
Program Product

SC33-0077 -2

Customer Information
Control System/Virtual
Storage (CICS/VS)
Version 1 Release 5

Application Programmer's
Reference Manual
(Command Level)

Program Numbers 5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

--- ----- ------- - ---- - ---- ---- - ---- ----- - - ---- - - -----------------_.-

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Third Edition (May 1980)

This edition, as amended by Teclmical Newsletter (TNL) SN33-6268,
applies to Version 1 Release 5 (Version 1.5) of the IBM program product
Customer Information control System/Virtual Storage (CICS/VS), program
numbers 5746-XX3 (for DOS/VS) and 5740-XXl (for OS/v51 •

This edition is based on the CICS/VS version 1.4.1 edition, and changes
from that edition are indicated by vertical lines to the left of the
changes. Note, however, that the 1.4.1 edition remains current and
applicable for users of Version 1.4.1 of CICS/VS.

Information in this publication is subject to change. Changes will be
published in new editions or technical newsletters. Before using this
publication, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material may contain references to, or
information about, IBM products (machines and programs) , programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication; if the fonn has been removed, comments may be addressed
either to:

International Business Machines corporation,
Department 812HP,
1133 Westchester Avenue
White PlainS, New York 10604.

or to:

IBM United Kingdom Laboratories Limited,
Programming Publications, Mail Point 095,
Hursley Park,
Winchester, Hampshire S021 2JN, England.

IBM may use or distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply_

© copyright International Business Machines Corporation 1977, 1978, 1979,
1980

ii

Preface

This manual describes the IBM Customer Information Control
System/Virtual storage (CICS/VS) command-level application-programming
interface; it contains introductory and reference information necessary
to prepare assembler-language, COBOL, and PL/I application programs,
using CICS/VS com.ands, to execute under either of two IBM program
products: CICS/DOS/VS (5746-XX3) or CICS/OS/VS (5740-XX1). It is
intended primarily for use by application programmers, but will be
useful also for system programmers and system analysts. 1 knowledge of
the concepts and terminology introduced in the Customer Information
control SystemL!irtu~l storage jCICSIVS) Version 1 Release 5: General
Information, GC33-0066 is required.

The manual contains the following parts:

• "Part 1. Command-Level Programming" introduces CICS/yS commands
and describes the basic facilities that are available to the user.
A chapter is included about the command language translator and the
options that can be selected to modify the way in which the
translator operates.

• "Part 2. Data Base Operations· deals with access to data sets in
the user's CICS/VS system either through CICS/VS file control or
through DL/I.

• "Part 3. Data Communication Operations" deals with communication
with terminals and logical units of the subsystems in the
telecommunications network that forms part of the CICS/VS system.

• "Part 4. Control Operations" groups together facilities for
controlling the operation of application programs in the CICS/yS
system.

• "Part 5. Recovery and Debugging" deals with facilities available
for recovery from abnormal termination; monitoring; tracing program
operation; and dumping areas of main storage.

• "Part 6. The CICS/VS Built-In Function (BIF DEEDIT) Command"
describes the one built-in function available with the command­
level interface.

• "Part 7. Appendixes"

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.
Appendix G.

EXEC Interface Block.
. Translation Tables for the 2980.
CICS/VS Macros and Equivalent Commands.
Sample Programs (Assembler Language).
Sample Programs (COBOL).
Sample Prograas (PL/I).
Sample Programs for Distributed Transaction
Pro cessi ng •

Experience in writing programs in asseabler language, COBOL, or in
PL/I is assumed. No previous experience of CICS/VS is assumed.

In this publication, the term ~ refers to ACF/VTAM, to ACF/yTAME
(CICS/DOS/VS only), and to the Record Interface of ACF/TC1M ~ICS/OS/VS
only). The term I~AM refers both to TeA! and to the DCB Interface of

Preface iii

ACF/TCAM. The term BTAM refers to BTAM (CICS/OS/VS only) and to BTAM-ES
(CICSjDOS/VS only). For further details of system requirements, refer
to the publication CICS/VS General Info£~ion.

Related publications are listed in the bibliography at the end of
this manual.

iv CICS/VS APRM (CL)

PART 1. COMMAND-LEVEL PROGRAMMING

CHAPTER 1.1. INTROOUCTION TO COMMAND-LEVEL PROGRAMMING
Structure of this Manual •
Syntax Notation Used in this Manual

CHAPl'ER 1.2. COMMAND FORMAT AND ARGUMENT VALUES •
Conmand Format • •
Argument Values

CHAPTER 1.3. COMMAND IAlGUAGE TRANSLATOR
Translator Data Sets •
Translated Code
Translator Options •

CHAPTER 1. 4. PROGRAMMING TECHNIQUES AND RESTRICTIONS
General Programming Techniques •
Object Program Size
Assembler-Language Considerations ."
COBOL Considerations • •
PL/I COnsiderations

CHAPTER 1.5. EXCEPTIONAL CONDITIONS •
Handle Exceptional Conditions (HANDLE CONDITION)
Handle Condition Command Option
Ignore Exceptional Conditions (IGNORE CONDITION)
List of Exceptional Conditions

CHAPTER 1.6. ACCESS TO SYSTEM INFORMATION.
Access to CICS/VS Storage Areas (ADDRESS)
ADDRESS Command Options
Values outside the Application Program ~SSIGN)
ASSIGN Command. Options ••

CHAPTER 1.7. EXECUTION (COMMAND LEVEL) DIAGNOSl'IC FACILITY
Functions of EDF
Security Rules •
Installing EDF •
Invoking EDF •
Using EDF Displays •
Checking Out Pseudo-conversational Programs
Program Labels •
Using EDF, with EXEC DLI Commands •

CHAPTER 1.8. COMMAND-LEVEL INTERPRETER
Invoking the Command-Level Interpreter •
Screen Layout
Program Control
Security Rules •
Installing the Command-Level Interpreter •

PART 2. DATA BASE OPERATIONS

CHAPl'ER 2 .1. INTRODUCTION TO DATA BASE OPERATIONS •

Contents

• 3
• 3
• 5

• 7
• 7
• 8

13
13
14
18

25
25
27
28
29
34

37
38
39
39
40

43
43
43
44
47

53
53
55
55
55
56
64
64
65

67
67
68
75
75
76

79

CHAPTER 2.2. FILE CONTROL • 81
ISAM Data Sets. 84
VSAM Data Sets • 86
DAM Data Sets 89

Contents v

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

• • •• 92. KEYLENGTHS for Remote Data Sets
Read a Record (READ) •••
write a Record (WRITE)

• • • • 93

Update a Record (REWRITE) ••••
Delete a VSAM Record (DELETE) ••••
Release Exclusive Control (UNLOCK)
Start Browse (STARTBR) • • • • • •
Read Next Record during a Browse (READNEXT)
Read Previous Record during a Browse (READPREV)
Reset Start of Browse (RESETBR)
End Brows e (ENDBR) • • • • • • • • • • • • • • •
File Control options • • • • • • • • •
File Control Exceptional Conditions ••••

CHAPTER 2.3. DL/I SERVICES (DL/I CALL STATEMENT)
User Interface Block (UIB) • • • • • •
Schedule the PSB and Obtain PCB Addresses
Build Segment Search Arguments (SSAS)
Acquire an I/O Work Area for DL/I Segments •

(\7SAM ONLY)

Issue a DL/I Data Base call •••••••• • • • •
Release a PSB in the CICS/VS Application Program •
Check the Response to a DL/I CALL ••••••
Example of DL/I Request Using CALL • • • • • • •

CHAPTER 2.4. DL/I Services (EXEC DLI Canmand)
General Format of EXEC DLI COmmand
DL/I Interface Block (DIB) • • • • • •
Example of DL/I Request Using EXEC DLI • • • • •

PART 3. DATA COMr.roNICATION OPERATIONS

CHAPTER 3.1. INTRODUCTION TO DATA COMMUNICATION OPERATIONS

CHAPTER 3.2. TERMINAL CONTROL • • • • • • • • • • • • •
Commands and Options for Terminals and Logical units •
Commands and Options for Logical Units • • • • • • • •
TCAM-Supported Terminals and Logical Units (CICS/OS/VS Only)
BTAM Programmable Ter.minals
Teletypewriter Programming • • • • • • • •
Display Device Operations ••••••••
Standard CICS/VS Terminal Support (BTAM or TeAM)
LUTYPE4 Logical Unit • • • •
LUTYPE6 Logical Unit •
Systern/3 • • • • • •
System/370 • • • • •
System/7 • • • • • • • • • •
2260 Display Station •
2265 Display Station • • • •
2741 Communication Terminal
2770 Data Conununication System

. .
2780 Data Transmission Terminal •••
2980 General Banking Terminal System •
3270 Information Display System (BTAM or TeAM)
3270 in 2260 Compatibility Mode (BTAM)
3270 Logical Unit • • • • • • • • •
3270 SCS Printer Logical unit • • • •
3270-Display Logical Unit (LUT YPE 2) • • • •
3270-Printer Logical Unit (LUTYPE3) ••••••
3600 Finance Communication System (BTAM) ••••
3600 Pipeline Logical Unit • • • • • • •
3600 (3601) Logical Unit • • • • • • • •
3600 (3614) Logical Unit • • • • • • • •
3630 Plant Communication System ••••••
3650/3680 Host COmmand Processor Logical Unit
3650 Host Conversational (3270) Logical Unit • •

vi CICS/VS APRM ~L)

• • •• 94
• • •• 95
• • •• 95

96
• • •• 96

97
97
98
98
99

• 103

• • 107
• • 108
• • 109

• • • • 110
• • 110

110
• ••• 112

• • 112
• • 115

• • 121
• • 121
• • 123
• • 123

• • 129

131
• "- • • 133

• • 138
• • 144
• • 144

146
• • 147
• • 153
• • 154
• • 155
• • 158

158
159

• • 161
161

• 162
• • 164

• 164
• • 165
• • 168
• • 169

• 170
• • 171
• • 172

173
• • 174
• • 176
• • 177
• • 179

179
• • 180
• • 181

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

3650 Host Conversational (3653) Logical Unit
3650 Interpreter Logical unit ••••
3650 pipeline Logical Unit • • • • • • • • •
3650/3680 Full Function IDgical Unit Ii • Ii •

3660 Supermarket Scanning System •••• Ii ..

3735 Programmable Buffered ~rminal
3740 Data Entry System • • • .. •
3767 Interactive Logical unit ••••
3770 Batch Logical Unit • Ii .. • • • •

3770 Interactive Logical unit • Ii •

3770 Full Function Logical Unit .. • • • • • • • . .

182
• • 183

184
184

• • 184
• • 185

187
188

• • 189
190
190

• • 190
191

3780 Col1lUunications Terminal • •
3790 Full Function Logical Unit
3790 Inquiry Logical Unit •••• • • 192
3790 SCS Printer Logical unit .. Ii

3790 (3270-Display) Logical Unit • • •
3790 (3270-Printer) Logical Unit .. • • ..
7770 Audio Response Unit. •
Terminal Control Options • • • • • • • •
Terminal Control Exceptional conditions ••

CHAPTER 3.3. BASIC MAPPING SUPPORT (BMS) •• ..
Data Mapping • • • • • • • • • • •
Map Definition • • • • .. • • • • • • •
Define a Map Set (DFHMSD Macro) •••••
Def ine a Map (DFBMDI Macro) • • • •
Define a Field (DFHMDF Macro) ••••
Display Device Operations (BMS) ••
Mapping Input Data (RECEIVE MAP) Ii •

Mapping Output Data (SEND MAP) •••••
Format output Data Without Mapping (SEND TEXT)

. . . .

Complete and Transmit a Logical Message (SEND PAGE) ••••
Delete a Logical Message (PURGE MESSAGE) • • • •••
Route a Logical Message (ROUTE) •••••• • •
Basic Mapping SUpport Options •••••••••
Basic Mapping Support Exceptional Conditions ...

CHAPTER 3.4. BATCH DATA INTERCHANGE ••••
Interrogate a Data Set (ISSUE QUERy) ... • • •
Read a Record From a Data Set (ISSUE RECEIVE)
Add a Reoord to a Da ta Set (ISSUE ADD) • • • • •
Update a Record in a Data set (ISSUE REPLACE)
Delete a Record from a Data Set (ISSUE ERASE) ••••
Terminate Processing of a Data Set (ISSUE END) . .

.. . .

. . .
Terminate Processing of a Data Set Abnormally (ISSUE ABOR~
Transmit Data to an output Device (ISSUE SEND)
Request Next Record Number (ISSUE NOTE) •• Ii ... •

Wait for an Operation to be Completed (ISSUE WAIT) • Ii •

Batch Data Interchange options • • • • • • • • • • •

• • 193
• • 194
• • 195

195
197

• • 205

• 209
• 210

• • 211
• 216
• 225

• • 231
• 250

253
• • 254

• 259
• 262

• • 263
• 264

272
• 281

• 285
• 287

287
• 288
• 288
• 289

289
• 289
• 290
• 290
• 290

Batch Data Interchange Exceptional Conditions ••••••••
• 291

• • • 294

PART 4. CONTROL OPERATIONS

CHAPrER 4.1. INTRODUCTION TO CONTROL OPERATIONS • •

CHAPTER 4.2. INTERVAL CONTROL • • Ii • •

Request CUrrent Time o£ Day (ASKTIME) •• ..
Delay Processing of a Task (DEIAY) •••
Request Notification when Specified Time has Expired (POST)
Wait for an Event to Occur (WAIT EVENT)
Start a Task (START) • • • • • • • • • • • •
Retrieve Data Stored for a Task (RETRIEVE) • .. •
Cancel Interval Control Requests (CANCEL)
Interval Control Options • • • • • • • •
Interval Control Exceptional Conditions

• • 299

• 301
• 302

• • 302
...... 303

• 304
• • 305

• 307
• 309

310
• 310

Contents vii

CHAPTER 4.3. TASK CONTROL •••••••••••••
Suspend a Task (SUSPEND) • • • • • • • • • • • • • •
Schedule Use of a Resource by a Task (ENQ and DEQ)
Task Control Options • • • • • • • • • • • •
Task Control Exceptional Conditions • • • •

CHAPTER 4. 4. PROGRAM CONTROL • •
Application Program Logical Levels ..
Link to Another Program Anticipating Return (LINK)
Transfer Program Control (XCTL) .. .
Return Program Control (RETURN)
Load a Program (LOAD)
Delete a Loaded Program (RELFASE)
Passing Data to Other Programs • • •
Program Control Options •• • • • •
Program control Exceptional conditions •

CHAPTER 4.5. STORAGE CONl'ROL
obtain and Initialize Main Storage (GETMA~
Release Main Storage (FREEMAIN) .o.o.o.o.....

Storage Control Options
Storage Control Exceptional COnditions • • • • • • •

CHAPTER 4.6. TRANSIENT DATA CONTROL • • • •
write Data to Transient Data Queue (WRITEQ TD)

· ..

• • 317
317
318

• • 319
319

• • 321
• • 321
• • 323

323
• • 324
• • 324
• • 325

325
• • • 331
• •• 332

• .. 333
• • • 333

• • 334
• 335

• •• 335

• • • • • • 337
• • 3QO

Read Data from Transient Data Queue (RFADQ TO) • • • • • •• 340
341 Delete an Intraparti tion Transient Data Queue (DELETEQ ~

Transient Data Control Options • • • • • • • • •
Transient Data Control Exceptional Conditions

CHAPTER Q. 7 • TEMPORARY STORAGE CONTROL
Wri te Data to a Temporary Storage Queue (WRITEQ TS)
Read Data from Temporary Storage Queue (READQ TS)
Delete Temporary Storage Queue (DELETEQ TS)
Temporary Storage Control Options ...o • . • .
Temporary Storage Control Exceptional Conditions •

PART 5. RECOVERY AND DEBUGGING

CHAPTER 5.1. INTRODUCTION TO RECOVERY AND DEBUGGING
Sequential Terminal,Support

· . ,.

. ..

• • 342
• 343

• • 345
• 347
• 348

• • 349
• • 350

• 352

•••• 355
• • • 356

CHAPTER 5.2. ABNORMAL TERMINATION RECOVERY • • • 359
Handle an Abnormal Termination Exit (HANDLE ABEND)
Terminate Task Abnormally (ABEND) .o...o.o.o.o.o.

Abnormal Termination Recovery Options
Abnormal Termination Recovery Exceptional Conditions •

• • • 361
• 362

363
• • • 363

CHAPl'ER 5.3. TRACE CONTROL • • 365
Trace Entry Points .. • .. • .. 365
Event Monitoring Points ••• 365
Trace Facility Control • • • • • • • • • • • • • • 366
Trace Table 'Format • • • • • • • • • • • • • • • • • • 366
CICS/VS Auxiliary Trace Facility .,. • • • • • 368
User Trace Entry Point and Event Monitoring Point (ENTER) ..o... 369
Control the CICS/VS Trace Facility (TRACE ON, TRACE OFF) •••••• 370
Trace Control Options ...o.o.o.. • • • 371
Trace Control Exceptional conditions • • • • • • • • • 372

CHAPTER 5.4. DUMP CONTROL •••••
Dump Main Storage (DUMp) ••••••
Dump Control Options • • • • • • • • • •
Dump Control Exceptional Conditions

viii CICS/VS APRM (CL)

• • .. • • 373
• • • • • 374

• ••••• 376
• • • • • • 377

CHAPTER 5.5. JOURNAL CONTROL •••••••••
CreatE: a Journal Record (JOURNAL)
Synchronize with Journal Output (WAIT JOURNAL)
Journal Control Options •••••• • •
Journal Control Exceptional Conditions •

CHAPTER 5.6. RECOVERY (SYNC POINTS)
Establish a Sync Point (SYNCPOINT) •
Sync Point Option • • • • • • •

PART 6. THE CICStVS BUILT-IN FUNCTION COM~AND

CHAPTER 6.1. THE FIELD EDIT BUILT-IN FUNCTION (BIF DEEDIT)

• 319
• 381
• 382
• 384

• • 385

• 381
• 388

• • 388

COMMAND, • • • • 391

PART 1. APPENDIXES

APPENDIX A.
BIB Fields ..

EXEC INTERFACE BLOCK • • • • 395

APPENDIX B. TRANSLATION TABLES FOR THE 2980 ••

APPENDIX C. CICS/VS MACROS AND EQUIVALENT COMMANDS

APPENDIX D. SA~PLE PROGRAMS (ASSEMBLER LANGUAGE)
Executing the Sample Programs ••••••••••••
Operator Instruction Sample Program (Assembler Language)
Update Sample Program (Assembler Language)
Browse Sample Program (Assembler Language) • • • • • • •
Order Entry Program (Assembler Language) • • • • • • • •

• 395

• 405

409

• • • 415
• 415

• •• 411
• 418

• •• 425
• 430
• 433

• •• 436
• 439
• 445

Order Entry Queue Print Sample Program (Assembler Language)
Report Sample Program (Assembler Language) • • • • • • • • • •
Sample Maps and Screen Layouts for Assembler Language Sample •
Additions to Tables for Assembler Language Sample Programs •
Record Descriptions for Assembler Language Sample Programs • • • • • 446

• • 447 APPENDIX E. SAMPLE PROGRAMS (COBOL) •••
Executing the Sample Programs • • • • • •
Operator Instruction Sample Program (COBOL)
Update Sample Program (COBOL)

• • • • • 448
• • • • 449

• • • • 450
Browse Sample Program (COBOL) •••• • 456
Order Entry Sample Program (COBOL) • • • • • • • 461
Order Entry Queue Print Sample Program (COBOL) • • • • • • • 465
Report Sample Program (COBOL) ••••••••• • • • • • •• 468
Sample Maps and Screen Layouts for COBOL Sample Programs ••
Additions to Tables for COBOL Sample Programs
Record Descriptions for COBOL Sample Programs

APPENDIX F. SAMPLE PROGRAMS (PL/I) ••••
Executing the Samp le Programs • • • •
Operator Instruction Sample Program (PL/I)
Update Sample Program (PL/I) ••••••••••

. ., . .

• 411
• 417

• •• 478

• 419
• 480

• • • 481
482

Browse Sample Program (PL/I) • • • • • • • • • • • • • • • • •
Order Entry sample Program (PL/I)

• 488
• 493

Order Entry Queue Print Sample Program (PL/I) ••••
Report Sample Program (PL/I) • • • • • • • • • •
Sample Maps and Screen Layouts for PL/I Sample Programs
Additions to Tables for PL/I Sample Programs • •
Record Descriptions for the PL/I Sample Programs • • • •

APPENDIX G.
PROCESSING

CICS to eIeS
eICS to eICS
CICS to CICS

SAMPLE PROGRAMS FOR DISTRIBUTED TRANSACrION

Synchronous Sample Program • • • • • •
(or Other) Synchronous Sample Program • •
Conversation (Synchronous) Sample Program.

• • 491
• • 500
• • 503

• • •• 509
• • 510

511
• 512

• • • • 519
• • • 525

Contents ix

CICS to Other Synchronous Sample Program • • •
Additions to Tables for the Sample Programs

BIBLIOGRAPHY • • • • • • • • • •
Availability of Publications •

. .
INDEX

Figures

1 .1-1.
1.1-2.
1.7-3.
1.7-4.
1.8-1.
1. B-2.
1.8-3.
2.3-1.
3.2-1.
3.2-2.
3.2-3.
3.2-4.

3.2-5.
3.3-1.
3.3-2.
3.3-3.
3.3-4.
4.4-1.
5.2-1.
5.3-1.
5.3-2.
5.3-3.
5.4-1.
A-1.
A-2.
1-3.
B-1.
B-2.
B-3.

Typical EDF Display •••• • • • •
"Stop Conditions" Display
Typical EXEC DLI Display (Page 1)
Typical EXEC DLI Display (Page 2)
"Command Syntax Check" Display
"About to Execute Command" Display •
"Command Execution Complete" Display • •

. .

;, .
CICS/VS-DL/I Interface Response Codes • • • • • • • •
Terminal-oriented Task Identification ••••
BTl! Programmable Terminal Programming • • • • •
Standard A ttention Identifier List (DFH! ID) •••••
Standard Attrinute and Printer Control Character
List (DFHBMSCA) •••••••••• • • • •
2121 Portable Audio Terminal Special Codes
BMS Terminal Code Table •• • • • • • • • •
Trailer Maps in Mapping Operations • • • • • • • •
Overflow Processing • • • • • • ~ • • • • • • • • • •
Interleaving Conversation with Message Routing •
Application Program Logical Levels • •
ABEND Exit Processing ••• • • • • • • • • • • • • •
Trace Entry Format on Issuance of Command
Trace Entry Format on Completion of Command
User Trace Entry For~at • •
Dump Control options • • • .. • •
EIBFN Codes ~ parts)
EIBRCODE Codes (3 parts)
The EXEC Interface Block

. .
2980-1 Character Set/Translate Table
2980-2 Character set/Translate Table ••
2980-4 Character Set/Translate Table • •

. . .

x CICS/VS APRM (CL)

• 532
• 546

541
• 548

• 549

51
63
66
66
70
11
12

• 114
131
145

• 149

152
• 196
• 249
• 256
• 258
• 266

322
360

• 367
• 367
• 368
• 316
• 399
• 401
• 404

• • • 406
• 407
• 408

Summary of Amendments for Version 1 Release 5

This edition (SC33-0017-2) provides information about the new or
enhanced features introduced by CICS/VS Version 1 Release 5, as follows:

• Extensions to the intercommunication facilities, offering:

aultiregion operation (aaO) -- a new mechanism that allows
communication between multiple connected CICS/VS regions within
the same processing system without the use of Sll networking
facilities.

Distributed transaction processing ~TP) -- direct transaction­
to-transaction communication across systems. (This facility is
not available on aRO.)

Intersystem Communication between CICS/VS and IftS/YS.

Improved throughput by support of SII parallel sessions.

• Enhanced master terminal facilities for interactive control of
CICS/VS.

• Command-level interface enhancements: an interactive command
interpreter, and a new command-level interface with DL/I.

• Security enhancements, including support for an external security
manager ~or example, the Resource lccess Control Facility (RICF)
program product) •

• Improved monitoring facilities.

• Further device support, including:

additional 3270 support.

use of the OS/YS console as a CICS/yS te'rminal.

networking of TWX and WTTY terminals through the Network
Terminal Option (NTO) program product.

• Usability and serviceabliity aids, including a new user exit
mechanism and facilities in CICS/DOS/yS similar to those provided
by the FERS service aid.

Some of the above features are not described in this manual because
they do not directly affect the application progra.mer1 for information
on these, refer to the other CICS/YS manuals listed in the bibliography.

Summary of l~endments xi

Summary of Amendments for Version I Release 4.1

This technical newsletter (S833-6242) provides information' about the new
or enhanced features introduced by CICS/VS Version 1 Release 4.1, as
follows:

• LUTYPE4 support

• FBA device support (CICS/DOS/VS only)

• Intersystem communication aessage perforaance option.

Summary of Amendments for Version I Release 4

This edition (SC33-0077-1) provides information about the new or
enhanced features introduced by CICS/VS Version 1 Release 4, as follows:

• Intersystem Communication

• Data Base Support (Transaction Restart)

• Extensions to Support of the 3270 Information Display System

• Enhancements to the Com.and Level Interface ~sse.bler Language and
DL/I)

• Execution (Command Level) Diagnostic Facility (EDF)

The appendixes have been extended to include assembler-language
sample application programs and a separate appendix has been allecated
to each language.

xii CICS/VS APR)! (CL)

Part 1. Command-Level Programming

Chapter 1.1. Introduction to Command-Level Programming

Chapter 1.2. Command Format and Argument Values

Chapter 1.3. Command Language Translator

Chapter 1.4. Programming Techniques and Restrictions

Chapter 1.5. Exceptional Conditions

Chapter 1.6. Access to System Information

Chapter 1.7. Execution (Comaand Level) Diagnostic Facility (EDF)

Chapter 1.8. Command-Level Interpreter

1

Chapter 1.1. Introduction to Command-Level Programming

The customer Inforaation Control System/Virtual Storage (CICS/VS)
command-level application-proqramming interface allows application
programmers to request CICS/VS services by means of CICS/VS co.mands.
These commands are statements that can be included at appropriate points
in an application program. They have a format siailiar to the
statements of the programming language in use.

CICS/VS commands can be used in application programs written in
assembler language, COBOL, PL/I, and in RPG II. The comaands are
essentially the same in each language, differing only in the delimiter
used, and, in the case of RPG II only, in the syntax.

Because of its fixed format, RPG II is not included in this manual.
Instead, a separate m~nual is available entitled CICS/VS Application
Programmer's Reference Manual (RPG II) •

Application programs that include CICS/VS commands are processed by
the command language translator, which translates the commands into
statements, in the language being used, which can then be assembled (or
compiled) and link-edited in the usual way. When these application
programs are executed, the statements inserted by the translator invoke
the EXEC interface program (DFHEIP), which provides the service
requested by each command by invoking one or more CICS/VS control
programs.

In addition to invoking CICS/VS control programs, the EXEC interface
program obtains, and provides addressability to, any required areas of
storage, such as terminal input/output areas and various work areas
which, when no longer required, are released automatically. As a
general rule, the application programmer need only select the required
function and code the appropriate command. There is normally no need to
know about CICS/VS storage areas and control blocks; in those cases when
access to such areas is needed, the command-level interface provides a
command for this purpose, the ADDRESS command, described in Chapter 1.6.

Structure of this Manual

This manual consists of several parts, each generally having an
introductory chapter and one or more other chapters. The remaining
chapters in Part 1 deal with the following topics:

• Command format and argument values used throughout this manual
(Chapter 1.2)

• Co.mand language translator (Chapter 1.3)

• Programming techniques, and restrictions placed on the use of the
programming language when CICS/VS commands are used (Chapter 1.4)

• Exceptional conditions that can occur during the execution of
CICS/VS cOllmands (Chapter 1.5)

• Access to system information (Chapter 1.6)

• Execution (com.and level) diagnostic facility (EDP) (Chapter 1.7)

Chapter 1.1. Introduction to Command-Level Program.ing 3

• Command-level interpreter (Chapter 1.8)

Part 2 through 6 of the manual are each concerned with CICS/VS
commands that can be discussed as a group:

• Part 2. Data base operations - describes the CICS/VS com.ands
provided for storage and retrieval of data in a data base using
CICS/VS file control facilities or using DL/I services.

• Part 3. Data communication operations - describes the CICS/VS
commands provided for communication between CICS/VS and the
terminals and logical units of the subsystems in the
telecommunications network of the CICS/VS system.

• Part 4. Control operations - describes the CICS/VS com.ands that
control the execution of tasks within the CICS/VS system.

• Part 5. Recovery and debugging - describes the CICS/VS commands
provided for recovery from abnormal termination, and for error­
handling, tracing, and monitoring.. Commands are also provided to
cause dUmping of selected areas of storage for offline analysis.

• Part 6. The CICS/VS Built-In Function (BIF DEEDIT) Command­
describes the one built-in function available with the command
level interface.

Each of the chapters (other than the introductory chapter) of these
parts of the manual has a standard format. The first section of a
chapter describes, in general terms, functions of the commands included
in the chapter. For each command the following information is
presented: the syntax of the command and its associated options;
exceptional conditions that can occur; a detailed description of what
the command does; and possibly one or more examples shoving typical
coding of the command. Finally; two lists are given: a list of the
options, with their functions, that can be used in any of the co.mands
in the chapter; and a list of the exceptional conditions, and their
causes, that can occur during the execution of the commands.

Part 7 contains several appendixes. References to most of these
appendixes are included in the text. The last four appendixes provide
sample programs that illustrate the use of many of the commands
described in the manual. The Bl!S maps and file record descriptions used
by the sample programs are also included.

CICS/VS APR! (CL)

Syntax Notation Used in this Manual

Throughout this manual, wherever a CICS/VS command is presented, the
symbols { }, I, [], and ••• are used in defining the command format.
These symbols are not part of the co.mand and are not coded by the
programmer. Their purpose is to indicate how the command may be
written, and they should be interpreted as follows:

• Uppercase identifiers and punctuation symbols must be coded exactly
as shown.

• Lowercase identifiers indicate that user text should be coded as
required.

• Square brackets [] are used to indicate that the enclosed
identifiers are optional. The less than, and greater than symbols
< > are used to replace square brackets in the syntax displays
produced by the command-level interpreter. (See Chapter 1.8).

• The "or" symbol I is used to separate alternatives.

• Underlining is used to denote that the identifier is the default;
that is, the one that will be assumed if no explicit choice is
made.

• Braces { } are used to enclose a set of alternatives, one of which
must be coded.

• The ellipsis ••• denotes that the immediately preceding
identifier (s) can be coded repetitively.

To denote, for example, that either GTEQ, or EQUAL, or neither, can
be coded (and that GTEQ is the default), the syntax notation would be:

[GTEQ I EQUAL]

Chapter 1.1. Introduction to Com.and-Level Progra •• ing 5

Chapter 1.2. Command Format and Argument Values

The purpose of this chapter is to explain the general rules governing
the use of the CICS/VS commands that are described in the following
chapters.

Command Format

The general format of a CICS/VS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the required function, and possibly by one or
more options, as follows:

{EXECUTE IEXEC} CICS function [option[(argument)]] •••

where:

and:

"function" describes the operation required (for example READ),

"option" describes any of the many optional facilities
available with each function. Some options are followed by an
argument in parentheses, others are not. Options (including
those that require arguments) can be written in any order,

"argument" is a value such as "data-value" or "name", as
defined later in this chapter.

An example of a CIOS/VS command (from Chapter 2.2. File Control) is
as follows:

EXEC CICS READ INTO(FILEA) DATASET('FILEA') RIDFLD~EYIUM) UPDATE

The appropriate end-of-command delimiter, described in the next
section, must be added.

CODING CONVENTIONS

CICS/VS commands can be included in an assembler-language, COBOL, or
PL/I program anywhere that an executable statement can be included.

In assembler language:

• The keyword EXEC must appear in an operator position. The command
can be l.abe Ie d •

• The delimiter between options must be either a blank or a com.a,
but not both. The appearance of ",~" or ".~. im.ediatel.y following
an option indicates that the rest of the line is a comment.

• The usual continuation conventions apply (non-blank character in
col.umn 72, the continuation line to start in column 16).

Chapter 1.2. Command Format and Argument Values 1

In COBOL, a cOllmand lBust be delimited with "END-EXEC" as shown in the
following example:

EXEC CICS ISSUE RESET END-EXEC

This delimiter allows a command to be written within a THEN clause.

In PL/I, a command must be delimited with a semicolon as shown in the
follow ing example:

EXEC CICS ISSUE RESET;

In the following chapters, for sillplicity, the syntax of each of the
commands that can be specified in an application program is presented
without the phrase EXEC CICS, without the continuation conventions, and
without the end-of-command delimiter (END-EXEC or semicolon) •

In the programming examples in the text, the phrase EXEC CICS is
added but not the continuation conventions or end-of-command delimiter.
When coding comaands these must be added as appropriate for the
programming language in use.

Argument Values

In the following chapters, the parenthesized argument values that follow
options in a CICS/VS command are specified as follows:

• data-value

• data-area

• pointer-value

• pointer-ref

• name

• label

• hhmmss

The argument values are defined in the following sections.

ARGUMENT VALUES IN ASSEMBLER LANGUAGE

In general, an argument may be either the address of the data or the
data itself (in assembler-language terms, either a relocatable
expression or an absolute expression) •

A relocatable expression must not contain unmatched brackets (outside
quotes) or unmatched quotes (apart from length attribute references).
Provided this rule is obeyed, any expression may be used, including
literal constants, such as =AL2(100), forms such as 20(0,R11), and forms
which use the macro replacement facilities.

An absolute expression must be a single terll which may be either a
length attribute reference, or a self-defining constant.

8 CICS/VS APRM (CL)

Care mast be taken with equated symbols which should be used only
when referring to registers (pointer references). If an equated symbol
is used for a length, say, it will be treated as the address of the
length and an unpredictable error will occur.

• "data-value" can be replaced by an assembler-language reference to
data of the correct type for the argument or by a constant of the
correct type for the argument.

• "data-area" can be replaced by an assembler-language reference to
data of the correct type for the argument.

• "pointer-value" can be replaced by an assembler-language reference
to a register.

• "pointer-ref" can be replaced by an assembler-language reference to
a register.

• "nallle" can be replaced either

by a character string in quotes

by an assembler-language reference to a character string with a
length equal to the maximum length allowed for the name. The
value of the character string is the name to be used by the
argument.

• "label" can be replaced by any program label or address constant.

• "hhmmss" can be replaced by a self-defining decimal constant or an
assembler-language reference to a field defined as PL4. The value
must be of the form OHHMMSS+ where 8H represents hours from 00
through 99, MM represents minutes from 00 through 59, and SS
represents seconds from 00 through 59.

Many commands involve the transfer of data between the application
program and CICS/VS. In most cases, the length of the data to be
transferred must be provided by the application program. However, if a
data area is specified as the source or target, it is not necessary to
provide the length explicitly, because the command language translator
will generate a default length value of L'data-area.

llthough the DB5TIDLBNG, FBOMLENGTB, KEYLEBGTH, LENGTH, PFXLBBG,
TOLEBGTB,. or VOLOIIBLENG options are shown as required options in· the
syntax fora co •• and,. these options are always optional in an asseJibler­
lanq.uage proqraJi which specifies a data area (except in the case of the
ENQ and DEQ commands). Length v~lues cannot be defaulted if the SET
option is specified in a com.and.

ARGUMENT VALUES IN COBOL

• "data-value" can be replaced by any COBOL data nalle of the correct
data type for the argument or by a constant that can be converted
to the correct type for the argument. The data type can be
specified as being one of the following:

halfword binary - PIC 59(4) COMP

fullword binary - PIC S9(8) COMP

Chapter 1.2. Command Format and Argument Values 9

• "data-area" can be replaced by any COBOL data naIBe of the correct
data type for the argument. The data type can be specified as
being one of the following:

halfword binary

fullvord binary

PIC S9 (4) CORP

PIC 59(8) CORP

In cases where the data type is unspecified, the data area can
refer to an elementary or group item.

• "pointer-value" can be replaced by the name of any BLL (base
locator for linkage) cell, or by any COBOL data name which contains
a copy of such a pointer in a BLL cell.

• "pointer-ref" can be replaced by the nalle of any BLL (base locator
for linkage) cell.

• "nalle" can be replaced either

by a literal constant; or

by an COBOL data-area with a length equal to the maximum length
allowed for the name. The value of the character string is the
name to be used by the argument.

Names must be padded with trailing blanks to the maximum length
permitted.

• "label" can be replaced by any COBOL paragraph name or a section
nalle.

• "hhmmss" can be replaced by a decimal constant or by a data name of
the form PIC 59(7) CORP-3. The value must be of the form OBBRft55+
where HD represents hours froll 00 through 99, Bft represents minutes
from 00 through 59, and 55 represents seconds frolB 00 through 59.

ARGUMENT VALUE5 IN PL/I

• "data-value" can be replaced by any PL/I expression that can be
converted to the correct data type for the argument. The data type
can be specified as being one of the following:

halfword binary - FIXED BII(15)

fullword binary - FIXED BII(31)

If the data value is specified as halfword binary, the data value
is converted, if necessary, to FIXED BIN (15). "Data-value"
includes "data-area" as a subset.

10 CICS/VS APRa (CL)

• "data-area" can be replaced by any PL/I data reference of the
correct data type for the argument. The data type can be specified
as being one of the following:

halfword binary

fullword binary

FIXED BIN (15)

FIXED BIN (31)

If the data type is unspecified, the data area can refer to an
element, array, or structure; the reference must be to connected
storage, for example, FROB(P->STRUCTURE) LENGTB(LBG).

If data, that is not in varying-length string format, is read into
a varying-length string, the length bytes at the beginning of the
varying-length string will be corrupted.

• "pointer-value" (which includes "pointer-ref" as a subset) can be
replaced by any PL/I expression that can be converted to POINTER.

• "pointer-ref ll can be replaced by any PL/I reference of type
POINTER.

• "name n can be replaced either

by a literal constant; or

by a PL/I expression or reference whose value can be converted
to a character string with a length equal to the maximum length
allowed for the name. The value of the character string is the
name to be used by the argument.

• "label" can be replaced by any PL/I expression whose value is a
label. Program labels are always passed by value, not by
reference.

• "hhllmss" can be replaced by" a decimal constant or an expression
that can be converted to a FIXBD DBCIBAL(1,O) value. The value
must be of the form OBH!!5S+ where Bft represents houLS from 00
through 99, fU! represents minutes froll 00 through 59, a'nd S5
represents seconds from 00 through 59.

Bany commands involve the transfer of data between the application
program and CIC5/VS. In most cases, the length of the data to be
transferred must be provided by the application program. However, if a
data area is specified as the source or target, it is not necessary to
provide the length explicitly, because the command language translator
will generate a default length value of either STG(data-area) or
C5TG(data-area) as appropriate.

ll:tll.ou.gh the DBSTIDLENG,PROIILEIGTB, KBYLBllGTB, L'ElIGTB, PPXLBIG,
TOI.BHGTB, or VOLUIlBLEIG options.a(lJ))e shown as reqniredoptions . ,in the
s.yntaxfor aco •• and, these options are always qptional in .. Cl PL/I
prOCjramwhich specifies a data area . (except in the case of the RNQ and
DEQ cOIIRnds). Length values. cannot bedefaul ted .if the .SBT option is
specified ill a comaand. .,

Chapter 1.2. Command Pormat and Argument Values 11

Chapter 1.3. Command Language Translator

The command language translator accepts as input a source program,
written in assembler language, COBOL, or PL/I, in which CICS/VS commands
have been coded, and produces as output an equivalent source program in
which the commands have been translated into statements in the language
of the source program. At execution time, these statements invoke the
EXEC interface program, which accepts the arguments passed by the call
from the application program, sets up the parameters in the CICS/VS
control blocks, and passes control to the appropriate CICS/VS facility.

The translator is executed in a separate job step_ The job step
sequence for preparing an application program is translate - assemble
(or compile)- link-edit. Cataloged procedures are supplied to assist
the user; refer to the CICS/VS SIstem Programmer's Guide fDOS/YS) or
CICS/VS SIstem programmer's Guide (OS/VS) for details. The translator
requires a region or partition of 96K bytes.

There are three separate translators, one for assembler language, one
for COBOL, and one for PL/I. The translators are each provided in two
versions, one for VSE and one for OS/VS. The VSE version reads its
input from SYSIPT, produces its output (the translated source program)
on SYSPCR, and writes the source listing, error messages and so on, on
SYSLST. The OSjVS version reads its input from SYSIB, produces its
output on SYSPUNCH, and writes the source listing, error messages and so
on, on SYSPRINT.

The iSE translators for COBOL and PL/I accept also the commands that
can be used to access DL/I data bases. These commands, of the form EXEC
DLI, are translated in a similar way to EXEC CICS commands, and are
described in Chapter 2.4.

If the Entry Level System (ELS) is used (VSE only), a translator is
generated with function limited to that supported by the host entry
level eICS/VS system. This translator will flag functions that are not
supported by the entry level system (as described in the CICS/VS EntrI
Level system User's Guide (DOS/VS».

Translator Data Sets

INPUT DATA SET

The input data set must be a sequential data set. It may be on punched
cards, on a direct-access device, or on magnetic tape.

For DOS/VS, the input data set must contain 80-byte fixed-length
unblocked records.

For OS/VS, the input data set for COBOL must contain fixed-length
records (blocked or unblocked); for assembler language and PL/I it may
contain either fixed-length or variable-length records. The maximum
record size (LREeL) must not exceed 104 bytes.

Chapter 1.3. Command Language Translator 13

OUTPUT DATA SET

The output data set must be a sequential data set. It may be on punched
cards, on a direct access device, or on magnetic tape.

For DOSjVS, the output data set must contain 80-byte fixed-length
unblocked records.

For OS/VS, the output data set must contain 80-byte fixed-length
records (blocked or unblocked) •

LISTING DATA SET

The listing data set must'be a sequential data set. Although the
listing is usually printed, it can be stored on any magnetic tape or
direct access device.

For DOS/YS, the listing data set must contain 121-byte fixed-length
unblocked records.

For OS/VS COBOL users, the listing data set must contain 121-byte
fixed-length blocked records (RECFK=FBA).

For OS/VS assembler language and PL/I users, the listing data set
must contain variable length blocked records with a maximum length of
121 bytes (RECFK=VBA).

Translated Code

ASSEKBLER LANGUAGE

For an assembler-language application program, each co.mand is replaced
by an invocation of the DFHEICIL macro which builds an argument list in
dynamic storage, so that the application program is reentrant, and then
invokes the EXEC interface program. I definition of this dynamic
storage is provided automatically by the translator inserting an
invocation of the macros DFHBISTG and DFBBIEND. The translator will
also insert an invocation of the DFBBIBHT macro which performs prolog
initialization code and an invocation of the DPBBIRBT macro which
performs epilog code.

The following example shows a simple assembler-language application
program that uses a B!S command to send a map to a ter.inal.

14 CICS/VS IPR! (CL)

INSTRUCT CSECT
EXEC CICS SEND MAP ('XDFHAMA ') MAPONLY ERASE
END

which is translated to:

INSTRUCT CSECT

*
DFHEIENT INSERTED BY TRANSLATOR
EXEC CICS SEND MAP ('XDFHAMA ') MAPONLY ERASE
DFHEICAL (23;5), P1804C0000800000000046204000020', 'XDFHAMA' ,DF*

HEIVOO)
DFHEIREI'
DFHEISTG
DFHEIEND
END

INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR

The dynamic storage that is obtained for building the parameter list
may be extended by the user to provide reentrant storage for assembler­
language variables. The following example shows a simple assembler­
language application program that uses variables in dynamic storage.

DFHEISTG DSECT
COPY XDFHAMA INPUT MAP DSECT
COPY XDFHAMB OUTPUT MAP DSECT

MESSAGE DS CL39
INQUIRY CSECT

EXEC CICS RECEIVE MAP ('XDFHAMA ')
MVC NUMBO ,KEYI
MVC MESSAGE ,=CL (L'MESSAGE) 'THI S IS A MESSAGE'
EXEC CICS SEND MAP C'XDFHAMB')
END

which is translated to:

DFHEISTG DSECT
DFHEISTG
COPY XDFHAMA
COPY XDFHAMB

INSERTED BY TRANSLATOR
INPUl' MAP DSECT
OUTPUT MAP DSECT

MESSAGE DS CL39
INQUIRY CSECT

*

*

DFHEIENT INSERTED BY TRANSLATOR
EXEC CICS RECEIVE MAP ('XDFHAMA')
DFHEICAL (23,5), ('1802C0000800000000040900000020','XDFHAMA',XD*

FHAMAI)
MVC NUMBO,KEYI
MVC MESSAGE,=CL (L'MESSAGE) 'THIS IS A MESSAGE'
EXEC CICS SEND MAP ('XDFHAMB')
DFHEICAL (23,5) , ('1804C000080000000004E004000020','XDFHAMA',XD*

FRAMBO)
DFBEIREl'
DFHE I STG
DFHE I END
END

INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR

The use of the reserved name DFHEISTG ·as the DSECT name indicates
that dynamic storage is to be provided for the extra user variables.
within that named DSECT.

The invocation of an assembler-language application program using the
command-level interface obeys system standards and the invocation of the
EXEC interface program by a command also obeys system standards.
Details are given below.

Chapter 1.3. Comnand Language Translator 15

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

On entry to an assembler-language application program using the
command-level interface;

Register 1 contains the address of the parameter list.
Register 15 contains the address of the entry point.
Register 14 contains the address of the return point.
Register 13 contains the address of a save area.

The parameter list held in register 1 consists of two entries,
follows:

• Addre ss of the EXEC interface block (EIB).

as

t • Address of the COMMAREA. If there is no COMMAREA, the entry should
I contain the value X·SOOOOOOO·.

A copy book, DFHEIBLK, containing a DSECT which describes the EIB is
included automatically.

Each command is replaced by an invocation of the DFHEICAL macro which
expands to a system-standard call sequence using the following
registers:

Register 15
Register 14
Register 0
Register 1

contains the entry point of the EXEC interface program.
contains the return address in the application program.
is undefined.
contains the address of the parameter list.

The entry point held in· register 15 is resolved in a stub (DFHEAI)
which must be link-edited with the application program.

Storage for the parameter list is provided automatically by the
translator, which inserts invocations of the two macros DFBEISTG and
DFHEIEND. These macros define the storage required for the parameter
list and a save area. The translator also inserts an invocation of the
DFHEIENT macro after the first CSECT or START statement. This macro
saves registers, obtains an initial allocation of the storage defined by
DFHEISTG, sets up a base register (default register 3) , a dynamic
storage register (default register 13) , and a register 'to address the
EXEC interface block (default register 11) •

Exit from the assembler-language program can be achieved by the EXEC
CICS RETURN command or by the DFHElRET macro, which is inserted by the
translator before the END statement to restore registers and return to
the address in register 14.

The dynamic storage defined by DFHEISTG can be extended by the user
to provide reentrant storage for user variables. This is done by
defining the user variables in a DSECT with the reserved name DFHEISTG.
The translator inserts the DFHEISTG macro after the DFHEISTG DSECT
statement. In this way the DSECT finally describes dynamic storage
consisting of the parameter list area, other areas needed by the
command-level interface, and space for user variables.

Assembler-language programs larger than 4095 bytes that do not use
the CODEREC parameter of the DFHEIENT macro to establish multiple base
registers, must include an LTORG statement for use by DFHEIENT.

The user may also modify or extend the defaults used by the DFHEIENT
macro by coding the required default as a keyword argument. The macro
can have up to three keyword arguments, as follows:

16 CI CS/VS APRM (eL)

CODE REG - base register or registers
DATAREG - dynamic storage register or registers
EIBREG - register to address the EIB.

and must be coded instead of the first CSECT or START statement, as
shown in the following example:

INSTRUCT DFHEIENT CODEREG=(2,3,4),DATAREG=(13,5) ,EIBREG=6

The symbolic register DFHEIPLR is equated to the first DATABEG either
explicitly specified or obtained by default. It is recommended that
register 13 be used as the first dynamic storage register since register
13 points to the save area defined in dynamic storage by DFHEISTG.
DFHBIPLR will be assumed by the expansion of an EXEC command to contain
the value set up by DFHEIENT. It is the userls responsibility to either
dedicate this register or to ensure that it is restored before each
command.

An assembler-language application program that uses both the command­
level interface and the macro-level interface (that is, a mixture of
commands and macros) must define the macro global bit &DFHEIMX and set
it to 1. This will ensure that register 13 points to the CSA, and
register 12 to the TCA. In this case, DFHEIPLR will not be assumed by
the expansion of a command.

COBOL

For COBOL, each command is· replaced by one or more COBOL f10VE statements
followed by a COBOL CALL statement. The purpose of the KOVE statements
is to assign constants to COBOL data variables; this enables constants
and names to be s~ecified as arguments to options in the commands. For
example, a command such as:

EXECUTE CICS RECEIVE MAP(IA') EHD-EXEC

may be translated to:

!fOVE I • TO DFHEIVO
!fOVE IAI TO DFHEIV1
CALL IDFHEI11 USING DFBEIVO DFHEIV1 AI

Declarations for the generated variables DFBEIVO and DFBEIV1 are
included automatically in working storage; their names are reserved.
The string moved to DFBEIVO is a hexadecimal string, not blanks. The
use of EXEC, CICS, DLI, and END-EXEC as names for user variables should
be avoided.

The translator modifies the Linkage Section by inserting the EIB
structure as the first parameter, and inserts declarations of the
temporary variables that it requires into the Working-Storage section.

It is possible to translate program segments for later inclusion into
the Procedure Division.

PL/I

For PLjI, each command is always replaced by a single PL/I CALL
statement. Warning messages fro. the PL/I compiler to the effect that
the number of arguments to the call is incorrect should be ignored.

Chapter 1.3. Command Language Translator 17

If OPTION5(ftIIH) is specified, the translator modifies the parameter
list by inserting the EIB structure pointer as the first parameter, and
a 'INCLUDE statement to copy the structure into the program. If
OPTION5(81IN) is not specified (that is, if the program is to be link­
edited to the main module), the parameter list is not modified, and it
is the application programmer's responsibility to pass the EIB structure
(or addressability to it) to the link-edited program if access to it is
required.

It is possible to translat'e program segments for later incl usion into
a main prograll.

Translator Options

The translator provides a number of optional facilities, for example, to
allow for different record formats and to specify what information is
required on the listing. The translator options and their defaults
(indicated by underlines) are listed below. There are different sets of
options for assembler language, COBOL, and for PLjI users.

Translator options are specified in the *158 statement for assellbler
language, the CBL statement for COBOL, or in the *PROCE55 statement for
PL/I. These statements must precede the source program; there is no
batching facility. The *158 statement must obey the same syntax and
continuation rules as the assembler-language comment statement. For
05/VS, options may also be specified in the EXEC job control statement
that invokes the translator; if both methods are used, the options
specified in the *15M, CBL, or *PROCESS statements override those in the
EXEC job control statement, and the last setting for each option takes
precedence.

Translator options are written as a list within the CICS keyword
option, for example:

*158 CICS (NOPROLOG NOEPILOG)

or

CBL CICS(QUOTE 5PACE2)

or

*PROCE55 CICS(FLIG(W) SOURCE);

No characters, other than blanks, can appear before the CBL statement
on the COBOL options card.

The options may appear in any order. They may be separated by one or
more blanks or by a comma. If coded in the EXEC job control statement,
the CIC5 keyword ~nd its associated parentheses) is unnecessary; only
options for the translator are permitted.

For COBOL and PL/I under D05/Y5, the CBL and *PROCESS statements can
use the XOPTS keyword as an alternative to the CIC5 keyword, for
example:

18 CIC5/VS APRM (CL)

CBL XOPTS (QUOTE SPACB2)

or

*PROCESS XOPTS (FLAG (W) SOURCB);

If the application program contains EXBC DLI co. lands, the options
DLI and CICS must be specified in a CBL or *PROCBSS statement, as
follows:

CBL IOPTS(DLI,CICS)

or

*PROCESS XOPTS(DLI,CICS);

The CBL or *PROCBSS statement can also contain options that apply to
the following compiler. These options will be ignored by the translator
(that is, they will not be checked for validity) but they will be copied
through onto the output data set. For example, a PL/I application
program preceded by:

*PROCBSS CICS (SOURCE) ,ATTRIBUTES;

vill be passed to the PL/I compiler preceded by:

*PROCESS ATTRIBUTBS;

ASSEMBLER-LANGUAGE TRANSLATOR OPTIONS

NOSPIE

NOPROLOG

NOBPILOG

prevents the translator trapping unrecoverable errors; instead,
a dump is produced.

prevents the translator inserting the macros DFHBISTG,
DFBEIBND, and DFBEIBNT, described earlier in this chapter.

prevents the translator inserting the macro DFHEIRET, described
earlier in this chapter.

COBOL TRANSLATOR OPTIONS

DBBUGINODEBUG
specifies whether or not the translator is to produce code that
passes the translator line number through to CICS/VS to be
displayed by the Execution (Command Level) Diagnostic Facility
(EDF) •

Chapter 1.3. COBmand Language Translator 19

CICS

I DLI
I

FE

specifies that the translator is to process EIEC CICS commands.
This option may be specified either as an alternative to, or as
a suboption of, the IOPTS option. If neither IOPTS nor CICS is
specified, CICS is assumed by default. This option must not be
specified for batch DL/I application programs containing EXEC
DLI com.ands; IOPTS(DLI) must be specified instead.

specifies that the translator is to process EIEC DLI commands.

produces translator informatory messages which print (in
hexadecimal notation) the bit pattern corresponding to the
first argument of the translated call. This bit pattern has
the encoded information that the EXEC interface program uses to
determine which function is required and which options are
specified. If FE is specified, all diagnostic messages are
listed, whatever the FLAG option specifies. .

PLAGIIPLIGWIPLAGE
specifies which diagnostics the translator is required to list:
FLAGI specifies diagnostics at a11 severity levelsi FLAGW
specifies diagnostics at severity levels W, C, E, and D; and
FLAG! specifies diagnostics at severity levels C, E, and D.

LAHGLVL (1) I LAIGLVL (2) (OS/VS only)
specifies whether the translator is to analyse the source
program and generate code according to the lIS 13.23-1968
(LIHGLVL(l» or ANS 13.23-1974 (LANGLVL(2» interpretation.

The same value for this option must be specified for the
translator and following compiler.

LISTINOLIST (VSE only)

HOSPI!

HUftlNONUft

OPT I HOOPT

specifies whether or not the translator is to produce a listing
of the source program.

is used to prevent the translator from trapping unrecoverable
errorsi instead, a dump is produced.

specifies whether or not the translator is to use the line
numbers appearing in columns 1 through 6 of the card as the
line number in its diagnostic messages and cross-reference
listing. If NU!! is not specified, the translator generates its
ovn line numbers.

specifies whether or not the translator is to generate SERVICE
RBLOID statements to address the BIB and DFBCO!!BAREA. The same
value for this option must be specified for the translator and
following compiler. The default is OPT for OS, IOOPT for DOS.

20 CICS/VS APRft (CL)

QUOTEtAPOST

SEQ.INOSEQ

QUOTE indicates to the translator that the double quotation
marks (") should De accepted as the character to delineate
literals; APOST indicates that the apostrophe (.) should be
accepted instead. The same value must be specified for the
translator and following compiler.

indicates whether or not the translator is required to check
the sequence of source statements. If SEQ is specified and a
statement is not in sequence it is flagged.

SOURCEINOSOURCE (OS/VS only)
specifies whether or not the translator is to produce a listing
of the source program.

SPACE11SPACB21SPACE3
indicates the required type of spacing to be used in the output
listing: SPACE1 specifies single spacing; SPACE2 double
spacing; and SPACE3 triple spacing.

XREFINOXREF
specifies whether or not the translator is required to provide
a cross-reference list of all the commands used in its input.

PL/I TRANSLATOR OPTIONS

DEBUG I NODEBUG

CICS

DLI

FE

specifies whether or not the translator is to produce code that
passes the translator line number through to CICS/VS to be
displayed by the Execution (Com.and Level) Diagnostic Facility
(EDF} •

specifies that the translator is to process EXEC CICS commands.
This option may be specified either as an alternative to, or as
a suboption of, the XOPTS option. If neither XOPTS nor CICS is
specified, CICS is assumed by default. This option must not be
specified for batch DL/I application programs containing EXEC
DLI commands; IOPTS(DLI) must be specified instead.

specifies that the translator is to process EXEC DLI co •• ands.

specifies that the translator is to produce informatory
messages which print (in hexadecillal notation) the bit pattern
corresponding to the first argument of the translated call.
This bit pattern forms a code that the EXEC interface program
uses to determine which function is required and which options
are specified. If FE is specified, all diagnostic messages are
listed, whatever the FLAG option specifies.

Chapter 1.3. Command Language Translator 21

FLAG[(!lllIEIS)] Abbreviation: F
specifies the minimum severity of error that requires a message
to be listed.

FLAG (Il

FLAG I FLAG (ll)

FLAG (E)

FLAG (S)

all messages

all except informatory messages

all except warning and informatory messages

only severe and unrecoverable error messages

LINECOUNT(n) Abbreviation: LC
specifies the number of lines to be included in each page of
translator listing, including heading and blank lines. The
value of n must be an integer in the range 1 to 32767; if n is
less than 5, only the heading and one line of listing will be
included on each page. The default is 55.

K ARGINS (m, n[, c]) lbbrev iation: KAR

NOSPIE

specifies the extent of the part of each input line or record
that contains Pl/I statements. The translator does not process
data that is outside these limits (but it does include it in
the source listings).

The option can also specify the position of an American
National Standard (ANS) printer control character to format the
listing produced if the SOURCE option applies; otherwise the
input records will be listed without any intervening blank
lines.

"ll" Col.umn number of left-hand margin.

"n" Column number of right-hand margin. It must be greater
than limit.

"c" Column number of the ANS printer control character. It
must be outside the values specified for "m" and "nn.
A zero value for "c" means no printer control character.
Only the following printer control characters can be
used:

(blank)

o

+

1

Skip one line before printing.

Skip two lines before printing.

Skip three lines before printing.

No skip before printing.

Start new page.

The default is KARGINS(2,72,0) for fixed-length records; an4
~lRGINS (10,100,0) for variable-length records (OS/VS only).

is used to prevent the translator trapping unrecoverable
errors; instead, a dump is produced.

22 CICS/VS APRft (Cl)

OPMARGINS (m ,n[,cl) Abbreviation: Oft
specifies the translator output margins, that is, the margins
of the input to the following compiler. Bormally these will be
the same as the input margins. For the meaning of tlm", "n",
and "c" see MARGINS. The default is OPftARGIBS (2,72,0)

OPSEQUEBCE ~,n)INOOPSEQUEHCE Abbreviations: OS and NOS
specifies the position of the sequence field in the output
records. For the meaning of tim" and tin" see SEQUENCE.. The
default is OPSEQUENCE n3,80).

OPTIONS I BOOPTIONS Abbreviations: OP and lOP
specifies whether the translator is to include in the listing a
list of all the translator options used during this
translation.

SEQUENCE (m,n) INOSEQUENCE Abbreviations: SEQ and NSEQ
specifies the extent of the part of each input line or record
that contains a sequence number. This number is included in
the source listing and used in the error message and cross­
reference listings. No attempt is made to sort the input lines
or records into sequence~ If no sequence field is specified,
the translator creates and prints in the source listing its own
sequence numbers; this is necessary so that the error messages
and cross~eference listings can refer to a particular line in
the source listing.

"mit Column number of left-hand margin ..

"nit Column number of right-hand margin.

The extent must not exceed eight characters and must not
overlap the source program (as specified in the ~ARGINS
option) •

The default for fixed-length records is SEQUENCE 03,80); for
varying-length records it is SEQUENCE (1 ,8) (OS/VS only) •

SOURCEINOSOURCE Abbreviations: Sand NS
specifies whether or not the translator is to produce a listing
of the source program.

XREFIHQXREF Abbreviations: X and NX
specifies whether the translator is to include in the listing a
list of all the commands used in the program together with the
sequence numbers of the lines in which they are used.

Chapter 1.3. Command Language Translator 23

Chapter 1.4. Programming Techniques and Restrictions

This chapter contains information that will help to improve performance
and effici~ncy of an application program in the CICS/VS system.

The first section deals with general programming techniques; this
section gives advice about the virtual-storage environment in which
CICS/VS application programs operate. The rest of the chapter contains
information that is applicab1e only to programs written in assembler
language, COBOL, and PL/I respectively, and includes the restrictions
that apply to each language when CICSjVS com.ands are used.

This manual does not contain any guidance on the use of programming­
language statements or programming techniques that are unrelated to
CICS/VS; such information is given in the appropriate language
publications.

Files and queues are not defined within application programs; these
definitions are established with the help of the system programmer.
Refer to the £!£~~_SIs!~Qgram.~r·s_Refere.!!£!LA§.!!ual.

General Programming Techniques

To see how programming techniques can affect the performance and
efficiency of the CICSjVS system, it is necessary to understand a little
of the virtual-storage environment in which CICS/VS operates. Two
concepts are important: multithreading and virtual-storage paging.

!ultithreading is a technique, used by CICSjVS, that allows a single
copy of an application program to process several transactions
concurrently. For example, the first section of an application prograa
may be' processing one transaction. When that section is completed (in
general, signaled by the execution of a CICS/VS command that causes a
wait), processing of another transaction using a different section of
the application program may take place. (Compare this with single
threading, which is the execution of a program to completion.
Processing of one transaction is completed before another transaction is
started.)

!ultithreading requires that all crcs/vs application programs be
quasi-reentrant; that is, they must be serially reusable between entry
and exit points, and any instructions or data altered in them must be
restored. CICSjVS application programs using the co •• and-level
interface obey this rule automatically (provided that, in PL/I programs,
static storage is used for read-only data). For these program to stay
reentrant, variable data should not appear as static storage in PL/I,
nor as a DC in the program CSECT in assembler language.

Care must be taken if a program involves lengthy calculations; since
an application program retains control from one CICS/VS command to the
next, pIOcessing of other transactions is completely excluded. Bowever,
the SUSPEND command can be used to allow other transaction processing to
proceed; refer to Chapter 4.3 for details.

virtual-Gtorage paging is a technique used by CICS/VS in a virtual­
storage environment. The key objective of programming in this
environaent is the reduction of page faults. A page fault occurs when a
program refers to instructions or data that do not reside in real
storage, in which case, the page in virtual storage that contains the

Chapter 1.4. Programming Techniques and Restrictions 25

referenced instructions or data must be paged into real storage. The
more paging required, the lower the overall system performance.

An understanding of the following terms is necessary for writing
application programs to be run in a virtual-storage environment:

• locality of reference - the consistent reference, during the
execution of the application program, to instructions and data
within a relatively small number of pages ~ompared to the total
number of pages in a program) for relatively long periods

• working set - the number and combination of pages of a program
needed during a given period

• validity of reference - direct reference to the required pages,
without intermediate storage references that retrieve useless data

In general, the following techniques should be used:

1. To improve locality of reference, processing should be sequential
for both code and data, where possible.

a. The ideal application program executes sequentially with no
branch logic reference beyond a small range of address space.
However, error-handling or unusual-situation routines should be
separated from the main section of a program; they should be
subprograms.

b. Subroutines should be placed near to the caller.

c. Subprograms that are short and used only once or twice (other
than error-handling or unusual-situation routines) should be
coded inline in the calling program.

d. Try to keep the execution path in a straight line by using XCTL
commands to transfer control to other programs when necessary,
rather than LINK commands.

e. Initialize data as close as possible to its first use.

f. Define arrays or other data structures in the order in which
they viII be referred to. Refer to elements within arrays in
the order in which they are stored; for example, in PLjI
programs, in rows rather than in columns.

g. Issue as few as possible GETftAIN commands.

h. In COBOL programs, avoid using EXAftINE or VARIABLE ftOVE
operations, because these expand into subroutine executions.

2. To minimize the size of the working set, the amount of storage that
a program refers to in a given period should be as small as
possible.

a. Write modular programs and structure the modules according to
frequency and anticipated time of reference. Do not modularize
merely for the sake of size; consider duplicate code inline as
opposed to subroutines or separate modules.

b. Use separate subprograms whenever the flow of the program
suggests that execution will not be sequential.

c. Do not tie up main storage awaiting a reply from a terminal
user.

26 CICS/VS APRft (CL)

d. Use command-level file control locate-mode input/output rather
t han move-mode.

e. In COBOL programs, specify constants directly, rather than as
data variables in the Working-storage section.

f. In PL/I programs, use static storage for constant data.

g. Avoid using LINK commands where possible, because they generate
requests for main storage.

3. To improve validity of reference, the correct page should be
determined directly.

a. Avoid long searches for data.

b. Use data structures that can be addressed directly, such as
arrays, rather than structures that must be searched, such as
chains.

c. Avoid indirect addressing and any methods that simulate
indirect addressing.

No attempt should be made to use overlays (paging techniques) in an
application program. System paging is provided automatically ,and has
superior performance. The design of an application program for a
virtual-storage environment is similar to that for a real environment.
The system should have all modules resident so that code on unreferenced
pages need not be paged in.

If the program is dynamic, the entire program must be loaded across
adjacent pages before execution begins. Dynamic programs can be purged
from storage if not in use and an unsatisfied storage request exists.
Allowing sufficient dynamic area to prevent purging is more expensive
than making them resident, because a dynamic program will not share
unused space on a page with another program.

CICS/VS !ACROS USED WITH CICSjVS COftftANDS

Care should be exercised when writing application programs that contain
a mixture of CICS/VS commands and CICS/VS macros, or in a macro-level
program that invokes a command-level program and vice-versa.

I When a RECEIVE MAP command is used with the SET option, the EXEC
I interface program always reuses the terminal input/output area (TIOI)
I obtained. Do not use a DFHSC TYPE=FREEKAIH, RELEASE=ALL macro in the
I same or an invoked program because the TIOA is freed unknown to the EXEC
I interface program, which will attempt to reuse it, giving unpredictable
t results.

Object Program Size

The object module resulting from any application program must not occupy
more than 262,136 bytes of main storage.

Chapter 1.4. Programming Techniques and Restrictions 21

Assembler-Language Considerations

RESTRICTIONS

The following restrictions apply to an assembler-language program that
is to be used as a CICS/VS application program.

1. The assembler instructions CO~ (identify blank common control
section), ICTL (input format control), and OPSYN (equate operation
code) cannot be used.

2. Private code containing commands cannot be used.

CO!!ANDS CONTAINED WITHIN MACROS AND COpy CODE

!acro instructions that generate commands, and COpy code that contains
commands, must be translated and stored in the source library in
translated form for later inclusion by the assembler.

INVOKING ASSE!BLER-LANGUAGE APPLICATION PROGBA!S BY A CALL
STATE~ENT

Assembler-language application prograas containing commands can be
treated as separate CICS/VS programs that have their own PPT entries and
that can be invoked by assembler-language, COBOL, PL/I, or RPG II
application programs using LINK or XCTL commands (see Chapter 4.4).

However, since assembler-language application programs containing
commands are invoked by a system standard call, they can be invoked also
by a COBOL, PL/!, or RPG II CALL statement or by an assembler-language
CALL macro. A single CICS/VS application program with one PPT entry may
consist of a module containing separate CSECTs linked together, although
they may have been compiled or assembled separately.

Also, assembler-language application programs containing commands can
be linked with other assembler-language programs, or with programs in
one of the high-level languages COBOL, PL/I, or RPG II, but with only
one. When such an application program is linked with an assembler­
language application program, the main program must be the one coded in
the high-level language, and the PPT must specify that high-level
language.

Since assembler-language application programs containing commands are
always passed the parameters EIB and CO!!ABEA when invoked, the CALL
statement or macro must pass these two parameters followed, optionally,
by other parameters.

28 CICS/VS APR~ (CL)

page of SC33-0011-2, revised September 1980 by TNL SN33-6268

COBOL Considerations

RESTRICTIONS

The following restrictions apply to a COBOL program that is to be used
as a CICS/VS application program. (Refer to the appropriate COBOL
programmer·s guide for more information about these features.)

1. Environment Division and Data Division entries normally associated
with data management cannot be used.

2. File Section of the Data Division cannot be used.

3. Special features: ACCEPr; DISPLAY, EXHIBIT, INSPECT, REPORT
WRITER, SmMENTATION , SORT, TRACE, and UNSTRING cannot be used.
For CICS/OS/VS, any feature that requires an OS/VS GETMAIN cannot
be used.

4. Options that require the use of operating system services: COUNT,
FLOW, STATE, STOP RUN, STXIT, or SYMDMP for CICS/OOS/VSi COUNT,
ENDJOB; FIPW, DYNAM, STATE, STOP RUN, SYMDUMP, SYST, or TEST for
CICS/OS/VS cannot be used. Note that since STOP RUN can be
generated by the COBOL compiler, the application programmer must
always code either a COBOL GOBACK statement or an EXEC CICS RETURN
command at the end of the program.

5. COBOL statements: READ, WRITE, OPEN, and CLOSE cannot be used.
(Canmands are provided for the storage and retrieval of data, and
for communication with terminals.)

6. Optimization option of the DOS Full COBOL V3 compiler cannot be
used.

7. When separate COBOL routines are link-edi ted together, only the
first can invoke CICS/VS.

8. The length of working storage plus the length of the TGT (task
globa 1 table) must not exceed 64K bytes.

COMPILERS SUPPORTED

only the following compilers are supported by CICS/VS:

a. DOS Full COBOL Version 3 Compiler (S136-cB2)

h. DOS/VS COBOL Compiler (5146-cB1)

c. OS Full COBOL Version 4 Compiler (5734-cB2)

d. OS/VS COBOL COmpiler (5140-cJ31)

Chapter 1.4. Programming Techniques and Restrictions 29

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

BASE LOCATOR FOR LINKAGE (BLL)

The base locator for linkage ~LL) mechanism is used to address storage
outside the Working-storage Section of an application program. It
operates by addressing the storage as if it were a parameter to the
program. The storage must be defined by means of an Ol-level data
defini tion in the Linkage Section of the program. The COBOL compiler
generates code to address the storage via the parameter list. When the
program is inVOked; CICS/VS sets up the parameter list in such a way
that the parameter list is itself addressable by the application
program.

The parameter list must be defined as the first parameter to the
program, unless a communication area is being passed to the program, in
which case the DFHCOMMAREA definition must precede it. (See Chapter
4.4) •

In the following example, the first 02-l.evel data name (that is,
FILLER) is set up by CICS/VS to provide addressability to the other
fields in the parameter list. The other data names are known as BLL
cells, and address the remaining parameters of the program. There is a
one-to-one correspondence between the 02-level data names of the
parameter list definition and the Ol-level data definitions in the
Linkage Section.

LINKAGE SECTION.
01 PARMLIsr.

02 FILLER PIC S9(8) COMP.
02 A-POINTER PIC S9 (8) COMP.
02 B-POINTER PIC S9 (8) COMP.
02 C-POINTER PIC S9 (8) COMP.

01 A-DATA.
02 PARTNO PIC 9 (4) •
02 QUANTITY PIC 9 (4) •
02 DESCRIPTION PIC X (l00) •

01 B-DATA PIC X.
01 C-DATA PIC X.

In this example, A-POINTER addresses A-DATA; B-POtNTER addresses B­
DATA, and C-POIN'BER addresses C-DATA. The actual data names chosen fo:r
the BLL cells and for the data areas that they address are not
significant, but the names must be defined in the correct orderj so that
the necessary correspondence is established.

If a BLL cell is named in the SET option of a CICS/VS command,
subsequent reference to the corresponding data definition name will.
address the storage supplied by CICS/VS as a result of executing the
command. For example, suppose that a program is required to read a
variable-length record from a file, examine part of it, and update it;
all of this is to be done without providing storage for the record
wi thin the program. Using the data definitions shown in the example
above, the program could be written as follows:

EXEC CICS READ UPDATE DATASET C·FILEA·)
RIDFLD (PART~EQD) SET (A-POINTER) LENGTH (A-LRECL) END-EXEC

IF A-LRECL LESS THAN 8 GO TO ERRORS.
IF QUANTITY GREATER ZERO

SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE DATASET (·FILEA·)

FROM ~-DATA) LENGTH (A-LRECL) END-EXEC.

30 CICS/VS APRM (CL)

CICSjVS reads the record into an internal buffer and supplies the
address of the record in the buffer to the application program. The
application program updates the record in the buffer and rewrites the
record to the data set.

BLL and Chained storage Areas

If access is needed to a series of chained storage areas (that is, areas
each of which contain a pointer to the next area in the chain), a
paragraph name aust be inserted immediately following any statement that
establishes address~bility to one of the storage areas. For example:

LINKAGE SECTION.
01 PARMLIST.

02 USERPTR PIC S9~) COMP.

01 USER1RE1.
02 FIELD PIC X ~).
02 NEXTAREA PIC 59(8) CO~P.

PROCEDURE DIVISION.

KOVE NEXTAREA TO USERPTR.
lNYNA~E.

MOVE FIELD TO TE5TVAL.

In this example, storage areas mapped or defined by USER1REl are
chained. The first MOVE statement establishes addressability to the
next area in the chain. The second ~OVE statement moves data from the
newly addressed area, but only because a paragraph name follows the
first MOVE statement. If no paragraph name is inserted, the reference
to FIELD is taken as being to the storage area that is addressed when
the first MOVE statement refers to REXTARE1. Insertion of a paragraph
name causes the compiler to generate code to reestablish addressability
through USERPTR, so that the reference to PIELD (and the next reference
to NEXTAREA) is to the newly addressed storage area.

BLL and OCCURS DEPENDING ON Clauses

If the object of an OCCURS DEPENDING ON clause is defined in the Linkage
Section, a special technique is required to ensure that the correct
value is used at all times. In the following example, PIELD-COUNTER is
defined in the Linkage Section. The MOVE PIELD-COUNTER TO FIELD-COUNTER
statement is needed to ensure that unpredictable results do not occur
when referring to DATA.

Chapter 1.4. Programming Techniques and Restrictions 31

LINKAGE SECTION.

01 FILE-REC.

02 FIELD-COUNTER PIC 9 (4) COMP.
02 FIELDS PIC X(5) OCCURS 1 TO 5 TIMES DEPENDING ON FIELD-COUNTER.
02 DATA PIC X(20).

PROCEDURE DIVISION.

EXEC CICS READ DATASET ('FILEAI) RIDFLD~EYVAL) SET (RECPTB) END-EXEC.
MOVE FIELD-COUNTER TO FIELD-COUNTER.
MOVE DATA TO DATA-VAL.

The MOVE statement referring to FIELD-COUNTER causes the compiler to
reestablish the value it uses to compute the current number of
occurrences of FIELDS and ensures that it can determine the displacement
of DATA correctly.

BLL and Large Storage Areas

If an area greater than 4096 bytes is defined in the Linkage Section,
additional statements are required to establish addressability to the
extra area. An additional BLL cell is required for each extra 4096
bytes (or part) added to the area. (No additional corresponding 01-
level data name definition is added, so the usual one-to-one
correspondence of BLL cells to the data areas they address is not
maintained.) An ADD statement is required also for each extra 4096
bytes (or part) 1 it is placed after the statement that establishes
addressability to the data area.

For example, if a record exceeds 4096 bytes in length, the program
might be coded as follows:

LINKAGE SECTION.
01 PARMLIST.

02 FRPTR PIC S9(8) COMP.
02 FRPTRl PIC S9(8) COMP.

01- FILE-REC ~
02 FIELD1 PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.

EXEC CICS READ DAT1SET('FILEAI) RIDFLD{KEYVAL) SET~RPTR) END-EXEC.
ADD 4096 TO FRPTR GIVING FRPTR1.

32 CICS/VS APR! (CL)

BLL and the Optimization Feature

If an application program is to be compiled using the OS full COOOL V4
Compiler, the OS/VS COBOL compiler, or the DOS/VS caOOL ccmpiler with
the optimization (OPT) feature, a special compil.er control. statement
must be inserted at appropriate places within the program to ensure
addressability to a particular area defined in the Linkage Section.
This control statement has the form:

SERVICE RELOAD fieldnarne

where • fieldname- is the symbolic name of a specific storage area which
is also defined in an Ol-level statement in the Linkage Section. The
SERVICE RELOAD statement must be used following each statement whiCh
modifies addressability to an area defined in the Linkage Section, that
is, whenever the contents of a BLL cell is changed in any way.

If a HANDLE CONDITION or a HANDLE AID command is invoked as a result
of a command that changes the contents of a BLL cell., a SERVICE RELOAD
statement should follow the l.abel. branched to as the exit for that
condition.

If the BLL mechanism is used (described earlier in this chapter) ,
addressability to the parameter list must be established at the start of
the procedure division. This is done by adding a SERVICE RELOAD
PARMLIST statement at the start of the procedure division in the earlier
examples.

For example, after a locate-mode input operation the SERVICE RELOAD
statement must be used to establish addressability to the data, as
follows:

EXEC CICS HANDLE CONDITION
ERROR (GIVEUP)
LENGERR (BADLENGTH) END-EXEC

EX~ CICS READ DATASET ('FILFA') RIDFLD (PART-REQD)
SET (A-POINTER) LENGTH (A-LRECL) END-EXEC

SERVICE RELOAD A-DATA.
BADLEOO.
SERVICE RELOAD A-DATA.

If an address is moved into a BLL cell; addressability must be
established in the same way, for example:

MOVE B-POINTER TO A-POINTER
SERVICE RELOAD A-DATA ..

If areas larger than 4096 bytes are being addressed, the secondary
BLL cells must be reset after the SERVICE RELOAD statement has been
executed. (Resetting a BLL cell is described in the previous section.)

NOTRUNC COMPILER OPl'ION

If an argument to a connnand is greater than 9999 in value, the NOTRUNC
compiler option must be specified to ensure successful execution.

Chapter 1.4. Programming Techniques and Restrictions 33

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

PROGRAM SEGMENTS

Segments of programs to be copied into the Procedure Division can be
translated by the command language translator, stored in their
translated form, and later copied into the program to be compiled.

PL/I Considerations

RESTRICTIONS

The follqwing restrictions apply to a PLIT program that is to be used as
a CICS/VS application program. ~efer to the PLII Optimizing compiler
Proqrammer·s Guide for more information about these features.)

1. The multitasking built-in functions: COMPLETION, PRIORITY, and
STATUS cannot be used.

2. The multitasking options: EVEN!', PRIORITY, and TASK cannot be
used.

3. The PL/I statements: READ, WRITE, GET, PUT (a limited form is
permitted) , OPEN, CLOSE, DISPLAY, DEIAY, REWRITE, LOCATE, DELETE,
UNIDCK, STOP, HALT, EXIT, FETCH, and RELEASE cannot be used.
(Commands are provided for the storage and retrieval of data i and
for communication with terminals.)

4. PL/I Sort/merge cannot be used.

5. Static storage (except for read-only data) cannot be used. A
consequence of this restriction for CICS/DOS/VS PL/I users is that
CONTROLLED variables cannot be used.

6. A declaration for a variable with the attributes STATIC EXTERNAL
should have also the INITIAL attribute. Failing this, such
declarations will generate a common CSECT that cannot be handled by
CICS/VS.

PL/I STAE EXECUTION-TIME OPTION

If this option is specified, an abend occurring in the transaction will
be handled by PL/I error handling routines, and the transaction may
terminate normally, in which case, CICS/VS facilities, such as dynamic
transaction backout (DTB), will not be invoked.

COMPILERS SUPPORTED

Only the following compilers are supported:

a. DOS PL/I Optimizing Compiler, Version 1, Release 5.0

b~ OS PL/I Optimizing Compiler, Version 1, Release 3.0

34 CICS/VS APRM (CL)

OPTIONS (MAIN) SPECIFICATION

If OPTIOIS(ftAIN) is specified in an application program, that program
can be the first program of a transaction, or control can be passed to
it by means of a LINK or XCTL com.and.

If OPTIONS (ftAIN) is not specified, it cannot be the first program in
a transaction, nor have control passed to it by a LINK or XCTL command,
but it can be link-edited to a main program.

The definition of the EIB is generated only in main programs. If
fields in the BIB are referred to in an external procedure for Which
OPTIONS~AIN) is not specified, either the address of the BIB, or the
necessary fields themselves, must be passed to the external procedure as
a parameter to the CALL statement that invokes the external procedure.

PROGRAM SEGftENTS

Segments of programs can be translated by the command language
translator, stored in their translated form, and later included in the
program to be compiled.

Chapter 1.4. Programming Techniques and Restrictions 35

Chapter 1.5. Exceptional Conditions

Exceptional conditions may occur during the execution of a CICS/VS
command and, unless specified otherwise in the application program by an
IGNORE CONDITION or HANDLE CONDITION command or by the NOHANDLE option,
a default action for each condition will be taken automatically by
CICS/VS. Usually, this default action is to terminate the task
abnormally. (Exceptional conditions are described, together with the
CICS/VS default action, at the end of a chapter, and a list of
conditions that apply to a co.mand is included within the syntax box for
the command.)

However, to prevent abnormal termination, an exceptional condition
can be dealt with in the application program by a HANDLB CONDITION
co.mand. The comsand must include the name of the condition and,
optionally, a label to which control is to be passed if the condition
occurs. The HANDLE CONDITION command must be executed before the
com.and which may give rise to the associated condition.

The HANDLE CONDITION command for a given condition applies only to
the program in which it is specified, remaining active until the
associated task is terminated, or until another HANDLE CONDITION command
for the same condition is encountered, in which case the new command
overrides the previous one.

When control returns to a program from a program at a lower logical
level, the HANDLE CONDITION commands that were active in the higher­
level program before control was transferred from it are reactivated,
and those in the lower-level program are deactivated. (Refer to Chapter
4.4 for information about logical levels.)

Some exceptional conditions can occur during the execution of anyone
of a number of unrelated commands. For example, IOERR can occur during
file-control operations, interval-control operations, and others. If
the same action is required for all occurrences, a single HANDLE
CONDITION IOERR command at the beginning of the program will suffice.

If different actions are required, HANDLE CONDITION com.ands
specifying different labels, at appropriate points in the program will
suffice. The same label can be specified for all comsands, and fields
EIBFN and EIBRCODE (in the EIB) can be tested to find out which
exceptional condition has occurred and in which command. The EIB is
described in Appendix A.

The IGNORE CONDITION command specifies that no action is to be taken
if an exceptional condition occurs. Execution of a cosmand could result
in seve£al conditions being raised. CICS/VS checks these in a
predetermined order and only the first one that is not ignored (by an
IGNORE CONDITION comsand) will be passed to the application program.

I The NOHANDLE option may be used with any command to specify that no
I acti~n is to be taken for any condition resulting from the execution of
I that command. In this way the scope of the IGIORE CONDITION command
I covers specified conditions for all comsands (until a BANDLE CONDITIOS
I for the condition is executed) and the scope of the NOHANDLE option
I covers all conditions for specified commands.

Chapter 1.5. Exceptional Conditions 37

THE ERROR EXCEPTIONAL CONDITION

Apart from the exceptional conditions associated with individual
commands, there is a general exceptional condition named ERROR whose
default action also is to terminate the task abnormally. If no HANDLE
CONDITION command is active for a condition, but one is active for
ERROR, control will be passed to the label specified for ERROR. A
HANDLE CONDITION command (with or without a 1abel) for a condition
overrides the HABDLE CONDITION ERROR command for that condition.

Commands should not be included in an error routine that may give
rise to the same condition that caused the branch to the routine;
special care should be taken not to cause a loop on the ERROR condition.
A loop can be avoided by including a HAfDLE CORDITIOR ERROR co •• and as
the first command in the error routine. The original error action
should be reinstated at the end of the error routine by including a
second HANDLE CONDITION ERROR command.

Handle Exceptional Conditions (HANDLE CONDITION)

HANDLE CONDITION condition[(label)]
[condition[(label)]].;.;.

I

I
I
I
I
•

This command is used to specify the label to which control is to be
passed if an exceptional condition occurs. It remains in effect until a
subsequent IGNORE CONDITION command for the condition is encountered.
No more than twelve conditions are allowed in the same command;
additional conditions must be specified in further HANDLE CONDITION
commands. The ERROR condition can also be used to specify that other
conditions are to cause control to be passed to the same label. If
"label" is omitted, the default action for the condition will be taken.

The following example shows the handling of exceptional conditions,
such as DUPREC, LENGERR, and so on, that can occur when a WRITE command
is used to add a record to a data set. DUPREC is to be handled as a
special case; system default action (that is, to terminate the task
abnormally) is to be taken for LENGERR; and all other conditions are to
be handled by the generalized error routine ERRHANDL.

EXEC CICS HANDLE CONDITION
ERROR (ERRHANDL)
DUPREC (DUPR TN)
LENGERR

Handle exceptional conditions
General label
Label of duplicate-record routine
Default action requested

If the generalized error routine can handle all exceptional
conditions except IOERR, for which the default action (that is, to
terminate the task abnormally) is required, IOERR (without a label)
would be added to the above command.

In an assembler-language application program, a branch to a labe1
caused by an exceptional condition will restore the registers in the
application program to their values at the point where the EXEC
interface program is invoked.

In a PL/I application program, a branch to a label in an inactive
procedure or in an inactive begin block, caused by an exceptional
condition, will produce unpredictable results.

38 CICS/VS APRlI (CL)

Handle Condition Command Option

condition[(label)]
·condition- specifies the name of the exceptional condition,
and -label· specifies the location within the program to be
branched to if the condition occurs. If this option is not
specified; the default action for the condition is taken,
unless the default action is to terminate the task abnormally,
in which case the ERROR condition occurs. If the option is
specified without a label, any HANDLE CONDI TION command for the
condition is deactivated, and the default action taken if the
condition occurs.

l$Jnore Exceptional Conditions QGNORE CONDITION)

IGNORE CONDITION condition
[condition] •••

I
I
I
I
I

This command is used to specify that no action is to be taken if an
exceptional condition occurs. It remains in effect until a subsequent
HANDLE OONDITION command for the condition is encountered. No more than
twelve conditions are allowed in the same command; additional conditions
must be specified in further IGNORE CONDITION commands. The option
-condition- specifies the name of the exceptional condition that is to
be ignored.

Chapter 1.5. Exceptional Conditions 39

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

List of Exceptional Conditions

The following list shows all the exceptional conditions that can occur
during the execution of CICS/VS canmands. Each condition is followed by
one or more keywords and by nwnbers (in parentheses). The keywords are
the coomands during the execution of which the condition may occur, and
the numbers are the chapters that describe those commands. For the
meaning of a condition, and the default action associated with that
condition, refer to the list of exceptional conditions at the end of the
indicated chapter.

CBIDERR ALLOCATE (3.2) , CONVERSE (3.2), EXTRAcr ATTACH (3.2) ,
SEND (3.2)

DSIDERR DELETE (2.2) t READ (2.2) , RFADNEXT (2. 2), READPREV (2.2) ,
REWRITE (2.2), STARTBR (2.2), UNLOCK (2.2) , WRITE (2.2)

DSSTAT ISSUE RECEIVE (3.4)

DUPREY READ (2.2) , READNEXT (2.2) , READPREV (2.2)

DUPREC WRITE (2 .2) , REWRITE (2.2)

ENDDATA RETRIEVE (4.2)

ENDFILE RFADNEXT (2.2), READPREV (2 .2)

ENDINPI' RECEIVE (3.2)

ENQBU SY ENQ (4 .3)

ENVDEFERR RETRIEVE (4.2)

EOC CONVERSE (3.2) , RECEIVE MAP (3.3) , RECEIVE (3.2)

EODS CONVERSE (3.2), ISSUE RECEIVE (3.4), RECEIVE MAP (3.3) ,
RECEIVE (3.2)

EOF CONVERSE (3.2), RECEIVE (3.2)

ERROR General exceptional condition (1.5). Not included in the
list of conditions in the syntax of individual commands ..

