Program Product

SC33-0077-2

Customer Information
Control System/Virtual
Storage (CICS/VS)
Version 1 Release 5

Application Programmer’s
Reference Manual
(Command Level)

Program Numbers 5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

I
I
i

(o
I

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Third Edition (May 1980)

This edition, as amended by Technical Newsletter (TNL) SN33-6268,
applies to Version 1 Release 5 (Version 1.5) of the IBM program product
Customer Information Control System/Virtual Storage (CICS/VS), program
numbers 5746-XX3 (for DOS/VS) and 5740-XX1 (for OS/VS) .

This edition is based on the CICS/VS Version 1.4.1 edition, and changes
from that edition are indicated by vertical lines to the left of the
changes. Note, however, that the 1.4.1 edition remains current and
applicable for users of Version 1.4.1 of CICS/VS.

Information in this publication is subject to change. Changes will be
published in new editions or technical newsletters. Before using this
publication, consult the latest IBM System/370 and_ 4300 Processors
Bibliography, GC20-0001, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material may contain references to, or
information about, IBM products (machines and programs) , programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader®s comments is provided at the back of this
publication; if the form has been removed, comments may be addressed
either to:

International Business Machines Corporation,
Department 812HP,

1133 Westchester Avenue

White Plains, New York 10604.

or to:

IBM United Kingdom Laboratories Limited,

Programming Publications, Mail Point 095,
Hursley Park,

Winchester, Hampshire S021 2JN, England.

IBM may use or distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

€ Copyright International Business Machines Corporation 1977, 1978, 1979,
1980

H-
[

Preface

This manual describes the IBM Customer Information Control
System/Virtual Storage (CICS/VS) command-level application-programming
interface; it contains introductory and reference information necessary
to prepare assembler-language, COBOL, and PL/I application programs,
using CICS/VS commands, to execute under either of two IBM program
products: CICS/DOS/VS (5746-XX3) or CICS/0S/VS (5740-XX1). It is
intended primarily for use by application programmers, but will be
useful also for system programmers and system analysts. A knowledge of
the concepts and terminology introduced in the Customer_ Information

Control System/Virtual Storage (CICS/VS) Version 1 Release 5: General
Information, GC33-0066 is required.

The manual contains the following parts:

° wpart 1. Command-Level Programming® introduces CICS/VS commands
and describes the basic facilities that are available to the user.
A chapter is included about the command language translator and the
options that can be selected to modify the way in which the
translator operates.

. "Part 2. Data Base Operations™ deals with access to data sets in
the user's CICS/VS system either through CICS/VS file control or
through DL/I.

o “pPart 3. Data Communication Operations™ deals with communication
with terminals and logical units of the subsystems in the
telecomnmunications network that forms part of the CICS/VS systenm.

. "pPart 4. Control Operations" groups together facilities for
controlling the operation of application programs in the CICS/VS
systen.

. "Part 5. Recovery and Debugging” deals with facilities available
for recovery from abnormal termination; monitoring; tracing progranm
operation; and dumping areas of main storage.

["Part 6. The CICS/VS Built-In Punction (BIF DEEDIT) Command"®
describes the one built—in function available with the command-—
level interface.

. wPart 7. Appendixes®

Appendix A. EXEC Interface Block.

Appendix B. . Translation Tables for the 2980.

Appendix C. CICS/VS Macros and Equivalent Commands.

Appendix D. Sample Programs (Assembler Language).

Appendix E. Sample Programs (COBOL).

Appendix F. Sample Programs (PL/I).

Appendix G. Sample Programs for Distributed Transaction
Processing.

Experience in writing programs in assembler language, COBOL, or in
PL/I is assumed. No previous experience of CICS/VS is assumed.

In this publication, the term VTAM refers to ACF/VTAM, to ACF/VTAME

(CICS/DOS/VS only), and to the Record Interface of ACF/TCAM (CICS/OS/VS
only). The term TCAM refers both to TCAM and to the DCB Interface of

Preface iii

| ACP/TCAM. The term BTAM refers to BTAM (CICS/0S/VS only) and to BTAM-ES
} (CICS/DOS/VS omly). PFor further details of system requirements, refer
{ to the publication CICS/VS_General Information.

Related publications are listed in the bibliography at the end of
this manual.

iv CICS/VS APRM (CL)

PART 1. COMMAND-LEVEL PROGRAMMING

CHAPTER 1.1. INTRODUCTION TO COMMAND-LEVEL PROGRAMMING

Structure of this Manual . . . e o o
Syntax Notation Used in this Manual .« o

CHAPTER 1.2. COMMAND FORMAT AND ARGUMENT VALUES

Command Format . . . & ¢« o ¢ ¢ ¢ o & « &«
Argument ValuesS . . . ¢« o ¢ o o o o = o

CHAPTER 1.3. COMMAND IANGUAGE TRANSLATOR

Translator Data SetS « o« ¢« 2 o o o o o »
Translated Code . « o« e« ¢ « s « « o o
Translator Options « =« =« ¢« « ¢ ¢ o o o &«

CHAPTER 1l.4. PROGRAMMING TECHNIQUES AND
General Programming Techniques . . .
Object Program Size
Assembler—-Language Considerations
COBOL Considerations . . « « « . .
PL/I Considerations . « . « - . &

CHAPTER 1.5. EXCEPTIONAL CONDITIONS .

.

RESTRICTIONS

Handle Exceptional Conditions (HANDLE CONDITION)

Handle Condition Command Option . . .

Ignore Exceptional Conditions (IGNORE CONDITION)
List of Exceptional Conditions « « . . .

CHAPTER 1.6. ACCESS TO SYSTEM INFORMATION .

Access to CICS/VS Storage Areas (ADDRESS)
ADDRESS Command Options . « ¢« ¢« ¢ « « o«

Values Outside the Application Program (ASSIGN)

ASSIGN Command Options . . .« &

-

CHAPTER 1.7. EXECUTION (COMMAND LEVEL) DIAGNOSTIC

Functions of EDF
Security Rules . . « « « « &«
Installing EDF
Invoking EDF . « & & « « .
Using EDF DisplayS « o« « o o « &

Program Labels . o« ¢ 2« « ¢« o« o o
Using EDF with EXEC DLI Commands .

Checking Out Pseudo—Conversational Programs

CHAPTER 1.8. COMMAND-LEVEL INTERPRETER
Invoking the Command-Level Interpreter .
Screen Layout . . ¢ ¢ o e ¢ o o o o » o
Program Control . . « « ¢ ¢ o o o o o o«
Security Rules . . ¢« ¢ ¢ o 2 o o o o «

Installing the Command-Level Inter:preter

PART 2, DATA BASE OPERATIONS

e o ® o o v

CHAPTER 2.1. INTRODUCTION TO DATA BASE OPERATIONS

CHAPTER 2.2. FILE CONTROL .

ISM mta sets ® - . - - L] L J L] L] L - - L]
VSAM Data SetS « « ¢ ¢ o o ¢ o o o« o o o
DAM Data SetsS . o o ¢ o o ¢ ¢ s o o &

[N N]

.

[2 T I N) [B I

FACILITY

e 9 0 & 9 9 0

e & ¢ 0 ¢ * 2 [20 T I B [T I B N] ¢ 0 o 0 0 * 0 .

« o o

e 0 ¢ * 0 9 ¢ o 0t [2 T B N e ¢ 5 9 & [20 N I)

L I T BN TR)

L I T I

¢ 6 o 0 ¢ 9 0 0 e o 0 B @ [N I T e ¢ 9 0 ¢ [T T

Contents

.
L]
L]
.
.
@x

L I I B
[
w

. o 0 9 0
s 0t 0 9

[2 I R Y B)
N
~

¢ ¢ o o 0
* % o e 0
o 5 o 0 0
w
0

e ¢ 0 9 9
e * 0 9 0
0 8 ¢ 0

" ¢ e 9 0
&~
w

o * 0 9 0 0 0
¢ o & 0 3 ¢ ° 0 ¢
O o ¢ & o s 0 0

e ¢ & 0 o 0 0 0
5]
(%,]

¢ o 9o 0 9 0

¢ o o ® ¢

® 0 0 e 9

s e o o 0 0
>

L]
LI I B

LI Y Y
®
&

Contents v

Page of SC33-0077-2, revised September 1980 by TNL

KEYLENGTHS for Remote Data Sets
Read a Record (READ) . « - « « «
Write a Record (WRITE) . « « « o«
Update a Record (REWRITE) . . .
Delete a VSAM Record (DELETE) .
Release Exclusive Control (UNLOCK)
Start Browse (STARTBR) . o « « «

Read Next Record during a Browse (READNEXT)

Read Previous Record during a Browse (READPRE
Reset Start of Browse (RESETBR) . . .
End Browse (ENDBR) . 2 o ¢ o = = o o «
File Control Options . o« ¢ ¢ o o = o o«
File Control Exceptional Conditions .

o e ¢ 0
® e 9o 0 ¢ 9 9
¢ 8 0 0 0 9 0
¢« o o & 9o 9 0
e ® 8 0 ¢ 4 0
¢ 0 0 e ¢ ¢ o

ltctsot'.'lll

CHAPTER 2.3. DL/I SERVICES (DL/I CALL STATEMENT)

User Interface Block (UIB) . o« o o o o o o o »
Schedule the PSB and Obtain PCB Addresses . .
Build Segment Search Arguments (SSAS)
Acquire an I/O Work Area for DL/I Segments . .
Issue a DL/I Data Base Call . . &« o o o « o »
Release a PSB in the CICS/VS Application Program
Check the Response to0 a DL/I CALL . « « ¢ o« « »
Example of DL/I Request Using CALL . « =« o « « «

CHAPTER 2.4. DL/I Services (EXEC DLI Command)
General Format of EXEC DLI Command . « « » « &
DL/I Interface Block (PIB) e o o o o
Example of DL/I Request Usmg EXEC DLI . .

PART 3. DATA COMMUNICATION OPERATIONS

SN33-6268

000.500.'00.0
0 8

£

L T T I B D I)
e 0 % & & 9 2 0
e ¢ & 0 ¢ o s 0
s ¢ 2 ¢ 9 9 v 0 g
o ¢ * ¥ 9 s 0 0

CHAPTER 3.1. INTRODUCTION TO DATA COMMUNICATION OPERATIONS

CHAPTER 3.2. TERMINAL CONTROL ¢« « o « o « « « &

Commands and Options for Terminals and Logical Units .

Commands and Options for Logical Units

TCAM—Supported Terminals and Logical Units (CICS/OS/VS

BTAM Programmable Terminals . . ¢ o« o o = » «
Teletypewriter Programming « « « ¢« « ¢ =« & « « &
Display Device Operations . . . - - “- . .
Standard CICS/VS Terminal Support (BTAM or TCAM)
LUTYPE4 Logical Unit
LUTYPE6 Logical Unit
System/3 e o e o o o
System/370
System/7 . « ¢ . . .
2260 Display Station
2265 Display Station
2741 Communication Termn.nal
2770 Data Communication System
2780 Data Transmission Terminal -
2980 General Banking Terminal System
3270 Information Display System (BTAM or
3270 in 2260 Compatibility Mode (BTAM)
3270 Logical Unit . . &« ¢« ¢ ¢ o o = &«
3270 SCS Printer Logical Unit

® ° e 0 ¢ 0 o
"¢ o o 0 0

¢ 00 " g 0
¢ s 0 " 0 9 0

e ¢ 9o % 3 0 8 0
" 0 o ¢ o & ¢ g3 o @

o o 8 * 0 0 o 0
* 0 0 9 0 * 0 2 0 0 0
¢ 0 9 o ® % 9 0 0 0 0
9 * ¢ 0 0 3 g 0 v &
® o g 0 0 9 9 s % 8 o

3270-Display Logical Unit (LUTYPE2)
3270—-Printer Logical Unit (LUTYPE3)
3600 Finance Communication System (BTAM)
3600 Pipeline logical Unit
3600 (3601) Logical Unit
3600 (3614) Logical Unit
3630 Plant Communication System . - .
3650/3680 Host Command Processor Logical Unit
3650 Host Conversational (3270) Logical Unit .

vi CICS/VS APRM (L)

" 2 8 0 % o ¢ 9 T 0 ¢ 8 0 8 g 9 0 0 3 0% e,

<)

o 8 0 0 g 0 0 " 9 0 0 0 0 8 % B B 9 0 0 9 0 0t 9 g 0 0 [y e @

9 0 0 & ¢ 9 " 0 0 0 % 5 9 0 0 0 g 0 0 e v e 0 0 g 0 O 0 0
o..'c!'lol'!o'tlntl.oOOOQQO'S.UQ

" o 9 L L] e s & 0 9 [} [

L2 DR DU Y DU DN DY DU TN TN DN TN DN RN N DN DU DN DR R T DY R R T D Y T R R)

L2 D T I I I I R)

[I I T)

0 0 8 0 0 9 0 0 g 0 % 8 9 8 0 0 0 s 0t o s 0 " N g o9

115

121
121
123
123

129

131
133
138

“144

144
146
147
153
154
155
158
158
159
161
161
162
164
164
165
168
169
170
171
172
173
174
176
177
179
179
180
181

Page of SC33-0077-2, revised September 1980 by

3650 Host Conversational (3653) Logical Unit
3650 Interpreter Logical Unit
3650 Pipeline Logical Unit

365073680 Full Function ILogical Um.t
3660 Supermarket Scanning System . .
3735 Programmable Buffered Terminal
3740 Data Entry System
3767 Interactive Logical Unit .
3770 Batch Ilogical Unit o o o &
3770 Interactive Logical Unit .
3770 Full Function Logical Unit
3780 Communications Terminal . .
3790 Full Function Logical Unit
3790 Inquiry logical Unit . . .
3790 SCS Printer logical Unit .
3790 (3270-Display) Logical Unit
3790 (3270-Printer) Logical Unit
7770 Audio Response Unit
Terminal Control Options
Terminal Control Exceptional Conditions

® & B & 8 0 T ¢ ® & 8 0 ¢ v v 9
s 0 & & o ¢ 0 o ¢ ¢ % o 9 F 0 ¢ o 0

¢ o 8 0 o ¢ O & » g3 & ¢

® 9 ¢ - 8 8 0 0 o & 0 8 o
e ® 0 ¢ ¢ ° 9 9 ¢ B 0 9 9 s 0 5 9+ b o

e 0 % 8 ¢ % 5 9 0 T B 0 8 0 0 g 8 0 s 0
9 0 % 3 e % & 0 0 B 0 0 8 0 o 0 % 0 s e
e & 0 9 8 % ¢ 0 0 B 9 0 0 0 9 s v b 0
¢ 0 8 0 8 s 0 % g " 0 g 0 0 P O o0 o
® 9 s 0 0 8 9 0 0 s 8 0 3 ¢ 0 0 s 0 0

-
*
L)
.
3
.
.
-
-
3
.
-
-
.
3
3
.
L)

o o & o o & 8 o o " O 0 9 » ¢ o s & ¢

CHAPTER 3.3. BASIC MAPPING SUPPORT (BMS)
Data Mapping . « « « ¢ o « & o «
Map Definition «
Define a Map Set (DFHMSD Macro)
Define a Map (DFHMDI Macro) . .
Define a Field (DFHMDF Macro) .
Display Device Operations (BMS)
Mapping Input Data (RECEIVE MAP)
Mapping Output Data (SEND MAP) . .
Format Output Data Without Mapping (SEND TEXT)
Complete and Transmit a Logical Message (SEND P
Delete a Logical Message (PURGE MESSAGE) . . .
Route a Logical Message (ROUTE) e 6 o o o o o
Basic Mapping Support Options . . .
Basic Mapping Support Exceptional Condltlons .

¢ o 0o 0 & *
e« s o 0 ¢ 0
e o 0 0 s 0
*® s ¢ o o v 0 ¢

" e * o 0 s 0
e s o % 9 o ¢ o
® s 8 0 9 st 0 0

" o ® 0 8 ¢ ¢ 0 0

e oo ¢ 0 0 s 8 0

GE)

e % o o Tle o 0 0 0 8 s 0 0
s ¢ 9

R S T TR TR T SR SN TR S S S TN B
® 8 6 0 3 5 8 % s g e s g

- 9

CHAPTER 3.4. BATCH DATA INTERCHANGE
Interrogate a Data Set (ISSUE QUERY) ¢« . . .
Read a Record From a Data Set (ISSUE RECEIVE)
Add a Record to a Data Set (ISSUE ADD) . & . .
Update a Record in a Data Set (ISSUE REPLACE)

Delete a Record from a Data Set (ISSUE ERASE)

Terminate Processing of a Data Set (ISSUE END) .
Terminate Processing of a Data Set Abnormally (ISSUE
Transmit Data to an Output Device (ISSUE SEND) . .
Request Next Record Number (ISSUE NOTE) . . . <« .
Wait for an Operation to be Completed (ISSUE WAIT)
Batch Data Interchange Options . . « « ¢« ¢ o « « &
Batch Data Interchange Exceptional Conditions . .

L
LI I L I]
. o & @ L I

s o & o 0 o o
0"!0§00'0.o- S 8 8 0 0 ¢ 9 s g 0 0 0 8 L N N O I I B S R O 2 T I I D B)

o 0t e s 0 Pe s s s s g 0

¢ & ¢ 9 0

PART 4. CONTROL OPERATIONS
CHAPTER 4.1. INTRODUCTION TO CONTROL OPERATIONS . . .

CHAPTER 4.2, INTERVAL CONTROL . « s o «
Request Current Time of Day (@ASKTIME) .
Delay Processing of a Task (DEIAY) . . .
Request Notification when Specified Time
Wait for an Event to Occur (WAIT EVENT)
Start aTask (START) « ¢ o o o o o o
Retrieve Data Stored for a Task (RETRIEVE)
Cancel Interval Control Requests (CANCEL)
Interval Control Options . « « ¢« ¢ « « . .
Interval Control Exceptional Conditions

* 0 o o 0 0 [N o 0
e
2
47}

o 0 o v o v Hoe o o

a

8 Se e o

s 0 0 v 0 0
" e s v s b

outood;!'to.'

TNL

® 0 9 % g s % 9 s 0 0 s g " s 9 0

® 9 0 % o 5 % % o " 0 " s ¢ " 0 g3 9 0

8 & 0 8 9 & * 9 " " 0 s .
[] ¢ ¢ s 9 * B 9 0 0 L I]]

¢ 0 9 0

~—
0 0 9 € * o e 0

SN33-6268

182
183
184
18y
184
185
187
188
189
190
190
190
191
192
193
194
195
195
197
205

® ¢ 8 1 9 8 8 8 ¢ % 0 0 ¢ 8 0 e g s 0
T e 9 0 8 ® 9 8 9 O 6 3 e b 9 e 0 0 o

o 0 0 9 0 % 0 p s " P 0 v 8 0 g ¢ 0 0

e % * & o 0 0 3 ¢ % S % 0 0
L O 2 T D D I T
" 0 0 9 & ¢ 9 0 8 % 0 0 0 @

N

%]

w

289
289
289
290
290
290
291
294

e o« = 299

301
302
302
303
304
305
307
309
310
310

% 9. 9 0 & ¢ 0 0 0
0 9 0o 0 v 9 b o

L T T S S Y S S R |

Contents vii

CHAPTER 4.3. TASK CONTROL « ¢ = o ¢ o o o = o = o
Suspend a Task (SUSPEND) . . <« « » e s o e o o
Schedule Use of a Resource by a Task (ENQ and DEQ)
Task Control Options .« ¢« ¢« o o o c ¢ o o s o = = »
Task Control Exceptional Conditions

DI I T T

CHAPTER 4.4, PROGRAM CONTROL . « »
Application Program Logical Levels .
Link to Another Program Anticipating
Transfer Program Control (XCTL) . .
Return Program Control (RETURN} . .
Load a Program (LOAD)

Delete a Loaded Program (RELEASE)
Passing Data to Other Programs . .
Program Control Options
Program Control Exceptional COndJ.tlons

o 0 v 2 0 s e e
c'rloo-g’oc
&
e o v s o o o Hoe o
=]
e & 0 3 0 0
.OO'OOQFOO
(=l
e 0 o s 0 0 0
-onooooé
o 0 o 0 0 ¢ ¢ 8 0 0

CHAPTER 4.5. STORAGE CONTROL . o« ¢ - » « o«
Obtain and Initialize Main Storage (GETMAIN)
Release Main Storage (FREEMAIN) . . « « . «
Storage Control Options . « ¢ ¢« ¢ ¢ o ¢ o o«
Storage Control Exceptional Conditions . . .

CHAPTER 4.6. TRANSIENT DATA CONTROL . « « « - =«
Write Data to Transient Data Queue (WRITEQ TD) . . .
Read Data from Transient Data Queue (READQ TD) . .

LN IR S

Delete an Intrapartition Transient Data Queue (DELETEQ TD)

Transient Data Control Options- o o o
Transient Data Control Exceptional Condz.tlons o o o

CHAPTER 4.7. TEMPORARY STORAGE CONTROL
Write Data to a Temporary Storage Queue (WRITEQ TS)

Read Data from Temporary Storage Queue (READQ TS) .
Delete Temporary Storage Queue (DELETEQ TS) . « . .
Temporary Storage Control Options . « « & o ¢ o & &«
Temporary Storage Control Exceptional Conditions . .

PART 5. RECOVERY AND DEBUGGING

CHAPTER 5.1. INTRODUCTION TO RECOVERY AND DEBUGGING
Sequential Terminal Support

CHAPTER 5.2. ABNORMAL TERMINATION RECOVERY . . .
Handle an Abnormal Termination Exit (HANDLE ABEND)
Terminate Task Abnormally (ABEND) .« ¢ ¢« « « o « =
Abnormal Termination Recovery Options -
Abnormal Termination Recovery Exceptional COndltlons

CHAPTER 5.3. TRACE CONTROL
Trace Entry Points . . + . .
Event Monitoring Points . .
Trace Facility Control . . .
Trace Table Format

CICS/VS Auxiliary Trace Fac111ty

" s v 0

e s v 0

L] (] L[] . . []
T S
CRECE S Y

L] [] L] . [
[T Y

L] . € .]
LY SR
LR T }

o o * o o o

e o o o ., -

User Trace Entry Point and Event Monitoring Point (ENTER)

L] L] [L] L 2

¢ o ¢ & s @

Control the CICS/VS Trace Facility (TRACE ON, TRACE OFF)

Trace Control Options e o o o o o s o o e
Trace Control Exceptional COndxtlons e o o e s o o @

CHAPTER 5.4. DUMP CONTROL . « « o «
Dump Main Storage (DUMP) . . < « « « &
Dump Control Options . « « « o & & & &
Dump Control Exceptional Conditions .

viii CICS/VS APRM (CL)

¢ o ¢

¢ & 0 9 b

L] * ® *

L

L A LS S T Y ® 0 % 8 e 0 8 % e @ LI R T Y

[T I 2

[TS R R T Y o s s 0 e

. L] . 0 ¢ o ° e 9 . . * & 0 1]] [o 9 L I] L] [] L] . .

R I T T T T B B S ()

. * 0 o ¢ 0 e = 0 9 @ [L B

* o 8 e & 9 o 0o & 8 3 o e ® 0 0 o ® g » o & 8 e 9 @ P e ¢ o o

317
317
318
319
319

321
321
323
323
324
324
325
325
331
332

333
333

335
335

337
340
340
341
342
343

345
347
348
349

352

355

356

359
361
362
363
363

365
365
365
366
366
368
369
370
371
372

373
374
376
377

| CICS to CICS (or Other) Synchronous Sample Program . . .

CHAPTER 5.5. JOURNAL CONTROL . & 2o 2 o o o 2 o s o
Create a Journal Record (JOURNAL) ¢ o e 6 8 o =
Synchronize with Journal Output (WAIT JOURNAL) .

Journal Control Options . . . ¢« o &« o o o o &«
Journal Control Exceptional Conditions

CHAPTER 5.6. RECOVERY (SYNC POINTS) . « ¢ o « « o»
Establish a Sync Point (SYNCPOINT) . ©. ¢« ©o o = o o o o o o &«
Sync Point Option . . & ¢ ¢ ¢ ¢ o o o o o e s e s s s s e e

.
.
.
(3
L]

PART 6. THE CICS/VS BUILT-—IN FUNCTION COMMAND

CHAPTER 6.1. THE FIELD EDIT BUILT-IN FUNCTION (BIF DEEDIT)
COMMAND . «. ¢ ¢« ¢ « o o o o o o s a o 2 s s & o » o o » o =

PART 7. APPENDIXES

APPENDIX A. EXEC INTERPACE BLOCK . . ¢ o o ¢ ¢ « o o o o »
BIB PFieldS s o o o o o o o o o o » o o s o o o s o o = o o =

APPENDIX B. TRANSLATION TABLES FOR THE 2980
APPENDIX C. CICS/VS MACROS AND EQUIVALENT COMMANDS

APPENDIX D. SAMPLE PROGRAMS (ASSEMBLER LANGUAGE) o o o
Executing the Sample ProgramsS .« « « =« « o o = o o = = &«
Operator Iastruction Sample Program (Assembler Language)
Update Sample Program (Assembler Language) . ¢« ¢ « o o o«
Browse Sample Program (Assembler Language) « « o o o o
Order Entry Program (Assembler Language) « « » o o o o o »
Order Entry Queue Print Sample Program (Assembler Language)
Report Sample Program (Assembler Language) « « o o o o o o o
Sample Maps and Screen Layouts for Assembler language Sample
Additions to Tables for Assembler Language Sample Programs .
Record Descriptions for Assembler Language Sample Programs .

APPENDIX E. SAMPLE PROGRAMS (COBOL)
Executing the Sample Programs . . « « « o« &
Operator Instruction Sample Program (COBOL)

Update Sample Program (COBOL) . « ¢ « « + =«
Browse Sample Program (COBOL) .+ . « « &« « =«
Order Entry Sample Program (COBOL)

Order Entry Queue Print Sample Program (COBOL)
Report Sample Program (COBOL) . . . « ¢« « o &
Sample Maps and Screen Layouts for COBOL Sample Pr
Additions to Tables for COBOL Sample Programs . .
Record Descriptions for COBOL Sample Programs . .

® s 3 v o

e 9 8 9 8 0 9

T

=]
e o N v o ¢ v 9 & o
]

009"00-...'

c-\Qv'.t-OO-

APPENDIX FP. SAMPLE PROGRAMS (PL/I)
Executing the Sample Programs « .
Operator Instruction Sample Program (PL/I) .
Update Sample Program (PL/I)
Browse Sample Program (PL/I) . & . o o o & = .
Order Entry Sample Program (PL/I)
Order Entry Queue Print Sample Program (PL/I) .
Report Sample Program (PL/I) . . « o« o o « o o =«
Sample Maps and Screen Layouts for PL/I Sample Prog
s

® e 8 0 0 s o @

Additions to Tables for PL/I Sample Progranms .
Record Descriptions for the PL/I Sample Progran

. 8 s % 8 8 e v g3 o
N T SR SR ST B SR T S)

o
o B Y e s v v 9 s o
1]

.
-
L

APPENDIX G. SAMPLE PROGRAMS FOR DISTRIBUTED TRANSACTION
PROCESSING =« . 2 o o o o o s s o o o o o o o o o = =
CICS to CICS Synchronous Sample Prograli < . . « « « =«

* s . s 0

* 8 s+ 0

CICS to CICS Conversation (Synchronous) Sample Program

Contents

e 8 8 8 8 %t o s s s

[T S D D R Y B

. . . L . L] . .

e 5 o o O 9o 9 s 8 8

s s 0 ®

"9 " " 9 ¢ s o e & 9 ® 9 9 o o 8 v g

*

379
381
382
384
385

387
388
388

391

395
395

405
409

415
415
417
418

430
433
436
439
845
446

447
448
449
450
456
461
465
468
471
477
478

479
480
481
482
488
493
497
500
503
509
510

511
512
519
525

ix

| CICS to Other Synchronous Sample Program . . « . « -«
| Additions to Tables for the Sample Programs

BIBLIOGRAPHY . o o o ¢ ¢ o o ¢« o o 4 o o o o o o o =
Availability of Publications . « ¢« ¢« o o ¢ ¢ o o = &

INDEX .

Figures

1.7-1.
1.7—2.
1.7-3.
1.7-4.
108-1-
1-8"‘20
1.8-3.
2.3-1.
3-2-10
3.2-2.
3.2-3.
3.2-4.

3.2-5.
3.3-1.
3.3=2.
3.3-3.
3.3-4.
4.4_1o
5.2-1.
5.3-1.
5.3-2.
503—3-
5.4-1.
A-1.
A-2.
A-3.
B-1.
B-2.
B-3.

. - L - - - L] - . - - - - - - - L -

Typical EDP Display .« « o o o o & o
"Stop Conditions% Display
Typical EXEC DLI Display (Page 1) .
Typical EXEC DLI Display (Page 2) .
"Command Syntax Check" Display . . .
wAbout to Execute Command" Display .
"Command Execution Complete™ Display
CICS/VS-DL/I Interface Response Codes
Terminal-Oriented Task Identification
BTAM Programmable Terminal Programming . .
Standard Attention Identifier list (DFHAID)
Standard Attripute and Printer Control Charac
List (DFHBMSCA) e o 8 s & o o e e o s = = =
2721 Portable Audio Terminal Special Codes .
BMS Terminal Code Table : . « ¢ o o o & o 4
Trailer Maps in Mapping Operations
Overflow Processing . . « o o o 2 o o o o &
Interleaving Conversation with Message Routi

L) L . & 0

e 8- ¢ ¢ ¢ 8 & 0 0 0

Application Program Logical Levels
ABEND Exit Processing . ¢« « o « ¢ o o o o«
Trace Entry Format on Issuance of Command
Trace Entry Format on Completion of Command
User Trace Entry Format o o
Dump Control Options «

EIBFN Codes (2 parts) . . .
EIBRCODE Codes (3 parts) i . .
The EXEC Interface Block . . .
2980—1 Character Snt/Trans].at° Table
2980—-2 Character Set/Translate Table
2980—-4 Character Set/Translate Table

.

LI Y

- ¢ 8 9
¢ 8 ¢ ¢ % 2
o 9 % o * 9 @
s & & g 0 4 @
" 8 8 & 8 o & o

x CICS/VS APRM (CL)

n

olc-t.o.oto.\glround-.ou.o.-.o..

$ 8 9. 8 & ® & 5 & 9 & 3 T " o ° 9

* & L I L] *

e 8 8 % e % & 3 % 9 S g G- 9 L 9 " ¢

® e & ® 8 T 5 8 0 s ¢ " 9 0 3 0 @

¢ ® e % s ° 5 9 & 0

® s 5 8 6 8 8 8 0 0 % 8 v g v g s ¢

L Y LI) 1] L] L] L) L]

* e & 0 LI T] S 9 & o ¢ 3 8 O 9 O @

® 9. % 9 ® 8 ¢ ¢ 9 o

532
546

547
548

549

408

Summary of Amendménts for Version 1 Release 5

This edition (SC33-0077-2) provides information about the new or
enhanced features introduced by CICS/VS Version 1 Release 5, as follows:

Extensions to the intercommunication facilities, offering:

— Multiregion operation (MRO) — a new mechanism that allows
communication between multiple connected CICS/VS regions within
the same processing system without the use of SNA networking
facilities.

— Distributed transaction processing (DTP) — direct transaction-—
to—transaction communication across systems. (This facility is
not available on MRO.)

- Intersystem Communication between CICS/¥S and IMS/VS.

- Improved throughput by support of SHA parallel sessions.

Enhanced master terminal facilities for interactive contrbl of
CICS/VS.

Command—level interface enhancements: an interactive command
interpreter, and a new command-—level interface with DL/I.

Security enhancements, including support for an external security
manager {for example, the Resource Access Control Facility (RACF)
program product) .

Improved monitoring facilities.

Further device support, including:

- additional 3270 support.

- use of the 0S/VS console as a CICS/VS terminal.

-~ networking of TWX and WTTY terminals through the Network
Terminal Option (NTO) program product.

Usability and serviceabliity aids, including a new user exit
mechanism and facilities in CICS/DOS/VS similar to those provided
by the FERS service aid.

Some of the above features are not described in this manual because

they do not directly affect the application programmer; for information
on these, refer to the other CICS/VS manuals listed in the bibliography. .

Summary of Amendments xi

Summary of Amendments for Version 1 Release 4.1

This technical newsletter (SN33-6242) provides information about the new
or enhanced features introduced by CICS/VS Version 1 Release 4.1, as
follows:

. LUTYPE4 support

L FBA device support (CICS/DOS/VS only)

° Intersystem communication message performance option.

Summary of Amendments for Version 1 Release 4
This edition (SC33-0077-1) provides information about the new or
enhanced features introduced by CICS/VS Version 1 Release 4, as follows:
. Intersystem Communication
° Data Base Support (Transaction Restart)
o Extensions to Support of the 3270 Information Display Systenm

] Enhancements to the Command Level Interface (Assembler Language and
DL/T)

J Execution (Command Level) Diagnostic Facility (EDF)
The appendixes have been extended to include assembler—language

sample application programs and a separate appendix has been allocated
to each language.

xii CICS/VS APRM (CL)

Part 1. Command-Level Programming

Chapter 1.1. Introduction to Command-Level Programming

Chapter 1.2. Command Format and Argument Values

Chapter 1.3. Command Language Translator

Chapter 1.4. Programming Techniques and Restrictions

Chapter 1.5. Exceptional Conditions

Chapter 1.6. .Access to System Information

Chapter 1.7. Execution (Command Level) Diagnostic Pacility (EDF)

| Chapter 1.8. Command-Level Interpreter

Chapter 1.1. Introduction to Command-Level Programming

The Customer Information Control System/Virtual Storage (CICS/VS)
command-level application-programming interface allows application
programpers to request CICS/VS services by means of CICS/VS commands.
These commands are statements that can be included at appropriate points
in an application program. They have a format similiar to the
statements of the programming language in use.

CICS/VS commands can be used in application programs written in
assembler language, COBOL, PL/I, and in RPG II. The commands are
essentially the same in each language, differing only in the delimiter
used, and, in the case of RPG II only, in the syntax.

Because of its fixed format, RPG II is not included in this manual.
Instead, a separate manual is available entitled CICS/VS Application
Proqrammer's Reference Manual (RPG II).

Application programs that include CICS/VS commands are processed by
the command lanquage translator, which translates the commands into
statements, in the language being used, which can then be assembled (or
conpiled) and link—edited in the usual way. When these application
programs are executed, the statements inserted by the translator invoke
the BXEC interface program (DFHEIP), which provides the service
requested by each command by invoking one or more CICS/VS comntrol
programs.

In addition to invoking CICS/VS control programs, the EXEC interface
program obtains, and provides addressability to, any required areas of
storage, such as terminal input/output areas and various work areas
which, when no longer required, are released automatically. As a
general rule, the application programmer need only select the required
function and code the appropriate command. There is normally no need to
know about CICS/VS storage areas and control blocks; in those cases when
access to such areas is needed, the command-level interface provides a
conmand for this purpose, the ADDRESS command, described in Chapter 1.6.

Structure of this Manual

This manual consists of several parts, each generally having an
introductory chapter and one or more other chapters. The remaining
chapters in Part 1 deal with the following topics:

. Command format and argument values used throughout this manual
(Chapter 1.2)

o Command language tramslator (Chapter 1.3)

. Programming techniques, and restrictions placed on the use of the
programming language when CICS/VS commands are used (Chapter 1.4)

. Exceptional conditions that can occur during the execution of
CICS/VS commands (Chapter 1.5)

° Access to system information (Chapter 1.6)

° Execution (coammand level) diagnostic facility (EDF) (Chapter 1.7)

Chapter 1.1. Introduction to Command-lLevel Programaing 3

. Command—level interpreter (Chapter 1.8)

Part 2 through 6 of the manual are each concerned with CICS/VS
commands that can be discussed as a group:

. Part 2. Data base operations — describes the CICS/VS commands
provided for storage and retrieval of data in a data base using
CICS/VvS file control facilities or using DL/I services.

L Part 3. Data communication operations — describes the CICS/VS
comnmands provided for communication between CICS/VS and the
terminals and logical units of the subsystems in the
telecommrunications network of the CICS/VS systen.

. Part 4. Control operations — describes the CICS/VS comamands that
control the execution of tasks within the CICS/VS systen.

] Part 5. Recovery and debugging — describes the CICS/VS commands
provided for recovery from abnormal termination, and for error-—
handling, tracing, and monitoring. Commands are also provided to
cause dumping of selected areas of storage for offline analysis.

. Part 6. The CICS/VS Built-—In Function (BIF DEEDIT) Command —
describes the one built-—in function available with the command
level interface.

Each of the chapters (other than the introductory chapter) of these
parts of the manual has a standard format. The first section of a
chapter describes, in general terms, functions of the commands included
in the chapter. PFor each command the following information is
presented: the syntax of the command and its associated options;
exceptional conditions that can occur; a detailed description of what
the command does; and possibly one or more examples showing typical
coding of the command. Finally, two lists are given: a list of the
options, with their functions, that can be used in any of the commands
in the chapter; and a list of the exceptional conditions, and their
causes, that can occur during the execution of the commands.

Part 7 contains several appendixes. References to most of these
appendixes are included in the text. The last four appendixes provide
sample programs that illustrate the use of many of the commands
described in the manual. The BMS maps and file record descriptions used
by the sample programs are also included.

4 CICS/VS APRM (CL)

Syntax Notation Used in this Manual

Throughout this manual, wherever a CICS/VS command is presented, the
symbols { }, |, [], and ... are used in defining the command format.
These symbols are not part of the coamand and are not coded by the
programmer. Their purpose is to indicate how the command may be
written, and they should be interpreted as follows:

. Uppercase identifiers and punctuation symbols must be coded exactly
as shown.

[Lowetcase jdentifiers indicate that user text should be coded as
required.

. Square brackets [] are used to indicate that the enclosed
identifiers are optional. The less than, and greater than symbols
< > are used to replace square brackets in the syntax displays
produced by the command-level interpreter. (Sea Chapter 1.8).

1 The "or" symbol | is used to separate alternatives.

° Underlining is used to denote that the identifier is the default;

that is, the one that will be assumed if no explicit choice is
made.

. Braces { } are used to enclose a set of alternatives, one of which
must be coded.

° The ellipsis ... denotes that the immediatély preceding
identifier (s) can be coded repetitively.

To denote, for example, that either GTEQ, or EQUAL, or neither, can
be coded (and that GTEQ is the default), the syntax notation would be:

{ GTEQ | EQUAL]}

Chapter 1.1. Introduction to Command-—-Level Programming 5

Chapter 1.2. Command Format and Argument Values

The purpose of this chapter is to explain the general rules governing
the use of the CICS/VS commands that are described in the following
chapters.

Command Format

The general format of a CICS/VS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the required function, and possibly by one or
more options, as follows:

{EXECUTE|{EXEC} CICS function [option[(argument)]] ...

where:
"function" describes the operation required (for example READ),
woptionn describes any of the many optional facilities
available with each function. Some options are followed by an
argument in parentheses, others are not. Options (including
those that require arguments) can be written in any order,

and:

"argument” is a value such as "data—value" or "name", as
defined later in this chapter.

An example of a CICS/VS command (from Chapter 2.2. File Control) is
as follows:
EXEC CICS READ INTO(PILEA) DATASET (*FILEA') RIDFLD (KEYNUM) UPDATE

The appropriate end-of—command delimiter, described in the next
section, must be added.

CODING CONVENTIONS

CICS/VS commands can be included in an assembler-language, COBOL, or

PL/I program anywhere that an executable statement can be included.
In assembler language:

° The keyword BXEC must appear in an operator position. The command
can be labeled.

° The delimiter between options must be either a blank or a comma,
but not both. The appearance of ",p" or ".p" immediately following
an option indicates that the rest of the line is a comment.

. The usual continuation conventions apply (non-blank character in
column 72, the continuation line to start in column 16) .

Chapter 1.2. Command Format and Argument Values 7

In COBOL, a command must be delimited with "END-EXEC" as shown in the
following example:

EXEC CICS ISSUE RESET END-EXEC

This delimiter allows a comemand to be written within a THEN clause.

In PL/I, a command must be delimited with a semicolon as shown in the
following example:

EXEC CICS ISSUE RESET;

In the following chapters, for simplicity, the syntax of each of the
commands that can be specified in an application program is presented
without the phrase EXEC CICS, without the continuation conventions, and
without the end—of—command delimiter (END—EXEC or semicolon).

In the programming examples in the text, the phrase EXEC CICS is
added but not the continuation conventions or end—of—command delimiter.

When coding commands these must be added as appropriate for the
programhing language in use.

Argument Values
In the following chapters, the parenthesized arqument values that follow
options in a CICS/VS command are specified as follows:

. data-value

. data—area

. pointer—value

. pointer—ref

. nane

o label

° hhmmss

The argument values are defined in the following sections.

ARGUMENT VALUES IN ASSEMBLER LANGUAGE

In general, an argument may be either the address of the data or the
data itself (in assembler-language terms, either a relocatable
expression or an absolute expression).

A relocatable expression must not contain unmatched brackets (outside
quotes) or unmatched quotes (apart from length attribute references).
Provided this rule is obeyed, any expression may be used, including
literal constants, such as =aL2(100), forms such as 20 (0,R11), and forms
which use the macro replacement facilities.

An absolute expression must be a single term which may be either a
length attribute reference, or a self-defining constant.

8 CICs/VS APRM (CL)

Care must be taken with equated symbols which should be used only
when referring to registers (pointer references). If an equated symbol
is used for a length, say, it will be treated as the address of the
length and an unpredictable error will occur.

. ndata—value®" can be replaced by an assembler-language reference to
data of the correct type for the argument or by a constant of the
correct type for the argument.

. "data—area™ can be replaced by an assembler—language reference to
data of the correct type for the argument.

. "pointer—value®™ can be replaced by an assembler-language reference
to a register.

. wpointer—ref® can be replaced by an assembler-language reference to
a register.

. "pame"” can be replaced either
by a character string in guotes

by an assembler—language reference to a character string with a
length equal to the maximum length allowed for the name. The
value of the character string is the name to be used by the
argument.

. nlabel" can be replaced by any program label or address constant.

J “hhmmss" can be replaced by a self-defining decimal constant or an
assembler—-language reference to a field defined as PL4. The value
must be of the form OHHMMSS+ where HE represents hours from 00
through 99, MM represents minutes from 00 through 59, and SS
represents seconds from 00 through 59.

Many commands involve the transfer of data between the application
program and CICS/VS. In most cases, the length of the data to be
transferred must be provided by the application program. However, if a
data area is specified as the source or target, it is not necessary to
provide the length explicitly, because the command language translator
will generate a default length value of L'data-area.

Although the DESTIDLENG, FROMLENGTH, KEYLENGTH, LENGTH, PFXLENG,
TOLENGTH, or VOLUMELENG options are shown as required options in the
syntax for a command, these options are alwvays optional in an assembler—
language program which specifies a data area. (except in the case of the
ENQ and DEQ commands). Length values cannot be defaulted if the SET
option is specified in a command.

ARGUMENT VALUES IN COBOL

° ndata-value® can be replaced by any COBOL data name of the correct
data type for the argument or by a constant that can be converted
to the correct type for the argument. The data type can be
specified as being one of the following:

halfword binary - PIC S9(4) COMP

fullword binary - PIC S9(8) COMP

Chapter 1.2. Command Format and Argument Values 9

"data—area" can be replaced by any COBOL data name of the correct
data type for the argument. The data type can be specified as
being one of the following:

halfword binary — PIC S9 (4) COMP
fullword binary — PIC S9(8) COMP

In cases where the data type is unspecified, the data area can
refer to an elementary or group item.

wpointer-valuem can be replaced by the name of any BLL (base
locator for linkage) cell, or by any COBOL data name which contains
a copy of such a pointer in a BLL cell.

npointer—-refr can be replaced by the name of any BLL (base locator
for linkage) cell.

"name”" can be replaced either
by a literal constant; or

by an COBOL data-area with a length equal to the maximumr length
allovwed for the name. The value of the character string is the
name to be used by the argument.

Names nust be padded with trailing blanks to the maximum length
permitted.

#label" can be replaced by any COBOL paragraph name or a section
nane.

"hhemss™ can be replaced by a decimal constant or by a data name of
the form PIC S9(7) COMP-3. The value must be of the form OHHMMSS+
where HR represents hours from 00 through 99, MM represents minutes
from 00 through 59, and SS represents seconds from 00 through 59.

ARGUMENT VALUES IN PL/I

10

"data—value™ can be replaced by any PL/I expression that can be
converted to the correct data type for the argument. The data type
can be specified as being one of the following:

halfword binary — PFPIXED BIN (15)

fullword binary — FIXED BIN (31)
If the data value is specified as halfword binary, the data value

is converted, if necessary, to FIXED BIN(15). wData-value®w
includes "™data—area" as a subset.

CICS/VS APRM (CL)

o "data—area"™ can be replaced by any PL/I data reference of the
correct data type for the argument. The data type can be specified
as being one of the following:

halfword binary - FIXED BIN (15)

fullword binary — FIXED BIN (31)
If the data type is unspecified, the data area can refer to an
element, array, or structure; the reference must be to connected
storage, for example, FROM(P—>STRUCTURE) LENGTH (LNG).
If data, that is not in varying-length string format, is read into
a varying-length string, the length bytes at the beginning of the
varying-length string will be corrupted.

. "pointer—value" (which includes "pointer—ref" as a subset) can be
replaced by any PL/I expression that can be converted to POINTER.

. "pointer—ref" can be replaced by any PL/I reference of type
POINTER.

. "name® can be replaced either
by a literal constant; or
by a PL/I expression or reference whose value can be converted
to a character string with a length egqual to the maximum length

allowed for the name. The value of the character string is the
name to be used by the arqument.

. "label" can be replaced by any PL/I expression whose value is a
label. Program labels are always passed by value, not by
reference.

. "hhmmss" can be replaced by a decimal constant or an expression

that can be converted to a FIXED DECIMAL (7,0) value. The value
must be of the form OBHMMSS+ where HH represents hours from 00
through 99, MM represents minutes from 00 through 59, and SS
represents seconds from 00 through 59.

Many commands involve the transfer of data between the application
progran and CICS/VS. In most cases, the length of the data to be
transferred must be provided by the application program. However, if a
data area is specified as the source or target, it is not necessary to
provide the length explicitly, because the command language translator
will generate a default length value of either STG(data—area) or
CSTG (data—area) as appropriate.

Although the DESTIDLBNG, FROMLENGTH, KE!LBHGTH, LENGTH, PPILBHG,
TOLENGTH, or VOLUMELENG options may be shown as required options in the
syntax for a command, these options are alvays optional in a PL/I
program whlch specifies a data area (except in the case of the ENQ and
DEQ comnands). Length values cannot be defaulted if the SET option is
specified in a command.

Chapter 1.2. Command Format and Argument Values 1

Chapter 1.3. Command Language Translator

The command language translator accepts as input a source progranm,
written in assembler language, COBOL, or PL/I, in which CICS/VS commands
have been coded, and produces as output an equivalent source program in
which the commands have been translated into statements in the language
of the source program. At execution time, these statements invoke the
EXEC interface program, which accepts the arguments passed by the call
from the application program, sets up the parameters in the CICS/VS
control blocks, and passes control to the appropriate CICS/VS facility.

The translator is executed in a separate job step. The job step
sequence for preparing an application program is translate — assemble
(or compile) — link-edit. Cataloged procedures are supplied to assist
the user; refer to the CICS/VS System Programmer's Guide (DOS/VS) or

CICS/VS System Programmer®s Guide (0S/VS) for details. The translator
requires a region or partition of 96K bytes.

There are three separate translators, one for assembler language, one
for COBOL, and one for PL/I. The translators are each provided in two
versions, one for VSE and one for O0S/VS. The VSE version reads its
input froam SYSIPT, produces its output (the translated source progranm)
on SYSPCH, and writes the source listing, error messages and so omn, on
SYSLST. The 0S/VS version reads its input from SYSIN, produces its
output on SYSPUNCH, and writes the source listing, error messages and so
on, on SYSPRINT.

The VSE translators for COBOL and PL/I accept also the commands that
can be used to access DL/I data bases. These commands, of the form EXEC
DLI, are translated in a similar way to EXEC CICS commands, and are
described in Chapter 2.4.

If the Entry Level System (ELS) is used (VSE only), a translator is
generated with function limited to that supported by the host entry
level CICS/VS system. This translator will flag functions that are not
supported by the entry level system (as described in the CICS/VS_Entry
Level System User's Guide (DOS/VS)).

Translator Data Sets

INPUT DATA SET

The input data set must be a sequential data set. It may be on punched
cards, on a direct—access device, or on magnetic tape.

For DOS/VS, the input data set must contain 80-byte fixed-length
unblocked records.

For 0S/VS, the input data set for COBOL must contain fixed-length
records (blocked or unblocked); for assembler language and PL/I it may
contain either fixed-length or variable-length records. The maximum
record size (LRECL) must not exceed 104 bytes.

Chapter 1.3. Command Language Translator 13

OUTPUT DATA SET

The output data set must be a sequential data set. It may be on punched
cards, on a direct access device, or on magnetic tape.

For DOS/VS, the output data set must contain 80-byte fixed-length
unblocked records.

For 0S/VS, the output data set must contain 80-byte fixed-length
records (blocked or unblocked).

LISTING DATA SET

The listing data set must-be a sequential data set. Although the
listing is usually printed, it can be stored on any magnetic tape or
direct access device.

For DOS/VsS, the listing data set must contain 121-byte fixed-length
unblocked records.

For 0S/VS COBOL users, the listing data set must contain 121-byte
fixed-length blocked records (RECFM=FBA).

For 0S/VS assembler language and PL/I users, the listing data set
must contain variable length blocked records with a maximum length of
121 bytes (RECPH=VBA)‘

Translated Code

ASSEMBLER LANGUAGE

For an assembler-language application program, each command is replaced
by an invocation of the DFHEICAL macro which builds an argument list in
dynamic storage, so that the application program is reentrant, and then
invokes the EXEC interface program. A definition of this dynamic
storage is provided automatically by the translator imnserting an
invocation of the macros DFHEISTG and DFHEIEND. The translator will
also insert an invocation of the DFHEIENT macro which performs prolog
initialization code and an invocation of the DPHEIRET macro which
performs epilog code.

The following example shows a simple assembler-language application
program that uses a BMS command to send a map to a terminal.

14 CICS/VS APRM (CL)

INSTRUCT CSECT
EXEC CICS SEND MAP (*XDFHAMA ') MAPONLY ERASE
END

which is translated to:

INSTRUCT CSECT

DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS SEND MAP (*XDFHAMA') MAPONLY ERASE
DFHEICAL (23,5) ,("1804C0000800000000046204000020", *XDFHAMA"® ,DF¥*
HEIVO00)

DFHEIRET INSERTED BY TRANSLATOR

DFHEISTG INSERTED BY TRANSLATOR

DFHEIEND INSERTED BY TRANSLATOR

END

The dynamic storage that is obtained for building the parameter list
may be extended by the user to provide reentrant storage for assembler—
language variables. The following example shows a simple assembler—
language application program that uses variables in dynamic storage.

DFHEISTG DSECT
COPY XDFHAMA INPUT MAP DSECT
COPY XDFHAMB OUTPUT MAP DSECT
MESSAGE DS CL39
INQUIRY CSECT
EXEC CICS RECEIVE MAP ("XDFHAMA')
MVC NUMBO,KEYI
MvC MESSAGE ,=CL (L"MESSAGE) "THIS IS A MESSAGE"'
EXEC CICS SEND MAP (*XDFHAMB*)
END

which is translated to:

DFHEISTG DSECT

DFHEISTG INSERTED BY TRANSLATOR
COPY XDFHAMA INPUT MAP DSECT
COPY XDFHAMB OUTPUT MAP DSECT

MESSAGE DS CL39
INQUIRY CSECT
DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS RECEIVE MAP ("XDFHAMA®)
DFHEICAL (23,5), (*1802C0000800000000040900000020", *XDFHAMA*,XD*
FHAMATI)
MVC NUMBO,KEYI
MVC MESSAGE ,=CL (L "MESSAGE) "THIS IS A MESSAGE'

* EXEC CICS SEND MAP (*XDFHAMB"')
DFHEICAL (23,5), (*1804Cc000080000000004E004000020°*, *XDFHAMA"® ,XD*
FHAMBO)
DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

The use of the reserved name DFHEISTG as the DSECT name indicates
that dynamic storage is to be provided for the extra user variables
within that named DSECT.

The invocation of an assembler-language application program using the
command—level interface obeys system standards and the invocation of the
EXEC interface program by a command also obeys system standards.

Details are given below.

Chapter 1.3. Command Language Translator 15

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

On entry to an assembler-language application program using the
command-level interface;

Register 1 contains the address of the parameter list.
Register 15 contains the address of the entry point.
Register 14 contains the address of the return point.
Register 13 contains the address of a save area.

The parameter list held in register 1 consists of two entries, as
follows:

. Address of the EXEC interface block (EIB).

e Address of the COMMAREA. If there is no COMMAREA, the entry should
contain the value X®80000000°.

A copy book, DFHEIBLK, containing a DSECT which describes the EIB is
included automatically.

Each command is replaced by an invocation of the DFHEICAL macro whlch
expands to a system—standard call sequence using the following
registers:

Register 15 contains the entry point of the EXEC interface program.
Register 14 contains the return address in the application program.
Register 0 1is undefined. ‘

Register 1 contains the address of the parameter list.

The entry point held in-register 15 is resolved in a stub (DFHEAT)
which must be link-edited with the application program.

Storage for the parameter list is provided automatically by the
translator, which inserts invocations of the two macros DFHEISTG and
DFHEIEND. These macros define the storage required for the parameter
list and a save area. The translator also inserts an invocation of the
DFHEIENT macro after the first CSECT or START statement. This macro
saves registers, obtains an initial allocation of the storage defined by
DFHEISTG, sets up a base register (default register 3), a dynamic
storage register (default register 13) , and a register to address the
EXEC interface block (default register 11).

Exit from the assembler-language program can be achieved by the EXEC
CICS RETURN command or by the DFHEIRET macro, which is inserted by the
translator before the END statement to restore registers and return to
the address in register 14.

The dynamic storage defined by DFHEISTG can be extended by the user
to provide reentrant storage for user variables. This is done by
defining the user variables in a DSECT with the reserved name DFHEISTG.
The translator inserts the DFHEISTG macro after the DFHEISTG DSECT
statement. In this way the DSECT finally describes dynamic storage
consisting of the parameter list area, other areas needed by the
command-level interface, and space for user variables.

Assembler-language programs larger than 4095 bytes that do not use
the CODEREC parameter of the DFHEIENT macro to establish multiple base
registers, must include an LTORG statement for use by DFHEIENT.

The user may also modify or extend the defaults used by the DFHEIENT

macro by coding the required default as a keyword argument. The macro
can have up to three keyword arguments, as follows: .

16 CICS/VS APRM (CL)

CODEREG — base register or registers
DATAREG — dynamic storage register or registers
EIBREG — register to address the EIB.

and must be coded instead of the first CSECT or START statement, as
shown in the following example:

INSTRUCT DFHEIENT CODEREG=(2,3,4) ,DATAREG=(13,5) ,EIBREG=6

The symbolic register DFHEIPLR is equated to the first DATAREG either
explicitly specified or obtained by default. It is recommended that
register 13 be used as the first dynamic storage register since register
13 points to the save area defined in dynamic storage by DFHEISTG.
DFHEIPLR will be assumed by the expansion of an EXEC command to contain
the value set up by DFHRIENT. It is the user's responsibility to either
dedicate this register or to ensure that it is restored before each
command.

An assembler—langquage application program that uses both the command-—
level interface and the macro—-level interface (that is, a mixture of
commands and macros) nust define the macro global bit EDFHEIMX and set
it to 1. This will ensure that register 13 points to the CSA, and
register 12 to the TCA. 1In this case, DFHEIPLR will not be assumed by
the expansion of a command.

COBOL

For COBOL, each command is replaced by one or more COBOL MOVE statements
followed by a COBOL CALL statement. The purpose of the MOVE statements
is to assign constants to COBOL data variables; this enables constants
and names to be specified as arguments to options in the commands. For
example, a command such as:

EXECUTE CICS RECEIVE MAP ('A*) END-EXEC
may be translated to:

MOVE °* ' TO DFHEIVO
MOVE 'A®' TO DFHEIV1
CALL *DFHEI1® USING DFREIVO DFHEIV1 AI

Declarations for the generated variables DFHEIVO and DFHEIV1 are
included automatically in working storage; their names are reserved.
The string moved to DFHEIVO is a hexadecimal string, not blanks. The
use of EXEC, CICS, DLI, and END—EXEC as names for user variables should
be avoided.

The translator modifies the linkage Section by inserting the EIB
structure as the first parameter, and inserts declarations of the
temporary variables that it reqguires into the Working-Storage Section.

It is possible to translate program segments for later inclusion into
the Procedure Division.

PL/I

For PL/I, each command is always replaced by a single PL/I CALL
statement. Warning messages from the PL/I compiler to the effect that
the number of arguaments to the call is incorrect should be ignored.

Chapter 1.3. Command Language Translator 17

If OPTIONS (MAIN) is specified, the translator modifies the parameter
list by inserting the EIB structure pointer as the first parameter, and
a RINCLUDE statement to copy the structure into the program. If
OPTIONS (MAIN) is not specified (that is, if the program is to be link-—
edited to the main module), the parameter list is not modified, and it
is the application programmer's respomnsibility to pass the EIB structure
(or addressability to it) to the link—edited program if access to it is
required.

It is possible to translate program segments for later inclnsion into
a main program.

Translator Options

The translator provides a number of optional facilities, for example, to
allow for different record formats and to specify what information is
required on the listing. The translator options and their defaults
(indicated by underlines) are listed below. There are different sets of
options for assembler language, COBOL, and for PL/I users.

Translator options are specified in the *ASM statement for assembler
language, the CBL statement for COBOL, or in the *PROCESS statement for
PL/1. These statements must precede the source program; there is no
batching facility. The *ASM statement must obey the same syntax and
continuation rules as the assembler-language comament statement. For
0s/VSs, options may also be specified in the EXEC job control statement
that invokes the translator; if both methods are used, the options
specified in the *ASM, CBL, or *PROCESS statements override those in the
EXEC job control statement, and the last setting for each option takes
precedence.

Translator options are written as a list within the CICS keyword
option, for example:
*ASM CICS (NOPROLOG NOEPILOG)
or
CBL CICS(QUOTE SPACE2)
or
*PROCESS CICS (FLAG (W) SOURCE) ;

No characters, other than blanks, can appear before the CBL statement
on the COBOL options card.

The options may appear in any order. They may be separated by one or
more blanks or by a comma. If coded in the EXEC job control statement,
the CICS keyword (and its associated parentheses) is unnecessary; only
options for the translator are permitted.

For COBOL and PL/I under DOS/VS, the CBL and *PROCESS statements can

use the XOPTS keyword as an alternative to the CICS keyword, for
example:

18 CICS/VS APRM (CL)

CBL XOPTS (QUOTE SPACE2)
or
*PROCESS XOPTS (FLAG (W) SOURCE) ;

If the application program contains EXEC DLI commands, the optioms
DLI and CICS must be specified in a CBL or *PROCESS statement, as
follows:

CBL XOPTS (DLI,CICS)
or
*PROCESS XOPTS (DLI,CICS);

The CBL or *PROCESS statement can also contain options that apply to
the following compiler. These options will be ignored by the translator
{(that is, they will not be checked for validity) but they will be copied
through onto the output data set. For example, a PL/I application
program preceded by:

*PROCESS CICS (SOURCE),ATTRIBUTES;
will be passed to the PL/I compiler preceded by:

*PROCESS ATTRIBUTES;

ASSEMBLER—LANGUAGE TRANSLATOR OPTIONS

NOSPIE

prevents the translator trapping unrecoverable errors; instead,
a dump is produced.

NOPROLOG
prevents the translator imserting the macros DFHEISTG,
DFHEIEND, and DFHEIENT, described earlier in this chapter.

NOEPILOG

prevents the translator inserting the macro DFHEIRET, described
earlier in this chapter.

COBOL TRANSLATOR OPTIONS

DEBUG|NODEBUG
specifies whether or not the translator is to produce code that
passes the translator line number through to CICS/V¥S to be

displayed by the Execution (Command Level) Diagnostic Facility
(EDF) .

Chapter 1.3. Command Language Translator 19

CICs
specifies that the translator is to process EXEC CICS commands.
This option may be specified either as an alternative to, or as
a suboption of, the XOPTS option. If neither XOPTS nor CICS is
specified, CICS is assumed by default. This option must not be
specified for batch DL/I application programs containing EBXEC
DLI commands; XOPTS (DLI) must be specified instead.

DLT
specifies that the translator is to process EXEC DLI commands.

FE
produces translator informatory messages which print (in
hexadecimal notation) the bit pattern corresponding to the
first argument of the translated call. This bit pattern has
the encoded information that the EXEC interface program uses to
determine which function is required and which options are
specified. If PE is specified, all diagnostic messages are
listed, whatever the FLAG option specifies. ‘

FLAGI|FLAGW |FLAGE :
specifies which diagnostics the translator is required to list:
PLAGI specifies diagnostics at all severity levels; FLAGW
specifies diagnostics at severity levels W, C, E, and D; and
PLAGE specifies diagnostics at severity levels C, E, and D.

LANGLVL (1) | LANGLVL (2) (0S/VS only)
specifies whether the translator is to analyse the source
program and generate code according to the ANS X3.23-1968
(LANGLVL (1)) or ANS X3.23-1974 (LANGLVL (2)) interpretation.
The same value for this option must be specified for the
translator and following compiler.

LIST|NOLIST (VSE only)
specifies whether or not the translator is to produce a listing
of the source progranm.

NOSPIE

is used to prevent the translator from trapping unrecoverable
errors; instead, a dump is produced.

NUM|NONUN
specifies whether or not the tramnslator is to use the line
numbers appearing in columns 1 through 6 of the card as the
line number in its diagnostic messages and cross-reference
listing. If NUM is not specified, the translator generates its
own line numbers.

OPT | NOOPT
specifies whether or not the tramnslator is to generate SERVICE
RELOAD statements to address the EIB and DFHCOMMAREA. The same
value for this option must be specified for the translator and
following compiler. The default is OPT for 0S, NOOPT for DOS.

20 CICS/VS APRM (CL)

QUOTE JAROST
QUOTE indicates to the translator that the double quotation
marks (") should be accepted as the character to delineate
literals; APOST indicates that the apostrophe (') should be
accepted instead. The same value must be specified for the
translator and following compiler.

SEQ INOSEQ
indicates whether or not the translator is required to check
the sequence of source statements. If SEQ is specified and a
statement is not in sequence it is flagged.

SOURCE | NOSOURCE (0S/VS only)
specifies whether or not the translator is to produce a listing
of the source program.

SPACE1)SPACE2 |SPACE3
indicates the required type of spacing to be used in the output
listing: SPACE1 specifies single spacing; SPACE2 double
spacing; and SPACE3 triple spacing.

XREF | NOXREF
specifies whether or not the translator is required to provide
a cross-—reference list of all the commands used in its input.

PL/I TRANSLATOR OPTIONS

DEBUG|NODEBUG
specifies whether or not the translator is to produce code that
passes the translator line number through to CICS/VS to be
displayed by the Execution (Command Level) Diagnostic Facility
(EDF) .

CICS
specifies that the translator is to process EXEC CICS commands.
This option may be specified either as an alternative to, or as
a suboption of, the XOPTS option. If neither XOPTS nor CICS is
specified, CICS is assumed by default. This option must not be
specified for batch DL/I application programs containing EXEC
DLI commands; XOPTS (DLI) must be specified instead.

DLI
specifies that the translator is to process EXEC DLI commands.

FE
specifies that the translator is to produce informatory
messages which print (in hexadecimal notation) the bit pattern
corresponding to the first argqument of the translated call.
This bit pattern forms a code that the EXEC interface program
uses to determine which function is required and which options
are specified. If FE is specified, all diagnostic messages are
listed, whatever the FLAG option specifies.

Chapter 1.3. Command Language Translator 21

FLAG[(LIWIE|S)] Abbreviation: F

specifies the minimum severity of error that requires a message
to be listed.

FLAG (I) all messages

PLAG) FLAG (W) all except informatory messages

FLAG (E) all except warning and informatory messages

FLAG (S) only severe and unrecoverable error messages
LINECOUNT (n) Abbreviation: LC

specifies the number of lines to be included in each page of
translator listing, including heading and blank lines. The
value of n must be an integer in the range 1 to 32767; if n is
less than 5, only the heading and one line of listing will be
included on each page. The default is 55.

MARGINS (m,nf ,c]) Abbreviation: MAR

NOSPIE

22

specifies the extent of the part of each input line or record
that contains PL/I statements. The translator does not process
data that is outside these limits (but it does include it in
the source listings).

The option can also specify the position of an American
National Standard (ANS) printer control character to format the
listing produced if the SOURCE option applies; otherwise the
input records will be listed without any intervening blank
lines.

van Column number of left-hand margin.

"p" Column number of right-hand margin. It must be greater
than "m".

ncw Column number of the ANS printer control character. It
must be outside the values specified for "a" and "nn".
A zero value for "c" means no printer control character.
Only the following printer control characters can be

used:

(blank) Skip one line before printing.

0 Skip two lines before printing.
- Skip three lines before printing.
+ No skip before printing.

1 Start new page.

The default is MARGINS (2,72,0) for fixed-length records; and
MARGINS (10, 100,0) for variable-length records (0S/VS only) .

is used to prevent the translator trapping unrecoverable
errors; instead, a dump is produced.

CICS/VS APRM (CL)

OPMARGINS (m,n[,c]) Abbreviation: OM
specifies the translator output margins, that is, the margins
of the input to the following compiler. Normally these will be
the same as the input margins. For the meaning of wmw, wpn,
and "c" see MARGINS. The default is OPMARGINS (2,72,0)

OPSEQUENCE (m,n) | NOOPSEQUENCE Abbreviations: 0S and NOS
specifies the position of the sequence field in the output
records. For the meaning of "m" and "n" see SEQUENCE. The
default is OPSEQUENCE (73,80).

OPTIONS|NOOPTIONS Abbreviations: OP and NOP
specifies whether the translator is to include in the listing a
list of all the tramslator options used during this
translation.

SEQUENCE (m,n) | NOSEQUENCE Abbreviations: SEQ and NSEQ
specifies the extent of the part of each input line or record
that contains a sequence number. This number is included in
the source listing and used in the error message and cross—
reference listings. No attempt is made to sort the input lines
or records into sequence: If no sequence field is specified,
the translator creates and prints in the source listing its own
sequence numbers; this is necessary so that the error messages
and cross-reference listings can refer to a particular line in
the source listing.

wpnw Column number of left-hand margin.
“n* Column number of right-hand margin.

The extent must not exceed eight characters and must not
overlap the source program (as specified in the MARGINS
option) .

The default for fixed-length records is SEQUENCE (73,80); for
varying—length records it is SEQUENCE(1,8) (0S/VS only).

SOURCE| NOSOURCE Abbreviations: S and NS
specifies whether or not the translator is to produce a listing
of the source program.

XREF|NOXREF Abbreviations: X and NX
specifies whether the translator is to include in the listing a
list of all the commands used in the program together with the
sequence numbers of the lines in which they are used.

Chapter 1.3. Command Language Translator 23

Chapter 1.4. Programming Techniques and Restrictions

This chapter contains information that will help to improve performance
and efficiency of an application program in the CICS/VS systen.

The first section deals with general programming techniques; this
section gives advice about the virtual-storage environment in which
CICS/VS application programs operate. The rest of the chapter contains
information that is applicable only to programs written in assembler
language, COBOL, and PL/I respectively, and includes the restrictions
that apply to each language when CICS/VS commands are used.

This manual does not contain any guidance on the use of programming—
language statements or programming techniques that are unrelated to
CICS/VS; such information is given in the appropriate language
publications.

Files and queues are not defined within application programs; these
definitions are established with the help of the system programmer.

General Programming Techniques

To see how programming techniques can affect the performance and
efficiency of the CICS/VS system, it is necessary to understand a little
of the virtual-storage environment in which CICS/VS operates. Two
concepts are important: multithreading and virtual-storage paging.

Multithreading is a technique, used by CICS/VS, that allows a single
copy of an application program to process several transactions
concurrently. Por example, the first section of an application program
may be processing one transaction. When that section is completed (in
general, signaled by the execution of a CICS/VS command that causes a
wait), processing of another transaction using a different section of
the application program may take place. (Compare this with single
threading, which is the execution of a program to completion.

Processing of one transaction is completed before another transaction is
started.)

Multithreading regquires that all CICS/VS application programs be
guasi-reentrant; that is, they must be serially reusable between entry
and exit points, and any instructions or data altered in them must be
restored. CICS/VS application programs using the command-level
interface obey this rule automatically (provided that, in PL/I prograns,
static storage is used for read-only data). Por these program to stay
reentrant, variable data should not appear as static storage in PL/I,
nor as a DC in the program CSECT in assembler language.

