SH20-9002-2

Customer Information
Control System/Virtual
Storage (CICS/VS)
System/Application
Program Product Design Guide

Program Numbers 5740-XX1 (CICS/OS/VS)
' 5746-XX3 (CICS/DOS/VS)

IBM

Third Edition (July 1975)

This is a reprint of SH20-9002-1 incorporating changes released
in the following Technical Newsletter:

SN20-9089 (dated May 22, 1975)

This edition applies to Version 1, Modification Level 1, Release 1,
of the program product Customer Information Control System/Virtual

Storage (CICS/VS), program numbers 5740-XX1 and 5746-XX3, and to all

subsequent. versions and modifications until otherwise indicated in
new editions or technical newsletters.

Information in this publication is subject to significant change.
Any such changes will be published in new editions or technical
newsletters. Before using this publication, consult the latest
IBM System/360 and System/370 Bibliography, GA22-6822, and the
technical newsletters that amend the bibliography, to learn which
editions and technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the
IBM branch office that serves you.

A form for readers' comments has been provided at the back of
this publication. If the form has been removed, address comments
to IBM United Kingdom Laboratories Ltd., Publications Department,
Hursley Park, Winchester, Hampshire, S021 2JN, England. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1973, 1975

PREFACE

This publication provides the system analyst and system administrator

with guidelines which assist in the design of online applications to

run under the control of CICS/DOS/VS or CICS/0S/VS, hereafter referred
to as CICS/VS or simply CICS. It assumes that the reader is familar
with the CICS/VS General Information Manual (GIM). The GIM provides

an introduction to the CICS/VS facilities, using several application
examples to highlight the various facilities which these applications
demand of CICS/VS. These applications are then developed further in
this publication.

The publication is directed mainly towards the inexperienced CICS
user, and assumes no prior CICS knowledge apart fram that presented in
the CICS/VS General Information Manual.

It presents separate chapters, covering the following design topics:

Introduction to Systems Design
Program Design

Data Communication Design
Data Management Design
Data Base Design

Advanced Features
Performance Considerations
Recovery and Restart
Testing and Integration
Cutover and Follow-up
Application Design

Each chapter is presented in a tutorial fashion, generally first
with an outline of various CICS/VS facilities relevant to that chapter,
followed by specific design techniques utilizing those facilities.

To enable experienced CICS users to concentrate only on these CICS/VS
facilities which differ from previous versions of CICS, each chapter
commences with a reading guide identifying only those topics which may
need to be read by experienced users.

To enable the publication to be subsequently used for reference
purposes, various CICS/VS facilities relevant to several areas of design
are jidentified in those areas., However, whenever a CICS/VS facility
is discussed, cross-reference is made to the section of the publication
which describes that facility in more detail.

RELATED PUBLICATIONS

VTAM
Introduction to VTAM GC27-6987
VSAM
DOS/VS Data Management Guide GC33-5372
0S/VS VSAM Planning Guide GC26-3799

Preface i

CICS/VS

Advanced Communication Guide

Application Programmer's Reference Manual

System Programmer's Reference Manual

Terminal Operator's Guide

System Administrator's Guide

Operations Guide (CICS/DOS/VS)

Operations Guide (CICS/0S/VS)

Subset User's Guide (CICS/DOS/VS)

Reference Summary: Master Terminal
Operator

Reference Summary: Program Debugging

DL/I DOS/VS

System/Application Design Guide

General Information Manual

Application Programming Reference Manual

DL/I Bridge General Information Manual

IMS/VS

System/Application Design Guide

General Information Manual

System Programming Reference Manual

Application Programming Reference Manual

Utilities Reference Manual

DMS IX

General Information Manual

videos/370

General Information Manual

CICS/VS System/Application Design Guide

SH20-9049
SH20-9003
SH20-9004
SH20-9005
SH20-9006
SH20-9012
SH20-9011

SH12-5404

SX26-3700

5X26-3701

SH12-5413
GH20-1246
SH12-5700

GH12-5106

SH20-9025
GH20-1260
SH20-9027
SH20-9026

SH20-9029

GH20- 1251

SC27-6960

CICS Productivity Aids

Installed User Programs

CICS Online Test/Debug Program
Description Operations Manual SH20-1258

CICS/COBOL Call Interface Program
Description Operations Manual SH20-1359

Field Developed Programs

CICS Dynamic Map Program Description
Operations Manual. SB21-1075

CICS Performance Analyzer Program
Description Operations Manual SB21-1181

CICS/3270 Simulator Program Description
Operations Manual SB21-1036

Preface iii

CONTENTS

Chapter 1.

System Design in the Ipplementation Phase.

The Need for Good Systen

Resource Utilization
Design Strategye « « « o « « &
Structured System Design . .
Application Design

Chapter 2.

Turnaround or Response Time.
User Acceptance. « « « « «

CICS/DOS/VS Subset Option. . .
CICS/D0OS/VS Starter System . .
Modular Programming.

Batch Environment.
CICS/VS Online Environment .
Virtual Storage Environment.

High Level Langquages . « « «

Tabularn

Structures « ¢« « ¢ . .

Structured Programming

Structured Programmlng with CIC

Traditional Progranm Developme

Top-Down Programming . . .

Application Functions.

Quasi-Reentrant Programming
Task Initiation.

Program Control. . « « .« « .

Message Routing. . « « o« o« &
Terminal Paging. « « « « «
Terminal Device Independence
Extended 3270 Support. . . .
Input Formatting . . .
Table Search « « « «
Field Verify/Edit. . .
Bit Manipulaticn . . .
Phonetic Conversion. .
Weighted Retrieval . .
Asynchronous Transaction

Transaction Codes. . . .
Automatic Task Initiation.
Interval Control «
Task Control « ¢« ¢ ¢« o «

Transfer Control to Program
Link to Program (LINK) . .

Load Program (LOAD). . . . «
Delete Program (DELETE). . .
Return from Program (RETURN)

Abnormally Terminate Program (RBEND
Abnormal Termination Bxit (SETXIT

Progran Error Recovery . . . «

Chapter 3.
Basic

Terminal Device Independence

iv

Program Error Processing . .
Program Error Prograte . « .

Mapping Support.
BMS MapsS « « o o « ¢ o o o
Input Messages . « « « «
Output Messages. « « « «

CICS/VS System/Application

e s s Ige & o o &
-

¢ o o ¢ o o o O o s s s
O

Design.

CICS/VS Program Design

S e & ¢ s 0 0 ¢ s s

Ule

s ® ¢ bde a ¢ o s o ¢ M e s 2 s s 3 2 e e a2 @

.

L s & 0o

t
/Vs

ssi

CIL

s
Ld
T

s & o o & & o

in
)
N
)

e & o o

o

s 6 8 8 % ¢ 2 & 5 & 8 o & 4 s @

e o o s @

P
€ 6 8 8 6 8 & & 8 o & s e 8 % & s e s s & 8 & 6 8 8 6 8 6 8 6 8 6 6 85 85 06 6 8 e »
=
S 6 8 & ¢ 0 s 8 2 ¢ & 8 0 & s s s e s & & s 8 * & & 8 ¢ 6 & & 8 0 & 8 8 8 8 s o

-

S

& & @& 6 8 5 & 6 & 3 & 2 6 ' 5 8 S T 4 8 6 6 B 0 6 C % 6 & 6 8 B 6 " 6 0 4 8 s e . a e

CICS/VS Data Communications Design

Design Guide

® 8 6 5 & 6 e & 8 o & & o s 2 & & & 4 ¢ & 2 4 & & 2 0 4 8 6 B & 8 B 8 6 B B 4 s 6 & a o & s & o o

® & & & o o

Introduction to Online System Design .

® 8 & 6 & 0 5 & 8 3 & & S 8 8 b s 6 o6 0 6 & % 2 4 O 4 6 g 6 8 4 0 4 " S s 8 & 8 & @

¢ o e o &

® a 8 o 8 & s 8 8 ¢ & 8 5 4 & % o 6 2 s 6 8 & & & 0 4 0 4 & ® & b 6 &6 % & e & 8 e @ e 8 o s & &2 &

® e & ¢ o

® 6 3 8 & 0 s 6 & 5 & 3 & 3 0 O 3 b 9 # s B & 0 & O 3 4 g & % 4 6 82 s % 4 ® 6 4 * @

“ e 8 e 8 & 4 0 B2 s 4 & b s 6 2 a2 6 o ¢ &6 s & 2 & 2 & 0 4 6 6 s 6 0 0 " & s ® & b . e & ¢ & & & o

e o & 8 & & o o

e 8 & & 8 & ¢ 8 & 3 8 s & 9 & 2 0+ 2 8 6 s s 0 ¢ & o 2 o s & e & 5 & 2 B & &

& & & 6 6 & 0 6 & s & & 8 2 O & & & 2 s 8 8 0 B 0 s 4 8 & b & s 6 8 0 & e 0 s e s @

S 8 & & & & 6 8 ¥ 4 ¢ & 0 2 8 8 B & & P & 6 0 b+ & 6 & 4 8 6 0 8 & B 4 0 6 8 e 6 8 » e« & o & 2 o &

L . s 8 ¢ e .

¢ & s & 4 & 85 6 8 e 8 8 & s 8 S & 5 & B s S & b & 06 2 ¢ 6 0+ 8 6 H & 8 8 s 0 &8 8 & @

e s o & o

Terminal Paging. « « « « « o «

Terminal Paging StatuUS « « o« « 2 ¢ ¢« o o « o a o o o o o « « 37
Message ROUtINg. o« o ¢ o o o o o o o ¢« o o« o o« o o o« o o o « « 37
Message Delivery e s« e s o s e s s s o s e o 38
Message Switching Trancaction (CHSG) e o s e o o & o s« o o « 39
CICS/VS Terminal Control and BMS o o « o o « o o « « o« « o « o U0
CPU Console as a CICS/DOS/VS Terminal. « « o« o o « o o o« « o « U1
Basic TelecommBunication Access Method (BTAM) . « ¢« o « « « « « U1
Basic Graphic Access Method (BGAM) . « o o o o o o« o « o o o o« U2
Telecommunication Access Method (BTAM) .« « « o <« ¢ « « « o o o U2
Virtual Telecommunication Access Method (VTAM) . . . « « « « o W2
Synchronous Data Link Control (SPLC) « « o o o « o o o « o o U3
vTAu Net"ork L] L] ° L] o L] - L] L] - - - L] L] . - - - - - - - - L] uu
Use Of VTAM bY CICS/VS &« o o o o o o o o o o o o o o« s« s o o o U5
CICS/VS Session Types. . . e o s o o s s e o o b5
Establishing CICS/VS Sessionc with VTAH. e« o o 2 o o e« o o o 52
Terminal Control Communication Using VIAM. . . .« « « « « « « 53
Basic Mapping Support Communication with VIAM. 54
Terminal Device Independence with VTAM and BTAM. . .« . « . « 56
Terminal Paging Using VIAM . « ¢ ¢« « e ¢ o« o o & o o « o o« « 57
Message Routing and Message Switching Using VITAM 57
Conversational Applications. . « ¢ « o ¢ o o o « o o o 2 s ¢« o 58
Task Initiation‘ - L] L] * - - L] - . - - L] - - L] - - - L] L] . L] 58
Input Transaction DesSign . « « o o« & o ¢ o ¢ o « o o o« o o« o 61
Transaction Editing. . ¢ & & ¢ o ¢ o ¢« ¢ ¢ « e o« o « « o o« « 66
Error Correction L] Ll - L] - . -* . L] - L] - - L] - - . - - L] - - 70
Ooutput Formattinge « « o o o o o o o o ¢ o o« o o« o ¢ o o o o 12
Batch Applications « « ¢ o« ¢ o o« o o« o o o o o o o o o o o o o« 13
Asynchronous Transaction Processing. « « « ¢« « o« o « o o« o« » 13
General BatcCh Processing . « o o« o o ¢« o o o « ¢ s« o =« a o « 14
Terminal EITOr RECOVEIYe « « « o o o o o « o o o o o o« o o« o o 15
Terminal Abnormal Condition Program (TACP) . ¢ « « « o « o « 15
Terminal Errcr Program . . « « « . e e o s s o o o o o o o 16
Node Abnormal Condition Erogranm (NACP) e o o s s« o s o o o o 17
Node Error Program (NEP) . ¢« « o o ¢ o o o o o o = o o o o« o« 17
Message Logging. ¢ o« ¢ o o o o« o o o o o o o o o o o o s o o 18
Security Designe o o o o« ¢« ¢ o o ¢ ¢ o o o o 2 o s o s o o o o 18
CICS/VS Operator Securitye. « o« « ¢« ¢« « o o o o« o o« o« o o o« o 19
Security Enhancementse « « « o o s o o o o « o s o ¢« ¢« o o o 81
Operator Error StatisticsS. « ¢« « « ¢ o ¢ ¢ o o o o o ¢ o « « 83
Priority Processing. + o« o« o o o o o o o « o o o o o« s o« ¢ o« « 83
Task PrioTitYe o ¢« o o o ¢ o o @« o o a o o o o« o o o o o o o 60
Change Priority. L] * - - L] L] . L] L] L] . L] L] - - - L] L] - . - L] 85
Chapter 4. CICS/VS Data Management Design « « ¢« ¢ ¢« o o« o « « o 87
Application Requirements . « o « « ¢« ¢ « ¢ o o o ¢« « o « « « o« 87
Work File Capability o« « o ¢ o e o o o o o o s o o« o o o« o« o 87
CICS/VS Temporary Storage Management « « « ¢ « « « « o « +» « « 88
Temporary Storage USAg€. « « « « o o o o s « « s « s o « » o 88
Data Identification. « « « e s o o o o e« o « « o 89
Use of Dynamic Storage by Temporary storage. e e o o o o o o 91
Accessing Records in Temporary StOorage « « « « o o« « ¢ « o « 91
Temporary Storage RECOVEIY « « o« « ¢ ¢ o o o o o o o o o o o 92
Selection of Temporary Storage or Transaction Work Area. . . 93
CICS/VS Transient Data « « ¢ o o« ¢ ¢ o o s o « o o« o« o s o o o 94
Transient Data USAGE o« « « o o o s o o« o o « a o o o s o o o« 94
Extrapartition Transient Data. « « « s« ¢ o « o o« « « s o« « « 95
Intrapartiticn Transient Data. « « ¢« o ¢ « ¢ o o« o o o « « o« 97
Intrapartition Queue USage « « « « o « « « ¢ o o o ¢ ¢« o « o« 98
Reusable Intrapartition Queues . . « ¢« « ¢« ¢« ¢« ¢« ¢« « « ¢ o« « 105
Indirect Destinations. « ¢« ¢« ¢ ¢ ¢« ¢« ¢ o o o o o ¢ o o ¢« + o 106
Chapter 5. CICS/VS Data Base Design . « « ¢« « ¢ ¢ ¢ ¢ o o o « « 111

Application Requirements of Data Bases « « « « o ¢« o ¢ o« o « « 112
Data Base Definitiod « o ¢« ¢ o ¢ o o ¢ ¢ o o o ¢ 2 o s o o o 112

Contents v

Manufacturing Industry
Banking Industry . . .
Insurance Industry . .
Medical Industry . . .
Pharmaceutical Industry.
Distribution Industry. .
Law Enforcement Industry
Otilities Industry . . .
Data Base Implementation
Data Base Support for CICS/VS.
CICS/VS File Control (ISAM, DAM, VS

Direct

Sequential Access (Browsing) . .

Record

Indirect ACCESSe « « o o o s o =
Segmented RecordsS. « « o« « o o o
Advantages of Segmented Records.
CICS/VS File Control Design Conmsi
Recovery Considerations. .
DL/I Products. « « « o« =
DL/I ENTRY ¢« ¢« « « «
DL/I DOS/VSe « o o o

INS/VS

Introduction to DL/I . .
Advantages of DL/I . .
Segment Design . . .« .
Data Independence. . .
Logical Data Structures.
Data Base Access Calls .
Data Base Organization and
Logical Structure Design .
Updates, Additions, and Del
Logical Relationships.
Secondary Indexing . .
Data Base Utilities. .
Data Base Recovery . .
DL/I LOG ¢ « o o o o o
DL/I Data Pase Design. .

Data Base Selecticn Criteria

Chapter 6.

DL/I Access fronm CICS/VS

¢ 8 o 0
s & 6 & & & 2
. e & & & s o

L]
e o o o o 2 s

Q
-+

€ & 6 2 8 & 0 0 0+ 6 8 6 & 4 0 6 & 6 5 8 s (P 8 s 0 6 6 4 b Fhe o 8 s s 0 s 8

1

rh
(]
(o]
o

T e ¢ s o 5 & o o

e

A

-~y

M
ACCGSS. e @ o e o e o . e

Identification.s « « o <«
i

era

DL/I- e o o o

4 0 & & 2 4 ¢ ¢ o 4 s s e s s o s s e e o s s s s s

3
.
.
.
.
.
L]
.
.
-
-

-ocl-‘.o.goﬁco-o.-o.aaﬂo..-uo
[ad
o

@ o & o & ¢ s s 6 U & 2 s e & 4 0 & 5 a0 O s s 6 s s 6 0

‘+

e 8 & 8 ¢ & s (D Dve & ¢ 3 & 5 85 6 8 & &
(2]

& & & & o o e ONs s ¢ &8 8 & s 6 & &
[}

ions

¢ o o .

s & o o 0
¢ & & 2 & & & s o

-
-
L]
3
-
-
-
.
.
.
.
.
S8
n
L]
.
.
.
.

CICS/VS Advanced Features. .

*
.

Task CONtLOL ¢« & & o ¢ « o o o o ¢« s o o o

Interval

Chapter 7.

Design Criteria. « « « « « =
Application Design .
Message Design . . .
Program Design . . .
Data Base Design . .
Dynamic Storage. . .
Multitasking

Priority

System Administration Functions.
CICS/D0OS/VS Subset Option. . .
virtual Storage Considerations
CICS/0S/VS - 3850 Mass Storage

CoNtrol « ¢ ¢ ¢« ¢ ¢ o s o o o o o

e & @« & s o 8 o

=}

& & & o & & & & 0 o 2 0o & & & 6 & 6 o 0 o o m. ¢ & 8 & ¢ 0 ¢ 0 * 4 6 8 s o o o

]

CICS/VS rerformance Considerations

e & o o s o o
s o 8 3 s
s 8 o 0 o o
¢ o & & s
e & s 8 o s o

s 8 o o & & @

Processing.

e & @& & 2 » ¢ &
e & & s o & 2 o .
® & @ & & & & ¢ o
¢ & & & & 0 & 0 o

Performance Evaluation . « « « ¢ o o« o o o

Chapter 8§,
Recovery
Recovery
Recovery
Recovery

CICS/VS Recovery and Restart .
and Restart Overview. . . « « =
from Prcgram Errors and Abends.
from Terminal I/0 Errors. . . «
from Disk I/0 EITOrS« « ¢ o o

e o o 3 o

vi CICS/VS System Application Design Guide

Systen 0perati

s & o o o

* o & o & e & 4 8 2 0 & 2 4 8 & 2 2 6 4 & & s 6 0 8 b 9 0 & 6 0 9 b o 8 & s o

¢ O s 2 o s 0 6 s s 2 ¢

& 8 & & & & g & 2 ¢ 0+ &+ & s 6 & & & 5 6 g & 5 & 6 4 6 5 & 6 & & g 6 8 6 0 @& &

¢ & & & 5 0 3 & & & o 5 ¢

¢ o o e« & 8 e & 4 8 2 5 2 o 8 3 4 % 2 & ¢ % & & 6 2 & B 3 2 9 & b 4 2 & & 2 @ .

. 4@ 8 &6 & ¢ 9 o & & 3 % g * 0 4 6 & & g * & & 8 o 8 ® 3 0 e @& & & & s ¢ o L

¢ o & 8 & & s & 4 4 2 & % & 6 & 8 & 2 s @ 6 B s & 0+ s % 4 6 & 6 8 g 6 e b 8 0 &

s o 9 6 o & & 8 6 & & 8 ¢ L]

& & &6 & &6 8 o & 2 2 & o 2 0 & & o 0+ e s 6 3 6 82 3 & ¢ o & s 4 & & & 8 S 0 & o

4 & & & 5 & & 5 2 8 2 & 06 ° s * & & & & O 8 6 0O 5 & 0 P O & 6 6 & 6 & & % 2 e

s & 6 & 6 & & 0o 0 2 2 o 0 []

e & & o @

a & & & & o e & 6 2 9 & & 0 2 2 & & & 82 8 0 &5 3 4 46 8 B 0 0 6 8 & & & s & s 0

e 3 o s & o 8 &6 8 & 95 6 6 & 4 6 0 & & & & & s ° & & 8 6 & ¢ & 8 3 8 8 & 0 0@ s o

® & & 6 o &5 & & s o & &+ o .

201

201
202
202
203
204
205
208
208
215
219

221
221
222
223
223

Recovery from Device Failure . . .
Termination of CICS/VS System. . .
Reestablishment of CICS/VS Systen.
Temporary Storage Recovery
Transient Data Recovery. . . o
Recording CICS/VS File Ccntrol Data Set Mod
CICS/VS File Ccntrol Data Set Backout.
Transaction Restart on System Restart.
System Recovery Program (SEP). . . .
Program Check Interception in SRP.
CICS/VS Partition/Regicn ABEND . .
System Recovery Table.
Frogram Control ABEND Requests .
Program-Level ABEND Exit Routine
Program Error Prografle « o o« o
PCT/PPT Disable and Enable
Dynamic Task Backout . . .
Program Backup . « « « «
Dump Data Set. « « « « ¢ &
Online Program Maintenance
Keypointing of CICS/VS . . .
System Warm Keypcints. . .
System Activity Keypoints.
Logical Task Synchronizatio
Protected Resources. . . «
Protected Messages . .
CICS/VS Termination. . .
Controlled Shutdown. .
Abnormal Termination .
Uncontrolled Shutdown.
CICS/VS Initialization .

24

4 6 ¢ & o 5§ & 3 0 6 o S o % 6 5 & o 8 6 p S s B & 4 6 o & S ¢ 6 & 4 O o o o g o e s 2 s o

Hh

® & 6 6 & 5 & 5 & 0 0 4 B 0 o 6 & 8 s s 6 s 0 6 5 o s b o s s s b 2 s 9 g * fhoe & 0+ D>

0

L] ® ©& & 9 ® o o * o s 3 b+ s & » & o e o & o 9 o s o ® ® & & o & & & » o o m e 0 *e o 9

o

;Omol..0.0‘0..0.0..0..0....0uilolotootoonolb.lql.

7]

-.f"bt.oo.a.l-....llo.l..l.o..-DQOQQQ-OOOCQICOC.OA

Complete Cold Start.
Complete Warm Start.
Partial Warm Start .
Emergency Restart. . « o o
System Failure during Emergency R
Data Base ReCOVEIrY « « o o o o
CICS/VS File Control Recovery.
Read-Only Data Sets. . . .
Update, Deletion, and Addition tc D
Journaling « « « ¢ ¢ « o o o o o o
Preparation of User Journals . . .

e & 6 o & 5 o o o o s s o 3 0 s 0 o

o 8 o o & 5 & & o
o & o o o o ® & & 0 & & 0o o 0o & » »

S t

-

e o o o s o o M e s e 2 s ® s 2 S 6 & s & b+ & 2 s s s 4 4 0 s s 0 s 00

c

e o o (D e o & 2 0 &6 s 5 & o 0 & 8 6 s 8 & 0 0 s s o

o
0

e ¢ o N s o o ko s 0 8 2 s & & 6 @ s 0 8 s B & 2 8 0 s 0 2 s 6 o s

Data Set Backout « <« ¢ o o« o « o
Online DL/I Data Base Backout. . . .
DL/I Logging Using CICS/VS System Log.
DL/I Termination Activity. « « ¢ ¢ o & .
DL/I Data Base Backout Druing CICS/VS Energency R
‘Online DL/I ENTRY Data Base Backout Technique. .
DL/I ENTRY Segment Scheduling. « « ¢« ¢ « ¢« &« o« &
Temporary Storage Recovery « . o o .
Temporary Storage Recovery after Ccntrolled shutdown .
Temporary Storage Recovery after Uncontrolled Shutdown
User Recovery of Temporary Storage Using Dynanic storag
Transient Data Recovery. « « ¢ « o« o« « o«
Intrapartition Data Set Recovery after Controlled
shutdovn. - L] - L] . - . L] o L] L] - L] L] L] L] L]
Intrapartition Data Set Recovery after Uncontrolled
Shutdown. . . . @« o ¢ s e e o @ o o s e e o o o
Extrapartition Data Set FecovVery « « .« « « o
Use of Journal Centrcl for Seguential Data Sets.
Indirect Destinations. « « ¢« o« ¢« « & &
Dump Data Set RECOVELY « o« « o o o o o o &

¢ 8 6 8 o (PO s 8 s 9 5 6 6 & 3 0 8 0 5 5 0 8 4 6 6 06 s 06 5 2 6 & 6 5 5 B 6 8 [Her o 2 o

L]
o
S

(a2

L] m e o o & o s ¢ o e e & & o & 0 o 5 & o & » o . & 8 s & & & & 3 8 & & 5 » & & 8 % & & & & s 0 0 e o @

S

s ® H s o ® & & & & 8 O 82 5 B & 82 b B 6 B & & B O 8 6 B &+ O 2 & v s B 4 s 6 4 s 0 2 0 2 s 2 e o

CICS/VS Program Library Recovery . . .
Transaction Recovery and Restart . . .
Recovery of Messages Associated with VTAM Terminals

e 1

Contents

® 5 & 8 0 0 0 & & 8 & 8 5 & 6 0 e e 5 B 4 S 0 0 P s 0 8 ° s 6 2 8 B e s B ® 2 0 s e 0 % s 0 s & b o s 0 0

® 8 0 5 & 8 & 5 & 2 5 & B & 8 s s 8 5 6 & & s 0 6 O B 8 O s ° B 6 5 O & & B s 5 B 8 O 6 0 6 > 0 b s 0 ¢ o 00

223

vii

Recovery of Messages Asscciated with BTAM Terminals.
Transaction Restart (BTAM and VTAM Terminals). . .
Terminal Operator Restart. .
Terminal Error Recovery. . . .
Terminal BackupPe « « « o « &
Terminal Reccnfiguration . .
Device RECOVELYe « ¢ « o« o o«
Extrapartition Device Failure.
Batch DL/I Data Base Recovery.
Batch DL/I System Log. « . «
DL/I Recovery Utilities.
Backup Design. . « « « o
Backup Procedures. . . .
Fallback Design. « « « &«
Cutover Design « « o« « o «

e o @ e« o e e o

L] e & & & o & & & & s & 9

e & & 8 ¢ ¢ 0 s o o 0 0
2 & & 8 & & & 2 8 0 o
& 6 o ¢ & 8 & o & 8 a8 o
® & 6 & o & & & o » o o
e & & 5 & o 6 2 & 8 6 @
e & & & & & & & 0 2 2 o
e & 8 @+ e * 8 s s
® &6 o6 ¢ & » & a ¢ s 3 o
L e & s @ 8 & @ e & 9

Chapter 9. CICS/VS Testing and Integration
Tracing and Debugging. .
Single-Thread Testing.
Multithread Testing. .
System Test. « « ¢« ¢ « &
Topdown Testing. . . .

* & o & &
e o o o

* & & s
» & 0 3

> & o

e & o o
e« & o o

e & &

s & & & o+ &
e o & o s o
e a2 8 o & o
¢ 9o & ¢ & o
e o & 3 & @
"= & & o 3 o
o o & o

Chapter 10. CICS/VS Cutover and Fc¢llow Up
Cutovert L] L] - - L] - . L] L] - - - - L
Terminal Operator Training
Master Terminal Operator Training.
System Operator Training
FOllOWUP « o ¢ « o « o o o« o o = o @

e o & o o
s e o

s s o & & o
*® & & 8 & o
e o s ¢ o &
s o & & 8 o
* e & 3 o
s o 0 & o+ o
» 9 € o @ o

Chapter 11. CICS/VS Application Design.
Manufacturing Industry . « « ¢« « o« « s s @
Production Order and Sstatus Reporting Systen
Data Sets. ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o
Online ProgramS. « « « « o« o &
Offline Programs . . . o o e
Data Base Support Selectlon. .
Banking Industry « « « ¢« ¢« o« o
Savings Bank and Mortgage Loan
Data lsetSO - - - L] . - L] L] - L]
Online ProgramSe. « o« « « o« o =
Offline Programs . . . « o e
Customer Informaticn Systen (Cust
n

. e e

t

O ¢ ¢ s UNe o o
~
l.l‘ml..
B
e & & & & & © o & o 0 @

g
-]
o]

8 6 o 8 & 2 & 5 3 2 8 & 5 & & 2 % 2 P B 2 b e 2 2 8 2 a8 s s s s

-

& & 8 2 & & 2 o 6 s 6 2 & 2 0 & 8 0 b 2 6 De o & 0 s 8 b & 8 s 2 @

[

e 8 5 s 4 @& & 5 0 6 2 % 3 s ¢ s b a2 06 b s s O s 2 s 2 s s 0 0 s s

b

]
-
~—

H

8 & & & & & 0 8 s 4 8 8 o 0 s & 8 o s 6 s ¢ Bl s e o s e o 3

[+]

e & 2 & & & & § &+ * g o p & & ¢ * g v 2 @ ('f. @ & 0 e o o &

Data SetSe o« ¢ « ¢ ¢ ¢ o o o
Onlin'e PrograMSo e e o & o =
Data ‘Base Support Selectiocn.
Insurance Industry « « « o« o «
Policy Information System. .
Data SetsSe « ¢ o « ¢« ¢ o o o
Online ProgramSe. « « « « o
New-Business Poclicy Entry Syste

Da.ta sets. - L] . L] L] L] . L] L] -
Online ProgramsS. « « « o o o «
Data Base Support Selection. .
Medical Industry « « « « o « o« &
Patient Information System . .
Data SetSe o« o« o ¢ o ¢ o o o
Online ProgramSe. « « « o « o &
Data Base Support Selection. .
Pharmaceutical Industry. . « . .
s

4 0 0 ¢ & 4 ¢ o2 0 & s 0 s 2 s s s 0 s s s s De e o N s

Pharmaceutical Order Entry Syst
Data SetsS. o« ¢« « ¢ o o« o o o
Online ProgramS. « « o« « o «
Offline Programs . . . P
Data Base Support Selection.

-
.
.
-
L]
.
.
-
.

n
.
.
o
[
.
.
-
.
-
.
.
.
-
.
-
.
.
.
-
.
L)
.

¢ ¢ & 5 & & & o 6 & 2 & ¢ 2 6 2 06 s 0 6 0 s O s s s 8 s o

¢ & & 4 2 3 5 & 4 4 6 8 2 &+ 8 8 & s s s s @
¢ & o 0 2 & & 8 8 & o % s 0 4 ¢ 8 & 8 4 2 a

s o o ¢ Me s ¢ o ¢ s 06 5 8 s & 66 0 & & 3 »

viii CICS/VS System Application Design Guide

¢ & & 5 8 o & & 0 0 6 6 2 4 5 0 2 e 2 6 3 s 4 8 B s & 8 8 ° 0 0 8 o

e & & o 2 o

S 6 & 5 & 6 0 9 04 B & B 5 & & 6 4 8 6 ° 8 & G O S 0 % 0 e & 8 ¥ e s @

e o ¢ & & 3 &6 5 & B o 0 & o o

¢ o o e & o

¢ & & & o 0

¢ & 2 ¢ 8 & 4 & & & & & & 4 B &6 4 & & 4 & 2 5 6 6 B 6 & 3 8 B e 6 & 0

® e 8 8 & 4 & 5 2 s 6 ¢ o o

* & o & o

@ 6 8 & & 0 0 & 6 s 5 &6 3 & & 8 4 6 4 & % o 8 s 8 &6 4 6 8 s 8 8 6 0 .

280
282
282
283
283
283
284

337

Distritution Industry. « « « « « &

Order Entry and Invoicing Systenm
Data sets. - L] L] L] - L] L] L] - . L]
Online ProgramSe. « « « o« o o o o
Retail Store System. . « . « . .
Data Base Support Selection. . .
Lavw Enforcement Industry «
Police Information System. . . .
Data sets. - L] - - L] . L] - L] e .-
Online ProgramS. « « « o« o o o o
Data Base Support Selection. . .
Utilities Industry « o « o o o « o
Custcomer Infcrmation System. . .
Data Sets. « « ¢« ¢ ¢ o o o o o
Online ProgramSe. « « o« « o« o o @
Data Base Support Selection. . .

e & & & 9 . e 6 3 & & » & & o

a & o & & s s o e & o & o & & »

e @ o & o & & & o o & o ¢ e &

8 8 6 s s & & ¢ & & ¢ s s s s

s & o & o ¢ & & 9 & & s o & & o

338
338
339
341
342
343
343
343
345
345

348
348
349
351
352

o & & & & & & & & & o 2 & o 2 0
e & o & 8 & 4 & & ¢ & o 0 s 0 o
e 0 & & & 4 & & ¢ & o 8 " e 0 o

Contents

ix

CHAPIER 1. INIRCDUCIION IG CNLINE SYSIEMS DESIGN

This chapter presents an cverview of CICS/VS system design, and
introduces informaticn ccvered in more detail in later chapters of this
publication.

- - - - WD W D W D - WD D D - D A — AP D T A D P D D R D WD AP A A G =D > - -

SYSTEM DESIGN IN THE IMRPLEMENIATION EHASE

The installaticn of an cnline system involves a number of activities.
These include, but are not limited to:

e Feasibility study

e System design of online applications

e Application prcgramming

e Program testing

e Documentation

e System testing

e Training

e Installation of equipment

e Cutover to online application

® Follcwup of systenm

The purpose of this publicaticn is to discuss only one activity of
those detailed akove, namely, Systsms Design of Cnline Applications,
because of the effect of system design on the overall success cr failure
of the imnstallation. Online system design is presented in the same
sequence as would be covered in real-life. The varicus factors to
consider during each ster cf the design process are identified in terms
of the application requirements. Some design factcrs and application

requirements are satisfied by CICS/VS-provided support. These
facilities are explicitly defined and identified.

Many applications will nct require additional user-developed support
beyond that provided by CICS,/VS. However, online applications may
exhibit unique requirements, for example, bigh online system
availability beyond the standard provided by CICS/VS. This publication
presents these additional surport requirements, cutlines suggested
design soluticns, and discusses some of the potential prchkblem areas
that should be ccnsidered bty the user.

To utilize CICS/VS facilities efficiently and satisfy various design
requirements, it is important that the system designer be aware of the
manner in which CICS/VS implements these facilities., This information
is presented at the conceptual level, assuming there is no prior
knowledge beyond that ccvered in the CICS/VS General Information Manual.
More detail can also be cbtained, if necessary, Ly referring tc other
CICS/VS documentation.

Chapter 1. Introducticn to Online Systems Design 1

THE NEED FOR GOOD SYSTEM DESIGN

The design of any system, whether it be a batch processing systenm
or an online system, is a cceplex and involved procedure. A "cookbook"
apprecach tc system design cannot be followed because of the variety of
ways the same application may be implemented in different organizations.
However, guidelines can te reccmeended which direct the designer to
consider those functions or requirements which exist in the design of
mcst online systems.

TURNAROUND OR RESPONSE TIME

The effect of poor system design in a batch prccessing environment
increases the tctal processing time cf applicaticms, with consequent
delays in turnaround time kefcre results of that processing are
availaktle., With an infrequently run batch application, the effect of
poor system design on the installaticn may not be great. However, with
frequently run batch processing apgplications, poor system design and
long run times may impact the ability of the installation to provide
adequate turnaround for that and cther applicaticns. This will probably
necessitate a change in the system design of the offending application.

In an online envircnment, the effect of pcor system design is often
immediately apparent, generally through the cnline system providing
unacceptable resgonse times for the particular applications concerned.
The definition of an "acceptable response time" is generally very
application-dependent. Fcr example, in an online crder entry
application, where the termiral cperator takes an crder from a customer
directly over the telephcne, any resgonse time that keeps that customer
waiting unnecessarily can ke regarded as unacceptakle.

WITHOUT DOUET, THE SIKGIE MOST IMEOETANT FACTOR IN ONLINE PERFOEMANCE
IS THE SYSTEM DESIGN OF THE CNLINE AEPLICATICNS.

USER ACCEPTANCE

A factor that can affect the accertability of an online application
is the way in which it meets the needs of the users of that application.
It is pointless for the user tc¢ design a system that provides fast
response time if the icfcrmaticn provided cannot ke used. In this
regard, measured by the usability cf the system, an unusakle system is
therefore a "poor performance" systen.

RESOURCE UTILIZATION

A final facteor to consider is the utilization cf resources such as
the CPU rprccessing capability, CFU storage, and input/cutput devices.
An online system which unnecessarily uses so much CPU precessing
capability, or storage, or sc many input/output devices that it impacts
the ability cf the imstallaticn tc carry cut other processing in other
partitions or regiomns may ke a "poor performance" systen.

Thus, poor system design can have a significant impact on:

e Custcmer service (because cf pcor response time)

e Application usability

e Installaticn processing capakility

2 CICS/VS System/Application Lesign Guide

Oonce the system designer realizes that poor design can result in
the opposite of the desired chbjectives being met, he is well on the
way to producing a well designed systen.

DESIGN SIRATEGY

Generally, online systems cannot ke designed in isolaticn. To ensure
that the foregcing objectives are met, it is important that a design
grcur comprise people with kncwledge of:

e Application requirements
e CICS/VS facilities
e Installation regquirements

Usually, the optimum size for the design grour is three or four.
Fewer than this number increases the probability that bad design
decisions can slip through, while many more than four may affect the
productivity of the desigm group as a whole.

The system design phase is an iterative process. Based on the
decisions taken at one stage of the design, it may be necessary to
change decisions which were made earlier in ancther area of the design.
This change may in turn affect cther decisions. Thus, the design group
must be flexible in its apgrcach and be prepared during the design
phase to change its decisicns if necessary. However, once the systern
design has been completed, it should be frozen at that point, and not
changed unless sericus errcrs or osmissions are found which will affect
the ability of the system to run effectively.

During implementaticn of the design, there is always the temptation
to incorrorate imprcvements from an aprplication point of view. While
each improvement may not represent a great deal cf extra implementation
effort, all cf these imprcvements may affect the project completion
date. Also, the effect of these improvements on the overall systen
performance must be evaluated. The danger is that this evaluation nmay
not be carried out for those changes intrcduced after the system design
phase has been ccmpleted.

These changes or enhancements must be controlled. The kest way of
achieving this ccntrol may be to incorporate all of these enhancements
in a later versicn of the cnline application or system. These
enhancements beccme a project in their own right, and must therefore
go through the system design phase befcre implementation. Imn this way
their effect on system performance can he readily evaluated.

A structured approach tc system design is possitle, and such a
structured approach should direct the design grour to comsider all of
those areas of the online system which may require decisions to be
taken. This structured desigr aprroach is illustrated in Figure 1-1.
This figure also illustrates some of the topics presented in this
publication, and the description cf each topic following the figure
rrovides an overview of this publication.

STRUCTURED SYSTEM LESIGN
Application Design
The starting point for cnline system design is the application

design. The initial application design steps require that the
objectives to be achieved by an cnline application be defined and the

Chapter 1. Introducticn to Online Systems Design 3

requirements of the users of that application be identified. A broad
system flow of the applicaticn is then developed as part of the initial
design. This system. flcw and application design are an extremely
important part of the overall design process, since they define the
interface between the terminal user and the computer. Unless the online
application meets the requirements of its users, it is destined to

fail.

The online application shculd k¢ designed initially to identify the
broad ingut, processing, and outfput requirements cf the application.
The need for conversatiomal and/cr batch data transmission between the
terminals and the CPU can be identified. The terminal outrut
requirements of the application can be determined, after which the
broad processing logic and data set accessing necessary tc produce that
output can be designed. At this stage, the input data required for
that processing and output can also ke defined.

Application
Design
Data L Recovery Data Base
Communication And Restart Desi
. ; esign
Design Design
Program pata DL/ File
Design anagement Products Control
Design
Temporary Transient DLA pLA DL/
Storage Data ENTRY DOS/VS IMS/VS

Fiqure 1-1. Structured Systems Cesign

The result of this application design phase is a broad system
flowchart showing, in aprlication terms only, the flow of information
to and from terminals, the brcad processing tc be carried out by the
CPU, and the file accessing necessary to allow that processing. Figures
1-2 and 1-3 illustrate two types of flcwcharts, kcth representing the
system flow cf an Order Entry ard Invoicing application in the
Distribution industry.

Data Communication Design

With the troad application design mapped out, design of transactioms
to be initiated from terminals and the responses tc be sent back to
the terminals can be developed. Alsc, during this phase the editing
and validation of input messages can be defined in more detail.

Consideration should ke given to the design of security procedures
and the hardling of high pricrity transactions. The effect of

4 CICS/VS System/Application Lesign Guide

unrecoverable terminal and line errors should be ccnsidered, together
with approaches which may be used to provide a ccmmunications backup
capability (if required) to enable the online applications to continue
to function, if possible, in the event of a communications equipment
malfunction.

Program Design

After determining system flow and broad processing to be carried
out by the CPU, this processing shculd now be trcken down into
particular functions. For example, the initial function on receiving
a terminal transaction wculd be that of editing or validation.

INPUT APPLICATION PROCESSING OUTPUT
O 1. Access Customer Record.
Enter L > 2. Display Name and Address. ka'ay
Customer Customer ’ : L Customer
Data Set Ident. 3. Generate Order-In-Progress Details
\) Data Set.
O Enter [> 4. Access Product Record.
Product Product 5. Update Order-In-Progress
Data Set Order Record. i
5 |~ Display
N— 6. Display Order Quantity +T & pted
uantit
Accepted. iy Order-
7. Record Back Order Quantity, In-Progress
Order- If Necessary. Data Set
in-Progress 8. Update Product Inventory) Back
Data Set With Accepted Quantity. Order
S~— Data Set
Product
Data Set
e C > 9. Access Order-In-Progress
End OF Data Set.
Order 10. Place In Warehouse Location
Sequence.
11. Transmit Packing Slip.
12. Extend lnvoice. L Packing
13. Transmit Invoice. Stie
E L > 14. Access Product Record.
nter
Product Receipt 16. Update Product Inventory
Data Set Detaits With Received Quantity. L

Figure 1-2. oOrder Entry ard Invcicing Function riagram

Chapter 1. 1Introducticn to Online Systems Design 5

This validation may require access tc¢ various data sets. Follcewing
validation, it may be necessary to retrieve information from other data
sets fcr processing, follcwed by pocssible updating of those data sets.
Finally, it would ke necessary tc fprepare a respcnse to ke sent to the
terminal.

