
Program Product

SC33-0077-3

Customer Information
Control System/Virtual
Storage (CICSNS)
Version 1 Release 5

Application Programmer·'s
Reference Manual
(C'ommand Level)

Program Numbers 5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOSNS)

Fourth Edition (July 1981)

This edition applies to Version 1 Release 5 (Version 1.5) of the IBM
program product Customer Information Control System/Virtual Storage
CICS/VS, program numbers 5746-XX3(forDOS/VS) and 5740-XXl (for OS/VS).

This edition is based on the previous CICS/VS Version 1.5 edition,'and
changes from that edition are indicated by vertical lines to the left of
the changes.

Information in this publication is subject to change. Changes will be
published in new editions or technical newsletters. Before using this
publication. consult the latest IBM System/370 and 4300 Processors
Bibliog~, GC20-000l, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material may contain references to, or
information about~ IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stbcked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this pu~'ication;
if the form has been removed, comments may be addressed ei t~,

or to:

International Business Machines Corporation,
Department 812HP,
1133 Westchester Avenue,
White Plains, New York 10604.

IBM United Kingdom laboratori~s limited,
Programming Publications, Maii Point 095
Hursley Park,
Winchester, Hampshire S021 2JN, Englan

IBM may use or distribute any of the in~~rmat
.bel i eves appropr i ate wi thout i ncurr i ng anY ot

'1 •• I\Of course. cont i nue to use the i nformat i on~ yet

III~ Copyri ght Internat i onal Busi ness Machi n85 ('
.1980, 1981

i i

Summary of Amendments Number 10

Date of Publication: December 3, 1976

Form of Publication: TNL GN26-0887 to GC28-6394-4, -5, -6

IBM DOS COBOL

Maintenance: Documentation

• Minor technical changes and additions have been made to the text.

Summary of Amendments Number 9

Date of Publication: March 15, 1974

Form of Publication: TNL GN28-1062 to GC28-6394-4

IBM DOS!VS COBOL

New: Programming Features

• SORT ·OPfION clause for Sort and Merge Features

• 5425 MFCU Support

Maintenance: Documentation only

Minor technical changes and corrections to update the documentation to
Release 2

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

• 5425 MFCU support deleted

• Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the I
left of the text. These bars will be deleted at any subseq'Oent republication of the page affected. I

I

Summary of Amendments

Date of Publication: October 15, 1973
",Form of Publication: TNL GN28-1 047 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

• Merge Facility

New: Documentation only

• Miscellaneous File Processing Considerations

Maintenance: Documentation only

Number 8

Minor technical changes to update the documentation to the initial release level.

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made ~ of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Preface

This manual describes the IBM Customer
Information Control System/Virtual
Storage (CICS/VS) command-level
application-programming interface; it
contains introductory and reference
information necessary to prepare
assembler-language, COBOL, and PL/I
application programs, using CICS/VS
commands, to execute under either of two
IBM program products: CICS/DOS/VS
(5746-XX3) or CICS/OS/VS (5740-XX1). It
; s intended pri mari ly for use by
application programmers, but will be
useful also for system programmers and
system analysts. A knowledge of the
concepts and terminology introduced in
the Customer Information Control
~tem/Virtuar StoraSLe (CICS/VS) Version
1 Release 5: General Information,
GC33-0066 is required.

The manual contains the following parts:

• "Part 1. Command-Level Programming"
introduces CICS/VS commands and
describes the basic facilities that
are available to the user. A chapter
is included about the command
language translator and the options
that can be selected to modify the
way in which the translator operates.

•

•

•

"Part 2. Data Base Operations" deals
with access to data sets in the
user's CICS/VS system either through
CICS/VS file control or through DL/I.

"Part 3. Data Communication
Operations" deals with communication
wi th termi nal sand logi cal un its of
the subsystems in the
telecommunications network that
forms part of the CICS/VS system.

"Part 4. Control Operations" groups
together facilities Tor controlling
the operation of application
programs in the CICS/VS system.

• "Part 5. Recovery and Debugging"
deals with facilities available for
recovery from abnormal termination;
monitoring; tracing program
operation; and dumping areas of main
storage.

• "Part 6. The CICS/VS Built-In
Function (BIF DEEDIT) Command"
describes the one built-in function
available with the command-level
interface.

• "Part 7. Appendixes"

A. EXEC Interface Block.
B. Translation Tables for the 2980.
C. CICS/VS Macros and Equivalent

Commands.
D. Sample Programs (ASM).
E. Sample Programs (COBOL).
F. Sample Programs (PL/I).
G. Sample Programs for Distributed

Transaction Processing.

Experience in writing programs in
assembler language, COBOL, or in PL/I is
assumed. No previous experience of
CICS/VS is assumed. (Note: in some places
in the manual, ASM is used as the
abbreviation for assembler language.)

Related publications are listed in the
bibliography at the end of this
publication.

In this pUblication, the term VTAM refers
to ACF/VTAM, to ACF/VTAME (CICS/DOS/VS
only), and to the Record Interface of
ACF/TCAM (CICS/OS/VS only). The term
TCAM refers both to TCAM and to the DCB
Interface of ACF/TCAM. The term BTAM
refers to BTAM (CICS/OS/VS only) and to
BTAM-ES (CICS/DOS/VS only). For further
details of system requirements, refer to
the pub I i cat ion C I CS/VS Genera I
Information.

. Preface iii

Summary of Amendments

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 5

This fourth edition (SC33-0077-3)
includes information about outboard
formatting support for 8100 Information
Systems using the DPPX/DPS Version 2.

In addition various editorial and
formatting changes, together with minor
corrections, have been made throughout.

The third edition (SC33-0077-2) provides
information about the new or enhanced
features introduced by CICS/VS Version 1
Release 5, as follows:

• Extensions to the intercommunication
facilities, offering:

•

•

•

Multiregion operation (MRO) -- a
new mechanism that allows
communication between multiple
connected CICS/VS regions within
the same processing system
without the use of SNA networking
facilities.

Distributed transaction
processing (DTP) -- direct
transaction-to-transaction
communication across systems.
(Thi s faci 1 i ty is not avai lable
on MRO.)

Intersystem Communication
between CICS/VS and IMS/VS.

Improved throughput by support
of SNA parallel sessions.

Enhanced master terminal facilities
for interactive control of CICS/VS.

Command-level interface
enhancements: an interactive
command interpreter, and a new
command-level interface with Dl/I.

Security enhancements, including
support for an external security
manager (for example, the Resource
Access Control Facility (RACF)
program product).

• Improved monitoring facilities.

• Further de~ice support, including:

Additional 3270 support.

Use of the OS/VS console as a
CICS/VS terminal.

•

Network i ng of TWX and WTTY
terminals through the Network
Terminal Option (NTO) program
product.

Usability and serviceability aids,
including a new user exit mechanism
and facilities in CICS/DOS/VS
similar to those provided by the FERS
servi ce ai d.

Some of the above features are not
described in this manual because they do
not directly affect the application
programmer; for information on these,
refer to the other CICS/VS manuals listed
in the bibliography.

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 4.1

The technical newsletter (SN33-6242)
provides information about the new or
enhanced features introduced by CICS/VS
Version 1 Release 4.1, as follows:

• LUTYPE4 support

•

•

FBA device support (CICS/DOS/VS
only)

Intersystem communication message
performance option.

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 4

The second edition (SC33-0077-1)
provides information about the new or
enhanced features introduced by CICS/VS
Version 1 Release 4, as follows:

•
•

•

•

•

Intersystem Communication

Data Base Support (Transaction
Restart)

Extensions to Support of the 3270
Information Display System

Enhancements to the Command level
Interface (Assembler language and
DL/I)

Execution (Command Level) Diagnostic
Faci 1 i ty (EDF)

The appendixes have been extended to
include assembler-language sample
application programs and a separate
appendix has been allocated to each
language.

Summary of Amendments v

Contents

Part 1. Command-Level Programming

Chapter 1.1. Introduction to
Command-Level Programming ••••

Structure of thi s Manual
Syntax Notation Used in this Manual

Chapter 1.2. Command Format and
ArgUment Values

Command Format .• ..
Coding Conventions

Argument Values
Argument Values in Assembler

Language .
Argument Values in COBOL
Argument Values in PL/I

Chapter 1.3. Command Language
Translator ••••

Translator Data Sets
Input Data Set
Output Data Set
Listing Data Set

Translated Code .
Assembler Language
COBOL
PL/ I. ..

Translator Options
Assembler-Language Translator

Opt ion s . .
COBOL Translator Options
PL/! Translator Options

Chapter 1.4. programming
Techniques and Restrictions

General Programming Techniques
CICS/VS f1acros used wi th

CICS/VS Commands
Object Program Size .. .
Assembler-Language Considerations

Restrictions ..
Commands Contained within

Macros and COPY Code
Invoking Assembler-Language
Application Programs by a Call
Statement . ..

COBOL Considerations
Restrictions
Compilers Supported .
Base Locator for linkage (BLL)

BLL and Chained Storage Areas
BLL and OCCURS DEPENDING ON
Clauses •.

BlL and Large Storage Areas
BLL and the Optimization

Feature
BLL and Large Communication
Area. .

HOTRUNC Compiler Option
Program Segments

PL/I Considerations
Restrictions .
PL/I STAE EXecution-Time Option
Compilers Supported .
OPTIOHS(MAIH) Specification
Program Segments. ...

1

3
3
4

5
5
5
5

6
6
7

9
9
9
9
9

10
10
12
12
12

13
13
14

17
17

18
19
19
19

19

19
19
19
19
20
20

21
21

21

22
22
22
22
22
22
22
23
23

Chapter 1.5. Exceptional
Conditions •••••••••••

The ERROR Exceptional Condition
Handle Exceptional Conditions

(HANDLE CONDITION)
Handle Condition Command Option
Ignore Exceptional Conditions

(Ignore Condition)
List of Exceptional Conditions

Chapter 1.6. Access to system
Informat i on ••••••••••

EXEC Interface Block (EIB)
Access to CICS/VS Storage Areas

(ADDRESS) .. .
ADDRESS Command Options
Values Outside the Application

Program (ASSIGN)
Assign Command Options

Chapter 1.7. Execution
(Command-Levell Diagnostic
Facility

Functions of EDF
Security Rules
Install i ng EDF ...
Invok i ng EDF ..
Using EDF Displays .

Terminal Sharing Between
Transaction and EDF

Enter and PF Keys ..
Overtyping EDF Displays

Check i ng Out
Pseudo-conversational Programs

Program Labels
Using EDF with EXEC DLI Commands

Chapter 1.8. Command-Level
Interpreter •••••••

Invoking the Command-Level
Interpreter

Screen Layout
Command Input Area
Status Area
Information Area

Command Syntax Che.ck .
About to Execute Command
Command Execution Complete
Vari abies . ..
Expanded A rea

Enter Key and PF Key Values
Terminal Sharing ..•

Program Control .••
Security Rules .•..•.
Installing the Command-Level
Interpreter•

Part 2. Data Base Operations

Chapter 2.1. Introduct;on to Data
Base Operat; ons ••••

Chapter 2.2. File Control
Data Set Identificat;on
Direct Access to Records
Multiple File Operations

2S
25

25
26

26
26

29
29

29
29

30
30

35
35
36
36
36
37

38
39
41

41
42
42

45

45
45
45
46
46
46
47
48
48
49
49
50
50
50

50

51

53

55
55
55
56

Contents v;i

Sequential Access to Records
(Browsing) •••.

Segmented Records .• ..
ISM1 Data Sets

Record Identification
Adding Records to ISAM Data Sets
ISAM Exclusive Control
ISAM Browsing Operations

VSAM Data Sets .
Initialization of VSAM Data Sets
Record Identification
VSAM Keys ...
VSAM Exclusive Control
Deletion of VSAM Records
VSAM Mass Sequential Insertion
VSAM Browsing Operations
VSAM Skip-Sequential Processing
Sharing VSAM Resources •..
V5AM Ai ternate Indexes .••

DAM Data Sets • •. . .
Record Identification
Adding Records to DAM Data Sets
DAM Exclusive Control
DAM Browsing Operations

KEYLENGTHS for Remote Data Sets
Read a Record (READ)
Write a Record (WRITE)
Update a Record (REWRITE)
Delete a VSAM Record (DELETE)
Release Exclusive Control (UNLOCK)
Start Browse (STARTBR) ..• •.
Read Next Record during a Browse

(READNEXT) . . • .
Read Previous Recor-d during a

Browse (READPREV) (VSAM ONLY)
Resat Start of Brow~e (RESETBR)
End Browse (ENDBR) ..
File Control Options •
File Control Exceptional Conditions

Chapter 2.3. DL/I Services (DL/I
CALL Statement) ••••••••

User Interface Block (UIB)
Schedule the PSB and Obtain PCB

Addresses
Segment Search Arguments (SSAs)
I/O Work Area for DL/I Segments
Issue a DL/I Data Base Call
Release a PSB in the CICS/VS
, Appl i cat; on Program . .
Check the Response to a Dl/I CALL
Example of DL/I Request Using Call

Chapter 2.4. DL/I Services (EXEC
DLI Command) ••••••••••

General Format of EXEC DLI Command
DL/ I Interface Block (01 B) ...•
Example of DL/I Request Using EXEC

DL I ..
COBOL
Pl/!

Part 3. Data Communication
Opera t ions ••••••••

Chapter 3.1. Introduction to Data
Communication Operations

Chapter 3.2. Terminal Control
Commands and Opt ions for
Terminals and logical Units

Read from Terminal or Logical
Unit (RECEIVE)

viii CICS/VS APRM (Cl)

56
56
57
57
57
57
57
57
57
57
58
58
58
58
58
59
59
59
59
59
60
61
61
61
62
62
63
63
63
63

64

64
64
64
64
66

69
70

70
71
71
71

72
72
72

77
77
77

78
78
79

81

83

85

86

86

Write to Terminal or logical
Unit (SEND)

The WAIT Option of the SEND
Command ..

Synchronize Terminal
Input/Output for a Transaction
(WAIT TERMINAL)•

Converse with Terminal or
logical Unit (CONVERSE) •••

Send an Asynchronous Interrupt
(ISSUE SIGNAL) ••.. .•

Relinquish a Communication line
(ISSUE RESET). . .•.

Disconnect a Switched Line
(ISSUE DISCONNECT)

Terminal-Oriented Task
Ident i ft cat ion .•

Commands and Options for Logical
Units • ••

Send/Recei ve Mode .. .
Send/Receive Protocol (Invite

Option)••••
Chaining of Input Data
Chaining of Output Data
Logical Record Presentation
Definite Response .•
Function Management Header (FMH)

Inbound FMH • • • . .
Outbound FMH . . .

Unsolicited Input
Bracket Protocol (LAST option)
Suspend a Task (WAIT SIGNAL)
Terminate a Session (ISSUE

DISCONNECT)•.
Return a Facillty to CICS/VS

(Free) . .•. .•
TeAM-Supported Terminals and

Logical Units (CICS/OS/VS Only)
BTAM Programmable Terminals
Teletypewriter Programming

Message Format .
Message length ...••.
Connection through VTAM .

Display Device Operations .
Print Displayed Information

(ISSUE PRINT) ... • ..•••
Copy Displayed Information

(ISSUE COPY)
Erase All Unprotected Fields

(ISSUE ERASEAUP) ...••
Input Operation Without Data

(RECEIVE) .• ...
Standard Attention Identifier

List (DFHAID) ..•.
Handling Attention Identifiers

(HANDLE AID)
Standard Attribute and Printer

Control Character List
(DFtiBMSCA) .. •

Standard CICS/VS Terminal Support
(STAM or TCAM) .• ••

lUTYPE4 Logi cal Uni t ••.
lUTYPE6 Logical Unit ..••••

Session Status Information ...
Application-Oriented Information
Session-Oriented Information

System/3 .•. .. .•
System/ 370 •.• .••
System/7
2260 nisplay Station
l265 Display Station •
2741 Communication Terminal

Read Attent ion ...•.....

86

86

86

87

87

87

87

87

88
88

88
88
90
90
90
91
91
91
91
91
92

92

92

92
92
93
94
94
94
94

94

95

95

95

95

96

96

97
98
98
99
99
99

100
100
100
101
101
102
102

Write Break (CICS/OS/VS only)
2770 Data Communication System
2780 Data Transmission Terminal
2980 General Banking Terminal

System . .• .. • . .
Passbook'Control •
Output Control . . .
Output to a Common Buffer
The DFH2980 Structure .•

3270 Information Display System
(BTAM or TCAM) •

3270 in 2260 Compatibility Mode
(BTAM) . •. ..

3270 Logical Unit .•
3270 SCS Printer Logical Unit
3270-Display Logical Unit

(LUTYPE2) . .•. ..
3270-Printer Logical Unit

(LUTYPE3) .. . • •
3600 Finance Communication System

(BTAM)
In pu t
Output•.
Resend Message .

3600 Pipeline Logical Unit .•.
3600 (3601) Logical Unit .. •

Logical Device Code (LDC option)
36 0 0 (3614) Log i ca 1 Un it. ..
3630 Plant Communication System
3650/3680 Host Command Processor

Logical Unit
3650 Host Conversational (3?70)

Logical Unit• .
3650 Host Conversational (3653)

Logical Unit . .• ..
3650 Interpreter Logical Unit
3650 Pipeline logical Unit
3650/3680 Full Function Logical

Unit • . .
3660 Supermarket Scanning System
3735 Programmable Buffered

Termi nal••
3735 Transactions - Autoanswer
3735 Transactions - Autocall

and Time-Initiated
3740 Data Entry System .•.•

Batch Mode Applications
3767 Interactive logical Unit
3770 Batch Logical Unit
3770 Interactive logical Unit
3770 Full Function logical Unit
3780 Communications Terminal
3790 Full Function Logical Unit
3790 Inqui ry Logi cal Uni t
3790 SCS Printer Logical Unit
3790 (3270-Display) Logical Unit
3790 (3270-printer) Logical Unit
7770 Audio Response Unit
Terminal Control Options
Terminal Control Exceptional
Conditions ..••• • •.

Chapter 3.3. Bas;c Happ;ng
Support (BMS) ••••

Device Independence
Format Independence

Data Mappi ng
Map Definition

Input Mappi ng
Output Mapping
Inpu't/Output Mappi ng ••••
Map Retri eval

Outboard Formatting

102
102
103

103
103
104
104
104

105

105
106
106

107

107

108
108
108
108
109
109
109
110
110

110

111

111
112
112

112
112

112
112

113
113
113
114
114
114
114
114
115
115
115
116
116
116
117

121

125
125
125
126
126
127
128
129
129
129

Define a Map Set (DFHMSD Macro)
Define a Map (DFHMDI Macro)
Define a Field (DFHMDF Macro)
Map Positioning

The Screen Contents . .
The Trailer Area
JUSTIFY=FIRST and JUSTIFY=LAST
The LINE Operand . • .• ..
The COLUMN and JUSTIFY Operands
Page Building Examples
Usi ng Maps
Copying Symbolic Description

Maps
Logical Message Building
Output Operations
Output Commands with the SET

Opt ion .
Terminal Code Table
Message Rout i ng
BMS Message Recovery

Display Device Operations (BMS)
Symbolic Cursor Positioning
Terminal Operator Paging

Commands
Map Input Data (RECEIVE MAP)
Map Output Data (SEND MAP)

Overflow Processing
Format Output Data Without

Mapping (SEND TEXT)
Header and Trailer Format
Output Data with Extended

At t rib II t e s
Complete and Transmit a logical

Message (SEND PAGE)
Delete a Logical Message (PURGE

MESSAGE) •• . .• ..
Route a logical Message (ROUTE)

Disposition and Message Routing
Interleaving Conversation with
Message Rout i ng •.•..••.

Message Title ..••..•
Route List and Operator Class

Codes (LIST and OPCLASS
Options)

Basic Mapping Support Options .
Basic Mapping Support Exceptional
Conditions ...•••...•.•

Chapter 3.4. Batch Data
Interchange •••••
Destination Selection and
Identification ••...••

Def in i te-Response .. •
Waiting for Function Completion

Interrogate a Data Set (ISSUE
QUERY) . . . • .. •.

Read a Record From a Data Set
(ISSUE RECEIVE) •...••

Add a Record to a Data Set (ISSUE
ADD) •

Update a Record in a Data Set
(ISSUE REPLACE) ...•

Delete a Record from a Data Set
(ISSUE ERASE)•.•

Terminate Processing of a Data Set
(ISSUE END) . .• .• . •

Terminate Processing of a Data Set
Abnormally (ISSUE ABORT) ...•

Transmit Data to an Output Device
(ISSUE SEND) • .••••

Request Next Record Number (ISSUE
NOTE) •. •...

129
135
138
143
143
144
144
144
144
145
146

147
148
148

149
149
149
150
150
150

150
151
152
152

155
155

156

156

157
157
158

158
159

159
161

166

169

169
169
169

170

170

170

170

171

171

171

171

171

Contents ix

Wait for an Operation to be
Completed (ISSUE WAIT) .

Batch Data Interchange Options
Batch Data Interchange

Exceptional Conditions

Part 4. control Operations

Chapter 4.1. Introduction to
Control operations ••••

Chapter 4.2. Interval Control
Expiration Times ...•.
Request Identifiers

Request Current Time of Day
(ASKTIME)••

Delay Processing of a Task (DELAY)
Request Notification when
Specified Time has Expired
(POST)

Wait for an Event to Occur (WAIT
EVENT)•...

Start a Task (START)
Starting Tasks Without Terminals
Starting Tasks with Terminals

but Wi thout Data ..•..
Starting Tasks with Terminals

and Data
Retrieve Data Stored for a Task

(RETRIEVE)•..
Cancel Interval Control Requests

(CANCEL)••.
Interval Control Options
Interval Control Exceptional

Condi ti ons

Chapter 4.3. Task Control
Suspend a Task (SUSPEND)
Schedule use of a Resource

Task (ENQ and DEQ)
Task Control Options .
Task Control Exceptional
Conditions ...•.•.

. .
by a

Chapter 4.4. Program Control ••
Application Program Logical Levels
Link to Another Program
Anticipating Return (LINK) .

Transfer Program Control (XCTL)
Return Program Control (RETURN)
Load a Program (LOAD)•
Delete a Loaded Program (RELEASE)
Passing Data to Other Programs
Progt'am Control Options .•
Program Control Exceptional
Conditions••

Chapter 4.5. storage Control
Obtain and Initialize Main

Storage (GETMAIN)
Release Main Storage (FREEMAIN)
Storage Control Options .
Storage Control Exceptional

Conditions

Chapter 4.6. Transient Data
Control •••••••••••••

Intrapartition Destinations
Extrapartition Destinations
Indirect Destinations .
Automatic Task Initiation

(ATI)•....•

x CICS/VS APRM (CL)

172
172

173

175

177

179
179
179

179
180

180

181
181
182

182

182

182

183
184

186

187
187

187
188

188

189
189

189
190
190
191
191
191
197

197

199

199
199
199

200

201
201
201
201

202

Asynchronous Transaction
Processing (ATP)

Write Data to Transient Data Queue
(WRITEQ TO)

Read Data from Transient Data
Queue (READQ TO)

Delete an Intrapartition
Transient Data Queue (DELETEQ
T D) •••••••••••••••

Transient Data Control Options
Transient Data Control

Exceptional Conditions

Chapter 4.7. Temporary storage
Control •••••••••••

Temporary Storage Queues
Typical Uses of Temporary
Storage Control ...•...

Write Data to a Temporary Storage
Queue (WRITEQ TS) ...••...

Read Data from Temporary Storage
Queue (READQ TS)••.

Delete Temporary Storage Queue
(DELETEQ T5)•

Temporary Storage Control Options
Temporary Storage Control

Exceptional Conditions

part 5. Recovery and Debugging

Chapter 5.1. Introduction to
Recovery and Debugg i ng •••••

Sequential Terminal Support

Chapter 5.2. Abnormal
Term ina t i on Recovery ••••••

Handle an Abnormal Termination
Ex; t (HANDLE ABEND)•

Terminate Task Abnormally (ABEND)
Abnormal Termination Recovery
Options

Abnormal Termination Recovery
Exceptional Conditions

Chapter 5.3. Trace Control
Trace Entry Points ..••..•.
Event Monitoring Points
Trace Facility Control ..•.
Trace Table Format
CICS/VS Auxiliary Trace Facility
User Trace Entry Point and Event
Monitoring Point (ENTER)
Co~trol the CICS/VS Trace
Facility (TRACE ON, TRACE OFF)
Macro-level Trace Facilities

Trace Control Options ' .•
Trace Control Exceptional
Conditions•.•.

Chapter 5.4. Dump Control
Dump Main Storage (DUMP)
Dump Control Optl0ns ...
Dump Control Exceptional
Conditions ...••.

Chapter 5.5. Journal Control
J ou rna 1 Reco rds ...•...
Journal Output Synchronization

Create a Journal Racord (JOURNAL)
Synchronize with Journal Output

(WAIT JOURNAL)
Journal Control Options

202

203

203

203
204

204

207
207

207

208

208

209
209

210

211

213
213

215

217
217

217

218

219
219
219
219
220
221

221

221
222
222

222

223
223
223

225

227
227
227
228

229
229

Journal Control Exceptional
Conditions . ..

Chapter 5.6. Recovery (Sync
Points) ••••••••••

Establish a Sync Point (SYNCPOINT)
Sync Poi nt Opti on

Part 6. The ClCS/VS Built-in
Function Command •••••

Chapter 6.1. The F;eld Ed;t
BUilt-In Function (BlF DEEDlT)
Command •••••

Part 7. Appendixes

APpendix A. EXEC Interface Block
EIB Fi elds

APpendix B. Translation Tables
for the 2980 •••••••••

Appendix C. ClCS/VS Macros and
Equivalent Commands

Appendix D. Sample Programs
(Assembler Language) •

Executing the Sample Programs
Operator Instructi~n Sample

Program (Assembler language)
Description
Source Listing .•
Program Notes ...

Update Sample Program (Assembler
Language) .•..
Descri pti on•..
Source listing •.. .•.
Program Notes . .

Browse Sample Program (Assembler
language)
Description
Source l i sti n9 ..
Program Notes . .

Order Entry Sample Program
(Assembler Language)
Description ..•....
Source L i sti ng
Program Notes . . .

Order Entry Queue Print Program
(Assembler Language)
Description .•.....
Sou rce l; st i ng
Program Notes

Report Sample Program (Assembler
Language)
Description . • .. .•
Source listing
Progr'am Notes•

Sample Maps and Screen layouts for
Assembler-Language Sample
Programs

XDFHAMA Map Definition
XDFHAMA Screen layout
XDFHAMB Map Definition
XDFHAMB Screen layout
XDFHAMC Map Defi nit ion. .
XDFHAMC Screen layout
XDFHAMD Map Definition
XDFHAMD Screen layout
XDFHAMK Map Definition
XDFHAMK Screen layout
XDFHAMl Map Definition

230

231
231
231

233

235

237

239
239

243

247

251
251

252
252
252
252

253
253
253
256

258
258
259
260

262
262
262
263

264
264
264
265

266
266
266
267

268
268
268
269
269
270
270
271
271
272
272
273

XDFHAMl Print Format
Addi ti ons to Tables for

Assembler-language Sample
Programs .•. . . . •

PPT . . .
PCT .••. • ..
DCT •..

Record Descriptions for
Assembler-language Sample
Programs ••..

FILEA Record Description
LOGA Record Description
L860 Record Description

Appendix E. Sample Programs
(COBOL) ••••••••••

Executing the Sample Programs
Operator Instruction Sample

Program (COBOL) ..
Description ..
Source listing
Program Notes

Update Sample Program (COBOL)
Description ..•....
Source listing
Program Notes •

Browse Sample Program (COBOL)
Description ..•.
Source L i sti ng
Program Notes •. ...

Order Entry Sample Program (COBOL)
Descr i pt ion ..•
Source Listing .. .
Program Notes .•

Order Entry Queue Print Sample
Program (COBOL)
Description •.. . ..
Source l i sti ng
Program Notes ..

Report Sample Program (COBOL)
Description
Source listing••.
Program Notes

Sample Maps and Screen layouts for
COBOL Sample Programs

XDFHCMA Map Definition
XDFHCMA Screen layout
XDFHCMB Map Definition
XDFHCMB Screen layout
XDFHCMC Map Definition
XDFHCMC Screen Layout
XDFHCMD Map Definition
XDFHCMD Screen Layout
XDFHCMK Map Definition
XDFHCMK SCREEN LAYOUT
XDFHCMl Map Definition .••.
XDFHCMl Print layout ...

Additions to Tables for COBOL
Sample Programs . • ••••••

PPT .••.•.•••..
PCT
DCT

Record Descriptions for COBOL
Sampl e Programs . • . • .

FllEA Record Description
lOGA Record Description
l860 Record Description

Appendix F. Sample Programs (PL/IJ
Executing the Sample Programs
Operator Instruction Sample

Program (Pl/I)
Description

273

274
274
274
274

274
274
274
274

275
275

276
276
276
276
277
277
277
279
281
281
282
283
285
285
285
286

287
287
287
288
289
289
289
290

291
291
291
292
292
293
293
294
294
295
295
296
296

297
297
297
297

297
297
297
297

299
299

300
300

Contents xi

Source l. i sti n9 .•.
Program Notes .••

Update Sample Program CPL/I)
Description•
Source listing
Program Notes ..

Browse Sample Program (PL/I)
Description•••
Source Listing .• . •••••
Program Notes

Order Entry Sample Program CPL/I)
Description . • .
Source Listing•..
Program Notes • . • • .

Order Entry Queue Print Sample
Program (PL/I) .••.
Description ••.....
Source listing ••••.•
Program Notes ... • ••.

Report Sample Program CPL/I)
Description
Source Listing
Program Notes

Sample Maps and Screen Layouts Tor
PL/I Sample Programs

XDFHPMA Map Definition
XDFHPMA Screen layout
XDFHPMB Map Definition
XDFHPMB Screen Layout
XDFHPMC Map Definition
XDFHPMC Screen Layout
XDFHPMD Map Definition
XDFHPMD Screen layout
XDFHPMK'Map Definition
XDFHPMK Screen Layout
XDFHPMl Map Definition
XDFHPMl Print Format .

Additions to Tables for PL/I
Sampl e Programs

PP T ..• •• .•
peT ••••••••••
OCT •. . • .• .

Record Descriptions for the PL/I
Sampl e P rograrns . .. •

FIlEA Record Description
lOGA Record Description
L860 Record Description

xi i CICS/VS APRM eCL)

300
300
301
301
301
303
305
305
306
307
308
308
308
309

31.0
310
310
311
312
312
312
313

314
314
314
315
315
316
316
317
317
318
318
319
319

320
320
320
320

320
320
320
320

APpendix G. sample Programs for
Distributed Transaction
Processing ••••••••••

CICS to CICS Synchronous Sample
Program •• •
Description . . ••
Source Listing of Local User

Transact ion •...
Program notes •...•
Source Listing Of Remote User
Transaction

Program Notes ..
CICS to CICS (Or Other)

Synchronous Sample Program
Description••
Source listing of the Sending

User Transaction
Program Notes •••.
Map Definition
Screen layout •...

CICS To CICS Conversation
(Synchronous) Sample Program
Description .
Source Listing of User

Transaction
Program Notes
Map Definition
Screen layout . .

CICS to Other Synchronous Sample
Program • . • • • . • • • .
Description. • ..•••
Source listing of the Sending

User Transacti on •••.
Program Notes . • •••.
Map Def in it ion . . • •
Screen layout •••
Description ..••
Source list i ng of the SENDi ng

user transaction ..•
Program notes .•. •.•

Additions to Tables for the Sample
Programs •••.•....•

B i bl i ography ••••••••
Availability of Publications

Index

321

322
322

322
324

325
326

327
327

327
329
330
330

331
331

331
333
335
335

336
336

336
337
339
339
340

340
344

346

347
347

349

Figures

1 •
2.
3.
4.
5.

6 •

7 •
8.

9.

10.

11.

12.

13.

Translated Code for BMS Command
Translated Code for Variables
Typical EDF Display
"Stop-Conditions" Display
First Page of Typical EXEC
DLI Display ..
Second Page of Typical EXEC
DLI Display .
"Command Syntax Check" Display
"About to Execute Command"
Display .
"Command Execution Complete"
Display . •.
Examples of Record
Indentification .•
CICS/VS-DL/I Interface
Response Codes
Terminal-Oriented Task
Identification
BTAM Programmable Terminal

10
11
38
42

43

43
46

47

48

60

73

89

14.

15.
16.
17.

18.

19.
20.

21.
22.

23.

24.

PI~ogrammi ng .•..•
DFHMSD Macro CDefine a Map
Set). .
DFHMDI Macro (Define a Map)
DFHMDF Macro (Define a Field)
Map Positioning for More
than One Map . .
Page Address List (SET
Option) . .• ..
Overflow Processing
Application Program Logical
Level s .. .•• .
ABEND Exit Processing
2980-1 Character
Set/Translate Table
2980-2 Character
Set/Translate Table
2980-4 Character
Set/Translate Table

93

130
136
139

147

149
154

190
216

244

245

246

Figures xiii

Chapter 1.1.

Chapter 1.2.

Chapter 1.3.

Chapter 1.4.

Chapter 1.5.

Chapter 1.6.

Chapter 1.7.

Chapter 1.8.

Part 1. Command-Level Programming

Introduction to Command-Level Programming

Command Format and Argument Values

Command Language Translator

Programming Techniques and Restrictions

Exceptional Conditions

Access to System Information

Execution (Command-Level) Diagnostic Facility (EDF)

Command-Level Interpreter

Part 1. Command-Level Programming 1

Chapter 1.1. Introduction to Command-Level Programming

The Customer Informat~on Control
System/Virtual Storage (CICS/VS)
command-level application-programming
interface allows application programmers
to request CICS/VS services by means of
CICS/VS commands. These commands are
statements that can be included at
appropriate points in an application
program. They have a format similar to
the statements of the programming
language in use.

CICS/VS commands can be used in
application programs written in
assembler language, COBOL, PL/I, and in
RPG II. The commands are essentially the
same in each language, differing only in
the delimiter used, and, in the case of
RPG II only, in the syntax.

Because of its fixed format, RPG II is
not included in this manual. Instead, a
separate manual is available entitled
CICS/VS Application Proqrammer's
Reference Manual (RPG II).

Appl~cation programs that include
CICS/VS commands are processed by the
command language translator, which
translates the commands into statements,
in the language being used, which can
then be assembled (or compiled) and
link-edited in the usual way. When these
application programs are executed, the
statements inserted by the translator
invoke the EXEC ;nterface program
(DFHEIP), which provides the service
requested by each command by invoking one
or more CICS/VS control programs.

In addition.to invoking CICS/VS control
programs, the EXEC interface program
obtains, and provides addressability to,
any required areas of storage, such as
terminal input/output areas and various
work areas which, when no longer
required, are released automatically. As
a general rule, the application
programmer need only select the required
function and code the appropriate
command. There is normally no need to
know about CICS/VS storage areas and
control blocks; in those cases when
access to such areas is needed, the
command-level interface provides a
command for this purpose, the ADDRESS
command, described in "Chapter 1.6.
Access to System Information" on page 29.

STRUCTURE OF THIS MANUAL

This manual consists of several parts,
each generally having an introductory
chapter and one or more other chapters.
The remaining chapters in Part 1 deal
with the following topics:

•

•

•

•

•

Command format and argument values
used throughout this manual
("Chapter 1.2. Command Format and
Argument Values" on page 5)

Command language translator
("Chapter 1.3. Command Language
Translator" on page 9)

Programming techniques, and
restrictions placed on the use of the
programming language when CICS/VS
commands are used ("Chapter 1.4.
Programming Techniques and
Restrictions" on page 17)

Exceptional conditions that can
occur during the execution of CICS/VS
commands ("Chapter 1.5. Exceptional
Conditions" on page 25)

Access to system information
("Chapter 1.6. Access to System
Information" on page 29)

• Execution (command-level) diagnostic
facility (EDF) ("Chapter 1.7.
Execution (Command-Level) Diagnostic
Facility" on page 35)

• Command-level interpreter ("Chapter
1.8. Command-Level Interpreter" on
page 45)

Part 2 through 6 of the manual are each
concerned with CICS/VS commands that can
be di scussed as a group:

• Part 2. Data base operations -
describes the CICS/VS commands
provided for storage and retrieval of
data in a data base using CICS/VS
file control facilities or using Dl/I
services.

• Part 3. Data communication
operations - describes the CICS/VS
commands provided for communication
between CICS/VS and the terminals and
logical units of the subsystems in
the telecommunications network of
the CICS/VS system.

• Part 4. Control operations -
describes the CICS/VS commands that
control the execution of tasks within
the CICS/VS system.

• Part 5. Recovery and debugging -
describes the CICS/VS commands
provided for recovery from abnormal
termination, and for error-handling,
tracing, and monitoring. Commands
are also provided to cause dumping of
selected areas of storage for offl i ne
analysis.

Chapter 1.1. Introduction to Command-Level Programming 3

• Part 6. The CICS/VS Built-In
Function (alF DEED!T) Command -
describes the one built-in function
available with the command level
interface.

Each of the chapters (other than the
introductory chapter) of these parts of
the manual has a standard format. The
first section of a chapter describes, in
general terms, functions of the commands
included in the chapter. For each
command the following information is
presented: the syntax of the command and
its associated options; exceptional
conditions that can occur; a detailed
description of what the command does; and
possibly one or more examples showing
typical coding of the command. Finally,
two lists are given: a list of the
options, with their functions, that can
be used in any of the commands in the
chapter; and a list of the exceptional
conditions, and their causes, that can
occur during the execution of the
commands.

Part 7 contains several appendixes.
References to most of these appendixes
are included in the text. The last four
appendixes provide sample programs that
illustrate the use of many of the
commands descri bed in the manual. The
BMS maps and file record descriptions
used by the sample programs are also
included.

SYNTAX NOTATION USED IN THIS MANUAL

Throughout this manual, wherever a
CICS/VS command is presented, the symbols
{ }, [1, I, and ... are used in def in i ng
the command format. These symbols are not
part of the command and are not coded by
the programmer. Their purpose is to
indicate how the command may be written,

f. CICS/VS APRM (Cl)

and they should be interpreted as
follol-Js:

• Uppercase identifiers and
punctuation symbols must be coded
exactly as shown.

•

•

•

•

•

•

lowercase identifiers indicate that
user text should be coded as
required. The lower case character
"b" is used in some places to
indicate a blank.

Square brackets [J are used to
indicate that the enclosed
identifiers are optional. The less
than, and greater than symbols < >
are used to replace square brackets
in the syntax displays produced by
the command-level interpreter. (See
"Chapter 1.8. Command-level
Interpreter" on page 45).

The "or" symbol I is used to separate
alternatives.

Underlining is used to denote that
the identifier is the default; that
i s, the one that wi 11 be assumed if
no explicit choice is made.

Braces { } are used to enclose a set
of alternatives, one of which must be
coded.

The ellipsis ... denotes that the
immediately preceding identifier(s)
can be coded repetitively.

To denote, for example, that either GTEQ,
or EQUAL, or neither, can be coded (and
that GTEQ is the default), the syntax
notation would be:

[GTEQ\EQUAll

Chapter 1.2. Command Format and Argument Values

The purpose of this chapter is to explain
the general rules governing the use of
the CICS/VS commands that are described
in the following chapters.

COMMAND FORMAL

Th9 general format of a CICS/VS command
is EXECUTE CICS (or EXEC CICS) followed
by the name of the required function, and
possibly by one or more options, as
follows:

(EXECUTEIEXEC)
CICS function [option[(argument)]]

where:

"function" describes the operation
required (for example READ),

"option" describes any of the many
optional facilities available with each
function. Some options are followed by
an argument in parentheses, others are
not. Options (including those that
require arguments) can be written in any
order,

"argument" is a value such as
"data-value" or "name", as defined later
in this chapter.

An example of a CICS/VS command (from
"Chapter 2.2. File Control" on page 55)
is as follows:

EXEC CICS READ INTO(FILEA)
DATASET('FILEA') RIDFLD(KEYNUM) UPDATE

The appropriate end-of-command
delimiter, described in the next section,
must be added.

CODING CONVENTIONS

CICS/VS commands can be included in an
assembler-language, COBOL, or Pl/I
program anywhere that an executable
statement can be included.

In assembler language:

• the keyword EXEC must appear in an
operator position. The command can
be labeled.

• The delimiter between options must be
either a blank or a comma, but not
both. The appearance of ",b" or ".b"
immediately following an option
indicates that the rest of the line
i s a comment.

• The usual continuation conventions
apply (non-blank character in column
72, the continuation line to start in
column 16).

In COBOL, a command must be delimited
with "END-EXEC" as shown in the following
example:

EXEC CICS ISSUE RESET END-EXEC

This delimiter allows a command to be
written within a THEN clause.

In PL/I, a command must be delimited with
a semicolon as shown in the following
example:

EXEC CICS ISSUE RESET;

In the following chapters, for
simplicity, the syntax of each of the
commands that can be specified in an
application program is presented without
the phrase EXEC CICS, without the
continuation conventions, and without
the end-of-command delimiter (END-EXEC
or semi colon).

In the programming examples in the text,
the phrase EXEC CICS is added but not the
continuation conventions or
end-of-command delimiter. When coding
commands these must be added as
appropriate for the programming language

. in use.

ARGUMENT VALUES

In the following chapters, the
parenthesized argument values that
follow options in a CICS/VS command are
specified as follows:

•
•
•
•
•
•
•

data-value
data-area
pointer-value (or ptr-value)
pointer-ref (or ptr-ref)
name
label
hhmmss

Halfword binary values are generally used
for lengths. This restricts the size of
data areas to 32,768 bytes. There will
usually be no other restriction so, in
particular, a communication area
(COMMAREA) can be 32,768 bytes long and
GETMAIN can be used to obtain such an
amount of storage.

The argument values are defined in the
following sections.

Chapter 1.2. Command Format and Argument Values 5

ARGUMENT VALUES IN ASSEMBLER LANGUAGE

In general, an argument may be either the
address of the data or the data itself
(in assembler-language terms, either a
relocatable expression or an absolute
expression).

A relocatable expression must not contain
unmatched brackets (outside quotes) or
unmatched quotes (apart from length
attribute references). Provided this
rule is obeyed, any expression may be
used, including literal constants, such
as =Al2(lOO), forms such as 20(0,Rll),
and forms which use the macro replacement
facilities.

An absolute expression must be a single
term which may be either a length
attribute reference, or a self-defining
constant.

Care must be taken w;th equated symbols
It.Jhi ch should be used only , ... hen referri ng
to registers (pointer references). If an
equated symbol is used for a length, say,
it L ... i 11 be treated as the address of the
length and an unpredictable error will
occur.

• "data-value" can be replaced by an
assembler-language reference to data
of the correct type for the argument
or by a constant of the correct type
for the argument.

•

•

•

•

•

•

"data-area" can be replaced by an
assembler-language reference to data
of the correct type .for the argument.

"pointer-value" can be replaced by an
assembler-language reference to a
register.

"pointer-ref" can be replaced by an
assembler-language reference to a
register.

"name" can be replaced either

by a character string in quotes

by an assembler-language reference
to a character string with a length
equal to the maximum length allowed
for the name. The value of the
character string is the name to be
used by the argument.

"label" can be replaced by any
program label or address constant.

"hhmmss" can be replaced by a
self-defining decimal constant or an
assembler-language reference to a
fi eld defi ned as PL4. The value must
be of the form OHHMMSS+ where HH
represents hours from 00 through 99,
MM represents minutes from 00 through
59, and 55 represents seconds from 00
through 59.

6 CI C5/V5 APRM (Cl)

Many commands involve the transfer of
data between the application program and
CICS/V5. In most cases, the length of
the data to be transferred must be
provided by the application program.
However, if a data area is specified as
the source or target, it is not necessary
to provide the length explicitly, because
the command language translator will
generate a default length value of
l'data-area.

Although the DE5TIDlEHG, FROMlENGTH,
KEYlENGTH, LENGTH, PFXlENG, TOlENGTH, or
VOLUMElENG options are shown as required
options in the syntax for a command,
these options are always optional in an
assembler-language program which
specifies a data area (except in the case
of the ENQ and DEQ commands). Length
values cannot be defaulted if the SET
option is specified in a command.

ARGUMENT VALUES IN COBOL

• "data-value" can be replaced by any
COBOL data name of the correct data
type for the argument or by a
constant that can be converted to the
correct type for the argument. The
data type can be specified as being
one of the following:

•

•

•

•

halfword binary - PIC S9(4) COMP

fullword binary - PIC 59(8) COMP

character string - PIC X(n) where n
is number of bytes

"data-area" can be replaced by any
COBOL data name of the correct data
type for the argument. The data type
can be specified as being one of the
following:

halfword binary - PIC S9(4) CaMP

fullword binary - PIC 59(8) COMP

character string - PIC XCn) where n
is number of bytes

In cases where the data type is
unspecified, the data area can refer
to an elementary or group item.

"pointer-value" can be replaced by
the name of any BLl (base locator for
linkage> cell, or by any COBOL data
name which contains a copy of such a
pointer in a Bll cell.

"pointer-ref" can be replaced by the
name of any Bll (base locator for
linkage) cell.

"name" can be replaced either

by a character string in quotes (that
is, a nonnumeric literal)

•

by a COBOL data-area with a length
equal to the maximum length allowed
for the name. The value in the data
area is the name to be used by the
argument.

"label" can be replaced by any COBOL
paragraph name or a section name.

• "hhmmss" can be replaced by a decimal
constant or by a data name of the
form PIC S9(7) COMP-3. The value
must be of the form OHHMMSS+ where HH
represents hours from 00 through 99,
MMrepresents minutes from 00 through
59, and SS represents seconds from 00
through 59.

ARGUMENT VALUES IN PL/I

•

•

"data-value" can be replaced by any
PL/I expression that can be converted
to the correct data type for the
argument. The data type can be
speci fi ed as bei ng one of the
following:

halfword binary - FIXED BIN(15)

fullword binary - FIXED BIN(31)
~

character string - CHAR(n) where n is
number of bytes

If the data value is specified as
halfword binary, the data value is
converted, if necessary, to FIXED
BIN(15). "Data-value" includes
"data-area" as a subset.

"data-area" can be replaced by any
Pl/I data reference which is ALIGNED
and has the correct data type for the
argument. The data type can be
specified as being one of the
following:

halfword binary - FIXED BIN(15)

fullword binary - FIXED BIN(31)

character string - CHARCn) where n is
number of bytes

If the data type is unspecified, the
data area can refer to an element,
array, or structure; the reference
must be to connected storage, for
example, FROMCP->STRUCTURE)
LENGTH(LNG).

If data, that is'not in
varying-length string format, is
read into a varying-length string,
the length bytes at the begi nn i ng of
the varying-length string will be
corrupted.

•

•

•

•

"pointer-value" (which includes
"po inter-ref" as a subset) can be
replaced by any PL/! expression that
can be converted to POINTER.

"pointer-ref" can be replaced by any
PL/I reference of type POINTER
ALIGNED.

"name" can be replaced either

by a character string in quotes Cthat
is, a literal constant); or

by a PL/! expression or reference
whose value can be converted to a
character string with a length equal
to the maximum length allowed for the
name. The value of the character
string is the name to be used by the
argument.

"label" can be replaced by any PL/I
expression whose value is a label.
Program labels are always passed by
value, not by reference.

• "hhmmss" can be replaced by a decimal
constant or an expression that can be
converted to a FIXED DECIMAL(7,0)
value. The value must be of the form
OHHMMSS+ whe.re HH represents hours
from 00 through 99, MM represents
minutes from 00 through 59, and SS
represents seconds from 00 through
59.

If the UNALIGNED attri bute is added to
the ENTRY declarations generated by the
CICS/VS translator by a DEFAULT
DESCRIPTORS statement, data-area or
pointer-reference arguments to CICS/VS
commands must also be UNALIGNED.

Many commands involve the transfer of
data between the application program and
CICS/VS. In most cases, the length of
the data to be transferred must be
provided by the application program.
However, if a data area is specified as
the source or target, it is not necessary
to provide the length explicitly, becau~e
the command language translator will
generate a default length value of either
STGCdata-area) or CSTG(data-area) as
appropriate.

Although the DESTIDLENG, FROMLENGTH,
KEYLENGTH, LENGTH, PFXLENG, TOLENGTH, or
VOLUMELENG options may be shown as
required options in the syntax for a
command, these options are always
optional in a PL/I program which
specifies a data area (except in the case
of the ENQ and DEQ commands). Length
values cannot be defaulted if the SET
option is specified in a command.

Chapter 1.2. Command Format and Argument Values 7

Chapter 1.3. Command Language Translator

The command language translator accepts
as input a source program~ written in
assembler language, -COBOL, or Pl/I, in
whi ch CICS/VS commands have been codei,
and produces as output an equivalent
source program in whi ch the commands h,lve
been translated into statements in the
language of the source program. At
execution time, these statements invoke
the EXEC interface program, which accepts
the arguments passed by the call from the
application program, sets up the
parameters in the CICS/VS control blocks,
and ~asses control to the appropriate
CICS/VS facility.

The translator is executed in a separate
job step. The job step sequence for
~reparing an application program is
translate - assemble (or compile) -
link-edit. Cataloged procedures are
supplied to assist the user; refer to the
appropriate CICS/VS System Programmer's
Guid~ for details. The translator
requires a region or partition of 96K
bytes.

There are three separate translators, one
for assembler language, one for COBOL,
and one for Pl/I. The translators are
each provided in two versions, one for
VSE and one for OS/VS. The VSE versi on
reads its input from SYSIPT, produces its
output (the translated source program) on
SYSPCH, and writes the source listing,
error messages and so on, on SYSlST. The
OS/VS version reads its input from SYSIN,
produces its output on SYSPUNCH, and
writes the source listing, error messages
and so on, on SYSPRINT. (SYSLST and
SYSPRINT do not contain the source
listing or error messages for the
assembler-language translator>.

The VSE translators for COBOL and Pl/I
accept also the commands that can be used
to access Ol/I data bases. These
commands, of the form EXEC OlI, are
translated in a similar way to EXEC CICS
commands, and are described in "Chapter
2.4. DL/I Services (EXEC OLI Command)"
on page 77.

If the Entry level System eELS) is used
(VSE only), a translator is generated
with function limited to that supported
by the host entry level crcs/vs system.
This translator will flag functions that
are not supported by the entry level
system (as described in the CICS/VS Entry
level System User's Guide (DOS/VS».

TRANSLATOR DATA SETS

INPUT DATA SET

The input data set must be a sequential
data set. It may be on punched cards~ on
a direct-access device, or on magnetic
tape.

For VSE, the input data set must contain
BO-byte fixed-length unblocked records.

For OS/VS, the input data set for COBOL
must contain fixed-length records
(blocked or unblocked); for assembler
language and PL/I it may contain either
fixed-length or variable-length records.
The maximum record size (lRECL) must not
exceed 104 bytes.

OUTPUT DATA SET

The output data set must be a sequential
data set. It may be on punched cards, on
a direct access device, or on magnetic
tape.

For VSE, the output data set must contain
BO-byte fixed-length unblocked records.

For OS/VS, the output data--set must
contain BO-byte fixed-length records
(blocked or unblocked).

LISTING DATA SET

The listing data set must be a sequential
data set. Although the listing is
usually printed, it can be stored on any
magnetic tape or direct access device.

For VSE, the listing data set must
contain 121-byte fixed-length unblocked
records.

For OS/VS COBOL users, the listing data
set must contain 121-byte fixed-length
blocked records (RECFM=FBA).

For OS/VS assembler language and PL/I
users, the listing data set must contain
variable length blocked records with a
maximum length of 121 bytes (RECFM=VBA).

Chapter 1.3. Command language Transl~tor 9

TRANSLATED COD~

ASSEMBLER LANGUAGE

For an assembler-language application
program, each command is replaced by an
invocation of the DFHEICAL macro which
builds an argument list in dynamic
storage, so that the application program
i s reentrant, and then invokes the EXEC
interface program. A definition of this
dynamic storage is provided
automaticallY by the translator
inserting an invocation of the macros
DFHEISTG and DFHEIEHD. The translator
will also insert an invocation of the
DFHEIEHT macro which performs prolog
initialization code and an invocation of
the DFHEIRET macro wlli ch performs epi log
code.

The example in Figure 1 shows a simple
assembler-language application program
that uses the BMS command SEND MAP to
send a map to a terminal.

The dynamic storage that is obtained for
building the parameter list may be
extended by the user to provide reentrant
storage for assembler-language
variables. The example in Figure 2 on
page 11 shows a simple assembler-lan~uage
application program that uses variables
in dynamic storage.

The use of the reserved name DFHEISTG as
the DSECT name indicates that dynamic
storage is to be provided for the extra
user variables within that named DSECT.

The invocation of an assembler-language
application program using the
command-level interface obeys system
standards and the invocation of the EXEC
interface program by a command also obeys
system standards. Details are given
below.

INSTRUCT CSECT

On entry to an assembler-language
application program using the
command-level interface;

Rl contains address of parameter
list.

R15 contains address of entry point.
R14 contains address of return point.
R13 contains address of save area.

Other registers are undefined.

The parameter list held in register 1
consists of two entries, as follows:

• Address of the EXEC interface block
(EIB).

• Address of the COMMAREA. If there is
no COMMAREA, the entry should
contain the value X'80000000'.

A copy book, DFHEIBLK, containing a DSECT
which describes the EIB is included
automatically.

Each command is replaced by an invocation
of the DFHEICAL macro which expands to a
system-standard call sequence using the
following registers:

R15 contains entry point of EXEC
interface program.

R14 contains ret~rn address in
application program.

RO is undefined.
Rl contains address of parameter

list.

The entry point held in register 15 is
resolv.d in a stub (DFHEAI) which must be
link-edited with the application
program.

Storage for the parameter list is
provided automatically by the
translator, which inserts invocations of
the two macros DFHEISTG and DFHEIEND.
These macros define the storage required
for the parameter list and a save area.

EXEC CICS SEND MAP('XDFHAMA') MAPONLY ERASE
END

which is translated to:

INSTRUCT CSECT
DFHEIENT INSERTED BY TRANSLATOR

* EXEC CICS SEND MAP('XDFHAMA') MAPOHLY ERASE
DFHEICAL (23,5),('1804C0000800000000046204000020','XDFHAMA',DF*

HEIVOO)
DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

Figure 1. Translated Code for BMS Command

10 CICS/VS APRM (eL)

OFHEISTG OSECT
COpy XOFHAMA INPUT MAP OSECT
COpy XDFHAMB OUTPUT MAP DSECT

MESSAGE OS CL39
INQUIRY CSECT

EXEC CICS RECEIVE MAP('XDFHAMA')
MVC NUMBO,KEYI
MVC MESSAGE,=CLCL'MESSAGE)'THIS IS A MESSAGE'
EXEC CICS SEND MAP('XDFHAMB')
END

which is translated to:

OFHEISTG OSECT
DFHEISTG INSERTED BY TRANSLATOR
COPY XDFHAMA INPUT MAP DSECT
COpy XDFHAMB OUTPUT MAP OSECT

MESSAGE OS CL39
INQUIRY CSECT

DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS RECEIVE MAP('XDFHAMA')

DFHEICAL (23,S),('1802C0000800000000040900000020','XDFHAMA',XD*
FHAMAI)

MVC NUMBO,KEYI
MVC MESSAGE,=ClCl'MESSAGE)'THIS IS A MESSAGE'
EXEC CICS SEND MAP('XDFHAMB')
DFHEICAl (23,S),('1804C000080000000004E004000020','XOFHAMA',XO*

FHAMBO)
DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

Figure 2. Translated Code for Variables

The translator ~lso inserts an invocation
of the DFUEIENT macro after the fi rst
CSECT or START statement. This macro
saves registers, obtains an initial
allocation of the storage defined by
DFHEISTG, sets up a base register
(default register 3), a dynamic storage
register (default register 13), and a
register to address the EXEC interface
block (default register 11).

Exit from the assembler-language program
can be achieved by the EXEC CICS RETURN
command or by the DFHEIRET macro, which
is inserted by the translator before the
END statement to restore registers and
return to the address in register 14.

The dynamic storage defined by DFHEISTG
can be extended by the user to provide
reentrant storage for user variables.
This is done by defining the user
variables in a DSECT with the reserved
name DFHEISTG. The translator inserts
the DFHEISTG macro after the DFHEISTG
DSECT statement. In this way the DSECT
finally describes dynamic storage
consisting of the parameter list area,
other areas needed by the command-level
interface, and space for user variables.

Assembler-language programs larger than
4095 bytes that do not use the CODEREG

parameter of the DFHEIENT macro to
establish multiple base registers, must
include an lTORG statement for use by
DFHEIENT.

The user may also modi fy or extend the
defaults used by the DFHEIENT macro by
coding the required default as a keyword
argument. The macro can have up to three
keyword arguments, as follows:

CODEREG - base register or registers
DATAREG - dynamic storage register or

registers
EIBREG - register to address the EIB.

and must be coded instead of the first
CSECT or START statement, as shown in the
following example:

INSTRUCT DFHEIENT CODEREG=(2,3,4)
,DATAREG=(13,S),EIBREG=6

The symbolic register DFHEIPLR is equated
to the first DATAREG either explicitly
specified or obtained by default. It is
recommended that register 13 be used as
the first dynamic storage register since
register 13 points to the save area
defined in dynamic storage by DFHEISTG.
DFHEIPLR will be assumed by the expansion
of an EXEC command to contain the value
set up by DFHEIENT. It is the user's

Chapter 1.3. Command language Translator 11

responsibility to either dedicate this
register or to ensure that it is restored
before each command.

An assembler-language application
program that uses both the command-level
interface and the macro-level interface
(that is, a mixture of commands and
macros) must define the macro global bit
&DFHEIMX and set it to 1. This will
ensure that register 13 points to the
CSA, and regi ster 12 to the TCA. In thi s
case, DFHEIPlR will not be assumed by the
expansion of a command.

COBOL

For COBOL, each command is replaced by
one or more COBOL MOVE statements
followed by a COBOL CAll statement. The
purpose of the MOVE statements is to
assign constants to COBOL data variables;
thi 5 enables constants and names to be
specified as arguments to options in the
commands. For example, a command such
as:

EXEC CICS RECEIVE MAPC'A') END-EXEC

may be translated to:

MOVE ' , TO DFHEIVO
MOVE 'A' TO DFHEIVI
CALL 'DFHEll' USING DFHEIVO DFHEIVI AI

Declarations for the generated variables
DFHEIVO and DFHEIVI are included
automatically in working storage; their
names a re reserved. The st ring moved to
DFHEIVO is a hexadecimal string, not
blanks. The use of EXEC, CICS, DLI, and
END-EXEC as names for user variables
should be avoided.

The translator modifies the linkage
section by inserting the EIB structure as
the first parameter, and inserts
declarations of the temporary variables
that it requires into the working-storage
section.

It is possible to translate program
segments for later inclusion into the
procedure division.

PL/I

For PL/!, each command is always replaced
by a single Pl/! CALL statement. Warning
messages from the Pl/I compiler to the
effect that the number of arguments to
the call is incorrect should be ignored.

If OPTIOHSCMAIN) is specified, the
translator modifies the parameter list by
inserting the EIB structure pointer as
the first parameter, and a %INClUDE
statement to copy the structure into the
progt'am. If OPTIONSCMAIN) is not
specified (that is, if the program is to
be link-edited to the main module), the

12 CICS/VS APRM (Cl)

parameter list ;s not modified, and it is
the application programmer's
responsibility to pass the EIB structure
(or addressability to it) to the
link-edited program if access to it is
required.

It is possible to translate program
segments for later inclusion into a main
program.

TRANSLATOR OPTIONS

The translator provides a number of
optional facilities, for example, to
allow for diffe~ent record formats and to
specify what information is required on
the listing. The translator options and
their defaults (indicated by underlines)
are listed below. There are different
sets of options for assembler language,
COBOL, and for Pl/I users.

Translator options are specified in the
*ASM statement for assembler language,
the CBl statement for COBOL, or in the
*PROCESS statement for PL/I. These
statements must precede the source
program; there is no batching facility.
The *ASM statement must obey the same
syntax and continuation rules as the
assembler-language comment statement.
For OS/VS, options may also be specified
in the EXEC job control statement that
invokes the translator; if both methods
are used, the options specified in the
*ASM, CBl, or *PROCESS statements
override those in the EXEC job control
statement, and the last setting for each
option takes precedence.

Translator options are written as a list
within the CICS keyword option, for
example:

*ASM CICSCNOPROlOG NOEPllOG)

or

CBL CICSCQUOTE SPACE2)

or

*PROCESS CICSCFlAGCW) SOURCE);

No characters, other than blanks, can
appear before the CBl statement on the
COBOL options card.

The options may appear in any order.
They may be separated by one or more
blanks or by a comma. If coded in the
EXEC job control statement, the CICS
keyword (and its associated parentheses)
is unnecessary; only options for the
translator are permitted.

For COBOL and PL/I under VSE, the CBl and
*PROCESS statements can use the XOPTS
keyword as an a1 ternat i ve to the CICS
keyword, for example:

CBl XOPTS(QUOTE SPACE2)

or

*PROCESS XOPTSCFlAG(W) SOURCE);

If the application program contains EXEC
OlI commands, the options OlI and CICS
must be specified in a CBl o~ *PROCESS
statement, as follows:

CSl XOPTS(DlI,CICS)

or

*PROCESS XOPTSCOlI,CICS);

The CBl or *PROCESS statement can also
contain options that apply to the
following compiler. These options will
be ignored by the translator (that is,
they will not be checked for validity)
but they will be copied through onto the
output data set. For example, a Pl/I
application program preceded by:

*PROCESS CICS(SOURCE),ATTRIBUTES;

will be passed to the Pl/I compiler
preceded by:

*PROCESS ATTRIBUTES;

ASSEMBLER-LANGUAGE TRANSLATOR OPTIONS

NOSPIE
prevents the translator trapping
unrecoverable errors; instead, a
dump is produced.

NOPROLOG
prevents the translator inserting
the macros OFHEISTG, DFHEIENO, and
DFHEIENT, described earlier in this
chapter.

NOEPILOG
prevents the translator inserting
the macro DFHEIRET, described
earlier in this chapter.

COBOL TRANSLATOR OPTIONS

DEBUGINODEBUG

eICS

specifies whether or not the
translator is to produce code that
passes the translator line number
through to CICS/VS to be displayed
by the Execution (Command level)
Diagnostic Facility (EOF).

specifies that the translator is to
process EXEC CICS commands. This
option may be specified either as an
alternative to, or as a suboption
of, the XOPTS option. If neither
XOPTS nor CICS is specified, CICS is
assumed by default. This option
must not be specified for batch Dl/I
application programs containing

DLI

FE

EXEC OlI commands; XOPTS(OlI) must
be specified instead.

specifies that the translator is to
process EXEC OlI commands.

produces translator informatory
messages which print (in
hexadecimal notation) the bit
pattern corresponding to the first
argument of the translated call.
This bit pattern has the encoded
information that the EXEC interface
program uses to determine which
function is required and which
options are specified. If FE is
specified, all diagnostic messages
are listed, whatever the FLAG option
specifies.

FLAGIIFLAGwlFLAGE
specifies which diagnostics the
translator is required to list:
FLAGI specifies diagnostics at all
severity levels; FlAGW specifies
diagnostics at severity levels W, C,
E, and 0; and FlAGE specifies
diagnostics at severity levels C, E,
and O.

LANGLVl(1)llANGLVL(2)
specifies whether the translator is
to analyse the source program and
generate code according to the ANS
X3.23-1968 ClANGlVlCl» or AHS
X3.23-1974 (lAHGlVL(2»
interpretation. The same value for
this option must be specified for
the translator and following
compiler.

LISTINOLIST (VSE only)
specifies whether or not the
translator is to produce a listing
of the source program.

NOSPIE
is used to prevent the translator
from trapping unrecoverable errors;
instead, a dump is produced.

NUMINONUH
specifies whether or not the
translator is to use the line
numbers appearing in columns 1
through 6 of the card as the line
number in its diagnostic messages
and cross-reference listing. If HUM
is not specified, the translator
generates its own line numbers.

OPTINOOPT
specifies whether or not the
tr~nslator is to generate SERVICE
RELOAD statements to address the EIB
and DFHCOMMAREA. The same value for
this option must be specified for
the translator and following
compiler. The default is OPT for
OS, NOOPT for VSE.

Chapter 1.3. Command language Translator 13

QUOTEI~POST
QUOTE indicates to the translator
that the double quotation m~rks (")
should be accepted as the character
to delineate literals; APOST
indicates that the apostrophe C')
should be accepted instead. The
same value must be specified for the
translator and following compiler.

SEQINOSEQ
indicates whether or not the
translator is required to check the
sequence of source statements. If
SEQ is specified and a statement is
not in sequence it is flagged.

SOURCEINOSOURCE (OS/VS only)
specifies whether or not the
translator is to produce a listing
of the source program.

SPACEliSPACE21sPACE3
indicates the required type of
spacing to be used in the output
listing: SPACE1 specifies single
spacing; SPACE2 double spacing; and
SPACE3 triple spacing.

XREFINOXRE~
specifies whether or not the
translator is required to provide a
cross-reference list of all the
commands used in its input.

PL/I TRANSLATOR OPTIONS

DEBUGINODEBUG

CICS

DLI

FE

specifies whether or not the
translator is to produce code that
passes the translator line number
through to CICS/VS to be displayed
by the Execution (Command Level)
Diagnostic Facility (EDF).

specifies that the translator is to
process EXEC CICS commands. This
option may be specifie.d either as an
alternative to, or as a suboption
of, the XOPTS option. If neither
XOPTS nor CICS is specified, CICS is
assumed by default. This option
must not be specified for batch DL/I
application programs containing
EXEC DLI commands; XOPTSCDLI) must
be specified instead.

specifies that the translator is to
process EXEC DLI commands.

specifies that the translator is to
produce informatory messages which
print Cin hexadecimal notation) the
bit pattern corresponding to the
first argument of the translated
call. This bit pattern forms a code
that the EXEC interface program uses
to determine which function is
required and which options are

14 CICS/VS APRM CCL)

specified. If FE is specified, all
diagnostic messages are listed,
whatever the FLAG option specifies.

FLAG[(!IWIEls)]
Abbreviat;on: F
specifies the minimum severity of
error that requires a message to be
listed.

FLAG(I) all messages

FLAGIFLAGCW) all except informatory
messages

FLAG(E) all except warning and
informatory messages

FLAG(S) only severe and
unrecoverable error
messages

LINECOUNT(n)
Abbreviation: LC
specifies the number of lines to be
included in each page of translator
listing, including heading and
blank lines. The value of n must be
an integer in the range 1 to 32767;
if n is less than 5, only the
heading and one line of listing will
be included on each page. The
default is 55.

HARGINS(m,n[,c])
Abbreviation: MAR
specifies the extent of the part of
each input line or record that
contains PL/I statements. The
translator does not process data
that is outside these limits Cbut it
does include it in the source
listings).

The option can also specify the
position of an American National
Standard CANS) printer control
character to format the listing
produced if the SOURCE option
applies; otherwise the input
records will be listed without any
intervening blank lines.

"~

~"

"e"

Column number of left-hand
margin.

Column number of right-hand
margin. It must be greater than
"mHo

Column number of the ANS
printer control character. It
must be outside the values
specified for "m" and "n". A
zero value for "c" means no
printer control character.
Only the following printer
control characters can be
used:

(blank)

o

+

1

Skip on2 line before
printing.

Skip two lines before
printing.

Skip three lines before
printing.

No skip before printing.

Start new page.

The default is MARGINS(2,72,O) for
fixed-length records; and
MARGINS(lO,lOO,O) for
variable-length records (OS/VS
only).

t~OSPIE
is used to prevent the translator
trapping unrecoverable errors;
instead, a dump is produced.

OPMARGINS(m,n[,c])
Abbrev;ation: OM
specifies the translator output
margins, that is, the margins of the
input to the following compiler.
Normally these wi 11 be the same as
the input margins. For the meaning
of u m", "n", and "c" see MARGINS.
The default is OPMARGINS (2,72,0)

OPSEQUENCE(m,nlINOOPSEQUENCE
Abbreviations: OS and NOS
specifi2s the position of the
sequence field in the output
records. For the meaning of "m" and
"n" see SEQUENCE. The default is
OPSEQUENCE(73,80).

OPTIONSINOOPTIONS
Abbreviations: OP and NOP
specifies whether the translator is
to include in the listing a list of
all the translator options used
during this translation.

SEQUENCE(m,nlINOSEQUENCE
Abbreviations: SEQ and NSEQ
specifies the extent of the part of
each input line or record that
contains a sequence number. This
number is included in the source
listing and used in the error
message and cross-reference
listings. No attempt is made to
sort the input lines or records into
sequence. If no sequence field is
specified, the translator creates
and prints in the source listing its
own sequence numbers; this is
necessary 50 that the error messages
and cross-reference listings can
refer to a particular line in the
source Ii s·ti ng.

"m"

"n"

Column number of left-hand
margin.

Column number of right-hand
margin.

The extent must not exceed eight
characters and must not overlap the
source program (as specified in the
MARGINS option).

The default for fixed-length
records is SEQUENCE(73,80); for
varying-length records it is
SEQUENCE(1,8) (OS/VS only).

SOURCEINOSOURCE
Abbrev;ations: Sand NS
specifies whether or not the
translator is to produce a listing
of the source program.

XREFINOXREF
Abbreviat;ons: X and NX
specifies whether the translator is
to include in the listing a list of
all the commands used in the program
together with the sequence numbers
of the lines in which they are used.

Ch~pter 1.3. Command Language Translator 15

Chapter 1.4. Programming Techniques and Restrictions

This chapter contains information that
will help to improve performance and
efficiency of an application program in
the CICS/VS system.

The first section deals with general
programming techniques; this section
gives advice about the virtual-storage
environment in which CICS/VS application
programs operate. The rest of the
chapter contains information that is
applicable only to programs written in
assembler language, COBOL, and Pl/I
respectively, and includes the
restrictions that apply to each language
when CICS/VS commands are used.

This manual does not contain any guidance
on the use of programming-language
statements or programming techniques
that are unrelated to CICS/VS; such
information is given in the appropriate
language publications.

Files and queues are not defined within
application programs; these definitions
are establ i shed wi th the help of "the
system programmer. Refer to the CICS/VS
System Programmer's Reference Manual.

GENERAL PROGRAMMING TECHNIQUES

To see how programming techniques can
affect the performance and efficiency of
the CICS/VS system, it is necessary to
understand a little of the
virtual-storage environment in which
CICS/VS operates. Two concepts are
important: multithreading and
virtual-storage paging.

Multithreading is a technique, used by
CICS/VS, that allows a single copy of an
application program to process several
transactions concurrently. For example,
the first section of an application
program may be processing one
transaction. When that section is
completed (in general, signaled by the
execut i on of a CICS/VS command that
causes a Ha it), process i ng of another
transaction using a different section of
the application program may take place.
(Compare this with single threading,
which is the execution of a program to
completion. Processing of one
transaction is completed before another
transaction is started.)

Multithreading requires that all CICS/VS
application programs be quasi-reentrant;
that is, they must be serially reusable
between entry and exit points, and any
instructions or data altered in them must
be restored. CICS/VS application
programs using the command-level

interface obey this rule automaticallY
(provided that, in Pl/I programs, static
storage is used for read-only data). For
these program to stay reentrant, variable
data should not appear as static storage
in PL/I, nor as a DC in the program CSECT
in assembler language.

Care must be taken if a program involves
lengthy calculations; since an
application program retains control from
one CICS/VS command to the next,
processing of other transactions is
completely excluded. However, the
SUSPEND command can be used to allow
other transaction processing to ~roceed;
refer "to "Chapter 4.3. Task Control" on
page 187 for details.

Virtual-storage paging ;s a technique
used by CICS/VS in a virtual-storage
environment. The key objective of
programming in this environment is the
reduction of page faults. A page fault
occurs when a program refers to
instructions or data that do not reside
in real storage, in which case, the page
in virtual storage that contains the
referenced instructions or data must be
paged into real storage. The more paging
required, the lower the overall system
performance.

An understanding of the following terms
is necessary for writing application
programs to be run in a virtual-storage
environment:

• locality of reference - the
consistent reference, during the
execution of the application
program, to instructions and data
within a relatively small number of
pages (compared to the total number
of pages in a program) for relatively
long per i ods

• working set - the number and
combination of pages of a program
needed during a given period

• validity of reference - direct
reference to the required pages,
without intermediate storage
references that retrieve useless
data

In general, the following techniques
should be used:

1. To improve locality of reference,
processing should be sequential for
both code and data, where possible.

a. The ideal application program
executes sequentially with no
branch logic reference beyond a

Chapter 1.4. Programming Technictues and Restrictions 17

small range of address space.
However, error-handling or
unusual-situation routines
should be separated from the main
section of a program; they should
be subprograms.

b. Subroutines should be placed
near to the caller.

c. Subprograms that are short and
used only once or twice (other
than error-handling or
unusual-situation routines)
should be coded inline in the
calling program.

d. Try to keep the execution path in
a straight line by using XCTL
commands to transfer control to
other programs when necessary,
rather than LINK commands.

e. Initialize data as close as
possible to its first use.

f. Define arrays or other data
structures in the order in which
they will be referred to. Refer
to elements within arrays in the
order in which they are stored;
for example, in PL/I programs, in
rows rather than in columns.

g. Issue as few as possible GETMAIt~
commands.

h. In COBOL programs, avoid using
EXANINE or VARIABLE MOVE
operations, because these expand
into subroutine executions.

2. To minimize the size of the working
set, the amount of storage that a
program refers to in a given period
should be as small as possible.

a. Wr i te modular programs and
structure the modules according
to frequency and anticipated
time of reference. Do not
modularize merely for the sake of
size; consider duplicate code
inline as opposed to subroutines
or separate modules.

b. Use separate subprograms
whenever the flow of the program
suggests that execution will not
be sequential.

c. Do not tie up main storage
awaiting a reply from a terminal
user.

d. Use command-level file control
locate-mode input/output rather
than move-mode.

e. In COBOL programs, spec; fy
constants directly, rather than

18 CICS/VS APRM (eL)

as data variables in the
Working-Storage Section.

f. In PL/I programs, use static
storage for constant data.

g. Avoid using LINK commands where
possible, because they generate
requests for main storage.

3. To improve validity of reference, the
correct page should be determined
directly.

a. Avoid long searches for data.

b. Use data structures that can be
addressed directly, such as
arrays, rather than structures
that must be searched, such as
chains.

c. Avoid indirect addressing and
any methods that simulate
indirect addressing.

No attempt should be made to use overlays
(paging techniques) in an application
program. System paging is provided
automatically and has superior
performance. The design of an
application program for a
virtual-storage environment is similar
to that for a real environment. The
system should have all modules resident
so that code on un referenced pages need
not be paged in.

If the program is dynamic, the entire
program must be loaded across adjacent
pages before execution begins. Dynamic
programs can be purged from storage if
not in use and an unsatisfied storage
request exists. Allowing sufficient
dynamic area to prevent purging is more
expensive than making them resident,
because a dynamic program will not share
unused space on a page with another
program.

CICS/VS MACROS USED WITH CICS/VS COMMANDS

Care should be exercised when writing
application programs that contain a
mixture of CICS/VS commands and CICS/VS
macros, or in a macro-level program that
invokes a command-level program and
vice-versa.

When a RECEIVE MAP command is used with
the SET option, the EXEC interface
program always reuses the terminal
input/output area (TIOA) obtained. Do
not use a DFHSC TYPE=FREEMAIN,
RELEASE=ALl macro in the same or an
invoked program because the TIOA is freed
unknown to the EXEC interface program,
which will attempt to reuse it, giving
unpredictable results.

OBJECT PROGRAM SIZE

The object module resulting from any
application program must not occupy more
than 262,136 bytes of main storage.

ASSEMBLER-LANGUAGE CONSIDERATIONS

RESTRICTIONS

The following restrictions apply to an
assembler-language program that is to be
used as a CICS/VS application program.

1. The assembler instructions COM
(identify blank common control
section), ICTl (input format
control), and OPSYN (equate
operation code) cannot be used.

2. Private code containing commands
cannot be used.

COMMANDS CONTAINED WITHIN MACROS AND COpy
CODE

Macro instructions that generate
commands, and COPY code that contains
commands, must be translated and stored
in the source library in translated form
for later inclusion by the assembler.

INVOKING ASSEMBLER-LANGUAGE APPLICATION
PROGRAMS BY A CALL STATEMENT

Assembler-language application programs
containing commands can be treated as
separate CICS/VS programs that have their
own PPT entries and that can be invoked
by assembler-language, COBOL, PL/I, or
RPG II application programs using LINK or
XCTL commands (see "Chapter 4.4. Program
Control" on page 189).

However, since assembler-l~nguage
application programs containing commands
are invoked by a system standard call,
they can be invoked also by a COBOL,
PL/I, or RPG II CALL statement or by an
assembler-language CALL macro. A single
CICS/VS application program with one PPT
entry may consist of a module cont~ining
separate CSECTs linked together,
although they may have been compiled or
assembled separately.

Also, assembler-language application
programs containing commands can be
linked I.J i th other assembler-language
programs, or with programs in one of the
high-level languages COBOL, Pl/I, or RPG
II, but with only one. When such an
application program is linked with an
assembler-Iahguage application program,
the main program must be the one coded in
the high-level language, and the PPT must
specify that high-level language.

Since assembler-language application
programs containing commands are always
passed the parameters EIB and COMMAREA
when invoked, the CALL statement or macro
must pass these two parameters followed,
optionally, by other parameters.

COBOL CONSIDE~ATIONS

RESTRICTIONS

The following restrictions apply to a
COBOL program that is to be used as a
CICS/VS application program. (Refer to
the appropriate COBOL programmer's guide
for more information about these
features.)

1. Environment Division and Data
Division entries normally associated
with data management cannot be used.

2. File Section of the Data Division
cannot be used.

3. Special features: ACCEPT, DISPLAY,
EXHIBIT, INSPECT, REPORT WRITER,
SEGMENTATION, SORT, TRACE, and
UNSTRING cannot be used. For
CICS/OS/VS, any feature that
requires an OS/VS GETMAIN cannot be
used, (for example, CURRENT-DATE).

4. Options that require the use of
operating system services: COUNT,
FLOW, STATE, STOP RUN, STXIT, or
SYMDMP for CICS/DOS/VS; COUNT,
ENDJOB, FLOW, DYNAM, STATE, STOP
RUN, SYMDUMP, SYST, or TEST for
CICS/OS/VS cannot be used. Note that
since STOP RUN can be generated by
the COBOL compiler, the application
programmer must always code either a
COBOL GOBACK statement or an EXEC
CICS RETURN command at the end of the
program.

5. COBOL statements: READ, WRITE, OPEN,
and CLOSE cannot be used. (Commands
are provided for the storage and
retrieval of data, and for
communication with terminals.)

6. Optimization option of the DOS Full
COBOL V3 compiler cannot be used.

7. When separate COBOL routines are
link-edited together, only the first
can invoke CICS/VS.

8. The length of working storage plus
the length of the TGT (task global
table) must not exceed 64K bytes.

COMPILERS SUPPORTED

OnlY the following compilers are
supported by CICS/VS:

Chapter 1.4. Programming Techniques and Restrictions 19

• DOS Full .COBOL Version 3 Compiler
(5736-CB2)

• DOS/VS COBOL Compiler (5746-CB1)

• OS Full COBOL Version 4 Compiler
(5734-C82)

• OS/VS COBOL Compiler (5740-CB1)

BASE LOCATOR FOR LINKAGE (ILL)

The base locator for linkage (BLL)
mechanism is used to address storage
outside the working-storage section of an
application program. It operates by
addressing the storage as if it were a
parameter to the program. The storage
must be defined by means of an Ol-level
data definition in the linkage section of
the program. The COBOL compiler
generates code to address the storage via
the parameter list. When the program is
invoked, CICS/VS sets up the parameter
list in such a way that the parameter
list is itself addressable by the
application program.

The parameter list must be defined as the
first parameter to the program, unless a
communication area is being passed to the
program, in which case the DFHCOMMAREA
definition must precede it. (See "Chapter
4.4. Program Control" on page 189).

In the following example, the first
02-1evel data name (that is, FILLER) is
set up by CICS/VS to provide
addressability to the other fields in the
parameter list. The other data names are
kno ... m as B L L cell s, and address the
remaining parameters of the program.
There is a one-to-one correspondence
between the 02-level data names of the
parameter list definition and the
01-level data definitions in the linkage
section.

LINKAGE SECTION.
01 PARMLIST.

02 FILLER PIC S9(8) COMPo
02 A-POINTER PIC 59(8) COMPo
02 B-POINTER PIC S9(8) COMPo
02 C-POINTER PIC 59(8) COMPo

01 A-DATA.
02 PARTNO PIC 9(4).
02 QUANTITY PIC 9(4) .
02 DESCRIPTION PIC X(lOO).

01 B-DATA PIC X.
01 C-DATA PIC X.

In this example, A-POINTER addresses
A-DATA, B-POINTER addresses B-DATA, and
C-POIHTER addre.sses C-OATA. The actual
data n~mes chosen for the BlL cells and
for the data areas that they address are
not significant, but the names must be
defined in the correct order, 50 that the
neces~ary correspondence is established.

If a BLL cell is named in the SET option
of a CICS/VS command, subsequent

20 CICS/VS APRM (CL)

reference to the correspondi ng data
definition name will address the storage
suppl i ed by CICS/VS as a resul t 0 f
executing the command. For example,
suppose that a program is required to
read a variable-length record from a
file, examine part of it, and update it;
all of this is to be done without
providing storage for the record within
the program. Using the data definitions
shown in the example above, the program
could be written as follows:

EXEC CICS READ UPDATE DATASET('FILEA')
RIDFLD(PART-REQD) SETCA-POINTER)
LENGTH(A-LRECL) END-EXEC

IF A-LRECL LESS THAN 8 GO TO ERRORS.
IF QUANTITY GREATER ZERO

SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE DATASETC'FILEA')

FROMCA-DATA) LENGTH(A-LRECL)
END-EXEC.

CICS/VS reads the record into an internal
buffer and supplies the address of the
record in the buffer to the application
program. The application program updates
the record in the buffer and rewrites the
record to the data set.

BLL and Chained storage Areas

If access is needed to a series of
chained storage areas (that is, areas
each of which contain a pointer to the
next area in the chain), a paragraph name
must be inserted immediately following
any statement that establishes
addressability to one of the storage
areas. For example:

LINKAGE SECTION.
01 PARMLIST.

02 USERPTR PIC 59(8) COMPo

01 USERAREA.
02 FIELD PIC X(4).
02 NEXTAREA PIC 59(8) COMPo

PROCEDURE DIVISION.

MOVE NEXTAREA TO USERPTR.
ANYNAME.

MOVE FIELD TO TESTVAL.

In thi s example, storage areas mapped or
defined by USERAREA are chained. The
first MOVE statement establishes
addressability to the next area in the
cha in. The second MOVE statement moves
data from the newly addressed area, but
only because a paragraph name follows the
first MOVE statement. If no paragraph
name is inserted, the reference to FIELD
; s taken as bei ng to the storage area

that is addressed when the flrst MOVE
statement refers to NEXTAREA. Insertion
of a paragraph name causes the compiler
to generate code to reestablish
addressability through USERPTR, so that
the reference to FIELD (and the next
reference to NEXTAREA) is to the newly
addressed storage area.

BLL and OCCURS DEPENDING ON Clauses

I f the obj ect of an OCCURS DEP ENOl NG ON
clause is defined in the linkage section,
a special technique is required to ensure
that the correct value is used at all
times. In the follot-Jing example,
FIELD-COUNTER is defined in the linkage
section. The MOVE FIELD-COUNTER TO
FIELD-COUNTER statement is needed to
ensure that unpredictable results do not
occur when referring to DATA.

LINKAGE SECTION.

01 FILE-REC.

02 FIELD-COUNTER PIC 9(4) COMPo
02 FIELDS PIC XeS) OCCURS 1 TO S

TIMES DEPENDING ON
FIELD-COUNTER.

02 DATA PIC X(20).

PROCEDURE DIVISION.

EXEC CICS READ DATASETC'FILEA')
RIDFLDeKEYVAL)
SETCRECPTR) END-EXEC.
MOVE FIELD-COUNTER TO
FIELD-COUNTER.
MOVE DATA TO DATA-VAL.

The MOVE statement referring to
FIELD-COUNTER causes the compiler to
reestablish the value it uses to compute
the current number of occurrences of
FIELDS and ensures that it can determine
the displacement of DATA correctly.

BLL and Large storage Areas

If an ar'ea greater than 4096 bytes is
defined in the linkage section.
additional statements are required to
establish addressability to the extra
area. An additional BLL cell is required
for each extra 4096 bytp.s (or part) added
to the area. (No additional
corresponding Ol-level data name
definition is added, so the usual
one-to-one correspondence of BLL cells to
the data areas they address is not
maintained.) An ADD statement is
required also for each extra 4096 bytes
(or part); it is placed after the

statement that establishes
addressability to the data area.

The extra statements are shown in the
following example:

LINKAGE SECTION.
01 PARMLIST .

.
02 FRPTR PIC 59(8) COMPo
02 FRPTRl PIC S9(8) COMPo

.
01 FILE-REC.

02 FIELD! PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.

EXEC CICS READ DATASETC'FILEA')
RIDFLD(KEYVAL) SETCFRPTR)
END-EXEC.
ADD 4096 TO FRPTR GIVING FRPTR1.

BLL and the optimization Feature

If an application program is to be
compiled using the OS full COBOL V4
Compiler, the OS/VS COBOL compiler, or
the DOS/VS COBOL compiler with the
optimization (OPT) feature, a special
compiler control statement must be
inserted at appropriate places within the
program to ensure addressability to a
particular area defined in the linkage
section. This control statement has the
form:

SERVICE RELOAD fieldname

where "fieldname" is the symbolic name of
a specific storage area which is also
defined in an Ol-level statement in the
linkage section. The SERVICE RELOAD
statement must be used following each
statement which modifies addressability
to an area defined in the linkage
section, that is, whenever the contents
of a BLL cell is changed in any way.

If a HANDLE CONDITION or a HANDLE AID
command is invoked as a result of a
command that changes the contents of a
BLL cell, a SERVICE RELOAD statement
should follow the label branched to as
the exit for that condition.

If the BLL mechanism is used (described
earlier in this chapter), addressability
to the parameter list must be established
at the start of the procedure division.
This ;s done by adding a SERVICE RELOAD
PARMLIST statement at the start of the
procedure division in the earlier
examples.

For example, after a locate-mode input
operation the SERVICE RELOAD statement

Chapter 1.4. Programming Techniques and Restrictions 21

must be used to establish addressability
to the data, as follows:

EXEC CICS HANDLE CONDITION
ERROR(GIVEUP)
LENGERRCBADLENGTH) END-EXEC

EXEC CICS READ DATASET('FILEA')
RIDFLD(PART-REQD)
SETCA-POINTER)
LENGTH(A-LRECL)
END-EXEC

SERVICE RELOAD A-DATA.
BADLENG.
SERVICE RELOAD A-DATA.

If an address is moved into a BLL cell,
addressability must be established in the
same way, for example:

MOVE B-POINTER TO A-POINTER
SERVICE RELOAD A-DATA.

If areas larger than 4096 bytes are being
addressed, the secondary BLL cells must
be reset after the SERVICE RELOAD
statement has been executed. (Resetting
a BLL cell is described in the previous
section.)

BLL and Large Communicat;on Area

If a communication area greater than 4096
bytes is defined in the linkage section,
an additional statement is required for
each extra 4096 bytes (or part) to
establish addressability to the extra
are~. For example, the coding for a
communication area of 10000 bytes might
be as follot s:

LINKAGE SECTION
01 DFHCOMMAREA PIC X(lOOOO).
01 PARMlIST.

02 FIllER PIC S9(8) COMPo
02 FILLER PIC 59(8) COMPo
02 FILLER PIC S9(8) COMPo
02 ...

The first FILLER statement establishes
BLL addressability to the first 4096
bytes, the second FILLER statement
establishes addressability to the next
4096 bytes, and so on.

NOTRUNC COMPILER OPTION

If an argument to a command is greater
than 9999 in value, the NOTRUNC compiler
option must be specified to ensure
successful execution.

PROGRAM SEGMENTS

Segments of programs to be copied into
the procedure division can be translated
by the command language translator,
stored in their translated form, and
later copied into the program to be
compiled.

22 CICS/VS APRM (Cl)

PL/I CONSIDERATIONS

RESTRICTIONS

The following restrictions apply to a
PL/I program that is to be used as a
CICS/VS application program. (Refer to
the PL/I Optimi~ing Comeiler
Programmer's Guide for more information
about these features.)

1. The multitasking built-in functions:
COMPLETION, PRIORITY, and STATUS
cannot be used.

2. The mul t i task i ng opt ions: EVENT,
PRIORITY, and TASK cannot be used.

3. The PL/I statements: READ, WRITE,
GET, PUT, OPEN, CLOSE, DISPLAY,
DELAY, REWRITE, LOCATE, DELETE,
UNLOCK, STOP, HALT, EXIT, FETCH, and
RELEASE should not be used. Commands
are provided for the storage and
retrieval of data, and for
communication with terminals.

Refer to the PL/L..Q.Etimi zi n9 Comei ler
Programmer's Guide for information
on when the use of these PL/!
statements is necessary and the
consequences of using them.

4. PL/! Sort/Merge cannot be used.

5. Static storage (except for read-only
data) cannot be used. A consequence
of this restriction for CICS/DOS/VS
PL/I users is that CONTROLLED
variables cannot be used.

6. A declaration for a variable with the
attributes STATIC EXTERNAL should
have also the INITIAL attribute.
Failing this, such declarations will
generate a common CSECT that cannot
be handled by CICS/VS.

PL/I STAE EXECUTION-TIME OPTION

If this option is specified, an abend
occurring in the transaction will be
handled by PL/I error handling routines,
and the transaction may terminate
normally, in which case, CICS/VS
facilities, such as dynamic transaction
backout (DTB), will not be invoked.

COMPILERS SUPPORTED

Only the following compilers are
sllPported:

•

•

DOS PL/I Optimizing Compiler,
Version 1, Release 5.0

OS PL/I Optimizing Compiler, Version
1, Release 3.0

OPTIONS(HAINJ SPECIFICATION

If OPTIONSCMAIN) is specified in an
application program, that program can be
the first program of a transaction, or
control can be passed to it by means of a
LINK or XCTL command.

If OPTIONSCMAIN) is not specified, it
cannot be the first program in a
transaction, nor have control passed to
it by a LINK or XCTl co~mand, but it can
be link-edited to a main program.

The de.finition of the EIB is generated
only in main programs. If fields in the

EIB are referred to in an external
procedure for which OPTIONSCMAIN) is not
specified, either the address of the EIB,
or the necessary fields themselves, must
be passed to the external procedure as a
parameter to the CALL statement that
invokes the external procedure.

PROGRAM SEGMENTS

Segments of programs can be translated by
the command language translator, stored
in their translated form, and later
included in the program to be compiled.

Chapter 1.4. Programming Techniques and Restrictions 23

Chapter 1.5. Exceptional Conditions

Exceptional conditions may occur during
the execution of a CICS/VS co~mand and,
unless specified otherwise in the
application program by an IGNORE
CONDITION or HANDLE CONDITION command or
by the NOHANDlE option, a default action
for each condition will be taken by
CICS/VS. Usually, this default action is
to terminate the task abnormally.
(Exceptional conditions are described,
together with the CICS/VS default action,
at the end of a chapter, and a list of
conditions that apply to a command is
included within the syntax box for the
command.)

However, to prevent abnormal
termination, an exceptional condition
can be dealt with in the application
program by a HANDLE CONDITION command.
The command must include the name of the
condition and, optionally, a label to
which control is to be passed if the
condition occurs. The HANDLE CONDITION
command must be executed before the
command which may give rise to the
associated condition.

The HANDLE CONDITION command for a given
condition applies only to the program in
which it is specified, remaining active
until the associated task is terminated,
or until another HANDLE CONDITION command
for the same condition is e~countered, in
which case the new command overrides the
prev i ous one.

When control returns to a program from a
program at a lower logical level, the
HANDLE CONDITION commands that were
active in the higher-level program before
control was transferred from it are
reactivated, and those in the lower-level
program are deactivated. (Refer to
"Chapter 4.4. Program Control" on page
189 for information about logical
levels.)

Some exceptional conditions can occur
during the execution of anyone of a
number of unrelated commands. For
example, IOERR can oc~ur during
file-control operations,
interval-control operations, and others.
If the same action is required for all
occurrences, a single HANDLE CONDITION
IOERR command at the beginning of the
program will suffice.

If different actions are required, HANDLE
CONDITION commands specifying different
labels, at appropriate points in the
program will suffice. The same label can
be specified for all commands, and fields
EIBFN and EIBRCODE (in the EIB) can be
tested to find out which exceptional
condition has occurred and in which

command. The EIB is described in
"Appendix A. EXEC Interface Block" on
page 239.

The IGNORE CONDITION command specifies
that no action is to be taken if an
exceptional condition occurs. Execution
of a command could result in several
conditions being raised. CICS/VS checks
these in a predetermined order and only
the first one that is not ignored (by an
IGNORE CONDITION command) will be passed
to the application program.

The NOHANDLE opti on may be used wi th any
command to specify that no action is to
be taken for any condition resulting from
the execution of that command. In this
way the scope of the IGNORE CONDITION
command covers specified conditions for
all commands (until a HANDLE CONDITION
for the condition is execut~d) and the
scope of the NOHANDL E opt i on covers all
conditions for specified commands.

THE ERROR EXCEPTIONAL CONDITION

Apart from the exceptional conditions
associated with individual commands,
there is a general exceptional condition
named ERROR whose default action also is
to terminate the task abnormally. If no
HANDLE CONDITION command is active for a
condition, but one is active for ERROR,
control will be passed to the label
specified for ERROR. A HANDLE CONDITION
command (with or without a label) for a
condition overrides the HANDLE CONDITION
ERROR command for that condition.

Commands should not be included in an
error routine that may give rise to the
same condition that caused the branch to
the routine; special care should be taken
not to cause a loop on the ERROR
condition. A loop can be avoided by
including a HANDLE CONDITION ERROR
command as the first command in the error
routine. The original error action
should be reinstated at the end of the
error routine by including a second
HANDLE CONDITION ERROR command.

HANDLE EXCEPTIONAL CONDITIONS (HANDLE
CONDITION)

HANDLE CONDITION condition[(label)]
[condition[(label)]l ...

This command is used to specify the label
to which cont~ol is to be passed if an

Chapter 1.5. Exceptional Conditions 25

exceptional condition occurs. It remains
in effect until a subsequent IGNORE
CONDITION command for the condition is
encountered. No more than twelve
conditions are allowed in the same
command; additional conditions must be
specified in further HANDLE CONDITION
commands. The ERROR condition can also
be used to specify that other conditions
are to cause control to be passed to the
same label. If "label" is omitted, the
default action for the condition will be
taken.

The following example shows the handling
of exceptional conditions, such as
DUPREC, LENGERR, and so on, that can
occur when a WRITE command is used to add
a record to a data set. DUPREC is to be
handled as a special casej system default
action (that is, to terminate the task
abnormally) is to be taken for LENGERRj
and all other condi ti ons are to be
handled by the generalized error routine
ERRHANDL.

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(OUPRTN)
lENGERR

If the generalized error routine can
handle all exceptional conditions except
IOERR, for which the default action (that
is, to terminate the task abnormally) is
required, IOERR (without a label) would
be added to the above command.

In an assembler-language application
program, a branch to a label caused by an
exceptional condition will restore the
registers in the application program to
their values at the point where the EXEC
interface program is invoked.

In a Pl/I application program, a branch
to a label in an inactive procedure or in
an inactive begin block, caused by an
exceptional condition, will produce
unpredictable results.

HANDLE CONDITION COMMAND OPTION

condition[(label)]
"condition" speci'fies the name of
the exceptional condition, and
"label" specifies the location
within the program to be branched to
i'f the condi ti on occurs. If thi s
option is not specified, the default
action for the condition is taken,
unless the default action is to
terminate the task abnormally, in
which case the ERROR condition
occurs. If the option is specified
without a label, any HANDLE
CONDITION command for the condition
is deact i vated, and the defaul t
action taken if the condition
occurs.

26 CICS/VS APRM (Cl)

IGNORE EXCEPTIONAL CONDITIONS (IGNORE
CONDITIOt4)

IGNORE CONDITION condition
[condition] •.•

This command is used to specify that no
action is to be taken if an exceptional
condition occurs. It remains in effect
until a subsequent HANDLE CONDITION
command for the condition is encountered.
No more than twelve conditions are
allowed in the same command; additional
conditions must be speci.fied in further
IGNORE CONDITION commands. The option
"condition" specifies the name of the
exceptional condition that is to be
ignored.

LIST OF EXCEPTIONAL CONDITIONS

The following list shows all the
exceptional conditions that can occur
during the execution of CICS/VS commands.
Each condition is followed by one or more
keywords and by numbers (in parentheses).
The keywords are the commands duri ng the
execution of which the condition may
occur, and the numbers are the chapters
that describe those commands. For the
meaning of a condition, and the default
action associated with that condition,
refer to the list of exceptional
conditions at the end of the indicated
chapter.

CBIDERR

DSIDERR

DSSTAT

DUPKEY

DUPREe

ENDDATA

ENDFIlE

ENDINPT

ENQBUSY

ENVDEFERR

EOC

AllOCATE(3.2),
CONVERSE(3.2), EXTRACT
ATTACH(3.2),
SEND(3.2)

DElETE(2.2), READ(2.2),
READNEXT(2.2),
READPREV(2.2),
REWRITE(2.2), STARTBR(2.2),
UNlOCK(2.2), WRITE(2.2)

ISSUE RECEIVE(3.4)

READ(2.2), READNEXT(2.2),
READPREV(2.2)

WRITE(2.2), REWRITE(2.2)

RETRIEVE(4.2)

READNEXT(2.2),
READPREV(2.2)

RECEIVE(3.2)

ENQ(4.3)

RETRIEVE(4.2)

CONVERSE(3.2), RECEIVE
MAP(3.3), RECEIVE(3.2)

EODS

EOF

ERROR

EXPIRED

CONVERSE(3.2), ISSUE
RECEIVE(3.4),
RECEIVE MAP(3.3),
RECEIVE(3.2)

CONVERSE(3.2),
RECEIVE(3.2)

General exceptional
condition (1.5). Not
included in the list of
conditions in the syntax of
individual commands.

DElAY(4.2), POST(4.2)

FUNCERR ISSUE ABORT(3.4),
ISSUE ADD(3.4),
ISSUE END(3.4),
ISSUE ERASE(3.4),
ISSUE NOTE(3.4),
ISSUE QUERY(3.4),
ISSUE REPlACE(3.4),
ISSUE SEND(3.4),
ISSUE WAIT(3.4)

IGREQCD CONVERSE(3.2),
ISSUE SEND(3.4),
SEND(3.2),
SEND MAP(3.3),
SEND PAGE(3.3),
SEND TEXT(3.3)

IGREQID SEND MAP(3.3),
SEND PAGE(3.3),
SEND TEXT(3.3)

IllOGIC DELETE(2.2), ENDBR(2.2),
READ(2.2), REAONEXT(2.2),
READPREV(2.2),
RESETBR(2.2), REWRITE(2.2),
STARTBR(2.2), UNlOCK(2.2),
WRITE(2.2)

INBFMH CONVERSE(3.2), RECEIVE(3.2)

INVERRTERM ROUTE(3.3)

INVlDC ROUTE(3.3), SEND MAP(3.3),
SEND TEXT(3.3)

IHVMPSZ RECEIVE MAP(3.3),

IOERR

ISCINVREQ

ITEMERR

JIDERR

lENGERR

MAPFAIl

NODATARECD

SEND MAP(3.3) NOJBUFSP

IHVREQ

INVTSREQ

ALlOCATE(3.2), ASSIGN(1.6), NONVAL
CANCEl(4.2), CONVERSE(3.2),
D~LAY(4.2), DElETE(2.2), NOPASSBKRD
ENDBR(2.2),
EXTRACT ATTACH(3.2), NOPASSBKWR
EXTRACT TCT(3.2), FREE(3.2),
POST(4.2), READ(2.2), NOSPACE
READNEXT(2.2), READPREV(2.2),
RECEIVE(3.2), RESETBR(2.2),
RETRIEVE(4.2), RETURN(4.4),
REWRITE(2.2), SENO(3.2), NOSTART
SEND MAP(3.3),
SEND PAGE(3.3), N05TG
SEND TEXT(3.3), 5TART(4.2),
STARTBR(2.2), NOTAllOC
WAIT JOURNAl(S.S),
WRITE(2.2), WRITEQ TS(4.7)

RETRIEVE(4.2)

DElETE(2.2), JOURNAl(S.S),
READ(2.2), READNEXT(2.2),
READPREV(2.2),
READQ TD(4.6),
READQ T5(4.7),
RESETBR(2.2),
RETRIEVE(4.2),
REWRITE(2.2), START(4.2),
STARTBR(2.2),
UNlOCK(2.2),
WAIT JOURNAl(S.S),
WRITE(2.2), WRITEQ TD(4.6),
WRITEQ TS(4.7)

CANCEl(4.2), DElETE(2.2),
DElETEQ TD(4.6),
OElETEQ TS(4.7),
ENOBR(2.2), REAO(2.2),
READNEXT(2.2),
READPREV(2.2),
READQ TO(4.6),
READQ TS(4.7),
RESETBR(2.2),
RETRIEVE(4.2),
REWRITE(2.2), START(4.2),
S1ARTBR(2.2), UNLOCK(2.2),
WRITE(2.2), WRITEQ TO(4.6),
WRITEQ 15(4.7)

READQ TS(4.7),
WRITEQ 1S(4.7)

JOURNAl(S.S),
WAIT JOURNAL(S.S)

CONVERSE(3.2),
ISSUE RECEIVE(3.4),
JOURNAl(S.S), READ(2.2),
REAONEXT(2.2),
READPREV(2.2),
READQ TD(4.6),
READQ TS(4.7),
RECEIVE(3.2),
RETRIEVE(4.2),
REWRITE(2.2), WRITE(2.2),
WRITEQ TD(4.6)

RECEIVE MAP(3.3)

ISSUE RECEIVE(3.4)

JOURHAl(S.S)

ISSUE lOAD(3.2)

RECEIVE(3.2)

SEND(3.2)

REWRITE(2.2), WRITE(2.2),
WRITEQ TD(4.6),
WRITEQ TS(4.7)

ISSUE lOAO(3.2)

GETMAIH(4.S)

CONVERSE(3.2),
EXTRACT ATTACH(3.2),
FREE(3.2),
ISSUE OISCOHNECT(3.2),
ISSUE SIGHAl(3.2),

Chapter 1.S. Exceptional Conditions 27

NOTFND

NOTOPEN

OVERFLOW

PGMIDERR

QBUSY

QIDERR

QZERO

RDATT

RETPAGE

RTEFAIl

RTESOME

SEGIDERR

SElNERR

POINTC3.2),
RECEIVEC3.2), SENDC3.2),
WAIT TERMINAlC3.2)

CANCEl(4.2), DElETEC2.2),
READ(2.2), READNEXTC2.2),
READPREVC2.2),
RESETBR(2.2),
RETRIEVE(4.2), STARTBRC2.2)

DElETE(2.2), JOURNAlCS.S),
READC2.2), READNEXT(2.2),
READPREV(2.2),
READQ TDC4.6),
RESETBR(2.2), REWRITE(2.2),
STARTBR(2.2), UNlOCKC2.2),
WAIT JOURNAlCS.S),
WRITE(2.2),
WRITEQ TO(4.6)

SEND MAPC3.3)

HANDLE ABENDCS.2),
lINK(4.4), lOAD(4.4),
RELEASE(4.4), XCTLC4.4)

READQ TD(4.6)

DElEIEQ TD(4.6),
DElETEQ TS(4.7),
READQ TDC4.6),
READQ TS(4.7),
WRITEQ TD(4.6),
WRITEQ TS(4.7)

READQ TDC4.6)

CONVERSEC3.2),
RECEIVE MAP(3.3),
RECEIVE(3.2)

SEND MAP(3.3),
SEND PAGE(3.3),
SEND TEXT(3.3)

ROUTE(3.3)

ROUTEC3.3)

READ(2.2), READNEXT(2.2),
READPREV(2.2)

ISSUE ABORT(3.4),
ISSUE ADDC3.4),
ISSUE ENO(3.4),
ISSUE ERASEC3.4),
ISSUE NOTEC3.4),
ISSUE QUERY(3.4),
ISSUE REPlACE(3.4),

28 CICS/VS APRMCCl)

SESSBUSY

ISSUE SEND(3.4),
ISSUE WAIT(3.4)

ALLOCATE(3.2)

SESSIONERR AlLOCATE(3.2),
CONVERSE(3.2),
EXTRACT ATTACHC3.2),
FREE(3.2),
ISSUE DISCONNECT(3.2),
ISSUE SIGNAL(3.2),
POINT(3,2), RECEIVE(3,2),
SEND(3.2),
WAIT TERMINAlC3.2)

SIGNAL CONVERSE(3.2),

SYSBUSY

ISSUE DISCONNECT(3.2),
RECEIVE(3.2),
WAIT TERMINAl(3.2),
SEND(3.2), WAIT SIGNAl(3.2)

ALlOCATE(3.2)

SYSIDERR AllOCATE(3.2), CANCEl(4.2),
DElETEC2.2), DELETQ TD(4.6),
DELETEQ TS(4.7), ENDBR(2.2),
READ(2.2), READNEXT(2.2),
READPREV(2.2), READ TD(4.6),
READQ TS(4.7), RESETBR(2.2),
RETRIEVE(4.2), REWRITE(2.2),
START(4.2), STARTBR(2.2),
UNLOCK(2.2), WRITE(2.2),
~JRITEQ TD(4.6),
WRITEQ TS(4.7)

TERMIDERR ISSUE COPY(3.2), STARI(4.2)

TRANSIDERR START(4.2)

TSIOERR PURGE MESSAGE(3.3),
SEND MAPC3.3),
SEND PAGE(3.3),
SEND TEXT(3.3)

UNEXPIN ISSUE ABORT(3.4),
ISSUE ADD(3.4),
ISSUE END(3.4),
ISSUE ERASE(3.4),
ISSUE NOTE(3.4),
ISSUE QUERY(3.4),
ISSUE RECEIVE(3.4),
ISSUE REPlACE(3.4),
ISSUE SENO(3.4),
ISSUE WAIT(3.4)

WRBRK CONVERSEC3.2),
SEND MAP(3.3),
SEND PAGE(3.3), SEND(3.2),
SEND TEXT(3.3)

Chapter 1.6. Access to System Information

It is possible to write many application
programs using the CICS/VS command-level
interface without any knowledge of or
reference to CICS/VS control blocks and
storage areas. However, it is sometimes
necessary to obtain information that is
valid outside the local environment of
the application program; the ADDRESS and
ASSIGN commands are provided to make
access to such informatio~ possible and
these commands are described in the
following sections. Not all fields are
intended to be accessed by the
application program; refer to the CICS/VS
AeRli£ation Programmer's Reference
Manual (Macro level) for a list of the
fields that are part of the application
programming interface (the API) and that
will remain valid from release to
release. Details of each control block
and its fields are contained in the
appropriate CICS/VS Data Areas
publication.

EXEC INTERFACE BLOCK (EIB)

In addition to the usual CICS/VS control
blocks, each task in a command-level
environment has a control block called
the EXEC interface block (EIB) associated
with it. The offsets, fieldnames, and
lengths of the fields in this control
block are as follows:

Offset
(Hex)

o
4
8
C

10
14
16
18
lA
1B
10
23
2B
33
3B
3C
3D
3E
3F
40
41

Field
Hame

EIBTIME
EIBDATE
EIBTRHID
EIBTASKN
EIBTRMID
EIBRSVDl
EIBCPOSN
EIBCALEN
EIBAID
EIBFN
EIBRCODE
EIBDS
EIBREQID
EIBRSRCE
EIBSYHC
EIBFREE
EIBRECV
EIBSEND
EIBATT
EIBEOC
EIBFMH

Length
(Bytes)

4
4
4
4
4
2
2
2
1
2
6
8
8
8
1
1
1
1
1
1
1

An application program can access all of
the fields in the EIB by name. The EIB
contains information, additional to that
provided by execution of a terminal
control command, that is useful during
the execution of an application program,
such as the transaction identifier, the

time and date (initially when the task is
started, and subsequently, if updated by
the application program), and the cursor
position on a display device. The EIB
also contains information that will be
helpful when a dump is being used to
debug a program.

ACCESS TO CICS/VS STORAGE AREAS (ADDRESS)

ADDRESS [CSA(ptr-ref)]
[CWA(ptr-ref)]
[TCTUA(ptr-ref)]
[TWA(ptr-ref)]

This command is used to obtain access to
any of the following areas: the common
storage area (CSA), the common work area
(CWA), the terminal control table user
area (TCTUA), and the transaction work
area (TWA).

ADDRESS COMMAND OPTIONS

eSA

CWA

TCTUA

TWA

allows access to control blocks
addressed by the CSA. The pointer
reference is set to the address of
the CSA. The CSA gives access to all
fields in CICS/VS control blocks and
storage areas.

is used to pass information between
application programs. The pointer
reference is set to the address of
the CWA. If a CWA does not exist,
the pointer reference is set to
X'FFOOOOOO'.

is used al so to pass i nformat 1 on
between application programs, but
only if the same terminal is
associated with the application
programs involved (which can be in
di fferent tasks). The poi nter
reference is set to the address of
the TCTUA. If a TCTUA does not
exist, the pointer reference is set
to X'FFOOOOOO'. The data area
contains the address of the TCTUA of
the principal facility, not that for
any alternate facility that may have
been allocated.

is used al so to pass i nformat ion
between application programs but
only if they are in the same task.
The pointer reference is set to the

Chapter 1.6. Access to System Information 29

address of the TWA. If a TWA does
not exist, the pointer reference is
set to X'FFOOOOOO'.

An example of the use of the ADDRESS
comm~nd is given in the next section.
(Information can also be passed between
programs using the COMMAREA option of the
program control commands, described in
"Chapter 4.4. Program Control" on page
189.)

If an ADDRESS command is included in a
COBOL program that is to be compiled
using the optimization feature, it must
be followed by SERVICE RELOAD statements
to reload the BlL cell bei ng used. (The
SERVICE RELOAD statement is described
earlier in the manual in "BLL and the
Optimization Feature" in "Chapter 1.4.
Programming Techniques and Restrictions"
on page 17.)

VALUES OUTSIDE THE APPLICATION PROGRAM
(ASSIGN)

ASSIGN option(data-area)
[option(data-area)] ...

Condition: INVREQ

This command is used to obtain values
outside the local environment of the
application program. The value obtained
is assigned to the data area specified in
the opt ion.

The following values can be obtained:

•
•

lengths of storage areas

values needed when communicating
with the 2980 General Banking
Terminal System (copied from the
TeTTE)

• values needed during BMS operations
(copied from the TCA)

•

•

values needed during batch data
interchange

screen size in use on the 3270

• other information that may be useful
t~ the application programmer
(copied from various CICS/VS control
blocks)

A complete list of ASSIGN command options
is given at the end of thi s chapter.

The following example shows, in the
different application programming
languages, how the ADDRESS command is
used to obtain access to the TWA, and how
the ASSIGN command is used to obtain the
length of the TWA. Included is a test for

30 CICS/VS APRM (CL)

validity based on the fact that, if there
is no TWA, the ASSIGN command wi 11 obta in
a length of zero.

Assembler Language

DSWORKA
WAPTR

COUNT

DFHEISTG
TWALENG
CODE

CONTINUE

COBOL

DSECT
EQU 08
USING DSWORKA,WAPTR

OS H

DSECT
OS H
CSECT
EXEC CICS ASSIGN

TWALENG(TWALENG)
ClC TWAlENG,=H'O'
BNH CONTINUE
EXEC CICS ADDRESS TWA(WAPTR)
LH 6,COUNT
lA 6,1(6)
STH 6,COUNT
OS OH

WORKING-S.TORAGE SECTION.
77 TWALENG PIC S9(4) COMPo

lINKAGE SECTION.
01 BLlCElLS.

02 FILLER PIC S9(8) COMPo
02 WAPTR PIC S9(8) COMPo

01 WORKAREA.
02 COUNT PIC S9(4) COMPo

PROCEDURE DIVISION.

PL/I

EXEC CICS ASSIGN TWALENG(TWALENG)
END-EXEC
IF TWAlENG GREATER THAN 0 THEN
EXEC CICS ADDRESS TWA(WAPTR)
END-EXEC
ADD 1 TO COUNT.

DCl TWALENG FIXED BIN(15);
DCl 1 WORKAREA BASED(WAPTR),

2 COUNT FIXED BIN(15);

EXEC CICS ASSIGN TWALENG(TWALENG);
IF TWALENG>O THEN DO;

EXEC CICS ADDRESS TWACWAPTR);
COUNT=COUNT+1;

END;

ASSIGN COMMAND OPTIONS

Where any of the followi n9 opti ons apply
to terminals or terminal-related data,
the reference is always to the principal
facility.

ABC ODE
specifies a variable that is set to
the current value of the abend code
(abend codes are documented in
CICS/VS Messagas and Codes). If an
abend has not occurred, the variable
is set to blanks. The format of the
value is a four-byte character
string.

APPLID

COLOR

specifies that the value required is
the appl i cat i on name used in
transaction routing or to identify
the local CICS/VS system to VTAM.
The format of the value is an
eight-byte character string.

specifies that the value required is
an indicator showing that the
terminal is defined as having the
extended color capability (X'FF');
or no extended color capability
(X'OO'). If this option is
specified and there is no TeTTE for
the task, the INVREQ condition
occurs. The format of the value is
a one-byte character.

CWALENG
specifies that the length of the CWA
; s requi red. If no CWA ex; sts, a
zero length is returned. No
exceptional condition occurs. The
format of the value is halfword
binary.

DELIMITER
specifies that the value required is
the data-link control character for
a 3600, copied from TCTTEDlM. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs. The format of the
value is a one-byte character.

DESTCOUNT
specifies that the value required is
the relative overflow control
number of the destination that has
encountered overflow. If this
option is specified when overflow
processing is not in effect, the
value obtained will be. meaningless.
If no BMS commands have been issued,
the INVREQ condition'occurs. The
format of the value is halfword
binary.

DESTID
specifies that the value required is
the identifier of the outboard
destination, padded with blanks on
the right to eight characters. If
this option is specified before a
batch data interchange command has
been issued in the task, the INVREQ
condition occurs. The format of the
value is an eight-byte character
string.

DESTIDLENG

EXTDS

specifies that the value required is
the length of the destination
identifier obtained by DESTID. If
this option is specified before a
batch data interchange command has
been issued in the task, the INVREQ
condition occurs. The format of the
value is halfword binary.

specifies that the value required is
an indicator showing that the
terminal is defined as having the
extended data stream capability
(X'FF'); or no extended data stream
capabi Ii ty (X' 00'). If thi s opti on
is specified and there is no TCTTE
for the task, the INVREQ condition
occurs. The format of the value is
a one-byte character.

FACILITY

FC!

specifies that the value required is
the identification of the facility
that initiated the transaction. The
value is copied from the first four
bytes pointed at by TCAFCAAA. If
this option is specified, and there
is no allocated facility, the INVREQ
condition occurs. For example, this
option gives the name of the
transient data destination whose
trigger level caused the
transaction to be started. The
format of the value is a four-byte
character string.

specifies that the value required is
the facility control indicator, ,
copied from TCAFCI, that indicates
the type of facility associated with
the transaction, for example, X'O!'
indicates a terminal or logical
unit. The obtained value is always
returned. No exceptional condition
occurs. The format of the value is
a one-byte character.

HILIGHT
specifies that the value required is
an indicator showing that the
terminal is defined as having the
extended highlight capability
(X'FF'); or no extended highlight
capabi Ii ty (X' 00'). If thi s opti on
is specified and there is no TCTTE
for the task, the IHVREQ condi t ion
occurs. The format of the value is
a one-byte character.

LDCMNEH
specifies that the value required is
the lDC mnemonic of the destination
that has encountered overflow. If
this option is specified when
overflow processing is not in
effect, the value obtained will be
meaningless. No exceptional
condition occurs. The format of the
value is a two-byte character
string.

Chapter 1.6. Access to System Information 31

LDCNUM
specifies that the value required is
the LDC numeric value of the
destination that has encountered
overflow. If thi s opti on is
specified when overflow processing
is not in effect, the value obtained
will be meaningless. No exceptional
condition occurs. The format of the
value is a one-byte character.

HUHTAB
specifies that the value required is
the number of the tabs required to
position the print element in the
correct passbook area of the 2980.
If this option is specified and
there is no TeTTE for the task, the
INVREQ condition occurs. The format
of the value is a one-byte
character.

OPCLASS

OPID

specifies that the value required is
the operator class, copied from
TCTTEOCL. Iof thi s opt i on is
specified and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a three-byte character string.

specifies that the value required is
the operator identification, copied
from TCTTEOI. If this option is
specified and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a three-byte character string.

OPSECURITY
specifies that the value required is
the operator security key, copied
from TCTTESK. If this option is
speci fi ed and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a three-byte character string.

PAGENUM
specifies that the value required is
the current page number for the
destination that has encountered an
overflow. If this option is
specified when overflow processing
is not in effect, the value obtained
will be meaningless. If no BMS
commands have been issued, the
INVREQ condition occurs. The format
of the value is halfword binary.

PRINSYSID
specifies that the value required is
the name of the TeTSE (terminal
control table system entry)
associated with the principal
faci Ii ty. If there is no TCTTE for
the task or if the principal
facility is not an LU6 or MRO
session, the INVREQ condition
occurs. The format of the value is
a four-byte character string.

32 CICS/VS APRM (Cl)

PS
specifies that the value required is
an indicator showing that the
terminal is defined as having the
programmed symbols capability
(X'FF'); or no programmed symbols
capabi Ii ty (X' 00'). If thi s opti on
is specified and there is no TCTTE
for the task, the INVREQ condition
occurs. The format of the value is
a one-byte character.

RESTART
specifies that the value required is
an indicator showing whether a
restart (X'FF'), as opposed to a
normal start (X'OO'), has occurred.

SCRNHT
specifies that the value required is
the height of th~ current 3270
screen. If this option is specified
and there is no TCTTE for the task,
the INVREQ condi t i on occurs. The
format of the value is halfword
binary.

SCRNWD
specifies that the value required is
the width of the current 3270
screen. If this option is specified
and there is no TCTTE for the task,
the INVREQ condition occurs. The
format of the value is halfword
binary.

SIGDATA
specifies that the value required is
the signal data received from a
logical unit, copied from TCTESIDI.
If this option is specified and
there is no TCTTE for the task, the
INVREQ condition occurs. The format
of the value is a four-byte
character string.

STARTCODE
specifies that the value required is
a code indicating how a transaction
has been started. The format of the
value is a two-byte character string
which can have the following values:

Code

QD
S
SD
TD
U

Transaction started by

Transient data trigger level
START command (no data)
START command (with data)
Terminal input
User-attached task

STATIONID

SYSID

specifies that the value required is
the station identifier of a 2980. If
this option is specified and there
is no TeTTE for the task, the INVREQ
condition occurs. The format of the
value is a one-byte character.

specifies that the value required is
the name given to the local CICS/VS
system. "This value may be specified

in the SYSID option of a file
control, interval control,
temporary storage, or transient
data command, in which case the
resource to be C3ccessed j s assumed
to be on the local system. The
format of the value is a four-byte
character string.

TCTUALENG
specifies that the value required is
the length of the terminal control
table user area (TCTUA). If no
TCTUA exists, a zero length is
returned. No exceptional condition
occurs. The format of the value is
halfl ... ord binary.

TELLERID
specifies that the value required is
the teller identifier of a 2980. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs. The format of the
value is a one-byte character.

TERMCODE
specifies that the value required is
a code giving the type and model
number of the terminal associated
with the task, copied from TCTTETT
and TCTTETM. If thi s opti on is
specified and there is no TCTTE for
the task, the INVREQ condition

occurs. The format of the value is
a two-byte character string.

TWALENG
specifies that the value required is
the length of the transaction work
area (TWA). If no TWA exi sts, a
zero length is returned. No
exceptional condition occurs.

UNATTEND
spe.cifies that the value required is
a code indicating that the mode of
operation of the terminal is
unattended (X'FF') or attended
(X'OO'), copied from TCTEMOP. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs.

VALIDATION
specifies that the value required is
an indicator showing that the
terminal is defined as having the
validation capability (X'FF')
consisting of the mandatory fill,
mandatory enter, and trigger
attributes. No validation
capability is indicated by (X'OO').
If this option is specified and
there is no TCTTE for the task, the
INVREQ condition occurs. The format
of the value is a one-byte
character.

Chapter 1.6. Access to System Information 33

Chapter 1.7. Execution (Command-Level) Diagnostic Facility

The Execution (Command-Level) Diagnostic
Facility (EDF) enables an application
programmer to test a commnnd-level
application program online without
making any modifications to the source
program or the program preparation
procedure. The facility intercepts
execution of the program at various
points and displays information about the
program at these points. Also displayed
are any screens sent by the user program,
so that the programmer can converse with
the application program during testing
just as a user would on the production
system.

EDF runs as a CICS/VS transaction. It is
started by a transaction identifier or PF
key named in the PCT by the system
programmer; also, the PPT needs to
specify the programs and maps that are
used by EDF. EDF uses temporary storage
and BMS. It can be used only from a 3270
terminal with a screen width of 80
columns and a screen depth of 24 lines or
more.

EDF is a command-level diagnostic aid
only, and unpredictable results may occur
if macro instructions are coded in
application programs using this
facility.

For OS/VS only, this facility is not
supported if TCTUA=VICOMPAT is specified
in the DFHSG TYPE=INITIAL system macro.

TCAM (a data stream access method) is not
supported by EDF, which supports only
terminals and logical units.

Terminal input received by EDF should be
in read modified format as it is mapped
using BMS.

When using EDF, the user task should
specify DTIMOUT=NO or a large value in
the DFHPCT TYPE=ENTRY system macro. When
running EDF from the same terminal as the
user task, the user task must not specify
the ONEWTE parameter in the DFHPCT
TYPE=OPTGRP system macro.

FUNCTIONS OF EDF

During execution of a transaction in
debug mode, EDF intercepts the execution
of the application program at the
following points:

1. At transaction initialization:

After the EXEC interface block (EIB)
has been initialized; but

Before the application program is
given control.