Care must be taken if a program involves lengthy calculations; since
an application program retains control from one CICS/VS command to the
next, processing of other tramnsactions is completely excluded. However,
the SUSPEND command can be used to allow other transaction processing to
proceed; refer to Chapter 4.3 for details.

virtual-storage paging is a techanique used by CICS/VS in a virtual-
storage environment. The key objective of programming in this
environaent is the reduction of page faults. A page fault occurs when a
program refers to instructions or data that do not reside in real
storage, in which case, the page in virtual storage that contains the

Chapter 1.4. Programaing Techniques and Restrictions 25

referenced instructions or data must be paged into real storage. The
more paging required, the lower the overall system performance.

An understanding of the following terms is necessary for writing

application programs to be run in a virtual-storage environment:

1.

26

locality of reference — the consistent reference, during the
execution of the application program, to instructions and data
within a relatively small number of pages ({(compared to the total
number of pages in a program) for relatively long periods

working set — the number and combination of pages of a program
needed during a giveam period

validity of reference — direct reference to the required pages,

without intermediate storage references that retrieve useless data

In general, the following techniques should be used:

To improve locality of reference, processing should be sequential
for both code and data, where possible.

a. The ideal application program executes seguentially with no
branch logic reference beyond a small range of address space.

However, error-handling or unusual—-situation routines should be

separated from the main section of a program; they should be
subprograms.

b. Subroutines should be placed near to the caller.
c. Subprograms that are short and used only once or twice (other

than error-handling or unusual-situation routines) should be
coded inline in the calling program.

d. Try to keep the execution path in a straight line by using XCTL
commands to transfer coantrol to other programs when necessary,

rather than LINK commands.

e. Initialize data as close as possible to its first use.

f. Define arrays or other data structures in the order in which
they will be referred to. Refer to elements within arrays in
the order in which they are stored; for example, in PL/I
programs, in rows rather than in columans.

g. Issue as few as possible GETMAIN commands.

h. In COBOL programs, avoid using EXAMINE or VARIABLE MOVE
operations, because these expand into subroutine executions.

To minimize the size of the working set, the amount of storage that

a program refers to in a given period should be as small as
possible.

a. Write modular programs and structure the modules according to

frequency and anticipated time of reference. Do not modularize
merely for the sake of size; consider duplicate code inline as

opposed to subroutines or separate modules.

b. Use separate subprograms whenever the flow of the program
suggests that execution will not be sequential.

Cc. Do not tie up main storage awaiting a reply from a terminal
user.

CICS/VS APRM (CL)

d. Use command-level file control locate-mode input/output rather
than move-—mode.

e. In COBOL programs, specify constants directly, rather than as
data variables in the Working—-Storage Section.

f. In PL/I programs, use static storage for constant data.

g. Avoid using LINK commands where possible, because they generate
requests for main storage.

3. To improve validity of reference, the correct page should be
determined directly.

a. Avoid long searches for data.

b. Use data structures that can be addressed directly, such as
arrays, rather than structures that must be searched, such as
chains.

c. Avoid indirect addressing and any methods that simulate
indirect addressing.

No attempt should be made to use overlays (paging techniques) in an
application program. System paging is provided automatically .and has
superior performance. The design of an application program for a
virtual-storage environment is similar to that for a real environment.
The system should have all modules resident so that code on unreferenced
pages need not be paged in.

If the program is dynamic, the entire program must be loaded across
adjacent pages before execution begins. Dynamic programs can be purged
from storage if not in use and an unsatisfied storage request exists.
Allowing sufficient dynamic area to prevent purging is more expensive
than making them resident, because a dynamic program will not share
unused space on a page with another program.

CICS/VS MACROS USED WITH CICS/VS COMMANDS

Care should be exercised when writing application programs that coatain
a mixture of CICS/VS commands and CICS/VS macros, or in a macro-level
progran that invokes a command—-level program and vice-—versa.

When a RECEIVE MAP command is used with the SET option, the EXEC
interface program always reuses the terminal input/output area (TIOA)
obtained. Do not use a DFHSC TYPE=FREEMAIN, RELEASE=ALL macro in the
same or an invoked program because the TIOA is freed unknown to the EXEC
interface program, which will attempt to reuse it, giving unpredictable
results.

Object Program Size

The object module resulting from any application program must not occupy
more than 262,136 bytes of main storage.

Chapter 1.4. Programking Techniques and Restrictioms 27

Assembler-Language Considerations

RESTRICTIONS

The following restrictions apply to an assembler—language program that
is to be used as a CICS/VS application program.

1. The assembler instructions COM (identify blank common control
section), ICTL (input format control), and OPSYN (equate operation
code) cannot be used.

2. Private code containing commands cannot be used.

COMMANDS CONTAINED WITHIN MACROS AND COPY CODE

Macro instructions that generate commands, and COPY code that contains
commands, must be translated and stored in the source library in
translated form for later inclusion by the assembler.

INVOKING ASSEMBLER—LANGUAGE APPLICATION PROGRAMS BY A CALL
STATEMENT

Assembler—language application programs containing commands can be
treated as separate CICS/VS programs that have their own PPT entries and
that can be invoked by assembler-language, COBOL, PL/I, or RPG II
application programs using LINK or XCTL commands (see Chapter 4.4).

However, since assembler-language application programs containing
commands are invoked by a system standard call, they can be invoked also
by a COBOL, PL/I, or EPG II CALL statement or by an assembler-language
CALL macro. A single CICS/VS application program with one PPT entry may
consist of a module containing separate CSECTs linked together, although
they may have been compiled or assembled separately.

Also, assembler—language application programs containing commands can
be linked with other assembler-language programs, or with programs in
one of the high-level languages COBOL, PL/I, or RPG II, but with only
one. When such an application program is linked with an assembler—
language application program, the main program must be the one coded in
the high—level language, and the PPT must specify that high—level
language.

Since assembler—language application programs containing commands are
always passed the parameters EIB and COMMAREA when invoked, the CALL
statement or macro must pass these two parameters followed, optionally,
by other parameters.

\

28 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

COBOL Considerations

RESTRICTIONS

The following restrictions apply to a COBOL program that is to be used

as a CICS/VS application program. (Refer to the appropriate COBOL
programmer®s guide for more information about these features.)

1. Environment Division and Data Division entries normally associated

with data management cannot be used.
2. File Section of the Data Division cannot be used.

3. Special features: ACCEPT,; DISPLAY, EXHIBIT, INSPECT, REPORT
WRITER, SEGMENTATION, SORT, TRACE, and UNSTRING cannot be used.

For CICS/0S/VS, any feature that requires an 0S/VS GETMAIN cannot

be used.

4. Options that require the use of operating system services: COUNT,

FLOW, STATE, STOP RUN, STXIT, or SYMDMP for CICS/DOS/VS; COUNT,

ENDJOB, FLOW, DYNAM, STATE, STOP RUN, SYMDUMP, SYST, or TEST for

CICS/0S/VS cannot be used. Note that since STOP RUN can be

generated by the COBOL compiler, the application programmer must

always code either a COBOL GOBACK statement or an EXEC CICS RETURN

command at the end of the program.

5. COBOL statements: READ, WRITE, OPEN, and CLOSE cannot be used.

(Commands are provided for the storage and retrieval of data, and

for communication with terminals.)

6. Optimization option of the DOS Full COBOL V3 compiler cannot be
used.

7. When separate COBOL routines are link-edited together, only the
first can invoke CICS/VS.

8. The length of working storage plus the length of the TGT (task
global table) must not exceed 64K bytes.

COMPILERS SUPPORTED

Only the following compilers are supported by CICS/VS:
a. DOS Full COBOL Version 3 Compiler (5736—CB2)
b. DOS/VS COBOL Compiler (5746-—CBl)
c. OS Full COBOL Version 4 Compiler (5734—CB2)

d. OS/VS COBOL Compiler (5740-CB1)

Chapter 1.4. Programming Techniques and Restrictions

29

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268
BASE LOCATOR FOR LINKAGE (BLL)

The base locator for linkage (BLL) mechanism is used to address storage
outside the Working-Storage Section of an application program. It
operates by addressing the storage as if it were a parameter to the
program. The storage must be defined by means of an 0l-level data
definition in the Linkage Section of the program. The COBOL compiler
generates code to address the storage via the parameter list. When the
program is invoked, CICS/VS sets up the parameter list in such a way
that the parameter list is itself addressable by the application
program.

The parameter list must be defined as the first parameter to the
program, unless a communication area is being passed to the program, in
which case the DFHCOMMAREA definition must precede it. (See Chapter
4.4).

In the following example, the first 02-level data name (that is,
FILLER) is set up by CICS/VS to provide addressability to the other
fields in the parameter list. The other data names are known as BLL
cells, and address the remaining parameters of the program. There is a
one-to-one correspondence between the 02-level data names of the
parameter list definition and the 0l-level data definitions in the
Linkage Section.

LINKAGE SECTION.
01 PARMLIST.
02 FILLER PIC S9(8) COMP.
02 A—-POINTER PIC S9 (8) COMP.
02 B-POINTER PIC S9 (8) COMP.
02 C—POINTER PIC S9 (8) COMP.
01 A-DATA.
02 PARTNO PIC 9 (4) .
02 QUANTITY PIC 9 (4).
02 DESCRIPTION PIC X (100) .
01 B-DATA PIC X.
01 C-DATA PIC X.

In this example, A-POINTER addresses A-DATA, B—-POINTER addresses B-—
DATA, and C-POINTBER addresses C-DATA. The actual data names chosen for
the BLL cells and for the data areas that they address are not
significant, but the names must be defined in the correct order, so that
the necessary correspondence is established.

If a BLL cell is named in the SET option of a CICS/VS command,
subsequent reference to the corresponding data definition name will
address the storage supplied by CICS/VS as a result of executing the
command. For example, suppose that a program is required to read a
variable-length record from a file, examine part of it, and update it;
all of this is to be done without providing storage for the record
within the program. Using the data definitions shown in the example
above, the program could be written as follows:

EXEC CICS READ UPDATE DATASET (*FILEA®)
RIDFLD (PART-REQD) SET (A—POINTER) LENGTH (A—-LRECL) END-EXEC
IF A-LRECL LESS THAN 8 GO TO ERRORS.
IF QUANTITY GREATER ZERO
SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE DATASET ("FILEA®)
FROM @-DATA) LENGTH (A—-LRECL) END-EXEC.

30 CICS/VS APRM (CL)

CICS/VS reads the record into an internal buffer and supplies the
address of the record im the buffer to the application program. The
application program updates the record in the buffer and rewrites the
record to the data set.

BLL and Chained Storage Areas

If access is needed to a series of chained storage areas (that is, areas
each of which contain a pointer to the next area in the chain), a
paragraph name must be inserted immediately following any statement that
establishes addressability to one of the storage areas. For example:

LINKAGE SECTION.
01 PARMLIST.

02 USBRPTR PIC S9 (8) COMP.

01 USERAREA.
02 FIELD PIC X (4).
02 NBXTAREA PIC S9(8) COMP.

PROCEDURE DIVISION.

MOVE NEXTAREA TO USERPTR.
ANYNANME.
MOVE FIELD TO TESTVAL.

In this example, storage areas mapped or defined by USERAREA are
chained. The first MOVE statement establishes addressability to the
next area in the chain. The second MOVE statement moves data from the
newly addressed area, but only because a paragraph name follows the
first MOVE statement. If no paragraph name is inserted, the reference
to FIELD is taken as being to the storage area that is addressed when
the first MOVE statement refers to NEXTAREA. Insertion of a paragraph
name causes the compiler to generate code to reestablish addressability
through USERPTR, so that the reference to FIELD (and the next reference
to NEXTAREA) is to the newly addressed storage area.

BLL and OCCURS DEPENDING ON Clauses

If the object of an OCCURS DEPERDING ON clause is defined in the Linkage
Section, a special technique is required to ensure that the correct
value is used at all times. In the following example, FIELD—COUNTER is
defined in the Linkage Section. The MOVE FIELD—COUNTER TO FIELD—COUNTER
statement is needed to ensure that unpredictable results do not occur
when referring to DATA.

Chapter 1.4. Programming Techniques and Restrictions 31

LINKAGE SECTION.

01 FILE-REC.

02 FIELD-COUNTER PIC 9 (4) COMP.
02 FIELDS PIC X(5) OCCURS 1 TO 5 TIMES DEPENDING ON FIELD—COUNTER.
02 DATA PIC X (20).

PROCEDURE DIVISION.

EXEC CICS READ DATASET (*FILEA®) RIDFLD (KEYVAL) SET (RECPTR) END-EXEC.
MOVE FIELD-COUNTER TO FIELD--COUNTER.
MOVE DATA TO DATA-VAL.

The MOVE statement referring to FIELD-COUNTER causes the compiler to
reestablish the value it uses to compute the current number of
occurrences of FIELDS and ensures that it can determine the displacement
of DATA correctly.

BLL _and Large Storage Areas

If an area greater than 4096 bytes is defined in the Linkage Section,
additional statements are required to establish addressability to the
extra area. An additional BLL cell is required for each extra #4096
bytes (or part) added to the area. (No additional corresponding 01—
level data name definition is added, so the usual one—to—one
correspondence of BLL cells to the data areas they address is not
maintained.) An ADD statement is required also for each extra 4096
bytes (or part); it is placed after the statement that establishes
addressability to the data area.

For example, if a record exceeds 4096 bytes in length, the progranm
might be coded as follows:

LINRAGE SECTION.
01 PARMLIST.

02 FRPTR PIC S9(8) COMP.
02 FRPTR1 PIC S9(8) COMP.

01 FILE-REC.
02 FIELD1 PIC X (4000).
02 FIELD2 PIC X (1000).
02 PIELD3 PIC X (400).

PROCEDURE DIVISION.

EXEC CICS READ DATASET (*FILEA') RIDFLD (KEYVAL) SET (FRPTR) END—EXEC.
ADD 4096 TO FRPTR GIVING FRPTR1.

32 CICs/VS APRE (CL)

BLL and the Optimization Feature

If an application program is to be compiled using the OS full COBOL V4
Compiler, the 0S/VS COBOL compiler, or the DOS/VS COBOL compiler with
the optimization (OPT) feature, a special compiler control statement
must be inserted at appropriate places within the program to ensure
addressability to a particular area defined in the Linkage Section.
This control statement has the form:

SERVICE RELOAD fieldname

where "fieldname®™ is the symbolic name of a specific storage area which
is also defined in an 0l-level statement in the Linkage Section. The
SERVICE RELOAD statement must be used following each statement which
modifies addressability to an area defined in the Linkage Section, that
is, whenever the contents of a BLL cell is changed in any way.

If a HANDLE CONDITION or a HANDLE AID command is invoked as a result
of a command that changes the contents of a BLL cell, a SERVICE RELOAD
statement should follow the label branched to as the exit for that
condition.

If the BLL mechanism is used (described earlier in this chapter),
addressability to the parameter list must be established at the start of
the procedure division. This is done by adding a SERVICE RELOAD
PARMLIST statement at the start of the procedure division in the earlier
examples.

For example, after a locate-mode input operation the SERVICE RELOAD
statement must be used to establish addressability to the data, as
follows:

EXEC CICS HANDLE CONDITION
ERROR (GIVEUP)
LENGERR (BADLENGTH) END-EXEC
EXEC CICS READ DATASET (*FILEA') RIDFLD (PART-REQD)
SET (A-POINTER) LENGTH (A-LRECL) END—EXEC
SERVICE RELOAD A~-DATA.
BADLENG.
SERVICE RELOAD A-DATA.

If an address is moved into a BLL cell, addressability must be
established in the same way, for example:

MOVE B—POINTER TO A-POINTER
SERVICE RELOAD A-DATA.
If areas larger than 4096 bytes are being addressed, the secondary

BLL cells must be reset after the SERVICE RELOAD statement has been
executed. (Resetting a BLL cell is described in the previous section.)

NOTRUNC COMPILER OPTION

If an argument to a command is greater than 9999 in value, the NOTRUNC
compiler option must be specified to ensure successful execution.

Chapter 1.4. Programming Techniques and Restrictiomns 33

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268
PROGRAM SEGMENTS

Segments of programs to be copied into the Procedure Division can be
translated by the command language translator, stored in their
translated form, and later copied into the program to be compiled.

PL/I Considerations

RESTRICTIONS

The following restrictions apply to a PL/I program that is to be used as
a CICS/VS application program. (Refer to the PL/I Optimizing Compiler
Programmer®s Guide for more information about these features.)

1. The multitasking built-in functions: COMPLETION, PRIORITY, and
STATUS cannot be used.

2. The multitasking options: EVENT, PRIORITY, and TASK cannot be
used.

3. The PL/I statements: READ, WRITE, GET, PUT (a limited form is
permitted) , OPEN, CLOSE, DISPLAY, DELAY, REWRITE, LOCATE, DELETE,
UNLOCK, STOP, HALT, EXIT, FETCH, and RELEASE cannot be used.
{(Commands are provided for the storage and retrieval of data, and
for communication with terminals.)

4. PL/I Sort/merge cannot be used.

5. Static storage (except for read-only data) cannot be used. A
consequence of this restriction for CICS/DOS/VS PL/I users is that
CONTROLLED variables cannot be used.

6. A declaration for a variable with the attributes STATIC EXTERNAL
should have also the INITIAL attribute. Failing this, such

declarations will generate a common CSECT that cannot be handled by
CICS/VS.

PL/I STAE EXECUTION-TIME OPTION

If this option is specified, an abend occurring in the transaction will
be handled by PL/I error handling routines, and the transaction may
terminate normally, in which case, CICS/VS facilities, such as dynamic
transaction backout (DTB), will not be invoked.

COMPILERS SUPPORTED

Only the following compilers are supported:
a. DOS PL/I Optimizing Compiler, Version 1, Release 5.0

b. O0S PL/I Optimizing Compiler, Version 1, Release 3.0

34 CICS/VS APRM (CL)

OPTIONS MAIN) SPECIFICATION

If OPTIONS (MAIN) is specified in an application program, that program
can be the first program of a transaction, or control can be passed to
it by means of a LINK or XCTL command.

If OPTIONS (MAIN) is not specified, it cannot be the first program in
a transaction, nor have control passed to it by a LINK or XCTL command,
but it can pbe link—edited to a main progranm.

The definition of the EIB is generated only in main programs. If
fields in the EIB are referred to in an external procedure for which
OPTIONS (MAIN) is not specified, either the address of the BIB, or the
necessary fields themselves, must be passed to the external procedure as
a parameter to the CALL statement that invokes the external procedure.

PROGRAM SEGMENTS

Segments of programs can be translated by the command language
translator, stored in their translated form, and later included in the
program to be compiled.

Chapter 1.4. Programming Techniques and Restrictions 35

Chapter 1.5. Exceptional Conditions

Exceptional conditions may occur during the execution of a CICS/VS
command and, unless specified otherwise in the application program by an
IGNORE CONDITION or. HANDLE CONDITION command or by the NOHANDLE option,
a default action for each condition will be taken automatically by
CICs/VS. Usually, this default action is to terminate the task
abnormally. (Bxceptional conditions are described, together with the
CICS/VS default action, at the end of a chapter, and a list of
conditions that apply to a command is included within the syntax box for
the command.)

However, to prevent abnormal termination, an exceptional condition
can be dealt with in the application program by a HANDLE CONDITION
command. The command must include the name of the condition and,
optionally, a label to which control is to be passed if the condition
occurs. The HANDLE CONDITION command must be executed before the
command which may give rise to the associated condition.

The HANDLE CONDITION command for a given condition applies only to
the program in which it is specified, remaining active until the
associated task is terminated, or until another HANDLE CONDITION command
for the same condition is encountered, in which case the new command
overrides the previous one.

When control returns to a program from a program at a lower logical
level, the HANDLE CONDITION commands that were active in the higher—
level program before control was transferred from it are reactivated,
and those in the lower-level program are deactivated. (Refer to Chapter
4.4 for information about logical levels.)

Some exceptional conditions can occur during the execution of any one
of a number of unrelated commands. For example, IOERR can occur during
file—control operations, interval—control operations, and others. If
the same action is required for all occurrences, a single HANDLE
CONDITION IOERR command at the beginning of the program will suffice.

If different actions are required, HANDLE CONDITION commahds
specifying different labels, at appropriate points in the program will
suffice. The same label can be specified for all commands, and fields
EIBFN and EIBRCODE (in the BIB) can be tested to find out which
exceptional condition has occurred and in which command. The BIB is
described in Appendix A.

The IGNORE CONDITION command specifies that no action is to be taken
if an exceptional condition occurs. Execution of a command could result
in several conditions being raised. CICS/VS checks these in a
predetermined order and only the first omne that is not ignored (by an
IGNORE CONDITION command) will be passed to the application program.

The NOHANDLE option may be used with any command to specify that no
action is to be taken for any condition resulting from the execution of
that command. In this way the scope of the IGNORE CONDITION command
covers specified conditions for all commands (until a HANDLE CONDITION
for the condition is executed) and the scope of the NOHANDLE option
covers all conditions for specified commands.

Chapter 1.5. Exceptional Conditions 37

THE ERROR EXCEPTIONAL CONDITION

Apart from the exceptional conditions associated with imndividual
commands, there is a general exceptional condition named ERROR whose
default action also is to terminate the task abnormally. If no HANDLE
CONDITION command is active for a condition, but one is active for
ERROR, control will be passed to the label specified for ERROR. A
HANDLE CONDITION command (with or without a label) for a condition
overrides the HANDLE CONDITION ERROR command for that condition.

Commands should not be included in an error routine that may give
rise to the same condition that caused the branch to the routine;
special care should be taken not to cause a loop on the ERROR conditiomn.
A loop can be avoided by including a HANDLE CONDITION ERROR commahnd as
the first command in the error routine. The original error action
should be reinstated at the end of the error routine by including a
second HANDLE CONDITION ERROR command.

Handle Exceptional Conditions (HANDLE CONDITION)

HANDLE CONDITION condition[(label)]
[condition[(label) }])...

o ———
> qan WS e e o

This command is used to specify the label to which control is to be
passed if an exceptional condition occurs. It remains in effect until a
subsequent IGNORE CONDITION command for the condition is encountered.

No more than twelve conditions are allowed in the same command;
additional conditions must be specified in further HANDLE CONDITION
conmands. The ERROR condition can also be used to specify that other
conditions are to cause control to be passed to the same label. If
"label" is omitted, the default action for the condition will be taken.

The following example shows the handling of exceptional conditions,
such as DUPREC, LENGERR, and so on, that can occur when a WRITE command
is used to add a record to a data set. DUPREC is to be handled as a
special case; system default action (that is, to terminate the task
abnormally) is to be taken for LENGERR; and all other conditions are to
be handled by the generalized error routine ERRHANDL.

EXEC CICS HANDLE CONDITION Handle exceptional conditions

ERROR (ERRHANDL) General label
DUPREC (DUPRTN) Label of duplicate-record routine
LENGERR Default action requested

If the generalized error routine can handle all exceptional
conditions except IOERR, for which the default action (that is, to
terminate the task abnormally) is required, IOERR (without a label)
would be added to the above command.

In an assembler—language application program, a branch to a label
caused by an exceptional condition will restore the registers in the
application program to their values at the point where the EXEC
interface program is invoked.

In a PL/I application program, a branch to a label in an inactive

procedure or in an inactive begin block, caused by an exceptional
condition, will produce unpredictable results.

38 CICS/VSs APRM (CL)

Handle Condition Command Option

condition[(label)]}
®condition® specifies the name of the exceptional condition,
and "label®™ specifies the location within the program to be
branched to if the condition occurs. If this option is not
specified, the default action for the condition is taken,
unless the default action is to terminate the task abnormally,
in which case the ERROR condition occurs. If the option is
specified without a label, any HANDLE CONDITION command for the
condition is deactivated, and the default action taken if the
condition occurs.

Ignore Exceptional Conditions (IGNORE CONDITION)

]
!
| IGNORE CONDITION condition

| {condition}...
1

L

This command is used to specify that no action is to be taken if an
exceptional condition occurs. It remains in effect until a subsequent
HANDLE CONDITION command for the condition is encountered. No more than
twelve conditions are allowed in the same command; additional conditions
must be specified in further IGNORE CONDITION commands. The option
®"condition® specifies the name of the exceptional condition that is to

be ignored.

Chapter 1.5. Exceptional Conditions 39

Page of SC33-0077-2, revised September 1980 by TNIL SN33-6268

List of Exceptional Conditions

The following list shows all the exceptional conditions that can occur
during the execution of CICS/VS commands. Each condition is followed by
one or more keywords and by numbers (in parentheses) . The keywords are
the commands during the execution of which the condition may occur, and
the numbers are the chapters that describe those commands. For the
meaning of a condition, and the default action associated with that
condition, refer to the list of exceptional conditions at the end of the
indicated chapter.

CBIDERR ALLOCATE (3.2) , CONVERSE (3.2) , EXTRACT ATTACH (3.2) ,
SEND (3.2)

DSIDERR DELETE (2.2) , READ (2.2) , READNEXT (2.2) , READPREV (2.2),
REWRITE (2.2) , STARTBR (2.2) , UNLOCK (2.2) , WRITE (2.2)

DSSTAT ISSUE RECEIVE (3.4)

DUPKEY READ (2.2) , READNEXT (2.2) , READPREV (2.2)

DUPREC WRITE (2.2) , REWRITE (2.2)

ENDDATA RETRIEVE (4.2)

ENDFILE READNEXT (2.2) , READPREV (2.2)

ENDINPT RECEIVE (3.2)

ENQBUSY ENQ (4 .3)

ENVDEFERR RETRIEVE (4.2)

EOC CONVERSE (3.2) , RECEIVE MAP (3.3) , RECEIVE (3.2)

EODS CONVERSE (3.2) , ISSUE RECEIVE (3.4) , RECEIVE MAP (3.3),
RECEIVE (3.2)

EOF CONVERSE (3.2) , RECEIVE (3.2)

ERROR General exceptional condition (1.5) . Not included in the
list of conditions in the syntax of individual commands.

EXPIRED DELAY (4.2) , POST (4.2)

FUNCERR ISSUE ABORT (3.4) , ISSUE ADD (3.4) , ISSUE END (3.4),

ISSUE ERASE (3.4) , ISSUE NOTE (3.4), ISSUE QUERY (3.4),
ISSUE REPIACE (3.4), ISSUE SEND (3.4) , ISSUE WAIT (3.4)

IGREQCD CONVERSE (3.2) , ISSUE SEND (3.4) , SEND (3.2),

SEND MAP (3.3) , SEND PAGE (3.3), SEND TEXT (3.3)
IGREQID SEND MAP (3.3) , SEND PAGE (3.3), SEND TEXT (3.3)
ILLOGIC DELETE (2.2) , ENDBR (2.2), READ (2.2), READNEXT (2.2),

READPREV (2.2) , RESETBER (2.2) , REWRITE (2.2) , STARTBR (2.2) ,
UNLOCK (2.2) , WRITE (2.2)

INBFMH CONVERSE (3.2) , RECEIVE (3.2
INVERRTERM ROUTE (3.3)

INVLDC ROUTE(3.3) , SEND MAP (3.3) , SEND TEXT (3.3)

40 CICS/VS APRM (CL)

INVMPSZ

INVREQ

INVTSREQ

IOERR

ISCINVREQ

ITEMERR
JIDERR

LENGERR

MAPFAIL
NODATARECD
NOJBUFSP
NONVAL
NOPASSBKRD
NOPASSBKWR
NOSPACE
NOSTART
NOSTG

NOTALLOC

NOTFND

NOTOPEN

OVERFLOW

RECEIVE MAP (3.3) , SEND MAP(3.3)

ALLOCATE (3.2), ASSIGN(1.6), CANCEL (4.2), CONVERSE(3.2),
DELAY (4.2), DELETE (2.2), ENDBR (2.2), EXTRACT ATTACH(3.2),
EXTRACT TCT (3.2), FREE(3.2), POST(4.2), READ(2.2),

READNEXT (2.2), READPREV (2.2), RECEIVE (3.2), RESETBR (2.2),
RETRIEVE (4.2), RETURN (4.4), REWRITE(2.2), SEND(3.2),

SEND MAP (3.3), SEND PAGE (3.3), SEND TEXT (3.3), START (4.2),
STARTBR (2.2), WAIT JOURNAL (5.5), WRITE (2.2), WRITEQ TS (4.7)

RETRIEVE (4.2)

DELETE (2.2) , JOURNAL (5.5), READ(2.2), READNEXT(2.2),
READPREV (2.2), READQ TD (4.6), READQ TS (4.7), RESETBR (2.2),
RETRIEVE (4.2), REWRITE(2.2), START (4.2), STARTBR(2.2),
UNLOCK (2.2), WAIT JOURNAL (5.5), WRITE(2.2), WRITEQ TD (4.6),
WRITEQ TS (4.7)

CANCEL (4 .2) , DELETE (2.2), DELETEQ TD(4.6), DELETEQ TS (4.7),
ENDBR(2.2), READ(2.2), READNEXT (2.2), READPREV(2.2),

READQ TD (4.6), READQ TS (4.7), RESETBR(2.2), RETRIEVE (4.2),
REWRITE (2.2) , START(4.2), STARTBR(2.2), UNLOCK (2.2),

WRITE (2.2), WRITEQ TD(4.6), WRITEQ TS(4.7)

READQ TS (4.7), WRITEQ TS (4.7)

JOURNAL (5.5), WAIT JOURNAL (5.5)

CONVERSE (3.2), ISSUE RECEIVE (3.4), JOURNAL(5.5), READ (2.2),
READNEXT (2.2), READPREV(2.2), READQ TD (4.6), READQ TS (4.7),
RECEIVE(3.2), RETRIEVE (4.2), REWRITE(2.2), WRITE (2.2),
WRITEQ TD (4.6)

RECEIVE MAP (3.3)

ISSUE RECEIVE(3.4)

JOURNAL (5.5)

ISSUE LOAD (3.2)

RECEIVE (3.2)

SEND (3.2)

REWRITE(2.2), WRITE (2.2), WRITEQ TD (4.6), WRITEQ TS (4.7)
ISSUE LOAD (3.2)

GETMAIN (4.5)

CONVERSE (3.2) , EXTRACT ATTACH(3.2), FREE(3.2),

ISSUE DISCONNECT (3.2), ISSUE SIGNAL(3.2), POINT 3.2),
RECEIVE (3.2), SEND(3.2), WAIT TERMINAL (3.2)

CANCEL (4.2) , DELETE (2.2) , READ(2.2) , READNEXT (2.2),
READPREV (2.2), RESETBR (2.2), RETRIEVE(4.2), STARTBR (2.2)

DELETE (2.2) , JOURNAL(5.5), READ(2.2) , READNEXT (2.2),
READPREV (2.2) , READQ TD(4.6) , RESETBR(2.2), REWRITE (2.2),
STARTBR (2.2), UNLOCK (2.2), WAIT JOURNAL (5.5), WRITE (2.2),
WRITEQ TD(4.6)

SEND MAP (3.3)

Chapter 1.5. Exceptional Conditions 41

PGMIDERR

QBUSY

QIDERR

QZERO
RDATT
RETPAGE
RTEFAIL
RTESOME
SEGIDERR

SELNERR

SESSBUSY

SESSIONERR

SIGNAL

SYSBUSY

SYSIDERR

TERMIDERR
TRANSIDERR

TSTOERR

UNEXPIN

WRBRK

42 CICS/VS APRM

HANDLE ABEND (5.2), LINK (4.4), LOAD(4.4), RELEASE (4.4),
XCTL (4.4)

READQ TD (4.6)

DELETEQ TD (4.6), DELETEQ TS (4.7), READQ TD (4.6),
READQ TS(4.7), WRITEQ TD(4.6), WRITEQ TS(4.7)

READQ TD (4.6)

CONVERSE (3.2), RECEIVE MAP(3.3), RECEIVE(3.2)

SEND MAP (3.3), SEND PAGE(3.3), SEND TEXT(3.3)

ROUTE (3.3)

ROUTE (3.3)

READ(2.2), READNEXT (2.2), READPREV (2.2)

ISSUE ABORT (3.4) , ISSUE ADD(3.4), ISSUE END(3.4),
ISSUE ERASE (3.4), ISSUE NOTE (3.4), ISSUE QUERY (3.4),
ISSUE REPLACE(3.4), ISSUE SEND(3.4), ISSUE WAIT(3.4)
ALLOCATE (3.2)

ALLOCATE (3.2), CONVERSE (3.2), EXTRACT ATTACH (3.2),
FREE (3.2), ISSUE DISCONNECT (3.2), ISSUE SIGHNAL(3.2),
POINT (3,2), RECEIVE(3,2), SEND(3.2), WAIT TERMINAL (3.2)

CONVERSE (3.2) , ISSUE DISCONNECT (3.2), RECEIVE (3.2),
WAIT TERMINAL (3.2), SEND (3.2), WAIT SIGNAL (3.2)

ALLOCATE (3.2)

ALLOCATE (3.2), CANCEL(4.2), DELETE(2.2), DELETQ TD (4.6),
DELETEQ TS (4.7), ENDBR(2.2), READ (2.2), READNEXT (2.2),
READPREV (2.2) , READ TD(4.6), READQ TS (4.7), RESETBR (2.2),
RETRIEVE (4.2) , REWRITE (2.2) , START (4.2), STARTBE (2.2),
UNLOCK (2.2), WRITE(2.2), WRITEQ TD(4.6), WRITEQ TS (4.7)

ISSUE COPY(3.2), START (4.2)
START (U.2)

PUBRGE MESSAGE (3.3), SEND MAP (3.3), SEND PAGE (3.3),
SEND TEXT (3.3)

ISSUE ABORT(3.4), ISSUE ADD(3.4), ISSUE END (3.4),

ISSUE ERASE(3.4), ISSUE NOTE (3.4), ISSUE QUERY (3.4),
ISSUE RECEIVE (3.4), ISSUE REPLACE (3.4) , ISSUE SEND (3.4),
ISSUE WAIT (3.4)

CONVERSE (3.2), SEND MAP (3.3),
SEND TEXT (3.3)

SEND PAGE (3.3), SEND(3.2),

(C1L)

Chapter 1.6. Access to System Information

It is possible to write many application programs using the CICS/VS
command-level interface without any knowledge of or reference to CICS/VS
control blocks and storage areas. However, it is sometimes necessary to
obtain information that is valid outside the local environment of the
application program; the ADDRESS and ASSIGN commands are provided to
make access to such information possible and these commands are
described in the following sections. Not all fields are intended to be

-accessed by the application program; refer to the CICS/VS Application

Programmer's Reference Manual (Macro_ Llevel) for a list of the fields
that are part of the application programming interface (the API) and
that will remain valid from release to release. Details of each control
block and its fields are contained in the publication CICS/DOS/VS Data

Areas or CICS/0S/VS Data_ Areas.

EXEC INTERFACE BLOCK (EIB)

In addition to the usual CICS/¥S control blocks, each task in a command-—
level environment has a control block called the EXEC interface block
(EIB) associated with it. An application program can access all of the
fields in the EIB by name. The EIB contains information, additional to
that provided by execution of a terminal control command, that is useful
during the execution of an application program, such as the transaction
identifier, the time and date (initially when the task is started, and
subsequently, if updated by the application program), and the cursor
position on a display device. The EIB also contains information that
will be helpful when a dump is being used to debug a program. Refer to
Appendix A for details of the EIB.

Access to CICS/VS Storage Areas (ADDRESS)

ADDRESS [CSA (pointer—ref)]
[CWA (pointer—ref)]
[TCTUA (pointer—reference)]}
[TWA (pointer—ref)]

IR

This command is used to obtain access to any of the following areas:
the common storage area (CSA), the common work area (CWA), the terminal
control table user area (TCTUA), and the transaction work area (TWA).

ADDRESS Command Options

CSA
allows access to control blocks addressed by the CSA. The
pointer reference is set to the address of the CSA. The CSA
gives access to all fields in CICS/VS control blocks and
storage areas.

Chapter 1.6. Access to System Information 43

CWA
is used to pass information between application programs. The
pointer reference is set to the address of the CWA. If a CWA
does not exist, the pointer reference is set to X'FF000000°.

TCTUA
is used also to pass information between application progranas,
but only if the same terminal is associated with the
application programs involved (vhich can be in different
tasks). The pointer reference is set to the address of the
TCTUA. If a TCTUA does not exist, the pointer reference is set
to X'FF000000°*. The data area contains the address of the
TCTUA of the principal facility, not that for any alternate
facility that may have been allocated.

TWA
is used also to pass information between application programs
but only if. they are in the same task. The pointer reference
is set tc the address of the TWA. If a TWA does not exist, the
pointer reference is set to X*FF000000°*.

An example of the use of the ADDRESS command is given in the next
section. (Information can also be passed between programs using the
COMMAREA option of the program control commands, described in Chapter
4.4.)

If an ADDRESS command is included in an COBOL program that is to be
compiled using the optimization feature, it must be followed by SERVICE
RELOAD statements to reload the BLL cell being used. (The SERVICE
RELOAD statement is described earlier in the manual in "BLL and the
Optimization Feature®™ in Chapter 1.4.)

Values Outside the Application Program (ASSIGN)

ASSIGN option(data—area)
[option (data—area)]...

Exceptional condition: INVREQ

- ——— - ——— -
N —

This command is used to obtain values outside the local enviroanment of
the application program. The value obtained is assigned to the data
area specified in the option.
The following values can be obtained:
. lengths of storage areas

o values needed when communicating with the 2980 General Banking
Terminal System (copied from the TCTTE)

. values needed during BMS operations (copied from the TCA)
. values needed during batch data interchange

. screen size in use on the 3270

44 CICS/VS APRM (CL)

. other information that may be useful to the application programmer
(copied from various CICS/VS control blocks)

A complete list of ASSIGN command options is given at the end of this

chapter.

The following example shows, in the different application programming
languages, how the ADDRESS command is used to obtain access to the THA,

and how the ASSIGN command is used to obtain the length of the TWA.

Included is a test for validity based on the fact that, if there is no
TWA, the ASSIGN command will obtain a length of zero.

Assembler_ Language

DSWORKA
WAPTR

DFHEISTG
TWALENG
CODE

CONTINUE

COBOL

DSECT
EQU

USING DSWORKA,WAPTR

08

EXEC CICS ASSIGN TWALENG (TWALENG)

EXEC CICS ADDRESS TWA (WAPTR)

DS H

DSECT

DS H

CSECT

CLC TWALENG,=H'0"
BNH CONTINUE

LH 6,COUNT

La 6,1(6)

STH 6,COUNT

DS oH

WORKING—-STORAGE SECTION.

77 TWALENG PIC S9 (4) COMP.

LINKAGE SECTION.

01 BLLCELLS.

02 FPILLER PIC S9 (8) COMP.
02 WAPTR PIC S9 (8) COMP.

01 WORKAREA.

02 COUNT PIC S9(4) COMP.

PROCEDURE DIVISION.
EXEC CICS ASSIGN TWALENG(TWALENG) END-EXEC

IF TWALENG GREATER THAN 0 THEN

EXEC CICS ADDRESS TWA (WAPTR) END-EXEC
ADD 1 TO COUNT.

Chapter 1.6.

Access to System Information

45

PL/I

DCL TWALENG FIXED BIN(15);
DCL 1 WORKAREA BASED (WAPTR),
2 COUNT FIXED BIN (15);

.

EXEC CICS ASSIGN TWALENG (TWALENG);
IF TWALENG>O THEN DO;
EXEC CICS ADDRESS TWA (WAPTR) ;
COUNT=COUNT+1;
END;

46 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

ASSIGN Command Options

Where any of the following options apply to terminals or terminal-
related data, the reference is always to the principal facility.

ABCODE

APPLID

COLOR

specifies a variable that is set to the current value of the
abend code (abend codes are documented in CICS/VS Messages and
Codes) . If an abend has not occurred, the variable is set to
blanks. The format of the value is a four-byte character
string.

specifies that the value required is the application name used
in transaction routing or to identify the local CICS/VS system
to VIAM. The format of the value is an eight-byte character
string.

specifies that the value required is an indicator showing that
the terminal is defined as having the extended color capability
(X'FF'") ; or no extended color capability &®00%). If this
option is specified and there is no TCTTE for the task, the
INVREQ condition occurs. The format of the value is a one-byte
character.

CWALENG
specifies that the length of the CWA is required. If no CWA
exists, a zero length is returned. No exceptional condition
occurs. The format of the value is halfword binary.
DELIMITER

specifies that the value required is the data-link control
character for a 3600, copied from TCTTEDLM. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs. The format of the value is a one-byte
character.

DESTCOUNT

DESTID

specifies that the value required is the relative overflow
control number of the destination that has encountered
overflow. If this option is specified when overflow processing
is not in effect, the value obtained will be meaningless. If
no BMS commands have been issued, the INVREQ condition occurs.
The format of the value is halfword binary.

specifies that the value required is the identifier of the
outboard destination, padded with blanks on the right to eight
characters. If this option is specified before a batch data
interchange command has been issued in the task, the INVREQ
condition occurs. The format of the value is an eight-byte
character string.

Chapter 1.6. Access to System Information 47

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

DESTIDLENG

FACILITY

FCI

HILIGHT

LDCMNEM

LDCNUM

specifies that the value required is the length of the
destination identifier obtained by DESTID. If this option is
specified before a batch data interchange command has been
issued in the task, the INVREQ condition occurs. The format of
the value is halfword binary.

specifies that the value required is an indicator showing that
the terminal is defined as having the extended data stream
capability ("FF'); or no extended data stream capability
(X*00®). If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

specifies that the value required is the identification of the
facility that initiated the transaction. The value is copied
from the first four bytes pointed at by TCAFCAAA. If this
option is specified, and there is no allocated facility, the
INVREQ condition occurs. For example, this option gives the
name of the transient data destination whose trigger level
caused the transaction to be started. The format of the value
is a four-byte character string.

specifies that the value required is the facility control
indicator, copied from TCAFCI, that indicates the type of
facility associated with the transaction, for example, X"01°
indicates a terminal or logical unit. The obtained value is
always returned. No exceptional condition occurs. The
format of the value is a one-byte character.

specifies that the value required is an indicator showing that
the terminal is defined as having the extended highlight
capability (X'FF"); or no extended highlight capability
(X*00") . If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

specifies that the value required is the IDC mnemonic of the
destination that has encountered overflow. If this option is
specified when overflow processing is not in effect, the value
obtained will be meaningless. No exceptional condition occurs.
The format of the value is a two-byte character string.

specifies that the value required is the LDC numeric value of
the destination that has encountered overflow. If this option
is specified when overflow processing is not in effect, the
value obtained will be meaningless. No exceptional condition
occurs. The format of the value is a one-byte character.

48 CICS/VS APRM (CL)

NUMTAB

OPCLASS

OPID

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

specifies that the wvalue required is the number of the tabs
required to position the print element in the correct passbook
area of the 2980. If this option is specified and there is no
TCTTE for the task, the INVREQ condition occurs. The format of
the value is a one-byte character.

specifies that the value required is the operator class, copied
from TCTTEOCL. If this option is specified and there is no
TCTTE for the task, the INVREQ condition occurs. The format of
the value is a four-byte character string.

specifies that the value required is the operator
identification, copied from TCTTEOXI. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs. If this option is specified and there is no
TCTTE for the task, the INVREQ condition occurs. The format of
the value is a four-byte character string.

OPSECURITY

PAGENUM

specifies that the value required is the operator security key,
copied from TCPTTESK. If this option is specified and there is
no TCTTE for the task, the INVREQ condition occurs. The format
of the value is a four-byte character string.

specifies that the value required is the current page number
for the destination that has encountered an overflow. If this
option is specified when overflow processing is not in effect,
the value obtained will be meaningless. If no BMS commands
have been issued, the INVREQ condition occurs. The format of
the value is halfword binary.

PRINSYSID

PS

RESTART

specifies that the value required is the name of the TCTSE
(terminal control table system entry) associated with the
principal facility. If there is no TCTTE for the task or if
the principal facility is not an LU6 or MRO session, the INVREQ
candition occurs. The format of the value is a four-byte
character string.

specifies that the value required is an indicator showing that
the terminal is defined as having the programmed symbols
capability (X'FF') ; or no programmed symbols capability
(X*00°*). If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

specifies that the value required is an indicator showing
whether a restart (X'FF'), as opposed to a normal start
X*'00") , has occurred.

Chapter 1.6. Access to System Information 49

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

SCRNHT
specifies that the value required is the height of the current
3270 screen. If this option is specified and there is no TCTTE
for the task, the INVREQ condition occurs. The format of the
value is halfword binary.

SCRNWD
specifies that the value required is the width of the current
3270 screen. If this option is specified and there is no TCTTE
for the task, the INVREQ condition occurs. The format of the
value is halfword binary.

SIGDATA
specifies that the value required is the signal data received
from a logical unit, copied from TCTESIDI. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs. The format of the value is a four-byte
character string.

STARTCODE
specifies that the value required is a code indicating how a
transaction has been started. The format of the value is a
two-byte character string which can have the following values:

Code Transaction started by

QD Transient data trigger level
S START command (no data)

SD START command (with data)

TD Terminal input

U User-attached task

STATIONID
specifies that the value required is the station identifier of
a 2980. If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

SYSID
specifies that the value required is the name given to the
local CICS/VS system. This value may be specified in the SYSID
option of a file control, interval control, temporary storage,
or transient data command, in which case the resource to be
accessed is assumed to be on the local system. The format of
the value is a four-byte character string.

TCTUALENG
specifies that the value required is the length of the terminal
control table user area (TCTUA). If no TCTUA exists, a zero
length is returned. No exceptional condition occurs. The
format of the value is halfword binary.

TELLERID
specifies that the value required is the teller identifier of a
2980. If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character. '

50 CICS/VS APRM (CL)

TERMCODE

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

specifies that the value required is a code giving the type and
model number of the terminal associated with the task, copied
from TCTTETT and TCTTETM. If this option is specified and
there is no TCTTE for the task, the INVREQ condition occurs.
The format of the value is a two-byte character string.

TWALENG
specifies that the value required is the length of the
transaction work area (TWA) . If no TWA exists, a zero length
is returned. No exceptional condition occurs.
UNATTEND
specifies that the value required is a code indicating that the
mode of operation of the terminal is unattended (X'FF') or
1 attended (X'00") , copied from TCTEMOP. If this option is
| specified and there is no TCTTE for the task, the INVREQ
| condition occurs.
VALIDAT ION

specifies that the value required is an indicator showing that
the terminal is defined as having the validation capability
{(X*FF®) consisting of the mandatory fill, mandatory enter, and
trigger attributes. No validation capability is indicated by
(X*00*% . If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character. '

Chapter 1.6. Access to System Information 51

Chapter 1.7. Execution (Command Level) Diagnostic
Facility

The Execution (Command Level) Diagnostic Pacility (EDF) enables an
application programmer to test a command-level application program
online without making any modifications to the source program or the
program preparation procedure. The facility intercepts execution of the
program at various points and displays information about the program at
these points. Also displayed are any screens sent by the user program,
so that the programmer can converse with the application program during
testing just as a user would on the production systen.

EDF runs as a CICS/VS transaction. It is started by a transaction
identifiser or PP key named in the PCT by the system programaer; also,
the PPT needs to specify the programs and maps that are used by EDF.

EDF uses temporary storage and BMS. It can be used only from a 3270
terminal with a screen width of 80 columns and a screen depth of 24
lines or more.

EDF is a command—-level diagnostic aid only, and unpredictable results
may occur if macro instructions are coded in application programs using
this facility.

For 0S/VS only, this facility is not supported if TCTUA=VICOMPAT is
specified in the DFHSG TYPE=INITIAL system macro.

Functions of EDF
During execution of a transaction in debug mode, EDF intercepts the
execution of the application program at the following points:
1. At transaction initialization:
After the EXEC interface block (EIB) has been initialized; but
. Before the application program is given control.

2. At the start of the execution of every EXEC CICS and BXEC DLI
command:

After the initial trace entry has been made; but
Before the requested action has been performed.

3. At the end of the execution of every command (except ABEND, XCTL,
and RETURN) :

After the requested action has been performed; but
Before the HANDLE CONDITION mechanism is invoked; and
Before the response trace entry is made.

4. At program termination

5. At normal task termination

6. When an ABEND occurs

Chapter 1.7. Execution (Command Level) Diagnostic Facility 53

7.

At abnormal task termination

At these points of interception, EDF displays the current status, by

identifying the cause of interception. In addition:

1.

2.

At point 1, EDF displays the values of the fields in the EIB.

At point 2, BDF displays the command, including keywords, options,
and arqument values. The command is identified by tramsaction
identification, program name, the hexadecimal offset within the
program, and, if the program has been translated with the DEBUG
option, the line number of the command as given in the translator
source listing.

At point 3, EDF displays the same as at point 2, plus the response
from command execution.

At points 6 and 7, EDF displays the values of the fields in the EIB
and the following items:

The abend code;

If the abend code is ASRA (that is, a program interrupt has
occurred) , the PSW at the time of interrupt, and the source of
the interrupt as indicated by the PSW;

If the PSW indicates that the instruction giving rise to the
interrupt is within the application program, the offset of that
instruction.

The user is also given the ability to display any of the following:

The values of the fields in the EIB and the DIB (DL/I interface
biock) .

The program's working storage in hexadecimal and character form.

The last ten commands executed, including all argument values,
responses, and so on.

The hexadecimal contents of any address location within the CICS/VS
partition.

At any of these points of interception, the user is allowed to

interact with the application in the following ways:

54

If the current command is being displayed before it is executed,
the user can modify any argument value by overtyping the value that
is displayed on the screen. Alternatively, the user can suppress
execution of the command (that is, convert it to a null operation).

If the current command is being displayed after it has been
executed, the user can modify certain argument values and the
response code by overtyping the displayed value or response with
the required value or response.

The user can modify the program's working storage and most fields
of the EIB and DIB.

The user can switch off debug mode (except at point 2) and continue

running the application normally. Alternatively, the user can
force an abend.

CICS/VS APRM (CL)

. The user may request that command displays are suppressed until one
or more of a set of specific conditions is fulfilled. These
conditions may be: :

A specific named command is encountered.

Any exceptional condition occurs for which the system action is
to raise ERROR.

A specific exceptional conditiomn occurs.

The command at a specific offset or on a specific line number
(assuming the program had been translated with the DEBUG
option) is encountered.

An abend occurs.

The task terminates normally.

The task terminates abnormally.

Any DL/I error status occurs.

A specific DL/I error status occurs.

Security Rules

To invoke EDF, the user must have a security key that matches the
security key defined for EDF in the PCT. 1In addition, to test a
particular transaction, the EDF user must have a security key that
matches the security key for that tramsaction. If this condition is not
satisfied, the EDF session is terminated immediately.

Resource level security checks will be made during execution of the
transaction under test unless EDF has been defined as not requiring
these checks. If such checks indicate that the EDF user is not allowed
access to the resource, the user transaction will be abended.

Installing EDF

To ensure that EDF is available on the test system, the systen
programmer must make one group entry in the PPT and one group entry in
the PCT (see the CICS/VS_System Proqrammer's Reference Manual for
details of constructing a PPT and PCT).

EDF can send messages greater than 4K bytes in length. VTAM users
should ensure that their NCP (network control program) can handle data
of this length. The same applies if temporary storage is defined as
auxiliary, in which case the VSAM control interval length must be large
enough to handle the message.

Invoking EDF

EDF can be run on the same terminal as the transaction requiring
checkout provided that the application under test does not make use of
extended attributes, or on a different terminal.

Chapter 1.7. Execution (Command Level) Diagnostic Pacility 55

For same—terminal checkout, EDF can be invoked either by:

1. Using the transaction *CEDF' or

2. Using the appropriate PF key, if one has been defined for EDF.
The transaction requiring checkout can then be started.

For different—terminal checkout, EDPFP is invoked on the current
terminal, which must be in TRANSCEIVE status, by using the transaction
identifier CEDF with an argument that specifies the four-character
identifier (as defined in the TRMIDNT operand of the DFHTCT
TYPE=TERMINAL system macro) of the terminal on which the transaction
requiring checkout is being run. For example:

CEDF L77a

If a command-level transaction is already rumning om that terminal,
EDF will associate itself with that transaction; otherwise it will
associate itself with the next command-level transaction started at that
terminal.

The above applies to a single system. If the tramnsaction running on
the terminal has been transaction routed, EDPF will not associate itself
with it, nor with any other transaction that has been routed. EDF will
associate itself with the next command-level transaction that runs on
the system to which the terminal is connected.

The transaction identifier 'CEDF' may be entered from a formatted
screen, in which case the effect is the same as pressing the PF key;
that is, the terminal at which *CEDF' is entered is put into EDP mode.
(No message is issued, so that the formatted screen remains intact.)

The full format of the command to initiate or terminate an EDF
session is:

CEDF [terminal—id] [, {ON|OFF}]

If the terminal identifier is omitted, the terminal at which the CEDF
transaction is initiated is assumed.

CEDF cannot be defined to be a remote transaction. The only way to
test a transaction running in a connected system is by means of the
routing transaction CRTE. This transaction is used to set up a routing
session with the connected system; CEDF can then be used for same—
terminal checkout.

To invoke EDF within the routing session, the user must type CEDF
because the routing session does not allow the use of PA or PF keys. It
is impossible to use EDF for two—terminal checkout if the transaction

under test, or the terminal that invokes it, is owned by a different
systen.

Using EDF Displays

An example of a typical EDF display is given im Figure 1.7-1.

56 CICS/VS APRM (CL)

TRANSACTION: CMNU PROGRAM: XDFHINST TASK NUMBER: 0000115 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND

MAP (*XDFHCMA')

FROM (* N....P..Jj8K..¥8.cceeeKeeeeoeMeeeHeeeDKeZXBoeeveaoaa¥oaatole)
TERMINAL

ERASE
OFFSET:X'0003EE"* EIBFN=X"1804"
RESPONSE: NORMAL EIBRCODE=X'000000000000"*

ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY

PF7 : SCROLL BACK PP8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USBR TASK

. . — S — —— WD v s S N G — — am. W M by S D - —— — o
e . D VY NP = G D T ey TR NS WS Wme T THR S G e S WD g o

Figure 1.7-1. Typical EDF Display

The five lines at the foot of the screen provide a menu indicating
the effect of the ENTER and PF keys for that particular display. If the
terminal does not have PF keys, the same effect can be obtained by
positioning the cursor under the required instruction on the screen and
pressing the ENTER key. The cursor can be correctly positioned by using
the tab keys.

Although the menu may change from one display to another, no function
will move from one key to another as a result of a menu change.

If the ENTER key is pressed while the cursor is not positioned within
the menu, the function specified for the ENTER key is performed.

EDF uses the line immediately above the menu to display messages to
the user.

Up to ten displays are remembered and can be redisplayed later.

The number at the top right of the screen indicates the current
display number; it is possible to recall any of the last ten displays,
which are numbered -01, —-02, and so on, by overtyping this number.
Alternatively, PF10 and PF11 can be used to step back and forward one
display at a time.

Argument values can be displayed in character or hexadecimal format.
If character format is requested, numeric arguments are shown in signed
numeric character format. PEach argument value is restricted to one line
of the display; if the value is too long, only the first few bytes are
displayed, followed by "..." to indicate that the value is incomplete.
If the argument is displayed in hexadecimal format, the address of the
argument is also displayed. This enables the user to display the
argument value in full by requesting a display of that location and
scrolling if necessary.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 57

The user can overtype any screen area at which the cursor stops when
the tabbing keys are pressed, such as the response field. Thus, for
example, the response can be changed from "NORMAL" to "ERROR"™ or some
other exceptional condition, so as to test the program'’s error handling
at this point in the program. A list of areas that can be overtyped is
given later under "Overtyping EDF Displays."

The response of EDP to a user request is in accordance with the
following order of priority:

1. If the CLEAR key is used, EDF redisplays the screen with any
changes ignored.

2. If invalid changes are made, EDF accepts any valid changes and
redisplays the screen with a diagnostic message.

3. If the display number is changed, EDF accepts any other changes and
displays the requested display.

4. If a PP key is used, EDF accepts any changes and performs the
action requested by the PF key.

5. If the ENTER key is pressed, and the screen has been modified
(other than the REPLY field), EDF redisplays the screen with
changes included.

6. If the ENTER key is pressed, and the screen has not been modified
(other than the REPLY field), then if the ENTER key means CONTINUE,
execution of the user transaction continues, otherwise if the ENTER
key means CURRENT DISPLAY, EDF redisplays the current status
display.

TERMINAL SHARING BETWEEN TRANSACTION AND EDP

When both EDF and the user transaction are sharing the same terminal,
EDP restores the user transaction's display at the following times:

L when the transaction requires input from the operator
. when the transaction's display is changed

o at the end of the transaction

. when EDF displays are suppressed

. when USER DISPLAY is requested.

Thus, when a SEND command is followed by a RECEIVE command, the
display sent by the SEND command appears twice, once when the SEND
command is executed, and again when the RECEIVE command is executed. It
is not necessary to respond to the SEND command, put if a response is
made, EDF will remember it and redisplay it when the screen is restored
for the RECEIVE command. The response passed to the transaction is that
which is made to the RECEIVE command.

When EDF restores the transaction display, it does not sound the
alarm or affect the keyboard in the same way as the user transaction.
The effect of the user transaction options will be seen when the SEND
command is executed, but not when the screen is restored.

For same—terminal use, when EDF restores the transaction display on a
device that uses color, programmed symbols, or extended highlighting,

58 CICS/VS APRM (CL)

the attributes will no longer be present and the display will be in
monochrome with no programmed symbols, or extended highlighting.

If the inbound reply mode in the application program is set to
character (to enable the attribute setting keys) EDF will reset this
mode causing these keys to be disabled.

When EDF restores the transaction display, it locks the keyboard
until the transaction issues a RECEIVE command, at which time EDF frees
the keyboard.

If the EDF session is terminated part way through the tranmsaction,
EDF restores the screen with the keyboard locked if the last
send/receive to the terminal was in fact a RECEIVE command; otherwise,
the keyboard is unlocked. This will usually, but not always, match the
normal behavior of the tramnsaction.

ENTER AND PF KEYS

The following list explains the meanings of the ENTER key and the
program function (PF) keys:

ABEND USER TASK
terminates the task. EDF asks the user to confirm this action
by displaying the message MENTER ABEND CODE AND REQUEST ABEND
AGAIN." After entering the code at the position indicated by
the cursor, the user must request this function again to
actually abend the task with a transaction dump identified by
the specified code. If the user enters ®“NO," the task will be
abended without a dunmp.

This function cannot be used if an abend is already in progress
or the task is terminating.

CONTINUE
causes the user transaction to continue unless the screen has
been modified. In the latter case, EDF redisplays the screen
with changes incorporated.

CURRENT DISPLAY
displays the screen that was being displayed before the user
started examining other displays, such as remembered displays,
unless the screen has been modified. 1In the latter case, EDF
redisplays the screen with changes incorporated.

DIB DISPLAY
shows the contents of the DIB.

EIB DISPLAY
shows the contents of the EIB and COMMAREA (if any) (see
Appendix A for a description of the fields in the EIB).

END EDF SESSION

ends the debugging session, and takes the terminal out of debug
mode. The user transaction continues.

NEXT DISPLAY
used when examining displays, to step on to the next remembered
display. Repeated use stops at the current display, when the
"next display" key is no longsr available.

Chapter 1.7. BExecution (Command Level) Diagnostic Facility 59

PREVIOUS DISPLAY

shows the latest remembered display. Repeated use stops at the
earliest remembered display. Further use merely causes the
earliest remembered display to be redisplayed.

REGISTERS AT ABEND

displays storage containing the values of the registers in the
event of an ASRA abend. The layout of the storage is as
follows:

e PSW at abend (8 bytes)
e Register values (0 through 15)

In some (very rare) cases, when a second program check occurs
in the system before EDF has captured the values of the
registers, this function will not appear on the menu of the
abend display. If this happens, a second test rum will
generally prove to be more informative.

REMEMBER DISPLAY

SCROLL

SCROLL

SCROLL

SCROLL

SCROLL

SCROLL

60

places a display that would not normally be remembered, such as
an EIB display, in the memory. (Noreally, only the command
displays are remembered.) The memory can hold up to ten
displays. All pages associated with the display are remembered
(and can be scrolled when recalled) except for storage displays
where only the page currently displayed is remembered.

BACK
scrolls a command or EIB display backwards. A plus sign (+)
against the first option or field indicates there are more
options or fields preceding.

BACK FULL

scrolls a working storage display a full screen backwards,
displaying lower addresses.

BACK HALF
scrolls a working storage display half a screen backwards,
displaying lower addresses.

FORWARD
scrolls a command or EIB display forwards. A plus sign (+)
against the last option or field indicates there are more
options or fields following.

FORWARD HALF
scrolls a working storage display half a screen forwards,
displaying higher addresses.

FORWARD FULL

scrolls a working storage display a full screen forwards,
displaying higher addresses.

CICS/VS APRM (CL)

| STOP COaDITIONS (See Figure 1.7-2)

—— - w—

SUPPRESS

displays a skeleton menu with which the user can specify one or
more conditions that will cause EDF to stop the user
transaction, and start redisplaying commands, after displays
have been suppressed by the SUPPRESS DISPLAYS function. These
functions are used to reduce the amount of operator
intervention required to check out a program that is partly
working.

The transaction can be stopped under the following conditions:
When a specified type of command is reached.

When a specified exceptional or error condition occurs
during execution of a command.

When a specified offset or line is reached.
At transaction abend.

At normal task termination.

At abnormal task termination.

The line number, which will be available on the source listing
if the program has been translated using the DEBUG option, must
be specified exactly as it appears on the listing, including
leading zeros, and must be the line on which a command starts.

The offset specified must be the offset of the BALR instruction
corresponding to the command.

The correct line can be determined easily from the translator
output listing. The offset can be determined from the code
listing produced by the assembler or compiler.

Por transactions that contain DLI commands, the gualifier CICS
on the command line can be overtyped with DLI to specify a DLI
command. Also, the transaction can be stopped when a specified
error status, or any error status, occurs.

DISPLAYS
suppresses all EDF displays until the next stop coandition
occurs.

SWITCH HEX/CHAR

UNDEFINED

switches the display between hexadecimal and character
representation. This is a mode switch; subsequent displays
will stay in the chosen mode until the next time this key is
pressed. This switch has no effect on previously-remembered
displays, stop condition displays, and working storage
displays.

means that this key is not available with this type of display.

USER DISPLAY

shows what the user would see if the terminal was not in EDF
mode. Hence, this function is usable only for same—terminal
checkout.

Chapter 1.7. Ezxecution (Command Level) Diagnostic Facility 61

WORKING STORAGE

62

displays the program's working storage, in a form similar to
that of a dump listing, that is, in both hexadecimal and
character representation. When this key is used, two
additional scrolling keys are provided, and other PF keys allow
the BIB (and the DIB if a DL/I command has been processed by
EDF) to be displayed.

The meaning of "working storage” depends on the programming
lJanguage of the application program, as follows:

Assembler language
the storage defined in the current DFBBISTG DSECT.

COBOL
all data storage defined in the WORKING—STORAGE section of
the progranm.

PL/I
the dynamic storage area (DSA) of the current procedure.

Except for COBOL programs, working storage starts with a
standard format save area, that is, registers 14-12 are stored
at offset 12 and register 13 at offset &.

Working storage can be changed at the screen; either the
hexadecimal section or the character section may be used.
Also, the ADDRESS field at the head of the display can be
overtyped with a hexadecimal address; storage starting at that
address will then be displayed when ENTER is pressed. This
allows any location in the partition to be examined. Further
information on the use of overtyping is given later under
nOvertyping EDF Displays.%

If the storage examined is not part of the user's working
storage (which is unique to the particular transaction under
test) , the corresponding field on the screen is inhibited to
prevent the user from overwriting storage that can affect more
than one task in the program.

If the initial part of a working storage display line is blank,
the blank portion is not part of working storage. This can
occur because the display is doubleword aligned.

At the beginning and end of a task, working storage is not
available. 1In these circumstances, EDF generates a blank
storage display so that the user can still examine any storage
area im the partition by overtyping the address field.

CICS/VS APRM (CL)

-~ — —— — ——————— — — —— — —— — S ————— ————

[o o T ——— T S0 e — TS G e S W G e e e S)

TRANSACTION: XDLI PROGRAMN: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
DISPLAY ON CONDITION:—

COMMAND: EXEC CICs

OFFSET: x'....-.'

LINE NUUBER: se ® o0 000

CICS EXCEPTIONAL CONDITION:

ANY CICS ERROR CONDITION YES

TRANSACTION ABEND YES

NORMAL TASK TERMINATION YES

ABNORMAL TASK TERMINATION YES

DLI ERROR STATUS: .o

ANY DLI ERROR STATUS YES
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: UNDEFINED PF11: UNDEFINED PF12: REMEMBER DISPLAY

b o an WP e m T T VP R . TER T TP . W S S e W P WP e e o

Figure 1.7-2. "Stop—-Conditions" Display

OVERTYPING EDF DISPLAYS

As mentioned above, certain areas of an EDF display can be overtyped.
These areas can be identified by use of the tab keys; the cursor stops
only at fields that can be overtyped (excluding fields within the menu).

The verb of a command, such as the "SEND" in "EXEC CICS SENDY, can
be overtyped with "NOOP" or "NOPY" before execution; this suppresses
execution of the command. When the screen is redisplayed with
NOOP, the original verb line can be restored by erasing the whole
verb line with the ERASE EOF key.

Any argument value can be overtyped, bat not the keyword of the
argument. Overtyping must be in the same representation,
hexadecimal or character, as the original field, and must not
extend beyond the argument value displayed. Any modification that
is not overtyping of the displayed value is ignored (no diagnostic
message being generated). When an argument is displayed in
hexadecimal format, the address of the argument location is also
displayed.

Numeric values always have a sign field, which can be overtyped
with a minus or a blank only.

The response field can be overtyped with the name of any
exceptional condition, including ERROR, that can occur for the
current function, or with the word "NORMAL". The effect when EDF
continues will be that the program will take whatever action has
been prescribed for the specified response.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 63

. The EIBRCODE field, when displayed as part of the EXEC Interface
Block, can be overtyped with any desired bit pattern. This does
not apply when the EIBRCODE field is part of a command display.

When a field representing a data area of a program is overtyped, the
entered value is placed directly into the application program's storage.
On the other hand, before execution of a command, when a field
representing a data value (which may possibly be a constant) is
overtyped, a copy of the field is used; thus, other parts of the program
that might use the same constant for some unrelated purpose will not be
affected by the change. If, for example, the map name is overtyped
before executing a SEND MAP command, the map actually used temporarily
is the map with the entered name; but the map name displayed on response
will be the original map nane. (The mwprevious display® key can be used
to display the map name actually used.)

When an argument is to be displayed in character format, some of the
characters may not be displayable (including lowercase characters). EDF
replaces each non—displayable character by a period. When overtyping a
period, the user must be aware that the storage may in fact contain a
character other than a period, the user may not overtype any character
with a period; if this is done, the change is ignored and no diagnostic
message is issued. Similarly, when a value is displayed in hexadecimal
format, overtyping with a blank character is ignored and no diagnostic
message is issued.

When storage is displayed in both character and hexadecimal format
and changes are made to both, the value of the hexadecimal field will
take precedence should the changes conflict; no diagnostic message is
issued.

If invalid data is entered, the result is as follows, regardless of
the action requested by the user:

. the invalid data is ignored;
° a diagnostic message is displayed;
. the alarm is sounded if the terminal has the alarm feature;

EDF does not translate lowercase characters to uppercase. If
uppercase translation is not specified for the terminal in use, the user
must take care to enter only uppercase characters.

Checking Out Pseudo-Conversational Programs

On termination of the task, EDF displays a message saying that the task
is terminated and prompting the user to specify whether or not debug
mode is to continue into the next task. This is to allow realistic
debugging of pseudo—conversational programs. If the terminal came out
of debug mode between the tasks involved, each task would start with
fresh EDF settings, and the user would not be able, for example, to
display screens remembered from previous tasks.

Program Labels

Some commands, such as HANDLE CONDITION, require the user to specify a
program label. The form of the display program labels depends on the
programmning language in use:

64 CICS,/VS APRM (CL)

For assembler language, the offset of the program label is
displayed; for example, ERROR (X'00030C")

For COBOL, a null argument is displayed: for example, ERROR ()

For PL/I, the address of the label constant is displayed; for
example, ERROR (X'"001D0016")

If no label value is specified on a HANDLE CONDITION command, EDF

displays the condition name alone.

Using EDF with EXEC DLI Commands

EDF supports EXEC DLI commands in the same way as it supports EXEC CICS
commands. However, the following minor differences should be noted:

The two—character DL/I status code appears in the RESPONSE field
and the EIBRCODE field is not displayed. The status code can be
displayed in character or hexadecimal format. If the status code
is changed to an invalid value, or to a value that would have
caused DL/I to abend the user task, a warning message is issued
before continuing the user task.

For commands that generate more than one CALL statement, the offset
is that of the last CALL.

For the WHERE option, only the keyfield value (the third component)
can be converted to hexadecimal. The address shown for this option
is that of the keyfield value.

The line number of the command is always displayed.
For transactions that contain EXEC DLI commands, the DL/I interface

block can be displayed, and additional stop conditions can be
specified.