The processing for each type cf transaction in the apglication should
ke kroken down imtc logical secticns in this manner. These logical
sections may subsequently teccme separate CICS/VS application progranm
modules, or can ke incorpcrated into one module. Figure 1-4 illustrates
the various modules in the program design for the Order Entry and
Invoicing aprlicaticr shcwn in Figures 1-2 and 1-3.

Note that the separate prcgrams and broad processing required,
developed in Figure 1-4 from the flcwchart in Figure 1-3, are described
as part of the function diagram in Figure 1-2. In effect, the first
three boxes in Figure 1-2 define the three separate programs in Figure
1-4.

A point to consider when defining program modules is the frequency
of use of different modules. ¥For example, excepticn routines cr error
routines which are infrequently used should ke separated from the more
frequently used main processing modules. In this way rrogram design
and subsequent implementatior will be able tc take best advantage of
the dynamic storage capakilities of CICS/VS and the virtual storage
capakilities of DOS/VS, CS/VSE1l, cxr CE&/VS2.

Application fprograms car ke ccded in Assembler language, ANS COBOL,
or PL/I. The user can select the most appropriate language for each
program. Prcgrams written in one language can pass contrcl to programs
written in any other language.

Data Management Lesign

Application requirements for the temporary stcrage of infcrmation
and the gueuing cf inforrmaticn should ke defined. CICS/VS Temporary
Storage management provides a "scratchpad®" capability and allows
information to ke stored temporarily in main storage or, alternatively,
on secondary storage.

The queuing, or sequential data set requirements, of the application
can te defined. The need to rass information thrcugh sequential files
to and from the CICS/VS partition and other batch partitions or regioms
using the CICS/VS Transient Cata management facility can also te
determined, together with krcad recovery procedures.

The need for the applicaticn prcgrams to pass small sequential queues
of information Letween each cther in the CICS/VS partition using CICS/VS
Transient Data can be determined.

Data Base Desian

Particular application data base characteristics and requirements

are considered when selecting the best data lkase support. This can he
based on CICS/VS File Control facilities or on cne of the DL/I products.

6 CICS/VS System/Application Lesign Guide

SYSTEM FLOW

DESCRIPTION

Order Entry
Enter
Customer
Details

Cust Edit
Du: os;n :r Customer
ata Se Details

Invalid
Cust. No.
Display

Display
Customer
Details

Enter
Order
Detail
Lines

Product Edit Check
Drc; uSce’(Stock Avail.
o And Update

Display
Accptd Qty.
For Oper

Action

End
Of Order
?

Y
Place In Whse
Orders Location
Data Set Seq & Entend
Invoice

Invoice

End Of Order Packing
Slip

—

Order Entry

Enter customer number and customer reference number.

Validate customer number and extract credit limit.

If an error is found, display error message back at terminal.

Display customer name, address, ship-to-address and credit limit.

Enter product number and quantity for each line item.

Validate product number against product data set. Determine
current stock availability, and update product data set.

I insufficient stock, indicate quantity on-hand. Then allow operator

to either order available quantity, cancel item, or cancel order;

If not end of order, read next line item from order terminal.

Sequence products in order to warehouse loacation sequence. Extend
invoice. Write order to orders data set.

Transmit packing slip ans invoice to terminal in warehouse.

Figure 1-3. oOrder Entry and Invcicing Flowchart

Chapter 1. 1Introducticn to Online Systems Design 7

SYSTEM FLOW PROGRAM
ORDER ENTRY)
Enter
Customer
Details
ORDER START PROGRAM
. Accept customer details and edit to
Customer (E:d'tt commence order.
Data Set D::a(i)l?er
Order
> Start
Program
Invalid
Cust. No.
Display
Display
Customer
Details
J
\
ORDER DETAIL PROGRAM
Accept product order, edit, and update
product data set.
N Edit Check
Produc‘.,t Stock Avail. Order
Data.Set And Update % Detail
Program
Display
Accptd Qty
For Oper.
Action
End ORDER FINISH PROGRAM
Of Order
?
Complete order, put orders® in
warehouse location sequence, extend
invoice, log order to orders data set
Place In Whse for audit, and transmit packing slip
Orders Location Order and invoice to warehouse printer.
Data Set Seq & Extend > Finish
Invoice Program
*Note: Standard batch sort is not used; products
Invoice are placed in location slots in storage
table, to carry out sequencing.
End Of Order Pa_ckmg
Slip

Figure 1-4.

\~_./”’_~

Order Entry ard Invcicing Program Design

8 CICS5/VS Systen/Application Lesign Guide

Factors to be considered in this decision include the need to access

the data base from both online application prograss and batch processing
rrograms, and the number cf ways in which infcrmation is to be
retrieved, such as by the use of different record keys (for example,
part numker or part name in an inventory control applicaticm). Further
factors in this decision are the numkter of times certain information
occurs in each record, and the amcunt cf information which may be absent
in scme records, yet present in cthers.

After selecting the arrrorriate data base suppcrt, the structure of
the data base is designed, ard hcw that data can ke retrieved fronm
applicaticn programs is defined. Figqure 1-5 shcws the design of a DL/I
logical structure for the Crder Entry application discussed above.
(This logical structure is discussed in "Distribution Industry" in
Chapter 11.)

The effect of various errcr or system failure situations on the

integrity of the data base is considered, and a data base recovery and
backup approach (if required) is defined.

CONTAINS - ITEM NUMBER

- ITEM NAME
ITEM

INFORMATION WAREHOUSE SUPPLIER
CONTAINS CONTAINS CONTAINS
- PRICE PER UNIT (SALES) - WAREHOUSE NO. - SUPPLIER NO.
- DATE OF LAST CHANGE - NO. OF ITEMS IN STOCK - PRICE PER UNIT (PURCHASE)
- UNIT OF ITEM - STOCK LOCATION - UNIT OF ITEM
- TURNOVER LAST YEAR - REORDER POINT - DELIVERY TIME
- TURNOVER Y.T.D. - QUALITY INDEX

- DELIVERY INDEX
- PURCHASE Y.T.D.
- SUPPLIER INFORMATION

Figure 1-5. Order Entry Applicaticn Data Base Design

3 2 3£ 3§23

The designed system is starting tc take shape. The extent to which
the application objectives and requirements are met by the designed
system must be evaluated. The pctential performance of the system must
be evaluated to identify areas where improvement can be made if
necessary.

Chapter 1. Introducticn to Online Systems Design 9

Performance evaluation may include one, or both, of:
e Simulation techniques
e Benchmark techniques

Based on this performance evaluaticn, changes in the system design
may be considered, with possibtle iteration through the above steps.

Becovery and Restart

The success of an online system is dependent cn its availability.
Frocedures must ke designed fcr kackup in the event of failure of
varicus components of the system, and for recovery and restart following
abnormal termination of the systen.

Testing and Integration

The arount and tyre of testing tc be carried out should be kroadly
defined as part of system design, together with the way in which the
varicus online applicaticns are tc be integrated.

Prodycticn Cutover apd Followup

It is important to define the procedures to be followed fcr training
of terminal operators, system administrators, and all personnel involved
in the cutover and subsequent operation of the system. The procedures
to be used for cutover must Le fully defined to ensure smooth tramsition
to the nevw online systesn.

APPLICATION DESIGN

The logical starting peint for online system design is the kroad
system flow design of the aprlications to be imgplemented. 1In the normal
design phase of an online system, the design team would commence with
application design. However, in the presentation cf topics in this
publication, agpplication design will be left until the various CICS/VS
facilities and design techniques have Leen discussed. 1In this way,
application design in a pumber of industries can ke described more
effectively, indicating hcw specific CICS/VS facilities can be utilized
for different applications. Using these application design guidelines,
the design team may wish tc use the various techniques described as a
starting point for their own applications. The aprlications discussed
in Chapter 11 of this publication are those introduced in the
"Management Overview" section of the CICS/VS General Information Manual
(GIM). The applications described in the GIM are:

e Mapufacturipg Indystry
- Production Order and Status Reporting Systenm

e Bapking Indusiry
- Savings Bank and Mortgage Loan Systesm
- Custopmer Infcrmation System (often called

Customer Information File)

e Ipsurance Ipdusiry
- Policy Information System

- New-Business Folicy Entry Systen

10 CICS/VS System/Application Design Guide

e Medical Ipdustry
- Patient Informaticn Systenm

e Pharmaceutical Ipdustry
- Pharmaceutical Crder Entry System

e Law Enforcement Industry
- Police Information System

e Distribution Indusiry

i
Oorder Entry ard Invoicing Systenm

"= "Customer Infcrmaticn System

The reader may wish to refer to these application descriptions from
time to time as he reads this CICS/VS System/Application Desigp Guide.

Deferring the applicaticn design now until Chapter 11 im this
publication, the next design topic is that of Prcgram Design.

Chapter 1. 1Introducticn to Online Systems Design 11

CHAPTER 2. CICS/VS PROGRAM DESIGN

Chapter 2 presents Program Design in a tutorial manner. Experienced
CICS users may wish to omit most of this chapter. However, it is
strongly recommended that such users still read the following topics:

e CICS/DOS/VS Subset Option

e Virtual Storage Environment
e Tabular Structures

e Structured Programmihg

e Application Built-in Functions

e Program Error Recovery

- - ——— - - - - - - - - - - - - - - - — - —— - - - - - — . - - - - -

CICS/VS is a transaction-oriented DB/DC system which uses the
techniques of:

e Multitasking
e Quasi-reentrant programming
e Dynamic storage allocation

These techniques are described in the CICS/VS General Information
Manual. The design of applicaticn programs to take advantage of them
for efficient online operation will now be discussed. In this
discussion, the facilities available to the system design team are
outlined first, followed by a discussion of the various program services
provided by CICS/VS. The design facilities available for use are:

e CICS/DOS/VS Subset Option
e Modular programming

e High-level languages

e Tabular structures

s Structured programming

e Application functions

CICS/DOS/VS SUBSET OPTION

Facilities are provided to generate a subset of CICS/DOS/VS for new
CICS/DOS/VS users. It is easy to install and is fully compatible with
the complete CICS/DOS/VS system. No changes need be made to application
programs when the user generates a complete CICS/DOS/VS system. The
subset option identifies :CICS/VS facilities which may be utilized by
a CICS/VS user with limited CPU Storage. See "CICS/DOS/VS Subset
Option" in Chapter 7 for additional information.

Chapter 2. CICS/VS Program Design 13

CICS/DOS/VS STARTER SYSTEM

A set of object modules, generated using the subset option of
CICS/DOS/VS, is supplied with the CICS/DOS/VS system. The starter
system includes precompiled sample application programs and predefined
tables, and need only be link-edited into a DOS/VS core image library
before use.

INSTALLATION AND USE

The user can install the pregenerated CICS/DOS/VS system as described
above, and expand it as his needs dictate. CICS/VS facilities which
are not part of the subset ortion can be generated when required to
support advanced CICS/VS capabilities. These can be achieved by
regenerating only those CICS/VS management modules and table options
required to support the advanced capabilities.

The subset option is described in the Subset User's Guide (DOS)
SH12-5404,

MODULAR PROGRAMMING

BATCH ENVIRONMENT

Modular programming techniques in a batch environment may involve
the consolidation of similar program functions in one program module.
For example, the main execution code used may be incorporated in one
module, while exception routines may be in another module and error
routines in other modules. In this way, modular programming enables
sections of the program to be written by programmers at different times.
Apart from the advantage of distributing the program workload across
several people, another advantage of modular programming is that it
generally makes the application program logically easier to follow for
someone who is unfamiliar with it.

CICS/VS ONLINE ENVIRONMENT

CICS/VS is oriented around the concept of modular programming.
Transactions received from terminals are analogous to transaction cards
read from a card reader. A transaction code defines the format and
processing required for an online transaction, in the same manner as
a card code defines the format and processing of a card.

This transaction code identifies the CICS/VS application program
that will process the transaction. The use of such modular programming
techniques is an integral part of CICS/VS and enables large programs
to be broken into smaller logical modules. However, program size and
CICS/VS address space availability should be balanced with the
additional overheads involved in passing control between many small
modules.

When a transaction is received from a terminal, only that program
code relevant to the processing of that transaction need be loaded into
storage, if it is not already present. As modules tend to be smaller
than complete programs, more application program modules may reside in
a given address space than may full programs. This enables one copy
of each of many different modules to be currently resident in the
CICS/VS dynamic storage area. A high degree of multitasking may
therefore be achieved within a limited storage size.

14 CICS/VS System/Application Design Guide

VIRTUAL STORAGE ENVIRONMENT

Using the modular programming techniques discussed above, a CICS/VS
application program rodule should include code which is relevant to
the processing of the specific tramsacticn.

From the system design point cf view, the design team should specify
the various application prcgrams which are to be written tc implement
the particular applicaticn. They shculd also identify thdse application
functions (and hence program coding) which will ke frequently used by
transactions, and those which will be infrequently used. 1In this way,
the design team is able tc broadly specify the mcdular program structure
of the application, and define the necessary application progranms.

The various applicaticn picgrams executing concurrently in the
CICS/VS partition, and the demands made by them for CICS/VS services
and resources, ccntribute to the total "working set" of CICS/VS. This
term is used in a virtual stcrage environment to describe that part of
a program which is active over a specific period of time. The CICS/VS
working set is influenced Lty the sizes of the varicus concurrently
executing application prcgrass, the cnline transacticn lcad and its
use of various applicaticn prcgrams, and the degree of multitasking
permitted by the CICS/VS master terminal operator. Techniques for
varying the working set are discussed in "CICS/VS Rorking Set" in
Chapter 7.

HIGH-LEVEL LANGUAGES

CICS/VS accepts applicaticn prcgrams written in Assemkler language,
American National Standard (ANS) COBOL, or PL/I Crtimizing Comriler
for DOS/VS, 0S/Vs1, or 0S/VSz. 1In addition, application programs may
be compiled with the PL/I F Compiler for CS/VS1 cxr 0S/VS2.

IABULAR STRUCTURES

CICS/VS is basically table driven. Tables define the terminal
network configuration, data set and data kase specifications, online
transaction details, application programs, and output message
destination information. Since CICS/VS is writtenm as a generalized
program and is table-oriented, the unique requirements of an
installation can be tailcred by srecifying thcse requirements in the
various CICS/VS tables. CICS/VS uses the takular information in a
direct manner to ccmplete the particular functions required. 1In the
event of the installation characteristics changing (such as the addition
of more terminals, c¢r extra data sets for example), that change in the
installation requirements can be inccrporated into the system by
modifying and reassembling the relevant tables.

The tabular structure cf CICS/VS is one of the main factors which
enables fast implementation and easy installaticp growth--two of the
significant advantages ¢f CICS/VS. :

This same tabular structure concept can be extended to application
programs. An example of a takular structure application is a savings
bank and mortgage lcan system in the banking industry. Figure 11-7
illustrates a typical savings bank and mortgage lcan systen.

This application is characterized by a large ruzber of transaction
types with similar transacticn fcrreats, similar processing, and similar
output formats. Certainly, unique modules may be written to accept
each different transacticn, process that information, and send back an
output response. However, the overall lcgic ip the separate modules
is basically identical, with differences appearing only in the

Chapter 2. <CICS/VS Erogram Design 15

particular input and output formats. In some cases certain information
is processed by additicn (a deposit transaction amount to be added to
the current balance), and in cther cases by subtraction (a withdrawal
transaction amount to be subtracted frcm the current balance). It is
expensive in the initial applicaticn programming and subsequent
maintenance to write separate programs for these various similar
transactions.

In this banking application, a generalized application program may
be written utilizing a takular structure. A numker of application
tables wculd be reguired in this environment. These are illustrated
in FPigure 2-1, and are listed and discussed below:

e Input format table
e Processing requirements table
e Output format takle

Alternatively, the information described in these tables may be
consclidated intc ome ccepcsite takle.

On receipt of a tramsacticn from a terminal, that transaction type
(Bank Trancode) may be identified in the input fcrmat takle. Switches
in this table specify the lccaticn of information within the
transaction. This informaticn is used together with information
obtained from the prccessing requirements table which is also accessed
based on the transaction type (Bank Trancode). F¥cr that transaction
type, the prccessing requirewsents takle entry may indicate certain
fields of the transacticn are to be edited based upon specific editing
criteria, and fields are tc te added to or subtracted frcm specific
applicaticm counters.

Based on the particular transaction type, the relevant entry in the
output format takle may specify the exact locaticn in the cutput message
into which certain fields are to be inserted. Responses may then be
sent back to the terminal to update the customer's bank passbook based
upon the particular input tramsacticn entered.

Use of tabular structures results in less programming effort. Only
one generalized application frogram is written, determining the editing
and processing required cf transacticns by means of various switches
in the relevant tables.

However, the power of this prcgram design approcach becomes more
apparent when it is necessary to mcdify the application requirements.
Typically such application mcdification may require comnsiderable
recoding and testing if a takular structure is not used. In this
environment, the relevant talkle entry may be quickly and easily changed
to reflect a changed input f£crmat, changed processing requirements, or
a changed output format. In many cases, no modification of the -
generalized application program is required.

The net effect is greater responsiveness to the application needs
of user departments, as well as the needs of the ccmpany's customers.

The IBM 3600 Finance Communication System, a banking system, comnsists
of an IBM 3601 programmakle contrcller and several terminals. Some of
the functions perfcrmed ty the previcusly descrilked tables may be
executed in the 3601 contrcller. For example, the terminal input
message pmay be ccnverted tc a standard format input message by the 3601
controller for transmission to CICS5/VS with processing requirement
switches inccrporated in the input message. Similarly, a standard
format output response may be transmitted by CICS/VS back to the

16 CICS/VS System/Aprlication Design Guide

controller, which performs any unique formatting required by the
response and transmits it to the crigimating terminal.

INPUT

APPLICATION PROGRAM PROCESSING

QUTPUT

Teller
ferminal

Input Format Table

Bank TRANCODE

. Receive input message from teller

terminal.

. Use banking trancode in message to

locate entry in input format tabie.

[CICS/VS]Bank
Trans TRAN {Input Message
Code CODE

Input
Format

P i i Bank
Specifications 3. Format input message based on input]

- format table specs. Amount § Misc. gggg
Processing

Requirements

Table <
4. Use banking trancode to locate entry

Bank TRANCODE

in processing requirements table.

Processing

ificati Update
Specifications > 5. Process input message based on pro- Banking
cessing table specs. Data Sets
Output Format Table 6. Using banking TRANCODE to locate entry
in output format table.
Bank TRANCODE
Output
Format T T H T| T} Bal-
e 7. Prepare output message based on Audit ’ ount a
Specifications output table specs. Info é Date ‘é\ Code BA Amou Q é ance

8. Transmit output message to teller
terminal.

Teller
Terminal

Passbook

Figure 2-1. Tabular Program Structure in Banking

Using this approach, the tabular structure concept described in
Figure 2-1 can also ke applied tc the application rrogramming performed
in the 3601. The functicns cutlined in steps 1 through 4 and 6 through
8 in Figure 2-1 are then executed by the 3601 and only step 5 is
executed by the CICS/VS aprlication program. See "virtual
Telecommunications Access Method" in Chapter 3 for additicnal
information regarding 3600/CICS/VS ofperation.

STRUCTURED PROGRAMMING

Structured programming is a mcdular programming technique which has
been developed tc permit easier integration cf mcdules into a working
program. It is sometimes referred tc as "top-down prograaming," and
rrovides a useful tocl fcr ccrtrcl and development of large programming
projects. The fcllowing remarks serve to introduce the concept of
top-down programming.

Chapter 2. CICS/VS Frogram Design 17

TRADITIONALI FROGEAM LEVELOEMENT

Traditionally, some programs have been developed from the bottom
up, as illustrated in Fiqure 2-2. That is tc say, each routimne or
module has been designed and written, then these modules have been
combined, or integrated, tc produce a working prcgram. Programs at
the lowest level are combined by integrating them with a grogram at a
higher level, which calls then.

Thus a large program is built up from separate modules, with the
lowest level of modules combined first, and then the successively higher
levels of modules until eventually the entire prcgram, with all of its
modules, has been integrated. If the system design has been well done,
and all of the linkages and interfaces have been fully designed,
documented, and completely adhered tc ky all programmers, a working
program results.

However, as is cften the case, each programmer's understanding of
the way in which his modules fit intc the total rrcject may be slightly
different., These differences are cften reflected in errors in the
module interfaces. These errors are not determined until integration
cr system test, and may involve ccnsiderable mcdification to enakle
the entire program to be Lkuilt ugp.

A further problem that arises with the traditional "bhottom up"
develorment of mcdules is that of testing. To test a lower level
module, a test driver invariably has to be develcped. The function of
this driver is tc present to the mcdule to be tested the same interface
which will be presented ky the higher level module which will eventually
call that lower level module. Thus, the testing of these lower level
modules can require considerable additional work on the part of the
rrogrammer in developing test vehicles.

In addition, in testing higher level modules, changes may have to
be made to lower level mcdules because of errors identified or interface

Order Level*
of

Implementation Module Module Module Module Module
3 4

1 2

w

Module Module Module

Main-Line
Module

* Level 1 = Highest Level
Level 3 = Lowest Level

Figure 2-2. Traditicnal Frogram Develcpment

18 CICS/VS System/Aprlication Design Guide

changes. Consequently, the lower level changes must be fully tested
before testing can continue %ith the higher level module.

TOF-DOWN FROGRAMEING

Top-dcwn programming apprcaches the problem of prrogram development
in a different way. The highest level module is defined and ccded
first, including the necessary linkages to lower level modules.
However, these lower level mcdules are not develcped at this time.
Instead, a general "dumey" test mcdule is used in place of the lower
level modules. The high level mcdule links to this test module in
place of lower level mrodules which are yet to be written. The dumnmy
test module notes the fact that control was passed to this module from
the higher level module (perbhaps by a test output message, or a dump,
for examrle), and then returns ccntrcl to the higher level module.

It is not until the high level module has been tested that coding
commences on the next lcwer modules. At this time, the interface
between the higher level and lower level modules has been completely
defined, coded, and tested. Furthermore, the higher level module now
becomes a test driver for the lower level modules.

As each lcw level module is ccded, it replaces the common dummy test
module which was used in the higher mrodule testing. When the higher
module passes control to this low level test module, the only functions
which have to be tested are the functicns rerresented by that low level
module.

This testing continues, with progressively lcwer level modules being
integrated into the total grcgrar structure in this way, until the
entire program has been developed and tested. Tor-dcwn programming is
illustrated in Fiqure 2-3.

Advantages of Iop-Down Programming
The advantages offered by this technique over traditional "bottcm-up"
programming are:

e Chief Programmer Operaticn

Top-down programming lends itself to the chief programmer method
of program develcpment. This methcd involves an experienced (or
“chief") programmer, who defines the overall lcgic flow of the
program by developing the highest level modules, and leaving the
lower level modules to less—experienced prograsmers., In this way,
the controlling high-level mcdules benefit from the skill of the
chief programmer, resulting in ketter overall control of the total
program development tc ensure that processing objectives and
perfcrmance requirements are met.

e Module Development Independence

Modules can ke coded and tested from the highest level down to the
lowest level without consideraticn for the progress of other modules
at the same level. For example, developing a program from the
bottom up generally reguires all of the lower level modules to be
coded and availakle kefore integration with the higher modules can
te achieved.

Chapter 2. CICS/VS Frogram Design 19

IMPLEMENTATION Main-Line

LEVEL*

ORDER
OF

Module

1

—
Ry

V

Module Module Module

1 2 3 2

M
1y

V

Module Module Modute Module Module 3

\/ 4 5 6 7 8

* Level 1 = Highest Level
Level 3 = Lowest Level

Figure 2-3., Tcp-Dcwn Prcgras Develogment

20

e Module Testing Independence

Because higher level modules are coded and tested befcre lower
level modules, the testing of these lower level modules is not
dependent upon code which may not have been written at that tinme.
The familiar problem cf the testing of the lower level module Leing
held up because the higher level module which called it (or
alternatively a test driver im its place) was not ready, is now

not significant.

e Easier Evaluation of Testing Progress

The progress of testing can ke mcre readily evaluated using the
top~down programming agpproach. As testing descends to lower level
modules, the probability of errors detected in these lower level
modules affecting already tested higher level modules is much less.
However, with bottcm-up frogramming, a problem area encountered
during integration from lower level modules ufp to higher level
modules may require considerable mcdification of the lower level
modules to ensure that the interface reguirements are nmet.

Furthermore, the amount of testing necessary fcr integration or
system test is variable and difficult to predict. 1All too often,
communication between members cf a project is such that each
programmer has a slightly different view of the function and
integration of his module intoc the overall program. This
nisunderstanding dces not generally become apparent until testing
and integration are well advanced. With top-dcwn programming, all
interfaces are fully def ined, coded, and tested before coding starts
on lower level modules.

CICS/VS System/Application Design Guide

e Programmer Resource Flexikility

With the top-down technique, if a particular program falls behind
schedule, cther prograsming resources can support the coding of
lovwer level modules while the original programser continues with
his higher level module.

The system design technique described in this publication is also
a top-down design technique. As shown in Figure 1-1, systems design
cccurs at the highest level first by broadly defining the application
reqguirements in terms of the input, general processing required, and
the output. This highest level application design then allows the
design team to descend tc a lower level data comsunication design to
define input and cutput, program design to define processing, angd data
base design. PFurthermore, within these functions are additional levels,
each level taking the design to a greater depth cf detail.

SIRUCTURED PROGRAMMING WITH CICS/V¥S

The CICS/VS program structure accommodates the top-down programming
technique. A terpinal transacticn initiates an application progranm,
which can be regarded as being at the highest level. This program can
utilize a module at a lower level to carry out the necessary editing,
another module tc carry out the prccessing required by the transaction,
and still ancther tc pregare the output response.

Each of these lcwer level modules can be written separately, but
does not have to be availalle before testing starts. For example, the
editing module can be tested without the processing or output module
being ready. Instead, duemy mcdules can be used in their places to
indicate that control did pass frce the higher level module to the
processing and output modules. In the editing module, control can pass
to lowvwer level modules in the event cf errors. RAgain, these error
modules are not ccded until the editing module has been tested.

In this way, development cof the CICS/VS application program proceeds
from the top down., Top-doun programming definitely offers the most
advantages fcr ccmplex programs. In this case, the number of functions
to be coded and tested may be sufficiently ccmplex that the development
of the applicaticn program is a major task.

Lower level podules need not necessarily lte separate CICS/VS
application programs. Instead, the technique of tcp~-down programming
can ke used in a single CICS/VS aprlication program, with the main-line
of the program keing the highest level. This may call various
subroutines. These subrcutines may te replaced during testing with a
dummy subroutine to implement the tor-down approcach. An example would
be the use of the PERFORM verb in COEOL to execute a number of "dummy"
paragraphs. The actual paragraphs may be incorpcrated in the progras
at a later time, when the main lcgic flow of the program has been fully
tested. This technique allows easier initial testing, without having
to test cut all prcgram lcgic right from the start of testing.

The use of CICS/VS as the DB/LC system represents the start of a
top-down programeing technique. CICS/VS is the main controlling
routine, which in turm calls a number cf modules at a lower level--that
is, the application progranss.

AEELICATION FURCIJONS
In designing an online aprlicaticn to execute under control of

CICS/VS, the design team should ke aware of those application functions
cffered Lty CICS/VS. Scee cf these are referred to as built-imn CICS/VS

Chapter 2. CICS/VS Prograe Design 21

functions, while other functions (such as message routing, terminal
paging, and device indegendence) use CICS/VS basic mapping support
(BMS) . Consequently, these functicns can only be used with terminals
supported by BMS. These applicaticn functions provide the facilities
listed in Figure 2-4. They are summarized here, and described in detail
in Chaptexr 3 unless stated otherwise.

MESSAGE KOUTING

CICS/VS provides am cfptioral Bessage routing and broadcasting
capability. This enables any terminal to transmit messages to other
BEMS-supported terminals in the system, either immediately, or at some
future time, provided that all affected terminals are of a type
supported by basic mapping support. While message routing may have
relevance in specific application design, it is particularly important
in epatling the master terminal cperator, who has the overall
responsibkility fcr ccntrcl of the cnline applications, to communicate
with each terminal operator.

TERMINAL EAGING

The terminal paging facility cf CICS/VS enables applicaticn programs
to develop information tc be presented to BMS-supported terminals as
a series of pages. However, the sequence of these pages requested by
the terminal cperator is nct impcrtant to the aprlication progranm.
CICS/VS-provided terminal cperatcr commands enable the operator to
request the distlay of pages in amy sequence desired.

CiCS/VS

TERMINAL
. 3270 INPUT FIELD BIT PHONETIC
RouTme ::’gm::“ oEvice EXTENDED FORMAT- ;:BLZ " VERIFY/ MANIPU. CONVER- WeIGHTED ATP
ROUTING . 'E""“[::EEPEND" SUPPORT TING AR EDIT LATION SION
" - L V— ~ vl | — e J \ " J \)
SUPPORTED BY USED FOR DATA USED FOR USED FOR USED FOR
BASIC MAPPING COMMUNICATION PROCESSING DATA SET BATCH DATA
SUPPORT, FOR USE IN ACCESSING ENTRY

DATA COMMUNICATION

Figure 2-4. CICS/VS Application Euilt-in Functions

TERMINAL DEVICE INDEEENLCENCE

CICS/Vs terminal device independence enables transacticns to be
entered from any BMS-suppcrted terminal type, and presents those
transactions to the application prcgram in a standard form. The output
response developed by the apglicaticn rrogram can ke presented in
standard form to CICS/VS, which then prepares it fcr transmission to

22 CICS/Vs sSystem/Applicatiocn Design Guide

the relevant BMS-supported termiral. The application progranm is
relieved of most ccnsideraticns regarding device-dependent requirements
for terminals. It can accept input frcm any BEMS-supported terminal in
the network and prepare terminal output as a series of lines regardless
of the particular terminal tyre tc be used.

EXTENDED 3270 SUEPCRT

This added support enables the design of input transactions to take
advantage of the 3270 Prcgzam Attention (PA) or Frogram Function (PF)
keys to initiate tramsacticns. This enables frequently used
transactions to ke initiated bty cne key depressicn, instead of the use
of a transaction code which normally is from one to four characters
long.

In addition, a specific P2 or PF key can ke defined as a 3270 PRINT
key. Derressicn of this key enakles the contents of the 3270 screen
to be printed on the first available printer idertified for this
purpose. The 3270 selectcr light ren can also be used to initiate
transactions.

INEUT FOEMATTING

This CICS/VS tuilt-in function enables infput transactions to be
entered in a variety of formats. They are converted to a standard
format for presentation to arplicaticn programs fcr processing. This
can enable applicaticn prcgrams tc be developed relatively independent
of the way in which specific transactions are entered at a terminal.
TABLE SEARCH

This kuilt-in function enables a table of infcrmation to te readily
searched to extract the apprcpriate value from that table based upon

a search arqument. The table search can ke either a sequential or a
kinary search.

FIELD VERIFY/EDI1

Editing macro instructions are provided by this CICS/VS built-in
functicn to enable the ccntents of a field to be examined for:

e All numeric (0 tc 9)
e A1l alphabetic (A to 2, cr blanks)

e All packed decimal (COCFPUTATIONAI-3 in American National Standard
(ANS) COBOL or FIXED LECIMAL im EL/I)

User routines can be executed in the event that characters other
than those specified for a field are present.

A macro instruction is alsc provided to edit nonnumeric information
from a field (for example, part number 119-445/B) and present the
remaining numeric characters in EECDIC.

BIT MANIFULATION
The akility to test the status of individual kits, and to turn bits

cn or off, is prcvided thrcugh the use of CICS/VS macro instructions
for Assembler, P1/I, and CCBCL. This built-in function is especially

Chapter 2. CICS/VS Frogram Design 23

useful in COBOL, which does not have a standard kit manigpulaticn
capakility.

PHONETIC CONVERSION

This tuilt-in function enakles gisspelled names tc be used as keys
to access data sets. The name is converted to a standard key based
upon the phonetic sound cf the name. For example, the names Smith,
Smyth, Snythe, and Swiths result in the phonetic ccde S530.

This is particularly useful for identification cf names, such as in
a police infcrmaticn system, custcmer information systems in Lkanking,
insurance and medical applications, cr product names in crder entry
applications.

A phonetic conversion subroutine is also provided for use by batch
programs executing in partitions other than the cne containing CICS/VS.
This subroutine can be used fcr batch programs executed under the
control of DOS/VS, 0S/Vs1, or 0S/VSs2.

Refer to "Reccrd Identificaticn" im Chapter S5 fcr a more detailed
discussicn of phcnetic ccnversion.

WEIGHTED RETRIEVAL

This powertul built-in functicn provides CICS/VS applicaticn programs
with the ability to search part, or all, of a specified VSAM data set,
and retrieve infcrmaticn from that data set based upon user-specified
selection criteria. Furthermore, records satisfying the criteria are
indicated as relevant only if they fall between user-specified limits.
The records that fall between the specified limits are themn presented
to the applicaticn prograe, with thcse records best satisfying the
criteria presented first, followed by records satisfying the criteria
Jeast.

This function is useful for the design and development of query
applications. Queries can be designed based upon the selection of
information meeting fixed criteria srecified in a program.
Alternatively, the design team can define user tramsactions and programs
vhich pexmit terminal operatcrs to specify the relevant selection
criteria, or selection limits, tc permit "ad-hoc" queries to be entered
ty terminal operators. Refer to "“Heighted Retrieval" in Chapter 5 for
more detail and for specific applicaticn examples of the use of this
function.

ASYNCHRONOUS TRANSACTION FFOCESSING (ATP)

This is not a built-in functicm, but is supplied by CICS/VS to
provide a batch data collection capatility, oriented to high-volume
data transmissicn frcm remote batch terminals. Specifically, this
function enables batches of data tc ke entered frcm remote terminals
and queued by CICS/VS for prccessing. On receipt of the entire tatch,
CICS/VS initiates the processing of that batch while the terminal is
able to transmit further batches to the systen.

Messages describing any errors detected during application-program
processing of the tatch are queued by CICS/VS. These error messages
are transmitted back to the remote terminal on request, tc permit batch
error correction and resubmission cf corrections if required. Refer
to "Asynchronous Transaction Processing"™ in Chapter 3 for more detail.

24 CICS/VS System/Application Design Guide

CUASI-EEENTRANT EROGRAMMING

For efficient utilizaticn of storage, CICS/VS ensures (unless
requested otherwise) that cnly one copy of a prcgram will reside inm
the dynamic storage area. All tacsks requiring the use of that progranm
are able to execute that program ccncurrently.

In order to achieve a high degree of multitasking, CICS/VS supports
quasi-reentrancy. This allows several tasks to utilize the sanme section
of code over the same pericd cf time. However, it differs from fully
reentrant programming in that control is coply passed from one task to
ancther when the active task issues a CICS/VS macrc instruction.

Control will not pass from one task to another omn amn I/0 interrupt,
for examrle, as is the case in a DOS/VS or 0S/VS multitasking
environment. CICS/VS prcvides a quasi-reentrant capability for
Assenbler, ANS COBOL, and FL/I.

Infcrmaticn unique tc the processing of a transaction (such as the
terminal input area, file I/C areas, or work areas) is separated fronm
the body of the application program. Instead of these areas residing
within the program, they are allccated from dynamic storage. The
execution of each separate transaction in a multitasking envircnment
is contrclled by a task ccotrcl area (TCA) that contains address
pointers and other vital infcrmation for that particular transaction
(task) . Because the infcrmation unique to a task is separated fronm
the main body of a program, the rrogram can ke used concurrently by
several tasks. The access methocds are inccocrporated within the CICS/VS
nucleus, and exception or errcr routines are included in cther CICS/VS
applicaticn programs. Figure 2-% shcws the concept of quasi-reentrant
programming. This figure is discussed in the CJICS/VS General
Information Manual.

Chapter 2. CICS/VS Frogram Design 25

INPUT APPLICATION TASK PROCESSING OUTPUT

CICS/VS CICS/VS Nucleus

Nucleus
. Access Methods

r\Allziﬁzsds Dynamic Storage Area

Area Task 1

1. Locate Terminal Input

L > Area.

Dynamic Storage Area

Control
Task 1 2. Allocate Work Area. Area
Control 3. Allocate File lnput Area.
Area .
4. Get File Record. I '~>
v Terminal
Table
Table Terminal
Input Appli-
) Terminal cation
Appli- Input ’—\ A
cation Work
[As For Task 1, Then: A::a Task 2 Code
A s Tor ek L e E
6. Free Terminal {nput Area. Cu'ntfol
Code . Area
Task 2 6. Process File Input Record.
Control 7. Free File Input Area.
Area
Terminal
[-'> Table
Terminal
Table
Terminal
Input
i > 1. Locate Termiral Input [File
Task 3 Area, > Input Task 3
Control B Control
Area 2. Allocate File Input Area. Area
Appli- 3. Get Fite Record. >
cation 4. Allocate Fite Input Area.
Code Table 6. Allocate Terminal Output Table
Area. 8
Terminal 7. Set Up Terminal Response. Code
Input 8. Send Response. Input

Terminal
Output

Figure 2-5. Quasi-Reentrant Programsing and Multitasking

IASK INITIATION

There are several methods utilized by CICS/VS tc initiate tasks.
These ar¢ briefly outlined here, but discussed in more detail in later
sections of this publicaticn.

26 CICS/VS System/Application Design Guide

TRANSACTION CODES

CICS/VS examines a tramsacticn code received as part c¢f a terminal
message, to identify the particular transacticn involved. This
transaction code must occury the first one to four characters of the
transaction invocation message. An input message is considered a
transaction invocaticn when it occurs and no task is active on the
terminal. This transaction code is validated by CICS/VS against a
program control table (FCT). If the specific tramsaction code exists
in that table, the transaction is assumed to be a valid cne, and the
transaction is passed tc that prcgrar identified in the relevant PCT
entry, for processing (see "Task Ipitiation" in Chapter 3 for more
detail).

The 3270 enables transactions to ke initiated by the use of a Progranm
Attention (PA) key, Program Functicn (FF) key, or selector light pen.

AUTOMATIC TASK INITIATION

Automatic task initiation invclves the queuing ¢f transactions on
disk using CICS/VS transient data management. A number of transactions
may be queued based upcn a specific trigger level. When the numker of
transactions queued reaches this trigger level, CICS/VS automatically
utilizes a specified transaction ccde for that queuve to initiate a task
and allow those queued transacticns to be processed by a specific
program. (See "Intrapartiticn Queue Usage" in Charter 4,)

INTERVAL CONTROL

~ CICS/VS enables a task to be initiated using a specified transaction
code at some future time, based upon time of day cr on elapsed time.
Data may be passed to that future task for use in processing when it
has Leen initiated. (See Chapter 6.)

TIASK CCNTROL

‘A task can be explicitly initiated from a CICS/VS applicaticn program
by the use of the CICS/VS task ccntrol ATTACH macro instruction. This
macro instruction specifies the transacticn code tc be used to identify
the rrogram which will prccess the tramsaction. (See Chapter 6.)

PROGRAM CONTEOL

A program may pass control to cther programs in a variety of ways.
These are illustrated in Figure 2-6 and described triefly below. See

additicnal information.

TRANSFER CONTROL TC EROGEAM (XCTIL)

This macro instruction (XCTL) enakles cne aprlication progranm
(referred to as the calling program) to pass contrcl to another
application program (referred to as the called prcgram). Control is
not returned to the calling program cn coempletion of execution of the
called program.

Chapter 2. CICS/VS FErogram Design 27

Program
A
CICS/VS
Nucleus
XCTLB
Link A Program Pro%ram Program
B D
Load E Program
Link D . E
Return Process
LinkC |a—""1
Delete E
Return Return

Figure 2-6. CICS/VS Program Contrcl Facilities

LINK TO FROGRAM (LINK)

This macro instruction specifies the name of amn application program
to be executed. The calling program passes contrcl to the called
program. On conmgletion of executicn, control is returned to the calling
program, to the statement following the LINK.

LOAD PROGRAM (LO2AD)

This macro instruction enables a program, identified by name, to be
loaded into storage. However, ccntrcl is not passed to that program
for execution, but is returned tc¢ the statement following the LOAD
racro instruction. The LOAD macro imstruction can be used to load
application programs, which may subsequently be linked to or transferred
to. Alternatively, this macrio instruction may be used to load tables
of information.

DELETE PEOGRAM (LELETE)
Normally, on completion of execution of a task, all storage utilized

by that task is automatically freed and made available for use in

28 CICS/VS sSystem/Application Design Guide

processing other tramsactions. Active programs keing used by tasks
will continue tc reside in storage. If, however, the storage occupied
by an inactive program is required fcr some cther executing task, that
storage will be freed. When a program is loaded, its stcrage can be
automatically freed if it is currently inactive, allowing another task
to use that storage.

Alternatively, the LOAD macro instruction can srecify that the
storage is not tc be freed, Lkut that the program is to remain resident
in storage even though inactive, fcr perfcrmance reasoms.

The DELETE macro instruction is used to delete such a resident
program at a point which will enable its storage tc be utilized for
other functions.

RETUEN FECM ERCGEAM (EETURN)

The Program Control RETURN macro instruction enables a program to
return ccntrcl tc a higher level prcgram, that program can be either
another application program c¢r CICS/VS if the RETURN is issued by the
application prcgram at the highest level. The RETURN indicates that
the relevant program has ncw comrleted processing. At task cospletion,
CICS/VS frees all of the storage asscciated with the task, such as
terminal I/0 areas, file I/0 areas, and file work areas, and eventually
also frees the storage cccupied ky the task controcl area. Optionally,
a transaction code may be specified in the RETURN macro imnstruction.
The transaction code is used with the next input message froe the same
terminal that originated this completed task.

ABNORMALLY TERMINATE PROGFAM (ABEND)

This macro instruction enables a program to immediately terminate
execution of a task, with an optional dump if required. 1In conjunction
with the optional cperater signon facility (see Chapter 3), the ABEND
macro instruction can be used to develop operator error statistics.

ABNORMAL TERMINATION EXIT (SETXIT)

This macro instruction enables a task to activate, deactivate, or
reestablish a prcgram-grcvided exit routine to be executed in event of
abnormal termination of the task. This exit routine can be utilized
€ither on CICS/VS abnormal task termination, or ty termination through
the use of the ABEND macrc inmstructicn by the task.

An abnormal termimnaticn exit routine is used to complete urgent
processing by a task for reccvery purposes, or it may attempt recovery
of the particular error condition itself. Refer tc "Program Error
Recovery" in the following secticn fcr more detail.

PROGEAM ERROR RECOVERY

CICS/VS features facilities fcr detection of prcgram error
situations, and protection of the online system frcm the effect of
these errors. If a program-check error is detected in an application
program, CICS/VS will attempt to aknormally terminate that task while
still permitting other tasks to ccntinue processing.