2. At the start of the execution of
every EXEC CICS and EXEC DLI command:

After the initial trace entry has
been made; but

Before the requested action has been
performed.

3. At the end of the execution of every
command (except ABEND, XCTL, and
RETURN) :

After the requested action has been
performed; but

Before the HANDLE CONDITION
mechanism is invoked; and

Before the response trace entry is
made.

4. At program termination

5. At normal task termi nati on

6. When an ABEND occurs

7. At abnormal task termination

At these points of interception, EDF
displays the current status, by
identifying the cause of interception.
In addition:

1. At point 1, EDF displays the values
of the fields in the ElB.

2. At point 2, EDF displays the command,
including keywords, options, and
argument values. The command is
identified by transaction
identification, program name, the
hexadecimal offset within the
program, and, if the program has been
translated with the DEBUG option, the
line number of the command as given
in the translator source listing.

3. At point 3, EDF displays the same as
at point 2, plus the response from
command execution.

4. At points 6 and 7, EDF displays the
values of the fields in theEIB and
the following items:

The abend code;

I f the abend code ; s ASRA (that is, a
program interrupt has occurred), the
PSW at the time of interrupt, and the
source of the interrupt as indicated
by the PSW;

Chapter 1.7. Execution (Command-Level) Diagnostic Facility 35

If the PSW indicates that the
instruction giving rise to the
interrupt is within the application
pr ogram, the offset of that
instruction.

The user is al so 9i ven the abi 1 i ty to
display any of the following:

• The values of the fields in the EIB
and the DIB (Dl/I interface block).

• The program's working storage in
hexadecimal and character form.

• The last ten commands executed,
including all argument values,
responses, and so on.

• The hexadecimal contents of any
address location within the CICS/VS
partition.

At any of these points of interception,
the user is allowed ·to interact wi th the
application in the following ways:

•

•

•

•

•

If the current command is being
displayed before it is executed, the
user can modify any argument value by
overtyping the value that is
displayed on the screen.
Alternatively, the user can suppress
execution of the command (that is,
convert it to a null operation).

If the current command is being
displayed after it has been executed,
the user can modify certain argument
values and the response code by
overtyping the displayed value or
response with the required value or
response.

The user can modify the program's
work i ng storage and most fi elds of
the EIB and DIB.

The user can switch off debug mode
(except at point 2) and continue
running the application normally.
Alternatively, the user can force an
abend.

The user may request that command
displays are suppressed until one or
more of a set of specific conditions
is fulfilled. These conditions may
be:

A specific named command is
encountered.

Any exceptional condition occurs for
which the system action is to raise
ERROR.

A specific exceptional condition
occurs.

The command at a specific offset or
on a specific line number (assuming

36 CICS/VS APRM (Cl)

the program had been translated with
the DEBUG option) is encountered.

An abend occurs.

The task terminates normally.

The task terminates abnormally.

Any Dl/I error status occurs.

A specific Dl/I error status occurs.

SECURITY RULES

To invoke EDF, the user must have a
security key that matches the security
key defined for EDF in the PCT. In
addition, to test a particular
transaction, the EDF user must have a
security key that matches the security
key for that transaction. If this
condition is not satisfied, the EDF
session is terminated immediately.

Resource level security checks will be
made during execution of the transaction
under test unless EDF has been defined as
not requiring these checks. If such
checks indicate that the EDF user is not
allowed access to the resource, the user
transaction will be abended.

INSTALLING EDF

To ensure that EDF is available on the
test system, the system programmer must
make one group entry in the PPT and one
group entry in the PCT (see the CICS/VS
~tem Programmer's Reference Manual for
deta i 1 s of construct i ng a PPT and PCT).

EDF can send messages greater than 4K
bytes in length. VTAM users should ensure
that their HCP (network control program)
can handle data of this length. The same
applies if temporary storage is defined
as auxiliary, in which case the VSAM
control interval length must be large
enough to handle the message.

INVOKING EDF

EDF can be run on the same terminal as
the transaction requiring checkout
provided that the application under test
does not make use of extended attributes,
or on a different terminal.

For same-terminal checkout, EDF can be
invoked either by:

1. Using the transaction CEDF or

2. Using the appropriate PF key, if one
has been defined for EDF.

The transaction requiring checkout can
then be started.

For different-terminal checkout, EDF is
invoked on the current terminal, which
must be in TRANSCEIVE status, by using
the transaction identifier CEDF Lalith an
argument that specifies the
four-character identifier (as defined in
the TRMIDNT operand of the DFHTCT
TVPE=TERMINAL system macro) of the
terminal on which the transaction
requiring checkout is being run. For
example:

CEOF L77A

If a command-level transaction is already
running on that terminal, EOF will
associate itself with that transaction;
otherwise it will associate itself with
the next command-level transaction
started at that terminal.

The above applies to a single system. If
the tran~action running on the terminal
has been transaction routed, EOF will not
associate itself with it, nor with any
other transaction that has been routed.
EDF will associate itself with the next
command-level transaction that runs on
the system to which the terminal is
connected.

The transaction identifier CEDF may be
entered from a formatted screen, in which
case the. effect is the same as press; ng
the PF key; that is, the terminal at
which CEOF is entered is put into EDF
mode. (No message is issued, so that the
formatted screen remains intact.)

The full format of the command to
initiate or terminate an EOF session is:

CEDF [terminal-id][,{ONIOFF}]

If the terminal identifier is omitted,
the term; nal at whi ch the CEOF
transaction is initiated is assumed.

CEOF cannot be defined to be a remote
transaction. The only way to test a
transaction running in a connected system
is by means of the routing transaction
CRTE. Thi s transact ion ; s used to set up
a routing session with the connected
system; CEDF can then be used for
same-terminal checkout.

To invoke EDF within the routing session,
the user must type CEOF because the
routing session does not allow the use of
PA or PF keys. It is impossi ble to use
EOF for two-terminal checkout if the
transaction under test, or the terminal
that invokes it, is owned by a different
system.

USING EDF DISPLAYS

An example of a typical EDF display is
given in Figure 3 on page 38.

The five lines at the foot of the screen
provide a menu indicating the effect of
the ENTER and PF keys for that particular
display. If the terminal does not have
PF keys, the same effect can be obtai ned
by positioning the cursor under the
required instruction on the screen and
pressing the ENTER key. The cursor can
be correctly positioned by using the tab
keys.

Although the menu may change from one
display to another, no function will move
from one key to another as a result of a
menu change.

If the ENTER key is pressed while the
cursor is not positioned within the menu,
the function specified for the ENTER key
is performed.

EOF uses the line immediately above the
menu to display messages to the user.

Up to ten di splays are remembered and can
be redisplayed later.

The number at the top right of the screen
indicates the current display number; it
is possi ble to recall any of the last ten
displays, which are numbered -01, -02,
and so on, by overtyping this number.
Alternatively, PF7 and PF8 can be used to
scroll back and forward one display at a
time.

Argument values can be displayed in
character or hexadecimal format. If
character format is requested, numeric
arguments are shown in signed numeric
character format. Each argument value .is
restricted to one line of the display; if
the value is too long, only the first few
bytes are displayed, followed by" ... " to
indicate that the value is incomplete. If
the argument is displayed in hexadecimal
format, the address of the argument is
also displayed. This enables the user to
display the argument value in full by
requesting a display of that location and
scrolling if necessary.

The user can overtype any screen area at
which the cursor stops when the tabbing
keys are pressed, such as the response
field. Thus, for example, the response
can be changed from "NORMAL" to "ERROR"
or some other exceptional condition, so
as to test the program's error handling
at this point in the program. A list of
areas that can be overtyped is given
later under "Overtyping EDF Displays."

The response of EDF to a user request is
in accordance with the following order of
priority:

Chapter 1.7. Execution (Command-Level) Diagnostic Facility 37

TRANSACTION: CMHU PROGRAM: XDFHINST TASK NUMBER: 0000115 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND

MAP('XDFHCMA')
FRO M (' N.... F . . j & K. . Y & • • • • • • K. . • . . . m. . . H . . . D K . zX & • • • • • • • • • • * . . . ' . . .)
TERMINAL
ERASE

OFFSET:X'0003EE'
RESPONSE: NORMAL

EIBFN=X'1804'
EIBRCODE=X'OOOOOOOOOOOO'

ENTER: CONTINUE
PFI : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFIO: PREVIOUS DISPLAY

PF2
PF5
PF8
PF11

SWITCH HEX/CHAR
WORKING STORAGE
SCROLL FORWARD
UNDEFINED

PF3 : END EDF SESSION
PF6 : USER DISPLAY
PF9 : STOP CONDITIONS
PF12: ABEND USER TASK

Figure 3. Typical EDF Display

1. If the CLEAR key i s used~ EDF
redisplays the screen with any
changes ignored.

2. If i nval i d changes are made, EDF
accepts any valid changes and
redisplays the screen with a
diagnostic message.

3. If the display number is changed, EDF
accepts any other changes and
displays the requested display.

4. If a PF key is used, EDF accepts any
changes and performs the act ion
requested by the PF key.

5. If the ENTER key is pressed, and the
screen has been modified (other than
the REPLY field), EDF redisplays the
screen with changes included.

6. If the ENTER key is pressed, and the
screen has not been modified (other
than the REPLY field), then if the
ENTER key means CONTINUE, execution
of the user transaction continues,
otherwise if the ENTER key means
CURRENT DISPLAY, EDF redisplays the
current status display.

TERMINAL SHARING BETWEEN TRANSACTION AND
EDF

When both EDF and the user transaction
are sharing the same terminal, EDF
restores the user transaction's display
at the following times:

• When the transaction requires input
from the operator

38 eI CS/VS APRM (CL)

• When the transaction's display is
changed

• A t the end of the t ran sact ion

• When EDF displays are suppressed

• When USER DISPLAY is requested.

Thus, when a SEND command is followed by
a RECEIVE command, the display sent by
the SEND command appears twice, once when
the S END command i s executed, and aga in
when the RECEIVE command is executed. It
is not necessary to respond to the SEND
command, but if a response is made, EDF
will remember it and redisplay it when
the screen is restored for the RECEIVE
command. The response passed to the
transaction is that which is made to the
RECEIVE command.

When EDF restores the transaction
display, it does not sound the alarm or
affect the keyboard in the same way as
the user transaction. The effect of the
user transaction options will be seen
when the SEND command is executed, but
not when the screen is ~estored.

For same-terminal use, when EDF restores
the transaction display on a device that
uses color, programmed symbols, or
extended highlighting, the attributes
will no longer be present and the display
will be in monochrome with no programmed
symbols~ or extended highlighting.

If the inbound reply mode in the
application program is set to character
(to enable the attribute setting keys)

EDF wi 11 reset thi s mode causi ng these
keys to be disabled.

When EDF restores the transaction
display, it locks the keyboard until the
transaction issues a RECEIVE command, at
which time EDF frees the keyboard.

If the EDF session is terminated part way
through the transaction, EDF restores the
screen with the keyboard locked if the
last send/receive to the terminal was in
fact a RECEIVE command; otherwise, the
keyboard is unlocked. This will usually,
but not always, match the normal behavior
of the transaction.

ENTER AND PF KEYS

The following list explains the meanings
of the ENTER key and the program function
(PF) keys:

ABEND USER TASK
term; nates the task. EDF asks the
u~er to confirm this action by
displaying the message "ENTER ABEND
CODE AND REQUEST ABEND AGAIN." After
entering the code at the position
indicated by the cursor, the user
must request this function again to
actually abend the task with a
transaction dump identified by the
specified code. If the user enters
"NO," the task wi 11 be abended
wi thout a dump.

This function cannot be used if an
abend is already in progress or the
task is terminating.

CONTINUE
causes the u~er transaction to
continue unless the screen has been
modified. In the latter case, EDF
redisplays the screen with changes
incorporated.

CURRENT DISPLAY
displays the screen that was being
displayed before the user started
examining other displays, such as
remembered displays, unless the
screen has been modified. In the
latter case, EDF redisplays the
screen with changes incorporated.

DII DISPLAY
shows the contents of the DIB.

Ell DISPLAY
shows the contents of the EIB and
COMMAREA (if any) (see "Appendix A.
EXEC Interface Block" on page 239
for a description of the fields in
theEIB) •

END EDF SESSION
ends the debugging session, and
takes the terminal out of debug
mode. The user transact ion
continues.

NEXT DISPLAY
used when examlnlng displays, to
step on to the next remembered
display. Repeated use stops at the
current display, when the "next
display" key is no longer available.

PREVIOUS DISPLAY
shows the latest remembered
display. Repeated use stops at the
earliest remembered display.
Further use merely causes the
earliest remembered display to be
redisplayed.

REGISTERS AT ABEND
displays storage containing the
values of the registers in the event
of an ASRA abend. The layout of the
storage is as follows:

• PSW at abend (8 bytes)

• Register values (0 through 15)

In some (very rare) cases, when a
second program check occurs in the
system before EDF has captured the
values of the registers, this
function will not appear on the menu
of the abend display. If this
happens, a second test run will
generally prove to be more
informative.

REMEMBER DISPLAY
places a display that would not
normally be remembered, such as an
EIB display, in the memory.
(Normally, only the command
di splays are remembered.) The
memory can hold up to ten displays.
All pag.es associated with the
display are remembered (and can be
scrolled when recalled) except for
storage displays where only the page
currently displayed is remembered.

SCROLL BACK
scrolls a command or EIB display
backwards. A plus sign (+) against
the first option or field indicates
there are more opti ons or fi elds
preceding.

SCROLL BACK FULL
scrolls a working storage display a
full screen backwards, displaying
l~wer addresses.

SCROLL BACK HALF
scrollSta working storage display
half a screen backwards, displaying
lower addresses.

SCROLL FORWARD
scrolls a command or EIB display
forwards. A plus sign (+) against
the last option or field indicates
there are more opti ons or fi elds
following.

Chapter 1.7. Execution (Command-Level) Diagnostic Facility 39

SCROLL FORWARD HALF
scrolls a working storage display
half a screen forwards, displaying
higher addresses.

SCROLL FORWARD FULL
scrolls a working storage display a
full screen forwards, displaying
higher addresses.

STOP CONDITIONS
displays, as shown in Figure 4 on
page 42, a skeleton menu with which
the user can specify one or more
conditions that will cause EDF to
stop the user transact ion, and start
redis~laying commands, after
displays have been suppressed by the
SUPPRESS DISPLAYS function. These
funct ion s are u sed to reduce the
amount of operator intervention
required to check out a program that
is partly working.

The transaction can be stopped:

• When a specified type of command
is reached.

• When a specified exceptional or
error condition occurs during
execution of a command.

•

•

When a specified offset or line
is reached.

At transaction abend.

• At normal task termination.

• At abnormal task termination.

The line number, which will be
available on the source listing if
the program has been translated
using the DEBUG option, must be
specified exactly as it appears on
the listing, including leading
zeros, and must be the line on which
a command starts.

The offset specified must be the
offset of the BALR instruction
corresponding to the command.

The correct line can be determined
easily from the translator output
listing. The offset can be
determin~d from the code listing
produced by the assembler or
compiler.

For transactions that contain DlI
commands, the qualifier CICS on the
command line can be overtyped with
DlI to specify a DLI command. Also,
the transaction can be stopped when
a specified error status, or any
erro~ status, occurs.

SUPPRESS DISPLAYS
suppresses all EDF displays until
the next stop condition occurs.

40 CICS/VS APRM (CL)

SWITCH HEX/CHAR
switches the display between
hexadecimal and character
representation. This is a mode
switch; subsequent displays will
stay in the chosen mode until the
next time this key is pressed. This
switch has no effect on
previously-remembered displays,
stop condition displays, and
w~rking storage displays.

UNDEFINED
means that thi s key is not avai lable
with this type of display.

USER DISPLAY
shows what the user would see if the
terminal was not in EDF mode. Hence,
this function is usable only for
same-terminal checkout.

WORKING STORAGE
displays the program's working
storage, in a form similar to that
of a dump listing, that is, in both
hexadecimal and character
repres~ntation. When this key is
used, two additional scrolling keys
are provided, and other PF keys
allow the EIB (and the DIB if a Dl/I
command has been processed by EDF)
to be displayed.

The meaning of "working storage"
depends on the programming language
of the application program, as
follows:

ASM

COBOL

PL/I

the storage defined in the
current DFHEISTG DSECT.

all data storage defined in the
WORKING-STORAGE section of the
program.

the dynamic storage area (DSA)
of the current procedure.

Except for COBOL programs, working
storage starts with a standard
format save area, that is, registers
14-12 are stored at offset 12 and
register 13 at offset 4.

Working storage can be changed at
the screen; either the hexadecimal
section or the character section may
be used. Also, the ADDRESS field at
the head of the display can be
overtyped with a hexadecimal
address; storage starting at that
address will then be displayed when
ENTER is pressed. Thi s allows any
location in the partition to be
examined. Further information on
the use of overtyping is given later
under "Overtyping EDF Displays."

If the storage examined is not part
of the user's working storage (which
is unique to the particular
transaction under test), the
corresponding field on the screen is
inhibited to prevent the user from
overwriting storage that can affect
more than one task in the program.

If the initial part of a working
storage display line is blank, the
blank portion is not part of working
storage. This can occur because the
display is doubleword aligned.

At the beginning and end of a task,
working storage is not avai lable. In
these circumstances, EDF generates
a blank storage display so that the
user can still examine any storage
area in the partition by overtyping
the address field.

OVERTYPING EDF DISPLAYS

As ment i oned above, certa in areas of an
EDF display can be overtyped. These areas
can be identified by use of the tab'keys;
the cursor stops only at fields that can
be overtyped (excluding fields within the
menu) .

• The verb of a command, such as the
"SEND" in "EXEC CICS SEND", can be
overtyped with "NOOP" or "NOP" before
execution; this suppresses execution
of the command. When the screen is
redisplayed with HOOP, the original
verb line can be restored by erasi ng
the whole verb line with the ERASE
EOF key.

•

•

•

Any argument value can be overtyped,
but not the keyword of the argument.
Overtyping must be in the same
representation, hexadecimal or
character I as the ori gi nal fi eld, and
must not extend beyond the argument
value displayed. Any modification
that is not overtyping of the
displayed value is ignored (no
diagnostic message being generated).
When an argument is displayed in
hexadecimal format, the address of
the argument location is also
displayed.

Humeri c values always have a si gn
field, which can be overtyped with a
minus or a blank only.

The response field can be overtyped
with the name of any exceptional
condition, including ERROR, that can
occur for the current function, or
with the word "NORMAL". The effect
when EDF cohtinues will be that the
program will'take whatever action has
been prescribed for the specified
response.

• The EIBRCODE field, when displayed as
part of the EXEC Interface Block, can
be overtyped with any desired bit
pattern. This does not apply when
the EIBRCODE field is part of a
command display.

When a field representing a data area of
a program is overtyped, the entered value
is placed directly into the application
program's storage. On the other hand,
before execution of a command, when a
field representing a data val~e (which
may possibly be a constant) is overtyped,
a copy of the field is used; thus, other
parts of the program that might use the
same constant for some unrelated purpose
wi 11 not be affected by the change. If,
for example, the map name is overtyped
before executing a SEHD MAP command, the
map actually used temporeri ly is the map
with the entered name; but the map name
displayed on response will be the
original map name. (The "previous
di splay" key can be used to di splay the
map name actually used.)

When an argument is to be displayed in
character format, some of the characters
may not be displayable (including
lowercase characters). EDF replaces each
non-displayable character by a period.
When overtyping a period, the user must
be aware that the storage may in fact
contain a character other than a period,
the user may not overtype any character
wi th a peri od; if thi sis done, the
change is ignored and no diagnostic
message is issued. Similarly, when a
value is displayed in hexadecimal format,
overtyping with a blank character is
ignored and no diagnostic message is
issued.

When storage is displayed in both
character and hexadecimal format and
changes are made to both, the value of
the hexadecimal field will take
precedence should the changes conflict;
no diagnostic message is issued.

If invalid data is entered, the result is
as follot-Is, regardless of the action
requested by the user:

• The invalid data is ignored;

• A diagnostic message is displayed;

• The alarm is sounded if the terminal
has the alarm feature;

EDF does not translate lowercase
characters to uppercase. If uppercase
translation is not specified for the
terminal in use, the user must take care
to enter only uppercase characters.

CHECKING OUT PSEUDO-CONVERSATIONAL
PROGRAMS

On termination of the task, EDF displays

Chapter 1.7. Execution (Command-Level) Diagnostic Facility 41

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
DISPLAY ON CONDITION:-

COMMAND: EXEC CICS
OFFSET: X' •••••• '
LINE NUMBER:
CICS EXCEPTIONAL CONDITION:
ANY CICS ERROR CONDITION
TRANSACTION ABEND
NORMAL TASK TERMINATION
ABNORMAL TASK TERMINATION

DlI ERROR STATUS:
ANY DlI ERROR STATUS

YES
YES
YES
YES

YES

ENTER: CURRENT DISPLAY
PFl : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION

PF6 : USER DISPLAY PF4 : SUPPRESS DISPLAYS
PF7 : SCROll BACK
PFIO: UNDEFINED

PF5 : WORKING STORAGE
PF8 : SCROLL FORWARD
PFl1: UNDEFINED

PF9 : STOP CONDITIONS
PF12: REMEMBER DISPLAY

Figure 4. "Stop-Conditions" Display

a message saying that the task is
termi nated and prompt 1 ng the user to
specify whether or not debug mode is to
cont i nue into the next task. Thi sis to
allow realistic debugging of
pseudo-conversational programs. If the
terminal came out of debug mode between
the tasks involved, each task would start
with fresh EDF settings, and the user
would not be able, for example, to
display screens remembered from previous
tasks.

PROGRAM LABELS

Some commands, such as HANDLE CONDITION,
require the user to specify a program
label. The form of the display program
labels depends on the programming
language in use:

•

•

•

For assembler language, the offset of
the program label is displayed; for
example, ERROR (X'00030C')

For COBOL, a null argument is
displayed: for example, ERROR ()

For PL/I, the address of the label
constant ;s displayed; for example,
ERROR (X'OOlD0016')

If no label value is specified on a
HANDLE CONDITION command, EDF displays
the condition name alone •.

42 CI CS/VS APRM (CL)

USING EDF WITH EXEC DLI COMMANDS

EDF supports EXEC DLI commands in the
same way as it supports EXEC CICS
commands. However, the following minor
differences should be noted:

• The two-character DL/I status code
appea r sin the RESPONS E f i el d and the
EIBRCODE field is not displayed. The
status code can be displayed in
character or hexadecimal format. If
the status code is changed to an
i nval i d value, or to a value that
would have caused DL/I to abend the
user task, a warning message-is
issued before continuing the user
task.

• For commands that generate more than
one CALL statement, the offset is
that of the last CALL.

•

•

•

For the WHERE option, only the
keyfield value (the third component)
can be converted to hexadecimal. The
address shown for this option is that
of the keyfield value.

The line number of the command is
always displayed.

For transactions that contain EXEC
DLI commands_ the DL/I interface
block can be displayed, and
additional stop conditions can be
specified.

Examples of typ..i cal di splays for an EXEC
DlI command are given in Figure 5 on page
43 and Figure 6 on page 43.

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT

USIHG PCB (+00003)

FIRST
SEGMENT ('A ')
INTO (' ')
SEGLENGTH (+00012)

FIRST
VARIABLE

+SEGMENT ('B ')

OFFSET:X'000246'
RESPONSE: 'AD'

LINE: 00000510 EIBFN:X'OOOC'

ENTER: CONTINUE
PF1 : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFIO: PREVIOUS DISPLAY

PF2 : SWITCH HEX/CHAR
PF5 : WORKING STORAGE
PF8 : SCROLL FORWARD
PFl1: UNDEFINED

Figure 5. First Page of Typical EXEC DLI Display

PF3 : END EDF SESSION
PF6 : USER DISPLAY
PF9 : STOP CONDITIONS
PF12: ABEND USER TASK

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
+

FIRST
SEGMENT ('C ')
SEGLENGTH (+00010)
LOCKED
INTO ('SMITH ')
WHERE (ACCOUNT = '12345')
FIELDLENGTH (+00005)

OFFSET:X'000246'
RESPONSE: 'AD'

LINE: 00000510 EIBFN:X'OOOC'

ENTER: CONTINUE
PFl : UNDEFINED
PF4 SUPPRESS DISPLAYS
PF7 SCROLL BACK
PF10 PREVIOUS DISPLAY

PF2 : SWITCH HEX/CHAR
PF5 : WORKING STORAGE
PF8 : SCROLL FORWARD
PF11: UNDEFINED

Figure 6. Second Page of Typical EXEC DLI Display

PF3 END EDF SESSION
PF6 USER DISPLAY
PF9 STOP CONDITIONS
PF12: ABEND USER TASK

Chapter 1.7. Execution (Command-Level) Diagnostic Facility 43

Chapter 1.8. Command-Level Interpreter

The command-level interprQter enables
CICS/VS commands to be entered,
syntax-checked, and executed
interactively at a 3270 screen. The
interpreter performs a dual role in the
operation of a CICS/VS system.

• For the application programmer, it
provides a reference to the syntax of
the whole of the CICS/VS
command-level application
programming interface (excluding
DL/I). Most of the commands can be
carried through to execution, and the
results of execution can be
displayed.

• For the system programmer, it
provides a means of interaction with
the system. For example, a corrupted
data-base record can be "repaired", a
temporary storage queue can be
created or deleted, and so on. It
thus provides a useful extension to
the facilities provided by the master
terminal transaction CEMT.

INVOKING THE COMMAND-LEVEL INTERPRETER

The command-level interpreter is a
CICS/VS appl i cat i on program and runs as a
CICS/VS transaction. It is started by
the transaction identification of
"CECI", or "CECS", followed optionally by
the command.

The general format is:

I CECIICECS [command]

where "command" can be any of the CICS/VS
commands (except EXEC DLI) described
throughout this manual.

The use of CECI will give the full·
facilities of the interpreter right
through to execution of the command.

For example, entering:

CECI READ DATASET('FIlEA')

will give the screen display shown in
Figure 7 on page 46.

Modifying the command input to:

READ DATASET('FIlEA') RIDFLD('OOOOOl')

will give the screen display shown in
Figure 8 on page 47. The error message
has disappeared because the requested

record identification field has been
supplied.

The command is now ready to be executed,
and this is achieved simply by pressing
the ENTER key. The display shown in
Figure 9 on page 48 will appear showing
the result of execution.

It is possible to prevent unauthorized
access by the interpreter to resources
such as data sets. Refer to the security
rules later in the chapter.

A question mark (?) before the command
always gives the command syntax check
display and prevents command execution.

The use of CECS forces a question mark
before the command. This always gives
the command syntax check display and
prevents command execution. In a system
where security is important, CECS can be
made more widely available than CECI.

SCREEN LAYOUT

The command interpreter uses a basi c
screen layout of four areas, as shown in
Fi gure 7 on page 46. These areas are:

• Command Input Area (the first line of
the screen)

• status Area (the second line of the
screen)

•

•

Information Area (21 lines tin a 24 x
80 display)

PF Key Values Area (the last line of
the screen)

COMMAND INPUT AREA

This is the first line of the screen.
The command, whose syntax is to be
checked, or which is to be executed, is
entered on this line, either in the
normal format described in "Chapter 1.2~
Command Format and Argument Values" on
page 5 and as illustrated throughout this
manual, or in an abbreviated or condensed
form that reduces the number of
keystrokes involved. The condensed form
of the command is obtained as follows:

• The keywords EXEC CICS are optional.

• The opt ions of a command can be
abbreviated to any number of
characters sufficient to make them
unique. Valid abbrev;ations are
shown in capital letters in syntax
displays.

Chapter 1.8. Command-Level Interpreter 45

• The quotes around character strings
are optional, and all strings of
characters will be treated as
character-string constants unless
they are preceded by an ampersand C&)
in which case they are treated as
variables, as described later in the
chapter.

• Options of a command that receive a
value from CICS/VS when the command
is executed are called "receivers",
and need not be specified. The value
received from CICS/VS will be
included in the syntax display after
the command has been executed.

The following example shows the condensed
form of a command. The file control
command:

EXEC CICS READ DATASETC'FILEA')
RIDFLDC'OOOOOl') INTOCdata-area)

can be entered on the command input
line, as:

READ DATCFILEA) RIDC000001)

or at a minimum, as:

READ DCFILEA) RCOOOOOl)

here, the INTO option is a receiver Cas
defined above), and can be omitted.

STATUS AREA

This is the second line of the screen.
It will contain one of the following:

READ DATASETC'FllEA')
STATUS: COMMAND SYNTAX CHECK

EXEC CICS READ
Dataset('FILEA ')
SET() I Into()
< length() >
Ridfld()
< Keylength() < GEneric> >
< SYsid() >
< SEGset() I Segsetall >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

• COMMAND SYNTAX CHECK
• ABOUT TO EXECUTE COMMAND
• COMMAND EXECUTION COMPLETE Cor

COMMAND NOT EXECUTED)
• EIB DISPLAY
• VARIABLES
• ERROR MESSAGES
• EXPANDED AREA

This status line describes the type of
information in the immediately following
information area of the display.

INFORMATION AREA

This area consists of the remainder of
the screen between the "command input"
and "status" areas at the top, and "PF
key values" at the bottom of the screen.
This area is used to display the syntax
of the entered command, error message
information, the response to execution,
and any other information that can be
obtained by using the PF keys or the
cursor.

A line at the bottom of this area is
reserved for messages that describe
errors in the conversation with the user
(for example, "INVALID PACKED DECIMAL").
These messages are intensified to attract
attention.

Command syntax Check

When this status message appears Cas
shown in Figure 7), it indicates that the

NAME:

DFH7052I S RIDFlD OPTION MUST BE SPECIFIED

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 S8 11 SF

Figure 7. "Command Syntax Check" Display

46 CICS/VS APRM (el)

command which has been entered on the
command input line has been syntax
checked but is not about to be executed.
This will always be the status for CECS
or for CECI with a question mark before
the command. It is also the status when
the syntax check of the command gives
severe error messages and for those
commands which are not executable (for
example, HANDLE CONDITION and HANDLE
AID) .

The INFORMATION AREA of the display for
"Command Syntax Check", "About to Execute
Command", and "Command Execution
Complete" contains information common to
all three displays.

The full syntax of the command is
displayed together with error
information at the foot of the display.
Options in the syntax panel are
intensified to show those specified on
the command input line, those assumed by
default, and any "receivers".

The command on the command input line can
be modified at any time by overtyping and
pr'essing ENTER.

If the command has more options than can
be held in one display, a plus sign (+)
will appear at the left-hand side of the
last option of the current display to
indicate that there are more. These can
be displayed by using one of the
scrolling PF keys.

The syntax display differs slightly from
the syntax shown throughout the manual in
the following ways:

READ DATASET('FIlEA') RIDFlDC'OOOOOI')
STATUS: ABOUT TO EXECUTE COMMAND

EXEC CICS READ
Data set ('FI l EA ')
SET() I Into()
< LengthC) >
Ridfld('000001')
< Keylength() < GEneric> >
< SYsidC) >
< SEGsetC) I Segsetall >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

• Square brackets [] are replaced by
the less-than and greater-than
symbols < >.

• Braces { } are not used. If a
mandatory option is omitted, an error
message will be displayed and
execution will not proceed until the
option has been specified.

• Parentheses () are used to i ndi cate
that an option requires a value or
data field but none has been
specified.

The error information consists either of
a single error message or an indication
of the number and severity of the
messages generated.

The NAME= field on the syntax display can
be used to create a variable containing
the current command. (See the description
of a variable later in the chapter.)

About to Execute Command

This display (as shown in Figure 8)
appears when none of the reasons for
stopping at Command Syntax Check apply.
Option values can be modified by
overtyping them in the syntax panel.
This is a temporary modification for the
duration of the command and does not
affect the command input line. It is
similar to the modification of option
values that is possible with EDF when
debugging an application program.

NAME=

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 8. "About to Execute Command" Display

Chapter 1.8. Command-level Interpreter 47

Command Execution Complete

This display (as shown in Figure 9)
appears in response to the ENTER key
after an "about to execute command"
display. The command has been executed
and the results are di splayed on the
screen. Any "receivers", whether
specified or not, together with their
CICS/VS-supplied values, are displayed
intensified. If the value of an option is
too long for the line, only the first
part will be displayed followed by" ... "
to indicate there is more. Positioning
the cursor, using the tab key, at the
start of the option value and pressing.
EHTER will produce an expanded display of
the whole option value.

Also displayed at the foot of the
information area, is the appropriate
response code (for example, NORMAL)
together with the contents of the
EIBRCODE field of the EIB.

Variables

This display will show, in response to
pressing key PF5, all the variables
associ ated wi th the current interpreter
session, showing for each, its name,
length~ and value.

Normalh.t,the value supplied for an
option in the command input area is taken
as a character-string constant. However,
there is sometimes a requirement for this
value to be represented by a variable.
Th~ command int~rpreter will recognize a

READ DCFILEA) R(OOOOOI)
STATUS: COMMAND EXECUTION COMPLETE

EXEC CICS READ
Dataset('FILEA ')
SETe) I Into('UOOOOOI
< length(+00080) >
Ridfld('000001')
< KeylengthC) < GEneric> >
< SYsidC) >
< SEGsetC) I Segsetall >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

RESPONSE: NORMAL

va lu e a s a va ria b 1 eon 1 y i fit i s
preceded by an ampersand el).

A variable is required when two
associated commands are to be connected
through the values supplied in their
options, for example, READ
INTOCdata-area) UPDATE and REWRITE
FROMCdata-area). A variable can be used
to make the data area in the FROM option
the same as that in the INTO option.

A variable is also useful when the values
of options cause the command to exceed
the line length of the command input
area. Creating variables with the
required values and specifying the
variable names in the command will enable
a command to be accommodated.

Variables can also be used to contain
commands, and variable names can be
entered in a command input line that
contains complete or partial commands.

Variables are deleted at the end of an
interpreter session unless action has
been taken to save them, for example, in
temporary storage, as described below.

Variables, which can be of data type
character, fullword, halfword, or packed
decimal, can be created, as follows:

1. By naming the variable in ~ receiver.
The variable will be created when the
command is executed. Tne data type
is implied by the type of receiver.

2. By addi ng one or more new entri es to
the 1 i st of variables already

NAME=

, ...)

EIBRCODE=X'OOOOOOOOOOO'

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 5B 11· SF

Figure 9. "Command Execution Complete" Display

48 CICS/VS APRM (el)

defined. This list is displayed by
pressing key PF5. The display shows
all defined variables giving, for
each, its name, length in bytes, and
its value. The value is di splayed in
character form but PF2 can be used to
switch from character to
hexadecimal. An expanded display of
each variable can be obtained by
positioning the cursor under the & of
the name and pressing ENTER. To
create a new character variable,
enter its name and its length and
press ENTER. The variable will be
initialized to blanks, which can then
be overtyped. For a fullword,
halfword, or packed variable, enter
F, H, or P in the length field.
These fields are initialized to zero.

Variable names, lengths, and their
values, can be modified by
overtyping. Variables can be deleted
by positioning the cursor under the &
of the name and pressing erase EOF.
Variables can be copied by obtaining
the expanded display of the variable
and overtyping the name field.

3. By associating a variable name with
the value of an option. Positioning
the cursor, using the tab key, at the
start of the line of the syntax
display and pressing ENTER will
produce an expanded display of the
whole option value. A variable name
can now be assigned to the data so
displayed.

4. By entering a name in the NAME= field
of the syntax panel. Thi s wi 11
create a variable containing the
cur'rent command.

Three variables are provided initially.
The first, &DFHC, is a sample. The
second, &DFHW, contains a temporary
storage WRITEQ command, and the third,
&DFHR, contains a READQ command. It is
possible to write a command to temporary
storage by entering &DFHC in the NAME=
field of the syntax panel, en"tering &DFtfW
in the command input line, and executing
the WRITEQ command. In this way, a list
of commands can be written. The command
list can be read and executed by
alternately entering &DFHR and &DFHC in
the command input line.

EXP'lnded Area

This display will use the whole of the
information area of the screen to display
areas sel ected by means of the cursor.
The cursor' can be posi ti oned at the start
of the va I ue of an OP"t i on on a s~'ntax
display, or under the ampersand of a
variable in a variables display.
Pressing ENTER will then give the
expanded area dis~lay. The scrolling
keys can be used to display all the
information if it exceeds a full screen.

ENTER KEY AND PF KEY VALUES

The single line at the foot of the screen
provides a menu indicating the effect of
the ENTER and PF keys for the display.
Continuation of interpretation depends
entirely upon use of the ENTER key;
unless this key is pressed no further
action will occur.

The PF keys are self-explanatory; if the
terminal has no PF keys, the same effect
can be obtained by positioning the cursor
under the required item in the menu by
means of the tab keys and pressing ENTER.
The follo~"i ng PF keys are avai lable:

PF1: HELP
displays a HELP panel giving more
information on how to use the
command interpreter and on the
meanings of the PF keys.

PF2: SWITCH HEX/CHAR
switches the display between
hexadecimal and character
representation. This is a mode
switch; all subsequent displays
will stay in the chosen mode until
the next time this key is pressed.

PF3: END SESSION
ends the current session of the
interpreter.

PF4: EIB DISPLAY
shows the contents of the EXEC
interface block (EIB). (See
"Appendix A. EXEC Interface Block"
on page 239 for a description of the
fields in the EIB).

PFS: VARIABLES
shows all the variables associated
with the current command
interpreter session, giving for
each its name, length, and value.

PF6: USER DISPLAY
shows what the user would see if the
terminal had been executing a
transaction which contained the
commands which have been executed
using the interpreter.

PF7: SCROLL BACK HALF
scrolls half a screenful backwards.

PF8: SCROLL FORWARD HALF
scrolls half a screenful forwards.

PF9: EXPAND MESSAGES
shows all the messages generated
during the syntax check ofa
command.

PFIO: SCROLL BACK
scrolls backwards.

Chapter 1.8. Command-Level Interpreter 49

PFll: SCROLL FORWARD
scrolls forwards.

PF12: UNDEFINED
means that thi s key is not avai lable
with this type of display.

TERMINAL SHARING

When the command being interpreted is one
that uses the screen which the
interpreter is using, the command
interpreter will manage the sharing of
the screen between the interpreter
display and the user display.

The user display will be restored:

• when the command being executed
requires input from the operator.

• when the command being executed is
about to modify the user display.

• when USER DISPLAY is requested.

Thus, when a SEND command is followed by
a RECEIVE command, the display sent by
the SEND command appears twice, once when
the SEND command is executed, and again
~",hen the RECEIVE command is executed. It
is not necessary to respond to the SEND
command, but if a response is made, the
interpreter will remember it and
redisplay it when the screen is restored
for the RECEIVE command.

When the interpreter restores the user
di splay, it does not sound the alarm or
affect the keyboard in the same way as
when a SEND command is executed.

PROGRA.M CONTROL

The interpreter is itself a CICS/VS
application program and the execution of
certain program control commands may
cause different results from an
application program containing those
commands. For example, an EXEC CICS

50 CICS/VS APRM (CL)

ABEND command will be intercepted by the
interpreter rather than abending the
interpreter (unless the CANCEL option is
specified).

If the interpreter is used to LINK to a
program, the interpreter will not be
aware of modifications to the USER
DISPLAY made by that program. If the
interpreter executes an XCTl command,
control will be transferred to that
program and that will be the end of the
interpreter session.

SECURITY RULES

To invoke the command interpreter, the
user must have a security key that
matches the security key defined in the
PCT.

The command-level interpreter
transaction identifier, CECI, specifies,
by default, that resource level security
checking is required for any resources
referenced with the interpreter. This
checking applies to data sets, transient
data queues, temporary storage queues,
programs, transaction identifiers of the
START command, and journal file
identifiers.

If the resource security level specified
in the appropriate CICS/VS table (for
example, the FeT for a dataset) is not
matched by the authorization obtained
from a sign-on, the resource security
check fails, and the response to the
command will be ABEND AEY7. This
response is given on the "command
execution complete" display.

INSTALLING THE COMMAND-LEVEL INTERPRETER

To ensure that the command interpreter is
available on the system, the system
programmer must make one group entry in
the PPT and in the peT. (See the CICS/VS
System Programmer's Reference Manual for
details on constructing a PPT and a peT.)

Chapter 2.1.

Chapter 2.2.

Chapter 2.3.

Part 2. Data Base Operations

Introduction to Data Base Operations

File Control

Dl/I Services

Part 2. Data Base Operations 51

Chapter 2.1. Introduction to Data Base Operations

CICS/VS transactions can access two kinds
of data bases, which can be on either a
local or remote system, as follows:

•

•

Standard operating system data sets
holding a data base.

DL/I (Data Language/I) data bases .

standard operating system data sets are
processed by the CICS/VS file control
program, which permits the retrieval,
addition, updating, deletion, and
browsing of records in ISAM, VSAM, and
DAM data sets. File control relieves the
application programmer of buffer
management, blocking and deblocking, and
access-method dependencies. File control
is described in "Chapter 2.2. File
Control" on page 55.

A DL/I data base gives the application
programmer a greater degree of data
independence than is given by file
control. The programmer is presented
with a logical view of the data base in
terms of a hierarchy of segments. DL/I

offers powerful facilities for the
manipulation of these segments without
requiring the programmer to be aware of
how they are organized.

Processing of a DL/I data base is
performed by one of the following program
products with which CICS/VS interfaces:

• For VSE users, Data Language/I DOS/VS
(Program Number 5746-XX1).

• For OS/VS users, Information
Management System/Virtual Storage
(IMS/VS) (Program Number 5740-XX2).

The CICS/VS-DL/I interface for both VSE
and as, which is invoked by means of the
DL/I CALL statement, is described in
"Chapter 2.3. DL/I Services (DL/I CALL
Statement)" on page 69.

The CICS/VS-DL/I interface for VSE only,
which is invoked by means of the EXEC DLI
command, is described in "Chapter 2.4.
DL/I Services (EXEC DLI Command)" on page
77.

Chapter 2.1. Introduction to Data Base Operations 53

Chapter 2.2. File Control

The CICS/VS file control program
processes fixed-length or
variable-length, blocked or unblocked,
undefined, or segmented records of a
direct-access data set. (Sequential data
sets are processed by the transient data
control program, as described in "Chapter
4.6. Transient Data Control" on page
201).

File control uses the standard access
methods of the host operating system
(OS/VS or VSE), namely:

• Direct Access Method (DAM)

• Indexed Sequential Access Method
(ISAM)

• Virtual Storage Access Method
(VSAM).

Application programs can access DAM data
sets on a logical-record level,
deblocking services being provided by
CICS/VS. If an ISAM data set is
converted to a VSAM data set
organization, using VSAM data set
conversion utilities, no alteration to
application programs that access the data
set is necessary, but the f1le control
table (FCT) must be changed. Data sets
on fixed block architecture (FBA) devices
can be accessed only by VSAM.

File control commands can be used to:

•
•
•

•

•

•

•

•

•

Read a record from a data set (READ).

Write a record to a data set (WRITE).

Update a record in a data set
(REWRITE).

Delete a single record or a group of
records "from a kev-sequenced or
relative-record data set (DELETE)
(VSAM only).

Release exclusive control over a data
set (UNLOCK).

Specify the starting point for a
browse (that is, sequentially access
a data set) (STARTBR).

Read the next record in a data set
during a browse (READNEXT).

Read the previous record in a data
set during a browse (READPREV) (VSAM
only).

Reset the starting point for a browse
(RESETBR).

• End a browse (ENDBR).

An option can be included in these
commands to specify that the record to be
accessed is in a data set on a remote
system.

Exceptional conditions that occur during
execution of a file control command are
handled as described in Chapter 1.5.

The following sections discuss the
identification of data sets to be used in
file control operations; direct access to
records in data sets; sequential access
to records (browsing); and information
particular to the access methods
available (ISAM, VSAM, and DAM).

DATA SET IDENTIFICATION

Data sets are identified in file control
commands by the DATASET option; they must
have been defined previously in the file
control table (FCT) unless, for a local
system only, the SYSID option has been
specified also, in which case a FCT
definition is unnecessary. These
definitions may be set up with the help
of the system programmer, although
logical record handling only is required
in the application program; buffers and
work areas are acqui red automati cally by
CICS/VS.

DIRECT ACCESS TO RECORDS

When reading records directly (that is,
searched for by a search argument such as
a key) using the READ command, the record
is retrieved and placed in main storage
according to which of the options INTO or
SET has been specified.

The INTO option specifies the area into
which the record is to be placed. For
variable-length records, the LENGTH
option must specify the maximum length of
record that the application program will
accept. If the record exceeds this
value, it is truncated to thi s value and
the LENGERR condition will occur. For
fixed-length records, the LENGTH option
must specify the length of the record,
otherwise the LENGERR condition will
occur. After the record has been
retrieved, the data area specified in the
LENGTH option is set to the actual record
length (before any truncation occurred).

The SET option specifies a pointer
reference that is set to the address of
an area large enough to hold the record.
After the record has been retrieved, the
data area specified in the LENGTH option
is set to the actual record length.

Chapter 2.2. File Control 55

The READ command can be used for both
read-only and read-for-update
operat ions. If the record is to be
updated, the UPDATE option must be
specified. When a record has been read
for update, CICS/VS maintains exclusive
control (which varies according to the
access method in use) to prevent another
task accessing the record until it has
been rewritten, or until exclusive
control is released by an UNLOCK command,
or (for VSAM only) until the record is
deleted.

When add; ng records usi ng the WRITE
command, or when updating records using
the REWRITE command, the record to be
written is specified in the FROM option,
and its length in the LENGTH option.
(LENGTH can be omitted for fixed-length
records.)

When a record has been read for update,
the REWRITE or UNLOCK command should be
issued as soon as poss; ble to avo; d
obstructing file storage, and possibly
preventing other transactions from
accessing the record.

MULTIPLE FILE OPERATIONS

When accessi ng more than one fi Ie at a
time, a lockout may occur, for example,
if two tasks attempt to read the same
record for update at the same time or
when accessing files on a remote system.
Assume the following:

Prog 1: READ UPDATE (File A)
READ UPDATE (File a)

Prog 2: READ UPDATE (File B)
READ UPDATE (File A)

Suppose that the two tasks become
intermixed in multitasking, as follows:

Prog 1 : READ UPDATE (File A, rec 338)
Prog 2: READ UPDATE (File a, rec 753)
Prog 1 : READ UPDATE (File B, rec 753)
Prog 2 : READ UPDATE (File A, rec 338)

The two tasks will both be suspended
indefinitely, because each would have
exclusive control of the first record
requested by the other. The second
request of each task cannot be completed.
To avoid this problem, all programs
should access the files in the same
sequence, such as A first, followed by B.

SEQUENTIAL ACCESS TO RECORDS (BROWSING)

When reading records sequentially, the
STARTBR command specifies the starting
point only for the browse; no records are
retrieved. The READNEXT command reads
records sequentially from the data set,
starting with the specified record, which

56 CICS/VS APRM (Cl)

would normally be, but need not be, the
record specified in the STARTBR command.
(For VSAM data sets, the READPREV command
does the same as the READNEXT command,
except that records are read in reverse
order.)

Records are retrieved and placed in main
storage using the INTO, SET, and LENGTH
options in the same way as for direct
access, described in a previous section.

The starting point can be reset at any
time by a RESETBR command.

When more than one browse is required on
a data set at the same time, the REQID
option must be included in every browse
command to distinguish between the browse
operations.

If records are unblocked, or have a very
low blocking factor (which means that
many file reads are done before
displaying a page), it may be more
efficient to display fewer records.

With a high blocking factor, fewer read
operations are done, records merely being
moved from a buffer area, so lengthy
browses are not so inefficient.

A browse should always be terminated by
an ENDBR command, but will, in any case,
be terminated by a normal or abnormal end
of task.

SEGMENTED RECORDS

An optional feature of CICS/VS file
management allows the user to create and
define a data set containing segmented
records. A segment is one or more
adjacent fields within a record. Some
segments appear in all records while
others appear in only certain records.
Each record contains one segment (the
root segment) which contains information
about which other segments are present.
Groups of segments can be defined and
identified symbolically as Segment sets.
A record can be read with a specified
segment set and only those segments of
the record defined in that segment set
are returned. The user cannot access
segmented records in a data set on a
remote system.

If it is planned to use segmented records
the structure of individual segments and
of segment sets must have been defined in
the file control table by the system
programmer, and the user must create and
maintain the control information in the
root segment of each record.

For further information on segmented
records see the CICS/VS
System/Application Design Guide.

ISAH DATA SETS

RECORD IDENTIFICATION

Records in ISAM data sets are identified
by key. This key must be provided in a
record identification field specified by
the RIDFLD option.

For CICS/OS/VS systems, the contents of
the record identification field may have
been changed following the addition of a
record; this point should be considered
in CICS/DOS/VS systems also, to avoid
future VSE to OS/VS conversion problems.

Records that are flagged for deletion are
presented to the application program,
which must be able to recognize them.

ADDING RECORDS TO ISAH DATA SETS

Adding records to an ISAM data set may
degrade performance due to overflow
accesses; also data sets may be destroyed
undetected, if for example, a power
failure occurs, or CICS/VS terminates
abnormally. If such a failure occurs
when adding records, records may be lost
and overflow chains destroyed. To
prevent these problems, consider one of
the following:

• Memo posting. This is a technique
that uses special memo fields created
in each record of a file. All fields
that are normally updated by changing
quantities, such as the number of
items, amounts, and so on, are
recorded in these memo fields, so
that system failures affect only
these memo fields. All changes must
be posted to a log file, 50 that the
data file can be updated later on a
batch basis. This ensures the
integrity of the data file while
retaining the advantages of online
posting.

• Using a file copy. A copy of the
data file is provided for use with
CICS/VS. This allows the addition
and deletion of records and
modification of any data in the file
without affecting the file
integrity. All changes must be
posted to a log file, 50 that the
data file can be updated later on a
batch basis. This ensures the
integrity of the data file and allows
complete online file maintenance.

ISAM EXCLUSIVE CONTROL

When an ISAM record is read for update,
CICS/VS maintains exclusive control of
the record. An attempt to re-read the
record before it is updated (by a REWRITE
command), or before exclusive control is

released (by an UNLOCK command), will
cause a lockout.

ISAM BROWSING OPERATIONS

A browse can be started at any record in
an ISAM data set. A complete key of
hexadecimal zeros, or the options
KEYLENGTH(O) and GENERIC, will start the
browse at the first record. Any other
starting point must be specified in the
RIDFLD option of the STARTBR or RESETBR
command. The key provided can be a
complete (specific) key or a generic
(partial) key.

If a complete key is provided, the browse
starts with the record having that key.
If this record cannot be found, then by
default, the browse starts with the first
record having a key greater than the
specified key.

If a generic key is provided, its length
must be specified in the KEYLENGTH
option, and the GENERIC option also must
be specified. The search for the
starting record uses only the number of
characters in this key. The first record
having a matching generic key is the
starting point. If this record cannot be
found, then by default, the browse starts
with the first record having a generic
key greater than the specified generic
key.

The record identification field is
updated by CICS/VS with the complete key
of the record retrieved each time a
READNEXT command is executed. For a given
browse, all associated commands must use
the same record identification field.

Records flagged for deletion are
presented to the application program,
which must be able to recognize them.

VSAM DATA SETS

INITIALIZATION OF VSAH DATA SETS

When creating a VSAM key-sequenced data
set for use with CICS/VS, at least one
dummy record must be loaded into the data
set before it can be processed by
CICS/VS.

RECORD IDENTIFICATION

Records in VSAM data sets are identified
in one of three ways: by key,by
relative byte address, or by relative
record number. One of these must be
specified (in the RIDFLD option) as the
search argument. If a relative byte
address is supplied, the RBA option must
be specified; if a relative record number
is supplied, the RRN option must be
specified.

Chapter 2.2. File Control 57

VSAM KEYS

When writing records to a VSAM data set,
a complete key must be provided.

When reading records in inquiry mode, the
.. search key can be a complete key or a

generic key, and, for either type, the
search can be for an equal key (EQUAL
option) or a greater-or-equal key (GTEQ
option).

When reading records for update, the
search key should be a complete key, and
the search should be for an equal key
(EQUAL option).

If a complete key is specified, the
record having that key is retrieved; if

. it cannot be found and the GTEQ option is
specified, the first record having a key
greater than the specified key is
retr'i eved, otherwi se the NOTFND
exceptional condition occurs. The
complete key is returned in the record
identification field after the record has
been retrieved.

If a generic key is specified, its length
must be specified in the KEYlENGTH
option, and the GENERIC option also must
be specified. The search for the
required record uses only the number of
characters in the generic key. The first
record having a matching generic key is
retrieved; if no matching record is
found, and the GTEQ option is specified,
the first record having a generic key
greater than the specified generic key is
retrieved, otherwise the NOTFND
exceptional condition occurs.

VSAM EXCLUSIVE CONTROL

When a VSAM record is read for update,
VSAM maintains exclusive control of the
control interval containing that record.
An attempt to read a second record for
update or add a new record to the same
control interval before exclusive
control is released, would cause a
lockout.

When local resources are shared, a
lockout will also occur if an attempt is
made to read two records (one of them for
update) from the same control interval.

CICS/VS prevents such a lockout by
rals1ng the INVREQ condition if,
following the first READ UPDATE command,
a second READ UPDATE command, or a WRITE
command is issued for the same data set
and within the same transaction before
exclusive control is released (by a
REWRITE, UNLOCK, or DELETE command).

58 CICS/VS APRM (el)

DELETION OF VSAM RECORDS

Records in a VSAM key-sequenced or
relative-record data set can be deleted,
either singly or in groups, using the
DELETE command. Single records are
identified by key, relative byte address,
or relative record number. Groups of
records can be deleted only if the data
set is unprotected, and if the records
all have a common starting group of
characters in their keys (that is, a
common generic key).

A record that has been read for update
(that is, with UPDATE specified in the
READ command) may be deleted also by a
DELETE command, but only if a complete
key has been specified. If deletion is
attempted for a record with a generic
key, or if the DELETE command includes
the RIDFlD option, the INVREQ condition
wi 11 occur.

VSAM MASS SEQUENTIAL INSERTION

The MASSINSERT option is used to specify
that a VSAM mass sequential insertion
operation is in progress; it must be
specified in every WRITE command that is
part of the operation.

A mass insert operation must be
terminated (by an UNLOCK command) to
ensure that all records ar'e wri tten to
the data set; a READ command will not
necessarily retrieve a record that has
been added by an incomplete mass insert
operation. Incomplete operations will be
termi nated when the task termi nates.

A lockout will occur if more that one
transaction is attempting simultaneously
to perform a mass insert operation to the
same control interval of a protected data
set. A 10 c k 0 u t ... J i 11 0 c cur a I so i f a
transaction uses keys that are not in
ascending sequence.

VSAM BROWSING OPERATIONS

A VSAM data set can be browsed in either
direction.

A record identification field of
hexadecimal zeros, or the options
KEYLENGTH(O) and GENERIC in a STARTBR or
RESETBR command, will start a forward
browse at the first record.

A record identification field of
hexadecimal 'FF's will start a backward
browse at the last record.

Any other starting point must be
speci fi ed in the same way as a si ngle
record is retrieved, using a key
(complete or generic), relative byte
address, or relative record number.
There is one exception; a backward browse

cannot be specified if the previous
STARTBR command has the GENERIC option.

The RESETDR command can be used not only
to reset the starting position for the
browse, but also to change the type of
search argument (key, relative byte
address, or relative record number).

The record identification field is
updated by CICS/VS with the complete key,
relative byte address, or relative record
number of the record retrieved each time
a READNEXT or READPREV command is
executed. For a given browse, all
associated commands must use the same
record identification field.

When browsing a protected data set
(LOG=YES specified in the DFHFCT
TYPE=DATASET macro by the system
programmer), an end browse (ENDBR)
command must be issued before issuing a
READ UPDATE command.

VSAH SKIP-SEQUENTIAL PROCESSING

Skip-sequential processing can be
performed on a VSAM data set. The
identifier (key, relative byte address,
or relative record number) of the next
record required must be placed in the
record identification field specified in
the RIDFLD option of the READHEXT
command. This record need not be the
next sequential record in the data set,
but must have a key, relative byte
address, or relative record number
greater than the last record accessed.
(A READPREV command should not be used.)
This procedure allows quick random access
to a VSAM data set by reducing index
search time.

The identifier must be of the same form
(key, relative byte address, or relative
record number) as that specified in the
STARTBR (or the last RESETBR) command for
thi s browse. If the STARTBR or last
RESETBR command specified a generic key,
the new identifier must also be a generic
key, but it need not be of the same
length.

If the STARTBR or last RESETBR command
specifies an equal-key search (complete
or generic), a READNEXT command using
skip-sequential processing may result in
a NOTFND condition.

SHARING VSAH RESOURCES

CICS/VS permits the sharing of VSAM
resources. Resources to be shared are
identified in the DFHFCT TYPE=SHRCTL
macro instruction, as explained in the
eICS/VS System Pr09r_ammer' s Reference
Manual. When a task requi res resources
in several VSAM data sets at the same
time and these data sets are sharing

resources, the probability of a lockout
increases.

VSAr1 ALTERNATE INDEXES

The VSAM Alternate Index feature allows
access to a data set using several
indexes, which contain alternate keys to
the records in the data set. A record
can be accessed by many different keys;
also, many records can have the same
alternate key in an alternate index.

Accessing a record via an alternate index
is simi lar to accessing a normal
key-sequenced data set, unless records
having non-unique alternate keys are
involved. If the (alternate) key
provided in a READ, READNEXT, or READPREV
command is not unique, the first record
in the data set having that key is read,
and the DUPKEY condition occurs. To
retrieve other records having the same
key, a browse should be started, the
subsequent READNEXT commands reading the
records in the order in which they were
added to the data set. (READPREV
commands could be used, but the records
will be returned in the same order as for
READNEXT commands.)

When switching from direct retrieval
(READ) to a browse (READNEXT), the first
record having a non-unique key is read
twice: once for the READ command, and
again for the first READNEXT command.

The DUPKEY condition occurs for each
retrieval operation except the last. For
example, if there are three records with
the same alternate key, DUPKEY occurs for
the first two records, but not for the
third. The application program can be
designed to revert to direct retrieval
operations when DUPKEY no longer occurs.

DAt" DATA SETS

RECORD IDENTIFICATION

Records in DAM data sets are identified
by a block reference, a physical key
(keyed data set), and a deblocking
ar9ument (blocked data set). The record
identification (specified in the RIDFLD
option) contains a subfield for each,
which, when used must be in the above
order. The subfields are as follows:

Block reference - one of the following:

•

•

Relative block address (CICS/OS/VS
only): three-byte binary
(RELTYPE=BLK).

Relative track and record
(hexadecimal format): two-byte TT,
one-byte R (RELTYPE=HEX).

Chapter 2.2. File Control 59

Byte 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I RElBlK# I N I (CICS/OS/VS only) Search by relative block;
deblock by relative record

I RElBlK# I KEY (CICS/OS/VS only) Search by relative block;
deblock by key

IT T R PH-KEyl KEY Search by relative track
and record and key;
deblock by key

1M B B C C H H R I H' Search by actual address;
deblock by relative record

IT T T T T T R R PH-KEY KEY Search by zoned decimal
relative track and record
and key; deblock by key

IT T R KEY Search by relative track
and record; deblock by key

Figure 10. Examples of Record Indentification

• Relative track and record (zoned
decimal format): six-byte TTTTTT,
two-byte RR (RElTYPE=DEC).

• Actual (absolute) address:
eight-byte MBBCCHHR (RELTYPE operand
omitted).

The type of block reference being used
must be specified in the RElTYPE operand
of the DFHFCT TYPE=DATASET system macro
which defines the data set.- ~

Physical key - required only if the data
set has recorded keys. r·f used, it must
immediately follow the block reference.
Its length must be the same as the length
specified in the BlKKEYl operand of the
DFHFCT TYPE=DATASET system macro that
defines the data set.

Deblocking argument - required only if
specific records are to be retrieved from
a block. If used, it must follow
immediately the physical key (if present)
or the block reference. If omitted, an
entire block will be retrieved.

The deblocking argument may be either a
key (specify DEBKEY), in which case its
length must be the same as that specified
in the KEYLEH operand of the DFHFCT
TYPE=DATASET system macro, or it may be a
relative record number (specify DEBREC),
in which case it is a one-byte binary
number (first record=O).

The examples in Figure 10 assume a
physi cal key of four-bytes and a
deblocking argument of three bytes.

60 CICS/VS APRM (CL)

ADDING RECORDS TO DAM DATA SETS

When adding records to a DAM data set,
the following considerations and
restrictions apply:

1. When adding undefined or
variable-length records (keyed or
non-keyed), the track on which each
new record is to be added must be
spec; fi ed. If space is avai lable on
the track, the record is written
following the last previously
written record, and the record number
i s placed in the "R" po rt i on of the
record identification field of the
record. The track specification may
be in any of the acceptable formats
except relative block. If zoned
decimal relative format is used, the
record number is returned as a
two-byte zoned decimal number in the
seventh and ei ghth posi ti ons of the
record identification field.

In a CICS/DOS/VS system, an attempt
to add undefined or variable-length
records is limited to the single
trad< speci fi ed. If insuffi ci ent
space is available on that track, the
NOSPACE condition occurs. However,
an attempt may be made to add the
record on another track simply by
altering the track identifier and
using another WRITE command.

In a CICS/OS/VS system, the extended
search option allows the record to be
added to another track if no space is
available on the specified track.
The location at which the record is
added is returned to the application

program in the record identification
field being used.

When adding records of undefined
length, the length of the record must
be specified in the LENGTH option.
When an undefined record is
retrieved, the application program
must determine its length.

2. When adding keyed fixed-length
records the data set must first be
formatted with dummy records or
"slots" into which the records may be
added. (A dummy record is signified
by a key of hexadecimal 'FF's; in a
CICS/OS/VS system, the first byte of
data contains the record number.)

3. When adding non-keyed fixed-length
records the block reference must be
given in the record identification
field. The new records are written
in the location specified,
destroying the previous contents of
that location.

4. When adding keyed fixed-length
records track information only is
used to search for a dummy key and
record, which, when found, is
replaced by the new key and record.
The location of the new record is
returned to the application program
in the block reference subfield of
the record identification field.

For example, for a record whose
identification field is as follows:

o 3 0 ALPHA
T T R KEY

the search will start at relative
track 3. When control is returned to
the application program, the record
identification field will be as
follows:

o 4 6 ALPHA

showing that the record is now record
6 on relative track 4.

5. When adding variable-length blocked
records a four-byte record
description field (RDF) must be
included in each record. The first
two bytes specify the length of the
record (including the 4-byte RDF);
the other two bytes consist of zeros.

DAM EXCLUSIVE CONTROL

When a blocked record is read for update,
CICS/VS maintains exclusive control of
the containing block. An attempt to read
a second record from the block before the
first is updated (by a REWRITE command),
or before exclusive control is released
(by an UNLOCK command), will cause a
lockout.

DAM BROWSING OPERATIONS

The record identification field must
contain a block reference (for example,
TTR or MBBCCHHR) that conforms to the
addressing method defined for the data
set. Processing begins with the
specified block and continues with each
subsequent block until the browse is
terminated. If the data set contains
block~d records, processing begins at the
first record of the first block and
continues with each subsequent record,
regardless of the contents of the record
identification field.

The record identification field is
updated by CICS/VS with the complete
identification of each record retrieved
by a READNEXT command. For example,
assume a browse is to start with the
first record of a blocked, keyed data
set. Before issuing the STARTBR command,
the TTR (assuming that is the addressing
method) of the first block should be
placed in the record identification
field. After the first READHEXT command,
the record identification field might
contain

X'0000010504'

where 000001 represents the TTR value, 05
represents the block key, and 04
represents the record key.

As another example, assume that a
blocked, non-keyed data set is being
browsed, and the second record from the
second physical block on the third
relative track is read by a READNEXT
command. Upon return to the application
program, the record identification field
contains

' ••• ;''' 01 ' .. ".

X'0000020201'

where 000002 represents the track, 02
represents the block, and 01 represents
the record within the block.

KEVLENGTHS FOR REMOTE DATA SETS

In general, execution of file control
commands requires the RIDFLD and
KEYLEHGTH options to be specified.
KEYlENGTH may be specified explicitly in
the command, or it may be determined
implicitly from the file control table
(FCT).

For remote data sets however, KEYLENGTH
should be specified whenever SYSID and
RIDFLD are specified, unless either RBA
or RRN is specified, (when it is
invalid), or if the command is a READHEXT
or READPREV, <when it is not required).

For a remote DAM data set, where the
DEBKEY or DEBREC options have been

Chapter 2.2. File Control 61

specified, KEYlENGTH (when specified
explicitly) should be the total length of
the key (that is, all specified
5ubfi elds). If the value of KEYL ENGTH is
taken from the FCT, the system programmer
must ensure that the default for the
KEYLENGTH value is equal to the DEBKEY
value; again this value must be the total
length of the key.

For relative-record data sets, the system
programmer should specify KEYLEN=4 in the
DFHFCT TYPE=REMOTE system macro. This
will allow an application program
translated on Version 1.3 to be executed
on succeeding versions without
retranslation.

READ A RECORD (READ)

READ DATASET(name)
{SET(ptr-ref)IINTO(data-area)}
[lENGTH(data-area)]
RIDFlD(data-area)
[KEYLENGTH(data-value)[GENERIC]]
[SYSID(name)]
[SEGSET(name)ISEGSETALLl
[RBAIRRN] (VSAM only)
[DEBKEYIDEBRECJ (blocked DAM only)
[GTEQlfQUAl] (VSAM only)
[UPDATE]

Conditions: DSIDERR, DUPKEY,
ILLOGIC eVSAM only), OMVREQ, IOERR
ISCINVREQ, LENGERR, NOTFND, NOTOPEN
SEGIDERR, SYSIDERR

Thi s command is used to read a record
from a direct-access data set on a local
or remote system.

The following example shows how to read a
record from a data set into a specified
data area:

EXEC CICS READ
INTO(RECORD)
DATASET('MASTER')
RIDFLDeACCTNO)

The following exampla shows how to read a
record from a VSAM data set using a
generic key, specifying a
greater-or-equal key search, and that the
~ecord is later to be rewritten into a
data area provided by CICS/VS:

EXEC CICS READ
INTOeRECORD)
LENGTHeRECLEN)
DATASET('MASTVSAM')
RIDFLD(ACCTNO)
KEYLENGTH(4)
GENERIC
GTEQ
UPDATE

62 CICS/VS APRM eCL)

If more than one READ command with the
UPDATE option is executed without
corresponding REWRITE commands, a unique
record identification field must exist
for each to preserve the correct key for
subsequent execution of the REWRITE
commands.

Note that the last example above would
fail if the data set is protected
(LOG=YES specified in the DFHFCT
TVPE=DATASET system macro), because a
generic key cannot be used with READ
UPDATE on a protected data set.

WRITE A RECORD (WRITE)

WRITE DATASET(name)
FROM(data-ar'ea)
[LENGTHedata-value)]
RIDFLD(data-area)
[KEYLENGTHCdata-value)]
[SYSID(name)]
[RBAIRRNJ eVSAM only)
[MASSIHSERT] (VSAM only)
[SEGSETALL]

Conditions: DSIDERR, DUPREC,
ILLOGIC (VSAM only), INVREQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE, NOTOPEN,
SYSIDERR

This command is used to write a record to
a direct-access data set on a local or
remote system. For example:

EXEC CICS WRITE
FROM(RECORD)
LENGTHCDATLEN)
DATASET('MASTER')
RIDFLDeKEYFLD)

For a VSAM entry-sequenced data set
(ESDS) the record is always added at the
end of the data set, its relative byte
address (RBA) being placed in the record
identification field specified in the
RIDFLD option.

For a VSAM key-sequenced data set (KSDS),
the record is added in the location
specified by the associated key; this
location may be anywhere in the data set.

Records for entry-sequenced and
key-sequenced data sets can be either
fixed length or variable length. Those
for a relative record data set must be
fixed length.

UPDATE A RECORD (REWRITE)

REWRITE DATASET(name)
FROM(data-area)
[lENGTH(data-value)]
[SYSIDCname)]
[SEGSETAlll

Co~ditions: DSIDERR, DUPREC,
ILLOGIC CVSAM only),INVREQ, IOERR,
ISCINVREQ, lENGERR, NOSPACE, NOTFND,
HOTOPEN, SYSIDERR

This command is used to update a record
in a direct-access data set on a local or
remote system. The record to be updated
must first be read by a READ command with
the UPDATE option. For example:

EXEC CICS REWRITE
FROMCRECORO)
DATASETC'MASTER')

DELETE A VSAM RECORD (DELETE)

DELETE DATASET(name)
[RIDFlD(data-area)] (mandatory

with GENERIC)
[KEYlENGTHCdata-value)] (mandatory

with GENERIC)
[GENERIC [NUMREC(data-area)]]
[SYSID(name)]
[RBAIRRNl

Conditions: DSIDERR, ILLOGIC,
INVREQ, IOERR, ISCIHVREQ, NOTFHD,
HOTOPEN, SYSIDERR

This command is used to delete a record
from a key-sequenced or relative-record
data set on a local or remote system. The
record to be deleted must be identified
by means of the RIDFLD option.

A record that has been retrieved for
update (by a READ UPDATE command) can
also be deleted, instead of being
rewritten, by the DELETE command. Since
the record has already been identified,
there is no need to specify RIDFLD.

Groups of records can be deleted in a
similar way. A group is identified by the
GENERIC option.

A generic key must not be used for data
sets for which LOG=YES has been specified
in the DFHFCT TYPE=DATASET macro by the
system programmer.

The following example shows how to delete
a group of records in a VSAM data set:

EXEC CICS DELETE
DATASET('MASTVSAM')
RIDFLD(ACCTNO)
KEYlENGTH(4)
GENERIC
NUMRECCNUMDEL)

RELEASE EXCLUSIVE CONTROL (UNLOCK)

UNLOCK DATASETCname)
[SYSIDCname)]

Conditions: DSIDERR,
ILLOGIC CVSAM only), IOERR,
ISCINVREQ, NOTDPEN, SYSIDERR

This command is used to release exclusive
control arrangements made in response to
a READ command with the UPDATE option.
It is used when a record has been
retrieved for update and it is
subsequently determined that the update
should not occur. The effect is to allow
other application programs to access the
record that was to be updated. However,
for a data set for which auto logging has
been specified by the system programmer,
the resource remains under the task
control enqueue until either a sync point
command is executed, or the task is
terminated. The record can be in a data
set on a local or remote system.

This command is also used to terminate a
VSAM mass insert operation.

START BROWSE (STARTBR)

STARTBR DATASET(name)
[RIDFlDCdata-area)
[KEYLENGTHCdata-value)[GENERIC]]
REQID(da~a-value)
[SYSIDCname)]
(RBAIRRNl (VSAM only)
[DEBKEYIDEBREC] (blocked DAM only)
[GTEQIEQUALl (VSAM only)

Conditions: DSIDERR,
ILLOGIC CVSAM only), INVREQ, IOERR,
ISCINVREQ, NOTFND, NOTOPEN, SYSIDERR

This c6mmand is used to specify the
record in a data set, on a local or
remote system, at which the browse is to
start. No records will be read until a
READNEXT command (or, for VSAM only, a
READPREV command) is executed.

Chapter 2.2. File Control 63

READ NEXT RECORD DURING A BROWSE
l.READNEXT).

READNEXT DATASETCname)
{SETCptr-ref)IINTOCdata-area)}
[LENGTH(data-area)]
RIDFlDCdata-area)
[KEYlENGTHCdata-value)]
REQID Cdata-value)
[SYSIDCname)]
[SEGSETCname)ISEGSETALL]
[RBAIRRN] CVSAM only)

Conditions: DSIDERR, DUPKEY,
ENDFIlE, ILLOGIC CVSAM only), INVREQ,
IOERR, ISCOMVREQ, lENGERR, NOTFND,
NOTDPEN, SEGIDERR, SYSIDERR

This command is used to read records in
sequential order from a data set on a
local or remote system. It can also be
used during VSAM skip-sequential
processing.

The RIDFLD option must specify the same
data area as that specified in the RIDFLD
option in the corresponding STARTBR
command, but the contents of the data
area can be different. If the NOTFND
condition occurs during a browse, a
RESETBR command must be issued to reset
the browse, or an ENDBR command must be
issued to terminate the browse.

READ PREVIOUS RECORD DURING A BROWSE
JFEADPREVl (VSAM ONLY)

READPREV DATASETCname)
{SET(ptr-ref)IINTOCdata-area)}
[LENGTHCdata-area)]
RIDFlDCdata-area)
[KEYLENGTHCdata-value)]
REQIDCdata-value)
[SYSIDCname)]
[SEGSETCname)ISEGSETALLl
[RBAIRRN)

Conditions: DSIDERR, DUPKEY,
ENDFILE, ILLOGIC, INVREQ, IOERR,
ISCINVREQ, LENGERR, NOTFND, NOTOPEN,
SEGIDERR, SYSIDERR

This command is used only to read records
in reverse sequential order from a VSAM
data set on a local or remote system.

The RIDFLD option must specify the same
data area as that specified in the RIDFLD
option in the corresponding STARTBR
command, but the contents of the data
area can be different.

If a READPREV command follows immediately
a STARTBR command, the latter must
specify the key of a record that exists
on the data set, otherwise the NOTFND

64 CICS/VS APRM eCL)

condition will be raised for the READPREV
command.

A READPREV command following a READNEXT
command will read the same record as that
read by the READNEXT command.

RESET START OF BROWSE (RESETBR)

RESETBR DATASETCname)
RIDFlDCdata-area)
[KEYLENGTHCdata-value)[GENERIC)]
REQIDCdata-value)
[SYSIDCname)]
[Qli.9.IEQUAL] CVSAM only)
[RBAIRRNl CVSAM only)

Conditions: ILLOGIC CVSAM only),
INVREQ, IOERR, ISCINVREQ, NOTFND,
NOTOPEN, SYSIDERR

This command is used to specify the
record in a data set, on a local or
remote system, at which the browse is to
be restarted.

The RIDFLD option must specify the same
data area as that specified in the RIDFLD
option in the corresponding STARTBR
command, but the contents of the data
area can be different.

The RESETBR command can be issued at any
time prior to issuing a command. It is
similar to an ENDBR STARTBR sequence Cbut
with less function), and gives the ISAM
and DAM user the sort of skip-sequential
capability that is available to VSAM
users through use of the READNEXT
command.

END BROWSE (ENDBR)

ENDBR DATASETCname)
REQID(data-value)
[SYSID(name)]

Conditions: ILLOGIC CVSAM only),
INVREQ, ISCINVREQ, SYSIDERR

This command is used to end a browse on a
data set on a local or remote system.

FILE CONTROL OPTIONS

DATASET(name)
specifies the symbolic name of the
data set to be accessed. The name
must be alphameric, up to seven
characters in length for DOS, up to
eight characters in length for OS,
and must have been defined in the
file control table (FCT).

If SYSID is specified, the data set
is assumed to be on a remote system
irrespective of whether or not the
name is defined in the FCT.
Otherwise, the FCT entry will be
used to determine if the data set is
on a local or remote system.

DEBKEY (blocked DAM only)
specifies that deblocking is to
occur by key. If neither DEBREC nor
DEBKEY is specified, deblocking
does not occur.

If KEYLENGTH is specified, its value
must be the sum of the lengths of
all three subfields comprising the
key.

DEBREC (blocked DAM only)
specifies that deblocking is to
occur by relative record (relative
to zero). If net ther DEBREC nor
DEBKEY is spec;fied, deblocking
does not occu r.

If KEYLEHGTH is specified, its value
must be the sum of the le.ngths of
all three subfields comprising the
key.

EQUAL (VSAM only)
specifies that the search will be
satisfied only by a record having
the same key (complete or generic)
as that specified in the RIDFLD
option.

FRorHdata-Clrea)
specifies the record that is to be
written to the data set.

GENERIC (ISAH, VSAM only)
specifies that the search key is a
generic key whose length is
specified in the KEYLENGTH option.
The search for a record is satisfied
when a record is found that has the
same starting characters (generic
key) as that specified. For VSAM,
this search will only take place if
the EQUAL option also has been
specified.

A generic key cannot be used with a
READ UPDATE command or a DELETE
command if the data set is protected
(LOG=YES specified in the DFHFCT
TYPE=DATASET system macro).

GTEQ (VSAtt only)
specifies that if the search for a
record having the same key (complete
or generic) as that specified in the
RIDFLD option is unsuccessful, the
first record having a greater key
will satisfy the search.

INTO(data-Cireal
specifies the data area into which
the record retrieved from the data
set is to be written.

KEVLENGTH(data-value)
specifies the length (halfword

_ bi nary) of the key that has been
specified in the RIDFlD option,
except when RBA or RRN is specified
when it is invalid. This option
must be specified if GENERIC is
specified, and it can be specified
whenever a key is specified.
However, if the length specified is
different from the length specified
in the FCT and the operation is not
generic, the INVREQ condition
occurs.

If KEYLEHGTH is omitted from a
READNEXT or READPREV command used in
a generic browse, normal browsing
occurs.

If KEYLENGTH is specified in a
READNEXT or READPREV command used in
a generic browse, a new browse is
started using the keylength
specified and the key in the RIDFLD
option.

The use of KEYLENGTH with remote
data sets is discussed earlier in

LENGTH(parameterJ
specifies the length (as a halfword
binary value) of the record to be
used with READ, READNEXT, READPREV,
REWRITE, and WRITE commands. This
option must be specified if SYSID
and either INTO or FROM are
specified.

For a READ, READNEXT, or READPREV
command with the INTO option, the
parameter must be a data area that
specifies the largest record the
program will accept. If the value

• specified is less than zero, zero is
assumed. If the record exceeds the
value specified, it is truncated to

• that value and the L ENGERR condi t ion
occurs. On completion of the
retrieval operation, the data area
is reset to the original length of
the record.

r-""- ----

'

For a READ, READNEXT, or READPREV
command with the SET option, the
parameter must be a data area. On
completion of the retrieval
operation, the data area is set to
the length of the record, except for
a record whose format is undefined,
when it is set to the maximum record
length.

1-
For a ~lRITE or REWRITE command, the
parameter must be a data value that
is the length of the record that is
to be written.

This option need not be specified
for fixed-length records when the
length is known and a data area of
the correct size is available.

Chapter 2.2. File Control 65

HASSINSERT (VSAM only)
specifies that the WRITE command is
part of a mass-insert operation.

NUMREC(data-areal
specifies a halfword binary data
area that is to be set to the number
of records deleted.

RBA (VSAN only)
specifies that the record
identification field specified in
the RIDFlD option contains a
relative byte address.

REQID(data-valueJ
speci fi es as a hal fword bi nary value
a unique request identifier for a
browse, used to control multiple
browse operations on a data set. If
this option is not specified, a
default value of zero is assumed.

RIDFLD(data-areal
specifies the record identification
field. The contents can be a key
(for ISAM and VSAM data sets), a
relative byte address or relative
record number (for VSAM data sets),
or a block reference, physical key,
and deblocking argument (for DAM
data sets). For a relative byte
address or a relative record number,
the format of this field must be
fullword binary. For a key, the
format must be that of the key of
the record when adding records.

RRN (VSAM only)
specifies that the record
identification field specified in
the RIDFlD option contains a
relative record number. This option
should only be used with relative
record data sets.

SEGSET(nameJ
specifies the. name of the segment
set to be retrieved. The name may
be UP to eight characters and m~st
have been defined in the segment
control section of the FCT. The
data set must contain segmented
records. SEGSET cannot be used with
UPDATE.

SEGSETALL
specifies that the entire record in
an unpacked and aligned format is
required. The data set must contain
segmente.d records. If neither
SEGSET nor SEGSETAlL is specified in
a command, and the data set contains
segmented records, the record 1"s
returned in its packed unaligned
format.

SET(ptr-ref)
specifies the pointer-reference
which is to be set to the address of
the retrieved record. This option
implies locate~mode access.

66 CICS/VS APRM eCl)

In assembler language, if the DUPKEY
exceptional condition occurs, the
regi ster speci fi ed wi'll not have
been set, but can be loaded from
DFHEITP1.

SYSID(name)
specifies the name of the system
whose resources are to be used for
intercommunication facilities. The
name may be up to four characters in
length.

When this option is specified,
LENGTH and KEYlENGTH must be
specified in some situations where
normally they need not be, as
follows. If neither RBA nor RRN is
specified, KEYLENGTH must be
specified; it cannot be found in the
FCT. If SeT is not specified,
LENGTH must either be specified
explicitly or must be capable of
being defaulted from the INTO or
FROM option using the length
attribute reference in assembler
language, or STG and CSTG in PL/I.
LENGTH must be specified explicitly
for COBOL.

UPDATE
specifies that the record is to be
obtained for updating or (for VSAM
only) deletion. If this option is
omitted, a read-only operation is
assumed.

FILE CONTROL EXCEPTIONAL CONDITIONS

DSIDERR
occurs if a data set name referred
to in the DATASET option cannot be
found in the FCT.

Default action: terminate the task
abnormally.

DUPKEY
occurs if a record is retrieved via
an alternate index in which the key
that is used is not unique. It will
not occur as a resul·t of a READNEXT
command that reads the last of the
records having the non-unique key.

In assembler language, if the SET
option is being used, the register
specified will not have been set,
but can be loaded from DFHEITP1.

Default action: terminate the task
abnormallY.

DUPREe
occurs ; f an attempt is made to add
a record to a data set in which the
same key already exi sts.

Default action: terminate the task
abnormallY.

ENDFILE
occurs if an end-of-file condition
;s detected during a browse.

Default action: terminate the task
abnormally.

ILLOGIC (VSAM only)
occurs if a VSAM error occurs that
does not fall wi thi n one of the
other CICS/VS response categories.
Further information is available in
the EXEC interface block (refer to
"Appendix A. EXEC Interface Block"
on page 239 for details).

Default action: terminate the task
abnormally.

INVREQ
occurs if any of the following
situations exist:

•

•

•

•

•

•

•

•

•

A request~d file control
operation is not provided for or
allowed according to the data
set entry specification in the
FCT.

A REWRITE command, or a DELETE
command without the RIDFLD
option, is issued for a data set
for which no previous READ
UPDATE command has been issued.

A READNEXT, READPREV, ENDBR, or
RESETBR command is issued fo~ a
data set for which no previous
STARTBR command has been
issued.

A READPREV command is issued for
a data set for which the
previous STARTBR command has
the GENERIC option.

The KEYLENGTH option is
specified (but the GENERIC
option is not specified), and
the specified length does not
equal the entry in the FCT for
the data set.

The KEYLENGTH and GENERIC
options are specified, and the
length specified in the
KEYLENGTH option is either less
than zero, or greater than or
equal to the length in the FCT
entry.

A DELETE command is issued for
an ISAM or DAM data set.

A DELETE command with the RIDFLD
option specified is issued for a
VSAM data set when a READ UPDATE
command is outstanding.

Following a READ UPDATE command
for a data set, a WRITE or READ
UPDATE command is issued for the
same data set before exclusive

IOERR

•

•

•

•

control is released by a
REWRITE, UNLOCK, or DELETE
command.

The data area specified in the
RIDFLD option ;s not the same
one in all the commands of a
brol ... se.

An attempt is made to start a
browse with a REQID already in
use for another browse.

The method (for example, key or
relative record number) used to
access a file during a browse is
changed by a READNEXT or
READPREV command.

SEGSET or SEGSETALL is
specified but the data set does
not contain segmented records,
or is on a remote system.

Further information is available in
the EXEC interface block (refer to
"Appendi x A. EXEC Interface Block"
on page 239 for detai Is).

Default action: terminate the task
abnormally.

occurs if there is an 1/0 error
during a file control operation. An
110 error is any unusual event that
is not covered by a CICS/VS
exceptional condition.

Default action: terminate the task
abnormally.

ISCINVREQ
occurs when the remote system
indicates a failure which does not
correspond to a known condition.

Default action: terminate the task
abnormally.

LENGERR
occurs if any of the following
situations exist:

•

•

•

The LENGTH option is not
specified for an input (without
the SET option specified) or
output operation involving
variable-length records.

The length specified for an
output operation exceeds the
maximum record size; the record
is truncated.

The length of a record read
during an input operation (with
the INTO option specified)
exceeds the value specified in
the LENGTH option; the record is
truncated, and the data area
supplied in the LENGTH option is

Chapter 2.2. File Control 67

set to the actual length of the
reco r-d.

• An incorrect length is
specified for an input or output
operation involving
fixed-length records.

Default action: terminate the task
abnormally.

NOSPACE
occurs if no space is available on
the direct-access device for adding
records to a data set.

Default action: terminate the task
abnormally.

NOTFND
occurs if an attempt to retrieve or
delete a record based on the search
argument provided is unsuccessful.
This could occur on a REWRITE
command if the RIDFlD data area has
changed since the previous READ
command. It may occur also on a
READPREV command immediately
following a STARTBR command which
specifies the key of a record that
does not exist on the data set.

Default action: terminate the task
abnormally.

68 CICS/VS APRM (Cl)

NOT OPEN
occurs if the requested data set is
not open. This condition can occur
in response to any file control
command except UNLOCK and ENDBR,
because a data-base data set can be
closed dynamically at any time
without regard to outstanding
activity on the data set.

Default action: terminate the task
abnormally.

SEGIDERR
occurs when the name specified in
the SEGSET option is not defined in
the FCT.

Default action: terminate the task
abnormally.

SYSIDERR
occurs when the SYSID option
specifies either a name which is not
defined in the intersystem table or
a system to which the link is
closed.

Default action: terminate the task
abnormally.

Chapter 2.3. DL/I Services (DL/I CALL Statement)

Dl/I is a general-purpose data base
control system that executes in a
virtual-storage environment under VSE,
OS/VSl, or OS/VS2. It simplifies the
creation and maintenance of data bases
that can be created by CICS/VS
application programs.

For VSE, the Dl/I program product
(program number 5746-XXl) is used,
running as part of the CICS/VS partition.
For further information about DL/I, refer
to the CICS/VS System/Application Design
guide.

For OS/VS, the IMS/VS program product
(program number 5740-XX2) is used,
running as part of the CICS/VS region.
For further information about IMS/VS,
refer to the CICS/VS System/Application
Design Guide.

For assembler language, COBOL, and PL/I
application programs using the
command-level interface, all CICS/OS/VS
requests, and CICS/DOS/VS
assembler-language requests must be in
the form of Dl/I CAll statements which
are identical to DL/I data base CALL
statements running in batch mode or under
IMS/VS data communication. (For
assembler-language application programs,
the CALLDlI macro, rather than the CALL
macro, should be used when running under
CICS/VS.)

However, for CICS/DOS/VS requests for
COBOL and Pl/I application programs, the
DL/I command-level interface provides a
simpler method (by means of the EXEC DlI
command) of accessing DL/I data bases.

This chapter describes only the CALL Dl/I
method of accessing Dl/I data bases. The
use of the EXEC DLI command for COBOL and
Pl/I users is described in "Chapter 2.4.
DL/I Services (EXEC DlI Command)" on page
77.

The two methods of accessing DL/I data
bas~s cannot both be used in the same
task. However, it is possible for
different tasks in the same system to use
different methods.

The CICS/VS application program can
request DL/I services by means of a DL/I
CALL statement. In response to such a
request, control is passed to a
CICS/VS-DL/I routi ne that acts as an
interface between the CICS/VS
application program and Dl/I. This
interface routine checks the validity of
the CALL list, sets up DL/I to handle the
request, and passes control and the CALL
list to DL/I. When the interface routine
regains control, it, in its turn, returns

control to the calling program, unless a
Dl/I pseudo-ABEND has occurred, in which
case the CICS/VS task is abnormally
terminated.

Under CICS/VS, two or more tasks may
require access to the same application
program at the same time. Because
CICS/VS application programs must be
qussi-reenterable, OL/I areas that may be
modified under CICS/VS, such as PCB
pointers, segment search arguments, and
I/O work areas, should be placed in
dynamic storage. For assembler language
this will be in the OFHEISTG OSECT, for
COBOL in working storage, and for PL/I in
AUTOMATIC storage.

The OL/I data-base access capabilities of
a CICS/VS application program are defined
in a program specification block (PSB)
which is created, by the system
programmer, by means of a PSB generation
utility program.

The PSB conta ins one or more program
communication blocks (PCBs) that
describe the data-base access
requirements of each Ol/I data base to be
accessed by the application program.

A CICS/VS application program designed to
access OL/I data bases must schedule its
access to OL/I. Scheduling involves, for
example, ensuring that the PSB is valid,
that the application is not already
scheduled, that the referenced data bases
are open and enabled, and that there is
no intent conflict between the PSB and
already scheduled PSBs from other
appl i cat i on programs. Hegat i ve .
responses to any of the above will
prevent scheduling.

The scheduling call, if successful,
returns a list of addresses of the PCBs
within the scheduled PSB. The
application program in a subsequent CALL
statement can specify, from this list~
the address of the PCB corresponding to
the data base to be accessed. If the
addresses cannot be obtained, an INVREQ
(invalid request) indicator is returned
in response to subsequent DL/I CALL
statements in the application program.

A task may schedule only one PSB at a
time. Any attemp~~to schedule a second
PSB while one is still scheduled causes
the INVREQ indica~or to be returned.

A sync point request (see "Chapter 5.6.
Recovery (Sync Points)" on page 231) by a
task that is scheduled to use Ol/I
resources implies the release of those
resources. Thi s means that if, after
issuing a sync point request, access to a

Chapter 2.3. DL/I Services (Ol/I CALL Statement) 69

DL/I data base is required, the PSB must
be rescheduled. The previous position of
the data base has been lost.

To access DL/I data bases, the following
steps are required.

1. Issue a DL/I call to schedule the PSB
and obtain PCB addresses.

2. Issue a DL/I call to access the
required data base.

3. Check the results immediately
followlngeach DL/I call.

4. Issue a DL/I call, when all Dl/I
access is complete, to terminate the
connection by releasing the PSB.

USER INTERFACE BLOCK (UIB)

The CICS/VS-Dl/I rout i ne that acts as the
interface between the CICS/VS
application program and Ol/I passes
information to the application program in
a User Interface Block (UIB). A
definition of the UIB must be included in
the applic'ation program. The UIB is
acquired by the interface routine when an
application program issues a schedule
request specifying a pointer reference to
be set wi th the address of the UIB. The

. UIB contai ns the address of the PCB
address list (UIBPCBAl) from the schedule
request and, for each OL/I request, the
response (UIBRCOOE) from the interface
routine, as follows:

Field ASH COBOL PL/I

UIBPCBAl OS A PIC 9(8) COMP POINTER
UIBRCOOE OS OXl2 PIC XX
UIBFCTR OS X PIC X BIT(8)
UIBOLTR OS X PIC X BIT(8)

The fi elds UIBFCTR and UIBDl TR are
overlays for the first and second bytes
respectively of the return code.

ASH

COBOL

PL/I

The UIB definition is included by
invoking the DLIUIB macro.

The UIB definition is included by a
COpy DLIUIB statement in the Linkage
Section of the program.

The UIB definition is included by a
r.INClUDE DlIUIB statement.

Examples of these are given at the end of
the chapter.

SCHEDULE THE PSB AND OBTAIN PCB ADDRESSES

The format of the CALL statement to
request scheduling of the PSB and to

70 CICS/VS APRM(CL)

obtain the associated PCB addresses is as
follows:

ASH:

CAlLDLI ASMTDlI,([parmcount,]
function,psbname,pointer-ref)

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function,psbname,pointer-ref

PL/I:

CALL PLITDLI ([parmcount,]
function,psbname,pointer-ref)

where:

"parmcount"
is a binary fullword containing a
count of the arguments that follow.

"function"
is the name of the field containing
the four-character function 'PCBb'.

"psbname"
is an eight-byte field containing
the PSB generation name (one through
seven characters for VSE, and one
through eight for OS/VS) accessed by
the application program. It is left
justified and padded right with
blanks as appropri ate. If the PSB
name is specified as '*' padded
right with blanks, a default name is
supplied. For CICS/DOS/VS this
default is the first PSB name
associated with the application
program in the DL/I DOS/VS
Application Control Table (ACT) as
defined during Ol/I DOS/VS system
generation. For CICS/OS/VS, this
default is the name of the
application program associated with
this task in the CICS/VS Program
Control Table (PCT).

If the call is successful, field
UIBPCBAl in the UIB will contain the
address of the list of PCB
addresses. The order of the
addresses i s the same a s the PCB s
within the PSB as specified when the
PSB was generated.

If the call is unsuccessful, the
reason for the failure will be
indicated in field UIBRCODE in the
UIB.

"pOinter-ref"
i 5 a po inter reference that wi 11

be set to the address of the UIB
after the call has been processed.
The UIB contai ns the address of the
PCB address list and the response
from the CICS/VS-Dl/I interface.

SEGMENT SEARCH ARGUMENTS (SSASl

Segment search arguments (SSAs) are used
to identify segments of a DL/I data base.
SSAs may be simple segment names or they
may be qualified to include constraints
made upon the values of fields within the
named segment types. (For information on
how "to bu i Id an SSA, refer to the
publ i cat ions DL/I DOS/VURpl i cati Ot).
Programmi n,!LReferencg.Jianual or IMS/VS
Application Programming Reference
Manual.)

Except for a read-only operation, when it
is unnecessary, SSAs used by a CICS/VS
application program must be in dynamic
storage because of the requirement for
the progra~~to be quasi-reenterable.

•

•

•

For assembler-language programs, the
SSAs should be placed in the dummy
section called DFHEISTG.

For COBOL programs, the SSAs should
be in the Working-Storage Section.

For PL/I programs, the SSAs should be
in AUTOMATIC storage.

I/O WORK AREA FOR Dl/I SEGMENTS

An I/O work area is required by DL/I to
hold the segment being retrieved or to
hold the segment being written to the
data base. Like SSAs, thi s work area
must be in dynamic storage. The address
of the work area is specified as the
address of the first byte of the data
area.

ISSUE A Dl/I DATA BASE CALL

The format of the CALL statement to
request Dl/I services is as follows:

ASH:

CALLDLI ASMTDLI[,([parmcount,]function
,pcb,workarea[,ssal,ssa2, ...])]

COBOL:

CALL 'CBlTDLI' USING [parmcount,]
function,pcb,workarea[,ssal,ssa2, ...]

PL/I:

CALL PLITDLI ([parmcount,]function
,pcb,workarea[,ssa1,ssa2, ..•])

where:

"parmcount"
is the name of a bi nary fullword
containing a count of the arguments
that follow.

"funct;on"

"pcb"

is the 2-4 byte name of the function
to be performed. Valid function
names for a CICS/VS application
program are as follows:

"CHKP"

"GU"

"GN"

"GNP"

"GHU"

"GHN"

request that a checkpoint be
issued. (VSE only).

get a unique segment
identified by SSAs.

get the next segment in the
data base, optionally
qualified by SSAs.

get the next segment within the
scope of the current hierarchy
in the data base, optionally
qualified by SSAs.

as for "GU", but in addition,
hold the segment for
subsequent update.

as for "GN", but in addition,
hold the segment for
subsequent update.

"GHNP"
as for "GNP", but in addition,
hold the segment for
subsequent update.

"ISRT"
insert a new segment at the
current position; also used in
the initial load of a data
base.

"REPL"
replace a segme.nt at the
current position.

"DLET"
delete the segment at the
current position.

is a field containing the address of
the PCB corresponding to the data
base specified in the call. This
address i s one of the addresses
returned in the address list by the
scheduling call.

"workarea"
specifies the workarea that
contains the segment being passed to
DL/I or is to contain the segment
being retrieved from DL/I.

"ssal,ssa2, ••• "
are the names of the SSAs.

Chapter 2.3. DL/I Services (DL/I CALL Statement) 71

For detai Is of VSE calls, refer to the
Dl/I DOS/VS Application Programmer's
Reference Manual.

RELEASE A PSB IN THE CICS/VS APPLICATION
pROGRAM

When all Dl/I operations have been
completed, thePSB should be released (or
terminated), so that it can be used by
other application programs. The
releasing application program can reuse
the PSB or a different PSB as required.

The DL/I CALL statement is used to
release a PSB. It causes all data base
records used by the application program,
and all associated log records to be
written out. It also causes a CICS/VS
sync point to be taken, which commits all
activity performed by this task, both
related to DL/I and to CICS/VS protected
resources. (A sync point is taken by
means of the SYNCPOINT command, as
described in "Chapter 5.6. Recovery
(Sync Points)" on page 231.)

Changes performed prior to the execution
of the command will not be backed out
either in the event of Dynamic
Transaction Backout for a single failing
task, or in the event of an emergency
restart following an abnormal
termination of the system. A CICS/VS
sync point generates implicitly a DL/I
release statement. CALL statements and
sync points should be specified only at
points in the transaction where logically
related processing ends.

The PSB must be rescheduled explicitly
after it has been released (by a CAll or
sync point) if further access to the data
base is required, because the position of
the data base has been lost by the
release mechanism.

The format of the CALL statement to
release a PSB is as follows:

ASM:

CALlDlI ASMTDlI,([parmcount,]function)

COBOL:

CAll 'CBlTDlI' USING [parmcount,]function

PL/I:

CAll PlITDlI (parmcount,function)i

where:

"parmcount"
is the name of the bi nary fullword
containing the parameter count

72 CICS/VS APRM (Cl)

value of one.

"function"
is the name of the field containing
the four-character function 'TERM'
or 'Tbbb'.

CHECK THE RESPONSE TO A DL/I CALL

The response to a Dl/I CALL statement
should always be checked so that, if
unsuccessful, alternative processing can
be initiated. Two types of check can be
performed, as follows:

• A check that the CICS/VS-DL/I
interface has been used correctly by
the application program (for
example, the required PSB not being
found in the directory of psas would
cause a response code to be
returned). The response codes for
this type of error appear in the UIB
for the task.

• A check that the specified Dl/I
function has been performed
correctly according to the rules of
Dl/I (for example, a segment that
cannot be located from the specified
SSA would cause an error indication).
This type of error is detected
internally by Dl/I and is explained
in the appropriate Dl/I application
programming reference manual. DL/I
may also issue a pseudo-ABEND which
causes the task to be terminated
rather than control to be returned to
the CICS/VS application program. For
CICS/DOS/VS the task is terminated
with an ABEND code of "Dnnn" 1 where
"nnn" is the DL/I pseudo~ABEND code;
for CICS/OS/VS the code is ADlA.

For the first type of check, the response
codes are returned in fields UIBFCTR and
UIBDLTR in the UIB; these two fields are
known collectively as UIBRCODE.
Figure 11 on page 73 lists the response
codes. These fields should be examined
first and, if normal, the Dl/I response
in the PCB should be examined.

EXAMPLE OF DL/I REQUEST USING CALL

The example at the end of the chapter
shows, in the different application
programming languages, the use of the
DL/I CALL statements to request Dl/I
services.

UIBFCTR Response Code
Condition

ASM COBOL

HORESP (normal response) X'OO' L Ol\l-VALUES

NOTOPEN (not open) X' OC' 12-4-8-9

INVREQ (invalid request) X'08' 12-8-9

Invalid PCB address X'10' 12-11-1-8-9

Following codes returned in UIBDLTR after HOlOPEN condition raised

Data base not open; request issued in OS/VS
system

Data base not open; request issued in VSE
system

Intent scheduling conflict

X' 00'

X'Ol'

X'02'

12-0-1-8-9

12-1-9

12-2-9

Following codes returned in UIBDLlR after INVREQ condition raised

Data base not in FCl, or not open according
to FCR, or invalid argument passed to DL/I

PSBNF (PSB not found)

TASKNA (task not authorized)1

PSBSCH (PSB already scheduled)

LANGCON (language conflict)1

PSBFAILCPSB initialization failed)

PSBNA (PSB not authorized)l

TERMNS (termination unscheduled)

FUNCNS (function unscheduled)

DLINA (DL/I not active)

1 CICS/DOS/VS only

Figure 11. CICS/VS-DL/! Interface Response Codes

X'OO' 12-0-1-8-9

X'Ol' 12-1-9

X'02' 12-2-9

X'03' 12-3-9

X'04' 12-4-9

X'05' 12-5-9

X' 06' 12-6-9

X' 07' 12-7-9

X'08' 12-8-9

X'FF' 12-11-0-7-8-9

PL/I

00000000

00001100

00001000

00010000

00000000

00000001

00000010

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

11111111

Chapter 2.3. DL/I Services (DL/! CALL Statement) 73

ASf1

DFHEISTG
UIBP1R
IOAREA
AREAl
AREA2

PCBPTRS
PCBIPTR
PCBl

DBPClDBD
DBPCILEV
DBPCISTC
DBPCIPRO
DBPCIRSV
DBPCISFD
DBPCIMKL
DBPCINSS
DBPClKFD
DBPCINM
DBPClHMA
DBPClNMP
ASMUIB

PSBNAME
PCB FUN
REPLFUN
TERMFUN
GHUFUH
BLANKS
SSA!
GOODRC
GOODSC
SKIP

ERROR!
* ERROR2
* ERROR3
* ERROR4
* ERROR5
* TERM

DSECT
DS F
DS OCL40
DS CL3
DS CL37
OLIUIB
USING UIB,8
DSECT
DS
DSECT
USING
DS
DS
DS
OS
OS
DS
DS
DS
DS
DS
DS
DS
CSECT

F

PCBl,6
el8
Cl2
CL2
CL4
F
CL8
F
F
OCl256
OCL12
OCLl4
Cll7

B SKIP
DC CL8'ASMPSB'
DC CL4'PCB'
DC CL4'REPL'
DC Cl4'TERM'
DC Cl4'GHU'
DC CL3' ,
DC Cl9'AAAA4444'
DC XLI'OQ'
DC Cl2"
DS OH
CALlDlI ASMTDlI,(PCBFUN,PSBNAME,UIBPTR)
l 8,UIBPTR
ClC UIBFCTR,X'OO'
BNE ERROR!
l 4,UIBPCBAL
USING PCBPTRS,4
l 6,PCBIPTR
CALLDlI ASMTDlI,(GHUFUN,PCBl,IOAREA,SSAl)
ClC UIBFCTR,GOODRC
BNE ERROR2
CLC DBPCISTC,GOODSC
BNE ERROR3
MVC AREAl,BLANKS
CALlDlI ASMTDLI,(REPLFUN,PCBl,IOAREA,SSAl)
ClC UIBFCTR,GOODRC
SNE ERROR4
CLC DBPCISTC,GOODSC
BNE ERROR5
B TERM
DS OH

DS

OS

OS

DS

INSERT ERROR DIAGNOSTIC CODE
OU
INSERT ERROR DIAGNOSTIC CODE
OH
INSERT ERROR DIAGNOSTIC CODE
OH
INSERT ERROR DIAGNOSTIC CODE
OH
INSERT ERROR DIAGNOSTIC COOE

OS OH
CAlLDlI ASMTDlI,(TERMFUN)
END ASMUIB

74 CICS/VS APRM (Cl)

COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CBLUIB'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PSB-HAME PIC XeS) VALUE 'CBLPSB
77 PCB-FUNCTION PIC X(4) VALUE 'PCB '.
77 TERM-FUNCTION PIC X(4) VALUE 'TERM'.
77 GHU-FUNCTION PIC X(4) VALUE 'GHU '.
77 REPL-FUNCTION PIC X(4) VALUE 'REPl'.
77 THREE-BLANKS PIC X(3) VALUE' ,
77 SSAI PIC X(9) VALUE 'AAAA4444 '.
77 SUCCESS-MESSAGE PIC X(40).
77 GOOD-STATUS-CODE PIC XX VALUE' .
77 GOOD-RETURN-CODE PIC X VALUE LOW-VALUE.
01 MESSAGE.

02 MESSAGEl PIC X(3S).
02 MESSAGE2 PIC XX.

01 DLI-IO-AREA.
02 AREAl PIC X(3).
02 AREA2 PIC X(37).

LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMPo
02 UIB-PTR PIC S9(8) COMP .
02 B-PCB-PTRS PIC S9(8) COMPo
02 peBI-PTR PIC S9(8) COMPo

01 DLIUIB COpy DlIUIB.
01 PCB-PTRS.

02 B-PCBl-PTR PIC 9(8) COMPo
01 PCB1.

02 PCB1-DBD-NAME PIC X(8).
02 PCB1-SEG-LEVEl PIC XX.
02 PCB1-STATUS-CODE PIC XX.
02 PCBl-PROC-OPT PIC XXXX.
02 FILLER PIC S9(5) COMPo
02 PCB1-SEG-NAME PIC X(8).
02 PCBI-LEN-KFB PIC S9(5) COMPo
02 PCBI-NU-SENSEG PIC S9(5) COMPo
02 PCBI-KEY-FB PIC X(256).

PROCEDURE DIVISION.
CALL 'CBLTDlI' USING PCB-FUNCTION, PSB-NAME, UIB-PTR.
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN * INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE B-PCB1-PTR TO peBI-PTR.
CALl'CBLTDlI' USING GHU-FUNCTION, PCB1, DLI-IO-AREA, SSA1.
SERVICE RELOAD UIB-PTR
IF UIBFC1R IS NOT EQUAL GOOD-RETURN-CODE THEN * INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
IF PCBl-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN * INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
MOVE THREE-BLANKS TO AREAl.
CALL 'CBLTDLI' USING REPl-FUNCTION, PCB1, DLI-IO-AREA, SSA1.
IF UIBFCTR IS HOT EQUAL GOOD-RETURN-CODE THEN * INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
IF PCBl-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN * INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
CAll 'CBLTDLI' USING TERM-FUNCTION.

EXEC CICS RETURN END-EXEC.

Chapter 2.3. Dl/I Services (DL/I CALL Statement) 75

PL/I

PlIUIB: PROC OPTIONSCMAIN);
DCl PSB_NAME CHAR(8) STATIC INITC'PlIPSB ');
DCl PCB FUNCTION CHAR(4) STATIC INITC'PCB ');
DCl TERM FUNCTION CHAR(4) STATIC INITC'TERM');
DCl GHU FUNCTION CHAR(4) STATIC INITC'GHU ');
DCl REP[FUNCTION CHAR(4) STATIC INITC'REPl');
DCl THREE BLANKS CHAR(3) STATIC INITC' ');
DCl SSA! CHAR(9) STATIC INITC'AAAA4444 ');
DCl PARM CT I FIXED BIN(31) STATIC INITCl);
DCl PARM-CT-3 FIXED BIN(31) STATIC INIT(3);
DCl PARM-CT-4 FIXED BIN(31) STATIC INIT(4);
DCl GOOD-RETURN CODE BIT(8) STATIC INITC'O'B);
DCl GOOD-STATUS-CODE CHAR(2) STATIC INITC' ');
DCl IO_AREA_PTR-POINTERi
%INClUDE DlIUIB;
DCl 1 PCB POINTERS BASEDCUIBPCBAl),

2 PCBl PTR POINTER;
DCl lOll la-AREA,

2 AREAl CHAR(3),
2 AREA2 CHAR(37);

DCl 1 PCBI BASEDCPCB1_PTR),
2 PCBI DBD NAME CHAR(8),
2 PCB1-SEG-lEVEL CHAR(2),
2 PCBI-STATUS CODE CHAR(2),
2 PCBI-PROC OPTIONS CHAR(4),
2 PCBI-RESERVE DlI FIXED BIN C3l,0),
2 PCBl-SEGNAME-FB CHAR(8),
2 PCBI-lENGTH FB KEY FIXED BIN(31,O),
2 PCBI-NUMB SENS-SEGS FIXED BINC3I,O),
2 PCBI-KEY FB AR~A CHARC!7);

CALL PlITD[ICPARM:CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR);
IF UIBFCTR-=GOOD RETURN CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END;
CALL PLITDlICPARM_CT_4,GHU_FUNCTION,PCBl,DLI_IO_AREA,SSAl);
IF UIBFCTR-=GOOD RETURN CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END;
IF PCBI STATUS CODE-=GOOD STATUS CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END;
AREAI=THREE BLANKS;
CAll PLITDlICPARM CT 4,REPl FUNCTION,PCB1,DlI 10 AREA,SSAl);
IF UIBFCTR-=GOOD RETURN CODE THEN DO; - -

/* INSERT ERROR DIAGNOSTIC CODE */
END;
IF PCB! STATUS CODE-=GOOD STATUS CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END; .
CAll PlITDlICPARM_CT_l,TERM_FUNCTION);
END PlIUIB;

76 CICS/VS APRM (Cl)

Chapter 2.4. DL/I Services (EXEC DLI Command)

This chapter outlines the EXEC DLI
command that can be used in CICS/DOS/VS
command-level application programs that
are used to access DL/I data bases under
VSE. These programs, which can be
written only in COBOL or Pl/I, require
the installation of the DL/I DOS/VS
program product (program number
5746-XXl), whi ch runs as part of the
CICS/VS partition in the VSE system.

These commands have a syntax and format
that are similar to CICS/VS commands
(EXEC DlI instead of EXEC eICS). Full
details of the commands are given in the
publication Pl/I DOS/VS Ap~cation
Programmer's Reference Manual.

The commands are transl~ted by the
appropriate command language translator
(see "Chapter 1.2. Command Format and
Argument Values" on page 5) into calls to
the CICS/VS link-edit stub. At execution,
DFHEIP is invoked which in turn invokes a
DL/I interface program to perform the
requested operations.

There are no exceptional conditions for
DL/I commands, though the HANDLE ABEND
command can be used if desired to handle
abends issued by DL/I.

GENERAL FORMAT OF EXEC DlI COMMAND

The general~format of the EXEC DLI
command is as follows:

EXECUTEIEXEC} DLI function
[option[Cargument)]] ...

The functions, options, and arguments
that can be used are as follo\.oJs: '

CHECKPOINTICHKP Request a checkpoint
IOCchar-expr)

DElETEIDLET Delete a segment
[USING PCBCinteger-expr)]
[VARIABLE]

S EGf1ENT C name)
FROMCdata-area)

[SEGlEHGTHCinteger-expr)]

GET UNIQUEIGU or GET NEXTIGN or
GET NEXT IN PARENTIGNP Get a segment

[USING ~integer-expr)]
[VARIABLE] .
[FIRSTILAST]
[SEGMENTCname)]
[LOCKED]

INTOCdata-area)
[SEGLENGTijCinteger-expr)]

[WHERECname operator data area)]
[FIELDLENGTHCinteger-expr)]
[OFFSETCinteger-expr)]

INSERTIISRT Insert a segment
(USING PCB(integer-expr)]
[VARIABLE]
[FIRSTILAST]
SEG~1ENT (name)

[SEGLENGTH(integer-expr)]
FROMCdata-area)

[WHERECname operator data area)]
[FIELDLENGTHCinteger-expr)]

REPLACEIREPL Replace a segment
[USING PCBCinteger-expr)
[VARIABLE]

SEGMENTCname)
[SEGLENGTHCinteger-expr)]

FROMCdata-area)

SCHEDULElsCHD Schedule the PSB
[PSBCname)]

TERMINATEITERM Terminate access

SEGLENGTH is required in COBOL whenever
FROM or INTO is specified. It is never
required in PL/I.

On the GET, INSERT, and REPLACE commands,
the segment-oriented keywords (that is,
all those except USING PCB) may be
repeated for each segment. Keywords
preceding the keyword SEGMENT in the
above list must be written immediately
preceding the segment to which they
apply, but within themselves may be
written in any order. Similarly,
keywords which follow the keyword SEGMENT
in the above list: must be wri tten
immediately following the segment to
which they apply, but within themselves
they may be written in any order.

The command must be delimited, in the
same way as an EXEC CICS command, by
END-EXEC for COBOL and by a semicolon for
PL/I, for example:

EXEC DLI GET SEGMENTCSKILL)
WHERECSKILLTYPE='PLUMBER')
INTOCSKILLSTRUCT) END-EXEC

Dl/I INTERFACE BLOCK (DIB)

The CICS/VS-DL/I interface module passes
information to the CICS/VS application
program in a DL/I Interface Block (DIB).
The DIB contains the response from the
interface module in the field DIBSTAT.
The DIB structure is included
automatically in the application program
by the translator, and unlike the EIB, no
copy book exists in the source statement

Chapter 2.4. DL/I Services <EXEC DLI Command) 77

library. The fields and their
descriptions are as follows:

Field

DIBFLAG
DIBSEGlV
DIBSEGM
DIBSTAT

COBOL

PIC X
PIC XX
PIC XeS)
PIC XX

PL/I

CHARC!)
CHAR(2)
CHAR(S)
CHAR(2)

Field DIBFlAG is a flag indicating that
an online task had to wait for a resource
owned by an MPS batch task. The value is
either X'FF' (HIGH-VALUE in COBOL,
HIGH(!) in Pl/I) or X'OO' (lOW-VALUE in
COBOL, lOWe!) in Pl/I).

Field DIBSEGlV gives the hierarchical
level of the object segment or lowest
level parent segment actually retrieved.

COBOL

CBL XOPTSCDLI,CICS)
IDENTlFICATION DIVISION.
PROGRAM-ID. EXAMPL.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEGDATA.

02 AREAl PICTURE X(3).
02 AREA2 PICTURE X(37).

Field DIBSEGM is the name of the object
segment or the lowest level parent
segment actually retrieved.

Field DIBSTAT is the Dl/I status code.

EXAMPLE OF DL/I REQUEST USING EXEC DLI

The following example (in COBOL and PL/I)
shows the use of the EXEC DlI command to
request DL/I services; it provides the
same functions as the example in the
previous chapter.

01 SEGDATAL COMPUTATIONAL PICTURE S9999 VALUE IS +40
PROCEDURE DIVISION.

EXEC DLI SCHEDULE PSBCCBlPSB) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN * INSERT ERROR CODE
EXEC DLI GET UNIQUE SEGMENTCAAAA4444)
INTO(SEGDATA) SEGLENGTHCSEGDATAL) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN * INSERT ERROR CODE
MOVE SPACES TO AREAl.
EXEC DLI REPLACE SEGMENTCAAAA4444)
FROMCSEGDATA) SEGLENGTH(SEGDATAL) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN * INSERT ERROR CODE
EXEC DLI TERMINATE END-EXEC
EXEC CICS RETURN END-EXEC
GOBACK.

7S CICS/VS APRM CCl)

PL/I

* PROCESS XOPTSCDLI,CICS),INCLUDE;
EXAMPLE: PROC OPTIONSCMAIN);
DCL 1 SEG_DATA,

2 AREAl CHAR(3),
2 AREA2 CHAR(37)j

EXEC DLI SCHEDULE PSBCPLIPSB);
IF DIBSTAT -= , , THEN CALL ERRORj
EXEC DLI GET UNIQUE SEG~lENTCAAAA4444) INTOCSEG_DATA)j
IF DIBSTAT -= , , THEN CALL ERROR;
AREAl = 'XXX';
EXEC DLI REPLACE SEGMENTCAAAA4444) FROM CSEG_DATA);
IF DIBSTAT -=' , THEN CALL ERROR;
EXEC DLI TERMINATE;
ERROR: PROC;
/* INSERT USER ERROR ROUTINE */

END;
END; /* EXAMPLE */

Chapter 2.4. DL/I Services (EXEC DLI Command) 79

Part 3. Data Communication Operations

Chapter 3.1. Introduction to Data Communication Operations

Chapter 3.2. Terminal Control

Chapter 3.3. Basic Mapping Support CBMS)

Chapter 3.4. Batch Data Interchange

Part 3. Data Communication Operations 81

Chapter 3.1. Introduction toData Communication Operations

Three methods are available to the
CICS/VS application programmer for
communicating with the terminals and
logical units in the subsystems of the
network that forms part of the CICS/VS
system. The methods dealt with are:

• Terminal control

• Basic mapping support CBMS)

• Batch data interchange

Terminal control is the basic method for
communicating with devices, whereas both
BMS and batch data interchange extend the
facilities of terminal control to
simplify further the manipUlation of data
streams. Both BMS and batch data
interchange use terminal control
facilities when invoked by an application
program. Terminal control provides
commands and options that can be
specified in various combinations
according to the requirements of the
devices. However, application programs
written in this way are dependent on the
data formatting requirements of these
dev ices and a deta i led knowl edge of the
devices is required. Terminal control is
described in "Chapter 3.2. Terminal
Control" on page 85.

Basic mapping support provides commands
and options that can be used to format
data in a standard manner. BMS converts
data streams provided by the application
program to conform to the requirements of
the devices. Conversely, data received
from a device is converted by BMS to a
standard form. However, not all devices
supported by CICS/VS can be used with BMS
and, for those that cannot, terminal
control must be used. Also, in some
cases, the overhead incurred to achieve
data stream independence may outweigh the
advantages. The choice as to whether BMS
should be used is a matter for
application design and is discussed more
fully in the CICS/VS System/Application
Design Guide. BMS is described in
"Chapter 3.3. Basic Mapping Support
(BMS)" on page 125.

Batch data interchange provides commands
and options that may be used, possibly in
conjunction with BMS commands, to
communicate with the 6670 logical unit
and with the batch logical units of the
3770 and 3790 subsystems. Batch data
interchange is described in "Chapter 3.4.
Batch Data Interchange" on page 169.

Chapter 3.1. Introduction to Data Communication Operations 83

Chapter 3.2. Terminal Control

The CICS/VS terminal control program
provides for communication between
user-written application programs and
terminals and logical units, by means of
terminal control commands.

Terminal control uses the standard access
methods available with the host operating
system. The Basic Telecommunications
Access Method (BTAM) is used by CICS/VS
for most start-stop and BSC terminals.
As an option for OS/VS, the
Telecommunications Access Method (TCAM)
can be specified. The Sequential Access
Method (SAM) is used where keyboard
terminals are simulated by sequential
devi ces such as card readers and line
printers. The Virtual
Telecommunications Access Method
(ACF/VTAM) or the Telecommunications
Access Method (TCAM) is used for Systems
Network Architecture (SNA) terminal
systems.

Terminal control polls terminals to see
if they are ready to transmit or receive
data. Terminal control handles code
translation, transaction validation,
synchronization of input and output
operations, and the line control
necessary to read from or write to a
terminal. The application program is
freed from having to physically control
terminals. During processing, an
application program is connected to one
terminal for one task and the terminal
control program monitors which task is
associated with which terminal. The task
to be initiated is determined as
described later in this chapter under
"Terminal-Oriented Task Identification".

Terminal control is used for
communication with terminals. In SNA
systems, howev.r, it is used also to
contrel communication with logical units
or with another CICS/VS system. A
109ical unit (LU) represents either a
terminal directly, or a program stored in
a subsystem controller which in turn
controls one. or more terminals. The
CICS/VS application program
communicates, by means of the logical
unit, either with a terminal or with the
stored program. For example, a 3767
terminal is represented by a single
logical unit without an associated
user-written application program. In
contrast, a 3790 SUbsystem is represented
by a 3791 controller, user-written 3790
application programs, and one or more
3790 terminals; when the subsystem is
configured, one or more logical units are
designated by the user.

Terminal control is used also for
communicating with terminals or logical

units in a remote system by means of
Distributed Transaction Processing
(DTP). SNA protocols are avai lable,
through terminal-control commands, to
initiate and terminate a conversation (a
session) with a remote LU6 logical unit.

This conversation is carried on between a
principal facility and one or more
alternate facilities.

A principal facility for a task is a
terminal or LU6 session that is made
available to the application program when
the task is initiated.

An alternate facility for a task is a
terminal or lU6 session acquired as
needed by the application program. In
general, terminal-control commands that
refer to an alternate facility should
include the SESSION option.

The ALLOCATE and FREE commands allow the
application program to acquire and
release these alternate facilities and
allow both principal and alternate
facilities to be used at the same time.

The BUILD ATTACH and EXTRACT ATTACH
commands, together with the ATTACHID
option of the SEND command, allow the
application program to attach a
transaction in a remote system.

Fields in the EIB allow access to
indicators that give the status of the
conversation after execution of RECEIVE
or CONVERSE commands. For example,
EIBEOC, EIBATT, and EIBFMH provide more
information about the received data, and
EIBSYNC, EIBFREE, and EIBRECV provide
more information about the session.

The INVITE option of the SEND command
allows the optimization of SNA flows that
occur when communicating with another
transaction, or with IMS/VS.

Distributed transaction processing is
described fully in the CICS/V~
~tem/AEplication Design Guide.

Commands and options that apply
specifically to logical units are
described later in the chapter.

Terminal control commands are provided to
request the following services that are
applicable to most, or all, of the types
of terminal or logical unit supported by
CICS/VS:

• Read data from a terminal or logical
unit (RECEIVE).

Chapter 3.2. Terminal Control 85

•

•

•

Write data to a terminal or logical
unH: (SEND).

Converse with a terminal or logical
unit (CONVERSE).

Synchronize terminal input/output
for a transaction (WAIT TERMINAL).

• Send an asynchronous interrupt
(ISSUE SIGNAL).

• Relinquish use of a communication
line (ISSUE RESET).

• Disconnect a switched line or
terminate a session with a logical
unit (ISSUE DISCONNECT).

It is possible to read records from a
card reader and read records from or
write records to a disk data set,
magnetic tape unit, or a line printer
defined by the system programmer as a
card-reader-in/line-printer-out (CRLP)
terminal. For additional information,
see the section "Sequential Terminal
Support" in "Chapter 5.1. Introduction
to Recovery and Debugging" on page 213.

Other services available in response to
terminal control commands apply to
specific types of terminal. The
permissible commands and options that can
be used by specific terminal types are
detailed later in this chapter. Because
many types of terminal are supported by
CICS/VS, many special servic~s are
provided. (For a list of terminals
supported by CICS/VS, see the pUblication
CICS/VS General Information.) In
par"ti cular,- a large number of commands
are provided for communicating with
di splay dev ices such as the 3270
Informati on 01 splal.' System; these are
described in the section "Display Device
Operations" later in this chapter.

The options that follow th~ command
depend on the terminal or logical unit
(and sometimes, access method) used and
the operations required. Options
included in a terminal control command
that do not apply to the device being
used will be ignored.

The HANDLE CONDITION and IGNORE CONDITION
commands, and the NOHAHDLE option, can be
used to deal with exceptional conditions
that occur during the execution of
terminal control commands. Refer to
"Chapter 5.1. Introduction to Recovery
and Debugg; ng" on page 213 for further
information about exceptional
conditions.

COMMANDS AND OPTIONS FOR TERMINALS AND
LOGICAl UNITS

The commands and options described in
this section apply to all terminals and
logical units. Th~re may, however, be

86 CICS/VS APRM(CL)

others that apply to specific devices.
If so, details are given later in the
chapter under headings for the device
types.

