly, it should be easily read and understood by a typical user
of that online application.

The amount of informaticn that Dust be presented in response to an
input reguest depends upon the requirements of that request. For
example, an inquiry requesting display of a customer's current account
balance is a request for specific information. However, a request for
display of a customer's account details generally requires all
informaticn relating to that acccunt.

Depending upon the particular terminal device bEing used, the amount
of inforDatien te te displayed may eXCEed the physical capacity of that
device. For example, a 3270 Model 1 displays 480 characters in 12
lines of qO characters per line. !he display of 15 lines of information
requires that information be trokeD into two pages.

The use of terminal paging in CICS/VS enables considerable
flexibility to be achieved in output formatting, rEgardlESS of the

72 eICS/VS System/Application Design Guide

physical capacity of the terminal which will receive the output. This
feature is available only for BMS-suFPorted terminals. Refer to
"Terminal Paging" for further detail.

Batch applications are generally associated with high-speed data
transmission terminals such as the 277C, 2780, 3600, 3650, 3735, 3740,
and 3790, or comFuters used as terminals, such as the system/3 Models
6 and 10, the System/7, cr the System/370.

In this envircnment, the emphasis is on the transmission of data
from the terminal (or remote comFuter) to the central computer. Because
of the nature of these devices, they are not designed for easy terminal
operator interaction as is the case for conversational terminals.
Generally, a batch of transactions is transmitted to the central
computer, which Frocesses that batch and then transmits any error
messages back to the remote terminal or computer.

This online application ervironment is similar to the normal batch
processing environment. In both cases, a batch cf transactions is read
and Frocessed, and error messages are produced in an error list for
offline correction.

This application approach is useful in an online environment where
considerable amounts of informaticn are to be transmitted across long
distances. A high-speed batch terminal is able tc transmit larger
volumes of information than a ccnversational terminal, thus utilizing
expensive long-distance transmission lines more eccnomically. In this
instance, the emFhasis is cn transmitting the data to the central
computer as quickly and efficiently as possible, Editing that data,
and then transmitting any errcr messages back to the remote location
quickly and economically.

ASYNCHBONOUS TRANSACTION EEOCESSING

ClCS/VS provides a fUDcticn, called asynchronous transaction
processing (ATP), which is designed for easy implementation of batch
applications. ATP allows transactions, and the data associated with
those transactions, to be transmitted in batches. Each batch is given
a unique identification by the terminal operator. CICS/VS accepts each
transaction frem a batch ter.inal and delays its initiation until all
specified input tatches have teen transmitted.

ATP requires that transient data intrapartition file support be
generated as part of the user's CICS/VS system. This enables ATP to
save batches of data for future Frecessing and editing.

When all input batches haVE been transmitted, the transactions within
the batch are then processed by apFlicatien programs based upon their
respective transaction cedes. Any Error messages are directed by the
editing program to transient data for later trans.ission back to the
terminal.

When the batches have CCD.Ileted processing, the terminal operator
may thEn request that the eutput, if any, be sent to the terminal that
originated the batch, or to a different terminal. Depending upon the
amount of processing tc be carried out on transmitted batches, the
batch terminal may be disconnEcted from the transmission line by the
user until output is available tc be transmitted back to it.

The AiP facility is designed specifically for handling input from
batch terminals such as the 3780, 2780, or 2770. Generally, ATP can

Chapter 3. CICS/VS Data communications Design 73

be used from other interactile terminals (such as the 2741). However,
~TP does not support input from 3210 or 2980 terminals. Also,
application programs which intend to execute under control of ATP must
not use the BMS terminal ~aging macre instructions. Figure 3-11
illustrates the use of the CEDE and CiTE ITP commands, which are used
respecti l jely fer input and output of batched data.

The sulbset option of CICS/DOS/VS does not support ATP.

INPUT

c::J
CRDR NAME=BATCH1,DELlM=$$$$,

m PASSWD=PA Y0061,EXIT=A 1

L $$$$ HOLD

~ $$$$
(data

~ TRNA

L TRNC
,- data

~ nlNB

r $$$S

1 data

r
TRNA

T"",;,,,]
Data (CWTR I

CWTR NAME=(BATCH1,BATCH2),

[iJ
SOURCE=TRM1,PASSWD=PAYOO61,
COPIES=2,EXIT=A2, SAVE OR
RELEASE OR DELETE OR STATUS

Operator specifies batch name in CRDR com­
mand, and optional delimiter characters for
batch, password to prevent unauthorized
access to output, and user exit routine for
extra proce5sing.

~

>

-'

CICS/VS AND APPLICATION
PROGRAM PROCESSING

1. Operator enters CRDR
command specifying A TP
input.

2. A TP allocates batch
queue in transient data.

3. Transactions are trans-
mitted to CPU and
written to batch queue
by ATP.

4. At end of all input
batches, they are
scheduled for pro-
cessing by appli-
cation programs.

5. Application programs
direct output to tran-
sient data. I,

> 0""'0"""" CWTR

command, requesting
ATP output.

7. Output is sent to re-
questing terminal by
CICSIVS ATP program.

Extended Description

iii Two consecutive delimiters
L:.II indicate batch end. Batch

can be held or saved if not
finished.

Figure 3-11. ATF Terminal OFerator Commands

GENEBAL fATCH FROCESSING

OUTPUT

I
Transient

{ DJ~'> Data

1

m
Processing

.> Program

> Transient
Data

~ From
Processing >

r.:I CWTR command identifies batch
~ name(sl. password source termi­

nal(s) and number of copies. Us~r
exit can be specified. Batch can
be saved, released or deleted, or
status may be requested.

Some guidelines are presented below to assist in the design of batch
applications when the design team does not wish to use ATP.

Execution of a batch applicaticn is, by its nature, of long-term
duration. Accordingly, any Etorage required in executing batch
application programs will be in use for a relatively long time, compared
to conversational applications. Depending upon the amount of dynamic
storage available for both batch and cenversational applications, this
requirement for long-term stcrage may affect th~ ~Erformance of
conversational a~plications. Tc minimize the amount of storage used
by batch programs, the following aFproach may be ccnsidered.

14 CICS/VS System/Application Design Guide

Ideally, an application program should be written to accept batch
input transactions from the terminal, and queue these transactions on
transient data. At the completion of each batch, the last transaction
may automatically initiate a user program to validate and process the
queued batch. In the meantime, the remote terminal is freed to allow
further data input. On completion of batch processing, any error
messages which were queued on transient data to send back to the remote
batch terminal may be either automatically transmitted back as soon as
that terminal is idle, or transmitted on request by the remote terminal.

This approach is similar to that adopted by ATP as described
previously. It offers the principal advantage of very efficient
utilization of data transmission lines, and the overlapping of
processing one batch with the transmission of the next batch to be
processed. On the other hand, ATP enables all input batches to be
transmitted to the CPU, and then allows the user to disconnect the
batch terminal from the transmission line until all of those batches
are processed. At that time, the user or the CPU may reestablish
connection between the terminal and CPU for output transmission.

This ATP approach is particularly economical when the processing
time for all batches is longer than the input transmission time.

An alternative approach that can be used involves the batch
application program reading a transaction, immediately following which
the input transaction received is edited and error messages are queued
on transient data for later transmission. However, this approach
suffers from the disadvantage of less efficient data transmission.
Data is transmitted from the remote terminal, followed by a pause for
processing. Then the next transaction is transmitted and processed,
with the line again being idle while the second transaction is being
processed. No overlap of processing with data transmission is possible.

Either the first method described above, or the use of ATP, is
recommended for most efficient and economic line utilization.

TERMINAL ERROR RECOVERY

CICS/VS uses BTAM, BGAM, TeAM, or VTAM for the control of terminals.
These telecommunications access methods detect transmission errors
between the central computer and a remote terminal, and automatically
invoke error recovery procedures, if specified. These error recovery
procedures generally involve the retransmission of data a defined number
of times, or until that data is transmitted error-free. In the event
that the error is not corrected after the specified number of retries,
CICS/VS passes information;connected with the error to the terminal
abnormal condition program (ETAM-supported terminals) or to the node
abnormal condition program (VTAM-supported terminals) for additional
processing.

TERMINAL ABNORMAL CONDITION PROGRAM (TACP)

The TACP is used by BTAM-supported terminal. After determining that
the error is unrecoverable, the ~ACP sets default actions based on
keeping the network live. These may involve:

• setting the terminal out-of-service

• setting the line out-of-service

Chapter 3. CICS/VS Data Communications Design 75

• Abnormally terminating the transaction

• Disconnecting a switched line

Before t-hese defa ul t actions are taken, CICS/VS passes control to
a user-supplied terminal error program (TEP) for application-dependent
action if necessary (see Figure 3-12). On return from the terminal
error program, TACP performs the indicated action as previously set by
TACP or as altered by the TEP.

CICS/VS provides a sample TEP, which can be used to generate a
specific TEP to meet the user's terminal error recovery requirements.
A generated example of a TEP is supplied as part of the subset option
of CICS/DOS/VS. (See the Subset User's Guide (DOS) for additional
information.) This TEP can be used without change or as an example when
developing a unique user-written TEP.

Generation of a sample TEP is described in CICSIVS system
programmer's Reference Manual, SH20-9004.

INI'UT

Application Program

User-Written
Terminal
Error
Program

C"SNST] 11:'1 Default iii
Actions

CICSIVS AND lISER TERMINAL
ERROR PROGRAM PROCESSING

1. Program issues terminal control
WRITE macro to originating terminal,
specifying output message.

2. CICS/VS sends output message to ter­
minal.

3. On transmission error, BTAM attempts
error recovery.

4. If not successful, CICS/VS terminal
control attempts recovery.

5. If still not successful, default ac­
tions are set by terminal abnormal
condition program ("r.ACP).

6. Control passed to user-written ter­
minal error program (TEP).

7. TEP may:
- Attempt further recovery
- Allocate alternate terminal or

device to receive output
- Accept default actions and return

to TACP, or
- Alter default actions and return

to TACP.

8. CICSIVS T ACP terminates task and
carries out other defaults, unless
changed by TEP.

Extended Description

TACP sets default actions to: - -A-bn-o-rm--a-lIy-t-er-m-in-a-te--ta-Sk---J

- Mark terminal out·of·service
- Mark line out·of·service
- Disconnect switched line

unless altered by user-written terminal error program (TEP). L..-----__ _

Figure 3-12 .. CICS/VS Terminal Error Recovery

TERMINAL ERROR PROGRAM

OUTPUT

User-Written
Terminal
Error
Program

CICSIVS
TACP

The terminal error program may be supplied by the user to attempt
further e:l:'ror recovery, if necessary. Alternatively, a sample TEP can
be genera,ted or the CICS/DOS/vS subset option TEP may be utilized.
(see CICS/VS System Programmer's Reference Manual, SH20-9004.) For

76 CICS/VS System/Application Design Guide

example, a user-written TEF can specify additional retries to te carried
out by CICS/VS bEfore thE error is considered comfletely unrEcoverable.

Alternatively, the user-written TIP can request that the output
message he queued on disk using CICS/VS transient data, to be
automatically transmitted to the error terminal when the problem has
teEn rectified.

The user-written terminal error program might specify that the error
terminal and linE are not to be markEd out-of-service, a switched line
is not to be disconnected, or th~ ta~k is not to 1:e abnormally
terminated. On return from the tEP, the task may te reactivated as if
the error had not cccurred.

This may be a satisfactcry solution, if transmission of the output
message is not critical to the application, tut continued processing
of the task is~ For example, it may be necessary to allow the task to
continue processing to enatle various data sets to be completely
processed and updated. Alternatively, the task may be allowed to
abnormally terminate. and a frogram control SETXIT routine provided by
the user may be utilized tc ccmplete urgent processing for the task
(see "Program Error Recovery" in Chapter 2).

Generally howEver. all ~rocessing associated with a transaction and
task, and updating of relevant data sets, should he completed before
the programmer makes any attempt to transmit an output message to the
terminal. This can be ensured on VTAM-supported terminals by specifying
that transmission te delaYEd until a terminal control WAIT is issued,
the program passes through a user synchroni2ation point, or terminates.
This is also the standard method used for ETAM-supported terminals.
Receipt of an output message at the terminal sheuld be regarded as an
indicatien that all cf the processing for the particular input
transaction has been completed successfully.

The error recovery precedures described abeve fer the terminal error
program are discussed in mere detail in the secticns "Terminal Backup"
and "Dynamic Terminal Reconfiguration" in Chapter 4.

NODE ABNCEMAL CONDITION fBCGFA8 (NACF)

The NACP is used for VTAM-supported terminals te process abnormal
situations associated with lcgical units. Information concerning the
processing state of a logical unit is contained in the relevant TCT
terminal entry, and in the VTAM reguezt parameter list (RPL). There
is no accompanying line entry as there is for ETAM-supported terminals.

NACP is scheduled any time a VTAM request made by CICS/VS completes
in errer or cannot be honored. The receipt of a negative response sent
by a logical unit also causes NACP to be scheduled. This permits
analysis of the sense information and issuance of any appropriate
messages.

Whenever NACP is scheduled, its analysis routinES determine the
actions that are mandatory te the recovery procedure. Prior to
performing these actions, NACP links to the user-written node error
program (NEP).

NCDE EERCE PROGRAM (NEP)

The user is responsible fer coding an NEP for V~AM-supported
terminals. To aid the user, certain optional actions are generated in
the NACP. (For example. retry of a message.) If the user wishes any

Chapter 3. CICS/VS Data Communications Design 77

of these actions to be performed, he can set the relevant optional
actien cedes in the ~CT during NIP processing.

The user can issue VTAM responses or commands in the NIP. (See
"Terminal Control Using VTAM.") The user can also issue VTAM responses
or commands frem remcte Frcgrammable ccntrollers. For example, if a
printer on a programmable controller runs out of paper, the user may
code the contrcller to send a negative response to the CPU, specifying
a relevant user sense code. This will cause NICP (and NEP) to be
scheduled in the cpu. The NIP can then quiesce the logical unit using
that printer, until the paper supply is replenished. Refer to the
CICSL!~ jAd~AD~§g ~9~!Y~!~~!iSD §Yig~ for additional information.

MESSAGE JLOGGING

Input and output messages may be automatically logged by CICS/VS
for message recovery and resynchronization. In the event of loss of
contact with VTAM-supported terminals, logging and recovery protect
message integrity. Transactions requiring message integrity are
specified in the PCT. The programmable controllers should also log
(as a minimum requirement) the VTAM sequence numters of protected tasks.

Fer performance reason~transactions that do not change the system
environment (such as inguiries that do not update data sets) should
not specify message inte9rity.

In thE event of system failure. CICS/VS emergency restart identifies
in-flight tasks and backs cut in-flight task activity. The input
message for an in-flight-protected task can be used durin9 emergency
restart to establish message resynchronization with the controller.
This is also true for a committed output message fer which a pcsitive
indicaticn of receipt was not received by the CPU before system failure.
(See "Transaction Recovery" in Chapter 8.)

The main objective of an cnline application is to make timely,
complete~ and accurate infer~aticn available to the people who need
it. The availability of up-to-the-minute infor.ation will help maintain
control over online applications, or facilitate changes which could be
made onl:y at considerable ti~e and expense. Applications should be
responsive to the needs of the aFplication user, and should provide
improved service to the company's customers.

However, responsiveness and ready availability cf information can
also be disadvantages if that availability is not controlled.
Information accessible online should only be made available to those
people who are authorized to use it. Thus:

• Only manufacturing personnel may inquire into or change
manufacturing werk orders

• Only bank tellers or authorized personnel may initiate savings or
loan transactions

• Only authorized perscnnel may inguire into a customer information
system for banking, insurance, or utilities

• only authorized dccters cr medical staff may inquire inta a
patient's history

• only authorized police personnel may inquire into a police
information system

78 CICS/-VS System/Application Design Guide

• Only authorized personnel may ~lace orders in the pharmaceutical
or distribution industriEs

Regardless of how effective an online application is, if it does
not have security provisicns to Frevent unauthorized access to or abuse
of information, the consequences can bE far-reaching.

CICS/VS OPERATOR SECURITY

CICS/VS provides an c~tioral cperatcr security facility. Each
terminal operator is identified to CICS/VS in an oFerator signon table
(SNT). ~he following information is contained in the tat1e:

• Operator name

• Operator initials

• Operator password

• Operator security codes

• operator security class

• Operator priority

Each terminal operator is required to signon to CICS/VS at a
terminal, by entering the signon transaction code CSSN, together with
his allocated 4-character ~a!sword and his name, up to 20 characters
in length (see Fi9ure 3-13). OpeIator security is also discussed in
~l~.§L!.§ l§ilin~l .Q.E§!!!2!!§ §J!ig~, SH20-9005.

INPUT CICS/VS PROCESSING OUTPUT

1. Operator enters sign on trans-
Operator ;> action with his name and pass-
Signs On

word. (CSSN)

CSSN PS=XXXX,
NAME=XXX ... XX

CICS/VS Sign On Table

[(
2. CICS/VS loads signon table,

and scans for name.
Name

If no name in table, error Sign on 3.
Password message sent to terminal. f? Error

Operator ID ~~D Message
r--r--

Security Codes r'1'> 4. If password does not check,
Security Class error message sent to ter- CICS/VS Terminal

minal. Control Table Priority

~ ;> Operator ID

CICS/VS 5. Operator I D, security codes, Oper. Priority
.>

Terminal and priority transferred to Oper. Sec. Code
Control terminal control table entry

Oper. Sec. Class Table for terminal used.

6. "Signon complete" "Signon
;> Complete" response sent back to

Message
terminal.

Figure 3-13. Operator Signon

Chapter 3. CICS/VS Data Communications Design 79

The CSSN transaction code initiates the CICS/VS signon program (SNP).
This program loads the signon tatle (SNT) an~ locates the operator ~ame
an~ password in the table. If these tvo do not agree exactly, the
operator is prevented frem entering further transactions until he signs
on successfully.

Once signon is achieved, the signon program Extracts the operator
identification (for exam~le, his initial~, security codes, an~ class
and operator priority from the signon table. This information is
transferred to the terminal ccntrol table (TCT) entry for the physical
terminal to which he has signed on. This information remains in the
TCT entry until the operator signs off with a CSSP transaction.

The three-character operator identification is used for subsequent
operator identification, and the operator priority is used in
conjunction with terminal and transaction priorities to establish the
overall task priority. This is discussed in more detail in "priority
Frccessing" later in this chaptere

The o~erator security codes consist of a series of numbers ranging
from 1 to 24. The function of these sEcurity codes is defined by the
user, hut conventionally security code 1 implies low security while
security code 24 implies high security.

These security cedes arE used in conjunction with a security code
defined for each application transaction code. 1 transaction code with
a defined security cede of 10, say, can be used only by those operators
who also have a security code of 10. An operator may have more than
one security code. Operator security codes 5, 6, 10, and 12, for
example, would enable those cperatcrs to use only those transaction
codes which also have been defined as security 5, 6, 10, and 12.

The power of the CICS/VS operator security lies in the vay the system
designer defines the relevant transaction security codes for the
application. For example, in an inguiry system, low security
transactions may be given a security code of 1, vhich allows any
operator to use that transaction code. However, only those operators
who are authorized to make certain other high security inquiries are
given the same sEcurity code as allocated to those inquiry transactions.

All operators Day be alloved to see general information following
an inquiry, while only authorized operators are presented additional
information base~ on their sEcurity codes. This aay be achieved by
baving two versicns of the inquiry program: one which displays limited
amounts of information, and another which displays the full information.
The limited infor.aticn prcgram ~ay be given a security code of 1, for
example, while the more detailed information inquiry transaction code
may te given a different security code.

If an operator attempts to enter an unauthorized transaction code,
CICS/VS viII reject the transaction and send an error message indicating
a security violation to the terminal operator. ihe master terminal
operator is also notified by CleS/VS of the attempt to enter an
unauthorized transaction code. ihe operator identification, terminal
identification, and transaction code used are detailed in the
notification message to the master terminal, as shown in Figure 3-14.
(See the ~!~~L!~ ~§§§Ag§~ An~ ~2~!§ J§»YAl, SH20-9008, for additional
information.) The master terminal operator Day then take appropriate
action.

The operator security class is used primarily in conjunction vith
the CICS/VS message routing facility. Messages may be directed to
specific terminals, specific opE:!rators, or all operators with a specific
security class. In operator may have more than ene security class.

80 CleS/VS system/Application Design Guide

Messages directed to specific operators. or to specific operator
classes, are net transmitted until the particular operator or operators
sign on to CICS/'S. Befer to "Message Bouting" in this chapter for
more detail.

INPUT CICSNS PROCESSING OUTPUT

Enter I Trans I J Input 1. Operator enters > Code
Input Message

Transaction transaction code and data.

il Trans Code 2. CICSIVS locates transaction ,<
code in program control
table (PCT) entry.

Secty Code

-~ 3. CICS/VS compares security

Program Control code in PCT entry with oper-

Table (PCT) ator security codes in termi-
nal control table entry for
terminal that operator
Signed-on.

Security
Oper Sec Code '--"-- Violation

4. If operator does not have >
transaction security code,

Message

CICSIVS sends violation mes-

Terminal Control
sage to terminal.

Table (TCT)

~
At Term XXXX

5. CICSIVS notifies master > By Oper XXX
terminal of security viola- With Trans XXXX
tion.

Malter Terminal

6. If security codes agree, CICSIVS Application
passes transaction to applica- > Program
tion program for processing.

Figure 3-14. CICS/'S Operatcr security

SECUBITY ENH1NCE!ENTS

The CICS/'S o~erator security feature relies en an operator's name
and his knowledge of a unigue password to allow him to signon. Once
he has signed on, he has full access to all transaction codes which he
is authorized to use.

However, a password is like the combination to a safe. It is
effective when it is known only ty those persons authorized to use it.
To avoid the possibility of tnauthcrized persons learning the signon
procedure and an operator naae and relevant password, the design team
may incorporate some security enhancements into their system design if
reguired by the application.

The security enhance.ents which may be develoFed depend upon the
particular application reguirements and the cost of providing that
security in time and effort, as well as the potemtial cost to the
organization if that additional security is not provided.

Chapter 3. CICS/'S Data Co •• unications Design 81

The following techniquEs are suggested user enhancements which may
be considered as part of the system design, and which could be readily
imFlemented by user-writter coding in the application programs. These
enhancements build upon the CICS/VS security features and provide
increasing degrees of security with each technique discussed. They
may be inplemented within CICS/VS application programs or in application
programs written for program&able controllers. Iaplementation of these
security enhancements in program.atl~ controllers permits authorization
to be performed before transmission to the CPU, and enables security
checks tc be carried cut based on each reDote location's requirements.

This provides security on the tasis cf authorized operators entering
transactions only frem authorized Fhysical terminals. Normally a
terminal operator may sign-on tc any terminal supported by CleS/vS.
This includes conversational and batch terminals, together with
simulated terminals such as eard reader, tape, or disk.

On initiation of a task, CICS/VS makes the terminal identification
available to the user's applicaticn Frogram. For security purposes,
the CICS/VS (or Frogrammable ccntrcller) application program may check
this terminal identification against a user-supplied table of authorized
terminal identifications. If the terminal is unauthorized, the
transaction can te rejected ty the application prcgram, together with
an error message. The program may alse notify the master terminal
operator ..

For a transaction entered by an authorized operator using an
authoriz~~d terminal, the system designer may require the terminal
operator to provide an additional password (or security code) to the
user program to permit access to high security functions or information.
This additional password may be prcvided in the main body of the
transaction when it is first entered, or be explicitly re9uested by
the application prcgram when it reaches that point in its execution.

This security technique requires the terminal operator to supply a
password to the user program tefere a specific data set er data base
can te accessed. A data reccrd pass~ord may additionally require a
specific password to be supplied by the operator tc the program before
information in particular Iecords is displayed. This password may be
incorporated as part of the record. A data field password is an
extensiom of data record passwords, and requires a password to be
provided before specific fields can be displayed fer the operator.

This applies to all of the passwords described above, and requires
that a password te changed frequently by the user to prevent
unauthorized persons gaining knowledge of it.

For maintenance purposes, the current password is best recorded on
disk, and is changed on disk by a specific transaction. This reduces
the need to modify programs, but intIoduces the requirement that access
to this password data set be strictly controlled both in the online
environment and in the batch environme~t. To guard against possible
unauthorized aCCESS of this data set, the passwcrds may be recorded by
the user in a ceded (scramtled) ferm on the data set; this code is

82 eICS/VS system/Application Design Guide

unintelligible and useless unless it is translated using, for example,
a unique translaticn table in the aFFlication prcgram.

This translation table can also be changed dynamically by the user,
if required, to further reduce tie possibility of vnauthcrized access
to the password data set and the scrambled passwcrds.

~~D~i£ QR~g!~~ i~§I2~g§

Support of dynamic operator passwords is achieved by periodic
regeneration of the sign en table (SNT). An alternative which is also
equally effective is dynamic passwords as descrited previously.

The extent of security precauticns is limited only by the imagination
of the design team. Howe~er, the apFlication requirements will
generally dictate the point at which security prccedures should stop.

A battery of locks on a door is useless if the person authorized to
open that doer dces not ha~e all cf the keys. In the same way, the
use of dynamic passwords may prevent even authorized access if the
person attempting that access forgets the current password and
procedures. Furthermore, the security precautions adopted by the user
may be se stringent as tc ~re~ent him from ever finding out those
passwords and procedures.

OPEBATOB BEBOB STATISTICS

As a ty-product of the cperatcr signon feature of CICS/VS, a count
is maintained of all transactions entered by that operator, together
with all operator errors as indicated by abnormal termination of
applicaticn programs using the prcgram control AEEND macro instruction.
When the operator signs off, using the CSSF transaction code, CICS/VS
directs a message containing the o~erator identification, number of
transactions entered, and nu.ber of transaction errors to a transient
data destination. This transient data destinaticn may be allocated to
a terminal, a disk or tape data set, a line printer, or any other
CICS/VS-supported device. When directed to tape or disk, these operator
statistics may be accumulated for audit, control, or evaluation
purposes.

Each terminal operator is allocated a priority code as well as
security codes. This operater priority is used in conjunction with
terminal and transaction prierities to establish the overall task
processing priority.

TASK PEICBITl

CICS/iS uses priority cedes ranging from 0 to 255. The 0 represents
low priority while 255 represents high priority.

Each operator, terminal, and transaction code can be allocated a
priority code ranging frc. 0 to ~55. The operator priority is contained
in the signon table (SNT) and is ccpied across to the terminal control
table (TCT) when the operator signs on. The ter.inal priority is also
contained in the TCT, while the transaction priority is contained in
the program control table (PCT) entry for that transaction code (see
Figure 3-15).

Chapter 3. CICS/iS Data Com.unications Design 83

When an operator enters a specific transaction code, his priority
and the priority of the terminal he is using are extracted, together
with the priority associated with the transaction code entered. These
three priorities are added together to produce a tctal priority. This
total priority is used as the task priority, and also ranges from 0 to
255. In the event that the sum of the three priorities exceeds 255,
the task priority is rcunded down to 2~5.

This calculation of task ~riority provides the design team with
considerable flexibility tc ensure that the best performance and
response time are ~rovided in the areas where they are most needed.
Thus, operators carrying out higher priority functions than other
operators may be given a higher ~riority code by the user. Similarly,
some terminals may be given higher priorities than other terminals.
Also, high priority transactions may be given a higher priority value
than other transactions.

A very high priority transaction may be given a priority value of
255. In this case, regardless of the operator or terminal priority,
that transaction is always given the highest task priority. In the
same vay, very higb priority operators or terminals may be given
operatcr or terminal priorities of 255.

INPUT CICS/vS PROCESSING OUTPUT

~~ 1. Operator enters input transaction

I E"'g code and data. > I Trans I Input Message
Input Code

Tran"action __ d m 1<

2. CICSIVS locates PCT enny. After
Trans Code

~ur>
security check. transaction priority
is extracted from PCT by CICSIVS. '> I Trans. Priority~200 I

Trans Priority m +

T%
3. CICSIVS extracts terminal priority

I from TCT entry for terminal. > Term. Piiority~O I
Program Control m Table +

Termn Ident '--- 4. CICS/VS extracts operator priority
r-- from TCT entry for terminal. > I Oper. Priority=255 I Termn Priority -- m =

5. CICS/VS sums transaction. terminal
and operator priorities to develop I Task Priority=455 J Oper Priority '--- > task priority. -- Round Down

Terminal Control
Table I I 6. If task priority exceeds 255. CICS/VS '> Task Priority=255

rounds down to 255.

Application
7. Task commences execution at task Program

priority.

Extended Description

m Priorities range from 0 (low priority) m Priority Examples
to 255 (high priority).

Transaction: 0 0 100 100 100
Terminal: 0 100 0 0 100
Operator: ~ _Q ~ 100 100

Task 0 100 100 200 255

----_._- -

Figure 3-·15.· Task Priority

84 CICS/VS system/Application Design Guide

The task priority is useful in those cases where, because of the
transaction volume, there Day be several tasks ccncurrently executing.
In this event, CICS/VS passes control to the highest priority task
which is able to ccntin~e executing, and that task retains control of
the CPU until it requests various elcS/VS services. If the high
priority task is not able to continue processing until a particular
event (such as an I/O operation) has occurred, CICS/VS passes control
to the next highest task which is able to execute. A high priority
task is given preference in the use cf the CEU and other facilities
even if entered later than a loveI priority task.

CICS/VS
preference
that task.
value (for
control to

ensures that such high priority tasks are given first
in prcc~ssing to enable gcod performance to be achieved by
In the event that twc tasks with the same high priority

example, 255) are both ready to process, CICS/VS gives
that task which reachEd the system first.

CICS/VS is an event-driven system, and as such does not seize control
from a currently dispatched (executing) task. Therefore, even a low
priority task will continue to eXEcute once it has been dispatched,
until it voluntarily relinquishes control by issuing a CICS/VS macro
instruction. If no CICS/VS serviCES are required by such a task, it
should periodically issue a task centrol dispatchable WAIT, or a CHAP
(change priority), macro instruction. The CHAP need not changE the
task's priority, but merely relinquish control. (See the next topic,
or Chapter 6, for Dore detail.)

CHANGE PEIOEITY

A task may commence execution at one priority, and then may need to
change its priority at anothEr phase in its procEssing_ CICS/VS
provides this capability through the task control change priority (CHAP)
macre instruction (see ChaFter 6). A high priority task may be changed
through the use of this macrc instruction to low priority, or vice
versa. In this way, secticns of an application Frogram may be given
a high priority for processing, while cther sections may be given lower
priority. This enables a task to dynamically change its priority based
on differing requirements determined through execution. Some examples
when sections of a program may wish to change the task priority are
illustrated in "Friority ChaDge" in Chapter 6.

Chapter 3. CICS/VS Data Co.munications Design 85

This chapter discusses CICS/VS temporary storage and transient data
in a tutorial fashion. Ex{erienced CICS users mal wish to omit the
section en transient data. However, it is reccaDended that such users
read the s~ction on temporarJ storage in its entirety. The temporary
storage control program (TSP) is changed from that ~vailable in previous
CICS versions. While still lrcviding compatibility with previous CICS
versions, this new TSP.provides additional seguential as well as direct
accessing capability, and utilizes VSAft.

-~----~--~--------~-~---~-----~~-~-----~-----~---------~-------~-------. . .

CICS/VS, together with DL/I, provides extensive data base capability
to online applications. In-additicn to this data base capability (which
is discussed in Chapter 5), CICS/VS offers additional facilities for
internal data management. This chapter first identifies various
application reguiiements which demand the services offered by CICS/VS
tempcrary storage Danage&entand transient data management. It then
describes those services which can be used as "design tools" by the
system designer to satisfJ his own application reguirements.

It is first necessary to define the various data management functions
(as distinct frem data base capability) which online applications
require of a DB/DC system. These functions are triefly described below.

WOEK FILE CAPABILITY

Most online applicatiens reguire the ability to store information
for later retrieval and use. This function is sometimes referred to
as a "scratchpad" or work file capability, and is analogous to a person
using sheets of Faper to jet down the intermediate re~ults of
calculations for later use in processing.

The following are two main work file requirements used for most
online aFplicaticns:

• Scratchpad capability

• Cueuing capability

This capability refers to the teaporary storage of. information for
later retrieval. In a batch environment, this capability is. often
provided through the use of work data sets. In CICS/VS, this capability
is provided by the CICS/VS temporary storage contrel p"rograa. The
application program identifies data which is to be temporarily stored
by name, and subseguently retrieved by name without any consideration
of its physical location. Online apFlication uses of temporary storage
include the following.

l»~DSdi~!§ Ei2Yl!§: ThE storagE of intermediate results developed
during the processing of a transaction, for use later in the processing
of that transaction.

Chapter 4. CICS/VS Data !anageaent Design 81

1;J;J;:.QI ~I§~:tie.!!: The stcrage ef input transactions which were
found to be in error, for subseguent use when the corrected error fields
are received from the terminal.

12.9:t.9 ~J;:I91!§!§I: A tempora ry storage of data se it can be used to
transfer data between programs. This data transfer may eccur
immediately or at scme future time.

1!i!:mi!ll\! fS.9i!l.9: An apFlicatien Frogram may develop several pages
of information to be displayed at a terminal. This inforaation should
be temporarily stored until the terminal operator requests that it be
displayed for his attention.

In addition to the tempcrary storage of data, online applications
generally require a facility which will enable data to be queued for
subsequent processing. The difference between this and temporary
storage is that temporary storage stores and retrieves individual
sections of data, while a gueuing caFability enablES several different
sections of the same type o(data to be queued, and then all sections
retrieved together, sequentially, in the order that they were queued.
In eIeS/VS, this queuing capability is provided by the eleS/VS transient
data centrol program. EIaDples in which cnline applications may utilize
a queuing capability follow:

~at~h .Tra.n§A5:!ig iI.Q~§~i.ng: Transactions of a particular type
may be received from many terminals. If the applicatien requires that
all ef these transactions be Frocessed together, they may be stored in
a unique queue for that transaction type, in the crder that they reach
the cpu. This queue of transactions may then be processed in the
eIes/vS partition as a small sequential group of transactions.

,l!atcJl§.g .H!i§§.9.9.i 1ran§.!i,g§i2!l: The online application may require
that messages be batched and tralsmitted to specific terminals.

~s.:t~l! .~.9!::ti:ti.Q'!! 12.91.9 l~Jl!§!.i": The online application may require
that infermation be transferred tc batch partiticns for further
processing, and the results cf that Frocessing be provided to the online
application for input at a later time.

The temporary storage management facility of CICS/VS provides a
scratchpad capability for online aFplication programs. It enables data
to be stored either in dynamic storage or on auxiliary storage. Data
to be stored can be identified symtolically, and retrieved symbolically,
without application progra.s being ccncerned with the actual physical
location of that data. Data can be retrieved on request by an
application program in either a sequential or a direct access manner.
Temporary storage allcws reccrds tc be up to 32,000 bytes in length,
but supports variable-length reccrds only.

TEepOEARY STOEAGE USAGE

The previous discussion of application requirements identified the
general u:se of a scratcilpad facility by applicaticn programs. eIeS/VS
temporary storage management is used to meet these application
requirements as follcvs.

88 eIeS/VS System/Application Design Guide

The atility to temporarily save data for later use, and retrieve it
symbolically by name at a future time, enables easier implementation
of complex processing. This complex processing may be broken into
several logical steps, each step carried out by a separate module.
Information may be passed tetween these modules using temporary storage.

Depending upon the amount of information to be passed, and the time
period before that informaticn will te used, this data may be stored
either in dynamic storage cr, alternatively, in auxiliary storage.

Temporary storagE may be used to save information for later use.
An example would be the saving of error transactions for later
combination with corrected fields received from a terminal, as described
in "Error Correction". Using this capability, ccrrect information in
the original errcr tran~acticn dces not have to te reentered by the
terminal operator. Consequently, error correction is easier, and the
potential for further operater errors is reduced.

~§~inal R~ing

Terminal paging in CICS/VS is also supported through the use of
temporary storage. Fages cf infcrmaticn developed by application
programs are presented by them to CICS/VS. These pages are stored in
tempQrary storage for transmissien tc the terminal operator on request.
Refer to "Terminal Paging" in ChaFter 3 for more detail.

The ability to transmit messages frem one terminal to another
term~nal, using the CICS/VS message switching transaction CMSG, or the
EMS BOUTE macro instruction, is sUFPcrted through the use of temporary
storage. These messages are automatically transmitted to the relevant
terminal when that terminal is atle to receive them, or the specified
operator has signed on to CICS/VS. Refer to "Message Bouting" in
Chapter 3 for more detail.

The CICS/VS interval control pregram uses temFcrary storage to pass
data from one task te anether task which is to be initiated at a future
time. An application program may indicate the task to be initiated at
a specified time (based cn elapsed time or, alternatively, time of day)
and may transfer data to that future task. The interval control PUT
macro instruction results in the data to be transferred being written
to temporary storage on disk for subsequent retrieval by the interval
control GET macro instruction. Eefer to "Interval Control" in Chapter
6 for more detail.

DATA IDENTIFIC~TION

Each record may be presented to temForary storage with a unique
eight-character data identification. Alternatively, several records
may be presented with the same data identificaticn. 1 queue of re~ords
associated with a particular logical function (as indicated by the data
identification) can be develeped, and subsequently retrieved in the
same sequence.

ChaFter 4. CICS/VS Data Management Design 89

The data identificaticn is used by CICS/VS to develop a data element
which contains that identificatien, the sequence or entIY number of
the recoId i~ a gueue of records with the same data identification,
and the location of the record eitheI in dynamic storage or on disk.
These data elements are maintained in CICS/VS dynamic storage. As
records are written to temForary stoIage, data elements are dynamically
built by CICS/VS and saved in dynamic storage. The number of temporary
storage records which may te retained is limited only by the
availability of dynamic stcrage and/cr the amount of disk space
allocated to the temporary storage data set.

Because many tasks may corcurrently use the same FrogIam, the use
of a constant in the prcg~am for identification of individual records
is not advisable. The data identification may be dynamically generated
by the program based upon information such as:

• A combination of transaction identification (four characters) and
operator identification (three characters) will enable that operator
to store one record at a time for each transaction identification.

• A combination of oFerator identification and time of day, or
transaction identification and time of day, will enable the record
to be uniquely identified. However, it requires the application
program to determine the time of day and then respond to the
terminal operator with the allocated data identification. He may
then use it to uniquely identify the record in a lateI transaction.

• Each task initiated by CICS/VS is given a unique task sequence
number. This task numter may be used as the data identification;
it may be returned to the terminal operator fer subsequent reentry
ky him when the relevant recerd is to be retrieved.

The techniques for unique data identification described above assume
an application environment where infermation is te be stored by the
user's pIogram, and directly retrieved at some future time under control
of the terminal operator.

If temporary storage is used to pass data from ene aPFlication
program to another, the allocated data identification may be passed to
a subsequent application program (exEcuted under ccntrol of the same
task) thIough the transaction work area (TiA) appended to the task
control area (TCA) for that task. !he program (executing under the
same TCA) which is to retrieve the data from temporary storage can
obtain the allocated data identificaticn from the !WA. This data
identification is then used to identify the record to be retrieved.

If a r'9cord within a temperary storage gueue is to be directly
retrieved, it must be uniguelyreferenced by the data identification
(10) and its relevant entry (or sequence) number. When a record is
written tiD a temporary storage queue (data identification is nonunique),
it is placed at the end of the queue of records with that same data
identification. Temporary storage management will allocate the next
sequential entry numker and return this entry numter to the program.
The recoId is now uniquely identified by the data ID and the entry
number.

This data ID and entry number may be transmitted to a terminal
operator for subsequent reentry, if the retrieval is to be initiated
by the terminal eperator. If the xetrieval is to te in~tiated
automatically by subsequent application programs executed by the same
task,-the data identificaticr: and entry number should be saved in the
TWA. The program which is tc retIieve that unique record may then
extract this infermatien fIom the TWA for use.

90 CICS/VS System/Application Design Guide

USE OF DYNAHIC StORAGE BY TE~PORAEY STCRAGE

Dynamic storage is a valuable resource, and the overall perfo~mance
of the online system is directly related to the al:cunt of available
dynamic storage and its relationship to real storage available for use
as a virtual storage page pool (see "CICS/VS iorking Set" in Chapter
7) •

Generally, dynamic sterage residence of records should be used only
when the life of those recerds is to bE of very shert duration. Its
main purpose is in passing data between program modules which are
executed Qnder control of the same task. Once the data has been passed
between modules through dynamic stcrage, that data should te deleted
and the storage occupied by it freed. Dynamic storage may be used for
record queues as well as unique entries; however, write requests to
dynamic and auxiliary storagE with the same data identification cannot
be used. CICS/VS will fcrce all subsequent write requests with the
same data identification to use the same storage facility specified by
the first request.

The length of records to be stored in dynamic storage may be up to
the VSA" control interval size specified during CICS/VS system
initialization, less 84 bytes for CICS/VS control information.

CICS/VS permits temporary storage records to reside in dynamic
storage only if the CICS/VS system is generated indicating no auxiliary
storage residence sUIPort is required. The specification of no
auxiliary storage support removes the requirement for VSA" by temporary
storage. Instead, virtual storage is utilized; temporary storage
information is only paged into real sterage when referenced.

Any temporary storage infcrmation residing in dynamic storage is
lost if a controlled or unccntrolled shutdcwn cccurs. See the Gl~~!~
~Y§!~~ R'2~gmm~~!§ ~!!~!~§ ~gD~sl, 5H20-9004, and "Temporary Storage
Recovery" in Chapter 8 for atditicnal information.

As a general rule, if a record must be stored for more than one
second, it should be directed to auxiliary or secondary storage rather
than to dynamic or main storage. Dynamic storage is then available as
much as possible for use in initiating concurrently executed tasks.
certainly, the writing of Iecords to disk, and the subsequent retrieval
from disk, will involve file accesses and so increase the processing
time of those particular tasks. However, the overall effect on the
entire online system is ene of potentially better ferformance than
would result if considerable dynamic storage were utilized for temporary
storage residence.

ACCESSING RECORDS IN TEMPOEAEY STOBAGE

Temporary storage sUPIorts variable-length records only. A queue
or message set of records may be developed by issuing a temporary
storage ~UTQ macro instruction fcr each record, using the same data
identification. As each reccrd is ~ritten, temporary storage allocates
the next sequential entry nu.ber and returns it to the application
program.

Using the data identification and the entry number, the records in
the queue can be retrieved by application programs either seguentially,
in the chronolcgical order in which they were written, or directly
accessed by referencing a specific entry number.

A queue of records can te retrieved seguentially by specifying the
data identification allocated for that queue and issuing a temporary
storage GETQ macro instructicn. Temporary storage management retrieves

Chapter 4. CICS/VS Data Management Design 91

the first record in the queue for that data identificaticn and presents
it to the application prograa. Each subsequent GETQ macto.instruction
retrieves the next record in sequence until the last record has been
retrieved., when an end-of-queue indication will te returned to the
Frogram.

Alternatively, if it is required to commence sequential retrieval,
not from the beginning of thE queuE tut from a lcgical point within
the queue, both the data identification and the entry number are
specified by the program. GITQ macro instructions are then issued to
retrieve each record sequentially frem the logic~l starting point in
the queue.

The program may directly retrieve records by issuing a temporary
storage GETQ macro instructicn with the specific entry number of the
record in a queue to be directly retrieved.

A record can subsequently be uFoated by issuing a temporary storage
PUTQ macro instructien specifyin9 the relevant entry number.

The facilities offered ty temporary storage for direct and sequential
retrieval of information make it a powerful work file capability for
online aFplicaticns. Infermation may be retrieved as often as required
until it is no lenger needed. At that time, the records may be deleted.

Queues of records based upon a specific data. identification may be
purgEd by an apFlicatien program PURGE macro instruction. The deletion
or purging of these records results in the logical deletion~f those
records in the temporary storage data set, with the disk space occupied
by those records being reclaimed when the space is subsequently used
for another record. The data eleaents describing the deleted or purged
records are freed, and the dynaaic storage occupied by these records
is reclaimed for other uses.

The eICS/VS temporary storage centrol program supports requests for
specific records using the POT, GET, and RELEASE macro instructions
provided in previous versicns of eles. However, PUT, GE~, and RELEASE
are mutually exclusive with FOTQ, GETO, and PURGE on a data
identification basis. That is, a record written by a PUT macro
instruction cannot te retrieved by a GETQ, or deleted by a PURGE, for
example.

TEMPORARY STORAGE RECOVEEY

After a ccntrclled or unccntrclled teraination of CleS/VS, temporary
storage records on disk may remain available for use, if desired.
Temporary storagE in dynamic storage is lost.

On restart of CICS/VS, either a "cold start," "warm start," or
emergency restart aay be specified. If a cold start of temporary
storage is specified, any information recorded on disk is lost.

If a warm start is specified on system restart, the information in
the temporary stcragE data set is retained. The temporary storage
keypoint recorded at system termination (see "Termination Keypoints"
in Chapter 81 is used to reccnstruct the data elements in eICS/VS
dynamic storage, to enable subsequent retrieval of information by
applicaticn prcgrams once the system has been restarted.

If an E~mergency restart is specified, the information in the
temporary storagE data set is retained. The contents of that data set
and any tE~mporary storage update activity automatically logged to the
eleS/VS system log prior tc uncontrolled shutdown are used to
reconstruct temporary storage tables in dynamic storage. These tables

92 CICS/VS system/Application DeSign Guide

identify the status of temporary sto~age at unccntrolled shutdown. The
data identification of temForary storage records and queues, the number
of entries in queues, the location of each entry in auxiliary storage,
and the status of available space in the temporary storage data set
are reconstructed during emergency restart.

The processing of in-flight tasks is also backed out during emergency
restart. A task is considered in-flight if it did not pass through a
user synchronizaticn point (with IC subsequent logging activity) or
terminate before uncontrolled shutdown.

Thus, a consideration in the use cf dynamic storage or auxiliary
storage as a temForary storage medium is the requirement for
recoverability. Information stored in main storage will be lost;
information stored in auxiliary storage may be recovered, if a warm
start is specified cn restart.

SELECTION OF TEftFOBAEY STOFAGE OE TBANSAC~ION WOEK AREA DATA TRANSFER

The design team must indicate whether infor.aticn to be passed .from
one module tc ancther may be transferred using the transaction work
area (TWA) appended to the task control area (TCA), or that temporary
storage must be used.

II! !Q~ ~~ta I~Jn§i~~

The TWA can be used only if the information will be subsequently used
by the same application Frcg~am, or by another application program
which executes under control of the same TCA. That is, ccntrol must
be passed to the subsequent Frogram either by prcgram control ICTL or
by LINK macro instructions. If the information is to be passed to some
future task initiated by time, or by a subsequent transaction entered
by a terminal operator, then the TWA cannot be used. This is because
the TCA and associated TWA are destroyed when the task which generated
the information terminates execution. Consequently, the TWA may be
used for data transfer of a short-term nature, while temporary storage
is generally used for data transfer of long-term nature.

A consideration in the use of a ~WA or temporary storage is the
ameunt of data tc be stored. The size of the TWA associated with a
transaction code is stored in the Fregram control table (PCT). This
TWA size is used to allocate a TWA aFpended to the TCA. Thus, if a
TWA of 200 bytes is indicated in the PCT, the TCA is allocated 200
bytes more than if no TWA size is specified.

A further factor is the duration of execution of the task, and the
ameunt of time between when data may be stored in the TWA and when it
will be subsequently retrieved from the TWA. As a general r~le, if
data may remain in the TiA fer lenger than one second it should be
stored in temporary storage. This would be particularly advisable if
a TWA much larger than 200 te 300 bytes was to be used. Furthermore,
because of the relatively low activity of use of this data (because of
the long executicn time) I it should be stored on disk rather than in
dynamic storage address space.

Chapter 4. CICS/VS Data ftanagement Design 93

Va~iable I!J ~i~~ ~§gYiI!!~~!§

Another factor is the pessible requirement of the pre9ram for
different size TiAs based upen the processin9 required. For example,
90~ of transactions which use the saKe transaction code and application
program may require a TWA ef 50 bytes. However, the remaining 101 of
these transactions may require a TiA of 500 bytes, say. If a TWA was
used for all transactions by this program, a SOO-byte TWA would have
to be specified in the relevant FCT entry. This would mean that for
901 of t:ransactions using that program, 450 bytes'cf storage would be
wasted.

A more efficient soluticn in this case would te to allocate a 50-byte
TWA, and utilize this TWA for the 90' of transacticns which need 50
bytes. In the case of the remaining 101 of transactions, temporary
storage on disk should be utilized. Thus, storage is used most
efficiently, with the additicnal time to store information on disk and
retrieve it from disk only affecting 101 of the transactions in this
example. .

The queuing facility provided by CICS/VS for online applications is
supported by the transient data management routine of CICS/VS. There
are two types of transient data queues. These are:

~~traparj;i ti.Q1}: Extrapartit ion queues are sequential da ta sets used
for transfer of informaticn tetween CICS/VS and tatch partitions.

In!~gRgI!i!iQn: The intrapartition data set supports queues used within
the CICS/VS partition itself, to transfer information between CICS/VS
tasks.

TRANSIEN~ DATA USAGE

The application uses cf extrapartition and intrapartition data sets
will new be discussed.

EX!Ig~~Ili!iQD ~S!2 ~!§

Extrapartition data sets in CICS/VS are used for the following main
purposes:

~g!£b Dais I~gn§!§~: Information which is to be passed from CICS/VS
to batch partitions is directed to extrapartition data sets or queues.
These data sets are normal sequential data sets using OSA! for OS/VS
or SA" for DOS/VS.

Similarly, information to be passed .from a batch partition to crcS/VS
is read by the relevant CICS/VS task from an extrapartition input data
set. •

.§§g.Y§.Dli~,l ~§.!.i£§§: Extrapartition Clata sets may be used by CICS/VS
to ccmmunicate with varicus sequential devices, such as line printers.
Because the stanClard sequential access methoCl under as/vs or nos/vs is
used to support extrapartiticn data sets~ those devices supported by
the stanClard sequential access method can be utilized by CICS/VS. These
include card reaCler, line printer, disk, and tape. Particularly because
of as/vs device independence, most sequential devices which are
supported by OSA" may be utilizeCl as either input cr output data sets
by CICS/VS, when the user specifies them as extrapartition data sets.

94 CICS/VS System/Application Design Guide

l~!~~~~!iti~~ ~g!g ~!

Intrapartition queues are used to pass direct access organized data
(chained sequentially) between CICS/VS tasks. A number of
applicaticn-oriented uses fOI intrapartition files are detailed below.

~~tch ~y~y§§: Data received from many terminals for the same
application may be consolidated in one queue for FIocessing as a batch.
Each concurrently executing task may direct the data to the relevant
batch queue, where it ~s chained sequentially. Subsequently, this
batch or queue of data may be precessed as an input file of information
by a CICS/VS task.

!Y!Q~s!i£ Ta§~§: .Data stored as a queue as described above may be
automatically processed by a CICS/VS task when a specified amount of
information has been queued. Based upon a trigger level (or count)
for that queue, a specified task gay be automatically initiated to
process that quantity of data. ~he trigger level Day vary from 0 (which
implies nc automatic task initiation) through 1 (which initiates a task
each time information is written to the queue) to a trigger level of
greater than 1.

l§~~ina! QY1RY!: Output may be automatically directed to a terminal
from several tasks. ~his automatic output may nct be able to be sent
to the terminal for some time, because it is engaged in other activity
such as entering an input transaction or receiving output from previous
transactions.

In addition, the terminal may be one to which output is only sent
when requested. An example ef such a terminal weuld be a video
terminal. Automatic output directed to a video terminal may not be
displayed at a convenient time, or may not allow sufficient time for
assimilation of the information displayed. Hard-copy terminals,
however, may be able to receive automatic· output at any time they are
not active, unless they are used with preprinted stationery. In this
case, automatic output for a terminal must be queued on disk until the
terminal is able to receive it, cr until the terminal operator has
explicitly requested it.

output to be directed autcmatically to a terminal is queued on an
intrapartition queue. A trigger level may be associated with this
queue such that when a specified number. of output messages have been
queued a task is automatically initiated to transmit those messages to
the terminal, if the terminal is able to receivE those messages at that
time.

Aygi!: Intrapartition (or extraFartition) queues Day be used to
accumulate information for audit purposes~ Intrapartition queues may
be specified as being nonreusable. Data written to these queues is
accumulated throughout the oFerational period of CICS/VS, and will only
be deleted (and the disk space used viII. only be freed) by an explicit
transient data PUBGE macro instruction issued by an application program.

Alternatively, queues may be specified as reusable, in which case
information on these queues is purged auto.atically by CICS/VS when
the data has been read by application programs. The subset option of
CICS/DOS/VS supports extrapartition data sets but Dot intrapartition
data sets. (See "CICS/DeS/VS Subset Option" in Chapter 1.)

EXTEAPAB~ITION TEANSIENT DATA

As discussed above, extrapartition data sets Frovide a sequential
data set capability te eICS/VS. Standard access aethods such as QSAM
for OS/VS or SAM for DOS/VS are utilized. ~he specification of the

Chapter 4. CICS/VS Data ~anagement Design 95

particular sequential data set is made at system generation time.
Further information describing that data set may be provided at CICS/VS
system initiation time from CS/VS DD, or DOS/VS tLEL and EXTENT, job
control statements. Extrapartition data sets can be either fixed-length
or variatle-length, blccked cr unblocked data sets.

F.~£Q!g A!;£~§.§!n~

Each extrapartition data set is identified by a four-character
destination identification. This destination identification is
specifie<l by a CICS/VS task when it requests input (GET) or output
(PUT) on a particular data set (see Figure 4-1).

This destination identificaticn is used to locate the relevant entry
in a destination control table (tCT) describing that paIticular
extrapartition data set. CICS/VS transient data management then issues
the appropriate DOS/VS or OS/VS GET or PUT macro instructions for the
particulclr sequential access method. (See the ~l.tU!~ !l!l!l!gti.Q.!!
~!2gI.A!!!l!!~L~.!.§ !1.~ls.sD~! 1!.§.!!,Y.Al, S H 2 C- 9003 •)

INPUT CICSIVS PROCESSING OUTPUT -
PrDgram

r-- ,.----- ...> 1. Application program issues
---- transient data get macro, ------ specifying destination 10

DFHTD TYPE=GET,
(DESTID=ABCD for example).

DESTlD=ABCD

Destination 2. CICSIVS locates entry in des·

Control Table > tination control table (DCT)
for DESTlD=ABCD.

~BCD--
1------

3. DESTI 0 is for extra partition

Extn,partition data set. CICSIVS allocates

[IJp>
> input area for task.

DCB!DTF Name

J, Inp~ '-------

~
4. CICSIVS gets record via seqtl

access method and moves to
input area for task.

5. CICS!VS returns extraparti- ~ DFHTD TYPE=GET,
tion record in input area to DESTID=ABCD

-'--
user program.

JT DCEI!DTF

.---- Program

Figure 4-1. Extrapartition Data set Accessing

For output to a sequential data set, an application program first
requests the CIC~/VS storage contrel program to allocate storage to be
used as an output area. The cutFut record is then constructed by the
application program, after which the program issues a transient data
PUT macro instruction indicating the relevant destination identification
of the output data set. The output record is then written by transient
data to the specified seguential data set. On successful completion
of output, without error, the allocated output area is automatically
freed by eICS/VS and ieturned to dynamic storage for use by other tasks.

When an application Frogram has to initiate input from a sequential
data set, it issues a transient data GET macro instruction specifying
the relevant destination identification. Transi€nt data determines

96 CICS/VS system/Application Design Guide

the data set involved, automatically rEquests that an input arEa large
enough tc contain the next record beallecatEd for the particul.r task,
and moves the next seguential in~ut record into tbat area. The address
of that input area is returned to thE requesting task after successful
completicn without error. The accessing of extrafartition data sets
is illustrated in Figure 4-1.

ExtraFartition data sets may te either fiXEd-lEngth or
variable-length, blccked OI unblccked.

~~~Q~~~ 21 1~!~§R~.!i!is~ ~~!g ~~!§ 

CICS/VS does not attempt to reccver extrapartition data sets after 
a centrolled shutdown or in the event of abnermal termination or system 
failure. (This subject is discussed in more detail in Chapter 8.) 

INTBAPARTITION TEANSIENT DATA 

As discussed Freviously, the intra~artition data set provides a 
useful queuing facility for ~assing information between CICS/VS tasks. 
Its main use is to provide sup~ort for accumulation of data to be Either 
processed as a batch or automatically transmitted to a terminal, for 
exam~le. 

~ecord !s£~§§ing 

Data is written to or rEad from intrapartition queues by CICS/VS 
applicatien prograDs in exactly the same way as fer extrapartition data 
sets. However, only variatle-Iengtb records are supported. An 
application ~rcgram requests an cutput area to be allocated to it by 
CICS/VS storage control, sets up the output record, and issues a 
transient data PUT macro instructicn s~ecifying the relevant 
four-character intrapartition destination identification. 

Similarly, for input, when a transient data GE~ macro instruction 
is issued by an ap~licatien ~rcgIam, transient data requests that an 
input area be allocated. ThE record is then read and passed to the 
requesting task. 

From a general programming point of vie~, there is no effective 
difference between reading and writing extrapartition data sets or 
intrapartition queues. ~he indicaticn by the program as to whether an 
extrapartition data set or an intrapartition queue is to be used is 
the specification of the'relevant destination identification. 

One main difference between extra~artition and intrapartition queues, 
however, is that intrapartition queues may be specified as being 
reusable, if required. Thus they can be used as work files if needed, 
queuing data to be processed, and then, after precessing that data, 
deleting it so that the disk space it occupied can be utilized for 
other purposes. This is discussed in more detail in "Beusab1e 
Intrapartition Queues" later in this cbapter. 

CICS/VS uses a direct access data set to suppcrt intrapartition 
qUEues. The disk s~ace allocated for the intrapartition data set is 
regarded as a pool of tracks which may be allocated to intrapartition 
queues (destinatiens) as required (see Figure 4-2). 

Chapter 4. CICS/VS Data ~anagement Design 97 



INPUT 

Program 

DFHTD TYPE~PUT, 
DESTID oJKLM 

Destination 
Control Table 

JKLM 
1--------

~~_ar_ti_tio_n_...J 

Intra~laritition 

Data !iet 

OutP~ 

~------.--------.---

-- .----"-- ::> 

--
r-r----

CICSIVS "ROCESSING 

r-------------.----'----------~ 

1. Application program issues 
transient data put macro, 
specifying destination ID 
(DESTID=JKLM for example). 

2. CICS/VS locates entry in des 
tination control table (DCT) 
for DESTlD-JKLM 

3. DESTID is for intrapartition 
queue. If it is first record for 
this DESTID, CICS/vS allocates 
track from pool of tracks and 
writes DESTID to track, 

4. CICS/VS writes output alea to 
track as first datd record. 

5. CICS/vS places disk address of this 
record in DCT as g"t pointer, if 
it is first record for this DESTI D. 

6. CICSIVS places disk address of next 
available record location in DCT, as 
put pointer to writr! next record 
to this DESTID. 

7. CICSIVS updates put pointer as 
each record is written. At end of 
track, CICSIVS allocates new 
track chained to first, for use 
when subsequent records are put. 

Figure 4-2. Intrapartiticn Disk Crganization 

OUTPUT 

DESTID 

OCT 

,I-___ JK_L_M ___ --l 

" Get Pointer 

Put Pointer 

Transient data maintains a series of tracks allocated to each active 
destination, based on the dYEamic requirements fer intraFartition disk 
space. However, recerds are logically read from a destination in the 
seguence in which they were written; it thus appears to the CICS/VS 
task as if it were oFeratiEg on a normal sequential data set. The data 
set is actually a direct access file. 

INTEAPAR~ITION QUEUE USAGE 

As discussed above, intraFartltion queues are generally used to 
accumulate and process data as a batch of records. The various 
application uses to which intrapartition queues can be applied are new 
discussec in more detail. 

Records may be accumulated as a batch on an intrapartition queue or 
destination. Retrieval and Frocessing of these records are achieved 

98 CICS/VS system/Application Design Guide 



by a task issuing transient data GE! macro instructions specifying that 
intrapartition destinaticn. !he initiation of these tasks .ay be 
achieved in one of three ways: 

!I§D§A£!12D Ini!i§!i2D: A transaction entered by a terminal can 
initiate a task which issues transient data GE! .acro instructions for 
a particular intrapartition destination. Data retrieved in this way 
can then be processed as required. 

In!~~§l ~~ntr~l Ini!i§!i2D: A task can be initiated at a future time 
based upon elapsed ti.e cr time cf day. !his task can issue transient 
data or interval control GE! .acro instructions to read records queued 
on an intrapartition destination and process the.. (See "Interval 
Control.") 

!Y~~~i~ Ii§k I~i!i~!i~D: A task .ay be automatically initiated by 
transient data when a specified nu.ber of records have been written to 
an intrapartition destination. ~he trigger level specified in the DC! 
entry for that destinaticn is co. pared with the count of records which 
still remain to be read. ihen the queue count eguals the trigger level, 
a specified task (as identified by a transaction code in the DC! entry) 
is initiated. !his task may issue transient data GE! .acro instructions 
to read and process the data on that queue. !his is discussed further 
in the sEction, "~erDinal outFut." 

CICS/VS supports the recovery of intrapartition transient data 
queues on a warm start fcllowing a ccntrolled shutdown, and on an 
emergency restart following an unccntrolled shutdown. The DC! status 
of each intra partition desticaticn is reestablished to reflect the GET 
pointer, PUT pointer, gueue count and trigger level status as it was 
prior to the shutdown. Intrapartition queues are recovered, and 
automatic task initiation can then proceed after eICS/VS restart as if 
shutdown had not occurred. 

On emergency restart follcwing an unccntrolled shutdown, any 
intrapartition destinatitns can be recovered to .reflect all activity 
against those destinations up to the point of unccntrolled shutdown. 
This is called "physical reccvery." Alternatively, any intrapartition 
destinations can be recovered to rEflect the activity of co.pleted 
tasks prier to uncontrolled shutdowni all in-flight task activity at 
unccntrolled shutdown is backed out during an emergency restart. This 
is called "logical recovery." ThE User specifies in the DCT, at syste. 
generaticn time, whether an intrapartition destination reguires physical 
recovery or logical recovery. Befer to "Transient Data Becovery" in 
Chapter 8 for additional infermatien. 

Data may be directed to a ter.in~l from many tasks. That ter.inal 
may presently be active either entering input or receiving output fro. 
one task. When ether tasks wish to transmit output messages to that 
same terminal, it is necessary for these messages to be gueued on disk 
until the ter.inal is ready to rEcei~e the •• 

This message queuing is achieved tyreguiring the other tasks to 
write the terminal output .essages ~o a transient data destination. 
This destination is intrapartition, and further.ore is identified as 
being associated with a terminal. The destination identification used 
~y§! be identical to the terminal idEntification in the ter.inal control 
tablE (TCT) entry for the associated terminal. Tasks may. issue 
transient data PUT macro instructions specifying as a destination 

ChaptEr 4. CICS/VS Data Banage.ent Design 99 



identification the terminal identification. These output messages will 
t~en be ~ueued in the intraFartition data set (see Figure 4-3). 

To initiate transmissien of these output messages to the relevant 
terminal, a trigger level ef 1 is generally specified for that terminal 
destination. As socn as cne cutFut message has been written to that 
terminal intrapartition destination, a task (identified by a transaction 
code in that DCT entry fer the relevant destination) is eligitle to be 
automatically initiated. The prcgram used by that transaction code 
will conventionally be a ccmmcn Frcgram, developed by the installation, 
to transmit data from various destinations to their relevant terminals. 

However, to be able to transmit messages from the intraFartition 
destination to the terminal, that terminal must be idle and able to 
receive automatic output-~that is, the output sent to the terminal is 
not in response to a transaction entered earlier by the terminal. 

Accordingly, unless the associated terminal is idle and able to 
receive output, a task is not automatically initiated based upon the 
trigger level of a term~nal destination. If these conditions exist, 
the task is initiated. The terminal is allocated to that task as if 
the terminal itself had entered the transaction code which initiated 
the automatic task. The automatic task ma~ now issue transient data 
GET macrc instructions tc retrieve outFut messages from the particular 
terminal intrapartition destination. These messages may be transmitted 
directly tc the terminal using CICS/VS terminal centrol or basic mapping 
support macro instructions. 

100 CICS/VS System/ApFlication Design Guide 



INPUT CICSIVS PROCESSING OUTPUT 

Program 
1. Application program issues tran-_._---

r-- ---- .;> sient data 'put macro, specifying 

DFHTD TYPE ,PUT same destination ID (DESTID) as 

DESTIDcTRM1 terminal I D of terminal to re-
ceive message (TERMID=TRM1 for 
example). 

OCT 

~ ~ 
TRM1 

2. CICSIVS locates entry in OCT for 

~ 
DESTlD=TRM1. 

~~> Terminal 

Trans Code 3. DESTID is for terminal queue, 
CICS/VS puts output message to 
intrapartition data set. 

Trigger Level 

Queue Count 
4, CICS/VS uses transaction code in r-:=> Task 

DCT ENTRY=TRM1, If trigger level 

C""" ~ equals No. of messages queued on I Area 
disk. (That is, queue count). 

TCT 

~ 
-----

TRM1 '---
TCT 

> r--.-- TRM1 

) 5. If terminal able to receive message 

Term. Able To Rec. (as shown in terminal control r-;:::> 
tablel. a user task is initiated by 
DESTID=TRM1.. 

Program 
'--'--

~> 6, I nitiated user task is given con- r-r-- DFfHD TYPE=GET 

~ 
1< 

trol of TERMINAL=TRM1. User task DESTlD=TRMl 

gets output message from disk 

-'-- DESTID=TRM1. 

-..--
"'> ~ I ntrapartition 

7, User task transmits output mes-

Data Set 
sage to TERMINAL=TRM1. 

Figure 4-3. Terminal output Via Intra~artition Data Set 

To indicate whether a terminal may receive autcaatic output or not, 
a processing status is defined fer each CICS/VS terminal. The 
precessing status codes are: 

• TEANSACTICN status 

• TEANSCEIVI status 

• EECEIVE status 

• INPUT status 

• PAGE status 

• AUTOPAGE status 

Chapter 4. CICS/VS Data "anagement Design 101 



TRANSACTION processing status indicates that a terminal is unable 
to receive automatic output. It can receive outFut only as a result 
of an inFut transaction entered from that same terminal. Output queued 
from other tasks for a TRANSACTION status terminal can be transmitted 
to it only when the terminal oFerator enters a transaction code which 
will read the data from the relevant intrapartition queue, and send it 
to that teiminal~ The terminal oFerator has contrel over when he will 
receive the gueued output. Generally, and particularly for video 
terminals, one intrapartition message would be trarsmitted each time 
the relevant transaction code is entered~ The terminal operator can 
then assimilate the information Fresented to him before the next output 
message is requested. 

TRANSCEIVE status indicates that a terminal may enter input 
transactions, but can also receive automatic outFut from ether tasks. 
This is generally used fer hard-ce~y terminals, where several lines of 
output may be automatically transmitted when the terminal is idle. 

RECEIVE status indicates that a terminal is unable to enter any 
input data, but is only able to receive automatic output from other 
tasks. This is generally used fcr printers. 

INPUT status indicates that a terminal can enter data but cannot 
receive data. 

PAGE status indicates that a terminal can only retrieve pages on 
request, one at a time. 

AOTOPAGE status indicates that a terminal will receive all pages 
queued fo:r it. 

Two additional terminal status codes are used to indicate the 
activity status of each CICS/VS terminal. These are: 

• IN-SERVICE status 

• OOT-OF-SERVICE status 

IN-SEFVICE status indicates that the terminal is presently active 
and able to process as defined above. 

OOT-OE-SERVICE status indicates that the terminal is presently 
inactive, either because it has been marked out-of-service by the master 
terminal operator for example, or because of an unrecoverable I/O error 
which occurred on that terminal. In this case, it is unable to enter 
any messages or receive any output, automatic or ctherwise. 

Thus, for a task to be automatically initiated based upon a terminal 
intrapartition destinaticn trigger level, the relevant terminal must 
have the following status: 

• IN-·SERVICE status 

• TRANSCEIVE status, or RECEIVE status 

If the terminal is OO'I-CF-SERVICE, messages are accumulated on the 
intrapartition destinatien qteue until the terminal is placed 
IN-SERVICE. If the status is TRANSACTION, messages are also accumulated 
on the intrapartition queue until either the status is changed to 
RECEIVE or TRANSCEIVE, or the terminal operator enters the transaction 
code to initiate a task which will read the messages from transient 
data and sEnd them tc the terminal. 

A VTAM-supported terminal (such as the 3600) which supports automatic 
task initiation, may be IN-SERVICE and in ~RANSCEIVE or RECEIVE status 

102 CICS/VS System/Application Design Guide 



as indicated in its relevant TCT entry but may not currently bE 
connected to CICS/VS. It may be operating offline or be communicating 
with other VTAft application prograas. If a task is to be automatically 
initiated for that terminal, CICS/VS will re~uest VTAft to establish 
connection with the relevant logical unit. This Day require VTAft to 
request that another VTAM application program communicating with the 
logical unit release it for connecticn to CICS/VS, or may require VTAft 
to establish a new logical ccnne~tion (session) to the logical unit 
currently in offline mode. 

B2!iij~~!iQD 2t ~~~~ed Qy!]Y! ~~§§sg§§ 

In the case of a TBANSACTION status terminal, some indication should 
be given to the·terminal operator that messagEs are queued. This can 
be done either by the terDinal cperator periodically requesting that 
any messages queued be sent to him, or through th~ techniques shown in 
Figures q-q and 4-5. 

Figure 4-4 shows one terminal operator notifi~ation technique. The 
application program that retrievEs the data from Transient Da~a may . 
indicate in a standard area cf a display screen the·number of messages 
to be sent. This is then presented to the prograa for incorporation 
into the output message that is sent to the terminal. Part of the 
response sent back to that terminal then indicates the number of 
messages presently queued to be transmitted to the operator upon his 
request. 

INPUT APPLICATION PROGRAM PROCESSING OUTPUT 

Application 

f 
Output 

Program Message 1. Application program links 

-- to common user routine 
--- after preparing output 

( Uo. '0",;0. 
message, and before sending 

~ 
it to terminal. 

OCT 

I Terminal 

2. Common user routine ex-

( 
Queue Control 

amines queue count in OCT 
Examine OCT entry for this terminal. 
Entry Queue 

~lJ 
Control For 
Terminal 

3. If messages are queued to send Msgs Queued I 
Insert Queue ;. to terminal, user routine 
Control In Messageq inserts number of messages Output 

queued in standard area Message 

I(~ 
of output message. 

4. User routine returns con~ I 
trol to application pro- 1< gram. --

f Msgs. Queued I 5. Application program sends 
output message, with count 

\~ Appl ication 
of messagas queued, to 

Program 
terminal. ---

(Cont'd) Output Massage 
At Termlnel 

Figure 4-4. Notification to Terminal Operator of Autoaatic output 

A second technique is shown in Fig~re 4-5, and utilizes the terminal 
paging facility of CICS/VS to control automatic output to the terminal. 

Chapter 4. CICS/VS Data Manage.ent Design 103 



The terminals must be specified as T~ANSCEIV! or EFCEIVE status, such 
that autcmatic output may te sent to them. Tasks preparing output to 
be transmitted tc a specific terminal preFare that output as a series 
of pages to be displayed tc the teLmina1. These Fages, however, are 
directed to tempcrary stcragE through the use of the BMS terminal paging 
macro instructions, instead cf to the intrapartition destination for 
that terminal. 

The terminal operator may then Leguest at his convenience pages of 
information to be displayed in whichevEr sequEnce he requires. 

Application 
Program 

Put Pages 

Prepare 
Output 
Message 

DFHBMS 
Type: 

Route 

INPUT 

~
page4 

I Page 3 

I Page 2 

Page 1 

1 

Output Msg. 1 
"MSGS READY 
PAGEID~XXXX 

rlTLE ~XXXXXXX" 

Message 
Routing 

1 

"MSGS READY ,I 
-PAGEID=XXXX 
- TITLE=XXXXXXX" 
Route=TRMl 

~-------------------"-------

TempOrary] 
Storage 

Terminal-TRM1 

Paging 
Command, 

API'LICATION PROGRAM PROCESSING 

1. Application program prepares 
pages to be sent to terminal 
(for e~ample, Termid·TRM1). 

2. Program issues BMS paging 
macro instructions to 
write pages to temporary 
storage. 

3. Program prepares output 
-- r-----~ message to notify operator 

of titles of pages stored 
tor him. 

4. Program uses BMS message r---"1----,...,........., route macro instruction 
to send message to 
t.rminal·TRM1. 

5. Message is sent by CICSIVS 
as soon as terminal is able 
to receive it. 

---.----------------, 
""""'-- 6. Tmminal operator later 

'-- --- - ":> enters paging command, 
requesting pages in 
sequence desired, 

Figure 4-5. Notification of PagEd output 

OUTPUT 

Temporary ( 
Storage 

Terminal-TRM1 

'MSGS READY· 
PAGEID=XXXX 
TITLE=XXXXXXX' 

L:PJ
Pagel 

I Page 4 

Page 2 

The task that generated tbe pages for display may also issue the 
BMS BOUTE macro instruction to send a message to the terminal notifying 
it of the fact that pages have bEEn stored, and identifying the pages 
so that they can be disF1ayed, when convenient, ty the operator entering 
CICS/VS terminal paging commands. Thus the amount of information the 
terminal operator has to'rEad as the result of automatic output. is 
limited to one 1ine# and he can USE the CICS/VS paging commands to 
request subsequent output when he desires it. Terminal output formats 
should be designed to reserve at least one line cn display terminals 
for autoDatic system-to-operator messages of this nature. 

This second technique is based on terminal Faging, which utilizes 
temporary storage and VSI!. 

If a task is to be autc.atica1ly initiated to SEnd output to a 
VTAM-supported ter.ina1 such as the 3!OO, CICS/VS Establishes a logical 
connection, if the relevant logical unit is not currently connected to 
CICS/VS. The 3600 IP controlling that logical unit is then notified 
of the requirement by CICS/VS to automatically initiate a task on behalf 

104 CICS/VS syste./lpplication Design Guide 



of that logical unit. This is achie~ed by CICS/VS requesting VTAft to 
send a "tid" command. On receipt cf the bid, the AP can notify the 
terminal operator (perhaps by displaying a message or by turning on an 
indicator light cn the 3604) that automatic output is to be sent to 
him. If he indicates that he can receive that output, the AP can 
respond positively to the bid. CICS/VS then automatically initiates 
the task to send data to the AP, and henc~ the terminal operator. If, 
however, the terminal operatcr dces not wish to accept automatic outp9t 
at that time, the AP can res Fond negatively to the bid. CICS/VS viII 
not reissue the tid at a later time. ihen the terminal oFerator is 
able to accept the automatic outFut, he notifies the AP. The AP then 
transmits a "ready to rec·eive" cClllland to VTA!!, and hence CICS/VS. 
CICS/VS then automatically initiates the task as discussed abo~e. Refer 
to the ~1~~!~ Ag~~n~~g ~~Jm~Di~~!i2D gyig§ for further information. 

If none of the above techniques is to be utilized, the terminal 
operator can periodically enter a user transaction which reads any 
messages queued for that terminal ~estination in transient data, and 
transmits those messages tc the terminal. This does not require the 
use of the techniques Fre~iously described, but has the disadvantage 
that it is completely dependent upon the terminal cperator. 

121 ~ High gXi2Xiil iI2~§§§iD~ 

CICS/VS intrapartition queues may be utilized fcr low (or high) 
priority processing_ A prcgram can receive transactions froll a 
terminal, validate them, and notify the terminal cf any error messages. 
Valid transactions are directed to an intrapartition destination, and 
queu~d for that destination until a specified trjgger level is reached. 

A terminal is not associated with this destination. When the trigger 
level is reached, a task is autcDatically initiated based upon the 
transaction code specified for that destination. As no terminal or 
operator is associated with this task, the task Friority used in 
processing these transactions is the transaction priority as specified 
for that transaction code in the program control table (PCT). The 
initiated task may read the transactions queued to that intrapartition 
destination, process the., and update any required data sets depending 
upon the application requirements. Frocessing of data may then proceed 
independently of subsequent terminal input. 

This technique is utilized by the asynchronous transaction processing 
(ATP) facility in CICS/VS (see Chapter 3). A batch of transactions 
may be entered frOB a batch terminal using the ATP transaction, CBDR 
(refer to Figure 3-11). This batch is given a batch name by the 
terminal operator, and each transaction is queued on a transient data 
intrapartition queue until all batch input is completed. At this time, 
a task (or tasks) is initiated, tased upon the transactions in the 
batches, to Frocess those batches. In the meantime, the terminal 
operator is free to enter any other transactions, including other ATP 
batches. 

During processing of the ATP tatches, terminal output is directed 
by application programs to intraFartition destinations. This terminal 
output may be retrie~ed and transmitted to th~ terminal, when requested 
by the terminal operator. This is achieved by entering the ATP 
transactio~ code CiTE (see Figure 3-11). 

REUSABLE INTEAPAETITION CUEUES 

IntraFartition destinations can be specified as nonreusable or 
reusable. Nonreusable queues accumUlate data ever the entire CICS/VS 
operational Feriod, including any warm starts following termination of 

Chapter 4. CICS/VS Data ~anagement Design 105 



CICS/VS (see "CIeS/VS Initialization" in Chapter 8). Data on 
nonreusatle destinations is not destroyed until transient data is cold 
started, or until explicitly purged by user programs. 

If reusable queues are emFloyed, when an application {rogram issuing 
a transiEnt data GET macre in~truction causes data to be read from a 
new trac)t, the track just read is automatically returned by transient 
data to the pool of tracks available for use in satisfying other PUT 
reguests~ This also causes transient data to refermat the returned 
track for later use, and may in some cases result in performance 
degradation during this refor.atting. 

The intrapartition data set can therefore be utilized most 
efficiently for those destinations for which data does not need to be 
retained; however, other destinations containing data which must be 
retained for audit or recovery pur{oses, are not disturbed. 

INDIBECT DESTINATIONS 

CICS/"S transient data uses extrapartition, intrapartition, and 
indirect destinaticns. 

An inclirect destination has its own destinaticn identification, but 
in turn identifies another destinaticn. Output Eventually to be 
directed to specific devices may be written to a "logical" 
intrapartition destination. This logical destination identification 
is an indirect destinaticn, which in turn specifies the destination 
for the Fhysical device to be used to receive that output (see Figure 
4-6) • 

PROGRAM A OCT Entry 

( 
INVC (DESTID) 

OCT Entry 

I 
PRTR (DESTID) OCT Entry Access Method (TYPE) 

INDIRECT DEST 

I 
PRTl (DESTID) 

f OFHTD TYPE=PLJT PRTR 
(TYPE) 

DCB/DTF 
DESTID=INVC INDIRECT OEST 

(TYPE) 
PRTI 

EXTRAPARTITION 

-
J 

DCB/DTF NAME 

~ =PRTl 

PROGRAM B OCT Entry 

PACK (DESTID) 
OCT Entry 

TRMl (DESTID) 
(TYPE) 

INDIRECT DEST 

DFHTD TYPE=PUT. 
(TYPE) 

TRMl 
DESTID=PACK TERMINAL 

Figure 4-6. Indirect Destinations 

If the output is to be subsequently directed to seme other device, 
the application ~rograms dc not have to be changed. The output is 
directed to the relevant logical destination. However, the entry for 
that indirect logical destination is changed in the DCT to refer to 

106 CICS/VS Syste./Ap~lication DEsign Guide 



the new device, which may be either intra~artiticn, such as a terminal, 
or estrapartition, such as a tape, disk, or printer. 

Thus the amount of maintenance resulting from a change in the 
terminal network configuratien, for example, is reduced to only a change 
and reassembly of the DC!. 

Different types of output to be directed to the same terminal should 
be written to different lcgical indirect destinatiens. These different 
destinations may refer indirectly to the same terminal destination. 
If, at scme later time it is decided to separate logical output across 
terminals, instead of havitg it appear on the saDe terminal, this can 
bE achieved merely hy changing the relevant indirect logical 
destinations to point to the new terminals tQ receive that output. No 
change need be made to the afplicaticn programs. 

As well as reducing the a.eunt cf program maintenance resulting from 
a change in the terminal net~ork c~nfiguration or a change in 
application requirements directing output to different terminals, 
indirect destinations have other useful purposes. These are summarized 
below. 

By directing output to logical indirect destinations instead of to 
specific terminal destinations, the ~rcgrams now become independent of 
the particular device selected te receive that output. An indirect 
destination may ~oint to any intra~artition or extrapartition 
destination. Por exampl~, the output which may ncrmally be directed 
to a terminal printer may be directed to an extrapartition destination 
line printer. This can be achieved by writing the output to an indirect 
transient data destinatien, and then reassembling the DCT to point to 
the line printer extrapartition destination identificaticn. 

The use of indirect destinaticns and device independence raises the 
question of terminal backup. Through the use of indirect destinations, 
programs are no lODger dependent u~on the availability of specific 
terminals. In the event of a terminal going down, an alternative 
terminal or device (tape, disk, cr printer) may be assigned to receive 
the output logically directed to the failing terminal. 

On terminal failure (see figure 3-12), it is not practical to 
reassemble the destinatien centrel table to changE the indirect 
destination to the backup device, without terminating CICS/VS. In this 
case, the system design team should evaluate the requirement for a 
backup capability to enable critical information to be received. 

If it is necessary that infor.atien be directed to an alternative 
device, then the destinatien control table may be changed dynamically 
by user-written programs. The user may write an application program 
(initiated by a specific transacticn code) to search the destination 
control table for the specified indirect destinatien. The destination 
identificaticn pcinting indirectly tc the failed device can then be 
modified to point indirectly te the destination cf an alternative 
device. Data already gueued for the original destination cannot be 
sent to the failed terminal, but must then be copied by the user program 
to the destination gueue of the allocated device. Subsequent data 
written to the indirect destination will then automatically be directed 
to that device (see Figure 4-7). 

Cha~ter 4. eICS/VS Data ftanagement Design 107 



~9!~: In the event of abnerRal termination because of a Fcwer failure 
or machine check r and subsequent reinitiation of CICS/VS r such user 
modifications to the nCT may be lost. The neT will be initialized by 
CICS/VS as if the user modification had not occurred, since it is not 
aware that the nCT was changed by the user. This can be overcome by 
the user program journaling each neT modification and reestablishing 
each modification itself after reinitiation. (SEe "Journaling.") 

INPUT 

Program 

I DFH"!"C_TYPE= I 
~:E 

Transmis· 
sion Error 
Indication 

User-Suppl ied 
Alternative 

t Device 
Table 

'----.----1 

\ TEl> 

DFHTD TYPE=PUT, 
DESTID=XXXX 

--
r-r-

~> 

-'--

APPLICATION PROGRAM PROCESSING 

1. Application program Issues ter­
minal control WRITE macro 
instruction to transmit mes­
sage to terminal. 

2. Terminal indicates transmiss~ 
error occurred, and message 
failed to be sent correctly. 

3. CICSIVS attempts recovery. If not 
successful, control is passed to 
user-written terminal error 
program (TEP). 

4. User-written TEP scans user­
provided alternative device 
device table to identify an 
alternative terminal or device 
(tape, disk, printer) to receive 
message. 

5. User TEP writes failed message 
to transient data destination 
for alternate device XXXX, to 
send message when terminal 
available. 

6. User TEP then copies messages 
queued to destination of failed 
terminal across to destination 
of alternative device. 

7. OCT for error terminal is modi­
fied by user TEP to point to 
alternative device for sub-
sequent reference. 

~------------------------

< 

Figure q-7. Terminal Backup and Beconfiguration 

OUTPUT 

(Terminal) 

User-Written 
Terminal 
Error 
Program (TEP) 

II 

~ 
OCT ~ 

Trans-

Frient LJ Data 

The transactien code allocated to the nCT modification program may 
be given a security code se that only certain authorized terminal 
operators, such as the master terminal operator, may use it. 

DI~g!i~ l~!ingl Ej~Qnfi~YXAti9D 

The user-written tCT Modificaticn program for terminal backup 
described above Day also be utili2ed for dynamic terminal 
reconfiguration. If at different tiDes of the day it is required to 
change the destinatien of logical eutput to different physical devices, 
this can be achieved by using the [CT modificatien transaction code 
and frogram. 

This raises the possitility of dynamically reconfiguring the terminal 
network, or other devices, tc receive output. Per example, at one time 
of the day output may be directed to a particular terminal printer, 
while at other times it may te directed to a disFlay screen, and again, 
to a linE printer. 

As described above, any dynamic neT modification made by user-written 
programs should be journaled by the user r and ut'ilized after CICS/VS 
reinitia1ization to reestablish the modified nCT. 

108 CICS/VS SysteD/Apflication Design Guide 



The availability of CICS/VS terminal device independence, which 
enables application progra.s to FresEnt output Bessages in a standard 
form regardless of the terminal type which will receive those messages, 
lends itself to such dynamic reconfiguration capability. Dynamic 
terminal reconfiguration is discussed further in "Terminal Backup" in 
Chapter 8. 

Because CICS/VS allows an] terminal (or simulatEd terminal such as 
card reader, disk, or taFe) to enter any transaction, the user-developed 
support of dynamic rEconfiguraticn also enables the master terminal 
operator to exercise centrcl over where output is to be directed hased 
upon online application reguiremEnts. Used in this way, transient data 
and indirect destinations become pcwerful online aFplication tools. 

Some VTAM-supported terminals (such as the 3600) permit dynamic 
terminal reconfiguration to te pErformed by the ccntrollet for the 
devices controlled by an AP. Through use of logical device addresses, 
the AP identifies devices to be used for I/O. The contrc11er relates 
their logical device addresses tc Fhysical device addresses using a 
table associated with that AI. The controller also permits this table 
to be changed dynamically so that a specific logical device address 
may refer to a different physical device. The 3€00 system operator 
may request this reassignment to te carried cut ty a user-developed 
AP. Por example, a 3600 system cFerator may reassign an alternative 
printer for use ty an AP with an inoperative printer. 

This device reassignment is transparent to CICS/VS. CICS/VS 
communicates output disposition to an AP through use of logical device 
codes (LECs). The IP then relates the logical device code to a logical 
device address and issues the relevant output reguest. The controller 
then relates the logical device address to a physical device as 
previously described. 

The AP can interpret the tDC tased upon app1icaticn requirements 
and identify a legica1 device address to the contreller. The controller 
can then identify the physical device currently assigned to that logical 
device address fer that AP. 

Use of alternative devices and device reassignment support in the 
3601 provides additional system flExibility and availability for 3600 
users. 

Chapter 4. CICS/VS Data !anageaent Design 109 





This chapter presents a tutorial discussion of data base design. 
Experienced ClCS users may wish to omit reading about those facilities 
which are identical to those provided in previous versions of ClCS. 
New facilities provided i6 CleS/VS include support of VSAM data sets 
and DL/l data bases. Appreciation of these facilities can be obtain~d 
ty reading the following topics: 

• Data base iuplementaticn for applications 

• Bandom record deleticn (VSAM only) 

• Locate mode Frocessing (VSAM only) 

• Mass record insertion (VSAM cnly) 

• Skip sequential browsing 

• ieighted retrieval function (VSAM only) 

• Becord identification 

• Phonetic conversion function 

• segment updating (key-se9uenced VSAM) 

• Becovery considerations 

• DL/l products 

• Data base selection critEria 

Because of thE. significant caFability available both to the 
ClCS/DOS/VS and the eleS/eS/vs user for accessing DL/I data bases, it 
is strongly recommended that the CleS/VS user whe is not familiar with 
DL/l concepts and advantages read the DL/I Products section in its 
entirety. 

In designing data bases, it is important to identify thE data base 
requiremEnts of each apFlication to te implemented. Accordingly, this 
chapter first examines the data t~se requirements of a number of 
diffErent applications, to identify these factors most important to 
the applications in selecting the appropriate data base support. 
Following this, the services offered by eleS/VS file control and by 
the various DL/l products are deserited. ~echniques are identified 
for thE design of data baSES using these facilities to satisfy various 
application requirements. At the end of the chapter, a number of 
selection criteria are discussed for the determination of the most 
appropriate data baSE support in specific environments. 

Chapter 5. eIeS/VS Data Base Design 111 



DATA BASE DEPINI7ION 

The term "data base" lay have a different meaning to different online 
applications or installaticns. A general definitien of a data base, 
which covers mest consideraticne, is: 

"A structured nonredundant collection of interrelated informatien 
accessible to many users at the same time." 

The term "structured" in the definition refere to the organization 
01 informatien in a manner by which it can be easily retrieved. The 
following two structuring apFroaches can be used: 

• Fhysical structure 

• Logical structure 

To reguire an applicatien Frogram to be aware of the physical 
structure of the data base ilplies that any change to the organization 
of inforDation OD that data tase might also necessitate modification 
of the applicatien programs which access the data tase. 

A logically structured data base is one in which an application 
program can refer to infer.ation in that data base by name, without 
necessarily being aware cf the physical organizaticn or location of 
data on the data base. The Fhysical structure or organization may be 
separately described by a data description table, while the application 
prograD can describe its 1cgica1 accessing and usage of the data using 
a program description table. ThesE: tables provide an interface between 
the ap~lication Frogram and the Ehysical structure of the data base. 

The advantage of logical ~tructureS is that a change in the data 
base generally only requires a changE in the rel~vant tables, often 
without ne~essitating any change in the application programs. This is 
termed data independence, and results in reduced maintenance of prograDs 
follewing modificaticn ef a data basE. 

Data tases which are referenced b] Fhysical structure usually have 
limited (or no) data independencE, and programs may require considerable 
modification following a data base change. However, programs that 
refer to data bases logically, exhibit a much higher degree of data 
independence. Any data base changes are reflected in the data base 
tables and program tables rather than in the program itself. 

The term "noriredundant" in the above definition refers to the abil{ty 
of a data base to record certain information (for example, a customer's 
name and address) once only, but make that information available to 
other prograDs that use it. 

Traditionally, batch apFlicaticns and programs are developed with 
their own data sets, often disregarding information that is recorded 
on separate data sets for seEarate aFP1ications. The result in the 
traditional batch environment is the existence of redundant 
information--that is, the sale infer.ation is often recorded in many 
data sets. A change to that information must be propagated through 
all data sets to ensure that the infermation remains in step across 

112 eleS/VS System/Application Design Guide 



all applications. The advantage in recording information only once, 
and yet making that cne record of. information available to all 
applications, is that once that information is changed, the change is 
reflected across all applications that us~ the infermation. 

A further advantage resulting from nonredundant storage of 
information is storage econo.y, either on disk or tape. 

The term "collection of interrelated information" in the definition 
refers to the consolidation ef infer.ation relating to applications at 
one common point. The advantages offered by such consolidation include: 

• More readily available irformatien 

• More timely information 

• Elimination of redundant information 

• Saving in disk or tape storage requirements 

• Easier maintenance of informatien 

• Development cf infor.atien relationships 

The last advantage listed refers to a significant advantage of data 
bases: the determination of the logical relationship of all information 
referring to a particular entity. 7he identification of such 10g1cal 
relationships of information enables that information to be utilized 
for better management of ancrganizaticn's activities. This information 
may have been available previously, but may not have been utilized 
effectively before iDplementing the data base. 

To illustrate the importance of the data hase factors 
discussed above, namely: 

• Interrelated infermaticn 

• Logical structuring of information 

• Data independence 

• Nonredundant information 

the application reguire.ents for data base support in the following 
industries are discussed: 

• Manufacturing 

• Banking 

• Insurance 

• Medical 

• Pharmaceutical 

• Distribution 

• Law Enforcement 

• utilities 

Chapter 5. CICS/VS Data Base Design 113 



The entire data base reguire8ents will not be described for each 
industry~ However, some data base requireDents will be identified 
here, to use as a base fer subseguent discussion in this chapter and 
in Chapter 11. The reader aay wish to read only that section below 
relevant to his ewn industry, and then refer to the topic "Data Base 
Implementation for Applicatiens." 

One of the most iRFortant reseurces in each of the industries next 
discussed is data. iithcut access te such data or information in these 
indugtries, the following ap~lications cannot exist. The availability 
of such information can open apF1ication Fotentials which were not 
practical previously. 

The application design in each of these industries is discussed in 
more detail in ChaFter 11. However, the data base requirements 
introduced here highlight the main requirements fer data base support 
in each industry. References are also made to diagrams in Chapter 11. 

The DL/I products provide extensive data base support, which exceeds 
that prolrided by CICS/VS file centrol. File contrel is· a da ta 
management system which can te utilized to access data sets. However, 
the user must be aware of the physical organization of data on those 
data setsl. DL/I refers te data in a data base, while CICS/VS file 
control refers to data in data sets. ihile recognizing the different 
levels of data base suppert effered ty DL/I and by CICS/VS file centrol, 
te avoid confusien of terminology between data sets and data bases, 
all infoI:mation is discussed belcw as teing part of a da ta base, 
regardless of whether CICS/VS file centrol or DL/I is used. 

8ANUFACTURING IanUSTRY 

Some of the infor.atien requireaents of this industry relate to 
manufact~ring (or production) work orders. The data d~scribing the 
products to be manufactured,· parts to be utilized, availability of 
materials: and resources, and status and location of work orders in the 
manufacturing process are essential to manufacturing control. Figure 
11-1 illustrates a manufacturing Froduction order and status reporting 
system. 

~~!A~!~ri~g !~~~ ~rde~ ~!1!,~§! 

At least three data bases aay te·reguired for control of information 
relating to manufacturing. Cne is the manufacturing order data base, 
on which the entire manufacturing apFlication deFends. This generally 
contains the record for each manufacturing order as illustrated in 
Figure 11-2. This manufacturing order data tase centains information 
describing the manufacturing requirements for each werkerder, together 
with infermation reporting the status of that work order at each step 
in the manufacturing process. 

!!~1 !Y!!~~ ~~2§§=~!i!I§~~s ~!5 ~!§s 

A second data base is used to indicate relationships between part 
numbers and open manufacturing orders using a particular part. This 
data base is called the part numter cross-reference data base. By 
accessing this data base for a particular part, each current 
manufacturing crder which uses that Fart may be identified, as 
illustrated in Figure 11-3. Further information relating to that 
manufacturing order may te obtained from.the manufacturing work order 
data basE:. 

11q CICS/VS systeR/App1ication Design Guide 



A third data tase is the Danufacturing planning data base, which 
contains information for each manufacturing ordEr that has been planned 
and that will be released to the shop flcor for ~ork. This data base 
is used mainly fer audit trail and control functions. The information 
containea in this data base is illustrated in Figure 11-4. 

As manufacturing crders are received, they are added to the 
manufacturing oraer data base, and all parts utilized by that 
manufacturing werk erder are added tc the part number cross-reference 
data base. As each work order is planned for manufacturing, it is 
entered into the manufacturiDg planning data base. 

!!!l t a ~~~ 1!§.9Yi~SJ!n.1§ 

The data base reguireeents for this application should support: 

• Logical relationships of data to be established; for example, all 
work orders using a particular part. 

• Multiple occurrences of infor.ation relating tc particular data, 
for example, multiple status infermation relating to a work order, 
or multiple work orders relating to a part. 

• Adding inforaation to tbe data base, replacing or altering 
information, or deletilg infcr.ation. This enables new work orders 
to be added, existing work orders to be altered, or completed work 
orders to be deleted. In addition, one work crder may be split 
into two or more work orders. ~his implies the need for changing 
the original werk order and adding each new split work order. 

Additional facilities which should, ideally, be provided by data 
base support in this. industry are: 

• Data indepenaence 

• Nonredundant informaticn 

• Easy maintenance 

• Batch and online aCCESS to the data base 

BANKING INDUSTBY 

The applicaticns often cf interest in this industry are: 

• savings tank and mortgage loan system 

• customer information system (called Customer Information File -
CIF) 

The savings bank and .ortgage loan system, when iapleaented as an 
online application, enables savings bank deposits and withdrawals and 
mortgage loan transactions to be entered from teller terainals located 
in various branches of the bank. These transactions are used to update 
savings bank and loan accounts. Pigure 11-7 illustrates a typical 
savings tank and mortgage loan system. 

Chapter 5. CICS/VS Data Base Design 115 



The customer information system is used to identify all information 
relating to a customer's activities with the bank. This enables the 
following informaticn to be identified for each customer: 

• Savings accounts 

• Checking accounts 

• Loan accounts held 

Furthermore, given a custemer's name and account number, it can also 
be determined frcm that account all ether accounts owned by that 
customer. Figure 11-11 illuEtrates a typical banking customer 
information system. 

To implement these applications, several data tases are required. 
These data bases should te interrelated, to allow implementation of 
the custcmer inferaaticn system. A descIiption of these possitle data 
bases follows. 

~~!i~g§ J££2~~! ~g!s Ba§~ 

The savings account data tase contains information relating to each 
savings account·-such as aeceunt numter and current balance. 
Information describing each transaction against that account, such as 
deposits, withdrawals, and interest, is also contained in this data 
base. There may be multiple transactions against each account, as 
illustrated in Figure 11-8. 

The mortgage loan data base may bE similar to the savings account 
data baSE, as illustrated in Figure 11-8, except that the multiple 
transactions that occur against a loan account are normally payments. 
The initial granting of a loan usually results in the cr~ation of a 
new loan account, against which there may be multiple transactions 
reflecting periodic payments against that loan, and interest 
calculations based upon the current talance. 