EXPIRED DELAY (4 .2) ; POST (4.2)

FUNCERR ISSUE ABORT (3.4) , ISSUE ADD(3.~; ISSUE END(3.4),
ISSUE ERASE (3.4) , ISSUE NOTE(3.4), ISSUE QUERY (3.4) ,
ISSUE REPIACE (3.4), ISSUE SEND (3.4), ISSUE WAIT (3.4)

IGREQCD CONVERSE (3.2) , ISSUE SEND (3.4), SEND (3.2) ,
SEm> MAP (3.3) , SEND PAGE (3.3); SEND TEXT (3. 3)

IGREQID SEND MAP (3.3) , SEND PAGE (3.3), SEND TEXT (3.3)

ILLOGIC DELETE (2.2) , ENDBR (2.2), READ (2.2) , READNEXT (2.2) ,
READPREV (2.2) , RESETBR (2.2), REWRITE (2.2) , STARTBR (2 .2) ,
UNLOCK (2. 2), WRITE (2 .2)

INBFMH CONVERSE (3.2) , RECEIVE (3 .2)

INVERRTERM ROUTE (3.3)

INVLDC ROt1rE (3.3) , SEND MAP (3 .. 3) , SEND TEXT (3.3)

40 CICS/VS APRM (eL)

INVMPSZ RECEIVE MAP(3.3), SEND RAP(3.3)

INVREQ ALLOCATE(3.2), ASSIGN(1.6), CANCEL(4.2), CONVERSE(3.2),
DELAY (4.2), DELETE (2.2), ENDBR (2.2), EXTRACT ATTACH (3.2) ,
EXTRACT TCT(3.2), FREE(3.2), POST (4.2) , READ(2.2),
REAONEXT (2.2), REAOPREV (2.2), RECEIVE (3.2), RESETBR (2.2),
RETRIBVE(4.2), RBTORN(4.4), RBWRITE(2.2), SENO(3.2),
SEND RAP(3.3), SEND PAGE(3.3), SENO TEXT (3.3), START(4.2),
STARTBR(2.2), WAIT JOURNAL (S.S), WRITE(2.2), WRITEQ TS(4.7)

INVTSREQ RETRIEVE (4.2)

IOBRR DELETE (2.2) , JOURNAL(S.S), READ(2.2), READNEXT(2.2),
REAOPREV (2.2), READQ TO (4.6), REAOQ TS (4. 1), RESETBR (2.2) ,
RETRIEVE(4.2), REWRITE(2.2), START (4.2) , STARTBR(2.2),
UNLOCK(2.2), WAIT JOURNAL (S.S) , WRITE(2.2), WRITEQ TD(4.6),
WRITEQ TS (4.1)

ISCINVREQ CANCBL(4.2), DELETE(2.2), OELETEQ TD(4.6), DELETEQ TS(4.1),
ENDBR (2. 2), READ (2 .2), READNEXT (2.2), READPREV (2.2) ,
READQ TD (4.6), READQ TS (4.1), RESETBR (2.2), RETRIEVE (4.2) ,
REWRITE (2.2) , START(4.2), STARTBR(2.2), UNLOCK (2.2) ,
WRITE(2.2), WRITEQ TD(4.6), WRITEQ TS(4.7)

ITEMERR REAOQ TS~.1), WRITEQ TS ~.1)

JIOERR JOURNAL (S.S) , WAIT JOURNAL (S.S)

LENGERR CONVERSE (3.2), ISSUE RECEIVE (3.4), JOURNAL (S.S) , READ(2.2),
READIEXT (2.2), READPREV (2 .2), REIDO TD (4.6), READ Q TS (4. 1) ,
RECEIVE(3.2), RETRIEVE(4.2), REWRITE(2.2), WRITE (2.2) ,
W BITEQ TO (4 .6)

MAPFAIL RECEIVE MAP (3.3)

NODATARECD ISSUE RECEIVE(3.4)

NOJBUFSP JOURNAL (S.S)

NONV1L ISSUE L010(3.2)

NOPASSBKRD RECEIVE (3.2)

10PASSBKWR S£10(3.2)

NOSPACE REWRITE(2.2), WRITE(2.2), WRITEQ TD(4.6), WRITEQ TS(4.1)

NOSTART ISSUE LOAO(3.2)

NOSTG GETMAIN (4.S)

NOTALLOC CONVERSE(3.2), EXTRACT ATTACB(3.2), FREE(3.2),
ISSUE OISCONIBCT(3.2), ISSUE SIGRAL(3.2), POIRT(3.2),
RECEIVE (3.2) , SENO(3.2), WAIT TERftINAL(3.2)

NOTFND CANCEL(4.2), DELETE(2.2), READ(2.2), READNEXT(2.2),
READPR EV (2.2), RESETBR (2.2), RETRIEVE (4.2), STARTBR (2.2)

NOTOPEN DELETE (2.2) , JOURRAL(S.S), REAO(2.2), REAONEXT(2.2),
READPREV(2.2), READQ TD(4.6), RESETBR(2.2), REWRITEa.2),
STARTBR(2.2), UNLOCK(2.2), WAIT JOURRAL(S.S), WRITE(2.2),
WRITEQ TO(4.6)

OVERFLOW SEND !AP(3.3)

Chapter 1.S. Exceptional Conditions 41

PGMIDERR HAIDLE ABEID~.2), LINK ~.4), LOAD(4.4), BELEASE(4.4),
XCTL (4 .4)

OBUSY READQ TD(4.6)

QIDERR DELETEQ TD (4.6), DELETEQ TS (4.7), READQ TD (4 .6) ,
READQ TS(4,,7), WRI'l'EQ TD(4.6), WRITEQ TS(4.7)

QZERO READQ TD(4.6)

RDATT COIVERSE(3.2), RECEIVE MAP(3.3), RECEIVE(3.2)

RETPAGE SEND MAP(3.3), SEND PAGE(3.3), SEND TEXT(3.3)

RTEP AIL ROUTE (3.3)

RTESOME ROUTE (3.3)

SEGIDERR READ(2.2), READIEXT(2.2), REIDPBEV(2.2)

SELIERR ISSUE ABORT (3.4) , ISSUE ADD(3.4), ISSUE EID(3.4),
ISSUE ERASE(3.4), ISSUE NOTE(3.4), ISSUE QUERY (3.4) ,
ISSUE REPLACE(3.4), ISSUE SEID(3.4), ISSUE WIIT(3.4)

SESSBUSY ALLOCATE (3.2)

SESSIONERR ILLOCATE(3.2), CONVERSE (3.2), EXTRACT ATTICH(3.2),
FREE(3.2), ISSUE DISCONNECT (3.2), ISSUE SIGIAL(3.2),
POINT (3,2), RECEIVE (3,2), SEID(3.2), WAIT TERMINAL (3.2)

SIGNAL CONVERSE (3.2) , ISSUE DISCONNECT(3.2), RECEIVE(3.2),
WAIT TERMIIAL(3.2), SEID(3.2), WAIT SIGIAL(3.2)

SYSBUSY ALLOCATE (3,,2)

SYSIDERR ALLOCATE (3.2), CINCEL(4.2), DELETE(2.2); DELETQ TD(4,,6),
DELETEQ TS~.7), EIDBR(2.2), READ ~.2), READIEXT(2.2),
READPREV(2.2), READ TD(4.6), READO TS(4.7), RESETBR(2.2),
RETRIEVE (4.2) , REWRrrE(2.2), START(4.2), STARTBR(2.2),
UNLOCK(2.2), WRITE(2.2), WRITEQ TD(4.6), WRITEQ TS(4.7)

TERMIDERR ISSUE COPY(3.2), START(4.2)

TRANSIDERR START (4,,2)

TSIOERR PURGE MESSAGEP.3), SEID MAP (3.3), SEID PAGE(3.3),
SEND TEXT (3.3)

UIEXPII ISSUE ABORT(3.4), ISSUE 1DD(3.4), ISSUE EID(3.4),
ISSUE ERASE(3.4), ISSUE lOTE (3.4), ISSUE QUERY(3.4),
ISSUE RECEIVE(3,,4), ISSUE REPLACE (3.4) , ISSUE SEID(3.4),
ISSUE WAIT(3.4)

WRBBK CONVERSE (3.2), SEND MAP e3.3), SEND PAGE(3.3), SEIDe3.2),
SEID TEXT (3.3)

42 CICS/V S APRM (CL)

Chapter 1.S. Access to System Information

It is possible to write many application programs using the CICS/VS
command-level interface without any knowledge of or reference to CICS/VS
control blocks and storage areas. However, it is sometimes necessary to
obtain information that is valid outside the local environment of the
application program; the ADDRESS and ASSIGN commands are provided to
make access to such information possible and these commands are
described in the following sections. Not all fields are intended to be
accessed by the application program; refer to the CICSIVS Application
Programmer's Reference Manual (Macro Level) for a list of the fields
that are part of the application programming interface (the API) and
that will remain valid from release to release. Details of each control
block and its fields are contained in the publication CICSIDOS/yS Data
Areas or CICS/OS/VS Data Areas.

EXEC INTERFACE BLOCK (EIB)

In addition to the usual CICS/VS control blocks, each task in a command­
level environment has a control block called the EXEC interface block
(EIB) associated with it. An application program can access all of the
fields in the EIB by name. The EIB contains information, additional to
that provided by execution of a terminal control command, that is useful
during the execution of an application program, such as the transaction
identifier, the time and date (initially when the task is started, and
subsequently, if updated by the application program), and the cursor
position on a display device. The EIB also contains information that
will be helpful when a dump is being used to debug a program. Befer to
Appendix A for details of the EIB.

Access to CICSNS Storage Areas (ADDRESS)

I

I
I ADDRESS [CSA(pointer-ref)]
I [CWA (pointer-ref)]
I [TCTUA (pointer-reference)]
I [TWA (pointer-ref)]
I
I

This command is used to obtain access to any of the following areas:
the common storage area (CSA), the com.on work area (CWA), the terminal
control table user area (TCTUA), and the transaction work area (TWA).

ADDRESS Command Options

CSA
allows access to control blocks addressed by the CSA. The
pointer reference is set to the address of the CSA. The CSA
gives access to all fields in CICS/yS control blocks and
storage areas.

Chapter 1.6. Access to System Information 43

CiA

TCTUA

is used to pass information between application programs. The
pointer reference is set to the address of the CWA. If a CiA
does not exist, the pointer reference is set to X'PPOOOOOO'.

is used also to pass information between application programs,
but only if the same terminal is associated with the
application programs involved (which can be in different
tasks). The pointer reference is set to the address of the
TCTUA. If a TCTUA does not exist, the pointer reference is set
to X'PPOOOOOO'. The data area contains the address of the
TCTUA of the principal facility, not that for any alternate
facility that may have been allocated.

TiA
is used also to pass information between application programs
but only if they are in the same task. The pointer reference
is set to the address of the TWA. If a TWA does not exist, the
pointer reference is set to X'PFOOOOOO'.

An example of the use of the ADDRESS command is given in the next
section. (Information can also be passed between programs using the
COKMAREA option of the program control com.ands, described in Chapter
q .. q.)

If an ADDRBSS command is included in an COBOL program that is to be
compiled using the optimization feature, it must be followed by SBRVICE
RELOAD statements to reload the BLL cell being used.. (The SERVICB
RELOAD statement is described earlier in the manual in "BLL and the
Optimization Feature" in Chapter 1.4 ..)

Values Outside the Application Program (ASSIGN)

ASSIGN option(data-area)
[option (da ta-area)]

Exceptional condition: INVREQ

i

I
I
1
I
I

.1

This command is used to obtain values outside the local environment of
the application program. The value obtained is assigned to the data
area specified in the option.

The following values can be obtained:

• lengths of storage areas

• values needed when communicating with the 2980 General Banking
Terminal System (copied from the TCTTE)

• values needed during BKS operations (copied from the TCA)

• values needed during batch data interchange

• screen size in use on the 3210

q4 CICS/VS APR! (CL)

i

• other information that may be useful to the application programmer
(copied from various CICS/VS control blocks)

A complete list of ASSIGN command options is given at the end of this
chapter.

The following example shows, in the different application programming
languages, how the ADDRESS command is used to obtain access to the TWA,
and how the ASSIGN command is used to obtain the length of the TiA.
Included is a test for validity based on the fact that, if there is no
TWA, the ASSIGN command will obtain a length of zero.

Assembler Language

DSWORKA
WAPTR

COUNT

DFHEISTG
TWALENG
CODE

CONTINUE

COBOL

DSECT
EQU 08
USING DSiORKA,iAPTR

DS B

DSECT
DS B
CSECT
EXEC CICS ASSIGN TWALENG (TWALENG)
CLC TWALENG,=H'O'
BNB CONTINUE
EXEC CICS ADDRESS TWA (WAPTR)
LH 6,COUNT
LA 6,1 (6)
5TH 6,COUNT
DS OH

WORKING-STORAGE SECTION.
77 TWALENG PIC 59(4) COMP.

LINKAGE SECTION.
01 BLLCELLS •

02 FILLER PIC 59(8) COMP.
02 WAPTR PIC 59 (8) COMP.

01 WORKAREA.
02 COUNT PIC 59(4) COMP.

PROCEDURE DIVISION.
EXEC CIC5 A5SIGN TWALENG(TWALENG) END-BXEC
IF TWALENG GREATER THAN 0 THEN
EXEC CICS ADDRESS TWA(iAPTR) END-EXEC
ADD 1 TO COUNT.

Chapter 1.6. Access to System Information 45

PL/I

DCL TWALENG FIXED BIN(15);
DCL 1 WORKAREA BASED (WAPTR),

2 COUNT FIXED BIN (1~ ;

EXEC CICS ASSIGN TWALENG(TWALENG);
IF TWALENG>O THEN DO;

EXEC CICS ADDRESS TWA (WAPTR) ;
COUNT=COUNT+1;

END;

46 CICS/VS APRM (CL)

page of SC33-0077-2, revised September 1980 by TNL SN33-6268

ASSIGN Command Options

Where any of the fo11owing options app1y to termina~s or termina1-
re1ated data, the reference is always to the principal faci1ity.

ABCODE

APPLID

COLOR

CWALENG

specifies a variable that is set to the current va1ue of the
abend code (ahend codes are documented in CICS/vs Messages and
Codes). If an abend has not occurred, the variable is set to
blanks. '!be format of the value is a four-byte character
string.

specifies that the value required is the application name used
in transaction routing or to identify the 1oca1 CICS/VS system
to VTAM. The format of the value is an eight-byte character
string.

specifies that the value required is an indicator showing that
the terminal is defined as having the extended color capability
(X'FF') , or no extended color capability (X'OOI). If this

option is specified and there is no TCTTE for the task, the
INVREQ condition occurs. The format of the value is a one-byte
character.

specifies that the length of the CWA is required. If no <:.WA
exists, a zero length is returned. No exceptional condition
occurs. The format of the value is halfword binary.

DELIMITER
specifies that the value required is the data-link control
character for a 3600, copied from TCTTEDLM. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs. The format of the value is a one-byte
character.

D EST COUNl'

DESTID

specifies that the value required is the relative overflow
control number of the destination that has encountered
overflow. If this option is specified when overflow processing
is not in effect, the value obtained will be meaningless. If
no BMS commands have been issued, the INVREQ condition occurs.
The format of the value is halflllJOrd binary.

specifies that the value required is the identifier of the
outboard destination, padded with blanks on the right to eight
characters. If this option is specified before a batch data
interchange conunand has been issued in the task, the INVRBJ
condition occurs. The format of the value is an eight-byte
character string.

Chapter 1.6. Access to System Information 41

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

DESTIDLENG

EXTDS

FACILITY

FC!

HILIGHT

LDCMNEM

LDCNUM

specifies that the value required is the length of the
destination identifier obtained by DESTID. If this option is
specified before a batch data interchange command has been
issued in the task, the INVREQ condition occurs. The format of
the value is halfword binary.

specifies that the value required is an indicator showing that
the terminal is defined as having the extended data stream
capability ~·FF·); or no extended data stream capability .
CX'OO·). If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

specifies that the value required is the identification of the
facility that initiated the transaction. The value is copied
from the first four bytes pointed at by TCAFCAAA. If this
option is specified, and there is no allocated facility, the
INVREQ condition occurs. For example, this option gives the
name of the transient data destination whose trigger level
caused the transaction to be started. The format of the value
is a four-byte character string.

specifies that the value required is the facility control
indicator, copied ~ran TCAFCI, that indicates the type of
facility associated with the transaction, for example, X'Ol'
indicates a terminal or logical unit. The obtained value is
always returned. No exceptional condition occurs. The
format of the value is a one-byte character.

specifies that the value required is an indicator showing that
the terminal is defined as having the extended highlight
capability CX'FF·); or no extended highlight capability
(X'OO '). If this option is specified and there is no TCTTE for
the task; the INVREQ condition o~curs. The format of the value
is a one-byte character.

specifies that the value required is theLDC mnemonic of the
destination that has encountered overflow. If this option is
specified when overflow processing is not in effect, the value
obtained will be meaningless. No exceptional condition occurs.
The format of the value is a two-byte chara cter string.

specifies that the value required is the IDC numeric value of
the destination that has encountered overflow. If this option
is specified when overflow processing is not in effect, the
value obtained will be meaningless. No exceptional condition
occurs. The format of the value is a one-byte character.

48 CI CS /VS APRM (eL)

NUMl'AB

OPCLASS

OPID

Page of SC33-0077-2; revised September 1980 by TNL SN33-6268

specifies that the value required is the number of the tabs
required to position the print element in the correct passbook
area of the 2980. If this option is specified and there is no
TCTTE for the task, the INVREQ condition occurs. The format of
the value is a one~byte character.

specifies that the value required is the operator class, copied
from TCTTEOCL. If this option is specified and there is no
TCTTE for the task, the INVREQ condition occurs. The format of
the value is a four~yte character string.

specifies that the value required is the operator
identification, copied from TCTTIDI. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs. If this option is specified and there is no
TCTTE for the task, the INVREQ condition occurs. The format of
the value is a four-byte character string.

OPSECURITY

PAGENUM

specifies that the value required is the operator security key,
copied from TCTTESK. If this option is specified and there is
no TCTTE for the task, the INVREQ condition occurs. The format
of the value is a four-byte character string.

specifies that the value required is the current page number
for the destination that has encountered an overflow. If this
option is specified when overflow processing is not in effect,
the value obtained will be meaningless. If no BMS commands
have been issued, the INVREQ condition occurs. The format of
the value is halfword binary.

PRINSYSm

PS

RESTART

specifies that the value required is the name of the TCTSE
(terminal control table system entry) associated with the
principal facility. If there is no TCTTE for the task or if
the principal facility is not an LU6 or MRO session, the INVREQ
ccndition occurs. The format of the value is a four-byte
character string.

specifies that the value required is an indicator showing that
the terminal is defined as having the programmed symbols
capability (X IFF') , or no programmed symbols capability
(X'OO'). If this option is specified and there is no TCTTE for

the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

specifies that the value required is an indicator showing
whether a restart (X 'FF I), as opposed to a norma.l start
(X'OO'), has occurred.

Chapter 1.6. Access to System Information 49

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

SCRNHT

SCRNWD

SIGDATA

specifies that the value required is the height of the current
3270 screen. If this option is specified and there is no TCTTE
for the task, the INVREQ condition occurs. The format of the
value is halfword binary.

specifies that the value required is the width of the current
3270 screen. If this option is specified and there is no TCTTE
for the task, the INVREQ condition occurs.. The format of the
value is halfword binary.

specifies that the value required is the signal data received
from a logical unit, copied from TCTESIDI. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs. The format of the value is a fcnr-byte
character string.

STARTCODE
specifies that the value required is a code indicating how a
transaction has been started. The format of the value is a
two-byte character string which can have the following values:

QD
S
SD
TD
U

Transaction started by

Transient data trigger level
START cormnand (no data)
START command (with data)
Tenninal input
User-attached task

STATIONID

SYSID

specifies that the value required is the station identifier of
a 2980. If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

specifies that the value required is the name given to the
local CICS/VS system. This value may be specified in the SYSID
option of a file control, interval control, temporary storage,
or transient data canmand, in which case the resource to be
accessed is assumed to be on the local system. The format of
the value is a four-byte character string.

TCTUALENG

TELLERID

specifies that the value required is the length of the terminal
control table user area (TCTOA). If no TCTUA exists, a zero
length is returned. No exceptional condi,tion occurs. The
format of the value is halfword binary. '

specifies that the value required is the teller identifier of a
2980. If this option is specified and there is no TCTTE for
the task, the INVREQ condition occurs. The format of the value
is a one-byte character.

50 CICS/VS APRM (CL)

TERMCODE

'!WALEN:;

UNATTEND

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

specifies that the value required is a code giving the type and
model number of the terminal associated with the task, copied
fran TCTTETT and TCTTETM. If this option is specified and
there is no TCTTE for the task, the INVREQ condition occurs.
The format of the value is a two-byte character string.

specifies that the value required is the length of the
transaction work area (TWA). If no TWA exists, a zero length
is returned. No exceptional condition occurs.

specifies that the value required is a code indicating that the
mode of operation of the terminal is unattended (X'FF ') or
attended (X'OO-),. copied from TCTEMOP. If this option is
specified and there is no TCTTE for the task, the INVREQ
condition occurs.

VALIDATION
specifies that the value required is an indicator showing that
the terminal is defined as having the validation capability
(X'FF') consisting of the nandatory fill, mandatory enter,' and
trigger attributes. No validation capability is indicated by
(XIOO -). If this option is specified and there is no TCTTE for
the taSk, the INVREQ condition occurs. The format of the value
is a one~te character.

Chapter 1 .. 6. Access to System Information 51

Chapter 1.7. Execution (Command Level) Diagnostic
Facility

The Execution (Command Level) Diagnostic Facility (EDF) enables an
application programmer to test a command-level application program
online without making any modifications to the source program or the
program preparation procedure. The facility intercepts execution of the
program at various points and 'displays information about the program at
these points. Also displayed are any screens sent by the user program,
so that the programmer can converse with the application program during
testing just as a user would on the production system.

EDF runs as a CIC5/V5 transaction. It is started by a transaction
identifier or PF key named in the PCT by the system programaer; also,
the PPT needs to specify the programs and maps that are used by EDF.
EDF uses temporary storage and B85. It can be used only from a 3270
terminal with a screen width of 80 columns and a screen depth of 24
lines or more.

EDF is a command-level diagnostic aid only, and unpredictable results
may occur if macro instructions are coded in application programs using
this facility.

For OS/VS only, this facility is not supported if TCTUA=VIC08PAT is
specified in the DFHSG TYPE=IBITIAL system macro.

Functions of EDF

During execution of a transaction in debug mode, EDF intercepts the
execution of the application program at the following points:

1. At transaction initialization:

After the EXEC interface block (EIB) has been initialized; but

Before the application program is given control.

2. At the start of the execution of every EXEC CICS and EXEC DLI
command:

After the initial trace entry has been made; but

Before the requested action has been performed.

3. At the end of the execution of every command (except ABEND, XC'lL,
and RETURN) :

After the requested action has been performed; but

Before the HANDLE CONDITION mechanism is invoked; and

Before the response trace entry is made.

4. At program termination

5. At normal task termination

6. When an ABEND occurs

Chapter 1.7. Execution (Command Level) Diagnostic Facility 53

7. At abnormal task termination

At these points of interception, EDF displays the current status, by
identifying the cause of interception. In addition:

1. At point 1, EDF displays the values of the fields in the BIB.

2. At point 2, BDF displays the command, including keywords, options,
and argument values. The com.and is identified by transaction
identification, program name, the hexadecimal offset within the
program, and, if the program has been translated with the DEBUG
option, the line number of the command as given in the translator
source listing.

3. At point 3, EDF displays the same as at point 2, plus the response
from command execution.

4. At points 6 and 7, EDF displays the values of the fields in the EIB
and the following items:

The abe nd code-;

If the abend code is ASRA (that is, a program interrupt has
occurred), the PSW at the time of interrupt, and the source of
the interrupt as indicated by the PSi;

If the PSi indicates that the instruction g1v1ng rise to the
interrupt is within the application program, the offset of that
instruction.

The user is also given the ability to display any of the following:

• The values of the fields in the BIB and the DIB (DL/I interface
block) •

• The program's working storage in hexadecimal and character form.

• The last ten commands executed, including all argument values,
responses, and so on.

• The hexadecimal contents of any address location within the CICS/yS
partition.

At any of these points of interception, the user is allowed to
interact with the application in the following ways:

• If the current command is being displayed before it is executed,
the user can modify any argument value by overtyping the value that
is displayed on the screen. Alternatively, the user can suppress
execution of the command (that is, convert it to a null operation).

• If the current command is being displayed after it has been
executed, the user can modify certain argument values and the
response code by overtyping the displayed value or response with
the required value or response.

• The user can modify the program's working storage and most fields
of the EIB and DIB.

• The user can switch off debug mode (except at point 2) and continue
running the application normally. Alternatively, the user can
force an abend.

54 CICS/VS APR!! (CL)

• The user may request that command displays are suppressed until one
or more of a set of specific conditions is fulfilled.. These
conditions may be:

A specific named command is encountered.

Any exceptional condition occurs for which the system action is
to raise ERROR.

A specific exceptional condition occurs.

The command at a specific offset or on a specific line number
(assuming the program had been translated with the DEBUG
option) is encountered.

An abend occurs.

The task terminates normally.

The task terminates abnormally.

Any DL/I error status occurs.

A specific DL/I error status occurs.

Security Rules

To invoke EDF, the user must have a security key that matches the
security key defined for BDP in the PCT. In addition, to test a
particular transaction, the BDF user must have a security key that
matches the security key for that transaction. If this condition is not
satisfied, the EDF session is terminated i&mediately.

Resource level security checks will be made during execution of the
transaction under test unless EDF has been defined as not requiring
these checks. If such checks indicate that the EDF user is not allowed
access to the resource, the user transaction will be abended.

Installing EDF

To ensure that EDF is available on the test system, the system
programmer must make one group entry in the PPT and one group entry in
the PCT (see the CICS/yS System Programmer's Reference Manual for
details of constructing a PPT and PCT).

EDF can send messages greater than 4K bytes in length. VTA8 users
should ensure that their NCP (network control program) can handle data
of this length. The same applies if temporary storage is defined as
auxiliary, in which case the VSA8 control interval length must be large
enough to handle the message.

Invoking EDF

EDP can be run on the same terminal as the transaction requiring
checkout providel that the application under test does not make use of
extended attributes, or on a different terminal.

Chapter 1.1. Execution (Com.and Level) Diagnostic Facility 55

For same-terminal checkout, EDF can be invoked either by:

1. Using the transaction 'CEDP' or

2. Using the appropriate PF key, if one has been defined for EDF.

The transaction requiring checkout can then be started.

For different-terminal checkout, EDF is invoked on the current
terminal, which must be in TRANSCEIYE status, by using the transaction
identifier CEDF with an argument that specifies the four-character
identifier (as defined in the TR!IDHT operand of the DFHTCT
TYPE=TER!INAl system macro) of the terminal on which the transaction
requiring checkout is being run. For example:

CEDF L 77A

If a command-level transaction is already running on that terminal,
EDF will associate itself with that transaction; otherwise it will
associate itself with the next comsand-level transaction started at that
terminal.

The above applies to a single system. If the transaction running on
the terminal has been transaction routed, EDF will not associate itself
with it, nor with any other transaction that has been routed. EOP will
associate itself with the next command-level transaction that runs on
the system to which the terminal is connected.

The transaction identifier 'CEDF' may be entered from a formatted
screen, in which case the effect is the same as pressing the PF key;
that is, the terminal at which 'CEDP' is entered is put into EDP mode.
(No message is issued, so that the formatted screen remains intact.)

The full format of the command to initiate or terminate an EDF
session is:

CEDF [terminal-id] [, {ON IOFF}]

If the terminal identifier is omitted, the terminal at whiCh the CEDF
transaction is initiated is assumed.

CEDF cannot be defined to be a remote transaction. The only way to
test a transaction running in a connected system is by means of the
routing transaction CRTE. This transaction is used to set up a routing
session with the connected system; CEDF can then be used for same­
terminal checkout.

To invoke EDP within the routing session, the user must type CEDF
because the routing session does not allow the use of PA or PF keys. It
is impossible to use EDF for two-terminal checkout if the transaction
under test, or the terminal that invokes it, is owned by a different
system.

Using EDF Displays

An example of a typical EDF display is given in Figure 1.7-1.

56 CICS/VS APR! (Cl)

TRANSACTION: CMNU PROGRAM: XDFHINST TASK NUBBER: 0000115 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND

! AP ('XDFHCBA •)
FROM (. N •••• F •• j&K •• Y& •••••• K •••••• m ••• B ••• DK.zX& •••••••••• * ...•...)
TERMINAL
ERASE

OFFSET:X'0003EE'
RESPOHSE: HOR!AL

ENTER: CONTINUE
PF 1 : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PF10: PREVIOUS DISPLAY

EIBFH=X' 180'"
EIBBCODE=X'OOOOOOOOOOOO'

PF2 SWITCH HEX/CHAR PF3 END EDF SESSION
PF5 WORKING STORAGE PF6 USER DISPLAY
PF8 SCROLL FORWARD PF9 STOP CONDITIONS
PFll: UNDEFINED PF12: ABEND USER TASK

Figure 1.7-1. Typical EDF Display

The five lines at the foot of the screen provide a menu indicating
the effect of the ENTER and PF keys for that particular display. If the
terminal does not have PF keys, the same effect can be obtained by
positioning the cursor under the required instruction on the screen and
pressing the ENTER key. The cursor can be correctly positioned by using
the tab keys.

Although the menu may change from one display to another, no function
will move from one key to another as a result of a menu change.

If the ENTER key is pressed while the cursor is not positioned within
the menu, the function specified for the EITER key is performed.

EDF uses the line immediately above the menu to display messages to
the user.

Up to ten displays are remembered and can be redisplayed later.

The number at the top right of the screen indicates the current
display number; it is possible to recall any of the last ten displays,
which are numbered -01, -02, and so on, by overtyping this number.
Alternatively, PF10 and PF11 can be used to step back and forward one
display at a time.

Argument values can be displayed in character or hexadecimal format.
If character format is requested, numeric arguments are shown in signed
numeric character format. Each argument value is restricted to one line
of the display; if the value is too long, only the first few bytes are
displayed, followed by" ••• " to indicate that the value is incomplete.
If the argument is displayed in hexadecimal format, the address of the
argument is also displayed. This enables the user to display the
argument value in full by requesting a display of that location and
scrolling if necessary.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 57

The user can overtype any screen area at which the cursor stops when
the tabbing keys are pressed, such as the response field. Thus, for
example, the response can be changed from "!fORMAL" to "ERROR" or some
other exceptional condition, so as to test the program's error handling
at this point in the program. A list of areas that can be overtyped is
given later under "Overtyping EDF Displays."

The response of EDF to a user request is in accordance with the
following order of priority:

1. If the CLEAR key is used, EDF redisplays the screen with any
changes ignored.

2. If invalid changes are made, EDF accepts any valid changes and
redisplays the screen with a diagnostic message.

3. If the display number is changed, EDF accepts any other changes and
displays the requested display.

4. If a PF key is used, EDF accepts any changes and performs the
action requested by the PF key.

5. If the ENTER key is pressed, and the screen has been modified
(other than the REPLY field), EDF redisplays the screen with

changes included.

6. If the ENTER key is pressed, and the screen has not been modified
(other than the REPLY field), then if the ENTER key means CONTINUE,
execution of the user transaction continues, otherwise if the ENTER
key means CURRENT DISPLAY, EDF redisplays the current status
display.

I TERMINAL SHARING BETWEEN TRlNSACTION AND EDF

When both EDF and the user transaction are sharing the same terminal,
EDF restores the user transaction's display at the following times:

• when the transaction requires input from the operator

• when the transaction's display is changed

• at the end of the transaction

• when EDF displays are suppressed

• when USER DISPLAY is requested.

Thus, when a SEND command is followed by a RECEIVE command, the
display sent by the SEND com.and appears twice, once when the SEND
command is executed, and again when the RECEIVE command is executed. It
is not necessary to respond to the SEND command, nut if a response is
made, EDF will remember it and redisplay it when the screen is restored
for the RECEIVE command. The response passed to the transaction is that
which is made to the RECEIVE command.

When EDF restores the transaction display, it does not sound the
alarm or affect the keyboard in the same way as the user transaction.
The effect of the user transaction options will be seen when the SEND
command is executed, but not when the screen is restored.

For same-terminal use, when EDF restotes the transaction display on a
device that uses, color, programmed symbols, or extended highlighting,

58 CICS/V 5 APR!! (CL)

the attributes will no longer be present and the display will be in
monochrome with no programmed symbols, or extended highlighting.

If the inbound reply mode in the application program is set to
character ~o enab1e the attribute setting keys) EDF will reset this
mode causing these keys to be disabled.

When EDF restores the transaction display, it locks the keyboard
until the transaction issues a RECEIVE command, at which time EDF frees
the keyboard.

If the EDF session is terminated part way through the transaction,
EDF restores the screen with the keyboard locked if the last
send/receive to the terminal was in fact a RECEIYE command; otherwise,
the keyboard is unlocked. This will usually, but not always, match the
normal behavior of the transaction.

ENTER AND PF KEYS

The following list explains the meanings of the ENTER key and the
program function (PF) keys:

ABEND USER TASK

CONTINUE

terminates the task. EDF asks the user to confirm this action
by displaying the lIessage "ENTER ABEND CODE AND REQUEST ABEND
AGAIN." After entering the code at the position indicated by
the cursor, the user must request this function again to
actually abend the task with a transaction dump identified by
the specified code. If the user enters "NO," the task will be
abended without a dump.

This function cannot be used if an abend is already in progress
or the task is terminating.

causes the user transaction to continue unless the screen has
been modified. In the latter case, EDF redisplays the screen
with changes incorporated.

CURRENT DISPLAY
displays the screen that was being displayed before the user
started examining other displays, such as remembered displays,
unless the screen has been modified. In the latter case, EDF
redisplays the screen with changes incorporated.

DIB DISPLAY
shows the contents of the DIB.

EIB DISPLAY
shows the contents of the EIB and C08ftAREA (if any) (see
Appendix A for a description of the fields in the EIB) •

END EDF SESSION
ends the debugging session, and takes the terminal out of debug
mode. The user transaction continues.

NEXT DISPLAY
used when examining displays, to step on to the next remembered
display. Repeated use stops at the current display, when the
"next display" key is no longer available.

Chapter 1.1. Execution ~ommand Level) Diagnostic Facility S9

PREVIOUS DISPLAY
shows the latest remembered display. Repeated use stops at the
earliest remembered display. Further use merely causes the
earliest remembered display to be redisplayed.

REGISTERS AT ABEND
displays storage containing the values of the registers in the
event of an ASRA abend. The layout of the storage is as
follows:

• PSW at abend (8 bytes)

• Register values (0 through 15)

In some (very rare) cases, when a second program check occurs
in the system before EDF has captured the values of the
registers, this function will not appear on the menu of the
abend display. If this happens, a second test run will
generally prove to be more informative.

REMEMBER DISPLAY
places a display that would not normally be remembered, such as
an EIB display, in the memory. (Normally, only the command
displays are remembered.) The memory can ho~d up to ten
displays. All pages associated with the display are remembered
~nd can be scrolled when recalled) except for storage displays

where only the page currently displayed is remembered.

SCROLL BACK
scrolls a command or EIB display backwards. A plus sign ~)
against the first option or field indicates there are more
options or fields preceding.

SCROLL BACK FULL
scrolls a working storage display a full screen backwards,
displaying lower addresses.

SCROLL BACK HALF
scrolls a working storage display half a screen backwards,
displaying lower addresses.

SCROLL FORWARD
scrolls a command or EIB display forwards. A plus sign (+)
against the last option or field indicates there are more
options or fields following.

SCROLL FORWARD HALF
scrolls a working storage display half a screen forwards,
displaying higher addresses.

SCROLL FORWARD FULL
scrolls a working storage display a full screen forwards,
displaying higher addresses.

60 CICS/VS APRPl (CL)

I ,
I
I

STOP CO.DITIONS (See Figure 1.7-2)
displays a skeleton menu with which the user can specify one or
more cond~tions that will cause EDF to stop the user
transaction, and start redisplaying commands, after displays
have been suppressed by the SUPPRESS DISPLAYS function. These
functions are used to reduce the amount of operator
intervention required to check out a program that is partly
working.

The transaction can be stopped under the following conditions:

When a specified type of command is reacbed.

When a specified exceptional or error condition occurs
during execution of a command.

When a specified offset or line is reached.

At transaction abend.

At normal task termination.

At abnormal task termination.

The line number, which will be available on the source listing
if the program has been translated using the DEBUG option, must
be specified exactly as it appears on the listing, including
leading zeros, and must be the line on which a command starts.

The offset specified must be the offset of the BALR instruction
corresponding to the command.

The correct line can be determined easily from the translator
output listing. The offset can be determined from the code
listing produced by the assembler or compiler.

For transactions that contain DLI commands, the qualifier CICS
on the command line can be overtyped with DLI to specify a DLI
command. Also, the transaction can be stopped when a specified
error status, or any error status, occurs.

SUPPRESS DISPLAYS
suppresses all EDF displays until the next stop condition
occurs.

SWITCH HEX/CHAR

UNDEFINED

switches the display between hexadecimal and character
representation. This is a mode switch; subsequent displays
will stay in the chosen mode until the next time this key is
pressed. This switch has no effect on previously-cemembered
displays, stop condition displays, and working storage
displays.

means that this key is not available with this type of display.

USER DISPLAY
shows what the user would see if the terminal was not in EDF
mode. Hence, this function is usable only for same~erminal
checkout.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 61

WORKING STORAGE
displays the program's working storage, in a form similar to
that of a dump listing, that is, in both hexadecima1 and
character representation. When this key is used, two
additional scrolling keys are provided, and other PF keys allow
the EIB (and the DIB if a DL/I command has been processed by
EDF) to be disp1ayed.

The meaning of "working storage" depends on the programming
language of the application program, as follows:

Assembler language
the storage defined in the current DFHBISTG DSECT.

COBOL

PL/I

all data storage defined in the WORKING-5TORAGE section of
the program.

the dynamic storage area (051) of the current procedure.

Except for COBOL programs, working storage starts with a
standard format save area, that is, registers 1q-12 are stored
at offset 12 and register 13 at ~ffset 4.

Working storage can be changed at the screen: either the
hexadecimal section or the character section may be used.
Also, the ADDRESS field at the head of the display can be
overtyped with a hexadeciaal address: storage starting at that
address will then be displayed when BNTER is pressed. This
allows any location in the partition to be examined. Further
infor.ation on the use of overtyping is given later under
nOvertyping EDF Displays."

If the storage examined is not part of the user1s working
storage (which is unique to the particular transaction under
test), the corresponding field on the screen is inhibited to
prevent the user from overwriting storage that can affect more
than one task in the program.

If the initial part of a working storage display line is blank,
the blank portion is not part of working storage. This can
occur because the display is doubleword aligned.

At the beginning and end of a task, working storage is not
available. In these circumstances, EOF generates a blank
storage display so that the user can still examine any storage
area in the partition by overtyping the address field.

62 CICS/VS APRil (CL)

I
I
I
I

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
DISPLAY ON CONDITION:-

COMMAND: EXEC CICS
OFFSET:
LINE NUMBER:
CICS EXCEPTIONAL CONDITION:
ANY CICS ERROR CONDITION
TRANSACTION ABEND
NORMAL TASK TERMINATION
ABNORMAL TASK TERMINATION

DLI ERROR STATUS:
ANY DLI ERROR STATUS

x· •

YES
YES
YES
YES

YES

I ENTER: CURRENT DISPLAY
I PFl UNDEFINED PF2 UNDEFINED PF3 END EDF SESSION
I PF4 : SUPPRESS DISPLAYS
t PF7 : SCROLL BACK

PF5 WORKING STORAGE PF6 : USER DISPLAY
PF8 SCROLL FORiARD PF9 STOP CONDITIONS

t PF10: UNDEFINED PF11: UNDEFINED PF12: RE8EftBER DISPLAY
I L __ ~

Figure 1. 7-2 • "stop-Conditions" Display

OVERTYPlNG EDF DISPLAYS

As mentioned above, certain areas of an EDF display can be overtyped.
These areas can be identified by use of the tab keys; the cursor stops
only at fields that can be overtyped (excluding fields within the menu).

• The verb of a co DlIaand , such as the "SEND" in "EXEC CICS SEND", can
be overtyped with "NOOP" or "NOP" before execution; this suppresses
execution of the command. When the screen is redisplayed with
NOOP, the original verb line can be restored by erasing th~ whole
verb line with the ERASE EOF key.

• Any argument value can be overtyped, nut not the keyword of the
argument. Overtyping must be in the same representation,
hexadecimal or character, as the original field, and must not
extend beyond the argument value displayed. Any modification that
is not overtyping of the displayed value is ignored (no diagnostic
message being generated). When an argument is displayed in
hexadecimal format, the address of the argument location is also
displayed.

• Numeric values always have a sign field, which can be overtyped
with a minus or a blank only.

• The response field can be overtyped with the
exceptional condition, including ERROR, that
current function, or with the word "NOR!AL".
continues will be that the program will take
been prescribed for the specified response.

name of any
can occur for the

The effect when EDF
whatever action has

Chapter 1.7. Execution ~om.and Level) Diagnostic Facility 63

• The EIBRCODE field, when displayed as part of the EXEC Interface
Block, can be overtyped with any desired bit pattern. This does
not apply when the EIBRCODE field is part of a command display.

When a field representing a data area of a program is overtyped, the
Entered value is placed directly into the application program's storage.
On the other hand, before execution of a command, when a field
representing a data value (which may possibly be a constant) is
overtyped, a copy of the field is used; thus, other parts of the program
that might use the same constant for some unrelated purpose will not be
affected by the change. If, for example, the map name is overtyped
before executing a SEND ftAP command, the map actually used temporarily
is the map with the entere1 name; but the map name displayed on response
will be the orig inal map name. (The "previous display" key can be used
to display the map name actually used.)

When an argument is to be displayed in character format, some of the
characters may not be displayable (including lowercase characters). EDF
replaces each non-displayable character by a period. When overtyping a
period, the user must be aware that the storage may in fact contain a
character other than a period, the user may not overtype any character
with a period; if this is done, the change is ignored and no diagnostic
message is issued. Similarly, when a value is displayed in hexadecimal
format, overtyping with a blank character is ignored and no diagnostic
message is issued.

When storage is displayed in both character and hexadecimal format
and changes are made to both, the value of the hexadecimal field will
take precedence should the changes conflict; no diagnostic message is
issued.

If invalid data is entered, the result is as follows, regardless of
the action requested by the user:

• the invalid data is ignored;

• a diagnostic message is displayed;

• the alarm is sounded if the terminal has the alarm feature;

EDF does not translate lowercase characters to uppercase. If
uppercase translation is not specified for the terminal in use, the user
must take care to enter only uppercase characters.

Checking Out Pseudo-Conversational Programs

On termination of the task, EDF displays a message saying that the task
is terminated and prompting the user to specify whether or not debug
mode is to continue into the next task. This is to allow realistic
debugging of pseudo-conversational programs. If the terminal came out
of debug mode between the tasks involved, each task would start with
fresh EDF settings, and the user would not be able, for example, to
display screens remembered from previous tasks.

Program Labels

Some commands, such as HANDLE CONDITION, require the user to specify a
program label. The form of the display program labels depends on the
programming language in use:

64 CICS/VS APRM ~L)

• For assembler language, the offset of the program label is
displayed; for example, ERROR (X'00030C')

• For COBOL, a null argument is displayed: for example, ERROR ()

• For PL/I, the address of the label constant is displayed; for
example, ERROR (X '00100016')

If no label value is specified on a HANDLE CONDITION cormnand, EDF
displays the condition name alone.

Using EDF with EXEC DLI Commands

EDF supports EXEC DLI commands in the same way as it supports EXEC CICS
commands. However, the following minor differences should be noted:

• The two-character DL/I status code appears in the RESPONSE field
and the EIBRCODE field is not displayed. The status code can be
displayed in character or hexadecimal format. If the status code
is changed to an invalid value, or to a value that would have
caused DL/I to abend the user task, a warning message is issued
before continuing the user task.

• For commands that generate more than one CALL statement, the offset
is that of the last CALL.

• For the WHERE option, only the keyfield value (the third component)
can be converted to hexadecimal. The address shown for this option
is that of the keyfield value.

• The line number of the command is always displayed.

• For transactions that contain EXEC DLI commands, the DL/I interface
block can be displayed, and additional stop conditions can be
specified.

Examples of typical displays for an EXEC DLI command are given in
Figures 1. 7-3 and 1. 7-4 •

Chapter 1.7. Execution (Conunand Level) Diagnostic Facility 65

Page of SC33-0077-2, revised september 1980 by TNL SN33-6268

i

I TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
I STATUS: COMMAND EXECUTION COMPLETE
r EXEC ILl GET NEXT
I USING PCB (+00003)
I ,
r
I

FIRST
SEGMENT ('A
INTO (I

')

SEGLENGTH ~0001~

FIRST
VARIABLE

+SEGMENT ('B ')

OFFSET:X'000246'
RESPONSE: 'AD'

ENTER: CONTINUE

')

LINE: 00000510 EIBFN:X 'OOOC'

PFl : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EI)F SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK W8 : SCROLL FORWARD PF9: STOP CONDITIONS
PFI0: PRE.VIOUS DISPLAY PFll: UNDEFINED PF12: ABEND USER TASK

Figure 1. 7-3 • Typical EXEr DLI Display (Page 1)

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GEl' NEXT
+

FIRST
SEGMENT ('C .)
SmLENGTH (+00010)
LOCKID
INTO C'SMITH ')
WHERE (ACCOUNT = '12345 I)
FIELDLENGTH (+00005)

OFFSET:X'000246 I LINE: 00000510
RESPONSE: 'ADI

ENTER: CONTINUE

EIBFN:X'OOOC'

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SOPPRESS DISPLAYS PFS : WORKING STORAGE PF6 : USER DISPlAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9: STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND OSER TASK

Figure 1.7-4. Typical EXEC DLI Display (page 2)

66 CI CS/VS APRM (CL)

Chapter 1.8. Command-Level Interpreter

The command-level interpreter enables CICS/VS commands to be entered,
syntax-checked, and executed interactively at a 3270 screen. The
interpreter performs a dual role in the operation of a CICS/VS system.

• For the application programmer, it provides a reference to the
syntax of the whole of the CICS/VS command-level application
programming interface (excluding OL/I). 80st of the commands can
be carried through to execution, and the results of execution can
be displayed.

• For the system programmer, it provides a means of interaction with
the system. For example, a corrupted data-base record can be
"repaired", a temporary storage queue can be created or deleted,
and so on. It thus provides a useful extension to the facilities
provided by the master terminal transaction CE8T.

Invoking the Command-Level Interpreter

The command-level interpreter is a CICS/VS application program and runs
as a CICS/VS transaction. It is started by the transaction
identification of "CECI", or ItCECS", followed optionally by the command.

The general format is:

CECIICECS [command]

where "command" can be any of the CICS/VS commands (except EXEC DL1)
described throughout this manual.

The use of eECI will give the full facilities of the interpreter
right through to execution of the command.

For example, entering:

CECI READ DATASET (IFILEAI)

will give the screen display shown in Figure 1.8-1.

Modifying the command input to:

READ DATASET(IFILEAI) RIDFLD('0000011)

will give the screen display shown in Figure 1.8-2. The error message
has disappeared because the requested record identification field has
been supplied.

The command is now ready to be executed, and this is achieved simply
by pressing the ENTER key. The display shown in Figure 1.8-3 will
appear showing the result of execution.

It is possible to prevent unauthorized access by the interpreter to
resources such as data sets. Refer to the security rules later in the
chapter.

Chapter 1.8. Co •• and-Level Interpreter 67

A question mark (1) before the command always gives the command
syntax check display and prevents command execution.

The use of CECS forces a question mark b~fore the command. This
always gives the command syntax check display and prevents command
execution. In a system where security is important, CECS can be made
more widely available than CECI.

Screen Layout

The command interpreter uses a basic screen layout of four areas, as
shown in Pigure 1.8-1. These areas are:

• Command Input Area (the first line of the screen)

• Status Area (the second line of the screen)

• Information Area (21 lines on a 24 x 80 display)

• PP Key Values Area ~he last line of the screen)

COMMAND INPUT AREA

This is the first line of the screen. The command, whose syntax is to
be checked, or which is to be executed, is entered on this line, either
in the normal format described in Chapter 1.2 and as illustrated
throughout this manual, or in an abbreviated or condensed form that
reduces the nuaber of keystrokes involved. The condensed form of the
command is obtained as follows:

• The keywords EXEC CICS are optional.

• The options of a command can be abbreviated to any number of
characters sufficient to make them unique. Valid abbreviations are
shown in capital letters in syntax disp1ays.

• The quotes around character strings are optional, and all strings
of characters will be treated as character-string constants unless
they are preceded by an ampersand (&) in which case they are
treated as variables, as described later in the chapter.

• Options of a command that receive a value from CICS/VS when the
command is executed are called "receivers", and need not be
specified. The value received from CICS/VS will be included in the
syntax display after the command has been executed.

The following example shows the condensed form of a com.and. The
file control command:

EXEC CICS READ DATASET(IPILEAI) RIDPLD"000001 1) INTO (data-area)

can be entered on the com.and input line, as:

READ DAT(PILEA) RID (000001)

or at a minimum, as:

READ D (PILEA) R (000001)

68 CICS/V S APRM (CL)

here, the INTO option is a receiver (as defined above), and can be
omitted.

STATUS ABEA

This is the second line of the screen. It will contain one of the
following:

• CPM8AND SYNTAX CHECK
• ABOUT TO EXECUTE COMMAND
• COMMAND EXECUTION CO!PLETE (or COM!AND NOT EXECUTED)
• ElB DISPLAY
• VARIABLES
• ERROR !ESSAGES
• EXPANDED AREA

This status line describes the type of information in the immediately
following information area of the display.

INFOR!ATION ABEA

This area consists of the remainder of the screen between the "command
input" and "status" areas at the top, and "PF key values" at the bottom
of the screen. This area is used to display the syntax of the entered
comaand, error message information, the response to execution, and any
other information that can be obtained by using the PP keys or the
cursor.

A line at the Dottom of this area is reserved for messages that
describe errors in the conversation with the user (for example, "INVALID
PACKED DECI!AL"). These messages are intensified to attract attention.

Chapter 1.8. Command-Level Interpreter 69

Command Syntax Check

READ DATASET(IFILEA')
STATUS: COaaAND SYNTAX CHECK

EXEC CICS READ
Dataset (I FILEA ')
SET () I Into ()
< Length () >
Ridfld ()
< K eylength 0 < GEneric > >
< SYsid () >
< SEGset() I Segsetall >
< RBa I RRn I DEBRec I DEBKey >
< GTeg I Equal >
< Update>

DFH70521 S RIDFLD OPTION MUST BE SPECIFIED

NAME=

PF: 1 HELP 2 HEX 3 END q BIB 5 VAR 6 USER 7 SBa 8 SFa 9 MSG 10 SB 11 SF

Figure 1.8-1. "Command Syntax Check" Display

When this status message appears, it indicates that the com.and which
has been entered on the command input line has been syntax checked but
is not about to be executed. This will always be the status for CECS or
for CECI with a question mark before the co.sand. It is also the status
whan the syntax cneck of the command gives severe error messages and for
those commands which are not executable (for example, HANDLE CONDITION
and HANDLE AID).

The INFORMATION AREA of the display for Command Syntax Check, Aoout
to Execute Command and Command Execution Complete contains information
common to all three displays.

The full syntax of the command is displayed together with error
information at the foot of the display. Options in the syntax panel are
intensified to show those specified on the command input line, those
assumed by default, and any "receivers".

The command on the command input line can be modified at any time by
overtyping and pressing ENTER.

If the command has more options than can be held in one display, a
plus Sign (+) will appear at the left-hand side of the last option of
the current display to indicate that there are more. These can be
displayed by using one of the scrolling PF keys.

The syntax display differs slightly from the syntax shown throughout
the manual in the following ways:

Square brackets [] are replaced by the less-than and greater-than
symbols < >.

70 CICS/VS APR!! (CL)

Braces { } are not used. If a mandatory option is omitted, an
error message will be displayed and execution will not proceed
until the option has been specified.

Parentheses () are used to indicate that an option requires a
value or data field but none has been specified.

The error information consists either of a single error message or an
indication of the number and severity of the messages generated.

The NAME= field on the syntax display can be used to create a
variable containing the current command. (See the description of a
variable later in the chapter.)

About to Execute Command

r--READ DATASETC1FILEA') RIDFLDC'OOOOOl l)

STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS READ
Dataset ('FILEA ')
SET () I Into ()
< Length () >
Ridfld C '000001')
< Keylength() < GEneric> >
< SYsidO >
< SEGset() I Segsetall >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

NAPIE=

tPF: 1 HELP 2 HEX 3 END 4 BIB 5 VAR 6 USER 7 SBa 8 SFH 9 PISG 10 SB 11 SF L __ ~

Figure 1.8-2. "About to Execute Command" Display

This display appears when none of the reasons for stopping at Command
Syntax Check apply. Option values can be modified by overtyping them in
the syntax panel. This is a temporary modification for the duration of
the command and does not affect the command input line. It is similar
to the modification of option values that is possible with EDF when
debugging an application program.

Chapter 1.8. Command-Level Interpreter 71

Command Execution Complete

READ D(FIlEA) R(OOOOOl)
STATUS: COMMAND EXECUTION CO!PLETE

EXEC CICS READ
Dataset ('FIlEA .)
SET () I Into ('UOOOOO 1
< Length (+00080) >
Ridfld('000001')
< Keylength() < GEneric> >
< SYsid () >
< SEGset () I Segsetall >
< RBa I RRn I DEBRec I DEBKey >
< GTeg I Equal >
< Update >

RESPONSE: NORMAL

NAlfE=

, ...)

EIBRCODE=X'OOOOOOOOOOO'

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SPH 9 MSG 10 SB 11 SF

Figure 1.8-3. "Colllilland Execution Complete" Display

This displ.ay appears in response to the ENTER key after an "about to
execute command'i display. The command has been executed and the results
are displayed on the screen. Any "receivers", whether specified or not,
together with their CICSjVS-supplied values, are displayed intensified.
If the val~e of an option is too long for the line, only the first part
will be displayed followed by" to indicate there is more.
Positioning the cursor, using the tab key, at the start of the option
value and pressing ENTER will produce an expanded display of the whole
option value.

Also displayed at the foot of the information area, is the
appropriate response code ~or example, NORMAL) together with the
contents of the EIBRCODE field of the EIB.

Variables

This display will show, in response to pressing key PF5, all the
variables associated with the current interpreter session, showing for
each, its name, length, and value.

Normally, the value supplied for an option in the command input area
is taken as a character-string constant. However, there is sometimes a
requirement for this value to be represented by a variable. The command
interpreter will recognize a value as a variable only if it is preceded
by an ampersand (S).

A variable is required when two associated com.ands are to be
connected through the values supplied in their options, for example,
READ INTO(data-area) UPDATE and REWRITE FROM (data-area) • A variable can

72 CICS/VS APRM (Cl)

I be used to make the data area in the FROM option the same as that in the
I INTO option.

A variable is also useful when the values of options cause the
command to exceed the line length of the command input area. creating
variables with the required values and specifying the variable names in
the command will enable a command to be accommodated.

Variables can also be used to contain commands, and variable names
can be entered in a command input line that contains complete or partial
commands.

Variables are deleted at the end of an interpreter session unless
action has been taken to save them, for example, in temporary storage,
as described below.

Variables, which can be of data type character, fullword, halfword,
or packed decimal, can be created, as follows:

1. By naming the variable in a receiver. The variable will be created
when the com.and is executed. The data type is implied by the type
of receiver.

2. By adding one or more new entries to the list of variables already
defined. This list is displayed by pressing key PF5. The display
shows all defined variables giving, for each, its name, length in
bytes, and its value. The value is displayed in character form but
PF2 can be used to switch from character to hexadecimal. An
expanded display of each variable can be obtained by positioning
the cursor under the & of the name and pressing ENTER. To create a
new character variable, enter its name and its length and press
ENTER. The variable will be initialized to blanks, which can then
be overtyped. For a fullword, halfword, or packed variable, enter
F, H, or P in the length field. These fields are initialized to
zero.

Variable names, lengths, and their values, can be modified by
overtyping. Variables can be deleted by positioning the cursor
under the & of the name and pressing erase EOP. variables can be
copied by obtaining the expanded display of the variable and
overtyping the name field.

3. By associating a variable name with the value of an option.
Positioning the cursor, using the tab key, at the start of the line
of the syntax display and pressing ENTER will produce an expanded
display of the whole option value. A variable name can now be
assigned to the data so displayed.

4. By entering a name in the NAME= field of the syntax panel. This
will create a variable containing the current command.

Three variables are provided initially. The first, &DFHC, is a
sample. The second, &DFHW, contains a temporary storage WRITEQ command,
and the third, &DFHR, contains a READQ command. It is possible to write
a command to temporary storage by entering &DFHC in the NAME= field of
the syntax panel, entering &DFHW in the command input line, and
executing the WRITEQ command. In this way, a list of commands can be
written. The command list can be read and executed by alternately
entering &DPHR and &DFHC in the command input line.

Chapter 1.8. Command-Level Interpreter 73

Expanded Area

This display will use the whole of the information area of the screen to
display areas selected by means of the cursor. The cursor can be
positioned at the start of the value of an option on a syntax display,
or under the ampersand of a variable in a variables display. Pressing
ENTER will then give the expanded area display. The scrolling keys can
be used to display all the information if it exceeds a full screen.

ENTER REY AND PF REY VALUES

The single line at the foot of the screen provides a men~ indicating the
effect of the ENTER and PF keys for the display. Continuation of
interpretation depends entirely upon use of the ENTER key; unless this
key is pressed no further action will occur.

The PF keys are self-explanatory; if the terminal has no PF keys, the
same effect can be obtained by positioning the cursor under the required
item in the menu by means of the tab keys and pressing ENTER. The
following PF keys are available:

PF1: HELP
displays a HELP panel g~v~ng more information on how to use the
command interpreter and on the meanings of the PF keys.

PF2: SWITCH HEX/CHAR
switches the display between hexadecimal and character
representation. This is a mode switch; all subsequent displays
will stay in the chosen mode until the next time this key is
pressed.

PF3: END SESSION
ends the current session of the interpreter.

PF4: EIB DISPLAY
shows the contents of the EXEC interface block (EIB). (See
Appendix A for a description of the fields in the EIB) •

PF5: VARIABLES
shows all the variables associated with the current command
interpreter session, giving for each its name, length, and
value.

PF6: USER DISPLAY
shows what the user would see if the terminal had been
executing a transaction which contained the commands which have
been executed using the interpreter.

PF1: SCROLL BACK HALF
scrolls half a screenful backwards.

PF8: SCROLL FORWARD HALF
scrolls half a screenful forwards.

PF9: EXPAND MESSAGES
shows all the messages generated during the syntax check of a
command.

PF10: SCROLL BACK
scrolls backwards.

14 CICS/VS APRM (CL)

PF11: SCROLL FORWARD
scrolls forwards.

PF12: UNDEFINED
means that this key is not available with this type of display.

TERKINAL SHARING

When the command being interpreted is one that uses the screen which the
interpreter ~s using, the command interpreter will manage the sharing of
the screen between the interpreter display and the user display.

The user display will be restored:

• when the command being executed requires input from the operator.

• when the com.and being executed is about to modify the user
display.

I • when USER DISPLAY is requested.
I
I Thus, when a SEND command is followed by a RECEIVE command, the
I display sent by the SEND command appears twice, once when the SEND
I com.and is executed, and again when the RECEIVE command is executed. It
I is not necessary to respond to the SEND command, but if a response is
t made, the interpreter will remember it and redisplay it when the screen
I is restored for the RECEIVE command.

When the interpreter restores the user display, it does not sound the
alarm or affect the keyboard in the same way as when a SEND command is
executed.

Program Control

I The -interpreter is itself a CICSjVS application program and the
I execution of certain program control com.ands may cause different
I results from an application program containing those commands. For
I example, an EXEC CICS ABEND command will be intercepted by the
I interpreter rather than abending the interpreter ~nless the CANCEL
I option is specified).

If the interpreter is used to LINK to a program, the interpreter will
not be aware of modifications to the USER DISPLAY made by that program.
If the interpreter executes an XCTL com.and, control will be transferred
to that program and that will be the end of the interpreter session.

Security Rules

To invoke the command interpreter, the user must have a security key
that matches the security key defined in the PCT.

The command-level interpreter transaction identifier, eECI,
specifies, by default, that resource level security checking is required
for any resources referenced with the interpreter. This checking
applies to data sets, transient data queues, temporary storage queues,

Chapter 1.8. Command-Level Interpreter 75

programs, transaction identifiers of the START command, and journal file
identifiers.

If the resource security level specified in the appropriate CICS/VS
table (for example, the PCT for a dataset) is not matched by the
authorization obtained from a sign-on, the resource security check
fails, and the response to the command will be ABEND IEY7. This
response is given on the "command execution complete" display.

Installing the Command-Level Interpreter

To ensure that the command interpreter is available on the system, the
system programmer must make one group entry in the PPT and in the PCT.
(See the CICSLVS~!stem Programmer's Reference ~anua! for details on
constructing a PPT and a PCT.)

76 CICS/VS APRa (CL)

Part 2. Data Base Operations

Chapter 2.1. Introduction to Data Base Operations

Chapter 2.2. File Control

Chapter 2.3. DL/I Services

77

Page of SC33-0017-2, revised September 1980 by TNL SN33-6268

Chapter 2.1. Introduction to Data Base Operations

CICS/VS transactions can access two kinds of data bases, which can be on
either a local or remote system, as follows:

• Standard operating system data sets holding a data base.

• DL/I (Data Language/I) data bases.

Standard operating system data sets are processed by the CICS/VS file
control program, which permits the retrieval, addition, updating,
deletion, and browsing of records in ISAM, VSAM, and DAM data sets.
File control relieves the application programmer of buffer management,
blocking and deblocking, and access-method dependencies. File control
is described in Chapter 2.2.

A DL/I data base gives the application programmer a greater degree of
data independence than is given by file control. The programmer is
presented with a logical view of the data base in te~s of a hierarchy
of segments. DL/I offers powerful facilities for the manipulation of
these segments without requiring the programmer to be aware of heM they
are organized.

Processing of a DL/I data base is performed by one of the following
program products with which CICS/VS interfaces:

• For VSE users, Data Language/I OOS/VS (program Number 5746-XXl) •

• For OS/VS users, Information Management System/Virtual Storage
(IMS/VS) (program Number 5740-XX2).

The CICS/VS-DL/I interface for both VSE and OS, which is invoked by
means of the DL/I CALL statement, is described in Chapter 2.3.

The CICS/VS-DL/I interface for VSE only; which is invoked by means of
the EXEC DLI command, is described in Chapter 2.4.

Chapter 2 .1. Introduction to Data Base Operations 79

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Chapter 2.2. File Control

The CICS/VS file control program processes fixed-length or variable­
length; blocked or unblocked, undefined, or segmented records of a
direct-access data set. (Sequential data sets are processed by the
transient data control program, as described in Chapter 4.6) •

File control uses the standard access methods of the host operating
system PS/VS or DOS/VS), namely:

• Direct Access Method ~~

• Indexed Sequential Access Method ~S~

• Virtual Storage Access Method (VSAM) ~

Application programs can access DAM data sets on a logical-record
level, deblocking services being provided by CICS/VS. If an I SAM data
set is converted to a VSAM data set organization, using VSAM data set
conversion utilities, no alteration to application programs that access
the data set is necessary, but the file control table (FCT) must be
changed. Data sets on fixed block architecture (FBA) devices can be
accessed only by VSAM.

File control commands can be used to:

• Read a record from a data set ~EAD).

• Write a record to a data set (WRITE).

• Update a record in a data set (REWRITE).

• Delete a single record or a group of records from a key-sequenced
or re lati ve-record data set (DELETE) (VSAM only) •

• Release exclusive control over a data set (UNLOCK).

• Specify the starting point for a browse (that is, sequentially
access a data set) (STARTBR).

• Read the next record in a data set during a browse (READNEXT).

• Read the previous record in a data set during a browse ~FADPREV)
(VSAM only) •

• Reset the starting poirit for a browse (RESETBR).

• End a browse (ENDBR).

An option can be included in these. camnands to specify that the
record. to be accessed is in a data set on a remote system.

The HANDLE CONDITION or IGNORE CONDITION camnands, as described in
Chapter 1.5, can be used to deal with exceptional Conditions that occur
during execution of a file control command •

• The following sections discuss the identification of data sets to be
used in file control operations, direct access to records in data sets,
sequential access to records (browsing) 1 and information particular to
the access methods available (ISAM, VSAH, and DAM) •

. Chapter 2.2. File Control 81

DATA SET IDENTIFICATION

Data sets are identified in file control commands by the DATASET option;
they must have been defined previously in the file control table ~)
unless, for a local system only, the SYSID option has been specified
also, in which case a FCT definition is unnecessary. These definitions
may be set up with the help of the system programmer; although logical
record handling only is required in the application program; buffers and
work areas are acquired automatically by CICS/VS.

DIRECT ACCESS TO RECORDS

When reading records directly (that is, searched for by a search
argument such as a key) using the READ command, the record is retrieved
and placed in main storage according to which of the options INTO or SET
has been specified.

The INTO option specifies the area into which the record is to be
placed. For variable-length records, the LENGTH option must specify the
maximum length of record that the application program will accept. If
the record exceeds this value, it is truncated to this value and the
LENGERR condition will occur. For fixed-length records, the LENGTH
option must specify the length of the record, otherwise the LENGERR
condition will occur. After the record has been retrieved, the data
area specified in the LENGTH option is set to the actual record length
~efore any truncation occurred) •

The SET option specifies a pOinte" reference that is set to the
address of an area large enough to hdld the record. After the record
has been retrieved, the data area specified in the LENGTH option is set
to the actual record length.

The READ command can be used for both read-only and read-for-update
operations. If the record is to be updated; the UPDATE option must be
specified. When a record has been read for update, CICS/VS maintains
exclusive control ~hich varLes according to the access method in use)
to prevent another task accessing the record until it has been
rewritten, or until exclusive control is released by an UNLOCK command,
or ~or VSAM only) until the record is deleted.

When adding records using the WRITE command; or when updating records
using the REWRITE command, the record to be written is specified in the
FROM option, and its length i.n the LENGTH option. (LENGrH can be
omitted for fixed-length records.)

When a record has been read for update, the REWRITE or UNLOCK command
should be issued as soon as possible to avoid obstructing file storage,
and possibly preventing other transactions fram accessing the record.

MULTIPLE FILE OPERATIONS

When accessing more than one file at a time, a lockout may occur; for
example, if two tasks attempt to read the same record for update at the
same time or when accessing files on a remote system. Assume the
following:

82 CICS/VS APRM (eL)

Prograll 1:

Program 2:

Suppose that
follows:

Program 1:
Program 2:
Program 1 :
Program 2:

READ UPDATE
READ UPDATE

READ UPDATE
READ UPDATE

the two tasks

READ UPDATE
READ UPDATE
READ UPDATE
READ UPDATE

(File A)
(File B)

(File B)
(File A)

become intermixed

(File A, record
(File B, record
(File B, record
(File A, record

in multitasking, as

3385)
7538)
7538)
3385)

The two tasks will both be suspended indefinitely, because each would
have exclusive control of the first record requested by the other. The
second request of each task cannot be completed. To avoid this problem,
all programs should access the files in the same sequence, such as A
first, followed by B.

SEQUENTIAL ACCESS TO RECORDS (BROWSING)

When reading records sequentially, the STARTBR command specifies the
starting point only for the browse; no records are retrieved. The
READNEXT cOllmand reads records sequentially from the data set, starting
with the specified record, which would normally be, but need not be, the
record specified in the STARTBR command. (For VSAl! data sets, the
READPREV command does the same as the READNEXT command, except that
records are read in reverse order.)

Records are retrieved and placed in main storage using the INTO, SET,
and LENGTH options in the same way as for direct access, described in a
previous section.

The starting point can be reset at any time by a RESETBR command.
The ENDBR command ends a browse.

When more than one browse is required on a data set at the same time,
the REQID option must be included in every browse com.and to distinguish
between the browse operations.

If records are unblocked, or have a very low blocking factor (which
means that many file reads are done before displaying a page), it may be
more efficient to display fewer records.

with a high blocking factor, fewer read operations are done, records
merely being moved from a buffer area, so lengthy browses are not so
ineff icie nt •

Chapter 2.2. File Control 83

SJSG!ENTED RECORDS

An optional feature of CICS/VS file management allows the user to create
and define a data set containing segmented records. A segment is one or
more adjacent fields within a record. Some segments appear in all
records while others appear in only certain records. Each record
contains one segment ~he root segment) which contains information about
which other segments are present. Groups of segments can be defined and
identified symbolically as segment sets. 1 record can be read with a
specified segment set and only those segments of the record defined in
that segment set are returned. The user cannot access segmented records
in a data set on a remote system.

If it is planned to use segmented records the structure of individual
segments and of segment sets must have been defined in the file control
table by the system programmer, and the user must create and maintain
the control information in the root segment of each record.

For further information on segmented records see the CICS/VS
system/Application Design Guide.

ISAM Data Sets

RECORD IDENTIFICATION

Records in ISAM data sets are identified by key. This key must be
provided in a record identification field specified by the RIDFLD
option.

For CICS/OS/VS systems, the contents of the record identification
field may have been changed following the addition of a record; this
point should be considered in CICS/DOS/VS systems also, to avoid future
DOS/VS to OS/VS conversion problems.

Records that are flagged for deletion are presented to the
application program, which must be able to recognize them.

ADDING RECORDS TO ISAII DATA SETS

Adding records to an ISAft data set may degrade performance due to
overflow accesses; also data sets may be destroyed undetected, if for
example, a power failure occurs, or CICS/VS terminates abnormally. If
such a failure occurs when adding records, records may be lost and
overflow chains destroyed. To prevent these problems, consider one of
the following:

• lIemo posting. This is a technique that uses special memo fields
created in each record of a file. All fields that are normally
updated by changing quantities, such as the number of items,
amounts, and so on, are recorded in these memo fields, so that
system failures affect only these memo fields. All changes must be
posted to a log file, so that the data file can be updated later on
a batch basis. This ensures the integrity of the data file while
retaining the advantages of online posting.

84 CICS/VS APRil (CL)

• Using a file copy. A copy of the data file is provided for use
with CICS/VS. This allows the addition and deletion of records and
modification of any data in the file without affecting the file
integrity. All changes must be posted to a log file, so that the
data file can be updated later on a batch basis. This ensures the
integrity of the data file and allows complete online file
maintenance *

ISAM EXCLUSIVE CON'mOL

When an ISAM record is read for update Ii CICS/VS maintains exclusive
control of the record. An attempt to re-read the record before it is
updated (by a REWRITE command), or before exclusive control is released
(by an mLOCK command) , will cause a lockout.

ISAM BROWSING OPERATIONS

A browse can be started at any record .in an ISAM data set. A complete
key of hexadecimal zeros; or the options KEYLENGTB (0) and GENERIC, will
start the browse at the first record. Any other starting point must be
specified in the RIDFLD option of the srARTBR or RESETBR command. The
key provided can be a complete (specific) key or a generic (partial)
key.

If a complete key is provided, the browse starts with the record
having that key * If this record cannot be found, then by default, the
browse starts with the first record having a key greater than the
specified key.

If a generic key is provided; its length must be specified in the
KEYLENGTH option, and the GENERIC option also must be specified. The
search for the starting record uses only the nwnber of characters in
this key. The first record having a matming generic key is the
starting ,point. If this record cannot be foundl then by default; the
browse starts with the first record having a generic key greater than
the specified generic key.

The record identification field is updated by CICS/VS with the
~lete key of the record retrieved each time a READNEXT command is
executed.. For a given browse, all associated conmands must use the same
record identification field.

Records flagged for deletion are presented to the application
program, which must be able to recognize them.

Chapter 2.2. File COntrol 85

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

VSAM Data Sets

INITIALIZATION OF VSAM DATA SETS

r When creating a VSAM entry-sequenced data set for use with CICSjVS, at
I least one dummy record must be loaded into the data set before it can be
I processed by CICS/VS.

RECORD IDENTIFICATION

Records in VSAM data sets are identified in one of three ways: by key,
by relative byte address, or by relative record number. One of these
must be specified (in the RIDFLD option) as the search argument. If a
relative byte address is supplied, the RBA option must be specified, if
a relative record number is supplied, the RRN option must be specified.

VSAM KEYS

When writing records to a VSAM data set, a complete key must be
provided.

When reading records in inquiry mode, the search key can be a
complete key or a generic key, and, for either type, the search can be
for an equal key (EQUAL option) or a greater-or-equal key (G'mQ option) •

When reading records for update, the search key should be a complete
key, and the search should be for an equal key (EQUAL option) •

If a complete key is specified, the record having that key is
retrieved; if it cannot be found and the GTEQ option is specified, the
first record having a key greater than the specified key is retrieved,
otherwise the NOTFND exceptional condition occurs. '!he complete key is
returned in the record identification field after the record has been
retrieved.

If a generic key is specified, its length must be specified in the
KEYLENGTH option, and the GENERIC option also must be spec if ied • The
search for the required record uses only the number of characters in the
generic key. The first record having a matching generic key is
retrieved; if no matching record is found, and the GTEQ option is
specified, the first record having a generic key greater than the
specified generic key is retrieved, otherwise the NOTFND exceptional
condition occurs.

VSAM EXCLUSIVE CONTROL

~en a VSAM record is read for update, VSAM maintains exclusive control
of the control interval containing that record. An attempt j:o read a
second record for update or add a new record to the same control
interval before exclusive control is released, would cause a lockout.

CICS/VS prevents such a lockout by raising the INVREQ condition if,
following the first READ UPDATE command; a second READ UPDATE command;

86 CI CS/VS APRM (CL)

or a WRITE command is issued for the same data set and within the same
transaction before exclusive control is released (by a REWRITE, UNLOCK,
or DELETE command) ..

DELETION OF VSAM RECORDS

Records in a VSAM key-sequenced or relative-record data set can be
deleted; either singly or in groups, using the DELETE command. Single
records are identified by key, relative byte address, or relative record
number. Groups of records can be deleted only if the data set is
unprotected, and if the records all have a conunon starting group of
characters in their keys ~hat is, a cammon generic key) •

A record that has been read for update (that is , with UPDATE
specified in the READ command) may be deleted also by a DELETE command,
but only if a canplete key has been specified. If deletion is attempted
for a record with a generic key, or if the DELETE command includes the
RIDFLD option, the INVREQ condition will occur.

VSAM Mr\SS SEQUENTIAL INSERTION OPERATIONS

The ·MASSINSERT option is used to specify that a VSAM mass sequential
insertion operation is in progress; it must be specified in every WRITE
command that is part of the operation.

Amass insert operation must. be terminated (by an UNLOCK conunand) to
ensure that all records are written to the data set; a READ command will
not necessarily retrieve a record that has been added by an incomplete
mass insert operation. Incomplete operations will be terminated when
the task terminates.

A lockout will occur if more that one transaction is attempting
simultaneously to perform a mass insert operation to the same control
interval of a protected data set. A lockout will occur also if a
transaction uses keys that are not in ascending sequence.

VSAM BROWSING OPERATIONS

A VSAM data set can be browsed in either direction.

A record identification field of hexadecimal zeros, or the options
KEYLENGTH (0) and GENERIC in a STARTBR or RESETBR canmand, will start a
forward browse at the first record.

A record identification-field of hexadecimal ·FF·s will start a
backward browse at the last record.

Any other starting point must be specified in the same way as a
single record is retrieved, using a key (complete or generic), relative
byte address, or relative record nwnber. There is one exception; a
backward browse cannot be specified if the previous STARTBR command has
the GENERIC option.

'lhe RESETBR command can be used not only to reset the starting
position for the browse, but also to change the type of search argument
(key, relative byte address, or relative record number) •

Chapter 2.2. File Control 87

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

The record identification field is updated by CICS/VS wi til the
complete key, relative byte address, or relative record number of the
record retrieved each time a READNEXT or READPREV command is executed.
For a given browse, all associated commands must use the same record
identification field.

When browsing a protected data set (LOG=YES specified in the DFHFCT
TYPE=DATASET macro by the system programmer) , an end browse (ENDBR)
command must be issued before issuing a READ UPDATE command.

VSAM SKIP-SEQUENTIAL PROCESSING

Skip-sequential processing can be performed on a VSAM data set. The
identifier (key, relative byte address, or relative record number) of
the next record required must be placed in the record identification
field specified in the RIDFLD option of the READNEXT command. This
record need not be the next sequential record in the data set, but must
have a key, relative byte address, or relative record number greater
than the last record accessed. ~ READPREV command should not be used.)
This procedure allows quick random access to a VSAM data set by reducing
index search time.

The identifier must be of the same form (key, relative byte address,
or relative record number) as that specified in the STARTBR (or the last
RESETBR) conunand for this browse. If the STARTBR or last RESETBR
command specified a generic key, the new identifier must also be a
generic key, but it need not be of the same length.

If the STARTBR or last RESETBR command specifies an equal-key search
~omplete or generic), a READNEXT command using skip-sequential

processing may result in a NOTFND condition.

SHARING VSAM RESOURCES

CICS/VS permits the sharing of VSAM resources. Resources to be shared
are identified in the DFHFCT TYPE=SHRCTL macro instruction, as explained
in the CICStyS System Programmeras Reference Manual. When a task
requires resources in several VSAM data sets at the same time and these
data sets are sharing resources, the probability of a lockout increases.

VSAM ALTERNATE INDEXES

The VSAM Alternate Index feature allows access to a data set using
several indexes, which contain alternate keys to the records in the data
set. A rerord can be accessed by many different keys; also, many
records can have the same al ternate key in an alternate index.

Accessing a record via an alternate index is similar to accessing a
normal key-sequenced data set; unless records having non-unique
alternate keys are involved. If the (alternate) key provided in a READ,
READNEXT, or READPREV conmand is not unique, the first record in the
data set having that key is read, and the DUPREY condition occurs. To
retrieve other records having the same key, a browse should be started,
the subsequent READNEXT commands reading the records in the order in
which they were added to the data set. (READPREV commands could. be

88 CICS/VS APRM (CL)

Page of SC33-0077-2, added September 1980 by TNL SN33-6268

used, but the records will be returned in the same order as for READNEXT
canmands.)

When switching from direct retrieval (READ) to a browse (READNEXT),
the first record having a non-unique key is read twice: once for the
READ command i and again for the first READNEXT command.

The DUPKEY condition occurs for each retrieval operation except the
last. For example, if there are three records with the sane alternate
key, DUPKEY occurs for the first two records, but not for the third.
The application program can be designed to revert to direct retrieval
operations when DUPKEY no longer occurs.

Chapter 2.2. File Control 88.1

DAM Data Sets

RECORD IDENTIFICATION

Records in DAM data sets are identified by a block reference, a physical
~~ (keyed data set), and a deblockin~rgument (blocked data set). The
record identification ~pecified in the RIDFLD option) contains a
subfield for each, which, when used must be in a fixed order, as
follows:

1. Block reference - one of the following:

a. Relative block address (CICS/OS/VS only): three-byte binary
(RELTYPE=BLK) •

b. Relative track and record (hexadecimal format): two-byte TT,
one-byte R (RELTYPE=HEX).

c. Relative track and record (zoned decimal format): siX-byte
TTTTT?, two-byte RR (RELTYPE=D3C).

d. Actual (absolute) address: eight-byte !BBCCHHR (RELTYPE
operand omitted) •

The type of block reference being used must be specified in the
RELTYPE operand of the DFBFCT TYPE=DATASET system macro which
defines the data set.

~~mpls.2.:

Byte I 0 1 2 3 4 5 6 7 8

RELBLK# (CICSjOS/VS only) Relative block

T T R Relative track and record

T T T T T T R R Relative track and record

M B B C C H B R Actual address

Chapter 2.2. File Control 89

2. Physical key - required only if the data set has recorded keys. If
used, it must immediately follow the block reference. Its length
must be the same as the length specified in the BLKKEYL operand of
the DFHFCT TYPE=DATASET system macro that defines the data set.

Exameles:

Byte 10 1 2 3 q 5 6 7 8

I RELBLK# I KEY ••• (CICS/OS/VS only)

IT T R , KEY •••

IT T T T T T R R KEY •••

la B B C C H H R KEY •••

3. Deblocking argument required only if specific records are to be
retrieved from a block. If used, it must follow immediately the
physical key (if present) or the block reference. If omitted, an
entire block will be retrieved.

The deblocking argument may be either a key ~pecify DEBKEY), in
~hich case its length must be the same as that specified in the
KEYLEN operand of the DFHFCT TYPE=DATASET system macro, or it may
be a relative record number (specify DEBREC), in which case it is a
one-byte binary number Cfirst record=O).

The following examples assume a physical key of six bytes and a
deblocking argument of three bytes.

ExamEles:

Byte
10 1 2 3 4 5 6 1 8

I RELBLK# I RRN I (CICS/OS/VS

I RBLBLK# I KEY ICCICS/OS/VS

IT T R KEY

la B B C C H H R ~RN

IT T T T T T R RI

90 CICS/VS APRa (CL)

9 10 11 12 13 14 15

only) search by relative block;
deblock by relative record

only) Search by relative block;
deblock by key

KEY Search by relative track
and record and key;
deblock by key

Search by actual address;
deblock by relative record

KEY KEY I
Search by zoned decimal
relative track and record
and key; deblock by key

Search by relative track
and record; deblock by key

ADDING RECORDS TO DAM DATA SETS

When adding records to a DAft data set, the following considerations and
restrictions apply:

1. When adding undefined or variable-length records (keyed or non­
keyed), the track on which each new record is to be added must be
specified. If space is available on the track, the record is
written following the last previously written record, and the
record number is placed in the "R" portion of the record
identification field of the record. The track specification may be
in any of the acceptable formats except relative block. If zoned
decimal relative format is used, the record number is returned as a
two-byte zoned decimal number in the seventh and eighth positions
of the record identification field.

In a CICS/DOSjVS system, an attempt to add undefined or variable­
length records is limited to the single track specified. If
insufficient space is available on that track, the HOSPACE
condition occurs. However, an attempt may be made to add the
record on another track simply by altering the track identifier and
using another WRITE comsand.

In a CICSjOS/VS system, the extended search option allows the
record to be added to another track if no space is available on the
specified track. The location at which the record is added is
returned to the application program in the record identification
field being used.

When adding records of undefined length, the length of the record
must be specified in the LENGTH option. Whe.n an undefined record
is retrieved, the application program must determine its length.

2. When adding keyed fixed-length records the data set must first be
formatted with dummy records or "slots" into which the records may
be added. (A dummy record is signified by a key of hexadecimal
IFpls; in a CICSjOS/VS system, the first byte of data contains the
record number.)

3. When adding non-keyed fixed-length records the block reference must
be given in the record identification field. The new records are
written in the location specified, destroying the previous contents
of that location.

4. When adding keyed fixed-length records track information only is
used to search for a dumay key and record, which, when found, is
replaced by the new key and record. The location of the new record
is returned to the application program in the block reference
subfield of the record identification field.

For example, for a record whose identification field is as follows:

o 3 0
T T R

ALPHA
KEY

the search will start at relative track 3. When control is
returned to the application program, the record identification
field will be as follows:

o ij 6 ALPHA

showing that the record is now record 6 on relative track 4.

Chapter 2.2. File Control 91

5. When adding variable-length blocked records a four-byte record
description field (RDP) must be included in each record. The first
two bytes specify the length of the record (including the q-byte
RDP); the other two bytes consist of zeros.

DAM EXCLUSIVE CONTROL

When a blocked record is read for update, CICS/VS maintains exclusive
control of the containing block. An attempt to read a second record
from the block before the first is updated (by a REWRITE command), or
before exclusive control is released (by an UNLOCK command), will cause
a lockout.

DA! BROiSING OPERATIONS

The record identification field must contain a block reference· ~or
example, TTR or MBBCCHHR) that conforms to the addressing method defined
for the data set. Processing begins with the specified block and
continues with each subsequent block until the browse is terminated. If
the data set contains blocked records, processing begins at the first
record of the first block and continues with each subsequent record,
regardless of the contents of the record identification field.

The record identification field is updated by CICS/VS with the
complete identification of each record retrieved by a READNEXT command.
Por example, assume a browse is to start with the first record of a
blocked, keyed data set. Before issuing the STARTBR command, the TTR
(assuming that is the addressing method) of the first block should be
placed in the record identification field. After the first READNEXT
command, the record identification field might contain

X'OOOOOl050q'

where 000001 represents the TTR value, 05 represents the block key, and
Oq represents the record key.

As another example, assume that a blocked, non-keyed data set is
neing browsed, and the second record from the second physical block on
the third relative track is read by a READNEXT command. Upon return to
the application program, the record identification field contains

X'0000020201'

where 000002 represents the track, 02 represents the block, and 01
represents the record within the block.

KEYLENGTHS for Remote Data Sets

In general, execution of file control commands requires the RIDFLD and
KEYLENGTH options to be specified. KEYLENGTH may be specified
explicitly in the command, or it may be determined implicitly from the
file control table (PCT).

Por remote data sets however, KEYLENGTH should be specified whenever
SYSID and RIDFLD are specified, unless either RBA or RRN is specified,

92 CICS/VS APR~ (CL)

Page of SC33-o077-2, revised September 1980 by TNL SN33-6268

(when it is invalid) , or if the conmand is a READNEX'l' or READPREV ,(when
it is not required) •

For a remote DAM data set, where the DEBKEY' or DEBREC options have
been specified, KEYLENGTH (when specified explicitly) should be the
total length of the key (that is, all specified subfields). If the
value of KEYLENGTH is taken from the FCT; the system programmer must
ensure that the default for the KEYLENGTH value is equal to the DEBKEY
value, again this value must be the total length of the key.

For relative-record data sets; the system programmer should specify
KEYLEN=4 in the DPBFcr 'rYPE=REMO'l'E system macro. '!'his wUl allow an
application program translated on Version 1.3 to be executed on
succeeding versions without retranslation.

Read a Record (READ)

READ DATASET Olame)
{SET (pointer-ref) I INTO (data-area) }
[LENGTB(data-area)]
RIDFLD (data-area)
[KEYLENGTH(data~alue)[GENERIC]]
[SYS:ID (name)]
[SEGSET Olame) I SEGSETALL]
[RBA I RRN]
[DEBKEY I DEBREC]
[GTEQ I EQUAL]
[UPDATE]

(VSAM only)
(blocked DAM only)
(VSAM only)

Exceptional conditions: DSIDERRj OOPKEY, ILLOGIC (VSAM only) ,
INVREQ, IOERR, ISCINVREQ, LENGERR, NOTFND,
NOTOPEN, SEGIDERR, SYSIDERR

This conmand is used to read a record from a direct-a.ccess data set on a
local or remote system.

The following example shows how to read a record from a data set into
a specified data area:

EXEC eICS READ
INTO (RECORD)
DATASEr (-MASTER·)
R:IDFLD (ACCl'NO)

Read a record
Data area
Data set
Record identification field

The following example shows how to read a record fran· a VSM data set
using a generic key, specifying a greater-or-equal key search; and that
the record is later to be rewritten into a data area provided by
CICS/VS:

Chapter 2.2. File COntxol 93

Page of SC 33-0 077-2 , revised September 1980 by TNL SN33-6268

EXEC CICS READ
INTO (RECORD)
LER;TH (RECLEN)
DATASET (eMAsrvSAMe)
RIDFLD (ACCTNO)
KEYLENGTH (4)
GENERIC
GTEQ
UPDATE

Read a record
Data area
Record length
Data set
Record identification field
Generic key length
Key is generic
Greater-or-equal search
Record is to be rewritten

If more than one READ command with the UPDATE option is executed
without corresponding REWRITE conunands; a unique record identification
field must exist for each to preserve the correct key for subsequent
execution of the REWRITE commands.

Note that the last example above would fail if the data set is
protected (LOG=YES specified in the DFBFcr TYPE=DATASET system macro) ,
because a generic key cannot be used with READ UPDATE on a protected
data set.

Write a Record (WRITE).

WRITE DATASET (name)
FROM pata-area)
[LENGTH(data~alue)]
RIDFLD (data-area)
[KEYLENGTH(data-value)]
[SYSID (name)]
[RBA IRRN]
[MASSINSERT]
[SEGSETALL]

(VSAM only)
(VSAM only)

Exceptional conditions: DSIDERR, DUPREC; ILLOGIC (VSAM only) ,
INVREQ, IOERR, ISCINVREQ; LENGERR,
NOSPACE, NOTOPEN, SYSIDERR

This corrmand is used to write a record to a direct-access data set on a
local or remote system. For example:

EXEC CICS WRITE
FROM (RECORD)
LENGTH" (DATLEN)
DATASET (-MASTER·)
RIDFLD (KEYFLO)

Write a record
Data area
Record length
Data set
Record identification field

For a VSAM entry-sequenced data set (ESDS) the reoord is always added
at the end of the data set, its relative byte address (RBA) being placed
in the record identification field specified in the RIDFLD option.

For a VSAM key-sequenced data set PSDS), the record is added in the
location specified by the associated key; this location may be anywhere
in the data set.

Records for entry-sequenced and key-sequenced data sets can be either
fixed length or variable length. Those for a relative record data set
must be fixed length.

94 CI CS/VS APRM (eL)

Page of SC33-0011-2, revised September 1980 by TNL SN33-6268

Update a Record (REWRITE)

REWRITE DATASET (name)
FROM (data-area)
[LENGTH (data-value)]
[SYSID (name)]
[SEGSETALL]

Exceptional conditions: DSIDERR, DUPREe; ILLOGIC (VSAM only) ,
INVREQ, IOERR, ISCrNVREQ, LENGERR,
NOSPACE, NO'lFND, NO'l'OPEN, SYS~ERR

This conmand is used to update a record in a direct;...access data set on a
local or remote system. The record to be updated must first be read by
a READ command with the UPDATE option.. For example:

EXEC CICS REWRITE
FROM (RECORD)
DATASET ('MASTER·)

Delete a VSAM Record (DELETE)

DELETE DATASET (name) .

Update a recom
Data area
Data set

[RIDFLD tiata-area)]
[KEYLENGTH(data-valuel]
[GENERIC [NUMREC (data-area)]]
[SYSID (name)]

(mandatory with GENERIC)
~ndatory with GENERI~

[RBAIRRN]

Exceptional conditions: DSIDERR, ILLOGIC, INVREQ, IOERR,
ISCINVREQ; NOTFND, NOTOPEN; SYSIDERR

This command is used to delete a record or, if a generic key is
provided, a group of records, from a VSAM key-sequenced or relative­
record data set on a local or remote system; when used for a group of
records the RIDFLD option is mandatory.

Unle ss a generic key is used, this command can be used also to delete
a VSAM record that has been read for update, instead of using a REWRITE
or UNLOCK cOllUlBnd. When used in this way, RIDFLD must not be specified.
A generic key must not be used for data sets for which LOG=YES has been
specified in the DFHFCT TYPE=DATASET macro by the system programmer.

The following example shows how to delete a group of records in.a
VSAM data set:

EXEC CICS DELETE
DATASET (·MASTVSAM·)
RIDFLD (ACCl'NO)
KEYLENG'rH (4)
GENERIC
NUMREC (NUMDEL)

Delete group of records
Data set
Record identification field
Generic key length
Key is generic
Return number deleted

Chapter 2.2. File COntrol· 95

Release Exclusive Control (UNLOCK)

I

I
UNLOCK DATASET (name) I

[SYSIn (name)] I
I

EKceptional conditions: DSIDERR, ILLOGIC (VSAM only), IOERR, I
ISCINVREQ, NOTOPEN, SYSIDERR I

I ,

This command is used to release exclusive control arrangements made in
response to a READ conunand with the UPDATE option. It is used when a
record has been retrieved for update and it is subsequently determined
that the update should not occur. The effect is to allow other
application programs to access the record that was to be updated.
However, for a data set for which auto logging has been specified by the
system programmer, the resource remains under the task control enqueue
until either a sync point command is executed, or the task is
terminated. The record can be in a data set on a local or remote
systein.

This command is also used to terminate a VSAM mass insert operation.

Start Browse (STARTBR)

STARl'BR DATASET (name)
RIDFLD (data-area)
[KEYLENGTH(data~alue)[GENERIC]]
REQID (data-value)
[sysm (name)]
[RBA I RRN]
[DEBKEY I DEBREC]
[GTEQ I EQUAL]

(VSAM only)
(blocked DAM only)
(VSAM only)

Exceptional conditions: DSIDERRj ILLOGIC (VSAM only), INVREQ,
IOERR i ISCINVREQ, NOTFND, NOTOPEN;
SYSIDERR

This co1TlDand is used to specify the record in a data set, on a local or
remote system, at which the browse is to start. No records will be read
until a READNEXT command (or, for VSAM only; a READPREV conmand) is
executed.

96 CICS/VS APRM (Ct.)

Read Next Record during a Browse (READ NEXT)

READNEXT DATASET(name)
{SET (pointer-ref) I INTO(data-area)}
[LENGTH (data-area))
RIDFLD(data-area)
[KEYLENGTH~ata-value)]
REQID (data-value)
[SYSID (name)]
[SEGSET(name) ISEGSETALL]
[RBA I RRN] (VSAM only)

Exceptional conditions: DSIDERR, DUPKEY, EHDFILE,
ILLOGIC (VSAH only), INVHEQ, lOEHR,
ISCINVREQ, LENGERR, NOTFND, NOTOPEN,
SEGIDEHR, SYSIDERR

This command is used to read records in sequential order from a data set
on a local or remote system. It can also be used during VSAM skip­
sequential processing.

The RIDFLD option must specify the same data area as that specified
in the RIDFLD option in the corresponding STARTBR command, but the
contbnts of thG data area can be different. If the NOTFND condition
occurs during a browse, a RESETBR command must be issued to reset the
browse, or an ENDBR com.and must be issued to terminate the browse.

Read Previous Record during a Browse (READPREV) (VSAM Only)

READPREV DATASET (name)
{SET (pointer-ref) I INTO (data-area)}
[LENGTH (data-area)]
RIDFLD(data-area)
[KEYLENGTH(data-value)]
REQID (data-val ue)
[SYSID (name)]
[SEGSET(name) ISEGSETALL]
[RBA I RRN]

Exceptional conditions: DSIDERR, DUPKEY, ENDFILE, ILLOGIC,
INVREQ, IOERR, ISCINVREQ, LENGERR,
NOTFND, NOTOPEN, SEGIDERR, SYSIDERR

This command is used only to read records in reverse sequential order
from a VSAa data set on a local or remote system.