READ FROM TERMINAL OR LOGICAL UNIT
(RECEIVE)

The RECEIVE command is used to read data
from a terminal or logical unit. The
INTO option is used to specify the area
into which the data is to be placed, in
which case the maximum length of data
that the program will accept must be
specified in the LENGTH option. If the
data exceeds the specified maximum, it is
truncated and the LENGERR condition
occurs. If the LENGTH option is
specified, the named data area is set to
the actual data length (before truncation
occurs) when data has been received.

Alternatively, a pointer reference can be
specified in the SET option. CICS/VS
acquires an area large enough to hold the
data and sets the po i ntar reference to
the address of that area. When data has
been received, the data area specified in
the LENGTH option is set to the data
length.

The first RECEIVE command in a
terminal-initiated task will not issue a
terminal-control read but will simply
copy the input buffer, even if the data
length is zero. A second RECEIVE must be
issued to cause a terminal-control read.

WRITE TO TERMINAL OR LOGICAL UNIT (SEND)

The SEND command is used to write data to
a terminal or logical unit. The options
FROM and LENGTH specify respectively the
data area from which the data is to be
taken and the length (in bytes) of the
data.

The WAIT Option of the SEND Command

Unless the WAIT option is specified also,
the transmission of the data associated
with the SEND command is deferred until a
later event, such as a sync point,
occurs. This deferred transmission
reduces the flows of data by allowing
data flow controls to be transmitted with
the data.

SYNCHRONIZE TERMINAL INPUT/OUTPUT FOR A
TRANSACTION (WAIT TERMINAL)

This command is used to ensure that a
terminal operation has completed before
further processing occurs in a task under
which more than one terminal or logical
unit operation is performed.
Alternatively, the WAIT option can be
specified in a SEND command. (A wait is

always carried out for a RECEIVE
command.>

Either method may cause execution of a
task to be suspended. If suspension is
necessary, control is returned to
CICS/VS. Execution of the task is
resumed when the operation is completed.

Even if the WAIT option is not specified
in a SEND command, the EXEC interface
program will ensure that the operation is
completed before issuing a subsequent
RECEIVE or SEND command.

CONVERSE WITH TERMINAL OR LOGICAL UNIT
(CONVERSE)

For most terminals or logical unit types
a conversational mode of communicati~n is
permissible. The CONVERSE command is
used for this purpose. In general, the
CONVERSE command can be considered as a
combination of a SEND command followed
immediately by a WAIT TERMINAL command
and then by a RECEIVE command. However,
not all options of the SEND and RECEIVE
commands are valid for the CONVERSE
command. Specific rules are given in the
syntax descriptions for different
devices later in this chapter. The
TOLENGTH option is equivalent to the
LENGTH option of the RECEIVE command, and
the FROMLENGTH option is equivalent to
the LENGTH option of the SEND command.

SEND AN ASYNCHRONOUS INTERRUPT (ISSUE
SIGNAL)

This command is used, in a transaction in
receive mode, to inform the sending
transaction that it wishes to change
modes. The execution of the command will
raise the SIGNAL condition on the next
SEND or RECEIVE command executed in the
sending transaction, and a previously
executed HANDLE CONDITION command for
this condition can be used either to
action the request or to ignore it.

RELINQUISH A COMMUNICATION LINE (ISSUE
RESET)

This command is used to relinquish use of
a communication line. The command
applies only to binary synchronous
devices using BTAM. The next BTAM
operation will be a read or write
initial.

DISCONNECT A SWITCHED LINE (ISSUE
DISCONNECT)

This command is used to break a line
connection between a terminal and the
processor, or to break a session bQtween
TCAM or ACF/VTAM logical units, when the

transaction is completed. If the
terminal is a buffered device, the data
in the buffers will be lost.

TERMINAL-ORIENTED TASK IDENTIFICATION

When CICS/VS receives input from a
terminal to which no task is attached, it
has to determine which transaction should
be initiated. The methods by which the
user can specify the transaction to be
initiated and the sequence in which
CICS/VS checks these specifications are
as follows (see also Figure 12 on page
89). The system macros referred to in
the following tests are described in the
CICS/VS System Programmer's Reference
Manual.

Test 1:
Is the input from a PA key (of a
3270 terminal) that has been defined
at system initialization as the
print ~equest key?

If yes, printing of the data
displayed on the screen is
initiated.

Test 2:
(a) Is this terminal of a type
supported by BMS terminal paging?

(b) Is the input a paging command?
(The terminal operator can enter
paging commands defined in the
DFHSIT system macro.)

If yes to both (a) and (b), the
transaction CSPG, which processes
paging commands, is initiated.

Test 3:
If an attach FMH is present in the
data stream and Tests 4 and 5 are
not fulfilled, the transaction
specified in the attach FMH is
initiated. The architectured attach
names are converted to "CSMI".

Test 4:
Does the terminal control table
entry for the terminal include a
transaction identification
(specified by the TRANSID operand of
the DFHTCT TYPE=TERMINAL system
macro.)

If yes, the specified transaction is
initiated.

Test 5:
Is a transaction specified by the
TRANSID option of a program control
RETURN command (or by the
application program moving the
transaction name into TCANXTID)?

If yes, the specified transaction is
initiated.

Chapter 3.2. Terminal Control 87

Test 6:
(a) Is the terminal a 3270
(including 3270 logical uni~ and
3650 host-conversational (3270)
logical unit, connected via VTAM)?

(b) Is the input from a PA key, PF
key, light pen attention, or
operator identification card
reader?

ec) Is this input specified by the
T ASKREQ operand""'of the DFHPCT
TYPE=ENTRY system macro?

If yes to (a), (b), and (c), the
program specified by the PROGRAM
operand of the same DFHPCT
TYPE=ENTRY macro is given control.

Test 7:
Is a valid transaction
identification specified by the
first one to four characters of the
termi nal input?

If yes, the specified transaction is
initiated.

For all PA keys and some LPAs there
cannot be terminal input. If there
is no termi nal input an "i nval i d
transaction identification" message
is sent to the terminal.

If none of the above tests is met, an
invalid transaction identification
exists, and message DFH2001 (INVALID
TRANSACTION IDENTIFICATION - PLEASE
RESUBMIT) is sent to the terminal.

The 3735 Programmable Buffered Terminal
makes an exception to this sequence when
operating in inquiry mode. The test of
input from the terminal (Test 7 above) is
given highest priority.

COMMANDS AND OPTIONS FOR LOGICAL UNITS

An application program communicates with
a TCAM or VTAM logical unit in much the
same way as it does with BTAM or TCAM
terminals (that is, by using the terminal
control commands descr i bed above).
However, communication with logical
units is governed by the conventions
(protocols) that apply to each type of
logical unit. This section describes the
additional commands and options provided
by CICS/VS to enable application programs
to comply with these protocols.

The types of logical units and the
related protocols for each of the SNA
subsystems supported by CICS/VS are
described in the CICS/VS guides for the
subsystems. (See the B i bl i ography) .

88 CICS/VS APRM (CL)

SEND/RECEIVE MODE

For SNA logical units, only one of the
two ends of the session can be in send
mode at anyone time, that is, one is in
send mode, the other is in receive mode.
An application program in send mode can
issue any commands for the logical unit.
On the other hand, one in receive mode,
can issue only RECEIVE commands until the
mode is changed back to send. The EIB
indicator EIBRECV informs the
application program that it is in receive
mode and that it must perform the above
operations.

If the above protocols are not followed,
the transaction will be abended, unless
the read-ahead queueing feature
(RAQ=YES) is specified in the DFHPCT
TYPE=ENTRY system macro. This option
allows the application program to ignore
the EIBRECV indicator and to send and
receive at any time. However, it should
only be used with transactions that
support both bisynchronous devices and
logical units.

For displays, the transaction would
normally be in send mode, provided that
the INVITE option is not used, and can
ignore the EIBRECV indicator. Displays
work with a subset of the full protocols
(see the CICS/VS System/Application
Design Guide for further information).

SEND/RECEIVE PROTOCOL (INVITE OPTION)

The INVITE option of a SEND command
informs the session partner that it is
now in send mode and that it should send
a reply. At the same time it places the
transaction in receive mode. The
transaction should now issue a RECEIVE
command as its next operation.

CHAINING OF INPUT DATA

The unit of data from a logical unit is
the request/response unit (RU). One or
more RUs can be grouped together and
treated as a chai n.

The last RU in a chain (even if it is the
only RU in the chain) raises an
end-of-chain CEOC) condition. When this
occurs, a HANDLE CONDITION EDC command
will give control to a user-written
routine, which can do any additional
processing required when the complete
chain has been received.

For logical units that do not send
chained data (for example, the 3270
logical unit), the EOC condition occurs
for every RECEIVE request. For logical
units that send chained data, the EOC
condition usually occurs for every
RECEIVE request, but it may not,
depending on the length of the data and
on whether the terminal control table

Send "invalid
transaction ident."
message to terminal

Yes

Yes

Yes

Initiate
Printing

I nitiate specified

transaction

Initiate specified

transaction

I nitiate transaction

specified by

terminal input

Figure 12. Terminal-Oriented Task Identification

Initiate CSPG

Chapter 3.2.

No

Yes

I nitiate transaction

specified in
Attach FMH

I nitiate transaction

specified by

terminal input AI D

Terminal Control 89

CHNASSY option is specified by the system
programmer. The syntax descriptions for
individual logical units in this chapter
omit the EOC condition unless it is
likely that meaningful use may be made of
the fact that it has not been received.
The IGNORE CONDITION command can be used
to ignore the EOC condition in cases
where it is raised on every RECEIVE
command.

The EOC condition may occur
simultaneously with the EODS
(end-of-data-set) and/or INBFMH
(inbound-FMH) conditions. When this
happens, the user-written routine for the
EODS or INBFMH conditions will be given
control rather than the EOC routine.

The system programmer specifies, in the
TCTTE, whether or not chaining is to
occur. If chain assembly is specified,
instead of an input request being
satisfied by one RU at a time until the
chain is complete, the whole chain is
assembled and is sent to the CICS/VS
application program satisfying just one
request. This ensures that the integrity
of the whole chain is known before it is
presented to the application program.

CHAINING OF OUTPUT DATA

As in the case of input data, output data
is transmitted as request/response units
(RUs) . I f the length of thg data to be
sent exceeds the RU size, CICS/VS
automaticallY breaks up the data into RUs
and transmi ts these RUs as a chai n.
During transmission from CICS/VS to the
logical unit, the RUs are marked FOC
(first-of-chain), MOC (middle-of-chain),
or EOC (end-of-chain) to denote their
position in the chain. An RU that is the
only one in a chain is marked OC
(only-in-chain).

If the system programmer specified that
the application program can control the
chaining of outbound data, the
application program uses the CNOTCOMPl
(chain-not-complete) option of the SEND
command to indicate continuation of the
chain. In general, the CNOTCOMPl option
should not be used. Once an output
request with CNOTCOMPl specified has been
made, subsequent output requests may not
use the FMH, LAST, or (for the 3600
(3601) logical unit) lDC options until
the beginning of the next chain (that is,
the first output request following an
output request in which CHOTCOMPl is
omitted).

LOGICAL RECORD PRESENTATION

Each RECEIVE command results in one RU
(or one chain of RU~ if chain assembly is
specified) being presented to the
application program. An RU may consist of
one or more logical records. If an RU

90 CICS/VS APRM (Cl)

contains more than one logical record,
the records will be separated by new
lineCNl), inter-record separator(IRS),
or transparent(TRN) characters. Except
for lUTYPE4 devices, a logical record
cannot be transmitted in more than one
RU; the end of the RU is always the end of
the logical record. Data from an lUTYPE4
may contain logical records that span
RUs, in which case, chain assembly should
be specified.

The system programmer can specify in the
PCT, for specific application programs,
that the application program will be
presented with logical records instead of
with RUs or chains. For those
application programs for which this
option is specified, each RECEIVE command
results in one logical record being
presented to the application program,
regardless of whether chain assembly is
specified or not.

If the logical records are separated by
IRS or TRN characters, these are removed,
and do not appear in the data.
Therefore, a blank card will have a
length of zero. If Nl characters are
used to separate the logical records,
they are not removed, and the Nl
character from the end of each logical
record appears at the end of the data.
If the delimiter is a transparent (TRN)
character, CICS/VS will pass up to 256
bytes in one logical record. This
logical record can contain any
characters, including NL and IRS
characters, all of which will be treated
as data .

All communication features for logical
units are still in operation, that is,
notification of end-of-chain conditions,
and (for batch logical units only)
notification of end-of-data-set
conditions and presentation of the
inbound FMH at the beginning of a chain,
still occurs.

If chain assembly has been specified, a
logical record ends with a delimiter (Hl,
IRS, or TRN), or the end of the assembled
chain. The end of chain notification
occurs in the last logical record of the
chain.

DEFINITE RESPONSE

The type of response requested by CICS/VS
for outbound data is generally determined
by the system programmer in the peT; it
can be specified that all outbound data
for an application program will require a
definite response, or that
exception-response protocol is to be
used, that is, a response wi 11 be made
only if an error occurs.

The use of definite-response protocol has
some performance disadvantages, but may
be necessary for some application

programs. To provide a more flexible
method of specifying the protocol to be
used, the DEFRESP option is provided for
use on the SEND command. One example of
the use of thi s opt ion is to request a
definite response for every tenth output
command, exception response being the
general rule.

Because a definite response can be
requested only on the last element in the
chain, the DEFRESP and CNOTCOMPL options
are mutually exclusive.

FUNCTION MANAGEMENT HEADER (FMH)

A function management header (FMH) is a
field that can be included at the
beginning of an input or output message.
It is used to convey information about
the message and how it should be handled.
For some logical units, the use of an FMH
is mandatory, for others it is optional,
and in some cases FMHs cannot be used at
all.

For output, the FMH can be built by the
application program or by CICS/VS. For
input, the FMH can be passed to the
application program or it can be
suppressed by CICS/VS.

The FMH option of the SEND command is
used to specify that the application
program will provide the FMH in the data
to be transmitted.

The ATTACHID option specifies a set of
values that CICS/VS puts into an LU6
attach FMH which is concatenated ahead of
the user data.

FUrther information about FMHs is given
in the CICS/VS guides for the subsystems.
(See the Bibliography.)

Inbound FMH

An application program can request
notification when an FMH is included in
the data received from a batch logical
unit.

Whether or not inbound FMHs will be
passed to the application program is
specified in the INBFMH operand of the
DFHPCT TYPE=ENTRY system macro. It can be
specified that no inbound FMHs will be
passed, or that only the FMH at the end
of the data set will be passed, or that
all inbound FMHs will be passed.

If inbound FMHs are to be passed to the
application program, a HANDLE CONDITION
INBFMH command will allow control to be
passed to a user-written routine whenever
an inbound FMH is received. These
user-written routines can investigate
the contents of the FMH and take some
action depending on, for example, the
device from which the data has come. The

contents of the FMH can be accessed also
by means of the EIBFMH field of the EIB.

If an inbound FMH, containing an attach
FMH, is passed to the application
program, the attach FMH can be removed as
long as thi s has been alloltJed for by the
system programmer in the PCT. The values
of the attach FMH may be examined by
using the EXTRACT ATTACH command.

When input data is received as a chain of
RUs, only the first (or only) RU of the
chain is preceded by an FMH.

Outbound FMH

If the user data contains one or more
FMHs, the output request must specify the
FMH option. When sending output data to
a logical unit that expects an FMH, the
FMH must be at the start of the user data
to be transmitted.

UNSOLICITED INPUT

If unsolicited input arrives from a
logical unit, it is queued and used to
satisfy future input requests for that
logical unit. However, for 3270 logical
units, unsolicited input will be
discarded if the PUHSOL operand is
specified in the DFHSG PROGRAM=TCP system
macro.

BRACKET PROTOCOL (LAST OPTION)

Bracket protocol prevents the
interruption of a transaction between
CICS/VS and a logical unit. A bracket
can, generally, be begun either by
CICS/VS or by the logical unit, or ended
only by CICS/VS unless it is for an lU6
logical unit, in which case the logical
unit can end it. A bracket also can
delimit conversation between CICS/VS and
the logical unit or merely the
transmission of a series of data chains
in one direction.

Bracket protocol is used when CICS/VS
communicates with some logical units.
The use of brackets is usually
transparent to the application program.

Only on the last output request of a task
to a logical unit does the bracket
protocol become apparent to the
application program. On the last output
request to a logical unit, the
application program may specify the LAST
option on the SEND command. The last
output request is defined as either the
last SEND command specified for a task
.... Jithout chain control; or as the output
request that transmits the FOC or OC
marker of the last chain of a transaction
with chain control. The LAST option
causes CICS/VS to transmit an end-bracket
indicator with the final output message

Chapter 3.2. Terminal Control 91

to the logical unit. This indicator
notifies the logical unit that the
current transaction is ending. If the
LAST option is not specified, CICS/VS
waits until the task detaches before
sending the end-bracket indicator. Since
an end-bracket indicator is transmitted
only with the first RU of a chain, the
LAST option is ignored for a transaction
with chain control unless FOe or OC is
also specified.

Including a FREE command after a SEND
command with the LAST option may be
useful if the transaction does not
terminate immediately after issuing the
SEND command. This allows another
transaction to be initiated from the LU
or from CICS/VS.

SUSPEND A TASK (WAIT SIGNAL)

WAIT SIGNAL

Condition: SIGNAL

This command is used, for a principal
facility only, to suspend a task until a
SIGNAL condition occurs. Some logical
units can interrupt the normal flow of
data to the application program by a
SIGNAL data-flow-control command to
CICS/VS, signaling an attention, which in
turn causes the SIGNAL condition to
occur.

The HANDLE CONDITION SIGNAL command will
cause a branch to an appropriate
user-written routine when an attention is
received.

TERMINATE A SESSION (ISSUE DISCONNECT)

I ISSUE DISCONNECT

This command is used to terminate a
session between CICS/VS and a logical
unit, but only if the system programmer
has specified RELREQ=(,YES) in the DFHTCT
TYPE=TERMINAL macro for the logical unit.

RETURN A FACILITY TO CICS/VS (FREE)

FREE [SESSIONCname)]

Conditi~ns:
INVREQ, NOTALLOC, SESSIONERR

This command is used to return a facility
(a principal facility or a previously

92 CICS/VS APRM (CL)

allocated alternate facility) to CICS/VS
when a transaction owning it no longer
requires it. The facility then can be
allocated for use by other transactions.

Facilities not freed explicitly will be
freed by CICS/VS when the task
terminates.

TCAM-SUPPORTED TERMINALS AND LOGICAL
YNITS (CICS/OS/VS ONLY)

Because TeAM permits many applications to
share a single network, the CICS/VS-TCAM
interface supports data streams rather
than specific terminals or logical units.

Operations for terminals supported by
TCAM use the same options as the
terminals supported by othe~ access
methods. With the exception of the
BUFFER option for the 3270, all options
applicable for input operations are
supported by CICS/VS-TCAM. However, the
exceptional conditions ENDINPT and EOF
will not occur.

All output requests are the same for TCAM
as for other CICS/VS supported terminals,
except that:

• the ISSUE RESET command cannot be
used

• the ISSUE COPY and ISSUE PRINT
commands for the 3270 cannot be used

• the DEST option is available on the
SEND command, in addition to other
appropriate options

With the exception of 3650 logical units,
operations for logical units supported by
TCAM use the same options as logical
units supported by VTAM.

The 2260 compatibility facilities for the
3270 cannot be used with TCAM.

BTAM PROGRAMMABLE TERMINALS

When BTAM is used by CICS/VS for
programmable binary synchronous
communication line management, CICS/VS
initializes the communication line with a
BTAM read initial (TI); the terminal
response must be a write initial (TI) or
the equivalent. If an application
program makes an input request, CICS/VS
issues a read continue (TT) to that line;
if the application program makes an
output request, CICS/VS issues a read
interrupt (RVI) to that line. If end of
transmission CEOT) is not received on the
RVI, CICS/VS issues a read continueCTT)
until the EOT is received. When TCAM is
used, all of this line control is handled
by the MCP rather than by CICS/VS.

The programmable terminal response to a
read interrupt must be "end of

transmission" (EOT). The EOT respons~
may, however, be preceded by writes, in
order to exhaust the cont~nts of output
buffers; this is provided the input
buffer size is not exceeded by this data.
The input buffer size is specified by the
system programmer during preparation of
the terminal control table. CICS/VS
issues a read continue until it receives
an EOT, or until the input message
exceeds the size of the input buffer (an
error condition).

After receiving an EOT, CICS/VS issues a
write initial (TI) or the equivalent
(depend; ng on the type of line). The
programmable terminal response must be a
read initial (TI) or the equivalent.

If the application program makes another
output request, CICS/VS issues a write
continue (TT) to that lin~. If the
application program makes an input
request after it has made an output
request, CICS/VS turns the line around
with a write reset (TR). (CICS/VS does
not recognize a read interrupt.)

Application Program
Command

CICS/VSl

To ensure that binary synchronous
terminals (for example, System/370,
1130, 2780) remain coordinated, CICS/VS
processes the data collection or data
transmission transaction on any line to
completion, before polling other
terminals on that line.

The programmable terminal actions
required for the above activity, with the
corresponding user application program
commands and CICS/VS actions, are
summarized in Figure 13.

Automatically initiated transactions
attached to a device will cause message
DFH2503 to be sent to the device which
must be prepared to action it.

Input data is deblocked to ETX, ETB, RS,
and US characters. These characters are
moved wi th the data but are not included
in the data length. Characters such as
Nl, CR, IF, and EM are included as data
in a CICS/VS application program.

Programmable
Terminal Program

Read initial (TI) Write initial (TI)

RECEIVE

SEND

SEND

RECEIVE

Read

Read

Read

Write

Write

Write

R~ad

continue (TT)

interrupt (RVI)2

continue (TT)3

initial (TI)

continue (TT)

reset (TR)4

initial (TI)

Write continue (TT)

Write reset (TR) or

Write continue
Write reset

Read initial (TI)

Read continue (TT)

Read continue (TT)

Write initial (TI)

1 CICS/VS issues the macro shown, or, if the line is switched, the equivalent.
The user-written programmable terminal program must issue the equivalent
of the BTAM operation shown.

2 An RVI sequence is indicated by the DECFLAGS field of the data evel1t control
block (DECB) being set to X'02' and a completion code of X'7F' being
returned to the event control block (ECB).

3 The read cont i nue is' issued only if the EOT character is not recei ved on the
the read interrupt.

4 Write reset is issued only for point-to-point terminals.

Figure 13. BTAM Programmable Terminal Programming

Chapter 3.2. Terminal Control 93

!ElETY£~WRITER PROGRAMMING

The teletypewritar (World Trade only)
uses two different control characters for
print formatting, as follows:

< carriage return, (X'22' in ITA2
code or X'15' in EBCDIC)

- line feed, (X'28' in ITA2 code
or X'25' in EBCDIC)

The character < should always be used
first; that is <= or <===, but never =<,
otherwise following characters (data)
may be printed while the typebar is
moving to the left.

MESSAGE FORMAT

Message Beg;n: To start a message on a
new line at the left margin, the message
text must begin with X'1517' (EBCDIC).
CICS/VS recognizes the X'17' and changes
it to X'25' (X'17' is an IDLE character).

Message Body: To write several lines with
a single transmission, the lines must be
separated by X'1525', or if multiple
blank lines are required, by
X'152525 ... 25'.

Message End Before Next Input: To allow
input of the next message on a line at
the left margin, the preceding message
must end with X'1517'. CICS/VS
recognizes X'15' and changes the
character following it to X'25'.

Message End Before Next Output: In the
case of two or more successive output
messages, the message begin and the
message end look the same; that is
X'1517', except for the last message (see
above). To make the message end of the
preceding message distinguishable from
the message begin of the next message,
the penultimate character of the message
end must not be X' 15'.

MESSAGE LENGTH

It is recommended that messages for
teletypewriter terminals do not exceed a
length of about 3000 bytes ~r
approximately 300 words.

CONNECTION THROUGH VTAM

Both the TWX Model 33/35 Common Carrier
Teletypewriter Exchange and the WTTY
Teletypewriter (World Trade only) can be
connected to CICS/VS through BTAM, or
through VTAM using NTO.

If a device is connected through VTAM
using NTO, the protocols used are the
same as for the 3767 logical unit, and
the appl i cat i on program can make use of
these protocols (for example, HANDLE

94 CICS/VS APRM (Cl)

CONDITION SIGNAL). However, the data
stream is not translated to a 3767 data
stream but remains as that for a
TWX/WTTY.

DISPLAY DEVICE OPERATIONS

Besides the standard terminal control
commands for sending and receiving data,
several addi ti onal commands and lists are
provided for use with display devices
such as the 3270, as follows:

• Print displayed information (ISSUE
PRINT).

• Copy displayed information (ISSUE
COpy) •

•

•

•

•

Erase all unprotected fields (ISSUE
ERASEAUP) .

Input operation without Data
(RECEIVE).

Standard Attention Identifier list
(DFHAID).

Handling Attention Identifiers
(HANDLE AID).

• Standard Attribute and Printer
Control Character list (DFHBMSCA).

For devices with switchable screen sizes,
the size of the screen that can be used,
and the size to be used for a given
transaction, are defined by CICS/VS table
generation. These values can be obtained
by means of the NSSIGN command, described
in "Chapter 1.6. Access to System
Information" on page 29.

The ERASE option should always be
included in the first SEND command to
clear the screen and format it according
to the transmitted data. This first SEND
with ERASE will select also the screen
size to be used, as specified in the PCT
and TCT. If ERASE 1S omitted, the
screensize will be the same as its
previous setting, which may be incorrect.

Use of the CLEAR key outsi de of a
transaction will set the screen to its
default size.

PRINT DISPLAYED INFORMATION (ISSUE
PRINT)

If the 3270 print request facility is
included in the terminal control program
at CICS/VS system generation, the ISSUE
PRINT command will cause the displayed
data to be printed on the first
available, print-request-eligible
printer. For a BTAM-supported 3270, this
is a printer on the same control unit.
For a 3270 logical unit or a 3650
host-conversational (3270) logical unit,
it is a printer predesignated by the

system programmer using the PRINT TO or
ALTPRT operands of the DFHTCT
TYPE=TERMINAL macro. For a 3270-display
logical unit with the PTRADAPT feature
(LUTYPE2 specified in the TRMTYPE=
operand and PTRADAPT specified in the
FEATURE=operand of the DFHTCT
TYPE=TERMIHAL system macro) used with a
3274 or 3276, it ;s a printer allocated
by the printer authorization matrix.
(See the IBM 3270 Information Disp]~
System Component Description for details
oft his ma t r i x.) For a 3790
(3270-display) logical unit, it is a
printer allocated by the 3790.

For a pri nter to be avai lable it must be
in service and not currently attached to
a task.

For a STAM printer to be eligible, it
must be attached to the same control unit
as the display, must have a buffer
capacity equal to or greater than that of
the display, and must have FEATURE=PRINT
specified in the associated DFHTCT
TYPE=TERMINAL system macro.

For a 3270 logical unit to be eligible,
it must have been specified by the system
programmer, using the PRIHTTO or ALTPRT
operands, and it must have the correct
buffer capacity; FEATURE=PRINT is not
necessary. If COpy is specified with the
ALTPRT or PRINTTO operands, the printer
must be on the same control unit.

For some 3270 displays, it is possible
also to print the displayed information
without using CICS/VS. For further
details see under "printer authorization
matrix" in the IBM 3270 Information
Display System Component Description.

COpy DISPLAYED INFORMATION (ISSUE COpy)

The ISSUE COpy command is used to copy
the format and data contained in the
buffer of a specified terminal into the
buffer of the terminal that started the
transaction. This command cannot be used
for an LUTYPE2. Both terminals must be
attached to the same remote control unit.
The terminal whose buffer is to be copied
is identified in the TERMID option. If
the terminal identifier is invalid, that
is, it does not exist in the TCT, the
TERMIDERR condition will occur. The copy
function to be performed is defined by
the Copy Control Character (CCC)
specified in the CTLCHAR option of the
ISSUE COpy command.

The WAIT option of the ISSUE COPY command
ensures that the operation "has been
completed before control is returned to
the application program.

ERASE ALL UNPROTECTED FIELDS (ISSUE
ERASEAUP)

The ISSUE ERASEAUP command is used to
erase all unprotected fields of a 3270
buffer. The following actions are
performed:

1. All unprotected fields are cleared to
nulls (X'OO').

2. The modified data tags (MOTs) in each
unprotected field are reset to zero.

3. The cursor is positioned to the first
unprotected field.

4. The keyboard is restored.

The WAIT option of the ISSUE ERASEAUP
command ensures that the operation has
been completed before control is returned
to the application program.

INPUT OPERATION WITHOUT DATA (RECEIVE)

The RECEIVE command with no options
causes input to take place and the EIB to
be updated. However, data received by
CICS/VS is not passed on to the
application program and is lost. A wait
will be implied. Two of the fields in
the EIB that are updated are described
below:

Cursor Position (EIBCPOSN) - For every
terminal control (or BMS) input operation
associated with a display device, the
screen cursor address (position) is
placed in the EIBCPOSN field in the EIB.
The cursor address is in the form of a
halfword binary value and remains until
updated by a new input operation.

Attention Identifier (EIBAID) - For every
terminal control (or BMS) input operation
associated with a display device, an
attention identifier (AID) is placed in
field EIBAID in the EIB. The AID
indicates which method the terminal
operator has used to initiate the
transfer of information from the device
to CICS/VS; for example, the ENTER key, a
program function key, the light pen, and
so on. The field contents remain
unaltered until updated by a new input
operation.

Field EIBAID can be tested after each
terminal control (or BMS) input operation
to determine further processing and a
standard attention identifier list
(OFHAID) is provided for this purpose.
Alternatively, the HANDLE AID command can
be used to pass control to specified
label s when the AIDs are recei ved. The
standard attention identifier list and
the HANDLE AID command are described in
the next two sections.

Chapter 3.2. Terminal Control 95

STANDARD ATTENTION IDENTIFIER LIST
(DFHAID)

The standard attention identifier list
DFHAID simplifies testing the cont~nts of
the EIBAID field. The following list is
obtained by copying DFHAID into the
application program and shows the
symbolic names for the attention
identifiers (AIDS) and the corresponding
3270 functions.

For COBOL users, the- list consi sts of a
set of 01 statements that must be copied
into the working-storage section. For
PL/I users, the list consists of DECLARE
statements defining elementary character
variables.

Name

DFJiCLEAR
DFHENTER
DFHOPID

DFHMSRE
DFHTRIG
DFHPAI
DFHPA2
DFHPA3
DFHPEN
DFHPFI
DFHPF2

DFHPF24

3270 Function

CLEAR key
ENTER key
Operator identification
card reader or MSR
Extended (standard) MSR
Trigger field
PAl key
PA2 key
PA3 key
Light pen attention
PFI key
PF2 key

PF2(t key

HANDLING ATTENTION IDENTIFIERS (HANDLE
AID)

HANDLE AID option[Clabel)]
[option[Clabel)]] •..

This command is used to specify the label
to which control is to be passed when an
AID is received from a display device.
Control is passed after the input command
is compl~ted; that is, any data received
in addition to the AID has been passed to
the application program. In the absence
of a HANDLE AID command, control returns
to the application program at the point
immediately following the input command.

No more than twelve options are allowed
in the same command.

A HANDLE AID command will take precedence
over a HANDLE CONDITION command (see
"Chapter 1.4. Programming Techniques and
Restrictions" on page 17); if an AID is
received during an input operation, for
which a HANDLE AID command is active,
control will pass to the label specified
in that command, regardless of any
conditions that may have occurred (but
which did not stop receipt of the AID).

96 CI CS/VS APRM (CL)

The options that can be specified are:

•

•

•

Program attention key names (PAl,
PA2, or PA3)

Program function key names (PFI
through PF24)

CLEAR or ENTER (for the keys of the
same names)

• LIGHTPEN (for a light pen attention)

•

•

OPERID (for the operator
identification card reader, the
magnetic slot reader (MSR), or the
extended MSR)

ANYKEY (any PA key, any PF key, or
the CLEAR key, but not the ENTER key)

The HANDLE AID command for a given AID
applies only to the task in which it is
specified, remaining active until the
task is terminatedf or until another
HANDLE AID command for the same AID is
encountered, in which case the new
command overrides the previous one.

When control returns to a.program from a
program at a lower logical level, the
HANDLE AID commands that were active in
the higher-level program before control
was transferred from it are reactivated,
and those in the lower-level program are
c/12activated. (Refer to "Chapter 4.4.
Program Control" on page 189 for
information about logical levels.)

If no HANDLE AID command is acti ve for
any PA key, any PF key, or the CLEAR key,
but one is active for ANYKEY, control
will be passed to the label specified for
ANYKEY. A HANDLE AID command for an AID
overrides the HANDLE AID ANYKEY command
1:or that AID.

The following example shows a HANDLE AID
command that specifies one label for the
PAl key AID, a second label for the PA2
8nd PA3 key AIDs, all of the PF key AIDs
except PFlO, and the CLEAR key AID. If a
PFIO AID is received, control returns to
the application program at the
instruction immediately following the
input command. .

EXEC CICS HANDLE AID
PAl(LABl)
ANYKEY(LAB2)
PFIO

If a task is initiated from a terminal by
means of an AID, the fi rst RECEIVE
command in the task will not read from
the terminal but will copy only the input
buffer (even if the length of the data is
zero) so that control may be passed by
means of a HANDLE AID command for that
AID.

A BMS RECEIVE MAP command with the FROM
option will not cause a HANDLE AID

command to be invoked because no terminal
input is involved.

STAUDARD ATTRIBUTE AND PRINTER CONTROL
CHARACTER LIST (DFHBMSCA)

The standard list DFHBMSCA simplifies the
provision of field attributes and printer
control characters. The list is obtained
by copying DFHBMSCA into the application
program. The symbol i c names for the
various combinations of attributes and
control characters are given below.
Combinations other than shown must be
generated separately.

Name

DFHBMPEM
DFHBMPNL
DFHBMASK
DFHBMUNP
DFHBr1UNN
DFHBMPRO
DFHBMBRY
DFHBMDAR
DFHBMFSE
DFHBMPRF
DFHBMASF
DFHBft1ASB
DFHSAl
DFHCOl.ORl
DFHPSl
DFHHLTl
DFH3270 1

DFHVALl
DFHALll
DFHERROR
DFHDFT
DFHDFCOLl
DFHBLUE
DFHRED
DFHPINK
DFHGREEN
DFHTURQ
DFHYELLO
DFHNEUTR
DFHBASEl
DFHDFHIl
DFHBlINK
DFHREVRS
DFHUNDlN
DFHMFIl2
DFHMENT2
DFHMFE2

Attr;bute/Control Character

Printer end-of-message
Printer new-line character
Autoskip
Unprotected
Unprotected; numeric
Protected
High intensity
Dar'kj nonprint
MDT set to 1
Protected; MDT set to 1
Autoskip; MDT set to 1
Autoskip; high intensity
Set attribute order
Color attribute code
PS attribute code
Highlight attribute code
3270 attribute code
Validation attribute code
X'OO'(Reset all attributes)
X'3F'(Error code)
X'FF'(Default for maps)
Default color
Blue
Red
Pink
Green
Turquoise
Yellow
Neutral
Base PS
Default highlight
Blink
Reverse video
Underline
Mandatory fill
Man,.datof'y enter
Mandatory fill and enter

For text processing only. Use
for constructing embedded set
attribute orders in user text

2 Cannot be used in set attribute
orders

For assembler-language users, the list
consists of a set of EQU statements. For
COBOL users, the I; st consi sts of a set
of 01 statements that must be copied into
the working-storage section. For PL/I
users, the list consists of DECLARE
statements defining elementary character
variables.

The symbolic name DFHDFT must be used in
the application structure to override a
map attribute with the default. On the
other hand, to specify default values in
a set attribute (SA) sequence in text
build, the symbolic names DFHDFCOl,
DFHBASE, OR DFHDFHI should be used.

STANDARD CICS/VS TERMINAL SUPPORT (BTAM
9R TeAM)

RECEIVE {INTOCdata-area)ISET(ptr-ref)}
lENGTHCdata-area)

Condition: LENGERR

SEND FROM(data-area)
lENGTHCdata-value)
[DEST(name)]
[WAIT]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTOCdata-area)ISET(ptr-ref)]
[TOlENGTHCdata-area)]
[DEST(name)]

Condition: lENGERR

ISSUE RESET
ISSUE DISCONNECT

These commands can be used by all
terminals supported by CICS/VS that are
not dealt with separately in the
following sections.

Chapter 3.2. Terminal Control 97

LUTYPE4 LOGICAL UNIT

RECEIVE {INTOCdata-area)/SET(ptr-ref)}
lENGTH(data-area)

Conditions: EOC, EODS, INBFMH,
lENGERR, SIGNAL

SEND FROMCdata-area)
lENGTH(data-value)
[lolAIT]
[INVITEllAST]
[CNOTCOMPL/DEFRESP]
[FMH]

Conditions: IGREQCD, SIGNAL

CONVERSE FROM(data-area)
FROMlENGTHCdata-value)
[INTOCdata-area)/SET(ptr-ref)]
[TOlENGTH(data-area)]
[DEFRESP]
[FMHl

Conditions: EOe, EODS, IGREQCD,
INBFMH, LENGERR, SIGNAL

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

LUTYPE6 LOGICAL UNIT

RECEIVE [SESSIONCname)]
(INTO Cdata-area)fSET(ptr-ref)}
lENGTHCdata-area)

Conditions: INBFMH, NOTALLOC,
lENGERR, SESSIONERR, SIGNAL

SEND [SESSION(name)]
[WAIT]
[INVITE/LAST]
[ATTACHIDCname)]
[FROMCname)]
[L ENGHH name)]
[Fr1H]
[DEFRESP]

Conditions: CBIDERR, NOTALlOC,
SESSIONERR, SIGNAL

CONVERSE [SESSION(name)]
[ATTACHID(name)]
[FROMCname)]
[FROMlENGTH(name)]
[INTO(data-area)ISET(ptr-ref)]
[TOlENGTH(data-area)]
[Ff'lH]
[DEFRESP]

Conditions: CBIDERR, INBFMH,
lENGERR, NOTAlLOC, SESSIONERR, SIGNAL

WAIT SIGNAL ALLOCATE {SYSIDCname)ISESSION(name)}
(PROFllECname)]

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

98 CI CS/VS APRM (CL)

Conditions: CBIDERR, INVREQ,
SESSBUSY, SESSIONERR, SYSBUSY,
SYSIDERR

BUILD ATTACH
[ATTACHID(name)]
[PROCESS(name)] [RESOURCE(name)]
[RPROCESSCname)] [RRESOURCE(name)]
[QUEUECname)] [IUTYPECname)]
[DATASTRCname)] [RECFMCname)]

EXTRACT ATTACH
[ATTACHIDCname)ISESSIONCdata-area)]
[PROCESS(data-area)]
[RESOURCECdata-area)]
[RPROCESSCdata-area)]
[RRESOURCECdata-area)]
[QUEUECdata-area)]
[IUTYPE(data-area)]
[DATASTR(data-area)]
[RECFMCdata-area)]

Conditions: CBIDERR, INVREQ,
NOTAllOC, SESSIONERR

LUTYP~~ LOGICAL UNIJ: (con t i nued)

EXTRACT TCT
NETHAfl1E (name)
{SYSID(data-area)ITERMIDCdata-area)}

Condition: INVREQ

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

POINT [SESSIONCname)]

Conditions: NOTALLOC, SESSIONERR

WAIT SIGNAL

WAIT TERMINAL [SESSION(name)]

Conditions: NOTAlLOC, SESSIONERR,
SIGNAL

ISSUE DISCONNECT [SESSIONCname)]

Conditions: NOTALLOC, SESSIONERR

ISSUE SIGNAL [SESSIONCname)]

Conditions: NOTALLOC

The ALLOCATE command is used to acquire
an alternate facility and to select
optionally a set of terminal control
processing options. If SYSIDis
specified, CICS/VS will make available to
the application program one of the
sessi ons associ ated wi th the named
system. The name of this session can be
obtained from field EIBRSRCE in the EIB.
If SESSION is specified, CICS/VS will
make the named session available.

The BUILD ATTACH command is used to
specify a set of values to be placed in
the named attach header control block.
This control block contains values that
are to be sent in an LU6 attach FMH which
is constructed by CICS/VS, and is sent
only when a SEND ATTACHID or CONVERSE
ATTACHID command is executed. The
specified values override existing
values in the control block; unspecified
values are set to default values.

The EXTRACT ATTACH command is used to
retrieve a set of values held in an
attach header control block or that have
been built previously. This control
block contains values received in an
attach FMH or that have been built
previously.

The EXTRACT TCT command is used to allow
the eight-character VTAM networl(name for
a terminal or logical unit to be
converted into a corresponding
four-character name by which it is known
in the local CICS/VS system.

The FREE command is used to return a
facility to CICS/VS when a transaction
owning it no longer requires it. The
faci Ii ty can then be allocated for use by
other transactions. A facility can be
freed only when it is in free mode
(EIBFREE set to X'FF').

The POINT command is used to obtain
information about a named facility, such
as whether it owns the given facility.

SESSION STATUS INFORMATION

This information consists of several
fields that contain application-oriented
and session-oriented information when an
LU6 session is in progress. These fields
are located in the EIB.

Session status information is set to
zeros at the start of execution of every
command and is updated whenever a RECEIVE
or CONVERSE command naming an lU6 session
is executed. If the information is to be
retained across the execution of several
commands, the user must take steps to
preserve it.

APPLICATION-ORIENTED INFORMATION

The application-oriented information
determines the action taken by function
processing logic. The information
consists of, for example, indicators
(such as end-of-chain), an attach header,
and user data.

The user data is moved to an area
specified in the application program;
alternatively the address of the user
data is passed to the application
program.

The indicators, together with an attach
header indicator, are passed to the
application program in the EIB. The
EXTRACT ATTACH command (described
earlier in the chapter) can be used to
process the attach header data if such
data exists.

The following application-oriented
fields, each one byte in length, appear
in the EIB: EIBATT, EIBEOC, and EIBFMH.

SESSION-ORIENTED INFORMATION

The session-oriented information
determines the action taken by
session-handling logic, for example,
syncpoint requested. This information is
available to the application program in

Chapter 3.2. Terminal Control 99

fields EIBSYNC, EIBFREE, and EIBRECV in
the ErS, and should be processed in that
ot'der, before further operations, such as
SEND, RECEIVE, CONVERSE, or FREE, are
performed on the session.

.§YSTEH/3

RECEIVE {INTOCdata-area)I
SET(ptr-ref)}

LENGTHCdata-area)
[ASIS]

Condition: lENGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[DESTCnarne)]
[WAIT]
[ASIS]
[CNOTCOMPLJ

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOLENGTH(data-area)]
[DESTCname)]

Condition: lENGERR

SYSTEM/370

Support and command syntax as for
System/3.

100 CICS/VS APRM (Cl)

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

lENGTHCdata-area)
[PSEUDOBIN]l
[ASIS]

Condition: lENGERR

SEND FROMCdata-area)
LENGTH(data-value)
[DESTCname)]
[WAIT]
[PSEUDOBINJl
[ASIS]

CONVERSE FROMCdata-area)
FROMLENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
(TOlENGTH(data-area)]
[DESTCname)]

Condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

r---.-------------------------------------~
Start-stop only

Transactions are normally initiated from
the System/7 by issuing a four-character
transaction code which is transmitted in
BCD mode. Pseudobinary mode can be used
only while communicating with an active
CICS/VS transaction; it cannot be used to
initiate the transaction. The message
length is given as the number of words to
be transmitted Cnot as the number of
characters).

When a transaction is initiated on a
System/7, CICS/VS services that System/7
only for the duration of the transaction;
that is, to ensure efficient use of the
line, any other System/7s on the same
line are locked out for the duration of
the transaction. CICS/VS application
programs for the multipoint System!7
should be designed with the shortest
possible execution time.

The first word Ctwo characters) of every
message received by the System/7 must be
an identification word, except words
b.eginning with "0)" (X'20') which are
reserved by CICS/VS.

When the PSEUDOBIN option is specified,
the length of the data-area provided by
the application program must be at least
twice that of the data to be read.

In the case of a System/7 on a dial-up
(switched) line, the System/7

application program must, initially,
transmit a four-character terminal
i dent i fi cat ion. (Thi s term; nal
identification is generated during
preparat i on of the TCT through lise of the
DFHTCT TYPE=TERMINAl, TRMIDNT=parameter
specification.) CICS/VS responds with
either a "ready" message, indicating that
the terminal identification is valid and
that the System/7 may proceed as if it
were on a l~ased line, or an INVALID
TERMINAL IDENTIFICATION message,
indicating that the terminal
identification sent by the System/7 did
not match the TRMIDNT=parameter
specified.

Whenever CICS/VS initiates the
connection to a dial-up System/7, CICS/VS
writes a n~ll message, consisting of
three idle characters, prior to starting
the transaction. If there is no program
resident in the System/7 capable of
supporting the Asynchronous
Communication Control Adapter (ACCA),
BTAM error routines cause a data check
message to be recorded on the CICS/VS
Chost) system console.- This is normal if
the task initiated by CICS/VS is to IPL
the System/7. Although the data check
message is printed, CICS/VS ignores the
error and continues normal processing.
If a program capable of supporting the
ACCA is resident in the System/7 at the
time this message is transmitted, no data
check occurs.

When a disconnect is i~sued to a dial-up
System/7, the 'busy' bit is sometimes
left on in the interrupt status word of
the ACCA. If the line connection is
reestablished by dialing from the
System/7 end, the 'busy' condition of the
ACCA prevents message transmission from
the System/7. To overcome this problem,
the System/7 program must reset the ACCA
after e~ch disconnect and before message
transmission is attempted. This can be
done by issuing the following
instruction:

PWRI RESET ACCA

This procedure is not necessary when the
line is reconnected by CICS/VS Cthat is,
by an ~utomatically initiated
transact ion) .

2260 DISPLAY STATION

RECEIVE {INTOCdata-area)I
SET(ptr-ref)}

lEHGTH(data-area)
[LEAVEKB]

Cond it ion: L ENGERR

SEND FROM(data-area)
lENGTHCdata-value)
[CTLCHARCdata-value)]
[DESTCname)]
[LINEADDRCdata-value)]
[WAIT]
[LEAVEKB]

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
[INTO(data-area)ISETCptr-ref)]
[TOlEHGTHCdata-area)]
(CTLCHARCdata-value)]
[DESTCname)]
[LINEADDRCdata-value)]

Condition: LEHGERR

ISSUE RESET
ISSUE DISCONNECT

The LINEADDR option s~ecifies on which
line of a 2260 screen writing is to
begin. A line number in the range 1
through 12 must be provided in the
application program.

g26S DISPLAY STATION

Support and command syntax as for the
2260 Display Station except that a line
number in the range 1 through 15 must be
provided in the application program.

Chapter 3.2. Terminal Control 101

~741 COMMUNICATION TERMINAL

RECEIVE {INTOCdata-area)I
SET C ptr-re"f)}

lENGTHCdata-area)

Conditions: lENGERR, RDATTCnot TCAM)

SEND FROMCdata-area)
lENGTHCdata-value)
[DESTCname)]
[WAIT]

Condition: WRBRK

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
[INTO(data-area)ISET(ptr-ref)]
[TOlENGTH(data-area)]
[DEST(name)]

Conditions: lENGERR, RDATT (not
TCAM), WRBRK

ISSUE RESET
ISSUE DISCONNECT

READ ATTENTION

If the terminal operator presses the
Attention key on the 2741 after typing a
message, it is recognized as a Read
Attention if:

• Read Attention support is generated
into the system (CICS/OS/VS or
CICS/DOS/VS).

• The message is read by a RECEIVE
command.

When this occurs, control is transferred
to a CICS/VS read attention exit routine,
if it has been generated into the system.
This routine is a skeleton program that
can be tailored by the system programmer
to carry out act ions such as the
following:

•

•

•

•

Perform data analysis or
modification on a Read Attention.

Return a common response to the
terminal operator following a Read
Attention.

Return a response and request
additional input th~t can be read
into the initial input area or into a
new area.

Request new 1/0 without requiring a
return to the task to request
additional input.

102 CICS/VS APRM (Cl)

When the Read Att~ntion exit routine is
completed, control is returned to the
application program at the address
specified in the HANDLE CONDITION RDATT
command. The return is made whenever one
of the following occurs:

•

•

The exit routine issues no more
requests for input.

The exit routine issues a RECEIVE
request and the operator terminates
the input with a carriage return.
(If the operator terminates the input
with an Attention, the exit routine
i s reentered and i s free to issue
another RECEIVE request).

If a HANDLE CONDITION RDATT command is
not included in the application program
or Read Attention support has not been
generated, the attention is treated as if
the return key had been pressed.

WRITE BREAK (CICS/OS/VS ONLY)

If the terminal operator presses the
Attention key on the 2741 while a message
is bei ng recei ved, it is recogni zed as a
Write Break if:

• Write Break support is generated into
the system (available only in
CICS/OS/VS) by the system
programmer.

• A HANDLE CONDITION WRBRK command is
active in the application program.

When this occurs, the remaining portion
of the message is not sent to the
t:ermi nal. The wri te is termi nated as
though it were successful, and a new-line
character (X' 15') is sent to cause a
carrier return. Control is returned to
the application program at the address
specified for the WRBRK condition.

If a HANDLE CONDITION WRBRK command is
not included in the application program
or if Write Break support has not been
generated, the attenti on is treated as an
I/O error.

2770 DATA COMMUNICATION SYSTEM

Support and command syntax as for
$ystem/3. The 2770 recognizes a read
interrupt and responds by transmitting
the contents of the I/O buffer. After the
contents of the buffer have been
fransmitted, the 2770 responds to the
next read continue with an EOT. If the
1/0 buffer is empty, the 2770 transmits
an EOT. CICS/VS issues a read interrupt
and read continue to relinquish use of
the line and to enable the application
program to write to the 2770.

Input from a 2770 consists of one or more
logical records. CICS/VS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the I/O buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

The 2265 component of the 2770 Data
Communication System is controlled by
data stream characters, not BIAM macro
instructions; appropriate screen control
characters should be included in the
output area.

For 2770 input, data is deblocked to ETX,
ETB, RS, and US characters. These
characters are moved with the data to the
input area but are not included in the
data length; characters such as Hl, CR,
and LF are passed in the input area as
data.

2780 DATA TRANSMISSION TERMINAL

Support and command syntax as for
System/3. The 2780 recognizes a read
interrupt and responds by transmitting
the contents of the I/O buffer. After the
contents of the buffer have been
transmitted, the 2780 responds to the
next read continue with an EOT. If the
I/O buffer is empty, the 2780 transmits
an EOT. CICS/VS issues a read interrupt
and read continue to relinquish use of
the line and to enable the application
program to write to the 2780.

Input from a 2780 consists of one or more
logical records. CICS/VS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the I/O buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

Output to a 2780 requires that the
application program contains an
appropriate "escape sequence" for
component selection associated with the
output message. (For programming
details, see the publication Component
Description: IBM 2780 Data Transmission
Terminal.)

For 2780 input, data is deblocked to ETX,
ETB, RS, and US characters. These
characters are moved with the data to the
input area but are not included in the
data length; characters such as HL, CR,
and IF are passed in the input area as
data.

2980 GENERAL BANKING TERMIHAL SYSTEM

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

LEHGTHCdata-area)
PASSBK

Conditions: lEHGERR, NOPASSBKRD

SEND FROMCdata-area)
LENGTHCdata-value)
[DEST(name)]
{PASSBKICBUFF}

Condition: NOPASSBKWR

PASSBOOK CONTROL

All input and output requests to the
passbook area of a 2980 are dependent on
the presence of a passbook. The PASSBK
option is used to specify the passbook
area. The conditions NOPASSBKRD and
NOPASSBKWR will occur on input and output
requests respectively when a passbook is
not present. These conditions can be
handled by a HANDLE CONDITION command and
appropriate handling routines.

If the passbook is present on an input
request, the application program
generally writes back to the passbook
area to update the passbook. If the
NOPASSBKWR condition occurs, CICS/VS
allows immediate output to the terminal.
In a routine for the NOPASSBKWR
condition, the application program
should send an error message to the
journal area of the terminal to inform
the 2980 operator of this error
condition. To allow the operator to
insert the required passbook, CICS/VS
automatically causes the transaction to
wait 23.5 seconds before continuing.

On regaining control from CICS/VS after
sending the error message, the
application program can attempt again to
update the passbook when it has ensured
that the print element is positioned
correctly in the passbook area. This is
generally accomplished by issuing two
carrier returns followed by the number of
tabs required to move the print element
to the correct position. (See "The
DFH2980 Structure" later in this
section).

If the NOPASSBKWR condition occurs during
the second attempt to write to the
passbook area, the application program
can send another error message or take
some alternative action Cfor example,
place the terminal "out of service").

The presence of the Auditor Key on a 2980
Administrative Station Model 2 is
controlled by the SEND PASSBK command and

Chapter 3.2. Terminal Control 103

may be used in a manner similar to that
described above.

OUTPUT CONTROL

The un it of transmi ssi on for a 2980 is
called a segment. A segment is
equivalent to the buffer size of the 2972
Control Unit. However, for the passbook
and journal areas, CICS/VS allows an
application program to send messages that
exceed the buffer size. For the passbook
area, the maximum length of message is
limited to one line of a passbook to
avoid spacing (indexing) past the bottom
of the passbook. For the journal area,
the maximum length of message is
specified in the LENGTH option of the
S END command.

For example, consider a 2972 buffer size
of 48 characters and a 2980 Teller
Station Model 4 passbook print area of
100 characters/line. The application
program can send a message of 100
characters to this area; CICS/VS
automatically segments the message to
adjust to the buffer size. The
application program must insert the
passbook indexing character (X'25') as
the last character written in one output
request to the passbook area. This is
done to control passbook indexing and
thereby achieve positive control of
passbook presence.

If a message contains embedded passbook
index characters, and segmentation is
necessary because of the length of the
message, the output is terminated if the
passbook spaces beyond the bottom of the
passbook; the remaining segments are not
printed.

OUTPUT TO A COMMON BUFFER

The SEND CBUFF command is used to
transmit data to a common buffer. The
data is translated to the character set
of the receiving 2980 model. If more
than one 2980 ~odel type is connected to
the 2972 Control Unit, the lengths are
automatically truncated if they exceed
the buffer size.

THE DFH2980 STRUCTURE

The DFH2980 structure contains constants
that may be used when writing only COBOL
or PL/I appl i cati on programs for the
2980. The structure is obtained by
copying DFH2980 into the application
program.

Fpr COBOL, DFH2980 is copied into the
Wbfking Storage section; for PL/I,

104 CICS/VS APRM (CL)

DFH2980 is included using a %INCLUDE
s·t:a·tement.

The station identification is given in
the field STATIONID, whose value must be
determined by the ASSIGN command. To
test whether a normal or alternate
station is being used, the STATIONID
field is compared with values predefined
in DFH2980. The values are;

STATION-#-A or STATION-#-N

STATION_#_A or STATION_#_N

(COBOL)

CPL/I)

where ft is an integer (0 through 9) and A
and N signify alternate and normal
stations. (The break symbol is "-"
(minus) for COBOL, and" " (underline)
for PL/I.) -

The teller identification on a 2980
Teller Station Model 4 is given in the
one-byte character field TELLERID. An
ASSIGN command must be used to determine
the TELLERID value.

Tab characters (X'05') must be included
in the application program. The number
of tabs required to position the print
element to the first position of a
passbook area is given in the field
NUMTAB. An ASSIGN command must be used
to determine the NUMTAB value. The value
of NUMTAB is specified by the system
programmer and may be unique to each
t'2rmi nal.

Q·ther tab character's are inserted as
needed to control formatting.

Any of the DFH2980 values TAB-ZERO
through TAB-NINE for COBOL and PL/I, may
be compared with NUMTAB to determine the
number of tab characters that need to be
inserted in an output message to obtain
correct positioning of the print element.
~he tab character is included in DFH2980
as TABCHAR.

Thirty special characters are defined in
DFH2980. Twenty-three of these can be
referred to by the name SPECCHAR-# or
SPECCHAR # (for ANS COBOL or PL/I) where
i s an integer (0 through 22). The
seven other characters are defined with
names that imply their usage, for
example, TABCHAR. For further
information on these thirty characters,
see "Appendix B. Translation Tables for
the 2980" on page 243.

Several other characters defined in
DFH2980, such as HOLDPCF or TCTTEPCR, are
intended for use in application programs
using CICS/VS macro-instructions and
should not be required in application
programs using CICS/VS commands.

3270 INFORMATION DISPLAY SYSTEM (BTAH OR
TCAM)

RECEIVE {IHTOCdata-area>I
SETCptr-ref)}

lENGTH(data-area)
[ASIS]
[BUFFER] Cnot TCAM)

Condition: lENGERR

SEND FROMCdata-area)
lENGTH(data-value)
[DEST(name)] (TCAM only)
[WAIT]
[STRFIElDI[[ERASE]

[CTLCHAR(data-value)]]]

CONVERSE FROMCdata-area)
FROMlEHGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOlENGTH(data-area)]
[STRFIElDI[[ERASE]

[CTLCHAR(data-value)]]]

Condi t ion: l ENGERR

ISSUE PRINTl

ISSUE COPylTERMIDCname)
[CTlCHARCdata-value)]
[WAIT]

Condition: TERMIDERR

ISSUE ERASEAUP [WAIT]

ISSUE RESET
ISSUE DISCONNECT

1 The ISSUE PRINT and ISSUE COpy
commands cannot be used with TCAM.

3270 IN 2260 COMPATIBILITY MODE (QTAMl

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

lENGTHCdata-area)
[lEAVEKB]

Condition: lENGERR

SEND FROM(data-area)
lENGTHCdata-value)
[lINEADDR(data-value)]
[WAIT]
[ERASE]
[LEAVEKB]

CONVERSE FROMCdata-area)
FROMlENGTH(data-value)
[INTO(data-area)ISET(ptr-ref)]
[TOlENGTHCdata-area)]
[lINEADDRCdata-value)]
[ERASE]

Condition: lENGERR

ISSUE DISCONNECT

On output, a SEND ERASE command will
clear the screen and set the cursor to
the upper left corner before writing
starts.

Chapter 3.2. Terminal Control 105

RECEIVE (INTOCdata-area)I
SETCptr-ref)}

LENGTH(data-area)
[ASIS]
[BUFFER]

Condition: LENGERR

SEND FROM(data-area)
LENGTH(data-value)
[WAIT]
[INVITEILAST]
[STRFIELDI[[ERASE]

[CTLCHAR(data-value)]]]
[DEFRESP]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISET(ptr-refl]
[STRFIELDI[[ERASEl

[CTLCHARCdata-valuel]]
[TOLENGTH(data-areal]
[DEFRESP]

Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SES5IONERR

ISSUE PRINT

ISSUE COpy TERMIDCname)
[CTLCHAR(data-value)]
[WAIT]

Condition: TERMIDERR

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

106 CICS/VS APRM Cel)

3270 SCS PRINTER LOGICAL UNIT

SEND FROMCdata-areal
lENGTH(data-value)
[DESTCname)]
[WAIT]
[INVITEllASTJ
[CNOTCOMPlIDEFRESP]
[DEFRESP]

FREE [SESSION(name)]

Conditions: INVREQ, NOTAlLOC,
SESSIONERR

ISSUE DISCONNECT

The SCS printer logical unit accepts a
character string as defined by SNA
(Systems Network Arch; tecture). Some
devices connected under SNA can send a
signal which can be detected by the
HANDLE CONDITION SIGNAL command, which in
turn can invoke an appropriate handling
routine. If necessafy, a WAIT SIGNAL
command can be used to make the
application program l,fait for the signal.
The PA keys on a 3287 can be used in this
way, or with a RECEIVE command.

3270-DISPLAY LOGICAL UNIT (LUTYPE2J

RECEIVE{INTOCdata-area)I
SET(ptr-ref)}

lENGTHCdata-area)
[ASIS]
[BUFFER]

Condition: LENGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[DESTCnarne)]
[WAIT]
[STRFIElDI[[ERASEl

[CTlCHARCdata-value)]]]
[INVITEILAST]
[DEFRESP]

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
INTOCdata-area)ISETCptr-ref)]
(TOLENGTHCdata-area)]
(STRFIElDI[[ERASEl

[CTlCHARCdata-value)]]
[DESTCname)]
(DEFRESP]

Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ~ NOTAllOC~
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

3270-PRINTER LOGICAL UNIT (LUTYPE31

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

LENGTHCdata-area)
[ASIS]
[SUFFER]

Condition: LEHGERR

SEND FROMCdata-area)
lEHGTHCdata-value)
[OESTCnarne)]
[WAIT]
[STRFIElDI[[ERASE]
[CTlCHARCdata-value)]]]
[INVITEILAST]
[OEFRESP]

CONVERSE FROMCdata-area)
FROMLENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[STRFIELDI[[ERASE]

[CTlCHAR(data-value)]]
[OESTCname)]
[DEFRESP]

Condition: LENGERR

FREE [SESSIONCname)]

Conditions: INVREQ~ NOTAlLOC~
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

Chapter 3.2. Terminal Control 107

3600 FINANCE COMMUNICATION SYSTEM (BTAM)

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

LENGTHCdata-area)

Condition: LENGERR

SEND FROMcdata-area)
LENGTH(data-value)
[OEST(name)]
[WAIT]

CONVERSE FROMCdata-area)
FROMlENGTH(data-value)
INTO(data-area)ISET(ptr-ref)]
[TOlENGTH(data-area)]
[DEST(name)]

Condition: lENGERR

ISSUE RESET

ISSUE DISCONNECT

INPUT

The unit of transmission from a 3601
Finance Communication Controller to
CICS/VS is a segment consisting of the
start-of-text data link control
character (STX), the one byte
identification of the 3600 logical work
station that issued the processor write,
the data, and either an end-of-block
(ETB) or an end-of-text (ETX) control
char'acter.

A logical work station sends a message
either in one segment, in which case the
segment ends with ETX, or in more than
one segment, in which case only the last
segment ends with ETX, all others ending
with ETB.

The input area passed to the user-written
application program consists of the data
only. The one-byte field TCTTEDLM, which
may be obtained by means of an ASSIGN
DELIMITER command, contains flags
describing the data-link control
character (ETB, ETX, or IRS) that ended
the segment. The application program can
issue terminal control commands to read
the data until it receives a segment
ending with ETX. If blocked data is
transmitted, it is received by CICS/VS as
blocks of segments. Only the first
segment in a block starts with the STX
control character, and all segments are
separated by IRS characters. None of the
segments contain ETB or ETX·characters
except the last, which has the ETX
character.

108 CICS/VS APRM (el)

For blocked input, the flags in TCTTEDlM
only indicate end of segment, not end of
message. The CICS/VS application program
still receives only the data, but
user-defined conventions may be required
to determine the end of the message.

The field TCTTEDLM also indicates the
mode of the input, either transparent or
non-transparent. Blocked input is
non-transparent.

The terminal control program does not
pass input containing a "start of header"
(SOH) data link control character to a
user-written application program. If it
receives an SOH it sets an indicator in
TCTTEDLM, passes the input to the user
exit in the terminal control program, and
then discards it.

OUTPUT

When an application program issues a SEND
command, the terminal control program
determines, from the value specified in
the BUFFER parameter of the DFHTCT
TYPE=TERMINAl system macro, the number of
segments to be built for the message. It
sends the message to the 3600 logical
unit either in one segment consisting of
a start-of-text character (STX), the
data, and an end-of-text character (ETX);
or in more than one segment, in which
case only the last ends with ETX, all
others ending with ETB.

The host input buffer of the 3600
controller and the input segment of the
receiving logical unit must be large
enough to accommodate the data sent by
CICS/VS. However, space for the data
link control characters need not be
included. The 3600 application program
reads the data from the host, by means of
an LREAD, until it has received the
ent ire message.

CICS/VS system output messages begin with
"DFH" followed by a four-byte message
number and the message text. These
messages are sent in non-transparent
mode. It is suggested that CICS/VS
user-written application programs do not
send messages starti ng ... Jl th "DFH" to the
3601.

RES END MESSAGE

When a logical unit sends a message to
the host and a short-on-storage condition
exists or the input is unsolicited (the
active task associated with the terminal
has not issued a read), the terminal
control program sends a "resend" message
to the logical unit. The format of this
message is DFHI033 RE-ENTER followed by
X'lS' (a 3600 new line character)
followed by the first eight bytes of the
text of the message being rejected. No

message is sent to the destinations CSMT
or CSTL.

The first eight bytes of data sent to
CICS/VS can be used by the 3600
application program to define a
convention to associate responses
received from CICS/VS with transactions
sent to the host, for example, sequence
numbers could be used.

If a CICS/VS user-written application
program has already issued a SEND command
when a resend situation occurs, the
resend message is not sent to the 3601
until the user-written application
program message has been sent. A 3600
logical unit cannot receive a resend
message while receiving a segmented
message.

Only one resend message at a time can be
queued for a logical unit. If a second
resend situation occurs before CICS/VS
has written the first, a resend message,
containing the eight bytes of data that
accompanied the second input transaction
from the 3600 logical unit, is sent.

The resend message is sent in transparent
mode if the input data from the 3601 to
be re-transmitted is received by CICS/VS
in transparent mode. Otherwise it is
sent in non-transparent mode.

3600 PIPELINE LOGICAL UNIT

SEND FROMCdata-area)
LENGTHCdata-value)
[t~AIT]

ISSUE DISCONNECT

3600 (3601) LOGICAL UNIT

RECEIVE {INTOCdata-area)I
SET Cpt r- ref) }

lENGTHCdata-area)

Conditions: EOC, EODS, INBFMH,
lENGERR, SIGNAL

SEND FROMCdata-area)
lENGTHCdata-value)
[LDCCname)IFMH]
[DESTCname)]
[WAIT]
[INVITEllAST]
[CNOTCOMPLIDEFRESP]

Condition: SIGNAL

CONVERSE FROMCdata-area)
FROMLENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[LDCCname)IFMH]
[DESTCname)]
[DEFRESP]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

FREE [SESSIONCname)]

Conditions:
INVREQ, NOTALlOC, SESSIONERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

LOGICAL DEVICE CODE (LDC OPTION)

A logical device code CLDC) is a code
that can be included in an outbound FMH
to specify the disposition of the data
Cfor example, to which subsystem terminal
it should be sent). Each code can be
represented by a unique LOC mnemonic.
The installation can specify up to 256
two-character mnemonics for each TCTTE,
and two or more TCTTEs can share ali st
of these mnemonics. Corresponding to
each lOe mnemonic for each TCTTE is a
numeric value (0 through 255). A 3600
d~vice and a logical page size are also
associated with each LOCo "lOC" or "LOC
va--1u~" is used in this pUblication in
refe~ence to the code specified by the
user. "lOC mnemonic" refers to the

Chapter 3.2. Terminal Control 109

two-character symbol that represents the
lDe numeric value.

When the lDe option is specified in the
SEND command, the numeric value
associated with the mnemonic for the
particular TCTTE, is inserted in the FMH.
The numeric value associated with the lDC
mnemonic is chosen by the installation,
and is interpreted by the 3601
application program.

3600 (3614) LOGICAL UNIT

RECEIVE {INTO(data-area)I
SET(ptr-ref)}

lENGTHCdata-area)

Condition: lENGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[DESTCname)]
[WAIT]
[INVITEILAST]
[CNOTCOMPlIDEFRESP]

CONVERSE FROM(data-area)
FROMLENGTHCdata-value)
[INTOCdata-area)ISET(ptr-ref)]
[TOLENGTHCdata-area)]
[OEFRESPCname)]
[DESTCname)]

Condition: LENGERR

FREE [SESSIONCname)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE DISCONNECT

The data stream and communication format
used between a CICS/VS application
program and a 3614 is determined by the
3614. The application program is

110 CICS/VS APRM (Cl)

therefore device dependent when handling
3614 communications.

For further information about designing
3614 application programs for CICS/VS,
refer to the CICS/VS 3600 Guide.

3630 PLANT COMMUNICATION SYSTEM

Support and command syntax as for the
3600 (3601) logical unit and the 3600
pipeline logical unit as described
earlier in this chapter for the 3600
Finance Communication System.

~6S0/3680 HOST COMMAND PROCESSOR LOGICAL
UNIT

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

LENGTHCdata-area)

Condi ti ons: EOC, LENGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[WAIT]
[INVITEILAST]
[CNOTCOMPLIDEFRESP]
[FMH]

CONVERSE FROMCdata-area)
FROMLENGTHCdata-value)
[INTO(data-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[F~1H]
[DEFRESP]

Condition: LENGERR

FREE [SESSIONCname)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE DISCONNECT

3650 HOST CONVERSATIOtfAL (3270) LOGICAL
UNIT

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

LENGTHCdata-area)

Conditions: EOC, LENGERR

SEND FROMCdata-area)
lENGTHCdata-value)
[CTLCHARCdata-value)]
[WAIT]
[ERASE]
[INVITEILAST]
[CNOTCOMPLIDEFRESP]
[FMH]

CONVERSE FROMCdata-area)
FROMLENGTHCdata-value)
(tNTOCdata-area)ISETCptr-ref)]
(TOLENGTHCdata-area)]
[CTLCHARCdata-value)]
[ERASE]
[DEFRESP]
(FMH]

Condition: LENGERR

FREE [SESSIONCname)]

Conditions: INVREQ, NOTAlLOC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

3650 HOST CONVERSATIONAL (3653) LOGICAL
UNIT

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

lENGTHCdata-area)

Conditions: EOC, lENGERR

SEND FROMCdata-area)
lENGTHCdata-value)
B.JAITl
[INVITEILAST]
[CNOTCOMPlIDEFRESP]

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
[INTOCdata-area)ISET(ptr-ref)]
[TOlENGTHCdata-area)]
[DEFRESP]

Conditions: EOC, lENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE DISCONNECT

Chapter 3.2. Terminal Control 111

3650 INTERPRETER LOGICAL UNIT

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

lEHGTHCdata-area)

Conditions: EOC, EODS, INBFMH,
lENGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[WAIT]
[IHVITEllAST]
[DEFRESP]
[FMH]

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
[INTOCdata-area)ISET(ptr-ref)]
[TOlENGTHCdata-area)]
[DEFRESP]
[FMHl

Conditions: EOC, EOOS, IHBFMH,
LENGERR

FREE [SESSIONCname)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE LOAD PROGRAMCname)
[CONVERSE]

Conditions: NONVAl, NOSTART

ISSUE EODS

ISSUE DISCONNECT

The ISSUE lOAD command specifies the name
of the 3650 application program that is
to be loaded.

The ISSUE EODS command can be used to
send an end-of-data-set function
management header to the 3650.

112 CICS/VS APRM (Cl)

3650 PJPELINE LOGICAL UNIT

Support and command syntax as for the
3600 Pipeline Logical Unit.

3650/3680 FULL FUNCTION LOGICAL UNIT

Support and command syntax as for the
3790 Full Function logical Unit.

3660 SUPERMARKET SCANNING SYSTEM

Support and command syntax as for
System/3.

3735 PROGRAMMABLE BUFFERED TERMINAL

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

LENGTHCdata-area)

Conditions: EOF Cnot TCAM), lEHGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[DESTCname)]
[WAIT]
[ASIS]

CONVERSE FROM(data~area)
FROMLENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[DESTCname)]

Conditions: EOF (not TCAM), LENGERR

ISSUE RESET
ISSUE DISCONNECT

The 3735 Programmable Buffered Terminal
may be serviced by CICS/VS in response to
terminal-initiated input, or as a result
of an automatic or time-initiated
transaction. Both are explained below.

3735 TRANSACTIONS - AUTOANSWER

The 3735 transaction is attached by
CICS/VS upon receipt of input from a
3735. Data is passed to the application
program in 476-byte blocks; each block
(one buffer) may contain several logical
records. The final block may be shorter
than 476 bytes; zero-length final blocks
are not, however, passed to the
application program. If the block
contains several logical records, the
application program must perform any
necessary deblocking and gathering of
partial logical records.

It is recommended that input data from a
3735 be spooled to an intermediate data
set (for example, an intrapartition
destination) to ensure that all data has
been captured before deblocking and
processing that data.

The application program must follow 3735
conventions and read to end-of-file
before attempting to write FDPs (form
description programs) or data to the
3735. For this reason, the application
program must include a HANDLE CONDITION
command for the EOF condition. When
control passes to the EOF routine, FDPs
or data may be written to the 3735, or,
optionally, CICS/VS requested to
disconnect the line.

The 3735 may transmit the EOF condition
immediately upon connection of the line,
in which case, a HANDLE CONDITION command
for the EOF condition must be issued
before any other terminal control
commands.

The application program must format all
special message headers for output to the
3735 (for example, SELECTRIC,
POWERDOWN). If FDPs are to be
transmitted to a 3735 with ASCII
transmission code, the ASIS option must
be included in the SEND command for each
block of FDP records.

An ISSUE DISCONNECT command must be
issued when all output has been
transmi tted to the 3735. If the
ilPpl i cat i on program ends duri ng batch
write mode before the ISSUE DISCONNECT
command is executed, CICS/VS forces a
3735 "receive abort" condition and all
data just transmitted is ignored by the
3735.

3735 TRANSACTIONS - AUTOCALL AND
TIME-INITIATED

In automatic and time-initiated
transactions, all considerations stated
above apply when CICS/VS dials a 3735,
except that the EOF condition cannot
occur.

CICS/VS connects the line and allows the
first terminal control command to
indicate the direction of data transfer.
If this first command is a SEND and the
3735 has data to send, the 3735 causes
the line to be disconnected.

3740 DATA ENTRY SYSTEM

RECEIVE (INTO(data-area)I
SET(ptr-ref)}

LENGTHCdata-area)

Conditions: EOF (except TCAM),
ENDINPT (except TCAM), LENGERR

SEND FROM(data-area)
LENGTH(data-value)
[DESTCname)]
[WAIT]
[ASIS]

---~

CONVERSE FROMCdata-area)
FROMLENGTH(data-value)
[INTO(data-area)/SET(ptr-ref)]
[TOLENGTH(data-area)]
[DEST(name)]

Condition: LENGERR

ISSUE ENDFILE [ENDOUTPUT]

ISSUE ENDOUTPUT [ENDFILE]

ISSUE RESET
ISSUE DISCONNECT

BATCH MODE APPLICATIONS

In batch mode, many files are e<changed
behJeen the 3740 and CICS/VS ina si ngle
transmi s5i on. The transmi ssi Ot,I of an
input batch must be complete before an
output transmission can be started.

On input, the EOF (end-of-file) condition
is raised by CICS/VS when a null block
(indicating the end of a physical file)
is recei ved from the 3740. A HANDLE
CONDITION EOF command should be included
to specify that processing of the file is
to continue. Eventually, the EHDINPUT
condition is raised by CICS/VS when all
input has been received. No more RECEIVE
commands will be executed and a HANDLE
CONDITION ENDINPUT command should be
included to specify that control is to be
returned to CICS/VS 56 that the 3740 can
be set to receive data.

On output, the ISSUE ENDFIlE and ISSUE
ENDOUTPUT commands are used to indicate
the end-of-file and end-of-output
conditions, respectively, to the 3740.
These two conditions may be specified in
one command if required, for example:
ISSUE ENDFILE ENDOUTPUT.

Chapter 3.2. Terminal Control 113

3767 INTERACTIVE LOGICAL UNIT

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

lENGTHCdata-area)

Conditions: EOC, lENGERR, SIGNAL

SEND FROM(data-area)
lENGTH(data-value)
[DESTCname)]
[WAIT]
[INVITEllAST]
[CNOTCOMPlIDEFRESP]

Condition: SIGNAL

CONVERSE fROMCdata-area)
FROMlENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[DESTCname)]
[DEFRESPJ

Conditions: EOC, lENGERR, SIGNAL

FREE [SESSIONCname)]

Conditions: INVREQ, NOTAllOC,
SESSIONERR

WAIT SIGNAL

Condition: SIGNAL
~--------------------------------------

ISSUE DISCONNECT

Condition: SIGNAL

114 CICS/VS APRM Cel)

~770 BATCH LOGICAL UNIT

RECEIVE {INTOCdata-area)I
SET(ptr-ref)}

lENGTHCdata-area)

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

SEND FROMCdata-area)
LENGTHCdata-value)
[DEST(name)]
[WAIT]
[INVITEILASTJ
[CNOTCOMPLIDEFRESP]
[FMH]

Condition: SIGNAL

CONVERSE FROMCdata-area)
FROMLENGTH(data-value)
[INTO(data-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[DESTCname)]
[DEFRESP]
[FMH]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

FREE [SESSIONCname)]

Conditions: INVREQ, NOTALlOC,
SESSIONERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

3770 INTERACTIVE LOGICAL UNIT

Support and command syntax as for 3767
Interactive Logical Unit.

~770 FU~L FUNCTION LOGICAL UNIT

Support and command syntax as for 3790
Full Function Logical Unit.

~780 COMMUNICATIONS TERMINAL

Support and command syntax as for
Systern/3.

3790 FULL FUNCTION LOGICA~ UNIT

RECEIVE {INTOCdata-area)I
SETCptr-ref)}

lENGTH(data-area)

Conditions: EOC, EODS, INBFMH,
lENGERR, SIGNAL

SEND FROMCdata-area)
lENGTH(data-value)
[DESTCname)]
[WAIT]
[INVITEILAST]
[CNOTCOMPLIDEFRESP]
[FMH]

Condition: SIGNAL

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO(data-area)ISETCptr-ref)]
[TOLENGTH(data-area)]
[DEST(name)]
[FMHl
[DEFRESPl

Conditions: EOC, EODS, INBFMH,
lENGERR, SIGNAL

FREE [SESSIONCname)]

Conditions: INVREQ, NOTAllOC,
SESSIONERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

3790 INQUIRY LOGICAL UNIT

RECEIVE (INTOCdata-area)I
SET(ptr-ref)}

lENGTH(data-area)

Condi'tions: EOC, EODS, INBFMH,
LENGERR

SEND FROMCdata-area)
lENGTH(data-value)
[DEST(name)]
[WAIT]
[IHVITEllASTl
[CHOTCOMPLIDEFRESP]
[FMH]

CONVERSE FROMCdata-area)
FROMlENGTH(data-value)
[INTOCdata-area)ISET(ptr-ref)]
[TDLEHGTHCdata-area)]
[DEST(name)]
[FMHl
[DEFRESPl

Conditions: EDC, EODS, INBFMH,
lEHGERR

FREE [SESSION(name)]

Conditions: IHVREQ, NOTAlLOC,
SESSIOHERR

ISSUE DISCONNECT

3790 SCS PRINTER LOGICAL UNIT

SEND FROMCdata-area)
LENGTHCdata-value)
[DEST(name)]
[WAIT]
[IHVITEllAST]
[CNOTCOMPLIDEFRESP]
[DEFRESP]

FREE [SESSION(name)]

Conditions: INVREQ, NOTAllOC,
SESSIONERR

ISSUE DISCONNECT

Chapter 3.2. Terminal Control 115

3790 (3270-DISPLAY) LOGICAL UNIT

RECEIVE {INTOCdata-area)I
SET(ptr-ref)}

lENGTH(data-area)
[ASIS]
[SUFFER]

Condition: LENGERR

SEND FROMCdata-area)
LEHGTHCdata-value)
[OESTCname)]
[CTLCHARCdata-value)]
[WAIT]
[ERASE]
[INVITEILAST]
[DEFRESP]

CONVERSE FROMCdata-area)
FROMlENGTHCdata-value)
[INTOCdata-area)ISETCptr-ref)]
[TOLENGTHCdata-area)]
[DESTCname)]
[DEFRESP]
[CTLCHARCdata-value)]
[ERASE]

Condition: LENGERR

FREE [SESSIONCname)]

Conditions: IHVREQ, NOTAlLOC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

116 CICS/VS APRM (Cl)

3790 (3270-PRINTER) LOGICAL UNIT

SEND FROMCdata-area)
LENGTH(data-value)
[CTLCHARCdata-value)]
[WAIT]
[ERASE]
[INVITEILAST]
[DEFRESP]

FREE [SESSIONCname)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

1770 AUDIO RESPONSE UNIT

RECEIVE {INTOCdata-area)I
SET cpt r- J' e f) }

LENGTHCdata-area)

Condition: LENGERR

SEND FROMCdata-area)
LENGTHCdata-value)
[DESTCname)]
[WAIT]

CONVERSE FROMCdata-area)
FROMLENGTHCdata-value)
[INTO(data-area)ISETCptr-ref)]
[TOLENGTH(data-area)]

Condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

CICS/VS cannot distinguish between
special codes (characters) entered at
audio terminals (for example, the 2721
Portable Audio Terminal); however, an
~pplication program can make use of these
codes. The special codes that can be
entered from a 2721 are as follows:

Key

CALL END
CNCL

Code(hex)

37
18

VERIFY
RPT

3B or 7B
20
3D

EXEC 26
Fl B1
F2 B2
F3 B3
F4 B4
F5 B5
00 AO
00 3B or BO
IDENT 11, 12, 13, or 14

plus two other characters

For further information concerning the
2721, see the publication IBM 2721
Portable Audio Terminal Component
Description.

The special codes AO and 3B (or BO) are
also generated by the keys * and #
respectively of a "Touch-Tone"
telephone. (Touch-Tone is the trademark
of the American Telephone and Telegraph
Company.)

If the SET option has been specified in
the associated command, codes 26, 37, and
3B (each of which causes a hardware
interrupt) will immediately follow the
data, but will not be included in the
value set by the LENGTH option.

If the end-of-inquiry (EOI) Disable
Feature (Feature No. 3540) is installed
on the 7770 Model 3, the option of
including either or both # and 000 as
data is available.

If, after receiving at least one code
from a terminal, no other codes have been
received by the 7770 for a period of five
seconds, the 7770 generates an EO!
hardware interrupt that ends the
operation.

JERMINAL CONTROL OPTIONS

ASIS
For System/370, System/7, 2770,
2780, and 3740: indicates that
output is to be sent in transparent
mode (with no recognition of control
char'acter~s and accept i ng any of the
256 possible combinations of eight
bi ·ts as val i d transmi ttable data).

For System/7: indicates that the
data being written or read is not to
be translated.

For 3735: prevents translation of
the Form Description Program (FOP)
records that are to be transmitted
to a 3735 using ASCII code.

For 3270 and VTAM terminals:
specifies a temporary override of

the uppercase translation feature
of CICS/VS to allow the current task
to receive a message containing both
uppercase and lowercase data.

This option has no effect on the
first RECEIVE command of a
transaction, as terminal control
will perform a read initial and use
the terminal defaults to translate
the data.

Thi s opti on has no effect if the
screen contains data prior to a
transaction being initiated. This
data will be read and translated in
preparation for the next task and
the first RECEIVE command in that
task will retrieve the translated
data.

ATTACHID(name)
specifies, for a BUILD ATTACH
command, that the set of values
specified is to be placed in an
attach header control block
identified by the specified name
(maximum of eight characters).

specifies, for a SEND or CONVERSE
command, that an attach header
(created by a BUILD ATTACH command)
is to precede, and be concatenated
with, the user data supplied in the
FROM option. "Name" (maximum of
eight characters) identifies the
attach header control block to be
used in the local task.

specifies, for an EXTRACT ATTACH
command, that values are to be
retrieved from an attach header
control block. "Name" (maximum of
eight characters) identifies this
control block to the local task. If
the option is omitted, the attach
header control block to be used is
that associated with the facility
n~~ed in the SESSION option.

BUFFER

CBUFF

specifies that the contents of the
3270 buffer are to be read,
beginning at buffer location one and
cont i nu i n9 unt i 1 a 11 contents of the
buffer have been read. All
character and attribute seque.nces
(including nulls) appear in the
input data stream in the same order
that they appear in the 3270 buffer.

specifies that data is to be written
to a common buffe.r in a 2972 Control
Urdt. The WAIT option is implied.

CNOTCOMPL
indicates that the request/response
uni t (RU) sent as a result of thi s
SEND command will not complete the
chain. If this option is omitted

Chapter 3.2. Terminal Control 117

and chain assembly has been
specified, the RU will terminate the
chain.

CONVERSE
specifies that the 3650 application
program will communicate with the
host CPU. If this option is not
specified, the 3650 application
program cannot communicate with the
host CPU.

CTLCHAR(data-valueJ
specifies a one-byte Write Control
Character (WeC) that controls a SEND
command, or the Copy Control
Character (CCC) that controls an
ISSUE COPY command, for a 3270. An
COBOL user must specify a data area
containing this character. If the
option is omitted from a SEND
command, all modified data tags are
reset to zero and the keyboard is
restored. If the option is omitted
from an ISSUE COpy command, the
contents of the entire buffer
(including nulls) are copied.

DATASTR[(namell(data-areal]
This corresponds to the data stream
profile field, ATTDSP, in an attach
FMH.

For communication between two
CICS/VS systems, no particular
significance is attached by CICS/VS
to the data stream profile field in
an attach FMH. For most CICS/VS
applications, the option may be
omitted when a value of "user
defined" will be as~umed.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the data
stream profile field in an attach
FMH.

When EIBATT is set during execution
of a RECEIVE or COHVERSE command,
the EXTRACT ATTACH command may be
used to examine the data stream
profile field received in the attach
Ff1H.

The value is halfword binary; only
the low-order byte i s used. If thi s
option is omitted, "user defined" is
assumed. The bits in the binary
value are used as follows:

0-7 reserved - must be set to
zero

8-11 0000 - user defined
1111 - SCS datastream
1110 - 3270 datastream
1101 - structured field
1100 - lnglcal record

management
12-15 defined by the user if bits

8-11 are set to 0000;

118 CICS/VS APRM (CL)

otherwise reserved (must be
set to zero).

A value of "structured field"
indicates that chains begin with
four bytes of data that are used to
interpret the following data; the
four bytes consist of overall length
(2 bytes), class identifier (1
byte), and sub-class identifier (1
byte). A value of "logical record
management"indicates that chains
can be split into separate fields by
the data receiver.

These values may be used for
communication between a CICS/VS
system and another subsystem; for
further details of structured
fields and logical record
management refer to the
documentation supplied by the
subsystem.

If the option is omitted from the
BUILD ATTACH command, a value of
"user defi ned" is assumed.

DEFRESP
indicates that a definite response
is required when the output
operation has been completed.

DEST(name)

ERASE

FMH

specifies the four-byte symbolic
name of the TCAM destination to
which the message is to be sent.
This option is meaningful only for
t~rminals for which DEVICE=TCAM has
been specified in the DFHTCT
TYPE=SDSCI system macro.

specifies that the screen is to be
erased and the cursor returned to
the upper left corner of the screen
before writing occurs. Normally,
ERASE should be specified in the
first output command of a
transaction. This will clear the
screen ready for the new output
data.

However, when switching from one
screen ~ize to another on a
transaction basis, it is important
to note that if ERASE is not
specified in the first output
command of the transaction, the
screen size will be unchanged from
its previous setting, that is, the
previous transaction setting, or
the default screen size if the CLEAR
key has been pressed.

specifies that a function
management header has been included
in the data that is to be wr i tten.
If the ATTACHID option is specified
as well, the concatenated FMH flag
will be set in the attach FMH .

FROM(data-areal
specifies the data that is to be
written to the terminal or logical
unit. This option may be omitted if
ATTACHID is specified.

FROMLENGTH(data-valuel
See LENGTHCparameter). The
FROMLENGTH option of the CONVERSE
command is equivalent to the LENGTH
option of a SEND command.

INTOldata-area)
specifies the receiving field for
the data read from the terminal or
logical unit.

INVITE
specifies that the next terminal
control command to be executed for
this facility is a RECEIVE. This
allows optimal flows to occur.

IUTVPE((nameJlldata-areal)
This corresponds to the interchange
unit field, ATTIU, in an attach FMH.

For communication between two
CICS/VS systems, no particular
significance is attached by CICS/VS
to the interchange unit field in an
attach FMH. For most CICS/VS
applications, the option may be
omitted when a value of "multiple
chain" will be assumed.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the
interchange unit field in an attach
FMH.

When EIBATT is ~et during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the interchange unit
field received in the attach FMH.

The value is halfword binary; only
the low-order 7 bits being used.
The bits in the binary value are
used as follows:

0-10 reserved - must be set to zero
11 0 - not end of multi chain

interchange unit
1 - end of multi chain

interchange unit
12-13 reserved - must be set to zero
14-15 00 - multi chain interchange

unit
01 - single chain interchange

unit
10 - reserved
11 - reserved

If the option is omitted from the
BUILD ATTACH command, values of "not
end of multi chain interchange unit"
and "multiple chain" are assumed.

LAST
specifies that this is the last
output operation for a transaction
and therefore the end of a bracket.

LDC(namel
specifies the two-character
mnemonic used to determine the
appropriate logical device code
(LDC) numeric value. The mnemonic
represents an LDC entry in the
DFHTCT TYPE=LDC macro instruction.

LEAVEKB
specifies that the keyboard is to
remain locked at the completion of
the data transfer. This option is
applicable only to CICS/OS/VS but
may be used in a CICS/DOS/VS
application program if
compatibility is required.

LENGTH(parameterl
specifies the length (as a halfword
binary value) of the data \
transmitted by RECEIVE and SEND
commands.

For a RECEIVE command with the INTO
option, the parameter must be a data
area that specifies the maximum
length that the program will accept.
If the value specified is less than
zero, zero is assumed. If the
length of the data exceeds the value
specified, the data is truncated to
that value and the LENGERR condition
occurs. When the data has been
received, the data area is set to
the original length of the data.

For a RECEIVE command with the SET
option, the parameter must be a data
area. When the data has been
received, the data area is set to
the length of the data.

For a SEND command, the parameter
must be a data value that is the
length of the data that is to be
written.

LINEADDRldata-valuel
specifies that the writing is to
begin on a specific line of a
2260/2265 screen. The data value is
a halfword binary value in the range
1 through 12 for a 2260, or 1
through 15 for a 2265.

NETNAHE(nameJ
specifies the eight-character name
of the logical unit in the VTAM
network.

PASSBK
specifies that communication is
with a passbook at a 2980. The WAIT
option is implied.

PROCESS((nameJI(data areal)
This corresponds to the process
name, ATTDPN, in an attach FMH.

Chapter 3.2. Terminal Control 119

For communication between two
CICS/VS systems, a transaction
running in one system can acquire a
se~sion to the second system and can
identify the transaction to be
attached in the second system; the
identification is c~rried in the
first chain of data sent across the
session.

In general, the first four bytes of
data will identify the transaction
to be attached. However an attach
FMH, identifying the transaction to
be attached, may be built and sent;
the PROCESS option on the BUILD
ATTACH command is used to specify
the transaction name. (Note that
the receiving CICS/VS system will
use just the fi rst four bytes of the
process name as a transact i on name).

No significance is attached by
CICS/VS to process names in attach
FMHs sent in chains of data other
than the first.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
sybsystem on how to use the process
name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the process name
received in the attach FMH.

PROFILE(name)
specifies the name (maximum of eight
characters) of a set of termi nal
control processing options, held in
the PCT, that are to be used duri ng
execution of terminal control
commands for the session specified
in the SYSIO or' SESSION options. If
this option is omitted, a set of
processing options, called
DFHCICSA, will be selected.

PROGRA~1 (name 1
specifies the name (maximum of eight
characters) of the 3600 application
program that is to be loaded.

PSEUDOBIN
specifies that the data being
written or read is to be translated
from System/7 pseudobinary
representation to hexadecimal on a
RECEIVE command or from hexadecimal
to pseudob i nary on a SEND command.

QUEUE{(namell(data-area)}
This corresponds to the queue name,
ATTOQN, in an attach FMH.

For communication between two
CICS/VS systems, no significance is
attached by CICS/VS to the queue
name in an attach FMH.

120 CICS/VS APRM (Cl)

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the queue
name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the queue name
received in the attach FMH.

RECFM{(nameJI(data areal}
This corresponds to the deblocking
algorithm field, ATTOBA, in an
attach FMH.

For communication between two
CICS/VS systems, no particular
significance is attached by CICS/VS
to the deblocking algorithm field in
an attach FMH. For most CICS/VS
applications, the option may be
omitted when a value of "chain of
RUs" will be assumed.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the
deblocking algorithm field in an
attach Ft1H.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the deblocking
~lgorithm field received in the
attach FMH.

The value is halfword binary; only
the low-order 8 bits being used.
The bits in the binary value are
used as follows:

0-7 reserved - must be set to zero
8-15 X'OO' - reserved

X'O!' - variable length variable
blocked

X'02' - reserved
X'03' - reserved
X'04' - chain of RUs
X'05' to X'FF' - reserved

If the option is omitted from the
BUILD ATTACH command, a value of
"chain of RUs" is assumed.

RESOURCE{(nameJ I (data-areal)
This corresponds to the resource
name, ATTPRN, in an attach FMH.

For communication between two
CICS/VS systems, no significance is
attached by CICS/VS to the resource
name in an attach FMH.

For communication between a CICS/VS
system and another subsystem, refer
to documenta t ion suppl i ed by the
subsystem on how to use the resource
name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the resource name
received in the attach FMH.

RPROCESS{(nameJI Cdata-area)J
This corresponds to the return
process name, ATTRDPN, in an attach
FMH.

For communication between two
CICS/VS systems, no significance is
attached by CICS/VS to the return
process name in an attach FMH.

For communication between a CICS/VS
system and another SUbsystem, refer
to documentation supplied by the
sybsystem on how to use the return
process name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the return process
name received in the attach FMH.

RRESOURCE[(nameJI Cdata-area)J
This corresponds to the return
resource name, ATTRPRN, in an attach
FMH.

For communication between two
CICS/VS systems, no significance is
attached by CICS/VS to the return
resource name in an attach FMH.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the return
resource name field in an attach
FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the return resource
name received in the attach FMH.

SESSION(name)
specifies the symbolic identifier
(maximum of four characters) of a
session TCTTE. This option
specifies the alternate session to
be used. If this option is omitted,
the principal facility for the task
wi 11 be used.

SET(ptr-ref)
specifies the pointer reference
that is to be set to the address of
the data read from the terminal or
logical unit.

STRFIElD
specifies that the data area
specified in the FROM option
contains structured fields. If this
option is specified, the contents of
all structured fields must be
handled by the application program.

The CONVERSE command, rather than a
SEND command, must be used if the
data area contains a read partition
structured field. (Structured
fields are described in the CICS/VS
IBM 3270 Guide.) CTLCHAR and
ERASE are mutually exclusive with
STRFIELD, and their use with
STRFIELD will generate an error
message.

SYSID{(namell(data-arealJ
specifies the name (maximum of four
characters) of a system TCTSE. This
option specifies that one of the
sessions to the named system is to
be allocated.

When used with the EXTRACT TCT
command, this option specifies the
variable to be set to the equivalent
local name of the system.

TERMID{(nameJI (data-areaJJ
specifies the name (up to four
characters in length) of the
terminal whose buffer is to be
copied. The terminal must have been
defined in the TCT.

When used with the EXTRACT TCT
command this option specifies the
variable to be set to the equivalent
local name of the terminal.

TOLENGTH(data-area)

WAIT

See LENGTH(parameter). The
TOLENGTH option of the CONVERSE
command is equivalent to the LENGTH
option of a RECEIVE command.

specifies that processing of the
command must be completed before any
subsequent processing is attempted.

If the WAIT option is not specified,
control is returned to the
application program once processing
of the command has started. A
subsequent input or output request
(terminal control, BMS, or batch
data interchange) to the terminal
associated with the task will cause
the application program to wait
until the previous request has been
completed.

TERMINAL CONTROL EXCEPTIONAL CONDITIONS

Some of the follow~ng exceptional
conditions may occur in combination with
others. CICS/VS checks for these
conditions in the following order: EODS,
IHBFMH, EOC. If more than one of these
conditions occurs, only the first one
found to be present is passed to the
application program.

CBIDERR
occurs if the named set of
terminal-control processing options

Chapter 3.2. Terminal Control 121

cannot be found.

Default action: termin~te the task
abnormally.

ENDINPT

EOC

EODS

EOF

occurs when an end-of-input
indicator is received.

Default action: terminate the task
abnormally.

occurs when a request/response unit
(RU) is received with the
end-of-chain indicator set. Field
EIBEOC also contains this
i ndi cator·.

Default action: ignore the
condition.

occurs when an end-of-data-set
indicator is received.

occurs when an end-of-file
indicator is received.

Default action: terminate the task
abnormally.

IGREQCD
occurs when an attempt is made to
execute a SEND or CONVERSE command
after a SIGNAL data-flow control
command with an RCD (request change
direction) code has been received
from an LUTYPE4 logical unit.

Default action: terminate the task
abnormally.

INBFMH
occurs if a request/response unit
(RU) contains a function management
header (FMH). Field EIBFMH contains
thi s i ndi cator and it should be used
in preference to INBFMH. The IGNORE
CONDITION command can be used to
ignore the condition.

Default action: terminate the task
abnormally.

INVREQ
occurs, for the EXTRACT TCT command,
if the name specified in the NETNAME
option cannot be found.

LENGERR
occurs if the length of data
received in response to a command
that specifies the INTO option,
exceeds the value specified by the
LENGTH or TOlENGTHoption.

Default action: terminate the task
abnormally.

122 CICS/VS APRM eel)

NONVAL
occurs if a 3650 application program
name is invalid.

Default action: terminate the task
abnormally.

NOPASSBKRD
occurs if no passbook is present on
an input operation.

NOPASSBKWR
occurs if no passbook is present on
an output operation.

NOSTART
occurs if the 3651 is unable to
initiate the requested 3650
application program.

Default action: terminate the task
abnormally.

tlOTALlOC

RDATT

occurs if the facility specified in
the command is not owned by the
application.

Default action: terminate the task
abnormally.

occurs if a RECEIVE command is
termi nated by the attenti on (ATTN)
key rather than the return key.

Default action: ignore the
condition.

SESSBUSY
occurs if the request for a session
cannot be serviced immediately.

Default action: queue the request
until a session is available.

SESSIONERR
occurs if the name specified in the
SESSION option is not that of a
session TCTTE or if the session
cannot be allocated because it is
out of service.

Default action: terminate the task
abnormally.

SIGNAL
occurs when an inbound SIGNAL
data-flow control command is
received from a logical unit or
session. It is raised by execution
of the next SEND, RECEIVE, or WAIT
TERMINAL command that refers to the
logical unit or session. It is
raised also by executi~n of a WAIT
SIGNAL command, in which case the
data-flow control command has been
received from the principal
facility.

Default action: ignore the
condition.

SVSBUSY
occurs if the request for a session
cannot be serviced immediately.

Default action: queue the request
until a session is available.

SYSIDERR
occurs if the name in the SYSID
option is not that of a system
TCTTE, or if all sessions are out of
service.

Default action: terminate the task
abnormally.

TERHIDERR

WRBRK

occurs if the specified terminal
identifier cannot be found in the
terminal control table (TCT).

Default action: terminate the task
abnormally.

occurs if a SEND command is
terminated by the attention key.

Default action: ignore the
condition.

Chapter 3.2. Terminal Control 123

Chapter 3.3. Basic Mapping Support (BMS)

CICS/VS basic mapping support is an
interfacet between an application
program and the terminal control programt
that provides various formatting
services for interpreting input data
streams and for preparing output data
streams for the terminal network.

The application program passes data to
BMS and receives data from BMS in a
standard device independent format. BMS
commands are included in the application
program to control formatting of the data
and to initiate input from a terminal or
output to one or more terminals.

BMS commands are provided to:

• Map data into a data area in the
program (RECEIVE MAP).

• Mapt and possibly transmit t output
data in field or block data format
(SEND MAP).

•

•

•

Build, and possibly transmit t output
data in text data format (SEND TEXT).

Complete and transmit a logical
message (SEND PAGE).

Delete an incomplete logical message
(PURGE MESSAGE)."

• Initiate building a logical message
for delivery to one or more terminals
(ROUTE).

All of these commands, with their
associated options and exceptional
conditions, are described in the last
part of this chapter. Other sections
describe how combinations of the commands
can be used to control output operations
and discuss features shared by the
commands.

BMS input and output commands result in
terminal control commands. Howevert both
terminal control and BMS commands can be
included in an application program. An
operation to map a data stream already in
storage, rather than receiving and
mapping, may be requested to cause BMS to
map a device-dependent input data stream.
If a map operation is requested for input
from the non-formatted 3270 buffer,
mapping is not performed; the
non-formatted data stream is returned to
the application programt and the MAPFAIL
exceptional condition occurs.

The HANDLE CONDITION and IGNORE CONDITION
commands, and the NOHANDLE option, can be
used to deal with any exceptional
conditions that occur during the
execution of BMS commands. Refer to

Chapter 1.5 for further information about
exceptional conditions.

Two principal advantages are obtained by
using BMS: device independence and
format independence.

DEVICE INDEPENDENCE

Device independence allows the
application program to send data to a
terminal or to receive data from a
terminal without regard to the physical
characteristics of the terminal.

Under BMS, the terminal may be any of the
following devices: 1050, 2740, 2741,
2770, 2780, 2980 Models 1 and 2, 2980-4
(keyboard and printer only), 3270, 3780,
TWX, tape, disk, CRLP (a device declared
to have card-reader-in/line-printer-out
characteristics), or terminals specified
by the system programmer in the terminal
control table (TCT) as TRMTYPE=TCAM.

Certain BMS facilities can also be used
with some 3270, 3600, 3650t 3767, 3770,
and 3790 logical units; for information
about these logical units, refer to the
appropriate CICS/VS subsystem guide.
These guides are listed in the
bibliography.

With BMS, a CICS/VS installation with
more than one type of terminal need
provide only one application program for
each transaction to support all terminals
in the installation~ BMS identifies
which type of terminal is requesting use
of the application program and provides
for the conversion of the
device-dependent data stream to and from
the standard device independent data
format used by the application program. A
CICS/VS installation using only one type
of terminal may wish to use the
formatting services of BMS to facilitate
the addi t i on of other types or the
conversion to another type in the future.

FORMAT INDEPENDENCE

Format independence allows the
application program to provide data to
one or more terminals or to receive data
from a terminal without regard to the
placement of fields within the data
stream or on the terminal.

All references to data by the application
program are through symbolic field names.
Fields are placed within the data stream
by BMS according to information stored in
data format tables called maps. A
CICS/VS installation in whi"ch BMS is used

Chapter 3.3. Basic Mapping Support (BMS)
(

125

may rearrange the fields to be included
in the data by simply changing the values
stored in the map that defines the format
of the data. The application program
that causes the data to be written need
n~t be modified. The programming
maintenance requirements should be
considerably less than they might be if
BMS were not used.

Format independence also allows
information such as headings,
field-identifying keywords, and 3270
screen formats to be stored in maps.
This information can be modified simply
by~hanging its value in the maps.
Programs that refer to the maps benefit
from the changes, but none of the
programs themselves need be modified.

The format independence provided by BMS
removes from the application program the
requirement to know the location of
fields within the data stream; fields may
be rearranged, removed, or added without
changing the application program.

DATA MAPPING

Data mapping is the technique used by BMS
to convert the standard
device-independent data format, which
the application program uses, to and from
the device-dependent data stream
required for the particular terminal in
use. Device-dependent control
characters are embedded or removed by BMS
during this processing.

There are three standard formats in which
the application program can provide or
accept BMS data, as follows:

Field Data Format: data is passed to BMS
as separate fields. Each field is glven a
symbolic name, which is used when passing
data to, or retrieving data from, BMS.
Each field consists of a two-byte 'length
area (used by BMS on input), a one-byte
attribute area (for 3270 output
operations), and the data area. A map is
used to describe the field position, data
length, and other necessary information.

Block Data Format: data is passed to BMS
as line segments. Fields positioned
within the line segments may be"given
symbolic names to aid the application
program in positioning the fields. Each
field provides for a one-byte attribute
and the field data area. A gap
consisting of several blanks may separate
consecutive fields in the line se~ment.
A map is used to describe the number and
lengths of line segments, the "field
pQsition, d~ta length, and oth~r
necessary information.

Text Data Format: output data is passed
to BMS as a data stream which i. divided
into lines no longer than those defined
for tha terminal to which the data stream

126 CICS/VS APRM (CL)

is related. Printable character strings
or words which overlap lines are placed
unbroken on the next available line.
New-line eX'IS') characters can be
included in the data stream to further
define line lengths. CICS/VS inserts the
appropriate leading characters, carrier
returns, and idle characters, and
eliminates trailing blanks from each
line. If tab control characters are
contained in the data stream, the user
should also supply all of the necessary
new-line characters. No maps are used
with text data format.

Field data format is the most common for
both display and printer terminals.

Block data format may be used with both
display and printer terminals, but it is
more useful for input operations on
printer terminals.

Text data format is used with both
display and printer terminals and is
especially convenient for handl~ng data
not divided into fields. When text data
format is used with a 3270 device, an
attri bute byte appears on the 3270 as a
blank at the beginning of each line and
~n front of each new piece of data. When
the data is destined for a device with
extended attributes, set attribute (SA)
orders can be included also in the data
stream. These orders enable characters
in the data stream to be modified by the
extended attributes. To aid this
modification, symbolic names are
available in DFHBMSCA (the standard
attribute list). The standard attribute
list is described in Chapter 3.2.

HAP DEFINITION

Most of the facilities of BMS (text data
format is the exception) require two
types of maps to be defined by CICS/VS
macro instructions and to be assembled
offline prior to running the application
program. The two types are:

1. Physical map - used by BMS to convert
data to br from th~ format required
by the application program. The map
is a table containing information
about each field; it is stored in the
CICS/VS program library and is loaded
by BMS at execution time.

Z. symbolic description map - used by
the application program to refer to
the data in ~torage. This map is a
set of source statements that are
cataloged into the appropriate
source library and copied into the
application program when it is
assembl~d or compiled.

All maps must be generated as members of
a map set; e single map must be generated
as the only member of such a map set. A
map set is a collection of related maps

that are generated and stored together in
the CICS/VS libraries. A reference to
any map in a map set requires that the
entire map set be loaded into storage for
the duration of the task or until another
map set is referred to by the task.

An alternative method of defining maps
for use with BMS is by means of SDF/CICS
(Sc~een Definition Facility (CICS». The
unload facility of SDF/CICS converts the
stored form of the BMS map into a form
acceptable to the Interactive Map
Definition component of DPPX/DPS. For
more information refer to the SDF/CICS
Program Reference Manual.

The following macro instructions are used
in the map-definition process.

DFHMSD macro

• defi nes a map set

• sP,eci fi es that a set of macros is for
a physical map or for a symbolic
descrrption map

•

•

specifies that the map is for input,
output, or both

specifies that the data format is
either field or block.

DFHMDI macro

• defi nes a map wi thi n a map set

•

•

specifies the position of the map on
the page, either absolutely or in
relation to other maps

specifies the size of the map

• specifies that the data format is
either field or block.

DFHMDF macro

• defines a field within a map

• specifies the position of the field

• specifies the length of the field.

The formats of these macros and an
example of their use and of the symbolic
descriptions maps generated is given
later in the chapter. The macros follow
the normal coding conventions for
assembler-language macros; in
particular, note that if the comma
preceding an operand is omitted, that
operand and all succeed; ng operands for
the associated macro will be treated as a
comment, without notification.

An operand in a DFHMDF macro will always
override the same operand in a DFHMDI
macro. Similarly, an operand in a DFHMDI
macro wi 11 always override the same"
operand in a DFHMSD macro.

If an ope.rand is omitted from a DFHMDF
macro, the same operand, if present, in
the DFHMDI macro will be used.
Similarly, if an operand is omitted from
both the DFHMDF or DFHMDI macros, that in
the DFHMSD macro will be used.

If an operand is omi tted from all the
macros used to define a map set, the
default values for the DFHMDF macro will
be assumed.

Some facilities, such as color, are
available only on certain terminals, and
a specification for such a facility will
be ignored if the terminal does not
support it. This obviates the
requirement to define separate maps for
different terminals.

The map definition macros are assembled
twice, once to produce the physical map
used by BMS, and once to produce the
symbolic description map (or DSECT) that
will be copied into the application
program.

Examples of map definition are included
in the sample programs in the appendixes.

INPUT MAPPING

For an input map, the starting position
and the maximum data length of each field
must be defined, as follows:

The TIOA symbolic storage definition
contains an area for the length of each
input data field, followed by a flag byte
and an area for the data itself. Space
is reserved for the maximum number of
bytes defined for each field.

The program can access the length, flag,
and data areas of any field by symbolic
labels. The length area is a halfword
binary field and is addressed by the name
"fieldnameL~ or "groupnameL". The flag
i s a one-byte fi eld and is addressed by
the name "fieldnameF" or "groupnameF".
The data portion of each field (or group
of fields) is contiguous with th~length
and flag areas. A group of fi elds, or a
single field not within any group of
fields, has one data portion addressed by
the name "groupnameI" or "fieldnameI".
For fields contained within a group,
there are no intervening length or flag
areas (only "groupnameL" exists) but each
field is addressed by a name
"fieldnameI".

In assembler-language programs, the
first byte of the first occurrence of a
field defined by the DFHMDF operand
OCCURS=n (where n is greater than 1) is
named "fi eldnameD", and the fi rst Dyte of
the next occurrence of the field is named
"fieldnameN". These names refer to the
first byte of the length area if
DATA=FIELD is specified, and to the first

Chapter 3.3. Basic Mapping Support (BMS) 127

byte of the attribute data if DATA=BLOCK
is speci fi ed.

In COBOL and PL/I programs, "fieldnameD"
is the name of the array of mi nor
structures containing the length, flag,
and data areas of the field.

The number of characters entered may
differ from the length of the field at
program execution time. If more data is
keyed than specified in the map, the data
is truncated on the right to the number
of characters specified. The length that
is returned to the applicati~n program is
the truncated length. If less data is
k~yed than specified, the remaining
character positions are filled with
blanks or zeros and the length of the
keyed data is returned in the length
field.

The flag byte is normally set to X'OO'.
However, if the field has been modified
but no data has been sent (as, for
example, if it has been modified to
nulls), the flag byte is set to X'80' and
the length area is set to zeros~

Fields that are entered as input but are
not defined in the map are discarded.
The length and data areas of fields
defined but not keyed are set to nulls
(X'OO').

For a light pen-detectable field,
although no data is passed, a single data
byte is reserved. This byte contains
X'FF' if the field ;s selected or X'OO'
if the field is not selected. The length
area of a light pen-detectable field
contains a binary one if selected or a
binary zero if not selected.

OUTPUT MAPPING

For an output map, the starting position,
length, field characteristics, and
default data (if desired) must be
defined, as follows:

The fi eids of an output map are ass; gned
names in the DFHMDF macro. The
characteristic or attribute byte is named
"fieldnameA" or "groupnameA". For a field
contained within a group, the data area
is given the name "fieldnameO", but there
is no separate attribute byte for the
field. (Only the group name has the
attribute byte.) For a group name, or a
field not contained within a group, the
data area is given the name "groupnameO"
or "fieldnameO."

In assembler-language programs, the
first byte of the first occurrence of a
field defined by OCCURS=n (where n is
greater than 1) is named "fi~ldnameD",
and the first byte of the next occurrence
of the field is named "fieldnameH".
These names refer to the first byte of

128 CICS/VS APRM (CL)

the length area if DATA=FIELD is
specified, and to the first byte of the
attribute data if DATA=BlOCK is
specified.

In COBOL and Pl/I programs, "fieldnameD"
is the name of the array of mi nor
structures containing the attribute byte
and data area of the field, together with
the unused two-byte length field
(described below). A field not contained
within a group is treated as a group
containing one field entry. An unused
two-byte length field precedes each
attribute byte and data field to provide
a format similar to an input symbolic
storage description TIOA.

The TIOAPFX=YES operand must be specified
in the DFHMSD or DFHMDI macros that
create the maps. Also, if the symbolic
description maps are referred to by a
Pl/I program, the STORAGE=AUTO operand
must be specified in the DFHMSD macro.

When defining fields, the user may
provide a name for any field that he
wishes to refer to at execution time.
Such names are associated with the fields
in the symbolic storage definition of the
TIOA to allow symbolic references to be
made to them. The user may specify not
only the characteristics of the field but
also the default data to be written as
output for a field when no data is
supplied for that field by an application
program. This facility permits the
specification of titles, headers, and so
forth, for output maps. The user may
temporarily override the field
characteristics, the data, or both field
characteristics and data of any field for
which a name has been specified. The
desired changes are simply inserted into
the TIOA under the specified field name
in the symbolic storage definition
(symbolic description map) in the
program.

Output field data supplied by the
application program must not begin with a
null character (X'OO'), or the entire
field will be ignored by BMS. A suitable
character to use in the first position is
blank (X'40').

Light pen-detectable fields should be
"autoskip" to prevent data from being
keyed into them. Because of the nature
of these fields, in most instances, they
should not be modified. If the data
field is modified, the application
program must ensure that the first
character is a"?", ">", "&", or a blank
character; otherwise, the field is no
longer light pen-detectable.

Fields that can be keyed should be
delimited by a stopper field to ensure
that all the data keyed and transmitted
can be mapped.

INPUT/OUTPUT MAPPING

Input/output maps combining all the
functions of input and output maps can
also be created using the DFHMSD, DFHMDI,
and DFHMDF macros.

The number of fields which can be
specified for a COBOL or PL/I
input/output map is limited to 1023.

MAP RETRIEVAL

Map sets placed in the CICS/VS program
library are accessed by BMS through
program control LOAD commands. Each map
set name must have been entered in the
processing program table (PPT) by the
system programmer. When device-dependent
map sets are placed in the CICS/VS
program library, they must be identified
by the device-dependent suffixed name,
and a corresponding entry of the same
name must appear in the PPT.
(Device-dependent suffixes are described
below under the "mapset" name of the
DFHMSD macro and under the SUFFIX and
TERM operands of that macro.)

OUTBOARD FORMATTING

Outboard formatting is a facility that
can be used in a telecommunication
network to offload some of the display
presentation work normally performed at
the host to another node. DPS Version 2
supports outboard formatting on an 8100
running DPPX and communicating with a
System/370 host running CICS/VS.
Outboard formatting is also supported on
a 3650 (for details refer to the CICS/VS
3650/3680 Guide).

The support is designed primarily for use
by an application program running under
CICS/VS basic mapping support (BMS) at
the host, and interacting with a 3650 or
a terminal at the 8100 node. Instead of
input and output mapping being performed
wholly by BMS at the host, it is
performed in part by either the 3650 or
by DPS at the 8100. S6me of the resulting
advantages are that:

1. The number of processing cycles at
the host can be reduced.

2. The line traffic between the two
systems can be reduced.

3. On an 8100 the BMS application
program can take advantage of
DPS/8100 facilities; it can make use
of DPS exits, for example, and device
features that are supported by DPS
but not BMS.

For detailed information on DPS Version 2
outboard formatting support, including
the procedure for setting up an outboard

formatting system, see the DPPX/DPS
Version 2 System Programming Guide.

DEFINE A MAP SET (DFHMSD MACRO)

The syntax of the DFHMSD macro used to
define a map set is shown in Figure 14 on
page 130. The macro specifies whether
physical maps (TYPE=MAP) or symbolic
description maps (TYPE=DSECT) are to be
generated. The end of a map set is
indicated always by a DFHMSD TYPE=FINAL
macro.

Alternatively, both types of map can be
assembled in the same job by job control
language, as described in the CICS/VS
System Programmer's Guide.

The operands are defi ned as follows:

mapset
i s the name of the map set. The
name (1 through 7 characters) must
begin with an alphabetic character.
A suffix specified by the SUFFIX
operand, or based on the terminal
type specified in the TERM operand,
is added during assembly.

This suffixed name is the name that
should be used in the NAME statement
(aS) or the PHASE statement (DOS) in
cataloging the map set (see the
appropriate CICS/VS System
Programmer's Guide for further
details), and the name that should
be specified in the PPT (see the
CICS/VS System Programmer's
Reference Manual). Valid suffixes
are shown in the description of the
TERM operand) below.

When a mapping operation is
requested by a BMS command, CICS/VS
adds a similar suffix to the map set
name specified in the command, and
attempts to load a map set with the
suffixed name. If the suffixed map
set name cannot be found in the
library, CICS/VS will load a map set
with the specified name (equivalent
to being suffixed with a blank).

CICS/VS obtains the suffix from the
TCTTE for the terminal (either the
terminal associated with the
transaction or, for routing, the
destination terminal) depending on
the terminal type specified in the
TRMTYPE operand (together with the
SESTYPE operand for VTAM terminals)
of the DFHTCT TYPE=TERMINAL (or
TYPE=LINE) system macro. If the
alternate page size is being used,
as specified by the ALTPGE operand
of the DFHTCT TYPE=TERMINAL system
macro, and the ALTSFX operand of
that same system macro has also been
specified, an attempt will be made
to load the map set that has the
alternate suffix specified in the

Chapter 3.3. Basic Mapping Support (BMS) 129

map set DFHMSD TYPE={DSECTIMAP}
[,BASE=nameJ
[,COlOR={DEFAUlTIBlUEIREDIPINKIGREENITURQUOISEIYEllOWINEUTRAl}]
[,CTRL=([PRINT)[,{l40 l64 L80IHONEOM}][,FREEKB][,ALARM][,FRSET])]
[,DATA={FIElDIBlOCK}]
[,EXTATT={NOIMAPONLYIYES}]
[,HIlIGHT={OFFIBLINK REVERSEIUNDERlINE}]
[,HTAB=tab[,tab) .•.]
[,LANG={ASMICOBOlIPlIIRPG}]
[,lDC=mnemonic]
[,MODE={INIQVIIINOUT}]
[,OBFMT={YEST~Q}]
[,PS={BASElpsid}]
[,STORAGE=AUTO]
[,SUFFIX=n]
[,TERM=terminal-type]
[,TIOAPFX={YESINO}]
[,VAlIDN=([MUSTFIll][,MUSTENTER])]
[,VTAB=tab[,tab] ...]

map set DFHMSD TYPE=FINAl

Figure 14. DFHMSD Macro (Define a Map Set)

TYPE=

AlTSFX operand of the DFHTCT
TYPE=TERMINAl system macro. If this
load is unsuccessful, normal map set
selection will occur.

For example, if two map sets are
assembled, one with TERM=CRlP and
the other wi th TERM=AL l, the fi rst
map set name will be suffixed with A
and the second with blank. The
system programmer should use these
suffixed names in the NAME/PHASE
statements and in the PPT. If a
CICS/VS transaction now routes a
message to two terminals, one of
whi ch has TRMTYPE=CRlP and the other
TRMTYPE=l3277,TRMMODL=2, CICS/VS
will attempt to load "mapsetA" for
the first and "mapsetM" for the
second. The second of these will be
unsuccessful, 50 BMS will then look
for the unsuffixed map set name for
routing to the 3277.

specifies the function of the macro.

OSEeT
-----specifies that a symbolic

description map is to be
generated. If the same map set
is to be used by appl i cat ion
programs written in different
languages, a separate DFHMSD
TYPE=DSECT macro must be
written for each language to
put the symbolic description
map into the copy library of
the language.

130 CICS/VS APRM (Cl)

HAP

FINAL

BASE=name

specifies that a physical map
i s to be generated. Th i s
physical map is stored in the
CICS/VS program library and
loaded as required by BMS. The
assembler-language application
programmer can, alternatively,
generate the map in his program
and pass its address to BMS.

must be coded to indicate the
end of the map set. If other
parameters are specified in
this macro, they will be
ignored.

specifies that the same storage base
will be used for the symbolic
description maps from more than one
map set. The same name is specified
for each map set that is to share
the same storage base. Since all
map sets with the same base describe
the same storage, data related to a
previously-used map set may be
overwritten when a new map set is
used. Furthermore, different maps
within the same map set will also
overlay one another.

Thi s operand is not val i d for
assembler-language programs.

For example, assume that the
following macros are used to
generate symbolic description maps
for two map sets.

MAPSET1 DFHMSD TYPE=DSECT,
TERM=2780,LANG=COBOL,
BASE=DATAREAl,
MODE=IN

MAPSET2 DFHMSD TYPE=DSECT,
TERM=3270,LANG=COBOL,
BASE=DATAREA1,
MODE=OUT

The symbolic description maps of
this example might be referred to in
a COBOL application program as
follows:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PIC S9(8) COMPo
02 MAPBASE1 PIC S9(8) COMPo

01 DFHTIOA COpy OFHTIOA.
01 DATAREA1 PIC X(1920).
01 name COPY MAPSET1.
O! name COPY MAPSET2.

MAPSET1 and MAPSET2 both redefine
DATAREAl; only one 02 statement is
needed to establish addressability.
However, the program can only use
the fields in one of the symbolic
description maps at a time.

If BASE=DATAREAl is deleted from
this example, an additional 02
statement is needed to establish
addressability for MAPSET2; the 01
DATAREAl statement is not needed.
The program could then refer to
fields concurrently in both
symbolic description maps.

In PL/I application programs, the
name specified in the BASE operand
is used as the name of the pointer
variable on which the symbolic
description map is based. If this
operand is omitted, the default name
(BMSMAPBR) is used for the pointer
variable. The PL/! programmer is
responsible for establishing
addressability for the based
structures.

COLOR=
specifies the default color for all
fields in all maps in a map set
unless overridden explicitly by the
COLOR option of a DFHMDI or DFHMDF
macro. If this option is specified
when EXTATT=NO, a warning will be
issued and the option ignored. If
this option is specified, but EXTATT
is not, EXTATT=MAPONLY will be
assumed.

CTRL=
specifies device characteristics
related to terminals of the 3270
Information Display System.
CTRL=ALARM is valid for TCAM 3270
SOLC and VTAM-supported terminals
(except interactive and batch
logical units); all other
parameters for CTRL are ignored.
This operand must be specified on
the last (or only) map of a page
unless the options of a BMS command
are being used to override the
corresponding operand in the DFHMSO
macro. If the CTRL operand is
specified in the DFHMOI macro, it
cannot be specified in the DFHMSD
macro.

PRINT
must be specified if the
printer is to be started; if
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored if the map set is used
with 3270 displays without the
Printer Adapter feature.

L40, L64, L80, HONEO"
are mutuallY-exclusive options
that control the line length on
the printer. L40, L64, and L80
force a carrier return/line
feed after 40, 64, or 80
characters, respectively.
HONEOM causes the default
printer line length to be used.

FREEKB

ALARM

FRSET

specifies that the keyboard
should be unlocked after the
map is written out. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

activates the 3270 audible
alarm feature. For other VTAM
terminals it sets the alarm
flag in the FMHi this feature
is not supported by
interactive and batch logical
units.

specifies that the modified
data tags (MOTs) of all fields
cur~ently in the 3270 buffer
are to be reset to a
not-modified condition (that
is, field reset) before map
data is written to the buffer.
This allows the DFHMOF macro
with the ATTRIB operand to
control the final status of any
fields written or rewritten in
response to a BMS command.