Examples of typical displays for an EXEC DLI command are given in

Figures 1.7-3 and 1.7-4.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 65

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

EXEC DLI GET NEXT
USING PCB (+00003)

FIRST

SEGMENT ('A)
INTO (°)
SEGLENGTH (+00012)

FIRST
VARIABLE
+SEGMENT ("B ")

RESPONSE: "AD*®

ENTER: CONTINUE

PF1 : UNDEFINED PF2 :
PF4 : SUPPRESS DISPLAYS PF5 :
PF7 : SCROLL BACK PF8 :

PF10: PREVIOUS DISPIAY PF1ll:

o — - — — —— —— o — ——— i — —— - W — - ——

OFFSET:X"000246" LINE: 00000510

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER:
STATUS: COMMAND EXECUTION COMPLETE

SWITCH HEX/CHAR
WORKING STORAGE
SCROLL FORWARD

UNDEFINED

0000111 DISPLAY: 00

EIBFN:X"000C*

PF3 : END EDF SESSION
PF6 : USER DISPLAY
PF9 : STOP CONDITIONS

PF12: ABEND USER TASK

.—-—————————————-——-————_J

Figure 1.7-3. Typical EXEC DLI

Display (Page 1)

EXEC DLI GET NEXT
+

FIRST

SEGMENT (°C)
SEGLENGTH (+00010)
LOCKED

INTO (°SMITH v)

WHERE (ACCOUNT = "12345°)
FIELDLENGTH (+00005)

RESPONSE: °*aAD"*

ENTER: CONTINUE

PFl : UNDEFINED PF2 :
PF4 : SUPPRESS DISPLAYS PPF5 :
PF7 : SCROLL BACK PF8 :

PF10: PREVIOUS DISPLAY PFl1l:

OFFSET:X"000246* LINE: 00000510

SWITCH HEX/CHAR
WORKING STORAGE
SCROLL FORWARD

UNDEFINED

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE

EIBFN:X*000C*

PF3 : END EDF SESSION
PF6 : USER DISPIAY
PF9 : STOP CONDITIONS

PFl12: ABEND USER TASK

Figure 1.7-4. Typical EXEC DLI

66 CICS/VS APRM (CL)

Display (Page 2)

— —— o— —

Chapter 1.8. Command-Level Interpreter

The command-level interprester enables CICS/VS commands to be entered,
syntax—checked, and executed interactively at a 3270 screen. The
interpreter performs a dual role in the operation of a CICS/VS systenm.

For the application programmer, it provides a reference to the
syntax of the whole of the CICS/VS command-level application
programming interface (excluding DL/I). Most of the commands can
be carried through to execution, and the results of execution can
be displayed.

For the system programmer, it provides a means of interaction with
the system. For example, a corrupted data—base record can be
"repaired™, a temporary storage queue can be created or deleted,
and so on. It thus provides a useful extension to the facilities
provided by the master terminal tramrsaction CEMT.

Invoking the Command-Level Interpreter

The command-level interpreter is a CICS/VS application program and runs
as a CICS/vS transaction. It is started by the transaction
identification of "CECI", or "CECS", followed optionally by the command.

The general format is:

CECI |CECS [command]}

where "command™ can be any of the CICS/VS commands (except EXEC DLI)
described throughout this manual.

The use of CECI will give the full facilities of the interpreter

right through to execution of the command.

For example, entering:

CECI READ DATASET (*FILEA'*)

will give the screen display shown in Figure 1.8-1.

Modifying the command input to:

READ DATASET (*FILEA'®) RIDFLD (*000001*)

will give the screen display shown in FPigure 1.8-2. The error message
has disappeared because the requested record identification field has
been supplied.

The command is now ready to be executed, and this is achieved simply

by pressing the ENTER key. The display shown in Figure 1.8-3 will

appear showing the result of execution.

It is possible to prevent unauthorized access by the interpreter to

resources such as data sets. Refer to the security rules later in the
chapter.

Chapter 1.8. Command-Level Interpreter 67

4 guestion mark (?) before the command always gives the command
syntax check display and prevents command execution.

The use of CECS forces a question mark before the command. This
always gives the command syntax check display and prevents command

execution. 1In a system where security is important, CECS can be made
more widely available than CECI.

Screen Layout
The command interpreter uses a basic screen layout of four areas, as
shown in Figure 1.8-1. These areas are:

. Command Input Area (the first line of the screen)

. Status Area (the second line of the screen)

. Information Arsa (21 lines on a 24 x 80 display)

L PF Key Values Area (the last line of the screen)

COMMAND INPUT AREA

This is the first line of the screen. The command, whose syntax is to
be checked, or which is to be executed, is entered on this line, either
in the normal format described in Chapter 1.2 and as illustrated
throughout this manual, or in an abbreviated or condensed form that
reduces the number of keystrokes involved. The condensed form of the
conmand is obtained as follows:

. The keywords EXEC CICS are optional.

. The options of a command can be abbreviated to any number of
characters sufficient to make them unique. Valid abbreviations are
shown in capital letters in syntax displays.

. The quotes around character strings are optional, and all strings
of characters will be treated as character-string constants unless
they are preceded by an ampersand (&) in which case they are
treated as variables, as described later in the chapter.

. Options of a command that receive a value from CICS/VS when the
command is executed are called "receivers", and need not be
specified. The value received from CICS/VS will be included in the
syntax display after the command has been executed.

The following example shows the condensed form of a command. The
file control command:
EXEC CICS READ DATASET ("FILEA*) RIDFLD ('000001?) INTO (data-area)
can be entered on the command input line, as:
READ DAT (FILEA) RID(000001)

or at a minimum, as:

READ D (FILEA) R (000001)

68 CICS/VS APRM (CL)

—— s ——

here, the INTO option is a receiver (as defined above), and can be
omitted.

STATUS AREA

This is the second line of the screen. It will contain one of the
following: ‘

COMMAND SYNTAX CHECK

ABOUT TO EXECUTE COMMAND

COMMAND EXECUTION COMPLETE (or COMMAND NOT EXECUTED)
EIB DISPLAY

VARIABLES

ERROR MESSAGES

EXPANDED AREA

This status line describes the type of information in the immediately
following information area of the display.

INFORMATION AREA

This area consists of the remainder of the screen between the "command
input" and "status™ areas at the top, and "PF key values"™ at the bottom
of the screen. This area is used to display the syntax of the entered
command, error message information, the response to execution, and any
other information that can be obtained by using the PP keys or the
cursor.

A line at the pbottom of this area is reserved for messages that

describe errors in the conversation with the user (for example, ®INVALID
PACKED DECIMAL®™). These messages are intensified to attract attention.

Chapter 1.8. Command-level Interpreter 69

Command Syntax Check

¥

| READ DATASET (*FILEA")

} STATUS: COMMAND SYNTAX CHECK NAME=
} EXEC CICS READ

} Dataset (*FPILEA ')

| SET () | Into()

} < Length () >

| Ridflad ()

! < Keylength() < GEneric > >

| < SYsid () >

| < SEGset() | Segsetall >

| < RBa | RRn | DEBRec | DEBKey >

) < GTeq | Egual >

| < Update >
I
|
|
|
|
1
]
|
|
|
|
[

DFH7052I S RIDFLD OPTION MUST BE SPECIFIED

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

1
|
|
|
|
1
I
|
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
!

Figure 1.8-=1. "Command Syntax Check" Display

When this status message appears, it indicates that the command which
has been entered on the command input line has been syntax checked but
is not about to be executed. This will always be the status for CECS or
for CECI with a question mark before the command. Tt is also the status
when the syntax check of the command gives severe error messages and for
those commands which are not executable (for example, HANDLE CONDITION
and HANDLE AID).

The INFORMATION AREA of the display for Command Syntax Check, Apout
to Execute Command and Command Execution Complete contains information
common to all three displays.

The full syntax of the command is displayed together with error
information at the foot of the display. Options in the syntax panel are
intensified to show those specified on the command input line, those
assumed by default, and any "receiverswm.

The command on the command input line can be modified at any time by
overtyping and pressing ENTER.

If the command has more options than can be held in one display, a
plus sign (+) will appear at the left-hand side of the last option of
the current display to indicate that there are more. These can be
displayed by using one of the scrolling PF keys.

The syntax display differs slightly from the syntax shown throughout
the manual in the following ways:

Square brackets [] are replaced by the less—than and greater—than
symbols < >.

70 CICS/VS APRM (CL)

Braces { } are not used. If a mandatory option is omitted, an
errcr message will be displayed and execution will not proceed
until) the option has been specified.

Parentheses () are used to indicate that an option requires a
value or data field but none has been specified.

The error information consists either of a single error message or an
indication of the number and severity of the messages generated.

The NAME= field on the syntax display can be used to create a

variable containing the current command. (See the description of a
variable later in the chapter.)

About to Execute Command

READ DATASET ("*FILEA®) RIDFLD (*000001")
STATUS: ABOUT TO EXECUTE COMMAND NAME=
EXEC CICS READ
Dataset ("FILEA ')
SET() | Into()
< Length() >
Ridflda (*000001*)
Keylength () < GEneric > >
SY¥sid () >
SEGset () | Segsetall >
RBa | RRn | DEBRec | DEBKey >
GTeq | Equal >
Update >

ANANANAANANAN

L]
|
1
1
!
1
i
1
|
1
|
|
|
l
!
|
]
]
1
1
i
|
1
1
|PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SP

Pigure 1.8-2. "About to Execute Command" Display

This display appears when none of the reasons for stopping at Command
Syntax Check apply. Option values can be modified by overtypiang them in
the syntax panel. This is a temporary modification for the duration of
the command and does not affect the command input line. It is similar
to the modification of option values that is possible with EDF when
debugging an application program.

Chapter 1.8. Command-Level Interpreter 7

. —— e D B e D e D TP mam e — — WU D weas GHD TP . — O W w—— —

Command Execution Complete

r
| READ D(FILEA) R(000001)
STATUS: COMMAND EXECUTION COMPLETE NAME=
EXEC CICS READ
Dataset('FILEA ')
SET() | Into(*U000001 eee? L.l)
< Length (+00080) >
Ridfld(*000001°*)

< Keylength() < GEneric > >

< SYsid () >

< SEGset() | Segsetall >

< RBa | RRn | DEBRec | DEBKey >

< GTeg | Equal >

< Update >
RESPONSE: NORMAL EIBRCODE=X*00000000000"

|
I
1
i
|
|
I
1
I
1
}
|
1
i
I
|
i
|
1
|
I
1
jPF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF
L

Figure 1.8-3. "Command Execution Complete™ Display

This display appears in response to the ENTER key after an mabout to
execute command™ display. The command has been executed and the results
are displayed on the screen. Any "receivers®™, whether specified or not,
together with their CICS/VS-supplied values, are displayed intensified.
If the value of an option is too long for the line, only the first part
will be displayed followed by "..." to indicate there is more.
Positioning the cursor, using the tab key, at the start of the option
value and pressing ENTER will produce an expanded display of the whole
option value.

Also displayed at the foot of the information area, is the
appropriate response code (for example, NORMAL) together with the
contents of the EIBRCODE field of the EIB.

Variables

This display will show, in response to pressing key PF5, all the
variables associated with the current interpreter session, showing for
each, its name, length, and value.

Normally, the value supplied for an option in the command input area
is taken as a character—string constant. Howaver, there is sometimes a
requirement for this value to be represented by a variable. The command
interpreter will recognize a value as a variable only if it is preceded
by an ampersand (&) .

A variable is required when two associated commands are to be

connected through the values supplied in their options, for example,
READ INTO (data-area) UPDATE and REWRITE FROM (data—area). A variable can

72 CICS/VS APRH (CL)

be used to make the data area in the FROM option the same as that in the
INTO option.

A variable is also useful when the values of options cause the
command to exceed the line length of the command input area. Creating
variables with tne required values and specifying the variable names in
the command will enable a command to be accommodated.

Variables can also be used to contain commands, and variable names
can be entered in a command input line that contains complete or partial
commBands.

Variables are deleted at the end of an interpreter session unless
action has been taken to save them, for example, in temporary storage,
as described below.

Variables, which can be of data type character, fullword, halfword,
or packed decimal, can be created, as followus:

1. By naming the variable in a receiver. The variable will be created

when the command is executed. The data type is implied by the type
of receiver.

2. By adding one or more new entries to the list of variables already
defined. This list is displayed by pressing key PF5. The display
shows all defined variables giving, for each, its name, length in
bytes, and its value. The value is displayed in character form but
PF2 can be used to switch from character to hexadecimal. An
expanded display of each variable can be obtained by positioning
the cursor under the & of the name and pressing ENTER. To create a
new character variable, enter its name and its length and press
ENTER. The variable will be initialized to blanks, which can then
be overtyped. PFor a fullword, halfword, or packed variable, enter
F, H, or P in the length field. These fields are initialized to
Zero.

Variable names, lengths, and their values, can be modified by
overtyping. Variables can be deleted by positioning the cursor
under the & of the name and pressing erase EOF. Variables can be
copied by obtaining the expanded display of the variable and
overtyping the name field.

3. By associating a variable name with the value of an option.
Positioning the cursor, using the tab key, at the start of the line
of the syntax display and pressing ENTBR will produce an expanded
display of the whole option value. A variable name can now be
assigned to the data so displayed.

4. By entering a name in the NAME= field of the syntax panel. This
will create a variable containing the current command.

Three variables are provided initially. The first, &DFHC, is a
samnple. The second, &§DFHW, contains a temporary storage WRITEQ command,
and the third, &DFHR, contains a READQ command. It is possible to write
a command to temporary storage by entering &§DFHC in the NAME= field of
the syntax panel, entering &DFHW in the command input line, and
executing the WRITEQ command. In this way, a list of commands can be
written. The command list can be read and executed by alternately
entering &DFHR and &DPRC in the command input line.

Chapter 1.8. Command—Level Interpreter 73

Expanded Area

This display will use the whole of the information area of the screen to
display areas selected by means of the cursor. The cursor can be
positioned at the start of the value of an option on a syntax display,
or under the ampersand of a variable in a variables display. Pressing
ENTER will then give the expanded area display. The scrolling keys can
be used to display all the information if it exceeds a full screen.

ENTER KEY AND PF KEY VALUES

The single line at the foot of the screen provides a menu indicating the
effect of the EHTER and PF keys for the display. Continuation of
interpretation depends entirely upon use of the ENTER key; unless this
key is pressed no further action will occur.

The PP keys are self-—explanatory; if the terminal has no PF keys, the
same effect can be obtained by positioning the cursor under the required
item in the menu by means of the tab keys and pressing ENTER. The
following PF keys are available:

PF1: HELP
displays a HELP panel giving more information on how to use the
command interpreter and on the meanings of the PP keys.

PF2: SWITCH HEX/CHAR
sWwitches the display between hexadecimal and character
representation. This is a mode switch; all subsequent displays
will stay in the chosen mode until the next time this key is
pressed.

PF3: END SESSION
ends the current session of the interpreter.

PF4: EIB DISPLAY
shows the contents of the EXEC interface block (EIB). (See
Appendix A for a description of the fields in the EIB).

PF5: VARIABLES
shows all the variables associated with the current command
interpreter session, giving for each its name, length, and
value.

PF6: USER DISPLAY
shows what the user would see if the terminal had been
executing a transaction which contained the commands which have
been executed using the interpreter.

PF7: SCROLL BACK HALF
scrolls half a screenful backwards.

PF8: SCROLL FORWARD HALF
scrolls half a screenful forwards.

PF9: EXPAND MESSAGES

shows all the messages generated during the syntax check of a
command.

PF10: SCROLL BACK
scrolls backwards.

74 CICS/VS APRM (CL)

PF11: SCROLL FORWARD
scrolls forwards.

PF12: UNDEFINED
means that this key is not available with this type of display.

TERMINAL SHARING

When the command being interpreted is one that uses the screen which the
interpreter is using, the command interpreter will manage the sharing of
the screen between the interpreter display and the user display.

The user display will be restored:
o when the command being executed requires input from the operator.

. when the command being executed is about to modify the user
display.

. when USER DISPLAY is requested.

Thus, when a SEND command is followed by a RECEIVE command, the
display sent by the SEND command appears twice, once when the SEND
command is executed, and again when the RECEIVE command is executed. It
is not necessary to respond to the SEND command, but if a response is
made, the interpreter will remember it and redisplay it when the screen
is restored for the RECEIVE command.

When the interpreter restores the user display, it does not sound the

alarm or affect the keyboard in the same way as when a SEND command is
executed.

Program Control

The -interpreter is itself a CICS/VS application program and the
execution of certain program control commands may cause different
results from an application program containing those commands. For
example, an EXEC CICS ABEND command will be intercepted by the
interpreter rather than abending the interpreter (unless the CANCEL
option is specified).

If the interpreter is used to LINK to a program, the interpreter will
not be aware of modifications to the USER DISPLAY made by that progranm.
If the interpreter executes an XCTL command, control will be transferred
to that program and that will be the end of the interpreter session.

Security Rules

To invoke the command interpreter, the user must have a security key
that matches the security key defined in the PCT.

The command-level interpreter transaction identifier, CECI,
specifies, by default, that resource level security checking is required
for any resources referenced with the interpreter. This checking
applies to data sets, transient data queues, temporary storage gqueues,

Chapter 1.8. Command-Level Interpreter 75

programs, transaction identifiers of the START command, and journal file
jidentifiers.

If the resource security level specified in the appropriate CICS/VS
table (for example, the FCT for a dataset) is not matched by the
authorization obtained from a sign—on, the resource security check
fails, and the response to the command will be ABEND AEY7. This
response is given on the "command execution complete" display.

Installing the Command-Level Interpreter

To ensure that the command interpreter is available on the system, the
system programmer must make one group entry in the PPT and in the PCT.

constructing a PPT and a PCT.)

76 CICS/VS APRM (CL)

Part 2. Data Base Operations

Chapter 2.1. Introduction to Data Base Operations
Chapter 2.2. File Control

Chapter 2.3. DL/I Services

77

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Chapter 2.1. Introduction to Data Base Operations

CICS/VS transactions can access two kinds of data bases, which can be on
either a local or remote system, as follows:

. Standard operating system data sets holding a data base.
. DL/I (Data Language/I) data bases.

Standard operating system data sets are processed by the CICS/VS file
control program, which permits the retrieval, addition, updating,
deletion, and browsing of records in ISAM, VSAM, and DAM data sets.

File control relieves the application programmer of buffer management,
blocking and deblocking, and access-method dependencies. File control
is described in Chapter 2.2.

A DL/I data base gives the application programmer a greater degree of
data independence than is given by file control. The programmer is
presented with a logical view of the data base in terms of a hierarchy
of segments. DL/I offers powerful facilities for the manipulation of
these segments without requiring the programmer to be aware of how they
are organized.

Processing of a DL/I data base is performed by one of the following
program products with which CICS/VS interfaces:

. For VSE users, Data Language/I DOS/VS (Program Number 5746-XX1).

L For 0S/VS users, Information Management System/Virtual Storage
(IMS/VS) (Program Number 5740-XX2).

The CICS/VS-DL/I interface for both VSE and 0S, which is invoked by
means of the DL/I CALL statement, is described in Chapter 2.3.

The CICS/VS-DL/I interface for VSE only, which is invoked by means of
the EXEC DLI command, is described in Chapter 2.4.

Chapter 2.1. Introduction to Data Base Operations 79

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Chapter 2.2. File Control

The CICS/VS file control program processes fixed-length or variable-— .
length, blocked or unblocked, undefined, or segmented records of a
direct-access data set. (Sequential data sets are processed by the
transient data control program, as described in Chapter 4.6) .

File control uses the standard access methods of the host operating
system OS/VS or DOS/VS), namely:

. Direct Access Method (DAM)
° Indexed Sequential Access Method (ISAM)
° Virtual Storage Access Method (VSaM) .

Application programs can access DAM data sets on a logical-record
level, deblocking services being provided by CICS/VS. If an ISAM data
set is converted to a VSAM data set organization, using VSAM data set
conversion utilities, no alteration to application programs that access
the data set is necessary, but the file control table (FCT) must be
changed. Data sets on fixed block architecture (FBA) devices can be
accessed only by VSAM.

File control commands can be used to:

° Read a record from' a data set (READ).
® Write a record to a data set (WRITE).
. Update a record in a data set (REWRITE).

. Delete a single record or a group of records fram a key-sequenced
or relative-record data set (DELETE) (VSAM only) .

[Release exclusive control over a data set (UNLOCK).

. Specify the starting point for a browse ({that is, sequentially
access a data set) (STARTBR). -

. Read the next record in a data set during a browse (READNEXT) .

] Read the previous record in a data set during a browse (READPREV)
(VSAM only) .

e Reset the starting point for a browse (RESETBR) .
. End a browse (ENDBR) .

An option can be included in these cammands to specify that the
record to be accessed is in a data set on a remote system.

The HANDLE CONDITION or IGNORE CONDITION commands, as described in
Chapter 1.5, can be used to deal with exceptional conditions that occur
during execution of a file control command.

s The following sections discuss the identification of data sets to be
used in file control operations; direct access to records in data sets;
sequential access to records (browsing) ; and information particular to
the access methods available (ISAM, VSAM, and DAM) .

.Chapter 2.2. File Control 81

DATA SET IDENTIFICATION

Data sets are identified in file control commands by the DATASET option;
they must have been defined previously in the file control table (FCT)
unless, for a local system only, the SYSID option has been specified
also, in which case a FCT definition is unnecessary. These definitions
may be set up with the help of the system programmer, although logical
record handling only is required in the application program; buffers and
work areas are acquired automatically by CICS/VS.

DIRECT ACCESS TO RECORDS

When reading records directly (that is, searched for by a search
argument such as a key) using the READ command, the record is retrieved
and placed in main storage according to which of the options INTO or SET
has been specified.

The INTO option specifies the area into which the record is to be
placed. For variable-length records, the LENGTH option must specify the
maximum length of record that the application program will accept. If
the record exceeds this value, it is truncated to this value and the
LENGERR condition will occur. For fixed-length records, the LENGTH
option must specify the length of the record, otherwise the LENGERR
condition will occur. After the record has been retrieved, the data
area specified in the LENGTH option is set to the actual record length
(before any truncation occurred).

The SET option specifies a pointe; reference that is set to the
address of an area large enough to hold the record. After the record
has been retrieved, the data area specified in the LENGTH option is set
to the actual record length.

The READ command can be used for both read-only and read-—for—update
operations. If the record is to be updated, the UPDATE option must be
specified. When a record has been read for update, CICS/VS maintains
exclusive control (which varies according to the access method in use)
to prevent another task accessing the record until it has been
rewritten, or until exclusive control is released by an UNLOCK command,
or (for VSAM only) until the record is deleted.

When adding records using the WRITE command, or when updating records
using the REWRITE command, the record to be written is specified in the
FROM option, and its length in the LENGTH option. (LENGTH can be
omitted for fixed-length records.)

When a record has been read for update, the REWRITE or UNLOCK command
should be issued as soon as possible to avoid obstructing file storage,
and possibly preventing other transactions from accessing the record.

MULTIPLE FILE OPERATIONS

wWhen accessing more than one file at a time, a lockout may occur, for
example, if two tasks attempt to read the same record for update at the
same time or when accessing files on a remote system. Assume the
following: o

82 CICS/VS APRM (CL)

Program 1: READ UPDATE (File A)

READ UPDATE (File B)
Program 2: READ UPDATE (File B)
READ UPDATE (File a)

Suppose that the two tasks become intermixed in multitasking, as
follows:

Program 1: READ UPDATE (File A, record 3385)
Program 2: READ UPDATE (File B, record 7538)
Program 1: READ UPDATE (File B, record 7538)
Progranm 2: READ OUPDATE (File A, record 3385)

The two tasks will both be suspended indefinitely, because each would
have exclusive control of the first record requested by the other. The
second request of each task cannot be completed. To avoid this problenm,
all programs should access the files in the same sequence, such as A
first, followed by B.

SEQUENTIAL ACCESS TO RECORDS (BROWSING)

When reading records sequentially, the STARTBR command specifies the
starting point only for the browse; no records are retrieved. The
READNEXT command reads records sequentially from the data sst, starting
with the specified record, which would normally be, but need not be, the
record specified in the STARTBR command. (For VSAM data sets, the
READPREV command does the same as the READNEXT command, except that
records are read in reverse order.)

Records are retrieved and placed in main storage using the INTO, SET,
and LENGTH options in the same way as for direct access, described in a
previous section.

The starting point can be reset at any time by a RESETBR command.
The ENDBR command ends a browse.

When more than one prowse is required on a data set at the same time,
the REQID option must be included in every browse command to distinguish
between the browse operations.

If records are unblocked, or have a very low blocking factor (which
means that many file reads are done before displaying a page), it may be
more efficient to display fewer records.

With a high blocking factor, fewer read operations are done, records

merely being moved from a buffer area, so lengthy browses are mnot so
insfficient.

Chapter 2.2. Pile Control 83

SEGMENTED RECORDS

An optional feature of CICS/VS file management allows the user to create
and define a data set containing segmented records. A segment is one or
more adjacent fields within a record. Some segments appear in all
records while others appear in only certain records. Bach record
contains one segment (the root segment) which contains information about
which other segments are present. Groups of segments can be defined and
identified symbolically as segment sets. A record can be read with a
specified segment set and only those segments of the record defined in
that segment set are returned. The user cannot access segmented records
in a data set on a remote systenm.

If it is planned to use segmented records the structure of individual
segments and of segment sets must have been defined in the file control
table by the system programmer, and the user must create and maintain
the control information in the root segment of each record.

For further information on segmented records sse the CICS/VS
System/Application Design Guide.

ISAM Data Sets

RECORD IDENTIFICATION

Records in ISAM data sets are identified by key. This key must be
provided in a record identification field specified by the RIDFLD
option.

For CICS/0S/VS systems, the contents of the record identification
field may have been changed following the addition of a record; this
point should be considered in CICS/DOS/VS systems also, to avoid future
DOS/VS to 0S/VS conversion problems.

Records that are flagged for deletion are presented to the
application program, which must be able to recognize them.

ADDING RECORDS TO ISAM DATA SETS

Adding records to an ISAM data set may degrade performance due to
overflow accesses; also data sets may be destroyed undetected, if for
example, a power failure occurs, or CICS/VS terminates abnormally. 1If
such a failure occurs when adding records, records may be lost and
overflow chains destroyed. To prevent these problems, consider one of
the following:

L Memo posting. This is a technique that uses special memo fields
created in each record of a file. All fields that are normally
updated by changing quantities, such as the number of items,
amounts, and so on, are recorded in these memo fields, so that
system failures affect only these memo fields. All changes must be
posted to a log file, so that the data file can be updated later on
a batch basis. This ensures the integrity of the data file while
retaining the advantages of online posting.

84 CICS/VS APRM (CL)

. Using a file copy. A copy of the data file is provided for use
with CICS/VS. This allows the addition and deletion of records and
modification of any data in the file without affecting the file
integrity. All changes must be posted to a log file, so that the
data file can be updated later on a batch basis. This ensures the
integrity of the data file and allows complete online file
maintenance.

ISAM EXCLUSIVE CONTROL

when an ISAM record is read for update, CICS/VS maintains exclusive
control of the record. An attempt to re-read the record before it is
updated (by a REWRITE command), or before exclusive control is released
(by an ONLOCK command) , will cause a lockout.

ISAM BROWSING OPERATIONS

A browse can be started at any record in an ISAM data set. A complete
key of hexadecimal zeros, or the options KEYLENGTH (0) and GENERIC, will
start the browse at the first record. Any other starting point must be
specified in the RIDFLD option of the STARTBR or RESETBR command. The
key provided can be a complete (specific) key or a generic (partial)
key.

If a complete key is provided, the browse starts with the record
having that key. If this record cannot be found, then by default, the
browse starts with the first record having a key greater than the
specified key.

If a generic key is provided; its length must be specified in the
KEYLENGTH option, and the GENERIC option also must be specified. The
search for the starting record uses only the number of characters in
this key. The first record having a matching generic key is the
starting point. If this record cannot be found, then by default, the
browse starts with the first record having a generic key greater than
the specified generic key.

The record identification field is updated by CICS/VS with the
complete key of the record retrieved each time a READNEXT command is
executed. For a given browse, all associated commands must use the same
record identification field.

Records flagged for deletion are presented to the application
program, which must be able to recognize them.

Chapter 2.2. File Control 85

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

VSAM Data Sets

INITIALIZATION OF VSAM DATA SETS

" When creating a VSAM entry-sequenced data set for use with CICS/VS, at
least one dummy record must be loaded into the data set before it can be
processed by CICS/VS.

RECORD IDENTIFICATION

Records in VSAM data sets are identified in one of three ways: by key,
by relative byte address, or by relative record number. One of these

must be specified (in the RIDFLD option) as the search argument. If a
relative byte address is supplied, the RBA option must be specified; if
a relative record number is supplied, the RRN option must be specified.

VSAM KEYS

When writing records to a VSAM data set, a complete key must be
provided.

When reading records in inquiry mode, the search key can be a
complete key or a generic key, and, for ‘either type, the search can be
for an equal key (EQUAL option) or a greater-or—equal key (GTEQ option).

When reading records for update, the search key should be a complete
key, and the search should be for an equal key (EQUAL option) .

If a complete key is specified, the record having that key is
retrieved; if it cannot be found and the GTEQ option is specified, the
first record having a key greater than the specified key is retrieved,
otherwise the NOTFND exceptional condition occurs. The complete key is
returned in the record identification field after the record has been
retrieved.

If a generic key is specified, its length must be specified in the
KEYLENGTH option, and the GENERIC option also must be specified. The
search for the required record uses only the number of characters in the
generic key. The first record having a matching generic key is
retrieved; if no matching record is found, and the GTEQ option is
specified, the first record having a generic key greater than the
specified generic key is retrieved, otherwise the NOTFND exceptional
condition occurs.

VSAM EXCLUSIVE CONTROL

when a VSAM record is read for update, VSAM maintains exclusive control
of the control interval containing that record. An attempt to read a
second record for update or add a new record to the same control
interval before exclusive control is released, would cause a lockout.

CICS/VS prevents such a lockout by raising the INVREQ condition if,
following the first READ UPDATE command, a second READ UPDATE command,

86 CICS/VS APRM (CL)

or a WRITE command is issued for the same data set and within the same
transaction before exclusive control is released (by a REWRITE, UNLOCK,
or DELETE command) .

DELETION OF VSAM RECORDS

Records in a VSAM key—sequenced or relative-record data set can be
deleted, either singly or in groups, using the DELETE command. Single
records are identified by key, relative byte address, or relative record
number. Groups of records can be deleted only if the data set is
unprotected, and if the records all have a common starting group of
characters 'in their keys (that is, a common generic key).

A record that has been read for update (that is, with UPDATE
specified in the READ command) may be deleted also by a DELETE command,
but only if a complete key has been specified. If deletion is attempted
for a record with a generic key, or if the DELETE command includes the
RIDFLD option, the INVREQ condition will occur.

VSAM MASS SEQUENTIAL INSERTION OPERATIONS

The MASSINSERT option is used to specify that a VSAM mass sequential
insertion operation is in progress; it must be specified in every WRITE
command that is part of the operation.

A mass insert operation must be terminated (by an UNLOCK command} to
ensure that all records are written to the data set; a READ command will
not necessarily retrieve a record that has been added by an incomplete
mass insert operation. Incomplete operations will be terminated when
the task terminates.

A lockout will occur if more that one transaction is attempting
simultaneously to perform a mass insert operation to the same control
interval of a protected data set. A lockout will occur also if a
transaction uses keys that are not in ascending sequence.

VSAM BROWSING OPERATIONS

A VSAM data set can be browsed in either direction.

A record identification field of hexadecimal zeros, or the options
KEYLENGTH (0) and GENERIC in a STARTBR or RESETBR command, will start a
forward browse at the first record.

A record identification field of hexadecimal °FF"s will start a
backward browse at the last record.

Any other starting point must be specified in the same way as a
single record is retrieved, using a key (complete or generic), relative
byte address, or relative record number. There is one exception; a
backward browse cannot be specified if the previous STARTBR command has
the GENERIC option.

The RESETBR command can be used not only to reset the starting

-position for the browse, but also to change the type of search argument
(key, relative byte address, or relative record number).

Chapter 2.2. File Control 87

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

The record identification field is updated by CICS/VS with the
complete key, relative byte address, or relative record number of the
record retrieved each time a READNEXT or READPREV command is executed.
For a given browse, all associated commands must use the same record
identification field.

When browsing a protected data set (LOG=YES specified in the DFHFCT
TYPE=DATASET macro by the system programmer) , an end browse (ENDBR)
command must be issued before issuing a READ UPDATE command.

VSAM SKIP-SEQUENTIAL PROCESSING

Skip—sequential processing can be performed on a VSAM data set. The
identifier (key, relative byte address, or relative record number) of
the next record required must be placed in the record identification
field specified in the RIDFID option of the READNEXT command. This
record need not be the next sequential record in the data set, but must
have a key, relative byte address, or relative record number greater
than the last record accessed. (A READPREV command should not be used.)
This procedure allows quick random access to a VSAM data set by reducing
index search time.

The identifier must be of the same form (key, relative byte address,
or relative record number) as that specified in the STARTBR (or the last
RESETBR) command for this browse. If the STARTBR or last RESETBR
command specified a generic key, the new identifier must also be a
generic key, but it need not be of the same length.

If the STARTBR or last RESETBR command specifies an equal-key search
(complete or generic) , a READNEXT command using skip-sequential
processing may result in a NOTFND condition.

SHARING VSAM RESOURCES

CICS/VS permits the sharing of VSAM resources. Resources to be shared
are identified in the DFHFCT TYPE=SHRCTL macro instruction, as explained
in the CICS/VS System Programmer®s Reference Manual. When a task
requires resources in several VSAM data sets at the same time and these
data sets are sharing resources, the probability of a lockout increases.

VSAM ALTERNATE INDEXES

The VSAM Alternate Index feature allows access to a data set using
several indexes, which contain alternate keys to the records in the data
set. A record can be accessed by many different keys; also, many
recoxrds can have the same alternate key in an alternate index.

Accessing a record via an alternate index is similar to accessing a
normal key-sequenced data set,; unless records having non-unique
alternate keys are involved. If the (alternate) key provided in a READ,
READNEXT, or READPREV command is not unique, the first record in the
data set having that key is read, and the DUPKEY condition occurs. To
retrieve other records having the same key, a browse should be started,
the subsequent READNEXT commands reading the records in the order in
which they were added to the data set. (READPREV commands could be

88 CICS/VS APRM (CL)

Page of SC33-0077-2, added September 1980 by TNL SN33-6268

used, but the records will be returned in the same order as for READNEXT
commands.)

When switching from direct retrieval (READ) to a browse (READNEXT),
the first record having a non-unique key is read twice: once for the
READ command, and again for the first READNEXT command.

The DUPKEY condition occurs for each retrieval operation except the
last. For example, if there are three records with the same alternate
key, DUPKEY occurs for the first two records, but not for the third.
The application program can be designed to revert to direct retrieval
operations when DUPKEY no longer occurs.

Chapter 2.2. File Control 88.1

DAM Data Sets

RECORD IDENTIFICATION

Records in DAM data sets are identified by a block reference, a physical
key (keyed data set), and a deblocking argument (blocked data set) . The
record identification (specified in the RIDFLD option) contains a
subfield for each, which, when used must be in a fixed order, as
follows:

1. Block reference - one of the following:

a. Relative block address (CICS/0S/VS only): thfee-byte binary
(RELTYPE=BLK) .

b. Relative track and record ¢(hexadecimal format): two-byte TT,
one-byte B (RELTYPE=HEX).

C. Relative track and record (zoned decimal format): six-—byte
TTTTTT, two—byte RR (RELTYPE=DEC) .

d. Actual (absolute) address: eight—byte MBBCCHHR (RELTYPE
operand omitted).

The type of block reference being used must be specified in the

RELTYPE operand of the DFBFCT TYPE=DATASET system macro which
defines the data set.

Examples:

Byte‘ 0o 1 2 3 4 5 6 7 8

[RELBLK# |(c1c5/03/vs only) Relative block
lT T R | Relative track and record
IT T T T T T R R | Relative track and record
|» 8 8 c c H B R| Actual address

Chapter 2.2. File Control 89

90

Physical key — required only if the data set has recorded keys. If
used, it must immediately follow the block reference. Its length
must be the same as the length specified in the BLKKEYL operand of
the DFHPFCT TYPE=DATASET system macro that defines the data set.

Examples:
Byte [0 1 2 3 4 5 6 7 8 . .

IRELBLK# lKBY... (CICS/0S/VS only)

IT T R |gEY...

IT T T T T T R R | KEY...

I& B B C C H H R l KEY...

Deblocking arqument — required only if specific records are to be
retrieved from a block. If used, it must follow immediately the

physical key (if present) or the block reference. If omitted, an
entire block will be retrieved.

The deblocking argument may be either a key (specify DEBKEY), in
which case its length must be the same as that specified in the
KEYLEN operand of the DFHFCT TYPE=DATASET system macro, or it may
be a relative record number (specify DEBREC), in which case it is a
one-byte binary number (first record=0).

The following examples assume a physical key of six bytes and a
deblocking argument of three bytes.
Examples:

Byte lO 1 2 3 & 5 6 7 8 9 10 11 12 13 14 15

| RELBLE# | RRN |(CICS/0S/¥S only) Search by relative block;
deblock by relative record

|RELBLK# IKE! hCICS/OS/VS only) Search by relative block;
deblock by key

IT T R I KEY I KEY Search by relative track
and record and key;
deblock by key

ln B B C C H H R kRN Search by actual address:;
deblock by relative record

IT T T T T T R R' KEY , KEY l
Search by zoned decimal
relative track and record
and key; deblock by key

lT T R l KBY' Search by relative track
and record; deblock by key

CICS/VS APRM (CL)

ADDING RECORDS TO DAM DATA SETS

When adding records to a DAM data set, the following considerations and
restrictions apply:

1.

When adding undefined or variable-length records (keyed or non—
keyed), the track on which each new record is to be added must be
specified. If space is available on the track, the record is
written following the last previously written record, and the
record number is placed in the "R"™ portion of the record
identification field of the record. The track specification may be
in any of the acceptable formats except relative block. If zoned
decimal relative format is used, the record number is returned as a
two—byte zoned decimal number in the seventh and eighth positions
of the record identification field.

In a CICS/DOS/VS system, an attempt to add undefined or variable-—
length records is limited to the single track specified. 1If
insufficient space is available on that track, the NOSPACE
condition occurs. Hovwever, an attempt may be made to add the
record on another track simply by altering the track identifier and
using another WRITE command.

In a CICS/OS/VS system, the extended search option allows the
record to be added to another track if no space is available on the
specified track. The location at which the record is added is
returned to the application program in the record identification
field being used.

When adding records of undefined length, the length of the record
must be specified in the LENGTH option. When an undefined recorad
is retrieved, the application program must determine its length.

When adding keyed fixed-length records the data set must first be
formatted with dummy records or "slots"™ into which the records may
be added. (A dummy record is signified by a key of hexadecimal
'FF*s; in a CICS/0S/VS system, the first byte of data contains the
record number.)

When adding non-keyed fixed-length records the block reference must
be given in the record identification field. The new records are
written in the location specified, destroying the previous contents
of that location.

When adding keyed fixed-length records track information only is
used to search for a dummy key and record, which, when found, is
replaced by the new key and record. The location of the new record
is returned to the application program in the block reference
subfield of the record identification field.
For example, for a record whose identification field is as follows:

0 3 0 ALPHA

T TR KEY
the search will start at relative track 3. When control is
returned to the application program, the record identification
field will be as follows:

0 4 6 ALPHA

showing that the record is now record 6 on relative track 4.

Chapter 2.2. File Control 91

5. When adding variable—length blocked records a four-byte record
description field (RDF) must be included in each record. The first
two bytes specify the length of the record (including the #4-byte
RDF) ; the other two bytes consist of zeros.

DAM EXCLUSIVE CONTROL

When a blocked record is read for update, CICS/VS maintains exclusive
control of the containing block. An attempt to read a second record
from the block before the first is updated (by a REWRITE command), or
before exclusive control is released (by an UNLOCK command), will cause
a lockout.

DAM BROWSING OPERATIONS

The record identification field must contain a block reference (for
example, TTR or MBBCCHHR) that conforms to the addressing method defined
for the data set. Processing begins with the specified block and
continues with each subsequent block until the browse is terminated. If
the data set contains blocked records, processing begins at the first
record of the first block and continues with each subsequent record,
regardless of the contents of the record identification field.

The record identification field is updated by CICS/VS with the
complete identification of each record retrieved by a READNEXT command.
For example, assume a browse is to start with the first record of a
blocked, keyed data set. Before issuing the STARTBR command, the TTR
(assuning that is the addressing method) of the first block should be
placed in the record identification field. After the first READNEXT
conmand, the record identification field might contain

X*0000010504"*

where 000001 represents the TTR value, 05 represents the block key, and
04 represents the record key.

As another example, assume that a blocked, non—keyed data set is
being browsed, and the second record from the second physical block on
the third relative track is read by a READNEXT command. Upon return to
the application program, the record identification field contains

X'0000020201"

where 000002 represents the track, 02 represents the block, and 01
represents the record within the block.

KEYLENGTHS for Remote Data Sets

In general, execution of file control commands requires the RIDFLD and
RKEYLENGTH options to be specified. KREYLENGTH may be specified
explicitly in the command, or it may be determined implicitly from the
file control table (FCT).

For remote data sets however, KEYLENGTH should be specified whenever
SYSID and RIDFLD are specified, unless either RBA or RRN is specified,

92 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

(when it is invalid) , or if the command is a READNEXT or READPREV, (when
it is not required). ‘

For a remote DAM data set, where the DEBKEY or DEBREC options have
been specified, KEYLENGTH (when specified explicitly) should be the
total length of the key (that is, all specified subfields). If the
value of KEYLENGTH is taken from the FCT, the system programmer must
ensure that the default for the KEYLENGTH value is equal to the DEBKEY
value; again this value must be the total length of the key.

For relative-record data sets, the system programmer should specify
KEYLEN=4 in the DFHFCT TYPE=REMOTE system macro. This will allow an
application program translated on Version 1.3 to be executed on
succeeding versions without retranslation.

Read a Record (READ)

READ DATASET (name) ,
{SET (pointer-ref) | INTO (data-area)}
[LENGTH (data-area)] :
RIDFLD (data—area)
{ KEYLENGTH (data-value) [GENERIC])
[SYSID (name) }
[SEGSET (name) | SEGSETALL]

[RBA | RRN] (VSAM only)

[DEBKEY | DEBREC] (blocked DAM only)
[GTEQ | EQUAL] (VSAM only)
{UPDATE }

Exceptional conditions: DSIDERR, DUPKEY, ILLOGIC (VSAM only),
INVREQ, IOERR, ISCINVREQ, LENGERR, NOTFND,
NOTOPEN, SEGIDERR, SYSIDERR

PP aas S Gy SEE G G S g TED CEP W P CUD wEn wES =
i D D s . TS P GES D e THS GED we S wm =R emn WD o

This command is used to read a record from a direct—access data set on a
local or remote system.

The following example shows how to read a record from a data set into
a specified data area:

EXEC CICS READ Read a record
INTO (RECORD) Data area
DATASET ("MASTER") Data set
RIDFLD (ACCTNO) Record identification field

The following example shows how to read a record fram a VSAM data set
using a generic key, specifying a greater—or—equal key search, and that
the record is later to be rewritten into a data area provided by
CICS/VS:

Chapter 2.2. File Control 93

Page of SC33-0077-2, revised September 1980 by TNL SN33-—6268

EXEC CICS READ . Read a record

INTO (RECORD) Data area

LENGTH (RECLEN) Record length

DATASET (*"MASTVSAM") Data set

RIDFLD (ACCTNO) Record identification field
KEYLENGTH (4) Generic key length

GENERIC Key is generic

GTEQ Greater-or—equal search
UPDATE Record is to be rewritten

If more than one READ command with the UPDATE option is executed
without corresponding REWRITE commands, a unique record identification
field must exist for each to preserve the correct key for subsequent
execution of the REWRITE commands.

Note that the last example above would fail if the data set is
protected @LOG=YES specified in the DFHFCT TYPE=DATASET system macro) ,
because a generic key cannot be used with READ UPDATE on a protected
data set.

Write a Record (WRITE) .

WRITE DATASET (name)
FROM @ata—area)
[LENGTH (data-wvalue)]}
RIDFLD (data-area)
[{KEYLENGTH (data—value))
[SYSID (name)]

{RBA | RRN] (VSAM only)
[MASSINSERT] (VSAM only)
[SEGSETALL]

Exceptional conditions: DSIDERR, DUPREC, ILLOGIC (VSAM only),
INVREQ, IOERR, ISCINVREQ, LENGERR,
NOSPACE, NOTOPEN, SYSIDERR

P

This command is used to write a record to a dlrect-access data set on a
local or remote system. For example:

EXEC CICS WRITE Write a record
FROM (RECORD) Data area
LENGTH (DATLEN) Record length
DATASET (*MASTER®) Data set
RIDFLD (KEYFLD) Record identification field

For a VSAM entry-sequenced data set (ESDS) the record is always added
at the end of the data set, its relative byte address (RBA) being placed
in the record identification field specified in the RIDFLD option.

For a VSAM key-sequenced data set (KSDS), the record is added in the
location specified by the associated key; this location may be anywhere
in the data set.

Records for entry—sequenced and key—sequencéd data sets can be either

fixed length or variable length. Those for a relative record data set
must be fixed length.

94 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Update a Record (REWRITE)

REWRITE DATASET (name)
FROM data—area)
{ LENGTH (data—value)]
[SYSID {name))
{ SEGSETALL]

Exceptional conditions: DSIDERR, DUPREC, ILLOGIC (VSAM only),
: INVREQ, IOERR, ISCINVREQ, LENGERR,
NOSPACE, NOTFND, NOTOPEN, SYSIDERR

This command is used to update a record in a direct—access data set on a
local or remote system. The record to be updated must first be read by
a READ command with the UPDATE option. For example:

.EXEC CICS REWRITE - Update a record
FROM (RECORD) Data area

DATASET (*MASTER"*) ' Data set

Delete a VSAM Record (DELETE)

DELETE DATASET (name) .
[RIDFLD @ata-area)] © (mandatory with GENERIC)
[KEYLENGTH (data-value)] fmandatory with GENERIC)

[GENERIC [NUMREC (data-area) 1]
[SYSID (name))
[RBA|RRN]

Exceptional conditions: DSIDERR, ILLOGIC, INVREQ, IOERR,
: ‘ ISCINVREQ, NOTFND, NOTOPEN, SYSIDERR

- S D emm wEe TED g VED s GED S S
-—;———-— ——-—-;j

This command is used to delete a record or, if a generic key is
provided, a group of records, from a VSAM key-sequenced or relative—
record data set on a local or remote system; when used for a group of
records the RIDFLD option is mandatory.

Unless a generic key is used, this command can be used also to delete
a VSAM record that has been read for update, instead of using a REWRITE
or UNLOCK command. When used in this way, RIDFLD must not be specified.
A generic key must not be used for data sets for which LOG=YES has been
specified in the DFHFCT TYPE=DATASET macro by the system programmer.

The following example shows how to delete a group of records in a
VSAM data set:

EXEC CICS DELETE Delete group of records
DATASET ("MASTVSAM") Data set
RIDFLD (ACCTNO) Record identification field
KEYLENGTH (&) Generic key length
GENERIC ' Key is generic
NUMREC (NUMDEL) Return number deleted

Chapter 2.2. File Control 95

Release Exclusive Control (UINLOCK)

UNLOCK DATASET (name)
[SYSID (name) }

Exceptional conditions: DSIDERR, ILLOGIC (VSAM only), IOERR,
ISCINVREQ, NOTOPEN, SYSIDERR

o D e VI TS WSS e .)
b - - - o

This command is used to release exclusive control arrangements made in
response to a READ command with the UPDATE option. It is used when a
record has been retrieved for update and it is subsequently determined
that the update should not occur. The effect is to allow other
application programs to access the record that was to be updated.
However, for a data set for which auto logging has been specified by the
system programmer, the resource remains under the task control enqueue
until either a sync point command is executed, or the task is
terminated. The record can be in a data set on a local or remote
Systann

This command is also used to terminate a VSAM mass insert operation.

Start Browse (STARTBR)

STARTBR DATASET (name)
RIDFLD (data—area)
[KEYLENGTH (data—value) [GENERIC]]
REQID (data—value)
[SYSID (name)]

[RBA | RRN] (VSAM only)
[{DEBKEY | DEBREC] (blocked DAM only)
{GTEQ | EQUAL] (VvsaM only)

Exceptional conditions: DSIDERR, ILLOGIC (VSAM only), INVREQ,
IOERR, ISCINVREQ, NOTFND, NOTOPEN,
SYSIDERR

S ———
o . T e mn - o T — = o

This command is used to specify the record in a data set, on a local or
remote system, at which the browse is to start. No records will be read
until a READNEXT command (or, for VSAM only, a READPREV command) is
executed.

96 CICS/VS APRM (CL)

Read Next Record during a Browse (READNEXT)

READNEXT DATASET (name)
{SET (pointer—ref) | INTO (data—area)}
[LENGTH (data—area) }
RIDFLD (data—area)
[KEYLENGTH (data—value)]
REQID (data-value)
[SYSID (name)]
[SEGSET (name) | SEGSETALL]
[RBA | RRN] (VSAM only)

Bxceptional conditions: DSIDERR, DUPKEY, ENDFILE,
ILLOGIC (VSAM only), INVREQ, IOERR,
ISCINVREQ, LENGERR, NOTFND, NOTOPEN,
SEGIDERR, SYSIDERR

(o e - - — T — —— e — =)
be mes e e S — . — Y T —— W w— o

This command is used to read records in sequential order from a data set
on a local or remote system. It can also be used during VSAM skip-—
sequential processing.

The RIDFLD option must specify the same data area as that specified
in the RIDFLD option in the corresponding STARTBR coammrand, but the
contents of the data area can be different. If the NOTFND condition
occurs during a browse, a RESETBR command must be issued to reset the
browse, or an ENDBR command must be issued to terminate the browse.

Read Previous Record during a Browse (READPREV) (VSAM Only)

READPREV DATASET (name)
{SET (pointer-ref) | INTO (data—area)}
[LENGTH (data-—area)]
RIDFLD (data—area)
[KEYLENGTH (data—value)]
REQID (data—value)
[SYSID (name)]
[SEGSET (name) | SEGSETALL)
[RBA | RRN]

Exceptional conditions: DSIDERR, DUPKEY, ENDFILE, ILLOGIC,
INVREQ, IOERR, ISCINVREQ, LENGERR,
NOTFND, NOTOPEN, SEGIDERR, SYSIDERR

P S e v = AR S T G — — o S o— o
e e . T — - — W —

This command is used only to read records in reverse sequential order
from a VSAM data set on a local or remote systenm.

The RIDFLD option must specify the same data area as that specified
in the RIDFLD option in the corresponding STARTBR command, but the
contents of the data area camn be different.

If a READPREV command follows immediately a STARTBR comkand, the
latter must specify the key of a record that exists on the data set,
otherwise the NOTFND condition will be raised for the READPREV command.

A READPREV command following a READNEXT command will read the same
record as that read by the READNEXT command.

Chapter 2.2. File Control 97

Reset Start of Browse (RESETBR)

RESETBR DATASET (name)
RIDFLD (data—area)
[KEYLENGTH (data—value) [GENERIC]])
REQID (data—value)
[SYSID (name)]

[GTEQ|BQUAL } (VSaM only)
[RBA | RRN] (VSAM only)

Exceptional conditions: ILLOGIC (VSAM only), INVREQ, IOERR,
ISCINVREQ, NOTFND, NOTOPEN, SYSIDERR

- —— T — — — — - TS oo -
b o - — - — — o -]

This command is used to specify the record in a data set, on a local or
remote system, at which the browse is to be restarted.

The RIDFLD option must specify the same data area as that specified
in the RIDFLD option in the corresponding STARTBR command, but the
contents of the data area can be different.

The RESETBR command can be issued at any time prior to issuing a
cormand. It is similar to an ENDBR STARTBR sequence (but with less
function), and gives the ISAM and DAM user the sort of skip-sequential
capability that is available to VSAM users through use of the READNEXT
command.

End Browse (ENDBR)

r R
| I
| ENDBR DATASET (name)]
| REQID (data—value) |
| [SYSID (name) } |
1 |
) Exceptional conditions: ILLOGIC (VSAM only), INVREQ, ISCINVREQ, }
! SYSIDERR |
! |
L ']

This command is used to end a browse on a data set on a local or remote
systen.

98 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268
File Control Options

DATASET (name)
specifies the symbolic name of the data set to be accessed.
The name must be alphameric, up to seven characters in length
for DOS, up to eight characters in length for 0S, and must have
been defined in the file control table (FCT).

If SYSID is specified,; the data set is assumed to be on a
remote system irrespective of whether or not the name is
defined in the FCT. Otherwise, the FCT entry will be used to
determine if the data set is on a local or remote system.

DEBKEY (blocked DAM only)
specifies that deblocking is to occur by key: If neither
DEBREC nor DEBKEY is specified, deblocking does not occur.

If REYLENGTH is specified, its value must be the sum of the
lengths of all three subfields comprising the key.

DEBREC (blocked DAM only)
specifies that deblocking is to occur by relative record
(relative to zero). If neither DEBREC nor DEBKEY is specified,
deblocking does not occur.

If KEYLENGTH is specified, its wvalue must be the sum of the
lengths of all three subfields comprising the key.

EQUAL (VSAM only)
specifies that the search will be satisfied only by a record
having the same key (complete or generic) as that specified in
the RIDFLD option.

FROM (data—area)
specifies the record that is to be writtem to the data set.

GENERIC (ISAM, VSAM only)
specifies that the search key is a generic key whose length is
specified in the KEYLENGTH option. The search for a record is
satisfied when a record is found that has the same starting
characters (generic key) as that specified. For VSAM, this
search will only take place if the EQUAL option also has been
specified.

A generic key cannot be used with a READ UPDATE command or a
DELETE command if the data set is protected (LOG=YES specified
in the DFHFCT TYPE=DATASET system macro) .

GTEQ (VSAM only)
specifies that if the search for a record having the same key
(complete or generic) as that specified in the RIDFLD option is
unsuccessful, the first record having a greater key will
satisfy the search.

INTO (data-—area))
specifies the data area into which the record retrieved from
the data set is to be written.

Chapter 2.2. File Control 99

KEYLE$BTH(dataava1ue)

specifies the length (halfword binary) of the key that has been
specified in the RIDFLD option, except when RBA or RRN is

specified when it is invalid. This option must be specified if
GENERIC is specified, and it can be specified whenever a key is
specified. However, if the length specified is different from

"the length specified in the FCT and the operation is not

generic, the INVREQ condition occurs.

If KEYLENGTH is omitted from a READNEXT or READPREV command
used in a generic browse, normal browsing occurs.

If REYLENGTH is specified in a READNEXT or READPREV command
used in a generic browse, a new browse is started using the
keylength specified and the key in the RIDFLD option.

The use of KEYLENGTH with remote data sets is discussed earlier
in the chapter.

LENGTH (parameter)

specifies the length (as a halfword binary value) of the record
to be used with READ, READNEXT, READPREV, REWRITE, and WRITE
commands. This option must be specified if SYSID and either
INTO or FROM are Spec1f1ed.

For a READ, READNEXT, or READPREV command with the INTO option,
the parameter must be a data area that specifies the largest
record the program will accept. If the value specified is less
than zero, zero is assumed. If the record exceeds the wvalue
specified, it is truncated to that value and the LENGERR
condition occurs. -On completion of the retrieval operation,
the data area is reset to the original length of the record.

For a READ, READNEXT, or READPREV command with the SET option,
the parameter must be a data area. On completion of the
retrieval operation, the data area is set to the length of the
record, except for a record whose format is undefined, when it
is set to the maximum record length.

For a WRITE or REWRITE command, the parameter must be a data
value that is the length of the record that is to be written.

This option need not be specified for fixed-length records when
the length is known and a data area of the correct size is
available.

MASSINSERT (VSAM only)

specifies that the WRITE command is part of a mass—insert
operation.

NUMREC (data—area)

100

specifies a halfword binary data area that is to be set to the
number of records deleted.

ommm only)

specifies that the record identification field specified in the
RIDFLD option contains a relative byte address.

CICS/VS APRM (CL)

REQID (data—value)
specifies as a halfword binary value a unique regquest
identifier for a browse, used to control multiple browse
operations on a data set. If this option is not specified, a
default value of zero is assumed.

RIDFLD (data—area)
specifies the record identification field. The contents can be
a key (for ISAM and VSAM data sets), a relative byte address or
relative record number (for VSAM data sets), or a block
reference, physical key, and deblocking argument (for DAM data
sets). PFor a relative byte address or a relative record
number, the format of this field must be fullword binary.

RRN (VSAM only)
specifies that the record identification field specified in the
RIDFLD option contains a relative record number. This option
should only be used with relative record data sets.

SEGSET (name)
specifies the name of the segment set to be retrieved. The
name may be up to eight characters and must have been defined
in the segment control section of the FCT. The data set must
contain segmented records. SEGSET cannot be used with UPDATE.

SEGSETALL
specifies that the entire record in an unpacked and aligned
format is required. The data set must contain segmented
records. If neither SEGSET nor SEGSETALL is specified in a
command, and the data set contains segmented records, the
record is returned in its packed unaligned format.

SET (pointer—ref)
specifies the pointer—reference which is to be set to the

address of the retrieved record. This option implies locate-—
mode access.

In assembler language, if the DUPKEY exceptional condition
occurs, the register specified will not have been set, but can
be loaded from DFHEITP1.

SYSID (name)
specifies the name of the system whose resources are to be used

for intercommunication facilities. The name may be up to four
characters in length.

When this option is specified, LENGTH and KEYLENGTH amust be
specified in some situations where normally they need not be,
as follows. If neither RBA nor RREN is specified, KEYLENGTH
must be specified; it cannot be found im the FCT. If SET is
not specified, LENGTH must either be specified explicitly or
must be capable of being defaulted from the INTO or FROM option
using the length attribute reference in assembler language, or

STG and CSTG in PL/I. LENGTH must be specified explicitly for
COBOL.

Chapter 2.2. File Control 101

UPDATE
specifies that the record is to be obtained for updating or
(for VSAM only) deletion. If this option is omitted, a read-
only operation is assumed.

102 CICS/VsS APRM (CL)

File Control Exceptional Conditions

DSIDERR

DUPKEY

DUPREC

ENDFILE

ILLOGIC

INVREQ

occurs if a data set name referred to in the DATASET option
cannot be found in the FCT.

Default action: terminate the task abnormally.

occurs if a record is retrieved via an alternate index in which
the key that is used is not unique. It will not occur as a
result of a READNEXT command that reads the last of the records
having the non—unique key.

In assembler language, if the SET option is being used, the
register specified will not have been set, but can be loaded
from DFHEITP1.

Default action: terminate the task abnormally.

occurs if an attempt is made to add a record to a data set in
which the same key already exists.

Default action: terminate the task abnormally.

occurs if an end—of—file condition is detected during a browse.

Default action: terminate the task abnormally.

(VSAM only)

occurs if a VSAM error occurs that does not fall within one of
the other CICS/VS response categories. Further information is
available in the EXEC interface block (refer to Appendix A for
details) .

Default action: terminate the task abnormally.

occurs if any of the following situations exist:

A requested file control operation is not provided for or
allowed according to the data set entry specification in the
PCT.

A REWRITE command, or a DELETE command without the RIDFLD
option, is issued for a data set for which no previous READ
UPDATE command has been issued.

A READNEXT, READPREV, ENDBR, or RESETBR command is issued for a
data set for which no previous STARTBR command has been issued.

A READPREV command is issued for a data set for which the
previous STARTBR command has the GENERIC option.

The KEYLENGTH option is specified (but the GERERIC option is

not specified), and the specified length does not equal the
entry in the FCT for the data set.

Chapter 2.2. File Control 103

The KEYLENGTH and GENEBRIC options are specified, and the length
specified in the KEYLENGTH option is either less than zero, or
greater than or equal to the length im the FCT entry.

A DELETE command is issued for an ISAM or DAM data set.

A DELETE command with the RIDFLD option specified is issued for
a VSAM data set when a READ UPDATE command is outstanding.

Following a READ UPDATE command for a data set, a WRITE or READ
UPDATE command is issued for the same data set before exclusive
control is released by a REWRITE, UNLOCK, or DELETE command.

The data area specified in the RIDPLD option is not the same
one in all the commands of a browse.

An attempt is made to start a browse with a REQID already in
use for another browse.

The method (for example, key or relative record number) used to
access a file during a browse is changed by a READNEXT or
READPREV command.

SEGSET or SEGSETALL is specified but the data set does not
contain segmented records, or is on a remote system.

FPurther information is available in the EXEC interfacsz block
(refer to Appendix A for details).

Default action: terminate the task abnormally.

IOERR
occurs if there is an I/0 error during a file control
operation. An I/O error is any unusual event that is not
covered by a CICS/VS exceptional condition.
Default action: terminate the task abnormally.
ISCINVREQ
occurs when the remote system indicates a failure which does
not correspond to a known condition.
Default action: terminate the task abnormally.
LENGERR
occurs if any of the following situations exist:
- The LENGTH option is not specified for an input (without the
SET option specified) or output operation involving variable-—
length records.
- The length specified for an output operation exceeds the
paximum record size; the record is truncated.
- The length of a record read during an input operation (with the
INTO option specified) exceeds the value specified in the
LENGTH option; the record is truncated, and the data area
supplied in the LENGTH option is set to the actual length of
the record.
- An incorrect length is specified for an input or output
operation involving fixed-lemngth records.
104 CICS/VS APRM (CL)

NOSPACE

NOTFND

NOTOPEN

SEGIDERR

SYSIDERR

Default action: terminate the task abnormaliy.

occurs if no space is available on the direct—access device for
adding records to a data set.

Default action: terminate the task abnormally.

occurs if an attempt to retrieve or delete a record based on
the search argument provided is unsuccessful. This could occur
on a REWRITE command if the RIDFLD data area has changed since
the previous READ command. It may occur also on a READPREV
cormand immediately following a STARTBR command which specifies
the key of a record that does not exist on the data set.

Default action: terminate the task abnormally.

occurs if the requested data set is not open. This condition
can occur in response to any file control command except UNLOCK
and ENDBR, because a data—base data set can be closed

dynamically at any time without regard to outstanding activity
on the data set.

Default action: terminate the task abnormally.

occurs when the name specified in the SEGSET option is not
defined in the FCT.

Default action: terminate the task abnormally.

occurs when the SYSID option specifies either a name which is
not defined in the intersystem table or a system to which the
link is closed.

Default action: terminate the task abnormally.

Chapter 2.2. Pile Control 105

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Chapter 2.3. DL/I Services (DL/I CALL Statement)

DL/I is a general-purpose data base control system that executes in a
virtual-storage enviromment under VSE, OS/VS1, or OS/VS2. It simplifies
the creation and maintenance of data bases that can be created by
CICS/VS application programs.

For VSE, the DL/I program product (program number 5746-XX1) is used,
running as part of the CICS/VS partition. For further information about
DL/I, refer to the CICS/VS System/Application Design Guide.

For 0OS/VS, the IMSAS program product (program number 5740-XX2) is
used, running as part of the CICS/VS region. For further information
about IMS/VS, refer to the CICS/VS System/Application Design Guide.

For assembler language, COBOL, and PL/I application programs using
the command-level interface, all CICS/0S/VS requests, and CICS/DOS/VS
assembler—language requests must be in the form of DL/I CALL statements
which are identical to DL/I data base CALL statements running in batch
mode or under IMS/VS data communication. (For assembler-language
application programs, the CALLDLI macro, rather than the CALL macro,
should be used when running under CICS/VS.)

However, for CICS/DOS/VS requests for COBOL and PL/I application
programs, the DL/I command-level interface provides a simpler method (y
means of the EXEC DLI command) of accessing DL/I data bases.

This chapter describes only the CALL DL/I method of accessing DL/I
data bases. The use of the EXEC DLI command for COBOL and PL/I users is
described in chapter 2.4,

The two methods of accessing DL/I data bases cannot both be used in
the same task. However, it is possible for different tasks in the same
system to use different methods.

The CICS/VS application program can request DL/I services by means of
a DL/I CALL statement. In response to such a request, control is passed
to a CICS/VS-DL/I routine that acts as an interface between the CICS/VS
application program and DL/I. This interface routine checks the
validity of the CALL list, sets up DL/I to handle the request, and ;
passes control and the CALL list to DL/I. When the interface routine
regains control, it, in its turn, returns control to the calling
program, unless‘a DL/I pseudo-ABEND has occurred, in which case the
CICS/VS task is abnormally terminated.

Under CICS/VS, two or more tasks may require access to the same
application program at the same time. Because CICS/VS application
programs must be quasi-reenterable, DL/I areas that may be modified
under CICSAVS, such as PCB pointers, segment search arguments, and I/0
work areas, should be placed in dynamic storage. For assembler language
this will be in the DFHEISTG DSECT, for CQBOL in Working Storage, and
for PL/I in AUTOMATIC storage.

. The DL/I data-base access capabilities of a CICS/VS application
program are defined in a program specification block (PSB) which is
created, by the system programmer, by means of a PSB generation utility
program.

The PSB contains one or more program communication blocks (PCBs) that

describe the data-base access requirements of each DL/I data base to be
accessed by the application program.

Chapter 2.3. DL/I Services (DL/I Call Statement) 107

A CICS/VS application program designed to access DL/I data bases must
schedule its access to DI/I. Scheduling involves, for example, ensuring
that the PSB is valid, that the application is not already scheduled,
that the referenced data bases are open and enabled, and that there is
no intent conflict between the PSB and already scheduled PSBs from other
application programs. Negative responses to any of the above will
prevent scheduling. ,

The scheduling call, if successful, returns a list of addresses of
the PCBs within the scheduled PSB. The application program in a
subsequent CALL statement can specify, from this list, the address of
the PCB corresponding to the data base to be accessed. If the addresses
cannot be obtained, an INVREQ (invalid request) indicator is returned in
response to subsequent DL/I CALL statements in the application program.

A task may schedule only one PSB at a time. Any attempt to schedule
a second PSB while one is still scheduled causes the INVREQ indicator to
be returned.

A sync point request (see Chapter 5.6) by a task that is scheduled to
use DL/I resources implies the release of those resources. This means
that if, after issuing a sync point request, access to a DL/I data base
is required, the PSB must be rescheduled. The previous position of the
data base has been lost. ‘

. To access DL/I data bases, the following steps are required.

1. 1Issue a DL/I call to schedule the PSB and obtain PCB addresses.
2. 1Issue a DL/I call to access the required data base.

3. Check the results immediately following each DL/I call.

4. 1Issue a DL/I call, when all DL/I access is complete, to terminate
the connection by releasing the PSB.

User Interface Block (UIB)

The CICS/VS-DL/I routine that acts as the interface between the CICS/VS
application program and DL/I passes information to the application
program in a User Interface Block (UIB). A definition of the UIB must
be included in the application program. The UIB is acquired by the
interface routine when an application program issues a schedule request
specifying a pointer reference to be set with the address of the UIB.
The UIB contains the address of the PCB address list from the schedule
request and, for each DL/I request, the response from the interface
routine, as follows:

Field Assembler COBOL PL/I Description
UIBPCBAL DS A PIC 9 (8) CcOoMP POINTER PCB address list
UIBRCODE DS 0XL2 PIC XX CHAR (2) DL/I return code
UIBFCTR DS X PIC X CHAR (1) overlay for 1st byte
of return code
UIBDLTR DS X PIC X CHAR (1) Overlay for 2nd byte

of return code

Assembler language ,
The UIB definition is included by invoking the DLIUIB macro.

108 CICS/VS APRM (CL)

COBOL

The UIB definition is included by a COPY DLIUIB statement in
the Linkage Section of the progranm.

PL/I
The UIB definition is included by a %INCLUDE DLIUIB statement.

Examples of these are given at the end of the chapter.

Schedule the PSB and Obtain PCB Addresses

The format of the CALL statement to request scheduling of the PSB and to
obtain the associated PCB addresses is as follows:

Assembler languadge:
CALLDLI ASMTDLI, ([parmcount, Jfunction,psbname, pointer—ref)

COBOL:

CALL *CBLTDLI®* USING [paramcount,]Jfunction,psbname,pointer-ref

PL/I:
CALL PLITDLI ([parmcount, Jfunction,psbname,pointer-ref)

where:

nparmcount

is a bimnary fullword containing a count of the arguments that
follow.

nfunctionw

is the name of the field containing the four—character function
'PCBE"Y.

"psbname"
is an eight-byte f£ield containing the PSB generation name (one
through seven characters for DOS/VS, and one through eight for
0S/VS) accessed by the application program. It is left
justified and padded right with blanks as appropriate. If the
PSB name is specified as *'** padded right with planks, a
default name is supplied. Por CICS/DOS/VS this default is the
first PSB name associated with the application program in the
DL/I DOS/VS Application Control Table (ACT) as defined during
DL/I DOS/VS system generation. For CICS/0S/VS, this default is
the name of the application program associated with this task
in the CICS/VS Program Coantrol Table (PCT).