The RIDFLD option must specify the same data area as that specified
in the RIDFLD option in the corresponding STARTBR command, but the
contents of the data area can be different.

If a READPREV command follows immediately a STARTBR comaand, the
latter must specify the key of a record that exists on the data set,
otherwise the NOTFND condition will be raised for the READPREV command.

A READPREV command following a READNEXT command will read the same
record as that read by the READNEXT command.

Chapter 2.2. File Control 97

Reset Start of Browse (RESETBR)

I

I
I
t
t
I
I
I
I
I
r
I
t

RESETBR DATASET (name)
RIDFLD(data-area)
[KEYLENGTB(data-¥alue) [GEBERIC]]
REQID(data-value)
[SYSID (name)]
[GTEQ r EQUAL]
[RBA t RRN]

(VSAM only)
(VSAM only)

Exceptional conditions: ILLOGIC (YSAM only), IHVREQ, IOERR,
ISCINVREQ, NOTFND, NOTOPEN, SYSIDERR

L __ ~

This command is used to specify the record in a data set, on a local or
remote system, at which the browse is to be restarted.

The RIDFLD option must specify the same data area as that specified
in the RIDFLD option in the corresponding STARTBR com.and, but the
contents of the data area can be different.

The RESETBR comaand can be issued at any time prior to issuing a
command. It is similar to an ENDBR STARTBR sequence (but with less
function), and gives the ISAft and DAM user the sort of skip-sequential
capability that is available to VSA! users through use of the READNEXT
comBland.

End Browse (ENDBR)

I

I
I ENDBR DATASET(name)
I REQID(data-value)
I [5 Y SID (nam e)]
I
I Exceptional conditions: ILLOGIC (VSAM only), INYREQ, ISCINVREQ,
I SYSIDERR
r L __ ~

This command is used to end a browse on a data set on a local or remote
system.

98 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

File Control Options

DATASET (name)
specifies the symbolic name of the data set to be accessed.
The name must be alphameric, up to seven characters in length
for DOS, up to eight characters in length for OS, and must have
been defined in the file control table (FCT).

If SYSID is specified; the data set is assumed to be on a
remote system irrespective of whether or not the name is
defined in the FCT. Otherwise; the FCT entry will be used to
determine if the data set is on a local or remote system.

DEBKEY (blocked DAM only)
specifies that deblocking is to occur by key.. If neither
DEBREC nor DEBKEY is specified, deblocking does not occur.

If KEYLENGTH is specified, its value must be the sum of the
lengths of all three subfields comprising the key.

DEBREC (blocked DAM only)
speci fies that deblocking is to occur by relative record
(relati ve to zero). If neither DEBREC nor DEBKEY is spec if ied,

deblocking does not occur.

If KEYLENGTH is specified, its value must be the sum of the
lengths of all three subfields comprising the key.

EQUAL (VSAM only)
specifies that the search will be satisfied only by a record
having the same key (complete or generic) as that specified in
the RIDFLD option.

FROM (data-area)
specifies the record that is to be written to the data set.

GENERIC (ISAH, VSAM only)
specifies that the search key is a generic key whose length is
specified in the KEYLENGTH option. The search for a record is
satisfied when a record is found that has the same starting
characters (generic key) as that specified. For VSAM, this
search will only take place if the EQUAL option alsoMs been
specified.

A generic key cannot be used with a READ UPDATE command or a
DEJ;...ETE connnand if the data set is protected ([,OG=YES specified
in the DFHFCT TYPE=DATASET system macro) •

GTEQ (VSAM only)
specifies that if the search for a record having the same key
(canplete or generic) as that specified in the RIDFLD option is
unsuccessful, the first record having a greater key will
satisfy the search.

INl'O (da ta-area)
specifies the data area into which the record retrieved from
the data set is to be written.

Chapter 2.2. File Control 99

KEYLEtGTH (data....J\7alue)
specifies the length (halfword binary) of the key that has been
specified in the RIDFLD option, except when RBA or RRN is
specified when it is invalid. This option must be specified if
GENERIC is specified, and it can be specified whenever a key is
specified. However, if the length specified is different .from
the length specified in the FCT and the operation is not
generic, the INVREQ condition occurs.

If KEYLENGTH ia omitted from a READNEX'!' or READPREV command
used in a generic browse, norma1 browsing occurs.

IfKEYLEN;TH is specified in .a READNEX'!' or READPREV conunand
used in a generic browse, a new browse is started using the
keylength specified and the key in the RIDFLD option.

The use of KEYLENG'l'H with remote data sets is discussed earlier
~n the chapter.

LENG'!'H(parameter)
specifies the length (as a halfword binary value) of the record
to be used with READ, . REAnNEX'!', READPREV, RmiRITE, and WRITE
commands. This option must be specified if SYSID and either
IN'l'O or FROM are specified.

For a READ, READNEXT, or READPREV command with the IN'l'O option,
the parameter must be a data area that specifies the largest
record the program will accept. If the value specified is less
than zero; zero is assumed. If the record exceeds the value
specified, it is truncated to that value and the LENGERR
condition occurs. ,.On completion of the retrieval operation,
the data area is reset to the original length of the record.

For a READ, RFADNEX'!', or READPREV command with the SE'!' option,
the parameter must be a data area. On completion of the
retrieval operation, the data area is set to the length of the
record, except for a record whose format is undefined, when it
is set to the maximum record length.

For a WRITE or REWRITE conunand, the parameter must be a data
value that is the length of the record that is to be written.

This option need oot be specified for fixed-length records when
the length is known and a data area of the correct size is
available.

MASS INSER'!' (VSAMonly)
specifies that the WRITE command is part of a mass-insert
operation.

NUMREC (data-area)
specifies a halfword binary data area that is to be set to the
number of records deleted.

RBA (VSAM only)
specifies that the record identification field specified in the
RIDFLD option contains a relative byte address.

100 CICS/VS APRM (CL)

BEQID(data-value)
specifies as a halfword binary value a unique request
identifier for a browse, used to control multiple browse
operations on a data set. If this option is not specified, a
default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The contents can be
a key (for ISAM and VSAM data sets), a relative byte address or
relative record number (for VSAM data sets), or a block
reference, physical key, and deblocking argument (for DAM data
sets). For a relative byte address or a relative record
number, the format of this field must be fullword binary.

BRN (VSA~ only)
specifies that the record identification field specified in the
BIDFLD option contains a relative record number. This option
should only be used with relative record data sets.

SEGSET(name)

SEGSETALL

specifies the name of the segment set to be retrieved. The
name may be up to eight characters and must have been defined
in the segment control section of the FCT. The data set must
contain segmented records. SEGSET cannot be used with UPDATE.

specifies that the entire record in an unpacked and aligned
format is required. The data set must contain segmented
records. If neither SEGSET nor SEGSETALL is specified in a
command, and the data set contains segmented records, the
record is returned in its packed unaligned format.

SET (pointer-ref)
specifies the pointer-reference which is to be set to the
address of the retrieved record. This option implies locate­
mode access.

In assembler language, if the DUPKEY exceptional condition
occurs, the register specified will not have been set, but can
be loaded from DFHEITP1.

SYSID~ame)
specifies the name of the system whose resources are to be used
for intercommunication facilities. The name may be up to four
characters in length.

When this option is specified, LENGTH and KEYLENGTB must be
specified in some situations where normally they need not be,
as follows. If neither BSA nor RRN is specified, KEYLENGTH
must be specified; it cannot be found in the FCT. If SET is
not specified, LENGTH must either be specified explicitly or
must be capable of being defaulted from the INTO or FROM option
using the length attribute reference in assembler language, or
STG and CSTG in PL/I. LENGTH must be specified explicitly for
COBOL.

Chapter 2.2. File Control 101

nPDATE
specifies that the record is to be obtained for updating or
(for VSAft only) deletion. If this option is omitted, a read­

only operation is assumed.

102 CICS/VS APR! (CL)

File Control Exceptional Conditions

DSIDERR

DUPKEY

DUPREC

ENDFILE

occurs if a data set name referred to in the DATASET option
cannot be found in the FCT.

Default action: terminate the task abnormally.

occurs if a record is retrieved via an alternate index in which
the key that is used is not uni~ue. It will not occur as a
result of a READNEXT command that reads the last of the records
baving the non-unique key.

In assembler language, if the SET option is being used, the
register specified will not have been set, but can be loaded
from DFHEITP1.

Default action: terminate the task abnormally.

occurs if an attempt is made to add a record to a data set in
which the same key already exists.

Default action: terminate the task abnormally.

occurs if an end-of-file condition is detected during a browse.

Default action: terminate the task abnormally.

ILLOGIC (VSAft only)

INVREQ

occurs if a VSAM error occurs that does not fall within one of
the other CICS/VS response categories. Further information is
available in the EXEC interface block (refer to Appendix A for
details) •

Default action: terminate the task abnormally.

occurs if any of the following situations exist:

A requested file control operation is not provided for or
allowed according to the data set entry specification in the
FCT.

A REWRITE command, or a DELETE command without the RIDFLD
option, is issued for a data set for which no previous READ
UPDATE command has been issued.

A READNEXT, READPREV, EIDBR, or RESETBR command is issued for a
data set for which no previous STARTBR command has been issued.

A READPREV command is issued for a data set for which the
previous STARTBR command has the GENEBIC option.

The KEYLENGTH option is specified (but the GENERIC option is
not specified), and the specified length does not equal the
entry in the FCT for the data set.

Chapter 2.2. File Control 103

IOERR

The KEYLENGTB and GENERIC options are specified, and the length
specified in the KEYLENGTB option is either less than zero, or
greater than or equal to the length in the PCT entry.

A DELETE command is issued for an ISla or DA~ data set.

A DELETE command with the RIDFLD option specified is issued for
a VSAa data set when a READ UPDATE command is outstanding.

Following a READ UPDATE command for a data set, a WRITE or READ
UPDATE command is issued for the same data set before exclusive
control is released by a REWRITE, UNLOCK, or DELETE command.

The data area specified in the RIDFLD option is not the same
one in all the commands of a browse.

An attempt is made to start a browse with a REQID already in
use for another browse.

The method ~or exaaple, key or relative record number) used to
access a file during a browse is changed by a READNEXT or
READPREV command.

SEGSET or SEGSETALL is specified but the data set does not
contain segmented records, or is on a remote system.

Further information is availaole in the EXEC int&riace block
(refer to Appendix A for details) •

Default action: terminate the task abnormally.

occurs if there is an I/O error during a file control
operation. An I/O error is any unusual event that is not
covered by a CICS/VS exceptional condition.

Default action: terminate the task abnormally.

ISCINVREQ

LENGERB

occurs when the remote system indicates a failure which does
not correspond to a known condition.

Default action: terminate the task abnormally.

occurs if any of the following situations exist:

The LENGTH option is not specified for an input (without the
SET option specified) or output operation involving variable­
length records.

The length specified for an output operation exceeds the
maximum record size; the record is truncated.

The length of a record read during an input operation ~ith the
INTO option specified) exceeds the value specified in the
LENGTH option; the record is truncated, and the data area
supplied in the LENGTH option is set to the actual length of
the record.

An incorrect length is specified for an input or output
operation involving fixed-length records.

104 CICS/VS APRM ~L)

NOSPACE

NOTFND

NOTOPEN

SBGIDERR

SYSIDERR

Default action: terminate the task abnormalLY.

occurs if no space is available on the direct-access device for
adding records to a data set.

Default action: terminate the task abnormally.

occurs if an attempt to retrieve or delete a record based on
the search argument provided is unsuccessful. This could occur
on a REWRITE command if the RIDFLD data area has changed since
the previous READ command. It may occur also on a READPREV
command immediately following a STARTBR command which specifies
the key of a record that does not exist on the data set.

Default action: terminate the task abnormally.

occurs if the requested data set is not open. This condition
can occur in response to any file control command except UNLOCK
and ENDBR, because a data-base data set can be closed
dynamically at any time without regard to outstanding activity
on the data set.

Default action: terminate the task abnormally.

occurs when the name specified in the SEGSET option is not
defined in the FCT.

Default action: terminate the task abnormally.

occurs when the SYSID option specifies either a name which is
not defined in the intersystem table or a system to which the
link is closed.

Default action: terminate the task abnormally.

Chapter 2.2. File Control 105

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Chapter 2.3. DL/I Services (DL/I CALL Statement)

DL/I is a general-purpose data base oontrol system that executes in a
virtual-etorage environment under VSE, OS,lVS1, or OS/VS2. It simplifies
the creation and maintenance of data bases that can be created by
CICS/VS application programs.

For VSE, the DL/I program product (program number 5746-XX1) is used,
running as part of the CICS/VS partition. For further information about
DL/I, refer to the CICSIVS SystemlApplication Design Guide.

For OS/VS, the IMS,lVS program product (program number 5740-XX2) is
used, running as part of the CICS,lVS region. For further information
about IMS/VS, refer to the CICSIVS SystemlApplication Design Guide.

For. assembler language, COBOL, and PL/I application programs using
the comnand-level interface, all CICS/OS/VS requests, and CICS/DOS/VS
assembler-language requests must be in the form ofDL/I CALL statements
which are identical to DL/I data base CALL statements running in batch
mode or under IMS/VS data communication. (For assembler-language
application programs; the CALLDLI IlBcro I rather than the CALL macro,
should be used when running under CICS/VS.) .

However i for CICS/DOS/VS requests for COBOL and PL/Iapplication
programs; the DL/I conunand-level interface provides a simpler method (by
means of the EXEC DLI command) of accessing DLjI data bases.

This chapter describes only the CALL DL/I method of accessing DL/I
data bases. The use of the EXEC DLI command for COBOL and PL/I users is
described in Chapter 2.4.

The two methods of accessing DL/I data bases cannot both be used in
the same task. However; it is possible for different tasks in the same
system to use different methods.

The CICS/VS application program can :z;equest DL/I services by means of
a DL/I CALL statement. In response to such a request, control is passed
to a CICS/VS-DL/I routine that acts as an interface between the CICS,lVS
application program and DL/I. This interface routine checks the
validity of the CALL list, sets up DL/I to hand1e the request, and
passes control and the CALL list to DL/I. When the interface routine
regains control, it, in its turn, returns control to the calling
program; unless· aDL/I pseudo-ABEND has occurred; in which case the
CICS/VS task is abnormally terminated.

Under CICS/VS, two or nore tasks may require access to the same
application program at the same time. Because CICS/VS application
programs must be quasi-f:eenterable, DL/I areas that may be modified
under CICS,IVS, such as PCB pointers, segment search arguments, and I/O
work areaSj should be placed in dynamic storage. For assembler language
this will be in the DPHEISTG DSECT, for CQBOL in Working Storage; and
for PL/I in AUTOMATIC storage.

The DL/I data-base access capabilities of a CICS,lVS application
program are defined in a program specification block (PSB) whiCh is
created, by the system programmer; by means of a PSB generation utility
program.

The PSB contains one or more program corimunication blocks (PCBs) that
describe the data-base access requirements of each DL/I data base to be
accessed by the application program.

Chapter 2.3. DL/I Services (DL/I Call Statement) 107

A CICS/'VS application program designed to access DL/I data bases must
schedule its access to DIv'I. Schedu1ing involves, for example, ensuring
that the PSB is valid; that 'the application is not already scheduled,
that the referenced data bases are open and enabled, and that there is
no intent conflict between the PSB and already scheduled PSBs fran other
application programs. Negative responses to any of the above will
prevent scheduling.

The scheduling call; if successful, returns a list of addresses of
the PCBs within the scheduled PSB. The application program in a
subsequent CALL statement can specify, from this list, the address of
the PCB corresponding to the data base to be accessed. If the addresses
cannot be obtained; an INVREQ (invalid request) indicator is returned in
response to subsequent DL/I CALL statements in the application program.

A task may schedule only one PSB at a time. Any attempt to schedule
a second PSB while one is still scheduled causes the INVREQ indicator to
be returned.

A sync point request .(see Chapter 5.6) by a task that is scheduled to
use DL/I resources implies the release of those resource s. This means
that if i after issuing a sync point request, access to a DL/I data base
is required, the PSB must be rescheduled. The previous position of the
data base has been lost.

To access DL/I data bases, the following steps are required.

1. Issue a DL/X call to schedule the PSB and obtain PCB addresse s.

2.. Issue a DL/I call to access the required data base.

3. Check the results immediately following each DLji call.

4.. Issue a DL/I call; when all DL/I access is complete I to terminate
the connection by releasing the PSB.

User Interface Block (UIB)

The CICS/V8-DL/I routine that acts as the interface between the CICS/VS
application program and DL/I passes information to the application
program in a User Int~rface Block (OIB). A definition of the UIB must
be iD: I med in the application program. The UIB is acquired by the
interface routine when an application program issues a schedule request
specifying a pointer reference to be set with the address of the UIB.
The UIB contains the address of the PCB address list from the schedule
request and; for each IL/I request, the response from the interface
routine, as follows:

Field Assembler COBOL l!!L! Descril2tion

UIBPCML DSA PIC 9 (8) CCKP POINTER PCB address list
UIBRCODE DS OXL2 PIC :xx afAR (2) DL/I retuxn code
umFCTR DS X PIC X CHAR (1) Overlay for 1st byte

of return code
UIBDLTR DSX PIC X CHAR (1) OVerlay for 2nd byte

of return code

Assembler language
The um definition is included by invoking the DL:rUIB macro.

:Loa CICS /VS APRN ~)

COBOL

PL/I

The urB definition is included by a COpy DLIUIB statement in
the Linkage Section of the program.

The urB definition is included by a %INCLUDE DLIUIB statement.

Examples of these are given at the end of the chapter.

Schedule the PSB and Obtain PCB Addresses

The format of the CALL statement to request scheduling of the PSB and to
obtain the associated PCB addresses is as follows:

Assembler language:

CALLDLI ASMTDLI, ([parmcount,]function,psbname, pointer-ref)

COBOL:

CALL 'CBLTDLI' USING [parmcount,]function,psbname,pointer-cef

PL/I:

CALL PLITDLI ([parmcount,]function,psbname,pointer-ref)

where:

nparmcount n
is a binary fullword containing a count of the arguments that
follow.

"function"

"psbnam e"

is the name of the field containing the four-character function
'PCB)r' •

is an eight-byte field containing the PSB generation name (one
through seven characters for DOS;VS, and one through eight for
OS/VS) accessed by the application program. It is left
justified and padded right with blanks as appropriate. If the
PSB name is specified as '*' padded right with blanks, a
default name is supplied. For CICS/DOS/VS this default is the
first PSB name associated with the application program in the
DL/I DOS/VS Application Control Table (ACT) as defined during
DL/I DOS/VS system generation. For CICS/OS/VS, this default is
the name of the application program associated with this task
in the CICS/VS Program Control Table (PCT).

If the call is successful, field UIBPCBAL in the orB will
contain the address of the list of PCB addresses. The order of
the addresses is the same as the PCBs within the PSB as
specified when the PSB was generated.

If the call is unsucces~ful, the reason for the failure will be
indicated in field UIBRCODE in the UIB.

Chapter 2.3. DL/I Services (DL/I Call statement) 109

"pointer-ref"
is a pointer reference that will be set to the address of the
UIB after the call has been processed. The UIB contains the
address of the PCB address list and the response from the
CICS/VS-DL/I interface.

Building Segment Search Arguments (SSAs)

Segment 5earch Arguments ~SAs) are used to identify segments of a DL/I
data base. SSAs may be simple segment names or they may be qualified to
include constraints made upon the values of fields within the named
segment types. (For information on how to build an 5SA, refer to the
publications DL/I DOS/y5 Aeelication Program.in~Refe£ence "anual or
IKS/V5 ApDlication Programming Reference ~anual.)

Except for a read-only operation, when it is unnecessary, SSAs used
by a CICS/VS application program must be in dynamic storage because of
the requirement for the program to be quasi-reenterable.

• For assembler-language programs, the SSAs should be placed in the
dummy section called DFHEISTG.

• For COBOL programs, the SSAs should be in the Working-Storage
section.

• For PL/I programs, the SSAs should be in AUTO~ATIC storage.

Acquire an I/O Work Area for DL/I Segments

An I/O work area is required by DL/I to hold the segment being retrieved
or to hold the segment being written to the data base. Like S5As, this
work area must be in dynamic storage. The address of the work area is
specified as the address of the first byte of the data area.

Issue a DL/I Data Base Call

The format of the CALL statement to request DL/I services is as follows:

Assembler lan~:

CALLDLI A5KTDLI[, ([parmcount,]function,pcb,workarea[,ssa1,ssa2, •••])]

COBOL:

CALL 'CBLTDLI' USING [parmcount,]function,pcb,workarea[,ssal,ssa2, •••]

CALL PLITDLI ([parmconnt,]function,pcb,workarea[,ssa1,ssa2, •••])

where:

110 CIC5/V 5 APR!! (C.i..)

"parmcount"
is the name of a binary fullword containing a count of the
arguments that follow.

"function"

"pcb"

is the 2-4 byte name of the function to be performed. Valid
function names for a CICSjVS application program are as
follows:

"CBKPn

"GU"

"GN"

request that a checkpoint be issued.

get a unique segment identified by 55As.

get the next segment in the data base, optionally qualified
by SSAs.

"GNP"
get the next segment within the scope of the current
hierarchy in the data base, optionally qualified by 5SAs.

"GRUft
as for "GU", but in addition, hold the segment for
subsequent update.

"GHN"
as for "GN", but in addition, hold the segment for
Subsequent update.

"GHNP"
as for "GNP", but in addition, hold the segment for
subsequent update.

"ISRT"
insert a new segment at the current position; also used in
the initial load of a data base.

"REPL"
replace a segment at the current position.

"DLET"
delete the segment at the current position.

is a field containing the address of the PCB corresponding to
the data base specified in the call. This address is one of
the addresses returned in the address list by the schsduling
call.

"workarea"
specifies the workarea that contains the segment being passed
to DLjI or is to contain the segment being retrieved from DL/I.

"ssa 1 ,ssa2, ••• 11

are the names of the 55As.

For details of DOS calls, refer to the ~~D05/V5 Application
Programmer's Reference Manual.

Chapter 2.3. DL/I Services (DLII Call Statement) 111

Release a PSB in the CICS/VS Application Program

When all DL/I operations have been completed, the PSB should be released
(or terminated), so that it can be used by other application programs.

The releasing application program can reuse the PSB or a different PSB
as required.

The DL/I CALL statem&nt is used to release a PSB. It causes all data
base records used by the application program, and all associated log
records to be written out. It also causes a CICS/VS sync point to be
taken, unless the PSB is local and read-only, which has the effect of
committing all activity performed by this task, both related to DL/I and
to CICS/VS protected resources. (A sync point is taken by means of the
SYNCPOINT command, as described in Chapter 5.6.)

Changes performed prior to the execution of the command will not be
backed out either in the event of Dynamic Transaction Backout for a
single failing task, or in the event of an emergency restart following
an abnormal termination of the system. A CICS/VS sync point generates
implicitly a DL/I release statement. CALL statements and sync points
should be specified only at points in the transaction where logically
related processing ends.

The PSB must be rescheduled explicitly after it has been released ~y
a CALL or sync point) if further access to the data base is required,
because the position of the data base has been lost by the release
mechanism.

The format of the CALL statement to release a PSB is as follows:

Assembler language:

CALLDLI ASMTDLI, ([parmcount,]function)

~OBOL:

CALL 'CBLTDLI' USING [parmcount,]function

PL/I:

CALL PLITDLI (parmcount,function);

where:

"parmcount"
is the name of the binary fullword containing the parameter
count value of one.

"function"
is the name of the field containing the four-character function
'TERM' or 'T~~~·.

Check the Response to a OL/I CALL

The response to a DL/I CALL statement should always be checked so that,
if unsuccessful, alternative processing can be initiated. Two types of
check can be performed, as follOWS:

112 CICS/VS APRM (CL)

• A check that the CICS/VS-DL/I interface has been used correctly by
the application program (for example, the required PSB not being
found in the directory of PSBs would cause a response code to be
returned). The response codes for this type of error appear in the
UIB for the task.

• A check that the specified DL/I function has been performed
correctly according to the rules of DL/I (for example, a segment
that cannot be located from the specified SSA would caase an error
indication). This type of error is detected internally by DL/I and
is explained in the appropriate DL/I application programaing
reference manaal. DL/I may also issue a pseudo-ABEND which causes
the task to be terminated rather than control to be returned to the
CICS/VS application program. For CICSjDOS/VS the task is
terminated with an ABEND code of "Dnnn", where "nnn" is the DL/I
pseudo-ABEND code; for OS the code is lDLA.

For the first type of check, the response codes are returned in
fields UIBFCTR and UIBDLTR in the OIB; these two fields are known
collectively as UIBRCODE. Figure 2.3-1 lists the response codes.
fields should be examined first and, if normal, the DL/I response
PCB should be examined.

These
in the

Chapter 2.3. DL/I Services (DL/I Call Statement) 113

r
UIBFCTR Response Code

Condition
ASM COBOL PL/I

NOR ESP (normal response) X'OO' LOW-VALUES 00000000

NOTOPEN (not oPen) X'Oct 12-4-S-9 00001100

INVREQ (invalid request) X'OS' 12-8-9 00001000

Invalid PCB address X'10' 12-11-1-8-9 00010000

Following codes returned in UIBDLTR after NOTOPEN condition raised
I

Data base not open; request issued I X'OO'
in OS/Vs system I

I
Data base not open; request issued I X' 01'
in VSE system I

I
Intent scheduling conflict I X'02 '

I

Following codes returned in UIBDLTR after

Data base not in FCT, or not open
according to FCT, or invalid
argument passed to DL/I

PSBNF (PSB not found)

TASKNA (task not authorized)1

PSBSCB (PSB already scheduled)

LANGCON (language conflict) 1

PSBFAIL (PSB initialization failed)

PSBNA (PSB not authorized)l

TER!!NS (termination unscheduled)

FUNCRS (function unscheduled)

OLINA (DL/I not active)

1 CICS/DOS/VS only

X'OO'

X'Ol'

X'02 1

X'03'

X'04 •

X'OS'

X'06 '

X'01'

X'OS'

X'FP'

12-0-1-8-9 00000000

12-1-9 00000001

12-2-9 00000010

IHVREQ condition raised
r

12-0-1-8-9 00000000

12-1-9 00000001

12-2-9 00000010

12-3-9 00000011

12-4-9 00000100

12-5-9 00000101

12-6-9 00000110

12-1-9 00000111

12-S-9 00001000

1 2-11-0-7-S-9 11111111

Figure 2.3-1. CICS/VS-DL/I Interface Response Codes

114 CICS/VS APR! (CL)

Example of DL/I Request Using CALL (VSE Only)

The following example shows, in the different application programming
languages, the use of the DL/I CALL statements to request DL/I services:

ASSEMBLER LANGUAGE

DFBEISTG
UIBPTR
IOAREA
AREAl
AREA2

PCBPTRS
PCB1PTR
PCBl

DBPC1DBD
DBPC1LEV
DBPC1STC
DBPC1PRO
DBPC1RSV
DBPC1SFD
DBPC1MKL
DBPC1NSS
DBPC1KFD
DBPC1NM
DBPC1NMA
DBPC11U!P
ASMUIB

PSBNAI!E
PCBFUN
REPLFUN
TERMFUN
GHUFUN
BLANKS
SSAl
GOODRC
GOODSC
SKIP

DSECT
DS F
DS OCL40
DS CL3
DS CL31
DLIUIB
USING UIB,8
DSECT
DS
DSBCT
USING
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
CSBCT

F

PCB1,6
CLa
CL2
CL2
CL4
F
CLa
F
F
OCL256
OCL12
OCL14
CL17

B SKIP
DC CLS'ASMPSB'
DC CL4 'PCB'
DC CL4 I REPL'
DC CL4' TERI! I

DC CL4'GHU'
DC CL3'
DC CL9'AAAA4444'
DC XL1'00'
DC CL2'
DS OR
CALLDLI ASMTDLI,(PCBFUN,PSBNAI!E,UIBPTR)
L 8,UIBPTR
CLC UIBFCTR,X100'
BNE BRROR1
L 4,UIBPCBAL
USING PCBPTRS,4
L 6,PCB1PTR
CALLDLI ASMTDLI, (GBUFUN,PCB1,IOAREA,SSA1)
CLC UIBFCTR,GOODRC
BNB ERROR2
CLC DBPC1STC,GOODSC
BNE ERROR3
MVC lREA1,BLANKS
CALLDLI lSKTDLI, (RBPLFUN,PCB1,IOAREA,SSA1)
CLC UIBFCTR,GOODRC
BNE ERROR4
CLC DBPC1STC,GOODSC
BNE ERRORS
B TERI!

Chapter 2.3. DL/I Services (DL/1 Call Statement) 115

ERROR 1 DS Off

* INSERT ERROR DIAGNOSTIC CODE
ERB032 DS OH

* INSERT ERROR DIAGNOSTIC CODE
ERROR3 DS OR

* INSERT ERROR DIAGNOSTIC CODE
ERRORQ DS OR

* INSERT ERROR D IAGlfOS TIC CODE
ERRORS DS OR

* INSERT ERROR DI.AGNOSTIC CODE
TERM DS OB

CALLDLI ASMTDLI, (TERMFUN)
END ASMUIB

116 CICS/VS APRM (CL)

COBOL

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CBLUIB I.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKI~RAGE SECTION.
77 PSB-NAME PIC X (8) VALUE 'CBLPSB I

77 PCB-FUNCTION PIC X (4) VALUE IPCB '.
77 TERM-FUNCTION PIC X (4) VALUE 'TERM'.
77 GHU-FUNCTION PIC X (4) VALUE 'GHU '.
77 REPL-FUNCTION PIC X (4) VALUE 'REPL I ..

77 TBREE-BLANKS PIC X (3) VALUE' I

77 SSAl PIC X(9) VALUE 'AAAA4444 I.

77 SUCCESS~ESSAGE PIC X~O) •
77 GOOD-5TATUS-CODE PIC XX VALUE I •

77 GOOD-RErURN-CODE PIC X VALUE LOW-VALUE.
01 MESSAGE.

02 MESSAGEl PIC X (38) •
02 MESSAGE2 PIC XX.

01 DLI-IQ-AREA.
02 AREAl PIC X (3) ..
02 AREA2 PIC X (37) •

LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9 (8) COMP.
02 UIB-PTR PICS9~) COMP.
02 B-PCB-Pl'RS PIC S9 (8) Ca4P.
02 PCB1-PTR PIC S9 (8) COMP.

01 DLIUIB COPY DLIUIB.
01 PCB-PTRS.

02 B-PCB1-PTR PIC 9 (8) COMP.
01 PCB1.

02 PCBI-DBD-NAME PIC X (8) •
02 PCBI-BEG-LEVEL PIC XX.
02 PCB1-STATUS-OOOE PIC XX.
02 PCBI-PROC-oPT PIC XXXX.
02 FILLER PIC S9(~ COMP.
02 PCB1-Sm-NAME PIC X (8) •
02 PCBI-LEN-KFB PIC S9 (5) CCMP.
02 PCB1-NU-SENSEG PIC S9 (5) COMP.
02 PCBI-KE!'-FB PIC X (256) •

PROCEDURE DIVIS ION.
CALL ·CBLTDLI' USING PCB-FUNCTION, PSB-NAME, UIB-PrR.
IF UIBFCTR IS R>T EQUAL LOW-VALUES THEN

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE B-PCBI-PrR TO PCBl-PTR.
CALL 'CBLTDLI' USING GBU-FUNCTION; PCB1; DLI-Io-ARFAI SSA1.
SERVICE RELOAD UIB-PTR
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-cQDE THEN

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

IF PCBl-5TATUS-CODE IS R>T EQUAL GOOD-STAT05-CODE mEN
* INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETDRN END-EXEC.
MOVE THREE-BlANKS TO AREAl..
CALL 'CBLTDLI I USING REPL-PUNCTION; PCBl ;DLI-IO-AREA; SSAl..
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-COOE THEN .

* INSERI' ERROR OIAGNOsrIC CODE
EXEC CICS RETURN END-EXEC.

IF PCBl-5TATUS-CODE IS NOT EQUAL OOOD-STATUS-COOE- THEN

Chapter 2 .. 3. DL/I Service s (DLII Cal.l Statement) 117

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC ..

CALL • CBLTDLI· USING TERM-FUNCTION ..
EXEC CICS RETURN END-EXEC.

118 CICS,lVS APRM (CL)

PLjI

PLIUIB: PROC OPTIONS (MAIN) ;
DCL PSB_NAKE CHAR(S) STATIC INIT('PLIPSB ');
DCL PCB FUNCTION CHAR (4) STATIC IN IT ('PCB I);
DCL TERM_FUNCTION CHAR (4) STATIC INIT('TERM');
DCL GHU_FUNCTION CHAR(q) STATIC INIT(IGHU ');
DCL REPL_FUNCTION CHAR (4) STATIC INIT(,REPL');
DCL THREE_BLANKS CHAR (3) STATIC INIT (' I) ;

DCL SSA1 CHAR(9) STATIC INIT('AAAA4444 I);
DCL PARM_CT_l FIXED BIN (31) STATIC INIT(l);
DCL PARM_CT_3 FIXED BIN(31) STATIC INIT(3);
DCL PARM_CT_4 FIlED BIN (31) STATIC INIT(4);
DCL GOOD_RETURN_CODE CHAR (1) STATIC INIT(LOW(l»;
DCL GOOD_STATUS_CODE CHAR (2) STATIC IN IT (I I);

DCl (IO_AREA_PTR,UIB_PTR) POINTER;
IINCLUDE DLIUIB;
DCL 1 PCB_POINTERS BASED (UIBPCBAL),

2 PCB1_PTR POINTER;
DCL 1 DLI 10 AREA,

2 AREA"1 CHAR (3),
2 AREA2 CHAR (37) ;

DCL 1 PCBl BASED(PCB1_PTR),
2 PCB1_DBD_NAME CHAR(S),
2 PCB1_SEG_LEVEL CBAR(2),
2 PCB1_STATUS_CODE CBAR(2),
2 PCB1_PROC_OPTIONS CHAR(4),
2 PCBl RESERVE DLI FIXED BIN (31,0),
2 PCB1:SEGNAME:FB CHAR (8) ,
2 PCBl LENGTH FB KEY FIlED BIN(3l,0),
2 PCB1:NUMB_SENS:SEGS FIXED BIN (31,0) ,
2 PCB1_KEY_FB_AREA CHAR (17) ;

CALL PLITDLI(PARM_CT_3,PCB_FUNCTION,PSB_NA~E,UIB_PTR);
IF UIBFCTR,='OOOOOOOO'B THEN DOi

/* INSERT ERROR DIAGNOSTIC CODE */
END;
CALL PLITDLI(PARM_CT_4,GHU_FUNCTION,PCB1,DLI_IO_AREA,S5A1);
IF UIBFCTR,=GOOD_RETURN_CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END;
IF PCB'_STATUS_CODE,=GOOD_STATUS_CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END;
AREA1=THREE BLANKS;
CALL PLITDLI (PARM_CT_ 4 ,REPL_FUNCTION, PCB 1 ,DLI_IO_AREA, 5SA 1) ;
IF UIBFCTR,=GOOD_RETURN_CODE THEN DO;

/* INSERT ~RROR DIAGNOSTIC CODE */
END;
IF PCB1_STATUS_CODE,=GOOD_STATU5_CODE THEN DO;

/* INSERT ERROR DIAGNOSTIC CODE */
END;
CALL PLITDLI (PARI1_CT_1 ,TERM_FUNCTION) ;
END PLIUIB;

Chapter 2.3. Dl/I Services (DL/I Call statement) 119

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Chapter 2.4. DL/I Services (EXEC DLI Command)

This chapter outlines the EXEC DLI Command that can be used in
CICS/DOS/VS command-level application programs that are used to access
DL/I data bases under VSE. These programs, which can be written only in
COBOL or P~I, require the installation of the DLjI DOSjVSprogram
product (program number 5746-XX1), which runs as part of the CICS/VS
parti tion in the VSE system;.

These commands have a syntax and. format that are similar to CICS/VS
commands (EXEC DLI instead of EXEC CICS) •

The canmands.;are translated by the appropriate command language
translator (see Chapter 1.2) into calls to the CICSjVS link-edit stub.
At execution, DFHEIP is invoked which in turn invokes a DL,II interf~ce
program to perform the requested operations.

There are no exceptional conditions for DL/I commands, though the
HANDLE ABEND command can be used if desired to handle abends issued by
DL/I.

General Format of EXEC DLI Command

The general format of the EXEC DLI' command is as follows:

{EXECUTE I EXEC} DLI function [option[(argument)]] •••

The functions, options, and argUments that can be used are as
follows:

Chapter 2.4. DL,II Services (EXEC DLI COIllllaIld) 121

CHECKPOINTICHKP Request a checkpoint
IO (char-expr)

DELETEIDLET Delete a segment
[USING PCB (integer~xpr)]
[VARIABLE] .

SEGMENT (name)
FROM (da ta-area)
[SEGLENGTH(integer~xpr)]

GET UNIQUE,GU or
GET NEXT I GN or
GET NEXT IN PARENTIGNP Retrieve a segment

[USING PCB (integer-expr)]
[VARIABLE]
[FIRST I LAST]
[SEGMENT (name)]
[LOCKED]

INTO (data-area)
[SEGLENGTB(integer~xp~]
[WHERE (name operator data area)]
[FIELDLENGTH~nteger-expr)]
[OFFSET(integer~xpr)]

INSERTIISRT Insert a segment
[USING PCB (integer-expr)]
[VARIABLE]
[FIRST I IAST]

SEGMENT (name)
[SEGLENGTH(integer-expr)]

FROM (data-area)
[WHERE (name operator data area)]
[FIELDLENGTH(integer-expr)]

REPLACEIREPL Replace a segment
[USING PCB(integer~xpr)
[VARIABLE)

SEGMENT (name)
[SEGLENGTB(integer~xpr)]

FROM (data-area)

SCBED~ISCHD Schedule a program specification block
[PSB (name)]

TERMINATEITERM Terminate access

~: SEGLENGTH is required in COBOL whenever FROM or INTO is specified.
It is never required in PL/I ..

On the GET; INSERT I and REPLACE comnands, the segment-oriented
keywords (that is, all those except USING PCB) may be repeated for each
segment. Keywords preceding the keyword SEGMENT in the above list must
be written inunediately preceding the segment to which they apply, but
within themselves may be written in any order. Similarly, keywords
which follow the keyword SEGMENT in the above list must be written
immediately following the segment to which they apply, but within
themselves they may be written in any order.

The command must be delimited; in the same way as an EX~ CICS
command, by END-EXEC for COBOL and by a semicolon for PL/I, for example:

EX~ m.I GET SEGMENT (SKILL) WHERE (SKILLTYPE= ·PLUMBER .)
INTO (SKILLSTRUCT) END4aEC

122 (!ICS/VS APRM (CL)

DL/I Interface Block (DIB)

The CICS/VS-DL/I interface module passes information to the CICS/VS
application program in a DL/I Interface Block (DIB). The DIB contains
the response from the interface module in the field DIBSTAT. The DIB
structure is included automatically in the application program by the
translator, and unlike the EIB, no copy book exists in the source
statement library. The fields and their descriptions are as follows:

DIBFLAG

DIBSEGLV

DIBSEGM

DIBSTAT

£Q!!Q~

PIC X

PIC XX

PIC X (8)

PIC XX

nL!

CHAR (1)

CHAR (2)

CHAR (8)

CHAR (2)

Flag indicating that an online task
had to wait for a resource owned by
an ~PS batch task. The value is
either X'FF' (HIGH-VALUE in COBOL,
HIGB (1) in PL/I) or X '00' (LOW-VALUE
in COBOL, LOW(1) in PL/I) •

The hierarchical level of the object
segment or lowest level parent
segment actually retrieved.

Name. of the object segment or the
lowest level parent segment actually
retrieved.

DL/I status code.

Example of DL/I Request Using EXEC DLI

The following example shows the use of the EXEC DLI co •• and to request
DL/I services; it provides the same functions as the example in the
previous chapter.

Chapter 2.4. DLjI Services (EXEC DLI Comlland) 123

COBOL

CBL XOPTS(DLI,CICS)
IDENTIFICATION DIVISION.
PROGRAK-ID. EXAMPL.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 5EGDATA.

02 AREA 1 PICTURE X (3) •
02 AREA2 PICTURE X (37) •

01 SEGDATAL COMPUTATIONAL PICTURE 59999 VALUE IS +40
PROCEDURE DIVISION.

EXEC DLI SCHEDULE P5B(CBLPSB) END-EXEC
IF DIB5TAT IS NOT EQUAL SPACES THEN

* INSERT ERROR CODE
EXEC DLI GET UNIQUE SEGMENT (AAAA4444)

INTO(5EGDATA) 5EGLENGTH(5EGDATAL) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN

* INSERT ERROR CODE
MOVE SPACES TO AREAl.
EXEC DLI REPLACE SEGMENT~AAA4444)

FROM~EGDATA) SEGLENGTH(SEGDATAL) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN

* INSERT ERROR CODE .
EXEC DLI TERMINATE END-EXEC
EXEC CICS RETURN END-EXEC
GOBACK.

124 CICS/VS APRM ~L)

PL/I

* PROCESS XOPTS(DLI,CICS),INCLUDE;
EXAMPLE: PROC OPTIONS (MAIN) :
DCL 1 SEG_DATA,

2 AREA 1 CHAR (3) ,
2 AREA2 CHAR (31) :

EXEC DLI SCHEDULE PSB(PLIPSB);
IF DIBSTAT ~= I • THEN CALL ERROR;

EXEC DLI GET UNIQUE SEGMENT(AAAAqqqq) INTO (SEG_DATA) ;
IF DIBSTAT ~= • • THEN CALL ERROR;

AREA1 = 'XXX';
EXEC DLI REPLACE SEGMENT(AAAAqq~q) FROM (SEG_DATA);
IF DIBSTAT ~=' I THEN CALL ERROR;

EXEC DLI TERMINATE;
ERROR: PROC;

/* INSERT USER ERROR ROUTINE */
END;

ENO; /* EXAMPLE */

Chapter 2.q. OL/I Services (EXEC OLI Command) 125

Part 3. Data Communication Operations

Chapter 3.1. Introduction to Data Communication Operations

Chapter 3.2. Terminal Control

Chapter 3.3. Basic Mapping Support CBMS)

Chapter 3.4. Batch Data Interchange

127

Chapter 3.1. Introduction to Data Communication Operations

Three methods are available to the CICS/VS application programmer for
communicating with the terminals and logical units in the subsystems of
thb network that forms part of the CICS/VS system. The methods dealt
with are:

• Terminal control

• Basic mapping support (BMS)

• Batch data interchange

Terminal control is the basic method for communicating with devices,
whereas both BMS and batch data interchange extend the facilities of
terminal control to simplify further the manipulation of data streams.
Both BMS and batch data interchange use terminal control facilities when
invoked by an application program. Terminal control provides commands
and options that can be specif1ed in various combinations according to
the requirements of the devices. However, application programs written
in this way are dependent on the data formatting requirements of these
devices and a detailed knowledge of the devices is required. Terminal
control is described in Chapter 3.2.

Basic mapping sUE£Q£~ provides commands and options that can be used
to format data in a standard manner. BMS converts data streams provided
by the application program to conform to the requirements of the­
devices. Conversely, data received from a device is converted by Bas to
a standard form. However, not all devices supported by CICS/VS can De
used with BMS and, for those tnat cannot, terminal control must be used.
Also, in some cases, the overhead incurred to achieve data stream
independence may outweigh the advantages. The choice as to whether BSS
should be used is a matter for application design and is discussed more
fully in the CICS/VS System/Application Design Guide. BMS is described
in Chapter 3.3.

Batch data interchange provides commands and options that may be
used, possibly in conjunction with BMS commands, to communicate with the
6670 logical unit and with the natch logical units of the 3770 and 3790
sUDsystems. Batch data interchange is described in Chapter 3.q.

Chapter 3.1. Introduction to Data Communication Operations 129

Chapter 3.2. Terminal Control

The CICS/VS terminal control program provides for communication between
user-written application programs and term~nals and logical units, by
means of terminal control commands.

Terminal control uses the standard access methods available with the
host operating system. The Basic Telecommunications Access Method
(BTAM) is used by CICS/VS for most start-stop and BSC terminals. As an
option for OS/VS, the Telecommunications Access ftethod (TCAM) can be
specified. The Sequential Access Method (SAM) is used where keyboard
terminals are simulated by sequential devices such as card readers and
line printers. The Virtual Telecommunications Access Method (ACF/VTAM)
or the Telecommunications Access Kethoa (TCAM) is used for Systems
Network Architecture (SRA) terminal systems.

Terminal control polls terminals to see if they are ready to transmit
or receive data. Terminal control handles code translation, transaction
validation, synchronization of input and output operations, and the line
control necessary to read from or write to a terminal. The application
program is freed from having to physically control terminals. During
processing, an application program is connected to one terminal for one
task and the terminal control program monitors which task is associated
with which terminal. The task to be initiated is determined as
described later in this chapter under "Terminal-oriented Task
Identification" •

Terminal control is used for communication with terminals. In SNA
systems, however, it is used also to control comaunication with logical
units or with another CICS/VS system. A logical unit (LU) represents
either a terminal directly, or a program stored in a subsystem
controller which in turn controls one or more terminals. The CICS/VS
application program communicates, ny means of the logical unit, either
with a terminal or with the stored program. For example, a 3767
terminal is represented by a single logical unit without an associated
user-written application program. In contrast, a 3790 subsystem is
represented by a 3791 controller, user-written 3790 application
programs, and one or more 3790 terminals; when the subsystem is
configured, one or more logical units are designated by the user.

Terminal control is used also for comaunicating with terminals or
logical units in a remote system by means of Distributed Transaction
Processing (DTP). SNA protocols are available, through terminal-control
,commands, to initiate and terminate a conversation ~ session) with a
remote LU6 logical unit.

This conversation is carried on between a principal facility and one
or more alternate facilities.

A princioal facility for a task is a terminal or LU6 session that is
made available to the application program when the task is initiated.

An alternate facility for a task is a terminal or LU6 session
acquired as needed by the application program. In general, terminal­
control commands tnat refer to an alternate facility should include the
SESSION option.

The ALLOCATE and FREE comaands allow the application program to
acquire and releaSe these alternate facilities and allow both principal
and alternate facilities to be used at the same time.

Chapter 3.2. Terminal Control 131

The BUILD ATTACH and EXTRACT ATTACH com.ands, together with the
ATTACHID option of the SEND conmand, allow the application program to
attach a transaction in a remote system.

Fields in the EIB allow access to indicators that give the status of
the conversation after execution of RECEIVE or CONVERSE com.ands. For
example, EIBEOC, EIBATT, and EIBFMH provide more information about the
received data, and EIBSYNC, EIBFREE, and EIBRECV provide more
information about the session. -

The INVITE option of the SEND command allows the optimization of SNA
flows that occur when communicating with another transaction, or with
IMS/VS.

Distributed transaction processing is described fully in the CICSIVS
~Y2te.mL!2ElicS!tion D~siqn Guide.

Commands and options that apply specifically to logical units are
described later in the chapter.

Terminal control com.ands are provided to request the following
services that are applicable to most, or all, of the types of terminal
or logical unit supported by CICS/VS:

• Read data from a terminal or logical unit (RECEIVE).

• write data to a terminal or logical unit (SEND).

• Converse with a terminal or logical unit (CONVERSE).

• Synchronize terminal input/output for a transaction (WAIT
TERMINAL) •

• Send an asynchronous interrupt (ISSUE SIGNAL) •

• Relinquish use of a communication line (ISSUE RESET).

• Disconnect a switched line or terminate a session with a logical
unit (ISSUE DISCONNECT).

It is possible to read records from a card reader and read records
from or write records to a disk data set, magnetic tape unit, or a line
printer defined by the system programmer as a card~reader-in/line­
printer-out (CRLP) terminal. For additional information, see the
section "Sequential Terminal Support- in Chapter 5.1.

Other services available in response to terminal control commands
apply to specific types of terminal. The permissible commands and
options that can be used by specific terminal types are detailed later
in this chapter. Because many types of terminal are supported by
CICS/VS, many special services are provided. (For a list of terminals
supported by CICS/VS, see the publication CICStVS General Information.)
In particular, a large number of commands are provided for communicating
with display devices such as the 3270 Information Display System; these
are described in the section "Display Device Operations- later in this
chapter.

The options that follow the command depend on the terminal or logical
unit (and sometimes, access method) used and the operations required.
Options included in a terminal control com.and that do not apply to the
device being used will be ignored.

The HANDLE CONDITION and IGNORE CONDITION commands, and the NOHANDLE
option, can be used to deal with exceptional conditions that occur

132 C res/vs APRM (CL)

during the execution of terminal control commands. Refer to Chapter 1.5
for further information about exceptional conditions.

Commands and Options for Terminals and Logical Units

The commands and options described in this section apply to all
terminals and 10gical units. There may, however, be others that apply
to specific devices. If so, details are given later in the chapter
under headings for the device types.

READ FROM TERMINAL OR LOGICAL UNIT (RECEIVE)

The RECEIVE command is used to read data from a terminal or logical
unit. The INTO option is used to specify the area into which the data
is to be placed, in which case the maximum length of data that the
program will accept must be specified in the LENGTH option. If the data
exceeds the specified maximum, it is truncated and the LENGERR condition
occurs. If the LENGTH option is specified, the named data area is set
to the actual data length ~efore truncation occurs) when data has been
received.

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS acquires an area large enough to hold the data and sets
the pointer reference to the address of that area. When data has been
received, the data area specified in the LENGTH option is set to the
data length.

The first RECEIVE command in a terminal-initiated task will not issue
a terminal-control read but will simply copy the input buffer, even if
the data length is zero. A second RECEIVE must be issued to cause a
terminal-control read.

WRITE TO TERMINAL OR LOGICAL UNIT (SEND)

The SEND command is used 'to write data to a terminal or logical unit.
The options FROM and LENGTH specify respectively the data area from
which the data is to be taken and the length (in bytes) of the data.

The WAIT Option of the SEND Command

Unless the WAIT option is specified also, the transmission of the data
associated with the SEND command is deferred until a later event, such
as a sync point, occurs. This deferred transmission reduces the flows
of data by allowing data flow controls to be transmitted with the data.

SYNCHRONIZE TERltINAL INPUT/OUTPUT FOR A TRANSACTION (W AIT
TERMINAL)

This command is used to ensure that a terminal operation has completed
before further processing occurs in a task under which more than one
terminal or logical unit operation is performed. Alternatively, the

Chapter 3.2. Terminal Control 133

WAIT option can be specified in a SEND com.and.
carried out for a RECEIVE command.)

(A wait is always

Either method lIay cause execution of a task to be suspended. ·If
suspension is necessary, control is returned to CICS/VS. Execution of
the task is resumed when the operation is completed.

Even if the WAIT option is not specified in a SEND command, the EXEC
interface program will ensure that the operation is completed before
issuing a subsequent RECEIVE or SEND command.

CONVERSE WITH TER8INAL OR LOGICAL UNIT (CONVERSE)

For most terminals or logical unit types a conversational mode of
communication is permissible. The CONVERSE command is used for this
purpose. In general, the CONVERSE command can be considered as a
combination of a SEND command followed immediately by a WAIT TER8INAL
command and then by a RECEIVE command. However, not all options of the
SEND and RECEIVE commands are valid for the CONVERSE command. Specific
rules are given in the syntax descriptions for different devices later
in this chapter. The TOLENGrH option is equivalent to the LENGTH option
of the RECEIVE cOlllland, and the FRO!LENGTH option is equivalent to the
LENGTH option of the SEND command.

SEND AN ASYNCHRONOUS INTERRUPT (ISSUE SIGNAL)

This command is used, in a transaction in receive mode, to inform the
sending transaction that it wishes to change modes. The execution of
the command will raise the SIGNAL condition on the next SEND or RECEIVE
command executed in the sending transaction, and a previously executed
HANDLE CONDITION command for this condition can be used either to action
the request or to ignore it.

RELINQUISH A COMMUNICATION lINE (ISSUE RESET)

This cOllmand is used to relinquish use of a communication line. The
command applies only to binary synchronous devices using BrA!. The next
BTAM operation will be a read or write initial.

DISCONNECT A SWITCHED LINE ~SSUE DISCONNECT)

This command is used to break a line connection between a terminal and
the processor, or to break a session between TCA! or ACF/VTAft logical
units, when the transaction is completed. If the terminal is a buffered
device, the data in the buffers will be lost.

134 CICS/VS APRM (Cl)

,
t

TERaINAL-ORIENTED TASK IDENTIFICATION

When CICS/VS receives input from a terminal to which no task is
attached, it has to determine which transaction should be initiated.
The methods by which the user can specify the transaction to be
initiated and the sequence in which CICS/VS checks these specifications
are as follows (see also Figure 3.2-1). The system macros referred to
in the following tests are described in the CIeStvS System Programmer's
Reference Manual.

Test 3:

Test 4:

Is the input from a PA key (of a 3270 terminal) that has been
defined at system initialization as the print request key1

If yes, printing of the data displayed on the screen is
initiated.

(a) Is this terminal of a type supported by BMS terminal
paging?

(b) Is the input a paging command? (The terminal operator can
enter paging commands defined in the DFBSIT system macro.)

If yes to both (a) and (b), the transaction CSPG, which
processes paging commands, is initiated.

If an attach FMB is present in the data stream and Tests q and
5 are not fulfilled, the transaction specified in the attach
FMB is initiated. The architectured attach names are converted
to "CS!I".

Does the terminal control table entry for the terminal include
a transaction identification (specified by the TRANSID operand
of the DFHTCT TYPE=TERMIN1L system macro.)

If yes, the specified transaction is initiated.

Is a transaction specified by the TRANSID option of a prograa
control RETURN command (or by the application program moving
the transaction name into TCANXTID)?

If yes, the specified transaction is initiated.

~) Is the terminal a 3270 (including 3270 logical unit and
3650 host-conversational (3270) logical unit, connected via
VTAM)?

(b) Is the input from a PA key, PF key, light pen attention,
or operator identification card reader?

(c) Is this input specified by the TASKREQ operand of the
DFBPCT TYPE=ENTRY system macro?

If yes to (a), (b), and (c), the program specified by the
PROGRAM operand of the same DFHPCT TYPE=ENTRY macro is given
control.

Chapter 3.2. Terminal Control 135

Tes~ 7:
Is a valid transaction identification specified by the first
one to foar characters of the terminal input?

If yes, the specified transaction is initiated.

For all PA keys and some LPAs there cannot be terminal input.
If there is no terminal input an "invalid transaction
identification" message is sent to the terminal.

If none of the above tests is met, an invalid transaction
identification exists, and message DFH2001 (INVALID TRANSACTION
IDENTIF]cATION - PLEASE RESUBMIT) is sent to the terminal.

The 3735 Programmable Buffered Terminal makes an exception to this
sequence when operating in inquiry mode. The test of input from the
terminal (Test 7 ahove) is given highest priority.

136 CICS/VS APRM (eL)

Send "invalid
transaction ident."
message to terminal

Figure 3.2-1.

Yes

Yes

Initiate
Printing

Initiate specified

transaction

I nitiate specified

transaction

I nitiate transaction

specified by

terminal input

Initiate CSPG

No

Yes

Initiate transaction

specified in
Attach FMH

I nitiate transaction

specified by

terminal input AI D

Terainal-Oriented Task Id~nti£ication

Chapter 3.2. Terminal Control 137

Commands and Options for Logical Units

An application program communicates with a TCAM or VTAM logical unit in
much the same way as it does with BTAM or TCAM terminals ~hat is, by
using the terminal control commands descrined above). However,
com.unication with logical units is governed by the conventions
(protocols) that apply to each type of logical unit. This section
describes the additional commands and options provided by CICS/VS to
enable application programs to comply with these protocols.

The types of logical units and the related protocols for each of the
SNA subsystems supported by CICS/VS are described in the CICS/VS guides
for the subsystems. (See the Bibliography).

SEND/RECEIVE MODE

For SNI logical units, only one of the two ends of the session can be in
send Bode at anyone time, that is, one is in send mode, the other is in
receive mode. An application program in send mode can ~ssue a~y
commands for the logical unit. On the other hand, one 1n rece1ve mode,
can issue only RECEIVE commands until the mode is changed back to send.
The EIB indicator EIBRECV informs the application program that it is in
receive mode and that it must perform the above operations.

If the above protocols are not follOWed, the transaction will be
abended, unless the read-ahead queueing feature (RAQ=YES) is specified
in the DFHSG PROGRAM=TCP system macro. This option allows the
application program to ignore the BIBRECV indicator and to send and
receive at any time. However, it should only be used with transactions
for non-SNA devices.

For displays, the transaction would normally be in send mode,
provided that the INVITE option is not used, and can ignore the EIBRECV
indicator. Displays work with a subset of the full protocols (see the
CICS/yS System/Application Design Guide for further information).

SEND/RECEIVE PROTOCOL (INVITE OPTION)

The INVITE option of a SEND command informs the session partner that it
is now in send mode and that it should send a reply. At the same time
it plac~s the transaction in receive mode. The transaction should now
issue a RECEIVE command as its next operation.

CHAINING OF INPUT DATA

The unit of data from a logical unit is the request/response unit (RU).
One or more RUs can be grouped together and treated as a chain.

The last RU in a chain (even if it is the only RU in the chain)
raises an end-of-chain ~OC) condition. When this occurs, a HANDLE
CONDITION EOC command will give control to a user-written routine, which
can do any additional processing required when the complete chain has
been received.

138 CICS/VS APRM (CL)

For logical units that do not send chained data (for example, the
3270 logical unit), the EOC condition occurs for every RECEIVE request.
For logical units that send chained data, the EOC condition usually
occurs for every RECEIVE request, but it may not, depending on the
length of the data and on whether the terminal control table CHNASSY
option is specified by the system programmer. The syntax descriptions
for individual logical units in this chapter emit the EOC condition
unless it is likely that meaningful use may be made of the fact that it
has not been received. The IGNORE CONDITION command can be used to
ignore the EOC condition in cases where it is raised on every RECEIVE
command.

The EOC condition may occur simultaneously with the EODS (end-of­
data-set) and/or INBFMH (inbound-FMH) conditions. When this happens,
the user-written routine for the EODS or INBFMB conditions will be given
control rather than the EOC routine.

The system programmer specifies, in the TCTTE, whether or not
chaining is to occur. If chain assembly is specified, instead of an
input request being satisfied by one RU at a time until the chain is
complete, the whole chain is assembled and is sent to the CICS/VS
application program satisfying just one request. This ensures that the
integrity of the whole chain is known before it is presented to the
application program.

CHAINING OF, OUTPUT DATA

As in the case of input data, output data is transmitted as
request/response units (RUs). If the length of the data to be sent
exceeds the RU size, CICSjVS automatically breaks up the data into RUs
and transmits these RUs as a chain. During transmission from CICS,/VS to
the logical unit, the RUs are marked FOC (first-of-chain), MOC (middle­
of-chain) , or EOC (end-of-chain) to denote their position in the chain.
An RU that is the only one in a chain is marked OC (only-in~ain).

If the system programmer specified that the application program can
control the chaining of outbound data; the application program uses the
CNOTCOMPL (chain-not-complete) option of the SEND conmand to indicate
continuation of I the chain. In general , the CNOTCOMPL option should not
be used. Once an output request with CNOTCOMPL specified has been made,
subsequent output requests may not use the FMH, LAST, or (for the 3600
(3601) logical unit) LDC options until the beginning of the next chain
(that is, the first output request following an output request in which

CNOTCOMPL is omitted) •

LOGICAl. RECDRD PRESENTATION

Each RECEIVE command re sul ts in one RU (or one chain of RUs if chain
assembly is specified) being presented to the application program. An
RU may consist of one or more logical records. If an RU contains more
than one logical record, the records will be separated by new line (NL),
inter-record separator (IRS), or transparent (TRN) characters.- . Except for
LUTYPE4 devices, a logical record cannot be transmitted in more than one
RU; the end of the RU is always the end of the logical recor.d. Data
from an LUTYPE4 may contain logical records that span RUs; in which
case, chain assembly should be specified.

The system programmer can specify in the PCT, for specific
application programs, that the application program will be presented

Chapter 3.2. Te~inal Control 139

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

with logical records instead of with RUs or chains. For those
application programs for which· this option is specified, each RECEIVE
command results in oneloqical record being presented to the application
program, regardless of whether chain assembly is specified or not.

If the logical records are separated by IRS or TRN characters, these
are removed, and do not· appear in the data.. Therefore, a blank card
wi 11 have a length of zero. If NL characters are used to separate the
logical records, they are not renoved, and the NL character from the end

I of each logical record appears at the· end of the data. If the delimiter
I is a transparent fl'RN} character, CICS/VS will pass up to 256 bytes in
lone logical record. This logical record can cootain any characters,
I including NL and IRS characters, all of which wil.l be treated as data.

All communication features for logical units are stil.l in operation,
thcit is, notification of end-of-chain conditions, and (for batch logical
units only) notification of end-of-data-set conditions and presentation
of the inbound FMH at the beginning of a chain, still occurs.

If chain assembly has been specified, a logical record ends with a
delimiter (NL, IRS, or TRN), or the end of the assembl.ed chain. The end
of chain notification occurs in the last logical record of the chain.

DEFINITE RESPONSE

The type of response requested by CICS/VS for outbound data is generally
determined by the system progranmer in thePCT; it can be specified that
all outbound data for an application program will require a definite
response, or that exception-response protocol is to be used, that is, a
response will be made only if an error occurs.

The use of definite-response protocol has sane performance
disadvantages, but may be necessary for some application programs. To
provide a IOOre flexible method of specifying the protocol. to be used,
the DEFRESP option is provided for use on the SEND canmand. One example
of the use of this option is to request a definite response for every
tenth output command, exception response being the general rule.

Because a definite response can be requested only on the last element
in the chain, the DEFRESP and CNOTCCMPL options are mutually exclusive.

FUNcrION MANAGEMENT HEADER (FMH)

A function management header (FMB) is a field that can be included at
the beginning of an input or output message. It is used to convey
infornation about the message and how it should be handled. For some
logical units, the use of an PMH is mandatory, for others it is

.optional, and in some cases FMHs cannot be used at all.

For output, the FMH can be built by the application program or by
crCS/VS. For . input, the FMH can be passed to the application program or
it can be suppressed by CICS/VS.

The FMB option of the SEND command is used to specify that the
app1ication program will provide the FMH in the data to be transmitted.

The ATTACBcrD option specifies a set of values that crcS/VS puts into
an LU6 attach FMH which is concatenated ahead of the user data.

140 crCS/VS APRM (CL)

Further information about FMBs is given in the CICS/VS guides for
the subsystems. (See the Bibliography.)

Inbound F~B

An application program can request notification when an FMH is included
in the data received from a batch logical unit.

Whether or not inbound FMHs will be passed to the application program
is specified in the INBFMH operand of the DFHPCT TYPE=ENTRY system
macro. It can be specified that no inbound FKHs will be passed, or that
only the FMB at the end of the data set will be passed, or that all
inbound FMHs will be passed.

If inbound FMHs are to be passed to the application program, a HANDLE
CONDITION INBFMH command will allow control to be passed to a user­
written routine whenever an inbound FMH is received. These user-written
routines can investigate the contents of the F~H and take some action
depending on, for example, the device from which the data has come. The
contents of the FMH can be accessed also by means of the EIBFMB field of
the EIB.

If an inbound FMH, containing an attach FMH, is passed to the
application program, the attach FMB can be removed as long as this has
been allowed for by the system programmer in the peT. The values of the
attach FMB may be examined by using the EXTRACT ATTACH command ••

When input data is received as a chain of RUs, only the first ~r
only) RU of the chain is preceded by an FMH.

Outbound FMR

If the user data contains one or more FMHs, the output req~est must
specify the F~H option. When sending output data to a logical unit that
expects an FMH, the FMH must be at the start of the user data to be
transmitted.

UNSOLICITED INPUT

If unsolicited input arrives from a logical unit, it is queued and used
to satisfy future input requests for that logical unit. However, for
3210 logical units, unsolicited input will be discarded if the PUNSOL
operand is specified in the DFHSG PROGRAM=TCP system macro.

BRACKET PROTOCOL ~AST OPTION)

Bracket protocol prevents the interruption of a transaction between
CICS/VS and a logical unit. A bracket can, generally, be begun either
by CICSjVS or by the logical unit, or ended only by CICS/VS unless it is
for an LU6 logical unit, in which case the logical unit can end it. A
bracket also can delimit conversation between CICS/VS and the logical
unit or merely the transmission of a series of data chains in one
direction.

Chapter 3.2. Terminal Control 1q1

Bracket protocol is used when CICS/VS comaunicates with some logical
units. The use of brackets is usually transparent to the application
program.

Only on the last output request of a task to a logical unit does the
bracket protocol become apparent to the application program. On the
last output request to a logical unit, the application program may
specify the LAST option on the SEND command. The last output request is
defined as either the last SEND command specified for a task without
chain control; or as the output request that transmits the FOC or OC
marker of the last chain of a transaction with chain control. The LAST
option causes CICS/VS to transmit an end-bracket indicator with the
final output message to the logical unit. This indicator notifies the
logical unit that the current transaction is ending. If the LAST option
is not specified, CICS/VS waits until the task detaches before sending
the end-bracket indicator. Since an end-bracket indicator is
transmitted only with the first RU of a chain, the LAST option is
ignored for a transaction with chain control unless FOC or OC is also
specified.

Including a FREE command after a SEND command with the LAST option
may be useful if the transaction does not terminate immediately after
issuing the SEND command. This allows another transaction to be
initiated from the LU or from CICS/VS.

SUSPEND A TASK (WAIT SIGNAL)

,
I
I WAIT SIGNAL
I
I Exceptional condition: SIGNAL
I L __ ~

This command is used, for a principal facility only, to suspend a task
until a SIGNAL condition occurs. Some logical units can interrupt the
normal flow of data to the application program by a SIGNAL data-flow­
control command to CICS/VS, signaling an attention, which in turn causes
the SIGNAL condition to occur.

The HANDLE CONDITION SIGNAL command will cause a branch to an
appropriate user-written routine when an attention is received.

142 CICS/V S APR! (CL)

TERftINATE A SESSION ~SSUE DISCONNECT)

ISSUE DISCONNECT

This command is used to terminate a session between CICS/VS and a
logical unit, but only if the system programaer has specified
BELREQ= ~YES) in the DFHTCT TYPE=TERMIN1L macro for the loqical unit.

RETURN A FACILITY TO CICS/VS (FREE)

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTAllOC, SESSIONERR

This command is used to return a facility (a principal facility or a
previously allocated alternate facility) to CICS/VS when a transaction
owninq it no longer requires it. The facility then can be allocated for
use by other transactions.

Facilities not freed explicitly will be freed by CICS/VS when the
task term ina tes.

Chapter 3.2. Terminal Control 143

TeAM-Supported Terminals and Logical Units (CICS/OS/VS Only)

Because ,TCAM permits many applications to share a single network, the
CICS/VS-TCAM interface supports data streams rather than specific
terminals or logical units.

Operations for terminals supported by TCAM use the same options as
the terminals supported by other access metnods. with the exception of
the BUFFER option for the 3270, all options applicable for input
operations are supported by CICS/VS-TCAM. However, the exceptional
conditions ENDINPT and EOF will not occur.

All output requests are the same for TCAM as for other CICSjVS
supported terminals, except that:

• the ISSUE RESET command cannot be used

• the ISSUE COPY and ISSUE PRINT commands for the 3270 cannot be used

• the DEST option is available on the SEND command, in addition to
other appropriate options

with the exception of 3650 logical units, operations for logical
units supported by TCAM use the same options as logical units supported
by VTAM.

The 2260 compatibility facilities for the 3270 cannot be used with
TCAM.

BTAM Programmable Terminals

When BTAM is used by CICS/VS for programmable binary synchronous
co.munication line management, CICS/VS initializes the communication
line with a BTA! read initial (TI); the terminal response must be a
write initial (TI) or the equivalent. If an application program makes
an input request, CICS/VS issues a read continue (TT) to that line; if
the application program makes an output request, CICS/VS issues a read
interrupt (RVI) to that line. If end of transmission (EOT) is not
received on the RVI, CICS/VS issues a read continue (TT) until the EOT is
received. When TCAM is used, all of this line control is handled by the
MCP rather than by CICS/VS.

The programmable terminal response to a read interrupt must be nend
of transm i3sion" (EOll). The EOT res ponse may, however, be preceded by
writes, in order to exhaust the contents of output buffers; this is
provided the input buffer size is not exceeded by this data. The input
buffer size is specified by the system programmer during preparation of
the terminal control table. CICS/VS issues a read continue until it
receives an EDT, or until the input message exceeds the size of the
input buffer (an error condition) •

After receiving an EOT, CICS/VS issues a write initial (TI) or the
equivalent (depending on the type of line). The program.able terminal
response must be a read initial (TI) or the equivalent.

If the application program makes another output request, CICS/VS
issues a write continue (TT) to that line. If the application program
makes an input request after it has made an output request, CICS/VS
turns the line around with a write reset (TR). (CICS/VS does not
recognize a read interrupt.)

144 CICS/VS APRa (eL)

To ensure that binary synchronous terminals ~or example, System/370,
1130, 2780) remain coordinated, ClCS/VS processes the data collection or
data transmission transaction on any line to completion, before polling
other terminals on that line.

The programmable terminal actions required for the above activity,
with the corresponding user application program commands and CICS/VS
actions, are summarized in Figure 3.2-2.

r-------------------------r--------------------------~----------------------~

Application Program
Command

CICS/VSl Program.able
Terminal Program

Read initial (Tl) write initial (TI)

RECEIVE Read continue (TT) write continue (TT)

SEND Read interrupt (RVI) 2 write reset (TR) or

Read continue (TT) 3 write continue
write reset

write initial (TI) Read initial (TI)

SEND write continue (TT) Read continue (TT)

RECEIVE write reset (TR) ~ Read continue (TT)

Read initial (TI) write initial (TI)

1 CICS/VS issues the macro shown, or, if the line is switched,
the equivalent. The user-written programmable terminal
program must issue the equivalent of the BTAM operation shown.

2 An RVl sequence is indicated by the DECFLAGS field of the data
event control block (DECB) being set to X'02' and a completion
code of X'7F' being returned to the event control blOCK (ECB).

3 The read continue is issued only if the EOT character is not
received on the read interrupt.

~ Write reset is issued only for point-to-point terminals.

Figure 3.2-2. BTA! Programmable Terminal Programming

Input data is deblocked to ETX, ETB, RS, and US characters. These
characters are moved with the data but are not included in the data
length. Characters such as NL, CR, LF, and sa are included as data in a
CICS/VS application program.

Chapter 3.2. Terminal Control 145

Teletypewriter Programming

The teletypewriter ~orld Trade only) uses two different control
characters for print formatting, as follows:

< carriage return, (X'22' in ITA2 code or X'15' in EBCDIC)

line feed, (X'28' in ITA2 code or X'2S' in EBCDIC)

The character < should always be used first; that is <= or <===, but
never =<, otnerwise following characters (data) may be printed while the
typebar is moving to the left.

KESSAGE FORMAT

Message Begin: To start a message on a new line at the left .margin, the
message text must begin with X'lS11' (EBCDIC). CICS/VS recognizes the
X'11' and changes it to X' 25' (X '11' is an IDLE character).

Message Bod!: To write several lines with a single transmission, the
lines must be separated by X'1S25', or if multiple blank lines are
required, by X'152525 ••• 25'.

Message End Before Next Input: To allow input of the next message on a
line at the left margin, the preceding message must end with X'1511'.
CICS/VS recognizes X'lS' and changes the character following it to
X'25'.

Message End Before Next Output: In the case of two or more successive
output Bessages, the message begin and the message end look the same;
that is X'lS11', except for the last message ~ee above). To make the
message end of the preceding message distinguishanle from the message
begin of the next message, the penultimate character of the message end
must not be X'15'.

MESSAGE LENGTH

It is recommended that messages for teletypewriter terminals do not
exceed a length of about 3000 bytes or approximately 300 words.

CONNECTION THROUGH VTAM

Both the TWX Model 33/35 Common Carrier Teletypewriter Exchange and the
WTTY Teletypewriter (World Trade only) can be connected to CICS/VS
through BTAK, or through VTAM using NTO.

If a device is connected through VTA! using NTO, the protocols used
are the same as for the 3167 logical unit, and the application program
can make use of these protocols ~or example, HANDLE CONDITION SIGNAL).
However, the data stream is not translated to a 3767 data stream but
remains as that for a TWIjVTTY.

146 CICS/VS APRM (eL)

Display Device Operations

Besides the standard terminal control commands for sending and receiving
data, several additional commands and lists are provided for use with
display devices such as the 3270, as follows:

• Print displayed information (ISSUE PRINT) •

• Copy displayed information (ISSUE COPY) •

• Erase all unprotected fields (ISSUE ERASEAUP).

• Input operation without Data (RECEIVE).

• Standard Attention Identifier List (DFHAID).

• Handling Attention Identifiers (HANDLE AID) •

• Standard Attribute and Printer Control Character List (DFHBMSCA).

For devices with switchable screen sizes, the size of the screen that
can b,e used, and the size to be used for a given transaction, are
defined by CICSjVS table generation. These values can be obtained by
means of the ASSIGN com.and, described in Chapter 1.6.

The ERASE option should always be included in the first SEND command
to clear the screen and format it according to the transmitted data.
This first SEND with ERASE will select also the screen size to be used,
as specified in the PCT and TCT. If ERASE is omitted, the screensize
will be the same as its previous setting, which may be incorrect.

Use of the CLEAR key outside of a transaction will set the screen to
its default size.

PRINT DISPLAYED INFOR~ATION (ISSUE PRINT)

If the 3270 print request facility is included in the terminal control
program at CICS/VS system generation, the ISSUE PRINT command will caus~
the displayed data to be printed on the first available, print-request­
eligible printer. For a BTAM-supported 3210, this is a printer on the
same control unit. For a 3210 logical unit or a 3650 host­
conversational (3210) logical unit, it is a printer predesignated by the
system programmer using the PRINTTO or ALTPRT operands of the DFHTCT
TYPE=TERMINAL macro. For a 3270-display logical unit with the PTRADAPT
feature (LUTYPE2 specified in the TRMTIPE= operand and PTRADAPT
specified in the FEATURE=operand of the DFBTCT TYPE=TER8INAL system
macro) used with a 3214 or 3216, it is a printer allocated by the
printer authorization matrix. (See the IBM 3210 Inforllation Display
System Component Descrip.tion for details of this matrix.) For a 3190
(3270-display) logical unit, it is a printer allocated by the 3190.

For a printer to be available it must be in service and not currently
attached to a task.

For a BTA8 printer to be eligible, it must be attached to the same
control unit as the display, must have a buffer capacity equal to or
greater than that of the display, and must have FEATURE=PRINT specified
in the associated DFHTCT TYPE=TERMINAL system macro.

For a 3270 logical unit to be eligible, it must have been specified
by the system programmer, using the PRINTTO or ALTPRT operands, and it

Chapter 3.2. Terminal Control 141

must have the correct buffer capacity; FEATURE=PRINT is not necessary.
If COpy is specified with the ALTPRT or PRINTTO operands, the printer
must be on the same control unit.

For some 3270 displays, it is possible also to print the displayed
information without using CICS/VS. For further details see under
"printer authorization matrix" in the IBl! 3270 Information Display
System Component Description.

COPY DISPLAYED INFORMATION (ISSUE COPY)

The ISSUB COpy command is used to copy the format and data contained in
the buffer of a specified terminal into the buffer of the terminal that
started the transaction. This command cannot be used for an LUTYPE2.
Both terminals must be attached to the same remote control unit. The
terminal whose buffer is to be copied is identified in the TER!ID
option. If the terminal identifier is invalid, that is, it does not
exist in the TCT, the TERMIDERR condition will occur. The copy function
to be performed is defined by the Copy Control Character (CCC) specified
in the CTLCHAR option of the ISSUE COpy command.

The WAIT option of the ISSUE COpy command ensures that the operation
has been completed before control is returned to the application
program.

ERASE ALL UNPROTEC':rED FIELDS (ISSUE ERASEAUP)

The ISSUE ERASEAUP com.and is used to erase all unprotected fields of a
3270 buffer. The following actions are performed:

1. All unprotected fields are cleared to nulls (X·OO·).

2. The modified data tags ~DTs) in each unprotected field are reset
to zero.

3. The cursor is positioned to the first unprotected field.

4. The keyboard is restored.

The WAIT option of the ISSUE ERASEAUP command ensures that the
operation has been completed before control is returned to the
application program.

INPUT OPERATION WITHOUT DATA (RECEIVE)

The RECEIVE command with no options causes input to take place and the
EIB to be updated. However, data received by CICS/VS is not passed on
to the application program and is lost. A wait will be implied. Two of
the fields in the EIB that are updated are described below:

Cursor Position (EIBCPOSN) - For every terminal control (or BMS) input
operation associated with a display device, the screen cursor address
(position) is placed in the EIBCPOSN field in the EIB. The cursor

address is in the form of a halfword binary value and remains until
updated by a new input operation.

148 CICS/VS APRM (CL)

Attention Identifier lEIBA];D) - For every terminal control (or BMS)
input operation associated with a display device, an attention
identifier (AI~ is placed in field EIBAID in the EIB. The AID
indicates which method the terminal operator has used to ini tiate the
transfer of information from, the device to CICS/VS, for example, the
ENTER key, a program function key, the liqht pen, and so on. The field
content$ remain unaltered until updated by a new input operation.

Field EIBAID can be tested after each terminal control (or BMS) input
operation to determine further processinq and a standard attention
identifier list (DFBAIO) is provided for this purpose (see Figure 3.2-
3). Alternatively; the HANDLE AID command can be used to pass control
tb specified labels when the AIDs are received. The standard attention
identifier list and the HANDLE AID command are described in the next two
sections.

STANDARD ATTENTION IDENl'IFIER LIST (DFlJAID)

The standard attention identifier list DFHAID simplifies testing the
contents of the EIBAID field. The list is obtained by copying DFHAID
into the application program. Figure 3.2-3 shows the symboli.c names for
the attention identifiers (UOS) and the corresponding 3270 functions ..

For COBOL users, the list consists of a set of 01 statements that
must be copied into the Working-Storaqe Section. For PL/I users, the
list consists of DECLARE statements defininq elementary character
variables.

Symbolic Name

DFBCLFAR
DFHENTER
DFlDPID
DFBMSRE
OFBTRIG
OFHPA1
OFBPA2
OFHPA3
OFBPEN
DFBPF1
DFBPF2

3270 Ftmction

CLEAR key
ENTER key
Operator identification card reader or MSR
Extended (standard) MSR
Trigqer field
PA1 key
PA2 key
PAl key
Liqht pen attention
PF1 key
PF2 key

• •
OFHPF24 PF24 key

Fiqure 3.2-3. Standard Attention Identifier List (DPH.AI:D)

HANDLING ATTENTl:ON IDENi'IPIERS (HANDLE AID)

HANDLE AID option[(label)]
[option[(label)]] •••

I
I
I
I ,

Chapter 3.2. Tenninal Control 149

Page of SC33-0077-2, revised September 1980 by TN[, SN33-6268

This coumand is used to specify the label to which control is to be
passed when an AID is recei ved from a display device. Control is passed
after the input command is completed; that is, any· data received in
addition to the AID has been passed to the application program. In the
absence of a HANDLE AID command, control returns to the application
program at the point immediately following the input command.

No more than twelve options are a llowed in the same conanand.

A HANDLE AID conmand will take precedence over a HANDLE CONDITION
command (see Chapter 1.4); if an AID is received during an input
operation, for which a HANDLE AID command is active, control will pass
to the label specified in that cOI1lDBnd, regardless of any conditions
that may have occurred (but which did not stop receipt of the AID) •

The options that qan be specified are:

• Program attention key names (pAl, PA2, or PAl)

• Program function key names (pFl through PF24)

• CLEAR or ENTER (for the keys of the same name s)

• LI:GBTPEN (for a light pen attention)

• OPERID (for the operator identification card reader, the magnetic
slot reader (MSR), or the extended MSR)

• ANYKEY(any PA key, any PF key, or the CLEAR key)

The HANDLE AID command for a given AID applies only to the task in
which it is specified, remaining active until the task is terminated, or
until another HANDLE AID cOImland for the same AID is encountered, in
which case the new command overrides the previous one ..

When control returns to a program from a program at a lower logical
level, the HANDLE AID commands that were active in the higher-level
program before control was transferred from it are reactivated, and
those in the lower-level program are deactivated. (Refer to Chapter 4.4
for information about logical levels.)

If no HANDLE AID· command is active for any PA key, any PF key, or the
CLEAR key, but one is active for ANYKEY, control will be passed to the
label specified for ANYKEr. A HANDLE AID command for an AID overrides
the HANDLE AID ANYKEY command for that AID.

The following example shows a HANDLE Am command that specifies one
label for the PAl key Am, a second label for the PA2 and PA3 key AIDs,
all of the PF key AIDs except PF10, and the CLEAR key AID. If a PFlO
AID is received, control returns to the application program at the
instruction immediately following the input conunand.

EXEC CICS HANDLE AID
PAl (LAB1)
ANYKEY (LAB2)

. PF10

Handle AID characters
Specify label for PAl
Specify label for ANYKEY group
Exclude PF10 from ANYKEY group

If a task is initiated from a terminal by means of an AID, the first
RECEIVE colll1land in the task will not read from the terminal but will
copy only the input blffer (even if the length of the data is zero) so
that control may be passed by means of a HANDLE AID conunand for that
AID.

150 CICS/VS APRM (eL)

A BMS RECEIVE !AP command with the FROM option will not cause a
HANDLE AID command to be invoked because no terminal input is involved.

STANDARD ATTRIBUTE AND PRINTER CONTROL CHARACTER LIST
(DFHBMSCA)

The standard list DFHBMSCA simplifies the provision of field attributes
and printer control characters. The list is obtained by copying
DFHBMSCA into the application program. The symoolic names for the
various combinations of attributes and control characters are given in
Figure 3.2-4. Combinations other than shown must be generated
separately_

For assembler-language users, the list consists of a set of EQU
statements. For COBOL users, the list consists of a set of 01
statements that must be copied into the Working-Storage section. For
PL/I users, the list consists of DECLARE statements defining elementary
character variables.

The symbolic name DFBDFT must be used in the application structure to
override a map attribute with the default. On the other hand, to
specify default values in a set attribute (SA) sequence in text build,
the symbolic names DFHDFCOL, DFHBASE, OR DFHDFHI should be used.

Chapter 3.2. Terminal Control 151

Symbolic
Name

DF HBrt PErt
DFHBMPNL
DFHBMASK
DFHBrt UNP
DFHBMUNN
DPHBMPRO
DFHBrtBRY
DFHBMDAR
DFHBrtFSE
DFHBMPRP
DFHBMASF
DFHBMASB
DFHSAl
DFHCOLORl
DFHPSl
DFHHLTl
DFH3270 1

DFHVALl
DFHALLl
DFHERROR
DFHDFT
DFHDPCOLl
DFHBLUE
DFHRED
DFHPINK
DFHGREEN
DFBTURQ
DFHYELLO
DFHNEUTR
DFHBASEl
DFHDFHIl
DFHBLINK
DFHREVRS
DFHUNDLN
DFHrtFIL2
DPHMENT2
DFHrtFE2

Field Attribute or Printer Control Character
(or combination of these)

Printer end-of-message
Printer new-line character
Autoskip
Unprotected
Unprotected; numeric
Protected
High intensity
Dark; nonprint
MDT set to 1
Protected; aDT set to 1
Autoskip; MDT set to 1
Autoskip; high intensity
set attribute order
Color attribute code
PS attribute code
Highlight attribute code
3270 attribute code
Validation attribute code
X '00' (Reset all attri.outes)
X '3P' (Error code)
X'FP'(Default override for use in maps)
Default color
Blue
Red
Pink
Green
Turquoise
Yellow
Neutral
Base PS
Default highlight
Blink
Reverse video
Underline
Mandatory fill
rtandatory enter
Mandatory fill and enter

1 For text processing only- Use for constructing embedded set
attribute orders in user text

2 Cannot be used in set attribute orders

Figure 3.2-4. Standard Attribute and Printer Control Character List
(D FH BlISCA)

152 CICS/VS APRM (eL)

Standard CICS/VS Terminal Support (BTAM or TeAM)

RECEIVE {INTO(data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data-value)
[DE ST (n am e)]
[WAIT]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH (data-area)]
[DE ST (name)]

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

These commands can be used by all terminals supported by CICS/VS that
are not dealt with separately in the following sections.

Chapter 3.? Term.inal Control 153

LUTYPE4 Logical Unit

RECEIVE (INTO(data-area) I SET(pointer-ref)}
LENGTB(data-area)

Exceptional conditions: EOC, EODS, INBFftH, LENGERR, SIGNAL

SEND FRO~(data-area)
LENGTB(data-value)
[WAIT]
[INVITE I LAST]
[CNOTCOaPL I DEFRESP]
[Fl!H]

Exceptional condition: IGREQCD, SIGNAL

CONVERSE FRO~(data-area)
FROaLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH fda ta-area)]
[DEFRESP]
[FlI!H]

Exceptional conditions: EOC, EODS, IGREQCD, INBFMH, LENGERR,
SIGNAL

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

154 CICS/VS APRlI! (CL)

LUTYPE6 Logical Unit

RECEIVE [SESSION (name) 1
{INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional conditions: IBBFSH, NOTALLOC, LENGERR, SESSIONERR,
SIGNAL

SEND [SESSION (name) 1
[WAIT]
[INVITE I LAST]
[ATTACHID (name)]
[FROM. (name)]

LENGTH (name)
[FI!H]
[DEFRESP]

Exceptional conditions: CBIDERR, NOTALLOC, SESSIONERR, SIGNAL

CONVERSE [SESSION (name)]
[ATT1CHID (name)]
[FROI! (name)]
FRO~LENGTH(name)

[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH(data-area)]
(Ft!H]
[DEFRESP]

Exceptional conditions: CBIDERR, INBFMH, LENGERR, NOTALLOC,
SESSIONERR, SIGNAL

ALLOCATE {SYSID (name) I SESSION (name) }
[PROFILE (name)]

Exceptional conditions: CBIDERR, INVREQ, SESSBUSY, SESSIONERR,
SYSBUSY, SYSIDERR

BUILD ATTACH
[ATTACHID (nalle)]
[PROCESS (name)] [RESOURCE (name)]
[RPROCESS(name)] [RRESOURCE(name)]
[QUEUE (name)] [IUTYPE(name»)
[DATASTR (name)] [RECF!! (name)]

EXTRACT ATTACH
[ATTACH ID (name) I SESSION (da ta-area)]
[PROCESS (data-area)] [RESOORCE(data-area)]
[RPROCEsS(data-area)] [RRESOURCE(data-area)]
[QUEUE (data-area)] [IOTYPE(data-area)]
[DATASTR (data-area)] [ReCF]! (data-area)]

Exceptional conditions: CBIDERR, INVREQ, NOTALLOC, SESSIONERR

Chapter 3.2. Terminal Control 155

I LUTYPE6 Logical Unit (Continued)

EXTRACT TCT
NETNAME(name)
{SYSID (data-area) I TERMID (data-area)}

Exceptional condition: INVREQ

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

POINT [SESSION (name)]

Exceptional conditions: NOTALLOC, SESSIONERR

WAIT SIGNAL

WAIT TERMINAL [SESSION (name)]

Exceptional conditions: NOTALLOC, SESSIONERR, SIGNAL

ISSUE DISCONNECT [SESSION (name)]

Exceptional conditions: NOTALLOC, SESSIONERR

ISSUE SIGNAL [SESSION (name)]

Exceptional conditions: NOTALLOC

The ALLOCATE command is used to acquire an alternate facility and to
select optionally a set of terminal control processing options. If
SYSID is specified, CICS/VS will make available to the application
program one of the sessions associated with the named system. The name
of this session can be obtained from field EIBRSRCE in the EIB. If
SESSION is specified, CICS/VS will make the named session available.

The BUILD ATTACH command is used to specify a set of values to be
placed in the named attach header control block. This control block
contains values that are to be sent in an LU6 attach F!H which is
constructed by CICS/VS, and is sent only wnen a SEND ATTACHID or
CONVERSE ATTACHID command is executed. The specified values override
existing values in the control block; unspecified values are set to
default values.

The EXTRACT AT~ACH command is used to retrieve a set of values held
in an attach header control block or that have been built previously.

156 CICS/VS APRM (CL)

This control nlock contains values rec~ived in an attach Faa or that
have been built previously.

The EXTRACT TCT command is used to allow the eight-character VTAM
network name for a terminal or logical unit to be converted into a
corresponding four-character name by which it is known in tfie local
CICS/VS system.

The FREE com~and is used to return a facility to CICSjVS when a
transaction owning it no longer requires it. The facility can then be
allocated for use by other transactions. A facility can be freed only
when it is in free mode (EIBFREE set to X'FP') •

The POINT command is. used to obtain information about a na&ed
facility, such as whether it owns the given facility.

SESSION STATUS INFORMATION

This information consists of several fields that contain application~
oriented and session-oriented information when an L06 session is in
progress. These fields are located in the EIB.

Session status information is set to zeros at the start of execution
of avery com&and and is updated whenever a BECEIVE or CONVERSE command
naming an L06 session is executed. If the information is to be retained
across the execution of several commands, the user must take steps to
preserve it.

APPLICATION-QRIENTED INFORMATION

The application-oriented information determines the action taken by
function processing logic. The information consists of, for example,
indicators (such as end-of-chain), an attach header, and user data.

The user data is moved to an area specified in the application
program; alternatively the address of the user data is passed to the
application program.

The indicators, together with an attach header indicator, are passed
to the application program in the EIB. The EXTRACT ATTACH command
(described earlier in the chapter) can be used to process the attach
header data if such data exists.

The following application-oriented fields, each one byte in length,
appear in the EIB: EIBATT, EIBEOC, and EIBFMH.

SESSION-ORIENTED INFORMATION

The session-oriented information determines the action taken by session­
handling logic, for example, syncpoint requested. This information is
available to the application program in fields EIBSYNC, EIBFREE, and
EIBRECV in the EIB, and should be processed in that order, before
further operations, such as SEND, RECEIVE, CONVERSE, or FREE, are
performed on the session.

Chapter 3.2. Terminal Control 157

System/3

r--~----------------------,
I
I RECEIVE {INTO (data-area) I SET (pointer-ref)}
I LENGTH (data-area)
I [ASIS] ,
I Exceptional condition: LENGERR
t

SEND FROM (data-area)
LENGTH (data-value)
[DEST (name)]
(WAIT]
[ASIS]
[CNOTCO!tPL]

CONVERSE FROM (data-area)
FROMLENGTH{data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTB (data-area)]
[DEST (name)]

Exceptional condition: LENGERR

System/370

Support and command syntax as for System/3.

158 CICS/VS APR! (CL)

System/7

RECEIVE {INTO(data-area) I SET(pointer-ref)}
LENGTH (data-area)
[PSEUDOBIN]1
(1SIS]

Exceptional condition: LENGERR

SEND FROM(data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[PSEUDO BIN]1
[1S1S]

CONVERSE FRO~(data-area)
FROMLENGTH(data-value)
(INTO (data-area) I SET (poin ter-ref)]
[TOLENGTH(data-area)]
[DEST (name))

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCON~ECT

1 start-stop only

Transactions are normally initiated from the system/7 by issuing a four­
character transaction code which is transmitted in BCD mode.
Pseudobinary mode can be used only while communicating with an active
C1CS/VS transaction; it cannot be used to initiate the transaction. The
message length is given as the number of words to be transmitted (not as
the number of characters).