~~~£~!~g Acccu~! ~s!g ~g§! 

The checking account data base is somewhat sioilar to the savings
account data base, except that the multiple tran~actions that occur
against the checking acceunt are checks written, or deposits received,
together with fees charged against the account, as illustrated in Figure
11-12.

~~sto.!!.§l: !££2.Y.n! g;2§§=j~!fi~~£! .R!!g ~§~

The customer account cress-reference data base generally provides
information describing the customer, such as namE, address, and
telephone number, and contains inf~rmation describing every type of
account and account number held ty that customer at the bank. Because
a customer can have many different types of accounts, multiple account
references may exist (see Figure 11-9).

116 CICS/VS System/Application Design Guide

The data base support required for this application should support:

• Multiple occurrence of transacticns relating to an account.

• Logical relationship of accounts to a specific customer, to produce
an interrelated data basE.

• Add new accounts, change accounts, and delete accounts from the
data base.

• Add new transactions, change transactions, and delete transactions
from accounts.

• Using related data tasEs, record custcmer information only once,
but allow that informatien tc be available te all of the customer's
accounts se as te aveid redundant infcrmation.

• Modify the data tase without requiring program modification--that
is, data independence.

• Access the data base beth online and offline.

INSUEANCE INDUSTEY

The applicatiens within the insurance industry, covered in the
following paragraphs include:

• Policy information system

• New-business policy entry systEm

A policy information systEm is somewhat analogous to a customer
information systEm in the banking industry. It utilizes a numter of
data bases which describe all of the policies issued by the insurance
company for each customer (see Figure 11-14). Other information
relating to claims and renewals against each policy enable the insurance
company to assess more accurately a customer's insurance value.

The new-business policy entry system enables new policies to be
entered and added to the policy data tase (see Figure 11-18). In
addition, provision is made through this system to alter or delete
policies already in the policy data tase.

!Qli~x ~§!~ ~~§~

The policy data base generally contains all the information relating
to each current insurance ~olicy. In additicn, claims and renewals
against that policy are associated with the policy inforaation. There
may be multiple claims or renewals against each policy, as shown in
Figure 11-14.

The customer cress-reference data base contains information relating
to the customer, such as name and address, together with identification
of each policy number owned (see Figure 11-1E).

Chapter 5. CICS/VS Data Base Design 117

In some cases, a representative or a territory data base may be
used. This identifies each insurance company representative, or
geographic territory, together with all the policy numbers relating to
that representative or territory (see Figure 11-17).

Data base sUPFort for these aFFlications should support the
following:

• Multiple occurrences of information, such as claims and renewals
to be associated with each Fclicy

• Multiple policy numbers to be associated with each customer

• Logical relationships of a customer's ownershiF of various policies

• Nonredundant storage of infcrmation, so that information describing
a particular customer cr policy may appear only once and yet be
accessible in many different ways

• Data independence, tc enable the data base to be modified without
requiring corresFonding IrograD maintenance

• Batch and online access to data base

I1EDICAL INDUSTRY

One online application in this industry is the control and
maintenance of infcrmaticn relating to all the patients. in a hospital
or clinic, in a Fatient informatic:o system (see Figure 11~20). This
application enables a history to bE developed for each patient,
describing all visits, diagncses, and treatments received for that
patient. In addition, each Fatient receiving certain medication or
with a particular disease can be nated to enable rapia identification
cf such Fatients receiving certain treatment or suffering from
particular diseases.

!g!i~D!]ist~l ~!!! ~!§~

The patient history data base generally ccntains all the information
describing each patient, such as name, address, sex, and physical
characteristics. In this data baSE Day be information describing each
visit by each patient to the hosFital or clinic, each diagnosis made
for that patient, and all Dedicaticn or treatment received (see Figure
11-21) •

~~gi~ati9D ~~9§§=~§~~~~~§ ~!!! ls§§

The medication cress-reference data base .ay contain information
describing the particular medication, together with identification of
all patients who have received that aedication, as illustrated in Figure
11-22.

Y!~ss§§ Y!!!]s§!

A diseases data base Day be used, which contains information relating
to each disease, together with identification of all patients suffering

118 CICS/VS system/Application DeSign Guide

from that disease. Alternatively, the patient history data base can
be searched sequentially, to select all patients with a particular
disease. The use of a separate diseases data base is reccmmended if
there will be a significant Dumber of disease inquiries.

Data base support fer such a patient information system should
support:

• Multiple visits, diagncses, and treatments to te recorded for each
patient, or .,ultiple patients to be recorded for each medication
or disease

• Logical relationships of Dedication or disease to patient history
and vice versa

• Add, change, or delete patients or patient history information such
as visits, diagnoses, and treatment

• Add, change, or delete identification of patients receiving certain
medications cr suffering frOB specified diseases

• Nonredundant storage of information, such that information
describing a patient occurs only once

• Data independence, such that a modification of the data base will
not require corresponding modification of programs

• Access to the data base from batch and online programs

PHARMACEUTICAL INDUS~RY

One online application in this industry is the entry of orders from
pharmacists for various products and the filling of those orders in
the pharmaceutical company's warehouse, as illustrated in Figure 11-24.

This application uses a pharmacist data base, describing the
information relating tc a pharmacist such as name, postal address,
ship-to address, and credit rating (SEe Figure 11-26).

Prod'y£! ~~ ~g§§

The products which may be ordered are held in a product data base
which describes the infcrmaticn relating to each product.

The synonym data base may contain display images of all product
names with the same first few characters (first four, five, six, or
seven characters for exanple), together with product information such
as unit price, unit size, discounts, and warehouse location, as shown
in Figure 11-25. This data tase is used to identify by name the product
ordered. The display image is transmitted to the terminal operator to
enable the appropriate product name to be identified.

Chapter 5. eICS/VS Data Base Design 119

The accepted order data base contains orders which are to be filled
by the warehouse. The ~roducts within each crder may subsequently be
sequenced into warehouse location sequence for production of warehouse
packing slips (see Figure 11-27).

The order in-progress data base may have the sa~e record format as
the acceFted order data base (see Figure 11-27), and is used for
temporary storage of products ordered, until the entire order is
complete v to allcw for changes in the rirder.

The data tases used for this a~~lication may need to support multiple
occurrences of information, such as multi~le product details for
products stored in more than one warehouse. The particular data base
support used should provide:

• Access of informatien relating to ~harmacists and products

• Add crders to the order data base

• Multiple occurrence ef deta!ls fer products in the data tase which
may te stored in several wa~ehouses

• Nonredundant storage of data, with all the information relating to
a pharmacist or a preduct, fer example, stored only once

• Data independence, such that modification of the data base does
not require corresponding modification of pregrams

• Access to the data base ty batch and online programs

DISTEIBU1ION INDUSTRY

A common apFlication in t~e distribution industry is order entry
and invoicing. This application is sometimes similar to the
pharmaceutical order entry system described above, but differs mainly
in the area of stock status checking. Orders are accepted against
products, and the product inventory is imRediately updated.
Furthermore, informatien such as issues and receipts against each
product can be retained online as part of the ~urrent preduct
information. Figure 11-28 illustrates one example of an order entry
and invoicing system.

Some of the data bases used in this applicaticn may be similar to
those used in the pharmaceutical order entry system, but with additional
inventery control information in the product data base.

~y§toB~. .~s ~~§!

The customer data base is generally a record of information relating
to the customer, such as na.e, pestal address, shi~-to address, and
credit rating (see Figure 11-30).

120 CICS/VS System/Application Design Guide

The product data base Day contain information describing the product,
together with current balance, minimum balance, reorder quantity, unit
price, and disceunts acress several warehouses (see Figure 11-31). In
addition, each accepted product order may result in an issue against
inventory, while each reorder placed a9ainst suppliers may eventually
result in a receipt into inventory when the reordered quantity is
deli vered.

These issues and receipts may be recorded in se~arate data bases or
associated with the criginal Froduct in the product data base. In this
case, there may be multiple issues and receipts against each product
in the product data base.

The orders data base may contain information describing each accepted
erder, and the products cCDprising that order (see Figure 11-29).
Products in the accepted order data base may be sequenced into warehouse
location sequence for prcduction cf a warehouse packing slip.

The order in-progress data base temporarily helds each product
erdered until the entire order is co.p1eted, in case it is necessary
to alter the order before completien (see Figure 11-29).

The ftata base support requirements for this apF1ication should
support:

• Accessing of customer information

• Accessing and updating of product informatien and inventory levels
of products in the data base which may be stored in several
warehouses

• Application of issues and receipts against a product in the product
data base

• Addition of accepted orders to the order data base

• Nonredundant infermation, by asseciating product issues and receipts
with the original product record

• Data independence, such that modification of the data base will
not require correspondin9 modification of the programs

• Access to the data base from both batch and online programs

LAW BNFOECEHEN~ INDUSTE!

One online application in this industry is a police information
system. This is generally an inte9rated data base system containing
all information relating tc known criminals, and data available on
crim.es such as JI~'y§ 2.ES'l.DA! and suspects (see Figure 11-33).

A police information system provides a useful function, not only in
the recording and maintenance of all. information relating to criminals

Chapter 5. CICS/VS Data Base Design 121

and crimes, but also throUgh the rElationships. of information. A police
information systEm c~n be utilized as a powerful law enforcement tool,
by examining various relatioDshi~s; for examFle:

• The personal characteristics of suspects against personal
characteristics of known criminals

• compi!lring the .. ~gy§ .Q]iIJD,gi used for a particular crime against
the):nown J!!2..9.Y§ ,gl!~'jl!g.! of various criminals

• The examination of all factc~s relevant to a particular crime and
the relation of those factors to other information

A numtler of separate data bases may be used in this ap~lication to
produce an integrated police data tase. Some of these data bases are
described in the following parag~aFhs.

~'iJiDjl ~J!9 ~j~~

The c~iminal data basE .aJ contain all information relating to each
known criminal, such as naae, kncwn addresses, aliases, and reference
information in other data bases, such as personal characteristics and
particula.r lIQgy§ .QR$UJlgi.

giaD ~S!:.t9 b§~

The crimes data base aaJ contain all kncwn information relating to
particular crimes, together with details of the crime, such as ~
2l!~IJJl9!, and referEnce to Fcssitle suspects.

~Y§R~ts ~!9 ~j~~

The suspects data baSE may be similar in nature to the cri.inal data
base, and records all kncwn information relating to each suspect of a
crime.

~2D!ic:.ti~Jl§ ~9!J ~9§!

The convictions data base may relate SOlVEd crimes to criminals,
and may indicate the punishmEnt dispEnsed.

This data baSE may contain the personal characteristics (such as
height, weight, age, and descripticn) of all known criminals, suspects,
and participants in crimes.

Mo..9.Y§ .QR!"n..9i ~9!J b!i.!i

This data baSE may contain thE .2~~ 2l!~IJag! used by known
criminals, suspects, and ~artici~ants in crimes.

122 CICS/VS system/Application Design Guide

The data tase support requirements for this aPElication are quite
extensive. The data base sUfport sheuld allow:

• The multiple occurrence ef infermation, such as aultiplereferences
to crimes and convictions for each criminal, or multiple references
to criminals for each crime

• The ability to readily aad, change, or delete information on the
various data bases

• The ability to manipulate coded and textual infor.ation of data
bases--that is, the sUFpert of variable-length text information

• The ability to identify logical relationships between various
information

• The capability to search data tases, selecting infermation based
upon specified criteria

• Nonredundant information, to reduce the a.ount of disk storage
space required

• Data independence, such that medification of the data bases will
not require corresponding modification of programs

• Access to the data bases by batch and online programs

UTILITIES INDUSTBY

One online application in this industry .ay be a Custemer Information
System (see Pigure 11-35). ihis may contain all inf~r.ation relating
to the utility company's customers, such as na.e, address, account
details, appliances installed, and their aaintenance history.

The customer data base cODtains descriptive information such as
name, address,aFpliances installed, consumption history, account
details and history, installment lean account details, and history and
maintenance history for aFFliances (see Figure 11-36). The historical
information may be part of, the customer data base and requires that
multiple entries of inforaatioD relating to the particular account or
appliance be associated with each customer.

To enable scheduling of maintenance technicians to repair faulty
appliances as reported by customers, a maintenance technician data base
can be used. It may contain infermation describing the maintenance
technician, his particular experience, a planned werk schedule for that
technician, and, possibly, service calls and repairs already carried
out. Based upon customer service calls, and unallocated slots in a
technician's schedule, technicians may be allocated to answer particular
service calls. This s~rvice call information refers to the particular
customer and appliance invc11ed. Infor.ation describing the service
call and repair may also be added to the maintenance history for that
customer's appliance in the custcmer data base.

Chapter 5. CICS/VS Data Base Design 123

The data base support requirements for this aFplication should
permit:

• Multiple occurrence of information, such as account history er
maintenance history, te be asseciated with eacb custo.er or
appliance, or each maintenance tecbnician

• Ability to add, change, or delete customers, appliances, account
information, and maintenance infermatien

• AbiljLty to generate main tenance work erders for technicians,
accessing prior maintenance bistery for an appliance

• Ability to contain varying a.cunts of information for each customer,
such as infoImation relating te multiple appliances, or no
appliances, and extensive acceunt history, or no account history,
while still utilizing disk storage space efficiently

• Nonredundant infermaticn

• Data independence

• Access to the data bases from batch and enline programs

tATA BASE I!PLEMENTATION FCR APPIICATICNS

~s!s ~s§! ReB~j~s~~!§ ~YI~~1

The most common requirements ef data base support for the f~regoing
applications are:

• Ability to support the multipleeccurrence of information, with
the number of occurrences varying from zero te many

• utilize disk storage mcst efficiently, without requiring storage
space to be allocated for infermation which is net present for a
particular record

• Handle variable-length informatien such as names, address~s, or
textual information fer tetter disk storage efficiency

• Add, change, or delete rEcords in a data baSE

• Add, change, or delete multiple cccurrences of information for a
record

• Nonredundant storage of information

• Data independence

• Access to the data bases by batch and online programs

Before examining the various data base support techniques available
to determine how these can satisfy tbe abcve requirements, it is
particularly important to exaainE the way in which multiple occurrences
of information fer a particular data base record can be implemented.
The two techniqUES are:

124 CICS;VS System/Application Design Guid~

• Fhysically related cccurrences

• lo~ically related cccurrEnces

Physically related occurrEnces generally are imFlemented by utilizing
separate data sets. The main "rcot" information is stored in one data
set. This may be specific customer data in a customer information
system, account information in a savings b~nk and loan system, or
product information in an order Entry system.

The multiple cccurrences cf rElated informaticn are then stored in
a separate data set or data sets, and are related back to the 8ain root
information in the root data set ty means of pointers. Furthermore,
the separate occurrences cf information relating to a root can be
chained ty means of pointers.

For example, in the banking industry, all the accounts relating to
a bank~s customers Bay bE recorded in savings and loan account data
sets, with each account record ccrtaining pointers which refer back to
the customer's rcot information, such as name and address. Bach account
record for that customer may also contain a Fointer to the next account
for that samE customer in a chain of accounts. A further data set, a
transaction data set,contaiDs deFosits and withdrawals for accounts.
Bach transaction refers back to its relatEd account record by means of
a pointer, and to the ne~t transaction against the same account-in a
chain of transactions, using another pointer. This is illustrated in
Figure 5-1.

Savings Loan
Transactions Transactions
Data Set Data Set

Figure 5-1. Savings and Loan Data Base Chaining

Chapter S. CICS/VS Data Base Design 125

The separation of the root information in one data set, with the
variable transacticn infcraation in ether data sets chained logically
to the root data set and alse to ether transacticns for that same root,
enables standard access methcds to be utilized in Froviding data base
support. The root i~formaticn may be organized as a standard DAM
(Direct Access Method), 1SlM (Indexed sequential Access Method), or

VSAM (Virtual stcrage Access Methcd) data set. Generally, the
transaction data set would be organized as a DAM data set, or an
entry-seguenced VSAM data set, tc enable direct retrieval of transaction
records. Retrieval of all the transactions relating to a particular
root requires retrieval of the root information itself, followed by
retrieval of each transaction in the chain--with a possible separate
physical access for each transaction.

This physically related chaining technique may be supported by the
CleS/VS file centrol indirect access feature, which is discussed. in
more detail later in this chapter.

The lcgically related technique for the multiFle occurrence of
information generally inccrpcrates the multi FIe transactions in the
same data set (or data base) with the root information. Most of the
transactilons relating to the root information are Fotentially accessible
in fewer physical disk accesses than for physically related information.
The data base sUFPort endeavcrs to place multiple transactions as close
physically to their logically related root information as possible.
For example, root information such as customer details is recorded
immediately followed by multiple occurrences of information, each
detailing a separate acccunt for that customer and transaction activity
against each particular account.

The data base support tc implement a logically related technique
must enable new informaticn related to the root informatien to be added
to other information for that root, existing information to be changed,
or informaticn to be deleted. This may require the utilization of
internally controlled pointers and chains which are known only to the
data base support and which are transparent to the application program.
The application program may logically regard the multiple occurrences
of information as if that information were physically adjacent to the
root information.

Alternatively, the data base support may attempt to physically insert
added information with the rcot and existing information, thus shifting
aleng other information in the data base.

The data base support available for such logically related
informaticn is:

• eleS/VS file control segmented record feature

• DL/I products

These are discussed in more detail in the rellainder of this chapter.

The features and system design_~spects of CleS/VS file control and
DL/I products are presented below. Included are the factors to consider
when selecting appropriate data base support and selecticn criteria.

126 CleS/VS system/Application Design Guide

The CICS/VS file centrel ~rogra. ~rovides data tase support fot
application programs executing under its control. It uses the standard
access methods availabl. under DOS/VS and OS/VS1 or OS/VS2 -- nam~ly
the Indexed Seguential Access aethod (DOS/VS ISA! cr OS/VS BISAa),
Direct Access Method (DOS/VS DAa or OS/VS BDA!), and Virtual storage
Access aethod (VSAM). Per the re.ainder of this chapter, "DAM" will
be used to refer both to DOS/VS DAa and OS/VS BDA!, and "ISAM" will
refer to both DOS/VS ISAM and OS/VS EISAM.

The facilities provided by the standard access methods are extended
in some cases by CICS/VS file control to provide additional support.
For example, file centrel supports the following data sets:

• Fixed-length and variable-length records

• Blocked and unblocked data SEts

• ISAa, DAft, and VSAft

Extensions provided by CICS/DOS/VS file centrol enable the support
of variable-length DOS/VS 151M data sets, which are not part of standard
support ~rovided by ~OS/VS ISAft. Si.~larly, filE control provides
support for blocked fixEd-lergth or variable-length DAB data sets,
which. are not included in the standard support provided by DOS/VS DAa
or as/vs BDAft. ~he suppert ef blecked direct access data sets is
particularly useful if those data sets are processEd seguentially by
CICS/VS programs, as discussed bElow in "Seguential Access (Browsing)."
CICS/VS file centrel allcws toth direct access and seguential access
to ISAft, DAB, and VSAa data sets.

DIRECT ACCESS

Direct access, seaetiDes referred to as random access, is supported
by file control for ISAft, CAM, and VSAM data sets. The following
services are provided by CICS/VS filE control for DAa, ISAft, and VSAft:

• Randem recerd retrieval

• Random record update

• Randcm record additien

• Random record deletion (VSAM only)

• Logically opEn/close data sets

• Exclusive control of recerds during update operations

• Variable-length ISAft recerds (both DOS/VS and OS/VS)

• Blocked DAft records

• LOCATE mode, read-only rEtriEval (VSAft only)

• Mass record insertion (VSAB cnly)

• segmented records

• Indirect access

These services enable CICS/VS file centrol to provide data manage.ent

Chapter 5. eICS/VS Data Base Design 127

support that surpasses OS/VS or DOS/VS data management support in many
areas.

Direct access to data sets is .ade on the basis of record
identification of the particular lcgical record to be retrieved. The
record identification may be either a record key in the case of IS AM
or key-sequenced VSA! data sets, or a record location within the data
set for DAM or entry-sequenced VSlft data sets. The use of record keys
or lccations for direct access is discussed in more detail under "Record
Identification. II

Based upon presentation of the appropriate record identification by
the application ~rcgram, CICS/VS file control viII access the data set
requested by the program tc carry out the services listed above, and
described in detail in the fcllowing sections.

]~1!dc.m 1!~.S;;21:9 1!!2!~!~.!Sl!

File control viII directly acce~s the record identified by the
application program using either key or record lecation (depending upon
the type of data set) frcm the s~ecified data set. The application'
program issues a file control GET maero instruction, identifying by
name the data set tc be accessed, and indicating the location in the
program which contains the record identification. The data set name
is used by CICS/VS to locate the relevant entry for that data set in
the file control table (FC'l). ThiE entry contains specifications for
that data set, such as:

• Access method used

• Record length

• Elock length

• Key len~th (if applicable)

• Key location (if applicable)

This information is not contained within the application program.
In the event of a change tc the data set, the relevant changes ~ay be
made to the FCT, without affecting the application program. This
provides a limited degree ef data independence.

When the applicatien {rogram issues a file control GET .~cro
instruction, CICS/VS dynamically allocates storage to be used as an
input area (file I/O area--FIOA), and a work area ~ile work area--F8A,
or virtual storage work area--VSiA--for locate mcde procEssing of VSAM
data sets) if required. The input o{eration then begins. The
application prcgram vaits until that requested operation is completed.
Any I/O errors on completien, which cannot be recovered by the access
methcd or by file centrol, are thell returned to the application program
for action. See Figure 5-2.

Although an applicaticn program does not continue processing while
a requested I/O cperation is being carried out, CICS/VS utilizes the
available processing time during the I/O for other concurrently
executing tasks. Consequently, all tasks are given an equal opportunity
to process, based upon their respective task pricrities, vhile I/O is
in progress. The net result is im~reved overall performance of all
concurrently executing tasks in thE: system, eveD though the full
processing overlap pctential of the single task issuing the I/O
operation request is Dot utilized.

128 CICS/VS System/Applicaticn Design Guide

INPUT CICS/VS PROCESSING OUTPUT

Application Program

I -- 1. Application Program Issues GET
DFHFC TYPE=GET Macro Instruction, Specifying

DATASET=FILE1 Data Set Name (FILE1) And Record
RDIDADR-KEY1 Identification (Contained In -- KEY1).

FCT

Dataset (Filel) :> 2. CICS/vS Locates Data Set Entry
In File Control Table.

Blocksize
Received Length 3. CICSIVS Allocates File I/O Area File 1/0 Area

(FIOA) For DAM or ISAM Data Sets :>
Based On Block Size In FCT.

FK[G
FIOA

4. CICSIVS Retrieves Relevant Record

III :> From Data Set.
VSAM Control I Interval

5. CICSIVS Allocates File Work Area
(FWA) Based On Record Length In

~
FCT, If Data Set Is Blocked And/Or File Work Storage
Segmented, Or Virtual Storage Area Work Area
Work Area (VSWA) If VSAM Locate >
Mode Processing Is Specified. I FWA I VSWA

6. CICSIVS Moves Logical Record
From FIOA To FWA, If Allocated. Task Con trol Area
However, If VSAM Locate Mode Is
Specified, CICSIVS Places Address TCA
Of Logical Record (Within VSAM

~
Control Interval) Into VSWA.

7. CICSIVS Returns Record Address --
To Program, Via TCA. Address Will ----
Be of FIOA For Unblocked, Unseg·

Program
mented Read-Only Data Sets, Or --Of VSWA For Locate Mode Read- --
Only Processing Of VSAM Data :> --
Sets. In All Other Cases, Address
Will Be Of FWA.

Figure 5-2. CICS/VS File Control Randcm Record Eetrieval

A file I/O arEa (FIOl) is dynamically allocated before the GET
operation commences. On com~letion of that I/O cpEration without error,
in the case cf blocked and/or segmented data sets a file work area
(FiA) is allocated of sufficient size to contain a logical record. The
requested logical record is then lecated in the tlock in the FIOA, and
transferred across to the FiA. For locate mode ~recessing of VSAM data
sets, a VSWA is allocated, and information identifying thE record in
the control interval is ~laced in the VSiA. This is discussed in more
detail in "Locate Mode Processing (VSAM Bead-Only)" later in this
chapter. The ap~lication Fregrav is then presented with the address
of the FiA or VSiA, or of thE FICA for an unblocked unsegmented
read-only data set. The aFplicatien program may then process the
logical record.

When the record has been ~rocessed and is no le[ger required, the
FIOA and FWA or VSil (if allccated) can be dynamically released by the
application program, and the storage utilized by these areas may be
returned to the CICS/VS dynamic storage area for use in satisfying
other sterage requests. Figure 5-2 illustrates the function of CICS/VS
file control random record retrieval.

A record can te directly accessed using a file control GET Dacro
instruction, as described abeve, for potential subsequent update. An
indicatien that this recerd may subseq~ently be updated is made by the
application program at the time that the GET macro instruction is
issued, ty indicating that the type cf operation is a GET for UPDATE.

Chapter 5. CICS/VS Data Base Design 129

In this case, the record is retrieved as descrited above for the
GET macro instruction. After the apFlication program has updated the
logical records in the paA, it issues a POT macro instruction, supplying
to CICS/VS the address in storage of that FWA. CICS/VS file control
determin€s the fact that this is a POT of a record which was earlier
retrieved for update. The lcgical record then rEplaces the original
record OD disk (see Figure 5-3).

INPUT

r------

Program ----- r--r-- ,.....--~
DFHFC TYPE=GET.

DATASET=FILE1
RDIDADR=KEY1

TYP OPER=UPDATE

c::J '--'--
r--r---

DF"'tTY":""T I ;;>

APPLICATION PROGRAM AND
CICS/VS PROCESS'ING

1. Application Program Retrieves
Record Indicating Intention To Sub·
sequently Update It.

2. CICS/VS Applies Exclusive Control To
Block For This Task. To Prevent Con·
Current Updating By Other Tasks.

3. Application Program Processes
Retrieved Record.

4. If Record Is Not To Be Updated.
Program Issues DFHFC TYPE=RELEASE
Or Next DFHfC TYPE=GET MACRO
Instruction.

5. If Record Is To Be Updated. Program
Issues DFHFC TYPE:PUT To Write
Updated Rccord Back.

6. CICS/vS Releases Exclusive Control
To Permit Other Tasks To Update
Block. If Required.

--

.

Figure 5-3. CICS/VS File Control Bandom Record Update

OUTPUT

File I/O Area

~ FIOA

'(. ,;,. W.,k .. ~
I

I I FWA

\C Task Control Area

TCA

(------
Program ----

B

If thE application Frcgra~ does net wish to UFdate the record which
was retrieved, it does not issue a PUT macro instruction. The
application program should issue a File Control BELEASE macro
instruct ic:m.

If the exclusive control feature was specified when the file control
manage.eDt routine was generated f~r the installation, file control
will ensure that no other concurrently executed task is able to. issue
a GET with UPDATE macro instruction for the same logical record for
ISAft data sets, physical reccrd for DAft data sets, or control interval
for VSAft data sets (referred to as the "physical record" below). This
is necessary in a multitasking environment to avoid two or more
concurrently executing tasks updating the same physical record on disk,
with the I?Ossibility of losing information resulting frem ene or more
concurrent updates. However, a GET request without update .ay be
concurrently issued with a GET reguest for updatE, for the same physical
record. Several tasks may read that record at the same time, tut only
one task is permitted to uFdate it.

If it is not necessary to updatE the record retrieved, exclusive
control on that Fhysical reccrd can te released ty issuing a file

130 CICS/VS System/Application Design Guide

control RELEASE macro instruction (see Figure 5-3). This will permit
any other waiting task which alse wishes to updatE the sase physical
record to commence its update, at an earlier time than it could if the
application program did not iSSUE a RELEASE .acrc instruct-ion.

Records may be added to a data set through the use of a File Control
PUT macro instruction indicating that the type of operation is a new
record addition. In this caSE, the application trogra~ sust first
request that a file work area lFiA) be allocated to enable the new
record to be constructed in .ain storage. ThE allocation of an FWA is
achieved by issuing a file ccntrcl GETAREA macro instruction specifying
the data set name to which the record will be sutse9uently added. The
data set name is used to locate the appropriate entry in the FCT and
so deter~ine the record length tc be used by CICS/VS in allocating the
FiA.

After constructing the new record in the allocated FIA, the
application program issues a PUT sacro instruction, specifying that
the type of operation is the addition of a new record. The record
identification supplied by the program is used to determine where the
new record will be added.

If the record identification trovided is a recerd key for addition
of new records tc IS1M or key-sequenced VSAM data sets, the record is
placed in sequence in the data set based upon that key. For DAft data
sets, the new record is inserted as clcse as possible to the specified
record location as described below.

For fixed-length unblocked DAft records, such data sets,.ust be
initially generated with a nu.ber of dummy records interspersed
throughout the data set. A dummy record is one containing hexadecimal
FF in the first byte of the record. The record to be added is inserted
in the first available du •• y record, location following the specified
record lccation. If no du.my records are availatle in the sase cylinder
(for DOS/VS), the application program is notified; it may then reissue
the PUT request for the new record to another part of the data set
until a dummy record is found. ihen the new record replaces the du •• y
record, file control returns the,record location where the new record
is stored to the application program (see Figure 5-4).

Chapter 5. eICS/VS Data Base Design 131

INPUT
APPLICATION PROGRAM AND

CICSNS PROCESSING OUTPUT

1. p,",,,m "q"""~110"<;O=- ----l
file I/O area and file work area.

File 1/0 Area

DFHFC TYPE=GETAREA,
DATASET=FI LEl

DFHFC TYPE=PUT,
TYP OPER=NEWREC,
RDIDADR=ADDRl

Data Set

2. Program constructs output
record.

3. Program issues new record put
request specifying record
location in data set.

4. If unblocked data set, CICS/VS
scans cylinder from specified
location for first dummy record

(X'FF' in first byte).

5. When dummy record found, new
record replaces dummy.

6. If blocked data set, CICS/vS
writes new record to specified
location.

7. CICS/VS returns address of new
record to program. J

.L..----__

Figure 5-4. CICS/VS Pile Control Addition to Fixed-Length
DAM Data.Set

For variable-length record DA! data sets, CICS/VS file control
attempts to add the new recoId at the end of the specified track, for
CICS/DOS/'S, providing theIe is sufficient space cn that track to
contain i,t. For CICS/OS/VS, a spec·ified number cf tracks may be
searched to locate a track on which to add the record. If there is
not sufficient s~ace, the ap~lication ~rogram is notified, and may
Ieissue the POT request for the new record, indicating another track
to be used. When the new record has been successfully written at the
end of the specified track, its record location is returned to the
application program (see Pigure 5-5).

Por entry-sequenced VSA! data sets, new records are always added to
the end of the data set regardless of whether they are fixed or
variable-length. The relati~e byte address of the added record in the
data set is returned to the application program.

lt~.ngS!m Ii~=.Q!:g]~l~!iS!Jl (l~j~ Qnl.t)

The file control DBLETE macro instruction is used to specify the
deleticn ()f records in a VSA! key-seguenced data set. The specified
recoId is physically deleted. The space occupied by that record is
reclaimed and added to the available free space in the particular
control interval which contained that deleted record.

132 CICS/VS SysteR/Application Design Guide

INPUT PROCESSING

[

. ·~D·-AF~TA;:SOE:T:;FEI~L-GE-El ::~~-~J-11'--'I"---l-... ---.---' ---l.-P<O:'~"~~~" ~:~
tion of file 1/0 area and
file work area.

Fil:'~:~~~~= I .
0,,, So< Ii!!! 'L __ - 1 2. p,,,,,,m 00"",","

~e'-- ---. -------.
Record Lengih·­

I...-.--.-.. -.-~:==-':'~-­

Program

DFHC TYPE=PUT,
TYP OPER-NEWREC,

RDODADR=TRLl

Data Set

output record.

3. Program write new
record specifying track
location in data set.

. 4. CICSIVS attempts to add
record at end of specified
track (or tracks for OSIVS).

5. If no space, program
specifies new track.

6. CICS/VS returns address
of new record to program. I
'-----~

OUTPUT

File I/O Area

Program

'--------_ .. -._._-_.

Figure 5-5. CICS/VS File Control Addition tc Variable-Length
DAM Data set

The normal mode of processing for file control operations is move
mode. with mode processing of blocked data sets, the logical record
is moved from the blcck into a FiA, and the address of that PVA is
presented to the applicaticn program.

For VSAM data sets, locate mode processing may te specified for
read-only operations. with locate mcde processing, the address of the
logical record in the control interval is stored in a virtual storage
work area (VSiA). The additional CFU processing required to move the
logical record from the control interval is therefcre avoided. However,
locate mcde is invalid if a read fer uFdate is sFecified and/or
segmented records are being retrieved.

~lQ£~~g ~!~ Be£2~g§

CICS/VS file control. prov ides for the deblocking of. logical records
in a blocked direct access (tAM) data set. This service is provided
for both fixed-length and variable-length records. When creating or
adding to blocked DAM data sets, the application program .ust work with
entire blocks.

The advantage in supporting blocked DAM records is to enable both
direct and sequential access of the data set. The block size should
be such that the physical reccrd retrieved for direct access is

Chapter 5. CICS/VS Data. Base Design 133

maintained as small as possible, while still providing sufficient
blocking to enable satisfactcry performance for sequential retrieval.

110SL1~ 1~A111!lIig!21~=~§1l.9!l! ~~~.Q!g.§

CICS/DOS/VS supports tbe retrieval and static update (that is, no
length variation) of variatle-length records withi:r a fixed-length
blcck under ISAM organization. 1hese pseudovariable blocks must contain
the block length in the first four bytes in the standard form LLtb.
Since all blocks are fixed-length r this value is the same for all
blocks. Each logical record within the block must also reflect the
lerigth of the record in the first four bytes (LLtb). A logical record
may not be ccntinued into the next block. The first byte of any unused
portion of a block must contain a hexadecimal FF.

The addition and deleticn of recozds for a DOS/VS ISAft
variable-length record data set must be handled ty the user in an
offline batch environment. When creating the data set, it must be
defined as fixed unblocked, and the key for each block must be the same
as the last logical record in that block. The block size must be an
even numter of bytes. All recordE must reside in the prime data area;
no overflow records are allowed.

However, the use of key-sequenced VSAft data sets instead of ISAft
allows the support cf toth fixed-length and variatle-length records,
with the added advantagE that the record length can be either increased
or reduced as a result of a record update,. addition, or deletion.

When the CleS/VS system is initialized r data sets may be specified
in the file control table (FeT) as either open or closed. Closed data
sets may be dynamically opened for accessing at a later time, by means
of a master terminal command. The design techiques described below
utilize dynamically opened or clcsed data sets.

Data sets may be dynamically closed at certain times. of the day, to
prevent access to information from terminals r and may be dynamically
opened when access is to be Fermitted. In this way, support for certain
online applications may be provided only when desired. If an
application prcgram attempts to access a data set which has been closed,
an error indication is returned to the program.

When adding records to a key-sequenced VSAM data set, significant
performance advantages can be realized if many records have to be added,
and if those records are added in the same sequence as the original
data set. This is referred to as mass record insertion. The
application program specifies the mass insert operation in a GETAREA
macro ins·truction. This indica tes to the file centrol program that
the user intends to submit several successive PUT requests for new
logical records with keys that are in ascending sequence. VSAft then
perferms the addition of the new reccrds faster than if the additions
were made in random sequence.

Each subsequent PUT macro instructien utilizes the same FWA as each
record is added. The mass insert cperation is terminated by issuing
a file centrol RELEASE macro instruction.

134 CleS/VS system/Application Design Guide

VSAM Shared Resources (CICS/OS/VS Only)

VSAM shared resources enable a pool of I/O related blocks, channel
programs, and buffers to be shared among several VSAM data sets. This
permits efficient utilization of storage in an environment in which
many VSAM data sets are open and it is difficult to predict the amount
of activity against a given data set, or in a situation where each
transaction may access several VSAM data sets.

The user indicates in the FCT which VSAM data sets are to share
resources. CICS/vS calculates the maximum amount of resources required
by using the number of strings specified in the FCT for each of the
VSAM data sets that are to share resources and the control interval
sizes for these data sets from the VSAM catalog. CICS/VS then requests
VSAM to build a resource pool large enough for a certain percentage of
maximum amount of resources required. The user can override this
percentage and resource calculation if desired. For example, the user
may wish to override the CICS/VS calculation to reflect specific data
set activity known only to the user.

Storage utilization efficiency obtained by sharing VSAM resources
must be evaluated against the effect on performance. If insufficient
resources are available to satisfy a specific I/O request against a
shared resource data set, the requesting task is placed in a CICS/VS
wait until the necessary resources become available. CICS/VS provides
statistics (number of strings, buffer sizes, and number of buffers of
each size) to identify the resources allocated. Statistics are also
provided to aid in the optimization of these resources to ensure that
sufficient buffers and VSAM strings are available to avoid excessive
task wait time. (See "CICS/VS Working Set" in Chapter 7.)

If the activity against specific data sets is higher than can be
managed using shared resources, those data sets should be defined in
the FCT as not sharing resources.

Chapter 5. CICS/VS Data Base Design 134.1

SEQUENTIAL ACCESS (EBOWSING)

The oFerations discussed above refer to direct access. CICS/VS file
control enables DAM, ISAM, and VSAM data sets to te sequentially as
well as directly accessed. This sequential access is sometimes referred
to as a "browse" operaticn. Data sets to be browsed may be either
fixed-length or variable-length, blocked or unblocked data sets.

A browse operation using CICS/VS file control is analogous to the
sequential retrieval of records frcm ISAM data sets, sometimes called­
SETL retrieval, in a batch environment. However, a batch program can
only sequentially retrieve records from one logical section of a data
set at a time. Cn the other hand, CICS/VS enables many browse
operations to be ccncurrently executed on the same data set, either
from the one task or several tasks. This is referred to as multiple
browsing, and is discussed further belcw.

To specify a browse operation, the application Frogrammer identifies
the data set to te browsed, and Frcvides the reccrd identification of
the logical starting point in the data set for the browse operation.
This lcgical starting pcint can be either a specified record location,
or key, or a generic key. Pcr example, if it is desirable tc browse
an orders data set, containing orders for products placed by different
branches, a generic key ~ay indicate that browsing is to start with
the first order recorded from a specified tranch. The initiation of
a browse operaticn is achieved by the application Frogram issuing a
file control SETL macro instruction.

Each record is sequentially retrieved for the browse operation when
the application Frogram issues a GETNEXT macro instruction. Each
GETNEXT macro instructicn Fresents the next sequential logical record
to the application program fcr precessing. In the case of an ISAM data
set or a key-sequenced VSAM data set, the records are pres~nted in
ascending key sequence (exceFt fer a browse operation using relative
byte address (BBA) fer a key-sequenced data set, when records may be
presented in physical sequence). For a DAM data set, or an
entry-sequenced 1SA8 data set, the records will te presented in the
sequence in which they are Fhysically stored on the data set.

~~~§~ 1~~Di~~!i9n 

The browse operation continues with each subsequent GETNEXT macro 
instruction, until the end of the data set is reached or it is desired 
to terminate the brcwse operation. This terminaticn is achieved by 
issuing a file ccntrol ESETL macro instruction. 

When a browse operaticn is initiated by a SET1 macro instruction, 
a file work area (FiA) and file l/e area (FIOA), or a virtual storage 
work area (VSiA) fer VSAM data sets, is allocated for that browse. 
Each subsequent reccrd read as the result of a GETNEXT macro instruction 
is presented to the applicaticn Frcgram in this FWA. When the ESETL 
macro instruction is issued to terminate the browse, the FWA and PIOI 
or VSWA are released. 

Chapter 5. ClCS/VS Data Base Design 135 



A task can issue one cr mcre SETt macro instructions to initiate 
one or more browse operations. Each SETL macro instruction results in 
the alloc:ation of an PWA and PIOA cr VSil for that browse operation, 
and this FWA or VSiA contains the current record identification of the 
logical rointreached iu the data set. When several SETL macre 
instructions are issued by the one task against the same data set, 
several FWAs and PIOAs, cr VSWAs will be allocated, one FWA and PIOA 
or VSiA for each browse. The task may maintain se~eral concurrent 
browse operations, by indicating the address of the FiA or VSWA for 
the logical section of the data set to be browsed next. The GETNEXT 
macro instruction issue~ will read a record from that logical section 
of the dc:lta set and present it tc the application Frogram in the 
relevant FWA or l5iA. Pigure 5-6 illustrates multiple browse 
operatiolls. 

Disk Data Set 

Logical Section 1 Logical Section 2 Logical Section 3 Logical Section 4 
( __ ---~~-------VT------~A--------vy------~A,---------1-------AA~ 

CL~~.~~ 

Program 

GETNEXT From Section 2 

GETNEXT From Section 1 

GETNEXT From Section 4 

Figure 5-6. MultiFle Brcwse Operations Using CICS/VS Pile Control 

There is no lcgical limit to the number of brcwse oFerations that 
may be executed concurrently for the s~.e data set, either from the 
same task or many tasks. The only limitation is the availability of 
dynamic storage to aaintain an PIOA and PiA or VSiA for each concurrent 
or multi~le browse. This is a factor of the block length, record 
length, degree of multitasking, and ameunt of dynamic'storage allocated 
in the CICS/VS partition, and number of VSAft strings specified for a 
VSAM datu set. 

The multiple browse technique introduces a numter of very useful 
system design solutions. Por examFle, an orders data set aay contain 

136 CICS/VS System/Application Desigb Guide 



orders that are in sequence according to Froduct number as placed frem 
several tranches within a company. If it is desired to retrieve all 
product crders from a sFecific branch, this can te achieved by issuing 
a browse operation, starting the browse at the first product number 
ordered from that tranch. Subse9uent GETNEXT macre instructions will 
retrieve the next product crdered from the branch, until the end of 
all products ordered fre. that branch is reached. At this time the 
browse operation may be terminated by an ESETL macro instruction. 

However, if the product orders received from several tranches are 
reported using a terminal, this lay imFly that the orders data set 
should be sorted into the sequence of tranch number within product 
number. 

Generally, online sorting is impractical. Eecerds should be 
retrieved in the sequence. of branch within product, while still 
maintaining the crders data set in the sequence ef product within 
branch. ~his can be achieved by issuing multiple browse oFerations, 
having each browse initiated fro. the first product order record from 
each branch. Each browse operation in effect logically breaks up the 
orders data set into a numter of separate order data sets, one for each 
tranch. 

A GETNEXT request can be issued fer each tranch browse operation to 
retrieve the orders placed fer the first product number in·th~ small 
logical data set for each tranch. The second GEiNEXT macro instruction 
issued for each browse operation then retrieves the next product erder 
record for each tranch. 

ThiS can continUE, retrieving all the informaticn from each branch 
relating to a specified Frcduct until the application program has 
constructed an entire terminal page. At this tiae, the browse 
operations for the products and branches contained on that terminal 
page may be terminated by issuing an BSETL macro instruction for each 
browse. 

As previously stated, the teChnique of multiple browsing enables 
the sequential retrieval cf information in a sequence different from 
that in which a data set is crganized. This aultiFie browsing design 
technique may open up powerful data inquiry PQssibilities for online 
data sets. 

Skip sequential refers to the ability to sequentially browse through 
a logical section of a data set, and then skip tc another logical 
section of a data set to centinue the same browse operation. In effect, 
it provides a direct access capatility in the middle of a sequential 
retrieval operation. The record identification of the next logical 
section of the data set may te moved into the record identification 
field set up in the prograa, and another GBTNEXT macro instruction can 
be issued. This will positicn the browse to the new section of the 
data set, thus effecting a skip sequential operation. This technique 
cannot be used for DIB or 151M data sets. 

This facility is provided as a built-in application function and 
can be used only for key-sequenced VSAB data sets. It enables a data 
set to be searched by CICS/VS and records to be extracted from that 
data set based UFon selection criteria. These criteria .ay be specified 
either by the application pregraa, or by the ter.inal operator, to be 
used by the application Frcgram. 

Chapter 5. CIeS/VS Data Base Design 137 



This vrovides a powerful information retrieval capability to eIeS/VS, 
so that records Day te retrieved and fields within those records may 
be matched against inforaatien ~rovided by the application program or 
terminal operator. Becords may te selected based upon an exact match 
with the selectien criteria, or a match within a specified range of 
the selection criteria. Figure 5-1 illustrates the concept of weighted 
retrieval. 

INPUT CICS/vS PROCESSING OUTPUT 

~® 1. Operator Enters Transaction To Initiate 
;> User Program Which Will Issue Weighted ;. USER PROGRAM 

Selection 

I 
Retrieval Macro Instructions. DFHBIF WTRETST 

Transaction 2. User Program Issues Macro Instructions 
K DFHBIF WTRTPARM 

To Identify Selection Criteria To CICS/vS. DFHBIF WTRETGET 
DFHBIF WTRETCHK ---CI CS/VS Weighted Retrieval ------

""""'"'j 
;> 3. CICS/vS Initiates Weighted Retrieval On Key· 

Sequenced VSAM Data Set Using Specified 
VSAM Selection Criteria. 
Data Set 

U -u 4. If Record Field Matches Criteria, CICS/vS 

U Adds Match Value To Weighted Counter, V And To Total Counter. 

I ReCOr(~ Weighted II Total I 
---11. 5. If Record F,eld Does Not Match Criteria, Counter Counter 

CICS/vS Subtracts Non-Match Value From f} 
Weighted Counter. 

6. After All Criteria Are Applied To Record II Weighted I [Total I Fields, CICS/vS Calculates Percent Of 
Counter Counter Weighted Counter Divided By Total Weighted 

Percent = --.. -

~ 
Counter. Total 

7. If Percent Falls Between User-Specified V 
Limits, CICS/VS Saves Record Ident. And Per· 

~ cent In CICS/vS Dynamic Storage. CICS/vS Dynamic 
Storage 

8. After All Records Are Examined, CICS/vS 
Retrieves Selected Record I D's And Per- Ij cents From Dynamic Storage And Sorts 
Into Descending Sequence Based On Percent. < 

9. CICS/vS Drops All Record ID's After User- PROGRAM ---Specified Maximum Number. 
DFHBIF WTRETGET 

""",",~d ( -=> VSAM 10. CICS/VS Retrieves Remaining Records From 
Data Set Data Set And Presents Each One To User J Program, Together With Percentage. 

Figure 5-,7. eles/vs ie1ghted Retr1eval 

Associated with each selection criterion are both a match value and 
a nonmatch value. In additicn, counters are maintained for each 
selection criterion to accumUlate statistics relating to the degree of 
matching achieved. In thE event cf an exact match, or a match within 
specified limits, a match value associated with that criterion is added 
to a weighted counter and to a current total counter. In the event of 
a match not being achieved, a nonmatch value is suttracted from the 
weighted counter, tut not frcm the current total counter. The match 
and nonmatch values may be either positive or negative, but they must 
have the same si~n. 

If a particular criterion is matched, the weighted counter is 
increased appropriately. However, if another criterion is not matched, 
the weighted counter may be decreased. After all selecticn criteria 
have been applied to the necessary fields in the record, ~ percentage 
of acceptability is calculated by dividing the value of the total 
counter into that of the weighted counter. If this percentage falls 
within defined limits for the weighted retrieval operation, the full 
key identification of that record and the percentage are saved in 
CICS/VS dynamic storage by the built-in weighted retrieval function. 

After all required record~ are examined, the keys and percentages 
are read back from dynamic storage and sorted into sequence based upon 
the percentage of cORpliance cf each record with the selection criteria. 

138 CICS/VS system/Application Design Guide 



If the number of keys satisfying the selecticD criteria exceeds a 
maximum, say H, specified by the apFlication program, then all keys 
having a percentage equal to or lower than that cf the H+1th key are 
dropped. Follcwing this, the re.aining records are retrieved and made 
available to the application program one at a time in order of 
decreasing acceptability, together with each reccra's percentage. Refer 
to the ~l~~L!~ A]£li~i!i~! ~rogrsii§~!§ ~~~~!~~ A!DYil for more 
detailed information about the use of weighted retrieval. 

A~E1i£g!lQn ~§~§ 19. j~igh!~g ~~!~i~lgl IYn£ti2! 

The weighted retrieval functicn uses the browsing capability of 
CICS/VS file control and is applicable only to key-sequenced VSAM data 
sets. Use of this weighted retrieval capability opens significant 
online application opportunities in a number of industries. For' 
example, in a manufacturing industry, weighted retrieval may be used 
to search a key-sequenced VSAM werk erder data set to identify specified 
part numbers, quantities,. revenUE, and completior; ~eriods for all work 
orders. Alternatively, a VSAM manufacturing planning data base can be 
searched to identify all wcrk orders planned to he manufactured by 
specified equipment cr with farticular materials or parts. 

In the banking industry, the weighted retrieval function can be a 
powerful tool. It enables all customer records cf various branches of 
the bank to be examined. These with a current balance ahove or below 
a specified amount for certain types of accounts, can be selected. 
Alternatively, Weighted retrieval can be used to provide an exception 
report of all checking acccunts with an overdraft greater than a 
specified amount. 

Weighted retrieval can be used in the insurance industry to search 
key-sequenced VSAM policy data bases. It can identify those pclicies 
with claims exceeding a certain value for specified types of policies 
in particular geographic locations or owned by a Farticular class of 
policyholder. 

In the medical industry, a patient information system can use the 
weighted retrieval function to identify all fatients receiving 
particular medication in sFecified quantities over ~ particular period 
of time. Alternatively, all patients with a particular coabination of 
symptoms may be selected. 

Weighted retrieval can also be used in law enforcement agencies to 
5earch a key-sequenced VSAM criminal data base te select all criminals 
with specified personal characteristics and !2SY§ ~~~Si that co.pare 
with characteristics and ~od]§ Q!~~!g! of particiFants in a sFecific 
crime. Alternatively, a key-sequenced VSAM crimes data base ~an be 
searched, selecting those crimes with the same .fSY! 2R~~~!' and 
using this .~~ QR~~~~gi to select those criminals known to use that 
iody§ 9~§~ADgj from a criminal data base. The recerds of these 
identified criminals can be further searched to select criminals who 
satisfy ether criteria identified ty the nature of a particular crime. 
using weighted retrieval in this aFplication beccmes a powerful tool 
for crime analysis and the identification of criminals or susFects 
associated with these cri.es. 

As shown by previous examfles, the application potentials offered 
by the use of the built-in weighted retrieval furction can be 
significant. In fact, utili2ing weighted retrieval maybe an important 
consideration in determining the data base support to be used for the 
particular infor.atien tc be retrieved. 

The weighted retrieval fUlcticn can only be used with key-sequenced 
VSAM data sets. As will be seen later in thE discussion of the Dl/I 

Chapter S. CICS/VS Data Base Design 139 



products 4, DL/I DOS/VS usesVSAM. IMS/VS DL/1 may use either VSAM or 
BISAM and BDAM. A DL/I VSAM data base utilizing root segments only 
can be accessed as a standard VSAM data set and operated upon by the 
weighted retrieval function. 

For effective online perfcrmance, VSAM data sets (and, hence, 
weightEd retrieval) should net bE used with systems having less than 
144K of real storage. This is discussed further in "Data Base Selection 
criteria" at the end of this chapter. 

EECOED I£ENTIF1CATION 

As di~:cussed above, data sets supported by CICS/VS file control can 
be accessed either directly cr sequentially. Records are accessed 
based upon the record identification supplied by the application 
program. The record identification utilized depends upon the particular 
data set being accessed. There are twc types of record identifications: 

• ReCOl:d key 

• Eecord location 

Record identification based uFcn a key is used to access ISAM data 
sets and key-sequenced VSAM data sets. The key may be either a full 
key for retrieval of a particular logical record, or a partial (generic) 
key, to indicate a logical peint in a data set from which a browse 
operation is to cemmence. This generic key contains' sufficient 
information in the high-erder bytes of the key tc uniquely identify 
the logical section of the data set. The remaining low-order bytes of 
the key may be either binary zercs or blanks. Fer key-sequenced VSAM, 
a truncated generic key aay te utili2ed, with the first byte of the 
key specifying (in binary) the number of significant bytes in the 
generic key which follows. 

For instance, the orders data set discussed above for btowsing can 
utilize a key containing a branch number in the high-order bytes of 
the key, and specific product numbers in the low-erder bytes of the 
key. F01: example, crders for prcduct number 1016 frem branch number 
12 may be contained in a record which utilizes the key of 121016. The 
generic Itey to enable the fiIst Frcduct record tc te accessed for branch 
number 12 would then be the generic key 120000 for ISAM, or 212 for 
VSAM. The "2" indicates (in binary) that a generic key of length two 
bytes follows, fer branch Dumber 12 in this example. 

When a full record key is used to access an ISAM data set, it must 
lecate a record on that data set with the identical key; etherwise, an 
errOI indication is xetuIDed to the application program. 

However, when a full record key is used to access a key-sequenced 
VSAM dat~l set, any search fOI relevant VSAM records must be specified 
as: 

• Full ~~~ jgy~l - indicates that the key provided by the application 
program is a full key, and failute to locate a record with this 
exact key will result in an error indication being returned to the 
application FrcgIam. 

• tyll ~§l §!§i!§~ ~~ jgYAl - specifies that the record key is a full 
key, and that the first data record with a key equal to or greater 
than the supplied record key is to be retrieved. ~his is equivalent 
to using a gen~ric key in 151M. 

140 C1CS/VS SysteR/Application Design Guide 



• ~~~ri£ ~~l !gys! - indicates that the record key is a generic key 
with a specified generic length. A record whose key is equal to 
the supplied generic key for the number of bytes indicated is then 
retrieved. If rine cannot be fcund, a "no record found" condition 
is returned to the program. 

• ~~~!i£ !~l ~~§g!~I ~I !SYS! - indicates that a generic key is 
Frovided, and the first data reccrd with a key equal to or greater 
than this generic key for the number of bytes indicated is to be 
retrieved. 

An additional advantage in the utilization of record keys is in the 
addition of records. When new records are added to the data set, they 
are inserted in sequence in the data set based upcn their record key 
value. 

To facilitate retrieval from tA~ or VSAM data sets, records are 
identified by their lccatiens in the data set. VSAM record 
identification is based on relative tyte address (RBA) within the data 
set. In the case of DAM, the physical block (record) identification 
can te on the basis of: 

• Actual disk address (MEBCCHHB) 

• Relative track and recerd within the data set 

• Relative block number (fer CICS/CS/VSonly) 

If a physical key is recorded for the physical record, it may be 
appended to each of the record identifications detailed above. Figure 
5-8 shows some representative record identification field formats. 

DAM data sets with or wit bout physical keys can be accessed. If a 
physical key is reccrded cn disk preceding the data record, the record 
identification can indicate the relative track within the data set, 
and the key which is physically recorded with the data record to be 
retrieved. 

Both blocked and unblecked DAM data sets are supported by CICS/VS 
file control. In the case of blocked DAM data sets, additional 
information may be provided to identify the logical record within the 
physical block. This logical record identificaticn immediately follows 
the physical block identification (as detailed atove) in the record 
identification field provided by the application program. Logical 
records may be selected freB a physical block based upon: 

• Record number within block 

• Record key within block (as illustrated in Figure 5-8) 

where the location of the record key within each logical record is 
defined in the file centrel table. 

CICS/VS file control uses this logical record number or key to 
deblock the relevant logical record from the physical blcck and present 
it to the applicaticn prcgraa. 

For VSAM data sets, the record location utilized is a relative byte 
address (RBA). VSAM data sets use this relative tyte address to 
identify the location within the entire data set of information (such 
as a logical record) to be retrieved. 

Chapter 5. ClCS/VS Data Base Design 141 



PHYSICAL RECORD 
(BLOCK) LOCATION 

-< 

Relative Blocl< No. 

Relative Block No. 

TTR 

TTR 

TTR 

TTTTTTRR 

TTTTTTRR 

TTTTTTRR 

MBBCCHHR 

MBBCCHHR 

Block 
Referenc:e 

PHYSICAL KEY 
(IF PRESENT) 

-
Key 

-
-

Key 

-
-

Key 

-
-

Physical Key 
(if present) 

DEBLOCKING 
ARGUMENT 
(IF BLOCKED) I 

Record No. 

Record Key 

---------
Record No. 

Record Key 

Record Key 

Record No. 

Record Key 

Record Key 

Record No. 

Record Key 

Deblocking I 
Argument 

Figure 5-8. DA! Data set Eecord location 

.. _----. 

COMMENTS 

CICS/OS/VS Only 

---.----

Relative Track and 
Record (binary) 

Relative Track and 
Record (zoned decimal) 

Actual Disk Address 

Format of Record 
Identification Field 
in Program 

--, 

--

Initially, this appears tc restrict the size of the data set. 
However, the relatiVE address is maintained in afullword, enabling a 
data set to be maintained, ccntaining 2 raised to the power of 32 bytes. 
This is equivalent to a data set of approximately 43 billion bytes, 
extending over aore than forty-three 3330 disk drives. 

Records which are written to an entry-sequenced VSA! data set are 
never moved until the data SEt is reorganized. Any additions to the 
data set are made at the end of the data set, and the relative byte 
address by which that added record may be subsequently retrieved is 
returned to the applicaticn FrograD. 

Using the relative byte address for record identification of a VSAM 
data set provides the following advantagES: 

• Operates equally well with fixed-length or variable-length records 

• Provides rapid file access, with full rotational position sensing 
suppcrt even when variable-length records arE utilized 

The record identification provided by an application program to 
access a VSAM data set by EBA is a four-byte relative byte address. 

142 CICS/VS system/Application Design Guide 



This may be calculated using techniques similar to that used to 
calculate a relative reccrd rumber or relative bleck number for DAM 
data sets, or the relative byte address may be stored as a pointer in 
logically related records. 

RBQDetic ~2n~~§i2D lYD~!i~D 

Phonetic conversion is an cpticnal CICS/VS built-in function that 
can be utilized to develep record keys based upon ~ossible misunderstood 
or misspelled informaticn. The application program presents a 16-byte 
field to CICS/VS by issuing a built-in function (ElF) phonetic 
conversicn macro instructien. The phenetic ccnversion routine returns 
a four-byte phonetic equivalent cf the supplied field. This returned 
value consists of the first letter of the field, and three EECDIC 
numbers which represent the letters in the rest cf the field. 

INPUT CICS/vS PROCESSING OUTPUT 

1. CICSIVS Moves First Letter Of Name To 

II :> First Character Position Of Code. 

lj ISIMIYITIHI E I 

~ I > 2. Next Letter Of Name Is Selected. Is I I I I 

Value Letter 

1 B,P,F,V >L 3. If Not A Bypass Character, CICSIVS 
2 C,G,J,K,O,S,X,Z Translates It To Number. IS ,5 , I 
3 D,T I 

4 L D 5 M,N 4. Translated Number Is Inserted In 
6 R Next Position Of Phonetic Code. 

r lj btl II 
;>l 5. Repeat 2 And 3 Above Until Three 

Translated Numbers Have Been A 
Inserted In Phonetic Code. 

Is ,5 ,3 10 I 

ISIM'DTljU 6. If Fewer Than Three Letters Used, 
CICSIVS Pads To Right With EBCDIC 

~ 
Zeros. 

Extended Description 

0 - Double Letters Are Treated As Single Letters. 

- Two Or More Contiguous Letters With Same Value Are Considered As A Single Value. 

0 Bypass Characters Are: A, E, H, 1,0, Y, W, U, Blanks, And Nonalphabetic Characters. 

[J - If More Than Three Numbers Can Be Computed From The Name, Only The First Three 
Are Used. 

Figure 5-9. CICS/VS phonetic Ccnversion 

The key produced is based upon the phonetic sound of the name. Names 
which sound similar, but are spelled differently, will generally produce 
the same phonetic value (see Figure 5-9). For example, the names SMITH, 
SMYTH, SMYTHE, and S~ITHS produce a phonetic key of S530. Likewise, 
the names ANDERseN, ANDBESBN, and ANtRESENN produce a phonetic key of 
A336. This phonetic key is used as a partial key. which can then be 

Chapter 5. CICS/VS Data Ease Design 143 



used to access a name data base. ~honetically similar names will 
produce the same value, redncing errors caused by Fronunciation or 
misunderstanding in spoken conversation. !isspel1ed names can be used 
in retrieving required data~ 

The built-in phonetic ccnversion function is based upon the phonetic 
conversic)n capability provided in the IB! Frograa ~roduct FASTER (Filing 
And Selecti~n Technique for Easy Retrieval: 5734-G21 (OS), 
5736-G24 (DOS)). It is particularly useful in industries which require 
data sets to be accessed based uFon names cr product descriptions. It 
is also useful in a Folice infor.aticn system, to identify all criminals 
and suspects with phonetically similar names. Phonetic conversion, 
together with the built-in weighted retrieval function, enables records 
to be retrieved based uFon names, and records with phonetically sim~lar 
names to be further identified based uFon selection criteria through 
the use ()f the weighted retrieval function (see above). 

For example, all cri.inals named Smith with SFEcific personal 
characteristics can be. identified. Criminals with a particular name 
and other identifying information, such as birth date and address, may 
be used to select the aFFrcpriate records. 

A phonetic conversion subroutine is also Frovided by CICS/VS for 
use by batch programs which Frocess online CICS/1S data sets in a batch 
Environment. 

INDIBECT ACCESS 

CICS/VS file control enables data bases to be ccnstructed. Th~s is 
achieved by the use cf the indirect access feature of file centrol, 
enabling various data sets tc be ccnstructed to identify logically 
related records in other data sets. The indirect access feature 
utilizes pointers frca a reccrd in the data set to logically related 
records in other data sets. The pointers can contain the actual disk 
address ()f a.logically related reccrd, the relative location of that 
record in its data set, cr the kEY of that record. This enables 
identification and retrieval of inforaatien logically related to the 
record bEing processed. 

!n~!~~! A~§§§ J~~li~a!i21 1~§.~1!§ 

Figure 5-10 illustrates a Froduct record in a Froduct data $et and 
the supplier of that product through a supplier Iumber. This supplier 
number is used as a pointer to access a separate supplier data set to 
obtain further information atout the supplier of the product in 
question .. The supplier numbEr in the Froduct record becomes a-pointer 
to the supplier data set and can teindirectly accessed frem the product 
data setH 

144 CICS/VS system/Application Design Guide 



Product 
No. 

13425 

Supplier 
No. 

Supplier Record 

8018 

Figure 5-10. Product Data set Indirect Access 

Another example of indirect access is in an insurance policy 
information system. In this case, a policy record in a policy data 
set contains infer.ation relating te the policyhclder (for example, 
customer number or name). If the customer data set is organized in 
customer name sequence as an ISA! data set, the name may be used as a 
key to retrieve the customer recerd relating to that particular policy. 
In this way, the customer naDe in the policy record is used as a pointer 
for indirect access to further custo.er details in the customer data 
set (see Figure 5-11). . 

Policy 
No. 

Policy Record 

Policyholder 

8133462 Smith, John A. 

Policyholder 

Smith, John A. 

Figure 5-11. Policy Data set Indirect Access 

An indirectly accessed data set may also contain pointers to other 
logically related records in ether data sets. The customer record, 
indirectly accessed froa the policy record, may in turn have a field 
which identifies tbat custe.erls insurance agent. The identification 
of this agent (agent number) Day be used to access the related agent 
record in an agent data set (see Figure 5-12). 

Chapter 5. CICS/VS Data Base Design 145 



Policy 
No. 

8133462 

Polilcy Record 

Pol icyholder 

Smith, John A. 

Policyholder 

Smith, John A. 

Agent 
No. 

68 

Figure 5-'12. Indirect Access to Insurance Agent Data set 

lDdi~~! !~~!§§ lJRli~i~!§!is~ 

Agent Record 

The CICS/VS file centrol indirect access feature enables fields in 
a record to be utilized as peinters to legically related records in 
other data sets. There is nc limit to the number of indirect accesses 
to other data sets which may be made throu9h the use of these pOinters. 
Data sets may te indirectly accessed, re9ardless of whether they are 
fixed-length or variable-Ien9th ISAM data sets, DAM data sets, or VSAM 
data setsi. Depending upcn the tJpe ef data set, the pointer will be 
either a record location (in the case of DAM or VSAM data sets), or a 
record key (in the case of ISAM or key-sequenced VSAM data sets) • 

The data set which contains a Fcinter field tc a logically related 
record in another data set is referred to as the index data set. The 
logically related data set is referred to as the ebject data set. An 
index data set Day utilize several fields in a record to point to 
logically related records in several otject data sets. These indirectly 
accessed object data sets DaJ in turn utilize a field in their records 
to point to logically related records in ether data sets. These 
original object data sets become index data sets fer the next level of 
indirectly accessed data set. 

lDdi~!£! A££!§§ IDi!iA!i~B 

Indirect access enables a chain te be constructed throu9h logically 
related records in many different data sets. Fi9ure 5-13 illustrates 
a parts data set, which may be organized in Fart name sequence as an 
ISAM data set. This data set is accessed by means of a part name. The 
part name record is utilized as an index to a part number record in 
the parts data set. This part numter record may in turn contain a 
supplier number utilized as a pointer to the supplier data set. In 
turn, the. supplier record may contain a disk address pointer to an 
associated accounts payable record for that supplier in a DAM accounts 
payable data set. 

146 CICS/VS System/Application Design Guide 



Figure 5-13. Indirect Access Chain. in a Parts Data Base 

TTR 
Disk 
Address 

To initiate an indirect access retrieval, the application program 
issues a file centrol GET .acro instruction indicating the name of the 
data set to be utilized as an index data set, and the name of the data 
set from which a logically related record is to te retrieved. In the 
example illustrated in Pigure 5-13, the application program may provide 
a part name key, indicate the part name data set as the index data set, 
and specify that a record is to te retrieved froD the supplier data 
set, to obtain further infcr.aticn atout the supplier of that part 
name. This is shown in Figure 5-14. 

Application Program 

DFHFC TYPE=GET 
INDEX=PARTNAME, 

DATASET=SUPPLlER, 
RDIDADR=RECDKEY 

Process Supplier 
Record 

Supplier 
No. 

82 

Supplier 
Record 

Pigure 5-14. Indirect Access Operation 

CICS/VS file control autoaatically retrieves the part name record 
for the Fart name key Frcvided bJ the program, extracts the part number, 
and uses it as a key to retrieve the part number record fro. the parts 

Chapter 5. CICS/1S Data Base Design 147 



data set. Also, the sUPFlier number is extracted from that parts record 
and is used as a key by file centrel to retrieve the related supplier 
record from the sUFplier data set. ~his supplier record is the record 
requested by the applicaticn program and is returned to it for 
processing. 

In one GET request, CICS/VS file control follows the necessary 
indirect access chain, accessing as many data sets as required, to 
retrieve the reccrd requested and ~resent it to the application program. 
However, the application program is not aware of the number of data 
sets indirectly accessed. It appears to the program as if the supplier 
data set in the above examFle is in fact organized in part name 
sequence, rather than in supplier Dumber sequence. 

By following an indirect access chain in this way, file control must 
be aware of the logical relationship between data sets. This is 
achiEved at system generation when the file control table (FCT) is 
generated. 

As characteristics of each data set are specified in the FCT entry 
for that data set during FeT generation, an indirect access relationship 
tetween that data set and ancther data set may be specified. 
Information required to define an indirect access relationship is: 

• location of the field in the record to be used as a pointer to the 
indirectly accessed data set 

• Length of that field or peinter 

• Name of the object data set 

FILE CONTROL TABLE (FCT) 

DATASET=PARTNAME DATA SET SPECIFICATIONS 

OBJECT D/S=PARTNO KEY LOC=40' KEY LNG=:5 

DATASET=PARTNO DATA SET SPECIFICATIONS 

OBJECT D/~=SUPPLIER KEY LOC=32 KEY LGN==3 

DATASET=SUPPLIER DATA SET SPECIFICATIONS 
1-----.------+-------.----

OBJECT D/S=ACCTPAY KEY LOC=25· 

DATA_SE_T_=_A_(_:C_T~PA~Y~ __ L-~D~A~T~A~S~E~T~S~P~E~C~IF~IC=A~T~I~O~N.=S~ _________________________ _ 

Figure 5-15. Specification cf Indirect Access Logical Relationships 

148 CICS/VS System/Application Design Guide 



All fields in the record which are to be utilized as peinters to 
indirectly accessed data sets are identified, together with the data 
sets to which they refer, as shown in Figure 5-15. This information 
defines the data set in question as an index data set and identifies 
the indirectly accessed data set as an object data set. These data 
sets, when they are subsequently defined in the FCT, are also identified 
as index data sets which refer to other object data sets. This is done 
by defining the record fields which are to-be used as pointers in those 
data sets, and the names cf the object data sets tc which they refer. 

A chain of logically related data sets is defined in the FCT during 
system generation. When an application program requests indirect access 
retrieval, file control identifies a chain on which the object data is 
located. It tben retrieles each related record in the data sets on 
the identified chain in the sequence specified by the FCT, until the 
related record in the cbject data set is retrieved. It is then 
presented to the application program fer processing. 

Indirect access retrieval enatles data bases to be constructed 
utilizing logically related information in a numter of data sets. One 
file control GET macro instruction causes all the required indirect 
accesses to he carried out until the requested record is retrieved for 
presentation to the task. This indirect accessing is carried out 
asynchronously, enabling ether ccncurrently executing tasks to continue 
processing. 

Indirect access retrieval may be carried out with the intention of 
subsequently updating the object data set record, if required. This 
is indicated by the application prcgram specifying that this indirect 
access retrieval is also part of an update operation. When the object 
record is retrieved, exclusile centrcl is placed on that logical record 
for I5AM data sets, physical record for DAM data sets, or control 
interval for VSAM data sets. The application program issues either a 
POT macro instruction to write the updated record hack, or a RELEASE 
macro instruction to indicate that the record is net to te updated, 
but that exclusive control is to te released. 

In following a direct access chain through several data sets, the 
pointer fie1d,in an index data set recerd can identify a number of 
separate records in its relevant object data set. As shown in Figure 
5-12, a policy record identifies the pelicyholder hy name. The customer 
data set in this case may te organized in custemer name sequence, with 
the name used as a key to access relevant records. However, there may 
be several customers with the same name, such as Jones. To develop a 
unique key for each policyholder with the name of Jones, additional 
infor.ation covering first and second names, birth date, or address 
must be added to the key. However, ,adding extra information to the 
record key reduces the a.ount of disk storage available for an 15AM 
data set, and wastes disk storage when additional identifying 
information is not used. 

To overcome this problem, CICS/VS file control provides an additional 
capability with the indirect access feature, to enable duplicate records 
to be identified. This is achieled by utilizing the first byte of a 
pointer field in an index data set record. This first byte contains 
a unique code which cannct otherwise occur as part of the key. In the 
case of customer Jones, the first byte of the custcmer name field in 
the policy record can contain a unique code, for example, hexadecimal 
FF, as shown in Figure 5-16. This is immediately followed by the 

Chapter 5. CIC5/VS Data Base Design 149 



customer name (Jones in this case). The hexadecimal code FP identifies 
this as a pointer to several reccrds with thE samE key. The key is 
utilized to access a separate dUFlicates data set, rather than the 
normal otject data set. In this example, the key Jones is used to 
access a "duplicate customer" data set that contains one record with 
the name key of Jones. ~his duplicate record may in turn contain 
information enabling further identification of customers with the name 
Jones. 

Figure 5-16. Duplicates Data set for Indirect Access 

The definition cf a duplicates data set associated with a particular 
index data set is specified in the FeT as part of the index data set 
PCT entry. This indirect access peT entry identifies the location and 
length of the pointer field in the index record and the name of the 
object data set. In additioD, the user-specified duplicates code in 
the first byte of the pointer is defined, together with the name of 
the duplicates data set. 

Even though an indirect access chair is followed through several 
data sets, the first byte of the pointer field tc teused in a record 
is examined by file centrcl to determine whether it is a duplicates 
code defined for that index data set. If it is, the duplicates data 
set is accessed using that pcinter, instead of the defined object data 
set for that index record. The itdirect access chain is broken at that 
point, and the duplicates record is returned to a user-supplied 
duplicates routine in the application program for further processing, 

150 CICS/VS System/Application Design Guide 



instead of returning the requested object data set record. The function 
of the user-supplied duplicates routine is to exasine the information 
presented in that du~licat~s reccrd, and uniquely identify the pointer 
to be used to retrieve the next record in the indirect access chain. 
This identification can be made either by the apFlication program 
itself, cr by a reeguest fer further informaticn froD the terminal 
operator if necessary (see Figure 5-16). 

The duplicates data set feature bEcomes a powerful capability, 
enabling unigue record identificaticn Froblems to te resolved so that 
an indirect access chain can be maintained through the various logically 
related data sets. 

Records can be retrieved using the indirect access data set, either 
for processing only (GET), ox for subsequent update (GET with UPDATE). 
The updated object record can be written back with a PUT macro 
instruction, or ignored by issuing a BELEASE macro instruction. 

However, when adding ne~ records to data sets ~hich are indirectly 
accessed, care must be exe.rcised tc ensure that the inditect access 
chains are correctly maintained. 

Records can be added to data sets which are part of an indirect 
chain, using the procedures described in the topic "Direct Access." 
When constructing new records, the indirect access pointer fields must 
be correctly positioned, and must contain the correct information for 
record identificaticn to access the cbject data set referenced by that 
particular index pointer. 

The order in which ne~ records are added to indirect data sets is 
significant, depending uFcn ~hether a record key or a record location 
pointer is utilized. If all the indirect access pcinters are record 
key pointers (for example, tc be used for accessing ISAM or 
key-sequenced VSAM data sets), the order in which additions should be 
made to the indirect data sets is not Farticularly significant. 
However, if some or all of the pcinters are record location fields for 
use with DAM or VSAM data sets, the crder becomes significant, because 
the actual locations of the addeo records are Dot known until the 
addition is completed. 

As discussed above, and illustrated in Figures 5-4 and 5-5, records 
added to DAM data sets are written at a specified locaticn or near a 
specified locati~n depending upon the type of data set involved. In 
the case of DAM data sets with fixed-length records, an addition is 
made utilizing the first available dummy reccrd after the location 
specified by the applicaticn program where the addition shculd be made. 
In the case of DAM variable-length data sets, the addition is made at 
the end of the specified track, for CICS/DCS/VS, provided there is 
sufficient room to insert that new record. For CICS/OS/VS, a specified 
number of tracks can be searched tc locate a track which can centain 
the record. 

On adding a new record to a DAft data set, the actual record location 
cccupied by the new record is returned to the apFlication program. 
This record location can be used as a pointer to that new record from 
an indirect access index reccrd. Ey inserting this record location 
pointer in the appropriate field of the· record used to index the added 
record, the indirect chain between these two data sets is maintained. 
Similarly, if the index record containing this record location pointer 
is a new record to be added, the lecation of that index record is 
returned to the application Frogram and can be utilized as a pointer 
to the higher level index record for that data set. 

Chapter 5. CICS/VS Data Ease Design 151 



In this way, new records aay te addEd to a seriEs of data sets, 
ccnstructing any indirectly accessEd chains in the process. This is 
achieved by adding records tc thE lowest level data sets first, and 
then pro~,ressing u~vard through higher level indEX data sets until the 
highest level data SEt rEccrd is added. The reccrd location occupied 
by each IIEW record is returned tc thE application ~rogram for use in 
constructing the next higher level index record. 

FigurE! 5-11 illustrates the addition of records to indirectly 
accessed DAM data sets. 

INPUT PROCESSING OUTPUT 

[0-> Lowest Record 
To Add 

~l 
1. User Program Adds Record To Lowest Level ~ 

Data Set In Indirect Access Chain, First. Lowest 
Lowest ~W Level 
Level Data Set 
Data Set 2. CICSfVS Returns Location Of Added Record ~ I Recor.d r-~l To Program. Location _ 

3. Program Inserts Record Location Of Added 1l 
Higher Reco,'d > Record As Pointer In Record To Be Added 

~ 
To Add To Next Higher Data Set. Locn 

~.-' 
'" b-AM ~ 

Higher ;:-Level 4. Program Adds Record To Next Higher Level 
Data Set Data Set In Indirect Access Chain. Level 

Data Set 

I Record New Rec 
Location ~, 

} 

I Reed I Highest RecOI'd 5. CICSfVS Returns Record Location. 
To Add Locn 

6. Program Inserts This In Record To Be 

~J 
Added To Highest Level Data Set. ~~ Highest ~ 7. Program Adds Record To Highest Level ;> Highest II 

Level Data Set. Level 

Data Set 
Data Set 

~. 
~ 

-.----

Figure 5-·17. Additicn of Becords to Indirect Accessed Data Base 

Additions to an entry-sequenced VSAM data set are made at t~e end 
of the data set, as discussed under thE topic "DirEct Access." The 
record lccation (BEA) of the addEd record is returned to the application 
program. This BEA may be utilized as a pointer frcm an index record 
to that new added record. Indirect access chains for entry-sequenced 
VSAM datel sets may be built up (SEE Figure 5-11) in si.ilar fashion to 
the methcd used for DAM data sets. Becords are added at the lowest 
indirect access level first, and the BEA pointers returned to the 
applicaticn Frogram are utilized as indirect aCCESS pointers in the 

152 eIes/,S system/Application Design GuidE 



nExt higher indirect aCCESS level. This progresses upward through 
successively higher indirect accEss. levels until the highest indirect 
access level record has teen added to its associatEd data set. 

An indirect access chain can utilize any combination of DAft, lSI!, 
entry-sequenced lSA!, or key-sequenced YSAft data sets. If an indirect 
access chain utilizes any direct aCCESS data sets (DAB ox 
entry-seguenced lSA!), additions must Froceed frem the lowest level 
data set upward to the highest levEl data set. It is a good technique 
to always add records at the lowest level and then at subsequently 
higher levels regardless of vhether DAft, ISAft, or YSA! data sets are 
used. 

ln~i~~~! A~~!§§ ~AJiD ~!is.lil 

Special consideration should be given to the possibility of systeR 
failure during the addition of an indirect access chain. If a systeR 
failure eccurs before all the logically related records are added to 
their relevant data sets, an incomplEte direct access chain viII result. 
Accordingly, techniques discussed in Chapter 8 should be utilized for 
journaling any indirect access additions, to enatle incomplete indirect 
access chains to be tackEd out on restart if neCEssary. 

Normally, new indirect access chain records should be added offline 
to the data sets. However, adding these indirect access record chains 
online using the preceding tEchnique is required to redUCE the 
vulnerability of those data sets te system failure, and it is advisable 
to ensure that only one direct access chain be added at a time. This 
may be achieved ty all applicaticn pxograms that generate nev indirect 
access chains enqueuing cn the samE single user resource prior to 
commencing an indirect access chain addition. On successful completion 
of the entire indirect access chain addition, the application program 
can dequeue itself fro. the single user resource. By utilizing CICS/YS 
task control ENQ/DBQ macxo instructions, only one task at a tiae viiI i 

be able to carry out an indirect access chain addition. ihile this 
may have an effect cn online perferaance, depending upon the frequency 
of adding nev chains, it viII result in a definite improvement in the 
integrity and safety of the various data sets in the event of a system 
failure. 

SBG!ENTED EECOBDS 

The CICS/VS file centxol segmented record featur~ enables data sets 
to be constructed for efficient use on disk and dynamic storage space, 
including those data sets cODtaining a consideratlE aRount of 
variable-length information and which have various fields that are 
either present or absent in specific records. 

The segmented record feature considers a record to be cORprised of 
a number of segRents - each segaeDt containing one or more related 
fields. For example, in a customer data set (see Figure 5-18), the 
customer name may te defined as one segment and each address line as 
another segment. A numbEr of customEr account history fields containing 
the balance outstanding (current, ene Bonth, tvo menths, three months, 
and over three months) may comprise anether single segment. 

ChaptEr S. CICS/VS Data Base Design 15~ 



Postal Address J Customer Credit Customer 
Number Limit Name Line 1 Line 2 Line 3 Line 4 Line 1 .( 

6 bytes 6 bytes 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes 

J Ship-To-Address Account History - Arrears 
Customer 

( line 2 Line 3 Line 4 History Current One Two Three Over Three 
Balance Month Months Months Months 

20 bytes 20 bytes 20 bytes 60 bytes 6 bytes 6 bytes, 6 bytes 6 bytes 6 bytes 

• Record Format: Fixed-length 

• Record length: 282 Bytes 

Figure 5-18. Typical Customer Becord Poraat 

Another example of segmented records is shown in Figure 5-19, which 
illustrates a savings acccunt data set used in the banking industry. 
The account master informaticn may te defined as one segment. Each 
deposit or withdrawal transaction made previously against the accb~nt 
may also be defined as a segaent. 

Account Master 
Previous Transactions ) In'formation 

Against This Account 

Account Account Current Other Passbook Passbook No Book pa~b(( Number Type Balance Account Withdrawal Deposit Deposit With 
Details 

Passbook No Book Passbook Unused 
Withdrawal Withdrawal Deposit 

Figure 5-19. Typical savings Account Becord For.at 

~~gllel!! 12!sign 

Generally, fields are grouped within one segmEnt if they have some 
similar relationship, such as si.ilar information which will be operated 
upon togEther by various programs, or fields which are either all 
present or all absent for a particular record, or single fields which 
may contain variable-length information such as name or address lines. 

A segment may contain any numter of fields up to a total segment 
length of 255 bytes. Segaents may be further defined as either 

154 eIeS/'S System/Application Design Guide 



fixed-length segments, or variable-length segments whose length is 
indicated by a one-byte tinaxy field at the start cf the segment. 

Consider the storage of a customer name and address in the record 
format shown in figure 5-18. How many bytes should be allocated for 
the name field? Should each n~me field be allocated 20 bytes or 30 
bytes or 15 bytes? Depending upcn the characteristics of various 
customer names, a 30-byte name field could ccntain every possible name, 
whereas a ~O-tyte name field may contain 951 of customer names, and a 
15-byte name field only 80~ cf names. using the 30-byte name field 
will avoid the necessity of abbreviating or reducing the. lengths of 
names, as would te necessary using 20~byte or 15-tyte fields. However, 
the great majority of namES &ay be less than 15 bytes. In this case, 
15 bytes er more of disk s~acE in Each customer record is wasted if a 
30-byte name field is allocatEd. 

How many bytes should be allocated to each address line? Allocation 
of 30 bytes for each address linE may enable every possible address 
line te be stored in full, while 20-byte or 15-byte address lines may 
require some form of abbreviation. Again, the use of 30-byte address 
line fields may result in wasting approximatEly 15 bytes er more per 
address line, becaUSE the .ajerity of address lines may fit within 15 
bytes. 

AnothEr consideration is the numbEr of address lines to allQcate 
for a customer rEcerd. Many custcmer addresses have two or three 
address lines, while somE may require six or morE address lines. Should 
six address lines be allccated fer each customer record? Should instead 
three address lines be allocated, reducing lenger addresses to three 
lines, but wasting an address line field in the case of a two-line 
address? 

The segmented record feature enables record fermat definition 
problems such as these to te easily resolved. The customer name and 
each custemer address line may be defined as separate segments. 
Furthermore, they may be defined as variable-length segments such that 
for one additional lengtb byte at the start of each segment, the exact 
length of that segment can be indicated. Thus, a five-character 
customer name weuld eccupy five bytes plus one byte for the length 
indication - a total of six bytes. However, a 25-byte customer name 
would occupy a tetal of 25 plus cne er 26 bytes, while a 14-character 
name would o~cupy a total cf 15 tytes. Only the amount of storage 
required for each individual name nEEd be allocated, for more efficient 
disk storage utilizaticn. 

Figure 5-20 shows that each address line segment may te defined as 
variable-length, with the actual lEngth of each address line occupying 
only that many bytes, together with an additional byte per address line 
as a length indication. Names and addresses need not be abbreviated, 
but may cccupy as little or as much disk storage as required. 

Chapter 5. eICS/VS Data Ease Design 155 



Variable 
Format Root Segment Customer Postal Address Segments 
Length Name 
4 Bytes Segment Line 1 Line 2 Line 3 

Account History 
Segment 

4 bytes , ____ 1.5 .. b,...y .. te.s ___ -... 12 bytes 13 bytes 9 bytes 7 bytes 30 bytes 
--.. ~_ A ,..-"-..,..-"-..,..-"-.., _--__ ~---".." __ -", , 

Varible Customer Credit Segment Customer Postal Postal Postal 
Account History 

* * * * Arrears (Months) 
Length Number Limit Presence L Name Address Address Addre,Ss 
Control 

LU'>Y> 

* L = 1-Byte Length Field For 
Variable-- Length Segments 

** LLM = 4-Byte Variable-Length 
Record Control 

L 
Indicators 

L L 
Line 1 Line 2 Line 3 

• Record Format: Variable-Length 

• Length Of This 
Customer Record: 90 Bytes 

• Original Record Length 
If Not Segmented: 282 Bytes 

Figure 5-20. Segnented custemer Record Format 

Cur. 1 2 
Bal. 

A further advantage of variable-length segments is that segments 

3 Over 
3 

may be defined as being either present or absent on an individual record 
basis. In Figure 5-18, eight address line segments are defined for 
each customer record. However, if only three address lines are 
required, only three address line segments need be present for that 
record (see Figure 5-20). The remaining five possible address line 
segments are not present. and do not occupy any disk space. 

Fields which are always present in every record, such as a customer 
number, credit rating, and other required information for each record, 
are generally greuped together into one segment. This is called the 
root segment and precedes all other segments in the record. This 
segment is always present in a segmented record. 

The presence er absence of other segments in the record is indicated 
by segment indicator flags. These indicator flags are contained within 
the root segment, and may comprise either bit indicators or halfword 
indicator;s. 

Bit indicators use a separate tit to indicate the presence or absence 
of each specific segment. If the segment associatEd with a tit is 
present, that bit is turned cn. HOWEver if the s~gment associated with 
the tit is absent, that bit is turned off. 

Halfword indicators utilize two bytes to indicate the presence or 
absence of each segment. The twe tytes are used as a zer~/nonzero 
switch. If the twe bytes arE nonzerc, the associated segment is 

156 CICS/VS System/Application Design Guide 



present; if the two bytes are binary zero, the associated segment is 
absent. 

COBOL programs must use halfwcrd indicators, unless the bit 
manipulation built-in function supplied by CICS/VS is utilized (see 
"Application Built-in Functions" in Chapter 2). Figure 5-21 illustrates 
the use of segment indicator flags, and relates to the customer record 
shown in Figure 5-20. 

~!HJ1!!~.n! ]~fini ti.£!! in l~l' 

While it is the responsibility of the system programmer to specify 
segments in the PCT, it is important that the system designer have a 
general understanding of how segments are defined, to better understand 
the operation of the CICS/VS segmented record feature. this will enable 
him to take advantage of facilities cffered by this feature when 
initially designing the varicus data bases which will be utilized by 
the application. 

Either bit indicators or halfword indicators aay be used with a 
particular segmented record data set, tut not both. The selected type 
of indicators is specified in the file control table (FCT) entry for 
that segmented record data set. As many bytes as required to contain 
all of the necessary segment indicator flags (up tc a maximum of 99 
segment flags) must be defined within the root segment. ~he starting 
location, and length in bytes, of the segment indicator flags field in 
the root segment is also defined in the FCT entry for a segmented record 
data set. See Figure 5-21. 

Each separate segment is then defined in the PCT entry (see Figure 
5-22). Every segment is allccated a segment name up to 8 characters 
long, and is specified as a fixed-length segment or a variable-length 
segment of a defined maximum length. In addition, any required boundary 
alignment (byte, halfword, fullword, or doutleword) necessary when the 
segment is read into storage is identified. As each segment is 
presented to the applicaticn program for processing, the segment is 
aligned on the specified boundary. However, the extra bytes required 
to ensure specific boundary alignment are not recorded on disk; they 
are inserted w~en the record has been read from disk and before the 
segment is passed to the application program. 

An application program aay utilize several segments in a record for 
processing. These segments aay te grouped together and called a segment 
set. By identifying a segment set by name, all the segments comprising 
that segment set are also identified. 

Consider a customer data set in the utilities industry, as shown in 
Figure 5-23. An applicaticn program which requires access only to the 
customer name and address aay reguest a segment set comprised only of 
the customer name seg_ent and each of the postal address line segments. 
This may be uniquely identified as a· segment set which. is given a 
specific name, such as ~AeEAtDR. 

Chapter 5. CICS/VS Data Base Design 157 



Variable 
Format 
Length 
4 Bytes 

Root Segment Customer Postal Address Segments Account History 
Segment Name 

Segment 

4 bytes • ___ -"' ..... ____ ..... 

---~ 
15 bytes 12 bytes 

A 

,...-"-. ... 
Varible 
Length 
Control 
LLr>r> 

Customer 
Number 

/ 

Credit 
Limit 

Segment * Customer 
* 

Presence L Name L 
Indicators 

Segment I ndicator Flags 

Line 1 
13 bytes 

Postal 
Address 
Line 1 

Line 2 
9 bytes 

"..-"-.. 

Postal 
L Address L 

Line 2 

Line 3 

7 bytes . 

Postal 
Address 
Line 3 

. ,. 30 bytes 

Account History 
Arrears (Months) 

Cur. 2 3 Over 
Bal. 3 

• Record Format: Variable-Length 

• Length Of This Customer 
Record: 90 Bytes 

• Original Record Length If 
Not Segmented: 282 Bytes 

* L = 1-Byte Length Field For 
Variable-Length Segments 

** LLr>r> = 4-Byte Variable-Length 
Record Control 

Flag I 1 I 
Number L.J 1 ,1 ,1 ,0, 0,0, 0 0 I 0, 1 , I I I I I I , , I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 7 18 19 20 21 22 23 24 

• Segment Indicator Flags Indicate The Presence Or Absence Of Segments. 

• 1 Bit or 2 Bytes May Be Used To Indicate The Presence Or Absence Of Each Segment. Here, Bit Indicators 
Are Used. 

• Flag 1 Refers To The First Segment After The Root, That Is, Customer Name. Flag 2 Refers To Postal Address 
Line 1, Flag 3 Is Postal Address Line 2, And So On, Up To Flag 11, Which Is Account History. 

• A Bit ON Indicates The Relevant Segment Is Present; A Bit OFF Indicates The Segment Is Absent. 

• The Exampli3 Here Shows That Customer Name, A 3-Line Postal Address, And Account History Are Present In 
This Particular Customer Record. 

• Bits 12 Through 26, In This Example, Are Not Used. They Have Been Allocated To Enable Another 13 Segments To Be 
Added To This Record Later, For Other Applications, Without Necessitating Any Modification To Existing Application 
Programs. 

Figure 5-21. Segment Indicator Flags 

158 CICS/V5 System/Application Design Guide 



6 bytes 6 bytes 

---..---'" 
Customer Credit Customer 
Number limit Name 

Data Set = Customer 

DATASET=CUSTOMER 

SEGMENT=ROOT 

SEGMENT=NAME 

SEGMENT=ADDRl 

SEGMENT=ADDR2 

SEGMENT=ADDR3 

SEGMENT=ADDR4 

SEGMENT=SHIPl 

SEGMENT=SHIP2 

SEGMENT=SHIP3 

SEGMENT=SHIP4 

SEGMENT=HISTORY 

SEGMENT=ARREARS 

20 bytes 60 bytes 6 bytes , 
,~, 

~ .... 
Postal Address Ship-To-Address Account History - Arrears 

Li", 1 Li", 'I Li",' 1 Li", ,I Li", , Li", ,I Li",' 1 Li",' 
Customer 
History eo,,,,,, 1 0" 1 T ~ 1 Th'~ 1 0", 

Balance Month Months Months Three 
Months 

File Control Table (FCT) 

OAT A SET SPECS 

LENGTH=15 BITINDICS I START=12 I LNG=3 

VARIABLE 20 BYTES (MAX) BYTE ALIGN 

" 20 " " 

" 20 " " 

" 20 " " 

" 20 " " 

" 20 " " 

" 20 " " 

" 20 " " 

VARIABLE 20 " BYTE ALIGN 

FIXED 60 BYTES WORD ALIGN 

FIXED 60 BYTES WORD ALIGN 

• Record Format: Fixed-Length 

• Record Length: 282 Bytes 

Segment Definitions 
For Dataset = Customer 
(See Record Format Above) 

Figure 5-22. Segment Definition in lCT 

Chapter 5. CXCS/VS Data Base Design 159 



yes Il 

" ..--"-'-_r ,..--, 6 b t 6 byt S 
20 bytes 60 bytes 

Postal Address Ship-To-Address 

Customer Credit Customer 

u_~u_'IU_3IU_4Iu_' UO' ,I Uo, 31,,0, 4 

Customer 

Number limit Name History Current 
Balance 

Dataset = Customer 

File Control Table (FCT) 

-

DATASET=GUSTOMER DATA SET SPECS 

SEGMENT= ROOT LENGTH=15 BITINDICS I START=121 LNG=3 

SEGMENT=NAME VARIABLE 20 BYTES (MAX) BYTE ALIGN 

SEGMENT=ADDRl " 20 " " 
SEGMENT=ADDR2 " 20 " " 

SEGMENT=ADDR3 " 20 " " 

SEGMENT=ADDR4 " 20 " " 

SEGMENT=SHIPl " 20 " " 
SEGMENT=SHIP2 " 20 " " 

SEGMENT=SHIP3 " 20 " " 

SEGMENT=SH I P4 VARIABLE 20 " BYTE ALIGN 

SEGMENT=HISTORY FIXED 60 BYTES WORD ALIGN 

SEGMENT=ARREARS FIXED 60 BYTES WORD ALIGN 

SEGSET=NAMEADDR (ROOT) NAME ADDRl ADDR2 ADDR3 ADDR4 

SEGSET=ACCOUNT (ROOT) NAME ARREARS 

Figure 5-23. Segment Set Definition in peT 

6 bytes . 
"-

Account History - Arrears 

00' I T~ I Thm, I 0.., Month Months Months ~hree 
onths 

• Record Format: Fixed-Length 

• Record Length: 282 Bytes 

Segment Definitions 
For Dataset = Customer 

} 
Segment Set 
Definitions 

Another application program may require access cnly to the customer 
name and account history segaentE in Pigure 5-23. These segments may 
be defined in a separate segment SEt which may bE given a unique name 

160 eles/vS Syste./Application Design Guide 



such as ACCOUNT. The application program in this way indicates that 
it is sensitive only to segments in the specified seg_ent set. 

~§gmsn! j§tri!~~l 

When the application program wishes to retrieve a specified segment 
set from a segmented reccrd, it Frcvides information for the 
identification of that record, such as a record key or record location 
field, identifies the data set tc te accessed by name, and then 
identifies the segment set by name to te presented to the application 
~rogram (see Figure 5-24). 

INPUT PROCESSING OUTPUT 

PROGRAM 
1. Program Issues File Control --- GET for Segmented Record. 

DFHFC TYPE~GET, 
DATASET=CUSTOMER, 

V RDIDADR=KEYFIELD, 
SEGSET=ACCOUNT 

I --- \ ---
l FILE CONTROL TABLE 

I) ~lliX 
2. CICSIVS Locates Entry In 

DATASET=CUSTOMER 
FCT For Data Set. 

3. File I/O Area Allocated By 
SEGSET=ACCOUNT 

CICSIVS Based On Data Set 0 Blocksize. 

File I/O Area (FIOA) j 

( 4. CICSIVS Retrieves Record « Data Set 
From Data Set Into File I/O (Customer) 
Area. 

5. CICSIVS Locates Segments In nnl Specified Segment Set In FIOA. 

File I/O Area (FIOA) 

I Root I Name I I Arrs I I 6. File Work Area Allocated 

IJ By CICSIVS Based On Length 

UUI 
Of Segments In SEGSET. 

I Root J Name I Arrs 

1ULJ) 7. CICSIVS Moves Specified Seg· 
ments To File Work Area. 

I 

DFHFC TYPE=GET 

V 8. CICSIVS Frees FIOA Storage, ~ SEGSET*ACCOUNT 
And Passes Address Of FWA 
To Program. 

Figure 5-24. Segment Eetrieval 

File centrol uses the reccrd identification field to access the 
required record from the s~ecifiEd data set. The segment set name is 
then used to identify the particular segments aaking up that set. Each 

Chapter 5. CleSt'S Data Base Design 161 



of the SEgment names in the segment set is defined in the PCT entry as 
being fixed-length or variable-length, of a specified maximum length, 
and requiring specified bcundary a1ignaent. Segments are assumed to 
be in the same sequence in the reccrd as the sequence in which they 
are defined in the FeT. 

The segments in the segment set are extracted from the record by 
file centrol. These segaents are presented to the application program 
together with the root segment, as if only those SEgments were present 
in the record on disk (see Figure 5-24). Other segments which are not 
part of the segment set are ignored, and are not Fresented to the 
applicaticn program. 

The presence or absence of segments in the record passed to the 
program is indicated by the status of the segment indicator flags (see 
Figure 5-21). These seguent indicator flags are lecated within the 
root segment, and each flag is tEsted by the application program to 
determine whether it is cn QI off, and hence whether its associated 
segment is present or absent. The first segment. indicator flag (which 
may be a bit flag, for example) indicates the presence or absence of 
the first segment in the record following the roet segment. The second 
indicator flag specifies presence or absence of the second segment in 
the record follo~ing the root segment, and so on. These indicator 
flags specify the presence or absence of all segments within the record, 
not only those segments in the segment set passed to the program. 

The USl9 of DSECTs or structures in application programs can simplify 
the testing and ~aniFulaticn of segment indicator flags. If the 
appropriate DSECT or structure defining all indicators is copied into 
the application program when it is co~piled, the use of 
installation-controlled latels for each indicator may be achieved. The 
applicaticn prcgrams may then be less sensitive to changes in segments, 
a segment change being made to the DSECT or structure and the programs 
then recclDpiled. 

Applic~ltion programs aay replace segments, delete segments, or add 
new segments. However, the extent to which new segments may be added 
depends upon the particular access method used for the data set. If 
DAM, ISAM~ or entry-sequenced VSA! data sets are used for the segmented 
record da1:a set, the total segmented record length may DSi be increased, 
but may te reduced if required. (An exception is with OS/VS 
variable-length 151M reccrds, where the segmented record length may be 
increased if necessary.) iith key-sequenced 'SA8 data sets, the 
segmented record length may be increased, either through the addition 
of new segments to t~e record or by a change in the length of existing 
segments. The increased recerd length is regarded by file control as 
a replacement of the previous segmented record and is handled in much 
the same way as the additicn of a new record to the data set. That 
is, records which follow the lengthened record in the same control 
interval are shifted to the right to enable the increased-length record 
to be inserted. 

If it is necessary to increaSE thE length of DAM, ISA8, or 
entry-sequenced VSA8 seg_ented rEccrds, a different technique, segment 
updating, must be utilized. 

When it is determined that a segmEnted record in a D1B, 1516, or 
entry-sequenced VSA! data set will be increased in length because of 
the addition of a new segment, or the increase in length of an existing 

162 CleS/VS system/Application DE~ign Guide 



segment, the original segmented record retrieved must be updated by 
the application program to indicate that that record is new obsolete. 
This may be specified by the program placing a logical delete flag in 
the root segment as shown in Figure 5-25. 

Current 
Record 
Pointer 

Obsolete Segmented Record 

Segmented Record 

Updated Segmented Record 

(Length Increased) 

Figure 5-25. Segment Updating, ~ith Length Increase in DAM, lSI!, and 
Entry-Sequenced VSA~ Data sets 

The increased-length record may be written by the user program to 
a separate user-defined "overflow" data set. The location of that 
increased-length recerd in the overflow data set may be inserted as a 
record pointer field in the root segment of the eriginal record (see 
Figure 5-25). The logical delete flag in the root segment may be 
utilized as the record pointer field. If this reccrd pointer field is 
zero, it indicates that the segmented record is current. However, if 
the record pointer field is nonzero, it indicates that the segmented 
record has been logically deleted and replaced by ancther record in 
the overflow data set. The record pcinter may be utilized by the user 
program as a record key, or record location pointer (depending upon 
the particular data set it peints to). It directs the application 
program to the new current segment in the overflew data set. 

with this technique, an increase in length of a segmented record 
may te logically supported using DA~, ISA~, or entry-sequenced VSA~ 
data sets. The increased-length recerd is first written by the user 
program to the overflow data set. The record location field returned 
by CICS/VS as a result of that addition, or the record key for ISAM, 
is then inserted into the record peinter field in the root segment of 
the record in thE segmented data SEt (See Figure 5-25). 

On subsequent retrieval, the application program first tests the 
record pcinter field in the Ioot seguent. If the pointer field is 
nonzero, the application program uses that pointer as a record 
identification te the more current segmented record in the overflow 
data set, and retrieves that current segmented reccrd for precessing. 
The overflow data set must be specified during FCT generation as having 
the same segments, and segment sets, as the original segmented data 
set. 

If a segment is to te updated ~ith no change in length, that update 
is effected and the segments are presented by the program to CICS/VS 

Chapter 5. CICS/VS Data Base Design 163 



to be written back to the data set by means of a PUT macro instruction. 
If the length of a variable-length segment i~ to te reduced, the length 
byte is modified to reflect the new length of the updated segment. 
This segment is then written back to the data set ty issuing a file 
control FUT macro instruction. File ccntrol blocks up each segment in 
the segmented record, removes any boundary alignment bytes, and uses 
the length byte in variable-length segments to allocate a sufficient 
number of bytes to contain centents ef that segment. 

To allow for a potential increa~e in length after a GET with UPDATE 
macro instruction of variatle-Iength segments, or the addition of a 
new segment which was missing in the segmented record, eIeS/VS file 
control will present the application program with a segmented record 
containing space set aside fer each segment, whether present or absent, 
based upon either the fixed length of that segment, or the maximum 
variable length of that segment. 

~~gm~n! ~~1§!i9n 

A segment may be deleted if the application prcgram turns off the 
relevant segment indicater in the roet segment. File control then 
physically deletes that segment when it writes the segmented record 
back to disk. 

Fixed- !ng !~~i~~!§=~~~g!h a§g~~!!g ~§£2Ig§ 

eIeS/VS segmented reccrds Day be either fixed-length or 
variable-length. For fixed-length records, the actual segmented record 
may te less than the allocated fixed-length record size. Slack bytes 
are therefore used at the end of the segmented reccrd to make up the 
specified fixed-length recerd. Segmented records which are variable 
in length because of variable-length" segments, or the absence of 
particular segments, may be specified as variable-length records (see 
Figure 5-26). In this case, variable-length records enable more 
efficient disk storage utili2aticn4 

Fixed-Length Record 

~m.ntedReCOrd ~ 
Segmented Fixed-Length Record 

Variable- Length Record 

Segmented Record 

Segmented Variable-Length Record 

Figure 5-26. Segmented Becord Disk Utilization 

164 eIeS/VS System/Application Design Guide 



Cr§A!iQD ~ng ~gi~!§Dgn£~ 91 ~g!~n!~g i§£Q!g§ 

CICS/VS file control provides no facilities fer the creation or 
maintenance of segmented reccrds. These records must be created 
offline, with the various segments (either fixed- or variable-length) 
blecked by user pregrams. The offline user program must set the 
relevant indicator flags, to specify the presence cr absence of each 
segment in that segmented record. Once segmented records have been 
created offline, they may te retrieved online using the CICS/VS 
segmented record feature. In the event of addition of new segments or 
deletion of existing segments online, the online application program 
is responsible fer determining that the appropriate bit or byte 
indicator flag is en or eff, and turning on the appropriate indicator 
for a segment which has teen addEd online, or turning off the indicator 
for a se9ment which is to be deleted online. CICS/iS will examine 
these indicator flags When the rEcord is to be written back to disk, 
and take the appropriate acticn to either delete the segment or increase 
the segmented record length if nEcessary to allow for an added segment. 

with the availability of the built-in bit manipulation function (see 
Chapter 2), Assembler, PL/I, and American National Standard (ANS) COBOL 
application programs may test bit indicator flags and set bit indicator 
flags on or off. Conseguently, the use of halfword indicator flags 
for ANS COBOL programs is not neCEssary, and all indicator flags may 
be maintained as bit flags. 

ADVANTAGES OF SEGMENTED EECOFDS 

The principal advantagEs in thE use of the segmEnted record feature 
are described belcw. 

Through the use of variable-lEngth records, variable-length segments, 
and omitting unused seg_Ents, only that amount of disk storage required 
for storagE of the information relevant to each record need be 
allocated. 