If the call is successful, field UIBPCBAL in the UIB will
contain the address of the list of PCB addresses. The order of
the addresses is the same as the PCBs within the PSB as
specified when the PSB was generated.

If the call is unsuccessful, the reason for the failure will be
indicated in field UIBRCODE in the UIB.

Chapter 2.3. DL/I Services (DL/I Call Statement) 109

wpointer—refn
is a pointer reference that will be set to the address of the
UIB after the call has been processed. The UIB contains the
address of the PCB address list and the response from the
CICS/VS—DL/I interface.

Building Segment Search Arguments (SSAs)

Segment Search Arguments (SSAs) are used to identify segments of a DL/I
data base. SSAs may be simple segment names or they may be qualified to
include constraints made upon the values of fields within the named
segment types. (For information on how to build an SSA, refer to the
publications DL/I DOS/VS Application Proqramming Reference Manual or

IMS/VS Application Programming Referasnce Manual.)

Except for a read—only operation, when it is unnecessary, SSAs used
by a CICS/V¥S application program must be in dynamic storage because of
the requirement for the program to be quasi-reenterable.

. For assembler-languags programs, the SSAs should be placed in the
- dummy section called DFHEISTG.

° For COBOL programs, the SSAs should be in the Working-Storage
Section.

. Por PL/I programs, the SSAs should be in AUTOMATIC storage.

Acquire an I/O Work Area for DL/I Segments

An I/0 work area is required by DL/TI to hold the segment being retrieved
or to hold the segment being written to the data base. Like SSAs, this
work area must be in dynamic storage. The address of the work area is
specified as the address of the first byte of the data area.

Issue a DL/I Data Base Call

The format of the CALL statement to request DL/I services is as follows:

Assembler lanquage:

CALLDLI ASMTDLI[, ([parmcount, }function,pcb,workareal ,ssal,ssa2,...])]
COBOL:

CALL *CBLTDLI®* USING [parmcount, Jfunction, pcb,workarea[,ssal1,ssa2,...)

PL/I:

CALL PLITDLI ([parmcount, }function,pcb,workareaf,ssal,ssa2,...])

where:

110 CICS/VS APRM (CiL)

"parmcount®
is the name of a binary fullword containing a count of the
arguments that follow.

nfunctionw
is the 2-4 byte name of the function to be performed. Valid
function names for a CICS/VS application program are as
follows:

nCHKPw®
request that a checkpoint be issued.

IIGUII
get a unique segment identified by SSAs.

QIGNH
get the next segment in the data base, optionally gqualified
by Ssis.

BGNP®
get the next segment within the scope of the current
hiesrarchy in the data base, optionally qualified by SSAs.

nGHU™
as for "GO", but in addition, hold the segment for
subsegquent update.

NGHN®
as for "GN*, but in addition, hold the segment for
subsequent update.

"GHNP"
as for "GNP", but in addition, hold the segment for
subsequent update.

NTISRT™
insert a new segment at the current position; also used in
the initial load of a data base.

WREPL™
replace a segment at the current position.

uWDLET"
delete the segment at the current position.

" [1]

pcb
is a fi=ld containing the address of the PCB corresponding to
the data base specified im the call. This address is one of
the addresses returned in the address list by the scheduling
call.

nworkarea
specifies the workarea that contains the segment being passed
to BDL/I or is to contain the segment being retrieved from DL/I.

vssal,ssa2,..."
are the names of the SSAs.

For details of DOS calls, refer to the DL/I_DOS/VS Application
Programmer®*s Reference Manual.

Chapter 2.3. DL/I Services (DL/I Call Statement) 1M

Release a PSB in the CICS/VS Application Program

When all DL/I operations have been completed, the PSB should be released
(or terminated), so that it can be used by other application programs.
The releasing application program can reuse the PSB or a different PSB
as required.

The DL/I CALL statement is used to release a PSB. It causes all data
base records used by the application program, and all associated log
records to be written out. It also causes a CICS/VS sync point to be
taken, unless the PSB is local and read-only, which has the sffect of
committing all activity performed by this task, both related to DL/I and
to CICS/VS protected resources. (A sync point is taken by means of the
SYNCPOINT command, as described in Chapter 5.6.)

Changes performed prior to the execution of the command will not be
backed out either in the 2vent of Dynamic Transaction Backout for a
single failing task, or in the event of an emergency restart following
an abnormal termination of the system. A CICS/VS sync point generates
implicitly a DL/I release statement. CALL statements and sync points
should be specified only at points in the transaction where logically
related processing ends.

The PSB must be rescheduled explicitly after it has been released (by
a CALL or sync point) if further access to the data base is required,
because the position of the data base has been lost by the release
mechanism.

The format of the CALL statement to release a PSB is as follows:

Assembler lanquage:

CALLDLI ASMTDLI, ([parmcount, Jfunction)
COBOL:

CALL °*CBLTDLI®" USING [parmcount, }Jfunction
PL/1:

CALL PLITDLI (paracount,function);

where:

“parmcount" :
is the name of the binary fullword containing the parameter
count value of one.

"function"

is the name of the fi=ld containing the four—character function
'TERHM" or 'ThEpp".

Check the Response to a DL/I CALL

The response to a DL/I CALL statement should always be checked so that,
if unsuccessful, alternative processing can be initiated. Two types of
check can be performed, as follows:

112 CICS/VS APRM (CL)

] A check that the CICS/VS-DL/I interface has been used correctly by
the application program (for example, the reguired PSB not being
found in the directory of PSBs would cause a response code to be
returned) . The response codes for this type of error appear im the
UIB for the task.

. A check that the specified DL/I function has been performed
correctly according to ths rules of DL/I (for example, a segment
that cannot be located from the specified SSA would cause an error
indication) . This type of error is detected internally by DL/I and
is explained in the appropriate DL/I application programming
reference manual. DL/I may also issue a pseudo—ABEND which causes
the task to be terminated rather than coantrol to be returned to the
CICS/VS application program. For CICS/DOS/VS the task is
terminated with an ABEND code of "Dnnn", where "nnn" is the DL/I
pseudo—ABEND code; for 0S the code is ADLA.

For the first type of check, the response codes are returned in
fields UIBPCTR and UIBDLTR in the UIB; these two fields are known
collectively as UIBRCODE. Figure 2.3-1 lists the response codes. These
fields should be examined first and, if normal, the DL/I response in the

| PCB should be examined.

Chapter 2.3. DL/I Services (DL/I Call Statement) 113

UIBPCTR Response Code

r
Condition : r r
! ASM ! COBOL ! PL/I
NORESP (normal response) { X'00°* i LOW-VALUES AT 00000000
NOTOPEN (not open) : Xsoc* : 12-4--8-9 : 00001100
INVREQ (invalid reguest) : X*08: : 12-8-9 : 00001000
Invalid PCB address ; X*10°* E 12-11-1-8-9 : 00010000

Pollowing codes returned in UIBDLTR after

NOTOPEN condition raised

Data base not open;
in 0S/VS system

in VSE systenm

Intent scheduling conflict

—
request issued} X'00°*

Data base not open; request issued| X'01*

Xr02°"

r
l
|
|
|
1
|
|
L

12-0-1-8-9

12-1-9

12-2-9

r
i
|
|
|
|
]
|
[}

00000000

00000001

00000010

Following codes returned in UIBDLTR after

INVREQ condition raised

according to FCT, or invalid
argument passed to DL/I

PSBNF (PSB not found)

TASKNA (task not authorized)?
PSBSCH (PSB already scheduled)
LANGCON (language conflict)?
PSBNA (PSB not authorized)?
TERMNS (termination unscheduled)
FUNCNS (function unscheduled)

DLINA (DL/I not active)

Data base not in FCT, or not open

PSBFAIL (PSB initialization failed)

X*00°"*

X0
X*02¢
X*03°®
X0y
X*05¢*
XTo06*
X*07°*
Xr08*

X*FF*

12—0—1-8—9

12-1-9
12-2-9
12-3-9
12-4-9
12-5-9
12-6-9
12-7-9

12-8-3

12-11-0-7-8-9

¥
|
I
|
l
|
]
!
|
|
|
|
|
i
|
|
|
1
|
|
!
|
I
L

00000000

00000001
00000610
00000011
00000100
00000101
00000110
00000111
00001000
11111111

1 CICS/DOS/VS only

o - . — —— ——— — — W — ——— — — T — T D i Ve W D — . —_— e . T NP vemp WA e WD eum) W WD s — S cmes W ——— ——

ko S S e TER M SN W S NS S TP D wa VIS VD s G ey cmm G GME gy WA TEF G ame P e, TED e o S WP e, G BT G e s TP G D WS G YD e, WY e e

Figure 2.3-1.

114 CICS/VS APRM (CL)

CICSs/Vvs—-DL/I Interface

Response Codes

| Example of DL/I Request Using CALL (VSE Only)

The following example shows, in the different application programming

languages, the use of the DL/I CALL statements to request DL/I services:

ASSEMBLER LANGUAGE

DFHEISTG DSECT

UIBPTR DS F
IOAREA DS OCL40
AREA1 DS CL3
AREA2 DS cL37
DLIUIB
USING UIB,8
PCBPTRS DSECT
PCB1PTR DS F
PCB1 DSECT
USING PCB1,6
DBPC1DBD DS CL8
DBPC1LEV DS CL2
DBPC1STC DS cL2
DBPC1PRO DS CLY4
DBPC1RSV DS F
DBPC1SFD DS cL8
DBPCIMKL DS F
DBPC1NSS DS F
DBPC1KFD DS 0CL256
DBPC1NM DS 0CL12
DBPC1NMA DS 0CL14
DBPC1NMP DS CL17
ASMUIB CSECT
B SKIP
PSBNAME DC CL8 YASMPSB?*
PCBFUN DC CL4 *PCB?
REPLFUN DC CL4* REPL®
TERMFUN DC CL4* TERM®
GHUFUN DC CLU *GHU®
BLANKS DC CL3* ¢
SSA1 DC CL9®*AAAALLLL®
GOODRC DC XL1%00*
GOODSC DC cL2*
SKIP DS 0H
CALLDLI ASMTDLI, (PCBFUN,PSBNAME,UIBPTR)
L 8 ,UIBPTR
| CLC UIBFCTR,X'00°®
BNE ERROR1
L 4,ULBPCBAL
USING PCBPTRS,4
L 6 ,PCB1PTR
CALLDLI ASMTDLI, (GHUFUN,PCB1,I0AREA,SSA1)
CLC UIBFCTR,GOODRC
BNE ERROR2
CLC DBPC1STC,GOODSC
BNE ERROR3
MVC AREA1,BLANKS
CALLDLI ASMTDLI, (REPLFUN,PCB1,I0AREA,SSA1)
CLC UIBFCTR,GOODRC
BNE ERRORY4
CLC DBPC1STC,GOODSC
BNE ERRORS
B TERM

Chapter 2.3. DL/I Services (DL/I Call Statesment)

115

ERROR1
*
ERROR2
*
ERROR3
*
ERRORY
*
ERRORS
*

TERM

116

DS

DS

DS

DS

DS

DS

ggSERT ERROR DIAGNOSTIC CODE
ggSERT ERROR DIAGNOSTIC CODE
ggSERT ERROR DIAGNOSTIC CODE
23$ERT ERROR DIAGNOSTIC CODE
%ESERT ERROR DIAGNOSTIC CODE

CALLDLI ASHTDLI, (TERMFUN)

END

ASMUIB

CICsS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

IDENTIFICATION DIVISION.
PROGRAM—-ID. °CELUIB®.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING—STORAGE SECTION.

77
77

01

PSB-NAME PIC X(8) VALUE 'CBLPSB °.
PCB-FUNCTION PIC X (4) VALUE °*PCB °.
TERM—FUNCTION PIC X (i) VALUE °TERM®,
GHU-FUNCTION PIC X (4) VALUE °GHU °.
REPL-FUNCTION PIC X (4) VALUE "REPL®.
THREE-BLANKS PIC X (3) VALUE * °.
SSA1 PIC X(9) VALUE °AAAAG4LY4 °.
SUCCESS-MESSAGE PIC X (40) .
GOOD—STATUS—CODE PIC XX VALUE °® °.
GOOD-RETURN—CODE PIC X VALUE LOW-VALUE.
MESSAGE.

02 MESSAGEL PIC X (38) .

02 MESSAGE2 PIC XX.

DLI-IO-AREA.

02 AREA1l PIC X (3) .

02 AREA2 PIC X(37) .

LINRAGE SECTION.

o1

01
01

01

BLLCELLS.

02 FILLER PIC S9(8) COMP.

02 UIB-PTR PIC S9 (8) COMP.

02 B—PCB~PTRS PIC S9 (8) COMP.
02 PCB1-PTR PIC S9 (8) COMP.
DLIUIB COPY DLIUIB.

PCB-PTRS.

02 B—-PCB1-PTR PIC 9 (8) COMP.
PCB1.

02 PCB1-DBD-NAME PIC X (8) .

02 PCB1-SEG-LEVEL PIC XX.

02 PCB1-STATUS-CODE PIC XX.

02 PCB1-PROC-OPT PIC XXXX.

02 FILLER PIC S9 (5) COMP.

02 PCB1-SEG-NAME PIC X (8) .

02 PCB1-LEN-KFB PIC S9 (5) COMP.
02 PCB1-NU-SENSEG PIC S9 (5) COMP.
02 PCB1-KEY-FB PIC X (256) .

PROCEDURE DIVISION.

CALL *"CBLTDLI'" USING PCB-FUNCTION, PSB-NAME, UIB-PTR.
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE B-PCB1-PTR TO PCB1-PTR. }
CALL °*CBLTDLI" USING GHU-FUNCTION, PCBl, DLI-IO-AREA, SSAl.
SERVICE RELOAD UIB-PTR .
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-~CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
IF PCB1~STATUS-CODE IS NOT EQUAL GOOD-STATUS—-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
MOVE THREE-BIANKS TO AREAl.
CALL °CBLTDLI®" USING REPL-FUNCTION, PCBl, DLI-IO-AREA, SSAl.
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
IF PCB1-STATUS-CODE IS NOT EQUAL GOOD-STATUS—CODE TBEN

Chapter 2.3. DL/I Services (DL/I Call Statement) 117

Page of SC33-0077-2, revised September 1980 by TNL SN33—6268

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
CALL °CBLTDLI" USING TERM—FUNCTION.
EXEC CICS RETURN END-EXEC.

118 CICS/VS APRM (CL)

PL/T

PLIUIB: PROC OPTIONS (MAIN) ;

DC
DC

DCL TERM_FUNCTION CHAR (4) STATIC INIT (*TER

DC
DC
DC

L PSB_NAME CHAR (8) STATIC INIT('PLIPSB
L PCB_FUNCTION CHAR (4) STATIC INIT (*PCB

L GHU_FUNCTION CHAR(4) STATIC INIT('GHU
L REPL_FUNCTION CHAR (4) STATIC IRIT(*REP
L THREE_BLANKS CHAE (3) STATIC INIT (* ’

)3
)
b I
)
")

- bt el e e

DCL SSA1 CHAR(9) STATIC INIT ("AAAA444L *);

DC

L PARM_CT_1 FIXED BIN (31) STATIC INIT (1);

DCL PARM_CT_3 FIXED BIN(31) STATIC INIT (3);
DCL PARM_CT_4 FIXED BIN(31) STATIC INIT (4);

DC
DC
DC
%I

L GOOD_RETURN_CODE CHAR (1) STATIC INIT (LOW(1));
L GOOD_STATUS_CODE CHAR (2) STATIC INIT(* ');

L (IO_AREA_PTR,UIB_PTR) POINTER;

NCLUDE DLIUIB;

DCL 1 PCB_POINTERS BASED (UIBPCBAL),

DC

DC

2 PCB1_PTR POINTER;
L 1 DLI_IO_AREA,
2 AREA1 CHAR (3),
2 AREA2 CHAR(37);
L 1 PCB1 BASED(PCB1_PTR),
PCB1_DBD_NAME CHAR (8),
PCB1_SEG_LEVEL CHAR (2),
PCB1_STATUS_CODE CHAR(2),
PCB1_PROC_OPTIONS CHAR(Y4),
PCB1_RESERVE_DLI FIXED BIN (31,0),
PCB1_SEGNAME_FB CHAR (8),
PCB1_LENGTH_FB_KEY FIXED BIN(31,0),
PCB1_NUMB_SENS_SEGS FIXED BIN (31,0),
PCB1_KEY_FB_AREA CHAR(17);
CALL PLITDLI (PARM_CT_3,PCB_FUNCTION,PSB_NAME,UIB_PTR) ;
IF UIBFCTR-='0000000G*B THEN DO;
/% INSERT ERROR DIAGNOSTIC CODE *x/
END;
CALL PLITDLI (PARM_CT_U4,GHU_FONCTION,PCB1,DLY_IO_AREA,SSA1);
IF UIBFCTR-~=GOOD_RETURN_CODE THEN DO;
/* INSERT ERROR DIAGNOSTIC CODE x*x/
END;
IF PCB1_STATUS_CODE-~=GOOD_STATUS_CODE THEN DO;
/% TINSERT ERROR DIAGNOSTIC CODE */
END;
AREAT1=THREE_BLANKS;
CALL PLITDLI (PARM_CT_4,REPL_FUNCTION,PCB1,DLI_IO_AREA,SSA1);
IF UIBFCTR-~=GOOD_RETURN_CODE THEN DO;
/¥ INSERT BERROR DIAGNOSTIC CODE */
END;
IF PCB1_STATUS_CODE~=GOOD_STATUS_CODE THEN DO;
/¥ INSERT ERROR DIAGNOSTIC CODE */
END;
CALL PLITDLI (PARM_CT_1,TERM_FUNCTION) ;
END PLIUIB;

NNONNNNNNDNN

Chapter 2.3. DL/I Services (DL/I Call Statement)

119

Page of SC33-0077-2, revised September 1980 by TNL SN33—6268

Chapter 2.4. DL/I Services (EXEC DLI Command)

This chapter outlines the EXEC DLI Command that can be used in
CICS/DOS/VS command-level application programs that are used to access
DL/I data bases under VSE. These programs, which can be written only in
COBOL or PL/I, require the installation of the DL/I DOS/VS program
product (program number 5746-XX1) , which runs as part of the CICS/VS
partition in the VSE system.

These commands have a syntax and.format that are similar to CICS/VS
commands (EXEC DLI 1nstead of EXEC CICS) .

The commands:are translated by the appropriate command language
translator (see Chapter 1.2) into calls to the CICS/VS link-edit stub.
At execution, DFHEIP is invoked which in turn invokes a DL/I interface
program to perform the requested operations.

There are no exceptional conditions for DL/I commands, though the

HANDLE ABEND command can be used if desxred to handle abends issued by
DL/I. .

Ge:_leralb Format of EXEC DLI Command

The general format of the EXEC DLY command is as follows:
[EXECUTElEXEC} DLI'function [option[(argument)]]...

The functions, optlons, and arguments that can be used are as
follows:

Chapter 2.4. DL/I Services (EXEC DLI Command) 121

CHECRPOINT|CHKP Request a.checkpoint
ID (char—expr)

DELETE | DLET Delete a segment
[USING PCB (integer-expr)]
[VARIABLE]

SEGMENT (name)
FROM {(data—area)
[SEGLENGTH (integer—expr)]

GET UNIQUE|GU or
GET NEXT|GN or

GET NEXT IN PARENTIGNP Retrieve a segment
[USING PCB (integer-expr)]
[VARIABLE]
[FIRST{LAST]
[SEGMENT (name)]
[LOCKED]
INTO (data-area).
{ SEGLENGTH (integer—expr)]
[WHERE (name operator data area)]
[FIELDLENGTH (integer—expr)]
[OFFSET (integer-expr)]

INSERT| ISRT Insert a segment
[USING PCB (integer—expr)]
[VARIABLE]
[FIRST |IAST]
SEGMENT (name)
[{ SEGLENGTH (integer—expr)]
FROM (data—-area)
[WHERE (name operator data area)]
[FIELDLENGTH (integer—expr)]

REPLACE |REPL Replace a segment
" [USING PCB (integer—expr)
[VARIABLE]
SEGMENT (name)
[SEGLENGTH (integer—expr)]
FROM (data-—area)

SCHEDUL:r: | SCHD Schedule a program specification block
[PSB (name)]

TERMINATE|TERM Terminate access

Note: SEGLENGTH is required in COBOL whenever FROM or INTO is specified. -
It is never required in PL/I.

On the GET,; INSERT, and REPLACE commands, the segment-oriented
keywords (that is, all those except USING PCB) may be repeated for each
segment. Keywords preceding the keyword SEGMENT in the above list must
be written immediately preceding the segment to which they apply, but
within themselves may be written in any order. Similarly, keywords
which follow the keyword SEGMENT in the above list must be written
immediately following the segment to which they apply, but within
themselves they may be written in any order. :

The command must be delimited, in the same way as an EXEC CICS
command; by END-EXEC for COBOL and by a semicolon for PL/I, for example:

EXEC DLI GET SEGMENT (SKILL) WHERE (SKILLTYPE="PLUMBER")
"INTO (SKILLSTRUCT) END-EXEC

122 CICS/VS APRM (CL)

DL/I Interface Block (DIB)

The CICS/VS-DL/I interface module passes information to the CICS/VS
application program in a DL/I Interface Block (DIB). The DIB contains
the response from the interface module in the field DIBSTAT. The DIB
structure is included automatically in the application program by the
translator, and unlike the EIB, no copy book 2xists in the source
statement library. The fields and their descriptions are as follows:

PField COBOL PL/I Description
DIBFLAG PIC X CHAR (1) Flag indicating that an online task

had to wait for a resource owned by
an MPS batch task. The value is
either X'FF' (HIGH-VALUE in COBOL,
HIGH (1) in PL/I) or X'00*' (LOW—VALUE
in COBOL, LOW(1) in PL/I).

DIBSEGLY PIC XX CHAR (2) The hierarchical level of the object
segment or lowest level parent
segment actually retrieved.

DIBSEGHM PIC X (8) CHAR (8) Name of the object segment or the
lowest level parent segment actually
retrieved.

DIBSTAT PIC XX CHAR (2) DL/I status code.

Example of DL/I Request Using EXEC DLI

The folloving example shows the use of the EXEC DLI command to request
DL/I services; it provides the same functions as the example in the
previous chapter.

Chapter 2.4. DL/I Services (EXEC DLI Command) 123

I

| .

| CBL XOPTS(DLI,CICS)

| IDENTIFICATION DIVISION.

| PROGRAM-ID. EXAMPL.

| ENVIRONMENT DIVISION.

i DATA DIVISION. ‘

{ WORKING—STORAGE SECTION.

} 01 SEGDATA.

J 02 AREA1 PICTURE X (3).

§ 02 AREA2 PICTURE X (37).

{ 071 SEGDATAL COMPUTATIONAL PICTURE S9999 VALUE IS +40
| PROCEDURE DIVISION.

I EXEC DLI SCHEDULE PSB(CBLPSB) END-EXEC

{ IF DIBSTAT IS NOT EQUAL SPACES THEN

I * INSERT ERROR CODE

] EXEC DLI GET UNIQUE SEGMENT (AAAAL444Y4)

| INTO (SEGDATA) SEGLENGTH (SEGDATAL) END-EXEC
] IF DIBSTAT IS NOT BQUAL SPACES THEN

} * INSERT ERROR CODE

| MOVE SPACES TO AREA1.

I EXEC DLI REPLACE SEGMENT (AAAALLLY)

I FROM (SEGDATA) SEGLENGTH (SEGDATAL) END-—EXEC
} IF DIBSTAT IS NOT EQUAL SPACES THEN

| * INSERT ERROR CODE

| EXEC DLI TERMINATE END-—-EXEC

) EXEC CICS RETURN END—-EXEC

| GOBACK.

|

124 CICS/VS APRM (CL)

PL/I

* PROCESS XOPTS (DLI,CICS),INCLUDE;
EXAMPLE: PROC OPTIONS (MAIN);
DCL 1 SEG_DATA,

2 AREA1 CHAR (3),

2 AREA2 CHAR (37);

EXEC DLI SCHEDULE PSB(PLIPSB);
IF DIBSTAT -»= ' * THEN CALL ERROR;

EXEC DLI GET UNIQUE SEGMENT (AAAA4U44L4) INTO (SEG_DATA);
IF DIBSTAT -»= * ® THEN CALL ERROR;

AREA1 = 'XXX*;
EXEC DLI REPLACE SEGMENT (AAAA4444) FROM (SEG_DATA);
IF DIBSTAT -~=' ' THEN CALL ERROR;

EXEC DLI TERMINATE;
ERROR: PROC;

/% INSERT USER ERROR ROUTINE */
END;

END; /* EXAMPLE */

Chapter 2.4. DL/I Services (EXEC DLI Command)

125

Part 3. Data Communication Operations

Chapter 3.1.

Chapter 3.2.

Chapter 3.3.

Chapter 3.4.

Introduction to Data Communication Operations

Terminal Control

Basic Mapping Support (BMS)

Batch Data Interchange

127

Chapter 3.1. Introduction to Data Communication Operations

Three methods are available to the CICS/VS application programmer for
communicating with the terminals and logical units in the subsystems of
the network that forms part of the CICS/VS system. The methods dealt
with are:

. Terminal control
. Basic mapping support (BMS)
. Batch data interchange

Terminal control is the basic method for communicating with devices,
whereas both BMS and batch data interchange extend the facilities of
terminal control to simplify further the manipulation of data streams.
Both BMS and batch data interchange use terminal control facilities when
invoked by an application program. Terminal control provides commands
and options that can be specified in various combinations according to
the requirements of the devices. However, application programs written
in this way are dependent on the data formatting requirements of these
devices and a detailed knowledge of the devices is required. Terminal
control is described in Chapter 3.2.

Basic_ mapping support provides commands and options that can be used
to format data in a standard manner. BMS converts data streams provided
by the application program to conform to the requirements of the
devices. Conversely, data received from a device is converted by BMS to
a standard form. However, not all devices supported by CICS/VS can be
used with BMS and, for those that cannot, terminal control must be used.
Also, in some cases, the overhead incurred to achieve data stresanm
independence may outweigh the advantages. The choice as to whether BMS
should be used is a matter for application design and is discussed more

fully in the CICS/VS System/Application Design Guide. BMS is described
in Chapter 3.3.

Batch data_ interchange provides commands and options that may be
used, possibly in conjunction with BMS commands, to communicate with the
6670 logical unit and with the patch logical units of the 3770 and 3790
subsystems. Batch data interchaage is described in Chapter 3.4.

Chapter 3.1. Introduction to Data Communication Operations 129

E—

Chapter 3.2. Terminal Control

The CICS/VS terminal control program provides for communication between
user—written application programs and terminals and logical units, by
means of terminal control commands.

Terminal control uses the standard access methods available with the
host operating system. The Basic Telecommunications Access Method
(BTAM) is used by CICS/VS for most start-stop and BSC terminals. As an
option for 0S/VS, the Telecommunications Access Method (TCAM) can be
specified. The Sequential Access Method (SAM) is used where keyboard
terminals are simulated by sequential Gevices such as card readers and
line printers. The Virtual Telecommunications Access Method (ACF/VTAM)
or the Telecommunications Access Method (TCAM) is used for Systenms
Network Architecture (SNA) terminal systenms.

Terminal control polls terminals to see if they are ready to transnit
or receive data. Terminal control handles code translation, transaction
validation, synchronization of input and output operations, and the line
control necessary to read from or write to a terminal. The application
program is freed from having to physically control terminals. During
processing, an application program is connected to one terminal for one
task and the terminal control program monitors which task is associated
with which terminal. The task to be initiated is determined as
described later in this chapter under "Terminal-Oriented Task
Identification™.

Terminal control is used for communication with terminals. In SHA
systems, however, it is used also to control communication with logical
units or with arother CICS/VS system. A logical unit (LU) represents
either a terminal directly, or a program stored in a subsysten
controller which in turn controls one or more terminals. The CICS/VS
application program communicates, by means of the logical unit, either
with a terminal or with the stored program. For example, a 3767
terminal is represented by a single logical unit without an associated
user—written application program. In contrast, a 3790 subsystem is
represented by a 3791 controller, user-written 3790 application
programs, and one or more 3790 terminals; when the subsystem is
configured, one or more logical units are designated by the user.

Terminal control is used also for communicating with terminals or
logical units in a remote system by means of Distributed Transaction
Processing (DTP) . SNA protocols are available, through terminal-control
.commands, to initiate and terminate a conversation (a session) with a
remote LU6 logical unit.

This conversation is carried on between a principal facility and one
or more alternate facilities.

A principal facility for a task is a terminal or LU6 session that is
made available to the application program when the task is ianitiated.

An alternate facility for a task is a terminal or LU6 session
acquired as needed by the application program. In general, terminal-
control commands that refer to an alternate facility should include the
SESSION option.

The ALLOCATE and FREE commands allow the application program to

acquire and release these alternate facilities and allow both principal
and alternate facilities to be used at the same time.

Chapter 3.2. Terminal Control 131

The BUILD ATTACH and EXTRACT ATTACH commands, together with the
ATTACHID option of the SEND command, allow the application program to
attach a transaction in a remote systenm.

Fields in the EIB allow access to indicators that give the status of
the conversation after execution of RECEIVE or CONVERSE commands. For
example, EIBEOC, EIBATT, and EIBFMR provide more information about the
received data, and EIBSYNC, EIBFREE, and EIBRECV provide more
information about the session.

The INVITE option of the SEND command allows the optimization of SNA
flows that occur when communicating with another transaction, or with
INS/VS.

Distributed transaction processing is described fully in the CICS/VS
System/Application_Design Guide.

Commands and options that apply specifically to logical units are
described later in the chapter.

Terminal control commands are provided to request the following
services that are applicable to most, or all, of the types of terminal
or logical unit supported by CICS/VS:

] Read data from a terminal or logical unit (RECEIVE).
. Write data to a terminal or logical unit (SEND).
. Converse with a terminal or logical unit (CONVERSE).

. Synchronize terminal input/output for a transaction (WAIT
TERMINAL).

. Send an asynchronous interrupt (ISSUE SIGNAL).
. Relinguish use of a communication line (ISSUE RESET).

o Disconnect a switched line or terminate a session with a logical
unit (ISSUE DISCONNECT).

It is possible to read records from a card reader and read records
from or write records to a disk data set, magnetic tape unit, or a line
printer defined by the system programmer as a card—reader—in/line—
printer—out (CRLP) terminal. For additional information, see the
section "Sequential Terminal Support®™ in Chapter 5.1.

Other sarvices available in response to terminal control commands
apply to specific types of terminal. The permissible commands and
options that can be used by specific terminal types are detailed later
in this chapter. Because many types of terminal are supported by
CICS/VS, many special services are provided. (For a list of terminals
supported by CICS/VS, see the publication CICS/VS General Information.)
In particular, a large number of commands are provided for communicating
with display devices such as the 3270 Information Display System; these
are described in the section "Display Device Operations®™ later in this
chapter.

The options that follow the command depend on the terminal or logical
unit (and sometimes, access method) used and the operations regquired.
Options inciuded in a terminal control command that do not apply to the
device being used will be ignored.

The HANDLE CONDITION and IGNORE CONDITION commands, and the NOHANDLE
option, can be used to deal with exceptional conditions that occur

132 CICS/VS APRM (CL)

during the execution of terminal control commands. Refer to Chapter 1.5
for further information about exceptional conditioms.

Commands and Options for Terminals and Logical Units

The commands and options described in this section apply to all
terminals and logical units. There may, however, be others that apply
to specific devices. If so, details are given later in the chapter
under headings for the device types.

READ FROM TERMINAL OR LOGICAL UNIT (RECEIVE)

The RECEIVE command is used to read data from a terminal or logical
unit. The INTO option is used to specify the area into which the data
is to be placed, in which case the maximur length of data that the
program will accept must be specified in the LENGTH option. If the data
exceeds the specified maximum, it is truncated and the LENGERR condition
occurs. If the LENGTH option is specified, the named data area is set
to the actual data length (before truncation occurs) when data has been
received.

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS acquires an area large enough to hold the data and sets
the pointer reference to the address of that area. When data has been
recsived, the data area specified in the LENGTH option is set to the
data length.

The first RECEIVE command in a terminal-initiated task will not issue
a terminal—control read but will simply copy the input buffer, even if
the data length is zero. A second RECEIVE must be issued to cause a
terminal-control read.

WRITE TO TERMINAL OR LOGICAL UNIT (SEND)

The SEND command is used to write data to a terminal or logical unit.
The options FROM and LENGTH specify respectively the data area from
which the data is to be taken and the length (in bytes) of the data.

The WAIT Option of the SEND Command

Unless the WAIT option is specified also, the transmission of the data
associated with the SEND command is deferred until a later evant, such
as a sync point, occurs. This deferred transmission reduces the flows
of data by allowing data flow controls to be transmitted with the data.

SYNCHRONIZE TERMINAL INPUT/OUTPUT FOR A TRANSACTION (WAIT
TERMINAL)

This command is used to ensure that a terminal operation has completed
before further processing occurs in a task under which more than one
terminal or logical unit operation is performed. Alternatively, the

Chapter 3.2. Terminal Control 133

WAIT option can be specified in a SEND command. (A wait is always
carried out for a RECEIVE command.)

Either method may cause execution of a task to be suspended. If
suspension is necessary, coatrol is returned to CICS/VS. Execution of
the task is resumed when the operation is completed.

Even if the WAIT option is not specified in a SEND command, the EXEC
interface program will ensure that the operation is completed before
issuing a subsequent RECEIVE or SEND command.

CONVERSE WITH TERMINAL OR LOGICAL UNIT (CONVERSE)

Por most terminals or logical unit types a conversational mode of
communication is permissible. The CONVERSE command is used for this
purpose. In general, the CONVERSE command can be considersd as a
combination of a SEND command followed immediately by a WAIT TERMINAL
command and then by a RECEIVE command. However, not all options of the
SEND and RECEIVE commands are valid for the CONVERSE command. Specific
rules are given in the syntax descriptions for different devices later
in this chapter. The TOLENGTH option is equivalent to the LENGTH option
of the RECEIVE command, and the PROMLENGTH option is egquivalent to the
LENGTH option of the SEND command.

SEND AN ASYNCHRONOUS INTERRUPT (ISSUE SIGNAL)

This command is used, in a transaction in receive mode, to inform the
sending transaction that it wishes to change modes. The execution of
the command will raise the SIGNAL condition on the next SEND or RECEIVE
command executed in the sending tramsaction, and a previously executed
HANDLE CONDITION comrand for this condition can be used 2ither to action
the request or to ignore it.

RELINQUISH & COMMUNICATION LINE (ISSUE RESET)

This command is used to relinquish use of a communication line. The
conmand applies only to binary synchroaous devices using BTAM. The next
BTAM operation will be a read or write initial.

DISCONNECT A SWITCHED LINE (ISSUE DISCONNECT)

This command is used to break a line connection between a terminal and
the processor, or to break a session between TCAM or ACF/VTAM logical
units, when the transaction is completed. If the terminal is a buffered
device, the data in the buffers will be lost.

134 CICS/VS APRM (CL)

TERMINAL-ORIENTED TASK IDENTIFICATIOR

When CICS/VS receives input from a terminal to which no task is
attached, it has to determine which transaction should be initiated.
The methods by which the user can specify the transaction to be
initijated and the sequence in which CICS/VS checks these specifications
are as follows (see also Figure 3.2-1). The system macros referred to
in the following tests are described in the CICS/VS System Programmer's

Test 1:

Test 2:

Test 3:

Test 4:

-3
D
1]
o+
lon

Is the input from a PA key (of a 3270 terminal) that has been
defined at system initialization as the print request key?

If yes, printing of the data displayed on the screen is
initiated.

(@) Is this terminal of a type supported by BMS terminal
paging?

(b) Is the input a paging command? (The terminal operator can
enter paging commands defined in the DFHSIT system macro.)

If yes to both (a) and (b), the transaction CSPG, which
processes paging commands, is initiated.

If an attach FMB is present in the data stream and Tests 4 and
5 are not fulfilled, the transaction specified in the attach
FMH is initiated. The architectured attach names are converted
to "CSMIw.

Does the terminal control table entry for the terminal include
a transaction identification (specified by the TRANSID operand
of the DFHTCT TYPE=TERMINAL system macro.)

If yes, the specified transaction is initiated.

Is a transaction specified by the TRANSID option of a program
control RETURN command (or by the application program moving
the transaction name into TCANXTID)?

If yes, the specified transaction is initiated.

(@) Is the terminal a 3270 (including 3270 logical unit and
3650 host—conversational (3270) logical unit, connected via

VTAM)?

(bp) Is the input from a PA key, PF key, light pen attention,
or operator identification card reader?

(c) Is this ianput specified by the TASKREQ operand of the
DFHPCT TYPE=ENTRY system macro?

If yes to (2), (b), and (c), the program specified by the

PROGRAM operand of the same DFHPCT TYPE=ENTRY macro is given
control.

Chapter 3.2. Terminal Control 135

Test 7:
Is a valid transaction identification specified by the first
one to four characters of the terminal input?

If yes, the specified transaction is initiated.

For all PA keys and some LPAs there cannot be terminal input.
If there is no terminal input an "“invalid transaction
identification®™ message is sent to the terminal.

If none of the above tests is met, an invalid transaction
identification exists, and message DFH20G1 (INVALID TRANSACTION
IDENTIFICATION — PLEASE RESUBMIT) is sent to the terminal.

The 3735 Programmable Buffered Terminal makes an exception to this

sequence when operating in inquiry mode. The test of input from the
| terminal (Test 7 above) is given highest priority.

136 CICS/VS APRM (CL)

3270
Print Request
Key?

Initiate
Printing

Terminal
supported by
paging?

Paging
command
entered?

Attach
FMH present

Trans.
spec. by DFHTCT
TRANSID?

initiate CSPG

Trans.
spec. by TRANSID
of RETURN

Trans.
spec. by DFHTCT
TRANSID?

Initiate specified

transaction

Initiate specified

transaction

PA, PF, LPA, or
OPID?

TASKREQ =

No

Initiate transaction
specified in
Attach FMH

specified?

Term

input begins with
trans. id.?

Send "invalid
transaction ident.”
message to terminal

Initiate transaction
specified by
terminal input

Figure 3.2-1.

Terminal—Oriented Task Identification

Chapter 3.2.

Initiate transaction
specified by

terminal input AlID

Terminal Control 137

Commands and Options for Logical Units

An application program communicates with a TCAM or VTAM logical unit in
much the same way as it does with BTAM or TCAM terminals (that is, by
using the terminal control commands describped above). However,
communication with logical units is governed by the conventions
(protocols) that apply to each type of logical unit. This section
describes the additional commands and options provided by CICS/VS to
enable application programs to comply with these protocols.

The types of logical units and the related protocols for each of the
SNA subsystems supported by CICS/VS are described in the CICS/VS guides
for the subsystems. (See the Bibliography).

SEND/RECEIVE MODE

For SNA logical units, only one of the two ends of the session can be in
send amaode at any ons time, that is, one is in send mode, the other is in
receive mode. An application program in send mode can issue any
commands for the logical unit. On the other hand, one in receive mode,
can issue only RECEIVE commands until the mode is changed back to sznd.
The BIB indicator EIBRECV informs the application program that it is in
receive mode and that it must perform the above operations.

If the above protocols are not followed, the transaction will be
abended, unless the read—ahead queueing feature (RAQ=YES) is specified
in the DFHSG PROGRAM=TCP system macro. This option allows the
application program to ignore the EIBRECV indicator and to send and
receive at any time. However, it should only be used with tranasactions
for non-SNA devices.

Por displays, the transaction would normally be in send mode,
provided that the INVITE option is not used, and can ignors the BIBRECV
indicator. Displays work with a subset of the full protocols (see the
CICS/VS System/Application Design Guide for further information).

SEND/RECEIVE PROTOCOL (INVITE OPTION)

The INVITE option of a SEND command informs the session partner that it
is now in send mode and that it should send a reply. At the same time
it places the transaction in receive mode. The transaction should now
issue a RECEIVE command as its next operation.

CHAINING OF INPUT DATA

The unit of data from a logical unit is the request/response unit (RU).
One or more RUs can be grouped together and treated as a chain.

The last RU in a chain (even if it is the only RU in the chain)
raises an end—-of-—chain (EOC) condition. When this occurs, a HANDLE
CONDITION EOC command will give control to a user—written routine, which
can do any additional processing reguired when the complete chain has
been received.

138 CICS/VS APRM (CL)

For logical units that do not send chained data (for example, the
3270 logical unit) , the EOC condition occurs for every RECEIVE request.
For logical units that send chained data, the EOC condition usually
occurs for every RECEIVE request, but it may not, depending on the
length of the data and on whether the terminal control table CHNASSY
option is specified by the system programmer. The syntax descriptions
for individual logical units in this chapter omit the EOC condition
unless it is likely that meaningful use may be made of the fact that it
has not been received. The IGNORE CONDITION command can be used to
ignore the EOC condition in cases where it is raised on every RECEIVE
command .

The EOC condition may occur simultaneously with the EODS (end-of-—
data-set) and/or INBFMH (inbound—FMH) conditions. When this happens,
the user-written routine for the EODS or INBFMH conditions will be given
control rather than the EOC routine.

The system programmer specifies, in the TCTTE, whether or not
chaining is to occur. If chain assembly is specified, instead of an
input request being satisfied by one RU at a time until the chain is
complete, the whole chain is assembled and is sent to the CICS/VS
application program satisfying just one request. This ensures that the
integrity of the whole chain is known before it is presented to the
application program.

CHAINING OF OUTPUT DATA

As in the case of input data, output data is transmitted as

request /response units (RUs). If the length of the data to be sent
exceeds the RU size, CICS/VS automatically breaks up the data into RUs
and transmits these RUs as a chain. During transmission from CICS/VS to
the logical unit, the RUs are marked FOC (first-of—chain), MOC (middle-—
of—chain) , or EOC (end-of—chain) to denote their position in the chain.
An RU that is the only one in a chain is marked OC (only-in—chain) .

If the system programmer specified that the application program can
control the chaining of outbound data, the application program uses the
CNOTCOMPL (chain—mot—complete) option of the SEND command to indicate
continuation of'the chain. In general, the CNOTCOMPL option should not
be used. Once an output request with CNOTCOMPL specified has been made,
subsequent output requests may not use the FMH, LAST, or (for the 3600
(3601) 1logical unit) LDC options until the beginning of the next chain
(that is, the first output request following an output request in which
CNOTCOMPL is omitted) .

LOGICAL RECORD PRESENTATION

Each RECEIVE command results in one RU (or one chain of RUs if chain
assembly is specified) being presented to the application program. An
RU may consist of one or more logical records. If an RU contains more
than one logical record, the records will be separated by new line (NL),
inter-record separator (IRS) , or transparent (TRN) characters. Except for
LUTYPE4 devices, a logical record cannot be transmitted in more than one
RU; the end of the RU is always the end of the logical record. Data
from an LUTYPE4 may contain logical records that span RUs, in which
case, chain assembly should be specified.

The system programmer can specify in the PCT, for specific
application programs, that the application program will be presented

Chapter 3.2. Temminal Control 139

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

with logical records instead of with RUs or chains. For those _
application programs for which this option is specified, each RECEIVE

‘cammand results in one logical record being presented to the application

program, regardless of whether chain assembly is specified or not.

If the logical records are separated by IRS or TRN characters, these
are removed, and do not appear in the data. Therefore, a blank card
will have a length of zero. If NL characters are used to separate the
logical records, they are not removed, and the NL character from the end
of each logical record appears at the end of the data. If the delimiter
is a transparent (TRN) character, CICS/VS will pass up to 256 bytes in’
one logical record. This logical record can contain any characters,
including NL and IRS characters, all of which will be treated as data.

All communication features for logical units are still in operation,
that is, notification of end-of—chain conditions, and (for batch logical
units only) notification of end-of-data—set conditions and presentation
of the inbound FMH at the beginning of a chain, still occurs.

If chain'assembly has been specified, a logical record ends with a
delimiter L, IRS, or TRN), or the end of the assembled chain. The end
of chain notification occurs in the last logical record of the chain.

DEFINITE RESPONSE

The type of response requested by CICS/VS for outbound data is generally
determined by the system programmer in the PCT; it can be specified that
all outbound data for an application program will require a definite
response, or that exception-response protocol is to be used, that is, a
response will be made only if an error occurs.

The use of definite-response protocol has some performance
disadvantages, but may be necessary for some application programs. To
provide a more flexible method of specifying the protocol to be used,
the DEFRESP option is provided for use on the SEND command. One example
of the use of this option is to request a definite response for every
tenth output command, exception response being the general rule.

Because a definite response can be fequested only on the last element
in the chain, the DEFRESP and CNOTCOMPL options are mutually exclusive.

FUNCTION MANAGEMENT HEADER (FMH)

A function management header ("MH) is a field that can be included at
the beginning of an input or output message. It is used to convey
information about the message and how it should be handled. For some
logical units, the use of an PMH is mandatory, for others it is

.optional, and in some cases FMHs cannot be used at all.

For output, the FMH can be built by the application program or by
CICS/VS. For input, the FMH can be passed to the application program or
it can be suppressed by CICS/VS.

The FMH option of the SEND command is used to specify that the
application program will provide the FMH in the data to be transmitted.

The ATTACHID option specifies a set of values that CICS/VS puts into
an LU6 attach PMH which is concatenated ahead of the user data.

140 CICSNVS APRM (CL)

Further information about FMHs is given in the CICS/VS guides for
the subsystems. (See the Bibliography.)

Inpound FMH

An application program can request notification when an FMH is included
in the data received from a batch logical unit.

Whether or not inbound FMHs will be passed to the application program
is specified in the INBFMH opesrand of the DPAPCT TYPE=ENTRY system
macro. It can be specified that no inbound FMHs will be passed, or that
only the FMH at the end of the data set will be passed, or that all
inbound FMHs will be passed.

If inbound FMHs are to be passed to the application program, a HANDLE
CONDITION INBFMH command will allow control to be passed to a user—
written routine whenever an inbound FMH is received. These user—written
routines can investigate the contents of the FHH and take some action
depending on, for example, the device from which the data has come. The
contents of the FPMH can be accessed also by means of the EIBFMH field of
the EIB.

If an inbound FMH, containing an attach FMH, is passed to the
application program, the attach FMH can be removed as long as this has
been allowed for by the system programmer in the PCT. The values of the
attach FMH may be examined by using the EXTRACT ATTACH command..

When input data is received as a chain of RUs, only the first (or
only) RU of the chain is preceded by an FMH.

Outbound FMH

If the user data contains one or mores FMHs, ths output reguest must
specify the FMH option. When sending output data to a logical unit that
expects an FMH, the FMH must be at the start of the user data to be
transmitted.

UNSOLICITED INPOUT

If unsolicited input arrives from a logical unit, it is gueued and used
to satisfy future input requests for that logical unit. However, for
3270 logical units, unsolicited input will be discarded if the PUNSOL
operand is specified in the DFHSG PROGRAM=TCP system macro.

BRACKET PROTOCOL (LAST OPTION)

Bracket protocol prevents the interruption of a transaction between
CICS/VS and a logical unit. A bracket can, generally, be begun either
by CICSANS or by the logical unit, or emded only by CICS/VS unless it is
for an LU6 logical unit, in which case the logical unit can end it. A
bracket also can delimit conversation between CICS/VS and the logical
unit or merely the transmission of a series of data chains im one
direction.

Chapter 3.2. Terminal Control 141

Bracket protocol is used when CICS/VS communicates with some logical
units. The use of brackets is usually transparent to the application
program.

Only on the last output request of a task to a logical unit does the
bracket protocol become apparent to the application program. On the
last output request to a logical unit, the application program may
specify the LAST option on the SEND command. The last output request is
defined as either the last SEND command specified for a task without
chain control; or as the output request that transmits the FOC or OC
marker of the last chain of a transaction with chain control. The LAST
option causes CICS/VS to transmit an end-bracket indicator with the
final output message to the logical unit. This indicator notifies the
logical unit that the current transaction is ending. If the LAST option
is not specified, CICS/VS waits until the task detaches before sending
the end-bracket indicator. Since an end-bracket indicator is
transmitted only with the first RU of a chain, the LAST option is
ignored for a transaction with chain control umnless FOC or OC is also
specified.

Including a FREE command after a SEND command with the LAST option
may be useful if the transaction does not terminate immediately after
issuing the SEND command. This allows another transaction to be
initiated from the LU or from CICS/VS.

SUSPEND A TASK (WAIT SIGNAL)

WAIT SIGNAL

Exceptional condition: SIGNAL

o —— -
> — — - — o

This command is used, for a principal facility only, to suspend a task
until a SIGNAL condition occurs. Some logical units can interrupt the
normal flow of data to the application program by a SIGNAL data—flow—
control comsand to CICS/VS, signaling an attention, which in turn causes
the SIGNAL comdition to occur.

The BANDLE CONDITION SIGNAL command will cause a branch to an
appropriate user—written routine when an attention is received.

142 CICS/VS APRM (CL)

TERMINATE A SESSION (ISSUE DISCONNECT)

1 L
i |
} ISSUE DISCONNECT |
| |
L)
This command is used to terminate a session between CICS/VS and a
logical unit, but only if the system programaer has specified

RELREQ= (,YES) in the DPHTCT TYPE=TERMINAL macro for the logical unit.
RETURN A FACILITY TO CICS/VS (FREE)

r L]
I |
| FREE [SESSION (name)] |
| l
{ Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR !
l)
[']

This command is used to return a facility (a principal facility or a
previously allocated alternate facility) to CICS/VS when a transaction
owning it no longer regquires it. The facility them can be allocated for
use by other transactions.

FPacilities not freed explicitly will be freed by CICS/VS when the
task terminates.

Chapter 3.2. Terminal Control 143

TCAM-Supported Terminals and Logical Units (CICS/OS/VS Only)

Because TCAM permits many applications to share a single network, the
CICS/VS-TCAM interface supports data streams rather than specific
terminals or logical units.

Operations for terminals supported by TCAM use the same options as
the terminals supported by other access methods. With the exception of
the BUFFER option for the 3270, all options applicable for input
operations are supported by CICS/VS—TCAM. However, the exceptional
conditions ENDINPT and EOF will not occur.

All output requests are the same for TCAM as for other CICS/VS
supported terminals, except that:

. the ISSUE RESET command cannot be used
. the ISSUE COPY and ISSUE PRINT commands for the 3270 cannot be used

. the DEST option is available on the SEND command, in addition to
other appropriate options

With the exception of 3650 logical units, operations for logical
units supported by TCAM use the same options as logical units supported
by VTAM.

The 2260 compatibility facilities for the 3270 cannot be used with
TCAM.

BTAM Programmable Terminals

When BTAM is used by CICS/VS for programmable binary synchronous
communication line management, CICS/VS initializes the communication
line with a BTAM read initial (TI); the terminal response must be a
write initial (TI) or the equivalent. If an application program makes
an input request, CICS/VS issues a read continue (TT) to that line; if
the application program makes an output request, CICS/VS issues a read
interrupt (RVI) to that line. If end of transmission (EOT) is not
received on the RVI, CICS/VS issues a read coatinue (PT) until the EOT is
recaived. When TCAM is used, all of this line control is handled by the
MCP rather than by CICS/VS.

The programmable terminal response to a read interrupt must be "end
of transmission" (EOT). The EOT response may, however, be preceded by
writes, in order to exhaust the contents of output buffers; this is
provided the input buffer size is not exceeded by this data. The input
buffer size is specified by the system programmer during preparation of
the terminal control table. CICS/VS issues a read continue until it
receives an EOT, or until the input message exceeds the size of the
input buffer (an error condition).

After receiving an EOT, CICS/VS issues a write initial (TI) or the
equivalent (depending on the type of line). The programmable terminal
response must be a read initial (TI) or the eguivalent.

If the application program makes another output request, CICS/VS
issues a write continue (TT) to that line. If the application progranm
makes an input request after it has made an output request, CICS/VS
turns the line around with a write reset (TR). (CICS/VS does not
recognize a read interrupt.)

144 CICS/VS APRM (CL)

To ensure that binary synchronous terminals (for example, System/370,
1130, 2780) remain coordinated, CICS/VS processes the data collection or
data transmission transaction on any line to completion, before polling
other terminals on that line.

The programmable terminal actions required for the above activity,
with the corresponding user application program commands and CICS/VS
actions, are summarized in Fiqure 3.2-2.

Application Program CICs/vst Programmable

Read initial (TI) Write initial (TI)

r r
| |
| !
Conmand) | Terminal Progran
1 1
] |
I) | .
| Read initial (TI) | Write initial (TI)
I i
RECEIVE } Read continue (TT) } Write continue (TT)
| I
SEND | Read interrupt (RVI)2} Write reset (TR) or
] 1
] Read continue (TT)3 | Write continue
| | Write reset
1 |
| Write initial (TI) | Read initial (TI)
1 i
SEND | Write continue (TT) | Read continue (TT)
| |
RECEIVE] Write reset (TR) ¢ } Read continue (TT)
1 I
| 1
1 |
i L

1 CICS/VS issues the macro shown, or, if the line is switched,
the equivalent. The user—written programmable terminal
program must issue the equivalent of the BTAM operation shown.

2 An RVI sequence is indicated by the DECFLAGS field of the data
event control block (DECB) being set to X'02® and a completion
code of X*7F* being returned to the event control block (ECB).

3 The read continue is issued only if the EOT character is not
received on the read interrupt.

4 Write reset is issued only for point—to—point terminals.

o e e —— — — — — —— o — T — —— . — — ——— — . ——— ——— > —— — ——
he S0 g TEP e o S S e . W - T - — W RS S e e TP WP e W P W e e T - e - . ol

Pigure 3.2-2. BTAM Programmable Terminal Programming

Input data is deblocked to ETX, ETB, RS, and US characters. These
characters are moved with the data but are not included in the data
length. Characters such as NL, CR, LF, and EM are included as data in a
CICS/VS application program.

Chapter 2.2. Terminal Control 15

Teletypewriter Programming

The teletypewriter (World Trade only) uses two different control
characters for print formatting, as follows:

< carriage return, (X*22* in ITA2 code or X*15* in EBCDIC)

line feed, (X*28' in ITA2 code or X*25%' in EBCDIC)

The character < should always be used first; that is <= or <===, but
never =<, otherwise following characters (data) may be printed while the
typebar is moving to the left.

MESSAGE FORMAT

Message Begin: To start a message on a new line at the left margin, the
message text must begin with X'1517' (EBCDIC). CICS/VS recognizes the
X*17* and changes it to X'25' (X*17*' is an IDLE character).

Message Body: To write several lines with a single transmission, the
lines must be separated by X'1525', or if multiple blank lines ars
required, by X*®*152525...25°'.

Message End Before Next Input: To allow input of the next message on a
line at the left margin, the preceding message must end with X*1517°.
CICS/VS recognizes X' 15' and changes the character following it to
X257,

Message End Before Next Qutput: In the case of two or more successive
output messages, the message begin and the message end look the same;
that is X*1517°*, except for the last message (see above). To make the
message =nd of the preceding message distinguishable from the message
begin of the next message, the penultimate character of the message end
must not be X'15°*.

MESSAGE LENGTH

It is recommanded that messages for teletypewriter terminals do not
exceed a length of about 3000 bytes or approximately 300 words.

CONNECTION THROUGH VTAM

Both the TWX Model 33/35 Common Carrier Teletypewriter Exchange and the
WTTY Teletypewriter (World Trade only) can be connected to CICS/VS
through BTAM, or through VTAM using NTO.

If a device is connected through VTAM using NTO, the protocols used
are the same as for the 3767 logical unit, and the application program
can make use of these protocols (for example, HANDLE CONDITION SIGNAL).
However, the data stream is not translated to a 3767 data stream but
remains as that for a TWXI/WTTY.

146 CICs/Vs APRM (CL)

Display Device Operations

Besides the standard terminal control commands for sending and receiving
data, several additional commands and lists are provided for use with
display devices such as the 3270, as follows:

. Print displayed information (ISSUE PRINT).

. Copy displayed information (ISSUE COPY) .

. Erase all unprotected fields (ISSUE ERASEAUP).

. Input operation without Data (RECEIVE).

. Standard Attention Identifier List (DFHAID).

. Handling Attention Identifiers (HANDLE AID).

] Standard Attribute and Printer Control Character List (DFHBMSCA).

For devices with switchable screen sizes, the size of the screen that
can be used, and the size to be used for a given transaction, are
defined by CICS/VS table generation. These values can be obtained by
means of the ASSIGN command, described in Chapter 1.6.

The ERASE option should always be included in the first SEND command
to clear the screen and format it according to the transmitted data.
This first SEND with ERASE will select also the screen size to be used,
as specified in the PCT and TCT. If ERASE is omitted, the screensize
will be the same as its previous setting, which may be incorrect.

Use of the CLEAR key outside of a transaction will set the screen to
its default size.

PRINT DISPLAYED INFORMATION (ISSUE PRINT)

If the 3270 print request facility is included in the terminal control
program at CICS/VS system generation, the ISSUE PRINT command will cause
the displayed data to be printed on the first available, print-request—
eligible printer. For a BTAM—supported 3270, this is a printer on the
same control unit. PFor a 3270 logical unit or a 3650 host-—
conversational (3270) logical unit, it is a printer predesignated by the
system programmer using the PRINTTO or ALTPRT operands of the DFHTCT
TYPE=TERMINAL macro. For a 3270-display logical unit with the PTRADAPT
feature (LUTYPE2 specified in the TRMTYPE= operand and PTRADAPT
specified in the FEATURE=operand of the DFHTCT TYPE=TERMINAL systen
macro) used with a 3274 or 3276, it is a printer allocated by the
printer authorization matrix. (See the IBM 3270 Information Display
System Component Description for details of this matrix.) For a 3790
(3270—display) logical unit, it is a printer allocated by the 3790.

Por a printer to be available it must be in service and not currently
attached to a task.

For a BTAM printer to be eligible, it must be attached to the same
control unit as the display, must have a buffer capacity egqual to or
greater than that of the display, and must have FEATURE=PRINT specified
in the associated DFHTCT TYPE=TERMINAL system macro.

For a 3270 logical unit to be eligible, it must have been specified
by the system programmer, using the PRINTTO or ALTPRT operands, and it

Chapter 3.2. Terminal Control w7

must have the correct buffer capacity; FEATURE=PRINT is not necessary.
If COPY is specified with the ALTPRT or PRINTTO operands, the printer
must be on the same control unit.

For some 3270 displays, it is possible also to print the displayed
information without using CICS/VS. For further details see under
"printer authorization matrix®™ in the IBM 3270 Information Display

System Component Description.

COPY DISPLAYED INFORMATION (ISSUE COPY) -

The ISSUE COPY command is used to copy the format and data contained in
the buffer of a specified terminal into the buffer of the terminal that
started the transaction. This command cannot be used for an LUTYPE2.
Both terminals must be attached to the same remote control unit. Ths2
terminal whose buffer is to be copied is identified in the TERMID
option. If the terminal identifier is invalid, that is, it does not
exist in the TCT, the TERMIDERR condition will occur. The copy function
to be performed is defined by the Copy Control Character (CCC) specified
in the CTLCHAR option of the ISSUE COPY command.

The WAIT option of the ISSUE COPY command ensures that the operation
has been completed before control is returned to the application
progranm.

ERASE ALL UNPROTECTED FIELDS (ISSUE ERASEAUP)

The ISSUE ERASEAUP command is used to erase all unprotected fields of a
3270 buffer. The following actions are performed:

1. All unprotected fields are cleared to nulls (X'00¢).

2. The modified data tags (MDTs) im each unprotected field are reset
to zero.

3. The cursor is positioned to the first unprotected field.
4. The keyboard is restored.

The WAIT option of the ISSUE ERASEAUP command ensures that the
operation has been completed before control is returned to the
application program.

INPUT OPERATION WITHOUT DATA (RECEIVE)

The RECEIVE command with no options causes input to take place and the
EIB to be updated. However, data received by CICS/VS is not passed on
to the application program and is lost. A wait will be implied. Two of
the fields in the BIB that are updated are described below:

Cursor Position (EIBCPOSN) — For every terminal control (or BMS) input
operation associated with a display device, the screen cursor address
(position) is placed in the EIBCPOSN field in the EIB. Thes cursor
address is in the form of a halfword binary value and remains until
updated by a new input operation.

148 CICS/Vs APRM (CL)

Attention Identifier (EIBAID) — For every terminal control (or BMS)
input operation associated with a display device, an attention
identifier (@AID) is placed in field EIBAID in the EIB. The AID
indicates which method the terminal operator has used to initiate the
transfer of information from, the device to CICS/VS; for example, the
ENTER key, a program function key, the light pen, and so on. The field
contents remain unaltered until updated by a new input operation.

Field EIBAID can be tested after each terminal control (or BMS) input
operation to determine further processing and a standard attention
identifier list (DFHAID) is provided for this purpose (see Figure 3.2-
3) . Alternatively, the HANDLE AID command can be used to pass control
to specified labels when the AIDs are received. The standard attention
identifier list and the HANDLE AID command are described in the next two
sections.

STANDARD ATTENTION IDENTIFIER LIST (DFHAID)

The standard attention identifier list DFHAID simplifies testing the
contents of the EIBAID field. The list is obtained by copying DFHAID
into the application program. Figure 3.2-3 shows the symbolic names for
the attention identifiers (AIDS) and the corresponding 3270 functions.

For COBOL users, the list consists of a set of 01 statements that
must be copied into the Working-Storage Section. For PL/I users, the
list consists of DECLARE statements defining elementary character
variables. '

. — T G — — - — ——

| |
Symbolic Name | ° 3270 Function i
! %

1]
DFHCLEAR | CLEAR key 1
DFHENTER 1 ENTER key]
DFHOPID } Operator identification card reader or MSR |
DFHEMSRE I Extended (standard) MSR i
DFHTRIG 1 Trigger field |
DFHPA1 i PAl key]
DFHPA 2 } PA2 key i
DFHPA3 I PA3 key |
DFHPEN | Light pen attention }
DFHPF1 | PF1 key |
DFHPF 2] PF2 key]
. | . |
. ' .]
DFHPF2U4 | PF24 key |
L]

Figure 3.2-3. Standard Attention Identifier List (DFHAID)

HANDLING ATTENTION IDENTIFIERS (HANDLE AID)

HANDLE AID opti_ont (l1abel)]
(option{ (Label) }]).--

T

Chapter 3.2. Terminal Control 149

Page of SC33-0077-2, revised September 1980 by TNL SN33-—6268

- This command is used to specify the label to which control is to be
passed when an AID is received from a display device. Control is passed
after the input command is completed; that is, any data received in
addition to the AID has been passed to the application program. In the
' absence of a HANDLE AID command, control returns to the application
program at the point immediately following the input command.

No more than twelve options are allowed in the same command.

A HANDLE AID command will take precedence over a HANDLE CONDITION
command (see Chapter 1.4) ; if an AID is received during an input
operation, for which a HANDLE AID command is active, control will pass
to the label specified in that command, regardless of any conditions
that may have occurred (but which did not stop receipt of the AID).

The options that can be specified are:

e Program attention key names (PAl, PA2, or PA3)
. Program function key names (PF1 through PF24)
. CLEAR or ENTER (for the keys of the same names)
. LIGHTPEN (for a light pen attention)

. OPERID (for the operator identification card reader, the magnetic
-slot reader (MSR) , or the extended MSR)

. ANYKEY (any PA key, any PF key, or the CLEAR key)

The HANDLE AID command for a given AID applies only to the task in
which it is specified, remaining active until the task is terminated, or
until another HANDLE AID command for the same AID is encountered, in
which case the new command overrides the previous one.

When control returns to a program from a program at a lower logical
level, the HANDLE AID commands that were active in the higher-level
program before control was transferred from it are reactivated, and
those in the lower-level program are deactivated. (Refer to Chapter 4.4
for information about logical levels.)

If no HANDLE AID command is active for any PA key, any PF key, or the
CLEAR key, but one is active for ANYKEY, control will be passed to the
label specified for ANYKEY. A HANDLE AID command for an AID overrides
the HANDLE AID ANYKEY command for that AID.

The following example shows a HANDLE AID command that specifies one
label for the PAl key AID, a second label for the PA2 and PA3 key AIDs,
all of the PF key AIDs except PF10, and the CLEAR key AID. If a PF10
AID is received, control returns to the application program at the
instruction immediately following the input command.

EXEC CICS HANDLE AID Handle AID characters
PAl (LAB1) Specify label for PAl
ANYKEY (LAB2) Specify label for ANYKREY group
PF10 Exclude PF10 from ANYKEY group

If a task is initiated from a terminal by means of an AID, the first
RECEIVE command in the task will not read from the terminal but will
copy only the input buffer (even if the length of the data is zero) so
that control may be passed by means of a HANDLE AID command for that
AID.

150 CICS/VS APRM (CL)

A BMS RECEBIVE MAP command with the FROM option will not cause a
HANDLE AID command to be invoked because no terminal input is involved.

STANDARD ATTRIBUTE AND PRINTER CONTROL CHARACTER LIST
(DFHBMSCA)

The standard list DFHBMSCA simplifies the provision of f£ield attributes
and printer control characters. The list is obtained by copying
DFHBMSCA into the application program. The symbolic names for the
various combinations of attributes and control characters are given in
Figure 3.2-4. Combinations other than shown must be generated
separately.

For assembler-language users, the list consists of a sa2t of EQU
statements. PFor COBOL users, the list consists of a set of 01
statements that must be copied into the Working—Storage Section. For
PL/I users, the list consists of DECLARE statements defining elementary
character variables.

} The symbolic name DFHDPT must be used in the application structure to
] override a map attribute with the default. On the other hand, to

)} specify default values in a set attribute (SA) seguence in text builgd,

| the symbolic names DFHDFCOL, DFHBASE, OR DFHDFHI should be used.

Chapter 3.2. Terminal Control 151

—

Symbolic
Name

Field Attribute or Printer Control Character
{(or combination of these)

1 PFor text processing only. Use for constructing embedded set
attripute orders in user text

2 Cannot be usad in set attribute orders

r
{ |

| |

| |

I 1

| I

| DFHBMPEM } Printer end-of-message

| DFHBMPNL | Printer new-line character
| DFHBMASK | Autoskip

| DFHBMUNP | Unprotected

1 DFHBMUNN] Unprotected; numeric

] DFHBMPRO] Protected

| DFHBMBRY | High intensity

| DFHBMDAR I Dark; nonprint

| DPHBMFSE | MDT set to 1

| DFHBMPRF] Protected; MDT set to 1

| DFHBMASPF 1 Autoskip; HMDT set to 1

! DFHBMASB | Autoskip; high intensity
] DFHS A1 | Set attribute order

| DFHCOLOR?] Color attribute code

1 DFHPS? } PS attribute code

i DFHHLT? | Highlight attribute code
| DFH32701 | 3270 attribute code

i DFHVAL? I Validation attribute code
) DFHALL?] X*'00°* (Reset all attriputes)
| DFHERROR } X*'3FP! (Brror code)

| DFHDFT 1 X'FF' (Default override for use in maps)
| DFHDFCOL? } Default color

| DFHBLUE | Blue

| DFHRED] Red

} DFHP INK) Pink

} DFHG REEN } Green

| DFHTURQ } Turquoise

| DFHYELLO i Yellow

] DFHNEUTR] Neutral

i DFHBASE1 | Base PS

] DFHDFHI! | Default highlight

| DFHBLINK | Blink

] DFHBREVRS ! Reverse video

| DFHUNDLN } Underline

) DFHMFIL?2 | Mandatory fill

} DFHMENT2 } Mandatory enter

| DFHMFE?2] Mandatory fill and enter
l L

|

!

|

|

L

Pigure 3.2-4. Standard Attribute and Printer Control Character List
(DFHBMSCA)

152 CICS/VS APRM (CL)

Standard CICS/VS Terminal Support (BTAM or TCAM)

RECEIVE {INTO (data—aresa) | SET (pointer-ref)}
LENGTH (data-—area)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data—value)
[DEST (name)]
[WAIT)

CONVERSE FROM(data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET (pointer-ref)]
[TOLENGTH (data—area)]
[DEST (name)]

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

o e o - ——— WP S — - —— " ——)

o e e e

These commands can be used by all terminals supported by CICS/VS that
are not decalt with separately in the following sections.