When a transaction is initiatad on a System/7, CICS/VS services that
System/7 only for the duration of the transaction; that is, to ensure
efficient use of the line, any other System/1s on the same line are
lOCKed out for the duration of the transaction. CICS/VS application
programs for the multipoint System/7 SQould be designed with the
shortest possib1e execution time.

The first word ~wo characters) of every message received by the
System/? must be an identification word, except words beginning with 1I(j)"

(X I 20·) whiCh are reserved by CICS/VS.

When the PSEUDOBIN option is specified, the length of the data-area
provided by the application program must be at least twice that of the
data to he read.

In the case of a Systea/1 on a dial-up (switched) line, the System/1
application program must, initially, transmit a four-character terminal
identification. (This terminal identification is generated during
preparation of the TCT through use ot the DFHTCT TYPE=TER~INAL,
TRMIDNT=parameter specification.) CICS/VS responds with either a

Chapter 3.2. Terminal Control 159

"ready" message, indicating that the terminal identification is valid
and that the System/7 may proceed as if it were on a leased line, or an
INVALID THR~INAL IDENTIFICATION message, indicating that the terminal
identification sent by the system/7 did not match the TRMIDNT=paraaeter
specified.

Whenever CICS/VS initiates the connection to a dial-up System/7,
CICS/VS writes a null message, consisting of three idle characters,
prior to starting the transaction. If there is no program resident in
the System/7 capable of supporting the Asynchronous Communication
Control Adapter (ACCA), BTAM error routines cause a data check message
to be recorded on the CICS/VS (host) system console. This is normal if
the task initiated by CICS/VS is to IPL the System/7. Although the data
check message is printed, CICS/VS ignores the error and continues normal
processing. If a program capable of supporting the ACC! is resident in
the System/7 at the time this message is transmitted, no data check
occurs.

When a disconnect is issued to a dial-up System/1, the 'busy' bit is
sometimes left on in the interrupt status word of the ACCA. If the line
connection is reestablished by dialing from the System/7 end, the 'busy'
condition of the ACCA prevents message transmission from the System/7.
To overcome this problem, the System/7 program must reset the ACCA after
each disconnect and before message transmission is attempted. This can
be done by issuing the following instruction:

PWRI 0,8,3,0 RESET ACCA

This procedure is not necessary when the line is reconnected by
CICS/VS (that is, by an automatically initiated transaction).

160 CICS/VS APRM (CL)

2260 Display Station

r--~

RECEIV& {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)
[lEAVEKB)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data-value)
[CTLCHAR(data-value»)
[DEST (name)]
[LINEADDR(data-value) j
[WAIT]
[LEAVEKB]

CONVERSE FROM (data-area)
FROMLENGTH(data-value)
[INTO (dat:a-area) I SET (pointer-ref)]
[TOLENGTH(data-area)]
[CTLCHAR(data-value)]
[DEST (name)]
[LINEADDR(data-value)]

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

The LINEADDB option specifies on which line of a 2260 screen writing is
to begin. A line number in the range 1 through 12 must be provided in
the application program.

2265 Display Station

Support and command syntax as for the 2260 Display Station except that a
line number in the range 1 through 15 must be provided in the
application program.

Chapter 3.2. Terminal Control 161

2741 Communication Terminal

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional conditions: LENGRRR, RDATT (not TCA!)

SEND FROI.'! (data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]

Exceptional condition: iRBRK

CONVERSE FROM(data-area)
FROMLENGTH (data-value)
[INTO (data-area) I SET(pointer~ef)]
[TO LENGTH (data-urea)]
[DEST (name)]

Exceptional conditions: LENGERR, RDATT (not TCAM), iRBRK

ISSUE RESET
ISSUE DISCONNECT

READ ATTENTION

If the terminal operator presses the Attention key on the 2741 after
typing a massage, it is recognized as a Read Attention if:

• Read Attention support is generated into the system (CICS/OS/VS or
CICS/DOS/VS).

• The message is read by a RECEIVE command.

When this occurs, control is transferred to a CICS/VS read attention
exit routine, if it has bean generated into the system. This routine is
a skeleton program that can be tailored by the system programmer to
carry out actions such as the following:

• Perform data analysiS or modification on a Read Attention.

• Return a common response to the terminal operator following a Read
Attention.

• Return a response and request additional input that can be read
into the initial input area or into a new area.

• Request new I/O without requiring a return to the task to request
additional input.

162 CICS/VS APR~ (CL)

When the Read Attention exit routine is complated, control is
returned to the application program at the address specified in the
HANDLE CONDITION RDATT command. The return is made whenever one of the
following occurs:

• The exit routine issues no more requests for input.

• The exit routine issues a RECEIVE request and the operator
terminates the input with a carriage return. (If the operator
terminates the input with an Attention, the exit routine is
reentered and is free to issue another RECEIVE request) •

If a HANDLE CONDITION RDATT command is not included in the
application program or Read Attent~on support has not been generated,
the attention is treated as if the return key had been pressed.

WRITE BREAK (CICS/OS/VS ONLY)

If the terminal operator presses the Attention key on the 2741 while a
message is oeing received, it is recognized as a write Break if:

• Write Break support is generated into the system (available only in
CICS/OS/VS) by the system programmer.

• A HANDLE CONDITION WRBRK command is active in the application
program.

When this occurs, the remaining portion of the message is not sent to
the terminal. The write is terminated as though it were successful, and
a new-line character (X'lS') is sent to cause a carrier return. Control
is returned to the application program at the address specified for the
WRBRK condition.

If a HANDLE CONDITION WRBaK command is not included in the
application program or if write Break support has not been generated,
the attention is treated as an I/O error.

Chapter 3.2. Terminal Control 163

2770 Data Communication System

Support and command syntax as for System/3. The 2770 recognizes a read
interrupt and responds by transmitting the contents of the I/O buffer.
After the contents of the buffer have been transmitted, the 2770
responds to the next read continue with an EOT. If the I/O buffer is
empty, the 2770 transmits an EOT. CICS/VS issues a read interrupt and
read continue to relinguish use of the line and to enable the
application program to write to the 2770.

Input from a 2770 consists of one or more logical records. CICS/VS
provides one logical record for each read request to the application
program. The size of a logical record cannot exceed the size of the I/O
buffer. If the input spans multiple buffers, multiple reads must be
issued by the application program.

The 2265 coaponent of the 2770 Data Comaunication System is
controlled by data stream characters, not BTAM macro instructions;
appropriate screen control characters should be included in the output
area.

For 2770 input, data is deblocked to ETX, ETB, RS, and US characters.
These characters are moved with the data to the input area but are not
included in the data length; characters such as NL, CR, and LF are
passed in the input area as data.

2780 Data Transmission Terminal

Support aad command syntax as for System/3. The 2780 recognizes a read
interrupt and responds by transmitting the contents of the I/O buffer.
After the contents of the buffer have been transmitted, the 2780
responds to the next read continue with an EOT. If the I/O buffer is
empty, the 2780 transmits an EOT. CICS/VS issues a read interrupt and
read continue to relinguish use of the line and to enable the
application program to write to the 2780.

Input from a 2780 consists of one or more logical records. CICS/VS
provides one logical record for each read reguest to the application
program. The size of a logical record cannot exceed the size of the I/O
buffer. If the input spans multiple buffers, multiple reads must be
issued by the application program.

Output to a 2780 requires that the application program contains an
appropr~ate "escape sequence" for component selection associated with
the output message. ~or programming details, see the publication
Component Descrietion: IBM 2780 Data Transmission Terminal.)

For 2780 input, data is deblocked to ETX, ETB, RS, and US characters.
These characters are moved with the data to the input area but are not
included in the data length; characters such as NL, CR, and LF are
passed in the input area as data.

164 CICS/VS APRM (Cl)

2980 General Banking Terminal System

I
I RECEIVE {INTO (data-area) I SET(pointer-ref)}
I LENGTH (data-area)
I PASSBK
I
I Exceptional conditions: LENGERR, NOPASSBKRD
I
1---
I
I SEND FROM ~ata-area)
I LENGTB(data-value)
I (DEST(name)]
I {PASSBK I CBUFF}
I
1 Exceptional condition: NOPASSBKWR
I L __ _

PASSBOOK CONTROL

All input and output requests to the passbook area of a 2980 are
dependent on the presence of a passbook. The PASSBK option is used to
specify the passbook area. The conditions NOPASSBKRD and NOPASSBKWR
will occur on input and output requests respectively when a passbook is
not present. These conditions can be handled by a HANDLE CONDITION
command and appropriate handling routines.

If the passbook is present on an input request, the application
program generally writes back to the passbook area to update the
passbook. If the NOPASSBKWR condition occurs, CICS/VS allows immediate
output to the terminal. In a routine for the NOPASSBKWR condition, the
application program should send an error message to the journal area of
the terminal to inform the 2980 operator of this error condition. To
allow the operator to insert the required passbook, CICS/VS
automatically causes the transaction to wait 23.5 seconds before
continuing.

On regaining control from CICS/VS after sending the error message,
the application program can attempt again to update the passbook when it
has ensured that the print element is positioned correctly in the
passbook area. This is generally accomplished by issuing two carrier
returns followed by the number of tabs required to mOVG the print
element to the correct position. (See "The DFH2980 Structure" lat&r in
this section) •

If the NOPASSBKiR condition occurs during the second attempt to write
to the passbook area, the application program can send another error
message or take some alternative action (for example, place the terminal
"out of service").

The presence of the Auditor Key on a 2980 Administrative Station
aodel 2 is controlled by the SEND PASSBK com.and and may be used in a
manner similar to that described above.

Chapter 3.2. Terminal Control 165

OUTPUT CONTROL

The unit of transmission for a 2980 is called a segment. A segment is
equivalent to the buffer size of the 2972 Control Unit. However, for
the passbook and journal areas, CICS/VS allows an application program to
send messages that exceed the buffer size. For the passbook area, the
maximum length of message is limited to one line of a passbook to avoid
spacing (indexing) past the bottom of the passbook. For the journal
area, the maximum length of message is specified in the LENGTH option of
the SEND command.

For example, consider a 2972 buffer size of 48 characters and a 2980
Teller Station ~odel 4 passbook print area of 100 charactersj1ine. The
application program can send a message of 100 characters to this area;
CICS/VS automatically segments the message to adjust to the Duffer size.
The application program must insert the passDook indexing character
(X'2SI) as the !~1 character written in one output request to the
passbook area. This is done to control passbook indexing and thereby
aChieve positive control of passbook presence.

If a message contains embedded passbook index characters, and
segmentation is necessary because of the length of the message, the
output is term~nated if the passbook spaces beyond the bottom of the
passbook; the remaining segments are not printed.

OUTPUT TO A COMMON BUFFER

The SEND CBUFF command is used to transmit data to a common buffer. The
data is translated to the character set of the receiving 2980 model. If
more than one 2980 model type is connected to the 2972 Control Unit, the
lengths are automatically truncated if they exceed the buffer size.

THE DFH2980 STRUCTURE

The DFH2980 structure contains constants that may be used when writing
only COBOL or PLjI application programs for the 2980. The structure is
Obtained by copying DFH2980 into the application program.

For COBOL, DFH2980 is copied into the Working storage section; for
PL/I, DFH2980 is included using a %INCLUDE statement.

The station identification is given in the field STATIONID, whose
value must be determined by the ASSIGN command. To test whether a
normal or alternate station is being used, the STATIONID field is
compared with values predefined in DFH2980. The values are:

STATION-#-A or STATION-t-N (for COBOL)

where # is an integer (0 through 9) and A and N signify alternate and
normal stations. (The break sy mbol is "--" (minus) for COBOL, and " II

(underline) for PL/I.)

The teller identification on a 2980 Teller Station Bodel q is given
in the one-byte character field TELLERID. An ASSIGN command must be
used to determine the TELLERID valaa.

166 CICS/VS APRM (CL)

Tab characters (X'OS') must be included in the application program.
The number of tabs required to position the print element to the first
position of a passbook area is given in the field NU~~AB. An ASSIGN
command must be used to determine the NU~TAB value. The value of NUMTAB
is specified by the system programaer and may be unique to each
terminal.

Other tab characters are inserted as needed to control formatting.

Any of the DFB2980 values TAB-ZERO through TAB-NINE for COBOL and
PL/I, may be compared with NUl!TAB to determine the number of tab
characters that need to be inserted in an output message to obtain
correct positioning of the print element. The tab character is included
in DFH2980 as TABCHAR.

Thirty special characters are defined in DFH2980. Twanty-thre~ of
these can be referred to by the name SPECCBAR-' or SPECCHAR_# (for ANS
COBOL or PL/I) where t is an integer (0 through 22). The seven other
characters are defined with names that imply their usage, for example,
TABCHAR. For further information on these thirty characters, see
Appendix B.

Several other characters defirred in DFH2980, such as HOLDPCF or
TCTTEPCR, are intended for use in application programs using CICS/VS
macro-instructions and should not be required in application programs
using CICS/VS commands.

Chapter 3.2. Terminal Control 167

3270 Information Display System (BT AM or TeAM)

RECEIVE {INTO(data-area) I SET (pointer-ref)}
LENGTH (data-area)

[ASIS]
[BUFFER] (not TCAK)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data-value)
[DEST (name)] (TCAM only)
[WAIT]
[STRFIELD 1 [[ERASE] [CTLCBAR (data-value)]]]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO (data-area) t SET (pointer-ref)]
[TOLENGTH (data-area)]
[STRFIELD I [[ERASE] [CTLCBAR (data-val ue)]]

Exceptional condition: LENGERR

ISSUE PRINT1

ISSUE COPY1TERMID(nama)
[CTLCflAR (data-value)]
[WAIT]

, Exceptional condition: TER~IDERR

I
1--
1
I ISSUE ERASEAUP [WAIT)
1
1--------·--
1
1 ISSUE RESET
I ISSUE DISCONNECT
1 L __ ~

1
I 1 The ISSUE PRINT and ISSUE COpy commands cannot be used with TCAM.
I L __ ~

168 CICS/VS APRM ~L)

3270 in 2260 Compatibility Mode (BTAM)

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)
[LEAVEKB]

Exceptional condition: LENGERR

SEBD FROf! (da ta-area)
lENGTH (data-value)
[LINEADDR(data-value)]
[WAIT]
[ERASE)
[LEAVEKB]

CONVERSE FROM (data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH (data-area)]
[LINEADDR (data-value)]
[ERASE]

Exceptional condition: LENGERR

ISSUE DISCON BECT

On output, a SEND ERASE command will clear the screen and set the cursor
to the upper left corner before writing starts.

Chapter 3.2. Terminal Control 169

3210 Logical Unit

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

[ASIS]
[BUFFER]

Exceptional condition: LENGERR

SEND FROa(data-area)
LENGTH (data-value)
[WAIT]
(INVITE I LAS'r]
[STRFIELD I [[ERASE] [CTLCH AR (da ta-value)]]]
[DEFRESP]

CONVERSE FRO~(data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[STRFIELD I [[ERASE] (CTLCHAR (data-val ue)]]
[TOLENGTH (data-area)]
[DEFRESP]

Exceptional condition: LENGERR

FREE (SESSION(name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE COpy TER~ID(name)
[CTLCHAR (data-value)]
[WAIT]

Exceptional condition: TERMIDERR

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

170 CICS/VS APRM (CL)

3270 SCS Printer Logical Unit

I

1
1 SEND FROM (data-area)
1 LENGTH (data-value)
I [DEST (name)]
I [WAIT]
1 [INVITE 1 LAST]
1 [CNOTCOMPL I DEFRESP]
1 [DEFRESP]
1
1--
1
1 FREE [SESSION (name) 1
1
1 Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR
1
1--
I
1 ISSUE DISCONNECT
I L __ ~

The SCS printer logical unit accepts a character string as defined by
SNA (Systems Network Architecture). Some devices connected under SNA
can send a signal which can be detected by the HANDLE CONDITION SIGNAL
command, which in turn can invoke an appropriate handling routine. If
necessary, a WAIT SIGNAL command can be used to make the application
program wait for the signal. The PA keys on a 3281 can be used in this
way, or with a RECEIVE command.

Chapter 3.2. Terminal Control 111

3270-Display Logical Unit (LUTYPE2)

RECEIVE {INTO (data-area) I SET (pointer-ref) }
LENGTB(data-area)

[ASIS]
[BUFFER]

Exceptional condition: lE8GERR

SEND FRO~(data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[STRFIELD I [[ERASE] [CTLCHAR (data-value)]])
[INVITE t LAST]
[DEFRESP]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH(data-area)]
[STRFIELD I [[ERASE] [CTLCHAR(data-value)]]
[DEST (name)]
[DEFRESP]

Exceptional condition: lENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, SOTAlLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

172 CICS/VS APRM (Cl)

3270-Printer Logical Unit (LUTYPE3)

RECEIVE {INTO (data-area) I SET(pointer~ref)}
LENGTH (data-area)

[ASIS]
(BUFFER]

Exceptional condition: LENGERR

SEND FRO~ (data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[STRFIELD I [[ERASE] [CTLCHAR (da ta-value)]]]
[INVITE I LAST]
[DEFRESP]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH (data-area)]
[STRFIELD I [[ERASE] [CTLCHAR(data-value)])
[DEST (name)]
[DEFRESP]

Exceptional condition: LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP (WAIT]

ISSUE DISCONNECT

Chapter 3.2. Terminal Control 173

3600 Finance Communication System (BTAM)

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional condition: LENGERR

SEND FR08(data-area)
LERGTH(data-value)
[DEST (name)]
[WAIT]

CONVERSE FRO! (data-area)
FRO~LENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH(data-area)]
(DEST (name)]

Exceptional condition: LENGERR

ISSUE RESET

ISSUE DISCONNECT

INPUT

The unit of transmission from a 3601 Finance Comaunication Controller to
CICS/VS is a segment consisting of the start-of-text data link control
character (STX), the one byte identification of the 3600 logical work
station that issued the processor write, the data, and either an end-of­
block (ETB) or an end-of-tsxt (ETX) control character.

A logical work station sends a message either in one segment, in
which case the segment ends with ETX, or in more than one segment, in
which case only the last segment ends with ETX, all others ending with
ETB.

The input area passed to the user-written application program
consists of the data only. The one-byte field TCTTEDLM, which may be
obtained by means of an ASSIGN DELIftITER command, contains flags
describing the data~link control character (ETB, ETX, or IRS) that ended
the segment. The application program can issue terminal control
commands to read the data until it receives a segment ending with ETX.
If blocked data is transmitted, it is received by CICS/VS as follows:

r--------------~
I 5
I T idl data
I X

I
R
5

id2 data
L ________ ~

174 CICS/VS APRM (CL)

I
R
5

E
idn data T

X

For blocked input, the flags in TCTTEDL! only indicate end of
segment, not end of message. The CICS/VS application program still
receives only the data, but user-defined conventions may be required to
determine the end of the message.

The field TCTTEDLM also indicates the mode of the input, either
transparent or non-transparent. Blocked input is non-transparent.

The terminal control program does not pass input containing a "start
of header" (SOH) data link control character to a user-written
application program. If it receives an SOB it sets an indicator in
TCTTEDLM, passes the input to the user exit in the terminal control
program, and then discards it.

OUTPUT

When an application program issues a SEND command, the terminal control
program determines, from the value specified in the BUFFER parameter of
the DFHTCT TYP&=TERMINAL system macro, the number of segments to be
built for the message. It sends the message to the 3600 logical unit
either in one segment consisting of a start-of-text character (STX), the
data, and an end-of-text character (BTl); or in more than one segment,
in which case only the last ends with ETX, all others ending with ETB.

The host input buffer of the 3600 controller and the input segment of
the receiving logical unit must be large enough to accommodate the data
sent by CICS/VS. However, space for tbe data link control characters
need not be included. The 3600 application program reads the data from
the host, by means of an LREAD, until it has received the entire
message.

CICS/VS system output messages begin with "DFH" followed by a four­
byte message number and the message text. .These messages are sent in
non-transparent mode. It is suggested that CICS/VS user-written
application programs do not send messages starting with "DFHIt to the
3601.

RESBND MESSAGE

When a logical unit sends a message to the host and a short-on-storage
condition exists or the input is unsolicited (the active task associated
with the terminal has not issued a read), the terminal control program
sends a "resend" message to the logical unit. The format of this
message is DFH1033 RE-ENTER followed by X'lS' (a 3600 new line
character) followed by the first eight bytes of the text of the message
being rejected. No message is sent to the destinations CSMT or CSTL.

The first eight bytes of data sent to CICS/VS can be used by the 3600
application program to define a convention to associate responses
received from CICS/VS with transactions sent to the host, for example,
sequence numbers could be used.

If a CICS/VS user-written application program has already issued a
SEND command when a resend situation occurs, the resend message is not
sent to the 3601 until the user-written application program message has
been sent. A 3600 logical unit cannot receive a resend message while
receiving a segmented message.

Chapter 3.2. Terminal Control 175

Only one resend ~essage at a time can be queued for a logical unit.
If a second resend situation occurs before CICS/VS has written the
first, a resend message, containing the eight bytes of data that
accompanied the second input transaction from the 3600 logical unit, is
sent.

The resend message is sent in transparent mode if the input data from
the 3601 to be re-transmitted is received by CICS/VS in transparent
mode. Otherwise it is sent in non-transparent mode.

3600 Pipeline Logical Unit

SEND FROM (data-area)
LENGTH (data-value)
[WAIT]

ISSUE DISCONNECT

176 CICS/VS APR~ (CL)

3600 (3601) Logical Unit

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional conditions: EOC, EODS, INBFftH, LENGERR, SIGNAL

SEND FROM (data-area)
LENGTH (data-value)
[LDC (name) I FMH]
[DEST (name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPL I DEFRESP]

Exceptional condition: SIGNAL

CONVERSE FROM (data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TO LENGTH (data-area)]
[LDC(name) I FMH]
[DEST (name) j
(DEFRESP J

Exceptional conditions: EOC, EODS, INBFMH, LENGERR, SIGNAL

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

Chapter 3.2. Terminal Control 177

LOGICAL DEVICE CODE (LDC OPTION)

A logical device code (LDC) is a code that can be included in an
outbound F~H to specify the disposition of the data (for example, to
which subsystem terminal it should be sent). Bach code can be
represented by a unique lDC mnemonic. The installation can specify up
to 256 two-character mnemonics for each TCTTE, and two or more TCTTEs
can share a list of these mnemonics. Corresponding to each LDC mnemonic
for each TCT1E is a numeric value (0 through 255). A 3600 device and a
logical page size are also associated with each LDC. "LDe" or "LDC
value" is used in this publication in reference to the code specified by
the user. "LDC mnemonic" refers to the two-character symbol that
represents the LDC numeric value.

When the LDC option is specified in the SEND command, the numeric
value associated with the mnemonic for the particular TCTTE, is inserted
in the F!H. The numeric value associated with the lDC mnemonic is
chosen by the installation, and is interpreted by the 3601 application
program.

118 CICS/VS APRM (Cl)

3600 (3614) Logical Unit

RECEIVE {INTO (data-area) I SET (pointer-ref) }
LENGTH (data-area)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[INVI TE t LAST]
[CNOTCOMPL I DEFRESP]

CONVERSE FROM(data-are~
FROMLENGTH (data-value)
[INTO (data-area) t SET (pointer-ref)]
(TOLENGTH(data-area)]
[DEFRESP(name)]
[DEST (name)]

Exceptional condition: LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

1--I
I ISSUE DISCONNECT
I L __ ~

The data stream and communication format used between a CICS/VS
application program and a 3614 is determined by the 3614. The
application program is therefore device dependent when hand1ing 3614
camnunications.

For further information about designing 3614 application programs for
CICS,IVS, refer to the CICSIVS 3600 Guide.

3630 Plant Communication System

Support and conunand syntax as for the 3600 (3601) ~ogical unit and the
3600 pipeline logical unit as described earlier in this chapter for the
3600 Finance Communication System.

Chapter 3.2. Terminal Control 119

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

3650/3680 Host Command Processor Logical Unit

i

I
I RECEIVE {INTO (data-area) I SET (pointer-ref)}
I LENGTH (data-area)
I
I Exceptional conditions: !DC ~ LENGERR
f

SEND FROM (data-area)
LENGTH (data-value)
[WAIT]
(INVITE I LAST]
[ct«>TCOMPL I DEFRESP]
[FMH]

CONVERSE FROM (data-area)
FROMLENGTH (data-value)
[INTO~ata-area) I SEr(pointer-re~]
(TOLENGTH(data-area)]
[FMH]
[DEFRESP]

Exceptional condition: LER;ERR

FREE [SESSION (name) 1

Exceptional condi tions: INVREQ, NOTALIDC, SESSIONERR

ISSUE DISCONNECT

180 CICS/VS APRM (CL)

3650 Host Conversational (3270) Logical Unit

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional conditions: EOC, LENGERR

SEND FROM (data-area)
LENGTB(data-value)
[C'rLCHAR (data-value)]
[WAIT]
[ERASE]
[INVITE I LAST]
[CNOTCO~PL I DEFRESP]
[FKB]

CONVERSE FROM (data-area)
FROftLENGTB(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH (data-area)]
[CTLCHAR(data-value)]
[ERASE]
[DEFRESP]
[F~H]

Exceptional condition: LENGERR

FREE [SESSION(name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISS UE ERASEAUP [W lIT]

ISSUE DISCONNECT

Chapter 3.2. Terminal Control 181

3650 Host Conversational (3653) Logical Unit

RECEIVE {INTO (data-area) I SET(pointer-ref)}
LENGTH (da ta-area)

Exceptional conditions: EOC, LENGERR

SEND FROM (data-area)
LENGTH (data-value)
[WAIT]
[INVITE I LAST]
[CNOTCOMPL I DEFRESP]

CONVERSE FROM(data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH~ata-area)]
[DEFRESP]

Exceptional conditions: ROC, LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE DISCONNECT

182 CICS/VS APR! (CL)

3650 Interpreter Logical Unit

RECEIVE (INTO tiata-area) I SET (pointer-ref) }
LENGTH (data-area)

Exceptional. conditions: EOC, EODS, INBFMH, LENGERR

SEND FROM(data-area)
LENGTH (data-val.ue)
[WAIT]
[INVITE I LAST]
[DEFRESP]
[FMH]

CONVERSE FROM (da ta-area)
FROMLENGTH flata-val.ue)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTB (data-area)]
[DEFRESP]
[FMH]

Exceptional conditions:· me, EnDS, INBFMB, LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE LOAD PROGRAM (name)
[CONVERSE]

Exceptional conditions: NONVAL, NOSTARr

ISSUE EODS

ISSUE DISCONNECT

The ISSUE LOAD command specifies the name of the 3650 appl.ication
program that is to be loaded.

The ISSUE EODS command can be used to send an end~f-data-set
function management header to the 3650.

Chapter 3.2. Terminal. Control. 183

Page of SC33-0077-2; revised September 1980 by TNL SN33-6268

3650 Pipeline Logical Unit

Support and coIlDlland syntax as for the 3600 Pipe1ine Logica1 Unit.

3650/3680 Full Function Logical Unit

Support and command syntax as for the 3790 Fllll Function Logical Unit.

3660 Supermarket Scanning System

Support and command syntax as for System/3.

184 CICS,lVS APRM (CL)

3735 Programmable Buffered Terminal

RECEIVE {INTO (data-area) I SET(pointer-ref)}
LENGTB(data-area)

Exceptional conditions: EOP (not TCAM) , LENGERR

SEND PRm! (data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[ASIS]

CONVERSE PROM(data-area)
PROMLENGTH (data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH(data-area)]
[DEST (name)]

Exceptional conditions: EOP (not TCAK), LENGERR

ISSUE RESET
ISSUE DISCONNECT

The 3735 Programmable Buffered Terminal may be serviced by CICS/VS in
response to terminal-initiated input, or as a result of an automatic or
time-initiated transaction. Both are explained below.

3735 TRANSACTIONS - AUTOANSWER

The 3735 transaction is attached by CICS/VS upon receipt of input from a
3735. Data is passed to the application program in 476-byte blocks;
each block (one buffer) may contain several logical records. The final
block may be shorter than 476 bytes; zero-~ength final blocks are not,
however, passed to the application program. If the block contains
several logical records, the application program must perform any
necessary deblocking and gathering of partial logical records.

It is recommended that input data from a 3735 be spooled to an
intermediate data set ~or example, an intrapartition destination) to
ensure that all data has been captured before deblocking and processing
that data.

The application program must follow 3735 conventions and read to end­
of-file before attempting to write PDPs ~orm description programs) or
data to the 3735. Por this reason, the application program must include
a HANDLE CONDITION command for the EOP condition. When control passes
to the EOF routine, FDPs or data may be written to the 3735, or,
optionally, CICS/VS requested to disconnect the line.

Chapter 3.2. Terminal Control 185

The 3735 may transmit the BOP condition immediately upon connection
of the line, in which case, a HANDLE CONDITION command for the EOP
condition must be issued before any other terminal control commands.

The application program must format all special message headers for
output to the 3735 (for example, SELECTRIC, POWERDOWN). If PDPs are to
be transmitted to a 3735 with ASCII transmission code, the ASIS option
must be included in the SEND command for each block of PDP records.

An ISSUE DISCONNECT command must be issued when all output has been
transmitted to the 3735. If the application program ends during batch
write mode before the ISSUE DISCONNECT command is executed, CICSjVS
forces a 3735 "receive abort" condition and all data just transmitted is
ignored by the 3735.

3735 TRANSACTIONS - AUTOCALL AND TIME-INITIATED

In automatic and time-initiated transactions, all considerations stated
above apply when CICS/VS dials a 3735, except that the EOF condition
cannot occur.

CICS/VS connects the line and allows the first terminal control
command to indicate the direction of data transfer. If this first
command is a SEND and the 3735 has data to send, the 3735 causes the
line to be disconnected.

186 CICS/VS APRM (CL)

3740 Data Entry System

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Excep'tional conditions: BOF (except TCAl!) , ENDINPT (except
TCAl!), LENGERR

SEND FROM(data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]

CONVERSE FROM (data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH(data-area)]
[DEST (name)]

Exceptional condition: LENGERR

ISSUE ENDPILE [ENDOUTPUT]

ISSUE ENDOUTPUT [ENDFILE]

ISSUE RESET
ISSUE DISCONNECT

BATCH MODE APPLICATIONS

In batch mode, many files are exchanged between the 3740 and CICS/VS in
a single transmission. The transmission of an input batch must be
complete before an output transmission can be started.

On input, the EOP (end-of-file) condition is raised by CICS/VS when a
null block (indicating the end of a physical file) is received from the
3740. A HANDLE CONDITION EOP command should be included to specify that
processing of the file is to continue. Eventually, the ENDINPUT
condition is raised by CICS/VS when all input has been received. No
more RECEIVE commands will be executed and a HANDLE CONDITION ENDINPUT
command should be included to specify that control is to be returned to
CICS/VS so that the 3740 can be set to receive data.

On output, the ISSUE ENDFILE and ISSUE ENDOUTPUT commands are used to
indicate the end-of-file and end-of-output conditions, respectively, to
the 3740. These two conditions may be specified in one command if
required, for example: ISSUE ENDPILE ENDOUTPUT.

Chapter 3.2. Terminal Control 181

3767 Interactive Logical Unit

RECEIVE {IBTO(data-area) I SET(pointer-ref)}
LENGTH (data-area)

Exceptional conditions: EOC, LENGERR, SIGNAL

SEND FROe (data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[INVITE I LAST]
[CNOTCO~PL I DEFRESP]

Exceptional condition: SIGNAL

CONVERSE FROft(data-area)
FROftLENGTH (data-value)
[INTO (data-area) I SET (pointer-ref)]
[TO LENGTH (data-area)]
[DEST (name)]
[DEFRESP]

Exceptional conditions: EOC, LENGERR, SIGNAL

FREE [SESSION(name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

188 CICS/VS APRM (CL)

3770 Batch Logical Unit

RECEIVE {INTO(data-area) I SET(pointer-ref)}
LENGTH (data-area)

Exceptional conditions: EOC, EODS, INBF~H, LENGERR, SIGNAL

SEND FROM (data-area)
LENGTB(data-value)
[DEST (name)]
[WAIT]
[INVITE I LAST)
[CNOTCOMPL I DEFRESP]
[FMB]

Exceptional condition: SIGNAL

CONVERSE FROM (data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH (da ta-area)]
[DEST (name)]
[DEFRESP]
[FMH]

Exceptional conditions: EOC, EODS, INBFftB, LENGERR, SIGNAL

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

t WAIT SIGNAL
I
I Exceptional condi~ion: SIGNAL
I
1--
I
I ISSUE DISCONNECT
1
I Exceptional condition: SIGNAL
I
I

Chapter 3.2. Terminal Control 189

3770 Interactive Logical Unit

support and command syntax as for 3767 Interactive Logical Unit.

3770 Full Function Logical Unit

Support and command syntax as for 3790 Full Function Logical Unit.

3780 Communications Terminal

Support and command syntax as for System/3.

190 CICS/VS APRM eCL)

3790 Full Function Logical Unit

r--,
RECEIVE {INTO(data-area) I SETtpointer-ref)}

LENGTH (data-area)

Exceptional conditions: EOC, EODS, INBFaH, LENGERR, SIGNAL

SEND FROM (data-area)
LENGTH (data-value)
[DEST (nam e)]
[WAIT]
[INVITE I LAST]
[CNOTCOKPL I DEFRESP]
[FMR]

Exceptional condition: SIGNAL

CONVERSE FROM (data-area)
FROMLENGTB(data-value)
[INTO (data-area) I SET (pointer-ref)]
(TOLENGTH (data-area)]
[DEST (name)]
[FMH]
(DEFRESP]

Exceptional conditions: EOC, EOnS, INBFMH, LBNGERR, SIGNAL

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Exceptional condition: SIGNAL

ISSUE DISCONNECT

Exceptional condition: SIGNAL

Chapter 3.2. Terminal Control 191

3790 Inquiry Logical Unit

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTB{data-area)

Exceptional conditions: EOC, EODS, INBFaH, LENGERR

SEND FROM (data-area)
LENGTH (data-value)
[DEST (name)]
[WAIT]
[INVITE I LAST]
[CNOTCOMPL I DEFRESP]
[F~H]

CONVERSE FROM(data-area)
FBOMLENGTH (data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH~ata-area)]
[DEsT (name)]
[FMH]
[DEFREsP]

Exceptional conditions: EOC, BODS, INBFHH, LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE DISCONNECT

192 CICS/VS APRM ~L)

3790 SCS Printer Logical Unit

SEND FROM (data-area)
LENGTH (data-value)
[DEST (name)]
[wAIT]
[INVITE I LAST)
(CNOTCO~PL I DEFRESP]
[DEFRESP]

FREE [SESSION(name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE DISCONNECT

Chapter 3.2. Terminal Control 193

3790 (3270-Display) Logical Unit

r--,
RECEIVE {INTO (data-area) I SET (pointer-ref)}

LENGTH (data-area)
[ASIS]
(BUFFER]

Exceptional condition: LENGERR

SEND FROM(data-area)
LENGTH (data-value)
[DEST (name)]
(CTLCHAR (data-value)]
[WAIT]
[ERASE]
[INVITE I LAST]
[DEFRESP]

CONVERSE FRO~(data-area)
FRO~LENGTB(data-value)
[INTO (data-area) I SET (pointer-ref)]
[TOLENGTH (data-area)]
[DEST (name)]
[DEFRESP 1
[CTLCHAR(data-value)]
[ERASE)

Exceptional condition: LENGERR

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP (WAIT]

I SSUE DISCONNECT

194 CICS/VS APRM (CL)

3790 (3270-Printer) Logical Unit

SEND FROM (data-area)
LENGTH (data-value)
[CTLCHAR(data-value))
[WAIT]
[ERASE]
[INVITE I LAST]
[DEFRESP]

FREE [SESSION (name)]

Exceptional conditions: INVREQ, NOTALLOC, SESSIONERR

ISSUE PRINT

ISSUE ERASE! UP (WAIT]

ISSUE DISCONNECT

7770 Audio Response Unit

RECEIVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)

Exceptional condition: LENGERR

SEND FROM (data-area)
LENGTB(data-value)
(DEST (name)]
[WAIT]

CONVERSE FROM (data-area)
FROMLENGTH(data-value)
[INTO (data-area) I SET (pointer-r:-ef))
[TOLENGTH(data-area)]

Exceptional condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

Chapter 3.2. Terminal Control 195

CICS/VS cannot distinguish between special codes ~haracters) entered at
audio terminals (for exampl.e, the 2721 Portable Audio Terminal);
however, an application program can make use of these codes. The
special codes that can be entered from a 2721 are shown in Figure 3.2-5.

For further information concerning the 2721, see the publication ~
2721 Portable Audio Terminal Component Description.

Key

CALL END
CNCL

• VERIFY
RPT
EXEC
F1
F2
F3
F4
F5
00
000
IDENT

Code (hex)

37
18
3B or 7B
2D
3D
26
Bl
B2
B3
B4
B5
AO
3B or BO
11, 12, 13, or 14 plus two other characters

Figure 3.2-5. 2721 Portable Audio Terminal Special Codes

The special codes AO and 3B (or BO) are also generated by the keys *
and # respectively of a "Touch-Tone" telephone. (To\lch-Tone is the
traaemark of the American Telephone and Telegraph Company.)

If the SET option has been specifieu in the associated command, codes
26, 37, and 3B (each of which causes a hardware interrupt) will
immediately follow the data, but will not be included in the value set
by the LENGTH option.

If the end-of-inquiry ~OI) Disable Feature (Feature No. 3540) is
installed on the 7710 Model 3, the option of including either or Doth j

and 000 as data is available.

If, after receiving at least one code from a terminal, no other codes
have been received by the 7770 for a period of five seconds, the 7770
generates an EOI hardware interrupt that ends the operation.

196 CICS/VS APRM (CL)

Terminal Control Options

ASIS
For System/370, System/1, 2770, and 2780: indicates that output
is to be sent in transparent mode (with no recognition of
control characters and accepting any of the 256 possible
combinations of eight bits as valid transmittable data) •

For System,l7: indicates that the data being written or read is
not to be translated.

For 3735: prevents translation of the Form Description Program
(FOP) records that are to be transmitted to a 3735 using ASCII

code.

For 3270 and VT.AM terminals: specifies a temporary override of
the uppercase translation feature of CICS/VS to allow the
current task to receive a message containing both uppercase and
lowercase data.

This option has no effect on the first RECEIVE command of a
transaction,. as terminal control will perform a read initial
and use the terminal defaults to translate the data.

This option has no effect if the screen contains data prior to
a transaction being initiated. This data will be read and
translated in preparation for the next task and the first
RECEIVE camnand in that task will retrieve the translated data.

ATTACBID (name)

BUFFER

CBUFF

specifiesi for a BUILD ATTACH command, that the set of values
specified is to be placed in an attach header control block
identified by the specifi ed name paximum of eight characters) •

specifies, for a SEND or CONVERSE command, that an attach
header (created by a BUILD ATTACH conunand) is to precede, and
be concatenated with, the user data supplied in response to the
conunand. -Name- (maximum of eight characters) identifies the
attach header control block to be used in the local task.

specifies, for an EXTRACT ATTACH conunand, that values are to be
retrieved from an attach header control block. -Name- (maximum
of eight characters) identifies this control block to the local
task. If the option is omitted, the attach header control
block to be used is that associated with the facility named in
the SESSION option.

specifies that the contents of the 3270 buffer are to be read,
beginning at buffer location one and continuing until all
contents of the buffer have been read. All character and
attribute sequences (including nulls) appear in the input data
stream in the same order that they appear in the 3270 buffer.

specifies that data is to be written to a common buffer in a
2972 Control Unit. The WAIT option is implied.

Chapter 3.2. Terminal Control 197

I
I
I
I
I
I

Page of SC 33-0 0 77-2 , revised September 1980 by TNt. SN33-6268

CNOTCOMPL

CONVERSE

indicates that the request/response unit (RU) sent as a result
of this SEND command will not complete the chain. If this
option is omitted and chain assembly has been specified, the RU
will terminate the chain.

specifies that the 3650 application program will communicate
with the host cpu. If this option is not specified, the 3650
application program cannot communicate with the host cpu.

CTLCHAR flata-val ue)
specifies a one-byte Write Control Character (WCC) that
controls a SEND command, or the Copy Control Character (CCC)
that controls an ISSUE COPY command, for a 3210. An COBOL user
must specify a data area containing this character. If the
option is omitted from- a SEND comnand, all modified data tags
are reset to zero and the keyboard is restored. If the option
is omitted from an I SSUE COPY conunand, the contents of the
entire buffer (including null~ are copied.

DATASTR {(name) I (data-area) }
This corresponds to the deblo~king algorithm field, AT'l'DBA, in
-an attach FMH.

For communication between two CICS/VS systemS, no particular
significance is attached by CICS,/VS to the deblocking algorithm
field in an attach 'FMH. For most CICS,/VS applications, the
option may be omitted when a value of ·user defined· will be
assmned.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the deblocking algorithm field in an attach FMH.

When EIBATTis set during execution of a RECEIVE or CONVERSE
canmand, the EXTRACT ATTACH command may -be used to examine the
deblocking algorithm field received in the attach FMH.

The value is- halfword binary; only the low~rder 8 bits being
used. The bits in the binary value are used as follows:-

0-7
8-11

12-15

reserved - must be set to zero
0000 - user defined
1111 - SCS datastream
1110 - 3270 datastream
1101 - structured field
1100 - logical record management
defined by the user if bits 8-11
are set to 0000; otherwise reserved
(must be set to zero) •

A value of -structured field- indicates that chains begin with
four bytes of data that are used to interpret the following
data; the four bytes consist of overall length (2 bytes), class
identifier (1 byte), and sub-class identifier (1 byte). A
value of -lOgical record management-indicates that chains can
be split into separate fields by the data receiver.

These values may be used for communication between a CICS/VS
system and another subsystem; for further details of structured

198 CICS/VS APRM (CL)

DEFRESP

Page of SC33-0011-2, revised September 1980 by TNL SN33-6268

fields and logical record management refer to the documentation
supplied by the subsystem.

If the option is omitted from the BUILD ATTACH command, a value
of wuser definedw is assumed.

indicates that a definite response is required when the output
operation has been completed.

DEST (name)

ERASE

FMH

•

specifies the four-byte symbolic name of the TCAM destination
to which the message is to be sent. This option is meaningful
only for terminals for whichDEVICE=TCAM has been specified in
the DFHTCT TYPE=SDSCI system macro. Wt+O;aERASE option

specifies that the screen is to be erased and the cursor
returned to the upper left corner of the screen before writing
occurs. Normally, ERASE should be specified in the first
output command of a transaction. Thi s will clear the screen
ready for the new output data.

However, when switching from one screen size to another on a
transaction basis, it is important to note that if ERASE is not
specified in the first output command of the transaction, the
screen size will be unchanged from its previous setting, that
is, the previOUS transaction setting, or the default screen
size if the CLEAR key has been pressed.

specifies that a function management header has been included
in the data that is to be written. If the ATTACHID option is
specified as well, the concatenated FMH flag will be set in the
attach FMH.

FROM (data-area)
specifies the data that is to be written to the terminal or
logical unit.

FROMLENGl'H (data-value)
See LENGTH (parameter). '!he FROMLENGTH option of the CONVERSE
canmand is equivalent to the LENGTH option of a SEND command.

INTO (data-area)

INVITE

specifies the receiving field for the data read from the
terminal or logical unit.

specifies that the next terminal control command to be executed
for this facility is a RECEIVE. This allows optimal flows to
occur.

Chapter 3.2. Terminal Control 199

I
I
I
I
I

I
I

Page of SC33-o077-2; revised September 1980 by TNL SN33-6268

IUTYPE ((name) I (data-area))

LAST

LDC (name)

LEAVEKB

This oorresponds to the interchange unit field; ArI'IU., in an
attach FMR.

For canmunication between two CICS/VS systems, no particu1ar
significance is attached by CICS/VS to the interchange unit
field in an attach PMH. For most CICS/VS applications., the
option may be omitted when a value of -multiple chain- will be
assumed.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
haw to use the interchange unit field in an attach FMB.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH conmand may be used to examine the
interchange unit.field received in the attach PHH.

The value is halfword binary; only the low-order 7 bits being
used. The bits in the binary value are used as follows:-

0":"10
11

12-13
14-15

reserved - must be set to zero
o - not end of multi chain interchange unit
1 - end of multi chain interchange unit
reserved -must be set to zero
00 - multichain interchange unit
01 - single chain interchange unit
10 - .reserved
11 - reserved

If the option is omitted from the BUILD ATTACH oonmand, values
of -not end of multichain interchange unit- and -multiple
chain- are assumed.

specifies that this is the last output operation for a
transaction and therefore the end of a bracket.

specifies the two-<:haracter mnemonic used to determine the
appropriate logical device code (LDC) numeric value. The
mnemonic represents an !DC entry in the DmTCT TYPE=LDC macro
instruction.

specifies' that the keyboard is to remain locked at the
canpletion of the data transfer. This option is applicable
only to CICS/OS/VS but may be used in a CICS/OOS/VS application
program if compatibility is required.

200 CICS/VS APRM (CL)

I
I
I
I
I

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

LENGTH (parameter)
specifies the length (as a halfword binary value) of the dcita
transmitted by RECEIVE and SEND commands.

For a RECEIVE command with the INTO option, the parameter must
be a data area that specifies the maximum length that the
program will accept. If the value specified is less than zero,
zero is assumed. If the length of the data exceeds the value
specified, the data is truncated to that value and the LENGERR
condi tion occurs. When the data has been received, the data
area is set to the original length of the data.

For a RECEIVE command with the SET option, the parameter must
be a data area. When the data has been received, the data area
is set to the length of the data.

For a SEND command, the parameter must be a data value that is
the length of the data that is to be written.

LINEADDR (data-value)
specifies that the writing is to begin on a specific line of a
2260/2265 screen. The data value is a halfword binary value in
the range 1 through 12 for a 2260, or 1 through 15 for a 2265.

NETNAME pame)

PASSBK

specifies the eight-character name of the logical unit in the
VTAM network.

specifies that communication is with a passbook at a 2980. The
WAIT option is implied.

PROCESS {(name) I (data area)}
This corresponds to the process name, AT'l'DPN, in an attach FMH.

For camnunication between two CICSj\7S systems, a transaction
running in one system can acquire a session to the second
system and can identify the transaction to be attached in the
second system, the identification is carried in the first chain
of data sent across the session.

In general, the first four bytes of data will identify the
transaction to be attached. However an attach FMH, identifying
the transaction to be attached, maybe blilt and sent; the
PROCESS option on the BUILD ATTACH command is used to specify
the transaction name. (Note that the receiving system will use
just the first four bytes of the process name as a transaction
name) •

No significance is attached by CICS/VS to process names in
attach PMHs sent in chains of data oeller than the first.

For conununication between a CICS/VS system and another
subsystem, refer to docwnentation supplied by the sybsystem on
how to use the process name field in an attach PMB.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH canmand may be used to examine the
process name received in the attach FMB.

Chapter 3.2. Terminal COntrol 201

page of SC33-0077-2, revised September 1980 by TNL SN33-6268

PROFILE (name)
specifies the name (maximum of eight characters) of a set of
terminal control processing options, held in the PCT, that are
to be used during execution of terminal control commands for
the session specified in the SYSID or SESSION options. If this
option is omitted, a set of processing options, called
DFHCICSA, will be selected.

PROGRAM (name)
specifies the name ~aximum of eight characters) of the 3600
application program that is to be loaded.

PSEUDOBIN
specifies that the data being written or read is to be
translated from System/? pseudobinary representation to
hexadecimal on a RECEIVE command or from hexadecimal to
pseudobinary on a SEND command.

QUEUE {(name) I (data-area)}
This corresponds to the queue name, AT'I'DQN, in an attach FMH.

For communication between two CICS/VS systems, no significance
is attached by CICS/VS to the queue name in an attach FMH.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the queue name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH cormnand may be used to examine the
queue name received in the attach FMH.

RECFM{ (name) I (data area)}
This corresponds to the data stream profile field, ATTDSP, in
an attach FMH.

For canmunication between two CICS/VS systems, no particular
significance is attached by CICS/VS to the data stream profile
field in an attach FMH. For most CICS/VS applications, the
option may be omitted when a value of ·chain of Rus·will be
assumed.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the data stream profile field in an attach FMH.

When· EIBA.TT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
data stream profile field received in the attach FMH.

The value is halfword binary; only the low-order 8 bits being
used. The bits in the binary value are used as follows:-

0-7
8-15

202 CICS/VS APRM (CL)

reserved -must be set to zero
X'OO' - reserved
X'Ol' - variable length variable blocked
X'Ol' - reserved
X'03' - reserved
X'04' - chain of RUs
X'OS' to X'FF' - reserved

I
I
I

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

If the option is omitted from the BUILD ATTACH command, a value
of ·chain of RUs· is assumed.

RESOURCE { (name) I (data-area)}
This corresponds to the resource name, ATTPRN, in an attach
FMH.

For communication between two CICS/VS systems, no significance
is attached by CICS/VS to the resource name in an ·attach FMH.

For communication between a CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the resource name field in an attach FMH.

When EIBATT is set during exe~tiOn of a RECErvE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
resource name received in the attach FMB.

RPROCESS { (name) I. (data-area) }
This corresponds to the return process name, ATTRDPN, in an
attach FMH.

For communication between ·two CICS/VS systems, no significance
is attached by CICS/VS to the return process name in an attach
FMH.

For canmunication between a CICS/VS system and another
subsystem,· refer to documentation suppl.ied by the sybSystem on
how to use the return process name field in an attach FMH.

When EIBATT is set during execution of a RECEIVE or CONVERSE
command, the EXTRACT ATTACH command may be used to examine the
return process name received in the attach FMH.

RRESOURCE { (name) I (data-area)}
This corresponds to the return resource name, ATTRPRN, in an
attach FMH.

For communication between two CICSjVS systems, no significance
is attached by CICS/VS to the return resource name in an attach
FMH.

For communication between a'CICS/VS system and another
subsystem, refer to documentation supplied by the subsystem on
how to use the return resource name field in an attach FMH.

When EIBATT is set during execution of a RECEXVEor CONVERSE
canmand, the EXTRACT ATTACH command may be used to examine the
return resource name received in the attach FMB.

SESS ION (name)
specifies the symbolic identifier (maximum of four characters)
of a session TCTTE. This option specifies the alternate
session to be used. Xf this option is omitted, the prinCipal
facility for the task will be used.

SET (pointer-ref)
specifies the pointer reference that is to be set to the
address of the data read from the terminal or logical unit.

Chapter 3.2. Terminal Contro1 203

Page of SC33-0077-2; revised September 1980 by TNL SN33-6268

STRFIELD
specifies that the data area specified in the FROM option
contains structured fields. If this option is specified; the
contents of all structured 'fields must be handled by the
application program. The CONVERSE command; rather than a SEND
command I must be used if the data area contains a read
partition structured field. (Structured fields are described
in the CICStyS IBM 3270 Guide~) CTLCHAR and ERASE are mutually
exclusive with STRFIELD; and their use with STRFIEID will
generate an error message.

SYSID { (name) I (data-area)}
specifies the name Onaximum of four characters) of a system
TCTSE. This option specifies that one of the sessions to the
named system is to be allocated.

When used with the EXTRACT TCT command; this option specifies
the variable to be set to the equivalent local name of the
system~

TERMID { (name) I (data-area)}
specifies the name (up to four characters in length) of the
terminal whose buffer is to be copied. The terminal must have
been defined in the TCT ..

When used with the EXTRACT TCT command this option specifies
the variable to be set to the equivalent local name of the
terminal.

TOLENGTH (data-area)

WAIT

See LE'NGTH (parameter). The TOLENGTH option of the CONVERSE
command is equivalent to the LENGTH option of a RECEIVE
canmand ...

specifies that processing of the command must be completed
before any subsequent processing is attempted.

If the WAIT option is not specified; control is returned to the
application program once processing of the command has started.
A subsequent input or output request (terminal control, BMS, or
batch data interchange) to the terminal associated with the
task will cause the application program to wait until the
previous request has been completed.

204 CICS/VS APRM (CL)

Terminal Control Exceptional Conditions

Some of the following exceptional conditions may occur in combination
with others. CICS/VS checks for these conditions in the following
order: EODS, INBFMH, EOC. If more than one of these conditions occurs,
only the first one found to be present is passed to the application
program.

CBIDERR

ENDINPT

EOC

EODS

EOF

IGREQCD

INBFMH

INVREQ

occurs if the named set of terminal-control processing options
cannot be found.

Default action: terminate the task abnormally.

occurs when an end-of-input indicator is received.

Default action: terminate the task abnormally.

occurs when a request/response unit (RU) is received with the
end~f-chain indicator set. Field EIBEOC also contains this
indicator.

Default action: ignore the condition.

occurs when an end-of-data-set indicator is received.

occurs when an end-of-file indicator is received.

Default action: terminate the task abnormally.

occurs when an attempt is made to execute a SEND or CONVERSE
command after a SIGNAL data-flow control command with an RCD
(request change direction) code has been received from an

LUTYPE4 logical unit.

Default action: terminate the task abnormally.

occurs if a request/response unit (RU) contains a function
management header (FMH). Field EIBFMH contains this indicator
and it should be used in preference to INBFMH. The IGNORE
CONDITION command can be used to ignore the condition.

Default action: terminate the task abnormally.

occurs, for the EXTRACT TeT command, if the name specified in
the NETNAME option cannot be found.

Chapter 3.2. Terminal Control 205

LENGERR

NONVAL

occurs if the length of data received in response to a command
that specifies the INTO option, exceeds the value specified by
the LENGTH or TOLENGTH option.

Default action: terminate the task abnormally.

occurs if a 3650 application program name is invalid.

Default action: terminate the task abnormally.

NOPASSBKRD
occurs if no passbook is present on an input operation.

NOPASSBKWR

NOSTART

NOTALLOC

RDATT

SESSBUSY

occurs if no passbook is present on an output operation.

occurs if the 3651 is unable to initiate the requested 3650
applicatiDn program.

Default action: terminate the task abnormally.

occurs if the facility specified in the command is not owned by
the application.

Default action: terminate the task abnormally.

occurs if a RECEIVE command is terminated by the attention
(ATTN) key rather than the return key.

Default action: ignore the condition.

occurs if the request for a session cannot be serviced
immediately.

Default action: queue the request until a session is
available.

SESSIONERR
occurs if the name specified in the SESSION option is not that
of a session TCTTE or if the session cannot be allocated
because it is out of service.

Default action: terminate the task abnormally.

206 CICS/VS APRM (CL)

SIGNAL

SYSBUSY

SYSIDERR

occurs when an inbound SIGNAL data-flow control command is
received from a logical unit or session. It is raised by
execution of the next SEND, RECEIVE, or WAIT TERMINAL command
that refers to the logical unit or session. It is raised also
by execution of a WAIT SIGNAL command, in which case the data­
flo II control command has heen received from the principal
facility.

Default action: ignore the condition.

occurs if the request for a session cannot be serviced
immediately.

Default action: queue the request until a session is
available.

occurs if the name in the SYSID option is not that of a system
TCTTE, or if all sessions are out of service.

Default action: terminate the task abnormally.

TERKIDERR

WRBRK

occurs if the specified terminal identifier cannot be found in
the terminal control table (TCT).

Default action: terminate the task abnormally.

occurs if a SEND command is terminated by the attention key.

Default action: ignore the condition.

Chapter 3.2. Terminal Control 207

Chapter 3.3. Basic Mapping Support (BMS)

CICS/VS basic mapping support is an interface, between an application
program and the terminal control program, that provides various
formatting services for interpreting input data streams and for
preparing output data streams for the terminal network.

The application program passes data to BMS and receives data from BMS
in a standard device independent format. BMS commands are included in
the application program to control formatting of the data and to
initiate input from a terminal or output to one or more terminals.

BMS com&ands are provided to:

• Map data into a data area in the program (RECEIVE MAP).

• Map, and possibly transmit, output data in field or block data
format (SEND MAP) •

• Build, and possibly transmit, output data in text data format (SEND
TEXT) •

• Complete and transmit a logical message (SEND PAGE).

• Delete an incomplete logical message (PURGE MESSAGE).

• Initiate the building of a logical message to be scheduled for
delivery to one or more terminals (ROUTE).

All of these commands, with their associated options and exceptional
conditions, are described in the last part of this chapter. Other
sections describe how combinations of the commands can be used to
control output operations and discuss features shared by th.e commands.

BMS input and output commands result in terminal control commands.
However, both terminal control and BMS commands can be includ~d in an
application program. An operation to map a data stream already in
storage, rather than receiving and mapping, may be reguest~d to cause
BMS to map a device-dependent input data stream. If a map operation is
requested for input from the non-formatted 3270 buffer, mapping is not
performed; the non-formatted data stream is returned to the'application
program, and the MAPFAIL exceptional condition occurs.

The HANDLE CONDITION and IGNORE CONDITION commands, and the NOHANDLE
option, can be used to deal with any exceptional conditions that occur
during the execution of BMS commands. Refer to Chapter 1.5 for further
information about exceptional cond~tions.

Two principal advantages are obtained by using BMS: device
independence and format independence.

DEVICE INDEPENDENCE

Device independence allows the application program to send data to a
terminal or to receive data from a terminal without regard to the
physical characteristics of the terminal.

Chapter 3.3. Basic Mapping Support ~MS) 209

Under BKS, the terminal may be any of the following devices: 1050,
2740, 2741, 2770, 2780, 2980 Models 1 and 2, 2980-4 ~eyboard and
printer only), 3270, 3780, TWX, tape, disk, CRLP (a device declared to
have card-reader-in/line-printer-out characteristics), or terminals
specified by the system programmer in the terminal control table (TCT)
as TRMTYPE=TCAM.

certain B~S facilities can also be used with some 3270, 3600, 3650,
3767, 3770, and 3790 logical units; for information about these logical
units, refer to the appropriate CICS/VS sUbsystem guide. These guides
are listed in the bibliography.

With BMS, a CICS/VS installation with more than one type of terminal
need provide only one application program for each transaction to
support all terminals in the installation. BMS identifies which type of
terminal is requesting use of the application program and provides for
the conversion of the device-dependent data stream to and from the
standard device independent data format used by the application program.
A CICS/VS installation using only one type of terminal may wish to use
the formatting services of BMS to facilitate the addition of other types
or the conversion to another type in the future.

FORMAT INDEPENDENCE

Format independence allows the application program to provide data to
one or more terminals or to receive data from a terminal without regard
to the placement of fields within the data stream or on the terminal.

All references to data by the application program are through
symbolic field names. Fields are placed within the data stream by BMS
according to information stored in data format tables called ~aps. A
CICS/VS installation in which BMS is used may rearrange the fields to be
included in the data by simply changing the values stored in the ~ap
that defines the format of the data. The application program that
causes the data to be written need not be modified. The programming
maintenance requirements should be considerably less than they might be
if BMS were not used.

Format independence also allows information such as headings, field­
identifying keywords, and 3270 screen formats to be stored in maps.
This information can be modified simply by changing its value in the
maps. Programs that refer to the maps benefit from the changes, but
none of the programs themselves need be modified.

The format independence provided by BMS removes from the application
program the requirement to know the location of fields within the data
stream; fields may be rearranged, removed, or added without changing the
application program.

Data Mapping

Data mapping is the technique used by BMS to convert the standard
device-independent data format, which the application program uses, to
and from the device-dependent data stream required for the particular
terminal in use. Device-dependent control characters are embedded or
removed by B~S during this processing.

There are three standard formats in which the application program can
provide or accept BMS data, as follows:

210 CICS/VS APRM (CL)

Field Data Format: data is passed to BMS as separate fields. Each
field is given a symbolic name, which is used when passing data to,
or retrieving data from, BMS. Each field consists of a two-byte
length area (used by B~S on input), a one-byte attribute area (for
3270 output operations), and the data area. A map is used to
describe the field position, data length, and other necessary
information.

Block Da!LFo~m.at: data is passed to BMS as line segments. Fields
positioned within the line segments may be given symbolic names to
aid the application program in positioning the fields. Each field
provides for a one-byte attribute and the field data area. A gap
consisting of several blanks may separate consecutive fields in the
line segment. A map is used to describe the number and lengths of
line segments, the field position, data length, and other necessary
information.

Text Data Format: output data is passed to.BMS as a data stream
which is divided into lines no longer than those defined for the
terminal to which the data stream is related. Printable character
strings or words which overlap lines are placed unbroken on the
next available line. New~line (X ' 15 I) characters can be included
in the data stream to further define line lengths. CICS/VS inserts
the appropriate leading characters, carrier returns, and idle
characters, and eliminates trailing blanks from each line. If tab
control characters are contained in the data stream, the user
should also supply all of the necessary new-line characters.· No
maps are used with text data format.

Field data format is the most common for both display and printer
terminals.

Block data format may be used with both display and printer
terminals, but it is more useful for input operations on printer
terminals.

Text data format is used with both display and printer terminals and
is especially convenient for handling data not divided into fields.
When text data format is used with a 3270 device, an attrioute byte
appears on the 3270 as a blank at the beginning of each line and in
front of each new piece of data. When the data is destined for a device
with extended attributes, set attribute (SA) orders can be included also
in the data stream. These orders enable characters in the data stream
to be modified by the extended attributes. To aid this modification,
symbolic names are available in DFHBMSCA (the standard attribute list).
The standard attribute list is described in Chapter 3.2.

-. Map Definition

Most of the facilities of BMS (text data format is the exception)
require two types of maps to be defined by CICSjVS macro instructions
and to be assembled offline prior to running the application program.
The two types are:

1. fhysical~ - used by BaS to convert data to or from the format
required by the application program. The map is a table containing
information about each field; it is stored in the CICS/VS program
library and is loaded by B~S at execution time.

Chapter 3.3. Basic Mapping Support (BKS) 211

2. ~mbolic description map - used by the application program to refer
to the data in storage. This map is a set of source statements
that are cataloged into the appropriate source library and copied
into the application program when it is assembled or compiled.

All maps must be generated as members of a map s~~; a single map must
be generated as the only member of such a map set. A map set is a
collection of related maps that are generated and stored together in the
CICS/VS libraries. A reference to any map in a map set requires that
the entire map set be loaded into storage for the duration of the task
or until another map set is referred to by the task.

An alternative method of defining maps for use with BMS is by means
of SDF/CICS (screen Definition Facility (CICS)).

The following macro instructions are used in the map-definition
process.

DFH~SD macro

• aetines a map set

• specifies that a set of macros is for a physical map or for a
symbolic description map

• specifies that the map is for input, output, or both

• specifies that the data format is either field or block.

DFHKDI macro

• defines a map within a map set

• specifies the position of the map on the page, either absolutely or
in relation to other maps

• specifies the size of the map

• specifies that the data format is either field or block.

DFHKDF macro

• defines a field within a map

• specifies the position of the field

• specifies the length of the field.

The formats of these macros and an example of their use and of the
symbolic descriptions maps generated is given later in the chapter.

An operand in a DFHMDF macro will always override the same operand in
a DFHMDI macro. Similarly, an operand in a DFHMDI macro will always
override the same operand in a DFHKSD macro.

If an operand is omitted from a DFHMDF macro, the same operand, if
present, in the DFHMDI macro will be used. Similarly, if an operand is
omitted from both the DFHMDF or DFHKDI macros, that in the DFHMSD macro
will be used.

If an operand is omitted from all the macros used to define a map
set, the default values for the DFHMDF macro will be assumed.

Some facilities, such as color, are available only on certain
terminals, and a specification for such a facility will be ignored if

212 CICS/VS APRM ~L)

the terminal does not support it. This obviates the requirement to
define separate maps for different terminals.

The map definition macros are assembled twice, once to produce the
physical map used by BMS, and once to produce the symbolic description
map (or DSECT) that will be copied into the application program.

, Examples of map definition are included in the sample programs in the
appendixes.

INPUT MAPPING

Por an input map, the startlng position and the maximum data length of
each field must be defined, as follows:

The TIOA symbolic storage definition contains an area for the length
of each input data field, followed by a flag byte and an area for the
data itself. Space is reserved for the maximum number of bytes defined
for each field.

The program can access the length, flag, and data areas of any field
by symbolic labels. The length area is a halfword binary field and is
addressed by the name "fieldnameL" or "groupnameL". The flag is a one­
byte field and is addressed by the name "fieldnameP" or tlgroupnameP".
The data portion of each field (or group of fields) is contiguous with
the length and flag areas. A group of fields, or a single field not
within any group of fields, has one data portion addressed by the name
ngroupnam eI" or IIf ieldnameI". Por fields contained wi thin a group,
thare are no intervening length or flag areas (only "groupnameL" exists)
but each field is addressed by a name "fieldnameI".

In assembler-language programs, the first byte of the first
occurrence of a field defined by the DPHMDF operand OCCUBS=n (where n is
greater than 1) is named "fieldnameD", and the first byte of the next
occurrence of the field is named "fieldnameN". These names refer to the
first byte of the length area if DATA=FIELD is specified, and to the
first byte of the attribute data if DATA=BLOCK is specified.

In COBOL and PL/I programs, "fieldnameDIt is the name of the array of
minor structures containing the length, flag, and data areas of the
field.

The number of characters entered may differ from the length of the
field at program execution time. If more data is keyed than specified
in the map, the data is truncated on the right to the number of
characters specified. The length that is returned to the application
program is the truncated length. If less data is keyed than specified,
the remaining character positions are filled with blanks or zeros and
the length of the keyed data is returned in the length field.

The flag byte is normally set to X·OO'. However, if the field has
been modified but no data has been sent (as, for example, if it has been
modified to nulls), the flag byte is set to X'SO' and the length area is
set to zeros.

Fields that are entered as input but are not defined in the map are
discarded. The length and data areas of fields defined but not keyed
are set to nulls (X·OO').

For a light pen-detectable field, although no data is passed, a
single data byte is reserved. This byte contains X'PP' if the field is
selected or X'OO' if the field is not selected. The length area of a

Chapter 3.3. Basic liapping Support (BaS) 213

light pen-detectable field contains a binary one if selected or a binary
zero if not selected.

OUTPUT MAPPING

For an output map, the starting position, length, field characteristics,
and default data (if desired) aust be defined, as follows:

The f1elds of an output map are assigned names in the DFHftDP macro.
The characteristic or attribute byte is named "fieldnameA" or
"groupnamel li • For a field contained within a group, the data area is
given the name "fieldnameO", but there is no separate attribute byte for
the field. (Only the group name has the attribute byte.) For a group
name, or a field not contained within a group, the data area is given
the name "groupnameO" or "fieldnameO."

In assembler-language programs, the first byte of the first
occurrence of a field defined by OCCURS=n (where n is greater than 1) is
named "fieldnameD", a~d the first byte of the next occurrence of the
field is named "fieldnameN". These names refer to the first byte of the
length area if DlTA=FIELD is specified, and to the first byte of the
attribute data if DATl=BLOCK is specified.

In COBOL and PL/I programs, "fieldnaDleD" is the name of the array of
minor structures containing the attribute byte and data area of the
field, together with the unused two-byte length field ~escribed below).
1 field not contained within a group is treated as a group containing
one field entry. An unused two-byte length field precedes each
attribute byte and data field to provide a format similar to an input
symbolic storage description TIOl.

The TIOAPFX=YES operand must be specified in the DFHMSD or DFHaDI
macros that create the maps. Also, if the symbolic description maps are
referred to by a PL/I program, the STORlGE=AUTO operand must be
specified in the DFB!!SD macro.

When defining fields, the user may provide a name for any field that
he wishes to refer to at execution time. Such names are associated with
the fields in the symbolic storage definition of the TICl to allow
symbolic references to be made to them. The user may specify not only
the characteristics of the field but also the default data to be written
as output for a field when no data is supplied for that field by an
application program. This facility permits the specification of titles,
headers, and so forth, for output maps. The user may temporarily
override the field characteristics, the data, or both field
characteristics and data of any field for which a name has been
specified. The desired changes are simply inserted into the TIOl under
the specified field name in the symbolic storage definition (symbolic
description map) in the program.

Output field data supplied by the application program must not begin
with a null character (X'OOI), or the entire field will be ignored by
BMS. 1 suitable character to use in the first position is blank
(XI401) •

Light pen-detectable fields should be lIautoskip" to prevent data frOII
being keyed into them. Because of the nature of these fields, in most
instances, they should not be modified. If the data field is modified,
the application program must ensure that the first character is all?",
">", "S", or a blank character; otherwise, the field is no longer light
pen-detectable. -

214 CICS/VS APRM (CL)

Fields that can be keyed should be delimited by a stopper field to
ensure that all the data keyed and transmitted can be mapped.

INPUTjOUTPUT MAPPING

Input/output maps combining all the functions of input and output maps
can also be created using the DFHKSD, DFHMDI, and DFHMDF macro.

The number of fields which can be specified for a COBOL or PLjI
input/output map is limited to 1023.

MAP RETRIEVAL

Map sets placed in the CICS/VS program library are accessed by B~S
through program control LOAD commands. Each map set name must have been
entered in the processing program table (PPT) by the system programmer.
When device-depsndent map sets are placed in the CICS/VS program
library, they must be identified by the device-dependent suffixed name,
and a corresponding entry of the same name must appear in the PPT.
(Device-dependent suffixes are described below under the Imapsat l name
of the DFHMSD macro and under the SUFFIX and TERM operands of that
macro.)

Chapter 3.3. Basic Mapping Support (BMS) 215

Define a Map Set (DFHMSD Macro)

~r=------'rl-------r--' ,
mapset DFH!lSD TYPE= ~ECT ,aAP}

I

I I

[, BASE=name]
[,COLOR={DEFAULTIBLUEIREDIPINKIGREENITURQUOISEIYELLOWI

NEUTRAL}]
[, CTRL= [PRINT][, {L40 I L641 L80 1 HONEOM}]

[,FREEKB][, ALARM][,FRSET)]
[, DATA= {FIELD I BLOCK}]
[, EXTATT= {NO I MAPONLY I YES}]
[,HILIGHT={OFFIBLINKIREVERSEIUNDERLINE}]
[,HTAB=tab[,tab] •••]
[,LANG={ASMICOBOLIPLIIRPG}]
[, lDC=mnemonic]
[, MODE= {IN I OUT IINOUT}]
[, OBFMT= {Y ES t NO}]
[, PS= {BASEl psid})
[,STORAGE=AUTO)
[, SUFFIX=n]
[,TERM=terminal-type]
[, TIOAPFX= {YES I NO}]
[, VA LIDN= ([MU STFILL][,l1USTENTER])]
[, VTAB=tab[,tab] •••]

ImapsetlDFH!SD TYPE=FINAL
I I
t t

These versions of the DFHMSD macro are used to define a map set. The
macro specifies whether physical maps (TIPE=MAP) or symbolic description
maps (TYPE=DSECT) are to be generated. The end of a map se~ is
indicated always by a DFHMSD TIPE=FINAL macro.

Alternatively, both types of map can be assembled in tha same job Dy
job control language, as described in the CICS/VS Systam Prog~ammer'~
Guidg.

The operands are defined as follows:

mapset
is the name of the map set. The name (1 through 7 characters)
must begin with an alphabetic character. A suffix specified by
the SUFFIX operand, or based on the terminal type specified in
the TERM operand, is added during assembly.

This suffixed name is the n~me that should be used in the NAME
statement (OS) or the PHASE statement (DOS) in cataloging the
map set (see the appropriate CICS/VS Syst~m PrQg~~§&~§_~~igg
for further details), and the name that should be specified in
the PPT (see the CICS/VS~stgm_f~Qgrammer's Reference Manual).
Valid suffixes are shown in the description of the TERM
operand, below.

216 CICS/VS APRM (Cl)

TYPE=

When a mapping operation is requested by a BMS command, CICS/VS
adds a similar suffix to the map set name specified in tha
com.and, and attempts to load a map set with the suffixed name.
If the suffixed map set name cannot be found in the library,
CICS/VS will load a map set with the specified name (equivalent
to being suffixed with a blank) •

CICS/VS obtains the suffix from the TeTTE for the terminal
(either the terminal associated with the transaction or, for
routing, the destination terminal) depending on the terminal
type specified in the TR~TYPE operand (together with the
SESTYPE operand for VTAM terminals) of the DFHTCT TYPE=TERMINAL
(or TYPE=LINE) system macro. If the alternate page size is
being used, as specified by the ALTPGE operand of the DFHTCT
TYPE=TERMINAL system macro, and the ALTSFX operand of that same
system macro has also been specified, an attempt will be made
to load the map set that has the alternate suffix specified in
the ALTSFX operand of the DFHTCT TYPE=TBR~INAL system macro.
If this load is unsuccessful, normal map set selection will
occur.

For example, if two map sets are assembled, one with TERM=CRLP
and the other with TERM=ALL, the first map set name will be
suffixed with A and the second with blank. The system
programmer should use these suffixed names in the NAME/PHASE
statements and in the PPT. If a CleS/VS transaction now routes
a message to two terminals, one of which has TRMTYPE=CRLP and
the other TRMTYPE=L3277, TRMMODL=2, CleS/VS will attempt to
load "mapsetA" for the first and "mapseta" for the second. The
second of these will be unsuccessful, so BMS will then look for
the unsuffixed map set name for routing to the 3277.

specifies the function of the macro.

DSECT
-----specifies that a symbolic description map is to be

generated. If the same map set is to be used by
application programs written in different languages, a
separate DFHMSD TYPE=DSECT macro must be written for each
language to put the symnolic description map into th& copy
library of the language.

MAP
specifies that a physical map is to be generated. This
physical map is stored in the cres/vs program library and
loaded as required by BMS. The assembler-language
application programmer can, alternatively, generate the map
in his program and pass its address to EMS.

FINAL
must be coded to indicate the end of the map set. If other
parameters are specified in this macro, they will be
ignored.

Chapter 3.3. Basic Mapping Support (B~S) 217

BASE=name
specifies that the same storage hase will be used for the
symbo1ic description maps from more than one map set. The same
name is specified for each map set that is to share the same
storage base. Since all map sets with the same base describe
the same storage, data related to a previously-used map set may
be overwritten when a new map set is used. Furthermore,
different maps within the same map set will also overlay one
another.

This operand is not valid for assembler-language programs.

For example, assume that the following macros are used to
generate symbolic description maps for two map sets.

~APSETl DFH~SD TYPE=DSECT,
TER!=2180,LANG=COBOL,
BASE=DATAREA1,
!ODE=IN

MAP5ET2 DFHM5D TYPE=DSECT,
TER!=3270,LANG=COBOL,
BASE=DATAREA1,
MODE=OUT

*
*
*

*
*
*

The symbolic description maps of this example might be referred
to in a COBOL application program as follows:

LINKAGE SECTION.
01 DFHBLLD5 COPY DFHBLLD5.

02 TIOABAR PIC 59(8) COMP.
02 MAPBASE1 PIC 59(8) CaMP.

01 DFHTIOA COpy DFHTIOA.
01 DATAREAl PIC 1(1920).
01 name COpy MAP5ET1.
01 name COPY ~AP5ET2.

!APSETl and MAPSET2 both redefine DATAREA1; only one 02
statement is needed to establish addressability. However, the
program can only use the fields in one of the symbolic
description maps at a time.

If BASE=DATAREAl is deleted from this example, an additional 02
statement is needed to establish addressability for MAPSET2;
the 01 DATAREAl statement is not needed. The program could
then refer to fields concurrently in Doth symDolic description
maps.

In PL/I application programs, the name specified in the BASE
operana is used as the name of the point8r variable on which
the symbolic description map is based. If this operand is
omitted, the default name (BaS~APBR) is used for the pointer
varianle. The PL/I programmer is responsinle for establishing
addressability for the based structures.

218 CICS/YS APRM (CL)

COLOR=

I CTRL=
I
I
I
I
I
I
I
I
I

DATA=

specifies the default color for all fields in all maps in a map
set unless overridden explicitly by the COLOR option of a
DFH!DI or DFB!DF macro. If this option is specified when
EXTATT=NO, a warning will be issued and the option ignored. If
this option is specified, but EXTATT is not, EXTATT=M1PONLY
will be assumed.

specifies device characteristics related to terminals of the
3270 Information Display System. CTRL=ALAR~ is valid for TCA8
3270 SDLC and VTA~-supported terminals (except interactive and
batch logical units); all other parameters for CTRL are
ignored. This operand must be specified on the last (or only)
map of a page unless the options of a B~S command ar~ bei~g
used to override the corresponding operand in the DF3MS~ mdcro.
If the CTRL operand is specified in the DFH~DI macro, it cannot
be specified in the DFH~SD macro.

PRINT
must be specified if the printer is to be started; if
omitted, the data is sent to the printer buffer but is not
printed. This operand is ignored if the map set is used
with 3270 displays without the Printer Adapter feature.

L40, L64, L80, HOHEO~
are mutually exclusive options that control the line length
on the printer. L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respectively. HONEO~ causes the default printer line
length to be used.

FREEKB
specifies that the keyboard should be unlocked after the
map is written out. If omitted, the keyboard remains
locked; further data entry from the keyboard is inhibited
until this status is changed.

ALAR~

activates the 3270 audible alar. feature. Por other VTA!
terminals it sets the alarm flag in the F!B; this feature
is not supported by interactive and batch logical units.

FRSET
specifies that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to a not­
modified condition (that is, field reset) before map data
is written to the buffer. This allows the DFR!DF macro
with the ATTRIB operand to control the final status of any
fields written or rewritten in response to a BMS command.

specifies the format of the data.

FIELD
-----specifies that the'data is passed as contiguous fields in

the following format:

ILLIAldata fieldlLLIAldata field ILLIAldata field ,

Chapter 3.3. Basic Mapping support (BMS) 219

EXTATT=

HILIGBT=

tiLL" ~s two bytes specifying the length of the data as
input from the terminal (these two bytes are ignored in
output processing). "A" is a byte into which the
programmer may place an attribute to override that
specified in the map ased to process this data (see
"Standard Attribute List and Printer Control Characters
(DFHBMSCA)," later in this chapter).

BLOCK
specifies that the data is passed as a continuous stream in
the following format:

IAldata fieldlspacelAldata fieldlspacel L-~' ____________________________ • _______________ __

This stream is processed as line segments of the length
specified in the map used to process the data set. The
data is in the form that it appears on the terminal; that
is, it contains data fields and interspersed blanks
corresponding to any spaces that are to appear between the
fields on output. The first byte of each line is the
attribute byte; it is not available for data. EXTATT=YES
cannot be used if DATA=BLOCK is specified.

specifies whether the extended attributes (COLOR, HILIGBT, PS,
and VALIDN) are supported.

NO
specifies that the extended attributes are not supported;
the physical and symbolic description maps will be the same
as those generated under Version 1 Release 4. "NO" is the
default unless COLOR, HILIGBT, PS, or VALIDN is specified
in the DFH~SD macro, in which case EXTATT=ftAPONLY will be
assumed. If the TER~ operand is specified and is other
than 3270, 3270-1, 3270-2, or ALL, EXTATT=KAPONLY or
EXTATT=YES will be invalid, and the COLOR, HILIGHT, PS, and
VALIDN operands on the DFHMSD, DFH8DI, or DFHaDF macros
will be invalid.

~APONLY

YES

specifies that the extended attributes can be specified in
a map, but that the resulting symoolic description map will
contain no fields for them, and that it will be the same as
one generated under Version 1, Release 4. This operand can
be used to add the extended attributes to an existing map
without recompiling.

specifies that the extended attributes can be specified in
a map, and that they can be modified dynamically. The
symbolic description map (DSECT) will contain subfields for
the attributes, identified by suffixes C (for COLOR), II
(for HILIGHT), P (for PS), and V (for validation).

specifies the default highlighting attribute for all fields in
all maps in a map set.

is the default and means that no highlighting is used.

220 CICS/VS APRK (CL)

BLl.NK
specifies that the field is to "bl~nk" at a set frequency.

REVERSE
specifies that the character or field is displayed ~n
"reve!:'se video", for example, on a 3278, black characters
on a green background.

UNDERLINE
specifies that a field is underlined.

If this option is specified when EXTATT=NO, a warning w~ll De
issued and the option ignored. If this option is specified,
but EXTATT is not, EXTATT=MAPONLY will be assumed.

HTAB=tab[,tab] •••

LANG=

specifies one or more tab positions for use with interactive
and batch logical units having horizontal forms control.

specifies the language in which the application program
referring to a symnolic description map is written and, hence,
is applicable for only a DFHMSD TYPE=DSECT macro.

specifies that the symbolic description map is to be
referred to by an assembler-language program.

COBOL

PLI

RPG

specifies that the symbolic description map is to be
referred to by a COBOL program.

specifies that the sYllbolic <iescription !lap is to be
referred to by a PL/I program.

specifies that the symbolic description map is to be
refer=&d to by an EPG II program. This parameter is valid
for CICS/DOS/VS only.

LDC=mnemonic

MODE=

specifies the mnemonic to be used by CICS/VS to determine the
logical device code that is to be used for a B~S output
operation and transmitted in the function manage.ent header to
the logical unit if no LDC operand has been specified on any
previous BMS output in the logical message. This operand is
used only for TCAM ana VTAM-supported 3600 terminals, and oatch
logical units.

IN
specifies an input map generation.

specifies an output map generation.

Chapter 3.3. Basic Mapping Support (BftS) 221

OBFftT=

PS=

INOUT
specifies that the map definition is to be used for both
input and output mapping operations.

Input mapping is_ not available for VTAM-supported 3600
terminals. However, INOUT may be specified for map generation.
The map can then be used as a dummy input map for input
operations using the BECEIVE ftAP command.

specifies whether outboard formatting is to be used. This
operand is available only for 3650 logical units. Befer to the
CICS/VS 3650 Guide for details of 3650 logical units and of
outboard formatting.

YES
specifies that all maps within this map set can be used in
outboard formatting, except those for which OBFftT=NO is
specified in the DFHMDI macro.

specifies that no maps within this map set can be used in
outboard formatting, except those for which OBFMT=YES is
specified in the DF8MDI macro.

specifies that programmed symbols are to be used.

BASE

psid

specifies that only the basic symbols are used.

specifies a single EBCDIC character or a hexadecimal code
of the form X'nn l , that identifies the set of programmed
symbols.

If this option is specified when EXTATT=NO, a warning will be
issued and the option ignored. If this option is specified,
but EXTATT is not, EXTATT=!APONLY will be assumed.

STORAGE=AUTO
specifies, for assembler-language programs, that separate maps
within a map set are to occupy separate storage, not to overlay
one another.

specifies, for COBOL programs, that the symbolic description
maps in the map set are to be in separate ~hat is, not
redefined) areas. This operand is used when the symbolic
description maps are copied into the WORKING-STORAGE section
and the storage for the separate maps in the map set is to be
used concurrently.

specifies, for PL/I programs, that the symbolic description
maps are to be d~clared as baving the AUTOMATIC storage class.
If not specified, they are declared as BASED.

If STORAGE=Auro is specified, BASE=name cannot be used. If
STORAGE=AUTO is specified and TIOAPFX is not specified,
TIOAPFX=YES is assumed.

222 CICS/VS APRM ~L)

SUFFIX=n
spec1fies a one-character map set suffix that overrides any
suffix implied by the TERM operand. A message will indicate
that the TERM operand has been ignored. The user should
catalog the map set, with this suffixed name, in the program
library, and ensure also that there is no conflict with a
generated name of another version of the map set. The use of
numeric suffixes would help prevent conflict.

TERM=terminal type
specifies the type of terminal or logical unit associated with
the map set. If no terminal type is specified, 3210 is
assumed.

TERM=

CRLP
TAPE
DISK
TWX
1050
2140
2141
2710
2180
3180
3210-1
3270-2
INTLUI3761t3710IISCS

2980
2980-4
llIQ

3601
3653

3650UP
3650/3270

BCHLUI3710B

ALL

Remarks
Map Set
Suffix

Card-reader-in/Line-printer-out A
B
C
D
E
F
G
I
J
K

Use for 40-column displays L
Use for 80-column displays M
These four parameters are
synonymous. They cover all
interactive logical units,
including the 3790 full-
function LU and the
SCS-printer LUs (3270 and 3190). P
Excluding the 2980 Model 4 Q

For use when it is not
important to distinguish
between different models.
This parameter is synonymous
with ALL, and is the default
applied if the operand is not
coded.

Use for the host-conversational
(3653) LU

Use for the interpreter LU
Use for the host-conversational
(3270) LU

These two parameters are
synonymous. They cover all
batch and batch data inter­
change logical units.
Covers all the above

R

blank
U

v
if

x

y
blank

For TCAM-connected terminals (other than 3270 or SNA devices),
use either CRLP or ALL; for TCAM-connected 3270s or SMA
devic~s, select the appropriate parameter in the normal way.

If ALL is specified, ensure that device-dependent characters
are not included in the map set and that format characteristics
such as page size are suitable for all input/output operations

Chapter 3.3. Basic Mapping Support (BMS) 223

TIOAPFX=

VALIDN=

(and all terminals) in which the map set will bs applied. For
example, some terminals are limited to qaO bytes, others to
1920 bytes; the 3604 is limited to six lines of qO characters
each. Within these guidelines, use of ALL can offer important
advantages. Since an assembly run is required for each map
generation, the use of ALL, indicating that one map is to be
used for more than one terminal, can result in significant time
and storage savings.

However, better run-time performance for maps used by single
terminal types will be achieved if the terminal type (rather
than ~LL) is specified. Alternatively, B~S support for device­
dependent map sets can be bypassed by specifying B~SDDS=NO in
the DFHSG PROGRAM=BftS system macro. (See the CICS/VS System
Programmer's Reference Manual for further details.)

specifies whether BMS should include a filler in the symbolic
description maps to allow for the unused TIOA prefix.

YES
specifies that the filler should be included in the
symbolic description maps. If TIOAPFX=YES is specified,
all maps within the map set have the filler, except when
TIOAPFX=NO is specified on the DFHMDI macro. TIOAPFX=YES
should always be used for command-level application
programs.

is the default and specifies that the filler is not to be
inclUded. The filler may still be included for a map if
TIOAPFX=YES is specified on the DFHMDI macro.

MUSTFILL
specifies that the field must be filled completely with
data. An attempt to move the cursor from the field before
it has been filled, or to transmit data from an incomplete
field, will raise the inhibit input condition.

MUSTENTER
specifies that data must De entered into the field. An
atte~pt to move the cursor from an empty field will raise
the inhibit input condition.

VTAB=tab(, tab] •••
specifies one or more tab positions for use with interactive
and batcn logical units having vertical forms control.

22q C1CS/VS APRM (CL)

Define a Map (DFHMDI Macro)

I
map DFHMDI [,COLOR={DEFAULTIBLUEIREDIPINKIGREENITURQUOlSEIYELLOWI

NEUTRAL}]
[,COLUMN={number,NEXT,SAME1]
[,CTRL= [PRINT][, {L40 I L641 L80 I HONEOM}]

(, FREEKB][,AIARM][, FRSET D J
[,DATA= ~IELD I BLOCK}]
[, HEADER=YES]
[,HILIGHT={OFFIBLINKIREVERSEIUNDERLINE}]
[,JUSTIFY= ([{LEFT I RIGHT}][, {FIRST I LAST}])]
[,LINE={numberINEXTISAME}]
[,OBFMT={YESINO}]
[,PS={BASE,psid}]
[,SIZE= (line ,column)]
[,TIOAPFX={YESINO}]
[, TRAILER=YES]
[,VALIDN= ([MUSTFILL X ,MUSTENTERD]

This macro is used. to define a map. It defines the size of the data to
be mapped and its position within the input or output. When defining
more than cne nap, the corresponding number of DFHMDI macros must be
used.

If the maps are for use in a COBOL program, and STORAGE=AlJrO has been
specified in the DFHMSD macro, they must be specified in descending size
sequence ~ize refers to the generated 01 level data areas and not to
the size of the map on the screen).

The operands are defined as follows:

map

COLOR=

COLUMN=

is the name (1 through 7 characters) of the map.

specifies the default color for all fields in a map unless
overri8den explicitly by the COLOR option of a DFHMDF macro.
If this option is specified when EXTATT=NO is specified in the
associated DFHMSD macro, a warning will be issued and the
option ignored.

specifies the column in a line at which the map is to be
placed, that is, it establishes the left or right map margin.
The JUST! FY operand controls whether map and page margin
selection and column counting are to be from the left or right
side of the page. The columns between the specified map margin
and the page margin are not avail~ble for subsequent use on the
page for any lines included in the map.

number
is the column from the left or right page margin where the
left or right map margin is to be established.

NEXT
indicates that the left or right map margin is to be placed
in the next available column from the left or right on the
current line.

Chapter 3.3. Bas ic Mapping Support (BMS) 225

Page of SC33-0011-2, revised september 1980 by TNL SN33-6268

CTRL=

DATA=

SAME
---indicates that the left or right map margin is to be

established in the same column as the last non-header or.
non-trailer map used that specified COLUMN=number and the
same JUSTIFY parameters as this macro.

. ...

Refer to the section -map Positioning,· later iIi this chapter,
for a more detailed discussion.

specifies device characteristics related to terminals of the
3210 Information Display System.. CTRL=ALARM is valid for TeAM
3210 SOLe and ~-supported terminals ~xcept interactive and
batch logical units); all other parameters for CTRL are
ignored. This operand must be specifi~d on the last (or only)
map of a page unless options of a BMS command are being used to
override the corresponding operands in the DFHMSD macro. If
the CTRL operand is specified in the DFHMDI macro, it cannot be
specified in the DFHMSD macro ..

PRINT
must be specified if the printer is to be started; if
omitted,. the data is sent to the printer buffer but is no'c
printed.. Thi s operand is ignored if the map set is used
with 3270 displays without the Printer Adapter feature.

L40, L64, L80, HONEOM
are mutually exclusive options that control the line length
on the printer. L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respecti vely. HONEOM causes the default printer line
length to be used.

FREEKB
specifies that the keyboard should be unlocked after the
map is written out. If omitted, the keyboard remains
locked, further data entry from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible alarm. For other VTAM terminals
it sets the al.arm fl.ag in the FMH; this feature is not
supported by interactive and batch l.ogical units.

FRSET
specifies that the modified data tags (MOTs) of all fields
currently in the 3210 buffer are to be reset to a not­
modified condition (that is, field reset) before map data
is written to the buffer. This allows the DFHMDF macro
with the ATTRIB operand to control the final status of any
fields written or rewritten in response to a BMS command.

specifies the format of the data.

FIELD
specifies that the data is passed as contiguous fields in
the following format:

ILLIAldata field,LLtAldata field ,LL,A,data field
I

226 CICS/VS APRM (CL)

I
I
I
I
I
I
I
I
I
I
I

"LL" ~S two bytes specifying the length of the data as
input from thS terminal (these two bytes are ignored in
output processing). tlA" is a byte in to which the
programaer may place an attribute to override that
specified in the map used to process this data (see
"Standard Attribute List and Printer Control characters
(DFHBaSC~," later in this chapter).