~~~i~ ~!Q!gg~ j:ii~i~n£l 

On an application prcgram GET macro instruction, the entire segmented
record is read into the allocated file input/output area (FIOI), or,
for VSAM data sets, into the VSAM buffer. The segments making up the
segment sets requested by thE program are extracted by CICS/VS from
the record in the FICA, tuffEr, er VS8A and are moved into the file
work area (FWA). At this time, if the applicaticn program did not
indicate that the record will subsequently be updated and written back,
CICS/VS file control releases the PICA or VSil dynamic storage, and
transfers only the requested set of segments to the Pil. Consequently,
the amount of main stor~ge used in processing those segments is only
as large as the segments themselves. No additioral dynamic storage is
utilized for seg.ents which are not being processed.

1imi!~g ~g!g !ng§R§ng~£~

Because an application pregram identifies only that set of segments
which are significant to it, the modification of segments in the data
set which are not relevant tc the program concerned requires no
mod.ifica tions to that progra m. Limited data indEpendence is thus
achieved with a consequent reducticn in the amount of program

ChaptEr 5. CICS/VS Data Base Design 165

modifica -tion following a change to the record format or data set
organization.

A further consideraticn of data independence is that additional
segment indicator flags may te allccated in the roct segment to allow
for the addition of future segments. If bit indicators are used, each
additional byte of hit flags will enable up to eight segments to be
added to the end of the segmented record. When these segments are
eventually added tc the records, seme-reorganizaticn of the data set
will of course be necessary. However, applicaticn programs which
utilize segment sets which de net contain the new added segments are
not affe(:ted.

eICS/VS FIlE CeNTROL DESIGN CONSIDERATIONS

As can be s~en fre. the atove discussion cf the indirect access
feature and segmented record feature of CICS/VS file control, data
bases may be constructed. A numter of factors should be taken into
account in deciding the aF~rcFriate data base support technique, either
indirect access, or segmented records, or both.

If data sets utilized online in a data base must also be processed
offline, the indirect access feature may he found to be more suitable
than segmented records. Use of this feature requires each offline
application program to provide its own support for the extraction of
segment sets from segmented records, and the insertion o~ segment sets
back into segmented records for updating. Alternatively, the code
SUFPorting the segmented recerd feature in the CICS/VS fiie control
program may be extracted by the user and modified for use by batch
FIograms.

If the batch Frocessing requirements of the installation dictate
that standard access methed support be used for tatch programs accessing
online data sets, the indirect access feature rather than the segmented
record feature should be used. This enables-logically related
information to be maintained across a series of different data sets.
However, this additional file accessing will have an effect on the
perfcrmance of the online ap~lications, and consequently on response
time. This is a further consideration in the design of a CICS/VS file
control data base.

Provided that suitable su~port can be developed to enable batch
application programs to access segmented records in online data sets,
the segmented record feature is su~ericr to the indirect access feature
when ODe considers the reduced file accessing necessary and the
efficient utilization of disk storage. with one file access, a
segmented record with all its related segments may be retrieved. with
indirect access, these related segments may have been defined in
separate indirectly accessed data sets, each requiring a separate file
access. Furthermore, only the object or target data set is returned
to the user.

A ~onsideration with segmented records is the extent to which
additicns to segments may be made. If segment additions result in an
increase in the segmented record length, then the segmented record data
set should ideally be defined as a key-sequenced VSAM data set, or a
variable-length OS/VS ISAM data set. Alternatively, DAM, ISAM, or
entry-sequenced VSAM data sets may be utilized using the dummy segment

166 CleS/vS system/Application Design Guide

and overflow data set techniques described above. However, this will
result in less efficient disk stcrage utilization, more user
programming, and more file accesses.

A further consideraticn is the extent to which information may be
added to data set records at a future time. If there is a strong
possibility of this occurring, it may be advisable to use the segmented
record feature, allocating additional segment indicator flags in the
root segment to allow for a specified number of additional future
segments. At that time, additional segments may be added, without
requiring modification of Fregrams which utilize segment sets not
associated with the newly added segments.

The use of the segmented record feature enables a large number of
multiple segments to be stered fcr a particular logical record within
a block, to a maximum of 99 segments in each logical record. The number
of multiple occurrences of segments may be further limited by user data
set creation and maintenance factors.

~sl ~toI!g§ !~!il!~ili!l

While the segDented rEccrd feature does net provide the capability
of the DL/I products, and introduces somE difficulties regarding batch
program access to segmented Iecords, this segmented record feature may
be considered for installations with real storagE of less than 1441
bytes, wbichare unahle te use the DI/I products because of insufficient
real storage. See "Data Ease Selection criteria" at the end of this
chapter for more detail.

EECOVEBY CONSIDEEATICNS

Becovery of infcrmatien in the event of system er program failure
must be considered in data base design. This subject is discussed in
more detail in Chapter 8, tut is introduced bere te identify those
factors which are relevant tc the recovery of CICS/VS file control data
sets. The optional journaling feature of CICS/VS permits a record to
be automatically logged by file central to the system log and/or to be
journaled to a user journal data set. The subset option of CICS/DOS/VS
does not support autematic lcgging or autematic journaling.

AY!QJ!~ ti,£ LoggiJ!,g

Automatic logging is reguired if data set backout is to be supported
by CICS/VS on emergency restart following an unccntrolled shutdown.
Automatic logging is specified in the file contrel table entry of each
data set for which backout is to bE supported by specifying LOG=YES.
(See ~l~~L!~ ~~~te! fIg,gIA!BSI!§ i§i!Ienc§ IADYA1.) On any update,
deletion, or addition of a nEW record, the "before" image is
automatically recorded cn the CICS/VS system log if automatic logging
is specified. The system log is journal number 1.

Automatic journaling allows the user to specify data set activity
to be recorded on any CICS/VS journal. For example, ~utomaticlogging
records the "befere" image of a record to be updated and goes to the
system log. Automatic journaling may specify that the "after" image
is to be recorded also. Additional journaling activity is identified

Chapter 5. CICS/VS Data Ease tesign 167

in the FCT entry for each data set through use of the JREQ parameter,
and may te directed to a user journal data set or the system log through
use of the FCT JID parameter. This .ay be desired i~ a chronological
record of all data set activity is to te maintained. It permits
implementation of a user-written recovery program to recover a data
set from a previous backup copy if a'll unrecoveratle I/O error is
detected ..

The information recorded cn automatic logging, and on automatic
journaling, contains the identification of th~ task which carried out
the update, deleticn, or addition, the transaction code and terminal
identification involved with that task, the time of day, other
information required by the eICS/VS journal control program, and an
exact image of the record which was updated or deleted, or the record
identification of an added record. These records are written to the
CICS/VS system log and/or relevant journal data set in chronological
sequence '0

These logged updates, deletions, and additions to the CICS/VS system
log are utilized by CICS/VS on emergency restart fcllowing uncontrolled
shutdown to back out the data set activity of in-flight tasks.
Additional restart information can be found in ChaFter 8.

This section introduces the ccncepts, user design considerations,
and advantages of the DL/I products. It is stro~gly reco •• ended that
all eICS/VS users read the secticn in its entirety, unless they already
have prior DL/I experience.

This section is intended cnly as an introduction to some of the
significant features of DL/I, as used in the CICS/VS environment. It
should n<lt be considered as a sul:;sti tute for the DL/l product
documentation. No attempt is made to describe the operation of the
various DL/l products in depth, ncr to describe in detail the deSign
of DL/l data bases. DL/I is discussed only in sufficient detail to
enable the CICS/VS system designer to evaluate the various DL/I products
and the eICS/VS File Centrol facilities as data base support for online
applications to run under control of CICS/VS. Refer to the appropriate
DL/li§D~~~l Ini2IiAtioD JADlAl, ~l§!iJLIE~lis!!iRl Design iYi9S, ana
other DLII manuals listed in the preface of this publication for further
information about these DL/l products and the design of DL/l data bases.

This chapter on data base design concludes with a discussi~n of
various selection criteria which can assist the system designer in his
choice of the appropriate data base support to be used for the online
applications being designed.

CICS/iS enables data tases created and maintained by the following
DL/I products to be accessed by eICS/VS applicaticn programs:

• DL/I ENTRY

• DL/I DOS/VS

• IMS/'VS DL/I

DL/I ENTFY

DL/I :ENTBY Frcvides a subset cf the data base facilities offered by
DL/I DOS/VS. It utilizes DOS/VS SAM and VSAM on which DL/l access
methods HSAM and HISAM are organized. Data bases .ay be created,
maintained, and operated UpOD by batch processing programs. In

168 eICS/VS System/Application Design Guide

addition, CICS/VS apFlication Frcgrams may retrieve, update, add or
delete information in Dt/l EN~BY HISAM data bases online. However,
Dt/I ENTEY does not support logging of Dt/I activity, and does not
provide data base recovery utilities that are available with Dt/I DOS/VS
and 185/15.

Dt/I DOS/VS

Dt/I DOS/VS provides a subset of the data base facilities cffered
by 18S/VS and utilizes DeS/VS SA~ and lSAM as its standard access
methods, on which are organized the tL/I access methods, HSA8, HISA8,
HIDA8, and HDA8. These access methods are descrited later in this
chapter. Data bases may be created, maintained, and operated upon by
batch. processing programs. In addition, CICS/VS application programs'
may retrieve, update, add, and delete information in DL/I 005/15 data
bases online. Data base reccvery utilities are supplied for data base
backout in the event of an uncontrolled shutdown and for data recovery
following an unrecoverable I/O errcr.

185/15 DI/I

18S/VS DL/I operates under centrol of OS/VS1 or OS/VS2. It utilizes
VSA8 as its st~ndard access aethed (and also BISA8 and a EDA8 access
method called OSA8). DL/I access methods HSA8, HISA8, HIDAM, and BDA8
are organized on VSAM (see later in this chaFter). Data bases may be
created, maintained, and operated upon by batch precessing programs.
In addition, CICS/VS apFlication Frograms may retrieve, update, add,
and delete information in 18S/VS DL/I data bases online. Data base
recovery utilities are supplied for data base backout in the event of
an uncentrolled shutdown and for data recovery following an
unrecoverable I/O error.

Unless specifically stated otherwise, the following discussion of
DL/I support applies to each of the tt/I Froducts previously described.

Dt/I ACCI'SS FaO! CICS/1S

Access to DL/I data bases online from CICS/VS applicaticn Frograms
is achieved using the multitasking facilities of CICS/VS. Any CICS/VS
application programs may ccncurrently access the same data base, up to
the maxiEum number of active DL/I tasks specified for the CICS/VS
partition, or the .aximu. number of concurrent DL/I tasks specified
during initialization of the relevant Dt/I product with eICS/VS.

DL/I !N~BY permits concurrent data tasE access up to a maximum of
8 tasks, Dt/I DOS/VS up to 2~5 tasks, and IMS/VS DL/I up to 15 tasks.

Dt/I utilities are used tc describe the physical organization of
data bases and the way in which Frograms will logically access the data
bases defined. In addition, a number of DL/I utilities are provided
to allow recovery of data bases in the event of I/O errors or system
failures.

DL/I is a general-purFose data base control system that executes in
a virtual storage environment under DOS/VS, OS/VS1, or OS/VS2. It has
been designed to simplify the user's task of creating and maintaining
large com.on data bases to bE accessed by various applications. Its
design is open-ended, which allows future DL/I functions to be added
without affecting existing functions. DL/I also allows growth to online

Chapter 5. CICS/VS Data Base Design 169

applications through an interface with CICS/VS, and through the data
communications feature cf IMS/VS.

DL/I bas been developed by IBM to serve two application areas:

• Eatch processing

• Online processing

In batch processing, single data tase transactions requested by
applications are accumulated and Frocessed periodically against the
data bas4e. Because of the elapsed time, data in the data base is not
always current. The use of tatch Frccessing should depend on how
current the user's information must te, viewed in relaticn to the cost
of other methods of processing data.

For omline processing, IMS/VS DL/I provides a data communications
feature, and also a eICS/VS tL/I interface facility. with DL/I ENTRY
and DL/I DOS/VS, data communicaticns support is provided only by a
CICS/VS IDL/I interface facility. The use of online processing, as
opposed to batch processing, enables a response to be generated for
each tramsaction as it is reguested. This reduces the elapsed time
inherent in batch processing systems and allows the user to maintain
current data for his applications.

Traditionally, data used ty aFplication programs is organized in
data sets. Each data set is physically structured to present data in
the physical sequence and format required by the particular application
program,

PROGRAIVI A

DATA
'OESCR.

I PROGRr B
DATA
DESCR.

PROGRAM C

DATA
DESCR.

r--------------~

Figure 5-27. Traditional Data Set Approach

DATA SET A

DATA SET B

DATA SET C

170 CICS/VS System/Application Design GuidE

and each program contains a descri~tion of the data set organization
and record format as an integral part of the program (see Figure 5-27).
When the same data is shared by many applications (common data), the
data is duplicated on different data sets so that it can be presented
to each application ~regra. in the physical sequence and format
required. This duplication uses additional storage space and results
in increased maintenance time and cost, since the same data has to be
maintained simultaneously in many locations. Futhermore, when the data
set organization or record format must be changed, each program which
accesses that data set must te medified to reflect the changes. This
traditional data set approach is illustrated in Figure 5-27.

DL/I enables programs to te freed from their dependence on data set
organization and record fermat. The description of the physical
organization of a data base is removed from programs and contained in
a separate data description table. Each program utilizes this data
description. DL/I extracts the reqUEsted information from the data
base to ~resent te the pregram. This is illustrated in Figure 5-28.
Because programs using DL/I are no longer dependent upon the physical
organizatien of data, when the data base organization must be changed,
generally only the data descripticn table need be changed. Frograms
which access the data base using the data description in most cases
need not be aware that the data base has changed, and generally need
no modification. .

PROGRAM A

I

DATA
PROGRAM B

DATA ..
> DESCRIPTION

1

> BASE

(ABC)

PROGRAM C

I
Figure 5-28. DL/I Data Ease Approach

All application data is stered in one or more data bases in a
hierarchical fashion; that is, the mest significant data resides on
hierarchically higher levels, while less significant but related data
(dependent data) appears on hierarchically lewer levels, as illustrated
in Figure 5-29. This hierarchical aFproach enables programs te view
data in a data base apart frem its physical organization. Through the
use of a concept called "sensitivity," each application prcgram views
only that data in the data base which it uses. (Sensitivity is
discussed further, in "Logical Data structures," later in this chapter.)

Chapter 5. CIeS/VS Data Ease Design 171

DL/I accesses data in the data case and preseDts only the information
reguesteo by the program. The data Fresented to the program by DL/I
is calleo a "segment." A prcgram requEsts a segment from DL/I by
issuing a DL/I call.

In practice, a system designer reviews the data requirements of all
applications (as illustrated at the start of this chapter), then defines
the data base or bases. Tc create a data 'base, the user defines to
DL/I a common data structure and format that serve his applications
and loads his apFlication data into that data base.

The definition of thE data basE is provided by a data base
description (DED), and a tED is required for each data base (see Figure
5-29). ~his is generated Fricr to the loading of oata into the data
base, by assembling a set of DBD macro instructions which define the
data basE.

DUI

-
f'- ./

Program I Program
Communication

Data
Base

Block Description
Data

DUI Call (PCB) ~

I
(DBD) Base

Program View Data Base View -- ---
/ Customer '" /

No.!Name

I
I I

Address
Account
Details

--

Figure 5-29. DL/I Data Ease Access

The sEcond definition required is the program specification block
(PSB). ~bere is one PSB for each application prcgram. The PSB define~
to DL/I:

• The oata bases accessed ty an application program. Associated with
each data basE used by aD apFlication is a PCB. One or more PCBs
exist within a PSB.

172 CICS/VS system/Application Design Guide

• Each PCB identifies the sensitive data lsegments) in the data base,
available to the application program ~hich uses the PSB.

• Each PCB identifies the way in which the program views the data
base.

• More than one PCB defined in a FSB allows the application program
to process multiple data bases.

The PSB is generated by assembling a set ~f PSB macro instructions
which define the above factors.

An application program specifies its associated PSB to be used to
access data bases. Each PCB is used to pass inferaation to DL/I
identifying:

• The name of the DBD describing the particular data base

• The type of calls (or precessing options) ~hich the program ~ill
use to access the data base

• The number of segments te which this program is sensitive

In addition, fields are provided in the PCB fer DL/I te pass
information back te the Fregram, such as:

• The level number in the hierarchical structure of the last retrieved
segment

• The DL/I status code indicating the result of the last DI/I call
issued by the pregra&:

• The name of the last segment retrieved by DL/I

• The key of the last segment retrieved

Threugh DL/I's use of the DBD and PSB, application programmers can
write their programs without much regard to the physical structure of
data. Instead, they refer orly to segments of data as needed by the
program, without consideratien fer the physical location of that data
in the data base.

ADVANTAGES OF DL/I

DL/I provides applicaticn independence from access methods, from
physical storage organization, and from the characteristics of the
devices on which the data cf the application is stored. This
independence is provided by a commcn symtolic pregram linkage and by
data base descriptions external to the applicatien program. A reduction
in application program maintenance is generally realized.

DL/I provides for the reductien, and possible elimination of,
redundant data or sharing ef commOD data. The majcrity of the data
utilized by any company has Dany interrelationships that can cause
significant redundant storage of data if conventional organization and
access methods are used. For example, manufacturing and engineering
departments work with subset data which is also useful to quality
control.

The storage organization and access methods employed by DL/I
facilitate data integration ~ith a minimum of data redundancy. Ho~ever,
if an analysis of a company's data sho~s that all of the da·ta cannot
be placed in a single common data base, DL/I allcws the user the
additional capability of Ihysically st~ucturing the data across more

Chapter 5. CICS/VS Data Base Design 173

than one data base. Before tL/I, application prcgrammers frequently
did not have the time or ability to integrate other data with their
own data to eliminate redund~ncies without the necessity of a major
rewrite of the applicatien prograDs involved.

SEG~ENT DESIGN

The sDallest element cf data that may be retrieved by DL/I is a
segment. A segment contains ene ex more logically related data fields,
and is fixed-length for DL/I ENTFY~ and fixed- or variable-length for
tL/1 DOS/VS and IMS/VS DL/1.

The design of segments to be utilized in DL/I data bases is dependent
upon a number of factors. Seme of these are:

• The amount of data required at a time by the aFplicatien program

A segment is the smallest element of data which may be oFerated
upon in a DL/I data base and may comprise one cr several related
fields. The allccation ef fields to segments is generally based
upon common usage of the data contained within those fields. For
examFle, if a particular group of fields may be required by one
application program, it Day te desirable tc grcup these into a
segment, if ether characteristics of those fields are similar (see
below).

• The multiple occurrence cf infcrmation

The multiple occurrence cf infcrDation may require each separate
occurrence to be defined as a segment. For example, in a savings
bank system there may be many deposits or withdrawals against each
sa~ings account (see Figure 5-30). ~he savings account details
such as the account nUDber, account name, current balance, and
interest-to-date may comFrisE cne segment which, because it may be
required by many applications processing those accounts, may be
defined as a "root segment." A root segment is at the highest
level and generally contains infcrmation required by most
applicaticn FrcgraDs.

Each deposit transaction may ccntain fields such as date of deposit,
amount of deposit. and type of deposit. These fields may be defined
together as being a depoeit segment. Similarly, a withdrawal
transaction may contain fields such as date cf withdrawal,
withdrawal amount, and type cf withdrawal. These fields make up
a withdrawal segment. Because there may be maDY deposit and
withdrawal segments for a saviDgs account root segment, defining
each transaction as a separate segment will enable individ~al
transaction details te be readily accessed. Figure 5-30 illustrates
the multiple occurrence of deposit and withdrawal segDents based
upon a savings account reot seg.ent.

174 eIeS/VS System/Application Design Guide

Account Deposit Withdrawal
Detail Segment Segment
Segment

Contains Contains Contains

• Account Number • Date Of Deposit • Date Of Withdrawal

• Account Name • Amount • Amount

• Current Balance • Type Of Deposit • Type Of Withdrawal

• Interest To Date Etc. Etc.

Etc.

Root Segment

Account
Detail
Segment

I
I

J I
Deposit

3 Withdrawal r--
Segment 2 Segment

2 I-- "--
1

1

Figure 5-30. Multiple Occurrence of Segments

• The sensitivity to data ty various programs

The requirement for certain application programs to have access to
certain infermation (tbat is, be sensitive tc certain segments),
and not be atle to access (OI be sensitive te) other information
or segments, assists in the segment design. For example, related
fields of information relevant to a particular applicaticn program
may te designed as a segment. That applicatien program may then
be made sensitive to this segment.

• Variable-length segments

In the case of IMS/VS DL/I, the ability to sUPFort variable-length
segment~ may dictate those fields which should be defined as
comprising a segment. Pcr example, a customer data set contains
customer name and address. A customer name is normally vaIiable
in length, as are custcmer address lines. In addition there may

Chapter 5. CICS/VS Data Ease tesign 175

be a variable number of address lines. In this case, it may be
desirable to define the custcler name as one segment, called, for
example, the name segment, and to define each address line as a
separate address segment. There may be multiFle address segments
to allow a variable nUDbEr of lines in a custcmer address.

• Appl :ication-dependent reguirellents for information grouping

The design of segments, as wEll as the fields ~hich make up those
segments, is dependent upon thE application. An
application-deFendent Ieguirement lIay be the eJtent to which
information in the data tase might be expected to change in the
futul:e. If there is a high likelihood that certain fields within
a segment may change, it Day te desirable to define thcse
potentially changEable fields in a single segment, or a small number
of s4:gments. The extent of Frogram maintenancE because of a change
in the segment contents is therefore reduced. Dt/I enables new
segments to te defined very readily, vithoutaffecting application
programs which de not need to access those segments.

To assist in the design of segments, consult the appropriate
~I§!§JLAJ2Rli~J!i2D n~ig! i~idi for DL/I ENTBY, tt/I DOS/VS, or IMS/VS
DL/I.

DATI INDEPENDENCE

Under DL/I, the data base concept gives the user data independence
between the physical storage of data and the application programs which
access tbe data in various ways. Physical data storage is accomplished
through the use cf two unique DL/1 storage organizations:

• Hierarchical Sequential

• Hierarchical Direct

The Hierarchical sequential organization is supported by two Dt/I
access methods: the Hierarchical Se~uential Acce~s Method (HSIM) and
the Hierarchical Indexed sequential Access Method ~ISAM). The·
Hierarchical Direct organization is supported by two DL/I access
methods: the Hierarchical Direct Access Method (HtAM) and the
Hierarchical Indexed Direct Access Method (HIDAM). The application
program interfacE with these two organization types and four access
methods is totally symbolic. The application is typically insensitive
to the pbysical data organizatien er the access method used. The
various (lata base organizaticns and access methods are discussed in
more detelil in tbe nlLl l!g~!.§ ~l§!~.lL'!ul~Jtig! ~'§~5U! "ui.9~ and the
!~~L!~ ~l.§te.LJRRli~J!igl l!~§ign ~Yi~~·

To pr()vide this iD.9~R!D~!~$' tbree definitions are required prior
to the use of the data base ty a program:

• The segments within a logical data base record to which a program
~ishes to te sensitive

• The logical data base record structure represented by one or more
segments frol one or more physical records

• The data base organizaticn and access methods

These definitions are madE thrcugh the use of the following data
base definition functions:

• Data BaSE Description (DED) Generation

176 Cles/vs' System/Application Design Guide

• Program Specification Eleck (PSB) Generation

• Application Control Bleck (ACB) Generation

The use of the DBD and FSE vas described above. The generated PSBs
and DBDs to be used in an online environment are processed offline by
an application centrel bleck (ACE) utility program before the first
use, to combine their se~arate specifications into an application
control klock (ACB) for use enline. ~he DED is changed by the ACB
utility into a data management block (DMB) describing the specific use
of the physical data sets re~resenting a data base. The PSB is changed
by the ACB to describe the specific use of the logical structures
available frcm one cr aore data tases to the asseciated application
program for processing. It is thrcugh the use of the DBD, PSB, and
ACB that DL/I achieves its data independence.

20 bytes 20 bytes 60 bvtes 6 bytes
--"-__ r ,., ,--, "

Postal Address Ship-To-Address Account History -- Arrears

Customer Credit Customer

Uoo 1 I Uri"

Customer
Number Limit Name

Line 3
History Current One T ~ Th,oo 1 0,,,, Line 4 Line 1 Line 2 Line 3 Line 4

Bala~ce Month ::thS. ___ ::s _ ~~~~

• Record Format: Fixed-Length

• Record Length: 282 Bytes

Figure 5-31. Custcmer Account Record Pormat

lOGICAL DA~A STROCTURES

Application prcgrams written to use DL/I deal with logical data
structures. A logical structure refers to the manner in which the
application program sees the data. ~he logical data structure is always
a hierarchical structure cf £egaents. prograas written to process
logical data structures can te independent of the physical data
structure. A physical structure refers to the manner in which the data
is stored on a tape or on a direct access storage device. An
application program nevel: deals directly 'with a physical data structure.
Most data processing informatien, regardless of industry, can and should
be viewed as a logical data structure. Customer account infol:mation
is chosen here fer explanatQry pvrFoses because of its commonality.

Chapter 5. CICS/YS Data Base Design 177

Figure 5-31 illustrates a typical customer account record and
desc~ibEs the physical structure of the record as it might appear on
tape or on a direct access storage device. Each of the field groups
(name, pestal address, ship-to address, customer history, and account
history) is referred to as a segment. These segments usually contain
more basic data elements. Fcr example, one of the data elements
typically included in the name segment is a custcmer number. In
addition, the record might ccntain multiple address lines and account
fields. This is typical if address and account history are part of
the custcmer account inforDation.

This same data record appears in Figure 5-32 as a DL/I logical data
structurE~. The name, postal address, ship-to address, and customer
and account history fields are considered DL/I segments. Each segment
of information may be made up of several fields.

The logical data structure in Figure 5-32 represents a hierarchical
relationship. Data ~elaticnships described by this hierarchical
structure have only one segment at the first level, level zero, and
may have multiple segments at sutordinate levels (for example, level
1) in the hierarchical structure. Each dependent segment in the
hierarchy has enly one parent or immediate superior segment. The
logical representation is sometimes called a tree structure. In Figure
5-32, the name segment with its associated address and account segments
constitutes a logical data base record.

Through the concept of program sensitivity, DI/l allows a program
to be structured so that only those segments of informatien that are
relevant to the precessing being Ierformed are presented to it. For
example, an account prog~am could be written for only the name and
account segments of the logical data base structure, as shown
cross-hatched in Figure 5-32. The program need net be aware of the
existence of the address segments.

Accounl
Program
Segment
Sensitiv,ity

Line :3
Line 2

Postal Address
Line 1

Root Segment

Line 4
Line 3

Line 2

Ship-To-Address
Line 1

Customer
History

Figure 5-32. Customer Acccunt Lcgical Structure

178 CICS/VS system/Application Design Guide

Level 0 Segment

Level 1 Segment

The DL/I data base ca~abilities allow for handling hierarchically
related logical data structures cf considerable variance. The maximum
number of segment ty~es is limited for DL/I to 2~5 per logical data
base record (63 for tL/I ENTFY). A maximum cf 15 segment levels can
te defined in a logical data base record.

Figure 5-33 represents an example of a logical data structure for
a banking savings account. The structure consists of four segment
types: account detail, account name, deposit, and withdrawal.

li.2te: To illustrate DL/I terminology, the account name segment has
been specified in the lcgical structure on a level lower than the
account detail segment, tut higher than the deposit and withdrawal
segments. This imFlies that a relationship cf deposits and withdrawals
to each person operating on the account is significant to the
application. In actual ~ractice, it is generally not necessary to
identify the person who made a deposit, or withdrawal, but only the
fact that such a transacticn was made against the account. In this
case, the account name segment would be placed on the same level as
the deposit and withdrawal segments. It has beer. shown at a higher
level than these segments in Figure 5-33, only tc illustrate DL/I
terminology.

The lcgical structure in Figure 5-33 shows that account detail is
a root segment. The acccunt name segment is a de~endent segment of
the account detail segment, and the deposit and withdrawal segments
are dependents of the account names.

Account 'Detail

Acct.
No.

67321

Acct. Curr
Type Bal.

Account Detail
Is Parent Of
AccofJnt Names

Account

Deposit

Account Names

Namel Name2

Smith, John Smith, Mary

Savings Account Record

Account
Detail
Ac No 67321

Account
Names

Twins

peposits
-

Deposit Deposit Deposit
1 2 3

$600 $200 $500

Withdrawal

Figure 5-33. Savings Acccunt Logical Structure

Withdrawals
-.-----.-- - -

Withdrl Withdrl
1 2

---1------ ---

$20 $50

Account Names
Are Children Of Account
Detail

Deposits And
Withdrawals Are
Children Of
Account Names

Chapter 5. CleS/VS Data Ease Design 179

A dependent segment relies on some higher level segment for its full
meaning or identification. Since the number of account name segments
may vary from one savings account to the next, logical data base records
will vary in length according to the number of segments occurring in
the hierarchy of the data structure.

The root segment in Figure 5-33 ccntains the specific account details
for account number 61321. There are multiple account name segments
for perscns using this account: John Smith and Mary Smith.

Also, for this account, there are t~o withdrawal and three deposit
segments,. The data base has four segment types, and this particular
data baSE record consists of eight segments because of the multiple
occurrences of the account name, deposit, and withdrawal segments.

The sf~gments immediately above and below a given segment are called
the "parent" and "child" seqment~ respectively. In Figure 5-33, the
account detail segment fer account 61321 is a parent of the two name
segments~ Each account name segment is a child of the account detail
segment. The deposit and ~ithdrawal segments sutordinate to the account
name segments are their children. All occurrences of a particular
segment type dependent on a particular parent segment are called "twin"
segments.. The account name segments fer John smith and Mary Smith are
twins of each other.

Refer to the ~1§!§~~jERli~ti~~ ~~§ign Qyi~§ for the relevant DL/I
product for further discussion of logical structures.

DATA BASE ACCESS CALLS

A com loon symbelic program linkage and data base description allow
batch ana online applicaticn programs to request DL/I to:

• Betrieve a unique segment (GET UNIQUE)

• Retrieve the next sequential segment (GET NEXT)

• Beplace the contents of an existing segment (REPLACE)

• Delete the data in an Existing segment (DELETE)

• Insert a new segment (INSERT)

Additional data tase access calls are pro~ided to enable all
dependent segments based on a particular parent segment to be retrieved
seguentially. The retrieval access calls may also specify that a record
being retrieved is to be held, because it will suhseguently be updated,
replaced, or deleted.

Application pregrams written in American National Standard (ANS)
COBOL, PI,II, and Assembler Language utilize the CALL statement facility
in these languages te perform the input/output functions listed above.
The external data base descriptions (DEDs) and program specification
block (PSB) descrihe the ~hysical data organization and logical data
structure of the data base to DL/I. Because of this ap~roach to data
referencE:, input/output cFerations and associated system control blocks
are not compiled into the apFlication ~rogram. This avoids program
dependence upon currently availatle access methods and physical storage
organizati~ns. other apFlication data can be added to this data base
without necessitating changes to application programs that use the
data.

180 CleS/VS System/Application Design Guide

DATA BASE ORGANIZATION AND ACCESS ~E~HODS

DL/I supports two basic physical storage organizations as discussed
briefly above. 7he first crganizaticn, Hierarchical Sequential,
provides the base for both tbe Hierarchical Sequential Access Method
(HSAM) and the Hierarchical Inde~ed Sequential Access Method (HISAM).
The second organization, Hierarchical Direct, prcvides the base for
two more accessing techniques, the Hierarchical Direct Access Method
(HDAM) and the Hierarchical Indexed Direct Access ~ethod (HIDA~). HDAM
uses an addressing algorithm for direct access sup~ort of the
hierarchical direct organization. Standard addressing algorithms are
provided by DL/I, or may be supplied by the user installation for each
HDAM data base. HIDAM is an indexed access suppcrt of this hierarchical
direct organization.

~ach DL/I access method and data tase organization will now be
briefly introduced. Refer tc the ~~§!~L!RR1~~!lsD ~~§ign ~ide for
the relevant DL/I product for a aore detailed description of each data
base access method.

The primary differences between hierarchical direct and hierarchical
sequential organizations are the manner in which segments are related,
and the techniques of data storage and access. Segments in the
hierarchical sequential organization that represent one data base record
(that is, a physical hierarchical tree structure) are related by
physical adjacency. This requires that segments which represent one
data base record be contained in a variable number of segment blocks
unique to that data base record.

HSAM is used for sequential storage and access on tape or direct
access storage. The DOS/VS and CS/VS sequential access methods (SAM
and ESAM respectively) provide the data management services for HSAM.

Physical blocks (a variable numter) required to contain a particular
data base record are accessed by physical adjacency (H5AM).

HISAM is used for indexed sequential access to the hierarchical
sequential organization. data base record may be directly accessed
through an index. Segments within a data base record are related by
physical adjacency. All physical blocks used to store the segments of
a single data base are related by direct address pointers. The virtual
storage access method (VSAM) provides data management services for DL/I
ENTRY, DL/I DOS/VS, and IMS/VS DI/I. IM5/VS can optionally use BISAM
and a EDAM-like access method called OSAM for data management services.
(However, DL/I facilities such as variable-length segments, or secondary
indexing (see later in this chapter) are only available to data bases
which utilize VSAM.) Generally, a HISAM data base is comFrised of one
VSAM key-sequenced data set and cne entry-sequenced data set.

Note: DI/I ENTRY only uses one VSAM key-sequenced data set to support
a HISAM data base.

Chapter 5. CICS/VS Data Base Design 181

segments in the hierarchical direct organization that represent one
data baSE record (that is, a physical hierarchical tree structure) are
stored in one or more physical blocks. However, all segments in that
data baSE record, rather than the physical blocks containing the data
base record, are related by direct addresses. Each segment in a data
base record refers to segments of the same type, as well as to adjacent
segment types, through direct addressing. Physical blocks that contain
segments of the data base record are not related by direct addressing.

In the hierarchical direct organization, the sFace requirement for
each segment is increased frc. that required in the hierarchical
sequenticll organization. This sFace is required to accommodate direct
addresses. However, the following advantages are gained:

• More rapid direct access to segments within a data base record.

• The ability to share sFace in a direct access storage block across
multiple data base reccrds. One physical blcck may contain segments
from different data tase reccrds. This may result in a considerable
saving of data base stcrage space.

• The ability to reuse sFace occupied by deleted segments through
the laintenance of free sFace addresses.

!Ul!!1 !1§£Q~gl~~.!!.2!

HDAM is used for direct algorithmic randomized access to records in
the hierarchical direct organization. Direct access is available to
each data base record. VSAM Frovides the data management services for
HDAM. OSAM provides optional data management services for IMS/VS DL/I,
but (as discussed previcusly for HIS AM) facilities such as
variable-length segments or secondary indexing cannot be utilized with
OSAM. 01/1 ENTRY does not support HCAM.

!!!12!~ Re.£_Q~g IQ~u!

HIDAM is used for indexed access to the hierarchical direct
organization. Indexed access is available to each data base record.
VSAM provides the data managellent services for HIDAM for Dt/I DOS/VS
and IMS/VS DL/I. BISAM and eSAM Frovide optional data management
serv ices in HIDAM for IMS/VS DL/I. (See reference to EISAM and OSAM
limi tations above for HISAM and BDAM.) DL/I EN'IEY does not support
HIDAM.

Refer -to the ~~§!nLJ~.Eli.£JU.Qll 12!§isul §.g!g§ for the aFpropriate
DL/I product for further infcrllaticn c~ncerning data base organization
and access methods.

lOGICAL STRUCTURE tESIGN

The preceding discussion has estatlished the concept and organization
of DL/I data bases. As discussed previously, the smallest data element
which can be accessed by an application Frogram is a segment. The
design of segments is a key factcr in the design of DL/I data bases.
Following this segment design, the design of logical data base
structures should be considered.

182 CICS/VS System/Application Design Guide

Logical structure design depends upon the application. However,
some of the factcrs which shculd be considered in the design of logical
structures are:

• The utilization of deFendent segments

A program may wish tc access the information in the root segment
of a data base record. In the savings account example in Figure
5-33, the account details will be contained in the root segment.

Follcwing the accessing of this root segment, the application
requirements may dictate that segments dependent on this root must
te accessed. In the savings account example in Figure 5-33, the
account name segments, then the deposit segments and the withdrawal
segments may be accessed either individually or in their order of
occurrence.

• The sensitivity of programs to segments

An account inquiry pregram, fer example, may wish to access only
the account detail (root segment) and the acceunt name segments.
In this case, the program would te defined as teing sensitive only
to these segments.

Similarly, an account process1ng program may need to access only
the account detail (roet segment) and the depesit and withdrawal
segments, withcut reguiring reference to the account name segments.
This enables deposit and withdrawal transactions to be retrieved,
updated to reflect possitle correction, cr added as new deFosit or
withdrawal transactions are received against an account. In this
case, the account processing program would be defined as being
sensitive only te the account detail root segment, and the
withdrawal and deposit segments, but not sensitive to the account
name segment.

• Application factors

In a savings account example, once an account is opened, information
such as the name segment may not be changed or added to
significantly. In fact, if there is only one name for each account,
it may be logical to Flace the name within the root segment itself.
However, because there may be more than cne ~ame associated with
an account, the Fossible multi FIe cccurrence of names may dictate
that these be separate segments which are deFendent upon the account
detail root segment and furtheI describe that account. The deposit
and withdrawal segments reflect activity of transactions against
the account. Because there may be multiFle deposit and withdrawal
transactions, it is logical to make them separate segments which
are also dependent (legical children) upon the account detail root
segment.

Similarly, in an insurance pelicy information system, a policy data
tase may contain policy details in the root segment, policy
beneficiaries in name segments dependent upon the root segment,
and Folicy claims and renewals transactions dependent upon the name
segments (see Figure 11-19).

In a manufacturing werk crder system, the manufacturing werk order
data base may contain all of the manufacturing work erder
information in a root segment, with multiple status information
recorded at different stages of manufacture in status segments
dependent upon the root segment (see Figure 11-5).

Chapter 5. CICS/VS Data Ease nesigD 183

In a medical patient information system, the patient's na.e, birth
date~ and ctber details vould be contained in the root segment,
with his address in seFarate address line seg_ents dEpendent upon
the root seg.ent. De~endent upon these address segments would then
be visit segments, diagnosis segaents, and treatment segments of
which tbere way be aultiFle cccurrences for a patient (see Figure
11-23) •

~§gg§~! E~!§~~~~s ~§§igD 1!£12~!

In a Folice inforaaticn s}stea, the logi~al structure aay te designed
for a criminal data base by placing the personal characteristics of
the criminal in a root seg.ent tcgether with his true na.e. This is
illustrated in Figure 5-34 for reference during the discussion in the
follcwing paragraphs.

Alias names may be dependent segments of the root segment. The
particular mode of operaticn for various criaes lay be each stored in
a separate 1!.2g'y§ 2RillDgi seg_ent. ~hese G~ll§ .9~!Ey,gi segments lIay
be dependent upon the alias segments (see (A) in Figure 5-34), but more
logically are furtber descriFticns of the cri.inal who is descrited by
the root segment. Thus, tbe alias segments and ~dus 2~iI!Dg! segments
are regarded as twins if both are children of the root segment (see
(B) in Figure 5-34).

Following the J!~JL§ .2.E!.!!!S! segments may be various convictions
recorded against this cri.inal (e). Bach conviction is contained within
a conviction segment, and typically idEntifies the crime to which the
conviction is related, the particular punishment carried out, and the
extent to which that punisbment has teen carried out. Alternatively,
the conviction seg.ents aa} te children of the root segment and twins
of the .I~.g'y§ 2R!I!Dgi and alias segments (see (D) in Figure 5-34).

The decision whether tc define the logical structure in such a manner
that these dependent segaents are twins, or children, depends upon the
information which will be availatle for subsequent accessing of this
data baSE record. Tc access a child segment efficiently requires
identification of the parent.

184 CICS/VS Syste./ApFlication Design Guide

Personal
Name

Characteristics

I

I J

J I

Alias
Conviction

Name 2 2 I--

To access one
conviction here,
only the name
must be identi· t;;\
fied. V

1-

To access one
modus operandi,
the name and
alias name must
be identified, or
all modus operandi
searched.

1

I
I

1

r~---
----l I I Modus I 1
I Operandi I~

1_-.
1
-_'1
I

rl-- --,
- - - --,
I I I
: Conviction I 2 I
I 1 L..::.J _____ J

To access one
conviction here,
the name, alias name,
modus operandi and
conviction must be
identified, or all
convictions searched.

3 -
I

I

Modus
Operandi 2

1 -
I

1

[- -'- --,
J ---1 1

I Conviction G:
I 1 L- ___ J

Summary

To access one
modus operandi
only the name
must be identified.

o To access one
conviction, the

, name and modus
operandi m~
be identified, or
all convictions
searched.

(8) Is most sUitable position for
modus operandi segment 10.

(0) Is most suitable position for
conviction segment 10.

Figure 5-34. P9lice Data EaSE Lcgical Structure

In this exa.~le, if J~~J~ ~R~IA~~i were a child of alias (A), and
convicticns were children cf JRgJ§ 2R~IAn~i (E), to. retrieve information
relating to particular convictions for a cri.inal would require
knowledge possibly of his true naDe, his alias name, and various aggg§
~R~ • .iD.9i (see (E) 'in figure 5-34). Bowever, in this aFplica tion, that
idEntification aay not be availatle to access information relating to
convictions. In this case, it wculd bEtter to define convictions as
children of the roct seg.ent (D).

If the convictions, .~~i§ ~R§'j»~i, and alias segaents are twins,
any segment may be accessed knowing only the trUE name of the criminal.
KnowledgE only of a Farticularalias nalle, or of a particular l2.Qy§
2R§'~~~i for a cri.inal, in some caSES, may requirE the use of
additional DL/I features, such as logical relationships, or secondary
indexing, which are descrited below.

Alternatively, instead cf using sEcondary indexing, a separate data
base may be organized based cn alias names, which Frovides a
cross-reference to the original criminal names, and another data base
lIay be organized based u~cn !2GY§ 2R~I!ngi which again identifies the

Chapter 5. CIeS/1S Data Base Design 185

criminal's true name. Thus, by accessing the separate data bases first,
the criminal may be identifiEd and then further information related to
that criminal may be ottained frcm the criminal data base.

Obviously, the factors which may te considered in the design of
logical structurES are cften very de~endent upon application. Refer
to the ~l~§!!:!!!!L.lJ2.Eli5:gti~1! ~§ign 2.Yi,g§ for the relevant DL/I product
for further discussion af logical structure design.

UPDA!ES, ADDITIOtiS, AND tEIEilONS

In order to update (REFtACE) segments in DL/I data bases, it is
necessary to indicate when the original record is retrieved that there
is a possibility that the record aay bE updated. ihis is indicated by
placing a "hold" cn that segDent with a GET call, such as GET HOLD
UNIQUE, GET HOLD NEXT, or GET HOLD NEXT WITHIN PAR~NT. The segment
presented on a GET HOLD call is then updated by the application program
and written back with a EEFLACE call. Alternatively, if the segment
is not tc be updated, this is indicated by the next GET call, without
an intervening REPLACE or DELETE. In effect, the HOLD used with the
GET call implies that "exclusive centrol" is to te placed on that
segment to prevent the same segment from being concurrently updated by
another task. Only when the REPlACE or DELETE call (or the next GET)
is issued is the exclusive control released.

When DL/l DOS/VS or I!S/VS DL/I is used with CICS/VS, concurrent
updating "ill be prevented at the segment-type level with the
scheduling-by-intent feature. The DL/I task will not be scheduled if
it has conflicting intent with another active DL/I task on the same
segment type. This may have performance implications, depending upon
the frequency cf reference tc the saDe segment type by concurrently
executing tasks. However, it provides the ability to back out p~ograms
independently in the event of an unccntrolled shutdown. VANDL-1 and
DL/I ENTEI, used with CICS/DCS/VS, does not perfcra checks at scheduling
time and does not previde specific backout support following an
unccntrolled shutdown.

To illustrate the significance of segment intent scheduling on data
base design and performance using ut/I DOS/VS or 18S/VS Dt/I, consider
the follewing order entry and inventory control application in the
distribution industry.

Each store carries its cwn inventory and enters orders from a
terminal located in the stcre. These orders update the inventory
maintained in a central data base for all stores. If the inventory
data base is designed with oLly cne segment type for inventory details
across all stores, only one task (that is, store transaction) would be
scheduled to update that segment type at a time. This may have
significant performance implications if several stores were concurrently
entering orders, and may result in single thread access to the data
base.

However, as each store carries its own inventory, a separate
inventory details segment type may bE defined for each store (subject
to the maximum of 255 differEnt segment types, imposed by DL/I). In
this way, each store transaction would bE scheduled on its own inventory
details segment type, with nc conflict with other stores inventory
segment types. This will permit multithread access to each stores
inventory details, with conseguent iuprovement in performance without
any loss in data integrity. However, it will be dcne at the expense
of additional HDA! data base pointers, control block storage, and
application program logic.

186 CICS/VS System/Application Design Guide

In the case of an addition (INSEE~), the seg.eDt to be added is
ccnstructed according tc the aF~licaticn require.ents, and then added
to the appropriate part of the data base by identifying the keys of
various higher level segments (using a GET HOLD UNIQUE call, for
example) and hence the lccation within the data base.

For a deletion (DELETE), the segment to be deleted may be identified
by providing the keys of various higher level seg.ents, and hence the
location of the segment within the data base by using a GET HOLD UNIQUE
call. Depending upon the hierarchical access method used, the segment
may be either physically deleted immediately (HIDA8 or BDAft), or
logically deleted, and net physically deleted until the next data base
reorgani2ation (BISAft).

LOGICAL BELATIONSHIFS

IMS/VS and DL/I DOS/VS previde enhanced data base support through
the use of logical relationships. Consider the police information
example discussed in Figure 5-34 above. Two data bases will nov be
considered, a criminal data tase and a crimes data base. If each data
base were completely separate, criminal identification vould be provided
within the crimes data base, and crimes identification vould be provided
within the criminal data base. ihile this eay be quite satisfactory,
the use of logical relationships enables redundancy of information to
be avoided. For example, the crimes data base, in identifying various
criminals associated with a ~articular crime, is duplicating information
which is already on the criminal data base. Similarly, the criminal
data base, in identifying information relating tc particular crimes,
is duplicating information already in the cri.es data base.

As described in "DL/I Access from CICS/YS," each DL/I product permits
multithread access to DL/I data bases by several concurrently executing
CICS/VS tasks. DL/I DOS/VS and I!S/YS DL/I use seg_ent intent
scheduling to ensure data integrity; DIll ENTEY issues I/C requests to
CICS/VS file control. File control maintains data integrity through
exclusive control and prctected resources. In addition, DL/I data
bases specified for DL/I ENTEY as data sets in the file control table
may also specify autcmatic lcgging fer implementation of backout
support. (See Chapter 8.)

Modus
Operandi

Name Personal --I ~h.aracter­
IStlCS
---"--- .-

Alias
Name

Criminal Data Base

Conviction

-...,
I Conviction I
I
L __ . ..J

Crime

--,
: Criminal I

I L ___ ._....l

Crimes Data Base

Suspect

Figure 5-35. Police Data Ease Logical BelatioDships

Chapter 5. CICS/YS Data Base Design 187

To avoid this duplication, logical relationshiFs utilize pointers
in the criminal data base conviction segments to identify the relevan
crimes infor.atien in the crimes data base (see Figure 5-35).
Similarl}', pointers in the crimes data base enable relevant criminal
information to be identified in the criminal data base. crimes
information and criminal infermation need appear cnly once, each in
its ewn data base.

I
Conviction]

Figure 5-36.

Modus
Operandi

Crime -]

I
Criminal] I Sus pect

I ",
Modus Alias

Conviction Operandi Name

Logical Data Base Viewed from Crimes Data Ease

Criminal

I
I I

Alias
Conviction Name

I
Crime

Conviction

Figure 5-37. Logical Data Base Viewed frcm criminal Data Base

188 CICS/VS systeR/ApFlication Design Guide

Consequently, that information is accessible to the other data base
through the use cf logical relatienships.

Through the concept of logical relationships, expanded data
structures can be created. These eXFanded data structures are then
available to applicatien Frograme. See Figures 5-36 and 5-37.

Once a logical data base is defined through one or more physical
data bases, the logical data base can be accessed ty an aFFlication
Frogram through a PCE.

Logical relationships and logical data bases are available with
IMS/VS and DL/I tOS/VS., and limited logical relaticnships are available
with DL/1 ENTRl.

Secondary indexing is a feature offered by 1"5/V5 and Dt/1 DOS/VS,
and to a limited extent ty 01/1 INTEl, for data bases which utilize
VSAM. Effectively, it enables separate indexes to be developed based
upon the data as key or data fields cf particular segments. For
example, in the police information system described previously, and
shown in Figures 5-34 and 5-35, it may be necessarl to access
information in the criminal data tase given the !~9Y§ 2£§IAn2i, or
given the personal characteristics of a criminal. This can be achieved
by establishing a data base crganized by !2SY§ 9I§!lDgi and another
data base organi2ed by personal characteristics.

Secondary indexing, hcwever, enables separate indexes to be developed
by DL/I for segments at any level in a logical structure of a data
base. These indexes may be used tc directly retrieve segments at that
level. Eapid access to specific infcrmation within a data base can be
achieved, as well as the ability to consider a data base as being
organized in different seguerces. In addition, secondary indexing
allows a data base structure to be inverted. Consider the criminal
data base in Figure 5-35, with a seccndary index tased on a field within
the !22YS QE§.s»9i segment. The structure may thEn be referenced in
an inverted form, as shewn in Figure 5-38.

MODUS
OPERANDI

I
CRIMINAL

Figure 5-38. Inverted Folice Data Base Logical Structure

If secondary indexing is rct to te used, an alternative approach
may be adopted. By defining additional small data bases containing
the relevant segment key infcrmaticn, and identifying thE data base
record key information as descrited above, a similar effect may be
achieved, but with pcssibly more physical disk accesses and more user
programming.

ChaptEr 5. CICS/VS Data Base Design 189

DATA BASE UTILITIES

A numter of data base utilities are provided for DL/I. These
facilitate the s~ecification of data bases, and the recovery of the
data bases in the event of failuIE.

g~QgIAD ~§£i!i~~!i~~ ~12~! ~~§) ~!~!~!i2n

The program specification block (ESE) macro instructions generate
the contlcol blocks that define tc Dtll the physical or logical data
bases used, the logical data structures within each physical or logical
data basE, and the operaticns allowed on each data base by a particular
application. The sensitivity of an application prcgram tc particular
information cr segments within the data base is also defined in the
PSB generation assembly.

~~!g ~.9.§~~ De§s,,:i12!i2'!! U2~IH §.§ll!.!!!i.2n

The data base description (DBI) macro instructions generate control
blocks that define to DLII fer each data base, the data base name, its
data structure, its data format, any logical relationships, any
secondary indexes, and the DI/I access method used.

Before the program and data baSE descriptions created by the PSB
and DBD generaticn utilities can be used with DL/I DOS/VS or IftS/VS
DL/I, they must te merged and expanded to an internal format.
Instruction execution and direct access I/C time, required to prepare
the program fOI execution, are minimized by prebuilding the required
application control blocks by means cf the application control block
creation and maintenance utility. Then, when an application program
is to be run, its control blccks are read in directly (if they are not
already in dynamic storage), and control is passed to the application
program. with DLII DOS/VS, the control blocks are brought into the
eICS/DOS/VS address space at initialization of CICS/VS.

~gta ~~§s ~!Q~g!ni~g!i2B Y~lS!g Jn~ i!12!g

When the data in the data base is updated, the physical structure
of the data may change, increasing access time. Also, the space
occupied by obsolete data is not in all cases reclaimed and reused.
The data base reorganizaticn unloa~ and reload utilities may be used
to unload, reorganize, then reload HISAM, HIDAM, and HDAft data bases
to eliminate these problems. Additional informaticn on DL/I data base
reorganiziaticn and recovery Day be fcund in the .Yi!lilii§ ~fere!l.£.§
~§nY~l for the relevant DLII product.