Chapter 3.3. Basic Mapping Support (BMS) 131

DATA=
specifies the format of the data.

FIELD
---spec if i es that the data is

passed as cont i guous fi elds
where each field has the
following format:

BLOCK

ILLIAldata ...

"LL" is two bytes specifying
the length of the data as input
from the terminal (these two
bytes are ignored in output
processi ng). "A" is a byte into
which the programmer may place
an attribute to override that
specified in the map used to
process this data (see
"Standard Attribute List and
Printer Control Characters
(DFHBMSCA), in "Chapter 3.2.
Terminal Control" on page 85).

specifies that the data is
passed as a continuous stream
in the following format:

IAldata fieldlspace ...

This stream is processed as
line segments of the length
specified in the map used to
process the data set. The data
is in the form that it appears
on the terminal; that is, it
contains data fields and
interspersed blanks
corresponding to any spaces
that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.
EXTATT=YES cannot be used if
DATA=BLOCK is specified.

EXTATT=
specifies whether the extended
attributes (COLOR, HILIGHT, PS, and
VALIDN) are supported.

NO
specifies that the extended
attributes are not supported;
the physical and symbolic
description maps will be the
same as those generated under
Version 1 Release 4. "NO" is
the default unless COLOR,
HILIGHT, PS, or VALIDN is
specified in the DFHMSD macro,
in which case EXTATT=MAPONLY
will be assumed. If the TERM
operand is specified and is
other than 3270, 3270-1,
3270-2, or ALL, EXTATT=MAPONLY
or EXTATT=YES will be invalid,

132 CICS/VS APRM (CL)

and the COLOR, HILIGHT, PS, and
VALIDN operands on the DFHMSD,
DFHMDI, or DFHMDF macros will
be invalid.

MAPONLY

YES

specifies that the extended
attributes can be specified in
a map, but that the resulting
symbolic description map will
contain no fields for them, and
that it wi 11 be the same as one
generated under Version 1,
Release 4. This operand can be
used to add the extended
attri butes to an exi sti ng map
without recompiling.

specifies that the extended
attributes can be specified in
a map, and that they can be
modified dynamically. The
symbolic description map
(DSECT) will contain subfields
for the attributes, identified
by suffixes C (for COLOR), H
(for HIlIGHT), P (for PS), and
V (for validation).

HILIGHT=
specifies the default highlighting
attribute for all fields in all maps
ina map set.

BLINK

is the defaul t and means that
no highlighting is used.

specifies that the field is to
"bl ink" at a set frequency.

REVERSE
specifies that the character
or field is displayed in
"reverse video", for example,
on a 3278, black characters on
a green background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NQ, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONlY will be
assumed.

HTAS=tab[,tabl •••

LANG=

specifies one or more tab positions
fo ruse wi th interact i ve and batch
logical units having horizontal
forms control.

specifies the language in which the
application program referring to a
symbolic description map is written
and, hence, is appl i cable for only a
DFHMSD TYPE=DSECT macro.

COBOL

PLI

RPG

specifies that the symbolic
description map is to be
referred to by an
assembler-language program.

specifies that the symbolic
description map is to be
referred to by a COBOL program.

specifies that the symbolic
description map is to be
referred to by a Pl/I program.

specifies that the symbolic
description map is to be
referred to by an RPG II
program. This parameter is
valid for CICS/DOS/VS only.

LDC=mnemonic

MODE=

specifies the mnemonic to be used by
CICS/VS to determine the logical
device code that is to be used for a
BMS output operation and
transmitted in the function
management header to the logical
unit if no lDC operand has been
specified on any previous BMS output
in the logical message. This
operand is used only for TCAM and
VTAM-supported 3600 terminals, and
batch logical units.

IN

INOUT

specifies an input map
generation.

specifies an output map
generation.

specifies that the map
definition is to be used for
both input and output mapping
operations.

Input mapping is not available for
VTAM-supported 3600 terminals.
However, INOUT may be specified for
map generation. The map can then be
used as a dummy input map for input
operat ions usi ng the RECEIVE MAP
command.

OSFMT=
specifies whether outboard
formatting is to be used. This
operand is avai lable only for 3650
logi cal uni ts and for 8100
Information Systems using the
DPPX/DPS Versi on 2 acti ng as a
logical unit for a real display (for
example, 3277, 3278, 3279, or 8775).
If a logical unit does not support

outboard formatting this operand
will be ignored at execution time.
Refer to the CICS/VS 3650/3680
Guide, or the DPPX/Distributed
Present ion Serv i cas Versi on 2
Systems Programming Guide for more
details.

YES
specifies that all maps within
this map set can be used in
outboard formatting, except
those for which OBFMT=NO is
specified in the DFHMDI macro.

specifies that no maps within
this map set can be used in
outboard formatting, except
those for which OBFMT=YES is
specified in the DFHMDI macro.

specifies that programmed symbols
are to be used.

BASE

psid

specifies that only the basic
symbols are used.

specifies a single EBCDIC
character or a hexadecimal
code of the form X'nn', that
i denti fi es the set of
programmed symbols.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONlY will be
assumed.

STORAGE=AUTO
specifies, for assembler-language
programs, that separate maps within
a map set are to occupy separate
storage, not to overlay one another.

specifies, for COBOL programs, that
the symbolic description maps in the
map set are to be in separate (that
is, not redefi ned) areas. Thi s
operand is used when the symbolic
description maps are copied into the
WORKING-STORAGE section and the
storage for the separate maps in the
map set is to be used concurrently.

specifies, for Pl/I programs, that
the symbolic description maps are to
be declared as having the AUTOMATIC
storage class. If not specified,
they are declared as BASED.

If STORAGE=AUTO is specified,
BASE=name cannot be used. If
STORAGE=AUTOis specified and
TIOAPFX is not specified,
TIOAPFX=YES is assumed.

Chapter 3.3. Basic Mapping Support (BMS) 133

SUFFIX=n
speci fi es a one-character map set
suffix that overrides any suffix
implied by the TERM operand. A
message will indicate that the TERM
operand has been ignored. The user
should catalog the map set, with
this suffixed name, in the program
library, and ensure also that there
is no conflict with a generated name
of another version of the map set.
The use of numeric suffixes would
help prevent conflict.

TERM=terminal type
specifies the type of terminal or
logical unit associated with the map
set. If no terminal type is
specified, 3270 is assumed.

TERM=

CRLP
TAPE
DISK
TWX
1050
2740
2741
2770
2780
3780
3270-1 (40-col display)
3270-2 (80-col display)
INTLUI376713770IISCSl
2980
2980-4
3270
3601
3653 2

3650Up3
3650/3270 4

BCHLUI3770Bs
ALL

Suffix

A
B
C
D
E
F
G
I
J
K
L
M
P
Q
R
blank
U
V
W
X
y
blank

1 Use also for all interactive LUs,
3790 full function LU, and
SCS-printer LUs (3270 and 3790)

2 Use for host conversational
(3653) LU

3 Use for interpreter LU

4 Use for host conversational
(3270) LU

5 Use also for all batch and batch
data interchange LUs.

For TCAM-connected terminals (other
than 3270 or SNA devices), use
either CRLP or ALL; for
TCAM-connected 3270s or SNA
devices, select the appropriate
parameter in the normal way.

If ALL is specified, ensure that
device-dependent charact~rs are not
included in the map set and that
format characteristics such as page
size are suitable for all
input/output operati ons (and all

134 CICS/VS APRM (CL)

terminals> in which the map set will
be applied. For example, some
terminals are limited to 480 bytes,
others to 1920 bytes; the 3604 is
limited,to six lines of 40
characters each. Within these
guidelines, use of ALL can offer
important advantages. Since an
assembly run is required for each
map generation, the use of ALL,
indicating that one map is to be
used for more than one terminal, can
result in significant time and
storage savings.

However, better run-time
performance for maps used by single
terminal types will be achieved if
the terminal type (rather than ALL)
is specified. Alternatively, BMS
support for device-dependent map
sets can be bypassed by specifying
BMSDDS=NO in the DFHSG PROGRAM=BMS
system macro. (See the CICS/VS
System Programmer's Reference
Manual for further details.>

TIOAPFX=
specifies whether BMS should
include a filler in the symbolic
description maps to allow for the
unused TIOA prefix.

YES

VALIDN=

specifies that the filler
should be included in the
symbolic description maps. If
TIOAPFX~YES is specified, all
maps within the map set have
the filler, except when
TIOAPFX=NO is specified on the
DFHMDI macro. TIOAPFX=YES
shoulQ always be used for
command-level application
programs.

is the default and specifies
that the filler is not to be
included.' The fi ller may sti 11
be included for a map if
TIOAPFX=YES is specified on
the DFHMDI macro.

HUSTFILL
specifies that the field must
be filled completely with
data. An ~ttempt to move the
cursor from the field before it
has been filled, or to 'transmit
data from an incomplete field,
will raise the inhibit input
condition.

MUSTENTE'R
specifies that data must be
entered into the field. An
attempt to move the cursor from
an empty field will raise the
inhibit input condition.

VTAB=tab[,tabl •••
specifies one or more tab positions
for use with interactive and batch
logical units h~ving vertical forms
control.

DEFINE A MAP (DFHMDI MACRO)

The syntax of the DFHMDI macro to define
a map is shown in Figure 15 on page 136.
It defines the size of the data to be
mapped and its position within the input
or output. When defining more than one
map, the corresponding number of DFHMDI
macros must be used.

If the maps are for use; n a COBOL
program, and STORAGE=AUTO has been
specified in the DFHMSD macro, they must
be specified in descending size sequence
(size refers to the generated 01 level
data areas and not to the si ze of the map
on the screen).

The operands are defi ned as follows:

map
is the name (1 through 7 characters)
of the map.

COLOR=
specifies the default color for all
fields in a map unless overridden
explicitly by the COLOR option of a
DFHMDF macro. If this option is
spec; fi ed when EXTATT=NO, H~ .
specified in the associ~tBdDfHMSD
macro, a warning ~ill be issuad and
the option ignore~. .

COLUMN=
specifies the column in a line at
which the map is to be placed, that
is, it establishes the left or right
map margin. The JUSTIFY operand
controls whether map and page margin
selection and column counting are to
be from the left or right side of
the page. The columns between the
spec; fi ed map margi n and the page
margin are not available for
subsequent use on the page for any
lines included in the map.

number

NEXT

is the column from the left or
right pagp. margin where the
left or right map margin is to
be established.

indicates that the left or
right map margin is to be
placed in the next available
column from the left or right
on the current line.

indicates that the left or
right map margin is to be
established in the same column
as the last non-header or

CTRL=

non-trcd ler map used that
specified COLUMN=number and
the same JUSTIFY p~rameters as
thi s macro.

Refer to the section "Map
Positioning," later in this
chapter, for a more detailed
discussion.

specifies device characteristics
related to terminals of the 3270
Information Display System.
CTRl=AlARM is valid for TeAM 3270
SDLC and VTAM-supported terminals
(except interactive and batch
logical units); all other
parameters for CTRL are ignored.
This operand must be specified on
the last (or only) map of a pagp.
unless options of a BMS command are
being used to override the
corresponding operands in the
DFHMSD macro. If the CTRL operand
is specified in the DFHMDI macro, it
cannot be specified in the DFHMSD
macro.

PRINT
must be specified if the
printer is to be started; if
omitted, khe data is sent to
the printer buffer but is not
printed. This operand is
ignored if the map set is used
with 3270 displays without the
Printer Adapter feature.

L40, L64, LBO, HONEOM
are mutually exclusive options
that control the line length on
the printer. L40, L64, and L80
force a carrier return/line
feed after 40, 64, or 80
characters, respectively.
HONEOM causes the default
printer line length to be used.

FREEKB

ALARM

FRSET

specifres that the keyboard
should be ul1locked after the
map is written·out .. If
omitted, the keyboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

activates the 3270 audible
alarm. For other VTAM
terminals it sets the alarm
flag in the FMH; this feature
is not supported by
interactive and batch logical
units.

speCifies that the modified
data tags (MOTs) of all fields
currently in the 3270 buffer
are t~ be reset to a
not-modified conditionCthat

Chapter 3.3. Basic Mapping Support (BMS) 135

map DFHMDI [,COlOR={DEFAUlTIBlUEIREDIPINKIGREENITURQUOISEIYEllOWINEUTRAL}
[,COlUMH={number HEXT SAME}]
[,CTRL=([PRIHT][,{L40 I64TL80IHOHEOM}][,FREEKB][,ALARM][,FRSET])]
[, DATA= {FIEL D I BLOCK}]
[,HEADER=YES]
[,HILIGHT={OFFIBlIHKIREVERSEIUNDERlIHE}]
[,JUSTIFY=([{lEFTIRIGHT}][,{FIRSTILAST}])]
[, l IHE= {number{,HEXT I SAME}]
[,OBFMT={YESIHO}]
[,PS={BASE/psid}]
[,SIZE=(line,co!umn)]
[,TIOAPFX={YESINO}]
[,TRAIlER=YES]
[,VAlIDN=([MUSTFIll][,MUSTENTER])]

Figure 15. DFHMDI Macro (Define a Map)

DATA=

is, field reset) before map
data is written to the buffer.
Thi s allows the DFHMDF macr'o
with the ATTRIB operand to
control the final status of any
fields written or rewritten in
response to a BMS command.

specifies the format of the data.

FIELD
---specifies that the data is

passed as contiguous fields in
the following format:

BLOCK

IllIAldata ...

"ll" is two bytes specifying
the length of the data as input
from the terminal (these two
bytes are ignored in output
process; ng). "A" is a byte
into which the programmer may
place an attr i bute to overr ide
that specified in the map used
to process this data (see
"Standard Attribute list and
Printer Control Characters
(DFHBMSCA), in "Chapter 3.2.
Terminal Control" on page 85).

specifies that the data is
passed as a continuous stream
in the following format:

IAldata fieldlspace .•.

Thi s stream is processed as
line segments of the length
specified in the map used to
process the data set. The data
is in the form that it app~ars
on the terminal; ~hat is, it
contains datafi~lds and
interspersed blanks
corresponding to ~ny spaces

136 CICS/VS APRMCCL)

HEADER=YES

that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.

allows the map to be used during
page building without terminating
the overflow condition (see
"Overflow Processing," later in
thi s chapter). Thi s operand may be
specified for more than one map in a
map set.

HILIGHT:
specifies the default highlighting
attribute for all fields in a map.

BLINK

is the defaul t and means that
no highlighting is used.

specifies that the field is to
"blink" at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this option is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
wi 11 be issued and the opt ion .
ignored. If thi s opti on is
specified, but EXTATT is not,
EXTATT=MAPOHlY will be assumed.

JUSTIFY:
specifies the margins on a page in
which a map is to be formatted.

LINE=

LEFT

RIGHT

FIRST

LAST

indicates that th~ map is to be
positioned starting at the
specified column from the left
margin on the specified line.

indicates that the map is to be
positioned starting at the
specified column from the
right margin on the specified
line.

indicates that the map is to be
posi t i oned as th~ fi rst map on
a new page. Any partially
formatted page from preceding
BMS commands is considered to
be complete. This operand can
be specified for only one map
per page.

indicates that the map is to be
positioned at the bottom of the
current page. Thi s operand can
be specified for multiple maps
to be placed on one page.
However, maps other than the
first map for which it is
specified must be able to be
positioned horizontally
without requiring that more
lines be used.

LEFT and RIGHT are mutually
exclusive, as are FIRST and LAST.
If neither FIRST nor LAST is
specified, the data is mapped at the
next ava; lable posi ti on as
determined by other parameters of
the map definition and the current
mapping operation. FIRST and LAST
are ignored unless PAGEBlD is
specified, since otherwise only one
map is placed on each page.

Refer to the section "Map
Positioning," later in this
chapter, for a more detailed
discussion.

specifies the starting line on a
page in which data for a map is to
be formatted.

number
is a value from 1 to 240,
specifying a starting line
number. A request to map data
on a line and column that has
been formatted in response to a
preceding BMS command causes
the current page to be treated
as though complete. The new
data is formatted at the
requested line and column on a
new page.

SAME

specifies that formatting of
data is to begin on the next
available completely empty
line. If lIN E= NEXT i s
specified in the DFHMDI macro,
it is ignored for input
operations and LINE=l is
assumed.

specifies that formatting of
data is to b~gin on the same
line as that used for a
preceding BMS command. If the
data does not fit on the same
line, it is placed on the next
available completely-empty
line.

Refer to the section "Map
Positioning," later in this
chapter, for a more d_tailed
discussion.

OBFMT=

PS=

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units and for 8100
Information Systems using the DPPX
operating system with DPPX/DPS
Version 2 acting as a logical unit
for a real display (for example,
3277, 3278, 3279, or 8775). If a
logical unit does not support
outboard formatting this operand
will be ignored at execution time.
Refer to the CICS/VS 3650/3680
Guide, or the DPPX/Distributed
PreSentation Services Version 2
System Programming Guide for more·
details.

If omitted, the OBFMT operand in the
DFHMSD macro is used.

YES

NO

spec; fi es that th; s map; s to
be used with outboard
formatting.

specifies that this map is not
to be used with outboard
formatting.

specifies that programmed symbols
are to be used.

BASE
specifies that only the basic
symbols are used.

specifies a single EBCDIC
character or a hexadecimal
code of the form X'nn' that
identifies the set of
programmed symbols.

Chapter 3.3. Basic Mapping Support (BMS) 137

SIZE=

If this option is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the option
ignored. If thi s opti on is
specified, but EXTATT is not,
EXTATT=MAPONlY will be assumed.

specifies the size of a map.

is a value from 1 to 240,
specifying the depth of a map
as ~ number of lines.

column
is a value from 1 to 240,
specifying the width of a map
as a number of columns. Space
for the attribute byte should
be included.

This operand is required in the
following cases:

• An associated DFHMDF macro with
the POS operand i s used.

• The map is to be referred to in
a SEND MAP command with the
ACCUM option.

• The map is to be used when
referring to input data from
other than a 3270 terminal in a
RECEIVE MAP command.

TIOAPFX=
specifies whether BMS should
include a filler in the symbolic
description maps to allow for the
unused TIOA prefix. If omitted, the
TIOAPFX operand on the DFHMSD macro
is used.

YES

NO

specifies that the filler
should be included in the
symbolic description map.
TIOAPFX=YES should always be
used for command level
application programs.

specifies that the filler is
not to be included for this
map.

TRAILER=YES
allows the map to be used during
page building without terminating
the overflow condition. (see
"Overflow Processing," later in
thi s chapter). Thi s operand may be
speci fi ed for more than one map ina
map set. If a trai ler map is used
other than in the overflow
environment, the space normally
reserved for overflow trailer maps
is not reserved whi Ie mappi ng the
trai ler map.

138 CICS/VS APRM (Cl)

VALIDtt=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before it
has been filled, or to transmit
data from an incomplete field,
will raise the inhibit input
conditions.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor from
an empty field will raise the
inhibit input condition.

DEFINE A FIELD (DFHMDF MACRO)

The syntax of the DFHMDF macro to define
a field is shown in Figure 16 on page
139. Thi s macro is used to defi ne a
field. One DFHMDF macro is required for
each field in a map, giving information
such as symbolic field name, field
position, field length, attribute byte
(for 3270 terminals), initial constant
data, justification of input, and COBOL
or Pl/I data picture. Two or more DFHMDF
macros must be arranged in numerical
order of the POS operand, except for
output mapping operations using
DATA=FIElD.

The number of named fields that can be
defined for a COBOL or Pl/I input/output
map must not exceed 1023.

The operands are defined as follows:

fld

POS:

is the name (1 through 7 characters)
of the field. Although a name is
not required for every field within
a map, a name must be specified for
at least one field of a map to be
compi led under COBOL or Pl/!. All
fields within a group must have
names.

If name is omitted, an application
program cannot access the field to
change its attri butes or al ter its
contents. For an output map,
omitting the field name may be
appropriate when the INITIAL
operand is used to specify field
contents. If a field name is
specified and the map that includes
the field is used in a mapping
operation, data supplied by the user
overlays data supplied by
initialization (unless default data
only is being written).

specifies the location of a field.
This operand specifies the
individually addressable character

[fld] DFHMDF [,POS={numberl(line,co!umn)}]
[,ATTRB=([{ASKIPiPROTIUNPROT[,HUM]}][,{BRTINORMIDRK}][,DET][,IC]
[,FSET])]
[,COlOR={DEFAUlTIBlUEIREDIPINKIGREENITURQUOISEIYElLOWINEUTRAL}]
[,GRPNAME=group-nameJ
[, HI L I G H T = {O F FIB lIN K I R ,E V E R S E / UN D E R LIN E}]
[,INITIAL='character data'IXINIT=hexadecimal data]
[,JUSTIFY=([{LEFTIRIGHT}][,{BLANK/ZERO}])]
[,LENGTH=numberl
[,OCCURS=nurnber]
[,PICIN='value'J
[,PICOUT='value'l
[,PS={BASE/psid}]
[,VALIDN=([MUSTFILL][,MUSTENTER])]

Figure 16. DFHMDF Macro (Define a Field)

location in a map at which the
attribute byte that precedes the
field is positioned.

number
specifies the displacement
(relative to zero) from the
beginning of the map being
defined.

(line,column)
specify lines and columns
(relative to one) within the
map being defined.

The location of data on the output
medium is dependent on DFHMDI macro
parameters as well.

The first position of a field is
reserved for an attribute byte.
When supplying data for input
mapping from non-3270 devices, the
input data must allow space for this
attribute byte. Input data must not
start in column 1 but may start in
column 2.

The POS operand always contains the
location of the first position in a
field, which is normally the
attribute byte when co~municating
with the 3270. For the second and
subsequent fields of a group, the
POS operand points to an assumed
attribute-byte position, ahead of
the start of the data, even though
no actual attribute byte is
necessary. If the fields follow on
immediately from one another, the
POS operand should point to the last
character position in the previous
field in the group.

When a position number is specified
which represents the last character
position in the 3270, two special
rules apply:

• The IC attribute should not be
coded. The cursor may be set to

•

ATTRB=

location zero by using the
cursor option of the SEND MAP or
SENT TEXT command.

If the field is to be used in an /
output mapping operation with
the DATA=ONLY specification, an
attribute byte for that field
must be supplied in the TIOA by
the application program.

is appl i cable only to fi elds to be
displayed on a 3270 and specifies
device-dependent characteristics
and attri butes, such as the
capability of a field to receive
data or the intensity to be used
when the field is output. If the
ATTRB operand is specified within a
group of fields, it must be
specified in the first field entry.
A group of fi elds appears as one
field to the 3270. Therefore, the
ATTRB specification refers to all of
the fi elds ina group as one fi eld
rather than as individual fields.
Refer to the publication IBM 3270
Information Display System
Component Description for further
information.

This operand applies only to 3270
data stream devices; it will be
ignored for other devices,
including the SCS Printer Logical
Unit. I·t will also be ignored if
the NLEOM option is specified on the
SEND MAP command for transmission to
a 327 0 p r i n t e r . In pa r tic u I a r ,
ATTRB=DRK should not be used as a
method of protecting secure data on
output. It could however, be used
for making an input field nondisplay
for secure entry of a password from
a screen.

For input map fields, DET and HUM
are the only valid op·tions; all
others are ignored.

Chapter 3.3. Basic Mapping Support (BMS) 139

ASKIP

PROT

specifies that data cannot be
keyed into the field and causes
the cursor (current location
pointer) to skip over the
field.

specifles that data cannot be
keyed into the field.

If data is to be copied from
one device to another attached
to the same 3270 control unit,
the first position (address 0)
in the buffer of the device to
be copied from must not contain
an attribute byte for a
protected field. When
preparing maps for 3270s,
ensure that the first map of
any page does not contain a
protected fiel~ starting at
position O.

UN PROT

NUM

BRT

NORM

DRK

DET

specifies that data can be
keyed into the field.

ensures that the data entry
keyboard is set to numeric
shift for this field unless the
operator presses the alpha
shift key, and prevents entry
of nonnumeric data if the
Keyboard Numeric Lock feature
is installed.

specifies that a
high-intensity display of the
fi aId is reqlli red. By vi rtue
of the 3270 attribute
character bit assignments, a
field specified as BRT is also
potentially detectable.
However, for the field to be
recognized as detectable by
BMS, DET must also be
specified.

specifies that the field
intensity is to be normal.

specifies that the field is
nonprint/nondisplay. DRK
cannot be specified if DET is
specified.

specifies that the field is
potentially detectable.

The first character of a 3270
detectable field must be a"?",
n>", "l", or blank. If the
first character is "&" or
blank, the field is an
attention field; if the first
character is "?n or n>", the

140 CICS/VS APRM (Cl)

IC

field is a selection field.
(See the publication IBM 3270
Information Display System
Component Description for
further details of detectable
fields.)

A field for which BRT is
specified is potentially
detectable to the 3270, by
virtue of the 3270 attribute
character bit assignments, but
is not recogn i zed as such by
BMS unless DET is also
specified.

DET and DRK are mutually
exclusive options.

If DET is specified for an
input field, only one data byte
is reserved for each input
fi eld. Thi s byte is set to
X'OO', and remains unchang~d
if the field is not selected.
If the field is selected the
byte is set to X'FF'.

No other data is supplied, even
if the field is a selection
fi eld and the ENTER key has
been pressed.

If the data in a detectable
field is required, all of the
following conditions must be
fulfilled:

1. The field must begin with
ei ther a"?" ">", or nl"
and DET must be specified
in the output map.

2. The ENTER key (or some
other attention key) must
be pressed after the field
has been selected,
although for detectable
fields beginning with n&"
the ENTER key is not
required.

3. DET must not be specified
for the field in the input
map. DET must, however, be
specified in the output
map.

specifies that the cursor is to
be placed in the first position
of the field. The Ie attribute
for the last field for which it
is speci 'fi ed in a mapi s the
one that takes effect. If not
specified for any fields in a
map, the default location is
zero. Specifying IC with ASKIP
or PROT causes the cursor to be
placed in an unkeyable field.

This option may be o~erridden
by specifying the CURSOR

FSET

option of the SEND MAP or SEND
TEXT command that causes the
write operation.

specifies that the modified
data tag (MDT) for this field
should be set when the field is
sent to a terminal.

Specification of F~ET causes
the 3270 to treat the field as
though it has been modified.
On a subsequent read from the
terminal, this field is read,
whether or not it has been
modified. The MDT remains set
until the field is rewritten
without ATTRB=FSET or until an
output mapping request (for
example, DFHMSD CTRL=FRSET or
DFHBMS CTRl=FRSET) causes the
MDT to be reset.

Either of two sets of defaults may
apply when a field to be displayed
on a 3270 is being defined but not
all parameters are specified. If no
ATTRB parameters are specified,
ASKIP and NORM are assumed. If any
parameter is specified, UHPROT and
HORM are assumed for that field
unless overridden by a specified
parameter.

COLOR=
specifies the colors to be used. If
this option is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the option
ignored.

GRPNAME=group-name
is the name (1 through 7 characters)
used to generate symbolic storage
definitions and to combine specific
fields under one group name. The
same group name must be specified
for each field that is to belong to
the group.

The fields in a group must follow
on; there can be intervening gaps
between them, but not other fields
from outside the group. A field
name must be specified for every
field that belongs to the group, ~nd
the POS operand must be also
specified to ensure the fields
follow each other. All the DFHMDF
macros defining the fields of a
group must be placed together, and
in the correct order (upward numeric
order of the POS operand).

For example, the first 20 columns of
the first six lines of a map can be
defined as a group of six fields, so
long as the remaining columns on the
fi rst fi ve lines are not def·i ned as
fields.

The ATTRB operand specified on the
first field of the group applies to
all of the fields within the group.
The sum of the lengths of the fields
within the group must not exceed 256
bytes. If thi s operand is
specified, the OCCURS operand
cannot be specified.

Examples showing the effect of this
operand are included later in the
chapter.

HILIGHT=
specifies the type of highlighting
to be used.

BLINK

is the defaul t and means that
no highlighting is used.

specifies that the field is to
"blink" at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a field is
underlined.

If this operand is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the ope~and
ignored.

INITIAL='cha~acter
data'IXINIT=hexadec;mal data
specifies constant or default data
for an output field. The INITIAL
operand is used to specify data in
character form; the XINIT operand is
used to specify data in hexadecimal
form. INITIAL and XINIT are
mutually exclusive.

For fields with the DET attribute,
initial data that begins with a
blank character, "a", ">", or "?"
should be supplied.

The number of characters that can be
sp~cified in the INITIAL operand is
restricted to the continuation
limitation of the assembler to be
used ~r to the value specified in
the LENGTH operand (whi chever is the
smaller).

Hexadecimal data is written as an
even number of hexadecimal digits,
for example, XINIT=CIC2. If the
number of valid characters is
smaller than the field length, the
data will be padded on the ~ight
with blanks. For example,

Chapter 3.3. Basic Mapping Support (BMS) 141

XINIT=C1C2 might result in an
initial fi·eld of 'AB '

If,hexadecimal data is specified
that corresponds with line or format
control characters, the results
will be unpredictable. The XINIT
operand should therefore be used
with care.

JUSTIFY:
specifies the field justifications
for input operations. This operand
is ignored for TCAM-supported 3600
and 3790, and for VTAM-supported
3600, 3650, and 3790 terminals, as
input mapping is not available.

LEFT

RIGHT

BLANK

ZERO

specifies that data in the
input field is left-justified.

specifies that data in the
input field is
ri ght-justi fi ed.

specifies that blanks are to be
inserted in any unfilled
positions in an input field.

specifies that zeros are to be
inserted in any unfilled
positions in an input field.

lEFT and RIGHT are mutually
exclusive, as are BLANK and ZERO.
If certain parameters are specified
but others are not, assumptions are
made as follows:

Specified

lEFT
RIGHT
BLANK
ZERO

Assumed

BLANK
ZERO
LEFT
RIGHT

If JUSTIFY is omittQd, but the NUM
attribute is specified, RIGHT and
ZERO are assumed. If JUSTIFY is
omitted, but attributes other than
NUM are specified, LEFT and BLANK
are assumed.

Ifa field is initialized by an
output map or contains data from any
other source, data that is keyed as
input may not be just i fi ed and the
additional data may remain in the
field.

LENGTH=number
specifies the length (1 through 256
bytes) of the field. This specified
length should be the maximum length
required for application-program
data to be entered into the field;
it should not include the one-byte
attribute indicator appended to the
field by CICS/VS for use in

142 CICS/VS APRM (el)

subsequent processing. The sum of
the lengths of the fields within a
group must not exceed. 256 bytes.
LENGTH can be omitted if PICIN or
PICOUT is specified but is required
otherwise.

The map dimensions specified in the
SIZE operand of the DFHMDI macro
instruction defining a map may be
smaller than the actual page size or
screen size as defined for the
terminal. The LENGTH specification
in ai DFHMDF\~macro instruct i on cannot
cause the ma~-defined boundary on
the ~ame lin~ to be exceeded. That
is, :the lengttl declared for a fi eld
canriot exceedlthe number of
positions available from the
sta~ting position of the field to
the final position of the
map-defined line. For example,
given an 80-position page line, the
following map definition and field
definition are valid:

DFHMDI SIZE=(2,40), ...
DFHMDF POS=22,LENGTH=17, ..•

but the following definitions are
not acceptable:

DFHMDI SIZE=(2,40), ...

r:
DFHMDF POS=22,LENGTH=30, •••

OCCURS=number
specifies that the indicated number
of entries for the field are to be

r generated in a map and that the map
\ definition is to be generated in
l such a way that the fields are
;;\ addressable as entri es ina matri x

or an array. This permits several
data fields to be addressed by the
same name (subscripted) without

\

.. , generat i ng a un i que name for each
'. f i el d. OCCURS and GRPNAME are

mutually exclusive; that is, OCCURS
! cannot be used when fields have been
~\ defined under a group name. If this
, operand is omitted, a value of 1 is
\ assumed.

\.,
Examples showing the effect of the
OCCURS operand are included later in

, the chapter.
\

PIct~.!.yalUe'
specifies a picture to be applied to
an input field in an IN or INOUT
map; thi s pi cture serves as an
editing specification which is
passed to the application program,
thus permitting the user to exploit
the editing capabilities of COBOL or
PL/I. The PICIN operand is not
valid for assembler-language
programs. BMS checks 'value' to
ascertain that the specified
characters are valid picture
specification characters for the
language of the map.

However, no validity checking of the
input data is performed by BMS or
the high-level language when the map
is used, so any desired checking
must be performed by the application
program. The length of the data
associated with 'value' should be
the same as that specified in the
LENGTH operand if LENGTH 1S
specified. If both PICIN and PICOUT
(see below) are used, an error
message is produced if their
calculated lengths do not agree; the
shorter of the two lengths is used.
If PICIN or PICOUT is not coded for
the field definition, a character
definition of the field is
automatically generated regardless
of other operands that are coded,
such as ATTRB=NUM.

As an example, assume the following
map definition is created for
reference by a COBOL application
program:

MAPX DFHMSD TYPE=DSECT,
LAHG=COBOL,
MODE=INOUT

MAP DFHMDI LINE=!,
COLUMN=!,
SIZE=(1,80)

Fl DFHMDF POS=0,LENGTH=30
F2 DFHMDF POS=40,LENGTH=lO,

PICOUT='$$$,$$O.OO'
F3 DFHMDF POS=60,LENGTH=6,

PICIN='9999V99',
PICOUT='ZZ9.99'

DFHMSD TYPE=FINAL

The following DSECT is generated:

01 MAPI.
02 FlL PIC S9(4) COMPo
02 FIA PIC X.
02 FILLER REDEFINES FlA.

03 FIF PIC X.
02 FlI PIC X(30).
02 FILLER PIC X.
02 F2L PIC 59(4) COMPo
02 F2A PIC X.
02 FILLER REDEFINES F2A.

03 F2F PIC X.
02 F2I PIC X(lO).
02 FILLER PIC X.
02 F3L PIC 59(4) COMPo
02 F3A PIC X.
02 FILLER REDEFINES F3A.

03 F3F PIC X.
02 F31 PIC 9999V99.
02 FILLER PIC X.

01 MAPO REDEFINES MAPI.
02 FILLER PIC X(3).
02 FlO PIC X(30).
02 FILLER PIC X.
02 FILLER PIC X(3).
02 F20 PIC $$$,$$0.00.
02 FILLER PIC X.
02 FILLER PIC X(3).
02 F30 PIC ZZ9.99.
02 FILLER PIC X.

PICOUT='value'

PS=

is similar to PICIN, except that a
picture to be applied to an output
field in the OUT or INOUT map is
generated.

Like PICIN, PICOUT is not valid for
assembler-language programs.

specifies the programmed symbol set
to be used for the display of the
field.

BASE
specifies that only the basic
symbols are used.

specifies a single EBCDIC
character or a hexadecimal
code of the form X'nn' that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO is specified in the
associated DFHMDS macro, a warning
will be issued and the option
ignored. If this option is
specified, but EXTATT is not,
EXTATT=MAPONLY will be assumed.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before it
has been filled, or to transmit
data from an incomplete field,
will raise the inhibit input
conditions.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor from
an empty field will raise the
inhibit input condition.

MAP POSITIONING

The position of a map on a screen is
determined by two major factors: the
current contents of the screen, and the
values coded for the LINE, COLUMN, and
JUSTIFY operands of the DFHMDI macro.
Positioning is also affected if the
DFHMOI m~cro specifies HEADER=YES or
TRAILER=YES, and by the depth of the
deepest trailer map in the map set.

THE SCREEN CONTENTS

At any instant, the part of the screen
which is still available for maps is in
the form of either an L, a reversed L, a

Chapter 3.3. Basic Mapping Support (BMS) 143

rectangle, or an inverted T, as shown by
the unshaded area in the following
diagram:

next col
from
left

I
v

left
ref
col

I
v

next col
from
right

I
v

right
ref
col

I
v

//////////////////////////////////////
//////////////////////////////////////
//////////////////////////////////////
//////////////////////////////////////
//////// /////////
//////// AI /////////
//////// /////////
//////// current /////////
//////// line /////////

i
next free

line
free
area

trailer

The shape and size of this area is
represented internally by four
variables: current line, next free line,
next column from left, and next column
from right.

Three other pointers are maintained that
are relevant to map placement though they
do not affect the area available: left
reference column and right reference
column, which are used when COlUMN=SAME
is specified, and trailer size.

THE TRAILER AREA

The trailer size is equal to the number
of lines that would be occupied by the
deepest trailer map in the map set
currently in use. It is determined when
the map set is assembled, and is copied
from the map set whenever one is loaded.
The trailer size is assumed to be zero if
there is no overflow routine.

The area defined by trailer size is not
available for mapping unless no overflow
routine has been specified or the map has
TRAIlER=YES specified in its DFHMDI
macro.

JUSTIFY=FIRST AND JUSTIFY=LAST

If JUSTIFY=FIRST is specified, the map is
placed on a new page, so that the only
maps above it are the header maps used in

144CICS/VS APRM (Cl)

overflow processing. The lINE operand may
also be used with JUSTIFY=FIRST to place
the map below the top of the page.

If JUSTIFY=lAST is specified, the map is
placed as low as possible on the page.
For a non-trailer map, this is
immediately above the trailer area; for a
trailer map, it is at the bottom of the
page. In the absence of an overflow
routine, the trailer area is null and
JUSTIFY=lAST places the map at the bottom
of the page .

A map defined with JUSTIFY=lAST cannot be
used in input operations unless it was
previously put out without the ACCUM
option, in which case JUSTIFY=lAST is
ignored and the map is positioned at the
top of the page.

THE LINE OPERAND

The LINE operand specifies the line of
the screen on which the first line of the
map is to be placed. The initial
determination of this line is made
without regard to the specification of
the COLUMN operand or the columns
available on the screen on that
particular line. If it transpires that
the map will not fit on the chosen line,
the first subsequent line that will
satisfy the column requirements is
selected.

If LINE=SAME or LINE=NEXT is specified,
the initial line selected for the start
of the map is the current line or the
next free line, respectively. If a
number is specified in the lINE operand,
the line with that number is selected,
provided the number is greater than or
equal to the number of the current line;
if not, the overflow condition is raised
so that the map can be placed on the next
page.

The line selected becomes the new current
line and, if it is below the next free
line, the next free line is reset to the
same line; the next column from the left
and right are also reset, to the left and
right margins respectively.

If the line selected is such that the end
of the map extends into the trailer area
for a non-trailer map or beyond the end
of the page for a trailer map, the
overflow condition is raised and the map
will be placed on the first available
line of the next page when the request is
reissued after handling the overflow.

THE COLUMN AND JUSTIFY OPERANDS

The COLUMN specification may be either
NEXT, SAME, or a number and is processed
in conjunction with the LEFT or RIGHT
specification of the JUSTIFY operand.
JUSTIFY=LEFT is the default and implies

that the column specification is related
to the left-hand margin. Conversely,
JUSTIFY=RIGHT implies that the column
specification is related to the
right-hand margin. For the purposes of
this explanation, it is assumed hereafter
that JUSTIFY=lEFT has been specified (or
applied by default).

If COlUMN=NEXT is specified, the column
chosen for the map is the next column
from the left. If a numeric value is
specified, the column with that number is
chosen, counting from the left. If
COLUMN=SAME is specified, the left
reference column is chosen. (The left
reference column is the one that was most
recently specified by number with
JUSTIFY=lEFT.)

The map is then checked to ensure that
its right margin is not to the right of
the next column from the right. If it
is, the map wi 11 not fi t into the
remaining space, so a new line must be
selected. This will be either the next
full line or, if the map is too deep, the
first ava i labl eli ne on the next page.

Finally, the column pointers are updated
by setting the next column from the left
to the right margin of the map, and, if
COlUMN=number was specified, by setting
the left reference column to the
specified column number.

PAGE BUILDING EXAMPLES

The effects of the mechanisms described
above are illustrated by the following
examples. The examples show the
interactions between SIZE, LINE, COLUMN,
and JUSTIFY=lEFT or RIGHT; header and
trai ler maps and JUSTIFY=FIRST or LAST
are not brought into the examples.

In processing a BMS command, BMS
determines Whether the area of the page
required by the map is wholly available
or whether any part of it has been used
by an earlier command. "Used" means
actually filled by a map or rendered
unavailable as described below.

1. When the LINE operand of -the DFHMDI
macro is coded, all lines above the
specified line are unavailable.

2. When JUSTIFY=lEFT is coded (or
applied by default), all columns to
the left of the leftmost map column,
for the full depth of the map, are
unavailable

MAPA DFHMDI ... ,lINE=3,COLUMN=5,
JUSTIFY=LEFT, ...

5

////////////////////////////////
////////////////////////////////

3 ////
////
//// Map A
////

3. When JUSTIFY=RIGHT is coded, all
columns to the right of the rightmost
map column, for the full depth of the
map, are unavailable.

MAPA DFHMDI ... ,lINE=3,COLUMN=35,
JUSTIFY=RIGHT, .••

35 1

////////////////////////////////
////////////////////////////////

3 //////
//////

Map A //////
//////

4. When two or more maps are placed so
that they share certain lines, all
columns beneath a map that ends
higher are unavailable to the depth
of the map that ends lowest.
Similarly unavailable are all
columns to the left (if the higher
map is left justified) or to the
right Cif the higher map is right
justified) of the 'used' area beneath
the higher map.

MAPA DFHMDI ... ,lINE=3,COLUMN=2,
JUSTIFY=lEFT, ...

MAPB DFHMDI ... ,LINE=4,COlUMN=20,
JUSTIFY=lEFT, ...

2 20

////////////////////////////////
////////////////////////////////
-//

3 // """"""""'" // ""'/ // Map A "'" Map B
// "'" // """"""'"

Chapter 3.3. Basic Mapping Support (BMS) 145

MAPA DFHMDI ... ,lINE=3,COlUMN=2,
JUSTIFY=LEFT, ...

MAPB DFHMDI ... ,LINE=4,COLUMN=20,
JUSTIFY=RIGHT, ...

2

////////////////////////////////
////////////////////////////////

3 //
// """"""""'" //

I'" // Map A ~lap B '" // '" // """""'"

MAPA DFHMDI ... ,LINE=3,COlUMN=40,
JUSTIFY=RIGHT, ...

MAPB DFHMDI ... ,LIHE=3,COlUMN=1,
JUSTIFY=LEFT, ...

////////////////////////////////
////////////////////////////////

3 ///
///

Map A ///
///

""""'" Map B """"'" """"'" """"'" """"'" """"'"
Figure 17 on page 147 shows the effect of
several different maps on one page.

If an area of the page directly specified
for a map has already been used by a
previous map, the overflow condition is
t'aised. This condition is handled as
described later in the chapter under
"Overflow Processing."

USING t'APS

The symbolic description map provides
names for fields and groups of fields
that may be sent to and recei ved from the
devices supPorted by BMS. The symbolic
description map must be copied into each
application program that uses the
associated physical map. (Refer to
"Copyi ng Symbol i c Descri pt i on Maps"
below.)

Data can then be passed to and from the
application program under the field names
in the symbolic description map. (The
names used in the application program are
those defined by the DFHMDF macro

146 CI CS/VS APRM (Cl)

instruct ions wi th the addi t i on of the
suffix "I" for input or "0" for output.)

Since the application program is written
to manipUlate the data under the field
names, altering the map format by adding
new fields or rearranging old fields does
not necessarily alter the program logic.

If the map format is altered, it is
necessary in most cases to make the
appropriate changes to the mac~o
instructions that describe the map and
reassemble both the physical map and the
symbolic description map. The new
symbolic description map must then be
copied into the application program and
the program reassembled or recompiled.
There are some map alterations that can
be made without reassembly of the
symbolic description map, in particular,
COLOR, PS, HILIGHT, and VAlDN can be
added to existing maps if it is not
required to change the attributes
dynamically. It is only necessary to
specify EXTATT=MAPONlY, define the new
attributes, and reassemble the physical
map.

An application program has access to the
input and output fi elds usi ng the names
given to the fields when the maps were
generated. The application-program
logic should be dependent upon the named
fields and their contents but should be
independent of the positions of the
fields within the terminal format. If it
is necessary to modify a map, the
existing application program must be
recompiled to gain access to the new
positions of these fields. Reprogramming
is not necessary to account for new
fields or for the changed terminal format
of those fields.

By using BMS to construct and interpret
data streams, application programs can be
in~ulated from the device-dependent
considerations required to handle the
data streams. If necessarYt the
application program can modify
temporarily the attributes or the initial
data of any named field in an output map.
A collection of named attribute
combinations is supplied within BMS so
that the application program remains
essentially independent of the data
stream format.

The ability to add to map definitions
without obsoleting existing application
programs permits the design and
implementation of systems in a modular
fashion with a progressive expansion of
the screen formats. Design and
programming of the first stages of
applications can begin before later
stages have been designed. These early
implementations are protected from
updates in the terminal formats.

//
//

///////

"""""""""""""""""""""""""""""""" ///////

"""""""""""""""""""""""""""""""" ///////

""" Map A ///////

""" ///////

""" ///////

""" ///////

""" ///////

""" Map B ///////

"""
" III III

///////

""" ///////

""" Map C ///////

""" JUSTIFY ///////

""" = LEFT ///////

""" Map D ///////

""" ///////

"""""""'" JUSTIFY ///////

"""""""'" = RIGHT ///////

"""""""'" JUSTIFY ///////

"""""""'" = RIGHT ///////

"""""""'" JUSTIFY ///////

"""""""'" = LEFT ///////

"""""""'" ///////

""'\""""'"

" " I
///////

"""""""'" ///////

"""""""'" ///////

Figure 17. Map Positioning for More than One Map

COPYING SYMBOLIC DESCRIPTION MAPS

The symbolic description maps must be
copied into the application program as
shown in the following examples;
"mapsetnamel", "mapsetname2", and
"mapsetname3" are the names of members
that contain the assembly of a BMS
symbolic storage definition. The
TIOAPFX=YES operand must be specified in
the OFHMSD macro instructions used to
def i ne the maps.

1. Assembler language COPY statements.

COPY mapsetnamel
COPY mapsetname2
COPY mapsetname3

The symbolic storage definitions can
be copied into the OFHEISTG OSECT, in
which case storage will be provided
automatically. Alternatively, the
application program can provide its
own DSECT, storage, and
addressability.

While it is generally stated that
TIOAPFX=YES must be specified in the
map definition macros, it is possible
to use maps created without the TIOA
prefix if the following technique is
used.

The EXEC interface program assumes
that the FROM or INTO option
specifies an area which includes the
12-byte TIOA prefix. If the symbolic
description maps do not include this,
the COpy instruction in the OFHEISTG
OSECT should be preceded by a filler,
as follows:

NEWNAME OS 12C
COPY MAP!

and the command must specify the FROM
or INTO option instead of using the
default, for example as follows:

EXEC CICS RECEIVE MAP('MAPl')
INTOCNEWNAME)

2. COBOL COPY statements. The names
"mapnamel", "mapname2", and
"mapname3" in this example are the
names of the first maps in the map
sets. These names include the
appropriate suffix to signify the
type of map; that is, "I" for input
Cor input/output), and "0" for
output.

The symbolic storage definitions can
be copied into either the linkage
section or the working-storage
section.

Chapter 3.3. Basic Mapping Support CBMS) 147

If the symbolic storage definition is
copied into the linkage section, the
required storage must be obtained by
the application program and access to
this storage made by the Bll (base
locator for linkage) mechanism, as
follows:

01 BLlCEllS.
02 FIllER PIC S9(8) COMPo
02 MAP1Bll PIC S9(8) COMPo
02 MAP2BLl PIC S9(8) COMPo
02 MAP3Bll PIC S9(8) COMPo

01 mapname1 COpy mapsetname1.
01 mapname2 COPY mapsetname2.
01 mapname3 COpy mapsetname3.

If the sy~bolic storage definition is
copied into the working-storage
section, and there is more than one
map in the map set, and separate
storage is required for the data in
each map, the STORAGE=AUTO operand
must be specified in the DFHMSD
macros.

If working storage is used as the
origin or destination of data
processed by BMS it should be
initialized with low-values by a
"MOVE lOW-VALUES TO ... " statement.

3. Pl/I %INClUDE statements.

%INClUDE mapsetnamel;
Y.INClUDE mapsetname2;
%IHCLUDE mapsetname3;

The symbolic storage definitions may
specify AUTOMATIC or BASED storage
depending on the operands of the
DFHMSD macro.

LOGICAL MESSAGE BUILDING

logical message building allows the
application program to:

• Combine several small mapped data
areas into one or more pages of
output, or

• Prepare more output than can be
contained in one page of output.

A page is the area of a terminal on which
data can be displayed or printed at one
time. The size of the area (in numbers
of lines and columns) for the terminal is
specified in the TCT by the system
programmer. A page of output may be
constructed by BMS from several small

148 CICS/VS APRM (Cl)

maps, and these maps must be generated
together to form a map set.

The SEND MAP command is used to map and
position portions of a page. If all data
to be mapped cannot be contained on one
page, the overflow condition occurs and
control is passed to an overflow routine
within the application program. This
routine normally causes any required
trailer (footing) data to be placed at
the foot of the page, the current page to
be written to temporary storage, a new
page to be started, a heading to be
placed on the new page, and the data
causing the overflow to be mapped on the
new page.

As each page of output is completed, it
is written to temporary storage to await
completion of other pages. The result of
building output data in this cumulative
manner is known as a log;cal message. A
SEND PAGE command signifies completion of
the logical message. Alternatively, the
logical message is completed upon
termination of the application p~ogram
unless CICS/VS has insufficient storage
available, in which case the logical
message is deleted.

An alternative way to build a logical
message without the use of maps is by
means of SEND TEXT commands. Data is
passed in text data format, which BMS
places on succeeding lines (and pages, if
necessary) without reference to maps. A
word is not split between lines; any word
that cannot fit on the remaining portion
of a line is placed on the next line.
Formatting can be controlled by new-line
characters (X'15') embedded within the
text. A SEND PAGE command signifies
completion of the logical message;
alternatively, the logical message is
completed upon termination of the
application program unless CICS/VS has
insufficient storage available, in which
case the logical message is deleted.

OUTPUT OPERATIONS

The SEND MAP and SEND TEXT commands can
be used individually to request BMS to
map data and transmit it to a terminal or
to a data area in the application
program.

Alternatively, these commands can be used
to build a logical message cumulatively.
The logical message is built by
successive SEND MAP or SEND TEXT
commands~ each of which must include the
ACCUM option. Finally~ a SEND PAGE
command must be issued to complete the
logical message and transmit it.

SEND MAP and SEND TEXT commands cannot be
used to build portions of the same
logical message. The process of building
a logical message can be discontinued by
means of a PURGE MESSAGE command, which

(a) TC Page Buffer TC Page Buffer X'FF ... FF' (

4 bytes 4 bytes 4 bytes

(b) CICS/VS Storage Acctng

8 bytes

Buffer length

2 bytes

Reserved

2 bytes

Data I J
x bytes

Figure 18. Page Address list (SET Option)

deletes the portions of the message
already built.

OUTPUT COMMANDS WITH THE SET OPTION

The SET option of the SEND MAP and SEND
TEXT commands causes completed pages to
be returned to the application program
and a pointer to be set to the address of
a list of completed pages. Since more
than one page of output may resul t from a
single BMS output command, there may be
more than one entry in the list for a
given type of termi nal. The entri es for
each type of terminal immediately follow
one another in the list (TC is the
terminal code as described in the next
secti on). The 1 i st is lai d out as shown
in Figure 18.

The page buffer pointer in (a) of
Figure 18 points to an area of storage
which has an eight-byte storage
accounting prefix, as shown in (b) of
Figure 18.

At this point, page buffers are on the
user's storage chain and are
disassociated from BMS control blocks;
when no longer needed, page buffers
should be released by the FREEMAIN
command. The data to be freed should not
include the storage accounting prefix.
The storage containing the list of
buffers should not be freed; the list
will be reused to reduce processing time.
This list will be altered by the next BMS
command; its contents must be saved
before that command is executed.

TERMINAL CODE TABLE

A terminal code table is established
within BMS for reference in servicing
BMS-supported termi nal s. There is one
entry in this table for each terminal
supported under BMS. The terminal codes
that appear in the table are given below.
This code appears in the list of
completed pages made avai lable to the
application program when the SET option
is specified in a SEND MAP or SEND TEXT

command. The code is ava i labl e a 1 so in
the EIBRCODE field of the EXEC interface
block when the INVMPSZ condition occurs;
for a description of this field, refer to
"Appendix A. EXEC Interface Block" on
page 239.

Code

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
pI
Q
R
S
T
U
V
W
X
y2
Z

Terminal or Logical Unit

CRlP or TRMTYPE=TCAM terminals
Magnetic Tape
Sequential Disk
TWX Model 33/35
1050
2740-1,-2 (no buffer receive)
2741
2740-2 (with buffer receive)
2770
2780
3780
3270 (40-character width)
3270 (80-character width)
Not used
Not used
3767/70 Interpreter lU
2980 Models 1 and 2
2980 Model 4
Not used
Not used
3600 (3601) LU
3650 Host Convers (3653) lU
3650 Interpreter lU
3650 Host Convers (3270) LU
3770 Batch lU
Not used

1 Used also for the 3790 full function
logical unit, the SCS printer logical
unit, and the SCS printer.

2 Used also for the 3770 and 3790 batch
data interchange logical units.

MESSAGE ROUTING

Message routing permits an application
program to build and route a logical
message to one or more terminals. The
message is scheduled, for each designated
termi nal, to be deli vered as soon as the
terminal is available to receive
messages, or at a specified time.

Chapter 3.3. Basic Mapping Support (BMS) 149

A ROUTE command initiates a message
routing operation. It is followed by

. SEND MAP or SEND TEXT commands to build
the logical message to be routed. A SEND
PAGE command terminates the page building
and causes the message to be routed.
When individual logical messages are
routed to a terminal, they are not
necessarily delivered in the sequence in
which they were issued. If a specific
sequence is required, the pages must be
output as one message.

The SEND MAP or SEND TEXT commands that
build the message must include the ACCUM
option. Other SEND MAP or SEND TEXT
commands without the ACCUM option can be
interleaved with these commands to send
messages to the terminal that initiated
the transaction while the message to be
routed is being built.

Another consideration of routing to
different types of terminal is the
handling of overflow conditions. Since
different types of terminal may have
different page sizes, the overflow
condition is apt to occur at different
times in page building. BMS returns
control to an overflow routine in the
application program, indicating which
type of terminal caused the overflow and
how many pages have been created for that
type.

The message routing facility of BMS is
useful for developing message switching
and broadcasting applications. CICS/VS
provides a generalized message switching
application program that uses the message
routing facility of BMS (see the CICS/VS
~rator's Guide for details).

BMS MESSAGE RECOVERY

BMS provides message recovery for routed
and non-routed messages. Recoverable
messages must satisfy the following
requirements:

• The PAGING option must have been
specified in the BMS output commands
that built the logical message.

•

•

•

The BMS default REQID (**) or the
specified REQID for the logical
message must have been identified to
the temporary storage program (via
the TST) as recoverable.

The task that built the message must
have reached its logical end of task.

The temporary storage program and the
interval control program must also
support recovery.

150 CICS/VS APRM (Cl)

DISPLAY DEVICE OPERATIONS (BMS)

The information in this section applies,
in general, only to the IBM 3270
Information Display System. All the
basic facilities described in the section
"Display Device Operations" in "Chapter
3.2. Terminal Control" on page 85 can be
requested in a BMS program. The following
additional facilities apply only to BMS,
and are described in the following
sections:

• Symbolic Cursor Positioning

• Terminal . -g~mandS'\
--/

("'-- SYMBOLI~U POSITIONING ..
________..- f\

: The CURSOR opt; on of the SEND MAP and '
i SEND TEXT commands can be used to 'I~,:',
~ position the cursor on completion of an

\

output operation. Alternatively, a !
; method called symbolic cursor I
~, posi ti oni ng can be used, whi ch allows a I
': fi eld in the data to be marked, !

symbol i cally, such that the cursor is t
placed under the first data byte of the '
field on the output screen. I
Requirements for the use of symbolic !
cursor positioning are as follows:

•

•

•

MODE=INOUT must be specified in the
DFHMSD macro.

CURSOR must be specified in the BMS
command.

The length field, suffix "l",
associated with the field under which
the cursor is to be placed must be
initialized to -1.

The rema i nder of the data may be bu i 1 t as /
1 desired by the lIser. Symbolic cursor /

\

i positioning is operable only for devices;!
that allow cursor placement to be

. performed independent ly of data /
\ placement; for example, 3604 and 3270.
\ ~~~b~f~~r c~~~,L~e~~~:it ion i ng is i gnored/

\

\TElftiiNAL OPERATOR PAGING COMMANDS

The commands used by terminal operators
to communicate with BMS are collectively
known as te~minal paging commands, or
simply as paging commands. Their format
and use are discussed in detail in the
CICS/VS Oeerator'sGuide.

Cursor placement is an important
consideration in programming for paging
commands. Any of the following can cause
a paging command not to be the first data
read by CICS/VS and therefore not to be
1 nterpreted as a pagi ng command.

• After a pri nt opera·t: i on on a 3275
Display Station, the cursor is set to

•

•

position zero. A paging command
entered at this location is not
recognized unless the last position
of the buffer contains an attribute
byte or the buffer has been cleared.

A field sent with the DATAONLY option
of the SEND MAP command and without
an attribute in the data (that is,
with an attribute byte in the data
having the value X'OO') is written
into the buffer without an attribute
byte. If the application program
places the cursor in this field and
the operator keys a paging command
beginning at the cursor location, the
paging command is not recognized.

Since the field has no attribute
byte, the data is considered to be an
extension of the previously defined
field. When the operator keys into
the mi ddle of the
hardware-recognized field and
presses the enter key, the field is
transmitted from the beginning of the
previously defined field. The data
at the beginning of the field is
exami ned for a pagi ng command and
responded to accordingly.

Cursor specification in the BMS
commands can adversely affect
operator action if the cursor is not
set at the beginning of a field.
Paging commands entered at a cursor
location that is not the beginning of
a field are not recognized by BMS
because data transmission starts at
the beginning of the field if the
field is not set to nulls (X'OO').

HAP INPUT DATA (RECEIVE HAP)

RECEIVE MAPCname)
[SET(ptr-ref)IINTOCdata-value)]
[MAPSET(name)]
[FROMCdata-area} LENGTHCdata-value) I
.TERMINAL [ASIS]]

Conditions:
EOC, EOnS, INVMPSZ, MAPFAIL, RDATT

This command is used to map data into a
data area in the application program.
The source of the data can be either a
terminal (TERMINAL option) or another
data area in the program (FROM option).
If neither option is specified, TERMINAL
is assumed. The ASIS opti on i nhi bi ts
translation of lowercase characters to
uppercase.

If the FROM and LENGTH options are used,
the length specified must equal the value
received by the corresponding terminal
control RECEIVE command that includes the
INTO and LENGTH options.

The data area into which the data is to
be mapped can be specified in the INTO
option. Alternatively, BMS will supply a
data area and place its address in the
pointer reference given in the SET
option.

Data from certain logical units is not
mapped, but is left unaltered. Refer to
the appropriate CICS/VS subsystem guide
for detai Is.

If nei ther the INTO opti on nor the SET
option is specified, it is assum~d that
the data is to be mapped into the data
area defined by the symbolic description
map copied into the program. This can be
accomplished only if the map name
provided is a literal constant. If it is
a variable, INTO or SET must be
specified. If the data is to be written
into another data area, it must be named
in the INTO option. The data area named
must be large enough to accommodate the
mapped data.

Once the data has been mapped, fields
within the mapped data can be referred to
by the field names specified in the
DFHMDF macro instructions used to define
the map with the additional suffix "I".
(For example, a field named PERSN must be
referred to in the application program as
PERSNI.)

The data area into which the data is
mapped must include a 12-byte prefix for
use by BMS. The application program must
make provision for this prefix only if a
data description other than the
BMS-supplied symbolic description is
used, or if TIOAPFX=YES is omitted from
the DFHMDI macro defining the map.

If the symbolic description is included
in the linkage section of a COBOL
application program, the 12-byte prefix
must not be overwritten.

If RECEIVE MAP commands are used to read
data from a 3770 balch logical unrt, the
FMHs wi 11 be removed. However, if an FMH
is required, a ter~inal control RECEIVE
command should be included to deal with
the FMH, followed by a RECEIVE MAP
command with the FROM option to map the
data.

Chapter 3.3. Basic Mapping Support CBMS) 151

HAP OUTPUT DATA (SEND HAP)

SEND MAP(name)
FROM(data-area)[DATAONlY]IMAPONlY
[lENGTH(data-value)]
[MAPSETCname)]
[FMHPARM] lUs only
[REQIDCname)]
[lDC(name)] lUs only
[~URSOR[Cdata-value)]]
[SETCptr-ref)IPAGINGI

TERMINAl[WAIT]]
[ACCUM-] -
[ERASEIERASEAUP]
[PRINT]
[FREEKB]
[ALARM]
[FRSET]
[l40Il64Il80IHONEOM]
[NlEOM]
[lAST] lUs only

Conditions:
IGREQCD, IGREQID, INVlDC, INVMPSZ,
IHVREQ, OVERFLOW, RETPAGE, TSIOERR,
WRBRK

This command is used to map output data.
Several successive SEND MAP commands with
the ACCUM option can be used to build a
logical message, which must be completed
by a SEND PAGE command.

If the FROM option is omitted, it is
assumed that the data to be mapped is in
the data area defined by the symbolic
description map copied into the program.
Thi s assumpti on is val i d only if the map
name provided is a literal; if it is a
variable, the FROM option must be
specified. If the data is to be obtained
from another data area, it must be named
in the FROM option; the lENGTH option is
not required unless the data to be mapped
is less than the total length of the data
area named.

The data area specified by the FROM
option must include a 12-byte prefix for
use by BMS. The application program must
make provision for this prefix only if a
data description other than the
BMS-supplied symbolic description is
used.

In the symbolic description map
definition, the DFHMSD macro must have
the TIOAPFX=YES operand specified either
explicitly or implicitly by the
appearance of the STORAGE=AUTO operand.

The mapped data can be transmitted to a
terminal (specify the TERMINAL or PAGING
option) or made available to the
application program in its mapped form
(spec i fy the SET opt ion). If none of
these options is specified, TERMINAL is
assumed. The WAIT option specifies that
control is not to be returned to the
program until the operation is completed.

152 CICS/VS APRM (Cl)

The PAGING option causes the l~gical
message to be placed in temporary storage
until itis requested by paging commands
entered by the terminal operator. The
PAGING option conflicts with the lAST
option and is ignored.

If the disposition specified by the
PAGING, SET, or TERMINAL option is
changed while a logical message is being
built, the INVREQ condition occurs.

The DATAONl Y and MAPONl Y opt ions are used
to specify that application-program data
only, or default data only, is to be
written. If both these options are
omitted, data placed in the data area
named in the FROM option by the
application program is merged with
default data from the map. The
user-supplied data and/or attribute
character C3270 only) supplied for a
given field replaces the corresponding
default data and/or attribute character
from the map. The MAPONLY and FROM
options are mutually exclusive. If the
user-supplied data for a field is X'OO',
the data from the map for that field ;s
used. If the user-supplied attribute for
a field ;s X'OO', the attribute from the
map for that field is used.

The mapped data is positioned by BMS
within an area large enough to contain
one page of output. The application
program need not keep track of when a
page is full: a HANDLE CONDITION
OVERFLOW command will cause BMS to
transfer control to an overflow routine.

The ERASE option should-always be
specified on the first SEND MAP command
to select the correct screensize for the
application.

If ACCUM is specified, the pointer-ref in
the SET option will be updated with the
address of the completed page only after
the RETPAGE condition is raised. In an
assembler-language program the SET
option specifies a register instead of a
pointer, and thi s regi ster wi 11 not be
set even though the RETPAGE condition has
been raised. However, the register can be
loaded from DFHEITPI.

OVERFLOW PROCESSING

Overflow occurs when the number of lines
in the requested map plus the number of
lines in the largest trailer map in the
map set (if there are any trailer maps)
is gr'eater than the number of lines
remaining in the page being built for the
terminal involved in an output operation.

For logical units having lDC support,
pages are accumulated individually by lDC
mnemonic. Therefore, overflow may occur
at end of page for each different lDC
mnemonic used in different BMS commands.

The lOC mnemonic is accessible to the
application program from lOCMNEM, and the
lDC numeric value from lDCNUM. ASSIGN
commands must be used to determine the
values of lDCMNEM and lDCNUM.

Overflow can occur on a logical message
being built for routing. If the route
list contains more than one lDC mnemonic,
the returned lOe mnemonic and numeric
value is the first lDC mnemonic resolved
in the route list. Refer to the section
"Route a logical Message (ROUTE)" later
in this chapter for details of route
lists.

The routine to which control is
transferred (specified in a HANDLE
CONDITION OVERFLOW command) must be in
the application program, but no special
considerations apply. The data which was
to have been mapped, but which caused the
overflow, is not mapped by BMS and
remains unaltered.

If a ROUTE command has not been issued
previously, there is only one
destination. If a ROUTE command has been
issued, the logical message is probably
being built for more than one
destination. Since the application
program can build pages concurrently for
terminals that have different-sized
output, overflow may occur at different
times for different terminal groups. The
overflow routine gets control every time
anyone of the destinations or groups of
destinations encounters an overflow
condition. The application program
overflow routine must determine which
destination or group of destinations has
encountered the overflow.

Upon return to the application program
from a ROUTE command, a count of the
number of destinations or groups of
destinations can be determined by means
of the DESTCOUNT option of the ASSIGN
command. This count tells the
application program how many overflow
control areas (for example,
accumulators) are required. Whenever the
overflow routine gets control, DESTCOUNT
indicates the relative overflow control
number of the destination that has
encountered the overflow. This number
indicates which control area should be
output, perhaps through one or more
trailer maps.

In addition to the relative control
count, BMS returns the current page
number for the destination that has
encountered the overflow. This page
number can be determined by means of the
PAGENUM option of the ASSIGN command.

The SEND MAP command is used to place
trailer data on a page. The macros used
to format the data must contain
TRAllER=YES so that the amount of space
on the page to reserve for overflow can
be calculated. More than one trailer map

may be placed on a page. There should be
a dummy trailer map (not otherwise used)
in the map set specifying the number of
lines to be reserved for trailer data if
no single trailer map extends over the
total number of lines required for
trailer data (see diagrams). Maps used
to map trailer data may contain
JUSTIFY=lAST to force their placement at
the bottom of the page. An attempt to
place more lines of trailer data on the
page than are available causes the
trailer data to be placed on a separate
page by itself. Yet another page is
built to continue mapping with or without
a header map.

TR2

No dummy trailer required.

TRI

TR2 TR3

Dummy trailer required.

The SEND MAP command is used also tQ
process header data and place it on a
page. The maps used to map header data
must specify JUSTIFY=FIRST to complete
processing of the previous page if that
has not been done, and to begin a new
page. An attempt to place more header
data on the page than the page can
contain causes multiple pages to be
created.

If a header map is not used,
JUSTIFY=FIRST must be specified for the
first map used after OVERFLOW 1S raised,
if a line number 1S also specified to
force out the previous page. Failure to

Chapter 3.3. Basic Mapping Support (BMS) 153

specify this will cause OVERFLOW to be
raised again immediately.

When all trailer and/or header data has
been processed, the command that caused
the overflow must be reissued, since this
data has not yet been mapped for all
destinations.

It is important to recognize that BMS
maintains the overflow environment for as
long as the appl i cat i on program issues
BMS commands usi ng maps defi ned as
headers or trai lers. The fi rst use of a
map that is not defi ned as a header or
trailer terminates overflow processing.

Application program issues
a SEND MAP command

V

BMS processes the command

This coincides with reissuing the command
that caused the overflow.

If an overflow routine has not been
specified in a HANDLE OVERFLOW command,
no overflow occurs and new pages will be
forced automatically. If a header is to
be placed on the first page and a trailer
on the last, the OVERFLOW condition would
not be used.

An overview of overflow processing is
given in Figure 19.

>---------------> OVERFLOW ROUTINE

V

BMS returns control to
the application program
and the SEND MAP command
is mapped for all
destinations

I
V

The application program
updates all overflow
control areas to reflect
the last SEND MAP com­
mand (which mayor may
not have caused over­
flow)

I

Figure 19. Overflow Processing

154 CICS/VS APRM (el)

1. Save sufficient information to
be able to reissue the command
that caused the overflow.

2. Using the overflow control
number from DESTCOUNT, determine
the appropriate control area
to map its contents via SEND MAP
commands specifying trailer
map(s).

3. The current page number is
avail~ble from PAGENUM and could
be supplied with the data to be
mapped by the trailer map(s);
and/or this page number could be
incremented and supplied with
the data to be mapped by header
map(s).

4. Return to A and reissue the
SEND MAP command.

I
V

o

FORMAT OUTPUT DATA WITHOUT MAPPING (SEND
TEXT)

SEND TEXT FROMCdata-area)
LENGTHCdata-value)
[FMHPARM] LUs only
[REQIDCname)]
[LDCCname)] LUs only
[CURSORCdata-value)]
[SETCptr-ref)IPAGINGITERMINAL[WAIT]
[HEADER(data-area)]
[TRAILERCdata-area)]
[JUSTIFYCdata-value)IJUSTFIRSTI

JUSTLAST]]
[ACCUMINOEDIT]
[ERASE]
[P.RINT]
[FREEKB]
[ALARM]
[L40IL64IL80IHONEOMl
[HLEOM]
[LAST] LUs only

Conditions: IGREQCD, IGREQID,
INVLDC, INVREQ, RETPAGE,
TSIOERR, WRBRK

This command is used to format output
data without mapping. Several successive
SEND TEXT commands with the ACCUM option
can be used to build a logical message,
which must then be completed by a SEND
PAGE command. The beginning and ending of
pages is handled by BMS and does not
affect the application program.

The data to be transmitted, specified by
the FROM and LENGTH options, can be sent
to a terminal (specify the TERMINAL or
PAGING option) or made available to the
application program in its formatted form
(specify the SET option). If none of
these options is specified, TERMINAL is
assumed. The WAIT option specifies that
control is not to be returned to the
program until the operation is completed.

The PAGING option causes the logical
message to be placed in temporary storage
until it is requested by paging commands
entered by the terminal operator.

If the disposition specified by the
PAGING, SET, or TERMINAL option is
changed while a logical message is being
built, the INVREQ condition occurs.

The options HEADER, TRAILER, JUSTIFY,
JUSFIRST, and JUSLAST can be used to edit
the output pages. Any of these options
imply the ACCUM option.

The NOEDIT option allows the application
program to control the insertion of
device-dependent tontrol characters and
the following notes apply when it is
omitted:

1. SEND TEXT formats data for each
terminal so that output lines are no
longer than the line-length of the
terminal as specified in the TCT, and
wherever possible the output line is
broken at a blank character. The
user may force a new line at a
particular point by inserting a
new-line (X'15') character in the
data stream presented to BMS via SEND
TEXT.

2. For all terminal types, SEND TEXT
interprets the data stream with
regard to the line-size of the
terminal found in the TCT and any
embedded X'15' characters, and
builds an internal representation of
the final appearance of the data on
the terminal. Control characters
other than X' 15' are treated as
normal character data, and their
presence may in certain cases disrupt
the results of this internal
formatting process.

3. If the output terminal is a 3270
device and NLEOM is not specified,
SEND TEXT uses the line-length
specified in the TCT to position the
data in the device buffer so that
When displayed it will be in the
correct format. Hardware new-line
characters are not used: instead it
is the position of the data in the
buffer which determines the output
format. Therefore if the actual
line-length of the terminal differs
from that specified in the TCT, the
resulting output will not be
correctly formatted on the terminal.

For example, if the termi nal is a
3270 printer with 132 print positions
but a TCT line-length of 80, to get
correct output format without
specifying NLEOM it is necessary to
specify L80 in the WCC.

The formats of the header and trai ler
data are described below.

HEADER AND TRAILER FORMAT

The data areas named in the HEADER and
TRAILER options have the following
format:

L L P C PNFLD

<-------DATA----------->

where:

LL
is a halfword binary field
containing the length of the header
or tra i ler data. (The value
includes the two bytes for this
field.)

Chapter 3.3. Basic Mapping Support (BMS) 155

p

C

PNFlD

DATA

is a one-byte field whose contents
indicate whether page numbering is
required or not. If the field
contai ns a character l other than a
blank (X'40'), page numbering is
required. The character specified
is the character that is embedded in
the header or trai Ier data in the
positions (a maximum of 5) where the
page number is to appear. If the
field contains a blank, page
numbering is not required.

(1 X'OC', X'15', X'!7', X'26', and
X'FF' are reserved and cannot be
used).

is a reserved one-byte field.

is the page number fi eld. Thi s
field can be embedded anywhere in
the header or trailer data in the
required page number position. It
can contain from one through five
occurrences of the character
specified by P. These characters
will be replaced by the current page
number, up to a maximum of 32,767,
aSClpageisbuilt. A SEND PAGE
command will causes the page number
to be reset to 1.

is the header or tra i ler data to be
placed at the beginning or end of
each page of output. Embedded
new-line characters (X'15') may be
used to provide multiple heading or
footing lines.

OUTPUT DATA WITH EXTENDED ATTRIBUTES

When the data is destined for a device
with extended attributes, set attribute
(SA) orders can be included also in the
data stream. These orders enable
characters or words in the data stream to
be modified by the extended attributes.
The.se orders will be ignored during
calculation of line lengths. Orders for
extended attributes not supported by a
terminal will be removed from the data
stream. If a sequence of orders is less
than three characters, or contains an
invalid attribute type, the transactipn
will be terminated abnormally (ABMX).

Attributes will remain effective until
overridden by subsequent orders. If
output exceeds a page, the attributes
will apply for the following page.
However, in headers or trailers, the
attributes will be reset to their default
values until changed by a new sequence of
orders wi thi n the header or trai ler. On
resumption of normal processing of text
after the header or trai ler, the previ ous
attributes will be restored.

156 CI CS/VS APRM C Cl)

To aid the modification of characters or
words, the following symbolic names are
available in DFHBMSCA (the standard
attribute list): DFHSA, DFHCOLOR, DFHPS,
DfHHLT, and DFHAll. (The standard list
D~HBMSCA is described in "Chapter 3.2.
Terminal Control" on page 85.) The
following example shows Pl/I statements
that will color a single word blue:

TEXTSTR='data 'I IDFHSAI IDFHCOlORI I
DFHBlUEI I'blueword '

I IDFHSAI IDFHCOLORI I
DFHDFCOLI I'rest of data';

SEND TEXT FROM(TEXTSTR) lENGTHCIOO);

COMPLETE AND TRANSMIT A LOGICAL MESSAGE
(SEND PAGE)

SEND PAGE [[TRAHSIDCname)lIRELEASEll
RETAIN]

[TRAIlERCdata-area)]
[FMHPARMCname)] LUs only
[AUTOPAGE[CURRENTIAlllINOAUTOPAGEl
[OPERPURGEl
[LASTl lUs only

Conditions: IGREQCD, IGREQID,
INVREQ, RETPAGE, TSIOERR, WRBRK

This command is used to complete and
transmit a logical message built by one
or more SEND MAP or SEND TEXT commands
with the ACCUM option.

Options can be included to specify how
much control the termi nal operator should
have over the disposition of the logical
message CAUTOPAGE and OPERPURGE), to
determine whether control should return
to the application program after
transmission of the logical message
(RELEASE and RETAIN), and to add trailer
data to the logical message (TRAILER).
The format of the trailer data is
described under "Format Output Data
Without Mapping CSEND TEXT)" earlier in
th i 5 chapter.

If neither AUTOPAGE nor NOAUTOPAGE is
specified, the paging status specified
for the terminal at system generation
determines how pages are to be written to
the terminal. For logical units with lDC
support, paging status for each LDC is
obtained from the system LDC table.

To ensure that a logical message appears
at the receiving terminal before any
messages that may have been routed to it,
or before other transactions are
initiated from the terminal, RELEASE
should be specified. Control then
returns to an application program at the
next higher logical l~vel or to CICS/VS;
this action is as if a RETURN program
control command had been issued. When

control returns to CICS/VS, the TRANSID
option specifies the transaction
identifier for the next application
program to be associated with the
terminal; the TRANSID option has the same
function and restrictions on its use as
the TRANSID option of the RETURN command.
Refer to "Chapter 4.4. Program Control"
on page 189, "Program Control," for
information about application program
logical levels, the way in which control
returns through the levels, and the use
of the TRANSID option.

RETAIN is intended to be used for a
combination of page display from the page
file (logical message built using PAGING)
and operator data entry. BMS issues an
input request to the terminal after
writing the appropriate pages to the
terminal. BMS issues the input request
only if the logical message is built with
PAGING. If the logical message is built
without PAGING, BMS returns control to
the application program after the last
page is written to the terminal, and
without issuing an input request to the
terminal.

The operator may enter any page, purge,
or copy commands that are valid for the
particular message. Any other entered
data is passed back fo the application
program after the current message is
deleted.

If neither RETAIN nor RELEASE is
specified and the logical message is to
be retrieved by terminal-operator
requests (PAGING specified in the SEND
MAP or SEND TEXT command), a new task is
scheduled for writing pages to the
terminal. Control is returned to the
application program immediately, rather
than after the pages have been written.
RETAIN and RELEASE are ignored for routed
messages.

If an error occurs during the processing
of a SEND PAGE command, control is
returned to the application program, and
the-RETAIN or RELEASE specification is
ignored. The logical message is not
considered complete. The application
program should either retry the SEND PAGE
operation or delete the logical message.

Any logical message started but not
completed when a SYNCPOINT command is
executed is forced to completion by an
implied SEND PAGE command.

DELETE A LOGICAL MESSAGE (PURGE MESSAGE)

PURGE MESSAGE

Condition: TSIOERR

This command is used to discontinue the
building of a logical message. The
portions of the logical message already
built in main storage or in temporary
storage are deleted.

FourE A LOGICAL MESSAGE (ROUTE)

ROUTE [INTERVAL(hhmmss)IINTERVAL(O)1
TIMEChhmmss)]

[ERRTERM[Cname)]]
[TITLECdata-area)]
[LIST(data-area)]
[OPClASS(data-area)]
[REQIDCname)]
[LDC(name)] (LUs only)
[NLEOM]

Conditions: INVERRTERM, INVLDC,
RTEFAIL, RTESOME

This command is used to initiate the
building of a logical message that is to
be scheduled for delivery to one or more
terminals. It is followed by the SEND
MAP or SEND TEXT commands that format the
data.

The options LIST and OPCLASS allow the
designation of those terminals or logical
units, or particular operators, to which
the logical message is to be scheduled
for delivery. Whether or not the logical
message will actually be delivered (that
is, recei ved at the termi nal) depends on
many factors, such as avai labi Ii ty of the
terminal, or of a specific operator,
within a certain time after the logical
message is ready to be delivered.

The LIST option specifies a list of
terminals and/or operators to receive the
routed logical message. If no l;st is
provided, the logical message will be
scheduled for delivery to all terminals
supported by BMS (unless the OPCLASS
option is specified and has some effect).

The OPCLASS option specifies the classes
of operators to receive the routed
logical message. OPCLASS can be used
alone, or in conjunction with LIST.

The uses and format of the route list and
of the information to be provided in the
OPCLASS option are described in the
section "Route List and Operator Class
Codes (LIST and OPCLASS Options)" later
in thi s chapter.

The logical message can be delivered at a
specified time (TIME option) or after a
certain interval has elapsed (INTERVAL
option); if neither option is specified,
or if INTERVAL(O) is specified, the
logical message will be delivered as soon
as possible.

Chapter 3.3. Basic Mapping Support (BMS) 157

If a logical message is to b~ routed to
more than one type of terminal, BMS
bui Ids the message for each type. Each
message is stored on tempnrary storage
until all terminals of the related
terminal type have received the message.
If a terminal is scheduled to receive a
message but is nnt eligible, the message
is stored until one of the following
conditions occurs:

•

•

•

A change in terminal status allows
the message to be sent.

A period (specified at system
generation) has elapsed, causing the
message to be deleted by BMS.

The message is deleted by the
destination terminal.

If a logical message is to be routed to
terminals with alternate screensize
capabilities (for example, the 3278), the
choice of alternate or default screensize
is made dependi ng on the SCRNSZE operand
of the DFHPCT TYPE=ENTRY system macro for
the transaction issuing the ROUTE
command. (See the CICS/VS System
Programmer's Reference Manual.)

If a ROUTE command followed by one or
more BMS output commands is not
terminated by a SEND PAGE command before
a subsequent ROUTE command is issued, the
INVREQ exceptional condition occurs. A
ROUTE command may be issued immediately
following another ROUTE command. In this
case, the first ROUTE command is
nullified, and the second determines the
routing environment.

If a message cannot be delivered within a
certain time, it will be deleted
(purged); the time is specified in the
PRGDlAY (purge delay) operand of the
DFHSIT system macro. If the PRGDlAY
operand is omitted, undelivered messages
await delivery indefinitely. If PRGDlAY
is specified, an error message is
generated by CICS/VS whenever a message
becomes undeliverable. The error message
will be sent to the terminal associated
with the task that is sending the
message; alternatively, the application
program can specify a different terminal
to receive such ~rror messages by using
the ERRTERM option. In addition to
sending an error message, CICS/VS lets
the master terminal operator know how
many undeliverable messages have been
deleted for a destination.

In CICS/DOS/VS, there is a Dl/I
restriction that a single ROUTE command
cannot route a message to more than 40
terminals. The restriction applies when:

•

•

Dl/I logging to the CICS/VS system
log (tape only) is bei ng used

BMS message recovery is required
(that is, the route request specifies

158 CICS/VS APRM (Cl)

a recoverable temporary storage
prefix in theREQID option, or the
default prefix (**) is defined as
recoverable.

To route a message to more than 40
terminals, more than one ROUTE command
must be used, each with a lIST option of
no more than 40 entries.

The restriction arises because under
CICS/DOS Dl/I, the log buffer size cannot
exceed lK bytes for tape files, and the
limit of 40 terminals in a route list
corresponds to a size of lK bytes for the
BMS message control record which will be
put on temporary storage and logged to
the same file if the temporary storage is
recoverabl e .

DISPOSITION AND MESSAGE ROUTING

A logical message can be built using
either of two dispositions: PAGING or
SET. The first BMS output command
following the ROUTE command (with some
exceptions noted below) determines the
disposition of the logical message. Once
established, the disposition remains
unchanged until the logical message is
completed by a SEND PAGE command. An
output request specifying a disposition
that is not in effect results in the
INVREQ condition.

PAGING is the normal disposition and
results in the logical message either
being delivered or deleted. SET causes
the logical message to be returned to the
application program which is then
responsible for its delivery.

INTERLEAVING CONVERSATION WITH MESSAGE
ROUTING

A task can converse with the terminal to
which it is currently attached while it
is building the logical message.~ The
attached terminal is known as the direct
terminal; a terminal to which the message
i s to be routed i s known a s a rout i ng
termi nal. If any RECEIVE MAP (or,
RECEIVE) commands are encountered while
the message is being built, they are
processed as usual.

The following rules apply to a direct
terminal:

• TERMINAL must be specified or implied
in any output command that is to go
to the direct terminal.

• ACCUM options with a disposition of
TERMINAL are invalid and'~esult in
the INVREQ condition.

• The direct terminal may be included
in the routing environment without
impairing the ability to converse
with it while under ROUTE. Data

routed to the direct terminal will be
del i vered as though the ROUTE command
had been issued from another
tarom; nal.

The following is a list of abridged
commands, in order of execution. For each
command, the action taken by BMS is
shot-m.

SEND TEXT TERMINAL - Transmit to
direct terminal.

ROUTE - Establish routing environment.

SEND TEXT TERMINAL - Transmit to
direct terminal.

RECEIVE MAP - Receive from direct
terminal.

SEND TEXT PAGING ACCUM - First output
command eligible for routing
establishes disposition of
PAGING.

SEND TEXT TERMINAL - Transmit to
direct terminal.

SEND TEXT SET(A) - Invalid request,
routed logical message has
already established a disposition
of PAGING.

SEND TEXT PAGING ACCUM - Continue
building routed logical message.

SEND MAP(Y) PAGING ACCUM - Invalid
request routed logical message
cannot be built with both SEND
TEXT and SEND MAP commands.

SEND MAP(Y) TERMINAL ACCUM - Invalid
request, cannot issue SEND MAP
ACCUM or SEND TEXT ACCUM command
to direct terminal while
building a routed logical
message.

SEND TEXT PAGING ACCUM - Continue
building routed logical message.

SEND PAGE - Complete and transmit
logical message and terminate
routing operation.

SEND TEXT TERMINAL - Transmit to
direct terminal.

MESSAGE TITLE

The title named in the TITLE option is
displayed with the logical message
identifier when the terminal paging query
command is entered (see the CICS/VS
~rator's Guide). This ti·t:le serves as
an additional message identifier,
displayed upon request with the message
identifier, not on the logical message.
The value in the two byte length field
preceding the title includes the bytes
used for the length field. The length

field and title, in total, may be up to
64 bytes long. For example:

IX'OOlA'IMONTHlYbINVENTORYbREPORTI

2-byte
length
field

24-byte
title
field

ROUTE LIST AND OPERATOR CLASS CODES (LIST
AND OPCLASS OPTIONS)

The system programmer specifies the
terminal or logical unit identifiers for
all the terminals of the CICS/VS system
in the terminal control table (TCT).
(For logical units with LDC support, LDC
mnemonics are specified in the LDC
table.) Also, an operator identifier
must be specified for each operator, and
up to 24 operator class codes (in the
range 1 through 24) can be specified for
particular operators, using the OPIDENT
and OPCLASS operands, respectively, of
the sign-on-table system macro (DFHSNT
TYPE=ENTRY). When an operator signs on
at a terminal, CICS/VS associates the
operator and the optional class codes
with that terminal until the operator
signs off again.

The application program can provide a
route list in the LIST option to specify
which terminals, or logical units, or
operatprs are to receive the logical
message; alternatiVely, or in addition,
liP to 24 operator class codes can be
specified for use with a ROUTE operation,
by using the OPClASS option.

Before a logical message is delivered,
all of the following conditions must be
fulfilled:

e The terminal or logical unit must be
supported by BMS and be operational.

•

•

The logical message must be ready for
delivery (TIME or INTERVAL options
sat i sfi ed).

The purge delay must not have
expired.

Whether or not a logical message will be
delivered at a specific terminal then
depend~ on the use of the LIST and
OPClASS options, as follows:

•

•

LIST and OPCLASS are omitted. All
terminals will receive the message.

LIST is specified but OPClASS is
omitted. The route list can contain
three types of entry, each type
having a different effect. All three
types of entry can be included in the
same list. The types of entry are:

Entries specifying a particular
terminal (or logical unit)

Chapter 3.3. Basic Mapping Support (BMS) 159

•

•

identifier but no operator
identifier. Each specified
terminal will receive the
message.

Entries specifying a particular
terminal (or logical unit)
identifier and an operator
ide.ntifier. Each specified
terminal will receive the
message if or when the specified
operator is signed on at the
terminal.

Entries specifying only an
operator identifier. Each
specified operator must be
signed on at a terminal supported
by BMS when the ROUTE command is
issued; otherwise the route list
entry for that operator is
ignored (skipped). CICS/VS will
then schedule the message for
delivery to each terminal at
which a specified operator is
signed on. If a particular
operator is signed on at more
than one terminal, CICS/VS will
schedule the message for
delivery to the one whose entry
appears first in the terminal
control table. Each terminal for
which the message is scheduled
will then receive the message
(when it is ready for delivery)
if the specified operator is
still signed on at the terminal
or when the operator signs on
again.

LIST ;s omitted but OPCLASS is
specified. CICS/VS will schedule the
message for delivery to all terminals
at which an operator having at least
one of the specified operator class
codes is signed on when the ROUTE
command is issued. Each terminal for
which the message is scheduled will
then receive the message (when it is
ready for delivery) if or when an
operator (not necessarily the same
one as before) having at least one of
the specified operator class codes is
signed on at the terminal.

LIST and OPClASS are both specified •
The effect of the OPCLA~S
specification for the different
types of route list entries is as
follows:

Entries specifying no operator
identifier. The effect is the
same as if only the OPCLASS
option were specified, but is
restricted to those terminals
(or logical units) specified in
the route list.

Entries specifying an operator
identifier (and possibly a
terminal or logical unit

160 CICS/VS APRM (CL)

identifier). The OPCLASS
specification is ignored for
these route list entries, and the
effect is the same as if only the
LIST option were specified.

Route List Format. The route list
specified in the LIST option must conform
to a fixed format. The list consists of
16-byte entries (with contents as shown
in the following table). The end of the
list is designated by a binary halfword
initialized to -1.

Bytes contents

0-3 Terminal or logical unit
identifier (four-characters,
including trailing blanks), or
blanks

4,5 LDC mnemonic (two-characters)
for logical units with LDC
support, or blanks

6-8 Ope.rator identifier, or blanks

9 Status flag for the route
entry

10-15 Reserved; must contain blanks

The status flag byte indicates to the
application program the status of the
destination when the ROUTE command is
issued. Upon return, the application
program can investigate the status flag
byte for each entry and take appropriate
action. The status flag byte settings
and their meanings are as follows:

ENTRY SKIPPED
A route list entry was excluded. If
an entry has been excluded, another
flag indicating why the entry was
skipped may be on in the status
byte. This second flag could be any
of the other flags shown in the
table. If the OPERATOR NOT SIGNED ON
flag is on, only an operator
identifier was specified in the
route list entry and the specified
operator was not signed on at any
terminal. If only the ENTRY SKIPPED
flag is on, neither a terminal
identifier nor an operator
identifier was specified in the
route list entry. The settings are
X'80' for ASM, 12-0-1-8 for COBOL,
and 10000000 for PL/I.

INVALID TERMINAL IDENTIFIER
indicates that the terminal
identifier specified in the route
list entry does not have a
corresponding TCTTE in the terminal
control table. This entry is also
flagged as ENTRY SKIPPED. The
settings are X'40' for ASM, no
punches for COBOL, and 01000000 for
PL/I.

TERMINAL NOT SUPPORTED UNDER BMS
indicates that the terminal
identifier specified in the route
list entry is for a type of terminal
that is not supported under BMS; or
the terminal table entry indicated
that the terminal was not eligible
for routing. This entry is also
flagged as ENTRY SKIPPED. The
settings are X'20' for ASM
11-0-1-8-9 for COBOL, and 00100000
for PL/I.

OPERATOR NOT SIGNED ON
indicates that the specified
operator is not signed on. Anyone
of the following conditions causes
this flag to be set:

•

•

•

Both an operator identifier and
a terminal identifier were
specified, and the specified
operator was not signed on at
the terminal. This entry is not
skipped.

An operator identifier was
specified without a terminal
identifier, and the operator
was not signed on at any
terminal. This entry is also
flagged as ENTRY SKIPPED.

The OPCLASS option was
specified with the ROUTE
command and a terminal
identifier was specified in the
route list entry, but the
operator signed on at the
terminal did not have any of the
specified operator classes.
This entry is not skipped.

The settings are X'10' for ASM,
12-11-1-8-9 for COBOL, and 00010000
for PL/I.

OPERATOR SIGNED ON AT UNSUPPORTED
TERMINAL
indicates that only an operator
identifier was specified in the
route list entry, and that operator
was signed on a terminal not
supported by BMS. This entry is
also flagged as ENTRY SKIPPED. The
unsupported terminal identifier is
returned in that route list entry at
URLTRMID, defined in DFHURlDS
(described below). The settings are
X'08' for ASM, 12-8-9 for COBOL, and
00001000 for Pl/I.

INVALID LDC MNEMONIC
indicates that one of the following
situations exists:

• The lDC mnemonic specified in
the route list does not appear
in the lDC list associated with
the TCT.

• The device type generated in the
system LDC table for the

specified or implied lDC
mnemonic is not the same as the
device type. for the first lDC
specified in the route
environment.

The settings are X'04' for ASM,
12-4-9 for COBOL, and 00000100 for
Pl/I.

A symbolic storage definition of the
user-supplied route list is available in
the source library (or libraries) under
the member name DFHURlDS. This
definition can be used as an aid in
building the route list, and if
necessary, in testing the status flag
byte for each entry upon return from a
ROUTE command that refers to a list.

The list can be supplied in noncontiguous
areas called segments, in which case
every segment except the last is
terminated with (at least) an eight-byte
entry with contents as shown in the
following table. The last segment ends
with a binary halfword initialized to -1.

Bytes contents

0,1

2,3

4-7

ASM: binary halfword
initialized to -2

COBOL: PIC S9(4) COMP
VALUE -2

PL/I: DCl FIXED BIN(15)
INIT(-2)

Reserved

Chain address to the first
entry of the next segment

BASIC HAPPING SUPPORT OPTIONS

ACCUH

ALARM

ALL

specifies that this command is one
of a number of commands that are
used to build a logical message.
The logical message is completed by
a SEND PAGE command. This option is
mutually exclusive with NOED!T.

specifies that the 3270 audible
alarm feature 1S to be activated.
For logical units supporting FMHs
(except inte.ractive and batch
logical units), ALARM signals BMS to
set the alarm flag ;n the FMH.

specifies that if the ATTN key on a
2741 is pressed while data is being
sent to the terminal and the WRBRK
condition is not active,
transmission of the current page is
to cease and no additional pages are
to be transmitted. The logical
message is deleted.

Chapter 3.3. Basic Mapping Support (BMS) 161

ASIS'
specifies that the specification
FEATURE=UCTRAN in the terminal
control table for the terminal is to
be overridden. lowercase
characters in the data stream are
not translated to uppercase.

AUTOPAGE
specifies that each page of the
logical message is to be sent to the
terminal as soon as it is available.
If paging upon request is specified
for the terminal at system
generation, AUTOPAGE overrides it
for this logical message.

AUTOPAGE is assumed for 3270
printers; it does not apply to 3270
display terminals. If neither
AUTOPAGE nor NOAUTOPAGE is
specified, the terminal has the
paging status specified for it at
CICS/VS system generation.

CURRENT
specifies that if the ATTN key on a
2741 is pressed while data is being
sent to the terminal and the WRBRK
condition is not active,
transmission of the current page is
to cease and transmission of the
next page (if any) is to begin.

CURSOR[(data-value)]
specifies the position to which the
3270 or 3604 cursor is to be
returned upon completion of a send
operation.

The data value must be a halfword
binary value that specifies the
cursor position relative to zero;
the range of values that can be
specified depends on the size of the
screen being used. If no data value
is specified, symbolic cursor
positioning (described earlier in
the chapter) is assumed.

This option overrides the IC option
of the ATTRB operand of the DFHMDF
macro instruction, if it is
specified in a command that
completes a page-building operation
and thus causes a send operation.
Previous specifications of the IC
option and of the CURSOR option for
the other maps making up the page
are ignored.

DATAONLY
specifies that only
application-program data is to be
written. The attribute characters
(3270 only) must be specified for
each field in the supplied data. If
the attribute byte in the
user-supplied data is set to X'OO',
the attribute byte on the screen
will be unchanged. Any default data
or attributes from the map are
ignored.

162 CICS/VS APRM (Cl)

ERASE
specifies that the screen is to be
erased and the cursor returned to
the upper left corner of the screen
before this page of output is
displayed. (This option applies
only to the 3270 and to the 3604
Keyboard Display.) The first output
operation in any transaction, or in
a series of pseudo-conversational
transactions, should always specify
ERASE. For transactions attached to
3278 screens, this will also ensure
that the correct screen size is
selected, as defined for the
transaction in the PCT.

ERASEAUP
specifies that before this page of
output is displayed, all
unprotected character locations are
to be erased. (This option applies
only to the 3270.)

ERRTERM[(namel]
specifies the name of the terminal
to be notified if the message is
deleted because it is
undeliverable. The message number,
title identification, and
destination are indicated. If no
name is specified, the originating
terminal is assumed.

This option is operative only if the
PRGDlAY operand has been specified
in the DFHSG PROGRAM=BMS system
macro.

FMHPARM(name)
specifies the name (1 through 8
characters) of the outboard map to
be used. (This option applies only
to 3650 logical units with outboard
formatting).

FREEKB
specifies that the 3270 keyboard
should be unlocked after the data is
written. If FREEKB is omitted, the
keyboard remains locked.

FROM(data-areal
specifies the data area containing
the data to be mapped by a SEND MAP
or RECEIVE MAP command.

If the data area provided in a SEND
MAP command has not been generated
by the BMS map definition process,
it must start with a 12-byte TIOA
prefix. If FROM is specified, the
MAPONLY option must not be
specified. If FROM is omitted from a
SEND MAP command, and the map name
is a literal constant, the name of
the data area is assumed to be the
map name with the addition of the
suffix "0".

FRSET

The data area provided in a RECEIVE
MAP command should not include a
TIOA prefix.

specifies that the modified data
tags (MOTs) of all fields currently
in the 3270 buffer are to be reset
to the not-modified condition (that
is, field reset) before any map data
i s wr i tten to the buffer.

This allows the ATTRB operand of the
DFHMOF macro for the requested map
to control the final status of
fields written or rewritten in
response to a BMS command.

HEADER(data-valuel
specifies the header data to be
placed at the beginning of each
page. The format of the header is
described under "Format Output Data
without Mapping (SEND TEXT)"
earlier in this chapter.

HONEOM
specifies that the default printer
line length is to be used. Thi s
length should be the same as that
specified in the PGESIZE operand of
the DFHTCT TYPE=TERMINAL system
macro, otherwise the data may not
format correctly.

INTERVAL(hhmmss)
specifies the interval of time after
which the data is to be transmitted
to the terminals specified in the
ROUTE command.

INTOCdata-areal
specifies the data area into which
the mapped data is to be written.
If neither INTO nor SET is specified
and the map name is ali teral
constant, the name of the data area
is. assumed to be the map name wi th
the addition of the suffix "I". If
the data area has not been generated
by the BMS map definition process,
it must start with a 12-byte TIOA
prefix.

JUSTIFY(data-value)
specifies the line of the page at
which the data is to be positioned.
The data value must be a halfword
binary value in the range 1 through
240. Although they may not be
specified as constants, the special
values -1 and -2 can be supplied
dynamically to signify JUSFIRST or
JUSLAST, respectively.

JUSFIRST
specifies that the data is to be
placed at the top of the page. Any
partially formatted page from
previous requests is considered to
be complete. If the HEADER option
is specified, the header precedes

the data. See also the description
of the JUSTIFY option.

JUSLAST

LAST

specifies that the data is to be
positioned at the bottom of the
page. The page is considered to be
complete after the request has been
processed. If the TRAILER option is
specified, the trailer follows the
data. See also the description of
the JUSTIFY option.

specifies that this is the last
output operation for a transaction
and, therefore, the end of a
bracket. If the RELEASE option is
specified, LAST is assumed unless
the SEND PAGE command is terminating
a routing operation. (This option
applies to logical units only.)

LDC(name)
specifies a two-character mnemonic
to be used to determine the logical
device code (LDC) to be transmitted
in the FMH to the logical unit. The
mnemonic represents an LDC entry
specified in the DFHTCT TYPE=LOC
system macro.

When an LOC is specified, BMS uses
the device type, the page size, and
the page status associ ated wi th the
LOC mnemonic to format the message.
These values are taken from the
extended local LDC table for the LU,
if it has one. If the LU has only a
local (unextended> LDC table, the
values are taken from the system LDC
table. The numeric value of the LDC
is obtained from the local LDC
table, unless this is an unextended
table and the value is not
specified, in which case it is taken
from the system table.

If the LDC option of a SEND MAP or
ROUTE command is omitted, the LOC
mnemonic specified in the DFHMSO
macro is used. If the LOC option
has also been omi tted from the
DFHMSO macro, the action depends on
the type of logical unit, as
follows:

3601 LU - the first entry in the
local or extended local LOC table is
used, if there; s one. If a default
cannot be obtained in this way, a
null LOC numeric value (X'OO') is
used. The page size used is the
value that is specified in the
OFHTCT TYPE=TERMIHAL system macro,
or (1,40) if such a value is not
specified.

LUTYPE4 LU, batch LU, or batch data
;nterchange LU - the local LDC table
is not used to supply a default LDe;
instead, the message is directed to
the LU console (that is, to any

Chapter 3.3. Basic Mapping Support (BMS) 163

medium that the LU elects to receive
such messages. For a batch data
interchange LU, this does not imply
sending an LOC in an FMH). The page
size is obtained in the manner
described for the 3601 LU.

For message routing, the LDC option
of the ROUTE command takes
precedence over all other sources.
If this option is omitted and a
route list is specified (LIST
option), the LOC mnemonic in the
route list is used; if the route
list contains no LDC mnemonic, or no
route list is specified, a default
LOC is chosen as described above.

LENGTHCdata-valuel
specifies the length of the data to
be formatted as a halfword binary
value.

LIST(data-areal

L40

L64

L80

specifies the data area that
contains a list of terminals and/or
operators to which data is to be
directed. If this option is
omitted, all terminals supported by
BMS receive the data (unless the
OPClASS option has some effect).
The format of the list is described
under "Route list and Operator Class
Codes" earlier in this chapter.

specifies the line length for a 3270
printer; a carrier return and line
feed are forced after 40 characters
have been printed on a line.

specifies the line length for a 3270
printer; a carrier retur" and line
feed are forced after 64 characters
have been printed on a line.

specifies the line length for a 3270
printer; a carrier return and line
feed are forced after 80 characters
have been printed on a line.

MAP(name)
specifies the name (1 through 7
characters) of the map to be used.

MAPONlY
specifies that only default data
from the map is to be written. If
this option is specified, the FROM
option must not be specified.

MAPSET(namel
specifi.s the name (1 through 7
characters) of the map set to be
used. The map set must reside in the
CICS/VS program library, and an
entry for it must exist in the
processing program table (PPT). If
the MAPSET option is not specified,
the name given in the MAP option is
assumed to be that of the map set.

164 CICS/VS APRM (CL)

NLEOM

This option should be used always
unless a reference is made to pre-VS
BMS maps, which were loaded one at a
time, rather than as a set, and
whose names were not extended by a
terminal-type suffix.

specifies that data for a 3270
printer or a 3275 display with the
printer adapter feature should be
built with new-line (Nl)
characters, and that an
end-of-message (EM) character
should be placed at the end of the
data. As the data is printed, each
Nl character causes printing to
continue on the next line, and the
EM character terminates printing.

This option must be specified in the
first SEND MAP or SEND TEXT command
used to build a logical message, and
in the ROUTE command if the message
is to be routed. The option is
ignored if the device receiving the
message (direct or routed) is not
one of those noted above.

If this option is used, buffer
updating and attribute modification
of fields previously written into
the buffer are not allowed. CICS/VS
includes the ERASE option with every
write to the terminal.

The NL character occupies a buffer
position. A number of buffer
positions, equivalent to the value
of the PGESIZE operand of the DFHTCT
system macro for that terminal, is
unavailable for data. This may
cause data to wrap around in the
buffer; if this occurs, the PGESIZE
value must be reduced.

NOAUTOPAGE
specifies that pages are to be sent
one at a time to the terminal. BMS
sends the first page to the terminal
when the terminal becomes available
or upon request of the operator.
Subsequent pages are sent to the
terminal in response to requests
from the terminal operator. (Refer
to the CICS/VS Operator's Guide.)

If automatic paging is specified for
the terminal at system generation,
NOAUTOPAGE overrides it for this
logical message. For logical units,
NOAUTOPAGE applies to all LDC page
sets accumulated within the logical
message.

NOAUTOPAGE does not apply to 3270
printers.

NOEDIT
specifies that the application
program, as opposed to CICS/VS,

controls the insertion of
device-dependent control characters
(carrier return, line feed, idle,
and so on) into the output data
stream. Thi s opt ion i s mutua 11 y
exclusive with ACCUM. This option
cannot be used with 3601 devices.

OPCLASS(data-area)
specifies the data area that
contains a list of operator classes
to which the data is to be routed.
The classes are supplied in a
three-byte field, each bit position
corresponding to one of the codes in
the range 1 through 24 but in
reverse order, that is, the first
byte corresponds to codes 24 through
17, the second byte to cod~s 16
through 9, and the third byte to
codes 8 through 1. .

OPERPURGE
specifies that CICS/VS is to delete
the message only when the terminal
operator requests deletion. If the
option is omitted, CICS/VS deletes
the message if the operator enters a
transaction that is not a paging
command.

PAGING

PRINT

specifies that the output data is
not to be sent immediately to the
terminal, but is to be placed in
temporary storage and displayed in
response to paging commands entered
by the terminal operator.

If PAGING is specified with a REQID
that is defined in the temporary
storage table (TST), CICS/VS
provides message recovery for
logical messages if the task has
reached logical end.

specifies that a print operation is
to be started at a 3270 printer or
at a 3275 with the printer adapter
feature, or that data on an lUTYPE2
(3274/76 or 3790) is to be printed
on a printer allocated by the
controller. If this option is
omitted, the data is ~ent to the
printer buffer but is not printed.

RELEASE
specifies that control is to be
returned to the program at the next
higher logical level, or to CICS/VS
(if the issuing program isat the
highest logical level), after the
pages have been written to the
termi nal. For more data i 1 s of the
effect of th is opt ion, refer to the
description of the SEND PAGE command
earlier in the chapter.

REQID(name)
specifies a two-character prefix to
be used as part of a temporary
storage identifier for CICS/VS
message recovery. Only one prefix
can be specified for each logical
message. The default prefix is **.
BMS message recovery is provided for
a logical message only if the PAGING
option is specified ;n the BMS
output command and if the logical
end of task has been reached.

RETAIN
specifies that control is to be
returned to the application program
after the pages have been written to
the terminal. For thore details of
the effect of this option, refer to
the description of the SEND PAGE
command earlier in the chapter.

SETlptr-ref)
specifies the pointer that is to be
set to the address of the input or
output data.

For input, the pointer is set to the
address of the mapped data.

For output, the SET option specifies
that the completed pages are to be
returned to the application
program. The pointer is set to the
address of a list of completed
pages. For the format ·of the list,
refer to "Output Requests with the
SET Option" earlier in this chapter.

The application program regains
control either immediately
following the BMS command (if the
current page is not yet completed),
or at an alternative entry point
specified through a HANDLE
CONDITION RETPAGE command (if one or
more pages have been completed).

TERMINAL
specifies that input data is to be
read from the terminal that
originated the transaction, or that
output data is to be sent to that
terminal when the page is completed.

TIME(hhmmss)
specifies the time of day at which
data is to be transmitted to the
terminals specified in the ROUTE
command.

TITLE(data-areaJ
specifies the data area that
contai ns the ti tIe to be used wi th
the logical message. For the format
of the tit Ie, refer to "Rout i ng
Messages (ROUTE)" earlier in this
chapter.

TRAILER(data-area)
specifies the data area that
contains trailer data to be placed

Chapter 3.3. Basic Mapping Support (BMS) 165

at the bottom of each output page
(with a SEND TEXT command) or at the
bottom of the last page only (w.i th a
SEND PAGE command). For the format
of the trailer data, refer to
"Formatting Output Data Without
Mapping (SEND TEXT)" earlier in this
chapter.

TRANSID(name)

WAIT

5pecifies the transaction
i dent i fi er to be used wi th the next
input message from the terminal to
~hich the task is attached. The
identifier can consist of UP to four
alphameric characters; it must have
been defined in the program control
table (PCT). TRANSID is valid only
if RELEASE is specified.

If this option is specified in a
program that is not at the highest
logical level, the specified
transaction identifier will be used
only if a new transaction identifier
is not prov i ded in another S END PAGE
command (or in a RETURN program
control command) issued in a program
at a higher logical level.

specifies that control should not be
returned to the application program
until the output operation has been
completed.

If WAIT is not specified, control
will return to the application
program once the output operation
has started. A subsequent input or
output command (terminal control,
BMS, or batch data interchange) will
cause the application program to
wait until the previous command has
been completed.

BASIC MAPPING SUPPORT EXCEPTIONAL
gONDITIONS

Some of the following exceptional
conditions may occur in combination with
others. CICS/VS checks for these
conditions in the following order:
TSIOERR, INVREQ, RETPAGE, MAPFAIL,
RTEFAIL, INVERRTERM, INVMPSZ. If more
than one of these conditions occurs, only
the first one found to be present is
passed to the application program.

EOC

EODS

occurs if the request/response unit
(RU) is recei ved wi th the
end-of-chain (EOC) indicator set.
It applies only to logical units.

Default action: ignore the
condition.

occurs if no data is received (only
an FMH). It applies only to 3770
batch logical units and to 3770 and

166 CICS/VS APRM (CL)

3790 batch data interchange logical
unlts.

Default action: terminate the task
abnormally.

IGREQCD
occurs when an attempt is made to
execute a SEND MAP, SEND PAGE, or
SEND TEXT command after a SIGNAL
data-flow control command with an
Reo (request change direction) code
has been received from an LUTYPE4
logical unit.

Default action: terminate the task
abnormally.

IGREQID
occurs if the prefix specified in
the REQID option is different from
that established by a previous REQID
option or by default for this
logical message.

Default action: terminate the t~sk
abnormally.

INVERRTERtt
occurs if the terminal identifier
specified in the ERRTERM option of a
ROUTE command is invalid or is
assigned to a type of terminal not
supported by RMS.

Default action: terminate the task
abnormally.

INVlDC
occurs if the specified LDC mnemonic
is not included in the LDC list for
the logical unit.

Default action: terminate the task
abnormally.

INVttPSZ
occurs if the specified map is too
wi de for the termi nal, or if a
HANDLE CONDITION OVERFLOW command
is act i ve and the speci fi ed map is
too long for the terminal.

Default action: terminate the task
abnormally.

INVREQ
occurs if a request for BMS services
is i nval i d for any of the followi ng
reasons: .

•

•

The disposition of a routed
message is changed prior to its
completion by a SEND PAGE
command.

A separate SEND TEXT ACCUM or
SEND MAP ACCUM command is issued
to the terminal that originated
the transaction while a routed
logical message is being built.

• The TRAILER option is specified
in a SEND PAGE command when
terminating a logical message
built with SEND MAP commands.

• An output mapping command is
issued for a map without field
specifications by specifying
the FROM option without the
DATAONLYoption.

Default action: terminate the task
abnormally.

HAPFAIL
occurs if the data to be mapped has
a length of zero or does not contain
a set-buffer-address (SBA)
sequence. It applies only to 3270
devices. The receiving data area
will contain the unmapped input data
stream. The amount of unmapped data
moved to the user's area will be
limited to the length specified in
the LENGTH option of the RECEIVE MAP
command.

Default action: terminate the task
abnormally.

OVERFLOW

RDATT

occurs if the mapped data does not
fit on the current page.

Default action: ignore the
condition.

occurs if a RECEIVE MAP command is
terminated by the operator using the
ATTN key rather than the RETURN key.
It applies only to the 2741
Communications Terminal, and only
if 2741 read attention support has
been generated for CICS/VS.

Default action: ignore the
condition.

RET PAGE
occurs if the SET option is
specified and one or more completed

pages are ready for return to the
application program.

Default action: return to the
application program at the point
immediately following the BMS
command.

RTEFAIL
occurs if a ROUTE command would
result in the message being sent
only to the terminal that initiated
the transaction.

Default action: return to the
application program at the point
immediately following the ROUTE
command.

RTESOME
occurs if any of the terminals
specified by options of a ROUTE
command will not receive the
message.

Default action: return control to
the application program at the point
immediately following the ROUTE
command.

TSIOERR

WRBRK

occurs if there is an unrecoverable
temporary storage input/output
error.

Default action: terminate the task
abnormally.

occurs if a SEND command ;s
interrupted by the terminal
operator pressing the ATTN key. It
applies only to the 2741
Communication Terminal under OS/VS,
and only if write break support has
been generated for CICS/VS.

Default action: ignore the
condition.

Chapter 3.3. Basic Mapping Support (BMS) 167

Chapter 3.4. Batch Data Interchange

The CICS/VS batch data interchange
program provides for communication
between an application program and a
named data set (or destination) that is
part of a batch data interchange logical
unit in an outboard controller, or with a
selected medium on a batch logical unit
or an LUTYPE4 logical unit.

The term "outboard controller" is a
generalized reference to a programmable
subsystem, such as the IBM 3770 Data
Communication System or the IBM 3790 Data
Communication System, which uses SNA
protoco Is. (Deta i I s of SNA pr otocol sand
the data sets that can be used are given
in the publications CICS/VS IBM 3767,
3770, and 6670 Guid~ and CICS/VS IBM 3790
Guide . .>

Batch data interchange commands are
provided to:

• Interrogate a data set (ISSUE QUERY).

• Read a record from a data set or read
data from an input medium (ISSUE
RECEIVE).

• Add a record to a data set (ISSUE
ADD) .

• Update (replace) a record in a data
set (ISSUE REPLACE).

•

•

•

•

•

•

Delete a record in a data set (ISSUE
ERASE).

Terminate processing of a data set
(ISSUE END).

Terminate processing of a data set
abnormallY (ISSUE ABORT).

Request the next record number in a
data set (ISSUE NOTE).

Wait for an operation to be completed
(ISSUE WAIT).

Transmit data to a named data set or
to a selected medi um (ISSUE SEND).

Where the controller is an LUTYPE4
logical unit, only the ISSUE ABORT, ISSUE
END, ISSUE RECEIVE, ISSUE SEND, and ISSUE
WAIT commands can be used.

The HANDLE CONDITION command is used to
deal with any exceptional conditions that
occur during execution of a batch data
interchange command. Refer to "Chapter
1.5. Exceptional Conditions" on page 25
for further information about
exceptional conditions.

DESTINATION SELECTION AND IDENTIFICATION

All batch data interchange commands
except ISSUE RECEIVE include options that
specify the destination. This is either
a named data set in a batch data
inte.rchange logical unit, or a selected
medium in a batch logical unit or LUTYPE4
logical unit.

Select;on by Named Data set: The DESTID
and DESTIDLENG options must always be
specified, to supply the data set name
and its length (up to a maximum of eight
characters). For destinations having
diskettes, the VOLUME and VOLUMELENG
options may be specified, to supply a
volume name and its length (up to a
maximum of six characters); the volume
name identifies the diskette that
contains the data set to be used in the
operation. If the VOLUME option is not
specified for a multi-diskette
destination, all diskettes are searched
until the required data set is found.

Select;on by Med;um: As an alternative
to naming a data set as the destination,
various media can be specified by means
of the CONSOLE, PRINT, CARD, or
WPMEDIA1-4 options. These media can be
specified only in an ISSUE ABORT, ISSUE
END, ISSUE SEND, or ISSUE WAIT command.

DEFINITE-RESPONSE

CICS/VS uses terminal control commands to
carry out the functions specified in
batch data interchange commands. For
those commands that cause terminal
control output requests to be made, the
DEFRESP option can be specified. This
option has the same effect as the DEFRESP
option of the SEND terminal control
c6mmand; that is, to request a definite
response from the outboard controller,
irrespective of the specification of
message integrity for the CICS/VS task
(by the system programmer). The DEFRESP
option can be specified for the ISSUE
ADD, ISSUE ERASE, ISSUE REPLACE, and
ISSUE SEND commands.

WAIlltiG>FOR FUNCTION COMPLETION

For those batch data interchange commands
that cause terminal control output
requests to be made, the NOWAIT option
can be specified also. This option has
the effect of allowing CICS/VS task
processing to continue; unless the option
is specified, task activity is suspended
until the batch data interchange command
is completed. The NOWAIT option can be

Chapter 3.4. Batch Data Interchange 169

specified for the ISSUE ADD, ISSUE ERASE,
ISSUE REPLACE, and ISSUE SEND commands.

After a batch data interchange command
with the NOWAIT option has been issued,
task activity can be suspended, by the
ISSUE WAIT command, at a suitable point
in the program to wait for the command to
be completed.

INTERROGATE A DATA SET (ISSUE QUERY)

ISSUE QUERY DESTIDCdata-value)
DESTIDlENGCdata-value)
[VOlUMECdata-value)

VOlUMElENG(data-value)]

Conditions: FUNCERR, SElNERR,
UNEXPIN

This command is used to request that a
sequential data set in an outboard
controller be transmitted to the host
system. The application program should
either follow this command with ISSUE
RECEIVE commands to obtain the resulting
inbound data, or terminate the
transaction to allow CICS/VS to start a
new transaction to process the data.

READ A RECORD FROM A DATA SET (ISSUE
RECEIVE')

ISSUE RECEIVE {SET(ptr-ref>I
INTOCdata-area)}
lENGTH(data-area)

Conditions: DSSTAT, EODS, lENGERR,
NODATARECD, UNEXPIN

This command is used to read a record
from an outboard controller. The INTO
option specifies the area into which the
data is to be placed. The LENGTH option
must include a data area that contains
the maximum length of record that the
program will accept. If the record
length exceeds the specified maximum
length, the record is truncated and the
LENGERR condition occurs. After the
retrieval operation, the data area
specified in the LENGTH operand is set to
the record length (before any truncation
occurred).

Alternatively, a pointer reference can be
specified in the SET option. CICS/VS then
acquires an area of sufficient size to
hold the record and sets the pointer
reference to the address of that area.
After the retrieval operation, the data
area specified in the lENGTH option is
set to the record length.

170 CICS/VS APRM (Cl)

The outboard controller might not send
the data from the data set specified in
the ISSUE QUERY command. An ASSIGN
command must be used to obtain the value
of DESTID, which identifies the data set
that has actually been transmitted; also
the value of DESTIDLENG, which is the
length of the identifier in DESTID.

ADD A RECORD TO A DATA SET (ISSUE ADD)

ISSUE ADD DESTIDCdata-value)
DESTIDLENG(data-value)
[VOLUMECdata-value)/
VOLUMELENGCdata-value)]
FROMCdata-area)
LENGTHCdata-value)
[NUMRECCdata-value)]
[DEFRESP]
[NOL.JAIT]

Conditions: FUNCERR, SElNERR,
UNEXPIN

This command is used to add records to a
sequential or keyed direct data set in an
outboard controller. The FROM option is
used to specify the data to be written,
and the LENGTH option specifies its
length.

The RIDFLD option is not needed with this
command; the key is embedded in the data.

UPDATE A RECORD IN A DATA SET (ISSUE
EtEPLA~

ISSUE REPLACE DESTIDCdata-value)
DESTIDLENGCdata-value)
[VOLUMECdata-value)I

VOLUMElEHGCdata-value)]
FROMCdata-area)
LENGTHCdata-value)
RIDFLDCdata-area)
[DEFRESP]
[HOWAIT]
[KEYlENGTHCdata-value)IRRNl
[NUMRECCdata-value)]

Conditions: FUNCERR, SElNERR,
UNEXPIN

This command is used to replace (update)
a record in either a relative Caddressed
direct) or an indexed (keyed direct) data
set in an outboard controller.

The FROM option is used to specify the
data t~ be written to the data set and
the LENGTH option specifies the length of
the data.

The RIDFLD option specifies the relative
record number of the first record to be
replaced for a relative data set, or the

embedded key in the data specified by the
FROM option for an indexed data set.

For a relative data set, the RRN option
must be specified since the RIDFlD option
contains a relative record number. In
addition, the NUMREC option must specify
the number of records to be replaced
consecutively, starting with the one
specified in RIDFlD.

For an indexed data set, the RIDFlD
option specifies the key embedded in the
data specified in the FROM option. In
addition, the KEYlENGTH option must
specify the length of the key. The
NUMREC option cannot be specified since
only one record is replaced.

DELETE A RECORD FROM A DATA SET (ISSUE
ERASE)

ISSUE ERASE DESTID(data-value)
DESTIDlENGCdata-value)
[VOlUMECdata-value)

VOlUMElENG(data-value)]
RIDFLD(data-area)
[KEYLENGTH(data-value)IRRH]
[NUMREC(data-value)]
[DEFRESP]
[HOWAIT]

Conditions: FUNCERR, SElHERR,
UNEXPIN

This command is used to delete a record
from a keyed direct data set in an
outboard controller. The RIDFLD option
specifies the key of the record to be
deleted; the length of the key must be
specified in the KEYLENGTH option.

TERMINATE PROCESSING OF A DATA SET (ISSUE
E:ND)

ISSUE END [DESTID(data-value)
DESTIDlENGCdata-value)]

[VOLUME(data-value)
VOlUMElENGCdata-value)]

[SUBADDR(data-value)]
[CONSOlEIPRINTICARD1WPMEDIAll

WPMEDIA21WPMEDIA3 WPMEDIA4]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to terminate
communication with a data set in an
outboard controller or\wi th the selected
medium. The data set s~ecified in the
DESTID option, or the selected medium, is
de-selected normally. The options
CONSOLE, PRINT, CARD, WPMEDIAl-4 are
alternatives to DESTID and DESTIDlENG.

TERMINATE PROCESSING OF A DATA SET
ABNORMALLY (ISSUE ABORT)

ISSUE ABORT [DESTID(data-value)
DESTIDlENGCdata-value)]

[VOlUME(data-value)
VOlUMElENG(data-value)]

[SUBADDR(data-value)]
[~ONSOlEIPRINTICARDIWPMEDIAll

WPMEDIA21WPMEDIA3 WPMEDIA4]

Conditions: FUNCERR, SElNERR,
UNEXPIN

This command is used to terminate
communication with a data set in an
outboard controller, or with the selected
medium, abnormally. The data set
specified in the DESTID option is
de-selected abnormally. The options
CONSOLE, PRINT, CARD, WPMEDIAl-4 are
alternatives to DESTID and DESTIDlENG.

TRANSMIT DATA TO AN OUTPUT DEVICE (ISSUE
~END)

ISSUE SEND [DESTID(data-value)
DESTIDlENGCdata-value)]

[VOLUME(data-value)
VOlUMElENG(data-value)]

FROMC da"t:a-area)
lEUGTH(data-value)
[SUBADDRCdata-value)]
[CONSOi~IPRIHTICARDIWPMEDIAll

WPMEDIA21WPMEDIA3 WPMEDIA4]
[HOWAIT]
[DEFRESP]

Conditions: FUNCERR, IGREQCD,
SElNERR, UNEXPIN

This command is used to transmit data to
a named data set in an outboard
controller, or to a selected medium in a
batch logical unit or an lUTYPE4 logical
uni t. The opti ons CONSOLE, PRINT, CARD,
WPMEDIAl-4 .re alternatives to DESTID and
DESTIDlENG.