BLOCK
specifies that the data is passed as a continuous stream in
the following format:

IAtdata fieldlspacelAldata fieldlspacel L __ __

This stream is processed as line segments of the length
specified in the map used to process the data set. rhe
data is in the form that it appears on the terminal; that
is, it contains data fields and interspersed blanks
corresponding to any spaces that are to appear between the
fields on output. The first byte of each line is the
attribute byte; it is not available for data. II

HEADER=YES

HILIGBT=

JUSTIFY=

allows the map to be used during page building without
terminating the overflow condition (see "Overflow Processing,"
later in this chapter). This operand may be specified for more
than one map in a map set.

specifies the default highlighting attribute for all fields in
a map.

is the default and means that no highlighting is used.

BLINK
specifies that the field is to "blink" at a set freq\lency.

REVERSE
specifies that the field is displayed in "reverse video",
for example, on a 3278, black characters on a green
background.

UNDERLINE
speCifies that a field is underlined.

If this option is specified when EXTATT=NO is specifisd in the
associat~d DFHftSD macro, a warning will be issued and the
option ignored. If this option is specified, but EXTATT is
not, EXTATT=!APONLY will be assumed.

specifies the margins on a page in which a map is to be
formatted.

LEFT
----indicates that the map is to De positioned starting at the

specified column from the left margin on the specified
line.

Chapter 3.3. Basic Mapping Support (B8S) 227

LINE=

OBFKT=

RIGHT
indicates that the map is to be positioned starting at the
specifieu column from the right margin on the specified
line.

FIRST

LAST

indicates that the map is to be positioned as the first map
on a new page. Any partially formatted page from preceding
Bas commands is considered to be complete. This operand
can be specified for only one map per page.

ind~cates that the map is to be positioned at the bottom of
the current page. This operand can be specified for
multiple maps to be placed on one page. However, maps
other than the first map for which it is specified must be
able to be posit~oned horizontally without requiring that
mor~ lines be used.

LEFT and RIGHT are mutually exclusive, as are FIRST and LAST.
If neither FIRST nor LAST is specified, the data is mapped at
the next available position as determined by other parameters
of the map definition and the current mapping operation. FIRST
and LAST are ignored unless PAGEBLD is specified, since
otherwise only one map is placed on each page.

Refer to the section "Map Positioning," later in this chapter,
for a mo~e detailed discussion.

specifies the starting line on a page in which data for a map
is to be formatted.

number

NEXT

SAME

is a value from 1 to 240, specifying a starting line
number. A request to map data on a line and column that
has been formatted in response to a preceding BMS command
causes the current page to be treat~d as though complete.
The new data is formatted at the requested line and column
on a new page.

specifies that formatting of data is to begin on the next
available completely empty line. If LINE=NEXT is specified
in the DFHMDI macro, it is ignored for input operations and
LINE=1 is assumed.

specifies that formatting of data is to begin on the same
line as that used for a preceding BKS command. If the data
does not fit on the same line, it is placed on the next
available completely-empty line.

Refer to the section "Map Positioning,ft later in this chapter,
for a more detailed discussion.

spec~fies whether outboard formatting is to be used. This
operand is available only for 3650 logical units. Refer to the
CICS/yS 3650 Guide for details of 3650 logical units and of
outboard formatting.

If omitted, the OBFKT operand in the DFHKSD macro is used.

228 CICS/V S APRM (CL)

PS=

SIZE=

TIOAPFX=

YES

NO

specifies that this map is to be used with outboard
formatting.

specifies that this map is not to be used with outboard
formatting.

specifies that programmed symbols are to be used.

BASE

psid

specifies that only the basic symbols are used.

specifies a single EBCDIC character or a hexadecimal code
of the form X'nn l , that identifies the set of programmed
symbols.

If this option is specified when EXTATT=NO is specified in the
associated DFHKSD macro, a warning will be issued and the
option ignored. If this option is specified, but EXTATT is
not, EXTATT=MAPONLY will be assumed.

specifies the size of a map.

line
is a value from 1 to 240, specifying the depth of a map as
a number of lines.

column
is a value from 1 to 240, specifying the width of a map as
a numoer of columns. Space for the attribute byt8 should
be included.

This operand is required in the following cases:

• An associated DFHKDF macro with the POS operand is used.

• The map is to be referred to in a SEND ~AP com. and with the
ACCUM option.

• The map is to be used when referring to input data from
other than a 3270 terminal in a RECEIVE ~AP command.

specifies whether BMS should include a filler in the symbolic
description maps to allow for the unused TIOA prefix. If
omitted, the TIOAPFX operand on the DFHMSD macro is used.

YES

NO

specifies that the filler should be included in the
symbolic description map. TIOAPFX=YES should always De
used for command level application programs.

specifies that the filler is not to be included for this
map.

Chapter 3.3. Basic aapping support (BMS) 229

TR~ ILER=YES

VALIDN=

allows the map to be used during page building without
terminating the overflow condition (see IIOverflow Processing,"
later in this chapter). This operand may be specified for more
than one map in a map set. If a trailer map is used other than
in the overflow environment, the space normally reserved for
oV6rflow trailer maps is not reserved while mapping the trailer
map.

MUST FILL
specifies that the field must be filled completely with
data. An attempt to move the cursor from the field before
it has been filled, or to transmit data from an incomplete
field, will raise the inhibit input conditions.

MUSTENTER
specifies that data must be entered into the field. An
attempt to move the cursor from an empty field will raise
the inhibit input condition.

230 CICS/VS APRM (CL)

Define a Field (DFHMDF Macro)

r------r r--·------------------~

I
I
I
I
I
I
I

[fId]
I
DFHMDF [,POS={numberl (line,column)}]

[,ATTRB=«({ASKIPIPROTIUNPROT(,tHJM]}][, {BRTINORM tDRR}]
(,DET][,IC][,FSET])]

[,COLOR={DEFAULTtBLUEIREDIPINKIGREENITURQUOISEIYELLOWI
NEUTRAL}]

[,GRPNAME=group-name]
[,HILIGHT={OFFIBLINKIREVERSEIUNDERLINE}]
[,INITIAL='character data'IXINIT=hexadecimal data]
[,JUSTIFY= ([{LEFT I RIGHT}][, {BLANK I ZERO}])]
[,LENG'rH=number]
[,OCCURS=number]
[,PICIN='vaIue']
[,PICOUT=I value']
[, PS= {BASE I psid}]
[, VALIDN= ([MUSTFILL][, MUSTENTER]) 1

L ___ L--__ L--

This macro is used to define a field. One DFHMDF macro is required for
each field in d map, giving information such as symbolic field name,
field position, field length, attribute byte (for 3210 terminals),
initial constant data, Justification of input, and COBOL or PL/I data
picture. Two or more DFHMDF macros must be arranged in numerical order
of the POS operand, except for output mapping operations using
DATA=PIELD.

The number of named fields that can be defined for a COBOL or PL/I
input/output map must not exceed 1023.

The operands are defined as follows:

fld

POS=

is the name (1 through 1 characters) of the field. Although a
name is not required for every field within a map, a name must
be specified for at least one field of a map to be compiled
under COBOL or PL/I. All fields within a group must have
names.

If name is omitted, an application program cannot access the
field to change its attributes or alter its contents. For an
output map, omitting the field name may be appropriate when the
INITIAL operand is used to specify field contents. If a field
name is specified and the map that includes the field is used
in a mapping operation, data supplied by the user overlays data
supplied by initialization (unless defaultiata only is being
written) •

specifies the location of a field. This operand specifies the
individually addressable cbaracter location in a map at Which
the attribute bytE that precedes the field is positioned.

number
specifies the displacement (relative to zero) from the
beginning of the map being defined.

Chapter 3.3. Basic Mapping Support (BMS) 231

I
I
I

ATTRB=

~in&,column)
specify lines and columns (relative to one) within the map
being defined.

The location of data on the output medium is dependent on
DFHMDI macro parameters as well.

The first position of a field is reserved for an attribute
byte. When supplying data for input mapping from non-3270
devices, the input data must allow space for this attribute
byte. Input data must not start in column 1 but may start in
column 2.

The POS operand always contains the location of the first
position in a field, which is normally the attribute byte when
com.unicating with the 3270. For the second and subsequent
fields of a group, the POS operand points to an assumed
attribute-byte position, ahead of the start of the data, even
though no actual attribute byte is necessary. If the fields
follow on immediately from one another, the POS operand should
point to the last character position in the previous field in
the group.

When a position number is specified which represents the last
character position in the 3270, two special rules apply:

• The IC attribute should not be coded. The cursor may be
set to location zero by using the cursor option of the SEND
MAP or SENT TEXT command.

• If the field is to be used in an output mapping operation
with the DATA=ONLY specification, an attribute byte for
that field must be supplied in the TIOA by the application
program.

is applicable only to fields to be displayed on a 3270 and
specifies device-dependent characteristics and attributes, such
as the capability of a field to receive data or the intensity
to be used when tne field is output. If the ATTRB operand is
specified within a group of fields, it must be specified in the
first field entry. A group of fields appears as one field to
the 3270. Therefore, the ATTRB specification refers to all of
the fields in a group as one field rather than as individual
fields. Refer to the publication IB~1~lQ_!nfor!21iog_DisE!gy
System ComEonent Description for further information.

This operand applies only to 3270 data stream devices; it will
be ignored for other devices, including the SCS Printer Logical
Unit. It will also be ignored if the NLEOK option is specified
on the SESD MAP com.and for transmission to a 3270 printer. In
particular, ATTRB=DRK should not be used as a method of
protecting secure data on output. It could however, be used
for making an input field nondisplay for secure entry of a
password from a screen.

For 1nput map fields, DET and NUM are the only valid options;
all others are ignored.

ASKIP
specifies that data cannot be keyed into the field and
causes the cursor (current location pointer) to skip over
the field.

232 CICS/VS APRM (CL)

PROT
specifies that data cannot be keyed into the field.

If data is to be copied from one device to another attached
to the same 3270 control unit, the first position (address
0) in the buffer of the device to be copied from must not
contain an attribute byte for a protected field. When
preparing maps for 32705, ensure that the first map of any
page does not contain a protected field starting at
position o.

UNPROT

NUt'!

BRT

NORK

DRK

DET

specifies that data can be keyed into the field.

ensures that the data entry keyboard is set to numeric
shift for this field unless the operator presses the alpha
shift key, and prevents entry of nonnumeric data if the
Keyboard Numeric Lock feature is installed.

specifies that a high-intensity display of the field is
required. By virtue of the 3270 attribute character bit
assignments, a field specified as BRT is also potentially
detectable. However, for the field to be recognized as
detectable by BMS, DET must also be specified.

specifies that the field intensity is to be normal.

specifies that the field is nonprint/nondisplay. DRK
cannot be specified if DET is specified.

specifies that the field is potentially dbtectable.

The first character of a 3270 detectable field must be a
n1", n)lI, uS", or blank. If the first character is usu or
blank, the field is an attention field; if tha first
character is "1" or ">", the field is a selection field.
(See the publication IBM 3270 Information Display S~te~
~Q~2QQgll!~g§£~i~t!Qg for further details of detectable
fields .)

A field for which BRT is specified is potentially
detectable to the 3270, by virtue of the 3270 attribute
character bit assignments, out is not recognized as such by
BMS unless DET is also specified.

DET and DRK are mutually exclusive options.

If DET is specified for an input field, only one data byte
is reserved for each input field. This byte is set to
X'OO', and remains unchanged if the field is not selected.
If the field is selected the oyte is set to X·PPI.

No other data is supplied, even if the field is a sel~ction
field and the ENTER key bas been pressed.

If the data in a detectable field is required, all of the
following conditions must be fulfilled:

Chapter 3.3. Basic ~apping Support (BKS) 233

I
I
I
I
I
I
I

COLOR=

IC

FSET

1. The field must begin with either a "1" ">", or
"&" and DET must be specified in the output map.

2. The ENTER key (or some other attention key) must be
pressed aftar the field has been selected, although for
detectable fields beginning with II&n the ENTER key is
not required.

3. DET must not be specified for the field in the input
map. DET must, however, be specified in the output
map.

specifies that the cursor is to be placed in the first
position of the field. The IC attribute for the last field
for which it is specified in a map is the one that takes
effect. If not specified for any fields in a map, the
default location is zero. Sp9cifying IC with ASKIP or PROT
causes the cursor to be placed in an unkeyable field.

This option may be overridden by specifying the CURSOR
option of the SEND ~AP or SEND TEXT command that causes the
write operation.

specifies that the modified data tag (MDT) for this field
should be set when the field is sent to a terminal.

Specification of FSBT causes the 3270 to treat the field as
though it has been modified. On a subsequent read from the
terminal, this field is read, whether or not it has been
modified. The MDT remains set until the field is rewritten
without AT'rRB=FSET or until an output mapping request (for
example, DFHMSD CTRL=FRSET or DFHBMS CTRL=FRSET) causes the
PfDT to be reset.

Either of two sets of defaults ~ay apply when a field to be
displdyed on a 3210 is being defined but not all parameters are
specified. If no ATTRB parameters are specified, ASKIP and
NORM are assumed. If any parameter is specified, UNPROT and
NORM are assumed for that field unless overridden by a
specified parameter.

specifies the colors to be used. If this option is specified
when EXTATT=NO is specified in the associated DFHMSD macro, a
warning will be issued and the option ignored.

234 CICS/VS A1?RM (CL)

GRPNAME=group-name

HILIGBT=

is the name (1 through 7 characters) used to generate symbolic
storage definitions and to combine specific fields under one
group name. The same group name must be specified for each
field that is to belong to the group.

The fields in a group must follow on; there can be intervening
gaps between them, but not other fields from outside the group.
A field name must be specified for every field that belongs to
the group, and the POS operand must be also specified to ensure
the fields follow each other. All the DFHMDF macros defining
the fields of a group must be placed together, and in the
correct order (upward numeric order of tha POS operand).

For exa&ple, the first 20 columns of the first six lines of a
map can be defined as a group of six fields, so long as the
remaining columns on the first five lines are not defined as
fields.

The ATTRB operand specified on the first field of the group
applies to all of the fields within the group. The sum of the
lengths of the fields within the g~oup must not exceed 256
bytes. If this operand is specified, the OCCURS operand cannot
be specified.

Examples showing the effect of this operand are included later
in the chapter.

specifies the type of highlighting to be used.

is the default and means that no highlighting is used.

BLINK
specifies that the field is to "blink" at a set frequency.

REVERSE
specifies that the field is displayed in "reverse video",
for example, on a 3278, black characters on a green
background.

UNDERLINE
specifies that a field is underlined.

If this option is specified when EXTATT=NO is specified in the
associated DFHaSD macro, a warning will be issued and the
option ignored.

Chapter 3.3. Basic Mapping Support (BMS) 235

I INITIAL='character data'IXINIT=hexadecimal data
I specifies constant or default data for an output field. The
t INITIAL operand is used to specify data in character form; the
I XINIT operand is used to specify data in hexadecimal form.
I INITIAL and XINIT are mutually exclusive.

JUSTIFY=

For fields with the DET attribute, initial data that begins
with a blank character, 11&", ">,., or II?'. should be supplied.

The number of characters that can be specified in the INITIAL
operand is restricted to the continuation limitation of the
assembler to be used or to the va1ue specified in the LENGTH
operand (whichever is the smaller).

Hexadecimal data is written as an even number of hexadecimal
digits, for example, XINIT=C1C2. If the number of valid
characters is smaller thaa the field length, the data will be
padded on the right with blanks. For example, XINIT=C1C2 might
result in an initial field of lAB I

If hexadecimal data is specified that corresponds with line or
format control characters, the results ~ill be unpredictable.
The XINIT operand should therefore be used with care.

specifies the field justifications for input operations. This
operand is ignored for TCAM-supported 3600 and 3790, and for
VTA~-supportea 3600, 3650, and 3790 terminals, as input mapping
is not available.

LEFT
specifies that data in the input field is left-justified.

RIGHT
specifies that data in the input field is rignt-justified.

BLANK
specifies that blanks are to be inserted in any unfilled
positions in an input field.

ZERO
specifies that zeros are to be inserted in any unfilled
positions in an input field.

LEFT and RIGHT are mutually exclusive, as are BLANK and ZERO.
If certain parameters are specified but others are not,
assumptions are made as follows:

~ecified

LEFT
RIGHT
BLANK
ZERO

Assumed

BLANK
ZERO
LEF'r
RIGHT

If JUSTIFY is omitted, but the NU~ attribute is specified,
RIGHT and ZERO are assumed. If JUSTIFY is omitted, but
attributes other than NUM are specified, LEFT and BLANK are
assumed.

If a field is initialized by an output map or contains data
from any other source, data that is Keyed as input may not be
justified and the additional data ~ay remain in the field.

236 CICS/VS APRM (CL)

I
I
I
I
I
I
I
I
I
I

LENGTH=number
specifies the length (1 through 256 bytes) of the field. This
specified length should be the maximum length required for
application-program data to be entered into the field; it
should not include the one-byte attribute indicator appended to
the field by CICS/VS for use in subsequent processing. The sum
of the lengths of the fields within a group must not exceed 256
bytes. LENGTH can be omitted if PICIN or PICOUT is specified
but is required otherwise.

The map dimensions specified in the SIZE operand of the DFHMDI
macro instruction defining a map may be smaller than the actual
page size or screen size as defined for the terminal. The
LENGTH specification in a DFHMDF macro instruction cannot cause
the map-defined boundary on the same line to be exceeded. That
is, the length declared for a field cannot exceed the number of
positions available from the starting position of the field to
the final position of the map-defined line. For example, given
an 80-position page line, the following map definition and
field definition are valid:

DFH~DI SIZE=(2,40), •••
DFH~DF POS=22,LENGTH=17, •••

but the following definitions are not acceptable:

OCCORS=number

DFH!!DI
DFHMDF

SIZE=(2,40), •••
POS=22,LENGTH=30, •••

specifies that the indicated number of entries for the field
are to be generated in a map and that the map definition is to
be generated in such a way that the fields are addressable as
entries in a matrix or an array. This permits several data
fields to be addressed by the same name ~ubscripted) without
generating a unique name for each field. OCCURS and GRPNA~E
are mutually exclusive; that is, OCCURS cannot be used when
fields have been defined under a group name. If this operand
is omitted, a value of 1 is assumed.

Examples showing the effect of the OCCORS operand are included
later in the chapter.

Chapter 3.3. Basic Mapping Support (B~S) 237

PICIN='value'
specifies a picture to be applied to an input field in an IN or
INOUT map; this picture serves as an editing specification
which is passed to the application program, thus permitting the
user to exploit the editing capabilities of COBOL or PL/I. The
PICIN operand is not valid for assembler programs. B~S checks
'value' to ascertain that the specified characters are valid

, picture specification characters for the language of the map.

However, no validity checking of the input data is performed by
BMS or the high-level language when the map is ased, so any
desired checking must be performed by the application program.
The length of the data associated with 'value' should be the
same as that specified in the LENGTH operand if LENGTH is
specified. If both PICIN and PICOUT (see below) are used, an
error message is produced if their calculated lengths do not
agree; the shorter of the two lengths is used. If PICIN or
PICOUT is not coded for the field definition, a character
definition of the field is automatically generated regardless
of other operands that are coded, such as ATTRB=Nua.

As an example, assume the following map definition is created
for reference by a COBOL application program:

MAPX
MAP
Fl
F2
F3

DFHMSD
DFHMDI
DFHMDF
DFHMDF
DFHMDF
DFHMSD

TYPE=DSECT,LANG=COBOL,!ODE=INOUT
LINE=1,COLUMN=1,SIZE=(1,80)
POS=0,LENGTH=30
POS=40,LENGTH=10,PICOUT='$$$,$$0.OO·
POS=60,LENGTH=6,PICIN='9999V99',PICOUT='ZZ9.99,
TYPE=FINAl

The following DSECT is generated:

01 MAPI.
02 F1L PIC S9 (4) COMP.
02 F1A PIC X.
02 FILLER REDEFINES FlA.

03 F1F PIC X.
02 F1I PIC X (30) •
02 FILLER PIC X.
02 F2L PIC S9 (4) COMP.
02 F2A PIC X.
0.2 FILLER REDEFINES F2A.

03 F2F PIC x.
02 F21 PIC X(lO).
02 FILLER PIC x.
02 F3L PIC S9 (4) COMP.
02 F3A PIC x.
02 FILLER REDEFINES F3A.

03 F3F PIC x.
02 F31 PIC 9999V99.
02 FILLER PIC x.

01 MAPa REDEFINES ~API.

02 FILLER PIC X (3) •
02 FlO PIC X (30) •
02 FILLER PIC x.
02 FILLER PIC X (3).
02 F20 PIC $$$,$$0.00.
02 FILLER PIC x.
02 FILLER PIC X (3) •
02 F30 PIC ZZ9.99.
02 FILLER PIC x.

238 CICS/VS APRM (CL)

PICOUT='value'

PS=

VALIDN=

is similar to PICIN, except that a picture to be applied to an
output field in the OUT or INOUT map is generated.

Like PICIN, PICOUT is not valid for assembler progr ams •

specifies the programmed symbol set to be used for the display
of the field.

BASE

psid

specifies that only the basic symbols are used.

specifies a single EBCDIC character or a hexadecimal code
of the form X'nn', that identifies the set of programmed
symbols.

If this option is specified when EXTATT=NO is specified in the
associated DFHMDS macro, a warning will be issued and the
option ignored. If this option is specified, but EXTATT is
not, EXTATT*1APONLY will be assumed.

MUSTFILL
specifies that the field must be filled completely with
data. An attempt to move the cursor fram the field before
it has been filled, or to transmit data from an incomplete
field, will rais~ the inhibit input conditions.

MUS TENTER
specifies that data must be entered into the field. An
attempt to move the cursor from an empty field will raise
the inhibit input condition.

Map Positioning

The position of a map on a screen is determined by two major factors:
the current contents of the screen, and the values coded for the LINE,
COLUMN, and JUSTIFY operands of the DFHMDI macro. Positioning is also
affected if the DFHMDI macro specifies HEADER=YES or TRAILER=YES, and by
the depth of the deepest trailer map in the map set.

THE SCREEN CONTENTS

At any instant, the part of the screen which is still available for maps
is in the form of either an L, a reversed L, a rectangle or an inverted
T, as shown by the unshaded area in the following diagram.

Chapter 3.3. Basic Mapping Support (BMS) 239

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

next column left reference next column right reference

CUI rent line -----.;

next free line --'--~

from left column from right column

free

area

trailer size

The shape and size of this area is represented internally b¥ four
vari.ables: current line, next free line, next column from left, and
next column from right.

Three other pointers are maintained that are relevant to map
placement though they do not affect the area available: left reference
column and right reference column, which are used when COLtHN=SAME is
specified, and trailer size.

THE TRAILER AREA

The trailer size i.s equal to the number of lines that would be occupied
by the deepest trailer map in the map set currently in use. It is
determined when the map set is assembled, and is copied from the map set
whenever one is loaded. The trailer size is assumed to be zero if there
is no overflow routine.

The area defined by trailer size is not available for mapping unless
no overflow routine has been specified or the map has TRAILER=YES
specified in its DFBMDI macro.

JUSTIFY=FIRST AND JUSTIFY=LAST

If JUSTIFY=FIRST is specified, the map is placed on a new page, so that
the only maps above it are the header maps used in overflow processing.
The LINE operand may also be used with JUSTIFY=FIRBr to place the map
below the top of . the page.

If JUSTIFY=LAST is specified, the map is placed as low as possible on
the page. For a non-trailer map, this is i.nmediately above the trailer
area; for a trailer map, it is at the bottan of the page. In the
absence of an overflow routine, the trailer area is null and
JUSTIFY=!AST places the map at the bottom of the page.

A map defined with JUSTIFY=IAST cannot be used in input operations
unless it was previously put out without the ACCUM option, in which case

240 CICS/VS APRM (CL)

JUSTIFY=LAST is ignored and the map is positioned at the top of tbe
page.

THE LINE OPERAND

The LINE operand specifies the line of the screen on which the first
line of the map is to be placed. The initial determination of this line
is made without regard to the specification of the COLUMN operand or the
columns available on the screen on that particular line. If it
transpires that the map will not fit on the chosen line, the first
subsequent line that will satisfy the column requirements is selected.

If LINE=SAME or LINE=NEXT is specified, the initial line selected for
the start of the map is the current line or the next free line ,
respectively. If a number is specified in the LINE operand, the line
with that number is selected, provided the number is greater than or
equal to the number of the current line; if not, the overflow condition
is raised so that the map can be placed on the next page.

The line selected becomes the new current line and, if it is below
the next free line, the next free line is reset to the same line; the
next column from the left and right are also reset, to the left and
right margins respectively.

If the line selected is such that the end of the map extends into the
trailer area for a non-trailer map or beyond the end of the page for a
trailer map, the overflow condition is raised and the aap will be placed
on the first available line of the next page when the request is
reissued after handling the overflow.

THE COLUMN AND JUSTIFY OPERANDS

The COLUMN specification may be either NEXT, SAME, or a number and is
processed in conjunction with the LEFT or RIGHT specification of the
JUSTIFY operand. JUSTIFY=LEFT is the default and implies that the
column specification is related to the left-hand margin. Conversely,
JUSTIFY=RIGHT implies that the column specification is related to the
right-hand margin. For the purposes of this explanation, it is assumed
here:after that JUSTIFY=LEFT has been specified (or applied by default).

If COLUMN=NEXT is specified, the column chosen for the map is the
next column from the left. If a numeric value is specified, the column
with that number is chosen, counting from the left. If COLUMN=SAME ~s
specified, the left reference column is chosen. (The left reference
column is the one that was most recently specified by number with
JUSTIFY=LEFT .)

The map is th~n checkeu to ensure that its right margin is not to the
right of the next column from the right. If it is, the map will not fit
into the remaining space, so a new line must be selected. This will be
either the next full line or, if the map is too deep, the first
available line on the next page.

Finally, the column pointers are updated by setting the next column
from the left to the right margin of the map, and, if COL=numher was
specified, by setting the left reference column to the specified column
number.

Chapter 3.3. Basic aapping Support (B~S) 241

PAGE BUILDING EXAMPLES

I The effects of the mechanisms described above are illustrated by the
I following examples. The examples show the interactions between SIZE,
I LINE, COLUMN, and JUSTIFY=LEFT or RIGHT; header and trailer maps and
I JUSTIFY=FIRST or LAST are not brought into the examples.

In processing a BMS command, BMS determines whether the area of the
page required Dy the map is wholly available or whether any part of it
has been used by an earlier command. "Used" means actually filled by a
map or rendered unavailable as described below.

1. When the LINE operand of the DFHMDI macro is coded, all lines above
the specified line are unavailable.

2. When JUSTIFY=LEFT is coded (or applied by default), all columns to
the left of the leftmost map column, for the full depth of the map,
are unavailable

Example: MAPA DFHMDI ••• ,LINE=3,COLUMN=5,JUSTIFY=LE¥T, •••

5

3. When JUSTIFY=RIGHT is coded, all columns to the right of the
rightmost map column, for the full depth of the map, are
unavailable.

Example: ~APA DFHMDI ••• ,LINE=3,COLUMN=35,JUSTIFY=RIGBT, •••

35

3

242 CICS/VS APRM (eL)

4. When two or more maps are placed so that they share certain lines,
all columns beneath a map that ends higher are unavailable to the
depth of the map that ends lowest. Similarly unavailable are all
columns to the left (if the higher map is left justified) or to the
right (if the higher map is right justified) of the 'used l area
beneath the higher map.

Exam~j~: MAPA DFHKDI ••• ,LINE=3,COLU~N=2,JUSTIFY=LEFT, •••
MAPB DFHMDI ••• ,LINE=4,COLuaN=20,JUSTIFY=LEFT, •••

3

Exam~Ql: MAPA DFHMDI ••• ,LINE=3,COLUMN=2,JUSTIFY=LEFT, •••
MAPB DFBMDI ••• ,LINE=4,COLUKN=20,JUSTIFY=RIGBT, •••

3

Examele 1£l: MAPA DFBMDI ••• ,LINE=3,COLUMN=40,JUSTIFY=RIGHT, •••
MAPB DFBMDI ••• ,LINE=3,COLUKN=1,JUSTIFY=LEFT, •••

3

Chapter 3.3. Basic Mapping Support (B!~ 243

5. The following ~llust~tion shows the effect of several different
maps on one page.

Map D

JUSTIFY
= LEFT

Map C

JUSTI FY
= RIGHT

If an araa of the page directly specified for a map has already been
used by a previous map, the overflow condition is raised. This
condit ion is handled as described later in the chapter under "Overflow
Processing."

USING MAPS

The symbolic description map provides names for fields and groups of
fields that may be sent to and received from the devices supported by
BMS. The- symbolic description map must be copied into each application
program that uses the associated physical map. (Refer to "Copy ing
Symbolic Description Maps" below.)

Data can then be passed to and from the application program under the
field names in the symbolic description map. (The names used in the
application program are those defined by the DFHMDF macro instructions
with the addition of the suffix "1" for input or "0" for output.)

since the application program is written to manipulate the data under
the field names, altering the map format by adding new fields or
rearranging old fields does not necessarily alter the program logic.

If the map format is altered, it is necessary in most cases to make
the appropriate changes to the macro instructions that describe the map
and reassemble both the physical map and the symbolic description map.
The new symbolic description map must then be copied into the
application program and the program reassembled or recompiled. There
are some map alterations that can be made without reassembly of the
symbolic description map, in particular, COLOR, PS, HILIGHT, and VALDN
can be added to existing maps if it is not required to change the
attributes dynamically. It is only necessary to specify EXTATT=MAPONLY,
define the new attributes, and reassemble the physical map.

244 CICS/VS APRM (CL)

An application program has access to th; input and output fielas
using the names given to the fields when the maps were generated. ~he
application-program logic should be dependent upon the named fields and
their contents but should be independent of the positions of the fields
within the terminal format. If it is necessary to modify a map, the
existing application program must be recompiled to gain access to the
new positions of these fields. Reprogramming is not necessary to
account for new fields or for the changed terminal format of those
fields.

By using BMS to construct and interpret data streams, application
programs can be insulated from the device-dependent considerations
required to handle the data streams. If necessary, the application
program can modify temporarily the attributes or the initial data of any
named field in an output map. A collection of named attribute
combinations is supplied within BMS so that the application program
remains essentially independent of the data stream format.

The ability to add to map definitions without obsoleting existing
application programs permits the design and implementation of systems in
a modular fashion with a progressive expansion of the screen formats.
Design and programming of the first stages of applications can begin
before later stages have been designed. These early implementations are
protected from updates in the terminal formats.

COPYING SYMBOLIC DESCRIPTION MAPS

The symbolic description maps must be copied into the application
program as shown in the following examples; "mapsetname,lt,
nmapsetname2 n , and IImapsetname3" are the names of members that contain
the assembly of a BMS symbolic storage definition. The TIOAPFX=YES
operand must be specified in the DFHaSD macro instructions used to
define the maps.

Chapter 3.3. Basic Mapping Support (BMS) 2~5

1. Assembler language COpy statements.

COPY mapsetnamel
COpy mapsetname2
COPY mapsetname3

The symbolic storage definitions can be copied into the DFHEISTG
DSECT, in which case storage will be provided automatically.
Alternatively, the application program can provide its own DSECT,
storage, and addressability.

While it is generally stated that TIOAPFX=YES must be specified in
the map definition macros, it is possible to use maps created
without the TIOA prefix if the following technique is used.

The EXEC interface program assumes that the FRO! or INTO option
specifies an area which includes the 12-byte TIOI prefix. If the
symbolic description maps do not include this, the COpy instruction
in the DFHEISTG DSECT should be preceded by a filler, as follows:

NEWNAaE DS 12C
COpy alPl

and the command must specify the FROM or INTO option instead of
using the default, for example as follows:

EXEC CICS BECEIVE MAP(laIPl l) INTO (NEWNIME)

2. COroL COpy statements. The names "mapname''', "mapname2 11 , and
"mapname3" in this example are the names of the first maps in the
map sets. These names include the appropriata suffix to signify
the type of map; that is, "I" for input (or input/output), and "0"
for output.

The symbolic storage definitions can be copied into either the
Linkage section or the Working-storage Section.

If the symbolic storage definition is copied into the Linkage
Section, the required storage must be obtained by the application
program and access to this storage made by the BLL (base locator
for linkage) mechanism, as follows:

01 BLLCELL 5.
02 FILLER PIC 59(8) COMP.
02 MAP1BLL PIC S9~) COMP.
02 MAP2BLl PIC S9 (8) COMP.
02 MAP3BLL PIC S9(8) CaMP.

01 mapname1 COpy mapsetnamel.
01 mapname2 COPY mapsetname2.
01 mapname3 COPY mapsetname3.

If the symoolic storage definition is copied into the Working­
Storage Section, and there is more than one map in the map set, and
separate storage is required for the data in each map, the
STORAGE=!OTO operand must be specified in the DFH~SD macros.

246 CICS/VS APRM (eL)

If working storage is used as the origin or destination of data
processed by BKS it should be initialized with low-values by a
"MOVE LOll-VALUES TO ••• " statement.

3. PL/I ~INCLODE statements.

~INCLUDE mapsetnamel;
'INCLUDE mapsetname2;
~INCLUDE mapsetname3;

The symbolic storage definitions may specify AUTOMATIC or BASED
storage depending on the operands of the DFBMSD macro.

LOGICAL MESSAGE BUILDING

Logical message building allows the application program to:

• Combine several small mapped data areas into one or more pages of
output, or

• Prepare more output than can be contained in one page of output.

A ~ is the area of a terminal on which data can be displayed or
printed at one time. The size of the area (in numbers of lines and
columns) for the terminal is specified in the TCT by the system
programmer. A page of output may be constructed by BKS from several
small maps, and these maps must be generated together to form a map set.

The SEND KAP command is used to map and position portions of a page.
If all data to be mapped cannot be contained on one page, the overflow
condition occurs and control is passed to an overflow routine within the
application p£ogram. This routine normally causes any required trailer
(footing) data to be placed at the foot of the page, the current page to
be written to temporary storage, a new page to be started, a heading to
be placed on the new page, and the data causing the overflow to be
mapped on the new page.

As each page of output is completed, it is written to temporary
storage to await completion of other pages. The result of building
output data in this cumulative manner is known as a logical message. A
SEND PAGE command signifies completion of the logical message.
Alternatively, the logical message is completed upon termination of the
application program unless CICS/VS has insufficient storage available,
in which case the logical message is deleted.

An alternative way to build a logical message without the use of maps
is by means of SEID TEXT commands. Data is passed in text data format,
which BMS places on succeeding lines (and pages, if necessary) without
reference to maps. A word is not split between lines; any word that
cannot fit on the remaining portion of a line is placed on the next
line. Formatting can be controlled by new-line characters (X'lS')
embedded within the text. A SEND PAGE command signifies completion of
the logical message; alternatively, the logical message is completed
upon termination of the application program unless CICS/VS has
insufficient storage available, in which case the logical message is
deleted.

Chapter 3.3. Basic Mapping Support (Bl! S) 2ij 7

OUTPUT OPERATIONS

The SEND KAP and SEND TEXT commands can be used individually to request
B!S to map data and transmit it to a terminal or to a data area in the
application program.

Alternatively, these commands can be used to build a logical message
cumulatively. The logical message is built by successive SEND ftAP or
SEND TEXT commands, each of which must include the ACCUM option.
Finally, a SEND PAGE command must be issued to complete the logical
message and transmit it.

SEND MAP and SEND TEXT commands cannot be used to build portions of
the same logical message. The process of building a logical message can
be discontinued by means of a PURGE MESSAGE command, which deletes the
portions of the message already built.

OUTPUT COMMANDS WITH THE SET OPTION

The SET option of the SBND MAP and SEND TEXT com.ands causes completed
pages be returned to the applica tion program and a pointer to be set to
the address of a list of completed pages. Since more than one page of
output may result from a single BKS output com.and, there may be more
than one entry in the list for a given type of terminal. The entries
for each type of terminal immediately follow one another in the list (TC
is the terminal code as shown in Figure 3.3-1). The list is laid out as
follows:

I TC I Page Buffer I TC I Page Buffer tiFF ••• FyI L __ ~

4 bytes 4 bytes 4 bytes

The page buffer pointer points to an area of storage which has an
eight-byte storage accounting prefix, as follows:

CICS/VS storage Acctng Buffer Length Reserved Data

8 bytes 2 bytes 2 bytes x bytes

At this point, page buffers are on the user's storage chain and are
disassociated from BKS control blocks; when no longer needed, page
buffers should be released by the FREEMAIN command. The data to be
freed should not include the storage accounting prefix. The storage
containing the list of buffers should not be freed; the list will be
reused to reduce processing time. This list will be altered by the next
B!S command; its contents must be saved before that command is executed.

248 CICS/VS APRM (CL)

TERMINAL CODE TABLE

A terminal code table is established within BMS for reference in
servicing BMS-supported terminals. There is one entry in this table for
each terminal supported under BMS. The terminal codes that appear in
the table are given in Figure 3.3-1. This code appears in the list of
completed pages made available to the application program when the SET
option is specified in a SEND MAP or SEID TEXT com.and. The code is
available also in the EIBRCODE field of the EXBC interface block when
the INvapsz condition occurs; for a description of this field, refer to
Appendix A.

Code

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
p
Q
R
S
T
U
V
W
X
Y
Z

Terminal or Logical unit

CRLP or TRMTYPE=TCA! terminals
Magnetic Tape
sequential Disk
TWX Model 33/35
1050
2140 Models 1 and 2 (Without Buffer Receive)
2141
2140 !odel 2 (With Buffer Receive)
2710
2180
3180
3210 (40-character width)
3270 (80-character width)
Not used
Not used
3161/70 Int.LU; 3190 Full LU/SCS Printer LO; SCS Printer
2980 !odels 1 and 2
2980 Model 4
lot used
Not used
3600 (3601) LU
3650 Host Conversational (3653) LU
3650 Interpreter LO
3650 Host Conversational (3210) LU
3770 Batch LU; 3770 and 3790 Batch Data Interchange LUs
Not used

Figure 3.3-1. Terminal Code Table

MESSAGE ROUTING

Message routing permits an application program to build and route a
logical message to ODe or more terminals. The message is scheduled, for
each designated terminal, to be delivered as soon as the terminal is
available to receive messages, or at a specified time.

A ROUTE command initiates a message routing operation. It is
followed by SEND MAP ~r SEND TEXT com.ands to build the logical message
to be routed. A SEND PAGE command terminates the page building and
causes the message to be routed. When individual logical messages are

Chapter 3.3. Basic Mapping Support (BMS) 249

routed to a terminal, they are not necessarily delivered in the sequence
in which they were issued. If a specific sequence is required, the
pages must be output as one message.

The SEND alP or SEND TEXT commands that build the message must
include the ACCU! option. Other SEND aAP or SEND TEXT com.ands without
the ACCU8 option can be interleaved with these commands to send messages
to the terminal that initiated the transaction while the message to be
routed is being built.

Another consideration of routing to different types of terminal is
the handling of overflow conditions. Since different types of terminal
may have different page sizes, the overflow condition is apt to occur at
different times in page building. BMS returns control to an overflow
routine in the application program, indicating which type of terminal
caused the overflow and how many pages have been created for that type.

The message routing facility of B8S is useful for developing message
switching and broadcasting applications. CICS/VS provides a generalized
message switching application program that uses the message routing
facility of B8S (see the CICSt'S Operator's Guide for details).

Bas ~ESSAGE RECOVERY

BMS provides message recovery for routed and non-routed messages.
Recoverable messages must satisfy the following requirements:

• The PAGING option must have been specified in the BMS output
commands that built the logical message.

• The BMS default REQID (**) or the specified REQID for the logical
message must have been identified to the temporary storage program
(via the TST) as recoverable.

• The task that built the message must have reached its logical end
of task.

• The temporary storage program and the interval control program must
also support recovery.

Display Devices Operations (BMS)

The information in this section applies, in general, only to the IBM
3270 Information Display System. All the basic facilities described in
the section "Display Device Operations" in Chapter 3.2 can be requested
in a B!S program. The following additional facilities apply only to
B8S, and are described in the following sections:

• Symbolic Cursor Positioning

• Terminal Operator Paging Commands

250 CICS/VS APRM (CL)

SYMBOLIC CURSOR POSITIONING

The CURSOR option of the SEND alP and SEND TEXT commands can be used to
position the cursor on completion of an output operation.
Alternatively, a method called symbolic cursor positioning can be used,
which allows a field in the data to be marked, symbolically, such that
the cursor is placed under the first data byte of the field on the
output screen.

Requirements for the use of symbolic cursor positioning are as
follows:

• MODE=INOUT must be specifie~ in the DFHMSD macro.

• CURSOR must be specified in the BMS command.

• The leng~ field, suffix "L", associated with the field under which
the cursor is to be placed must be initialized to -1.

The remainder of the data may be built as desired by the user.
Symbolic cursor positioning is operable only for devices that allow
cursor placement to be performed independently of data placement; for
example, 3604 and 3270. Symbolic cursor positioning is ignored for
other devices.

TERMINAL OPERATOR PAGING COMMANDS

The commands used by terminal operators to communicate with BMS are
collectively known as termi~!_Egg~co~~nds, or simply as paging
commands. Their format and use are discussed in detail in the CICS/VS
Q£erator1s Guide.

Cursor placement is an important consideration in programming for
paging commands. Any of the following can cause a paging command not to
be the first data read by CICS/VS and therefore not to be interpreted as
a paging command.

• After a print operation on a 3275 Display Station, the cursor is
set to position zero. A paging command entered at this location is
not recognized unless the last position of the buffer contains an
attribut~ byte or the buffer has been cleared.

• A field sent with the DATAONLY option of the SEND MAP command and
without an attribute in the data ~hat is, with an attribute byte
in the data having the value X'OO') is written into t~e buffer
without an attribute byte. If the application program places the
cursor in this field and the operator keys a paging command
beginning at the cursor location, the paging com.and is not
recognized.

Since the field has no attribute byte, the uata is considered to be
an extension of the previously d8fined field. When the operator
keys into the middle of the hardware-recognized field and presses
the enter key, the field is transmitted from the beginning of the
previously defined field. The data at the beginning of the field
is examined for a paging command and responded to accordingly.

Chapter 3.3. Basic Mapping Support (BMS) 251

• Cursor specification ia the B8S commands can adversely affect
operator action if the cursor is not set at the beginning of a
field. Paging commands entered at a cursor location that is not
the beginning of a field are not recognized by BMS because data
transmission starts at the beginning of the field if the field is
not set to nulls (X·OOI).

252 CICS/VS APRM (CL)

Map Input Data (RECEIVE MAP)

RECEIVE MAP (name)
[SET (pointer-ref) I INTO (data-value)]
[MAP SET (name)]
[FROM (data-area) LENGTH (data-value) I TERMINAL [ASIS]]

Exceptional conditions: EOC, EODS, INVMPSZ, MAPFAIL, RDATT

This command is used to map data into a data area in the ~plication
program. The source of the data can be either a terminal. (TERMINAL
option) or another data area in the program (FROM option). If neither
option is specified, TERMINAL is assumed. The ASIS option inhibits
translation of lowercase characters to uppercase.

If the FROM and LENGTH options are used, the l.ength specified must
equal the value received by the corresponding terminal control RECEIVE
command that includes the INTO and LENGTH options.

The data area into which the data is to be mapped can be specified in
the INTO option. Alternatively, BMS will supply a data area andpl.ace
its address in the pointer reference given in the SET option.

Data from certain logical units is not mapped, but is left unaltered.
Refer to the appropriate CICS/VS subsystem guide for details.

If neither the INTO option nor the SET option is specified, it is
assumed that the data is to be mapped into the data area defined by the
symbolic description map copied into the program. This can be
accomplished only if the map name provided is a literal constant. If it
is a variable, INTO or SET must be specified. If the data is to be
written into another data area, it must be named in the INTO option.
The data area narned must be large enough to accommodate the mapped data.

Once the data has been mapped, fields within the mapped data can be
referred to by the field names specified in the DFHMDF macro
instructions used to define the map with the additional suffix -1-.
~or example, a fie~d named PERSN must be referred to in the appl.ication

program as PERSNI.)

The data area into which the data is mapped must include a 12-byte
prefix for use by BMS. The appl.ication program must make provision for
this prefix only if a data description other than the BMS-supp1ied
symbol.ic description is used, or if TIOAPFX=YES is omitted from the
DFHMDI macro defining the map.

If the symbolic description is included in the l.inkage section of a
COBOL application program, the 12-byte prefix must not be overwritten.

If RECEIVE MAP commands are used to read data from a 3770 batch
logical unit, the FMHs will be removed. However, if an FMH is required,
a terminal control RECEIVE command should be incl.uded to deal with the
FMH, followed by a RECEIVE MAP command with the FROM option to map the
data.

Chapter 3.3. Basic Mapping Support (BMS) 253

Page of SC33-0077-2, revised September 1980 by TNL SN33~268

Map Output Data (SEND MAP)

SEND MAP (name)
FROM (da ta-area) [DATAONLY] I MAPONLY
[LENGTH (data-value)]
[MAPSET (name)]
[FMHPARM] LUs only
[REQID (name)]
[LDC (name)] LUs only
[CURSOR[(data-value)]]
[SET (pointer-ref) f PAGING TERM mAIl WAIT]]
[ACCUM]
[ERASE f ERASEAUP]
[PRINT]
[FREEKB]
[ALARM]
[FRSET]
[L40 I L64 I L80 I HONEOM]
[NLEOM]
[~~] ms~~

Exceptional conditions: IGREQCD, IGREQID, INVLDC, rNVMPSZ, INVREQ,
OVERFIDW, RETPAGE, TSIOERR, WRBRK

This coomand is used to map output data. Several successive SEND MAP
commands with the ACCOM option can be used to build a logical message,
which must be completed by a SEND PAGE command.

If the FROM option is omitted, it is assumed that the data to be
mapped is in the data area defined by the symbolic description map
copied into the program. This assumption is valid only if the map name
provided is a literal; if it is a variable, the FROM option must be
specified. If the data is to be obtained fram another data area, it
must be named in the FROM option; the LENGTH option is not required
unless the data to be mapped is less than the total length of the data
area named.

The data area specified by the FROM option must include a 12-byte
prefix for use by BMS. The application program must make provision for
this prefix only if a data description other than theBMS-supplied
symbolic description is used.

In the symbolic description map definition, the DFHMSD macro must
have the TIOAPFX=YES operand specified either explicitly or implicitly
by the appearance of the STORAGE=AUTO operand.

The mapped data can be transmitted to a terminal (specify the
TERMINAL or PAGING option) or made available to the application program
in its mapped fonn (specify the SET option). If none of. these options
is specified, TERMINAL is assumed. The WAIT option specifies that
control is not to be returned to the program until the operation is
completed.

The PAGING option causes the logical message to be placed in
temporary storage until it is requested by paging commands entered by
the terminal operator. The PAGING option oonflicts with the ~ST option
and is ignored.

If the disposition specified by the PAGING, SET, or TERMINAL option
is changed while a logical message is being built, the INVREQ condition
occurs.

254 CICS/VS APRM (CL)

The DATAONLY and MAPONLY options are used to specify that
application-program data only, or default data only, is to be written.
If both these options are omitted, data placed in the data area named in
the FROM option by the application program is merged with default data
from the map. The user-supplied data and/or attribute character (3270
only) supplied for a given field replaces the corresponding default data
and/or attribute character from the map. The MAPONLY and FROM options
are mutually exclusive. If the user-supplied data for a field is X'OO',
the data from the map for that field is used. If the user-supplied
attribute for a field is X'OO', the attribute from the map for that
field is used.

The mapped data is positioned oy BMS within an area large enough to
contain one page of output. The application program need not keep track
of when a page is full: a HANDLE CONDITION OVERFLOW command will cause
BMS to transfer control to an overflow routine.

The ERASE option should always be specified on the first SEND MAP
command to select the correct screensize for the application.

OVERFLOW PROCESSING

Overflow occurs when the number of lines in the requested map plus the
number of lines in the largest trailer map in the map set (if there are
any trailer maps) is greater than the number of lines remaining in the
page being built for the terminal involved in an output operation.

For logical units having LDC support, pages are accumulated
individually by LDC mnemonic. Therefore, overflow may occur at end of
page tor each different LDC mnemonic used in different BMS commands.
The LDC mnemonic is accessible to the application program from LDCMNEM,
and the LDC numeric value from LDCNUM. ASSIGN commands must be used to
determine the values of LDC~NEM and LDCNUM.

Overflow can occur on a logical message being built for routing. If
the route list contains more than one LDC mnemonic, the returned LDC
mnemonic and numeric value is the first LDC mnemonic resolved in the
route list. Refer to the section "Route a Logic~ Message (ROUTE)"
later in this chapter for details of route lists.

The routine to which control is transferred (specified in a HANDLE
CONDITION OVERFLOW command) must be in the application program, but no
special considerations apply. The data which was to have been mapped,
but which caused the overflow, is not mapped by BMS and remains
unaltered.

If a ROUTE command has not been issued previously, there is only one
destination. If a ROUTE comaand has been issued, the logical message is
probably being built for more than one destination. Since the
application program can build pages concurrently for terminals that have
different-sized output, overflow may occur at different times for
different ter~inal groups. The overflow routine gets control every time
anyone of t~e destinations or groups of destinations encounters an
overflow condition. The application program overflow routine must
determine uhich destination or group of destinations has encountered the
overflow.

Upon return to the application program from a ROUTE command, a count
of the number of destinations or groups of destinations can be
determined by means of the DESTCOUNT option of the ASSIGN command. This
count tells the application program how many overflow control areas (for
example, accumulators) are required.. Whenever the overflow routine gets

Chapter 3.3. Basic aapping Support (BaS) 255

control, DESTCOONT indicates the relative overflow control number of the
destination that has encountered the overflow. This number indicates
which control area should be output, perhaps through one or more trailer
maps.

In addition to the relative control count, BMS returns the current
page number for the destination that has encountered the overflow. This
page number can be determined by means ot the PAGENUa option of the
ASSIGN cOln.and.

The SEND MAP command is used to place trailer data on a page. The
macros used to format the data must contain TRAILER=YES so that the
amount of space on the page to reserve for overflow can be calculated.
More than one trailer map may be placed on a page. There should be a
dummy trailer map (not otherwise used) in the map set specifying the
number of lines to be reserved for trailer data if no single trailer map
extends over the total number of lines required for trailer data ~ee
Figure 3.3-2). ~aps used to map trailer data may contain JOSTIFY=LAST
to force their placement at the bottom of the page. An attempt to place
more lines of trailer data on the page than are available causes the
trailer data to be placed on a separate page by itself. Yet another
page is built to continue mapping with or without a header map.

r--,

r --, r= r
I TR2 t TRl
I ,
I TRl I TR3 ,..-----.
I I TR2 I TR3

-J I

No dummy trailer required. Dummy trailer required.

Figure 3.3-2. Trailer Maps in aapping Operations

The SEND MAP command is used also to process header data and place it
on a page. The maps used to map header data must specify JOSTIFY=FIRST
to complete processing of the previous page if that h~s not been done,
and to begin a new page. An attempt to place more header data on the
page than the page can contain causes multiple pages to be created.

If a header map is not used, JOSTIFY=FIRST must be specified for the
first map used after OVERFLOW is raised, if a line number is also
specified to force out the previous page. Failure to specify this will
cause OVERFLOW to be raised again immediately.

When all trailer and/or header data has been processed, the command
that caused the overflow must be reissued, since this data has not yet
been mapped for all destinations.

It is important to recognize that BMS maintains the overflow
environment for as long as the application program issues BMS commands
using maps defined as headers or trailers. The first use of a map that

256 CICS/VS APRM (eL)

is not defined as a header or trailer terminates overflow processing.
This coincides with reissuing the command that caused the overflow.

If an overflow routine has not been specified in a HANDLE OVERFLOW
command, no overflow occurs and new pages will be forced automatically.
If a header is to be placed on the first page and a trailer on the last,
the OVERFLOW condition would not be used.

An overview of overflow processing is given in Figure 3.3-3.

Chapter 3.3. Basic Kapping Support (B~S) 257

I
v

I Application program
r issues a SEND MAP
I comlland

-,

L ~

I
f
I
V

B~S processes the command

I ,
I ,

Yes

~------------------>

I

BMS has returned control I
to the application pro- I
gram and the SEND MAP t
command has been mapped I
for all destinations I L __________________________ ~

I
I
I
V

The application program
updates all overflow I
control areas to reflect I
the last SEND MAP com- I
mand (which mayor may I
not have caused over- t
flow) I

Figure 3.3-3. OVerflow Processing

258 CICS/VS APRM eeL)

OVERFLOW ROUTINE

1. Save sufficient in­
formation to be able
to reissue the command
that caused overflow.

2. Using the overflow
control number from
DESTCOUNT, determine
the appropriate control
area to map its contents
via SEND MAP commands
specifying trailer
map (s) •

3. The current page number
is available from
PAGENUM and could be
supplied with the data
to be mapped oy the
trailer map(s); and/or
this page number could
be incremented and sup­
plied with the data to
be mapped by header
map (s) •

4. Return to A and reissue
the SEND MAP command.

I ,
V

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Format Output Data Without Mapping (SEND TEXT)

SEND TEXT FROM (data-area)
LENGTH (data-value)
[FMHPARM] LUs only
[REQID (name)]
[LDC (name)] LUs only
[CURSOR (data-value)]
[SET (pointer-ref) ,PAGING TERMINAI{ WAIT]]
[HEADER (data-a re a)]
[TRAILER (data-area)]
[JUSTIFY (data-value) I JUSTFIRST I JUSTLAsr]]
[ACCUM , NOEDIT]
[ERASE]
[PRINT]
[FREEKB]
[ALARM]
[L40 I L64 I LBO I HONEOM]
[NLEOM]
[LAST] LUs only

Exceptional conditions: IGREQCD, IGREQID, INVLDC, INVREQ, RETPAGE,
TSIOERR, WRBRK

This conunand is used to format output data without mapping. Several
successive SEND TEXT commands with the ACCUM option can be used to build
a logical message, which must then be completed by a SEND PAGE command.
The beginning and ending of pages is handled by BMS and does not affect
the application program.

The data to be transmitted, specified by the FROM and LENGTH options,
can be sent to a terminal (speci fy the TERMINAL or PAGING option) or
made available to the application program in its formatted form (specify
the SET option). If none of these options is specified, TERMINAL is
assumed. The WAIT option specifies that cOntrol is not to be returned
to the program until the operation is completed.

The PAGING option causes the logical message to be placed in
temporary storage until it is requested by paging commands entered by
the terminal operator.

If the disposition specified by the PAGING, SET, or TERMINAL option
is changed while a logical message is being built, the INVREQ condition
occurs.

The options HEADER, TRAILER, JUST'IFY, JUSFIRST, and JUSIAST can be
used to edit the output pages. Any of .these options imply the ACCUM
option. .

The NOEDIT option allows the application program to control the
insertion of device-dependent control characters and the followinq notes
apply when it is omitted:

1. SEND TEXT formats data for each terminal so that outpl¢lines are
no longer than the line-length of the terminal as sPecified in the
TCT, and wherever possible the output line is broken at a blank
character. The user may force a new line ata particular point by'
inserti~g a new-line ~·15·) character in the data stream presented
to BMS via SEND TEXT.

Chapter 3.3. Basic Mapping Support (aMS) 259

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

2. For all terminal types, SEND TEXT interprets the data stream with
regard to the line-size of the terminal found in the TCT and any
embedded X' 1S' characters, and builds an internal representation of
the final appearance of the data on the terminal. Control
characters other than X 115 I are treated as normal character data,
and their presence may in certain cases disrupt the results of this
internal formatting process.

3. If the output terminal is a 3270 device and NLEOM is not specified,
SEND TEXT uses the line-length specified in the TCT to position the
data in the device buffer so that when displayed it will be in the
correct format. Hardware new-line characters are not used: instead
it is the position of the data in the buffer which determines the
output fonnat. Therefore if the actual 1ine-Iength of the terminal
differs from that specified in the TCT, the resulting output will
not be correctly formatted on the terminal.

For example, if the terminal is a 3270 printer with 132 print
positi.ons but a TCT line-length of 80, to get correct output format
without specifying NLEOM it is necessary to specify L80 in the wcc.

The formats of the header and trailer data are described below.

HEADER AND TRAILER FORMAT

The data areas named in the HEADER and TRAILER options have the
following format:

L L P C I PNFLD
L __ ~---------

where:

LL

P

C

<~--------------------DATA,----------------~----------~~

is a half word binary field containing the length of the header
or trailer data. (!'he value includes the two bytes for this
field.)

is a one-byte field whose contents indicate whether page
numbering is required or not. If the field contains a
character l other than a blank (XI 40 I) , page numbering is
required. The character specified is the character that is
eni:>edded in the header or trailer data in the positions (a
maximum of 5) where the page number is to appear. If the field
contains a blank, page numbering is not required.

(1 XIOC I ; XllSI, x1171' x,261, and XIFF' are reserved and
cannot be used) •

is a reserved one-byte field.

260 CICS/VS APRM (CL)

PNFLD

DATA

is the page number field. This field can be embedded anywhere
in the header or trailer data in the required page number
position. It can contain from one through five occurrences of
the character specified by P. These characters will be
replaced by the current page number, up to a maximum of 32,767,
as a page is built. A SEND PAGE command will causes the page
number to be r9set to 1.

is the header or trailer data to be placed at the beginning or
end of each page of output. Embedded new--line characters
(X'lS') may be used to provide multiple heading or footing
lines.

OUTPUT DATA WITH EXTBNDED ArrRIBUTES

When the data is destined for a device with extended attributes, set
attribute (SA) orders can be included also in the data stream. These
orders enable characters or words in the data stream to be modified by
the extended attributes. These orders will be ignored during
calculation of line lengths. Orders for extended attributes not
supported by a terminal will be removed from the data stream. If a
sequence of orders is less than three characters, or contains an invalid
attribute type, tne transaction will be terminated abnormally (ABMX).

Attributes will remain effective until overridden by subsequent
orders. If output exceeds a page, the attributes will apply for the
following page. However, in headers or trailers, the attributes will be
reset to their default values until changed by a new sequence of orders
within the header or trailer. On resumption of normal processing of
text after the header or trailer, the previous attributes will be
restored.

To aid the modification of characters or words, the follo~ing
symbolic names are available in DFaBMSCA (the standard attribute list) :
DFHSA, DFHCOLOR, DFHPS, DFHHLT, and DFHALL. (The standard list DF3BMSCA
is described in Chapter 3.2.) The following example shows PL/I
statements that will color a single word blue:

TEXTSTR 'data II IDFHSAIIDFHCOLORtlDFHBLUEl1 'blueword I
IIDFHSAIIDFHCOLORI IDFHDFCOLI I 'rest of data':

SEND TEXT FROK(TEXTSTR) LENGTH(100);

Chapter 3.3. Basic Mapping Support (BaS) 261

Complete and Transmit a Logical Message (SEND PAGE)

r---,
SEND PAGE [[TRANSID (name)] I RELEASE] I RETAIN]

[TRAILER (data-area)]
[FMHPAR~(name)] LUs only
[AUTOPAGE[CURRENT I ALL] I NOAUTOPAGE]
[OPBRPURGB]
[LAST] LUs only

Exceptional conditions: IGREQCD, IGREQID, INVREQ, RETPAGE,
TSIOERR, WRBRK

This command is used to complete and transmit a logical message built by
one or more SEND ~AP or SEND TEXT commands with the ACCU8 option.

Options can be included to specify how much control the terminal
operator should have over the disposition of the logical message
(AUTOPAGE and OPERPURGE), to determine whether control should return to
the application program after transmission of the logical message
(RELEASE and RETAIN), and to add trailer data to the logical message
(TRAILER). The format of the trailer data is described under "Format

Output Data Without Mapping (SEND TBXT) " earlier in this chapter.

If neither AUTOPAGE nor NOAUTOPAGE is specified, the paging status
specified for the terminal at system generation determines how pages are
to be written to the terminal. For logical units with LDC support,
paging status for each LDC is obtained from the system LDC table.

To ensure that a logical message appears at the receiving terminal
before any messages that may have been routed to it, or before other
transactions are initiated from the terminal, RELEASE should be
specified. Control then returns to an application program at the next
higher logical level or to CICS/VS; this action is as if a RETURN
program control command had been issued. When control returns to
CICSjVS, the TRANSID option specifies the transaction identifier for the
next application program to De associated with the terminal; the TRANSID
option has the same function and restrictions on its use as the TRANSID
option of the RETURN command. Refer to Chapter 4.4, "Program Control,"
for information about application program logical levels, the way in
which control returns through the levels, and the use of the TRANSID
option.

RETAIN is intended to be used for a combination of page display from
the page file (logical message built using PAGING) and operator data
entry. BMS issues an input request to the terminal after writing the
appropriate pages to the terminal. BMS issues the input request only if
the logical message is buiit with PAGING. If the logical message is
built without PAGING, BMS returns control to the application program
after the last page is written to the terminal, and without issuing an
input request to the terminal.

The operator may enter any page, purge, or copy commands that are
valid for the particular message. Any other entered data is passed back
to the application program after the current message is deleted.

If neither RETAIN nor RELEASE is specified and the logical message is
to be retrieved by terminal-operator requests (PAGING specified in the
SEND MAP or SEND TEXT command) , a new task is scheduled for writing
pages to the terminal. Control is returned to the application program
imaediately, rather than after the pages have been written. RETAIN and
RELEASE are ignored for routed messages.

262 CICS/VS APR!! (CL)

If an error occurs during the processing of a SEND PAGE command,
control is returned to the application program, and the RETAIN or
RELEASE specification is ignored. Th& logical message is not considered
complete. The application program should either retry the SEND PAGE
operation or delete the logical message.

Any logical aessage started but not completed when a SYNCPOINT
command is executed is forced to completion by an implied SEND PAGE
command.

Delete a Logical Message (PURGE MESSAGE)

r---,
I
I PURGE MESSAGE
I
I Exceptional condition: TSIOERR
I L ___ ~

This command is used to discontinue the building of a logical message.
The portions of the logical message already built in main storage or in
temporary storage are deleted.

Chapter 3.3. Basic "apping Support (B"S) 263

Route a Logical Message (ROUTE)

ROUTE [INTERVAL (hhmsss) I INTBRVAL(Ol I TIME (hhmmss)]
[ERRTBRft[(name)]]
[TITLE (data-area)]
[LIST (data-area)]
[OPCLASS (da ta-area)]
[REQID (name)]
[LDC (name)] (LUs only)
[NLEOft]

Exceptional conditions: INVERBTERM, INVLDC, RTEFAIL, RTESOME

This command is used to initiate the building of a logical message that
is to be scheduled for delivery to one or more terminals. It is
followed by the SEND MAP or SEND TEXT commands that format the data.

The options LIST and OPCLASS allow the designation of those terminals
or logical units, or particular operators, to which the logical message
is to be scheduled for delivery. Whether or not the logical message
will actually be delivered ~hat is, received at the terminal) depends
on many factors, such as availability of the terminal, or of a specific
operator, within a certain time after the logical message is ready to be
delivered.

The LIST option specifies a list of terminals and/or operators to
receive the routed logical message. If no list is provided, the logical
message will be scheduled for ~elivery to all terminals supported by BftS
(unless the OPCLASS option is specifiea and has some effect).

The OPCLASS option specifies the classes of operators to receive the
routed logical message. OPCLASS can be used alone, or in conjunction
with LIST.

The uses and format of the route list and of the information to be
provided in the OPCLASS option are described in the section "Route List
and Operator Class Codes (LIST and OPCLASS options)" later in this
chapter.

The logical message can be delivered at a specified time (TIME
option) or after a certain interval has elapsed (INTERVAL option); if
neither option is specified, or if INTERVAL(O) is specified, the logical
message will be delivered as soon as possible.

If a logical message is to be routed to more than one type of
terminal, BMS builds the message for each type. Each message is stored
on temporary storage until all terminals of the related terminal type
have received the message. If a terminal is scheduled to receive a
message but is not eligible, the message is stored until one of the
following conditions occurs:

• A change in terminal status ~llows the message to be sent.

• A period (specified at system generation) has elapsed, causing the
message to be deleted by BMS.

• The message is deleted by the destination terminal.

If a logical message is to be routed to terminals with alternate
screensize capabilities ~or example, the 3218), the choice of alternate
or default screensize is made depending on the SCRNSZE operand of the

264 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

DFHPCT TYPE=ENTRY system macro for the transaction issuing the ROUTE
command. (See the CICSIYS System Programmer·s Reference Manual.)

If a ROUTE command followed by one or more EMS output commands is not
terminated by a SEND PAGE command before a subsequent ROUTE command is
issued, the INVREQ exceptional condition occurs. A ROUTE command may be
issued immediately following another ROUTE command. In this case, the
first ROUTE conunand is nullified, and the second determines the routing
environment.

If a message cannot be delivered within a certain time, it will be
deleted (purged); the time is specified in the PRGDLAY (purge delay)
operand of the DFHSIT system macro. If the PRGDIAY operand is omitted,
undelivered messages await delivery indefinitely. If PRGDLAY is
specified, an error message is generated by CICS/VS whenever a message
becomes undeliverable. The error message will be sent to the terminal
associated with the task that is sending the message; alternatively, the
application program can specify a different terminal to receive such
error messages by using the ERRTERM option. In addition to sending an
error message; CICSjVS lets the master terminal operator know how many
undeliverable messages have been deleted for a destination.

In CICS/DOS/VS, there is a DL/I restriction that a single ROUTE
command cannot route a message to more than 40 terminals. The
restriction applie s when:

• DL/I logging to the CICS/VS system log (tape only) is being used

• BMS message recovery is required (that is, the route request
specifies a recoverable temporary storage prefix in the REQID
option, or the default prefix (**) is defined as recoverable.

To route a message to more than 40 terminals; more than one ROUTE
command must be used, each with a LIST option of no more than 40
entries.

The restriction arises because under CICS/DOS DL/I, the log buffer
size cannot exceed 1K bytes for tape files, and the limit of 40
terminals in a route list corresponds to a size of 1K bytes for the BMS
message control record which will be put on temporary storage and logged
to the same file if the temporary storage is recoverable.

DISPOSITION AND MESSAGE ROUTING

A logical messaqe can be built using either of two dispositions: PAGING
or SET. The first BMS output command following the ROUl'E command (with
some exceptions noted below) determines the disposition of the logical
message. Once established, the disposition remains unchanged until the
logical message is completed by a SEND PAGE command. An output request
specifying a disposition that is not in effect results in the INVREQ
condition.

PAGING is the normal disposition and results in the logical message
either being delivered or deleted. SET causes the logical message to be
returned to the application program which is then responsible for its
delivery.

Chapter 3.3. Basic Mapping Support ~M~ 265

INTERLEAVING CONVERSATION WITH MESSAGE ROt1l'ING

A task can converse with the tennlnal to which it is currently attached
while that it is building the logical message. The attached terminal is
known as the direct terminal; a terminal to which the message is to be
routed is known as a routing terminal. If any RECEIVE MAP (or RECEIVE)
commands are encountered while the message is being built, they are
processed as usual.

The following rules apply to a direct terminal:

• TERMINAL must be specified or implied in any output command that is
to go to the direct terminal.

• ACCUM options with a disposition of TERMINAL are invalid and result
in the INVREQ condition.

• The direct tennina1 may be included in the routing environment
without impairing the ability to converse with it while under
ROUl'E. __ Data routed to the direct terminal will be delivered as
though the ROUTE command had been issued from another terminal.

As an example, a list of abridged commands, in order of execution, is
gi ven in Figure 3.3-4. For each comnand I the action taken by BMS is
shown.

MESSAGE TITLE

The title named in the TITLE option is displayed with the logical
message identifier when the terminal paging query cormnand is entered
(see the CICSNS Operator's Guide). This title serves as an additional

message identifier, displayed upon request with the message identifier,
not on the logical message. The value in the two-byte length field
preceding the title includes the bytes used for the length field. The
length field and title, in total, may be up to 64 bytes long. For
example:

IX'OOlA l tMONTHLY)fINVENTOR~PORTI
, I

2-byte
length
field

24-byte
title field

ROUTE LIsr AND OPERATOR CLASS CODES (LIST AND OPCLASS OPTIONS)

The system programmer specifies the terminal or logical unit identifiers
for all the terminals of the CICS/VS system in the terminal control
table ('reT). (For logical units with LDC support, LDC mnemonics are
specified in the LDCtable.) Also, an operator identifier must be
specifi ed for each operator, arid up to 24 operator class codes (in the
range 1 through 24) can be specified for particular operators, using the
OPIDENT and OPCLASS operands, respect! vely, of the sign-on-table system
macro (DFBSNT TYPE=ENTRY). When an operator signs on at a terminal,
CICS/VS associates the operator and the optional class codes with that
termina I until the operator signs off again.

266 CICS/VS APRM (CL)

Page of SC33-0011-2, revised September 1980 by TNL SN33-6268

Conunand

SEND TEXT TERMINAL

ROUTE

SEND TEXT TERMINAL

RECEIVE MAP

SEND TEXT PAGING
ACCUM

SEND TEXT TERMINAL

SEND TEXT SET (A)

SEND TEXT PAGING
ACCOM

SEND MAP (Y) PAG ING
ACCUM

SEND MAP (Y) TERMINAL
ACCUM

SEND TEXT PAGING
ACCUM

SEND PAGE

SEND TEXT TERMINAL

Action Taken by BMS

Transmit to direct terminal.

Establish routing environment.

Transmit to direct terminal.

Receive from direct terminal.

First output conunand eligible for routing
establishes disposition of PAGING.

Transmit to direct terminal.

INVREQ - routed logical message has
already established a disposition of
PAGING.

Continue building routed logical message.

INVREQ - routed logical message cannot be
built with both SEND TEXT and SEND MAP
commands.

INVREQ - cannot issue SEND MAP ACCUM or
SEND TEXT ACCUM conunand to direct terminal
while building a routed logical message. f

continue building routed logical message.

Complete and transmit logical message and
terminate routing operation.

Transmit to direct terminal.
L __ ~

Figure 3.3-4. Interleaving Conversation with Message Routing

The application program can provide a route list in the LIST option
to specify which terminals, or logical units, or operators are to
receive the logical messageJ alternatively, or in addition, up to 24
operator class codes can be specified for use with a ROUTE operation, by
using the OPCLASS option.

Before a logical message is delivered, all of the following
conditions must be fulfilled:

• The terminal or logical unit must be supported by BMS and be
opera tional.

• The logical message must be ready for delivery ~IME or INTERVAL
options satisfied).

• The purge delay must not have expired.

Chapter 3 .3. Basic Mapping Support (BMS) 261

Whether or not a logical message will be delivered at a specific
terminal then depends on the use of the LIST and OPCLASS options, as
follows:

• LIST and OPCLASS are omitted. All terminals will receive the
message.

• LIsr is specified but OPCLASS is omitted. The route list can
contain three types of entry, each type having a different effect.
All three types of entry can be included in the same list. The
types of entry are:

Entries specifying a particular terminal (or 10gical unit)
identifier but no operator identifier. Each specified terminal
will receive the message.

Entries specifying a particular terminal (or 10gical unit)
identifier and an operator identifier. Each specified terminal
will receive the message if or when the specified operator is
signed on at the terminal.

Entries specifying only an operator identifier. Each specified
operator must be signed on at a term1nal supported by BMS when
the ROUTE command is issued; otherwise the route list entry for
that operator is ignored (skipped). CICS/VS wi11 then schedule
the message for deli very to each terminal at which a specified
operator is signed on. If a particular operator is signed on
at more than one terminal,CICSjVS will sChedule the message
for delivery to the one whose entry appears first in the
terminal control table. Each terminal for which the message is
scheduled will. then receive the message (when it is ready for
delivery) if the specified operator is still signed on at the
terminal or when the operator signs on again.

• LI sr is omitted but OPCLASS is specified.. CICSjVS will schedule
the message for delivery to all terminals at which an operator
having at least one of the specified operator class codes is signed
on when the ROUTE canmand is issued. Each terminal for which the
message is scheduled will then receive the message (When it is
ready for delivery) if or when an operator (not necessarily the
same one as before) having at least one of the-specified operator
class codes is signed on at the terminal.

• LIST and OPCLASS are both specified. The effect of the OPCLASS
specification for the different types of route list entries is as
follows:

Entries specifying no operator identifier. The effect is _ the
same as if only the OPCLASS option were specified, but is
restricted to those terminals (or logical units) specified in
the route list.

Entri.es specifying an operator identifier (and possibly a
terminal or logical unit identifier). The OPCLASS
specification is ignored for these route list entries, and the
effect is the same as if only the LIST option were specified.

268 CICS/VS APRM (cr.)

Page of SC33-0077-2, revised September 19S0 by TNL SN33-6268

Route List FODnat. The route list specified in the LIST option must
conform to a fixed format. The list consists of 16--byte. entries (with
contents as shown in the following table).. The end of the list is
designated by a binary halfword initialized to -1.

Bytes

0-3

4,5

6-8

9

10-15

Contents
I
I
I

--1
Terminal or logical unit identifier (four-characters,
including trailing blanks) , or blanks

LDC mnemonic (two-characters) for logical units with
support, or blanks

Operator identifier, or blanks

Status flag for the route entry

Reserved; must contain blanks

I
I
I
I

IDCI
I
I
I
I
I
I
I
I
I

The status flag byte indicates to the application program the status
of the destination when the ROUTE command is issued. Upon return, the
application program can investigate the status flag byte for each entry
and take appropriate action. The status flag byte settings and their
meanings are as follows:

L

Status Flag Byte Name

ENTRY SKIPPED

INVALID TERMINAL
IDENTIFIER

TERMINAL NOT SUPPORTED
UNDER BMS

OPERATOR NOT SIGNED ON

OPERATOR SIGNED ON AT
UNSO'PPORTED TERMINAL

INVALID LDC MNEMONIC

Assembler
language

X·SO·

X·q.O·

X·20·

X·l0·

X·OS-

X·04-

r-
I
I COBOL
I
r

12-O-1-S

no punches

11-0-1-8-9

12-11-1-8-9

12-8-9

12-4-9

PL/I

10000000

01000000

00100000

00010000

00001000

00000100

ENTRY SKIPPED
A route list entry was excluded. If an entry has been
excluded, another flag indicating why the entry was skipped may
be on in the status byte. This second flag could be any of the
other flags shown in the table. If the OPERATOR NOT SIGNED ON
flag is on, only an operator identifier was specified in the
route list entry and the specified operator was not signed on
at any terminal. If only the ENTRY SKIPPED flag is on, neither
a terminal identifier nor an operator identifier was specified
in the route list entry.

Cha pter 3.3. Basic Mapping Support (BMS) 269

INVALID TER.1\!INAL IDENTIFIER
indicates that the terminal identifier specified in the route
list entry does not have .a corresponding TCTTE in the terminal
control table. This entry is also flagged as ENTRY SKIPPED.

TERM:INAL Nor SUPPORTED UNDER BMS
indicates that the terminal identifier specified in the route
list entry is for a type of terminal that is not supported
under BMS; or the terminal table entry indicated that the
terminal was not eligible for routing. This entry is also
flagged as ENTRY SKIPPED.

OPERATOR NOT SIGNED ON
indicates that the specified operator is not signed on. Any
one of the following conditions causes this flag to be set:

• Both an operator identifier and a terminal identifier were
specified, and the specified operator was not signed on at
the terminal. This entry is not skipped.

• An operator identifier was specified without a terminal
identifier, and the operator was not signed on at any
terminal. This entry is also flagged as ENTRY SKIPPED.

• The OPCLASS option was specified with the ROUTE command and
a terminal identifier was specified in the route list
entry, but the operator signed on at the terminal did not
have any of the specified operator classes. This entry is
not skipped.

OPERATOR SIGNED ON AT UNSUPPORTED TERMINAL
indicates that only an operator identifier was specified in the
route list entry, and that operator was signed on a terminal
not supported by BMS. This entry is also flagged as ENTRY
SRIPPED. The unsupported terminal identifier is returned in
that route list entry atURLTRMID, defined in DFHURIDS
(described below) •

INVALID LDC MNEMONIC
indicates that one of the following situations exists:

• The LDC mnemonic specified in the route list does not
appear in the LDC list associated with the TCT.

• The device type generated in the system LDC table for the
specified or implied LDC mnemonic is not the same a s the
device type for the first LDC specified in the route
environment.

A symbolic storage definition of the user-supplied route list is
available in the source library (or libraries) under the member name
DFHURLDS. This definition can be used as an aid :in building the route
list, and if necessary, in testing the status flag byte for each entry
upon return from a ROUTE command that refers to a list.

270 CICS/VS APRM (CL)

The list can be supplied in noncontiguous areas ca11ed segments, in
which case every segment except the 1ast is terminated with (at 1east)
an eight-byte entry with contents as shown in the fo11owing table. The
last segment ends with a binary halfword initia1ized to -1.

Bytes

0,1

2,3

4-7

Contents

Assemb1er 1anguage: binary halfword initia1ized to -2
COBOL: PIC 89 (4) COMP VALUE -2
PL/I: DCL FIXED BIN (15) I NIT (-2)

Reserved

Chain address to the first entry of the next segment

Chapter 3.3. Basic Mapping Support (BMS) 271

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Basic Mapping Support Options

ACCUM

ALARM

ALL

ASIS

AUTOPAGE

CURRENT

specifies that this command is one of a number of commands that
are used to build a logical message. The logical message is
completed by a SEND PAGE command. This option is mutually
exclusive with NOEDIT.

specifies that the 3270 audible alarm feature is to be
activated. For logical units supporting FMHs (except
interact~ve and batch logical units) , ALARM signals BMS to set
the alarm flag in the FMH.

specifies that if the ATTN key on a 2741 is pressed while data
is being sent to the terminal. and the WRBRK condition is not
active, transmission of the current page is to cease and no
additional pages are to be transmitted. The logical message is
deleted.

specifies that the specification FEATURE=UCTRAN in the terminal
control table for the terminal is to be overridden. Lowercase
characters in the data stream are not translated to uppercase.

specifies that each page of the logical message is to be sent
to the terminal as soon as it is available. If paging upon
request is specified for the terminal at system generation,
AUTOPAGE overrides it for this logical message.

AUTOPAGE is assumed for 3270 printers; it does not apply to
3270 display terminals. If neither AUTOPAGE nor NOAUTOPAGE is
specified, the terminal has the paging status specified for it
at CICS/VS system generation.

specifies that if the ATTN key on a 2741 is pressed while data
is being sent to the terminal and the WRBRK condition is not
active, transmission of the current page is to cease and
transmission of the next page (if any) is to begin.

CURSOR[(data-value)]
specifies the position to which the 3270 or 3604 cursor is to
be returned upon completion of a send operation.

The data value must be a halfword binary value that specifies
the cursor position relative to zero; the range of values that
can be specified depends on the size of the screen beingus-ed.
If no data value is specified, symbolic cursor positioning
(described earlier in the chapter) is assumed.

272 CICS/VS APRM (CL)

DATAONLY

ERASE

ERASEAUP

This option overrides the IC option of the ATTRB operand of the
DFHMDF macro instruction, if it is specified in a command that
completes a page-building operation and thus causes a send
operation. Previous specifications of the IC option and of the
CURSOR option for the other maps making up the page are
ignored.

specifies that only application-program data is to be written.
The attribute characters (3270 only) must be specified for each
field in the supplied data. If the attribute byte in the user­
supplied data is set to X'OO-, the attribute byte on the screen
will be unchanged. Any default data or attributes from the map
are ignored.

specifies that the screen is to be erased and the cursor
returned to the upper left corner of the screen before this
page of output is displayed. (This option applies only to the
3270 and to the 3604 Keyboard Display.) The first output
operation in any transaction, or in a series of pseudo­
conversational transactions, should always specify ERASE. For
transactions attached to 3278 screens, this will also ensure
that the correct screen size is selected, as defined for the
transaction in the PCT.

specifies that before this page of output is displayed, all
unprotected character locations are to be erased. ~his option
applies only to the 3270.)

BRRTERM[(name)]
specifies the name of the terminal to be notified if the
message is deleted because it is undeliverable. The message
number, title identification, and destination are indicated.
If no name is specified, the originating terminal is assumed.

This option is operative only if the PRGDLAY operand has been
specified in the DFHSG PROGRA!=SaS system macro.

FMHPARM (name)

PREEKB

specifies the name (1 through 8 characters) of the outboard map
to be used. (This option applies only to 3650 logical units
with outboard formatting.)

specifies that the 3270 keyboard should be unlocked after the
data is written. If FREEKB is omitted, the keyboard remains
locked.

Chapter 3.3. Basic Mapping Support (BMS) 273

FROft(data-area)

FRSET

specifies the data area containing the data to be mapped by a
SEND ~AP or RECEIVE KAP command.

If the data area provided in a SEND ~AP command has not been
generated by the BMS map definition process, it must start with
a 12-byte TIOA prefix. If FROft is specified, the ~APONLY
option must not be specified. If FRO~ is omitted from a SEND
MAP com.and, and the map name is a literal constant, the name
of the data area is assumed to be the map name with the
addition of the suffix "0".

The data area provided in a RECEIVE KAP command should not
include a TIOA prefix.

specifies that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to the not­
modified condition ~hat is, field reset) before any map data
is written to the buffer.

This allovs the ATTRB operand of the DFHMDF macro for the
requested map to control the final status of fields written or
rewritten in response to a BMS command.

HEADER (data-value)

HONEO~

specifies the header data to be placed at the beginning of each
page. The format of the header is described under "Format
Output Data without Mapping (SEND TEXT)" earlier in this
chapter.

specifies that the default printer line length is to be used.
This length should be the same as that specified in the PGESIZE
operand of the DFHTCT TYPE=TERMINAL system macro, otherwise the
data may not format correctly.

INTERVAL(hhmms~
specifies the interval of time after which the data is to be
transmitted to the terminals specified in the ROUTE command.

INTO (data-area)
specifies the data area into which the mapped data is to be
written. If neither INTO nor SET is specified and the map name
is a literal constant, the na.e of the data area is assumed to
be the map name with the addition of the suffix "I". If the
data area has not been generated by the BMS map definition
process, it must start with a 12-byte TIOA prefix.

JUSTIFY (data-value)
specifies the line of the page at which the data is to be
positioned. The data value must be a ha1fword binary value in
the range 1 through 240. Although they may not be specified as
constants, the special values -1 and -2 can be supplied
dynamically to signify JUSFIRST or JUSLAST, respectively.

274 CICS/VS APRM (CL)

JUSFIRST

JUSLAST

LAST

LDC (name)

specifies that the data is to be placed at the top of the page.
Any partially formatted page from previous requests is
considered to be complete. If the BEADER option is specified,
the header precedes the data. See also the description of the
JUSTIFY option.

specifies that the data is to be positioned at the bottom of
the page. The page is considered to be complete after the
request has been processed. If the TRAILER option is
specified, the trailer follows the data. See also the
description of the JUSTIFY option.

specifies that this is the last output operation for a
transaction and, therefore, the end of a bracket. If the
RELEASE option is specified, LAST is assumed unless the SEND
PAGE command is terminating a routing operation. (This option
applies to logical units only.)

specifies a two-character mnemonic to be used to determine the
logical device code (LOC) to be transmitted in the Faa to the
logical unit. The mnemonic represents an LDC entry specified
in the DFHTCT TYPE=LDC system macro.

When an LDC is specified, B~S uses the device type, the page
size, and the page status associated with the LDC mnemonic to
format the message. These values are taken from the extended
local LDC table for the LU, if it has one. If the LU has only
a local (unextended) LDC table, the values are taken from the
system LDC table. The numeric value of the LDC is obtained
from the local LDC table, unless this is an unextended table
and the value is not specified, in which case it is taken from
the system table.

If the LOC option of a SEND MAP or ROUTE command is omitted,
the LDe mnemonic specified in the DFHMSD macro is used. If the
LOC option has also been omitted from the DFHMSD macro, the
action depends on the type of logical unit, as follows:

3601 LU - the first entry in the local or extended local
LDC table is used, if there is one. If a default cannot be
obtained in this way, a null LDC numeric value (X'OO') is
used. The page size used is the value that is specified in
the DFHTCT TYPE=TERMINAL system macro, or (1,40) if such a
value is not specified.

LUTYPE4 LU, batch LU, or batch data interchange LU - the
local LDC table is not used to supply a default LDC;
instead, the message is directed to the LU console (that
is, to any medium that the LU elects to receive such
messages. For a batch data interchange LU, this does not
imply sending an LDC in an FMH). The page size is obtained
in the manner described for the 3601 LO.

For message routing, the LDC option of the ROUTE command takes
precedence over all other sources. If this option is omitted
and a route list is specified (LIST option), the LDC mnemonic
in the route list is used; if the route list contains no LDe

Chapter 3.3. Basic Mapping Support (BMS) 275

mnemonic, or no route list is specified, a default LDC is
chosen as described above.

LENGTH (data-value)
specifies the length of the data to be formatted as a halfword
binary value.

LIST~ata-area)

L40

L64

L80

MAP (name)

M1PONLY

specifies the data area that contains a list of terminals
and/or operators to which data is to be directed. If this
option is omitted, all terminals supported by BKS receive the
data (unless the OPCL1SS option has some effect). The format
of the list is described under "Routing aessages (ROUTE)"
earlier in this chapter.

specifies the line length for a 3270 printer; a carrier return
and line feed are forced after 40 characters have been printed
on a line.

specifies the line length for a 3270 printer; a carrier return
and line feed ate forced after 64 characters have been printed
on a line.

specifies the line length for a 3270 printer; a carrier return
and line feed are forced after 80 characters have been printed
on a line.

specifies the name (1 through 7 characters) of the map to be
used.

specifies that only default data from the map is to be written.
If this option is specified, the FROM option must not be
specified.

MAPSET(name)
specifies the name (1
be used. The map set
library, and an entry
program table ~PT).
the name given in the
map set.

through 7 characters) of the map set to
must reside in the CICS/VS program
for it mast exist in the processing
If the MAPSET option is not specified,
MAP option is assumed to be that of the

This option should be used always unless a reference is made to
pre-iS BMS maps, which were loaded one at a time, rather than
as a set, and whose names were not extended by a terminal-type
suffix.

276 CICS/VS APRM ~L)

NLEOM

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

specifies that data for a 3270 printer or a 3215 di~lay with
the printer adapter feature should be built with new-line (NL)
characters, and that an end-of-message (El'4) character should be
placed at the end of the data. As the data is printed, each NL
character causes printing to continue on the next line, and the
EM character terminates printing.

This option must be specified in the first SEND MAP or SEND
TEXT command used to build a logical message, and in the ROUTE
command if the message is to be routed. The option is ignored
if the device receiving the message ~irect or routed) is not
one of those noted above.

If this option is used, buffer updating and attribute
modification of fields previously written into the buffer are
not allowed. CICS/VS includes the ERASE option with every
write to the terminal.

The NL character occupies a buffer position. A number of
buffer positions, equivalent to the value of the PGESIZE
operand of the DFHTCT system macro for that terminal, is
unavailable for data. This may cause data to wrap around in
the buffer; if this occurs, the PGESIZE value must be reduced.

NOAUTOPAGE

NOEDIT

specifies that pages are to be sent one at a time to the
termina 1. BMS sends the first page to the terminal when the
terminal becomes available or upon request of the operator.
Subsequent pages are sent to the terminal in response to
requests from the terminal operator. ~efer to the CICS/VS
Operator- s Guide.)

If automatic paging is specified for the terminal at system
generation, NOAUTOPAGE overrides it for this logical message.
For logical units, NOAUTOPAGE applies to all LDC page sets
accumulated within the logical message.

NOAUTOPAGE does not apply to 3270 printers.

specifies that the application program, as opposed to CICS/VS,
controls the insertion of device-dependent control Characters
(carrier return, line feed, idle, and so on) into the output

data stream. This option is mutually exclusive with ACCUM.
This option cannot be used with 3601 devices.

OPCLASS (da ta-area)
specifies the data area that contains a list of operator
classes to which the data is to be routed. The classes are
supplied in a three-byte field, each bit position corresponding
to one of the codes in the range 1 through 24 but in reverse
order, that is, the first byte corresponds to codes 24 through
17, the second byte to codes 16 through 9, and the third byte
to codes 8 through 1.

OPERPURGE
specifies that CICS/VS is to delete the message only when the
terminal operator requests deletion. If the option is omitted,
CICS/VS deletes the message if the operator enters a
transaction that is not a paging command.

Chapter 3.3. Basic Mapping Support (BMS) 277

PAGIR3

PRINT

RELEASE

specifies that the output data is not to be sent Lmffiediately to
the terminal, but is to be placed in temporary storage and
displayed in response to paging commands entered by the
terminal operator.

If PAGING is specified with a REQID that is defined in the
temporary storage table (TST), CICS/VSprovides message

. recovery for logical messages if the task has reached logical
end.

specifies that a print operation is to be started at a 3210
printer or at a 3215 with the printer adapter feature, or that
data on an LUTYPE2 (3214/16 or 3190) is to be printed on a
printer allocated by the controller. If this option is
omitted, the data is sent to the printer buffer but is not
printed.

specifies that control is to be returned to the program at the
next higher logical level, or to CICS/VS ~f the issuing
program is at the highest logical level) , after the pages have
been written to the terminal. For more details of the effect
of this option; refer to the description of the SEND PAGE
command earlier in the chapter.

REQID (name)

RETAIN

specifies a two-character prefix to be used as part of a
temporary storage identifier forCICSjVS message recovery.
Only one prefix can be specified for each logical message. The
default prefix is **.

BMS message recovery is provided for a logical message only if
the PAGING option is specified in the BMS output command and if
the logical end of task has been reached.

specifies that ex>ntrol is to be returned to the application
'program after the pages have been written to the terminal. For
more details of the effect of this option, refer to the
description of the SEND PAGE command earlier in the chapter.

278 ctCS/VS APRM (CL)

SET (pointer-ref)

TERMINAL

specifies the pointer that is to be set to the address of the
input or output data.

For input, the pointer is set to the address of the mapped
data.

For output, the SET option specifies that the completed pages
are to be returned to the application program. The pointer is
set to the address of a list of completed pages. For the
format of the list, refer to "Output Requests with the SET
Option" earlier in this chapter.

The application program regains control either imaediately
following the BMS com.and (if the current page is not yet
completed), or at an alternative entry point specified through
a HANDLE CONDITION RETPAGE command (if one or more pages have
been compl eted) •

In assembler language, if the RETPAGE condition occurs, the
register specified will not have been set but can be loaded
from DFBEITP1.

specifies that input data is to be read from the terminal that
originated the transaction, or that output data is to be sent
to that terminal when the page is completed.

TIME (hhmmss)
specifies the time of day at which data is to be transmitted to
the terminals specified in the ROUTE command.

TITLE (data-area)
specifies the data area that contains the title to be used with
the logical message. For the format of the title, refer to
"Routing Messages (ROUTE)" earlier in this chapter.

TRAILER (data-area)
specifies the data area that contains trailer data to be placed
at the bottom of each output page (with a SEND TEXT command) or
at the bottom of the last page only (with a SEND PAGE command).
For the format of the trailer data, refer to "Formatting Output
Data Without aapping (SEND TEXT)" earlier in this chapter.

TRANSID (name)
specifies the transaction identifier to be used with the next
input message from the terminal to which the task is attached.
The identifier can consist of up to four alphameric characters;
it must have been defined in the program control table (PCT).
TRANSID is valid only if RELEASE is specified.

If this option is specified in a program that is not at the
highest logical level, the specified transaction identifier
will be used only if a new transaction identifier is not
provided in another SEND PAGE command (or in a RETURN program
control command) issued in a program at a higher logical level.