DATA BASE RECOVERY

The data base recovery system provided by DL/l DOS/VS and IftS/VS
comprises four utility programs and is designed to provide a rapid,
accurate, and easy-to-eaploy means of restoring the contents of the
physical data baEe after destruction through an I/O error or abnormal
task termination. The utilities are:

• Data base data set image copy

• Data base change accumUlation

190 eICS/VS system/Application Design Guide

• Data base data set recovery

• Data base backout

These utilities are introduced here, and discussed in more detail in
Chapter S.

DL/I ENTBY does not provide any support for data tase recovery.

All updates or additions to a data tase are autcmatically logged on
a DL/I log tape in a batch envircnment, or optionally on the CICS/VS
system log when DL/I is used on online with CICS/VS. These changes
may be utilized, together with the data tase reccvery utilities
described below, to restcre the data base to its data state at a
particular point in time, in the event of the destruction of the data
base through I/O errors, program errors, or system failure.

Data ~.Sl§~ Ba.£!,YJ2

The data base data set image ccpy utility dumps individual data sets
on tape or disk in a format suitable for use by the data base data set
recovery utility. It is run periodically for data base backup.

R~ri~i.£ ~.Sl!§ ~~~~ £h~Dgj J£~Y!,Yl~!i~n

The data base change accululaticn utility sorts records from the
data base log tape and conti res all records that update the same
segment. The result is a se9uential data set that contains a condensed
description of all changes tc the data base, and results in faster data
base recovery.

The objective of the data base data set recovery utility is to
recover from I/O error destructicn of the data base. This utility
reconstructs individual data sets cf the data base by first obtaining
from the data base backup rUD an image of each data set at a point in
time when it was known to te valid, and then merging the accumulated
application data from the most recent data base change accumulation
run. Finally, any DL/I systeD lcg tapes which were not included in
the accumulated change input are applied until the data set contains
the desired data. The net effect is tc update the backup data base to
its status at the time of failure caused by an I/O error.

Th€ data base backout utility is designed to recover from data base
"pollution" caused by abnormal prcgram terminaticn in a batch
environment. It reads the DI/I system log tape tackward and removes
(backs out) changes made to the data base from the pcint at which the
DL/I system terminated, to the pcint at which the program was scheduled.
The resulting data base is ncw restcred to its data state at the time
the application program was originally scheduled, exceFt for changes
made by ether ncn tacked-out Frograms that terminated afterward. This
utility also creates a log tape that reflects backcut changes.

Chapter 5. CICS/VS Data Base Design 191

]~ta ~~§~~ Ba~~~y! (2Rli~~)

In thE: online environment with CICS/VS, DL/I log activity is
optionally directed to the CICS/VS system log. Curing emergency restart
following an unccntrolled shutdown, the CICS/VS recovery utility program
(DFBBUP) identifies in-flight tasks and collects in-flight tasks to
the restart data set. (ihis identificat~on may include in-fli9ht DL/I
activity.) CICS/VS backs cut in-flight DL/I activity directly during
emergency restart. The batch DIll backout utility need not te used.
See "Online DL/I Data Base BEcovery" in Chapter e for additional
information.

DL/I DATA BASE DFSIGN

The informaticn presented above has been given to enable the CICS/VS
system designer to develcp a conceptual understanding of the
capabilities of the varicus Il/I Froducts. Guidelines were given for
the design of segments and lcgical structures, which make up part of
the design of a data base. The follcwing discussion identifies some
additional factors which should be considered in oata base design.

• Fhysical disk storage available

Boot-segment-only lcgical structures may enable an access method
to be chosen which utilizes little or no prefix information, but
contains only the data base record. Bowever, a more complex logical
structure, such as one invo11ing lcgical relationships, contains
considerable additional information in the prefix to define the
pointers tc varicus related segments.

A further consideration is the reduction of redundant storage of
information through the use of integrated data bases and lcgical
relaticnships.

• Number of disk acceSSES

The number of acceSSES which will be necessary to retrie1e
particular inforaaticn is a factor to be considered in the design
of data bases and of logical structures. These are influenced by
factors which are the responsibility of the data base administrator,
such as logical record lEngtls, block lengths~ access method chosen,
logical relaticnshiFs, and seccndary indexing.

• DL/I product to be used

Another factor in data base design is the selection of the
appropriate DL/I product. Fcr example, in the case of DOS/VS
installations, DL/I £05/VS would normally be utilized with CICS/VS
for installations ha1ing at least 160K of real storage 9r greater.
For satisfactory perfcrmance, 192K of real storage, or greater, is
recommended. support available with the particular product chosen
may influence the data base design decision.

For further informaticn on data base design, refer to the
~~§!~.L!~!li~~!i~~ ~§§iSD §yid§ for the relevant DL/I product.

Baving broadly defined the data sets and programs required for the
various online applications, a dEcision must be made as to the
appropriate data base SUPFcrt for these applications. Various
characteristics of the application and of the data sets required, as
discussed at the beginning of this chapter, are used to make this

192 CICS/VS system/Application Design Guide

decision. The support fer CICS/VS applications should be selected from
the following alternatives:

• CICS/VS file control support

• Data Language/I (DL/I) support

Several factors should be considered when making this decision. The
most important of these facters are detailed in the follewing
paragraphs.

• EXISiING RECORD FOReATS

The particular record format for each data set should be considered.
If the recerds are best suited te fixed fermat, any of the data
base support products may be selected, depending on other criteria.

However, if the data set can takE advantage cf variatle record
formats, the record contents should be examined in aore detail.
If the record is of variable-length because it contains a variable
number of fixed-length secticns cf information (segments or
logically related fields), then cne of the DI/I products should be
serieusly censidered.

Each of the DL/I products suppcrts the use of fixed-length segments.
An effectively infinite numbEr of segments can be present for each
record, so resulting in a variable-length record.

On the other hand, if there aay be up to a certain maximum nueber
of segments within each record, eleS/VS file centrol, using the
segmented record feature, ma] be censidered.

If the variable record is made up of variable-length fields such
as customer name and address, they may be sUPFcrted by Dl/I ENTRY
er DL/I DOS/VS only if these variable-length fields are contained
in fixed-length segments.

If the record is variatle because of the presence or absence of
different secticns cr segments of the record, the recerd aay lend
itself either to CICS/VS filE control segmented record support, or
to DL/I support depending upcn whether the segments are fixed-length
or variable-length. If variatle-lEDgth segments .!§i be used,
select CICS/VS file control, or if CICS/OS/VS is used, then 18S/VS
DL/I may te selected.

• DATA BASE PERPOR!ANCE

Prime consideration in oDline application design should be given
to the access time fer retrieval of infor.atien from a data base.
Depending upcn the performance reguirements of the application,
this may dictate the selection of data base support. Por example,
if a data set aay need te be accEssed through cther data sets, it
may lend itSElf to the use of the CICS/VS file control indirect
accessing feature. However, if several data SEts have to be
indirectly accessed to ottain the required information, these
additional file accesses could have an adverse effect on online
perfcrmance.

The particular access method selected with CleS/VS file control
for the application may affect the performance. Por example, the
direct access method (DAe) generally provides excellent online
performance. However, DAM suppert reguires that recerds be
identified by either their physical location on disk er their

Chapter 5. CICS/VS Data Base Design 193

relative location in a data set. The application, on the other
hand, may reguire that a reccrd te accessed ty a key. In this
case, the indexed sequential clccess method (ISAM) may be suitable,
but its use will invelve at least two file accesses to retrieve
each record. FurtherDere, if many additions are made to an ISAM
data set, the access time for a specific reccrd may increase.

To o'vercome some of the above limitations, the virtual storage
access method (VSAM) may be test suited. This enables records to
be retrieved directly, based on relative location in the data set,
or by key. It also enables rapid retrieval of information for
applications with a high percentage of additions to the data set.
However, VSAM should net te us~d on CPUs with less than 144K of
real storage, if satisfactory performance is to be achieved.

Another factor which should te ccnsidered is the serial scheduling
of concurrently executing tasks, several of which may wish to update
the same record in a data set at the same tiDe (see "Exclusive
Control During Update" in this chapter). CICS/VS will permit only
one task te update a reccrd at a time, and other tasks wishing to
update that same record must wait for completicn of the first
update. (HoweVer, other reccrds in the data set may be concurrently
updated, if required.) 1his serialization of updates may affect
perfcrmance, if applicaticn factors may cause concurrent updating
of individual data set records to be attempted.

DL/I provides a number of access methods which may be used for
satiEfactory perfermance depending upon the reguirements of the
application. These access methods are the: Hierarchical Seguential
Access Method (HSAM), Hierarchical Index Sequential Access Method
(HISAM), Hierarchical Direct Access Method (HDAM), and Hierarchical
Index Direct Access Method (BIrAM). Refer to the ~~§!~LA£Rlication
~§§!gn ~Yide for the relevant tL/I product for further informaticn
about DL/I access methcd selecticn.

The (ICS/VS-DL/I interfaces all scheduled DL/I CALLs fromCICS/VS
application programs on a multithread tasis. Several CICS/VS
application programs (tasks) may cencurrently access the same, or
different, data bases up to a maximum of 255 cencurrent tasks for
DL/I DOS/VS, 32 for DL/I ENTEY, er 15 for IMS/VS DL/I. CICS/VS
tasks may concurrently access different segment types in a data
base. However, if two or more tasks attempt to concurrently access
the Siame segment type, DL/I DOS/VS and IMS/VS tt/I determine the
type of accessing reguested. If both tasks enly wish to read the
segment type, they are permitted concurrent access. However, if
the tasks wish to update the segment type concurrently, for example,
they are not scheduled ccncurrently by DL/I. 1he second task must
wait until the first task has terminated its use of DL/I. This is
called "Scheduling by Intent." It may affect performance if several
tasks attempt ccncurrent update (fer examFle) ef specific segment
types in the data base. (See "Updates, Additiens, and Deletions"
with DL/I in this chapter for an example of data base design to
reduce the effect of segment intent scheduling in perfbrmance.)

ihe CICS/DOS/VS-tt/I ENTFY intErface permits multithread access to
DL/I data tases, up te 32 taskE for Dt/I ENTEY. In order to prevent
double updating of a seguent, DL/I ENTRY uses CICS/VS facilities
to enqueue (tetween the GET HOlD and the REPLACE calls) on the
logical record that contains the segment to te replaced.

194 CICS/VS System/Application Design Guide

• EATCE PROGRAM ACCESS

If the online application data sets require further processing in
a batch environment, this consideration should also be taken into
account in selection of the data base support.

Factors which shculd be ccnsidered are that CICS/VS file centrol
supports variable-length reccrds within a fixed-length block for
DOS/VS ISAM data sets, standard OS/VS variable-length BISAM data
sets, and blecked records for DA~ data sets. COS/VS IS1M does not
support these variable-length records for ISAe in a batch partition.
They can be accessed in a batch environment ty defining thea to
DOS/VS 1SAM as fixed-length unblocked records. However, the batch
processing program must itself deblock the variable-length records
from the fixed-length blcck returned to it by DOS/VS ISAM.

Neither DOS/VS DAM, CS/VS1, cr OS/VS2 EDAM supports tlocked records.
If blocked DAM data sets are tc te accessed in a batch environment
seguentially, they may be defined as DOS/VS SAM data sets or as/vs
ESAM or QSAM data sets. In this instance, the sequential access
methed will handle detlocking of records.

Eowever, if the batch precessing programs need to access these
blocked records directly instead of seguentially, the responsibility
rests with the batch program to define the data set as an unblocked
DAM data set and previde its ewn deblocking of records within that
physical block.

The use online of the CICS/VS file control indirect access and
segmented record features reguires that special coding to support
these features in batch programs be developed by the installation.

The DL/1 products support the same acceSs methcds and record formats
toth online and effline. No additional coding is required to enable
batch DL/I programs to access online data bases.

CICS/VS and concurrently executing DL/I batch Frograas in other
partitions should net attempt to access the saDe data bases.

• EATCE DATA BASE CREATICN

C1CS/VS file control provides no facility for creation of the online
data bases, apart frem that Frevided by standard SAM, VSAM, DAe,
and ISAM support. The insertion of indirect access pointers in
data sets, and the preparatien and organization of segmented
records, is the responsitility of the user. Generally, special
data base creation prcgram~ must be written ty the user.

Similarly, no facilities are provided for maintenance of the online
file control data bases in a batch environmert. To provide this,
the user's data'base creation Fregram should also be designed to
allow a maintenance capatility.

DL/I allows creation and maintenance of data tases through the use
of various utilities. Furthermore, because the program is
independent of the physical data base organization and only refers
to its legical organization, considerable flexibility is offered
the installation in data base reorganization and aaintenance.

Chapter 5. CICS/VS Data Base Design 195

• INSTALLATION DATA BASE SOPPOET DIRECTICN

In evaluating each of the selection criteria described atove, the
systEm designer Dust keep in mind the future directicn for his
installation in the use cf particular data base support.

CICS/VS file control may be utilized if desired, because CICS/VS
has teen identified ty lEe as one of its standard data base/data
communications Frogram pIoducts. However, the CICS/VS installation
may wish to take full advantage of the extensive data base support
provided by DL/I, by using the aFpropriate CICS/VS-Dl/I Interface
feature.

196 CICS/VS system/ApFlication Design Guide

CHAPTER 6. CICS/VS ADVANCED FEATURES

This chapter describes task control, interval control, and some of
the facilities provided to CICS/VS application programs.

A number of facilities are provided to CICS/VS application programs
for:

• Immediate creation of tasks

• Task priority change

• Enqueue/dequeue resource allocation

• Terminal read timout

• Isolated task paging

• Automatic task initiation at a future time

• Wait for completion of a time event

• Cancel a future time event

These facilities are provided by the task control program and the
interval control program of CICS/vS. They are described in more detail
in the CICS/VS Application Programmer's Reference Manual, SH20-9003.

TASK CONTROL

Task control allows CICS/VS application programs to attach new tasks
for execution, if required. This may be done either by the automatic
task initiation feature of transient data intrapartition queues, by
time-ordered initiation (see "Interval Control," below), or by explicit
use of the task control ATTACH macro instruction issued by an
application program. The ATTACH macro instruction identifies the
transaction code corresponding to the program to be executed. This
program is initiated in exactly the same way as if a terminal
transaction with that same transaction code had been received. The
task attached competes for execution with other concurrently executing
tasks based upon its task priority, which is determined from the
transaction priority.

priority Change

During the execution of a task, the task priority may be altered by
use of the task control CHAP (change priority) macro instruction. The
priority may be set to any priority value between 0 and 255. A normally
low priority executing task may temporarily change itself to high
priority (possibly during a section of logic which may involve updating
of data sets) and then later change itself back to its previous low
priority, if necessary, through use of the task control CHAP macro
instruction. The use of the change priority facility enables data set
updating (for example) to be com~leted in the shortest possible time.
Alternatively, a task may execute initially in high priority, and then
may be able to complete its execution in low priority.

Chapter 6. CICS/VS Advanced Features 191

The use of the task control CHAP macro instruction, without
specifying a priority value, enables control to be released by a task
to allow any high priority task which is ready for execution to gain
control of the cpu. It is equivalent to issuing a task control WAIT
macro instruction, and causes a task switch. This should be utilized
if a tas]{ involves a considerable amount of CPU processing, to ensure
that it does not monopolize the cpu and prevent other tasks from gaining
control of the cpu.

The task control WAIT macro instruction functions in a similar
fashion 1:0 the DOS/VS or OS/VS WAIT macro instruction, enabling a task
to wait ()n completion of a single event or one event in a list of
events. However, the WAIT may first result in task switching to another
CICS/VS 1:ask which is able to process. Only if no CICS/VS task is able
to process is control passed to another DOS/VS or OS/VS
partition/region.

Terminal Read Timeout

This feature allows the user to specify a timeout limit for a
conversat:ional transaction when the transaction is waiting for a
terminal input message. This keeps a single transaction from occupying
system rE!SOUrCes for long periods of time while waiting for a reply
from the terminal.

Isolated Task Paging

This option allows the user to participate (with the operating
systems page manager) in selecting pages to be made available for
pageout. When the TCA storage of a private or long running task is
acquired by task control, a number of additional pages may be acquired
as specified by the ANTICPG operand in the task's PCT entry. Task
control makes these pages available for pageout when the task waits
for a response from a terminal, and causes them to be asynchronously
paged in when the task is to be given control after the response has
been received. This allows pages occupied by data areas belonging to
conversational tasks to be paged out faster than the normal paging
process.

Enqueue/D~eu~

Task control provides ENQ and DEQ macro instructions for other
CICS/VS modules and application programs to enqueue and dequeue on
various resources.

An enqueue and dequeue facility is often necessary in a multitasking
environment, to ensure that only one task is able to utilize a
particul a:r resource at a time. In the case of the potential concurrent
updating of records in a file control data set, file control utilizes
the task control ENQ and OEQ macro instructions to ensure that the
first task that retrieves a particular record for update is given the
exclusive use of that physical record. A second or subsequent task
which also wishes to update that same physical record while the first
task is s~till in the process of updating it, is prevented from carrying
out its update. When the first task has completed its update, and is
dequeued :from exclusive control of that record, the next task is given
exclusive control of the record through the ENQ macro instruction. It
carries out its update until it has completed, and then is dequeued
from that record.

198 CICS/vS system/Application Design Guide

INTERVAL CONTROL

Future Task Initiation

Tasks can be initiated at a future time, based on either an elapsed
period of time or a specific time of day. These future tasks can be
initiated either with no data transfer through the use of the interval
control INITIATE macro instruction, or with data transfer through the
use of the interval control PUT macro instruction.

The INITIATE macro instruction enables a task to be attached at a
future time. A unique time request identification can be allocated to
that INITIATE macro instruction, to later identify that request if it
is necessary to cancel the request before the task is initiated.

The use of the interval control PUT macro instruction also allows
a task to be initiated at a future time, based on elapsed time or time
of day, and specify data to be transferred to that task. Temporary
storage is used to record the data to be passed to the future task.
This time request is given a unique identification, and data which is
to be transferred to the future task is written by interval control to
temporary storage for each interval control PUT macro instruction which
is executed.

Chapter 6. CICS/VS Advanced Features 198.1

When the future task is initiated. its data may be retrieved from
temporary storage by the aFplicaticn program issuing an interval control
GET macro instruction. Subsequent GET macro instructions will retrieve
each reccrd which was initially FOT to temporary storage for the future
task, until all expired records have been retrieved.

This facility is useful when designing online aFplications, to ensure
that particular application events which must cccur at a specific time
of day, or after a specific elapsed time following scme other
application action, can be initiated automatically. However, procedures
must be developed during online systEm design to cancel these future
application events, if necessary for the application. Generally,
canceling of future events wculd be placed under centrol cf the master
terminal operator, through user-written programs which are given the
same security code as that allocated to the master terminal operator.

Application prograas Day need to wait on completion of a specific
period of time or until a specific time of day occurs. This can be
achieved by the use of the interval control WAIT macro instruction,
specifying the request identification of the original interval control
macro instruction which specified the particular time requ~st.

The use of an interval control WAIT macro instruction will utilize
CICS/VS resources (such as dynamic storage for residence of the
particular program and associated arEas), until the WAIT is satisfied.
Accordingly, the IAIT macre instruction should not be used unless the
time duration is only a matter of seconds. If it is necessary for a
longer duration wait to te in effect, this should te achieved by
initiating a future task at some short interval of time before the time
event to be waited on expires. This future task may issue the interval
control WAIT macro instructicn tc wait for completion of the specified
time event, and so ensure that CICS/VS dynamic storage is tied up for
the shortest possible time. To minimize the effect of utilizing these
resources, that future task should occupy as little storage as possible.

Application programs may also request the time cf day through the
use of a CICS/VS interval control GETI!E macro instruction.

As indicated Freviously, it may be necessary for future time events
to be canceled. This is best achieved by user-written aFFlication
programs which issue the irterval control CANCEL macro instruction,
specifying the time event request identification fer that event to be
canceled. Ideally, these canceled transactions should te placed under
control of the master terminal o~erator, by allocating a security code
to thetransacticn code so tbat it can be utilized only by the master
terminal operator.

Chapter 6. CICS/VS Advanced Features 199

This chapter does not provide specific CICS/iS ferformance
information, tut instead discusses the various factors which should
be considered to ensure adequatE online performance fer applications
executed under centrol ef CICS/VS. It descrites various facilities
provided by CICS/VS for the evaluation and im~rcvement of online
performance and details hew these facilities can be used to vary
the working set of CICS/iS, and hence its demands for real (main)
storage. This chapter, particularly "Nucleus Load Table," is
recommended reading in its entirety for all CICS/VS users.

APPLICATION DESIGN

Good application design will ensure that the amount of information
to be transmitted between terminal operators and CICS/VS is ke~t to
the minimum required by the application. In addition, good design
ensures that only that informaticn reguired for the application is
retrieved from data sets, and possibly updated. The objective of
Chapter 11, "Ap~lication Design," is to assist the CICS/VS system
designer to develop applicaticn specifications which will result in
satisfactory online perfcrmance.

f!ESSAGE tESIGN

The amount of informaticn to be transmitted by the terminal operator
to the CPU and the amount ef infcrmation transmitted back from the CPU
should be kept to a minimum. Most efficient utili2ation of dynamic
storage fer cenversational tasks Day be achieved ty limiting, where
possible, the use of the CICS/iS terminal control BEAD or GET macro
instructions, or the Bf!S IN macre instruction, if it takes several
seconds for a terminal operator to enter the relevant data. Instead,
use should be made of temporary tran£action codes (see Chapter 3), or
entry of transaction codes by the terminal operator. This will permit
the dynamic storage occupied by the ~rograa waiting for terminal input
to be utilized fer ether pur£cses, if the transaction load requires
it. When the terminal input is received, the pregram required to
process it is then initiated as for any other CICS/iS task.

Use the versatility offered by the various programmable controllers
to perform data editing and message formatting prier to transmission
to CICS/VS.

PROGBAf! DESIGN

CICS/VS application programs may te modular, and may contain only
that code necessary to precess a particular transaction. Code not
reguired in every case fer the precessing of a transaction, such as
exce~tion routines or error routines, may be incerporated in separate
modules.

Chapter 7. CICS/VS Performance Considerations 201

However, the a'Dount ef ~rcgra& modularity should not be extended so
far that it requires too many apflication programs to be loaded to
process the information in a particular transaction. The need to
transfer control (XeTL) or link (LINK) to many application programs in
processing each transaction ~ill add extra processing overhead to the
potential response time, because of the need to search larger tables,
dynamically allocate more register save areas for LINK macro
instructions, or dynamically load application prcgrams frcm the CIeS/VS
program library if they are net rresently resident. It Day also
increase virtual storage paging activity (see "Virtual Storage
considerations" later in this chapter) •

DATA BAS£ DESIGN

One of the mcst important factors in the design of online application
programs is the data base design. The factors identified in Chapter
5 should be considered when determining the apprcpriate data base
support. The particular supfcrt selected is a function of the
application requirements, ameunt of logically related information,
degree of data independence and reduction in data redundancy, the number
of file accesses necessary to retrieve and possitly update the required
information, and the amount cf main storage in the system to support
the CICS/VS applications.

The mere file accesses that are necessary to retrieve information
the 10ng4:r is the potential response time. The number of file accesses
necessary in following a logical chain of information across data sets
using thE~ indirect access feature ef CICS/VS file control may be quite
extensivE: in many applications. The utilization of a segmented data
base support, such as that provided by the CICS/VS file centrol
segmented record feature, and by the DL/I products, may be instrumental
in reducing the amcunt of file accessing necessary. However, the use
of complE;x logical relationships with DL/I may involve additional file
accesseso

DYNAMIC STORAGE

One of the most significant resources in ensuring adequate online
performance and respense time is the availability of dynamic storage
for program execution.

A formDula is provided in the ~!~L!~ ~~D~~Al lDfo~mati~D ~!nY!l
(~~) to enable dynamic sterage to be estimated. The amount of dynamic
storage required is a functicn of:

• The maximum number of tasks that are active at any instant in time

• The amount of information to be transmitte~ tetween the CPU and
the terminals

• The storage required by application programs needed to process the
transaction information

• The additional storage required foz file input/output areas, file
work areas, temporary stcrage requirements, and working storage
areas

The amount of dynamic storage allocated should te consistent with
the degree of multitasking tc be supported (see "Multitasking" in this
chapter) ~ It shculd alsc be large enough to prevent any eICS/VS short
on storage (SOS) situations from occurring. Such a situation occurs
when the storage cushion has been released to satisfy storage requests,
and subsequent storage requests EIcEed the remaining storage in the

202 CICS/VS System/Application DEsign Guide

cushion. In this instance CICS/VS will temporarily stop inviting
terminals to send input messages until sufficient storage has been
released by active tasks to reestablish the storage cushion. Terminals
will then be invited to send input cnce more. The effect of the SOS
condition then is to temporarily degrade the acceptance of input until
the condition disappears. If insufficient dynamic storage is allocated,
and SOS occurs, performance may degrade.

It was suggested with previous versions of CICS/VS that SOS be
permitted to occur occasionally, by allocating only sufficient dynamic
storage to satisfy average transacticn loads. At ~eak transaction
loads, SOS could be useful tc control the arrival of transactions for
processing by the cpu. This technique is not recommended for use with
CICS/VS, since an SOS condition can result in virtual stqrage
performance degradation. It can be avoided by allccating a sufficiently
large virtual stcrage partition/regicn to result in a large dynamic
storage area, or by reducing the maximum tasks value used by CICS/VS
(see "Multitasking" later in this chapter). The CICS/VS statistics
indicate when SOS occurs.

The dynamic storage area should also be large enough to avoid
excessive applicaticn prcgrau loadingfroa the CICS/VS program library,
but not so large as to result in the generation cf a largE number of
page faults in a virtual storage environment The amount of dynamic
storage allocated, and hence the virtual partition size, is chosen
based upcn:

• The storage required, using the formula from the CICS/VS §IM

• The amount of multitasking tc be used

• The amount of contention for real storage by CICS/VS and other
partitions

The optimum CICS/VS virtual partition size is dependent upon the
paging characteristics and storage reference patterns of CICS/VS and
its application programs, and also the type cf ccncurrently executing
batch applicatien prcgrams. While the CICS/VS virtual partition and
dynamic storage size can be estimated as descr,ibeo above, the contention
between CICS/VS and batch prcgrals fer real resources (such as main
storage, CPU computing capability, channels, and oisk file arms) must
be determined. In many cases, benchmarking the particula'r CICS/VS
online application with specific batch progralls &ay be appropriate.

Previous versions of CICS recommended that transaction processing
storage te requested in small amcunts, be acquired only when needed,
and be released as soon as pessible. with CICS/VS, several separate
requests for storage should be consolidated, so that a larger area is
acquired to satisfy the individual requirements frcm that area. This
has the advantage of localizing storage references, and so reduce the
possibility of page faults.

Alternatively, storage should te preallocated in the TWA when the
TCA for each task is created by CICS/VS. The TWA for each transaction
code may be specified by the user when the PCT "is generated.

MUlTITASKING

The ability of CICS/VS to per_it up to 999 tasks to be processed
concurrently can enable efficient resource utilization to be achieved.
As soon as a transaction reaches the CPU froll a terminal, CICS/VS
endeavers to create a task tc CODmence processing that transaction as
soon as possible. When the task has to wait on the completion of an
event, such as an I/O access, ancther task which is able to continue

Chapter 7. CICS/VS Performance Considerations 203

processing is given control of the system. Although no Frov1s1on is
made by CICS/VS to enable a task tc continue processing while an I/O
operation is in process for that same task (except for VTAM terminal
I/O operations sFecified for immediate execution and asynchronous
journaling activity - see "Jcurnaling" in Chapter 8), the multitasking
capability enables other tasks to execute while that task is waiting
on the ccmpletion of an event.

Multitasking permits many transactions to be processed concurrently
and efficiently, with the result that a much s.aller range of response
times is achieved than if cne transaction were processed at" a time,
that is, in single-thread precessing_ with single-thread processing,
if three transactions reached the CPO at the sa~e time and each required
one second for processing, the transactions would be processed one at
a time. Thus the first transactien would have a response time of one
second, the second transacticn wculd have a response time of two
seconds, and the third transaction would have a response time of three
seconds. If, however, 50 transactions reached the CPU at the same
time, with this example the spread cf response times would range between
one second and 50 seconds.

Even though the time for Frocessing of each transaction may be
slightly increased over that achieved with single-thread processing,
the net effect is a reduction in the range of response time. This is
very significant to the overall ~erformance of a heavily loaded system.

The degree of multitasking (the "maximum tasks" value) to be carried
out by CICS/VS can be specified by the user, either at CICS/VS
initialization time, or dynamically during online execution by the
master terminal cperator. (See the Cl~~L!~ Syst§J! !gl!ini§:!:~si2~!§
Guid§, SH20-9006.) While a large maximum tasks (MAXTASKS) value can
rednce the range ef respcnse times, an unnecessarily large value can
increase the number of virtual storage pages utilized by CICS/VS. This
can affect the a II-aunt of pag ing acti vi ty carried out by the CPO, and
is discussed further in "CleS/VS iorking Set" later in this chapter.

PRlOElTY PROCESSING

A further factor which affects the processing time and response time
of individual transacticns is the degree to which the priority
processing facilities of CleS/VS are utilized. In an environment in
which the transaction load is such that there may be several
transactions concurrently in process, certain transactions or tasks
may be given a higher priority for execution than ether transactions
or tasks. Thus, in DOst instances in which a high priority and a low
priority task are able to continue processing, the high priority task
is given control of the CPO ever the lew priority task.

Task priority can be set as described in Chapter 4, by the sum of
the allocated terminal priority, o~erator priority, and transaction
priority. The terminal and/cr tIansaction priorities may be dynamically
modified during eleS/VS operation by the master terminal operator (as
described later under "Syste. Centrol Changes") to reflect the changing
significance during operation of various application transactions or
terminals.

The various factors which influence the performance of online
applications under eleS/VS have teEn discussed abeve. The determination
of the actual performance achieved in an operating environment, and
the variation of the eleS/VS system to improve performance, is the
function of the system administrator.

204 eleS/VS System/Applica tion DI3sign Guide

SYSTEM ADMINSTRATION FUNCTIONS

The system administration, monitoring, and control of the online
system are generally functions of the CICS/VS master terminal operator
in the installation. An installation may allocate a terminal, ideally
a hard-copy printer, to the master terminal operator such that automatic
messages directed to his attention by CICS/VS may be immediately
printed. While the master terminal operator may sign on at any CICS/VS
terminal, it is usually desirable for the installation to provide a
specific master terminal. This may be a hard-copy terminal such as a
2740 Communications Terminal or a video terminal such as a 3270
terminal, with either a 3277 or a 3275 display station and a 3284 or
3286 printer for master terminal messages.

A number of monitoring and control functions are available to the
master terminal operator. These will now be discussed.

operating Statistics

The master terminal operator can request particular CICS/VS operating
statistics or all CICS/VS operating statistics. (see the CICS/vS System
Administrator's Guide, SH20-9006.) These requests can be made at any
time. CICS/VS will output the various statistics which have been
accumulated since the last time they were requested.

Optionally, the CICS/VS automatic statistics feature can be used to
get statistics on a regular interval basis and have them printed in
interval and/or summary format.

Some of the statistical information maintained includes:

• Maximum number of tasks for any time period

• Number of times at the maximum tasks value

• Number of tasks initiated

• Maximum number of active tasks in system for any time period

• Total number of ATP transactions

• Total number of ATP batches

• Number of storage acquisitions

• Number of times storage cushion is released

• Number of times storage request is queued

• Number of times storage queues were established

• Maximum number of requests in the storage queue

• Number of times each transaction was used

• Number of times each transaction was stall purged

• Number of times each transaction required storage in addition to
the specified anticipatory paging amount

• Time (in seconds) that elapsed while the first search of the PCT
was made for each transaction used

Chapter 7. CICS/VS Performance Considerations 205

• Number of times a program is used

• Time (in seconds) that elapsed while the first search of the PPT
was made for each program used

• Total number of storage dumps

• Total number of storage dump 'irite errors

• Number of polls issued per line

• Number of input messages per terminal

• Number of output messages per terminal

• Number of transmission errors per terminal

• Number of transactions per terminal

• Number of transaction errors per terminal

• Number of pipeline messages discarded

• Number of groups of pipeline messages discarded

• Maximum length of a group of discarded pipeline messages

• Maxi.mum number of VTAM RPLs posted in RPL pool

• Tota.l number of times that maximum number of RPLs was reached

• Number of times VTAM was short on storage

• Number of READ requests per data set

• Number of WRITE update requests per data set

• Number of WRITE adds per data set

• Number of READs from overflow area per data set (ISAM only)

• Number of times each individual segment in a segmented record data
set is operated upon

• Total number of tasks required to wait for a VSAM string per data
set

• Highest number of tasks requi.red to wait for a VSAM string per data
set

• Total number of DL/I requests of each type (GU, GN, GNP, GHU, GHN,
GHNP, ISRT, DLET, and REPL)

• Number of WRITES or READS (per data set) to extrapartition data
sets

• Number of WRITEs or READs (pE~r data set) to intraparti tion data
sets

• Numlber of temporary storage l~ecords PUT/PUTQ to main storage

• Number of temporary storage PUTs to unique IDs

• Max:imum virtual storage used for temporary storage records

206 CICS/vS System/Application Design Guide

• For each journal:

a. Number of records written

b. Number of blocks written

c. Number of times the buffer was full

d. Number of times the block was shifted up

e. Average output block size

This statistical information is necessary not only to indicate the
actual performance of the CICS/VS system during operation but also
for management's planning for future system growth. The ~tatistics
are useful to:

• Help the system programmer determine that efficient data set
allocation has been made

• Aid the system programmer in choosing programs to be made
permanently resident during system initialization processing, as
opposed to those programs CICS/vS is to load dynamically

• Determine the activity of terminals and transactions

• Reorder the sequence of entries in various CICS/VS tables, to ensure
that the most active entries are toward the top of tables and thus
minimize table scanning

• In general, determine if the resources of the system are being
effectively used

statistics concerning DLII DOS/VS data base accesses are collected
by DL/I rather than by CICS/VS. In addition, DL/I DOS/VS provides
utilities which may be used to produce reports of these statistics.

IMS/VS DL/I also collects statistics. In addition, the
CICS/OS/VS-DL/I interface maintains statistics in the file control
table for the following DL/I CALL functions: GU, GN, GNP, GHU, GHN,
GHNP, ISRT, REPL, and DLET.

performance Monitoring

The statistics described above are particularly useful for the system
administrator or master terminal operator, to monitor the overall
performance of CICS/VS, and also to vary the working set of CICS/VS
(see "CICS/vS Working Set" later in this chapter.)

If the statistics indicate that the maximum number of tasks in the
system for any time period approached the maximum tasks value allocated,
some improvement may be realized by increasing that maximum tasks value.
However, if the maximum number of tasks in the system for any time
period is significantly less than the maximum tasks value, that value
should be decreased to the maximum number of tasks indicated by the
CICS/VS statistics. This may result in improved virtual storage
operation. (The maximum tasks value can be varied dynamically by the
master terminal operator, as described in "System Control Changes"
later in this chapter).

If the storage cushion has not been released and a storage queue
has not been established, there is sufficient dynamic storage available
to maintain a higher degree of multitasking, if required. On the other
hand, if the storage cushion has been released frequently and storage

Chapter 7. CICS/VS Performance Considerations 207

queues have also been established frequently, perhaps approaching the
total number of storage acquisitions, insufficient dynamic storage has
been allocated to enable effective operation of the online applications.

statistics on the number of transmission errors per terminal may
indicate a possible failing line or terminal which may require
maintenance. Similarly, a large number of transaction errors per
operator or terminal may indicate inadequate operator training.

CICS/VS statistics may be reset by the master terminal operator as
desired. The master terminal operator may also specify that they are
to be written out periodically and then reset. For example, it may be
desired to output the statistics every 15 minutes. These statistics
are directed to the transient data. destination CSSO, which may be
defined or as an extrapartition de:stination such as a tape, or disk.
A CICS/vS-supplied edit program can be used to produce a formatted
report of the statistics to illust.rate changes in the system environment
by time.

The CICS/VS Performance Analyzer Field Developed Progra.m (Program
No. 5798-'AZN) may be used to measure the performance of tasks executed
in the online system. Refer to "Related Publications" in the Preface
for relevant publications.

This feature allows the user to tune the CICS/vS system by
controlli.ng the mix of transactions within CICS/VS. Without this
feature, all transactions initiated within CICS/VS are considered equal,
and one t.ransaction type can dominate the system. (For example, a
broadcast. to all terminals would flood CICS/VS with transactions until
the broadcast was complete and prevent terminal operators from
performing any useful work.)

The class max task feature also allows resource balancing within CICS/VS
by limiting the number of transactions allowed to run concurrently.
CICS/VS supports ten transaction classes (1 through 10). The function
of the classes is at the discretion of the user. An example of the
use of the transaction classes is:

Class 1 -

Class 2 -

Class 3 -

Class 4 -

Inquiry only transactions.

Update or add transactions.

File browse or weighted retrieval transactions.

Auto-initiated tasks (such as ICP or TOP initiated).
Classes 5 throu9h 10 - Could be used to group
tran~actions ~ith sim~lar working. set sizes by
work1ng set S1ze. Th1s feature, 1n conjunction with
Isolated Task Asynchronous Paging, can be used to
control paging load in CICS/VS through use of a data
area swapping technique.

,!his fE~atu::e ~llows the user to tune the system by controlling the
pag1ng ra't:e w1th1n CICS/VS. It provides a tuning tool for CICS/VS
conversational systems where max task cannot be less than the number
of terminaLls in the system.

The user can specify a max active task value to CICS/VS in the system
initialization table, or as an over:ride at start-up time. The master

208 CICS/vS System/Application Design Guide

terminal program can also change the max active task value. (See the
system Programmers Reference Manual, Order Number SH20-9004 for
additional information.)

System Control Changes

Based. upon the CICS/VS operating statistics provided to the master
terminal operator, either on request or at system termination, he may
monitor the performance of the online system. He may wish to make
changes in various significant areas of the CICS/VS online system to
attempt to improve its performance. The master terminal operator can
also dynamically vary system parameters, as well as change the status
of lines and/or terminals and/or data sets. All processing for master
terminal operation is controlled by conversational terminal interaction,
using the master terminal transaction CSMT. (See the CICS/VS system
Administrator's Guide, Order No. SH20-9006.)

Some of the system control functions which the master terminal
operator is able to carry out include:

• Altering transaction and/or terminal priority

• Disabling and enabling various table entries (PPT, PCT, FCT, OCT)

• Placing terminals in-service or out-of-service

• Dynamically listing active tasks

• Purging active and suspended tasks

• Dynamically opening or closing selected data sets

• switching to an alternate dump data set

• Increasing or reducing the maximum number of tasks which will be
processed concurrently by CICS/vS

• Changing the storage cushion size

• Acquire and release VTAM terminals to establish CICS/VS-terminal
sessions

Of the functions detailed above, the modification of the maximum
tasks value and of transaction and terminal priorities may have most
effect on overall online system performance.

In addition, the ability to dynamically list active tasks may enablE
certain long executing tasks which are tying up system resources and
dynamic storage to be identified, and if required, to be purged
(abnormally terminated) under control of the master terminal operator.
This will enable the resources being utilized by those long-running
tasks to be freed for use by other tasks.

CICS/DOS/VS SUBSET OPTION

The subset option of CICS/DOS/vS does not support the following
CICS/DOS/vS facilities.

• Program Control - Dynamic program loading

• Interval Control - Except for system stall detection and runaway
task control

Chapter 7. CICS/VS Performance Considerations 209

• Terminal Control - Terminals other than 3270, 2740, 2741, sequential
terminals, and CPU console

• File Control - Automatic logging

• Transient Data - Automatic loqging

• Temporary storage - Auxiliary storage residence

• Journal Control

• Sync Point Management

• supervisory Terminals

• Asynchronous Transaction Processing

• BMS Terminal Paging

• BMS Message Routing/Switching

• Syst 49m Recovery - Partition abnormal termination interception

• Emerqency Restart

• Systf9m Log/Journal Utili ties

• 2260 Compatibility

• Built-in Functions

Removal of this support reduces the working set of CICS/DOS/vS
substantially. Refer to the subse~ User's Guide (DOS), Order No.
SH12-540n for further details.

VIRTUAL ~)TORAGE CONSIDERATIONS

CICS/VS executes in a virtual storage environment under control of
~OS/VS, OS/VS1, or OS/VS2. A number of factors must be considered in
the virtual storage environment to ensure that optimum online
performance is achieved, consistent with satisfactory batch program
performance.

With ine availability of virtual storage on System/310 computers,
the funct:ion of main storage (that is, real storage) in a computer has
been changed from an essential resource, necessary to enable various
programs to execute, to a performance resource.

The majority of applicaticn programs can execute in a virtual storage
environm€mt regardless of the size of the program or the amount of real
storage available. However, the more real storage available, the less
the amount of paging which must be carried out by the virtual storage
supervisor to enable that program to execute. Because each page fault
represent~s I/O and CPU execution overheads, the real storage available
for execution of virtual storage programs should be sufficiently large
as to minimize the number of page faults necessary.

The page pool is the total real storage available to all partitions
or regions, after operating system requirements are met. It is
difficult. to change the size of the page pool without adding more real
storage. In many cases, the adequacy of the page pool cannot be

210 CIC'S/VS system/Application Design Guide

effectively determined without benchmarking the batch programs and
CICS/VS together and evaluating performance (as measured by response
time for CICS/VS, and as measured by throughput for the batch programs)
as the demands on the page pool vary.

The size of the page pool necessary for satisfactory performance of
the CICS/VS applications together with concurrently executing batch
programs is very dependent on the "working -sets" of all the programs
operating concurrently. The working set of a program is the number of
page frames (the amount of real storage) required by that program at
any given point in time. Performance degrades or improves in direct
relation to the amount of contention for the page pool caused by the
working sets of all the concurrently operating programs.

To determine the factors affecting total performance, CICS/VS and
its working set on the one hand should be balanced with the rest of
the system and its working sets on the other. As the working set of
CICS/VS is increased, the available real storage for the rest of the
sys~em is decreased, possibly degrading the performance of other
operating programs. The converse is also true. It is the user's
responsibility to determine the number of partitions or regions to be
used and the best mix of batch programs to operate concurrently with
CICS/VS.

Those factors which affect the working set and performance of CICS/VS
will now be examined.

• VSAM Shared Resources (CICS/OS/vS Only)

VSAM shared resources enable the real storage requirements for VSAM
control block and buffer resources to be reduced. This results in a
reduction of the working set of CICS/vS. Shared resources permit
efficient utilization of storage in an environment in which many VSAM
data sets are open and it is difficult to predict the amount of activity
against a given data set, or in a situation where each transaction may
access several VSAM data sets. (See Chapter 5 for additional
information concerning VSAM shared resources.)

CICS/VS provides statistics to evaluate the effici,ency of resource
sharing. If too few VSAM buffers or strings are available, tasks may
wait an excessive amount of time. If too many are available, real
storage may be being used inefficiently. The ~tatistics are calculated
by CICS/VS to provide the following information:

• Maximum key length

• Number of strings

• Size of buffers

• Number of buffers of each size

The effectiveness of these resources can be evaluated using the
following statistics:

• The highest number and total number of requests that had to wait
for the availability of a buffer according to control interval
sizes. This information may be used to change the percentage of
the maximum amount of resources required, or to specify the sizes
of buffers and number of buffers for each size to be allocated.

• The highest number and total number of requests that had to wait
for a string. This information may be used to change the percentage

Chapter 7. CICS/VS Performance Considerations 211

of the maximum amount of resources required, or to specify the
number of strings to be allocated.

• The maximum number of strings active concurrently. This may be
used to change the percentage of the maximum amount of resources
required, or to specify the number of strings to be allocated.

• The number of successful read requests that were satisfied by data
that was already in the buffer.

• The number of buffer reads.

• The number of buffer writes.

The last three statistics may be used to change the percentage of the
maximum amount of resources required, or to specify the sizes and number
of buffers for each size to be allocated.

crcs/vs ~iVorking set

• Activity

The mE~ssage rate, whi Ie not directly under the control of the system
programmf:!r, has the effect of increasing or decreasing the crcs/vs
demands on the system. The batch processing load in other partitions
may need to be varied when the message rate increases at times of peak
online activity.

Throuqh the use of the MAXTASKS and/or AMXT parameters, the master
t.erminal opera tor can direct ly a ff:ect the amount of acti vi ty that
crcs/vs ~~ill attempt concurrently. Each initiated task increases the
crcs/vs ~~orking set by the demands of the tas-k for dynamiC storage and
application programs. The MAXTASKS and AMXT parameters are tuning aids
for the system.

As discussed previously in this chapter, an arbitrarily large value
which siqnificantly exceeds the maximum number of tasks active in the
system for a given period of time (see "Performance Monitoring") can
result in unnecessarily high demands on real storage. This may result
in perfolEance degradation, if an inadequate page pool is available to
satisfy -these real storage demands. The user should vary the MAXTASKS
and AMXT values until he determines the best value for his
installa-tion's performance requirements and real storage availability.

At periods of low online activity, a method of controlling the
frequency of use of crcs/vs is by the use of the system partition/region
exit timE~ interval (rCV). A low rcv value causes control to return to
crcs/vs quickly with a strong possibility of the more frequently
utilized crcs/vs management routines remaining resident in real storage,
and thus also a strong possibility of improved response time. The lCV
value can be varied by the master terminal operator to meet high and
low ClCS/VS demands at times of differing online activity •

• Short-'I'erm and Long-Term Transactions

ClCS/VS enables transactions in the program control table (peT) to
be definE"d as being either short term or long term in execution.

Short--term execution transactions are allocated dynamic storage from
common pages. A page is utilized to satisfy the storage requests of
concurrently executing short-term transactions. Pages are allocated
for concurrent usage by short-term transactions as required. When all
the storage allocated in a short-term transaction page has been freed,

212 CICS/vS System/Application Design Guide

it is returned to a common CICS/VS pool of pages for use in satisfying
other dynamic storage requests. The storage required by a short-term
transaction is intermixed in pages with the storage required by other
short-term transactions.

On the other hand, all the storage required for execution of each
long-term transaction is included in one page (or more, if necessary),

-and each long-term transaction storage is kept separate from other
long-term transaction storage in different pages. If there are long
periods of inactivity for these long-term transactions, the pages in
which storage has been allocated for them may be paged out, if
necessary, to enable those page frames to be utilized for other
purposes.

Identification of short-term and long-term transactions is made by
the user in the program control table. If not specified for a
transaction, CICS/VS will default to a long-term specification for that
transaction. A large number of long-term transactions may result in
inefficient utilization of virtual storage pages, if those transactions
are in fact short-term. This will increase the CICS/VS working set,
and result in higher demands for real storage than would otherwise be
necessary, with possible performance degradation. The CICS/VS General
Information Manual, GH20-1280, and CICS/VS System Programmer's Reference
Manual, SH20-9004, describe the allocation of dynamic storage by CICS/VS
to various subpools, based upon the expected use of storage by the
application programs.

If insufficient dynamic storage is allocated, together with a large
maximum tasks (MAXTASKS) and maximum active task (AMXT) values, CICS/VS
will, in allocating storage for short-term transactions, encounter
short-on-storage (SOS) conditions. Accordingly, MAXTASKS and AMXT
values should be utilized consistent with the allocated dynamic storage
area, as discussed previously in "Dynamic storage" in this chapter.
Too large a value may result in a large number of SOS situations.

• Nucleus Load Table

The nucleus load table (NLT) is used by CICS/VS to control the load
order of the CICS/VS nucleus during system initialization. This enables
the user to vary the nucleus load sequence to reflect his installation's
use of various CICS/VS management modules, and to reduce the amount of
real storage required by CICS/VS. The purpose of the NLT is to allow
tailoring of the nucleus loading to provide the user with the smallest
possible working set for his particular environment.

The user should first identify those CICS/vS management modules most
frequently used by his applicaticn programs, and those less frequently
used, or not used at all. For example, the TCT, CSA, KCP, ICP, Tep,
and SCP are used frequently in polling terminals and servicing terminal
input. The PCT, PPT, and PCP are used when initiating task processing.
During execution, tasks may initiate activity in the FCP, FCT, JCP,
and JCT. Other management modules such as TSP, TDP, OCT, and BMS may
be referenced during execution. However, modules such as DCP, SRP,
SCR, and the SRT are only referenced to handle abnormal conditions,
CICS/VS dumps, or to intercept abnormal conditions and attempt recovery.
(See the CICS/VS system programmer's Reference Manual, SH20-9004, for

NLT examples.) Use of the NLT enables these modules to be sequenced
with all frequently referenced programs packaged together to reduce
the number of pages required, and may be page fixed in real storage if
desired •

• Application Load Table

Chapter 7. CICS/VS Performance Considerations 213

The application load table (AL'I') is used to control the load order
of application programs. The application load table is an o~tional
feature in CICS/VS. If it is not used, application programs will be
loaded based on parameters in the processing program table. If the
applicatlon load table is used, the application programs specified in
the appl:lcation load table will be loaded first. Any programs in the
PPT not specified in the ALT will be loaded with the options specified
in the pJ:ogram processing table. Options such as page fix, page align,
page out, and so on, are available in the ALT.

• Page Fixing

The NIJT enables CICS/VS mcdules to be page fixed. By fixing these
CICS/vS management modules in real storage, their availability can be
assured when needed to ensure their responsiveness to requests fo:r
service from application programs.

In addition to fixing some CICS/vS nucleus modules, various
applicati.on programs which will be used frequently, or for which optimum
response is required, may be defined as being resident and may also be
fixed in real storage. This is specified in the program processing
ta hIe. 'I'hese fixed application programs are never paged out of real
storage.

Page fixing of parts of CICS/VS and of various application programs
may degra.de batch processing program throughput and possible CICS/VS
reponse times. These fixed page frames are available only to the
CICS/VS partition and, in effect, increase its working set. The net
effect is the reduction of the number of remaining page frames for
other partitions. When considerable contention exists for real storage,
this reduction of available page f:rames for use by other partitions
may significantly degrade the performance of programs operating in
those partitions and result in deactivation of low priority partitions
(see "Batch and CICS/vS Page Contention" later in this chapter) •

• Anticipatory Paging and T/P Balancing (CICS/OOS/VS only)

In a low volume online environment, batch program contention may
force mos't of CICS/VS to be paged out. To permit these pages to be
rapidly paged in again when needed, CICS/VS supports anticipatory paging
of CICS/VS nucleus modules.

The CICS/VS user may specify (using the NLT) various frequently used
modules w!hich are to be paged in when the CICS/VS partition is given
control by DOS/VS. These pages may have been paged out by DOS/VS to
satisfy the paging requirements of concurrently executing batch programs
in a low '~olume online environmento CICS/vS constructs a page-in list
and, as soon as it is given control, requests DOS/VS to page-in the
user-specified modules if they are not already in real storage. This
is called "anticipatory block paging," and is supported by CICS/OOS/VS
V1.0.1 or higher. It is not supported by CICS/OS/VS.

All paqes referenced in the pagE~-;i.n list are migrated by the T/P
Balancing feature of the 'OOS/VS supervisor to "most recently used"
status in its paging algorithm. Batch pages may have been paged out
to enable the referenced CICS/VS pages to be paged in. Batch partition
execution is permitted to continue if required. At this time, CICS/VS
may specify, using the NLT, certain infrequently referenced modules
which are to be paged-out.

CICS/VS modules can be paged out: at times of no activity until a
terminal 1:ransaction is received for processing. DOS/VS then pages in
blocks of pages identified by CICS/VS with minimum I/O activity. Batch

214 CICS/vS System/Application Design Guide

processing may be deactivated to ensure that CICS/VS has exclusive use
of all of the resources it needs. The result is consistent online
response time; the trade-off is possible reduced batch throughput.

Anticipatory block paging and T/P balancing of CICS/VS nucleus
modules should not be specified when CICS/VS is continually active, as
in a high volume online environment, because of the additional
processing overhead of anticipatory paging. In this case, the NLT can
be used to minimize the C!CS/VS working set. However, it should not
specify page-in or page-out for any modules. Normal CICS/VS and batch
program execution contend for the available page pool as in a normal
virtual storage environment.

If CICS/VS is executing in a dedicated environment without concurrent
batch execution, no benefit is gained by anticipatory block paging or
T/P balancing; it should not be specified in the NLT. Refer to the
CICS/VS system Programmer's Reference Manual for additional information
on anticipatory paging and T/P balancing using the nucleus load table •

• Nucleus Load Table Design

A default NLT is supplied by CICS/vS. This is documented in the
CICS/vS system Programmer's Reference Manual, SH20-900Q, together with
several examples of typical nucleus load tables. If the system
programmer wishes to design an NLT for his installation's environment,
the following factors should be considered:

• The use of BTAM and/or VTAM modules, and reference characteristics
reflected by terminal cow.munication activity

• Application program characteristics as reflected by use of CICS/VS
nucleus modules

• Individual nucleus module sizes

• Module grouping to minimize page faults

Use may be made of CICS PLOT, a Field Developed Program (Program
No. 5798-CCG), to determine the virtual and real storage usage of
CICS/VS and identify possible nucleus load table structures •

• Resident CICS/VS Application Programs

Application programs may be specified in the PPT as resident in the
nucleus or dynamically loaded (as required) in the dynamic storage
area. Resident programs are loaded with the CICS/VS nucleus at
initialization time, and are packed to occupy the minimum number of
pages. The PPT also provides facilities to define page alignment and
force pageout requirements for resident programs •. These options can
be used to improve the utilization of system address space.

When a program is selected for force pageout, CICS/VS issues a force
pageout command to the operating system when the program has terminated
processing and is no longer being used by the application program. The
force pageout command will include the complete page or pages occupied
(or partially occupied) by the program. The program will be paged out
by the operating system upon first occurrence of a page fault.

Dynamically loaded programs occupy unique pages in the dynamiC
storage area; a program occupies contiguous pages. Each program is
loaded on a page boundary and space at the end of a page is not used.
Consequently, dynamically loaded programs may increase the working set
of CICS/VS.

Chapter 7. CICS/VS Performance Considerations 214.1

CICS/OOS/VS and its subset option permit execution using a DOS/VS
supervisor which specifies no asynchronous processing support (AP=NO).
see £!£§/DOS/vS operations Guide, SH20-9012. This reduces the size of
the DOS/VS supervisor by approximately SR. The 51< becomes available
as extra storage for the page pool. However, .if AP=NO is specified,
CICS/VS journal control facilities and the CICS/DOS/VS-DL/I DOS/VS
interface cannot be used.

• CICS/VS Generation options

As more CICS/VS generation opti.ons are selected, the size and number
of the management modules increase. As mentioned earlier, some of
these modules may be page fixed by the user, while others are always
pageable.. The CICS/VS working set will generally increase as more
generation options are selected. The user should therefore give careful
thought to planning his CICS/vS system generation.

The subset option (CICS/DOS/VS) defines an environment which
specifies only selected generation options for ease of use and
installa1:ion and for a reduced working set. Refer to "CICS/OOS/VS
subset Option" in this chapter for the CICS/vS facilities not
supported.

• Network Control System (NCS)

The user may wish to examine the relevance of NCS to his environment,
and its effect on the real storage ~equirements for his online
appl ications. Refer to "ReI ated Publication s" in the Preface for
relevant NCS publications.

• General considerations

The size of the CICS/VS dynamic storage area is an important factor
in considerations involving the CICS/vS working set, as identified
previously. The dynamic storage area increases as the CICS/VS virtual
partition size allocated by the user is increased, and the converse is
also true. Too small a dynamic storage area can cause frequent CICS/VS
program loading and use of the storage cushion, which may slow terminal
response due to a short-an-storage (SOS) condition. A large maximum
tasks value with a small dynamic storage area will also result in an
SOS condition, with subsequent performance degradation.

On the other hand, in the same online environment, too large a
dynamic s·torage area where there is considerable contention with other
partitions far the available page pool may increase the amount of
virtua I s'torage paging necessary. The most suitable dynamic storage
area for ·the user's environment can best be determined by varying the
CICS/VS virtual partition size and maximum tasks value in separate
runs, and evaluating their effect on both CICS/VS performance and the
performance of programs executing in other partitions.

Program residency in a virtual storage environment has a different
meaning than in a nonvirtual storage environment. Page fixing in
CICS/VS is equivalent to program residency in previous versions of
CICS. A l::"esident CICS/VS program is loaded when the CICS/VS system is
initialized, but can be paged in and out as needed. The user should
evaluate, in his own environment, the effect of specifying various
application programs as resident, and also as page fixed, on CICS/VS
performan(~e as well as on the performance of programs executing in
other pa r1:i tions.

214.2 CICS/vS System/Application Design Guide

The number and size of I/O areas used by application programs for
file and terminal I/O also have a direct effect on the CICS/VS working
set. File I/O areas will be short-term page fixed for the duration of
the I/O operation. Terminal and line I/O areas, on the other hand,
are long-term page fixed while terminals are being invited to send
input. In addition, all of BTAM and the TCT are page fixed at CICS/VS
initialization. The number and variety of different terminal types
supported by BTAM and VTAM in the user's environment increase their
real storage requirement, and hence the working set of CICS/VS.

CICS Dynamic Map (Program No. 5198-AXR), and CICS PLOT (Program No.
5798-CCG) Field Developed Prograros may be used to analyze virtual and
real storage usage of the CICS/VS partition during execution. Refer
to "Related Publications" in the Preface for relevant publications.

Batch and CICS/VS Page Contention

As discussed previously, the most significant impact on online and
batch program performance, executing.in a virtual storage environment,
occurs when there is considerable contention between the various
concurrently executing programs for available page frames in the page
pool. The extent to which the total pages required by all concurrently
operating programs exceeds the number of page frames in the page pool
is called the degree of "overcommitment." The degree of overcommitment
will determine the amount of performance degradation for both online
and batch programs. If the overcommitment of the page pool is too
great, such that the amount of paging necessary to enable various
partitions to execute exceeds certain limits (depending upon the virtual
storage operating system used), the particular operating system will
attempt to deactivate the lowest priority partition. This situation
is called "thrashing." The page frames occupied by this deactivated
partition are made available for programs executing in higher priority
partitions. When the paging rate reaches an acceptable level again,
the lowest priority partition is reactivated.

Thrashing is a situation in which the demands made by various
partitions for real storage result in a high proportion of necessary
paging activity to enable the system to complete useful work. It is
temporarily alleviated by the operating system deactivating a low
priority partition to reduce the demand for real storage. Depending
upon the degree of overcommitment, reactivation of the low priority
partition by the operating system causes thrashing and subsequent
deactivation.

In this environment, the only permanent solutions to avoid thrashing
are either to avoid operating all programs together, or to provide more
real storage for use as a page pool.

virtual ~torage Access Method (VSAM)

VSAM may be utilized by CICS/VS for support of temporary storage on
auxiliary storage. In addition, temporary storage is used to provide
the necessary support for the terminal paging and message switching
features of CICS/VS.

The temporary storage program can be generated specifying that
auxiliary storage residence is not to be used. In this case, temporary
storage records reside in dynamic storage, and are paged into real

Chapter 7. CICS/VS Performance Considerations 214.3

storage when referenced. VSAM is thEn not required for support of
temporary storage. (See the £l~~Ll~ Sls!§! iI2gI§!B~!§ Ref§~
~g~ygl, SH20-9004.

However, it should be recognized that the use only of dynamic storage
for temporary sterage will increase the paging activity of the system,
depending upen the frequency of reference of temporary storage records
by CICS/VS application programs, er for terminal paging or message
switching. This increased paging activity should be balanced against
that encountered when VSAM is used by temporary sterage for auxiliary
storage residence ef data.

CICS/VS file control enables VSAM data sets to te accessed by
application programs. Furthermore, the built-in weighted retrieval
function of CICS/VS can enly operate on VSAM data sets.

VSAM is the standard access method support utilized by DL/I.ENTRY
and DL/I DOS/VS. It is also used ty IMS/VS tL/l fer the support of
advanced features such as variable-length segments and secondary
indexing.

The number of pages required ty various VSAM features can be
estimated frem the VSAM documentation. This infermation should be
utilized, together with ether information on CICS/VS, to evaluate the
contentien for the available page pocl between the CICS/VS working set
and the batch partitions.

DL/I ~OSL!~ g~~!2I~~£~

Refer to "Performance" in the ~ILl m!~L!~ ~§n§ral I.D!2~Dll.QJ! Manual
for a discussion of performance measurements carried out on DL/I DOS/VS,
and identificaticn ef the real sterage requirements of DL/I DOS/VS and
VSAM. DL/I DOS/VS, when used by CIeS/DOS/VS application programs,
differs from batch DL/I tOS/VS in thE online interface and program
request handler (approximately 8K bytes). The action modules are the
same as for batch.

To permit multithread access to data bases, DL/I DOS/VS uses one
PST (Program Specificaticn Table - the DL/l DOS/VS counterpart of the
CICS/VS TCA) and one PSB per DL/l task. This storagE, together with
that required by other DI/l control blocks, will determinE the amount
of real storage required for multithread accEssing by DL/I DOS/VS, and
hence its perferuance.

CICS/OS/VS--3850 MASS STCRAGE SYSTEM OPERATION

CICS/CS/VS enables the 3850 Mass Storage System to be used to support
massive data bases onlinE. Applications which previously could only
be supported in a batch environment, or could not te placed on computers
at all because of physical size and/er cost limitations, can use the
3850 for online data base residence. (See Chapter 11.) Typical
applications include:

• Online residence of manufacturing engineering drawings and technical
reports

• Banking current account (checking) transaction history

• Medical and police data tases

• Legal report cases

Chapter 7. CICS/VS PerformanCE Considerations 215

O!.§!:vie.!._ g! 38~,g 2R!IJ!i~l!

The 3950 transfers (stages) infcrmation from the 3851 8ass Storage
Facility to 3330 drives where it is accessed as needed. As the capacity
of the 3851 far Exceeds that of the available 3330 drives in an
installation, a virtual DASD storage algorithm is used. In order to
understand the performance implications inherent in the use of the 3850
in a DB/IDC environment, an analogy will be drawn between the use of
the 3850~ and the use of virtual storage by CS/VS.

The 3851 Mass Storage Facility contains from 35 billion 1 bytes to
236 billion bytes of data. this data resides on "virtual 3330 drives,"
analogous to virtual storage using OS/VS1 or OS/VS2. It represents a
third level of storage residence for data. (CPU and DASD being the
first and second.)

When data in a virtual 3330 drive is referenced (either at CPEN
time, cr as a result of a seek and read), the 3850 first determines if
that data currently resides cn the "real 3330 drives" associated with
the 3850 ..

If it is resident on a real 3330, the data is transferred to the
CPU as if it was a normal read tc a 3330. This is analogous to a
program's reference to a virtual Fage which is currently in real storage
in the CPU. .

If thE data is not currently resident on a real 3330, it must first
be staged from the 3851 to availatle cylinders in the real 3330
(analogous to virtual stcrage paging). The 3850 maintains tables to
indicate the location of virtual 3330 cylinders on the real 3330
cylinders (analogous to CS/VS sUFervisor page tables). A least recently
used algorithm is used tc select the most suitable real 3330 cylinders
to be used to contain the referenced virtual 3330 cylinders.

If the data presently in the selected real 3330 cylinders has been
modified, it must first he staged back to the 3851 (analogous to a
page-out operation). Following this, the referenced virtual 3330
cylinders can be staged in (analogous to a page-in) to the now-available
real 3330 cylinders. Once the data has been staged, it is available
for use as normal 3330 data.

The previous comments show the similarity between 3850 operation
and virtual storage operation. Factcrs which affect virtual storage
performance can also influence 3850 Ferformance in a DB/DC environment •

• Beal 3330 storage

The number of real 3330 drives associated with the 3850 is analogous
to the amount of real CPU stcrage in a virtual storage environment.
An overcommittment of real C~U storage results in virtual storage
paging, with consequent Ferfcrmance degradation. Similarly, an
overcommittment of real 3330 storagE results in 3850 staging. As the
3850 represents third level data storage, its staging time is measured
in seconds. Virtual storage uses 3330 or 3340 seccnd level storage
and has a paging time measured in milliseconds. ccnse~uently, the
effect of real 3330 overco8.ittment en performance is more apparent
with 3850 ..

216 CICS/VS System/ApFlication Design Guide

As the 3850 is transparent to applicaticn programs (such as
CICS/OS/VS), and appears as if it is a normal 3330, such performance
degradation seems tc the program as if a "long" seek is in progress.
A CICS/OS/VS application program is not aware of a possible need to
stage data from the 3851 tc 3330, and so cannot notify the terminal
operator of the amount of response delay expected. However, the
application Frogram should still notify the terminal operator of the
BQ~§~ili!l of a delay before the data base reference is made.

• Locality of Data Reference

Locality of reference in a virtual storage program reduces the
working set and hence real storage requirements cf that program.
Similarly, locality of data reference in a 3850 data base reduce$ the
data working set (and hence real 3330 storage requirements) of that
data base. Thus data bases ~hich have some sequential retrieval
requirements are well suited to 3850.

• Transaction Volume

High transaction volu.es in a virtual storage system increase the
activity of the systeD, and aay increase its locality of reference and
hence, paging activity. Similarly, high transacticn volumes with the
3850 increase the activity of the 3850, and may increase its locality
of data reference (access to different parts of the data base) and
hence, staging activity. High staging activity in the 3850 can also
result in queuing delays, which can increase sta9ing time.

• Frequency of Data Reference

Data which is referenced frequently will tend to remain resident on
3330 provided if sufficient real 3330 devices are available.
Infrequently referenced data Day be staged out. (This is analogous to
paging out infrequently referenced virtual storage pages.)

• Data Binding

Data can be "bound" to real 3330 cylinders so that it cannot be
staged out, similar tc virtual storage "page fixing." Such bound 3330
cylinders, while ensuring ready availability of the bound data, reduce
the number of real 3330 cylinders available for staging, and so may
possibly increase staging activity for other parts of the data base.

• Batch Partition Activity

Batch partitions may use the 3850 to support data sets previously
held on tape files. (The 3850 may hold data from thousands of reels
of tape.) Such "tape" data sets Day be completely staged from 3851 to
3330 at OPEN time, thereby using the 3850 as an automated tape library.
However, a request to stage a taFe data set may take minutes to
complete, and may delay a later staging request queued in proceSSing
a CICS/VS transaction. ThUS, as with virtual stcrage batch actiVity,
high volume batch partition staging activity may seriously degrade
online performance.

Chapter 7. CICS/VS Performance Considerations 217

Based on the 3850 perfcraance ccn~iderations di~cussed previously,
typical 3850 applications can be iaentified. Such application~ .ay
exhibit some of the following characteristics:

• Large data bases

• low transaction volumes, if airEct access reguired

• Long responsE times acce~table

• sequential retrieval of secticn~ of the data base

• Primarily enqueuing, with limited update activity

• High activity against li.ited elements of thE aata base

• Limitea use of DL/l logical relaticnships across DL/I data bases
and aata set groups

Applications which meet these criteria includE information retrieval
applications such as technical, legal, and medical data bases containing
textual information. The STAIRS/VS Program Product (program No.
5740-XR1) can be used to sEarch a keyword index, established on""real
3330 drives, of documents stcrea on 3850. Based u~on keyword selection
criteria, documents can be rankea in order of relEvance. the aost
relevant documents can he selectEd and staged to 3330 for subsequent
printing. Refer to the ~%Jl~LI~ g~D§lAl !ni2~!!!1QD AlD»Jl (GH12-5114)
for further information.

Another typical application is theret~ieval cf banking current
account (checking) transactions. Such a historical data base ~xhibits
highest activity against the most recent transacticns for enquiry
purposes. This section cf the data base will tend to reside on 3330
due to its activity.

A Police Information SystEm (SEE Chapter 11) tYFically involves the
storage of massive aaounts ef information generally in a coded form to
reduce disk storage requirements. The 3850 permits textual information
relating to crimES and criainals tc be aaintainea online, and enquired
against (1I1sing STAIRS/VS for example).

As discussed previously, such information retrieval applications
generally exhibit low transaction volumes and arE well suited to the
3850 Mass Storage System. Banual retrieval techniques, or in some
cases batch processing against ta~e data sets, may be used currently
for these applications. ResFonsE tiaes fer information using these
techniques may be hours, or even days. The use of 3850 to store such
data bases online enables such response times to be reduced to minutes
or seconds.

DL/I DOS/VS performance may alsc be influenced hy segment intent
schedulin~J. Refer to "UpdatES, Additions and DEletions wi tb DL/I in
Chapter 5 for an example of data base design to reauce the effect of
segment intent scheduling on DL/l Ferforaance. A eICS/VS application
program issues a DL/I scheduling call, identifying the PSBit wishes
to be scheduled against. It iSSUES a DL/l termination call when it
has completed its use of the PSB. (Eefer to ChaFter 4 of the nLLl
~!~ JRP.li~J!i9~ f~2g~~IJiI9 l!!§I§B~ IIBYA1.) The period over
which a task is scheduled against a FSE should be kept as short as
possible by issuing the termination call at the earliest possible time.
This permits more effectiVE multithread access by DL/I DOS/VS, and
hence im~roved performance.

218 CICS/VS system/Application Design Guide

PERFORMANCE EVALUATION

Two main techniques may be utilized fcr performance evaluation.

• Simulation techniques

• Benchmark techniques

~1~Yl~1i~n I§£~Digy~§

Simulation techniques involve the develofment of simulation models
which describe the particular apFlication processing involved, CICS/VS
features utilized, transacticn loads for processing, allccation of data
sets, and machine configuratien. Simulation models may te developed
using simulation languages such as GFSS V (General purpose System
Simulator 'V--Program Product 5734-152(05), 5736-IS2(DOS», or CSS II
(Computer SysteD Simulater II--Prcgram Product 573Q-IS5(OS», or
analytical languages such as APL (A Frogramming Language--Program
Product 5734-IM6(OS), 5736-IM6(DOS».

simulation techniques are cnly apFroximations of performance and
are only as accurate as the input prcvided. If they model only the
CICS/VS partition environment, rather than the overall system together
with ccncurrently executing batch precessing programs, they will not
be able to evaluate the effect of those batch prcgrams on CICS/VS online
performance caused by page ccntention. However, the effect of a number
of different system design approaches on overall CICS/VS online
performance can be quickly evaluated to assist in the design process.

A more accurate perfor.ance evaluation technique is that of
benchmarking. Using this technique, dummy (or prototype) CICS/VS
application prograDs may be written to model the number and type of
file accesses involved in processing a transaction, and reflect the
amount of CPU precessing necessary, possibly by executing loops of
instructions to represent the expected CPU processing of the final
application programs when they are written. These du.my or prototype
application programs may then be executed with the generated CICS/VS
system to be used by the installaticn, and the CICS/VS statistics can
be examined to determine the performance of the system when executing
the type of transactions and particular transacticn volumes which will
be encountered in real life. Furthermcre, the effect of concurrently
executing batch programs, and different-sized page pools, may be
examined to evaluate their effect en the CICS/VS online application
performance. The CICS/VS Ferformance Analyzer Field Developed program
(Program No. 5798-AZN) Day bE used tc measure the perforDance of the
benchmarked system.

The transacticn volumes used for the benchmark should model actual
terminal activity as closely as possible. Use may be made of sequential
terminals such as card reader/line printer, disk or tape, or of actual
terminal input." If sequential terainals are used, time delays must be
introduced in the reading of transactions from such terminals to ensure
that the input rate approximates that of the system to be benchmarked.
Unless such delays are introduced, the rate ot input from such
sequential terminals may be significantly different from the actual
system being benchmarked, with a resultant difference in storage
reference patterns in a virtual storage environment, and hence different
performance. It should also te recognized that the use of sequential
terminals does not perDit .easurement of the effect of BTAM on the
performance of the online applications.

Chapter 7. CICS/VS Performance Considerations 219

If input delays cannot te designed into the system to be benchmarked,
or if measurements using BTA! are required, the use of actual terminal
input may be more appropriate.

Using this technique early in the system desiqn process enables an
approximate evaluaticn of Ferforaance to be determined. Subsequently,
when the CICS/VS applicaticn programs which will be used in the
operational online system have been developed, these programs may te
substituted for the prototype prcgrams described above. The performance
of the actual system which will be utilized in an operational
environmE~nt can then be evaluated again. At this time, too, the effect
of batch processing prcgraas and the size of the page pool on the online
application perfcrmance, and the effect of the aaount of dynamic storage
and degree of multitasking on online performance, can be further
evaluatea.

220 CICS/VS System/Application Design Guide

This chapter discusses the facilities provided ty CICS/VS in the
area of reliability, availability, and serviceability (RAS), and
describes various design techniques which may te adopted by the user.
It first examines various restart and recovery requirements of online
applications and identifies CICS/VS facilities which can be used to
meet those requirements. It identifies additional BAS facilities that
may be required ty some CICS/VS users and suggests design approaches
which may be adoFted by the user fcr their i.plementation. This chapter
is recommended reading, in its entirety, for all eICS/VS users. The
follcwing failure conditions are considered:

• Program failure

• Terminal failure

• Device failure

• CPU failure

Techniques for recovery of infcrmation following such failures are
discussed. The information covered includes:

• Temporary storage recovery

• Transient data extrapartition data set rECOVEry

• Transient data.intraFartition data set rEcovery

• File control data set recovery

• DL/I data base rEcovery

• Transaction recovery

Unless otherwise explicitly stated, the recovery procedures discussed
in this chapter apply to both CleS/DOS/VS and eICS/OS/VS, referred to
collectively as CleS/VS.

Two of the most significant aSFects in the design of applications
to execute under control of CleS/VS are the rECOVEry of the systea from
various errors and restarting the system after recovery. Depending
upon the complexity of the online application and the eICS/VS facilities
utilized, the design of recovery and restart procedures may represent
little effort on the part cf the design team or may be a major element
of the overall system design.

For example, for an inquiry aFFlication that cnly retrieves
information from data bases and dces net update that information or
add new information, recovery and rEstart generally involves
reestablishment of the CICS/VS system to its status at the time of
failure.

HoweVEr, for an online apFlication which retrieves information from
data bases, and updates, deletes, cr adds records to the data bases,

Chapter 8. CleS/VS Eecovery and Eestart 221

the information which must be recorded by the system during normal
operation may be extensive. This information is utilized following a
system failure to recover the status of the varicus data sets and data
tases to a defined pcint, Euch that all necessary updates, deletions,
and additions up to that point have been completed. Recovery of such
an online update and addition apFlication can invclve considerable
system design effort.

Regaraless of the type cf application, the system design team should
consider the effect on the online application of each of the various
types of error or failure Eituaticns described in this chapter. The
team should determine whether any acticn is neceEsary to design
procedures which ensure that infcrmation necessary for recovery purposes
is recerded during executien.

Many online applicaticnE Frocess adequately with no recovery and
restart Frocedures. However, the value of a well-designed online
application containing recovery and restart ~rccedures is truly realized
when an error situation arises. Regardless cf how well a system is
designed' and debugged, failure situatiens will occur because of program
errors, data transmissien errors, l/e access errors, or system component
failures (such as CPU). An enline system that allcws for error
situations and has recovery and restart procedures to handle them is
better atle to continue operation when errors occur.

A measure of the perfcr.ance ef an online system is its ability not
only to ~rovide s~tisfactcry res~cnse time, tut also to provide enline
access to applications from terminals over extended periods of time.

While error situations must inevitably occur, they sheuld not be
permitted to disrupt the availability ef online aF~lications for long
periods of time. Good reccvery and restart design procedures can
minimize the amount of time a sYEtem is down following a failure. They
can also minimize the effect of a system going dcwn at an unscheduled
point, by ensuring that the integrity ef any data sets or data bases
is maintained.

The iRportance of thorough design of recovery and restart procedures
has been emphasized earlier in this chapter. The next section details
the more common error or failure situations. It provides an overview
of the recovery and restart suppcrt ~rovided by CICS/VS, and identifies
that support which may need to be ~rovided by user programming.

RECOVEBY FROM FRCGEAM EEEOBS AND AEINDS

CICS/VS intercepts program checks and system ABENDs through the use
of the system recovery prcgram (SRP). The SEP attempts recovery of
OS/VS ABFNDs identified in the system recovery table (SRT) as system
recoverable. ABENDs may alse be specified in the SRT as being user
recoverable, in which case centrol is passed to a specified user routine
to attempt recovery.

The program centrel program intercepts prograR control ABENDs and
passes centrol te specified user-written program-level AEEND exit
routines, and to a user-written installation-level program errcr program
(PEP). These routines may attem~t recovery cf the error condition,
ignore the ABEND and continue task execution, or record application
dependent informatien.

To prevent propagation of an error by the same transaction or program
at a later time, an option is previded by CICS/VS to permit the relevant
PCT and/or PPT entries te be dynamically marked as disabled or
inoperative ~f desired by the user). These facilities are utilized
by a design technique described in this chapter fer program backup.

222 CleS/VS System/Application teEign Guide

Partition/region ABENC processing is not suppcrted by the subset
option of CICS/DOS/VS.

RECOVERY FROM TEBMINAL I/C EERORS

Chapter 3 describes the use of a user-written installation-level
terminal error program (TEF) for recovery from terminal I/O errors.
It also describes technigues for dynamic terminal reconfiguration (by
user programming) following an unrecoverable ter~iral I/O error.
Techniques are discussed for use with ETAft-supported terminals and
VTAM-supported programmable controllers.

RECOVERY FROM DISK I/O EBRCRS

CICS/VS passes error indications to applicaticn prograas, identifying
the cccurrence of disk I/O errors. An installaticn-Ievel user-written
disk error program may be designed to obtain control following any disk
I/O error detected by an application program.

BECOVEEY FBOM DEVICE FAI1UEE

CICS/VS provides limited suppcrt for recovery from device failure.
Various facilities can be utilized by user-written routin~s to permit
recovery from many of these failures. Design techniques for such
user-written support are discussed in this chapter.

TERMINATION OF CICS/VS SlSTE!

CICS/VS supports both a ccntrclled shutdown and an unccntrolled
shutdown following sericus eIror situations.

A ccntrolled shutdown enatles CICS/VS to quiesce system activity in
such a way that currently active tasks are allowed to terminate
normally.

During controlled shutdown, information describing the operating
environment of CICS/VS at the time of termination. is recorded (by
CICS/VS) on the restart data set reserved for this purpose. This
information is referred to as a warm keypoint. It contains key system
information which will enable CICS/VS operation to be reestablished to
the same environment status as at ccntrol1ed shutdown. This
reestablishment of CICS/VS is referred to as a warm start, and is
discussed further.in following paragraphs.

An unccntrolled shutdcwn cccurs when CICS/VS is unable to quiesce
system operation to permit active tasks to terminate normally.

Recognizing the possibility of an uncontrolled shutdown occurring
at any time during operaticn, CICS/VS periodically records information
on system activity on the system log data set. System activity
information is referred to as an activity keypoint. It contains key
information describing the processing activity of the system at the
time of the keypcint, utilized on subsequent reinitialization of CleS/VS
to restore the system tables and to determine which tasks were still
active at system terminaticn (that is, in-flight tasks). This

Chapter 8. CICS/VS Becovery and Restart 223

reinitialization of CICS/VS is referred to as an emergency restart,
and is discussed further in follcwing Faragraphs.

System logging is not sUPForted by the subset option of CICS/DOS/VS.

REESTABLISHMENT OF CICS/VS SYSTEM

CICS/VS operaticn may be reestablished following a controlled
shutdown, either as a cold start or a warm start, or following an
uncentrolled shutdewn as an emergency restart.

A cold start initializes CICS/VS system data sets and system tables
as defined during syste. generation. Cold start initialization of
CICS/VS is not influenced by previous system activity.

A warm start of CICS/VS enables iDfermation in a warm keypoint,
describing the previous CICS/VS cperating environment on a centrolled
shutdown, to be used to initialize system data sets and system tables.
The warm keypoint information is merged into the system during system
initialization, to restore system data sets and tables to their status
as they existed at the previeus CICS/VS ccntrolled shutdown.

An emergency restart enables CICS/VS to rebuild and initialize the
system to its status at the time of an uncontrolled shutdown. The most
recent system activity keYFoint recorded prior tc uncontrolled shutdown
is used to determine the activity status of CICS/VS at the time of the
keypoint. system activity keypoint and subsequent system activity data
recorded on the system log data set (such as user data set changes) is
used to determine those tasks which were still active (in-flight) when
uncontrolled shutdown occurred.

The activity of ccmFleted tasks, whose processing resulted in changes
to system and user data sets and te tables since the activity keypoint
was taken, is used to restore those data sets and tables to the same
status as they existed at cOlpleticn of those tasks prior to
uncontrolled shutdown. The activity of in-flight tasks, whose
processing resulted in changes tc system and user data sets since the
activity keypoint was taken, is used to back out the effect of
processing by thcse uncomFleted tasks. The affected data sets are
restored to the same status as it those tasks had never started
execution.

Emergency restart is not supported by the subset option of
CICS/DOS/VS.

TEMPOBARY STORAGE R!COVEFY

CICS/VS restores auxiliary storage temporary storage data
identifications (and the temForary storage use map) during a warm start
or emergency restart, to their status prior to a ccntrolled or
unccntrolled shutdown. No support is provided by CICS/VS for recovery
of temporary storage in dyramic storage.

224 CICS/VS System/Application Design Guide

Temporary storage in dynamic storage is lost following either a
controlled or unccntro11ed shutdcwn.

Temporary storage recovery is not supported by the subset option of
CICS/DOS/VS.

TRANSIENT DATA RECOVERY

The processing carried out by unccmF1eted (in-flight) tasks may have
resulted in CICS/VS transient data activity. These tasks may have
operated on extrapartition data sets or intrapartition destination~
during processing.

~ll~partition ~at~ ~! ~§£QlS.~

CICS/VS does not provide any facilities for reccvery cf
extrapartition data sets. Hcwever, design techniques are presented
later in this chapter detailing aFproaches which may be utilized by
the user to develop his cwn extrapartition recovery procedures.

1D!~~~!iti~~ ~g!g ~§!]§~2~~.~

CICS/VS provides facilities for recovery of data cn intrapartition
destinations during warm start and emergency restart.

A warm start is carried out when a controlled shutdown is successful.
Reestablishment of the destinatien centro1 table (tCT) to its status
at system terminatien will result in the restoration of intrapartition
destination status, as systeK activity was quiesced at controlled
shutdown.

On emergency restart, CICS/VS utilizes logged intrapartition data
set activity of tasks which completed execution fcllowing an activity
keypoint, to update the DCT (for the destinations used by those tasks)
to reflect their processing activity. The activity of in-flight tasks
on intraFartition destinations is tacked out, to return those
destinations to their status as if those tasks had never commenced
execution.

Intrapartition data set recovery is not supported by the subset
option of CICS/Des/vs.

RECORDING OF CICS/VS FILE CONTROl DATA SET MODIFICATIONS

Data set modifications may optionally be autosatically logged by
the CICS/VS file centrel FIogram during nor.al operation, to either
the system log data set and/er a separate us~r jcurna1 data set. The
processing carried out by in-flight tasks may also have resulted in
modification tc us~r data sets. These data set modifications may
comprise data set record updates, additions, or deletions, and can
subsequently be used during emergency restart to tack out those
modifications made by uncoapleted tasks.

Automatic logging is not supported by the subset option of
CICS/DOS/VS.

CICS/VS FILE CONTROL DATA SET BAC~OUT

During emergency restart, CICS/VS collects (froa the system log data
set) logged records for in-flight tasks which describe user data set

Chapter S. CICS/VS Recovery and Restart 225

modification activity carried out by those tasks. (User journaled
records written ty those in-flight tasks to the system log are also
collected.) These ccllected:records ~re written by CICS/VS, during
emergenc:y restart, to the restart data set. The iJlformation on this
restart aata set is used by the transaction tackcut program, which is
executed as part of CICS/VS emergency restart to back out modifications
made to those user data sets by in-flight tasks.

Data set backout.is net supported by the subset option of
CICS/DOS/VS.

TRANSACTION RESTART ON SlS~E! RESTART

CICS/VS does not provide support for automatic transaction
reinitiation on system restart. This support, if required, aust be
provided by user-written rcutines. £uring CICS/VS execution,
VTAft-supported terminal input transactions may be logged by CICS/VS if
specified as "prctected" by the user in the PC~ fer specific transaction
codes. 'Ihe input messages for in-flight tasks are collected ty the
transaction backout prograa during eaergeJlcy restart and ~ransferred
to temporary storage. They can te:retrieved fro. temporary storage
based upon the identification of the terminals that entered the
in-flight transactions. A user-written transaction restart program
may reinitiate each tacked-out task, to reprocess. its relevant
transaction. A technique is described in this chapter for the design
of such a transaction restart prc~raa.