Chapter 3.7 Terminal Control

153

LUTYPE4 Logical Unit

RECEIVE {INTO (data-area) | SET({(pointer-ref)}
LENGTH (data-—area)

Exceptional conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

SEND FROM (data—area)
LENGTH (data—value)
[WAIT])

[INVITE | LAST]
[CNOTCOMPL | DEFRESP]
[FMH]

Exceptional condition: IGREQCD, SIGNAL

P S G W S — — T —— T ——ar o — T o — D o W G —— — T —— — S —— — — — " — w——— — — " — v —

CONVERSE FROM(data-—area)
FROMLENGTH (data—value)
[INTO (data-area) | SET (pointer—ref)]
[TOLENGTH (data-area)]
[DEFRESP]
[FMR]

Exceptional conditions: EOC, EODS, IGREQCD, INBFMH, LENGERR,
SIGNAL

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

b oo et ouy e TR W can v T G TP EEP G TR G TEE e S VI e mee TS WD SR ey T g WIS VIS S g e TS oy S SR WS e W TER e e S S e)

154

CICs/VS APRM (CL)

— —
— —— — T — - — S — T — — - D W o — S G W — owmy v D S D — A — D — T — —— —— —— - —— N — 0 ———— —— — —— w—

LUTYPES Logical Unit

Ly
1
1
1
|
]
!
)
|
1
1
|
|
1
!
|
|
]
1
]
|
!
|
1
1
|
1
|
|
1
|
|
|
I
|
|
|
|
|
|
|
|
|
|
i
1
]
1
|
1
|
|
|
1
1
1
!
|
|
|
|
!
L

RECEIVE [SESSION (name) }
{INTO (data—area) | SET (pointer—ref)}
LENGTH (data—area)

Bxceptional conditions: INBFMH, NOTALLOC, LENGERK, SESSIONERR,
SIGNAL

SEND [SESSION (name)]
[WAIT]
[INVITE | LAST])
[ATTACHID (name)]
[FROM (nane)]

LENGTH (name)

[FMH]
[DEFRESP]

Exceptional conditions: CBIDERR, NOTALLOC, SESSIONERR, SIGNAL

CONVERSE [SESSION (name)]
[ATTACHID (name)]}
[FROM (name)]}
FROMLENGTH (name)
[INTO {data—area) | SET (pointer—ref)]
[TOLENGTH (data—area)]}
[FMH]
[DEFRESP]

Exceptional conditions: CBIDERR, INBFMH, LENGERR, NOTALLOC,
SESSIONERR, SIGNAL

ALLOCATE {SYSID(name) | SESSION (nam=)}
{ PROPILE (name)] -

Exceptional conditions: CBIDERR, INVREQ, SESSBUSY, SESSIONERR,
SYSBUSY, SYSIDERR

BUILD ATTACH
[ATTACHID (name)]
[PROCESS (name)] [RESOURCE (name) }
[RPROCESS (name)] { RRESOURCE (name) }
[QUEUE (name)] [IUTYPE (name))}
[DATASTR (name)] [RECFM (name) }

EXTRACT ATTACH
[ATTACHID (name) | SESSION (data-area)]
[PROCESS (data—area)] [RESOURCE (data—area)]
{ RPROCESS (data—area)] [RRESOURCE (data—area)]
[QUBUE (data—area)] [IOTYPE (data—area)]
[DATASTR (data—area)] [RECFM (data—area)]

Bxceptional conditions: CBIDERR, INVREQ, NOTALLOC, SESSIONERR

._-—_—__—.——-—_—-————_—-_--—-...———-——————_——-———-—_-—————————————-——-————-I

Chapter 3.2. Terminal Control

155

LUTYPESG Logical Unit (Continued)

EXTRACT TCT
NETNAME (nane)
{SYSID (data—area) | TERMID (data—area)}

Exceptional condition: INVREQ

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, S5ESSIONERR

POINT { SESSION (name)]

Exceptional conditions: NOTALLOC, SESSIONERR

WAIT SIGNAL

WAIT TERMINAL [SESSION (name)]

Exceptional conditions: NOTALLOC, SESSIONERR, SIGNAL

ISSUE DISCONNECT [SESSION (name)]

Exceptional conditions: NOTALLOC, SESSIONERR

ISSUE SIGNAL [SESSION (name)]

Exceptional conditions: NOTALLOC

o - —— — oy ot - — - —— - g o — - o . T P e T gy v —— S — e
e e T B e o G - Y G A TS oy T B P gy W WSS S e TP G e S G e S S R G e S U e eeve o

The ALLOCATE command is used to acguire an alternate facility and to
select optionally a set of terminal control processing options. If
SYSID is specified, CICS/VS will make available to the application
program one of the sessions associated with the named system. The name
of this session can be obtained from field EIBRSRCE in the EIB. If
SESSION is specified, CICS/VS will make the named session available.

The BUILD ATTACH command is used to specify a set of values to be
placed in the named attach header control block. This control block
contains values that are to be sent in an LU6 attach FMH which is
constructed by CICS/VS, and is sent only when a SEND ATTACHID or
CONVERSE ATTACHID command is executed. The specified values override
existing values in the control block; unspecified values are set to
default values.

The EXTRACT ATTACH command is used to retrieve a set of values held
in an attach header control block or that have been built previously.

156 CICS/Vs APRM (CL)

- — — o ——

This control plock contains values received in an attach FMH or that
have been built previously.

The EXTRACT TCT command is used to allow the eight—character VTAM
network name for a terminal or logical unit to be converted into a
corresponding four—character name by which it is known in the local
CICS/VS systen.

The FREE coammand is used to return a facility to CICS/VS when a
transaction owning it no longer requires it. The facility can then be
allocated for use by other transactions. A facility can be freed only
when it is in free mode (EIBFREE set to X'FFY).

The POINT command is used to obtain information about a named
facility, such as whether it owns the given facility.

SESSION STATUS INFORMATION

This information consists of several fields that contain application—
oriented and session—oriented information when an LU6 session is in
progress. These fields are located in the EIB.

Session status information is set to zeros at the start of execution
of every command and is updated whenever a RECEIVE or CONVERSE command
naming an LU6 session is executed. If the information is to be retained
across the execution of several commands, the user must take steps to
preserve it.

APPLICATION—ORIENTED INFORMATION

The application—oriented information determines the action taken by
function processing logic. The information consists of, for example,
indicators (such as end—of—chain), an attach header, and user data.

The user data is moved to an area specified in the application
program; alternatively the address of the user data is passed to the
application program.

The indicators, together with an attach header indicator, are passed
to the application program in the EIB. The EXTRACT ATTACH command
(described earlier in the chapter) can be used to process the attach

“header data if such data exists.

The following application—oriented fields, each one byte in length,
appear in the EIB: EIBATT, EIBEOC, and EIBFMH.

SESSION-ORIENTED INFORMATION

The session—oriented information determines the action taken by session—
handling logic, for example, syncpoint requested. This information is
available to the application program in fields EIBSYNC, EIBFREE, and
EIBRECV in the EIB, and should be processed in that order, before
further operations, such as SEND, RECEIVE, CONVERSE, or PREE, are
performed on ths session.

Chapter 3.2. Terminal Control 157

System/3

RECEIVE {INTO (data—area) | SET (pointer-ref)}
LENGTH (data—area)
[ASIS]

Exceptional condition: LENGERR

J

SEND FROM (data-—area)
LENGTH (data—value)
[DEST (name)]}
[WAIT]

[ASIS}
[CNOTCONPL]

CONVERSE FROM (data—area)
FROMLENGTH (data—value)
[INTO (data-area) | SET (pointer—ref)]
[TOLENGTH (data—area)]
[DEST (name)]

Exceptional condition: LEKNGERR

I o - S . NS e TS — . AN - — — — — — W — — - S ————)

System/370

Support and command syntax as for System/3.

158 CICS/VS APRM (Cl)

System/7

RECEIVE {IRTO (data-area) | SET(pointer-ref)}
LEXNGTE (data—area)
[PSEUDOBIN J?
[ASIS]

Exceptional condition: LENGERR

r
}
|
|
l
l
I
I
I
|
|
1 SEND FROHM (data-—area)
| LENGTH (data—value)
] [DEST (name) }
1 [WAIT]
i [PSEUDOBIN)2

| [ASIS])
|
|
|
!
|
|
|
i
|
|
|
|
|
i
}
i
|
L

CONVERSE FROM (data-area)
FROMLENGTH (data—value)
[INTO (data—area) | SET (pointer—ref) }
[TOLENGTH (data-—area)]
[DEST (name) j

Fxceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

e mar b e e e - o — — W s I S e P e T SRS ae G S e wpe T T e AR SES mae wwe

1 Start-stop only

Transactions are normally initiated from the System/7 by issuing a four—
character transaction code which is transmitted in BCD mode.
Pseudobinary mode can be used only while communicating with an active
CICS/VS transaction; it cannot be used to initiate the transaction. The
message length is given as the number of words to be transmitted (not as
the number of characters).

When a transaction is initiated on & System/7, CICS/VS services that
System/7 only for the duration of the transaction; that is, to ensure
efficient use of the line, any other Systenm/7s on the same line are
locked out for the duration of the tramsaction. CICS/VS application
programs for the multipoint System/7 saould be designed with the
shortest possible execution time.

The first word (two characters) of every message received by the
System/7 must be an identification word, except words beginning with "a"
{X*20%) which are reserved by CICS/VS.

When the PSEUDOBIN option is specified, the length of the data-area
provided by the application program aust be at least twice that of the
data to be read.

In the case of a System/7 on a dial-up (switched) line, the System/7
application program must, initially, transmit a four—character terminal
identification. (This terminal identification is generated during
preparation of the TCT through use of the DFHTCT TYPE=TERMINAL,
TRMIDNT=parameter specification.) CICS/VS responds with either a

Chapter 3.2. Terminal Control 159

"ready" message, indicating that the terminal identification is valid
and that the System/7 may proceed as if it were on a leased line, or an
INVALID TERMINAL IDENTIFICATION message, indicating that the terminal
identification sent by the System/7 did not match the TEMIDNT=parameter
specified.

Whenever CICS/VS initiates the connection to a dial-up System/7,
CICS/VS writes a null message, consisting of three idle characters,
prior to starting the transaction. If there is no program resident in
the System/7 capable of supporting the Asynchronous Communication
Control Adapter (ACCA), BTAM error routines cause a data check message
to be recorded on the CICS/VS (host) system console. This is normal if
the task initiated by CICS/VS is to IPL the System/7. Although the data
check message is printed, CICS/VS ignores the error and continues normal
processing. If a program capable of supporting the ACCA is resident in
the System/7 at the time this message is transmitted, no data check
occurs.

When a disconnect is issued to a dial—up System/7, the *busy' bit is
sometimes left on in the interrupt status word of the ACCA. If the line
connection is reestablished by dialing from the System/7 end, the *busy*®
condition of the ACCA prevents message transmission from the System/7.
To overcome this problem, the System/7 program must reset the ACCA after
each disconnect and before message transmission is attempted. This can
be done by issuing the following instruction:

PWRI 0,8,3,0 RESET ACCA

This procedure is not necessary when the line is reconnected by
CICS/VS (that is, by an automatically initiated transaction).

160 CICS/VS APRM (CL)

2260 Display Station

RECEIVE {INTO(data—area) | SET(pointer—ref)}
LENGTH (data-area)
[LEAVEKB)

Exceptional condition: LENGERR

SEND FROM {(data-area)
LENGTH (data—value)
{CTLCHAR (data—value) }
[DEST (name)]
[LINEADDR (data-value) }
[WAIT]
[LEAVEKB]

CONVERSE FROM (data-—-area)
FROMLENGTH (data—value)
{ INTO (data—area) | SET (pointer-ref) }
[TOLENGTH (data-area)]
[CCLCHAR (data-value)]}
[DEST (name)]}
[LINEADDR (data—value)]

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

I - — — T —— —— T —— T D ot T TS - e w— SRR G —an —— e
b - S — T — - T . = W W —— T D W w— - oo S W e M —— —— — " — ——

The LINEADDR option specifies on which line of a 2260 screen writing is
to begin. A line number in the range 1 through 12 must be provided in
the application program.

2265 Display Station

Support and command syntax as for the 2260 Display Station except that a
line number in the range 1 through 15 must be provided in the
application program.

Chapter 3.2. Terminal Control 161

2741 Communication Terminal

RECEIVE {INTO(data—area) |} SET(pointer—ref)}
LENGTH (data—area)

Exceptional conditions: LENGERR, RDATT (not TCAM)

SEND FROM (data-—area)
LENGTH (data—value)
[DEST (name) }
[WAIT]

Exceptional condition: WRBRK

CONVERSE FROM{data-area)
FROMLENGTH (data—value)
[INTO (data—area) | SET(pointer-ref)]
[TOLENGTH (data—area)]}
[DEST (name)]

Exceptional conditions: LENGERR, RDATT (not TCAM), WRBRK

ISSUE RESET
ISSUE DISCORNECT

o — - ———— T — T o —— T - o T — o —— — -
e w - —— wo E w— D pa T— S — VES WE e T PGPt we e TS eme — T

READ ATTENTION
If the terminal operator presses the Attention key on the 2741 after
typing a message, it is recognized as a Read Attention if:

. Read Attention support is generated into the system (CICS/0S/VS or
CICS/DOS/VS) .

. The message is read by a RECEIVE command.

When this occurs, control is transferred to a CICS/VS read attention
exit routine, if it has been generated into the system. This routine is
a skeleton program that can be tailored by the system programmer to
carry out actions such as the following:

. Perforr data analysis or modification on a Read Attention.

° Return a common response to the terminal operator following a Read
Attention.

° Return a response and request additional input that can be read
into the initial input area or into a new area.

. Request new I/0 without requiring a return to the task to request
additional input.

162 CICS/VS APRM (CL)

When the Read Attention exit routine is completed, control is
returned to the application program at the address specified in the
HANDLE CONDITION RDATT command. The return is made whenever one of the
following occurs:

. The exit routine issues no more requests for input.

. The exit routine issues a RECEIVE request and the operator
terminates the input with a carriage return. (If the operator
terminates the input with an Attention, the exit routine is
reentered and is free to issue another RECEIVE request).

If a HANDLE CONDITION RDATT command is not included in the
application program or Read Attention support has not been generated,
the attention is treated as if the return key had been pressed.

¥RITE BREARK (CICS/0S/VS ONLY)

If the terminal operator presses the Attention key on the 2741 while a
message is being received, it is recognized as a Write Break if:

. Write Break support is generated into the system (available only in
CICS/0S/VS) by the system programmer.

L] A HANDLE CONDITION WRBRK command is active in the application
progran.

When this occurs, the remaining portion of the message is not sent to
the termipnal. The write is terminated as though it were successful, and
a new-line character (X*15*) is sent to cause a carrier return. Control
is returned to the application program at the address specified for the
WRBRK condition.

If a HANDLE CONDITION WRBRK command is not included in the

application program or if Write Break support has not been generated,
the attention is treated as an I/0 error.

Chapter 3.2. Terminal Control 163

2770 Data Communication System

Support and command syntax as for System/3. The 2770 recognizes a read
interrupt and responds by transmitting the contents of the I/O buffer.
After the contents of the buffer have been transmitted, the 2770
responds to the next read continue with an ROT. If the I/0 buffer is
empty, the 2770 transmits an BEOT. CICS/VS issues a read interrupt and
read continue to rzlinquish use of the line and to enable the
application program to write to the 2770.

Input from a 2770 consists of one or more logical records. CICS/VS
provides one logical record for each read request to the application
program. The size of a logical record cannot exceed the size of the I/0
buffer. If the input spans multiple buffers, multiple reads must be
issued by the application program.

The 2265 component of the 2770 Data Comaunication System is
controlled by data stream characters, not BTAM macro instructions;
appropriate screen control characters should be included in the output
area.

For 2770 input, data is deblocked to ETX, ETB, RS, and US characters.
These characters are moved with the data to the input area but are not
included in the data length; characters such as NL, CR, and LF are
passed in the input area as data.

2780 Data Transmission Terminal

Support and command syntax as for System/3. The 2780 recoghizes a read
interrupt and responds by transmitting the contents of the I/0 buffer.
After the contents of the buffer have been transmitted, the 2780
responds to the next read continue with an EOT. If the I/0 buffer is
empty, the 2780 transmits an EOT. CICS/VS issues a read interrupt and
read continue to relinquish use of the line and to enable the
application program to write to the 2780.

Input from a 2780 consists of one or more logical records. CICS/VS
provides one logical record for each read request to the application
program. The size of a logical record canmot exceed the size of the I/0
buffer. If the input spans multiple buffers, multiple reads must pe
issued by the application program.

Output to a 2780 requires that the application program contains an
appropriate "escape sequence™ for component selection associated with
the output message. (For programming details, see the publication
Component Description: IBM 2780 Data Transmission Terminal.)

For 2780 input, data is deblocked to ETX, ETB, RS, and US characters.
These characters are moved with the data to the input area but are not
included in the data length; characters such as NL, CR, and LF are
passed in the input area as data.

164 CICS/VS APRM (CL)

2980 General Banking Terminal System

RECEIVE {INTO(data—area) | SET(pointer-ref)}
LENGTH (data—area)
PASSBK

Exceptional conditions: LENGERR, NOPASSBKRD

SEND FROM (data—area)
LENGTH (data—value)
[DEST (name)]
{PASSBK | CBUFF}

Exceptional condition: NOPASSBKWR

- —— —— —— - —— —— o —
e e - —— —— T — -~ - ——— " ——)

PASSBOOK CONTROL

All input and output requests to the passbook area of a 2980 are
dependent on the presence of a passbook. The PASSBRK option is used to
specify the passbook area. The conditions NOPASSBRRD and NOPASSBKWR
will occur on input and output requests respectively when a passbook is
not present. These conditions can be handled by a HANDLE CONDITION
command and appropriate handling routines.

If the passbook is present on an input reguest, the application
program generally writes back to the passbook area to update the
passbook. If the NOPASSBKWR condition occurs, CICS/VS allows immediate
output to the terminal. In a routine for the NOPASSBEKWR condition, the
application program should send an error message to the journal area of
the terminal to inform the 2980 opzrator of this error comdition. To
allow the operator to insert the required passbook, CICS/VS
automatically causes the tramnsaction to wait 23.5 seconds before
continuing.

On regaining control from CICS/VS after sending the error message,
the application program can attempt again to update the passbook when it
has ensured that the print element is positioned correctly in the
passbook area. This is generally accomplished by issuing two carrier
returns follovwed by the number of tabs required to move the print
element to the correct position. (See "The DFH2980 Structure® later in
this section).

If the NOPASSBRKWR condition occurs during the second attempt to write
to the passbook area, the application program can send another error

message or take some alternative action (for example, place the terminal
"out of service").

The presence of the Auditor Ksy on a 2980 Administrative Station

Model 2 is controlled by the SEND PASSBK comsmand and may be used in a
manner similar to that described above.

Chapter 3.2. Terminal Control 165

OUTPUT CONTROL

The unit of transmission for a 2980 is called a segment. A segment is
equivalent to the buffer size of the 2972 Control Unit. However, for
ths passbook and journal areas, CICS/VS allows an application program to
send messages that exceed the buffer size. For the passbook area, the
maximum length of message is limited to one line of a passbook to avoid
spacing (irdexing) past the bottom of the passbook. For the journal
area, the maximum length of message is specified in the LENGTH option of
the SEND command.

For example, consider a 2972 buffer size of 48 characters and a 2980
Teller Station Model 4 passbook print area of 100 characters/line. The
application program canh send a message of 100 characters to this area;
CICS/VS automatically segments the message to adjust to the puffer size.
The application program must insert tne passpbook indexing character
(X*25') as the last character written in one output request to the
passbook area. This is domne to control passbook indexing and thereby
achieve positive control of passbook presence.

If a message contains embedded passbook index characters, and
segmentation is necessary because of the length of the message, the
output is terminated if the passbook spaces beyond the bottom of the
passbook; the remaining segments are not printed.

OUTPUT TO A COMMON BUFFER

The SEND CBUFF command is used to transmit data to a common buffer. The
data is translated to the character set of the receiving 2980 model. If
more than one 2980 model type is connected to the 2972 Control Unit, the
lengths are automatically truncated if they exceed the buffer size.

THE DFH2980 STRUCTURE

The DFH2980 structure contains constants that may be used when writing
only COBOL or PL/I application programs for the 2980. The structure is
obtained by copying DFH2980 into the application progranm.

For COBOL, DFH2980 is copied into the Working Storage section; for
PL/Y, DFH2980 is included using a ZINCLUDE statement.

The station identification is given in the field STATIONID, whose
value must be determined by the ASSIGN command. To test whether a
normal or alternate station is being used, the STATIONID field is
compared with values predefined in DFH2980. The values are:

STATION—#-A or STATION—#-N (for COBOL)
STATION_#_A or STATION_#_N (for PL/I)
where # is an integer (0 through 9) and A and N signify alternate and
normal stations. (The break symbol is "-¢ (minus) for COBOL, and n_»
(underline) for PL/I.)
The teller identification on a 2980 Teller Station Model 4 is given

in the one-byte character field TELLERID. An ASSIGN command must be
uszad to determine the TELLERID value.

166 CICS/VS APRM (CL)

Tab characters (X'05') must be included in the application program.
The number of tabs required to position the print element to the first
position of a passbook area is given in the field NUMTAB. An ASSIGN
command must be used to determine the NUMTAB value. The value of NUMTAB

is specified by the system programmer and may be uniqgue to each
terminal.

Other tab characters are inserted as needed to control formatting.

Any of the DFH2980 values TAB-ZERO through TAB-NINE for COBOL and
PL/I, may be compared with NUMTAB to determine the number of tab
characters that need to be inserted in an output message to obtain
correct positioning of the print element. The tab character is included
in DFH2980 as TABCHAR.

Thirty special characters are defined in DFH2980. Twanty—three of
these can be referred to by the name SPECCHAR~# or SPECCHAR_# (for ANS
COBOL or PL/I) where # is an integer (0 through 22). The seven other
characters are defined with names that imply their usage, for example,
TABCHAR. For further information on these thirty characters, see
Appendix B.

Several other characters defimed in DFH2980, such as HOLDPCF or
TCTTEPCR, are intended for use in application programs using CICS/VS
macro—instructions and should not be required in application programs
using CICS/VS commands.

Chapter 3.2. Terminal Control 167

3270 Information Display System (BTAM or TCAM)

RECEIVE {INTO (data—ar=a) | SET (pointer—ref)}
LENGTH (data-—area)
[ASIS]
[BUFFER] (not TCAM)

Exceptional condition: LENGERR

SEND FROM (data-—area)
LENGTH (data—value)
[DEST (name)] (TCAM only)
[WAIT]
[SPRFIELD | {[ERASE] [CTLCHAR (data-value)}]l]

CONVERSE FROM (data—area)
FROMLENGTH (data—value)
[INTO (data—area) |} SET (pointer-ref) }
[TOLENGTH (data—area)]
[STRFIELD | [[ERASE] [CTLCHAR (data—value) j)}

Exceptional condition: LENGERR

ISSUE PRINT?

ISSUE COPYTERMID (name)
[CTLCHAR (data—value)]
[WAIT]

Exceptional condition: TERMIDERR

ISSUE ERASEAUP [WAIT]

ISSUE RESET
ISSUE DISCONNECT

1 The ISSUE PRINT and ISSUE COPY commands cannot be used with TCAM.

[o me = [S - — — — R — — o —— T —— - ——— — — — T — —— o ——— — ————

168 CICS/VS APRM (CL)

3270 in 2260 Compatibility Mode (BTAM)

RECEIVE {INTO (data—area) | SET(pointer—ref)}
LENGTH (data—area)
[LEAVEKB]

Exceptional condition: LENGERR

SEND FROM (data-—area)
LENGTH (data—value)
[LINEADDR (data-value)]
[WAIT)
[ERASE]
[LEAVEKB]

CONVERSE FROE (Gdata—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET(pointer—ref) }
[TOLENGTH (data—area)]
[LINEADDR (data-value)]
[ERASE]

Exceptional condition: LENGERR

ISSUE DISCONNECT

PP e e —— ——— T ——— — — T e T —
b o T s . T G ST - TS e G e e e S m WS SIS ume S WS GER mae s T S G G WSS -)

On output, a SEND ERASE command will clear the screen and set the cursor
to the upper left corner before writing starts.

Chapter 3.2. Terminal Control 169

3270 Logical Unit

RECEIVE {INTO(data-—area) | SET(pointer-ref)}
LENGTAH (data—area)
[ASIS]
{ BUFFER]

Exceptional condition: LENGERR

SEND FROM (data—area)
LENGTH (data—value)
[WAIT)
[INVITE | LAST]
[STRFIELD | [[ERASE] [CTLCHAR (data—value)]]]
[DEFRESP]

CONVERSE FROM (data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET(pointer-ref)]
[STRFIELD | [[ERASE] [CTLCHAR (data—value)]]
[TOLENGTH (data—area)]
[DEFRESP]

Exceptional condition: LENGERR

FREE { SESSION(name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE COPY TERMID (name)
[CTLCHAR (data—value)]
[WAIT]

Exceptional condition: TERMIDERR

ISSUE ERASEAUP [WAIT]

(o . — . —— . —— — ——— - — " S e o T S Y — . — — o " oay T - ——— — A o—— -

ISSUE DISCONNECT

170

CICS/VS APRM (CL)

3270 SCS Printer Logical Unit

SEND FROM (data-area)
LENGTH (data—value)
[DEST (name)]

[WAIT)]

[INVITE | LAST]
[CNOTCOMPL | DEFRESP]
[DEFRESP]

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

r
1
|
|
|
|
|
|
]
|
|
1
|
|
I
|
|
!
| ISSUE DISCONNECT
|

L

I . AU

The SCS printer logical unit accepts a character string as defined by
SNA (Systems Retwork Architecture). Some devices connected under SNA
can send a signal which can be detected by the HANDLE CONDITION SIGNAL
command, which in turn can invoke an appropriate handling routine. If
necessary, a WAIT SIGNAL command can be used to make the application
program wait for the signal. The PA keys on a 3287 can be used in this
way, or with a RECEIVE command.

Chapter 3.2. Terminal Control 171

gy IS e s i N — P v T e WS BUP S e TS WS G SR e WA e S G e W G e Y e SRS YT e e WD AN g A S e T e -

3270-Display Logical Unit (LUTYPE2)

RECEIVE {INTO (data—-area) | SET (pointer-—ref)}
LENGTA (data-area)
[ASTIS]
{ BUFFER]

Exceptional condition: LENGERR

SEND FROM (data-—area)
LENGTH (data—value)
[DEST (name)]}
[WAIT]
[STRFIELD | [[ERASE} [CTLCHAR (data-value)]]]
[INVITE | LAST]
[DEFRESP]

CONVERSE FROM(data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET {pointer-ref)]
[TOLENGTH (data—area)]
[STRFIELD | [[ERASE] [CTLCHAR (data—value)]}
[DEST (name)]}
[DEFRESP]

Exceptional condition: LENGERR

FREE [SESSION(naame)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

F"'—-—“""'—-’-“-——"——""————_-""—"‘""""——‘—"'_-""""——"‘—"'“"—'-"’—""—"

b e S S o . . S BT - TN SN apy Y W ey e SEN NS W M e G G S s eSS S g TS e WA WD cww WD SN pum GE S AN ame S TS e e O

172 CICS/VS APRM (CL)

. — — —— T — T S D —gy W VEP e SEn W e W T D e TR mp S e - T G D e TR M W R Se wa W e e W WD mm W S e — . —

3270-Printer Logical Unit (LUTYPE3)

RECEIVE {INTO(data—area) | SET(pointer--raf)}
LENGTH (data-—area)
[ASIS]
[BUFFER)]

Exceptional condition: LENGERR

SEND FROM (data-—area)
LENGTH (data—value)
[DEST (name) }
[WAIT]
[STRFIELD | [[ERASE] [CTLCHAR (data—value)]]]
[INVITE | LAST])
[DEFRESP)

CONVERSE PROM(data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET(pointer—ref) }
[TOLENGTH (data—area)]
[STRFIELD | [[BRASE] [CTLCHAR (data—value) }j
[DEST (name) }
[DEFRESP]

Exceptional condition: LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

P-——-‘—-—_——'——_————"'"—-'-—-—--"“"'———__'——_—————-—-—'-'"1

b e e T T - W WP e WU W S T men THP TSR wae AP TR WS Gy TER GE B TS e YR R WEP sme e SIS D GEE T cams WIS WA TN ams R T uam e T Gmn e Swme w—

Chapter 3.2. Terminal Control

173

3600 Finance Communication System (BTAM)

RECEIVE {INTO (data-area) | SET (pointer-ref)}
LENGTH (data—area)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data—value)
[DEST (name)]}
[WAIT]

CONVERSE FROM (data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET {pointer—ref)]
[TOLENGTH (data—area)]
[DEST (name)]

Exceptional condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

o T —————— ——— Y ——— " — — T — — — " ——)

INPOUT

The unit of transmission from a 3601 Finance Communication Controller to
CICS/VS is a segment consisting of the start—of—text data link control
character (STX), the one byte identification of the 3600 logical work
station that issued the processor write, the data, and either an end—of-
block (ETB) or an end—of-text (ETX) control character.

A logical work station sends a message either in one segment, in
which case the segment ends with ETX, or in more than one segment, in
which case only the last segment ends with ETX, all others ending with
ETB.

The input ar=za passed to the user—written application program
consists of the data only. The one-byte field TCTTEDLM, which may be
obtained by means of an ASSIGN DELIMITER command, contains flags
describing the data-link control character (ETB, ETX, or IRS) that ended
the segment. The application program can issue terminal control
commands to read the data until it receives a segment ending with ETX.
If blocked data is transmitted, it is received by CICS/VS as follows:

id1 data id2 data idn data

- —— -
MHHEn
wnoH

- -
WM

L]
b4 w

174 CICS/VS APRM (CL)

For blocked input, the flags in TCTTEDLM only indicate end of
segment, not end of message. The CICS/VS application program still
receives only the data, but user—defined conventions may be required to
determine the end of the message.

The field TCTTEDLM also indicates the mode of the input, either
transparent or non—transparent. Blocked input is non—transparent.

The terminal control program doss not pass input containing a "start
of header" (SOH) data link control character to a user—written
application program. If it receives an SOR it sets am indicator in
TCTTEDLM, passes the input to the user exit in the terminal control
program, and then discards it.

oOUTPUT

When an application program issues a SEND command, the terminal control
progran determines, from the value specified in the BUFFER parameter of
ths DFHTCT TYPE=TERMINAL system macro, the number of segments to be
built for the message. It sends the message to the 3600 logical unit
either in one segment consisting of a start—of—text character (STX), the
data, and an end—of—-text character (ETX); or in more than one segment,
in which case only the last ends with BTX, all others ending with ETB.

The host input buffer of the 3600 controller and the input segment of
the receiving logical unit must be large enough to accommodate the data
sent by CICS/VS. However, space for the data link control characters
need not bes included. The 3600 application program reads the data from
the host, by means of an LREAD, until it has received the entire
message.

CICS/VS system output messages begin with wDFA» followed by a four—
byte message number and the message text. These messages are sent in
non—transparent mode. It is suggested that CICS/VS user—written
application programs do not send messages starting with “DFH" to the
3601.

RESEND MESSAGE

When a logical unit sends a message to the host and a short—on-storage
condition exists or the input is unmsolicited (the active task associated
with the terminal has not issued a read), the terminal control program
sends a "resend" message to the logical unit. The format of this
message is DFH1033 RE—ENTER followed by X'15* (a 3600 new line
character) followed by the first eight bytes of the text of the message
being rejected. No message is sent to the destinations CSMT or CSTL.

The first eight bytes of data sent to CICS/VS can be used by the 3600
application program to define a convention to associate responses
received from CICS/VS with transactions sent to the host, for example,
sequence numbers could be used.

If a CICS/VS user—written application program has already issued a
SEND command when a resend situation occurs, the resend message is not
sent to the 3601 until the user-written application program message has
been sent. A 3600 logical unit cannot receive a resend message while
receiving a segmented message.

Chapter 3.2. Terminal Control 175

Only one resend message at a time can be queued for a logical unit.
If a second resend situation occurs before CICS/VS has written the
first, a resend message, containing the eight bytes of data that
accompanied the second input transaction from the 3600 logical umnit, is
sent.

The resend message is sent in transparent mode if the input data from

the 3601 to be re—transmitted is received by CICS/VS in transparent
mode. Otherwise it is sent in non-transparent mode.

3600 Pipeline Logical Unit

SEND FROM (data-—area)
LENGTH (data—value)
[WAIT]

ISSUE DISCONNECT

- — —— o —
e . S e W S0 o

176 CICS/VS APRM (CL)

3600 (3601) Logical Unit

|
|
|
!
|
1
|
1
i
!
1
l
|
|
|
!
!
|
|
1
|
1
|
|
|
!
|
|
|
1
!
1
|
|
!
!
I
|
|
|
!
|
!
|
]
|
|
|

RECEIVE {INTO(data-area) | SET (pointer—ref)}
LENGTH (data—area)

Exceptional coanditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

SEND FROM (data-area)
LENGTH (data—value)
[LDC(name) | FMH]

[DEST (name) }

[WAIT]

[INVITE | LAST]

[CNOTCOMPL | DEFRESP])

Exceptional condition: SIGNAL

CONVERSE FROM (data-—area)
FROMLENGTH (data—value)
{INTO (data—area) | SET (pointer-ref) }
[TOLENGTH (data—area)]}
[LDC(name) | FMH]
[DEST (name) }
{ DEFRESP }

Exceptional conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

FREE [SESSION (name)]}

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

R S AUy RPNy AU IUPUS [P

Chapter 3.2. Terminal Control

177

LOGICAL DEVICE CODE (LDC OPTION)

A logical device code (LDC) is a code that can be includad in an
outbound FMH to specify the disposition of the data (for example, to
which subsystem terminal it should be sent) . Each code can be
represented by a unigque LDC mnemonic. The installation can specify up
to 256 two-—character mnemonics for each TCTTE, and two or more TCTTEs
can share a list of these mnemonics. Corresponding to each LDC mnemonic
for each TCTTE is a numeric value (0 through 255). A 3600 device and a
logical page size are also associated with each LDC. "LDC" or "LDC
valuem is used in this publication in reference to the code specified by
the user. "YLDC mnemonic®" refers to the two—character symbol that
represents the LDC numeric value.

When the LDC option is spscified in the SEND command, the numeric
value associated with the mnemonic for the particular TCTTE, is inserted
in the FMH. The numeric value associated with the LDC mnemonic is
chosen by the installation, and is interpreted by the 3601 application
program.

178 CICS/VS APRM (CL)

3600 (3614) Logical Unit

RECEIVE {INTO (data—area) | SET (pointer-ref)}
LENGTH (data—area)

Exceptional condition: LENGERR

SEND FROM (Qata—area)
LENGTH (@ata—value)
[DEST (name)]
[WAIT]

[INVITE | LAST)
{ CNOTCOMPL | DEFRESP]

CONVERSE FROM (data—area)
FROMLENGTH {data-value)
{ INTO (data—area) | SET (pointer-ref)]
[TOLENGTH (data—area)]
[DEFRESP (name)]
[DEST {(name))]

Exceptional condition: LENGERR

FREE [SESSION (name)]}

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

. ISSUE DISCONNECT

e — T T —— —— ——— oup — T ——_ - D gmp W W - ———— — e T eup —— —— oy
e e e T . Dt e D S W G S P ume W UID agn T e wme G WD e WD WIS W s W e -

The data sStream and communication format used between a CICS/VS
application program and a 3614 is determined by the 3614. The
application program is therefore device dependent when handling 3614
communications.

For further information about designing 3614 application programs for
CICS/VS, refer to the CICSANS 3600 Guide.

3630 Plant Communication System

Support and command syntax as for the 3600 (3601) logical unit and the
3600 pipeline logical unit as described earlier in this chapter for the
3600 Finance Communication System.

Chapter 3.2. Terminal Control 179

Page of SC33-0077-2, revised September 1980 by TNL SN33—6268

I 3650/3680 Host Command Processor Logical Unit

RECEIVE {INTO (Qata—area) | SET (pointer-ref)}
LENGTH (data—area)

Exceptional conditions: EOC, LENGERR

SEND FROM (data-area)
LENGTH (data—value)
[WAIT]

[INVITE | LAST]
[CNOTCOMPL | DEFRESP])
[FMH]

CONVERSE FROM (data-—area)
FROMLENGTH {data—value)
{ INTO (data—area) | SET (pointer-ref)]
[TOLENGTH (data-area)]
[FMH]
[DEFRESP]

Exceptional condition: LENGERR

FREE [SESSION (name) j

Exceptional conditions: INVREQ, NOTALIOC, SESSIONERR

ISSUE DISCONNECT

. m R N S TGS e TED e W WED Sum VD TS e G TS gy W GED G wme TP T SR YA S g TR S VE e, RS W ams S)

180 CICS/VS APRM (CL)

3650 Host Conversational (3270) Logical Unit

RECEIVE {INTO(data—area) | SET(pointer-ref)}
LENGTH (data—area)

Exceptional conditions: EOC, LENGERR

SEND FROM (data-—area)
LENGTH (data—value)
[CTLCHAR (data—value)]
[WAIT]
[ERASE]
[INVITE | LAST]
[CHOTCOMPL | DEFRESP]
[FMH]

CONVERSE FROM (data-—area)
FROMLENGTH (data—value)
[INTO(data—area) | SET(pointer-ref)
[TOLENGTH (data—area)]

[BRASE]
[DEFRESP]
[FMH)

Exceptional condition: LENGERR

]

FREE [SESSION (name))

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT)

r
|
|
1
|
|
1
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| [CTLCHAR (data—value)]
|
|
1
|
1
|
|
|
!
|
I
1
1
1
|
|
i
|
|
|
|
| :
| ISSUE DISCONNECT
|
[N

L e o o . - e — T A — T D IR P e e Sme S - — T e T e RS G — S W S e e T — G " — — T —

Chapter 3.2.

Terminal Control

181

3650 Host Conversational (3653) Logical Unit

RECEIVE {INTO (data—area) | SET (pointer—ref)}
LENGTH (data-area)

Exceptional conditions: EOC, LENGERR

SEND FROM (data-—area)
LENGTH (data-value)
[WAIT])

[INVITE | LAST]
[CNOTCOMPL | DEFRESP]

CONVERSE FROM(data-area)
FROMLENGTH (data—value)
[INTO (data-area) | SET (pointer-tref) }
[TOLENGTH (data—area)]
[DEFRESP]

Exceptional conditions: EOC, LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

M - a — D o —— — —— — — t— — — T — — —— — S —— — D — g — S —

ISSUE DISCONNECT

e o T e — D G - VD WY ey WO G VS gy G VD G e TES S g GUE D e S SN Wme G ame W

182

CICS/VS APRM (CL)

3650 Interpreter Logical Unit

RECEIVE {INTO data-—area) | SET (pointer—ref)}
LENGTH (data—area)

Exceptional conditions: EOC, EODS, INBFMH, LENGERR

SEND FROM (data-area)
LENGTH (data—value)
[WAIT])

[INVITE | LAST]
{ DEFRESP }
[FMH]

CONVERSE FROM (data-area)
FROMLENGTH data—value)
[INTO (data—area) | SET (pointer-ref)]
[TOLENGTH (data-area)]}
{ DEFRESP]}
(FPMH]

Exceptional conditions: EOC, EODS, INBFMH, LENGERR

FREE [SESSION (name)]}

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE LOAD PROGRAM (name)
[CONVERSE]

Exceptional conditions: NONVAL, NOSTART

ISSUE EODS

ISSUE DISCONNECT

-————--——--—--————-———._—-_—————_————-—_——-—-——q

i O G e . T w TIPS) W D D e — G G YD e BT D wmm WS WD e G WS D e S g W . VD e e TP aue e e S e wn ol

The ISSUE LOAD command specifies the name of the 3650 application
program that is to be loaded. '

The ISSUE EODS command can be used to send an end-of—data-set
function management header to the 3650. -

Chapter 3.2. Terminal Control

183

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268
3650 Pipeline Logical Unit

Support and command syntax as for the 3600 Pipeline Logical Unit.

3650/3680 Full Function Logical Unit

Support and command syntax as for the 3790 Full Function Logical Unit.

3660 Supermarket Scanning System

Support and command syntax as for System/3.

184 CICS/VS APRM (CL)

3735 Programmable Buffered Terminal

RECEIVE {INTO({data-—area) | SET(pointer—ref)}
LENGTH (data—area)

Exceptional conditions: EOF (not TCAM) , LENGERR

SEND FROM (data—area)
LENGTH (data—value)
[DEST (name) }

[WAIT]
[ASIS])

CONVERSE FROM (data-area)
FROMLENGTH (data—value)
[INTO (data—area) | SET (pointer-ref)]
[TOLENGTH (data—area) }
[DEST (namne)]

Exceptional conditions: EOF (not TCAM), LENGERR

ISSUE RESET
ISSUE DISCONNECT

e e]

The 3735 Programmable Buffered Terminal may be serviced by CICS/VS in
response to terminal-initiated input, or as a result of an automatic or
time—initiated transaction. Both are explained below.

3735 TRANSACTIONS — AUTOANSWER

The 3735 transaction is attached by CICS/VS upon receipt of input from a
3735. Data is passed to the application program in 476-byts blocks;
each block (one buffer) may contain several logical records. The €final
block may be shorter than 476 bytes; zero-length final blocks are not,
however, passed to the application program. If the block containms
several logical records, the application program must perform any
necessary deblocking and gathering of partial logical records.

It is recommended that input data from a 3735 be spooled to an
intermediate data set (for example, an intrapartition destination) to
ensure that all data has been captured before deblocking and processing
that data.

The application program must follow 3735 conventions and read to end-—
of-file before attempting to write PDPs (form description programs) or
data to the 3735, For this reason, the application program must include
a HANDLE CONDITION command for the EOF condition. When control passes
to the EOF routine, FDPs or data may be written to the 3735, or,
optionally, CICS/VS requested to disconnect the line.

Chapter 3.2. Terminal Control 185

The 3735 may transmit the EOF condition immediately upon connection
of the line, in which case, a HANDLE CONDITION command for the EOF
condition must be issued before any other terminal control commands.

The application program must format all special message headers for
output to the 3735 (for example, SELECTRIC, POWERDOWN) . If FDPs are to
be transmitted to a 3735 with ASCII transmission code, the ASIS option
must be included in the SEND command for each block of FDP records.

An ISSUE DISCONNECT command must be issued when all output has been
transmitted to the 3735. If the application program eands during batch
write mode before the ISSUE DISCONNECT command is executed, CICS/VS
forces a 3735 “receive abort"™ condition and all data just transmitted is
ignored by the 3735.

3735 TRANSACTIONS — AUTOCALL AND TIME-INITIATED

In automatic and time—initiated transactions, all considerations stated
above apply when CICS/VS dials a 3735, except that the EOF condition
cannot occur.

CICS/VS connects the line and allows the first terminal control
conmand to indicate the direction of data transfer. If this first
command is a SEND and the 3735 has data to send, the 3735 causes the
line to be disconnected.

186 CICS/Vs APRM (CL)

3740 Data Entry System

RECEIVE {INTO (data-—area) | SET (pointer—ref)}
LENGTH (data—area)

Exceptional conditions: EOF (except TCAM) , ENDINPT (except
TCAM), LENGERR

SEND FROM (data-—area)
LENGTH (data-value)
[DEST (nanme)]
[WAIT]

r
|

|

|

]

|

|

|

1

]

|

|

|

|

|

1

|

| CONVERSE FROM (data—area)

} FROMLENGTH (data—value)
| [INTO (data—area) | SET (pointer—ref)]}
| [TOLENGTH (data—area)]
} [DEST (name) }

|

|

|

|

|

|

]

]

|

|

1

|

|

|

|

|

1

Exceptional condition: LENGERR

ISSUE ENDFILE [ENDOUTPUT]

ISSUE ENDOUTPUT [ENDFILE]

ISSUE RESET
ISSUE DISCONNECT

e s e . . N ey S S e G VR S WP G D WP w WES e T W G S s TR TS eege TS WD S e WSS S TES SUN s e

BATCH MODE APPLICATIONS

In batch mode, many files are exchanged between the 3740 and CICS/VS in
a single transmission. The transmission of an input batch must be
complete before an output transmission can be started.

On input, the EOF (end-of—file) condition is raised by CICS/VS when a
null block (indicating the end of a physical file) is received from the
3740. A HANDLE CONDITION EOF command should be included to specify that
processing of the file is to continue. Eventually, ths ENDINPUT
condition is raised by CICS/VS when all input has been received. No
more RECEIVE commands will be exscuted and a HANDLE CONDITION ENDINPUT
command should be included to specify that control is to be returned to
CICS/VS so that the 3740 can be set to receive data.

On output, the ISSUE ENDFILE and ISSUE ENDOUTPUT commands are used to
indicate the end—of—file and end-of-output conditions, respectively, to
the 3740. These two conditions may be specified in one command if
required, for example: ISSUE ENDFILE ENDOUTPUT.

Chapter 3.2. Terminal Control 187

3767 Interactive Logical Unit

RECEIVE {INTO(data—areca) | SET(pointer-ref)}
LENGTH (data—area)

Exceptional conditions: EOC, LENGERR, SIGNAL

SEND FROM (data-—area)
LENGTH (data—value)
[DEST (name) }

[WAIT]
[INVITE | LAST)
[CNOTCOMPL | DEFRESP]

Exceptional condition: SIGNAL

CONVERSE FROM (data-—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET(pointer—ref) }
[TOLENGTH (data—area)]

[DEFRESP]

Exceptional conditions: EOC, LENGERR, SIGNAL

FREE [SESSION (nare)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

r
|
I
1
|
|
|
|
1
|
|
l
|
|
I
|
|
|
)
I
|
|
|
|
| [DEST (name)]
|
|
|
'
I
|
|
I
|
|
|
|
|
|
|
{
|
1
|
|
i Exceptional condition: SIGNAL
|
L

e e e e S o — . G TS D S G S ——n G M e P . Y — S Y w—e maw — ——)

188 CICS/VS APRM (CL)

3770 Batch Logical Unit

|
!
|
1
|
|
|
i
|
1
!
|
1
i
|
|
1
!
|
]
|
1
]
|
!
1
|
|
1
i
|
1
|
!
|
]
1
|
!
|
1
|
1
|
|
1
|
1

RECEIVE {INTO (data-area) | SET (pointer-ref)}
LENGTH (data-area)

Exceptional conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

SEND FROM (data—area)
LENGTH (data—value)
[DEST (name) }

[WAIT]

[INVITE | LAST)
[CNOTCOMPL | DEFRESP}
[FMH]

Exceptional condition: SIGHAL

CORVERSE FROM (data-area)
FROMLENGTH (data—value)
[INTO (data—area) | SET (pointer-ref)]
{ TOLENGTH (dJata—area)]
[DEST (name)]
[DEFRESP]
[PMH]

Exceptional conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

FREE [SESSION (name)]}

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGHAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

b——————-—r———--————————-—-——-—.—-——-—_——-—_—_————————-——-—d

Chapter 3.2. Terminal Control

189

3770 Interactive Logical Unit

Support and command syntax as for 3767 Interactive Logical Unit.

3770 Full Function Logical Unit

Support and command syntax as for 3790 Full Function Logical Unit.

3780 Communications Terminal

Support and command syntax as for System/3.

190 CICS/Vs APRM (CL)

3790 Full Function Logical Unit

LENGTH (data—area)

RECEIVE {INTO (data-area) | SET(pointer-ref)}

BExceptional conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

SEND PROM (data—area)
LENGTH (data—value)
[DEST (name)]

[WAIT]

[INVITE | LAST]

[CNOTCOMPL | DEFRESP]
[PMH]

Exceptional condition: SIGNAL

CONVERSE FROM (data-—area)
FPOMLENGTE (data—value)

[TOLEKGTH (data—area)]
[DEST (name)]}

[FMBR}

[DEFRESP]

Exceptional conditions: EOC, #0DS, INBFMH,

[INTO (data—area) | SET (pointer-ref)]

LENGERR, SIGHNAL

FREE [SESSION (name)]

Exceptional coaditions: INVRED, NOTALLOC,

SESSIONEERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional coandition: SIGNAL

B e e MM AN S e T e N e S D mmp o T G TS TS e e — S — A e M D TED g e SR A — S e T w G wm — S e e o)

e e e T oo T W T Em T apm e T R e e S WS UMD pee S e WD SR M GNP WY as S LS G Ee e S G TP G Swe S G o W S S s e o)

Chapter 3.2.

Terminal Control

191

3790 Inquiry Logical Unit

RECEIVE {INTO(data—area) | SET(pointer—ref)}
LENGTH (data—area)

Exceptional conditions: EOC, EODS, INBFMH, LENGERR

SEND FROM (data—area)
LENGTH (data—value)
[DEST (name)]

[WAIT])

[INVITE | LAST)

[CNOTCOMPL | DEFRESP])
[FHH]

CONVERSE FROM(data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET(pointer-ref)]}
[TOLENGTH (data—area)]
[DEST (nane) }
[FME)
[DEFRESP]

Exceptional conditions: EOC, EODS, INBFMH, LENGERR

FREE [SESSION (name))

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE DISCONNECT

o e v — ——— T T o ——— T o G0N G TEe W D g S Y e S S S — O T gy

RS KN AU SN I UUPIDI U IS R

192 CICS/VS APRM (CL)

3790 SCS Printer Logical Unit

SEND FROM (data—area)
LENGTH (data—value)
[DEST (name)]}
[WAIT]
[INVITE | LAST]}

{CNOTCOMPL | DEFRESP]

[DEFRESP }

r
|
|
|
I
|
!
|
|
|
|
|
|
!
|
|
|
|
|
|
4

FREE [SESSION(name)]

Exceptional conditions:

INVREQ, NOTALLOC, SESSIONERR

ISSUE DISCONNECT

b o e e G — D — — D —— - TS wu W o)

Chapter 3.2.

Terminal Control

193

3790 (3270-Display) Logical Unit

RECEIVE {INTO(data—area) | SET (pointer-ref)}
LENGTH (data—area)
[ASIS])
[BUFFER]

Exceptional condition: LENGERR

SEND FROM(data—area)
LENGTH (data—value)
[DEST (name)]
[CTLCHAR (data-value)]
[WAIT])
[ERASE]
[INVITE | LAST)
[DEFRESP]

CONVERSE FROM (data—area)
FROMLENGTH (data—value)
[INTO (Aata—area) | SET(pointer—ref) }
[TOLENGTH (data—area) }
[DEST (name)]
[DEFPRESP }
[CTLCHAR (data-—value)]
[ERASE)

Exceptional condition: LENGERR

FREE [SESSION (nane)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

o - ——— — — —— — — T —— T S - ——— - — S - —— —

ISP P g S AP RPN

194 CICS/VS APEM (CL)

3790 (3270-Printer) Logical Unit

SEND FROM (data-—-area)
LENGTH (data—value)
[CTLCHAR (data—value) j
[WAIT)

[ERASE]
[INVITE | LAST]
[DEFRESP]

FREE [SESSION (name) }

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCORNECT

(o . - . — ——— T " o T S — T - — — = "

b o - T T — — — oy W T = — T WD e G W e B WS e N e wem S W

7770 Audio Response Unit

RECEIVE {INTO(Gata—area) | SET (pointer—ref)}
LENGTH (data-—-area)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data—value)
[DEST (name)]
[WAIT]

CONVERSE FROM (data—area)
FROMLENGTH (data—value)
[INTO (data—area) | SET (pointer-ref) }
[TOLENGTH (data—area)]

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

pr e — v - — — — T — —— > o — o — o — ———— ——

b o e . T - S g W T e S AP B G R WD SRR e P SES O s e o)

Chapter 3.2. Terminal Control

195

CICS/VS cannot distinguish between special codés (characters) entered at
audio terminals (for example, the 2721 Portable Audio Terminal);
however, an application program can make use of these codes. The
special codes that can be entered from a 27217 are shown in Figure 3.2-5.

For further information concerning the 27217, see the publication IBM
2721 Portaple Audio Terminal Component Description.

o - = e —— — — -

r i
| - |
Key } Code (hex) |
| |
I |
! i
CALL END | 37 |
CNCL | 18]
¥ | 3B or 7B }
VERIFY | 2D)
RPT } 3D |
EXEC)} 26 |
F1] B1)
F2 { B2 i
F3)] B3]
Py | B4]
F5 | BS |
00 | AO 1
000 | 3B or BO]
IDENT I %1, 12, 13, or 14 plus two other characters]
| t
L '

Figure 3.2-5. 2721 Portable Audio Terminal Special Codes

The special codes A0 and 3B (or B0) are also generated by the keys *
and # respectively of a "Touch-Tone» telephone. (Touch-~Tone is the
trademark of the American Telephone and Telegraph Company.)

If the SET option has been specified in the associated command, codes
26, 37, and 3B (each of which causes a hardware interrupt) will
immediately follow the data, but will not be included in the value set
by the LENGTH option.

If the end-of-inquiry (20I) Disable PFeature (Feature No. 3540) is
installed on the 7770 Model 3, the option of including either or both #
and 000 as data is available.

If, after receiving at least one code from a terminal, no other codes

have been received by the 7770 for a period of five seconds, the 7770
generates an EOI hardware interrupt that ends the operation.

196 CICS/VS APRM (CL)

Terminal Control Options

ASIS

For System/370, System/7, 2770, and 2780: indicates that output
is to be sent in transparent mode (with no recognition of
control characters and accepting any of the 256 possible
combinations of eight bits as valid transmittable data) .

For System/7: indicates that the data being written or read is
not to be translated.

For 3735: prevents translation of the Form Description Program
(FDP) records that are to be transmitted to a 3735 using ASCII
code.

For 3270 and VTAM terminals: specifies a temporary override of
the uppercase translation feature of CICS/VS to allow the
current task to receive a message containing both uppercase and
lowercase data.

This option has no effect on the first RECEIVE command of a
transaction, as terminal control will perform a read initial
and use the terminal defaults to translate the data.

This option has no effect if the screen contains data prior to
a transaction being initiated. This data will be read and
translated in preparation for the next task and the first
RECEIVE command in that task will retrieve the translated data.

ATTACHID (name)

BUFFER

CBUFF

specifies, for a BUILD ATTACH command, that the set of values
specified is to be placed in an attach header control block
identified by the specified name (maximum of eight characters) .

specifies, for a SEND or CONVERSE command, that an attach
header (created by a BUILD ATTACH command) is to precede, and
be concatenated with, the user data supplied in response to the
command. "Name® (maximum of eight characters) identifies the
attach header control block to be used in the local task.

specifies, for an EXTRACT ATTACH command, that values are to be
retrieved from an attach header control block. "Name"™ (maximum
of eight characters) identifies this control block to the local
task. If the option is omitted, the attach header control
block to be used is that associated with the facility named in
the SESSION option.

specifies that the contents of the 3270 buffer are to be read,
beginning at buffer location one and continuing until all
contents of the buffer have been read. All character and
attribute sequences (including nulls) appear in the input data
stream in the same order that they appear in the 3270 buffer.

specifies that data is to be written to a common buffer in a
2972 Control Unit. The WAIT option is implied.

Chapter 3.2. Terminal Control 197

— - T o ——

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

CNOTCOMPL

CONVERSE

indicates that the request/response unit (RU) sent as a result
of this SEND command will not complete the chain. If this
option is omitted and chain assembly has been specified, the RU
will terminate the chain.

specifies that the 3650 application program will communicate .
with the host CPU. If this option is not specified, the 3650
application program cannot communicate with the host CPU.

CTLCHAR @ata—value)

specifies a one-byte Write Control Character (WCC) that
controls a SEND command, or the Copy Control Character (CCC)
that controls an ISSUE COPY command, for a 3270. An COBOL user
must specify a data area containing this character. If the
option is omitted from a SEND command, all modified data tags
are reset to zero and the keyboard is restored. If the option
is omitted from an I SSUE COPY command, the contents of the
entire buffer (including nulls) are copied.

DATASTR { (name) | (data-area) }

This corresponds to the deblocklng algorlthm field, ATTDBA, in

-an attach FMH.

For communication between two CICS/VS systems, no particular
significance is attached by CICS/VS to the deblocking algorithm
field in an attach 'FMH. For most CICS/VS applications, the
option may be omitted when a value of "user defined® will be
assumed.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the deblocking algorithm field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
deblocking algorithm field received in the attach FMH.

The value is- halfword binary; only the low—order 8 bits being
used. The bits in the binary value are used as follows:-—

0-7 reserved — must be set to zero
8-11 0000 — user defined
1111 - SCS datastream
.1110 - 3270 datastream
1101 - structured field
_ 1100 -~ logical record management
12-15 defined by the user if bits 8-11
are set to 0000; otherwise reserved
(must be set to zero) .

A value of "structured field” indicates that chains begin with
four bytes of data that are used to interpret the following
data; the four bytes consist of overall length (2 bytes), class
identifier (1 byte), and sub—class identifier (1 byte). A
value of "logical record management®indicates that chains can
be split into separate fields by the data receiver.

These values may be used for communication between a CICS/VS
system and another subsystem; for further details of structured

198 CICS/VS APRM (CL)

DEFRESP

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268
fields and logical record management refer to the documentation
supplied by the subsystem.

If the option is omitted from the BUILD ATTACH command, a value
of "user defined®™ is assumed.

indicates that a definite response is required when the output
operation has been completed.

DEST (name) ;

ERASE

specifies the four-byte symbolic name of the TCAM destination
to which the message is to be sent. This option is meaningful
only for terminals for which DEVICE=TCAM has been specified in
the DFHTCT TYPE=SDSCI system macro. *t+0; aERASE option

specifies that the screen is to be erased and the cursor
returned to the upper left corner of the screen before writing
occurs. Normally, ERASE should be specified in the first
output command of a transaction. This will clear the screen
ready for the new output data.

However, when switching from one screen size to another on a
transaction basis, it is important to note that if ERASE is not
specified in the first output command of the transaction, the
screen size will be unchanged from its previous setting, that
is, the previous transaction setting, or the default screen
size if the CLEAR key has been pressed.

specifies that a function management header has been included
in the data that is to be written. If the ATTACHID option is
specified as well, the concatenated FMH flag will be set in the
attach FMH.

FROM (data-—area)

specifies the data that is to be written to the terminal or
logical unit.

FROMLENGTH (Qata—value)

See LENGTH (parameter) . The FROMLENGTH option of the CONVERSE
command is equivalent to the LENGTH option of a SEND command.

INTO (data-area)

INVITE

specifies the receiving field for the data read from the
terminal or logical unit. .

specifies that the next terminal control command to be executed
for this facility is a RECEIVE. This allows optimal flows to
occur. '

Chapter 3.2. Terminal Control 199

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

IUTYPE{ (name) | (data—area)}

LAST

LDC (name)

LEAVEKB

This corresponds to the interchange unit field, ATTIU, in an
attach FMH.

For communication between two CICS/VS systems, no particular
significance is attached by CICS/VS to the interchange unit
field in an attach PFMH. For most CICS/VS applications, the
option may be omitted when a value of ®"multiple chain® will be
assumed.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the interchange unit field in an attach FMH.

Wwhen EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
interchange unit.field received in the attach FMH.

The value is halfword binary; only the low-order 7 bits being
used. The bits in the binary value are used as follows:—

0-10 ’ reserved — must be set to zero

11 0 — not end of multichain interchange unit
‘1 — end of multichain interchange unit

1213 reserved — must be set to zero

14-15 E 00 — multichain interchange unit

. 01 - single chain interchange unit
10 — reserved
11 - reserved

If the option is omitted from the BUILD ATTACH command, values
of "not end of multichain interchange unit®™ and "multiple
chain® are assumed. '

specifies that this is the last output operation for a
transaction and therefore the end of a bracket.

specifies the two—character mnemonic used to determine the
appropriate logical device code (LDC) numeric value. The
mnemonic represents an LDC entry in the DFHTCT TYPE=LDC macro
instruction.

specifies that the keybocard is to remain locked at the
completion of the data transfer. This option is applicable
only to CICS/0S/VS but may be used in a CICS/DOS/VS application
program if compatibility is required.

200 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

LENGTH (parameter)

specifies the length (as a halfword binary value) of the 3data
transmitted by RECEIVE and SEND commands.

For a RECEIVE command with the INTO option, the parameter must
be a data area that specifies the maximum length that the
program will accept. If the value specified is less than zero,
zero is assumed. If the length of the data exceeds the value
specified, the data is truncated to that value and the LENGERR
condition occurs. When the data has been received, the data
area is set to the original length of the data.

For a RECEIVE command with the SET option, the parameter must
be a data area. When the data has been received, the data area
is set to the length of the data.

For a SEND command, the parameter must be a data value that is
the length of the data that is to be written.

LINEADDR (data-—value)
specifies that the writing is to begin on a specific line of a
226072265 screen. The data value is a halfword binary wvalue in
the range 1 through 12 for a 2260, or 1 through 15 for a 2265.

NETNAME (name)
specifies the eight-character name of the logical um.t in the
VTAM network.

PASSBK
specifies that communication is with a passbook at a 2980. The
WAIT option is implied.

PROCESS{(name) | (data area)}
This corresponds to the process name, ATTDPN, in an attach FMH.

For communication between two CICS/VS systems, a transaction
running in one system can acquire a session to the second
system and can identify the transaction to be attached in the
second system; the identification is carried in the first chain
of data sent across the session.

In general, the first four bytes of data will identify the
transaction to be attached. However an attach FMH, identifying
the transaction to be attached, may be built and sent; the
PROCESS option on the BUILD ATTACH command is used to specify
the transaction name. (Note that the receiving system will use
just the first four bytes of the process name as a transaction
name) .

No significance is attached by CICS/VS to process names in
attach PMHs sent in chains of data other than the first.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the sybsystem on
how to use the process name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE

command, the EXTRACT ATTACH command may be used to examine the
process name received in the attach FMH.

Chapter 3.2. Terminal Control 201

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

PROFILE (name) :
specifies the name (maximum of eight characters) of a set of
terminal control processing options, held in the PCT, that are
to be used during execution of terminal control commands for
the session specified in the SYSID or SESSION options. If this
option is omitted, a set of processing options, called
DFHCICSA, will be selected.

PROGRAM (name)
specifies the name (maximum of eight characters) of the 3600
application program that is to be loaded.

PSEUDOBIN
specifies that the data being written or read is to be
translated from System/7 pseudobinary representation to
hexadecimal on a RECEIVE command or from hexadecimal to
pseudobinary on a SEND command.

QUEUE { (name) | (data—area)}
This corresponds to the queue name, ATTDQON, in an attach FMH.

For communication between two CICS/VS systems, no significance
is attached by CICS/VS to the queue name in an attach FMH.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the queue name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
queue name received in the attach FMH.

RECFM{ (name) | (data area)}
This corresponds to the data stream profile field, ATTDSP, in
an attach FMH.

For communication between two CICS/VS systems, no particular
significance is attached by CICS/VS to the data stream profile
field in an attach FMH. For most CICS/VS applications, the
option may be omitted when a value of ®chain of RUs"™ will be
assumed.

For communication between a CICS/VS systém and another
subsystem, refer to documentation supplied by the subsystem on
how to use the data stream profile field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
data stream profile field received in the attach FMH.

The value is halfword binary; only the low—order 8 bits being
used. The bits in the binary value are used as follows:—

0-7 reserved — must be set to zero
8-15 X*00* — reserved
X'01" — variable length variable blocked
X*01" — reserved
X*03" — reserved
X*'04* — chain of RUs
X*05° to X"FF* — reserved

202 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

If the option is omitted from the BUILD ATTACH command, a value
of "chain of RUs™ is assumed.

RESOURCE { (name) | (data—area)}
This corresponds to the resource name, ATTPRN, in an attach
FMH.

For communication between two CICSANS systems, no significance
is attached by CICS/VS to the resource name in an attach FMH.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the resource name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
resource name received in the attach FMH.

RPROCESS { (name)). (data—area)} _
This corresponds to the return process name, ATTRDPN, in an
attach FMH. :

For communication between two CICS/VS systems, no significance
is attached by CICS/VS to the return process name in an attach
FMH.

For cammunication between a CICS/VS system and another
subsystem, refer to documentation supplied by the sybsystem on
how to use the return process name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
return process name received in the attach FMH.

RRESOURCE { {name) | (data—area)} .
This corresponds to the return resource name, ATTRPRN, in an
attach FPMH. :

For communication between two CICS/VS systems, no significance
is attached by CICS/VS to the return resource name in an attach
m. ’

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the return resource name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
return resource name received in the attach FMH.

SESSION (name) : .
specifies the symbolic identifier (maximum of four characters)
of a session TCITE. This option specifies the alternate
session to be used. If this option is omitted, the principal
facility for the task will be used.

SET (pointer—ref)
specifies the pointer reference that is to be set to the
address of the data read from the terminal or logical unit.

Chapter 3.2. Terminal Control 203

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

STRFIELD

specifies that the data area specified in the FROM option
contains structured fields. If this option is specified, the
contents of all structured fields must be handled by the
application program. The CONVERSE command, rather than a SEND
command ; must be used if the data area contains a read
partition structured field. (Structured fields are described
in the CICS/VS IBM 3270 Guide.) CTLCHAR and ERASE are mutually
exclusive with STRFIELD,; and their use with STRFIEID will
generate an error message.

SYSID { (name) | (data-area)}

specifies the name @maximum of four characters) of a system
TCTSE. This option specifies that one of the sessions to the
named system is to be allocated.

When used with the EXTRACT TCT command, this option specifies
the variable to be set to the equivalent local name of the
system.

TERMID { (name) | (data—area)}

specifies the name (up to four characters in length) of the
terminal whose buffer is to be copied. The terminal must have
been defined in the TCT.

When used with the EXTRACT TCT command this option specifies
the variable to be set to the equivalent local name of the
terminal.

TOLENGTH (data-area)

WAIT

See LENGTH (parameter) . The TOLENGTH option of the CONVERSE
command is equivalent to the LENGTH option of a RECEIVE
command .

specifies that processing of the command must be completed
before any subsequent processing is attempted.

If the WAIT option is not specified, control is returned to the
application program once processing of the command has started.
A subsequent input or output request (terminal control, BMS, or
batch data interchange) to the terminal associated with the
task will cause the application program to wait until the
previous request has been completed.

204 CICS/VS APRM (CL)

Terminal Control Exceptional Conditions

Some of the following exceptional conditions may occur in combination
with others. CICS/VS checks for these conditions in the following
order: EODS, INBFMH, EOC. If more than one of these conditions occars,
only the first one found to be present is passed to the application
progranm.

CBIDERR

occurs if the named set of terminal—control processing options
cannot be found.

Default action: terminate the task abnormally.

ENDINPT
occurs when an end-of—input indicator is received.

Default action: terminate the task abnormally.

EOC
occurs when a request/response unit (RU) is received with the
end—of—chain indicator set. PField EIBEOC also contains this
indicator.

Default action: ignore the condition.

EODS
occurs when an end-of—data—set indicator is received.

EOF
occurs when an end-of—file indicator is received.

Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute a SEND or CONVERSE
command after a SIGNAL data—flow control command with an EKCD
(request change direction) code has been received from an
LUTYPE4 logical unit.

Default action: terminate the task abnormally.

INBFMH
occurs if a request/response unit (RU) contaias a function
ranagement header (FMB) . Field EIBFMH contains this indicator
and it should be used in preference to INBF#H. The IGNORE
CONDITION command can be used to ignore the condition.

Default action: terminate the task abnormally.

INVREQ
occurs, for the EXTRACT TCT command, if the name specified in
the NETNAME option cannot be found.

Chapter 3.2. Terminal Control 205

LENGERR

NONVAL

NOPASSBK

NOPASSBK

NOSTART

NOTALLOC

RDATT

SESSBUSY

SESSIONE

206

occurs if the length of data received in response to a command
that specifies the INTO option, exceeds the value specified by

the LENGTH or TOLENGTH option.

Default action: terminate the task abnormally.

occurs if a 3650 application program name is invalid.
Default action: terminate the task abnormally.

RD
occurs if no passbook is present on an input operation.

WR
occurs if no passbook is present on an output operation.

occurs if the 3651 is unable to initiate the requested 3650
application program.

Default action: terminate the task abnormally.

occurs if the facility specified in the command is not owned
the application.

Default action: terminate the task abnormally.

occurs if a RECEIVE command is terminated by the attention
(ATTN) key rather than the return key.

Default action: ignore the condition.

occurs if the request for a session cannot be serviced
immediately.

Default action: gueue the request until a session is
available.

RR

by

occurs if the name specified in the SESSION option is not that

of a session TCTTE or if the session cannot be allocated
because it is out of service.

Default action: terminate the task abnormally.

CICS/VS APRM (CL)

SIGNAL

SYSBUSY

SYSIDERR

TERMIDERR

WRBRK

occurs when an inbound SIGNAL data-—flow control command is
received from a logical unit or session. It is raised by
execution of the next SEND, RECEIVE, or WAIT TERMINAL command
that refers to the logical unit or session. It is raised also
by execution of a WAIT SIGNAL command, in which case the data-
flow control command has been received from the principal
facility.

Default action: ignore the condition.

occurs if the request for a session cannot be serviced
immediately.

Default action: queue the request until a session is
available.

occurs if the name in the SYSID option is not that of a system
TCTTE, or if all sessions are out of service.

Default action: terminate the task abnormally.

occurs if the specified terminal identifier cannot be found in
the terminal control table (TCT).

Default action: terminate the task abnormally.

occurs if a SEND command is terminated by the attention key.

Default action: ignore the condition.

Chapter 3.2. Terminal Control 207

Chapter 3.3. Basic Mapping Support (BMS)

CICS/VS basic mapping support is an interface, betwezn an application
program and the terminal control program, that provides various
formatting services for interpreting input data streams and for
preparing output data streams for the terminal network.