Chapter 3.3. Basic Mapping Support (BMS) 279

WAIT
specifies that control should not be returned to the
application program until the output operation has been
completed.

If WAIT is not specified, control will return to the
application program once the output operation has started. 1
subsequent input or output command (terminal control, BKS, or
batch data interchange) will cause the application program to
wait until the previous command has been completed.

280 CICS/VS APRM (eL)

Basic Mapping Support Exceptional Conditions

Some of the following exceptional conditions may occur in combination
with others. CICS/VS checks for these conditions in the following
order: TSIOERR, IHVREQ, RETPAGE, MAPFAIL, RTEFAIL, INVERRTERM, INVMPSZ.
If more than one of these conditions occurs, only the first one found to
be present is passed to the application program.

EOC

EODS

IGREQCD

IGREQID

occurs if the request/response unit (RU) is received with the
end-of-chain (EOC) indicator set. It applies only to logical
units.

Default action: ignore the condition.

occurs if no data is received (only an FMR). It applies only
to 3110 batch logical units and to 3110 and 3790 batch data
interchange logical units.

Default action: terminate the task abnormally.

occurs when an attempt is made to execute a SEND MAP, SEND
PAGE, or SEND TEXT command after a SIGNAL data-flow control
command with an RCD (request change direction) code has been
received from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

occurs if the prefix specified in the REQID option is different
from that established by a previous REQID option or by default
for this logical message.

Default action: terminate the task abnormally.

INVERRTERrt

INVLDC

INVMPSZ

occurs if the terminal identifier specified in the ERRTERM
option of a ROUTE command is invalid or is assigned to a type
of terminal not supported by BMS.

Default action: terminate the task abnormally.

occurs if the specified LDC mnemonic is not included in the LDC
list for the logical unit.

Default action: terminate the task abnormally.

occurs .if the specified map is too wide for the terminal, or if
a HANDLE CONDITION OVERFLOW command is active and the specified
map is too long for the terminal.

Default action: terminate the task abnormally.

Chapter 3.3. Basic ~apping Support tBMS) 281

INVREQ

KAPFAIL

OVERFLOW

RDATT

RETPAGE

RTEFAIL

occurs if a request for B~S services is invalid for any of the
following reasons:

• The disposition of a routed message is changed prior to its
completion by a SEND PAGE command.

• A separate SEND TEXT ACCU" or SEND MAP ACCDS command is
issued to the terminal that originated the transaction
while a routed logical message is being built.

• The TRAILER option is specified in a SEND PAGE command when
terminating a logical message built with SEND MAP commands.

• An output mapping comaand is issued for a map without field
specifications by specifying the FROM option without the
DATAONLY option.

Default action: terminate the task abnormally.

occurs if the data to be mapped has a length of zero or does
not contain a set-buffer-address (SBA) sequence. It applies
only to 3270 devices. The receiving data are.a will contain the
unmapped input data stream.

Default action: terminate the task abnormally.

occurs if the mapped data does not fit on the current page.

Default action: ignore the condition.

occurs if a RECEIVE MAP command is terminated by the operator
using the ATTN key rather than the RETURN key. It applies only
to the 2741 Communications Terminal, and only if 2741 read
attention support has been generated for CICS/VS.

Default action: ignore the condition.

occurs if the SET option is specified and one or more completed
pages are ready for return to the application program.

In asse&bler language, the register specified will not have
been set but can be loaded from DFHEITP1.

Default action: return to the application program at the point
imaediately following the BMS com.and.

occurs if a ROUTE command would result in the message being
sent only to the terminal that initiated the transaction.

Default action: return to the application program at the point
immediately following the ROUTE command.

282 CICS/VS APRM (CL)

RTESOME

TSIOERR

WRBRK

occurs if any of the terminals specified by options of a ROUTE
command will not receive the message.

Default action: return control to the application program at
the point immediately following the ROUTE command.

occurs if there is an unrecoverable temporary storage
input/output error.

Default action: terminate the task abnormally.

occurs if a SEND command is interrupted by the terminal
operator pressing the ATTN key. It applies only to the 2741
Communication Terminal under OS/VS, and only if write break
support has been generated for CICS/VS.

Default action: ignore the condition.

Chapter 3.3. Basic Mapping Support (BMS) 283

Chapter 3.4. Batch Data Interchange

The CICS/VS batch data interchange program provides for comaunication
between an application program and a named data set (or destination)
that is part of a batch data interchange logical unit in an outboard
controller, or with a selected medium on a batch logical unit or an
LUTYPE4 logical unit.

Th~ term "outboard controller" is a generalized reference to a
programmable subsystem, such as the IBM 3770 Data Comaunication System
or the IBM 3790 Data Communication System, which uses SRA protocols.
(Details of SRA protocols and the data sets that can be used are given
in the publications CICSIVS IBM 3767. 3770. and 6670 Guide and £IC~~
IBM 3790 Guide.)

Batch data interchange commands' are provided to:

• Interrogate a data set (ISSUE QUERY) •

• Read a record from a data set or read data from an input medium
(ISSUE RECEIVE) •

• Add a record to a data se~ (ISSUE ADD).

• Update (replace) a record in a data set (ISSUE REPLACE).

• Delete a record in a data set (ISSUE ERASE).

• Terminate processing of a data set (ISSUE END) •

• Terminate processing of a data set abnormally ~SSUE ABORT).

• Request the next record number in a data set (ISSUE NOTE) •

• wait for an operation to be completed (ISSUE WAIT) •

• Transmit data to a named data set or to a selected medium (ISSUE
SEND) •

Where the controller is an LUTYPE4 logical unit, only the ISSUE
ABORT, ISSUE END, ISSUE RECEIVE, ISSUE SEND, and ISSUE WAIT commands can
be used.

The HANDLE CONDITION command is used to deal with any exceptional
conditions that occur during execution of a batch data interchange
command. Refer to Chapter 1.5 for further information about exceptional
conditions.

Chapter 3.4. Batch Data Interchange 285

DESTINATION SELECTION AND IDENTIFICATION

All batch data interchange commands except ISSUE RECEIVE include options
that specify the destination. This is either a named data set in a
batch data interchange logical unit, or a selected medium in a batch
logical unit or LUTYPE4 logical unit.

selection~~ed_~gta_2et: The DESTID and DESTIDLENG options must
always be specified, to supply the data set name and its length (up to a
maximum of eight characters). For destinations having diskettes, the
VOLUME and VOLUMELENG options may be specified, to supply a volume name
and its length (up to a maximum of six characters); the volume name
identifies the diskette that contains the data set to be used in the
operation. If the VOLUME option is not specified for a multi-diskette
destination, all diskettes are searched until the required data set is
found.

Selection by Medium: As an alternative to naming a data set as the
destination, various media can be specified by means of the CONSOLE,
PRINT, CARD, or WPMEDIll-4 options. These media can be specified only
in an ISSUE ABORT, ISSUE END, ISSUE SEND, or ISSUE WAIT command.

DEFINITE-RESPONSE

CICSjVS uses terminal control commands to carry out the functions
specified in batch data interchange com.ands. For those commands that
cause terminal control output requests to be made, the DEFRESP option
can be specified. This option has the same effect as the DEFRESP option
of the SEND terminal control command; that is, to request a definite
response from the outboard controller, irrespective of the specification
of message integrity for the CICS/VS task (by the system programmer).
The DBFRESP option can be specified for the ISSUE ADD, ISSUE ERASE,
ISSUE REPLACE, and ISSUE SEND commands.

WAITING FOR FUNCTION COMPLETION

For those batch data interchange com.ands that cause terminal control
output requests to be made, the HOWAIT option can be specified also.
This option has the effect of allowing CICSjVS task processing to
continue; unless the option is specified, task activity is suspended
until the natch data interchange command is completed. The SOWAIT
option can be specified for the ISSUE ADD, ISSUE ERASE, ISSUE REPLACE,
and ISSUE SEND commands.

After a batch data interchange command with the NOWAIT option has
been issued, task activity can be suspended, by the ISSUE WAIT command,
at a suitable point in the program to wait for the command to be
completed.

286 CICS/VS APRM (CL)

Interrogate a Data Set (ISSUE QUERY)

I

I
I ISSUE QUERY DESTID(data-value)
I DESTIDLENG(data-value)
I [VOLUME(data-value) VOLUMELENG(data-value)]
I
I Exceptional conditions: FUNCERR, SELNERR, UNEXPIN
I L ___ ~

This command is used to request that a sequential data set in an
outboard controller be transmitted to the host system. The application
prograa should either follow this command with ISSUE RECEIVE comaands to
obtain the resulting inbound data, or terminate the transaction to allow
CICSjVS to start a new transaction to process the data.

Read a Record From a Data Set (ISSUE RECEIVE)

ISSUE RECEIVE {SET (pointer-ref) I INTO (data-area) }
LENGTH (data-area)

I
I
I
I

Exceptional conditions: DSSTAT, EODS, LENGERR, NODATARECD, UNEXPINI
I
•

This command is used to read a record from an outboard controller. The
INTO option specifies the area into which the data is to be placed. The
LENGTH option must include a data area that contains the maximua length
of record that the program will accept. If the record length exceeds
the specified maximum length, the record is truncated and the lENGERR
condition occurs. After the retrieval operation, the data area
specified in the LENGTH operand is set to the record length (before any
truncation occurred) •

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area of sufficient size to hold the
record and sets toe pointer reference to the address of that area.
After the retrieval operation, the data area specified in the LENGTH
option is set to the record length.

The outboard controller might not send the data from the data set
specified in the ISSUE QUERY command. An ASSIGN command must be used to
obtain the value of DESTID, which identifies the data set that has
actually been transmitted; also the value of DESTIDLENG, which is the
length of the identifier in DESTID.

Chapter 3.4. Batch Data Interchange 281

Add a Record to a Data Set (ISSUE ADD)

ISSUE ADD DESTID(data-value)
DESTIDLENG(data-value)
[VOLUME(data-value) VOLUMELENG(data-value)]
FROM (da ta-area)
lENGTH (data-value)
[NUJ:l!REC (data-value)]
[DEFRESP]
[NOWAIT]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

This command is used to add records to a sequential or keyed direct data
set in an outboard controller. The FROM option is used to specify the
data to be written, and the LENGTH option specifies its length.

The RIDFLD option is not needed with this com.and; the key is
embedded in the data.

Update a Record in a Data Set (ISSUE REPLACE)

ISSUE REPLACE DESTID(data-value)
DESTIDLEBG(data-value)
[VOLUME1data-value) VOLU!ELENG(data-value»)
FROM (data-area)
LENGTH (data-value)
RIDFLD (data-area)
[DEFRESP]
[NOWAIT]
[KEYLENGTH(data-value) I RRB]
[NUMREC(data-value)]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

This command is used to replace (update) a record in either a relative
(addressed direct) or an indexed (keyed direct) data set in an outboard
controller.

The FROM option is used to specify the data to be written to the data
set and the LENGTH option specifies the length of the data.

The RIDFLD option specifies the relative record number of the first
record to be replaced for a relative data set, or the embedded key in
the data specified by the FROM option for an indexed data set.

For a relative data set, the RRN option must be specified since the
RIDFLD option contains a relative record number. In addition, the
NU~REC option must specify the number of records to be replaced
consecutively, starting with the one specified in RIDFLD.

For an indexed data set, the RIDFLD option specifies the key embedded
in the data specified in the FROM option. In addition, the KEYlENGTH
option must specify the length of the key. The NUMREC option cannot be
specified since only one record is replaced.

288 C ICS/VS APRM (el)

Delete a Record from a Data Set (ISSUE ERASE)

r--,
I
, ISSUE ERASE DESTID(data-value)
I DESTIDLENG~ata-value)
I [VOLUME (data-value) VOLUMELENG(data-value)]
I RIDFLD@ata-area)
I [KEYLENGTH(data-value) I RRN)
I [HUMREC (data-value)]
I [DEFRESP]
I [NOWAIT]
I
I Exceptional conditions: FUNCERR, SELNERR, UNEXPIN
I L __ ~

This command is used to delete a record from a keyed direct data set in
an outboard controller. The RIDFLD option specifies the key of the
record to be deleted; the length of the key must be specified in the
KEYLENGTH option.

Terminate Processing of a Data Set (ISSUE END)

ISSUE END [DESTID(data-value) DESTIDLENG(data-value) 1
[VOLUME ~ata-value) VOLUMELENG(data-value)]
[SUSADDR (data-value)]
[CONSOLEIPRINTICARDIWP~EDIA1IWPMEDIA21

WPMEDIA3IWPMEDIA4]

Exceptional conditions: FUNCERR, SEL~ERR, UNEXPIN

This command is used to terminate communication with a data set in an
outboard controller or with the selected medium. The data set specified
in the DESTID option, or the selected medium, is de-selected normally.
The options CONSOLE, PRINT, CARD, WP~EDIAl-4 are alternatives to DESTID
and DESTIDLENG.

Terminate Processing of a Data Set Abnormally (ISSUE ABORT)

ISSUE ABORT [DESTID(data-value) DESTIDLENG(data-value)]
[VOLUME (data-value) VOLUMELENG(data-value)]
[SUSADDR (da ta-value)]
[~QNSOLEIPRINTICARDIWPKEDIA1IWPKEDIA21

WPMEDIA31 WPMEDIA4]

Exceptional conditions: FUNCERR, SELNERR, UNEXPIN

This command is used to terminate communication with a data set in an
outboard controller, or with the selected medium, abnormally. The data
set specified in the DESTID option is de-selected abnormally. The
options CONSOLE, PRINT, CARD, WPMEDIAl-4 are alternatives to DESTID and
DESTIDLENG.

Chapter 3.4. Batch Data Interchange 289

Transmit Data to an Output Device (ISSUE SEND)

ISSUE SEND (DESTID(data-value) DESTIDLENG(data-value)]
(VOLUME (data-value) VOLUMELENG(data-value)]
FROM (data-area)
LENGTH (data-value)
[SUBADDR (data-value)]
(CONSOLEIPRINTICARDIWPMEDIA1IWPMEDIA21

WPMEDIA31WPMEDIA4]
[NOW1IT]
[DEFRESP]

Exceptional conditions: FURCERR, IGREQCD, SELNERR, UNEIPIN

This command is used to transmit data to a named data set in an outboard
controller, or to a selected medium in a batch logical unit or an
LUTYPE4 logical unit. The options CONSOLE, PRINT, CARD, WPMEDI11-4 are
alternatives to DESTID and DESTIDLENG.

Request Next Record Number (ISSUE NOTE)

r--------·---,
I
I ISSUE NOTE DESTID(data-value)
I DESTIDLENG~ata-value)
I [VOLUME (data-value) VOLUMELENG (data-value)]
I RIDFLD(data-area)
I [RRN]
I
I ~xceptional conditions: FURCERR, SELNERR, UNBXPIN
I
L

This command is used to find the relative record number of the next
record in an addressed direct data set. The number is returned in the
data area specified in the RIDFLD option. The RRN option must be
specified, because a relative record number is involved.

Wait for an Operation to be Completed (ISSUE WAIT)

ISSUE WAIT [DESTID(data-value) DESTIDLENG(data-value)]
[VOLUME (data-val ue) VOLUMELENG (data-value)]
(SUBADDR (data-value)]
[CONSOLEIPRINTICARDIWPMEDIA11WPMEDIA2 1

WPMEDIA3 rWPMEDIA4]

Exceptional conditions: FUNCERR, SELNERR, UIEIPIN

This command is used to cause task activity to be suspended until the
previous batch data interchange command is completed. This command is
meaningful only when it follows an ISSUE ADD, ISSUE ERASE, ISSUE
REPLACE, or ISSUE SEND command. The options CONSOLE, PRINT, CARD,
WPMEDIA1-4 are alternatives to DESTID and DESTIDLENG.

290 CICS/VS APRM (CL)

Batch Data Interchange Options

CARD

CONSOLE

DEFRESP

specifies that the output medium is a card reader/punch device.
This option is not valid with DESTID and DESTIDLENG.

specifies that the output medium is that provided for messages
to the operator. This option is not valid with DESTID and
DESTIDLENG.

specifies that all terminal control com.ands issued as a result
of the batch data interchange com.and will request a definite
response from the outhoard batch program, irrespective of the
specification of message integrity for the CICS/VS task (ny the
system programmer) •

DESTID(data-value)
specifies the name of the data set in the outboard destination.
The data value must be a character string of up to eight
characters. This option is not valid with CONSOLE, CARD,
PRINT, or WPMEDIll-4.

DESTIDLENG(data-value)

DFTPROF

specifies the length of the name specified in the DESTID option
as a halfword binary value. This option is not valid with
CONSOLE, CARD, PRINT, or WPMEDI11-4.

specifies that the default data strea. profile has been
specified.

FROM (data-area)
specifies the data that is to be written to the data set.

INTO (data-area)
specifies the rece~v~ng field for the data read from the data
set. The INTO option implies move-mode access.

KEYLENGTH(data-value)
specifies the length of the key specified in the RIDFLD option
as a halfword binary value.

Chapter 3.4. Batch Data Interchange 291

LENGTH (parameter)

NOWAIT

specifies a half word binary value to be used with ISSUE ADD,
IS~UE RECEIVE, ISSUE REPLACE, and ISSUE SEND commands.

For an ISSUE ADD, ISSUE REPLACE, or ISSUE SEND1. command, the
parameter must be a data value that is the length of the data
that is to be written.

For an ISSUE RECEIVE command with the INTO option, the
parameter must be a data area that specifies the maximum length
of data that the program is prepared to handle. If the value
specified is less than zero, zero is assumed. If the length of
the data exceeds the value specified, the data is truncated to
that value and the LENGERR condition occurs. On completion of
the retrieval operation, the data area is set to the original
length of the data.

For an ISSUE RECEIVE command with the SET option, the parameter
must be a data area. On completion of the retrieval operation,
the data area is set to the length of the data.

specifies that the CICS/VS task will continue processing
without waiting for the batch data interchange command to
complete. If this option is not specified, the task activity
will be suspended until the command is completed.

NUMREC(data-value)

PRINT

for a relative data set, specifies as a halfword binary value
the number of logical records affected by one ISSUE REPLACE
command. Records are replaced sequentially starting with the
one identified by the RIDFLD option.

For an indexed data set, NU8REC cannot be specified since only
one record is replaced.

specifies that the output is to the print medium.

RIDFLD(data-area)
specifies the record identification field for use with ISSUE
REPLACE and ISSUE ERASE commands; it also specifies a data area
in which the relative record number of the next record is
returned in an ISSUE NOTE command.

For ISSUE REPLACE commands for a relative data set, the RIDFLD
option must specify a fullword binary integer being the
relative record number (starting from zero) of the record. The
RRN option is also required.

For ISSUE REPLACE commands for an indexed data set, the RIDFLD
option specifies the key which is embedded in the data
specified by the FROK option. The KEYLENGTH option is also
required.

For ISSUE ERASE commands, the RIDFLD option must specify the
key of the record.

292 CICS/VS APR~ (el)

RRN
specifies that the record identification field specified in the
RIDFLD option is a relative record number. If the option is
not specified, RIDFLD is assumed to specify a key.

SET (pointGr-ref)
specifies the pointer reference that is to be set to the
address location of the data read from the data set. The SET
option implies locate-mode access.

SUBADDR(data-value)
specifies the mediua subaddress as a decimal value (in the
range 0 through 15) which allows media of the same type, for
example, "printer 1" or "printer 2", to be defined. Value 15
means a mediua of any type. The default is 00.

VOLUME (data-value)
specifies the name of a diskette in an outboard destination
that contains the data set specified in the DESTID option. The
data value must be a character string of up to six characters.

VOLUMELENG(data-value)
specifies the length of the name specified in the VOLUME option
as a halfword binary value.

WPMEDIAl through WPMEDIA4
specifies that for each specific LUTYPE4 device, a word
processing aedium is defined to relate to a specific
input/output device.

Chapter 3.4. Batch Data Interchange 293

Batch Data Interchange Exceptional Conditions

DSSTAT

EODS

IGREQCD

FUNCERR

LENGERR

occurs when the destination status changes in one of the
following ways:

• The data stream is aborted.

• The data stream is suspended.

Default action: terminate the task abnormally.

occurs when the end of the data set is encountered.

Default action: terminate the task abnormally.

occurs when an attempt is made to execute an ISSUE SEND command
after a SIGNAL RCD data-flow control code has been received
from an LUTYPE4 logical unit.

Default action: terminate the task abnormally.

occurs when an error occurs during execution of the command.
Destination selection is unaffected and other com.ands for the
same destination may be successful.

Default action: terminate the task abnormally.

occurs if the length of the retrieved data is greater than the
value specified by the LENGTH option for a move-mode ISSUE
RECEIVE command.

Default action: terminate the task abnormally.

NODATARECD

SELNERR

UNEXPIN

occurs if an ISSUE RECEIVE command is issued to an LUTYPE4
logical unit and the destination currently has no data to send.

Default action: terminate the task abnormally.

occurs when an error occurs during destination selection. The
destination is not selected and other commands for the same
destination are unlikely to be successful.

Default action: terminate the task abnormally.

occurs when some unexpected or unrecognized information is
received from the outboard controller.

Default action: terminate the task abnormally.

294 CICS/VS APRl! (CL)

~ore detailed information about the cause of an exceptional condition
is given in field EIBRCODE in the EIB which is shown in Appendix A.
(Refer also to the CICS/VS Problem Determination Guide.)

Chapter 3.4. Batch Data Interchange 295

Part 4. Control Operations

Chapter 4.1. Introduction to Control Operations

Chapter 4.2. Inte~val Control

Chapter 4.3. Task Control

Chapter 4.4. Program Control

Chapter 4.5. Storage Control

Chapter 4.6. Transient Data Control

Chapter 4.1. Temporary Storage Control

297

Chapter 4.1. Introduction to Control Operations

This part of the manual collects together several groups of operations
that are not specifically data base or data communication operations,
but that control the execution of tasks within a CICS/VS system. These
groups of operations are as follows:

• Interval control - comprising functions whose execution is
dependent on time.

• Task control - comprising functions to synchronize task activity or
resource usage.

• Program control compr1s1ng functions affecting the flow of
control between application programs.

• storage control - comprising functions to obtain and release areas
of main storage.

• Transient data control comprising functions for the transfer of
data between CICS/VS tasks and between the CICS/VS region or
partition and other regions or partitions.

• Temporary storage control
storage of data.

comprising functions for the temporary

Each group of operations is described in a separate chapter within
this part, as listed on the previous page.

Chapter 4.1. Introduction to Control Operations 299

Chapter 4.2. Interval Control

The CICS/VS interval control program, in conjunction with a time-of-day
clock maintained by CICS/VS, provides functions that can be performed at
the correct time; such functions are called time-oontrolled functions.
The time of day is obtained from the operating system at intervals whose
frequency, and thus the accuracy of the time-of-day clock, depends on
the task mix and the frequency of task switching operations.

Interval control commands are provided to:

• Request the current .date and time of day (ASKTIME).

• Delay the processing of a task (DELAY).

• Request notification when a specified time has expired (POST).

• Wait for an event to occur (WAIT EVENT) •

• Start a task and store data for the task (START).

• Retrieve data stored for a task (RETRIEVE).

• Cancel the effect of previous interval control commands (CANCEL).

The HANDLE CONDITION and IGNORE CONDITION commands can be used to
deal with any exceptional conditions that occur during the execution of
an interval control command. Refer to Chapter 1.~ for further
information about exceptional conditions.

~pecif~xpiration Times

The time at which a time-controlled function is to be performed is
called the expiration time. Expiration times can be specified
absolutely, as a time of day, or as an interval that is to elapse before
the- function is to be performed.

If th~ specified time of day is in advance of the current clock time,
the requested function is performed wh8n the specified time occurs. If
the specified time of day is the same as the current clock time, or up
to and including six hours preceding the current clock time, the
specified time is considered to have expired and the requested function
is performed immediately. If the specified time of day precedes the
current clock time by more than six hours, the requested function is
performed the next day at the specified time.

since each end of an intersystem link may be in a different time
zone, it is recomaended that the INTERVAL form of expiration time be
used when the transaction to be started is in a remote system.

Chapter 4.2. Interval Control 301

~Eecify Request Identifiers

As a means of symbolically identifying the request and any data
associated with it, a unique request identifier is assigned by CICS/VS
to each DELAY, POST, or START command. The application programmer can
specify his own request identifier by means of the RBQID option; if none
is assigned by the programmer, then for POST and START commands only,
CICSjVS assigns a unique request identifier and places it 1n the field
EIBREQID in the EXEC interface block (EIB). A request identifier should
be specified by the application programmer if the request may be
canceled at some later time. (See "Canceling Interval Control Requests"
later in this chapter.)

Request Current Time of Day (ASKTIME)

ASKTIME

This command is used to update the CICS/VS time-of-day clock, and the
fields EIBDATE and EIBTIME in the BIB. The two fields contain initially
the date and time when the task started. Refer to Appendix A for
details of the EIB.

Delay Processing of a Task (DELAY) .

I

I
I DELAY [IN'rERVA L (hhmmss) I INTERVAL (0) I TIl'IE (hbmllss)]
I [REQID (name)]
I
I Exceptional conditions: EXPIRED, INYREQ
I L __ ~

This command is used to request CICS/VS to suspend the processing of the
issuing task for a specified interval of time or until a specified time
of day. It supersedes any previously initiated POST command for the
task. (The POST command is described in the follow1ng section.)

The following example shows how to suspend the processing of a task
for a specified period of time:

EXEC CICS DELAY
IN'rERVAL (500)
REQID (' GXLBZQMR')

Delay task processing
for 5 minutes
Unique request ID

The following example shows how to suspend the processing of a task
until a specified time of day:

EXEC CICS DELAY
TIME (124500)
REQID(IUNIQCODE')

302 CICS/VS APRM ~L)

Delay task processing
until 12.45
Unique request ID

Request Notification when Specified Time has Expired (POST)

,
I
I POST [INTERVAL (hhmmss) INTERVAL (0) I TIME (hhmllSS))
I SET (pointer-ref)
I [REQID (name)]
I
I Exceptional conditions: INVREQ, EXPIRED
I L __ ~

This command is used to request notification that a specified time has
expired. In response to this command, CICSjVS makes a timer event
control area available for testing. This four-byte area is initialized
to binary zeros, and the pointer reference specified in the SET option
is set to its address. This area is available for the duration of the
task issuing the POST COllmand. "

When the time specified has expired, the timer event control area is
posted; that is, its first byte is set to X'40' and its third byte to
X'SO'. Posting can be tested in either of the following ways:

• By checking the timer event control area at intervals. CICS/VS
must be given the opportunity to post the area; that is, the task
must relinquish control of CICS/VS before testing the area.
Normally, this condition is satisfied as a result of other commands
being issued; if a task is performing a long internal function,
control can be relinquished by issuing a SUSPEND command, described
in the section nSuspending a Task n in Chapter 4.3.

• By suspending task activity by a WAIT EVENT command until the timer
event control area is posted. This action is similar to issuing a
DELAY command, the difference being that with a POST, WAIT EVENT
sequence, it is possible to perform some processing after issuing
the POST command, whereas a DELAY com.and suspends task activity at
once. Also, a WAIT EVENT com~and can be issued by some other task,
to synchronize itself with the posting of the timer event control
area specified in this task. However, the timer event control area
will be released when this task terminates normally, or abnormally.

A timer ev~nt control area provided for a task is not released or
altered (except as described above) until one of the following events
occurs:

• The task issues a subsequent DELAY, POST, or START command.

• The task issues a CANCEL command to cancel the POST command.

• The task is terminated, normally or abnormally.

A task can have only one POST command active at any given time. Any
DELAY, POST, or START command supersedes a previously issued POST
command by the task.

The following example shows hov to request a timer event control area
tor a task, to be posted after 30 seconds:

EXEC CICS POST
INTERVAL (30)
REQID (I RBL3DI)
SET (PREF)

Request timer event control area
Post after 30 seconds
Request identifier
Pointer reference for timer event

control area

Chapter 4.2. Interval Control 303

Th~ following example shows how to provide a timer event control area
for the task, to be posted when the specified time of day is reached.
Since no request identifier is specified in the command, CICS/VS
automatically assigns one and returns it to the application program in
the EIBREQID field in the BIB.

EXEC CICS POST
TIltE (PACKTIKE)
SET (PREP)

Wait for an Event to Occur (WAIT EVENT)

Request timer event control area
Post at specified time
Pointer reference for timer event

control area

r--~

I
I WAIT EVENT ECADDR (pointer-value)
I
I

This command is used to synchronize a task with the completion of an
event initiated by the same task or by another task. The event would
normally be the posting, at the expiration time, of a timer event
control area provided in response to a POST command, as described in the
preceding section. The WAIT EVENT command provides a method of directly
relinquishing control to some other task until the event being waited on
is completed.

A pointer value giving the address of an event control area must be
specified in the ECADDR option. The event control area must conform to
the format and standard posting conventions for ECBs; it will normally
be the timer event control area created by a POST command.

In CICS/OS/VS systems, only one task at a time should be allowed to
wait on anyone event, otherwise an abnormal termination of the system
may occur.

The following example shows how to suspend processing of a task until
the specified event control area is posted:

EXEC CICS WAIT EVENT
ECADDR(PVALUE)

304 CICS/VS APRM eeL)

Wait for event to occur
Area to be posted

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Start a Task (START)

START [INTERVAL (hhmmss) I INTERVAL (0) I TIME (hhmmss)]
TRANSID (name)
(REQID (name)]
[FROM (data-area) LENGTH(data-value)[FMH]]
[TERMID (name)]
[SYSID (name))
[RTRANSID (name)]
(RTERMID (name)]
[QUEUE (name)]
[NOCHECK]
(PROTECT]

Exceptional conditions: IOERR, INVREQ, ISCINVREQ, SYSIDERR,
TERMIDERR, TRANSIDERR

This command is used to start a task, on a local or remote system, at a
specified time. The starting task may pass data to the started task -and
may also specify a terminal to be used by the started task as its
principal facility. The TRANSID, TERMID, and FROM options specify the
transaction to be executed, the terminal to be used, and the data to be
used, respectively.

The FMH option may be specified if the FROM option is specified. It
indicates that the data, to be passed to the started task, contains
function management headers.

Further data may be passed to the started task in the RTRANSID,
RTERMID, and QUEUE options. For example, one task can start a second
task passing it a transaction name and a terminal name to be used when
the second task starts a third task; the first task may also pass the
name of a queue to be accessed by the second task.

If data is to be passed , it will be queued using the request
identifier specified in the REQID option,. if one is provided. This
identifier should be recoverable (in temporary-storage terms) if the
PROTECT option is also specified, or nonrecoverable if PROTECT is not
specified, otherwise unpredictable results can occur. Such problems
cannot occur if REQID is not used.

The NOCHECK option specifies that no response (to execution of the
START canmand) is expected by the starting transaction. For START
commands naming tasks to be started on a local system, error conditions
will be returned, whereas those for tasks to be started on a remote
system will not be returned. The NOCHECK option allows CICS/VS to
improve perfornance when the START comnand has to be shipped to a remote
system; it is also a prerequisite if the shipping of the START command
is queued pending the establishing of links to the remote system.

One or more constraints have to be satisfied before the transaction
to be executed can be started, as follows:

1. The specified interval must have elapsed or the specified
expiration time must have been reached. An expiration time equal
to the current time of day (or up to 6 hours preced ing it) is
equivalent to an interval value of zero. It is reconunended that
the INTERVAL option be specified When a transaction is to be
executed on a remote system; this avoids complications arising when
the local and remote systems are in different ttme zones.

Chapter 4.2. Interval Control 305

2. If the TERMID option is specified, the named terminal must be
available.

3. If the PROTECT option is specified, the starting task must have
taken a successful syncpoint. This option, coupled to extensions
to system tables, reduces the exposure to lost or duplicated data
ca used by failure of a starting task.

4. If the transaction to be executed is on a remote system the format
of the data must be declared to be the same as that at the local
system. This is done by the DATASTR and RECFM operands of the
DFHTCT TYPE=SYSTEM sy stem macro. For CICS/VS-CICS/VS these are
always the default values. For CICS/VS-IMS/VS care should be taken
to specify the correct values.

Execution of a START command naming a transaction in the local system
wi11 supersede any outstanding POST command executed by the starting
task.

STARTING TASKS WITHOtJr TERMINALS

If the task to be started is not associated with a terminal, each START
command resu1ts in a separate task being started. This happens
regardless of whether or not data is passed to the started task.

The following example shows how to start a specified task not
associated with a termina1:

EXEC eIeS srART
TRANSID (8TRNL 8)
INTERVAL (10000)
REQID (8NONGL 8)

Start the task
Transaction identifier
Start task in one hour
Request identifier

STARTmG TASKS WITH TERMINALS BUT WITHOur DATA

on1y one task is started if severa1 START connnands, each specifying the
same transaction and termina1, expire at the same time or prior to
terminal avai1ability.

The fo1lowing example shows how to request initiation of a task
associated with a termina1. Since no request identifier is specified in
this example, CICS/VS assigns one and returns it to the application
program in the EIBREQID field in the EKECinterface block.

EXEC eIeS START
TRANSID (·TRN1·)
TIME (185000)
TERMID (8STAS 8)

306 CICS/VS APRM (er,)

Start the task
Transaction identifier
Expiration time (1850 hours)
Terminal identifier

Page of SC33-0077-2, added September 1980 by TNL SN33-6268

STARTING TASKS WITH TERMINALS AND DATA

Data is passed to a started task if one or more of the FROM, RTRANSID,
RTERMID, and QUEUE options is specified. Such data is accessed by the
started task through execution of a RETRIEVE command as described later
in the chapter.

It is possible to pass many data records to a new task by issuing
several START commands, each specifying the same transaction and
terminal.

Execution of the first S~RT command will ultimately cause the new
task to be started and allow it to retrieve the data specified on the

Chapter 4.2. Interval Control 306. 1

command. The new task will also be able to retrieve data specified on
subsequently executed START commands that expire before the new task is
terminated. If such data has not been retrieved before the new task is
terminated, another new task will be started and will be able to
retrieve the outstanding data.

The following example shows how to start a task associated with a
terminal and pass data to it:

EXEC CICS START
TRAISID ('TBN2 ')
TIME (113000)
TERM I D (' S TA 3 ')
REQID (DATAREC)
FROM (DATAFLD)
LE NGTH (100)

Start the task
Transaction identifier
Expiration time 1130
Terminal identifier
Request identifier field
Data address
Data length

Retrieve Data Stored for a Task (RETRIEVE)

RETRIEVE {INTO (data-area) I SET (pointer-ref)}
LENGTH (data-area)
[RTRAN SID (da ta-area)]
[BTERM ID (data-area)]
(QUEUE (data-area))
[WAIT]

Exceptional conditions: ENPDATA, ENVDEFERR, INVREQ, INVTSREQ,
IOERR, LENGERB, NOTFND,

This command is used to retrieve data stored by expired START commands
(the START command is described in the previous section). It is the
only method available for accessing such data.

The INTO option is used to specify the area into which the data is to
be placed. The LENGTH option must specify a data area that contains the
maximum length of record that the application program will accept. If
the record length exceeds the specified maximum, it is truncated and the
LENGERB condition occurs. After the retrieval opEration, the data area
specified in the LENGTH option is set to the record length (before any
truncation occurred).

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of that area. After the
retrieval operation, the data area specified in the LENGTH option is set
to the record length.

A task that is not associated with a terminal can access only the
single data record associated with the original START command; it does
so by issuing a RETRIEVE com.and. The storage occupied by the data
associated with the task is released upon execution of the RETRIEVE
command, or upon termination of the task if no RETRIEVE command is
executed prior to termination.

A task that is associated with a terminal can access all data records
associated with all expired START com.ands having the same transaction
identifier and terminal identifier as the START command that started the
task; it does so by issuing consecutive RETRIEVE com.ands. Expired data

Chapter 4.2. Interval control 301

records are presented to the task upon reguest in expiration time
sequence, starting with any data stored by the command that started the
task, and including data from any commands that have expired since the
task started. When all expired data records have been retrieved, the
ENDDATA exceptional condition occurs. The storage occupied by the
single data record associated with a START com.and is released after the
data has been retrieved by a RETRIEVE command; any storage occupied by
data that has not been retrieved is released when the CICS/VS system is
terminated.

The WAIT option specifies that, if all expired data records have
already been retrieved, the task is suspended until further expired data
records become available. The ENDDATA exceptional condition will be
raised only if CICS/VS is shut down before any expired data records
become available.

If a value has been specified in the DTIMOUT operand of the DFHPCT
TYPE=ENTRY systea macro, the EJDDATA condition will be raised if no data
is availab1e after the specified length of time. This condition will be
raised also if the terminal, on which the transaction has been
suspended, receives a request for a transaction other than the one that
has been suspended. This condition will be raised also if CICS/VS
enters shut down and the transaction is still suspended. An attempt to
reissue the RETRIEVE command with the WAIT option after this event (that
is, system shut down) will cause an abend with a code of AICB.

If the retrieved data contains FMHs, as specified by the FMH option
on the associated START command, field EIBFMH in the EIB will be set to
X' FF' •

If an input/output error occurs during a retrieval operation, th6
IOERR exceptional condition occurs. The operation can be retried by
reissuing the RETRIEVE command.

The following example shows how to retrieve data stored by a START
command for the task, and store it in a specified area:

EXEC CICS RETRIEVE
IN10 (DATAFLD)
LENGTH (LENG)

Retrieve time-ordered data
User-provided data area
Length program will accept

The following example shows how to request retrieval of a data record
stored for a task into a data area provided by CICS/VS; the pointer
reference specified by the SET option is set to the address of the
storage area reserved for the data record.

EXEC CICS RETRIEVE
SET (PREF)
LENGTH (LENG)

308 CICS/VS APRM (CL)

Retrieve time-ordered data
Request pointer reference set
Set to langth of data

Cancel Interval Control Requests (CANCEL)

I

I
I CANCEL [REQID(name)[TRANSID(name)][SYSID(name)]]
I
I Exceptional conditions: INVREQ, ISCINVREQ, ROTFND, SYSIDERR
I L __ ~

This command is used to cancel a previously issued DELAY, POST, or START
command. The presence of SYSID wi1l cause the command to be shipped to
a remote system. If SYSID is not present, TRANSID (if present) will
determine where the command is to be executed. The effect of the
cancellation varies depending on the type of command being canceled, as
follows:

• A DELAY command can be canceled only prior to its expiration, and
only by a task other than the task that issued the DELAY command
(which is suspended for the duration of the request). The REQID
used by the suspended task must be specified. The effect of the
cancellation is the same as an early expiration of the original
DELAY. That is, the suspended task becomes dispatchable as though
the original expiration time had been reached.

• When a POST command issued by the same task is to be canceled, no
REQID should be specified; if it is, it will be ignored.
Cancellation can be requested either before or after expiration of
the original request. The effect of the cancellation is as if the
original request had never been made.

• When a POST command issued by another task is to be canceled, the
REQID of that command must be specified. The effect of the
cancellation is the same as an early expiration of the original
POST request. That is, the timer event control area for the other
task is posted as though the original expiration time had been
reached.

• When a START command is to be canceled, the REQID of the original
command must be specified. The effect of the cancellation is as if
the original command had never been made. The cancellation is
effective only prior to expiration of the original command.

Chapter 4.2. Interval Control 309

Interval Control Options

ECADDR (pointer-va1ue)

F!H

specifies the address of the timer event control area that must
be posted before task activity can be resumed.

specifies that the user data to be passed to the started task
contains FMHs.

FRO! (data-area)
specifies the data that is to be stored for a task that is to
be started at some future time.

INTERVAL (hhmass)
specifies the expiration time for an interval control function
as an interval of time that is to elapse from the time at which
the interval control command is issued. The time specified is
added to the current clock time by CICS/VS when the command is
executed to calculate the expiration time. If the calculated
time of day is the same as the current clock time, or up to and
including six hours preceding the current clock time, the
specified time is considered to have expired.

This option is used in DELAY commands (to specify the time for
which the task should be suspended), POST commands (to specify
when the posting of the timer event control area should occur),
and START commands (to specify when a new task should be
started) •

The ti.e interval is specified in the form IIhh.ass" where "hh"
represents h.ours from 00 to 99, "mm" represents minutes from 00
to 59, and ··ss .. represents seconds from 00 to 59.

INTO (data-area)
specifies the user data area into which retrieved data is to be
written. If this option is specified, move-mode access is
implied.

LENGTH (parameter)
specifies a halfword binary value to be used with START and
RETRIEVE commands.

For a START command, the parameter must be a data value that is
the length of the data that is to be stored for the new task.

For a RETRIEVE command with the INTO option, the parameter must
be a data area that specifies the maximum length of data that
the program is prepared to handle. If the value specified is
less than zero, zero is assumed. If the length of the data
exceeds the value specified, the data is truncated to that
value and the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a RETRIEVE command with the SET option, the parameter must
be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

310 CICS/VS APR! (eL)

NOCBECK

PROTECT

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

specifies that* for a remote system, CICS/VS shou1d optimize
the execution of the START command to improve performance by
providing less error checking and slightly less function.

specifies that, in addition to the constraints described
earlier in the chapter, the new task will not be started until

. the starting task has taken a sync point. If the starting task
abendsbefore the sync point is taken, the request to start the
new task will be canceled. If . theREQID option is specified as
well, the request identifier should be a name defined as
recoverable to temporary storage.

QUEUE { (name) I (data area) }
when used in a START command, 8 name- specifies the name of the
queue that may be used by the transaction specified also in the
START command. The name must be up to eight characters in
length.

When used in a RETRIEVE command, -data area- specifies the name
of the queue that may be accessed by the transaction issuing
the RETRIEVE conmand. The data area must be eight characters
in length.

REQID (pame)
specifies a unique name (up to eight characters) to identify a
command.

This option can be used in a DELAY, POST, orsrART <x>mmand when
another task is to be provided . with the capability of canceling
an unexpired oommand; and in CANCEL conunands, except those
canceling. a POST conmand issued by the same task (for which,
the REQID option is ignored if it is specif ied) •

If this option is anitted from a POST command,CICS/VS
generates a unique request identifier in the EIBREQID field of
the EXEC interface block. This applies also to a START command
unless the NOCBECK· option is specified, in which case field
EIBREQID is set· to blailks and cannot be used subsequently to
cancel the START camnand.

RTERMID {(pame) I (data area)}
When used in.a START command, -name8 specifies a value, for
example a terminal name, that maybe retrieved when the
transaction, specified in the TRANSID option in tbe START
canmand* is started. The name must be up to four characters in
length.

When used in a RETRIEVE command, -data area- specifies an area
which may be used in the TERMID o~on of a START command that

. may be executed subsequently. The data area must be four
characters· in length.

Chapter 4.2. Interval. Control 311

RTRANSID { (name) I (data area)}
When used in a START command, -name- specifies a value, for
example a transaction name, that may be retrieved when the
transaction, specified in the TRANSID option in the START
command, is started. The name must be up to four characters in
length.

When used in a RETRIEVE command, -data area- specifies an area
which may be used in the TRANSID option of a START command that
may be executed subsequently. The data area must be four
characters in length.

SET (pointer-ref)
when used with a POST command, SET specifies the pointer
reference to be set to the addres.s of the 4-byte timer event
control area generated by CICS/VS. This area is initialized to
binary zeros; on expiration of the specified time, the first
byte is set to X·qO·, and the third byte to X·SO·.

When used with a RETRIEVE command, SET specifies the pointer
reference to be set to the address of the retrieved data. If
this option is specified, locate-mode access is implied.

SYSID tlame) remote systems only
speci fi es the name of the system whose re sources are to be used
for intercommunicatLon facilities. The name may be up to four
cha ra cter s in len gth.

TIME (hhmms s)
specifies the expiration time for an interval control function.
If the specified time is the same as the current clock time, or
up to and including six hours preceding the current clock time,
the specified time is considered to have expired.

This option is used in DELAY commands (to specify the time for
which the taSk should be suspended) , POST commands (to specify
when the posting of the timer event control area should occur) ,
and START commands ~o specify when a new task should be
started) •

The time is specified in the form -hhmmss- where -hh­
represents hours from 00 to 99, -rom- represents minutes from 00
to 59, and -ss- represents seconds from 00 to 59.

TERMID (name)
specifies the symbolic identifier of the terminal associated
with a transaction to be started as a result of a START
command. This option is required when the transaction to be
started must communicate with a terminal; it should be omitted
otherwise. The name must be alphameric, up to four characters
in length, and must have been defined in the tenninal control
table (TCT)· by the system programmer.

If the transaction to be started is on a remote system, the
terminal identifier will be assumed to be defined in the TCT on
the remote system.

312 CICS/VS APRM (CL)

TRANSID(name)

WAIT

specifies the symbolic identifier of the transaction to be
executed by a task started as the result of a START command, or
to be canceled by a CANCEL command. The name may be up to four
characters in length and must have been defined in the program
control table (PCT) by the system programmer.

If SYSID is specified, the transaction is assumed to be on a
remote system irrespective of whether or not the name is
defined in the PCT. otherwise the entry in the PCT will be
used to determine if the transaction is on a local or remote
system.

specifies that, if all expired data records have already been
retrieved, the task is to be put into a wait state until
further expired data records become available. The ENDDATA
exceptional condition will be raised only if CICS/VS is shut
down before any expired data records become available.

If the retrieved data contains FftHs, as specified by the FftB
option on the associated START command, field EIBFftH in the EIB
will be set toX'FF'.

Chapter 4.2. Interval Control 313

Interval Control Exceptional Conditions

ENDDATA

ENVDEFERR

EXPIRED

INVREQ

INVTSREQ

IOERR

occurs if no more data is stored for a task issuing a RETRIEVE
command. It can be considered a normal end-of-file response
when retrieving data records sequentially.

Default action: terminate the task abnormally.

occurs when a RETRIEVE command specifies an option not
specified by the corresponding START command.

Default action: terminate the task abnormally.

occurs if the time specified in a POST or DELAY command has
already expired when the command is issued.

Default action: ignore the condition.

occurs if an invalid type of interval control command is
received for processing by CICS/VS.

Default action: terminate the task abnormally.

occurs if there is no support for a temporary storage read
request issued by CICS/VS during execution of a RETRIEVE
command. This situation can occur when a dummy Temporary
Storage Program is included in the system by the system
programmer in place of a functional Temporary Storage Program.

Default action: terminate the task abnormally.

occurs if an input/output error occurs during a RETRIEVE or
START operation. The operation can be retried by reissuing the
RETRIEVE command.

Default action: terminate the task abnormally.

ISCINVREQ

LENGERR

occurs when the remote system indicates a failure which does
not correspond to a known condition.

Default action: terminate the task abnormally.

occurs in a move~ode retrieval operation if the length
specified is less than the actual length of the stored data.

Default action: terminate the task abnormally.

314 CICS/VS APR! (CL)

NOTFND
occurs if any of the following situations exists:

SYSIDERR

TER~IDERR

• ~he request identifier specified in a CANCEL com. and fails
to match an unexpired time-controlled-function command.

• ~he RETRIEVB co •• and is issued by a task that is started in
response to a START command which did not specify the FR08
option.

• ~he request identifier associated with a START command
fails to remain unique; when a RETRIEVE command is issued,
CICS/VS cannot determine where the data is stored.

Default action: terminate the task abnormally.

occurs when the SYSID option specifies either a name which is
not defined in the intersystem table or a system to which the
link is closed.

Default action: terminate the task abnormally.

occurs if the terminal identifier specified in a START command
cannot be found in the terminal control table.

Default action: terminate the task abnormally.

TRANSIDERR
occurs if the transaction identifier specified in a START
command cannot be found in the program control table.

Default action: terminate the task abnormally.

Chapter 4.2. Interval Control 315

Chapter 4.3. Task Control

The CICS/VS task control program provides functions that synchronize
task activity, or that control the use of resources.

CICS/VS processes tasks concurrently according to priorities assigned
by the system programmer. Control of the processor is given to the
highest priority task that is ready to be processed and is returned to
the operating system when no further work can be done by CICS/VS or by
user-written application programs.

Task control commands are provided to:

• Suspend a task (SUSPEND).

• Schedule the use of a resource by a task (RHQ and DEQ).

A task can issue the SUSPEND command to relinquish control and allow
tasks with a higher priority to proceed. This facility can be used to
prevent processor-intensive tasks from monopolizing the processor. If
no higher-priority task is waiting to be processed, control is returned
to the issuing task; that is, the task remains dispatchable.

Scheduling the use of a resource by a task is sometimes useful in
order to protect the resource from concurrent use by more than one task,
that is, to make the resource serially reusable. Each task that is to
use the resource issues an RHQ (enqueue) command. The first task to do
so has the use of the resource immediately, but subsequent RHQ commands
for the resource, issued by other tasks, result in those tasks being
suspended until the resource is available. Each task using the resource
should issue a DEQ (dequeue) command when it has finished with it. The
resource then becomes available and the next task to have issued an EHQ
command is resumed and given use of the resource. The other tasks
obtain the resource in turn, in the order in which they enqueued upon
it.

Suspend a Task (SUSPEND)

SUSPEND

This command is used to relinquish control to a task of higher
dispatching priority. Control is returned to the task issuing the
command if no other task of a higher priority is ready to be processed.

Chapter 4.3. Task Control 311

Schedule Use of a Resource by a Task (ENQ !lnd DEQ)

r--~
I
I {EBQ I OEQ} RESOURCE(data-area)
I [LENGTH (data-value)]
I
I Exceptional condition: EHQBUSY (ENQ only)
I L __ ~

The ENQ and OEQ commands can be used to enqueue upon and dequeue from a
resource that is to be protected from concurrent use by more than one
task.

The ENQ command causes further execution of the task issuing the EHQ
command to be synchronized with the availability of the specified
resource; control is returned to the task when the resource is
available.

The ENQBUSY condition allows a conditional EHQ to be used. If a
resource is not available when enqueued, the ENQBUSY condition is
raised. The execution of a HANDLE CONDITION ENQBUSY comaand will return
control to the task at the ENQBUSY label, without waiting for the
resource to become available.

The OEQ command causes a resource currently enqueued upon by the task
to be released for use by other tasks. If a task enqueues upon a
resource but does not dequeue from it, CICS/VS automatically releases
the resource when the task is terminated.

When issuing the EHQ command, the resource to be enqueued upon must
be identified by one of the following methods:

• Specifying a data area that is the resource.

• Specifying a data variable that contains a unique character-string
argument (for example, an employee name) that represents the
resource. The character string may be up to 255 bytes in length.
The length of the string must be supplied in the LENGTH option.

When issuing the DEQ command, the resource to be dequeued from must
be identified by the method used when enqueuing upon the resource.

The following examples show how to enqueue upon a resource using the
two methods shown above. Substituting "DEQ" for "ENQ" in these examples
illustrates the ways in which a resource can be released.

EXEC CICS ENQ
RESOURCE (RESNA!E)

or

EXEC CICS EHQ
RESOURCE (SOCSECNO)
LENGTH (9)

318 CICS/VS APR! (CL)

Enqueue upon resource
Address of resource

Enqueue upon resource
Character string field
Length of argument

Task Control Options

LENGTH (data-value)
specifies that the resource to be enqueued upon ~r dequeued
from) is a data variable of length given by the data value.
The data value is a halfword binary value in the range 1
through 255. If the LENGTH option is specified in an ENQ
command, it must also be specified in the DEQ command for that
resource, and the values of these options must be the same.
This option is required if the resource is specified as a
character string; it should not be specified otherwise.

RESOURCE (data-area)
specifies either the resource to be enqueued upon (or dequeued
from) or a data variable that contains a character string (for
example an employee name) that represents the resource. In the
latter case, the length of the string must be specified by the
LENGTH opt ion.

Task Control Exceptional Conditions

ENQBUSY
occurs when an ENO command specifies a resource that is
unavailable.

Default action: wait for the resource to become available.

Chapter 4.3. Task Control 319

Chapter 4.4. Program Control

The CICS/VS program control program governs the flow of control between
application programs in a CICS/VS system. The name of an application
program referred to in a program control command must have been placed
in the processing program table (PPT) by the system program.er before
CICS/VS is started.

Program control commands are provided to:

• Link one user-written application program to another, anticipating
subsequent return to the requesting program (LINK). The COKMAREA
option allows data to be passed to the requested application
program.

• Transfer control from one user-written application program to
another, with no return to the requesting program ~CTL). The
COKMAREA option allows data to be passed to the requested
application program.

• Return control from one user-written application program to another
or to CICS/VS (RETURN). The coaKAREA option allows data to be
passed to a newly-initiated transaction.

• Load a designated application program, table, or map into main
storage and return control to the requesting program (LOAD).

• Delete a previously loaded application program, table, or map from
main storage (RELEASE).

The HANDLE CONDITION command can be used to deal with the PGKIDERR
exceptional condition, which may occur during execution of a -program
control command. Refer to Chapter 1.5 for further information about
exceptional conditions.

The HANDLE ABEND command can be used to deal with abnormal
terminations. Refer to Chapter 5.2 for further information about this
cOIlBland.

Application Program Logical Levels

Application programs running under CICS/VS are executed at various
logical levels. The first program to receive control within a task is
at the highest logical level. When one application program is linked to
another, expecting an eventual return of control, the linked-to program
is considered to reside at the next lower logical level. When control
is simply transferred from one application program to another, without
expecting return of control, the two programs are considered to reside
at the same logical level. Figure 4.4-1 illustrates the concept of
logical levels.

Chapter 4.4. Program Control 321

1
CICSIVS

1
Application

LINK
r--- Program r--

A

L./" ~
RETURN 1 XCTL

J
Application Application

LINK Program .-- Program r---
B C

t---

J, ./' '"
RETURN XCTL

Application
Program
0

t--

Figure 4.4-1. Application Program Logical Levels

322 CICS/VS APRM (eL)

1
Application
Program
E

RETURN 1

CICSIVS
level

Highest
logical
level

Lowest
logical
level

Link to Another Program Anticipating Return (LINK)

LINK PROGRA!(name)
[COMMAREA (data-area) LENGTH (data-value)]

Exceptional condition: PGMIDERR

I
I
I
I
I
I
I

This command is used to pass control from an application program at one
logical level to an application program at the next lower logical level.
If the linked-to prograa is not already in main storage, it will be
loaded. When the RETURN command (described later in this chapter) is
executed in the linked-to program, control is returned to the program
initiating the linkage at the next sequential executable instruction.

The following example shows how to request a link to an application
program called PROG1:

EXEC CICS LINK
PROGRAM ('PROG1')

Link to a program
Program name

The COMMA REA option can be used to pass data to the linked-to
program. For further details, see the section "Passing Data to Other
Programs" earlier in this chapter. The LENGTH option specifies the
length of the data being passed.

The linked-to program operates independently of the program that
issues the LINK command with regard to handling exceptional conditions,
attention identifiers, and abends. For example, the effects of BANDLE
commands in the linking program are not inherited by the linked-to
program, but the original HANDLE commands are restored on return to the
linking program.

Transfer Program Control (XCTL)

XCTL PROGRA8(name)
[COMMAREA(data-area) LENGTB(data-value)]

Exceptional condition: PG!IDERR

i

I
I
I
I
I
I
I

This command is used to transfer control from one application program to
another at the same logical level. The program from which control is
transferred is released. If the program to which control is transferred
is not already in main storage, it will be loaded.

The following example shows how to request a transfer of control to
an application progra& called PROG2:

EXEC CICS XCTL
PROGRAM ('PROG2 I)

Transfer control
Program name

The CO!8AREA option can be used to pass data to the invoked program.
For further details, see the section "Passing Data to Other Programs"

Chapter 4.4. Prograa Control 323

earlier ~n this chapter. The LENGTH option specifies the length of the
data to be passed.

Return Program Control (RETURN)

RETURN [TRANSID (name) [CO!UtAREl (data-area) LENGTH (data-value)]]

Exceptional condition: INVREQ

This command is used to return control from an application program
either to an application program at the next higher logical level or to
CICS/VS.

When the command is issued in a lower-level program, the program to
which control is returned will have relinquished control by issuing a
LINK command and will reside one logical level higher than the program
returning control.

When the command is issued in a program at the highest logical level,
control returns to CICS/VS. If the task is associated with a terminal,
the TRANSID option can be used to specify the transaction identifier for
the next program to be associated with that terminal; this causes
subsequent input entered from the terminal to be interpreted wholly as
data. In addition, the COMMAREl option can be used to pass data to the
new task that will be started. For further details, see the section
"Passing Data to Other Programs" earlier in this chapter. The LENGTH
option specifies the length of the data to be passed. The COMMAREA and
LENGTH options can be used only when the RETURN command is returning
control to CICS/VS; the INVREQ exceptional condition will occur
otherwise •

Load a Program (LOAD)

LOAD PROGRAM (name)
[SET (pointer-ref)]
[LENGTH (data-area)]
[ENTRY (pointer-ref)]
[HOLD]

Exceptional condition: PGMIDERR

This command is used to fetch application programs, tables, or maps from
the library where they reside and load them into main storage. This
facility is used to load an application program that will be used
repeatedly, thereby reducing system overhead through a single load, to
load a table to which control is not to be passed, or to load a map to
be used in a mapping operation. (See Chapter 3.3 for further details
about maps.) CICS/VS sets the pointer reference specified in the SET
option to the address of the loaded program, table, or map; if the
LENGTH option is specified, the data area provided will be set to the
length involved.

324 CICS/VS APRM (CL)

If the HOLD option is specified, the loaded program, table, or map
remains in main storage until a RELEASE command is issued; if HOLD is
not specified, the program, table, or map remains in main storage until
a RELEASE command is issued or until the task that issued the LOAD
command is terminated normally or abnormally.

The following example shows how to load a user-prepared table called
TABl :

EXEC CICS LOAD
PROGRAM (' TAB 1')
SET (PTR)

Delete a Loaded Program (RELEASE)

I
I RELEASE PROGRAM (name)
I

Load a table
Table name
Request pointer reference set

I Exceptional condition: PGMIDERR
I L __ ~

This command is used to delete from main storage a program, table, or
map previously loaded in response to a LOAD command. If the BOLD option
is specified in the LOAD command, the loaded program is deleted only in
response to a RELEASE command. If the BOLD option is not specified, the
loaded program can be deleted by a RELEASE, or it will be deleted
automatically when the task that issued the LOAD is terminated.

The following example shows how to delete an application program,
called PROG4, loaded in response to a LOAD command:

EXEC CICS RELEASE
PROGRAM ('PROG4')

Passing Data to Other Programs

Delete a program
Program name

This section describes how data can be passed between programs when
control is passed to another program by means of a program control
command. (Data can be passed between application programs and
transactions in other ways. For example, the data can be stored in a
CICS/VS storage area outside the local environment of the application
program, such as the transaction work area (TWA); see Chapter 1.6 for
details. Another way is to store the data in temporary storage; see
Chapter 4.1 for details.)

The COMMAREA option of the LINK and XCTL commands specifies the name
of a data area (known as a ~gnication_~~) in which data can be
passed to the program being invoked.

In a similar manner, the COKMAREA option of the RETURN command
specifies the name of a communication area in which data can be passed
to the transaction identified in the TRANSID option. (The TRANSID
option specifies a transaction that will be initiated when input is
received from the terminal associated with the task.) The length of the
communication area is specified in the LENGTH option; PL/I programs need
not specify the length.

Chapter 4.4. Program Control 325

The invoked program receives the data as a parameter. The program
must contain a definition of a data area to allow access to the passed
data.

In an assembler-language program, the data area should be a DSECT.
The register used to address this DSECT must be loaded from DFHEICAP,
which is in the DFBEISTG DSECT.

In a COBOL program, the data area must be called DFHCO!!AREA.

In a PL/I program, the data area can have any name, but it must be
declared as a based variable, based on the parameter passed to the
program. The pointer to this based variable should be declared
explicitly as a pointer rather than contextually by its appearance in
the declaration for the area. This will prevent the generation of a
PL/I error aessage.

The data area need not be of the same iength as the original
communication area; if access is required only to the first part of the
data, the new data area can be shorter. It must not be longer, because
the results in this situation are unpredictable.

The invoked program can determine the length of any communication
area that has been passed to it by accessing the BIBCALBN field in the
BIB of the task. If no communication area has been passed, the value of
EIBCALEH will be zero; otherwise, EIBCALEN will always contain the value
specified in the LENGTH option of the LINK, XCTL, or RETURN command,
regardless of the size of the data area in the invoked program.

When a communication area is passed by means of a LINK command, the
invoked program is passed a pointer to the communication area itself.
Any changes made to the contents of the data area in the invoked program
are available to the invoking program, when control returns to it; to
access any such changes, the program names the data area specified in
the original CO!~AREA option.

When a communication area is passed by means of an XCTL command, a
copy of that area is made unless the area to be passed has the same
address and length as the area that was passed to the program issuing
the command. For example, if program A issues a LIRK com.and to program
B which, in turn, issues an XCTL command to program C, and if B passes
to C the same communication area that A passed to B, program C will be
passed addressability to the communication area that belongs to A ~ot a
copy of it) and any changes made by C will be available to A when
control returns to it.

A communication area can be passed by means of a RETURN command
issued at the highest logical level when control returns to CICS/VS; in
this case, a copy of the communication area is made, and addressability
to the copy is passed to the first program of the next transaction.

The invoked program can access field EIBFN in the BIB to determine
which type of command invoked the program. The field must be tested
before any CICS/VS commands are issued. If a LINK or XCTL invoked the
program, the appropriate code will be found in the field; if RETURN is
used, no CICS/VS commands will have been issued in the task, and the
field will contain zeros.

The following examples show how a LINK command causes data to be
passed to the program being linked to; the XCTL command is coded in a
similar way.

326 CICS/VS APR! ~L)

LINK or ICTL, for assembler language

DFHEISTG DSECT
COM REG DS OCL20
FIELD DS CL3

PROG1 CSECT

MVC FIELD,=CIABC'

(Invoking program)

EXEC CICS LINK PROGRAM (' PROG2 1) COMMAREA (COMREG)

COMREG
FIELD

PROG2

END

DSECT
DS CL3

CSECT

L COMPTR,DFHEICAP ADDRESS COMMAREA
USING COMREG,COMPTR
CLC FIELD,=CIABC'

END

LINK or ICTL, for COBOL

IDENTIFICATION DIVISION.
PROGRAM ID. • PROG1 ' •

WORKING-STORAGE SECTION.
01 COMMUNICATIONS-REGION.

02 FIELD PICT(JRE X (3).

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD.

~nvoked program)

(Invoking program)

EXEC CICS LINK PROGRAM('PROG2')
C08!AREA(CO!!UNICATIONS-REGION) LENGTH(3) END-EXEC.

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'.

LINKAGE SECTION.
01 DFHCOIU!AREA.

02 FIELD PICTURE X(3).

PROCEDURE DIVISION.

(In voked program)

IF EIBCALEN GREATER ZERO THEN IF FIELD EQUALS 'ABC' ••••

Chapter 4.4. Program Control 321

PROG1:PROC OPTIONS (MAIN) ;
DCL 1 COMMUNICATIONS REGION AUTOMATIC,

2 FIELD CHAR (3),

FIELD=' ABC';
EX BC CICS LINK PROGRAI.'! (' PROG2 ')

eOI.'!MAREA (COMMUNICATIONS_REGION) LENGTH (3) ;
END;

PROG2: PRoe (COaa_REG_PTR) OPTIONS (MAIN) ;
Del COMa REG PTR PTR;
DCL 1 coaMUNICATI0NS_REGION BASED (CO!M_REG_PTR) ;

2 FIELD CHAR (3) ,

IF EIBCALEN>O THEN DO;
IF FIELD='ABC' THEN

END;

END;

328 CICS/VS APRM (CL)

(Invoking program)

~nvoked progra&)

The following examples show, for COBOL and PLjI, how a RETURN command
causes data to be passed to a new transaction.

RETURN, for assembler language

D FHE IS TG DS ECT
TER~STG DS OCL20
FIELD DS CL3
DATAFLD DS CL11

PROG1 eSECT

!VC FIELD,=C'ABC'

~nvoking program)

EXEC CICS RETURN TRANSIDC'TRN2') COft!AREA(TERftSTG)

TER!!STG
FIELD
DATAFLD

PROG2

LABELl

LABEL2

END

DSECT
DS CL3
DS CL11

CSECT

CLC EIBCALEN,=H10I
BNH LABEL2
L CO~PTR,DFHEICAP
USING TERaSTG,COSPTR
CLC FIELD,=C'XYZ'
BNE LABEL1
avc FIELD,=C'ABC'
DS OH

DS OR

END

(Invoked program)

Chapter 4.ij. Program COntrol 329

RETURN, for COBOL

IDENTIFICATIOR DIVISION.
PROGRAM-ID. 'PROG1'.

WORKING-5TORAGE SECTION.
01 TERMINAL-STORAGE.

02 FIELD PICTURE X(3).
02 DATAFLD PICTURE X(17).

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD.

(Invoking program)

EXEC CICS RETURN TRANSID('TRN2')
COMMAREA(TERMIN1L-STORAGE) LENGTH(20) END-EXEC.

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'

LINKAGE SECTION.
01 DFHCOftMAREl.

02 FIELD PICTURE X(3).
02 D1T1FLD PICTURE X(17).

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO THEN
IF FIELD EQUALS 'XYZ' MOVE 'IBC' TO FIELD.
EXEC CICS RETURN END-EXEC.

RETURN£ for P~

PROG1:PROC OPTIONS (M1IN) ;
DCL 1 TERMINAL_STORAGE,

2 FIELD CHAR (3),

FIELD='XYZ';
EXEC CICS RETUR. TRNIDC'TRN2')

COMMAREA(TERMINAL_STORAGE);
END;

PROG2:PROC(TERM_STG_PTR) OPTIOBS(MAIN);
DCL TERM_STG_PTR PTR;
DCL 1 TERMINAL_STORAGE BASED (TER!_STG_PTR),

2 FIELD CHAR (3),

IF EIBCALEN>O THEN DO;
IF FIELD='XYZ' THEN FIELD='ABC';
END;

EXEC CICS RETURB;
END;

330 CICS/VS APRM (CL)

(Invoked program)

(Invoking Program)

~nvoking Program)

Program Control Options

COe!AREA(data-area)
specifies a communication area that is to be made available to
the invoked program. For LINK commands, a pointer to the data
area is passed; for XCTL commands, a pointer to the data area
is passed or a copy of it (see "Passing Data to Other Progralls"
earlier in this chapter); and for RETURN commands, because the
data area is freed before the next program is invoked, a copy
of the data area is created and a pointer to the copy is
passed.

ENTRY (pointer-ref)

BOLD

specifies the pointer reference that is to be set to the
address of the entry point in the program, table, or map that
has been loaded.

specifies that the loaded program, table, or map is not to be
deleted (if still resident) when the task issuing the LOAD
command is terminated; deletion is to occur only in response to
a RELEASE command, from this task or from another task.

LENGTB(parameter)
specifies a halfword binary value to be used with LINK, XCTL,
RETURN, and LOAD commands.

For a LINK, XCTL, or RETURN command, the parameter must be a
data value that is the length in bytes of the comaunication
area. If a negative value is supplied, zero is assumed.

For a LOAD command, the parameter must be a data area. On
completion of the LOAD operation, the data area is set to the
length of the loaded program, table, or map.

PROGRAM (name)
specifies the identifier of the program to which control is to
be passed unconditionally (for a LINK or XCTL command); or the
identifier of a program, table, or map to be loaded (for a LOAD
command) or deleted (for a RELEASE command). The specified
name must consist of up to eight alphameric characters and must
have been defined in the processing program table (PPT).

SET (pointer-ref)
. specifies the pointer reference that is to be set to the

address at which a program, table, or map is loaded.

TR1NSID (name)
specifies the transaction identifier to be used with the next
input message entered from the terminal with which the task
that issued the RETURN command has been associated. The
specified name must consist of up to four characters and must
have been defined in the program control table (PCT).

Chapter 4.4. Program Control 331

Program Control Exceptional Conditions

INVREQ

PGMIDERR

occurs if either of the following situations exists:

• A RETURN command with the CO~~AREA option is issued in a
program that is not at the highest logical level.

• A RETURN command with the TR1ISID option is issued in a
task that is not associated with a terminal.

occurs if a program, table, or map cannot be found in the PPT
or is disabled.

Default action: terminate the task abnormally.

332 CICS/VS APRM (CL)

Chapter 4.5. Storage Control

The CICS/VS storage control program controls requests for main storage
to provide intermediate work areas and any other main storage not
provided automatically by CICS/VS but needed to process a transaction.
The acquired main storage can be initialized to any bit configuration;
for example, binary zeros or EBCDIC blanks.

storage control commands are provided to:

• Obtain and initialize main storage (GETaAIN).

• Release main storage (FREE~AIN).

CICS/VS releases all main storage associated with a task when the
task is terminated normally or abnormally. This includes any storage
acquired, and not subsequently released, by the application program.

If there is insufficient main storage to satisfy a GET~AIN command,
the NOSTG exceptional condition occurs and all activity within the task
is suspended until sufficient storage becomes available, when task
activity will be resumed and the requested storage obtained.

The HANDLE CONDITION command can be used to deal with the NOSTG
exceptional condition. Refer to Chapter 1.5 for further information
about exceptional conditions.

Obtain and Initialize Main Storage (GETMAIN)

I

I
I GETMAIH SET (pointer-ref)
I LENGTH (data-value)
I [INITI!G (data-value))
I [SHARED]
I
I
I Exceptional condition: NOSTG L __ ~

This command is used to obtain a specified amount of main storage and,
optionally, to initialize that storage to a specified bit configuration.
The pointer reference specified in the SET option is set to the address
of the acquired storage. The acquired storage is doubleword-aligned.

storage should be released when no longer needed; it will then be
available to other tasks. Shared storage, that is, storage obtained
with the SHARED option, can be used for communication between diferent
tasks and must be explicitly released. Other storage not released will
be released by CICS/VS when the task is terminated.

The following example shows how to obtain a 1024-byte area of main
storage:

EXEC CICS GETMAIN
SET (PTR)
LENGTH (1024)
IN ITIMG (BLANK)

Obtain new storage area
Pointer reference
Size of storage requested
Initialize to blanks

Chapter 4.5. Storage Control 333

Release Main Storage (FREEMAIN)

FREEaAIN DATA(data-area)

This command is used to release main storage previously acquired by a
GETBAIN command. If the task itself does not release the acquired
storage, it is released by CICS/VS when the task is terminated.

The following example shows how to release main storage:

EXEC CICS FBEEMAIN
DATA (BBCOBD)

334 CICS/VS APRM (CL)

Release main storage
Data area

Storage Control Options

D1Tl(data-area)
specifies that the main storage associated with the data area
is to be released. This storage must have been acquired
previously by a GET8AIH command and the length of data released
will be the length obtained by the GETMAIN and not necessarily
the length of the data area.

IBITIMG~ata-value)
specifies the one-byte hexadecimal initialization value for the
acquired main storage. A data area must be provided in COBOL
programs.

LENGTH (data-value)
specifies the length of main storage required as a half word
binary value. The maximum length that can be specified is
32767 bytes.

SET (pointer-ref)

SHARED

specifies the pointer reference to be set to the address of the
acquired main storage. The pointer reference addresses the
user data, and not the CICS/VS control information that
precedes the acquired main storage.

specifi~s that the storage is not to be released on task
termination.

Storage Control Exceptional Conditions

HOSTG
occurs if the requested main storage cannot be obtained.

Default action: suspend task activity until the required main
storage can be provided.

Chapter 4.5. Storage Control 335

Chapter 4.6. Transient Data Control

The CICS/VS transient data control program provides a generalized
queuing facility. Data can be queued (stored) for subsequent internal
or external processing. Selected data, specified in the application
program, can be routed to or from predefined symbolic destinations,
either intrapartition or extrapartition.

Destinations are intrapartition if associated with a facility
allocated to the CICS/VS partition or region, and extrapartition if the
data is directed to a destination that is external to the CICS/VS
partition or region. The destinations must be defined in the
destination control table (DCT) by the system programmer when the
CICS/VS system is generated.

Transient data control commands are provided to:

• Write data to a transient data queue ~RITEQ TD).

• Read data from a transient data queue (READQ TD) •

• Delete an intrapartition transient data queue (DELETEQ TD) •

If TD is omitted, the command is assumed to be for temporary storage
(see Chapter 4.7).

The HANDLE CONDITION command can be used to deal with any exceptional
conditions that occur during the execution of a transient data control
command. Befer to Chapter 1.5 for further information about exceptional
conditions.

Intrapartition Desting!iQfis

Intrapartition destinations are queues of data on direct-access storage
devices for use with one or more programs running as separate tasks.
Data directed to or from these internal destinations is called
intrapartition data; it must consist of variable-length records.
Intrapartition destinations can be associated with either a terminal or
an output data set. Intrapartition data may ultimately be transmitted
upon request to the destination terminal or retrieved sequentially from
the output data set.

Typical uses of intrapartition data include message switching,
broadcasting, data base access and routing of output to several
terminals ~or example, for order distribution), queuing of data (for
example, for assignment of order numbers or priority by arrival), and
data collection (for example, for batched input from 2780 Data
Transmission Terminals). If generated within the system, the CICS/VS
Asynchronous Transaction Processing ~TP) facility can be used to
transfer data to or from an intrapartition destination. (Refer to the
section "Asynchronous Transaction Processing" later in this chapter for
further information.)

The storage associated with an intrapartition queue can be reused.
The system programmer can specify, for each symbolic destination,
whether or not storage tracks are to be reused as the data on them is
read. If the storage is specified to be non-reusable, an intrapartition
queue continues to grow, irrespective of whether the data has been read,

Chapter 4.6. Transient Data Control 337

until a DELETBQ TD command is issued when the whole of an intrapartition
queue is deleted and the storage associated with it is released.

Extrapartition Destinations

Extrapartition destinations are queues (data sets) residing on any
sequential device (OASD, tape, printer, and so on), which are accessible
by programs outside (or within) the CICS/VS partition or region. In
general, sequential extrapartition destinations are used for storing and
retrieving data outside the CICS/VS partition. For example, one task
may read data from a remote terminal, edit the data, and write the
results to a data set for subsequent processing in another partition or
region. Logging data, statistics, and transaction error messages are
examples of data that can be written to extrapartition destinations. In
general, extrapartition data created by CICS/VS is intended for
subsequent hatched input to non-CICS/VS programs. Data can also be
routed to an output device such as a line printsr.

Data directed to or from an external destination is called
extrapartition data and consists of sequential records that are fixed­
length or variable-length, blocked or unblocked. The record format for
an extrapartition destination must be defined in the DCT by the system
programaer. (Refer to the CICStVS System Programmer's Reference Manual
for details.)

Indirect Destinations

Intrapartition and extrapartition destinations can be used as indirect
destinations, which are symbolic references to other destinations. This
facility provides some flexibility in program maintenance in that data
can be routed to a destination known by a different symbolic name,
without the necessity for recompiling existing programs that use the
original name; only the destination control table (nCT) need be changed.
When the DCT has been changed, the application programs can route data
to the destination using the previous symbolic name; however, the
previous name is now an indirect destination that refers to the new
symbolic name. Since indirect destinations are established by means of
destination control table entries, the application programlller need not
usually be concerned with how this is done. Further information is
available in the CICSIYS System Programmer's Reference ftanual.

For intrapartition destinations, CICS/VS provides the option of
automatic task initiation. A basis for automatic task initiation is
established by the system programmer by specifying a non-zero trigger
level for a particular intrapartition destination in the DCT. (See the
discussion of the DFHDCT ~YPE=INTRA macro instruction in the crCStVS
System Program&er's Reference Manual.) When the number of entries
(created by WRITEQ TO commands issued by one or more programs) in the
queue (destination) reacbes the specified trigger level, a task
specified in the definition of the destination is automatically
initiated. Control is passed to a program that processes the data in
the queue; the program must issue repetitive READQ TO commands to
deplete the queue.

338 CICS/VS APRM (CL)

Once the queue has been depleted, a new automatic task initiation
cycle begins. That is, a new task is scheduled for initiation when the
specified trigger level is again reached, whether or not execution of
the prior task has terminated.

If an automatically initiated task does not deplete the queue, access
to the queue is not inhibited. The task may be normally or abnormally
terminated before the queue is emptied ~hat is, before a QZERO
exceptional condition occurs in response to a READQ TD command). If the
destination is a terminal, the same task is reinitiated regardless of
the trigger level. If the destination is a data set, the task is not
reinitiated until the specified trigger level is reached. If the
trigger level of a queue is zero, no task is automatically initiated.
To ensure that termination of an automatically initiated task occurs
when the queue is empty, the application program should test for a QZERO
condition rather than for some application-dependent factor such as an
anticipated number of records; only the QZERO condition indicates a
depleted queue.

Asynchronous Transaction Processing~l

Typically, a task to be run under CICS/VS is initiated from a terminal
and processed at regular intervals until completion, according to system
service patterns established for CICS/VS. This mode of operation is
sometimes referred to as synchronous transaction processing, because the
task has complete control of the terminal which initiated it.

Support for asynchronous transaction processing can also be generated
into a CICS/VS system. This capability is designed primarily to permit
a type of batch processing within CICS/VS. A task is initiated from a
terminal as described above, but the specified transaction
identification code causes a CICS/VS-provided asynchronous transaction
processing program to read the data to an intrapartition data set. In
effect, data collection from a device such as the 2780 Data Transmission
Terminal is possible. When the data has been read, the device is freed
for other activity. An application program processes the data, and,
upon operator request, output is queued for subsequent transmission to a
specified terminal. If the automatic task initiation feature is
generated into CICS/VS, that application program can be initiated
automatically when a specified trigger level is reached (that is, when a
specified number of inputs have been entered in the intrapartition data
set) •

The asynchronous transaction processing (ATP) facility is designed
specifically for handling input from batch terminals like the 2770 and
2780. Generally, ATP can also be used for other, interactive terminals
like the 2741. However, ATP is not intended for, and will not support,
input from the 2980, 3270, or 3735; ATP is not available for VTAM
logical units. Application programs intended to execute under control
of ATP must not contain Basic Mapping Support (BMS) commands requesting
BMS terminal paging facilities.

Additional information concerning the creation of user exits for
asynchronous transaction processing and the coding of the exit routines
is given in the CIest's System Programmer's Reference Manual. The
initiation of ATP by means of terminal commands is described in the
CICS/VS Operator's Guide.

Chapter 4.6. Transient Data Control 339

Write Data to Transient Data Queue (WRITEQ TD)

WRITEQ TD QUEUE (name)
FROM (data-area)
[LENGTH (data-value)]
[SYSID (name)]

Exceptional conditions: IOERR, ISCIHVREQ, LENGERR, HOSPICE,
NOTOPEH, QIDERR, SYSIDERB

This command is used to write transient data to a predefined symbolic
destination. The destination (queue) is identified in the QUEUE option.

The FROM option specifies the data to be written to the queue, and
the LENGTH option specifies the record length. The LENGTH option need
not be specified for extrapartition queues of fixed-length records if
the length is known and a data area of the correct size is available.
If SYSID is specified, LENGTH must be specified as well.

For CICS/DOS/VS, the LENGTH option must be specified for a
destination other than disk; length is not checked. If the LENGTH
option is omitted, the LENGERR condition will occur.

The following example shows how to write data to a predefined
symbolic destination; in this case, the control system message log
(CSKL) :

EXEC CICS WRITEQ TD
QUEUE ('CSKL')
FROM (MESSAGE)
LENGTH (LENG)

write to transient data queue
Queue name (destination)
Data to be written
Data length

Read Data from Transient Data Queue (READQ TD)

READQ TD QUEUE (name)
{SET (pointe r-ref) I INTO (da ta-area)}
[LENGTH (data-area)]
[SY SID (name)]

Exceptional conditions: IOERR, ISCINVREQ, LENGERR, NOTOPEN,
QBUSY (CICS/OS/VS only), QIDERR, QZERO,
SYSIDERR

This command is used to read transient data from a predefined symbolic
source. The source (queue) is identified in the QUEUE option.

The INTO option specifies the area into which the data is to be
placed. The LENGTH option must specify a data area that contains the
maximum length of record that the program will accept. If the record
exceeds this value, it is truncated and the LENGERR condition occurs.
After the retrieval operation, the data area specified in the LENGTH
option is set to the record length (before any truncation occurred) •
The LENGTH option need not be specified for extrapartition queues of
fixed-length records if the length is known and a data area of the

340 CICS/VS APR!'! (CL)

co~rect size is available. If SYSID is specified, LENGTH must be
specified as well.

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of that area. The area is
retained until another transient data command is executed. After the
retrieval operation, the data area specified in the LENGTH option is set
to the record length.

If automatic task initiation is being used (see earlier in the
chapter under "Automatic Task Initiation (ATI) II), the HANDLE CONDITION
QZERO command should be included to ensure that termination of an
automatically initiated task only occurs when the queue is empty.

Por CICS/DOS/VS, the LENGTH option must be specified for a
destination other than disk, when the INTO option is specified. If the
LENGTH option is omitted, the LENGERR condition will occur.

The following example shows how to read a record from an
intrapartition data set (queue), which in this case is the control
system message log (CSML), into a data area specified in the request:

EXEC CICS READQ TD
QUEUE (,CSML I)
INTO (DATA)
LENGTH (LENG)

Read from transient data queue
Queue name (source)
Data area
Length program will accept

The following example shows how to read a record from an
extrapartition data set (queue) having fixed-length records into a data
area provided by CICS/VS; the pointer reference specified by the SET
option is set to the address of the storage area reserved for the data
record. It is assumed that the record length is known.

EXEC CICS READQ TD
QUEUE (EX 1)
SET (PREP)

Read from transient data queue
Queue name (source)
Request pointer reference set

Delete an Intrapartition Transient Data Queue (DELETEQ TO)

DELETEQ TD QUEUE (name)
[SYSID (name)]

Exceptional conditions: ISCINVRBQ, QIDERR, SYSIDERR

I
I
I
I
I
I
•

This command is used to delete all of the transient data associated with
a particular intrapartition destination (queue). All storage associated
with the destination is released (deallocated).

This command must be used to release the storage associated with a
destination specified as non-reusable in the destination control table.
Otherwise, the storage remains allocated to the destination; the data
and the amount of storage associated with the destination continue to
grow whenever a WRITEQ TD command refers to the destination.

Chapter 4.6. Transient Data Control 341

Transient Data Control Options

FRO!! (data-area)
specifies the data that is to be written to the transient data
queue.

INTO (data-area)
specifies the user data area into which the data read from the
transient data queue is to be placed. If this option is
specified, move-mode access is implied.

LENGTH (parameter)
specifies a halfword binary value to be used with WRITEQ TD and
READQ TD commands.

For a WRITEQ TD command, the parameter must be a data value
that is the length of the data that is to be written.

For a READQ TD command with the INTO option, the parameter must
be a data area that specifies the maximum length of data that
the program is prepared to handle. If the value specified is
less than zero, zero is assumed. If the length of the data
exceeds the value specified, the data is truncated to that
value and the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a HEADQ TD command with the SET option, the parameter must
be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

QUEUE (name)
specifies the symbolic name of the queue to be written to, read
from, or deleted. The name must be alphameric, up to four
characters in length, and must have been defined in the
destination control table (DCT) by the system programmer.

When used with the READQ TD command, the name used should not
be that of the system spool file otherwise unpredictable
results or an abnormal termination will occur.

If SYSID is specified, the data set is assumed to be on a
remote system irrespective of whether or not the name is
defined in the FCT. Otherwise the entry in the FCT will be
used to determine if the data set is on a local or remote
system.

SET (pointer-ref)
specifies a pointer reference that is to be set to the address
of the data read from the queue. If this option is specified,
locate-mode access is implied.

SYSID (name) remote systems only
specifies the name of the system whose resources are to be used
for intercommunication facilities. The name may be up to four
characters in length.

342 CICS/VS APRM (CL)

Transient Data Control Exceptional Conditions

IOERR

ISCINVREQ

LENGERR

NOSPACE

NOTOPEN

occurs when an input/output error occurs and the data record in
error is skipped. The IOERR condition occurs so long as the
queue can be read; a QZERO condition occurs when the queue
cannot be read, in which case a restart may be attempted.

Default action: terminate the task abnormally.

occurs when the remote system indicates a failure which does
not correspond to a known condition.

Default action: terminate the task abnormally.

occurs in any of the following situations:

• The LENGTH option is not coded for an input (without the
SET option) or output operation involving variable-length
records.

• The length specified on output is greater than the maximum
record size specified for the queue in the DCT.

• The record read from a queue is longer than the length
specified for the input area; the record is truncated and
the data area supplied in the LENGTH option is set to the
actual record size.

• An incorrect length is specified for a fixed-length-record
input or output operation.

• The LENGTH option is not coded for an input operation
(without the SET option) from, or an output operation to, a
destination other than disk, involving fixed-length
records.

Default action: terminate the task abnormally.

occurs if no more space exists on the intrapartition queue. If
the HOSPACE condition occurs, no more data should be written to
the queue because it may be lost.

Default action: terminate the task abnormally.

occurs if the destination is closed.

Default action: terminate the task abnormally_

Chapter 4.6. Transient Data Control 343

QBUSY (CICSjOS/VS only)

QIDERR

QZERO

SYSIDERR

occurs if a READQ TD command attempts to access a record in an
intrapartition queue that is being written to or is being
deleted by another task. This exceptional condition applies
only to input; output requests are always queuea until the
intrapartition queue is no longer busy.

Default action: the task issuing the READQ TD command waits
until the queue is no longer being used for output.

occurs if the symbolic destination to be used with a transient
data control command cannot be found.

Default action: terminate the task abnormally.

occurs when the destination (queue) accessed by a BEADQ TD
command is empty.

Default action: terminate the task abnormally.

occurs when the SYSID option specifies either a name which is
not defined in the intersystem table, or a system to which the
link is closed.

Default action: terminate the task abnormally.

344 CICS/yS APRM (CL)

Chapter 4.7. Temporary Storage Control

The CICS/VS temporary storage control program provides the application
progranmer with tbe ability to store data in temporary storage queues,
either in min storage, or in auxiliary storage on a direct-access
storage device. Data stored in a temporary storage queue is known as
temporary data.

Temporary storage control commands are pr~ided to:

• Write data to a temporary storage queue {WRITEQ TS) •

• Update data in a temporary storage queue (WRITEQ TS REWRITE) •

• Read data from a temporary storage queue (READQ TS) •

• Delete a temporary storage queue (DELETEQ TS) •

If TS is omitted, the command is assumed to be for temporary storage,
not for transient data whiCh has similar commands.

The HANDLE CONDITION and IGNORE CONDITION commands can be used to
deal with any exceptional conditions that occur during the execution of
a temporary storage control command. Refer to Chapter 1.5 for further
information about exceptional conditions.

Temporary Storage Queues

Temporary storage queues are identified by symbolic names of up to eight
characters assigned by the originating task. Temporary data can be
retrieved by the originating task or by any other task using the
symbolic name assigned to it. Specific i terns (logical records) wi thin a
queue are referred to by relative position numbers. To avoid conflicts
~aused by duplicate names, a naming convention should be established,
for example, the operator identifier, tenninal identifier, or
transaction identifier could be used as a prefix or suffix to eaCh
programmer-supplied symbolic name.

Temporary storage queues remain intact until they are deleted by the
originating task or by any other task; prior to deletion, they can be
accessed any number of times. Even after the originating task is
terminated, temporary data can be accessed by other tasks through
references to the symbolic name under which it was stored.

Temporary data can be stored either in main storage or in auxiliary
storage. Generally, main storage should be used if the data is needed
for short periods of time; auxiliary storage soould be used if the data
is to be kept for long periods of time. Data stored in auxiliary
storage is retained after CICS/VS termination and can be recovered in a
subsequent restart, but data in main storage cannot be recovered. Main
storage might be used to pass data from task to task, or for unique
storage that allows programs to meet the requirement of CICS/VS that
they be quasi-reentrant ~hat is, serially reusable between entry and
exit points of the program) •

Chapter 4.7. Temporary Storage COntrol 345

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Typical Uses of Temporary Storaqe Control

A temporary storage qUeue having only one record can be treated as a
sing-le unit of data that can be accessed using its symbolic name. Using
temporary storage control in this way provides a typical -scratch pad­
facility. This type of storage should be accessed using the READQ TS
oonunand with the ITEM (1) option; failure .to do so may cause the ITEMERR
condition to be raised.

In general, temporary storage queues of more than one record should
be used only when direct access or repeated access to records is
necessary; transient data control provides facilities for efficient
handling of sequential data sets.

Some uses of temporary storage queues follow:

• Tenninal paging. A task could retrieve a large master record from
a direct-access data set, format it into several screen images
(using Basic Mapping Support) , store the screen images temporarily
in auxiliary storage, and then ask the terminal operator which
-page- ~creen image) is desired. The application programmer can
provide a program (as a generalized routine or unique to a single
application) to advance page by page, advance or back up a relative
number of pages, and so on.

• A suspend data set. Assume a data collection task is in progre ss
at a terminal. The task reads one or more units of input and then
allows the terminal operator to interrupt the process by some kind
of coded input. If not interrupted, the task repeats the data
collection process. If interrupted, the task writes its
-incomplete- data to temporary storage and terminates. The
terminal is now free to process a different transaction (perhaps a
high-priority inquiry). When the terminal is available to continue
data collection, the operator initiates the task in a -resume­
mode, causing the task to recall its suspended data from temporary
storage and continue as though it had not been interrupted.

• Preprinted forms. An application program can accept data to be
written as output on a preprinted form. This data can be stored in
temporary storage as it arrives. When all the data has been
stored, it can first be validated and then sent to output in the
order required by the format of the preprinted form.

346 CICS/VS APRM eCL)

Write Data to a Temporary Storage Queue (WRITEQ TS)

r--'---,
WRITEQ TS QUEUE (name)

FROM (data-area)
LENGTH (data-value)
[ITEM (data-area) [REWRITE]]
[SYS ID (name)]
[MAIN I AUXILIARY]

Exceptional conditions: INVREQ, IOERR, ISCINVREQ, ITEMERR,
NOSPACE, QIDERR, SYSIDERR

This corrmanq. is used to store temporary data (records) in a temporary
stor age queue in main or auxiliary storage. Data written to a temporary
storage queue on a remote system will always be written to auxiliary
storage.

The queue is identified in the QUEUE option. The FROM and LENGTH
options are used to specify the record that is to be written to the
queue, and its length.

If the ITEM option is specified, CICS/VS assigns an item number to
the record in the queuej and sets the data area supplied in that option
to the item number. If the record starts a new queue, the item number
assigned is 1; subsequent item numbers follow on sequentially.

The REWRITE option specifies that records are to be updated, in which
case the ITEM option must also be specified to identify the item
(record) that is to be replaced by the data identified in the FRCM
option. If the specified queue exists, but the specified item cannot be
found, the ITEMERR condition occurs. If the specified queue does not
exist, the QIDERR condition occurs.

The maximum temporary storage record size is based on user-specified
data set characteristics. ~ee the relevant CICStVS System Programmer's
Guide for details.)