REQUEST NEXT RECORD NUMBER (ISSUE NOTE)

ISSUE NOTE DESTID(data-value)
DESTIDlENGCdata-value)

[VOlUME(data-value)
VOLUMElENG(data-value)]

RIDFlD(data-area)
[RRN]

Conditions: FUNCERR, SElNERR,
UNEXPIN

Chapter 3.4. Batch Data Interchange 171

This command IS used to find the relative
record number of the next record in an
addressed direct data set. The number is
returned in the data area specified in
the RIDFLD option. The RRN option must
be specified, because a relative record
number is involved.

HAlT FQR AN OPERATION TO BE COMPLETED
(ISSUE WAIT 1

ISSUE WAIT [DESTID(data-value)
DESTIDLENG(data-value)]

[VDLUMECdata-value)
VDLUMELENGCdata-value)]

[SUBADDRCdata-value)]
[CONSOLEIPRINTICARDIWPMEDIAll

WPMEDIA21WPMEDIA3 WPMEDIA4]

Conditions: FUNCERR, SELNERR,
UNEXPIN

This command is used to cause task
activity to be suspended until the
previous batch data interchange command
is completed. This command is meaningful
only when it follows an ISSUE ADD, ISSUE
ERASE, ISSUE REPLACE, or ISSUE SEND
command. The options CONSOLE, PRINT,
CARD, WPMEDIAl-4 are alternatives to
DESTID and DESTIDLENG.

BATCH DATA INTERCHANGE OPTIONS

CARD
specifies that the output medium is
a card reader/punch device. This
option is not valid with DESTID and
DESTIDLENG.

CONSOLE
specifies that the output medium is
that provided for messages to the
operator. This option is not valid
with DESTID and DESTIDLENG.

DEFRESP
specifies that all terminal control
commands issued as a result of the
batch data interchange command will
request a definite response from the
outboard batch program,
irrespective of the specification
of message integrity for the CICS/VS
task (by the system programmer).

DESTIDCdata-valuel
specifies the nama of the data set
in the outboard destination. The
data value must be a character
string of up to eight characters.
This option is not valid with
CONSOLE, CARD, PRINT, or
wpr1EDIA 1-4.

172 CICS/VS APRM (CL)

DESTIDLENG(data-valuel
specifies the length of the name
specified in the DESTID option as a
halfword binary value. This option
is not valid with CONSOLE, CARD,
PRINT, or WPMEDIAl-4.

DFTPROF
specifies that the default data
stream profile has been specified.

FROMCdata-areal
specifies the data that is to be
written to the data set.

INTO(data-areal
specifies the receiving field for
the data read from the data set.
The INTO option implies move-mode
access.

KEYLENGTH(data-value)
specifies the length of the key
specified in the RIDFLD option as a
halfword binary value.

LENGTH(parameterl
specifies a halfword binary value to
be used wi th ISSUE ADD, ISSUE
RECEIVE, ISSUE REPLACE, and ISSUE
S END commands.

For an ISSUE ADD, ISSUE REPLACE, or
ISSUE SEND!. command, the parameter
must be a data value that is the
length of the data that is to be
written.

For an ISSUE RECEIVE command with
the INTO option, the parameter must
be a data area that specifies the
maximum length of data that the
program is prepared to handle. If
the value specified is less than
zero, zero i s assumed. I f the
length of the data exceeds the value
specified, the data is truncated to
that value and the LENGERR condition
occurs. On completion of the
retrieval operation, the data area
is set to the original length of the
data.

For an ISSUE RECEIVE command l.Ji th
the SET option, the parameter must
be a data area. On completion of
the retrieval operation, the data
area is set to the length of the
data.

NOWAIT
specifies that the CICS/VS task will
continue processing without waiting
for the batch data interchange
command to compl ete. If thi s opt ion
is not specified, the task activity
will be suspended until the command
is completed.

NUNREC(data-valuel
for a relative data set, specifies
as a hal fword bi nary value the

number of logical records affected
by one ISSUE REPLACE command.
Records are replaced sequentially
starting with the one identified by
the RIDFLD option.

For an indexed data set, NUMREC
cannot be specified since only one
record is replaced.

PRINT
specifies that the output is to the
print medium.

RIDFLD(data-area)

RRN

specifies the record identification
fi eld for use wi th ISSUE REPLACE and
ISSUE ERASE commands; it also
specifies a data area in which the
relative record number of the next
record is returned in an ISSUE NOTE
command.

For ISSUE REPLACE commands for a
relative data set, the RIDFLD option
must specify a fullword binary
integer being the relative record
number (starting from zero) of the
record. The RRN option is also
required.

For ISSUE REPLACE commands for an
indexed data set, the RIDFLD option
specifies the key which is embedded
in the data specified by the fROM
option. The KEYLENGTH option is
also required.

For ISSUE ERASE commands, the RIDFLD
option must specify the key of the
record.

specifies that the record
identification field specified in
the RIDFLD option is a relative
record number. If the option is not
specified, RIDFLD is assumed to
spec i ·fy a key.

SET(ptr-ref)
specifies the pointer reference
that is to be set to the address
locat.i on of the data read from the

. data set. The SET option implies
locate-mode access.

SUBADDR(data-value)
specifies the medium subaddress as a
decimal value (in the range 0
through 15) whi ch allol.Js media of
the same type, for example, "printer
1" or "printer 2", to be defined.
Value 15 means a medium of any type.
The default is 00.

VOLUME(data-value)
specifies the name of a diskette in
an outboard destination that
contains the data set specified in
the DESTID option. The data value
must be a character string of up to
six characters.

VOLUHELENG(data-valuel
specifies the length of the name
specified in the VOLUME option as a
halfword binary value.

WPMEDIAl through WPMEDIA4
specifies that for each specific
LUTYPE4 device, a word processing
medium is defined to relate to a
specific input/output device.

BATCH DATA INTERCHANGE EXCEPTIONAL
CONDITIONS

DSSTAT

EODS

occurs when the destination status
changes in one of the following
ways:

• The data stream is aborted.

• The data stream is suspended.

Default action: terminate the task
abnormally.

occurs when the end of the data set
i s encountered.

Default action: terminate the task
abnormally.

IGREQCD
occurs when an attempt is made to
execute an ISSUE SEND command after
a SIGNAL ReD data-flow control code
has been received from an LUTYPE4
logical unit.

Default action: terminate the task
abnormally.

FUHCERR
occurs when an error occurs during
execution of the command.
Destination selection is unaffected
and other commands for the same
destination may be successful.

Default action: terminate the task
abnormally.

LEHGERR
occurs if the length of the
retrieved data is greater than the
value specified by the LENGTH option
for a move-mode ISSUE RECEIVE
command.

Default action: terminate the task
abnormally.

NODATARECD
occurs if an ISSUE RECEIVE command
is issued to an LUTYPE4 logical unit
and the destination currently has no
data to send.

Default action: terminate the task
abnormally.

Chapter 3.4. Batch Data Interchange 173

SELNERR
occurs when an error occurs during
destination selection. The
destination is not selected and
other commands for t~e same
destination are unlikely to be
successful.

Default action: terminate the task
abnormally.

UNEXPIN
occurs when some unexpected Or
unrecognized information is

174 CICS/VS APRM eCl)

received from the outboard
controller.

Default action: terminate the task
abnormally.

More detailed information about the cause
of an exceptional condition is given in
field EIBRCODE in the EIB which is shown
in "Appendix A. EXEC Interface Block" on
page 239. (Refer also to the CICS/VS
Problem Determination Guide.)

Part 4. Control Operations.

Chapter 4.1. Introduction to Control Operations

Chapter 4.2. Interval Control

Chapter 4.3. Task Control

Chapter 4.4. Program Control

Chapter 4.5. Storage Control

Chapter 4.6. Transient Data Control

Chapter 4.7. Temporary Storage Control

Part 4. Control Operations 175

Chapter 4.1. Introduction to Control Operations

This part of the manual collects together
several groups of operations that are not
specifically data base or data
communicetion operations, but that
control the execution of tasks within a
CICS/VS system. These groups of
operations are as follows:

• Interval control - comprising
functions whose execution is
dependent on time.

• Task control - comprising functions
to synchronize task activity or
resource usage.

• Program control - comprising
functions affecting the flow of
control between application
programs.

• storage control - comprlslng
functions to obtain and release areas
of ma in storage.

• Transient data control - comprising
functions for the transfer of data
between CICS/VS tasks and between the
CICS/VS region or partition and other
regions or partitions.

• Temporary storage control -
comprising functions for the
temporary storage of data.

Each group of operations is described in
a separate chapter within this part, as
listed on the previous page.

Chapter 4.1. Introduction to Control Operations 177

Chapter 4.2. Interval Control

The CICS/VS interval control program, in
conjunction with a time-of-day clock
maintained by CICS/VS, provides
functions that can be performed at the
correct time; such functions are called
time-controlled functions. The time of
day is obtained from the operating system
at intervals whose frequency, and thus
the accuracy of the time-of-day clock,
depends on thatask mix and the frequency
of task switching operations.

Interval control commands are provided
to:

• Request the current date and time of
day (ASKT IME) .

•

•

•

•

•

•

Delay the processing of a task
(DELAY).

Request notification when a
specified time has expired (POST).

Wait for an event to occur (WAIT
EVENT).

Start a task and store data for the
task (START).

Retrieve data stored (by a start
command) for a task (RETRIEVE).

Cancel the effect of previous
interval control commands (CANCEL).

Exceptional conditions that occur during
execution of an interval control command
are handled as descri bed in "Chapter 1.5.
Exceptional Conditions" on page 25.

Expiration Times

The time at which a time-controlled
function is to be performed is called the
expiration time. Expiration times can be
specified absolutely, as a time of day,
or as an interval that is to elapse
before the function is to be performed.

An interval is measured relative to the
current time and so the expiry time will
always be after the current time
(assuming a nonzero interval is
specified). An absolute time is measured
relative to midnight prior to the current
time and may therefore be prior to the
current time.

CICS/VS treats as expired a request for
an absolute time that is equal to the
current time or that precedes the curront
time by up to six hours. If the specified
absolute time precedes the current time
by more than six hours, CICS/VS adds 24
hours, that is, the requested function is

performed at the time specified but on
the next day.

Examples of the START command specifying
absolute time-of-day requests, are as
follows:

EXEC CICS START TIME (123000)
issued at 1000 hours on Monday will
expire at 1230 hours on the same
Monday.

EXEC CICS START TIME (090000)
issued at 1000 hours on Monday will
expire immediately because the
specified time is within the
preceding six hours.

EXEC CICS START TIME (020000)
issued at 1000 hours on Monday will
expire at 0200 hours on Tuesday
because the specified time is more
than six hours before the current
time.

EXEC CICS START TIME (330000)
issued at 1000 hours on Monday will
expire at 0900 hours on Tuesday.

Since each end of an intersystem link may
be in a different time zone, it is
recommended that the INTERVAL form of
expiration time be used when the
transaction to be started is in a remote
system.

Request Identifiers

As a means of symbolically identifying
the request and any data associated with
it, a unique request identifier is
assigned by CICS/VS to each DELAY, POST,
or START command. The application
programmer can specify his own request
identifier by means of the REQID option;
if none is assigned by the programmer,
then for POST and START commands only,
CICS/VS assigns a unique request
identifier and places it in the field
EIBREQID in the EXEC interface block
(EIB). A request identifier should be
specified by the application programmer
if the request may be canceled at some
later time by a CANCEL command.

REQUEST CURRENT TIME OF DAY (ASKTIME)

I ASKTIME

This command is used to update the
CICS/VS time-of-day clock, and the fields

Chapter 4.2. Interval Control 179

EIBDATE and EIBTIME in the EIB. The two
fields contain initially the date and
time when the task started. Refer to
"Appendix A. EXEC Interface Block" on
page 239 for details of the EIB.

DELAY PROCESSING OF A TASK (DELAY)

DELAY [INTERVALChhmmss)IINTERVALCO)1
TIMEChhmmss)]

[REQIDCname)]

Conditions: EXPIRED, INVREQ

This command is used to request CICS/VS
to suspend the processing of the issuing
task for a specified interval of time or
until a specified time of day. It
supersedes any previously initiated POST
command for the task. (The POST command
is described in the following section.)

The following example shows how to
suspend the processing of a task for a
specified period of time:

EXEC CICS DEL.AY
INTERVAL(500)
REQID('GXLBZQMR')

The following example shows how to
suspend the processing of a task until a
specified time of day:

EXEC CICS DELAY
TIME(124500)
REQIDC'UNIQCODE')

REq~EST NOTIFICATION WHEN SPECIFIED TIME
HAS EXPIRED (POST)

POST [INTERVALChhmmss)IINTERVAL(O)1
TIME(hhmmss)]

SETCptr-ref)
[REQIDCname)]

Conditions: INVREQ, EXPIRED

This command is used to request
notification that a specified time has
expired. In response to this command,
CICS/VS makes a timer event control area
available for testing. This four-byte
area is initialized to binary zeros, and
the pointer reference specified in the
SET opt ion is set to its address. Thi s
area is avai lable for the durati on of the
task issuing the POST command.

When the time specified has expired, the
timer event control area is posted; that
is, its first byte is set to X'40' and
its third byte to X'BO'. Posting can be
tested in either of the following ways:

1BO CICS/VS APRM (CL)

•

•

By checking the timer event control
area at intervals. CICS/VS must be
given the opportunity to post the
area; that is, the task must
relinquish control of CICS/VS before
testing the area. Normally, this
condition is satisfied as a result of
other commands being issued; if a
task is performing a long internal
function, control can be
relinquished by iSSUing a SUSPEND
command, described in "Chapter 4.3.
Task Control" on page 187.

By suspending task activity by a WAIT
EVENT command until the timer event
control area is posted. This action
is simi lar to i ssui ng a DELAY
command, the difference being that
with a POST, WAIT EVENT sequence, it
is possible to perform some
processing after issuing the POST
command, whereas a DELAY command
suspends task activity at once. No
other task should attempt to wait on
the event set up by a POST command.
The timer event control area can be
released for a variety of reasons
(see below). If thi s happens, the
result of any other task issuing a
WAIT on the event set up by the POST
is unpredictable.

However, other tasks can CANCEL the
event if they have access to the
REQID associ ated wi th the POST
command~ (See CANCEL command and
description of REQID option.)

A timer event control' area provided for a
task is not released or altered (except
as descri bed above) unt i lone of the
following events occurs:

•

•

•

The task issues a subsequent DELAY,
POST, or START command.

The task issues a CANCEL command to
cancel the POST command.

The task is terminated, normally or
abnormally.

Any other ta sk issues a CANCEL
command for the event set up by the
POST command.

A task can have only one POST command
active at any given time. Any DELAY,
POST, or START command supersedes a
previously issued POST command by the
task.

The following example shows how to
request a timer event control area for a
task, to be posted after 30 seconds:

EXEC CICS POST
INTERVAl(30)
REQID('RBL3D')
SET (PREF)

The following example shows how to
provide a timer event control area for
the task, to be posted when the specified
time of day is reached. Since no request
identifier is specified in the command,
CICS/VS automatically assigns one and
returns it to the application program in
the EIBREQID field in the EIB.

EXEC CICS POST
TIMECPACKTIME)
SETCPREF)

WAIT FOR AN EVENT TO OCCUR (WAIT EVENT)

I WAIT EVENT ECADDRCptr-valuel

This command is used to synchronize a
task with the completion of an event
initiated by the same task or by another
task. The event would normally be the
posting, at the expiration time, of a
timer event control area provided in
response to a POST command, as described
in the preceding section. The WAIT EVENT
command provides a method of directly
relinquishing control to some other task
until the event being waited on is
completed.

1\ po inter value gi v i ng the address of an
event control area must be specified in
the ECADDR option. The event control
area must conform to the format and
standard posting conventions for ECBs; it
will normally be the timer event control
area created by a POST command.

The following example shows how to
suspend processing of a task until the
specified event control area is posted:

EXEC CICS WAIT EVENT
ECADDRCPVALUE)

START A TASK (START)

START [INTERVAl(hhmmss)IINTERVAL(O)1
TIME(hhmmss)]

TRANSIDCname)
[REQIDCname)]
[FROM(data-area)

LENGTHCdata-value)[FMH]]
[TERMID(name)]
[SYSIDCname)]
[RTRANSID(name)]
[RTERMIDCname)]
[QUEUECname)]
[NOCHECK]
[PROTECT]

Conditions: IOERR, INVREQ,
ISCINVREQ, SYSIDERR, TERMIDERR,
TRANSIDERR

This command is used to start a task, on
a local or remote system, at a specified
time. The starting task may pass data to
the started task and may also specify a
terminal to be used by the started task
as its principal facility. The TRANSID,
TERMID, and FROM options specify the
transaction to be executed, the terminal
to be used, and the data to be used,
respectively.

The FMH option may be specified if the
FROM option is specified. It indicates
that the data, to be passed to the
started task, contains function
management headers.

Further data may be passed to the started
task in the RTRANSID, RTERMID, and QUEUE
options. For example, one task can start
a second task passing it a transaction
name and a terminal name to be used when
the second ta sk sta rt s a th i rd ta sk; the
fi rst task may al so pass the name of a
queue to be accessed by the second task.

If data is to be passed, it will be
queued using the request identifier
specified in the REQID option, if one is
provided. This identifier should be
recoverable (in temporary-storage terms)
if the PROTECT option is also specified,
or nonrecoverable if PROTECT is not
specified, otherwise unpredictable
results can occur. Such problems cannot
occur if REQID is not used.

The NOCHECK option specifies that no
response (to execution of the START
command) is expected by the starting
transaction. For START commands naming
tasks to be started on a local system,
error conditions will be returned,
whereas those for tasks to be started on
a remote system will not be returned.
The NOCHECK opt i on allows CICS/VS to
improve performance when the START
command has to be shipped to a remote
system; it is also a prerequisite if the
shipping of the START command is queued
pending the establishing of links to the
remote system.

One or more constraints have to be
satisfied before the transaction to be
executed can be started, as follows:

1. The specified interval must have
elapsed or the specified expiration
time must have been re~ched. See the
section "Expiration Times" earlier
in the chapter. It is recommended
that the INTERVAL option be specified
when a transaction is to be executed
on a remote system; this avoids
complications arising when the local
and remote systems are in different
time zones.

2. If the TERMID option is specified,
the named terminal must be available.

Chapter 4.2. Interval Control 181

3. If the PROTECT option is specified,
the starting task must have taken a
successful syncpoint. This option,
coupled to ~xtensions to system
tables, reduces the exposure to lost
or duplicated data caused by failure
of a starting task.

4. If the transaction to be executed is
on a remote system the format of the
data must be declared to be the same
as that at the local system. This is
done by the DATASTR and RECFM
operands of the DFHTCT TYPE=SYSTEM
system macro. For CICS/VS-CICS/VS
these are always the default values.
For CICS/VS-IMS/VS care should be
taken to specify the correct values.

Execution of a START command naming a
transaction in the local system will
supersede any outstanding POST command
executed by the starting task.

STARTING TASKS WITHOUT TERMINALS

If the task to be started is not
associated with a terminal, each START
command results in a separate task being
started. This happens regardless of
whether or not data is passed to the
started task.

The following example shows how to start
a specified task, not associated with a
terminal, in one hour:

EXEC CICS START
TRANSID('TRNL')
INTERVAL(lOOOO)
REQID('NONGL')

STARTING TASKS WITH TERMINALS BUT WITHOUT
DATA

Only one task is started if several START
commands, each specifying the same
transaction and terminal, expire at the
same time or prior to terminal
availability.

The following example shows how to
request initiation of a task associated
with a terminal. Since no request
identifier is specified in this example,
CICS/VS assigns one and returns it to the
application program in the EIBREQID field
in the EXEC interface block.

EXEC CICS START
TRANSID('TRNl')
TIME(185000)
TERMID('STA5')

STARTING TASKS WITH TERMINALS AND DATA

Data is passed to a started task if one
or more of the FROM, RTRANSID, RTERMID,
and QUEUE options is specified. Such

182 CICS/VS APRM (el)

data is accessed by the started task
through execution of a RETRIEVE command
as described later in the chapter.

It is possible to pass many data records
to a new task by issuing several START
commands, each specifying the same
transaction and terminal.

Execution of the first START command will
ultimately cause the new task to be
started and allow it to retrieve the data
specified on the command. The new task
will also be able to retrieve data
specified on subsequently executed START
commands that expire before the new task
is terminated. If such data has not been
retrieved before the new task is
terminated, another new task will be
started and will be able to retrieve the
outstanding data.

The following example shows how to start
a task associated with a terminal and
pass data to it:

EXEC CICS START
TRANSID('TRN2')
TIME(173000)
TERMIDC'STA3')
REQIDCDATAREC)
FROMCDATAFLD)
LENGTHCIOO)

RETRIEVE DATA STORED FOR A TASK
(RETRIEVE")

RETRIEVE {INTO(data-area)I
SET(ptr-ref)}

lENGTHCdata-area)
[RTRANSID(data-area)]
[RTERMIDCdata-area)]
[QUEUECdata-area)]
[WAIT]

Conditions: ENDDATA, ENVDEFERR,
INVREQ, INVTSREQ, IOERR, LENGERR,
NOTFND,

This command is used to retrieve data
stored by expired START commands (the
START command is described in the
previous section). It is the only method
available for accessing such data.

The INTO option is used to specify the
area into which the data is to be placed.
The LENGTH option must specify a data
area that contains the maximum length of
record that the application program will
accept. If the record length exceeds the
specified maximum, it is truncated and
the LENGERR condition occurs. After the
retrieval operation, the data area
specified in the LENGTH option is set to
the record length (before any truncation
occurred).

Alternatively, a pointer reference can be
specified in the SET option. CICS/VS then
acquires an area large enough to hold the
record and sets the pointer reference to
the address of that area. After the
retrieval operation, the data area
specified in the LENGTH option is set to
the record length.

A task that is not associated with a
terminal can access only the single data
record associated with the original START
command; it does so by issuing a RETRIEVE
command. The storage occupied by the
data associated with the task is released
upon execution of the RETRIEVE command,
or upon termination of the task if no
RETRIEVE command is executed prior to
termination.

A ta~k that is associated with a terminal
can access all data records associated
with all expired START commands having
the same transaction identifier and
terminal identifier as the START command
that started the task; it does so by
issuing consecutive RETRIEVE commands.
Expired data records are presented to the
task upon request in expiration time
sequence, starting with any data stored
by the command that started the task, and
including data from any commands that
have expired since the task started. Each
data record is retrieved from temporary
storage using the REQID of the original
START command as the identification of
the record in temporary storage.

When all expired data records have been
retrieved, the ENDDATA exceptional
condition occurs. The storage occupied
by the single data record associated with
a START command is released after the
data has been retrieved by a RETRIEVE
command; any storage occupied by data
that has not been retrieved is released
when the CICS/VS system is terminated.

The WAIT option specifies that, if all
expired data records have already been
retrieved, the task is suspended until
further expired data records become
available. The ENDDATA exceptional
condition will be raised only if CICS/VS
is shut down before any expired data
records become available.

If a value has been specified in the
DTIMOUT operand of the DFHPCT TYPE=ENTRY
system macro, the ENDDATA condition will
be raised if no data is available after
the specified length of time. This
condition will be raised also if the
terminal, on which the transaction has
been suspended, receives a request for a
transact ion o·ther than the one that has
been suspended. This condition will be
raised also if CICS/VS enters shut down
and the transaction is still suspended.
An attempt to reissue the RETRIEVE
command with the WAIT option after this
event (that is, system shut down) will
cause an abend I:Ji th a code of AICB.

If the retrieved data contains FMHs, as
specified by the FMH option on the
associated START command, field EIBFMH in
the EIB will be set to X'FF'. If no FMH is
present, EIBFMH will be set to X'OO'.

If an input/output error occurs during a
retrieval operation, the IOERR
exceptional condition occurs. The
operation can be retried by reissuing the
RETRIEVE command.

The following example shows how to.
retrieve data stored by a START command
for the task, and store it in a specified
area:

EXEC CICS RETRIEVE
INTO(DATAFLD)
LENGTH(LENG)

The following example shows how to
request retrieval of a data record stored
for a task into a data area provided by
CICS/VS; the pointer reference specified
by the SET option is set to the address
of the storage area reserved for the data
record.

EXEC CICS RETRIEVE
SETCPREF)
lENGTH(LENG)

CANCEL INTERVAL CONTROL REQUESTS
(CANCEL)

CANCEL [REQID(name)[TRANSIDCname)]
[SYSIDCname)]]

Conditions: INVREQ, ISCINVREQ,
NOTFND, SYSIDERR

This command is used to cancel a
previously issued DELAY, POST, or START
command. The presence of SYSID will
cause the command to be shipped to a
remote system. If SYSID is not present,
TRANSID (if present) will determine where
the command is to be executed. The
effect of the cancellation varies
depending on the type of command being
ca~celed, as follows:

• A DELAY command can be canceled only
prior to its expiration, and only by
a task other than the task that
issued the DELAY command Cwhich is
suspended for the duration of the
request). The REQID used by the
suspended task must be specifi~d.
The effect of the cancellation is the
same as an early expiration of the
original DELAY. That is, the
suspended task becomes dispatchable
as though the original expiration
time had been reached.

Chapter 4.2. Interval Control 183

•

•

When a POST command issued by the
same task is to be canceled, no REQID
should be specified; if it is, it
will be ignored. Cancellation can be
requested either before or after
expiration of the original request.
The effect of the cancellation is as
if the original request had never
been made.

When a POST command issued by another
task is to be canceled, the REQID of
that command must be specified. The
effect of the cancellation is the
same as an early expiration of the
original POST request. That is, the
timer event control area for the
other task is posted as though the
original expiration time had been
reached.

• When a START command is to be
canceled, the REQID of the original
command must be specified. The
effect of the cancellation is as if
the original command had never been
made. The cancellation is effective
only prior to expiration of the
original command.

INTERVAL CONTROL OPTIONS

ECADDR(ptr~value)

FMH

specifies the address of the timer
event control area that must be
posted before task activity can be
resumed.

specifies that the user data to be
passed to the started task contains
FMHs.

FROM(data-areal
specifies the data that is to be
stored for a task that is to be
started at some future time.

INTERVAL(hhmmss)
specifies the expiration time for an
interval control function as an
interval of time that is to elapse
from the time at which the interval
control command is issued. The time
specified is adde.d to the current
clock time by CICS/VS when the
command is exe.cuted to calculate the
expiration time.

This option is used in DELAY
commands (to specify the time for
which the task should be suspended),
POST comma~ds (to specify when the
posting of the timer event control
area should occur), and START
commands (to specify when a new task
should be started).

The time interval is specified in
the form "hhmmss" where "hh"
represents hours from 00 to 99, "mm"
represents minutes from 00 to 59,

184 CICS/VS APRM (Cl)

and "ss" represents seconds from 00
to 59.

INTO(data-areal
specifies the user data area into
which retrieved data is to be
written. If this option is
specified, move-mode access is
implied.

LENGTH(parameter)
specifies a halfword binary value to

.be used with START and RETRIEVE
commands.

For a START command, the parameter
must be a data value that is the
length of the data that is to be
stored for the new task.

For a RETRIEVE command with the INTO
option, the parameter must be a data
area that specifies the maximum
length of data that the program is
prepared to handle. If the value
specified is less than zero, zero is
assumed. If the length of the data
exceeds the value specified, the
data is truncated to that value and
the LENGERR condition occurs. On
completion of the retrieval
operation, the data area is set to
the original length of the data.

For a RETRIEVE command with the SET
option, the parameter must be a data
area. On completion of the
retrieval operation, the data area
is set to the length of the data.

NOCHECK
specifies that, for a remote system,
CICS/VS should optimize the
execution of the START command to
improve performance by providing
less error checking and slightly
less function.

PROTECT
specifies that, in addition to the
constraints described earlier in
the chapter, the new task will not
be started until the starting task
has taken a sync point. If the
starting task abends before the sync
point is taken, the request to start
the new task will be canceled. If
the REQID option is specified as
well, the request identifier should
be a name defined as recoverable to
temporary storage.

QUEUE{(namell(data area)
when used in a START command, "name"
specifies the name of the queue that
may be used by the transaction
specified also in the START command.
The name must be up to eight
characters in length.

When used in a RETRIEVE command,
"data area" specifies the name of
the queue that may be accessed by

)

1
. "1

the transaction issuing the
RETRIEVE command. The data area
must be eight characters in length.

REQID(name)
specifies a unique name (up to eight
characters) to identify a command.

This option can be used in a DELAY,
POST, or START command when another
task is to be provided with the
capability of canceling an
unexpired command; and in CANCEL
commands, except those canceling a
POST command issued by the same task
(for which, the REQID option is
ignored if it is specified).

If this option is omitted from a
POST command, CICS/VS generates a
unique request identifier in the
EIBREQID field of the EXEC interface
block. This applies also to a START
command unless the NOCHECK option is
specified, in which case field
EIBREQID is set to blanks and cannot
be used subsequently to cancel the
START command.

RTERMIDt(nameJlldata areal)
When used in a START command, "name"
specifies a value, for example a
terminal name, that may be retrieved
when the transaction, specified in
the TRANSID option in the START
command, is started. The name must
be ~p to four characters in length.

When used in a RETRIEVE command,
"data area" specifies an area which
may be used in the TERMID option of
a START command that may be executed
subsequently. The data area must be
four characters in length.

RTRANSIDt(nameJI(data areal}
When used in a START command, "name"
specifies a value, for example a
transaction name, that may be
retrieved when the transaction,
specified in the TRANSID option in
the START command, is started. The
name must be up to four characters
in length.

When used in a RETRIEVE command,
"data area" specifies an area which
may be used in the TRANSID option of
a START command that may be executed
subsequently. The data area must be
four characters in length.

SET(ptr-refl
When used with a POST command. SET
specifies the pointer reference to
be set to the address of the 4-byte
timer event control area generated
by CICS/VS. This area is
initialized to binary zeros; on
expiration of the specified time,
the first byte is set to X'40', and
the thi rd byte to X' 80' .

When used with a RETRIEVE command,
SET specifies the pointer reference
to be set to the address of the
retrieved data. If this option is
specified, locate-mode access is
implied.

SYSIDlname) remote systems only
specifies the name of the system
whose resources are to be used for
intercommunication facilities. The
name may be up to four characters in
length.

TIMElhhmmss)
specifies the expiration time for an
interval control function. See the
section "Expiration Times" earlier
in the chapter.

This option is used in DELAY
commands (to specify the time for
which the task should be suspended),
POST commands (to specify when the
posting of the timer event control
area should occur), and START
commands (to specify when a new task
should be started).

The time is specified in the form
"hhmmss" where "hh" represents
hours from 00 to 99, "mm" represents
minutes from 00 to 59, and "5S"
represents seconds from 00 to 59.

TERMID(name)
specifies the symbolic identifier
of the terminal associated with a
transaction to be started as a
result of a START command. This
option is required when the
transaction to be started must
communicate with a terminal; it
should be omitted otherwise. The
name must be alphameric, up to four
characters in length, and must have
been defined in the terminal control
table (TCT) by the system
programmer.

If the transaction to be started is
on a remote system, the terminal
identifier will be assumed to be
defined in the TCT on the remote
system.

TRANSID(name)
specifies the symbolic identifier
of the transaction to be executed by
a task started as the result o'f a
START command, or to be canceled by
a CANCEL command. The name may be
up to four characters in length and
must have been defined in the
program control table (PCT) by the
system programmer.

If SYSID is specified, the
transaction is assumed to be on a
remote system irrespective of
whether or not the name is defined
in the PCT. Otherwise the entry in
the PCT will be used to determine if

Chapter 4.2. Interval Control 185

WAIT

the transaction is on a local or
remote system.

specifies that, if all expired data
records have already been
retrieved, the task is to be put
into a wait state until further
expired data records become
available. The ENDDATA condition
will be raised only if CICS/VS is
shut down before any expired data
records become available.

INTERVAL CONTROL EXCEPTIONAL CONDITIONS

ENDDATA
occurs if no more data is stored for
a task issuing a RETRIEVE command.
It can be considered a normal end of
file response when retrieving data
records sequentially.

Default action: terminate the task
'abnormally.

ENVDEFERR
occurs when a RETRIEVE command
specifies an option not specified by
the corresponding START command.

Default action: terminate the task
abnormally.

EXPIRED
occurs if the time specified in a
POST or DELAY command has already
expired when the command is issued.

Default action: ignore the
condition.

INVREQ
occurs if an invalid type of
interval control command is
received for processing by CICS/VS.

Default action: terminate the task
abnormally.

INVTSREQ

IOERR

occurs if there is no support for a
temporary storage read request
issued by CICS/VS during execution
of a RETRIEVE command. Thi s
situation can occur when a dummy
Temporary Storage Program is
included in the system by the system
programmer in place of a functional
Temporary Storage Program.

Default action: terminate the task
abnormally.

occurs if an input/output error
occurs during a RETRIEVE or START
operation. The operation can be
retried by reissuing the RETRIEVE
command.

186 CICS/VS APRM (Cl)

Default action: terminate the task
abnormally.

ISCINVREQ
occurs when the remote system
indicates a failure which does not
correspond to a known condition.

Default action: terminate the task
abnormally.

LENGERR
occurs in move-mode retrieval if the
length specified is less than the
actual length of the stored data.

Default action: terminate the task
abnormally.

NOTFND
occurs if any of the following
situations exists:

•

•

•

The request identifier
specified in a CANCEL command
fails to match an unexpired
interval control command.

The RETRIEVE command is issued
by a task that is started by a
START command which did not
specify the FROM option.

The request identifier
associated with a START command
fails to remain unique; when a
RETRIEVE command is issued,
CICS/VS cannot find the data.

Default action: terminate the task
abnormally.

SYSIDERR
occurs when the SYSID option
specifies either a name which is not
defined in the intersystem table or
a system to which the link is
closed.

Default action: terminate the task
abnormally.

TERMIDERR
occurs if the terminal identifier in·
a START command cannot be found in
the terminal control table.

Default action: terminate the task
abnormally.

TRANSIDERR
occurs if the transaction
identifier specified in a START
command cannot be found in the
program control table.

Default action: terminate the task
abnormally.

Chapter 4.3. Task Control

The CICS/VS task control program provides
functions that synchronize task
activity, or that control the use of
resources.

CICS/VS processes tasks concurrently
according to priorities assigned by the
system programmer. Control of the
processor is given to the highest
priority task that is ready to be
processed and is returned to the
operating system when no further work can
be done by CICS/VS or by user-written
application programs.

Task control commands are provided to:

• Suspend a task (SUSPEND).

• Schedule the use of a resource by a
task (ENQ and DEQ).

A task can issue the SUSPEND command to
relinquish control and allow tasks with a
higher priority to proceed. This
facility can be used to prevent
processor-intensive tasks from
monopolizing the processor. If no
higher-priority task is waiting to be
processed, control is returned to the
issuing task; that is, the task remains
dispatchable.

Scheduling the use of a resource by a
task is sometimes useful in order to
protect the resource from concurrent use
by more than one task, that is, to make
the resource serially reusable. Each
task that is to use the resource issues
an ENQ (enqueue) command. The first task
to do so has the use of the resource
immediately, but subsequent EHQ commands
for the resource, issued by other tasks,
result in those tasks being suspended
until the resource is available. Each
task using the resource should issue a
DEQ (dequeue) command when it has
finished with it. The resource then
becomes avai lable and the next task to
have issued an ENQ command is resumed and
given use of the resource. The other
tasks obtain the resource in turn, in the
order in which they enqueued upon it.

Exceptional conditions that occur during
execution of a task control command are
handled as described in "Chapter 1.5.
Excepti~nal Conditions" on page 25.

SUSPEND A TASK (SUSPEND)

SUSPEND

This command is used to relinquish
control to a task of higher dispatching
priority. Control is returned to the
task issuing the command if no other task
of a higher priority is ready to be
processed.

SCHEDULE USE OF A RESOURCE BY A TASK (ENQ
AND DMJ.

{ENQIDEQ} RESOURCE(data-area)
[LENGTHCdata-value)]

Condition: ENQBUSY (ENQ only)

The ENQ and DEQ commands can be used to
enqueue upon and dequeue from a resource
that is to be protected from concurrent
use by more than one task.

The ENQ command causes further execution
of the task issuing the ENQ command to be
synchronized with the availabili"ty of the
specified resource; control is returned
to the task when the resource is
available.

The EHQBUSY condition allows a
conditional ENQ to be used. If a
resource is not available when enqueued,
the ENQBUSY condition is raised. The
execution of a HANDLE CONDITION ENQBUSY
command will return control to the task
at the ENQBUSY label, without waiting for
the resource to become available.

The DEQ command causes a resource
currently enqueued upon by the task to be
r'eleased for use by other tasks. If a
task enqueues upon a resource but does
not dequeue from it, CICS/VS
automatically releases the resource when
the task is terminated.

When issuing the ENQ command, the
resource. to be enqueued upon must be
identified by one of the following
methods:

• Specifying a data area that is the
resource.

• Specifying a data variable that
contains a unique character-string
argument (for example, an employee
name) that represents the resource.
The character string may be up to 255
bytes in length. The length of the
string must be supplied in the LENGTH
option.

Chapter 4.3. Task Control 187

~Jhen i ssu i ng the DEQ command t the
resource to be dequeued from must be
identified by the method used when
enqueuing upon the resource.

The following examples show how to
enqueue upon a resource using the two
methods shown above. Substituting "DEQ"
for "ENQ" in these examples illustrates
the ways in which a resource can be
released.

EXEC CICS ENQ
RESOURCECRESNAME)

or

EXEC CICS ENQ
RESOURCECSOCSECNO)
LENGTH(9)

TASK CONTROL OPJ~ONS

LENGTH(data-valuel
specifies that the resource to be
enqueued upon Cor dequeued from) is
a data variable of length given by
the data value. The data value is a
halfword binary value in the range 1

188 CICS/VS APRM eCl)

through 255. If the LENGTH option
is specified in an ENQ command, it
must also be spec; fi ed in the DEQ
command for that resource, and the
values of these options must be the
same. This option is required if
the resource is speci fi ed as a
character string; it should not be
specified otherwise.

RESOURCE(data-areaJ
specifies either the resource to be
enqueued upon (or dequeued from) or
a data variable that contains a
character string (for example an
employee name) that represents the
resource. In the latter case, the
length of the string must be
specified by the LENGTH option.

TASK CONTROL EXCEPTIONAL CONDITIONS

ENQBUSY
occurs when an ENQ command specifies
a resource that is unavailable.

Default action: wait for the
resource to become available.

Chapter 4.4. Program Control

The CICS/VS program control program
governs the flow of control between
application programs in a CICS/VS system.
The name of an application program
referred to in a program control command
must have been placed in the processing
program table (PPT) by the system
programmer before CICS/VS is started.

Program control commands are provided to:

•

•

•

•

•

Link one user-written application
program to another, anticipating
subsequent return to the requesting
program (LINK). The COMMAREA option
allows data to be passed to the
requested application program.

Transfer control from one
user-written application program to
another, with no return to the
requesting program (XCTL). The
COMMAREA option allows data to be
passed to the requested application
program.

Return control from one user-written
application program to another or to
CICS/VS (RETURN). The COMMAREA
option allows data to be passed to a
newly-initiated transaction.

Load a designated application
program, table, or map into main
storage and return control to the
requesting program (LOAD).

Delete a previously loaded
application program, table, or map
from main storage (RELEASE).

Exceptional conditions that occur during
execution of a program control command
are handled as described in "Chapter 1.5.
Exceptional Conditions" on page 25.

The HANDLE ABEND command can be used to
deal with abnormal terminations. Refer to
"Chapter 5.2. Abnormal Termination
Recovery" on page 215 for further
information about this command.

APPLICATION PROGRAM LOGICAL LEVELS

Application programs running under
CICS/VS are executed at various logical
levels. The first program to receive
control within a task is at the highest
logical level. When one application
program is linked to another, expecting

an eventual return of control, the
linked-to program is considered to reside
at the next lower logical level. When
control is simply transferred from one
application program to another, without
expecting return of control, the two
programs are considered to reside at the
same logical level.

LINK TO ANOTHER PROGRAM ANTICIPATING
RETURN (LINK)

LINK PROGRAMCname)
[COMMAREA(data-area)

LENGTH(data-value)]

Condition: PGMIDERR

This command is used to pass control from
an application program at one logical
level to an application program at the
next lower logical level. If the
linked-to program is not already in main
storage, it will be loaded. When the
RETURN command is executed in the
linked-to program, control is returned to
the program initiating the linkage at the
next sequential executable instruction.

The following example shows how to
request a link to an application program
called PROG!:

EXEC CICS LINK
PROGRAMC'PROG1')

The COMMAREA option can be used to pass
data to the llnked-to program. For
further detai Is, see the secti on "Passi ng
Data to Other Programs" later in the
chapter. The LENGTH option specifies the
length of the data being passed.

The linked-to program operates
independently of the program that issues
the LINK command with regard to handling
exceptional conditions, attention
identifiers, and abends. For example,
the effects of HANDLE commands in the
linking program are not inherited by the
linked-to program, but the original
HANDLE commands are restored on return to
the linking program. Figure 20 on page
190 illustrates the concept of logical
levels.

Chapter 4.4. Program Control 189

LEVEL 0

LEVEL 1

PROG A

LINK
.

RETURN -

... _______ -J

V LEVEL 2

PROG B > PROG C .
XCTL LINK

->
RETURN -

- -
V LEVEL 3

PROG D J> PROG E

· · XCTL
· · RETURN i'-

- -

Figure 20. Application Program Logical Levels

TRANSFER PROGRAM CONTROL (XeTL)

XCTL PROGRAMCname)
[COMMAREACdata-area)

lENGTH(data-value)]

Condition: PGMIDERR

This command is used to transfer control
from one application program to another
at the same logical level. The program
from which control ;s transferred is
released. If the program to which
control is transferred is not already in
main storage, it will be loaded.

The following example shows how to
request a transfer of control to an
application program called PROG2:

EXEC CICS XCTl
PROGRAMC'PROG2')

190 CI CS/VS APRM (CL)

The COMMAREA option can be used to pass
data to the invoked program. For further
deta; Is, see the sect; on "Passi ng Data to
Other Programs" later in the chapter.
The lENGTH option specifies the length of
the data to be passed.

RETURN PROGRAM CONTROL (RETURN)

RETURN [TRANSID(name)
[COMMAREA(data-area)

LENGTHCdata-value)]]

Condition: INVREQ

This command ;s used to return control
from an application program either to an
application program at the next higher
logical level or to CICS/VS.

When the command is issued in a
lower-level program, the program to which
control is returned will have
relinquished control by issuing a LINK
command and will reside one logical level
higher than the program returning
control.

When the command is issued in a program
at the highest logical level, control
returns to CICS/VS. If the task is
associated with a terminal, the TRANSID
option can be used to specify the
transaction identifier for the next
program to be associated with that
terminal; this causes subsequent input
entered from the terminal to be
interpreted l.Jholly as data. In addition,
the COMMAREA option can be used to pass
data to the new task that will be
started. For further details, see the
section "Passing Data to Other Programs"
later in the chapter. The LENGTH option
specifies the length of the data to be
passed. The COMMAREA and LENGTH options
can be used only when the RETURN command
is returning control to CICS/VS; the
INVREQ exceptional condition will occur
otherwise.

LOAD A PROGRAM (LOAD)

LOAD PROGRAMCname)
[SET(ptr-ref)]
[LENGTH(data-area»)
[ENTRYCptr-ref)]
[HOLD]

Condition: PGMIDERR

This command is used to fetch application
programs, tables, or maps from the
library where they reside and load them
into main storage. This facility is used
to load an application program that will
be used repeatedly, thereby reducing
system overhead through a single load, to
load a table to which control is not to
be passed, or to load a map to be used in
a mapping operation. CSee "Chapter 3.3.
Basic Mapping Support CBMS)" on page 125
for further deta i 1 s about maps.) CICS/VS
sets the pointer reference specified in
the SET option to the address of the
loaded program, table, or map; if the
LENGTH option is specified, the data area
provided will be set to the length
involved. (See also the RELOAD operand of
theDFHPPT TYPE=ENTRY macro as described
in the CICS/VS System Programmef's
Reference Manual.)
I

If the HOLD option is specified, the
loaded program, table, or map remains in
main storage until a RELEASE command is
issued; if HOLD is not specified, the
program, table, or map remains in main
storage until a RELEASE command is issued
or until the task that issued the LOAD

command is terminated normally or
abnormally.

The following example shows how to load a
user-prepared table called TABl:

EXEC CICS LOAD
PROGRAMC'TAB1')
SET(PTR)

DELETE A LOADED PROGRAM (RELEASE)

RELEASE PROGRAMCname)

Condition: PGMIDERR

This command is used to delete from main
storage a program, table, or map
previously loaded in response to a LOAD
command. If the HOLD option is specified
in the LOAD command, the loaded program
is deleted only in response to a RELEASE
command. If the HOLD option is not
specified, the leaded program can be
deleted by a RELEASE, or it will be
deleted automatically when the task that
issued the LOAD is terminated.

The following example shows how to delete
an application program, called PROG4,
loaded in response to a LOAD command:

EXEC CICS RELEASE
PROGRAMC'PROG4')

PASSING DATA TO OTHER PROGRAMS

This section describes how data can be
passed between programs when control is
passed to another program by means of a
program control command. (Data can be
passed between application programs and
transactions in other ways. For example,
the data can be stored ;n a CICS/VS
storage area outside the local
environment of the application program,
such as the transaction work area (TWA);
see "Chapter 1.6. Access to System
Information" on page 29 for details.
Another way is to store the data in
temporary storage; see "Chapter 4.7.
Temporary Storage Control" on page 207
1:or detai Is.)

The COMMAREA option of the LINK and XCTL
commands specifies the name of ~ data
area (known as a commun;cat;on area) in
which data can be passed to the program
being invoked.

In a similar manner, the COMMAREA option
of the RETURN command specifies the name
of a communication area in which data can
be passed to the transaction identified
in the TRANSID option. CThe TRANSID
option specifies a transaction that will
be initiated when input is received from
the terminal associated with the task.)

Chapter 4.4. Program Control 191

The length of the communication area is
specified in the LENGTH option; PL/!
programs need not specify the length.

The invoked program receives the data as
a parameter. The program must contain a
definition of a data area to allow access
to the passed data.

In an assembler-language program, the
data area should be a DSECT. The
register used to address this DSECT must
be loaded from DFHEICAP, which is in the
DFHEISTG OSECT.

In a COBOL program, the data area must be
called OFHCOMMAREA.

In a PL/I program, the data area can have
any name, but it must be declared as a
based variable, based on the parameter
passed to the program. The pointer to
this based variable should be declared
explicitly as a pointer rather than
contextually by its appearance in the
declaration for the area. This will
prevent the generation of a PL/I error
message.

The data area need not be of the same
length as the original communication
area; if access is required only to the
first part of the data, the new data area
can be shorter. It must not be longer
than the length being passed, because the
results in this situation are
unpredictable.

The invoked program can determine the
length of any communication area that has
been passed to it by accessing the
EIBCALEN field in the EIB of the task.
If no communication area has been passed,
the value of EIBCALEN will be zero;
otherwise, EIBCAlEN will always contain
the value specified in the LENGTH option
of the LINK, XCTl, or RETURN command,
regardless of the size of the data area
in the invoked program.

When a communication area is passed by
means of a LINK command, the invoked

192 CICS/VS APRM (Cl)

program is passed a pointer to the
communication area itself. Any changes
made to the contents of the data area in
the invoked program are available to the
invoking program, when control returns to
1 t; to access any such changes, the
program names the data area specified in
the original COMMAREA option.

When a communication area is passed by
means of an XCTl command, a copy of that
area is made unless the area to be passed
h4'3s the same address and length as the
area that was passed to the program
issuing the command. For example, if
program A issues a LINK command to
program B which, in turn, issues an XCTL
command to program C, and if B passes to
C the same communication area that A
passed to B, program C will be passed
sddressability to the communication area
that belongs to A (not a copy of it) and
any changes made by C will be available
to A when control returns to it.

A communication area can be passed by
means of a RETURN command issued at the
highest logical level when control
returns to CICS/VS; in this case, a copy
of the communication area is made, and
addressability to the copy is passed to
the first program of the next
transaction.

The invoked program can access field
EIBFN in the EIB to determine which type
of command invoked the program. The
field must be tested before any CICS/VS
commands are issued. If a LINK or XCTL
invoked the program, the appropriate code
will be found in the field; if RETURN is
used, no CICS/VS commands will have been
i .ssued in the task, and the fi eld wi 11
contain zeros.

The following examples show how a LINK
command causes data to be passed to the
program being linked to; the XCTL command
is coded in a similar way. Further
examples show how the RETURN command is
used to pass data to a new transaction.

LINK or XCTL, for assembler language

DFHEISTG DSECT
COMREG OS OCL20
FIELD DS CL3

PROGI CSECT

MVC FIElD,=C'ABC'

(Invoking program)

EXEC CICS LINK PROGRAM('PROG2') COMMAREA(COMREG)

COMREG
FIELD

PROG2

END
DSECT
OS CL3

CSECT

l COMPTR,DFHEICAP ADDRESS COMMAREA
USING COMREG,COMPTR
CLC FIELD,=C'ABC'

END

LINK or XCTL, for COBOL

IDENTIFICATION DIVISION.
PROGRAM ID. 'PROGl'.

WORKING-S10RAGE SECTION.
01 COMMUNICATIONS-REGION.

02 FIELD PICTURE X(3).

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD.

(Invoked program)

(Invoking program)

EXEC CICS LINK PROGRAM('PROG2')
COMMAREA(COMMUNICATIONS-REGION) LENGTH(3) END-EXEC.

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'.

LINKAGE SECTION.
01 DFHCOt-1MAREA.

02 FIELD PICTURE X(3).

PROCEDURE DIVISION.

(Invoked program)

IF EIBCALEN GREATER ZERO THEN IF FIELD EQUALS 'ABC'

Chapter 4.4. Program Control 193

LINK or XCTL, for PL/I

PROGl: PROC OPTIONS(MAIN);
DCl 1 COMMUNICATIONS REGION AUTOMATIC,

2 FIELD CHAR(3),

FIElD='ABC';
EXEC CICS lINK PROGRAM('PROG2')

COMMAREA(COMMUNICATIONS_REGION) lENGTH(3);
END;

PROG2: PROC(COMM REG PTR) OPTIONS(MAIN);
DCl COMM REG PTR-PTR;
DCl 1 COMMUNICATIONS REGION BASEDCCOMM_REG_PTR);

2 FIELD CHAR(3),

IF EIBCAlEN>O THEN DO;
IF FIElD='ABC' THEN

END;

END;

194 CI CS/VS APRM (Cl)

(Invoking program)

(Invoked program)

RETURN, fo~ assemble~ language

OFHEISTG OSECT
TERMSTG OS OCL20
FIELD OS CL3
DATAFlD OS CLl7

PROGl CSECT

.
MVC FIElD,=C'ABC'

(Invoking program)

EXEC CICS RETURN TRANSID('TRN2') COMMAREA(TERMSTG)

TERMSTG
FIELD
DATAFlD

PROG2

LABELl

lABEl2

END

OSECT
OS Cl3
OS Cll7

CSECT

ClC EIBCAlEN,=H'O'
BNH LABEL2
l COMPTR,OFHEICAP
USING TERMSTG,COMPTR
ClC FIELD,=C'XYZ'
BNE LABEll
MVC FIELD,=C'ABC'
DS OH

OS OH

.
END

(Invoked program)

Chapter 4.4. Program Control 195

RETURN, for COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG!'.

WORKING-STORAGE SECTION.
01 TERMINAL-STORAGE.

02 FIELD PICTURE X(3).
02 DATAFLD PICTURE X(17).

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD.

(Invoking program)

EXEC CICS RETURN TRANSIDC'TRN2')
COMMAREACTERMINAl-STORAGE) lENGTH(20) END-EXEC.

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'

LINKAGE SECTION.
01 DFHCOtriMAREA.

02 FIELD PICTURE X(3).
02 DATAFlD PICTURE X(17).

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO. THEN
IF FIELD EQUALS 'XYZ' MOVE 'ABC' TO FIELD.
EXEC CICS RETURN END-EXEC.

RETURN, for PL/I

PROGl: PROe OPTIONSCMAIN);
DCl 1 TERMINAL STORAGE,

2 FIELD CHAR(3),

.
FIELD:: 'XYZ';
EXEe CICS RETURN TRNIDC'TRN2')

COMMAREACTERMINAL_STORAGE);
END;

PROG2: PROCCTERM STG PTR) OPTIONSCMAIN);
DCl TERM STG PiR pfR;
DCl 1 TERMINAL-STORAGE BASED CTERM STG PTR),

2 FIELD CHAR(3), - -

IF EIBCALEN>O THEN DO;
IF FIELD='XYZ' THEN FIElD='ABC';
END;

EXEC eICS RETURN;
END;

196 CICS/VS APRM (Cl)

CInvoked program)

Clnvoking Program)

CInvoking Program)

PROGRAM CONTROL OPTIONS

COMMAREA(data-area)
specifies a communication area that
i s to be made ava 1 labl e to the
invoked program. For LINK commands,
a pointer to the data area is
passed; for XCTl commands, a pointer
to the data area is passed or a copy
of it (see "Passi ng Data to Other
Programs" earlier in this chapter);
and for RETURN commands, because the
data area is freed before the next
program is invoked, a copy of the
data area is created and a pointer
to the copy 1S passed.

ENTRY(ptr-refl

HOLD

specifies the pointer reference
that is to be set to the address of
the entry point in the program,
table, or map that has been loaded.

specifies that the loaded program,
table, or map is not to be deleted
(if still resident) when the task
issuing the LOAD command is
terminated; de.letion is to occur
only in response to a RELEASE
command, from this task or from
another task.

LENGTH(parameterl
specifies a halfword binary value to
be used with LINK, XCTL, RETURN, and
LOAD commands.

For a LINK, XCTL, or RETURN command,
the parameter must be a data value
that is the length in bytes of the
communication area. If a negative
value is supplied, zero is assumed.

For a LOAD command, the parameter
must be a data area. On completion
of the LOAD operation, the data area
is set to the length of the loaded
program, table, or map.

PROGRAM(name)
specifies the identifier of the
program to which control is to be

passed unconditionallY (for a LINK
or XCTL command); or the identifier
of a program, table, or map to be
loaded (for a LOAD command) or
deleted (for a RELEASE command).
The specified name must consist of
up to eight alphameric characters
and must have been defined in the
processing program table (PPT).

SET(ptr-refJ
specifies the pointer reference
that is to be set to the address at
which a program, table, or map is
loaded.

TRANSID(nameJ
specifies the transaction
i denti fi er to be used wi th the next
input message entered from the
terminal with which the task that
issued the RETURN command ha s been
associated. The specified name must
consi st of up to four characters and
must have been defined in the
program control table (PCT).

PROGRAM CONTROL EXCEPTIONAL CONDITIONS

INVREQ
occurs if either of the following
situations exists:

•

•

PGMIDERR

A RETURN command with the
COMMAREA option is issued in a
program that is not at the
highest logical level.

A RETURN command with the
TRANSID option is issued in a
task that ; s not associ ated wi th
a term; na1.

occurs if a program, table, or map
cannot be found in the PPT or is
disabled.

Default action: terminate the task
abnormally.

Chapter 4.4. Program Control 197

Chapter 4.5. Storage Control

The CICS/VS storage control program
controls requests for main storage to
provide intermediate work areas and any
other main storage not provided
automaticallY by CICS/VS but needed to
process a transaction. The acquired main
storage can be initialized to any bit
configuration; for example, binary zeros
or EBCDIC blanks.

storage control c6mmands are provided to:

•

•

Obtain and initialize main storage
(GETMAIN).

Release main storage (FREEMAIN) .

CICS/VS releases all main storage
associ ated wi th a task when the task is
terminated normally or abnormally. This
includes any storage acquired, and not
subsequently released, by the
application program.

If there is insufficient main storage to
satisfy a GETMAIN command, the NOSTG
exceptional condition occurs and all
activity within the task is suspended
until sufficient storage becomes
available, when task activity will be
resumed and the requested storage
obtained.

Exceptional conditions that occur during
execution of a storage control command
are handled as described in "Chapter 1.5.
Exceptional Conditions" on page 25.

OBTAIN AND INITIALIZE MAIN STORAGE
(GETMAIN)

GETMAIN SETCptr-ref)
LENGTH(data-value)
[INITIMG(data-value)]

Condition: NOSTG

This command is used to obtain a
specified amount of main storage and,
optionally, to initialize that storage to
a specified bit configuration. The
pointer reference specified in the SET
option is set to the address of the
acquired storage. The acquired storage
is doubleword-aligned. .

Storage should be released when no longer
needed; it will then be available to
other tasks. Other storage not released
will be released by CICS/VS when the task
is term i nated.

The following example shows how to obtain
a l024-byte area of main storage:

EXEC CICS GETMAIN
SET(PTR)
LENGTH(1024)
INITIMG(BLANK)

RELEASE MAIN STORAGE (FREEMAINJ

I FREEMAIN DATA(data-area)

This command is used to release main
storage previously acquired by a GETMAIN
command. If the task itself does not
release the acquired storage, it is
released by CICS/VS when the task is
terminated.

The following example shows how to
release main storage:

EXEC CICS FREEMAIN
DATA(RECORO)

STORAGE CONTROL OPTIONS

DATA(data-areal
specifies that the main storage
associated with the data area is to
be released. This storage must have
been acquired previously by a
GETMAIN command and the length of
data released will be the length
obtained by the GETMAIN and not
necessarily the length of the data
area.

INITIMGldata-valuel
specifies the one-byte hexadecimal
initialization value for the
acquired main storage. A data area
must be provided in COBOL programs.

LENGTH(data-valuel
specifies the length of main storage
required as a halfword binary value.
The maximum length that can be
specified is 32767 bytes.

SET(ptr-refl
specifies the pointer reference to
be set to the address of the
acquired main storage. The pointer
reference addresses the user data,
and not the CICS/VS control
information that precedes the
acquired main storage.

Chapter 4.5. Storage Control 199

STORAGE CONTROL EXCEPTIONAL CONDITIONS

NOSTG
occurs if the requested main storage
cannot be obtained.

200 CICS/VS APRM (Cl)

Default action: suspend task
activity until the required main
storage can be provided.

Chapter 4.6. Transient Data Control

The CICS/VS transi~nt data control
progrClm prov i des a generC'lI i zed queu i ng
facility. Data can be queued (stored)
for subsequent internal or external
processing. Selected data, specified in
the application program, can be routed to
or from predefined symbolic
destinations, either i~trapartition or
extrapartition.

Destinations are intrapartition if
associated with a facility allocated to
the CICS/VS partition or region, and
extrapartition if the data is directed to
a dest: i nat i on that i 5 externa I to the
CICS/VS partition or region. The
destinations must be defined in the
destination control table (OCT) by the
system programmer when the CICS/VS system
i s generated.

Transient data control commands are
prov i ded to:

• Write data to a transient data queue
(WRITEQ TO).

• Read data from a transient data queue
(READQ TO).

• Delete an intrapartition transient
data queue (OElETEQ TD).

If TO is omitted, the command is assumed
to be for temporary storage (see "Chapter
4.7. Temporary Storage Control" on page
207) .

Exceptional conditions that occur during
execution of a transient data control
command are handled as described in
"Chapter 1.5. Exceptional Conditions" on
page 25.

Intrapartition Destinations

Intrapartition destinations are queues
of data on direct-access storage devices
for use with one or more programs running
as separate tasks. Data directed to or
from these internal destinations is
called intrapartition data; it must
consist of variable-length records.
Intrapartition destinations can be
associated with either a terminal or an
output data set. Intrapartition data may
ultimately be transmitted upon request to
the destination terminal or retrieved
sequentially from the output data set.

Typical uses of intrapartition data
include message switching~ broadcasting,
data base access and rout i ng of output to

severClI terminals (for example, for order
distribution), queuing of data (for
example, for assignment of order numbers
or priority by arrival), and data
collection (for example, for batched
input from 2780 Data Transmission
Termi nal s). If generated ItJi thi n the
system, the CICS/VS Asynchronous
Transaction Processing (ATP) facility
can be used to transfer data to or from
an intrapartition destination. (Refer to
the section "Asynchronous Transaction
Processi ng" later in thi s chapter for
further information.)

The storage associated with an
intrapartition queue can be reused. The
system programmer can specify, for each
symbolic destination, whether or not
storage tracks are to be reused as the
data on them is read. If the storage is
specified to be non-reusable, an
intrapartition queue continues to grow,
irrespective of whether the data has been
read, until a OElETEQ TO command is
issued when the whole of an
intrapartition queue is deleted and the
storage associated with it is released.

Extrapartition Destinations

Extrapartition destinations are queues
(data sets) residing on any sequential
device (OASD, tape, printer, and so on),
which are accessible by programs outside
(or within) the CICS/VS partition or
region. In general, sequential
extrapartition destinations are used for
storing and retrieving data outside the
CICS/VS partition. For example, one task
may read data from a remote terminal,
edit the data, and write the results to a
data set for subsequent processing in
another partition or region. Logging
data, statistics, and transaction error
messages are examples of data that can be
written to extrapartition destinations.
In general, extrapartition data created
by CICS/VS is intended for subsequent
batched input to non-CICS/VS programs.
Data can also be routed to an output
device such as a line printer.

Data directed to or from an external
destination is called extrapartition
data and consists of sequential records
that are fixed-length or
variable-length, blocked or unblocked.
The record format for an extrapartition
destination must be defined in the DCT by
the system programmer. (Refer to the
CICS/VS System Programmer's Reference
~anual for details.)

Chapter 4.6. Transient Oata Control 201

Indirect Destinations

Intrapartition and extrapartition
destinations can be used as indirect
destinationst which are symbolic
references to other destinations. This
facility provides some flexibility in
program maintenance in that data can be
routed to a destination known by a
different symbolic name, without the
necessity for recompiling existing
programs that use the original name; only
the destination control table (OCT) need
be chahged. When the OCT has been
changed, the application programs can
route data to the destination using the
previous symbolic name; however, the
previous name is now an indirect
destination that ref~rs to the new
symbolic name. Since indirect
destinations are est~blished by means 6f
destination control table entries, the
application programmer need not usually
be concerned with how this is done.
Further information is available in the
CICS/VS System Programmer's Reference
Manual.

Automatic Task Initiation (ATI)

For intrapartition destinations, CICS/VS
provides the option of automatic task
initiation. A basis for automatic task
initiation is established by the system
programmer by specifying a non-zero
trigger level for a particular
intrapartition ~estination in the OCT.
(See the discussion of the DFHDCT
TYPE=INTRA macro instruction in the
CICS/VS System Proarammer's Reference
tl.anua I.) When the number: of entr i es
(created by WRITEQ TO commands issued by
one or more programs) in the queue
(destination) reaches the specified
trigger level, a task specified in the
definition of the destination is
automatically initiated. Control is
passed to a program that processes the
data in the queue; the program must issue
repetitive READQ TD commands to deplete
-the queue.

Once the queue has been depleted, a new
automatic task initiation cycle begins.
That is, a new task is scheduled for
initiation when the specified trigger
level is again reached, whether or not
execution of the prior task has
terminated.

If an automatically initiated task does
not deplete the queue, access to the
queue is not inhibited. The task may be
normally or abnormally terminated before
the queue is emptied (that is, before a
QZERO exceptio,nal condition occurs in
response to a REAOQ TO command). If the
destination is a terminal, the same task
is reinitiated regardless of the trigger
level. If the destination is a data set,
the task is not reinitiated until the
specified trigger level is reached. If

202 CICS/VS APRM (Cl)

the trigger level of a queue is zero, no
task is automaticallY initiated. To
ensure that termination of an
automatically initiated task occurs when
the queue is empty, the application
program should test for a QZERO condition
rather than for some
application-dependent factor such as an
anticipated number of records; only the
QZERO condition indicates a depleted
queue.

Asynchronous Transaction Process;ng
(ATP)

Typically, a task to be run under CICS/VS
is initiated from a terminal and
processed at regular intervals until
completion, according to system service
patterns established for CICS/VS. This
mode of operation is sometimes referred
to as synchronous transaction
processing, because the task has complete
control of the terminal which initiated
it.

Support for asynchronous transaction
processing can also be generated into a
CICS/VS system. This capability is
designed primarily to permit a type of
batch processing within CICS/VS. A task
15 initiated from a terminal as described
above, but the specified transaction
identification code causes a
CICS/VS-provided asynchronous
transaction processing program to read
the data to an i ntraparti ti on data set.
In effect, data collection from a device
such as the 2780 Data Transmission
Terminal is possible. When the data has
been read, the device is freed for other
activity. An application program
processes the data, and, upon operator
request, output is queued for subsequent
transmission to a specified terminal. If
the automatic task initiation feature is
generated into CICS/VS, that application
program can be initiated automatically
when a specified trigger level is reached
(that is, when a specified number of
inputs have been entered in the
intrapartition data set).

The asynchronous transaction processing
(ATP) facility is designed specifically
for handling input from batch terminals
like the 2770 and 2780. Generally, ATP
can also be used for other, interactive
terminals like the 2741. However, ATP is
not intended for, and will not support,
input from the 2980, 3270, or 3735; ATP
is not available for VTAM logical units.
Application programs intended to execute
under control of ATP must not contain
Basic Mapping Support (BMS) commands
requesting BMS terminal paging
facilities.

Additional information concerning the
creation of user exits for asynchronous
transaction processing and the coding of
the exit routines is given in the CICS/VS

System Programmer's Reference Manual.
The initiation of ATP by means of
terminal commands is described in the
CICS/VS Operator's Guide.

WRITE DATA TO TRANSIENT DATA QUEUE
(WRITEQ TD)

WRITEQ TO QUEUECname)
FROM(data-area)
[LENGTH(data-value)]
[SYSIO(name)]

Conditions: IOERR, ISCINVREQ,
LENGERR, NOSPACE, NOTOPEN, QIDERR,
SYSIDERR

This command is used to write transient
data to a predefined symbolic
destination. The destination Cqueue) is
identified in the QUEUE option.

The FROM option specifies the data to be
written to the queue, and the LENGTH
option specifies the record length. The
LENGTH option need not be specified for
extrapartition queues of fixed-length
records if the length is known and a data
area of the correct size is available.
If SYSIO is specified, LENGTH must be
speci fi ed as well.

For CICS/DOS/VS, the LENGTH option must
be specified for a destination other than
disk; length i s not checked. I f the
LENGTH option is omitted, the LENGERR
condition will occur.

The following example shows how to write
data to a predefined symbolic
destination; in this case, the control
system message log (CSML):

EXEC CICS WRITEQ TO
QUEUEC'CSML')
FROM(MESSAGE)
LENGTH(LENG)

READ DAT~ FROM TRANSIENT DATA QUEUE
(READQ TD)

READQ TO QUEUE(name)
(SET(ptr-ref)IINTOCdata-area)}
[LENGTH(data-area)]
[SYSIOCname)]

Conditions: IOERR, ISCINVREQ,
LENGERR, NOTOPEN,
(CICS/OS/VS only), QIDERR, QZERO,
SYSIDERR

This command is used to read transient
data from a predefined symbolic source.

The source (queue) is identified in the
QUEUE opt ion.

The INTO option specifies the area into
which the data is to be placed. The
LENGTH option must specify a data area
that contains the maximum length of
record that the program will accept. If
the record exceeds this value, it is
truncated and the LENGERR condition
occurs. After the retrieval operation,
the data area specified in the LENGTH
option is set to the record length
(before any truncati on occurred). The
LENGTH option need not be specified for
extrapartition queues of fixed-length
records if the length is known and a data
area of the correct size is available.
If SYSIO is specified, LENGTH must be
specified as well.

Alternatively, a pointer reference can be
specified in the SET option. CICS/VS then
acquires an area large enough to hold the
record and sets the pointer reference to
the address of that area. The area is
retained until another transient data
command is executed. After the retrieval
operation, the data area specified in the
LENGTH option is set to the record
length.

If automatic task initiation is being
used (see earlier in the chapter under
ttAutomatic Task Initiation (ATI)"), the
HANDLE CONDITION QZERO command should be
included to ensure that termination of an
automatically initiated task only occurs
when the queue is empty.

For CICS/OOS/VS, the LENGTH option must
be specified for a destination other than
disk, when the INTO option is specified.
If the LENGTH opti on is omi tted, the
LENGERR condition will occur.

The following example shows how to read a
record from an intrapartition data set
(queue), whi ch in thi s case is the
control system message log (CSML), into a
data area specified in the request:

EXEC CICS REAOQ TO
QUEUEC'CSML')
INTO(OATA)
LENGTH(LENG)

The following example shows how to read a
record from an extrapartition data set
(queue) having fixed-length records into
a data area provided by CICS/VS; the
pointer reference specified by the SET
option is set to the address of the
storage area reserved for the data
record. It is assumed that the record
length; s known.

EXEC CICS READQ TO
QUEUE(EXl)
SET(PREF)

Chapter 4.6. Transient Data Control 203

DELETE AN INTRAPARTITION TRANSIENT DATA
(fUEUE1'DELETEQ'TO)

OELETEQ TO QUEUE(name)
[SYSIO(name)]

Conditions: ISCINVREQ, QIOERR,
SYSIOERR

This command is used to delete all of the
transient data associated with a
particular intrapartition destination
(queue>. All storage associated with the
destination is released (deallocated).

This command must be used to release the
storage associated with a destination
specified as non-reusable in the
destination control table. Otherwise,
the storage remains allocated to the
destination; the data and the amount of
storage associated with the destination
continue to grow whenever a WRITEQ TO
command refers to the destination.

TRANSIENT DATA CONTROL OPTIONS

FROM(data-areal
specifies the data that is to be
written to the transient data queue.

INTO(data-area)
specifies the user data area into
which the data read from the
transient data queue is to be
placed. If this option is specified,
move-mode access is implied.

LENGTH(parameter)
specifies a halfword binary value to
be used with WRITEQ TO and REAOQ TO
commands.

For a WRITEQ TO command, the
parameter must be a data value that
is the length of the data that is to
be written.

For a READQ TO command with the INTO
option, the parameter must be a data
area that specifies the maximum
length of data that the program is
prepared to handle. If the value
specified is less than zero, zero is
assumed. I f the length of the data
exceeds the value specified, the
data is truncated to that value and
the LENGERR condition occurs. On
completion of the retrieval
operation, the data area is set to
the original length of the data.

For a READQ TO command with the SET
option, the parameter must be a data
area. On completion of the
retrieval operation, the data area
is set to the length of the data.

204 CICS/VS APRM (CL)

QUEUE(name)
specifies the symbolic name of the
queue to be written to, read from,
a r del eted. The name mu st be
alphameric, up to four characters in
length~ and must have been defined
in the destination control table
(OCT j by the system programmer'.

When used with the REAOQ TO command,
the name used should not be that of
the system spool file otherwise
unpredictable results or an
abnormal termination will occur.

If SYSIO is specified, the data set
is assumed to be on a remote system
irrespective of whether or not the
name is defined in the OCT.
Otherwise the entry in the OCT will
be used to determine if the data set
is on a local or remote system.

SET (ptr-r'ef)
specifies a pointer reference that
is to be set to the address of the
data read from the queue. If this
option is specified, locate-mode
access is implied.

SYSID(name) remote systems only
specifies the name of the system
whose resources are to be used for
intercommunication facilities. The
name may be up to four characters in
length.

JRANSIENT DATA CONTROL EXCEPTIONAL
CONDITIONS

IOERR
occurs when an input/output error
occurs and the data record in error
is skipped. The IOERR condition
occurs so long as the queue can be
read; a QZERO condition occurs when
the queue cannot be read, in which
case a restart may be attempted.

Default action: terminate the task
abnormally.

ISCINVREQ
occurs when the remote system
indicates a failure which does not
correspond to a known condition.

Default action: terminate the task
abnormally.

LENGERR
occurs in any of the following
situations:

• The LENGTH option is not coded
for an input (without the SET
option) or output operation
involving variable-length
records.

• The length specified on output
is greater than the maximum

•

•

•

record sizQ specified for the
queue in the OCT.

The record read from a queue is
longer than the length
specified for the input area;
the record is truncated and the
data area supplied in the LENGTH
option is set to the actual
record size.

An incorrect length is
specified for a
fixed-length-record input or
output operation.

The LENGTH option is not coded
for an input operation (without
the SET option) from, or an
output operation to, a
destination other than disk,
involving fixed-length records.

Default action: terminate the task
abnormally.

NOSPACE
occurs if no more space exists on
the intrapartition queue. If the
NOSPACE condition occurs, no more
data should be written to the queue
because it may be lost.

Default action: terminate the task
abnormally.

NOTOPEH
occurs if the destination is closed.

Default action: terminate the task
abnormallY.

QBUSY (CICS/OS/VS only)
occurs if a READQ TO command
attempts to access a record in an
intrapartition queue that is being
written to or is being deleted by
another task. This exceptional
condition applies only to input;
output requests are always queued
until the intrapartition queue is no
longer busy.

Default action: the task issuing the
REAOQ TO command waits until the
queue is no longer being used for
output.

QIDERR

QZERO

occurs if the symbolic destination
to be used,with a transient data
control command cannot be found.

Default action: terminate the task
abnormally.

occurs when the destination (queue)
accessed by a READQ TD command is
empty.

Default action: terminate the task
abnormally.

SYSIDERR
occurs when the SYSIO option
specifies either a name which is not
defined in the. intersystem table, or
a system to which the link is
closed.

Default action: terminate the task
abnormally.

Chapter 4.6. Transient Data Control 205

)

Chapter 4.7. Temporary Storage Control

The CICS/VS temporary storage control
program provides the application
programmer with the ability to store data
in temporary storage queues, either in
main storage, or in auxiliary storage on
a direct-access storage device. Data
stored in a temporary storage queue is
known as temporary data.

Tempor~ry storage control commands are
provided to:

• Write data to a temporary storage
queue (WRITEQ TS).

• Update data in a temporary storage
queue (WRITEQ TS REWRITE).

• Read data from a temporary storage
queue (READQ TS).

• Delete a temporary storage queue
(DELETEQ TS).

If TS is omitted, the command is assumed
to be for temporary storage, not for
transient data which has similar
commands.

Exceptional conditions that occur during
execution of a temporary storage control
command are handled as descri bed in
"Chapter 1.5. Exceptional Conditions" on
page 25.

Temporary storage Queues

Temporary storage queues are identified
by symbolic names of up to eight
characters assigned by the originating
task. Temporary data can be retrieved by
the originating task or by any other task
using the symbolic name assigned to it.
Specific items (logical records) within a
queue are referred to by relative
position numbers. To avoid conflicts
ca~sed by duplicate names, a naming
convention should be established, for
example, the operator identifier,
terminal identifier, or transaction
i dent i fi er could be used as a pr'efi x or
suffix to each programmer-supplied
symbolic name.

Temporary storage queues remain intact
until they are deleted by the originating
task or by any other task; prior to
deletion, they can be accessed any number
of times. Even after the originating
task is terminated, temporary data can be
accessed by other tasks through
references to the symbolic name under
which it was stored.

Temporary data can be stored either in
main storage or in auxiliary storage.

Generally, main storage should be used if
the data is needed for short periods of
time; auxiliary storage should be used if
the data is to be kept for long periods
of time. Data stored in auxiliary
storage is retained after CICS/VS
termination and can be recovered in a
subsequent restart, but data in main
storage cannot be recovered. Main
storage might be used to pass data from
task to task, or for unique storage that
allows programs to meet the requirement
of CICS/VS that they be quasi-reentrant
(that is, serially reusable between entry
and ex it po i nt s of the program).

Typ;cal Uses of Temporary storage Control

A temporary storage queue having only one
record can be treated as a single unit of
data that can be accessed using its
symbolic name. Using temporary storage
control in this way provides a typical
"scratch pad" facility. This type of
storage should be accessed using the
READQ T5 command with the ITEM(l) option;
failure to do so may cause the ITEMERR
condition to be raised.

In general, temporary storage queues of
more than one record should be used only
when direct access or repeated access to
records is necessary; transient data
control provides facilities for
efficient handling of sequential data
~3ets .

Some uses of temporary storage queues
follow:

• Terminal paging. A task could
retrieve a large master record from a
direct-access data set, format it
into several screen images (using
Basic Mapping Support), store the
screen images temporarily in
auxiliary storage, and then ask the
terminal operator which ~page"
(screen image) is desired. The
application programmer can provide a
program (as a generalized routine or
unique to a single application) to
advance page by page, advance or back
up a relative number of pages, and so
on.

• A suspend data set. Assume a data
collection task is in progress at a
termi nal. The task reads one or more
urd t s o'f input and then allo~.Js the
terminal operator to interrupt the
process by some kind of coded input.
If not interrupted, the task repeats
the data collection process. If
interrupted, the task writes its
"incomplete" data to temporary

Chapter 4.7. Temporary Storage Control 207

storage and termi nates. The termi nal
is now free to process a different
transaction (perhaps a high-priority
inquiry). When the terminal is
available to continue data
collection, the operator initiates
the task ina "resume" mode, causi ng
the task to recall its suspended data
from temporary storage and continue
as though it had not been
interrupted.

• Preprinted forms. An application
program can accept data to be written
as output on a preprinted form. This
data can be stored in temporary
storage as it arrives. When all the
data has been stored, it can first be
validated and then sent to output in
the order required by the format of
the preprinted form.

WRIT,E DATA TO A TEMPORARY STORAGE QUEUE
('~RITE~

WRITEQ' TS QUEUE(name)
FROM(data-ar'ea)
LENGTH(data-value)
[ITEM(data-area) [REWRITE)]
[SYSID(name)]
[MAINIAUXIlIARYl

Conditions: INVREQ, IOERR, ISCINVREQ,
ITEMERR, NOSPACE, QIDERR, SYSIDERR

This command is used to store temporary
data (records) in a temporary storage
queue in main or auxiliary storage. Data
written to a temporary storage queue on a
remote system will always be written to
auxiliary storage.

The queue is identified in the QUEUE
option. The FROM and LENGTH options are
used to specify the record that is to be
written to the queue, and its length.

If the ITEM option is specified, CICS/VS
assigns an item number to the record in
the queue, and sets the data area
supplied in that option to the item
number'. If the record starts a new
queue, the item number assigned is 1;
subsequent item numbers follow on
sequentially.

The REWRITE option specifies that records
are to be updated, in which case the ITEM
option must also be specified to identify
the item (record) that is to be replaced
by the data identified in the FROM
option. If the specified queue exists,
but the speci fi ed item cannot be found,
the ITEMERR condition occurs. If the
specified queue does not exist, the
QIDERR condition occurs.

The maximum temporary storage record size
is based on user-specified data set

208 CICS/VS APRM (CL)

characteristics. (See the relevant
CICS/VS System Programmer's Guide for
details.)

The following example shows how to write
a record to a temporary storage queue in
auxiliary storage:

EXEC CICS WRITEQ TS
QUEUE(UNIQNAME)
FROM(MESSAGE)
LENGTHCLENGTH)
ITEMCDREF)

The following example shows how to update
a record in a temporary storage queue in
main storage:

EXEC CICS WRITEQ TS
QUEUE('TEMPQ!')
FROMCDATAFLO)
LENGTH(40)
ITEMCITEMFLD)
REWRITE
MAIN

READ DATA FROM TEr1PORARY STORAGE QUEUE
(READQ T5)

READQ TS QUEUE(name)
{SETCptr-ref)IINTO(data-area)}
LENGTH(data-area)
[ITEN(data-value)INEXTl
[SYSIDCname)]

Conditions: INVREQ, IOERR, ISCINVREQ,
ITEMERR, LENGERR, QIDERR, SYSIDERR

This command is used to retrieve data
from a temporary storage queue in main or
auxiliary storage. The queue is
identified in the QUEUE option.

The INTO option specifies the area into
which the data is to be placed. The
LENGTH option must specify a data area
that contains the maximum length of
record that the program will accept. If
the record length exceeds the specified
maximum length, it is truncated and the
LENGERR condition occurs. After the
retrieval operation, the data area
specified in the LENGTH option is set to
the record length (before any truncation
()ccurred) .

Alternatively, a pointer reference can be
specified in the SET option. CICS/VS then
acquires an area large enough to hold the
record and sets the pointer reference to
the address of the record. The area is
retained until another READQ TS command
'j s executed. A'fter the retri eval
operation, the data area specified in the
LENGTH option is set to the record
length.

The ITEM and NEXT options are used to
specify which record (item) within a

queue is to be read. If the ITEM option
is specified, the record with the
specified item number is retrieved. If
the NEXT option is in effect (either
explicitly or by default), the next
record after the last record to be
retrieved (by any task) is retrieved.
Therefore, if different tasks are to
access the same queue and each task is to
start at the beginning of the queue, the
ITEM option must be used.

The following example shows how to read
the first (or only) record from a
temporary storage queue into a data area
specified in the request:

EXEC CICS READQ TS
QUEUE(UNIQNAME)
INTO(DATA)
LENGTH(LDATA)

The following example shows how to read
the next record from a temporary storage
queue into a data area provided by
CICS/VS; the pointer reference specified
by the SET option is set to the address
of the storage area reserved for the data
record.

EXEC CICS READQ TS
QUEUE(DESCRQ)
SET(PREF)
LENGTHCLENG)
NEXT

DELETE TEMPORARY STORAGE QUEUE (DELETEQ
TS)

DELETEQ TS QUEUECname)
[SYSID(name)]

Conditions: ISCINVREQ, QIDERR,
SYSIDERR

This command is used to delete all the
temporary data associated with a
temporary storage queue. All storage
associated with the queue is freed.

Temporary data should be deleted at the
earliest possible time to avoid using
excessive amounts of storage.

TEMPORARY STORAGE CONTROL OPTIONS

AUXILIARY
specifies that the temporary
storage queue is on a direct-access
storage device in auxiliary
storage.

FROM(data-areal
specifies the data that is to be
written to temporary storage.

INTO(data-area)
specifies the data area into which
the data is to be LoJr i tten. The data
area may be any variable, array, or
structure. If this option is
specified, move-mode access is
implied.

ITEtHpCJrameter)
specifies a halfword binary value to
be used with WRITEQ TS and READQ TS
commands. .

When used with a WRITEQ TS command
in which the REWRITE option is not
speci fi ed, "parameter" must be a
data area that is to be set to the
item (record) number assigned to
thi s record in the queue. If the
REWRITE option is specified, the
data area specifies the item in the
queue that is to be replaced.

When used with a READQ T5 command,
"parameter" specifies the item
number of the logical record to be
retrieved from the queue. The
parameter must be a data value that
is to· be taken as the relat i ve
number of the logical record to be
retrieved. This number may be the
number of any item that has been
written to the temporary storage
queue.

LENGTH(parsmeterl

MAIN

specifies the length (as a halfword
binary value> of the data to be used
with WRITEQ TS and READQ TS
commands.

For a WRITEQ T5 command, the
parameter must be a data value that
is the length of the data that is to
be written. .

For a READQ TS command with the INTO
option, the parameter must be a data
area that specifie.s the maximum
length of data that the program is
prepared to handle. If the value
specified is less than zero, zero is
assumed. If the length of the data
exceeds the value specifi~d, the
data is truncated to that value and
the LENGERR condition occurs. On
completion of the retrieval
operation, the data area is set to
the original length of the data.

For a READQTS command with the SET
option, the parameter must be a data
area. On completion of the
retrieval operation, the data area
is set to the length of the data.

specifies that the temporary
storage queue is in main storage.

Chapter 4.7. Temporary storage Control 209

NEXT
specifies that the next sequential
logical record following the last
record to be retrieved (by any task)
is to be retrieved. '

QUEUE(name)
specifies the symbolic name of the
queue to be written to, read from,
or deleted. If the queue name
appears in the TST~ and the entry is
marked as remote, the request is '
shipped to a remote system. The
name must be alphameric, up to eight
characters in length, and must be
uni~ue within the CICS/VS system.
Do not use hexadecimal 'FA' through
'FF' as the first character of the
name; these characters are reserved
for CICS/VS use.

REWRITE
specifies that the existing record
in the queue is to be overwritten
with the data provided. If the
REWRITE option is specified, the
ITEM option must also be specified.
If the ~pecified queue does not
exist, the QIDERR condition occurs.
If the correct item within an
existing queue cannot be found, the
ITEMERR condition occurs but the
data is not stored.

SET(ptr-ref)
specifies the pointer reference
that isto be set to the address of
the retrieved data. If this option
is specified, l~cate-mode access is
implied.

SYSID(name) (remote systemsonlyl
specifies the name of the system
whose resources are to be used for
intercommunication facilities. The
name may be up to four characters in
length.