The application program passes data to BMS and receives data from BMS
in a standard device independent format. BMS commands are included in
the application program to control formatting of the data and to
initiate input from a terminal or output to one or more terminals.

BMS commands are provided to:
. Map data into a data area in the program (RECEIVE MAP).

. Map, and possibly transmit, output data in field or block data
format (SEND MAP) .

. Build, and possibly transmit, output data in text data format (SEKD
TEXT).

. Complete and transmit a logical message (SEND PAGE).
° Delete an incomplete logical message (PURGE MESSAGE).

o Initiate the building of a logical message to be scheduled for
delivery to one or more teranainals (ROUTE).

A1]1 of these commands, with their associated options and exceptional
conditions, are described in the last part of this chapter. Other
sections describe how combinations of the commands can be used to
control output operations and discuss features shared by the commands.

BMS input and output commands result in terminal control commands.
However, both terminal control and BMS commands can be included in an
application program. An operation to map a data stream already in
storage, rather than receiving and mapping, may be resquested to cause
BMS to map a device—dependent input data stream. If a map operation is
requested for input from the non-formatted 3270 buffer, mapping is not
performed; the non~-formatted data stream is returnsd to the application
program, and the MAPFAIL exceptional condition occurs.

The HANDLE CONDITION and IGNORE CONDITION commands, and the NOHANDLE
option, can be used to deal with any exceptional conditions that occur
during the execution of BMS commands. Refer to Chapter 1.5 for further
information about exceptional conditions.

Two principal advantages are obtained@ by using BMS: device
independence and format independence.

DEVICE INDEPENDENCE

Device independence allows the application program to send data to a
terminal or to receive data from a terminal without regard to the
physical characteristics of the terminal.

Chapter 3.3. Basic Mapping Support (BMS) 209

Under BMS, the terminal may be any of the following devices: 1050,
2740, 2741, 2770, 2780, 2980 Models 1 and 2, 2980-4 (keyboard and
printer only), 3270, 3780, TWX, tape, disk, CRLP (a device declared to
have card-reader—in/line—printer—out characteristics), or terminals
specified by the system programmer in the terminal control table (TICT)
as TRMTYPE=TCAM.

Certain BMS facilities can also be used with some 3270, 3600, 3650,
3767, 3770, and 3790 logical units; for information about these logical
units, refer to the appropriate CICS/VS subsystem guide. These guides
are listed imn the bibliography.

With BMS, a CICS/VS installation with more than one type of terminal
ne=d provide only one application program for each tramsaction to
support all terminals in the installation. BMS identifies which type of
terminal is requesting use of the application program and provides for
the conversion of the device—dependent data stream to and from the
standard device independent data format used by the application progranm.
A CICS/VS installation using only one type of terminal may wish to use
the formatting services of BMS to facilitate the addition of other types
or the conversion to another type in the future.

FORMAT INDEPENDENCE

Format independence allows the application program to provide data to
one or more termirals or to receive data from a terminal without regard
to the placement of fields within the data stream or on the terminal.

All references to data by the application program are through
symbolic field names. Pields are placed within the data stream by BMS
according to information stored in data format tables called maps. A
CICS/VS installation in which BMS is used may rearrange the fields to be
included in the data by simply changing the values stored in the map
that defines the format of the data. The application program that
causes the data to be written need not be modified. The programming
maintenance requirements should be considerably less than they might be
if BMS were not used.

Format independence also allows information such as headings, field-
identifying keywords, and 3270 screen formats to be stored in maps.
This information can be modified simply by changing its value in the
maps. Programs that refer to the maps benefit from the changes, but
none of the programs themselves need be modified.

The format independence provided by BMS removes from the application
program the requirement to know the location of fields within the data
stream; fields may be rearranged, removed, or added without changing the
application program.

Data Mapping

Data mapping is the technigque used by BMS to coavert the standard
device—independent data format, which the application program uses, to
and from the device—dependent data stream required for the particular
terminal in use. Device-dependent control characters are embedded or
removed by BMS during this processing.

There are three standard formats in which the application program can
provide or accept BMS data, as follows:

210 CICS/VS APRM (CL)

FPield Data Format: data is passed to BMS as separate fields. Each
field is given a symbolic name, which is used when passing data to,
or retrieving data from, BMS. Each field consists of a two-byte
length area (used by BMS on input), a one-byte attribute area (for
3270 output operations), and the data area. A map is used to
describe the field position, data length, and other necessary
information.

Block Data Format: data is passed to BMS as line segments. Fields
positioned within the line segments may be given symbolic names to
aid the application program in positioning the fields. Each field
provides for a one-byte attribute and the field data area. A gap
consisting of several blanks may separate comnsecutive fields in the
line segment. A map is used to describe the number and lengths of
line segments, the field position, data length, amd other necessary
information.

Text_Data Format: output data is passed to.BMS as a data streanm
which is divided into lines no longer than those defined for the
terminal to which the data stream is related. Printable character
strings or words which overlap lines are placed unbroken on the
next available line. New-line (X'15') characters can be included
in the data stream to further define line lengths. CICS/VS imserts
the appropriate leading characters, carrier returns, and idle
characters, and eliminates trailing blanks from each line. If tab
control characters are contained in the data stream, the user
should also supply all of the necessary new—line characters. No
maps are used with text data format.

Field data format is the most common for both display and printer
terminals.

Block data format may be used with both display and printer
terminals, but it is more useful for input operations on printer
terminals.

Text data format is used with both display and printer terminals and
is especially convenient for handling data not divided into fields.
When text data format is used with a 3270 device, an attripute byte
appears on the 3270 as a blank at the beginning of each line and in
front of each new piece of data. When the data is destined for a device
with extended attributes, set attribute (SA) orders can be included also
in the data stream. These orders enable characters in the data stream
to be modified by the extended attributes. To aid this modification,
symbolic names are available in DFHBMSCA (the standard attribute list).
The standard attribute list is described in Chapter 3.2.

‘Map Definition

Most of the facilities of BES (text data format is the exception)
require two types of maps to be defined by CICS/VS macro instructions
and to be assembled offline prior to running the application progran.
The two types are:

1. Physical mgp — used by BMS to convert data to or from the format
required by the application program. The map is a table containing
information about each field; it is stored in the CICS/VS progran
library and is loaded by BMS at execution time.

Chapter 3.3. Basic Mapping Support (BMS) 211

2. Symbolic description map — used by the application program to refer
to the data in storage. This map is a set of source statements
that are cataloged into the appropriate source library and copied
into the application program when it is assembled or compiled.

All maps must be generated as members of a map set; a single map must
be generated as the only member of such a map set. A map set is a
collection of related maps that ars generated and storsd together in the
CICS/VS libraries. A reference to any map in a map set requires that
the entire map set be loaded into storage for the duration of the task
or until another map set is referred to by the task.

An alternative method of defining maps for use with BMS is by means
of SDF/CICS (Screen Definition Facility (CICS)).

The following macro instructions are used in the map—definition
process.

DFHMSD macro
. aerines a map set

o specifies that a set of macros is for a physical map or for a
symbolic description map

. specifies that the map is for input, output, or both

° specifies that the data format is either field or block.
DFHMDI macro

° defines a map within a map set

. specifies the position of the map on the page, either absolutely or
in relation to other maps

. specifies the size of the map

. specifies that the data format is either field or block.
DFAMDF macro

. defines a field within a map

- specifies the position of the field

. specifies the length of the field.

The formats of these macros and an example of their use and of the .
symbolic descriptions maps generated is given later in the chapter.

An operand in a DFHMDF macro will always override the same operand in
a DFPHMDI macro. Similarly, an operand imn a DFHMDI macro will always
override the same operand in a DFHMSD macro.

If an operand is omitted from a DFHMDF macro, the same operand, if
present, in the DFHMDI macro will be used. Similarly, if an operand is
omitted from both the DFHMDF or DFHMDI macros, that in the DPHMSD macro
will be used.

If an operand is omitted from all the macros used to define a map
set, the default values for the DFHMDF macro will be assumed.

Some facilities, such as color, are available only on certain
terminals, and a specification for such a facility will be ignored if

212 CICS/VS APRM (CL)

the terminal does not support it. This obviates the requirement to
define separate maps for different terminals.

The map definition macros are assembled twice, once to produce the
physical map used by BMS, and once to produce the symbolic description
map (or DSECT) that will be copied into the application progran.

Examples of map definition are included in the sample programs in the
appendixes.

INPUT MAPPING

For an input map, the starting position and the maximum data length of
each field must be defined, as follows:

The TIOA symbolic storage definition contains an area for the length
of each input data field, followsd by a flag byte and an area for the
data itself. Space is reserved for the maximum number of bytes defined
for each field.

The program can access the length, flag, and data areas of any field
by symbolic labels. The length area is a halfword binary field and is
addressed by the name nfieldnamel" or "groupnamelLw. The flag is a one-
byte field and is addressed by the name "fieldnameF"™ or "groupnameF".
The data portion of each field (or group of fields) is contiguous with
the length and flag areas. A group of fields, or a single field not
within any group of fislds, has one data portion addressed by the nanme
“groupnamel® or "fieldnameI™. For fields contained within a group,
thare are no intervening length or flag areas (only "groupnaasl" exists)
but each field is addressed by a name "fieldnamelIw.

In assembler-language programs, the first byte of the first
occurrence of a field defined by the DFHMDF operand OCCURS=n (where n is
greater than 1) is named "fieldnameD"™, and the first byte of the next
occurrence of the field is named "fieldnameN". These names refer to the
first byte of the length area if DATA=FIELD is specified, and to the
first byte of the attribute data if DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldnameD™ is the name of the array of
minor structures containing the length, flag, and data areas of the
field.

The number of characters entered may differ from the lerngth of the
field at program execution time. If more data is keyed than specified
in the map, the data is truncated on the right to the number of
characters specified. The length that is returned to the application
program is the truncated length. If less data is keyed than specified,
the remaining character positions are filled with blanks or zeros and
the length of the keyed data is returned in the length field.

The flag byte is normally set to X*00®*. However, if the £ield has
been modified but no data has bean sent (as, for example, if it has been
modified to nulls), the flag byte is set to X'80' and the length area is
set to zeros.

Fields that are entered as input but are not defined in the map are
discarded. The length and data arzas of fields defined but not keyed
are set to nulls (X'00').

For a light pen—detectable field, although no data is passed, a

single data byte is reserved. This byte contains X*FF' if the field is
selected or X'00* if the field is not selected. The length area of a

Chapter 3.3. Basic Mapping Support (BMS) 213

light pen—detectable field contains a binary one if selected or a binary
zero if not selected.

OUTPUT MAPPING

For an output map, the starting position, length, field characteristics,
and default data (if desired) must be defined, as follows:

The fields of an output map are assigned names in the DFHMDF macro.
The characteristic or attribute byte is named "fieldnameA" or
ngroupnameA®. For a field contained within a group, the data area is
given the name "fieldnameO®™, but there is no separate attribute byte for
the field. (Only the group name has the attribute byte.) For a group
name, or a field not contained within a group, the data area is given
the name "groupnameO" or "fieldnameO."

In assembler-language programs, the first byte of the first
occurrence of a field defined by OCCURS=n (where n is greater than 1) is
named "fieldnameD™, and the first byte of the next occurrence of the
field is named "fieldnameN". These names refer to the first byte of the
length area if DATA=FIELD is specified, and@ to the first byte of the
attribute data if DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldnameD"™ is the name of the array of
minor structures containing the attribute byte and data area of the
field, together with the unused two-byte length field (described below).
A field not contained within a group is treated as a group containing
one field entry. An unused two—byte length field precedes ecach
attribute byte and data field to provide a format similar to an input
symbolic storage description TIOA.

The TIOAPFX=YES operand must be specified in the DFHMSD or DFHMDI
macros that create the maps. Also, if the symbolic description maps are
referred to by a PL/I program, the STORAGE=AUTO opesrand must be
specified in the DFHMSD macro.

When defining fields, the user may provide a name for any field that
he wishes to refer to at execution time. Such names are associated with
the fields in the symbolic storage definition of the TIOA to allow
symbolic references to be made to them. The user may specify not only
the characteristics of the field but also the default data to be written
as output for a field when no data is supplied for that field by an
application program. This facility permits the specification of titles,
headers, and so forth, for output maps. The user may temporarily
override the field characteristics, the data, or both field
characteristics and data of any field for which a name has been
specified. The desired changes are simply inserted into the TIOA under
the specified field name in the symbolic storage definition (symbolic
description map) in the progran.

Output field data supplied by the application program must not begin
with a null character (X'00°), or the entire field will be ignored by
BMS. A suitable character to use in the first position is blank
(X*400) .

Light pen—detectable fields should be mautoskip" to prevent data from
being keyed into them. Because of the nature of these fields, in most
instances, they should@ not be modified. If the data field is modified,
the application program must ensure that the first character is a w?w,
w>n, uwgn, or a blank character; otherwise, the field is no longer light
pen—detectable.)

214 CICS/VS APRM (CL)

Fields that can be keyed should be delimited by a stopper field to
ensure that all the data keyed and transmitted can be mapped.

INPUT/OUTPUT MAPPING

Input/output maps combining all the functions of input and output maps
can also be created using the DFHMSD, DFHEMDI, and DFHMDF macro.

The number of fields which can be specified for a COBOL or PL/I
input/output map is limited to 1023.

MAP RETRIEVAL

Map sets placed in the CICS/VS program library are accessed by B#S
through program control LOAD commands. Each map set name must have been
entered in the processing program table (PPT) by the system progranmer.
When device—dependent map sets are placed in the CICS/VS progran
library, they must be identified by the device-dependent suffixed nanme,
and a corresponding entry of the same name must appear in the PPT.
(Device—dependent suffixes are described below under the *mapsat® nanme
of the DFHMSD macro and under the SUFFIX and TERM operands of that
macro.)

Chapter 3.3. Basic Mapping Support (BMS) 215

——— S —— = —— — —

————— —— —

Define a Map Set (DFHMSD Macro)

mapset|
1

o e i S TS it e W ey W D ame T . D Wt w— —— w——
P e T o o - T — — D — — — — — " a— — —

DFHMSD | TYPE={DSECT|MAP}

{ ,BASE=name]

[,COLOR={DEFAULT |BLUE|RED| PINK|GREEN |TURQUOISE|YELLOW|

NEUTRAL})}

[,CTRL= ([PRINT][, {L4O}{L64} 1LBO| HONEOM}]
[,FREEKB][,ALARM J[,FRSET))]

[,DATA={FIELD|BLOCK}]

[,EXTATT={NO|MAPONLY|YES}]

[,HILIGHT={OFF|BLINK|REVERSE |UNDERLINE}]

[,.BTAB=tab[,tab}...]

[,LANG={ASM |COBOL) PLI | RPG}]

[,LDC=mnemonic]

[,MODE={INjOUT|INOUT}]

[,OBFMT= {YES|NO}]

[,PS={BASE|psid})

[,STORAGE=AUTO]

[,SUFFIX=n]

[,TERM=terminal—type }

[,TIOAPFX={YES|NO}]

{ ,VALIDN= ((MUSTFILL]){ ,MUSTENTER]) }

{ ,VTAB=tab[,tabl...]

[F o s e T e e . - —— — ————— — — T e =
e o W e A — W - - T G —— - T oy T S w e wan o

r

mapset)

(o — s

DFHMSD TYPE=FINAL

o —— —
e — — o)

These versions of the DFHMSD macro are used to define a map set. The
macro specifies whether physical maps (TYPE=MAP) or symbolic description
maps (TYPE=DSECT) are to be generated. The end of a map set is

indicate

d always by a DFHMSD TYPE=FINAL macro.

Alternatively, both types of map can be assembled in thes same job by
job control lanqguage, as describs=d in the CICS/VS Systzam_ Programmer's

Guide.

The operands are defined as follows:

mapset

216

is the name of the map set. The name (1 through 7 characters)

nust begin with an alphabetic character. B3 suffix specified by
the SUFFIX operand, or based on the terminal type specified in

the TERM operand, is added during assembly.

This suffixed name is the name that should be used in the NAME
statement (0S) or the PHASE statement (DOS) in cataloging the
map set (see the appropriate CICS/VS System Programmer's_Guide
for further details), and the name that should be specified in
the PPT (see the CICS/VS System Programmer's Referencs Manual).
Valid suffixes are shown in the description of the TERM
operand, below.

CICS/VS APRM (CL)

— — g T o —

TYPE=

When a mapping operation is requested by a BMS command, CICS/VS
adds a similar suffix to the map set name specified in the
command, and attempts to load a map set with the suffixed name.
If the suffixed map set name cannot be found in the library,
CiCS/VsS will load a map set with the specified name (equivalent
to being suffixed with a blank) .

CICS/VS obtains the suffix from the TCTTE for the terminal
(either the terminal associated with the transaction or, for
routing, the destination terminal) depending on the terminal
type specified in the TRMTYPE operand (together with the
SESTYPE operand for VTAM terminals) of the DFHTCT TYPE=TERMINAL
(or TYPE=LINE) system macro. If the alternate page size is
being used, as specified by the ALTPGE operand of the DFHTCT
TYPE=TERMINAL system macro, and the ALTSFX operand of that same
system macro has also been specified, an attempt will be made
to load the map set that has the alternate suffix specified in
the ALTSFX operand of the DFATCT TYPE=TERMINAL system macro.

If this load is unsuccessful, normal map set selection will
occur.

For example, if two map sets are assembled, one with TERM=CRLF
and the other with TERM=ALL, the first map set nams will be
suffixed with A and the second with blank. The systen
programser should use these suffixed names in the NAME/PHASE
statements and in the PPT. If a CICS/VS transaction now routes
a message to two terminals, one of which has TRMTYPE=CRLP and
the other TRMTYPE=13277, TRMMODL=2, CICS/VS will attempt to
load "mapsetA" for the first and "mapsetM" for the second. The
second of these will be unsuccessful, so BMS will then look for
the unsuffixed map set name for routing to the 3277.

specifies the function of the macro.

DSECT
specifies that a symbolic description map is to be
generated. If the same map set is to be used by
application programs written in different languages, a
separate DFHMSD TYPE=DSECT macro must be written for each
language to put the sympolic description map into the copy
library of the language.

MAP
specifies that a physical map is to be generated. This
physical map is stored in the CICS/VS program library and
loaded as required by BMS. The assembler—language
application programmer can, alternatively, generate the map
in his program and pass its address to BMS.

FINAL
must be coded to indicate the end of the map set. If other
parameters are specified in this macro, they will be
ignored.

Chapter 3.3. Basic Mapping Support (BAS) 217

| BASE=name

i specifies that the same storage base will be used for the

| symbolic description maps from more than one map set. The same
] nase is specified for each map set that is to share the same

i storage base. Since all map sets with the same base describe

| the same storage, data related to a previously-us=d map set may
) be overwritten when a new map set is used. Furthermore,

} different maps within the same map set will also overlay one

] another.

| This operand is not valid for assembler-language programs.

1 For example, assume that the following macros are used to
generate symbolic description maps for two map sets.

]
] MAPSET1 DFHMSD TYPE=DSECT, *
1 TERM=2780,LANG=COBOL, *
| BASE=DATAREA1, *
| MODE=IN
MAPSET2 DFHMSD TYPE=DSECT, *
TERN=3270,LANG=COBOL, *
BASE=DATAREA1, *
MODE=0UT

The symbolic description maps of this example might be referred
to in a COBOL application program as follows:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PIC S9(8) COMP.
02 MAPBASE1 PIC S9(8) comz.

———— ——— — — ——

01 DFHTIOA COPY DFHTIOA.
01 DATAREAY PIC X (1920).
01 name COPY MAPSET1.
01 name COPY MAPSET2.

MAPSET1 and MAPSET2 both redefine DATAREA1; only one 02
statement is needed to establish addressability. However, the
progran can only use the fields in one of the symbolic
description maps at a time.

If BASE=DATAREA1 is deleted from this example, an additional 02
statement is needed to establish addressability for MAPSET2;
the 01 DATAREA1 statement is not needed. The program couid
then refer to fields concurrently in poth sympolic description
maps.

In PL/I application programs, the name specified in the BASE
operand is used as the name of the pointer variable on which
the symbolic description map is based. If this operand is
omitted, the default name (BMSMAPBER) is used for the pointer
variaple. The PL/I programmer is responsible for establishing
addressability for the based structures.

218 CICS/VS APRM (CL)

CTRL=

DATA=

specifies the default color for all fields in all maps in a map
set unless overridden explicitly by the COLOR option of a
DFHMDI or DFHMDF macro. If this option is specified when
EXTATT=NO, a warning will be issued and the option ignored. If
this option is specified, but EXTATT is not, EXTATT=MAPONLY
will be assumed.

specifies device characteristics related to terminals of the
3270 Information Display System. CTRL=ALARM is valid for TCAHM
3270 SDLC and VTAM-supported terminals (except interactive and
batch logical units); all other parameters for CTRL are
ignored. This operand must be specified on the last (or only)
map of a page unless the options of a BMS command are being
used to override the corresponding operand in the DFIMSD macro.
If the CTRL operand is specified in the DFHMDI macro, it cannot
be specified in the DFHMSD macro.

PRINT
must be specified if the printer is to be started; if
omitted, the data is sent to the printer buffer but is not
printed. This operand is ignored if the map set is used
with 3270 displays without the Printer Adapter feature.

140, L64, L8O, HONEOM
are mutually exclusive options that control the line length
on the printer. 1L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respectively. HONEOM causes the default printer line
length to be used.

FREEKB
specifies that the keyboard should be unlocked after the
map is written out. If omitted, the keyboard remains
locked; further data entry from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible alarm feature. For other VTAM
terminals it sets the alarm flag in the FMH; this feature
is not supported by interactive and batch logical urnits.

FRSET
specifies that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to a not-—
modified condition (that is, field reset) before map data
is written to the buffer. This allows the DFHAMDF macro
with the ATTRIB operand to control the final status of any
fields written or rewritten in response to a BMS command.

specifies the format of the data.

FIELD
specifies that the data is passed as contiguous fields in
the following format:

JLLjA)data fieldjLL}A)data field JLLjA}data field

Chapter 3.3. Basic Mapping Support (BMS) 219

——— — ——— —

EXTATT=

HILIGHT=

®LL® is two bytes specifying the length of the data as
ipput from the terminal (these two bytes are ignored in
output processing). "A"™ is a byte into which the
programmer may place an attribute to override that
specified in the map used to process this data (see
wStandard Attribute List and Printer Control Characters
(DFABMSCA) ," later in this chapter).

BLOCK

specifies that the data is passed as a continuous stream in
the following format:

jAjdata field|space|A|data field|space|

—t

This stream is processed as line segments of the length
specified in the map used to process the data set. The
data is in the form that it appears on the terminal; that
is, it contains data fields and interspersed blanks
corresponding to any spaces that are to appear between the
fields on output. The first byte of each line is the
attribute byte; it is not available for data. EXTATT=YES
cannot be used if DATA=BLOCK is specified.

specifies whether the extended attributes (COLOR, HILIGHT, PS,
and VALIDN) are supported.

NO

specifies that the extended attributes are not supported;
the physical and symbolic description maps will be the same
as those generated under Version 1 Release 4. M"iO" is the
default unless COLOR, HILIGHT, PS, or VALIDN is specified
in the DFHMSD macro, in which case EXTATT=MAPONLY will be
assumed. If the TERM operand is specified and is other
than 3270, 3270-1, 3270—2, or ALL, EXTATT=MAPONLY or
EXTATT=YES will be invalid, and the COLOR, HILIGHT, PS, and
VALIDN operands on the DFHMSD, DFHMDI, or DFHMDF macros
will be invalid.

MAPONLY

YES

specifies that the extended attributes can be specified in
a map, but that the resulting symbolic description map will
contain no fields for them, and that it will be the same as
one generated under Version 1, Release 4. This operand can
be used to add the extendasd attributes to an =2xisting map
without recompiling.

specifies that the extended attributes can be specified in
a map, and that they can be modified dynamically. The
symbolic description map (DPSECT) will contain subfields for
the attributes, identified by suffixes C (for COLOR), H
(for HILIGHT), P (for PS), and V (for validation) .

specifies the default highlighting attribute for all fields in
all maps in a map set.

OFF

is the default and means that no highlighting is used.

220 CICs/VsS APRM (CL)

BL1NK
specifies that the field is to "blink" at a set frequency.

REVERSE
specifies that the character or field is displayed in

“reverse video", for example, on a 3278, black characters
on a green background.

UNDERLINE
specifies that a field is underlined.

If this option is specifisd when EXTATT=NO, a warning will pe
issued and the option ignored. If this option is specified,
but EXTATT is not, EXTATT=MAPONLY will be assumed.

HTAB=tab[,tab}...

LANG=

specifies one or more tab positions for use with interactive
and batch logical units having horizontal forms control.

specifies the language in which the application progranm
referring to a symbolic description map is written and, hsnce,
is applicable for only a DFHMSD TYPE=DSECT macro.

AS
specifies that the symbolic description map is to be
referred to by an assembler—language prograni.

COBOL
specifies that the symbolic description map is to be
referred to by a COBOL program.

PLI
specifies that the symbolic description map is to be
referred to by a PL/I progran.

RPG

specifies that the symbolic description map is to be
referced to by an RPG II program. This parameter is valid
for CiICS/DOS/VS only.

LDC=mnemonic

MODE=

specifies the mnemonic to pe used by CICS/VS to determine the
logical device code that is to be used for a BMS output
operation and transmitted in the function management header to
the logical unit if no LDC operand has been specified on any
previous BMS output in the logical message. This operand is
used only for TCAM anc VTAM-supported 3600 terminals, and bpatch
logical units.

IN
specifies an input map generation.

uT

specifies an output map generation.

Chapter 3.3. Basic Mapping Support (BMS) 221

OBFMT=

INOUT :
specifies that the map definition is to be used for both
input and output mapping operations.

Input mapping is not available for VTAM—supported 3600
terminals. However, INOUT may be specified for map generation.
The map can then be used as a dummy input map for input
operations using the RECEIVE MAP command.

specifies whether outboard formatting is to be used. This
operand is available only for 3650 logical units. Refer to the
CICS/VS 3650 Guide for details of 3650 logical units and of
outboard formatting.

YES
specifies that all maps within this map set can be used in
outboard formatting, except those for which OBFMT=NO is
specified in the DFHMDI macro.

specifies that no maps within this map set can be used in
outboard formatting, except those for which OBFMT=YES is
specified in the DFRMDI macro.

specifies that programmed symbols are to be used.

BASE
specifies that only the basic symbols are used.

psid
specifies a single EBCDIC character or a hexadecimal code
of the form X*nn*, that identifies the set of programmed
symbols.

If this option is specified when EXTATT=NO, a warning will be
issued and the option ignored. If this option is specified,
but EXTATT is not, EXTATT=MAPONLY will be assumed.

STORAGE=AUTO

222

specifies, for assembler—-language programs, that separate maps
within a map set are to occupy separate storage, not to overlay
one another.

specifies, for COBOL programs, that the symbolic description
maps in the map set are to be in separate (that is, not
redefined) areas. This operand is used when the symbolic
description maps are copied into the WORKING—STORAGE section
and the storage for the separate maps in the map set is to be
used concurrently.

specifies, for PL/I programs, that the symbolic description
maps are to be declared as having the AUTOMATIC storage class.
If not specified, they are declared as BASED.

If STORAGE=AUTO is specified, BASE=pame cannot be used. If

STORAGE=AUTO is specified and TIOAPFX is not specified,
TIOAPFX=YES is assumed.

CICS/VS APRM (CL)

SUFFIX=n

specifies a one-character map set suffix that overrides any

suffix implied by the TERM operand.
that the TERM operand has been ignored.
catalog the map set, with this suffixed nanme,

A message will indicate
The user should
in the progranm

library, and ensure also that there is no conflict with a

generated name of another version of the map set.

numeric suffixes would help prevent conflict.

TERM=terminal type
specifies the type of terminal or logical unit associated with

the map set.

If no terminal type is specified, 3270 is

The use of

assumed .
Map Set

TERM= Remarks Suffix
CRLP Card-reader—in/Line-printer-out A
TAPE B
DISK C
TWX D
1050 E
2740 F
2741 G
2770 I
2780 J
3780 K
3270-1 Use for 40—column displays L
3270-2 Use for 80—column displays M
INTLU|3767137701)SCS These four parameters ars

synonymous. They cover all

interactive logical units,

including the 3790 full-

function LU and the

SCS—printer LUs (3270 and 3790). P
2980 Excluding the 2980 Model 4 Q
29804 R
3270 For use when it is not

important to distinguish

between different models.

This parameter is synonymous

with ALL, and is the default

applied if the operand is not

coded. blank
3601 1]
3653 . Use for the host—conversational

(3653) LU v
36500P Use for the interpreter LU W
3650,/3270 Use for the host—conversational

(3270) LU X
BCHLU|3770B These two parameters are

synonymous. They cover all

batch and batch data inter-—

change logical units. Y
ALL Covers all the above blank

For TCAM-connected terminals (other than 3270 or SNA devices),

use either CRLP or ALL;

for TCAM—connected 3270s or SNA

devices, select the appropriate parameter in the normal way.

If ALL is specified, ensure that device-dependent characters
are not included in the map set and that format characteristics
such as page size are suitable for all input/output operations

Chapter 3.3.

Basic Mapping Support (BMS)

223

TIOAPFX=

VALIDN=

(and all terminals) in which the map sst will be applied. For
example, some terminals are limited to 480 bytes, others to
1920 bytes; the 3604 is limited to six lines of 40 characters
each. Within these guidelines, use of ALL can offer important
advantages. Since an assembly run is required for each map
generation, the use of ALL, indicating that one map is to be
used for more than one terminal, can result in significant time
and storage savings.

However, better run-time performance for maps used by single
terminal types will be achieved if the terminal type (rather
than ALL) is specified. Alternatively, BMS support for device-—
dependent map sets can be bypassed by specifying BMSDDS=NO in
the DFHSG PROGRAM=BMS system macro. (See the CICS/VS Systen
Programmer's Reference Manual for further details.)

specifies whether BMS should include a filler in the symbolic
description maps to allow for the unused TIOA prefix.

YES
specifies that the filler should be included in the
symbolic description maps. If TIOAPFX=YES is specified,
all maps within the map set have the filler, except when
TIOAPFX=NO is specified on the DFHMDI macro. TIOAPFX=YES
should always be used for command—level application
progranms.

NO
is the default and specifies that the filler is not to be
included. The filler may still be included for a map if
TIOAPFX=YES is specified on the DFHMDI macro.

MUSTFILL
specifies that the field must be filled completely with
data. An attempt to move the cursor from the field before
it has been filled, or to transmit data from an incomplete
field, will raise the inhibit input condition.

MUSTENTER

specifies that data must pe entered into the field. An
attenpt to move the cursor from an eampty field will raise
the inhibit input condition.

| VTAB=tab[,tab]...

224

specities one or more tab positions for use with interactive
and batch logical units having vertical forms control.

C1CS/VS APRM (CL)

Define a Map (DFHMDI Macro)

-
|

map |DFHMDI | [, COLOR={DEFAULT|BLUE |RED| PINK | GREEN | TURQUOISE | YELLOW|

NEUTRAL})

[,COLUMN= {number | NEXT | SAME}]

[,CTRL= [PRINT J{ , {L40)L64) L80 | HONEOM}]
[,FREEKB J{ ,ALARM][,FRSETY)]

{ ,DATA= {FIELD |BLOCK}]

[,HEADER=YES]

[,HILIGHT={OFF | BLINK | REVERSE | UNDERLINE}]

[,JUSTIFY= ([{LEFT|RIGHT}][, {FIRST|LAST})]

[,LINE= {number | NEXT | SAME}]

[,OBFMT={YES |NO} }

[,PS={BASE|psid}]

[»,SIZE= (line,column)]

[,TIOAPFX={YES|NO} }

[,TRAILER=YES] .

{ ,VALIDN= { MUSTFILL J[,MUSTENTER]))]

o - . —Gn - — . — oy " ——— - —
- T . o ————— W W e R WS W e)
e - . - - G W W wm - —

This macro is used to define a map. It defines the size of the data to
be mapped and its position within the input or output. When defining
more than one map, the corresponding number of DFHEMDI macros must be
used.

If the maps are for use in a COBOL program, and STORAGE=AUTO has been
specified in the DPHMSD macro, they must be specified in descending size
sequence (size refers to the generated 01 level data areas and not to
the size of the map on the screen).

The operands are defined as follows:

map
is the name (1 through 7 characters) of the map.

COLOR=
specifies the default color for all fields in a map unless
overrifiden explicitly by the COLOR option of a DFHMDF macro.
If this option is specified when EXTATT=NO is specified in the
associated DFHMSD macro, a warning will be issued and the
option ignored.

COLUMN=

specifies the column in a line at which the map is to be
placed, that is, it establishes the left or right map margin.
The JUSTIFY operand controls whether map and page margin
selection and column counting are to be from the left or right
side of the page. The columns between the specified map margin
and the page margin are not available for subsequent use on the
page for any lines included in the map.

number
is the column from the left or right page margin where the
left or right map margin is to be established.

NEXT
indicates that the left or right map margin is to be placed
in the next available column from the left or right on the
current line.

Chapter 3.3. Basic Mapping Support (BMS) 225

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

CTRL=

DATA=

226

SAME
indicates that the left or right map margin is to be
established in the same column as the last non-header or
non-trailer map used that specified COLUMN=number and the
same JUSTIFY parameters as this macro.

Refer to the section "map Positioning," later in this chapter,

for a more detailed discussion.

specifies device characteristics related to terminals of the
3270 Information Display System. CTRL=ALARM is valid for TCAM
3270 SDLC and VIAM-supported terminals (except interactive and
batch logical units); all other parameters for CTRL are
ignored. This operand must be specified on the last (or only)
map of a page unless options of a BMS command are being used to
override the correspondlng operands in the DFBMSD macro. If
the CTRL operand is specified in the DFHMDI macro, 1t cannot be
spec1f1ed in the DFHMSD macro.

- PRINT

must be specified if the printer is to be started; if

omitted, the data is sent to the printer buffer but is not
~printed. This operand is ignored if the map set is used

with 3270 displays without the Printer Adapter feature.

L40, L64, L8O, HONEOM
are mutually exclusive options that control the line length
on the printer. L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respectively. HONEOM causes the default printer line
length to be used.

FREERB
specifies that the keyboard should be unlocked after the
map is written out. If omitted, the keyboard remains
locked; further data entry from the keyboard is inhibited
until this status is changed.

ALARM
" activates the 3270 audible alarm:. For other VTAM terminals
it sets the alarm flag in the FMH; this feature is not
supported by interactive and batch logical units.

FRSET
specifies that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to a not-
modified condition (that is, field reset) before map data
is written to the buffer. This allows the DFHMDF macro
with the ATTRIB operand to control the final status of any
fields written or rewritten in response to a BMS command.

specifies the format of the data.

FIELD
specifies that the data is passed as contiguous fields in
the following format:

|LL]AJdata field|LLjAjdata field |LL|A|data field
1

CICS/VS APRM (CL)

#LLm 1s two bytes specifying the length of the data as
input from the terminal (these two bytes are ignored in
output processing). "A"™ is a byte into which the
prograamer may place an attribute to override that
specified in the map used to process this data (see
®Standard Attribute List and Printer Control Characters
(DFHBMSCA) ," later in this chapter).

BLOCK
specifies that the data is passed as a continuous stream in
the following format:

jAjdata field|space|A|data field}space}

This stream is processed as line segments of the length
specified in the map used to process the data set. The
data is in the form that it appears on the terminal; that
is, it contains data fields and interspersed blanks
corresponding to any spaces that are to appear between the
fields on output. The first byte of cach line is the
attribute byte; it is not available for data. *

HEADER=YES

HILIGHT=

JUSTIFY=

allows the map to be used during page building without
terminating the overflow comdition (sse "Overflow Processing,"
later in this chapter). This operand may be specified for more
than one map in a map set.

specifies the default highlighting attribute for all fields in
a map.

OFF

is the default and means that no highlighting is used.

BLINK
specifies that the field is to "blink" at a set frequency.

REVERSE
specifies that the field is displayed in "reverse video",
for example, on a 3278, black characters on a green
packground.

UNDERLINE
specifies that a field is underlined.

If this option is specified when EXTATT=NO is specified in the
associated DFHMSD macro, a warning will be issued and the
option ignored. If this option is specified, but EXTATT is
not, EXTATT=MAPONLY will be assumed.

specifies the margins on a page in which a map is to be
formatted.

LEFT
indicates that the map is to be positioned starting at the
specified column from the left margin on the specified
line. A

Chapter 3.3. Basic Mapping Support (BMS) 227

LINE=

OBFMT=

228

RIGHT
indicates that the map is to be positioned starting at the
specified column from the right margin on the specified
line.

FIRST
indicates that the map is to bs position=4 as the first map
on a new page. Any partially formatted page from preceding
BMS commands is considered to be complete. This operand
can be specified for only one map per page.

LAST
indicates that the map is to be positioned at the bottom of
the current page. This operand can be specified for
multiple maps to be placed on one page. However, maps
other than the first map for which it is specified must be
able to be positioned horizontally without requiring that
more lines be used.

LEFT and RIGHT are mutually exclusive, as are PIRST and LAST.
If neither PIRST nor LAST is specified, the data is mapped at
the next available position as determined by other parameters
of the map definition and the current mapping operation. FIRST
and LAST are ignored unless PAGEBLD is specified, since
otherwise only one map is placed on each page.

Refer to the section "Map Positioning," later in this chapter,
for a more detailed discussion.

specifies the starting line on a page in which data for a map
is to be formatted.

number
is a value from 1 to 240, specifying a starting line
number. A request to map data on a iine and column that
has been formatted in responses to a preceding BMS command
causes the current page to be treated as though complete.
The new data is formatted at the requested line and column
on a new page.

NEXT
specifies that formatting of data is to begin on the next
available completely empty line. If LINE=NEXT is specified
in the DFHMDI macro, it is ignored for input operations and
LINE=1 is assumed.

SAME
specifies that formatting of data is to begin on the same
line as that used for a preceding BMS command. If the data
does not fit on the same line, it is placed on the next
available completely—empty line.

Refer to the section "Map Positioning,®™ later in this chapter,
for a more detailed discussion.

specifies whether outboard formatting is to be used. This
operand is available only for 3650 logical units. Refer to the

CICS/VS 3650 Guide for details of 3650 logical units and of
outboard formatting.

If omitted, the OBFMT operand in the DFHMSD macro is used.

CICS/VS APRM (CL)

PS=

SIZE=

TIOAPFX=

YES

specifies that this map is to be used with outboard
formatting.

NO

specifies that this map is not to be used with outboard
formatting.

specifies that programmed symbols are to be used.

BASE
specifies that only the basic symbols are used.

psid
specifies a single EBCDIC character or a hexadecimal code

of the form X'nn®, that identifies the set of programmed
symbols.

If this option is specified when EXTATT=NO is specified in the
associated DFHMSD macro, a warning will be issued and the
option ignored. If this option is specified, but EXTATT is
not, EXTATT=MAPONLY will be assuned.

specifies the size of a map.

line
is a value from 1 to 240, specifying the depth of a map as
a number of lines.

column
is a value from 1 to 240, specifying the width of a map as
a numper of columns. Space for the attribute byte should
be included.

This operand is required in the following cases:
e An associated DFHMDF macro with the POS operand is used.

e The map is to be referred to in a SEND MAP command with the
ACCUM option.

e The map is to be used when referring to input data from
other than a 3270 terminal in a RECEIVE MAP commangd.

specifies whether BMS should include a filler in the symbolic
description maps to allow for the unused TIOA prefix. If
omitted, the TIOAPFX operand on the DFHMSD macro is used.

YES
specifies that the filler should be included in the
symbolic description map. TIOAPFX=YES should always be
used for command level application programs.

NO

specifies that the filler is not to be included for this
map. :

Chapter 3.3. Basic Mapping Support (BES) 229

TRAILER=YES

VALIDN=

230

allows the map to be used during page building without
terminating the overflow condition (see "Overflow Processing,"
later in this chapter). This operand may be specified for more
than one map im a map set. If a trailer map is used other than
in the overflow environment, the space normally reserved for
overflow trailer maps is not reserved while mapping the trailer
map.

MUSTFILL
specifies that thes field must be filled completely with
data. An attempt to move the cursor from the field before
it has been filled, or to transmit data from an incomplete
field, will raise the inhibit ianput conditions.

MUSTENTER
specifies that data must be enterad into the field. An
attempt to move the cursor from an empty field will raise
the inhibit input condition.

CICS/VS APRM (CL)

Detine a Field (DFHMDF Macro)

r

1

[£1d] |DFHMDF [,POS={number| (Line,column)} j

[,ATTRB=([{ASKIP|{PROT|UNPROT[,001}][, {BRT|NORM |DRK}]
{,DET) ,IC][,FSET])]

[,COLOR={DEFAULT |BLUE{RED}PINK|GREEN | TURQUOISE|YELLOW|
NEUTRAL}]

[,GRPNAME=group—name]

[,HILIGHT={OFF|BLINK|REVERSE|UNDERLINE}]

{ ,INITIAL='character data*|XINIT=hexadecinsal data}

[,JUSTIFY=([{LEFT)RIGHT}){ , {BLANK]ZERO}])]}

[,LENGTH=number]

[,OCCURS=number]

[,PICIN='value']

[,PICOUT="value"]

[,PS={BASE|psid}]

{

-
|
|
|
!
|
1
|
|
)
|
|
]
1
1
I
i ,VALIDN= ([MUSTFILL }{ ,MUSTENTER])]
|

L

o - W — ——— — g — N —— o — ——
I ——— A kR e i
e o S e T o - — . —— —— — o —— —)

This macro is used to define a field. One DFHMDPF pacro is required for
each field in a map, giving information such as symbolic field name,
field position, field length, attribute byte (for 3270 terminals),
initial constant data, justification of input, and COBOL or PL/I data
picture. Two or more DFHMDP macros must be arranged in anumerical order
of the POS operand, except for output mapping operations using
DATA=FIELD.

The number of named fields that can be defined for a COBOL or PL/I
input/output map must not exce=d 1023.

The operands are definsd as follows:

f1d
is the name (1 through 7 characters) of the field. Aalthough a
name is not required for every field within a map, a name must
be specified for at least one field of a map to be compiled
under COBOL or PL/I. All fields within a group must have
names.

If name is omitted, an application program cannot access the
field to change its attributes or alter its contents. For an
output map, omitting the field name may be appropriate when the
INITIAL operand is used to specify field coantents. If a field
name is specified and the map that includes the fiz2ld is used
in a mapping operation, data supplied by the user overlays data
supplied by initialization (unless default data only is being
written) .

POS=
specifies the location of a field. This operand specifies the
individually addressable character location in a map at which
the attribute byte that precedes the field is positionsd.

number
specifies the displacement (relative to zero) from the
beginning of the map being defined.

Chapter 3.3. Basic Mapping Support (BHMS) 231

ATTRB=

232

(1inz,column)
specify lines and columns (relative to one) within the map
being defined.

The location of data on the output medium is dependent on
DFHMDI macro parameters as well.

The first position of a field is reserved for an attribute
byte. When supplying data for input mapping from non—-3270
devices, the input data must allow space for this attribute
byte. Input data must not start in column 1 but may start in
column 2.

The POS operand always contains the location of the first
position in a field, which is normally the attribute byte when
communicating with the 3270. For the second and subsequent
fields of a group, the POS operand points to an assumed
attribute—byte position, ahead of the start of the data, even
though no actual attribute byte is necessary. If the fields
follow on immediately from one another, the POS operand should
point to the last character position in the previous field in
the group.

When a position number is specifi=d which represents the last
character position in the 3270, two special rules apply:

e The IC attribute should not be coded. The cursor may be
set to location zero by using the cursor option of the SEND
MAP or SENT TEXT command.

e Ii the field is to be used in an output mapping operation
with the DATA=ONLY specification, an attribute byte for
that field must be supplied in the TIOA by the application
program.

is applicable only to fields to be displayed on a 3270 and
specifies device—dependent characteristics and attributes, such
as the capability of a field to receive data or the intensity
to be used when tne field is output. If the ATTRB operand is
specified within a group of fields, it must be specified in the
first field entry. A group of fields appears as one field to
the 3270. Therefore, the ATTRB specification refers to all of
the fields in a group as one field rather than as individual
fields. Refer to the publication IBM_3270_Information Display
System Component Description for further information.

This operand applies only to 3270 data stream devices; it will
be ignored for other devices, including the SCS Printer Logical
Unit. It will also be ignored if the JLEOM option is specified
on the SEND MAP command for transmission to a 3270 printer. 1In
particular, ATTRB=DRK should not be used as a method of
protecting secure data on output. It could however, be used
for making an input field nondisplay for secure entry of a
password from a screen.

Por input map fields, DET and NUM are the only valid options;
all others are ignored.

ASKIP
specifies that data cannot be keyed into the field and
causes the cursor (current location pointer) to skip over
the field.

CICS/VS APRM (CL)

PROT

UNPR

NUM

BRT

NORM

DRK

DET

specifies that data cannot be keyed into the fielad.

If data is to be copied from one device to another attached
to the same 3270 control unit, the first position (address
0) in the buffer of the device to be copied from must not
contain an attribute byte for a protected field. When
preparing maps for 3270s, ensure that the first map of any
page do=s not contain a protectad field starting at
position 0.

oT
gspecifies that data can be keyed into the field.

ensures that the data entry keyboard is set to numeric
shift for this field unless the operator presses the alpha
shift key, and prevents entry of nonnumeric data if the
Keyboard Numeric lLock fe2ature is installed.

specifies that a high-intensity display of the field is
reguired. By virtus of the 3270 attribute character bit
assignments, a field specified as BRT is also potentially
detectable. Howsver, for the field to be recognized as
detectable by BMS, DET must also be specified.

specifies that the field intensity is to be normal.

specifies that the fi=2ld is nonprint/nondisplay. DRK
cannot be specified if DET is specified.

spacifiss that the field is potantially detectable.

The first character of a 3270 detectable f£ield must be a
w2, wyu, uwge, or plank. If the first character is w&" or
blank, the field is an attention field; if thas first
character is "2" or ">#, the field is a selection field.
(See the publication IBM_ 3270 Information Display Systenm
Component Description for further details of detectable
fields.)

A field for which BRT is specified is potentially
detectable to the 3270, by virtue of the 3270 attribute
character bit assignments, but is not recognized as such by
BMS unless DET is also specified.

DET and DRK are mutually exclusive options.

If DET is specified for an input field, only one data byte
is reserved for sach input field. This byte is set to
X'00', and remains unchanged if the field is not seslectad.
If the field is selected the byts is s2t to X'PF'.

No other data is supplied, even if the field is a selection
field and the ENTER key has been pressed.

If the data in a detectable field is required, all of the
following conditions must be fulfilled:

Chapter 3.3. Basic Mapping Support (BMS) 233

COLOR=

234

1. The field must begin with either a w2" ">w,6 or
ng" and DET must be specified in the output map.

2. The ENTER key {or some other attention key) must be
pressed after the field has been sslacted, although for
detectable fields beginning with »&" the ENTER key is
not required.

3. DET must not be specified for the field in the input
map. DET must, however, be specified in the outpaut
map.

Ic
specifies that the cursor is to be placed in the first
position of the field. The IC attribute for the last field
for which it is specified in a map is the one that takes
effect. If not specified for any fields in a map, the
default location is zero. Sp=cifying IC with ASKIP or PROT
causes the cursor to be placed im an unkeyable field.

This option may be overridden by specifying the CURSOR
option of the SEND MAP or SEND TEXT command that causes the
write operation.

PSET
specifies that the modified data tag (MDT) for this field
should be set when the field is sent to a terminal.

Specification of FSET causes the 3270 to treat the field as
though it has been modified. On a subsequent read from the
terminal, this field is read, whether or not it has been
modified. The MDT remains set until the field is rewritten
without ATTRB=FSET or until an output mapping request (for
sxample, DPHMSD CTRL=FRSET or DFHBMS CTRL=FRSET) causes the
MDT to be reset.

Either of two sets of defaults may apply when a field to be
displayed on a 3270 is being defined but not all parameters are
specified. If no ATTRB parameters are specified, ASKIP and
NORM are assumed. 1If any parameter is specified, UNPROT and
NORM are assumed for that field unless overridden by a
specified parameter.

specifies the colors to be used. If this option is specified
when EXTATT=NO is specified in the associated DFHMSD macro, a
warning will be issued and the option ignored.

CICS/VS APRM (CL)

GRPNAME=group--name

HILIGHT=

is the name (1 through 7 characters) used to generate symbolic
storage definitions and to combine specific fields under one
group name. The same group name must be specified for each
field that is to belong to the group.

The fields in a group must follow on; there can be intervening
gaps between them, but not other fields from outside the group.
A field name must bes specified for every field that belongs to
the group, and the POS operand must be also specified to ensure
the fieslds follow each other. All the DFHMDF macros defining
the fields of a group must be placed togsther, and in the
correct order (upward numeric order of th= POS operand).

For example, the first 20 columns of the first six lines of a
map can be defined as a group of six fields, so long as the
remaining columns on the first five lines are not defined as
fields.

The ATTRB operand specified on the first field of the group
applies to all of the fields within the group. The sum of the
lengths of the fields within the group must not exceed 256
bytes. If this operand is specified, the OCCURS operand cannot
be specified.

Examples showing the effect of this operand are included later
in the chapter.

specifies the type of highlighting to be used.

OFF
is the default and means that no highlighting is used.

BLINK
specifies that the field is to "blink" at a set frequency.

REVERSE
specifies that the field is displayed in "reverse video™,
for example, on a 3278, black characters on a green
background.

UNDERLINE
specifies that a fi=ld is underlined.

If this option is specified when EXTATT=NO is specified in the

associated DFHMSD macro, a warning will be issued and the
option ignored.

Chapter 3.3. Basic Mapping Support (BMS) 235

|
|
I
1
I

INITIAL=*character data'|XINIT=hexadecimal data

specifies constant or default data for an output field. The
INITIAL operand is used to specify data in character form; the
XINIT operand is used to specify data in hexadecimal form.
INITIAL and XINIT are mutually exclusive.

For fields with the DET attribute, initial data that begins
with a blank character, nwgw, nd>n, or n?n should be supplied.

The nuaber of characters that can be specified in the INITIAL
operand is restricted to the continuation limitation of the
asseapbler to be used or to the value specified in the LENGTH
operand (whichever is the smaller).

Hexadecimal data is written as an even number of hexadecimal
digits, for example, XINIT=C1C2. If the numper of valid
characters is smaller thaa the field length, the data will be
padded on the right with blanks. For exampls, XINIT=C1C2 might
result in an initial field of *AB L

If hexadecimal data is specified that corresponds with line or
format control characters, the results will bs unpredictable.
The XINIT operand should therefore be us=sd with care.

JUSTIFY=

236

specifies the field justifications for input operations. This
operand is ignored for TCAM-supported 3600 and 3790, and for
VTAd-supported 3600, 3650, and 3790 terminals, as input mapping
is not available.

LEFT
specifies that data im the input field is left—justified.

RIGHT
specifies that data in the input field is rignt-justified.

BLANK
specifies that blanks are to be inserted in any unfilled
positions in an input field.

ZERO
specifies that zeros are to be inserted in any unfilled
positions in an iaput field.

LEFT and RIGHT are mutually exclusive, as are BLANK and ZERO.
If certain parameters are specified but others are not,
assumptions are made as follows:

Specifisgd Assum=d
LEFT BLANK
RIGHT ZERO
BLANK LEFT
ZERO RIGHT

If JUSTIPY is omitted, but the NUM attribute is specified,
RIGHT and ZERO are assumed. If JUSTIPFY is omitted, but
attributes other than NUM are specified, LEFT and BLANK are
assumed.

If a field is initialized by an output map or contains data

from any other source, data that is keyed as input may not be
justified and the additional data may remain in the field.

CICS/VS APRM (CL)

| LENGTH=number

! specifies the length (1 through 256 bytes) of the field. This
} specified length should be the maximum length regquired for

} application—program data to be entered into the field; it

! should not include the one-—byte attribute indicator appended to
} the field by CICS/VS for use in subsequent processing. The sun
1 of the lengths of the fields within a group must not exceed 256
| bytes. LENGTH can be omitted if PICIN or PICOUT is specified

| but is required otherwise.

The map dimensions specified in the SIZE operand of the DFHMDI
macro instruction defining a map may be smaller than the actual
page size or screen size as defined for the terminal. The
LENGTH specification in a DFHMDF macro imstruction cannot cause
the map—defined boundary on the same line to be exceeded. That
is, the length declared for a field cannot excesd the number of
positions available from the starting position of the field to
the final position of the map—defined line. For example, given
an 80-position page line, the following map definition and
field definition are valid:

DFHMDI SIZE=(2,40),...
DFHMDF PO0S=22,LENGTH=17,...

but the following definitions are not acceptable:

DFHMDI SIZE=(2,40),...
DFAMDF P0OS=22,LENGTH=30,...

OCCURS=number
specifies that the indicated number of entries for the field
are to be generated in a map and that the map definitiomn is to
be generated in such a way that the fields are addressable as
entries in a matrix or an array. This permits several data
fields to be addressed by the same name (subscripted) without
gensrating a unique name for each field. OCCURS and GRPNAME
are mutually exclusive; that is, OCCURS cannot be used when
fields have been defined under a group name. If this operand
is omitted, a value of 1 is assum=z4d.

) Examples showing the effect of the OCCURS operand are included
) later in the chapter.

Chapter 3.3. Basic Mapping Support (BAS) 237

PICIN=*%value’

238

specifies a picture to be applied to an input field in an IN or
INOUT map; this picture serves as an editing specification
which is passed to the application program, thus permitting the
user to exploit the =diting capabilities of COBOL or PL/I. The
PICIN operand is not valid for assembler programs. BMS checks
‘value' to ascertain that the specified characters are valid
‘picture specification characters for the language of the map.

However, no validity checking of the input data is performed by
BMS or the high-level language when the map is used, so any
desired checking must be performed by the application progranm.
The length of the data associated with 'value® should be the
same as that specified in the LENGTH operand if LENGTH is
specified. If both PICIN and PICOUT (see below) are used, an
error message is produced if their calculated lengths do not
agree; the shorter of the two lengths is used. If PICIN or
PICOUT is not coded for the field definition, a character
definition of the field is automatically generated regardless
of other operands that are coded, such as ATTRB=NUA.

As an example, assume the following map definition is created
for reference by a COBOL application program:

MAPX DFHMSD TYPE=DSECT,LANG=COBOL,MODE=INOUT

MAP DFAMDI LINE=1,COLUMN=1,SIZE=(1,80)

F1 DFHMDF POS=0,LENGTH=30

F2 DFHMDF POS=40,LENGTH=10,PICOUT='$%$$,$50.00"

F3 DFHMDF POS=60,LENGTH=6,PICIN="9999V99"*,PICOUT="229.99"

DFHMSD TYPE=FINAL

The following DSECT is generated:

01 MAPI.

02 FIL PIC S9 (4) COMP.
02 FI1A PIC X. .
02 FILLER REDEFINES F1A.
03 F1F PIC X.

02 PIT PIC X(30).

02 PILLER PIC X.

02 F2L PIC S9(4) COMP.
02 F2a PIC X. :

02 PFILLER REDEFINES F2A.
03 F2F PIC X.

02 P21 PIC X (10).

02 PFILLER PIC X.

02 F3L PIC S9 (4) COMP.
02 F3A PiC X.

02 FILLER REDEFINES F3A.
03 F3F PIC X.

02 F31 PIC 9999Vv99.

02 PFILLER PIC X.

01 MAPO REDEFINES MAPI.

02 PFILLER PIC X(3).

02 F10 PIC X (30).

02 FILLER PIC X.

02 FILLER PIC X (3).

02 F20 PIC 3%,$30.00.
02 FILLER PIC X.

02 FILLER PIC X(3).

02 F30 PIC ZZ29.99.
02 FILLER PIC X.

CICS/VS APRM (CL)

PICOUT='value®
is similar to PICIN, except that a picture to be applied to an
output field in the OUT or INOUT map is generated.

Like PICIN, PICOUT is not valid for assembler programs.

PS=
specifies the programmed symbol set to be used for the display
of the field.

BASE
specifies that only the basic symbols are used.

psid
specifies a single EBCDIC character or a hexadecimal code
of the form X"nn®, that identifies the set of programmed

symbols.

If this option is specified when EXTATT=NO is specified in the
associated DFHMDS macro, a warning will be issued and the
option ignored. If this option is specified, but EXTATT is
not, EXTATT=MAPONLY will be assumed.

VALIDN=

MUSTFILL
specifies that the field must be filled completely with
data. An attempt to move the cursor from the field before
it has been filled, or to transmit data from an incomplete
field, will raise the inhibit input conditions.

MUSTENTER
specifies that data must be entered into the field. An
attempt to move the cursor from an empty field will raise
the inhibit input condition.

Map Positioning

The position of a map on a screen is determined by two major factors:
the current contents of the screen, and the values coded for the LINE,
COLUMN, and JUSTIFY operands of the DFHMDI macro. Positioning is also
affected if the DFHMDI macro specifies HEADER=YES or TRAILER=YES, and by
the depth of the deepest trailer map in the map set.

THE SCREEN CONTENTS
At any instant, the part of the screen which is still available for maps

is in the form of either an L, a reversed L, a rectangle or an inverted
T, as shown by the unshaded area in the following diagram.

Chapter 3.3. Basic Mapping Support (BMS) 239

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

next column left reference next column right reference
from left column from right column

. - |

next free line —————

free
area

|

L e e e e e e e e e e e =] = ——

trailer size

The shape and size of this area is represented internally by four
variables: current line, next free line, next column from left, and
next column from right.

Three other pointers are maintained that are relevant to map
placement though they do not affect the area available: 1left reference
column and right reference column, which are used when COLUMN=SAME is
specified, and trailer size.

THE TRAILER AREA

The trailer size is equal to the number of lines that would be occupied
by the deepest trailer map in the map set currently in use. It is
determined when the map set is assembled, and is copied from the map set
whenever one is loaded. The trailer size is assumed to be zero if there
is no overflow routine.

The area defined by trailer size is not available for mapping unless
no overflow routine has been specified or the map has TRAILER=YES
specified in its DFHMDI macro.

JUSTIFY=FIRST AND JUSTIFY=LAST

If SJUSTIFY=FIRST is specified, the map is placed on a new page, so that
the only maps above it are the header maps used in overflow processing.
The LINE operand may also be used with JUSTIFY=FIRST to place the map
below the top of the page.

If JUSTIFY=LAST is specified, the map is placed as low as possible on
the page. For a non-trailer map, this is immediately above the trailer
area; for a trailer map, it is at the bottom of the page. In the
absence of an overflow routine, the trailer area is null and
JUSTIFY=ILAST places the map at the bottom of the page.

A map defined with JUSTIFY=LAST cannot be used in input operations
unless it was previously put out without the ACCUM option, in which case

240 CICS/VS APRM (CL)

JUSTIFY=LAST is ignored and the map is positionesd at the top of the
page.

THE LINE OPERAND

The LINE operand specifies the line of the screen on which the first
line of the map is to be placed. The initial determination of this 1line
is made without regard to the specification of the COLUMN operand or the
columns available on the screen on that particular line. If it
transpires that the map will not fit on the chosen line, the first
subsequent line that will satisfy the column requirements is selected.

If LINE=SAME or LINE=NEXT is specified, the initial line s=lected for
the start of the map is the current line or the next free line ,
respectively. If a number is specified in the LINE operand, the line
with that number is selected, provided the number is greater than or
equal to the number of the current line; if not, the overflow condition
is raised so that the map can be placed on the next page.

The line selected becomes the new current line and, if it is below
the next free line, the next free line is reset to the same line; the
next column from the left and right are also reset, to the left and
right margins respectively.

If the line selected is such that the end of the map extends into the
trailer area for a non-trailer map or beyond the end of the page for a
trailer map, the overflow condition is raised and the map will be placed
on the first available line of the next page when the reguest is
reissued after handling the overflow.

THE COLUMN AND JUSTIFY OPERANDS

The COLUMN specification may be =sither NEXT, SAME, or a number and is
processed in conjunction with the LEFT or RIGHT specification of the
JUSTIFY operand. JUSTIFPY=LEPT is the default and implies that the
column specification is related to the left-hand margin. Conversely,
JUSTIFY=RIGHT implies that the column specification is related to the
right—hand margin. For the purposes of this explanation, it is assumed
herecafter that JUSTIFY=LEFT has been specified (or applied by default).

If COLUMN=NEXT is specified, the column chosen for the map is the
next column from the left. If a numeric value is specified, the column
with that number is chosen, counting from the left. If COLUMN=SAME is
specified, the left reference column is chosen. (The left reference
column is the one that was most recently specified by number with
JUSTIFY=LEFT.)

The map is then checked to ensure that its right margin is not to the
right of the next column from the right. If it is, the map will not £fit
into the remaining space, so a neW line must be selected. This will be
either the next full line or, if the map is too deep, the first
available line on the next page.

Finally, the column pointers are updated by setting the next colunmn
from the left to the right margin of the map, and, if COl=number was
specified, by setting the left reference column to the specified column
number.

Chapter 3.3. Basic Mapping Support (BKS) 241

—— —— ————

PAGE BUILDING EXAMPLES

The effects of the mechanisms described above are illustrated by the
following examples. The examples show the interactions between SIZE,
LINE, COLUMN, and JUSTIFY=LEFT or RIGHT; header and trailer maps and
JUSTIFY=FIRST or LAST are not brought into the examples.

In processing a BMS command, BMS determines whether the area of the

page required oy the map is wholly available or whether any part of it
has been used by an earlier command. "Used" means actually filled by a
map or rendered unavailable as described below.

1.

2.

242

When the LINE operand of th= DFHMDI macro is coded, all lines above
the specified line are unavailable.

When JUSTIFY=LEFT is codad (or applied by default), all columns to
the left of the leftmost map column, for the full depth of the map,
are unavailable

Example: MAPA DFHMDI ...,LINE=3,COLUMN=5,JUSTIFY=LEFT,...

Map A

When JUSTIFY=RIGHT is coded, all columns to the right of the
rightmost map column, for the full depth of the map, are
unavailable.

Example: MAPA DFHMDI ...,LINE=3,COLUMN=35,JUSTIFY=RIGHT,...

35 1

Map A

CICS/VS APRM (CL)

. ————— — — — —— ——— " — —— o S—

4. When two or more maps are placed so that they share certain lines,
all columns beneath a map that ends higher are unavailable to the
depth of the map that ends lowest. Similarly unavailable are all
columns to the left (if the higher map is left justified) or to the
right (if the higher map is right justified) of the 'used® area
beneath the higher map.

Example (a): MAPA DPHMDI ...,LINE=3,COLUMN=2,JU0STIFY=LEFT,...
MAPB DFHMDI ...,LINE=4,COLUMN=20,JUSTIFY=LEFT,...

2 20

3 ///
Map A \7Map B

NN\

Example (b): MAPA DFHMDI ...,LINE=3,COLUMN=2,JUSTIFY=LEFT,...
MAPB DFHMDI ...,LINE=4,COLUMN=20,JUSTIFY=RIGHT,...

2

W iiiiiiiidds
// Map A Map B

Example (c): MAPA DFHMDI ...,LINE=3,COLUMN=40,JUSTIFY=RIGHT,...
MAPB DFHMDI ...,LINE=3,COLUMN=1,JUSTIFY=LEPT,...

Map A

Map B

Chapter 3.3. Basic Mapping Support (BMS) 243

—— ——

5. The following 1llustration shows the effect of several differeat
maps on ohe page.

\\\x \QEF\ o ////4
Map B /
N\ i Map €
= LEFT Map D /]
JUSTIFY /
= RIGHT
JUSTIFY /
= LEFT /
\\\\\ o |
N il 7

If an area of the page directly specified for a map has already been
used by a previous map, the overflow condition is raised. This
condition is handled as described later in the chapter under "Overflow
Processing.n

USING MAPS

The symbolic description map provides names for fields and groups of
fields that may be sent to and received from the devices supported by
BMS. The symbolic description map must be copied into each application
program that uses the associated physical map. (R=fer to "Copying
Symbolic Description Maps™ below.)

Data can then be passed to and from the application program under the
field names in the symbolic description map. (The names used in the
application program are those defined by the DFHMDF macro instructions
with the addition of the suffix "I" for input or "O% for output.)

Since the application program is written to manipulate the data under
the field names, altering the map format by adding new fields or
rearranging old fields does not necessarily alter the program logic.

If the map format is altered, it is necessary in most cases to make
the appropriate changes to the macro instructions that describe the map
and reassemble both the physical map and the symbolic description map.
The new symbolic description map must then be copied into the
application program and the program reassembled or recompiled. There
are some map alterations that can be made without reassembly of the
sympolic description map, in particular, COLOR, PS, HILIGHT, and VALDHN
can be added to existing maps if it is not required to change the
attributes dynamically. It is only necessary to specify EXTATT=MAPONLY,
define the new attributes, and reassemble the physical map.

244 CICS/VS APRM (CL)

An application program has access to thz input and output fielas
using the names given to the fields when the maps were generated. The
application—program logic should be dependent upon the named fields and
their contents but should be independent of the positions of the fields
within the terminal format. If it is necessary to modify a map, the
existing application program must be recompiled to gain access to the
new positions of these fields. Reprogramming is not necessary to
account for new fields or for the changed terminal format of those
fields.

By using BMS to construct and interpret data streams, application
programs can be insulated from the device—dependent considerations
required to handle the data streams. If n=cessary, ths application
program can modify temporarily the attributes or the initial data of any
named field in an output map. A collection of named attribute
combinations is supplied within BMS so that the application progran
remains essentially independent of the data stream format.

The ability to add to map definitions without obsoleting existing
application programs permits the design and implementation of systems in
a modular fashion with a progressive expansion of the screen formats.
Design and programming of the first stages of applications can begin
before later stages have been designed. These early implenentations are
protected from updates in the terminal formats.

COPYING SYMBOLIC DESCRIPTION MAPS

The symbolic description maps must be copied into the application
program as shown in the following examples; "mapsetnamel"®,
"mapsetname2", and “mapsetname3" are the names of members that contain
the assembly of a BMS symbolic storage definition. The TIOAPPX=YES
operand must be specified in the DFHMSD macro instructions used to
define the maps.

Chapter 3.3. Basic Mapping Support (BMS) 245

246

Assembler language COPY statements.

COPY mapsetnamel
COPY mapsetname2
COPY mapsetname3

The symbolic storage definitions can be copied into the DFHEISTG
DSECT, in which case storage will be provided automatically.
Alternatively, the application program can provide its own DSECT,
storage, and addressability.

While it is gesnerally stated that TIOAPFX=YES must be specified in
the map definition macros, it is possible to use maps created
without the TIOA prefix if the following technique is used.

The EXEC interface program assumes that the FROM or INTO option
specifies an area which includes the 12-byte TIOA prefix. If the
symbolic description maps do not include this, the COPY instruction
in the DFHEISTG DSECT should be preceded by a filler, as follows:

NEWNAME DS 12C
COPY MAP1

and the command must specify the FROM or INTO option instead of
using the default, for example as follows:

EXEC CICS RECEIVE MAP (*MAP1*) INTO (NEWNAME)

COBOL COPY statements. The names "mapname 1", "mapname2%, and
"mapname3" in this example are the names of the first maps in the
map sets. These names include the appropriats suffix to signify
the type of map; that is, ®™I" for input (or input/output), and "™O%
for output.

The symbolic storage definitions can be copied into either the
Linkage Section or the Working-Storage Section.

If the symbolic storage definition is copied into the Linkage
Section, the required storage must bs obtained by the application
program and access to this storage made by the BLL (base locator
for linkage) mechanism, as follows:

01 BLLCELLS.
02 FILLER PIC S9(8) COMP.
02 MAP1BLL PIC S9 (3) COMP.
02 MAP2BLL PIC SY (8) COMP.
02 MAP3BLL PIC S9 (8) COMP.

01 mapnamel COPY mapsetnamel.
01 mapname2 COPY mapsetname2.
01 mapname3 COPY mapsetname3.

If the sympolic storage definition is copied into the Working—
Storage Section, and there is more than one map in the map set, and
separate storage is required for the data in each map, the
STORAGE=AUTO operand must be specified in the DFHMSD macros.

CICS/VS APRM (CL)

If working storage is used as the origin or destination of data
processed by BMS it should be initialized with low—values by a
"MOVE LOW—VALUES TO..."™ statement.

3. PL/I %INCLUDE statements.

%INCLUDE rapsetnamel;
R%INCLUDE mapsetname2;
%INCLUDE mapsetname3;

The symbolic storage definitions may specify AUTOMATIC or BASED
storage depending on the operands of the DFAMSD macro.

LOGICAL MESSAGE BUILDING

Logical message building allows the application program to:

. Combine several small mapped data areas into one or more pages of
output, or

o Prepare more output than can be contained in one page of output.