CICS/VS also logs the last output message that is transmitted by
"protected" tasks to VTA!-SufPotted terminals. These are referred to
as "committed output messages," and they require a pcsitive response
indicating receipt by the relevant ViA! terminal. This response is
also logged. On emergency restart, eICS/VS can determine whether a
committed eutput message was recEived by the relevant terminal prior
to the uncontrolled shutdown. If it was not received, it is transferred
to temporary storage as previously described for input transactions.
The 3600 enables committed output messages to be retransmitted to the
relevant VTAM logical unit on emergency restart for messagE recovery
and resynchronization.

The r4:cover y suppert pro.ided by eICS/VS and that support which must
be provided by the user are summarized in Figure 8-1 for easy. reference.

The rE:mainder of this cha pter describES the CICS/VS BAS facilities,
outlined previously, in more detail. It discuSSES particular instances
when each facility may be utilizEd, and outlines various design
approaches which may be adopted ty the user. The remainder of the
chapter will cover each facility in the sequence presented in Figure
8-1.

226 CICS/VS System/Application Design Guide

CICS/OSNS
CICSNS- User-

Recovery Activity Provided Provided

Recovery FromProgram Errors And Abnormal Termination
ABEND codes Marked System-Recoverable in SRT YES

- ABEND codes Marked User-Recoverable in SRT

Reestablishment Of CICSNS System
- Cold Start Of CICS/VS
- Warm Start After Controlled Shutdown
- Emergency Restart After Uncontrolled Shutdown

Emergency Restart Following System Failure
Due To Power Failure
Due To Machine Check
Due To Operating System WAIT/ABEND
Due To CICS/VS Partition/Region ABEND

Recording Of CICS/VS File Control Data Set Modifications
- Automatic Logging Of Data Set Modifications

CICS/VS File Control Data Set Backout
Identification Of Inflight Tasks On Emergency Restart
Collection Of Data Set Activity Of Inflight Tasks On
Emergency Restart
Data Set Backout On Emergency Restart

Temporary Storage Recovery
- On Warm Start After Controlled Shutdown

Logging Of Temporary Storage Activity
Temporary Storage Recovery On Emergency Restart

Auxiliary Storage Residence
- Dynamic Storage Residence

Transient Data Extrapartition Data Set Recovery
- Journaling Of Extrapartition Data Set Activity

Extrapartition Data Set Recovery On Warm Start
After Controlled Shutdown
Extrapartition Data Set Recovery On Emergency
Restart After Uncontrolled Shutdown

Transient Data Intrapartition Data Set Recovery
On Warm Start After Controlled Shutdown
Logging Of Intrapartition Data Set Activity
Intrapartition Data Set Recovery On Emergency
Restart After Uncontrolled Shutdown

Transaction Backout On System Restart
Auto'matic Logging Of Terminal Input And Output
Messages (VTAM Terminals Only)
Identification Of Inflight Tasks On Emergency Restart
Collection Of Logged Terminal Messages For Inflight
Tasks

- Transaction Restart On Emergency Restart
- Message Research Of Committed Output Messages

In Doubt
Recovery From Terminal I/O Errors

Detection Of Terminal I/O Errors
Terminal/Node Error Program Recovery
Dynamic User Terminal Reconfiguration

Recovery From Disk I/O Errors

YES
YES
YES

YES
YES
YES
YES

YES

YES

YES
YES

YES
YES

YES

YES
YES

YES

YES
YES

YES

YES

YES
YES

YES

YES

YES

YES

YES

YES

YES
YES

CI CS/DOS/VS
CICS/VS­
Provided

YES

YES
YES
YES

YES
YES
YES
YES

YES

YES

YES
YES

YES
YES

YES

YES
YES

YES

YES
YES

YES

YES

YES
YES

- Detection Of Disk I/O Errors YES YES

User­
Provided

YES

YES

YES

YES

YES

YES

YES
YES

- Common User Disk Error Recovery YES YES

Figure 8-1. Su •• ary of Becovery Procedures Provided by CICS/VS and
by User

Chapter 8. CICS/VS Becovery and Bestart 227

CICS/1S supplies a system recovery program (SEP), which provides
logic for the recovery fre. varieus Fregram-check interrupts. In
addition" the system recovery program handles partition/region ABEND
recovery iDplemented within the system recovery table or within user
routiness.

The system recovery program (SRP) is a component of the reliability,
availability, and serviceability (EAS) features ef eICS/VS. In the
event of CICS/VS abnormal terDination by the operating systeD, the SRP
regains control through use of the S~AE and SPIE macro instructions of
OS/VS, or the STIlT Dacre instruction of DOS/VS.

PROGEAM CHECK INiERCEPTICN lti SRF

If a program check occurs during execution of a ClCS/VS application
program, the SRP interceFts the interrupt at the OS/VS SPIE or DOS/VS
STXIT routine defined in the SRP. ihe handling of the program check
depends cn the point reached during execution of the application
program. The following situations are identified by the SRP:

• Progl:am Check in storage ContJ:ol

• Progl:am Check in Application
Program

• Frogl:am Check in CICS/VS System
Module

RIggI~.!! !~.h.§£! ill ~!g~ig! ~~Y2!

SEP activates storage
contrel recovery

SEP AEFNDs the task

SRP AEENDs the
partition/region

If the program check occurred with the storage contJ:oi program
executing, SRP passes control to the stoJ:age control recovery program
(SCR) • I(Generally, such a prograa check occurs if a storage accounting
area (SAl) or storage chain Fointers have been destroyed by prior
incorrect execution of an application prograa.) The SCR attempts to
recover the destroyed information using either a duplicate SAA appended
to each allocated storage area, cr by using forward and backward chain
pointers connecting free area queue elements (FAQE). If recovery is
successful, the storage vielation is noted in the CICS/VS statistics
and task execution continues. If recovery is unsuccessful, a program
control ABEND macro instruction is issued to ABEND the task. This
activates progJ:aa-level ABEND exit routines associated with the task
as described later in this chapter.

If the program check occurred in a CICS/VS application program, the
task is abnormally terminated with a program control ABEND macro
instruction. This activates program-level ABEND exit routines
associated with the task (see Figure 8-2).

If thE! program check occurred while a CICS/VS management module
(such as task control) was executin9~ the SRF issues a DOS/VS or OS/VS
user ABEND macJ:o instructicn to ABEND the entire eleS/VS
partitioll/region. This is irtercepted by the OS/VS STAE or DOS/VS
STIlT routine defined in the SRP. ~he SEF may attempt recovery or

228 CICS/VS systeD/ApFlication Design Guide

recording of application dependent information pricr to initiatirig a
centrolled shutdcwn.

eles/vs FARTITION/REGION AEEND

The eleS/VS system recovery program determines what action must be
taken under the varieus ~artition/region ABEND conditions. This
determination is made froD irferBatien defined by the user in a System
recovery table (SET). In the case of DOS/VS, if the system recovery
program determines that eleS/VS execution cannot ccntinue, it Day
attempt to exercise the recording cf vital information so that eles/VS
can be warm started. If the recerding of vital information is
impossible and the shutdewn is uncentrolled, the user must subsequently
conduct an emergency restart or, instead, a complete cold start of
eleS/VS.

SYSTEM RECOVERY TABLE

The system recovery table (SRT) utilized by eleS/VS contains
user-specified entries fer selected ABEND codes, and identifies them
as either system or user AEEND cedes. A program to be given control,
or a routine within the SRT, is identified.

Through the use of the system recevery table it is possible to
identify various eleS/vS-issued C5/VS and DOS/VS system and user ABEND
codes, and to indicate whether the AEEND error can be recovered by
eleS/VS or by user routines. This gives the user considerable control
over the termination of applicatien Frograms and of the eleS/VS system.

Upon detecting a partition/region ABEND situaticn, the SRF gains
control and scans the SRT to determine if the ABENV code passed to it
is in the table. If an entry for thE ABEND code sFecif~ed is found in
the table, the associated recovery rcutine is scheduled.

If the ABEND processing reutine is resident in the SRT, control is
given to that routine. After preCEssing is complete, control can be
returned to the SRP specifying that the partition/region is to be
abnormally terminated, or (only for eleS/OS/vS) whether the
partition/region can continue precessing. Since an OS/VS ABEND can .be
recovered from, eleS/OS/vS allows the user te avcid ABENting the entire
partition or region. The tOS/VS supervisor does net permit recovery
from a partition ABEND and dces not allew the user to avoid the ABEND.
However, the user may record informatien for a subsequent warm start.

If a nonresident ABENt processing routdne is a Fr6gram, control is
given to that prcgram thrcugh a Fregra. ccntrol LINK. UFon return to
the SRF, the same options may be specified as in resident processing.

If no ABEND code is preSEnt in thE SET (or if rEcovery is
unsuccessful), the task and the eleS/VS partition/region are abnormally
terminated. During such task.termination, any program-level ABEND
exits for the task are processed. Following this, the user's
installation-level program error program is giver c0ntrol, and a
ccntrolled shutdown if attemlted.

Since a partition/region ABEND may occur at any time, a number of
tasks may be in-flight at the time of the ABEND. Although the SRP
attempts a centrelled shutdown by recording information for a subsequent
warm start, the user may wish to do an emergency restart to back out
the processing carried out by the in-flight tasks.

A similar situation may occur if the master terminal operator
attempts a controlled shutdown and specifies immediate termination of

Chapter 8. eleS/VS Recovery and Restart 229

CICS/VS. (See ~l~~Ll~ 31§!~! Ad!i~i§!;S!R~§ ~ids, S820-9006.) Tasks
which were in-flight at immediate termination may need to be tacked
out by an emergency restart.

FROGBAe CONTBOL JBENt EECOESTS

Program contrcl ABEND macro instructions, issued either by ClCS/VS
application programs or by CICS/VS, are intercepted by the program
control program. Control may be passed to program-level ABEND exit
routines (see Figure 8-2) specified ty each separate program level
reached as the r~sult of a program control LINK macro instruction.
These ABEND exit routines may:

• Attempt recovery and retry of the situation ~h~h caused the ABEND
to be requested

• Becord application-dependent infcrmation for later recovery and
permit the AEEND to continue

• Choo~e to ignore the ABEND and specify that normal execution is to
continue

control is then fassed to the next higher prcgram.level whose relevant
ABEND exit routine is given centrol if the ABEND is permitted to
continue~ If the ABEND is ignored at the lo~er ABEND exit, control is
returned to the stateaent following the LINK macre instruction whic~
originally activated the lewer level program.

FROGEA~ lEVEL JBENt EXI~ RCU~INE

program-level ABEND exits are SUFForted by CICS/VS, so that
user-written routines can ~move the effects of incorrectly executing
tasks. The exit is activated and deactivated by a CICS/VS SETXIT macro
instructicn coded in an ap{lication {regram (see "SETXIT Program
Processing" in this chapter). The exit routine may exist either as a
separate program, or as a routine ~ithin the program issuing the macro
instruction.

Once a program control ABEND cccurs in a task and a SE~XlT exit
routine has been entered, any of the fcllowing three ways can be used
to terminate the exit routine processing:

1. Issue a prograa ccntrcl RETURN macro instruction to continue
processing this task as if the ABENt had nct occurred. In this
case, co~trol is passed tc the program on the next higher logical
level (at the statelent fello~ing the LINK macro instruction)
OJ~, if the program in control at the time of the ABEND ~as at
the highest level, the task is normally terminated by CICS/VS.
(See A in Figure 8-2.)

2. Issue a program control AEEND ~acro instruction to continue with
AEEND processing. This may indicate execution of a specified
exit routine for a prcgram on a higher logical level, or at the
higbest level may cause a LINK to the CICS/VS abnormal condition
program to complete the atnormal termination. (See B in Figure
8-2.)

3. Branch to a point in the prcgram tbat was in control at the time
of the ABEND, and attempt to retry the operation. (See C in
Figure 8-2.)

230 CleS/VS SysteR/Application Design Guide

~~Il11 gI~g!g! gIQ~~~siD9

In order to activate the exit for a particular task, the application
prcgram may issue the prcgram control SETXIT macro instruction at each
program level reached by a LINK macro instruction. (See Chapter 2.)
This identifies either the name ef a separate prcgram or of a routine
within the abnormally terminated program, to which ccntrol is to be
passed if an ABEND occurs while that program level is in control. If
the program level, after further processing, wishes to cancel the exit,
it issues a SETXIT ma~ro instructicn without specifying a program or
routine name.

The program control SETXIT macro instruction can be issued by any
Assembler Language, American National Standard (ANS) COBOL, or PL/I
program. The ability to pass control to a specified routine or program
on a program ABEND, conceptually allows it tc be iaplemented in a manner
somewhat similar te that provided by PI/ION-conditions. However,
normal PI/ION-conditions cannot he utilized in CICS/VS PL/I application
programs.

In program-level ABEND exit routines defined for a task, the user
may wish to record applicaticn-dependent infcrmatien relating to that
task prier to its abnormal terminatien. He may also attempt dynamic
hack out of that task's specific activity through user-written routines.
(See "Dynamic Task Backout" later in this chapter.)

PROGRAM ERROR PBCGRAM (PEP)

A program errer program (PEP) capability is provided by CICS/VS, to
offer an opportunity for a user-written program error program to carry
out installaticn-level action follcwing a prcgram error. Such action
may involve the recording of application-dependent information, for
utilization by user-prograDs when CICS/VS is reinitialized.
Alternatively, a generalized dynamic task backout routine may be
developed by the user.

The PEP is given control during the processing of abnormal task
termination through a LINK from the abnormal condition prcgram (ACP)
of CICS/VS after all program-level AEEND exit routines have been
executed by the ABENting task. Included in the data passed to the PEP
are the FCT andPPT entry addresses for the transaction code which
initiated the program, and the AEEND code. The FEP can decide that
CICS/VS is to mark the PCT and/or FP~ entry as disabled (inaccessible)
when control is returned to the ACP. ~he user may perform any
additional functions he desires. The ACP will write a message
indicating abnormal task termination to the master terminal destination,
and indicate if the PCT and/er PFT entries have teen put out of service
(disabled). Any further infcrmaticn to be passed to the master terminal
operator may be written by the user-developed PEP.

The PEP is given control on any program control ABEND requested by
a user or system module, with the exception of a fcrced ABEND, in an
effort tc alleviate a stall situation. In this case, if the LINK to
PEP would be suspended because of a shortage of storage, the LINK does
not take place and no actien is taken against the FCT entry. A message
is sent to the master terminal destination stating that the PEP was
not executed, so that the gaster terminal operator can disable the PCT
and/or PFT entries, if desired.

Chapter 8. eICS/VS Recovery and Restart 231

PROG1

DFHPC TVPE=SETXIT,
ROUTINE=~BEND1

DFHPC TVPE=LlNK
PROG RAM=PROG2

DIFHPC TVPE=ABEND,
ABCODE=ERR1

ABEND1

®

DFHPcl
TVPE=J:j

DFHPC
TVPE=RETURN

.PROG2

DFHPC TVPE=SETXIT,
ROUTlNE=ABEND2

®

DFHPC
VPE=RETURN

®

DFHPC
TVPE=ABEND

Figure 8··2. Program-Level ABEND Exit ProcEssing

232 CICS/VS systew/ApI=lication Design Guide

SYSTEM RECOVERV
PROGRAM

DFHPC
TVPE=ABEND,
ABCODE=ASRA

PROGRAM CONTROL
PROGRAM

ICT/PPT DISAELE AND ENAELE

CICS/VS provides suppcrt for the disabling of transaction codes and
programs following their abncrmal termination, and their subsequent
enabling when the particular protlem has teen rectified.

If an applicatien prcgram abnermally terminates (perhaps because of
a program check er a program control AEEND macro instruction), the
user, in a SETXIT routine or in the FEP, can flag the appropriate
transaction code entry in the PCT, and the program entry in the PPT,
as disabled. Any further attempt ty terminals cr programs to use that
transaction code and/or prcgram will be rejected by CICS/VS until the
transaction code and/or prcgram are enabled again. Consequently, the
effect of program checks can be minimized, so that every use of the
offending program does not result in a program check. Only the first
program check is processed, and, if the PEP indicates that the PCT
and/or PPT entries are to be disabled, subsequent transaction codes
for that program will not te accepted by CICS/VS.

Fcllowing correction cf an application program, the relevant PCT
entry for the transactien code and FIT entry for the program can be
enabled ty the master terminal operator, to allow terminals to utilize
that transaction code and prcgram again. The master terminal operator
can also disable transaction codes and programs when transactions are
not to be accepted fer applicaticn-dependent ~easons, and enable them
again at a later time. (See the ~~~L~ ~!~m A9!iDi§!~ato~!§ §y!g§,
SH20-9006.)

DYNAMIC ~ASK BACKOUT

The user may wish to atteDpt dynamic backout of an ABENDing task's
activity, either in program-level ABEND exit routines defined f9r that
task, or in the program error program (PEP). User-written support
placed in the various pregra&-leve~ ABEND exit routines can be tailored
to the specific processing carried out by the ABENDing task. Since
only one PEP can be used by CICS/VS, suppor~ in the PEP must be more
generalized and able to be used for all tasks in the installation.

During normal CICS/VS operation, task activity may be automatically
logged to the CICS/VS sytem log. This may include file control data
set modifications, transient data intrapartition activity, temporary
storage activity, and input and cutput terminal messages for tasks
defined as protected in the FCT.

CICS/VS journal contrel permits data to be read from the CICS/VS
system leg or_user journal data sets during normal eICS/VS operation.
(See "Journaling" in this chapter.) A user-written dynamic task backout
routine may read logged activity belonging to the ABENDin~ task from
the CICS/VS system log. ~his activity can be extracted from the system
log by user-coding using logic similar to that used by the CICS/VS
recovery utility program (BUI) during emergency restart. (See "CICS/VS
Becovery utility Program" in this chapter.) The AEENDing task's
activity can then be backed out ty user-coding using logic similar to
that used by the CICS/VS transaction backout program. (See "eICS/VS
Transaction Backout Frograa" in this chapter.)

However, the effect of reading the CICS/VS system log on the
execution of other cencurrently executing tasks must be considered.
To ensure integrity of the system log, system environment, and user
data sets, a task that reads to the system log (for dynamic task
backout, for example) is given exclusive control by CICS/VS of that
system leg. The log is placed in input status and any tasks which
require the log to be in output status (for a write) must wait until
it is returned to output status ty the task reading the leg. Therefore,

Chapter S. CICS/VS Eecovery and Eestart 233

any tasks which initiate auteDatic: logging activity will wait; the
entire online system may subsequently be brought to a halt while the
dynamic task backout is perfermed~

This may impact online service te terminal users and may not be
desirable. The following alternative approach, related more to the
application characteristics, may be considered.

Many online applications have specific application backout
requirements which require processing similar to that needed for dynamic
task backout. For example, an order entry application in the
distribution and pharmaceutical industries may have to permit
cancellation of crders befere order completion by the terminal operator
if insufficient stock is available to satisfy a requirement for certain
items in the order. An incorrect banking or insurance transaction may
have to te voided by the terminal OpErator. A manufacturing work order
request may have to be reversed tecause of unforeseen unavailatility
of equipment or raw materials.

An ap~roach, which may te ado~ted by these ap~lications to Fermit
reversing (or backing out) requests to be accepted by the system, is
to record each input message relating to the operation (such as each
line iter in an erder) on telporary st~rage. If the operation is
completed normally, those input messages can be Furged frem temporary
storage at the End cf the crder. However, if the terminal operator
requests backout of the operation {cancellation of the order), all of
the input relating tc that oFeration is available on temporary storage.
A user-written program can retriEve the original input messages and
reprocess them to reverse thEir Effect on various data sets. For
example, cancellation of an order will require that the stock
availability of each previcusly acceFted line item be adjusted to
reflect the cancellation of the earlier order. 1his results in an
increase in stock availability if the stock availability was earlier
decreased when the line item was first accepted. Similar reversing
activity would be carried out for each of the other previously described
application examples.

The cancellation cf the order, as previously described, was initiated
at operator request. A Frcgram check, or program ABEND, is a
system-initiated requirement to cancel further precessing by the
offending task. Dynamic task backout is a system-initiated requirement
to reverse that task's processing up to the point ef abnormal
termination. As previously described, the application backout code
may be utilized for dynamic task tack cut.

Applicatien programs sheuld be written to reccrd all relevant input
messages on temporary stcrage. Eefore fields in data sets are updated
(for example, to reduce stock availatility by the quantity ordered for
the relevant product), the program should test a program switch to
determine whether, for example, the quantity ordErEd is to decrease
the stock availatility or increase it. This switch would normally be
set to decrease availability for an erder, or increase availability
for a receipt into inventory. The appropriate update activity is then
carried out, based on the status of the program switch.

with this program design, cancellation of the order can be initiated
on terminal operator request by having the application program first
setting the program switch to indicate receipt back into inventory,
and then executing the original Frcgram which first accepted the line
item. Similarly, on a program ChECk or ABEND, the program switch should
also be set to indicate receipt back into inventery. This is done in
the program-level ABEND exit routines for the ABENDing task. These
routines may be Fart of the crder entry program. After setting the
switch accordingly, each input message can be read from temporary
storage ty the AEEND exit routine and supplied to the order entry

23q CXCS/VS System/Application Design Guide

program for processing. This precessing ~ill now back out each input
message's activity against data sets based on the Frogram switch status.

The result is system-initiated task cancellation, and user-developed
dynamic task backout withcut requiring access to the CICS/VS system
log. The system log is then only used for emergency restart following
uncentrolled shutdewn.

The previous discussion is oriented toward dynamic task backout
against file control data sets. The same approach may also be used
for eL/I data bases. Once the order entry program retrieves the
relevant segment, it may te updated based on a reduction in inventory
(an erder) or a receipt into inventory (backout ef an order). In either
case. the updated DL/I seg&ent replaces the segment in the data base.

PROGRAM EACKUP

CICS/VS does not provide specific support for Frogram backup.
However, a number ef CICS/VS facilities may be employed by the user,
as described in the following paragraphs.

To prEpare for the possibility of program checks occurring in a
particular versien ef an aFplicaticn program, an earlier version of
that application program can also be pr.sent in the PPT, and identified
in the PCT by a unique transaction code. This earlier version can be
utilized as a backup program in the Event of failure of the current
version. A technique fer Frogram backup is descrited below. This
considers the situation in which changes to a correctly operating
program may intreduce errors, and assumes that the previous version of
the program may be used for tack up until the errcr is corrected
(assuming that the earlier program still provides the facilities
required by the online applicaticn. and is suitablE for temporary use
by the aFplicaticn).

If a program check cccurs in the new version of the program, the
PCT and PPT entries may te disabled by CICS/VS er ty the user-written
PEP. Through the use of the CICS/VS message switching transaction
(CMSG - see Chapter 3), terminal operators may be notified by the master
terminal operator to use another transaction code, which will initiate
an earlier version of the Fregram in error (see figure 8-3).

This technigue requires terminal operators to change their operating
FrocedurEs. It lay intreducE ter.inal operating procedure difficulties,
as it reguires the ter.inal cperator to utilize that alternative
transaction code until subseguently notified by the master terminal
operator that the original transactien code can te used once more.

This notification would be madE when the prograa in error has been
corrected, recataloged to the CICS/VS Frogram library, and the PPT
updated by the CICS/VS-provided master terminal eperator transaction
(CSMT) to point to the corrected Frogram. (See "Online Program
Maintenance" in this chapter.) Fellewing this, the CICS/VS master
terminal operator transaction may be utilized to enable the relevant
PPT and PCT entries, to activate the program and transaction code 8gain.
A CMSG transaction may then notify terminal operatcrs of this fact.

The correction ef the error program, and subsequent activation of
the original transaction cede, may take a considerable amount of time.
During this time the terminal oFErator must remember to use the
alternative transaction code (and transaction format if the backup
program demands a different format). If the ter.inal operator does
forget, and instead uses the original transaction code for the program
in error, CICS/VS will notify him that the transaction code and/or
program is disabled.

Chap~er 8. CICS/VS Recovery and Restart 235

If a mew terminal operator later signs onto CICS/VS, he may not
receive the master terminal cperator message notifying him to use the
alternative transacticn code. Similarly, a terminal operator may forget
to use the alternative code. To allcw for these situations, the
terminal operating procedures should indicate that if a CICS/VS message
is received indicating that a transaction code and/or program is
disabled" the terminal operator should refer to a user-provided table
in the UEer's terminal cFerating procedures documentation, which
identifies the alternative transaction code to be utilized.

The atove program backuF technique does not require any modification
of CICS/'VS, but does require different terminal operating procedures
to be adopted until the error prcgram is corrected. The user must
weigh the difficulties which theSE different operating procedures
introduce in his applicaticn envircnment, with the problems involved
if the functions carried out by the error program are unavailable to
the terminal users.

INPUT PROCESSING OUTPUT

Program Check

~Term;nal .
Code Message :> 1. Terminal operator enters input message: ..

2. Program check occurs in program

pro~
initiated by transaction code in

:> terminal message:

3. User's program error program is given r PPT

control, if specified. PCT

0 Trans Code
4. User's program error program accepts & Program'

Tran PCT ..
CICS/vS disable of PCT and PPT. > . Disabled I--

Code :> r .,.

Program Backup

5. Master terminal operator uses CMSG ..
"Please Use > message switching transaction to route
Trancode X

message termi nals specifying that Instead Of
alternate trans code is to be used. Trancode Y"

Alternate trans]
..

rn~>
6. When alternate trans code received, ---

(
backup program will be used.

Program Recovery

\ Backup
7. Error program is corrected, and re- I PPT

I Program

[]U~
cataloged to CICS/VS program library.

(
~

PCT
8. Master terminal operator enables origi- > Trans Code

nal transaction code, and corrected
....

& Program

~
program, for use again. Enabled .-

9. Master terminal operator broadcasts
~ D message to all terminals specifying >

original trans code to be used once
more.

Figure 8-3. Program Backup !echnique

DUMP DAT;" SET

If a program check or program control ABEND occurs, a program dump
of all the storage associated with the task in error is automatically
produted by CICS/VS. This includes any applicaticn programs which have
been linked to, or any terDiDal I/O areas, file I/O areas, file work
areas, amd other working storage utilized by that task.

23E CICS/VS system/Application tesign Guide

These program dumps are directed to one of two dump data sets.
Relevant CICS/VS areas such as the CSA (common system area) and TCA
(task control area), together with the associated terminal control
table entry for that task, are also dumped.

Two dump data sets are utilized by CICS/VS, but only one is in active
use at a time. Any program dump, resulting from abnormal termination
or use of the CICS/VS dump centro1 macro instructions issued by
application programs, is directed to the active dump data set. The
master terminal operator can indicate that the second dump data set is
to be made the active dump data set, and the first dump data set is to
be left inactive. This switching of dump data sets is accomplished to
enable dumps previou:s1y written to a dump data set to be printed from
that data set while CICS/VS execution is in progress. The printing of
dumps is achieved through the use of the CICS/VS dump utility program,
which may be executed in a batch partition concurrently with CICS/VS.
(see the relevant CICS/VS Operations Guide for DOS or os.)

ONLINE PROGRAM MAINTENANCE

CICS/VS provides support for online program maintenance. The master
terminal operator is notified by CICS/VS when an abnormal program
termination occurs. If a hard-copy terminal is used for such automatic
master terminal operator output, that indication will be immediate,
provided the terminal is in service and not presently being used for
other terminal I/O. Depending upon the severity ot the problem, the
master terminal operator may decide to switch durop data sets and run
the CICS/VS dump utility program in another partition to print the
particular offending dump as soon as possible. That dump can then be
passed to maintenance programmers for debugging and correction, while
CICS/VS execution continues for other application programs.

When the error is corrected, and the corrected version of the program
is compiled and cataloged to the CICS/VS program library, the master
terminal operator can alter the processing program table entry for that
program to point to its newly link-edited version. This is achieved
by the master terminal operator transaction (CSM~) provided by CICS/VS
(see CICS/VS System Administrator's Guide). Program maintenance and
correction can therefore proceed together with CICS/VS execution.
Following correction of the program in error, the relevant PPT and PCT
entries may then be enabled by the master terminal operator, to allow
the corrected program and transaction code to be put into active use
again. (See "Program Backup. It)

KEYPOINTING OF CICS/VS

The function of "keypointing" is to collect selected system
information to be used in a subsequent restart. CICS/VS provides two
types of keypoint:

• Warm keypoint

• Activity keypoint

These functions are described in the following paragraphs, together
with two other recovery facilities:

• Logical task synchronization

• Protected resources

Chapter B. CICS/VS Recovery and Restart 231

SYSTEM WARM KEYPOINTS

A system warm keypoint is written by the CICS/VS-provided keypoint
program as part of controlled shutdown, when all system activity has
been quiesced. It is used during a warm start of CICS to restore the
operating environment following a controlled shutdown. The following
information is recorded as part of a warm keypoint:

• FCT - File status (disabled, enabled, closed, read-only)

• TCT - Terminal and line status and negative poll delay (for
nonswitched terminals)

• DCT - Intrapartition destination status

• TST - Temporary storage control blocks and data set bit map

• ATP - Asynchronous transaction processing control blocks

• ICP - Interval control outstanding requests

• PPT/PCT - Disabled entries

• CSA - Information in the common system area; for example,
storage cushion size, ICV, rcvs, ICVR, and MAXTASK

The above information is written to the CICS/VS restart data set
just prior to a controlled shutdown. Since the system may be
inoperable, this function is performed without the use of CICS/VS macro
instructions. The addresses of the data are also checked for validity.

SYSTEM ACTIVITY KEYPOINTS

The purpose of system activity keypoints is to indicate to CICS/VS,
during an emergency restart, the user tasks active at the time of the
keypoint, the status of transient data intrapartition destinations,
temporary storage data identifications, and terminal control table
status for VTAM-supported terminals. This is used to minimize the
amount of emergency restart activity necessary.

A system activity keypoint is written periodically by CICS/VS during
normal operation, to record on the system log data set the processing
activity status of CICS/VS and user tasks at the time of the keypoint.
The frequency of recording system activity keypoints is a function of
the numbfer of output operations to the system log. This frequency may
be specified by the user either at CICS/VS system generation or at
system initialization, and may also be dynamically changed during online
operation through the use of the master terminal operator transaction
(CSMT). The frequency of the activity keypoint, and the amount of
journaling performed by active tasks, determines the amount of data on
the system log to be processed when CICS/VS is restarted. The amount
of this data will influence the duration of the CICS/VS emergency
restart.

The information recorded by the system activity keypoint comprises
the following CICS/VS tables and control blocks:

• TCAs

• DCT

• TST

status of tasks that have at least logged one record or
have completed a LUW by issuing a sync point

status of transient data intrapartition destinations

status of temporary storage unit table entries

238 CICS/VS System/Application Design Guide

• TCT identification of terminals waiting for response to
committed out~ut messages (see later)

The activity keypoint function is initiated hy the transaction CSKP
which is attached pericdically by the journal control program (JCP).
This transaction transmits system data to the system log and then issues
a conditional link to a user activity keypoint prcgram, DFHUAKF. The
purpcse cf this facility is to allow the user to insert
application-dependent information in the system activity keypoint. In
order to operate properly, the program must te resident and should use
only storage control and journal centrol functions. Journal operations
should be asynchronous without start I/O. Synchronization is provided
by an end-of-keypoint synchronous record, written by the activity
keypoint program at the end of key~oint processing. The user should
ensure that the keypoint transaction has higher ~riority over other
tasks that are eligible tc leg data.

During an emergency restart, the recovery utility program (RUP)
copies tc the restart data set only that data which has been output by
in-flight tasks (tasks that were still active at system termination
time). In order tc force EUf to cCIY user activity keypoint data to
the restart data set, the user must provide a journal record identifier
with the high-crder bit eN in the record ID field of the user key point
data record. Befer to the ~1~SL1~ ~~§!gm fI2g!!JJ§!~§ i§!e,e~ H!YY!!
for more detail. The user keypoint should be used to keypoint only
limited amounts of data, for example, selected user data or tables.

LOGICAL TASK SYNCHBONIZATICN

Logical task synchrcnizaticn defines the completion of a logical
unit of work (and the intent to begin another). It enables the user
to split a long duration task into lcgical units of work ef short
duration which hetter fit the task's recovery reguirements. A logical
unit of work (LUW) is a user unit of work which performs a complete
processing function. One task may perform a com~lete LUW, or several
LUWs may be performed, as idEntified by the user's application program.
The completion of a logical unit of work is referred to as a "sync
point" (synchronization ~oint), and may be explicitly defined hy the
user task (see ~I~~LVS !~~li£!!!~y f!Q£~!!!~X!§ E~~ren£~ !!~yal). A
sync point is generally implicitly defined to be at the completion of
processing of an entire task. The com~letion of a logical unit of work
indicates to CICS/VS that:

• All updates or modifications performed by the task up to that point
in time are logically completE, and should nct be backed out in
the event cf a subsequent system failure.

• Functions requested prior to the. synchronization point, but deferred
until the end of the lcgical unit of work, shculd he initiated.
An example of this is a transient data track release function which
is performed at end of LUW, in the case of recoverable
intrapartition destinaticns.

• All resources which were protected by the task up to this point
will be released. Such a resource may be a transient data
intrapartiticn destinaticn which is legically associated with a
task (see "Protected Bescurces," following).

The lccation cf a sync Ioint for a task on the system log, relative
to other journaled activity fcr that task, determines the extent to
which CleS/VS may need to prcvide transaction backout.

Transient data intrapartition data set activity of tasks which had
not reached logical task synchronization (a sync peint), at the time

Chapter E. CICS/VS Eecovery and Restart 239

of an uncontrolled shutdown may te backed out by CICS/VS to the previous
sync peint for that task (cr to the start of the task) on emergency
restart.

Sync points are also used by eres/vs to delimit the extent to which
user data set modificaticns may need to be backed out for tasks which
had not completed a logical unit of work at the time of an uncentrolled
shutdown. ClCS/YS collects all user data set modifications during
emergency restart, only for tasks which had nct ceupleted a logical
unit of work at the time cf an unccntrolled shutdown. These data set
modifications are copied by eICS/VS to the restart data set during
emergency restart. They are read by the CICS/VS transaction backout
program to back out the data set modifications made by tasks which
fail~d to complete a logical unit of work. This is discussed in more
detail in "User Data Set Eackout" later in this chapter.

FECTECTED BESOUECES

consider the following example ef two tasks which update the same
record in a data set. Task A gains exclusive control of the record,
updates it, and releases exclusive centrol. Then task B gains exclusive
control, updates the reccrd, and cemFletes nermally. However, task A
could not complete normally because of system termination.
Consequently, the effect of the ~artially completed task A must be
backed out on restart. When task A's update is backed out, the update
of task E will also be backed outu erroneously.

To avoid this, CICS/VS Frcvides a protection facility to enqueue a
task on specific recerds which are being updated, deleted, or added
using "protected" data sets (defined in the FCT entry LOG=YES). The
enqueue applies until the end of a logical unit of work, and protects
records from subsequent modification activity by ether tasks, until it
is determined that the lcgical unit of work is completed.

When task A issues a file centrel GET for update, Cles/yS enqueues
explicitly on that record. It then reads the record from the data set
and logs the input record to the system log. When the task issues the
subsequent POT, to update the record, CICS/VS does not dequeue its use
of that record until task A indicates completion of a logical unit of
work. ClCS/VS then dequeues the task from the data set record.

In the meantime, if task E wishes to update the same record, when
CICS/VS enqueues on that recerd, the task is placed on the suspended
task chain by CICS/VS until task A completes and dequeues from the
record. Task B then gains ccntrol of the record and carries out its
update. If the system terminates before the completion of task A, the
task A update can be backed out without affectingcther processing of
the record because task A had exclusive control of the record of
termination.

Enqueuing on the record fer the duration of the task therefere
protects the reccrd from pcssible less of an update made by a completed
task, because of backout of the uFdate of a partially completed task.

The same procedures also apply to additions and deleticns.

Similar protectien is carried cut by CICS/VS for transient data
intrapartition destinations. Only one task at a time is permitted to
access an intrapartition destinatien for input and one is permitted to
access it for output. The destination is regarded by CleS/VS as two
separate resources--one input resource, and one output resource.

By serializing updates as described above, the integrity of the data
set follc~wing backout en restart is Frctected. However, this may have

240 CleS/VS system/Application Design Guide

some effect on performance if several tasks are operating on the same
resource at some time during their combined total period of execution.
~his effect on performance must te evaluated in terms of improved
integrity.

The user should recognize the possibility of a lockout occurring if
several tasks attempt to update two er more records concuIrently in a
protected data set (FCT LOG=lES), and the records are not accessed in
the same sequence by each task. This is illustrated in the following
exam~le.

Consider an order entIY aFplication, which accepts orders for several
products in the same CICS/YS transaction. ~his transaction updates
the stock availability fcr each Froduct in a product data set, that
specifies automatic logging in its FC~ entry (LOG=lES). If one terminal
enters a transacticn for crders against product numbers 638, 815, and
1068, the application program will update those product records.
CICS/YS file control will en9ueue against each reccrd until the task
passes through a user-synchrcnizaticn point, or terminates. If another
terminal also enters a transacticn at the same time for orders against
product numbers 501, 1068, and 815, an enqueue interlock will occur on
product numbers 815 and 1068, and neither task will terminate. It will
appear to the operatcrs cf these terminals that the system has gone
down, while in fact it is still processing other terminal transactions
successfully.

To avoid this automatic lcgging enqueue interlock, three actions
are possible:

1. The terminal cperator should always enter product numbers in
the same sequence (such as ascending sequence).

2. The application program first sorts the input transaction
contents so that product numbers are ascending, before processing
begins.

3. The application program issues a user sync point macro
instruction after processing each product cIder in the
transacticn.

The first solution requires special terminal operator action which
may not be practical within the constraints of the application. (For
example, . orders aay be taken by teleFhone in random product number
sequence.)

The second solution requires additional application programming,
but im~oses no external ccnstraints en the terminal operator or
application.

The third soluticn re9uires less additional pregramming than the
second sclution. However, by issuing a user sync point, it implies
that previously processed product crders in the transaction are not to
be backed out on emergency restart if a system failure occurs before
the processing of the entire transaction is completed. This may not
be valid for the applicaticn, and Iaises the question on emergency
restart of which products in the transaction were processed (orders
accepted) and which were backed out by CICS/VS. If the entire
transaction must be tacked out, either a user sync peint should not be
issued, or only cne product crder should te entered in each CICS/VS
transaction.

Of the three solutions, the second solution (sorting product numbers
into ascending sequence by programming) is most widely accepted.

Chapter 8. CICS/VS Recovery and Bestart 241

The possibility of an automatic logging enqueue interlock occurring
exists fc;r any a~plicatioD which ~IocessEs several application-oriented
logical units of work (product oIders), within ODe CICS/VS logical unit
of work.

FROTECTEt "ESSAGIS

VTA"-!:upported terminals, such,as the 3600, enable message recovery
and resynchronization to be attempted during emergEncy restart of
CICS/VS. The user can specify in the FCT that vaIious transaction
codes are to be "protected."

If message-protected transacticn codes are used with VTAM-supported
terminal!:, the first input mEssage during a logical unit of work
associated with a task is logged to the system lcg. If uncoritrolled
shutdown occurs, the input mEssage fer each in-flight LUW is identified
during emergency restart and transferrEd tc tempcrary storage. 'It can
be retrieved frca temporary storage by user programs based on the
identification of the terminal which entered the message. The in-flight
activity associated. with each task is tacked out during emergency
restart. The user may then initiate reprocessing of that ihput message.
(See "Transaction Recovery and Restart" later in this chapter.)

The last output message trans8itted by message-protected tasks
without a WAIT, are regarded as "ccmmitted output" messages. The output
message is logged, and the message is transmitted ty VTAM together with
a request for a positive response frcm the VTAM terminal on receipt of
the message. When the pcsitive response. is received by VTAM, it
notifies CICS/VS, which logs the recei~t of the pcsitive response to
the syste.m log.

If an uncontrolled shutdown occurs before the Fositive response is
logged by CICS/VS, it can te detected by the CICS/VS recovery utility
program during emergency restart. The output message is transferred
to temporary storage, from which it can be retrieved by user programs
based on the identification of the terminal designated to receive the
output. The task which generated the output message may have terminated
normally prior tc uncontrolled shutdown, but the terminal may not have
received that committed output message. On emergency restart 3600
logical units; CICS/VS retransmits this output message with a request
for positive res~onse, to ensure its receipt by the terminal.

CICS/VS uses the VTAM sequence Dumbers, which are allocated to each
input and output message associate~ with a logical unit, to establish
message resynchrcnization with programmable controllers during emergency
restart. These are obtained from the system log by the CICS/VS recovery
utility program.

Inquiry transactions which de net modify data sets should not be
specified in the PCT as protected. Logging of input or output messages
will not occur. Such transactions can be reFrocessed on emergency
restart, if necessary.

An uncontrolled shutdown may cccur during the ~rocessing of an LUW
belonging to a protected task. Such an in-flight LUW will be b~cked
out on emergency restart by CICS/VS. If a coamitted output message. is
transmitted to a terminal when first requested by the application
program, it may reach the terminal even if an uncentrolled shutdown

242 eICS/VS System/Application Design Guide

cccurs before the protected task terminates normally. The contents of
the output message may indicate to the terminal that processing of the
task was completed before uncentrolled shutdown. However, if the task
was in-flight, it viII be tacked out on emergency restart. The task
must then be reprocessed followiDg emergency restart. The terminal
operator is not awar. that the task vas in-flight and was backed out,
and vould not normally reenter it cn emergency restart. The result is
the loss of that task's frecessing.

To avoid this possibility, CICS/VS defers transmission of the last
output message until completion of the task's current logical unit of
work. Thus, the outFut will be transmitted cnly if the LUW completes
normally. In the event of uncontrolled shutdown before completion of
the LUW, the in-flight LUW is backed out on emergency restart, and the
remote programma tIe controller (er the terminal oFerator) can retrieve
the original input message ~rem temForary storage and resubmit that
input message for reprocessing. If the LUW completed, and output vas
initiated, but uncontrolled shutdcwn occurred before a positive response
was received from the terminal, the completed LUW is not tacked out on
emergency restart. The committed 3600 output message is retransmitted
by CICS/VS on emergency restart as previously described.

The result of this 4eferred output is improved message integrity.
The trade-off is a delay befere transmission of the output with a
possible increase in response time at the terminal. If response time
is not to be increased, the user should either request a user sync
point, or terminate the task as soon as possible after requesting
output.

Terminal control and EMS toth permit the user to request immediate
initiation of terminal I/O fer VTAM-supported t~r.inals. (See "Terminal
Control Using VTAM" in Chafter 2.) This avoids the deferred output
delay, but the possibility is increased that the terminal operator may
receive output indicating co.pletien of tasks which are subsequently
backed out.

An alternative approach is to treak the output into tvo or more
sections. The program Can request output of the first section,
specifying either immediate cutput or the default of delayed output.
When output of the next section is requested, the first section is
transmitted if it indicated delayed output. This continues until either
a sync peint is reached, or the task terminates when the last section
of output is considered a co.mitted cutput message and is handled as
previously described. The partial sections of outfut may satisfy the
requirement for raFid respcnse time, with each section indicating that
further output is following. Only receipt of the last $ection of output
is an indication tc the terminal oFerator of completed task execution.
The disadvantage of this approach, however, may te increased CICS/VS
and VTAM overheads.

The use of Bes terminal paging intrcduces another consideration.
If the terminal which initiated a protected task is in transaction and
request page status, terminal pages are written to temporary storage
for subsequent display, but are not directed to the terminal. The
application program should send a ccmmitted output message to the
terminal indicating completion of the task, and availability of the
terminal pages through the terminal paging commands. (See ~!~~L!~
l§ .. inAl QR~'J!2'!§ §yig!, SH20-S005.) If the terminal is in TBANSCEIVE
status, the first page viII te transmitted to it automatically when
the protected task completes.

Chapter 8. eICS/VS Becovery and ~estart 243

The shutdown ef eIeS/VS may be either a centrolled shutdown or an
uncontrolled shutdown (such as fellowing a machine check er power
failure) •

CONTBOLLED SHU!DCWN

A centrolled shutdown preserves certain vital information about the
eIeS/VS environment during nermal or abnormal termination of eIeS/vS.
This informatien, recorded on the restart data set, may be subsequently
used to warm start eIeS/VS and reinitialize it te its status at
termination. The user may, eptionally, elect to warm start only certain
parts of eIeS/VS, and allow a cold start (complete reinitialization)
of ether parts of eIeS/VS.

Two eleS/VS tables are used to facilitate the functions of controlled
shutdown and warm start:

• Transaction list table (ILT)