Chapter 2. CICS/VS Programr Design 29

FERCGEAM ERROR PRCCESSING

CICS/VS enables an application prcgram to indicate, through the use
cf the program ccntrcl SETXIT macro instruction, that control is to be
passed tc a specified routine in the program in the event cf a program
error, or to another program. This routine (or prcgram) may attempt
recovery of the error situaticn, record certain critical information
necessary to the application befcre the error prcgram is abnormally
terminated, cr ignore the errcr situation and continue progranm
processing.

FROGEAM ERKOF PRCGEAM

In the event that a prcgram errc¢r requires abnormal termination of
a task, the terminal operator who invoked the transaction to ke
abnormally terminated will be notified of this fact by CICS/VS, if
aprropriate. CICS/VS passes ccntrcl tc a prcgram error program (PEP),
after all SETXIT processing has keen completed for the task and the
decision has been made tc permit the abnormal termination to continue.
This PEP is a user-written rcutime, given ccntrol through a LINK from
the CICS/VS abncrmal conditicn prcgram (ACP), which enables the user
to perform installation-level abncrmal terminaticn action.

SETXIT program processing and PEP are described further in'"Systenm

Recovery Program" in Charpter 8. These facilities can be used to provide
program tackup capability for onlime applications.

30 CICS/VS System/Application Design Guide

CHAPIER 3. CICS/YS EATA CCMPMUNICATICNS DESIGN

This chapter presents Data Communications Design in a tutorial
fashion. Experienced CICS users may wish to omit reading much of this
chapter. It is suggested, however, that such users should read the
following torpics:

e Terminal device independence

e Terminal paging

e Message routing

e Virtuval Telecommunications Access Method (VTAM)
e Task initiation

e Input transaction design

e Field verifys/edit

e Table search

These topics describe changed, cr new, facilities which were not
availatle in previous versions of CICS.

The Data Communications design has a significant effect on the
success cr failure of the overall rrcject. It is in this area that
the interface between the user and the computer is defined. This
definition should be oriented toward satisfying the requirements of
the user and the applicaticn, while still presenting informatiocn to
the computer in a suitable form for processing.

Before discussing varicus Data Communications design aprrcaches, it
is important that the reader understand the following CICS/VS support
and telecommunications access methcd facilities which will aid him in
his design:

e Basic mapping support
e Terminal device independence
e Terminal paging
e Message routing
e Virtual Telecommunications Access Method (VT2N)
W#ith these features available to the system designer, various

aprroaches fcr ccnversational CICS/VS applications and batch CICS/VS
applications can be considered.

EASIC MAEPING SUEPORT

The basic mapping support function (BMS) enables the application
program to have access to input data, and prepare cutput data for
transmission to terminals, without regard to the physical location of

Chapter 3. CICS/VS Data Communications Design 31

the data in the terminal message. Additiocnal infcrmation regarding
tasic mapping suppcrt can be fourd in the CICS/VS Application
Erogrammer's Referemce Mapual, SH20-9003.

B¥S uses "maps" to descrilte the input format cf data received from
terminals, and (if necessary) to describe the format of output data to
be transmitted tc terminals. These maps are defined by the user
(generally the systep prcgrammer) and are separately assembled and
cataloged into the CICS/VS prcgram library for retrieval when needed
by arplication programs.

The applicaticn program accesses data from input messages, and
grepares data for cutput resrcnses, ty field rather tham by location
of that information in the terminal message. Consequently, the
application becomes less dependent on the actual message format. This
format independence is one of the most significant advantages of BMS.
Changes to message fcrmats tc meet various application requirements
can te readily applied, by mcdifying only the EMS maps describing those
affected formats, reasseskling them, and catalocging the changed maps
to the CICS/VS program library. All programs using these maps reflect
the changed formats without modification of the prcgrams. However,
recompilation of the programs might ke necessary. In this manner, the
installation will be more responsive to applicaticn needs. The use of
BMS ty arplicaticn prcgrams is illustrated in Figure 3-1.

BMS HMAES

An inrut map can specify data in an input message which is relevant
to a particular program and ignore other data in the input. Several
programs can then operate on the same input message format, using a
unique map for each rrogram. In addition, constant (or descriptive)
information, if desired, can te defined in an output map and be
automatically incorporated by BMS in an output message.

Basic mapping sugport provides the following services:

» Terminal device inderendence

» ferminal paging

» HMessage routing

Because Basic Mapping Suppcrt remcves the need for the aprlication
programmer to code mcst terminal device-dependent support in his
programs, programs can be writtern withcut regard to the input or output
device used for transmission of messages to those terminals supported
by BHS. BMS accepts input messages and transmeits cutput messages to
and from the devices below (see Figure 3-2).

» 1050 Data Communication Systenm

s 2740 Communications Terminal, Mcdels 1 and 2
= 2747 Communications Terminal

e 2770 Data Ccmmunication Systenm

s 2780 Data Transmission Terminal

» 2980 General Banking System (keyboard and printer only)

32 CICS/Vs Systems/Application Design Guide

e 3270 Information Display Systenm
e Teletype Terminals

e Communicatinc¢ Magnetic Card SELECTERIC Typewriter (CMCST) Model
€610, used as a 2741

CICS/VS AND APPLICATION
INPUT PROGRAM PROCESSING OUTPUT

BMS N 1. Application program issues
Input CICS/VS BMS in macro instruc-
Map tion, specifying relevant input
MAP, to initiate terminal input.
Alternatively, BMS MAP macro
instruction is issued by appli-
cation program, specifying

Input Input Message relevant input MAP to be used
W for task initiation message.

Message A I B I [

> 2. BMS issues terminal control

get macro to read message, if
application program issued BMS
in macro instruction.

3. BMS extracts defined fields
from input message.

Formatted Message

> [ATws 1%

4, BMS positions fields in standard
format message.

Application
Program

5. Program access fields using
input MAP structure or DSECT. > Application
I Program

Qutput Map
Structure Or
DSECT

. l Terminal Output l Input Map

Structure Or
DSECT

Formatted Message | |
E] Fle ™

output in standard format,
using output MAP structure
or DSECT.

7. Program issues BMS output
macro, specifying output MAP

‘ D ~ and also fields to be included

BMS in output message from MAP.

|—.1 } 6. Application program prepares

Output 8. BMS extracts fields and sets Output Message
Map up output message, including

fields contained in MAP, if o [e[r]a]n
specified by program. Al

9. BMS issues terminal control
put macro to write message.

OQutput
Message

Figure 3-1. CICS/VS Basic Mapping Support (BMS)

Chapter 3. CICS/VS Data Communications Design 33

CICS/VS AND APPLICATION

INPUT PROGRAM PROCESSING OUTPUT
Input
® 1050 ® 1050
® 2740 1. BMS removes device- ® 2740
® 2741 _: > dependent code from ':} ® 2471
® TWX input message. ° T.'WX
® 2980 Keyboard/Printer 2. Input'message is pre- Keyboard/Printer ® 2080
® CMCST sented to program ® CMCST
as if read from card.
® 2700 Output ® 2770
® 3600 3. Application pro- :> ® 3600
® 3650 gram prepares out- ® 3650
® 3780 put message as if to ® 3780
Cornmunication Systems be output on line Communication systems
printer.
4. Program inserts op-
ional new line
® 3270 characte.rs (5’.1 5’} in :> ® 3270
output, if desired.
5. Program issues BMS
Displays output request. Displays
6. BMS sets up new ter-
minal line for each
new line character
® Card specified. J L] garc‘;
Reader 7. BMS breaks lines) .ea o
® Line greater than ter- ® Line
Printer minal line length Printer
specified, into sep-
Seqtl Unit Record arate lines. Seqt! Unit Record
8. Device-dependent
code (carriage
return, idles) in-
® Disk serted by BMS. _.> ® Disk
® Tape 9. Output message [® Tape
then transmitted
Seqt! Unit Record to terminal [Seqtl Unit Record

Extended Description

Device-dependent code may be removed by programmable controllers, such as the 3600, before transmission to CICS/VS.
For the 3600 and 3650, input mapping requests are ignored. ’

Fiqure 3-2. CICS/VS Tersinal Device Inderendence

e 3780 Communication Systen

e 3600 Finance Ccmmunicaticn Syster (BMS input requests are ignored)

e 3650 Retail stcre Systenm

Furthermore, the following sequential devices can be used to simulate

online terminals, and transmit simulated terminal messages to and fronm
the systemn:

34 CICS8/VS System/Application Design Guide

» Card reader/line printer
e Tape drives

e Disk drives

INFUT MESSAGES

CICS/VS accepts input messages frcm any of the above devices and,
using the input map specified by the application program, converts the
input message into a fixed fcrmat message, as specified kty that map.
Device-dependent characteristics in the input message are removed, and
the appropriate fields are selected from the message and inserted in
fixed locations in the mapred message.

In the case of the 3600, device-dependent characteristics in the
input message are removed Lty the 3601 Controller and the input message
is formatted for CICS/VS arplicaticn program processing before
transmission to CICS/VS. Consequently, BMS input marping requests
associated with 3600 input messages are ignored, and the data received
from the 3600 is passed to the CICS/VS applicaticn preogram without
change. See "Basic Mapping Suppcrt Using VTAM®" for additional
information.

OUTPUT MESSAGES

Output messages for tramsmissicn tc terminals can be prepared without
the control characters required for field positicning, or line
separaticn. Output messages can be presented to CICS/VS as a data
stream. Optionally, the applicaticn program can insert new line (X'15¢)
characters in the cutrut data stream if required.

CICS/VS device-inderendent suppcrt divides the data stream into
lines no longer than those defined for the particular terminal. If
new~line characters appear occasionally in the data stream toc further
define line lengths, they are honored. CICS/VS inserts the appropriate
leading characters, carriage returns, and idle characters, and truncates
trailing blanks from each line.

Terminal device independence rermits an application prcgram to be
independent of the terminal type (cr types) in the installation, and
can provide for support of mixed terminal types ty the same progras.
This allcws the use of backup terminals of a differemt type, or
changeover of hard-copy terminals to display terminals when transaction
volumes warrant the change, with little or no additional programming
effort. It also reduces the amcunt cf program maintenance necessary
when changes are made in the terminal devices used by online programs,
and permits increased grcwth flexikility in the installation.

Terminal device independence is the only EMS support available with
the subset option of CICS/DOS/VS. Terminal raging and message routing
are not supported. (See "CICS/DCS/VS Subset Option®" in Chapter 7.)

Terminal paging is an additional feature that extends the
capakilities of terminal device inderendence. The application
pProgrammer can prepare mcre cutput than can be conveniently or
physically displayed at the receiving terminal. That output can be
presented by CICS/VS as a series of pages. CICS/VS identifies and
saves each page of informaticn prerared by the applicaticn program.

Chapter 3. CICS/VS Data Communications Design 35

CICS/VS AND APPLICATION
INPUT PROGRAM PROCESSING OUTPUT

1. Application program
presents output pages
in normal application
sequenca.

Application
Program

2. CICS/VS write pages to ~
temporary storage.

Temporary
Storage

Request Pagiig Status

3. Terminal operator
> enters page commands
r— requesting pages in

1 desired sequence.

® Page Forward
® Page Back

4. CICS/VS retrieves each

Paging > page requested, and
® Skip Pages Command transmits it to the
Forward terminal.
® Skip Pages

Backward
Automatic Paging Status

® Page Next — .-.>

° ; N
Pege Previous Temporary 5. CICS/VS retrieves each

© Pege Current Storage page in same sequence

® Terminate An prepared by program Pa
Purge Pages and transmits it Di:ela

® Copy Page automatically to play

the terminal when
® Query Page 1D able to receive it.

Figure 3-3. CICS/VS Terminal Paging

The terminal operator can then retrieve this output as a number of
pages in any order; that is, in the crder they were prepared, or by
skipping forward or backward in the cutput page sequence.

CICS/VS provides a series of paging commands which can be used by
the terminal operatcr to select rages for display in whichever sequence
he desires (see Figure 3-3).

Terminal paging also provides the akility to combine several small
sections of data intc cne page which is then sent to the terminal.
This is referred to as “page building" and enables the application
programsmer to prepare his cutput independent of the physical output
capability of the terminal.

Terminal paging further relieves the applicaticn programmer of the
need to ccncern himself with the presentation of information in a form

36 CICS/VS System/Application Design Guide

suitable for display at the appropriate terminal, cr with presentation
of that information to the terminal in the sequence requested by the
terminal operator. The applicaticn frogrammer camn now prepare a series
of pages of information, on the assumption that the terminal operator
may wish to examine all c¢f that information, and then present those
pages directly to CICS/VS. ©Nc further programming is necessary to
handle the selection of pages for display at the terminal. Page
selection is made by the terminal operator, using the CICS/VS paging
comnmands.

This will simplify program development of ccnversational aprlications
and consequently increase prcgrammer productivity and decrease the
amount of future program maintenance necessary.

It is important that the system designer recognize that terminal
Fages are saved by CICS/VS in temporary storage. Temporary storage
may be supported in main storage alone, or on auxiliary storage using
VSAM; both will increase the demands for real stcrage during execution.
Using VSAM on a CPU with limited real storage available for virtual
storage paging may increase ragirg and therefore influence online
performance. Refer to Charter 7 for recommended minimum CPU sizes when
VSAM is used. Terminal raging is not supported ky the subkset option
of CICS/rOS/VS. (See “CICS/LOS/VS Subset Option.")

TERMINAL PAGING STATUS

Terminal paging is particularly oriented toward display terminals.
However, it can alsc be used for hard-copy terminals. A terminal can
be defined as having a "reguest raging" status or an "automatic paging"
status.

Display terminals must use a request paging status, while hard-copy
terminals can use either request paging or automatic paging status.
Request raging status enakles pages to be displayed at the terminal on
request bty the terminal operator, whc can specify the sequence of pages
to be displayed btased upon his requirements.

Automatic paging status, such as normally used for a hard-copy
terminal, causes CICS/VS tc automatically output the next page of
information on completion cf a previcus page. In this way, all
information is presented tc the hard-copy terminal in a continuous
output stream. If required, an automatic paging terminal may ke changed
to request paging status by either the terminal cperator or the
application program, enabling only those pages tc ke printed which are
of significance tc the terminal cperator. Similarly, the terminal
operator or the application program can change request paging status
to automatic paging for all terminals except display terminals.

Other terminal status specificaticns can also ke used to indicate
whether a terminal auvtomatically receives messages sent from the CPU
or from cther terminals, This is discussed under "Terminal Status" in
Chapter 4. Additional infcrmaticn on terminal paging can be found in
the CICS/VS Application Erogrammer's Beference Mapual, SH20-9003.

BESSAGE EFQUIING

Message routing directs messages to one cr more terminals in the
system, either by use cf the message switching tramnsaction, CMSG,
supplied by CICS/VS, or by the BMS RCUTE macro imstruction. 1In this
context, the term "message switching" refers to the use of CMSG. The
term "message routing" refers to the use of the EMS ROUTE macro
instruction. (The CMSG transaction itself uses the services of the
BMS ROUTE macro imnstructicn.)

Chapter 3. CICS/VS Data Communications Design 37

The CMSG transaction is entered by a terminal operator together with
a message to be directed tc ancther terminal, or to several terminals
identified by the terminal operator., (This is discussed further in
"Message Switching Tramsacticn (CMSG)Y later inm this chapter.)

The message routing macro instructicn permits an applicaticmn program
to send messages to one c¢r mcre terminals not in direct ccntrol of the
transaction. Message routing uses BMS, and saves messages in temporary
storage to be automatically sent tc the specified destination terminals
if the status of those terpinals allcws for reception of the messages
(refer to "Terminal Status" in Chapter 4). If a terminal is not
immediately eligible to receive the message, CICS/VS preserves it in
tempoary storage until such time as a change in terminal status allows
it to ke sent, cr a user-specified period of time elarses, whichever
cccurs finrst (see Figure 3-4). The message to ke delivered is separated
into a message for each terminal type that will receive it. Each
separate terminal-type message is saved in tempoary storage, together
with a destination terminal 1list fcr that particular termimnal type.

In addition, an applicaticn program can prepare pages of information
to be transmitted to terminals, using BMS and the terminal paging
facilities as described abcve. These pages can te routed to one or
more terminals or operators, through the use of the BMS RCUTE macro
instruction.

MESSAGE LELIVERY

The applicaticn programmer specifies the identification of the
terminal (or terminals) tc receive the message, and, opticmally, can
also specify a time when the message is to be delivered. If the message
cannot be delivered either irmediately or at the sgecified future time,
CICS/VS retains the message fcr a user-specified period of time. If
it still cannot ke delivered, CICS/VS notifies the originating terminal
or an alternative terminal specified when the original message was
entered.

CICS/VS allows messages tc be directed, not only to sgecific
terminals, but alsc to specific operators or operator classes. 1In this
way, sensitive security informaticn will only te delivered to those
operators authorized to receive it. It is retained in temporary storage
until the specified operatcrs sign on to the specified terminals, and
only then will relevant messages te delivered.

If a message is to be sent to a specified operator without
identifying a terminal, that orerator must already be signed on when
the message is first presented tc CICS/VS to establish the terminal
identificaticn tc be used. If a message is sent to a specific operator
and terminal, and that operator can never use that terminal (because
of geographic location, fcr example), the message will be accepted by
CICS/VS but may never ke delivered. This is noted by CICS/VS upon
expiraticn of the specified time within which the message must be
deliverxed.

Terminals in the IBM 3600 Finance Communicaticn System are identified
by a lcgical device code (LDC). Messages from CICS/VS are received by
the appropriate 3601 application program which represents the specified
terminal XD and controls the devices attached to the 3601, The message
from CICS/VS identifies the IDC (specified by the application
programmer) that is to receive the message; it is the responsibility
of the 3601 application prcgram to ensure that the message is delivered
to the device indicated ky the LDC. Logical device codes are described
in detail in "Basic Mapping Suppcrt Using VTAM®" in this chapter.

38 CICS/VS System/Application Design Guide

INPUT

CICS/VS PROCESSING

OUTPUT

Initiate Message Routing Operation

ﬁ Keyboard/Printer

Originator (Terminal Or
Program) Specifies:

@ Destination Terminal(s)
Destination Operator(s)
Delivery Time
Notification Terminal

L]
L]
e
® Message To Be Sent

N

w

. CICS/VS accepts message

switching transaction
from terminal, or BMS
route macro instruction
from application
program.

. Message is written to

temporary storage.

If message is to be de-
livered later, interval
control task initiation
is specified for required
timel(s).

Temporary

Storage

Temporary
Storage

. When delivery time is

reached, message is
read from temporary
storage and sent to
specified terminal(s)
or operator(s). If able
to receive message.

Keyboard/Printer

Line Printer

Destination Terminal(s)
Or Operator(s) Unable
To Receive

Disk
Display

Keyboard/Printer

Line Printer
Destination
Terminal(s)

Or Opérator(s)

. |f terminal(s) or oper-

ator(s) is unable to re-
ceive message after de-
fined delivery delay
period, originating (or
notification) terminal
is notified.

Keyboard/Printer

n
Printer

Originating (Or Notification)
Terminal

Figure 3-4.

CICS/VS Message Routing

MESSAGE SWITCHING TRANSACTION (CMSG)

CICS/VS provides the message switching transaction CMSG for

transmission of information ketween terminals.

Fiqure 3-4 shows the

use of this tramnsaction.

The availability cof the message routing feature in CICS/VS provides
a valuable capability fcr communication of information, not only Letween
terminals to satisfy application requirements, but alsc for better
control cf the online applications by the master terminal cperator or
supervisory terminal operators. These operators may broadcast messages
to all terminals under their contrcl informing them of certain
significant information.

CICS/VS message routine utilizes temporary stcrage, which will use
VSAM if auxiliary storage residence c¢f messages is desired. Message
routing and message switching are not supported bty the subset option
of CICS/DOS/VS. (See "CICS/DOS/VS Subset Option" in Chapter 7.)

Additional information abcut Lkasic papping suppcrt can be found in
the CIES/VS Application Erogrammer's Reference Manual, SH20-9003. 3600
logical device codes are described in more detail in the CICS/VS
Rdvanced Compunications Guide, SH20-9049.

Chapter 3. CICS/VS Data Communications Design 39

€ICS/VS IERMINRL CONTROL AND BMS

CICS/V5 applicaticn programs can communicate directly with terminals,
using:

e Basic mapping support (BMS) macro instructions
e Terminal control macro instructions

BMS enables application programs to request terminal imput or output,
using the DFHBMS macro instructicn:

e For input (TYPE=IN or MAEF)

e For output (TYPE=0UT)

e For terminal paging (TYPE=TEXTELD, PAGEBLD or FAGEOUT)
e For message routing (TYPE=ROUTE)

Terminal control enables programs to request additional functionms
by using applicaticn programmer LFHTC macro instructions to:

e frite data to a terminal (TYEE=WEITE or TYPE=EUT)

e Kead data from a terminal (TYPE=READ or TYPE=GET)

e Synchronize terminal I,/0 with processing (TYPE=WAIT)

e Transmit a page cf data and read reply (TIYPE=PAGE)

e Transmit to the buffer of a kanking terminal (TYPE=CRUFF)

e Test for the presence cf a banking passbook (TYPE=PASSEK)

e Reset a line (TYFE=RESET)

e Disconnect a switched line (TYPE=DISCONNECT)

e Erase and write data to a visual display (TYEE=(ERASE,WRITE))

e Specify the last cutrut message to a VIAM-suppcrted terminal
(TYPE=LAST)

In addition, the system programmer may use the following DFHTC macro
instructions to:

e Change the status of a terminal (CTYEE=STATUS)
e Locate a terminal entry in the TCT (CTYPE=LOCATE)
e Check the results of a previcus STATUS or LOCATE request (CTYPE=CHECK)

These macro instructions are described briefly in "Terminal Control
Using VTAM" and in mcre detail in the CICS/VS System Programmer's
Reference Manual, SH20-9C04.

The particular communication macro instructions used in programming
are not significant to the fcllowing discussion of data communication
design. However, if BMS is not used, the following facilities cannot
te provided by CICS/VS:

40 CICS5/VS System/Application Design Guide

e Terminal format independence
e Terminal device independence
®» Terminal paging
e Message routing

3270 BMS can be specified during system generation to provide
compatibility with previous versions of CICS. Terminal device
independence, terminal paging, and message routing need not be
specified. However, if they are specified, they require that temporary
storage (and also VSAM) be used.

BMS and terminal control macro instructions can be used in the same
application program, if required. Refer to the CICS/VS Application
Programmer's Reference Manual for further information.

CPU CONSOLE AS A CICS/D0OS/VS TERMINAL

CICS/DOS/VS allows the CPU printer keyboard or display console to
be used as a CICS/DOS/VS terminal. Users with only remote terminals
may enter master terminal operator, system administration, and CICS/VS
application transactions at the CPU, thereby isolating these activities
from any network considerations. See the Subset User's Guide (DOS),
SH12-5404 for additional information about this feature.

BASIC TEILECOMMUNICATIONS ACCESS METHOD (BTAM)

The Basic Telecommunications Access Method (BTAM) is used by CICS/VS
to support a wide variety of terminals. These include the following:

e 1050 Data Communication System
e 2260 Display Station

e 2265 Display Station

e 2740 Communication Terminal

e 2741 Communication Terminal

e Communicating Magnetic Card SELECTRIC Typewriter (CMCST) Model 6610,
used as a 2741

e 7770 Audio Response Unit

* TWX Common Carrier Teletypewriter Exchange Terminal Station (Model 33/35)
e 2770 Data Communication System

e 2780 Data Transmission Terminal

e 2980 General Banking Terminal System

e 3270 Information Display System

e 3735 Programmable Buffered Terminal

e 3740 Data Entry System

e 3780 Data Communications Terminal

Chapter 3. CICS/VS Data Communications Design 41

e System/3

e System/7

e System/370

e 3767 Communications Terminal (using 2740/2761 Compatibility Feature)
e 3770 Data Communications System (using 2770 Compatibility Feature)
See the CICS/VS System Programmer's Reference Manual for additional

information concerning ccmponents supported and features required for
these terminals.

The subset option of CICS/DOS/VS uses BTAM to support the following
terminals:

e 3270 Information Display System (lLocal and remote)
e 2740 Communication Terminal
e 2741 Communication Terminal

See the Subset User's Guide (DOS) for additional information.

BASIC GRAPHICS ACCESS METHOD (BGAM)

The Basic Graphics Access Method (BGAM) is used by CICS/0S/VS only.
It supports the local connection of the 2260 Display Station.

TELECOMMUNICATIONS ACCESS METHOD (TCAM)

CICS/05/VS provides an interface to the Telecommunications Access
Method (TCAM). This interface enables CICS/0S/VS to run with other
TCAM applications under a common TCAM environment, or under TCAM through
a VTAM-controlled terminal environment.

CICS/VS accepts data streams from TCAM-supported terminals which
can be edited in the message handler portion of the TCAM message control
program (MCP) to appear as EBCDIC or 3270 data streams.

With the exception of 7770 and 3270/2260 compatibility support, the
TCAM support provided in CICS/0S Standard Version 2.3 (Program Number
5736-XX7) is upward compatible to the CICS/0S/VS TCAM interface. See
the CICS General Information Manual, GH20-1028 (for information
regarding CICS/0S STANDARD Version 2.3, Program Number 5734-XX7) and
the 0S TCAM Programmer's Guide and Reference Manual, GC30-2024, for
information regarding the terminals supported.

Other TCAM-supported terminals, which were not supported by CICS/0S
STANDARD Version 2.3, are supported as data streams which are
terminal-type transparent to CICS/0S/VS.

TCAM is an optional access method which may be used alone, or in
combination with other access methods supported by CICS/0S/VS. When
communicating with terminals attached to 3704 or 3705 Communications
Controllers in NCP mode, TCAM must communicate through VTAM.

42 CICS/VS System/Application Design Guide

VIRTUAL TELECOMMUNICATICNS ACCESS METHCD (VTRAM)

The Virtual Telecommunications 2ccess Method (VTIAM) is used by
CICS/VS to support a numker cf prcgrammable terminal systems. These
terminal systems enable programming tasks (such as transaction editing,
validation, and formatting) relevant tc a remote location to be carried
out in programmalkle control units at the remote lccation. The
rrogrammable control units can orerate either onlime to a CPU, or
offline in a standalone mode. Ofperating offline, many of the control
units can permit terminal cperaticn to continue independent of
availability of the main CPU or associated ccmmunication links.
Terminal transactions can te recorded on disk storage (which is part
of the programmakle ccntrol unit) for later transmission when CPU
communication is available. Disk storage also enakles selected
application data sets tc be stored in the prcgrammable ccntrol unit
for direct reference by applicaticn programs executed in the ccntrol
unit on kehalf of terminals.

This concept cf "distributed function" enhances performance and
permits cost efficiencies to ke realized in the areas of data
transmission, system availability and configuraticr, and application
flexibility.

The Network Control System (NCS), which may be used by CICS/DOS/VS,
provides a subset of the support available with VIAM. Refer to "Related
Publications" in the Preface for NCS publicationms.

SYNCHRONCUS DATA LINK CCRTEOL (SLLC)

Further efficiency in data transmission and data integrity is
realized through the use of synchronocus data link control (SDLC) data
transmission. SLLC allows data to be transmitted in full-duplex mode
(transmitted simultaneously in beoth directions along a communications
line). VTAM suprorts both SLIC and full-duplex transmission.

A significant feature cffered by SDIC is data integrity. Eoth VTAM
and the control unit can check fcr errcr-free transmission of data and
can request retransmissicn if an errcr is detected. Each tramnsmission
between VTAM and a programmaltle control unit is assigned a sequence
number. Messages lcst, Lkecause cf ccmponent or ccmmunication failures,
are easily detected and the lost data recovered. If recovery is not
rossible at the time of detection, the end component (VTAM or the
control unit) requesting reccvery cam switch to an alternate processing
mode.

If cosmunication is lost tetween the CPU and the control unit, the
control unit may switch tc offline mcde. Transactions entered from
the attached terminals are processed by referencing data sets stored
on the disk storage in the ccntrcller. The transactions can be stored
on the disk for later batch transmission to the CPU when ccmmunications
are restored.

Message recovery and resynchrcnization are handled automatically by
VTAM and the controller. Either end of the link can tranmsmit a command
to test the sequence numkers cf the last transmitted messages and to
set the sequence numbers to reflect the status of the CPU and control
unit. If this operation determines that messages vwere lost,
resynchronization is accomplished ky retransaitting the lcst mescages
from copies stcred on the disk storage.

See IEM Synchromous Data Lipnk Ccnirol: Geperal Informationm,
GA27-3093, for additional information concerning SILC.

Chapter 3. CICS/VS Data Communications Design 43

CICS/VS uses VTIAM and SDLC to suprort the following programmable
control unit terminal systems:

e IBM 3600 Finance Ccrrunicaticn System
e IBM 3650 Retail Store Systenm
e IBM 3790 Communicaticns Systen
See "CICS/VS Session Types" for additional infocrmation about these
systems, and see CICS/VS System Ergarapmer's Beference Mapual SH20-9004,
for features suppcrted cr required by CICS/VS.
VIAM NETRORK
The VIAM netwcrk consists of the follcwing components:
e communicaticns ccntrclletrs
e communication lines
e rrogrammable terminal systems
These components are ccntrolled by the following programs:
e CPU program (VTAM applicatior prcgranm)

e Netwcrk Contrcl Frogram (NCP)--This program resides
in the communication contrcller.

e Function program or application rrogras block (AP)--
This program resides ir the prcgrammakle control unmit.

CICS/VS support of BTAM, EGAM, TCAM, and VTAM can co-reside in the
CICS/VS partition/region.

Communications Ccntrcllers

VTAM uses the IEM 3704/37(C5 Ccrmunications Controllers to enakle
part of the telecommunications prccessing to be eoved out of the central
computer and intc the netwerk. The 3604/3705 control the flow of
information between VTAM and terminals through use of a network control
program (NCP). The 3704,3705 and its NCP support a variety of remote
terminals. An NCP can be generated to handle lines in either network
control mode (for VIAM-supported terminals), in emulation mode (for
BTAM-supported terminals), or in koth modes. An NCP generated with
both functions is called an NCP with partitioned emulaticn programming
(PEP) extension. This permits bcth VTAM- and BTAM-supported terminals
to communicate with application programs (such as CICS/VS) through one
3704,3705.

Functions provided by the 3704,/37C5 include:

e line control

e dynamic buffering

e deleting and inserting line control characters

e translating character codes

handling recoverahbhle errors

44 CICS/VS System/Application Desigr Guide

e detecting permanent line errcrs
e gathering line statistics
e activating and deactivating lines and closing down the network
By performing these functions, the 3704,/3705 and NCP conserve central

computing resources. See Iptrodycticn to the IBM 3704 apd 3705
Communications Ccntroller, G227-3051, for additional information.

Shared Resources

VIAM permits its network resources to be shared among the various
VTAM applicaticn prcgrams keing executed in separate partitions/regions
in the CEU. One VTAM application program may be CICS/VS, which uses
VTAM to establish communicaticn Letween CICS/VS applicaticn programs
and terminals, and another program could be IMS/VS operating in a
different partition/regicn.

VTAM controls the use of paths through the 3704,3705, communication
lines, and programmakle ccontrollers so that several applications may
communicate with different terminals on a single line. Also, the
terminals on the same line may cocmrunicate with any of the application
programs using VIAM. Thus, cne terminal on the line may be
communicating with CICS/VS, while ancther terwinal on the same line is
communicating with IMS/VS. However, once a terminal begins to
comnunicate with a VTAM application program, that terminal cannot
communicate with another VTAF application prograe until the first
program breaks its logical connection and releases the terminal. While
connected to CICS/VS, the terminal may, of ccurse, enter transactions
to initiate different CICS/VS application programs.

For further informaticm on VTAM, refer to JIptrgcductiop to VIAN,
6C27-6987, and JIAM Copcerts apnd Elanning, 6C27-6998.

USE QF VIAM BY CICS/VNS
CICS/VS uses VTAM to ccmmunicate with the following terminal systems:
e 3600 Finance Communicaticn System
e 3650 Retail Store Systenm
e 3790 Communication Systen

These terminal systems have "intelligent" capabilities and use a
programmakle contrcller tc direct the operation ¢f a number of attached
terminals. The controller ccmmunicates with VTAM, vhich directs traffic
between CICS/VS and the contrcller. The 3601, 3€51, and 3791 are the
controllers for the 3600, 3650, and 3790 systems respectively.

A logical connection is established betvween CICS/VS amnd a controller
program. The ccntrcller program and its asscciated terminals, is called
a logical unit. The VTAM connection with a logical unit is regarded
by CICS/VS as similar to a physical connection with ETAM-supported
terminals. The CICS/VS terminal control table (ICT) is used to defirne
the status of each VIAM lcgical connection. A 4-character terminal
identification is used to identify each particular TCT terminal entry,
and hence identifies the lcgical unit.

Chapter 3. CICS/VS Data Communications Design 45

CICS/VS SESSION TYPES
CICS/VS supports several different logical connections (called
sessions) with the 3600, 365C, and 3790.

3600 Sessions

A 3600 session is established between CICS/VS and a 3600 application
program klock (AF) imn the 36C1 ccntrcllexr. The AF is regarded by
CICS/VS as a logical unit, referred to by its terminal identification
in the TCT. The AP, in turn, controls the operation of ome or several
of the following terminals attached to the 3601:

e IBM 31604 Keykoard Display

e IBM 3610 Document Printer

e IBM 3611 Passbook Printer

e IBM 3612 Passbook and Documert Erinter
e IBM 3618 Administrative line Frinter

o IBM 3614 Consumer Transaction Facility

The 3614 may also be attached directly to a 3704/3705 and is then
regarded as a separate logical unit. BAs many as 96 terminals may be
attached to a 3601. Disk stcrage in the 3601 cortains 288,000 bytes
of storage which permits multiprcgrammed execution of several APs.
Each AP may control several terminals. Individual terminals are
transparent to CICS/VS and it is the responsibility of the AP to
interpret specific requests from the terminals, communicate them to
CICS/VS, interpret the output from CICS/VS, and direct it to the
appropriate terminal.

CICS/VS communicates directly with an AP as a separate logical unit,
and is unaware of the operation c¢f other APs in the 3601. The other
APs may ke communicating with CICS/VS as other lcgical units, or with
other VT AM application programs (such as IMS/VS).

3600 sessions permit the following CICS/VS services to be supported.

e Operator signon

e Basic mapping support

e Terminal paging

e Message routing and message switching

e putomatic task imitiation

e Master terminal cperatcr functiocms

e Supervisory terminal operator fumctionms
e Message recovery and resynchronization

Refer to Introducing the IBM 3600 Finance Compupication System,
GA22-2764, for further inforwaticn on 3600 units and features, and to

the CICS/¥S Advanced Copmypicaticn Guide, SH20-9049, for information
on the support of the 3600 by CICS/VS.

46 CICS/VS System/Applicaticn Design Guide

3650 sSessions

The 3€51 Store Ccntrcller is a prcgrammable ccntrol unit to which
as many as 191 terminals may be attached for use in a retail store
environment. The terminals are:

e IBM 3653 Point of Sale Terminal
e IBM 3275 Display Station

e IBM 3284 Printer

e IBM 3657 Ticket Unit

e IBM 2659 Remote Communications Unit

(Fefer to IEM 3650 Retail Store System Introduction, GA27-3075, for
further information on 3650 units and features.)

The 3657 and 3659 are nct directly used by CICS/VS, but are used by
the 3651. The 3651 controller ccntains up to 9.3 pillion bytes of disk
storage and function programs (FEs) which control the operation of the
varicus terminals attached tc the 3651. CICS/VS ccmmunicates with the
FP and is not aware of individual terminals. It is the responsibility
of the FP to interrret specific requests from the terminals, select a
relevant session type for communicaticn to CICS/VS, interpret the output
from CICS/Vs, and direct it tc the arpropriate terminal. The different
session types which may ke selected are:

e 3275 host conversaticnal sessicn

® 3653 host conversaticnal sessicn

e Pipeline session

e Application frogram session
3275 Host Conversational Session: This session permits a 3275 to enter
transactions to ke transmitted tc CICS/VS and to initiate CICS/VS
application programs similar to tramsaction entry from BTAM-supported
terminals. A number of 3275 host conversational sessions can be defined
in the 3651 (less than cr equal tc¢ the number of 3275s).

The 3275 terminal operator requests the 3651 ccntroller to connect
him to an availakle 3275 hcest conversational sessicn. It is then the
responsibility of the 3651 to establish the logical connection (session)
between the 3275 and CICS/VS. The session is allocated an available
terminal entry in the TCT and is knewn to CICS/VS by the relevant TCT
terminal identification.

3275 host conversational sessions permit the following CICS/VS
services tc ke supported.

e Operator signon

e Basic mapping support

* Terminal paging

e Message routing and message switching

e Automatic task initiation

Chapter 3. CICS/VS Data Communications Design 47

e Master terminal cperatcr functicns

e surervisory terminal cperator functions
The following service is not sugpcrted:

e Message recovery and resynchrcnization

3275 host ccnversaticnal sessions are the only 3650 sessions which
pernit BMS maps to be stcred on disk in the 3651 instead of in the CPU.
CICS/VS transmits the unformetteé cutput data, plus the map name, to
the 3651, which inserts device-dependent characters and, using the
specification in the map, formats the output fcr display cnm the 3275.
See "Basic Mapring Support Ccmmunication using VIAM" for further
details.

3653 Host Convercsational Session: This session rermits a 3653 to enter
transactions to ke transmitted tc CICS/VS, and to initiate CICS/VS
application programs in a manner similar to that used for 3275 host
conversational sessions. A rumber of 3653 hcst ccnversational sessicns
can te defined in the 3651 (less than cr equal tc the numkter of 3653s).

The 3€53 terminal operator requests the 3651 stcre controller to
connect him to an availakle 3653 hcst conversaticral session. This
ccnnecticn, and allocaticn of an available terminal entry in the TCT,
is performed by the 3651 in a manner similar to that used for 3275 host
cocnversational sessicns. The sessicn is then identified to CICS/VS by
the relevant TCT terwminal identificaticn.

3€53 host conversational sessions permit the fcllowing CICS/VS
service to be sugported:

e Basic mapping sugpert

The following services are nct supported:

e Orerator signon

e Automatic task initiation

o Terminal paging

e Message routing and message switching

e Master terminal cperatcr functicns

e Supervisory terminal crerator functiomns

e Message recovery and resynchronization
Pipeline Session: One pireline sessicn may be established in a 3651
to supporxt multiple 3653 terminals. The purpose cof this session is to
suppoert mwinimum delay transactions from 3653 terminals, such as a credit
status check and update prior to initiating a particular customer
transaction, or adjustment of a custcmer's credit status cn cancellation
cf a credit transaction.

CICS/WS permits a numker cf TCT entries tc be specified as belonging
to the pipeline session. These ate used as a pocl of entries to permit
multiple tasks to be initiated fcr different 3653s using the pipeline
session. 1A separate pocl cf TCT entries can be specified for each

3651, or all TCT entries can be comkined in a single pool to service
all 3651 pipeline sessicns,

48 CICS/VS System/Aprlication Lesign Guide

The TCT pools represent a number of user-specified tasks to be run.
CICS/VS passes an input transaction from a pipeline session to one of
the available TCT entries in the pool for that session. This permits
the processing of a number of credit transactions to be multitasked
for optimum response.

To identify the 3653 initiating pipeline transaction, the 3651
transmits a terminal identification to CICS/VS at the beginning of the
input transaction. This is not used by CICS/VS, but is passed to the
CICS/VS application program. The program may use the identification
to maintain audit trails or statistics. The only change to data that
can be made is to the status byte. 2All other data must be returned
unchanged.

Pipeline sessions permit the following CICS/VS service to be
supported:

e Basic mapping support
The following services are not supported:
e Operator signon
& Terminal paging
e Message routing and message switching
e Automatic task initiation
e Master terminal operator functions
e Supervisory terminal operator functions
e Message recovery and resynchronization
The following restrictions aprly for pipeline sessions:
s CICS/VS logging is not performed.

s Only one input message and one output message are supported
for each task.

e Fach input message results in the initiation of a new task.

e A pipeline session can only be initiated by the 3651.

e A conversational transaction cannot use a pipeline session.

¢ The transaction code to initiate a task is defined in the TCT
when it is generated. The input message is not examined for a

transaction code.

e Unique operator identification is not associated with the TCT
entry used by a task.

e Request volume that exceeds the user specified number of concurrent
attached tasks is not queued within the system.

To meet the rapid response needed for credit transactions, the
pipeline session provides fast throughput for a specific transaction
type. In addition, the user can specify to the 3651 a time value at
which the 3651 will use an alternate user-defined procedure for
responding to these transactions.

Chapter 3. CICS/VS Data Communications Design 49

2pplication Program Sessions: This session (also referred to as an
Interpreter session) results in communication between CICS/VS
application programs and specific application programs in the 3651.
The application program session is primarily intended for the
noninteractive data transfer of application-oriented information such
as:

» Transaction log from 3651 disk to the CPU
e Inventory receipts file from 3651 to CPU
e Batch store messages and reports from the CPU to 3651

Ticket data +to be used in the preparation of magnetic
stripe tickets on the 3657

In most cases, where CICS/VS is involved with application programs
in the 3651, the logical terminal in the 3651 is disk. In some
applications, disk serves as an intermediate or staging area between
the CICS/VS application program and the ultimate destination. This
usage is not detected by CICS/VS.

Application program sessions may be initiated either by CICS/VS or
by the 3651 controller. When initiated by CICS/VS, the CICS/VS
application program issues a terminal control PROGRAM macro instruction
to identify the particular 3651 application program with which it wishes
to communicate. This 3651 program may then exchange data with the
CICS/VS program or may perform some function independent of CICS/VS as
specified by the user.

Another possibility is to initiate the session from the 3651
controller. This type of session occurs as the result of a user-written
program requesting (through the RCP interpreter) to establish a session
with the host.

Application program sessions permit the following CICS/VS service
to be supported:

s Basic mapping support
The following services are not supported:
e Operator signon
e Terminal paging
e Message routing and switching
e Automatic task initiation
e Master terminal operator functions
e Supervisory terminal operator functions
¢ Message recovery and resynchronization

Multiple input and output messages may be transmitted between CICS/VS
and 3651 application programs.

See the CICS/VS Advanced Communication Guide, SH20-9049, for further
information on the use of the 3650 by CICS/VS.