The following example shows how to write a record to a temporary
storage queue in auxiliary storage:

EXEC CICS WRITEQ TS
QUEUE (UNIQNAME)
FROM (MESSAGE)
LENGTH (LENGTH)
ITEM (DREF)

Write to temporary storage queue
Queue name
Data to be written
Data length
Accept item number

The following example shows how to update a record in a temporary
storage queue in main storage:

EXEC CICS WRITEQ TS
QUEUE ('TEMPQl .)
FROM (DATAFLD)
LENGTH (40)
ITEM (ITEMFLD)
REWRITE
MAIN

Write to temporary storage queue
Queue name
Data to be written
Data length
Provide item number
Data is to update record
Queue is in main storage

Chapter 4. 1. Temporary Storage Control 341

Page of SC33-0077-2; reviselSeptember 1980 by TNL SN33-6268

Read Data from TeDiporary8torage Queue (READQ T8)

i

J
I
I
I
I
I
I
I
I ,

READQ TS QUEUE (name)
{SET (pointer-ref)
LENGTH (data--a.rea)
[ITEM (data~value)
[SYSID (name)]

INTO(data-area)}

NEXT]

Exceptional conditions: IOERR, I SCINVREQ, ITEMERR, LEN3ERR,
QIDERR;SYSIDERR

This corrrnand is used to retrieve data from a temporary storage queue in
main or auxiliary storage. The queue is identified in the QUEUE option.

T.he INTO option specifies the area into which the data is to be
placed. The LENGTH optionrnust specify a data area that contains the
maximum length of record that the program will accept. If the record
length exceeds the specified maximum l~gth, it is truncated and the
LENGERR condition occurs. After the retrieval operation, the data area
specified in the LENGTH option is set to the record length ~efore any
truncation occurred).

Alternati vely; a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of the record. The area
is retained until another READQ TS command is executed. After the
retrieval operation, the data area specified in the LENGTH option is set
to the record length.

The ITEM and NEXT options are used to specify which record (item)
within a queue is to be read.' If the ITEM option is specified, the
record with the specified item number is retrieved. If the NEXT option
is in effect (either explicitly or by default) , the next record after
the last record to be retrieved (by. any task) is retrieved. Therefore,
if different tasks are to access the same queue and each task is to
start at the beginning of the queue, the ITEM option must be used.

The following example shows how to read the first (or only) record
from a temporary storage queue into a data area specified in the
request:

EXEC CICS READQ TS
QUEUE .(UNIQNAME)
INTO (DATA)
LENGTH (LDATA)

Read from temporary storage queue
Queue name
Data area
Length program will accept

The following example shows how to read the next record from a
temporary storage queue into a data area provided by CICS/VS; the
pointer reference specified by the SET option is set to the address of
the storage area reserved for the data record.

EXEC CICSREADQ TS
QUEUE (DESCRQ)
SET (PREF)
LENGTH (LENG)
NEXT

348 CICSj'VS APRM (CL)

Read fran temporary storage queue
Queue name
Request pointer reference set
Length of data retrieved
Specify next record in queue
~EXT could be omitted because
it is the default) •

Delete Temporary Storage Queue (DELETEQ TS)

DELETEQ TS QUEUE (name)
[SYSID (name)]

Exceptional conditions: ISCINVREQ, QIDERR, SYSIDERR

This com.and is used to delete all the temporary data associated with a
temporary storage queue. All storage associated with the queue is
freed.

Temporary data should be deleted at the earliest possible time to
avoid using excessive amounts of storage.

Chapter 4.7. Temporary Storage Control 349

Temporary Storage Control Options

AUXILIARY
specifies that the temporary storage queue is on a direct­
access storage device in auxiliary storage.

FROl! (data-area)
specifies the data that is to be written to temporary storage.

INTO (data~rea)
specifies the data area into which the data is to be written.
The data area may be any variable, array, or structure. If
this option is specified, move-~ode access is implied.

ITEl!(parameter)
specifies a halfword binary value to be used with WRITEQ TS and
READQ TS commands.

When used with a WRITEQ TS command in which the REWRITE option
is not specified, "parameter" must be a data area that is to be
set to the item (record) number assigned to this record in the
queue. If the BEWRI'rE option is specified, the data area
specifies the item in the queue that is to be replaced.

When used with a READQ TS command, "parameter" specifies the
item number of the logical record to be retrieved from the
queue. The parameter must be a data value that is to be taken
as the relative number of the logical record to be retrieved.
This number may be the number of any item that has been written
to the temporary storage queue.

LENGTH (parameter)

MAIN

NEXT

specifies the ~_dgth (as a half word binary value) of the data
to be used with WBITEQ TS and READQ TS commands.

For a WBITEQ TS command, the parameter must be a data value
that is the length of the data that is to be written.

For a READQ TS command with the INTO option, the parameter must
be a data area that specifies the maximum length of data that
the program is prepared to handle. If the value specified is
less than zero, zero is assumed. If the length of the data
exceeds the value specified, the data is truncated to that
value and the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a READQ TS command with the SET option, the parameter must
be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

specifies that the temporary storage queue is in main storage.

specifies that the next sequential logical record following the
last record to be retrieved (by any task) is to be retrieved.

350 CICS/VS APRK (CL)

QUEUE (name)

REWRITE

specifies the symbolic name of the queue to be written to, read
from, or deleted. If the queue name appears in the TST, and
the entry is marked as remote, the request is shipped to a
remote system. The name must be alphameric, up to eight
characters in length, and must be unique within the CICS/VS
system. Do not use hexadecimal IFAI through IFFI as the first
character of the name; these characters are reserved for
CICS/VS use.

specifies that the existing record in the queue is to be
overwritten with the data provided. If the REWRITE option is
specified, the ITEM option must also be specified. If the
specified queue does not exist, the QIDERR condition occurs.
If the correct item within an existing queue cannot be found,
the ITEKERB condition occurs but the data is not stored.

SET (pointer-ref)
specifies the pointer reference that is to be set to the
address of the retrieved data. If this option is specified,
locate-mode access is implied.

SYSID(name) (remote systems only)
specifies the name of the system whose resources are to be used
for intercommunication facilities. The name may be up to four
characters in length.

Chapter q.7. Temporary storage Control 351

Temporary Storage Control Exceptional Conditions

lNVREQ

lOERR

lSClNVREQ

lTEKERR

LENGERR

NOSPACE

QIDERR

SYSIDERR

occurs when a WRlTEQ TS com.and refers to data whose length'is
equal to zero or exceeds a certain size related to the size of
the control interval of the auxiliary data set. (Refer to the
relevant £IC~L!~ System Programmer~2-2~~de for details.)

Default action: terminate the task abnormally.

occurs when there is an unrecoverable input/output error.

Default action: terminate the task abnormally.

occurs when the remote system indicates a failure which does
not correspond to a known condition.

Default action: terminate the task abnormally.

occurs when the item number specified or implied by a READQ TS
comaand, or a WRITEQ TS command with the REWRITE option, is
invalid (that is, outside the range of entry numbers assigned
for the queue) •

Default action: terminate the task abnormally.

occurs if the length of the stored data is greater than the
value specified by the LENGTH option for move-mode input
operations.

Default action: terminate the task abnormally.

occurs when insufficient space is available in the temporary
storage queue to contain the data.

Default action: suspend the task until space becomes available
as it is released by other tasks; then return normally.

occurs when the queue cannot be found, either in main storage
or in auxiliary storage.

Default action: terminate the task abnormally.

occurs when the SYSID option specifies either a name which is
not defined in the intersystem table, or a system to which the
link is closed.

Default action: terminate the task abnormally.

352 CICS/VS APRM (CL)

Part 5. Recovery and Debugging

Chapter 5.1. Introduction to Recovery and Debugging

Chapter 5.2. Abnormal Termination Recovery

Chapter 5.3. Trace Control

Chapter 5.4. DUllp Control

Chapter 5.5. Journal Control

Chapter 5.6. Recovery (Sync Points)

353

Chapter 5.1. Introduction to Recovery and Debugging

CICS/VS application programs are executed in an interactive environment.
As a result, the operating system, CICS/VS itself, and the application
programs must be responsive to many factors. Because the network on
which the CICS/VS system is based consists of a variety of terminals and
sUbsystems from which requests for services are received at random, the
relationships between application programs and data set activity differ
from one moment to the next.

CICS/VS provides the following aids to the testing, monitoring, and
debugging of application programs:

• .Execution (Command Level) Diagnostic Facility (EDF). Allows
commands to be displayed in source form on a screen, both before
and after execution so that they can be checked and altered if
necessary. This facility is described in Chapter 1.1.

• Sequential terminal support. Enables sequential devices, such as
card readers and disk units, to simulate online interactive
terminals or subsystems of a CICS/VS network so that early testing
can be carried out.

• Abnormal termination recovery. The HANDLE ABEND command can be
used to deal with abnormal termination conditions, and the ABEND
command can be used to cause a task to be terminated abnormally.

• Trace facility. A trace table containing entries that reflect the
execution of various CICS/VS commands, and entries generated by
application programs, can be writtan to main storage and,
optionally, to an auxiliary storage device.

• Dump facility. Specified areas of main storage can be dumped onto
a sequential data set, either tape or disk, for subsequent offline
formatting and printing using a CICS/VS utility program.

• Journals. Facilities are provided for creating entries in special
data sets called journals, for statistical or monitoring purposes;
the system log is a journal.

• Recovery. When a task is abnormally terminated, CICS/VS can
restore certain resources to their original state so that a
transaction can be resubaitted for restart with no further action
by the operator. The SYNCPOINT command can be used to subdivide a
program so that only the uncompleted part of a transaction need be
resubmitted.

Sequential terminal support, for which no special CICS/VS commands
are required, is described below. The other facilities, and the
commands that enable the application programmer to make use of them, are
discussed in the other chapters of this part.

Chapter 5.1. Introduction to Recovery and Debugging 355

Sequential Terminal Support

Even at the simplest level of program testing, the programmer should
take the following into consideration. It is inefficient and error­
prone to test a program from a terminal if all test data must be keyed
into the system from that terminal for each test case. The programmer
cannot easily retain a backlog of proven test data and quickly test
programs through the key-driven terminal as changes are made.

CICS/VS allows the application programmer to begin testing his
programs without the use of a telecommunication device. It is possible
for the system programmer to specify through the terminal control table
(TCT) that sequential devices be used as terminals. These sequential
devices may be card readers, line printers, disk units, or magnetic tape
units. In fact, the terminal control table can include combinations of
sequential devices such as: card reader and line printer ~RLP), one or
more disk or tape data sets as input, one or more disk or tape data sets
as output. A TCT that contains references to these sequential terminals
can also define other true telecommunications terminals in the system.

The input data submitted from a sequential device must be prepared in
the form in Which it would come from a telecommunication device. The
input data must start with a transaction identification code of up to
four characters, unless the transaction identification is predefined in
the TCT. If there is more data, and the transaction identification code
has less than four characters, a system-defined transaction code
delimiter or a blank must precede the extra data. If a sequential
device is being used as a terminal, an end-of-data indicator (a 0-2-8
punched card code (XIEOI) or the equivalent as specified when the
CICSjVS system is generated) must follow the input message or the
system-defined data termination character. The input is processed
sequentially and must be unblocked. The Sequential Access Method (SAM)
is used to read and write the necessary inputs and outputs. The
operating system utilities can be used to create the input data sets and
print the output data sets.

Using this approach, it is possible to prepare a stream of
transaction test cases to do the basic testing of a program module. As
the testing progresses, the user can generate additional transaction
streams to validate the multiprogramming capabilities of his programs or
to allow transaction test cases to be run concurrently.

For operational convenience, it is usually appropriate to place a
terminating transaction at the end of each input stream. For tests that
use a single input stream, the transaction can be CSMT SHUTDOWN with
appropriate responses following the initial message to respond to the
CSMT queries about the mode of shutdown. In a batch-only testing
environment, this enables CICS/VS to be terminated in an orderly manner
without operator intervention. .

Where more than one sequential input stream is used, only one should
include the CSMT SHUTDOWN transaction. Others can be terminated with
CSSF GOODNIGHT.

At some point in testing, it is necessary to use telecommunication
devices to ensure that the transaction formats are satisfactory, that
the terminal operational approach is satisfactory, and that the
transactions can be processed on the terminal. The terminal control
table can be altered to contain more and different devices as the
testing requirements change.

When the testing has proved that transactions can be processed
concurrently and the necessary data sets (actual or duplicate) for
online operation have been created, the user begins testing in a

356 CICS/VS APRM (eL)

controlled environment with the telecommunication devices. In this
controlled environment, the transaction test cases should represent all
functions of the eventual system, but on a saaller, measurable scale.
For example, a company whose information system will work with 15
district offices may select one district office for the controlled test.
During the controlled test, all transactions, data set activity, and
output activity from the system should be monitored closely.

Requests for input or output from a sequential terminal are "expressed
by means of terminal control commands in the normal way. In response to
a RECEIVE command, where the terminal has been described in the terminal
control table as a CRLP, DISK, or TAPE terminal, data is read from the
input data set until anyone of the following situations occurs:

• An end-of-data indicator is detected in the input stream. (The
indicator must be defined by the user when the CICS/VS system is
generated.)

• sufficient input has be~n read to fill the input area associated
with the line used for transmission. If an end-of-data indicator
is not detected before the input area is filled, all further data
preceding an end-of-data indicator is bypassed and treated as a
system error, which is passed to the user-installation terminal
error program (DFHTEP).

• End-of-file (EOF) is detected. The input operation is considered
complete. Any subsequent RECEIVE command is treated as a system
error, which is passed to the user-installation terminal error
program (DFHTEP) with a response code of 4. (In a CICSjDOS/VS
system, EOF applies only to a card reader.)

In response to a SEND command for a CRLP terminal, lines are written
in print format as follows:

• If there is no new-line (X'lS') character within the number of
characters contained in one print line of the specified line size
~s defined by the system programmer in the LPLEN option of the

DFHTCT TYPE=TERMINAL macro) , the output is written in fixed-length
lines of the size specified.

• If new-line characters are encountered, a new line is begun for
each one.

Writing of output continues until the end of the user data is
reached.

For additional information concerning terminal control commands,
refer to Chapter 3.2.

Chapter 5.1. Introduction to Recovery and Debugging 351

Chapter 5.2. Abnormal Termination Recovery

During abnormal termination of a task, a program-level abend exit
facility is provided in CICS/VS so that a user-written exit routine can
be executed if desired. One example of a function performed by such a
routine is the "clean-up" of a program that has started but not
completed normally. An abend exit within an application program is
activated in response to a HANDLE ABEND command. The same command can
be used to cancel a previously activated exit.

The ABEND command can be used to abnormally terminate a task and so
cause an active exit routine to be executed. The ABEND command can
include a request for a dump.

A HANDLE ABEND command overrides any preceding such comaand in any
application program at the same logical level. Each application program
of a transaction can have its own exit, but only one exit at each
logical level can be active. (Logical levels are explained in Chapter
4.4.)

When a task is abnormally terminated, CICS/VS searches for an active
exit, starting at the logical level of the application program in which
the abend occurred, and proceeding, if necessary, to successively higher
levels. The first active exit found, if any, is given control. This
procedure is shown in Figure 5.2-1, which also shows how subsequent
abend exit processing is determined by the user-written exit routine.

Chapter 5.2. Abnormal Termination Recovery 359

Look at the
next highest
logical level

Figure 5.2-1.

No

No Yes

ABEND Exit Processing

Task ABEND

Terminate the
task

Yes

Action taken in
exit program or
routine

No

Exit to program
at next higher
logical level

Deactivate the
exit

Link to program
or branch to label

Terminate the
task

To prevent recursive abends in an exit routine, CICS/VS deactivates
an exit upon entry to the exit routine. If a retry of the operation is
attempted, the application programmer can branch to a point in the
program that was in control at the time of the abend and issue a HANDLE
ABEND RESET com.and to reactivate the exit. This command can also be
used to reactivate an exit ~t the logical level of the issuing program)
that was canceled previously as described above.

Refer to the section dealing with creation of task abend exits in the
CICS/VS SYstem Proqrammer's Reference Manual for additional information
about exit routines,and to the CICS/VS Messages and Codes manual for a
list of the transaction abend codes generated for abnormal terminations
initiated by CICS/VS.

360 CICS/VS APRM (CL)

Handle an Abnormal Termination Exit (HANDLE ABEND)

HANDLE ABEND {PROGRAM(name) I LABEL (label) CANCEL I RESET}

Exceptional condition: PGMIDERR (if PROGRAM specified) L __ ~

This command is used to activate, cancel, or reactivate an exit for
abnormal termination processing.

When activating an exit, the PROGR!! option must be used to specify
the name of a program to receive control, or (except for PL/I programs)
the LABEL option must be used to specify a program label to which
control will branch, when an abnormal termination condition occurs. A
HANDLE ABEND PROGRA! or HANDLE ABEND LABEL command overrides any
previous such request in any application program at the same logical
level.

If intersystem communication is being used, an abnormal termination
in the remote system may cause a branch to the specified program or
label, but subsequent requests to use resources in the remote system
will not be processed.

A HANDLE ABEND command with the CANCEL option will cancel a
previously established exit at the logical level of the application
program in control.

A HANDLE ABEND command with the RESET option will reactivate an
abnormal termination exit that was canceled by a HANDLE ABEND CANCEL
command or by CICS/VS. This command would usually be issued in an
abnormal termination exit routine.

When an XCTL command is to be used to transfer control from an
application program, there is a potential problem if an exit label
(rather than a program) has been specified within that application
program, and the exit is still active when control is transferred. If,
later, CICS/VS needs more storage, the storage occupied by the
application program may be reused, and an attempt to transfer control to
the reused storage, as a result of a subsequent task abend, will have
unpredictable results. This situation will not occur if an exit program
is specified, instead of a label. Labels can be used without this risk
in application programs that do not use an XCTL command.

When the label specified in a HANDLE ABEND LABEL command receives
control, the registers are set as follows:

assembler
language:

COBOL:

R15
RO-14

Abend label.
Contents at the time of the last CICS/VS
service request.

Control returns to the HANDLE ABEND command with
the registers restored; COBOL GO TO statement is
then executed.

The follOWing example shows how to establish a program as an exit:

EXEC CICS HANDLE ABEND
PROGRAM (IEXITPG"I)

Activate abend exit
Program name

Chapter 5.2. Abnormal Termination Recovery 361

Terminate Task Abnormally (ABEND)

I
I ABEND [ABCODE(name)]
I [CANCEL]
I L __ ~

This command is used to request that a task be terminated abnormally.

The main storage associated with the terminated task is released;
optionally, a dump of this storage can be obtained first by using the
ABCODE option to specify a four-character abnormal termination code,
which CICS/VS will place in the formatted storage dump to identify it.

If the CANCEL option is specified, all abnormal termination exits
established by BANDLE ABEND commands at any level in the task are

I canceled before the task is terminated. If the PLjI STAE execution-time
I option has been specified, an abnormal termination exit will have been
I established by PL/I. This exit is revoked by the CANCEL option. (Refer
I to the ~LI Optimizing_~Q!pilg£_Programmer·s Guide for further
I information.)

The following example shows how to terminate a task abnormally:

EXEC CICS ABEND
ABCODE(ABCD)

362 CICS/VS APR! (CL)

Terminate a task
Dump required

Abnormal Termination Recovery Options

A BCODE (na me)

CANCEL

specifies that main storage related to the task that is being
terminated is to be dumped and provides a name to identify the
dump. The specified name may consist of up to four characters.

specifies that exits established by HANDLE ABEND and ABEND
commands are to be canceled; in effect they are ignored. A
HANDLE ABEND CANCEL command cancels a previously established
exit at the logical level of the application program in
control. An ABEND CANCEL command cancels all exits at any
level in the task (and terminates the task abnormally) •

LABEL (label)
specifies the program label to which control will branch if
abnormal termination occurs. This option cannot be used for
PL/I application programs.

PROGRAM (name)

RESET

specifies the name of the program to which control is to be
passed if the task is terminated abnormally. The name can
consist of up to eight alphameric characters and must have been
defined in the processing program table (PPT).

specifies that an exit canceled by a HANDLE ABEND CANCEL
command is to be reactivated.

Abnormal Termination Recovery Exceptional Conditions

PGMIDERR
occurs if a program cannot be found in the PPT or is disabled.

Default action: terminate the task abnormally.

Chapter 5.2. Abnormal Termination Recovery 363

Chapter 5.3. Trace Control

The CICS/VS trace control program is a debugging and monitoring aid for
application programmers and IBM field engineers. This facility makes
use of a trace table consisting of entries produced in response to trace
control requests; the trace table resides in main storage. The CICS/VS
auxiliary trace facility allows trace records to be written on a
sequential device for later analysis.

Trace control commands are provided to:

• Specify user trace entry point or event monitoring point (ENTER).

• Control the CICS/VS trace facility (TRACE ON and TRACE OFF) •

Trace Entry Points,

The points at which trace entries are produced during CICS/VS operation
are of two types: system trace entry points and user trace entry points.

~ystem trace entry ~ints - points within CICS/VS at which trace
control requests are made. The only system trace entry points that need
concern the command-level application programmer are the EXEC-interface­
program trace points, which produce entries in the trace table whenever
a CICS/VS command is executed. Two trace entries are made: the first
when the command is issued, and the second when CICS/VS has performed
the required function and is about to return control to the application
program. Between them, these two trace entries allow the flow of
control through an application program to be traced, and a check to be
made on which exceptional conditions occurred during its execution.
(The TRACE ON, TRACE OFF, ABEND, ICTL, and RETURN commands produce
single entries.)

User trace entry points - additional points within an application
program that need to be included in the trace table to allow complete
program debugging. For example, a program loop would need a trace entry
to be produced containing a counter value showing the number of times
that the loop had been entered. User trace entries are produced
wherever an ENTER command is issued. Each trace entry request can be
given a unique identifer and can cause 8 bytes of data to be placed in
the trace table.

Event Monitoring Points

An event monitoring point ~MP) can be specified by means of the MONITOR
option of the ENTER command. Accounting data and performance data can
be selected optionally by means of the ACCOUNT and PERFORM options.
These two options specify that at this point in the application
programs, as long as monitoring has been specified by the system
programmer, accounting and performance data is to be recorded in
auxiliary storage. Here it can be used subsequently, in conjunction
with similar data recorded automatically by the system, as input to
offline analysis and reporting programs. More information on the use of
monitoring is given in the CI£~!~~Y2te~-E~grammer's Reference ~anual.

Chapter 5.3. Trace Control 365

Trace Facility Control

The CICS/VS trace facility is controlled by a number of trace flags; the
flags are stored within CICS/VS and the TRACE OB and TRACE OFF commands
are used to turn them on or off.

There is a master system trace flag, which must be on before any
system trace entries are produced, and a separate system flag for each
type of system trace entry. The master system trace flag can be turned
on or off independently of individual system trace flags; thus the
system trace pattern of activity can be left intact but controlled as a
single unit. When the master system trace flag and one or more system
trace flags are on, the relevant system trace entries are produced for
all active tasks, and tasks that become active subsequently, until the
flags are turned off again.

The TRACE 01 and TRACE OFF commands can be used to control the system
trace flags for other parts of CICS/VS, should it be necessary to debug
a program down to the level of the CICS/VS macro instructions issued by
the EXEC interface program; for further details, see later in this
chapter under "Control the CICS/VS Trace Facility".

There is a master user trace flag, and an individual user trace flag
for each task. If the master user trace flag is on, requested user
trace entries are produced for all active tasks, and tasks that become
active subsequently, until the flag is turned off again. Each
individual user trace flag controls user trace entries only for the task
that turns the flag on or off.

The master terminal operator can turn the whole CICS/VS trace
facility on or off by entering suitable instructions; all flags are
turned on or off together when this method is used.

Trace Table Format

The CICS/VS trace table is located in main storage; it is possible to
gain access to it by investigating a dump. The trace table consists of
a trace header and a variable number of fixed-length entries produced by
trace control requests. Each entry in the trace table is 16 bytes in
length and is aligned on a double-doubleword boundary. The trace table
area is of a fixed size specified by the system programmer, and entries
are placed in the table in a wraparound manner; that is, when the table
is full, the next entry is placed at the head of the table, overwriting
the original entry. The format of the trace header is:

0-3
4-7
8-11
12-15

Contents

Address of the last-used entry
Address of the beginning of the table
Address of the end of the table
Reserved

The formats of the two kinds of EXEC-interface-program trace entries
and of user trace entries are given in Figures 5.3-1 through 5.3-3.

366 CICS/VS APRM (CL)

Bytes

0

1-3

4

5 (bits

5 (bits

6,7

8-11

12,13

14,15

0-3)

4-7)

Contents

X'El' trace identifier.

Return point in the application program.

Not used.

X'O', identifying the first entry for the command.

Not used.

User task sequence number (packed decimal).

Assembler language: address of the dynamic storage
addressed by DFBEISTG DSECT.

COBOL: address of the Working-Storage Section.

PL/I: address of the Dynamic storage Area (DSA)

Not used.

Code identifying the CICS/VS command. See field
EIBFN in Appendix A for details.

Figure 5.3-1. Trace Entry Format on Issuance of Command

r---,
Bytes Contents

o X'El' trace identifier.

1-3 Return point in the application program; if the
response code in bytes 8-13 'is non-zero, these
bytes will contain the address of the label
specified in the HANDLE CONDITION command
associated with the response.

4 EIBGDI

5(bits 0-3) XIF', identifying the second entry for the command.

5(bits 4-7) Not used.

6,7 User task sequence number (packed decimal) •

8-13 Response code. Zero response code signifies that
no exceptional conditions occurred during execution
of the command. If the response is non-zero, see
field EIBRCODE in Appendix A for details.

14,15 Code identifying the CICS/VS command (same as bytes
14 and 15 in Figure 5.3-1.)

Figure 5.3-2. Trace Entry Format on Completion of Command Function

Chapter 5.3. Trace Control 367

r

Bytes

0

1-3

4

5 (bits

5 (bits

6,1

8-15

0-3)

4-1)

Contents

Trace identifier, being the binary value specified
in the ENTER command.

Return point in the application program.

Not used.

Not used.

X121, identifying this entry as a user trace entry.

User task sequence number (packed decimal) •

Data field supplied in the ENTER command.

Pigure 5.3-3. user Trace Entry Format

If consecutive, duplicate entries for the trace table are generated,
the first entry has the fora of a standard entry, but subsequent
identical entries are replaced by a single special entry, immediately
following the first entry. The trace identifier of this special entry
(in byte 0) is XIPDI; bytes 1-3 contain a packed decimal number that

shows how many repeated entries have been replaced by this single entry.
Trace table entries with the trace identifiers XIPEI or Xippi indicate
the turning on or turning off, respectively, of the trace facility.
Details of these and other CICSjVS trace entries are given in the
CICS/VS Problem Determination Guide.

CICS/VS Auxiliary Trace Facility

All trace entries that are written to the trace table can also be
written to the auxiliary trace data set (provided that the auxiliary
trace program has been generated and has been activated by the master
terminal operator). Whereas the entries written to the trace table wrap
around, the auxiliary trace data set contains all of the trace table
entries that have been made. The CICS/VS Trace utility Program (DPHTUP)
can be used to process and print selected trace entries from the data
set (for example, all the EXEC-interface-program trace entries). The
printout also shows the time at which each trace entry was produced.

368 CICS/VS APRM (CL)

User Trace Entry Point and Event Monitoring Point (ENTER)

ENTER TR1CEID(data-value)
[FRO!! (da ta-area)]
[ACCOONT]
[MONITOR]
[PERFOR!]

This command is used to specify a point within an application program at
which a user trace table entry is to be produced (if the trace facility
has been turned on for this type of entry).

This command is used also to specify an event monitoring point
(specify!ONITOR). The recording of accounting or performance data can
be specified optionally by the ACCOUNT or PERFOR! options.

A trace id~ntifier in the range 0 through 199 must be provided in the
TRACEID option; this will appear in the first byte of the trace table
entry that is produced. Optionally, 8 bytes of data can be supplied in
the FRO! option; this data will appear in bytes 8-15 of the trace table
entry.

The following example shows how to specify that a user trace table
entry should be produced:

EXEC CICS ENTER
TRACEID (123)
FROl!(MSG)

Specify trace entry point
Trace identifier
Provide data

Chapter 5.3. Trace Control 369

Control the CICS/VS Trace Facility (TRACE ON, TRACE OFF)

t

I
I TRACE {ON I OFF} [SYSTElt]
I [EI]
I [USER]
I [SINGLE 1
I L ___ ~

These commands are used to control the CICS/VS trace facility by turning
on and off the various trace flags. (See the section "Trace Facility
Control" earlier in this chapter for detail.s of trace flags.)

A TRACE ON or TRACE OFF command without options controls the entire
CICS/VS trace facility but leaves the established pattern of trace
activity undisturbed.

The SYSTBlt option controls the master system trace flag, which must
be on before any system trace table entries are produced. The EI option
controls the EXEC-interface-program system trace flag. The USER option
controls the master user trace flag, and the SINGLE option controls the
user trace flag for the task.

The following example shows how to turn on the master system and
EXEC-interface-program system trace flags to start tracing of CICS/VS
commands:

EXEC CICS TRACE ON
SYSTEM
EI

KACRO-LEVEL TRACE FACILITIES

Turn on trace flags
ltaster system trace flag
EXEC-interface flag

If debugging at the Dacro level is necessary, an additional option, ALL,
can be used, specifying that the entire CICS/VS trace facility is to be
controlled by the TRACE ON and TRACE OFF commands. It has the same
effect as a master terminal trace control instruction and affects all
master, system, and user trace flags.

The following options can only be used in conjunction with the SYSTElI
option but no system trace entries will be produced unless the master
system trace flag is on. Each option specifies that the system trace
entries produced by the associated program are controlled by the TRACE
ON and TRACE OFF commands. The options can be specified in any
combination and in any order.

Q.ption CICSLVS Program option CICS/VS PrQg,~

BF Built-in Function KC Task Control
BlI Basic Mapping Support PC Program Control
DC Dump Control SC Storage Control
DI Batch Data Interchange SP Sync Point
FC File Control TC Terminal Control
IC Interval Control TD Transient Data
IS ISC TS Temporary Storage
JC Journal Control UE User Exit Interface

370 CICS/VS APRM (eL)

Trace Control Options

ACCOUNT

EI

specifies that accounting data is to be recorded when an event
monitoring point has been specified.

specifies that tracing of CICS/VS commands through the EXEC
interface program is affected by the TRACE ON or TRACE OFF
command.

FROM (da ta-area)

"ONITOR

PERFOR"

SINGLE

SYSTEM

specifies an 8-byte data area whose contents are to be entered
into the data field of the trace table entry. When used for
monitoring, the data area is the same as the DATAl and DATA2
areas specified in the DFBftCT TYPE=E"P system macro.

specifies that an event monitoring point, rather than a trace
entry point, .is to be recorded.

specifies that performance data is to be recorded when an event
monitoring point has been specified.

specifies that the TRACE ON or TRACE OFF command applies to
user entries of the single task issuing the request for the
duration of the task.

specifies that all trace entries made from within CICS/VS are
affected by the TRACE ON or TRACE OFF command.

This option controls the master system trace flag but does not
change the status of individual system trace flags; the
established pattern of system trace activity remains intact but
is controlled as a single unit. (This characteristic is useful
when macro-level trace facilities are in use, as described
earlier in this chapter.)

TRACEID (data-value)

USER

specifies the trace identifier for a user trace table entry as
a halfword binary value in the range 0 through 199. When used
for monitoring, the data value is the event monitoring point
identifier as specified in the DFH!CT TYPE=E"P system macro.

specifies that all user entries for all current transactions
are affected by the TRACE ON or TRACE OFF command.

Chapter 5.3. Trace Control 371

Trace Control Exceptional Conditions i

There are no trace control exceptional conditions.

312 CICS/VS APRM (CL)

Chapter 5.4. Dump Control

The CICS/VS dump control program allows specified areas of main storage
to be dumped, by means of the DUMP command, onto a sequential dataset,
which can be either on tape or on disk. This data set contains only the
information applicable to the user·s transaction or application program,
and can be formatted subsequently and printed offline (or while tbedump
data set is closed) using the CICS/VS Dump Utility Program (OFHDUP).

Only one dump control command is processed at a time. If additional
canmands are issued while a dump is in progress, activity wi thin the
tasks associated with those camnands is suspended until the dump is
completed. Remaining dwnp commands are processed in the order in which
they are made. The use of the DUMP command will cause certain fields
(for example, EIBFN and EIBRCODE) in the Em and the TCA. to be

overwritten.

Options of the DUMP command allow the following areas of main storage
to be dumped in various combinations:

• Selected main" storage areas related to the requesting task. A dwnp
of these areas is normally used during the testing and debugging of
an application program. (CICS/VS automatically provides this
service if the related task is terminated abnormally.)

• CICS/VS tables: program control table. (PeT), processing program
table (PPT), system initialization" table (SIT); terminal control
table (TCT) ; file control table (FCT), destination control table
(OCT). A dump of these tables is typically the first dump taken in

a test in which the base of the test must be established;
subsequent dumps are usual.ly of the. task-related-storage type ~

• Task-related storage areas and CICS/VS control tables (a complete
dump).' To request a complete. dump is sometimes appropriate during
execution of a task, but this facility should not be used
excessively. CICS/VS control tables are primarily st~tic areas;
therefore; requeSting one CICS/VS-tables dump and a number of task­
related-storage dumps is generally more eff icientthanrequesting a
comparable number of complete dumps. .

Chapter 5.4. Dump Control 373

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Dump Main Storage (DUMP)

DUMP DUMPCODE (name)
[FROM (data-area) LENGTH (data-value)]
[TASK]
[STORAGE]
[PROGRAM]
[TERMINAL]
[TABLES]
[PCT] [PPT] [SIT] [TCT] [FCT) [nCT]

This coomand is used to dump any or all of the main storage areas
related to a task, any or all of the CICSjVS tables ~CT, PPT, SIT, TCT,
FCT, OCT), or all of these together.

The areas that can be dumped are:

• Task control area (TCA) and, if applicable, the transaction work
area (TWA).

• Conmon system area (CSA), including the userls portion of the CSA,
the common work area (CWA).;.

• Trace table (if trace is currently active) •

• contents of the general-purpose registers upon entry to the CICSjVS
dump control program from the requesting task.

• Either the terminal control table terminal entry (TCTTE) or the
destination control table entry associated with the requesting
task. Whenever the TCTTE is dumped; its associated TCTUA, and any
associated BMS message control blocks, are also dumped.

• All transaction storage areas chained off the TCA storage
accounting field.

• All program storage areas containing user-written application
programs active on behalf of the requesting task.

• Register save areas ~SAs) indicated by the RSA chain off the TCA.

• All terminal input/output areas (TIOAs) chained off the terminal
control table terminal entry (TCTTE) for the tenninal associated
with the requesting task (if any) •

• An area of main storage, specified in the FROM option, having a
length specified in the LENGTH option.

The tables that can be dumped are:

• Program control table (PCT).

• ProceSSing program table (PPT).

• System initialization table (SIT).

• Terminal control table (TCT).

374 CICS /VS APRM (CL)

• Pile control table ~CT).

• Destination control table (DCT).

Por CICSjOS/yS only, DUftP TASK or DUMP CO~PLETE will also dump the
DL/I control blocks.

The DUftPCODE option must specify a unique four-character dump code to
be printed out with the requested dump to identify it.

All other options are used to select the areas or tables that are to
be dumped; full details are given in the next section, "Dump control
Options."

The following example shows how to request a dump of the entire task­
related storage areas, the terminal control table, and a specified data
area:

EXEC CICS DU!P
TASK
TCT
PBO!(ABEA1)
LEHGTB(200)
DUftPCODE('DUM1')

Bequest main storage dump
All task~elated storage
Terminal control table
Specified data area
Length of area
Dump code

Chapter 5.4. Dump Control 375

Dump Control Options

The dump control options are summarized in Figure 5.~1. These options
can be specified in any combination; only one copy of each area or table
will be dumped, even if specified more than once.

Options

Du mped Storage Areas
V) 2: ..-J W

and CICS/VS Tables c w « I-
0 <.9 « z CJ) w

'.i= « a: w ..-J a. a: l? 2: 2: ~ ..-J a..
0 0 0 a: 0 Cf) I-- I-- I-- I-- I-- m ~
0 I-- a: w a: « u a.. I-- t) U U « 0 z Cf) a.. I-- LL I- a.. a.. CJ) l- LL 0 I-- t)

TCA and, if applicable, TWA • • • • • • •
CSA including CWA • • • • • • •
Trace Table • • • • • • •
General-purpose registers • • • • • • •
TCTTE or DCT entry • • • • • • •
Transaction storage areas • • • •
Program storage areas • • • •
Register save areas • • • •
TIOAs • • • •
DL/I control blocks • •
Specified data area •
PCT • • •
PPT • • •
SIT • • •
TCT • • •
FCT • • •
DCT • • •
Notes: 1. The data area specified in the F ROM (data-area) option must be a valid area;

that is, storage allocated by the operating system within the CICS/VS region or
partition boundaries.

2. The areas dumped when no options are specified are those dumped when the
T ASK option is specified.

I Figure 5.4-1. Dump Control Options

316 CICS/VS APR! (CL)

DU!!PCODE (nalle)
specifies a name of up to four characters in length to identify
the dump.

LENGTH (data-value)
specifies as a halfword binary value the length of the storage
area (specified in the FROM option) that is to be dumped.

Dump Control Exceptional Conditions

There are no dump control exceptional conditions.

Chapter 5.4. Dump Control 377

Chapter 5.5. Journal Control

CICS/VS provides facilities for creating and managing special-purpose
sequential data sets, called journals, during CICS/VS execution.
Journals may contain any and all data the user needs to facilitate
subsequent reconstruction of events or data changes. For example, a
journal might act as an audit trail, a change-file of data-base updates
and additions, or a record of transactions passing through the system
(often called a log). Each journal can be written from any task.

Only the CICS/VS facilities dealing with creation of journals
. (journal output) using journal control com.ands are dealt with in this
manual: the CICSIVS System Program.erts Reference !anual contains
information about reading journal data sets (journal input), which
involves the use of CICS/VS journal control macro instructions.

Journal control commands are provided to allow the application
programmer to:

• Create a journal record (JOURNAL).

• Synchronize with (wait for coapletion of) journal output (WAIT
JOURNAL) •

The BANDLE CONDITION command can be used to deal with any exceptional
conditions that occur during execution of a journal control command.
Refer to Chapter 1.5 for further information about exceptional
conditions.

J our nal Records

Data may be directed to any journal data set specified in the journal
control table (JCT), which defines the journals available during a
particular CICS/VS execution. The JCT may define one or more journals
on tape or direct access storage. Bach journal is identified by a
number known as the journal file identifier. This number may range from
2 through 99: the value 1 is reserved for a journal known as the system
log.

When a journal record is built, the data is moved to the journal
buffer area •. All buffer space and other work areas needed for journal
data set operations are acquired and managed by CICS/VS. The user task
supplies only the data to be written to the journal.

Journal records are built into blocks cOJlp,.atible with standard
variable-blocked format. CICS/VS uses the host operating system's
sequential Access Method to write the blocks to auxiliary storage.

Bach journal record begins with a standard fullword length field, a
user-specified identifier, and a system-supplied prefix. This data is
followed in the journal record by any user-supplied prefix data
(optional), and finally by the user-specified data. Journal control is
designed so that the application programaer requesting output services
need not be concerned further with the detailed layout and precise
contents of journal records. Be needs to know only which journal to
use, what user data to specify, and what unique user-identifier to
supply.

Chapter 5.5. Journal Control 379

Journal Output synchronization

When a journal record is created by issuing the JOURNAL command with the
WAIT option, the requesting task can wait until the output has been
completed. By specifying that this should happen, the application
programmer ensures that the journal record is written on the external
storage device associated with the journal before processing continues;
the task is said to be ~nchronizea with the output operation.

The application programmer can also request asynchronous journal
output. This causes a journal record to be created in the journal
buffer area and, optionally, initiates the data output operation from
the buffer to the external device, but allows the requesting task to
retain control and thus to continue with other processing. The task may
check and wait for output completion (that is, synchronize) at some
later time by issuing the WAIT JOURNAL command.

The basic process of building journal records in the buffer space of
a given journal continues until one of the following situations occurs:

• A request specifying the STARTIO option is made ~rom any task) for
output of a journal record.

• A request is rejected because of insufficient journal buffer space.

• The available buffer space is reduced below a level that is
specified by the system programmer.

• One second elapses after the last occasion on which any task
started writing to this journal buffer.

When any of these situations occurs, all journal records present in
the buffer, including any deferred output resulting from asynchronous
requests, are written to auxiliary storage as one block.

The advantages that may be gained by deferring journal output are:

• Transactions may get better response times by waiting less.

• The load of physical I/O requests on the host system may be
reduced.

• Journal data sets may contain fewer but larger blocks and so better
utilize auxiliary storage devices.

Bowever, these advantages are achievable only at the cost of more
buffer space and greater programming complexity. It is necessary to
plan and program to control synchronizing with journal output.
Additional decisions that depend on the data content of the journal
record and how it is to be used must be made in the application program.
In any case, the full benefit of deferring journal output is obtained
only when the load on the journal data set is high.

The STARTIO option is used with JOURNAL output requests to specify
that the journal output operation is to be initiated immediately. For
asynchronous output requests, control returns directly to the requesting
program. The STARTIO option should not be used unnecessarily because,
if every journal request used STARTIO, no improvement over synchronous
output requests, in terms of reducing the number of physical I/O
operations and increasing the average block size, would be possible.

If the journal buffer space available at the time of the request is
not sufficient to contain the journal record, the NOJBUFSP exceptional
condition occurs. If no HANDLE CONDITION request is active for this

380 CICS/VS APR! (CL)

condition, the request~ng task loses control, the contents of the
current buffer are written out, and the journal record is built in the
resulting freed buffer space before control returns to the requesting
task.

If the requesting task is not willing to lose control (for example,
ff some housekeeping must be performed before other tasks get control),
a HANDLE CONDITION command should be issued. If the NOJBUFSP condition
occurs, no journal record is built for the request, and control is
returned directly to the requesting program at the location provided in
the HANDLE CONDITION request. The requesting program can perform any
housekeeping needed before reissuing the journal output request.

Create a Journal Record (JOURNAL)

JOURNAL JFILEID(data-value)
JTYPEID~ata-value)
FRO!! (da ta-area)
LENGTH (data-value)
[REQID (data-area)]
[PREFIX (data-value) PFXLENG (data-value)]
[STARTIO]
[WAIT]

Exceptional conditions: JIDERR, lOERR, LENGERR, NOJBUFSP, NOTOPEN

This command is used to request CICS/VS to create a journal record. The
request can be for synchronous or asynchronous output; definitions of
these terms, and detailed information regarding the synchronization of
journal output, are contained in the section "Journal Output
Synchronization," earlier in this chapter. In either case, some
additional options are mandatory. These options are:

• JFILEID specifies the journal data set to receive the data.
(JFILEID{l) specifies the system log.)

• FROM specifies the user data to be included in the journal record.

• LENGTH specifies the 1ength of the user data.

• JTYPEID specifies a two-character identifier for the journal
record.

The following are optional:

• PREFIX specifies the user prefix data for the journal record.

• PFXLENG specifies the length of the prefix data.

To request synchronous journal output the WAIT option must be
specified. For asynchronous output, (WAIT option not specified), the
REQID option can be included to provide a unique identifier for the
journal record; the identifier can be used later in a WAIT JOURNAL
command to synchronize the task with the creation of the journal record.

The STARTIO option can be included in a synchronous or asynchronous
request to specify that the journal output operation should start
imaediately. STARTIO reduces absolute waiting time at the expense of
general system performance and input/output load.

Chapter 5.5. Journal Control 381

The following example shows how to request synchronous journal output
and wait for the output operation to be completed:

EXEC CICS JOURNAL
JFILEID (2)
JTYPEID (' XX')
FRO.! (KEYDATA)
LENGTH (8)
PREFIX (PROGNAftE)
PFXLENG (6)
WAIT

Create journal record
Journal identifier
Journal record origin
User data
User data length
Data prefix field
Prefix length
Synchronous output

In this example, since STARTIO is not specified, the task will wait
until the journal buffer is full or until output is initiated by a
STARTIO request in another task. CICS/VS limits the wait to one second.

The following example shows how to request deferred ~synchronous)
journal output:

EXEC CICS JOURNAL
FROl! (CO!!DATA)
LENGTH (10)
JFILEID (1)
JTYPEID ('SD')
REQID(ENTRYID)

Create journal record
User data
User data length
Journal identifier ~ystem log)
Journal record origin
Asynchronous output; record

identifier field

Synchronize with Journal Output (WAIT JOURNAL)

I

I I
I WAIT JOURNAL JFILEID (data-value) I
I [REQID (data-val ue)] t
I [STARTIO] I
I I
I Exceptional conditions: JIDERR, INVBEQ, IOERB, NOTOPEN I
I I L. ___ ,

This command is used to synchronize the task with the output of a one or
more journal records that have been created but whose output has been
deferred; that is, with asynchronous journal output requests.

The JFILEID option specifies the journal file identifier, and the
REQID option optionally specifies a particular journal record. If the
REQID option is not specified, the task is synchronized with the output
of the the last record created for the journal specified in the JFILEID
option.

The journal records in the journal buffer area may already be written
out to auxiliary storage, or the journal record output operation aay be
in progress. If the output operation has already been completed,
control returns immediately to the requesting task; if not, the
requesting task waits until the operation has been completed. If
STARTIO is specified, output is initiated im.ediately.

If the requesting program has made a succession of successful
asynchronous output requests to the same journal data set, it is
necessary to synchronize on only the last of these requests to ensure
that all of the journal records have reached auxiliary storage. This
may be done either by issuing a stand-alone WAIT JOURNAL co •• and, or by

382 CICS/yS APR!! ~L)

making the last output coamand itself synchronous (by specifying the
WAIT option in the JOURNAL command).

The following example shows how to request synchronization with the
output of a journal record:

EXEC CICS WAIT JOURNAL
JFILEID(Ll)
REQID (ENTRYID)

Synchronize with journal output
Journal identifier
Record identifier field

Chapter 5.5. Journal Control 383

Journal Control Options

FROM (da ta-area)
specifies the user data to be built into the journal record.

JFILEID (data-value)
specifies a halfword numeric value in the range 1 through 99 to
be taken as the journal file identifier. The valua 1 specifies
that the system log data set is the journal for this operation.

JTYPEID(data-value)
specifies a two-character identifier to be placed in the
journal record to identify its origin.

LENGTH (data-value)
specifies as a halfword binary value the length in bytes of the
user data to be built into the journal record. The minimum
value is 1, and the maximum value is such that the sum of the
LENGTH and PFXLENG values does not exceed the journal buffer
size specified by the system programmer.

PFXLENG(data-value)
specifies as a halfword binary value the length in bytes of the
user prefix data to be included in the journal record. The
minimum value is 1, and the maximum value is such that the sum
of the LENGTH and PFXLENG values does not exceed the journal
buffer size specified by the system programmer.

PREFIX (data-value)
specifies the user prefix data to be included in the journal
record. A data area must be provided in COBOL programs.

REQID (parameter)

STARTIO

specifies a fullword binary variable. For a JOURNAL command,
the REQID option specifies that asynchronous output is
required; the parameter must be a data area. CICS/VS sets the
variable to a unique value to identify the journal record that
is created.

When used with a WAIT JOURNAL com.and, the REQID option
specifies a variable set to a number that identifies the
journal record that has been created but possibly not yet
written out; the parameter is a data value.

specifies that output of the journal record is to be initiated
immediately. If WAIT is specified for a journal with a low
utilization, STARTIO should be specified also to prevent the
requesting task waiting for the journal buffer to be filled.
Very high utilization ensures that the buffer is flushed
quickly, so that STARTIO is unnecessary.

384 CICS/VS APRM (CL)

WAIT
specifies that synchronous journal output is required. The
journal record is written out; the requesting task waits until
the record has been written.

Journal Control Exceptional Conditions

INVREQ

IOERR

JIDERR

LENGERR

NOJBUFSP

NOTOPEN

occurs if a WAIT JOURNAL command is issued before any JOURNAL
command has been issued in the same task.

Default action: terminate the task abnormally.

occurs if the physical output of a journal record was not
accomplished because of an unrecoverable I/O error.

Default action: terminate the task abnormally.

occurs if the specified journal file identifier· does not exist
in the journal control table PCT).

Default action: terminate the task abnormally.

occurs if the computed length for the journal record exceeds
the total buffer space allocated for the journal data set, as
specified in the journal control table (JCT) entry for the data
set.

Default action: terminate the task abnormally.

occurs if the journal buffer space allocated by the system
programmer is not sufficient to contain a journal record.

Default action: write out the contents of the current buffer;
suspend task activity until the JOURNAL command is satisfied.

occurs if the journal command cannot be satisfied because the
specified journal data set has been disabled and is not
available.

Default action: terminate the task abnormally.

Chapter 5.5. Journal Control 385

Chapter 5.6. Recovery (Sync Points)

To facilitate recovery in the event of abnormal termination of a CICS/VS
task or of failure of the CICSjYS system, the system programmer can
during CICS/VS table generation define certain resources (for example,
files) as recoverab~e. If a task is terminated abnormally, these
resources are restored to the condition they were in at the start of the
task, which can then be rerun. The process of restoring the resources
associated with a task is termed backout.

If an individual task fails, backout is performed by the dynamic
transaction backout program. If the CICS/VS system fails, backout is
performed as part of the emergency-restart process. The CICS/VS
System/Application Design Guide and the CICS/VS System Programmer's
Reference ftanual describe these facilities, which in general have no
effect on the coding of application programs.

However, for long-running programs, it may be undesirable to have a
large number of changes, accumulated over a period of time, exposed to
the possibility of backout in the event of task or system failure. This
possibility can be avoided by using the SYNCPOINT command to split the
program into logically separate sections termed logical units of work·
(LUWs); the end of an LUW is called a synchronization point (sync
point).

In addition to those defined with the SYNCPOINT command, sync points
also occur at the end of a task and at each DL/I termination or
checkpoint ~HKP) call. For the purposes of backout, each of these sync
points is treat~d as though it marked the end of a task: if failure
occurs after a sync point but before the task has been completed, only
changes made since the sync point are backed out.

It is recommended that LUWs be entirely logically independent, not
merely with regard to protected resources, but also with regard to
execution flow. Typically, an LUW would co.priss a complete
conversational operation bounded by SEND and RECEIVE commands.

In addition to a DL/I termination cal~ being considered to be a sync
point, the execution of a SYNCPOINT command will cause CICS/VS to issue
a DL/I termination call. If a DL/I PSB is required in a subsequent LUW,
it must be rescheduled by means of a PCB call.

A BMS logical message started but not completed when a SYBCPOINT
command is executed is forced to completion by an implied SEND PAGE
command.

The system programmer should be consulted if sync points are to be
issued in a transaction that is eligible for transaction restart.

Chapter 5.6. Recovery (Sync Points) 387

Establish a Sync Point (SYNCPOINT)

SYNCPOINT [ROLLBACK]

This command is used to divide a task (usually a long-running one) into
smaller units known as logical units of work (LUWs). Each SYNCPOINT
command causes a sync point to be established to mark the completion of
a logical unit of work.

Sync Point Option.

ROLLBACK
specifies that all changes to recoverable resources, made by
the task since its last sync point, are to be backed out. This
option must not be used if remote recoverable resources have
been updated in the same LUW (because those resources will not
be backed out). In order to backout any remote recoverable
resources, the transaction could be abended.

This option can be used, for example, to tidy up in a HANDLE
ABEND routine, or to revoke data base changes after the
application program finds unrecoverable errors in its input
data.

388 CICS/VS APRM (CL)

Part 6. The CICS/VS Built-In Function Command

389

Page of sC33-0077-2, revised September 1980 by TNL sN33-6268

Chapter 6.1. The Field Edit Built-In FUDction
(BIF DEEDIT) Command

The built-in function, DEEDIT; is provided by means of the BIF DEEDIT
canmand.

BIF DEEDIT
FIELD (data-area)
LENGTH (data-value)

This conmand specifies that alphabetic and special. characters are to be
removed fran an EBCDIC data fiel.d, the remaining digits being right
justified and padded l.eft with zeros as necessary. This fiel.d is
specified by the FIELD option and its length, in bytes, by the LENGTH
option.

•
I
I
I
I
I
•

If the field ends with a minus sign or a 'CR'; a negative zone (X'D')
is placed over the rightIOOst (low-order) byte. The zone portion of the
rightIOOst byte may contain one of the hexadecimal characters X'A'
through X'F'; the digit portion may contain one of the hexadecimal
digits from X'O' through X·9·. Where this is the case, the rightmost
byte is retnrned unaltered (see the exampl.e below). This pennits the
appl.ica tion program to operate on a zoned numeric field. The returned
value is in the fiel.d that initially contained the unedited data.

For example, execution of the canmand:

EXEC CICs BIF
DEEDIT
FIELD (CONTG)
LENGTH (9)

removes al.l characters other than EBCDIC digits from CONTG, a nine-byte
fiel.d, and returns the edited result in that fiel.d to the appl.ication
program. Two exampl.es of the contents ofCONl'G before and after
execution of the command· are:

Original val.ue

14-6704/B

$25.68

Returnedval.ue

001467048

000002568

Note that a decimal point is an EBCDIC special character and as such is
removed.

There are no exceptional conditions with DEEDIT •.

Chapter 6.1. The Field Edit Buil.t-In Function (SIP DEEDIT) 391

Part 7. Appendixes

Appendix A. EXEC Inte~face Block

Appendix B. Translation Tables for the 2980

Appendix C. CICS/VS ~ac~os and Equivalent Commands

Appendix D. Sample Programs (Assembler Language)

Appendix E. Sample Programs (COBOL)

Appendix F. Sample Programs (PL/I)

I Appendix G. DTP Sample Programs (Assembler Language)

393

Appendix A. EXEC Interface Block

This appendix describes the fields of the EXEC interface block (EIB)
referred to in Chapter 1.6. An application program can access all of
the fields in the EIB of the associated task by name but must not change
the contents of any of them.

Por each field, the contents and format ~or each application
programming language) are given. All fields contain zeros in the
absence of meaningful information. Pields are listed in alphabetical
order. The order in which the fie~ds appear in the EIB is shown in
Figure A-3, which gives also the field length and its offset.

EIB Fields

EIBAID

EIBATT

EIBCALEN

EIBCPOSN

contains the attention identifier (AID) associated with the
last terminal control or basic mapping support (B~S) input
operation from a display device such as the 3270.

assembler language: CL1
COBOL: PIC X(1)
PL/I: CHAR (1)

indicates that the RU contains attach header data (X'PP').

assembler language: CL1
COBOL: PIC X (1)
PL/I: CHAR (1)

contains the length of the comaunication area that has been
passed to the application program from the last program, using
the CO!MABEA and LENGTH options. If no communication area is
passed, this field contains zeros.

assembler language: H
COBOL: PIC S9(4) COftP
PL/I: PIXED BIH(15)

contains the cursor address (position) associated with the last
terminal control or basic mapping support ~KS) input operation
from a display device such as the 3270.

assembler language: H
COBOL: PIC 59(4) COMP
PL/I: FIXED BIN(1S)

Appendix A. EXEC Interface Block 395

EIBDATE

EIBDS

EIBEOC

rlIBFMH

EIBFN

EIBFREE

contains the date the task is started ~his field is updated by
the ASKTIME command). The date is in packed decimal form
(OOYIDDD+) •

assembler language: PL4
COBOL: PIC S9(1) CO!P-3
PL/I: FI,XED DEC (1, 0)

contains the symbolic identifier of the last data set referred
to in a file control request.

assembler language: CL8
COBOL: PIC X(8)
PL/I: CHAR (8)

indicates that an end-of-chain indicator appears in the RU just
received (X'FP').

assembler language: CLl
COBOL: PIC X{l)
PL/I: CHAR (1)

indicates that the user data just received or retrieved
contains an P!H (X'FP').

assembler language: CLl
COBOL: PIC X (1)
PL/I: CHAR (1)

contains a code that identifies the last CICS/VS command to be
issued by the task (updated when the requested function has
baen completed). Refer to Pigure A-1 for details of the codes
used in this field.

assembler language: CL2
COBOL: PIC X (2)
PL/I: CHAR (2)

indicates that the application program cannot continue using
the facility. The application program should either free the
facility or should terminate so that the facility is freed by
CICS/VS (X' PP').

assembler language: CL1
COBOL: PIC X{l)
PL/I: CHAR (1)

396 CICS/VS APR! ~L)

EIBRCODE

EIBRECV

EIBREQID

EIBRSRCE

EIBSYNC

contains the CICSjVS response code returned after the function
requested by the last CICS/VS com.and to be issued by the task
has been completed. Almost all of the information in this
field can be used within application programs by the HANDLE
CONDITION command. Refer to Figure 1-2 for details of the
codes used in this field.

assembler language: CL6
COBOL: PIC X (6)
PL/I: CHAR (6)

indicates that the application program is to continue rece1v1ng
data from the facility by executing RECEIVE commands (X'FF').

assembler language: CLl
COBOL: PIC X(1)
PL/I: CHA R (1)

contains the request identifier assigned to an interval control
command by CICS/VS; this field is not used when a request
identifier is specified in the application program.

assembler language: CL8
COBOL: PIC X(8)
PL/I: CHAR (8)

contains the symbolic identifier of the resource being accessed
by the latest executed command. For file control commands this
will be the name of the data set. For transient data and
temporary storage commands it will be the name of the queue.
For terminal control commands it will be the name of the
terminal or logical unit. Identifiers less than eight
characters in length are padded on the right with blanks.

assembler language: CL8
COBOL: PIC X (8)
PL/I: CHAR (8)

indicates that the application program must take a sync point
or terminate. Before either is done, the application program
must ensure that any other facilities, owned by it, are put
into the send state, or are freed (XIFF').

assembler language: CLl
COBOL: PIC X (1)
PL/I: CHAR (1)

Appendix A. EXEC Interface Block 397

EIBTASKN

EIBTIftE

EIBTRftID

EIBTRIID

contains the task number assigned to the task by CICS/VS. This
number will appear in trace table entries generated while the
task is in control.

assembler language: PL4
COBOL: PIC S9(7) CO!P-3
PL/I: P IXED DEC (7,0)

contains the time at which the task is started (this field is
updated by the ASKTIME command). The time is in packed decimal
form (088ftftSS+).

assembler language: PL4
COBOL: PIC S9(7) COftP-3
PL/I: PIXED DEC (7,0)

contains the symbolic terminal identifier of the principal
facility (terminal or logical unit)· associated with the task.

assembler language: CL4
COBOL: PIC X(4)
PL/I: CHAR (4)

contains the symbolic transaction identifier of the task.

assembler language: CL4
COBOL: PIC X (4)
PL/I: CHAR (4)

398 CICS/VS APRM (CL)

Code COllmand

02 02
02 04
02 06
02 08
02 OA
04 02
04 04
04 06
04 08
04 OA
04 OC
04 OE
04 10
04 12
04 14
04 16
04 18
04 1A
04 1C
04 1E
04 20
04 22
04 24
04 26
04 28
04 2A
06 02
06 04
06 06
06 08
06 OA
06 OC
06 OE
06 10
06 12
06 14
08 02
08 04
08 06
OA 02
01 04
01 06
OC 02
OC 04
OE 02
OE 04
OE 06
OE 08
OE OA
OE OC
OE OE
10 02
10 04
10 06
10 08
10 OA
10 OC

ADDRESS
HANDLE CONDITION
HANDLE AID
ASSIGN
IGNORE CONDITION
RECEIVE
SEND
CONVERSE
ISSUE EODS
ISSUE COpy
WAIT TERMINAL
ISSUE LOAD
WAIT SIGNAL
ISSUE RESET
ISSUE DISCONNECT
ISSUE ENDOUTPUT
ISSUE ERASEAUP
ISSUE ENDFILE
ISSUE PRINT
ISSUE SIGNAL
ALLOCATE
FREE
POINT
BUILD ATTACH
EXTRACT ATTACH
EXTRACT TCT
READ
WRITE
REWRITE
DELETE
UNLOCK
STARTBR
READNEXT
READPREV
ENDBR
RESETBR
WRITEQ TD
READQ TD
DELETEQ TD
WRITEQ TS
READQ TS
DELETEQ TS
GETMAIN
FREEMAIN
LINK
XCTL
LOAP
RETURN
RELEASE
ABEND
HANDLE ABEND
ASKTIME
DELAY
POST
START
RETRIEVE
CANCEL

Figure A-1. (Part 1 of 2) EIBFN Codes

Appendix A. EXEC Interface Block 399

Code Command

12 02 WAIT EVENT
12 04 ENQ
12 06 DEQ
12 08 SUSPEND
14 02 JOURNAL
14 04 WAIT JOURNAL
16 02 SYNCPOINT
18 02 RECEIVE !!AP
18 04 SEND MAP
18 06 SEND TEXT
18 08 SEND PAGE
18 OA PURGE KESSAGE
18 OC ROUTE
1A 02 TRACE ONIOFF
1A 04 ENTER
lC 02 DUMP
1E 02 ISSUE ADD
lE 04 ISSUE ERASE
1E 06 ISSUE REPLACE
1E 08 ISSUE ABORT
1E OA ISSUE QUERY
1E OC ISSUE END
lE OE ISSUE RECEIVE
lE 10 ISSUE NOTE
lE 12 ISSUE WAIT
1E 14 ISSUE SEND
20 02 BIF DEEDIT

Figure A-1. (Part 2 of 2) EIBFN Codes

400 CICS/VS APRa (CL)

EIBPN EIBRCODE
Byte 0 Byte Bit (s) Meaning

02 0 EO INVREQ
04 0 04 BOF
04 0 10 EODS
04 0 C1 EOF
04 0 C2 ENDIHPT
04 0 E1 LENGERR
04 0 E3 WRBRK
04 0 E4 RDATT
04 0 E5 SIGNAL
04 0 E6 TERftIDERR
04 0 E7 NOPASSBKRD
04 0 E8 BOPASSBKWR
04 0 EA IGREQCD
04 0 EB CBIDERR
04 0 DO SYSIDERR3
04 0 D2 SESSIONERR3
04 0 D3 SYSBUSY
04 0 D4 SESSBUSY
04 0 D5 NOTALLOC
04 1 20 EOC
04 1 40 INBFftH
04 3 F6 ROSTART
04 3 P7 NOliVIL
06 0 01 DSIDERR
06 0 02 ILLOGIC l
06 0 04 SEGIDERR
06 0 08 INVREQ
06 0 OC NOTOPEN
06 0 OF ENDFILE
06 0 80 IOERRl
06 0 81 ROTFND
06 0 82 DUPREC
06 0 83 NOSPICE

1 When this condition occurs during
File Control operations, further
information is provided in field
EIBRCODE, as follows:

bytes 1-4 = DIK response (OS/VS
only)

bytes 1-2 = ISAM response
VSAl'! return code

= VSAl'! error code
byte 1
byte 2

2 When this condition occurs during
BftS operations, byte 3 of field
EIBRCODE conta ins t he terminal
code. (See Figure 3.3-1)

3 When this condition occurs,
further information is provided
in byte 1 of EIBRCODE, as follows:

04 Name not that of system entry.
08 Link out of service.
OC Name unknown to CICS/VS.

Figure A-2. (Part 1 of 3) EIBRCODE Codes

Appendix A. EXEC Interface Block 401

--, EIBFN
Byte 0 Byte

EIBRCODE
Bit(s) !eaning

06
06
06
06
08
08
08
08
08
08
08
08
08
OA
OA
OA
OA
OA
OA
OA
OA
OC
OE
OE
10
10
10
10
10
10
10
10
10

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

84
DO
D1
E1
01
02
04
08
10
CO
DO
D1
E1
01
02
04
08
20
DO
D1
E1
E2
01
EO
01
04
11
12
14
20
81
DO
D1

DUPKEY
SYSIDERR3
ISCINVREQ
LENGERR
QZERO
QIDERR
IOERR
NOTOPEN
BOSPACE
QBUSY
SYSIDERR3
ISCINVREQ
LENGERR
ITE!ERR
-QIDERR
IOERR
NOSPACE
INVREQ
SYSIDERR
ISCINVREQ
LENGERR
NOSTG
PGllIDERR
INVREQ
ENDDATA
IOERR
TRANSIDERR
TER!IDERR
INVTSREQ
EXPIRED
NOTFND
SYSIDERR
ISCINVREQ L ______________________________________ ~

1 When this condition occurs during
File Control operations, further
information is provided in field
EIBRCODE, as follows:

bytes 1-4

bytes 1-2
byte 1
byte 2

DA! response ~S/VS

only)
= ISA! response
= VSA! return code
= VSAM error code

2 When this condition occurs during
B!S operations, byte 3 of field
EIBRCODE contains the terminal
code. (See Figure 3.3-1)

3 When this condition occurs,
further information is provided
in byte 1 of EIBRCODE, as follows:

04 Naae not that of system entry.
08 Link out of service.
OC Name unknown to CICS/VS.

Figure A-2. (Part 2 of 3) EIBRCODE Codes

402 CICS/VS APR! eCL)

Page of SC33-0011-2, revised September 1980 by TNL SN33-6268

EIBFN EIBRCODE
Byte 0 Byte Bit (s) Meaning

10 0 E1 LENGERR
10 0 E9 ENVDEFERR
10 0 FF INVREQ
12 0 32 ENQBUSY
14 0 01 JIDERR
14 0 02 INVREQ
14 0 05 NOTOPEN
14 0 06 LENGERR
14 0 01 IOERR
14 0 09 NOJBUFSP
18 0 01 INVREQ
18 0 02 RETPAGE
18 0 04 MAPFAIL
18 0 08 INVMPSZ2
18 0 20 INVERRTERM
18 0 40 RTESOME
18 0 80 RTEFAIL
18 0 E3 WRBRK
18 0 E4 RDATT
18 1 10 INVLDC
18 1 40 IGREQCD
18 1 80 TSIOERR
18 2 01 OVERFLOW
18 2 04 EODS
18 2 08 EOC
18 2 10 IG~QID
1E 0 04 DSSTAT
1E 0 08 FUNCERR
lE 0 OC SELNERR
1E 0 10 UNEXPIN
1E 0 E1 LENGERR
1E 1 11 EODS
1E 1 2B IGREQCD
1E 2 20 IDC

1 When this condition occurs during
File Control operations, further
information is provided in field
EIBRCODE, as follows:

bytes 1-4 = DAM response (OS/VS
only)

bytes 1-2 = I SAM response
byte 1 = VSAM return code
byte 2 = VSAM error code

2 When this condition occurs during
BMS operations, byte 3 of field
EIBRCODE contains the terminal
code. (See Figure 3.3-1)

3 When this condition occurs,
further information is provided
in byte 1 of EIBRCODE, as follows:

04 Name not that of system entry.
08 Link out of service.
OC Name unknown to CICS/VS.

Figure A-2. (part 3 of 3) EIBRCODE Codes

Appendix A. EXEC Interface Block 403

Offset EIB Field Len<Ith
(HeX} Name m:y:tes}

0 EIBl'IME 4
4 EIBDATE 4
8 EIBTRNID 4
C EIBTASKN 4

10 EIBTRMID 4
14 EIBRSVD1 2
16 EIBCPOSN 2
18 EIBCALEN 2
1A EIBAID 1
IB EIBFN . 2
10 EIBRCODE 6
23 EIBDS 8
2B EIBREQID 8
33 EI:BR~CE 8
3B EIBSYNC. 1
3C EIBFREE 1
3D EmRECV 1
3E EIBSEND 1
.3F EIBATT . I ·1
40 EIBEOC I 1
41 EIBFMH I 1

Figure A-3. The EXEC Interface Block

404 CICS/VS APRM (CL)

Appendix B. Translation Tables for the 2980

This appendix contains translation tables for the following components
of the IBM 2980 General Banking Terminal System:

• 2980 Teller Station Model 1 (Figure B.1)

• 2980 Adllinistra ti ve Station Model 2 (Figure B.2)

• 2980 Teller station Model 4 (Figure B.3)

The line codes and CPU codes listed in these tables are unique to
CICS/VS and are represented as standard EBCDIC characters.

Appendix B. Translation Tables for the 2980 405

KEY ENGRAVING LINE CPU CODE HLL
No. Top (LC) Front (UC) Code Num eric (LC) Alpha (UC~ ID

0 !!SG ACK 1 F1 AA F1 1
1 SEND AGAIN Q D8 D9 D8
2 COBB 1 C1 C3 C1
3 HOLD OVBDE 2 F2 C8 F2
4 VOID Z E9 E5 E9
5 ACCT IRQ W E6 D8 E6
6 ACCT TFB S E2 AB E2 2
7 CIF 3 F3 AC P3 3
8 !fISC X E7 AD E7 4
9 CLSD ACCT E C5 E7 C5

10 NO BOOK D C4 AE C4 5
11 !fORT LOAN 4 F4 AF F4 6
12 C C3 BO C3 7
13 REW ACCT R D9 B1 D9 8
14 BOOK BAL F C6 B2 C6 9
15 INST LOAN 5 FS B3 FS 10
16 SPEC TBAN V E5 B4 E5 11
17 SAV BOND T E3 BS E3 12
18 SAV G C7 B6 C7 13
19 XMAS CLUB 6 F6 B7 F6 14
20 • B C2 4B C2
21 DDA Y E8 B8 E8 15
22 00 H C8 B9 C8 16
23 !fOlf ORD 7 F7 BA F7 17
24 0 N D5 FO D5
25 7 U E4 F7 E4
26 4 J Dl F4 D1
27 CSHR CHK 8 F8 BB F8 18
28 1 ! D4 F1 D4
29 8 I C9 F8 C9
30 5 K D2 FS D2
31 CASH RECD 9 F9 DC F9 19
32 2 6B F2 6B
33 9 0 D6 F9 D6
34 6 L D3 F6 D3
35 UTIL BILL 0 FO E4 FO
36 3 • 4B F3 4B
37 DEP + P D7 4E D7
38 WITH $ 5B 60 5B
39 FEES 60 C6 60
40 TOTL / 61 E3 61
41 CASH IN * 5C DD 5C 20
42 CASH CHK t 7B BE 7B 21
43 VAL & 50 STATION ID 50
44 TAB 05 05 05 TABCHAR
45 ALPHA ENTRY 36
46 NU!f ENTRY 06
47 SEND 26--ETB

03-ETX
48 RETURN 15 15 15 JRNLCR
49 NU! ENTRY 06
50 SPACE 40 40 40
58 !SGLIGHT 17 17 17 !SGLITE

Figure B-1. 2980-1 Character Set/Translate Table

406 CICS/VS APR! (eL)

r
I KEY I ENGRAVING I LINE I CPU CODE BLL
I Bo. I Top (LC) I Code I Numeric (LC) Alpha (UC) ID
I I I
I 0 I = 1 I 1"1 1"1 (1) 7E (=)
I 1 I Q I D8 98. (q) D8 (Q)
I 2 A C1 81 (a) C1 (A)
I 3 2 1"2 F2 (2) 4C «)
1 4 Z E9 A9 (z) :89 (Z)
I 5 V E6 16 (v) E6 (V)
I 6 S E2 A2 (5) E2 (S)
I 7 ; 3 F3 F3 (3) 5E (:)
I 8 X E7 A7 (x) E7 (X)

9 E C5 85 (e) C5 (E)
10 D CAl 84 (d) C4 (D)
11 : 4 1"4 1"4 (4) 7A (:)
12 C C3 83 (c) C3 (C)
13 R D9 99 (r) D9 (R)
14 F C6 86 (f) C6 (F)
15 I 5 F5 F5 (5) 6c (I)
16 V E5 AS (v) E5 (V)
17 T E3 A3 (t) E3 (T)
18 G C7 87 (q) C7 (G)
19

• 6
F6 1"6 (6) 7D (')

20 B C2 82 (b) C2 (B)
21 Y E8 A8 (y) EB (Y)
22 8 C8 88 (h) C8 (8)
23 > 7 F7 F7 (7) 6E (»
24 N D5 95 (n) D5 (N)
25 U E4 14 (u) E4 (0)
26 J D1 91 (j) D1 (J)
27 * 8 F8 F8 (8) 5C (*)
28 K D4 94 (II) D4 (a)
29 I C9 89 (i) C9 (I)
30 K D2 92 (k) D2 (K)
31 (9 1"9 F9 (9) 4D (0
32 I , 6B 6B (,) 41" (I)
33 0 D6 96 (0) D6 (0)
34 L D3 93 (1) D3 (L)
35) 0 FO FO (0) 5D ()
36 -. . 4B 4B (.) 51" (-.)
37 P D7 97 (p) D8 (P)
38 $ 5B 5B ($) 5A (!)
39 60 60 (-) 6D (J
40 1 / 61 61 (/) 61" (1)
41 ¢ ib 5C 70 (ib) 41 (¢)
42 II t 7B 7B (t) 11" (")
43 + & 50 50 (&) 4E (+)
44 TAB 05 05 05
45 LOCK 36 36 36
46 SHIFT 06 06 06
41 BACKSPACE 16 10 16 BCKSPACEI
48 RE'rORN 15 15 15 I
49 SHIFT 06 06 06 I
50 (SPACE) 40 40 40 1
53 SEND 26-ETBI I

03-ETXI ·1
•

Figure B-2. 2980-2 Character Set/Translate Table

Appendix B. Translation Tables for the 2980 407

KEY ENGRAVING LINE I CPU CODE BLL
No. Top (LC) Front (UC) Code Numeric (LC) Ilpha (UC) ID

0 CK $ D9 BC 60 19
1 Q D3 D3 DB
2 I C1 C1 C1
3 CK t 0 C9 B7 C9 14
4 Z E9 4B E9
5 if E6 5C E6
6 S E2 5B E2
7 IMD 2 1 5B 4F F1
8 X E7 IE E7 5
9 E C5 C5 C5

10 D C4 6F C4
11 IMD 1 2 4B BF F2
12 C C3 C3 C3
13 R 60 60 D9
14 F C6 C6 C6
15 CODE 3 E8 BB F3
16 V E5 10 E5 22
17 T E3 A1 E3 23
18 G C7 C7 C7
19 AMT 4 5C BE F4 21
20 B C2 C2 C2
21 Y 61 61 E8
22 H D7 D7 C8
23 OB 5 D8 B2 F5 9
24 N D5 D5 D5
25 U E4 AF E4 6
26 J D1 D1 D1
27 ACCT t 6 C8 7B F6
28 N D4 E7 D4
29 I D6 D6 C9
30 K D2 D2 D2
31 7 7 F7 F7 F7
32 6B BLANK 6B
33 4 0 F4 F4 D6
34 1 L Fl F1 D3
35 8 8 F8 F8 F8
36 0 FO FO 4B
37 5 P F5 F5 D7
38 2 $ F2 F2 5B
39 9 9 F9 F9 F9
40 7B BO 7B 7
41 6 * F6 F6 5C
42 3 • F3 F3 7B
LJ3 VAL & 50 50 50
LJ4 TAB 05 05 05
LJ5 ALPHA 36
46 NUMERIC 06
47 SEND 26-ETB

03-ETXI
48 RETURN 15 I 15 15
49 NUMERIC 06 I
50 SPACE 40 I LJO LJO
51 FEED OPEN 04 I OPENca

Figure B-3. 2980-4 Character Set/Translate Table

408 CICS/VS APRM eeL)

Appendix C. CICS/VS Macros and Equivalent Commands

This appendix provides a list of the macro instructions available to the
CICS/VS application programmer, and shows for each macro instruction the
command that will perform the same function. Command options may have
different defaults and/or functions from macro~level operands having
similar names. Some CICS/VS macros do not have an equivalent command;
for example, there is only one CICS/VS built-in function that can be
invoked by a command.

Although the TYPE=CHECK macro performs a similar function to the
HANDLE CONDITION command, it is used in a completely different way.

Appendix C. CICS/VS ~acros and Equivalent Commands 409

~acro Instruction Equivalent Com.and

DFBBFTA

DFBBIF TY PE=DEEDIT BIF DEEDIT

~l!!~ TYPE=CHECK HAIDLE COHDITIOli

TYPE=IN RECEIVE MAP

TYPE=8AP RECEIVE !AP FRml

TYPE=OUT SEND TEXT

TYPE=OUT,
MAP= SEND !AP

TYPE=PAGEBLD SEND MAP ACCUM

TY PE=PAGEOUT SEND PAGE

TYPE=PURGE PURGE MESSAGE

TYPB=RETURN SEID {MAP I TEXT} SET

TYPE=ROUTE ROUTE

TYPB=STORE SEND {!tAP I TEXT} PAGING

TYPE=TEXTBLD SEND TEXT ACCU!!

Qll!DC TYPE=CICS DUMP TABLES

TYPE=COl!PLETE DUMP COMPLETE

TYPE=PARTIAl
lIST=PROGBAM DUMP PROGRAM

LIST=TEBMINAL DU!lP TERl!IIAL

lIST=TRANSACTION DUI!P STORAGE

lIST=SEGMENT DU!lP FROl!

TYPE=TBANSACTION DUMP [TASK]

DFHDI TYPE=ABORT ISSUE ABORT

TYPE=ADD ISSUE ADD

TYPE=CHECK HANDLE CONDITION

TIPE=END ISSUE END

TYPE=ERASE ISSUE ERASE

TYPE=NOTE ISSUE NOTE

TYPE=QUERY ISSUE QUERY

410 CICS/VS APRl! (Cl)

!!acro Instruction Equivalent Co •• and

TYPE=RECEIVE ISSUE RECEIVE

TYPE=REPLACE ISSUE REPLACE

TYPE=SEID ISSUE SEID

TYPE=WAIT ISSUE WAIT

DFHFC TYPE=CBECK HAIDLE CONDITIO.

TYPB=DELBTE DELBTE RIDFLD

(DL/1 types)

TYPB=ESETL ENDBR

TYPE=GBT READ

TYPE=GET,
TYPOPER=UPDATE READ UPDATE

TYPE=GETAREA

TYPE=GETNEIT READNBIT

TYPE=GETPREV READPREV

TYPE=PUT,
TYPOPER=DELETE DELETE

TYPE=PUT,
TYPOPER=NBWRBC WRITE

TYPE=PUT,
TYPOPBR=UPDATB REWRITE

TYPB=RELBASE UNLOCK

TY PB=R BSBTL RESBTBR

TYPB=SETL STARTBR

DFHIC TYPB=CA~CBL CANCEL

TYPB=CHBCK HANDLB CONDITION

TYPB=GBT RETRIBVE

TY PE=G ETI!!E ASK'lI!!E

TYPE=INITIAT E START

TYPE=POST POST

TYPE=PUT START FRO!!

TYPE=RETRY RETRIEVB

TYPE=WAIT DELAY

Appendix C. CICS/VS ftacros and Equivalent Commands 411

I!acro Instruction Equivalent Co.mand

DFHJC TYPE=CHECK HANDLE CONDITION

TY PE=GETJCA

TYPE=PUT JOURNAL WAIT

TYPE=W.lIT WAIT JOURNAL

TYPE=WRITE JOURNAL

DFHKC TIPE=ATTACH

TYPE=CHAP

TYPE=DEQ DEQ

TYPE=ENQ ENQ

TYPE=NOPURGE

TYPE=PURGE

TYPE=WAIT SUSPEND

TYPE=WAIT,
ECADDR WAIT EVENT

DFHMDF

DFHMDI

DFHMSD

I2.FHPC TYPE=ABEND ABEND

TIPE=CHECK HANDLE CONDITION

TY PE=CO BADD R

TYPE=DELETE RELEASE

TYPE=LINK LINK

TYPE=LOAD LOAD

TYPE=RESETXlT HANDLE ABEND RESET

TY PE=RETURN RETURN

TYPE=SETXlT HANDLE ABEND

TYPE=XCTL XCTL

DFHSC TYPE=FREEMA IN PREESAlN

TYPE=GET!!AIN GETMAIN

412 CICS/VS APR!! (CL)

Macro Instruction ~uivalent Command

DFHSP TYPE=USER SYNCPOINT

TYPE=ROLLBACK SYNCPOINT ROLLBACK

QFHTC TYPE=CBUFF SEND CBUFF

TYPE=CONVERSE CONVERSE

TYPE=COPY ISSUE COPY

TYPE=D ISCONNECT ISSUE DISCONNECT

TYPE=EODS ISSUE EODS

TYPE=ERASE1UP ISSUE ER1SEAUP

TYPE=GET RECEIVE

TYPE=P1GE

TYPE=P1SSBK SEND PASSBK

TYPE=PRIBT ISSUE PRINT

TY PE=PROGRll! ISSUE LOAD

TYPE=PUT SEND WAIT

TYPE=READ RECEIVE (WAIT assumed)

TYPE=RE1DB RECEIVE BUFFER

TYPE=READL RECEIVE LEAVEKB

TYPE=RESET ISSUE RESBT

TYPB=SIGNAL WAIT SIGNAL

TYPB=W1IT WAIT TER!INAL

TYPE=WRITE SEND

TYPE=WRITEL SEND LEAVEKB

QFHT~ TYPE=CBECK BA.NDLE CONDITION

TYPE=FEOV

TYPE=GET READQ 'rD

TYPE=PURGE DELETEQ TD

TYPE=PUT WRITEQ TD

DFHTR TYPE=ENTRY ENTER

TYPE=OFF TRACE OFF

TYPE=ON TRACE ON

Appendix C. CICS/VS Macros and Equivalent Commands 413

!acro Instruction Equivalent Command

DFHTS TYPE=CHECK HANDLE CONDITION

TYPE=GETI READQ TS

TYPE=GETQ READQ TS

TYPE=PURGE DELETEQ TS

TYPE=PUTI WRITEQ TS

TYPE=PUTQ WRITEQ TS

TYPE=RELEASE DELETEQ TS

1 Because single units of information cannot be handled by the command­
level interface, data stored by a DFHTS TYPE=PUT macro cannot be
retrieved by a READQ TS command. Conversely, data stored by a WRITEQ TS
command cannot be retrieved by a DFHTS TYPE=GET .acro.

414 CICSjVS APRM (CL)

Appendix D. Sample Programs (Assembler Language)

This appendix consists of sample CICSjVS application programs written in
the assembler language. The BMS maps and file record descriptions used
by the sample programs are included after the sample programs. The maps
are unaligned. Users of aligned maps should protect the alignment of
their map DSECTS.

The sample maps include examples of how the COLOR, EXTATT, and
HILIGHT attributes are specified in the map definition macros. However,
due to production limitations, the associated screen layouts do not show
the effects of these attributes; they show how the maps would be
displayed on, for example, a 3271.

Specifying EXTATT=KAPONLY enables attributes to be added without
changing the application program. Any attribute, that specifies a
facility not available at the terminal, will be ignored.

The sample programs illustrate basic applications that can serve as a
framework for the installation's first programs. Each program has a
description and program notes. The program listings are of source code.
Numbered coding lines correspond to the nuabered program notes.

All transactions are initiated by the terminal operator entering a
four-character transaction code. (An account number must also be
entered, except in the case of the operator instruction sample program.)

There are six sample programs, as follows:

• Operator Instruction Sample Program

• Update Sample Program

• Browse Sample Program

• Order Entry Sample Prograll

• Order Entry Queue Print Sail pIe Prograll

• Report Sample Program

All the sample programs operate on a sample VSAM or ISAM file which
must first be created using a program provided on the library. The file
consists of records containing details of individual accounts. The
programs are used to display, alter, update, or browse through the
entries. Por information on how to create the sample VSAM or ISAft file
refer to the CICStVS System Program.erts Guide.

All the sample programs are for use with the IBM 3210 Information
Display System.

Executing the Sample Programs

Once CICS/VS is running, 3270 users can enter the following transaction
id's:

Appendix D. Sample Programs (Assembler Language) 415

AMMU
AINQ
AADD
AUPD
ABRW
AORD
ACOl!
AREP

Display other transaction ides (except AORD, ACO!, AREP)
Display an entry.
Create a new entry.
Update an entry.
Browse through entries.
Order entry.
Print order entry gueue.
Display a report ~ntries not greater than $50).

~: The transaction Acoa should be used once in the morning, after
which it will invoke itself at the printer in one hour (unless the time
is 1400 hrs or after).

416 CICS/VS APR! (CL)

Operator Instruction Sample Program (Assembler Language)

DESCRIPTION

To begin 3270 operations, a terminal operator aust enter a transaction
code of 18NU. Whenever the screen is cleared this transaction code must
be reentered, as no data is accepted from an unformatted screen.

The instruction program displays map XDFHA!A containing operator
instructions. This map lists the ASSEMBLER LANGUAGE CICSjVS sample
applications and the transaction codes (with the exception of AORD and
ACOK which are entered onto a clear scre'en), and provides space for
entering the code and an account number.

SOURCE LISTING

DFHEISTG
XDFHA8NU

1
2

DSECT
CSECT
EXEC CICS SEND MAP{aXDFHAKA') ltAPONLY ERASE
EXEC CICS RETURN
END

PROGRAM NOTES

1. The BKS command erases the screen and displays map XDFHAKA.

2. RETURN ends the program.

Appendix D. Sample Programs (Assembler Language) 417

Update Sample Program (Assembler Language)

DESCRIPTION

The update sample program combines the facilities of file update, file
add and file inquiry.

The update program maps in the account number and reads the file
record. The required fields from the file area, and a title depending
on the invoking transaction-id, are moved to the map area. In the case
of the file add function being required, the number entered onto map
XDFHAMA, and a title are moved to the map area of XDFHAMB. Then
XDFHAMB, containing the record fields, is displayed at the terminal. If
the function of this transaction is file inquiry, then the program ends
here.

The update program then reads and maps in the record to be added or
updated, and edits the fields. The sample program only suggests the
type of editing that might be done. The user should insert editing
steps needed to ensure valid changes to the file. Those fields which
have been changed are moved to the file area. Fields are moved to the
transient data area~ The file record is then either added or updated,
depending on the function required of the program. Either the message
'FILE UPDATED' or 'RECORD ADDED' is inserted in XDFHA!A and the map is
transmitted to the terminal.

This program demonstrates a pseudo-conversational program.ing
technique, where control is returned to CICS/VS together with a
transaction-id whenever a response is requested from the operator.
Associated with each return of control to CICS/VS is a storage area
containing details of the previous invocation of this transaction.