• Program list table (FL~

~~~.n'§Sl~!.i.Q1) lIi§! l~!lj (111) 

On eIeS/VS controlled shutdown, a transaction list table (ILT) may 
be leaded. This table identifies a list of transaction codes accepted 
by eIeS/VS during termination. All other transaction codes will be 
rejected by eIeS/VS. 

The program list table (PLT) is a list of programs to be ezecuted 
either during centrolled shutdown cr during system initialization. It 
is generated by the user, whc generally specifies two tables. One PLT 
identifies various user-wtitten programs which are to be ezecuted during 
either the first or second stage of eIeS/VS controlled shutdown (see 
below). These user prograas may record applicatien-dependent 
information, which will permit user recovery of that information on 
subsequent system initialization. 

Another PLT can be used tc identify various user-written programs 
which are to be executed during the post-initialization phase of eIeS/VS 
system initialization. These user programs may locate the 
application-dependent infermation written by PLT-identified programs 
during eleS/VS controlled shutdown, and use that informatien to 
reestablish the online applicatiens as required by the user. Several 
other uses of the PLT are described later in this chapter. 

A normal controlled shutdewn caUSES the status of various areas to 
be written to the restart data set tc permit a warm start to take place. 
It uses the program list table (PL~), as described above, and carries 
out termination in two stages: the "first quiescE stage" and the 
"second guiesce stage." During the first quiesce stage, terminals are 
still active, but they are only permitted to enter transactions defined 
in the transactien list table (XIT). programs defined in the first 
section of the PIT are also executed. During the second quiesce stage, 
terminals are deactivatEd and prcgrams defined in the second section 
of the PLT are executed. The following paragraphs further describE 
the purpose of these two sta9Es of termination. 

2qq eIeS/VS System/Application Design Guide 



• FIEST tUIESCE STAGE OP TEBeINATICN 

During the first guiesce stage of termination, a group of user-written 
programs may be seguentially executed. These programs perform special 
operations that are unique to the installaticn. All CICS/VS 
facilities are available tc the Frcgrams during this stage. The 
programs to be linked to are defined in the prcgram list table that 
is loaded during systea termination. 

In addition, only those transactions defined in the transaction list 
table are accepted from terminals. Existing tasks, tasks to be 
automatically initiated, or ATF batches in process are allowed to 
continue unhampered to their normal conclusion (see Pigure 8-4) • 

• SECOND QUIESCE STAGE OF 1EEMINATION 

At a user-defined point, termination activity waits until all system 
activity stops. Terminaticn then continues in the second quiesce 
stage without accepting any further terminal transactions. 

When all program list table programs defined tc execute in the second 
guiesce stage have been executed, the warm keypoint is taken and 
CICS/VS terminates further executicn (see Figure 8-4). 

INPUT 

. -h 
Controlled 
Shutdown 
Request 

Dn 
I J FCT TCT 

~~ ~~: J 
TST ICP 

,ATP - .. ----.~---

P~OCESSING 

1. On system error, system recovery 
program (SRP) attempts recovery. 

2. If recovery not possible, or controlled 
shutdown requested, termination is 
started. 

3. Only transactions in transaction 
list table (XL T) are accepted during 
termination. 

4. Programs specified by user in program 
list table (PL T) are executed. Applica­
tion-dependent information can be 
recorded by user program for use 
in subsequent system restart. 

5. Warm key point program extracts 
key information from system tables 
and chains. 

6. Warm keypoint program writes key 
information to restart file for 
subsequent warm start. 

Figure 8-4. CICS/VS Ccntrclled Shutdown 

ABNOEMAL TEBMINA1ION 

OUTPUT 

An abnormal termination of CICS/VS may occur if an aPFlication 
program destroys part of the CICS/VS nucleus or key system information 
maintained in dynamic stcrage. 1his ~s generally the result of an 
application program error, and may cause an ABEND cf the CICS/iS 

Chapter s. CICS/VS Becovery and Bestart 245 



partitioD/region. For this reasen, the CICS/VS system initialization 
program issues an OS/VS STAE (or DeS/VS STIlT) macro instruction to 
enable the system recovery program to regain control in the event of 
a CICS/VS ABEND. If an abnormal termination subseguently occurs, the 
system recovery program (SEP) attempts to either ccrrect or circumvent 
the problem (in the case of CICS/CS/VS) to continue operation (see 
"System :Becovery program" in this chapter). If recovery is not 
possible" er advisable, a controlled shutdown will be initiated by the 
SRP to guiesce other CICS/VS system and task activity, and record the 
environment status of the CICS/VS system on the restart data set for 
subsequent warm start (see Figure 8-4). 

Even though a controlled shutdown may be taken tefore the CICS/VS 
partition/region ABEND ccm~letes, executing tasks nay not be able to 
terminate normally. These in-flight tasks may need to be backed out 
by an emergency restart of CICS/VS, such as required to restart after 
an unccntrolled shutdown. 

If the SRP is unable te cerrect or circumvent the problem resulting 
in abnormal termination, and is further unable tc initiate a controlled 
shutdown (such as in the event of destruction of part of the controlled 
shutdown routines), an unccntrolled shutdown will cccur. 

UNCONTROLLED SHUTDOWN 

An uncentrolled shutdewD ef CICS/VS can tasically result from four 
different causes: 

• Power failure 

• Machine check 

• operating system WAIT/ABEND 

• partition/region ABEND 

In each case, termination of system operation is 'either immediate, 
or so shertly after appearance of the cause that insufficient time~ 
CPU resources, or system facilties are available te permit CICS/VS ~o 
complete a centrelled shutdewn. 

system or user tasks may still be active at the time of termination, 
as eICS/VS is unable to guiesce system activity. Conseguently, a 
subseguent warm start of'CICS/VS is impossible. Instead, an emergency 
restart must be carried cut. 

Recognizing the possibility of any of the above failure situations 
occurring at any time, CICS/VS periodically records system activity 
keypoints (described earlier in this chapter). Synchronization point 
records are also written during the execution of tasks, at the 
completicn of each logical unit cf work. 

This information records, on the system log data set, the dynamic 
activity of CleS/VS, and of active tasks, and permits an emergency 
restart to be performed at seme later time using the system log. The 
use of this information to restore CICS/VS to its status at the time 
of the uDcontrolled shutdewn and tc tack eut the processing of tasks 
which had not completed a lo~ical unit of work, is discussed in 
"Emergency Restart" later in this chapter. 

246 CICS/VS Systell/ApFlication Design Guide 



CICS/VS can be initialized either: 

• with a complete cold start 

• With a complete warD start 

• with a partial warm start 

• with an emergency restart 

COMPLETE COLD START 

A complete cold start results in complete reinitialization of CICS/VS 
and system data sets to their status as specified at system generation, 
withcut regard for any previcus system activity. The system 
initialization table (SIi) is used to specify the particular versions 
of the different CICS/VS system pregrams and tables that are to be 
utilized for CICS/VS initialization. 

COMPLETE WABM START 

A complete warm start reintializes CICS/VS to the status that existed 
at the previous ccntrolled shutdown -- all system activity having been 
quiesced normally prior to shutdewn. All CICS/VS system programs and 
tables are first ccld started using the SIT as described previously. 
If the SIT indicates that a complete warm start is to be performed, 
all CICS/VS system tables are then reestablished to their status as at 
controlled shutdowD, using the warm keypoint infcrmation written to 
the restart data set at that time. 

PABTIAL WABM STAET 

A partial warm start is similar tc a complete warm start, except 
that only selected CICS/VS systeD tables are warm started, as specified 
in the SIT. Information is cttained from the war. keypoint written at 
centrolled shutdcwn, cn1y for these tables specified to be warm started. 
The remaining tables are cold started. An example requiring a partial 
warm start is an applicaticn which requires a warm start of the DCT so 
that data queued to intrapartiticn destinations prior to a controlled 
shutdown may be retrieved en restart. The FCT and TCT may alsc need 
to be warm started to reestablish file and terminal status as at 
controlled shutdown. The application may, hcwever, require a cold 
start of temporary storage. Figure 8-5 illustrates a CICS/VS war. 
start. 

Chapter 8. CICS/VS Recovery and Restart 247 



INPUT 

r---Q CICS/vS 

Program . 
Library 

'------7 
Restart / 

Data:~ 

-:] Program 
List Table 
(PLT) 

[J 
rn' 

PROCESSING 

1. CICS/vS system initialization program 
(SIP) and system initialization table 
(SIT) are loaded from DOSIVS or 
OS/VS library. 

2. Versions of CICS/VS nucleus programs 
and tables specified by SIT are loaded. 

3. SIP reads data set and reestablishes 
system tables and chains to be warm 
started as specified in SIT. 

4. User programs in post·initialization 
phase program list table (PL T) are 
loaded and execu ted. These user 
programs may utilize application· 
dependent information recorded 
during system termination. 

5. Terminal polling com_m_en_c_es_fo_r ___ IJ .... 
o",m.' C>CS/VS 0''''''00. _J _ 

Figure 8-5. CICS/VS iarm start Frocedure 

OUTPUT 

SIP 

CICS/vS 
Management 
Routines 

CICS/VS 
System 
Tables 
And 
Chains 

After all items have been initialized and contrcl is about to be 
given to CICS/VS, the group cf user-written prograls specified in the 
program list table is seguentially executed. This is referred to as 
the "post-initialization" phase. ~hese programs perform 
application-dependent fUDcticns, for the recovery of 
application-dependent information recorded by the user on termination, 
prior to complete restart cf CICS/iS. All CICS/VS facilities are 
available except for direct terminal communicaticn. Following 
post-initialization execution of programs in the program list table, 
the terminal centrcl program is activated to enatle terminal 
transactions to te received and Frocessed. 

E~ERGENCY RESTARi 

An emergency restart restcres certain CICS/VS facilities to a 
predefined point which existed prier to an uncontrolled shutdown. 
Information describing all changes, modifications, and updates made to 
various system tables and to user data sets during previous CICS/VS 
execution is recorded on the system log data set. Another data set, 
the restart data set, is created during emergency restart. (Emergency 
restart is not supported by the subset option of CICS/DOS/VS.) 

The system log contains all changes made to reccverable file control 
data setsw reccverable transient data intrapartiticn destinations, and 
temporary storage prctected destinations. It also contains input and 
output messages for message-Frotected tasks executed by VTAM terminals. 

The restart data set is created during emergency restart, and 
contains system log activity and user journal records for those tasks 
whose proc:essing activity hac not reached a logical completion point 
when the Uinccntrclled shutdcwn occurred. (Such tasks are referred to 

248 CICS/VS Syst€D/ApFlication tesign Guide 



as in-flight tasks in the following discussion of emergency restart.) 
This infcrmation can be utilized by the CICS/VS transaction backout 
program, for example, to remcve the effect of data set modification by 
in-flight tasks. 

On an emergency restart, the eICS/VS system initialization program 
(SIP) carries out a number of steps to restore CICS/VS operation to a 
predefined point prior tc unccntrolled shutdown. 

These steps are carried out by CICS/VS-provided routines. The user 
may wish to extend the functions carried out in emergency restart by 
the addition of user-written programs. One example of such an extension 
to emergency restart is the execution cf a user-written extrapartition 
data set backout program to repositicn extrapartition data sets to the 
point reached on unccntrclled shutdown. To permit such user-written 
programs to be utilized, CICS/VS identifies in-flight tasks which may 
require user backout, and co~ies from the system log, in backward 
sequence, all system-logged records, and user journal records, for 
those in-flight tasks to the restart data set. 

The design of such a user-written extrapartition recovery program 
is described in "Extrapartition tata Set Eecovery." To utilize the 
suggested design technique effectively, it is important that the system 
designer have an appreciation of the steps carried out by CICS/VS during 
emergency restart. 

The remaining topics in this section provide an overview of the 
CICS/VS emergency restart procedure. This procedure is illustrated in 
Figure 8-6. Additional topics in this chapter discuss the information 
in the following overview in more detail. 

Chapter 8. CICS/VS Eecovery and Eestart 249 



INPUT PROCESSING 

c;:j2 :=::==:::::~» 
,Emergency Restart 

l.CICSIVS repositions system log to point 
reached at uncontrolled shutdown. 

( 

Intra- (1 
partition 
Data Set 

Temporary (I 
Storage 
Data Set 

CICSIVS 
Recovery 
Utility 
Pr,ogram 

...... 1...-_-".1> 2. CICSIYS cold starts OCT but does not 
r reformat intrapartition data set. 

...... 1...-_-".> 3. CICSIVS cold starts TSUT but does not 
reformat temporary storage data set. 

:=:=::::::» 4. CICSIVS initiates CICSIVS recovery 
utility program (RUP). 

~ 
5. CICSIVS RUP reads system log backwards 

Repositioned - r- Of/' to locate logical unit of work (lUW) 
System log sync points. 

> 6. If first record 10catEld for a task is 

( lntr.a.~ 
pattition 
pata Set 

Temporary 
Storag,e I 
Data Set' 

Restart 
'Data Set 

User 
Data Sets ( -------
-Resta;;---f 
Data~~ 

User ~ 
Extrapartition 
Data Setl; 

User-Written 
Programs 
(Identified 
By PlT) 

O 
sync point record, lUW was completed 
before system termination. 

_ > 7. If log or user journal record is located 
I • before sync point, task was inflight. 

~> 

~> 

Record is transferred by RUP to 
restart data set. 

8. System activity keypoint identifies 
tasks in system at time of keypoint, 
and indicates need to continue back­
ward scan. 

9. OCT, TSUT, and TCT status in system 
activity keypoint used to reestablish 
OCT and TSUT. 

I...,p > 10. Scan continues until sync point or start J of task located for each inflight lUW. 

....... 1...--.......... > 11. Transient data recovery program reestab-
r lishes physical PUT activity in OCT from 

intrapartition data set status. 

~~=:» 12., Temporary storage recovery program 

lL
r- reestablishes TSUT pointers and 

OJ t:> 

rr 

information from temporary storage data 
data set physical contents. 

13. Logged modifications to user data-sets, 
transferred by RUP to the restart data 
set, are used by the CICSNS transaction 
backout program to backout infli~t 
lUW activity against user data sets. 

14. logged input messages and committed 
output messages transferred to temporary 
storage message cache identified by 
terminal 10. 

15. User'programs identified in Pl Tare 
then executed (such as userextraparti­
tion data set recovery). 

16.; Terminal activity commences when all 
Pl T programs complete execution. 

J 
> 

> . 

. 
> 

OUTPUT 

RePO'itio~ 
System log 

Restart 
Data Set I 

I TpJT I TSUT 

DOT 

~ __ -J.'> ~1 ___ fD_C_T __ ~1 

.. 

TSUT 

( 

TemPQrary 
Storage I 
Data Sets 

(
' Back- ( 

out User 
\ Data Sets, \ 

~user \ 
E, xtra Partition 

'Data Sets 

Figure 8-6. CICS/1S Emergency Restart Procedure 

250 CICS/VS Systea/Application Design Guide 



1. l§R2§i!i2D ~l§!~. 129 ~A!A §s! 

The system initialization table (SI~ is used by the system 
initialization p~ogra. tc identify whether the system log is on ta~e 
or on disk. If it is on disk, the system log will be repositioned to 
the point reached at unccntrelled shutdown when it is opened for 
backwa~d processing (see the "CICS/VS Fost-Initialization Frocessing" 
step later in this sectien). 

If the system log is en ta~e, a separate system subtask is initiated 
to reposition the tape te the point ~eached at uDccntrolled shutdown. 

'This subtask utilizes a CICS/VS-~~ovided tape end-of-file utility 
program which reads the tape system log forward and locates the last 
journal record written prior to uncontrolled shutdcwn, by comparing 
tiDe stamps in each journal Ieco~d. The tape end-of-file utility 
program is executed as a system suttask to permit this tape positioning 
to be overlapped with the emergency restart processing descrited in 
the following steps. Once the tape is repositiored, it will 
subsequently te ~ead backward to deter.ine system activity at the time 
of shutdown (see the "CICS/VS Post-Initialization Processing" step 
late~ in this section). 

The system initialization program performs a normal cold start 
function for the destination cont~ol table (DCT) at this stage, but 
does not reformat the intrapartition data set. 1he status of 
extrapartition data sets is lost fcllowing an uncentrolled shutdown. 
The status of int~apartition destinations will subsequently be recovered 
for those destinations identified in the DCT as teing recoverable. 
This recovery is carried out by the CICS/VS-provided transient data 
recovery program (TDEP) which is discussed in the "CICS/VS Recovery 
utility Program" ste~ later in this section. 

The system initializaticn program performs a normal cold start 
function for temporary storage but does not reforDat the temporary 
storage data set. Tempo~a~y storage data in dynamic storage is lost 
following an unccntrolled shutdown. A design technique is described 
later in this chapter fo~ user recovery of temporary storage in dynaDic 
storage. 

The reaainder of emergency restart processing is accomplished by 
the CICS/VS-prcvided recevery utility ~rogra.. This is executed as a 
normal CICS/VS application program, under control of the terminal 
control program's TCA. (This TCA is used, because normal CICS/VS 
operation and terminal activity have not been initiated at this time.) 
Upon completion of the system initialization steps outlined above, and 
after the system log has been repositioned (if tape) to the point 
reached on uncontrolled shutdown, control is then passed to the recovery 
utility program. 

The recovery utility program (EUE) reads the system log (either on 
tape or disk) backward, to deteraine system activity prior to the 
uncentrolled shutdown. As the log is read backward, task 
synchronization records (sync points) are located. (See "Logical Task 

Chapter 8. CICS/VS Eecovery and Eestart 251 



synchronization," earlier in this chapter.) These define the normal 
completicn of a logical unit of work for a task. If any user data set 
modifications (logged either autcmatically by CICS/VS, or by the user) 
or any user journal records are located for a task before a sync point 
(or its initial log reccrd) is read, this indicates that the task had 
not completed a logical unit of work at CICS/VS uncontrolled shutdown 
(that is, was "in-flight"). The data set modifications carried out by 
an in-flight task may need tc be tacked out to the previcus sync point 
for that task, or to the start of the task. 

CICS/VS carries out this backcut later using the transaction backout 
program. The recovery utility program identifies in-flight tasks. It 
collects data set or user journal records fer in-flight tasks which 
were written after the start of the task or after a sync point, and 
copies them to the restart data set. As the system log is read 
backward, the restart data set is written forward. The restart data 
set therefore will reflect in-flight task activity prior to the 
unccntrolled shutdown. The restart data set can subsequently be read 
by user-written tack out ~rcgrams, which are executed as 
post-initialization prograas specified in the prcgram list table (PLT). 
The user-written backout programs can be automatically initiated by 
CICS/VS following emergency restart. and before terminal activity 
starts. 

The first record located for a task on the backward scan of the 
system log may be a sync pcint, indicating normal completion of a 
logical unit of work. Transacticn backout is then not necessary, and 
journaled or logged records for that task are not copied to the restart 
data set. (Note: Eecords output by cem~leted tasks are collected to 
the restart data set only if the u~er specifies a special journal-type 
code with the high-crder bit QI.) 

A log record located for a task on the backward scan of the system 
log may have b~en automatically logged by the CICS/VS transient data 
prcgram for intrapartition destinations identified in the nCT as 
recoverable. These records are used by the recovery utility programs 
to reestablish the nCT status for the relevant destination. Eefer to 
"Intrapartition tata set Recevery after Uncontrolled shutdcwn" later 
in this chapter for further discussicn. 

The backward scan continues until the following two conditions occur: 
(1) a system activity keypoint is reached, and (2) all jcurnal and log 
records output by in-flight lUis have been retrieved. The system 
activity keypoint contains irformation defining the status of 
intrapartition and temporary storage destinations, TCAs for in-flight 
tasks in the CICS/VS system at the time of the key~oint, and TCT entries 
for VTAM terminals with committed cutput messages outstanding. The 
status of intrapartition destinations is used to update the nCT, to 
back out intrapartition activity carried out by in-flight tasks, and 
to reflect the activity carried cut by completed tasks. 

The TeAs in the system activity keypoint indicate in-flight tasks 
at the time of the keypoint. A lcng-running task may have been present 
when the activity key~ciDt was taken, but may not have logged any 
processin9 activity, or written a sync point between the system activity 
keypoint and the point when unccntrolled shutdown occurred. Such a 
task had not completed a logical unit of work at the time of 
unccntrolled shutdown. The back~ard scan must therefore be continued 
until a sync point, or first record logged, for that long-running task 
is encountered. If the first record located for the task is a sync 
point, the task completed a logical unit of work and no backout is 
necessary. If a data set modificaticn log record, or a user journal 
record is encountered before a sync point, those records are copied to 
the restart data set. 

252 CICS/VS Systelf/Ap~lication Design Guide 



The TCT identification in the system activity keypoint of terminals 
which have committed output messages outstanding identifies a need to 
continue the backward scan until these logged output messages are 
located. These committed output messages are transferred to the 
temporary storage message cache for each relevant terminal. (See 
"Temporary storage Recovery" later in this chapter.) The TCT 
information in the system activity keypoint is used to prime the TCT 
with the VTAM sequence numbers from the last completed LUW from each 
VTAM terminal for subsequent message resynchronization by'CICS/VS with 
the programmable controller. 

Activity keypoints identify the necessity of continuing the backward 
scan until all in-flight tasks have been accounted for. Without 
activity keypoints, it would not be possible to identify all in-flight 
tasks without scanning the entire system log backward to its start. 

The recovery utility program (RUP) identifies in-flight task 
activity, and transfers automatically logged file control activity, 
and user journaled activity from the system log to the restart data 
set. It reestablishes the OCT status of recoverable intrapartition 
destinations using information from the latest system activity keypoint, 
sync point, or end-of-task records of completed LUWs which had activity 
against recoverable destinations. 

The transient data recovery program (TDRP) then scans physically 
recoverable destination queues on the' intrapartition data set to locate 
their latest PUT activity prior to uncontrolled shutdown. This is used 
to establish the PUT pointer in the OCT for each physically recoverable 
destination. 

The temporary storage recovery program (TSRP) uses status information 
collected by RUP from the latest activity keypoint, sync pOint, or end 
of task records of completed LUWs which had exclusive control activity 
against temporary storage destinations (DATAIDs). This status 
information reflects the logical status of each destination at 
uncontrolled shutdown. 

Following the above RUP, ~DRP, and TSRP functions, a new system log 
and user journal data sets are then opened by the system -initialization 
?rogram for output. 

6. CICS/vS Transaction ~out Program (TBP) 

RUP processing identifies in-flight LUWs and collects their 
automatically logged file control activity and user-journaled (to the 
log) activity on the restart data set. RUP also identifies user data 
sets which had in-flight activity transferred to the restart data set. 
Originating input messages and unresponded output messages for in-flight 
message-protected tasks are also written to the restart data set. 

The CICS/VS transaction backout program (TBP) is executed after 
completion of RUP processing, and after a new system log and user 
journal data sets have been opened for output. ~he purpose of TBP is 
to back out all in-flight activity against user data sets based on 
information read from the restart data set. 

For messages, TBP places originating input messages and committed 
output messages in a temporary storage message "cache", and primes 
~CTTEs with the VTAM sequence numbers to be used for reestablishing 
message traffic. 

TBP provides a number of exits to permit the user to participate in 
data set backout. A TBP initialization exit enables the user to ignore 
backout against specific data sets. For example, uncontrolled shutdown 

Chapter 8. CICS/VS Recovery and Restart 253 



may have occurred because of an unrecoverable I/O error against a data 
set. This data set must be recovered by user programs from a backup 
copy prior to emergency restart. Consequently, these data sets should 
not have backout activity during emergency 'restart .. 

An input exit is also provided. This is given control each time a 
record has been read from the restart data set and the user may choose 
to ignore specific records. 

An error exit is also given control if an error condition is returned 
by file control when TBP attempts to back out data set activity. The 
user may specify alternative activity to be undertaken. (One instance 
when this exit is given control is when TBP cannot back out an add due 
to the file organization.) If so, the user may back out adds against 
VSAM entl~-sequenced data sets or ISAM or DAM data sets by flagging 
the added record as "logically deleted." TBP then writes this logically 
deleted l,"ecord to the relevant data set on return from the input exit. 
User application programs must subsequently check this flag to identify 
logically deleted records in the data set.. (see "Data Set Backout" 
later in this chapter.) 

The result of TBP is to back out all in-flight task activity against 
VSAM key-sequenced and entry-sequenced data sets or ISAM and DAM data 
sets. The functions carried out by TBP are described in more detail 
in "Data Set Backout" later in this chapter. 

7. Messa~ Resynchronization for VTAM Terminals 

During TBP processing, input messages for in-flight LUWs or committed 
output messages are transferred to a temporary storage message cache 
identified by the relevant terminal associated with the message. 
Committed output messages, for which positive response had not been 
received from the terminal, are optionally retransmitted during 
emergency restart. Input messages for in-flight LOWs can be retrieved 
from temporary storage by user-written programs for reprocessing (see 
"Transaction Restart" later in this chapter .. ) 

CICS/VS must establish resynchronization with VTAM terminals on 
emergency restart. This is done using the VTAM sequence numbers placed 
by TBP in the TCT. These were established by RUP from information in 
the lates"t system activity keypoint, sync point, or end-of-task record 
for the last, completed, LUW against each VTAM terminal. CICS/VS issues 
VTAM STSN (set and test sequence number) commands to each VTAM logical 
unit, not:ifying each programmable controller of the sequence numbers 
known by CICS/VS. The programmable controller can compare these 
sequence numbers with those logged on its own disk to determine whether 
any messa(~es were lost because of the uncontrolled shutdown. These 
may either be input messages for protected tasks, which should be 
retransmitted to'CICS/VS by the programmable controller, or may be 
committed 3600 output messages. 

Both CICS/vS and the programmable controllers participate in message 
resynchronization to ensure that no protected messages are lost because 
of the uncontrolled shutdown .. 

8. User ]post-Initialization Programs 

Following execution of the recovery utility program and the opening 
of new journals, user-written programs identified in the program list 
table (PLT) are executed. These programs may carry out 
application-dependent recovery functions, such as repOSitioning 
extrapartition data sets or other user recovery fUnctions. 

254 CICS/VS System/Application Design Guide 



9. Terminal Control Activation 

At this point, emergency restart and user backout are complete. The 
system initialization program (SIP) then initiates a system activity 

Chapter 8. CICS/VS Recovery and Restart 254.1 



keypoint. Following this, terminal activity is initiated, and normal 
eleS/VS operation commences. 

10. ~.Q.n1.!ol*.§g ~Jly!g~!l! l~11:~il!9 !.m~~g§l!SI jn!~":t 

If a ccntrolled shutdewn is then requested by the master terminal 
operator immediately follewing emergency restart, the warm keypoint 
necessary for a centrolled shutdcwn is taken, and eleS/VS terminates 
operation. The system may then te initialized at a later time by a 
normal warm start. 

SYSTEM FAILURE DURING EMERGENCY EESTART 

System failure during emergency restart represe~ts cne of the most 
difficult types cf failures to diagnese and correct. The user must be 
fully aware of the functions performed during emergency restart, the 
sequence in which these functions are performed, aId the effect that 
abnormal termination during this operation has on data sets and tables. 

Prior to initiating emergency restart, an analysis of the failure 
which caused the system to atnormally terminate sheuld be performed. 
It is possible that the condition ~hich caused the system to ABEND will 
also cause emergency restart to fail. One example of this could be a 
physically damaged data set which caused an uncontrolled shutdown, 
causing the identical failure during emergency restart if the eleS/VS 
transaction tackeut progral attemFts to back out modifications made to 
that data set. 

If a file centrol data set has tecome physically damaged, a 
user-provided data set recevery prcgram(s) must recover the data set 
prior to the user backout pregram attempting to back out modifications 
to this data set. Data set recovery involves restoring the contents 
of that data set from some previeus copy, and then applying all 
modifications made to it since the ccpy was taken. eles/vS automatic 
journaling (see "Data Set Journaling" later in this chapter), can be 
used to keep track of data set mcdifications performed during online 
execution. 

If the transient data intrapartition data set or temporary storage 
data set is physically damaged, it will not be pcssible for eleS/VS to 
emergency restart these facilities. eleS/iS reccvery of these 
facilities is dependent upcn the physical contents of the relevant data 
set as it existed prior to system failure. Therefcre, if the data 
content cf the data set has to be restored because of physical damage, 
eleS/VS may not te able to successfully reconstruct the DCT or TSUT to 
reflect the status of the restored data set. 

User journaling may be utilized, if required, tc produce an audit 
log of all system data set activity. This audit leg can be created on 
a user journal data set, and utilized by user programs for subsequent 
reconstruction of all system data sets (such as intrapartiticn or 
temporary storage) which Day have teen physically damaged. 

CICS/VS emergency restart is net complete until the eleS/VS 
transaction backout prograa has successfully completed, and an activity 
keypoint has been taken. (0 ptionally, a con trolled shutdown could be 
taken at the completion of user tack out, if system execution is to be 
terminated.) If any failure is encountered prior to this time during 
emergency restart, this Frocedure must be followed: 

• ~§!§~min§ !R§ ~s~§ ~t !b§ :si1:Y~§: The cause of the failure of 
emergency restart must be determined and corrected. If the 
transient data intrapartition data set is daEaged, that 

Chapter 8. eIes/vs ReCOVEry and Restart 255 



intrapartition data set and the tCT must be cold started by CICS/VS. 
Its contents may subseguently te restored by the user. if required, 
by post-initialization (~LT) program processing. (This is also 
true for the temporary storagE data set.) If a data set is damaged 
it must be physically recovered by user data set recovery programs. 

• .b§!.9.! I.!§X.9.§.!!.£l ~i§!!'!: 'the emergency restart procedure is 
executed again using the original system log as input. The original 
systEm log is the ta~e or disk vclume which was being used for 
output when the original system failure occurred. As this data 
set is not used for cutput during emergency restart, its contents 
are available to reinitiate the emergency restart procedure, and 
recover CICS/VS to its status prior to abnormal termination. 

At thE completion of emergency restart, the recovered status of 
CICS/VS bas been recorded en the new system log if system execution is 
to proceed, or on the system restart data set as ~ warm keypoint if 
the system is to be terminated. This status represents the predefined 
point to which the system is recoverEd; system table, system data set, 
and user data set status are all logically synchronized. If restart 
becomes necessary from this point'cn, the new system log must be used 
for restart. 

If thiS system was terminated uFcn completion of emergency restart, 
without an intervening systes failure, the system restart data set 
contains the fully recovered CICS/VS status in the form cf a warm 
keypoint. A CICS/VS warm start Day be perfor.ed using this data to 
initiate CICS/VS execution with the recovered system status. 

The most significant element in .ystem restart is the recovery of 
various data bases utilized by CICS/VS applicaticn programs. This data 
base recovery is considered in two SEctions: 

• CICS/VS file ccntrol reccvery 

• DL/I data base recovery 

CICS/VS file control recovery and online tL/I data base recov~ry 
will now ba discussed. EatchDL/I data tase recovery is discussed 
later in this chapter. 

File control automatically logs modification activity against 
protected data SEts during nermal operation. (See "Journa1ing" in this 
chapter.) CICS/VS provides suppcrt using the transaction backout 
program (TBP) during emergency restart to back out the activity of 
in-flight tasks against those prctected data sets. 

Since abnormal termination of a task caused by an uncontrolled 
shutdown may have prevented it fIca completing its use, and possible 
modification, of protected data sets, all data set activity by that 
task must be completely reDoved, or "backed out" to restore the data 
set to i its status as if the task had never been initiated. Once this 
back out :ls complete, the abnermally terminated task may te reprocessed, 
if necessary. using the transacticn restart technique descrLbed later 
in this chapter in "Transaction BEcovery." 

The recovery procedures fer CICS/VS file control data bases increase 
in complexity depending upen whether data sets are read-only, or whether 
updates, deletions, and additions are made online. 

256 CXCS/iS System/Application Design Guide 



BEAD-OBLY DATA SETS 

Por read-only data sets, no data base recovery is required. 
Retrieval of infcraation fro. these data sets dees not result in 
subsequent updates, deleticns, or additions. The data sets are not 
changed online, and so do not need to te restored en restart. 

Bowever, an exceptlon to this is the case when an uncontrolled 
shutdown may have resulted frOB an unrecoverable I/O error for a 
particular read-only data set. In this case, the user may wish to 
follow the procedures for use of a duplicate backup data set described 
in "Device Recovery" in this cha~ter. 

UPDATE, DElETION, ANt lDtI!ICN TO DATA SETS 

CICS/VS provides facilities fer automatic logging of data set records 
which are to be updated, deleted from, or added to various file control 
data sets. This automatic legging is an cptional facility specified 
in the file contrel table by the user for each required data set and 
indicates that the data set is to be protected. lith automatic logging 
active for a particular data set, whenever a CICS/VS application program 
specifies a read-for-update eperation for that data set, the record 
retrieved on the read, fer subseguent update, will be automatically 
logged (written) to the system log. Similarly, any new records which 
are to be added, or existing reccrds to be deleted, will be 
automatically logged to the specified journal data set. In this way, 
inforaation is aaintained of each record's contents prior to an update, 
a deleticn, or an addition of a new record. 

This logged inforaation is utilized by the transaction backout 
program on emergency restart following uncontrolled shutdown. to back 
out the effects of tasks wbich had not completed at the time of 
termination. Tbis is discussed Rore completely in "Data set Backout" 
later in this chapter. 

Chapter 8. eICS/VS Recovery and Restart 257 



JOUBNALI~G 

Journaling provides a generalized facility for reporting and 
reviewing modifications to data bases and other important data sets • 

. The journal centrol program is tatle-driven frOB information defined 
by the user in the jeurnal centrel table (JCT). Application programs 
may issu4e journal control macro instructions to re~uest specific 
journalilog activity. (See ~l~~L!~ J£~lic§!!2n R12gram~~r's !~i~I~D£~ 
~s~yal, 5H20-9003.) 

Data may be journaled synchroncusly or asynchronously, thus providing 
for application processing overlap with journaling operations. In the 
synchronous mode, the requesting task is put in a WAIT state until the 
jeurnal write has co.pleted ~uccessfully, to guarantee that a journal 
copy of data exists on auxiliary storage before user processing 
continues. This mode of operatien is similar to the way in which most 
CICS/VS management modules function: the user task receives centrol 
only when the re~uested eperation ha~ been performed. 

The asynchronous mode allews the requesting task to retain control. 
The journal write is not synchronized unless and until the task requests 
synchronizatien either directly by use of the apprepriate journal 
control WAIT macro instructicn, or indirectly by issuing a synchronous 
journal request. There is ne guarantee that the journal copy of the 
data is written to auxiliary storagE until the user task performs 
synchronization. 

Journal records consist of a system prefix, an optional user prefix, 
and user data. Information Flaced in the system prefix includes: 

• Task identification (that is, transaction code) 

• Task sequence nu.ber allccated by CICS/VS to uniquely 
identify this task 

• Terminal identification associated with the task 

• Time of day 

• Journal data set identificatien 

In addition to that detailed above, tbe following information is 
provided by the automatic journaling option of file contrel. 

• Data set identificatien (internallj generated by CICS/VS) 

• Becord ~dentification sUFplied bj the application program 

The user prefix is generally application dependent and is defined 
bt the user. For automatic logging~ the user data may comprise the 
record read from the data set for updating, the record to te deleted, 
or the record to be added to the data set. It may instead be data 
supplied by the user task, such as terminal messages. 

~~ifi~jUio~ 21 ~2Yl~jli~g 

As in~icated previously, automatic logging may be specified by the 
user in the file control table fcr each required protected data set. 
Automatically logged inferaation is used by the ifF to back out data 
set modification activity initiated by in-flight tasks. The user may 
also specify additional journaling activity in the FCT. This is called 
automatic; journaling, and it enatles the user to request that activity 
(beyond that logged by file contre1 for backout purposes) also be 

258 CICS/VS System/Application Design Guide 



journaled by file control. This activity may include journaling of 
records after an update is complEtEd; for example, for user programs 
to recover a data set following an unrEcoverable I/O error based on a 
previous backup cepy of the data SEt. Automatic journaling activity 
can be directed to the systea log, or to a user journal data set. 
(Refer to the ~l~~L!~ ~l§!s~ fI~~iJJJS'!i j~~~~D~§ ~~YAl, 5H20-9004, 
for further information cn sFecificatioB of autoEatic logging and 
automatic journaling.) 

Automatic logging will also be initiatEd by transient data to record 
activity against intrapartition destinations defined in the DCT as 
recoverable. Te.porary sterage update, add, and delete activity against 
exclusive control destinations (tATIIDe) will also be automatically 
logged by temporary storage. Refer to 'Transient Data Recovery" and 
to "Temporary storage Recovery" latEr in this chapter for further 
information. 

Journal requests may be made directly by user tasks, through the 
use of journal centrel macro instructieBs. User journal records issued 
in this way may comprise data for audit purposes, for example, or may 
contain data to assist in subsequent 8Fplication-dependent rEcovery, 
such as terminal messages. 

On a warm start of CICS/VS, ne data set backout is necessary. All 
transaction activity was comFleted aDd the system was quiesced when 
the previcus ccntrolled shutdown teek place. 

On an emergency restart, the CICS/VS-prcvided recovery utility 
program (RUP) identifies all in-fli9~t tasks at uDcontrolled shutdown. 
It transfers all autcmatically jeurnale4 data set modification journal 
records (and other user journal records), written to the system log by 
the in-flight tasks to the restart data set. The ClCS/VS transaction 
backout program backs out Frotected data set activity initiated by 
in-flight tasks. The post-initialization phase is then entered. 

During this phase of system initialization, USEr programs identified 
in the program list table for use during post-initialization are 
executed. These user programs may issue journal centrol macro 
instructions tc access user journal data sets, or may read data set 
journal records from the rEstart data .et. 

The following types ef journal requests can be requested during 
normal execution of CIC5/VS by application progra.s. They are eIplained 
in more detail in the ~l~~LI~ AE£l~J!jQB iI~g!~~!§I!§ ~!!~iD~~ ~Dyal, 
5H20-900 3. 

WFITE 

WAIT 
PUT 
NCTE 

CHECK 
PCINT 

GETF 
GE'TB 

Create a logical record for the relevant journal 
data set. 
Synchronize request. 
Implies WElTE, ilIT~ 
Note current logical record pcsitioning of journal 
data set. 
Test return code for any exceptional conditions. 
positicn journal to a specified logical journal 
record. 
Get (forward) next logical journal record. 
Get (backward) next legical jcurnal record. For 
further discussion c.f the WBI'!E, WAIT, PU'!', and 
CHECK journal requests, refer to the ~ICS/V5 ~l§!~. 

Chapter 8. CIC5/V5 Recovery and Restart 259 



f~~g.s!~I!§ E~tj!~~~§ ]5~! fer further discussion 
of the ]QI~, 121Bl', §!II and .§j~ journal requests. 

The journaling facility of CICS/VS can be utili2ed by user programs 
to journa~ any aFplicaticn-dependent information, which can subsequently 
be retrieved by user-written post-initialization programs. This 
journaled informat~on may include terminal transactions. A transaction 
journal froduced iri this way Frovides a record of every terminal 
transaction received by the system, and may also include every output 
message sent tc terminals. A terminal input message may te written by 
the user to a unique user journal data set and/or the system log, 
immediat'sly after a task is given centrol to start processing the input 
message. The journaling of the input message should be the first 
activity carried out by the initial frcgram which operates on that 
transaction. 

The transacticn jcurnal may be used for audit and for transaction 
recovery purposes (see "Transacticn Eestart" later in this chapter). 
Transaction journals developed in this way may avoid the need for BTAM 
terminal operators to retransmit transactions on system restart, if 
those transactions had teen entered completely befere system 
termination. 

The first input message received from V~AM terminals for each lcgical 
unit of work carried out ty aessage-Frotected tasks (as specified in 
the FCT) is automatically logged by the VTAM terainal control program~ 
Similarly, committed output aessages are logged. CICS/VS uses these 
logged messages to establish message recovery and resynchronization 
with VTAM progragmable ccntrcllers on emergency restart. Input messages 
belonging to in-flight LUis cr ccmmitted output messages for which a 
positive response had not teen received, are transferred during 
emergency restart to temporary storage. In-flight input messages in 
temporary storage can be utilized to resubmit transactions for 
reprocessing, after their activity has been tacked out. The final 
decision as to whether transacticns must te resutmitted cn restart 
depends upon the applicaticn reguirements. 

FREPARATION OF USER JOURNALS 

Disk Extents that receive journal data set output must be allocated 
and preformatted prior to their use in CICS/VS execution. A journal 
format utility program is sUfplied by CICS/VS to complete this 
formattilog. (See the ~1~~L!~ QR§!s!i2~ .§uig§.) Cnce formatted, 
extents can be (and are) reused for successive CICS/VS executions. The 
system o~erator is notified when an extent is full, to enable the 
schedulilOg (concurrently with CICS/VS) of a user-written batch program 
to copy the journal extent tc an archive data set en disk or tape before 
allowing the extent to be reused, if required by the user. A PAUSE 
option is provided fer the user to prevent reUSE of the extent by 
CICS/VS until the archive cOFY is completed. More than one journal 
extent may be specified by the user to permit CICS/VS to make an extent 
switch when one extent is full, and to continue CICS/VS operation while 
the full extent is being ccpied to the archive data set. 

Tape journals may utilize either cne or two tape drives. If one 
tape dri'we is used, CICS/VS directs the system operator when another 
tape must be mounted, and Frcvides its own tape label management. If 
two tape drives are used, it autematically switches to the other tape 
drive anla directs the operatcr tc dismcunt the previously used tape. 

260 CICS/VS systea/Application Design Guide 



The CICS/VS-provided taFe end-of-file utility program may be used 
offline to reposition and clcse correctly a journal tape after an 
unccntrol1ed shutdown. For the tape system log, this function is 
performed by CICS/VS during an emergency restart. In order to enable 
the repositioning program to operate properly, the tapes Dust te 
formatted (with the CICS/VS-Frovided tape format utility Frogram) the 
first time they are used for jourIa1ing. 

Logged information is utilized by various CICS/VS programs during 
emergency restart to back out the Frccessing of in-flight tasks. 

Journaled infcrmation may be utilized during the post-initialization 
phase on restart by user-written aFF1icaticn programs (identified in 
the program list table). This infcrmation may te read either from the 
particular user journal data set, or from the restart data set following 
an emergency restart, if it was crigina11y written to the system log 
tefore unccntrc1led shutdc~n. 

The information included in the system prefix detailed above, and 
in the journal control data record, can be used to identify: 

• The transaction identificaticn of the task that logged or journaled 
the data 

• The sequence number of that task allocated internally by CICS/VS 

• The identification of the terminal involved 

• The time of day that the data set record was written to the journal 
data set 

For automatically logged data sets, the information in the system 
prefix can be used to identify: 

• The original data set to which that record be1cngs 

• The identificaticn of the particular logical record within the data 
set 

DATA SET BACKOUT 

Data set backcut during eaergency restart is achieved ty the CICS/VS 
transaction backout program, which reads data set log records for 
in-flight tasks from the restart data set, where they were written by 
the CICS/VS-prcvided reccvery utility Frogram as described previously. 
The transaction backout program is executed during the 
post-initialization phase of emergency restart, and backs out the effect 
of these in-flight tasks. See Figure 8-7 for a descripticn of the 
transaction tack cut Frogra •• 

Chapter 8. CICS/VS Becovery and Restart 261 



INPUT 

~ Log 

Transaction 
Backout 
Progr.am 

I 

[( User 
Data Sets 

\. 

I)ROCESSING 

1. CICS/VS Recovery Utility Program (RUP) 
reads system log backwards, identifies 

~ ... inflight tasks, and copies data set log > > .. records and user journal records, to restart 
... 

data set. 

2. CICS/VS Transaction Backout Program is 
to executed after CICS/VS Recovery > .. Utility Program . 

3. CICS/VS Transaction Backout Program iA 
identified in the PL T, reads data set log < 
records for inflight tasks from restart 

1"1 

data set. 

@) Data Set Log Records are used to backout .. to 

> > .. effect of inflight tasks activity against .. 
user data sets. 

Extended Description 

@) The "Before" Log Record of an update replaces the original record in the 
data set. A "Before Deletion" record for a key sequenced VSAM data set 
is added back to the data set. An addition to a key sequenced VSAM data 
set is physically deleted. An addition to other access method data sets is 
logically deleted by the user by turning on a "Delete Flag" in the record. 
(It is the user's responsibility to subsequently recognize this record as 
being logically deleted, via this flag.) 

OUTPUT 

( Restart ( 
Data Set 

1 I 
Backed-Out ~ 
User Data ~ 
Sets 

Figure 8-7. Transaction Eackout frogram (User Data set Backout) 

The log records read frcm the restart data set ty TBP are either 
the record read from the data set prior to uFdate or deletion, or the 
identification of a new record addad to that data set. 

For an update, the relevant logical record in the data set is 
retrieved, and the ccntents cf that updated record are replaced by the 
original data record contents frcm the journal reccrd. The effect of 
the in-flight task prior tc system termination is therefore reversed, 
and the logical record on the data set is returned to its state before 
the update. 

For a deletion (which can only be made to key-sequenced VSAM data 
sets), the deleted record frcm th,! jcurnal must be added to the data 
set again, by the backout FrcgraD p tc remove the effect of the inflight 
task. 

File centrol auto.atically logs the contents cf a reccrd to be 
deleted, before the physical deleticn takes place. It appears on the 
syste. log (and hence on the restart data set) as if it were a record 
before an update operation. TBP, therefore, first attempts to replace 
the data set record by the lcgged record as if to tack out an update. 
If a "no record found" error indication is returned, TBP recognizes 

262 CICS/VS System/Application Design Guide 



that the record is associated with a prior delete operation and adds 
the logged record to back cut thE delete operation. This approach 
avoids possible duplication cf rEcords, which could otherwise ocCUr 
under the following conditions: 

a. Uncontrolled shutdown before delete completed. CICS/VS may have 
automatically logged a record to be deleted, but an uncontrolled 
shutdown may have occurred tefore the physical delete operation 
could be completed. 

b. Restart of emergency restart. In the event of a system failure 
during emErgency restart, emergency restart can be run again as 
previously described. If a deletion is always backed out by 
addition, records which were added prior to emergency restart 
failure are added again when restart is performed again. 

The TEP therefore, first checks that the deleted record is present 
on the data set. If it is, it does not add it again. This ap~roach 
permits emergency restart to te rerun as often as necessary without 
possible duplication of records. 

If the log record indicates an addition, and the data set accessed 
is a VSAM key-seguenced data set, a eICS/VS file control DELETE macro 
instruction is issued to remove that added record from the data set. 
However, if the added record was made to an entry-sequenced VSAM data 
set, a DAM data set, or an 15AM data set, that addEd record should be 
logically flagged by the user to indicate that it has been deleted. 
This can be achieved by user programming developed for use in the error 
exit of TBP. Such a "logically deleted" record shculd be ignored if 
it is sutsequently retrieved by normal CICS/VS application programs. 
Each application program which accesses that data set during normal 
eleS/VS operation must check the logical deletion flag set in the error 
exit of the transaction backout Frogram, and consider that record 
deleted if it is ON. In this way, the addition of records by in-flight 
tasks is removed. 

CICS/VS application Frograms can also achieve the logical deletion 
of a record in a VSA~ entry-sequenced data set, or in an IS1M or DAM 
data set by turning ON the logical delete flag as ~reviously described. 
The logically deleted record then "uFdates" the original record on the 
data set. If the logical deletion must be backed out on emergency 
restart, it must be "logically added" to the data set. This is acheived 
by turning OFF the delete flag. 

However, such a lcgically deleted record appears to eICS/VS as if 
it is a normal u~dated reccrd. eleS/VS, during normal operation, logs 
the "before" image of the record prior to its update being written. 
The before image has the delete flag OFF. During emergency restart, 
TBP backs out the "update" (that is, logical deletion) using the 
before-image logged record, which therefore automatically "adds" ~ack 
the logically deleted record. Thus, no s~ecial user backout action is 
necessary. 

Backout processing can take place correctly only if the data set 
content has not been damaged during the abnormal teraination. This 
could occur, for instance, in the case of a power failure. If the 
backout cannot take place because of a damaged data set, the user must 
recover the data set from a tackup copy before attempting another 
restart. 

Chapter 8. eleS/VS Recovery and Restart 263 



The facilities described ~revicusly for CICS/VS file centrol backout 
are also used, in Fart, by DI/I when used online with CltS/VS. 

DL/I LOGGING USING CICS/VS SlSTE~ leG 

Dl';I DOS/VS and IMS/VS nL/I (when used online with CICS/DOS/VS and 
CICS/OS/VS respectively) cFtionally direct DL/I log activity to the 
'CICS/VS system log by issuing journal control requests. Thus all 
CICS/VS and DL/I log activity apFears on the saDe system log. 

A CICS/VS application program schedules itself against a DLII PSB 
by issuing a PCB scheduling call. (See the relevant ~l~§L!~ .§nd 111tLl 
.!lUl!.i~at.~.!! iU29!i.m!~!§ i§tireD~!! .an.Y.f&l.) The program indicates it 
has finished its use of the FSB ty either issuing a DL/I TERM 
(termination) call, er by terminating itself. 

DL/I logs the scheduling and termination call requests to the CICS/VS 
system log, identifying the task and the related PSB name. Between 
the scheduling andterminaticn calls, other DL/I calls which result in 
modification of DL/I data tases will initiate log activity. Similarly, 
CICS/VS activity against Fretected resources idata sets or 
intrapartition or temporary storage destinations) will also be logged. 
Such log activity will a~peaI on the CICS/VS system log tetween the 
DL/I scheduling and termination log records. 

DL/I TER~INATION AC~IVITl 

A DL/I termination call fcrces all DL/I data base records, which 
bad teen modified in DL/I tuffers in storage by the relevant task, to 
be written to their apprcpriate data bases. The termination call 
indicates the logical completion of DL/I activity by the task, which 
should net be tacked out in the event of a subsequent uncontrolled 
shutdown. The termination call indicates the coapletion of a DL/I 
logical unit of work. It also is recognized by CICS/VS as the 
completicn of a logical unit of work for any CICS/VS log activity which 
preceded the call. Thus it is regarded by CICS/VS as similar to a user 
synchronization Fcint. 

Similarly, a user synchronizatien pcint request issued by the task 
is regarcled as a DL/I termination call request. ~hus, a DL/I 
terminat:ion record, and a user sync ~oint record on the CICS/VS system 
log indicate completion of the current LUW. 

DL/I DATA EASE BACKOUT DURING CICS/VS EMERGENCY FESTAET 

Durinq emergency restart, the recovery utility ~rogra. scans the 
CICS/VS system lcg backward. End-of-task records, sync point records, 
and DL/I termination records enceuntered on the backward scan identify 
completed LUWs. CICS/VS and DL/l log activity initiated by in-flight 
LUWs is collected by RUP as Freviously discussed. CICS/VS backs out 
file control data set activity fcr in-flight LUWs using the transaction 
backout ~rogram as described earlier. CICS/VS alse issues the necessary 
DL/I calls to tack cut in-flight DI/I activity directly against the 
relevant DL/I data bases during emergency restart. It is not necessary 
to run the batch DL/I backout utility. 

If thE: uncontrolled shutdown was caused by an unrecoverable I/O 
error on a DL/I data base, that data base must first be recovered prior 
to emergency restart. This is achieved by running the batch DL/I 
recovery utilities. ' 

264 CICS/VS System/Application Design Guide 



ONLINE DI/I ENTBY DATA EAS! EACKOUT TECHNIQUE 

DL/I ENTRY permits online replace, delete, and insert operations 
against HISAM data bases. Hcwever, it does not provide a backout 
utility as does tL/I DOS/VS. The follcwing technique may be considered 
by users who wish to iIpleaent their o~n backout support for DL/I ENTRY. 

DL/I ENTRY HI~AM data bases are defined to CICS/VS in the PCT as 
VSAM key-sequenced data sets. (A VSAM entry-sequenced data set is not 
also used as it is for DL/I DOS/VS or IMS/VS DL/I HISAM data bases.) 
These VSAM data sets support update, addition, and physical deletion 
of logical records. 

DL/I ENTRY uses CICS/VS file centrol macro instructions to carry 
out I/O against the VSAM key-sequenced data set used to contain a HISAM 
data base. A DL/I HISAM data base record may cOIFrise one or more VSAM 
logical records. DL/I ENTBY will translate application program calls 
to replace, insert, or delete DL/I segments into file control requests 
to update, add, or delete VSAM key-sequenced logical records. 

If HISAM data bases are sFecified in the FCT as protected VSAM 
key-sequenced data sets (that is, LOG=YES), file centrol will 
automatically log update, add, and delete requests issued by DL/I ENTRY. 
The CICS/VS application program must issue an explicit user sync point 
request, at the point where a DL/I termination call is issued, as DL/I 
ENTRY will not leg a ter.ination record. However, the sync point will 
indicate completion of the lcgical unit of work. It will also dequeue 
VSAM logical records ~hich were medified during the LUW. In emergency 
restart following an unccntrolled shutdown, the CICS/VS recovery utility 
program will identify in-flight lUWs and will transfer logged data set 
activity for such in-flight tasks to the restart data set. The CICS/VS 
transaction backcut prograB will then back out the logged activity 
against the relevant VSAM key-sequenced data sets. The user can 
participate in this backcut through use of the TEF input exit. (See 
"Transaction Backout Program" earlier in this chapter.) This backout 
will restore the HIS AM data base to its status prier to the initiation 
of DL/I activity by in-flight tasks. 

The iaplementation of this technique is a user responsibility. The 
technique does net represent a cCHmitment by IBM to support backout of 
online DL/I ENTRY data baSES. It may require further investigation by 
the user to ensure that data baSE integrity is nct comFromised. This 
technique is practical fcr DL/I EN'IBY because it does not support HDAM 
or HIDAM, and because it uses file control to request I/O. 

DL/I ~NTFY SEGMENT SCHEDULING 

DL/I ENTRY does not use SEgment intent scheduling, as implemented 
for DL/I DOS/VS cr IMS/VS DL/I when executed online with CICS/VS. 
Instead, the specification in the FCT of automatic logging for VSIM 
key-sequenced data sets used by HISAM data bases enables CICS/VS file 
control protection to be used. (See "Frotected Besources" earlier in 
this chapter.) When a task requests a replace, insert, or delete 
operation through a DL/I call, the relevant file ccntrol I/O request 
causes automatic logging for backout, and also enqueues the task on 
the relevant file control logical record~ If a concurrently executing 
task also attempts modification of the same logical record, it will 
wait until the first task dequeues from the record before it enqueues 
on the record. This is done automatically when the application program 
issues the CICS/VS user synchronization peint request at the termination 
of DI/I activity by the task, or when the task tersinates. The second 
task then enqueues on the record and proceeds with its activity. 

Chapter 8. eICS/VS Recovery and Restart 265 



The result is data integrity at the VSAM logical record level, 
without the potential perfcrKance disadvantage of segment intent 
scheduli :Ilg. 

TEMPORARY STORAGE RECOVEFY AlTER CCN~RCLLED SHUTCCWN 

CICS/VS supports the warm start of temporary storage records on disk 
following a controlled shutdcwn, but dces not attempt warm start of 
temporary storage records in dynamic storage. The following paragraphs 
discuss data that can be stored in main storage and that which must bi 
stored Oln auxiliary storage for sutseguent warm start following a 
controlled shutdcwn. 

Temporary storage allocated tc main storage is not recoverable in 
the event of either abnormal cr normal terminatien. Although 
applicat:ion procedures can be developed to attempt recovery of this 
information, main storage generally should be used as a temporary 
storage luedium fer data that does net need recovery. Typically, it 
should be used only for short-term storage of information, such as fcr 
transferring infermation bet~een Frograms executin9 under control of 
the same task. If information is to be passed to programs executed by 
ether tasks (implying lenger-term stcrage of information), auxiliary 
storage should be used. 

If, during system initialization, ~emporary stoIage is to be warm 
started, the temForary storage warD keypoint (containing, for example, 
the tempcrary storage use maF and auxiliary storage data 
identifications) is utilized by CICS/VS to restore the status of 
temporary storage. 

If, prior to controlled system termination, certain data 
identifications were released or purged, the warm keypoint taken at 
termination will reflect this action. On warm start, this deleted 
information will not be used in reestablishing the various temporary 
storage aata identifications. 

Terminal pages presented ty aFplication programs to BMS are written 
to temporary storage on disk for later retrieval either automatically, 
or on re~luest by terminal operators. Temporary stcrage on disk is 
retained on a warm start, and terminal pages are still available 
following system restart. 

Similarly, messages to be transmitted to terminals using the CICS/VS 
message routing facility are written tc temporary storage on disk and 
are still available for transmission on warm start of temporary storage. 

266 C1:CS/VS System/Application Design Guide 



~EMPORARY STORAGE RECOVERY AFTER UNCONTROLLED SHUTDOWN 

Temporary storage is not recovered by CICS/VS followinq an 
uncontrol1 ed shutdown. Temporary storage in dynamic s"t~oraqE' is lost. 
However, a technique is presented later in this section for user 
implementation of temporary storage recovery for dynamic storage. 

TEMPORARY STORAGE RECOVERY AFTER UNCONTROLLED SHUTDOWN 

Temporary storage (on auxiliary storage) is recovered by CICS/VS 
during emergency restart following an Uncontrolled shutdown. Temporary 
storage in dynamic storage is lost. However, a technique is presented 
later in this section for user implementation of temporary storage 
recovery for dynamic storage. (see "User Recovery of Temporary Storage 
Using Dynamic storage. ") 

Temporary Storage Automatic Logging 

Temporary storage automatically logs activity which results in a 
change to the temporary storage data set. This includes the following 
operations: 

• Output (temporary storage PUT and PUTQ macro inst.ruct,ions) 

• Update (PUT or PUTQ with TYPEOPER=REPLACE macro 1nstructions) 

• Release (temporary storage RELEASE and PURGE macro instructions) 

(Refer to the CICS/VS Application Programmer's Reference Manual, 
SH20-9003, for a description of these macro instructions.) 

When a task accesses a temporary storage destination (DATAID) for 
any of the above operations, temporary storage enqueues the task on 
that destination until the end of its current logical task unit of work 
if the destination has been defined as protected in the temporary 
storage table (TST). Any other task which attempts to operate on the 
same destination for other than a nondestructive read request will 
result in an attempt to enqueue on the same destination, and will wait 
until the first task completes its LOW and is dequeued from the 
destination. The second task is then enqueued to carry out its required 
processing. 

Any of these operations represent an implied enqueue issued by 
temporary storage. Alternatively, the applicarion program may issue 
an explicit enqueue request by issuing the temporary storage G£~ or 
GETQ macro instruction specifying TYPEOPER=EXCL. This may be desirable 
when the destination has not been separately defined as protected. The 
program must ensure that no other task has concurrent access to the 
same destination for the duration of its logical unit of work. 

If a record in temporary storage is updated, the old copy of the 
record is logged to the system log. This is used to back out the effect 
of that update, if a subsequent uncontrolled shutdcwn occurs with the 
current LUW still in-flight. 

Automatic logging for output and release operations (PUT, PUTQ, 
RELEASE, and PURGE) is deferred until the end of the logical unit of 
work. At this time, temporary storage forces output of the temporary 
storage VSAM write buffer if it contains changed data for the particular 
destination (DATAID). The new status of the destination is logged to 
the system log identifying the total record count for that DATAID. If 
the DATAID is to be retained, the logical current record count and 
total record count are updated in the temporary storage tables in 

Chapter 8. CICS/VS Recovery and Restart 267 



dynamic storage to reflect processing activity carried out during the 
LUW. If the DATAID is to be released, the RELEASE or PURGE operation 
is carried out at this time. The task is then dequeued from the 
destination. 

If an uncontrolled shutdown occurs prior to completion of the LUW, 
all acti'vity by the in-flight LUW against the temporary storage 
destination is backed out on emergency restart. 

Temporary Storage Recovery 

On emergency restart, the recovery utility program identifies 
in-fligh't tasks and collects information defining the logical status 
of each protected temporary storage destination at the time of the 
uncontrolled shutdown. RUP links to the temporary storage recovery 
program (TSRP), which reads the temporary storage data set to collect 
all data pointers required to reconstruct the temporary storage tables 
in dynamic storage for protected destinations. Each record on disk is 
self-describing and contains the DATAID and the record sequence number 
within a message set (queue). As the data set is read, and the 
temporary storage tables are reconstructed, the status of each VSAM 
coni:rol interval is determined and used to reconstruct the temporary 
storage use map. 

At thl9 completion of TSRP processing, all recoverable destinatio~s 
have been restored to their most l:ecently recorded logical status with 
in-flight LUW activity backed out. 

Recovery of temporary storage in this way also restores terminal 
paging and message routing. 

In addition, interval control requests and automatic task initiation 
requests from transient data (which are recorded on temporary storage 
by CICS/VS during normal operations, for subsequent recovery) are 
reestablished on emergency restart. 

USER RECOVERY OF TEMPORARY S'IORAGE USING DYNAMIC STORAGE 

The user can specify, at CICS/VS initialization time, that auxiliary 
storage residence of temporary storage is not required. (See the 
CICS/VS ~~ystem Programmer's Reference Manual.) Temporary storage 
requests are then satisfied using dynamic storage only. This may be 
desirabIE~, for example, in an installation with limited real storage 
availability that (except for the use of VSAM for temporary storage 
residencE= on disk) does not other\ol1ise have a need for VSAM support. 
In this E=nvironment, the user may wish to specify that auxiliary storage 
residencE= is not required for temporary storage support, if the 
potential performance degradation trade-off is acceptable. (See 
"Virtual Storage Access Method (VSAM)" in Chapter 1.) 

The user should also recognize that temporary storage recovery is 
not supported for dynamic storage residence. Temporary storage recovery 
in this E:mvironment is a user responsibility. The following technique 
may be used to implement recovery of temporary storage resident in 
dyn.amic storage. This technique can be used either for a warm start 
followinq a controlled shutdown of CICS/VS, or for an emergency restart 
followinq an uncontrolled shutdown. It does not attempt to back out 
the processing carried out by in-flight logical units of work prior to 
uncontrolled shutdown. It does recover all temporary storage activity 
up to thE= time of shutdown. Use is made of the temporary storage 
program user exit "before request analysis" (XTYPREQ) to reduce the 
amount of coding necessary for recovery in the user's CICS/VS 
application programs. (See CICS/VS SysteIt} Programmer's Reference 

268 CICS/VS System/Application Design Guide 



Manual, SH20-9004.) 
recovery technique. 

INPUT 

User-Written 
Application 
Program 

Temporary 
Storage 
XTYPREO 
User Exit 

User-Written 
Temporary 
Storage 
Recovery 
Program 

Figure 8-8 illustrates this temporary storage 

PROCESSING 

Normal CI CS/VS Operation 

1. User application program issues GET /GETO, 
PUT/PUTO, and RELEASE/PURGE requests. 

2. Temporary storage request analysis user 
exit intercepts request. 

3. User exit journals PUT/PUTO and RELEASE/ 
PURGE information for recovery. 

4. User exit returns control to temporary 
storage program. 

5. Temporary storage completes original 
request by application program. 

Warm Start Or Emergency Restart 

6. User-written temporary storage 
recovery program is identified in PL T, 
and executed after CICS/VS recovery 
utility program. 

7. User journal data set is read forwards. 

8. Any PUT or PUTO journaled request is 
reissued to the appropriate temporary 
storage data identification. 

9. Any release or purge journaled request 
is reissued to the appropriate data 
identification. 

10. When end of user journal reached, 
temporary storage has been recovered 
to reflect journaled activity. 

[[] 
[] 

OUTPUT 

Temporary 
Storage In 
CICS/VS 
Dynamic 
Storage 

Figure 8-8. Temporary Storage User Recovery for Dynamic storage 
Residence 

The temporary storage "before request analysis" user exit intercepts 
requests from programs which direct data to temporary storage and 
journals that data to a user journal data set. This is done prior to 
completing the temporary storage PUT, PUTQ, RELEASE, or PURGE request. 
The user journal record must contain the record to be written by a 
temporary storage PUT or PUTQ macro instruction, together with the data 
ID. A request to update an existing temporary storage record must 
result in the old copy of the record being journaled. A user journal 
record containing only the data ID must be constructed for a temporary 
storage RELEASE or PURGE macro instruction. 

These user journal records are written to the user journal data set 
either synchronously using a journal control PUT macro instruction (see 
"Journal Requests" in this chapter), or asynchronously using a journal 
control WRITE macro instruction. Synchronous journaling will ensure 
that a copy of the user journal record exists on the user journal data 
set before the temporary storage operation is carried out. Asynchronous 
journaling enables the journal I/O to be overlapped with subsequent 
application program processing. While asynchronous journaling results 
in improved performance, it introduces added complexities during 
subsequent recovery. 

Chapter 8. CICS/VS Recovery and Restart 268.1 



'rhis ~journaling, carried out by user-written code incorporated in 
the CICS/vS temporary storage program by means of a user exit, has the 
advantagE~ of not requiring any special coding by the applica tion 

268.2 CICS/VS System/Application Design Guide 



programmer. Furthermore, it permits records directed to temporary 
storage (such as terminal ~ages cr routed messagEs) by BMS to he 
journa1ed for subsequent recovery also. This additicna1 user exit code 
may be easily removed frcm the tem~orary storage program in the future, 
if desired. 

If a controlled or unccntrolled shutdown subsequently occurs, a warm 
start or an emergency restart will be carried out to restore CICS/VS 
to its status at ter.ination. This will cold start temporary storage 
in dynamic storage, and sucsequently execute user-written programs 
identified in the prcgra~ list table during the post-initialization 
program phase. 

The user-written temporary stcrage recovery prcgram can be specified 
in the PLT and executed. This reccvery program reads the user journal 
data set forward. As each journal record is read, the data ID and 
temporary storage macro instructicn, issued during previous CICS/VS 
operation, is issued again tc the same data ID. Any data record in 
the journal reccrd is writter to temporary storage using a temporary 
storage PUT or PUTQ macrc instruction as originally issued. Any 
temporary storage BELliS! or PUEGF macro instructicn identified frcm 
the user journal is alsc issued to the relevant data identification. 

The result of this program's execution is that all temporary storage 
records ~ritten, and EEL!ASEd or PUEGEd, during previous system 
operation are reestablished in the same chronological sequence as prior 
to CICS/VS shutdown. 

CICS/VS supports the recovery cf intrapartition destinations, but 
does nct provide sup~ort fcr the reccvery of extrapartition 
destinations. Such recovery is the responsibility of the user. The 
procedures for recovery cf the two types of transient data are discussed 
in the following. 

INTBAPARTITION DATA SET BECOVERY APTEE CONTEOLLEt SHUTDOWN 

On warm start after a ccntrolled shutdown, CICS/VS reestablishes 
all intrapartition destinaticns and reconstructs the destiriation control 
table (DCT) entries to reflect their status at termination. The 
transient data use bit map (~hich is used for the allocation of tracks 
to various intra partition destinations) is also reestablished. In this 
way, the status of intra~artition destinations is automatically 
recovered on a transient data warm start. 

The queue count and trigger level of each intra~artition destination 
are reestablished on war~ start cf transient data. Conseguently, 
automatic task initiation can be utilized on warm start as if 
termination had not cccurred. 

Because of the reestablishment cf transient data intrapartition 
destinations on a warm start, and the ability to use automatic task 
initiation, terminal output directed to transient data intrapartition 
destinations is automatically recovered, and will he transmitted to 
the relevant terminal as soon as that terminal is in service and able 
to receive output. 

Chapter 8. CICS/VS Becovery and Eestart 269 



As discussed in Chapter 3, information received from terminals may 
be edited, validated, and, if ccrrect, written tc transient data 
intrapartition destinations to enable further precessing. This 
processing may permit the updating of various data sets, for example, 
to be carried out while the terminal is atle to continue entering other 
transactions. 

Information written to intrapartiticn destinaticns viII be recovered 
on a warm start. This enatlEs transactions entered from terminals to 
be quickly validated, and then reccrded on disk to allow the processing 
necessary for those transactions tc be carried out on warm start of 
eICS/VS (if necessary) after contrclled shutdovn. The terminal operator 
need not be required to reenter those transactions. 

INTBAPAB~ITION DATA SET EFCOVEEY IPTEB UNCCNTEOLIED SHUT£CWN 

CICS/VS provides recovery of the intrapartiticn data set during 
emergency restart following an unccntrolled shutdown. The recovery 
attributes of each intrapartition destination may be specified by the 
user in the DC~. The definition of recovery attributes for each 
intrapartition destination causes eICS/VS to autcmatically joutnal to 
the systEm log the inforaaticn necessary to recover each destination 
queue. 

The recovery attributes of an intrapartition destination may specify 
either physical cr logical recovery. 

fhI§j~s! E££Q~~~l 

When physical recovery is specified for a destination, the following 
functions are performed duri£g CICS/VS operation: 

• The destination entry is keypointed as part of a periodic system 
activity keypoint. 

• The destination entry is autcmatically logged by the transient data 
program to the system log on the first transient data PU~' macro 
instruction issued by any task in the system against each physically 
recoverable destination, and when the destination is PORGEd. 

• The destination entry is autcmatically logged by the transient data 
program before executicn cf each transient data GET macro 
instruction. 

• The destination entry is autcmatically logged, by the transient 
data program for reusatle queues, as a track is released - only if 
it has been completely read and a new transient data GET macro 
instruction is issued to the queue (that is, the record viII be 
read from the next track). 

During emergency restart, a physically recoveratle queue is restored 
by the CICS/VS transient data recovery program as follows: 

• The start of the queue, identified in the DCT, is set to the first 
track in existence for the qUEue. 

• The location of the Dext reccrd to be read from the queue (the GET 
pointer), is set in thE tCT to the last record previously r~~d if 
the task (or LUW) that issued the GET did Dot complete successfully. 
It is set to the following record if the task or LOW had completed. 

270 CICS/VS systeD/Application £esign Guide 



• The location of the next recerd to be written to the queue (the 
PUT Fointer), is set in the neT to point after the last physical 
record present in the queue at emergency restart. 

Fellowing emergency restart, each physically recoverable destination 
will have been recovered tc reflect all FUT activity. All GET activity 
to each destination will also be rEcovered, ExceFt for the last record 
which had been rEad ty an in-flight task against these destinations. 
This record may not have teen completely processed prior te uncontrolled 
shutdown and must te reread en eaergency restart. 

Logical recovery results in rEstoring the GET and PUT pointers to 
their status at the co.pletien of a logical unit of work (LUW)_. When 
logical recovery is specified, rEcoverable destinations are periodically 
keypointed in the syste. activity keypeint, and thEir status is logged 
at the end of each LUW which uses each destination (that is, at a sync 
point or end of task). 

This logging is deferred until the end of a LUW, in the event that 
an uncentrolled shutdown may cccur during the LUW. If this haFpens, 
no record of the activity of the in-flight task will appear on the 
system log. On subsequent emergency restart, the status of those 
intrapartition destinaticns cperated uFon ,by in-flight tasks is 
automatically backed out to the status at the end ef the last LUW which 
operated on those destinations. 

If an uncontrelled shutdown dces not occur, at the end of the LUW 
the status of all intrapartition neT entries operated on during that 
LUW is legged as part of the sync point for the LUW. If subsequent 
uncontrolled shutdown occurs, the DeT status will te restored to that 
at the end of the last LUW fer each destination, or from the last system 
activity keypoint. 

Destinations are protected for the duration of a logical unit of 
work, to prevent interleaved input and output activity. For protection, 
each destination is considered tc consist of two separate facilities. 
This permits one LUW to have exclusive control of the output facility 
and another LUW to concurrently have exclusive control of the input 
facility. There is no conflict tEtwEen these facilities unless the 
input LUi attempts to read the data records written by an output LUW 
while the output LUW is still active. In this caSE, the input LUW 
waits until completion of the output LUW. 

On emergency restart, the result of logical recovery is for eIes/vs 
to back out, from the queues, the activity of these in-flight tasks 
which had not completed a logical unit of work at system termination. 

Following emergency restart, automatic task initiation, terminal 
output and low or high priority Frocessing information on recoverable 
intrapartition destinations are rEcovered. 

EITRAPARTITION DATA SET RECOVERY 

eIes/vs does not Frovide for recovery of extrapartition data sets. 
If this is significant to the online application, the system design 
team must develop procedures to enable that information to be recovered 
for continued eXEcution cn restart, following either a controlled or 
uncontrolled shutdown of eles/vs. 

Chapter 8. CIeS/VS Recovery and Restart 271 



There are two areas which must be considered in recovery of 
extrapartition data sets: 

• Input data sets 

• Output data sets 

The main information required on restart is the number of records 
processed up to the time of system termination. ~his may be ~ecorded 
during precessing using the journaling capability of CICS/VS, as 
described in the following paragraphs and illustrated in Pigure 8-9. 

INPUT PROCESSING 

Normal CICSIVS Operation 

1. User application program enqueues on extra­
partition data identifications to be operated 
on by program. 

2. User program reads from relevant extra· 
partition input destinations, and accumu· 
lates number of reads against each 
destination. 

13. At completion of logical unit of work, user 
program journals number of reads against 
each destination to user journal data set, 
then dequeues from each destination. 

Warm Start, Or Emergency Restart 

__ ...... I 4. User·written extrapartition input reposition· 
ing program is identified in PL T~ and during 
post·initialization phase. 

5. User journal data set is read forwards. 

6. When journal record for destination is found, 1 

user program reiussues to get macro instruc· 
tions for total number of reads to that des· 
tination in journal record. 

7. When end of user journal reached, extra· 
, partition input data sets are repositioned 

to point reached when CICS/VS terminated 
with any inflight task activity automatically 
backed out. 

Ex,ended Description 

3. If system terminates before user journal 
record is written for a destination, 
previous journaled information for that 
destination is used. 

7. As inflight tasks did not complete a LUW 
no activity for those tasks appears on the 
user journal data set. 

OUTPUT 

Figure 8-9. Extrapartition InIut tata set User Recovery (Logical 
Recovery) 

Each application program which reads records from extrapartition 
input destinatiens should first enqueue to ensure exclusive access to 
those destinations. This will prevent interleaved access to those same 
destinations by ether concurrently executing tasks, and so enatle the 
user's extrapartition recovery tEchnique to operate correctly. (This 
provides a similar capability to that described earlier in this chapter 
in "Protected Resources.") 

Transient data GET macro instructions are then issued by the 
applicati10n program, to read and process extrapartition in~ut records. 
The application programs accumulate the total of input records. read 
and processed during executicn fer each destination. The total number 
of GETs is journaled by the program to a user journal data set, ~ogether 
with the relevant destination identifications. This journaling is only 
carried out at completion of a legical unit of work, which may be at 

272 eleS/VS System/Application Design Guide 



end of task or at a user sync point, such as on a conversational 
terminal operation (see "Logical Task Synchronization" in this chapter). 

Following output of the user journal record, the application program 
dequeues itself frog the input destinations, to permit other application 
programs to access those extrapa~tition input destinations. 

If uncontrolled shutdcwn cccurs prior to this user jou~naling, no 
records will appEar on the user jcurnal data set for that logical unit 
of work, and the effect of that in-flight task is therefore 
automatically backed out on emergency restart. However, if the user 
journal record is written tefore unccntrolled shutdown, this completed 
input data set processing will be ~ecogni2ed on emergency restart. 

On a controlled shutdown, CICS/VS viII wait until the application 
program completes executicn Dormally. This will Enable the input data 
set activity to be ~Ecorded by thE user for subsequent warm start. 

On emergency restart follcwiDg uncontrolled shutdown or on a warm 
start following a controllEd shutdown, the followiDg procedure may be 
utilized. This will reposition the extrapartition input data sets, to 
reflect the input and processing of their records during previous 
CICS/VS eperation. 

An uncontrollEd shutdown does not permit a taFe journal data set to 
be closed normally. This may be achieved through the use of the CICS/VS 
tape end-of-file utility program (see "Preparation of User Journals" 
in this chapter) prior to execution ef the USEr recovery program. 

A user-written extrapartition input recovery prcgram may be 
identified in thE PLT for execution during the pest-initialization 
phase. This program reads the user journal data set forward. Each 
;ournaled record indicates the number of GETs issued to the relevant 
extrapartition input data set during previous execution of application 
programs. The same number of transient data GET macro instructions is 
issued again by the recovery program, to the same input destination as 
referenced previously (see FigurE a-9). 

On reaching the end of thE USEr journal data set, the intraFartition 
input data sets are positicnEd at the same peint they had reached prior 
to initiation of tasks which were in-flight at unccntrolled shutdown. 
The result is the logical recovery of these input data sets with 
in-flight task activity tacked out. 

The user recovery of output data sets is somewhat different from 
the recovery of input data sets. 

For a tape output data set, a new output tape should be used on 
restart. The previous outFut taFe can be utilized if necessary to 
recover information ~ecerded prier tc termination. 

To avoid the loss of data in tape output buffers on termination, it 
may te desirable to write unklockEd records. Alternatively. data may 
be written te an intrapartition disk destination (which is recovered 
by CICS/VS on a warm start or emergency restart) and periodically copied 
to the extrapartition tape destinaticn by an autcmatically initiated 
task. In the event of terminaticn w thE data is still available on 
restart to be recopied. (This is discussed further in the logical 
recovery technique presented below.) 

If a controllEd shutdewn cf CICS/VS occurrEd, the previous output 
tape is clcsed ccrrectly, and a tapemark is written. However, on an 

Chapter 8. CICS/VS Eecovery and Eestart 273 



uncontrolled shutdown such as on a power failure cr machine check, a 
tapemark will not be written to indicate the end of the tape. This 
may te achieved by execution of the CICS/VS tape end-of-file utility 
program ~ricr to use of that tapE for subsequent rEcovery (see 
"Preparation of User Journals" in this chapter). 

For a line printer output data set, if it is satisfactory to continue 
output from the point reached prier to system termination, no special 
action n€ed be taken. HcwevEr, if it is desired to continue output 
from a dE:fined point, such as at the beginning of a page, it may be 
necessary to use a journal data set. As each page is completed during 
normal CICS/VS operation, that fact may be noted by writing a record 
to a journal data set. Cn restart, the page which was being processed 
at the time of failure can be identified from thE journal data set, 
and that page reFrocessed to reproduce that same output again, from 
the beginning of the page. Alternatively, an intermediate 
intrapartition destinaticn may be used (as previcusly described) for 
tape output buffers. 

since extrapartition disk outFut data sets are normal seguential 
data sets, a difficulty exists in locating the pcint where last output 
was written and continuing output f~cm that point. Two technigues for 
user reccvery are presented in the following paragraphs, to permit the 
end of the extrapartition data set to te located fer subseguent 
continuaticn of cutput. 

The first technique is suitable for physical recovery of the output 
data set. The end of thE data set is located, and output then continues 
from that point with no attempt to back out in-flight tasks. This 
technique assumes that the programs which will subsequently process 
this output data set can detect Fossible duplicate (or missing) records 
resulting from lack of tackout on physical recovety and take appropriate 
actien. This detection may he achieved by each extrapartition record 
having a consecutive sequence number, for example. 

The SEcond technigue is suitatle for logical recovery of the output 
data set. This also may utilize a ccnsecutive sequence number in each 
record (for subsequent program detection). The lcgical recovery 
capability offered by transient data intrapartition destinations is 
utilized for "spooling" of a logical section ~f data to an 
intrapartition destinaticn, and then subsequently copying each completed 
logical section to the extrapartition destination. If an uncontrolled 
shutdcwn eccurs, the in-flight tra~sient data intrapartition task 
activity can be tacked out. 

These two techniques are discussed further in the following 
paragraphs. The physical recovery technique is illustrated in Figure 
8-10. 

274 CICS/VS System/Application tesign Guide 



INPUT PROCESSING 

Normal CICSIVS Operation 

p,efor0'2 1. Preformatted data set with known 

matted 
. preformatted records is used as "> 

Data Set output data set. 

2. User program prepares extrapartition .. 
ouptut, but system terminates. > 

Program 
. 

List Table 
Warm Start Or Emergency Restart 

User Extra- . 
3. On restart, CICSIVS initiates user output 

partition > 
data set recovery program identified 

Recovery 
in program list table. 

Program 
4. User recovery program reads previous 

extrapartition output data set as an 1< 
input data set. 

5. User recovery program writes each 
record read to extra partition output 
DESTID. 

[]F> 6. When preformatted record is read, 
ouptut data set is positioned as at 
system termination. 

Figure 8-10. Extrapartition output Data set User Recovery 
(Fhysical Reccvery) 

• Physical Recovery 

OUTPUT 

( Ext,a~~ tltlon 
Output 
Data Set 

Recove~ 
Output 
Data Set 

Cn restart, a user program ir the prograa list table is utilized 
in the post-initialization phase to read the previous output data 
set as an input data set. Records read en restart from the previous 
output data set are written to the output destination to be used 
on restart. The result is the copying and reestablishment of a 
new output data set to the same status as the previous data set 
prior to ter.inaticn. 

However, to terminate the copy operation, it is necessary to 
identify when the end of the previous output data is reached. This 
is best achieved by prefcrmatting the entire cutput data set prior 
to initial use by Clcs/vs to kncwn record contents, such as records 
containing binary zeros. Accordingly, as the previous output data 
set is read by the post-initialization prograa as an input data 
set, each record retrieved from that data set is checked to 
determine whether it is a preformatted record. ihen the first 
preformatted reccrd is retrieved from the input data set, the output 
data set has been updated to reflect the output location reached 
prior to termination. Subse9uent output to that same extrapartition 
destination then continues from that point when eICS/iS restarts. 

Chapter S. CICS/VS Recovery and Restart 275 



• Logical Recovery 

An alternative technique, which can be utilized in the event of 
either a controlled or an unccntrolled shutdcwn, takes advantage 
of the recovery suppcrt pro~ided by CICS/'S for intrapartition 
destinations. This technique requires extrapartition data to be 
directed during normal CICS/VS operation instead of to an 
intrapartition destinaticn. (This requires applicaticn programs 
to prepare that data as variable-length records, as required by 
intrapartition destinaticns.) 

Such data is directed to an intra partition destination, rather than 
an extrapartition destination.. When a logical section of data (for 
example, a printer page) has been queued to that destination (based 
upen its trigger level), a task is automatically initiated. This 
task reads those reccrds queued to the intra partition destination, 
converts the reccrd fcrmat tc fixed-length if required, and then 
writes those records to the appropriate extrapartition destination. 
This transfer of data from intrapartition to extrapartition 
continues until all records currently gueued to the intrapartition 
destination have been read. At this point, a transient data PURGE 
macro instruction may be issued to release those tracks already 
read, for subsequent reuse. 

Several dummy records may be written to the extrapartition 
destination, when end cf queue on the intrapartition destination 
has teen reached. This forcEs a complete blcck cf records in the 
e~trapartiticn data set tuffers (QSA~ buffers for CICS/OS/'S) to 
be written out. Subsequent programs which read this data set must, 
of course, test for these dummy records and ignore them. 

An uDccntrolled shutdcwn may cccur before the data currently queued 
on intrapartition has teen transferred to extrapartition. If the 
transfer task is unable tc ccmplete normally, the effect of that 
in-flight task is backed out by CICS/VS on emergency restart. The 
data is still available cn the intra partition destination, and can 
he subsequently recopied to the Extrapartiticn destination following 
restart when the autcmatically initiated task is activated again. 
The user must positicn the extrapartition data set at the end of 
the last completed logical section {using a sequence number in the 
record, for exaDple), before this recopying from the intrapartition 
destination (following emergency restart) is i~itiated. 

USE OF JCUBNAL CCNTECL FCE SEQUENTIAL DATA SETS 

As previously discussed, reeovery of extrapartition data sets on 
warm start or emergency restart is a user responsibility. It can 
require a considerable amount of user implementation effort. One 
approach which may be considered fer user recovery of tape or disk 
extrapartition data sets is based on the use of journal centrol by the 
user's applicaticn programs in place of extrapartition transient data. 
This requires modification of existing applicaticn programs and a 
possible data conversion step before processing. However, this effort 
can be offset by the additioIal support offered by journal control over 
transient data. The following discussion compares the different support 
offered by each facility • 

• Becord Format 

Journal contrel supperts cnly variable-length blocked records with 
prefi~ control information preceding the data record. 
Extrapartitien data sets, however, may be fixed-length or 
variable-length, blocked or untlccked, with DC prefix control 

276 CICS/VS System/Application Design Guide 



information. Thus, journal control data sets lust be converted if 
compatibility is. desired lith existing extraFartition data sets. 

• Euffering 

eles/os/vs uses eSAft for extraFartition I/O and ESAM for journal 
control I/O. eICS/DOS/VS USES SAM for both. Journal control uses 
a sOFhisticated buffering techni~ue Ihich can be controlled at 
CICS/VS initialization time by using different versicns of the 
generated journal centrol tatle (JCT) having varying journal buffer 
size and buffer shiftuF values for each journal data set. (See 
~l~~Ll~ aI§!~~ ~I~~I~JJ~l!§ ~§1§1~~£§ ~!~Y~l, SH20-9004.) 

• output Buffer Flush 

Extrapartition I/O does not enable a task to force output of the 
buffer on task termination. Journal control enables a task to 
force buffer outFut at any time (see "Journaling" in this chapter). 
In addition, a task may close and cpen journal data sets for input 
or output at any time. 

• Work File Capability 

Extrapartition data sets can only be supported as sequential data 
sets. Journal data sets effer bcth sequential and work file 
capability using journal control NOTE and POINT macro instructions. 

• I/O Overlap 

Extrapartition I/O is synchrcneus and the task waits for I/O 
completion. In additien, journal control I/C can be synchronous 
or asynchronous to enable the task to continue processing Ihile 
I/O is in Frcgress. 

• I/O Wait Time 

Extrapartition I/O results in a DOS/VS or an OS/VS WAIT being issued 
which causes the entire eleS/VS Fartition/region to wait. Journal 
control uses CICS/VS WAIT, which enables the partition/region to 
remain active and allcls cther CICS/VS tasks tc Frocess during the 
journal control I/O. The result is additional CICS/VS processing 
time if journal control is used. 

• Volume Switching 

Extrapartiticn I/O dees net sUFpert automatic volume switching. 
The master terminal cperator can, however, dynamically open or 
clese extrapartiticn data sets. Journal contrel supports cne or 
two tape drives (or disk extents) for each jcurnal data set with 
automatic volume switching. Disk extents are automatically reused, 
if insufficient space is allccated. Accordingly, if disk reuse is 
to be avoided, the total disk space allocated must be sufficient 
to contain the tctal journal data set contents. 

• Concurrent Task Access 

Extrapartition transient data does not explicitly inhibit two or 
more tasks from accessing the saae destinaticn concurrently. To 
avoid the consequent data integrity problems (see "Protected 
Resources" in this chaFter), each task must eXFlicitly enqueue on 
the destination. There is nc similar integrity exposure for journal 
control output, as each journal control record identifies (in its 
prefix) the originating task number. Journal control explicitly 
inhitits concurrent access by two or more tasks to an input journal 

Chapter 8. eleS/VS Recovery and Restart 277 



data set. Other tasks will wait until the first task has finished 
its use of the data set, and close it • 

• Recovery 

Journal data sets are preformatted using utilities supplied by 
eleS/VS (DFHTAP for taFe and DFHJCJFP for disk). A utility is also 
supplied to write a tapemark at the point reached in a tape data 
set cit unccntrolled shutdown. (See ~I~~L!~ g~§!~tio]§ §yig~.) The 
journal control OPEN macre instruction enables an application 
progIam to open a journal data set for either input or output, and 
autoDatically positicn the data set at the peint reached at 
uncontrolled shutdown to continue I/O against the data set from 
that point. 

Ther€fore, the system designer may wish to specify that journal 
control be used for seguential data sets, in Flace of extrapartition 
tranEient data. 

INDIRECT DESTINATICNS 

The use of indirect destinaticns for providing backup of 
intrapartitien terminal destinations or extrapartltion destinations 
has teen discussed in this chapter. with the reccvery of intrapartition 
transient data bj eleS/vS en restart, all intrapartition indirect 
destinations are also reestatlished to their status at the time of 
system terminaticn. 

However, if a user-written DeT modification program (as described 
for terminal backup in this chapter and also in Chapter 4) was used to 
modify indirect destinations, theSE user modifications will nQt be 
reestablished in the DeT on restart by CleS/VS, since it is not aware 
that any modification was DadE. It is the user's responsibility to 
journal information when each user DeT modification is made. This 
journaled information must then te utilized by useI prograDs on system 
restart, to reestablish the same DeT modification in force at 
termination. 

On restart, unless specific user action is taken, the dump data set 
is opened by CICS/VS as if it were a new dump data set. Subsequent 
eleS/VS dumps then override earlieE dUDPS produced prior to termination. 
To avoid this situation, it may te necessary for the user, prior to 
restarting the online system, to print out all dumps taken up to system 
termination, by utilizing the CleS/Vs dump utility program. 
Alternatively, a user post-initialization program Day automatically 
attach the masteI terminal transaction CSMT which will switch to the 
alternative dump data set. Iumps prier to system termination are 
consequently retained en the original data set, and dumps following 
system restart are directed to the alternative dumF data set. The 
original dumF data set mal then be FIinted out using the dump utility 
program from another batch partition at some later time, when required. 

While the master terminal operator can switch the dumF data sets by 
using the master terminal cperaticn transaction (CSMT) on system 
restart, it is better to make this an automatic fUDction of restart by 
specifying a program in the Frogram list table used by the 
post-initialization phase, as descrited above. 

278 CleS/iS System/Application Design Guide 



The CICS/VS program library is a private core-i.age library for 
CICS/DOS/VS, or a partiticned data set for CICS/CS/VS. 

If no changes are made to the program library during CICS/VS 
execution, no special action need be taken to recover this library on 
system restart. 

If updated versions of CICS/VS apFlication pro9rams were cataloged 
to the CICS/VS program litrary pricr to system ter~ination, and the 
PPT could not be updated dynamically by the master terminal operator 
to point to the new version of the program before termination, on system 
restart the PPT is automatically reestablished to Foint to the current 
version ef each application frogram. Accordingly, no action need be 
taken during system restart fer FPT maintenance, either by 
post-initialization prograas or ty the master terminal operator. 

The following sections discuss message recovery and transaction 
restart considerations first for VTAM and BTAM terainals. 

BECOVEBY OF MESSAGES ASSCCIA~ED WITH VTAM TEB~INAIS 

CICS/VS automatically lcgs inFut messages for transactions specified 
in the PCT as "message-protected," and legs committed output messages 
and responses indicating their subse~uent positive receipt by the 
terminal. (See "Protected Messages" in this chaFter.) Automatic 
logging only applies to message-protected transactions associated with 
VTAM terminals which can sUF~ort message recovery. It is a user 
responsitility to carry out this jcurnaling for transactions associated 
with BTAM terminals. Inguiry transactions (which do not update data 
sets) should not be specified as "protected" in the PCT. 

The CICS/VS recovery utility Frogram (BUP) identifies in-flight 
tasks during emergency restart and transfers logged input messages or 
committed output messages (fer which receipt acknowledgment is 
outstanding) te temporary stcrage. (See Figure 8-11 and "Protected 
Messages.") A temporary storage message "cache" is defined for eac~ 
terminal which had an in-flight task at uncontrolled shutdown. This 
message cache has a unigue temporary storage DATAlt of DFHMXXXX (where 
XXXX=four-character terminal identification). This cache contains 
either the input message fcr the in-flight LUW, or, if the LUW completed 
normally but definite receipt of a cemmitted outFut message was not 
acknowledged by the terainal, the committed output message. 

A committed output message can cptionally be automatically 
retransmitted by CICS/VS on emergency restart to establish message 
resynchrcnization. Thus, committed cutput message integrity is 
preserved. 

An inFut message for an ir-flight LUW is not automatically 
reprocessed by CICS/VS on emergency restart. CICS/VS will back out 
all in-flight activity for that LUW. The decision tc reprocess the 
input message is a user respcnsitility based on factors such as 
application requirements and security of informatien. A technique for 
user-activated transacticn restart is discussed later in this chapter. 

Chapter 8. CICS/VS Becovery and Bestart 279 



INPUT PROCESSING OUTPUT 

1. CICS/VS logs input messages and com-
mitted ouput messages for VT AM CICS~ 

~ terminals > System 
F 

Terminals > or Log 
User journals input messages for BTAM 
terminals. 

Emergency Restart 

1< 
2. CICS/VS recovery utility program r 

( "> identifies inflight tasks and transfers . CICS/vS > 
CICS/vS 

inflight activity to restart data set. Restart 
Data 

Emergency 1< Set "> \ Restart J . Support 3. CICS/VS backs out inflight task activity I User Data / against data bases, intrapartition, and > 
> F 

Bases, Intra-
temporary storage destinations. 

partition, And 
Temporary 

User J 4. CICS/VS transfers VTAM input messages Storage 

\ PLT .... "'---- for inflight tasks or committed output Destinations 
Program 

DJu> 
messages or temporary storage 

OJ}> ( I 
or CICS/vS 

CICS/~ User PL T program transfers BT AM input Temporary ( 

Restart messages for inflight tasks to temporary Storage \ 

Data Set storage. r 
Transaction Restart 

5. Terminal operator (or VTAM controller) =;:-~ > 
Terminal 

initiates user transaction enquiry program. Original 

6. User enquiry program retrieves input -'" 
Input 

) ( > Message 
C'CS/B message from temporary storage (if ... 
Temporary > terminal had inflight task) and transmits 

For Inflight 

Storage 
... 

input message to terminal. 
Task 

7. Terminal operator (or VTAM controller) 
I ~ =9 . 

Transaction > specifies input message to be reprocessed ~ 
Terminal ., 

Reprocessing (if application and security factors permit). 

Figure 8-111. Message Recovery Transaction Bestart 

RECOVERY OF MESSAGES ASSCCIA1ED WI~H BTAM TEEMINAlS 

To provide for implementation of a user-written transaction restart 
~rogram, each USer task Bust journal its terminal input message as soon 
as it co.mences executioD. This can be achieved either ty each task 
lINKing to an installaticn-Ievel, user-written transaction jcurnal 
prcgram, or by sfecifying this transaction jcurnal program in the PCT 
for each transaction code for which in~ut messagES are to be journaled. 
In this latter case, aftEr jcurnaling the in~ut message the user-written 
transaction journaling program examines the transaction code in the 

280 CICS/VS systeB/ApFlicatioD :ttesign Guide 



input message, and transfers contrel to the relevant application 
Frogram. 

Alternatively, journaling of terminal input messages may be carried 
out by user-written code in a terminal contrel pregram user exit. 

The informatien which ieuld be included by the user in the 
transaction journal record is detailed belcw. Seme of this information 
is automatically provided in the system prefix by journa1 control. 
(See "Journaling" in this chapter.) 

• Terminal identificatien 

• Operator identification 

• Transaction code used to attach the task (extracted from the TCA) 

• Time of day when the journal reccrd was writter 

• Task priority frem the task ccntrol area (TCA) 

• Other informatien reguirEd te further identify that transaction 

The above information is inserted in the systEm and user prefixes 
of the journal record, and tbe original input transaction from the 
terminal input area may be placed by the user's transaction journal 
program in the data section ef the journal record. 

The user-written transacticn journal program may journal terminal 
input messages te a user jeurnal data set and/or the system log. Input 
messages written to the user journal data set can be used for audit 
purposes, if required. Input messages written to the system log will 
be transferred to the restart data set by the CICS/VS recovery utility 
program, for in-flight tasks when an uncontrolled shutdown occurred. 
This is carried out during emergency restart. 

Following RUP processing, the in-flight activity of that task against 
data bases, intrapartitien, and temperary storage destinations is backed 
out by CICS/VS. (See Figure 8-11.) User-written Frograms identified 
in the program list table (PIT) are then executed. 

A user-written PLT pregram shculd read terminal input messages from 
the restart data set, where they were transferred by RUP. This program 
should censtruct a temporary storage record, using the same temporary 
storage message cache format as that established by CICS/VS for VTAft 
terminals. This centains thE terminal identification, transaction 
code, and task sequence number. This information can be extracted from 
the system prefix which ias constructed for the record on the restart 
data set when it was originally iritten by journal control to the system 
log. The program should flag the message as a task-originating input 
record and then write the in~ut message (now in the VTAM temporary 
storage message cache format) to temForary storage using a DATAID of 
DFHMXXXX, where XXXX=four-eharacter terminal identification. 

The input message is then available to the user for reprocessing 
based on application requirements and security of information. By 
using the same fermat as that used fer the VTAM temporary storage 
message cache, reprocessing cf input messages frcm both BTAft and VTAM 
terminals can be handled consistently. (See Figure 8-11.) 

As BTAM terminals are unable to indicate definite receipt of specific 
output messages as can VTA~ terminals, the VTAM ccnceFt of committed 
output messages is net a~Flicable to ETAM terminals. Consequently, 
output message journaling by the user cannot ensure output message 
integrity. User applicaticn programs should delay issuing BTAM terminal 

Chapter 8. (ICS/VS Eecovery and Restart 281 



control ~rites until the comFletion of the logical unit of work. It 
is a user responsibility tc identify to terminal oFerators on emergency 
restBrt the transactions which were in-flight at uncontrolled shutdown 
and subsequently tacked cut. This is necessary tc ensure that the 
backed out transactions (whose aFFlication and security requirements 
permit) are reprccessed. The follcwing is a technique for 
user-activated transacticn restart following emerg~ncy restart. 

TRANSACTION RESTART (ETA! A~t VTA! TEEeINALS) 

At thE~ completion of emergency restart, input messages for in-flight 
tasks which have been backed out are available in the temporary storage 
message cache for each relevant terminal. (See Figure 8-11.) An 
inguiry ~rogram should be written by the user so that terminal operators 
can determine whether their last transaction was fully processed prior 
to unccntrolled shutdown, cr whether it was backed ont on emergency 
restart. This program should issue a temporary storage GET macro 
instruction, using as the DATAID DFHeXXXX, where XXXx=four-character 
identification of the enquiring terminal. If that terminal had no 
in-flight task, an IDERRCE error indication will te ret~rned to the 
program. (See ~!~~Ll~ JRRliSs!i2D f!2S!s!J~!!§ R~feI~n£§ AgDYs!.) If 
the task was in-flight (cr had a VTAe-committed cutput message), a 
temporary storage record will be returned to the program. The program 
should check the temporary storage message cache record flag for 
presence of an input message, and then present that input message and 
associated informaticn tc the terminal operator. (See Figure 8-11.) 
The terminal operator can then decide whether the transaction is to be 
reprocessed. A reprocessing request by the terminal operator should 
only be accepted if the terminal operator has the necessary authority 
(based on security codes, or operator class in the TCT) to make that 
decision for the particular transaction. Processing then proceeds as 
if the transaction has just teen entered from the terminal. 

If the input message is associated with a VTAM programmable 
controller, the inquiry Frcgram may be automatically initiated by the 
controller after message resynchrcni2ation and recovery have been 
completed. The in-flight input message (transmitted back to the 
ccntroller by the inguiry Frcgram) may be presented automatically to 
the relevant terminal operatcr fcr a reprocessing decision. 
Alternatively, if application and security considerations permit, the 
controller itself may automatically make the reprccessing decision and 
notify the enquiry program accordingly. 

TERMINAL OFEEATOE RESTART 

The previously described technique enables the terminal operator to 
determine, on emergency restart, the status of transactions submitted 
prior to unccntrolled shutdown. Ey initiating that transaction inquiry 
program, the t~rminal cperatcr is notified whether his last transaction 
was completely processed, or was in-flight. If it was in-flight (and 
therefore backed out), he is presented with the original input message 
to decide whether reprocessing is necessary. If a committed output 
message had net teen received by his VTAM terminal prior to uncontrolled 
shutdown, it is retransmitted on emergency restart. 

Thus, the terminal operatcr is pres~nted with sufficient information 
on emergency restart tc allo~ him to identify the point reached in 
previous communication with CICS/VS, and reestablish application 
processing activity. 

282 CICS/VS System/Application Design Guide 



If a terminal error is detected, ETAM or VTAM attempts to recover 
from the terminal or data transmission error. If recovery is not 
successful, that indication is passed to the CICS/VS terminal abnormal 
condition program (TACP) for ETA~, or node abnormal condition program 
(NACP) for VTAM. The TACF or NACF analyzes the terminal error failure 
and may attempt additional error recovery. It then specifies various 
default actions (such as requesting that the error terminal be disabled, 
the error line be disabled, the errer task he abnormally terminated, 
or the error line disconnected if it is a switched line). Control is 
then passed to a terminal errer pregram (TEP) or node error program 
(NEP) to enable further application-dependent recovery to be taken. 
CleS/VS provides a sample TEl which can be utilized to generate a TEP 
tailored to the user's requirements (see ~!~~L!~ ~l§!§m R~29~JI!~~ 
~~t~t~~£~ ~J~YJl for more detail). Alternatively, a user-written TEP 
or NEP can be utilized. 

Refer to Figure 3-12 and "Terminal Error Eecovery" in Chapter 3 for 
a description of procedurEs which may be coded in the terminal error 
or nedE error program by the user to provide, in the event of an 
unrecoverable terminal error, for: 

• Additional transmission retry to overCome a terminal Error 

• Transmission of an output message to an alternate terminal 

• Queuing of the output message to an intrapartition destination, 
for later transmission when thE terminal error has been rectified 

TERMINAL BACKUP 

CICS/VS does not provide specific support for tErminal backup. 
However, the use of the terminal errer program or node error program 
enables various forms of backup to bE implemented by the user. This 
may permit terminal aessages to be received cn a backup terminal, if 
an unrecoverable error occurred on the terminal which would normally 
receive those messages. 

Refer to "Terminal Backup" in Chapter 4 for techniques used to 
provide backup facilities in the event of unrecoverable terminal errors. 
This topic describes the utilizaticn of the terminal error or node 
error program, together with neT modification through user programming 
to allocate backup terminals or devices. 

TERMINAL RECONFIGORATION 

The technique described in Chapter 4 for allocation of backup 
terminals permits ccnsiderable flexibility in terminal reconfiguraticn 
in the event of I/C errors (see "tynamic Terminal Reconfiguration" in 
that chapter). < 

Through the destination centrol table (DCT) and indirect 
destinations, CICS/VS users can readily iRplement user-written terminal 
reconfiguration procedures. The terminal reconfiguratien can only be 
achieved by user-written cede to dynamically modify the tCT to reflect 
a configuration change. It is the user's responsibility to journal 
this DCT modificatien, and reestablish this modification (if necessary) 
on system restart, following system termination. (See "Terminal Backup" 
in Chapter 4, and "Journaling" in this chapter, for further discussion 
of this requirement.) 

Chapter 8. CICS/VS Eecovery and Restart 283 



"Dynamic Terminal Reconfiguration" in Chapter 4 also illustrates 
how this DCT modification may be used to dynamically allocate different 
devices to receive applicaticn output at different times cf the day, 
based upen application requirements. 

Techniques for dynamic terminal reconfiguraticn in programatle 
controllers are also discussed in "Dynamic Terminal Reconfiguration." 

CICS/VS does not specifically provide support for the recovery or 
backup of various devices. If devices such as tape drives, card 
readers, printers, or data sets fail during online operation, procedures 
must be designed, by the user, tc enable the online application to 
continue executicn. 

Following failure of a card reader, transactions which would normally 
be entered from such a simulated sequential terminal may be entered 
from any other terminal (fer example, from conversational terminals 
such as the 3270 Information Display system or 2740 Communications 
Terminal, or from batch terminals such as the 3735 Programmable Buffered 
Terminal, the 2770 Data communications system, or 2780 Data Transmission 
Terminal, depending upon volume). 

If a line printer fails, the output which would normally be directed 
to that ~rinter may be directed to ether devices, depending upon whether 
the printer is being used as a simulated sequential ter~inal output 
device, or whether it is being used.as an extrapartition output device. 

If the printer is being used as a simulated sequential terminal 
output device, an alternative terminal can be allocated to receive that 
output using the techniques described in this chapter (and in Chapter 
4) for terminal backup. 

If the line printer is being used for extrapartition output, 
procedures similar tc those discussed in "Extrapartition Cevice Failure" 
in this chapter may be carried out. 

If a tape drive failure occurs, procedures described for 
extrapartition device failure may also be applied. 

To handle disk I/O errors, application programs should specify in 
the CICS/VS file control macro instruction that centrol.is to be passed 
to particular routines in the apflication program (or to a common disk 
error routine for the installation) on detection of various error 
conditions. These routines should free any file I/O areas or file work 
areas which are still allocated as a result cf the error situation and 
then attempt to retry the operation. If the retry is not successful, 
the data set in question may be regarded as having "failed." Such data 
set failure may be as significant to the operaticn of the application 
as the failure of terminals cr devices as descrited above. 

Depending upon the importance of that data set, the design team may 
decide to carry a duplicate data set on a different pack. If a serious 
I/O error is encountered in the main data set, the duplicate data set 
may be utilized in place of the main data set. 

When duplicate data sets are to be used, if the main data set is to 
be updated, deleted frem, or added te online, then all updates, 
deletions, and additions must be applied to each ccpy of the data set. 
This introduces extra couplexity when recovery procedures are designed, 
since all data sets must be kept in step in the event of abnormal 
termination or Frogram failure. If some of the data sets were updated 
and ethers were not, those data ~ets net updated must be trought to 

284 CICS/VS System/Application tesign Guide 



the same status as the main data SEt, or the updatEs applied to the 
main data set must be backed out on restart. See "Data Set Backout" 
in this chapter. Complexity is also introduced in the handling of an 
unrecoverable I/O error en a write to a duplicatE disk data set. 

EXTRAPAR~ITION DEVICE FAILURE 

CICS/VS does not provide suppert for recovery from extrapartition 
device failure. If an extrapartition device failure occurs, such as 
failure of a tape drive, line printer, or extrapartition data set on 
disk, use may be made of preFlanned extrapartition backup devices as 
described in the following paragraphs. 

Allocation of the extrapartition output to a backup device can be 
achieved by using indirect transient data destinations, and defining 
backup devices as additional destinations, which are normally open but 
never referenced. A user-written DCT modificaticn transaction (see 
"Terminal Backup" in ChaptEr 4) Day then be entered by the master 
terminal operator to access the relevant failing extrapartition 
destination and change that destination to refer indirectly to a 
particular backup destinaticn, regardless of whether it is 
extrapartition or intrapartition. 

If the backup device is an intrapartition ter.ina1 destination, the 
failing extrapartiticn destiraticn indirectly points to that terminal 
destination, which in turn peints to the actual terminal to be used to 
receive the extrapartiticn output. However, to enable an intrapartition 
device to be used to back up an Extrapartition dEvice, only 
variable-length records can be used for the extrapartition output. 

If the backup device is arother extrapartition device, the DCT 
modification program changEs the failing destinaticn to indirectly 
point to the backup extrapartitien destination, for either input or 
output backup. 

DL/I DOS/VS and IMS/VS £L/I supply a number of katch utility programs 
designed to provide rapid reccvery of a data base rendered unusable 
because of: 

• Disk I/O errors 

• Abnormal task termination 

• System failure 

Dill data baSE recovery is designEd to provide a rapid, accurate, 
and Easy to emplcy means ef restcring the contents of the physical data 
base after destruction. The recovery system is supported by four 
utility programs which previde fer data base rEcevery frcm the error 
situations listed above. 

• Becovery from disk I/O errors is achieved by the use of the: 

1. Data ~~§i ~1! ~! l~§~! ~2£l: creation of du.p images of ,rata base data sets fer backup purposes. 

2. Data I~§i ~~~I£! J~~Y!Yl~!i2n ~1!li1~: accumUlation of data 
baSe changes since the last cemplete backup du.p. 

3. ~~1~ l~§§ ~~~! ~! Ei~2~~~1 Y~i1i!I: restoration of data 
sets of a data tase using a prior image copy (backup dump) 

Chapter 8. CICS/VS Recovery and Restart 285 



and the accumulated changes, together with changes aade 
since the last accumulated change run • 

• Becovery from abnormal task termination or system failure is 
achieved by the use cf the: 

q. ]2i1g £j.§~ ~i~!~.!l.! Jlllli:tI: relloval of changes made to data 
ba$es ty selected applicaticn programs. 

These batch data tase reccvery utilities are discussed further later 
in this chapter. ThE recovery utilities do not support BSA! data tases, 
since HSAft does not support insertions (additions), deletions, or 
replaces (updates). 

Utilities are not provided by DI/I !NTF1 for ~ata base recovery or 
data base tackout. 

During execution of batch application program~ utilizi~g DL/I DOS/VS 
or IftS/VS data bases, any ~ata baSE insertions (additions), deletions, 
or replacements (updates) are automatically written by DL/I to a DL/I 
system leg tape. eleS/VS apFlication Frograms which use DL/I online 
result in DL/I activity teing written to the system log. 

fATeH DL/I S1STEft LOG 

The DI/I system performs the fUnction of logging to taFe of all 
information associated with the mo~ification of data within a data 
base. The DL/I system log is net required when a data base is loaded, 
or when a batch applicatien Frograa only retrieves data (that is, 
read-only). The log is required for all other cases. 

The logging of data base .odifications, additions, and deletions is 
done on a physical basis to facilitate a quick reccvery procedure. 
Only DL/I calls that actually cause a change to te made to a data base 
are logged. Two sets of infermation, a "before" set and an "after" 
set, are logged for each mcdification made. This infor.ation is 
directed to the DL/I syste. log when DL/I is used effline or to the 
CleS/VS system log when DL/I is used online with cles/vs. 

The "tefore" information is that required by the eICS/VS recovery 
utility r.rogram when DL/I is online, o~ by the data base backout utility 
when DL/I is used offline. It is used to back out a partially completed 
update series and to restore a data base to some prior version. This 
is described further under "Eatch DL/I Data Ease Eackout" and "Online 
DL/I Data Ease Backout" in this chapter. 

The "after" information is that required ty thE data base data set 
recovery utility to restcre the data base fro. a previous backup ~opy. 
This is described further in "DL/I Data Base I/O Becovery" later 1n 
this char-ter. It applies to DL/I I/O recovery in both batch and online 
environments. ' 

In addition to the above, the DI/l system log contains: 

• A eICS/VS application program scheduling recerd (for DL/I DOS/VS), 
written whenever a eleS/VS aFplicaticn program issues a successful 
DL/I scheduling call against a PSB that is update sensitive to one 
or more DL/I data bases. See ~L~ ~~Ll lE~}i£A~i2D fk2SXiA,ing 
j~~~!~n~~ ~AIY§l· 

• A data set open record, written whenever a data set is opened. 

• A eICS/VS appl,ication prcgrall termination record, written whenever 
a DL/I application program task, iSSUES a DL/I termination call, or 

286 eles/vs System/Application Cesign Guide 



terminates while still scheduled to DL/I (if a scheduling record 
was written for this task). 

These three record types are used to facilitate data base recovery. 

DL/I RECOVERY UTILI1IES 

Data tase recovery is provided by both DL/I DOS/VS and 16S/VS DL/I. 
~he information on the CICS/VS system log for online operation, or on 
the DL/I system log tapes for offline operation, and periodically 
created tape ccpies cf the data sets representing the data base, are 
utilized by DL/I for recovery. The log informatien contains records 
which describe the mcdifications made to the data sets within a data 
base. The number of log tapes necessary for data tase recovery de~ends 
upcn the frequency of data base eo~y executicn, the volume of data base 
modification, and the total usage of DL/I. Since information from a 
considerable numker cf leg ta~es may be necessary for data base recovery 
(all log tapes created since the last data base co~y), a technique for 
accumulating all the latest changes to each specific data set in a data 
base is provided to permit faster recovery of data bases. This 
accumulation of the latest data base modification is performed by the 
data base change accumulation utility. ~hus, the information necessary 
for data base recovery is contained within the three following sources: 

1. Data base (data set) cc~y tapE created when the data base was 
last dumped, through the data base data set image eopy utility. 

2. Data base change accumulatien tape, created from log tapes 
available since the last data base copy creation, by the data 
base change accu.ulatien utility. 

3. Log tapes employed since the last data base copy creation and 
not incorporated into the accumUlation ta~e. ~his includes at 
least the log tape in use when ~roblems were encountered with 
the data bases. 

The data base data set recovery utility program, which is the final 
stage of data base recovery, eperates as an application program under 
control of the DI/I system. Becevery is done for individual data sets. 
In most cases, a data set is syncnymous with a data base. This is true 
with HDA! and HISA8 root-only data bases. However, most HISA! data 
bases consist of two data sets: a key-sequenced data set and an 
entry-sequenced data set. Thus, fer HISA8, if the contents of one data 
set are destroyed, it is not neCEssary to recover the complete data 
base. Becovery is by direct physical replacement of data within a data 
set rather than by logical reprocessing of transactions. 

The following functions, illustrated in Figure 8-12, are required 
to accomplish data base recovery fcllowing an unrecoverable I/O error 
encountered on Dl/I data bases used either offline or online with 
CICS/VS • 

• log change data for a segment re~lacement, insertion, or deletion, 
including the identification of the update segment. This function 
is performed autcaatically by Dl/I for all data bases, using the 
DL/I system log for tatch or CICS/VS system lcg for online • 

• Dump the data set periodically tc provide a backup co~y, using the 
data base data set i.age copy utility. 

Chapter e. CICS/VS Eecovery and Restart 287 



• Select the change data base leg records from the DL/I system log 
or CICS/VS system log and sort the. in order by data base and data 
set. If the data set is key-sequenced VSAM, the sort is ordered 
by VSAM key. If the data set is entry-sequenced VSAM, the sort is 
by entry-sequenced data set relative byte address (RBA). Selecting 
and sorting are ~erforDed as part cf the change accumulation data 
set creation by the data base change accumulation utility. 

• Merge the sorted, selected changed records ~ith the ~rior 
accumulated changes, keefing cnly the most recent data. Merging 
is performed as part of the change accumulation data set creation 
by tbe data tase change accuaulation utility. 

INPUT 

Figure 8--12. 

PROCESSING 

PERIODIC DATA BASE BACKUP ==tL_ 
1. DUMP DATA BASE PERIODICALLY USING DATA BASE DATASET IMAGE --.r---r/l 

COPY UTILITY I 
2. DURING PROCESSING, DLII LOGS CHANGE DATA FOR SEGMENT 

REPLACE, INSERT, AND DELETE _______ .. ______ --1---a---"--..J 

PERIODIC CONSOLIDATION OF DATA BASE CHANGES 

3. DATA BASE CHANGE ACCUMULATION UTILITY IS USED PERIODICALLY 
TO SELECT DATA BASE CHANGE RECORDS FROM DLII LOG, AND SORT 
BY DATA BASE AND DATA SET 

4. DATA BASE CHANGE ACCUMULATION UTILITY MERGES SORTED, 
SELECTED CHANGE RECORDS WITH PRIOR ACCUMULATED CHANGES, 
KEEPING MOST RECENT CHANGES AGAINST SPECIFIC SEGMENTS 

RECOVERY FROM DISK I/O ERRORS 

DATA BASE RECOVERY UTILITY 

5. WHEN RECOVERY OF DATA BASES FOLLOWING DISK I/O ERRORS IS 

~~=::::;> I :!~~~:::K~~~~:~::~E~C;~T~Ui~:~pC~tp~GES SINCE LAST 

lITY 

7. IF DATA BASE BACKOUT NECESSARY TO REMOVE EFFECT OF 
PARTIALLY·COMPLETED PROGRAMS, OL/I LOG IS USED WITH 
BACKOUT UTILITY BEFORE ANY DATA BASE RECOVERY ABOVE 
IS CARRIED OUT 

--- -_ .. --------_. -----_._--' 

DL/I Data Ease Eecovery 

OUTPUT 

• When recovery is necessary fcllo~ing I/O errors, read the Dost 
recent backu~ copy of the data set to be restcred, and merge the 
accumulated changes (thereby relcading a partially restored data 
set).o Read log tapes Dot included in the most recent accuDulated 
changes, and u~date the data set tc the point at which the error 
was detected. These functions are performed using the data base 
data set recovery utilit!. 

All updates to the data set at recovery time may be applied froD 
the log tapes rather than from the scrted accumulated changes and the 

288 CICS/VS System/Application Design Guide 



log tapes if desired. Hcwever, cccasional data set dumps will reduce 
recovery time, by allowing all accumulated changes which precede the 
dump or reload te be droFped from the sorted change accumulation tape. 

When the status ef a data base is not clear because of a system 
failure or because the batch programs that were updating the data base 
terminated abnermally, the data base backout utility may be used to 
back out the effect of those programs. This utility reads backward 
the log tapes created by the frocessing of the offending programs. 
Using the data base log records thus read, it restcres the data base 
to its status at the time abnormally terminated frograms were orginally 
scheduled. It also creates a log tafe that Dust be used as input to 
any future recovery eperation. 

Refer to the ~~Ll ]!il!!i§~ ~~~~~l for DL/I DCS/VS or the lMSL!~ 
Y!i!i~i~§ Fe!~~~~~~ ~~~YBl fer further information on DL/l recovery. 

Procedures have been described in this chapter for the backup of: 

• Programs 

• ~erminals 

• Data base devices 

• Extrapartition devices 

Facilities are provided by ClCS/VS to allow thE warm start (after 
controlled shutdewn) or emer~encl restart (following an uncontrolled 
shutdown) of: 

• various CICS/VS system tables 

• Temperary sterage data identifications 

• Transient data destinatien ccntrel table 

• File centre1 data set backout 

• DL/I data base backout 

Procedures have also been described which can be utilized through 
user-written programs fer: 

• Transient data extrafartitior data set recovEry 

• Transaction reinitiation en restart 

The function of the system design team is tc examine each of the 
areas identified above, te determinE whether the facilities available 
through CICS/VS and tL/I are satisfactory for backup and recovery, and 
to identify whether additienal frecedures or programs should be 
developed. Regardless of how simple, or complex, the online application 
may be, each of these factcrs must be considered te determine whether 
a backup or recovery problem exists for the online afplications. 

Chapter 8. CICS/VS Recovery and Restart 289 



EACKUP PROCEDUEES 

standard backup procedures must te defined for each potential failure 
situation. For exam~le, action ty the master terminal operator to 
carry out program recovery, terminal recovery, or data set or disk pack 
recovery must be completely descrited. 

The procedures tc be carried cut ty persons such as the system 
operator in running £L/1 data base recovery utilities must be defined, 
and any additional procedures for recovery of file control data sets 
and transaction restart (if used) must be identified. 

The most critical time in an cnline application operation occurs 
when the system terminates atnor.ally. Because of the need to 
reestablish online applicaticn execution as quickly as possible, every 
person involved in the reestablishment of the CICS/VS application must 
know exactly what is required of him and must te well versed in the 
backup procedures defined ty the design team. 

To ensure proficiency in the use of these backup procedures, it is 
absolutely essential to carry out regular backup "fire drills," either 
at scheduled or unscheduled times, and evaluate the performance of each 
person involved in the backuI. A wrong action made during system 
restart may completely invalidate the restart prccess and the data base 
recovery, with disastrous conseguences for the online applications and 
the installation. 

FAlLBACK DESIGN 

Fallback design refers to the design of the online applications such 
that information necessary tc fall back to a lower level of operation 
is created during normal execution of the online a~plication. An 
example ef this vay te the periodic printing of information to be 
utilized in a manual fallback environment for answering inquiries. As 
part of the backup procedures defined by the design team, each level 
of system fallback should te identified. For example, in the case of 
an installation having duple) CPUs, the switchover procedures to a 
tackup CPU shou~d be fully descrihed. 

However, even with two CPUs there is a possibility of both CPUs 
going down at the same time (resulting from a power outage, for 
example). Accordingly, the Ilext level of fallback after a backup CPU 
also becemes unavailable is generally manual fallback procedures. 

The design team should develop procedures for each level of fallback, 
and ensure that all Ierscnnel are ccmpletely versed in the 
implementation of those ~rccedures. 

The most critical period in the i.plementation of online applications 
is the time of initial cutover frcm the previous procedures used for 
those applications to the ne,ly developed online application procedures. 
It is at this time that the cnline application is most vulnerable. 
Regardless of the amount cf ~rogram testing and system testing carried 
out prior to cutover, bugs will invariably still te present in programs, 
either because of data inccnsistencies in input cf which no one was 
aware, 0:[ because of application and program requirements that were 
either peorly designed or incompletely tested. 

In addition, regardless of the amount of operator training carried 
out prio.[ to cutover, system operators, master terminal operators, and 
user terminal cperators .ay not be ccnfident of their ability to 

290 CleS/VS systeD/Application Design Guide 



function correctly in an online application envircnment. They have 
not had an o~portunity tc develo~ full confidence in their own ability, 
or in the ability of the designed system to satisfy different 
reguirements. 

To minimize the effect cf such ~roblems arising at cutover time, a 
number of technigues may be used. ~he most commonly used and generally 
satisfactory technigue is that of ~arallel processing. In effect, this 
involves the doutle ~rocessi[g of information using the previous 
application procedures as well as the new online application procedures. 
In the event of sericus prcblems develcping in the new online 
applications, the previous procedures may still be utilized to ensure 
that necessary actions for the application are carried out. While this 
does involve duplicate processing, parallel processing provides a form 
of insurance against cutcver ~rcblems. 

Accordingly, the cutover procedures must be designed before program 
development commences. ~his is necessary, as it may be required that 
additional facilities be designed into the system to provide for 
parallel processing, and alsc prcduce information which can be used to 
check the accuracy of online application processing against the accuracy 
of the prior application processing. 

The i~portance cf complete design for backup procedures, fallback 
_ procedures, and cutover prccedures cannot be too greatly emphasized. 

Unless these procedures are designed as part of the normal online 
application, the system eventually developed may be workable only when 
no unusual problems or device failures occur. 

Lack cf backup, fallback, or cutover design will drastically affect 
the availability of the cnline system and application. Regardless of 
how good a terminal response is provided, the online application may 
be considered a failure if it does not exhibit high availability owing 
to poor backup, fallback, or cutcver design. 

Chapter 10 outlines additional functions which must be carried out 
during online cutover and subseguent followup, and which should be 
considered during initial cutover design. 

Chapter 8. eICS/VS Recovery and Restart 291 





This chapter introduces techniques for testing and integrating 
CICS/VS application progra.s tc froduce an operaticnal online sys~em. 
Experienced CICS users may wish to omit reading this cha~ter, except 
for the section "Sequential Terminals." which describes changes in this 
support in CICS/VS from that provided in previous versions of CICS. 

The testing of individual CICS/VS application programs, and the 
subsequent integration and system test of the entire online 
applications, must be considered by the design team. CICS/VS facilities 
to assist in testing and system integration will new be discussed. 

eICS/VS permits the execution of application prcgrams to be traced. 
Information relating to the use cf each CICS/VS management routine by 
the application program is recorded by CleS/VS in a wraparound trace 
table in the CICS/VS nucleus. In addition, application programs may 
utilize trace control macro instructions to insert their own trace 
entries in the table. When the end of the table is reached, trace 
entries at the beginning of the table are overwritten by the trace 
control Frcgram. Trace activity may be turned on or off during CICS/VS 
execution by the master termibal operator. (See £~~L!§ ~Y§~! 
Agmini§iIA!2I§ §yig~, SH20-9006.) 

CICS/VS permits trace entries tc be time stam~ed and written to 
tape; a Frogram supplied by CICS/VS lists this tape offline in a 
formatted form for debugging purposes. programs may also be developed 
by the user to analyze the time-stam~ed trace entries for perfcrmance 
evaluation. This analysis may consolidate all of the trace entries 
relating to one task in a combined task report, cr may determine the 
elapsed processing times of all tasks initiated from a specific terminal 
or by a specific transaction code. These elapsed processing times may 
be statistically analyzed to deteraine the average, standard deviation, 
and 95 percentile values. Similarly, a statistical distribution of 
the peak number of tasks in the system dynamic storage usage over a 
defined period of time can bE develofed by user analysis programs. 

Analysis of the traCE tape is invaluable for debugging purposes and 
for evaluation of the performance of existing Cles programs. Potential 
performance bottlenecks can be identified and conditions rectified. 

In addition to utilizing trace entries, application programs may 
issue dump control macro instructions to dump selected parts of 
applicaticn Frograms, all the storage associated ~ith a task, or the 
entire CICS/VS nucleus to disk. These dumps on disk can be printed at 
the end of testing, cr concurrently with testing if the dump data set 
is switched to the alternative dump data set. Refer to "Program Backup" 
in Chapter 8 for more information relating to the use of the dump data 
set in this environment. During testing. the eles online Test/Debug 
Installed User Program (Prcgram No. 5796-AE6) may te used. Source 
program errors identified by the Online Test/Debug program may be 
corrected online by using the CIes Source Program Maintenance Online 
Field Developed Program (Program No. 579B-BDT) to update a copy of the 
source program maintained on disk. 

Chapter 9. eleS/VS Testing and Integration 293 



CICS/VS enables terminal transactions to be entered frem a 
"simulated" sequential terainal such as a card reader, magnetic tape, 
or disk. The terminal output may be directed to a line printer, tape, 
or disk. Througb the use cf simulated sequential terminals, large 
volumes of test data may be prepared for what is effectively batch-type 
testing. No online terminals need be used or even be present on the 
system. Instead, a card reader and line printer, and/or magnetic tape, 
and/or magnetic disk may be used for input of simulated terminal 
transactions, and receipt cf the output responses from the application 
programs. 

A simulated terminal transaction may be delimited by a user-defined 
end-of-data code in a card, cr by a code in a tape or disk record. 
Several card, tape, or disk records may be read by CICS/VS until this 
end-of-data code is reccgnized or the input area is full. Large 
terminal input messages may be simulated by CICS/VS for testing in a 
batch-type envircnment. 

The use of CICS/VS terminal device-independence enables simulated 
terminal messages from card reader, tape, or disk "terminals" to be 
presented to applicaticn Frograms as if they had been read from online 
BMS-supported terminals. 

The output responses from the aFFlication program are directed to 
the simUlated sequential cutFut terminal, which may be a line printer~ 
another tape, or another disk data set. Again, these output messages 
are prepared by the applicaticn Frogram as if they are to be transmitted 
to a particular EMS-supported terminal, and are then converted by 
CICS/VS device-indeFendent rcutines for output to the appropriate 
simulated terminal. 

Because testing is carried out in a batch-type environment using 
sequential terminals, all test data provided must anticipate the 
requirements of the application prcgram for input. This is necessary, 
because there is no conversational capability available in testing with 
sequential terminals. Consequently, conversational error correction 
carried out by the applicaticn Frogram must be simulated by successive 
sequential terminal transactions. 

The CICS/3270 Simulator Field Developed Program (Program No. 
5798-AIC) may be used to test 3270 device-dependent characteristics 
using seguential terminals. 

SINGLE-THREAt TESTING 

The first stage of testing involves the separate execution of each 
application program. Only one task is active at a time, and each 
program can be tested without considering its interaction with other 
concurrently executing Frcgrams. This is achieved by using only one 
simulated sequential terminal. As each transaction is read from that 
single terminal, the appropriate Frogram is initiated and the 
transaction is processed as a seFarate task. When that transaction 
complete~ execution, the task terminates, and the next terminal 
transaction is read and initiated. 

Single-thread testing allcvs the logic of application programs to 
be debugged withcut comFlications caused by the icncurrent execution 
of other programs. 

The next stage after all application programs have completed 
single-thread testing is Dultithread testing. 

294 CICS/VS System/Application Design Guide 



MULTITHREAD ~ESTING 

Multithread testing is equivalent to single-thread testing, except 
that several sequential terminals are utilized for entry of simulated 
terminal transactions. Each sequential terminal will result in the 
initiation of one task at a time to process each transaction read from 
that terminal. Not until a transaction has been completely processed 
will the next transaction be read from that terminal and another task 
initiated. However, at the same ti.e, tasks may te initiated to process 
transactions from the other sequential terminals. These programs from 
each sequential terminal execute in a limited multitasking environment, 
the number of concurrently executing tasks being equal to the number 
of simulated sequential terminals. 

A series of simulated sequential terminals may te set up, either 
using several card readers and printers, or, more commonly, using many 
tape and disk sivulated terminals. 

An approach which may be utilized in this multithread testing 
environment is to take the test stream which was used for single-thread 
testing, and copy that test stream to each separate sequential terminal 
on disk or tape, at the same time randomizing thE sequence of 
transactions in the separate copied test streams. A number of 
sequential terminals may then be made active to allow multitasking 
execution to be tested. The outIut from each terminal should be 
identical to the output for each transaction as a result of 
single-thread testing. 

The CICS Network Activity Simulator Field Developed Program (Program 
No. 5798-CCH) may be used to assist. in multithread testing with 
sequential terminals. Refer to "Related Publications" in the Preface 
for relevant publications. 

system testing generally involves the progressive checking out of 
all program logic and application functions, to Ensure that all elements 
of the online apIlication, and all programs, fit together and execute 
correctly. 

TOPDCWN 'JESTING 

In Chapter 2, the technique of "tcpdown" programming was discussed. 
Briefly, this involvES develcping the programs at the highest level 
first, linking to lower level programs which arE initially implemented 
by dummy programs. These du~my prcgrams note thE fact that control 
was passed to that lower level program and return control to the next 
higher level program. Ccnse9uently, the highest level programs are 
developed and tested first, and thEn successively lower level programs. 
The need to develop higher level test drivers (which is a problem with 
the traditional bottom-up coding and testing technique) is avoided, 
since the highest level routines provide the system integration and 
also function as test drivers for lower level prcgrams. As progra~ 
testing progresses, system testing is also carried out automatically. 
Eventually, programs at the lowest level are coded and tested. 

Because the development and testing of programs proceed in a topdown 
fashion using the structured programming technique, the problems and 
delays involved in having to move back to lower levels to check the 
correction of bugs with the traditional bottom-up method of programming 
are not apparent. Highest level programs and the entire system 
integration are tested out first, and then successively lover level 

Chapter 9. CICS/VS Testing and Integration 295 



programs are tested. As bugs are fcund in lover level programs, they 
will usually only affect those lcwer level programs. 

Tcpdown programming and testing ensure that prcgram interfaces are 
fully defined, ccded, and te~ted befcre lower level programs are 
develo~ed. Consequently, the interfacing of all the different 
components of the cnline a~plications is made easier. 

296 CICS/VS system/Application Design Guide 



This chapter discusses factors which should be considered by the 
system design team for cutover of the online applications to live 
operation, and their subsequent follcwup to evaluate the effectiveness 
of the operational applications. Experienced CleS users may wish to 
omit reading mest ef this chapter. 

As mentioned, the cutever period cf online ap~lication development 
is the most critical period of all. Regardless cf how thorough program 
and system testing may have been, bugs will invariably occur at this 
time, with possible disastrous ccnsequences. Similarly, regardless of 
how thoreugh operator training has been, during the cutover period 
operators may not have sufficient confidence in themselves, or the 
system, and may make unnecessary mistakes. 

Accordingly, to minimize the effects of cutover problems, it is 
generally recommended that cutover to the online a~plication be made 
in parallel with norgal ~rior ap~lication procedures. In this way, if 
serious problems develop, the prior application procedures can continue 
without disrupticn to the ap~lication. In addition, the results of 
the online application execution can be compared with the normal results 
of the prior application procedures for further evaluation of the 
effectiveness of the online system. 

TEB!INAL OPERATOR ~RAINING 

Complete training must be given to terminal operators prior to 
cutover, to ensure that they are completely familiar with all procedures 
required of them during online a~plication execution. These procedures 
should be documented in a Terminal Operator's Marual, which should 
include standard CICS/VS terminal operating procedures and transactions 
(such as the CICS/VS operator signon procedure), as well as the 
particular terminal operating procedures and transaction formats to be 
used for the online applications. All applicaticn error messages should 
be fully identified in this Danual, together with the cause of each 
error and the action required by the terminal operator to recover from 
that error situation. The use of a "HELP" transaction, to enable 
terminal operators to obtain more information relating to errors, may 
be considered in addition to, or as an alternative to, a detailed list 
of all error messages in that Terminal Operator's Manual. Refer to 
"Error Correction" in Chapter 3 for more detail. 

Procedures should be defined for the terminal operator to enable 
him to recognize system, terminal, or line failure situations. The 
corrective action or backup procedures which he should follow must be 
completely described. The effectiveness of terminal operator training 
is measured not cnly when the system is running correctly, but also 
when problems occur, or when system downtime occurs. If the terminal 
operators are sufficiently well trained to recognize these situations, 
and know exactly what to do to recover from the situations so that 
there is no panic, terminal cperator training has teen adequate. As 
mentioned elsewhere in this ~ublication, the effectiveness of online 
application design, develo~ment, and training can best be judged when 
error situations arise. 

Chapter 10. CICS/VS Production cutover and Followup 297 



MASTER TERMINAl CPERATCR TFAINING 

The master terminal o~eratcr must receive all the training given to 
the ether terminal operators, in addition to extra training for general 
administration of the CleS/VS system and entry of all master terminal 
commands. The master ter~inal cI€ratoI has the cverall responsibility 
for the correct functioning of the system and must be able to recognize 
failure conditions quickly and take the necessary action. 

It may not be immediately evident to him that a failure situation 
has arisen. Certainly if the CPU goes down, this situation is 
immediately evident. However, a similarly serious failure situation 
may occur because of continucus I/O errors on critical terminal lines, 
or on critical data sets or data bases. This may not be immediately 
apparent~ and in fact the online application may be able to continue 
operation with that failure situation, even though it may be operating 
in a degraded mode. However, the degree of degradation ewing to error 
recovery procedures may make the cnline application unworkable. In 
this situation the master terminal oFerator must be sufficiently well 
trained to recognize the Ircblem and be aware of the corrective action 
he must take. 

SYSTEM OFEEATOE ~EAINING 

The system operator must be ccmpletely trained in CICS/VS initiation 
and termination, as well as in the CICS/VS warm start procedure. 

Provision is made by eICS/VS to enable a tailered CICS/VS system to 
be generated. This tailcred system may be initiated, or specific 
functions may be overridden cr reFlaced, during system initialization. 
Different versions of tables may te utilized at system initialization 
to support different terminal configurations, data set configurations, 
transaction codes, or programs on different days if necessary, or in 
the event of failure situatiens. ~he master terminal operator specifies 
the particular initialization requirements to the system operator, if 
the standard application Eystem is not to be initiated. The system 
operator should normally not be required to interact with CICS/VS except 
for system initiation. The master terminal operator normally' specifies 
through a master terminal command when the system is to be terminated. 
The system operator is therefore able to concentrate on other 
concurrently executing batch applications. 

Particular care should be observed hy all personnel during cutover. 
with the parallel processing of Frior application procedures with the 
online aFplicatien procedures, personnel must be fully trained in the 
use of additional information produced by the online application to 
aid in parallel cutover, or in the checking of online application 
results against results frcm the prior application procedures. 

Once cutover has been successfully made, and the prior aPFlication 
procedures are stopped to enable the online apFlication to assume full 
control, regular followup must be made. This follcwup comprises a 
number of factors, such as: 

• Accuracy of operation 

• online application user satisfaction 

• statistics evaluation 

298 CleS/VS System/ApFlication Design Guide 



• Ferformance evaluaticn 

• Accuracy of operation 

During parallel testing, the accuracy of the online application should 
be fully checked. Procedures should be developed during system design 
to allow this accuracy to te further spot-checked at various stages 
after cutover, to ensure that no changes have cccurred in the 
applications or data to invalidate particular application programs 
or system design. Procedures should be initially designed into the 
online application to ensure that necessary information to allow this 
checking will be provided • 

• Online application user satisfacticn 

Regardless of how well an cnline application operates, or how 
satisfactory a terminal response is provided, the ultimate evaluation 
of the usefulness cf thcse cnline applications comes from terminal 
users. As mentioned at the beginning of this publication, to ensure 
that application requirements are fully met, a member of each 
particular user department which will use the online applications 
should be present at certain phases during system design. output 
produced by the system, and the information which the user department 
must be able tc enter into the system, must be meaningful to that 
user. Proper participation of user departments during the initial 
design phase will ensure that the subsequently developed system meets 
their requirements. 

During the training of user terminal operators, any areas overlooked 
during the initial design phase may become obvious. Although this 
is very late in the development cycle, depending upon the 
modifications necessary and the urgency of providing those 
modifications, action may te taken at that time to increase the 
usability of the system to the terminal operators. 

The design team should be aware that, regardless of how well a system 
may be designed, and even with considerable user department 
participation during design, it is often not until user departments 
have had some operational experience with the online application that 
they realize t~at certain improvements may be desirable. Their 
understanding of their own requirements prior tc cutover of the online 
application may differ froa their requirements after they have had 
some experience with the online application. 

Modifications identified through actual terminal experience in a live 
environment may be incorporated into the system in a future version. 
The design, development, and testing of this future version must be 
carried out using the design techniques already discussed. 

• statistics evaluation 

Statistics provided by ClCS/VS, either on individual request by the 
master terminal cperatcr, cr periodically on request, or automatically 
at system termination, should te accumulated historically. Through 
user-written programs to analyze these statistics or through use of 
the ClCS/VS program supplied to edit periodic statistics, the 
performance of the system cver a period of time may be evaluated. 
(See "Ferformance Monitoring" in Chapter 7.) For example, generally 
the transaction volumes in an inquiry application will rapidly 
increase once the system is operational, particularly if the inquiries 
are providing useful informaticn to the user departments. This 
increase in transaction volumes Day have an effect on the overall 

Chapter 10. ClCS/VS Production cutover and Followup 299 



performance of the online system. Historical analysis of the CICS/VS 
statistics enables these situaticns to be identified, and action to 
be taken, before the overall Ferformance is drastically affected • 

• Performance evaluation 

Performance evaluation may be cased upon the eleS/VS statistics taken 
at particular times or uFon the historical statistics analysis 
described above. Using the information provided by the eleS/VS 
statistics, it may be desirable to change the allocation of various 
data sets on disk, tc recrder some of the eleS/VS tables (such as 
the pct or PPT, for example, tc ensure that high activity transactions 
and prcgrams are near the head of the table and so reduce the amount 
of table searching), or to increase the maximu~ number of tasks 
allowed to execute concurrently~ 

In addition, it may be desirable to increase the total eICS/VS virtual 
partition size to enable mcre dynamic storage to be utilized. This 
may increase the CICS/VS wcrking set and hence ccntention with other 
partitions for the available page pool, and may result in increased 
paging with a consequent effect on online performance. The master 
terminal operator may dynamically control the si2e of the eICS/VS 
working set, and hence real storage contention, ty varying the 
MAXTASKS value if more than one task may be concurrently executed. 
Befer to "CICS/VS Working Set" in Chapter 7 for &ore detail. 

eICS/VS is generally given the highest priority partition, so that 
increased paging may ce reflected in reduced thrcughput for 
concurrently executing batch partitions. If the amount of dynamic 
storage which must be allocated for CleS/VS increases significantly, 
so as to cause sufficient Fagin~ to seriously degrade lower priority 
batch partitions, it Day be necessary either to reduce the numter of 
batch partitions executing concurrently with eICS/VS, or to increase 
the real storage size of the machine and so increase the available 
page pool. (Befer to "eICS/VS Working Set" for further discussion.) 

The flexibility available to the CICS/VS installation through the 
use of virtual storage enables CICS/VS online applications to be 
tuned for satisfactory operation, provided the system design has been 
carried out intelligently and effectively. The ability of a virtu~l 
storage system, and of CICS/VS, to dynamically adjust to changing 
work leads enables satisfactcry cnline performance consistent with 
batch performance to be achieved. 

When the available page FocI is increased by the installation of 
additicnal real storage, that real storage is made available not only 
for extra online performance, tut also for extra batch processing 
performance. Bea1 storage in a virtual storage environment is a 
performance resource, rather than a critical machine resource without 
which the applications may not have been atle to be executed. 

300 CICS/VS system/Application Design Guide 



This chapter cutlines a number of typical CICS/VS applications in 
several industries. Its objective is to identify common functions, 
data sets or data bases required, and the online and offline programs 
which may be needed. Guidelines are presented tc assist the user in 
the selection of the most ap~ropriate data base support for his 
installa tion. 

Because of differences in usage of applications across various 
installations, this chapter does nct attempt to develop complete 
application designs. It identifies only the most common problems and 
approaches, and is intended as a starting point for more detailed 
application design by the user. 

Only those application areas relevant to the user's own industry 
need be read in detail. Hcwever, review of other industry applications 
can be useful in identifying solutions to application design problems. 

As discussed in Chapter 1, the logical starting point for the system 
design of an online application is tc define the application 
requirements, objectives, and system flow, and outline the programs 
and data sets or data bases required. This phase is referred to in 
this publication as Application Design. 

Obviously, it is not possible to discuss all data processing tasks 
that lend themselves to cnline operation. However, by examining the 
design of a number of representative applications, a fundamental 
approach to application design can be defined. At the same time, 
requirements which are peculiar to a particular application, and which 
require specific attenticn during system design, can be identified. 

The applicaticns discussed in this section are introduced 
conceptually in the ~l~LI~ §§n~~~l lni2~Bati~D ~~~. The following 
topics describe these applications in more detail and use these 
applications to illustrate various design approaches for systems and 
applications to be executed under the control of CICS/VS. 

Specific design techniques relating to data base support are 
described for certain applications. In most cases these techniques 
are applicable nct only for the applications to which they refer, but 
also to most of the other applications discussed below. 

In the manufacturing industry, a typical online application may 
provide the following functicns: 

• Add new manufacturing crders 

• Locate orders in process 

• Provide order status 

• Monitor manufacturing orders in the shop 

Chapter 11. CICS/VS Application Design 301 



This c)n1ine app1icaticn may be referred to as an online manufacturing 
work order system or as a prcducticn order and status reporting system. 

CICS/OS/VS supports the IEM 3ESC Mass storage System. 'Ihis system 
allows large data tases tc be accessed online for applications with 
low transaction volumes which can tolerate low response times. (See 
"CICS/OS/VS - 3850 Mass Storage Operation" in Chapter 7.) Typical 
applications are the online residence cf engineering drawing data bases 
and technical reports to te retrieved using the STAIRS/VS Program 
Product (Program No. 57LO-XR1). See ~1l1i~L!~ §!D§I~ lDi2I!J!i2D 
Ma.lli:lg!, GH 12-5114, for addit ional information. 

PRODUCTICN OEDER AND STATUS FEPOETING SYSTEM 

This online app1icaticn provides manufacturing management and shop 
supervision with accurate, comprehensive reports concerning: 

• Order location 

• Schedule viatility 

• Status condition 

Figure 11-1 illustrates this online application. The application 
has the capability to: 

• Add new manufacturing work crders 

• Change existing manufacturing werk orders 

• Split a manufacturing werk order 

• Beport the status of a particular work order 

• Provide a general inguiry capahility 

INPUT 
PROCESSING 

1. Intertogate parts status and 
report progress. 

Add 

2. Add work order record and 
alloc.ne work order number. 

Change 

3. Correct or modify work 
order record. 

Split 

4. Split work order into two records 
and ddjust quantities. 

C 5. Store inquiry request for 
'-----J,------."""" batch processing. 

_~ 1...--..-__ 

6. Extract requested information and 
sort IOt0 required sequence. 

7 Extract records of unfilled 
orders. 

8. Determine work loads. 

9. Determine behind schedule 
positiOn. 

Figure 11-1. Manufacturing Froduction Order and Status Reporting System 

302 CICS/VS system/Application Design Guide 



DA'rA SETS 

Three data sets are required by this application. One contains the 
manufacturing werk crders, which are the heart of the application. 
This data set contains a reccrd for each manufacturing order. A typical 
record format for this data set is shown in Figure 11-2, which details 
various information to be keFt fcr the manufacturing order, together 
with the last reported status of the order. Following this, there may 
be a variable number of status transactions against this order, other 
than the last reForted. 

Work 
Order 
No. 

Split Plan- Date 
No. ning of 

Dept. Issue 

Authori- Model Next 
zation No. Assy. 

Part 
No. 

Lot In-
No. Work 

Date 

Material 
Type 

~ 

Complete Part Initial Final Qty. 
Date No. Stores Stores 

r 
J 

Quantity Last Last Status of Work Order 
Complete Status Numbers 

Of Work 
Order No. 

Figure 11-2. Manufacturing Work Crder Record Format 

No. 

The second data set is a part numter cross-reference data set. This 
relates a part number to all open manufacturing erders for that 
particular part. Pigure 11-3 shews a typical part number 
cross-reference record, which illustrates a multiple number of 
manufacturing work orders which USE that part. 

Part Number 

pigure 11-3. Part Number Crcss-Eeference Record Format 

The third data set is the manufacturing planning data set, which 
contains a record for each manufacturing order that has teen planned 
and that will be released to the shop floor for werk. Figure 11-4 
shovs a typical record format fer this manufacturing planning data set. 
This data set is required for audit trail and control functions. 

Program Project Part Model Unit Release Work Quantity Date/Time 
No. Number Order Sequence 

No. Number 

Figure 11-4. Manufacturing Flanning Record Format 

The most suitable data base support for these three data sets will 
be discussed shortly. Hcwever, tefore a decision is taken on the 
particular data base support, the application design should broadly 
define the various programs which are to process the input from 

Chapter 11. CICS/VS Application Design 303 



terminals for this applicaticn. Their function is shown in figure 
11-1. 

ONLINE PEiOGRAMS 

The add program generates a new reccrd in the manufacturing order 
data set for each new manufacturing crder. This record contains the 
information illustrated in Figure 11-2, less the status fields which 
are generated at a later time. In addition, the program places the 
manufacturing erder Dumber on the ~art number cress-reference data set. 

The change program allows the manufacturing order record to be 
corrected er medified as required. 

It is often necessary te split a manufacturing crder because of part 
quantity change requirements with respect to schedule_ the split number 
uniguely identifies each split cf the crder. The split program splits 
the manufacturing order; that is, it generates a new manufacturing 
order record with a unique split number. It adjusts the quantity in 
the two manufacturing order records in accordance with total quantity. 

~!aty~ In,gui~~ R!Qg~!~ - i§R~'!§ R~!~ ~!atu§ 

The status inquiry prcgra. allows the shcp to report the progressive 
status of parts as they flcw to various operations within manufacturing. 
The status is interrogated, and the appropriate action is taken. A 
status field, which is also used in batch programs to produce status 
reForts, is added to the manufacturing order record. 

status inquiry FrcgraDs may handle the processing of inquiries in 
both online and batch environmentso Requests for batch reporting are 
stored in a temporary data set to he used in processing regularly 
scheduled reports. 

OFFLINE FlROGRAMS 

The atove programs enable the cn1ine applicaticn requirements 
described earlier to be met. The application also requires a number 
of additional prcgrams tc select and format reports in the batch 
environmEnt. 

i§~Q!! jrite! R~2g~!! 

The report writer program selects and formats offline reports 
periodically. This progra. sequentially processes the manufacturing 
order data set, selecting the desired manu£acturing order records for 
inclusion in the report. Inclusion is determined either on the basis 
of a request submitted by manufacturing or on an exception reporting 
tasis. 

30Q CICS/VS System/Application Design Guide 



The unload and select program unlcads the manufacturing order data 
set periodically and selects the applicable records for input to the 
productien order status reFort program. As part of this program, a 
data set statistical report for data set reorganization is produced. 

The load program reloads the manufacturing order data set, using 
the backup created by the unload and select program as input. It 
eliminates any overflo~ and deleted records. 

Pro~y~ti~~ QIg~I ~!~!y§ R~E21! i,~g~s~ 

Using data set information prcvided through the unload and select 
program, this program prcduces production order status reports. These 
reports provide information about all unfilled manufacturing orders in 
an effort to give the manufacturing department up-to-date information 
regarding work leads and/or tehind-schedule positicn. 

The selected report writer program allows manufacturing personnel 
to vary the range and sorting se~uence of several types of reports. 
For example, manufacturing may request a part number report for a 
specific department, and for a specific model and unit, and receive 
only those manufacturing order numbers which apply to those criteria. 
This program allcws manufacturing to produce many unique reports. 

DATA BASE SUPPOR1 SELECTION 

The mcst suitable data base support for the online system should be 
selected at this time. The facters ~hich can be taken into account in 
making this decisicn are described in "Data Ease Selection Criteria" 
in Chapter 5. 

DBOMP (Data Base Organization and Maintenance Frocessor - Program 
Product (DOS) 5736-114) has teen widely used as the main batch data 
tase support in the manufacturing industry. However, it is not the 
purpose of this publication to discuss the use of tBOMF. DL/I products 
offer data base support which surpasses that provided by DBOMP in many 
respects, such as improved data independence and device independence. 
This data and device independence may result in significantly less 
program maintenance and data base maintenance than experienced with 
DBCMF. 

The support of lcgical relationshiFs and secondary indexing (see Chapter 
5) by DL/I ENTRY, DL/I DOS/VS, and I~S/VS DL/I, assists in the 
conversion of existing DEOMP data bases to DL/I. 

The Chained File - DL/I BIidge Program Product (Program No. 5748-XX3) 
can be used fer ccnversicn cf chained file systems, such as DEOMF, to 
DL/I DOS/VS or 'IMS/VS DL/I. Eefer to "Related publications" in the 
Preface for relevant publications. 

The manufacturing order data set may contain a multiple number of 
status segments (see Figure 11-2). FUIthermore, the part number 

Chapter 11. CICS/VS Application Design 305 



cross-reference data set (see Figure 11-3) contains a segment for each 
manufacturin~ order number associated with a particular part numter. 
since a vart may be used with many different manufacturing orders, 
there may be a very large nURber of these segments associated ~ith each 
part numter. These data sets are particularly suited to DL/I. A 
typical logical structure for these data sets is shown in Figure 11-5. 

Root Segment Root Segment 

Work ManUfacturin] 
Order Work Order 
Number Details 

Part 
Number 
Details 

I 
I 

Work 
Order 
Number --l~~]JJ Number 

Status 

-----

Work Order Part Number Cross-Reference 
Data Base Data Base 

Figure 11-5. Manufacturing Data Base Logical Structures 

The manufacturing planning data set (see Figure 11-4) has no 
dependent segments associated with it and does net require DL/I support 
specifically. However, DL/I can support it as a root-segment-only data 
tase. 

Since the segments in each data base previously described are fixed 
length, a:ny of the DI/I products may be selected.. Addition and deletion 
activity may be accumulated cnline in a eleS/VS file control data set, 
and applied to the data tuffer offline .. 

Befer to '''Sample Applicatiens" in ~lLl ~Q§L.!§ ~§Jlilil lnigDlllion l1iJlY~l 
for furth,er discussicn of the use cf DI/I in the manufacturing industry. 

ele'§L!'§_l';i:l~ eC!l:U~l ~1l121H2!! 

DIll is a suitable data base suvport for this cnline manufacturing 
application.. However, if cne cf the DL/I products cannot be used, 
eleS/VS file control support should te selected. 

The support of multiple dependent segments in the manufacturing 
order data set and the part number cross-reference data set can be 
provided by using the segmented record feature of eleS/VS file control. 
File control requires a specific numter of segments to be defined for 
each segmented record. The tasie information for J:oth of these data 
sets is placed in the roct segment of the segmented records (see Figure 
11-6), and additional segments are defined to allow multiple dependent 
segments. 

306 eICS/VS system/Application Design Guide 



Root Segment Dependent Segments 

Work Manufacturing Work Order Details Work Order No. Status Segment 

Order 
No. No. 

Figure 11-6. Manufacturing Work Order Segmented Record Pormat 

CICS/VS file centrol can be used to provide a segmented record 
capability which aFproaches that of DL/I, but which requires more user 
programming and subsequent maintenance. 

The manufacturing planning data set. which has a root segment but 
not multiple segments, dces net require the segmented record feature 
for support by file control. 

The next decision to be taken regarding the data base support for 
this application is the access methcd to be used by CICS/VS file control 
for these data sets. 

The three data sets may presently be supported by either ISAM or 
DAM in a batch environment. However, because of the above need to use 
the segmented record feature of file control, the record formats of 
the batch data sets will need to be changed for the cnline application. 
They may be converted and still be supported by ISAM or DAM if 
necessary. 

At this stage it is wcrthwhile ccnsidering the effect of adding 
manufacturing orders online. changing manufacturing orders and possibly 
deleting segments or adding segments, or deleting entire manufacturing 
orders. Because this application reflects high activity of additioris, 
updates, and deletions tc the online data sets, a more suitable access 
method to use is VSAM. This enatles records to be accessed either by 
key (key-seguenced VSAM), or by relative byte address within the data 
set (entry-sequenced VSAM). and also readily allcws for additicns to 
data sets while still maintaining good retrieval performance. Further, 
because of the ability of key-sequenced VSAM to physically delete 
segments or records from a data set, or increase ~r decrease the length 
of records in a data set, this aFFlication is ideally suited to the 
use of key-sequenced VSAM. However. if satisfactory performance is to 
be achieved, VSAM should nct be used on systems with less than 144K of 
real storage. 

If either DAM or 1SAM is used. the overflow technique described 
later in this chapter for the banking industry can be utilized to 
increase the length of segmented ISAM or DAM recerds. (~his technique 
is described in more detail under "Segment Updating (DAM, ISAM, and 
Entry-Sequenced VSAM)" in "Segmented Records" in Chapter 5.) 

The two principal online applications in the banking industry are: 

• Savings Bank and Mortgage Loan System 

• customer information system (called customer 
information file) 

SAVINGS BANK AND MORTGAGE LOAN S1STE! 

This online applicaticn enables saving bank deposits and withdrawals, 
and mortgage loan transactions, tc be entered frem teller terminals 

Chapter 11. CICS/VS Application Design 307 



located in various branches cf a bank. Such transactions are used to 
update savings bank and loan accounts immediately. Some of the 
advantages which ~esult from this online application are: 

• Imprcved customer service, enabling the tank's customers to utilize 
any tranch of the bank 

• Standardization of procedures across all branches 

• Ability to extend all tanking services to every teller terminal if 
required 

• Timely account informaticn 

• Assistance to tellers in maintaining teller tctals 

• Possiblity of improved audit and centrol procedures 

Figure, 11-7 illustrates such an online savings tank and mortgage 
loan application. This apFlicatio:n enables the following transactions 
to be entered: 

• Savings bank deposits 

• Savings bank withdra~als 

• Mortgage loan transactions 

• Inquiry transactions 

Further, it provides additional facilities for audit purposes in 
the areas of online operatio~ and offline operaticn. 

INPUl PROCESSING 

I onlin._I ______________ ~--------~ 

Figure 11-7. 

o;J [lA I I 
: ~~~ho~,i:wal ,-L---'----.............. 2' ~C:::I:;::.::aa~,~. balance 

• Inquiry 
~)(trac~ CUffent balance, 
lflnqullY. 

[

3, Open now accaunl. 
4, CloseaccolJnt. 

5. Change account details 

6. Extract required 
information 

7. Sort into specified 

account records 

~
.seleclrel,vanl 

9. Calculate jntere~t. 
10, Update account 

records, 

Savings Bank aDd Mcrtgage Lcan System 

308 CICS/VS System/ApFlication Design Guide 



DATA SETS 

Several data sets are used. One is the savings bank account data 
set, which contains a record of each savings bank account and 
transactions against that account. A typical savings account record 
is illustrated in Figure 11-8, which shows the multiple occurrence of 
deposit and withdrawal transactions, for example, against that account. 
Reference may need to be gade to previous deposit or withdrawal 
transactions, particularly if those transactions were "no-book" 
transactions (initiated without a Fassbook). When the passbook is next 
presented, these "no-book" transactions must be used to physically 
update the passbook with the previous "no-book" entries. The record 
format shown in Figure 11-8 endeavors to keep the transactions against 
a particular account in close proximity to the acccunt details, for 
optimum data set accessing time. 

Transactions 
, 

Account Customer Account Current Stops· 1 
Number Number Names Balance Flags I I Withdr. )' Deposit Deposit 

Figure 11-8. Savings Bank Account Record Format 

The mortgage loan data set may be similar in structure and 
organization to the savingE account data set, and may use a record 
format similar to that illustrated in Figure 11-8. It is organized as 
a separate data set mainly to physically separate savings bank and 
mortgage loan acceunts fer subsequent batch processing. 

The customer account cress-reference data set is used to open new 
savings or loan accounts, or close acccunts from a teller terminal. 
Furthermore, changes in custcmer details, such as a change in address, 
can be reflected in all the customer's accounts through the use of this 
data set. 

While this data set is of particular importance for a banking 
customer information system (see below), it is also useful in the 
savings and loan applicaticn for the above reasons. Figure 11-9 
illustrates a typical customer account cross-reference record format, 
which illustrates the multiple cccurrence of account numbers for each 
customer. 

Address Accounts j 
Customer Customer Customer Details Yr Number Name Line 1 Line 2 Line 3 Acct. Acct. Acct. 

No. No. No. I 
Acct. Acct. 
No. No. 

Figure 11-9. customer Account Cross-Reference Record Format 

A teller journal data set may be used for audit and recovery 
purposes. Alternatively, the journaling facility of CICS/VS may be 
utilized by the user to direct teller activity information to a journal 
data set. If the 3600 system is used, the teller journal should reside 
on the 3601 diskette. This makes it available for both online and 
offline modes of operaticn. 

In an online savings and loan application, each transaction entered 
from a terminal must be immediately recorded in the event of system 
failure, as the original transaction may no longer be available to be 

ChaFter 11. CICS/VS Application Design 309 



reentered. That transaction is represented by the customer at the 
teller window. Once he has made his transaction, he will take his 
passbook and leave. Apart from a hard-copy log cf all transactions, 
which is provided en most savings bank and loan terminals, the teller 
may have no other record of the original transaction. 

It is not reasonable to require the teller to reenter transactions 
from this hard-copy log in the event of a system failure. Instead, on 
receiving each banking transaction, the system should log that 
transaction to the teller journal data set, which contains a record 
for each teller in the bank. If the system goes dcwn before the 
transaction is ccmpleted and added to the customer account record, it 
is availab~e from the 3601 teller 'journal on restart and can be 
retransmitted for reprocessing. The question of how to handle 
transactions which could not be precEssed by the system because of 
system failure is discussed further under "Transaction Recovery and 
Restart" in Chapter 8. 

Figure 11-10 illustrates a possible teller journal record format. 
As well as containing infermatien relating to the last transaction from 
that terminal, this journal indicates the current status of the terminal 
which that teller is using, and maintains cumulative totals for that 
teller to enable him to balance his cash at the End of the day. This 
record fermat may be utilized in a separate teller journal data set on 
the 3601 diskette, or it may be written by the user to a journal data 
set utilizing CICS/VS journal contrel macro instructions. 

Teller Totals 
Teller Teller Terminal Terminal Last Transaction 
Number Status 

Deposits I Itenti- Status From Terminal 
With- I Cash fication 
drawals 

Figure 11-10. Teller Journal Record Format 

ONLINE PROGRAMS 

A numter of online pregra~s may be used in this application 
environment. These pregrams may be executed completely in the CPU or 
3601, or may be executed partly in the 3601 and partly in the cpu. The 
most important of these prcgrams are described in this chapter. 

~~viDg§ 1'An§~~!io~ R~g~A~ - iI2~~§§~§ ~~R2§i! ~D~ !i1hg,aw§l 
~'~Jl§A~:J:i2D§ 

Deposit and withdrawal transactions may be made in many ways. Some 
of the possible transaction types Day be made as follows: 

• With or without a passtock 

• Ey cash, check, cr cash and check 

• By transfer of funds between acccunts 

• Against accounts with various stops or holds placed on them 

All these transactions generally have the same input format, which 
may provide more or less infcrmaticn depending on the function required. 
Furthermcre, they generally involve the same logical processing, except 
that some transactions may add tc the current balance (deposits), other 
transactions may reduce the current balance (withdrawals), while other 
transactions may have to carry out certain tests first. Finally, the 

310 CICS/VS System/Application Design Guide 



output response for each of these transactions is usually the same, 
but may require certain fields to be printed in certain columns of the 
passbook. 

While it is pcssible te write a separate prcgram for each individual 
type of transaction described abcve, another solution is to write a 
generalized program that uses a cede entered with the transaction to 
define the particular transaction type, and then accesses various tables 
defined ty the user to detail, fer each transaction type: 

• The input format 

• Editing and testing to be carried cut on the transaction 

• precessing and inforDaticn te be updated on data sets 

• The output format to be used 

By adopting a tabular approach te the definitien of the requirements 
for each transaction type a user-written application program may be 
used with generalized logic to examine the information detailed in user 
tables for each transaction type and carry out the necessary processing. 
~his applicaticn program may be developed as a generalized application 
program block (AF) for execution in the 3601 Centreller. A generalized, 
user-written CICS/VS savings transacticn program may then be used by 
all savings bank terminals fcr all savings bank transactions as 
previously described. The use of the 3600 and CICS/VS enables many 
teller terminals to use this same frogram concurrently through the use 
of the multitasking, dynamic storage allccation, and quasireentrant 
capabilities of CICS/VS and the Dultiprogram execution capability of 
the 3600. Through these facilities and a tabular processing approach, 
most efficient use can be made of the CPU processing capability and 
storage availablity, to maintain a satisfactory response time at the 
terminal. This technique is discussed further under "Tabular 
structures" in Chapter 2. 

~QI!gsg~ 12lD ~'Qg'~1 - !!~£~~ ~~1!g~g§ ~o~n 1~§D§!~!i2D§ 

The tabular approach described above may also be used for lean 
transactions, if desired. Seme ef the logic used for the savings bank 
program ~ay te atle to be used for the mortgage loan program. 
Alternatively, by adding te the savings bank tables to describe loan 
transactions, and by identifying transactions as relating either to 
savings cr loan, one 3600 AP and one Cles/vS program may be used for 
both savings bank and mortgage loan transactions. 

An advantage in cembining these two applications into the one 
program, and using a tabular appreaCh to describe each transaction 
type, is that reductions may be made in future program maintenance. 
If it is necessary te change either the input or the output format, or 
the processing or editing requirements for any transaction type, that 
change need cnly be made in the apprcpriate table in the 3601, which 
is separately assembled frem the main savings and loan program. 
Furthermore, by deleting or adding entries in tables, transaction types 
can be easily removed or added te the application. If a generalized 
programming approach has been used for the savings and loan program, 
no coding changes may need te be made, unless a new application function 
is added which requires unique program code. 

~hsng~ i~~g~~ - ~h~ng~ ~!!!ng~ JDg 12JD A~9YD!§ 

This pr~gram is used to open and close accounts by adding or deleting 
records from the appropriate acceunt data set (savings or loan) and 

Chapter 11. CICS/VS Application Design 311 



adding or deleting account numbers from the customer account 
cross-reference data set. The program also may update the customer 
account cross-reference data set to reflect changEs in address or name, 
for example. A further re9uirement of the change program is to add or 
remove stops (holds) to various accounts, or change the customer names 
for an account. 

Use o:f the 3600 permits a subset of the account data set to be stored 
on the 3601 diskette. This normally would only identify account numbers 
that require special action, such as a stop on an account. A change 
to the accounts data set in the CPU ty the change program should also 
te reflected in the subset of the accounts data set in the 3601. 

This program enables information such as: 

• customer name and address 

• Account names 

• stops and holds 

• Current balance 

• Interest 

to be obtained from the varicus cnline data sets to satisfy various 
inquiries. 

This program is executed in the 3600, and utilizes the user-defined 
teller journal, which ccntains a reccrd for each teller using the 3601 
and logs each savings or loan transaction to this journal on it 
immediately after the transaction is received by it. In the event of 
system failure, a user AF can retrieve these transactions from the 
teller jcurnal, check to determine whether they have in fact updated 
the apprcpriatE account (were not in-flight), and, if they were backed 
out on emergency restart, the AP can complete the necessary processing 
for those transactions. This audit function is part of the AP executed 
in the 3601 for savings and loan transactions. 

This program records each change in status of the teller, such as 
"teller online," and also aaintains current cumUlative totals of all 
money handled by the teller during the day, including: 

• Total cash withdrawals 

• Total cash deposits 

• Total check withdrawals 

• Total check deposits 

• Total balance 

In many cases it may te necessary to override certain functions in 
the savings and loan application. For example, a stop or a hold may 
be placed on an account, or an account may be r~ndered inactive for 

312 CICS/VS system/Application Design Guide 



various reasons. It may be necessary for an authorized person in the 
bank to cverride this security provision of the application. An 
override capability is provided ty the supervisor Frogram and may be 
implemented either in the CPU or the 3601. 

OFFLINE FROGRAMS 

several programs select and fermat reports in the batch environment. 
These Fregrams are descrited belo~. 

The selected report writer prcgram selects and formats regularly 
produced reports. This program sequentially processes both the savings 
account data set and the lean account data set, selecting the desired 
records for inclusion in reports. The inclusjon is determined either 
on the basis of a reguest sutmitted ty bank personnel or on an exception 
reForting basis. 

The unload and select program unloads the savings and loan account 
data sets on a periodic basis, and selects the applicable records for 
input to the interest calculation pregram. As part of this program, 
a data set statistical report for data set reorganization is produced. 

The load program reloads the savings and loan account data sets, 
using the backup created by the unload and s~lect Frogram as input. 
It eliminates any overflow and any deleted records. It may be run 
overnight, to reorganize data sets or data bases for the next day's 
online oFeration. 

A subset load program must extract the necessary subset information 
from the data sets and transmit it to each 3600. A similar 3600 AP 
will rEload the informaticn en the 3601 diskette account data set if 
necessary. 

Using record information Frovided by the unload and select Frogram, 
this pr09ram calculates interest for various accounts. 

~~!~ste~ ~~EQ.~ J~i!~. g!Qg~~. 

The selected report writer program allows banking personnel to vary 
the range and sorting seguence of many types of reports. For example, 
bank personnel may request a repcrt of all loaD accounts in arrears, 
or of all savings accounts at a Farticular branch. This program allows 
the bank to produce a wide range of unique reports. 

Before considering the data base support for the data sets described 
above, the custcmer informatien system application is discussed. This 
banking application is sometimes referred to as a customer information 
file application. 

chapter 11. CICS/VS Application Design 313 



A customer of a bank may have several savings accounts, checking 
accounts q mortgage lean accounts, and ether accounts (such as tills of 
exchange., foreign exchange, stocks, and Christmas Clubs). Figure 11-11 
illustrates a typical customer informationn system for banking. 

CICS/OS/VS supports the 3e50 !ass storage System which can be ~sed 
to maintain massive custemer infermatien system data bases online. It 
can be used for applications that have lew transaction volumes and that 
can tolerate long response times. A typical 385C application in this 
industry is the en line residence cf historical current account 
(checking) transactions for suhseguent enquiry. (See "CICS/OS/VS -
3850 Mass storage Operation" in Chapter 7 for additional information 
related to the 3850.) 

INPUT 

c __ 
PROCESSING 

1. Access customer account 
cross· reference data set. 

2. I dentify accounts held 
by customer. 

3. Access relevant account 
records. 

4. Display requested 
account details. 

5. Determine selection 
criteria. 

6. Search specified 
account records. 

7. Extract records which 
satisfy criteria. 

8. Display information 
which meets criteria. 

Figure 11-11. Banking CustoDer Information System 

OUTPUT 

In this applicatien, all a customer's activities with the bank can 
be related. By relating all of a customer's acccunts, access to any 
one account also makes other acccunts identifiable and available. Thus 
a bank is tetter able to determine the involvement of each customer 
with the bank. 1wo cf the advantages efferea by such a customer 
information system are: 

• Improved customer service 

• Increased marketing cpportunities for the bank in selling additional 
services to customers 

314 CICS/VS system/Application Design Guide 



By accessing the customer account cross-reference data set, 
information relating to the custemer can be obtained, together with 
the account numbers of every other type of account held by a customer 
at that bank. By accessing the aFFropriate account data set, more 
detail may be obtained for each individual account. 

Futhermore, by recording ether information in each account record, 
such as the names of various FeoFle using a savings account or a 
checking account, the individual accounts held by each person can be 
identified by further reference tc the customer account cross-reference 
data set. 

This information, enabling the various banking services used by a 
customer to be identified, may be used together ~ith other information 
to open new marketing opportunities for the bank. For example, 
analyzing information such as the tYFe of services used by customers 
in particular geographical areas, may identify those services which 
are most popular in a particular lccation. Furthermore, those services 
which are less popular can be identified, enabling action to be taken 
to improve the service er to reduce costs by remcving the service. 

Another marketing opportunity which presents itself is to compare 
those customers in a particular location against a separate data base 
of all people living in that location, such as from an electoral roll. 
This enables the bank to identify people who are net presently 
customers, thus allowing selective marketing to te carried out to 
attract more customers to the bank. 

Another possibility is to identify various companies cr corForations 
which are customers of the bank, and then access information which is 
generally available in most countries identifying the main executives 
of those companies. If these executives are not presently customers 
of the bank, the bank may wish tc direct its marketing efforts toward 
attracting thea as new customers. 

The various approaches described are directed at improving customer 
services, reducing costs froE unFrofitable services, or attracting new 
customers to the bank. These approaches have always been available to 
the banking industry. However, the information which was necessary to 
implement them usually has net been readily accessible. The use of an 
online customer information system, with all related cus~omer accounts 
identified, makes this infcrmaticn available. CICS/VS enables such a 
customer informaticn system to be readily iaFlemented. 

DATA SETS 

The data sets used by a customer information system include the 
savings tank acceunt data set, the mortgage loan acccunt data set, the 
checking account data set, and other data sets (see Figure 11-11). 

The checking account record fermat is illustrated in Figure 11-12. 
This would normally be created and updated offline daily by various 
check processing and clearing batch Frograms. It can be seen from the 
figure that the checking acccunt reccrd format is similar to that used 
for savings and loan acceunts. In particular, after the fixed checking 
account information in a root segment, there may be a multiple number 
of transactions ~hich are associated with each acccunt recorded, each 
transaction representing a check written, or a check deposit made. 

Cha~ter 11. CICS/VS Application Design 315 



Transactions ) Account Customer Account Current Stops-
Number Number Names Balance Flags I Ch"k I Ch"k I Charge I Deposit 

Figure 11-12. Checking Account Eecord Format 

Mortgage loan account data sets use a record format similar to the 
savings account data set illustrated in Figure 11-8. 

The customer account cress-reference data set is used to contain 
customer details such as name and address, together with the account 
number of each account used ty that customer as illustrated in Pigure 
11-9. 

A customer information system is not as critically affected by syste. 
downtime as the savings and lcan a~~lication described previously. 
Accordingly, a teller journal is not essential for this inquiry system 
and has not been included in Figure 11-11. The terminal operator can 
reenter his inquiry once the system bas restarted, with little or no 
detriment to the applicaticn. 

The programs which may be necessary in this application include, 
but are not limited to, the follcwing. 

ONLINE PEOGRAMS 

This program accesses tbe customer account cress-reference data set 
for a particular customer and makes available at a terminal all account 
numbers used by that customer. As an option, the terminal operator 
may examin€ each individual acco~nt in detail. 

This ~rcgram particularly benefits from the terminal paging 
capability of CICS/VS. As each data set and acceunt is accessed, all 
the information relating to that acceunt may be retrieved and formatted 
as a separate terminal page for display if necessary. However, the 
program itself does not need to centrol the selection and presentation 
of pages by the terminal cperator. The program formats each page on 
the assumption that it may be required and presents each page to 
ClCS/VS. CICS/VS then disFlays each appropriate page as requested by 
the terminal operator. Refer to "~erminal Paging" in Chapter 3 for 
more detail. 

This program enables part or all of the specified data sets to be 
searched to locate records which satisfy various selection criteria. 
These criteria may be predefined, or defined by the terminal operator 
at the time of entering the retrie'val request. Por example, all 
checking account customers whose acccunts have been below a specifieQ 
minimum talance for a specified ti~e period may te selected from the 
checking account data set. These selected records may be presented to 
the terminal operator, with records satisfying the selection criteria 
most closely presented first, followed by records satisfying the 
criteria less clesely. In this way, the most delinquent checking 
accounts can be readily identified. 

316 CICS/VS System/Application Design Guide 



CICS/VS is particularly suited to this search requirement through 
the availablity of the built-in weighted retrieval function. This 
enables a key-sequenced VSAM data set to be sequentially scanned by 
CICS/VS, selecting records based upon user-supplied criteria. CICS/VS 
sequences records fer presentaticn based upon the degree to which they 
fall between user-defined limits for selection. Befer to "Weighted 
Betrieval" in Chapter 5 fer more detail. 

DATA BASE SUPPOB1 SELECTION 

Since both the savings and lcan application and the customer 
information system may nermally be simultaneously supported as online 
applicatia.ns by CICS/VS, the selection of the apprcpriate data base 
support should satisfy beth applications. The factors which should be 
considered in the selection ef this data base sUFPcrt are now discussed. 
The criteria that shculd be used in selection of the data base support 
are described under "Data EasE Selection criteria" in Chapter 5. 

Each of the data sets used by both the savings and loan application 
and by tbe customer information system exhibits a fixed amount of 
information relating to a Farticular account. This fixed information 
may be regarded as a root segment. The root segment may have a multiple 
number of dependent segments, such as various transactions for savings 
accounts, checking accounts, loan accounts, or ether accounts. 

In the case of the customer account cress-reference data set, the 
custemer details wculd fcr~ a roct segment, with each of the account 
numbers used by that customer being a dependent segment (see Figure 
11-13). With the savings and mortgage lean data sets, each account 
transaction would be a dependent segment as shown in Figure 11-13. 

There may be any number of dependent segments (transactions or 
account numbers) fer each roet segment. Because of this, these data 
sets are ideally suited to the use of DL/I as the data base support. 
DL/I enatles root segmert infermaticn or individual segment information 
to be retrieved on request by the Frogram and presented to it for 
processing with no ccncern by the Fregram for the physical location of 
the segments. 

DL/I ENTRY, DI/I DOS/VS, and IMS/VS DL/I readily enable the addition, 
replacement, or deletien of segments to be achieved online. The root 
and dependent segments are fixed length, and consequently can be 
supported by any of the DL/I products. The support of logical 
relationships and secondary indexing by DL/I ENTEY, DL/I DOS/VS, and 
IMS/VS is particularly useful for the design of the customer information 
system data base. Refer tc "Sample Applications" in HL1 12Q~L.!~ ~.Il§ral 
In!2~m9!i2n ~~nY91 for further discussion of the use of DL/I data bases 
in the banking industry. 

ChaFter 11. CICS/VS Application Design 317 



Customer Details 

Customer I Customer I Misc. I 
No. Name 

I 
I J 

I 
I J 

Address 
2.1-

Account 4 

Line Number 2~~ 
11- 1~ 

Customer Account Cross-Reference 

Account Details 

Account I Current JStoPsl 
No. Balance 

I 
I 

I I 
I 

lP 
I I 

Account 
3 4 

Deposit Withdrawal 3-
Names 2~ 2r-

10- 1~ 

Account Record 

Figure 11-13. Eanking Data Ease Logical structure 

CICS/VS file control should be considered in this industry by 
CleS/DOS/VS users with real stcragE size equal to or less than 160K 
who do n<)t wish to use DL/I tOS/VS, or by Cles/cs/vs users with real 
storage size equal to or less than 2QOK. In this instance, a limited 
capability similar tc that provided by Dt/lcan te offered by the 
segmentecl record feature of eICS/VS file control. 

The dependent segments (transacticn~ are generally saall, typically 
no more than 30 tytes in aost casE~. Each 30-tyte seg.ent can be 
defined to file control as a separate 30-tyte fixed-length segment. A 
largE number of deFendent segments (up to a .aximu. of 99) may be held 
as CICS/VS segments. For Example, by defining ten bytes of segment 

318 CleS/VS System/Application Design Guide 



indicator bit flags, 80 CICS/VS dependent segments can be defined. 
Each additional tyte of segment indicator bit flags will allow a further 
eight dependent segments to te stored. 

Because the segment indicator flags identify the presence or absence 
of CICS/VS segments, no disk storage is used (apart from the indicator 
flags) for segments which are absent in a particular data set recOrd. 
Addition or deletion of dependent segments will cbange the length of 
CICS/VS segments. The normal reguirement of this application is to 
add dependent segments, thus increasing the length of CICS/VS segments. 
However, this capability is not supported by 1518 or D18. 

Accordingly, the access method which should be selected is 
key-sequenced VSAft, which readily allows for the increase in segment 
length, or the deletion of segments with the ability to physical reuse 
that deleted storage. However, VSAM should not te used (for performance 
reasons) if the user's syste~ has less than 144K of real storage. 

If VSA8 cannot te used, a technique may be utilized based on a direct 
access data set for additicn or deleticn of transactions through a 
backward chain. In this case, the relative location of the most recent 
transaction for an account is placed on the root segment of that 
account's segmented record (see Figuxe 11-14). ihis is the overflow 
technique descrited in Chapter 5 in the section "Segment Updating (DAft, 
ISAM, and Entry-Sequenced VSAM.") 

Ideally, the teller journal should te a CICS/VS user journal data 
set, operated on by CICS/VS journal contrel macro instructions issued 
by the user. Alternatively, if this approach is not desired, the teller 
journal data set may be a direct access data set supported by DAM, or 
an entry-sequenced VSAM data set. 

The two main online applications within the insurance industry are: 

• Policy inforaation systea 

• New-business policy entry system 

The advantages of these online applications in the insurance industry 
are: 

• The availability of policies to all offices cf an insurance company 

• The ability to maintain close control of the claims made by a 
customer against his policies 

• The potential for reduction in cest of entering new-business 
policies 

• The potential for improvement in accuracy of neW-business policy 
entry 

POLICY INFORMATICN SYSTEM 

A policy infcrmation system is analogous to a customer information 
system in the banking industry. This policy information system uses 
a policy data base which contains all the policies issued by the 
insurance company. All the policies held by each customer are 
identified and related to that customer. By identifying the customer, 
or a policy owned by that customer, all other policies belonging to 

Chapter 11. CICS/VS Application Design 319 



that person may be identified. In this way, the customer's worth to 
the insurance company can te more fully assessed. 

However, it is not sufficient tc know onlj what policies are held 
by a particular customer. It is alsc imFortant to know the claims 
which have been made against thos€ pclicies and the current status of 
premium Fayments. Figure 11-14 illustrates a policy information system 
for insurance companies. 

CICS/OS/VS sUFPorts the 3850 ~ass storage System which can be used 
to maintain policy infcrmaticn sjstem data bases online. The 3850 
supports data bases ranging from 35 to 236 billion bytes. It can be 
used for applicaticns that have lew transaction volumes and that can 
tolerate long response time. (See Chapter 7 for additional information 
related to the 3850.) 

The insurance data base s~own in Figure 11-14 enables information 
to te retrieved in a numter cf ways, such as by: 

• Policyholder name and address 

• Policy number 

• Policy claims 

• Folicy renewals 

• Agent's identification 

• line of business (Policy Class) 

• Gecgraphic territory 

320 CICS/VS System/Application £esign Guide 



• Request Display 
Of Policies Held 
By Person. 

• Request Claims 
Display. 

• Policy Selection 
Based On Criteria 

Figure 11-14. 

DATA SETS 

PROCESSING 

Policies 

1. Access customer 
cross·reference data set 

2. Identify policies held by 
customer. 

3. Access relevant policy 
records. 

4. Display requested 
policy details. 

Claims 

5. Access specified policy 
record. 

6. Identify claims against 
policy. 

7. Access relevant claims 
records. 

8. Display claims details. 

7. Determine policy class 
selection criteria. 

8. Search specified policy 
records. 

9. Extract records which 
satisfy criteria. 

10. Display information 
which meets criteria. 

Insurance Pc1icy Infcrmation System 

OUTPUT 

The policy data set contains all the informaticn relating to each 
current insurance policy. A typical record format for this data set 
is illustrated in Figure 11-15. 

Cus-
Line of Activity J Policy Agent Business Issue Cease Premium 

tamer 

Renewal ( 
Number 

Code 
Number (Policy Date Date Data 

Claim Claim 
Class) 

Figure 11-15. Pc1icy Becord Format 

The details of the policy are ccntained in a fixed section of the 
record, which may be regarded as a root segment. Following these policy 
details, there may be multiple claims which have teen made against that 
policy. These may be regarded as de~endent segments of the policy root 
segment. Depending upon the type of policy, there may be also a 
multiple number of renewal segments, which represent the periodic 
payment cf premiums -- for esample, monthly premium payments. By 
accessing a particular pclicj record, all the details relating to that 
policy, including claims and premium payments, are available for 
analysis. 

Cha~ter 11. CICS/VS Application Design 321 



Alternatively, claims and renewals may be supported as separate data 
sets, with the root segmEnt of an account containing disk ~ointers to 
the most recent claim or renewal for that same account in the relevant 
data set. Each of the claims or renewals for an account is then chained 
backward through the data set. 

The customer cross-reference data set contains each customer name 
and number, together with a multiple number of segaents of the address, 
identification of agents who assist, and identification of the policies 
serviced by each agent. The code used to idEntify each customer may 
be a numeric COdE, a name code, or a phonetic code that is developed 
using the built-in phonetic conversion function cf eICS/VS (see "Record 
Identification" in Chapter 5). Figure 11-16 shows a typical record 
format for the customer cross-reference data set. 

Customer 
Code 

Name 

Address 
t----.-----.r----4 Agent 

Line 3 Number Pol. 
No. 

Policies 

Pol. 
No. 

Agent 
Number 

Pol. 
No. 

Figure 11-16. Customer Cress-Reference Record Fermat 

The agEnt data set contains fixed information relating to the 
insurance agent, such as his name, employee number, and sales 
performance, followed by a multiFle numbEr of segments, one for each 
customer serviced by that agent. A ty~ical insurance agEnt record 
format is illustrated in Figure 11-17. 

, 
Sales Customer Numbers I 

Agent Agent J 
Number Name Current Year No. No. No. No. No. No. No. No. 

/ To 
Date 

Figure 11-17. Insurance Agent Record Format 

The territory and pclicy class data sets contain fixed information 
relating to the ~articular geogra~hic territory or class of policy and 
may have a multiple numher of segments identifying the customers in 
that territory or the policy numbers in that classification. By 
accessing this data set for a particular territory, all the customers 
in that territcry can be identified. Further information about the 
policies owned by those custcmers is available from the customer 
cross-reference data set. Similarly, all the policy numbers in a 
particular policy classification can be identified and the information 
relating to those policies can be obtained from the policy data set. 

322 CICS/VS system/Application Design Guide 



ONLINE PEOGBAMS 

Having identified the various data sets used in a typical policy 
information system, the apFlicaticn Frograms should ce defined. Some 
of the more commcn programs are described below. 

i21i~I ~i§RlsI ~I2g!si - ~i§1121 i91i£I Inf2!i~i~D 

This program displays policy details from the policy data set and 
formats these details in a page for display at the terminal. These 
pages are presented to the CICS/VS terminal paging routine (see Chapter 
3) for subsequent display when requested by the terminal cperator, as 
described below. In this way, all the policy details are made available 
for inquiry. 

This program accesses the customer cross-reference data set, usually 
using customer name, and fcraats all the details relating to that 
customer (such as name and address) into a page for display at the 
terminal. Each policy owned by that customer is then retrieved from 
the policy data set by the system automatically initiating a policy 
inquiry, and the policy details are formatted into a page for display 
at the terminal. The terminal paging facility of CICS/VS (see Chapter 
3) relieves the prcgrammer of having tc select and display each 
individual page requested by the terminal operator. Instead, CICS/VS 
terminal paging selects the appropriate page requested by the terminal 
operator froD thcse pages sUFplied by the program and displays it on 
the terminal. 

~12ii~L]§D~sl§ i!~gl~! - Di§Rl~I ~lsi~ iDg ~§D§!sl§ 

Based on specific policy identification, the details of the policy 
may te retrieved and the various claims made against that policy may 
be displayed, together with the renewal status of the policy. 

This prcgram accesses the representative data set and formats 
representative details, such as name and sales performance, for display. 
Each client serviced by that representative can then be the subject of 
a policyholder inquiry if required. 

The territory data set is acce~sed, and territory details are 
displayed. The terminal operator shculd ce permitted to display details 
relating to each, or alternatively a specific, pclicyholder in the 
territory. 

i21i£I ~lg§§ !ngYiII - ~i§~iI R~lici~§ 21 f~I!i£Yl!I ~lsssifica!ion 

This program is similar tc the territory inquiry, except that the 
data set is accessed for a sFecific policy classification, and all the 
policies in that classification are displayed. A terminal operator 
then has the option to examine each of these policies in more detail 
with a policy inquiry. 

Chapter 11. CICS/VS APFlication Design 323 



NEW-BU~INESS POLICY ENTRl SYSTEM 

This cnline application allows the entry of new-business policies 
into a policy data set of the insurancE data basE. Without s~ch a 
system, the preparation of new-business policies would require highly 
experienced personnel to code the necessary information. 

The use of online data entry under CICS/VS for this application 
enables the terminal operator to enter policy information in terms he 
is familiar with, and allows the computer to carry out much of the 
necessary coding and checking. In this way, it may be possible to use 
less experienced (and lower ~aid) ~ersonnel to pre~are new business 
policies, with the computer handling the coding and checking of 
information for accuracy. 

The 3790 communication System enatles much of this coding and 
checking to be done in a remcte tranch office either online, or offline 
for subseguent transmission to CICS/VS. The 3791 Controller contains 
27.5 million bytes of disk storage which may be used to store sections 
of the data sets requirEd for editing the 3790. Refer to "3790 
Sessions" in this manual, and ID!,~~~ti~D ~2 th§ ~~ Jl~Q ~2.~ni£~!i2n 
~~§!§~, GA27-2767, for additional information about the 3790. A typical 
new-business policy entry system is illustrated in Figure 11-18. 

Figure 1 11-18. 

PROCESSING 

1. Generate policy entry work 
record. 

2. Write to policy work data set 
for this terminal. 

3. Access policy work record 

4. Store new policy details in 
work record. 

5. Validate policy and write to 
work data set. 

6. Access policy work record. 

7. Replace error filed with 
correction. 

8. Validate policy and write to 
work data set. 

9. Access policy work record. 

10. Add to policy data set. 

11. Add policy number to 
customer cross·re-ference 
data set. 

Change 

12. Change policy record. 

Delete 

13. Delete policy record. 

14. Delete policy number from 
customer cross-reference 
data set. 

New-Business ~olicy Entry System 

OUTPUT 

A considerable amount cf information must be entered for each new 
business policy. Typically, the information entered from a terminal 
may apprcach, or in some cases eJceed, 1,000 characters. If this 
approximately 1,000-character record is entered as one input 

32q CICS/VS System/Application Design Guide 



transaction, the extent to which the computer can help in coding and 
checking is somewhat limited. 

However, if a cenversational approach is taken to the entry of 
information, the computer can guide the terminal operator ty requesting 
each section of policy inforKaticn as it needs it. By adopting this 
conversational aFproach, the computer can request information in much 
the same way as it may be requested on a new-business policy form, and 
then take that entered infcrmaticn and code it based upon defined rules 
for each section of the policy entry. 

The advantage a cenversational policy entry approach offers is that 
it now becomes pcssible for inexFerieDced operatcrs to transcribe . 
information directly from new business policy forms, with the computer 
carrying out the necessary ccding and checking of information. 
Furthermore, in the event ef an error being detected in the input, only 
that errcr field need be reertered. 

To achieve this conversational policy entry, the policy information 
received from the terminal is used to progressively build up a complete 
new-business policy record. The pelicy work data set is used for this 
purpose. When the entry of the new-business policy is started, the 
policy informatien is written to the pclicy work data set. As 
subsequent policy information ~s received frcm the terminal for this 
new policy, the record written tc the policy work data set for that 
policy is retrieved, updated with the additional information, and 
written back. In this way, the new business policy record is gradually 
built up with each sectien of policy information being fully edited, 
validated, coded, and written to the data set before the next section 
is obtained from the terminal operator. 

On completion of entry of the pelicy informatien, the new-business 
policy record is transferred to the policy data set, and the policy 
number is added to the customer crcss-reference data set for the 
customer who has taken out the new pelicy. 

DATA SETS 

The pelicy work data set contains a record for each new-business 
policy entry terminal. In the event of system failure, the policy ~ork 
data set records all policy information entered by each terminal 
operator up to the time when a failure may have occurred. On system 
restart, it enables previously entered policy information to be 
retrieved from the data set such that the terminal operator can continue 
with the policy entry, close to the point he had reached when the system 
failure cccurred. 

This policy entry recovery facility is made possible through the 
use of conversational entry cf pelicy information. If all the policy 
information was entered as one large input transaction of approximately 
1jOOO characters, and the system went do~n toward the end of entering 
policy informaticn, it would be necessary to rekey all that policy 
information again when the system is restarted. Hewever, using 
conversational entry, only the last conversational section of the policy 
may have to be rekeyed on restart. 

The customer cress-reference data set and the pelicy data sets are 
the same as descrited abcve for the Folicy information system. 

Chapter 11. CICS/VS Application Design 325 



ONLINE PROGRAMS 

This program accepts policy information from terminals, validates 
that information based on Established editing and checking procedures 
used by the insurance company, COdES the validated information, and 
writes it to the pclicy work data set. The response returned to the 
terminal indicates the informaticn to te nExt entered for the policy. 
Each subseguent transaction received from the terminal is also validated 
and coded, then added to the infermation for that policy in the policy 
work data set. 

While this program has been identified as a pelicy entry program, 
it is in fact a series of pregram modules, each module used ta validate 
and code each separate terminal transaction which is used 
conversationally to build up the entire policy. Each program may 
utilize temporary transaction codes (refer to "Task Initiation" in 
Chapter 3) to identify the program to process the next section of the 
policy, without reguiring the terminal operator to enter a transaction 
code. 

This program accepts a terminal transaction which is identified as 
the correction of a previously entered error field. It retrieves the 
previous error information that was logged to the policy work data set, 
inserts the relevant corrected field, and revalidates the policy 
information. If the corrEcted field passes the validation procedure, 
it is inserted into the new-tusiness policy record and written back to 
the policy work data set. 

This program accesses policy records either in the policy work data 
set, or in the policy data set, to change specified policy infcrmation. 

This prcgram accesses the policy data set and customer 
cross-reference data set to delete specified policies. 

An extention to this new-tusiness policy entry system enables the 
entry, validation, and addition ef claims and renewal information to 
the policy data set. This uses a similar design approach to that 
described abcve, except that the amount of information to he entered 
may be supplied in a single input transaction, rather than in a 
conversational transaction envircnment as for new-business policies. 
A temporary data set such as the policy work data set is not necessary. 
Instead, after editing and ceding, the claims or renewal information 
may be added directly to the policy data set. 

DATA BASE SUPPOR1 SELECTION 

The criteria that shculd be ueed in selection of the data base 
support are described in "Data Base Selection criteria" in Chapter 5. 

326 CICS/VS System/Application Design Guide 



The policy data set, agent data set, policy class data set, territory 
data set, and the customer cress-reference data set contain fixed 
infcrmation, followed by a variable amcunt of related information, such· 
as: 

• Claims and renewals for a particular policy 

• Policy numbers for a particular customer 

• custemers for a particular insurance agent 

• customers for a particular territory 

• Folicy numbers for a particular policy classification 

Because of the above considerations, the ideal data base support in 
this industry is DL/I. The ~ultiIle occurrence cf related informaticn 
described above can be supported as dependent segments, with the fixed 
information in the various data sets as root segments (see Figure 
11-19). As these segments can be effectively made fixed-length, any 
of the DL/I products may be used. 

DL/I ENTRY, DL/I DOS/VS, and IMS/VS DL/I support logical 
relationships and secondary indexing, which enable indexes to be created 
and used by DL/I such that dependent segments may be directly accessed. 
An example of the use of such secondar~ indexing is the creation of 
DL/I indexes for directly accessing claims based on a claim number. 

DL/I has many advantages, particularly in the area of reduced 
maintenance, over CICS/VS file centrol. However, if DL/I will not be 
used for various reasons, the segmented record feature of CICS/VS file 
control may be used to advantage. As previously discussed for the 
manufacturing and banking industries, the dependent segments may be 
defined as separate file ccntrol segments. 

The policy information system is an inquiry application, and does 
not involve changes er additions to the data base. However, the 
new-business policy entry system will result in additions to the policy 
data base and the customer cress-reference data base. In this case, 
the length of file centrel segmented records will be increased, or in 
the case of deletion of policies, will be decreased. Consequently, 
the most suitable access method to provide this capability is 
key-sequenced VSAM, provided the user's system has at least 144K of 
real storage for satisfactory perfermance. If ISAM or DAM is used, 
the overflow technique described in "Segment Updating (DAM, ISAM, and 
Entry-Sequenced VSAM)" in Chapter 5 may be utilized to increase the 
length of segmented DAM or ISAM records. However, this technique 
requires additional prcgramming. 

Chapter 11. CleS/VS Application Design 327 



I r~12 3 
Claim ~ 

Policy Logical Structure 

I 
r 

r 

Address 
2t-l Line 

1~ 

Policy Details 

Pol. I Customer I Detail I 
No. Number 

I 

Customer 

NO.' Name' Detail 

I 

Customer Logical Structure 

Agent 
No. 

I 
I 

Renewal .l 
2 

1t-'--------

[gent 
Number 2 

1t-

I 
I 

I 
I 

Policy 
~ Number 2 

11'-

~ 

Figure 11-19. Pelicy Infermation System Logical Structures 

~E~~Al lBDU~I~! 

In the medical industry, a typical online application is the control 
and maintenance of informaticn relating to all of the patients in a 
hospital or clinic, in a patient information system. 

328 CICS/VS system/Application Design Guide 



PA!IENT INFOBMATION SYSTEM 

This application enables all activity such as visits, diagnoses, 
and treatments, tetween a patient and a hospital or clinic, to be 
recorded as that patient's history. When a patient is first admitted 
to a hospital or a clinic, his personal details can be entered from an 
online terminal directly intc the patient information system. On each 
subsequent visit, informatioL can be added to his history -- all visits 
made by the patient, the diagnosis made on each visit, and the medical 
or surgical treatment received; a complete history can be developed. 
An example of such a patient infcrmaticn system is illustrated in ~igure 
11-20. 

CICS/CS/VS supports the 3850 ~ass storage System to permit massive 
patient information system data tases to be maintained online. The 
3850 provides online capacity to large data bases for applications with 
low transaction volumes which caD tclerate lcng response times. (See 
"CICS/OS/vs - 3850 Mass Storage System Operation" in Chapter 7.) A 
typical 3850 applicatjon in this industry is the online residence of 
medical literature and research data. Use may be made of the STAIBS/VS 
Program Froduct (Program No. 57qO-XE1) to retrieve relevant medical 
literature based upon a keywcrd criteria search. See the ~!IE'§L!~ 
~~n~I~l In!2Imgijgn ~gn~gl (GH12-516q) for additional information. 

Figure 11-20. 

PROCESSING 

1. Generate new patient record. 

2. Access patient record. 

3. Update record with visit or 
treatment details. 

4. Display updated history. 

5. Access patient record. 

6. Extract visit and treat­
ment details. 

7. Display patient history. 

8. Access medication cross-
reference data set. 

9. Access patients with that 
medication in patient 
history data set. 

10. Display patients receiving 
specified medication. 

11. Search patient history for 
specified disease. 

12. Display patients with 
specified disease. 

Patient InfcrmaticD System 

The patient history develcped over a period of time using the patient 
information system can be made availatle ty means cf the computer to 
any authcrized person. ccnsequently: 

Chapter 11. CICS/VS Application Design 329 



• Doctors may be made aware of all visits, diagnoses, and treatments 
relating to a patient. 

• All handling and treatment of a ~atient can te identified. 

• A record of all ~atient activity with the hospital or clinic can 
be made available to the acceunting department for billing purposes. 

In addition to recording information, relating to a particular 
patient, the com~uter can al~o recerd elsewhere the fact that the 
patient has received particular medication. It is then ~ossible to 
determine which Fatients have received certain medication within a 
certain time period, for exaRple. 

DA'IA SETS 

The patient history data ~et contains information identifying the 
patient, such as patient numter, name, address, and personal details. 
Associated with this patient may te a multiple numter of segments of 
information, each segment relatiI9 te a particular visit er treatment. 
A typical patient history record is illustrated in Figure 11-21. 

Patient Patient Doctor Address Patient History 

No. Name Details Number Line 1 Line 2 Line 3 Visit Diag- Treat- Treat-
nosis ment ment 

Figure 11-21. Patient History Record Format 

The medication cress-reference data set ccntains details relating 
to each particular medication, with a multiple numter of segments 
identifying the patients who received that medication and the dates 
administered. Using this data set, all the patients who received 
particular medication at a particular time can be identified. By 
accessing the patient histcry data set, further information can be 
obtained relating to various patients. A typical medication 
cress-reference record fcr~at is shown in Figure 11-22. 

Medication Identification Patients Administered 

Number Description Details Patient Date Dose Patient Date Dose Patient Date 
No. No. No. 

Figure 11-22. Medicaticn Cress-Reference Record Fermat 

Visit 

Dose 

A diagnosis data set and a doctcr data set, if required, may be used 
to identify all patients who contacted a particular disease, or who 
were or are treated ty particular doctors. The format of these data 
sets is almost identical te that of the medicatien cross-reference data 
set. 

CNLINE Fl;OGBAMS 