50 CICS/VS System/Application Design Guide

3790 Sessions

The 3791 Controller is a programmable control unit, to which up to
16 terminals and 2 line printers may be attached. It is used in a
general-purpose data collection environment by many types of industries.
The terminals are:

e IBM 3793 Keyboard Printer

e IBM 3277 Display Station

e IBM 2741 Communications Terminal
e IBM Line Printer

e IBM 3792 Auxiliary Control unit, remotely located
from the 3791, to which may be attached 3793 or 3277
terminals, and one additional line printer.

The 3791 Controller contains a diskette and up to 27.5 million bytes
of disk storage. Operation of the various terminals attached to the
3791 is controlled by the 3790 function programs.

A 3790 terminal operator can select an appropriate 3790 program to
accept data entered at the terminal, edit it, and store it on disk for
later transmission to the CPU. General-purpose data entry editing
carried out by the 3790 program ensures that:

e Alphabetic fields contain only alphabetic characters,
and numeric fields contain only numeric characters

e Fixed-length fields contain the required number of characters

e Variable-length fields do not violate the minimum or maximum
length specified

¢ Required fields are not omitted
e Self-check digits are valid
e Numeric fields fall within a specified value range

e Field values are valid based upon application criteria
such as a field's relationship to other fields, or to
data held in tables or stored on 3791 disk data sets

e Field values are valid based upon the existence of required 3791
disk data set records, or the status of a particular data set
record. For example, the 3790 program can ensure that an inventory
update that reduces "quantity on hand" does not produce a negative
quantity.

The 3790 can operate completely offline, accepting and editing data
from terminals, and storing it on disk for later batch transmission to
the CPU., It can also operate online to the CPU, establishing sessions
between CICS/VS and 3790 FPs, which edit terminal input, pass input to
CICs/Vs for further processing, and accept output from CICS/VS to direct
to the terminal. The 3790 is suited for remote offices where the
functions of data entry, data inquiry, calculation, and document
preparation are required.

Refer to An Introduction to the IBM 3790 Communication System,
GA27-2767, for further information on 3790 units and features.

Chapter 3. CICS/VS Data Communications Design 51

CICS/VS application programs communicate with 3790 function programs,
and do not support or directly interact with terminals controlled by
the 3790 programs. CICS/VS is not aware of any other function programs
which may be concurrently executing in the 3790. These FPs may each
separately establish sessions with CICS/VS, or with other VTAM
application programs (such as IMS/VS).

3790 Host Inquiry Session: This session permits a 3790 FP to accept
transactions from the terminals it controls and transmit those
transactions to CICS/VS. Each host inquiry session is allocated the
specific terminal identification of its TCT entry. Any number of
CICS/VS transactions can be transmitted during a session, and each
transaction can involve several input and output messages.

3790 host inquiry sessions permit the following CICS/VS services to
he supported.

® Operator signon

The £ollowing services are not supported:
e Terminal paging
e Message routing and message switching

e Automatic task initiation

Master terminal operator functions

e Supervisory terminal operator functions

Message recovery and resynchronization
e Basic mapping support
The following restrictions apply to 3790 host inquiry sessions.

e The FP must initiate the session. The 3790 cannot accept
unsolicited output from CICS/VS.

e The FP must start the exchange of data with a CICS/VS transaction
by issuing a PUT, and must issue a GET to receive the last output
from the CICS/VS transaction.

e The maximum input message is 240 bytes. However, several input
messages can be transmitted by the FP and be concatenated by the
CICS/VS application program {through user programming) for input
greater than 240 characters.

e The FP is responsible for the unchaining of chained output.

Refer to the CICS/VS Advanced Communication Guide, SH20-9049, for
further information on the use of the 3790 by CICS/VS.

ESTABLISHING CICS/VS SESSIONS WITH VTAM

Sessions between CICS/VS and VTAM can generally be initiated either
from the CPU or from the logical unit. However, the 3790 must initiate
a session with the CPU. It cannot accept a session initiated by the
CPU.

CPU sessions are initiated by:

e CICS/VS automatically at CICS/VS initialization time

52 CICS/VS System/Application Design Guide

e VTAM system operator request
e CICS/VS master terminal cperator request

e CICS/VS to automatically initiate a task for
a logical unit

Logical units initiate sessions by:

e the remote controller automatically at controller
initialization time

e the remote controller on terminal operator request

when a connection is established, CICS/VS allocates the logical
connection (and hence the logical unit) to a relevant TCT terminal
entry. The logical unit may then transmit transactions to CICS/VS for
processing, These transactions result in the initiation of CICS/VS
application programs the same as for BTAM-supported terminals. Refer
to the CICS/VS Advanced Communication Guide, SH20-9049, for further
details on establishing connections.

cICcss/VS application programs communicate with logical units by means
of terminal control or basic mapping support.

TERMINAIL CONTROL COMMUNICATION USING VTAM
Each of the basic terminal control operations, READ, GET, WRITE,
PUT, WAIT, SAVE, and CONVERSE, is available for communication with

VTAM-supported terminals.’' ERASE, when used to erase the display screen
of a 3604 attached to a 3600, can only be specified using BMS.

Terminal I/0 Overlap

VTAM permits terminal I/O operations to proceed concurrently with
application program processing. This enables terminal I/0 to be
overlapped with CICS/VS. application program processing. The CICS/VS
application programmer can specify whether a terminal control request
is to be initiated immediately to communicate with a VTAM-supported
terminal while application program processing continues. The programmer
can check for completion of the request at a later time by issuing the
terminal control WAIT macro instruction.

Alternatively, the programmer may specify that a terminal control
request is not to be initiated immediately, but is to be delayed until
the program issues a terminal control WAIT macro instruction, passes
through a user-defined synchronization point, or terminates. Delayed
initiation of VTAM terminal control recquests provides compatibility
with the manner in which BTAM-supported terminals are controlled.
Further, it can ensure that no output is transmitted to a logical unit
until the task which generated that output is no longer vulnerable to
backout in the event of a system failure. (See "Deferred Output
Integrity" in Chapter 8.)

Full-Duplex Transmission

VTAM supports full-duplex transmission of data between the CPU and
logical units. Thus, input and output may be proceeding concurrently
on the same line, to different controllers multi-dropped on that line.
CICS/VS enables the application program to request terminal input when

Chapter 3. CICS/VS Data Communications Design 53

needed, and to direct terminal output to the relgvant terminal or
logical unit when processed (hal€-duplex processing).

Although CICS/VS application programs process in a half-duplex @ode,
for optimum line efficiency data can still be Fransmltted by VTAM in
full-duplex mode. Logical units may transm@t input to CICS/VS
application programs on an anticipatory basis. _VTAM queues this input
until the relevant CICS/VS application program issues a terminal control
READ or GET macro instruction. The input message has already reached
the CPU, and is then presented to the application program to satisfy
the request.

Function Management Header

output messages transmitted by terminal contrcl to particuler

VTAM-supported terminals require certain information within the message
to identify the disposition of the output by the logical unit. This
information is called a function management header (FMH) and ccmprises
the first part of the output message. It is 3 bytes long for the 3600,
and is of variable length, 6 bytes or greater for the 3650. The FMH
comprises at least a length byte, a message description byte, and a
logical device code byte. When used for communication with a 3275 host
conversational session in a 3650 it may also contain a BMS map name,

The message description byte indicates to the logical unit whether
the output message was generated by CICS/VS itself or by a CICs/vs
application program. It also identifies whether the output message
has already been formatted (either by BMS or the CICS/VS application
program) and contains device-dependent characters. The logical unit
can deliver the formatted message to the relevant device with no further
processing, if required.

The logical device code (IDC) in the FMH identifies the description
of the output by the logical unit. (See "Basic Mapping Support
Communication using VTAM" in this chapter, for additional information
about LDCs.)

It is the responsibility of the CICS/VS application program to insert
the appropriate FMH for the logical unit at the beginning of the output
message. See the CICS/VS Advanced communication Guide, and the CICS/VS
Application Programmer's Reference Manual for further details.

System Programmer Macro Instructions

Additional terminal control macrc instructions are available for
use by the CICS/VS system programmer. These enable the status of a
terminal to be changed in the TCT, or a specific terminal entry to be
located in the TCT, using the terminal control STATUS and LOCATE macro
instructions respectively. The result of these operations can be
checked using the terminal control CHECK macro instruction.

The STATUS, LOCATF, and CHECK terminal control macro instructions
are intended primarily to be used by the system programmer in the
network error program (NEP). The NEP enables the system programmer to
attempt recovery of error exception conditions encountered with
transmission to VTAM-supported terminals.

See the CICS/VS Advanced Communication Guide and the CICS/VS System
Programmer's Reference Manual, for further details on these system
programmer macro instructions.

54 CICS/YS System/Application Design Guide

BASIC MAPPING SUPPORT COMMUNICATION WITH VTAM
The benefits of format (mapping) and terminal device independence

offered by BMS to BTAM-supported terminals are also available to
VTAM-supported terminals.

Input Mapping

BMS performs input mapping for the 3650 system (3653, 3270HC), but
does not perform input mapping for the 3600 or 3790 system. The 3601
application program associated with the logical unit is responsible
for removing device-dependent characters from the terminal input
message, It is also responsible for formatting input data prior to its
transmission to CICS/VS. BMS MAP macro instructions are ignored, and
the input data is passed to the CICS/VS application program without
change.

BMS IN macro instructions result in BMS issuing a terminal control
GET macro for the application program. The received input data is not
mapped and is passed to the application program without change.

The application program may use the built-in function INFORMAT macro
instruction to locate delimiters inserted in the input message by the
3601. (See "Input Transaction Design" in this chapter for additional
information.)

BMS Output Mapping

BMS performs output mapping for VTAM-supported terminals (except
for 3790). Device-dependent characters are inserted into output
messages by BMS based upon the characteristics of the device intended
to receive the output. BMS constructs and inserts the function
management header (FMH) into the output message prior to issuing
terminal control output requests on behalf of the CICS/VS application
program. The FMH has the same format as described in "Terminal Control
communications using VTAM." The message description byte is set up by
BMS to define a formatted output message. The CICS/VS application
program jidentifies the output device to BMS for VITAM-supported terminals
by means of the logical device code (LDC). The LDC is used by BMS to
identify the page size and device type. BMS inserts the LDC in the
FMH prior to requesting terminal control output. The CICS/VS
application program is relieved of the responsibility of constructing
+he FMH. This permits programs to be written independent of particular
terminal characteristics.

Logical Device Code Uses

The LDC may be used to identify, to BMS and the APB, any 3600 device
(except the 3614) attached to a 3600 work station with an appropriate
page size. BMS uses the map specified by the application program to
format the 3604 output data. It inserts the device-dependent characters
into the output stream to ensure that the data is displayed as specified
by the map. The LDC is also inserted into the output stream for
transmission to the 3601. On receipt of the data, the 3601 application
program determines (from the LDC) which device is to receive the output.

In addition to identifying specific devices and their associated
page size, the LDC can also communicate other information to the
controller application program. For example, the IDC may identify a
specific preprinted form number to receive the output on a specific
printer, or on any printer available to that logical unit. The ILDC
may also be interpreted by the logical unit as a reguest to turn on

Chapter 3. CICS/VS Data Communications Design 55

(or off) particular terminal indicator lights, transmit data accumulated
on disk during offline. operation to the CPU, or change processing modes
(for example, change to after-hours processing operation).

The LDC is used by the CICS/VS application program to communicate
logical disposition of output to the logical unit, and can represent
any logical meaning useful to the installation's purpose.

CICS/VS permits the use of as many as 255 different logical device

codes. Fach may have a different meaning, dependent upon the particular
controller application program interpretation.

Map Residence in Controllers

Some VTAM-supported controllers, such as the 3651, permit formats
to reside outside the CPU on disk in the controller for 3275 host
conversational sessions. A BMS output request from a CICS/VS
application program results in transmission of the output data (without
mapping) and the format name in the FMH, to the remote controller. The
controller retrieves the specified format from the 3651 disk, and writes
it to the screen on the relevant 3275 attached to the 3651. Thus, CPU
processing is reduced, and additional flexibility is available to the
installation to tailor a general purpose map to specific 3650 systems
in individual retail stores.

BMS Alarm Indicator

The CICS/VS application program, using BMS, can request that an
alarm indicator be turned on at the terminal upon receipt of the output
message. This alarm indication is transmitted by BMS to the logical
unit by means of the function management header (FMH). The logical
unit responds to this request by turning on an appropriate indicator
light on the terminal that is to receive the output.

BMS 1I/0 Overlap

The CICS/VS application program can request that a BMS operation,
and the associated terminal I/0, be initiated immediately.
Alternatively, the program can request that the BMS operation be delayed
until a WAIT macro instruction is executed, the program passes through
a user-defined synchronization point, or the program terminates. This
immediate, or delayed, request is specified as part of the BMS macro
instruction in the manner described in "Terminal Control Communication
using VTAM." It has the same purpose as for terminal control: to
provide compatibility with BTAM operation and to improve output message
integrity.

TERMINAL DEVICE INDEPENDENCE WITH VTAM AND BTAM

The use of BMS permits CICS/VS application programs to be written
independent of the particular terminal to be used. For VTAM-supported
terminals, default options provide compatibility with BTAM supported
terminal operation. For example, the default option (unless specified
otherwise) is to delay the initiation of terminal I/O until the
application program issues a WAIT macro instruction, passes through a
user-defined synchronization point, or terminates.

If a 1IDC is not specified in a BMS request to VTAM-supported
terminals, a default value is used. This can be specified when the
TCT is generated as a unique value for a specific TCT entry, for a
group of entries, or for all entries in the TCT. 1If, however, a LDC

56 CICS/VS System/Application Design Guide

is specified in a BMS request to BTAM-supported terminals, it is
ignored.

BMS requests which specify 3270 attribute characterists can be used
with VTAM supported terminals. 1In this case, the 3270 attribute
information is ignored. The same function may be specified either in
the particular map associated with the VTAM-supported terminal, or in
the program in the remote controller which receives the output.

For these reasons CICS/VS application programs can be written to
communicate with a variety of BTAM- and VTAM-supported terminals.
Unique device characteristics may be specified in a map generated
specifically for a terminal to achieve a general format function
required by the CICS/VS application program. The CICS/VS application
program identifies a map name in its BMS request; BMS appends to that
map name a character which identifies the particular terminal type
which is communicating with the program. BMS then retrieves the unique
device-dependent map for that terminal type and uses it to format the
terminal data.

Consequently, existing BTAM-supported terminals may be used to test
CICS/VS application programs intended primarily for operation with
VTAM-supported terminals before the installation of the VTAM terminals.
Alternatively, sequential terminals, such as card reader / line printer,
disk, or tape, may be used for testing. However, testing must model
the operation of remote controller programs. For example, input must
be presented to CICS/VS in exactly the same format as would be presented
by the remote controller. Ovutput must be accepted from CICS/VS as
presented to the remote controller®. In the case of input mapping for
testing for the 3600, the mapped input from BTAM-supported or sequential
terminals must be the same as presented by the 3601. This is necessary
because mapping with actual 3600 input is ignored, and the input data
is presented to the application program without change.

Testing is limited to those operations which can be performed by
the relevant testing terminal, or which can be preplanned in the test
input. BTAM-supported and sequential terminals are unable to exercise
the same data handling and processing capability possible with remote
controllers.

TERMINAL PAGING USING VTAM

Some sessions established with remote controllers support terminal
paging. (See "CICS/VS Session Types.") The CICS/VS application program
can build pages to be associated with specific logical device codes
used by a logical unit. BMS separately controls the page construction
for each LDC, and then makes available all pages built for each LDC
used by the logical unit.

The terminal operator at the remote controller can request that
pages associated with a particular LDC for that logical unit be
displayed. (See Figure 3-3 for terminal paging commands.) The
appropriate LDC pages desired can be requested by appending the ILDC to
the terminal paging command; all LDC pages can then be displayed on
request., However, any LDC pages which have not been viewed will be
lost when the terminal orerator requests purging of pages associated
with the logical unit.

MESSAGE ROUTING AND MESSAGE SWITCHING USING VTAM
Some sessions established with remote controllexrs support both

message routing and message switching. (See "CICS/VS Session Types.")
Pages, built by CICS/VS application rrograms or by terminal operators,

Chapter 3. CICS/VS Data Communications Design 57

can be associated with particular logical device codes for transmission
to one, or a group, of logical units. The only restriction is that

the same LDC be associated with all logical units in a message routing
or switching request.

Pages delivered to the specified logical units can be viewed by the
terminal operator using the appropriate LDC appended to the terminal

raging commands as described for "Terminal Paging using VTAM" in this
chapter.

- - - - —— - - ——— " - —— -~ - —— D P = - _—— - — - ——

The basic concepts and facilities of:
e Basic mapping support

e Terminal device independence

Terminal paging
e Message routing
e Virtual Telecommunications Access Method (VTAM)
have now been outlined. The remainder of this chapter describes

techniques for using these CICS/VS facilities in data communications
design.

CONVERSATIONAL APPLICATIONS

The effectiveness of an online application depends to a large degree
on man-machine communications. The computer is a tool used to achieve
+he objectives of the online application. To ensure success of online
applications, the computer must provide the user with information to
enable him to carry out his function effectively.

Data communication design represents the interface between the
application and the machine. This is particularly true for
conversational application design.

At all times during conversational message design, the system
designer must keep in mind that the main objective of an online
application is to assist the terminal operator. Thus, message formats
should be designed to make the terminal operator's job easier. For
example, input message formats generally should not be designed as
fixed-format messages as for a card, but should enable the terminal
operator to enter information in a variable-length format. CICS/VS
can convert the variable-length input message into a fixed-length format
for processing of the application program, as discussed below.

Also, if the task response time for a terminal operator is limited,
the operator should be informed of the interval in which he is expected
to respond.

TASK INITIATION

CICS/VS determines whether an input message received from a terminal
satisfies an outstanding read request placed for that terminal by a
currently executing program. If no application is currently active
tfor the terminal which originated the input transaction, a task is
initiated to process it.

58 CICS/VS system/Application Design Guide

Task initiation refers to the identification of a particular input
transaction, the program to be used, and the creation of a task to
process the transaction. Transaction identification can be achieved
in several ways, as shown in Figure 3-5.

Chapter 3. CICS/VS Data Communications Design 58.1

INPUT CICS/VS PROCESSING OUTPUT

l 1. Use permanent ">
W —

> code Task

if specified in TCT Control
during SYSGEN Area
(TCA)

Keyboard/Printer

Appli-
cation
Program

or

2. Use temporary
transaction code
if specified in TCT

® Transaction Code by prior program.
(1-4 Chars) or

® Temporary 3. Use PA, PF or
Transaction Code light pen as

" Terminal
Entry

® Permanent)
Transaction Code code, if utilized Terminal
operator
or
4, Use first 1 through 4
—[characters of input
message as trans-
3270 action code.
Display 6. Scan PCT for
Program ™~ transaction code
Control as identified in
Table steps 1 through 4
® Program Attention (PCT) above.
(PA) Key 8. 1 found, deter-
® Program Function mine relevant
(PF) Key program.
® Selector Light Pen 7. Allocate TCA,

load program if
not in storage,
and transfer
control.

Extended Description

Only one of steps 1 through 4 is used to identify the
transaction code,

Figure 3-5. Task Initiatiocn

Trapsaction Code

The first omne to four characters ¢f a terminal message, delimited
by a defined character, are used as a transaction code. Valid
transaction code delimiter characters are the field name start character
or field separator character (both of which can Le defined in the systenm
initialization table), and any ccde with a hex value less than or equal
to X*'40*. The tranmnsaction ccde is used to searchk the prcgram control
table (PCT) to identify that tranmnsacticn code. Cn locating the
appropriate entry im the PCT with the same transaction code, the name
of the program tc be first used to process the tramsaction is obtained.
CICS/VS then creates a task ccntrcl area (TCA) to control the processing
of the transaction by the prcgram. The PCT can also identify the size
of a transaction work area (TWA) to be appended to the TCA and used as
a program work area during processing.

The prograr name identified in the PCT entry is located by CICS/VS
using an address pointer im the ECT pointing to the relevant program
entry in the processing program takle (PPT). The PPT entry for that
program indicates the language in which it wvas written (Assenmbler,
COBOL, or PL/I), the size of the program in bytes, whether it is
presently in CICS/VS address space and if so, the number of other tasks
concurrently using it, and the lccation of the program on the CICS/VS
program library on disk. 1If the program is not already in CICS/VS
address space, it is loaded from the progras library and control is
passed to it to process the transaction.

Chapter 3. CICS/VS Data Communications Design 59

3270 Attention ID Transactiop Initiaticn

In the case of the 3270 Information Display System, each of the
three Program Attention (PA) cr twelve Program Function (PF) keys or
the selector light pen can be defined in the PCT tc initiate specified
prograns. By pressing the relevant FA or PF key, or by selecting a
pen~-detectable field with the selectcr light pen, the appropriate
program is initiated. This is equivalent to entering a transaction
ccde of from one to four characters.

The use of the selector light pen for transaction initiationm is
discussed in more detail inp "Multiple Choice Format" later imn this
chapter.

Iemporary Transaction Code

Oon completing the prcecessing cf an input transaction, an application
program cptionally may identify the transaction code to be used with
the next input sent from that terminal. The next input need not be
preceded by any tramnsaction code, or PA or PF key, or be selected by
the light pen.

This program-identified transacticn code is referred to as a
temporary transaction code, and is specified in the program control
RETURN macro instructicn pricr tc termination of a task associated with
that terminal. This temporary tramnsaction code is used, %with the next
input from the terminal, to identify a program to be used to process
that input. Any FA, PF, light pen, or transacticn code in the input
is ignored. After use, the tempcrary tramnsaction code is removed, and
must be reestablished by a subsequent RETURN macro instruction, if it
is tc be used with further input from the terminal. Therefore, an
application program can transmit a response to a terminal requesting
further informaticn from the operator. The next transaction code to
be used is set by the prcgram so that, when the requested information
is supplied by the operator, the program to process that information
will automatically be initiated.

Permanent Transaction Code

A perpanent tramnsaction code can ke defined for any CICS/VS terminal,
at the time the CICS/VS terminal ccntrcl table (TCT) is generated.
This is particularly useful for those terminals which, by the nature
of their device characteristics, are unable to start an input
transaction with a valid tramsaction identification. 1In this case,
every inrut message is initially passed to the same application program,
which is related to the permanently defined transaction code for that
terminal. This application frogras examines the input tc determine
the processing required, and identifies subsequent application progranms
which operate on that tramsaction. The permanent transactionm code. is
used with any input message from a terminal which does not satisfy a
pending read request issued ky a program. It also overrides any PA,
PF, selector light pen, cr tramnsacticn code used in that message. A
temporary transaction code cannot be used with a terminal utilizing a
permanent transaction code. Certain VIAM sessions established for the
3650 or 3790 require that a rermanent transaction code be specified in
the relevant TCT entries for the sessions. (See "CICS/VS Session Types"
in this chapter.)

60 CICS/VS System/Application Design Guide

INPUT TRANSACTION DESIGN

The following design techriques for input messages may be used for
terminals attached directly to CICS/VS or for terminals attached to
programmable ccntrcllers such as the 3601, 3651, and 3791.

The fixed-format technique relates to the design of input messages
such that each field of informaticn cccuries a fixed location in the
input message (see Figure 3-6). While this is the normal technique
for design of transacticns entered froe cards, it is not generally
suitable for conversational applications. While a fixed message format
rakes it easy for the aprlication program to extract information from
the message for processing, this technigque makes it more difficult for
the terminal operator to enter that information, and is subject to
cperator error.

Yariable-Format Messages

The variable-format technique is similar to the fixed-format
technique previously described, except that required fields need not
alvays be located in the same positicns in the input message (see Figure
3-6). Fields are identified by their relative positions within the
message as for fixed-format messages, kut each field is separated from
cthers by a delimiter character cr characters. Fossible delimiter
characters are the blank, slash (/), equal (=), ccmma (,), or dash (-).
Using delimiters, the terminal operator can enter information in the
required sequence, without ccncern for the actual physical location of
fields within the message.

CICS/Vs provides a built-in function, which uses an input formatting
macro instructiom tc ccnvert this variable-format message into a
fixed-format message for processing by the application program. Fields
are located in the input message based upon the field separator
character, which is a delimiter character defined ky the user at CICS/VS
system initialization time. These fields are inserted by CICS/VS in
the appropriate locations in the converted fixed-format message based
upon the requirements of the application program. Refer to the CICS/VS
Application Programmer's Reference Manual, SH20-9003, for more details.

Consegquently, the terminal operatcr can enter the required
information in the specified sequence, without ccncern for the actual
physical location of that infcrmation in the message transmitted to
the CPU. The input message is converted to fixed format and presented
to the applicaticn program as if it had been entered by the terminal
operator as a fixed-format message. This enables the terminal operator
to enter the input message irn variable format suitable to bhim, yet be
presented to the program in fixed format for easy processing.

Chapter 3. CICS/VS Data Communications Design 61

FORMAT ENTERED AT TERMINAL
(b IS BLANK)

[136266] JONESBUIBBBBBIBBGEYS [JA] 312-AZ |

CUST. CUSTOMER NAME INITS|CUST.
NO. REF. NO. FORMAT PRESENTED TO PROGRAM

FIXED-FORMAT MESSAGE

FORMAT ENTERED AT TERMINAL

1362,JONES,JA,314-AZ |
COMMA IS FIELD SEPARATOR
CHARACTER (MAY ALSO USE
8,./-)
CUST. CUSTOMER NAME INITS | CUST. AFTER PROCESSING BY CICS/VS
NO. REF.NO. | INPUT FORMATTING MACRO
INSTRUCTION

VARIABLE-FORMAT MESSAGE

FORMAT ENTERED AT TERMINAL

[NO=1362,IN=JA,NM=JONES,RF=314-AZ | oA g_'r‘:'; IS FIELD NAME

COMMA IS FIELD SEPARATOR
CHARACTER

CUST. CUSTOMER NAME INITS | CUST. AFTER PROCESSING BY CICS/VS
NO. REF.NO. | \NPUT FORMATTING MACRO
INSTRUCTION

KEYWORD-FORMAT MESSAGE

Figure 3-6. Fixed-, Variakle-, and Keyword-Format Input Messages

This technigue can be used with CICS/VS application programs designed
to process input from the 3600 Finance Communicaticn System. BMS does
not mar input data from a 3601 ccntroller, but passes it to the
application program withcut change. (See "Basic Mapping Support using
VTAM.") Therefore, the 3601 Contrcller can format the input message
prior to transmissiocn tc CICS/VS fcr processing ky the CICS/VS
application program by using the built-in function INFORMAT macro
instruction. This formatting involves insertion (by the 3601 AP) of
delimiter characters in a variable fcrmat message entered from terminals
attached to the 3601. The same delimiter characters defined by the
user at CICS/VS system initialization time should also be used by the
appropriate 3601 APs which prepare the input for transmission to
CICS/VS.

62 CICS/VS Systemy/Application Design Guide

——— RSl RS SS=SZSS

This format is similar to the varialkle-format message described
above, except that each field is fpreceded by a field name start
character (defined at system initialization time) and a unique keyword.
The keywcrds and fields can ke variable format. Eecause each field is
identified by its arpropriate keywcrd, the sequence of fields in the
input message may vary.

The terminal cperator enters information in variable format, in the
sequence which is best suited to his requirements. The CICS/VS input
formatting macro instructicn locates each field kased on its keyword
and rositions that field in a fixed-format message presented to the
application program. If a particular keyword is cmitted, that field
is left klank in the ccnverted fixed-format message.

Both variable-format and keyword-format information cam be included
in an ingut message. The CICS/VS input formatting macro instruction
can process both input techniques as part of the same message.

Figure 3-6 illustrates tyrical fixed-, variable-, and keyword-format
input messages.

Keyvword-format messages offer maximum flexibility to the terminal
operator, not cnly in the positicring cf infcrmaticn in the message,
tut also in the sequencing of infcrmation in the message. However,
the information can still be precsented to the application program in
fixed format for processing.

A disadvantage for the terminal cperator, however, is that he must
accurately key in additicnal infcrmation, namely, the keyword for each
input field. This additional keying takes time and is vulnerable to
error, although it precvides pcsitive identification of each field.
Because this keyword fcrmat permits a number of inrut fields to be
present or absent, depending upcn the characteristics of the
application, it could in some instances result ir less keying than for
variable-format messages.

The keyword format technique can also be used for input from a 3601
Controller, as described in "variakle Pormat Messages." The additional
keying overheads of the keywcrd format technique are a comnsideration
with input from 3601 contrcllers. The terminal cperator can enter
input to the 3601 in any ccnvenient format. The 3601 AP can then insert
the necessary keywords and delimiter characters tefore transmission to
CICs/vs.

Fill-in-the-Elanks Format

This message format acccmeodates the inexrerienced terminal operator.
It involves the display of descriptive informaticn identifying each
field to be entered, as illustrated in Figure 3-7, and applies mainly
to display terminals.

The most useful approach is toc display an image of the information
normally provided cn the input dccuments used by the application. For
example, an image of a product order form may be displayed for an order
entry application., The terminal operator, using the description
preceding each field, enters the required information. In the case of
the 3270, only mcdified fields, such as that infcrmation entered from
the keyborad, will be transmitted to the computer. The descriptive
information is not transmitted, unless specified by the agprlication
rrcgram for identificaticn purposes. ©Each input field transmitted from
a 3270 is identified by its ruffer address. This buffer address is

Chapter 3. CICS/VS Data Communications Design 63

WORK ORDER REQUEST FORM — FILL IN BLANKS

WORK ORDER NUMBER: | 20165 | MONTH: [3] Dav: [26] vear:[72] nour:[10] min:
DEPT. NO.: DEPT. NAME: | MAINTENANCE l PROJECT NO.: ACCT. NO.: E
zone:[1] amea[s | emomrv:[1 | tvee:[m_] eouementno:[zws |

EQUIPMENT NAME: | BOILER FEED PUMP — UNIT NO. 2]
status:[1| REQUESTER: | J.JONES] ExTension:
WORK ORDER TITLE: I BOILER FEED PUMP MAINTENCE ‘

WORK REQUEST: l BOILER FEED PUMP NO. 2 LEAKING EXCESSIVELY l

L]
HARD COFY REQD.:

Figure 3-7. Fill-in-the-Blanks Input Message Format

used by tasic mapping suppcrt (BMS), in conjunction with the input map
defined for the transaction, to identify each input field and map the
input message into a fixed-fcrmat message. Figure 3-7 illustrates a
typical fill-in-the-blanks irput message format.

An example of the use of this technique is found in the Display
Management Systes II (Prcgramk numbers 5736-XC4 for DOS/VS, and 5736-XClU
for 0S/VS). Refer to "Related Publications" in the Preface for relevant
DMS II publicaticns.

Multiple Choice Format

This format uses the cpticnal selectoxr light pem on the 3270
Information Display System and involves the display of a number of
pen—-detectable fields., These fields present a series of multiple
choices, one or several of which can ke selected by the terminal
operator by placing the light pen to the pen-detectable fields to be
selected.

The output response from a previous applicaticn program may definme
certain fields displayed cp the 3270 screem as pen-detectable. Such
pen-detectable fields are identified by a question mark, "greater than"
(>) symbcl, or blank character at the start of the field. A
pen—-detectable field with its first character blank is referred to as
an "immediate" field.

64 CICS/VS Systemy/Application Design Guide

The appropriate choices are made ty the operator, by simply touching
the light pen to the relevant fields. A guestion mark is changed to
a "greater than" (>) sign to signify selection of that field. The
greater-than character is changed kack to a questicn mark if the field
is selected by the light pen a seccnd time, to indicate that the
previous selection of that field is to be ignored. Selection of an
immediate field (first character Lklank) results in the transmission of
a message to the CFU. This nmessage contains only the buffer addresses
of fields selected ky the ren and changed to a greater-than character.

The attention ID (AID) character transmitted from the terminal on
selection of an immediate field is used to lccate the PCT entry for
immediate pen-detectable fields, and tc transfer control to a common
user-written program. This program examines the Luffer addresses
representing selected fields, and interprets these selections through
the last BMS map used with that terminal. When designing pen-detectable
screen formats, each screen format tc ke supported by this ccmmon
program should be identified.

Another technique for multiple chcice input is for the application
program to list (or display) several choices, identifying each choice
ty number. The terminal cperator may them select an appropriate
response by keying in its identifying nunmter.

Figure 3-8. Multiple Chcice Input Message Fcrmat

Selection of nrultiple choice fields can be used by unskilled terminal
operators in user departments, tc enter informaticn for online

Chapter 3. CICS/VS Data Communications Design 65

applications. Figure 3-8 illustrates a typical multiple choice input
message format using pen-detectakle fields.

Any of these transacticn formats may be used for terminals which
conmunicate with CICS/VS either directly or through programmable
ccntrollers.

TRANSACTION EDITING

After defining the methods to be used for tramnsaction initiation
and designing the input message formats, the editing and validation to
ke performed on the message ky the CEU or prcgrammable controller must
te defined.

With the combination c¢f BMS and the CICS/VS input formatting macro
instruction, the applicaticn program is presented with an input message
in a defined fixed format. The editing to be done by the application
progran is application-dependent; Figure 3-9 suggests some of the
techniques available., Scme of these editing techniques are supported
by CICS/V5 built-in functicns, while others must ke supported by
user-written routines.

CUST. | CUSTOMER | INITS. | CUST. PAYMENT
NO. NAME REF.NO.

1362, JONES, JA, 314-AZ, 843.21
6148, SMITH, HW, 031492, 6332.50
3882, BROWN, AA, 1131, 28.00
5199, WILSON, JJ, 00316, 93998.60

TOTALS 101202.31

TRANSACTION EDITING TECHNIQUES

« FIELD VERIFY/EDIT** « LIMIT RANGE
- ALL ALPHABETIC (A-2) « TABLE SEARCH**
-ALL NUMERIC (0-9) - BINARY
- ALL PACKED DECIMAL -SEQUENTIAL

+ CHECK DIGIT + REASONABLENESS CHECK
- MODULUS 10 « DATA SET CHECK
-MODULUS 11 « SIGHT VERIFICATION

« HASH OR CONTROL TOTALS « KEY VERIFICATION

+ ZERO PROOF TOTALS

**CICS/VS MACRO INSTRUCTIONS AVAILABLE FOR APPLICATION PROGRAM USE

Figure 3-9. Transaction Editing Techniques

Built-in functions are not sugported by the subset option of
CICS/pD0S/VS. (See “CICS/DCS/VS Subset Option® in Chapter 7.)

66 CICS/VS Systesm/Application Design Guide

Many of these techniques may te izplemented by the user in
programmable ccntrcllers tc provide for detection and correction of
invalid data before tramsmission to the CPU. Editing of data at the
time of initial entry at the scurce permits: earlier detection of
errors, more efficient data transmission, and reduced CPU processing.
With the offline capability cf BTAM supported prograsmable controllers
such as the 3735, 3740, and VTAM supported programmalkle centrollers
such as the 3600, 3650, and 3790, data entry application availability
is enhanced. Data may be edited amnd ccllected offline on disk storage
for later transmission to CICS/VS. Only validated data need be
transmitted to the CPU. This data may be transmitted at line speed,
resulting in significant time and cost savings.

Field Verify/Edit

CICS/VS provides editing macrc instructions as built-in functions
to enakle the ccntents cf a data field tc ke verified as either
alphabetic or numeric. On determining the contents of the data field,
CICS/VS kranches to the apprcpriate routime in the application program.
Any field may ke checked fcr the fcllowing:

e Entirely alphabetic (klanks, or A to 2)
e Entirely EECLIC numeric (0 tc 9)

e Entirely packed decimal (COMEUTATICNAL-3 in ANS COEOL or FIXED
CECIMAL in PL/I)

If alphabetic characters have Leen entered intc a data field that
must be all numeric, the CICS/VS field verify function enakles control
to be passed to a user-specified routine. Usually an error message is
sent to the terminal operator notifying him that ncnnumeric data was
entered in the particular field.

The CICS/VS field edit furction allows the aprlication program to
present a field ccrtaining EECDIC numbers intermixed with cther values
(for example, part number 119-445/B) to CICS/VS, and receive a result
with all nonnumeric characters remcved. The result can ke in EBCDIC
decimal format. In effect, this function is the reverse of editing
(that is, a de-edit cperation) that is performed cn a field for output.

for additional informaticn.

Check Digit

Numeric fields may be checked by user-written rcutines for validity,
ty means of a check digit aprended tc the end of the field. Modulus
10 or Modulus 11 check digit editing is provided by the user program
to verify the correctness ¢f a field or to identify errors., This
technique can be used for an identification field such as a part number.
When the number is first assigned, a user prcgram computes the revelant
check digit and aprends it tc¢ the identification number. The check
digit is then considered an integral part of the number, and can be
used to check the accuracy of the entered number whenever that number
is referenced.

Hash or Control Totals

Contrcl totals can be developed by user programming of specified
fields in a number of tramsactioms. Ccntrcl totals can also be
developed for a katch of tramnsactions and compared by the user progranm
against similar control or hash totals developed manually prior to
entry of the batch into the system. If the program-developed and

Chapter 3. CICS/VS Data Communications Design 67

manually developed totals do not agree, the particular error or errors
can ke located by ccmparing the information entered in that field with
the origine original source information for each transaction in the
batch,

Zero Proof Totals

Generally, zero proof tctals operate on a numker of data fields
within one transaction. These fields are added and subtracted together
according to the requirements of the application. A nonzero result
indicates an error in ome cr several of the fields. This editing
technique may ke supported by user~-written rcutines.

Lipmit Range

This technique checks that the value in a data field lies Letween
certain application-dependent limits. A field 1lying outside those
limits is identified as an error. The user is resgomnsible for
developing this editing suppert.

This editing technique uses the data field contents to locate a
similar entry in an application-dependent table. If the exact field
contents cannot ke located in the takle, an error is indicated. A
substitute value can be presented to the applicaticn program, if
required.

CICS/VS provides a takle search built-in functicn to assist
application programs in utilizing takles for tramnsaction editing or
processing. Either a sequential or a kinary table search may ke
specified. Refer to the CICS/VS Application Programper's Reference
Manual, SH20-9003, for more information. v

easonakleness Check

The program applies various lcgical tests (prcvided by user-written
routines) to the ccntents c¢f a data field, to determine the
reasonableness of that informaticn as related to the particular
application. If the contents of the field have not met the application
criteria, it is identified as having amn error. Focr example, the progranm
may examine a prcduct number entered as part of am order entry input
message, in relation to the quantity of that product ordered. The
application may require that certain products only be ordered in
particular gquantities. An ordered gquantity outside that defined for
the rroduct would then be regarded as an error.

Data Set Check

This editing technique is sipilar in concept to the takle search
technique previously described, kut is far more extensive and
conprehensive. It requires user-written routines to satisfy the unique
application editing requirements. Information in the input transaction
is used ry the applicaticn program to access a data set related to that
transaction. Information in that data set record is then used to
validate other infcrmaticn in the transaction. For example, an
application might require a custcmer's number and name to be entered.
The customer numker is used Ly the applicaticn program to access the
relevant customer record, and the name in the reccrd is ccmpared with

68 CICS/VS System/Application Design Guide

the name in the input transaction to determine that the ccrrect customer
number was entered with the custcmer name.

Depending upon the disk capacity and capability of the programmable
controller, application data sets or subset informatiocn may be stored
on disk in a remcte ccntrcller. The 3601 contrcller permits up to
288,000 bytes of data to be stored on disk. The 3651 and 3791
controllers support as many as 9.3 million and 27,5 mwillicn bytes of
disk storage respectively. This permits some data set validation of
input to be carried out in the remcte controller before transmission
to the CEPU.

Sight Verification

Sight verification can ke used by the terminal cperator in
conjunction with data set checking as descritked abcve. In this
instance, information from the input transaction is used to retrieve
a relevant data set record. Infcrrmaticn in that record is then
transmitted back to the terminal fcr sight verification by the terminal
cperator. For example, in apr crder entry aprlication, the customer
number entered at the start ¢f an crder can be used to access the
relevant customer record. The custcmer name and address are then
displayed at the terminal for confirmation against the actual name and
address cf the perscn placing the crder.

A less effective editing technique is the sight verification of
keyed information against the source information, pricr to transmitting
the keyed transacticn intc the ccmputer. This technique is sukject to
error and is completely dependent upon the accuracy and
conscientiousness of the terminal cperator.

Key Verification

Certain data fields cannot be edited by any of the techniques
described above. An exasple of such data fields can be sales amounts
relating to products, or dcllar amounts to be entered. While control
or hash totals can be developed across a series cf transactions to
identify an error, the applicaticn could require mcre complete checking
than ccntrol totals alone. Key verification refers to the double keying
of specified fields at different times. This nust be supported by
user-written routines. The first entry of the field is saved by the
computer and compared against the second entry of that field at a later
time. If both entries disagree, one or both of the fields are in error
and correction is necessary.

Many of the editing techniques previously described can be
inplemented not cnly in CICS/VS, but also in programmable controllers
such as the 3735, 3740, 3600, 3650, or 3790. The 3740 and 3790 are
specifically designed for data entry and editing agplications for many
different industries.

These editing techniques may ke integrated directly into CICS/VS
applicaticn programs, or may be carried out in a prior data entry step.
This step may be accomplished offline for later batch tramsmission to
CICS/VS. Alternatively, it may ke carried out omline to CICS/VS with
terminals such as the 3270, Ly using Video/370 (Frcgram number 5736-RC3
under DOS/VS, or 5734-RC5 under 0S/VS). Refer tc "Related Publications®
in the Preface fcr relevant vVidec/370 publications.

Chapter 3. CICS/VS Data Communications Design 69

ERROF COEFERECTION

This section identifies scme technigues which may be utilized by
the system design team fcr error correction. Identification (through
editing) of a transaction errcr tc ke corrected ky the terminal operator
can either be made:

1) on the first occurrence of an error in the message, or

2) after the entire message has teen edited and all errors have
been detected.

In conversaticnal applications, the terminal cperator should
generally be notified by the applicaticn program cf any e€rrors
inmediately after the input transaction has been edited. The error
message should be concise and meaningful, and shculd identify the
particular field or fields ir error, the nature cf the error, and the
acticn required ky the terminal cperator. The operator should be given
the copportunity to obtain more information describing the particular
type of error detected if he needs it.

Error Message Contents

The following tyres cf errcr messages may ke used, depending ugon
the requirements of the application:

e Error number
¢ Frror number and text
o Abbreviated text, with a user-writtenm HELP facility

An error number enables the errcr tc be uniquely identified.
Additional information describing the cause cf the error may be provided
in Terminal Operating Procedures documentaticn for the application.

The user—-written HELF facility enables the terminal operator to oktain
more detailed information (that would ctherwise ke included in an
operating procedures manuval) , by a special inquiry requesting the
computer to provide the necessary detail. This technique has the
advantage of keering the mcst current cperating procedures available

to all terminal operators. It reduces the user's cost of developing,
distributing, and maintaining written information cn operating
rrocedures for terminal cperators. However, it has the disadvantage
that it is utilizing available ccmputer resources to provide information
which can alternatively ke dccumented in an operating procedures manual.