TEMPORARY STORAGE CONTROL EXCEPTIONAL
CONDITIONS

INVREQ
occurs when a WRITEQ TS command
refers to data whose length is equal
to zero or exceeds a certain size
related to the size of the control
inte~val of the auxiliary data set.
(Refer to the relevant CICS/VS
~~~m Pr09.r..~mmer' s G_u (de for 
details.) This condition occurs 
also for a READQ TS command when the 
record to be retrieved has been 
created by a DFHTS TYPE=PUT macro. 

210 CICS/VS APRM (Cl) 

IOERR 

Default action: terminate the task 
abnormally. 

occurs when there is an 
unrecoverable input/output error. 

Default action: ter~inate the task 
abnormally. 

ISCINVREQ 
occurs when the remote system 
indicates a failure which does not 
correspond to a known condition. 

Default action: terminate the task 
abnormally. 

ITEMERR 
occurs when the item number 
specified or implied by a READQ TS 
command, or a WRITEQ TS command with 
the REWRITE option, is invalid (that 
is, outside the range of entry 
numbers assi gned for the queue). 

Default action: terminate the task 
abnormally. 

LENGERR 
occurs if the length of the stored 
data is greater than the value 
specified by the LENGTH option for 
move-mode input operations. 

Default action: terminate the task 
abnormally. 

NOSPACE 
occurs when insufficient space is 
available in the temporary storage 
queue to contain the data. 

Default action: suspend the task 
until space becomes available as it 
is released by other tasks; then 
re'turn normally. 

QIDERR 
occurs when the queue cannot be 
found, either in main storage or in 
auxiliary storage. 

Default action: terminate the task 
abnormally. 

SYSIDERR 
occurs when the SYSID option 
specifies either a name which is not 
defined in the intersystem table, or 
a system to which the link is 
closed. 

Default action: terminate the task 
abnormally. 



Part 5. Recovery and Debugging 

Chapter 5.1. Introduction to Recovery and Debugging 

Chapter 5.2. Abnormal Termination Recovery 

Chapter 5.3. Trace Control 

Chapter 5.4. Dump Control 

Chapter 5.5. Journal Control 

Chapter 5.6. Recovery (Sync Points) 

Part 5. Recovery and Debugging 211 





Chapter 5.1. Introduction to Recovery and Debugging 

CICS/VS application programs are 
executed in an interactive environment. 
As a result, the operating system, 
CICS/VS itself, and the application 
programs must be responsive to many 
factors. Because the network on which 
the CICS/VS system is based c~nsists of a 
variety of terminals and sUbsystems from 
which requests for services are received 
at random, the relationships between 
application programs and data set 
activity differ from one moment to the 
next. 

CICS/VS provides the following aids to 
the testing, monitoring, and debugging of 
application programs: 

• 

• 

• 

• 

• 

• 

• 

Execution (Command level) Diagnostic 
Facility (EDF). Allows commands to 
be displayed in source form on a 
screen, both before and after 
execution so that they can be checked 
and altered if necessary. This 
facility is described in "Chapter 
1.7. Execution (Command-level) 
Diagnostic Facility" on page 35. 

Sequential terminal support. 
Enables sequential devices, such as 
card readers and disk units, to 
simulate online interactive 
terminals or SUbsystems of a CICS/VS 
network so th~t early testing can be 
carri ed out. 

Abnormal termination recovery. The 
HANDL E ABEND command can be used to 
deal with abnormal termination 
conditions, and the ABEND command can 
be used to cause a task to be 
terminated abnormally. 

Trace facility. A trace table 
containing entries that reflect the 
execution of various CICS/VS 
commands, and entries generated by 
application programs, can be written 
to main storage and, optionallY4 to 
an auxiliary storage device. 

Dump facility. Specified ~reas of 
main storage can be dumped onto a 
sequential data set, either tape or 
disk, for subsequent offline 
formatting and printing using a 
CICS/VS utility program. 

Journals. Facilities are provided 
for creating entries in special data 
sets called journals, for 
statistical or monitoring purposes; 
the system log is a journal. 

Recovery. When a task is abnormally 
terminated, CICS/VS can restore 
certain resources to their original 

state so that a transaction can be 
resubmitted for restart with no 
further action by the operator. The 
SYNCPOIHT command can be used to 
subdivide a pr~gram so that only the 
uncompleted part of a transaction 
need be resubmitted. 

Sequential terminal support, for which no 
special CICS/VS commands are required, is 
des~ribed below. The other facilities, 
and the commands that enable the 
application programmer to make use of 
them, are discussed in the other chapters 
of thi s part. 

SEQUENTIAL TERMINAL SUPPORT 

Even at the simplest level of program 
testing, the programmer should take the 
following into consideration. It is 
inefficient and error-prone to test a 
program from a terminal if all test data 
must be keyed into the system from that 
terminal for each test case. The 
programmer cannot easily retain a backlog 
of proven test data and quickly test 
programs through the key-driven terminal 
as changes are made. 

CICS/VS allows the application 
programmer to begin testing his programs 
without the use of a telecommunication 
devi ceo It is possi ble for the system 
programmer to specify through the 
terminal control table (TCT) that 
sequential devices be used as terminals. 
These sequential devices may be card 
readers, line printers, disk units, or 
magnetic tape units. In fact~ the 
terminal control table can include 
combinations of sequential de~ices such 
as: card reader and line printer (CRLP), 
one or more disk or tape data sets as 
input, one or more disk or tape data sets 
as output. A TCT that contains 
references to these sequential terminals 
can also define other true 
telecommunications terminals in the 
system. 

The input data submitted from a 
sequential device must be prepared in the 
form in which it would come from a 
telecommunication device. The input data 
must start with a transaction 
identification code of up to four 
characters, unless the transaction 
identification is predefined in the TCT. 
If there is more data, and the 
transaction identification code has less 
than four characters, a system-defined 
transaction code delimiter or a blank 
must precede the extra data. If a 
sequential device is being used as a 
terminal, an end-of-data indicator (a 

Chapter 5.1. Introduction to Recovery and Debugging 213 



0-2-8 punched card code (X'EO') or the 
equivalent as specified when the CICS/VS 
system is generated) must follow the 
input message or the system-defined data 
termination character. The input is 
processed sequentially and must be 
unblocked. The Sequential Access Method 
(SAM) i s u sed to read and wr i te the 
necessary inputs and outputs. The 
operating system utilities can be used to 
create the input data sets and print the 
output data sets. 

Usi ng thi s approach., it is possi ble to 
prepare a stream of transaction test 
cases to do the basi c testi ng of a 
program module. As the testing 
progresses, the user can generate 
additional transaction streams to 
validate the multiprogramming 
capabi 1 it i es of hi s programs or to allow 
transaction test cases to be run 
concurrently. 

For operational convenience, it is 
usually appropriate to place a 
terminating transaction at the end of 
each input stream. For tests that use a 
single input st~eam, the transaction can 
be CSMT SHUTDOWN with appropriate 
responses following the initial message 
to respond to the CSMT queries about the 
mode of shutdown. In a batch-only 
testing environment, this enables 
CICS/VS to be terminated in an orderly 
manner without operator intervention. 

Where more than one sequential input 
stream is used, only one should include 
the CSMT SHUTDOWN transaction. Others 
can be terminated with CSSF GOODNIGHT. 

At some point in testing, it is necessary 
to use telecommunication devices to 
ensure that the transaction formats are 
satisfactory, that the terminal 
operational approach is satisfactory, 
and that the transactions can be 
processed on the terminal. The terminal 
control table can be altered to contain 
more and different devices as the testing 
requirements change. 

When the testing has proved that 
transactions can be processed 
concurrently and the necessary data sets 
<actual or duplicate) for online 
operation have been created, the user 
begins testing in a controlled 
environment with the telecommunication 
devices. In this controlled environment, 
the transaction test cases should 
represent all functions of the eventual 
system, but on a smaller, measurable 
scale. For example, a company whose 
information system will work with 15 
district offices may select one district 

214 CICS/VS APRM (Cl) 

office for the controlled test. During 
the controlled test, all transactions, 
data set activity, and output activity 
from the system should be monitored 
closely. 

Requests for input or output from a 
sequential terminal are expressed by 
means of terminal control commands in the 
normal way. In response to a RECEIVE 
command, where the terminal has been 
described in the terminal control table 
as a CRlP; DISK, or TAPE termi nal, data 
is read from the input data set until any 
one of the following situations occurs: 

• An end-of-data indicator is detected 
in the input stream. (The indicator 
must be defi ned by the user lo.Jhen the 
CICS/VS system is generated.) 

o Sufficient input has been read to 
fill the input area associated with 
the line used for transmission. If 
an end-of-data indicator is not 
detected before the input area is 
filled, all further data preceding an 
end-of-data indicator is bypassed 
and treated as a system error, which 
is passed to the user-installation 
terminal error program (DFHTEP). 

• End-of-file (EOF) is detected. The 
input operation is considered 
complete. Any subsequent RECEIVE 
command is treated as a system error, 
which is passed to the 
user-installation terminal error 
program (DFHTEP) with a response code 
of 4. (In a CICS/DOS/VS system, EOF 
applies only to a card reader.) 

In response to a SEND command for a CRlP 
terminal, lines are written in print 
format as follows: 

• If there is no nel.,-line (X'15') 
character within the number of 
characters contained in one print 
line of the specified line size (as 
defined by the system programmer in 
the lPlEN option of the DFHTCT 
TYPE=TERMINAl macro), the output is 
written in fixed-length lines of the 
size specified. 

• If new-line characters are 
encountered, a new line is begun for 
each one. 

Writing of output continues until the end 
of the user data is reached. For 
additional information concerning 
terminal control commands, refer to 
"Chapter 3.2. Terminal Control" on page 
85. 



Chapter 5.2. Abnormal Termination Recovery 

During abnormal termination of a task, a 
program-level abend exit facility is 
provided in CICS/VS so that a 
user-written exit routine can be executed 
if desired. One example of a function 
performed by such a routine is the 
"clean-up" of a program that has started 
but not completed normally. An abend 
exit within an application program is 
activated in response to a HANDLE ABEND 
command. The same command can be used to 
cancel a previously activated exit. 

The ABEND command can be used to 
abnormally termi nate a task and .so cause 
an active exit routine to be executed. 
The ABEND command can include a request 
for a dump. 

A HANDLE ABEND command overrides any 
preceding such command in any application 

program at the same logical level. Each 
application program of a transaction can 
have its own exit, but only one exit at 
each logical level can be active. 
(Logical levels are explained in "Chapter 
4.4. Program C~ntrol" on page 189.) 

When a task is abnormally terminated, 
CICS/VS searches for an active exit, 
starting at the logical level of the 
application program in which the abend 
occurred, and proceeding, if necessary, 
to successively higher levels. The first 
active exit found, if any, is given 
control. This procedure is shown in 
Figure 21 on page 216, which also shows 
how subsequent abend exit processing is 
determined by the user-written exit 
IAout i ne. 

Chapter 5.2. Abnormal Termination Recovery 215 



Look at the 
next highest 
logical level 

No 

Figure 21. ABEND Exit Processing 

No 

Yes 

To prevent recursive abends in an exit 
routine, CICS/VS deactivates an exit upon 
entry to the exit routine. If a retry of 
the operation is attempted, the 
application programmer can branch to a 
point in the program that was in control 
at the time of the abend and issue a 
HANDLE ABEND RESET comm~nd to reactivate 
the exit. This command can also be used 
to reactivate an exit (at the logical 
level of the issuing program) that was 
canceled previously as described above. 

216 CICS/VS APRM (Cl) 

Task ABEND 

Terminate the 
task 

Action taken in 
ex it program or 
routine 

No 

Exit to program 
at next higher 
logical level 

Yes 

Deactivate the 
exit 

Link to program 
or branch to label 

r;ETURN ABEND -, 

I I 
-' 

Yes 

Terminate the 
task 

Refer to the section dealing with 
creation of task abend exits in the 
CICS/VS System Programmer's Reference 
Manual for additional information about 
exit routines, and to the CICS/VS 
Messages and Codes manual for a list of 
the transaction abendcodes generated for 
abnormal terminations initiated by 
CICS/VS. 



HANDLE AN ABNORMAL TERMINATION EXIT 
(HANDLE ABEND") 

HANDLE ABEND {PROGRAM(name)I 
LABEL(label)ICANCELIRESET} 

Condition: PGMIDERR 
(if PROGRAM specified) 

Thi s command is used to act i vate, cancel, 
or react i vate an exi t for abnormal 
termination processing. 

When act i vat i ng an ex; t, the PROGRAM 
option must be used to specify the name 
of a program to receive control, or 
(except for PL/I programs) the LABEL 
option must be used to specify a program 
label to which control will branch, when 
an abnormal termination condition 
occurs. A HANDLE ABEND PROGRAM or HANDLE 
ABEND LABEL command overrides any 
previous such request in any application 
program at the same logical le~el. 

If intersystem communication is being 
used, an abnormal termination in the 
remote system may cause a branch to the 
specified program or label, but 
subsequent requests to use resources in 
the remote system will not be processed. 

A HANDLE ABEND command with the CANCEL 
option will cancel a previously 
established exit at the logical level of 
the application program in control. 

A HANDLE ABEND command with the RESET 
option will reactivate an abnormal 
termination exit that was canceled by a 
HANDLE ABEND CANCEL command or by 
CICS/VS. This command would usually be 
issued in an abnormal termination exit 
routine. 

When an XCTL command is to be used to 
transfer control from an application 
program, there is a potential problem if 
an exit label (rather than a program) has 
been specified within that application 
program, and the exit is still active 
when control is transferred. If, later, 
CICS/VS needs more storage, the storage 
occupied by the application program may 
be reused, and an attempt to transfer 
control to the reused storage, as a 
result of a subsequent task abend, will 
have unpredictable results. This 
situation will not occur if an exit 
program is specified, instead of a label. 
Labels can be used without this risk in 
application programs that do not use an 
XCTL command. 

If an abend occurs as a result of a 
CICS/VS BMS command, control will not be 
returned to CICS/VS to clean up the 
control blocks. Results will be 
unpredictable if the command is retried. 

When the label specified in a HANDLE 
ABEND LABEL command receives control, the 
regi sters a re set as fo 11 ows: 

ASM: R1S - Abend label. 
RO-14 - Contents at the time 
of the last CICS/VS service 
request. 

COBOL: Control returns to the HANDLE 
ABEND command with the 
registers restored; COBOL GO 
TO statement is then 
executed. 

The following example shows how to 
establ ish a program as an exi t: 

EXEC CICS HANDLE ABEND 
PROGRAMC'EXITPGM') 

TERMINATE TASK ABNORMALLY (ABEND) 

ABEND [ABCODECname)] 
[CANCEL] 

This command is used to request that a 
task be terminated abnormally. 

The main storage associated with the 
terminated task is released; optionally, 
a dump of this storage can be obtained 
first by using the ABCODE option to 
specify a four-character abnormal 
termination code, which CICS/VS will 
place in the formatted storage dump to 
i den t i fy it. 

If the CANCEL option is specified, all 
abnormal termination exits established 
by HANDLE ABEND commands at any level in 
the task are canceled before the task is 
terminated. If the PL/I STAE 
execution-time option has been 
specified, an abnormal termination exit 
will have been established by PL/I. This 
exit is revoked by the CANCEL option. 
(Refer to the Pl/I Optimizing Compiler 
j>rogrammer's Gu i de for further 
information.) 

The following example shows how to 
terminate a task abnormally: 

EXEC CICS ABEND 
ABCODECABCD) 

ABNORMAL TERMINATION RECOVERY OPTIONS 

ABCODE(name) 
specifies that main storage related 
to the task that is being terminated 
; s to be dumped and prov i des a name 
to identify the dump. The specified 
name may consist of up to f~ur 
characters. 

Chapter 5.2. Abnormal Termination Recovery 217 



CANCEL 
specifies that exits established by 
HANDLE ABEND and ABEND commands are 
to be canceled; in effect they are 
ignored. A HANDLE ABEND CANCEL 
command cancels a previously 
established exit at the logical 
level of the application program in 
control. An ABEND CANCEL command 
cancels all exits at any level in 
the task (and terminates the task 
abnormally). 

LABEL(label) 
specifies the program label to which 
control will branch if abnormal 
termination occurs. This option 
cannot be used for PL/I application 
programs. 

PROGRAM(name) 
specifies the name of the program to 
which control is to be passed if the 
task is terminated abnormally. The 

218 CICS/VS APRM (Cl) 

RESET 

name can consist of up to eight 
alphameric characters and must-have 
been defined in the processing 
program table (PPT). 

specifies that an exit canceled by a 
HANDLE ABEND CANCEL command is to be 
reactivated. 

ABNORMAL TERMINATION RECOVERY 
EXCEPTIONAL CONDITIONS 

PGMIDERR 
occurs if a program cannot be found 
in the PPT or is disabled. 

Default action: terminate the task 
abnormally. 



Chapter 5.3. Trace Control 

The CICS/VS trace control program is a 
debugging and monitoring aid for 
application programmers and IBM field 
engi nears. Thi s faci 1 i ty makes use of a 
trace table consisting of entries 
produced in response to trace control 
requests; the trace table resides in main 
storage. The CICS/VS auxiliary trace 
facility allows trace records to be 
written on a sequential device for later 
analysis. 

Trace control commands are provided to: 

• Specify user trace entry point or 
user event monitoring point (ENTER). 

• Control the CICS/VS trace facility 
(TRACE ON and TRACE OFF). 

TRACE ENTRY POINTS 

The points at which trace entries are 
produced during CICS/VS operation are of 
two types: system trace entry points and 
user trace entry points. 

System trace entry pOints: points within 
CICS/VS at which trace control requests 
are made. The only system trace entry 
points that need concern the 
command-level application programmer are 
the EXEC-interface-program trace points, 
which produce entries in the trace table 
whenever a CICS/VS command is executed. 
Two trace entries are made: the first 
when the command is issued, and the 
second when CICS/VS has performed the 
required function and is about to return 
control to the application program. 
Between them, these two trace entries 
allow the flow of control through ~n 
application program to be traced, and a 
check to be made on which exceptional 
conditions occurred during its 
execut ion. (The TRACE ON, TRACE OFF, 
ABENO, XCTL, and RETURN commands produce 
single entries.) 

User trace entry po;nts: additional 
points within an application program that 
need to be included in the trace table to 
allow complete program debugging. For 
example, a program loop would need a 
trace entry to be produced containing a 
counter value showing the number of times 
that the loop had been ente.red. User 
trace entries are produced wherever an 
ENTER command is issued. Each trace 
entry request can be given a unique 
i dent i fer and can cau se 8 bytes of data 
to be placed in the trace table. 

EVENT MONITORING POINTS 

A user event monitoring point (EMP) can 
be defined in an application program by 
means of the MONITOR opt i on of the ENTER 
command. At a user EMP, information can 
be added to the user fields in accounting 
and performance class monitoring data 
records. The classes of data records to 
be eligible for the addition of user 
information are specified by the ACCOUNT 
and PERFORM options. The actual user 
informat.ion to be recorded ;s defined in 
the monitoring control table. The user 
information recorded, in conjunction 
with similar data recorded automatically 
by the system can be used as input to 
offline analysis and reporting programs. 
More information on the use of monitoring 
is given in the CICS/VS System 
Programmer's Reference Manual. 

TRACE FACILITY CONTROL 

The CICS/VS trace facility is controlled 
by a number of trace flags; the flags are 
store.d within CICS/VS and the TRACE ON 
and TRACE OFF commands are used to turn 
them on or off. 

There is a master system trace flag, 
which must be on before any system trace 
entries are producedp and a separate 
system flag for each type of system trace 
entry. The master system trace flag can 
be turned on or off independently of 
individual system trace flags; thus th~ 
system trace pattern of activity can be 
left intact but controlled as a single 
unit. When the master system trace flag 
and one or more system trace flags are 
on, the relevant system trace entries are 
produced for all active tasks, and tasks 
that become active subsequently, until 
the, flags are turned off a9ai n. 

The TRACE command can be used to control 
the system trace flags for other parts of 
CICS/VS, should it be necessary to debug 
a program down to the level of the 
CICS/VS macro instructions issued by the 
EXEC interface program; for further 
details, see later in this chapter under 
"Control the CICS/VS Trace Facility". 

There is a master user trace flag, and an 
individual user trace flag for each task. 
If the master user trace flag is on, 
requested user trace entries are produced 
for all acti ve tasks, and tasks that 
become active subsequently, until the 
flag is turned off again. Each 
individual user trace flag controls user 
trace entries only for the task that 
turns the flag on or off. 

Chapter 5.3. Trace Control 219 



The master termi nal operettor can tut'n the 
whole CICS/VS trace facility on or off by 
entering suitable instructions; all 
flags are turned on or off together when 
this method is used. 

TRACE TABLE FORMAT 

The CICS/VS trace table is located in 
main storage; it is possible to gain 
access to it by investigating a dump. 
The trace table consi sts of a trace 
header and a vari able number of 
fixed-length entries produced by trace 
control requests. Each entry in the 
trace table is 16 bytes in length and is 
aligned on a double-doubleword boundary. 
The trace table area is of a fixed size 
specified by the system programmer1 and 
entries are placed in the table in a 
wraparound manner; that is, when the 
table is full, the next entry is placed 
at the head of the table, overwriting the 
original entry. The format of the trace 
header is: 

Bytes 

0-3 
4-7 
8-11 
12-15 

Contents 

Address of last-used entry 
Address of start of table 
Address of end of table 
Reserved 

The format of the EXEC interface program 
trace entry on issuance of a command is 
as follows: 

Bytes 

o 

contents 

X'El' trace identifier. 

1-3 Return point in application 
program. 

4 Not used. 

5(0-3) X'0'1 identifying first entry 
for command. 

5(4-7) Not used. 

6,7 

8-11 

12 1 13 

14 1 15 

User task sequence number 
(packed decimal). 

ASM: address of dynamic 
storage addressed by DFHEISTG 
DSEeT. 

COBOL: address of 
working-storage section. 

Pl/I: address of dynamic 
storage area (DSA) 

Not used. 

Code identifying CICS/VS 
command. See field EIBFN in 
Appendix A for details. 

220 CICS.lVS APRM (Cl) 

The format of the EXEC interface program 
trace entry on completion of a command is 
as follows: 

Bytes contents 

o X'El' trace identifier. 

1-3 Return point in application 
program; if response code in 
bytes 8-13 is non-zero, 
these bytes will contain 
address of the label specified 
in HANDLE CONDITION command 
associated with response. 

4 EIBGDI 

5(0-3) X'F', identifying second entry 
for command. 

5(4-7) Not used. 

6,7 User task sequence number 
(packed decimal). 

8-13 

14,15 

Response code. Zero response 
code signifies that no 
exceptional conditions occurred 
during execution of command. 
If response is non-zero, see 
field EIBRCODE in Appendix A 
for details. 

Code identifying CICS.lVS 
command (same as bytes 14 
and 15 at issuance of 
command) . 

The format of a user trace entry is as 
follows: 

Bytes 

o 

1-3 

contents 

Trace identifier, being binary 
value specified in ENTER 
command. 

Return point in application 
program. 

4 Not used. 

5(0-3) Not used. 

5(4-7) X'2', identifying this entry 
as a user trace entry. 

6,7 

8-15 

User task sequence number 
(packed decimal). 

Data field supplied in ENTER 
command. 

If consecutive, duplicate entries for the 
trace table are generated, the first 
entry has the form of a standard entry, 
but subsequent identical entries are 
replaced by a single special entry, 
immediately following the first entry. 
The trace identifier of this special 



entry (in byte 0) is X'FD'; bytes 1-3 
contain a packed decimal number that 
shows how many repeated entries have been 
replaced by this single entry. Trace 
table entries with the trace identifiers 
X'FE' or X'FF' indicate the turning on or 
turning off, respectively, of the trace 
facility. Details of these and other 
CICS/VS trace entries are given in the 
CICS/VS Problem Determination Guide. 

CICS/VS AUXILIARY TRACE FACILITY 

All trace entries that are written to the 
trace table can also be written to the 
auxiliary trace data set (provided that 
the auxiliary trace program has been 
generated and has been activated by the 
master terminal operator). Whereas the 
entries written to the trace table wrap 
around, the auxiliary trace data set 
contains all of the trace table entries 
that have been made. The CICS/VS Trace 
Utility Program (DFHTUP) can be used to 
process and print selected tr~ce entries 
from the data set (for example, all the 
EXEC-interface-program trace entries). 
The printout also shows the time at which 
each trace entry was produced. 

USER TRACE ENTRY POINT AND EVENT 
MONITORING POINT (ENTER) 

ENTER TRACEID(data-value) 
[FROM(data-area)] 
[ACCOUNT] 
[MONITOR] 
[PERFORM] 

This command is used to specify a point 
~ithin an application program at which a 
user trace table entry is to be produced 
(if the trace facility has been turned on 
for this type of entry). 

This command is used also to define a 
user event monitoring point (specify 
MONITOR). The classes of monitoring data 
for which user information is to be 
collected at this user event monitoring 
point can be specified by the ACCOUNT and 
PERFORM options. 

A trace identifier in the range 0 through 
199 must be provided in the TRACEID 
option; this will appear in the first 
byte of the trace table entry that is 
produced. Optionally, 8 bytes of data can 
be supplied in the FROM option; this data 
will appear in bytes 8-15 of the trace 
table entry. 

For a user event monitoring point, the 
TRACEID specified should match the 
identification number of a TYPE=EMP entry 
in the monitoring control table that 
defines the user information to be 

collected. If no such entry exists, the 
ENTER command will have no effect. This 
provides a way of coding optional 
recording points which are activated by 
the use of an appropriate monitoring 
control table. 

If both the ACCOUNT and PERFORM options 
are specified in the application program, 
the corresponding entry in the monitoring 
control table can specify recording of 
aither accounting or performance data, or 
both. If only one option is specified at 
the user EMP, only that class of 
recording is possible. Thus greater 
flexibility is obtained by specifying 
both options for the user EMP and 
controlling run-time activity by a 
suitably coded monitoring control table. 

The following example shows how to 
specify that a user trace table entry 
should be produced: 

EXEC CICS ENTER 
TRACEID(123) 
FROMCMSG) 

r,ONTROL THE CICS/VS TRACE FACILITY (TRACE 
ON, TRACE OFF) 

TRACE {ONIOFFl [SYSTEM] 
(EI] 
(USER] 
[SINGLE] 

These commands are used to control the 
CICS/VS trace facility by turning on and 
off the various trace flags. (See the 
section "Trace Facility Control" earlier 
in this chapter for details of trace 
flags.) 

A TRACE ON or TRACE OFF command without 
options controls the entire CICS/VS trace 
facility but leaves the established 
pattern of trace activity undisturbed. 

the SYSTEM option controls the master 
system trace flag, which must be on 
before any system trace table entries are 
produced. The EI option controls the 
EXEC-interface-program system trace 
flag. The USER option controls the 
master user trace flag, and the SINGLE 
option controls the user trace flag for 
the task. 

The following example shows how to turn 
on the master system and 
EXEC-interface-program system trace 
flags to start tracing of CICS/VS 
commands: 

EXEC CICS TRACE ON 
SYSTEM 
EI 

Chapter 5.3. Trace Control 221 



MACRO-LEVEL TRACE FACILITIES 

If debugging at the macro level is 
necessary, an additional option, All, can 
be used, specifying that the entire 
CICS/VS trace facility is to be 
controlled by the TRACE ON and TRACE OFF 
commands. It: has the same effect as a 
master terminal trace control 
instruction and affects all master, 
system, and user trace flags. 

The following options can only be used in 
conjunction with the SYSTEM option but no 
system trace entries will be produced 
unless the master system trace flag is 
on. Each opticn specifies that the 
system trace entries produced by the 
associated program are controlled by the 
TRACE ON and TRACE OFF commands. The 
options can be specified in any 
co~bination and in any order. 

Opt;on 

BF 
BM 
DC 
01 
FC 
IC 
IS 
JC 
KC 
PC 
SC 
SP 
TC 
TO 
TS 
UE 

CICS/VS Program 

Built-in Function 
Basic Mapping Support 
Dump Control 
Batch Data Interchange 
File Control 
Interval Control 
ISC 
Journal Control 
Task Control 
Program Control 
Storage Control 
Sync Point 
Terminal Control 
Transient Data 
Temporary Storage 
User Exit Interface 

!~ACE CONTROL OPTIONS 

ACCOUNT 

EI 

specifies, for a user event 
monitoring point, that user 
information is to be collected in 
the accounting class monitoring 
data records. 

specifies that tracing of CICS/VS 
commands through the EXEC interface 
program is affected by the TRACE ON 
or TRACE OFF command. 

FROM(data-areaJ 
specifies an 8-byte data area whose 
contents are to be entered into the 
data field of the trace table entry. 
When used for monitoring, the data 
area is regarded as two successive 
fullword fields. These correspond, 

222 CI CS/VS APRM (Cl) 

in order, to the keywords DATAl and 
DATA2 that can be specified in the 
DFHMCT TYPE=EMP system macro. If the 
FROM option is omitted, two 
fullwords of binary zeros are passed 
as the values of DATAl and DATA2. 

MONITOR 
specifies that a user event 
monitoring point, rather than a 
trace entry point, is to be 
recorded. 

PERFORM 
specifies, for a user event 
monitoring point, that user 
information is to be collected in 
the performance class monitoring 
data records. 

SINGLE 
specifies that the TRACE ON or TRACE 
OFF command applies to user entries 
of the single task issuing the 
request for the duration of the 
task. 

SYSTEM 
specifies that all trace entries 
made from within CICS/VS are 
affected by the TRACE ON or TRACE 
OFF command. 

This option controls the master 
system trace flag but does not 
change the status of individual 
system trace flags; the established 
pattern of system trace activity 
remains intact but is controlled as 
a single unit. (This characteristic 
is useful when macro-level trace 
facilities are in use, as described 
earlier in this chapter.) 

TRACEID(data-value) 

USER 

specifies the trace identifier for a 
user trace table entry as a hal fword 
binary value in the range 0 through 
199. When used for monitoring, the 
data value is the user-event 
monitoring point identifier as 
specified in the DFHMCT TYPE=EMP 
system macro. 

specifies that all user entries for 
all current transactions are 
affected by the TRACE ON or TRACE 
OFF command. 

TRACE CONTROL EXCEPTIONAL CONDITIONS 

There are no trace control exceptional 
conditions. 



Chapter 5.4. Dump Control 

The CICS/VS dump control program allows 
specified areas of main storage to be 
dumped, by means of the DUMP command, 
onto a sequential data set, which can be 
either on tape or on disk. This data set 
contains only the information applicable 
to the user's transaction or application 
program, and can be formatted 
subsequently and printed offline Cor 
while the dump data set is closed) using 
the CICS/VS Dump Utility Program 
(DFHDUP) . 

Only one dump control command is 
processed at a time. If additional 
commands are issued while a dump is in 
progress, activity within the tasks 
associated with those commands is 
suspended until the dump is completed. 
Remaining dump commands are processed in 
the order in which they are made. The 
use of the DUMP command will cause 
certain fields (for example, EIBFN and 
EIBRCODE) in the EIB and the TCA to be 
overwritten. 

Options of the DUMP command allow the 
following areas of main storage to be 
dumped in various combinations: 

• Selected main storage areas related 
to the requesting task. A dump of 
these areas is normally used duri ng 
the test; ng and debuggi ng of an 
appl i cat i on program. (CI CS/VS 
automatically provides this service 
if the related task is terminated 
abnormally.) 

• CICS/VS tables: program control 
table (PCT), processing program 
table (PPT), system initialization 
table (SIT), terminal control table 
(TCT), file control table (FCT), 
destination control table CDCT). A 
dump of these tables is typically the 
first dump taken in a test in which 
the base of the test must be 
established; subsequent dumps are 
usually of the task-related-storage 
type. 

• Task-related storage areas and 
CICS/VS control tables (a complete 
dump). To request a complete dump is 
sometimes appropriate during 
execution of a task, but this 
facility should not be used 
excessively. C1CS/VS control tables 
are primarily static areas; 
therefore, requesting one 
CICS/VS-tables dump and a number of 
task-related-storage dumps is 
generally more efficient than 
requesting a comparable number of 
complete dumps. 

DUMP MAIN STORAGE (DUMP) 

DUMP DUMPCODECname) 
[FROMCdata-area) lENGTHCdata-value)] 
[COMPLETE] 
[TASK] 
[STORAGE] 
[PROGRAM] 
[TERMINAL] 
[TABLES] 
[OCT] [FCTl [PCTl [PPT] [SIT] [TCTl 

This command is used to dump any or all 
of the main storage areas related to a 
task, any or all of the CICS/VS tables 
(FCl, OCT, PCT, PPT, SIT, TCT), or all of 
these together. 

The following example shows how to 
request a dump of the entire task-related 
storage areas, the terminal control 
table, and a specified data area: 

EXEC CICS DUMP 
TASK 
TCT 
FROM(AREAl) 
LENGTH(200) 
DUMPCODE('DUMl') 

DUMP CONTROL OPTIONS 

The dump control options can be specified 
in any combination; only one copy of each 
area or table will be dumped, even if 
spec if i ed mo re than once.' 

If no options are specified, the areas 
dumped will be the same as those dumped 
when the TASK option is specified, except 
that the DL/I control blocks will not be 
dumped. 

COMPLETE 

DCT 

dumps all main storage areas related 
to a task, all of the CICS/VS 
tables, and for CICS/OS/VS only, the 
DL/I control blocks. 

dumps the destination control table 

DUHPCODE(name) 

FCT 

specifies a name (up to four 
characters) that identifies the 
dump. 

dumps the file control table. 

Chapter 5.4. Dump Control 223 



FROM(data-areaJ 
dumps the specified data area which 
must be a valid area, that iS I 

storage allocated by the operating 
system within the CICS/VS region or 
partition. In addition, the 
following areas are dumped: 

• Task control area (TCA) and, if 
applicable, the transaction 
work area (TWA). 

• Common system area (CSA), 
including the user's portion of 
the CSA (CWA). 

• Trace table. 

• 

• 

Contents of general-purpose 
registers upon entry to dump 
control from the requesting 
task .. 

Either the terminal control 
table terminal entry (TCTTE) or 
the destination control table 
entry associated with the 
requesting task. 

Whenever the TCTTE is dumped, the 
terminal control table user area (if 
any) and the message control blocks 
(if any) associated with the TCTTE 
are dumped. The latter are used by 
basic mapping support. 

LENGTH 

peT 

PPT 

specifies the length (halfword 
binary) of the data area specified 
in the FROM option. 

dumps the program control table. 

dumps the processing program table. 

PROGRAM 
specifies that program storage 
areas associated with this task are 
to be dumped , as follows: 

• 

• 

Task control area (TCA) and, if 
applicable, the transaction 
work area (TWA). 

Common system area (CSA), 
including the user's portion of 
the CSA (CWA). 

• Trace table. 

• 

• 

All program storage areas 
containing user-written 
application program(s) active 
on behalf of the requesting 
task. 

Register save areas (RSAs) 
indicated by the RSA chain off 
the TCA. 

224 CICS/VS APRM (Cl) 

SIT 

• 

• 

Contents of general-purpose 
registers upon entry to dump 
control from the requesting 
task. 

Either the terminal control 
table terminal entry (TCTTE) or 
the destination control table 
entry associated with the 
requesting task. 

Whenever the TCTTE is dumped, the 
terminal control tabl~ user area (if 
any) and the message control blocks 
(if any) associated with the TCTTE 
are dumped. 

dumps the system initialization 
table. 

STORAGE 
specifies that storage areas 
associated with this task are. to be 
dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction 
work area (TWA). 

• 

• 
• 

• 

• 

Common system area (CSA), 
including the user's portion of 
the CSA (CWA). 

Trace table. 

Contents of general-purpose 
registers upon entry to dump 
control from the requesting 
task. 

All transaction storage areas 
chained off the TCA storage 
accounting field. 

Either the terminal control 
table terminal entry (TCTTE) or 
the destination control table 
entry associated with the 
requesting task. 

Whenever the TCTTE is dumped, the 
terminal control table user area (if 
any) and the message control blocks 
(if any) associated with the TCTTE 
are dumped. 

TABLES 

TASK 

dumps the OCT, FCT, PCT, PPT, SIT, 
and the TCT. 

specifies that storage areas 
associated with this task are to be 
dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction 
work area (TWA). 

• Common system area (CSA), 
including the user's portion of 
the CSA (CWA). 



TeT 

• 
• 

• 

• 

• 

• 

• 

Trace table. 

All program storage areas 
containing user-written 
application programs active on 
behalf of the requesting task. 

Contents of general-purpose 
re.gisters upon entry to dump 
control from the requesting 
task. 

All transaction storage areas 
chained off the TCA storage 
accounting field. 

Either the terminal control 
table terminal entry (TeTTE) or 
the destination control table 
entry associated with the 
requesting task. 

Register save areas (RSAs) 
indicated by the RSA chain off 
the TCA. 

All terminal input/output areas 
(TIOAs) chained off the 
terminal control table terminal 
entry (TCTTE) for the terminal 
associated with the requesting 
task. 

• DL/I control blocks (CICS/OS/VS 
only). 

Whenever the TCTTE is dumped, the 
terminal control table user area (if 
any) and the message control blocks 
(if any) associated with the TCTTE 
are dumped. 

dumps the terminal control table. 

TERMINAL 
specifies that storage areas 
associated with the terminal are to 
be dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction 
work area (TWA). 

• Common system area (CSA), 
including the user's portion of 
the CSA (CWA). 

• 
• 

• 

• 

Trace table. 

All terminal input/output areas 
(TIOAs) chained off the 
terminal control table terminal 
entry (TCTTE) for the terminal 
associated with the requesting 
task. 

Contents of general-purpose 
registers upon entry to dump 
control from the requesting 
task. 

Either the terminal control 
table terminal entry (TCTTE) or 
the destination control table 
entry associated with the 
requesting task. 

Whenever the TCTTE is dumped, the 
terminal control table user area (if 
any) and the message control blocks 
(if any) associated with the TCTTE 
are dumped. The latter area used by 
basic mapping support. 

DUMP CONTROL EXCEPTIONAL CONDITIONS 

There are no dump control exceptional 
conditions. 

Chapter 5.4. Dump Control 225 





Chapter 5.5. Journal Control 

CICS/VS provides facilities for creating 
and managing special-purpose sequential 
data sets, called journals, during 
CICS/VS execution. Journals may contain 
any and all data the user needs to 
facilitate subs~quent reconstruction of 
events or data changes. For example, a 
journal might act as an audit trail, a 
change-file of data-base updates and 
additions, or a record of transactions 
passing through the system (often called 
a log). Each journal can be written from 
any task. 

Only the CICS/VS facilities dealing with 
creation of journals (journal output) 
using journal control commands are dealt 
with in this manual; the CICS/VS System 
Pr09ramm~r's Reference Manual contains 
information about reading journal data 
sets (journal input), which involves the 
use of CICS/VS journal control macro 
instructions. 

Journal control commands are provided to 
allow the application programmer to: 

• Create a journal record (JOURNAL). 

• Synchronize with (wait for 
completion of) journal output (WAIT 
JOURNAL). 

Exceptional conditions that occur during 
execution of a journal control command 
are handled as described in "Chapter 1.5. 
Exceptional Conditions" on page 25. 

Journal R.ecords 

Data may be directed to any journal data 
set specified in the journal control 
table (JCT), which defines the journals 
available during a particular CICS/VS 
execution. The JCT may define one or 
more journals on tape or di rect access 
storage. Each journal is identified by a 
number known as the journal file 
i dent if i er. Th i s number may range from 2 
through 99; the value 1 is reserved for a 
journal known as the system log. 

When a journal record is built, the data 
is moved to the journal buffer area. All 
buffer space and other work areas needed 
for journal data set operations are 
acquired and managed by CICS/VS. The 
user task supplies only the data to be 
written to the journal. 

Journal records are built into blocks 
compatible with standard 
variable-blocked format. CICS/VS uses 
the host operating system's Sequential 
Access Method to wri te the blocks to 
auxiliary storage. 

Each journal record begins with a 
standard fullword length field, a 
user-specified identifier, and a 
system-supplied prefix. This data is 
followed in the journal record by any 
user-supplied prefix data (optional), 
and finally by the user-specified data. 
Journal control is designed so that the 
application programmer requesting output 
services need not be concerned further 
with the detailed layout and precise 
contents of journal records. He needs to 
know only which journal to use~ what user 
da ta to spec i fy, and t>Jhat un i que 
user-identifier to supply. 

Journal Output Synchronization 

When a journal record is created by 
issuing the JOURNAL command with the WAIT 
option, the requesting task can wait 
until the output has been completed. By 
specifying that this should happen, the 
application programmer ensures that the 
journal record is written on the external 
storage device associated with the 
journal before processing continues; the 
task is said to be synchronized with the 
output operation. 

The application programmer can also 
request asynchronous journal output. 
This causes a journal record to be 
created in the journal buffer area and, 
optionally, initiates the data output 
operation from the buffer to the external 
device, but allows the requesting task to 
retain control and thus to continue with 
other processing. The task may check and 
wait for output completion (that is, 
synchronize) at some later time by 
issuing the WAIT JOURNAL command. 

The basic process of building journal 
records in the buffer space of a given 
journal continues until bne of the 
following situations occurs: 

• A request specifying the STARTIO 
option is made (from any task) for 
output of a journal record. 

• 

• 

A request is rejected because of 
insufficient jou~nal buffer space. 

The available buffer space is reduced 
below a level that is specified by 
the system programmer. 

• One second elapses after the last 
occasion on which-any task started 
writing to this journal buffer. 

When any of these situations occurs, all 
journal records presen~ in the buffer, 

Chapter 5.5. Journal Control 227 



including any deferred output resulting 
from asynchronous requests, are written 
to auxi Ii ary storage as one block. 

The advantages that may be gained by 
deferring journal output are: 

• Transactions may get better response 
times by waiting less. 

• The load of physi cal I/O ,-equests on 
the host system may be reduced. 

• Journal data sets may contain fewer 
but larger blocks and so bett~r 
utilize auxiliary .storage devices. 

However, these advantages are achievable 
only at the cost of more buff~r space and 
greater progr~mming complexity. It is 
necessary to plan and program to control 
synchronizing with journal output. 
Additional decisions that depend on the 
data content of the journal record and 
how it is to be used must be made in the 
application program. In any case, the 
full benefit of deferring journal output 
is obtained only when the load on the 
journal data set is high. 

The STARTIO option is used with JOURNAL 
output requests to specify that the 
journal output operation is to be 
initiated immediately. For asynchronous 
output requests, control returns 
directly to the requesting program. The 
STARTIO option should not be used 
unnecessarily because, if every journal 
request used STARTIO, no improvement over 
synchronous output requests, in terms of 
reducing the number of physical I/O 
operations and increasing the average 
block size, would be possible. 

If the journ~l buffer space avail~ble at 
the time of the request is not sufficient 
to contain the journal record, the 
NOJBUFSP exceptional condition occurs. 
If no HANDLE CONDITION request is active 
for this condition, the requesting task 
loses control, the contents of the 
current buffer a~e written out, and the 
journal record is built in the resulting 
freed buffer space before control returns 
to the requesting task. 

If the requesting task is not willing to 
lose control (for example, if some 
housekeeping must be performed before 
other tasks get control), a HANDLE 
CONDITION command should be issued. If 
the NOJBUFSP condition occurs, no journal 
record is built for the request, and 
control is returned directly to the 
requesting program at the location 
provided in the HANDLE CONDITION request. 
The requesting program can perform any 
housekeeping needed before reissuing the 
journal output request. 

228 CICS/VS APRM (Cl) 

CREATE A JOURNAL RECORD (JOURNAL) 

JOURNAL 
JFIlEIDCdata-value) 
JTYPEIDCdata-value) 
FROM(data-area) 
lENGTH(data-value) 
[REQID(data-area)] 
[PREFIX(data-value) 
PFXLENG(data-value)] 

[STARTIO] 
[WAIT] 

Conditions: JIDERR, IOERR, lENGERR, 
NOJBUFSP, NOTOPEN 

This command is used to create a journal 
record. The request can be for 
synchronous or asynchronous output; 
definitions of these terms, and detailed 
information regarding the 
synchronization of journal output, are 
contained in the section "Journal Output 
Synchronization," earlier in this 
chapter. The following options must be 
specified. 

• JFllEID specifies the journal data 
set to receive the data. (JFILEID(l) 
specifies the system log.) 

• JTYPEID specifies a two-character 
identifier for the journal record. 

• FROM specifies the user data to be 
included in the journal record. 

• LENGTH specifies the length of the 
user data. This length should include 
the amount of space reserved for 
CICS/VS use within the maximum 
defined by the BUFSIZE operand of the 
DFHJCT TYPE=ENTRY system macro. 

The following are optional: 

• PREFIX specifies the user prefix data 
for the journal record. 

• PFXlENG specifies the length of the 
prefix data. 

To request synchronous journal output the 
WAIT option must be specified. For 
asynchronous output, (WAIT option not 
specified), the REQID option can be 
included to provide a unique identifier 
for the journal record; the identifier 
can be used later in a WAIT JOURNAL 
command to synchronize the task with the 
creation of the journal record. 

The STARTIO option can be included in a 
synchronous or asynchronous request to 
specify that the journal output operation 
should start immediately. STARTIO 
reduces absolute waiting time at the 
expense of general system performance and 
input/output load. 



The following example shows how to 
request synchronous journal output and 
wait for the output operation to be 
completed: 

EXEC CICS JOURNAL 
JFILEID(2) 
JTYPEID('XX') 
FROM(KEYDATA) 
LENGTH(8) 
PREFIX(PROGNAME) 
PFXLENG(6) 
WAIT 

In this example, since STARTIO is not 
specified, the task will wait until the 
journal buffer is full or until output is 
initiated by a STARTIO request in another 
task. CICS/VS limits the wait to one 
second. 

The following example shows how to 
request deferred (asynchron6us) journal 
output: 

EXEC CICS JOURNAL 
FROMCCOMDATA) 
LENGTH(lO) 
JFILEID(l) 
JTYPEID('SD') 
REQID(ENTRYIO) 

SVNCHRO~IZE WITH JOURNAL OUTPUT (WAIT 
JOURNAL) 

WAIT JOURNAL 
JFILEID(data-value) 
[REQIO(data-value)] 
[STARTIO] 

Conditions: JIDERR, INVREQ, IOERR, 
NOTOPEN 

This command is used to synchronize the 
task with the output of a one or more 
journal records that have been. created 
but whose output has been deferred; that 
is, with asynchronous journal output 
requests. 

The JFILEIO option specifies the journal 
file identifier, and the REQIO option 
optionally specifies a particular 
journal record. If the REQIO option is 
not speci fi ed, the task is synchroni zed 
with the output of the the last record 
created for the journal specified in the 
JFILEIO option. 

The journal records in the journal buffer 
area may already be written out to 
auxiliary storage, or the journal record 
output operation may be in progress. If 
the output operation has already been 
completed, control returns immediately 
to the requesting task; if not, the 
requesting task waits until the operation 
has been completed. If STARTIO is 

specified, output is initiated 
immediately. 

If the requesting program has made a 
succession of successful asynchronous 
output requests to the same journal data 
set, it is necessary to synchronize on 
only the last of these requests to ensure 
that all of the journal records have 
reached auxiliary storage. This may be 
done either by issuing a stand-alone WAIT 
JOURNAL command, or by making the last 
output command itself synchronous (by 
specifying the WAIT option in the JOURNAL 
command) . 

The following example shows how to 
request synchronization with the output 
of a journal record: 

EXEC CICS WAIT JOURNAL 
JFILEID(4) 
REQIDCEHTRYIO) 

JOURNAL CONTROL OPTIONS 

FROtH data-area ) 
specifies the user data to be built 
into the journal record. 

JFILEID(data-value) 
specifies a halfword numeric value 
in the range 1 through 99 to be 
taken as the jouf'nal fi Ie 
identifier. The value 1 specifies 
that the system log data set is the 
journal for this operation. 

JTVPEID(data-valuel 
specifies a two-character 
identifier to be placed in the 
journal record to identify its 
origin. 

LENGTH(data-value) 
speci fi es as a hal fword bi nary value 
the length in bytes of the user data 
to be built into the journal record. 
The minimum value is 1, and the 
maximum value is such that the sum 
of the LENGTH and PFXLENG values 
does not exceed the journal buffer 
size specified by the system 
programmer. 

PFXLENG(data-valuel 
specifies as a halfword binary value 
the length in bytes of the user 
prefix data to be included in the 
journal record. The minimum value is 
1, and the maximum value is such 
that the sum of the LENGTH and 
PFXLENG values does not exceed the 
journal buffer size specified by the 
system programmer. 

PREFIX(data-valuel 
specifies the user prefix data to be 
included in the journal record. A 
data area must be provided in COBOL 
programs·. 

Chapter 5.5. Journal Control 229 



REQID(parameter) 
specifies a fullword binary 
variable. For a JOURNAL command, 
the REQID option specifies that 
asynchronous output is required; 
the parameter must be a data area. 
CICS/VS sets the variable to a 
unique value to identify the journal 
record that is created. 

When used with a WAIT JOURNAL 
command, the REQID option specifies 
a variable set to a number that 
identifies the journal record that 
has been created but possibly not 
yet written out; the parameter is a 
data value. 

STARTlO 

WAIT 

specifies that output of the journal 
record is to be initiated 
immediately. If WAIT is specified 
for a journal with a low 
utilization, STARTIO should be 
specified also to prevent the 
requesting task waiting for the 
journal buffer to be filled. Very 
high utilization ensures that the 
buffer is flushed quickly, so that 
STARTIO is unnecessary. 

specifies that synchronous journal 
output is required. The journal 
record is written out; the 
requesting task waits until the 
record has been written. 

JOURNAL CONTROL EXCEPTIONAL CONDITIONS 

lNVREQ 
occurs if a WAIT JOURNAL command is 
issued before any JOURNAL command 
has been issued in the same task. 

Default action: terminate the task 
abnormally. 

230 CICS/VS APRM (CL) 

IOERR 
occurs if the physical output of a 
journal record was not accomplished 
because of an unrecoverable I/O 
error. 

Default action: terminate the task 
abnormally. 

JIDERR 
occurs if the specified journal file 
identifier does not exist in the 
journal control table (JCT). 

Default action: terminate the task 
abnormally. 

lENGERR 
occurs if the computed length for 
the journal record exceeds the total 
buffer space allocated for the 
journal data set, as specified in 
the journal control table (JCT) 
entry for the data set. 

Default action: terminate the task 
abnormally. 

NOJBUFSP 
occurs if the journal buffer space 
allocated by the system programmer 
is not sufficient to contain a 
journal record. 

Default action: write out the 
contents of the current buffer; 
suspend task activity until the 
JOURNAL command is satisfied. 

NOT OPEN 
occurs if the journal command cannot 
be satisfied because the specified 
journal data set has been disabled 
and is not available. 

Default action: terminate the task 
abnormally. 



Chapter 5.S. Recovery (Sync Points) 

To facilitate recovery in the event of 
abnormal termination of a CICS/VS task or 
of failure of the CICS/VS system, the 
system programmer can during CICS/VS 
table generation define certain 
resources (for example, files) as 
recoverable. If a task is terminated 
abnormally, these resources are restored 
to the condition they were in at the 
start of the task, which can then be 
rerun. The process of restoring the 
resources associated with a task is 
termed backout. 

If an individual task fails, backout is 
performed by the dynamic transaction 
backout program. If the CICS/VS system 
fails, backout is performed as part of 
the emergency-restart process. The 
CICS/VS System/Application Design Guide 
and the CI CS/VS S~em P rogramrner' s 
Reference Manual describe these 
facilities, which in general have no 
effect on the coding of application 
programs. 

However, for long-running programs, it 
may be undesirable to have a large number 
of changes, accumulated over a period of 
time, exposed to the possibility of 
backout in the event of task or system 
failure. This possibility can be avoided 
by using the SYNCPOINT command to split 
the program into logically separate 
sections termed logical units of work 
(LUWs); the end of an LUW is called a 
synchronization point (sync pOint). 

In addition to those defined with the 
SYNCPOINT command, sync points also occur 
at the end of a task and at each OL/I 
termination or checkpoint (CHKP) call. 
For the purposes of backout, each of 
these sync points is treated as though it 
marked the end of a task: if failure 
occurs after a sync point but before the 
task has been completed, only changes 
made since the sync point are backed out. 

It is recommended that LUWs be entirely 
logically independent, not merely with 
regard to protected resources, but also 
with regard to execution flow~ 
Typically, an LUW would comprise a 
complete conversational operation 
bounded by S END and RECEI V E commands. 

In addition to a OL/I termination call 
being considered to be a sync point, the 
execution of a SYNCPOINT command will 
cause CICS/VS to issue a Ol/! termination 
call. If a DL/I PSB is requi red ina 
subsequent lUW, it must be rescheduled by 
means of a PCB call. 

A BMS logical message started but not 
completed when a SYNCPOINT command is 
executed is forced to completion by an 
implied SEND PAGE command. 

The system programmer should be consulted 
if sync points are to be issued in a 
transaction that is eligible for 
transaction restart. 

EST~BLISH A SYNC POINT (SYNCPOINT) 

I SYNCPOINT [ROLLBACK] 

This command is used to divide a task 
(usually a long-running one) into smaller 
units known as logical units of work 
(LUWs). Each SYNCPOINT command causes a 
sync point to be established to mark the 
completion of a logical unit of work. 

SYNC POINT OPTION 

ROLLBACK 
specifies that all changes to 
recoverable resources, made by the 
task since its last sync point, are 
to be backed out. This option must 
not be used if remote recoverable 
resources have been updated in the 
same LUW (because those resources 
wi 11 not be backed out). In order 
to backout any remote recoverable 
resources, the transaction could be 
abended. 

This option can be used, for 
example, to tidy up in a HANDLE 
ABEND routine, or to revoke data 
base changes after the appl i cat ion 
program finds unrecoverable errors 
in its input data. 

Chapter 5.6. Recovery (Sync Points) 231 





Part 6. The CICS/VS Built-In Function Command 

Part 6. The CICS/VS Built-In Function Command 233 





Chapter 6.1. The Field Edit Built-In Function (BIF DEEDIT) Command 

The built-in function, DEEDIT, is 
provided by means of the BIF DEEDIT 
command. 

BIF DEEDIT 
FIElD(data-area) 
LENGTH(data-value) 

This command specifies that alphabetic 
and special characters are to be removed 
from an EBCDIC data field, the remaining 
digits being right justified and padded 
left wi th zeros as necessar'y. Thi s fi eld 
is specified by the FIELD option and its 
length, in bytes, by the LENGTH option. 

If the field ends with a minus sign or a 
'CR', a negative zone (X'D') is placed 
over the rightmost (low-order) byte. The 
zone portion of the rightmost byte may 
contain one of the hexadecimal characters 
X'A' through X'F'; the digit portion may 
contain one of the hexadecimal digits 
from X' 0' through X' 9'. Where th i sis 
the case, the rightmost byte is returned 
unaltered (see the example below). This 

permits the application program to 
operate on a zoned numeric field. The 
returned value is in the field that 
initiallY contained the unedited data. 

For example, execution of the command: 

EXEC CICS BIF 
DEEDIT 
FIELDCCONTG) 
lENGTH(9) 

removes all characters other than EBCDIC 
digits from CONTG, a nine-byte field, and 
returns the edited result in that field 
to the application .program. Two examples 
of the contents of CONTG before and after 
execution of the command are: 

Original value 

14-6704/B 

$25.68 

Returned value 

00146704B 

000002568 

Note that a decimal point is an EBCDIC 
special character and as such is removed. 

There are no exceptional conditions with 
DEEDIT. 

Chapter 6.1. The Field Edit Built-In Function (BIF DEEDIT) Command 235 





Part 7. Appendixes 

Appendix A. EXEC Interface Block 

Appendix B. Translation Tables for the 2980 

Appendix c. CICS/VS Macros and Equivalent Commands 

Appendix D. Sample Programs (Assembler language) 

Appendix E. Sample Programs (COBOL) 

Appendix F. Sample Programs (PL/I) 

Appendix G. DTP Sample Programs (Assembler Language) 

Part 7. Appendixes 237 





Appendix A. EXEC Interface Block 

This appendix describes the fields of the 
EXEC interface block (EIB) referred to in 
"Chapter 1.6. Access to System 
Information" on page 29. An application 
program can access all of the fields in 
the EIB of the associated task by name 
but must not change the contents of any 
of them. 

For each field, the contents and format 
(for each application programming 
language) are given. All fields contain 
zeros in the absence of meaningful 
information. Fields are listed in 
alphabetical order. 

EIB FIELDS 

EIBAID 
contains the attention identifier 
(AID) ass~ciated with the last 
terminal control or basic mapping 
support (BMS) input operation from a 
display device such as the 3270. 

ASM: Cll 
COBOL: PIC XCI) 
PL/I: CHAR(!) 

EIBATT 
indicates that the RU contains 
attach header data (X'FF'). 

ASM: CLI 
COBOL: PIC XC!) 
PL/I: CHAR(!) 

EIBCALEN 
contains the length of the 
communication area that has been 
passed to the application program 
from the last program, using the 
COMMAREA and LENGTH options. If no 
communication area is passed, this 
field contains zeros. 

ASM: H 
COBOL: PIC S9(4) COMP 
PL/I: FIXED BIN( 15) 

EIBCPOSN 
contains the cursor address 
(position) associated with the last 
terminal control or basic mapping 
support (BMS) input operation from a 
display device such as the 3270. 

ASM: H 
COBOL: PIC S9(4) COMP 
PL/I: FIXED BIN(lS) 

EIBDATE 
conta ins the date the task is 
started (this field is updated by 
the ASKTIr-1E command). The date is 
in packed decimal form (OOYYDDD+). 

EIBDS 

ASM: PL4 
COBOL: PIC S9(7) COMP-3 
PL/I: FIXED DEC(7,0) 

contains the symbolic identifier of 
the last data set referred to in a 
file control request. 

ASM: CLS 
COBOL: PIC XeS) 
Pl/I: CHARCS) 

EIBEOC 
indicates that an end-of-chain 
indicator appears in the RU just 
received (X'FF'). 

ASM: Cll 
COBOL: PIC XC!) 
PL/I: CHAR(l) 

EIBFttH 

EIBFN 

indicates that the user data just 
received or retrieved contains an 
FMH (X' FF' ) . 

ASM: Cll 
COBOL: PIC XCI) 
PL/I: CHAR(l) 

contains a code that identifies the 
last CICS/VS command to be issued by 
the task (updated when the requested 
function has been completed). 
Detai Is of the codes used in thi s 
field are shown in the first table 
later in the appendix. 

ASM: Cl2 
COBOL: PIC X(2) 
Pl/I: CHAR(2) 

EIBFREE 
indicates that the application 
program cannot continue using the 
facility. The application program 
should either free the facility or 
should terminate so that the 
facility is freed by CICS/VS 
(X'FF'). 

ASM: Cll 
COBOL: PIC XC!) 
PL/I: CHAR(!) 

EIBRCODE 
contains the CICS/VS response code 
returned after the function 
requested by the last CICS/VS 
command to be issued by the task has 
been completed. Almost all of -the 
information in this field can be 
used within application programs by 
the HANDLE CONDITION command. 

Appendix A. EXEC Interface Block 239 



Details of the codes used in this 
field are shown in the second table 
later in the appendix. 

ASM: Cl6 
COBOL: PIC X(6) 
Pl/I: CHAR(6) 

EIBRECV 
indicates that the application 
program is to continue receiving 
data from the facility by executing 
RECEIVE commands (X'FF'). 

ASM: ClI 
COBOL: PIC X(l) 
Pl/I: CHAR(!) 

EIBREQID 
contains the request identifier 
assigned to an interval control 
command by CICS/VS; this field is 
not used when a request identifier 
is specified in the application 
program. 

ASM: Cl8 
COBOL: PIC XeS) 
Pl/!: CHAR(S) 

EIBRSRCE 
contains the symbolic identifier of 
the resou rce be i ng accessed by the 
latest executed command. For file 
control commands this will be the 
name of the data set. For transient 
data and temporary storage commands 
it will be the name of the queue. 
For terminal control commands it 
will be the name of the terminal or 
logical unit. Identifiers less than 
eight characters in length are 
padded on the right with blanks. 

ASM: ClS 
COBOL: PIC XeS) 
Pl/I: CHAR(S) 

EIBSYNC 
indicates that the application 
program must take a sync point or 
terminate. Before either is done, 

240 CICS/VS APRM (Cl) 

the application program must ensure 
that any other facilities, owned by 
it, are put into the send state, or 
are freed (X'FF'). 

ASM: ClI 
COBOL: PIC X(l) 
Pl/I: CHAR(!) 

EIBTASKN 
conta ins the task number assi gned to 
the task by CICS/V5. This number 
will appear in trace table entries 
generated while the task is in 
control. 

ASM: Pl4 
COBOL: PIC 59(7) COMP-3 
Pl/I: FIXED DEC(7,0) 

EIBTlttE 
contains the time at which the task 
is started (this field is updated by 
the ASKTIME command). The time is 
in packed decimal form (OHHMM55+). 

A5M: Pl4 
COBOL: PIC 59(7) COMP-3 
Pl/I: FIXED DEC(7,O) 

EIBTRMID 
contains the symbolic terminal 
identifier of the principal 
facility (terminal or logical unit) 
associated with the task. 

ASM: CL4 
COBOL: PIC X(4) 
Pl/I: CHAR(4) 

EIBTRNID 
contains the symbolic transaction 
identifier of the task. 

A5M: Cl4 
COBOL: PIC X(4) 
Pl/I: CHAR(4) 



Code Command Code Command 

02 02 ADDRESS OC 02 GETMAIN 
02 04 HANDLE CONDITION OC 04 FREEr1AIN 
02 06 HANDLE AID OE 02 LINK 
02 08 ASSIGN OE 04 XCTL 
02 OA IGNORE CONDITION OE 06 LOAD 
04 02 RECEIVE OE 08 RETURN 
04 04 SEND OE OA RELEASE 
04 06 CONVERSE OE OC ABEND 
04 08 ISSUE EODS OE OE HANDLE ABEND 
04 OA ISSUE COpy 10 02 ASKTIME 
04 OC WAIT TERMINAL 10 04 DELAY 
04 OE ISSUE LOAD 10 06 POST 
04 10 WAIT SIGNAL 10 08 START 
04 12 ISSUE RESET 10 OA RETRIEVE 
04 14 ISSUE DISCONNECT 10 OC CANCEL 
04 16 ISSUE ENDOUTPUT 12 02 WAIT EVENT 
04 18 ISSUE ERASEAUP 12 04 EHQ 
04 lA ISSlIE EHDFIlE 12 06 DEQ 
Oft IC ISSUE PRINT 12 08 SUSPEND 
04 IE ISSUE SIGNAL 14 02 JOURNAL 
04 20 ALLOCATE 14 04 WAIT JOURNAL 
04 22 FREE 16 02 SYNCPOINT 
04 24 POINT 18 02 RECEIVE MAP 
04 26 BUILD ATTACH 18 04 SEND MAP 
04 28 EXTRACT ATTACH 18 06 SEND TEXT 
04 2A EXTRACT TCT 18 08 SEND PAGE 
06 02 READ 18 OA PURGE MESSAGE 
06 04 WRITE 18 OC ROUTE 
06 06 RB.JRITE lA 02 TRACE ON/OFF 
06 08 DELETE lA 0(. ENTER 
06 OA UNLOCK 1C 02 DUMP 
06 OC STARTBR 1E 02 ISSUE ADD 
06 OE READNEXT 1E 04 ISSUE ERASE 
06 10 READPREV lE 06 ISSUE REPLACE 
06 12 ENDBR 1E 08 ISSUE ABORT 
06 14 RESETBR lE OA ISSUE QUERY 
08 02 WRITEQ TD 1E OC ISSUE END 
08 04 READQ TD IE OE ISSUE RECEIVE 
08 06 DELETEQ TD IE 10 ISSUE NOTE 
OA 02 WRITEQ TS lE 12 ISSUE WAIT 
OA 04 READQ T5 IE 14 ISSUE SEND 
OA 06 DELETEQ TS 20 02 BIF DEEDIT 

EIBFN Codes 

) 

Appendix A. EXEC Interface Block 241 



EIBFH 
Byte 0 Byte 

02 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 0 
04 1 
04 1 
04 3 

---~: 3 
0 

06 0 
06 0 
06 0 
06 0 
06 0 
06 0 
06 0 
06 0 
06 0 
06 0 
06 0 
06 0 

-96 0 
08 0 
08 0 
08 0 
08 0 
08 0 
08 0 
08 0 
08 0 
08 0 
OA 0 
OA 0 
OA 0 
OA 0 
OA 0 

EIBRCODE Codes 

Notes: 

EIBRCODE 
Bit(s) 

EO 
04 
10 
Cl 
C2 
El 
E3 
E4 
E5 
E6 
E7 
E8 
EA 
EB 
DO 
D2 
D3 
D4 
D5 
20 
40 
F6 
F7 
01 
02 
04 
08 
OC 
OF 
80 
81 
82 
83 
84 
DO 
Dl 
E1 
01 
02 
04 
08 
10 
CO 
DO 
D1 
E1 
01 
02 
04 
08 
20 

Meaning 

INVREQ 
EOF 
EODS 
EOF 
ENDINPT 
lENGERR 
WRBRK 
ROATT 
SIGNAL 
TERMIDERR 
NOPASSBKRD 
NOPASSBKWR 
IGREQCD 
CBIDERR 
SYSIDERR3 
SESSIONERR3 
SYSBUSY 
SESSBUSY 
NOTAllOC 
EOC 
INBFMH 
NOS TART 
NONVAl 
DSIDERR 
ILLOGIC! 
SEGIDERR 
INVREQ 
NOTOPEN 
ENDFIlE 
IOERRI 
NOTFND 
DUPREC 
NOSPACE 
DUPKEY 
SYSIDERR3 
ISCINVREQ 
lENGERR 
QZERO 
QIDERR 
IOERR 
NOTOPEN 
NOSPACE 
QBUSY 
SYSIDERR3 
ISCINVREQ 
lENGERR 
ITEMERR 
QIDERR 
IOERR 
NOSPACE 
INVREQ 

1. When this condition occurs during 
File Control operations, further 
~nformation is provided in field 
EIBRCODE, as follows: 

bytas 1-4 = DAM response (OS/VS only) 
bytes 1-2 = ISAM response 
byte 1 = VSAM return code 
byte 2 = VSAM error code 

2(.2 CICS/VS AF'RM (CL) 

EIBFN EIBRCODE 
Byte 0 Byte Bit(s) Meaning 

OA 0 DO SYSIDERR 
OA 0 Dl ISCINVREQ 
OA 0 El lENGERR 
OC 0 E2 NOSTG 
OE 0 01 PGMIDERR 
OE 0 EO INVREQ 
10 0 01 ENDDATA 
10 0 04 IOERR 
10 0 11 TRANSIDERR 
10 0 12 TERMIDERR 
10 0 14 INVTSREQ 
10 0 20 EXPIRED 
10 0 81 NOTFND 
10 0 DO SYSIDERR 
10 0 Dl ISCINVREQ 
10 0 El lENGERR 
10 0 E9 ENVDEFERR 
10 0 FF INVREQ 
12 0 32 ENQBUSY 
14 0 01 JIDERR 
14 0 02 INVREQ 
14 0 05 NOTOPEN 
14 0 06 lENGERR 
14 0 07 IOERR 
14 0 09 NOJBUFSP 
18 0 01 INVREQ 
18 0 02 RETPAGE 
18 0 04 MAPFAll 
18 0 08 INV~lPSZ2 
18 0 20 INVERRTERM 
18 0 40 RTESOME 
18 0 80 RTEFAIl 
18 0 E3 WRBRK 
18 0 E4 RDATT 
18 1 10 INVlDC 
18 1 40 IGREQCD 
18 1 80 TSIOERR 
18 2 01 OVERFLOW 
18 2 04 EODS 
18 2 08 EOC 
18 2 10 IGREQID 
IE 0 04 DSSTAT 
IE 0 08 FUNCERR 
IE 0 OC SElNERR 
IE 0 10 UNEXPIN 
IE 0 El LENGERR 
IE 1 11 EODS 
IE 1 15 NODATARECD 
IE 1 2B IGREQCD 
IE 2 20 EOC 

2. When this condition occurs during BMS 
operations, byte 3 of field EIBRCODE 
contains the terminal code. Sae 
"Te'~minal Code Table" in "Chapter 
3.3. Basic Mapping Support (BMS)." 
" 

3. When this condition occurs, further 
information is provided in byte 1 of 
EIBRCODE, as follows: 

04 Name not that of system entry. 
08 link out of service. 
OC Name unknown to CICS/VS. 



Appendix B. Translation Tables for the 2980 

This appendix contains translation 
tables for the following components of 
the IBM 2980 General Banking Terminal 
System: 

• 2980 Teller Station Modell 
(Figure 22 on page 244) 

• 2980 Administrative Station Model 2 
(Figure 23 on page 245) 

• 2980 Teller Station Model 4 
(Figure 24 on page 246) 

The line codes and CPU codes listed in 
these tables are unique to CICS/VS and 
are represented as standard EBCDIC 
characters. 

Appendix B. Translation Tables for the 2980 243 



KEY ENGRAVING LINE CPU CODE HLL 
No. Top(LC) Front(UC) Code Numeric(LC) Alpha(UC) 10 

0 MSG ACK 1 Fl AA Fl 1 
1 SEND AGAIN Q 08 09 08 )' 

2 CORR A Cl C3 Cl 
3 HOLO OVROE 2 F2 C8 F2 
4 VOID Z E9 E5 E9 
5 ACCT INQ W E6 08 E6 
6 ACCT TFR S E2 AB E2 2 
7 CIF 3 F3 AC F3 3 
8 MISC X E7 AD E7 4 
9 CLSO ACCT E C5 E7 C5 

10 NO BOOK 0 C4 AE C4 5 
11 MORT LOAN 4 F4 AF F4 6 
12 C C3 BO C3 7 
13 NEW ACCT R 09 81 09 8 
14 BOOK BAl F C6 B2 C6 9 
15 INST lOAN 5 F5 B3 F5 10 
16 SPEC TRAN V E5 B4 E5 11 
17 SAV BOND T E3 B5 E3 12 
18 SAV G C7 B6 C7 13 
19 XMAS CLUB 6 F6 B7 F6 14 
20 • B C2 4B C2 
21 OOA y E8 B8 Ea 15 
22 .Q.Q H C8 B9 C8 16 
23 MON ORO 7 F7 BA F7 17 
24 0 N 05 FO 05 
25 7 U E4 F7 E4 
26 4 J 01 F4 01 
27 CSHR CHK 8 F8 B8 F8 18 
28 1 M 04 Fl 04 
29 8 I C9 F8 C9 
30 5 K D2 F5 02 
31 CASH RECO 9 F9 BC F9 19 
32 2 , 68 F2 6B 
33 9 0 06 F9 06 
34 6 l D3 F6 03 
35 UTIL BILL 0 FO E4 FO 
36 3 • 4B F3 4B 
37 DEP + P 07 4E D7 
38 WITH - $ 5B 60 58 
39 FEES - 60 C6 60 
40 TOTl / 61 E3 61 
41 CASH IN * 5C BO 5C 20 
42 CASH CHK # 78 BE 7B 21 
43 VAL & 50 STATION 10 50 
44 TAB 05 05 05 TA8CHAR 
45 ALPHA ENTRY 36 
46 NUM ENTRY 06 
47 SEND 26-ETB 

03-ETX 
48 RETURN 15 15 15 JRNLCR 
49 NUM ENTRY 06 
50 SPACE 40 40 40 
58 MSGlIGHT 17 17 17 MSGlITE 

F~gure 22. 2980-1 Character Set/Translate Table 

244 CICS/VS APRM (Cl) 



KEY ENGRAVING lINE CPU COOE Hll 
No. Top(lC) Code Numerie(lC) Alpha(UC) 10 

0 = 1 F1 F1 (1) 7E (=) 
1 Q 08 98 (q) 08 (Q) 
2 A C1 81 (a) C1 (A) 
3 2 F2 F2 (2) 4C «) 
4 Z E9 A9 (z) E9 (Z) 
5 W E6 A6 (w) E6 (W) 
6 S E2 A2 (s) E2 (S) 
7 j 3 F3 F3 (3) 5E ( j ) 

8 X E7 A7 (x) E7 (X) 
9 E C5 85 (e) C5 (E) 

10 D C4 84 (d) C4 (0) 
11 : 4 F4 F4 (4) 7A ( : ) 
12 C C3 83 (e) C3 (C) 
13 R 09 99 ( r) 09 (R) 
14 F C6 86 (f) C6 (F) 
15 ~ 5 F5 F5 (5) 6C (~) 

16 V E5 A5 (v) E5 (V) 
17 T E3 A3 (t) E3 (T) 
18 G C7 87 (g) C7 (G) 
19 , 6 F6 F6 (6) 70 ( , ) 
20 B C2 82 (b) C2 (B) 
21 Y E8 A8 (y) E8 (V) 
22 H C8 88 ( h) C8 (H) 
23 > 7 F7 F7 (7) 6E (» 
24 N 05 95 (n) 05 (N) 
25 U E4 A4 (u) E4 (U) 
26 J 01 91 (j) 01 (J) 
27 * 8 F8 F8 (8) 5C 00 
28 M 04 94 (m) 04 (M) 
29 I C9 89 ( i ) C9 (I) 
30 K 02 92 (k) 02 (K) 
31 ( 9 F9 F9 (9) 4D ( ( ) 
32 I , 6B 6B ( , ) 4F ct) 
33 0 06 96 (0) 06 (0) 
34 l 03 93 (1) 03 (l) 
35 ) 0 FO FO (0) 50 ( ) ) 
36 -. 4B 4B ( . ) 5F (-.) 

37 P 07 97 (p) 08 (P) 
38 ! $ 5B 58 ($) 5A ( ! ) 
39 - 60 60 (-) 60 (-) 
40 ? / 61 61 (/) 6F ( ? ) 
41 e 4) 5C 70 (oD 4A (e) 
42 " # 78 7B ( #) 7F (n) 

43 + l 50 50 (l) 4E (+) 
44 TAB 05 05 05 
45 lOCK 36 36 36 
46 SHIFT 06 06 06 
47 BACKSPACE 16 10 16 BCKSPACE 
48 RETURN 15 15 15 
49 SHIFT 06 06 06 
50 (SPACE) 40 40 40 
53 SENO 26-ETB 

03-ETX 

Figure 23. 2980~2 Char~eter Set/Translate Table 

Appendix 8. Translation Tables for the 2980 245 



KEY ENGRAVING LINE CPU CODE HLL 
No. Top(LC) Front(UC) Code Numeric('LC) AlphaCUC) 10 

0 CK $ - 09 BC 60 19 
1 Q 03 03 08 
2 A C1 C1 Cl 
3 CK # 0 C9 B7 C9 14 
4 Z E9 4B E9 
5 W E6 5C E6 
6 S E2 5B E2 
7 IMD 2 1 58 4F F1 
8 X E7 AE E7 5 
9 E C5 C5 C5 

10 0 C4 6F C4 
11 IMO 1 2 4B BF F2 
12 C C3 C3 C3 
13 R 60 60 09 
14 F C6 C6 C6 
15 COOE 3 E8 8B F3 
16 V E5 AO E5 22 
17 T E3 Al E3 23 
18 G C7 C7 C7 
19 AMT 4 5C BE F4 21 
20 8 C2 C2 C2 
21 Y 61 61 E8 
22 U 07 07 C8 
23 DB 5 08 B2 F5 9 
24 N 05 05 05 
25 U E4 AF E4 6 
26 J 01 01 01 
27 ACCT # 6 C8 7B F6 
28 N 04 E7 04 
29 I 06 06 C9 
30 K 02 02 02 
31 7 7 F7 F7 F7 
32 . . . ... 6B BLANK 68 
33 4 0 F4 F4 06 
3(t 1 L F1 F1 03 
35 8 8 F8 F8 F8 
36 0 FO FO 4B 
37 5 P F5 F5 07 
38 2 $ F2 F2 5B 
39 9 9 F9 F9 F9 
40 ... . .. 7B BO 7B 7 
41 6 * F6 F6 5C 
42 3 # F3 F3 7B 
43 VAL & 50 50 50 
44 TAB 05 05 05 
45 ALPHA 36 
46 NUMERIC 06 
47 SENO 26-ETB 

03-ETX 
48 RETURN 15 15 15 
(t 9 NUMERIC 06 
50 SPACE 40 40 40 
51 FEEO OPEN 04 OPENCH 

Figure 24. 2980-4 Character Set/Translate Table 

246 CI CS/VS APRM (CL) 



Appendix C. CICSNS Macros and Equivalent Commands 

This appendix provides a list of the 
macro instructions available to the 
CICS/VS application programmer, and 
shows for each macro instruction the 
command that will perform the same 
function. Command options may have 
different defaults and/or functions from 
macro-level operands having similar 
names. Some CICS/VS macros do not have 
an equivalent command; for example, there 
is only one CICS/VS built-in function 
that can be invoked by a command. 

Although the TYPE=CHECK macro performs a 
similar function to the HANDLE CONDITION 
command, it is used in a completely 
different way. 

Macro 

DFHBFTA 

DFHBIF 
TYPE=DEEDIT 

DFHBHS 
TYPE=CHECK 

Command 

BIF DEEDIT 

HANDLE CONDITION 

RECEIVE MAP 

RECEIVE MAP FROM 

SEND TEXT 

SEND MAP 

SEND MAP ACCUM 

SEND PAGE 

PURGE MESSAGE 

SEND {MAPITEXT} SET 

ROUTE 

TYPE=TRANSACTION 

DFHDI 
TYPE=ABORT 

TYPE=ADD 

TYPE=CHECK 

TYPE=END 

TYPE=ERASE 

TYPE=NOTE 

TYPE=QUERY 

TYPE=RECEIVE 

TYPE=REPLACE 

TYPE=SEND 

TYPE=WAIT 

DFHFC 
TYPE=CHECK 

TYPE=DELETE 

CDL/I types) 

TYPE=ESETL 

TYPE=GET 

TYPE=GET, 
TYPOPER=UPDATE 

TYPE=GETAREA 

TYPE=GETNEXT 

TYPE=GETPREV 

TYPE=PUT, 

TYPE=IN 

TYPE=MAP 

TYPE=OUT 

TYPE=OUT,MAP= 

TYPE=PAGEBlD 

TYPE=PAGEOUT 

TYPE=PURGE 

TYPE=RETURN 

TYPE=ROUTE 

TYPE=STORE 

TYPE=TEXTBlD 

SEND {MAPITEXTl PAGING TYPOPER=DELETE 

DFHDC 
TYPE=CICS 

TYPE=COMPlETE 

TYPE=PARTIAL 
LIST=PROGRAM 

LIST=TERMINAL 

lIST=TRANSACTION 

LIST=SEGMENT 

SEND TEXT ACCUM TYPE=PUT, 
TYPOPER=NEWREC 

TYPE=PUT, 
DUMP TABLES TYPOPER=UPDATE 

DUMP COMPLETE TYPE=RElEASE 

DUMP PROGRAM 

DUMP TERMINAL 

DUMP STORAGE 

DUMP FROM 

TYPE=RESETL 

TYPE=SETL 

DFHIC 
TYPE=CANCEL 

DUMP [TASK] 

ISSUE ABORT 

ISSUE ADD 

HANDLE CONDITION 

ISSUE END 

ISSUE ERASE 

ISSUE NOTE 

ISSUE QUERY 

ISSUE RECEIVE 

ISSUE REPLACE 

ISSUE SEND 

ISSUE WAIT 

HANDLE CONDITION 

DELETE RIDFLD 

ENDBR 

READ 

READ UPDATE 

READNEXT 

READPREV 

DELETE 

WRITE 

REWRITE 

UNLOCK 

RESETBR 

STARTBR 

CANCEL 

Appendix C. CICS/VS Macros and Equivalent Commands 247 



TYPE=CHECK 

TYPE=GET 

TYPE=GETIME 

TYPE=INITIATE 

TYPE=POST 

TYPE=PUT 

TYPE=RETRY 

TYPE=WAIT 

DFHJC 
TYPE=CHECK 

TYPE=GETJCA 

TYPE=PUT 

TYPE=WAIT 

TYPE=WRITE 

DFHKC 
TYPE=ATTACH 

TYPE=CHAP 

TYPE=DEQ 

TYPE=ENQ 

TYPE=NOPURGE 

TYPE=PURGE 

TYPE=WAIT 

TYPE:::WAIT, 
ECADDR 

DFHMDF 

DFHt1DI 

DFHMSD 

DFHPC 
TYPE=ABEND 

TYPE=CHECK 

TYPE=COBADDR 

TYPE=DELETE 

TYPE=LINK 

TYPE=LOAD 

TYPE=RESETXIT 

TYPE=RETURN 

TYPE=SETXIT 

HANDLE CONDITION 

RETRIEVE 

ASKTIME 

START 

POST 

START FROM 

RETRI EVE 

DELAY 

HANDLE CONDITION 

JOURNAL WAIT 

WAIT JOURNAL 

JOURNAL 

DEQ 

ENQ 

SUSPEND 

WAIT EVENT 

ABEND 

HANDLE CONDITION 

RELEASE 

LINK 

LOAD 

HANDLE ABEND RE~ET 

RETURN 

HANDLE ABEND 

248 CICS/VS APRM eCL) 

TYPE=XCTL 

DFHSC 
TYPE=FREEMAIN 

TYPE=GETMAIN 

DFHSP 
TYPE=USER 

TYPE=ROLLBACK 

DFHTC 
TYPE=CBUFF 

TYPE=CONVERSE 

TYPE=COPY 

TYPE=DISCONNECT 

TYPE=EODS 

TYPE=ERASEAUP 

TYPE=GET 

TYPE=PAGE 

TYPE=PASSBK 

TYPE=PRINT 

TYPE=PROGRAM 

TYPE=PUT 

TYPE=READ 

TYPE=READB 

TYPE=READL 

TYPE=RESET 

TYPE=SIGNAL 

TYPE=WAIT 

TYPE=WRITE 

TYPE=WRITEL 

DFHTD 
TYPE=CHECK 

TYPE=FEOV 

TYPE=GET 

TYPE=PURGE 

TYPE=PUT 

DFHTR 
TYPE=ENTRY 

XCTL 

FREEMAIN 

GETMAIN 

SYNCPOINT 

SYNCPOINT ROLLBACK 

SEND CBUFF 

CONVERSE 

ISSUE COPY 

ISSUE DISCONNECT 

ISSUE EODS 

ISSUE ERASEAUP 

RECEIVE 

SEND PASSBK 

ISSUE PRINT 

ISSUE LOAD 

SEND WAIT 

RECEIVE (WAIT assumed) 

RECEIVE BUFFER 

RECEIVE LEAVEKB 

ISSUE RESET 

WAIT SIGNAL 

WAIT TERMINAL 

SEND 

SEND LEAVEKB 

HANDLE CONDITION 

READQ TO 

DEL·ETEQ TO 

WRITEQ TO 

ENTER 



) 

TYPE=OFF 

TYPE=ON 

DFHTS 
TYPE=CHECK 

TYPE=GETl 

TYPE=GETQ 

TYPE=PURGE 

TRACE OFF 

TRACE ON 

HANDLE CONDITION 

READQ TS 

READQ TS 

DElETEQ TS 

TYPE=PUTl 

TYPE=PUTQ 

TYPE=RElEASE 

WRITEQ TS 

WRITEQ TS 

DElETEQ TS 

1 Because single units of information 
cannot be handled by the command-level 
interface, data stored by a DFHTS 
TYPE=PUT macro cannot be retrieved by a 
READQ TS command. Conversely, data 
stored by a WRITEQ TS command cannot be 
retrieved by a DFHTS TYPE=GET macro. 

Appendix C. CICS/VS Macros and Equivalent Commands 249 





Appendix D. Sample Programs (Assembler Language) 

This appendix consists of sample CICS/VS 
application programs written in the 
assembler language. The BMS maps and 
file record descriptions used by the 
sample programs are included after the 
sample programs. The maps are unaligned. 
Users of aligned maps should protect the 
alignment of their map DSECTS. 

The sample maps'include examples of how 
the COLOR, EXTATT, and HILIGHT attributes 
are specified in the map definition 
macros. However, due to production 
limitations, the associated screen 
layouts do not show the effects of these 
attributes; they show how the maps would 
be displayed on, for example, a 3277. 

Specifying EXTATT=MAPONLY enables 
attributes to be added without changing 
the application program. Any attribute, 
that specifies a facility not available 
at the terminal, will be ignored. 

The sample programs illustrate basic 
applications that can serve as a 
framework for the installation's first 
programs. Each program has a description 
and program notes. The program listings 
are of source code. Humbered coding lines 
correspond to the numbered program notes. 

All transactions are initiated by the 
terminal operator entering a 
four-character transaction code. (An 
account number must also be entered, 
except in the case of the operator 
instruction sample program.) 

There are six sample programs, as 
follollJs: 

• Operator Instruction Sample Program 

• Update Sample Program 

• 
• 
• 

• 

Browse Sample Program 

Order Entry Sample Program 

Order Entry Queue Print Sample 
Program 

Report Sample Program 

All the sample programs operate on a 
sample VSAM or ISAM file which must first 
be created using a program provided on 
the library. The fi Ie consi sts of 
records containing details of individual 
accounts. The programs are used to 
display, alter, update, or browse through 
the entries. For information on how to 
create the sample VSAM or ISAM file refer 
to the CICS/VS System Programmer's Gyide. 

All the sample programs are for use with 
the IBM 3270 Information Display System. 

EXECUTING THE SAMPLE PROGRAMS 

Once CICS/VS is running, 3270 users can 
enter the following transaction id's: 

AMNU 

AINQ 
AADD 
AUPD 
ABRW 
AORD 
ACOM 
AREP 

Display other transaction id's 
(except AORD, ACOM, AREP) 
Display an entry. 
Create a new entry. 
Update an entry. 
Browse through entries. 
Order entry. 
Print order entry queue. 
Display a report (entries not 
greater than $50). 

Note: The transaction ACOM should be used 
once in the morning, after which it will 
invoke itself at the printer in one hour 
(unless the time is 1400 hrs or after). 

Appendix D. Sample Programs (Assembler Language) 251 



OPERATOR INSTRUCTION SAMPLE PROGRAM 
(ASSEMBLER LANGUAGE) 

DESCRIPTION 

To begin 3270 operations, a terminal 
operator must enter a transaction code of 
AMHU. Whenever the screen is cleared 
this transaction code must be reentered, 
as no data is accepted from an 
unformatted screen. 

SOURCE LISTING 

DFHEISTG DSECT 
XDFHAMNU CSECT 

The instruction program displays map 
XDFHAMA containing operator 
instructions. This map lists the 
ASSEMBLER LANGUAGE CICS/VS sample 
applications and the transaction codes 
(with the exception of AORD and ACOM 
which are entered onto a clear screen), 
and provides space for entering the code 
and an account number. 

1 EXEC CICS SEND MAPC'XDFHAMA') MAPONlY ERASE 
2 EXEC CICS RETURN 

END 

PROGRAM NOTES 

1. The BMS command erases the screen and displays map XDFHAMA. 

2. RETURN ends the program. 

252 CICS/VS APRM (CL) 



UPDATE SAMPLE PROGRAM (ASSEMBLER 
LANGUAGE) 

edits the fields. The sample program 
only suggests the type of editing that 
might be done. The user should insert 
editing steps needed to ensure valid 
changes to the file. Those fields which 
have been changed are moved to the file 
area. Fields are moved to the transient 
data area. The file record is then 
either added or updated, depending on the 
function required of the program. Either 
the message 'FILE UPDATED' or 'RECORD 
ADDED' is inserted in XDFHAMA and the map 
is transmitted to the terminal. 

DESCRIPTION 

The update sample program comb1nes the 
facilities of file update, file add and 
file inquiry. 

The update program maps in the account 
number and reads the file record. The 
required fields from the file area, and a 
title depending on the invoking 
transaction-id, are moved to the map 
area. In the case of the file add 
function being required, the number 
entered onto map XDFHAMA, and a title are 
moved to the map area of XDFHAMB. Then 
XDFHAMB, containing the record fields, is 
displayed at the terminal. If the 
function of this transaction is file 
inquiry, then the program ends here. 

This program demonstrates a 
pseudo-conversational programming 
technique, where control is returned to 
CICS/VS together with a transaction-id 
whenever a response is requested from the 
operator. Associated with each return of 
control to CICS/VS is a storage area 
containing details of the previous 
invocation of this transaction. 

The update program then reads and maps in 
the record to be added or updated, and 

SOURCE LISTING 

DFHEISTG DSECT 
COpy 
COpy 

RETREG EQU 
R06 EQU 
R07 EQU 
ROa EQU 
R09 EQU 
FILEDS DS 

COpy 
COMPTR EQU 

COpy 
COpy 

MESSAGES DS 
KEYNUM OS 
COMLEN DS 
XDFHAALL CSECT 

CLC 
BE 
CLC 

1 BE 
CLC 
SHE 

OKTRANID DS 
2 LH 

LTR 
BNZ 

3 EXEC 
4 EXEC 

OC 
BZ 

5 MVC 
XC 
CLC 
BNE 

6 MVC 
MVC 
MVI 

7 MVC 
MVC 

8 MVI 

XDFHAMA 
XDFHAMB 
2 
6 
7 
8 
9 
OC 
FILEA 
4 
LOGA 
DFHBMSCA 
CL39 
CL9 
lH 

MAP A 
MAP B 
SET UP REGISTER USAGE 

RECORD DESCRIPTION FOR FILEA 
POINTER TO COMMAREA 
LOG FILE RECORD DESCRIPTION 
BMS ATTRIBUTE BYTES 
TEMP STORE FOR MESSAGES 
TEMP STORE FOR FILE RECORD KEY 
LENGTH OF COMMAREA 

EIBTRKID,=CLCL'EIBTRNID)'AINQ' IS INVOKING T-ID 'AINQ'? 
OKTRANID OK HERE, SO CONTINUE 
EIBTRNID,=CL(L'EIBTRNID)'AUPD' IS IT 'AUPD'? 
OKTRANID OK HERE, SO CONTINUE 
EIBTRNID,=CL(L'EIBTRNID)'AADD' FINALLY, IS IT 'AADD'? 
ERRORS IF NOT, GO TO ERROR ROUTINE 
OH CORRECT INVOKING TRANSACTION 10 HERE 
COMPTR,EIBCALEN HAS A COMMAREA BEEN RETURNED? 
COMPTR,COMPTR 
COMRETND ..• YES, SO GO GET MAP 

CICS HANDLE CONDITION MAPFAIL(AMNU) ERROR(ERRORS) 
CICS RECEIVE MAPC'XDFHAMA') 

KEYI,KEYI IS KEYI HEX ZEROS? 
NOT FOUND .. YES, SO TREAT AS NOT FOUND 
KEYNUM,KEYI •. NO, SO SAVE KEY TO FILE 
XDFHAMBO(XDFHAMBE-XDFHAMBO),XDFHAMBO CLEAR MAP 
EIBTRNID,=CL(L'EIBTRNID)'AADD' IS INVOKING T-ID 'AADD'? 
INQUPD .. NO, SO GO TEST FOR OTHER IO'S 
TITLEO,=CLCl'TITlEO)'FIlE ADD' SET UP TITLE 
MSG30,=CLCl'MSG30)'ENTER DATA AND PRESS ENTER KEY' 
NUMBA,DFHBMFSE SET MDT ON NUMBER 
NUMB,KEYI PUT KEY IN COMMAREA 
NUMBO,KEYI ... AND ON MAP ENTRY 
AMOUNTA,C'J' NUMERIC AND MDT ATTRIBUTE BYTE 

Appendix D. Sample Programs (Assembler Language) 253 



INQUPD 
9 

10 
11 

12 

MVC AMOUNTO,=C'$OOOO.OO' PROMPTING FIELD FOR MAP 
MVC COMLEN,=H'7' SET UP LENGTH OF COMMAREA TO BE RTND 
BAL RETREG,MAPSEND GQ SEND MAP 
B crCSCONT GO RETURN CONTROL TO CICS 
OS OH HERE INVOKING T-ID IS AINQ, OR AUPD 
EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND) 
EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(KEYNUM) 
CLI STAT,X'FF' IS RECORD CODED AS NOT FOUND? 
BE NOT FOUND .. YES, SO BRANCH TO NOTFOUND ROUTINE 
CLC EIBTRNID,=CL(L'EIBTRNID)'AINQ' IS INVOKING T-ID AINQ? 
BNE UPDTSECT .. NO, SO BRANCH TO AUPD ROUTINE 
MVC TITLEO,=CL(L'TITLEO)'FILE INQUIRY' SET UP TITLE ON MAP 
MVC MSG30,=CL(L'MSG30)'PRESS ENTER TO CONTINUE' SET UP TITLE 
BAL RETREG,MAPBUILD GO BUILD MAP 
BAL RETREG,MAPSEND GO SEND MAP 

13 EXEC CICS RETURN TRANSID('AMNU') 
UPDTSECT DS OH UPDATE ROUTINE 

14 MVC TITLEO,=CLCL'TITLEO)'FIlE UPDATE' SET UP MAP TITLE 
MVC MSG30,=CLCL'MSG30)'CHANGE FIELDS AND PRESS ENTER' 

15 MVC COMLEN,=H'80' STORE LENGTH OF COMMAREA 
BAL RETREG,MAPBUILD GO BUILD MAP 
BAL RETREG,MAPSEND GO SEND MAP 
B CICSCONT GO RETURN CONTROL TO CICS 

*********************************************************************** 
* * * HERE A COMMAREA HAS BEEN RETURNED, AND IS THEREFORE SECOND * * INVOCATION OF THIS PROGRAM * 
* * *********************************************************************** 
COMRETND DS OH HERE COMMAREA HAS BEEN RETURNED 

L COMPTR,DFHEICAP GET ADRESSABILITY TO COMMAREA 
16 EXEC CICS HANDLE CONDITION MAPFAILCNOTMODF) ERRORCERRORS) * 

DUPREC(DUPREC) NOTFND(NOTFOUND) 
17 EXEC CICS RECEIVE MAP('XDFHAMB') 

CLC EIBTRNID,=CL(L'EIBTRNID)'AUPD' IS INVOKING T-ID AUPD? 
BNE SECADD .. NO, SO BRANCH TO 2ND ADD ROUTINE 

18 EXEC CICS READ UPDATE DATASET('FILEA') INTO(FILEA) * 
RIDFLD(NUMB-FILEDS(COMPTR» 

19 CLC FILEREC,FILEREC-FILEDS(COMPTR) RECORD CHANGED ON FILE? 
BE OKREC .. NO, SO BRANCH AND CONTINUE 

20 MVC MSGIO,=CL(L'MSGI0)'FILE ALREADY UPDATED - REENTER' 
MVI MSGIA,DFHBMBRY BRIGHTEN MESSAGE ON SCREEN 
MVI MSG3A,DFHBMDAR DARKEN OPERATOR INSTRUCTION 
BAL RETREG,MAPBUILD GO BUILD MAP 

21 EXEC CICS SEND MAP('XDFHAMB') DATAONLY 
MVC COMLEN,=H'80' SET UP LENGTH OF COMMAREA 
B CICSCONT GO RETURN CONTROL TO CICS 

OKREC OS OH HERE RECORD IS OK FOR UPDATE 
BAL RETREG,CHECK GO TEST RECORD TO BE UPDATED 
MVI STAT,C'U' MOVE 'UPDATE' BYTE TO FILE RECORD 
BAL RETREG,FILESTUP GO SET UP FILE RECORD 

22 MVC MESSAGES,=CL(L'MESSAGES)'FILE UPDATED' SET UP MESSAGE 
B AMNU COMPLETE, GO FINISH. 

SECADD OS OH SECOND ADD ROUTINE 
MVC NUMB,NUMB-FILEDS(COMPTR) MOVE SAVED RECORD KEY TO FILE 
BAL RETREG,CHECK GO CHECK RECORD TO BE ADDED 
XC FILEDS,FILEDS RECORD IS OK HERE,SO CLEAR FILE AREA 
MVI STAT,C'A' MOVE 'ADDED' BYTE TO FILE RECORD 
BAL RETREG,FILESTUP GO WRITE RECORD ON FILE 

23 MVC MESSAGES,=CL(L'MESSAGES)'RECORD ADDED' SET UP MESSAGE 
B AMNU COMP(ETE, GO FINISH. 

CICSCONT DS OH THIS ROUTINE RETURNS CONTROL TO CICS 
24 EXEC CICS RETURN TRANSID(EIBTRNID) COMMAREA(FILEDS) * 

LENGTHCCOMLEN) 
AMNU OS OH ENDING ROUTINE 

XC XDFHAMAO(XDFHAMAE-XDFHAMAO),XDFHAMAO CLEAR MAP 
25 MVI MSGA,DFHBMBRY BRIGHTEN MESSAGE FIELD ON MAP 

MVC MSGO,MESSAGES MOVE ANY MESSAGE TO MAP AREA 
26 EXEC CICS SEND MAP('XDFHAMA') ERASE 
27 EXEC eICS R~TURN 

*********************************************************************** 
* * * GENERAL ROUTINES * 

254 CICS/VS APRM (CL) 



* * 
*********************************************************************** 
MAPBUILD DS OH ROUTINE TO BUILD MAP XDFHAMB 

MVC NUMBO,NUMB MOVE FILE KEY TO MAP AREA 
MVC NAMEO,NAME MOVE NAME TO MAP AREA 
MVC ADDRO,ADDRX MOVE ADRESS TO MAP AREA 

28 MVC PHONEO,PHONE MOVE PHONE TO MAP AREA 
MVC DATEO,DATEX MOVE DATE TO MAP AREA 
MVC AMOUNTO,AMOUNT MOVE AMOUNT TO MAP AREA 
MVC COMMENTO,COMMEHT MOVE COMMENT TO MAP AREA 
BR RETREG RETURN 

MAPSEND DS OH ROUTINE TO SEND MAP XDFHAMB 
29 EXEC CICS SEND MAP('XDFHAMB') ERASE 

BR RET REG RETURN 
CHECK DS OH ANY INPUT FROM SCREEN? ROUTINE 

LA R06,XDFHAMBO R6 POINTS TO START OF MAP XDFHAMB 
LA R07,(XDFHAMBE-XDFHAMBO) R7 CONTAINS LENGTH OF MAP B 
LA R08,HEXZERO R8 POINTS TO HEXZERO 
LA R09,L'HEXZERO R9 CONTAINS LENGTH OF HEXZERO 
ICM R09,B'lOO',HEXZERO X'OO' INTO TOP BYTE OF R9 

30 CLCL R06,R08 DOES MAP CONTAIN ANY INPUT? 
BE NOTMODF .. NO, SO RAISE NOTMODIFIED 
CLC EIBTRNID,=ClCL'EIBTRNID)'AADD' IS INVOKING T-ID 'ADDS'? 
BE ADNAMCHK .. YES, SO GO TO 'AADD' NAME CHECK 

UPNAMCHK DS OH UPDATE TRANSACTION HERE 
OC NAMEI,NAMEI HAS NAME BEEN CHANGED? 
BZR RETREG .. NO, SO DON'T CHECK IT 

ADNAMCHK TRT NAMEO,TAB .. YES, IS IT ALPHABETIC? 
BM DATAERR .. NO, SO RAISE ERROR 
BR RETREG .. YES, SO RETURN 

FILESTUP DS OH ROUTINE TO SET UP FILE RECORD 
31 OC NAMEI,NAMEI HAS NAME BEEN ENTERED? 

BZ ADRTST .. NO, BRANCH 
MVC NAME,NAMEI .. YES, PUT IN IN FILE AREA 

ADRTST OC ADDRI,ADDRI HAS ADRESS BEEN ENTERED? 
BZ PHNTST .. NO, BRANCH 
MVC ADDRX,ADDRI .. YES, PUT IN IN FILE AREA 

PHNTST OC PHONEl,PHONEI HAS PHONE BEEN ENTERED? 
BZ DATTST .. NO, BRANCH 
MVC PHONE,PHONEI .. YES, PUT IN IN FILE AREA 

DATTST OC DATEI,DATEI HAS DATE BEEN ENTERED? 
BZ AMTTST .. NO, BRANCH 
MVC DATEX,DATEI .. YES, PUT IN IN FILE AREA 

AMTTST OC AMOUNTI,AMOUNTI HAS AMOUNT BEEN ENTERED? 
BZ COMTST .. NO, BRANCH 
MVC AMOUNT,AMOUNTI .. YES, PUT IN IN FILE AREA 

COMTST OC COMMENTI,COMMENTI HAS COMMENT BEEN ENTERED? 
BZ CONTINUE .. NO, CONTINUE 
MVC COMMENT,COMMENTI .. YES, PUT IN IN FILE AREA 

CONTINUE DS OH FILE RECORD IS NOW SET UP 
MVC lOGREC,FILEREC MOVE FILE RECORD TO LOG AREA 

32 MVC LDAY,EIBDATE MOVE DATE TO lOG AREA 
MVC LTIME,EIBTIME MOVE TIME TO LOG AREA 
MVC LTERML,EIBTRMID MOVE TERMINAL-ID TO LOG AREA 

33 EXEC CICS WRITEQ TD QUEUEC'lOGA') FROM(LOGA) LENGTH(92) 
CLC EIBTRNID,=CL(L'EIBTRNID)'AUPD' UPDATE REQUIRED? 
BNE ADDWRITE .. NO, SO BRANCH 

34 EXEC CICS REWRITE DATASET('FILEA') FROM(FIlEA) 
BR RETREG FINISHED, SO RETURN 

ADDWRITE DS OH ADD FUNCTION REQUIRED 
35 EXEC CICS WRITE DATASET('FIlEA') FROM(FILEA) * 

RIDFLD(HUMB-FILEDS(COMPTR» 
BR RETREG FINISHED, SO RETURN 

DATAERR DS OH GENERAL ROUTINES 
36 MVI NAMEA,DFHBMFSE PRESERVE CONTENTS OF SCREEN 

MVI ADDRA,DFHBMFSE BY SETTING THE MODIFIED DATA TAG 
MVI PHONEA,DFHBMFSE ON THE FIELDS ON THE SCREEN. 
MVI DATEA,DFHBMFSE 
MVI AMOUNTA,DFHBMFSE 
MVI COMMENTA,DFHBMFSE 
MVI MSG3A,DFHBMBRY BRIGHTEN ERROR MESSAGE 
MVI MSGIA,DFHBMDAR DARKEN OPERATOR INSTRUCTION 

37 MVC MSG30,=CLCL'MSG30)'DATA ERROR - PLEASE REENTER' 

Appendix D. Sample Programs (Assembler Language) 255 



38 EXEC 
CLC 
BE 
MVC 
B 

CICS SEND MAP('XDFHAMB') DATAONLY 
EIBTRNID,=Cl(L'EIBTRNID)'AUPD' UPDATE REQUIRED? 
UPDTERR .. YES, SO BRANCH 
COMLEN,=H'7' .. NO,SET UP COMLEN 
CICSCONT GO RETURN CONTROL TO CICS 
OH UPDTERR OS 

MVC 
B 

NOTMODF OS 

COMLEN,=H'80' UPDATE, SET UP REQUIRED COMLEN 
ClCSCONT 
OH SCREEN NOT CHANGED 

39 MVC MESSAGES,=CL(L'MESSAGES)'FILE NOT MODIFIED' MESSAGE 
B 

DUPREC OS 
AMNU COMPLETE, GO FINISH 
OH DUPLICATE RECORD 

40 MVC MESSAGES,=ClCL'MESSAGES)'DUPLICATE RECORD' MESSAGE 
B 

HOlFOUND DS 
A~lNU CONPLETE, GO FINISH 
OH RECORD NOT FOUND 

41 MVC MESSAGES,=CL(L'MESSAGES)'INVALID NUMBER-PLEASE REENTER' 
B 

ERRORS DS 
AMNU COMPLETE, GO FINISH 

OH GENERAL ERROR ROUTINE 
42 EXEC 

MVC 
B 

HEXZERO DC 
TAB DC 

ORG 

CICS DUMP DUMPCODEC'ERRS') 
MESSAGES,=CLCL'MESSAGES)'TRANSACTION TERMINATED' 
AMNU COMPLETE, GO FINISH 
X'OO' CONSTANT FOR COMPARISONS 
256X'FF' TRANSLATE TABLE 
TAB+X'40' BLANK 
X'DO' DC 

ORG 
DC 
ORG 
DC 
ORG 
DC 
ORG 
DC 
ORG 
END 

TAB+X'4B' CHAR '.' 
X'OO' 
TAB+X'C1' CHARS 'A' - 'I' 
9X'OO' 
TAB+X'Dl' CHARS 'J' - 'R' 
9X'OO' 
TAB+X'E2' CHARS'S' - 'Z' 
8X'OO' 

PROGRAM NOTES 

1. The possible invoking 
transaction-id's are tested. 

2. The length of the COMMAREA is tested. 

3. The program exits are set up. 

4. Map XDFHAMA is received. 

5. The account number is saved. 

6. If the progt"am is; nvoked by the 
transaction-id 'AADD', a title and 
command message are moved to the 
title area. 

7 • The record key is moved to the map 
area and to the COMMAREA. 

8. In the case of the AADD transaction, 
the amount field has the modified 
data tag and the numeric attribute 
byte set on so only numeric data can 
be entered. If no data is entered, 
the field contains the original data 
if it has not been modified when the 
contents of map XDFHAMB are mapped 
in. 

9. The exit for the record-not-found 
condition is set uP. 

10. The file control READ reads the file 
record into the file area. 

256 CI CS/VS APRM (CL) 

11. If the record is coded as deleted, it 
is treated as not found. 

12. If the program is invoked by the 
transaction-id 'AINQ', a title and 
command message are moved to the map 
area. 

13. This invocation of the program ends. 

14. If the program is invoked by the 
transaction-id 'AUPD', a title and 
command message are moved to the map 
area. 

15. The length of the COMMAREA to be 
returned is set up. 

16. The error exi ts are set up. 

17. This command maps in the contents of 
the screen. 

18. The file control READ UPDATE reads 
the file using the number from the 
last invocation of this program which 
is stored in COMMAREA. 

19. The fields from the last invocation 
are checked aga in st those on the 
current file record. 

20. A message and attri bute bytes are 
moved. . 



21. The contents of the map XDFHAMB are 
sent to the terminal. 

22. The message 'FILE UPDATED' is moved 
to MESSAGES. 

23. The message 'RECORD ADDED' is moved 
to MESSAGES. 

24. Control is returned to CICS/VS 
together with the name of the 
transaction to be invoked when an 
attention key is pressed at the 
terminal, and data associated with 
this transaction is returned in the 
COMMAREA. 

25. The bright attribute ;s turned on and 
MESSAGES is moved to the map area. 

26. The screen is erased and map XDFHAMA 
is transmitted to the screen. 

27. The program ends. 

28. The fields from the file area are 
moved to the map area. 

29. The screen is erased and map XDFHAMB 
is sent to the terminal. 

30. Any required editing steps should be 
inserted here. A suitable form of 
editing should be used to ensure 
valid records are placed on the file. 

31. The record to be written to the file 
is created. 

32. The record fields, date, time, and 
terminal identification are moved to 
the transient data area. 

33. This record is written to a transient 
data file. 

34. The updated record is rewritten to 
the file. 

35. The record is written to the file. 

36. The fields from the map have the 
modified data tag attribute set so 
that data is still in those fields 
when the map is received. 

37. An error message is moved. 

38. The contents of map XDFHAMB are sent 
to the screen. 

39. If no fields were modified, the 
message 'FILE NOT MODIFIED' is moved 
to MESSAGES. 

40. If a duplicate record condition 
exists, the message 'DUPLICATE 
RECORD' is moved to MESSAGES. 

41. If the file record was not found, the 
message 'INVALID NUMBER - PLEASE 
REENTER' is moved to MESSAGES. 

42. On an error (notes 4, 10, 13, 17, 18, 
21, 24, 26, 29, 33, 34, and 38) a 
dump is taken and the message 
'TRANSACTION TERMINATED' is moved to 
messages. 

Appendix D. Sample Programs (Assembler Language) 257 



BROWSE SAMPLE PROGRAM (ASSEMBLER 
LANGUAGE) 

DESCRIPTION 

The browse program sequentially 
retrieves a page or set of records for 
display, starting at a point in a file 
specified by the terminal operator. 
Depressing the PFI key or typing F causes 
retrieval of the next page or paging 
forward. If the operator wishes to 
reexamine the previous records 
displayed, depressing the PF2 key or 
typing B allows paging backward. 

To start a browse, the account number is 
mapped in and stored in a four entry key 
table in working storage. To retrieve a 
page, the key of the first record of that 
page is all that need be maintained in 
the table. The values in the key table 
are shifted right, so that the table is 
primed for the next page. A map area is 
obtained to move the fields from each 
record. The starting point of the browse 
is then established, the first record is 
read, and its fields are moved to the map 
area. As many successive records as can 
be shown on the screen are then read and 
setup. The sample program shows four 
records to a page (four lines). If 
conditions dictate displaying other than 
four lines, READNEXT and associated 
commands should be added or deleted. If 
only one record can be accommodated, 
browse is still possible. 

After viewing the first page, the 
operator may indicate page forward 
through the PFI key or by typing F. The 
program proceeds directly to building the 
next page, as the key table is already 
conditioned. The browse may continue for 
as long as is desired (or until the end 
of the file is reached). 

If the operator wishes to page backward 
with the PF2 key or by typing B, the key 
table entries are shifted left, so that 
the previous page is retrieved. The 
program resets the browse starting 
position and branches back to the main 
routine to construct a page. The 
backward browse depends on the number of 
keys that may be stored in the key table. 
If more than two page backwards in a 
sequence are required, the four entry key 
table should be expanded. 

The operator may cancel a browse at any 
time by pressing the clear key. 

Key Table example 

The following are the field functions: 

FLDA 
FLOB 
FLOC 
FlDD 

- Next page forward 
- Current page being viewed 
- Previous page 
- Page before previous page 

258 CICS/VS APRM (Cl) 

( + additional backward paging keys, 
if needed) 

Assume that the. file contains the 
following records, and there will be two 
records to a page for display: 

14 

28 

17 18 20 25 

The operator keys in 15, indicating that 
the browse should start with the first 
record equal to or greater than 15. The 
program stores 15 in FlDA and FlDB. 

15 
FLDA 

15 
FlOB 

o 
FLDC 

o 
FlDD 

The program reads records 17 and 18 from 
the file and displays them at the 
terminal. The last record (18) is 
stored in FLDA, to be ready for a page 
forward. 

18 
FLDA 

15 
FlDB 

o 
FLDC 

o 
FLDD 

The operator presses PF1 or types F to 
page forward and display the next page. 
The program uses FlDA (18) to retrieve 
records 20 and 25. These are displayed 
after the keys are shifted right. The 
last record read (25) is stored in 
FLDA. 

25 
FLDA 

18 
FLDB 

15 
FLOC 

o 
FLDD 

Additional page forward requests would 
cause the table entries to be shifted 
right, and a new entry stored in FlDA. 
Entries in FLDD are dropped during the 
shift right. 

The operator presses PF2 or types B to 
page backward and display the previous 
page of two records. The keys are 
shifted left to place the starting key of 
the previous page displayed (15) in FLDA 
and FlDB. FLDD is moved to FLDC, and 
zeros are moved to FLDD. 

15 
FLDA 

15 
FLDB 

o 
FLDC 

o 
FLDD 

The program uses FLDA to retrieve records 
17 and 18, which are then displayed. The 
last record (18) is stored in FLDA for 
the next page forward. 

18 
FlDA 

15 
FlDB 

o 
FLDC 

o 
FLDD 

The operator is viewing the first page 
that was requested, after paging forward 
one page and then paging backward to the 



starting page. The sample program does 
not permit paging beyond the starting 
page, so that the operator may only page 
forward at this point or cancel the 
browse by pressing the clear key. 
Although browse permits paging forward·to 

the end of the file, paging backward is 
limited by the number of table entries. 
The four-entry table allows going back 
two pages. If this is insufficient, a 
larger table will allow further backward 
paging. 

SOURCE LISTING 

DFUEIS1G 
~'ESSAGES 
KEYS 
FLDA 
FlDB 
FLOC 
FlDD 
HEXZERO 

XOFHABRW 

1 

2 
3 

4 
5 

PAGEF 

6 

BUILD 

NEXTLIN 
7 
8 

9 

SECLIN 
10 

THRLIN 

FORLIN 

DSECT 
OS 
OS 
DS 
OS 
OS 
DS 
DS 
COpy 
COpy 
COpy 
COpy 
CSECT 
MVI 
MVC 
MVI 
MVI 
EXEC 

EXEC 
EXEC 

MVC 
EXEC 
OS 
MVC 
MVC 
~1VC 
DS 
LA 
LA 
LA 
LA 
LA 
ICM 
MVCL 
DS 
EXEC 
CLI 
BE 
CH 
BNE 
MVC 
MVC 
MVC 
B 
CH 
BNE 
MVC 
MVC 
MVC 
B 
CH 
BNE 
MVC 
MVC 
MVC 
B 
CH 
BNE 
MVC 

ClSO 
OCl24 
Cl6 
CL6 
CL6 
CL6 
X'OO' 
XDFHAMA 
XDFHAMC 
FILEA 
DFHBf1SCA 

CONSTANT FOR CLEARING MAPS 
MENU MAP 
DISPLAY MAP 
FILE RECORD DESCRIPTION 
BMS ATTRIBUTE BYTES 

KEYS,X'FO' INSERT '0' INTO TOP BYTE OF KEYS 
KEYS+l(L'KEYS-1),KEYS INITIALISE KEYS TO ZERO 
MESSAGES,X'40' INSERT' , INTO TOP BYTE OF MESSAGES 
MESSAGES+ICL'MESSAGES-l),MESSAGES CLEAR MESSAGES FIELD 
CICS HANDLE CONDITION ERROR(ERRORS)MAPFAILCAMNU) 

ENDFILE(ENDFILE) NOTFNO(NOTFOUND) 
CICS RECEIVE MAP('XDFHAMA') 
CICS HANDLE AID CLEAR(AMNU) 

PF1 (PAGEF) PF2 (PAGEB) 
FLDA,KEYI 

CICS STARTBR DATASET('FILEA') RIDFLDCFLDA) 
OH 
FlDD,FlDC 
FlDC,FLDB 
FlDB,FLDA 
OH 
4,1 SET COUNTER TO 1 
6,XDFHAMCO R6->START OF MAP XOFHAMC 
7,(XDFHAMCE-XDFHAMCO) R7 CONTAINS lENGTH OF XDFHAMC 
8,HEXZERO R8-> X'OO' 
9,L'HEXZERO R9 CONTAINS LENGTH OF HEXZERO 
9,B'100',HEXZERO X'OO' INTO TOP BYTE OF R9 
6,8 MOVE X'OO' INTO XDFHAMCO 
OH 

CICS READNEXT 
STAT,X'FF' 
NEXTLIN 

INTOCFILEA) DATASETC'FILEA') RIDFLD(FLDA) 
IS RECORD CODED AS NOT FOUND 

4,=H'1' 
SECLIN 
NUMBER10,NUMB 
NAME10,NAME 
AMOUNTIO,AMOUNT 
CONT 
4,=H'2' 
THRLIN 
NUMBER20,NUMB 
NAME20,NAME 
AMOUNT20,AMOUNT 
CONT 
4,=H'3' 
FORLIN 
NUMBER30,NUMB 
NAME30,NAME 
AMOUNT30,AMOUNT 
CONT 
4,=H'4' 
CONT 
NUMBER40,NUMB 

.. YES, SET UP NEXT LINE 
FIRST LINE? 
.. NO, GO TEST FOR 2ND LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
GO CONTINUE 
SECOND LINE? 
.. NO, GO TEST FOR THIRD LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
GO CONTINUE 
THIRD LINE? 
.. NO, GP TEST FOR FOURTH LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
GO CONTINUE 
FOURTH LINE? 
.. NO, CONTINUE 
MOVE NUMBER TO MAP AREA 

* 

* 

Appendix D. Sample Programs (Assembler language) 259 



CO NT 

DISPREC 
11 

REPEAT 
12 

ENDFIlE 

13 

PAGEB 
14 

15 

TOOFAR 
16 

17 

NOT FOUND 
18 

ERRORS 
19 

AMNU 
20 

21 

MVC 
MVC 
DS 
lA 
CH 
BNE 
DS 
EXEC 
DS 
EXEC 
ClI 
BE· 
ClI 
BE 
BNE 
DS 
MVC 
MVI 
B 
DS 
ClC 
BE 
MVC 
MVC 
MVC 
MVC 
EXEC 
B 
DS 
MVI 
MVI 
EXEC 
B 
DS 
MVC 
B 
DS 
EXEC 
MVC 
DS 
XC 
MVI 
MVC 
EXEC 
EXEC 
END 

PROGRAM NOTES 

NAME40,NAME 
AMOUNT40 "AMOUNT 
OH 
4.,1(,4) 
4,=H'5' 
NEXTLIN 
OH 

MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 

INCREMENT COUNT 
FINISHED? 
.. NO, GO BUILD NEXT LINE 
.. YES, SEND MAP 

CICS SEND 
OH 

MAP('XDFHAMC') ERASE 

CICS RECEIVE MAP('XDFHAMC') 
DIRI,C'F' PAGE FORWARD REQUIRED? 
PAGEF .. YES, GO TO PAGE FORWARD ROUTINE 
DIRI,C'B' PAGE BACK REQUIRED? 
PAGEB .. YES, GO TO PAGE BACKWARD ROUTINE 
AMNU .. NO, GO SEND MENU MAP 
OH ENDFILE IS REACHED 
MSG10,=Cl(l'MSGI0)'END OF FILE' MESSAGE 
MSG2A,DFHBMBRY ATTRIBUTE BYTE FOR INSTRUCTION FLD 
DISPREC GO SEND MAP 
OH PAGE FORWARD ROUTINE 
FLDC(6),=C'000000' FlDC = ZEROS? 
TOOFAR .. YES, SO RAISE TOO FAR CONDITION 
FLDA,FlDC .. NO, SET UP KEYS FOR FILE 
FLDB,FLDC 
FlDC,FlDD 
FLDD,=C'OOOOOO' 

CICS RESETBR DATASET('FIlEA') RIDFlD(FlDA) 
BUILD GO BUILD MAP 
OH GONE TOO FAR 
MSG1A,DFHBMBRY BRIGHTEN MESSAGE 
MSG2A,DFHBMDAR DARKEN MESSAGE 

CICS SEND MAP('XDFHAMC') DATAONlY 
REPEAT GO GET MAP 
OH 
MESSAGES,=Cl(l'MESSAGES)'INVAlID NUMBER-PLEASE REENTER' 
AMNU 
OH GENERAL ERROR ROUTINE 

CICS DUMP DUMPCODE('ERRS') 
MESSAGES,=Cl(l'MESSAGES)'TRANSACTION TERMINATED' 
OH END ROUTINE 
XDFHAMAO(XDFHAMAE-XDFHAMAO),XDFHAMAO CLEAR MAP A 
MSGA,DFHBMBRY BRIGHTEN MESSAGE FIELD 
MSGO,MESSAGES MOVE MESSAGES TO MAP AREA 

CICS SEND MAP('XDFHAMA') ERASE 
CICS RETURN 

9. The required fields are moved from 
the fi Ie area to the map area. 

1. The error exi ts are set up. 

2. This command maps in the account 
number. 

3. The exits for each of the defined 
function keys are set up. 

4. The starting key 1S stored 1n field A 
in the key table. 

5. This command establishes the browse 
starting point. 

6. The keys in the table are shifted 
right in anticipation of a 
continuation of a browse .. 

7. The READNEXT reads the first record 
into the fi Ie area. 

8. If the record is flagged as deleted, 
the program reads the next record. 

260 CICS/VS APRM (Cl) 

10. The same basic commands are repeated 
to read and set up the next three 
lines. The same file area is used 
and, therefore, the fields must be 
reused after each READNEXT. 

11. The screen is erased and the page is 
displayed at the terminal. 

12. The browsing command (CLEAR, PF1, or 
PF2 key, or 'F' or 'B') is read from 
the terminal, and control is passed 
according to the operator response 
(see note 3). 

13. If the end of fi Ie is reached on any 
READNEXT, any records read to that 
point are displayed, together with 
the message 'END OF FI l E'. The label 
to which this routine branches allows 
the operator to restart the browse at 



a different point. The bright 
attribute for the page backward 
message is turned on. 

14. If the PF2 key is pressed or B typed 
in, indicating page backward, and 
FLOC contains zeros, further 
backward paging is not possible. The 
program branches to TOO-FAR (see note 
17). 

15. If not, the key fields are shifted 
left to retrieve the previous page 
and the starting point for the browse 
is reset accordingly. 

16. The table limit is exceeded. An 
output map area is acquired, the 
bright attribute for the page forward 
message is turned on, and a dark 
attribute is moved to the page 
backward message. 

17. On the record NOTFND condition, the 
message 'INVALID NUMBER - PLEASE 
REENTER' is moved to messages. 

18. An error message is written to the 
terminal. 

19. On an error (notes 2, 5, 7, 11, 12, 
17, or 21 ) a dump is taken and the 
message 'TRANSACTION TERMINATED' is 
moved to MESSAGES. 

20. The map area is cleared. This·is 
also the entry point if the clear key 
was depressed. The bright attribute 
to highlight the message is turned 
on, and the message 'TRANSACTION 
TERMINATED' or the default message is 
moved to MESSAGES. 

21. The screen is erased and map XDFHAMA 
is displayed, and the program ends. 

Appendix D. Sample Programs (Assembler Language) 261 



ORDER ENTRY SAMPLE PROGRAM (ASSEMBLER 
LANGUAGE) 

the customer number must be valid, that 
is, it must exist on FILEA.> When the 
screen has been fi lIed, the operator 
presses ENTER. The screen is then mapped 
in and the data is checked, errors being 
returned to the operator for reentering. 
When all the input is ~orrect it is sent 
to a transient data queue called 'L860' 
which is also a terminal-id where a 
transaction is to be triggered when the 
number of items on the queue reaches 30. 

DESCRIPTION 

The order entry sample application 
program accepts input relating to the 
ordering of parts from a warehouse. When 
sufficient orders have been accumulated 
in the headquarters of a business, these 
are automatically sent off to a 
warehouse, or some other distribution 
point. 

The trigger level may be changed using 
the CSMT command, as follows: 

The program displays the map XDFHAMK on 
the screen requesting the oPQrator to 
input details regarding the ordering of 
certain parts. The screen contains entry 
positions relating to the customer 
number, the part number, and the quantity 
of that part required. CAny integer up 
to six digits in length may be entered: 

CSMT TRIGGER,n,DESTID=L860 

where n is the destination trigger level 
Cany integer from 0 through 32761). 

When all orders have been entered, the 
operator presses CLEAR and RESET, and a 
new transaction may be started. 

SOURCE LISTING 

DFHEISTG 

FLAGS 
FLAGI 
XDFHAREN 

1 
2 

SEND 
3 

RECEIVE 
4 

QBUILD 
5 

6 

QWR1TE 
7 

8 

EAUP 
9 

NO'TFOUND 
10 

MAPFAIL 

11 

DSECT 
COPY 
COpy 
COpy 
COpy 
DS 
EQU 
CSECT 
NI 
EXEC 
EXEC 

XC 
DS 
EXEC 
DS 
EXEC 
OS 
EXEC 
MVC 
MVC 
~1VC 
MVC 
DS 
EXEC 
TM 
BZ 
EXEC 
NI 
B 
OS 
EXEC 
B 
DS 
MVC 
MVI 
t1VI 
01 
MVI 
B 
OS 
XC 
01 
MVI 

COpy MAP 
COPY QUEUE RECORD 

XDFHAMK 
L860 
FILEA 
DFHBMSCA 
IB 

COPY FILE RECORD DESCRIPTION 
COpy BMS ATTRIBUTE BYTES 
GROUP OF ERROR FLAGS 

X'80' ERROR FLAG FOR SCREEN MESSAGES 

FLAGS,X'FF'-FLAGI SET ERROR FLAG TO 0 
CICS HANDLE AID CLEARCENDA) 
CICS HANDLE CONDITION MAPFAILCMAPFAIL) NOTFNDCNOTFOUND) 

ERRORCERRORS) 
XDFHAMKO(XDFHAMKE-XDFHAMKO),XDFHAMKO 
OH 

CICS SEND MAPC'XDFHAMK') ERASE 
OH 

CICS RECEIVE MAPC'XDFHAMK') 
OH 

CLEAR MAP 

CICS READ DATASETC'FILEA') INTOCFILEA) RIDFLDCCUSTNOI) 
CUSTNO,CUSTNOI CREATE QUEUE RECORD 
PARTNO,PARTNOI 
QUANTITY, QUANTI 
TERMID,EIBTRMID PUT TERM1D ON QUEUE RECORD 
OH WRITE QUEUE RECORD 

CICS WRITEQ TO QUEUEC'L860'> FROM(L860) LENGTH(22) 
FLAGS,FLAGI ERROR MESSAGE ON SCREEN? 
EAUP .. NO BRANCH 

CICS SEND MAP('XDFHAMK') MAPONLY ERASE 
FLAGS,X'FF'-FLAG1 CLEAR FLAG 
RECEIVE GO GET NEXT RECORD 
OH NO ERROR MESSAGE ON SCREEN 