~~~ ~gti~nl ~~~~b9! - Jg£ ~! Rg!jsn! 12 Rg!i§]! ~i§!2~ 

This program accepts informaticn relating to a new patient and adds
that information to the patient histcry data set.

330 CICS/VS System/Application Design Guide

Rsti§~! y~gs!~ ~~2~~s~ - y~gs!s i9!i§~! ni§!~~l !!1h Vi§i!§,
l~§s!~~!§, s~ ~isgn2~s§

This Frogram is used to add infcrmaticn relating to a Farticu1ar
patient visit, or treatment received by the patient, to the patient
history data set. Over a period of time, a complete historical record
is built up for each patient.

~s!i~n! ni§!2~1 !Dg~i~l i~~g~s~ - ~i~lal ~s!i~n! ni§!2II lni2Ims!i2D

This inquiry ~rogram accesses the patient history data set and
formats that history intc ~ages to be displayed on request by the
terminal operator. These Fages are presented by the program to the
CICS/VS terminal ~aging routine (see Chapter 3), which saves them and
displays them for the terminal oFerator in the sequence requested.

~§gi£sti2n !Dg~i~l ~!29!sJ - ~i§~lsl All is!i~D!§ ~£ei~iD9 ~~~in
~~,g.i~s!j2D

This Frogram accesses the medication data set and identifies each
patient who received specified medication over a sFecified time period.
Further information relating to those patients may be obtained by a
patient history inquiry if required.

~is9D2§i§ 1~9~j!1 i!29!s! - ~i§~lsl All Is!i§~!~ !.i!h ~ ~E§£1!~9
~i.§~!!§§

This Frogram accesses the diagncsis data set and identifies all
patients who contracted a specified disease. Further information can
te ottained about thcse Fatients by means of a patient history inquiry_

~2ct2! ID9~i!1 ~!2~~s~ - ~i§!l~l All ~~!jsD!~ ~~lsting 12 ~ ~E§£i!1~9
~S£!2!

This program accesses the doctor data set and identifies all patients
treated ty that doctor. further information atout these Fatients may
then be ebtained by a patient histery inquiry.

DATA BASE SUPPOR~ SELECTION

At this stage of the apF1ication design, the data base sUFPort to
te used can be deter~ined. Befer te "Data Base Selection Criteria" in
Chapter 5 for a discussicn of the factcrs which shculd be considered
in this selection.

The record formats of the patient history, medication, diagnosis,
and doctor data sets (see Figures 11-21 and 11-22) exhibit multiple
occurrences of infcrmaticn, dependent upon a root segment. These record
formats indicate that DL/1 is the ideal data base sUFPort for this
application.

Generally, the segments may be made fixed-length, which allows DL/I
ENTRY to be used. Variat1e-length segments may te used by DL/I DOS/VS
and IMS/VS DL/I for information such as names and addresses.

Figure 11-23 shews a tYFical tL/I legical structure for the patient
history data base.

Information describing Fatient~s name, address, and physical
characteristics is centained in the Fatient detail root segment. Each
patient can have many visit and dependent diagnosis segments.

ChaFter 11. CICS/VS ApFlication Design 331

The support of logical relaticnships and secondary indexing by DL/l
ENTRY, DL/l DOS/VS, and l~S/VS is useful in the design of the patient
information system data tase.

Refer to "Sam~le Applications" in 121Ll 12Q~!.2 g!l!~nl ln2!nli.2!!
l:HU1Y.!!! for further discussicn on -the use of DL/l in the medical
industry.

Patient
Details

Visit] Body Site]

DiagnOSiS]

Surgery Treatment

L I
[speCime] DiagnOSiS]

,

Figure 11-23. Patient HistoIY Lcgical structure

~1~~L!~ 1!1~ ~~D!~~l

The segmented record feature cf ClCS/VS file ccntrol may be used to
support the multiple occurrerce ef dependent segments. Because of the
reguirement for increasing the length cf segments as information is
added to a record, the most suitable access methed to be used is
key-seguenced VSA~.

332 CleS/vs System/Application Design Guide

For machines with less than 1q48 bytes of real storage, the use of
VSAM is not advised, for perfcrmance reasons. 151M and DAM may be used
instead as the access methcd support. In this case, the overflow
technique described in the sectien "Segment Updating (DAM, ISAM, and
Entry-Sequenced VSAM)" in Chapter 5 may be used.

A typical online application in the pharmaceutical industry is the
entry of orders from pharmacists for various products, and the filling
of these orders in the Fharmaceutical company's warehouse. This
application is generally referred to as a pharmaceutical crder entry
system.

PHARMACEUTICAL ORDER EN~FY SYSTEP.

In this industry, orders fer prcducts are generally made by product
name rather than by product Dumber. Products such as aSFirin may be
supplied by many manufacturers in different strengths and in various
quantities. Thus, an order taker EUst have a very good knowledge of
the company's range ef preducts so that he can readily identify the

Figure 11-24.

PROCESSING

Online

1. Access pharmacist record.

2. Display name and address.

3. Generate order·in·progress
record.

4. Access synonym record.

5. Display product synonyms.

6. Access order·in·progress
data set.

7. Update with new product
, ordered.

8. Access order·in-progress
data set.

9. Prepare packing slip in
warehouse location sequence.

10. Transmit packing slip

11. Extend invoice.

12. Transmit invoice.

13. Write order to accepted·
order data set.

Offline

14. Read accepted orders.

15. Update product in'ventory.

16. Sort products into
alphabetic sequence.

17. Generate synonym
data set.

Pharmaceutical Order Entry System

particular product ordered. Figure 11-24 illustrates a typical
pharmaceutical order entry system. in this aplication, generally,

CICS/VS ApFlication Design 333

orders a]:e placed by pharmacists over the telephone, with the telephone
operator keying into the terminal each product ordered. The name of
the product ordered is entered on the terminal, and the computer
accesses all products similar to that entered (that is, synonyms) and
displays each of the syncnyms at the terminal for selection by the
operatoro

In this industry, a pharmacist's order is normally accepted
regardless of whether or not there is sufficient stock on hand to fill
that order. An cnline inventery status check is normally not carried
out. Hotiever, it is important that Facking slips for such orders be
passed tc the warehouse as quickly as possible. Ideally, the computer
should prepare all the products in each packing slip in warehouse
location sequence for faster picking of Froducts. This packing slip,
together with an extended invoice if preinveicing is to be implemented,
can be tr.ansmitted to a terminal in a warehouse very shortly after
completicn of entry of the order.

DATA SETS

The synonym Froduct data set is a sFecial online version of the
product data set (which is used only in the batch environment). If
the product data set is used online to identify various Froduct
synonyms, a file access gay te needed for each separate slnonym.
Eecause there may be twenty or more synonyms fer each product ordered
from each terminal, accessing the ~rcduct data set online represents
a significant (and unnecessary) file accessing lcad. This online
accessin9 is unnecessary, as the cnly ~urpose is to identify slnonyms
and not to update inventorl levels. In this industry, inventory is
normally updated overnight bl batch programs.

The synonym product data set is created offline from the product
data set (see Figure 11-24), by extracting from each product record
the product number and name into a separate data set. (A typical
product data set record format and product data base DL/I logical
structure are shcwn in Figures 11-31 and 11-32, respectively, for the
distribution industry. ~hese figures are also relevant to the offline
pharmaceutical product data set.) Information needed for invoice
calculations, such as unit price, unit size, discounts, and warehouse
location, is also extracted from the product data set to make up a
synonym record. Slnonym reccrds are sorted into alphabetical sequence
on the product name and are processed sequentially in a batch
environment to generate display images of synonyms based on the first
four to seven characters of the name (depending upcn installation
requirements). The display images cf synonyms are used to generate
the synonym product data set with the first characters of the product
name (that is, the synoDJa name) as the key. Figure 11-25 shows a
typical synonym product record format and the resultant sJnonym display.

Using the product name entered frem the terminal, the first four to
seven characters of the naDe are used to access the synonym product
data set and to retrieve one or several sjnonym displays, each
containing many synonym products. The operator then identifies the
appropriate product. That product identification can be entered with
the next product to be erdered, together with details of that next
product.

By using the synonym ~rcduct data set, the amcunt of data set
accessing which is necessary is dramatically reduced, with a subsequent
potential improvement in online Ferformance and response time.

334 eICS/VS System/Application Design Guide

Synonym

Key No.

Product Ordered: Aspirin Oty: 100

Prod. Product Name Unit Price Disc. Locn.
No.

1142 Aspirin-Tabs Box 0.23 5% A1

1143 Aspirin-Pwdr Box 0.21 5% A1

1148 Aspirin-Conc Box 0.32 8% A1

1155 Aspirin-Brand A Box 0.20 4% A2

1156 Aspirin-Brand C Box 0.22 4% A2

Figure 11-25. Synonym Beccrd Format and Display

The pharmacist data set ccntains information relating to the
pharmacist, as shown in Figure 11-26. This data set is accessed at

Unit

the start of each order to identify the pharmacist for credit purposes,
accQunt hi~tory, or disccunt.

Pharmacist Credit Postal Address Ship-To Address Account

No. I Name Limit Line 1 J Line 2 1 Line 3 Line 1 J Line 2 I Line 3 History

Figure 11-26. Pharmacist Data Set

The order-in-progress data set is used as a work data set. Each
product ordered by name, together with its quantity, is entered
conversationally and the ap~ro~riate product name is selected from the
various synonyms. This crdered ~roduct is then written to the
order-in-progress data set (see Figure 11-27). As further products

Order Cust.

No. No. No. Locn.

Figure 11-27. Order In-Frcgress Becord Format

are ordered, the order-in-Frogress record is updated until the complete
order bas been received. This is necessary in the event that the

ChaFter 11. CICS/VS Ap~lication Design 335

pharmacist may wish to change Fart cf his order, or cancel particular
products or the entire order before he has co~pleted the order.

Once the order has been completed, it.is then transferred from the
order-in-progress data set tc the acceFted order data set. This is
effectively a direct access file which will be processed overnight as
a sequential data set to uFdate the Froduct data set inventory. It
has the same record format as the order-In-progress data set (see Figure
11-27) •

CNLINE Fl:;OGIUMS

Q~9~I stj!.);,1 i~~gI.A!!! - A££§~! R1H!.!!!!s'£.i§i!.§ 19~n!ilig!ion

This Frogram accesses the pharmacist data set, displays the
pharmacist's name, address, and credit information, if reguired for
confirmation, and writes an crder-in-progress record.

The product name and guantity to be ordered are accepted from the
terminal and used to access the synonym data set. The highest synonym
key of each cylinder may be held in a table in storage, if required
for faster access, to allow the synonym displays for a product to be
retrieved directly. Details relating to the product, such as unit
price, discounts, and warehouse location, are part of the synonym record
(see Figure 11-25) and may be displayed for the operator, if desired.

This program indicates that the entire order has been completed, at
which tiDe the order-in-~rcgress reccrd is transferred to the accepted
order data set, to be used offline overnight to update the product
inventory in the product data set. This program then initiates the
warehouse location seguencing progIam.

!gI~~~~§§ ~Q~s!i2n ~~gY§~~.in£ ~I~9~gl - ~§9Y§D£§ iI2duc~§ in!Q
!AI§h2~§§ lQ~s!iQ»

This program is initiated automatically by the system at the
completicn of an order. It sequences the orders into warehouse
location, based upon the product's location extracted from the synonym
data set (see above). On completicn of the warehouse location
sequencing, control is passed to the invoice calculation program.

This program takes the order when it has teen sequenced into
warehouse locaticn. Using the unit ~rice, discount, and size supplied
by the synonym record (see Figure 11-2~, it extends each line item
and then calculates the total invoice.

The order, seqienced into warehouse location, is formatted into the
warehouse packing slip and transDitted to a printer in the warehouse.
Following this, the extended invoice is formatted and transmitted to
the same printer so that the packing slip and invoice may be packed
with the ordered products for preinvoicing.

336 CICS/VS System/Application DEsign Guide

CFFLINE FROGBAMS

As described earlier, this pregram accepts the product data set
sorted into alphabetical sequence and then formats display images of
synonym products based on the first four to seven characters of the
product name, for retrieval cnline from the synonym product data set.
Information such as the unit price, unit size, a~~licable discounts,
and warehouse location is also extracted for inclusion in the synonym
record, as shown in Figure 11-26.

At the same time, a synonym display image can be printed to be used
by terminal operators in the event of system downtime, for manual backup
and identificaticn of products ordered.

The accepted crder data set created online is read sequentially by
this program and used to update the stock levels cn the product data
set. Depending upon the freguency of activity of various products on
this product data set, the accepted. order data set may be sorted into
the same sequence as the Froduct data set before execution of the update
program, for better performance. As a result of the product update,
various inventery reForts may be produced, and back orders may be
recorded on a back-order data set.