CICS/VS-generated system errcr messages to be transmitted to the
3600 consist of only the CICS/VS errcr messages and pumbers documented
in the CICS/VS Messages and Codes Banuwal, SHZ0-900€. The 3601 AF must
recognize the error numbers and insert the necessary text kefore
transmission to the terminal operator. Additional information can be
found in the CICS/VS Advanced Communication Guide; SH20-9049

Error Message Docupentaticn

The informaticn which should ke provided in documentation detailing
an error includes:

e Error number and errcr message

70 CICs/vs System/Application Design Guide

¢ Cause of the errcr
e Operator correction

This documentation of errcr messages should be made available online
or incorporated into the user's terminal operating procedures
documentation. Other required dccumentation should include CICS/VS
terminal operating procedures and CICS/VS-supplied terminal transactions
and error messages. See the CICS/VS Messages and Codes Manual,
SH20-9008, and the CICS/VS Terminal Cperator's Guide, SH20-9005 for

additional information on error messages.

To use terminal operator time mcst effectively, the application
should be so designed that the cperator is required to enter only the
field or fields in error. The operator should nct be required to
reenter the entire input tramsacticn.

For example, in the case cf the entry of new-ktusiness insurance
policies that can approach 1000 characters in an ipput tramnsactiom, it
would be unwise to require the entire 1000 characters be reentered if
qQne field was in error.

However, in an crder entry application, the infcrmation entered for
each line item ordered is gemerally cnly product number and gquantity.
Detection of an invalid product number could require the reentry not
only of the correct groduct number, Ltut also of the quantity. Figure
3-10 illustrates an error field correction procedure which may be
utilized by applicaticn prcgrams.

INPUT APPLICATION PROGRAM PROCESSING OUTPUT

Enter
Input
Message

1. Receive input message from
terminal.

2. Edit input message and send error
message back to terminal.

Display
Error
Message

Temporary
Storage

3. Write original input message to
temporary storage.

> 4. Receive corrected field from
terminal.

T 6. Retrieve original input message
emporary from termporary storage.
Storage

. Combine corrected field with
original input message.

7. Re-edit input message, and process > Edited Input Message

if no error.

=]

Figure 3-10. Error Field Correction

Chapter 3. CICS/VS Data Communications Design 71

Use of Temporary Storage

If the terminal operator is required to input only the field in
error, the applicaticn prcgram must save the valid sections of the
input transaction. Temporary stcrage enables application rrograms to
save data either in dynamic storage cr on disk, identifying the data
uniquely for later retrieval by the same program c¢r ancther prcgram.
As the terminal cperator may take some time to enter the necessary
correction, the valid part of the input transaction should norrmally be
stored in temporary storage cn disk, rather tham in dynamic storage.
Dynamic storage may then be utilized more efficiently for other
purpcses.

When transmitting amn error message to a terminal, the application
program may set a temporary transaction code (see "Task Initiation" in
this charter). Using this, when the ccrrected field is retransmitted
from the terminal, a unique correction program may be initiated, based
on the temporary tramsacticn code, requiring no further action by the
terminal operator other than correction of the field.

The usert's correction program retrieves from temporary storage the
transaction that was crigipally entered by the terminal cperator. The
corrected field is then inserted in place of the error field, and the
entire transaction is reedited tc determine whether the cerrection is
valid, and that no cthexr errcrs have been introduced. Imn the event of
other errors being detected, further error messages are sent to the
terminal cperator.

The error correction prccess may be iterative until the input
transaction has Lteen completely validated. In the event that the
terminal cperator is unakle tc ccrrect the transaction, he should be
allowed to enter a unique code (such as “CANCEL") instead of the
corrected field, indicating that this errcr transaction is to ke
ignored. The transaction will then need to ke ccmpletely reentered at
a later time.

OUTPUT FORMAITING

The actual format of output responses is application-dependent.
Hovever, a number of guidelines may fprcve useful here.

The output response is the wmain interface between the online
application, under the ccntrcl of the computer, and the terminal user.
Accordingly, it shculd be easily read and understood by a typical user
of that online application.

The amount of informaticnm that must be presented in response to an
inrut request degends upcn the requirements of that request. For
example, an inquiry requesting display of a customer's current account
balance is a request fcr specific information. However, a request for
display cf a customer's account details generally requires all
informaticn relating to that acccunt.

Terminal Paging

Depending upon the particular terminal device being used, the amount
of informaticn tc ke displayed may exceed the physical capacity of that
device. For example, a 3270 Model 1 displays 480 characters in 12
lines of 40 characters per line. The display of 15 lines of information
requires that information ke kroken into two rages.

The use of terminal paging in CICS/VS enables considerable
flexibility to be achieved in cutrut formatting, regardless of the

72 CICS/VS System/Aprlication Design Guide

physical capacity of the terminal which will receive the output. This
feature is available only for BMS-surpcrted terminals. Refer to
"Terninal Paging" for further detail.

s S e o

Batch applications are gemerally associated with high-speed data
transmission terwkinals such as the 277C, 2780, 3600, 3650, 3735, 3740,
and 3790, or comruters used as terminals, such as the System/3 Models
6 and 10, the System/7, cr the System/370.

In this envircoment, the emphasis is on the tramsmission of data
from the terminal (or remote computer) to the central computer. Because
of the nature of these devices, they are not designed for easy terminal
operator interaction as is the case for conversational terminals.
Generally, a batch of transacticns is transmitted to the central
computer, which rrocesses that batch and then transmits any error
messages back to the remcte terminal or computer.

This online application ervircnment is similar to the mnormal tatch
processing environment. - In koth cases, a batch cf transactions is read
and processed, and errcor messages are rroduced in an error list for
offline correction.

This application approach is useful in an online envircnment where
considerable amounts of informaticn are to be transmitted across long
distances. A high-speed batch terminal is able tc transmit larger
volumes cf informaticn thanm a ccnversational terminal, thus utilizing
expensive long-distance transmission lines more eccnomically. In this
instance, the emphasis is cn transmitting the data to the central
computer as quickly and efficiently as possitle, editing that data,
and then transmitting any errcr messages back to the remote location
quickly and economically.

ASYNCHRONOUS TRANSACTION EROCESSING

CICS/VS provides a furcticn, called asynchroncus transaction
processing (ATP), which is designed for easy implementation of batch
applications. ATP allows transactions, and the data asscciated with
those transactions, to be transmitted in batches. Each batch is given
a unique identification by the terminal operator. CICS/VS accepts each
transaction frcm a batch terminal and delays its initiaticn until all
specified input tatches have keen transmitted.

ATP requires that trapsient data intrapartition file support be
generated as part of the user's CICS/VS system. This enakles ATP to
save batches of data for future fprccessing and editing.

When all input batches have been transmitted, the transactions within
the Lkatch are then processed by applicaticn rrograms based upon their
respective tramsacticn ccdes. Any error messages are directed by the
editing program to transient data for later transmission back to the
terminal.

hen the batches have ccmrleted processing, the terminal operator
may then request that the cutput, if any, be sent to the terminal that
originated the batch, or tc a different terminal. Depending upon the
amount of processing tc be carried cut on transmitted batches, the
batch terminal may be disconnected from the transmission line by the
user until output is available tc be transmitted kack to it.

The ATP facility is designed specifically for handling input from
batch terminals such as the 3780, 2780, or 2770. Generally, ATP can

Chapter 3. CICS/VS Data Communications Design 73

be used from other interactive terminals (such as the 2741). However,
ATP does not support input from 3270 or 2980 terminals. Also,
applicaticn prcgrams which intend to execute under contrcl of ATP must
not use the BMS terminal paging macrc instructions. Figure 3-11
illustrates the use of the CEDR and CWIR ATP commands, which are used
respectively fcr input and output of batched data.

The subset option of CICS/D0OS/VS does not support ATP.

CICS/VS AND APPLICATION

INPUT PROGRAM PROCESSING OUTPUT
;
1. Operator enters CRDR
CADR command specifying ATP
input.

CRDR NAME=BATCH1,DELIM=$$$$,

A PASSWD=PAY0061,EXIT=A1 2. ATP allocates batch

queue in transient data. Transient
Data

$$$$ HOLD
$$$8
data 3. Transactions are trans-
mitted to CPU and
RNC written to batch queue B
data by ATP.

[] 4. Atend of all input)
batches, they are Processing
scheduled for pro- Program

cessing by appli-
cation programs.

o

. Application programs
direct output to tran-

L TRNA
sient data.
Transient
Data ' CWTR i
6. Operator enters CWTR
command, requesting

Transient
J Data

ATP output. Output
CWTR NAME=(BATCH1,BATCH2), From
SOURCE=TRM1,PASSWD=PAY0061, 7. Output is sent to re- Processing
COPIES=2,EXIT=A2, SAVE OR questing terminal by
RELEASE OR DELETE OR STATUS CICS/VS ATP program. I

Extended Description

Operator specifies batch name in CRDR com- Two consecutive delimiters C CWTR command identifies batch
mand, and optional delimiter characters for indicate batch end. Batch namels), password source termi-
batch, password to prevent unauthorized -can be held or saved if not nal(s) and number of copies. User
access to output, and user exit routine for finished. exit can be specified. Batch can
extra processing. be saved, released or deleted, or

status may be requested.

Figure 3-11. ATF Terminal Operatcr Commands

GENERAL EATCH FPRCCESSING

Some guidelines are presented belcw to assist in the design of batch
applications when the design team does not wish to use ATE.

Execution of a katch applicaticnm is, by its nature, of long-term
duration. Accordingly, amy storage required in executing batch
application programs will te in use for a relatively long time, compared
to conversational applications. Depending upon the amount of dynamic
storage availakle for both batch and ccnversational applications, this
requirement for long-term stcrage may affect the performance of
conversational arpplications. Tc¢ minimize the amount of storage used
by batch programs, the following arproach may be ccnsiderxed.

74 CICS/VS sSystem/Application Design Guide

Ideally, an application program should be written to accept batch
input transactions from the terminal, and queue these transactions on
transient data. At the completion of each batch, the last transaction
may automatically initiate a user program to validate and process the
queued batch. In the meantime, the remote terminal is freed to allow
further data input. On completion of batch processing, any error
messages which were gqueued on transient data to send back to the remote
batch terminal may be either automatically transmitted back as soon as
that terminal is idle, or transmitted on request by the remote terminal.

This approach is similar to that adopted by ATP as described
previously. It offers the principal advantage of very efficient
utilization of data transmission lines, and the overlapping of
processing one batch with the transmission of the next batch to be
processed. On the other hand, ATP enables all input batches to be
transmitted to the CPU, and then allows the user to disconnect the
batch terminal from the transmission line until all of those batches
are processed. At that time, the user or the CPU may reestablish
connection between the terminal and CPU for output transmission.

This ATP approach is particularly economical when the processing
time for all batches is longer than the input transmission time.

An alternative approach that can be used involves the batch
application program reading a transaction, immediately following which
the input transaction received is edited and error messages are queued
on transient data for later transmission. However, this approach
suffers from the disadvantage of less efficient data transmission.

Data is transmitted from the remote terminal, followed by a pause for
processing., Then the next transaction is transmitted and processed,
with the line again being idle while the second transaction is being
processed. No overlap of processing with data transmission is possible.

Either the first method described above, or the use of ATP, is
recommended for most eftficient and economic line utilization.

TERMINAL ERROR RECOVERY

CICS/VS uses BTAM, BGAM, TCAM, or VTAM for the control of terminals.
These telecommunications access methods detect transmission errors
between the central computer and a remote terminal, and automatically
invoke error recovery procedures, if specified. These error recovery
procedures generally involve the retransmission of data a defined number
of times, or until that data is transmitted error-free. 1In the event
that the error is not corrected after the specified number of retries,
CICS/VS passes information-connected with the error to the terminal
abnormal condition program (BTAM-supported terminals) or to the node
abnormal condition program (VIAM-supported terminals) for additional
processing.

TERMINAL ABNORMAL CONDITION PROGRAM (TACP)

The TACP is used by BTAM-supported terminal. After determining that
the error is unrecoverable, the TACP sets default actions based on
keeping the network live. These may involve:

e Setting the terminal out-of-service

e Setting the line out-of-service

Chapter 3. CICS/VS Data Communications Design 75

e Abnormally terminating the transaction
* Disconnecting a switched line

Before these default actions are taken, CICS/VS passes control to
a user-supplied terminal error program (TEP) for application-dependent
action if necessary (see Figure 3-12). On return from the terminal
error program, TACP performs the indicated action as previously set by
TACP or as altered by the TEP.

CICS/VS provides a sample TEP, which can be used to generate a
specific TEP to meet the user's terminal error recovery requirements.
A generated example of a TEP is supplied as part of the subset option
of CICS/DOS/VS. (See the Subset User's Guide (DOS) for additional
information.) This TEP can be used without change or as an example when
developing a unique user-written TEP.

Generation of a sample TEP is described in CICS/VS System
Programmer's Reference Manual, SH20-9004.

CICS/VS AND USER TERMINAL

INPUT ERROR PROGRAM PROCESSING OUTPUT
Application Program
I 1. Program issues terminal control
WRITE macro to originating terminal,
DFHTC TYPE=WRITE specifying output message.
Qutput

. CICS/VS sends output message to ter- Message

' QOutput Message | > minal.
3. On transmission error, BTAM attempts
error recovery.
Transmission
Error 4, If not successful, CICS/VS terminal
Indication control attempts recovery.
. H still not successful, default ac-
tions are set by terminal abnormal
condition program (TACP}. User-Written
Terminal
) Error
3 antrol passed to user-written ter- Program
User-Nritten minal error program (TEP).
Terminal
S TEP may:

~

@

\/?

o

~

Error
Program — Attempt further recavery
— Allocate alternate terminal or
device to receive output
— Accept default actions and return

Display

to TACP, or Printer

— Alter default actions and return
to TACP,
CICS/VS TACP
Default 8. CICS/VS TACP terminates task and > CICS/VS
Actions carries out other defaults, unless TACP
changed by TEP.

Extended Description

m TACP sets default actions to: — Abnormally terminate task
~ Mark terminal out-of-service
~ Mark line out-of-service
- Disconnect switched line

unless altered by user-written terminal error program (TEP).

Figure 3-12. CICS/VS Terminal Error Recovery

TERMINAL ERROR PROGRAM

The terminal error program may be supplied by the user to attempt
further error recovery, if necessary. Alternatively, a sample TEP can
be generated or the CICS/DOS/VS subset option TEP may be utilized.
(See CICS/VS System Programmer's Reference Manual, SH20-9004.) For

76 CIC5/VS System/Application Design Guide

example, a user-written TEF can specify additional retries to ke carried
out by CICS/VS before the error is ccnsidered completely unrecoverable.

Alternatively, the user-written TEP can request that the cutput
message ke queued on disk using CICS/VS transient data, to be
automatically transmitted to the error terminal when the problem has
teen rectified.

The user-written terminal errcr program might specify that the error
terminal and line are not to be marked out~of-service, a switched line
is not to be discornected, or the tacsk is not to ke abnormally
terminated. On return from the TEP, the task may ke reactivated as if
the error had nct cccurred.

This may be a satisfactcry solution, if transmission of the output
message is not critical to the application, kut ccntinued processing
of the task is. PFor exarple, it may be necessary to allow the task to
continue processing to enakle various data sets tc be completely
processed and updated. RAlternatively, the task may be allowed to
abnormally terminate, and a program control SETXIT routine provided by
the user may be utilized tc ccmplete urgent processing for the task
(see "Program Error Recovery" in Chapter 2).

Generally however, all prccessing associated with a tramsaction and
task, and updating of relevant data sets, shculd ke completed before
the programmer makes any attempt to tramsmit an ocutput message to the
terminal. This can be ensured on VIAM~supported terminals by specifying
that transmission ke delayed until a terminal control WAIT is issued,
the program passes through a user synchronization point, or terminates.
This is also the standard method used for BTAM-supported terminals.
Receipt of am output message at the termimal shculd ke regarded as an
indicaticn that all cf the processing for the particular input
transaction has been completed successfully.

The error recovery prccedures descriked akcve fcr the terminal error
program are discussed in mcre detail in the secticng "Terminal Backup"
and "Dynamic Terminal Reconfiguration" in Chapter 4.

NODE ABNCEMAL CONDITION EECGEAM (NRACE)

The NACP is used for VTAM-supported terminals tc process abnormal
situations associated with lcgical units. Information concerning the
processing state of a logical unit is contained in the relevant TCT
terminal entry, and in the VIAM regquest parameter list (RFL). There
is no accompanying line entry as there is for BETAM-supported terminals.

NACP is scheduled any time a VTAM request made Ly CICS/VS completes
in errcr or cannct be honcred. The receipt of a negative response sent
by a logical unit also causes NACF to ke scheduled. This permits
analysis of the sense information and issuance of any appropriate
messages.

Whenever NACP is scheduled, its analysis routines determine the
actions that are mandatory tc the recovery procedure. Prior to
perforring these actions, NACP links to the user-written node error
program (NEP).

NCDE ERRCE PROGRAM (NEP)
The user is responsible fcr coding an NEP for VIAM-supported

terminals. To aid the user, certain ortional actions are gemnerated in
the NACP. (For example, retry of a message.) If the user wishes any

Chapter 3. CICS/VS Data Communications Design 77

of these actions to be performed, be can set the relevant optiocnal
acticn ccdes in the TCT during NFP prccessing.

The user can issue VTAM respomnses or commands in the NEP. (See
"Terminal Control Using VTAM.") The user can alsc issue VIAM responses
cr conmands frcm remcte prcgrammakle ccntrcllers. For example, if a
printer on a programmable ccntroller runs out of paper, the user may
code the contrcller to send a negative response to the CPU, specifying
a relevant user sense code. This will cause NACF (and NEP) to be
scheduled in the CPU. The NEP can then gquiesce the logical unit using
that printer, until the parer supply is replenished. Refer to the
CICS/VsS pdvanced Compupicaticn Guide for additiomal information.

MESSAGE LOGGING

Input and output messages may be automatically logged by CICS/VS
for message recovery and resynchrconization. In the event of lcss of
contact with VTAM-supported termimals, lcgging and recovery protect
message integrity. Transactions requiring message integrity are
specified in the PCT. The programmakle controllers should also log
(as a minimum requirement) the VIAM sequence numkers of protected tasks.

Fcr performance reasons, transactions that do not change the systenm
environment (such as inquiries that do not update data sets) should
not specify message integrity.

In the event of system failure, CICS/VS emergency restart. identifies
in-flight tasks and backs cut in-flight task activity. The input
message for an in-flight-protected task can be used during emergency
restart to establish message resynchronization with the ccntroller.

This is also true for a committed output message fcr which a pcsitive
indicaticn of receipt was pot received by the CPU tefore syster failure.
(See "Transaction Recovery" in Chapter 8.)

SECURIIY DESIGN

The main objective of an cnline applicaticn is to make timely,
conplete, and accurate infcrmsaticn available to the people who need
it. The availability of up-to-the-minute information will help maintain
control over online applications, or facilitate changes which could ke
made only at considerable time and expense. Applications should be
responsive tc the needs of the arplication user, and should provide
improved service to the company's customers.

However, responsiveness and ready availability cf informaticn can
also be disadvantages if that availakility is not controlled.
Information accessible online should only be made available to those
recple who are authorized to use it. Thus:

e Only manufacturing personnel may inqguire into cr change
ranufacturing wcrk corders

e Only bank tellers or authorized personnel may initiate savings or
loan transactions

e Only authorized perscnnel may inquire into a customer information
system for banking, insurance, or utilities

e Only authorized dcctcrs cr medical staff may inquire into a
patient?s history

e Only authorized police personnel may inquire into a police
information system

78 CICS/VS System/Application Design Guide

® Only authorized perscmnel may place orders in the pharmaceutical
or distribution industries

Regardless of how effective am cnline applicaticn is, if it does

not have security provisicrs to prevent unauthorized access to or abuse
of information, the consequences can be far-reaching.

CICS/VS CPERATOR SECURITY

CICS/VS provides an crtioral cperatcr security facility. Each
terminal operator is identified to CICS/VS in an oferator signon table
(SNT). The following information is contained in the takle:

e (Operator name
e Operator initials

e Operator password

e Operator security codes

e Operator security class

e Operatcr pricrity

Each terminal coperator is required to signon to CICS/VS at a
terminal, by entering the signon transaction code CSSN, together with
his allocated 4-character rassword and his name, up to 20 characters

in length (see Figure 3-13).
CICS/VS Terminal Operator's Guide, SH20-9005.

Cperatcr security is also discussed in

INPUT

CICS/VS PROCESSING

Operator
Signs On
(CSSN)

CSSN PS=XXXX,
NAME=XXX...XX

Ll

1. Operator enters sign on trans-
action with his name and pass-
word.

CICS/VS Sign On Table

Security Codes

Security Class

2. CICS/VS loads signon table,
and scans for name.

4. |If password does not check,
error message sent to ter-

6. “‘Signon complete”
response sent back to
terminal.

OUTPUT

Name . -
| Al | 3. 1f no name in table, error A Signon
Password message sent to terminal. > I\E/lrror
es. e
Operator 1D sag
e

Figure 3-13.

Operator Signon

Chapter 3.

CICS/VS Terminal

— minal. Control Table
Priority
L~ = Operator |D
CICS/VS 5. Operator ID, security codes, Oper. Priority
Terminal Iy and priority transferred to Oper. Sec. Code
Control terminal control table entry
. . . Cl
Table for terminal used. Oper. Sec. Class

"Signon
Complete”
Message

CICS/Vs Data Communications Design

79

The CSSN transaction code initiates the CICS/VS signon program (SNP).
This program loads the signon takle (SNT) and locates the operator name
and password in the table. If these two do not agree exactly, the
cperator is prevented frcm erptering further transactions until he signs
on successfully.

Once signon is achieved, the signcn program extracts the operator
identification (for example, his initials), security codes, and class
and operator priority frcm the signon table. This information is
transferred to the terminal ccntrel table (TCT) entry for the physical
terminal to which he has signed om. This information remains in the
TCT entry until the cperatcr signs off with a CSSF transaction.

The three-character operator identification is used for suksequent
operator identification, and the operator priority is used in
conjunction with terminal and transaction priorities to estaklish the
overall task priority, This is discussed in more detail in "Priority
Prccessing® later in this chapter.

The operator security codes consist of a series of numbers ranging
from 1 to 24. The function of these security codes is defined by the
user, but conventionally security code 1 implies low security while
security code 24 implies highb security.

These security ccdes are used in conjunction with a security code
defined for each applicaticn transacticn code. 12 transaction code with
a defined security code c¢f 10, say, can be used cnly by those operators
who also have a security ccde of 10. BAn operator may have more than
one security code. Operator security codes 5, 6, 10, and 12, for
example, would enakle thcse creratcrs to use only those tramsaction
codes which also have been defined as security 5, 6, 10, and 12.

The power of the CICS/VS cperatcr security lies in the way the systen
designer defines the relevant transaction security codes for the
application. For example, in an inquiry system, low security
transactions may be given a security code of 1, which allcws any
operator to use that tramsaction ccde. However, only those operators
who are authorized to make certain other high security inquiries are
given the same security code as allocated to those inquiry transactions.

All orerators may be allowed tc see general information following
an inquiry, while omly authorized cperators are presented additional
information based on their security codes. This may be achieved by
having two versicns cf the inquiry program: one which displays limited
amounts of information, and anothé¢r which displays the full information.
The limited informaticn prcgram may ke given a security code of 1, for
example, while the more détailed information inquiry transaction code
may ke given a differemt security code.

If an operator attempts to entexr an unauthorized tramsaction code,
CICS/VS will reject the transaction and send an error message indicating
a security violatiocn to the terminal operator. The master terminal
operator is alsc notified by CICS/VS of the attempt to enter an
unauthorized transaction code. The operator identification, terminal
identification, and tramsacticn code used are detailed im the
notification message to the master terminal, as shown in Figure 3-14,
(See the CICS/VS Messages and Codes Mapual, SH20-9008, for additional
information.) The master terminal operator may then take appropriate
acticn.

The operator security class is used primarily in conjunction with
the CICS/VS message routing facility. Messages may be directed to
specific terminals, specific operators, or all operators with a specific
security class. An operator may have more than cne security class.

80 CICS/VS System/Application Design Guide

Messages directed to specific operators, or to specific operator
classes, are nct transmitted until the particular cperater or operators
sign on to CICS/VS. Refer to “"Message Routing" in this chapter for
more detail.

INPUT CICS/VS PROCESSING OUTPUT
an;:: 2] 1. Operator enters > ;?dr: I Input Messagej
Transaction transaction code and data.

Trans Code >1 2. CICS/VS focates transaction <

code in program contro!
table (PCT) entry.

Secty Code

. CICS/VS compares security
code in PCT entry with oper-
ator security codes in termi-
nal control table entry for

Program Control
Table (PCT)

=

terminal that operator
signed-on.

Security
Violation
Message

Oper Sec Code

>

If operator does not have
transaction security code,

CICS/VS sends violation mes-
sage to terminal.

Terminal Control
Table (TCT)

Secty Violatn

At Term XXXX
CICS/VS notifies master > By Oper XXX
terminal of security viola- With Trans XXXX
tion.

o

Master Terminal

o

if security codes agree, CICS/VS Application
passes transaction to applica- ,> Program
tion program for processing.

Figure 3-14. CICS/VS Operatcr Security

SECURITY ENHANCEMENTS

The CICS/VS orerator security feature relies cn an operator's name
and his knowledge of a unique password to allow him to signon. Once
he has signed on, he has full access to all transaction codes which he
is authorized to use.

However, a password is like the combinaticn to a safe. It is
effective when it is known only Lty those persons authorized to use it.
Tco avoid the possibility cf tnauthcrized persons learning the signon
procedure and an operator name and relevant fpassvord, the design teanm
may incorporate scome security enbancements into their system design if
required by the application.

The security enhancements which may be develored depend upon the
particular applicaticn requirements and the cost cf providing that
security in time and effort, as well as the potertial cost to the
organization if that additional security is not provided.

Chapter 3. CICS/VS Data Communications Design 81

The following techniques are suggested user enhancements which may
be considered as part of the system design, and which could be readily
implemented by user-writter coding in the application programs. These
enhancements build upon the CICS/VS security features and provide
increasing degrees of security with each technique discussed. They
may be inrplemented withimn CICS/VS aprlication prcgrams or in application
programs written for programmable ccntrollers. Implementation of these
security enhancements in programeakle controllers permits authorization
to be performed before transmissicn to the CPU, and enables security
checks tc¢ be carried cut based on each remote location's requirements.

Physical Terminal Security

This provides security on the tasis cf authorized operators entering
transactions only frcm authorized physical termipals. Ncrmally a
terminal operator may sign-op tc any terminal supported by CICS/VS.
This includes conversational and batch terminals, together with
simulated terminals such as card reader, tape, or disk.

On initiation of a task, CICS/VS makes the terminal identification
available to the user's aprlicaticn program. For security purposes,
the CICS/VS (or programmable ccntrcller) application program may check
this terminal identification against a user-supplied table of authorized
terminal identifications. If the terminal is unauthorized, the
transaction can ke rejected ky the application precgram, tcgether with
an error message. The program may alsc notify the master terminal
operator.

Function Password or Segurity Code

For a transaction entered by an auvthorized operator using an
authorized terminal, the system designer may require the terminal
operator to provide amn additional password (or security code) to the
user program to permit access to high security functions or information.
This additional tassword may be fprcvided in the main body of the
transaction when it is first entered, or be explicitly regquested by
the application prcgram when it reaches that point in its execution.

Data Set Passwords

This security technique requires the terminal operator to supply a
password to the user program kefcre a specific data set cr data base
can ke accessed. A data reccrd password may additionally require a
specific password to be supplied by the operator tc the program before
information in particular records is displayed. This password may be
incorporated as part of the record. A data field rassword is an
extension of data record passwords, and requires a password to be
provided before specific fields can ke displayed fcr the operator.

Dynamic Fassuord

This applies to all cf the passwords descriked above, and requires
that a password ke changed frequently by the user to prevent
unauthorized persons gaining knowledge of it.

For maintenance purposes, the current password is best recorded on
disk, and is changed on disk by a specific tramsaction. This reduces
the need to modify programs, but introduces the requirement that access
to this password data set be strictly controlled both in the online
environment and in the batch envircnment. To guard against possible
unauthorized access of this data set, the passwcrds may ke recorded by
the user in a ccded (scramkled) fcrm cn the data set; this code is

82 CICS/VS System/Application Design Guide

unintelligible and useless unless it is translated using, for examfple,
a unigue translaticn table in the application prcgram.

This translation table can also be changed dynamically by the user,
if required, to further reduce tke pcssibility cf tvnauthcrized access
to the password data set and the scrambled passwcrds.

Support of dynamic operatcr passwords is achieved by pericdic
regeneration of the signcp table (SNT). BAn alternative which is also
equally effective is dynanmic passwords as descrited previcusly.

The extent of security precauticns is limited cnly by the imagination
of the design team. However, the application requirements will
generally dictate the point at which security prccedures should stop.

A battery of locks on a docor is useless if the person authcrized to
open that docr dces not have all c¢f the keys. In the same way, the
use of dynamic passwords may prevent even authorized access if the
person attempting that access forgets the current password and
procedures. Furthermore, the security precautions adopted by the user
ray ke sc stringent as tc rrevent him frem ever finding out those
rassvords and procedures.

OPERATOR EFROR STATISTICS

As a Ly-product of the cperatcr signon feature of CICS/VS, a count
is maintained of all tramsactions entered by that operator, together
with all operator errors as indicated Lty abnormal termination of
applicaticn prcgrams using the prcgram control AEEND macro instruction.
When the operator signs off, using the CSSF transaction code, CICS/VS
directs a message containing the operator identification, number of
transactions entered, and nusber cf transaction errors to a transient
data destination. This transient data destinaticn may be allocated to
a terminal, a disk or tape data set, a line printer, or any cther
CICs/vVs-supported device., When directed to tape cr disk, these operator
statistics may be accumulated for audit, control, or evaluation
purposes.

ERIOFITY PROCESSING

Each terminal operator is allccated a pricrity code as well as
security codes. This operatcr priocrity is used in conjunction with
terminal and transaction pricrities to establish the overall task
processing priority.

TASK PEICRITY

CICS/VS uses priority ccdes ranging from 0 to 255. The 0 represents
low priority while 255 represents high priority.

Each operator, terminal, and transaction code can be allocated a
priority ccde ranging frcm 0 to 25%5. The operator priority is contained
in the signon table (SNT) and is ccpied across tc the terminal control
table (TCT) when the operator signs on. The terminal pricrity is also
contained in the TCT, while the tramsaction priority is contained in
the program control table (PCT) entry for that tramsaction code (see
Figure 3-15).

Chapter 3. CICS/VS Data Communications Design 83

When an operator enters a specific transaction code, his priority
and the priority of the terminal he is using are extracted, together
with the priority associated with the transaction code entered. These
three priorities are added together tc produce a tctal priority. This
total priority is used as the task priority, and also ranges from 0 to
255. In the event that the sum of the three priorities exceeds 255,
the task priority is rcunded down to 2£5.

This calculation of task priority provides the design team with
considerable flexibility tc ensure that the best performance and
response time are provided in the areas where they are most needed.
Thus, operators carrying out higher priority functions than other
operators may be given a higher pricrity code by the user. Similarly,
some terminals may be given higher priorities than other terminals.
Also, high priority transactions may be given a higher priority value
than other transactions.

A very high pricrity transaction may be given a priority value of
25%. In this case, regardless cf the cperatcr or terminal priority,
that transaction is always given the highest task priority. 1In the
same way, very high pricrity orerators or terminals may be given
operatcr or terminal priorities of 255.

INPUT CICS/VS PROCESSING OUTPUT

Trans
Code

:> 1. Operator enters input transaction]
code and data.

_m
-]

g 2
c o
ce

Input Message I

A <

2. CICS/VS locates PCT entry. After

Trans Code > security check, transaction priority
is extracted from PCT by CICS/VS. Trans. Priority=200
Trans Priority m -+
3. CICS/VS extracts terminal priority
> from TCT entry for terminal.
Program Control
Table m -+
Termn Ident — > 4. CICS/VS extracts operator priority
from TCT entry for terminal. Oper. Priority=255
Termn Priority
5. CICS/VS sums transaction, terminal B
— and operator priorities to develop | Task Priority=455]
Oper Priority task priority.

Terminal Control Round Down

Table
8. If task priority exceeds 255, CICS/VS Task Priority=255

rounds down to 255.

Application
7. Task commences execution at task) Program
priority.
Extended Description
Priorities range from O (low priority) Priority Examples .
to 256 (high priority). Transaction: 0 0 100 100 100
Terminal: 0 100 0 [} 100
Operator: 0 _0 _0 100 100
Task 0 100 100 200 255

Figure 3-15. Task Priority

84 CICS/VS System/Application Design Guide

The task priority is useful in thcse cases where, because of the
transaction volume, there may be several tasks ccncurrently executing.
In this event, CICS/VS passes control to the highest priority task
which is able to ccntinuve executing, and that task retaims ccntrol of
the CPU until it requests various CICS/VS services. If the high
priority task is not able to continue processing until a particular
event (such as an I/0 operation) has cccurred, CICS/VS passes control
to the next highest task which is able to execute. A high pricrity
task is given preference in the use cf the CEU and other facilities
even if entered later tham a lower priority task.

CICS/VS ensures that such high priority tasks are given first
preference in prccéssing tc enable gcod performance to be achieved by
that task. In the event that twc tasks with the same high priority
value (for example, 255) are both ready to process, CICS/VS gives
control to that task which reached the system first.

CICS/VS is an event-driven system, and as such does not seize control
from a currently dispatched (executing) task. Therefore, even a lcw
priority task will continue to execute once it has been dispatched,
until it voluntarily relinquishes control by issuing a CICS/VS macro
instruction. If no CICS/VS services are required ky such a task, it
should periodically issue a task ccntrol dispatchable WAIT, or a CHAP
(change priority), macroc instructicn. The CHAP need not change the
task!s priority, but merely relinquish control. (See the next topic,
or Chapter 6, for more detail.)

CHANGE PRIORITY

A task may ccmmence execution at one priority, and then may need to
change its priority at another phase in its processing. CICS/VS
provides this capability through the task control change priority (CHAP)
macrc instruction (see Chagpter 6). A high priority task may be changed
through the use of this macrc¢ instruction to low priority, or vice
versa. In this way, secticns of an aprlication program may be given
a high priority for processing, while cther sections may be given lower
priority. This enables a task to dynamically change its priority based
on differing requirements determined through execution. Some examples
when sections of a program may wish to change the task priority are
jllustrated in "EFricrity Charge" in Chapter 6.

Chapter 3. CICS/VS Data Communications Design 85

CHARIER 4. CICS/3S DAIR MANBRGEMENI LESIGN

This chapter discusses CICS/VS temporary storage and transient data
in a tutorial fashion. Exrerienced CICS users may wish to omit the
section cn transient data. However, it is reccmpended that such users
read the section cn tempcrary storage in its entirety. The temporary
storage control program (TSP) is changed from that available in previous
CICS versions. W®hile still grcviding compatibility with previocus CICS
versions, this new TSP provides additional sequential as well as direct
accessing capability, and utilizes VSAM.

- - WD - - - - —— - ——— — D -t WD U > > € D B W VS D W YD ey D e W D T W U WS WD AP D W e e W W > U D W > 0O B = WP W o e -

CiCs/vVs, together with DL/I, rrcvides extensive data base capability
to online applications. Ip additicn to this data kase capability (which
is discussed in Chapter 5), €CICS/VS offers additicnal facilities for
internal data management. This chapter first identifies various
application requirements which demand the services offered by CICS/VS
tempcrary storage management and transient data management. It then
describes those services which can be used as "design toocls" by the
system designer to satisfy his own arplicaticn requirements.

APELICATION REQUIREMENIS

It is first necessary to define the various data management functions
(as distinct frcm data base capakility) which online applications
require of a DB/DC system. These functions are triefly described below.

WOEKK FILE CAFABILITY

Most online agplicaticns require the ability tc store information
for later retrieval and use. This function is scmetimes referred to
as a Yscratchpad" or work file capability, and is analogous to a person
using sheets of parer tc jct down the intermediate results of
calculations for later use in prccessing.

The following are twc main work file requirements used for most
online argplicaticns:

e Scratchpad capability

® Cueuing capakility

Scratchpad Capability

This capakility refers to the temporary storage of information for
later retrieval. In a batch environment, this capability is often
provided through the use of work data sets. 1In CICS/VS, this capability
is provided by the CICS/VS temporary storage contrcl program. The
application grcgram identifies data which is to ke temporarily stored
by name, and subsequently retrieved by name withcut any consideration
of its physical location. Online application uses of temporary storage
include the following.

Intermediate Results: The stcrage cf intermediate results developed

during the processing of a tramnsacticn, for use later in the processing
of that transaction.

Chapter 4. CICS/VS Data Management Design 87

Brror Correcticn: The stcrage cf input transactions which were
found to be in error, fcr sulksequent use when the corrected error fields
are received from the terminal.

Data Transfer: 1A temporary storage of data sc it can ke used to

transfer data Letween programs. This data transfer may cccur
immediately or at scme future time.

Terminal Paging: An applicaticn frogram may develop several pages
of information to be displayed at a terminal. This information should
ke temporarily stcred until the terminal orerator requests that it be
displayed for his attention.

In additicn to the tempcrary storage of data, cnline applications
generally require a facility which will enable data to be queued for
subsequent processing. The difference between this and temporary
storage is that temporary storage stores and retrieves individual
sections of data, while a queuing capakility enalkles several different
sections of the same type of data to be queued, and then all sections
retrieved together, sequentially, in the order that they were queued.

In CICS/VS, this queuing capability is provided ky the CICS/VS transient
data ccntrol program. Examples in which cnline applications may utilize
a queuing capability follow:

Batch Tramsacticn Processing: ‘Transactions of a particular type
may ke received from many terminals. If the applicaticn requires that
all cf these transactions ke processed together, they may be stored in
a unique gueue for that tramsaction type, in the crder that they reach
the CPU. This gqueue of transactions may then be processed in the

CICS/VS partition as a small sequential grcup of transactioms.

Batch Partiticn Data Transfer: The online application may require
that infcrmation be transferred tc batch partiticns for further
processing, and the results ¢f that prccessing be provided to the online

application for input at a later time.

e S e 2 e e

The temporary storage management facility of CICS/VS provides a
scratchpad capability for online agplication programs. It enables data
tc be stored either in dymamic stcorxage or on auxiliary storage. Data
to be stored can be identified symkolically, and retrieved symbolically,
without applicaticn programss teing ccncermned with the actual physical
location of that data. Lata can ke retrieved on request tky an
application program in either a sequential or a direct access manner.
Temporary storage allcws reccrds tc be up to 32,000 bytes in length,
but supports variable-length reccrds only.

TEMPCRARY STORAGE USRAGE
The previous discussion of aprlication requirements identified the
general use of a scratchrad facility by applicaticn programs. CICS/VS

temporary storage management is used to meet these application
requirements as follcws.

88 CICS/VS System/Application Design Guide

Data Transfer Facility

The akility toc temporarily save data for later use, and retrieve it
symkolically by name at a future time, enables easier implementation
of cemplex processing. This complex processing may be broken into
several logical steps, each step carried out by a separate module.
Information may ke passed Letween these modules using temporary storage.

Depending upon the amount of informaticn to be passed, and the tinme
period before that informaticn will te used, this data may be stored
either in dynamic storage cr, alternatively, im auxiliary storage.

Temporary storage may be used tc save information for later use.
An example would be the saving of error transactions for later
combination with corrected fields received from a terminal, as described
in "Error Correction"., Using this capability, ccrrect information in
the original errcr transacticn dces not have to ke reentered by the
terminal operator. Consequently, error correction is easier, and the
potential for further operatcr errors is reduced.

Terminal Paging

Terminal paging in CICS/VS is also supported through the use of
temporary storage. Fages cf infcrmaticn developed by application
programs are presented by them to CICS/VS. These pages are stored in
temporary storage for transmissicn tc the terminal operator on request.
Refer to "Terminal Paging" imn Chapter 3 for more detail.

Message Routing

The akility to transmit messages frcm one terminal to another
terminal, using the CICS/VS message switching tramnsaction CMSG, or the
EMS ROUTE macro instructior, is suppcrted through the use of temporary
storage. These messages are automatically transsitted to the relevant
terminal when that terminal is akle to receive them, or the specified
operator has signed on to CICS/VS. Refer to "Message Routing" in
Chapter 3 for more detail.

Interval Control

The CICS/VS interval control prcgram uses tempcrary storage to pass
data from ome task tc ancthexr task which is to be initiated at a future
tire. Ap application program may indicate the task to be initiated at
a specified time (based cn elapsed time or, alternatively, time of day)
and may transfer data to that future task. The interval control PUT
macro instruction results in the data to be transferred being written
to temporary storage on disk for subseguent retrieval by the interval
control GET macro instruction. FKefer to "Interval Contrcl" in Chapter
6 for more detail.

DATA IDENTIFICATION

Each record may be presented to temporary storage with a unique
eight-character data ideptification. Alternatively, several records
may ke presented with the sase data identificaticn. A queue of records
associated with a particular logical function (as indicated by the data
identification) can ke develcped, and subsequently retrieved in the
same sequence,

Chapter 4. CICS/VS Data Mavnagement Design 89

The data identificaticm is used by CICS/VS to develop a data element
which contains that idéntificaticn, the sequence or entry number of
the record in a gueue of reccrds with the same data identification,
and the location cf the record either in dynamic storage or on disk.
These data elements are maintained in CICS/VS dynamic storage. As
records are writtem to temporary storage, data elements are dynamically
built by CICS/VS and saved in dynamic storage. The number of temporary
storage records which may Le retained is limited cnly by the
availability of dynamic stcrage and/cr the amount of disk space
allocated to the temporary storage data set.

Because many tasks may corcurrently use the same program, the use
of a constant in the prcgram for identification cf individual records
is not advisable. The data identification may be dynamically generated
by the program based upon information such as:

e A combination of tramsaction identification (four characters) and
operator identification (three characters) will enable that operator
to store one reccrd at a time for each transaction identification.

e A combination of orerator identification and time of day, or
transaction identificaticon and time of day, will enable the record
to be uniquely identified. Hcwever, it requires the application
program to determine the time of day and then respond to the
terminal operator with the allocated data identification. He may
then use it to uniquely identify the record in a later transaction.

e Fach task initiated by CICS/VS is given a unique task sequence
nunber. This task numkexr may be used as the data identification;
it may be returned tc the terminal operator fcr subsequent reentry
ky him when the relevant reccrd is to be retrieved.