A page is the area of a terminal on which data can be displayed or
printed at one time. The size of the area (in numbers of lines and
columns) for the terminal is specified in the TCT by the systenm
programper. A page of output may be constructed by BMS from several
small maps, and these maps must be generated together to form a map set.

The SEND MAP command is used to map and position portions of a page.
If all data to be mapped cannot be contained on one page, the overflow
condition occurs and control is passed to an overflow routine within the
application program. This routine normally causes any required trailer
{footing) data to be placed at the foot of the pags, the current page to
be written to temporary storage, a new page to be started, a heading to
be placed on the new page, and the data causing the overflow to be
mapped on thes new page.

As each page of output is completed, it is written to temporary
storage to await completion of other pages. The result of building
output data im this cumulative manner is known as a logical message. A
SEND PAGE command signifies completion of the logical message.
Alternatively, the logical message is completed upon termirnation of the
application program unless CICS/VS has insufficient storage available,
in which case the logical message is deleted.

An alternative way to build a logical message without the use of maps
is by means of SEND TEXT commands. Data is passed in text data format,
which BMS places on succeeding lines (and pages, if necessary) without
reference to maps. A word is not split betwsen lines; any word that
cannot fit on the remaining portion of a line is placed on the next
line. PFormatting can be controlled by new=-line characters (X'15")
emb2dded within the text. A SEND PAGE command signifies completion of
the logical message; alternatively, the logical message is completed
upon termination of the application program unless CICS/VS has
insufficient storage available, in which case the logical message is
deleted.

Chapter 3.3. Basic Mapping Support (BMS) 247

OUTPUT OPERATIONS

The SEND MAP and SEND TEXT commands can be used individually to request
BMS to map data and transmit it to a terminal or to a data area in the
application program.

Alternatively, these commands can be used to build a logical message
cumulatively. The logical message is built by successive SEND MAP or
SEND TEXT commands, each of which must include the ACCUM option.
Finally, a SEND PAGE command must be issued to complete the logical
message and transmit it.

SEND MAP and SEND TEXT commands cannot be used to build portions of
the same logical message. The process of building a logical message can
be discontinued by means of a PURGE MESSAGE command, which deletes the
portions of the message already built.

OUTPUT COMMANDS WITH THE SET OPTION

The SET option of the SEND MAP and SEND TEXT commands causes completed
pages be returned to the application program and a pointer to be set to
the address of a list of completed pages. Since more than one page of
output may result from a single BMS output command, there may be more
than one entry in the 1ist for a given type of terminal. The entries
for each type of terminal immediately follow one another in the list (TC
is the terminal code as shown in Figure 3.3-1). The list is laid out as
follows:

| C | Page Buffer | TC | Page Buffer | X'FF ... FF' |
L

4 bytes 4 bytes 4 bytes

The page buffer pointer points to an area of storage which has an
eight-byte storage accounting prefix, as follows:

| CICS/VS Storage Acctng | Buffer Length | Reserved | Data }

8 bytes 2 bytes 2 bytes X bytes
At this point, page buffers ars on the user®s storage chain and are
disassociated from BMS control blocks; when no longer needed, page
buffers should be released by the FREEMAIN command. The data to be
freed should not include the storage accounting prefix. The storage
containing the list of buffers should not be freed; the list will be
reused to reduce processing time. This list will be altered by the next
BMS command; its contents must be saved before that command is executed.

248 CICs/Vs APRM (CL)

TERMINAL CODE TABLE

A terminal code table is established within BMS for reference in
servicing BMS—supported terminals. There is one entry in this table for
each terminal supported under BMS. The terminal codes that appear in
tha table are given in Fiqure 3.3-1. This code appears in the list of
completed pages made available to the application program when the SET
option is specified in a SEND MAP or SEND TEXT command. The code is
available also in the EIBRCODE field of the EXEC interface block when
the INVMPSZ condition occurs; for a description of this field, refer to
Appendix A.

—

Code Terminal or Logical Unit

CRLP or TRMTYPE=TCAM terminals

Magnetic Tape

Sequential Disk

TWX Model 33/35

1050

2740 Models 1 and 2 (Without Buffer Receive)
2741

2740 Model 2 (With Buffer Receive)

2770

2780

3780

3270 (40—character width)

3270 (80—character width)

Not used

Not used

3767770 Int.LU; 3790 Full LU/SCS Printer LU; SCS Printer
2980 Models 1 and 2

2980 Model 4

Not used

Not used

3600 (3601) LU 3

3650 Host Conversational (3653) LU

3650 Interpreter LU

3650 Host Conversational (3270) LU

3770 Batch LU; 3770 and 3790 Batch Data Interchange LUs
Not used

NHNEdQHR VYO OZENRUMTIORBOQ W
- —— — ————— — S — " — - — —_ — — . — —— e —— — —— > - —

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
1
|
!
1
!
]
1
|
!
L

Pigure 3.3-1. Terminal Code Table

MESSAGE ROUTING

Message routing permits an application program to build and route a
logical message to one or more terminals. The message is scheduled, for
each designated terminal, to be delivered as soon as the terminal is
available to receive messages, or at a specified time.

A ROUTE command initiates a messaqge routing operation. It is
followed by SEND MAP or SEND TEXT comamands to build the logical messagse
to be routed. A SEND PAGE command terminates the page building and

| causes the message to be routed. When individual logical messages are

Chapter 3.3. Basic Mapping Support (BMS) 249

} routed to a terminal, they are not necessarily delivered in the sequence
) in which they were issued. If a specific sequence is required, the
| pages must be output as one message.

The SEND MAP or SEND TEXT commands that build the message nmust
include the ACCUM option. Other SEND MAP or SEND TEXT comaands without
the ACCUM option can be interleaved with these commands to send messages
to the terminal that initiated the transaction while the message to be
routed is being built.

Another consideration of routing to different types of terminal is
the handling of overflow conditions. Since different types of terminal
may have different page sizes, the overflow condition is apt to occur at
different times in page building. BHAS returns control to an overflow
routine in the application program, indicating which type of termimal
caused the overflow and how many pages have been created for that type.

The message routing facility of BMS is useful for developing message
switching and broadcasting applications. CICS/VS provides a generalized
message switching application program that uses the message routing
facility of BMS (see the CICS/VS Operator's Guide for details).

BMS MESSAGE RECOVERY
BMS provides message recovery for routed and non-routed messages.
Recoverable messages must satisfy the following requirements:

. The PAGING option must have been specified in the BMS output
commands that built the logical message.

. The BMS default REQID (**) or the specified REQID for the logical
message must have been identified to the temporary storage progran
(via the TST) as recoverable.

° The task that built the message must have reached its logical end
of task.

° The temporary storage program and the imterval control program must
also support recovery.

Display Devices Operations (BMS)

The information in this section applies, in general, only to the IBM
3270 Information Display System. All the basic facilities described in
the section "Display Device Operations® in Chapter 3.2 can be requested
in a BMS program. The following additional facilities apply only to
BMS, and are described in the following sectiomns:

. Symbolic Cursor Positioning

e Terminal Operator Paging Commands

250 CICS/VS APRM (CL)

SYMBOLIC CORSOR POSITIONING

The CURSOR option of the SEND MAP and SEND TEXT commands can be used to
position the cursor on completion of an output operation.
Alternatively, a method called symbolic cursor positioning can be usegd,
which allows a field in the data to be marked, symbolically, such that
the cursor is placed under the first data byte of the field on the
output screen.

Requirements for the use of symbolic cursor positioning are as
follows:

. MODE=INOUT must be specified in the DFHMSD macro.
. CURSOR must be specified in the BMS commandg.

. The length field, suffix nLw, associated with the field under which
the cursor is to be placed must be initialized to —1.

The remainder of the data may be built as desired by the user.
Symbolic cursor positioning is operable only for devices that allow
cursor placement to be performed independently of data placement; for
example, 3604 and 3270. Symbolic cursor positioning is ignored for
other devices.

TERMINAL OPERATOR FAGING COMMANDS

The commands used by terminal operators to communicate with BMS are
collectively known as termipnal paging_commands, or simply as paging
commands. Their format and use are discussed in detail in the CICS/VS
Operator's Guide.

Cursor placement is an important consideration in programming for
paging commands. Any of the following can cause a paging command not to
be the first data read by CICS/VS and therefore not to be interpreted as
a paging command.

. After a print operation on a 3275 Display Station, the cursor is
set to position zero. A paging command entered at this location is
not recognized unless the last position of the buffer contains an
attribute byte or the buffer has been cleared.

. A field sent with the DATAONLY option of the SEND MAP command and
without an attribute in the data (that is, with an attribute byte
in the data having the value X'00*) is written into the buffer
without an attribute byte. 1If the application program places the
cursor in this field and the operator keys a paging command
beginning at the cursor location, the paging command is not
recognized.

Since the field has no attribute byte, the data is considered to be
an extension of ths previously defined field. When the operator
keys into the middle of the hardware-recognized field and presses
the enter key, the field is transmitted from the beginning of the
previously defined field. The data at the beginning of the field
is examined for a paging command and responded to accordingly.

Chapter 3.3. Basic Mapping Support (BMS) 251

252

Cursor specification ian the BMS commands can adversely affect
operator action if the cursor is not set at the beginning of a
field. Paging commands entered at a cursor location that is not
the beginning of a field are not recognized by BMS because data
transmission starts at the beginning of the field if the field is
not set to nulls (X'00°"').

CICS/VS APRM (CL)

Map Input Data (RECEIVE MAP)

RECEIVE MAP (name)
[SET (pointer—ref) | INTO (data—wvalue)]
[MAPSET (name)]
f{ FROM (data—area) LENGTH (data—value) | TERMINAL [ASIS]])

Exceptional conditions: EOC, EODS, INVMPSZ, MAPFAIL, RDATT

[T T T T T T

This command is used to map data into a data area in the application
program. The source of the data can be either a terminal (TERMINAL
option) or another data area in the program (FROM option). If neither
option is specified, TERMINAL is assumed. The ASIS option inhibits
translation of lowercase characters to uppercase.

If the FROM and LENGTH options are used, the length specified must
equal the value received by the corresponding terminal control RECEIVE
command that includes the INTO and LENGTH options.

The data area into which the data is to be mapped can be specified in
the INTO option. Alternatively, BMS will supply a data area and place
its address in the pointer reference given in the SET option.

Data from certain logical units is not mapped, but is left unaltered.
Refer to the appropriate CICS/VS subsystem guide for details.

If neither the INTO option nor the SET option is specified, it is
assumed that the data is to be mapped into the data area defined by the
symbolic description map copied into the program. This can be
accomplished only if the map name provided is a literal constant. If it
is a variable, INTO or SET must be specified. If the data is to be
written into another data area, it must be named in the INTO option.

The data area named must be large enough to accommodate the mapped data.

oOonce the data has been mapped, fields within the mapped data can be
referred to by the field names specified in the DFHMDF macro
instructions used to define the map with the additional suffix "I".
(For example, a field named PERSN must be referred to in the application
program as PERSNI.) '

The data area into which the data is mapped must include a 12-byte
prefix for use by BMS. The application program must make provision for
this prefix only if a data description other than the BMS—supplied
symbolic description is used, or if TIOAPFX=YES is omitted from the
DFHMDI macro defining the map.

If the symbdlic description is included in the linkage section of a
COBOL application program, the 12-byte prefix must not be overwritten.

If RECEIVE MAP commands are used to read data from a 3770 batch
logical unit, the FMHs will be removed. However, if an FMH is required,
a terminal control RECEIVE command should be included to deal with the
FMH, followed by a RECEIVE MAP command with the FROM option to map the
data. -

Chapter 3.3. Basic Mapping Support (BMS) 253

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Map Output Data (SEND MAP)

SEND MAP (name)
FROM (Qata—area) [DATAONLY] | MAPONLY
[LENGTH data—value)]
[MAPSET (name)]

[FMHPARM] LUs only
[REQID (name)]
[LDC (name) } LUs only

[CURSOR[(data-value)]]

[SET (pointer—-ref) | PAGING | TERMINAL{ WAIT]]
faccuM]

[ERASE | ERASEAUP]

[PRINT]

[FREEKB]

[ALARM]

[FRSET]

[L4O |} L64 | LBO | HONEOM]

[NLEOM]

[LasT] LUs only

Exceptional conditions: IGREQCD, IGREQID, INVLDC, INVMPSZ, INVREQ,
OVERFIOW, RETPAGE, TSIOERR, WRBRK

This command is used to map output data. Several successive SEND MAP
commands with the ACCUM option can be used to build a logical message,
which must be completed by a SEND PAGE command.

If the FROM option is omitted, it is assumed that the data to be
mapped is in the data area defined by the symbolic description map
copied into the program. This assumption is valid only if the map name
provided is a literal; if it is a variable, the FROM option must be
specified. If the data is to be obtained from another data area, it
must be named in the FROM option; the LENGTH option is not required
unless the data to be mapped is less than the total length of the data
area named. '

The data area specified by the FROM option must include a 12-byte
prefix for use by BMS. The application program must make provision for
this prefix only if a data description other than the BMS-supplied
symbolic description is used.

In the symbolic description map definition, the DFHMSD macro must
have the TIOAPFX=YES operand specified either explicitly or implicitly
by the appearance of the STORAGE=AUTO operand.

The mapped data can be transmitted to a terminal (specify the
TERMINAL or PAGING option) or made available to the application program
in its mapped form (specify the SET option). If none of these options
is specified, TERMINAL is assumed. The WAIT option specifies that
control is not to be returned to the program until the operation is
completed.

The PAGING option causes the logical message to be placed in
temporary storage until it is requested by paging commands entered by
the terminal operator. The PAGING option conflicts with the LAST option
and is ignored.

If the disposition specified by the PAGING, SET, or TERMINAL option

is changed while a logical message is being built, the INVREQ condition
occurs.

254 CICS/VS APRM (CL)

The DATAONLY and MAPONLY options are used to specify that
application-program data only, or default data only, is to be written.
If both these options are omitted, data placed in the data area named in
the FROM option by the application program is merged with default data
from the map. The user—supplied data and/or attribute character (3270
only) supplied for a given field replaces the corresponding default data
and/or attribute character from the map. The MAPONLY and FROM options
are mutually exclusive. 1If the user—supplied data for a field is X*00¢®,
the data from the map for that field is used. If the user-supplied
attribute for a field is X%00*, the attribute from the map for that
field is used.

The mapped data is positioned py BMS within an area large enough to
contain one page of output. The application program need not keep track
of when a page is full: a HANDLE CONDITION OVERFLOW command will cause
BMS to transfer control to an overflow routine.

The ERASE option should always be specified on the first SEND MAP
command to select the correct screensize for the application.

OVERFLOW PROCESSING

Overflow occurs when the number of lines in the reguested map plus the

number of lines in the largest trailer map in the map set (if there are
any trailer maps) is greater than the number of lines remaining in the

page being built for the terminal involved in an output operation.

For logical units having LDC support, pages are accumulated
individually by LDC mnemonic. Therefore, overflow may occur at end of
page for each different LDC mnemonic used in different BMS commands.
The LDC mnemonic 1s accessible to the application program from LDCMNEM,
and the LDC numeric value from LDCNUM. ASSIGN commands must be used to
determine the values of LDCMNEM and LDCNUM.

Overflow can occur on a logical message being built for routing. If
the route list contains more than one LDC mnemonic, the returned LDC
mnemonic and numeric value is the first LDC mnemonic resolved in the
route list. Refer to the section "Route a Logical Message (ROUTE)"™
later in this chapter for details of route lists.

The routine to which control is transferred (specified in a HANDLE
CONDITION OVERFLOW command) must be in the application program, but no
special considerations apply. The data which was to have been mapped,
but which caused the overflow, is not mapped by BMS and remains
unaltered.

If a ROUTE command has not been issued previously, there is only one
destination. If a ROUTE comaand has been issued, the logical message is
probably being built for more than one destination. Since the
application program can build pages concurrently for terminals that have
different—sized output, overflow may occur at different times for
different terwcinal groups. The overflow routine gets control every time
any oze of tke destinations or groups of destinations encounters an
overfiow condition. The application program overflow routine must

determine which destination or group of destinations has encountered the
overflow.

Upon return to the application program from a ROUTE command, a count
of the number of destinations or groups of destinations can be
determined by means of the DESTCOUNT option of the ASSIGN command. This
count tells the application program how many overflow control areas (for
example, accumulators) are requireé. Whenever the overflow routine gets

Chapter 3.3. Basic Mapping Support (BMS) 255

control, DESTCOUNT indicates the relative overflow control number of the
destination that has encountered the overflow. This number indicates
which control area should be output, perhaps through one or more trailer
naps.

In addition to the relative control count, BMS returns the current
page number for the destination that has encountered the overflow. This
page number can be determined by means of the PAGENUM option of the
ASSIGN command.

The SEND MAP command is used to place trailer data on a page. The
macros used to format the data must contain TRAILER=YES so that the
amount of space on the page to reserve for overflow can be calculated.
More than one trailer map may be placed on a page. There should be a
dumny trailer map (not otherwise used) in the map set specifying the
number of lines to be reserved for trailer data if no single trailer map
extends over the total number of lines required for trailer data (see
Figure 3.3-2) . Maps used to map trailer data may contain JUSTIFY=LAST
to force their placement at the bottom of the page. An attempt to place
more lines of trailer data on the page than are available causes the
trailer data to be placed on a separate page by itself. Yet another
page is built to continue mapping with or without a header map.

. ——p " . — ——— —— T —— . =y
e T o e D — —— . —— —— —— - = —)
P e TR R TN e T wap e = S W WS e G WD e =)
e T — T . — —— T T - —— v =]

¥ L r L ¥ 1 4 8
| I I TR2 | | i | TR1 I
I l —_— | L s
| TR ! | TR3 | ' Ny]
| | } | | TR2 [TR3 |
—) [W— | L 1L —
No dummy trailer required. Dummy trailer required.

FPigure 3.3-2. Trailer Maps in Mapping Operations

The SEND MAP command is used also to process header data and place it
on a page. The maps used to map header data must specify JUSTIFY=FIRST
to complete processing of the previous page if that has not been done,
and to begin a new page. An attempt to place more header data on the
page than the page can contain causes multiple pages to be created.

If a header map is not used, JUSTIFY=FIRST must be specified for the
first map used after OVERFLOW is raised, if a line number is also
specified to force out the previous page. PFailure to specify this will
cause OVERFLOW to be raised again immediately.

When all trailer and/or header data has been processed, the command
that caused the overflow must be reissued, since this data has not yet
been mapped for all destinations.

It is important to recognize that BMS maintains the overflow

environment for as long as the application program issues BMS coammands
using maps defined as headers or trailers. The first use of a map that

256 CICS/VS APRM (CL)

is not defined as a header or trailer terminates overflow processing.
This coincides with reissuing the command that caused the overflow.

If an overflow routine has not been specified in a HANDLE OVERFLOW
command, no overflow occurs and new pages will be forced automatically.
If a header is to be placed on the first page and a trailer on the last,
the OVERFLOW condition would not be used.

An overview of overflow processing is given in Figure 3.3-3.

Chapter 3.3. Basic Mapping Support (BMS) 257

Figure 3.3-3.

258

]

|

«1

Application program
issues a SEND MAP
command

|
!
!
v

-
| BMS processes the command
L

!
!
|

Y

Did Yes

overflow
occur

do

—

R]
BMS has returned control)
to the application pro-— |}
gram and the SEND MAP i
command has been mapped |
for all destinations]

< ———

o m — . oy ——— = — -

J

The application program
updates all overflow
control areas to reflect
the last SEND MAP com—
mand (which may or may
not have caused over—
flow)

CICS/VS APRM (CL)

v

N e D G W D RS ey D S—— GNP WS TED g G T o e T S gy W cmm w—— R D — g

Overflow Processing

r
| OVERFLORW ROUTINE

1.

[\
.

w
.

=
.

L}
}
|
Save sufficient in-— |
formation to bs able |
to reissue the command |
that caused overflow. |
1
I
I
i

Using the overflow
control number from
DESTCOUNT, determine
the appropriate control |}
area to map its contents)
via SEND MAP commands)
specifying trailer
map(s) .

The current page number
is available fronm
PAGENUM and could be
supplied with the data
to be mapped by the
trailer map (s); and/or
this page number coald
be incremented and sup-
plied with the data to
be mapped by header

map (s) .

Return to A and reissue
the SEND MAP command.

|
!
v
—_

A

-

[

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Format Output Data Without Mapping (SEND TEXT)

Exceptional conditions: IGREQCD, IGREQID, INVLDC, INVREQ, RETPAGE,
i . TSIOERR, WRBRK

!

| SEND TEXT FROM (data—area)

{ LENGTH (data-value) ~

) [FMHPARM] LUs only
| { REQID (name)]

I {LDC (name)] ' LUs only
} [CURSOR (data-value)] .
| [SET (pointer-ref) | PAGING | TERMINAL{ WAIT]]

) [HEADER (data-area)]

| [TRAILER (@ata—area)]

] { JUSTIFY (data-value) | JUSTFIRST | JUSTLAST]]

| [ACCUM | NOEDIT]} : }

| [ERASE]

I {PRINT]}

| [FREEKB }

| [ALARM]

) [L40 | L64 | L8O | HONEOM]

| [NLEOM] - T

| [LAST] LUs only
|

i

|

!

This command is used to format output data w1thout mapping. Several
successive SEND TEXT commands with the ACCUM option can be used to build
a logical message, which must then be completed by a SEND PAGE command.
The beginning and ending of pages is handled by BMS and does not affect
the application program.

The data to be transmitted, specified by the FROM and LENGTH options,
can be sent to a terminal (specify the TERMINAL or PAGING option) or
made available to the application program in its formatted form (specify
the SET option) . If none of these options is specified, TERMINAL is
assumed. The WAIT option specifies that control is not to be returned
to the program until the operation is completed.

The PAGING option causes the logical message to be placed in
temporary storage until it is requested by paging commands entered by
the terminal operator.

If the disposition spec1f1ed by the PAGING, SET, or TERMINAL option

is changed while a logical message is being built, the INVREQ cond:.t:.on
occurs.

The options HEADER, TRAILER, JUSTIFY, JUSFIRST, and JUSLAST can be
used to edit the output pages. Any of these options imply the ACCUM
option. o .

The bDEDIT option allows the application program to control the
insertion of dev:.ce—dependent control characters and the following notes -
apply when it is omitted:

1. SEND ’IEXT formats data for each terminal so that output lines are
no longer than the line-length of the terminal as specified in the
TCT, and wherever possible the output line is broken at a blank
character. The user may force a new line at a particular point by
1nsert:.ng a new-line (X®15") character m the data stream presented
to BMS via SEND TEXT.

Chapter 3.3. Basic Mapping Support (BMS) 259

Page

20

of SC33-0077-2, revised September 1980 by TNL SN33—6268

For all terminal types, SEND TEXT interprets the data stream with
regard to the line-—size of the terminal found in the TCT and any
embedded X"15* characters, and builds an internal representation of
the final appearance of the data on the terminal. Control
characters other than X*'15"' are treated as normal character data,
and their presence may in certain cases disrupt the results of this
internal formatting process.

If the output terminal is a 3270 device and NLEOM is not specified,
SEND TEXT uses the line-length specified in the TCT to position the
data in the device buffer so that when displayed it will be in the
correct format. Hardware new-line characters are not used: instead
it is the position of the data in the buffer which determines the
output format. Therefore if the actual line-length of the terminal
differs from that specified in the TCT, the resulting output will
not be correctly formatted on the terminal.

For example, if the terminal is a 3270 printer with 132 print
positions but a TCT line-length of 80, to get correct output format
without specifying NLEOM it is necessary to specify L80 in the WCC.

The formats of the header and trailer data are described below.

HEADER AND TRAILER FORMAT

The data areas named in the HEADER and TRAILER options have the
following format:

L

pr wme . —
-— e —

L P C | PNFLD |

V2 S

< DATA

where:

LL

260

is a halfword binary field containing the length of the header
or trailer data. (The value includes the two bytes for this
field.)

is a one-byte field whose contents indicate whether page
numbering is required or not. If the field contains a
character?! other than a blank &"'40") , page numbering is
required. The character specified is the character that is
embedded in the header or trailer data in the positions (a
maximum of 5) where the page number is to appear. If the field
contains a blank, page numbering is not required.

(* X"0C*, X"15", X"17", X"26°%, and X'FF"' are reserved and
cannot be used) .

is a reserved one-byte field.

CICS/VS APRM (CL)

—— — —

PNFLD)

is the page number field. This field can be embedded anywhere
in the header or trailer data in ths required page number
position. It can contain from oma through five occurrences of
the character specified by P. These characters will be
replaced by the current page number, up to a maximum of 32,767,
as a page is built. A SEND PAGE command will causes the page
number to be reset to 1.

DATA
is the header or trailer data to be pliaced at the besginning or
end of each page of output. Embedded new-line characters
(X*15*) may be used to provide multiple hsading or footing
lines.

OUTPUT DATA WITH EXTENDED ATITRIBUTES

When the data is destined for a device with extended attributes, set
attribute (SA) orders can be included also in the data stream. These
orders enable characters or words in the data stream to be modified by
the extended attributes. These orders will be ignored during
calculation of line lengths. Orders for extended attributss not
supported by a terminal will be removed from the data stream. If a
sequence of orders is less than three characters, or contains an invalia
attribute type, the transaction will be terminated abnormally (ABMX).

Attributes will remain effective until overridden by subsequent
orders. If output exceeds a page, the attributes will apply for the
following page. However, in headers or trailers, the attributes will be
reset to their default values until changed by a new sequence of orders
within the header or trailer. On resumption of normal processing of
text after the header or trailer, the previous attributes will be
restored.

To aid the modification of characters or words, the following
symbolic names are available in DFABMSCA (the standard attribute list):
DFHSA, DFHCOLOR, DFHPS, DFHHLT, and DFHALL. (The standard list DFHBMSCA
is described in Chapter 3.2.) The following example shows PL/I
statements that will color a single word blue:

TEXTSTR = *data *||DFHSA}|DFHCOLOR| |DFHBLUE]| | *blueword °*
| IDFHSA| |DFHCOLOR | |DFHDFCOL} | 'rest of data®';

SEND TEXT FROM (TEXTSTR) LENGTH (100);

Chapter 3.3. Basic Mapping Support (BNS) 261

Complete and Transmit a Logical Message (SEND PAGE)

SEND PAGE [[TRANSID (name)] | RELEASE] | RETAIN]
[TRAILER (data-area)]
[FEHPARM (name)] LUs only
[AUTOPAGE[CURRENT | ALL] | NOAUTOPAGE]
[OPERPURGE]
[LAST] LUs only

Exceptional conditions: IGREQCD, IGREQID, INVREQ, RETPAGE,
TSIOERR, WRBRK

(o S —— o —— T ———
b - — o —— @ o

This command is used to complete and transmit a logical message built by
one or more SEND MAP or SEND TEXT commands with the ACCUM option.

Options can be included to specify how much control the terminal
operator should have over the disposition of the logical message
(AUTOPAGE and OPERPURGE) , to determine whether control should return to
the application program after transmission of the logical message
(RELEASE and RETAIN), and to add trailer data to the logical message
(TRAILER) . The format of the trailer data is described under "Format
Output Data Without Mapping (SEND TEXT)" earlier in this chapter.

If neither AUTOPAGE nor NOAUTOPAGE is specified, the paging status
specified for the terminal at system generation determines how pages are
to be written to the terminal. For logical units with LDC support,
paging status for each LDC is obtained froam the system LDC table.

To ensure that a logical message appears at the receiving terminal
before any messages that may have been routed to it, or before other
transactions are initiated from the terminal, RELEASE should be
specified. Control then returns to an application program at the next
higher logical level or to CICS/VS; this action is as if a RETORN
program control command had been issued. When control returns to
CICS/VS, the TRANSID option specifies the transaction identifier for the
next application program to pe associated with the terminal; the TRANSID
option has the same function and restrictions on its use as the TRANSID
option of the RETURN command. Refer to Chapter 4.4, #Program Control,n
for information about application program logical levels, the way in
which control returns through the levels, and the use of the TRANSID
option.

RETAIN is intended to be used for a combination of page display from
the page file (logical message built using PAGING) and operator data
entry. BMS issues an input request to the terminal after writing the
appropriate pages to the terminal. BMS issues the input request only if
the logical message is buiit with PAGING. If the logical message is
built without PAGING, BMS returns control to the application progranm
after the last page is written to the terminal, and without issuing an
input request to the terminal.

The operator may enter any page, purge, or copy commands that are
valid for the particular message. Any other entered data is passed back
to the application program after the current message is deleted.

If neither RETAIN nor RELEASE is specified and the logical message is
to be retrieved by terminal-operator requests (PAGING specified in the
SEND MAP or SEND TEXT command) , a new task is scheduled for writing
pages to the terminal. Control is returned to the application program
imaediately, rather than after the pages have been written. RETAIN and
RELEASE are ignored for routed messages.

262 CICS/VS APRM (CL)

If an error occurs during the processing of a SEND PAGE command,
control is returned to the application program, and the RETAIN or
RELEASE specification is ignored. The logical message is not considered
complete. The applicatioa program should either retry the SEND PAGE
operation or delete the logical message.

Any logical message started but not completed when a SYNCPOINT

comnmand is executed is forced to completion by an implied SEND PAGE
command.

Delete a Logical Message (PURGE MESSAGE)

PURGE MESSAGE

Exceptional condition: TSIOERR

o —— e ——
R yp

This command is used to discontinue the building of a logical message.
The portions of the logical message already built in main storage or in
temporary storage are deleted.

Chapter 3.3. Basic Mapping Support (BMS) 263

Route a Logical Message (ROUTE)

|

i ROUTE [INTERVAL (hhmass) | INTERVAL (0} | TIME (hhamss) }
| [ERRTERM[(name)])]

) [TITLE (data—area)]

I [LIST (data—area)]
1 [OPCLASS (data—area) }

I { REQID (nane)]}

| [LDC (name)] (LUs only)
} [FLEOM]

|
|
|

Exceptional conditions: INVERRTERM, INVLDC, RTEFAIL, RTESOME

e o —— T —— W T o ol

This command is used to initiate the building of a logical message that
is to be scheduled for delivery to one or more terminals. It is
followed by the SEND MAP or SEND TEXT commands that format the data.

The options LIST and OPCLASS allow the designation of those terminals
or logical units, or particular operators, to which the logical message
is to be scheduled for delivery. Whether or not the logical message
will actually be delivered (that is, received at the terminal) depends
on many factors, such as availability of the terminal, or of a specific
operator, within a certain time after the logical message is ready to be
delivered. ’

The LIST option specifies a list of terminals and/or operators to
receive the routed logical message. If no list is provided, the logical
message will be scheduled for Gaelivery to all terminals supported by BMS
(unless the OPCLASS option is specified and has some effect).

The OPCLASS option specifies the classes of operators to receive the
routed logical message. OPCLASS can be used alone, or in conjunction
with LIST.

The uses and format of the route list and of the information to be
provided in the OPCLASS option are described in the section "Route List
and Operator Class Codes (LIST and OPCLASS Options)* later in this
chapter.

The logical message can be delivered at a specified time (TIME
option) or after a certain interval has elapsed (INTERVAL option); if
neither option is specified, or if INTERVAL(0) is specified, the logical
message will be delivered as soon as possible.

If a logical message is to be routed to more than one type of
terminal, BMS puilds the message for each type. Bach message is stored
on temporary storage until all terminals of the related terminal type
have received the message. If a terminal is scheduled to receive a
message but is not eligible, the message is stored until one of the
following conditions occurs:

° A change in terminal status allows the message to be sent.

. A period (specified at system generation) has elapsed, causing the
message to be deleted by BHMS.

. The message is deleted by the destination terminal.
If a logical message is to be routed to terminals with alternate

screensize capabilities (for example, the 3278), the choice of alternate
or default screensize is made depending on the SCRNSZE operand of the

264 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

DFHPCT TYPE=ENTRY system macro for the transaction issuing the ROUTE
command. (See the CICS/VS System Programmer's Reference Manual.)

If a ROUTE command followed by one or more BMS output commands is not
terminated by a SEND PAGE command before a subsequent ROUTE command is
issued, the INVREQ exceptional condition occurs. A ROUTE command may be
issued immediately following another ROUTE command. In this case, the
first ROUTE command is nullified, and the second determines the routing
environment. ’

If a message cannot be delivered within a certain time, it will be
deleted (purged) ; the time is specified in the PRGDLAY (purge delay)
operand of the DFHSIT system macro. If the PRGDIAY operand is omitted,
undelivered messages await delivery indefinitely. If PRGDLAY is
specified, an error message is generated by CICS/VS whenever a message
becomes undeliverable. The error message will be sent to the terminal
associated with the task that is sending the message; alternatively, the
application program can specify a different terminal to receive such
error messages by using the ERRTERM option. In addition to sending an
error message, CICS/VS lets the master terminal operator know how many
undeliverable messages have been deleted for a destination.

In CICS/DOS/VS, there is a DL/I restriction that a single ROUTE
command cannot route a message to more than 40 terminals. The
restriction applies when:

. DL/I logging to the CICS/VS system log (tape only) is being used

. BMS message recovery is required (that is, the route request
specifies a recoverable temporary storage prefix in the REQID
option, or the default prefix (**) is defined as recoverable.

To route a message to more than 40 terminals, more than one ROUTE
command must be used, each with a LIST option of no more than 40
entries.

The restriction arises because under CICS/DOS DL/I, the log buffer
size cannot exceed 1K bytes for tape files, and the limit of 40
terminals in a route list corresponds to a size of 1K bytes for the BMS
message control record which will be put on temporary storage and logged
to the same file if the temporary storage is recoverable.

DISPOSITION AND MESSAGE ROUTING

A logical message can be built using either of two dispositions: PAGING
or SET. The first BMS output command following the ROUTE command (with
some exceptions noted below) determines the disposition of the logical
message. Once established, the disposition remains unchanged until the
logical message is completed by a SEND PAGE command. An output request
specifying a disposition that is not in effect results in the INVREQ
condition.

PAGING is the normal disposition and results in the logical message
either being delivered or deleted. SET causes the logical message to be
returned to the application program which is then responsible for its
delivery.

Chapter 3.3. Basic Mapping Support (BMS) 265

INTERLEAVING CONVERSATION WITH MESSAGE ROUTING

A task can converse with the terminal to which it is currently attached
while that it is building the logical message. The attached terminal is
known as the direct terminal; a terminal to which the message is to be
routed is known as a routing terminal. If any RECEIVE MAP (or RECEIVE)
commands are encountered while the message is being built, they are
processed as usual.

The following rules apply to a direct terminal:

. TERMINAL must be specified or implied in any output command that is
to go to the direct terminal.

° ACCUM options with a disposition of TERMINAL are invalid and result
in the INVREQ condition. '

. The direct terminal may be included in the routing environment
without impairing the ability to converse with it while under
ROUTE. Data routed to the direct terminal will be delivered as
though the ROUTE command had been issued from another terminal.

As an example, a list of abridged commands, in order of execution, is
given in Figure 3.3-4. For each command, the action taken by BMS is
shown.

MESSAGE TITLE

The title named in the TITLE option is displayed with the logical
message identifier when the terminal paging query command is entered
(see the CICS/VS Operator®s Guide) . This title serves as an additional
message identifier, displayed upon request with the message identifier,
not on the logical message. The value in the two-byte length field
preceding the title includes the bytes used for the length field. The
length field and title, in total, may be up to 64 bytes long. For
example:

JX*001A* JMONTHL Y TNVENTORYSREPORT |
L]

2-Dbyte 24-byte
length title field
field

ROUTE LIST AND OPERATOR CLASS CODES (LIST AND OPCLASS OPTIONS)

The system programmer specifies the terminal or logical unit identifiers
for all the terminals of the CICS/VS system in the terminal control
table (TCT). (For logical units with LDC support, LDC mnemonics are
specified in the LDC table.) Also, an operator identifier must be
specified for each operator, and up to 24 operator class codes (in the
range 1 through 24) can be specified for particular operators, using the
OPIDENT and OPCLASS operands, respectively, of the sign-on-table system
macro (DFHSNT TYPE=ENTRY). When an operator signs on at a terminal,
CICS/VS associates the operator and the optional class codes with that
terminal until the operator signs off again.

266 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6

268

Command

Action Taken by BMS

e e —

SEND TEXT TERMINAL
ROUTE

SEND TEXT TERMINAL
RECEIVE MAP

SEND TEXT PAGING
ACCUM

SEND TEXT TERMINAL

SEND TEXT SET (&)

SEND TEXT PAGING
ACCUM

SEND MAP (Y) PAGING
ACCUM

SEND MAP (Y) TERMINAL

ACCUM

SEND TEXT PAGING
ACCUM

'SEND PAGE

SEND TEXT TERMINAL

Transmit to direct terminal.
Establish routing environment.
Transmit to ditect terminal.
Receive from direct terminal.

First output command eligible for routing
establishes disposition of PAGING.

Transmit to direct terminal.

INVREQ — routed logical message has
already established a disposition of
PAGING. '

Continue building routed logical message.
INVREQ - routed 1ogica1 message cannot be

built with both SEND TEXT and SEND MAP
commands.

INVREQ — cannot issue SEND MAP ACCUM or
SEND TEXT ACCUM command to direct termina
while building a routed logical message.
Continue building routed logical message.
Complete and transmit logical message and
terminate routing operation.

Transmit to direct terminal.

(o ——— . — — —— —— — - — TR — —— P o T W S —— —— T —— oy o —

1

e S o —_ —— — T o — . — - —— — — — —— — D —— | — — D — —— o] ——— e

Figure 3.3-4. Interleaving Conversation with Message Routing

using the OPCLASS option.

The application program can provide a route list in the LIST option
to specify which terminals, or logical units, or operators are to

receive the logical message; alternatively, or in addition, up to 24
operator class codes can be specified for use with a ROUTE operation, by

Before a logical message is delivered, all of the following
conditions must be fulfilled:

The terminal or logical unit must be supported by BMS and be

operational.

The logical message must be‘ready for delivery (TIME or INTERVAL

options satisfied).

The purge delay must not have expired.

Chapter 3.3. Basic Mapping Support (BM&

267

Whether or not a logical message will be delivered at a specific

terminal then depends on the use of the LIST and OPCIASS options, as

fol

268

lows:

LIST and OPCLASS are omitted. All terminals will receive the
message.

LIST is specified but OPCLASS is omitted. The route list can
contain three types of entry, each type having a different effect.
All three types of entry can be included in the same list. The
types of entry are:

— Entries specifying a particuiar terminal (or logical unit)
identifier but no operator identifier. Each specified terminal
will receive the message. : .

— Entries specifying a particular terminal (or logical unit)
identifier and an operator identifier. @Each specified terminal
will receive the message if or when the specified operator is
signed on at the terminal. :

— Entries specifying only an operator identifier. Each specified
operator must be signed on at a terminal supported by BMS when
the ROUTE command is issued; otherwise the route list entry for
that operator is ignored (skipped). CICS/VS will then schedule
the message for delivery to each terminal at which a specified
operator is signed on. If a particular operator is signed on
at more than one terminal, CICS/VS will schedule the message
for delivery to the one whose entry appears first in the
terminal control table. Each terminal for which the message is
scheduled will then receive the message (when it is ready for
delivery) if the specified operator is still signed on at the
terminal or when the operator signs on again.

LIST is omitted but OPCLASS is specified. CICSAVS will schedule
the message for delivery to all terminals at which an operator
having at least one of the specified operator class codes is signed
on when the ROUTE command is issued. Each terminal for which the’
message is scheduled will then receive the message (when it is
ready for delivery) if or when an operator (not necessarily the
same one as before) having at least one of the specified operator
class codes is signed on at the terminal.

LIST and OPCLASS are both specified. The effect of the OPCLASS
specification for the different types of route list entries is as
follows:

— Entries specifying no operator identifier. The effect is the
same as if only the OPCLASS option were specified, but is
restricted to those terminals (or logical units) specified in
the route list.

— Entries specifying an operator identifier (and possibly a
terminal or 1oglca1 unit identifier). The OPCLASS
specification is ignored for these route list entries, and the
effect is the same as if only the LIST option were specified.

CICS/VS APRM (CL)

o o ——— — s = ——— . — —— iy —— - ——

- Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Route List Format. The route list specified in the LIST option must
conform to a fixed format. The list consists of 16-byte entries {with
contents as shown in the following table) . The end of the list is
designated by a binary halfword initialized to -1.

¥ |]
| i 1
| Bytes | Contents I
| 1 1
I i |
K 1 . |
] 0-3 | Terminal or logical unit identifier (four-characters, |
1 } including trailing blanks) , or blanks {
| | ' |
] 4,5 | LDC mnemonic (two—characters) for logical units with LDC|
| } support, or blanks i
| : | ' |
1 6-8 | Operator identifier, or blanks |
| i ' I
|- 9 | Status flag for the route entry |
| | i
| 10-15 | Reserved; must contain blanks)
] i]
L L I 1

The status flag byte indicates to the application program the status
of the destination when the ROUTE command is issued. Upon return, the
application program can investigate the status flag byte for each entry
and take appropriate action. The status flag byte settings and their
meanings are as follows:

Status Flag Byte Name

- ¥ L L L]

| |) i

} Assembler | COBOL | PL/I 1

| language | | |

— r - |

|) | i

ENTRY SKIPPED i X*'go* } 12-0-1-8 } 10000000]
| 1 | !

INVALID TERMINAL) x'yo°* | no punches } 01000000 1
IDENTIFIER | ¥ | |

| 1 | |

TERMINAL NOT SUPPORTED | X*20°" | 11-0-1-8-9 | 00100000 1
UNDER BMS i | | |

] 1 1 |

OPERATOR NOT SIGNED ON | X*10* | 12-11-1-8-9 | 00010000 i
} ’ . 1 | |

OPERATOR SIGNED ON AT | Xx*os8" | 12-8-9 } 00001000 }
UNSUPPORTED TERMINAL | }) i

| | 1 I

INVALID LDC MNEMONIC) X'o4" | 12-4-9 § 00000100 [}
‘ | | | |
L L L N |

ENTRY SKIPPED
A route list entry was excluded. If an entry has been
excluded, another flag indicating why the entry was skipped may
be on in the status byte. This second flag could be any of the
other flags shown in the table. If the OPERATOR NOT SIGNED ON
flag is on, only an operator identifier was specified in the
route list entry and the specified operator was not signed on
at any terminal. If only the ENTRY SKIPPED flag is on, neither
a terminal identifier nor an operator identifier was specified
in the route list entry.

Chapter 3.3. Basic Mapping Support (BMS) 269

INVALID TERMINAL IDENTIFIER

TERMINAL

OPERATOR

OPERATOR

indicates that the terminal identifier specified in the route
list entry does not have a corresponding TCTTE in the terminal
control table. This entry is also flagged as ENTRY SKIPPED.

NOT SUPPORTED UNDER BMS

indicates that the terminal identifier specified in the route
list entry is for a type of terminal that is not supported
under BMS; or the terminal table entry indicated that the
terminal was not eligible for routing. This entry is also
flagged as ENTRY SKIPPED.

NOT SIGNED ON :
indicates that the specified operator is not signed on. Any
one of the following conditions causes this flag to be set:

e Both an operator identifier and a terminal identifier were
specified, and the speC1f1ed operator was not signed on at
the terminal. This entry is not skipped.

e An operator identifier was specified without a terminal
identifier, and the operator was not signed on at any
terminal. This entry is also flagged as ENTRY SKIPPED.

e The OPCLASS option was specified with the ROUTE command and
a terminal identifier was specified in the route list
entry, but the operator signed on at the terminal did not
have any of the specified operator classes. This entry is
not skipped.

SIGNED ON AT UNSUPPORTED TERMINAL ‘

indicates that only an operator identifier was specified in the
route list entry, and that operator was signed on a terminal
not supported by BMS. This entry is also flagged as ENTRY
SKIPPED. The unsupported terminal identifier is returned in
that route list entry at URLTRMID, defined in DFHURLIDS
(described below) .

INVALID LDC MNEMONIC

indicates that one of the following situations exists:

e The LDC mnemonic specified in the route list does not
appear in the LDC list associated with the TCT.

e The device type generated in the system LDC table for the
specified or implied LDC mnemonic is not the same as the
device type for the first LDC specified in the route
environment.

A symbolic storage definition of the user—supplied route list is
available in the source library (or libraries) under the member name
DFHURLDS. This definition can be used as an aid in building the route
list, and if necessary, in testing the status flag byte for each entry
upon return from a ROUTE command that refers to a list.

270 CICS/VS APRM (CL)

The list can be supplied in noncontiguous areas called segments, in
which case every segment except the last is terminated with (at least)
an eight-byte entry with contents as shown in the following table. The
last segment ends with a binary halfword initialized to -1.

Chain address to the first entry of the next segment

L] LB []
| J !
) Bytes | Contents i
| } |
: i l
) 0,1 | Assembler language: binary halfword initialized to -2 |
| | COBOL: PIC S9 (4) COMP VALUE -2 }
| } PL/I: DCL FIXED BIN (15) INIT (-2) 1
I } i
1 2,3] Reserved]
| | |
| 4=7 | i
i } |
L i]

Chapter 3.3. Basic Mapping Support (BMS) 27

Page of SC33-0077-2, revised September 1980 by TNL SN33—6268

Basic Mapping Support Options

ACCUM

ALARM

ASIS

AUTOPAGE

CURRENT

specifies that this command is one of a number of commands that
are used to build a logical message. The logical message is
completed by a SEND PAGE command. This option is mutually
exclusive with NOEDIT.

specifies that the 3270 audible alarm feature is to be
activated. For logical units supporting FMHs (except
interactive and batch logical units), ALARM signals BMS to set
the alarm flag in the FMH.

specifies that if the ATTN key on a 2741 is pressed while data
is being sent to the terminal and the WRBRK condition is not
active, transmission of the current page is to cease and no
additional pages are to be transmitted. The logical message is
deleted.

specifies that the specification FEATURE=UCTRAN in the terminal
control table for the terminal is to be overridden. Lowercase
characters in the data stream are not translated to uppercase.

specifies that each page of the logical message is to be sent
to the terminal as soon as it is available. If paging upon
request is specified for the terminal at system generation,
AUTOPAGE overrides it for this logical message.

AUTOPAGE is assumed for 3270 printers; it does not apply to
3270 display terminals. If neither AUTOPAGE nor NOAUTOPAGE is
specified, the terminal has the paging status specified for it
at CICS/VS system generation.

specifies that if the ATTN key on a 2741 is pressed while data
is being sent to the terminal and the WRBRK condition is not
active, transmission of the current page is to cease and
transmission of the next page (if any) is to begin.

CURSOR[(data—value)]

specifies the position to which the 3270 or 3604 cursor is to
be returned upon completion of a send operation.

The data value must be a halfword binary wvalue that specifies
the cursor position relative to zero; the range of values that
can be specified depends on the size of the screen being used.
If no data value is specified, symbolic cursor positioning
(described earlier in the chapter) is assumed.

272 CICS/VS APRM (CL)

DATAONLY

ERASE

ERASEAUP

This option overrides the IC option of the ATTRB operand of the
DFHMDF macro instruction, if it is specified in a command that
completes a page-building operation and thus causes a send
operation. Previous specifications of the IC option and of the
CURSOR option for the other maps making up the page are
ignored.

specifies that only application-program data is to be written.
The attribute characters (3270 only) must be specified for each
field in the supplied data. If the attribute byte in the user-
supplied data is set to X*00*, the attribute byte on the screen
will be unchanged. Any default data or attributes from the map
are ignored.

specifies that the screen is to be erased and the cursor
returnzsd to the upper left corner of the screen before this
page of output is displaysd. (This option applies only to the
3270 and to the 3604 Keyboard Display.) The first output
operation in any transaction, or in a series of psesudo-
conversational transactions, should always specify ERASE. For
transactions attached to 3278 screens, this will also ensure
that the correct screen size is selected, as defined for the
transaction in the PCT.

specifies that before this page of output is displayed, all
unprotected character locations are to be erased. (This option
applies only to the 3270.)

ERRTERM[(name)]

specifies the name of the terminal to be notified if the

message is deleted because it is undeliverable. The message
number, title identification, and destination are indicated.
If no name is specified, the originating terminal is assuned.

This option is operative only if the PRGDLAY operand has been
specified in the DFHSG PROGRAM=BMS system macro.

FMHPARM (name)

FREEKB

specifies the name (1 through 8 characters) of the outboard map
to be used. (This option applies only to 3650 logical units
with outboard formatting.)

specifies that the 3270 keyboard should be unlocked after the
data is written. If PREEKB is omitted, the keyboard remains
locked.

Chapter 3.3. Basic Mapping Support (BMS) 273

FROM (data-area)
specifies the data area containing the data to be mapped by a
SEND MAP or RECEIVE MAP conmand.

If the data area provided in a SEND MAP command has not been
generated by the BMS map definition process, it must start with
a 12-byte TIOA prefix. If FROM is specified, the MAPONLY
option must not be specified. If PROM is omitted from a SEND
MAP command, and the map name is a literal constant, the name
of the data area is assumed to be the map name with the
addition of the suffix wow,

The data area provided in a RECEIVE MAP coammand should not
include a TIOA prefix.

FPRSET
specifies that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to the not-—
modified condition (that is, field reset) before any map data
is written to the buffer.

This allows tha ATTRB operand of the DFHMDF macro for the
requested map to control the final status of fields written or
rewritten in response to a BMS command.

HEADER (data—-value)
specifies the header data to be placed at the beginning of each
page. The format of the header is described under "Format
Output Data without Mapping (SEND TEXT)" earlier in this
chapter.

HONEOM
specifies that the default printer line length is to be used.
This length should be the same as that specified in the PGESIZE
operand of the DFHATCT TYPE=TERMINAL system macro, otherwise the
data may not format correctly.

INTERVAL(hhnmss)

specifies the interval of time after which the data is to be
transmitted to the terminals specified in the ROUTE command.

INTO (data—area)
specifies the data area into which the mapped data is to be
written. If neither INTO nor SET is specified and the map name
is a literal constant, the name of the data area is assumed to
be the map name with the addition of the suffix "I®. If the
data area has not been generated by the BMS map definition
process, it must start with a 12-byte TIOA prefix.

JUSTIFY (data—value)
specifies the line of the page at which the data is to be
positioned. The data value must be a halfword binary value in
the range 1 through 240. Although they Bay not be specified as
constants, the special values -1 and -2 can be supplied
dynamically to signify JUSFIRST or JUSLAST, respectively.

274 cICs/VS APRM (CL)

JUSFIRST
specifies that the data is to be placed at the top of the page.
Any partially formatted page from previous requests is
considered to be complete. If the HEADER option is specified,
the header precedes the data. See also the description of the
JUSTIFY option.

JUSLAST
specifies that the data is to be positioned at the bottom of
the page. The page is considered to be complete after the
request has been processed. If the TRAILER option is
specified, the trailer follows the data. See also the
description of the JUSTIFY option.

LAST
specifies that this is the last output operation for a
transaction and, therefore, the end of a bracket. If the
RELEASE option is specified, LAST is assumed unless the SERND
PAGE command is terminating a routing operation. (This option
applies to logical units only.)

LDC (name)

specifies a two—character mnemonic to be used to determine the
logical device code (LDC) to be transmitted in the FPMH to the
logical unit. The mnemonic represents an LDC entry specified
in the DFHTCT TYPE=LDC system macro.

When an LDC is specified, BMS uses the device type, the page
size, and the page status associated with the LDC mnemonic to
format the message. These values are taken from the extended
local LDC table for the LU, if it has one. If the LU has only
a local (unextended) LDC table, the values are taken from the
system LDC table. The numeric value of the LDC is obtained
from the local LDC table, unless this is an unextended table
and the value is not specified, in which case it is taken fron
the system table.

If the LDC option of a SEND MAP or ROUTE command is omitted,
the LDC mnemonic specified in the DFHMSD macro is used. If the
LDC option has also been omitted from the DFHMSD macro, the
action depends on the type of logical unit, as follows:

3601 LU - the first entry in the local or extended local
LDC table is used, if there is one. If a default cannot be
obtained in this way, a null LDC numeric value (X'"00') is
used. The page size used is the value that is specified in
the DFHTCT TYPE=TERMINAL system macro, or (1,40) if such a
value is not specified.

LUTYPE4 LU, batch LU, or batch data interchange LU — the
local LDC table is not used to supply a default LDC;
instead, the message is directed to the LU comsole (that
is, to any medium that the LU =slects to rescsive such
messages. For a batch data interchange LU, this does not
imply sending an LDC in an FMH). The page size is obtained
in the manner described for the 3601 LO.

For message routing, the LDC option of the ROUTE command takes
precedsnce over all other sources. If this option is omitted
and a route list is specified (LIST option), the LDC mnemonic
in the route list is used; if the route list contains no LDC

Chapter 3.3. Basic Mapping Support (BMS) 275

mnemonic, or no route list is specified, a default LDC is
chosen as described above.

LENGTH (data—value)
specifies the length of the data to be formatted as a halfword
binary value.

LIST (data—-area)
specifies the data area that contains a list of terminals
and/or operators to which data is to be directed. If this
option is omitted, all terminals supported by BMS receive the
data (unless the OPCLASS option has some effect). The format
of the list is described under "Routing Messages (ROUTE)"
earlier in this chapter.

L40
specifies the line length for a 3270 printer; a carrier return
and line feed are forced after 40 characters have been printed
on a line.

L64
specifies the line length for a 3270 printer; a carrier return
and line feed are forced after 64 characters have been printed
on a line.

180
specifies the line length for a 3270 printer; a carrier return
and line feed are forced after 80 characters have been printed
on a line.

MAP (name)
specifies the name (1 through 7 characters) of the map to be
used.

MAPONLY

specifies that only default data from the map is to be written.
If this option is specified, the FROM option must not be
specified.

MAPSET (name)
specifies the name (1 through 7 characters) of the map set to
be used. The map set must reside in the CICS/VS progranm
library, and an entry for it must exist in the processing
program table (PPT). If the MAPSET option is not specified,
the name given in the MAP option is assumed to be that of the
map set.

This option should be used always unless a reference is made to
pre—VS BMS maps, which were loaded one at a time, rather than
as a set, and whose names were not extended by a terminal—type
suffix. -

276 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

NLEOM

‘ specifies that data for a 3270 printer or a 3275 display with
the printer adapter feature should be built with new—line (NL)
characters, and that an end-of—message (EM) character should be
placed at the end of the data. As the data is printed, each NL
character causes printing to continue on the next line, and the
EM character terminates printing.

This option must be specified in the first SEND MAP or SEND
TEXT command used to build a logical message, and in the ROUTE
conmand if the message is to be routed. The option is ignored
if the device receiving the message (direct or routed) is not
one of those noted above.

If this option is used, buffer updating and attribute
modification of fields previously written into the buffer are
not allowed. CICS/VS includes the ERASE option with every
write to the terminal.

The NL character occupies a buffer position. A number of
buffer positions, eguivalent to the value of the PGESIZE
operand of the DFHTCT system macro for that terminal, is
unavailable for data. This may cause data to wrap around in
the buffer; if this occurs, the PGESIZE value must be reduced.

NOAUTOPAGE
specifies that pages are to be sent one at a time to the
terminal. BMS sends the first page to the terminal when the
terminal becomes available or upon request of the operator.
Subsequent pages are sent to the terminal in response to
requests from the terminal operator. (Refer to the CICS/VS

Operator's Guide.)

If automatic paging is specified for the terminal at system
generation, NOAUTOPAGE overrides it for this logical message.
For logical units, NOAUTOPAGE applies to all LDC page sets
accumulated within the logical message.

NOAUTOPAGE does not apply to 3270 printers.

NOEDIT
specifies that the application program, as opposed to CICS/VS,
controls the insertion of device—dependent control characters
(carrier return, line feed, idle, and so on) into the output
data stream. This option is mutually exclusive with ACCUM.
This option cannot be used with 3601 devices.

OPCLASS (data—area) :
specifies the data area that contains a list of operator
classes to which the data is to be routed. The classes are
supplied in a three-byte field, each bit position corresponding
to one of the codes in the range 1 through 24 but in reverse
order, that is, the first byte corresponds to codes 24 through
17, the second byte to codes 16 through 9, and the third byte
to codes 8 through 1.

'OPERPURGE
specifies that CICS/VS is to delete the message only when the
terminal operator requests deletion. If the option is omitted,
CICS/VS deletes the message if the operator enters a
transaction that is not a paging command.

Chapter 3.3. Basic Mapping Support (BMS) 277

PAGING

PRINT

RELEASE

specifies that the output data is not to be sent immediately to

-"the terminal, but is to be placed in temporary storage and

displayed in response to paging commands entered by the
terminal operator.

If PAGING is specified with a REQID that is defined in the
temporary storage table (TST), CICS/VS provides message

‘recovery for logical messages if the task has reached logical

end.

- specifies that a print operation is to be started at a 3270

printer or at a 3275 with the printer adapter feature, or that
data on an LUTYPE2 (3274/76 or 3790) is to be printed on a
printer allocated by the controller. If this option is
omitted, the data is sent to the printer buffer but is not
printed.

specifies that control is to be returned to the program at the
next higher logical level, or to CICSANS (if the issuing
program is at the highest logical level) , after the pages have
been written to the terminal. For more details of the effect
of this option, refer to the description of the SEND PAGE
command earlier in the chapter.

REQID (name)

RETAIN

specifies a two—character prefix to be used as part of a
temporary storage identifier for CICS/VS message recovery.

Only one prefix can be specified for each logical message. The
default prefix is **,

BMS message recovery is provided for a logical message only if

the PAGING option is specified in the BMS output command and if
the logical end of task has been reached.

specifies that control is to be returned to the application

‘program after the pages have been written to the terminal. For

more details of the effect of this option, refer to the
description of the SEND PAGE command earlier in the chapter.

278 CICS/VS APRM (CL)

SET (pointer—ref)

specifies the pointer that is to be set to the address of the
input or output data.

For input, the pointer is set to the address of the mapped
data.

Por output, the SET option specifies that the completed pages
are to be returned to the application program. The pointer is
set to the address of a list of completed pages. For the
format of the list, refer to mOutput Requests with the SET
Option® earlier in this chapter.

The application program regains control either immediately

- following the BMS command (if the current page is not yet

TERMINAL

completed) , or at an alternative entry point specified through
a HANDLE CONDITION RETPAGE comekand (if one or more pages have
been completed).

In assembler language, if the RETPAGE condition occurs, the

register specified will not have been set but can be loaded
from DFBEITP1.

specifies that input data is to be read from the terminal that

originated the transaction, or that output data is to be sent

to that terminal when the page is completed.

TIME (hhmass)

specifies the time of day at which data is to be transmitted to
the terminals specified in the ROUTE command.

TITLE (data—area)

specifies the data area that contains the title to be used with
the logical message. For the format of the title, refer to
"Routing Messages (ROUTE)" earlier in this chapter.

TRAILER (data—area)

specifies the data area that contains trailer data to be placed
at the bottom of each output page (with a SEND TEXT command) or
at the bottom of the last page only (with a SEND PAGE command).
For the format of the trailer data, refer to "“Formatting Output
Data Without Mapping (SEND TEXT)"™ ecarlier in this chapter.

TRANSID (name)

specifies the transaction identifier to be used with the next
input message from the terminal to which the task is attached.
The identifier can consist of up to four alphameric characters;
it must have been defined in the program control table (PCT).
TRANSID is valid only if RELEASE is specified.

If this option is specified in a program that is not at the
highest logical level, the specified transaction identifier
will be used only if a new transaction identifier is not
provided in another SEND PAGE comzand (or in a RETURN program
control command) issued in a program at a higher logical level.

Chapter 3.3. Basic Mapping Support (BMS) 279

WAIT
specifies that control should not be returned to the

application program until the output operation has been
completed.

If WAIT is not specified, control will return to the
application program once the output operation has started. A
subsequent input or output command (terminal control, BMS, or
batch data interchange) will cause the application program to
wait until the previous command has been completed.

.

280 CICS/VS APRM (CL)

Basic Mapping Support Exceptional Conditions

Some of the following exceptional conditions may occur in combination
with others. CICS/VS checks for these conditions in the following
order: TSIOERR, INVREQ, RETPAGE, MAPFAIL, RTEPAIL, INVERRTERM, IKVMPSZ.
If more than one of these conditions occurs, only the first one found to
be present is passed to the application program.

EOC
occurs if the request/response unit (RU) is received with the
end—of—chain (EOC) indicator set. It applies only to logical
units.

Default action: ignore the condition.

EODS
occurs if no data is received (only an FMH). It applies only
to 3770 batch logical units and to 3770 and 3790 batch data
interchange logical units.

Default action: terminate the task abnormally.

IGREQCD
occurs when an attempt is made to execute a SEND MAP, SEND
PAGE, or SEND TEXT command after a SIGNAL data—flow control
compand with an RCD (request change direction) code has been
received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

IGREQID
occurs if the prefix specified in the REQID option is different
from that established by a previous REQID option or by default
for this logical message.

Default action: terminate the task abnormally.

INVERRTERM
occurs if the terminal identifier specified in the ERRTERH
option of a ROUTE command is invalid or is assigned to a type
of terminal not supported by BMS.
Default action: terminate the task abnormally.

INVLDC
occurs if the specified LDC mnemonic is not included in the LDC
list for the logical unit.
Default action: terminate the task abnormally.

INVMPSZ
occurs if the specified map is too wide for the terminal, or if
a HANDLE CONDITION OVERFLOW command is active and the specified

map is too long for the terminal.

Default action: terminate the task abnormally.

Chapter 3.3. Basic Mapping Support (BMS) 281

INVREQ

occurs if a request for BMS services is invalid for any of the
following reasons:

e The disposition of a routed message is changed prior to its
completion by a SEND PAGE command.

e A separate SEND TEXT ACCUM or SEND MAP ACCUM command is
issued to the terminal that originated the transaction
while a routed logical message is being built.

e The TRAILER option is specified in a SEND PAGE command when
terminating a logical message built with SEND MAP commands.

e An output mapping command is issued for a map without field
specifications by specifying the FROM option without the
DATAONLY option.

Default action: terminate the task abmormally.

MAPFAIL
occurs if the data to be mapped has a length of zero or does
not contain a set-buffer—address (SBA) sequence. It applies
only to 3270 devices. The receiving data area will contain the
unmapped input data strean.
Default action: terminate the task abmnormally.

OVERFLOW
occurs if the mapped data does not fit on the current page.
Default action: ignore the condition.

RDATT
occurs if a RECEIVE MAP command is terminated by the operator
using the ATTN key rather than the RETURN key. It applies only
to the 2741 Communications Terminal, and only if 2741 read
attention support has been generated for CICS/VS.
Default action: ignore the condition.

RETPAGE
occurs if the SET option is specified and one or more completed
pages are ready for return to the application program.
In assembler language, the register specified will not have
been set but can be loaded from DFHEITP1.
Default action: return to the application program at the point
immediately following the BMS command.

RTEFAIL
occurs if a ROUTE command would result in the message being
sent only to the terminal that initiated the transaction.
Default action: return to the application program at the point
immediately following the ROUTE command.

282 CICS/VS APRM (CL)

RTESOME

occurs if any of the terminals specified by options of a ROUTE
command will not receive the message.

Default action: return control to the application program at
the point immediately following the ROUTE command.

TSIOERR

occurs if there is an unrecoverable temporary storage
input /output error.

Default action: terminate the task abnormally.

WRBRK
occurs if a SEND command is interrupted by the terminal
operator pressing the ATTN key. It applies only to the 2741
Communication Terminal under 0S/VS, and only if Hr1t° break
support has been generated for CICS/VsS.

Default action: ignore the condition.

Chapter 3.3. Basic Mapping Support (BMS) 283

Chapter 3.4. Batch Data Interchange

The CICS/VS batch data interchange program provides for communication
between an application program and a named data set (or destination)
that is part of a batch data interchange logical unit in an outboard
controllar, or with a selectsd medium on a batch logical unit or an
LUTYPEY4 logical unit.

The term “outboard controller® is a generalized reference to a
programmable subsystem, such as the IBM 3770 Data Communication Systenm
or the IBM 3790 Data Communication System, which uses SNA protocols.
(Details of SNA protocols and the data sets that can be used are given
in the publications CICS/VS IBM 3767, 3770, and 6670 Guide and CICS/VS
IBM 3790 Guide.)

Batch data interchange commands are provided to:

. Interrogate a data set (ISSUE QUERY).

. Read a record from a data set or read data from an input medium
(ISSUE RECEIVE).

. Add a record to a data set- (ISSUE ADD).

. Opdate (replace) a record in a data set (ISSUE REPLACE).

. Delete a record in a data set (ISSUE ERASE).

. Terminate processing of a data set (ISSUE END).

. Terminate processing of a data set abnormally (ISSUE ABORT).
L] Request the next record number in a data set (ISSUE NOTE).

. Wait for an operation to be'completed (ISSUE WAIT) .

° Transmit data to a named data set or to a selected medium (ISSUE
SEND) .

Where the controller is an LUTYPE4 logical unit, omnly the ISSUE
ABORT, ISSUE END, ISSUE RECEIVE, ISSUgE SEND, and ISSUE WAIT commands can
be used.

The HANDLE CONDITION command is used to deal with any exceptional
conditions that occur during execution of a batch data interchange
command. Refer to Chapter 1.5 for further information about exceptional
conditions.

Chapter 3.4. Batch Data Interchange 285

DESTINATION SELECTION AND IDENTIFICATION

A1l batch data interchange commands except ISSUE RECEIVE include optioans
that specify the destination. This is either a named data set in a
batch data interchange logical unit, or a selected medium in a batch
logical unit or LUTYPE4 logical unit.

Selection by Named_Data Set: The DESTID and DESTIDLENG options must
always be specified, to supply the data set name and its length (up to a
maximum of eight characters). PFor destinations having diskettes, the
VOLUME and VOLUMELENG options may be specified, to supply a volume name
and its length (up to a maximum of six characters); the volume nane
identifies the diskette that contains the data set to be used in the
operation. If the VOLUME option is not specified for a multi-diskette
destination, all diskettes are searched until the required data set is
found.

Selection by Medium: As an alternative to naming a data set as the
destination, various media can be specified by means of the CONSOLE,
PRINT, CARD, or WPMEDIA1-4 options. These media can be specified only
in an ISSUE ABORT, ISSUE END, ISSUE SEND, or ISSUE WAIT coamand.

DEFINITE—RESPONSE

CICS/VS uses terminal control commands to carry out the functionms
specified in batch data interchange commands. For those commands that
cause terminal control output requests to be made, the DEFRESP option
can be specified. This option has the same effect as the DEFRESP option
of the SEND terminal control command; that is, to request a definite
response from the outboard comntroller, irrespective of the specification
of message integrity for the CICS/VS task (by the system programmer).
The DEFRESP option can be specified for the ISSUE ADD, ISSUE ERASE,
ISSUE REPLACE, and ISSUE SEND commands.

WAITING FOR FUNCTION COMPLETION

FPor those batch data interchange commands that cause terminal control
output requests to be made, the NOWAIT option can be specified also.
This option has the effect of allowing CICS/VS task processing to
continue; unless the option is specified, task activity is suspended
until the patch data interchange command is completed. The NOWAIT
option can be specified for the ISSUE ADD, ISSUE ERASE, ISSUE REPLACE,
and ISSUE SEND commands.

After a batch data interchange command with the NOWAIT option has
been issued, task activity can be suspended, by the ISSUE WAIT command,
at a suitable point in the program to wait for the command to be
comnpleted.

286 CICS/VS APRM (CL)

Interrogate a Data Set (ISSUE QUERY)

ISSUE QUERY DESTID (data-value)
DESTIDLENG (data-value)
[VOLUME (data—value) VOLUMELENG (data—-value) }

Exceptional conditions: PUNCERR, SELNERR, UNEXPIN

I

This command is used to request that a sequential data set in an
outboard controller be transmitted to the host system. The application
prograk should either follow this command with ISSUE RECEIVE commands to
obtain the resulting inbound data, or terminate the transaction to allow
CICS/VS to start a new transaction to process the data.

Read a Record From a Data Set (ISSUE RECEIVE)

ISSUE RECEIVE {SET (pointer-ref) | INTO(data-area)}
LENGTH (data—area)

Exceptional conditions: DSSTAT, EODS, LENGERR, NODATARECD, UNEXPIN

- ———— ————
T s ——

This command is used to read a record from an outboard controller. The
INTO option specifies the area into which the data is to be placed. The
LENGTH option must include a data area that contains the maximum length
of record that the program will accept. . If the record length exceeds
the specified maximum length, the record is truncated and the LENGERR
condition occurs. After the retrieval operation, the data area
specified in the LENGTH operand is set to the record length (before any
truncation occurred) .

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area of sufficient size to hold the
record and sets the pointer reference to the address of that area.
After the retrieval operation, the data area specified in the LENGTH
option is set to the record length.

The outboard controller might not send the data from the data set
specified in the ISSUE QUERY command. An ASSIGN command must be used to
obtain the value of DESTID, which identifies the data set that has
actually been transmitted; also the value of DESTIDLENG, which is the
length of the identifier in DESTID.