CICS ISSUE ERASEAUP 
RECEIVE 
OH 
CUSTNOA,=C'I' 
PARTNOA,DFHBMFSE 
QUANTA,DFHBMFSE 
FLAGS,FLAG1 
MSGIA,DFHBMBRY 
SEND 
OH 

GO GET NEXT RECORD 

MOVE BRT AND MDT ATTRIBUTE TO NUMBER 
AND MDT TO OTHER FIELDS SO AS TO 
PRESERVE CONTENTS OF SCREEN 
SET ERROR FLAG 
BRIGHTEN ERROR MESSAGE ON SCREEN 
GO SEND MAP 

XDFHAMKOCXDFHAMKE-XDFHAMKO),XDFHAMKO CLEAR MAP 
FLAGS,FLAGl SET ERROR FLAG 
MSG2A,DFHBMBRY BRIGHTEN ERROR MESSAGE ON SCREEN 

262 CICS/VS APRM CCL) 



B SEND GO SEND MAP 
OH ERRORS 

12 

DS 
MVI 
MVC 
EXEC 
EXEC 
DS 
EXEC 
END 

MSG2A,DFHBMBRY 
MSG20,=C'TRANSACTION TERMINATED' MESSAGE TO MAP 

ENDA 
13 

PROGRAM NOT ES 

eICS SEND MAP('XDFHAMK') 
CICS DUMP DUMPCODE('ERRS') 

OH 
eICS RETURN 

1. Set up exit for cle~r key. 

2. The error exi t:s are set up. 

3. The screen is erased and the map is 
displayed at the terminal. 

4. This command maps in the customer 
number, part number, and quantity. 
The user should add further editing 
steps necessary to ensure only valid 
orders are accepted. 

5. The file control READ reads the 
record into a record area in order to 
find whether a particular record 
exists. 

6. The input from the map is moved to 
the queue area. 

7. The transient data WRITEQ obtains a 
log area, and l-Jri tes thi s record to a 
sequential file. 

8. I f an error message is left on the 
screen, the screen is cleared and 
only the map is sent. 

9. The entered fields, having been 
mapped in and processed, are erased, 
and the screen is ready to receive 
more input. 

10. If the customer number entered was 
not found, the message 'NUMBER NOT 
FOUND - REENTER', having been stored 
on the screen with a dark attribute 
character, is brightened. 

11. If no fields were entered, the 
message 'DATA ERROR - REENTER', also 
having been stored on the screen with 
a dark attribute character, is 
brightened. The customer number 
field is also brightened. 

12. On an error a dump is taken, and the 
message 'TRANSACTION TERMINATED' is 
moved to the top message area, and 
the map is sent to the screen. 

13. This routine ends. 

Appendix D. Sample Programs (Assembler Language) 263 



PRDER ENTRY QUEUE PRINT PROGRAM 
(ASSEMBLER LANGUAGE) 

DESCRIPTION 

Th~s transaction is invoked by entering 
the transaction-id 'ACOM' at the 
terminal. The program checks to see 
whether it was started from a terminal or 
the printer. If from a terminal, (that 
is, the operator 1 s start i n9 thi s 
transaction for the first time) the 
program starts the transaction at the 
printer in one hour. (This time interval 
could be changed using EDF for 
demonstration purposes.) The operator 
may then press RESET and CLEAR and enter 
another t ran sact ion. I f from the 
printer, the program executes and starts 
again in one hour. If there are no items 
on the queue, a message indicating that 
the queue is empty, is sent to the 
warehouse. The last communication with 
the warehouse occurs not later than 1500 
hours. Thi s transacti on is also started 
when the number of items on the queue 
'l860' reaches 30. 

SOURCE LISTING 

DFHEISTG DSECT 
COpy MAP 

The trigger level may be changed using 
the CSMT command, as follows: 

CSMT TRIGGER,n,DESTID=L860 

where n is the destination trigger level 
(any integer from 0 through 32767). 

This program reads items off the queue 
'l860', until the queue is empty. Should 
the queue have been empty initially, a 
message is sent to the warehouse. Using 
the number from the queue as a key it 
reads the file FILEA, and checks the 
amount field to see if the customer is 
good for credi t on thi s order; If he is, 
the number, name, address, part number, 
and quantity are moved to the map XDFHAMl 
and this is sent to the printer. If he is 
not, the time, date, queue-item, and a 
comment field are moved to a data area, 
which may be used for later processing. 
A message is then sent to the warehouse 
indicating that the queue is empty. The 
EIBTIME is then updated and if the time 
is before 1400 hours, the transaction is 
started in one hour. 

COpy 
COPY 

XDFHAMl 
L860 
FIlEA 
OCL92 
PL7 

Q RECORD 
FILE RECORD 

lOGORD OS 
LDATE DS 
L T I~'E DS 
LITEM OS 
CO~lf"lNT OS 
FILLER OS 
QLENGTH OS 
XDFHACOM CSECT 

MVC 
MVI 
NVC 

1 EXEC 
2 CLC 

BNE 
XC 

QREAD DS 
f'lVC 

3 EXEC 
4 EXEC 
5 CLC 

BL 
MVC 
MVC 

6 MVC 
MVC 
MVC 
MVC 

7 EXEC 
B 

LWRITE DS 
MVC 

8 MVC 
MVC 

9 EXEC 
B 

Pl7 
Cl22 
CLI! 
CL51 

RECORD TO BE WRITTEN ONTO LOGA 

IH SIZE OF Q RECORD 

COMMNT,=C'ORDER ENTRY' 
FIlLER,X'40' 
FILlER+l(L'FILLER-l),FILLER 

CICS HANDLE CONDITION ERROR(ERRORS)QZERO(ENDA) 
EIBTRMID(4),=C'L860' TERMID='L860'? 
TIME IF NOT START TRANSACTION LATER 
XDFHAML~(XDFHAMlE-XDFHAMlO),XDFHAMLO CLEAR MAP 
OH 
QLENGTH,=H'+22' INITIALISATION 

CICS READQ TD INTO(L860)LENGTH(QLENGTH)QUEUE('L860') 
CICS READ DATASET('FILEA') INTO(FILEA) RIDFlD(CUSTNO) 

AMOUNT(8),=C'$0100.OO' IS ORDER VALID? 
LWRITE IF <100 BRANCH AND WRITE lOG 
ADDRO,ADDRX SET UP MAP 
NAMO,NAME 
PARTO,PARTNO 
NUMBO,CUSTNO 
LITEM, ITEM 
QUAt'HO, QUANTITY 

CICS SEND MAP('XDFHAML') ERASE PRINT L80 
QREAD GET NEXT RECORD 
OH 
LDATE,EIBDATE SET UP LOG RECORD 
l TIME, EIBTIf'lE 
LITEM, ITEM 

eICS WRITEQ TD QUEUE('LOGA') FROMCLOGORD) LENGTH(92) 
QREAD GET NEXT RECORD 

264 CICS/VS APRM eCl) 



ERRORS 
10 

OH 
CICS DUMP DUMPCODE('ERRS') 

OS 
EXEC 
B FIN BRANCH TO END 

OH ENDA 
11 

OS 
XC 
MVC 
EXEC 
DS 
EXEC 
CP 
BH 
EXEC 
OS 
EXEC 
END 

XDFHAMLO(XDFHAMLE-XDFHAMLO),XDFHAMLO CLEAR MAP 
TITLEO,=CL(L'TITLEO)'ORDER QUEUE IS EMPTY' SET UP TITLE 

12 
TIME 

13 
14 

CICS SEND MAPC'XDFHAML') DATAONLY ERASE LaO PRINT 
OH 

CICS ASKTIME 
EIBTIME,=P'0140000' 
FIN 

CICS 
OH 

TIME AFTER 1400 HOURS? 
.. YES, SO STOP 

15 START TRANSIDC'ACOM') INTERVAL(10000) TERMIDC'l860') 
FIN 

16 

PROGRAM NOT ES 

CICS RETURN 

1. The error exi ts are set up. 

2. The termi nal- i dis tested to see 
whether this transaction was started 
from a terminal or at the printer. 

3. The queue item is read into the 
program. 

4. The file control READ command reads 
the record into a record area so that 
the amount may be checked. 

5. The amount is tested. 

6. If it is over $100, '~he record on the 
queue is moved to the map XDFHAML. 
This test is only a suggestion; a 
suitable form of editing should be 
inserted here to ensure valid orders 
are sent to the warehouse. 

7. The map XDFHAMl is sent to the 
printer. 

S. If the order i s not val i d for thi s 
account, the record on the queue is 

moved to a data area, together with 
the terminal-id associated with the 
enteri ng of thi s pi ece of data, the 
time, and date. 

9. The transient data WRITEQ command 
obtai ns a log area, and wri tes thi 5 
record to a sequential file. 

10. On an error (notes 3,4,7,9,12, 
and 15) a dump is taken. 

11. When the queue is empty, a message is 
moved to the map area. 

12. The map is displayed on the screen. 

13. The current time-of-day clock is 
updated. 

14. The current time-of-day is tested. 

15. If the current time is not past 1400 
hours, the transaction is started 
again in one hour, at the warehouse 
printer. 

16. The program ends. 

Appendix D. Sample Programs (Assembler language) 265 



REPORT SAMPLE PROGRAM (ASSEMBLER 
LANGUAGE) 

DESCRIPTION 

The report sample program produces a 
report that lists all entries in the data 
set 'FILEA' for which the amount is less 
than or equal to $50.00. 

The program illustrates page building 
techniques and the use of the terminal 
paging facilities of BMS. 

The transaction is invoked by entering 
the transaction code AREP. The program 
does a sequential scan through the file 
noting each entry that obeys the search 
criterion. The pages are built from four 

SOURCE LISTING 

DFHEISTG DSECT 

maps which 60mprise mapset XDFHAMD, using 
the paging option so that the data is not 
displayed immediately but instead is 
stored for later retrieval. The HEADING 
map is inserted at the head of each page. 
The detail map CXDFHAMD) is written 
repeatedly until the overflow condition 
occurs. The FOOTING map is then written 
at the foot of the page and the HEADING 
map written at the top of the next page. 
The command to write the detail map that 
caused overflow is then repeated. When 
all the data has been written the FINAL 
map is written at the bottom of the last 
page and the transaction terminated. 

The terminal operator then enters paging 
commands to display the data, clearing 
the screen before entering each paging 
command. 

KEYNUM DS CL6 KEY TO FILE 
EDVAL DC CL3'OOO' PAGE NUMBER EDITING FIELD 
RETREG EQU 4 LINK REG 

COpy XDFHAMD OUTPUT MAP 
COpy FILEA FILEA'S RECORD DESCRIPTION 

XDFHAREP CSECT 
1 MVC KEYNUM(6),=C'OOOOOO' SET RECORD KEY TO ZERO 
2 EXEC CICS HANDLE CONDITION ERRORCERRORS) OVERFlOWCOFLOW) * 

ENDFILECENDFILE) 
3 MVI PAGENA,X'OO' MOVE X'OO' TO ATTRIBUTE 

BAL RETREG,MAPNUM MOVE PAGENUMBER TO MAP AREA 
4 EXEC CICS SEND MAPC'HEADING') MAPSETC'XDFHAMD') ACCUM PAGING * 

ERASE 
5 EXEC CICS STARTBR DATASET('FILEA') RIDFLDCKEYNUM) 

REPEAT DS OH 
6 EXEC CICS READNEXT INTOCFILEA) DATASETC'FILEA') * 

RIDFLDCKEYNUM) 
7 CLI STAT,X'FF' RECORD CODED AS DELETED? 

BE REPEAT .. YES, SO GO READ NEXT RECORD 
8 ClC AMOUNT,LOWLIM COMPARE AMOUNT ON RECORD WITH LIM 

BH REPEAT .. OK, GREATER THAN $50, TRY NEXT 
XC XDFHAMDOCXDFHAMDE-XDFHAMDO),XDFHAMDO CLEAR MAP 
MVC AMOUNTO,AMOUNT MOVE AMOUNT ON FILE TO MAP 

9 MVC NUMBERO,NUMB MOVE ACOUNT NUMBER TO MAP 
MVC NAMEO,NAME MOVE NAME TO MAP 
B SENDREC GO BUILD MAP 

OFLOW DS OH PAGE BUILT HERE 
10 EXEC CICS SEND MAPC'FOOTING') MAPSETC'XDFHAMD') * 

MAPONLY ACCUM PAGING ERASE 
AP PAGEN,=P'1' INCREMENT PAGE COUNT 
MVI PAGENA,X'OO' MOVE X'OO' INTO ATTRIBUTE 
BAL RETREG,MAPNUM GO SET UP PAGE NUMBER ON MAP 

11 EXEC CICS SEND MAPC'HEADING') MAPSETC'XDFHAMD') ACCUM PAGING * 
ERASE 

SENDREC DS OH 
12 EXEC CICS SEND MAPC'XDFHAMD') MAPSET('XDFHAMD') ACCUM PAGING 

B REPEAT GO BUILD NEXT MAP 
*********************************************************************** 
* * * END ROUTINE AND GENERAL ROUTINES * 
* * *********************************************************************** 
MAPNUM OS OH ROUTINE PUTS PAGE NUM IN CHAR FORM 

UNPK EDVAL,PAGEN 
01 EDVAL+L'EDVAL-l,X'FO' ZERO FILL PAGE NUMBER 
MVC PAGENO,EDVAL MOVE PAGE NUMBER TO OUTPUT MAP 

266 CICS/VS APRM CCL) 



RETREG RETURN 
ENDFIlE 

13 

BR 
DS 
EXEC 

OH END OF FILE CONDITION RAISED 
CICS SEND MAP ('FINAL') MAPSET ('XDFHAMD') MAPONlY 

14 
ACCUM PAGING 

CICS SEND PAGE 
15 
16 

EXEC 
EXEC 
EXEC 
EXEC 
DS 
EXEC 
EXEC 
EXEC 
DC 
DC 
DC 
END 

CICS SEND TEXT FROM (OPINSTR) ERASE 
CICS ENDBR DATASETC'FIlEA') 

17 
ERRORS 

18 
19 
20 

CICS RETURN 
OH 

CICS HANDLE CONDITION ERROR 
CICS PURGE MESSAGE 
CICS ABEND ABCODE('ERRS') 

PAGEN 
lOWlIM 
OPINSTR 

Pl2'1' INITIAL PAGE NUM 
Cl8'$0050.00' lOWER lIMIT FOR OK AMOUNT 
Cl22'ENTER PAGING COMMANDS.' OPERATOR INSTRUCTION. 

PROGRAM NOTES 

1. The initial key value is set up for 
the START BROWSE command. 

2. The program exits are set up. 

3. The attribute byte for the page 
number is cleared. 

4. This BMS request sets up the heading 
in the page build operation. 

5. This command starts the browse 
through the file, at a record whose 
key is equal to or greater than that 
specified. 

6. This command reads the next record on 
the file into the file area. 

7. If the record is coded as deleted, it 
is treated as not found. 

8. The search criterion for creating the 
report is that the customer has less 
than or equal to $50. 

9. Fields are moved from the file area 
to the map area. 

10. The BMS request sets up the footing 
in the page build operation. 

11. The BMS request sets up the heading 
in the page build operation. 

12. The customer detail map is set up. 

13. When the END OF FILE condition is 
raised, the last map is built. 

14. The page is sent to the terminal 
operator. 

15. A message is sent to the terminal. 

16. The BROWSE operation is ended. 

17. The program ends. 

18. On an error, the label to branch to 
on the ERROR condition is reset. 

19. Any pages waiting to be displayed at 
the terminal are purged. 

20. The program raises an abend 
condition, a dump is taken and the 
program ends. 

Appendix D. Sample Programs (Assembler language) 267 



SAMPLE MAPS AND SCREEN LAYOUTS FOR ASSEMBLER-LANGUAGE SAMPLE PROGRAMS 

XDFHAMA MAP DEFINITION 

MAPSETA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET),lANG=ASM, * 
TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BlUE 

XDFHAMA DFHMDI SIZE=(12,40) 
DFHMDF POS=(1,lO),lENGTH=21,INITIAl='OPERATOR INSTRUCTIONS', * 

HIlIGHT=UNDERLINE 
DFHMDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER AMN* 

U' 
DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER AIN* 

Q AND NUMBER' 
DFHMDF POS=(5,1),LENGTH=38,INITIAL='FILE BROWSE - ENTER ABR* 

W AND NUMBER' 
DFHMDF POS=(6,1),LENGTH=38,INITIAL='FILE ADD - ENTER AAD* 

D AND NUMBER' 
DFHMDF POS=(7,1),LENGTH=38,INITIAL='FILE UPDATE - ENTER AUP* 

D AND NUMBER' 
MSO DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS PAl TO PRINT--PRESS* 

CLEAR TO EXIT' 
DFHMDF POS=(12,1),lENGTH=18,INITIAL='ENTER TRANSACTION:' 
DFHMDF POS=(12,20),lENGTH=4,ATTRB=IC,COLOR=GREEN, * 

HIlIGHT::REVERSE 
DFHMDF POS=(12,2S),lENGTH=6,INITIAL='NUMBER' 

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN, * 
HIlIGHT=REVERSE 

DFHMDF POS=(12,39),LENGTH=1 
DFHMSD TYPE=FINAl 
END 

XDFHAMA SCREEN LAYOUT 

+OPERATOR INSTRUCTIONS 

+OPERATOR INSTR - ENTER AMNU 
+FIlE INQUIRY - ENTER AINQ AND NUMBER 
+FIlE BROWSE - ENTER ABRW AND NUMBER 
fFIlE ADD - ENTER AADD AND NUMBER 
+FILE UPDATE - ENTER AUPD AND NUMBER 

+PRESS PAl TO PRINT-PRESS CLEAR TO EXIT 
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+ 

268 CICS/VS APRM (Cl) 



XDFHAMB MAP DEFINITION 

MAPSETB DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=ASM, * 
TIOAPFX=YES,EXTATT=MAPONLY 

XDFHAMB DFHMDI SIZE=(12,40) 
TITLE DFHMDF POS=(1,lS),lENGTH=12 

DFHMDF POS=(3,1),LENGTH=8,INITIAl='NUMBER:',COLOR=BLUE 
NUMB DFHMDF POS=(3,lO),lENGTH=6 

DFHMDF POS=(3,17),LENGTH=1 
DFHMDF POS=(4,1),lENGTH=8,INITIAL='NAME: ',COlOR=BLUE 

NAME DFHMDF POS=(4,lO),LENGTH=20,ATTRB=(UNPROT,IC) 
DFHMDF POS=(4,31),LENGTH=1 
DFHMDF POS=(S,l),lENGTH=a,INITIAL='ADDRESS:',COLOR=BLUE 

ADDR DFHMDF POS=(S,lO),lENGTH=20,ATTRB=UNPROT 
DFHMDF POS=(S,31),LENGTH=1 
DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE 

PHONE DFHMDF POS=(6,lO),LENGTH=8,ATTRB=UNPROT 
DFHMDF POS=(6,19),LENGTH=1 
DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATE: ',COLOR=BLUE 

DATE DFHMDF POS=(7,lO),LENGTH=8,ATTRB=UNPROT 
DFHMDF POS=(7,19),LENGTH=1 
DFHMDF POS=(8,1),lENGTH=8,INITIAL='AMOUNT: ',COLOR=BlUE 

AMOUNT DFHMDF POS=(8,lO),LENGTH=8,ATTRB=NUM 
DFHMDF POS=(8,21),LENGTH=1 
DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENT:',COlOR=BLUE 

COMMENT DFHMDF POS=(9,lO),LENGTH=9,ATTRB=UNPROT 
DFHMDF POS=(9,20),LENGTH=1 

MSGI DFHMDF POS=(11,1),LENGTH=39 
MSG3 DFHMDF POS=(12,1),LENGTH=39 

DFHMSD TYPE=FINAL 
END 

XDFHAHB SCREEN LAYOUT 

+XXXXXXXXXXXX 

+NUMBER: +XXXXXX+ 
+NAME: +XXXXXXXXXXXXXXXXXXXX+ 
+ADDRESS:+XXXXXXXXXXXXXXXXXXXX+ 
+PHONE: +XXXXXXXX+ 
+DATE: +XXXXXXXX+ 
+AMOUNT: +XXXXXXXX+ 
+COMMENT:+XXXXXXXXX+ 

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Appendix D. Sample Programs (Assembler Language) 269 



XDFHAMC MAP DEFINITION 

MAPS ETC 

XDFHAMC 
DIR 

NUMBERI 
NAMEI 
AMOUNTl 
NUMBER2 
NAME2 
AMOUNT2 
NUMBER3 
NAME3 
AMOUNT3 
NUMBER4 
NAME4 
AMOUNT4 
MSGI 

MSG2 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=ASM, * 
TIOAPFX=YES,EXTATT=MAPONLY 

DFHMDI SIZE=(12,40) 
DFHMDF POS=(I,I),L~NGTH=I,ATTRB=IC 
DFHMDF POS=(1,3),lENGTH=1 
DFHMDF POS=(l,lS),LENGTH=ll,INITIAL='FILE BROWSE', * 

HILIGHT=UNDERLINE,COlOR=BLUE 
DFHMDF POS=(3,1),LENGTH=6,INITIAl='NUMBER',COlOR=BlUE 
DFHMDF POS=(3,17),LENGTH=4,INITIAl='NAME',COLOR=BlUE 
DFHMDF POS=(3,32),LENGTH=6,INITIAl='AMOUNT',COLOR=BlUE 
DFHMDF POS=(4,1),LENGTH=6 
DFHMDF POS=(4,9),lENGTH=20 
DFHMDF POS=(4,30),LENGTH=8 
DFHMDF POS=(S,1),lENGTH=6 
DFHMDF POS=(S,9),lENGTH=20 
DFHMDF POS=(S,30),lENGTH=8 
DFHMDF POS=(6,1),lENGTH=6 
DFHMDF POS=(6,9),LENGTH=20 
DFHMDF POS=(6,30),lENGTH=8 
DFHMDF POS=(7,1),lENGTH=6 
DFHMDF POS=(7,9),lENGTH=20 
DFHMDF POS=(7,30),lENGTH=8 
DFHMDF POS=(11,1),lENGTH=39, * 

INITIAL='PRESS PFI OR TYPE F TO PAGE FORWARD' 
DFHMDF POS=(12,1),lENGTH=39, * 

INITIAl='PRESS PF2 OR TYPE B TO PAGE BACKWARD' 
DFHMSD TYPE=FINAL 
END 

XDFHAMC SCREEN LAYOUT 

+FIlE BROWSE 

+NUMBER +NAME +AMOUNT 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 

+PRESS PFI OR TYPE F TO PAGE FORWARD 
tPRESS PF2 OR TYPE B TO PAGE BACKWARD 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

270 CICS/VS APRM (CL) 



XDFHAMD HAP DEFINITION 

MAPSET 

XDFHAMD 
NUMBER 
NAME 
AMOUNT 
HEADING 

PAGEN 

FOOTIHG 

FINAL 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), 
LANG=ASM,STORAGE~AUTO,EXTATT=MAPONLY,COLOR=BLUE 

DFHMDI SIZE=(1,40),COlOR=GREEN 
DFHMDF POS=(1,1),LENGTH=6 
DFHMDF POS=(1,9),LENGTH=20 
DFHMDF POS=(1,30),LENGTH=8 
DFHMDI SIZE=(3,40),HEADER=YES 
DFHMDF POS=(1,5),LENGTH=18,INITIAL='LOW BALANCE REPORT', 

HILIGHT=UNDERLINE 
DFHMDF POS=(1,30),LENGTH=4,INITIAL='PAGE' 
DFHMDF POS=(1,35),LENGTH=3 
DFHMDF POS=(3~1),LENGTH=6,INITIAL='NUMBER' 
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME' 
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT' 
DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST 
DFHMDF POS=(2,10),LENGTH=25, 

INITIAL='CONTINUED ON NEXT PAGE ... ' 
DFHMDI SIZE=(2,40),TRAIlER=YES,JUSTIFY=LAST 
DFHMDF POS=(2,lO),LENGTH=14,INITIAL='END OF REPORT.' 
DFHMSD TYPE=FINAL 
END 

XDFHAMD SCREEN LAYOUT 

LOW BALANCE REPORT PAGE XXX 

NUMBER NAME AMOUNT 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

(REPEAT TOTAL OF 19 TIMES) 
XXX XXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXX XXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

CONTINUED ON NEXT PAGE ... 

Appendix D. Sample Programs (Assembler Language) 271 



XDFHAMK MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTR1=(FREEKB), * 
TIOAPFX=YES,LANG=ASM,EXTATT=MAPONLY 

XDFHAMK DFHMDI SIZE=(12,40) 
DFHMDF POS=(Ol,10),LENGTH=11,ATTRB=(BRT,ASKIP), * 

INITIAL='ORDER ENTRY',COlOR=BLUE,HILIGHT=UNDERLINE 
MSGI DFHMDF POS=(03,04),LENGTH=26,ATTRB=(DRK,ASKIP), * 

INITIAL='NUMBER NOT FOUND - REENTER',COLOR=RED, * 
HIlIGHT=BLINK 

MSG2 DFHMDF POS=(04,04),LENGTH=22,ATTRB=(DRK,ASKIP), * 
INITIAl='DATA ERROR - REENTER',COLOR=RED,HILIGHT=BLINK 

DFHMDF POS=(05,04),LENGTH=09,ATTRB=PROT, * 
INITIAL='NUMBER :' 

CUSTNO DFHMDF POS=(05,14),LENGTH=06,ATTRB=(IC,NUM) 
DFHMDF POS=(05,21),LENGTH=Ol 
DFHMDF POS=(06,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, * 

INITIAL='PART NO :' 
PARTNO DFHMDF POS=(06,14),LENGTH=06,ATTRB=NUM 

DFHMDF POS=(06,21),LENGTH=Ol 
DFHMDF POS=(07,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE * 

INITIAL='QUANTITY:' 
QUANT DFHMDF POS=(07,14),LENGTH=06,ATTRB=NUM 

DFHMDF POS=(07,21),LENGTH=Ol 
DFHMDF POS=(09,Ol),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE, * 

INITIAL='PRESS ENTER TO CONTINUE, CLEAR TO QUIT' 
DFHMSD TYPE=FINAL 
END 

XDFHAMK SCREEN LAYOUT 

+ORDER ENTRY 

+NUMBER NOT FOUND - REENTER 
+DATA ERROR - REENTER 
+NUMBER :+XXXXXX+ 
+PART NO :+XXXXXX+ 
+QUANTITY:+XXXXXX+ 

+PRESS ENTER TO CONTINUE, CLEAR TO QUIT 

272 CICS/VS APRM (CL) 



XDFHAHL MAP DEFINITION 

MAPSET 

XDFHAML 
TITLE 

NUMB 
NAM 
ADDR 

PART 

QUANT 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB), 
TIOAPFX=YES,lANG=ASM ' 

DFHMDI SIZE=(05,80) 
DFHMDF POS=(Ol,Ol),lEHGTH=43, 

INITIAl='NUMBER NAME 
DFHMDF POS=(02,Ol),lENGTH=06 
DFHMDF POS=(02,12),lENGTH=20 
DFHMDF POS=(02,37),lEHGTH=20 
DFHMDF POS=(03,Ol),lENGTH=09, 

INITIAl='PART NO :' 
DFHMDF POS=(03,11),lENGTH=06 
DFHMDF POS=(04,Ol),lEHGTH=09, 

INITIAl='QUANTITY:' 
DFHMDF POS=(04,11),lENGTH=06 
DFHMDF POS=(05,Ol),lENGTH=lj 

INITIAl=' , 
DFHMSD TYPE=FINAl 
END 

XDFHAHLPRINT FORMAT 

+NUMBER NAME 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX 
+PART NO:+XXXXXX 
+QUANTITY:+XXXXXX 
+X 

ADDRESS 
+XXXXXXXXXXXXXXXXXXXX 

ADDRESS' 

Appendix D. Sample Programs (Assembler language) 273 



ADDITIONS TO TABLES FOR 
ASSEMBLER-LANGUAGE SAMPLE PROGRAMS 

PPT 

The followi ng ent.ri es were made for the 
sampl e maps: 

OFHPPT 
OFHPPT 
OFHPPT 
OFHPPT 
PFHPPT 
DFHPPT 

TYPE=ENTRY,PROGRAM=XOFHAMA 
TYPE=ENTRY,PROGRAM=XOFHAMB 
TYPE=ENTRY,PROGRAM=XOFHAMC 
TYPE=ENTRY,PROGRAM=XDFHAMO 
TYPE~ENTRy,PROGRAM=XDFHAMK 
TYPE=ENTRY,PROGRAM=XDFHAML 

The following entries were made for the 
sample programs: 

OFHPPT TYPE=ENTRY,PROGRAM=XDFHAMNU 
OFHPPT TYPE=ENTRY,PROGRAM=XOFHAALL 
OFHPPT TYPE=ENTRY,PROGRAM=XDFHABRW 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHAREN 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHACOM 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHAREP 

PCT 

The following entries were made for the 
sample programs: 

DFHPCT TYPE=ENTRY,TRANSID=AMNU 
,PROGRAM=XDFHAMNU 

DFHPCT TYPE=ENTRY,TRANSID=AINQ 
,PROGRAM=XDFHAALL 

OFHPCT TYPE=ENTRY,TRANSIO=AAOO 
,PROGRAM=XDFHAALL 

DFHPCT TYPE=ENTRY,TRANSID=AUPD 
,PROGRAM=XDFHAALL 

OFHPCT TYPE=ENTRY,TRANSID=ABRW 
,PROGRAM=XDFHABRW 

OFHPCT TYPE=ENTRY,TRANSID=AORO 
,PROGRAM=XDFHAREN 

DFHPCT TYPE=ENTRY,TRANSID=ACOM 
,PROGRAM=XDFHACOM 

DFHPCT TYPE=ENTRY,TRANSID=AREP 
,PROGRAM=XOFHAREP 

OCT 

The following entry needs to be made in 
order that the Order Entry Queue Print 
sample program is triggered when the 
number of items on the queue reaches 30. 

DFHOCT TYPE=INTRA,DESTID=L860 
,TRIGLEV=30,TRANSIO=ACOM 
,OESTFAC=TERMINAL 

274 CICS/VS APRM (Cl> 

RECORD DESCRIPTIONS FOR 
ASSEMBLER-LANGUAGE SAMPLE PROGRAMS 

FILEA RECORD DESCRIPTION 

The FILEA record description is used by 
the sample programs and is of the 
following format: 

FILEA OS 
FILEREC OS 
STAT OS 
NUMB DS 
NAME DS 
AOORX DS 
PHONE DS 
DATEX OS 
AMOUNT OS 
COMMENT OS 

OCl80 
OCl80 
Cll 
CL6 
CL20 
Cl20 
CL8 
CL8 
CL8 
CL9 

LOGA RECORD DESCRIPTION 

The LOGA record description is used by 
the sample programs when an audit trail 
is wri tten to a transi ent data fi Ie. It 
has the following format: 

LOGA DS 
LOGHOR OS 
LOAY DS 
LTIME OS 
LTERML OS 
LOGREC OS 
LSTAT OS 
LNUMB OS 
LNAME OS 
lAODR OS 
LPHONE DS 
LDATE OS 
LAMOUNT OS 
LCOMMENT OS 

OCl92 
OCL12 
PL4 
PL4 
CL4 
OCLaO 
CLl 
CL6 
CL20 
CL20 
CL8 
CL8 
CL8 
CL9 

L860 RECORD DESCRIPTION 

The L860 record description is used by 
the Order Entry Queue Print sample 
program when it writes to the transient 
data queue 'L860'. It has the following 
format: 

L860 OS 
ITEM DS 
CUSTNO OS 
PARTNO OS 
QUANTITY DS 
TERMID OS 

OCL22 
OCL22 
CL6 
CL6 
CL6 
CL4 



Appendix E. Sample Programs (COBOL) 

This appendix consists of sample CICS/VS 
application programs written in the COBOL 
language. The BMS maps and file record 
descriptions used by the sample programs 
are included after the sample programs. 

The sample maps include examples of how 
the COLOR, EXTATT, and HILIGHT attributes 
are specified in the map definition 
macros. However, due to production 
limitations, the associated screen 
layouts do not show the effects of these 
attributes; they show how the maps would 
be displayed on, for example, a 3277. 

Specifying EXTATT=MAPONlY enables 
attributes to be added without changing 
the application program. Any attribute, 
that specifies a facility not available 
at the terminal, will be ignored. 

The sample programs illustrate basic 
applications that can serve as a 
framework for the installation's first 
programs. Each program has a description 
and program notes. The program listings 
are of source code. Numbered coding lines 
correspond to the numbered program notes. 
The programs contain COPY statements 
coded according to the 1968 COBOL 
standar'd. I f the programs are to be 
compiled on the OS/VS COBOL compiler, 
LANGLVl(l) should be specified. 

All transactions are initiated by the 
terminal operator entering a 
four-character transaction code. (An 
account number must also be entered, 
except in the case of the operator 
instruction sample program.) 

There are six sample programs, as 
follows: 

• Operator Instruction Sample Program 

• Update Sample Program 

• Browse Sample Program 

• Order Entry Sample Program 

• Order Entry Queue Pri nt Sample 
Program 

• Report Sample Program 

All the sample programs operate on a 
sample VSAM'or ISAM file which must first 
be created using a program provided on 
the library. The fi Ie cons; sts of 
records containing details of individual 
accounts. The programs are used to 
display, alter, update, or browse through 
the entries. For information on how to 
create the sample VSAM or ISAM file refer 
to the CICS/VS System Programmer's Guide. 

All the sample programs are for use with 
the IBM 3270 Information Display System. 

EXECUTING THE SAMPLE PROGRAMS 

Once CICS/VS is running, 3270 users can 
enter the following transaction id's: 

MENU 

INQY 
ADDS 
UPDT 
BRWS 
OREN 
CeOM 
REPT 

Display other transaction id's 
(except OREN, CCOM, and REPT.) 
Display an entry. 
Create a new entry. 
Update an entry. 
Browse through entries. 
Order entry. 
Print order entry queue. 
Display a report (entries not 
greater than $50). 

Note: The transaction CCOM should be used 
once in the morning, after which it will 
invoke itself at the printer in one hour 
(unless the time is 1400 hrs or after). 

Appendix E. Sample Programs (COBOL) 275 



OPERATOR INSTRUCTION SAMPLE PROGRAM 
(COBOL) 

DESCRIPTION 

To begin 3270 operations, a terminal 
operator must enter a transaction code of 
MENU. Whenever the screen is cleared 
this transaction code must be reentered, 
as no data is accepted from an 
unformatted screen. 

SOURCE LISTING 

IDENTIFICATION DIVISION. 
PROGRAM-ID. INSTRUCT. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
PROCEDURE DIVISION. 

The instruction program displays map 
XDFHCMA containing operator 
i nstructi ons. Thi s map l; sts the COBOL 
CICS/VS sample applications and the 
transacti on codes (wi th the excepti on of 
OREN and CCOM whi ch are entered onto a 
clear screen), and provides space for 
entering the code and an account number. 

1 EXEC CICS SEND MAP('XDFHCMA') MAPONlY ERASE END-EXEC. 
2 EXEC CICS RETURN END-EXEC. 

PROGRAM NOTES 

1. The BMS command erases the screen and displays map XDFHCMA. 

2. RETURN ends the program. 

276 CICS/VS APRM (Cl) 



UPDATE SAMPLE PROGRAM (COBOL) 

DESCRIPTION 

The update sample program combines the 
facilities of file update, file add, and 
file inquiry. 

The update program maps in the account 
number and unless the invoking 
transaction-id is 'ADDS', reads the file 
record. The required fields from the 
file area, and a title depending on the 
invoking transaction-id, are moved to the 
map area. In the case of the file add 
function being required, the number 
entered onto map XDFHCMA, and a title, 
are moved to the map area of XDFHCMB. 
Then XDFHCMB, containing the record 
fields, is displayed at the terminal. If 
the function of this transaction is file 
inquiry, the program ends here. 

The update program then reads and maps in 
the record to be added or updated, and 

SOURCE LISTING 

IDENTIFICATION DIVISION. 
PROGRAM-ID. UPDATE. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 MESSAGES PICTURE X(39). 
77 NAMET PIC X(20). 
77 KEYNUM PICTURE 9(6). 
77 COMLEN PICTURE S9(4) COMPo 
01 XDFHCMAI COPY XDFHCMA. 
01 XDFHCMBI COPY XDFHCMB. 
01 FILEA COPY FILEA. 
01 LOGA COPY LOGA. 
01 DFHBMSCA COpy DFHBMSCA. 
01 COMMAREA COPY FILEA. 
LINKAGE SECTION. 
01 DFHCOMMAREA COPY FILEA. 
PROCEDURE DIVISION. 

1 IF EIBTRNID NOT = 'INQY' 
AND EIBTRNID NOT = 'ADDS' 

edits the fields. The sample program 
only suggests the type of editing that 
might be done. The user should insert 
editing steps needed to ensure valid 
changes to the file. Those fields which 
have been changed are moved to the file 
area. Fields are moved to the transient 
data area. The file record is then 
either added or updated, depending on the 
function required of the program. Either 
the message 'FILE UPDATED' or 'RECORD 
ADDED' is inserted in XDFHCMA and the map 
is transmitted to the terminal. 

This program demonstrates a 
pseudo-conversational programming 
technique, where control is returned to 
CICS/VS together with a transaction-id 
whenever a response is requested from the 
operator. Associated with each return of 
control to CICS/VS is a storage area 
containing details of the previous 
invocation of this transaction. 

AND EIBTRNID NOT = 'UPDT' THEN GO TO ERRORS. 
2 IF EIBCALEN NOT = 0 THEN 
3 MOVE DFHCOMMAREA TO COMMAREA GO TO READ-INPUT. 
4 EXEC eICS HANDLE CONDITION MAPFAILCMENU) 

ERROR(ERRORS) END-EXEC. 
S EXEC CICS RECEIVE MAP('XDFHCMA') END-EXEC. 

IF KEYI = LOW-VALUES THEN GO TO NOTFOUND. 
6 MOVE KEYI TO KEYNUM 

MOVE LOW-VALUES TO XDFHCMBO. 
7 IF EIBTRNID = 'ADDS' THEN 

MOVE 'FILE ADD' TO TITLEO 
MOVE 'ENTER DATA AND PRESS ENTER KEY' TO MSG30 

8 MOVE KEYI TO NUMB IN COMMAREA, NUMBO 
9 MOVE 'J' TO AMOUNTA 

MOVE '$0000.00' TO AMOUNTO 
MOVE 7 TO COMLEN GO TO MAP-SEND. 

10 EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND) END-EXEC. 
11 EXEC CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(KEYNUM) 

END-EXEC 
12 IF STAT IN FIlEA = HIGH-VALUE THEN GO TO NOTFOUND. 

IF EIBTRNID = 'INQY' THEN 

Appendix E. Sample Programs (COBOL) 277 



13 MOVE 'FILE INQUIRY' TO TITLEO 
MOVE 'PRESS ENTER TO CONTINUE' TO MSG30 
PERFORM MAP-BUILD THRU MAP-SEND 

14 EXEC CICS RETURN TRANSIDC'MENU') END-EXEC. 
IF EIBTRNID = 'UPDT' THEN 

15 MOVE 'FILE UPDATE' TO TITLEO 
MOVE 'CHANGE FIELDS AND PRESS ENTER' TO MSG30 

16 MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA 
MOVE 80 TO COMLEN. 

MAP-BUILD. 
MOVE NUMB IN FIlEA TO NUMBO 
MOVE NAME IN FILEA TO NAMEO 

17 MOVE ADDRX IN FILEA TO ADDRO 
MOVE PHONE IN FILEA TO PHONEO 
MOVE DATEX IN FILEA TO DATEO 
MOVE AMOUNT IN FILEA TO AMOUNTO 
MOVE COMMENT IN FILEA TO COMMENTO. 

MAP-SEND. 
18 EXEC CICS SEND MAPC'XDFHCMB') ERASE END-EXEC. 

FIN. 
GO TO CICS-CONTROL. 

READ-INPUT. 
19 EXEC CICS HANDLE CONDITION MAPFAILCNOTMODF) NOTFND(NOTFOUND) 

ERRORCERRORS) DUPRECCDUPREC) END-EXEC. 
20 EXEC CICS RECEIVE MAP('XDFHCMB') END-EXEC. 

IF EIBTRNID = 'UPDT' THEN 
21 EXEC CICS READ UPDATE DATASETC'FILEA') INTO(FILEA) 

RIDFLD(NUMB IN COMMAREA) END-EXEC 
22 IF FILEREC IN FILEA NOT = FILEREC IN COMMAREA THEN 

MOVE 'FILE ALREADY UPDATED - REENTER' TO MSGI0 
23 MOVE DFHBMBRY TO MSGIA 

MOVE DFHBMDAR TO MSG3A 
PERFORM MAP-BUILD 

24 EXEC CICS SEND MAPC'XDFHCMB') END-EXEC 
MOVE 80 TO COMLEN 
MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA 
GO TO CICS-CONTROL 

ELSE 
MOVE 'U' TO STAT IN FILEA 
PERFORM CHECK THRU FILE-WRITE 

25 MOVE 'FILE UPDATED' TO MESSAGES GO TO MENU. 
IF EIBTRNID = 'ADDS' THEN 

MOVE lOW-VALUES TO FIlEREC IN FILEA 
MOVE 'A' TO STAT IN FIlEA 
PERFORM CHECK THRU FILE-WRITE 

26 MOVE 'RECORD ADDED' TO MESSAGES GO TO MENU. 
CHECK. 

IF NAMEI = lOW-VALUES AND 
ADDRI = LOW-VALUES AND 

27 PHONEI = LOW-VALUES AND 
DATE! = LOW-VALUES AND 
AMOUNTI = LOW-VALUES AND 
COMMENT! = LOW-VALUES GO TO NOTMODF. 

MOVE NAMEI TO NAMET 
TRANSFORM NAMET CHARACTERS FROM '.' TO ' , 
IF EIBTRNID = 'ADDS' THEN 

IF NAMEl NOT ALPHABETIC THEN GO TO DATA-ERROR. 
IF EIBTRNID = 'UPDT' THEN 

IF NAMEI NOT = lOW-VALUES 
AND NAMET NOT ALPHABETIC THEN GO TO DATA-ERROR. 

FILE-WRITE. 
IF EIBTRNID = 'ADDS' THEN MOVE NUMB IN COMMAREA TO 

NUfrlB IN FIlEA. 
IF NAMEI NOT = lOW-VALUE MOVE NAMEI TO NAME IN FILEA. 

28 IF ADDRI NOT = lOW-VALUE MOVE ADDRI TO ADDRX IN FILEA. 
IF PHONE! HOT = lOW-VALUE MOVE PHONEI TO PHONE IN FIlEA. 
IF DATE! NOT = LOW-VALUE MOVE DATEI TO DATE~ IN FIlEA. 
IF AMOUNTI NOT = lOW-VALUE MOVE AMOUNTI TO AMOUNT IN FIlEA. 
IF COMMENTI NOT = lOW-VALUE THEN 

MOVE COMMENTI TO COMMENT IN FIL,EA. 
MOVE FllEREC IN FILEA TO LOGREC. -
MOVE EIBDATE TO lDAY 

29 MOVE EIBTIME TO lTIME 

278 CICS/VS APRM CeL) 



MOVE EIBTRMID TO LTERML 
30 EXEC CICS WRITEQ TO QUEUE('LOGA') FROM(LOGA) LENGTH(92) 

END-EXEC. 
IF EIBTRNID = 'UPDT' THEN 

31 EXEC CICS REWRITE DATASET('FILEA') FROMCFILEA) END-EXEC 
ELSE 

32 EXEC CICS WRITE DATASETC'FILEA') FROM(FILEA) 

DATA-ERROR. 
MOVE DFHBMBRY TO MSG3A 

RIDFLD(NUMB IN COMMAREA) 
END-EXEC. 

33 MOVE 'DATA ERROR - CORRECT AND PRESS ENTER' TO MSG30 
34 MOVE DFHBMFSE TO NAMEA, ADDRA, PHONEA, DATEA, AMOUNTA, 

COMMENTA. 
35 EXEC CICS SEND MAPC'XDFHCMB') DATAONlY END-EXEC. 

IF EIBTRNID = 'ADDS' THEN MOVE 7 TO COMLEN 
ELSE MOVE 80 TO COMLEN. 

CICS-CONTROL. 
36 EXEC CICS RETURN TRANSID(EIBTRNID) COMMAREA(COMMAREA) 

LENGTH(COMLEN) END-EXEC. 
NOTMODF. 

37 MOVE 'FILE NOT MODIFIED' TO MESSAGES 
GO TO MENU. 

DUPREC. 
38 MOVE 'DUPLICATE RECORD' TO MESSAGES 

GO TO MENU. 
NOTFOUND. 

39 MOVE 'INVALID NUMBER - PLEASE REENTER' TO MESSAGES 
GO TO MENU. 

ERRORS. 
40 EXEC CICS DUMP DUMPCODEC'ERRS') END-EXEC 

MOVE 'TRANSACTION TERMINATED' TO MESSAG~S. 
MENU. 

MOVE LOW-VALUE TO XDFHCMAO 
41 MOVE DFHBMBRY TO MSGA 

MOVE MESSAGES TO MSGO 
42 EXEC CICS SEND MAPC'XDFHCMA') ERASE END-EXEC 
43 EXEC CICS RETURN END-EXEC. 

GOBACK. 

PROGRAM NOTES 

1. The possible invoking 
transaction-id's are tested. 

2. The length of the COMMAREA is tested. 

3. If it has a length" the CoMMAREA 
returned is moved to working storage 
in the program. 

4. The program exits are set up. 

5. Map XDFHCMA is received. 

6. The account number is saved. 

7. If the program is invoked by the 
transaction-id 'ADDS', a title and 
command message are moved to the 
title area. 

8. The record key is moved to the 
COMMA REA and to the map area. 

9. In the case of the ADDS transaction, 
the amount field has the modified 
data tag and the numeric attribute 
byte set on so only numeric data can 
be entered. If no data is entered, 
the field contains the original data 

if it has not been modified when the 
contents of map XDFHCMB are mapped 
in. 

10. The error exit is set up for the 
record-not-found condition. 

11. The file control READ reads the file 
record into the file area. 

12. If the record is coded as deleted, it 
is treated as not found. 

13. If the program is invoked by the 
transaction-id 'INQY', a title and 
command message are moved to the map 
area. 

14. This invocation of the program ends. 

15. If the program is invoked by the 
transaction-id 'UPDT', a title and 
command message are moved to the map 
area. 

16. The file record is moved to the 
COMMAREA and the length of the 
COMMAREA to be returned is set up. 

17. The fields from the file area are 
moved to the map area. 

Appendix E. Sample Programs (COBOL) 279 



18. The screen is erased and the map 
XDFHCMB is sent to the terminal. 

19. The program exits are set up. 

20. This command maps in the contents of 
the screen. 

21. The file control READ UPDATE reads 
the file using the number from the 
last invocation of this transaction 
of this program which is stored in 
the COMMAREA. 

22. The fields from the last invocation 
are checked against those on the 
current file record. 

23. A message and attribute bytes are 
moved. 

24. Map XDFHCMB is sent to the terminal. 

25. The message 'FILE UPDATED' is moved 
to MESSAGES. 

26. The message 'RECORD ADDED' is moved 
to MESSAGES. 

27. Any required editing steps should be 
inserted here. A suitable form of 
editing should be used to ensure. 
valid records are placed on the file. 

28. The record to be written to the file 
is created. 

29. The record fields, date, time, and 
terminal identification are moved to 
the transient data area. 

30. This record is written to a transient 
data file. 

31. The updated record is rewritten to 
the file. 

280 CICS/VS APRM eeL) 

32. The record to be added is written to 
the file. 

33. An error message is moved. 

34. Fields on map XDFHCMB which are to be 
sent back to the screen have the 
modified data tag set on so they will 
still contain data if the contents 
are not altered, when the screen is 
mapped in. 

35. The contents of map XDFHCMB are sent 
to the screen. 

36. Control is returned to CICS/VS 
together with the name of the 
transaction to be invoked when an 
attention key is pressed at the 
terminal, and data associated with 
this transaction is returned in the 
COMMAREA. 

37. If no fields were modified, the 
message 'FILE NOT MODIFIED' is moved 
to MESSAGES. 

38. If a duplicate record condition 
exists, the message 'DUPLICATE 
RECORD' is moved to MESSAGES. 

39. If the file record is not found, the 
message 'INVALID NUMBER - PLEASE 
REENTER' is moved to MESSAGES. 

40. On an error (notes 5, 11, 18, 20, 21, 
24, 30, 31, 32, 35, and 42) a dump is 
taken and the message 'TRANSACTION 
TERMINATED' is moved to MESSAGES. 

41. The bright attribute is turned on and 
MESSAGES is moved to the map area. 

42. The screen is erased and map XDFHCMA 
is transmitted to the screen. 

43. The program ends. 



BROWSE SAMPLE PROGRAM (COBOL) 

DESCRIPTION 

The browse program sequentially 
retrieves a page or set of records for 
display, starting at a point in a file 
specified by the terminal operator. 
Depressing the PF1 key or typing in F 
causes retrieval of the next page or 
paging forward. If the operator wishes 
to reexamine the previous records 
displayed, depressing the PF2 key or 
typing B allows paging backward. 

To start a browse, the account number is 
mapped in and stored in a four entry key 
table in working storage. To retrieve a 
page, the key of the first record of that 
page is all that need be maintained in 
the table. The values in the key table 
are shifted right, so that the table is 
primed for the next page. A map area is 
obtained to move the fields from each 
record. The starting point of the browse 
is then established, the first record is 
read, and its fields are moved to the map 
area. As many successive records as can 
be shown on the screen are then read and 
set up. The sample program shows four 
records to a page (four lines). If 
conditions dictate displaying other than 
four lines, READNEXT and associated 
commands should be added or deleted. If 
only one record can be accommodated, 
browse ;s still possible. 

After viewing the first page, the 
operator may indicate page forward 
through the PFI key or by typing F. The 
program proceeds directly to building the 
next page, as the key table is already 
conditioned. The browse may continue for 
as long as is desired (or until the end 
of the file is reached). 

If the operator wishes to page backward 
with the PF2 key or by typing B, the key 
table entries are shifted left, so that 
the previous page is retrieved. The 
program resets the browse starting 
position and branches back to the main 
routine to construct a page. The 
backward browse depends on the number of 
keys that may be stored in the key table. 
If more than two page backwards in a 
sequence are required, the four entry key 
table should be expanded. 

The operator may cancel a browse at any 
time by depressing the clear key. 

Key Table example 

The following are the field functions: 

FlDA 
FLDB 
FLDC 
FLDD 

- Next page forward 
- Current page being viewed 
- Previous page 
- Page before previous page 

( + additional backward paging keys, 
if needed) 

Assume that the file contains the 
following records, and there will be two 
records to a page for display: 

14 

28 

17 I 18 

I .... 

20 25 

The operator keys in 15, indicating that 
the browse should start with the first 
record equal to or greater than 15. The 
program stores 15 in FLDA and FLOB. 

15 
FLOA 

15 
FLOB 

o 
FLOC 

o 
FLOO 

The program reads records 17 and 18 from 
the file and displays them at the 
terminal. The last record (18) is 
stored in FLOA, to be ready for a page 
forward. 

18 
FLOA 

15 
FLOB 

o 
FLOC 

o 
FLOO 

The operator presses PF1 or types F to 
page forward and display the next page. 
The program uses FLDA (18) to retrieve 
records 20 and 25. These are displayed 
after the keys are shifted right. The 
last record read (25) is stored in 
FLDA. 

25 
FLOA 

18 
FLOB 

15 
FLOC 

o 
FLOO 

Additional page forward requests would 
cause the table entries to be shifted 
right, and a new entry stored in FLOA. 
Entries in FLOD are dropped during the 
shift right. 

The operator presses PF2 or types B to 
page backward and display the previous 
page of two records. The keys are 
shifted left to place the starting key of 
the previous page displayed (15) in FLOA 
and FLOB. FLOO is moved to FLOC, and 
zeros are moved to FLOO. 

15 
FLOA 

15 
FLOB 

o 
FLOC 

o 
FLOO 

The program uses FLOA to retrieve records 
17 and 18, which are then displayed. The 
last record (18) is stored in FLOA for 
the next page forward. 

18 
FLOA 

15 
FLOB 

o 
FLOC 

o 
FLOO 

The operator is viewing the first page 
that was requested, after paging forward 
one page and then paging backward to the 

Appendix E. Sample Programs (COBOL) 281 



starting page. The sample program does 
not permit paging beyond the starting 
page, so that the operator may only page 
forward at this point or cancel the 
browse by pressing the clear key. 
Although browse permits paging forward to 

SOURCE LISTING 

IDENTIFICATION DIVISION. 
PROGRAM-ID. BROWSE. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 I PIC 999 USAGE IS COMPo 
77 MESSAGES PICTURE X(39) VALUE ' , 
77 FLDA PIC 9(6) VALUE IS ZERO. 
77 FLDB PIC 9(6) VALUE IS ZERO. 
77 FLOC PIC 9(6) VALUE IS ZERO. 
77 FLDD PIC 9(6) VALUE IS ZERO. 
01 XDFHCMAI COpy XDFHCMA. 
01 XDFHCMCI COPY XDFHCMC. 
01 FILEA COPY FIlEA. 
01 DFHBMSCA COpy DFHBMSCA. 
PROCEDURE DIVISION. 

the end of the file, paging backward is 
11mlted by the number of table entries. 
The four-entry table allows going back 
two pages. If this is insufficient, a 
larger table will allow further backward 
paging. 

1 EXEC CICS HANDLE CONDITION ERROR(ERRORS) 
MAPFAIL (MENU) 
NOTFND(NOTFOUND) 
ENDFILE (ENDFILE) END-EXEC 

2 EXEC eIes RECEIVE MAP('XDFHCMA') END-EXEC 
3 EXEC CICS HANDLE AID 

CLEAR(MENU) 
PF1 (PAGE-FORWARD) 
PF2 (PAGE-BACKWARD) END-EXEC 

4 MOVE KEYI TO FLDA 
5 EXEC CICS STARTBR DATASET('FIlEA') RIDFLD(FLDA) END-EXEC. 

PAGE-FORWARD. 
MOVE FlDC TO FLDD 

6 MOVE FLDB TO FLDC 
MOVE FLDA TO FLDB. 

BUILD. 
MOVE 1 TO I 
MOVE LOW-VALUES TO XDFHCMCO. 

NEXT-LINE. 
7 EXEC CICS READNEXT INTO(FILEA) 

DATASET('FILEA') RIDFLD(FLDA) END-EXEC 
8 IF STAT EQUAL HIGH-VALUE THEN GO TO NEXT-LINE. 
9 IF I = I MOVE NUMB TO NUMBERIO 

THEN MOVE NAME TO NAMEIO 
THEN MOVE AMOUNT TO AMOUNTIO. 

10 IF I = 2 MOVE NUMB TO NUMBER20 
THEN MOVE NAME TO NAME20 
THEN MOVE AMOUNT TO AMOUNT20. 

IF I = 3 MOVE NUMB TO NUMBER30 
THEN MOVE NAME TO NAME30 
THEN MOVE AMOUNT TO AMOUNT30. 

IF I = 4 MOVE NUMB TO NUMBER40 
THEN MOVE NAME TO NAME40 
THEN MOVE AMOUNT TO AMOUNT40. 

ADD 1 TO I 
IF I NOT EQUAL 5 GO TO NEXT-LINE. 

DISPLAY-RECORD. 
11 EXEC CICS SEND MAP('XDFHCMC') ERASE END-EXEC. 

REPEAT. 
12 EXEC CICS RECEIVE MAP('XDFHCMC') END-EXEC 

IF DIR! EQUAL 'F' THEN GO TO PAGE-FORWARD. 
IF DIR! EQUAL 'B' THEN GO TO PAGE-BACKWARD. 
GO TO MENU. 

ENDFILE. 
MOVE 'END OF FILE' TO MSGIO 

282 CICS/VS APRM (Cl) 



) 

13 MOVE DFH8M8RY TO MSG2A 
GO TO DISPLAY-RECORD. 

PAGE-8ACKWARD. 
14 IF FLDC EQUAL ZEROS GO TO TOO-FAR. 

MOVE FLDC TO FLOA 
15 MOVE FlDC TO FlDB 

MOVE FlDD TO FLOC 
MOVE ZEROS TO FlDD 
IF FLDA NOT EQUAL KEYI THEN ADD 1 TO FlDA. 
EXEC CICS RESETBR DATASETC'FIlEA') RIOFlDCFlDA) END-EXEC 
GO TO BUILD. 

TOO-FAR. 
16 MOVE DFH8MBRY TO MSGIA 

MOVE DFHBMDAR TO MSG2A 
17 EXEC CICS SEND MAP('XDFHCMC') DATAONlY END-EXEC 

GO TO REPEAT. 
NOTFOUND. 

18 MOVE 'INVALID MNUMBER - PLEASE REENTER' TO MESSAGES 
GO TO MENU. 

ERRORS. 
19 EXEC CICS DUMP DUMPCODEC'ERRS') END-EXEC 

MOVE 'TRANSACTION TERMINATED' TO MESSAGES. 
MENU. 

20 MOVE LOW-VALUE TO XDFHCMAO 
MOVE DFliBl"lBRY TO MSGA 
MOVE MESSAGES TO MSGO 

21 EXEC CICS SEND MAPC'XDFHCMA') ERASE END-EXEC 
EXEC CICS RETURN END-EXEC. 

PROGRAM NOTES 

1. The program exits are set up. 

2. This command maps in the account 
number. 

3. The ex; ts for each of the defi ned 
funct i on keys are set up. 

4. The starting key is stored in field A 
in the key table. 

5. This command establishes the browse 
starting point. 

6. The keys in the table are shifted 
right in anticipation of a 
continuation of a browse. 

7. The READNEXT reads the first record 
into the fi Ie area. 

8. If the record is flagged as deleted, 
the program reads the next record. 

9. The required fields are moved from 
the file area to the map area. 

10. The same basic commands are repeated 
to read and set up the next three 
lines. The same file area is used 
and, therefore, the fields must be 
reused after each READNEXT. 

11. The screen is erased and the page ;s 
displayed at the terminal. 

12. The browsing command (CLEAR, PFl, or 
PF2 key, or 'F' or 'B') ;s read from 
the terminal, and control is passed 
according to the operator response 
(see note 3). 

13. If the end of file is reached on any 
READNEXT, any records read to that 
point are displayed, together with 
the message 'END OF FI l E'. The label 
to which this routine branches allows 
the operator to restart the browse at 
a different point. The bright 
attribute for the page backward 
message is turned on. 

14. If the PF2 key is depressed or 8 
typed in, indicating page backward, 
and FLDC contains zeros, further 
backward paging is not possible. The 
program branches to TOO-FAR (see note 
17) . 

15. If not, the key fields are shifted 
left to retrieve the previous page 
and the starting point for the browse 
reset accordingly. 

16. The table limit is exceeded. An 
output map area is acquired, the 
bright attribute for the page forward 
message is turned on, and a dark 
attribute is moved to the page 
backward message. 

17. An error message is written to the 
terminal. 

18. On the record NOTFND condition, the 
message 'INVALID NUMBER - PLEASE 
REENTER' is moved to MESSAGES. 

19. On an error (notes 2,5,7,11,12, 
17,19, or 21) a dump is taken and 
the message 'TRANSACTION TERMINATED' 
i s moved to MESSAGES. 

Appendix E. Sample Programs (COBOL) 283 



20. The map area is cleared. This is 
also the entry point if the clear key 
was depressed. The bright attribute 
to highlight the message is turned 
on, and the message 'TRANSACTION 

284 CICS/VS APRM (el) 

TERMINATED' or the default message is 
moved to MESSAGES. 

21. The screen is erased and map XDFHCMA 
is displayed, and the program ends. 



ORDER ENTRY SAMPLE PROGRAM (COBOL) 

DESCRIPTION 

The order entry sample application 
accepts input relating to the ordering of 
parts from a warehouse. When sufficient 
orders have been accumulated in the 
headquarters of a business, these are 
automatically sent off to a warehouse, or 
some other distribution point. 

The program displays the map XDFHCMK on 
the screen requesting the operator to 
input details regarding the ordering of a 
certain part. The screen contains entry 
positions relating to the customer 
number, the part number and the quantity 
of that part required. (Any integer up 
to six digits in length may be entered: 

SOURCE LISTING 

IDENTIFICATION DIVISION. 
PROGRAM-ID. XDFHOREN. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 ERROR-FLAG PIC 9. 
77 WNG-MSG PIC 9 VALUE O. 
77 BRTMDT PIC X VALUE IS 'I'. 
01 XDFHCMKI COpy XDFHCMK. 
01 FILEA COpy FILEA. 
01 L860 COpy L860. 
01 DFHBMSCA COpy DFHBMSCA. 
PROCEDURE DIVISION. 

the customer number must be valid, that 
is, it must exist on FILEA.) When the 
screen has been filled, the operator 
presses CLEAR to stop entering data, and 
ENTER to continue entering data. The 
screen is then mapped in and the data is 
checked, errors being returned to the 
operator for reentering. When all the 
input is correct it is sent to a 
transient data queue called 'L860' -
which is also a terminal-id where a 
transaction is to be triggered when the 
number of items on the queue reaches 30. 

The trigger level may be changed using 
the CSMT command, as follows: 

CSMT TRIGGER,n,DESTID=L860 

where n is the destination trigger level 
(any integer from 0 through 32767). 

1 EXEC CICS HANDLE AID CLEAR(ENDA) END-EXEC. 
2 EXEC CICS HANDLE CONDITION MAPFAIL(MAPFAIL) 

NOTFND(NOTFOUND) 
ERROR(ERRORS) END-EXEC. 

MOVE LOW-VALUES TO XDFHCMKO. 
SENDM. 

3 EXEC CICS SEND MAP('XDFHCMK') ERASE END-EXEC. 
RECEIVEM. 

4 EXEC CICS RECEIVE MAP('XDFHCMK') END-EXEC. 
TEST. 

MOVE 0 TO ERROR-FLAG 
5 MOVE DFHBMFSE TO CUSTNOA, PARTNOA, QUANTA. 

IF CUSTNOI NOT NUMERIC THEN 
MOVE BRTMDT TO CUSTNOA MOVE 1 TO ERROR-FLAG. 

IF PARTNOI NOT NUMERIC THEN 
6 MOVE BRTMDT TO PARTNOAMOVE 1 TO ERROR-FLAG. 

IF QUANTI NOT NUMERIC THEN 
MOVE BRTMDT TO QUANTA MOVE 1 TO ERROR-FLAG. 

IF ERROR-FLAG = 1 THEN 
MOVE 1 TO WNG-MSG 

7 MOVE DFHBMBRY TO MSG2A GO TO SENDM. 
8 EXEC CICS READ DATASET('FILEA') INTOCFILEA) RIDFLD(CUSTNOI) 

Q-BUILD. 
MOVE CUSTNOI TO CUSTNO 

9 MOVE PARTNOI TO PARTNO 
MOVE QUANTI TO QUANTITY 
MOVE EIBTRMID TO TERMID~ 

Q-WRITE. 

END-EXEC. 

10 EXEC CICS WRITEQ TD QUEUEC'1860') FROMCL860) LENGTH(22) 
END-EXEC. 

11 IF WNG-MSG = 1 THEN 
EXEC CICS SEND MAPC'XDFHCMK') MAPONLY ERASE END-EXEC 

Appendix E. Sample Programs (COBOL) 285 



MOVE 0 TO WNG-MSG 
ELSE 

12 EXEC CICS ISSUE ERASEAUP END-EXEC. 
GO TO RECEIVEM. 

NOTFOUND. 
MOVE 1 TO WNG-MSG. 

13 MOVE DFHBMASB TO MSGIA 
GO TO SENDM. 

MAPFAIL. 
MOVE 1 TO WNG-MSG. 

14 MOVE lOW-VALUES TO XDFHCMKO. 
MOVE DFHBMASB TO MSG2A 
GO TO SENDM. 

ERRORS. 
15 MOVE 'TRANSACTION TERMINATED' TO MSG20 

MOVE DFHBMBRY T~ MSG2A 
EXEC CICS SEND MAPC'XDFHCMK') END-EXEC 
EXEC CICS DUMP DUMPCODEC'ERRS') END-EXEC. 

ENDA. 
16 EXEC CICS RETURN END-EXEC. 

GOBACK. 

PROGRAM NOTES 

1. The exit for the clear key is set up. 

2. The program exits are set up. 

3. The screen is erased and the map is 
displayed at the terminal. 

4. This command maps in the customer 
number, part number, and quantity. 

5. The input areas on the map have the 
modified data tag set on in case they 
need to be sent back for reinput, 
should an error occur in entering 
data. 

6. The input ;s tested, and erroneous 
fields are brightened, whilst the 
modified data tag is still set on. 
The user should add further editing 
necessary to ensure only valid orders 
are accepted. 

7. If there 1S a data error, the message 
'DATA ERROR - REENTER', having been 
stored on the screen with a dark 
attribute character, is brightened. 

8. The file control READ reads the 
record into a record area in order to 
find whether a particular record 
exists. 

286 CICS/VS APRM (eL) 

9. The input from the map is moved to 
the queue area. 

10. The transient data WRITEQ obtains a 
log area, and writes this record to a 
sequential file. 

11. If an error message is left on the 
screen, the screen is cleared and 
only the map is sent. 

12. The entered fields, ha~ing been 
mapped in and processed, are erased, 
and the screen is ready to receive 
more input. 

13. If' the customer number entered was 
not found, the message 'NUMBER NOT 
FOUND - REENTER', having been stored 
on the screen with a dark attribute 
character, is brightened. 

14. If no fields were entered, the 
message 'DATA ERROR - REENTER', also 
having been stored on the screen with 
a dark attribute character, is 
brightened. 

15. On an error (notes 3, 4, 8, 10, 11, 
and 15) a dump is taken, and the 
message 'TRANSACTION TERMINATED' is 
moved to the top message area. 

16. The program ends. 



ORDER ~NTRY QUEUE PRINT SAMPLE PROGRAM 
(COBOL) 

DESCRIPTION 

This transaction is invoked by entering 
the transaction-id 'CCOM' at the 
terminal. The program checks to see 
whether it was started from a terminal or 
the printer. If from a terminal, (that 
is, the operator is starting this 
transaction for the first time) the 
program starts the transaction at the 
printer in one hour. (This time interval 
could be changed using EDF for 
demonstration purposes.) The operator 
may then press RESET and CLEAR and enter 
another transaction. If from the 
printer, the program executes and starts 
again in one hour. If ther~ are no items 
on the queue, a message indicating that 
the queue is empty, is sent to the 
warehouse. The last communications with 
the warehouse occurs not later than 1500 
hours. This transaction is also started 
when the number of items on the queue 
'L860' reaches 30. 

SOURCE LISTING 

IDENTIFICATION DIVISION. 
PROGRAM-ID. XDFHCCOM. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 Q-LENGTH PIC S9(4) COMPo 
01 LOGORD. 

02 LOGTIME. 
03 lDAY PIC 59(7) COMP-3. 
03 LTIME PIC S9(7) COMP-3. 

02 LITEM PIC X(22). 

The trigger level may be changed using 
the CSMT command, as follows: 

CSMT TRIGGER,n,DESTID=L860 

where n is the destination trigger level 
(any integer from 0 through 32767). 

This program reads items off the queue 
'L860', until the queue is empty. Should 
the queue have been empty initially, a 
message is sent to the warehouse. Using 
the number from the queue as a key it 
reads the file FILEA, and checks the 
amount field to see if the customer is 
good for credit on this order. If he is, 
the number, name, address, part number 
and quantity are moved to the map XDFHCML 
and thi sis sent to the pri nter. If he is 
not, the time, date, queue-item, and a 
comment field are moved to a data area, 
this may be used for later processing. A 
message is then sent to the warehouse 
indicating that the queue is empty. The 
EIBTIME is then updated and if the time 
is before 1400 hours, the transaction is 
started in one hour. 

02 COMMENT PIC X(ll) VALUE 'ORDER ENTRY'. 
02 FILLER PIC X(51) VALUE SPACES. 

01 XDFHCMLO COpy XDFHCML. 
01 FILEA COPY FILEA. 
01 L860 COpy L860. 
01 DFHBMSCA COpy DFHBM5CA. 
PROCEDURE DIVISION. \ 

1 EXEC CICS HANDLE CONDITION ERRORCERRORS) 
QZERO(ENDA) END-EXEC. 

2 IF EIBTRMID NOT = 'L860' THEN 
GO TO TIME. 

MOVE LOW-VALUES TO XDFHCMLO. 
Q-READ. 

MOVE 22 TO Q-LENGTH. 
3 EXEC CICS READQ TD INTO(L8~0) LENGTH(Q-LENGTH) 

QUEUE('L860') END~EXEC. 
MAP-BUILD. 

4 EXEC CICS READ DATASET('FILEA') INTOCFILEA) RIDFLDCCUSTNO) 

5 

6 

7 

IF AMOUNT > '$0100.00' THEN 
MOVE ADDRX TO ADDRO 
MOVE NAME TO NAMO 
MOVE PARTNO TO PARTO 
MOVE NUMB TO NUMBO 
MOVE ITEM TO LITEM 
MOVE QUANTITY TO QUANTO 

END-EXEC 

EXEC CICS SEND MAP('XDFHCML') ERASE PRINT L80 END-EXEC 
GO TO Q-READ 

Appendix E. Sample Programs (COBOL) 287 



ELSE 
MOVE EIBDATE TO LDAY 
MOVE EIBTIME TO lTIME 
MOVE ITEM TO LITEM 

8 

9 EXEC CICS WRITEQ TO QUEUE('LOGA') 
FROM(LOGORD) lENGTH(92) END-EXEC 

GO TO Q-READ. 
ERRORS. 

10 EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC. 
GO TO FIN. 

ENDA. 
11 MOVE lOW-VALUES TO XDFHCMlO 

MOVE 'ORDER QUEUE IS EMPTY' TO TITLEO 
12 EXEC CICS SEND MAP('XDFHCML') DATAONLY ERASE PRINT L80 

END-EXEC. 
TIME. 

13 EXEC CICS ASKTIME END-EXEC. 
14 IF EIBTIME NOT > 140000 THEN 
15 EXEC CICS START TRANSID('CCOM') INTERVAL(10000) 

TERMID('L860') END-EXEC. 
FIN. 

16 EXEC CICS RETURN END-EXEC. 
GOBACK. 

PROGRAM NOTES 

1. The program exits are set up. 

2. The terminal-id is tested to see 
whether this transaction was started 
from a terminal or at the printer. 

3. The queue item is read into the 
program. 

4. The file control READ reads the 
record into a record area so that the 
amount may be checked. 

5. The amount is tested. 

6. If it; s over $100 p the record on the 
queue is moved to the map XDFHCMl. 
This test is only a suggestion; a 
suitable form of editing should be 
inserted to ensure val i d orders are 
sent to the warehouse. 

7. The map XDFHCML is sent to the 
printer. 

8. If the order is not val i d for thl s 
account p the record on the queue is 

288 CICS/VS APRM (CL) 

moved to a data area, together with 
the terminal-id associated with the 
entering of this piece of data, the 
time, and date. 

9. The transient data WRITEQ obtains a 
log area, and wri tes thi s record to a 
sequential file. 

10. On an error (notes 3, 4, 7, 9, 10, 12 
and 15) a dump is taken. 

11. When the queue is empty, a message is 
moved to the map area. 

12. The map is displayed on the screen. 

13. The current time-of-day clock is 
updated. 

14. The current time-of-day is tested. 

15. If the current time is not past 1400 
hours, the transaction is started 
again in one hour at the warehouse 
printer. 

16. The program ends. 



REPORT SAMPLE PROGRAM (COBOL) 

DESCRIPTION 

The report sample program produces a 
report that lists all entries in the data 
set 'FILEA' for which the amount is less 
than or equal to $50.00. 

The program illustrates page building 
techni ques and the use of the termi nal 
paging facilities of BMS. 

The transaction is invoked by entering 
the transaction code REPT. The program 
does a sequential scan through the file 
noting each entry that obeys the search 
criterion. The pages are built from four 
maps which comprise map set XDFHCMD, using 

SOURCE LISTING 

IDENTIFICATION DIVISION. 
PROGRAM-ID. REPORTC 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

the paging option so that the data is not 
displayed immediately but instead is 
stored for later retrieval. The HEADING 
map is inserted at the head of each page. 
The detail map (XDFHCMD) is written 
repeatedly until the overflow condition 
occurs. The FOOTING map is then written 
at the foot of the page and the HEADING 
map written ~t the top of the next page. 
The command to write the detail map that 
caused overflow is then repeated. When 
all the data has been written the FINAL 
map is written at the bottom of the last 
page and the transaction terminated. 

The terminal operator then enters paging 
commands to display the data, clearing 
the screen before entering each paging 
command. 

77 LOWLIM PICTURE X(8) VALUE '$0050.00'. 
77 KEYNUM PICTURE 9(6) VALUE o. 
77 PAGEN PICTURE 9(3) VALUE 1. 
77 OPINSTR PICTURE X(22) VALUE 'ENTER PAGING COMMANDS.'. 
01 XDFHCMDI COPY XDFHCMD. 
01 FIlEA COpy FIlEA. 
PROCEDURE DIVISION. 

1 EXECUTE CICS HANDLE CONDITION ERRORCERRORS) 
OVERFLOWCOFlOW) ENDFIlECENDFIlE) END-EXEC 

2 MOVE lOW-VALUE TO PAGENA 
MOVE PAGEN TO PAGENO 

3 EXEC CICS SEND MAPC'HEADING') MAPSETC'XDFHCMD') ACCUM 
PAGING ERASE END-EXEC 

4 MOVE 0 TO KEYNUM. 
5 EXEC CICS STARTBR DATASETC'FIlEA') RIDFLDCKEYNUM) END-EXEC. 

REPEAT. 
6 EXEC CICS READNEXT INTOCFIlEA) RIDFlDCKEYNUM) 

DATASETC'FILEA') END-EXEC 
7 IF STAT EQUAL HIGH-VALUE GO TO REPEAT. 

MOVE AMOUNT TO AMOUNTO 
8 IF AMOUNTO GREATER THAN lOWlIM GO TO REPEAT. 

MOVE lOW-VALUE TO XDFHCMDO 
9 MOVE AMOUNT TO AMOUNTO 

MOVE NUMB TO NUMBERO 
MOVE NAME ~O NAMEO 
GO TO SEND-RECORD. 

OFlOW. 
10 EXEC CICS SEND MAPC'FOOTING') MAPSETC'XDFHCMD') 

MAPONLY ACCUM PAGING END-EXEC 
ADD 1 TO PAGEN 
MOVE PAGEN TO PAGENO 

11 EXEC CICS SEND MAPC'HEADING') MAPSETC'XDFHCMD') 
ACCUM PAGING ERASE END-EXEC. 

SEND-RECORD. 
12 EXEC CICS SEND MAPC'XDFHCMD') MAPSETC'XDFHCMD') 

13 

14 
15 

ACCUM PAGING END-EXEC 
GO TO REPEAT. 

ENDFIlE. 
EXEC CICS SEND MAPC'FINAl') MAPSETC'XDFHCMD') 

MAPONlY ACCUM PAGING END-EXEC . 
EXEC CICS SEND PAGE END-EXEC 

EXEC CICS SEND TEXT FROMCOPINSTR) lENGTH(22) ERASE END-EXEC 

Appendix E. Sample Programs CCOBOl) 289 



16 EXEC CICS ENDBR DATASET('FIlEA') END-EXEC 
17 EXEC CICS RETURN END-EXEC. 

ERRORS. 
18 EXEC CICS HANDLE CONDITION ERROR END-EXEC 
19 EXEC CICS PURGE MESSAGE END-EXEC 
20 EXEC CICS ABEND ABCODE('ERRS') END-EXEC. 

PROGRAM NOTES 

1. The program exits are set up. 

2. The attribute byte for the page 
number is cleared. 

3. This BMS request sets up the heading 
in the page build operation. 

4. The initial key value is set up for 
the START BROWSE command. 

5. This command starts the browse 
through the file, at a record whose 
key is equal to or greater than that 
specified. 

6. This command reads the next record on 
the file into the file area. 

7. If the record is coded as deleted, it 
is treated as not found. 

8. The search criterion for creating the 
report is that the customer has less 
than or equal to $50. 

9. Fields are moved from the file area 
to the map area. 

290 CICS/VS APRM (Cl) 

10. The BMS request sets up the footing 
in the page build operation. 

11. The BMS request sets up the heading 
in the page build operation. 

12. The customer detail map is set up. 

13. When the END OF FILE condition is 
raised, the last map is built. 

14. The page is sent to the terminal 
operator. 

15. A message is sent to the terminal. 

16. The BROWSE operation is ended. 

17. The program ends. 

18. On an error, the label to branch to 
on the ERROR conditiGn is reset. 

19. Any pages waiting to be displayed at 
the terminal are purged. 

20. The program raises an abend 
condition, a dump is taken and the 
program ends. 



lAMPLE MAPS AND SCREEN LAYOUTS FOR COBOL SAMPLE PROGRAMS 

XDFHCHA MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET), * 
lANG=COBOl,TIOAPFX=YES,EXTATT=MAPOHlY,COlOR=BlUE 

XDFHCMA DFHMDI SIZE=(12,40) 
DFHMDF POS=(1,lO),lENGTH=21,INITIAl='OPERATOR INSTRUCTIONS', * 

HIlIGHT=UNDERlINE 
DFHMDF POS=(3,l),lENGTH=29,INITIAl='OPERATOR INSTR - ENTER MEN* 

U' 
DFHMDF POS=(4,1),lENGTH=38,INITIAl='FILE INQUIRY - ENTER INQ* 

Y AND NUMBER' 
DFHMDF POS=(S,1),lENGTH=38,INITIAl='FIlE BROWSE - ENTER BRW* 

S AND NUMBER' 
DFHMDF POS=(6,1),lENGTH=38,INITIAl='FIlE ADD - ENTER ADD* 

S AND NUMBER' 
DFHMDF POS=(7,1),lENGTH=38,INITIAl='FILE UPDATE - ENTER UPD* 

T AND NUMBER' 
MSG DFHMDF POS=(11,1),lENGTH=39,INITIAl='PRESS PAl TO PRINT--PRESS* 

CLEAR TO EXIT' 
DFHMDF POS=(12,l),LEHGTH=18,INITIAL='ENTER TRANSACTION:' 
DFHMDF POS=(12,20),lENGTH=4,ATTRB=IC,COlOR=GREEN, * 

HIlIGHT=REVERSE 
DFHMDF POS=(12,2S),lENGTH=6,INITIAl='NUMBER' 

KEY DFHMDF POS=(12,32),lENGTH=6,ATTRB=NUM,COLOR=GREEN, * 
HILIGHT=REVERSE 

DFHMDF POS=(12,39),lENGTH=1 
DFHMSD TYPE=FINAl 
END 

XDFHCMA SCREEN LAYOUT 

+OPERATOR INSTRUCTIONS 

+OPERATOR IHSTR - ENTER MENU 
+FI l E 'INQUIRY - ENT ER IHQY AND HUMBER 
+FIlE BROWSE - EHTER BRWS AND NUMBER 
+FILE ADD - ENTER ADDS AND NUMBER 
+FIlE UPDATE ENTER UrDT AND NUMBER 

+PRESS PAl TO PRINT-PRESS CLEAR TO EXIT 
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+ 

Appendix E. Sample Programs (COBOL) 291 



XDFHCMB MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET), 
lANG=COBOl,TIOAPFX=YES,EXTATT=MAPONlY 

XDFHCMB DFHMDI SIZE=(12,40) 
TITLE DFHMDF POS=(1,15),lENGTH=12 

DFHMDF POS=(3,1),lENGTH=S,INITIAl='NUMBER:'~COlOR=BlUE 
NUMB DFHMDF POS=(3,lO),LENGTH=6 

DFHMDF POS=(3,17),LENGTH=1 
DFHMDF POS=(4,1),lENGTH=S,INITIAl='NAME: ',COlOR=BlUE 

NAME DFHMDF POS=(4,lO),LENGTH=20,ATTRB=(UNPROT,IC) 
DFHMDF POS=(4,31),LENGTH=1 
DFHMDF POS=(5,1),lENGTH=8,INITIAl='ADDRESS:',COlOR=BlUE 

ADDR DFHMDF POS=(5,lO),LENGTH=20,ATTRB=UNPROT 
DFHMDF POS=(S,31),LENGTH=1 
DFHMDF POS=(6,1),lENGTH=S,INITIAl='PHONE: ',COlOR=BlUE 

PHONE DFHMDF POS=(6,lO),LENGTH=S,ATTRB=UNPROT 
DFHMDF POS=(6,19),LENGTH=1 
DFHMDF POS=(7,1),LENGTH=S,INITIAl='DATE: ',COlOR=BlUE 

DATE DFHMDF POS=(7,lO),lENGTH=S,ATTRB=UNPROT 
DFHMDF POS=(7,19),LENGTH=1 
DFHMDF POS=(S,l),LENGTH=S,INITIAl='AMOUNT: ',COlOR=BlUE 

AMOUNT DFHMDF POS=(S,lO),LENGTH=S,ATTRB=NUM 
DFHMDF POS=(S,19),LENGTH=1 
DFHMDF POS=(9,1),LENGTH=S,INITIAl='COMMENT:',COLOR=BLUE 

COMMENT DFHMDF POS=(9,lO),lENGTH=9,ATTRB=UNPROT 
DFHMDF POS=(9,20),lENGTH=1 

MSGI DFHMDF POS=(11,1),lENGTH=39 
MSG3 DFHMDF POS=(12,1),lENGTH=39 

DFHMSD TVPE=FINAl 
END 

XDFHCMB SCREEN LAYOUT 

+XXXXXXXXXXXX 

+NUMBER: +XXXXXX+ 
+NAME: +XXXXXXXXXXXXXXXXXXXX+ 
+ADDRESS:+XXXXXXXXXXXXXXXXXXXX+ 
+PHONE: +XXXXXXXX+ 
+DATE: +XXXXXXXX+ 
+AMOUNT: +XXXXXXXX+ 
+COMMENT:+XXXXXXXXX+ 

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

292 CICS/VS APR~ (Cl) 



XDFHCMC MAP DEFINITION 

MAPSET 

XDFHCMC 
DrR 

NUMBERl 
NA~lEl 
At10UNT 1 
NUMBER2 
NAME2 
At10UNT2 
NUMBER3 
NAME3 
AMOUNT3 
NUMBER4 
NAME4 
AMOUNT4 
MSGI 

MSG2 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET), 
LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONlY 

DFIiMDI SIZE=(12,40) 
DFHMDF POS=(l,l),lENGTH=l,ATTRB=IC 
DFHMDF POS=(1,3),LENGTH=l 
DFHMDF POS=(l,lS),lENGTH=ll,INITIAl='FIlE BROWSE', 

HIlIGHT=UNDERlINE,COlOR=BlUE 
DFHMDF POS=(3,1),lENGTH=6,INITIAl='NUMBER',COlOR=BlUE 
DFHMDF POS=(3,l7),lENGTH=4,INITIAL='NAME',COlOR=BlUE 
DFHMDF POS=(3,32),lENGTH=6,INITIAL='AMOUNT',COLOR=BLUE 
DFHMDF POS=(4,l),lENGTH=6 
DFHMDF POS=(4,9),LENGTH=20 
DFHMDF POS=(4,30),lENGTH=8 
DFHMDF POS=(S,1),lENGTH=6 
DFHMDF POS=(5,9),LENGTH=20 
DFHMDF POS=(S,30),lENGTH=8 
DFHMDF POS=(6,l),LENGTH=6 
DFHMDF POS=(6,9),lENGTH=20 
DFHMDF POS=(6,30),lENGTH=8 
DFHMDF POS=(7,l),lENGTH=6 
DFHMDF POS=(7,9),lENGTH=20 
DFHMDF POS=(7,30),lENGTH=8 
DFHMDF POS=(11,1),lENGTH=39, 

INITIAl='PRESS PFI OR TYPE F TO PAGE FORWARD' 
DFHMDF POS=(l2,1),lENGTH=39, 

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD' 
DFHMSD TYPE=FINAl 
END 

XDFHCMC SCREEN LAYOUT 

+FIlE BROWSE 

+NUMBER +NAME +AMOUNT 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 

+PRESS PFl OR TYPE F TO PAGE FORWARD 
+PRESS PF2 OR TYPE B TO PAGE BACKWARD 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Appendix E. Sample Programs (COBOL) 293 



XDFHCMD MAP DEFINITION 

MAPSETD 

XDFHCMD 
NUMBER 
NAME 
AMOUNT 
HEADING 

PAGEN 

FOOTING 

FINAL 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET), 
lANG=COBOl,STORAGE=AUTO,EXTATT=MAPONlY,COlOR=BlUE 

DFHMDI SIZE=(1,40),COlOR=GREEN 
DFHMDF POS=(1,1),lENGTH=6 
DFHMDF POS=(1,9),lENGTH=20 
DFHMDF POS=(1,30),lENGTH=8 
DFHMDI SIZE=(3,40),HEADER=YES 
DFHMDF POS=(1,S),lENGTH=18,INITIAl='lOW BALANCE REPORT', 

HIlIGHT=UNDERlINE 
DFHMDF POS=(1,30),LENGTH=4,INITIAl='PAGE' 
DFHMDF POS~(1,3S),lENGTH=3 
DFHMDF POS=(3,1),lENGTH=6,INITIAl='NUMBER' 
DFHMDF POS=(3,17),lENGTH=4,INITIAl='NAME' 
DFHMDF POS=(3,32),lENGTH=6,INITIAl='AMOUNT' 
DFHMDI SIZE=(2,40),TRAIlER=YES,JUSTIFY=lAST 
DFHMDF POS=(2,lO),LENGTH=25, 

INITIAl='CONTINUED ON NEXT PAGE ... ' 
DFHMDI SIZE=(2,40),TRAIlER=YES,JUSTIFY=lAST 
DFHMDF POS=(2,10),lENGTH=14,INITIAl='END OF REPORT.' 
DFHMSD TYPE=FINAl 
END 

XDFHCHD SCREEN LAYOUT 

lOW BALANCE REPORT PAGE XXX 

NUMBER NAME AMOUNT 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

(REPEAT TOTAL OF 19 TIMES) 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXX XXX XX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

CONTINUED ON NEXT PAGE ••. 

294 CICS/VS APRM (Cl) 



XDFHCMK MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB), * 
TIOAPFX=YES,LANG=COBOL,EXTATT=MAPONLY 

XDFHCMK DFHMDI SIZE=(12,40) 
DFHMDF POS=(Ol,10),LENGTH=11,ATTRS=(BRT,ASKIP), * 

INITIAL='ORDER ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE 
MSGI DFHMDF POS=(03,04),LENGTH=26,ATTRB=(DRK,ASKIP), * 

INITIAL='NUMBER NOT FOUND - REENTER',COlOR=RED, * 
HIlIGHT=BlINK 

MSG2 DFHMDF POS=(04,04),LENGTH=22,ATTRB=(DRK,ASKIP), * 
INITIAL='DATA ERROR - REENTER',COLOR=RED, * 
HIlIGHT=BLINK 

DFHMDF POS=(05,04),lEHGTH=09,ATTRB=PROT, * 
INITIAl='NUMBER :' 

CUSTNO DFHMDF POS=(05,14),LENGTH=06,ATTRB=(IC,NUM) 
DFHMDF POS=(05,21),LENGTH=Ol 
DFHMDF POS=(06,04),LENGTH=09,ATTRB=PROT,COlOR=BLUE 

INITIAL='PART NO :' 
PARTNO DFHMDF POS=(06,14),LENGTH=06,ATTRB=NUM 

DFHMDF POS=(06,21),LENGTH=Ol 
DFHMDF POS=(07,04),LENGTH=09,ATTRB=PROT,COlOR=BlUE 

INITIAl='QUANTITY:' 
QUANT DFHMDF POS=(07,14),LENGTH=06,ATTRB=NUM 

DFHMDF POS=(07,21),lENGTH=Ol 
DFHMDF POS=(09,Ol),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE 

INITIAL='PRESS ENTER TO CONTINUE, CLEAR TO QUIT' 
DFHMSD TYPE=FINAl 
END 

XDFHCMK SCREEN LAYOUT 

+ORDER ENTRY 

+NUMBER NOT FOUND - REENTER 
+DATA ERROR - REENTER 
+NUMBER :+XXXXXX+ 
+PART NO :+XXXXXX+ 
+QUANTITY:+XXXXXX+ 

+PRESS ENTER TO CONTINUE, CLEAR TO QUIT 

Appendix E. Sample Programs (COBOL) 295 



XDFHCML MAP DEFINITION 

MAPSET 

XDFHCMl 
TITLE 

NUMB 
NAM 
ADDR 

PART 

QUANT 

DFHMSD TYPE=&SYSPARM,MODE=OUT, 
TIOAPFX=YES,LANG=COBOL 

DFHMDI SIZE=(05,80) 
DFHMDF POS=(Ol,Ol),lENGTH=43, 

INITIAl='NUMBER NAME 
DFHMDF POS=(02,Ol),lENGTH=06 
DFHMDF POS=(02,12),LENGTH=20 
DFHMDF POS=(02,37),LENGTH=20 
DFHMDF POS=(03,Ol),LENGTH=09, 

INITIAl='PART NO :' 
DFHMDF POS=(03,11),lENGTH=06 
DFHMDF POS=(04,Ol),lENGTH=09, 

INITIAl='QUANTITY:' 
DFHMDF POS=(04,11),lENGTH=06 
DFHMDF POS=(05,Ol),LENGTH=1, 

INITIAl=' , 
DFHMSD TYPE=FINAl 
END 

XDFHCML PRINT LAYOUT 

+NUMBER NAME 
+XXXXXX+X~XXXXXXXXXXXXXXXXXX 
+PART NO:+XXXXXX 
+QUANTITY:+XXXXXX 
+X 

296 CICS/VS APRM (Cl) 

ADDRESS 
+XXXXXXXXXXXXXXXXXXXX 

ADDRESS' 



ADDITIONS TO TABLES FOR COBOL SAMPLE 
pROGRAMS 

PPT 

The following entries were made for the 
sample maps: 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHCMA 
DFHPPT TYPE=EHTRY,PROGRAM=XDFHCMB 
DFHPPT TYPE=EHTRY,PROGRAM=XDFHCMC 
DFHPPT TYPE=EHTRY,PROGRAM=XDFHCMD 
DFHPPT TYPE=EHTRY,PROGRAM=XDFHCMK 
DFHPPT TYPE=EHTRY,PROGRAM=XDFHCML 

The following entries were made for the 
sample programs: 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHIHST 
,PGMLAHG=COBOl 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHCALL 
,PGMLAHG=COBOL 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHBRWS 
,PGMLAHG=COBOL 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHOREN 
,PGMLANG=COBOl 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHCCOM 
,PGMLANG=COBOl 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHREPT 
,PGMlANG=COBOl 

PCT 

The following entries were made for the 
sample programs: 

DFHPCT TYPE=ENTRY,TRANSID=MENU 
,PROGRAM=XDFHINST 

DFHPCT TYPE=ENTRY,TRAHSID=INQY 
,PROGRAM=XDFHCAll 

DFHPCT TYPE=ENTRY,TRANSID=ADDS 
,PROGRAM=XDFHCALl 

DFHPCT TYPE=EHTRY,TRANSID=UPDT 
,PROGRAM=XDFHCALl 

DFHPCT TYPE=ENTRY,TRANSID=BRWS 
,PROGRAM=XDFHBRWS 

DFHPCT TYPE=EHTRY,TRANSID=OREN 
,PROGRAM=XDFHOREN 

DFHPCT TYPE=ENTRY,TRANSID=CCOM 
,PROGRAM=XDFHCCOM 

DFHPCT TYPE=ENTRY,TRAHSID=REPT 
,PROGRAM=XDFHREPT 

DCT 

The following entry was made: 

DFHDCT TYPE=INTRA,DESTID=L860 
,TRIGLEV=30, TRAHSID=CCOM 
,DESTFAC=TERMINAl 

RECORD DESCRIPTIONS FOR COBOL SAMPLE 
PROGRAMS 

FItEA RECORD DESCRIPTION 

The FIlEA record description is used by 
the sample programs and is of the 
following format: 

01 FIlEA. 
02 FILEREC. 

03 STAT PICTURE X. 
03 HUMB PICTURE X(6). 
03 NAME PICTURE X(20). 
03 ADDRX PICTURE X(20). 
03 PHONE PICTURE X(8). 
03 DATEX PICTURE X(8). 
03 AMOUNT PICTURE X(8). 
03 COMMENT PICTURE X(9). 

LOGA RECORD DESCRIPTION 

The LOGA record description is used by 
the sample programs when an audit trail 
is written to a transient data file. It 
has the following format: 

01 LOGA. 
02 LOGHDR. 

03 LDAY PICTURE 9(7) COMP-3. 
03 lTIME PICTURE 9(7) COMP-3. 
03 LTERML PICTURE X(4). 

02 LOGREC. 
03 LSTAT PICTURE X. 
03 LHUMB PICTURE X(6). 
03 LNAME PICTURE X(20). 
03 lADDR PICTURE X(20). 
03 LPHONE PICTURE X(8). 
03 LDATE PICTURE X(8). 
03 LAMOUNT PICTURE X(8). 
03 lCOMMENT PICTURE X(9). 

L860 RECORD DESCRIPTION 

The L860 record description is used by 
the Order Entry Queue Print sample 
program when it writes to the transient 
data queue 'L860'. It has the following 
format: 

01 L860. 
02 ITEM. 

03 CUSTNO PICTURE X(6). 
03 PARTNO PICTURE X(6). 
03 QUANTITY PICTURE X(6). 
03 TERMID PICTURE X(4). 

Appendix E. Sample Programs (COBOL) 297 





Appendix F. Sample Programs (PL/I) 

This appendix consists of sample CICS/VS 
application programs written in the PL/I 
language. The BMS maps and fi Ie record 
descriptions used by the sample programs 
are included after the sample programs. 

The sample maps include examples of how 
the COLOR, EXTATT, and HILIGHT attributes 
are specified in the map definition 
macros. However, due to production 
limitations, the associated screen 
layouts do not show the effects of these 
attributes; they show how the maps would 
be displayed on, for example, a 3277. 

Specifying EXTATT=MAPONLY enables 
attributes to be added without changing 
the application program. Any attribute, 
that specifies a facility not available 
at the terminal, will be ignored. 

The sample programs illustrate basic 
appl i cat ions that can serve as a 
framework for the installation's first 
programs. Each program has a description 
and program notes. The program listings 
are of source code. Numbered coding lines 
correspond to the numbered program notes. 

All transactions are initiated by the 
terminal operator entering a 
four-character transaction code. (An 
~ccount number must also be entered, 
except in the case of the operator 
instruction sample program.) 

There are six sample programs, as 
follows: 

• 
• 

Operator Instruction Sample Program 

Update Sample Program 

• Browse Sample Program 

• 
• 

Order Entry Sample Program 

Order Entry Queue Print Sample 
Program 

• Report Sample Program 

All the sample programs operate on a 
sample VSAM or ISAM file which must first 
be created using a program provided on 
the I; brary. The fi Ie consi sts of 
records containing details of individual 
accounts. The programs are used to 
display, alter, update, or browse through 
the entries. For information on how to 
create the sample VSAM or ISAM file refer 
to the CICS/VS System Programmer's Guide. 

All the sample programs are for use '''; th 
the IBM 3270 Information Display System. 

EXECUTING THE SAMPLE PROGRAMS 

Once CICS/VS is running, 3270 users can 
enter the following transaction id's: 

PMNU 

PINQ 
PADD 
PUPD 
PBRW 
PORD 
peOM 
PREP 

Display other transaction id's 
(except PORD, PCOM, and PREP.) 
Display an entry. 
Create a new entry. 
Update an entry. 
Browse through entries. 
Order entry. 
Print order entry queue. 
Display a report (entries not 
greater than $50). 

Note: The transaction PCOM should be used 
once in the morning, after which it will 
invoke itself at the printer in one hour 
(unless the time is 1400 hrs or after) . 

Appendix F. Sample Programs (PL/I) 299 



OPERATOR INSTRUCTION SAMPLE PROGRAM 
(PL/Il 

DESCRIPTION 

To begin 3270 operations, a terminal 
operator must enter a transaction code of 
PMNU. Whenever the screen is cleared 
this transaction code must be reentered, 
as no data is accepted from an 
unformatted screen. 

SOURCE LISTING 

INSTRCT: PROC OPTIONSCMAIN); 

The instruction program displays ~ap 
XDFHPMA containing operator 
instructions. This map lists the PL/I 
CICS/VS sample applications and the 
transaction codes (with the exception of 
PORD and rCOM which are entered onto a 
clear screen), and provides space for 
entering the code and an account number. 

1 EXEC eICS SEND MAPC'XDFHPMA') MAPONLY ERASE; 
2 EXEC CICS RETURN; 

END; 

PROGRAM NOTES 

1. The BMS command erases the screen and displays map XDFHPMA. 

2. RETURN ends the program. 

30~ CICS/VS APRM (el) 



UPDATE SAMPLE PROGRAM (PL/I) 

DESCRIPTION 

The update sample program combines the 
facilities of file update, file add and 
file inquiry. 

The update program maps in the account 
number and reads the file record. The 
required fields from the file area, and a 
title depending on the invoking 
transaction-id, are moved to the map 
area. In the case of the file add 
function being required, the number 
entered onto map XDFHPMA, and a title are 
moved to the map area of XDFHPMB. Then 
XDFHPMB, containing the record fields, is 
displayed at the terminal. If the 
function of this transaction is file 
inquiry, the program ends here. 

The update program then reads and maps in 
the record to be added or updated, and 

SOURCE LISTING 

PAll: PROC(COMPOIHT) OPTIONS(MAIN); 
DCL MESSAGES CHAR(39); 
DCl COMLEN FIXED BIN(15); 
DCL KEYNUM PICTURE '(6)9'; 
Y.INCLUDE XDFHPMA; 
Y.INClUDE XDFHPMBi 
Y.INClUDE FILEAi 
Y.INCLUDE LOGA; 
Y.INClUDE DFHBMSCAi 
DCL CHSTR CHAR(256) BASED; 
DCL COMPOINT PTR; 

edits the fields. The sample program 
only suggests the type of editing that 
might be done. The user should insert 
editing steps needed to ensure valid 
changes to the file. Those fields which 
have been changed are moved to the file 
area. Fields are moved to the transient 
data area. The file record is then 
either added or updated, depending on the 
function required of the program. Either 
the message 'FILE UPDATED' or 'RECORD 
ADDED' is inserted in XDFHPMA and the map 
is transmitted to the terminal. 

This program demonstrates a 
pseudo-conversational programming 
technique, where control is returned to 
CICS/VS together with a transaction-id 
whenever a response is requested from the 
operator. Associated with each return of 
control to CICS/VS is a storage area 
containing details associated with the 
previous invocation of this transaction. 

1 
2 

DCL COMMAREA LIKE FILEA BASEDCCOMPOINT)i 
IF EIBCAlEN~=O THEN GO TO READ INPUT; 
EXEC CICS HANDLE CONDITION ERROR(ERRORS) MAPFAIL(PMHU)i 
ALLOCATE COMMAREA; 

3 

4 

5 

6 
7 

8 
9 

10 

11 

EXEC CICS RECEIVE MAP('XDFHPMA')j 
IF KEYL=O THEN GO TO NOTFOUNDi 
KEYNUM=KEYI; 
SUBSTRCADDRCXDFHPMBO)->CHSTR,l,STG(XDFHPMBO» 

=LOW(STG(XDFHPMBO»; 
IF EIBTRNID='PADD' THEN 

DO; 
TITlEO='FILE ADD'; 
MSG30='ENTER DATA AND PRESS ENTER KEY'; 
NUMBO,COMMAREA.NUMB=KEYI; 
AMOUNTA='J'; 
AMOUNTO='$OOOO.OO'; 
COMLEN=7; 
CALL MAP SEND; 
GO TO CICS CONTROL; 

END; -
ELSE 
IF EIBTRNID='PINQ' 

I EIBTRNID='PUPD' THEN 
DO; 

EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND)i 
EXEC CICS READ DATASET('FILEA') INTOCFILEA) 

RIDFLDCKEYNUM); 
IF FILEA.STAT=HIGH(1) THEN GO TO NOTFOUND; 
IF EIBTRNID='PINQ' THEN 

DOi 
TITLEO='FILE INQUIRY'; 

App~ndix F. Sample Programs (Pl/I) 301 



MSG30='PRESS ENTER TO CONTINUE'; 
CALL MAP_BUILD; 
CALL MAP SEND; 

12 EXEC CICS RETURN TRANSID('PMNU'); 
END; 

ELSE 
DO; 

13 TITLEO='FILE UPDATE'; 
MSG30='CHANGE FIELDS AND PRESS ENTER'; 

14 COMMAREA.FILEREC=FILEA.FILERECi 

END; 
ELSE 

CALL MAP BUILD; 
CALL MAP-SEND; 
COMLEN=80; 
GO TO CICS CONTROL; 

END; -

GO TO ERRORS; 
MAP_BUILD: PROC; 

HUMBO=FILEA.NUMB; 
NAMEO=FILEA.NAME; 
ADDRO=FILEA.ADDRX; 

15 PHONEO=FILEA.PHONE; 

END; 

DATEO=FILEA.DATEX; 
AMOUNTO=FILEA.AMOUNT; 
COMMENTO=FILEA.COMMENT; 
RETURN; 

NAP SEND: PROC; 
16 EXEC CICS SEND MAP('XDFHPMB') ERASE; 

RETURN; 
END; 
READ INPUT: 

17- EXEC CICS HANDLE CONDITION MAPFAIL(NOTMODF) DUPREC(DUPREC) 
ERROR(ERRORS) NOTFNDCNOTFOUND); 

18 EXEC CICS RECEIVE MAP('XDFHPMB'); 
IF EIBTRNID='PUPD' THEN' 

DOi 
19 EXEC CICS READ UPDATE DATASET('FILEA') INTO(FILEA) 

RIDFLD(COMMAREA.NUMB); 
20 IF STRING(FILEA.FILEREC)~=STRING(COMMAREA.FILEREC) THEN 

DO; 
MSG10='FILE ALREADY UPDATED - REENTER'; 
~lSG1A=DFHBMBRY ; 

21 MSG3A=DFHBMDAR; 
CALL MAP BUILD; 

22 EXEC CICS SEND MAP('XDFHPMB') DATAONLY; 
COMMAREA.FILEREC=FILEA.FILEREC; 
CO~'L EN =8 0 ; 
GO TO CICS_CONTROL; 

END; 
ELSE 

DOi 
FILEA.STAT='U'; 

23 MESSAGES='FILE UPDATED'; 

END; 
ELSE 

END; 

IF EIBTRNID='PADD' THEN 
DO; 

FILEA.STAT='A'; 
24 MESSAGES='RECORD ADDED'; 

END; 
ELSE 

GO TO ERRORS; 
IF NAMEL=O & 

ADDRL=O & 
25 PHOHEL=O & 

DATEL=O & 
AMOUHTL=O & 
CO~'MEtHL =0 THEN 
GO TO NOTMODF; 

IF EIBTRNID='PADD' THEN 

302 CICS/VS APRM (CL) 



~ 

IF VERIFYCNAMEI,'ABCDEFGHIJKlMNOPQRSTUVWXYZ .')~=O THEN 
GO TO DATA ERROR; 

IF EIBTRNID='PUPD' THEN IF NAMEl~=O THEN 
IF VERIFY(NAMEI,'ABCDEFGHIJKlMHOPQRSTUVWXYZ .')~=O then 

GO TO DATA ERROR; 
IF EIBTRNID='PADD' THEN 

FIlEA.NUMB=COMMAREA.NUMB; 
IF NAMEl~=O THEN FIlEA.NAME=NAMEI; 
IF ADDRl~=O THEN FIlEA.ADDRX=ADDRI; 

26 IF PHONEl~=O THEN FILEA.PHONE=PHONEI; 
IF DATEl-=O THEN FIlEA.DATEX=DATEI; 
IF AMOUNTL-=O THEN FILEA.AMOUNT=AMOUNTI; 
IF COMMENTl~=O THEN FILEA.COMMENT=COMMENTI; 
lOGREC=FILEA.FIlEREC; 
lDAY=EIBDATE; 

27 LTIME=EIBTIMEi 
LTERML=EIBTRMID; 

28 EXEC CICS WRITEQ TD QUEUEC'lOGA') FROMCLOGA) LENGTH(92); 
IF EIBTRNID='PUPD' THEN 

29 EXEC CICS REWRITE DATASET('FILEA') FROMCFILEA); 
ELSE 

30 EXEC CICS WRITE DATASETC'FILEA') FROMCFILEA) 
RIDFLDCCOMMAREA.HUMB); 

GO TO PMHUi 
DATA_ERROR: 

MSG3A=DFHBMBRY; 
31 MSG30='DATA ERROR - CORRECT AND PRESS ENTER'; 
32 NAMEA, ADDRA, PHONEA, DATEA, AMOUNTA, COMMEHTA=DFHBMFSE; 
33 EXEC CICS SEND MAPC'XDFHPMB') DATAONLYi 

IF EIBTRHID='PADD' THEN COMlEN=7i 
ELSE COMLEN=80; 

CICS_CONTROL: 
34 EXEC CICS RETURN TRANSIDCEIBTRNID) COMMAREA(COMMAREA) 

NOTMODF: 
35 MESSAGES='FIlE NOT MODIFIED'; 

GO TO PMNUi 
DUPREC: 

36 MESSAGES='DUPlICATE RECORD'; 
GO TO PMNU; 

NOTFOUHD: 

lENGTHCCOMLEN); 

37 MESSAGES='INVAlID NUMBER - PLEASE REENTER'; 
GO TO PMNU; 

ERRORS: 
38 EXEC CICS DUMP DUMPCODE('ERRS'); 

MESSAGES='TRANSACTION TERMINATED'; 
PMNU: 

SUBSTRCADDR{XDFHPMAO)->CHSTR,1,STGCXDFHPMAO» 
=lOW(STG(XDFHPMAO»; 

39 MSGA=DFHBMBRY; 
MSGO=~lESSAGES ; 

40 EXEC CICS SEND MAPC'XDFHPMA') ERASE; 
41 EXEC CICS RETURN; 

END; 

PROGRAM NOTES 

1. The length of the COMMAREA is tested. 

2. The program exits are set up. 

3. Map XDFHPMA is received. 

4. The account number is saved. 

5. If the program is invoked by the 
transaction-id 'PAOD', a title and 
command message are moved to the 
title area. 

6. The record key is moved to the map 
area and to the COMMAREA. 

7 . 

8. 

9. 

In the case of the PADD transaction, 
the amount field has the modified 
data tag and the numer"i c attri bute 
byte set on so only numeric data can 
be entered. If no data is entered l 

the field contains the original data 
if it has not been modified when the 
contents of map XDFHPMB are mapped 
in. 

The exit for the record not found 
condition is set up. 

The file control READ reads the file 
record into the file area. 

Appendix F. Sample Programs CPL/I) 303 



10. If the record is coded as deleted, it 
is treated as not found. 

11. If the program is invoked by the 
transaction-id 'PINQ', a title and 
command message are moved to the map 
area. 

12. This invocation of the program ends. 

13. If the pr~gram is invoked by the 
transaction-id 'PUPD', a title and 
command message are moved to the map 
area. 

14. The file record is moved to COMMAREA 
and the length of the COMMAREA to be 
returned is set up. 

15. The fi elds from the fi Ie area are 
moved to the map area. 

16. The screen is erased and map XDFHPMB 
is sent to the terminal. 

17. The program exits are set up. 

18. Thi s command maps in the contents of 
the screen. 

19. The file control READ UPDATE reads 
the file using the number from the 
last invocation of this program which 
is stored in COMMAREA. 

20. The fields from the last invocation 
are checked against those on the 
current file record. 

21. A message and attri bute bytes are 
moved. 

22. The contents of map XDFHPMB are sent 
to the terminal. 

23. The message 'FILE UPDATED' is moved 
to MESSAGES. 

24. The message 'RECORD ADDED' is moved 
to MESSAGES. 

25. Any required editing steps should be 
inserted here. A suitable form of 
editing should be used to ensure 
valid records are placed on the file. 

26. The record to be wri tten to the fi Ie 
is created. 

304 CICS/VS APRM (CL) 

27. The r6cord fields, date, time, and 
terminal identification are moved to 
the transient data area. 

28. This record is written to a transient 
data file. 

29. The updated record on the file is 
rewritten. 

30. The added record is rewritten to the 
file. 

31. An e~ror message is moved. 

32. The fields from the map have the 
modified data tag attribute set so 
that data is still in those fields 
when the map is received. 

33. The contents of map XDFHPMB are sent 
to the screen. 

34. Control is returned to CICS/VS 
together with the name of the 
transaction to be invoked when an 
attention key is pressed at the 
terminal, and data associated with 
this transaction is returned in the 
COMMAREA. 

35. If no fi elds were modi fi ed, the 
message 'FILE NOT MODIFIED' is moved 
to MESSAGES. 

36. If a dupl i cate record condi.ti on 
exists, the message 'DUPLICATE 
RECORD' is moved to MESSAGES. 

37. If the file record was not found, the 
message 'INVALID NUMBER - PLEASE 
REENTER' is moved to MESSAGES. 

38. On an error (notes 3, 9, 12~ 16, 18, 
22, 28, 29, 30, 33, 34, and 40) a 
dump is taken and the message 
'TRANSACTION TERMINATED' is moved to 
messages. 

39. The bright attribute is turned on and 
MESSAGES is moved to the map area. 

40. The screen is erased and map XDFHPMA 
is transmitted to the screen. 

41. The program ends. 



BROWSE SAMPLE PROGRAM (PL/I) 

DESCRIPTION 

The browse program sequentially 
retrieves a page or set of records for 
display, starting at a point in a file 
specified by the terminal operator. 
Depressing the PFI key or typing in F 
causes retrieval of the next page or 
paging forward. If the operator wishes 
to reexamine the previous records 
displayed, depressing the PF2 key or 
typing B allows paging backward. 

To start a browse, the account number is 
mapped in and stored in a four entry key 
table in working ~torage. To retrieve a 
page, the key of the first record of that 
page is all that need be maintained in 
the table. The values in the key table 
are shifted right, so that the table is 
primed for the next page. A map area is 
obtained to move the fields from each 
record. The starting point of the browse 
is then established, the first record is 
read, and its fields are moved to the map 
area. As many successive records as can 
be shown on the screen are then read and 
set up. The sample program shows four 
records to a page (four lines). If 
conditions dictate displaying other than 
four lines, READNEXT and associated 
commands should be added or deleted. If 
only one record can be accommodated, 
browse is still possible. 

After viewing the first page, the 
operator may indicate page forward 
through the PFI key or by typing F. The 
program proceeds directly to building the 
next page, as the key table is already 
conditioned. The browse may continue for 
as long as is desired (or until the end 
of the file is reached). 

If the operator wishes to page backward 
with the PF2 key or by typing B, the key 
table entries are shifted left, so that 
the previous page is retrieved. The 
program resets the browse starting 
position and branches back to the main 
routine to construct a page. The 
backward browse depends on the number of 
keys that may be stored in the key table. 
If more than two page backwards in a 
sequence are required, the four entry key 
table should be expanded. 

The operator may cancel a browse at any 
time by depressing the clear key. 

Key Table example 

The following are the field functions: 

FlDA 
FlDB 
FLOC 
FlDO 

- Next page forward 
- Current page being viewed 
- Previous page 
- Page before previous page 

( + additional backward paging keys, 
if needed) 

Assume that the file contains the 
following records, and there will be two 
records to a page for display: 

14 

28 

17 18 

I .... 

20 25 

The operator keys in 15, indicating that 
the browse should start with the first 
record equal to or greater than 15. The 
program stores 15 in FlDA and FlOB. 

15 
FlOA 

15 
FlOB 

o 
FLOC 

o 
FlOO 

The program reads records 17 and 18 from 
the file and displays them at the 
terminal. The last record (18) is 
stored in FlOA, to be ready for a page 
forward. 

18 
FlOA 

15 
FlOB 

o 
FLOC 

o 
FlOO 

The operator presses PF1 or types F to 
page forward and display the next page. 
The program uses FlOA (18) to retrieve 
records 20 and 25. These are displayed 
after the keys are shifted right. The 
last record read (25) is stored in 
FlDA. 

25 
FlDA 

18 
FlOB 

15 
FLOC 

o 
FlOO 

Additional page forward requests would 
cause the table entries to be shifted 
right, and a new entry stored in FlOA. 
Entries in FlOO are dropped during the 
shift right. 

The operator presses PF2 or types B to 
page backward and display the previous 
page of two records. The keys are 
shifted left to place the starting key of 
the previous page displayed (15) in FlOA 
and FlOB. FlOO is moved to FLOC, and 
zeros are moved to FlOO. 

15 
FlOA 

15 
FlOB 

o 
FLOC 

o 
FlDO 

The program uses FlDA to retrieve records 
17 and 18, which are then displayed. The 
last record (18) is stored in FlDA for 
the next page forward. 

18 
FlOA 

15 
FlOB 

o 
FLOC 

o 
FLDD 

The operator is viewing the first page 
that was requested, after paging forward 
one page and then paging backward to the 
starting page. The sample program does 
not permit paging beyond the starting 
page, so that the operator may only page 
forward at this point or cancel the 
browse by pressing the clear key. 

Appendix F. Sample Programs (Pl/I) 305 



Although browse permits paging forward to 
the end of the file, paging backward is 
limited by the number of table entries. 
The four-entry table allows going back 

SOURCE LISTING 

BROWSE: PROC OPTIONSCMAIN); 
DCl I FIXED BINClS); 
DCl MESSAGES CHAR(39) INITC"); 

two pages. If this is insufficient, a 
larger table will allow further backward 
paging. 

DCl CFlDA,FlDB,FlDC,FlDD) PIC'999999' INITCO); 
DCl STRING CHAR(256) BASED; 
%INClUDE XDFHPMA; 
%INClUDE XDFHPMC; 
%INClUDE FIlEA; 
%INClUDE DFHBMSCA; 

1 EXEC CICS HANDLE CONDITION ERRORCERRORS) 
MAPFAIlCPMNU) 
NOTFNDCNOTFOUND) 
ENDFIlECENDFIlE); 

2 EXEC CICS RECEIVE MAPC'XDFHPMA'); 
3 EXEC CICS HANDLE AID ClEARCPMNU) 

4 FlDA=KEYI: 

PFICPAGE FORWARD) 
PF2CPAGE:BACKWARD); 

5 EXEC CICS STARTBR DATASETC'FIlEA') RIDFlDCFlDA); 
PAGE FORWARD: 

FL.DO=FlDC; 
6 FlDC=FlDB; 

FlDB=FlDA; 
BUILD: 1=1; 

5UBSTRCADDRCXDFHPMCO)->STRING,l,STGCXDFHPMCO» = lOWeSTGeXDFHPMCO»; 
NEXT lINE: 

7 EXEC CICS READNEXT INTOCFIlEA) DATASETC'FIlEA') RIDFlDeFlOA); 
8 IF STAT=HIGHCl) THEN GOTO NEXT lINE; . 
9 IF 1=1 THEN DO;NUMBERI0=NUMB; -

END; 
ELSE 

NAMEI0=NAME; 
AMOUNTIO=AMOUNTi 

10 IF 1=2 THEN DO; NUMBER20=NUMB; 
NAME20=NAME; 
AMOUNT20=AMOUNT; 
END; 

ELSE 
IF 1=3 THEN DO; NUMBER30=NUMB; 

NAME30=NAME; 
AMOUNT30=AMOUNT; 
END; 

ELSE 
IF 1=4 THEN DO; NUMBER40=NUMB; 

NAME40=NA~'E ; 
AMOUNT40=AMOUNT; 

END; 
1=1+1; 
IF I~=5 THEN GOTO NEXT lINE; 

DISPLAY RECORD: -
11 EXEC cics SEND MAPC'XDFHPMC1) ERASE; 

REPEAT: 
12 EXEC eICS RECEIVE MAPC'XDFHPMC'); 

IF DIRI = 'F' THEN GOTO PAGE FORWARD; 
IF DIRI = 'B' THEN GOTO PAGE-BACKWARD; 
GOTO PMNUi -

ENDFILE: 
MSGIO='END OF FILE'; 

13 MSG2A=DFHBMBRY; 
GOTO DISPLAY RECORD; 

PAGE BACKWARD: 
14 IF ~lDC=O THEN GOTO TOO_FAR; 

FLDA=FLDC; 

306 CICS/VS APRM Cel) 



15 FLDB=FLDC; 
FLDC=FLDD; 

FLDD=O; 
IF FLDA~=KEYI THEN FLDA=FLDA+li 
EXEC CICS RESETBR DATASETC'FILEA') RIDFLD(FLDA); 
GOTO BUILD; 

TOO FAR: 
16 MSijlA=DFHBMBRYi 

MSG2A=DFHBMDARi 
17 EXEC CICS SEND MAP('XDFHPMC') DATAONLY; 

GOTO REPEAT; 
NOTFOUND: 

18 MESSAGES='INVALID HUMBER - PLEASE REENTER'j 
GO TO PMNU; 

ERRORS: 
19 EXEC CICS DUMP DUMPCODE('ERRS'); 

MESSAGES='TRANSACTIOH TERMINATED'; 
PMNU: 

20 SUBSTRCADDR(XDFHPMAO)->STRING,l,STGCXDFHPMAO» = LOW(STG(XDFHPMAO»j 
MSGA=DFHBMBRY; 
MSGO=~1ESSAGES ; 

21 EXEC CICS SEND MAPC'XDFHPMA') ERASE; 
EXEC CICS RETURN; 

END; 

PROGRAM NOT ES 

1. The error exi ts are set up. 

2. The account number is mapped. 

3. The exits for PF keys are set up. 

4. The starting key is stored in field A 
in the key table. 

5. Start of browse established. 

6. The keys in the table are shi fted 
right in anticipation of a 
continuation of a browse. 

7. First record read into file area. 

8. If the record is flagged as deleted, 
the program reads the next record. 

9. The required fields are moved from 
the file area to the map area. 

10. The same basic commands are repeated 
to read and set up the next three 
lines. The samef; Ie area is used 
and, therefore, the fields must be 
reused after each READNEXT. 

11. The screen is erased and the page is 
displayed at the terminal. 

12. Browsing command (CLEAR, PF1, or PF2 
key, or 'F' or 'B') read from 
terminal, and control passed 
according to operator response (see 
note 3). 

13. If end of fi Ie is reached on a 
READNEXT, records read to that point 
are displayed, together with message 
'END OF FILE'. The label to which 

routine branches allows operator to 
restart browse at a different point. 
Bright attribute for page backward 
message is turned on. 

14. If PF2 key is depressed or B typed, 
indicating page backward, and FLDC 
contains zero~, further backward 
paging not allowed; program branches 
to TOO-FAR (see note 17). 

15. If not, the key fields are shifted 
left to retrieve the previous page 
and the starting point for the browse 
reset accordingly. 

16. Table limit is exceeded, output map 
area is acquired, bright attribute 
for page forward message is turned 
on, and dark attribute is moved to 
page backward message. 

17. Error message is sent to terminal. 

18. On the record NOTFND condition, the 
message 'INVALID NUMBER - PLEASE 
REENTER' is moved to messages. 

19. On an error (notes 2,5,7,11,12, 
17,19, or 21 ) a dump is taken and 
the message 'TRANSACTION TERMINATED' 
is moved to MESSAGES. 

20. The map area is cleared. Thi sis 
also the entry point if the clear key 
was depressed. The bright attribute 
to highlight the message is turned 
on, and the message 'TRANSACTION 
TERMINATED' or the default message is 
moved to MESSAGES. 

21. The screen is erased and map XDFHPMA 
is displayed, and the program ends. 

Appendix F. Sample Programs CPL/I) 307 



ORDER ENTRY SAMPLE PROGRAM (PL/I) 

DESCRIPTION 

The order entry sample application 
accepts input relating to the ordering of 
parts from a warehouse. When sufficient 
orders have been accumulated in the 
headquarters of a business, these are 
automatically sent off to a warehouse, or 
some other distribution point. 

The program displays the map XDFHPMK on 
the screen requesting the operator to 
input details regarding the ordering of 
certain parts. The screen contains entry 
positions relating to the customer 
number, the part number and the quantity 
of that part required. (Any integer up 
to six digits in length may be entered: 

SOURCE LISTING 

PORD: PROC OPTIONSCMAIN); 
r.INClUDE XDFHPMKi 
r.INClUDE DFHBMSCAi 
r.INClUDE DFHAIDi 
r.INClUDE l860i 
r.INClUDE FllEA; 
DCl BRTMDT CHAR(1) IN!TC'I')i 
DCl ERROR FLAG BIT(l); 
DCl WNG MSG BIT(l) IHIT('O'B); 
DCl NULL CHAR(l); 

the customer number must be valid, that 
is, it must exist on FIlEA.) When the 
screen has been filled, the operator 
presses CLEAR to stop entering data, an~ 
ENTER to continue entering data. The 
screen is then mapped in and the data is 
checked, errors being returned to the 
operator for reentering. When all the 
input is correct it is sent to a 
transient data queue called 'l860' -
which is also a terminal-id where a 
transaction is to be triggered when the 
number of items on the queue reaches 30. 

The trigger level may be changed using 
the CSMT command, as follows: 

CSMT TRIGGER,n,DESTID=l860 

where n is the destination trigger level 
Cany integer from 0 through 32767). 

DCl DUDCHAR CHARClO) INITC'l234567890'); 
DCl CHSTR CHAR(256) BASED; 

1 
2 

STARTA: 

SEND: 

EXEC CICS HANDLE AID ClEARCENDA); 
EXEC CICS HANDLE CONDITION MAPFAIlCMAPFAIl) ERRORCERRORS) 

NOTFNDCHOTFOUND); 

SUBSTRCADDRCXDFHPMKO)->CHSTR,l,STGCXDFHPMKO» 
=lOWCSTGCXDFHPMKO»; 

3 EXEC CICS SEND MAPC'XDFHPMK') ERASE; 
RECEIVE: 

4 EXEC CICS RECEIVE MAP('XDFHPMK'); 
TEST: 

ERROR FlAG='O'B; 
5 CUSTNOA,PARTNOA,QUANTA=DFHBMFSE; 

IF VERIFYCCUSTNOI,'1234567890')-=0 THEN DO; 
CUSTNOA=BRTMDT; 
ERROR_FlAG='l'B; 

END; 
IF VERIFYCPARTNOI,'1234567890')-=O THEN DO; 

6 PARTNOA=BRTMDT; 
ERROR FlAG='l'B; 

END; -
IF VERIFY(QUANTI,'1234567890')~=O THEN DO; 

QUANTA=BRTMDT; 
ERROR_FlAG='l'B; 

END; 
IF ERROR_FLAG THEN DO; 

WNG_MSG='l'B; 
7 MSG2A=DFHBMASB; 

GO TO SEND; 
END; 

8 EXEC CICS READ DATASET('FIlEA') 

308 CICS/VS APRM (el) 

INTOCFIlEA) 
RIDFlDCCUSTNOI); 



CUSTNO=CUSTNOI; 
PARTNO=PARTNOI; 

9 QUANTITY=QUANTIi 
TERMID=EIBTRMIDi 

Q WRITE: 
-10 EXEC CICS WRITEQ TD QUEUE('L860') 

11 IF WNG_MSG THEN DO; 

FROM(L860) 
LENGTH(22); 

EXEC CICS SEND MAP('XDFHPMK') MAPONLY ERASE; 
WNG MSG='O'B; 

END; -
ELSE 

12 EXEC CICS ISSUE ERASEAUP; 
GO TO RECEIVE; 

NOTFOUND: 
WNG_MSG='l'B; 

13 MSGIA=DFHBMASB; 
GO TO SEND; 

MAPFAIL: 
WNG_MSG='l'B; 
SUBSTReADDReXDFHPMKO)->CHSTR,I,STG(XDFHPMKO» 

=LOWeSTGeXDFHPMKO»i 
14 MSG2A=DFHBMASB; 

GO TO SEND; 
ERRORS: 

15 MSG20='TRANSACTION TERMINATED'; 
MSG2A=DFHBMBRY; 

ENDA: 

EXEC CICS SEND MAP('XDFHPMK'); 
EXEC CICS DUMP DUMPCODEC'ERRS'); 

16 EXEC CICS RETURN; 
END; 

PROGRAM NOTES 

1. The exit for the clear key is set up. 

2. The error exits are set up. 

3. The screen is erased and the map is 
displayed at the terminal. 

4. This command maps in the customer 
number, part number, and quantity. 

5. The input areas on the map have the 
modified data tag set on in case the 
fields need to be sent back for 
reinput, should an error occur in 
entering the data. 

6. The input is tested, and erroneous 
fields are brightened, whilst the 
modified data tag is still set on. 
The user should add further editing 
steps necessary to ensure only valid 
orders are accepted. . 

7. If there is a data error, the message 
'DATA ERROR - REENTER', having been 
stored on the screen with a dark 
attribute character, is brightened. 

8. The file control READ reads the 
record into a record area in order to 
find whether a particular record 
exists. 

9. The input from the map is moved to 
the queue area. 

lO. The transient data WRITEQ obtains a 
log area, and writes this record to a 
sequential file. 

11. If an error message is left on the 
screen, the screen is cleared and 
only the map is sent. 

12. The entered fields, having been 
mapped in and processed, are erased, 
and the screen is ready to receive 
more input. 

13. If the customer number entered was 
not found, the message 'NUMBER NOT 
FOUND - REENTER', having been stored 
on the screen with a dark attribute 
character, is brightened. 

14. If no fields were entered, the 
message 'DATA ERROR - REENTER', also 
having been stored on the screen with 
a dark attribute character, is 
brightened. 

15. On an error a dump is taken, and the 
message 'TRANSACTION TERMINATED' is 
moved to the top message area. 

16. The program ends. 

Appendix F. Sample Programs ePL/I) 309 



ORDER ENTRY QUEUE PRINT SAMPLE PROGRAM 
(PL/I) 

DESCRIPTION 

This transaction is invoked by entering 
the transaction-id 'PCOM' at the 
terminal. The program checks to see 
whether it was started from a terminal or 
the printer. If from a terminal, (that 
is, the operator is starting this 
transaction for the first time) the 
program starts the transaction at the 
printer in one hour. CThis time interval 
could bg changed using EDF for 
demonstration purposes.) The operator 
may then press RESET and CLEAR and enter 
another transaction. If from the 
printer, the program executes and starts 
again in one hour. If there are no items 
on theque~e, a message indicating that 
the queu~ is empty, is sent to the 
warehouse. The last communications with 
th~ warehouse occurs not later than 3 '0' 
clock. This transaction is also started 

'when the number of items on the queue 
'l860' reaches 30. 

SOURCE LISTING 

PCOM: PROC OPTIONSCMAIN); 
%INClUDE FIlEA; 
%INClUDE L860; 
%INClUDE XDFHPMl; 
DCl Q_lENGTH FIXED BIN(15); 
DCl 1 lOGORD, 

2 lOGTIME, 
3LDATE FIXED DECC7,0), 
3 lTIME FIXED DECe7,0), 

2 LITEM CHAR(22), 

The trigger lev~l may be changed using 
the CSMT command, as follows: 

CSMT TRIGGER,n,DESTID=l860 

where n is the destination trigger level 
Cany integer from 0 through 32767). 

This program reads items off the queue 
'l860', until the queue is empty. Should 
the queue have been empty initially, a 
message is sent to the warehouse. Using 
the number from the queue as a key it 
reads the file FIlEA, and checks the 
amount field to see if the customer is 
good for credit on this order. If he is, 
the number, name, address, part number and 
quantity are moved to the map XDFHPMl and 
this is sent to the printer. If he is 
not, the time,date,queue-item and a 
comment field are moved to a data area, 
this may be used for later processing. A 
message is then sent to the warehouse 
indicating that the queue is empty. The 
EIBTIME is then updated and if the time 
is before 1400 hours, the transaction is 
started in one hour. 

2 COMMENT CHARe1!) INITC'ORDER ENTRY'), 
2 FILLER CHAR(S!) INIT(' '); 

1 
2 

DCl CHSTR CHAR(256) BASED; 
EXEC CICS HANDLE CONDITION ERRORCERRORS) QZEROeENDA); 
IF EIBTRMID~='L860' THEN 

GO TO TIME; 
SUBSTR(ADDRCXDFHPMLO)->CHSTR,l,STGeXDFHPMlO» 

=LOWeSTGeXDFHPMlO»; 

Q_lENGTH=22; 
3 EXEC CICS READQ TO INTOCl860) lENGTHCQ lENGTH) QUEUE('l860'); 

MAP BUILD: -
4 EXEC CICS READ DATASETC'FILEA') INTOCFIlEA) RIDFLDCCUSTNO); 
5 IF AMOUNT>'$OlOO.OO' THEN DO; 

ADDRO=ADDRX; 
PARTO=PARTNO; 

6 NAMO=NAMEi 
NUMBO=CUSTNO; 
QUANTO=QUANTITY; 

7 EXEC eICS SEND MAPe'XDFHPMl') ERASE PRINT l80; 
GO TO Q READ; 

END; -
ELSE DO; 

lDATE=EIBDATE; 
8 LTIME=EIBTIME; 

LITEM=STRING(ITEM); 
9 EXEC CICS WRITEQ TD QUEUEC'lOGA') FROMCLOGORD) LENGTH(92); 

GO TO Q READ; 
END; -

310 CICS/VS APRM (Cl) 



ERRORS: 
10 EXEC CICS DUMP DUMPCODEC'ERRS'); 

GO TO FIN; 
ENDA: 

11 SUBSTRCADDRCXDFHPMLO)->CHSTR,I,STGCXDFHPMLO» 
=L~WCSTG(XDFHPMLO»; 

TITLEO='ORDER QUEUE IS EMPTY'; 
12 EXEC CICS SEND MAPC'XDFHPML') DATAONLY ERASE PRINT L80; 

EXEC CICS ASKTIMEi 
IF EIBTIME~>140000 THEN 

TIME: 
13 
14 
15 EXEC CICS START TRANSID('PCOM') INTERVAL(10000) 

TERMIDC'L860'); 
FIN: 

16 
ENDi 

EXEC CICS RETURN; 

PROGRAM NOTES 

1. The error exi ts are set up. 

2. The terminal-id is tested to see 
whether this transaction was started 
from a terminal or at the printer. 

3. The queue item is read into the 
program. 

4. The fi Ie control READ reads the 
record into a record area so that the 
amount may be checked. 

5. The amount is tested. 

6. If it is over $100, then the record 
on the queue is moved to the map 
XDFHPML. This test is only a 
suggestion; a suitable form of 
editing should be inserted to ensure 
val i d orders are sent to the 
warehouse. 

7. The map XDFHPML is sent to the 
printer. 

8. If the order is not val i d for thi s 
account, the record on the queue is 

moved to a data area, together with 
the terminal-;d associated with the 
ente~ing of this piece of data, the 
time, and date. 

9. The transient data WRITEQ obtains a 
log area, and , ... ri tes thi s record to a 
sequential file. 

10. On an error (notes 3, 4, 7, 9, 12, 
and 15) a dump is taken. 

11. When the queue ;s empty, a message is 
moved to the map area. 

12. The map is displayed on the screen. 

13. The current time-of-day clock is 
updated. 

14. The current time-of-day is tested. 

15. If the current time is not past 1400 
hours, the transaction ;s started 
again in one hour, at the warehouse 
printer. 

16. This routine ends. 

Appendix F. Sample Programs CPL/I) 311 



REPORT SAMPLE PROGRAM (PL/I) 

DESCRIPTION 

The report sample program produces a 
report that lists all entries in the data 
set 'FILEA' for which the amount entry is 
less than or equal to $50.00. 

The program illustrates page building 
techniques and the use of the terminal 
paging facilities of BMS. 

The transaction is invoked by entering 
the transaction code PREP. The program 
does a sequential scan through the file 
noting each entry that obeys the search 
criterion. The pages are built from four 
maps which comprise mapset XDFHPMD, using 

SOURCE LISTING 

REPORT: PROC OPTIONS(MAIN); 
DCl LOWLIM CHARCS) INITC'$0050.00'); 
DCL KEYNUM PIC'999999' INITCO)j 
DCL PAGEN PIC'999' INIT(1); 

the paging option so that the data is not 
displayed immediately but instead is 
stored for later retrieval. The HEADING 
map is inserted at the head of each page. 
The detail map (XDFHPMD) is written 
repeatedly until the overflow condition 
occurs. The FOOTING map is then written 
at the foot of the page and the HEADING 
map written at the top of the next page. 
The command to write the detail map that 
caused overflow is then repeated. When 
all the data has been written the FINAL 
map is written at the bottom of the last 
page and the transaction terminated. 

The terminal operator then enters paging 
commands to display the data, clearing 
the screen before entering each paging 
command. 

DCL OPINSTR CHAR(22) STATIC INIT('ENTER PAGING COMMANDS.'); 
DCL STRING CHAR(256) BASED; 
%INCLUDE XDFHPMD; 
%INCLUDE FIlEA; ~ 

1 EXEC CICS HANDLE CONDITION ERRORCERRORS) OVERFLOWCOFLOW) 
ENDFILECENDFILE); 

2 PAGENA=LOW(1)j 
PAGEHO=PAGEN; 

3 EXEC CICS SEND MAP('HEADING') MAPSETC'XDFHPMD') ACCUM PAGING ERASE; 
4 KEYNUM=O; 
5 EXEC CICS STARTBR DATASETC'FILEA') RIDFLDCKEYNUM); 

REPEAT: 
6 EXEC CICS READNEXT INTOCFILEA) DATASET('FILEA') RIDFLD(KEYNUM); 
7 IF STAT=HIGH(1) THEN GOTO REPEAT; 
8 IF AMOUNT<=LOWLIM THEN 

DO; 
SUBSTR(ADDR(XDFHPMDO)->STRING,1,STG(XDFHPMDO»= 

LOWCSTG(XDFHPMDO»; 
AMOUNTO=AMOUNT; 

9 NUMBERO=NUMB; 
NAMEO=NAME; 
GOTO SEND RECORD; 
OFLOW: -

10 EXEC CICS SEND MAP('FOOTING') MAPSETC'XDFHPMD') 

PAGEN=PAGEN+l; 
PAGENA=LOW(1); 
PAGENO=PAGEN; 

MAPONLY ACCUM PAGING; 

11 EXEC CICS SEND MAP('HEADING') MAPSETC'XDFHPMD') 
ACCUM PAGING ERASE; 

SEND_RECORD: 
12 EXEC CICS SEND MAP('XDFHPMD') MAPSET('XDFHPMD') ACCUM PAGING; 

END; 
GOTO REPEAT; 

ENDFILE: 
13 EXEC CICS SEND MAP('FINAL') MAPSET('XDFHPMD') MAPONLY ACCUM PAGING; 
14 EXEC CICS SEND PAGE; 
15 EXEC CICS SEND TEXT FROM(OPINSTR) ERASE; 
16 EXEC CICS ENDBR DATASET('FILEA'); 
17 EXEC CICS RETURN; 

ERRORS: 

312 CICS/VS APRM (el) 



18 EXEC CICS HANDLE CONDITION ERROR; 
19 EXEC CICS PURGE MESSAGE; 
20 EXEC CICS ABEND ABCODEC'ERRS'); 

END; 

PROGRAM NOTES 

1. The program exits are set up. 

2. The attribute byte for the page 
number is cleared. 

3. This BMS request sets up the heading 
in the page build operation. 

4. The initial key value is set up for 
the START BROWSE command. 

5. This command starts the browse 
through the file, at a record whose 
key ;s equal to or greater than that 
specified. 

6. This command reads the next record on 
the file into the file area. 

7. If the record is coded as deleted, it 
is treated as not found. 

8. The search criterion for creating the 
report is that the customer has less 
than or equal to $50. 

9. Fields are moved from the file area 
to the map area. 

10. The BMS request sets up the footing 
in the page build operation. 

11. The BMS request sets up the heading 
in the page build operation. 

12. The customer detail map is set up. 

13. When the END OF FILE condition is 
raised, the last map is built. 

14. The page is sent to the terminal 
operator. 

15. A message is sent to the terminal. 

16. The BROWSE operation is ended. 

17. The program ends. 

18. On an error, the label to branch to 
on the ERROR condition is reset. 

19. Any pages waiting to be displayed at 
the terminal are purged. 

20. The program raises an abend 
condition, a dump is taken and the 
program ends. 

Appendix F. Sample Programs (PL/I) 313 



SAMPLE MAPS AND SCREEN LAYOUTS FOR PL/I SAMPLE PROGRAMS 

XDFHPMA MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, * 
STORAGE=AUTO,EXTATT=MAPONLY,COLOR=BLUE 

XDFHPMA DFHMDI SIZE=(12,40) 
DFHMDF POS=(I,IO),LENGTH=21,INITIAL='OPERATOR INSTRUCTIONS', * 

HILIGHT=UNDERLINE 
DFHMDF POS=(3,1),lENGTH=29,IHITIAl='OPERATOR IHSTR - ENTER .PMH* 

U' 
DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER PIN* 

Q AND NUMBER' 
DFHMDF POS=(5,1),LENGTH=38,INITIAL='FILE BROWSE - ENTER PBR* 

W AND NUMBER' 
DFHMDF POS=(6,1),LENGTH=38,INITIAL='FILE ADD - ENTER PAD* 

D AND NUMBER' 
DFHMDF POS=(7,1),LENGTH=38,INITIAL='FILE UPDATE - ENTER PUP* 

D AND NUMBER' 
MSG DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS PAl TO PRINT--PRESS* 

CLEAR TO EXIT' 
DFHMDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION:' 
DFHMDF POS=(12,20),LENGTH=4,ATTRB=IC,COLOR=GREEN, * 

HILIGHT=REVERSE 
DFHMDF POS=(12,2S),LENGTH=6,INITIAL='NUMBER' 

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COlOR=GREEN, * 
HILIGHT=REVERSE 

DFHMDF POS=(12,39),lENGTH=1 
DFHMSD TYPE=FINAL 
END 

XDFHPMA SCREEN LAYOUT 

+OPERATOR INSTRUCTIONS 

+OPERATOR INSTR - ENTER PMHU 
+FILE INQUIRY - ENTER PIHQ AND NUMBER 
+FILE BROWSE - ENTER PBRW AND NUMBER 
+FILE ADD - ENTER PADD AND NUMBER 
+FILE UPDATE - ENTER PUPD AND NUMBER 

+PRESS PAl TO PRINT--PRESS CLEAR TO EXIT 
+ENTER TRAHSACTION:+XXXX+HUMBER+XXXXXX+ 

314 CICS/VS APRM (el) 



XDFHPMB MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, * 
STORAGE=AUTO,EXTATT=MAPONLY 

XDFHPMB DFHMDI SIZE=(12,40) 
TITLE DFHMDF POS=(l,15),LEHGTH=12 

DFHMDF POS=(3,1),LENGTH=8,INITIAL='HUMBER:',COLOR=BLUE 
NUMB DFHMDF POS=(3,lO),LEHGTH=6 

DFHMDF POS=(3,17),LEHGTH=1 
DFHMDF POS~(4,1),LENGTH=8,INITIAL='HAME: ',COLOR=BLUE 

NAME DFHMDF POS=(4,lO),LENGTH=20,ATTRB=(UNPROT,IC) 
DFHMDF POS=(4,31),LENGTH=1 
DFHMDF POS=(5,1),LEHGTH=8,INITIAL='ADDRESS:',COLOR=BLUE 

ADDR DFHMDF POS=(5,lO),LENGTH=20,ATTRB=UNPROT 
DFHMDF POS=(S,31),LENGTH=1 
DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE 

PHONE DFHMDF POS=(6,lO),LENGTH=8,ATTRB=UNPROT 
DFHMDF POS=(6,19),LEHGTH=1 
DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATE: ',COLOR=BLUE 

DATE DFHMDF POS=(7,lO),LENGTH=8,ATTRB=UNPROT 
DFHMDFPOS=(7,19),LENGTH=1 
DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE 

AMOUNT DFHMDF POS=(S,10),LENGTH=8,ATTRB=NUM 
DFHMDF POS=C8,19),LENGTH=1 
DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENT:',COLOR=BLUE 

COMMENT DFHMDF POS=(9,lO),LENGTH=9,ATTRB=UNPROT 
DFHMDF POS=(9,20),LEHGTH=1 

MSGl DFHMDF POS=(11,1),LENGTH=39 
MSG3 DFHMDF POS=(12,1),LEHGTH=39 

DFHMSD TYPE=FINAL 
END 

XDFHPMB SCREEN LAYOUT 

+XXXXXXXXXXXX 

+NUMBER: +XXXXXX+ 
+HAME: +XXXXXXXXXXXXXXXXXXXX+ 
+ADDRESS:+XXXXXXXXXXXXXXXXXXXX+ 
+PHONE: +XXXXXXXX+ 
+DATE: +XXXXXXXX+ 
+AMOUHT: +XXXXXXXX+ 
+COMMEHT:+XXXXXXXXX+ 

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Append~x F. Sample Programs CPL/I) 315 



XDFHPMC MAP DEFINITION 

MAPSET 

XDFHPMC 
DIR 

NUMBERl 
NAMEI 
AMOUNTl 
NUMBER2 
NAME2 
AMOUNT2 
NUMBER3 
NAME3 
AMOUNT3 
NUMBER4 
NAME4 
AMOUNT4 
MSGI 

MSG2 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET),lANG=PlI, * 
STORAGE=AUTO,EXTATT=MAPONlY 

DFHMDI SIZE=(12,40) 
DFHMDF POS=(l,l),lENGTH=l,ATTRB=IC 
DFHMDF POS=(1,3),lENGTH=1 
DFHMDF POS=(l,IS),lENGTH=ll,INITIAl='FIlE BROWSE', * 

HIlIGHT=UNDERLINE,COLOR=BlUE 
DFHMDF POS=(3,1),LEHGTH=6,INITIAl='NUMBER',COlOR=BLUE 
DFHMDF POS=(3,17),lENGTH=4,INITIAl='NAME',COlOR=BlUE 
DFHMDF POS=(3,32),lENGTH=6,INITIAl='AMOUNT',COLOR=BlUE 
DFHMDF POS=(4,1),lENGTH=6 
DFHMDF POS=(4,9),LENGTH=20 
DFHMDF POS=(4,30),lEHGTH=8 
DFHMDF POS=(S,1),lENGTH=6 
DFHMDF POS=(S,9),lENGTH=20 
DFHMDF POS=(S,30),lENGTH=8 
DFHMDF POS=(6,1),lENGTH=6 
DFHMDF POS=(6,9),lENGTH=20 
DFHMDF POS=(6,30),lENGTH=8 
DFHMDF POS=(7,1),LENGTH=6 
DFHMDF POS=(7,9),lENGTH=20 
DFHMDF POS=(7,30),lENGTH=8 
DFHMDF POS=(11,1),lENGTH=39, * 

INITIAl='PRESS PFI OR TYPE F TO PAGE FORWARD' 
DFHMDF POS=(12,1),lENGTH=39, * 

INITIAl='PRESS PF2 OR TYPE B TO PAGE BACKWARD' 
DFHMSD TYPE=FINAl 
END 

XDFHPMC SCREEN LAYOUT 

+FllE BROWSE 

+NUMBER +NAME +AMOUNT 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX 

+PRESS PFI OR TYPE F TO PAGE FORWARD 
+PRESS PF2 OR TYPE B TO PAGE BACKWARD 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

316 CICS/VS APRM (Cl) 



XDFHPMD HAP DEFINITION 

MAPSET 

XDFHPMD 
NUMBER 
NAME 
AMOUNT 
HEADING 

PAGEN 

FOOTING 

FINAL 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), 
LANG=PlI,STORAGE=AUTO,EXTATT=MAPONLY,COLOR=BLUE 

DFHMDI SIZE=(1,40),COLOR=GREEN 
DFHMDF POS=(1,1),LENGTH=6 
DFHMDF POS=(1,9),LENGTH=20 
DFHMDF POS=(1,30),LENGTH=8 
DFHMDI SIZE=(3,40),HEADER=YES 
DFHMDF POS=(1,S),LENGTH=18,INITIAL='LOW BALANCE REPORT', 

HILIGHT=UNDERLINE 
DFHMDF POS=(1,30),LEHGTH=4,INITIAL='PAGE' 
DFHMDF POS=(1,35),LEHGTH=3 
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER' 
DFHMDF POS=(3,17),LEHGTH=4,INITIAL='NAME' 
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT' 