The techniques for unique data identification described akcve assume
an application environment where infcrmation is tc be stored by the
user's program, and directly retrieved at some future time under control
of the terminal operator.

If tempcrary storage is used to pass data from cne application
prcgram to another, the allocated data identification may be passed to
a subsequent application program (executed under ccntrol of the same
task) through the transaction work area (TWA) apgended to the task
control area (TCl) for that task. The program (executing under the
same TCA) which is to retrieve the data from tempcrary storage can
oktain the allocated data identificaticn from the TWA. This data
identification is then used to identify the reccrd to be retrieved.

If a record within a tempcrary storage gueue is to be directly
retrieved, it must be uniquely referenced by the data identification
(ID) and its relevant entry (or sequence) number. When a record is
written to a temporary storage queue (data identification is nonunique),
it is placed at the end of the queue of records with that same data
identification. Temporary stcrage management will allocate the next
sequential entry numker and returm this entry nurkter to the progranm.

The record is now uniquely identified by the data ID and the entry
number.

This data ID and entry nusber may be transmitted to a terminal
operator for subsequent reentry, if the retrieval is to ke initiated
by the terminal cperator. If the retrieval is to te initiated
automatically ty subsequent application programs executed by the same
task, the data identificaticr and entry number should be saved in the
TWA. The program which is tc retrieve that unique record may then
extract this infcrmaticn fror the TWA for use.

90 CIc5/VS sSystem/Application Design Guide

USE OF DYNAMIC STORAGE EBY TEFPORAEY STCRAGE

Dynamic storage is a valuable resource, and the overall performance
of the onlime system is directly related to the amcunt of available
dynamic storage and its relaticnship tc real storage available for use
as a virtual storage page pocl (see “CICS/VS Working Set" in Chapter
.

Generally, dynamic stcrage residence cf records should ke used only
when the life of those reccrds is to be of very shcrt duration. Its
main purpose is in passing data Letween program modules which are
executed under control of the same task. Once the data has been passed
Letween modules through dyramic stcrage, that data should re deleted
and the storage occupied ky it freed. Dynamic storage may be used for
record queues as well as unique entries; however, write requests to
dynamic and auxiliary storage with the same data identification cannot
be used. CICS/VS will fcrce all subsequent write requests with the
same data identification tc use the same storage facility specified by
the first request.

The length of records tc ke stored in dynamic storage may ke up to
the VSAM control interval size specified during CICS/VS systen
initialization, less 84 Lkytes for CICS/VS control information.

CICS/VS permits temporary storage records to reside in dynamic
storage only if the CICS/VS system is generated indicating no auxiliary
storfage residence sugport is required. The specification of no
auxiliary storage support removes the requirement for VSAM by temporary
storage. Instead, virtual storage is utilized; temporary storage
information is only paged into real stcrage when referenced.

Any temporary storage infcrmation residing in dynamic storage is
lost if a controlled or unccntrolled shutdcwn cccurs. See the CICS/VS
System Prograpmer's Reference Mapual, SH20-9004, and “Temporary Storage
Recovery" in Chapter 8 for additicnal informatiocn.

As a general rule, if a record must be stored for more than one
second, it should be directed to auxiliary or secondary storage rather
than to dynamic c¢r main storage. Dynanic storage is then available as
much as possible for use in initiating concurrently executed tasks.
Certainly, the writing of records to disk, and the subseguent retrieval
from disk, will involve file accesses and so increase the processing
time of those particular tasks. However, the overall effect on the
entire online system is cne cf potentially better performance than
would result if considerable dynamic storage were utilized for temporary
storage residence.

ACCESSING RECORDS IN TEMEQGKAFY STORAGE

Temporary storage supgorts variable-length records only. A queue
or message set of records may be develcped by issuing a temporary
storage EUTQ macro instructicn fcr each record, using the same data
identification. As each reccerd is written, tempcrary storage allocates
the next sequential entry nusber and returns it to the application
progranm.

Using the data identification and the entry number, the records in
the queue can ke retrieved by application programs either sequentially,
in the chronclcgical order in which they were written, or directly
accessed bty referencing a specific entry number.

A queue of reccrds can ke retrieved sequentially by specifying the

data identification allocated for that gueue and issuing a temporary
storage GETQ macro instructicn. Temporary storage management retrieves

Chapter 4. CICS/VS Data Management Design 91

the first record in the gueue for that data identificaticn and presents
it to the application program. Each subsequent GETQ macic. instruction
retrieves the next record im sequence until the last record has keen
retrieved, when an end-of-queue indication will ke returned to the
Frogranm.

Alternatively, if it is required to cowmmence sequential retrieval,
not from the beginning of the queue rut from a lcgical point within
the queue, both the data identification and the entry number are
specified by the program. GETQ macrc instructions are then issued to
retrieve each record sequentially frcm the logical starting point in
the gueue.

The program may directly retrieve records by issuing a temporary
storage GETQ macro imstructicn with the srecific entry number of the
record in a queue to be directly retrieved.

A record can subsequently ke updated by issuing a temporary storage,
PUTQ macro instructicn srecifying the relevant entry number.

The facilities offered Ly temporary storage for direct and sequential
retrieval of information make it a pcwerful work file capability for
online applicaticns. Infcrmaticn may be retrieved as often as required
until it is no lcnger needed. At that time, the records may be deleted.

Queues of records based upon a specific data.identificaticon may be
purged ky an applicaticn progras PURGE macro instruction. The deletion
or purging of these records results in the logical deletion of those
records in the temporary storage data set, with the disk space occupied
by those records being reclaimed when the space is subsequently used
for ancther record. The data elements describing the deleted or purged
records are freed, and the dynamic storage occupied by thcse records
is reclaimed for other uses. .

The CICS/VS temporary storage ccntrcl program supports requests for
specific records using the PUT, GET, and RELEASE macro imnstructions
provided in previous versicns of CICS. However, PUT, GET, and RELEASE
are mutually exclusive with EUTQ, GETQ, and PURGE omn a data
identification basis. That is, a rxecord written by a PUT macroe
instruction cannot ke retrieved ky a GETQ, or deleted by a PURGE, for
example.

TEMPCRARY STORAGE RECOVEEY

After a ccntrclled or unccntrclled termination of CICS/VS, temporary
storage records on disk may remain available for use, if desired.
Temporary storage in dynamic storage is lost.

On restart of CICS/VS, either a "cold start," "“warm start," or
emergency restart may be specified. If a cold start of temporary
storage is specified, any information recorded on disk is lost.

If a warm start is specified on system restart, the information in
the temporary stcrage data set is retained. The temporary storage
keypoint recorded at systenm termination (see "Termination Keypoints"
in Chapter 8) is used to reccmnstruct the data elements in CICS/VS
dynamic storage, to enable subsequent retrieval of information by
applicaticn rrcgrams once the system has been restarted.

If an emergency restart is specified, the infcrmation in the
temporary storage data set is retained. The conterts of that data set
and any temporary stcrage update activity automatically logged to the
CICS/VS system log prior tc uncentrolled shutdown are used to
reconstruct temporary storage takles in dynamic storage. These tables

92 CICS/VS Systems/Application Design Guide

identify the status of temporary storage at unccntrolled shutdown. The
data identification of temporary storage records and queues, the number
of entries in queues, the locaticn of each entry in auxiliary storage,
and the status of availakle space in the temporary storage data set

are reconstructed during emergency restart.

The processing of in-flight tasks is also backed out during emergency
restart. A task is considered in-flight if it did not pass through a
user synchronizaticn point (with rc subsequent lcgging activity) or
terminate before unccntrolled shutdown.

Thus, a consideration in the use c¢f dynamic stcorage or auxiliary
storage as a temporary storage medium is the requirement for
recoverability. Information stored in main storage will be lost;
information stored in auxiliary storage may ke reccvered, if a warm
start is specified cn restart.

SELECTION OF TEMEORAKY STOFAGE OFK TRANSACTION WOKK AREA DATA TRANSFER

The design team must indicate whether informaticmn to be passed from
cne module tc ancther may te transferred using the transaction work
area (TWA) appended to the task control area (TCRA), or that temporary
storage must be used.

IWA for Data Iransfer
The TWA can be used only if the informatiorn will be subsequently used
by the same application prcgram, or ry another application program
which executes under control of the same TCA. That is, ccntrol must
be passed to the subsequent rrogram either by prcgram control XCTL or
by LINK macro instructions. If the informatiop is to be passed to scme
future task initiated by time, or ky a subsequent tramnsaction entered
by a terminal operatcr, then the TWA cannot ke used. This is because
the TCA and associated TWA are destroyed when the task which generated
the information terminates execution. Consequently, the TWA may be
used for data transfer of a short-term nature, while temporary storage
is generally used for data transfer cf lcng-term nature.

IHA Size

A consideration in the use of a TWA or temporary storage is the
amcunt of data tc be stored. The size of the TWA associated with a
transaction code is stored in the rrcgram control table (PCT). This
TWA size is used to allocate a TWA appended to the TCA. Thus, if a
TWA of 200 bytes is indicated in the BCT, the TCR is allocated 200
bytes more than if no TWA size is specified.

TIWA for Short-Term Data Transfer

A further factor is the duration of execution cf the task, and the
amcunt of time between when data may be stored in the TWA and when it
will be subsequently retrieved from the TWA. As a general rule, if
data may remain in the TRA fcr lcnger than one second it should ke
stored in temporary storage. This wculd te particularly advisable if
a TWA much larger tham 200 tc 300 bytes was to be used. Furthermore,
because of the relatively low activity of use of this data (because of
the long executicn time), it should te stcred on disk rather than in
dynanic storage address space.

Chapter 4. CICS/VS Data Management Design 93

ariable TWA Size Regquirements

Another factor is the pcssible requirement of the prcgram for
different size THAs based upcn the processing required. For example,
90% of transactions which use the same transacticn code and application
program may require a TWA cf 50 Lkytes. However, the remaining 10% of
these transacticns may require a TWRA of 500 bytes, say. If a TWA was
used for all transactions by this program, a 500-byte TWA would have
to be specified in the relevant FCT entry. This wculd mean that for
90% of transactions using that prcgram, 450 bytes cf storage would be
wasted.

A more efficient soluticn in this case would ke to allocate a 50-kyte
TWA, and utilize this TWA for the 90% of tramsacticns which need 50
bytes. In the case of the remaining 10% of transactions, temporary
storage on disk should be utilized. Tbus, storage is used most
efficiently, with the additicnal time to store information on disk and
retrieve it from disk only affecting 10% of the transactions in this
examgle.

CICS/VS IRANSIENT DAIR

The queuing facility prcvided by CICS/VS for online applications is
supported bty the transient data management routinpe of CICS/VS. There
are two types of transient data queues. These are:

Extrapartition: Extrapartition queues are sequential data sets used
feor transfer of informaticn ketween CICS/VS and katch partitions,

Intrapartition: The intrapartition data set supports queues used within

the CICS,/VS partition itself, tc transfer information between CICS/VS
tasks.

TRANSIENT DATA USAGE
The application uses cf extrapartition and intrapartition data sets

will new be discussed.

Extrapartition Data Sets

Extrarartition data sets in CICS/VS are used for the following main
Furposes:

Batch Data Transfer: Information which is to be passed from CICS/VS
to batch partitions is directed to extrapartition data sets or queues.
These data sets are normal sequential data sets using QSAM for 0S/VS

or SAM for DOS/VS.

Similarly, information to be passed from a batch partition to CICS/VS
is read Ly the relevant CICS/VS task from an extrapartition input data
set.

Sequential Devices: Extrapartition data sets may ke used by CICS/VS
to ccmmunicate with varicus sequential devices, such as line printers.
Because the standard sequential access method under 0S/VS.or DOS/VS is
used to support extrapartiticn data sets, those devices supported by

the standard sequential access method can be utilized by CICS/VS. These
include card reader, line printer, disk, and tape. Particularly because
of 0S/VS device independence, most sequential devices which are
supported by QSAM may be utilized as either input cr output data sets

by CICS/VS, when the user specifies them as extrapartition data sets.

94 CICS/VS System/Application Design Guide

Intrapartition Data Set

Intrarartition gueues are used to pass direct access organized data
(chained sequentially) between CICS/VS tasks. A number of
applicaticn-oriented uses for intrapartition files are detailed lelow.

Batch Queues: Data received from many terminals for the same
application may be consolidated in one queue for fprocessing as a batch.
Fach concurrently executing task may direct the data to the relevant
batch queue, where it is chained sequentially. Suksequently, this
batch or queue of data may be rrccessed as an inrut file of information

by a CICS/VS task.

Automatic Tasks: Data stored as a queue as described above may be
automatically prccessed by a CICS/VS task when a specified amount of
information has keen queued. Based upon a trigger level (or count)

for that queue, a specified task may be automatically initiated to
process that quantity of data. The trigger level may vary from 0 (which
implies nc automatic task imitiation) through 1 (which initiates a task
each time information is writtenm tc the queue) tc a trigger level of
greater than 1.

Terminal Output: Output may be auvtcmatically directed to a terminal
from several tasks. This autcomatic cutput may nct be able to be sent
to the terminal for some time, because it is engaged in other activity
such as entering am input transaction or receiving output from previous
transactions.

In addition, the terminal may be one to which ocutput is only sent
when requested. BAn example cf such a terminal wculd be a video
terminal. Autonmatic output directed to a videc terminal may not be
displayed at a convenient time, cr may not allow sufficient time for
assimilaticn of the informaticn displayed. Hard-copy terminals,
however, may be able to receive automatic output at any time they are
not active, unless they are used with preprinted stationery. 1Im this
case, automatic output for a terminal must be gueued on disk until the
terminal is able to receive it, cr until the terminal operator has
explicitly requested it.

Output to be directed auvtcmatically to a terminal is queued on an
intrapartition queue. A trigger. level may be associated with this
gueue such that when a specified number of output messages have been
gueued a task is automatically initiated to transmit those messages to
the terminal, if the terminal is akle to receive those messages at that
time.

Audit: Intrapartition (or extrapartition) queues may be used to
accunulate informaticn for audit purposes. Intrapartition qgueues may
be specified as Leing ncnreusable. Data written to these queues is
accumulated throughout the operaticnal period of CICS/VS, and will only
ke deleted (and the disk space used will only be freed) by an exrlicit
transient data PURGE macro imstructicn issued by an application program.

Alterpatively, gueues may be specified as reusakle, in which case
information on these queues. is purged automatically by CICS/VS when
the data has been read by applicaticn programs., The subset option of
CICS/D0S/VS supports extrapartition data sets but not intrapartition
data sets. (See "CICS/DCS/VS Sukset Option"™ in Chapter 7.)

EXTRAPARTITION TRANSIENT DATR
As discussed above, extrapartition data sets provide a sequential

data set capability tc CICS/VS. Standard access methods such as QSAM
for 0S/VS or SAM for DOS/VS are utilized. The specification of the

Chapter 4., CICS/VS Data Management Design 95

particular sequential data set is made at system generaticn tinme.
Further information descriking that data set may ke provided at CICS/VS
system initiation time from CS/VS DD, or DCS/VS LLEL and EXTENT, job
control statements. Extrapartition data sets can be either fixed-length
or variakle-length, blccked c¢r unblocked data sets.

Record Accessing

Each extrapartition data set is identified by a four-character
destination identificaticn. This destination identification is
specified by a CICS/VS task when it requests input (GET) or output
(PUT) on a particular data set (see Figure 4-1).

This destination identificaticn is used to locate the relevant entry
in a destination control table (LCT) describing that particular
extrapartition data set.. CICS/VS transient data management then issues
the appropriate LOS/VS or 0S/VS GET cr PUT macro instructions for the
particular sequertial access methcd. (See the CICS/VS Application
Programmer's Reference Manual, SH20-9003.)

INPUT CICS/VS PROCESSING oUTPUT

Program L
1. Appli

ion program issues
data get macro,
specifying destination 1D
(DESTID=ABCD for example).

DFHTD TYPE=GET,
DESTID=ABCD

I

CICS/VS locates entry in des-
tination control table (DCT)
for DESTID=ABCD.

Destination
Control Table

ABCD

]

DESTID is for extrapartition
~, data set. CICS/VS allocates
input area for task,

Extrapartition
DCB/DTF Name

Capa

DCB/DTF

______ Program

Input Area I

L

. CICS/VS gets record via seqt!
access method ard moves to
input area for task,

V

6. CICS/VS returns extraparti- DFHTD TYPE=GET,
tion record in input area to DESTID=ABCD
user program,

Figure 4-1. Extrapartiticn Data Set Accessing

For output to a sequential data set, an application program first
requests the CICS/VS storage contrcl program to allocate storage to be
used as an output area. The cutput record is then constructed by the
application program, after which the program issues a transient data
PUT macrc instruction indicating the relevant destination identification
of the output data set. The output record is then written by transient
data to the specified sequential data set. On successful completion
of output, without error, the allocated output area is automatically
freed by CICS/VS and returped to dynamic storage for use by cother tasks.

When an application program has tc initiate input from a sequential

data set, it issues a transient data GET macro instructicn specifying
the relevant destination identificaticn. Transient data determines

96 CICS/VS System/Application Design Guide

the data set involved, automatically requests that an input area large
enough tc contain the next record be allccated for the particular task,
and moves the next sequential inrut record into that area. The address
of that input area is returned tc the reguesting task after successful
completicn withcut error. The accessing of extrarartition data sets

is illustrated in Figure 4-1.

Extrapartition data sets may ke either fixed-length or
variable-length, blccked cr unblccked.

Recovery of Extrapartiticr Data Sets

CICS/VS does not attempt tc reccver extrapartition data sets after
a ccntrolled shutdown or in the event of abncrmal termination or system
failure. (This subject is discussed in more detail in Chapter 8.)

INTRAPARTITION TEANSIENT DATA

As discussed previously, the intrarartition data set provides a
useful queuing facility for passing information Lketween CICS/VS tasks.
Its main use is to provide support for accumulation of data to be either
processed as a batch or automatically transmitted to a terminal, for
examgle.

Record Accessing

Data is written to or read from intrapartition queues by CICS/VS
applicaticn prcgrams in exactly the same way as fcr extrapartition data
sets. Howvever, only variakle-length records are supported. An
application precgram requests an cutput area to be allocated to it by
CICS/VS storage control, sets up the output record, and issues a
transient data PUT macrc instructicn specifying the relevant
four-character intrapartition destination identification.

Similarly, for input, when a transient data GET macro instruction
is issued ky an aprlicaticn prcgram, transient data requests that an
input area be allocated. The record is then read and passed to the
requesting task.

From a general programming point of view, there is no effective
difference between reading and writing extrapartition data sets or
intrapartition queues. The indicaticn by the prcgram as to whether an
extrapartition data set or an intrapartition queue is to be used is
the specification of the relevant destination identification.

One main difference Lketween extrapartition and intrapartition queues,
however, is that intrapartition queues may be specified as being
reusable, if required. Thus they can be used as work files if needed,
gueuing data to be processed, and then, after prccessing that data,
deleting it so that the disk space it cccupied can be utilized for
other purposes. This is discussed in more detail in "Reusable
Intrapartition Queues" later in this chapter.

Intrapartition Disk Orgapization

CICS/VS uses a direct access data set to suppcrt intrapartition
gueues. The disk space allocated for the intrapartition data set is
regarded as a pool of tracks which may be allocated to intrapartition
queues (destinaticns) as required (see Figure 4-2).

Chapter 4. CICS/VS Data Management Design 97

INPUT CICS/VS PROCESSING QUTPUT

Program l
1. Application program issues
> transient data put macro,
DFHTD TYPE=PUT, specifying destination 1D
DESTID=JKLM (DESTID=JKLM for example}.
Destination
Control Table > 2. CICS/VS locates entry in des-
\ tination control table (DCT) DESTID
JKLM for DESTID=JKLM
I JKLM| Record ; / l
3. DESTID is for intrapartition
Intrapartition > queue. If itis first record for

this DESTID, CICS/VS allocates
track from pool of tracks and)

writes DESTID to track.

rS

. CICS/VS writes output area to
track as first data record.

Pool
of bCcT
“Tracks 5. CICS/VS places disk address of this

record in DCT as get pointer, if JKLM

it is first record for this DESTID. ‘> Get Pointer

g\:::;s;a;‘mnon 6. CICS/VS places disk address of next
available record location in DCT, as
put pointer to wiite next record > Put Pointer

Output Area ' to this DESTID.

. CICS/VS updates put pointer as
each record is written, At end of
track, CICS/VS allocates new >
track chained to first, for use
when subsequent records are put.

~

Figure 4-2. Intrapartiticm Disk Crganization

Transient data maintains a series of tracks allocated to each active
destination, based on the dyramic requirements fcr intrapartition disk
space. However, reccrds are logically read frcm a destination in the
sequence in which they were written; it thus aprears to the CICS/VS
task as if it were operating on a normal sequential data set. The data
set is actually a direct access file.

INTEAPARTITION QUEUE USAGE
As discussed above, intrapartition queues are generally used to
accumulate and process data as a katch of records. The various

application uses to which intrapartition gueues can ke applied are ncw
discussed in more detail.

Batch Retrieval

Records may ke accumulated as a batch on an intrapartition queue or
destination. Retrieval and processing of these records are achieved

98 CIc5/VS System/Application Design Guide

Ly a task issuing transient data GET macro instructions specifying that
intrapartition destinaticn. The initiation of these tasks may be
achieved in one of three ways:

Transaction Ipjtiatjon: A tramnsaction entered by a terminal can
initiate a task which issues transient data GET macro instructions for
a particular intrapartition destination. Data retrieved in this way
can then be processed as required.

Interval Control Initiation: A task can be initiated at a future tine
based upon elapsed time cr time cf day. This task can issve transient
data or interval control GET macrc imstructions to read records queued
on an intrapartition destination and process them. (See "Interval
Control.")

Aytomatic Task Ipitiatign: 2 task may be automatically initiated by
transient data when a specified number of records have been written to
an intrapartition destination. The trigger level specified in the DCT
entry for that destinaticn is compared with the count of records which
still remain to ke read. When the gueue count eguals the trigger level,
a specified task (as identified ky a transaction ccde in the DCT entry)
is initiated. This task may issue transient data GET macro instructions
to read and process the data on that gueue. This is discussed further
in the section, "Terminal Outgut.®"

Intrapartition Recovery:

CICsS/Vs supports the recovery of intrapartiticn transient data
queues on a warm start fcllowing a ccntrolled shutdown, and on an
emergency restart following an unccntrolled shutdown. The DCT status
of each intrapartition destiraticn is reestablished to reflect the GET
pointer, POUT pointer, queue count and trigger level status as it was
prior to the shutdown. Intrapartition queues are recovered, and
automatic task iritiation cam then proceed after CICS/VS restart as if
shutdown had not occurred.

On emergency restart fcllcwing an unccntrolled shutdown, any
intrapartition destinaticns can ke recovered to reflect all activity
against those destinations up to the point of unccntrolled shutdown.
This is called "gphysical reccvery." Alternatively, any intrapartition
destinations can be recovered to reflect the activity of completed
tasks pricr to uncontrolled shutdown; all in-flight task activity at
unccntrolled shutdcwn is backed out during an emergency restart. This
is called "logical recovery." The user specifies in the DCT, at systen
generaticn time, whether an intrapartition destination requires physical
recovery or logical recovery. Refer tc "Transient Data Recovery" in
Chapter 8 for additional infcrmaticn.

Terminal Output

Data may be directed to a tersinal from many tasks. That terminal
may presently be active either entering input or receiving outrut from
one task. When cther tasks wish tc transmit output messages to that
same terminal, it is necessary for these messages to be gueued on disk
until the terminal is ready to receive thes.

This message queuing is achieved Ly requiring the other tasks to
write the terminal output messages to a transient data destination.
This destinaticn is intrapartiticn, and furthermore is identified as
being associated with a terminal. The destination identification used
pust be identical to the terminal identification in the terminal control
takle (TCT) entry for the asscciated terminal. Taseks may. issue
transient data PUT macro instructicns specifying as a destination

Chapter 4. CICS/VS Data Management Design 99

identification the terminal identification. These output messages will
then be queued in the intrapartition data set (see Figure 4-3).

To initiate transmissicn of these output messages to the relevant
terminal, a trigger level cf 1 is generally specified for that terminal
destination. As scocn as cne cutput message has keen written to that
terminal intrapartition destination, a task (identified by a tramsaction
code in that DCT entry fcr the relevant destination) is eligikle to ke
automatically initiated. The prcgram used by that tramsaction code
will conventionally be a ccmmcn prcgram, developed by the installation,
to transmit data from various destinations to their relevant terminals.

However, to be able to transmit messages from the intragartition
destination to the terminal, that terminal must ke idle and able to
receive automatic output--~that is, the output sent to the terminal is
not in response to a tramsaction entered earlier Lty the terminal.

Accordingly, unless the associated terminal is idle and akle to
receive output, a task is not automatically initiated based upon the
trigger level of a terminal destination. If these conditions exist,
the task is initiated. The terminal is allocated to that task as if
the terminal itself had entered the transaction code which initiated
the automatic task. The autcmatic task may now issue transient data
GET macrc instructions tc retrieve outprut messages from the particular
terminal intrapartition destination. These messages may be transmitted
directly tc the teérminal using CICS/VS terminal ccntrol or basic mapping
support macro instructions.

100 CICS/VS System/Aprlication Lesign Guide

Trigger Level [D

Queue Count

TCT

TRM1

—

Term. Able To Rec.

i

(E

]

Intrapartition
Data Set

»

o

o

~

intrapartition data set.

CICS/VS uses transaction code in
DCT ENTRY=TRM1. If trigger level
equals No. of messages queued on
disk. {That is, queue count).

. ¥f terminai able to receive message

(as shown in terminal control
table), a user task is initiated by
DESTID=TRM1..

Initiated user task is given con-

trol of TERMINAL=TRM1. User task
gets output message from disk
DESTID=TRM1.

User task transmits output mes-
sage to TERMINAL=TRM1.

INPUT CICS/VS PROCESSING OUTPUT
Program 1. Application program issues tran-
- sient data put macro, specifying
DFHTD TYPE=PUT same destination 1D (DESTID) as
DESTID=TRM1 terminal 1D of terminal to re-
ceive message (TERMID=TRM1 for
example).
DCT '—
TRM1 -
2. CICS/VS locates ebtry in DCT for
DESTID=TRM1. > mﬁl
Terminal ’——‘ !—— -
Trans Code = 3. DESTID is for terminal gueue.
I__ CICS/VS puts output message to

Task
Control
Area

TCT

TRM1

Program

DFHTD TYPE=GET
DESTID=TRM1

Figure 4-3.

Termipal

Status

Terminal Output Via Intrapartition Data Set

To indicate whether a terminal may receive autcsatic output or not,

a processing status is defined fcr each CICS/VS terminal.

processing status codes are:

TRANSACTICN status

THEANSCEIVE status

RECEIVE status
INPUT status
PAGE status

AUTOPAGE status

Chapter 4.

The

CICS/VS Data Management Design

101

TRANSACTION processing status indicates that a terminal is unable
to receive automatic output. It can receive output only as a result
of an input transacticn entered from that same terminal. Output queued
from other tasks for a TEANSACTICN status terminal can be transmitted
to it only when the terminal operator enters a tramsacticn code which
will read the data from the relevant intrapartition queue, and send it
to that terminal. The terminal cperator has ccntrcl over when he will
receive the queued ocutput. Generally, and particularly for video
terminals, one intrapartition message would ke trarsmitted each time
the relevant transaction ccde is entered. The terminal operator can
then assimilate the information presented to him before the next ocutput
message is requested.

TRANSCEIVE status indicates that a terminal may enter input
transactions, but can also receive autcmatic output from cther tasks.
This is generally used fcr hard-ccpy terminals, where several lines of
output may be automatically transmitted when the terminal is idle.

RECEIVE status indicates that a terminal is uralkle to enter any
input data, but is only able to receive automatic ocutput from cther
tasks. This is generally used fcr printers.

INPUT status indicates that a terminal can enter data but cannot
rteceive data.

PAGE status indicates that a terminal can only retrieve pages on
request, one at a time.

AUTOPAGE status indicates that a terminal will receive all pages
queued for it.

Two additional terminal status codes are used tc indicate the
activity status of each CICS/VS terminal. These are:

e TIN-SERVICE status
e OQUT-OF-SERVICE status

IN-SEEFVICE status indicates that the termimal is presently active
and able tc prccess as defined akove.

OUT-OF—~-SERVICE status indicates that the terminal is presently
inactive, either because it has keen marked out-cf-service by the master
terminal operator for example, or Lecause cf an unrecoverable I/0 error
which occurred on that terminal. 1In this case, it is unakle tc enter
any messages or receive any output, automatic cr ctherwise.

Thus, for a task to be automatically initiated kased upon a terminal
intrapartition destinaticn trigger level, the relevant terminal must
have the following status:

e TIN-SERVICE status
e TRANSCEIVE status, cr RECEIVE status

If the terminal is OUT-CF-SERVICE, messages are accumulated on the
intrapartition destinaticn guteue until the terminal is placed
IN-SERVICE. If the status is TRANSACTION, messages are also accumulated
on the intrapartition queue until either the status is changed to :
RECEIVE or TRANSCEIVE, or the terminal operator enters the tramsaction
code to initiate a task which will read the messages from transient
data and send them tc the terminal.

A VTAM-supported terminal (such as the 3600) which supports automatic
task initiation, may be IN-SERVICE and in TRANSCEIVE or RECEIVE status

102 CICS/VS System/Application Design Guide

as indicated in its relevant TCT entry but may not currently be
connected to CICS/VS. It may be operating offline or be communicating
with other VTAM application programs. If a task is toc be automatically
initiated for that terminal, CICS/VS will request VTAM to estaklish
connection with the relevant logical unit. This may require VTAM to
request that another VTAM aprlicaticn program communicating with the
logical unit release it for connecticn to CICS/VS, or may require VTAM
to establish a new logical ccnnection (session) tc the logical unit
currently in offline mode.

Notification of Cueued Qutrut Messages

In the case of a TRANSACTION status terminal, some indication should
be given to the terminal cperator that messages are queued. This can
be done either by the terminal crerator periodically requesting that
any messages queued be sent to him, or through the techniques shown in
Figures 4-4 and 4-5.

Figure U4-4 shovws one terminal operator notification technique. The
application program that retrieves the data from Transient Data may
indicate in a standard area cf a display screen the number of messages
to be sent. This is then presented to the program for incorporation
into the output message that is sent tc the terminal. Part of the
response sent back to that terminal then indicates the number of
messages presently queued to be transmitted to the operator upon his
request.

INPUT APPLICATION PROGRAM PROCESSING OUTPUT

Application Output
Program 1. lication program links
/ Hessaoe > to common user routine
after preparing output
Link Routine message, and before sending
it to terminal.

DCT

Terminal

Common User Routine

g

Common user routine ex-
> amines queue count in DCT
entry for this terminal.

Examine DCT Queue Control
Entry Queue
Control For
Terminal

> 3. If messages are queued to send Msgs Queued
Insert Queue 10 terminal, user routine
Control In Messageq inserts number of messages ‘> Qutput
queued in standard area Message
of output message.
/’_\ 4. User routine returns con-
trol to application pro- <
P — gram, ™
— P Msgs. Queued
5 A rogram sonds [g Guued]
PFHTC Typo-Put output message, with count
C o of messages queued, to
Application terminal.
Program
(Cont'd) Output Message

At Terminal

Figure 4-4. Notification to Terminal Operator of Autcomatic Output

A seccnd technigue is shown in Figure 4-5, and utilizes the terminal
paging facility of CICS/VS tc control automatic cutput to the terminal.

Chapter 4. CICS/VS Data Management Design 103

The terminals must be specified as TRANSCEIVE or RFCEIVE status, such
that autcmatic output may ke sent to them. Tasks preparing output to

be transmitted tc a specific termimal grepare that output as a series

of pages to be displayed tc the terminal. These fpages, however, are
directed to tempcrary stcrage through the use of the BMS terminal paging
macro instructions, instead cf tc the intrapartition destinmation for
that terminal.

The terminal cperator may then request at his convenience pages of
information to be displayed in whichever sequence he requires.

INPUT APPLICATION PROGRAM PROCESSING OUTPUT

Application

Program
1. Application program prepares
. pages to be sent to terminal
({for example, Termid-TRM1).
Put Pages : 2. Program issues BMS paging
macro instructions to
virite pages to temporary Temporary
I storage. Storage
Prepare Output Msg. 3. Program prepares output
Output “MSGS READY-] message to notify operator
Message PAGEID=XXXX of utles of pages stored
TITLE =XXXXXXX"" tor him.
Massage
DFHEMS Routing '> 4, Program uses BMS message
Type= ” foute macro instruction .
VP! MSGS READY to send message to Terminal=TRM1
Route ~PAGEID=XXXX terminal-TRM1.
;TITLE=XXXXXXX" ‘MSGS READY-
—_— oute=TRM1
5. Message is sent by CICS/VS PAGEID=XXXX

as soon as terminal is able TITLE=XXXXXXX

o receive it.

6. Terminal operator later
Temporary Paging '> enters paging command,
Storage Commands requesting pages in
sequence desired,

Terminal=TRM1

Figure 4-5, Notification of Paged CQutput

The task that generated the pages for display may also issue the
BMS ROUTE macro instruction to send a message to the terminal notifying
it of the fact that pages have been stored, and identifying the pages
so that they can be displayed, when convenient, ky the operator entering
CICS/VS terminal paging commands. Thus the amount of information the
terminal operator has to read as the result of automatic output. is
limited to one line, and he can use the CICS/VS paging commands to
request subsequent output when he desires it. Terminal output formats
should be designed to reserve at lcast one line cn display terminals
for automatic system-to-cperatcr messages of this nature.

This second technique is based on terminal raging, which utilizes
temporary storage and VSAHM.

If a task is to be autcmatically initiated to send output tc a
VTAM-suprorted terminal such as the 3600, CICS/VS establishes a logical
connecticn, if the relevant logical unit is not currently connected to
CICS/VS. The 3600 AP controlling that logical unit is then notified
of the reguirement by CICS/VS to autcmatically initiate a task on behalf

104 CICS/VS Systenm/Application Lesign Guide

of that logical unit, This is achieved by CICS/VS requesting VTAM tc
send a "kid" command. On receipt cf the bid, the AP can notify the
terminal operator (perhaps by displaying a message or by turning on an
indicator light cn the 3604) that automatic output is to ke sent to
him. If he indicates that he can receive that output, the AP can
respond rositively tc the bid. CICS/VS then autcmatically initiates
the task to send data to the AP, and hence the terminal operator. If,
however, the terminal operatcr dces not wish to accept automatic output
at that time, the AP can resgond negatively to the bid. CICS/VS will
not reissue the kid at a later time. When the terminal operator is
able to accept the autcrmatic cutput, he notifies the AP. The AP then
transmits a "ready to receive" ccmmand to VTAM, and hence CICS/VS.
CICS/VS then autcmatically initiates the task as discussed above. Refer
to the CICS/VS Advanced Copmunication Guide for further information.

-

If none of the above techniques is to ke utilized, the terminal
operator can periodically enter a user transaction which reads any
messages queued for that terminal destination in transient data, and
transmits those messages tc the terminal. This dces not require the
use of the technigues previously described, but has the disadvantage
that it is completely dependent upon the terminal cperator.

lovw or High Priority Processing

CICS/VS intrapartition queues may be utilized fcr low (or high)
priority processing. A prcgram can receive tramnsactions from a
terminal, validate them, ard notify the terminal cf any error messages.
valid transactions are directed tc¢ an intrapartition destination, and
gqueued for that destination until a specified trigger level is reached.

A terminal is not associated with this destination. W®hen the trigger
level is reached, a task is autcmatically initiated based upon the
transaction code specified for that destination. As no terminal or
operator is associated with this task, the task rriority used in
processing these tramnsactions is the transaction priority as sgpecified
for that transaction code in the prcgram control table (PCT). The
initiated task may read the transactions gueued to that intrapartition
destinaticn, process them, and urdate any required data sets depending
upon the application requiresments. Frocessing of data may then proceed
independently cf subsequent terminal input.

This technique is utilized by the asynchronous transaction processing
(AtP) facility in CICS/VS (see Chapter 3). A batch cf tramsactions
may ke entered from a batch terminal using the ATP tramsaction, CRDR
(refer to Figure 3-11). This batch is given a batch name by the
terminal operator, and each transaction is gueued on a transient data
intrapartition queue until all batch input is ccmpleted. At this tinme,
a task (or tasks) is initiated, lkased upon the tramsactions in the
batches, to process those batches. 1In the meantime, the terminal
operator is free to enter any other tramsactions, including other ATP
batches.

During processing of the ATP Latches, terminal output is directed
by applicaticn programs to intrapartition destinations. This terminal
output may be retrieved and tramnsmitted to the terminal, when requested
by the terminal operator. This is achieved by entering the ATP
transaction code CHTR (see Figure 3-11).

REUSABLE INTFAPARTITION CUEUES
Intrapartition destinations can be specified as nonreusable or

reusable. Nonreusable gqueues accumulate data cver the entire CICS/VS
operational period, including any warm starts following termination of

Chagter 4. CICS/VS Data Management Design 105

CICS/VS (see "CICS/VS Initialization" in Chapter 8). Data on
nonreusakle destinations is not destroyed until transient data is cold
started, or until explicitly purged by user programs.

If reusable queues are employed, when an application program issuing
a transient data GET macrc instruction causes data to be read from a
new track, the track just read is automatically returned by transient
data to the pool of tracks availakle for use in satisfying other PUT
requests. This also causes transient data to refcrmat the returned
track for later use, and may in scme cases result in performance '
degradation during this reformatting.

The intrapartition data set can therefore be utilized most
efficiently for those destinations for which data does not need to be
retained; however, other destinaticns containing data which must be
retained for audit or reccvery purroses, are not disturbed.

INDIEECT DESTINATIONS

CICS/VS transient data uses extrapartition; iptrapartition, and
indirect destinaticnms.

An indirect destination has its own destinaticn identification, but
in turn identifies another destinaticn. Output eventually toc be
directed to specific devices may be written to a "logical®
intrapartition destination. This logical destination identification
is an indirect destipaticn, which in turn specifies the destination
for the physical device to be used to receive that output (see Figure
u-ﬁ) .

PROGRAM A DCT Entry

INVC (DESTID) DCT Entry

_— ESTID
FE— (TYPE) PRTR (DESTID) DCT Entry Access Method
INDIRECT DEST PRT1 (DESTID)
DFHTD TYPE=PUT PRTR (TYFE) / DCB/DTF

DESTID=INVC INDIRECT DEST
PRTI

(TYPE)
EXTRAPARTITION

DCB/DTF NAME PRINTER

=PRT1

—

PROGRAM 8B DCT Entry

PACK (DESTID) DCT Entry

— TRM1 (DESTID)
(TYPE)
INDIRECT DEST
DFHTD TYPE=PUT TRM1 (TYPE)
DESTID=PACK TERMINAL IE:M:NAL

Figure 4-6. Indirect Destinations

If the output is to be subsequently directed to scme cther device,
the application programs dc not have tc be changed. The output. is
directed to the relevant lcgical destination. Hcwever, the entry for
that indirect logical destinaticn is changed in the DCT to refer to.

106 CICS/VS System/Application Design Guide

the new device, which may be either intrarpartiticn, such as a terminal,
or extrapartition, such as a tape, disk, or printer.

Thus the amount of maintemnance resulting from a change in the
terminal network configuraticn, for example, is reduced to only a change
and reassembly of the DCT.

Different types of output to ke directed to the same terminal should
ke written to different lcgical indirect destinaticns. These different
destinations may refer indirectly to the same terminal destination.

If, at scme later time it is decided to separate logical output across
terminals, instead of havirg it appear on the sare terminal, this can
ke achieved merely by changing the relevant indirect logical
destinations to point to the new terminals tc receive that output. No
change need be made to the applicaticn programs.

As well as reducing the awcunt cf program maintenance resulting from
a change in the terminal network configurationm or a change in
application requirements directing output to different terminals,
indirect destinations have other useful purpcses. These are summarized
kelow.

Device Independepce

By directing output to logical indirect destinaticns instead of to
specific terminal destinations, the fprcgrams now become independent of
the particular device selected tc receive that output. An indirect
destination may roint to any intrapartition or extrapartition
destination. For example, the output which may ncrmally ke directed
to a terminal printer may be directed to an extrapartition destination
line printer. This can be achieved by writing the output to an indirect
transient data destinaticn, and then reassemkling the DCT to point to
the line printer extrapartition destination identificaticn.

Termipal Backup

The use of indirect destinaticns and device independence raises the
questicn of terminal backup. Through the use of indirect destinationms,
programs are no longer dependent uron the availatility of specific
terminals. In the event c¢f a terminal going down, an alternative
terminal cor device (tape, disk, cr printer) may ke assigned to receive
the output logically directed to the failing terminal.

Oon terminal failure (see Figure 3-12), it is nct practical to
reassemble the destinaticn ccntrcl table to change the indirect
destination to the backur device, without terminating CICS/VS. In this
case, the system design team should evaluate the requirement for a
backup capability to emnaktle critical informaticn to be received.

If it is necessary that informaticn be directed tc an alternative
device, then the destinaticn ccontrol table may be changed dynamically
by user-written programs. The user may write an arplication progranm
(initiated by a specific tramsacticm code) to search the destination
control table for the specified indirect destinaticn. The destination
identificaticn pcinting indirectly tc the failed device can then be
modified to point indirectly tc the destination cf an alternative
device. Data already queued for the original destination cannot be
sent to the failed terminal, but must then be copied by the user progranm
to the destination queue of the allocated device. Subsegquent data
written to the indirect destination will then autcmatically be directed
to that device (see Figure 4-7).

Charpter 4. CICS/VS Data Management Design 107

Note: 1In the event cf abncreal termination because of a pcwer failure
or machine check, and suksequent reinitiation of CICS/VS, such user
modifications to the DCT may be lost. The DCT will be initialized by
CICS/VS as if the user mocdification had nct cccurred, since it is not
aware that the DCT was changed by the user. This can be overcome Ly
the user program jourmaling each DCT modification and reestablishing
each modification itself after reipnitiation. (See "Journaling.")

sage to terminal.

INPUT APPLICATION PROGRAM PROCESSING OUTPUT
Program L 1. Application program issues ter- L
DFHTC TYPE= S minal control WRITE macro I—)
WRITE l— > instruction to transmit mes-]— — Terminal

2. Terminal indicates transmission
error occurred, and message
failed to be sent correctly.

Transmis-
sion Error
Indication

3. CICS/VS attempts recovery. }f not
successful, control is passed to
user-written terminal error N
program (TEP). e

4. User-written TEP scans user-
provided alternative device
device table to identify an
alternative terminal or device
(tape, disk, printer)} to receive
message.