Chapter 3.4. Batch Data Interchange 287

Add a Record to a Data Set (ISSUE ADD)

r
1

| ISSUE ADD DESTID (data-value)

| DESTIDLENG (data—value)

| [VOLUME (data—value) VOLUMELENG (data-value)]}
| FROYM (data-area)

| LENGTH (data—-value)

| [NUMREC (data—value)]

| [DEFRESP]

) [NOWAIT)

|
i
|
L

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

This command is used to add records to a sequential or keyed direct data
set in an outboard controller. The FROM option is used to specify the
data to be written, and the LENGTH option specifies its length.

The RIDFLD option is not needed with this command; the key is
embedded in the data.

Update a Record in a Data Set (ISSUE REPLACE)

ISSUE REPLACE DESTID (data-—value)
DESTIDLENG (data—value)
[VOLUME(data—value) VOLUMELENG (data-—value))
PROM (data—area)
LENGTH (data—value)
RIDFLD (data—area)
[DEFRESP])
[NOWAIT]
[REYLENGTH (data~value) | RRN]
[NUMREC (data-value)]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

(r o ——— — —— T v — - —y
b——-—-——-.—-—-———-—J

This command is used to replace (update) a record in either a relative
(addressed direct) or an indexed (keyed direct) data set in an outboard
controller.

The PROM option is used to specify the data to be written to the data
set and the LENGTH option specifies the length of the data.

The RIDPFLD option specifies the relative record number of the first
record to be replaced for a relative data set, or the embedded key in
the data specified by the FROM option for an indexsd data set.

For a relative data set, the RRN option must be specified since the
RIDFLD option contains a relative record number. 1In addition, the
NUMREC option must specify the number of records to be replaced
consecutively, starting with the one specified in RIDFLD.

For an indexed data set, the RIDFLD option specifies the key embedded
in the data specified in the FROM option. In addition, the KEYLENGTH
option must specify the length of the key. The NUMREC option cannot be
specified since only one record is replacegd.

288 CICS/VS APRM (CL)

Delete a Record from a Data Set (ISSUE ERASE)

ISSUE ERASE DESTID (data—value)
DESTIDLENG (data-value)
[VOLUME (data—value) VOLUMELENG (data—-value)]
RIDFLD (data—area)
[KEYLENGTH (data—~value) | RRN]
[NUMREC (data—value)]
[DEFRESP }
[NORAIT]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

e e

This command is used to delete a record from a keyed direct data set in
an outboard controller. The RIDFLD option specifies the key of the
record to be deleted; the length of the key must be specified in the
KEYLENGTH option.

Terminate Processing of a Data Set (ISSUE END)

ISSUE END [DESTID (data—value) DESTIDLENG (data-value)]}
[VOLUME (data—value) VOLUMELENG (data—value)]
[SUBADDR (data-value)]
[CONSOLE|PRINT|CARD)WPMEDIA1|WPMEDIA2|
WPMEDIA3|WPMEDIA4]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

o ——— —— T — —
P o o - —— — e W

This command is used to terminate communication with a data set in an
outboard controller or with the selected medium. The data set specified
in the DESTID option, or the selected medium, is de-selected normally.
The options CONSOLE, PRINT, CARD, WPMEDIA1-4 are alternatives to DESTID
and DESTIDLENG.

Terminate Processing of a Data Set Abnormally (ISSUE ABORT)

ISSUE ABORT [DESTID(data—value) DESTIDLENG (data—value)]
[VOLUME (data—value) VOLUMELENG (data—value))
[SUBADDR (data—value)]
[CONSOLE|PRINT |CARD | WPMEDIA1|WPMEDIA2|
WPMEDIA3|WPMEDIA4]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

I

This command is used to terminate communication with a data set in an
outboard controller, or with the selected medium, abnormally. The data
set specified in the DESTID option is de-—selected abnormally. The
options CONSOLE, PRINT, CARD, WPMEDIA1-4 are alternatives to DESTID and
DESTIDLENG.

Chapter 3.4. Batch Data Interchange 289

Transmit Data to an Output Device (ISSUE SEND)

ISSUE SEND [DESTID (data-value) DESTIDLENG (data-value)]
{ VOLUME (data—value) VOLUMELENG (data—value)]
FROM(data—area)

LENGTH (data—value)

[SUBADDR (data—value)] :

[CONSOLE|PRINT |CARD| WPMEDIA1{WPMEDIA2|
WPMEDIA3 |WPMEDIAY)

[NOWAIT]

[DEFRESP]

Exceptional conditions: FUNCERR, IGREQCD, SELNERR, UNEXPIN

o o e — . — o— T —— ———— ——— -
e s T e = e o

This command is used to transmit data to a named data set in an outboard
controller, or to a selected medium in a batch logical unit or an
LUTYPE4 logical unit. The options CONSOLE, PRINT, CARD, WPMEDIA1-4 are
alternatives to DESTID and DESTIDLENG.

Request Next Record Number (ISSUE NOTE)

ISSUE NOTE DESTID (data—value)
DESTIDLENG (data—value)
[VOLUME (data-value) VOLUMELENG (data—value)]
RIDFLD (data-—area)
[RRN]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

Fo————— e ———
I I

This command is used to find the relative record number of the next
record in an addressed direct data set. The number is returned in the
data area specified in the RIDFLD option. The RRN option must be
specified, because a relative record number is involved.

Wait for an Operation to be Completed (ISSUE WAIT)

ISSUE WAIT [DESTID(data—value) DESTIDLENG (data—value)]
[VOLUME (data—value) VOLUMELENG (data—value)]
[SUBADDR (data—value)]
[CONSOLE|PRINT |CARD|WPMEDIA1|WPMEDIA2|
WPMEDIA3|WPMEDIAY)

Exceptional comditions: FPUNCERR, SELNERR, UNEXPIN

o —— ——— =
R —

This command is used to cause task activity to be suspended until the
previous batch data interchange command is completed. This command is
meaningful only when it follows an ISSUE ADD, ISSUE ERASE, ISSUB
REPLACE, or ISSUE SEND command. The options CONSOLE, PRINT, CARD,
WPMEDIA1-4 are alternatives to DESTID and DESTIDLENG.

290 CICS/VS APRM (CL)

Batch Data Interchange Options

CARD
specifies that the output medium is a card reader/punch device.
This option is not valid with DESTID and DESTIDLENG.

CONSOLE
specifies that the output medium is that provided for messages
to the operator. This option is not valid with DESTID and
DESTIDLENG. .

DEFRESP

specifies that all terminal control commands issued as a result
of the batch data interchange command will request a definite
response from the outboard batch program, irrespective of the
specification of message integrity for the CICS/VS task (pby the
system programmer).

DESTID (data—value)
specifies the name of the data set in the outboard destination.
The data value must be a character string of up to eight
characters. This option is not valid with CONSOLE, CARD,
PRINT, or WPMEDIA1-4.

DESTIDLENG (data—value)
specifies the length of the name specified in the DESTID option
as a halfword binary value. This option is not valid with
CONSOLE, CARD, PRINT, or WPMEDIA1-4.

DFTPROF

specifies that the default data stream profile has been
specified.

FROM (data-—area)
specifies the data that is to be written to the data set.

INTO (data—area)
specifies the receiving field for the data read from the data
set. The INTO option implies move—mode access.

KEYLENGTH (data—value)

specifies the length of the key specified in the RIDFLD option
as a halfword binary value.

Chapter 3.4. Batch Data Interchange 291

LENGTH (parameter)

NOWAIT

specifies a halfword binary value to be used with ISSUE ADD,
ISSUE RECEIVE, ISSUE REPLACE, and ISSUE SEND commands.

For an ISSUE ADD, ISSUE REPLACE, or ISSUE SEND1. command, the
parameter must be a data value that is the length of the data
that is to be written.

For an ISSUE RECEIVE command with the INTO option, the
parameter must be a data area that specifies the maximum length
of data that the program is prepared to handle. If the value
specified is less than 2zero, zero is assumed. If the length of
the data exceeds the value specified, the data is truncated to
that value and the LENGERR conditiomr occurs. On completion of
the retrieval operation, the data area is set to the original
length of the data.

Por an ISSUE RECEIVE command with the SET option, the parameter
must be a data area. On completion of the retrieval operation,
the data area is set to the length of the data.

specifies that the CICS/VS task will continue processing
without waiting for the batch data interchange command to
complete. If this option is not specified, the task activity
will be suspended until the command is completed.

NUMREC (data—-value)

PRINT

for a relative data set, specifies as a halfword binary value
the number of logical records affected by one ISSUE REPLACE
command. Records are replaced sequentially starting with the
one identified by the RIDFLD option.

For an indexed data set, NUMREC cannot be specified since only
one record is replaced.

specifies that the output is to the print mediunm.

RIDFLD (data—area)

292

specifies the record identification field for use with ISSUE
REPLACE and ISSUE ERASE commands; it also specifies a data area
in which the relative record number of tha next record is
returned in an ISSUE NOTE command.

For ISSUE REPLACE commands for a relative data set, the RIDFLD
option must specify a fullvword binary integer being the
relative record number (starting from zero) of the record. The
RRN option is also required.

For ISSUE REPLACE commands for an indexed data set, the RIDFLD
option specifies the key which is embedded in the data
specified by the FROM option. The KEYLENGTH option is also
required.

For ISSUE ERASE commands, the RIDFLD option must specify the
key of the record.

CICS/VS APRM (CL)

RRN
specifies that the record identification field specified in the
RIDFLD option is a relative record number. If the option is
not specified, RIDFLD is assumed to specify a key.

SET (pointer—ref)
specifies the pointer reference that is to be set to the
address location of the data read from the data set. The SET
option implies locate—mode access.

SUBADDR (data—value)
specifies the medium subaddress as a decimal value (in the
range 0 through 15) which allows media of the same type, for
example, "printer 1" or "printer 2", to be defined. Values 15
means a medium of any type. The default is 00.

VOLUME (data-value) .
specifies the name of a diskette in an outboard destination
that contains the data set specified in the DESTID option. The
data value must be a character string of up to six characters.

VOLUMELENG (data—value)

spacifies the length of the name specified in the VOLUME option
as a halfword binary value.

WPMEDIA1 through WPMEDIAL
specifies that for each specific LUTYPEY device, a word
processing medium is defined to relate to a specific
input/output device.

Chapter 3.4. Batch Data Interchange 293

Batch Data Interchange Exceptional Conditions

DSSTAT

EODS

IGREQCD

FUNCERR

LENGERR

occurs when the destination status changes in one of the
following ways:

e The data stream is aborted.
s The data stream is suspended.

Default action: terminate the task abnormally.

occurs when the end of the data set is encountered.

Default action: terminate the task abnormally.

occurs when an attempt is made to execute an ISSUE SEND command
after a SIGNAL RCD data—flow control code has been received
from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

occurs when an error occurs during execution of the conmmand.
Destination selection is unaffected and other comaands for the
same destination may be successful.

Default action: terminate the task abnormally.

occurs if the length of the retrieved data is greater than the
value specified by the LENGTH option for a move—mode ISSUE
RECEIVE command.

Default action: terminate the task abnormally.

NODATARECD

SELNERR

UNEXPIN

294

occurs if an ISSUE RECEIVE command is issued to an LUTYPE4
logical unit and the destination currently has no data to send.

Default action: terminate the task abnormally.

occurs when an error occurs during destination selection. The
destination is not selected and other commands for the same
destination are unlikely to bes successful.

Default action: terminate the task abnormally.

occurs when some unexpected or unrecognized information is
received from the outboard controller.

Default action: terminate the task abnormally.

CICS/VS APRM (CL)

More detailed information about the cause of an exceptional condition
is given in field EIBRCODE in the EIB which is shown in Appendix A.
(Refer also to the CICS/VS Problem Determination Guide.)

Chapter 3.4. Batch Data Iaterchange 295

Part 4. Control Operations

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

4.6.

4.7.

Introduction to Control Operations

Interval Control

Task Control

Program Control

Storage Control

Transient Data Control

Temporary Storage Control

2917

Chapter 4.1. Introduction to Control Operations

This part of the manual collects together several groups of operations
that are not specifically data base or data communication operations,
but that control the execution of tasks within a CICS/VS system. These
groups of operations are as follows:

. Interval control — comprising functions whose execution is
dependent on tinme.

o Task control — comprising functions to synchronize task activity or
resource usage.

. Program control — comprising functions affecting the flow of
control between application progranms.

L Storage control — comprising functions to obtain and release areas
of main storage.

. Transient data control — comprising functions for the transfer of
data between CICS/VS tasks and between the CICS/VS region or
partition and other regions or partitioms.

. Temporary storage control - comprising functions for the temporary
storage of data.

- Each group of operations is described in a separate chapter within
this part, as listed on the previous page.

Chapter 4.1. Introduction to Control Operations 299

Chapter 4.2. Interval Control

The CICS/VS interval control program, in conjunction with a time—of—day
clock maintained by CICS/VS, provides functions that can be performed at
the correct time; such functions are called time—corntrolled functions.
The time of day is obtained from the operating system at intervals whose
frequency, and thus the accuracy of the time—of-day clock, depends on
the task mix and the freguency of task switching operations.

Interval control commands are provided to:

Request the current date and time of day (ASKTIME).

. Delay the processing of a task (DELAY).

. Request notification when a specified time has expired (POST).
. Wait for an event to occur (WAIT EVENT) .

. Start a task and store data for the task (START).

. Retrieve data stored for a task (RETRIEVE).

Cancel the effect of previous interval control commands (CANCEL).

The HANDLE CONDITION and IGNORE CONDITION commands can be used to
deal with any exceptional conditions that occur during the execution of
an interval control command. Refer to Chapter 1.5 for further
information about exceptional conditions.

Specify Expiration Times

The time at which a time—controlled function is to be performed is
called the expiration time. Expiration times can be specified

absolutely, as a time of day, or as an interval that is to elapse before
the function is to be performed.

If the specified time of day is in advance of the current clock time,
the requested function is performed@ when the specified time occurs. If
the specified time of day is the same as the current clock time, or up
to and including six hours preceding the current clock time, the
specified time is considered to have expired and the requested function
is performed immediately. If the specified time of day precedes the
current clock time by more than six hours, the regquested function is
performed the next day at the specified time.

Since each end of an intersystem link may be in a different time

zone, it is recommended that the INTERVAL form of expiration time be
used when the transaction to be started is in a remote systen.

Chapter 4.2. Interval Control 301

Specify Request Identifiers

As a means of symbolically identifying the request and any data
associated with it, a unique request identifier is assigned by CICS/VS
to each DELAY, POST, or START command. The application programmer can
specify his own request identifier by means of the REQID option; if none
is assigned by the programmer, then for POST and START commands only,
CICS/VS assigns a unigue request identifier and places it in the field
EIBREQID in the EXEC interface block (EIB). A request identifier should
be specified by the application programmer if the request may be
canceled at some later time. (See "Canceling Interval Control Requests®
later in this chapter.)

Request Current Time of Day (ASKTIME)

ASKTIME

o o - -
b o o —

This command is used to update the CICS/VS time—of-day clock, and the
fields EIBDATE and EIBTIME in the EIB. The two fields contain initially
the date and time when the task started. Refer to Appendix A for
details of the EIB.

Delay Processing of a Task (DELAY) .

L}
1
DELAY [INTERVAL (hhmmss) | INTERVAL (O) | TIME (hhmmss)] |
[REQID (name)] !

|

|

|

'}

Exceptional conditions: EXPIRED, INVREQ

o e — = — -

This command is used to request CICS/VS to suspend the processing of the
issuing task for a specified interval of time or until a specified time
of day. It supersedes any previously initiated POST command for the
task. (The POST command is described in the following section.)

The following example shows how to suspend the processing of a task
for a specified period of time:

EXEC CICS DELAY Delay task processing
INTERVAL (500) for 5 minutes
REQID ("GXLBZQMR") Unique request ID

The following example shows how to suspend the processing of a task
until a specified time of day:

EXEC CICS DELAY Delay task processing
TIME (124500) until 12.45
REQID (*UNIQCODE") Unique request ID

302 CICS/VS APRM (CL)

Request Notification when Specified Time has Expired (POST)

POST [INTERVAL (hhnmss) | INTERVAL(0) | TIME (hbhnmss)]}
SET (pointer-ref)
[REQID (name) }

Exceptional conditions: INVREQ, EXPIRED

[— —— e —
T e ————

This command is used to request notification that a specified time has
expired. 1In response to this command, CICS/VS makes a timer event
control area available for testing. This four-byte area is initialized
to binary zeros, and the pointer reference specified in the SET option
is set to its address. This area is available for the duration of the
task issuing the POST command.

When the time specified has expired, the timer event control area is
posted; that is, its first byte is set to X'40* and its third byte to
X*80%. Posting can be tested in either of the following ways:

. By checking the timer event control area at intervals. CICS/VS
must be given the opportunity to post the area; that is, the task
must relinguish control of CICS/VS before testing the area.
Normally, this condition is satisfied as a result of other commands
being issued; if a task is performing a long internal function,
control can be relinquished by issuing a SUSPEND coammand, described
in the section "Suspending a Task" in Chapter 4.3.

L By suspending task activity by a WAIT EVENT command until the timer
event control area is posted. This action is similar to issuing a
DELAY command, the difference being that with a POST, WAIT EVENT
sequence, it is possible to perform some processing after issuing
the POST command, whereas a DELAY command suspends task activity at
once. Also, a WAIT EVENT command can pe issued by some other task,
to synchronize itself with the posting of the timer event control
area specified in this task. However, the timer event control area
will be released when this task terminates normally, or abnormally.

A timer event control area provided for a task is not released or
altered (except as described above) until one of the following events
occurs:

L The task issues a subsequent DELAY, POST, or START command.
. The task issues a CANCEL command to cancel the POST command.
. The task is terminated, normally or abnormally.

A task can have only one POST command active at any given time. Any
DELAY, POST, or START command supersedes a previously issued POST
command by the task.

The following example shows how to request a timer event control area
for a task, to be posted after 30 seconds:

EXEC CICS POST Request timer event control area
INTERVAL (30) Post after 30 seconds
REQID (*RBL3D") Request identifier
SET (PREF) Pointer reference for timer event

control area

Chapter 4.2. Interval Control 303

The following example shows how to provide a timer event control area
for the task, to be posted when the specified time of day is reached.
Since no reguest identifier is specified in the command, CICS/VS
automatically assigns one and returns it to the application program in
the EIBREQID field in the EIB.

EXEC CICS POST Request timer event control area
TIME (PACKTIME) Post at specified time
SET (PREF) Pointer reference for timer event

control area

Wait for an Event to Occur (WAIT EVENT)

WAIT EVENT ECADDR (pointer—value)

o amm — — -
o - — ol

This command is used to synchronize a task with the completion of an
event initiated by the same task or by another task. The event would
normally be the posting, at the expiration time, of a timer event
control area provided in response to a POST command, as described in the
preceding section. The WAIT EVENT command provides a method of directly
relinquishing control to some other task until the event being waited on
is conmpleted.

A pointer value giving the address of an event control area must be
specified in the ECADDR option. The event control area must conform to
the format and standard posting conventions for ECBs; it will normally
be the timer event control area created by a POST command.

In CICS/0S/VS systems, only one task at a time should be allowed to
wait on any one event, otherwise an abnormal termination of the systenm
may occur.

The following example shows how to suspend processing of a task until
the specified event control area is posted:

EXEC CICS WAIT EVENT Wait for event to occur
ECADDR (PVALUE) Area to be posted

304 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Start a Task (START)

START [INTERVAL (hhmmss) | INTERVAL (0) | TIME (hhmmss) }
TRANSID (name)
[REQID (hame)]
[FROM (data—area) LENGTH (data—value){[FMH]]
[TERMID (name) }
[SYSID (name))
[{ RTRANSID (name)]
[RTERMID (name)]
{ QUEUE (name))]
[NOCHECK]
[PROTECT]

Exceptional conditions: IOERR, INVREQ, ISCINVREQ, SYSIDERR,
TERMIDERR, TRANSIDERR

. e . VD - - —— — - —— —— ny "8 e
e - T —— — —— " o— o —

This command is used to start a task, on a local or remote system, at a
specified time. The starting task may pass data to the started task and
may also specify a terminal to be used by the started task as its
principal facility. The TRANSID, TERMID, and FROM options specify the
transaction to be executed, the terminal to be used, and the data to be
used, respectively.

The FMH option may be specified if the FROM option is specified. It
indicates that the data, to be passed to the started task, contains
function management headers.

Further data may be passed to the started task in the RTRANSID,
RTERMID, and QUEUE options. For example, one task can start a second
task passing it a transaction name and a terminal name to be used when
the second task starts a third task; the first task may also pass the
name of a queue to be accessed by the second task.

If data is to be passed, it will be queued using the request
identifjer specified in the REQID option,. if one is provided. This
identifier should be recoverable (in temporary-storage terms) if the
PROTECT option is also specified, or nonrecoverable if PROTECT is not
specified, otherwise unpredictable results can occur. Such problems
cannot occur if REQID is not used.

The NOCHECK option specifies that no response (to execution of the
START camnmand) is expected by the starting transaction. For START
commands naming tasks to be started on a local system, error conditions
will be returned, whereas those for tasks to be started on a remote
system will not be returned. The NOCHECK option allows CICS/VS to
improve performance when the START command has to be shipped to a remote
system; it is also a prerequisite if the shipping of the START command
is queued pending the establishing of links to the remote system.

One or more constraints have to be satisfied before the transaction
to be executed can be started, as follows:

1. The specified interval must have elapsed or the specified
expiration time must have been reached. An expiration time equal
to the current time of day (or up to 6 hours preceding it) is
equivalent to an interval value of zero. It is recommended that
the INTERVAL option be specified when a transaction is to be
executed on a remote system; this avoids complications arising when
the local and remote systems are in different time zones.

Chapter 4.2. Interval Control 305

2. If the TERMID option is specified, the named terminal must be
available.

3. If the PROTECT option is specified, the starting task must have

: taken a successful syncpoint. This option, coupled to extensions
to system tables, reduces the exposure to lost or duplicated data
caused by failure of a starting task.

4. If the transaction to be executed is on a remote system the format
of the data must be declared to be the same as that at the local
system. This is done by the DATASTR and RECFM operands of the
DFHTCT TYPE=SYSTEM system macro. For CICS/VS-CICS/VS these are
always the default values. For CICS/VS-IMS/VS care should be taken
to specify the correct values.

Execution of a START command naming a transaction in the local system
will supersede any outstanding POST command executed by the starting
task.

STARTING TASKS WITHOUT TERMINALS

If the task to be started is not associated with a terminal, each START
command results in a separate task being started. This happens
regardless of whether or not data is passed to the started task.

The following example shows how to start a specified task not
associated with a terminal:

EXEC CICS START Start the task
TRANSID (*TRNL") Transaction identifier
INTERVAL (10000) Start task in one hour
REQID (*NONGL"*) Request identifier

STARTING TASKS WITH TERMINALS BUT WITHOUT DATA

Only one task is started if several START commands, each specifying the
same transaction and terminal, expire at the same time or prior to
terminal availability.

The following example shows how to request initiation of a task
associated with a terminal. Since no request identifier is specified in
this example, CICS/VS assigns one and returns it to the application
program in the EIBREQID field in the EXEC interface block.

EXEC CICS START Start the task
TRANSID (*TRN1") Transaction identifier
TIME (185000) Expiration time (1850 hours)
TERMID (*STAS5") Terminal identifier

306 CICS/VS APRM (CL)

Page of SC33-0077—2, added September 1980 by TNL SN33-6268
STARTING TASKS WITH TERMINALS AND DATA

Data is passed to a started task if one or more of the FROM, RTRANSID,
RTERMID, and QUEUE options is specified. Such data is accessed by the
started task through execution of a RETRIEVE command as described later
in the chapter.

It is possible to pass many data records to a new task by issuing
several START commands, each specifying the same transaction and
terminal.

Execution of the first START command will ultimately cause the new
task to be started and allow it to retrieve the data specified on the

Chapter 4.2. Interval Control 306.1

| command. The new task will also be able to retrieve data specified on
| subsequently executed START commands that expire before the new task is
| terminated. If such data has not been retrieved before the new task is
| terminated, another new task will be started and will be able to

| retrieve the outstanding data.

The following example shows how to start a task associated with a
terminal and pass data to it:

EXEC CICS START Start the task
TRANSID (*TRN2?) , Transaction identifier
TIME (173000) Expiration time 1730
TERMID (*STA3") Terminal identifier
REQID (DATAREC) Request identifier field
FROM (DATAFLD) Data address
LENGTH (100) Data length

Retrieve Data Stored for a Task (RETRIEVE)

RETRIEVE {INTO(data—area) | SET(pointer-ref)}
LENGTH (data—area)
[RTRANSID (data—area))
[RTERMID (data—area)]
[QUEUE (data—area)]}
[®WAIT]

Exceptional conditions: ENDDATA, ENVDEFERR, INVREQ, INVTSREQ,
JOERR, LENGERR, NOTFND,

S —

This command is used to retrieve data stored by expired START commands
(the START command is described in the previous section). It is the
| only method available for accessing such data.

The INTO option is used to specify the area into which the data is to
be placed. The LENGTH option must specify a data area that contains the
maximum length of record that the application program will accept. If
the record length exceeds the specified maximum, it is truncated and the
LENGERR condition occurs. After the retrieval operation, the data area
specified in the LENGTH option is set to the record length (before any
truncation occurred).

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of that area. After the
retrieval operation, the data area specified in the LENGTH option is set
to the record length.

A task that is not associated with a terminal can access only the
single data record associated with the original START command; it does
so by issuing a RETRIEVE comamand. The storage occupied by the data
associated with the task is released upon execution of the RETRIEVE
command, or upon termination of the task if no RETRIEVE coamand is
executed prior to termination.

A task that is associated with a terminal can access all data records
associated with all expired START commands having the same transaction
identifier and terminal identifier as the START command that started the
task; it does so by issuing consecutive RETRIEVE commands. Expired data

Chapter 4.2. 1Interval Control 307

records are presented to the task upon request in expiration time
sequence, starting with any data stored by the command that started the
task, and including data from any commands that have expired since the
task started. When all expired data records have been retrieved, the
ENDDATA exceptional condition occurs. The storage occupied by the
single data record associated with a START comamand is released after the
data has been retrieved by a RETRIEVE command; any storage occupied by
data that has not been retrieved is released when the CICS/VS systenm is
terminated.

The WAIT option specifies that, if all expired data records have
already been retrieved, the task is suspended until further expired data
records become available. The ENDDATA exceptional condition will be
raised only if CICS/VS is shut down before any expired data records
become available.

If a value has been specified in the DTIMOUT operand of the DFHPCT
TYPE=ENTRY system macro, the ENDDATA condition will be raised if no data
is available after the specified length of time. This condition will be
raised also if the terminal, on which the transaction has been
suspended, receives a reguest for a transaction other than the one that
has been suspended. This condition will be raised also if CICS/VS
enters shut down and the transaction is still suspended. An attempt to
reissue the RETRIEVE command with the WAIT option after this event (that
is, systemr shut down) will cause ak abend with a code of BAICB.

If the retrieved data contains FMHs, as specified by the FPMH option
on the associated START command, field EIBFMH in the EIB will be set to
X'FF'.

If an input/output error occurs during a retrieval operation, the
IOERR exceptional condition occurs. The operation can be retried by
reissuing the RETRIEVE command.

The following example shows how to retriesve data stored by a START
command for the task, and store it in a specified area:

EXEC CICS RETRIEVE Retrieve time—ordered data
INTO (DATAFLD) User—provided data area
LENGTH (LENG) Length program will accept

The following example shows how to request retrieval of a data record
stored for a task into a data area provided by CICS/VS; the pointer
reference specified by the SET option 1is set to the address of the
storage area reserved for the data record.

EXEC CICS RETRIEVE Retrieve time—ordered data
SET (PREF) Request pointer reference set
LENGTH (LENG) Set to length of data

308 CICS/VS APRM (CL)

Cancel Interval Control Requests (CANCEL)

C T T

CANCEL [REQID (name) [TRANSID (name) J{SYSID(name)]]

Exceptional conditions: INVREQ, ISCINVREQ, NOTFND, SYSIDERR

e = - —— o - o

This command is used to cancel a previously issued DELAY, POST, or START
command. The presence of SYSID will cause the cormand to be shipped to
a remote system. If SYSID is not present, TRANSID (if present) will
determine where the command is to be executed. The effect of the
cancellation varies depending on the type of command being canceled, as
follows:

A DELAY command can be canceled only prior to its expiration, and
only by a task other than the task that issued the DELAY command
(vhich is suspended for the duration of the request). The REQID
used by the suspended task must be specified. The effect of the
cancellation is the same as an early expiration of the original
DELAY. That is, the suspended task becomes dispatchable as though
the original expiration time had been reached.

When a POST command issued by the same task is to be canceled, no
REQID should be specified; if it is, it will be ignored.
Cancellation can be requested either before or after expiration of
the original request. The effect of the cancellation is as if the
original request had never been made.

When a POST command issued by another task is to be canceled, the
REQID of that command must be specified. The effect of the
cancellation is the same as an early expiration of the original
POST request. That is, the timer event control area for the other
task is posted as though the original expiration time had been
reached. -

When a START command is to be canceled, the REQID of the original
command must be specified. The effect of the cancellation is as if
the original command had never been made. The cancellation is
effective only prior to expiration of the origimal command.

Chapter 4.2. 1Interval Control 309

Interval Control Options

ECADDR (pointer—value)

specifies the address of the timer event control area that must
be posted before task activity can be resumed.

specifies that the user data to be passed to the started task
contains FMAs.

FROM (data-—area)

specifies the data that is to be stored for a task that is to
be started at some future time.

INTERVAL (hhmass)

specifies the expiration time for an interval control function
as an interval of time that is to elapse from the time at which
the interval control command is issued. The time specified is
added to the current clock time by CICS/VS when the command is
executed to calculate the expiration time. If the calculated
time of day is the same as the current clock time, or up to and
including six hours preceding the current clock time, the
specified time is considered to have expired.

This option is used in DELAY commands (to specify the time for
which the task should be suspended), POST commands (to specify
when the posting of the timer event control area should occur),
and START commands (to specify when a new task should be
started).

The time interval is specified in the form "hhmmss"® where “hhn
represents hours from 00 to 99, "mn® represents minutes from 00
to 59, and "ss" represents seconds from 00 to 59.

INTO (data—area)

specifies the user data area into which retrieved data is to be
written. If this option is specified, move—mode access is
implied.

LENGTH (parameter)

310

specifies a halfword binary value to be used with START and
RETRIEVE commands.

For a START command, the parameter must be a data value that is
the length of the data that is to be stored for the new task.

For a RETRIEVE command with the INTO option, the parameter must
be a data area that specifies the maximum length of data that
the program is prepared to handle. If the value specified is
less than zero, zero is assumed. If the length of the data
exceeds the value specified, the data is truncated to that
value and the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a RETRIEVE command with the SET option, the parameter must

be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

CICS/VS APRM (CL)

NOCHECK

PROTECT

Page of SC33-0077—-2, revised September 1980 by TNL SN33-6268

specifies that, for a remote system, CICS/VSvshould optimize

the execution of the START command to improve performance by

providing less error checking and slightly less function.

specifies that, in addition to the constraints described
earlier in the chapter, the new task will not be started until

~the starting task has taken a sync point. If the starting task

abends before the sync point is taken, the request to start the .
new task will be canceled. If the REQID option is specified as
well, the request identifier should be a name defined as
recoverable to temporary storage.

QUEUE { (hame) 1 v(data' area)}

when used in a START command, ®"name®™ specifies the name of the
gqueue that may be used by the transaction specified also in the
START command. The name must be up to eight characters in
length. '

When used in a RETRIEVE command, "data area® specifies the name
of the queue that may be accessed by the transaction issuing
the RETRIEVE command. The data area must be eight characters
in length. ‘

REQID (name)

specifies a unique name (up to eight characters) to ldentlfy a
command.

This option can be used in a DELAY, POST, or START command when
another task is to be provided with the capability of canceling
an unexpired command; and in CANCEL commands, except those
canceling a POST command issued by the same task (for which,
the REQID option is ignored if it is specified).

If this option is omitted from a POST command, CICS/VS
generates a unique request identifier in the EIBREQID field of
the EXEC interface block. This applies also to a START command
unless the NOCHECK option is specified, in which case field
EIBREQID is set to blanks and cannot be used subsequently to

cancel the START command.

' RTERMID{(name) | (data area)}

When used in a START command, "name" specxf:n.es a value, for
example a terminal name, that may be retrieved when the
transact:.on, specified in the TRANSID option in the START
command, is started. The name must be up to four characters in
length. -

‘When used in a RETRIEVE command, "data area™ specifies an area

which may be used in the TERMID option of a START command that

‘may be executed subsequently. The data area must be four

characters in length.

Chapter 4.2. Interval Control 311

RTRANSID{ (name) | {data area)}

Wwhen used in a START command, "name® specifies a value, for
example a transaction name, that may be retrieved when the
transaction, specified in the TRANSID option in the START
command, is started. The name must be up to four characters in
length.

When used in a RETRIEVE command, "data area®™ specifies an area
which may be used in the TRANSID option of a START command that
may be executed subsequently. The data area must be four
characters in length.

SET (pointer—ref)

When used with a POST command, SET specifies the pointer
reference to be set to the address of the 4-byte timer event
control area generated by CICS/VS. This area is initialized to
binary zeros; on expiration of the specified time, the first
byte is set to X*40", and the third byte to X'80°.

When used with a RETRIEVE command, SET specifies the pointer
reference to be set to the address of the retrieved data. If
this option is specified, locate-mode access is implied.

SYSID name) remote systems only

specifies the name of the system whose resources are to be used
for intercommunication facilities. The name may be up to four
characters in length.

TIME (hhmmss)

specifies the expiration time for an interval control function.
If the specified time is the same as the current clock time, or
up to and including six hours preceding the current clock time,
the specified time is considered to have expired.

This option is used in DELAY commands (to specify the time for
which the task should be suspended) , POST cammands (to specify
when the posting of the timer event control area should occur),
and START commands (to specify when a new task should be
started) .

The time is specified in the form "hhmmss® where "hh"
represents hours from 00 to 99, "mm™ represents minutes from 00
to 59, and "ss™ represents seconds from 00 to 59.

TERMID (name)

312

specifies the symbolic identifier of the terminal associated
with a transaction to be started as a result of a START
command. This option is required when the transaction to be
started must communicate with a terminal; it should be omitted
otherwise. The name must be alphameric, up to four characters
in length, and must have been defined in the terminal control
table (TCT) by the system programmer.

If the transaction to be started is on a remote system, the
terminal identifier will be assumed to be defined in the TCT on
the remote system.

CICSNVS APRM (CL)

TRANSID (name)

specifies the symbolic identifier of the transaction to be
executed by a task started as the result of a START command, or
to be canceled by a CANCEL command. The name may be up to four
characters in length and must have been defined in the program
control table (PCT) by the system programmer.

If SYSID is specified, the transaction is assumed to be on a
remote system irrespective of whether or not the name is
defined in the PCT. Otherwise the entry in the PCT will be
used to determine if the transaction is on a local or remote
system.

specifies that, if all expired data records have already been
retrieved, the task is to be put into a wait state until
further expired data records become available. The ENDDATA
exceptional condition will be raised only if CICS/VS is shut
down before any expired data records become available.

If the retrieved data contains FPMBs, as specified by the FMH

option on the associated START command, field EIBFMH in the EIB
will be set to X'FF°'.

Chapter 4.2. Interval Control 313

Interval Control Exceptional Conditions

ENDDATA
occurs if no more data is stored for a task issuing a RETRIEVE
command. It can be considered a normal end—of-—file response
when retrieving data records sequentially.
Default action: terminate the task abnormally.

ENVDEFERR
occurs when a RETRIEBVE command specifies an option not
specified by the corresponding START command.
Default action: terminate the task abnormally.

EXPIRED
occurs if the time specified in a POST or DELAY command has
already expired when the command is issued.
Default action: ignore the condition.

INVREQ
occurs if an invalid type of interval control command is
received for processing by CICS/VS.
Default action: terminate the task abnormally.

INVTSREQ
occurs if there is no support for a temporary storage read
request issued by CICS/VS during execution of a RETRIEVE
command. This situation can occur when a dummy Temporary
Storage Program is included in the system by the systenm
programmer in place of a functional Temporary Storage Program.
Default action: terminate the task abnormally.

IOERR
occurs if an input/output error occurs during a RETRIEVE or
START operation. The operation can be retried by reissuing the
RETRIEVE command.
Default action: terminate the task abnormally.

ISCINVREQ
occurs when the remote system indicates a failure which does
not correspond to a known condition.
Default action: terminate the task abnormally.

LENGERR
occurs in a move-mode retrieval operation if the length
specified is less than the actual length of the stored data.
Default action: terminate the task abnormally.

314 CICS/VS APRM (CL)

NOTFND
occurs if any of the following situations exists:

e The request identifier specified in a CANCEL command fails
to match an unexpired time-controlled—function command.

e The RETRIEVE command is issued by a task that is started in

response to a START command which did not specify the FROM
option.

e The request identifier associated with a START command
fails to remain unique; when a RETRIEVE command is issued,
CICS/VS cannot determine where the data is stored.

Default action: terminate the task abnormally.

SYSIDERR
occurs when the SYSID option specifies either a name which is

not defined in the intersystem table or a system to which the
link is closed.
Default action: terminate the task abnormally.

TERMIDERR

occurs if the terminal identifier specified in a START command
cannot be found in the terminal control table.

Default action: terminate the task abnormally.

TRANSIDERR

occurs if the transaction identifier specified in a START
compand cannot be found in the program control table.

Default action: terminate the task abnormally.

Chapter 4.2. 1Interval Control 315

Chapter 4.3. Task Control

The CICS/VS task control program provides functions that synchronize
task activity, or that control the use of resources.

CICS/VS processes tasks concurrently according to priorities assigned
by the system programmer. Control of the processor is givean to the
highest priority task that is ready to be processed and is returned to
the operating system when no further work can be done by CICS/VS or by
user-written application programs.

Task control commands are provided to:
. Suspend a task (SUSPEND).
. Schedule the use of a resource by a task (ENQ and DEQ).

A task can issue the SUSPEND command to relinquish coantrol and allow
tasks with a higher priority to proceed. This facility can be used to
prevent processor—intensive tasks from monopolizing the processor. If
no higher—priority task is waiting to be processed, control is returned
to the issuing task; that is, the task remains dispatchable.

Scheduling the use of a resource by a task is sometimes useful in
order to protect the resource from concurrent use by more than one task,
that is, to make the resource serially reusable. Each task that is to
use the resource issues an ENQ (enqueue) command. The first task to do
so has the use of the resource immediately, but subsequent ENQ commands
for the resource, issued by other tasks, result in those tasks being
suspended until the resource is available. Each task using the resource
should issue a DEQ (dequeue) command when it has finished with it. The
resource then becomes available and the next task to have issued an ENQ
command is resumed and given use of the resource. The other tasks
obtain the resource in turn, in the order in which they enqueued upon
it.

Suspend a Task (SUSPEND)

SUSPEND

oo

b —

This command is used to relinquish control to a task of higher
dispatching priority. Control is returned to the task issuing the
command if no other task of a higher priority is ready to be processed.

Chapter 4.3. Task Control 317

Schedule Use of a Resource by a Task (ENQ and DEQ)

{ENQ | DEQ} RESOURCE (data—area)
[LENGTH (data—value)]

Exceptional condition: ENQBUSY (ENQ only)

[P e - —
o e o - - - o

The ENQ and DEQ commands can be used to enqueue upon and degueue from a
resource that is to be protected from concurrent use by more than one
task.

The ENQ command causes further execution of the task issuing the ENQ
conmand to be synchronized with the availability of the specified
resource; control is returned to the task when the resource is
available.

The ENQBUSY condition allows a conditional ENQ to be used. If a
resource is not available when enqueued, the ENQBUSY condition is
raised. The execution of a HANDLE CONDITION ENQBUSY command will return
control to the task at the ENQBUSY label, without waiting for the
resource to become available.

The DEQ command causes a resource currently enqueued upon by the task
to be released for use by other tasks. If a task enqueues upon a
resource but does not dequeue from it, CICS/VS automatically releases
the resource when the task is terminated.

When issuing the ENQ command, the resource to be enqueued upon must
be identified by one of the following methods:

. Specifying a data area that is the resource.

. Specifying a data variable that contains a unique character—string
argument (for example, an employee name) that represents the
resource. The character string may be up to 255 bytes in length.
The length of the string must be supplied in the LENGTH option.

When issuing the DEQ command, the resource to be dequeued from must
be identified by the method used when enqueuing upon the resource.

The following examples show how to engueue upon a resource using the
two methods shown above. Substituting "DEQ"™ for "ENQ"™ in these exanmples
illustrates the ways in which a resource can be released.

EXEC CICS ENQ Enqueue upon resource
RESOURCE (RESNAME) Address of resource
or
EXEC CICS ENQ Enqueue upon resource
RESOURCE (SOCSECNO) Character string field
LENGTH (9) Length of argument

318 CICS/VS APRM (CL)

Task Control Options

LENGTH (data—value)

specifies that the resource to be enqueued upon (or dequeued
from) is a data variable of length given by the data value.
The data value is a halfword binary value in the range 1
through 255. If the LENGTH option is specified in an ENQ
command, it must also be specified in the DEQ command for that
resource, and the values of these options must be the sanme.
This option is required if the resource is specified as a
character string; it should not be specified otherwise.

RESOURCE (data-area)

specifies either the resource to be enqueued upon (or dequeued
from) or a data variable that contains a character string (for
example an employee name) that represents the resource. In the

latter case, the length of the string must be specified by the
LENGTH option.

Task Control Exceptional Conditions

ENQBUSY
occurs when an ENQ command specifies a resource that is
unavailable.

Default action: wait for the resource to become available.

Chapter 4.3. Task Control 319

Chapter 4.4. Program Control

The CICS/VS program control program governs the flow of control between
application programs in a CICS/VS system. The name of an application
program referred to in a program control command must have been placed
in the processing program table (PPT) by the system programmer before
CICS/VS is started.

Program control commands are provided to:

. Link one user—written application program to another, anticipating
subsequent return to the requesting program (LINK). The COMMAREA
option allows data to be passed to the requested application
progran.

] Transfer control from one user-written application program to
another, with no return to the requesting program (XCTL). The
COMMAREA option allows data to be passed to the requested
application progranm.

. Return control from one user—written application program to another
or to CICS/VS (RETURN). The COMMAREA option allows data to be
passed to a newly—initiated transaction.

o lLoad a designated application program, table, or map into main
storage and return control to the requesting program (LOAD).

. Delete a previously loaded application program, table, or map from
main storage (RELEASE).

The HANDLE CONDITION command can be used to deal with the PGMIDERR
exceptional condition, which may occur during execution of a progranm
control command. Refer to Chapter 1.5 for further information about
exceptional conditions.

The HANDLE ABEND command can be used to deal with abnormal

terminations. Refer to Chapter 5.2 for further information about this
comrmand.

Application Program Logical Levels

Application programs running under CICS/VS are executed at various
logical levels. The first program to receive control within a task is
at the highest logical level. When one application program is linked to
another, expecting an eventual return of control, the linked—to program
is considered to reside at the next lower logical level. When control
is simply transferred from one application program to another, without
expecting return of control, the two programs are considered to resigde
at the same logical level. PFigure 4.4-1 illustrates the concept of
logical levels.

Chapter 4.4. Program Control 321

Figure 4.4-1.

322 CICs/VsS APRM (CL)

XCTL

CICS/VS
Application LINK
Program
A
RETURN XCTL
IV i N
Application Application
Program Program LINK
B [
/\ RETURN _
Application
Program
D

Application
Program
E

RETURN

]

Application Program Logical Levels

CiCs/vs
level

Highest
logical
level

Lowest
logical
level

Link to Another Program Anticipating Return (LINK)

LINK PROGRAM (name)
[COMMAREA (data—area) LENGTH (data—value)]

Exceptional condition: PGMIDERR

This command is used to pass control from an application program at one
logical level to an application program at the next lower logical level.
If the linked—to program is not already in main storage, it will be
loaded. Wwhen the RETURN command (described later in this chapter) is
executed in the linked-to program, control is returned to the program
initiating the linkage at the next sequential executable instruction.

The following example shows how to request a link to an application
program called PROG1:

EXEC CICS LINK Link to a progranm
PROGRAN (*PROG1?%) Program name

The COMMAREA option can be used to pass data to the linked-to
program. For further details, see the section "Passing Data to Other
Programs" earlier in this chapter. The LENGTH option specifies the
length of the data being passed.

The linked—to program operates independently of the program that
issues the LINK command with regard to handling exceptional conditions,
attention identifiers, and abends. For example, the effects of HANDLE
commands in the linking program are not inherited by the linked-to
program, but the original HANDLE commands are restored oan return to the
linking progranm.

Transfer Program Control (XCTL)

XCTL PROGRAM (nane)
[COMMAREA (data—area) LENGTH (data—value)]

Exceptional condition: PGMIDERR

(o w— — — ——
e - — — - — o

This command is used to transfer control from one application program to
another at the same logical level. The program from which coatrol is
transferred is released. If the program to which control is transferred
is not already in main storage, it will be loaded.

The following example shows how to request a transfer of control to
an application program called PROG2:
EXEC CICS XCTL Transfer control
PROGRAM (*PROG2*) Program name

The COMMAREA option can be used to pass data to the invoked program.
For further details, see the section "Passing Data to Other Programs"

Chapter 4.4. Program Control 323

earlier in this chapter. The LENGTH option specifies the length of the
data to be passed.

Return Program Control (RETURN)

RETURN [TRANSID (name) [COMMAREA (data—area) LENGTH (data-value)]]

Exceptional condition: INVREQ

o — . — o — -
e vwe wn ams w— o= o

This command is used to return control from an application program
either to an application program at the next higher logical level or to
CICS/VS.

When the command is issued in a lower—level program, the program to
which control is returned will have relinquished control by issuing a
LINK command and will reside one logical level higher than the program
returning control.

When the command is issued in a program at the highest logical level,
control returns to CICS/VS. If the task is associated with a terminal,
the TRANSID option can be used to specify the transaction identifier for
the next program to be associated with that terminal; this causes
subsequent input entered from the terminal to be interpreted wholly as
data. In addition, the COMMAREA option can be used to pass data to the
new task that will be started. For further details, see the section
"Passing Data to Other Programs" earlier in this chapter. The LENGTH
option specifies the length of the data to be passed. The COMMAREA and
LENGTH options can be used only when the RETURN command is returning
control to CICS/VS; the INVREQ exceptional condition will occur
otherwise. ‘

Load a Program (LOAD)

LOAD PROGRAM (name)
[SET (pointer—ref)]
[LENGTH (data-area)]
[ENTRY (pointer—ref)]
[HOLD]

Exceptional condition: PGMIDERR

(O e - —— . —
e o ——— ———— —)

This command is used to fetch application programs, tables, or maps froa
the library where they reside and load them into main storage. This
facility is used to load an application program that will be used
repeatedly, thereby reducing system overhead through a single load, to
load a table to which control is not to be passed, or to load a map to
be used in a mapping operation. (See Chapter 3.3 for further details
about maps.) CICS/VS sets the pointer reference specified in the SET
option to the address of the loaded program, table, or map; if the
LENGTH option is specified, the data area provided will be set to the
length involved.

324 CICS/VS APRM (CL)

If the HOLD option is specified, the loaded program, table, or map
remains in main storage until a RELEASE command is issued; if HOLD is
not specified, the program, table, or map remains in main storage until
a RELEASE command is issued or until the task that issued the LOAD
command is terminated normally or abnormally.

The following example shows how to load a user-prepared table called
TAB1:

EXEC CICS LOAD Load a table
PROGRAM ("TAB1"*) Table name
SET (PTR) Request pointer reference set

Delete a Loaded Program (RELEASE)

RELEASE PROGRAM (name)

Exceptional condition: PGMIDERR

ro— e —
h—-————J

This command is used to delete from main storage a program, table, or
map previously loaded in response to a LOAD command. If the HOLD option
is specified in the LOAD command, the loaded program is deleted only in
response to a RELEASE command. If the HOLD option is not specified, the
loaded program can be deleted by a RELEASE, or it will be deleted
automatically when the task that issued the LOAD is terminated.

The following example shows how to delete an application progranm,
called PROG4, loaded in response to a LOAD command:

EXEC CICS RELEASE Delete a program
PROGRAM (' PROGH *) Program name

Passing Data to Other Programs

This section describes how data can be passed betwesen programs when
control is passed to another program by means of a program control
command. (Data can be passed between application programs and
transactions in other ways. For example, the data can be stored in a
CICS/VS storage area outside the local environement of the application
program, such as the transaction work area (TWA); see Chapter 1.6 for
details. Another way is to store the data in temporary storage; see
Chapter 4.7 for details.)

The COMMAREA option of the LINK and XCTL commands specifies the name
of a data area (known as a communication area) in which data can be
passed to the program being invoked.

In a similar manner, the COMMAREA option of the RETURN command
specifies the name of a communication area in which data can be passed
to the transaction identified in the TRANSID option. (The TRANSID
option specifies a transaction that will be initiated when input is
received from the terminal associated with the task.) The length of the
communication area is specified in the LENGTH option; PL/I programs need
not specify the length.

Chapter 4.4. Program Control 325

The invoked program receives the data as a parameter. The program
must contain a definition of a data area to allow access to the passed
data.

In an assembler-language program, the data area should be a DSECT.
The register used to address this DSECT must be loaded from DFHEICAP,
which is in the DFHEISTG DSECT.

In a COBOL program, the data area must be called DFHCOMMAREA.

In a PL/I program, the data area can have any name, but it must be
declared as a based variable, based on the parameter passed to the
program. The pointer to this based variable should be declared
explicitly as a pointer rather than contextually by its appearance in
the declaration for the area. This will prevent the generation of a
PL/I error message.

The data area need not be of the same length as the original
communication area; if access is required only to the first part of the
data, the new data area can be shorter. It must not be longer, because
the results in this situation are unpredictable.

The invoked program can determine the length of any communication
area that has been passed to it by accessing the EIBCALEN field in the
EIB of the task. If no communication area has been passed, the value of
EIBCALEN will be zero; otherwise, EIBCALEN will always contain the value
specified in the LENGTH option of the LINK, XCTL, or RETURN command,
regardless of the size of the data area in the invoked program.

When a communication area is passed by means of a LINK command, the
invoked program is passed a pointer to the communication area itself.
Any changes made to the contents of the data area in the invoked progranm
are available to the invoking program, when control returas to it; to
access any such changes, the program names the data area specified in
the original COMMAREA option.

When a communication area is passed by means of an XCTL command, a
copy of that area is made unless the area to be passed has the same
address and length as the area that was passed to the program issuing
the command. For example, if program A issues a LINK command to program
B which, in turn, issues an XCTL command to program C, and if B passes
to C the same communication area that A passed to B, program C will be
passed addressability to the communication area that belongs to A (not a
copy of it) and any changes made by C will be available to A when
control returns to it.

A communication area can be passed by means of a RETURN command
issued at the highest logical level when control returns to CICS/VS; in
this case, a copy of the communication area is made, and addressability
to the copy is passed to the first program of the next transaction.

The invoked program can access field EIBFN in the EIB to determine
which type of command invoked the program. The field must be tested
before any CICS/VS commands are issued. If a LINK or XCTL invoked the
program, the appropriate code will be found in the field; if RETURN is
used, no CICS/VS commands will have been issued in the task, and the
field will contain zeros.

The following examples show how a LINK command causes data to be

passed to the program being linked to; the XCTL command is coded in a
similar way.

326 CICS/VS APRM (CL)

LINK or XCTL, for assembler language

DFHEISTG DSECT (Invoking program)
COMREG DS 0CL20
FIELD DS CL3

PROG1 CSECT

MVC FIELD,=C*ABC®
EXEC CICS LINK PROGRAM (*PROG2') COMMAREA (COMREG)

END
COMREG DSECT (Invoked program)
FIELD DS CL3

PROG2 CSECT

L COMPTR,DFHEICAP ADDRESS COMMAREA
USING COMREG,COMPTR
CLC FIELD,=C"'ABC*

END

LINKE or XCTL, for COBOL

IDENTIFICATION DIVISION. (Invoking progran)
PROGRAM ID. ‘PROG1°*.

WORKING-STORAGE SECTION.
01 COMMUNICATIONS—REGION.
02 PFIELD PICTURE X (3).

PROCEDURE DIVISION.
MOVE 'ABC®' TO FIELD.
EXEC CICS LINK PROGRAM('PROG2')
COMMAREA (COMMUNICATIONS—REGION) LENGTH (3) END-EXEC.

IDENTIFICATION DIVISION. (Invoked program)
PROGRAM—-ID. 'PROG2°'.

LINKAGE SECTION.
01 DFHCOMMAREA.
02 FIELD PICTURE X (3).

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO THEN IF FIELD EQUALS °*ABC®

Chapter 4.4. Program Control

327

LiNK or XCTL, for PL/I

PROG1:PROC OPTIONS (MAIN) ; (Invoking program)
DCL 1 COMMUNICATIONS_REGION AUTOMATIC,
2 FIELD CHAR (3),

FIELD="ABC*;
EXEC CICS LINK PROGRAM (*PROG2')

COMMAREA (COMMUNICATIONS_REGION) LENGTH (3) ;
END;

PROG2:PROC (COMM_REG_PTR) OPTIONS (MAIRN); (Invoked program)
DCL COMM_REG_PTR PTR;
DCL 1 COMMUNICATIONS_REGION BASED (COMM_REG_PTR) ;

2 FIELD CHAR (3),

IF EIBCALEN>O0 THEN DO;
IF FIELD="ABC®* THEN ...

END;

END;

328 CICS/VS APRM (CL)

The following examples show, for COBOL and PL/I, how a RETURN command
causes data to be passed to a new transaction.

RETURN, for assembler language

DFHEISTG DSECT (Invoking program)
TERMSTG DS 0CL20

FIELD DS CL3

DATAFLD DS CL17

PROG1 CSECT

MVC FIELD,=C'ABC"*
EXEC CICS RETURN TRANSID(*TRN2") COMMAREA (TERMSTG)

END
TERMSTG DSECT (Invoked program)
FIELD DS CL3

DATAFLD DS CL17

PROG2 CSECT

CLC EIBCALEN,=H'0"*
BNH LABEL2

L COMPTR,DFHEICAP
USING TERMSTG,COMPTR
CLC FIELD,=C*XYZ*
BNE LABEL1

MVC FIELD,=C®'ABC’®

LABEL1 DS OH

LABEL2 Ds 0H

END

Chapter 4.4. Program Control 329

RETURN, for COBOL

IDENTIFICATION DIVISION.
PROGRAM~ID. *PROG1'.

WOBRKING~STORAGE SECTION.
01 TERMINAL-STORAGE.
02 FIELD PICTURE X (3).
02 DATAFLD PICTURE X(17).

PROCEDURE DIVISION.
MOVE °*ABC* TO FIELD.
EXEC CICS RETURN TRANSID("TRN2')
COMMAREA (TERMINAL-STORAGE) LENGTH (20)

IDENTIFICATION DIVISION.
PROGRAM-ID. ‘'PROG2®

LINKAGE SECTION.
07 DFHCOMMAREA.
02 FIELD PICTURE X (3).
02 DATAFLD PICTURE X (17).

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO THEHN
IF FIELD EQUALS 'XYZ' MOVE 'ABC' TO FIELD.
EXEC CICS RETURN END-EXEC.

RETURN, for PL/T

PROG1:PROC OPTIONS (MAIN) ;
DCL 1 TERMINAL_STORAGE,
2 FIELD CHAR (3),

FIELD='*XYZ*;

EXEC CICS RETURN TRNID (*TRN2')
COMMAREA (TERMINAL_STORAGE);

END;

PROG2:PROC (TERM_STG_PTR) OPTIONS (MAIN);

DCL TERM_STG_PTR PTR;

DCL 1 TERMINAL_STORAGE BASED (TERM_STG_PTR),
2 FIELD CHAR(3),

IF EIBCALEN>0 THEN DO;
IF FIELD=*XYZ* THEN FIELD='ABC*;
END;

EXEC CICS RETURN;

END;

330 CICS/VS APRM (CL)

(Invoking program)

END-EXEC.

{Invoked program)

(Invoking Program)

(Invoking Program)

Program Control Options

COMMAREA (data—area)

HOLD

specifies a communication area that is to be made available to
the invoked program. For LINK commands, a pointer to the data
area is passed; for XCTL commands, a pointer to the data area
is passed or a copy of it (see "Passing Data to Other Programs"
earlier in this chapter); and for RETURN commands, because the
data area is freed before the next program is invoked, a copy
of the data area is created and a pointer to the copy is
passed.

ENTRY (pointer—ref)

specifies the pointer reference that is to be set to the
address of the entry point in the program, table, or map that
has been loaded.

specifies that the loaded program, table, or map is not to be
deleted (if still resident) when the task issuing the LOAD
command is terminated; deletion is to occur only in response to
a RELEASE command, from this task or from another task.

LENGTH (parameter)

specifies a halfword binary value to be used with LINK, XCTL,
RETURN, and LOAD commands.

For a LINK, XCTL, or RETURN command, the parameter must be a
data value that is the length in bytes of the communication
area. If a negative value is supplied, zero is assumed.

For a LOAD command, the parameter must be a data area. On
completion of the LOAD operation, the data area is set to the
length of the loaded program, table, or map.

PROGRAM (name)

specifies the identifier of the program to which control is to
be passed unconditionally (for a LINK or XCTL command); or the
identifier of a program, table, or map to be loaded (for a LOAD
command) or deleted (for a RELEASE command) . The specified
name must consist of up to eight alphameric characters and must
have been defined in the processing program table (PPT).

SET}pointer—ref)

specifies the pointer reference that is to be set to the
address at which a program, table, or map is loaded.

TRARSID (name)

specifies the transaction identifier to be used with the next
input message entered from the terminal with which the task
that issued the RETURN command has been associated. The
specified name must consist of up to four characters aad must
have been defined in the program control table (PCT).

Chapter 4.4. Program Control 331

Program Control Exceptional Conditions

INVREQ
occurs if either of the following situations exists:
e A RETURN command with the COMMAREA option is issued in a
program that is not at the highest logical level.
e A RETURN command with the TRANSID option is issued in a
task that is not associated with a terminal.
PGMIDERR

occurs if a program, table, or map cannot be found in the PPT
or is disabled.

Default action: terminate the task abnormally.

332 CICS/VS APRM (CL)

Chapter 4.5. Storage Control

The CICS/VS storage control program controls requests for main storage
to provide intermediate work areas and any other main storage not
provided automatically by CICS/VS but needed to process a transaction.
The acquired main storage can be initialized to any bit configuration;
for example, binary zeros or EBCDIC blanks.

Storage control commands are provided to:

. Obtain and initialize main storage (GETMAIN) .
° Release main storage (FREEMAIN).

CICS/VS releases all main storage associated with a task when the
task is terminated normally or abnormally. This includes any storage
acquired, and not subsequently released, by the application program.

If there is insufficient main storage to satisfy a GETMAIN command,
the NOSTG exceptional condition occurs and all activity within the task
is suspended until sufficient storage becomes available, when task
activity will be resumed and the requested storage obtained.

The HANDLE CONDITION command can be used to deal with the NOSTG

exceptional condition. Refer to Chapter 1.5 for further information
about exceptional conditions.

Obtain and Initialize Main Storage (GETMAIN)

GETMAIN SET (pointer—ref)
LENGTH (data—value)
[INITING (data—value)]
{ SHARED]}

Exceptional condition: NOSTG

(o e o - ——
e e o — ——— -

This command is used to obtain a specified amount of main storage and,
optionally, to initialize that storage to a specified bit configuration.
The pointer reference specified in the SET option is set to the address
of the acquired storage. The acquired storage is doubleword-aligned.

Storage should be released when no longer needed; it will then be
available to other tasks. Shared storage, that is, storage obtained
with the SHARED option, can be used for communication between diferent
tasks and must be explicitly released. Other storage not rsleased will
be released by CICS/VS when the task is terminated.

The following example shows how to obtain a 1024-byte area of main
storage:

EXEC CICS GETMAIN Obtain new storage area
SET (PTR) Pointer reference
LENGTH (1024) Size of storage requested
INITING (BLANK) Initialize to blanks

Chapter 4.5. Storage Control 333

Release Main Storage (FREEMAIN)

FREEMAIN DATA (data-area)

I

This command is used to release main storage previously acquired by a
GETMAIN command. If the task itself does not release the acquired
storage, it is released by CICS/VS when the task is terminated.

The following example shows how to release main storage:

EXEC CICS FREEMAIN Release main storage
DATA (RECORD) ' Data area

334 CICS/VS APRM (CL)

Storage Control Options

DATA (data-area)

specifies that the main storage associated with the data area
is to be released. This storage must have been acquired
previously by a GETMAIN command and the length of data released
will be the length obtained by the GETMAIN and not necessarily
the length of the data area.

INITIMG (data—value)

specifies the one-byte hexadecimal initialization value for the
acquired main storage. A data area must be provided in COBOL
programs.

LENGTH (data~value)

specifies the length of main storage required as a halfword
binary value. The maximum length that can be specified is
32767 bytes.

SET (pointer-ref)

SHARED

specifies the pointer reference to be set to the address of the
acquired main storage. The pointer reference addresses the
user data, and not the CICS/VS control information that
precedes the acquired main storage.

specifies that the storage is not to be released on task
termination.

Storage Control Exceptional Conditions

NOSTG

occurs if the requested main storage cannot be obtained.

Default action: suspend task activity until the required main
storage can be provided.

Chapter 4.5. Storage Control 335

Chapter 4.6. Transient Data Control

The CICS/VS transient data control program provides a generalized
queuing facility. Data can be queued (stored) for subsequent internal
or external processing. Selected data, specified in the application
program, can be routed to or from predefined symbolic destinations,
either intrapartition or extrapartition.

Destinations are intrapartition if associated with a facility
allocated to the CICS/VS partition or region, and extrapartition if the
data is directed to a destination that is external to the CICS/VS
partition or region. The destinations must be defined in the
destination control table (DCT) by the system programmer when the
CICS/VS system is generated.

Transient data control commands are provided to:
. Write data to a transient data gueue (WRITEQ TD).
. Read data from a transient data queue (READQ TD).
. Delete an intrapartition transient data queue (DELETEQ TD).

If TD is omitted, the command is assumed to be for temporary storage
(see Chapter 4.7).

The HANDLE CONDITION command can be used to deal with any exceptional
conditions that occur during the execution of a transient data control
command. Refer to Chapter 1.5 for further information about exceptional
conditions.

Intrapartition Destination

Intrapartition destinations are queues of data on direct—access storage
devices for use with one or more programs running as separate tasks.
Data directed to or from these internal destinations is called
intrapartition data; it must consist of variable-length records.
Intrapartition destinations can be associated with either a terminal or
an output data set. Intrapartition data may ultimately be transmitted
upon request to the destination terminal or retrieved sequeatially from
the output data set.

Typical uses of intrapartition data include message switching,
broadcasting, data base access and routing of output to several
terminals (for example, for order distribution), queuing of data (for
example, for assignment of order numbers or priority by arrival), and
data collection (for example, for batched input from 2780 Data
Transmission Terminals). If generated within the system, the CICS/VS
Asynchronous Transaction Processing (ATP) facility can be used to
transfer data to or from an intrapartition destination. (Refer to the
section "Asynchronous Transaction Processing®" later in this chapter for
further information.)

The storage associated with an intrapartition queue can be reused.
The system programmer can specify, for each symbolic destination,
whether or not storage tracks are to be reused as the data on them is
read. If the storage is specified to be non-reusable, an intrapartition
gqusue continues to grow, irrespective of whether the data has bezsn read,

Chapter #4.6. Transient Data Control 337

until a DELETEQ TD command is issued when the whole of an intrapartition
queue is deleted and the storage associated with it is released.

Extrapartition Destinations

Extrapartition destinations are queues (data sets) residing on any
sequential device (DASD, tape, printer, and so omn), which are accessible
by programs outside (or within) the CICS/VS partition or region. In
general, sequential extrapartition destinations are used for storing and
retrieving data outside the CICS/VS partition. For example, one task
may read data from a remote terminal, edit the data, and write the
results to a data set for subsequent processing in another partition or
region. Logging data, statistics, and transaction error messages are
examples of data that can be written to extrapartition destinations. 1In
general, extrapartition data created by CICS/VS is intended for
subsequent batched input to non-CICS/VS programs. Data can also be
routed to an output device such as a line printer.

Data directed to or from an external destination is called
extrapartition data and consists of sequential records that are fixed-—
length or variable-length, blocked or unblocked. The record format for
an extrapartition destination must be defined in the DCT by the systen

programmer. (Refer to the CICS/VS System Programmer's Reference Manual
for details.)

Indirect Destinations

Intrapartition and extrapartition destinations can be used as indirect
destinations, which are symbolic references to other destinations. This
facility provides some flexibility in program maintenance in that data
can be routed to a destination known by a different symbolic name,
without the necessity for recompiling existing programs that use the
original name; only the destination control table (DCT) need be changed.
When the DCT has been changed, the application programs can route data
to the destination using the previous symbolic name; however, the
previous name is now an iadirect destination that refers to the new
symbolic name. Since indirect destinations are established by means of
destination control table entries, the application programmer need not
usually be concerned with how this is done. Further information is

available in the CICS/VS System Programmer's Reference Manual.

Automatic_Task_Initiation (ATI)

For intrapartition destinations, CICS/VS provides the option of
automatic task initiation. A basis for automatic task initiation is
established by the system programmer by specifying a non—zero trigger
level for a particular intrapartition destination in the DCT. (See the
discussion of the DFHDCT TYPE=INTRA macro instruction in the CICS/VS
System Programmer®s Reference Manual.) When the number of entries
(created by WRITEQ TD commands issued by one or more programs) in the
queue (destination) reaches the specified trigger level, a task
specified in the definition of the destination is automatically
initiated. Control is passed to a program that processes the data in
the queue; the program must issue repetitive READQ TD commands to
deplete the queune.

338 CICS/VS APRM (CL)

Once the gqueue has been depleted, a new automatic task initiation
cycle begins. That is, a new task is scheduled for initiation when the
specified trigger level is again reached, whether or not execution of
the prior task has terminated.

If an automatically initiated task does not deplete the queue, access
to the queue is not inhibited. The task may be normally or abnormally
terminated before the queue is emptied (that is, before a QZERO
exceptional condition occurs in response to a READQ TD command) . If the
destination is a terminal, the same task is reinitiated regardless of
the trigger level. If the destination is a data set, the task is not
reinitiated until the specified trigger level is reached. If the
trigger level of a queue is zero, no task is automatically imnitiated.

To ensure that termination of an automatically initiated task occurs
when the gqueue is empty, the application program should test for a QZERO
condition rather than for some application—despendent factor such as an
anticipated number of records; only the QZEBRO condition indicates a
depleted queue.

Asynchronous Transaction Processing_(ATP)

Typically, a task to be run under CICS/VS is initiated from a terminal
and processed at regular intervals until completion, according to system
service patterns established for CICS/VS. This mode of operation is
sometimes referred to as synchronous transaction processing, because the
task has complete control of the terminal which initiated it.

Support for asynchronous transaction processing can also be generatead
into a CICS/VS system. This capability is designed primarily to permit
a type of batch processing within CICS/VS. A task is initiated from a
terminal as described above, but the specified transaction
identification code causes a CICS/VS—provided asynchronous transaction
processing program to read the data to an intrapartition data set. 1In
effect, data collection from a device such as the 2780 Data Transmission
Terminal is possible. When the data has been read, the device is freed
for other activity. An application program processes the data, and,
upon operator request, output is queued for subsequent transmission to a
specified terminal. If the automatic task initiation feature is
generated into CICS/VS, that application program can be initiated
automatically when a specified trigger level is reached (that is, when a
specified number of inputs have been entered in the intrapartition data
set) .

The asynchronous transaction processing (ATP) facility is designed
specifically for handling input from batch terminals like the 2770 and
2780. Generally, ATP can also be used for other, interactive terminals
like the 2741. However, ATP is not intended for, and will not support,
input from the 2980, 3270, or 3735; ATP is not available for VTAM
logical units. Application programs intended to execute under control
of ATP must not contain Basic Mapping Support (BMS) commands regquesting
BMS terminal paging facilities.

Additional information concerning the creation of user exits for
asynchronous transaction processing and the coding of the exit routines
is given in the CICS/VS System Programmer®s Reference Manual. The
initiation of ATP by means of terminal commands is described in the
CICS/VS Operator'®s Guide.

Chapter 4.6. Transient Data Control 339

Write Data to Transient Data Queue (WRITEQ TD)

WRITEQ TD QUEUE (name)
FROM (data—area)
[LENGTH (data~value) }
[SYSID (name)]

Exceptional conditions: IOERR, ISCINVREQ, LENGERR, NOSPACE,
NOTOPEN, QIDERR, SYSIDERR

(P - e = ——
e e o . —— " —— —

This command is used to write transient data to a predefined symbolic
destination. The destination (queue) is identified in the QUEUE option.

The FROM option specifies the data to be written to the queue, and
the LENGTH option specifies the record length. The LENGTH option need
not be spec