DFHMDI SIZE=(Z,40),TRAILER=YES,JUSTIFY=LAST 
DFHMDF POS=(2,lO),LEHGTH=25, 

INITIAL='CONTINUED ON NEXT PAGE ... ' 
DFHMDI SIZE=(Z,40),TRAILER=YES,JUSTIFY=LAST 
DFHMDF POS=(2,10),LENGTH=14,INITIAL='END OF REPORT.' 
DFHMSD TYPE=FINAL 
END 

XDFHPMD SCREEN LAYOUT 

LOW BALANCE REPORT PAGE XXX 

NUMBER NAME AMOUNT 
XXX XXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXX XXX XX 

(REPEAT TOTAL OF 19 TIMES) 
XXX XXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

CONTINUED ON NEXT PAGE ... 

Appendix F. Sample Programs CPL/I) 317 



XDFHPMK MAP DEFINITION 

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB), * 
TIOAPFX=YES,lANG=PlI,STORAGE=AUTO,EXTATT=MAPONlY 

XDFHPMK DFHMDI SIZE=(12,40) 
DFHMDF POS=(Ol,lO),lENGTH=11,ATTRB=(BRT,ASKIP), * 

INITIAL='ORDER ENTRY',COlOR=BLUE,HILIGHT=UNDERLINE 
MSGI DFHMDF POS=(03,04),LENGTH=26,ATTRB=(DRK,ASKIP), * 

INITIAL='NUMBER NOT FOUND - REENTER',COLOR=RED, * 
HIlIGHT=BLINK 

MSG2 DFHMDF POS=(04,04),LENGTH=22,ATTRB=(DRK,ASKIP), * 
INITIAl='DATA ERROR - REENTER',COlOR=RED, * 
HIlIGHT=BLINK 

DFHMDF POS=(05,04),LENGTH=09,ATTRB=PROT, * 
INITIAL='NUMBER :' 

CUSTNO DFHMDF POS=(05,14),lENGTH=06,ATTRB=(IC,NUM) 
DFHMDF POS=(05,21),lENGTH=Ol 
DFHMDF POS=(06,04),lEHGTH=09,ATTRB=PROT,COlOR=BlUE, 

INITIAL='PART NO :' 
PARTNO DFHMDF POS=(06,14),lENGTH=06,ATTRB=NUM 

DFHMDF POS=(06,21),lENGTH=Ol 
DFHMDF POS=(07,04),LENGTH=09,ATTRB=PROT,COLOR=BlUE, 

INITIAL='QUANTITY;' 
QUANT DFHMDF POS=(07,14),lENGTH=06,ATTRB=NUM 

DFHMDF POS=(07,21),lENGTH=OI 
DFHMDF POS=(09,Ol),lENGTH=38,ATTRB=ASKIP,COLOR=BlUE, 

INITIAL='PRESS ENTER TO CONTINUE, CLEAR TO QUIT' 
DFHMSD TYPE=FINAL 
END 

XDFHPHK SCREEN LAYOUT 

+ORDER ENTRY 

+NUMBER NOT FOUND - REENTER 
+DATA ERROR - REENTER 
+NUMBER :+XXXXXX+ 
+PART NO :+XXXXXX+ 
+QUANTITY:+XXXXXX+ 

+PRESS ENTER TO CONTINUE, CLEAR TO QUIT 

318 CICS/VS APRM (CL) 



XDFHPML MAP DEFINITION 

MAPSET 

XDFHPMl 
TITLE 

NUMB 
HAM 
ADDR 

PART 

QUANT 

DFHMSD TYPE=&SYSPARM,MODE=OUT, 
TIOAPFX=YES,lANG=PlI,STORAGE=AUTO 

DFHMDI SIZE=(05,80) 
DFHMDF POS=(Ol,Ol),lENGTH=43, 

INITIAl='NUMBER NAME 
DFHMDF POS=(02,Ol),lENGTH=06 
DFHMDF POS=(02,12),LENGTH=20 
DFHMDF POS=(02,37),lENGTH=20 
DFHMDF POS=(03,Ol),LENGTH=09, 

INITIAl='PART NO :' 
DFHMDF POS=(03,11),lENGTH=06 
DFHMDF POS=(04,Ol),lENGTH=09, 

INITIAL='QUANTITY:' 
DFHMDF POS=(04,11),LENGTH=06 
DFHMDF POS=(05,Ol),LENGTH=1, 

INITIAl=' , 
DFHMSD TYPE=FINAl 
END 

XDFHPML PRINT FORMAT 

+NUMBER NAME 
+xxxxxx +xxxxxxxxxxxxxxxxxxxx 
+PART NO:+xxxxxx 
+QUANTITY:+xxxxxx 
+x 

ADDRESS 
+xxxxxxxxxxxxxxxxxxxx 

ADDRESS' 

Appendix F. Sample Programs (Pl/I) 319 



ADDITIONS TO TABLES FOR PL/I SAMPLE 
PROGRAMS 

, PPT 

The followi ng entri as were made for the 
sample maps: 

DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMA 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMB 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMC 
DFH~PT TYPE=EHTRY,PROGRAM=XDFHPMD 
DFHPPT TYPE=EHTRY,PROGRAM=XDFHPMK 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMl 

The following entries were made for the 
sample programs: 

DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMHU 
,PGMlAHG=Pl/I 

DFHPPT TYPE=ENTRY,PROGRAM=XDFHPAll 
,PGMlAHG=Pl/I 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHPBRW 
,PGMlANG=Pl/I 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHPORD 
,PGMlAHG=Pl/I 

DFHPPT TYPE=EHTRY,PROGRAM=XDFHPCOM 
,PGMlAHG=Pl/I 

DFHPPT TYPE=ENTRY,PROGRAM=XDFHPREP 
,PGMlAHG=Pl/I 

PCT 

The following entries were made for the 
sample programs: 

DFHPCT TYPE=ENTRY,TRANSID=PMNU 
,PROGRAM=XDFHPMNU 

DFHPCT TYPE=ENTRY,TRANSID=PINQ 
,PROGRAM=XDFHPAll 

DFHPCT TYPE=EHTRY,TRANSID=PADD 
,PROGRAM=XDFHPAll 

DFHPCT TYPE=ENTRY,TRANSID=PUPD 
,PROGRAM=XDFHPALl 

DFHPCT TYPE=ENTRY,TRANSID=PBRW 
,PROGRAM=XDFHPBRW 

DFHPCT TYPE=ENTRY,TRANSID=PORD 
,PROGRAM=XDFHPORD 

DFHPCT TYPE=ENTRY,TRAHSID=PCOM 
,PROGRAM=XDFHPCOM 

DFHPCT TYPE=ENTRY,TRANSID=PREP 
,PROGRAM=XDFHPREP 

OCT 

The following entry was made: 

DFHDCT TYPE=INTRA,DESTID=l860 
,TRIGlEV=30,TRANSID=PCOM 
,DESTFAC=TERMINAl 

320 CICS/VS APRM (Cl) 

RECORD DESCRIPTIONS FOR THE PL/I SAMPLE 
PROGRAMS 

FILEA RECORD DESCRIPTION 

The FIlEA record description is used by 
the sample programs and is of the 
following format: 

DCl 1 FILEA, 
2 FIlEREC, 

3 STAT CHAR(l), 
3 NUMB PIC'(6)9', 
3 NAME CHAR(20), 
3 ADDRX CHAR(20), 
3 PHONE CHAR(S), 
3 DATEX CHAR(S), 
3 AMOUNT CHAR(S), 
3 COMMENT CHAR(9); 

LOGA RECORD DESCRIPTION 

The lOGA record description is used by 
the sample programs when an audit trail 
i s l.J r itt en to a t ran s i en t da t a f i 1 e . It 
has the following format: 

DCl ! lOGA, 
2 lOGHDR, 

3 LDAY FIXED DEC (7,0), 
3 LTIME FIXED DEC (7,0), 
3 lTERML CHAR(4), 

2 LOGREC, 
3 LSTAT CHAR(!), 
3 lNUMB CHAR(6), 
3 lNAME CHAR(20), 
3 LADDR CHAR(20), 
3 LPHONE CHAR(S), 
3 lDATE CHAR(S), 
3 lAMOUNT CHAR(S), 
3 lCOMMENT CHAR(9); 

L860 RECORD DESCRIPTION 

The lS60 record description is used by 
the Order Entry Queue Print sample 
program when it writes to the transient 
data queue 'lS60'. It has the following 
format: 

DCl 1 lS60, 
2 ITEM, 

3 CUSTNO CHAR(6), 
3 PART NO CHAR(6), 
3 QUANTITY CHAR(6), 
3 TERMID CHAR(4); 



Appendix G. Sample Programs for Distributed Transaction Processing 

This appendix consists of sample CICS/VS 
application programs written in the 
assembler language illustrating 
distributed transaction processing 
between two CICS/VS systems, and between 
a CICS/VS system and an IMS/VS system. 

Distributed transaction processing (DTP) 
allows transactions to be distributed to 
other CICS/VS (or similar) systems for 
processing. DTP provides the ability to 
distribute not only the resources, but 
also the processing of different parts of 
an application program, to the most 
appropriate places in the user network. 

Commands are provided to allow a 
transaction in one system to initiate and 
converse with transactions in other 
systems in the network. Since one 
transaction exists before the 
conversation takes place, and since the 
other transaction is created by the 
conversation, there is a clear direction 
associated with each conversation. 

The transaction that initiates the 
c6nversation is called the "front-end" 
transaction; the transaction created by 
the conversati on is called the "back-end" 
transaction. 

Transaction processing can be 
distributed between two systems 
irrespective of the number of sessions 

that exist between them. If more than 
one session exists, both user functions 
and CICS/VS functions can be distributed 
at the same time. However, if only a 
single session exists only one or the 
other type of function can be 
distributed. 

A CICS/VS system can be connected either 
to another CICS/VS system, tir to the IBM 
Information Management System (IMS/DC). 
These connections are made by logical 
unit type 6 (LU6) protocols. 

Distributed transaction processing is 
controlled by the terminal control 
commands ALLOCATE, FREE, BUILD ATTACH, 
EXTRACT ATTACH, and POINT. 

Further information about the SNA flows 
that take place between transactions is 
given in the CICS/VS System/Application 
,Pesign Guide. 

There are four sample programs, as 
follows: 

• 
• 
• 

• 

CICS to CICS Synchronous 

CICS to CICS (or other) Synchronous 

CICS to CICS Conversation 
(Synchronous) 

CICS to Other (Synchronous) 

Appendix G. Sample Programs for Distributed Transaction Processing 321 



CICS TO CICS SYNCHRONOUS SAMPLE PROGRAM 

DESCRIPTION 

This sample is activated with the 
transaction code 'AIBL'. 

The purpose of this first sample is to 
illustrate how an existing application 
program 1 which runs on a single system 
onlYI can be recoded so as to allow for 
part of the processing to be performed on 
a second remote system. The sample 
provided is based upon the existing File 
Browse sample application - transaction 
code ABRW - with which the user is 
assumed to be familiar and which is 
described in "Appendix D. Sample Programs 
(Assembler Language)" on page 251. 

In this examplel the first program 
handles only the interaction with the 
terminal operator; the file to be read is 
on the remote system and is accessed by a 
second transaction on that system. The 
operator enters the key only of the 
record at which browsing is to startl and 
thi s key, together wi th the name of the 
remote transaction is all that is sent 

SOURCE LISTING OF LOCAL USER TRANSACTION 

DSECT 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

CL4 
H 
CL320 
CLSO 
OCL11 
OCL14 
CL5 
OCL24 
CL6 
CL6 
CL6 

across the link. The remote transaction 
now reads four file records and transmits 
them back to the originating system, 
where they are unblocked and moved to the 
output map. 

As soon as it has transmitted four 
records, or sent an error or end-of-file 
message, the remote program terminates; 
the session must be freed, possibly to be 
reallocated again later, by the local 
program. 

For simplicity, the use of the operator 
instruction menu - AMNU - has been 
avoided. The sample takes as input the 
transaction code plus data only. 

The remote transaction name plus data is 
all that is passed across the link; no 
attach header is needed since, by 
default, CICS will assume that the first 
field in the data received represents the 
transaction name. 

To illustrate the ease with which an 
existing application program can be 
'converted' to handle Distributed 
Transaction Processing, comments are 
provided for the changed code only. 

DFHEISTG 
ATCHSESS 
INLEN 
INAREA 
MESSAGES 
OUTDATA 
INDATA 
TRAN 
KEYS 
FLDA 
FlDS 
FlDC 
FlDD 
HEXZERO DS 

COPY 

CL6 
X'OO' 
XDFHAIB 
DFHXFILE 
DFHBMSCA 

CONSTANT FOR CLEARING MAPS 
DISPLAY MAP 

COpy 
COpy 

XDFHAIBL CSECT 

FILE RECORD DESCRIPTION 
BMS ATTRIBUTE BYTES 

MVI KEYS,X'FO' INSERT '0' INTO TOP BYTE OF KEYS 
MVC KEYS+1CL'KEYS-l),KEYS INITIALIZE KEYS TO ZERO 
MVI MESSAGES,X'40' INSERT ' , INTO TOP BYTE OF MESSAGES 
MVC MESSAGES+1(L'MESSAGES-l),MESSAGES CLEAR MESSAGES FIELD 

********************************************************************** 
* * 

1 EXEC CICS HANDLE CONDITION ERRORCERRORS)MAPFAILCAMNU) 
MVC INlEN,=H'14' 

2 EXEC CICS RECEIVE INTOCINDATA) LENGTHCINLEN) 
3 EXEC CICS HANDLE AID CLEARCQUIT) 

PFI (PAGEF) PF2 (PAGES) 
4 MVC TRAN,=CL5'AIBR' REMOTE TRANSACTION NAME. 

PAGEF DS OH 
MVC INLEN,=H'326' 4 X SO BYTE RECORDS PLUS FLDA. 

5 EXEC CICS ALLOCATE SYSID('REMl') 
MVC ATCHSESS,EISRSRCE 

6 EXEC CICS CONVERSE SESSIONCATCHSESS) FROMlENGTHC=H'll') * FROMCOUTDATA) TOLENGTHCINlEN) INTOCINAREA) 
LA 5,INAREA 

322 CICS/VS APRM Cel) 



MVC FLOA,0(5) LAST KEY READ 
LA 5,6(5) 

7 USING FILEA,5 
8 EXEC CICS FREE SESSIONCATCHSESS) 

* * ********************************************************************** MVC FLDD,FlDC 
MVC FLDC,FLDB 
MVC FLOB,FLDA 

BUILD DS OH 
LA 4,1 SET COUNTER TO 1 
LA 6,XDFHAMCO R6->START OF MAP XOFHAMC 
LA 7,(XDFHAMCE-XDFHAMCO) R7 CONTAINS LENGTH OF XOFHAMC 
LA 8,HEXZERO R8-> X'OO' 
LA 9,L'HEXZERO R9 CONTAINS LENGTH OF HEXZERO 
ICM 9,B'100',HEXZERO X'OO' INTO TOP BYTE OF R9 
MVCL 6,8 MOVE X'OO' INTO XOFHAMCO 

********************************************************************** 
* * 9 LH 9,INLEN 

OH 
9,=H'80' 

PICK UP INPUT DATA LENGTH 

< 80 BYTES RECEIVED ? 
NEXTLIN DS 

10 CH 

********************************************************************** 
BL NOTFOUND .. YES, ERROR MESSAGE. 
CH 4,=H'1' FIRST LINE? 
BNE SECLIN .. NO, GO TEST FOR 2ND LINE 
MVC NUMBERIO,NUMB MOVE NUMBER TO MAP AREA 
MVC NAMEIO,NAME MOVE NAME TO MAP AREA 
MVC AMOUNT10,AMOUNT MOVE AMOUNT TO MAP AREA 
B CONT GO CONTINUE 

SECLIN CH 4,=H'2' SECOND LINE? 
BNE THRLIN .. NO, GO TEST FOR THIRD LINE 
MVC NUMBER20,NUMB MOVE NUMBER TO MAP AREA 
MVC NAME20,NAME MOVE NAME TO MAP AREA 
MVC AMOUNT20,AMOUNT MOVE AMOUNT TO MAP AREA 
B CONT GO CONTINUE 

THRLIN CH 4,=H'3' THIRD LINE? 
BNE FORLIN .. NO, GO TEST FOR FOURTH LINE 
MVC NUMDER30,NUMB MOVE NUMBER TO MAP AREA 
MVC NAME30,NAME MOVE NAME TO MAP AREA 
MVC AMOUNT30,AMOUNT MOVE AMOUNT TO MAP AREA 
B CONT GO CONTINUE 

FORLIN CH 4,=H'4' FOURTH LINE? 
BNE CONT .. NO, CONTINUE 
MVC NUMBER40,NUMB MOVE NUMBER TO MAP AREA 
MVC NAME40,NAME MOVE NAME TO MAP AREA 
MVC AMOUHT40,AMOUNT MOVE AMOUNT TO MAP AREA 

CONT DS OH 
LA 4,1(,4) INCREMENT COUNT 

********************************************************************** 
* * 11 LA 5,80(,5) INCREMENT RECORD POINTER 

SH 9,=H'80' REDUCE LENGTH. 
* * ********************************************************************** 

CH 4,=H'5' FINISHED? 
BNE NEXTLIN .. NO, GO BUILD NEXT LINE 

OISPREC OS OH .. YES, SEND MAP 

REPEAT 

PAGEB 

EXEC CICS SEND MAP('XDFHAMC') ERASE 
DS OH 
EXEC CICS RECEIVE 
CLI OIRI,C'F' 
BE PAGEF 
CLI DIRI,C'B' 
BE PAGEB 
BNE AMNU 
DS OH 

MAPC'XDFHAMC') 
PAGE FORWARD REQUIRED? 
.. YES, GO TO PAGEFORWARD ROUTINE 
PAGE BACK REQUIRED? 
.. YES, GO TO PAGEBACKWARO ROUTINE 
.. NO, GO SEND MENU MAP 

CLC FLDC(6),=C'OOOOOO' 
PAGE FORWARD ROUTINE 
FLDC = ZEROS? 

BE TOOFAR 
MVC FLOA,FLOC 
MVC FLDB,FLDC 
MVC FLDC,FLDD 

.. YES, SO RAISE TOO FAR CONDITION 

.• NO, SET UP KEYS FOR FILE 

Appendix G. Sample Programs for Distributed Transaction Processing 323 



MVC FLDD,=C'OOOOOO' 
B BUILD GO BUILD MAP 

TOOFAR DS OH GONE TOO FAR 
MVI MSGIA,DFHBMBRY BRIGHTEN MESSAGE 
MVI MSG2A,DFHBMDAR DARKEN MESSAGE 
EXEC CICS SEND MAP('XDFHAMC') DATAONLY 
B REPEAT GO GET MAP 

NOT FOUND DS OH 
******~*************************************************************** 
* * BCTR 9,0 

12 EX 9,MOVEMSG MOVE MESSAGE TO MAP. 

* * ********************************************************************** 
B A~1NU 

MOVEMSG MVC MESSAGES(O),O(S) 
ERRORS DS OH GENERAL ERROR ROUTINE 

EXEC eICS DUMP DUMPCODEC'ERRS') 
MVC MESSAGES,=Cl(l'MESSAGES)'TRANSACTION TERMINATED' 

AMNU DS OH END ROUTIKE 
********************************************************************** 
* * MVI MSGIA,DFHBMBRY BRIGHTEN MESSAGE FIELD 

MVC MSGIO,MESSAGES MOVE MESSAGES TO MAP AREA 
13 EXEC CICS SEND MAPC'XDFHAMC') ERASE 

* * ********************************************************************** 
QUIT DS OH 

EXEC eICS RETURN 
END 

PROGRAf1 NOTES 

1. The exit addresses to handle 
End-of-Fi Ie and Not-Found are moved 
to the remote program. 

2. The local program reads in the 
transaction code followed by the key 
at which the browsing is to be 
started. -The read is from an 
unformatted screen. 

3. The action when the operator presses 
the CLEAR key has been changed to 
cause the program to exit 
immediately. 

4. The name of the remote transaction 
which performs the file reading is 
moved into the data area which will 
be shipped across the link. 

5. A session must now be established 
with the remote system. (The name of 
the remote system is here assumed to 
be 'REMl'; this name is installation 
dependent, and will be assigned by 
the system programmer). The session 
is created by issuing the ALLOCATE 
command specifying only the remote 
system name; the name of the 
allocated session is required by the 
application program only in so far as 
it is used in all subsequent 
SEND/RECEIVE commands, and it can be 
found in field EIBRSRCE immediately 
after completion of the ALLOCATE. 

6. A CONVERSE command - which comprises 
both a SEND and RECEIVE - is issued 
to transmit the remote transaction 

324 eICS/VS APRM (CL) 

name and key to the system here 
defi ned as 'REM!'. (Thi s name is of 
course installation dependent, and 
will be assigned by the system 
programmer). Otherwise, the command 
options are unchanged from their 
usage in CICS/VS Release 1.4. It 
should also be noted that the 
CONVERSE command utilizes the INTO 
option as opposed to SET; this is 
essential because the FREE SYSID 
command whi ch- follows causes all 
storage associated with the session, 
for example the TIOA, to be released 
immediately and thus become 
unavailable to the user program. 
With the INTO option being coded, the 
received data is moved into user 
storage wher'e it rema ins under the 
control of the program. If the FREE 
SYSID were to be omitted, either INTO 
or SET could be used; the latter 
would normally be preferable for 
improved performance. 

7. Addressability for the file records 
which will be returned to this 
program is provided using the file 
record descriptor FILEA. Note that 
the first six bytes of the received 
data contain the key of the last 
record read by the remote program. 

S. A session to the remote system 'REM!' 
will have been allocated 
automatically by CICS/VS when the 
CONVERSE command was executed. This 
session is now freed to enable it to 
be reused by another application. 
Execution of a further CONVERSE will 
cause a session to be reestablished. 



If ~t ~s des~red to maintain the 
sessi on unt i 1 the appl i c.:tt ~ on 
ter'minates, th~ FREE con.tlland should 
be omitted entirely, but in this case 
the remote program must itself keep 
the session open by issuing a 
CONVERSE in place of its SEND and 
RECEIVE commands. 

9. The total length of the returned 
records is held in INLEN. 

10. If the length of the buffer remaining 
is less than 80 bytes long, assume a 

SOURCE LISTING OF REMOTE USER TRANSACTION 

DFHEISTG 
IHLEN 
OUTlENG 
INPUT 
TRAN 
FlDA 
OUTBUF 

DSECT 
DS 
DS 
DS 
DS 
DS 

H 
H 
OCll1 
CLS 

message, rather than a f~ Ie record, 
has been received. 

11. The buffer pointer is incremented to 
address the next record and the 
length rema~ning value reduced. 

12. Whatever warning message has been 
sent by the remote program is now 
transferred to the BMS map. 

13. The message L-Ji 11 appear on the fi Ie 
record detail display rather than the 
operator instruction menu. 

DS 
COpy 

CL6 
CL320 
DFHXFILE FILE RECORD DESCRIPTION 

XDFtiAIBR CSECT 
EXEC CICS HANDLE CONDITION ENDFILECENDFILE) NOTFNDCNOTFOUND) 

********************************************************************** 
* * MVC INLEN,=H'11' LENGTH OF INPUT DATA. 

I EXEC CICS RECEIVE INTOCINPUT) lENGTH(INLEN) 
********************************************************************** 

EXEC CICS STARTBR DATASETC'FILEA') RIDFLDCFlDA) 
SET4 DS OH 

LA 4,1 SET COUNTER TO 1 
********************************************~************************* 
* * LA S,OUTBUF ADDRESS OUTPUT BUFFER. 

USING FIlEA,5 
NEXTlIN DS OH 

2 EXEC CICS READNEXT INTOCFILEA) DATASETC'FILEA') RIDFLDCFLDA) 
********************************************************************** 

ClI STAT,X'FF' IS RECORD ,CODED AS NOT FOUND 
BE NEXTLIN .. YES, SET UP NEXT lINE 
LA 4,lC,4) INCREMENT COUNT 
lA S,80(,5) INCREMENT BUFFER POINTER 
CH 4,=H'5' FINISHED? 
BNE NEXTlIN .• NO, GO BUILD NEXT lINE 

DISPREC OS OH .. YES, SEND MAP 
********************************************************************** 
* * 3 LA 4,OUTBUF 

SR 5,4 NO. OF BYTES TO BE SENT 
STH S,OUTLENG 

********************************************************************** 
B RETURN 

ENDFILE OS OH EHDFILE IS REACHED 
********************************************************************** 

4 MVC O(11,5),=Clll'END OF FILE' MESSAGE 
LA 5,11C,S) 
B DISPREC GO SEND MAP 

NOT FOUND DS OH 
MVC 0(29,S),=CL29'INVALID NUMBER-PLEASE REENTER' 
LA 5,29(,S) 

********************************************************************** 
B DISPREC 

RETURN DS OH 
S EXEC CICS SEND FROMCFLDA) LENGTH(OUTLENG) WAIT LAST 

EXEC CICS RETURN 
END 

Appendix G. Sample Programs for Distributed Transaction Processing 32S 



PROGRAM NOTES 

1. The transaction name and record key 
an:! received. 

2. A record is read di r'ect into the 
output buffer for transmission. 

3. The length of the data to be sent is 
now calculated. 

4. Any warning messages needed are sent 
to the output buffer and the length 
of the data is increased accordingly. 

326 CI CS/VS APRM C Cl) 

5. The records are return~d across the 
link and the program ends, thereby 
automatically freeing its session. 
Should the originating sample be 
amended to cause repeated invocation 
of this program, these last two 
instructions could be replaced by, 
for example: 

EXEC CICS CONVERSE FROMCOUTBUF) 
FROMlENGTH(OUTlENG) 
INTO(INPUT) TOlENGTH(INlEN) 

B SET4 



CICS TO CICS (OR OTHER) SYNCHRONOUS 
SAt1PLE PROGRAM 

DESCRIPTION 

This sample is activated with the 
transaction code 'AICC'. 

The CICS to CICS synchronous sample 
application program allows a terminal 
operator to enter a command on the screen 
and have that command transmitted to a 
remote system for execution. I'f 
necessary, the remote system responds 
with a request for further details, and 
the operator is given the opportunity of 
replying. 

The program is able to converse with any 
application on a remote system which 
sends output data either one line at a 
time or in multiple line format. The 
CICS supplied programs listed below have 
this capability, thus the main purpose of 
this example is to provide for the CICS 
system programmer a simple test 
transaction which will enable him to 
prove easily that he is able to establish 
contact with a second, remote CICS system 

wi thout the need for any appl i cat ion 
program coding on his part. A successful 
test of this sample will indicate, to the 
extent of the features actually being 
tested, that the system network has been 
correctly set up and that the 
Inter-System components of CICS to allow 
distributed transaction processing are 
in order; failure will indicate errors in 
set up rather than in user programming. 

At the start of the program, the operator 
i s prompted to enter the name of the 
remote system to be attached, and the 
actual command to be executed on the 
remote system which is entered just as if 
it were a local command, for example, 
CSMT TAS. The program is able to handle 
both single line output from the remote 
system and also output which exceeds the 
terminal page size. 

The message received from the remote 
system is assumed to be in SCS form, that 
is, containing printable characters and 
n eloJ lin e s ym b 01 son I y . T his i s the 
default output format for LU6 type 
terminals as produced by CICS supplied 
programs such as CSFE, CSMT, CSOT, CSST, 
or CSTT. 

SOURCE LISTING OF THE SENDING USER TRANSACTION 

DFHEISlG 

* * * 

DSECT 

STORAGE AREA FOR EIB SESSION AND STATUS FLAGS 

XOFEIFLG DS OCL7 
C OFHSYNC OS IF SET, SYNCHPOINT MUST 

BE EXECUTED * OFHFREE 

* DFHRECV 

* DFHSEND 
DFHATT 

* * DFHEOC 

* DFHFMH 

* 
* REMDATA 
ATCHSESS 
CONTROL 
SBA 
CDATA 
~1ESSAGE 
INLEN 
OUTLEN 
NEL~L INE 

XDFHAIIA 
1 

MAPFAIL 
2 

DS 

DS 

DS 
DS 

DS 

DS 

COPY 

C 

C 

C 
C 

C 

C 

XDFHAII 

DS 2560 
DS CL4 
DS OCL60 
DS Cl3 
DS CL57 
DS CL32 
DS H 
OS H 
EQU X'15' 
DFHEJECT 
CSECT 

IF SET, TERMINAL / LU 
MUST BE FREED 
IF SET, RECEIVE MUST 
BE EXECUTED 
RESERVED 
IF SET, ATTACH HEADER 
DATA EXISTS AND MAY BE 
ACCESSED USING EXTRACT 
IF SET, END-OF-CHAIN 
WAS RECEIVED WITH DATA 
IF SEl, DATA PASSED TO 
APPL'N CONTAINS FMHCS) 

COpy MAP 

EXEC CICS HANDLE CONDITION MAPFAILCMAPFAIL) 
EXEC CICS .HANDLE AID CLEAR{CLEAR) 
XC MAPAI{MAPAE-MAPAI),MAPAI CLEAR MAP 
EXEC CICS SEND MAPC'MAPA') MAPSET{'XDFHAIl') 

.ERASE MAPONLY WAIT 

Appendix G. Sample Programs for Distributed Transaction Processing 327 



3 EXEC CICS RECEIVE MAPC'MAPA') MAPSETC'XDFHAI1') 
LA S,DATAJ 
MVC DATABL(3+L'DATABO),DATAL 
MVC OUTLEN,DATAl 

4 EXEC CICS HANDLE CONDITION SYSIDERRCSYSERR) 

5 EXEC 
6 EXEC 

MVC 
CONVERSE DS 

~lVC 
7 EXEC 

MVC 
DATASENT DS 

8 ClC 

TESTSYNC 
9 

TESTFREE 
10 

TESIRECV 
11 

SEND 
12 

SYSERR 
13 

NOLINK 
14 

LINKMSG 
UNKNOWN 

15 

UNKMSG 
NOTCTSE 

16 

TCTMSG 

BE 

lH 
lA 
~1VI 
lA 
STH 
EXEC 
DS 
CLI 
nNE 
EXEC 
DS 
CLI 
BNE 
EXEC 
EXEC 
OS 
ClI 
BNE 
MVC 
EXEC 

MVC 
B 
OS 
EXEC 
MVC 
EXEC 
LH 
SH 
LA 
B 
DS 
CLI 
BE 
CLI 
BE 
DS 
MVC 
MVC 
B 
DC 
OS 
r1VC 
MVC 
B 
DC 
DS 
~lVC 
MVC 
B 
DC 

CICS SEND MAP('MAPB') MAPSET('XDFHAIl') WAIT ERASE 
CICS ALLOCATE SYSID(SYSIDI) 

ATCHSESS,EIBRSRCE 
OH 
INLEN,=H'2048' 

CICS CONVERSE 
SESSION(ATCHSESS) 
FROM(O(S» 
FROMLENGTH(OUTLEN) 
INTO(REMDATA) 
TOLENGTH(INLEN) 
XDFEIFLG,EIBSYNC SAVE EIB VALUES 

OH 
INlEN,=H'O' IF NULL RU SENT THEN 
TESTSYNC NOTHING TO SEND TO TERMINAL 

1,INLEN 
2,REMDATA(1) ADDR BYTE AFTER DATA 
O(2),X'13' INSERT CURSOR HERE 
1,1(,1) 
1,INlEN 

CICS SEND TEXT FROM(REMDATA) LENGTH(INLEN) ACCUM 
OH 
DFHSYNC,X'FF' 
TESTFREE 

CICS SYNCPOINT 
OH 
DFJ-fFREE,X'FF' 
TESTRECV 

CICS SEND PAGE RETAIN 
CICS RETURN 

OH 
DFHRECV,X'FF' 
SEND 
INlEN,=H'2048' 

CICS RECEIVE SESSION('ATCHSESS') INTO(REMDATA) 
LENGTH(INLEN) 
XDFEIFLG,EIBSYNC SAVE EIB VALUES 
DATASENT 
OH 

CICS SEND PAGE RETAIN 
OUTlEN,=H'60' 

CICS RECEIVE INTO(CONTROL) LENGTH(OUTlEN) 
O,OUTLEN 
O,=H'3' REDUCE FOR LENGTH OF SBA 
8,CDATA 
CONVERSE 
OH 
EIBRCODE+l,12 
UNKNOl~N 
EIBRCODE+l,4 
NOTCTSE 
OH 
MESSAGE,LINKMSG 
MESSAGE+28(4).SYSIDI 
EXPLAIN 
Cl32'UNABLE TO ESTABLISH LINK TO 
OH 
MESSAGE,UNKMSG 
MESSAGE+12(4),SYSIDI 
EXPLAIN 
CL32'SYSTEM NAME IS NOT KNOWN 
OH 
MESSAGE,TCTMSG 
MESSAGE(4),SYSIDI 
EXPLAIN 
CL32' IS NOT A SYSTEM NAME' 

328 CICS/VS APRM (Cl) 



EXPLAIN DS OH 
EXEC CICS SEND FROMCMESSAGE) LENGTH(=H'32') ERASE WAIT 

CLEAR DS OH 
END 

PROGRAM NOTES 

1. Set up exit for map errors and clear 
key. 

2. The screen is erased, and the 
prompting map displayed at the 
terminal. 

3. The remote system name and command to 
be transmitted are mapped in. 

4. Set up exit for the error conditions 
which may arise whilst establishing 
connection to the remote system. 

5. The screen is erased again and the 
command entered by the operator is 
displayed on the top line. 

6. A sessi on is now allocated nami ng the 
remote system only, and its name is 
obtained from EIBRSRCE. 

7. A CONVERSE command is now issued 
which sends the data entered by the 
terminal operator to the remote 
system which he has specified, then 
receives the resulting response from 
that system. To enable the program 
to determine what action is next 
expected of it, the contents of the 
EXEC Interface Block will have to be 
examined, thus the values therein 
must be retained. The SYSID option 
is used-since the application is 
requesting that an alternate 
facility be made available to it. 
Note that, although it is permissible 
to build an attach header and 
transmit it using the CONVERSE 
command, this action does not need to 
be taken in this case since by 
default CICS/VS will assume that the 
first four characters of the 
transmitted data contain the 
transaction code. 

8. If the data length fi eld for the 
RECEIVE component of the CONVERSE 
indicates that there is data to be 
handled, a logical message is built 
using the BMS TEXT facility for 
subsequent sending to the screen. To 
ensure that the terminal cursor is 
placed on the next available line for 
any further input, the 'Insert 
Cursor' control character is 
appended to the data stream. 

9. The session-oriented information 
transmitted across the lU6 session by 

the remote transaction must now be 
examined to determine what action 
should be taken next. The 'SYNCPOINT 
required' indicator in the EXEC 
Interface Block is first t~sted and 
if need be the program issues its own 
SYNCPOINT. 

10. If the EXEC Interface Block indicates 
that the program should now free the 
session, thereby denoting that the 
remote transaction has completed 
successfully and has terminated the 
conversation, the built logical 
messaae is sent to the screen using 
the RELEASE option of the SEND PAGE 
command which returns control direct 
to CICS/VS and thus frees the 
session. 

11. If the EXEC Interface Block indicates 
that the application is to continue 
receiving data from across the 
session, a further RECEIVE command is 
issued. 

12. The indicators SYNCPOINT, FREE 
session, or RECEIVE, do not apply, 
thus by default the remote 
application has requested a further 
transmission from this program. (In 
the case of the CICS/VS supplied 
programs named in the description 
above thi s would imply the recei pl: of 
a prompting message.) The program 
therefore sends the logical message 
built to date, which will include the 
prompt, to the terminal operator and 
receives his reply; a second CONVERSE 
can then be issued across the 
session. Note that the 'Set Buffer 
Address' control and the two buffer 
address bytes received from the 
terminal must be bypassed before 
transmission across the link. 

13. The SYSID error routine has been 
entered. To determine the exact 
cause of the error, EIBRCODE must be 
examined, and an appropriate 
informatory message sent to the 
operator. 

14. Some kind of error exists which 
prevents the link between the two 
systems from being established. 

15. The remote system name given by the 
operator is not recognized~ 

16. The system name given is recognized, 
but is not that for a remote system. 

Appendix G. Sample Programs for Disttibuted Transaction Processing 329 



HAP DEFINITION 

XDFHAII DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=FREEKB,TIOAPFX=YES, * 
lANG=ASM,STORAGE=AUTO 

MAPA DFHMOI SIZE=(12,80) 
DFHMOF POS=(1,1),ATTRB=ASKIP,lENGTH=33, * 

INITIAl='TYPE REMOTE SYSTEM 10 AND COMMAND' 
DFHMDF POS=(3,1),ATTRB=ASKIP,LENGTH=16, * 

INITIAl='REMOTE SYSTEM 10' 
SYSID DFHMDF POS=(3,20),ATTRB=(NORM,IC),LENGTH=4,INITIAL=' 

OFHMDF POS=(3,2S),LENGTH=1 
DFHMDF POS=(4,1),ATTRB=ASKIP,lENGTH=07, * 

INITIAl='COMMAND' 
DATA DFHMDF POS=(4,lO),ATTRB=(NORM),LENGTH=68,INITIAl=' , 

DFHMOF POS=(6,1),ATTRB=ASKIP,lENGTH=16, * 
INITIAl='THEN PRESS ENTER' 

MAPS DFHMDI SIZE=(12,80) 
DATAB DFHMDF POS=(1,1),ATTRB=(NORM),lEHGTH=68,IHITIAl=' , 

DFHMSD TYPE=FINAl 
END 

SCREEN LAYOUT 

TYPE REMOTE SYSTEM ID AND COMMAND 

REMOTE SYSTEM ID XXX X 
COMMAND XXXXXXXXXXXXXXXXXXXXXXXXXXXX 

THEN PRESS ENTER 

330 CICS/VS APRM (Cl) 



CICS TO CICS CONVERSATION (SYNCHRONOUS) 
SAMPLE PROGRAM 

To test the sample, a temporary storage 
queue may first be created on the local 
system. The operator may then refer to 
this queue by name or alternatively, if 
no name is given, a small 5-record queue 
will be built by the program for basic 
test purposes. The terminal operator at 
the local system is given the opportunity 
of specifying details of the queue name, 
and of the remote system including the 
queue name that the data set is to be 
given on the remote system, thus the 
sample is general purpose in nature. 

DESCRIPTION 

This sample is activated with the 
transaction code 'AISC'. 

The sample will consist of a two-part 
program illustrating the facility of 
transferring the contents of a temporary 
storage queue from a local CICS system to 
another remote CICS system. The 
corresponding transaction name to be used 
on the remote system is 'AISR'. 

When the transfer of the queue starts, 
the terminal operator fs notified 
cICCO rd i ngl y. 

SOURCE LISTING OF USER TRANSACTION 

DFHEISTG DSECT 

* * STORAGE AREA FOR EIB SESSION AND STATUS FLAGS 
* XDFEIFLG OS OCL7 

C * DFHSYNC OS IF SET, SYNCHPOINT MUST 
BE EXECUTED * OFIiFREE DS C IF SET, TERMINAL / LU 
MUST BE FREED * DFHRECV OS C IF SET, RECEIVE MUST 
BE EXECUTED * OFHSEND DS C RESERVED 

DFHATT OS C IF SE1, ATTACH HEADER 
DATA EXISTS AND MAY BE 
ACCESSED USING EXTRACT 
IF SET, END-OF-CHAIN 
WAS RECEIVED WITH DATA 
IF SET, DATA PASSED TO 
APPL'N CONTAINS FMHCS) 

* * DFHEOC OS C 

C * DFHFMH OS 
* 
RECCOUNT 
INLEN 
QNAME 
ATCHSESS 
MESSAGE 
R4 
R5 
Ra 
R9 

XDFHAI2A 
1 

2 

MAPFAIL 
3 

4 
5 

QLOOP 

QNAMED 

COpy XDFHAI2 
OS CL3 
DS H 
OS CLa 
DS Cl4 
OS CL32 
EQU 4 
EQU 5 
EQU a 
EQU 9 
DFHEJECT 
CSECT 
CLC 
BE 
EXEC 
EXEC 
XC 
EXEC 

EXEC 
CLI 
BHE 
MVC 
LA 
LA 
DS 
EXEC 
LA 
BCT 
OS 

EIBTRNID,=C'AISR' RECEIVING TRANSACTION? 
INBFMH YES - BRANCH TO HANDLE 

CICS HANDLE AID CLEAR(CLEAR) 
CICS HANDLE CONDITION MAPFAILCMAPFAIL) 

MAPAI(MAPAE-MAPAI),MAPAI CLEAR MAP 
CICS SEND MAPC'MAPA') MAPSETC'XDFHAI2') ERASE MAPONlY 

WAIT 
CICS RECEIVE MAPC'MAPA') MAPSET('XDFHAI2') 

LOCALQI,O IF TS Q IS NAMED 
QNAMED WE DO NOT CREATE ONE. 
LOCAlQI,=CL8'TSQAISC' 
R4,RECl ADDRESS 1ST RECORD 
R5,R5 lOOP COUNT 
OH 

CICS WRITEQ TS QUEUEClOCALQI) FROMCO(R4» LENGTHCRLEN) 
R4,L'RECICR4) ADDRESS NEXT RECORD 
R5,QlOOP AND WRITE IT. 
OH 

Appendix G. Sample Programs for Distributed Transaction Processing 331 



6 
7 
8 

REMQOK 
9 

10 

11 

12 

13 
14 

LOOP 
15 

QEND 
16 

17 
18 

* ABEND 
19 

20 

* SYSERR 
21 

NOLINK 
22 

LINKMSG 
* UNKNOWN 

23 

UNKMSG 
* NOTCTSE 

24 

TCT~1SG 

* EXPLAIN 

* RECI 

RLEN 

INBFMH 

EXEC 
EXEC 
ClI 
BNE 
MVC 
DS 
EXEC 
MVC 
EXEC 

EXEC 

MVC 
MVC 
EXEC 

ZAP 
EXEC 
DS 
EXEC 
EXEC 
AP 
B 
OS 
UNPK 
01 
EXEC 
EXEC 
EXEC 
B 

CICS HANDLE CONDITION ERRORCABEND) SYSIDERRCSYSERR) 
CICS READQ TS QUEUECLOCALQI) SETCR9) LENGTHCINLEN), 

REMOTQI,O REMOTE Q NAME SPECIFIED? 
REMQOK .. YES 
REMOTQI,=CL8'TSQAISR' .. NO, GIVE A DEFAULT 
OH 

CICS ALLOCATE SYSIDCSYSIDI) 
ATCHSESS,EIBRSRCE 

CICS BUILD ATTACH * 
ATTACHIDC'REMQ') PROCESSC'AISR') QUEUECREMOTQI) 

CICS SEND SESSION(ATCHSESS) FROMCO(R9» LENGTHCINLEN) * 
ATTACHIDC'REMQ') WAIT 
MTSQO,LOCALQI SET UP lOCAL TS Q NAME 
MSYSIDO,SYSIDI SET UP REMOTE SYSTEM ID 

CICS SEND MAPC'MAPB') MAPSET('XDFHAI2') 
WAIT CURSORC=H'80') ERASE 
RECCOUNT,=P'I' UPDATE RECORD COUNT 

CIes HANDLE CONDITION ITEMERRCQEND) 
OH 

CICS READQ TS QUEUEClOCALQI) SETCR9) LENGTHCINlEN) 
CICS SEND SESSIONCATCHSESS) FROMCOCR9» LENGTHCINLEN) WAIT 

RECCOUNT,=P'1' UPDATE RECORD COUNT 
lOOP START READQ/SEND lOOP AGAIN 
OH 
coutno, RECCOUNT 
COUNTO+5,C'O' 

CICS SEND MAP('MAPC') MAPSETC'XDFHAI2') WAIT 
CICS DELETEQ TS QUEUECLOCALQI) 
CICS SYNCPOINT 

CLEAR 

DS OH 
EXEC CIes ASSIGN ABCODECABCODEO) 
MVC RSOURCO,EIBRSRCE 
EXEC CICS SEND MAPC'MAPD') MAPSETC'XDFHAI2') ERASE WAIT 
B CLEAR 

DS OH 
CLI EIBRCODE+l,12 
BE UNKNOL~N 
eLI EIBRCODE+1,4 
BE NOTCTSE 
DS OH 
MVC MESSAGE,LINKMSG 
MVC MESSAGE+28(4),SYSIDI 
B EXPLAIN 
DC CL32'UNABLE TO ESTABLISH lINK TO 

DS OH 
Mve MESSAGE,UNKMSG 
MVC MESSAGE+12(4),SYSIDI 
B EXPLAIN 
DC CL32'SYSTEM NAME IS NOT KNOWN 

DS OH 
MVC MESSAGE,TCTMSG 
MVC MESSAGE(4),SYSIDI 
B EXPLAIN 
DC CL32' IS NOT A SYSTEM NAME' 

DS OH 
EXEC CICS SEND FROMCMESSAGE) LENGTHC=H'32') ERASE WAIT 
B CLEAR 

DC C'DISTRIBUTED TRANSACTION PROCESSING TS Q - RECORDl' 
DC C'DISTRIBUTED TRANSACTION PROCESSING TS Q - RECORD2' 
DC C'DISTRIBUTED TRANSACTION PROCESSING TS Q - RECORD3' 
DC C'DISTRIBUTED TRANSACTION PROCESSING TS Q - RECORD4' 
DC C'DISTRIBUTED TRANSACTION PROCESSING TS Q - RECORDS' 
DS OH 
DC AL2CL'RECl) 
DFHEJECT 
DS OH CODE FOR 'RECEIVING' TRANSACTION 

332 CICS/VS APRM (Cl) 



25 EXEC CICS RECEIVE SET(9) LENGTH C INL EtO 
MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES 

26 EXEC CICS EXTRACT ATTACH QUEUECQNAME) 
INBOUND OS OH 

27 CLC INLEH,=H'O' IF NO DATA SENT THEN 
BE TESTSYNC NOTHING TO WRITE 
EXEC CICS WRITEQ TS QUEUECQNAME) FROMCO(9» LENGTHCINLEN) 

TESTSYNC OS OH 
28 ClI DFHSYNC,X'FF' 

BNE TESTFREE 
EXEC CICS SYNCPOINT 

TESTFREE OS OH 
29 CLI DFHFREE,X'FF' 

BE CLEAR :. 
eLI DFHRECV,X'FF' 
SNE CLEAR 
EXEC CICS RECEIVE SET(9) lENGTHCINlEN) 
MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES 
B INBOUND 

CLEAR OS OH 
END 

PROGRAM NOTES 

1. This single program contains both the 
sending and receiving code and copies 
should be used simultaneously at both 
ends of the link. This first test is 
to determine which of the two 
functions is being executed. 

2. Set up exi t for clear key and to 
resend map on failure. 

3. The screen is erased, and the 
prompting map displayed at the 
terminal. 

4. The remote system name and both local 
and remote temp~rary storage queue 
names ar'e mapped in. 

5. The sending program normally expects 
the user to notify the name of a 
local temporary storage queue to be 
transferred. For testing purposes, 
however, the user may omit the queue 
name in which case a small, 5-record 
queue will be built for him and named 
'TSQAISC'. 

6. Set up exit for error condition which 
may arise whilst establishing 
connection to remote system, and for 
temporary storage queue errors. 

7. The first record on the local 
temporary storage queue is now read. 

8. If the remote queue name is omi tted, 
a default of 'TSQAISR' is supplied. 

9. A session is now allocated naming the 
remote system only, and its name is 
obtained from EIBRSRCE. 

10. A transaction is to be initiated on a 
remote system which needs to know the 
transaction name and the name to be 
given to the temporarY storage queue 
whi ch wi 11 be created. These are 

detailed in the attach header which 
is bui It at thi s point. 

11. The contents of the first record on 
the local temporary storage queue are 
sent across the session. The attach 
header just built is prefixed onto 
the SEND command by means of the 
ATTACHID option. 

12. A message is constructed and sent to 
the terminal operator informing him 
that the copying of the queue is now 
tak i ng place. 

13. A count is kept of tha number of 
temporary storage queue records 
transmitted. 

14. Set up exit Tor action to be taken at 
local temporary storage queue end. 

15. Continue reading the local temporary 
storage queue and sending records 
across the session. (The attach 
header is not prefixed to these 
subsequent records). 

16. The count of the number of records 
transmitted is unpacked and an 
informatory message sent to the 
terminal operator. 

17. The local temporary storage queue is 
deleted and the program exits. 

18. A syncpoint is taken to indicate end 
of transmitted data. 

19. If an abend code is detected, its 
value is assigned, together with 
details of the last resource used. 

20. A message warn i ng of the abend is 
sent to the operator and the program 
terminates. 

21. Some kind of error exists l.Jhich 
prevents the link between the two 
systems from being established. 

Appendix G. Sample Programs for Distributed Transaction Processing 333 



22. The remote system name given by the 
operator is not recognized. 

23. The system name given is recognized, 
but is not that for a remote system. 

24. This represents the start of the 
receiving element of the program. 
The first record transmitted, which 
will contain the attach header, is 
read and the contents of the EXEC 
Interface Block are accessed. No 
SYSID or SESSION options are required 
on the READ command since the 
principal facility is being 
addressed. 

25. The name of the temporary storage 
queue to be created by this program 
is contained in the attach header 
just received; it is extracted at 
this point. 

26. If the data length field for the 
RECEIVE indicates that there is data 
to be handled, it is written onto the 
temporarY storage queue. 

27. The session-oriented information 
transmitted across.the lU6 session by 
the sending transaction must now be 

334 CICS/VS APRM (Cl) 

examined to determine what action 
should be taken next. The 'SYNCPOINT 
required' indicator in the EXEC 
Interface Block is first tested and 
if necessary the program issues its 
own SYNCPOINT. The sending program 
takes a syncpoint to indicate end of 
data transmitted, and the receiving 
program must test for the presence of 
this syncpoint indicator in every 
message it receives. 

28. If the EXEC Interface Block indicates 
that the program should now free the 
session, thereby denoting that t~e 
remote transaction has completed 
successfully and has terminated the 
conversation, this program can 
itself end normally, when the session 
will be freed automaticallY. 

29. If the EXEC Interface Block indicates 
that the application is to continue 
receiving data from the session, a 
further RECEIVE command is issued. 
If neither the SYNCPOINT, FREE 
session, or RECEIVE indicators 
apply, the program exits. In 
practice this situation should never 
occur since the sending application 
never sets up a RECEIVE. 



MAP DEFINITION . 

XDFHA12 

MAPA 

lOCAlQ 

SYSID 

REMOTQ 

MAPD 

MTSQ 

MSYSID 
MAPC 
COUNT 

MAPD 
ABCODE 

RSOURC 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=FREEKB,TIOAPFX=YES, * 
lANG=ASM,STORAGE=AUTO 

DFHMDI SIZE=(12,80) 
DFHMDF POS=(1,Ol),ATTRB=ASKIP,lENGTH=28, * 

INITIAl='TS Q TRANSFER DRIVER PROGRAM' 
DFHMDF POS=(S,Ol),ATTRB=ASKIP,lENGTH=18, * 

INITIAl='lOCAl TS Q NAME ... ' 
DFHMDF POS=(S,30),ATTRB=(NORM,IC),lENGTH=8,INITIAl=' 
DFHMDF POS=(S,39),lENGTH=1 
DFHMDF POS=(7,Ol),ATTRB=ASKIP,lENGTH=19, * 

INITIAl='REMOTE SYSTEM ID ... ' 
DFHMDF POS=(7,30),ATTRB=NORM,lENGTH=4,INITIAl=' 
DFHMDF POS=(7,35),lENGTH=1 
DFHMDF POS=(9,Ol),ATTRB=ASKIP,lENGTH=19, * 

INITIAl='REMOTE TS Q NAME ... ' 
DFHMDF POS=(9,30),ATTRB=NORM,lENGTH=8,IHITIAl=' 
DFHMDF POS=(9,39),lENGTH=1 
DFHMDF POS=(11,1),ATTRB=ASKIP,lENGTH=35, * 

INITIAL='TYPE VALUES ABOVE, THEN PRESS ENTER' 
DFHMDI SIZE=(12,80) 
DFHMDF POS=(1,Ol),ATTRB=ASKIP,lENGTH=13, * 

INITIAL='COPYING TS Q ' 
DFHMDF POS=(1,15),ATTRB=NORM,LENGTH=8,INITIAl=' 
DFHMDF POS=(1,24),ATTRD=ASKIP,lENGTH=4,INITIAl=' TO ' 
DFHMDF POS=(1,29),ATTRB=NORM,lENGTH=4,INITIAl=' , 
DFHMDI SIZE=(12,80) 
DFHMDF POS=(2,l),ATTRB=NORM,lENGTH=6 
DFHMDF POS=(2,8),ATTRB=ASKIP,LENGTH=32,INITIAl='TS Q ITEMS HAV* 

E BEEN TRANSFERRED' 
DFHMDI SIZE=(12,80) 
DFHMDF POS=(1,1),ATTRB=NORM,lEHGTH=4 
DFHMDF POS=(1,6),ATTRB=ASKIP,lENGTH=23,INITIAl='ABEND HAS BEEN* 

RECEIVED' 
DFHMDF POS=(3,1),ATTRB=ASKIP,lENGTH=22,INITIAl='lAST RESOURCE * 

USED WAS' 
DFHMDF POS=(3,24),ATTRB=NORM,lENGTH=8 
DFHMSD TYPE=FINAl 
END 

SCREEN LAYOUT 

TS Q TRANSFER DRIVER PROGRAM 

lOCAL TS Q NAME ... 

REMOTE SYSTEM 10 .. 

REMOTE TS Q NAME .. 

XXXXXXXX 

XXXX 

XXX XXX XX 

TYPE VALUES ABOVE, THEN PRESS ENTER 

Appendix G. Sample Programs for Distributed Transaction Processing 335 



CICS TO OTHER SYNCHRONOUS SAMPLE PROGRAM remote system and application on that 
system, together with the input data to 
be ECHOed back. 

DESCRIPTION 

This sample is activated with the 
transaction code 'AICO'. 

The response at the terminal will consist 
of the reECHOed data only. 

The CICS to other Synchronous sample is 
intended to illustrate a conversation of 
a simple natOre. It is planned to 
operate the sample with a program similar 
to the IMS ECHO application. 

The message received from the remote 
system is assumed to contain printable 
characters only, and to be in variable 
length variable block format. Each 
logical record is treated as representing 
one screen line, and for the purposes of 
this sample, may not be greater than 79 
characters in length. At the start of the program, the operator 

is prompted to enter the name of the 

SOURCE LISTING OF THE SENDING USER TRANSACTION 

DFHEISTG DSECT 

* * STORAGE AREA FOR EIB SESSION AND STATUS FLAGS 
* XDFEIFLG DS OCL7 

C * DFHSYNC 
* DFHFREE 
* DFHRECV 
* DFHSEND 
DFHATT 
* * DFHEOC 

* DFHFMH 
* 
R4 
R5 
R6 
R7 
R8 
R9 
REMSYS 
ATCHSESS 
INLEN 

XDfHAI4A 

SENDMAP 
1 
2 
3 
4 

5 
6 

REMAP 
7 

BUILD 
8 

9 

DS 

DS 

DS 

DS 
DS 

DS 

DS 

C 

C 

C 
C 

C 

C 

IF SET, SYNCHPOINT MUST 
BE EXECUTED 
IF SET, TERMINAL / LU 
MUST BE FREED 
IF SET, RECEIVE MUST 
BE EXECUTED 
RESERVED 
IF SET, ATTACH HEADER 
DATA EXISTS AND MAY BE 
ACCESSED USING EXTRACT 
IF SET, END-Of-CHAIN 
WAS RECEIVED WITH DATA 
IF SET, DATA PASSED TO 
APPL'N CONTAINS FMHCS) 

COPY XDFHAI4 
COpy DfHBMSCA 
EQU 4 

BMS ATTRIBUTES 

EQU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
DS CL8 
DS CL4 
DS H 
DfHEJECT 
CSECT 
XC 
DS 
EXEC 
XC 
EXEC 
CLI 
BE 
EXEC 
MVC 
B 
OS 
MVC 
MVI 
B 
OS 
EXEC 

EXEC 

MAPAICMAPAE-MAPAI),MAPAI CLEAR MAP 
OH 

CICS SEND MAPC'MAPA') MAPSETC'XDFHAI4') ERASE 
DATAI,DATAI RE-CLEAR THE DATA AREA 

CICS RECEIVE MAPC'MAPA') MAPSETC'XDFHAI4') 
SYSIDI,O REMOTE SYSTEM NAME GIVEN? 
REMAP .. NO, SEND MESSAGE TO OPERATOR 

CICS ALLOCATE SYSIDCSYSIDI) 
ATCHSESS,EIBRSRCE 
BUILD 
OH 
ERROIOCL'SYSMSG),SYSMSG SET UP PROMPTING MESSAGE 
ERROIA,DFHBMBRY HIGHLIGHT MESSAGE 
SENDMAP AND SEND IT. 
OH 

CICS BUILD ATTACH ATTACHIDC'TIMS') RESOURCE(TRANI) 
IUTYPEC=B'l') 

CICS SEND SESSIONCATCHSESS) ATTACHID('TIMS') FROMCDATAI) * 

336 CICS/VS APRM C CL) 



LENGTHCOATAL) INVITE 
RECV OS OH 

10 EXEC CICS RECEIVE SESSIONCATCHSESS) SETCR9) LENGTHCINLEN) 
OATASENT DS OH 

MVC XOFEIFLG,EIBSYNC SAVE EIB VALUES 

* 11 

LRECL 

SENOMAPB 

* TESTSYNC 
12 

TESTFREE 
13 

14 
15 

16 

* 

LA 
LR 
LA 
XR 
MVCL 

CLC 
BE 

LA 
LH 
OS 
LH 
SR 
SH 
EX 
LTR 
BZ 
AH 
LA 
B 
OS 
EXEC 

OS 
CLI 
BNE 
EXEC 
OS 
ClI 
BE 
EXEC 
CLI 
BE 
EXEC 

B 

SETLINE MVC 
SYSMSG OC 
EXIT OS 

END 

PROGRAM NOTES 

R4,MAPBI 
R6,R4 
R5,MAPBE-MAPBI 
R7,R7 
R4,R6 

INLEN,=H'O' 
TESTSYNC 

R7,LINE10 
R4,INLEN 
OH 
R5,OCR9) 
R4,R5 
R5,=H'5' 
R5,SETLINE 
R4,R4 
SENDMAPB 
R9,O(R9) 
R7,LINE20-LINEIOCR7) 
LRECL 
OH 

CICS SEND MAPC'MAPB') 
CURSORC='1840') 

OH 
DFHSYNC,X'FF' 
TESTFREE 

CICS SYNCPOINT 
OH 
DFHFREE,X'FF' 
EXIT 

START OF OUTPUT MAP 

LENGTH OF MAP 

CLEAN UP THE MAP 

IF NULL RU SENT THEN 
NOTHING TO SEND TO TERMINAL 

ADDRESS 1ST OUTPUT LINE 
LENGTH OF RECEIVED DATA 

LOGICAL RECORD LENGTH 
REDUCE BLOCK LENGTH 
PREPARE FOR EX INSTR. 
MOVE LOGICAL RECORD TO MAP 
END OF BLOCK REACHED ? 
.. YES, SEND THE MAP 
ADVANCE TO NEXT RECORD 
ADDRESS NEXT OUTPUT LINE 
GO TO MOVE NEXT RECORD 

MAPSET('XDFHAI4') ERASE WAIT 

CICS RECEIVE SETCR8) LENGTHCINLEN) 
DFHRECV,X'FF' 
RECV 

CICS CONVERSE FROMLENGTHCINLEN) SESSIONCATCHSESS) 
SETCR9) TOLENGTH(INlEN) FROMCOCR8» 
DATASENT 

OCO,R7),4(R9) MOVE INPUT RECORD TO MAP 
C'MUST SPECIFY REMOTE SYSID' 
OH 

6. 

* 

1. The screen is erased, and the 

The name of the actual session 
allocated is found in the EIBRSRCE 
field. 

prompting map displayed at the 
term; nal. 

2. The data area portion of the map is 
used to hold any error messages sent 

7 • 

8. 

Use the input data area of the map to 
advise the operator to try again. 

to the termi nal; thi s area i s cleal~ed 
A transaction is to be initiated on a 
remote system which needs to know the 
transaction name. This is detailed 
in the attach header which is built 
at this point. For IMS, the 
"transaction name" must be entered as 
the resource name; the processing 
name being reserved for an attached 
system process (toJhen used). Also, 
since IMS requires single-chain 
input, the IUTYPE option is set to 
binary halfword '1'. 

3. 

4. 

5. 

before a RECEIVE is issued. 

The remote system n~me and data are 
mapped in. 

The terminal operator now enters the 
remote system name. 

If the remote system name is given, 
an ALLOCATE is performed on that 
system, and 

9. The data entered by the terminal 
operator is now sent across the 

Appendix G. Sample Programs for Distributed Transaction Processing 337 



acquired session together with the 
previously built attach header. The 
presence of the INVITE option 
indicates that a RECEIVE loJill 
directly follow this SEND and 
improves performance across the 
session. 

10. A RECEIVE ;s issued against the 
remote system to read back the echoed 
data. To enable the program to 
determine what action is next 
expected of it, the contents of the 
EXEC Interface Block will have to be 
retained. 

11. If the data length field for the 
previ ous RECEIVE i ndi cates that 
there is data to be handled, it is 
sent to the requesting terminal. 

12. The session-oriented information 
transmitted across the LU6 session by 
the remote transaction must now be 
examined to determine what action 
should be taken next. The SYNCPOINT 
required indicator in the EXEC 
Interface Block is first tested and 
if necessary the program issues its 
Ol.Jn SYNCPOINT. 

13. If the EXEC Interface Block indicates 
that the program should now free the 

338 CI CS/VS APRM (Cl) 

session, thereby denoting that the 
remote transaction has completed 
successfully and has terminated the 
conversation, the program now exits 
causing an automatic freeing of the 
session. 

14. The program receives further input 
data from the ter~inal operator. This 
allows for the remote program to 
send, for example, a request for 
further input. For simple autopaging 
through an output file, pressing 
ENTER is all that is required. 

15. If the EXEC Interface Block indicates 
that the application is t~ continue 
receiving data from the session, a 
further RECEIVE command is issued. 

16. A CONVERSE command is now issued 
which sends the data entered by the 
terminal operator to the remote 
system which he has specified, then 
receives the resulting response from 
that system. To enable the program 
to determine what action is next 
expected of it, the contents of the 
EXEC Interface Block must again be 
requested for the RECEIVE. 



MAP DEFINITION 

XDFHAI4 

MAPA 

TRAN 

SYSID 

DATA 
ERROl 
~1APB 
LINE! 
LINE2 
LINE3 
lINE4 
LINES 
LINE6 
LINE7 
LINES 
LINE9 
LINEIO 
MAPE 
ERROR 
MAPP 
OLP 

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=FREEKB,TIOAPFX=YES, 
LANG=ASM,STORAGE=AUTO 

DFHMDI SIZE=(24,SO) 
DFHMDF POS=(1,Ol),ATTRB=ASKIP,LENGTH=26, 

INITIAL='INVOKE RETURN APPLICATION' 
DFHMDF POS=(3,Ol),ATTRB=ASKIP,LENGTH=25, 

INITIAL='SUPPlY VALUES AS REQUIRED' 
DFHMDF POS=(4,Ol),ATTRB=(BRT,ASKIP),lENGTH=30, 

INITIAl='REMOTE TRANSACTION NAME ...... , 
DFHMDF POS=(4,32),ATTRB=(NORM,IC),lEHGTH=S,IHITIAl= , , 
DFHMDF POS=(4,41),LENGTH=1 
DFHMDF POS=(S,Ol),ATTRB=(BRT,ASKIP),LENGTH=30, 

I NIT I A l =' R EMO T E S YS T EM 10 .•...•....... ' 
DFHMDF POS=(S,32),ATTRB=NORM,LENGTH=4,INITIAL=' 
DFHMDF POS=(S,37),lENGTH=1 
DFHMDF POS=(8,Ol),ATTRB=(BRT,ASKIP),LENGTH=34, 

INITIAL='ANDRETURN TRANSACTION INPUT DATA' 
DFHMDF POS=(S,36),LENGTH=1 
DFHMDF POS=(lO,1),ATTRB=NORM,lENGTH=79,INITIAL=' , 
DFHMDF POS=(11,1),ATTRB=NORM,lENGTH=79 
DFHMDI SIZE=(24,SO) 
DFHMDF POS=(1,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(2,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(3,1),ATTRB=NORM,lENGTH=79 
DFHMDF POS=(4,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(S,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(6,1),ATTRB=NORM,lENGTH=79 
DFHMDF POS=(7,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(S,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(9,1),ATTRB=NORM,LENGTH=79 
DFHMDF POS=(lO,1),ATTRB=NORM,lENGTH=79 
DFHMDI SIZE=(24,80) 
DFHMDF POS=(1,1),ATTRB=NORM,lENGTH=36 
DFHMDI SIZE=(24,SO) 
DFHMDF POS=(24,1),ATTRB=NORM,lENGTH=6,INITIAl=' , 
DFHMSD TYPE=FINAL 
END 

SCREEN LAYOUT 

INVOKE REMOTE APPLICATION 

SUPPLY VALUES AS REQUIRED 
REMOTE TRANSACTION NAME ....... . 
REMOTE SYSTEM 10 ..........•.... 

XXXXXXXX 
xxxx 

AND REMOTE TRANSACTION INPUT DATA 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Appendix G. Sample Programs for Distributed Transaction Processing 339 



DESCRIPTION 

The following sample fulfills the same 
requirements as that above except that 
provision is made for the operator to 
read IMS Demand Paged Output using 
Operator Logical Paging. 

The sample automatically reads the first 
logical page of the IMS output and· it is 
then the responsibility of the terminal 
operator to signify which logical page of 
the output message he now requ i res to 
see. 

The message received from the remote 
system is assumed to contain printable 
characters only, and to be in VLVB 
(variable length variable block) format. 
Each logical record is treated as 
representing one screen line, and for the 
purposes of this example, may not be 
greater than 79 characters in length. 

This sample is activated with the 
transaction code 'AICD'. 

The following functionst available to the 
operator, are supported by the sample; 

they should be preceded by "P/" as if 
normal CICS/VS BMS paging were being 
performed. 

• N = display the next logical page. 

• P = display the previous logical 
page. 

• 

• 

• 

• 

• 

C = redisplay the current logical 
page. 

Enter =n, =nn or =nnn to display a 
specific logical page of the message. 

+n, +nn or +nnn to display the nth 
logical page past the current 
position. 

-n, -nn or -nnn to display the nth 
logical page before the current 
pO!Jition. 

Press CLEAR to delete the current 
message from the IMS system and CLEAR 
the user's screen. 

SOURCE LISTING OF THE SENDING USER TRANSACTION 

DFHEISTG DSECT 
COpy XDFHAI4 

* * STORAGE AREA FOR EIB SESSION AND STATUS FLAGS 

* XDFEIFLG DS OCL7 

* OFHSYNC DS C IF SET, SYNCPOINT MUST 

* BE EXECUTED 
DFHFREE OS C IF SET, TERMINAL / LU 

* MUST BE FREED 
DFHRECV DS C IF SET, RECEIVE MUST 

* BE EXECUTED 
DFHSEHD DS C RESERVED 

* DFHATT DS C IF SET, ATTACH ~EADER 

* DATA EXISTS AND MAY BE 

* ACCESSED USING EXTRACT 
DFHEOC DS C IF SET, END-OF-CHAIN 

* WAS RECEIVED WITH DATA 
DFUFMH OS C IF SET, DATA PASSED TO 
* APPl'N CONTAINS FMHCS) 

COPY DFHBMSCA BMS ATTRIBUTES 
R4 EQU 4 
R5 EQU 5 
R6 EQU 6 
R7 EQU 7 
DPAGEREG EQU 8 
R9 EQU 9 

* DBlWORD OS D 
INLEN OS H 
REMSYS OS CL8 
ATCHSESS DS CL4 

* OlP DSECT 
OL.PCODE OS CL2 
OLPVAl OS CL3 

340 CICS/VS APRM (Cl) 



XDFHAI4B 
1 

SENDMAP 

OFHEJECT 
CSECT 

2 

3 
4 

REMAP 
5 

6 

BUILD 
7 
8 
9 

10 

11 

12 
13 

14 

15 

16 

RECV 
17 
18 

UNPICK 

19 

XC 
OS 
EXEC 
EXEC 
CLI 
BE 
EXEC 
MVC 
B 
OS 
MVC 
MVI 
XC 
B 
OS 
EXEC 
EXEC 
EXEC 

EXEC 

EXEC 
EXEC 

MVC 
CLI 
BNE 
EXEC 

MVC 
MVC 
EXEC 

DS 
LA 
EXEC 

DS 
~1VC 
LA 
LR 
LA 
XR 
MVCL 

LH 

XR 
CATFMH OS 

IC 
LR 

20 AR 
SR 

21 BZ 

LRECL 
22 

23 

SENDMAPB 
24 

TM 
BO 

LA 
DS 
LH 
SR 
SH 
EX 
LTR 
BZ 
AH 
LA 
B 
DS 
EXEC 

MAPAICMAPAE-MAPAI),MAPAI CLEAR MAP 
OC 

eICS SEND MAPC'MAPA') MAPSETC'XDFHAI4') ERASE WAIT 
eICS RECEIVE MAPC'MAPA') MAPSETC'XDFHAI4') 

SYSIOI,O REMOTE SYSTEM NAME GIVEN? 
REMAP .. NO, SEND MSG TO OPERATOR 

eIes ALLOCATE SYSIDCSYSIDI) 
ATCHSESS,EIBRSRCE 
BUILD 
OH 
ERROIOCL'SYSMSG),SYSMSG SET UP PROMPTING MSG 
ERROIA,DFHBMBRY HIGHLIGHT MESSAGE 
MAPAICMAPAE-MAPAI),MAPAI RE-CLEAR MAP 
SENOMAP AND SEND IT. 
OH 

CICS IGNORE CONDITION INBFMH. 
eICS HANDLE AID CLEARCCLEAR) 
CICS BUILD ATTACH 

ATTACHIDC'TIMS') RESOURCECTRANI) IUTYPEC=H'I') 
CICS SEND SESSIONCATCHSESS) ATTACHIDC'TIMS') FROMCDATAI) * 

LENGTHCDATAL) INVITE 
CICS SYNCPOINT 
CIes RECEIVE SESSIONCATCHSESS) 

SETCR9) LENGTHCINLEN) , 
XDFEIFLG,EIBSYNC SAVE EIB VALUES 
OFHATT,X'FF' IF NO HEADER SENT, 
ABEND REMOTE SYSTEM ERROR. 

eICS EXTRACT ATTACH SESSIONCATCHSESS) 
QUEUECQGETQNAM). GET REMOTE QUEUE NAME. 
QGETNQNM,QGETQNAM 
QPURGENM,QGETQNAM 

CICS BUILD ATTACH 
ATTACHIDC'QMOD') PROCESSCQMODEL) IUTYPEC=H'I') 
OH 
DPAGEREG,1 1ST LOGICAL PAGE. 

CICS CONVERSE SESSIONCATCHSESS) FROMCQGETN) 
FROMLENGTHCQGETNLEN) TOLENGTHCINLEN) SETCR9) 
ATTACHIDC'QMOD') FMH 
OH 
XDFEIFLG,EIBSYNC 
R4,MAPBI 
R6,R4 
R5, ERRORL-~lAPBI 
R7,R7 
R4,R6 

R4,INLEN 

R5,R5 
OH 
R5,OCR9) 
R6,R9 
R9,R5 
R4,R5 
QSTATUS 
1CR6),X'80' 
CATFMH 

R7,LINEI0 
OH 
R5,OCR9) 
R4,R5 

R5,=H'3' 
RS,SETLINE 
R4,R4 
SENDMAPB 
R9,OCR9) 
R7,LINE20-LINEIOCR7) 
LRECL 
OH 

CICS SEND MAPC'MAPB') 

START OF OUTPUT MAP 

LENGTH OF MAP 

CLEAN UP THE MAP 

LENGTH OF REC'D DATA 

FMH LENGTH. 

POINT BEYOND FMH. 
LENGTH OF ACTUAL DATA. 
QSTATUS IF NO DATA. 
ANY CONCATENATED FMHS ? 
YES - AGAIN. 

ADDRESS 1ST OUTPUT LINE 

LOGICAL RECORD LENGTH 
REDUCE BLOCK LENGTH 

PRr:ARE FOR EX INSTR. 
MOVE. LREe TO MAP 
END OF BLOCK REACHED ? 
.. YES, SEND THE MAP 
ADVANCE TO NEXT RECORD 
ADDR NEXT OUTPUT LINE 
GO TO MOVE NEXT REC 

MAPSET('XDFHAI4') ERASE WAIT 

Appendix G. Sample Programs for Distributed Transaction Processing 341 



* TESTSYNC 
25 

TESTFREE 
26 

27 

* 

xc 
DS 
ClI 
BNE 
EXEC 
DS 
ClI 
BE 
ClI 
BE 

CURSORC=H'1841') 
ERRORO,ERRORO 

OH 
DFHSYNC,X'FF' 
TESTFREE 

CICS SYNCPOINT 
OH 
DFHFREE,X'FF' 
EXIT 
OFHRECV,X'FF' 

- ABEND 

GETOlP DS OH 

CLEAR ERROR LINE. 

28 EXEC CICS RECEIVE SETCR9) LENGTHCINLEN) 
* 

* 

29 

30 

31 

lA 
USING 
ClC 
BNE 
eLI 
BE 
ClI 
BNE 
lA 
B 

R9,3(R9) 
OlP,R9 
OlPCODE,=C'P/' 
OlPERR 
OLPVAl,C'C' 
READQ 
OlPVAl,C'N' 
TESTPREV 
DPAGEREG,lCDPAGEREG) 
READQ 

TESTPREV DS OH 
32 CLI OlPVAl,C'P' 

* 

BNE 
BCTR 
B 

COOETEST 
DPAGEREG,O 
READQ 

CODETEST OS OH 
33 lH R4,INlEH 

SH 
BM 

TM 

BO 
BCTR 
lA 
B 

R4,=H'6' 
OlPERR 

OlPVAl,C'O' 

NOSIGN 
R4,O 
R5,OLPVAl+l 
PACKINST 

HOSIGN DS OH 
R5,OlPVAl 
OH 

lA 
PACKINST OS 

EX 
EX 
CVB 
TM 

R4,OC 
R4,PACK 
R5,DBlWORD 
OlPVAL,C'O' 

SNO TMINUS 
lR DPAGEREG,R5 
B READQ 

lE 
TMINUS OS OH 

* TPlUS 

* 

ClI OLPVAl,C'-' 
BHE TPlUS 
lNR R5,R5 
B NEWDPAGE 

DS OB 
ClI OlPVAL,C'+' 
-BNE OlPERR 

NEt.JOPAGE OS OH 
DPAGEREG,R5 

lE 
READQ 

34 

AR 

DS OH 
lTR DPAGEREG,DPAGEREG 
BZ OlPERR 
STCM DPAGEREG,3,DPAGENO 

342 CICS/VS APRM (Cl) 

BYPASS SBA BYTES. 

'P/' REQUIRED TO START. 

CURRENT PAGE AGAIN ? 
YES. 
NEXT PAGE REQUIRED ? 
NO. 
YES, SET TS ITEM NO. 

PREVIOUS PAGE REQ'D ? 
HO. 
YES, SET TS ITEM NO. 

SBA + 3 CHARS. 

IF FIRST CHAR. IS A DIGIT, 
NO SIGN HAS BEEN GIVEN. 

REDUCE LENGTH BY ONE. 
ADDRESS 1ST DIGIT. 
CONVERT TO TS ITEM NO. 

ADDRESS 1ST DIGIT. 

ENSURE NO. IS NUMERIC. 
PACK PAGE NO. AND 
CONVERT TO BINARY VALUE. 
IF 1ST CHAR. IS NOT A DIGIT, 
IT MUST BE A SIGN. 

RESET TS ITEM NO. 

FOR ,+, 
REDUCE CURR~HT PAGE NO. 

SET TS ITEM NO. 

IF PAGE NO. IS ZERO 
THIS IS AN ERROR. 
STORE QUEUE RECORD NO. 

lE 



EXEC CICS CONVERSE SESSIONCATCHSESS) FROMCQGET) 
FROMlENGTHCQGETlEN) TOlENGTHCINlEN) SETCR9) FMH 

35 ClC INlEN,=H'O' IF NUll RU SENT, THEN 

* OC 
PACK 
* OlPERR 

36 

* QSTATUS 
37 

* CLEAR 
38 

BNE UNPICK ANALYZE INPUT 
MVC XDFEIFlG,EIBSYNC 
B TESTSYNC NOTHING TO SEND 

OC 
PACK 

DS 
MVC 
B 

DS 
MVC 
lA 
EXEC 

B 

OCO,R5),=C'OOO' 
DBlWORD,OCO,R5) 

OH 

ENSURE NUMERIC. 

ERROROCl'OlPERMSG),OlPERMSG SET UP MSG. 
SENDMAPB 

OH 
ERROROCl'QSTAMSG),QSTAMSG SET UP MSG. 
DPAGEREG,l 

CICS CONVERSE SESSIONCATCHSESS) FROMCQGETN) 
FROMLENGTHCQGETNLEN) TOLENGTHCINlEN) SETCR9) 
UNPICK 

DS OH 
EXEC CICS CONVERSE SESSIONCATCHSESS) FROMCQPURGE) 

FMH 

FROMlENGTHCQPURGElN) TOlENGTHCINlEN) SETCR9) FMH 
B EXIT 

* ABEND DS OH 
MVC ERROROCl'ABENDMSG),ABENDMSG SET UP ERROR MSG. 
EXEC CICS SEND MAPC'MAPB') MAPSETC'XDFHAI4') 

WAIT. 
B EXIT 

* SETLINE MVC 
* SYSMSG DC 
OlPERMSG DC 
ABENDMSG DC 
QSTAMSG DC 
* * QGETN 
* QGETN DS 

DC 
QGETQNAM DC 
* QGETNlEN 
* * * QGET 

QGETNQNM 

DPAGENO 
* QGETlEN 
* 

DC 

QGET 

DS 
DC 
DC 
DC 
DC 
DS 

DC 

* QPURGE 
* QPURGE DS 

DC 
DC 

QPURGENM DC 
* QPURGELN DC 
* QMODEl DS 

DC 
DC 

EXIT DS 
END 

OCO,R7), 2CR9) MOVE lOG.REC. TO MAP. 

C'MUST SPECIFY REMOTE SYSID' 
C'OPERATOR LOGICAL PAGING ERROR - RE-TYPE' 
C'PROCESSING ERROR IN REMOTE SYSTEM' 
C'PAGE NO. EXCEEDS QUEUE SIZE' 

OH 
X'l0060AIOOOOI0208' 
Cl8' , 

Al2C*-QGETN) 

OH 
X'13060A04000102' 
X' 08' 
Cl8' , 
X'02' 
Cl2 

Al2C*-QGET) 

OH 
X'l0060A06000102' 
X'08' 
Cl8' , 

Al2C*-QPURGE) 

OCl8 
X'03' 
Cl7' , 
OH 

lENGTH. 

lENGTH. 

lENGTH. 

Appendix G. Sample Programs for Distribut~d Transaction Processing 343 



PROGRAM NOTES 

1. The screen is erased, and the 
prompt i ng map di splayed at the 
terminal. 

2. The remote system name and data are 
mapped in. 

3. If the remote system name is given, 
an ALLOCATE is performed on that 
system, and 

4. The name of the actual sessi on 
allocated is found in the EIBRSRCE 
field. 

5 . Use the input data area of the map to 
advise the operator to reenter his 
data, correctly naming the remote 
system. 

6. The map is recleared to ensure that 
all three fields are correctly 
reentered. 

7. When pages are returned by IMS, they 
are preceded by a QXFR FMH; in this 
instance thi s FMH need not be 
examined, but the INBFMH condition 
will be raised by CICS/VS and should 
be i ~mored. 

8. Pressing CLEAR will cause the sample 
to instruct IMS to delete the demand 
paging queue after which the program 
terminates. 

9. A transaction is to be initiated on a 
remote system; the name of the 
transaction on that system is. 
sup~lied via the attach FMH, built at 
thi s point. 

10. The data entered by the terminal 
6perator is now sent across the 
acquired session together with the 
previously built attach header. The 
presence of the INVITE option 
i ndi cates that a RECEIVE loJi 11 
di rectly follow thi s SEND and 
improves performance across the 
session. 

11. A RECEIVE is issued against the 
remote system to read back the IMS 
reply. IMS will initially transmit 
an attach FMH to signify that the 
output will now be sent at the 
request of the CICS/VS terminal 
operator; this header will be 
examined to enable the name of the 
IMS demand paged output queue to be 
found. 

12. To enable the program to determine 
what action should next be performed 
on the session, the contents of the 
EXEC Interface Block, set by RECEIVE, 
will have to be ret~ined for future 
reference. 

344 CI CS/VS APRM (CL) 

13. For IMS demand paging output queues, 
IMS sends as its initial output an 
attach header. The absence of thi s 
header indi~ates an error on the 
remote system. 

14. The IMS queue name is extracted. 
(The SESSION option is required in 
this instance, since the EXTRACT 
relates to data sent by this sample's 
alternate facility; without this 
option, the principal facility, that 
is, the operator~ermi nal, would be 
addressed.) 

15. The sample wi 11 issue three types of 
request to the IMS queue -

a) Get Next 
b) Get (specific) 
c) Purge 

The queue model FMHs required to 
perform these functions must be 
completed so as to contain the 
appropriate IMS queue name. 

16. Preceding each queue model FMH, IMS 
needs an attach FMH, which must 
contain the queue model function as 
its destination process name. The 
FMH is built at this point and will 
be used in conjunction with all 
remaining commands across the 
session. 

17. The program has to keep a note of the 
page number of the logical page being 
currently accessed on the IMS queue; 
this is to enable the new page number 
to be correctly calculated each time 
a logical paging command is entered 
by the operator. To do this, the 
register 'DPAGEREG' is used to hold 
the current number. 

18. In order to open the IMS queue for 
output a GET NEXT command has first 
to be issued; this will cause the 
first logical page of the message to 
be returned to CICS/VS. Thereafter, 
GET commands will be issued. It will 
be seen that the command is sent as a 
text string containing an attach FMH 
together with the queue model FMH. 
The use of the ATTACHID and FMH 
options should be noted. 

19. The record seht by'IMS (that is, a 
logical page) is now prepared for 
writing to the operator's terminal. 

20. The output record received from IMS 
will contatn the requested page 
record preceded by a QXFR FMH; this 
FMH is not required in this sample 
and is bypassed. 

21. The presence of a FMH but no 
accompanying data in the message 



returned from IMS indicates that a 
request has been made for a logical 
page outside the dimensions of the 
queue size. In such instances, IMS 
sends a QSTATUS FMH with the QINVCUR 
(invalid cursor) flag set. 

22. The output from IMS is in VLVB 
format; the IMS mapping function 
sets one screen output line as one 
logical record. The following lines 
of code unpack the physical record 
received to obtain single logical 
records for transmission to the 
terminal via BMS. 

23. One logical record is inserted and a 
check made for further logical 
records. 

24. The whole logical message is now 
sent. 

25. The session-oriented information 
transmitted across the LU6 session by 
the remote transaction must now be 
examined to determine what action 
should be taken next. The syncpoint 
required indicator in the EXEC 
Interface Block is tested and if 
necessary the program issues its own 
SYNCPOINT. 

26. If the EXEC Interface Block indicates 
that the program should now free the 
session, thereby denoting that the 
remote transaction has completed 
successfully and has terminated the 
conversation, the program now exits 
causing an automatic freeing of the 
session. 

27. If the EXEC Interface Block indicates 
that a further RECEIVE should be made 
over the session, some kind of error 
has occurred, since normally IMS will 
be awaiting a paging command at this 
point; thus the program should be in 
'send' state. 

28. The operator now enters a paging 
command as if this were a normal 
CICS/VS application. 

29. The command must begin with 'P/'. 

30. If the current page ('P/C') is 
required again, go back to reuse the 

current page number in the GET 
command. 

31. If the next page ('P/N') is required, 
add 1 to 'DPAGEREG' and issue the GET 
command. 

32. If the previous page ('P/P') is 
required, subtract 1 from 'DPAGEREG' 
and issue the GET command. 

33. The presence of a ,+, or ,-, sign is 
now detected, in which case the 
increment or decrement is found and 
either added to or subtracted from 
the logical page number 'DPAGEREG'. 
If no sign is found, the actual value 
typed in is the new logical page 
number required. 

34. The page number of the logical record 
to be read next, held in 'DPAGEREG' 
is stored into DPAGENO and a GET 
command issued. 

35. If the data length field indicates 
that no data has been sent, the 
session status must be tested to 
determine what to do next; otherwise, 
the new data will be unpacked. 

36. If any error is detected in the 
paging command entered by the 
operator, an error message is sent to 
him to prompt for the command to be 
reentered correctly. 

37. The QSTATUS FMH indicates that IMS 
has'detected an invalid paging 
request. Having sent the QSTATUS, 
IMS relocks the queue in question, 
and it is the responsibility of the 
queue owner, in this case the sample 
program, to open the queue again for 
further processing; this is done by 
issuing the original GET NEXT which 
will unlock the queue and resend the 
first logical page. 

38. A queue purge request is sent to IMS 
to cause it to delete the demand 
paging queue. This command is sent 
using CONVERSE since IMS will respond 
to the purge request by returning a 
QSTATUS FMH and the program must 
allow for its receipt. 

Appendix G. Sample Programs for Distributed Transaction Processing 345 



ADDITIONS TO TABLES FOR THE SAMPLE 
PROGRAMS 

using system's PPT and PCT to enabla 
these samples to be run: ' 

The foll~wing entries are required in the 

PPT 

PCT 

DFHPPT TYPE=ENTRY,PROGRAM=XDFHAMC 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHAII 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHAIZ 
DFHPPT TYPE=ENTRY,PROGRAM=XDFHAI4 
DFHPPT TYPE=ENTRY,PROGRAM=DFHXAIBL 
DFHPPT TYPE=ENTRY,PROGRAM=DFHXAIBR 
DFHPPT TVPE=ENTRY,PROGRAM=DFHXAIIA 
DFHPPT TYPE=ENTRY,PROGRAM=DFHXA12A 
DFHPPT TYPE=ENTRY,PROGRAM=DFHXAI4A 
DFHPPT TYPE=ENTRY,PROGRAM=OFHXAI4B 

DFHPCT TYPE=ENTRY,TRANSIO=AIBL,PROGRAM=DFHXAIBl, 
SPURGE=YES,TPURGE=YES,INBFMH=AlL 

DFHPCT TYPE=ENTRY,TRANSIO=AIBR,PROGRAM=DFHXAIBR, 
SPURGE=YES,TPURGE=YES' . 

DFHPCT TYPE=ENTRY,TRANSID=AICC,'ROGRAM=DFHXAIIA, 
SPURGE=YES,TPURGE=YES 

OFHPCT TYPE=ENTRY,TRANSIO=AISC,PROGRAM=DFHXAI2A, 
SPURGE=YES,TPURGE=YES 

OFHPCT TYPE=ENTRY,TRANSIO=AISR,PROGRAM=DFHXAI2A, 
SPURGE=YES,TPURGE=YES,INBFMH=AlL,EX1RACT=ATTACH 

OFHPCT TYPE=ENTRY,TRANSID=AICO,PROGRAM"=DFHXA1.4A, 
SPURGE=YES,TPURGE=YES~INaFMH~All,EXTRAeT=~TTACH 

DFHPCT TYPE=ENTRy,TRANSID~AICO,PROGRAM=OFHXAI4B, 
SPURGE=YES,TPU~GE=YES,I~8FMH=AlL,EXTRACT=ATTACH 

346 CICS/VS APRM (CL) 



Bibliography, 

For further information ab~ut the 
Customer Information Contr~l 
System/Virtual Storage (CICS/VS), refer 
to the following IBM CICS/VS 
publications: 

Customer Information Control 
~stem;Virtual Storage (CICS/VS) Version 
rlelease 5: . 

General Information, GC33-0066 

System/Application Design Guide, 
SC33-00~8 

~m Programmer's Reference 
Manua~, SC33-0069 

System Programmer's Guide 
(DOS/VS), SC33-0070 

System Programmer's Guide 
(OS/VS), SC33-007l 

AREligation Programmer's Reference 
Manual, (Macro level), SC33-0079 

Application Programmer's Reference 
Manual, (RPG II), SC33~0085 

IBM 3270 Guide, SC33-0096 

IBM 3600/3630 Guide, SC33-0072 

IBM 3650/3680 Guide, SC33-0073 

IBM 3767/3770/6670 Guide, 
S'C33,-0074 

IBM 3790/3730 Guide, SC33-0075 

Operator's Guide, SC33-0080 

Messages and Codes, Se33-008l 

Entry-level System User's Guide 
(DOS/VS-), SCl3-0086 ' 

Problem Determination Guide, 
SC33-0089 

Diagnosis R~ference, lC33-0l05 

Data Areas (DOS/VS), LY33~6033 

Data Areas (OS/VS), LY33~6035 

Application Programmer~s Reference 
'Summary (Command level), GX33-60l2 

, '----, . 

Master Terminal Operator's Reference 
Summary, SX33~60l1 

Programming DebuQging Reference 
Summary, 5X33-6010 ' 

Master lridex, SC33-009S 

The reader of this manual may also want 
to refer to the following IBM 
publications: 

Systems Network Architecture (SNA) 

Logical Unit Types, GC20-l868 

~s of logical Unit to logical Unit 
Sessions, GC20-1869 

Distributed Processing Programming 
Exec~tive/Distributed Presentation 
Services (DPPX/DPS) 

DPPX/Distributed Presentation 
Services Version 2 System Programming 
Guide, SC33-0ll7 

Screen Definition Facility/CICS 
SDF/CICS Program Reference Manual, 
SH19-6077 

AVAILABILITY OF PUBLICATIONS 

The availability of a pUblication is 
indicated by its use key, which is the 
first letter in the order number. The 
use keys ~d their meanings are: 

G 

l 

Generally available: 
Provided to users of IBM 
systems, products, and 
services without 
charge, in quant it i es to 
meet their normal 
requirements. Can also 
be purchased by anyone 
through IBM branch 
offices. 

Sold: Can be purchased by 
anyone through IBM office~. 

licensed material, property 
of IBM: Available only 
to licensees of the 
related program 
products under the 
terms of the license 
~greements. 

Bibliography 347 





Index 

Special Characters 

& eCL interpreter) 48 
&DFHEIMX macro global bit 11 
*ASM statement (assembler lahguage) 12 
*PROCESS statement (Pl/I) 12 
? (CL interpreter) 45 

ABCODE option 31, 217 
ABEND (abn~rmal termination) 216 
ABEND command '217 
abnormal termination 

prevention 25 
reactivate a~ exit 217 

abnormal termination recovery 215 
ABEND exit processing 216 
exceptional conditions 218 
options 217 

access to DL/I data base 70 
access to system information 29 

ADDRESS command 29 
ASSIGN command 30 
CICS/VS storage areas 29 
EXEC interface block (EIB) 29 
external to application program 30 

ACCOUNT!option 222 
ACCUM option 161 
act i vate an ABEND ,ex'i t 217 
adding records 

to batch data interchange data 
set 170 

to DAM data sets 60 
to ISAM files 57 

address 
cursor 95 
PCB 70 

ADDRESS command 29 
AID (see attention identifier) 
ALARM option 161 
ALL QPtion 161 
ALlOcATE command 99 
alternate facility 85 
alternate index 59 
ampersand (Cl interpreter) 48 
ANYKEY option 96 
APOST option 14 
application program logical levels 189 
application program using commands and 

macros 12 
application-oriented information 

(LU6) 99 
APPLID option 31 
argument value 5 

assembler language 6 
COBOL 6 
PL/I 7 

ASIS opti on 
basic mapping support 162 
terminal control 117 

ASKTIME command 179 

assembler language 
argument values 6 
LENGTH option default 6 
program exit 11 
register contents 10 
restrictions 19 
sample programs 251 

ASSIGN command 
options 30 
syntax 30 

asynchronous interrupt 87 
asynchronous journal output 227 
asynchronous transaction processing 

CATP) 202 
ATI (see automatic task initiation) 
ATP (see asynchronous transaction 

processing) 
ATTACHID option 117 
attention condition (SIGNAL) 92 
attention identifier (AID) 95 
ATTRB operand 139 
attribute control character list 97 
audio response unit (7770) 116 
audio terminal (2721) 116 
autoanswer transaction (3735) 112 
autocall transaction (3735) 113 
a~tomatic task initiation (ATI) 202 
AUTOPAGE option 162 
AUXILIARY option 209 
auxiliary trace facility 221 

base locator for linkage (BLl) 20 
chained storage areas 20 
large communication area 22 
large storage areas 21 
OCCURS DEPENDING ON clauses 21 
optimization feature 21 

BASE operand 130 
basic mapping support (BMS) 125 

advantages 125 
commands 125 
data mapping 12' 
define a map 126 
delete a logical message 157 
device independence 125 
display devices 150 
exceptional conditions 166 
field definition macro 138 
format independence 125 
format output without mapping 155 
header maps 153 
input mapping 127 
input/output mapping 129 
map definition macro 135 
map input data 151 
map output dat~ 152 
map positioning 143 
m~p retrieval 129 
map set definition macro 129 
map sets 126 
message recovery 150 
options 161 

Index 349 



output mapping 128 
output operations 148 
output with SET option 149 
overf~ow processing 152 
page building 145 
route it message 149, 157 
specifyingmaps 127 
symbolic description map 147 
terminal code table 149 
terminal control commands 125 
terminal paging' 148 
trailer map 153 
transmit a logical message 156 

batch data interchange 169 
add record to data set 170 
delete a record from data set 171 
destination identification 169 
exceptional conditions 173 
iriterrogate a data set 170 
options 172 
read record from data set 170 
request next record number 171 
send data to output device 171 
terminate data set abnormally 
terminate data set normally 
update a record in data set 170 
wait for function completion 172 

batch logical unit (3770) 114 
batch mode applications (3740) 113 
BIF DEEDIT (built-in function) 233 
BlL (see base locator for linkage) 
block reference 59 ~ 
BMS (~eebasic mapping support) 
bracket protocol (LAST option) 91 
browse operation 56 

ending 64 
read next record during 64 
read previous record 64 
reset starting point 64 
specify starting point 63 

browsing operations 
DAM 61 
ISAM 57 
VSAM 58 

BTAM programmable device 92 
BUFFER/option 117 
BUILD ATTACH command 99 
built~in funct,ion (BIF DEEDIT) 233 

call DL/I data base 71 
CALLDlI ma~ro 69 
CAN~El command 183 
CANCEtoptJ on ' 218' 
CARDof:)t ion 172 
CBIDERRcondltion 121 
tBL st.tement (COBOL) 12 
CB,UFF oPtJoo' 117 
CECltrC!n~aotj on forCL interpreter 45 
CEes traO!$act i on forCL interpreter 45 
cha in ing 

of input data 88 
of output data 90 

check,DL/I call 72 
ch~~kout, program 35 
CICS opt ion 

" "CO,BOt , " '13 
Pl/I'14 

CL EARQ,pt ion 96 

350 CICS/VSAPRM (CL) 

CNOTCOMPL option 117 
COBOL 

argument value 6 
base locator for linkage (BLl) 20 
compilers supported 19 
program segments 22 
restrictions 19 
sa~ple programs 275 

CODEREG argument 11 
coding conventions 5 
COLOR operand 

DFHMDF 141 
DFHMDI 135 
DFHMSD 131 

COLOR opt ion 31 
COLUMN operand 135 
command 

argument values 5 
end-of-command delimiter 5 
format 5 

'macro equivalents 247 
syntax notation 4 

command execution (Cl interpreter) 47 
command execution complete CCL 
interpreter) 48 

command language translator 
data sets 9 
optional facilities 12 
translated code 10 

command syntax check (CL 
interpreter) 46 

command-level interpreter 45 
commands 

BMS 125 
paging 150 

COMMAREA option 197 
~ommon buffer, output to (2980) 104 
communication area DFHCOMMAREA 20 
communication line, relinquishing 87 
compiler options 13 
conditions (exceptional conditions) 25 
CONSOLE option 172 
control 

exclusive 
DAM 61 
ISAM 57 
releasing (UNLOCK) 63 
VSAM 58 

pass with return 189 
pass without return 190 
return 190 
trace 221 

CONVERSE command 87 
CONVERSE option 118 
converse with terminal or lU 87 
COpy 

displayed information 95 
symboliodescription map 147 

copy bookDFHEIBlK10 
create a journal reccird 228 
CSAopt ion 29 
CTLCHAR option 118 
CTRL operand 

DFHMDI 135 
DFHMSD 131 

CURRENT option 162 
cursor 

address 95 
position 150 

CURSQR option 162 
CWA opt ion 29 
CWAlEHG option 31 



DAM 
browsing operations 61 
data sets 59, 60 
exclusive control 61 

data base 69 
DL/I 69, 77 
file control 53 

data communication operations 81 
data interchange (see batch data 

interchange) 
data mapping and formatting 126 
DATA operand 

DFHNDI 136 
DFHMSD 132 

DATA option 199 
data set 

batch data interchange 169 
DAM 59 
identification 55 
ISA~l 57 
translator 9 
VSAM 57 

DATAONLYoption 162 
DATAREG argument 11 
DATASET option 64 
DATASTR option 118 
DEBKEYoption 65 
deblocking argument 60 
DEBREC option 65 
DEBUG opt ion 

COBOL 1.3 
PL/I 14 

debugging 35, 211 
default action for conditions 25 
deferred journal output 227 
define a map 126 
definite-response protocol 

batch data interchange 169 
terminal control 90 

DEFRESP option 
batch data interchange 172 
terminal control 90, 118 

DELAY command 180 
delay processing of task 180 
DELETE command 63 
DELETEQ TD command 204 
DELETEQ TS command 209 
deleting 

batch data interchange record 171 
BMS logical message 157 
file control record 58, 63 
loaded program 191 
temporary storage queue 209 
transi ent data queue, 204 

DELIMITER opti on 31 I 

delimiter, end-of-command 5 
DEQ command 187 
dequeue from resource 187 
DEST option 118 
DESTCOUNToption 31, 153 
DESTID option 

ASSIGN command 31 
batch data interchange 172 

DESTIDLENG option 
ASSIGN command 31 
batch data interchange 17~ 

destination 
extrapartition 201 
identification 169 

indirect 202 
intrapartition 201 

detect an attention condition 92 
device independence 125 
DFHAID (see standard attention 
identifier list) 

DFHBMSCA (see standard attribute/printer 
control list) 

DFHCOMMAREA communication area 20 
DFHEAI stub 10 
DFHEIBLK copy book 10 
DFHEICAL macro 10 
DFHEIEND macro 10 
DFHEIENT macro 

CODEREG 11 
DATAREG 11 
defaults 11 
EIBREG 11 
epi log code 10 
prolog code 10 

DFHEIPLR symbolic register 11 
DFHEISTG macro 10 
DFHMDF macro instruction 138 
DFHMDI macro instruction 135 
DFHMSD macro instruction 129 
DFH2980 structure 104 
DFTPROF option 172 
DIB (DL/I interface block) 77 
direct access to records 55 
disconnect a switched line 87 
display device operations 94 

attention identifier (AID) 95 
copy displayed information 95 
cursor address 95 
erase all unprotected fields 95 
pass control on receipt of an AID 96 
print displayed information 94 
programming techniques 150 
request input operation without 
data 95 

standard attention identifier list 
(DFHAID) 96 

standard attribute/printer control 
character list (DFHBMSCA) 97 

disposition and message routing 158 
distributed transaction processing 

(DTP) 85 
DL/I 

access scheduling 69 
call check 72 
CALL statement 69 
data base access 70 
data base call 71 
EXEC DLI command 77 
interface block (DIB) 77 
response codes 72 
restrictions on ROUTE command 157 
wi th EDF 42 
work area 71 

DLI option 
COBOL 13 
PL/I 14 

DPPX/DPS outboard formatting 129 
DSECT type of DFHMSO macro 129 
DSIOERR condition 66 
DSSTAT condition 173 
OTP (distributed transaction 
processing) 85 

DTP sample programs 321 
DUMP command 223 
dump control 

dump main storage 223 
exceptional conditions 225 

Index 351 



options 223 
DUPKEY condition 66 
DUPREC condition 66 

ECADDR option 184 
EDF (see execution diagnostic facility) 
EI opt ion 222 
EIB (see EXEC interface block) 
EIBAID field 239 
EIBATT field 239 
EIBCA(~N field 2S9 
EIBCPOSN field 239 
EIBDATE field 179, 239 
EIBDS field 239 
EIBEOC field 239 
EIBFMH field 239 
EIBFN field 239 
EIBFREE field 239 
EIBRCODE field 239 
EIBRECV field 240 
EIBREG argument 11 
EIBREQID field 240 
EIBRSRCE field 240 
EIBSYNC field 240 
EIBTASKN field 240 
EIBTIME field 179, 240 
EIBTRMID field 240 
EIBTRNID field 240 
end browse operation 64 
end-of-bommand delimiter 5 
ENDBR command 64 
ENDDATA condition 186 
ENDFIlE condition 67 
ENDINPT condition 122 
ENQ command 187 
ENQBUSY option 188 
enqueue upon resource 187 
ENTER command 221 
ENTER key (Cl interpre~er) 49 
ENT ER op't ion 96 
ENTRY option 197 
entry point, trace 219 
ENVDEFERR condition 186 
EOC condition 

basic mapping support 166 
terminal control 122 

EODS condition 
basic mapping support 166 
batch data interchange 173 
terminal control 122 

EOF condition 122 
EQUAL option 65 
erase all unprotected fields 95 
ERASE option 162 

terminal control 118 
ERASEAUP option 162 
ERROR condition 25 
ERRTERM option 162 
establish a sync point 231 
event 

control area, timer 180 
monitoring point 219 
waitingfor 181 

exceptional conditions 
abnormal termination recbvery 218 
basic mapping support 166 
batch data interchange 173 
description 25 

352 CICS/VS APRM (Cl) 

dump control 225 
file control 66 
HANDLE CONDITION command 25 
IGNORE CONDITION command 26 
interval control 186 
journal control 230 
list of 26 
program control 197 
storage control 200 
task control 188 
temporary storage control 210 
terminal control 121 
trace control 222 
transient data control 204 

exclusive control 
DAM 61 
ISAM 57 
releasing (UNLOCK) 63 
VSAM 58 

EXEC DlI command 42, 77 
EXEC interface block (EIB) 

description 29 
fields 239 

execution diegnostic facility (EDF) 
displays' 37, 41 
EXEC DlI command 42 
funct'i ons 35 
installing 36 
invoking 36 
program labels 42 
pseudo-conversational program 41 
terminal sharing 38 

exit (see abnormal termination recovery) 
exit from assembler language program 11 
expanded area (Cl interpreter) 49 
expiration time 

notificati.on when reached 180 
specifying 179 

EXPIRED condition 186 
EXTATT operand 132 
EXTOS option 31 
extended attributes 156 
EXTRACT ATTACH command 99 
EXTRACT TCT comma~d 99 
extrapartition destination 201 

FACILITY option 31 
facility, alternate 85 
facilitYt principal 85 
FBA (fixed block architecture) 
devices 55 

FeI option 31 
FE opti on 

COBOL 13 
Pl/I 14 

field definition macro (BMS) 138 
field edit built-in function 233 
f1 elds, EIB 239 
file control 55 

brm-ls1 ng 56 
DAM data sets 59 
data set identification 55 
deleting VSAM records 63 
direct access to records 55 
end browse operation 64 
exceptional conditions 66 
ISAM data sets 57 
multiple file operations 56 



options 64 
read a record 62 
read next record 64 
read previous record 64 
release exclusive control 63 
reset start for browse 64 
sequential access to records 

(brol.Jsi ng) 56 
specify start for browse 63 
update a record 63 
VSAM data sets 57 
writing new record (WRITE) 62 

FINAL type of DFHMSD macro 129 
fixed block architecture (FBA) 

devices 55 
flag byte, route list 160 
FLAG option 

COBOL 13 
Pl/I 14 

FMH (see function management header) 
FMH option 118, 184 
FMHPARM option 162 
format 

command 5 
independence 125 
trace table 220 

format output without mapping 155 
formatt~ng (BMS) 126 
FREE command 92, 99 
free main storage 199 
FREEKB option 162 
FREEMAIN command 199 
FROM option 

basic mapping support 162 
batch data interchange 172 
file control 65 
interval control 184 
journal control 229 
temporary storage control 209 
terminal control 119 
trace control "222 
transie~t data control 204 

FROMLEHG1H option 119 
FRSET option 163 
full function logical unit (3790) 115 
FUNCERR condition 173 
function key meanings, EDF 39 
function management header (FMH) 91 

inbound 91 
outbound 91 

general banking terminal system (see 
2980) 

GENERIC option 65 
get main storage 199 
GETMAIN command 199 
GRPNAME operand 141 
GTEQ option 65 

HANDLE ABEND command 217 
HANDLE AID command 96 
HANDLE CONDITION command 25 
header 

format 155 
map 153 

HEADER operand 
DFHMDI 136 

HEADER option 163 
HILIGHT operand 

DFHMDF 141 
DFHMDI 136 
DFH~1SD 132 

HILIGHT option 31 
HOLD option 197 
HONEOM option 163 
host command processor LU 

(3650/3680) 110 
host conversational (3270) LU 

(3650) 111 
host conversational (3653) LU (3650) 
HTAB operand 132 

I/O work area in DL/I 71 
identification 

DAM record 59 
data set 55 
destination 169 
ISAM recot~d 
VSAM data sets 57 
VSAM record 

IGNORE CONDITION command 26 
IGREQCD condition 

batch data interchange 173 
BMS 166 
terminal control 122 

IGREQID condition 166 
ILLOGIC condition 67 
INBFMH condition 122 
inbound FMH 91 
inde.x, alternate 59 
indirect destination 202 
INITIAL operand 141 
initialize main storage 199 
initiate a task (see start a task) 
INITIMG option 199 
input data 

chaining of 88 
unsolicited 91 

input data set 9 
input mapping (BMS) 127 
input operation without data 95 
input/output mapping (BMS) 129 
inquiry logical unit (3790) 115 
installing EDF 36 
installing the CL interpreter 50 
interactive logical units 114 
interleaving conversation with message 
routing 158 

interpreter 
installation 50 
invoking 45 
screen layout 45 
security rules 50 

Index 353 



variables 48 
interpreter logical unit (3650) 112 
interrogate a data set 170 
interval control 179 

cancel interval control command 183 
delay processing of task 180 
exceptional conditions 186 
notification when specified time 
expires 180 . 

options 184 
request current time of day 179 
retrieve data stored for task 182 
specify expiration time 179 
specifying request identifier 179 
start a task 181 
wait for event to occur 181 

INTERVAL option 
basic mapping su~port 163 
interval control 184 

INTO option 
basic mapping support 163 
batch data interchange 172 
file control 65 
interval control 184 
temporary storage control 209 
terminal control 119 
transient data control 204 

intrapartition destination 201 
INVERRTERM condition 166 
INVITE option 88, 119 
INVLDC condition 166 
INVMPSZ condition 166 
invoking EDF 36 
invoking the CL interpreter 

CECI transaction 45 
CECS transaction 45 

INVREQ condition 
basic mapping support 166 
file control 67 
interval control 186 
journal control 230 
program control 197 
temporary storage control 210 

INVTSREQ condition 186 
IOERR condition 

file control 67 
interval control 186 
journal control 230 
temporary storage control 210 
transi~nt data control 204 

ISAM 
browsing operations 57 
data sets 57 
exclusive control 57 
keys 57 

ISCINVREQ condition 
file control 67 
temporary storage 210 
transient data 204 

ISSUE ABORT command 171 
ISSUE ADD command 170 
ISSUE COpy command 95 
ISSUE DISCONNECT command 

disconnect a switched line 87 
terminate a session 92 

ISSUE END command 171 
ISSUE ENDFILE command 113 
ISSUE ENDOUTPUT command 113 
ISSUE EODS command 112 
ISSUE ERASE command 171 
ISSUE ERASEAUP command 95 
ISSUE LOAD command 112 
ISSUE NOTE command 171 

354 CICS/VS APRM (CL) 

ISSUE PRINT command 94 
ISSUE QUERY command 170 
ISSUE RECEIVE command 170 
ISSUE REPLACE command 170 
ISSUE RESET command 87 
ISSUE SEND command 171 
ISSUE SIGNAL command 87 
ISSUE WAIT command 172 
ITEM option 209 
ITEMERR condition 210 
IUTYPE option 119 

JFllEIDoption 229 
JIDERR condition 230 
JOURNAL command 228 
journal control 

create a journal record 228 
exceptional conditions 230 
journal records 227 
options 229 
output synchronization 227 
synchronizing with output 229 

JTYPEID option 229 
JUSFIRST option 163 
JUSLAST option 163 
JUSTIFY operand 

DFHMDF 142 
DFHMDI 136 

JUSTIFY option 144, 163 

KEYLENGTH option 
batch data interchange 172 
file control 65 

KEYLENGTH option for remote data set 61 
keys 

DAM 60 
ISAM 57 
VSAM 58 

LABEL option 218 
LANG operand 132 
LANGLVl option 13 
large communication area (COBOL) 22 
LAST option 

basic mapping support 163 
terminal control 91, 119 

lDe operand 133 
LDC option 

basic mapping support 163 
description of 109 
terminal control 119 

LDCMNEM option 31· 
LDCNUM option 32 
LEAVEKB option 119 
lENGERR condition 

batch data interchange 173 
file control 67 
interval control 186 



journal control 230 
temporary storage control 210 
terminal control 122 
transient data control 204 

LENGTH operand 142 
LENGTH opti on 

basic mapping support 164 
batch data interchange 172 
default (assembler language) 6 
default (PL/I) 7 
file control 65 
interval control 184 
journal control 229 
program control 197 
storage control 199 
task control 188 
temporary storage control 209 
terminal control 119 
transient data control 204 

levels, application program logical 189 
LIGHTPEH option 96 . 
LINE operand 137 
line, communication 

disconnect a switched 87 
relinquishing 87 

LINEADDR option 119 
LINECOUNT option 14 
LINK command 189 
link to program anticipating retu~n 189 
LIST option 

basic mapping support 164 
command language translator 13 

listing data set 9 
load a program, table, or map 191 
LOAD command 191 
locality of reference 17 
logical device code (LDC option) 109 
logical levels, application p~ogram 189 
logical message 148 
logical record prese~tation 90 
logical units 

batch 11(t 
conversing with (CONVERSE) 87 
facilities for 88 
interactive 114 
pipeline 109 
reading data from 

batch data interchange 170 
terminal control 86 

writing data to 
batch data interchange 170 
terminal control 86 

3270 Information Display System 106 
3270 SCS Printer 106 
3270-Display (lUTYPE2) 107 
3270-Prlnter (LUTYPE3) 107 
3600 (3601) 109 
3600 (3614) 110 
3600 pipeline 109 
3650 host conversational (3270) 111 
3650 host conversational (3653) 111 
3650 interpreter 112 
3650 pipeline 109 
3650/3680 host command processor 110 
3767 interactive 114 
3770 batch 114 
3770 interactive 114 
3790 (3270-display) 116 

3790 (3270-printer) 116 
3790 full function 115 
3790 inquiry 115 
3790 SCS printer 115 

lUTYPE2 (3270-Display LU) 107 
lUTYPE3 (3270-Printer lU) 107 
LUTYPE4 

batch data interchange 169 
logical record presentation 90 
logical unit 98 

lUTYPE6 
logical unit 98 

L40 option 164 
L64 option 164 
L80 option 164 

macro global bit &DFHEIMX 11 
macro instruction 

DFHMOF 138 
DFHMDI 135 
DFH~lSD 129 

macr"Qts and E!qui valent commands 247 
macrbs used with commands 18 
MAIH option 209 
main storage 

dumping (DUMP) 223 
initialize 199 
obtain 199 
releasing (FREEMAIN) 199 

map definition macro 135 
r1AP option 164 
map positioning 143 
map retrieval (BMS) 129 
map set definition macro 129 
MAP type of DFHMSD macro 129 
MAPFAIL condition 167 
MAPONLYoption 164 
mappi ng . 

input data (RECEIVE MAP) 151 
output data (SEND MAP) 152 

maps 
assembler isample programs 268 
COBOL ~ample programs 291 
COpy symbolic description 147 
defining 126 
PL/! sample programs 314 

MAPSET option 164 
MARGINS option 14 
mass .insert operations 58 
MASSINSERT option 66 
message 

format, tel~typewriter 94 
length, teletypewriter 94 
recovery (BMS) 150 
routing (see routing messages) 
title 159 

mixed mode application program 12 
MODE operand 133 
MONITOR option 222 
monitoring point (ENTER command) 219 
multiple f,'le operations 56 
multithreading 17 

Index 355 



NETNAME option 119 
NEXT option 210 
NlEOM option 164 
NOAUTOPAGE option 164 
NOCHECK option 184 
NODATARECD condition 173 
NOEDIT option 155, 164 
NOEPllOG option 13 
NOHANDlE option 25 
NOJBUFSP tondition 230 
NOlIST option 13 
NONUM option 13 
NONVAl condition 122 
HOOPSEQUENCE option 15 
HOOpr option 13 
NOOPTIONS option 15 
NOPASSBKRD condition 122 
NOPASSBKWR condition 122 
NOPROLOG option 13 
NOSEQ option 14 
NOSEQUENCE option 15 
NOSOURCE opt ion 

COBOL 14 
Pl/I 15 

NOSPACE condition 
file control 68 
temporary storage control 210 
transient data control 205 

NOSPIE option 13 
assembler language 13 
COBOL 13 
PL/I 15 

NOS TART condition 122 
NOSIG condition 200 
NOTAllOC condition 122 
notation, syntax 4 
HOTFND condition 

file control 68 
interval control 186 

HOTOPEN condition 
file control 68 
journal control 230 
transient data control 205 

NOTRUNC compiler option 22 
NOWAIT option 172 
NOXREF opti on 

COBOL 14 
Pl/I 15 

NUM option 13 
NUMREC op·t ion 

batch data interchange 172 
file control 66 

HUMTAB option 32 

OBFMT operand 
DFHMDI 137 
DFHMSD 133 

object program size 19 
OCCURS operand 142 
OPClASS option 

ASSIGN command 32 
BMS 165 

operator class codes 159 
OPERID option 96 

356 CICS/VS APRM (Cl) 

OPERPURGE option 165 
OPID option 32 
OPMARGINS option 15 
OPSECURITYoption 32 
OPSEQUENCE option 15 
OPT opt; on 13 
optimization feature (COBOL) 21 
options 

abnormal termination recovery 217 
ADDRESS command 29 
ASSIGN command 30 
basic mapping support 161 
batch data interchange 172 
dump control 223 
execution time (PL/I STAE) 22 
file control 64 
HANDLE AID command 96 
HANDLE CONDItION command 26 
interval control 184 
journal control 229 
program control 197 
STAE CPl/I) 22 
storage control 199 
task control 188 
temporary storage control 209 
terminal control 117 
trace control 222 
transient data control 204 
translator 13 

PL/I 14 
OPTIONS option 15 
OPTIONSCMAIN) specification 23 
outboard formatting 129 
outbound FMH 91 
output commands with SET option 
(B~lS) 149 

output control (2980) General Banking 
Terminal System 104 

output data set 9 
output data with extended 
attributes 156 

output data, chaining of 90 
output mapping (BMS) 128 
output operations in BMS 148 
output to common buffer (2980) 104 
OVERFLOW condition 167 
overflow processing 152 
overtyping EDF displays 41 

PA opt; on 96 
page 148 
page bu i Idi ng 

COLUMN operand 144 
examples 145 
JUSTIFY operand 144 
LINE operand 144 
map positioning 143, 144 
screen contents 143 
trailer area 144 

PAGENUM option 32 
pag;ng 

commands 150 
term;nal 148 

PAGING option 165 
parameter list storage 10 
PASSBK option 119 
passbook c~nt~ol (2980) 103 
passi ng contr.ol 



anticipating return (LINK) 189 
on receipt of an AID (HANDLE AID) 96 
without return (XeTL) 190 

passi ng data 
to new tasks 182 
to other programs 191 

PCB (program communication block) 69 
PCB address 70 
PERFORM option 222 
PF (program function) key 

Cl interpreter 49 
EDF 37 

PF opti on 96 
PFXlENG option 229 
PGMIDERR condition 

abnormal termination recovery 218 
program control 197 

physical key 60 
physical map (BMS) 126 
PICIN operand 142 
PICOUT operand 143 
pipeline logical unit 109 
PL/I 

argument value 7 
LENGTH option default 7 
OPTIONS(MAIN) s~ecif~cation 23 
program segments 23 
restrictions 22 
sample programs 299 
STAE option 22 
translator options 14 

POINT command 99 
POS operand 138 
POST command 180 
posting timer event control area 180 
PREFIX opti~n 229 
principal facility 85 
PRINSYSID option 32 
print displayed information 94 
PRINT option 

basic mapping support 165 
batch data interchange 173 

printer control character list 97 
PROCESS option 119 
PROFILE option 120 
program checkout 35 
program communication block (PCB) 69 
program control 

CL interpreter 50 
deleting loaded program 191 
exception~l conditions 197 
linking to another program 189 
load a program, table, or map 191 
options 197 
passing data to other programs 191 
program logical levels 189 
returning program control 190 
transfer program control 190 

program function key (see PF key) 
program labels in EDF 42 
PROGRAM option 

abnormal termination recovery 218 
program control 197 
terminal control 120 

program segments 
COBOL 22 
PL/I 23 

program specification block (PSB) 69 
programming techniques 

COBOL 19 
display devices 150 
general 17 
Pl/I 22 

programs 
checking out 

pseudo-conversational 41 
programs, sample 251 
PROTECT option 184 
PS operand 

DFJU1DF 143 
DFHMDI 137 
DFHMSD 133 

PS opti on 32 
PSB (program specification block) 69 
PSB release 72 
PSB scheduling 70 
pseudo-conversational programming 41 
PSEUDOBIN option 120 
PURGE MESSAGE command 157 

QBUSY condition 205 
QIDERR condition 

temporary storage control 210 
transient data control 205 

quasi-reenterability 17 
questi~n mark eCl interpreter) 45 
QUEUE option 120 

interval control 184 
temP9rary storage control 210 
transient data control 204 

queue, 'temporary storage 207 
QUOTE option 14 
QZERO condition 205 

RBA opt ion 66 
RDATT condition 

basic mapping support 167 
terminal control 122 

reactivate an ABEND exit 217 
read attention 102 
READ command 62 
reading' 

batch data interchange r~cord 170 
cl~ from temporary storage 
q~eue 208,. 

data fromt~rminal or lU 86 
data' from transient data queue 203 
file control record 62 
next record when browsing 64 
previous record in VSAM browse 64 

READNEXT command 64 
READPREV command 64 
READQ TO command 203 
READQ TS command 208 
RECEIVE command 86 
RECEIVE MAP command 151 
RECFM option 120 
r'ecord 

browsing 56 
creating journal 228 
deleting VSAM 58~ 63 
direct access to 55 
identification 

DAM data sets 59 
ISAM data sets 57 

journal 227 

Index 357 



reading 
batch data interchange 170 
file control 62 
next when browsing 64 
previous during VSAM browse 64 

requesting next number 171 
sequential access to (browsing) 56 
updating 

batch data interchange 170 
file control (REWRITE) 63 

writing new (adding) 
batch data interchange 170 
file control (WRITE) 62 

record descriptions 
assembler language sample 

programs 274 
COBOL sample programs 297 
PL/I sample programs 320 

recovery 
abnormal termination 215 
and debugging 211 
BMS message 150 
sequential terminal support 213 
sync point 231 

reenterability 17 
register contents in assembler 

language 10 
release a PSB 72 
RELEASE command 191 
RELEASE option 165 
releasing 

area of main storage 199 
exclusive control (UNLOCK) 63 

relinquish communication line 87 
remote data set, KEYLENGTH option 61 
REQID option 

basic mapping support 165 
file control 66 
interval control 185 
journal control 230 

RESET option 218 
reset start for browse 64 
RESETBR command 64 
RESOURCE option 120, 188 
resources 

scheduling use of 187 
sharing VSAM 59 

response codes (Dl/I) 72 
RESTART option 32 
restrictions 

assembler language 19 
COBOL 19 
PL/I 22 

RETAIN option 165 
RETPAGE condition 167 
RETRIEVE command 182 
retrieve data stored for task 182 
RETURN command 190 
return facility to CICS/VS 92 
return program control 190 
REWRITE command 63 
REWRITE option 210 
RIDFlD option 

batch data interchange 173 
file control 66 

ROLLBACK option 231 
route a message 157 
ROUTE command 

DL/I restrictions 157 
route list (LIST option) 159 

format 160 
status flag byte 160 

routing messages (ROUTE) 149 

358 CICS/VS APRM (Cl) 

disposition 158 
interleaving conversation with 158 
message title (TITLE option) 159 
operator class codes 159 
route list 159 
sample sequence of commands 159 

RPROCESS option 121 
RRESOURCE option 121 
RRN option 

batch data interchange 173 
file control 66 

RTEFAIl condition 167 
RTERMID option 185 
RTESOME condition 167 
RTRANSID option 185 

sample program 
browse (assembler language) 258 
browse (COBOL) 281 
browse (PL/I) 305 
operator instruction (assembler 

language) 252 
operator instruction (COBOL) 276 
operator instruction (PL/I) 300 
order entry (assembler language) 262 
order entry (COBOL) 285 
order entry (Pl/I) 308 
order entry queue print (assembler 

language) 264 
order entry queue print (COBOL) 287 
order entry queue print (Pl/I) 310 
report (assembler language) 266 
report (COBOL) 289 
report (PL/I) 312 
update (assembler language) 253 
update (COBOL) 277 
update (Pl/I) 301 

schedule a PSB 70 
schedule access (Dl/I) 69 
schedule use of resource by task 187 
screen definition facility 

(SDF/CICS) 127 
screen layout (Cl interpreter) 

command input area 45 
information area 46 
status area 46 

SCRHHT option 32 
SCRHWD option 32 
SCS printer logical unit (3790) 115 
SDF/CICS (screen definition 
facility) 127 

security rules 
Cl interpreter 50 
EDF 36 

SEGIDERR condition 68 
segment search argument (SSA) 71 
segments, program 

COBOL 22 
Pl/! 23 

SEGSET option 66 
5EGSETAll option 66 
5ELHERR condition 174 
send asynchronous interrupt 87 
SEND command 86 
send data to output device 171 
SEND MAP command 152 
SEND PAGE command 156 
SEND TEXT command 155 



SEND/RECEIVE mode 88 
SEND/RECEIVE protocol 88 
SEQ option 14 
SEQUENCE option 15 
sequential access (browsing) 56 
sequential retrieval (see browsing) 
sequential terminal support 213 
SERVICE RELOAD statement (COBOL) 21 
SESSION option 121 
session-oriented information (lU6) 99 
SESSIONERR condition 122 
SET option 

basic mapping support 149, 165 
batch data interchange 173 
file control 66 
interval control 185 
program control 197 
storage control 199 
temporary storage control 210 
terminal control 121 
transient data control 204 

sharing VSAM resources 59 
SIGDATA option 32 
SIGNAL condition 92, 122 
SINGLE option 222 
single threading 17 
SIZE operand 138 
skip-sequential processing 59 
SOURCE option 

COBOL 14 
Pl/I 15 

SPACE option 14 
SSA (segment search argument) 71 
STAE option (PL/I) 22 
standard attention identifier list 

(DFHAID) '96 
standard attribute/printer control 
character list (DFHBMSCA) 97 

standard CICS/VS terminal support 97 
start a task 

passing data to new tasks 182 
with terminals and data 182 
with terminals but no data 182 
without terminals 182 

START command 181 
STARTBR command 63 
STARTCODE option 32 
STARTlO option 230 
STATIONID option 32 
status flag byte, route list 160 
storage (see main storage) 
storage area length 30 
storage control 199 

exceptional conditions 200 
initialize main storage 199 
obtain main storage 199 
options 199 
release area of main storage 199 

storage for parameter list 10 
STORAGE operand 133 
STRFIELD option 121 
stub DFHEAI 10 
SUBADDR option 173 
SUFFIX operand 134 
SUSPEND command 187 
suspending task (SUSPEND) 187 
switched line disconnection 87 
symbolic cursor positioning 150 
symbolic description map (BMS) 126 
symbolic register DFHEIPLR 11 
sync point 231 
synchronizing 

journal output 227 

journ~l output ,(WAIT JOURNAL) 229 
terminal input/output 86 

SYNCPOINT command 231 
syntax notation 4 
syntax style 5 
SYSBUSY condition 123 
SYSIDoption 210 

ASSIGN command 32 
file control 66 
interval control 185 
terminal control 121 
transient data control 204 

SYSIDERR condition 205 
file control 68 
interval control 186 
temporary storage control 210 
terminal control 123 

system information, access to 29 
SYSTEM option 222 
system trace entry point 219 
System/3 100 
System/370 100 
System/7 100 

tables 297 
assembler language sample 

programs 274 
COBOL sample programs 297 
Pl/I sample programs 320 

task control 187 
exceptional conditions 188 
options 188 
schedule use of resource by task 187 
suspending task (SUSPEND) 187 

task identification 87 
~ask initiation (see start a task) 
TCAM-supported terminals 92 
TCTUA option 29 
TCTUALENG option 33 
techniques, programming 17 
teletypewriter programming 

message format 94 
message length 94 

TELLERID option 33 
temporary storage control 

deleting temporary storage queue 209 
exceptional conditions 210 
options 209 
queue 207 
read from temporary storage 

queue 208 
typical uses of 207 
write to temporary st~rage queue 208 

TERM operand 134 
TERMCODE option 33 
T ERMID opt ion 

interv~l control 185 
terminal control 121 

TERMIDERR condition 
interval control 186 
terminal control 123 

terminal code table 149 
terminal control 85 

BMS requests 125 
bracket ~rotocol (LAST option) 91 
STAM programmable device 92 
chaining of input data 88 
chaining of output data 90 

Index 359 



converse with terminal or lU 87 
definite response 90 
detecting attention condition 

(SIGNAL) 92 
disconnect a switched line 87 
display device operations 94 
exceptional conditions 121 
facilities for logical units 88 
facilities for terminals 87 
facilities for terminals and lUs 86 
FMH, inbound 91 
FMH, outbound 91 
function management header (FMH) 91 
interactive logical units 114 
logical record presentation 90 
lUTYPE2 (3270-Display lU) 107 
options 117 
pipeline logical unit 109 
read attention 102 
reading data from terminal or lU 86 
relinquish communication line 87 
standard CICS/VS terminal support 97 
synchronize terminal 1/0 86 
System/3 100 
System/370 100 
System/7 100 
TeAM-supported terminals 92 
teletypewriter programming 94 
terminate a session 92 
unsolicited input 91 
write break 102 
writing data to termin~l or lU 86 
2260 Display Station 101 
2265 Display Station 101 
2741 Communication Terminal 102 
2770 Data Communication System 102 
2780 Data Transmission Terminal 103 
2980 General Banking Terminal 

System 103 
3270 (BTAM or TCAM supported) 105 
3270 in 2260 compatibility mode 105 
3270 Information Displ~y System 
logical unit 106 ' 

3270 SCS Printer logicai unit 106 
3270-Display lU (lUTYPE2) 107 
3270-Printer lU (lUTYPE3) 107 
3600 (3601) logical unit 109 
3600 (3614) logical unit 110 
3600 pipeline, logical unit 109 
3650 host conversational (3270) 

lU 111 
3650 host conversational (3653) 

lU 111 
3650 interpreter logical unit 112 
3650 pip~lin~ logical unit 109 
3650/3680 host command processor 

lU 110 
3660 112 
3735 112 
3740 113 
3767 interactive logical unit 114 
3770 batch logical unit 114 
3770 interactive logical unit 114 
3790 (3270-display) logical unit 116 
3790 (3270-printer) logical unit 116 
3790 full function logical unit 115 
3790 inquiry logical unit 115 
3790 SCS printer logical unit 115 
7770 audio response unit 116 

TERMINAL option 
basic mapping support 165 

terminal paging 148 
terminal sharing 

360 CICS/VS APRM (Cl) 

Cl interpreter 50 
EDF 38 

terminal-oriented task 
identification 87 

terminating 
processing of data set 

abnormally (ISSUE ABORT) 171 
session 92 
task abnormally (ABEND) 217 

time of day, requesting (ASKTIME) 179 
TIME opti on 

basic mapping support 165 
interval control 185 

time-initiated transaction (3735) 113 
timer event control area 180 
TIOAPFX operand 

DFHMDI 138 
DFHMSD 134 

TITLE option 159, 165 
title, message 159 
TOlENGTH option 121 
trace control 219 

auxiliary trace facility 221 
controlling trace facility 221 
exceptional conditions 222 
options 222 
trace entry format 220 
trace entry point 219 
trace facility control 219 
trace flags 219 
trace table format 220 
user trace entry point 221 

trace entry format 220 
trace entry point 219 
trace facility control 219 
TRACE OFF command 221 
TRACE ON command 221 
trace table format 220 
TRACEID option 222 
trailer 

format 155 
trailer map 153 
TRAILER operand 138 
TRAILER option 165 
transfer program control 190 
TRANS I D opt ion 

basic mapping support 166 
interval control 185 
program control 197 

TRANSIDERR c6ndition 186 
transient data control 

asynchronous transaction processing 
(ATP) 202 

automatic task initiation (ATI) 202 
delete intrapartition queue 204 
exceptional conditions 20 4 
extrapartition destination, 201 
indirect destination 202 
intrapartition destination 201 
options 204 
read data from transient data 
queue 203 

write data to transient data 
queue 203 

translated code 
assembler language 10 
COBOL 12 
Pl/I 12 

translation tables f~r 2980 243 
transJator ~ata set_ 

input 9 
listing 9 
putPt.Jt 9; 



translator options 12 
assembler language 13 
COBOL 13 
Pl/I 14 

transmit a logical message 156 
TSIOERR condition 167 
TWA option 29 
TWAlENG option 33 
TYPE operand 130 

UIB (user interface block) 70 
UNATTEND option 33 
UNEXPIN condition 174 
UNLOCK command 63 
unsolicited input 91 
update a r'ecord 

batch data interchange 170 
file control 63 

UPDATE option 66 
user interface block (UIB) 70 
USER option 222 
user trace entry point 219, 221 

VALIDATION option 33 
validity of reference 17 
VAlIDN operand 

DFHMDF 143 
DFHMDI 13a 
DFHMSD 134 

values of arguments 5 
variable (Cl interpreter) 48 
virtual storage environment 17 
virtual storage paging 17 
VOLUME option 173 
VOlUMElENG option 173 
VSAM 

alternate index 59 
browsing operations 58 
data sets 57 

deletion of records 58 
record identification 57 

exclusive control 58 
keys 58 
mass insert operations 58 
sharing resources 59 
skip-sequential processing 59 

VTAB operand 135 

WAIT EVENT command 181 
WAIT JOURNAL command 229 
WAIT option 

basic mapping support 166 
interval control 186 
journal control 230 
of SEND command 86 
terminal control 86, 121 

WAIT SIGNAL command 92 
WAIT TERMINAL command 86 

loJaiting 
batch data interchange 172 
for event to occur 181 
terminal control operation 86 

work i ng set 17 
WPMEDIA option 173 
WRBRK condition 

basic mapping support 167 
terminal control 123 

write break 102 
WRITE command 62 
WRITEQ TO command 203 
WRITEQ TS command 208 
'oJriting 

batch data interchange record 170 
data to temporary storage queue 208 
data to terminal or logical unit 86 
data to transient data queue 203 
file controi record 62 

XCTl command 190 
XOPTS keyword 12 
XREF opt ion 

COBOL 14 
Pl/I 15 

2260 compatibility 105 
2260 Display Station 101 
2265 Display Station 101 
2721 Portable Audio Terminal 116 
2741 Communication Terminal 102 
2770 Data Communication System 102 
2780 Data Transmission Terminal 103 
2980 General Banking Terminal 

System 103 
DFH2980 structure 104 
output control 104 
output to common buffer 104 
passbook control 103 
translation tables for 243 

3270 Information Display System 
(BTAM or TCAM supported) 105 
in 2260 compatibility mode 105 
logical unit 106 

3600 Finance Communication System 108 
pipeline logical unit 109 
3601 logical unit 109 
3614 logical unit 110 

3630 Plant Communication System 110 
3650 Store System 

host conversational (3270) LU 111 
host conversational (3653) lU 111 
interpreter logical unit 112 
pipeline logical unit 112 

3650/3680 Store System 
full function logical unit 112 
host command processor LU 110 

Index 361 



3660 Supermarket Scanning System 112 
3680 Programmable Store Syst~m 

host command processor lU 110 
3735 Programmable Buffered Terminal 
3740 Data Entry System 113 
3767 Communication Terminal 

interactive'logical unit 114 
3770 Communication Sy~tem 

batch logical unit 114 
full function logical unit 114 
interactive logical unit 114 

3780 Communications Terminal i14 
3790 Communication System 

full function logical unit 115 
inquiry logical unit 115 
SCS printer logical unit 115 

362 CICS/VS APRM (Cl) 

112 

3270-display logical unit 116 
3270-printer log'; cal unit 116 

[2J 
7770 Audio Raspon sa Un it 116 

0 
8100 DPPX outboard formatting 129 



Customer Information Control System/Virtual Storage (CICS/VS) 
Application Programmer's Reference Manual (Command Level) 

SC33-0077-3 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM sys~ems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. Comments may be written in your own language; English is not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct 
any requeSl$. Jbr copies of publications, or for assistance in using your IBM system, to your IBM representative 
or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ......................................... . 

If you wa.nt all acknowledgement, give your name and address below. 

Name 

Job Title ______ .. ___ ._. ________________ Company _____ ~ ________ . __________ _ 

Address 

Zip 

Thank you for your cooperation. No postflge stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments ~r you may mail directly to either address 
in the Edition Notice on the back of the title page.) 



SC33-0077-3 

Reader's Comment Form 

Fold and tape Please do not sl3Ple-_____________ ......li- __ .--... __ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT40 ARMONK, NEW YOR~ 

Postage will be paid by the addressee: 

International Business Machines Corporation 
Department 812HP 
1133 Westchester Avenue 
White Plains, New York 10604 

Fold and tape Please do not staple 

111111 

Fold and tape 

Q 
("') 
en 
---< ----------, ~ 

No postage 
necessary 
if mailed 
in the 
United States 

Fold and tape 

"C 

1
"2-
~­

I !:to o 
I ~ .., 
I ~ .., 
I 3 
I ~ 
I ;; 
I ~ 
I . ~ 

o I (I) 

~ 
I ~ 

c: I Q) 

I Q 
I 3 

3 
I ~ 

c.. 
I r 

(I) 

I [ 
I 

en 
("') 
eN 
C(J 
o o ...... 
...... w 



SG33-0077-3 

Q 
(") 
en -< en 
» 
"0 
"2-
~' 
..... 
0' 
::J 

"tJ .., 
o 

CQ .., 
Q) 

3 
3 
CD .., 
VI" 

n o 
3 
3 
Q) 

::J 
Co 
r 
CD 
< 
~ 

"tJ .., 
3' ..... 
CD 
Co 

5' 
c 
en 
~ 


	00001
	00002
	00002a
	00002b
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	replyA
	replyB
	xBack