5. User TEP writes failed message
to transient data destination
for alternate device XXXX, to
send message when terminal
available.

6. User TEP then copies messages
queued to destination of failed
terminal across to destination
of alternative device.

User-Written
Terminal

Error

Program (TEP)

User-Supplied
Alternative
Device

Table

=

DCT
XXXX

TEP

~

. DCT for error terminal is modi-
fied by user TEP to point to
alternative device for sub-
sequent reference.

DFHTD TYPE=PUT,
DESTID=XXXX

Figure 4-7. Terminal Backup and EKeconfiguration

The tramsacticn ccde allocated tc the DCT modification pregram may
be given a security code sc that cnly certain authorized terminal
operators, such as the master terminal operator, may use it.

Dypamic Ierminal Reconfiguration

The user—-written LCT Modificaticn program for terminal backup
described abcve pay alsc be utilized for dynamic terminal
reconfiguration. If at different times of the day it is required to
change the destinaticn of logical cutput to different physical devices,
this can be achieved by using the L[CT modificaticn tramsaction code
and program.

This raises the possikility of dynapmically reconfiguring the terminal
network, or other devices, tc receive output. Fcr example, at one time
of the day output may be directed to a particular terminal printer,
while at other times it may ke directed to a disrlay screen, and again,
to a line printer.

As described above, any dynamic DCT modification made by user-written
programs should be journaled by the user, and utilized after CICS/VS
reinitializaticn to reestaklish the modified DCT.

108 CICS/VS System/Application Design Guide

The availability of CICS/VS terminal device independence, which
enables application programs to rresent ocutput messages in a standard
form regardless of the terminal type which will receive those messages,
lends itself to such dynamic reconfiguration capability. Dynanic
terminal reconfiguration is discussed further in "Terminal Backup" in
Chapter 8.

Because CICS/VS allcws any terminal (or simulated terminal such as
card reader, disk, or tare) to enter any tramsaction, the user-develcped
support of dynamic reconfiguraticn alsc enables the master terminal
operator to exercise ccntrcl cver where output is to be directed based
upon online application requirements. Used in this way, transient data
and indirect destinaticns hecome pcwerful cnline applicaticn tools.

Some VTAM-supported terminals (such as the 3600) permit dynamic
terminal reconfiquration to le performed by the ccntrcller for the
devices controlled by an AP, Through use of logical device addresses,
the AP identifies devices to be used for I/0. The contrcller relates
their logical device addresses tc physical device addresses using a
table associated with that AF. The contrcller alsc permits this table
to be changed dynamically so that a specific logical device address
may refer to a different physical device. The 3€00 system operator
may request this reassignment to ke carried cut Ly a user-developed
AP. For example, a 3600 system cperatcr may reassign an alternative
printer for use ky an AP with an inoperative printer.

This device reassignment is transparent to CICS/VS. CICS/VS
compunicates output disposition to anm AP through use of logical device
codes (LLCs). The AP then relates the lcgical device code to a logical
device address and issues the relevant output request. The ccntreller
then relates the lcgical device address to a physical device as
previously described.

The AP can interpret the 1IDC tased upon applicaticn requirements
and identify a lcgical device address to the contrcller. The controller
can then identify the physical device currently assigned to that logical
device address fcr that AP.

Use of alternative devices and device reassignment surport in the

3601 provides additional system flexibility and availability for 3600
users.

Charter 4. CICS/VS Data Management Design 109

This chapter presents a tutorial discussion of data base design.
Experienced CICS users may wish tc omit reading akbout those facilities
which are identical to those provided in previous versions of CICS.
New facilities provided im CICS/VS include support of VSAM data sets
and DL/I data bases. Appreciaticn of these facilities can be obtained
ty reading the following topics:

e Data base implementaticn for agplications

o Randcm record deleticn (VSAM cnly)

e Locate mode prccessing (VSAM cnly)

e Mass record insertion (VSAM cnly)

e Skip sequential krowsing

e Heighted retrieval function (VSAM only)

e Record identification

e Phonetic conversion function

e Segment updating (key-seguenced VSAM)

e Recovery consideraticns

e DL/I products

e Data hkase selection criteria
. Because of the significant cagability available both te the
CICS/DOS/VS and the CICS/CS/VS user for accessing DL/I data bases, it
is strongly recommended that the CICS/VS user whc is not familiar with

DL/I concepts and advantages read the DL/I Products section in its
entirety.

In designing data bases, it is important to identify the data base
requirements of each aprlication tc ke implemented. Accordingly, this
chapter first examines the data kase requirements cf a number of
different applicaticns, to identify thcse factors most important to
the applications in selecting the appropriate data base support.
Follcwing this, the services cffered by CICS/VS file control and by
the various DL/I products are descrited. Techniques are identified
for the design cf data bases using these facilities to satisfy various
application requirements. At the end of the chapter, a number of
selection criteria are discussed for the determination of the most
appropriate data base support in sgpecific environments,

Chapter 5. CICS/VS Data Base Design 11

APPLICATION BREQUIREMENIS OF LAIA EASES

CATA BASE DEFINITION

The term "data Lase" may have a different meaning to different online
applications or installaticns. 2 general definiticn of a data base,
which covers mcst consideraticns, is:

"2 structured nonredundant collection of interrelated informaticn
accessible to many users at the same time."

Structures

The term "structured" in the definition refers to the c¢rganization
of informaticn in a manner by which it can be easily retrieved. The
following two structuring approaches can be used:

e Fhysical structure
e Logical structure

To require an arplicaticn program tc be aware of the physical
structure of the data base implies that any change to the orgamnization
of inforration on that data kase might also necessitate modification
of the applicaticn programs which access the data lLase.

A logically structured data base is one in which an application
program can refer to infcrsation in that data base by name, without
necessarily being aware cf the physical organizaticn or locatiom of
data on the data base. The physical structure or crganization may be
separately described by a data description table, while the application
program can describe its lcgical accessing and usage of the data using
a program description table. These tables provide an interface between
the application rrogram and the physical structure of the data base.

The advantage of logical structures is that a change in the data
base generally only requires a change in the relevant tables, often
without necessitating any change in the agplicaticn programs. This is
termed data independence, and results in reduced maintenance of progranms
follcwing modificaticn cf a data hbase.

Data tases which are referenced by rhysical structure usually have
linited (or no) data independence, and programs may require comnsiderable
modification following a data base change. Hcwever, programs that
refer to data bases logically, exhibit a much higher degree of data
independence. Any data kase changes are reflected in the data base
tables and program tables rather than in the program itself.

Data Redupdancy

The term "nonredundant" in the above definitiorn refers to the ability
of a data kase tc record certain information (for example, a customer's
name and address) once only, but make that information available to
cther prcgrams that use it.

Traditionally, batch applicaticns and programs are developed with
their own data sets, often disregarding informaticn that is recorded
on separate data sets for separate applications. The result in the
traditional batch environment is the existence of redundant
information-~-that is, the same irfcrmation is often recorded im many
data sets. A change to that infcrration must be propagated through
all data sets to ensure that the infcrmation remains in step across

112 CICS/Vs System/Applicaticn LCesign Guide

all applications. The advantage in recording information only once,
and yet making that cne recoxrd of information available to all
applications, is that once that information is changed, the change is
reflected across all applications that use the infcrmaticnm.

A further advantage resulting frcm nonredundant storage of
information is storage eccnomy, either on disk or tape.

Collecticn of Interrelated Information

The term "collection of interrelated informatico" in the definition
refers to the consolidation cf infcrraticn relating to applications at
one common point. The advantages cffered by such comsolidation include:

e More readily available irformaticn

e More timely informaticn

e Flimination of redundant infcrmaticn

e Saving in disk or tape storage requirements

e Easier maintenance of informatioen

* Development cf informaticn relationships

The last advantage listed refers to a significant advantage of data
bases: the determination cf the logical relationship of all information
referring to a particular entity. The identification of such logical
relationships of informaticn enatles that information to be utiligzed
for tetter management of an crganization's activities. This information
may have been availakle previously, but may not have been utilized
effectively before implementing the data base.

To illustrate the importance of the data base factors
discussed above, namely:

e Interrelated irfcrmaticn

e Logical structuring of informaticn
e Data independence

e Nonredundant information

the application requirements for data base support in the following
industries are discussed:

e Manufacturing

e Banking

e Insurance

e Medical

e Pharmaceutical
e Distribution

¢ Law Enforcement

e Utilities

Chapter 5. CICS/VS Data Base Design 113

The entire data base requirements will not ke described for each
industry. Howvever, some data base requirements will be identified
here, to use as a base fcr subsequent discussion in this chapter and
in Chapter 11. The reader may wish to read only that section below
relevant to his cwn industry, and then refer to the topic "Data Base
Inplementation for Applicaticas."

One of the most ieportant rescurces in each of the industries next
discussed is data. W®ithcut access tc such data or information in these
industries, the following aprlications cannot exist. The availability
of such information can cpen application potentials which were not
practical previously.

The applicaticn design in each c¢f these industries is discussed in
more detail in Chapter 11. However, the data base requirements
introduced here highlight the main requirements fcr data base support
in each industry. References are also made to diagrams in Chapter 11.

The DIL/I products provide extensive data base support, which exceeds
that provided by CICS/VS file ccntrol. File contrcl is a data
management systep which can ke utilized to access data sets. However,
the user nust be aware of the physical organizaticn of data on those
data sets. DL/I refers tc data in a data base, while CICS/VS file
control refers tc data in data sets. While recognizing the different
levels of data base suppcrt cffered ky DL/I and by CICS/VvsS file control,
tc avoid confusicn of terminclogy between data sets and data bases,
all information is discussed belcw as keing part of a data base,
regardless of whether CICS/VS file ccntrol or DL/I is used.

MANUFACTURING INLUSTRY

Scme cf the informaticn requirements of this industry relate to
manufacturing (or prcduction) work orders. The data describing the
products to be manufactured, parts to ke utilized, availability of
materials and resources, apd status and location cf work orders in the
manufacturing process are essential to manufacturing control. Figure
11-1 illustrates a manufacturing production crder and status reporting
system.

Manufacturing Work Order Data Base

At least three data bases pay ke required for ccntrol of information
relating to manufacturing. Cne is the manufacturing order data base,
on which the entire manufacturing application derends. This generally
contains the record for each manufacturing order as illustrated in
Figure 11-2. This manufacturing crder data kase ccntains information
describing the manufacturing requirements for each wcrk crder, together
with infcrmation reporting the status of that work order at each step
in the manufacturing process.

Fart Numker Cross-Beferemce Data Base

A seccnd data base is used to indicate relatiomships Letween part
nurbers and open manufacturing orders using a particular part. This
data base is called the part numlter cross-reference data base. By
accessing this data kase for a particular part, each current
manufacturing crder which uses that part may be identified, as
illustrated in Figure 11-3, Further information relating to that
manufacturing order may ke oktained from the manufacturing work order
data base.

114 CICS/VS system/Application Design Guide

Mapufacturing Plannipg Data Ease

A third data Lase is the ranufacturing plamnning data base, which
contains informationm for each manufacturing order that has been planned
and that will ke released to the shor flcor for work. This data kase
is used mainly fer audit trail and control functions. The information
contained in this data base is illustrated in Figure 11-4.

Data Base Usage

As manufacturing crders are received, they are added to the
manufacturing order data lkase, and all parts utilized by that
manufacturing wcrk crder are added tc the part numkter cross-reference
data base. As each work order is planned for manufacturing, it is
entered into the manufacturirng planning data base.

Data Base Reguirepents
The data base requirements for this application should support:

e Logical relationships of data to be established; for example, all
work orders using a particular part.

e Multiple occurrences of informatiom relating tc particular data,
for example, multiple status infcrmation relating to a work order,
or multiple work orders relating tc a part.

e Adding informaticn tc the data base, replacirg or altering
information, or deletirqg infcrmation. This enables néw work crders
to be added, existing work corders to be altered, or ccmpleted work
orders to ke deleted. In additicm, one work crder may be split
into two or more work orders. This implies the need for changing
the original wecrk crder and adding each new split work order.

Additional facilities which should, ideally, be provided by data
base support in this industry are:

e Data independence
e Nonredundant infcrmaticn
* Fasy maintenance

e Batch and online access to the data base

BANKING INDUSTRY
The applicaticns often cf interest in this industry are:
e Savings bank and mortgage lcan systen

e Custcmer information system (called Custcmer Information File -
CIF)

The savings bank and wortgage lcan system, when implemented as an
online application, enables savings tank deposits and withdrawals and
mortgage loan transactions to be entered from teller tersinals located
in various branches cf the bank. These transactions are used to update
savings rank and loan accounts. Pigure 11-7 illustrates a typical
savings Lkank and mortgage loan systen.

Chapter 5. CICS/VS Data Base Design 115

The customer informaticn system is used to identify all information
relating to a customer's activities with the bank. This enables the
following informaticn to be identified for each customer:

e Savings accounts

e Checking accounts

e Loan accounts held

Furthermore, given a custcmer's name and account number, it camn also
be determined frcm that account all cther accounts owned by that

customer. Figure 11-11 illustrates a typical banking customer
information systen.

To implement these applications, several data kases are required.
These data bases should ke interrelated, to allow implementation of
the custcmer infcrmaticn system. 2 descrirption of these possikle data
bases follows.

Savings RAccount Data Base

The savings acccunt data lase contains information relating to each
savings account--such as acccunt numker and current balance.
Information describing each transaction against that acccunt, such as
deposits, withdrawals, and interest, is also contained in this data
base. There may be multiple transactions against each account, as
illustrated in Figure 11-8.

The mortgage loan data base may ke similar to the savings account
data base, as illustrated in Figure 11-8, except that the multiple
transactions that occur against a loan account are normally payments.
The initial granting of a lcan usually results in the creatiom of a
new loan account, against which there may be multiple tramsactions
reflecting periodic rayments against that loan, and interest
calculations based upon the current kalance.

The checking account data base is scmewhat sipilar to the savings
account data base, except that the multiple transactions that occcur
against the checking acccunt are checks written, or deposits received,
together with fees charged against the account, as illustrated in Figure
11-12.

Customer Account Cross-BReference Data RBase

The customer account crcss-reference data base generally provides
information describing the customer, such as name, address, and
telephone number, and contains infcrmation describing every type of
account and account number held Ly that customer at the bank. Because
a customer can have many different tyres of accounts, multiple account
references may exist (see Figure 11-9).

116 CICS/VS System/Application Design Guide

The data base support required for this application should support:
e Multiple occurrence of tramnsacticns relating to am account.

e lLogical relationship of accounts to a specific customer, to produce
an interrelated data base.

e Add mew accounts, change acccunts, and delete accounts from the
data base.

e Add new transactions, change transactions, and delete transactions
from accounts,

e Using related data kases, record custcmer information only once,
but allow that informaticn tc Le available tc all of the customer's
accounts sc as tc avcid redurdant infcrmation.

e Modify the data kase without requiring program modification--that
is, data independence.

e Access the data base bcth onlire and offline.

INSUKANCE INDUSTEKY

The applicaticns within the insurance industry, covered in the
following paragraphs include:

e Policy information sysfen
o New-business policy entry systen

A policy information system is somewhat analogous to a customer
information system in the banking industry. It utilizes a numkter of
data bases which describe all of the policies issued by the insurance
company for each customer (see Figure 11-14) . Other information
relating to claims and remnewals against each policy enable the insurance
company to assess more accurately a customer's insurance value.

The new-business policy entry system enables new policies to te
entered and added to the pclicy data kaseé (see Figure 11-18). 1In
addition, provision is made through this system to alter or delete
policies already in the policy data tase.

Eolicy Data Base

The policy data base generally contains all the information relating
to each current insurance policy. In additicm, claims and renevals
against that policy are associated with the policy information. There
may be multiple claims or renewals against each policy, as shown in
Figure 11-14.

Custoper Cross-Reference Data Base
The customer crcss-reference data base contains information relating

to the customer, such as name and address, together with identification
of each policy number owned (see Figure 11-1€).

Chapter 5. CICS/VS Data Base Design 117

RepresentativesTerritory Data Base

In some cases, a representative or a territory data base may be
used. This identifies each insurance company representative, or
geographic territory, together with all the policy numbers relating to
that representative or territory (see Figure 11-17).

Data Lkase suprort for these agrplications should support the
follcwing:

e Multiple occurrences c¢f information, such as claims and renewals
to be associated with each pclicy

e Multiple policy numbers to be associated with each customer
e lLogical relationships of a customer's ownership of various policies

e Nonredundant storage of infcrmation, so that information describing
a particular customer cr policy may appear only omnce and yet be
accessible in many different ways

e Data independence, tc enable the data base to ke modified without
requiring corresgcending frogram raintenance

e Batch and online access to data kase

MEDICAL INDUSTRY

One online application in this industry is the control and
raintenance of infcrmaticn relating to all the patients in a hospital
or clinic, in a patient informaticm system (see Fiqure 11-20). This
application enables a history to ke developed for each patient,
describing all visits, diagncses, and treatments received for that
patient. In addition, each patient receiving certain medication or
with a particular disease can be noted to enable rapid identification
cf such patients receiving certain treatment or suffering from
particular diseases.

Patient History Data Base

The patient history data Lase generally ccntains all the information
describing each patient, such as name, address, sex, and physical
characteristics., In this data base pay be information describing each
visit by each patient to the hosgital or clinic, each diagnosis made
for that patient, and all medicaticn or treatment received (see Figure
11-21) .

The medication crcecss-reference data base may contain information
describing the particular medicaticn, together with identification of
all patients who have received that sedication, as illustrated in Figure
11-22-

Diseases Data Ease

A diseases data base may Le used, which contains information relating
to each disease, together with identification of all patients suffering

118 CICS/VS System/Application Design Guide

from that disease. Alternatively, the patient history data base can
ke searched sequentially, to select all patients with a particular
disease. The use of a separate diseases data base is reccmmended if
there will be a significant pumber of disease inquiries,

Data kase suprort fcr such a patient informaticn system should
support:

e Multiple visits, diagncses, and treatments tc te reccrded for each
ratient, or multiple patiemts to be recorded for each medicaticn
or disease

e Logical relaticnships of medication or disease to patient history
and vice versa

e Add, change, or delete patients or patient history information such
as visits, diagnoses, and treatment

e 2dd, change, cr delete identification of patients receiving certain
medications cr suffering from specified diseases

e Nonredundant storage of ihformation, such that information
describing a patient occurs cnly once

e Data independence, such that a mcdification of the data base will
not require corresponding modification of programs

e Access to the data base from katch and online programs

PHARMACEUTICAL INDUSTRY
One online application in this industry is the entry cf orders from

rharmacists for varicus prcducts and the filling cf those orders in
the pharmaceutical company's warehouse, as illustrated in Figure 11-24.

Eharmacist Data Ease
This application uses a pharmacist data base, describing the

information relating tc a rharmacist such as name, postal address,
ship-to address, and credit rating (see Figure 11-26).

Product Data Base

The products which may ke ordered are held im a product data base
which describes the infcrmaticn relatimg to each product.

Synonym Data Base

The synonym data base may contain display images of all product
names with the same first few characters (first fcur, five, six, or
seven characters for exarple), together with product information such
as unit price, unit size, discounts, and warehouse loccation, as shown
in Figure 11-25. This data lase is used to identify by name the product
ordered. The display image. is transmitted to the terminal operator to
enable the arprorpriate product name to be identified.

Chapter 5. CICS/VS Data Base Design 119

Accepted Order Data Ease

The accepted order data base contains orders which are to be filled
by the warehcuse. The prcducts within each crder may subsequently be
sequenced into warehouse location sequence fcr production of warehouse
racking £lips (see Figure 11-27).

Oxder In-Progress Data Base

The order in-rrogress data base may have the same reccrd format as
the accerted order data Lkase (see Figure 11-27), and is used for
temporary storage of products ordered, until the entire order is
complete, to allcw for changes in the order.

Data Base¢ Reguirements

The data rases used fcr this application may need to support multiple
occurrences of informaticn, such as multiple prcduct details for
products stored in more than cne warehouse. The particular data base
support used should provide:

e Access of informaticn relatimng to pharmacists and products
e Add crders tc the crder data base

e Multiple occurrence cf details fcr products in the data kase which
may ke stored in several warehouses

e Nonredundant storage of data, with all the infcrmation relating to
a pharrmacist or a prcduct, fcr example, stored only once

e Data independence, such that modification cf the data base does
not require corresponding modification of prcgrams

e Access to the data base ry batch and online progranms

DISTEIBUTION INDUSTRY

A common apglication in the distribution industry is order entry
and invoicimg. This application is sometimes similar to the
pharmaceutical order entry system described above, but differs mainly
in the area cf stock status checking. Orders are accepted against
products, and the product inventcry is immediately updated.
Furthermore, infcrmaticn such as issues and receipts against each
product can be retained online as part of the current grcduct
information. Figure 11-28 illustrates one example of an crder entry
and invoicing systen.

Socme of the data bases used in this applicaticn may be similar to
those used in the pharnaceutlcal crder entry system, but with additicnal
inventcry control information in the product data base.

Customer Data Base

The customer data base is generally a record of information relating
to the customer, such as name, pcstal address, ship-to address, and
credit rating (see Figure 11-30).

120 CICS/VS System/Application Design Guide

Product Data Base

The product data kase may contain information describing the product,
together with current balance, minimum balance, recrder quantity, unit
price, and disccunts acrcss several warehouses (see Figure 11-31). 1In
addition, each accepted product crder may result in an issue against
inventory, while each recrder placed against suppliers may eventually
result in a receipt into inventory when the recrdered quantity is
delivered.

These issues and receipts may ke recorded in separate data bases or
associated with the criginal grcduct in the product data base. 1In this
case, there may be multiple issues and receipts against each product
in the product data base.

Accepted Order Data PRase

The orders data base may contain information describing each accerpted
crder, and the products ccmprising that order (see Figure 11-29).
Products in the accepted order data kase may be sequenced into warehouse
location sequence for prcduction cf a warehouse packing slip.

Order In-Progress Data Eass

The order in-progress data base temporarily hclds each product
crdered until the entire crder is ccmpleted, in case it is necessary
to alter the order before completicn (see Figure 11-29).

!U

a B Reguirements

ase
e data base support requirements for this apglication should
=upp t:
e Accessing of customer information
e Accessing and updating of product informaticn and inventory levels
cf products in the data kase which may be stored in several
warehouses

e Application of issues and receipts against a product in the product
data base

e Addition of accerted orders to the order data kase

e Nonredundant infcrmaticn, by asscciating product issues and receipts
with the original prcduct record

e pata independence, such that mcdification of the data base will
not require corresponding modification of the progranms

e Access to the data base from both batch and conline programs

LAW ENFORCEMENT INDUSTRY

One online application in this industry is a pclice inforpation
system. This is generally an integrated data base system containing
all information relating tc¢ knour criminals, and data availakle on
crimes such as podus operandi and suspects (see Figure 11-33).

A police infcrmation system rrovides a useful function, not only in
the recording and maintenance of all information relating to criminals

Chapter 5. CICS/VS Data Base Design 121

and crimes, but also through the relationships. of information. A police
informaticn system can be utilized as a powerful law enforcement tool,
by examining various relatiorshigs; for examgle:

e The personal characteristics of suspects against personal
characteristics of known criminals

e Ccomparing the podus ¢rerandi used for a particular crime against
the known modus gperandi of varicus criminals

e The examination cf all factcrs relevant to a particular crime and
the relation of those factors to other information

A number of separate data bases may be used in this arplication to
produce an integrated pclice data kase. Some of these data bases are
describeé in the following paragracghs.

Criminal Data Base

The criminal data base ®ay centain all information relating to each
kncwn criminal, such as naxe, kncwn addresses, aliases, and reference
information in other data Lkases, such as personal characteristics and

particular modus gperandi.

Crimes Data Base

The crimes data base may contain all kncwn information relatimg to
particular crimes, together with details of the crime, such as modus
operapdi, and reference tc pcssikle suspects.

Suspects Data Base

The suspects data base may be similar in nature to the criminal data
base, and records all kncwn information relating to each suspect of a
crinme.

The convictions data base may relate solved crimes to criminals,
and may indicate the punishment dispensed.

Personal Characteristics Data Base

This data base may contain the personal characteristics (such as
height, weight, age, and descripticn) of all known criminals, suspects,
and participants in crigmes.

Modus Operandi Data Ease

This data base may contain the podus operandi used by known
criminals, suspects, and participants in crimes.

122 CICS/VS System/Application Design Guide

Data Basc Reguirements

The data kase support requirements for this application are quite
extensive. The data base support shculd allow:

e The multiple occurrence c¢f infcrmation, such as multiple references
to crimes and convictions for each criminal, or multiple references
to criminals for each crime

e The ability to readily add, change, or delete information on the
various data Lases

s The ability to manipulate coded and textual information of data
bases--that is, the surpcrt cf variable-length text informatiocn

e The ability to identify logical relationships between various
information

e The capability tc search data kases, selecting infcrmation based
upon specified criteria

e Nonredundant information, to reduce the amount of disk storage
space required

e Data independence, such that mcdification of the data bases will
not require corresponding modification of prograns

e Access to the data bases by Lkatch and online programs

UTILITIES INDUSTRY

One online application in this industry may be a Custcmer Information
System (see Figure 11-35). This may contain all informatiom relating
to the utility company's customers, such as name, address, account
details, appliances installed, and their maintenance history.

Custoper Data Base

The customer data base cortains descriptive information such as
name, address, appliances installed, consumption history, account
details and history, installment lcan account details, and history and
raintenance history for apgliances (see Figure 11-36). The historical
information may be part of the customer data base and requires that
multiple entries of information relating to the particular account or
appliance be associated with each customer.

Maintepance Techpicjap Data Ease

To enable scheduling c¢f maintenance technicians to repair faulty
appliances as reported by customers, a maintenance technician data base
can be used. It may contain infcrsation describing the maintenance
technician, his particular experience, a planned wcrk schedule for that
technician, and, posseibly, service calls and repairs already carried
out. Based upon customer service calls, and upnallocated slots in a
techniciant's schedule, technicians may be allocated to answer particular
service calls. This service call information refers to the fparticular
customer and appliance invclved. Information describing the service
call and repair may also be added to the maintenance history for that
customer's appliance in the custcmer data base.

Chapter 5. CICS/VS Data Base Design 123

Dat

per

CAT

a Bas¢ Reguirements

The data Lkase support requirements for this arplication should
mit:
Multiple occurrence of information, such as account history cr
maintenance history, tc Le asscciated with each custosmer or
aprliance, or each maintenance technician

Ability to add, change, cr delete customers, appliances, account
information, and maintenance infcrmaticn

Ability to generate maintenance work crders for technicians,
accessing prior maintenance histcry for am argliance

Ability to ccntain varying amcunts of information for each custonmer,
such as information relating tc multiple appliances, or no
appliances, and extensive acccunt history, or no account history,
while still utilizing disk storage space efficiently

Nonredundant infcrmaticn

Data independence

Access to the data bases from batch and cnline programs

A BASE IMPLEMENTATION FCR AFPPIICATICNS

Data Base Reguirements Summary

The most common requirements cf data base support for the foregoing

applications are:

Mul

to

Bbility to support the multiple cccurrence of information, with
the number of occurrences varying from zero tc many

Otilize disk storage mcst efficiently, without requiring storage
space to be allocated for infcrmation which is nct present for a
particular record

Handle variakle-length informaticn such as names, addresses, or
textual ipnformation fcr tketter disk storage efficiency

Add, change, or delete records in a data base

add, change, or delete multiple cccurrences cf informatiocn for a
record

Nonredundant storage of information
Data independence

Access to the data bases by katch and online programs

tiple Occurrence Implepentaticn

Before examining the various data base support techniques available
detersine how these can satisfy the abcve requirements, it is

particularly important to examine the way in which multiple occurrences

of
The

124

information fer a particular data base record can be implemented.
two techniques are:

CICS/VS System/Application Design Guide

e Fhysically related cccurrences
e Logically related cccurrences

Physically related cccurrences generally are implemented ty utilizing
separate data sets. The pairn "rcct" information is stored inm one data
set. This may be specific customer data in a customer information
system, account infcrmatior in a savings bank and loan system, or
product information in an order entry system.

The multiple cccurrences cf related informaticn are then stored in
a separate data set or data sets, and are related kack to the main root
information in the root data set ty means of pointers. Furthermore,
the separate occurrences cf information relating tc a root cam be
chained ty means of pointers.

For example, in the banking industry, all the accounts relating to
a bank's custonmers may ke recorded in savings and loan account data
sets, with each account record ccrtaining pointers which refer back to
the custcomer's rcot informaticn, such as name and address. Each account
record for that custcomer may also contain a pointer to the next account
for that same customer in a chain c¢f accounts. A further data set, a
transaction data set, contains depcsits and withdrawals for accounts.
Each transaction refers back to its related account record by means of
a pointer, and tc the next transacticn against the same account in a
chain of transactions, using another pointer. This is illustrated in
Figure 5-1.

Customer
Data Set

Loan
Account
Data Set

Savings
Account
Data Set

Loan
Transactions
Data Set

Savings

Transactions
Data Set

Figure 5-1. Savings and Loan Data Base Chaining

Chapter 5. CICS/VS Data Base Pesign 125

The separation of the root information in one data set, with the
variable transacticn infcreaticn in cther data sets chained logically
to the root data set and alsc to cther transacticns for that same root,
enables standard access methcds to be utilized in providing data base
support. The roct irformaticn may be organized as a standard DAM
(Direct Access Method), ISAM (Indexed Sequential Access Method), or
VSAM (Virtual Stcrage Access Methcd) data set. Generally, the
transaction data set would be organized as a DAM data set, or an
entry-sequenced VSAM data set, tc enable direct retrieval of tramnsaction
records. Retrieval of all the transactions relating to a particular
root requires retrieval of the rcct information itself, followed by
retrieval of each transaction in the chain--with a possible separate
physical access for each transaction.

This physically related chaining technique may te supported by the
CICS/VS file ccntrcl indirect access feature, which is discussed in
more detail later in this chapter.

The lcgically related technique for the multiple cccurrence of
information generally inccrpcrates the multiple transacticns in the
same data set (or data base) with the root information. Most of the
transactions relating tc the root information are potentially accessible
in fewer physical disk accesses than for physically related information.
The data base support endeavcrs tc place multiple tranmsactions as close
physically to their logically related root inforemation as possible.

For example, root information such as customer details is recorded
immediately followed by multiple cccurrences of information, each
detailing a separate acccunt for that customer and transaction activity
against each particular account.

The data base support tc¢ implement a logically related techmnique
must enatkle new informaticr related to the rcot informaticn to be added
to other information for that root, existing information to be changed,
or informaticn tc be deleted. This may require the utilization of
internally controlled pointers and chains which are known only to the
data base support and which are transparent to the application progranm.
The application program may logically regard the multiple cccurrences
of information as if that information were physically adjacent to the
root information.

Alternatively, the data base support may attempt to physically insert
added information with the rcot and existing information, thus shifting
alcng other information in the data tase.

The data base support available fcr such logically related
informaticn is:

e CICS/VS file control segmented record feature
e DL/I products

These are discussed in more detail in the remainder of this chapter.

DAIA BASE SURPORT FOR CICS/VS

The features and system design aspects of CICS/VS file control and
LL/I products are presented kelow. 1Included are the factors to consider
when selecting appropriate data kase support and selecticn criteria.

126 CICsS/VS Systems/Application Design Guide

CICS/V¥S FILE CONIEOL (ISAM, LAM, VSAN)

The CICS/VS file ccntrcl program provides data rase support for
application programs executing under its control. It uses the standard
access methods available under DCS/VS and 0S/VS1 or 0S/VS2 -- namely
the Indexed Sequential Access Method (DOS/VS ISAM cr 0S/VS BISAM),
Direct Access Methocd (DOS/VS DAM or 0S/VS BDAM), and Virtual Storage
Access Method (VSAM). Fcr the remainder of this chapter, "DAM" will
be used to refer both to DOS/VS DAM and 0S/VS BDAM, and "ISAM" will
refer to both DOS/VS ISAM and 0OS/VS EISAM.

The facilities provided by the standard access methods are extended
in some cases by CICS/VS file control to provide additional support.
For example, file ccntrcl surports the following data sets:

e Fixed-length and variable-length records
e Blocked and unblocked data sets
e ISAM, DAM, and VSAM

Extensions prcovided by CICS/DOS/VS file ccntrol enable the support
of variakle-length DOS/VS ISAM data sets, which are not part of standard
support rrovided by DOS/VS ISAM. Similarly, file control provides
support for blocked fixed-lergth or variable-length DAM data sets,
which are not included in the standard support provided by DOS/VS DAM
or 0S/VS BDAM. The suppcrt cf blccked direct access data sets is
particularly useful if those data sets are processed sequentially by
CICS/VS programs, as discussed below in "Sequential Access (Browsing)."

CICS/Vs file ccntrcl allcws kcth direct access and sequential access
to ISAM, DAM, and VSAM data sets.

DIRECT ACCESS

Direct access, scmetipmes referred toc as random access, is supported
by file control for ISAM, [CAM, and VSAM data sets. The following
services are provided by CICS/VS file control for DAM, ISAM, and VSAM:

e Randcm reccrd retrieval

e Random record update

e Randcm reccrd additice

e Random record deletiocm (VSAM only)

e Togically open/close data sets

e Exclusive control of reccrds during update operations

e Variable-length ISAM reccrds (both DCS/VS and 0S/VS)

e Blocked DAM records

e LOCATE mode, read-only retrieval (VSAM only)

e Mass record insertion (VSAM cnly)

e Segmented records

e Indirect access

These services enable CICS/VS file ccntrol to provide data management

Chapter 5. CICS/VS Data Base Design 127

support that surpasses 0S/VS or LOS/VS data management support in many
areas.

Direct access tc data sets is made on the basis of record
identification of the particular lcgical record toc be retrieved. The
record identification may bke either a record key in the case of ISAM
or key-sequenced VSAM data sets, or a record location within the data
set for DAM or entry-sequenced VSAM data sets. The use cf record keys
or lccations for direct access is discussed in more detail under “Record
Identification."

Based upon presentaticn of the apprcpriate record identification by
the application rrcgram, CICS/VS file control will access the data set
requested by the program tc carry out the services listed above, and
described in detail in the fcllowing sectiomns.

Randcm Record Retrieval

File control will directly access the record identified by the
application program using either key or record. lccation (depending urpon
the type of data set) frcm the srecified data set. The application
progran issues a file control GET nacro instruction, identifying by
name the data set tc be accessed, and indicating the location in the
program which contains the record identification. The data set name
is used Ly CICS/VS to locate the relevant entry for that data set in
the file contrel table (FCT). This entry contains specifications for
that data set, such as:

e Access method used

Record length

e Blcck length

e Key length (if applicatle) .
e Key location (if applicatle)

This information is not contained within the arplication progranm.
In the event of a change tc the data set, the relevant changes may be
made to the FCT, without affecting the applicaticn program. This
provides a limited degree ¢f data inderendence.

When the applicaticsm prcgram issues a file control GET macro
instruction, CICS/VS dynamically allocates storage to be used as an
input area (file I/0 area--FIOA), and a work area (file work area--FRA,
or virtual storage work area--VSWA--for locate mcde processing of VSAM
data sets) if required. The input oreration then kegins. The
application prcgram waits until that requested operation is completed.
Any I/0 errors on completicn, which cannot ke recovered by the access
methcd or by file ccntrol, are then returned to the application program
for action. See Figure 5-2.

Although an arplicaticn program does not continue processing while
a requested I/0 cperation is being carried out, CICS/VS utilizes the
availakle processing time during the I/0 for other concurrently
executing tasks. Consequently, all tasks are givem an equal opportunity
to process, based upon their respective task pricrities, while I,/0 is
in progress. The net result is imprcved overall performance of all
concurrently executing tasks in the system, even though the full
processing overlap pctential of the single task issuing the I/0
operation request is not utilized.

128 CICS/VS System/Applicaticn Design Guide

INPUT

CICS/VS PROCESSING

OUTPUT

Application Program

DFHFC TYPE=GET
DATASET=FILE1
RDIDADR=KEY1

. Application Program Issues GET

Macro Instruction, Specifying
Data Set Name (FILE1) And Record
Identification (Contained In

KEY1).

FCT

N

. CICS/VS Locates Data Set Entry

Dataset (Filel) > .
In File Control Table.

Blocksize
Received Length

w

. CICS/VS Allocates File 1/0 Area Fite 1/0 Area

(FtOA)} For DAM or 1SAM Data Sets

Based On Block Size In FCT.
VSAM Control
Interval

Virtual
Storage
Work Area

EN

. CICS/VS Retrieves Relevant Record

From Data Set.

CICS/VS Allocates File Work Area
(FWA) Based On Record Length In
FCT, If Data Set Is Blocked And/Or

Data Set

@

File Work
Segmented, Or Virtual Storage
Work Area (VSWA) If VSAM Locate >
Mode Processing Is Specified.

CICS/VS Moves Logical Record
From FIOA To FWA, If Allocated.
However, |If VSAM Locate Mode Is
Specified, CICS/VS Places Address
Of Logical Record (Within VSAM
Control Interval) Into VSWA.

CICS/VS Returns Record Address
To Program, Via TCA. Address Will
Be of FIOA For Unblocked, Unseg-
mented Read-Only Data Sets, Or
Of VSWA For Locate Mode Read-
Only Processing Of VSAM Data >
Sets. In All Other Cases, Address J

b

Task Control Area

~N

Program

|

Will Be Of FWA.

Figure 5-2. CICS/VS File Control Randcm Record FKetrieval

A file I/0 area (FIOA) is dynamically allocated before the GET
operation commences. On completicn of that I/0 cperatiomn withcut error,
in the case cf blccked and/or segmented data sets a file work area
(FWA) is allocated of sufficient size to contain a lcgical record. The
requested logical record is then lccated in the klock in the FIOA, and
transferred across to the FW2. Fcr locate mode fprccessing of VSAM data
sets, a VSWA is allocated, and information identifying the record inmn
the control interval is placed in the VS®WA. This is discussed in more
detail in "Locate Mode Processing (VSAM Read-Only)" later in this
chapter. The application prcgrae is then presented with the address
of the FHA or VSWA, or of the FICA for an unblocked unsegmented
read-only data set. The arplicaticn program may then process the
logical record.

When the record has been processed and is no.lcrger regquired, the
FIOA and FWA or VSWA (if allccated) can be dynamically released by the
application program, and the storage utilized by these areas may be
returned to the CICS/VS dynamic stcrage area for use in satisfying
other stcrage requests. Figure 5-2 illustrates the function of CICS/VS
file control random reccrd retrieval.

Randcm Record Update
A record can ke directly accessed using a file control GET macro
instruction, as described abcve, for potential subsequent update. An
indicaticn that this reccrd pay subsegquently be updated is made tky the

application program at the time that the GET macroc imstruction is
issued, ky indicating that the tyre cf operation is a GET for UPDATE.

Chapter 5. CICS/VS Data Base Design 129

In this case, the reccrd is retrieved as descriked above for the
GET macro instruction. After the aprlication program has updated the
logical records in the FRA, it issues a FUT macroc instruction, supplying
to CICS/VS the address in storage of that FWA, CICS/VS file control
determines the fact that this is a PUT of a record which was earlier
retrieved for update. The lcgical record then replaces the original
record on disk (see Figure 5-3).

APPLICATION PROGRAM AND
INPUT CICS/VS PROCESSING OUTPUT

File 1/0 Area
Program
— -3 1. Application Program Retrieves
DFHFC TYPE=GET Record Indicating Intention To Sub-
DATASET=FILE'1 sequently Update It.
ADIDADR=KEY1
TYP OPER=UPDATE

2. CICS/VS Appties Exclusive Control To
Block For This Task, To Prevent Con-
Current Updating By Other Tasks.

Task Controt Area

w

. Application Program Processes
Retrieved Record.

Data Set

»

. If Record Is Not To Be Updated,
Program Issues DFHFC TYPE=RELEASE
Or Next DFHFC TYPE=GET MACRO
Instruction.

DFHFC TYPE=PUT > . If Record Is To Be Updated, Program .
N Issues DFHFC TYPE=PUT To Write S
Updated Record Back. Data Set
CICS/VS Releases Exclusive Control

To Permit Other Tasks To Update
Block, If Required.

Program

o

e

Figure 5-3. CICS/VS File Control Randcm Record Update

If the application gprcgram does nct wish to update the record which
was retrieved, it dces nct issue a FUT macro instruction. The
application program should issue a File Control RELEASE macro
instructicen.

Exclusive Contro]l During Update

If the exclusive control feature was specified when the file control
management routine was generated fcr the installation, file control
will ensure that no other concurrently executed task is able to. issue
a GET with UPDATE macro imnstructicn for the same logical record for
ISAM data sets, physical reccrd fcr DAM data sets, or control interval
for VSAM data sets (referred to as the "physical record" below). This
is necessary in a multitasking environment to avecid two or more
concurrently executing tasks updating the same physical record omn disk,
with the possibility of losing information resulting frcm cne or more
concurrent updates. However, a GET request withcut update may be
concurrently issued with a GET request for update, for the same physical
record. Several tasks may read that record at the same time, Lut only
one task is permitted to update it.

If it is not necessary to update the record retrieved, exclusive
control cn that physical reccrd can ke released Ly issuing a file

130 CICS/VS System/Application Design Guide

control RELEASE macro imstruction (see Figure 5-3). This will permit
any cther waiting task which alsc wishes to update the same physical
record tc commence its update, at an earlier time than it could if the
application program d4id not issue a RELEASE macrc instruction.

Random Record Addjtion

Records may be added to a data set through the use of a File Ccntrol
PUT macrc instruction indicating that the type of operation is a new
record addition. In this case, the application program must first
request that a file work area (FW3A) ke allocated to enable the new
record to be constructed in main storage. The allccation of an FWA is
achieved by issuing a file ccntrcl GETAREA macro instruction specifying
the data set name to which the recocrd will be sulsequently added. The
data set name is used to locate the appropriate entry in the FCT and
so deterrmine the record length tc be used by CICS/VS in allocating the
FWA.

After constructing the new record in the allocated FWA, the
application program issues a PUT macro instruction, specifying that
the type of operation is the addition of a new reccrd. The record
identification supplied by the prcgram is used to determine where the
new record will ke added.

If the record identification provided is a reccrd key for additionm
of new records tc ISAM or key-segquenced VSAM data sets, the record is
placed in sequence in the data set based upon that key. For DAM data
sets, the new record is inserted as clcse as possikle to the specified
record location as descriked below.