DATA BASE SUFPORT SElECTION

The selection of data base sUFPcrt for this application can now be
considered. Refer to "Data Ease Selection Criteria" in Chapter 5 for
a discussion of the varicus factcrs relevant to this selection.

In most cases with this a~plicaticn, the data sets contain simple
record formats which may be equally well supported by either DL/I or
CICS/VS file control. In this irstance, the decision on data base
support will generally be dictated by future installation direction
rather than ether considerations. While this particular application
does not need all the facilities of EL/I, the principal advantage of
data independence with Dl/I, and hence reduced maintenance of the data
base. is an important reason for using it. Refer to "DL/I Products"
for the distribution industry later in this chapter, for a discussion
of the use of DL/I to support the product and custemer data bases. The
techniques described are alsc aFFlicable to the pharmaceutical industry.

If the data base support decisicn is to use file control, either
DAM, ISAM, or VSAM may be selected. The order-in-Frogress data set
would normally be supported as a DAM or entry-sequenced VSAM data set.
The accepted orders data set may be supported as a sequential data set,
or as a direct access data set created sequentially. The pharmacist
data set would·typically be ISAM or key-sequenced VSAM. The synonym
data s~t may also be ISA! or key-sequenced VSAM. The product data set
used in a batch environment may be either a direct access data set or
a keyed data set such as ISA! or key-sequenced VSAM. However, the user
should recognize that VSA! should not be utilized cn systems with less
than 144R bytes of real sterage, for ~erformance reasons.

Chapter 11. CICS/VS Application Design 337

While the product data set does contain some descriptive information
(such as the product name), this data set need nct use variable-length
records unless disk storage is at a ~remium. In the case of the
pharmacist data set, however, the name, postal address, and possible
separate ship-to address may indicate significant disk storage savings
ty defining the ~harmacist data set as a variable-length segmented
record data set. The pharmacist's name, each address line, and the
ship-to address may be made variable-length segments, and, through the
presence or absence of segme~ts, a variable Dumber of address lines
may te supported if necessary. Refer to the discussion of segmented
records in Chapter 5 for a typical segmented customer record. This
segmented record is useful alsc fer a pharmacist data set.

A typical online application in the distribution industry is order
entry and invoicing. This aFplicatien is similar in many respects to
the pharmaceutical order entry system described abeve, but differs in
the area of stock status checking.

ORDER ENTRY AND INVOICING SYSTEM

In this industry, products are generally erdered by product number.
Orders may be accepted ever the telephone, in perscn, or by mail. A
customer number er account nuuiber :is used to identify the person making
the crder. This customer identificaticn is used to access a customer
data set to obtain informaticn such as customer name and address,
ship-to address, and current credit rating_

The significant differences between this application and the
pharmaceutical order entry application are discussed in the following.

since each item is ordered by product number and quantity, the
computer is able to access the product data set directly tc obtain the
preduct name, unit price, Ielevant discounts, and quantity-on-hand.
The quantity-on-hand may te updated immediately to reflect acceptance
of the order. In the event cf an insufficient quantity-on-hand, the
terminal operator may elect to either:

• Accept the quantity available

• Cancel that crder item

• Cancel the entire crder

depending on the customer's requirements.

On completion of the order, the computer can be used to produce an
extended invoice te be transKitted tc the warehouse, together with a
packing slip listing products in warehouse location sequence.
Furthermore, it is possible to produce an invoice as confirmation of
the acceptance of the order if required, by also transmitting a copy
of the invoice tc the terminal. This order confirmation may result in
improved customer service, and is of particular interest for orders
placed in person by the custcmer. In the case of the orders placed by
telephone or mail, the confirmation invoice may te mailed to the
customer if required, depending uFon the delivery time of the actual
products ordered.

338 CICS/VS System/Application Design Guide

The advantages which result from an online order entry system similar
to the one described above are:

• Improved customer service

• Improved credit control

• up-to-the-minute stock status availability

• Fotential reduction in inventery levels

• Bemoval of the need ~or stock clerks, pricing clerks, and checking
clerks

• preinvoicing, and efficient warehouse picking

Figure 11-28 shows a tYFical crder entry and invoicing system.

INPUT PROCESSING

1. Access Customer Record.

2. Display Name and Address.

3. Generate Order-In-Progress
Data Set.

4. Access Product Record.

rL---""' ... 1 5. Update Order-In-Progress
Record.

6. Display Order Quantity
Accepted.

7. Record Back Order Quantity,
If Necessary.

8. Update Product Inventory
With Accepted Quantity.

9. Access Order-In-Progress
Data Set.

10. Sort To Warehouse Location
Sequence.

11. Transmit Packing Slip.

12. Extend Invoice.

13. Transmit Invoice.

14. Access Product Record.

15. Update Product Inventory
With Received Quantity.

OUTPUT

Figure 11-28 Distribution Order Entry and Invoicing System

DATA SETS

The data sets used in this apFlication are analogous to those
described for the pharmaceutical industry. The crder-in-progress data
set is used to temporarily held the erder until coapleticn, in the
event of a change in the order or Fossible cancelation of a particular
item or the entire order. The ccapleted order is then transferred to
the accepted order data set. The record format for the accepted order
data set and the crder-in-Frcgress data set is shown in figure 11-29.

ChaFter 11. CICS/VS Application Design 339

R'ust. t---. ___ -r-__ p_ro d_u_ct_1--._

~NO. No. Locn.

Figure 11-29. Accepted Order and Order-in-Progress Record Formats

The customer data set ccntainE Eimilar information to that described
for the pharmaciEt data set and is illustrated in Figure 11-30.

Customer Credit Postal Address Ship-To Address Account

NO., Name· Limit Line 1 I Line 2 J Line 3 Line 1 1 Line 21 Line 3 History

Figure 11-30. Customer Eecord Fermat

In this application, prcducts are generally identified by product
number. The product data set can be placed online, allowing the stock
status to be immediately uFdated on acceptance of each line item
ordered. Figure 11-31 illustrate~ a typical prcduct record format.

r-=T
~

j Date of Last
Change

Item Name

Reorder
Point

Unit
Size

Supplier
No.

Ware-
Price Dis- House
Per Unit Count No.

No. Of
No. Of Items

Items On
Order

Delivered

Figure 11-31. Product Beccrd Format

Stock
No. of Items r Loca-

tion In Stock

Date Of
Order

The reorder data set is used to record crders tc be placed on
supplier~: when the stock status of a product reaches its reorder point.
It may be a separate data Eet, or part of the prcduct data set (see
"DL/I Products" below, and Figures 11-31 and 11-32).

The back order data set is used tc record back crders placed because
of insufficient Etcck. It may be a Eeparate data Eet, or part of the
product data set (see "DL/I Products" under "Data Base Support
selection", and Figures 11-31 and 11-3~.

340 CICS/VS System/Application DeEiqn Guide

Product
Identification

• Contains
• Product Number
• Product Name

Warehouse
Information

CONTAINS

Product
Information

CONTAINS

• WAREHOUSE NO. .UNIT SELLING PRICE
e NO. OF ITEMS IN STOCK e DATE OF LAST CHANGE
e LOCATION IN WAREHOUSE eUNIT SIZE
e REORDER POINT eTURNOVER LAST YEAR

eTURNoVER YTD

Supplier
Information

CONTAINS

eSUPPLIER NO •
eUNIT COST PRICE
eUNIT SIZE
eDELIVERY TIME
eQUALITY INDEX
eDELIVERY INDEX
e PURCHASES YTD
eSUPPLIER INFORMATION

Figure 11-32. Product Data Ease Lcgical structure

ONLINE PBOGRAMS

This ~rcgram accesses the customer data set based on customer number
and displays the customer name, address, shi~-to address, and credit
rating fer confirmation. An order-in-progress record is then created
for this terminal.

~~de~ Enl~~ i~Qg!~m - !~~~~! i~Q~~~! ~rd~~§

This program accepts ~rcducts ordered by product number and quantity,
accesses the product data set, updates stock status, determines whether
the reorder ~oint has been reached, and creates a reorder record if
necessary, then adds to the tack order data set if the complete quantity
ordered could not be satisfied. The line item ordered is then used to
update the order-in-progress record for that terminal.

~!g~~ Fi]ish ~~2~~m - ~ig]~l ~2!Rl~!i£n 21 Q!g~,

This program indicates the completion and acceptance of the order.
The program tran~fers the erder-in-progress record for this terminal
to the accepted order data set. The warehouse location sequencing
program is then automatically initiated by the system.

Cha~ter 11. CICS/VS ApFlication Design 3q1

!~~ho]§.§ ~Q£~!i~D ~§gY~I~iD9 RI~g~1 - ~~gY§n£~ i1Q~!§ in12
jjI§b~]§i !2~J!i~D

The products in the accepted c:[der record are sequenced on the
warehouse location field, obtainEd when the product information was
initially retrieved from the product data set. This sequenced record
is then written back to the accepted order data set, and control is
passed to the inveice calculatien {regram.

This program extends each line item of the crder, based on unit
price and product and customer discounts extracted from the relevant
data sets during entry of the order. The seguenced order and calculated
invoice are then transmitted to the warehouse.

!~J;~l!QY§.§ Tra!!§li§§i~!! i.5t.9IR.I!! - 11i!!§mi! Rj~1si!!g SIll illS l.u2i~
ja2 jJnJlQ]§§

The order, in warehouse lecation sequence, is prepared as a warehouse
packing slip and transmitted to a printer in the warehouse. The
calculated invoice is then fcrmatted and transmitted to the same
warehouse printer for preinveicing.

If a confirmatien invcice is to te sent to the terminal operator,
a copy of the warehouse invoice is also transmitted to a printer located
near the terminal operater.

Be£~i~§ R~~~I~J!! - YB~j!§ ~!~£~ ~!~!]§ !i!h ~~£~iBts

This program accepts transactions from the warehouse indicating the
receipt into inventcry of {rcducts ordered against suppliers. The
program accesses the product recerd, increases the stock status, and
reduces the reerder quantity in the reorder data set based upon the
quantity received.

The increased product quantity may be used online to satisfy back
orders in the back crder data set, if necessary, or these back orders
may te processed offline.

RETAIL S~OBE SYSTEM

An extension cf the previcusl] described crder entry and invoicing
application applies to the retail stere environment. Here, purchases
made by customers are entered to directly update inventory levels,
calculate the purchase aDcunt (with discounts and sales tax), print a
receipt, and calculate change. The need to print a warehouse packing
slip and invoice is bypassed. The customer selects the required product
from the store, and the receipt tecoDes the custcmer's and the stores
record of the purchase transacticn.

The 3650 Retail store System is specifically designed for this
environment. The 3650 system comprises a 3651 pregraamatle controller
with 9.3 millien bytes of disk storage, a 3653 Foint of Sale Terminal,
a 3275 Display Station, a 32E4 Printer, and a 3657 Ticket unit. Refer
to the .J§.2.Q Re!i.!l ~!QI~ ~l§!i.m l!LtI.Qg.Y.£!i:~!l, GA27-3075, for further
information.

CICS/VS permits cenversational sessions to be established from 3653
or 3275 terminals, and alsc supperts a pipeline session for rapid
authorization of credit transactions. An apFlication program session

342 CICS/VS System/Application Design Guide

can be established fcr ccmmunication between user application programs
in CICS/VS and in the 3651. (See "3650 Sessions" in Chapter 3 for
further information.)

DATA BASE SUFPOR1 SElECTION

The most appropriate data base sUFPort for the applications is
discussed in the following. Refer to "Data Base Se1ecticn Criteria"
in Chapter 5 for a discussion of the factcrs relevant to this selection.

The advantage of tL/I in this application perBits information
relating to stock availability for a product (across several warehouses)
to be readily identified. Sales information is included in the logical
structure for the prcduct data base (see Figure 11-32), together with
the stock availability in various warehouses. Back crder information
for each product may be maintained across different suppliers, using
the same logical structure.

DL/I may also be utilized to support the custcmer data base. Refer
to "DL/I Products" in ChaFter 5 for a typical customer data base logical
structure.

The order-in-Frogress and -acceFted order data sets will generally
be direct access DAM or entry-seguenced VSAM data sets. This also
applies to the reorder and back-crder data sets which, together with
the accepted-order data set, are created sequentially online, but maj
be retrieved in randcm fashicn.

The customer data set will generally be ISAM or key-sequenced VSAM,
while the product data set may be either tAM, 15AM, or VSAM.

Depending upon the size of the custcmer data set, disk storage
savings may be achieved by using the segmented record feature of file
control and defining the customer r~cord as variable-length, with a
variable number of variable-length segments for name, postal address,
and ship-to address, for example.

If satisfactory perfcrmance is to be achieved, VSAM is not
recommended for computers with less than 144K bytes of real storage.
In this instance, use DAM and 151M as the access methods.

A common online aplication in this industry is a police information
system. In such a systeD, a data base containing all information
relating to criminals is established and maintained.

FOlICE INFORMA!ICN SYSTEM

This online application is dependent upon the quick availablity of
information and the establishment cf lcgical relationships between
items of information. The data base used to provide this necessary
information includes reccrds of criminals, alias names, personal
characteristics, convictions, and !2g~§ ~£§I~Dgi. Information relating
to various crimes and suspects is also recorded. Fersonnel at online
terminals must be able to access this data when given any of several

Chapter 11. CICS/VS Application Design 343

items of informaticn, such as nalle, alias, 12g'y§ 9~!f!lld.!, and
convictions. The ability to maintain up-to-date, accurate information
about various crimes, criminals, and suspects is a valuable
record-keeping function. A typical Folice information system is
illustrated in Figure 11-33. .

M!:I
• Crimes

• Suspects

• Criminals

• Modus Operandi

Etc.

INPUT

L_
Figure 11-33.

PROCESSING

[

. Validate input.

2. Display update
confirmation.

3. Update police
data base.

9

C
. Access criminal

data set.

5. Access related
records in other
data sets.

6. Display details.

C
. Access crimes

data set.

B. Access related
records in other
data sets.

9. Display details.

C
O. Search data sets

based on selection
criteria.

11. Display selected
information.

Pelice Infcrmation System

Police Data Base

The computer effers its mest significant advantages not only in
establishing and maintaining a law enforcement data base, but also in
the analysis of this infcruation. For example, possible relationships
between particular crimes and the J2g'y§ 2~~g! and characteristics
of various criminals can be identified. Used in such a way, an online
police i:nformation system enables the facts relating to a particular
crime to be used in retrievir.g all information relevant to those facts;
the online system then becomes a powerful law enforcement tool.

The STAIRS/VS Program Eroduct (Frogram No. 57QO-XR1) may be used in
this environment. Refer te "Related Publications" in the Preface for
relevant publications.

Both STAIRS/VS and CICS/OS/VS support the use of the 3850 Mass
Storage System, which can be used to satisfy the massive online data
base requirements of this aPFlication. The 3850 supports data bases
ranging from 35 to 236 billicn bytes online. It can be used for
applications with low transaction volume which can toierate long response
times. (See Chapter 7 fer fcrther infcrmation on the 3850.)

A related application which can utilize the online storage capability
of the 3850 is the legal profession. The 3850 permits legal reports,

344 CICS/VS System/Application Design Guide

cases, research material, ana legislation to be maintaineo online for
search and retrieval based uFon keyword criteria using STAIRS/VS.

DATA SETS

Either of two comFletely oifferent approaches may be taken toward
this application in the definitien of data sets.

Figure 11-33 shows a criminal oat a set with separate oata sets for
criminal personal characteristics, convictions, aliases, and mody§
QR§Ijn~i. Similarly, separate data sets are shown fer crimes and
suspects. Figure 11-33 illustrates the logical relationships cetween
these data sets, which are shown schematically by lines (representing
pointers) from one data set to a logically related record in another
data set. This oata base structure is oriented toward the use of
CICS/VS file centrol indirect accessing.

A similar data base capability may be provided through the use of
DL/I. This is illustrated in Figure 11-34, which shows the logical
structure of two data bases, a criminal data base ana a crimes data
base.

Information in the criminal data case includes Fersonal
characteristics, aliases, ~g~§ 2E§Ijngi, and convictions as dependent
segments, of which tbere may be multiple occurrences for each type of
segment.

The crimes data base contains information relating to various crimes.
It contains segments describing !~~y§ QE~Ijng!, suspects, and
descriptions, for example.

The selection of the most appropriate data base support is discussed
following the description of the various online FrC9rams.

ONLINE PEOGRAMS

This Frogram accesses all of the information relating to a specified
criminal, including personal characteristics, aliases, BQg]§ Q~Ijng!,
and convictions, and formats that information for oisplay as a series
of pages. Those pages are presented to the CICS/VS terminal paging
routine, which displays them on the terminal in the sequence, and as
reguesteo, by the terminal oFerator (see "Terminal paging" in Chapter
3) •

ChaFter 11. CICS/VS ApFlication Design 345

~nVimion]J

,1
I Suspecu]JJ

Name Personal
Characteristics

I
I

Alias Name f-

t-

Criminal Data Base

Crime
Details

I

Witness
Descriptions

-

Modus
Operandi

Modus
Operandi

Figure 11-34. Police Data Base lcgical structures

Crill§ !!l9.YiII R!.Qg.!:A! - ~i§lisI ~li!§.§ !.D!QIlIIA!i~ll

This program accesses all of the information relating to specific
crimes and suspects and Frepares that infcrmation as a series of pages
for presentation by the eIes/VS terminal paging routine tc the terminal
operatcr, on request.

346 eIeS/VS System/Application Design Guide

This program adds inferaation relating to criminals, crimes, and
suspects to the police data tase, or changes existing infermation, thus
enabling the data base tc be dynamically updated and maintained online.

~l~~!io~ fI2g!!! - ~~~~! !!i2I!sii2D ~!§~ 9D !JIioQS ~~i!~Iii

This program searches the available informaticn relating to
criminals, crimes, and suspects~ selecting records which most closely
meet various criteria supplied by the terminal operator. Por example,
the description and characteristics of a suspect may be used to search
the personal characteristics and alias informaticI, to determine if
suspects are known criminals. Alternatively, the !29Y§ 2perangi of a
particular crime may be used to search the .29Y§ 2Ei~~i of all
criminals to identify likely suspects.

The CICS/VS built-in weighted. retrieval function (see "Weighted
Retrieval" in Chapter 5) is particularly suited for this selection
process. However, it can be utilized only for VSA! data sets.

£ATA BASI SUPPORT SELECTION

As discussed previously, two distinctly different data base
approaches may be used for this application. Refer to "Data Base
Selection criteria" in Chapter 5 for a discussion of the factors
relevant to the most appropriate data base support for this application.

~lL! fI2~~~!§

Because of the volatile Dature of information in this application,
it is particularly suited to DL/I. The continual changes which are
made to this data base, and the possible Deed to change the physical
organization of this data base froa tiae to time, make it best supported
by DL/I, with its data independence and hence reduced program
maintenance. Refer to "Segment Beference Design Factors" and. Pigure
5-34 in Chapter 5, for a discussion cf logical structure design for
this application. Figure 11-34 illustrates a logical structure of a
typical police data base.

If the police data base ccntains a considerable amount of textual
information, advantages may te gained ty the use of variable-length
segments with DL/I DOS/VS and I!S/VS DL/I. However, if disk storage
capacity is not a significant factor, the textual information may be
placed in fixed-length seg.ents.

The secondary indexing capability of DL/I is particularly suited to
this application, enabling indeXES to he created by DL/I for direct
retrieval of dependent segments, instead of by hierarchical retrieval
through a logical structure.

This facility is suppcrted by DL/I -ENTRY, DL/I DOS/VS, and 18S/VS.

The support of logical relaticnships by DL/I ENTRY, DL/I DOS/VS aLd
l!S/VS permits the design of sophisticated data tases for this
application. Refer to "10gical ~elationships" and Pigures 5-35 and
5-36 in Chapter 5, fer further discussion.

Por retrieval of DL/I segments, an important consideration in the
use of the file control indexes described above is the CICS/VS built-in
weighted retrieval function. This pcwerful facility is available only
for searching VSA8 files, tut cannot be used directly on DL/I data

Chapter 11. eICS/VS Application Design 347

bases, unless the data base is a root-segment-only data tase and of
standard VSAM format. In the case of the police iDfcrmaticn system,
the criminal and crimes data bases have a number of dependent segments.
Consequently the weighted retrieval function cannot be used directly
on these DL/I data bases.

However, through the use cf VSA~ for the file centrol indexes
described above, the built-in weighted retrieval function may be used
for searching these indexes and selecting relevant segment keys. The
segment names related to selected keys may then be used to access the
DL/I data base directly, by means of user-developed code.

Alternatively, if file control indexes are not desired, the search
facilities offered by the weighted retrieval function may be readily
iD~lemented by user coding, searching the DL/I data base directly.

The query and selection facilities cffered by STAIES/VS may be used
with data bases created and maintained by STAIES/VS.

As described above, file centrol indexes may te cr.ated to identify
all the DL/I seg.ent names associated with a Farticular key. File
control can also be used to support a police data base, with separate
data sets created for criminals, personal characteristics, aliases,
'!Q!l.Y.§ .Q.Eg~.9!!gi, convictions, crimes, and suspects.

For example, the criminal data set contains all the information
relating to a criminal, together with Fointers to related records for
the criminal in ether data sets (SEe Figure 11-34).

Chaining techniques with file centrol, discussed in Chapter 5 and
elsewhere in this putlication, may be utilized if required. However,
in many cases they will require extra user coding, and will introduce
additional work for the creation and maintenance of these data bases.
Because of the volatile nature of information in this application, and
the multiple occurrence ef dependent information, the use of DL/I rather
than file control for this applicaticn will result in a significant
reduction in user coding, data basE creation, and Ra~ntenance, and a
similar reduction in program maintenance when it is necessary to modify
the data base. The availability of DL/I data base maintenance and
recovery utilities, and the advantage of data independence with DL/I,
is invaluable to this avplication.

A typical online application in this industry is a customer
information system (CIS) as shewn in Figure 11-35. It contains
information relating to the utility companys customers, for example,
name, address, type of acccunt, current account balance, cash paYlients,
service order history, merchandise installment contract, and meter
histories,.

CUSTCMEE INFORHAiICN SYSTEM

The customer infermatien system (CIS) is designed to improve the
efficiency, quality, and accuracy of information and procedures used
principally by the service departments and customer activities
deFartments and, to scme extent, the gas service, gas sales, electric
service, electric sales, appliance service, and appliance sales
departments where they exist within individual utilities.

348 CICS/VS System/Application Design Guide

The customer information system consists of beth online and offline
programs which are designed te provide:

• An inguiry capability into the customer master data set

• A data entry capacity so that service orders or adjustments to the
data ~ase can be entered online

• Control of data entry activities, including the ability to monitor
service crders frem creaticn comfletien

• A historical record of all inguiry or service order activities for
online display at all times

CICS/OS/VS su~ports the 3850 Mass storage System. This provides
massive online data bases ranging frcm 35 to 236 tillionl bytes. It
can be used for applications with low transaction volume which can
tolerate leng respense times (see Chapter 7).

DATA SETS

The main data set used by this ap~lication is the custemer data set.
A tYFical customer recerd is illustrated in Figure 11-36.

The primary CIS system data set is the customer master data set.
It is made up of segments of information, each of which is a group of
r~lated fields (see Figure 11-36). Each record need contain only those
segments that are required by that acccunt. For example, not all
accounts contain a deposit segment, since deposits are not reguired
from all customers. Also, each segment that is present can contain
optional fields. Fer exam~le, the infermatien in the meter segment
can vary from account te acccunt. These segments can be fixed,
dependent upon the requirements cf each particular utility. There are
tasic segments of information that must exist, but no two companies
will use the identical centent. However, the basic concept and record
format should be the same in mest companies. The control segment is
always in every custcmer master record. Information in this segment
allows CICS and data set maintenance modules to determine the specific
format, contents, and relative lccation of each data segment in a given
customer master record.

lOne billion equals 109.

Chafter 11. CICS/VS Ap~lication Design 349

INPUT

Customer Information
Data Sets --

Index

Customer
Name
Index

Order
Execution
Standards
OataSet

Manpower
Available
Data Set

Field Order
Dispatching
Data Sets

PROCESSING'

Inquiry Subsystem

1. Access customer record.

2. Extract requested information.

3. Display requested details.

Service Order Subsystem

4. Access customer uSing customer
name index.

5. Process service order.

6. Produce service work order.

7. Update activity daw set.

Field Ordar Dispatching Subsystem

B. Access field order dispatching
data sets.

9. Process field order.

10. Update activity data set.

11. Update field order dispatching
dClta sets.

Trouble Order Subsystf1m

12. Access activity data set.

13. Process trouble order.

14. Update activity data set.

15. Produce trouble work order.

Data Collection Subsystem

16. Edit and process data.

17. Add to data collection data sets ..

Extended Descril,Otion

2. Extract following information, when requested:

- Billingstatus

9. Field order processing:

- Order schadul ing
- Billing history
- Merchandise
- Payments
- Credit status

5. Process following requests:

- Order entry
- Order pringing (same day or future)
- Order completion

- Ord~r assignment
- Order dispatching
- Workload statistics

13. Troublo order processing:

- Trouble calls
- Trouble processing

16. Data collection processing:

- Cash payments
- Meter readings
- Control totals

Payment
Batch

.Summary
Data Set

Figure 11-35. utilities custcmer Information System

OUTPUT

~
Dispatching
Data Sot.

Order
Execution
Standards
DataSet

Manpower
Available
DataSet

Man/Crew
Assignment
DataSet

!2!!!
Collection
Data Sets

The CIS activity data SEt is used to maintain all information
concErning a customer account that is not yet contained in the customer
master data set. The primary function of thE data set is to maintain
pending serviCE crders. When a service order is taken, it is added to
the data set as a pending crder. WhEn the service order has been
EXEcuted, completicn infcrmation is added. The completed service order
is remOVEd from the data set in a batch maintenanCE operation for
offline programs. These offline programs process the data and update
the customer master data SEt.

350 CICS/VS System/Application Design Guide

Control Premises Customer Meter Demand Electric Gas Bill

Segment Segment Segment Segment Segment Facilities Facilities Amount
Segment Segment Segment

Payment Merchandise
And Budget Installment Nonmetered Deposit Alpha Bank

Miscellaneous Billing Contract Service Segment Overflow Account

Segment Segment Segment Segment Segment Segment

Credit Information
Current

'" Bill
.r:; iii
b. ServicE' History (5 <1>

() Amount c Customer Name Start ~ <1>

~ I ~ ...J
Date

n;

cI5 24232221120191817 16 15 14131211 1098765432 1 ~
co

Cur,ent Bill
Cash Payment (Continued) +-' c

>'" >'"
<1> ~

>'" "CO

o ~ '" ... '" ... Tax ~ Cl ~ o ~
c 8~ .r:; ~ n; o ... o ... 0'" ~ !!l 0 «

c M« <0« 0)« 0 E ~

&. co « c
~

Figure 11-36. utilities customer Record Format

~Y~R~~! ~g!g ~§!§

Additional data sets are normally included in CIS which support
operations, but are not primary operational data sets are the customer
master data set and the CIS activity data set. The primary among these
can be termed manpower inforaatien data sets. These data sets contain
serviceman/crew assignment infor.atien. Their primary functions
include: (1) to assist in scheduling service order execution dates,
(2) to assist in the assignment cf service orders to a specific
serviceman or crew, and (3) to assist in the dispatching of service
orders.

ONLINE PEOGRAMS

The online programs which are ~sed in this apFlication are described
shortly. The application enline functions are performed ty modules
which are linked to one another randomly, depending upon the processing
required by any given online transaction. The functions performed are
as fellows.

ONLINE PFOGRAMS

• Inquiry programs -- previde the ability to query the CIS data base
for billing, payment, account status, outstanding service work,
and credit status and collectien information.

Chapter 11. CICS/VS Application Design 351

• service order program~s -- pro_ide the ability for online entry of
such service orders as turn-cn, turn-off, meter order, namE
correction, billing adjustment, the printing of service orders,
and the entry cf order ccmFleticn information.

• Field order dispatching Frograms -- provide the ability (1) to
assign service orders to a service-man/crew cnline, (2) to dispatch
and maintain the status cf service orders online, (3) to inquire
into the data base to obtain workload summary information, and (4)
to cbange basic aanpcwer data in the data base online.

• Trouble order programs -- previde the ability to enter trouble
information online and tc print this informatien on a hard-copy
terminal in the trouble dispatching center.

• Data collection programs -- Frovide the ability to enter cash
payment and meter reading information into tbe system from the
remote locations.

Bgtation R~2gIg~ - !~!~ ~E§~121 1~~2lD! lD!9!1!!A!j~D

This program allows special instructions to be entered from the
terminal and added to the customer recerd, for subsequent use in
processing that record •

.§~s!£l! Rl.QSIs1!! - ~~1§~! !;Y§!S1!!~! j.~£~.YD!§ ~~g SJl ~~eciii.§.g
~~i!~!is

This program searches through all or a specified section of th~
custemer data set, retrieving all records which most closely meet
specified selection criteria. For example, all account records in a
particular street, or building, er with certain appliances may be
selected for display. Alternatively, all records whose accounts are
in arrears by more than a specified amount for a specified period of
time can be selected and dis FlaYEd. This program can also utilize the
CICS/VS built-in weighted retrieval function (see "Weighted Betrieval"
in Chapter 5) for selection cf records meeting sFecified criteria from
key-sequenced VSAM data sets.

DATA BASE SUPPOBT SELECTION

The customer data set contains a variety of infermation which may
be present or absent in different records. Either DL/I or CICS/VS file
control can be used. Befer to the section "Data Ease Selection
criteria" in Chapter 5 for a discussion of the factors relevant to the
most appropriate data base support.

A customer data base may te set uF as illustrated in Figure 11-37,
showing the multiple occurrence of dependent segaents such as address
segments, installment contracts, payments, or gas and electric
facilities.

Furthermore, the addition of sFEcial notation information to the
customer record Day te acbieved by adding special notation segments to
the account history segment, with as many special notation dependent
segments as necessary.

352 CICS/VS System/Application Design Guide

Customer

I T Credit
Number Name I Information

..------,-----.-----r------,------.---------- r------.------,

Premise
(Address)

Demand

Meter

Gas
Facilities

Electric
Facilities

Payments
And
Miscellaneous

Billing

Budget
Billing

Merchandise
Installment
Contract

Non­
Metered
Service

Bank
Account

Deposit

Alpha
Overflow

Figure 11-37. customer Data Base Logical structure

While the use of variable-length segments is advantageous if IMS/VS
01/1 or ILII DOS/VS is used, fixed-length segments with DL/I ENTEY are
also fea sible.

~!~~L!~ Eile ~2in!~n2D~~
The customer information system (CIS) data tase should be built

around the use of VSAM. The high-response nature of CIS and the large
volume of transaction processing that cccurs offline make disk
processing efficiency critical. Offline programs usually process
several cycles daily, representing 15 to 25 percent of the entire
custcmer master record. File maintenance and building runs often take
several hours per day and any small degradations can be multiplied into
performance prcblems. Usually, a seguential or skip sequential file
organization technique built around VSAM can test handle the
reguirements of CIS.

VSAM should also be used to support CIS activities. Usually, little
direct file maintenance of the customer master reccrd is performed
online, tut rather is handled offline. Use of VSAM provides a
compatible data tase organizaticn compromise between online and offline
operation.

Information within each record cf the customer master file is
organized using the CICS segmented record feature, which allows data
to be grouped by freguency of use, function, and logical relationship.
Accordingly, it is possible to retrieve an entire record or selected
segments of a given record as ap~rcpriate.

To permit the addition of segments online, such as by adding pending
order segments, the access method uSEd should te key-seguenced VSAM,
which allows the record length tc be increased or decreased as reguired.
However, VSAM should not te used (if satisfactory performance is to be
achieved) cn systems with real storage less than 144K.

Chapter 11. CICS/VS Application Design 353

ABEND
abnormal termination 245
dump data set 236
dynamic task backout 233
function of 29
partition/region 229
program control 230
program centrol pregram 222
program-level exits 230
recovery from 222
system recovery table 229

Abnormal termination 245
Abnormal termination exit (see SBTJIT) 29
Abnormally terminate (see ABENt) 29
Access calls 180
Activity keypoints 238
Advanced features, CICS/VS

interval control 198
task centro1 197
VSAM support 215

Alarm indicator 56
Anticipatory paging 211
Application backout code 234
Application control bleck generaticn 177
Application control blecks (ACE) 190
Application design

application functions 21
banking industry

customer information system 314
data sets 309
offline programs 313
online programs 310
savings bank and mortgage loan

system 307
distribution industry

data base support selection 343
data sets 339
cnline programs 341
order entry and invoicing system 338
retail store system 342

insurance industry
data sets 321
data sets, policy entry 325
new-business policy entry system 324
enline programs 323,326
policy information system 319

introduction to 10
law enforcement industry

data base support selection 347
data sets 345
cnline programs 346
police infcrmation system 343

manufacturing industry
data base support selection 305
data sets 303
functions 301
offline programs 304
cnline programs 304
production order 302
status reporting system 302

Application design (Continued)
medical industry (Continued)

data base support selection 331
data sets 330
online prograas 330
patient information system 329

objectives 3
pharmaceutical industry

data .base support selection 337
data sets 334
offline programs 337
online prograas 336

INDEX

pharmaceutical order entry systea 333
utilities industry

customer information system 348
data base support selection 352
data sets 349
online prograas 351

Application functions
asynchronous transaction processing 24
bit manipulaticn 23
designing 21
extended 3270 support 23
field verify/edit 23
input formatting 23
message routing 22
phonetic conversion 24
table search 23
terminal device independence 22
terminal paging 22
weighted retrieval 24

Application program block (AP) 46
Applicatien program sessions 50
Applicaticn programs 212
Asynchronous journaling 268
Asynchronous transaction processing

advantage of 75
batch applications 73
description of 24
priority processing 105
terminal operator commands 74

ATI (see Automatic task initiation) 27
ATTACH maClO instruction 197
Attention ID character 65
Audit 95
Automatic journaling 167
Automatic logging

before delete completed 263
data set backout 167
data set records 257
DATA IDs 259
DL/I data bases 187
dynamic task backout 234
enqueue interlock 241
file centro1 recovery, CICS/VS 256
journaling 258
lockout 241
recording of CICS/VS data set

modifications 225
EUP processing 253
system prefix 261

Index 355

Automatic logging (Continued)
transient data 259

Automatic paging status
Automatic task initiation

description of 27
for 3600 1 C4
function of 27

37

IN-SERVICE status 102
intrapartition data set recovery
intrapartition queues 98
RECEIVE status 102
TRANSCEIVE status 102

Automatic tasks 95
AUTOPAGE status 102
Auxiliary storage

269

support, of temporary storage
temporary storage recovery
VSAM 214

214
224,266

Backup design 289
Backup procedures 290
Banking industry, application design

applications for 115
savings bank and mortgage loan

system 307
audit program 312
change program 311
customer account cross-reference record

format 309
customer infQrmation system

account reference ~rogra. 316
account search program 316
checking account record format 316
CICS/VS file control 318
data base support selection 317
data sets 315
description 314
DL/I support 317
enline programs 316

data se'ts 309
inquiry ~rogram 312
interest calculation program 313
load program 313
mortgage loan program 311
offline programs 313
online applications 308
online programs 310
savings bank account record format 309
savings transaction program 310
selected report writer program 313,313
supervisor program 312
teller journal record format 310
unload and select program 313

Basic graphics access methed
terminal error recovery 75
terminals 42

Basic mapping support
alarm indicator 56
application program sessions 50
deferred output 243
description cf 31
devices used 32
I/O overlap 56
illustration of 33

Basic mapping support (Continued)
input formatting macro instruction 66
input ma~ping 55
input message format 64
input messages 35
map residence in controllers 56
maps 32
output mapping 55
output messages 35
pipeline sessions 49
sequential devices used 34
services 32
techniques for using 58
terminal control 40
terminal paging 243
with VTAM 54
3275 host conversational sessions 47
3600 session 46
3653 host conversational session 48
3790 host inquiry session 52

Basic telecommunications access method
terminal abnormal condition program 75
terminal device independence 56
terminal error program 76
terminal error recovery 75
terminals 41

Batch applications
anticipatory paging 211
asynchronous transaction processing 73
batch data base creation 195
batch partition data transfer 88
batch prcgram access 195
batch transaction processing 88
batched message transmission 88
data base backout (batch) 191
description of 73
design of 74
general batch processing 74
page fixing 211
page pool 209
T/P balancing 211

Batch contention 214
Batch data base creation 195
Batch DL/I data base backout 289
Batch DL/1 data base recovery 285
Batch DL/1 system log 286
Batch environment 14
Batch partition data transfer 88
Batch program access f95
Batch queues 95
Batch transaction processing 88
Batched message trans.ission 88
Before request analysis 268
Benchmark techniques 219
BGAB (see Easic graphics access

method) 42
Bit manipulation 23
Block paging 212
Blocked records 133
BitS (see Basic mapping support) 31 I

BBS ROUTE macro instruction 37
Browse initiation 135
Browse retrieval 135
Browse termination 135
Browsing (see sequential access) 135
BTAB (see Easic telecommunications access

method) 41

356 CICS/VS system/Application Design Guide

Buffering 277
Built-in function 61
Built-in function (BIF) phonetic cenversion

macro instruction 143

CANCEL macro instructicn 199
canceled transactions 199
Chain integrity 153
change priority 85
CHAP macro instruction 85,191
Check digit 67
CMSG (see Message switching
transaction) 38

Cold start 92
Cold start of CICS/VS

complete 247
functions 224
initialization, CICS/VS 241

Committed output messages 226,242
Communications controllers 44
Concurrent task access 277
Centrol totals 61
Controlled shutdown of CICS/VS

description 223
example 245
extrapartiticn data set recovery 213
following emergency restart 255
intrapartition data set recovery 269
logical recovery 276
program list table (PLT) 244
temporary storage recovery 266
termination, CICS/VS 244
transaction list table (XLT) 244
warm start 247

Conversational applications 58
Conversational message design 58
CPU console as a CICS/DOS/VS terminal 41
CPU sessions 52
CTYPE=CHECK 40
CTYPE=LOCATE 40
CTYPE=STATUS 40
customer record format, segmented 156
cutover design 290

DAM
adding a record 151
batch program access 195
blocked records 133
browse initiation 135
browse retrieval 135
browse termination 135
data base performance 193
data set record location example 142
direct access 127
file centrol 127
file centrol accessing, CICS/VS 193

DAM (Continued)
indirect access chain
keys 141
manufacturing industry
multiple browse 136
multiple browsing 136
record deletion 263
record location 141
segment updating 162
sequential access 135

153

307

unblocked records 131
variable-length record DAM data
sets 132

180 Data base access calls
Data base backout 264
Data base backout (batch)
Data base backout (online)
Data base backout utility
Data base backup 191

191
192

286

Data base change accumulation
Data base description

data base access calls
function of 112
generation 190

Data base design 6
Data base design, CICS/VS

advantages of data bases
application requirements
banking industry

180

113
112

191

application factors 183
application uses for weighted
retrieval 139

chaining technique 126
checking account data base 116
customer account cross-reference

basE 116
data base chaining 125
data base requirements 117
mortgage loan data base 116
savings account data base 116
savings account logical structure

example 179
data base support for CICS/VS
data redundancy 112
distribution industry

121 accepted order data base
custcmer data base 120
data base requirements 121
order in-progress data base
product data base 121

126

121

segment intent scheduling 186

data

implementation for applications
insurance industry

124

application uses for weighted
retrieval 139

customer cross-reference data
base 117

data base requirements
indirect access 145

118

policy data base 117
representative/territory data
base 118

interrelated information 113
law enforcement industry

application uses for weighted
retrieval 139

Index 357

Data base design, C1CS/VS (Continued)
law enforcement industry (Continued)

convictions data base 122
crimes data base 122,188
criminal data base 122,188
data base logical structure 185
data base requirements 123
design factors 184
logical data base 188
logical relationships 187
modus operandi data base 122
personal characteristics data
base 122

phonetic ccnversion function 144
secondary indexing 189
suspects data base 122

logical structures 112
manufacturing industry

application factors 183
data base requirements 11~
data base usage 115
indirect access 145
manufacturing planning data basE 115
part numter cross-reference data
base 114

work order data base 114
medical industry

application factors 183
application uses for weighted
retrieval 139

data base requirements 119
diseases data base 118
medication cross-reference data

base 118
patient history data base 118

multiple occurrence i.plementation 124
online application programs 202
pharmaceutical industry

accepted order data base 120
data base requirements 120
order in-progress data base 120
Fharmacist data base 119
product data base 119
synonym data base 119

physical structure 112
requirements 111
requirements summary 124
savin~s and loan data base chaining 125
structures 112
utilities industry

customer data base 123
data base requirements 124
maintenance technician data base 123

Data base design, DL/1 192
Data base I/O error recovery 191
Data base recovery

backout utility 191
data base backup 191
data basE change accumulation 191
data base selection criteria 192
DL/1 log 191
file centrol recovery, C1CS/VS 256
I/O error recovery 191
in system restart 256
read-only data sets 257

Data base selection criteria 192

Data base utilities 190
Data base, definition of (see also Data

base design, C1CS/VS) 112
Data communication design 4
Data communications design, C1CS/VS

aids 31
approaches to 31
basic graphics access method 42
basic mapping support 31
basic telecommunications access

method 41
BftS maFs 32
CPU console as a C1CS/DOS/VS
terminal 41

message routing 37
message switching transaction (CftSG) 39
session types, C1CS/VS 46
synchronous data link control 43
telecommunications access method 42
terminal control and BftS C1CS/VS 40
terminal device independence 32
terminal pa~ing 35
use of VTAft by C1CS/VS 45
virtual telecommunications access

method 43
Data elements 90
Data identification 89
Data language/1 (see DL/1) 114
Data management design 6
Data management design, C1CS/VS

application requirements 87
batch transaction processing 88
data identification 89
data transfer facility 89
file control 114
interval control 89
message routing 89
queuing capability 88
scratchpad capability 87
scratchpad facility 89
temporary storage management,
C1CS/VS 88

temporary storage recovery 92
temporary storage usage 88
terminal paging 89
use of dynamic storage 91

Data redundancy 112
Data set approach, traditional 170
Data set backout 226,261
Data set check 68
Data set passwords 82
Data sets, DL/1 114
Data sets, extrapartition 94
DBD (see Cata base description) 172
DCT modification program 108
Debugging 293
Deferred output integrity 242
DELETE 28
DELETE macro instruction 132,263
Delimiter characters 62
Dependent segment 180
DEQ macre instruction 153,198
Dequeue 198
Design strategy 3
Destination entry 270
Destination identification 96

358 CICS/VS System/Application Design Guide

Device failure 223
Device recovery 284
DFHUAKP, keypoint program 239
Direct access

addition to fixed-length DAM data set
example 132

blccked records 133
exclusive control during update 130
ISAM variable-length records 134
locate mode processing 133
mass record insertion 134
OPEN/CLOSE of data sets 134
random record addition 131
random record deletion 132
random record retrieval 128
random record retrieval example 129
random record update 129
random record update example 130
record identification 140

Direct accesss method (see DAft) 127
Disk I/O errors 223,285
Disk organization, intrapartition 98
Distribution industry 120
Distribution industry, application design

accepted order data set 339
CICS/VS file control 343
customer record format 340
data base support selection 343
data sets 339
DL/I products 343
invoice calculation program 342
online programs 341
order entry and invoicing system 338
order entry program 341
order finish program 341
order start program 341
product record format 340
receipts program 342
retail store system 342
warehouse location sequencing

program 342
warehouse transmission program 342

DL/I
access calls 180
access from CICS/VS 169
accessing 194
additions 187
advantages of 171,173
application control blocks (ACE) 190
batch data base creation 195
batch DL/I data base backout 289
batch DL/I data base recovery 285
batch DL/I system log 286
CALL functions 206
CALLs 194
CICS/VS-DL/I interfaces 194
customer account logical structure 178
data base access 172
data base access calls 180
data base approach 171
data base capabilities 179
data base description 172
data basE description (DED) 190
Data base design, DL/I 192
data base I/O recovery 287
data base organization access
methods 181

DL/I (Continued)
data basE recovery 190
data base recovery example 288
data basE reorganization unload and
reload 190

data base selection criteria 192
data base utilities 190
data independence 176
deletions 187
design factors 183
distribution industry 343
DL/I data base backout during CleS/VS
emergEncy restart 264

DL/I DOS/VS 169
DL/I ENTRY 168
DL/I logging using CICS/VS system
log 264

DL/I termination activity 264
DOS/VS Ferformance 215
dynamic task backout 235
HDAft 181
HIDAM 181
HISAM 176
HSAM 176
IMS/VS DL/I 169
insurance industry 327
introduction to 169
law enforcement industry 347
log 191
logical data structures 177
logical relationships 187
logical structure design 182
manufacturing industry 305
medical industry 331
multiple occurrence of segments 175
online DL/I data base backout 264
pharmaceutical industry 337
products 168
program specification block 172
program specification block (PSB) 190
record format, customer account 177
recovery utility 287
savings account logical structure
example 179

secondary indexing 189
segment design 174
symbolic prograa linkage 180
sync point record 264
termination record 264
updates 186
utilities industry 352

DL/I data base backout during CICS/VS
emergency restart 264

DL/I DOS/VS
additions 187
application control blocks (ACE) 190
banking. industry 317
data base recovery 190,287
data communications support 170
deletions 187
DL/I accessing 194
DL/I logging using CICS/VS system
log 264

function of 169
insurance industry 327
law enforce.ent industry 347
logical relationships 187

Index 359

DL/I DOS/VS (Continued)
manufacturing industry 305
medical industry 331
multiple occurrence of segments 175
performance 215
program specification table 215
record formats 193·
secondary indexing 189
segment design 174
segment intent scheduling 187
statist:i.cs 206
updates 186
VSAM :215
3850 mass storage system 218

DL/I ENTB~r
additions 187
banking industry 317
data base backout 286
data base recovery 286
data communications support 17C
deletions 187
DL/I accessing 194
function of 168
insurance industry 327
law enforcement industry 347
logical relationships 187
manufacturing industry 305
medical industry 331
multiple occurrence of segments 175
multithread access 194
online DL/I ENTRY data base backout 265
record formats 193
secondary indexing 189
segment design 174
segment scheduling 265
transaction recovery and restart 279
updates 186
VSAM 215

DL/I ENTE1' segment scheduling 265
Dump data set 236
Dump data set recovery 278
Duplicates data set

device recovery 284
for indirect access 150
function 149
implementation 150

Dynamic operator passwords 83
Dynamic password 82
Dynamic storage

for temporary storage 215
general considerations 213
multitasking 203
online performance 202
short on storage (SOS) 202
storage required 202
temporary storage recovery 267
used by temporary storage 91

Dynamic task backout 233

Editing, transaction 66
Emergency restart of CICS/VS

completion of 254
data set backout 261
DL/I data base backout during CICS/VS
emergency restart 264

Emergency restart of CICS/VS (Continued)
function 224
initialization, CICS/VS
keypoints 238

248

logical recovery 271
physical recovery \ 210
post-initializatio~ processing,
CICS/VS 251

procedure 250
protected destinations
protected messages 242
restart 255
restart data set 248

271

system failure during 255
system initialization table (SIT)
system log 256
system log data set 251
temporary storage initialization
terminal oFerator restart 282
transaction backout program (TBP)
transaction restart 282
transient data initialization
transient data recovery program

251

(TDEP) 253
use of journals 259

End-of-file utility program 260
ENQ macro instruction 153,198
Enqueue 198
Enqueue interlock
Error correction

241

error field correction 71
error message contents 70
error message documentation
example 71
online program maintenance
scratchpad capability 87
use of temporary storage

Error field correction 71
Error message contents 70
Error message documentation
Error statistics 83

70

237

72

70

251

251

253

ESETL macro instruction 135
Exit routine, program level ABEND
Exit time, interval (ICV) 210
Extended 3270 support 23

230

Extents 260
Extrapartition data set

accessing example 96
batch data transfer 94
buffer ing 277
concurrent task access 277
destination identification
disk outFut data sets 274
I/O overlap 277
I/O wait time 277
input data set user recovery
line printer output data set
logical recovery 276
output buffer flush 277
output data set user recovery
physical recovery 275
record accessing 96
recovery 225,278
recovery of 97

input data sets
output data sets

sequential devices

272
273
94

96

272
274

275

360 CICS/VS System/Application Design Guide

Extrapartition data set (Continued)
volume switching 277
work file capability 277

Extrapartition data set recovery 271
Extrapartition device failure 285
Extrapartition transient data 95

Fallback design 290
Field edit 67
Field name start character 59
Field separator character 59
Field verify/edit 23

check digit
contro1 totals 67
data set check 68
field checking 67
hash totals 67
key verification 69
limit range 68
reasonableness check 68
sight verification 69
table search 68
zero proof totals 68

File control accessing, CICS/VS 193
File control program 127
File control table (FCT) 128
File control, CICS/VS

access to online data base 166
accessing 19.3
addition to fixed-length DAft data set
example 132

addition to variable-length tAft data set
example 133

additions to data sets 151
ad~antages of segmented records 165
banking industry 318
batch program access 195
blocked records 133
browse initiation 135
browse retrieval 135
browse termination 135
CICS/VS data set backout 225
customer record for~at, segmented 156
data base selection criteria 192
data integrity 187
DELETE macro instruction 263
design considerations, CICS/VS 166
direct access 127
distribution industry 343
duplicates data set 149
dynamic task backout 235
exclusive control during update 130
file centrol table (leT) 128
file I/O area (FIOA) 128
file work area (FWA) 128
GETAREA macro instruction 131
indirect access 144
indirect access operation example 147
insurance industry 327
ISAft variable-length records 134
law enforcement industry 348
locate mode processing 133
management routine 130
manufacturing industry 306

File control, CICS/VS (Continued)
mass record insertion 134
medical industry 332
multiple browse 136
multiple browsing 136
OPEN/CLOSE of data sets 134
parts data base exa.Fle 147
pharmaceutical industry 337
Prctected resources 240
random record addition 131
random record deletion 132
random record retrieval 128
random record retrieval example 129
random record update 129
random record update example 130
record format, customer 154
record format, savings account 154
record identification 140
recording of CICS/VS data set
modifications 225

recovery 256
recovery considerations 167
segment indicator flags example 158
segmented records 153
sequential access 135
skip sequential browsing 137
specification of logical
relationships 148

updating indirectly accessed
records 149

weighted retrieval example 138
weighted retrieval function 137

File I/O area (FIOA) 128
File work area (FWA) 128
Fill-in-the-blanks format 63
Fixed-format messages 61
FftH (see Function management header) 54
Full-duplex transmission 53
Function management header 54
Function password 82
Function programs (FPs) 47

Generation options, CICS/VS 213
GET macro instruction 92,129
GETAEEA macro instruction 131
GETlftE macro instruction 199
GE~NEXT macro instruction 135
GETQ macro instruction 91

~ash totals 67
HDAft

deletions 187
DL/I accessing 194
function of 181
record format 182
reload 190
unload 190

HIDAft
deletions 187
DL/I accessing 194
function of 181
record format 182

Index 361

HIDAM (Continued)
reload 190
unload 190

Hierarchical direct access method (see
HDA8) 181

Hierarchical
Hierarchical

(see HIDAM)
Hierarchlcal
lIethod (see

Hierarchical

direct organization 182
indexed direct access method

181
indexed sequential access
HISA8) 176
sequential access method (see

HSAM) 176
Hierarchical sequential organizaticn
High-level languages 15
HISAM

data base organizaticn access
methods 181

DL/I accessing 194
file control accessing, CICS/VS 193
online DL/I ENTRY data base back cut
record format 181
reload 190
sequential support
unload 190

8SA8

176

data base crganizaticn access
methods 181

DL/I accessing 194
file control accessing, CICS/VS
record format 181
recovery utilities
sequential support

I/O overlap 56,277
I/O wait time 277

286
176

ICV (exit time interval) 210
IDERROB 282
18S/VS DL/I

additions 187

193

181

265

application control blocks (ACE) 190
banking industry 317
data base recovery 190,287
deletions 187
DL/I accessing 194
DL/I logging using CICS/VS system
log 264

function of 169
insurance industry 327
law enforcement industry 347
logical relationships 187
manufacturing industry 305
medical industry 331
multiple occurrence of segments 175
online processing 170
record formats 193
secondary indexing 189
segment design 174
segment intent scheduling 187
statistics 206
updates 186

IN-SEBVICE status 102
Indexed sequential access method (see

ISA8) "127
Indirect ac:cess

Indirect access (Continued)
addition of records 152
additions to data sets 151
application examples 144
batch program access 195
chain integrity 153
duplicates data set
implementation 146

149

indirect access operation example
initiation 146
parts data base example
pointers 152
policy data set 145
product data set 145
specification of logical

147

relationships 148
updating indirectly accessed
records 149

Indirect destination§
device independence
example 106
terminal backup 107

107

terminal reconfiguration, dynamic
Initialization, CICS/VS 247
INITIATE macro instruction 198
Input data sets 272
Input formatting 23
Input mapping 55
Input message format
Input messages

64

attention ID character
CICS/VS 35
committed output messages
descri~tion of 35

61

65

242

63

63

design techniques
examples 62
fill-in-the-blanks format
fixed-format messages 61
input message format 64
keyword-format messages
message logging 78
message recovery 242
multiple choice format 64

72
61

use of temporary storage
variable-format messages

INPUT status 102
Input transaction design
Insurance industry 117

61

Insurance industry, application design
change program 326
CICS/VS file control 327
claims and renewals entry program
claims/renewals program 323
correcticn program 326
customer cross-reference record
forllat 322

customer program 323
data base support selection
data sets 321
data sets, policy entry
delete program 326
DL/I support 327

325

326

147

108

326

insurance agent record format 322
new-business policy entry system 324
online programs 323,326
policy class inquiry 323

362 CICS/VS System/Application Design Guide

Insurance industry, application design
(continued)
policy display program 323
policy entry program 326
policy information system 319
policy record format 321
representative inquiry 323
territory inquiry 323

Integration, CICS/VS
debugging 293
tracing 293

Intermediate results 87
Interval control

CANCEL macro instruction 199
function of 27
GETIME macro instruction 199
INITIATE macro instruction 198
intrapartition queues 98
program 197
PUT macro instruction 198
task initiation 198
temporary storage usage 88
time event cancel 199
time event wait 199
WAIT macro instruction 199

Intrapartition data set
audit 95
automatic task initiation 99,269
automatic tasks 95
batch queues 95
batch retrieval 98
damage 255
destination identification 99
disk organization 97
emergency restart 255
interval control initiation 99
logical recovery 271
physical recovery 270
protected destinations 271
protected resources 240
queue usage 98
record accessing 97
recovery 99,225
reusable intrapartition queues 105
terminal out~ut 95,99,269
terminal output example 101
te~minal status 101
transaction initiation 99

Intrapartition data set recovery 269
Intrapartition queues 98
Intrapartition transient data 97
ISM!

browse initiation 135
browse retrieval 135
browse termination 135
data base performance 193
direct access 127
file control 127
file control accessing, CICS/VS 193
indirect access chain 153
IS Aft variable-length records 134
manufacturing industry 307
multiple browse 136
multiple browsing 136
record deletion 263
segment updating 162

ISAft (Continued)
sequential access 135

ISAft variable-length records 134

JCP (see Journal control program) 258
Journal cent~ol for sequential data
sets 276

Journal centrol program 258
Journal centrol table (see JCT) 258
Journal records 258
Journal records, user 268
Journal requests 259
Journaling

buffering 217
concurrent task access 277
data 258
during post-initialization 261
format utility program 260
I/O overlap 277
I/O wait time 277
journal control for sequential da.ta
sets 276

journal requests 259
output buffer flush 277
output message 281
preparation of user journals 260
record fermat 276
recovery 278
specification of. 258
terminal input messages 281
transaction journals 260
use of journals 259
volume switching 271
work file capabiiity 277

Key verification 69
Keypoints

activity 238
destination entry 270
DFHUAKP, keypoint program 239
function of 238
keypointing of CICS/VS 237
TeAs in 252
TCT identification 253
warm 238

Keyword-format messages 63

Law enforcement industry, application
design

add program 347
applications 121
CICS/VS file control 348
crimes. inquiry prograa 346
criainalinquiry program 346
data base support selection 347
data sets 346
DL/I products 347
online programs 346
police information system 343
selection prograa 347

Index 363

LDC (see Logical device code) S4
Limit range 68
Line printer errors 284
LINK 2B
LOAD 28
Locate mc)de processing 133
Lockout 241
Logical connection 4S
Logical data structures 177
Logical device code

function of S4
in a BMS request 56
uses 55

Logical recovery 271,276
Logical structure design 182
Logical structures 112
Logical task synchronization 239
Logical unit of work (LUW) 239

"aero instructions
ABEND 29
A~TACH 197
EIP 143
EftS ROU~E 37
CANCEL 199
CHAP 85,197
CHECK 54
DELETE 28,132,180,263
DEQ 153,19E
editing 67
ENQ 153,1ge
ESE~L 135
GE~ 92,130
GET NEXT 180
GET UNIQUE 180
GETAREA 131
GETI"E 199
GE~I'NEXT 135
GETQ '91
INPORftA'f 62
INITIAT1!: 198
INSER~ 180
LINK ,28,93
LOAD :28
LOCA~E 54
message routing 40
PURGE 92
PUT 92,198
PUTQ ~J 1
RELEASE 92
REPLACE 180
EETURN 29
SETL 135
SETXIT 29
SPIE 228
STA~US 54
S~XIT 228
system programmer 54
terminal control 40
terminal paging 40
TYPE= (ERASE, iRITE) 40
TYPE=CBUFP 40
TYPE=DISCONNICT 40
TYPE=GE1~ 40

ftacro instructions (Continued)'
~YPE=IN 40
~YPE=LAS~ 40
TYPE=BAP 40
TYPE=OU~ 40
TYPE=PAGE 40
TYPE=PAG!BLD
TYPE=PAGEOUT
TYPE=PASSBK
TYPE=PUT 40
TYPE=READ 40

40
40

40

TYPE=R!SET 40
TYFE=BCUTE 40
TYPE=TEX~BLD 40
~YPE=WAIT 40
TYPE=WRITE 40
UPDATE 130
liAI~ 198,199
ICTL 27

Banufacturing industry 114
ftanufacturing industry, application design

add program 304
cbange ~rogram 304
data base logical structures
data base support selection
data sets 303

306
305

DL/I support 305
file control support
functions 301
load program 305

306

manufacturing planning record
format 303

offline programs 304
online programs 304

303 part number record format
production order 302
production order status report

program 305
report writer program 304
selected report writer program
split prcgram 304
status inquiry program
status reporting system
unload and select program
work order record format
3850 mass storage system

304
302

305
303
302

56 !ap residence in controllers
Bass record insertion 134
!aster terminal operation 207
Baster terminal operator training
ftAX~ASKS paraaeter 209
Bedical industry 11~

305

298

Bedical industry, application design
add patient program 330
CICS/VS file control 332
data base support selection
data sets 330
diagnosis inquiry program
DL/I products 331
doctor inquiry program 331

331

331

medicatien cross-reference record
format 330

medication. inquiry program
online application 328
online programs 330

331

patient history inquiry program 331

364 eIeS/VS System/Application Design Guide

Medical industry, application design
(Continued)
patient history record format 330
patient information system 329
patient update program 331

Message cache 279
Message design 201
Message integrity 243
Message logging 78
Message recovery

ETAM terminals 280
deferred output integrity 242
protected messages 242
system restart 226
transaction backoutprogram (TEP) 253
transaction journals 260
transaction restart 280
VTAM terminals 279

Message resynchronization
transaction recovery and restart 219
transaction restart 282
VTAM terminals 254,279

Message routing
description of 22
illustration of 39
message delivery 38
techniques for using 58
temporary storage recovery 266
temporary storage usage 88
using VTAM 57

Message switching transaction (CMSG)
description of 39
program backup 235
using VTAM 57

Messages, fixed format 61
Messages, keyword-format 63
Messages, variable format 61
Modular programming

batch environment 14
online environment, CICS/VS 14
program development, traditional 18
structured programming 17
virtual storage environment 15

Multiple browsing 136
Multiple choice format 64
Multitasking

description of 203
maximum tasks 204

Multithread testing 295

NACP (see Node abnormal condition
program) 77

NCP (see Network ccntrcl program) 44
NCS 213
NEP (see Node error program) 71
Network control program 44
Network control system (NeS) 213
NLT 211
No record found 262
Node abnormal condition program

function of 77
terminal error recovery 283

Node error program
function of 17

Node error program (Continued)
recovery of 211
terminal error recovery 283

Nonredundant storage 113
Nucleus load table (NLT)

anticipatory paging 211
default NLT 121
design 212
page fixing 211
T/P balancing 211

Online cutover 291
Online DI/l data base backout 264
Online DL/I ENTRY data base backout
Online environment, CICS/VS 14
Online program maintenance 237
OPEN/CLOSE of data sets 134
Operating statistics 205
Operator error statistics 83
Operator identification 80
operator passwords 83
Operator security 79
Operator signon 79
Order entry and invoicing

application data base design 9
flowchart 7
function diagram 5
program design 8

OUT-Of-SERVICE status 102
output buffer flush 277
Output data sets 213
Output formatting 72

terminal paging
Output integrity 242
output mapping 55
Output messages 35

committed output messages
deferred output integrity 242
description of 35
journaling 281
message logging 78
message recovery 242
notification of paged output,

example 104
notification of queued 103
output formatting 72
terminal operator notification
technique 103

trigger level 100
Overflow data set 163

Page building 36
Page contention, CICS/VS 214
Page fixing 211
Page pool 209
PAGE status 102
Paging 211
Partition/region ABEND 229
Password 82
PCT 210
PCT/PPT disable and enable 233
PEP (see Program error program) 30

265

Index 365

Performance considerations, CICS/VS
anticipatory paging 211
application design 201
benchmark techniques 219
data base design 202
design 212
DL/I DOS/VS performance 215
dynamic storage 202
general considerations 213
generation options, CICS/VS 213
message design 201
multitasking 203
network control system (NCS) 213
nucleus load table (NLT) 211
page contention, CICS/VS 214
page fixing 211
page pool 209
performance evaluation 219
priority processing 204
program design 201
simulation techniques 219
subset option, CICS/DOS/VS 208
system administration 205
T/P balancing 211
transactions, long-term 210
transactions, short-term 210
virtual storage considerations 208
working set, CICS/VS 209
3850 performance 216

Performance evaluation 219,300
Performance monitoring 206
Permanent transaction code 60
Pharmaceutical industry 119
Pharmaceutical industry, application design

CICS/VS file control 337
data base support selection 337
data sets 334
DL/I products 337
inventory update program 337
invoice calculation program 33E
offline programs 337
online programs 336
order entry program 336
order finish program 336
order in-progress reco~d format 335
order start program 336
pharmaceutical order entry systea 333
pharmacist data set 335
synonym data set creation 337
synonym record format and display 335
warehouse location sequencing

program 336
warehouse transmission program 336

Phonetic conversion 24
Phonetic conversion example 143
Phonetic conversion function 143
Physical recovery 270,275
Physical structure 112
Physical terminal security 82
Pipeline session

CICS/VS service supported 49
function of 48
restrictions 49

police information system 344
Post-initialization processing,

CICS/VS 251

366 CICS/VS System/Application Design Guide

Post-initialization programs, user 254
PPT 233
Prefix 258
Preparation of user journals 260
priority change 197
priority processing

change priority 85
example 84
high priority processing 105
high priority task 204
low priority processing 105
low priority task 204
task priority 83
transient data recovery 269

Production cutover, CICS/VS
accuracy of operation 299
follow up 298
master terminal operator training 298
performance evaluation 300
statistics evaluation 299
system operator training 298
terminal operator training 297
to the online application 297
user satisfaction 299

Program backup 235
Program check

application program 228
CICS/VS system module 228
dump data set 236
program tackup 235
storage control 228

Program control
ABEND 29
ABEND macro 228
ABEND macro instructions 230
ABEND requests 230
CICS/VS facilities 28
DELETE 28
LINK 28
LINK macro instruction 230
LOAD 28
RETURN 29
RETURN macro instruction 230
SETXIT 29
XCTL 27

Program control program 222
Program control table (PCT) 210
Program design

batch environment 14
CICS/VS 13
design facilities 13
dynamic task backout 233
functions 5
high-level languages 15
modular programming 14
online environment, CICS/VS 14
program control 27
program development, traditional 18
program error recovery 29
program modularity 202
quasi-reentrant programming 25
tabular structures 15
task initiation 26
techniques 13
vi~tual storage environment 15

Program development, traditional 18

Program dumps 237
Program error processing 30
Program error program

basic mapping support 40
description 30
processing of abnormal task
termination 231

program backup 235
program control ABEND 231
use of 222

Program error recovery
description 29
error processing 30
error program 30
program error processing 30
program error program 30
system recovery program 222
terminal abnormal condition prcgram 75
terminal error program 76

Program library recovery. CICS/VS 279
program list table (PLT) 244
Program maintenance 237
Program specification block

data base access calls 180
function of 172
generating 173
generation 190

Protected data sets 240
protected destinations 271
protected messages 242
Prctected resources 240
Protected tasks 226
PSE (see Program specification block) 173
PURGE macro instruction 92
POT macro instruction 92.198
PUTQ macro instruction 91

Quasi-reentrant programming 25
Queuing capability 88
Quiesce stage of termination 245

Random record addition 131
Random record retrieval 128
Random record update 129
Read-only data sets 257
Real storage availability 167
Reasonableness check 68
RECEIVE status 102
Record format 276
Record format. customer 154
Record format. customer account 177
Record format. savings account 154
Record identification

phonetic conversion example 143
phonetic conversion function 143
record key 140
record location 141

Record key 140
Record location 141
Recovery and restart

ABENDs 222
backup design 289

Recovery and restart (Continued)
backup procedures 290
batch DL/I data base recovery 285
BTAM terminals ~80
CICS/VS facilities 221
cold start 247
cold start of CICS/VS 224
conditions considered 221
controlled shutdown of CICS/VS 223
data base recovery 256
design of 222
device failure 223
device recovery 284
disk I/O errors 223
dump data set 236
dump data set recovery 278
dynamic task backout 233
emergency restart of CICS/VS 224
exit routine. program level ABEND 230
extrapartition data set recovery 271
extrapartition device failure 285
file control recovery, CICS/VS 256
in system design 10
initialization, CICS/VS 247
intrapartition data set recovery 269
journal control for sequential data
sets 276

keypointing of CICS/VS 237
logical task synchronization 239
online DL/I data base backout 264
online DL/I ENTRY data base backout 265
online program maintenance 237
overview 221
partition/region AEEND 229
PCT/PP'l disable and enable 233
program backup 235
program error program (PEP) 231
program errors 222
program-level ABEND exit processing
example 232

program library recovery, CICS/VS 279
prctected resources 240
read-only data sets 257
recovery utilities 287
reestablishment of CICS/VS system 223
SETXIT program processing 231
summary of CICS/VS procedures 227
system recovery program 228
system recovery table 229
temporary storage recovery 266
terminal error recovery 283
terminal I/O errors 223
terminal operator restart 282
termination of CICS/VS system 223
transaction 279
transaction backout program 226
transaction restart 226.282
transient data recovery 269
transient data recovery program

('IDRP) 253
uncontrolled shutdown of CICS/VS 223
warm start 247
warm start of CICS/VS 224

Recovery utilities 287
Recovery utility program (see ROP) 233
Relative byte address 141

Index 367

RELEASE macro instruction 92
Request paging status 37
Resident CICS/VS application programs 212
Resource utilization 2
Response. time 2
Restart data set

emergency restart 248
terminal input messages 281

Resynchronization (see "essage
recovery) 226

Retail store system 342
RETURN 29
Root segment 156~180
RUP

activity keypoint data 239
ETA" terminals 281
DCT status 253
dynamic task backout 233
emergency restart 239,251
intrapartition destinatiens 252
VTA" terminals 279

Scratchpad capability 87
SDlC (see Synchronous data link
control) 43

Secondary indexing 189
Security class 80
Security code 82
Security codes 80
security design

data set passwords 82
dynamic operatcr passwords 83
dynamic password 82
example 81
function password 82
operator identification 80
operator security 79
operator signon 79
physical terminal security 82
reasons for 78
security class 80
security code 82
security codes 80
security enhancements 81
signen program 80
techniques 82

Segment deletion 164
Segment design 154
Segment design, DL/I 174
Segment indicator flags 156
segment indicator flags example 158
Segment retrieval 161
Segment scheduling 265
Segment updating 162
Segmented records

address line segment 155
tit indicators 156
creation of 165
customer record format, segmented 156
dependent segment 180
description 153
design considerations, CICS/VS 166
design factors 183
disk storage utilization 165

368 CICS/VS System/Application Design Guide

Segmented records (Continued)
disk utilization 164
dynamic storage efficiency
fixed~length 164
limited data independence
maintenance of 165

165

165

multiple occurrence of segments
overflow data set 163
presence or absence of segments
real storage availability 167
record format, customer 154
record format, savings account
root segment 156,180
segment definition in PCT 157
segment definition in PCT example
segment deletion 164
segment design 154
segment indicator flags 156
segment indicator flags example
segment retrieval 161
seg.ent updating 162
variable-l~ngth 164

Sequence numbers 242
Sequential access

browse initiation 135
browse retrieval 135
browse termination 135
multiple browse 136
multiple browsing 136
record identification 140
skip sequential browsing 137
weighted retrieval example 138
weighted retrieval function 137

Sequential data sets 276

50

167

156

154

159

158

Session tYFes, CICS/VS
application program sessions
CPU sessions 52
establishing CICS/VS sessions
function programs 51
logical units 53

52

pipeline 48
3275 host conversational
3600 46
3650 47
3653 hest conversational
3790 host inquiry 51
3790 sessions 50

SETL macro instruction
SETXIT 29
SETXIT exit routine 230
SETXIT program processing
Shared resources 45

135

Short on storage (SOS) 202

47

48

231

Shutdown, controlled (see also Controlled
Shutdown ef CICS/VS 244

Shutdown, uncontrolled (see Uncontrolled
shutdown of CICS/VS) 246

Sight verification 69
Signon

operator error statistics
signon Frogram 80

Simulation techniques 219
Single-thread testing 294
SIP (see System initialization

program) 249

83

SIT (see System initialization table) 251

Skip seguential browsing
SOS 203,210

137

SPI! macro instructicn 228
SRP (see System recovery program)
SRT (see System recovery table)
STAE macro instruction 228
Stages of termination 245
Starter system, CICS/DOS/VS
Statistics 205

14

statistics evaluation 299
storage considerations 208
storage control recovery program
Structured programming

advantages of 19
chief programmer operation
description 17

19

evaluation of testing progress
module development independence
module testing independence 20
resource flexibility 21
top-down programming 19
with CICS/VS 21

Structured systems design 4
STXIT macro instruction 228
Subset option, CICS/DOS/VS

automatic logging 225
data set backout 226

222
222

228

20
19

data set recovery 225
emergency restart 248
emergency restart of CICS/VS
features sUPForted 208
generation options, CICS/VS
installation and use 14
introduction 13

224

recovery considerations
starter system 14

167

subset option, CICS/DOS/VS
terminal errcr program 76
terminals su~ported by 42

Synchronization 239
Synchronization point

CICS/VS uses 240
definition of 239
enqueue interlock
records 246

239

241

Synchronous data link control
Synchronous journaling 268
System administration

functions 205
operating statistics
performance monitoring
system control changes

System control changes
System design

205
206
207

207

application design 3,10,201
application design, CICS/VS
application functions 21
backup design 289
conversational applicaticns
conversational message design
cutover design 290
data base design 6,202

213

13

43

301

58
58

111 data base design, CICS/VS
data base requirements 6
data base su~port for CICS/VS
data communication design 4
data management design 6

126

data management design, CICS/VS 87

system design (Continued)
defining program modules 6
design strategy 3
error correction 70
fallback design 290
file control, CICS/VS 127
implementation for applications 124
implementation phase 1
initialization, CICS/VS 247
installation data base support
direction 196

message design 201
multitasking 203
need for 2
order entry and invoicing 5
performance considerations 9
performance considerations, CICS/VS 201
priority processing 83,204
production cutover and followup 10
production cutover, CICS/VS 297
products 168
program tackup technique 236
program control 27
program design 5,201
program development, traditional 18
program error recovery 29
quasi-reentrant programming 25
recovery and restart 10
recovery and restart, CICS/VS 221
resource utilization 2
response time 2
security design 78
security procedures 4
structured 3
structured programming 17
system administration 205
temporary storage management 6
temporary storage recovery 92
terminal error recovery 75
testing and integration 10
testing and integration, CICS/VS 293
top-down programming 19
transaction editing 66
transient data, CICS/VS 94
user acceptance 2

System failure 255
System initialization program

emergency restart 249
system initialization table (SIT) 251
terminal control activation 254

System initialization table (SIT) 251
System log 286
System log data set 251
System operator training 298
system prefix 258
System recovery program

ABENDs 222
abnormal termination 246
program check interception in 228
program errors 222

System recovery table 229
System test 295

T/P balancing 211
Table search 23,68
Tabular structures

Index 369

Tabular structures (Continued)
advantages of 16
banking application 16
description of 15
with 3600 system 17

TACP (see Terminal abnorDal condition
program) 75

Task 239
Task backout 233
Task control

CHAP 197
DEQ macro instruction 198
ENQ macro instruction 198
function of 27
priority change 197
program 197
WAIT macro instruction 198

Task initiation
achieving transaction ID 59
automatic task initiation 27
future 198
interval control 27
methods utilized 26
permanent transaction code 60
task control 27
techniques for using 58
temporary transaction code 60
transaction code 59
transac:tion codes 27
3270 attention ID transaction
initiation 60

Task priority 83
Task sequence number 90
TCA! (se4~ Telecommunications access

method) 42
Telecommunications access method

description of 42
terminal error recovery 75
terminals 42

Temporary storage initialization 251
Temporary storage management, CICS/'S

accessing records 91
data identification 89
data transfer facility 89
GET 92
GETQ macro instruction 91
interval control 89
message routing 89
PURGE macro instruction 92
PUT 92
PUTQ mncro instruction 91
queuing capability 88
RELEAS]~ 92
scratchpad capability 87
scratchpad facility 89
selection of temporary storage 93
tempornry storage recovery 92
temporary storage usage 88
terminal paging 89
transaction work area data transfer 93
TWA size 93
use of dynamic storage 91
VSAft 214
work file capability 92

Temporary storage message cache 281
Temporary storage program 214

370 CICS/VS System/Application Design Guide

Temporary storage recovery
after ccntrolled shutdown 266
after uncontrolled shutdown 267
auxiliary storage 224
auxiliary storage residence 266
cold start 92
data set damage 255,255
emergency restart 92
main storage residence 266
messagE cache 279
message routing availability 266
technique 268
terminal paging availability 266
use maF 224
user recovery 267
user-written program 269
using dynamic storage 267
warm start 92

Temporary storage update 259
Temporary storage usage 88
Temporary transaction code 60
TEP (see Terminal error prog~aD) 76
Terminal abnormal condition program

function of 75
terminal error recovery 283

Terminal backup 283
Terminal backup and reconfiguration 108
Terminal control and BftS CICS/VS 40
Terminal control communication

example 76
full-duplex transmission 53
function management header 54
macro instructions 54
terminal I/O overlap 53

Terminal device independence
advantage of 35
basic mapping support 32
descriFtion of 22
dynamic reconfiguration 109
illustration of 34
indirect destinations 107
simulated terminal messages 294
techniquEs for using 58
with VTA! and BTA! 56

Terminal error program
function 76
terminal error recovery 283
user-written 77

Terminal error recovery
BTl! 2S3
data baSE back out 264
device recovery 284
message logging 78
node abnormal condition program 77
node error program 77
terminal abnormal condition program 75
terminal backup 283
terminal error program 76
terminal I/O errors 223
terminal oFerator restart 282
terminal reconfiguration 283
VTAB 283

Terminal I/O errors 223
Terminal I/O overlap 53
Terminal oFerator restart 282
Terminal operator training 297

Terminal paging
advantage of 36
advantagEs of 37
automatic paging status
BMS 243
description of
illustration of
output formatting
page.building 36
request paging status
status 37

22
36

72

37

37

techniques for using 58
temporary storage recovery
temporary storage usage 88
terminal device independence
using VTAM 57

266

work file ,capability 87
Terminal reconfiguraticn 283
Terminal reconfiguration, dynamic
Terminal sEcurity 82
Terminal status 102
Termination 245

35

Termination of CICS/VS system
Termination, CICS/VS 244
Testing and integration, CICS/VS
Testing. CICS/VS

223

debugging 293
multithread testing 295
simulated terminal messages
single-thread testing 294
system test 295
terminal transactions
topdown testing 295
tracing 293

Thrashing 214
Time event cancel 199
Time event wait 199
Top-down programming

advantages of 19

294

294

chief prograsmer operation 19
evaluation of testing progress
module development independence
module testing independence 20
resource flexibility 21
topdown testing 295
with CICS/VS 21

Topdown testing 295
Trace entries 293
Trace tape 293
Tracing 293
Training 297,298
Transaction backout

data set backout
description of
emergency restart
error exit 254

program
261

262
252

file control recovery, CICS/VS
initializaticn exit 253

108

293

20
19

256

logged information 258
restart of emergency restart
BUP processing 253

263

system restart 226
Transaction codes

description 27
disabling of 233
field name start character 59

Transaction codes (Continued)
field seFarator character 59
function of 27
information inguiry 80
message recovery 242
permanent transaction code 60
recovery/restart 233
signon program 80
system prefix 258
task pricrity 83
temporary transaction code 60

Transaction editing
check digit 67
control totals 67
data set check 68
description of 59
field verify/edit 67
hash totals 67
key v,rification 69
limit range 68
permanent 60
reasonahleness check 68
sight verification 69
table search 68
techniquEs 66
temporary 60
zero proof totals 68

Transaction journal program 281
Transaction journals 260
Transaction list table (ILT) 244
Transaction recovery and restart 279
Transaction restart 226,280,282
TBANSACTION status 102
Transaction work area

for data transfer 93
Short-term data transfer 93
size 93
variable size requirements 94

Transactions, long-term 210
Transacticns, short-term 210
TBANSCEIVF status 102
Transient data program 270
Transient data recovery 269
Transient data recovery program

(TDBP) 253
Transient data, CICS/VS

extrapartition 95
extrapartition data set 94
GET macre instructions 272
indirect destinations 106,278
initialization 251
intrapartition 97
intrapartition data set 94
program 270
Prctected resources 240
recovery 225
recovery of intrapartition
destinations 269

usage 94
Trigger level 100
TWA (see Transaction work area) 93
TYPE=(EB1SE,WBITE) 40
TYPE=CBUFP 40
TYPE=DISCCNNECT 40
TYPE=GET 40
TYPE=IN 40

Index 371

TYPE=LAS~ 40
TYPE=MAP 40
TYPE=OUT 40
TYPE=PAGE 40
TYFE=PAGEBtD 40
TYPE=PAGEOUT 40
TYPE=PASSBK 40
TYJ?E=PUT 40
TYPE=READ 40
TYPE=RESET 40
TYPE=ROUTE 40
TYPE=TEXTBtD 40
TYPE=WAIT 40
TYFE=WRITE 40

uncontrolled shutdown of CICS/VS
before delete completed 263
causes of 246
description 223
extrapartition data set recovery 273
intrapartition data set recovery 270
logical recovery 271,276
message recovery 242
physical recovery 270
protected destinations 271
tem,porary storage recovery 267
u~ of journals 259

UF~TE macro instruction 130
U~er journ al record 268
~ser journals 260
User prefix 258
utilities industry 123
utilities industry, application design

CICS/VS file maintenance 353
CIS activity data set 350
customer information system 348
customer master data set 349
data collection programs 352
data sets 349
DL/I products 352
field order dispatching programs 352
inquiry Frograms 351
notation program 352
search program 352
service order programs 352
support data sets 351
trouble or~~r programs 352

utilities, recovery 285

Variable-format messages 61
Virtual partition size, optimum 203
Virtual storage access method (see

VSAM) 127
Virtual storage considerations 208
Virtual storage environment 15
Virtual telecommunications access

method 43
basic mapping support communication 54

alarm indicator 56
I/O overlap 56
input mapping 55
logical device code 55

Virtual telecommunications access
method (Continued)
basic mapping support communication

(Continued)
map residence in controllers
output mapping 55

communications controllers 44
CPU program 44
description of 43
establishing CICS/VS sessions
full-duplex transmission 53
function management header 54
function program 44
message routing 57
message switching 57
network components 44
network control program 44
node abnormal condition program

46
node error program 77
session types, CICS/VS
sh~redresources 45
synchronous data link control
techniques for using 58
terminal control communication
terminal device independence
terminal error recovery 75
terminal I/O overlap 53
terminal paging 57
terminals supported by
use of VTAM by CICS/VS

Volume switching 277
VSAM

44
45

addition of records 152
application uses for weighted
retrieval 139

browse initiation 135
browse retrieval 135
browse termination 135

193 data base performance
direct access 127
entry-sequenced data sets
file control 127

132

file centrol acceSSing, CICS/VS
generic key equal 141
generic key greater or equal
indirect access chain 153
key equal 140
key greater or equal 140
key-sequenced data sets 131
locate mode processing 133
manufacturing industry 307
mass record insertion 134
multiple browse 136
multiple browsing 136

56

52

77

43

53
56

193

141

online Dt/I ENTRY data base backout
random record deleticn 132
record deletion 263
record location 141
segment updating 162
sequential access 135
skip sequential browsing 137
support of temporary storage 214
weighted retrieval example 138
weighted retrieval function 137

265

VTAM (see Virtual telecommunications access
method Lt3

372 CICS/VS System/Application Design Guide

WAIT macro instruction 198,199
Warm keypoint 238
Warm start 92
Warm start of CICS/VS

complete 247
description 224
initialization, CICS/VS 247
partial 247
procedure 248
temporary storage recovery 266
use of journals 259

Weighted retrieval
description of 24
law enforcement industry 347
VSAM data sets 215.

Weighted retrieval function 137
Work file capability 87,277
Working set, CICS/VS 209

XCTL 27

Zero proof totals 68

2740 communications terminal 284
2780 data transmission terminal 284

3270
fill-in-the-tlanks format
multiple choice format 64

3270 attention ID transaction
initiation 60

63

3275 host conversational sessions
3275 terminal

CICS/VS services supported
device recovery 284

47

3600 finance communication system
automatic task initiation 102
CICS/VS serv~ces supported 46
committed output message 243
committed output messages 226
controller functions 45

47

data entry application availability
delimiter characters 62
description of 16
device reassignment 109
editing rechniques 69
error correction 70

63
61

63
46

error field correcticn 71
fill-in-the-tlanks format
input transaction design
keyword-format messages
list of 3600 terminals
logical connection 45
message delivery 38
message recovery 242
message resynchronization
protected messages 242
session types, CICS/VS 46

254

67

3600 finance communication system
(Continued)
tabular structure concept 17
terminal ID 38
terminal reconfiguration, dynamic 108
with V~AM and SDLC 44

3614 consumer transaction facility 46
3650 retail store system

application program sessions 50
CICS/VS services supported 47
controller functions 45
data entry application availability 67
distribution industry 342
editing techniques 69
fill-in-the-blanks format 63
input transaction design 61
keyword-format messages 63
list of 3650 terminals 47
logical connection 45
pipeline sessions 49
session types, CICS/VS 46
sessions 47
transaction recovery and restart 279
with VTAM and SDLC 44

3653 host conversational session 48
3653 point of sale terminal

CICS/VS services supported 48
terminals attached to 47

3735 programmable buffered terminal 284
3790 communications system

CICS/VS services supported 52
controller functions 45
data entry application availability 67
description of 51
editing techniques 69
fill-in-the-blanks format 63
functicn programs 51
input transaction design 61
insurance industry 324
keyword-format messages 63
list of 3790 terminals 50
logical connection 45
session restrictions 52
session types, CICS/VS 46
transaction recovery and restart 279
with VTAM and SDLC 44
3790 sessions 50

3790 host inquiry session 52
3850 mass storage system

application profile 218
batch partition activity 217
customer information system 314
data binding 217
description of 215
frequency of data reference 217
insurance industry 320
law enforcement industry 344
locality of data reference 217
medical industry 329
operation 216
performance considerations 216
storage size 216
transaction volume 217
utilities industry 349

3851 mass storage facility 216

Index 373

SH20-9002-2

International EJusiness Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058.0
	058.1
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134.0
	134.1
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198.0
	198.1
	199
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214.0
	214.1
	214.2
	214.3
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254.0
	254.1
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268.0
	268.1
	268.2
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	xBack