For fixed-length unblccked DAM records, such data sets must be
initially generated with a number of dummy records interspersed
throughout the data set. A dummy record is one containing hexadecimal
FF in the first byte of the record. The record to be added is inserted
in the first available duasy record location follcwing the specified
record lccation. If no dummy records are availakle. in the same cylinder
(for DOS/VS), the application prcgram is notified; it may then reissue
the PUT request for the new record tc another part of the data set
until a dummy record is found. When the new reccrd replaces the dummy
record, file contrcl returns the record location where the new record
is stored to the applicaticn program (see Figure 5-4),

Chapter 5. CICS/VS Data Base Design 131

APPLICATION PROGRAM AND
INPUT CICS/VS PROCESSING OUTPUT

Program L File 1/0 Area
DEHFC TYPE—‘GETAREA 1. Program requests atlocation of | B
DATASET=FILET 4 file 1/0 area and file work area. - L > Output FIOA
File Control Table] > File Work Area
2. Program constructs output
Dataset (File 1),) record. B, Output FWA
 Blocksize,
Recd Length
e 3. Program issues new record put
request specifying record
- Program — iacation in data set.
DFHFC TYPE=PUT,
TYP OPER=NEWREC,
RDIPﬂTﬁPBm 4. If unblocked data set, CICS/VS

N>' scans cylinder from specified
location for first dummy record
(X'FF' in first byte).

5. When dummy record found, new
record replaces dummy. EI]

. |f blocked data set, CICS/VS l
writes new record to specified
location.

[

Data Set 7. CICS/VS returns address of new

Program
record to program. b bl

AV,

Figure 5-4. CICS/VS File Control Rddition to Fixed-Length
DAM Data Set

For variable-length reccrd DAM data sets, CICS/VS file control
attempts to add the new recorxd at the end of the specified track, for
CICs/DOS/VS, providing there is sufficient space cn that track to
contain it. For CICS/0S/VS, a specified number cf tracks may be
searched to locate a track on which to add the record. 1If there is
not sufficient srace, the aprlicaticn frogram is notified, and may
reissue the POT request for the new record, indicating ancother track
to be used. When the new record has been successfully written at the
end of the specified track, its record locatiom is returned to the
applicaticn program (see Figure 5-5).

For entry-sequenced VSAM data sets, new records are always added to
the end of the data set regardless of whether they are fixed or
variable~-length. The relative byte address of the added record in the
data set is returned to the application prograem.

Random Record Deletion (¥SAM Only)

The file control DELETE macro instruction is used to specify the
deleticn of records in a VSAM key-sequenced data set. The specified
record is physically deleted. The space occupied by that record is
reclained and added to the available free space in the particular
control interval which contained that deleted reccrd.

132 CICS/VS System/Application Design Guide

INPUT PROCESSING OUTPUT

Program) File 1/0 Area
DFHFC TYPE=GETARA ~> 1. Program requests alloca-
DATASET=FILE1 [—1 tion of file 1/0 area and Output FIOA
file work area.
File Contro! Table Fite Work Area
Data Set (File1)] 2. Program constructs “’“‘J?
output record.
Blocksize -
Record Length
Program
3. Program write new
DFHC TYPE=PUT, > record specifying track
TYP OPER-NEWREC, location in data set.

RDODADR=TRL1

> | . 4. CICS/VS attempts to add
record at end of specified
track (or tracks for OS/VS).

Data Set

5. If no space, program
specifies new track.
Program

Data Set '
6. CICS/VS returns address
of new record to program.

Figure 5-5. CICS/VS File Control Addition tc Variable-length
DAM Data Set

Locate Mcde Processing (VSAM Read-Cnly)

The normal mode of processing for file control operations is move
mode. With mode processing of blocked data sets, the logical record
is moved from the blcck into a FWA, and the address of that FWA is
presented to the applicaticn program.

For VSAM data sets, lccate mcde processing may ke specified for
read-only operations. With locate mcde processing, the address of the
logical record in the control interval is stored in a virtual storage
work area (VSWA). The additional CPFU processing required to move the
logical record from the control interval is therefcre avoided. However,
lccate mcde is invalid if a read fcr urdate is specified and/or
segmented records are being retrieved.

Blocked DAM Recorxds

CICS/vsS file control provides for the deblocking of logical records
in a blocked direct access (LAM) data set. This service is provided
for both fixed-length and variable-length records. When creating or
adding to blocked DAM data sets, the application program pust work with
entire blocks.

The advantage in supporting blocked DAM records is to enable both

direct and sequential access of the data set. The block size should
be such that the physical reccrd retrieved for direct access is

Chapter 5. CICS/VS Data Base Design 133

maintained as small as pcssikle, while still providing sufficient
blocking to enable satisfactcry rerformance for sequential retrieval.

DOS/VS ISAM Variable-Length Becords

CICS/I0S/VS supports the retrieval and static update (tkat is, no
length variation) of variakle-length records withir a fixed-length
blcck under ISAM crganization. These pseudovariable blocks must contain
the block length in the first four bytes in the standard form LLLb.
Since all blocks are fixed-length, this value is the same for all
blocks. Each logical reccrd within the block must also reflect the
length of the record in the first four bytes (LLtb). A lcgical record
may not ke ccntinued intc the next block. The first byte of any unused
portion of a block must contain a hexadecimal FF.

The addition and deleticn of records for a DOS/VS ISAM
variable-length record data set must be handled ky the user in an
offline tatch environment. When creating the data set, it must be
defined as fixed unblocked, and the key for each block must be the same
as the last logical record in that block. The blcock size must be an
even numter of bytes. All reccrds must reside in the prime data area;
no overflow records are allowed.

However, the use of key-sequenced VSAM data sets instead of ISAM
allows the support cf koth fixed-length and variakle-~-length records,
with the added advantage that the record length can be either increased
or reduced as a result of a record update, addition, or deletiom.

Dynamic OPEN/CLOSE of Data Sets

When the CICS/VS system is initialized, data sets may be specified
in the file contrcl table (FCT) as either open or closed. Closed data
sets may be dynamically cpened fcr accessing at a later time, by means
of a master terminal command. The design techiques descrited below
utilize dynanmically opened or clcsed data sets.

Data sets may be dynamically closed at certain times c¢f the day, to
prevent access tc information frcm terminals, and may be dynamically
opened when access is to be permitted. 1In this way, support for certain
online applicaticns may ke provided only when desired. 1If an
application prcgram attempts to access a data set which has been closed,
an error indication is returned to the progranm.

Mass Reccrd Insertion (VSAM Cnly)

When adding records to a key-sequenced VSAM data set, significant
performance advantages can be realized if many records have to be added,
and if those records are added in the same sequence as the original
data set. This is referred to as mass record insertion. The
application program specifies the mass insert operation in a GETAREA
macro instruction. This irndicates tc the file ccntrol prcgram that
the user intends to submit several successive PUT requests for new
logical records with keys that are in ascending sequence. VSAM then
perfcrms the addition of the new reccrds faster tham if the additions
were nade in random sequence.

Each subsequent PUT macro instructicn utilizes the same FWA as each

record is added. The pmass insert cperaticn is terminated by issuing
a file ccntrol RELEASE macro instruction.

134 CICS/VS System/Application Design Guide

VSAM shared Resources (CICS/0S/VS Only)

VSAM shared resources enable a pool of 1I/0 related blocks, channel
programs, and buffers to be shared among several VSAM data sets. This
permits efficient utilization of storage in an environment in which
many VSAM data sets are open and it is difficult to predict the amount
of activity against a given data set, or in a situation where each
transaction may access several VSAM data sets.

The user indicates in the FCT which VSAM data sets are to share
resources. CICS/VS calculates the maximum amount of resources required
by using the number of strings specified in the FCT for each of the
VSAM data sets that are to share resources and the control interval
sizes for these data sets from the VSAM catalog. CICS/VS then requests
VSAM to build a resource pool large enough for a certain percentage of
maximum amount of resources required. The user can override this
percentage and resource calculation if desired. For example, the user
may wish to override the CICS/VS calculation to reflect specific data
set activity known only to the user.

Storage utilization efficiency obtained by sharing VSAM resources
must be evaluated against the effect on performance. If insufficient
resources are available to satisfy a specific I/0 request against a
shared resource data set, the requesting task is placed in a CICS/VS
wait until the necessary resources become available. CICS/VS provides
statistics (number of strings, buffer sizes, and number of buffers of
each size) to identify the resources allocated. Statistics are also
provided to aid in the optimization of these resources to ensure that
sufficient buffers and VSAM strings are available to avoid excessive
task wait time. (See "CICS/VS Working Set" in Chapter 7.)

If the activity against specific data sets is higher than can be

managed using shared resources, those data sets should be defined in
the FCT as not sharing resources.

Chapter 5. CICS/VS Data Base Design 134.1

SEQUENTIAL ACCESS (EROWSING)

The operations discussed above refer to direct access. CICS/VS file
control enables DAM, ISAM, and VSAM data sets to ke sequentially as
well as directly accessed. This sequential access is sometimes referred
to as a "browse" operaticn. PData sets to ke broused may be either
fixed-length or variable-length, blocked or unblocked data sets.

A browse operation using CICS,/VS file ccntrcl is analogous to the
sequential retrieval of records frcm ISAM data sets, sometimes called
SETL retrieval, in a batch envircnment. However, a batch program can
only sequentially retrieve records from ome logical section of a data
set at a time. Cn the other hand, CICS/VS enakles many brovwse
operations tc be ccncurrently executed on the sape data set, either
from the one task or several tasks. This is referred to as multiple
browsing, and is discussed further belcw.

Browse Initiation

To specify a browse operation, the application rrogrammer identifies
the data set tc ke browsed, and prcvides the reccrd identificatiom of
the logical starting point in the data set for the browse operation.
This lcgical starting pcint can ke either a specified record location,
or key, or a generic key. Fcr example, if it is desirable tc bkrowse
an orders data set, containirg orders for products placed by different
tranches, a generic key may indicate that browsing is to start with
the first order recorded from a specified kranch. The initiatiomn of
a browse operaticn is achieved by the application frogram issuing a
file control SETI macro instruction.

Browse Retrieval

Each record is sequentially retrieved for the krowse operation when
the application program issues a GETNEXT macro imnstruction. Each
GETINEXT macro instructicn presents the next sequential logical record
to the application program fcr prccessing. In the case of an ISAM data
set or a key-sequenced VSAM data set, the records are presented in
ascending key sequence (€xcept for a browse operation using relative
byte address (RBA) fcr a key-sequenced data set, when records may be
presented in physical sequence). For a DAM data set, or an
entry-sequenced VSAM data set, the records will ke presented in the
sequence in which they are rhysically stored on the data set.

Browse Termipation

The browse operation continues with each subsequent GEINEXT macro
instruction, until the end of the data set is reached or it is desired
to terminate the brcwse cperation. This terminaticn is achieved by
issuing a file ccntrol ESETL macrc instruction.

When a browse operaticn is initiated by a SETL macro imstruction,
a file work area (FW3) and file I/C area (FIOA), cr a virtual storage
work area (VSWA) fcr VSAM data sets, is allocated for that browse.
Each subsequent reccrd read as the result of a GETINEXT macro instruction
is presented to the applicaticn prcgram in this FWA. When the ESETL
macro instruction is issued tc terminate the browse, the FWA and FIOA
or VSWA are released.

Chapter 5. CICS/VS Data Base Design 135

Multiple Browsing

A task can issue cne cr mcre SETL macro instructions to initiate
one or more browse operaticns. Each SETL macrc instruction results in
the allocation of an FWA and FIOA cr VSWA for that browse operation,
and this FWA or VSWA contains the current record identification of the
logical point reached in the data set. When several SETL macrc
instructions are issued by the one task against the same data set,
several FWAs and FIOAs, cr VSWAs will ke allocated, one FWA and FIOA
or VSWA for each browse. The task may maintain several ccncurrent
browse orperations, by indicating the address of the FWA or VSWA for
the logical sectiom of the data set to be browsed next. The GETNEXT
macro instruction issued will read a record from that logical section
of the data set and present it tc the application program in the
relevant FWA or VSWA. Figure 5-6 illustrates multiple browse
operations.

Disk Data Set
Logical Section 1 | Logical Section 2 | Logical Section 3 | Logical Section 4
A Al A N
I'e Y Y Y

7 7 A7
‘Al 7

FIOA FIOA FIOA FIOA

| fwa | | Fwa | | rwa | | Fwa |

Program

GETNEXT From Section 2

GETNEXT From Section 1

GETNEXT From Section 4

Figure 5-6. Multirle Brcwse Operaticms Using CICS/VS File Control

There is no lcgical 1limit to the number of brcwse operaticns that
may ke executed ccncurrently fcr the same data set, either from the
same task or many tasks. The only limitation is the availability of
dynamic storage to maintain an FICA and FR2 or VSW2 for each concurrent
or multiple browse. This is a factor of the block length, reccrd
length, degree of pultitasking, and amcunt of dynamic storage allocated
in the CICS/VS partition, and numker of VSAM strings specified for a
VSAM data set.

The multiple browse technique introduces a numker of very useful
system design solutions. For example, an orders data set may contain

136 CICS/VS System/Application Desigh Guide

crders that are in sequence acccrding tc product number as placed frcm
several tranches within a company. If it is desired to retrieve all
product crders from a sprecific branch, this can ke achieved by issuing
a browse operation, starting the browse at the first product nuaber
ordered from that kranch. Subsegquent GETNEXT macrc instructions will
retrieve the next product crdered from the branch, until the end of
all products ordered frcm that branch is reached. At this time the
brovwse operation may be terminated by amn ESETL macro instruction.

However, if the product orders received from several tkranches are
reported using a terminal, this ®ay imply that the orders data set
should be sorted into the sequence of tkranch number within product
number.

Generally, online sorting is impractical. Reccrds should ke
retrieved in the sequence. ¢f branch within product, while still
maintaining the crders data set in the sequence cf product within
tranch. This can ke achieved by issuing multiple browse operations,
having each btrowse initiated frcom the first product order record from
each branch, Each browse operation in effect logically breaks up the
crders data set into a numker of separate order data sets, one for each
tranch.

A GETNEXT reguest can be issued fcr each kranch browse operation to
retrieve the orders placed fcr the first product number in the small
logical data set for each ktranch. The second GEINEXT macro instruction
issued for each trowse operation then retrieves the next product crder
record for each kranch.

This can continue, retrieving all the informaticn from each branch
relating to a specified prcduct until the application prograr has
constructed an entire terminal page. At this time, the browse
operations for the products and branches contained on that terminal
page may be terminated by issuing an ESETL macro instruction for each
krovwse.

As previously stated, the technigue of multiple browsing enables
the sequential retrieval cf information in a sequence different from
that in which a data set is crganized. This multirle browsing designm
technique may open up powerful data. inguiry possibilities for online
data sets.

Skip Segquential Browsinpg (¥S2M Qnly)

Skip sequential refers to the ability to sequentially browse through
a logical section of a data set, and then skip tc ancther logical
section cf a data set to ccntinue the same browse operation. 1In effect,
it provides a direct access capakility in the middle of a seguential
retrieval operation. The record identification of the next logical
section of the data set may ke moved into the reccrd identification
field set up in the progras, and another GETNEXT macro instruction can
be issued. This will positicn the browse to the pev section of the
data set, thus effecting a skip sequential operation. This technique
cannot be used for DAM or ISAM data sets.

Beigbted Retrieval Fupction (¥SAM QOply)

This facility is provided as a built-in arpplication function and
can be used only for key-sequenced VSAM data sets, It enables a data
set to be searched by CICS/VS and records to be extracted from that
data set based uron selection criteria. These criteria may be specified
either by the application prcgram, or by the terminal operator, to be
used by the applicatiocn prcgrams.

Chapter S. CICS/VS Data Base Design 137

This provides a powerful information retrieval capability to CICS/VS,

so that records may ke retrieved and fields within those records may
ke matched against inforpmaticm provided by the applicaticn program or
Records may le selected tased upcn an exact match
with the selecticn criteria, or a match within a specified range of
the selection criteria.

terminal operator.

retrieval.
INPUT

Enter
Selection
Transaction

CICS/VS PROCESSING

Figure S-7 illustrates the concept of weighted

OUTPUT

Key-Sequenced
VSAM
Data Set

Record I

Weighted Total
Counter Counter

Key-Sequenced
VSAM
Data Set

-

~

. Operator Enters Transaction To Initiate

User Program Which Will Issue Weighted
Retrieval Macro Instructions.

User Program Issues Macro Instructions
To Identify Selection Criteria To CICS/VS.

CICS/VS Weighted Retrieval

]

w

I

@

@

o

©

CICS/VS Initiates Weighted Retrieval On Key-

Sequenced VSAM Data Set Using Specified
Selection Criteria,

. If Record Field Matches Criteria, CICS/VS

Adds Match Value To Weighted Counter,
And To Total Counter.

I Record Field Does Not Match Criteria,
CICS/VS Subtracts Non-Match Value From
Weighted Counter.

. After All Criteria Are Applied To Record

Fields, CICS/VS Calculates Percent Of

After All Records Are Examined, CICS/VS
Retrieves Selected Record 1D’s And Per-
cents From. Dynamic Storage And Sorts

Into Descending Sequence Based On Percent.

CICS/VS Drops All Record 1D’s After User-
Specified Maximum Number.

. CICS/VS Retrieves Remaining Records From

Data Set And Presents Each One To User
Program, Together With Percentage.

B |

USER PROGRAM

DFHBIF WTRETST

DFHBIF WTRTPARM
DFHBIF WTRETGET
DFHBIF WTRETCHK

Total
Counter

Weighted
Counter

Weighted Counter Divided By Total - i d
Counter.)
7. 1f Percent Falls Between User-Specified .
Limits, CICS/VS Saves Record Ident. And Per-
Recd ID I cent In CIC5/VS Dynamic Storage. S| CICS/VS Dynamic

Storage

|

PROGRAM
DFHBIF WTRETGET

Figure 5-7. CICS/VS Weighted Retrieval

Associated with each selection critericn are koth a match value and
a nonmatch value. In additicn, ccunters are maintained for each
selection criterion to accumulate statistics relating to the degree of
matching achieved. In the event cf an exact match, or a match within
specified limits, a match value associated with that criterion is added
to a weighted counter and to a current total counter. 1In the event of
a match not being achieved, a nonmatch value is suktracted from the
weighted counter, Lkut nct frcm the current total counter. The match
and nonmatch values may ke either positive or negative, but they must
have the same sign.

If a particular criteriocn is matched, the weighted counter is
increased appropriately. However, if ancther criterion is not matched,
the weighted counter may be decreased. After all selecticnm criteria
have been applied to the necessary fields in the record, a percentage
of acceptability is calculated by dividing the value of the total
counter into that of the weighted counter. If this percentage falls
within defined limits for the weighted retrieval operation, the full
key identification of that record and the percentage are saved in
CICS/VS dynamic stcrage by the built-in weighted retrieval function.

After all required records are examined, the keys and percentages

are read back from dynamic storage and sorted intc sequence based upon
the percentage cf cowpliance cf each record with the selecticn criteria.

138 CICS/VS System/Aprlication Design Guide

If the number of keys satisfying the selecticr criteria exceeds a
maximum, say N, specified by the application program, then all keys
having a percentage equal to or lower than that c¢f the N+1th key are
dropped. Follcwing this, the remaining records are retrieved and mrade
available to the applicatiocn program one at a time in order of
decreasing acceptability, together with each reccrd's percentage. Refer
to the CICS/VS Arplicaticn Programper's Referepce Mapual for more
detailed information about the use of weighted retrieval.

Application Uses for Neighted Retrieval Function

The weighted retrieval functicn uses the browsing capability of
CICS/VsS file control and is applicable only to key-sequenced VSAM data
sets. Use of this weighted retrieval capability opens significant
online application cpportunities in a number of industries. For
example, in a manufacturing industry, weighted retrieval may be used
to search a key-sequenced VSAM wcrk crder data set to identify specified
part numkers, quantities, revenue, and completior reriods for all work
orders. Alternatively, a VSAM manufacturing planning data base can Le
searched to identify all wcrk orders planned to ke manufactured by
specified equipment cr with rarticular materials or parts.

In the banking industry, the weighted retrieval function can ke a
powerful tool. It enables all customer records cf various branches of
the tank to be examined. Thcse with a current balance akove or below
a specified amount for certain types of accounts, can be selected.
Alternatively, Weighted retrieval can ke used to provide an exception
report of all checking acccunts with an overdraft greater tham a
specified amcunt.

Weighted retrieval can ke used in the insurance industry to search
key-sequenced VSAM policy data bases. It can identify those pclicies
with claims exceeding a certain value for specified types of policies
in particular gecgraphic locations or cwned by a rarticular class of
policyholderx.

In the medical industry, a patient infcrmation system can use the
weighted retrieval function to identify all patients receiving
particular medication in specified quantities over a particular period
of time. Alternatively, all patients with a particular combination of
symptoms may be selected.

Weighted retrieval can also be used in law enforcement agencies to
search a key-sequenced VSAM criminal data base tc select all criminals
with specified perscnal characteristics and modus gperandi that ccepare
with characteristics and modus orerandi of particirants in a specific
crime. Alternatively, a key-sequenced VSAM crimes data base can te
searched, selecting those crimes with the same pcdus Qperandi, and
using this modus operandi to select those criminals known to use that
modus operandi from a criminal data ktase. The reccrds of these
identified criminals can be further searched to select criminals who
satisfy cther criteria identified Ly the nature cf a particular crinme.
Using weighted retrieval in this arplication beccmes a powerful tool
for crime analysis and the identification of crimirals or susgects
associated with thcse crimes.

As shcown by previous examrles, the application potentials offered
by the use of the built-in weighted retrieval furction can be
significant. In fact, utilizing vweighted retrieval may ke an important
consideration in determining the data base support tc be used for the
particular inforsaticn tc¢ Le retrieved.

The weighted retrieval furcticn can only be used with key-sequenced
VSAM data sets. BAs will be seen later in the discussion of the DL/I

Chapter 5. CICS/VS Data Base Design 139

products, DL/I DOS/VS uses VSAM. IMS/VS DL/I may use either VSAM or
BISAM and BDAM. A DL/I VSAM data base utilizing root segments only
can ke accessed as a standard VSAM data set and operated upon by the
weighted retrieval functicn.

For effective online perfcrmance, VSAM data sets (and, hence,
weighted retrieval) should nct be used with systems having less than
144K of 1eal storage. This is discussed further in "Data Base Selection
Criteria" at the end of this charter.

FECOED ILENTIFICATION

As discussed above, data sets supported by CICS/VS file ccntrol can
ke accessed either directly cr sequentially. Records are accessed
based upon the record identificaticn supplied by the application
program. The record identificaticen utilized depends upon the rparticular
data set being accessed. There are twc types of record identificatioms:

e Record key

s FKecord location

Record identification based ugcn a key is used to access ISAM data
sets and key-sequenced VSAM data sets. The key may be either a full
key for retrieval of a particular logical record, or a partial (generic)
key, to indicate a logical pcint in a data set from which a browse
operation is to ccmmence., This generic key contains sufficient
information in the high-crdexr bytes of the key tc uniquely identify
the logical section of the data set. The remaining low-grder Lkytes of
the key may be either binary zercs or klanks. Fcr key-sequenced VSAM,
a truncated generic key may ke utilized, with the first byte of the
key specifying (in binary) the numker of significant bytes in the
generic key which follows.

For instance, the orders data set discussed akove for browsing can
utilize a key containing a branch number in the high-order bytes of
the key, and specific product numbers in the low-crder bytes of the
key. For example, crders for prcduct number 1016 frcm branch number
12 may be contained in a record which utilizes the key of 121016. The
generic key to enable the first prcduct record tc ke accessed for branch
nunber 12 would then be the generic key 120000 for ISAM, or 212 for
VSAM. The "2" indicates (in kinary) that a generic key of length two
bytes follcews, fcr kranch number 12 in this examrple.

When a full record key is used to access an ISAM data set, it must
lccate a record on that data set with the identical key; ctherwise, an
error indication is returned to the aprlication program.

However, when a full record key is used to access a key-sequenced
VSAM data set, any search for relevant VSAM records must be specified

ass

e Full Key Egual - indicates that the key provided by the application
program is a full key, and failuze to locate a record with this
exact key will result in an error indication being returned to the
applicaticn prcgram.

e Full Key Greater or Equal - specifies that the record key is a full
key, and that the first data record with a key equal to or greater
than the supplied record key is to be retrieved. This is equivalent
to using a generic key in ISAM.

140 CICS/VS System/Aprplication Design Guide

neric Key Equal - indicates that the record key is a generic key

th a specified generic length. 1A record whose key is equal to
the supplied generic key for the number of bytes indicated is then
retrieved. If one cannot be fcund, a "no record found" condition
is returned to the progranm.

e Generic Key Greater cr Equal - indicates that a generic key is
rrovided, and the first data reccrd with a key equal to or greater
than this generic key for the number of bytes indicated is to be
retrieved.

An additicnal advantage in the utilization of record keys is in the
addition of records. When new reccrds are added to the data set, they
are inserted in sequence in the data set kased upcn their record key
value.

Record Location

To facilitate retrieval from L[AM or VSAM data sets, records are
identified by their lccaticns in the data set. VSAM record
identification is based on relative tyte address (RBA) within the data
set. In the case of DAM, the physical block (record) identification
can ke on the basis of:

e Actual disk address (MEBCCHHE)
e Relative track and reccrd within the data set
® Relative block number (fcr CICS/CS/VS omnly)

If a physical key is reccrded for the physical record, it may be
appended to each of the record identifications detailed above. Figure
5-8 shows some representative record identification field formats.

DAM data sets with or without physical keys can be accessed. If a
physical key is reccrded cn disk preceding the data record, the record
identification can indicate the relative track within the data set,
and the key which is physically recorded with the data record to be
retrieved.

Both klocked and unblccked DAM data sets are surported by CICS/VS
file control. In the case of blccked DAM data sets, additional
information may ke provided to identify the logical record within the
physical block. This logical record identificaticn immediately follows
the physical block identification (as detailed akove) in the record
identification field provided by the application program. Logical
records may ke selected frce a physical block based upon:

e Record number withim block
e Record key within block (as illustrated in Figure 5-8)

where the location of the record key within each lcgical record is
defined in the file ccntrcl table.

CICS/Vs file control uses this logical record number or key to
deblock the relevant logical record from the physical blcck and present
it to the applicaticr prcgras.

For VSAM data sets, the record location utilized is a relative byte
address (RBA). VSAM data sets use this relative tkyte address to
identify the loccaticn within the entire data set of information (such
as a logical reccrd) to ke retrieved.

Chapter 5. CICS/VS Data Base Design 141

DEBLOCKING
PHYSICAL RECORD PHYSICAL KEY ARGUMENT COMMENTS
(BLOCK) LOCATION (IF PRESENT) (IF BLOCKED):
Relative Block No. - Record No.
i CICS/0S/VS Only
Relative Block No. Key Record Key
TTR - Record No.
TTR - Record Key Relative Track and
Record (bina
TTR Key Record Key ()
TTTTTTRR - Record No.
TTTTTTRR - Relative Track and
Record Key Record (zoned decimal)
TTTTTTRR Key Record Key
MBBCCHHR - Record No.
MBBCCHHR - Record Key Actual Disk Address
Block Physical Key Deblocking Format of Record
Reference (if present) Argument Identification Field

in Program
Figure 5-8. DAM Data Set FKecord location

Initially, this appears tc restrict the size of the data set.
However, the relative address is maintained in a fullword, enabling a
data set to be maintained, ccntaining 2 raised to the power of 32 Lbytes.
This is equivalent to a data set of approximately 43 billion bytes,
extending over more than fcrty-three 3330 disk drives.

Records which are written to an entry-sequenced VSAM data set are
never moved until the data set is recrganized. Any additions to the
data set are made at the end of the data set, and the relative byte
address by which that added record may be subsequently retrieved is
returned to the applicaticn prograem.

Using the relative byte address for record identification of a VSAM
data set provides the follcwing advantages:

e Operates equally well with fixed-length or variable-length records

e Provides rapid file access, with full rotational position semsing
suppcrt even when variable~length records are utilized

The record identification provided ty am application program to
access a VSAM data set by EBA is a fcur-byte relative byte address.

142 CICS/Vs System/Application Design Guide

This may ke calculated using techniques similar to that used to
calculate a relative reccrd rumbexr or relative blcck number for DAM
data sets, or the relative byte address may ke stored as a pointer in
logically related records.

Phonetic conversion is an c¢pticnal CICS/VS built-in function that
can ke utilized to develcr record keys based upon possible misunderstood
or misspelled informaticn. The application program presents a 16-byte
field to CICS/VS by issuing a built~-in function (EIF) phonetic
conversicn macro instructicn. The phcnetic ccnversion routine returns
a four-byte phonetic equivalent cf the supplied field. This returned
value consists of the first letter of the field, and three EBCDIC
numbers which represent the letters in the rest cf the field.

INPUT CICS/VS PROCESSING OUTPUT

l 1. CICS/VS Moves First Letter Of Name To

[li > First Character Position Of Code.
SIMiY)T)H, E U
I [2. Next Letter Of Name Is Selected. < @ |iL_.I_.I_|
Value Letter
1 B.,P,F,V [3. If Not A Bypass Character, CICS/VS
2 C€,G,J,K,0,8,X.2 Translates It To Number. l S5
3 DT
4 L
g r'N 4. Translated Number Is Inserted In
Next Position Of Phonetic Code. [] l]
)[5. | Repeat 2 And 3 Above Until Three
Translated Numbers Have Been A
Inserted In Phonetic Code. I $.5 3,0
S/,M Y, T H,E
6. If Fewer Than Three Letters Used,
CICS/VS Pads To Right With EBCDIC
Zeros.]
I Bypass

Extended Description

) - Double Letters Are Treated As Single Letters.
i - Two Or More Contiguous Letters With Same Value Are Considered As A Single Value.
EI - Bypass Characters Are: A, E, H, |, O, Y, W, U, Blanks, And Nonalphabetic Characters.
- If More Than Three Numbers Can Be Computed From The Name, Only The First Three
Are Used.

Figure 5-9. CICS/VS Phornetic Ccnversion

The key produced is based upon the phonetic sound of the name. Names
which sound similar, but are spelled differemntly, will generally produce
the same phonetic value (see Fiqgure 5-9). For exapple, the names SMITH,
SMYTH, SMYTHE, and SMITHS prcduce a rhonetic key of S530. Likewise,
the names ANDERSCN, ANDRESEN, and ANLCRESENN produce a phonetic key of
A336. This rhonetic key is used as a partial key, which can then be

Chapter 5. CICS/VS Data Base Design U3

used to access a name data base. Fhcnetically similar names will
produce the same value, reducing errcrs caused by prcnunciation or
pisunderstanding in spoken conversation. Misspelled names can be used
in retrieving required data.

The built-in phonetic ccnversion function is kased upon the phonetic
conversion capability provided in the IBM Program Froduct FASTER (Filing
And Selection Technique fcr Easy Retrieval: 5734-Gz1(0S),
5736-G24 (DOS)). It is particularly useful in industries which require
data sets to be accessed based upcn names cr product descripticms. It
is also useful in a police infcrmaticn system, tc identify all criminals
and suspects with phonetically similar names. Phoretic conversion,
together with the built-in weighted retrieval function, emnables records
to be retrieved based upon names, and records with phonetically similar
names to be further identified based upon selecticn criteria through
the use of the weighted retrieval function (see above),

For example, all criminals named Smith with specific personal
characteristics can ke identified. Criminale with a particular name
and cther identifying information, such as birth date and address, may
ke used to select the arprcpriate records.

A phonetic conversion subroutine is also provided by CICS/VS for
use by batch programs which process online CICS/VS data sets in a batch
environment,

INDIRECT ACCESS

CICcsS/Vs file control enables data bases to be ccnstructed. This is
achieved by the use c¢f the indirect access feature of file ccntrol,
enabling various data sets tc be ccnstructed to identify logically
related xecords in other data sets. The indirect access feature
utilizes pointers frcm a reccrd in the data set to logically related
records in other data sets. The pointers can contain the actual disk
address ¢f a.lcgically related reccrd, the relative location of that
record in its data set, cr the key of that record. This enables
identification and retrieval of informaticn logically related to the
record being processed.

Indirect Access Mpplication Examrles

Figure 5-10 illustrates a product record im a product data set and
the supplier of that product thrcugh a supplier rumber., This supplier
number is used as a pointer to access a separate supplier data set to
obtain further information alout the supplier of the product in
question., The supplier pusber in the product record becomes a pointer
to the supplier data set and can ke indirectly accessed frcm the product
data set.

144 CICS/Vs system/Application Design Guide

ISAM ISAM

Product Supplier
Data Set Data Set
Product Record Supplier Record
Product Supplier Supplier
No. No. No.
13425 8018 8018

Figure 5-10. Product Data Set Indirect Access

Another example of indirect access is in an insurance policy
information system. In this case, a policy record im a policy data
set contains infcrmaticn relating tc the policyhclder (for example,
customer number or name). If the customer data set is organized in
customer name sequence as an ISAM data set, the name may be used as a
key to retrieve the customer reccrd relating to that particular policy.
In this way, the customer nase in the policy record is used as a pointer
for indirect access to further custcmer details in the customer data
set (see Figure 5-11).

ISAM ISAM
Policy Customer
Data Set Data Set
Policy Record Customer Record
;‘:)”CV Policyholder Policyholder
8133462 | Smith, John A. Smith, John A.

Figure 5-11. Policy Data Set Indirect Access

An indirectly accessed data set may also contain pointers to other
logically related records in cther data sets. The customer record,
indirectly accessed from the policy record, may inm turn have a field
which identifies that custcmer's insurance agent. The identification
of this agent (agent numker) may be used to access the related agent
record in an agent data set (see Figure 5-12).

Chapter 5., CICS/VS Data Base Design 145

ISAM ISAM ISAM

Policy Customer Agent
Data Set Data Set Data Set
Policy Record Customer Record Agent Record
Policy . . Agent Agent
P g
No. olicyholder Policyholder No. No.
8133462 | Smith, John A. Smith, John A. 68 68

Figure 5-12, 1Indirect Access to Insurance Agent Data Set

Indirect Access Implementaticn

The CICS/VS file ccntrol indirect access feature enables fields in
a record to be utilized as pcinters to lcgically related records in
other data sets. There is nc liwmit to the number of indirect accesses
to other data sets which may be made through the use of these pointers.
Data sets may ke indirectly accessed, regardless of whether they are
fixed-length or variable-length ISAM data sets, DAM data sets, or VSAM
data sets. Depending upcn the type cf data set, the pointer will be
either a record location (in the case of DAM or VSAM data sets), or a
record key (in the case of ISAM or key-sequenced VSAM data sets).

The data set which contains a pcinter field tc a logically related
record in another data set is referred to as the index data set. The
logically related data set is referred to as the ckject data set. An
index data set may utilize several fields in a record to point to
logically related records in several okject data sets. These indirectly
accessed object data sets may in turn utilize a field in their records
to point to logically related records in cther data sets. These
original object data sets kecome index data sets fcr the next level of
indirectly accessed data set.

Indirect Access Initiaticn
Indirect access enables a chain tc be constructed through logically
related records in many different data sets. Figure 5-13 illustrates
a parts data set, which may ke organized in part name sequence as an
ISAM data set. This data set is accessed by means of a part name. The
part name record is utilized as an index to a part number record in
the parts data set. This part numker record may im turn contain a
supplier number utilized as a pointer to the supplier data set. 1In
turn, the supplier record may contain a disk address pointer to an
associated accounts payable record for that supplier in a DAM accounts
payable data set.

146 CICS/VS System/Application Design Guide

Accounts
Payable
Data Set

Supplier
Data Set

Parts
Data Set

Partname
Data Set

Partname Record Parts Record Supplier Record Accounts Payable

- li . Supplier No. Acct Payable
Parts Name Part No. Part No. Supplier No. ppl o Acct Raval eord

Bolt, 2 Inch 6173 6173 82 82 R

TTR
Disk
Address

Figure 5-13. 1Indirect Access Chain. in a Farts Data Base

To initiate an indirect access retrieval, the application progranm
issues a file cecntrol GET sacro instruction indicating the name of the
data set to be utilized as an index data set, and the name of the data
set from which a logically related record is to ke retrieved. 1In the
exakple illustrated in Figure 5-13, the application program may provide
a part name key, indicate the part name data set as the index data set,
and specify that a record is to ke retrieved from the supplier data
set, to obtain further infcrmaticn akout the suppller of that part
name. This is shown in Figqure S5-14.

Application Program

| Bolt,2inch]

(:ECDKEY \
DFHFC TYPE=GET

Partname
Data Set

-PRT -617 ISAM
INDEX=PARTNAME,
DATASET=SUPPLIER, Parts
RDIDADR=RECDKEY Data Set 1SAM

P SPLR .
e e -m Supplier
Data Set

Process Supplier :

Record Accounts
——— Payable
Supplier . Data Set
No. Supplier
Record
82

Figure 5-14. 1Indirect Access Operation
Cics/Vvs file control automatically retrieves the part pname record

for the rart name key rrcvided by the rrogram, extracts the part number,
and uses it as a key to retrieve the part number record from the parts

Chapter 5. CICS/VS Data Base Design 147

data set. Also, the supplier number is extracted from that parts record
and is used as a key by file ccntrcl to retrieve the related supplier
record from the surplier data set. This suprlier record is the record
requested by the applicaticn program and is returned to it for
processing.

In one GET request, CICS/VS file control follows the necessary
indirect access chain, accessing as many data sets as required, to
retrieve the reccrd requested and present it to the application program.
However, the application program is pnot aware of the number of data
sets indirectly accessed. It appears to the program as if the supplier
data set in the above example is in fact organized in part name
sequence, rather than in suprlier number sequence.

By following an indirect access chain in this way, file control must
be aware of the logical relationship ketween data sets. This is
achieved at system generation when the file control table (FCT) is
generated.

Specification of Indirect Access Lggical Belationships

As characteristics of each data set are specified in the ECT entry
for that data set during FCT generation, amn indirect access relationship
tetween that data set and ancther data set may be specified.

Information required to define an indirect access relaticnship is:

e Location of the field in the reccrd to be used as a pcinter to the
indirectly accessed data set

e Length of that field or peinter

e Name of the object data set

FILE CONTROL TABLE (FCT)

DATASET=PARTNAME DATA SET SPECIFICATIONS
OBJECT D/S=PARTNO KEY LOC=40' | KEY LNG=5
DATASET=PARTNO DATA SET SPECIFICATIONS PARTNO

OBJECT D/S=SUPPLIER | KEY LOC=32 | KEY LGN=3 DATA SET

'SUPPLIER

DATASET=SUPPLIER DATA SET SPECIFICATIONS DATA SET

OBJECT D/S=ACCTPAY KEY LOC=25.] KEY LNG=3

ACCTPAY

DATASET=ACCTPAY J DATA SET SPECIFICATIONS) _>

DATA SET

Figure 5-15. Specification cf Indirect Access Logical Relationshigs

148 CICS/VS System/Application Design Guide

A1l fields in the reccrd which are to be utilized as pcinters to
indirectly accessed data sets are identified, together with the data
sets to which they refer, as shcown in Figure 5-15. This information
defines the data set in question as an index data set and identifies
the indirectly accessed data set as an object data set. These data
sets, when they are subsequertly defined in the FCT, are also identified
as index data sets which refer to cther object data sets. This is done
by defining the record fields which are to be used as pointers in those
data sets, and the names c¢f the cbject data sets tc which they refer.

A chain of logically related data sets is defined in the FCT during
system generation. When an application program requests indirect access
retrieval, file control identifies a chain on which the cbject data is
located. It thepn retrieves each related reccrd in the data sets on
the identified chain in the sequence specified by the FCT, until the
related record in the cbject data set is retrieved, It is then
presented to the application prcgram for processing.

Indirect access retrieval enalkles data bases to be constructed
utilizing logically related information in a numker of data sets. One
file control GET macro instruction causes all the required indirect
accesses to ke carried out until the requested record is retrieved for
presentation to the task. This indirect accessing is carried out
asynchronously, enabling cther ccncurrently executing tasks to continue
processing.

Indirect access retrieval may be carried out with the intention of
subsequently updating the cbject data set record, if required. This
is indicated by the application prcgram specifying that this indirect
access retrieval is also part of an update operaticn. When the cbject
record is retrieved, exclusive ccntrcl is placed on that logical record
for IsAaM data sets, physical record for DAM data sets, or control
interval for VSAM data sets. The aprlication program issues either a
PUT macro instruction to write the updated record tack, or a RELEASE
macrc instruction tec indicate that the record is nct to ke updated,
but that exclusive control is to lke released.

Duplicates Data Set

In following a direct access chain through several data sets, the
rointer field in an index data set reccrd can identify a number of
separate records in its relevant okject data set. As shown in Figure
5-12, a policy recerd identifies the pclicyholder bty name. The customer
data set in this case may ke organized in custcmer name sequence, with
the name used as a key tc access relevant records. However, there may
be several customers with the same name, such as Jones. To develop a
unique key for each policyholder with the name. of Jones, additional
informaticn covering first and seccnd names, birth date, or address
nust be added to the key. Hcwever, adding extra imformation to the
record key reduces the amcunt of disk storage availakle for an ISAM
data set, and wastes disk stcrage when additioral identifying
informaticn is not used.

To overcome this probiem, CICS/VS file control provides an additicnal
capakility with the indirect access feature, to enable duglicate records
to be identified. This is achieved by utilizing the first byte of a
pointer field in an index data set record. This first byte contains
a unique code which cannct othervise occur as part of the key. 1In the
case of customer Jones, the first byte of the custcmer name field in
the policy record can contain a unique code, for example, hexadecimal
FF, as shown in Figure 5-16. This is immediately followed by the

Chapter S. CICS/VS Data Base Design 149

custcmer name (Jones in this case). The hexadecimal code FF identifies
this as a pointer to several reccrds with the sawe key. The key is
utilized to access a separate durlicates data set, rather than the
normal olject data set. Ip this example, the key Jones is used to
access a "duplicate custcmer" data set that contains one record with
the name key of Jones., This duplicate record may in turn contain
information enabling further identification cf customers with the nane
Jones.

o>

Agent
Data Set

Customer
Data Set

Policy Record

Pol. No. | Flag Policyhotder
51565562 | ‘FF’ JONES, AB

Customer
Duplicate
Data Set

=

Duplicates Flag

Duplicates Record

Name First Code First Code
~1JONES, AB ALLAN B] JONES1| ALF B | JONES2

(Duplicates Key Coded Keys

Figure 5-16. Duplicates Data Set for Indirect Access

B R ——— e . —— s

The definition c¢f a duplicates data set associated with a particular
index data set is specified in the FCT as part of the index data set
FCT entry. This indirect access FCT entry identifies the location and
length of the pointer field in the index record and the name of the
object data set. In additior, the user-specifi