418 CICS/VS APR! ~L)

SOURCl!: LISTING

DFBEISTG

RETREG
R06
R07
R08
R09
FILEDS

CO!lPTR

!lESSAGES
KEYNUM
COMLEN
XDFBAALL

1

OKTRANID
2

3
4

5

6

7

8

INQUPD
9

10
11

12

13
UPDTSECT

14

15

DSECT
COpy
COpy
EQU
EQU
EQU
EQU
EQU
DS
COpy
EQU
COpy
COpy
DS
DS
DS
CSECT
CLC
BE
CLC
BE
CLC
BNE
DS
LH
LTR
BNZ
EXEC
EXEC
OC
BZ
MVC
XC
CLC
BNE
MVC
lIVC
"VI
MVC
!lVC
MVI
MVC
MVC
BAL
B
DS
EXEC
EXEC
CLI
BE
CLC
BNE
!lVC
MVC
BAL
BAL
EXEC
DS
MVC
MVC
I!VC
BAL
BAL

XDFHAMA
XDFHAMB
2
6
7
8
9
OC
FILEA
4
LOGA
DFHBI!SCA
CL39
CL9
1H

KAP A
!lAP B
SET UP REGISTER USAGE

RECORD DESCRIPTION FOR FILEA
POINTER TO COKKAREA
LOG FILE RECORD DESCRIPTION
BKS ATTRIBUTE BYTES
TEKP STORE FOR KESSAGES
TEllP STORE FOR FILE RECORD KEY
LENGTH OF COMMAREI

EIBTRNID,=CL(L'EIBTRNID)'AINQ' IS INVOKING T-ID 'AINQ'?
OKTRANID OK HERE, SO CONTINUE
EIBTRNID,=CL(L'EIBTRNID) 'AUPD' IS IT 'AUPD'?
OKTRANID OK HERE, SO CONTINUE
EIBTRNID,=CL(L'EIBTRNID)'AADD' FINALLY, IS IT 'AADD'?
ERRORS IF NOT, GO TO ERROR ROUTINE
08 CORRECT INVOKING TRANSACTION ID HERE
C08PTR,EIBCALEN HAS A COMI!ARE! BEEN RETURNED?
COMPTR,COKPTR
COllRETND ••• YES, SO GO GET KAP

CICS HANDLE CONDITION I!APFAIL(AMNU) ERROR(ERRORS)
CICS RECEIVE !lAP ('XDFBAI!A')

KEYI,KEYI IS KEYI HEX ZEROS?
NOTFOUND •• YES, SO TREAT AS NOT FOUND
KEYHU!l,KEYI •• NO, SO SAVE KEY TO FILE
XDFHAMBO(XDFHA!lBE-XDFHAMBO),XDFBA!BO CLEAR MAP
EIBTRNID,=CL ~'EIBTRNID)'AADD' IS INVOKING T-ID 'AADD'?
INQUPD •• NO, SO GO TEST FOR OTHER ID'S
TITLEO,=CL ~'TITLEO)'FILE ADD' SET UP TITLE
!lSG30,=CL(L'KSG30) 'ENTER DATA AND PRESS ENTER KEY'
NUI!BA,DFHBKFSE SET lIDT ON NUI!BER
NUMB,KEYI PUT KEY IN CO!lllAREA
NU!lBO,KEYI ••• AND ON !lAP ENTRY
A!lOUNTA,C'J' BUKERIC AND !lDT ATTRIBUTE BYTE
AllOUNTO,=C'$OOOO.OO' PRO!lPTING FIELD FOR KAP
COI!LEN,=H'7' 'SET UP LENGTH OF COMKARE! TO BE RTND
RETREG,MAPSEND GO SEND MAP
CICSCONT GO RETURN CONTROL TO CICS
OB HEBE INVOKING T-ID IS AIBQ, OR AUPD

CICS HANDLE CONDITION NOTFND(ROTFOUND)
CICS READ DATASET('FILEA') INTO(FILEA) RIDFLD(KEYNU!l)

STAT,X'FF' IS RECORD CODED AS NOT FOUND?
NOTFOUND •• YES, SO BRANCH TO NOTFOUND ROUTINE
EIBTRNID,=CL(L'EIBTRNID)'AINQ' IS INVOKING T-ID lIHQ?
UPDTSECT •• BO, SO BRANCH TO AUPD ROUTINE
TITLEO,=CL(L'TITLEO) 'FILE INQUIRY' SET UP TITLE ON KAP
MSG30,=CL(L'!SG30)'PRESS ENTER TO CONTINUE' SET UP TITLE
BETREG,I!APBUILD GO BUILD !lAP
RETREG,!lAPSEND GO SEND !lAP

CICS RETURN TRANSID('AMNU')
OH UPDATE ROUTINE
TITLEO,=CL(L'TITLEO) 'FILE UPDATE' SET UP MAP TITLE
!lSG30,=CL(L'MSG30) 'CHANGE FIELDS AND PRESS ENTER'
COMLEN,=B'SO' STORE LENGTH OF COMftAREA
RETREG,ftAPBUILD GO BUILD !AP
RETREG,MAPSEND GO SEND !lAP

Appendix D. Saaple Prograas (Asseabler Language) 419

B CICSCONT GO RETURN CONTROL TO CICS

* * * HERE A COMMAREA HAS BEEN RETURNED, AND IS THEREFORE SECOND *
* INVOCATION OF THIS PROGRAft *
* * ***
COftRETND DS OH BERE CORKAREA HAS BEEN RETURNED

L COftPTR,DFHEICIP GET ADRESSIBILITY TO COftftlREI
16 EXEC CICS HANDLE CONDITION MAPF1IL (NOTMODF) ERROR (ERRORS) *

17
DUPREC(DUPREC) NOTFND(NOTFOUND)

CICS RECEIVE HAP('XDFBAftB')
EIBTRNID,=CL(L'EIBTRNID)'AUPDI IS INVOKING T-ID AUPD?
SECADD •• NO, SO BRANCH TO 2ND ADD ROUTINE

18

EXEC
CLC
BIE
EXEC CICS READ UPDATE DATASETC'PILEAI) INTO (FILEA)

RIDFLD(NUMB-FILEDS(COftPTR» *
19

20

21

OKREC

22

SECADD

23

CICSCONT
24

AMNU

25

26
27

CLC
BE
avc
MVI
MVI
BAL
EXEC
MVC
B
DS
BAL
!VI
BAL
avc
B
DS
avc
BAL
XC
eVI
BAL
MVC
B
DS
EXEC

DS
XC
MYI
MVC
EXEC
EXEC

FILEREC,FILEREC-FILEDS (COMPTR) RECORD CHANGED 01 FILE?
OKREC •• NO, SO BRANCH AND CONTINUE
MSG10,=CL(LIHSG10)'FILE ALREADY UPDATED - REBNTERI
HSG1A,DFBBMBRY BRIGHTEN MESSIGE ON SCREEN
ftSG3A,DFBBMDAR DARKEN OPERATOR INSTRUCTION
RETREG,MIPBUILD GO BUILD RAP

CICS SEND MAP (IXDFHAMBI) DAT10NLY
COMLEN,=HISOI SET UP LENGTH OF COMHAREA
CICSCONT GO RBTURN CONTROL TO CICS
OR BERE RECORD IS OK FOR UPDATE
RETRBG,CBECK GO TEST RECORD TO BE UPDATED
STAT,CIUI HOVE IUPDATEI BYTE TO FILE RECORD
RETREG,FILESTU~ GO SET UP FILE REcoaD
MESSAGES, =CL (LI MESSAGES) Ip ILE UPDATEDI SET (JP MESSAGE
AMNU COMPLETE, GO FINISH.
OH SECOND ADD ROUTINE
NUMB,NUHB-FILEDS(CO!PTR) KOVE SAVED RECORD KEY TO FILE
RETREG,CHECK GO CHECK RECORD TO BE ADDED
FILEDS,FILEDS RECORD IS OK BERE,SO CLEIR FILE ARBA
STAT,C'A' MOVE 'ADDEDI BYTE TO PILE RECORD
RETREG,PILESTUP GO WRITE RECORD 01 PILE
HESSAGES,=CL(LI!ESSAGES) 'RECORD ADDED' SET UP MESSAGE
AHNU COMPLETE, GO FINISH.
OB THIS ROUTIIE RETURNS CONTROL TO CICS

CICS RETURN TRANSID(EIBTRNID) COMHAREA(FILEDS)
LENGTH CCOMLEN)
OB ENDING ROUTINB
XDPH1MAO(XDFHAftAE-XDFHAftAO),XDPHAMAO CLEAR MAP
MSGA,DFHBaBRY BRIGHTEN MESSAGE FIELD ON HAP
RSGO,MESSAGES MOVE ANY "ESSAGE TO HAP AREA

CICS SEND M1PC1XDPBAMA') ERASB
CICS RETURN

* *

*

*
*

GENERAL ROUTINES *
*

MAPBUILD DS OB ROUTINE TO BUILD MAP XDFHAHB

HVC NU!BO,NUHB HOVE PILE KEY TO HAP ARBA
MVC BAHEO,NAHE MOVE NAME TO HAP AREA
!VC ADDRO,ADDRX !OVE ADRESS TO MAP AREA

28 MVC PBONEO,PBONE MOVE PBONE TO MAP ARBA
!VC DATEO,DITEX MOVE DATE TO ftAP ARB A
MVC AHOUNTO,A!OUNT HOVE AMOUNT TO MAP AREA
HVC COMHENTO,CO!HENT HOVE COH!ENT TO HAP AREA
BR RETREG RETUR N

!APSEND DS OH ROUTINE TO SEND HAP XDFHAMB
29 EXEC CICS SEND MAP(IXDFBAftBI) ERASE

BR RETREG RETURN

420 CICS/VS APRM (CL)

CHECK DS
LA
LA
LA
LA
IC~

30 CLCL
BE
CLC
BE

UPNA~CHK DS
OC
BZR

ADNAMCHK TRT
BM
BR

FILESTUP DS
31 OC

BZ
MK

ADRTST OC
BZ
MVC

PHNTST OC
BZ
MVC

DATTST OC
BZ
~VC

AMTTST OC
BZ
avc

COMTST OC
BZ
avc

CONTINUE DS
HVC

32 MVC
MK
MVC

33 EXEC
CLC
BNE

3q EXEC
BR

ADDWRITE DS
35 EXEC

BR
DATAERR DS

36 MVI
aVI
KVI
aVI
KVI
KVI
MI
KVI

37 avc
38 EXEC

CLC
BE
MVC
B

UPDTERR DS

OH ANY INPUT FROM SCREEN? ROUTINE
R06,XDFHAMBO R6 POINTS TO START OF KAP XDFHAKB
R07, (XDFHAKBE-XDFHAKBO) R7 CONTAINS LENGTH OF MAP B
R08,HEXZERO R8 POINTS TO HEXZERO
R09,L'HEXZERO R9 CONTAINS LENGTH OF HEXZERO
R09,B'100',HEXZERO X'OO' INTO TOP BYTE OF R9
R06,R08 DOES MAP CONTAIN ANY INPUT?
NOTKODF •• NO, SO RAISE NOTMODIFIED
EIBTRNID,=CL(L'EIBTRNID) 'AADD' IS INVOKING T-ID 'ADDS'?
ADNAKCHK •• YES, SO GO TO 'AADO' NAME CHECK
OH UPDATE TRANSACTION HERE
NAMEI,NAMEI HAS NAME BEER CHANGED?
RETREG •• NO, SO DON'T CHECK IT
NAMEO,TAB •• YES, IS IT ALPHABETIC?
DATAERR •• NO, SO RAISE ERROR
RETREG •• YES, SO RETURN
OH ROUTINE TO SET UP FILE RECORD
NAMEI,NAMEI HAS NAKE BEEN ENTERED?
ADRTST •• NO, BRANCR
NAME,NAKEI •• YES, PUT IN IN FILE AREA
ADDRI,ADDRI HAS ADRESS BEEN ENTERED?
PBNTST •• NO, BRANCR
ADDRX,ADDRI •• YES, PUT IN IN FILE AREA
PHONEI,PHONEI HAS PRONE BEEN ENTERED?
DATTST •• NO, BRANCH
PRONE,PHONEI •• YES, PUT IN IN FILE AREA
DATEI,DATEI HAS DATE BEEN ENTERED?
AMTTST •• NO, BRANCR
DATEX,OATEI •• YES, PUT IN IN FILE AREA
AMOUNTI,AMOUNTI HAS AKOUNT BEEN ENTERED?
COMTST •• NO, BRANCH
AMOUNT,AMOUNTI •• YES, PUT IN IN FILE AREA
COMMENTI,COMMENTI HAS COMKENT BEEN ENTERED?
CONTINUE •• NO, CONTINUE
COMMENT,C08KENTI •• YES, PUT IN IN FILE AREA
OH FILE RECORD IS NOW SET UP
LOGREC,FILEREC MOVE FILE RECORD TO LOG AREA
LDAY,EIBDATE MOVE DATE TO LOG AREA
LTIKE,EIBTIME KOVE TIME TO LOG AREA
LTERML,EIBTRMID MOVE TERMINAL-ID TO LOG AREA

CICS WRITEQ TD QUEUE('LOGA') FROM(LOGA) LENGTH (92)
EIBTRNID,=CL(L'EIBTRNID)'AUPDI UPDATE REQUIRED?
ADDWRITE •• NO, SO BRANCH

CICS REWRITE DATASET('FILEA') FROM(FILEA)
RETREG FINISHED, SO RETURN
OH ADD FUNCTION REQUIRED

CICS WRITE DATASET(IFILEAI) FROM (FILEA)
RIDFLD(NUMB-FILEDS(COMPTR»
RETREG FINISHED, SO RETURN
OH GENERAL ROUTINES
NAMEA,DFHB8FSE PRESERVE CONTENTS OF SCREEN
ADDRA,DFHB~FSE BY SETTING THE MODIFIED DATA TAG
PHONEA,DFHBMFSE ON THE FIELDS ON THE SCREEN.
D1TEA,DFHBMFSE
AMOUNTA,DFHBMFSE
COMMENTA,DFHBMFSE
MSG3A,DFHBMBRY BRIGHTEN ERROR KESSAGE
MSG1A,DFHB~DlR DARKEN OPERATOR INSTRUCTION
MSG30,=CL~'MSG30)IDATA ERROR - PLEASE REENTER'

CICS SEND MAP(IXDFHAMBI) DATAOBLY
EIBTRNID,=CL(L'EIBTRNID)'AUPD' UPDATE REQUIRED?
UPDTERR •• YES, SO BRANCH
COMLEN,=H'7' •• HO,SET UP COMLEN
CICSCONT GO RETURN CONTROL TO CICS
Oft

*

Appendix D. Sample Programs (Assembler Language) q21

MVC COMLEN,=H'SOI UPDATE, SET UP REQUIRED COMLEN
B CIeSCONT

NOTMODF DS 08 SCREEN NOT CHANGED
39 MVC MRSSAGES,=CL(LIMESSAGES)IFILE NOT MODIFIEDI MESSAGE

B AMNU COMPLETE, GO FINISH
DUPREC DS OB DUPLICATE RECORD

40 MVC MESSAGES,=CL (LlaESSAGES) IDUPLICATE RECORDI MESSAGE
B AMNU COMPLETE, GO FINISH

NOTFOUND DS OB RECORD NOT FOUND
41 MVC MESSAGES,=CL(L'aESSAGES)IINVALID NUMBER-PLEASE REENTERI

B AMNU COMPLETE, GO FINISH
ERRORS DS OB GENERAL ERROR ROUTINE

42 EXEC CICS DUMP DUMPCODE(IERRS')
avc MESSAGES,=CL ~18ESSAGES)'TRANSACTION TERMINATEDI
B AMNU COMPLETE, GO FINISH

HEXZERO DC X'OOI CONSTANT FOR COMPARISONS
TAB DC 256X'FF' TRANSLATE TABLE

ORG TAB+X '40' BLANK
DC X'OO'
ORG TAB+X'4B' CHAR '.'
DC X'OOI
ORG TAB+X'Cl' CHARS 'A' 'II
DC 9X I OO'
ORG TAB+X'Dl' CHARS 'J' 'R'
DC 9X I OO'
ORG TAB+XIE2' CHARS IS' IZI
DC ax'oo'
ORG
END

422 CICS/VS APRM (CL)

PROGRA! NOTES

1. The possible invoking transaction-id1s are tested.

2. The length of the COMMAREA is tested.

3. The program exits are set up.

4. !ap XDFBA!l is received.

5. The account number is saved.

6. If the program is invoked by the transaction-id IAAOO', a title and
command message are moved to the title area.

1. The record key is moved to the map area and to the CO~~AREA.

8. In the case of the AAOO transaction, the amount field has the
modified data tag and the numeric attribute byte set on so only
numeric data can be entered. If no data is entered, the field
contains the original data if it has not been modified when the
contents of map XOFHAMB are mapped in.

9. The exit for the record-not-found condition is set up.

10. The file control READ reads the file record into the file area.

11. If the record is coded as deleted, it is treated as not found.

12. If the program is invoked by the transaction-id 'AINQ', a title and
command message are moved to the map area.

13. This invocation of the program ends.

14. If the program is invoked by the transaction-id 'AUPD', a title and
command message are moved to the map area.

15. The length of the COftftlREI to be r~turned is set up.

16. The error exits are set up.

17. This command maps in the contents of the screen.

18. The file control READ UPDATE reads the file using the number from
the last invocation of this program which is stored in COft!ARE1.

19. The fields from the last invocation are checked against those on
the current file record.

20. ~ message and attribute bytes are moved.

21. The contents of the map XDFHA!B are sent to the terminal.

22. The message 'FILE UPDATED' is moved to !ESS1GES.

23. The message 'RECORD ADDEDI is moved to !ESSAGES.

24. Control is returned to CICS/VS together with the name of the
transaction to be invoked when an attention key is pressed at the
terminal, and data associated with this transaction is returned in
the CORRIREI.

25. The bright attribute is turned on and ftESSAGES is moved to the map
area.

Appendix D. Sample Programs (Assembler Language) 423

26. The screen is erased and map XDFHAftA is transmitted to the screen.

27. The program ends.

28. The fields from the file area are moved to the map area.

29. The screen is erased and map XDFHA8B is sent to the terminal.

30. Any required editing steps should be inserted here. A suitable
form of editing should be used to ensure valid records are placed
on the file.

31. The record to be written to the file is created.

32. The record fields, date, time, and terminal identification are
moved to the transient data area.

33. This record is written to a transient data file.

34. The updated record is rewritten to the file.

35. The record is written to the file.

36. The fields from the map have the modified data tag attribute set so
that data is still in those fields when the map is received.

37. An error message is moved.

38. The contents of map XDFHAKB are sent to the screen.

39. If no fields were modified, the message 'FILE NOT KODIFIED' is
moved to MESSAGES.

40. If a duplicate record condition exists, the message 'DUPLICATE
RECORD' is moved to MESSAGES.

41. If the file record was not found, the message 'INVALID NUMBER -
PLEASE REENTER' is moved to KESSAGES.

42. On an error (notes 4, 10, 13, 11, 18, 21, 24, 26, 29, 33, 34, and
38) a dump is taken and the message 'TRANSACTION TERMINATED' is
moved to messages.

424 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Browse Sample Program (Assembler Language)

DESCRIPTION

The browse program sequentially retrieves a page or set of records for
display, starting at a point in a file specified by the terminal
operator. Depressing the PF1 key or typing F causes retrieval. of the
next page or paging forward. If the operator wishes to reexamine the
previous records displayed, depressing the PF2 key or typing B allows
paging backward.

To start a browse, the account number is mapped in and stored in a
four entry key table in working storage. To retrieve a page, the key of
the first record of that page is all that need be maintained in the
table. The values in the key table are shifted right, so that the table
is primed for the next page. A map area is obtained to move the fields
from each record. The starting point of the browse is then established,
the first record is read, and its fields are moved to the map area. As
many successive records as can be shown on the screen are then read and
setup. The sample program shows four records to a page (four lines) •
If conditions dictate displaying other than four lines, RFADNEXT and
associated commands should be added or deleted. If only one record can
be accommodated, browse is still possible.

After viewing the first page, the operator may indicate page forward
through the PF1 key or by typing F. The program proceeds directly to
building the next page, as the key table is already conditioned. The
browse may continue for as long as is desired (or lmtil the end of the
file is reached) •

If the operator wishes to page backward with the PF2 key or by typing
B, the key table entries are shifted left, so that the previous page is
retrieved. The program resets the browse starting position and branches
back to the main routine to construct a page. The backward browse
depends on the number of keys that may be stored in the key table. If
more than two page backwards in a sequence are required, the four entry
key table should be expanded.

The operator may cancel a browse at any time by pressing the clear
key.

Key Table example

The following are the field ftmctions:

FLDA
FLDB
FLDC
FLDD

- Next page forward
- Current page being viewed
- Previous page
- Page before previous page

(+ additional backward paging keys, if needed)

Assume that the file contains the foll~ing records, and there will be
two records to a page for display:

14 17 18 20 25 28 I •••• 1 ••••

The operator keys in 15, indicating that the browse should start with
the first record equal to or greater than 15. The program stores 15 in
FLDA and FLDB.

Appendix D. Sample Programs (Assembler Language) 425

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

I 15 I 15 I 0 I 0
FLDD FLDA FLDB FLOC

The program reads records 17 and 18 from the file and displays them
at the terminal. The last record (18) is stored in FLDA, to be ready
for a page forward.

I 18 I 15 I 0 I 0
FLDA FLDB FLDC FLDD

The operator presses PF1 or types F to page forward and display the
next page. The program uses FLDA (18) to retrieve records 20 and 25.
These are displayed after the keys are shifted right. The last record
read (25) is stored in FLDA.

I 25 I 18 I 15 I 0
FLDA FLDB FLOC FLDD

Additional page forward requests wou1d cause the table entries to be
shifted right, and a new entry stored in FLDA. Entries in FLDD are
dropped during the shift right.

The operator presses PF2 or types B to page backward and display the
previous page of two records. The keys are shifted left to place the
starting key of the previous page displayed (15) in FLDA and FLDB. FLDD
is moved to FLOC, and ze ros are moved to FLDD.

15
FLDA

15
FLDB

o
FLOC

o
PLDD

The program uses FLDAto retrieve records 17 and 18, which are then
displayed. The last record (18) is stored in FLDA for the next page
forward.

18
FLDA

15
FLDB

o
FLDC

o
FLDD

The operator is viewing the first page that was requested, after
paging forward one page and then paging backward to the starting page.
The sample program does not permi t paging beyond the starting page, so
that the operator may only page forward at this point or cancel the
browse by pressing the clear key. Although browse permits paging
forward to the end of the file, paging backward is l:imited by the number
of table entries. The four-entry table allows going back two pages. If
this is insufficient, a larger table Will allow further backward paging.

426 CICS/VS APRM (CL)

SOURCE LISTlliG

DFHEISTG
MESSAGES
KEYS
FLDA
FLDB
FLDC
FLDD
HEXZERO

XDFBABBW

1

2
3

4
5

PAGEF

6

BUILD

NEXTLIN
7
8

9

SEC LIN
10

THRLIN

FORLIN

DSECT
DS
DS
DS
DS
DS
DS
DS
COPY
COpy
COpy
COpy
CSECT
MVI
MVC
aVI
aVI
EXEC

EXEC
EXEC

!lVC
EXEC
DS
ayC
llVC
MVC
DS
LA
LA
LA
lA
LA
ICM
aVCL
DS
EXEC
ClI
BE
CH
BNE
!lVC
avc
avc
B
CH
BHE
!lVC
avc
MVC
B
CH
BNE
avc
avc
avc
B
CB
BIE
avc
avc
MVC

CLSO
OCL24
CL6
CL6
CL6
CL6
X'OO'
XDFBAMA
XDFHAMC
FILEA
DFBBMSCA

CONSTANT FOR CLEARING MAPS
MENU MAP
DISPLAY aAP
FILE RECORD DESCRIPTION
BftS ATTRIBUTE BYTES

KEYS,X'FO' INSERT '0' INTO TOP BYTE OF KEYS
KEYS+l (l'KEYS-1) ,KEYS INITIALISE KEYS TO ZERO
aESSAGES,X'40' INSERT' , INTO TOP BYTE OF ftESSAGES
aESSAGES+l (L'aESSAGES-l),MESSAGES CLEAR MESSAGES FIELD
CICS HANDLE CONDITION ERROR(ERRORS)MAPFAIL(AaNU)

ENDFIlE (EIDFILE) lOT PHD (NOTFOUND)
CICS RECEIVE llAP (' XDFH Aa A')
CICS HANDLE AID CLEAR (AMNU)

PFl WAGEF) PF2 (PAGEB)
FLDA,KEYI

CICS STARTBR DATASET('FILEA') RIDFLD(FLDA)
OH
FLDD,FLDC
FLDC,FLDB
FLDB,FLDA
OH
4,1 SET COUNTER TO 1
6,XDFHAMCO R6->START OF llAP XDPHAac
1,(XDFHAMCE-XDPHAMCO) R7 CONTAINS LENGTH OF XDFHAMC
8,HEXZERO
9,L'HEXZERO
9,B'100',HEXZERO
6,8
OH

R8-> X'OO'
R9 CONTAINS LENGTH OF BEXZERO
X'OO' INTO TOP BYTE OF R9
MOVE X'OO' INTO IDFRAMCO

CICS READIEXT
STAT,X'PP'
NEITLIN

18TO(FILEA) DATASET('FILEA') RIDFLD ~LDA)
IS RECORD CODED AS lOT POUND

4,=H'1'
SECLIN
NUMBER 10 ,NUftB
NAME10,NAME
AftOUNT10,AMOUNT
CONT
4,=H'2'
THRLIN
NUftBER20,NUKB
NAME20,NAPlE
A!!OUNT20, AMOUNT
CONT
4,=H'3'
FORLIN
NU!!BER30,NUPlB
NAME30,NAaE
AMOUNT30,AftOUNT
CONT
4,=H'4'
CONT
NUMBER40,NUMB
NAftE40,NAaE
AflOUNT40,AftOUNT

•• YES, SET UP NEIT LINE
FIRST LINE?
•• NO, GO TEST FOR 2ND LINE
aOVE HUllBER TO MAP lREA
MOVE lAME TO HAP AREA
MOVE AMOUNT TO MAP AREA
GO CONTINUE
SECOND LINE?
•• NO, GO TEST FOR THIRD LINE
MOVE NuaBER TO MAP AREA
80VE HAllE TO llAP AREA
MOVE AMOUNT TO !lAP AREI
GO CONTINUE
THIRD LINE?
•• NO, GP TEST FOR FOURTH LINE
llOVE NU!tBER TO !tAP AREA
80VE HA8E TO 8AP AREA
MOVE AMOUNT TO MAP AREI
GO CONTINUE
FOURTH LINE?
•• NO, CONTINUE
MOVE NOllBRR TO KAP AREA
80YE NAllE TO !tAP AREA
MOVE AMOUNT TO MAP AREA

*

*

Appendix D. Sample Proq~ams (Assembler Language) 427

CONT

DISPREC
11

REPEAT
12

BHDPILE

13

PAGEB
14

15

TOOFAR
16

17

NOTFOUND
18

ERRORS
19

AIHiU
20

21

DS
LA
CH
BNE
DS
EXEC
DS
EXEC
CLI
BE
CLI
BE
BNE
DS
MVC
MVI
B
DS
CLC
BE
ltVC
!tVC
ltVC
MVC
EXEC
B
DS
ltVI
MVI
EXEC
B
DS
MVC
B
DS
BIEC
MVC
DS
XC
MVI
ltVC
EIEC
EXEC
END

OH
Q,1(,4)
Q,=H'S'
NEITLIN
OH

CICS SEND
OR

INCREltENT COUNT
FINISRED?
•• NO, GO BUILD NEXT LINE
•• YES, SEND ltAP

MAP (IXDFHA!C') ERASE

CICS RECEIVE MAPC'XDFBA8C')
DIRI,C'P' PAGE FORWARD REQUIRED?
PAGEF •• YES, GO TO PAGE FORWARD ROUTINE
DIRI,C'B' PAGE BACK REQUIRED?
PAGEB •• YES, GO TO PAGE BACKWARD ROUTINE
AltHU •• NO, GO SEND MENU MAP
OH ENDFILE IS REACHED
I!SG10 ,=CL (L'MSG10) 'END OF FILE' ltESSAGE
MSG2A,DFHBMBRY ATTRIBUTE BYTE FOR INSTRUCTION FLD
DISPREC GO SEND MAP
OR PAGE FORWARD ROUTINE
FLDC(6),=C'000000' FLDC = ZEROS?
TOOFAR •• YES, SO RAISE TOO PAR CONDITION
FLDA,FLDC •• NO, SET UP KEYS FOR FILB
FLDB,FLDC
FLDC,FLDD
FLDD,=C'OOOOOO'

CICS RESETBR DATASET C' FILEA') RIDFLD (FLDA)
BUILD GO BUILD ltAP
OH GONE TOO FAR
ltSG1A,DFHBMBRY BRIGHTEN MESSAGE
MSG2A,DFHBMDAR DARKEN SESSAGE

CICS SEND ltAP(IXDFHA!C') DATAONLY
REPEAT GO GET MAP
OR
MBSSAGES,=CL(LlltESSAGES) 'INVALID NUMBER-PLEASE REENTER'
AMNU
OR GENERAL ERROR ROUTINE

CICS DUMP DUltPCODEC'ERRS')
MESSAGES,=CL~'MESSAGBS)'TRAHSACTION TERMINATED'
OR END ROUTINE
IDFHAMAO(XDFHAMAE-XDFRAMAO),XDFHA!AO CLEAR MAP A
MSGA,DFHBltBRY BRIGHTER MESSAGE FIELD
MSGO,MESSAGBS MOVE MESSAGES TO MAP AREA

CICS SEND ltAP('XDFRAMAI) ERASE
CICS RETURN

428 CICS/VS APRM ~L)

PRO GRAft NOTES

1. The error exits are set up.

2. This command maps in the account number.

3. The exits for each of the defined function keys are set up.

4. The starting key is stored in field A in the key table.

5. This command establishes the browse starting point.

6. The keys in the table are shifted right in anticipation of a
continuation of a browse.

1. The READNEXT reads the first record into the file area.

8. If the record is flagged as deleted, the program reads the next
record.

9. The required fields are moved from the file area to the map area.

10. The same basic com.ands are repeated to read and set up the next
three lines. The same file area is used and, therefore, the fields
must be reused after each READNEXT.

11. The screen is erased and the page is displayed at the terminal.

12. The browsing command (CLEAR, PF1, or PF2 key, or IFI or lSI) is
read from the terminal, and control is passed according to the
operator response (see note 3).

13. If the end of file is reached on any READNEXT, any records read to
that point are displayed, together with the message 'END OF FILEI.
The label to which this routine branches allows the operator to
restart the browse at a different point. The bright attribute for
the page backward message is turned on.

14. If the PF2 key is pressed or B typed in, indicating page backward,
and FLDC contains zeros, further backward paging is not possible.
The program branches to TOO-FAR (see note 11).

15. If not, the key fields are shifted left to retrieve the previous
page and the starting point for the browse is reset accordingly.

16. The table limit is exceeded. An output map area is acquired, the
bright attribute for the page forward message is turned on, and a
dark attribute is moved to the page backward message.

11. On the record NOTFND condition, the message IINVALID NUKBER -
PLEASE REENTER I is moved to messages.

18. An error message is written to the terminal.

19. On an error (notes 2, 5, 1, 11, 12, 11, or 21) a dump is taken and
the message 'TRANSACTION TERMINATEDI is moved to !ESSAGES.

20. The map area is cleared. This is also the entry point if the clear
key was depressed. The bright attribute to highlight the message
is turned on, and the message 'TRANSACTION TERMINATED' or the
default message is moved to MESSAGES.

21. The screen is erased and map XDFHAMA is displayed, and the program
ends.

Appendix D. Sample Programs (Assembler Language) 429

Order Entry Sample Program (Assembler Language)

DESCRIPTIOlf

The order entry sample application program accepts input relating to the
ordering of parts from a warehouse. When sufficient orders have been
accumulated in the headquarters of a business, these are automatically
sent off to a warehouse, or some other distribution point.

The program displays the map XDPHAMK on the screen requesting the
operator to input details regarding the ordering of certain parts. The
screen contains entry positions relating to the customer number, the
part nuaber, and the quantity of that part required. (lny integer up to
six digits in length may be entered: the customer number must be valid,
that is, it must exist on FILEA.) When the screen has been filled, the
operator presses ENTER. The.screen is then mapped in and the data is
checked, errors being returned to the operator for reentering. When all
the input is correct it is sent to a transient data queue called 'L860'
which is also a terminal-id where a transaction is to be triggered when
the number of items on the queue reaches 30.

The trigger level may be changed using the CSftT command, as follows:

CSMT TRIGGER,n,DESTID=L860

where n is the destination trigger level (any integer from 0 through
32161) •

When all orders have been entered, the operator presses CLEAR and
RESET, and a new transaction may be started.

430 CICS/YS APRM (el)

SOURCE LISTING

DFHEISTG

FLAGS
FLAG1
XDFBAREN

1
2

SEND
3

RECEIVE
4

QBUILD
5

6

QWRITE
1

8

EAUP
9

NOTFOUND
10

MAPFAIL

11

ERRORS

12

ENDI
13

DSECT
COpy
COpy
COpy
COpy
DS
EQU
CSRCT
HI
EXEC
EXEC

XC
DS
EXEC
DS
EXEC
DS
EXEC
MVC
MVC
evc
Mve
DS
EXEC
TM
BZ
EXEC
NI
B
DS
EXEC
B
DS
!tVC
MVI
MVI
01
MVI
B
DS
XC
01
MVI
B
DS
MVI
MVC
EXEC
EXEC
DS
EXEC
END

XDFBIMK
L860
FILEA
DFHBMSCA
1B
X 180 I

COpy MAP
COpy QUEUE RECORD
COpy FILE RBCORD DESCRIPTION
COPY BftS ATTRIBUTE BYTES
GROUP OF ERBOR FLAGS
ERROR FLAG FOR SCREEN ftESSAGES

FLAGS,XIFFI-FLAG1 SET ERBOR FLAG TO 0
CICS HANDLE AID CLEAR(BNDA)
CICS BANDLE CONDITION MAPFAIL(MAPFAIL) NOTFND(HOTFOUND)

ERROR (ERROBS)
XDFHAMKO (XDFBAMKE-XDFHAftKO) ,XDFHltlKO CLEAR MAP
OH

CICS SEND MAP (IXDFHAftKI) ERASE
OB

CICS RECEIVE MAPC'XDFHAftKI)
OH

CICS READ DATASET (IFILEAI) INTO(FILEA) RIDFLD(CUSTNOI)
CUSTNO,CUSTNOI CREATE QUEUE RECORD
PARTNO,PARTNOI
QUANTITY,QUANTI
TERMID,EIBTRMID PUT TERftID ON QUEUE RECORD
OH WRITE QUEUE RECORD

CICS WRITEQ TD QUEUEt I L860 1) FROft(L860) LENGTH (22)
FLAGS,FLAG1 ERROR MESSAGE ON SCREEN?
EAUP •• NO BRANCH

CICS SEND MAP(IXDFHAftKI) MAPONLY ERASE
FLAGS,XIFFI-FLAGl CLEAR FLAG
RECEIVE GO GET NEXT RECORD
08 NO ERROR ftESSAGE ON SCREEN

CICS ISSUE ERASEAUP
RECEIVE GO GET NEXT RECORD
08
CUSTNOA,=CIII
PARTNOA,DFBBMFSE
QUANTA, DF8BftFSE
FLAGS,FLAGl
M SG 1 A , D Fa Bft BRY
SEND
08

MOVE BRT AND RDT ATTRIBUTE TO NUMBER
AND MDT TO OTBER FIELDS SO AS TO
PRESERVE CONTENTS OF SCREEN
SET ERROR FLAG
BRIGHTEN ERROR ftESSAGE ON SCREEN
GO SEND alP

XDFHAMKO(XDFHAftKE-IDFBAMKO) ,IDFHAeKO CLEAR ftAP
FLAGS,FLAGl SET ERROR FLAG
MSG2A,DFHBftBRY BRIGHTER ERROR ftESSAGE ON SCREEN
SEND GO SEND ftAP
OB
MSG2A,DFHBMBRY
MSG20,=C'TRANSACTION TERftINATED' MESSAGE TO MAP

CICS SEND MAP(tXDFHAftK')
CICS DUMP DUftPCODE('ERRS')

OR
CICS RETURN

*

Appendix D. Sample Programs (Assembler Language) 431

PROGRAM NOTES

1. Set up exit for clear key.

2. The error exits are set up.

3. The screen is erased and the map is displayed at the terminal.

4. This command maps in the customer number, part number, and
quantity. The user should add further editing steps necessary to
ensure only valid orders are accepted.

5. The file control READ reads the record into a record area in order
to find whether a particular record exists.

6. The input from the map is moved to the queue area.

7. The transient data WRITEQ obtains a log area, and writes this
record to a sequential file.

8. If an error message is left on the screen, the screen is cleared
and only the map is sent.

9. The entered fields, having been mapped in and processed, are
erased, and the screen is ready to receive more input.

10. If the customer number entered was not found, the message 'NUMBER
NOT FOUND - REENTER', hav~ng been stored on the screen with a dark
attribute character, is brightened.

11. If no fields were entered, the message 'DATA ERROR - REENTER', also
having been stored on the screen with a dark attribute character,
is brightened. The customer number field is also brightened.

12. On an error a dump is taken, and the message 'TRANSACTION
TERMINATED' is moved to the top message area, and the map is sent
to the screen.

13. This routine ends.

432 CICS/VS APRM ~L)

Order Entry Queue Print Sample Program (Assembler Language)

DESCRIPTION

·This transaction is invoked by entering the transaction-id 'ACOS' at the
terminal. The program checks to see whether it was started from a
terminal or the printer. If from a terminal, (that is, the operator is
starting this transaction for the first time) the program starts the
transaction at the printer in one hour. (This time interval could be
changed using BDF for demonstration purposes.) The operator may then
press RESET and CLEAR and enter another transaction. If from the
printer, the program executes and starts again in one hour. If there
are no items on the queue, a message indicating that the queue is empty,
is sent to the warehouse. The last communication with the warehouse
occurs not later than 1500 hours. This transaction is also started when
the number of items on the queue 'LB60' reaches 30.

The trigger level may be changed using the CSMT command, as follows:

CSMT TRIGGER,n,DESTID=LB60

where n is the destination trigger level (any integer from 0 through
32767) •

This program reads items off the queue 'L860', until the queue is
empty. Should the queue have been empty initially, a message is sent to
the warehouse. Using the number from the queue as a key it reads the
file FILEA, and checks the amount field to see if the customer is good
for credit on this order. If he is, the number, name, address, part
number, and quantity are moved to the map XDFHAML and this is sent to
the printer. If he is not, the time, date, queue-item, and a comment
field are moved to a data area, which may be used for later processing.
A message is then sent to the warehouse indicating that the queue is
empty. The EIBTISE is then updated and if the time is before 1400
hours, the transaction is started in one hour.

Appendix D. Sample Programs (Assembler Language) ij33

SOURCE LISTING

DFHEISTG

LOGORD
LDATE
LTIME
LITEM
COfUUfT
FILLER
QLENGTH
XDFHACOM

1
2

QREAD

3
4
5

6

1

LWRITE

8

9

ERRORS
10

ENDA
11

12
TIME

13
14

15
FIN

16

DSECT
COpy
COpy
COpy
DS
DS
DS
DS
DS
DS
DS
CSECT
MVC
MVI
MVC
EXEC
CLC
BNE
XC
DS
MVC
EXEC
EXEC
CLC
BL
avc
MVC
MVC
MVC
MVC
MVC
EXEC
B
DS
MVC
MVC
MVC
EXEC
B
DS
EXEC
B
DS
XC
HVC
EXEC
DS
EXEC
CP
BB
EXEC
DS
EXEC
END

XDPHAML
L860
PILEA
OCL92
PL1
PL1
CL22
Cll1
e1.51

RAP
Q RECORD
FILE RECORD
RECORD TO BE WRITTEN ONTO LOGA

1B SIZE OF Q RECORD

C08MNT,=C'ORDER ENTRY'
FILLER,X'40'
FILLER+1(LIFILLER-1),FILLER

CICS HANDLE CONDITION ERROR (ERRORS) QZERO (ENDA)
EIBTRMID(4),=C'L860' TERMID='L860 1 ?
TIME IF NOT START TRANSACTION LATER
XDFHAMLO(XDFHAMLE-XDPHAMLO),XDFHAMlO CLEAR MAP
OB
QLENGTH,=B'+22' IHITIALISATIOJ

CICS READQ TD INTO (L860) LENGTH (QLENGTH) QOEUE ('L860')
CICS READ DATASETC'FILEA') INTO~ILEA) RIDFLD(COSTNO)

AMOUNT (8) ,=C'$0100.00' IS ORDER VALID?
LWRITE IF <100 BRABCR AND WRITE LOG
ADDRO,ADDRX SET UP RAP
HAMO,NA!!E
PARTO,PARTNO
NUflBO,CUSTNO
LITEM,ITEM
QUANTO,QUANTITY

CICS SEND MAP('XDFHAMlI) ERASE PRINT L80
QREAD GET NEXT RECORD
OH
LDATE,EIBDATE
LTIaE,EIBTI8E
LITEM ,ITEM

SET UP LOG RECORD

CIes WRITEQ TD QUEUE ('LOGA') FROM (LOGORD) LENGTH (92)
QREAD GET NEXT RECORD
OH

CICS DUMP DUMPCODEC'ERRS')
FIN BRANCH TO END
OB
XDFHAMLO(XDFHAMLE-XDPHARLO),XDFHAKLO CLEAR RlP
TITLEO,=CL~'TITLEO)'ORDER QUEUE IS EMPTY' SET UP TITLE

CIes SEND MAPC'XDPRAKL') DATAONLY ERASE L80 PRINT
OH

CICS ASKTIME
EIBTIME,=P'0140000' TIME AFTER 1400 HOURS?

•• YES, SO STOP FIN
CICS

OB
START TRANSID C'ACOK') INTERVAL (10000) TERMIDC'L860')

CIes RETURN

434 CICS/VS APRM (CL)

PROGRAM NOTES

1. The error exits are set up.

2. The terminal-id is tested to see whether this transaction was
started from a terminal or at the printer.

3. The queue item is read into the program.

4. The file control READ command reads the record into a record area
so that the amount may be checked.

5. The amount is tested.

6. If it is over $100, the record on the queue is moved to the map
XDFHAML. This test is only a suggestion; a suitable form of
editing should be inserted here to ensure valid orders are sent to
the warehouse.

7. The map XDFBAML is sent to the printer.

8. If the order is not valid for this account, the record on the queue
is moved to a data area, together with the terminal-id associated
with the entering of this piece of data, the time, and date.

9. The transient data WRITEQ command obtains a log area, and writes
this record to a sequential file.

10. On an error (notes 3, 4, 7, 9, 12, and 15) a dump is taken.

11. When the queue is empty, a message is moved to the map area.

12. The map is displayed on the screen.

13. The current time-of-day clock is updated.

14. The current time-of-day is tested.

15. If the current time is not past 1400 hours, the transaction is
started again in one hour, at the warehouse printer.

16. The program ends.

Appendix D. Sample Programs (Assembler Language) 435

Report Sample Program (Assembler Language)

DESCRIPTION

The report sample program produces a report that lists all entries in
the data set 'PILEA' for which the amount is less than or equal to
$50.00.

The program illustrates page building techniques and the use of the
terminal paging facilities of Bas.

The transaction is invoked by entering the transaction code AREP.
The program does a sequential scan through the file noting each entry
that obeys the search criterion. The pages are built from four maps
which comprise mapset XDFHAMD, using the paging option so that the data
is not displayed immediately but instead is stored for later retrieval.
The HEADING map is inserted at the head of each page. The detail map
~DFHAMD) is written repeatedly until the overflow condition occurs.

The FOOTING map is then written at the foot of the page and the HEADING
map written at the top of the next page. The command to write the
detail map that caused overflow is then repeated. When all the data has
been written the PINAL map is written at the bottom of the last page and
the transaction terminated.

The terminal operator then enters paging commands to display the
data, clearing the screen before entering each paging command.

436 CICS/VS APRM (CL)

SOURCE LISTING

DFHEISTG
KEYNUM
EDVAL
RETREG

XDFHAREP
1
2

3

DSECT
DS
DC
EQU
COpy
COpy
CSECT
I!VC
EXEC

CL6
CL3'000'

" XDFHAI!D
FILEA

KEY TO FILE
PAGE NUI!BER EDITING FIELD
LINK REG
OUTPUT MAP
FILEA'S RECORD DESCRIPTION

KEYNUM ~),=C'OOOOOO' SET RECORD KEY TO ZERO
CICS HANDLE CONDITION ERROB(ERRORS) OVERFLOW (OFLOW)

ENDFILE(ENDFILE)
PAGENA,X'OO' MOVE X'OO' TO ATTRIBUTE
RETREG,MAPNU! MOVE PAGENUMBER TO MAP AREA

*
MVI
BAL
EXEC CICS SEND I!AP('HEADING') I!APSET('XDFHAI!D') ACCUS PAGING

ERASE *
5

REPEAT
6

7

8

9

OFLOW
10

11

SENDREC
12

EXEC
DS
EXEC

CLI
BE
CLC
BB
XC
MVC
MVC
MVC
B
DS
EXEC

AP
MVI
BAL
EXEC

DS
EXEC
B

CICS STARTBR DAT1SET('FILElt) RIDFLD(KEYNUI!)
OB

CICS READNEXT INTO(FILE1) DATASET ('FILEA')
RIDFLD (KEYNU!)
STAT,X'FF' RECORD CODED AS DELETED?
REPEAT •• YES, SO GO READ NEXT RECORD
AMOUNT,LOWLI! COI!PARE AMOUNT ON RECORD WITH LIM
REPEAT •• OK, GREATER THAN $50, TRY NEXT
XDFHAMDO(XDFHAMDE-XDFHAI!DO) ,XDFBAMDO CLEAR I!AP
A!OUNTO,l!OUNT !OVE A!OUNT OB FILE TO RAP
NUMBERO,NU!B MOVE ACOUNT NU!BER TO MAP
IAI!EO,NA!E I!OVE IA!E TO MAP
SENDREC GO BUILD MAP
OH PAGE BUILT HERE

CICS SEND MAP ('FOOTING') I!APSET ('XDFBAMD')
I!APONLY ACCU! PAGING ERASE
P1GEN,=P'1' INCREMENT PAGE COUNT
PAGENA,X'OO' MOVE X'OO' INTO ATTRIBUTE
RETREG,MAPNUI! GO SET UP PAGE NUMBER ON MAP

CICS SEND MAP('HEADING') MAPSET('XDFHA!D') ACCUI! PAGING
ERASE
OB

CICS SEND I!AP('XDFHAMD') MAPSET ('XDFHAMD') ACCUI! PAGING
REPEAT GO BUILD NEXT !AP

• * * END ROUTINE AND GENERAL ROUTINES *

*

*

*

* * ***
MAPBUM DS OB ROUTINE PUTS PAGE NUl! IN CHAR FORM

UNPK EDVAL,PAGEN
01 EDV1L+L'EDV1L-1,X'FO' ZERO FILL PAGE NUMBER
MVC P1GENO,EDVAL I!OVE PAGE NUMBER TO OUTPUT MAP
BR RETREG RETURN

ENDFILE OS OH END OF FILE CONDITION RAISED
13 EXEC CICS SEND I!AP ('FINAL') M1PSET ('XDFHAI!D') ftAPONLY *

ACCUI! PAGING
14 EXEC CICS SEND PAGE
15 EXEC CICS SEND TEXT FROK (OPINSTR) ERASE
16 EXEC CICS ENDBR DATASET ('FILEA')
17 EXEC CICS RETURN

ERRORS DS OB
18 EXEC CICS BANOLE CONDITION ERROR
19 EXEC CICS PURGE' I!ESSAGE
20 EXEC CICS ABEND ABCOOE('ERRS')

PAGEN DC PL2'1' INITIAL PAGE NUM
LOWLIM DC CLS'$0050.00' LOWER LI!IT FOR OK AMOUNT
OPINSTR DC CL22'ENTER PAGING COMMANDS.' OPERATOR INSTRUCTION.

END

Appendix D. Sample Programs (Assembler Language) 437

PROGR1M NOTES

1. The initial key value is set up for the START BROWSE command.

2. The program exits are set up.

3. The attribute byte for the page number is cleared.

q. This BSS request sets up the heading in the page build operation.

5. This command starts the browse through the file, at a record whose
key is equal to or greater than that specified.

6. This command reads the next record on the file into the file area.

7. If the record is coded as deleted, it is treated as not found.

8. The search criterion for creating the report is that the customer
has less than or equal to $50.

9. Fields are moved fros the file area to the map area.

10. The B!S request sets up the footing in the page build operation.

11. The BMS request sets up the heading in the page build operation.

12. The customer detail map is set up.

13. When the BND OF FILE condition is raised, the last map is built.

lq. The page is sent to the terminal operator.

15. A message is sent to the terminal.

16. The BROWSE operation is ended.

17. The program ends.

18. On an error, the label to branch to on the ERROR condition is
reset.

19. Any pages waiting to be displayed at the terminal are purged.

20. The program raises an abend condition, a dump is taken and the
program ends.

q38 CICS/VS APRM (CL)

Sample Maps and Screen Layouts for Assembler-Language Sample Programs

IDFBAftA MAP DEFINITION

ftAPSETA DFHMSD TYPE=&SYSPARM,80DE=INOUT,CTRL=(PREEKB,FRSET) ,LANG=ASM, *
TIOAPFI=YES,EITATT=MAPONLY,COLOR=BLUE

XDFRAftA DFHMDI SIZE=(12,40)
DFHBDF POS=(1,10),LENGTB=21,INITIAL='OPERATOR INSTRUCTIOSS', *

BILIGHT=UNDERLINE
DFHBDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR ENTER AMN*

U'
DFBMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY ENTER AIN*

Q AND NUMBER'
DFHMDF POS=(S,1),LENGTH=38,INITIAL='FILE BROWSE ENTER ABR*

W AND NUMBER'
DFHMDF POS=(6,1),LERGTH=38,IBITIAL='FILE ADD ENTER AAD*

D AND NUMBER'
DFBMDF POS=(7,1),LENGTB=38,INITIAL='FILE UPDATE ENTER AUP*

D AND NUMBER'
MSG DFHftDF POS=(ll,1) ,LENGTB=39,INITIAL=' PRESS PAl TO PRINT--PRESS*

CLEAR TO EXIT'
DFHftDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION:'
DFHMDF POS=(12,20),LENGTB=4,ATTRB=IC,COLOR=GREEN, *

HILIGHT=REVERSE
DFHMDF POS=(12,2S) ,LENGTH=6,INITIAL=IHUMBER'

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN, *
HILIGHT=REVERSE

DFHBDF POS=(12,39) ,LENGTH=l
. DFHftSD TYPE=FINAL

END

XDFHAMA SCREEN LAYOUT

+OPBRATOR INSTRUCTIONS

+OPERATOR INSTR
+FILE INQUIRY
+FILE BROWSE
+FILE ADD
+FILE UPDATE

ENTER AMNU
ENTER AINQ AND NUMBER
ENTER ABRW AND NUMBER
ENTER AADD AND NUMBER
ENTER AUPD AND NUMBER

+PRESS PAl TO PRIHT--PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+IIII+NUMBER+XIIXXX+ ~ _______________________________________ ----J

Appendix D. Sample Programs (Assembler Language) 439

XDPHAMB MAP DEFINITION

MAPSETB DFHMSb ~E=&SYSPARK,!ODE=INOUT,CTRL=(FREBKB,FRSET),LANG=ASM, *
T=~'PFX=YES,EXTATT=KAPONLY

XDFHAMB DFHftDI SIZE=(12,40)
TITLE DFHMDF POS=(1,15),LENGTH=12

DFHMDP POS=(3,1) ,LENGTH=8,INITIAL='NUMBER: ',COLOR=BLUE
NU~B DFHMDF POS=(3,10),LENGTH=6

DFHMDF POS= (3,17),LBNGTH=1
DFHMDF POS=(4,1) ,LENGTB=8,INITIAL='NA~E: ',COLOR=BLUE

NA~E DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UNPROT,IC)
DFHMDF POS=(4,31),LENGTH=1
DFHftDF POS= (5, 1) ,LENG'rH=8,INITIAL='ADDRESS:' ,COLOR=BLUE

ADDH DFHMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
DFHMDP POS=(5,31),LENGTH=1
DFHMDF POS= (6,1) ,LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE

PHONE DFHMDF POS=(6,10),LENGTH=8,ATTRB=UNPROT
DFHftDF POS=(6,19) ,LENGTH=l
DFHMDF POS= (7,1) ,LENGTH=8,INITIAL='DATE: • ,COLOR=BLUE

DATE DFHMDF POS=(1,10),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(7,19),LENGTH=1
DFHKDF POS=(8,1) ,LENGTH=8,INITIAL='AMOONT: ',COLOR=BLUE

AMOUNT DFHMDF PaS= ~,10),LENGTB=8,ATTRB=NUM
DFHMDF POS=(8,21),L&NGTH=1
DFHMDF POS=(9,1) ,LENGTH=8,INITIAL='C08ftENT:',COLOR=BLUE

COMMENT DFHMDF POS=~,10),LgNGTH=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGl DFHMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39

DFH8SD TYPE=FINAL
END

XDFBAMB SCREEN LAYOUT

+XIIXIX11:XXII

+NUMBER: +XIXXXI+
+NAME: +XXXXXXIIXIXXXXXXIXX1+
+lDDRESS:+XXXXXXXIIXXXXXXXIIXI+
+PHONE: +XIXIXXIX+
+DATE: +IIIX1XXX+
+AMOUNT: +IIXXIXX1+
+COMMENT:+XXIIXXXII+

+XXI1XIXXXIXXIXIIXXXXXIIXII1XIIXXXXII1X
+XXIXXXXIXXXIXXXXXXIXIXXXXIIIIXXXXXXXIX

440 CICS/VS APRM (CL)

XDFHAMC MAP DEFINITION

HAPSETC

XDFBAMC
DIR

NUMBERl
NAKEl
AMOUNTl
NUKBER2
NAME2
AMOUNT2
NUMBER3
NAKE3
AMOUNT3
NUKBER4
NAKE4
AMOUNT4
SSGl

KSG2

DFHBSD TYPE=&SYSPARK,KODE=INOUT,CTRL=(FREEKB,FRSET),LANG=ASH, *
TIOAPFX=YES,EXTATT=BAPONLY

DFB!DI SIZE=(12,40)
DFHMDF POS=(1,1) ,LENGTH=l,ATTRB=IC
DFBMDP POS=(1,3),LENGTH=1
DFHKDF POS=(1,lS),LENGTH=11,INITIAL='PILE BROWSE', *

BILIGHT=UNDERLINE,COLOR=BLUE
DFHMDP POS=(3,1) ,LENGTB=6,IHITIAL=INUMBERI,COLOR=BLUE
DFHKDF POS=(3,17),LENGTB=4,INITIAL=INA!EI,COLOR=BLUE
DFHMDF POS=(3,32),LERGTH=6,IHITIAL=IA!OUNTI,COLOR=BLUE
DFHftDF POS=(4,1),LERGTB=6
DPBBDF POS=(4,9),LEHGTB=20
DFHKDF POS=(4,30),LERGTB=8
DFHftDF POS=(5,1),LEHGTB=6
DFHMDF POS=(5,9),LENGTB=20
DFHKDF POS=(S,30) ,LENGTB=8
DFBKDF POS=(6,1),LENGTH=6
DFBHDF POS=(6,9) ,LENGTH=20
DFHBDF POS=(6,30),LENGTB=8
DFBMDF POS=(7,1) ,LENGTB=6
DFBftDF POS= (7,9),LENGTB=20
DFBMDF POS=(7,30),LENGTB=8
DFHKDF POS=(11,1),LENGTH=39, *

INITIAL='PRESS PFl OR TYPE F TO PAGE FORWARDI
DFBKDF POS=(12,1),LERGTB=39, *

INITIAL=IPRESS PF2 OR TYPE B TO PAGE BACKWARDI
DFHKSD TYPE=FINAL
END

IDFHA!C SCREEN LAYOUT

--,
+FILE BROWSE

+NUMBER +NAKE +AMOUNT
+XXXXXX +XXXXIXXXXXXXXXXXXXXX+IXXXXX
+XXXIIX +XXXXXXIXXXXXXXXXXXXX+XXXXXX
+XXXXXX +XXXXXXXXXXXXIXXXXXXX+XXXXXX
+XXXXXX +XXII1XI1XXXXIXXXIXIX+XIXXXI

+PRESS PFl OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKWARD
+XXXXXXXXIXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Appendix D. Sample Programs (Assembler Language) 4ql

XDFHAMD MAP DEFINITION

MAPSET

XDFRAMD
NUMBER
NAME
AMOUNT
HEADING

PAGEN

FOOTING

FINAL

DFHMSD TYPE=&SYSPAR!,MODE=INOUT,CTRL=(FREEKB,FRSET),
LANG=AS!,STORAGE=AUTO,EXTATT=!APONLY,COLOR=BLUE

DFH!DI SIZE=(l,qO),COLOR=GREEN
DFHMDF POS=(l,l) ,LENGTH=6
DFHMDF POS=(l,9) ,LENGTH=20
DFH!DF POS=(l,30),LENGTH=8
DFHMDI SIZE= (3,40),HEADER=YES
DFHMDP POS=(l,5),LENGTH=18,INITIAL='LOW BALANCE REPORT',

HILIGHT=UNDERLINE
DFHMDF POS=(l,30),LENGTH=ij,INITIAL='PAGE'
DFH!DF POS=(1,3S),LENGTH=3
DFH!DP POS=(3,1) ,LENGTH=6,INITIAL=INUMBERI
DFHMDP POS=(3,17) ,LENGTH=q,INITIAL=INAMEI
DFHl'tDP POS= (3,32),LENGTH=6,INITIAL='AMOUNTI
DPBMDI SIZE=(2,ijO),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,10),LENGTH=25,

INITIAL='CONTINUED ON NEXT PAGE ••• •
DFHMDI SIZE=(2,qO),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,10),LENGTH=lQ,INITIAL=IEND OF REPORT.'
DFHMSD TYPE=FIN1L
END

XDFRA!D SCREEN LAYOUT

• I LOW BALANCE REPORT PAGE XXX
I
I NUMBER NAME AMOUNT
I XXXXXX XXXXXXXXIXXXXXXXXXXX XXIXXXXX
I XXXXXX IIXXXXXXIXXXXXXXXXXX IXXXXXXX
I (REPEAT TOTAL OF 19 TIMES)
I XXXXXX IXIIXXIIXXXXXXXXXXXX XXXXXXXX
I XXXXXI IXXXXXXXIXXXXXXXXXXX XXXXXIXX
I XXXXXI XXXXXXXXXXXXXXXXXXXX XXXXXXXX
I
I CONTINUED ON NEXT PAGE ••• L ______________________________________ ~

ijij2 CICS/VS APRM (CL)

*

*

*

XDFHAMK MAP DEFINITION

MAPSET DFHMSD TYPE=&SYSPARH,MODE=INOUT,CTRL=(FREEKB), *
TIOAPFX=YES,LANG=ASH,EXTATT=!APONLY

XDFBAMK DFBHDI SIZE=(12,40)
DFBHDP POS=(Ol,10),LENGTB=11,ATTRB=(BRT,lSKIP), *

IBITIAL='ORDER ENTRY',COLOR=BLUE,BILIGBT=UNDERLINE
SSGl DFBHDP POS=(03,04),LENGTB=26,ATTRB=(DRK,ASKIP), *

INITIAL='NUHBER NOT FOUND - REENTER',COLOR=RED, *
HILIGHT=BLINK

MSG2 DFBMDF POS=(04,04) ,LEHGTH=22,ATTRB=(DRK,ASKIP), *
INITIAL='D1Tl ERROR - RBEHTER',COLOR=RED,BILIGBT=BLINK

DFHKDF POS=(OS,04),LENGTB=09,ATTRB=PROT, *
INITIAL='NUKBER :'

CUSTNO DFHKDF POS=(OS,14),LENGTB=06,ATTRB=(IC,NUK)
DFHaDF POS=(OS,21),LENGTB=Ol
DFHSDF POS=(06,04),LENGTB=09,ATTRB=PROT,COLOR=BLUE, *

IHITIAL='PART NO :'
PARTNO DFBKDF POS=(06,14) ,LENGTB=06,ATTRB=NU~

DFBHDF POS=(06,21),LENGTB=Ol
DFHHDF POS=(07,04),LEHGTH=09,ATTRB=PROT,COLOR=BLUE *

INITIAL=' QUANTITY: , .
QUANT DFHMDP POS=(07,14),LEHGTH=06,ATTRB=NUH

DFHMDF POS=(07,21),LENGTB=Ol
DFBMDF POS=(09,Ol),LENGTB=38,ATTRB=ASKIP,COLOR=BLUE, *

INITIAL='PRESS ENTER TO CONTINUE, CLEAR TO QUIT'
DFHKSD TYPE=FINAL
END

XDFBAMK SCREEN LAYOUT

•
I
I
I
I
I
I
I
I

+ORDER ENTRY

+NUMBER NOT FOUND - REENTER
+DATA ERROR - REENTER
+NUMBER :+XXXXXX+
+PART NO :+XXXXXX+
+QUANTITY:+XXXXXX+

I
I+PRESS ENTER TO CONTINUE, CLEAR TO QUIT L __ ~

Appendix D. Sample Programs (Assembler Language) 443

XDFHAML MAP DEFINITION

MAPSET

XDFHAML
TITLE

NUMB
HAM
ADDR

PART

QUANT

DFH8SD TYPE=&SYSPAR!,80DE=INOUT,CTRL=(pREEKB),
TIOAPpX=YES,LANG=ASK

DpH!DI SIZE=~5,80)
DpHKDF POS=(Ol,Ol),LENGTH=43,

INITIAL='NUMBEB NAME
DFHMDF POS=(02,Ol),LENGTH=06
DFHKDp POS=(02,12) ,LENGTB=20
DpHKDF POS=(02,37),LENGTH=20
DFH!DF POS=(03,Ol),LENGTH=09,

INITIAL='PART NO :'
DFH!Dp POS=(03,11),LENGTH=06
DpHKDp POS=(04,Ol),LENGTH=09,

INITIAL='QUANTITY:'
DpH!DP POS=(04,11),LENGTH=06
DpHMDF POS=(05,Ol),LENGTH=1,

INITIAL=' •
DFHMSD TYPE=FINAL
END

XDpHAKL PRINT FORMAT

ADDRESS'

r---,.
I +NUMBER NAME ADDRESS I
I +IXIXXX +XXIXXXXXXXXXXIXXXXIX +XIXIIXXIXIXXIXXXIXXX I
I +PART NO:+XIXXXI I
I +QUANTITY:+XXXXXX I
I +X I
, I

444 CICS/VS APRM ~L)

*

*

*

*

*

Additions to Tables for Assembler-Language Sample Programs

PPT

The following entries were made for the sample maps:

DFHPPT TYPE=ENTRY,PROGRAH=XDFHAMA
DFBPPT TYPE=ENTRY,PROGRAH=XDFHAKB
DFBPPT TYPE=ENTRY,PROGRAH=XDFHAKC
DFBPPT TYPE=ENTRY,PROGRAK=XDFHAKD
DFBPPT TYPE=ENTRY,PROGRAK=XDFHAKK
DFHPPT TYPE=ENTRY,PROGRAK=XDFHAKL

The following entries were made for the sample programs:

PCT

DFHPPT TYPE=ENTRY,PROGRAM=XDFHAMNU
DFHPPT TYPE=ENTRY,PROGRAK=XDFHAALL
DFHPPT TYPE=ENTRY,PROGRAK=XDFHABRW
DFBPPT TYPE=ENTRY,PROGRAK=XDFBAREN
DFHPPT TYPE=ENTRY,PROGRAK=XDFHACOK
DFBPPT TYPE=ENTRY,PROGRAK=XDFBAREP

The follo~ing entries were made for the sample programs:

DCT

DFHPCT TYPE=ENTRY,TRANSID=AKNU,PROGRAK=XDFHAKBU
DFHPCT TYPE=ENTRY,TRANSID=AINQ,PROGRAH=XDFBA1LL
DFHPCT TYPE=ENTRY,TRANSID=AADD,PROGRAK=XDFHA1LL
DFHPCT TYPE=ENTRY,TRANSID=lUPD,PROGRAM=XDFHA1LL
DFBPCT TYPE=ENTRY,TftANSID=lBRW,PROGRAK=XDFHABRW
DFBPCT TYPE=ENTRY,TRANS1D=AORD,PROGRAK=XDFHAREN
DFBPCT TYPE=ENTRY,TR1NSID=lCOM,PROGRA8=XDFHACOK
DFBPCT TYPE=ENTRY,TR1NSID=AREP,PROGRAK=XDFHAREP

The following entry needs to be made in order that the Order Entry Queue
Print sample program is triggered when the number of items on the queue
reaches 30.

DFBDCT TYPE=INTRA,DESTID=L860,TRIGLEV=30,TRABSID=lCOH,
DESTF1C=TERKIBAL *

Appendix D. Sample Programs (Assembler Language) 445

Record Descriptions for Assembler-Language Sample Programs

FILEA RECORD DESCRIPTION

The FILEA record description is used by the sample programs and is of
the following format:

FILEA DS
FILEREC DS
STAT DS
NUMB DS
NAME DS
ADDRI DS
PHONE DS
DATEI DS
AMOUNT DS
COMMENT DS

OCL80
OCL80
CLl
CL6
CL20
CL20
CL8
CL8
CL8
CL9

LOGA RECORD DESCRIPTION

The LOGA record description is used by the sample programs when an audit
trail is written to a transient data file. It has the following format:

LOGA DS
LOGIiDR DS
LDAY DS
LTIME DS
LTERML DS
LOGREC DS
LSTAT DS
LNUMB DS
LNAME DS
LADDR DS
LPHONE DS
LDATE DS
LAMOUNT DS
LCOMMENT DS

OCL92
OCL12
PL'l
PL4
CL4
OCL80
CLl
CL6
CL20
CL20
CL8
CL8
CL8
CL9

L860 RECORD DESCRIPTION

The L860 record description is used Dy the Order Entry Queue Print
sample program when it writes to the TD queue IL860 1 • It has the
following format:

L860 DS
ITEM DS
CUSTNO DS
PARTNO DS
QUANTITY DS
TERMID DS

OCL22
OCL22
CL6
CL6
CL6
CL4

"46 CICS/VS APRM (CL)

Appendix E. Sample Programs (COBOL)

This appendix consists of sample CICS/VS application programs written in
the COBOL language. The BMS maps and file record descriptions used by
the sample programs are included after the sample programs.

The sample maps include examples of how th~ COLOR, EXTATT, and
HILIGBT attributes are specified in the aap definition macros. However,
due to production limitations, the associated screen layouts do not show
the effects of these attributes; they show how the maps would be
displayed on, for example, a 3211.

specifying EXTATT=MAPOBLY enables attributes to be added without
changing the application program. Any attriDute, that specifies a
facility not availanle at the terminal, will be ignored.

The sample programs illustrate basic applications that can serve as a
framework for the installation's first programs. Each program has a
description and program notes. The program listings are of source code.
Numbered coding lines correspond to the numbered program notes. The
programs contain COPY statements coded according to the 1968 COBOL
standard. If the programs are to be compiled on the OS/VS COBOL
compiler, LANGLVL(l) should be specified.

All transactions are initiated by the terminal operator entering a
four-character transaction code. (In account number must also be
entered, except in the case of the operator instruction sample program.)

There are six sample programs, as follows:

• Operator Instruction Sample Program

• Update Sample Program

• Browse Sample Program

• Order Entry Sample Program

• Order Entry Queue Print Sample Program

• Report Sample Program

All the sample programs operate on a sample VSAM or ISAM file which
must first be created using a program provided on the library. The file
consists of records containing details of individual accounts. The
pr~grams are used to display, alter, update, or browse through the
entries. For information on how to create the sample VSlft or ISlft file
refer to the CICStVS System Programmer's Guide.

All the sample programs are for use with the IBM 3210 Information
Display System.

Appendix E. Sa.ple Prograas (COBOL) 4~1

Executing the Sample Programs

Once CICS/VS is running, 3270 users can enter the following transaction
id's:

MENU
INQY
ADDS
UPDT
BRWS
OREN
CCO!
REPT

Display other transaction id's (except OREN, CCO!, and REPT.)
Display an entry.
Create a new entry.
Update an entry.
Browse through entries.
Order entry.
Print order entry queue.
Display a report (entries not greater than $50).

Note: The transaction CCO! should be uSed once in the morning, after
which it will invoke itself at the printer in one hour (unless the time
is 1400 hrs or after).

448 CICS/VS APRM (CL)

Operator Instruction Sample Program (COBOL)

DESCRIPTION

To begin 3210 operations, a termina1 operator must enter a transaction
code of MENU. Whenever the screen is cleared this transaction code must
be reentered, as no data is accepted from an unformatted screen.

The instruction program displays map XDFBCMA containing operator
instructions. This map lists the COBOL CICS/VS sample applications and
the transaction codes (with the exception of OREN and CCOM which are
entered onto a clear screen), and provides space for entering the code
and an account number.

SOURCE LISTING

IDENTIFICATION DIVISION.
PROGRAM-ID. INSTRUCT.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

1 EXEC CICS SEND MAP('XDFHC~A') MAPONLY ERASE END-EXEC.
2 EXEC CICS RETURN END-EXEC.

PROGRAM NOTES

1. The BMS command erases the screen and displays map XDFHCMA.

2. RETURN ends the program.

Appendix E. Sample Programs (COBOL) 449

Update Sample Program (COBOL)

DESCRIPTION

The update sample program combines the facilities of file update, file
add, and file inquiry.

The update program maps in the account number and unless the invoking
transaction-id is IADDS-, reads the file record. The required fields
from the file area, and a title depending on the invoking transaction­
id, are moved to the map area. In the case of the file add function
being required, the number entered onto map XDFBC8A, and a title, are
moved to the map area of XDFBcaB. Then XDFHCMB, containing the record
fields, is displayed at the terminal. If the function of this
transaction is file inquiry, the program ends here.

The update program then reads and maps in the record to be added or
updated, and edits the fields. The sample program only suggests the
type of editing that might be done. The user should insert editing
steps needed to ensure valid changes to the file. Those fields which
have been changed are moved to the file area. Fields are moved to the
transient data area. The file record is then either added or updated,
depending on the function required of the program. Either the message
'FILE UPDATED' or 'RECORD ADDED' is inserted in XDFHcaA and the map is
transmitted to the terminal.

This program demonstrates a pseudo-conversational programming
technique, where control is returned to CICSjVS together with a
transaction-id whenever a response is requested from the operator.
Associated with each return of- control to CICS/VS is a storage area
containing details of the previous invocation of this transaction.

450 CICS/VS APRS (CL)

SOURCE LISTING

IDENTIFICATION DIVISION.
PROGRAM-IO. UPDA TE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-5TORAGE SECTION.
77 MESSAGES PICTURE X (39) •
77 NAMET PIC X (20) •
77 KEYNUM PICTURE 9(6).
77 COMLEN PICTURE 59 (4) COMP •
01 XDFBCMAI COpy XDFHCMA.
01 XDFHCMBI COPY XDFHCMB.
01 FILEA COPY FILEA.
01 LOGA COPY LOGA.
01 DFHBMSCA COPY DFHBMSCA.
01 COMMAREA COpy FILEA.
LINKAGE SECTI ON.
01 DFHCOMMAREA COpy FILEA.
PROCEDURE DIVISION.

1 IF EIBTRNID NOT = 'INQY'
AND EIBTRNID NOT = 'ADDS'
AND EIBTRNID NOT = 'UPDT' THEN GO TO ERRORS.

2 IF EIBCALEN NOT = 0 THEN
3 MOVE DFHCOMMAREA TO COMMAREA GO TO READ-INPUT.
4 EXEC CICS HANDLE CONDITION MAPFAIL (MENU)

ERROR (ERRORS). END-EXEC.
5 EXEC CICS RECEIVE MAP ('XDFHCMA') END-EXEC.

IF KEYI = LOW-VALUES THEN GO TO NOTFOUND.
6 MOVE KEYI TO KEYNUM

MOVE LOW-VALUES TO XDFBCMBO.
7 IF EIBTRNID = • ADDS' THEN

MOVE 'FILE ADD' TO TITLEO
MOVE 'ENTER DATA AND PRESS ENTER KEY' ro MSG30

8 MOVE KEYI TO NUMB IN COMMAREA, NUMBO·
9 MOVE 'J' TO AlvDUNTA

l'DW '$0000.00' TO AMOUNTO
MOVE 7 TO COMLEN GO TO MAP-SEND.

10 EXEC CICS HANDLE CONDITION NOTFND (NOTFOUND) END-EXEC ..
11 EXEC CICS READ DATASET ('FILEA ') INTO (FILEA) RIDFLD (KEYNUM)

END-EXEC
12 IF STAT IN FILEA = HIGH-VALUE THEN GO TO NO'IFOUND.

IF EIBTRNID = 'INQY' THEN
13 MOVE 'FILE INQUIRY' TO TITLEO

MOVE 'PRESS ENTER TO CONTINUE' TO MSG30
PERFORM MAP-BUILD THRU MAP-SEND

14 EXEC CICS RETURN TRANSID ('MENU') END-EXEC.-
IF EIBTRNID = 'UPDT' THEN

15 MOVE 'FILE UPDATE' TO TITLED
MOVE 'CHANGE FIELDS AND PRESS ENTER' To MSG30

16 MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA
MOVE 80 TO Ca.fLEN.

MAP-BUILD.
MOVE NUMB IN FILEATO NUMBO·
t«:>VE NAME IN FILEA TO NAMEO

Appendix E. Sample Programs (COBOL) 451

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

17 MOVE ADDRX IN Fn.EA TO ADDRO
MOVE PHONE IN FILEA TO PHONEO
MOVE DATE X IN FILEA TO DATEO
M'JVE AMOUNT IN FILEA TO MoDUNTO
MOVE COMMENT IN F!LEA TO COMMENTO.

MAP-BEND.
18 EXEC crcs SEND MAP C'XDFHCMB') ERASE END-EXEC.

FIN.
GO TO crCS-CONTROL.

READ-INPUT ~
19 EXEC CICS HANDLE CONDITION MAPFAIL (NOTMODPl NOTFND (NOTFOUND)

ERROR (ERRORS) DUPREC (DUPREC) END-EXEC.
20 EXEC CICS RECEIVE MAP C'XDFHCMB') END-EXEC.

IF EIBTRNID = 'UPDT' THEN
21 EXEC C!CS READ UPDATE DATASET ('FILEA') INTO (FILEA)

RIDFLD (NUMB IN COMMAREA) END-EXEC
22 IF FILEREC IN FILEA NOT = FILEREC :IN COMMAREA THEN

MOVE 'FILE ALREADY UPDATED - REENl'ER' TO MSG10
23 MOVE DFHBMBRY TO MSGlA

MOVE DFHBMDAR TO MSG3A
PERFORM MAP-BUILD

24 EXEC Cles SEND MAP C'XDFHCMB') END-EXEC
MOVE 80 TO COMLEN
MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA
GO TO CICS-CONTROL

ELSE
MOVE '0' TO STAT IN FILEA
PERFORM CHECK THRU FlLE-WlUTE

25 MOVE 'FILE UPDATED' TO MESSAGES GO TO MENO.
IF EIBrRNID = 'ADDS' THm

MOVE LOW-VALUES TO FILEREC IN FILFA
MOVE 'A' TO STAT IN FILEA
PERFORM CHECK THRO FILE-wRlTE

26 MOVE 'RECORD ADDED' TO MESSAGES GO TO MENU.
CHECK.

IF NAMEI = LOW-VALOES AND
ADDRI = LOW-VALOES AND

27 PHONEI = LOW-VALUES AND
DATEI = LOW-VALOES AND
AMOUNTI = WW-VALUES AND
CCMMENTI = LOW-VALUES GO TO NOTMODF.

MOVE NAMEI TO NAMET
TRANSFORM NAMET CHARACTERS FROM '.' TO ' ,
IF EIBTRNID = 'ADDS' THEN

IF NAMET NOT ALPHABETIC THEN GO TO DATA-ERROR.
IF EIBTRNID = 'UPDT' THEN

IF ~~I NOT = LOW-~UES
AND NAMET Nor ALPHABETIC THEN GO TO DATA-ERROR.

FILE-WRITE.
IF EIBTRNID = • ADDS I THEN MOVE NUMB IN COMMAREA TO

NUMB IN FILEA.
IF NAMEI NOT = LOW-VALOE M'JVE NAMEI TO NAME IN F!LEA.

28 IF ADDRI NOT = LOW-YALUE MOVE ADDRI TO ADDRX IN F'ILEA.
IF PHONE! NOT = LOW-VALUE MOVE PHONE! TO PHONE IN FILEA.
IF DATEI NOT = LOW-VALOE MOVE DATEI TO DATEX IN FILEA.
IF AMOUNT! NOT = LOW-VALUE MOVE AMOUNTI TO AMOUNT IN FILEA.
IF COMMENTI NOT = LOW-VALUE THEN

MOVE COMMENI'I TO COMMENT IN FILEA.
MOVE FlLEREC IN FILEA TO LOGREC.
MOVE EIBDATE TO LDAY

29 MOVE EIBl'IME TO LTIME
MOVE EIBTRMID TO LTERML

30 EXEC Cles WRITEQ TD QUEUE ('LOGA') F'ROMCIOGA) LENGTH (92)
END-EXEC.

IF EIB'l'RNID = ·UPDT 8 THEN

452 CICS/VS APRM (cr.)

31

32

33
34

35

36

37

38

39

40

41

42
43

EXEC CICS REWRITE DATASET('FILEA') FROM(FILEA) END-EXEC
ELSE

EXEC CICS WRITE DATASET('FILEA') FROM (FILEA)

DATA-ERROR.
MOVE DFHBMBRY TO KSG3A

RIDFLD(NUKB IN COKMAREA)
END-EXEC.

KOVE 'DATA ERROR - CORRECT AND PRESS ENTER' TO MSG30
MOVE DFHBMFSE TO NAMEA, ADDRA, PHONEA, DATEA, AMOUNTA,

COMMENTA.
EXEC CICS SEND MAP('XDFHC3B') DATAONLY EHD-EXEC.
IF EIBTRHID = 'ADDS' THEN MOVE 7 TO COMLEN
ELSE !Oyg 80 TO COMlEN.

CI CS-CONTROL.
EXEC CICS RETURN TRANSID(EIBTRNID) COaMAREA ~O~MAREA)

LENGTH (COMLEN) END-EXEC.
NOTMODF.

MOVE 'PILE NOT MODIFIED' TO MESSAGES
GO TO l'tENU.

DUPREC.
MOVE 'DUPLICATE RECORD' TO !ESSAGES
GO TO MENU.

NOTFOUND.
MOVE 'INVALID NUMBER - PLEASE REENTER' TO MESSAGES
GO TO MENU.

ERROaS.
EXBC CICS DUMP DUMPCODE('ERRS') END-EXEC
MOVE 'TRANSACTION TERMINATED' TO MESSAGES.

MENU.
MOVE LOW-VALUE TO XDFHCMAO
MOVE DFHBMBRY TO MSGA
KOVE MESSAGES TO MSGO
EXEC CICS SEND MAP('XDFBCMA') ERASE END-EXEC
EXEC CICS RETURN END-EXEC.
GOBACK.

Appendix E. Sample Programs (COBOL) 453

PROGRAM NOTES

1. The possible invoking transaction-id's are tested.

2. The length of the COMMAREA is tested.

3. If it has a length, the COMMAREA returned is moved to working
storage in the program.

4. The program exits are set up.

5. Map IDFBCMA is received.

6. The account number is saved.

7. If the program is invoked by the transaction-id 'ADDS', a title and
command message are moved to the title area.

8. The record key is moved to the COMMAREA and to the map area.

9. In the case of the ADDS transaction, the amount field has the
modified data tag and the numeric attribute byte set on so only
numeric data can be entered. If no data is entered, the field
contains the original data if it has not been modified when the
contents of map XDFHCMB are mapped in.

10. The error exit is set up for the record-not-found condition.

11. The file control READ reads the file record into the file area.

12. If the record is coded as deleted, it is treated as not found.

13. If the program is invoked oy the transaction-id 'INQY', a title and
command message are moved to the map area.

14. This invocation of the program ends.

15. If the program is invoked by the transaction-id 'UPDT', a title and
command message are moved to the map area.

16. The file record is moved to the COMMAREA and the length of the
COMMAREA to be returned is set up.

17. The fields from the file area are moved to the map area.

18. The screen is erased and the map IDFHCMB is sent to the terminal.

19. The program exits are set up.

20. This command maps in the contents of the screen.

21. The file control READ UPDATE reads the file using the number from
the last invocation of this transaction of this program which is
stored in the COMMAREA.

22. The fields from the last invocation are checked against those on
the current file record.

23. A message and attribute bytes are moved.

24. Map XDFHCMB is sent to the terminal.

25. The message 'FILE UPDATED' is moved to MESSAGES.

454 CICS/VS APRM eCL)

26. The message -RECORD ADDED- is moved to MESSAGES.

21. Any required editing steps should be inserted here. A suitable
form of editing should be used to ensure valid records are placed
on the file.

28. The record to be written to the file is created.

29. The record fields, date, time, and terminal identification are
moved to the transient data area.

30. This record is written to a transient data file.

31. The updated record is rewritten to the file.

32. The record to be added is written to the file.

33. An error message is moved.

34. Fields on map XDFHCMB which are to be sent back to the screen have
the modified data tag set on so they will still contain data if the
contents are not altered, when the screen is mapped in.

35. The contents of map XDFHQfB are sent to the screen.

36. COntrol is returned to CICS/yS together with the name of the
transaction to be invoked when an attention key is pressed at the
terminal, and data associated with this transaction is returned in
the COMMAREA.

37. If no fields were modified, the message -FILE NOT MODIFIED- is
moved to MESSAGES.

38. If a duplicate record condition exists, the message -DUPLICATE
RECORD- is moved to MESSAGES.

39. If the file record is not found, the message -INVALID NtMBER PLEASE
REFNTER - is moved to MESSAGES.

40. on an error (notes 5, 11, 18, 20, 21, 24, 30, 31, 32, 35, and 4~ a
dump is taken and the message -TRANSACTION TERMINATED - is moved to
MESSAGES.

41. The bright attribute is turned on and MESSAGES is moved to the map
area.

42. The screen is e rased and map XDFHCMA is transmitted to the screen.

43. The program ends.

Appendix E. Sample Programs (COBO~ 455

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Browse Sample Program (COBOL)

DESCRIPTION

The browse program sequentially retrieves a page or set of records for
display, starting at a point in a file specified by the terminal
operator. Depressing the PF1 key or typing in F causes retrieval of the
next page or paging forward. If the operator wishes to reexamine the
previous records displayed, depressing the PF2 key or typing B allows
paging backward.

To start a browse, the account number is mapped in and stored in a
four entry key table in working storage. To retrieve a page, the key of
the first record of that page is all that need be maintained in the
table. The va lues in the key table are shifted right, so that the table
is primed for the next page. A map area is obtained to move the fields
from each record. The starting point of the browse is then established,
the first record is read, and its fields are IrOVed to the map area. As
many successive record s as can be shown on the screen are then read and
set up. The sample program shows four records to a page (four lines) •
If conditions dictate displaying other than four lines, READNEXT and
associated commands should be added or deleted. If only one record can
be acconmodated, browse is still possible.

After viewing the first page, the operator may indicate page forward
through the PF1 key or by typing F. The program proceeds directly to
building the next page, as the key table is already conditioned. The
browse may continue for as long as is desired (or until the end of the
file is reached) •

If the operator wishes to page backward with the PF2 key or by typing
B, the key table entries are shifted left, so that the previous page is
retrieved. The program resets the browse starting pos ition and branches
back to the main routine to construct a page. The backward browse
depends on the number of keys that may be stored in the key table. If
more than two page backwards in a sequence are required, the four entry
key table should be expanded.

The operator may cancel a browse at any time by depressing the clear
key.

Key Table example

The following are the field functions:

FLDA
FLDB
FLOC
FLDD

- Next page forward
- Current page being viewed
- Previous page
- Page before previous page

(+ additional backward paging keys, if needed)

Assume that the file contains the following records, and there will
be two records to a page for display:

14 17 18 20 25 28 I •••• I ••••

The operator keys in 15, indicating that the browse should start with
the first record equal to or greater than 15. The program stores 15 in
FLDA and FLDB.

456 CICSjVS APRM (CL)

Page of SC33-0077-2, revise6 September 1980 by TNL SN33-6268

15
FLDA

15
FLDB

o
FLDC

o I
FLDD

The program reads records 11 and 18 from the file and displays them
at the terminal. The last record (18) is stored in FLDA, to be ready
for a page forward.

18
FLDA

15
FLDB

o
FLDC

o
FLDD

The operator presses PF1 or types F to page forward and display the
next page. The program uses FLDA (18) to retrieve records 20 and 25.
These are displayed after the keys are shifted right. The last record
read ~5) is stored in FLDA.

25
FLDA

18
FLOB

15
FIDC

o
FLDD

Additional page forward requests would cause the table entries to be
shifted right, and a new entry stored in FLDA. Entries in FIDD are
dropped during the shift right. .

The operator presses PF2 or types B to page backward and display the
previous page of two records. The keys are shifted left to place the
starting key of the previous page displayed (15) in FLDA and FLDB. FLDD
is moved to FLDC, and zeros are moved to FLDD.

15
FLDA

15
FLDB

o
FLDC

o
FLDD

The program uses FLDA to retrieve records 17 and 18, which are then
displayed. The last record (18) is stored in FLDA for the next page
forward •

18
FLDA

15
FLDB

o
FLOC

o
FLDD

The operator is viewing the first page that was requested, after
paging forward one page and then paging backward to the starting page.
The sample program does not permit paging beyond the starting page, so
that the operator may only page forward at this point or cancel the
browse by pressing the clear key. Although browse permits paging
forward to the end of the file, paging backward is limited by the number
of table entries. The four-entry table allows going back two pages. If
this is insufficient, a larger table will allow further backward paging.

Appendix E.. Sample Programs (COBOL) 451

SOURCE LISTING

IDENTIFICATION DIVISION.
PROGRAM-ID. BROWSE.
ENVIRONMENT DIVISION.
DATA DIVI SION •
WCRKING-sI'ORAGE SECTION.
77 I PIC 999 USAGE IS COMP.
77 MESSAGES PICTURE X (39) VALUE • •
17 FLDA PIC 9 (6) VALUE I S ZERO.
77 FLDB PIC 9 (6) VALUE IS ZERO ..
77 FLDC PIC 9 (6) VALUE IS ZERO.
77 FLDD PIC 9 (6) VALUE I S ZERO ..
01 XDFHC~I COpy XDFHa.tA.
01 XDFHCf.fCI COpy XDFHCMC ..
01 FILEA COPY FILEA.
01 DFHlMSCA COpy DFHBMSCA.
moCEDURE DIVISION ..

1 EXEC CICS HANDLE CONDITION ERROR (ERRORS)
MAPFAIL (MENU)
NOTFND (NOTFOUND)
ENDFILE (ENDFILE) END-EXEC

2 EXPC CICS RECEIVE MAP C·XDFHCMA·) END-EXEC
3 EXEC CICS HANDLE AID

CLFAR tmNU)
PFl (pAGE-FORWARD)
PF2 (pAGE-BACKWARD) END-EXEC

4 MOVE KEYI TO FLOA
5 EXEC CICS STARTBR DATASET (·FILEA·) RIOFLD (FLDA) END-EXEC.

PAGE-¥ORWARD ..
MOVE FLOC TO PLOD

6 MOVE FLDB TO FLOC
MOVE FLDA TO FLDB.

BUILD.
MOVE 1 TO I
l«>VE LOW-VALUES TO XDFHCMCO ..

NEXT-LINE ..
1 EXEC CICS READNEXT INTO (FILEA)

DATASET (·FILEA·) RIDFLD (FLDA) END-EXEC
8 IF STAT EQUAL HIGH-VALUE THEN GO TO NEXT-LINE.
9 IF I = 1 MOVE NUMB TO NUMBER10

THEN MOVE NAME TO NAME10
THEN MOVE AMOUNT TO AMOUNT10.

10 IF I = 2 MOVE NUMB TO NUMBER20
THEN MOVE NAME TO NAME20
THEN MOVE AMOUNT TO AMOUNT20.

IF I = 3 MOVE NUMB TO NUMBER30
THEN MOVE NAME TO NAME30
THEN MOVE AMOUNT TO AK>UNT30.

IF I = 4 MOVE NtNB TO NUMBER40
THEN MOVE NAME TO NAME40
THEN MOVE AMOUNT TO AMOUNT40.

ADD 1 TO I
IF I NOT EQUAL 5 GO TO NEXT~INE.

DISPLAY-RECORD.
11 EXEC CICS SEND MAP C·XDFHCMC·) ERASE END-EXEC.

REPEAT.
12 EXEC CICS RECEIVE MAP C·XDFHCMC·) END-EXEC

IF DIRI EQUAL ·F· THEN GO TO PAGE-FORWARD ..
IF DIRI EQUAL eB e THEN GO TO PAGE-BACKWARD.
GO TO MENU.

ENDFILE.
!«>VE ·END OF FILE· TO MSG10

13 MOVE DmBMBRY TO MSG2A
GO TO DISPlAY-RECORD ..

458 CICS/VS APRM (CL)

PAGE-BACKWARD.
lq IF FLOC EQUAL ZEROS GO TO TOO~FAR.

MOVE FLDC TO FLDA
15 MOVE FLDC TO FLDB

MOVE FLDD TO FLDC
MOVE ZEROS TO PLDD
IF FLDA NOT EQUAL KEYI THEN ADD 1 TO FLDA.
EXEC CICS RESETBR DATASET('FILEA') RIDPLD(FLOA) END-EXEC
GO TO BUILD.

TOO-FAR.
16 MOVE OFHBMBRY TO MSG1A

MOVE DFHBMDAR TO MSG2A
17 EXEC CICS SEND MAP (,XDFHCMC') DATAONLY END-EXEC

GO TO REPEAT.
NOTFOUND.

18 MOVE 'INVALID MNUMBER - PLEASE REENTER' TO MESSAGES
GO TO MENU.

ERRORS.
19 EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC

MOVE 'TRANSACTION TERMINATED' TO MESSAGES.
MENU.

20 MOVE LOW-VALUE TO XDFHCMAO
MOVE DFHBMBRY TO MSGA
MOVE MESSAGES TO MSGO

21 EXEC CICS SEND MAP(IXDFBCMA') ERASE END-EXEC
EXEC CICS RETURN END-EXEC.

Appendix E. Sample Programs (COBOL) q59

PROGRAM NOTES

1. The program exits are set up.

2. This command maps in the account number.

3. The exits for each of the defined function keys are set up.

4. The starting key is stored in field A in the key table.

5. This command establishes the browse starting point.

6. The keys in the table are shifted right in anticipation of a
continuation of a browse.

7. The READNEXT reads the first record into the file area.

8. If the record is flagged as deleted, the program reads the next
record.

9. The required fields are moved from the file area to the map area.

10. The same basic commands are repeated to read and set up the next
three lines. The same file area is used and, therefore, the fields
must be reused after each READREXT.

11. The screen is erased and the page is displayed at the terminal.

12. The browsing command (CLEAR, PF1, or PF2 key, or IFI or lSI) is
read from the terminal, and control is passed according to the
operator response (see note 3) •

13. If the end of file is reached on any READNBIT, any records read to
that point are displayed, together with the message 'END OF FILEI.
The label to which this routine branches allows the operator to
restart the browse at a different point. The bright attribute for
the page backward message is turned on.

14. If the PF2 key is depressed or B typed in, indicatinq page
backward, and FLDC contains zeros, further backward paqing is not
possible. The program branches to TOO-FAR (see note 17).

15. If not, the key fields are shifted left to retrieve the previous
page and the starting point for the browse reset accordingly.

16. The table limit is exceeded. An output map area is acquired, the
bright attribute for the page forward message is turned on, and a
dark attribute is moved to the page backward message.

17. An error message is written to the terminal.

18. On the record NOTFND condition, the message IINVALID NUMSER -
PLEASE REENTERI is moved to MESSAGES.

19. On an error (notes 2, 5, 7, 11, 12, 17, 19, or 21) a dump is taken
and the message 'TRANSACTION TER~INATED' is moved to MESSAGES.

20. The map area is cleared. This is also the entry point if the clear
key was depressed. The bright attribute to highlight the message
is turned on, and the message 'TRANSACTION TERMINATEDI or the
default message is moved to MESSAGES.

21. The screen is erased and map XDFHCMA is displayed, and the program
ends •

460 CICS/VS APRM (CL)

Order Entry Sample Program (COBOL)

DESCRIPTION

The order entry sample application accepts input relating to the
ordering of parts from a warehouse. Wnen sufficient orders have been
accumulated in the headquarters of a business, these are automatically
sent off to a warehouse, or some other distribution point.

The program displays the map XDFBCMK on the screen requesting the
operator to input details regarding the ordering of a certain part. The
screen contains entry positions relating to the customer number, the
part number and the quantity of that part required. (Any integer up to
six digits in length may be entered: the customer number must be valid,
that is, it must exist on FILEI.) When the screen has been filled, the
operator presses CLEAR to stop entering data, and ENTER to continue
entering data. The screen is then mapped in and the data is checked,
errors being returned to the operator for reentering. When all the
input is correct it is sent to a transient data queue called 'L860' -
which is also a terminal-id where a transaction is to be triggered when
the number of items on the queue reaches 30.

The trigger level may be changed using the CSMT command, as follows:

CSMT TRIGGER,n,DESTID=L860

where n is the destination trigger level (any integer from 0 through
32767) •

Appendix E. Sample Programs ~OBOL) 461

SOURCE LISTING

IDENTIPICATION DIVISION.
PROGRAM-ID. XDFHOREN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ERROR-FLAG PIC 9.
77 WNG-ftSG PIC 9 VALUE O.
77 BRTMDT PIC X VALUE IS 'I'.
01 XDFHCMKI COpy XDFHCMK.
01 FILEA COPY FILEA.
01 L860 COpy L860.
01 DFHBMSCA COpy DFHBMSCA.
PROCEDURE DIVISION.

1 EXEC ercs HANDLE AID CLEAR (ENDA) END-BXEC.
2 EXEC CICS HANDLE CONDITION MAPFAlL ~APFAIL)

NOTFND (NO'lFOUND)
ERROR (ERRORS) END-EXEC.

MOVE LOW-VALUES TO XDFHCMKO.
SENDM.

3 EXEC CICS SEND MAPC'XDFHCMK') ERASE END-EXEC.
RECEIVE!!.

4 EXEC CICS RECEIVE MAPCIXDFHCMK') END-EXEC.
TEST.

MOVE 0 TO ERROR-FLAG
5 MOVE DFHB!FSB TO CUSTROA, PARTNOA, QUAITA.

IF CUSTNOI NOT NUMERIC THEH
MOVE BRTMDT TO CUSTNOA MOVE 1 TO ERROR-FLAG.

IF PARTNOI NOT RUMERIC THEN
6 MOVE BRTMDT TO PARTNOA MOVE 1 TO ERROR-FLAG.

IF QUANTI NOT NUMERIC THEN
ftOVE BRTMDT TO QUANTA MOVE 1 TO ERROR-FLAG.

IF ERROR-FLAG = 1 THEN
MOVE 1 TO WNG-ftSG

7 MOVE DFHBMBRY TO MSG2A GO TO SENDM.
8 EXEC CICS READ DATASET ('FILEA') IHTO CFILEA) RIDFLD (CUSTNOI)

Q-BUILD.
MOVE CUSTNOI TO CUSTNO

9 MOVB PARTNOI TO PARTNO
MOVE QUANTI TO QUANTITY
MOVE EIBTRMID TO TERMID.

Q-WRITE.

ERD-EXEC.

10 EXEC CICS WRITEQ TD QUEUE (11860') FROM(L860) LENGTH~2)
END-EXEC.

11 IF iNG-MSG = 1 THEN
EXEC CICS SEND MAP ('XDFHCMKI) MAPONLY ERASE END-EXEC
!!OVE 0 TO WNG-ftSG

ELSE
12 EXEC CICS ISSUE ERASEAUP END-EXEC.

GO TO RECEIVEM.
NOTFOUHD.

ftOVE 1 TO WNG-aSG.
13 MOVE DFHBMASB TO MSG1A

GO TO SEND!.
MAPFAIL.

MOVE 1 TO WNG-ftSG.
14 MOVE LOW-VALUES TO XDFHCMKO.

ftOVE DFHBftASB TO ftSG2A
GO TO SEND!.

ERRORS.
15 MOVE 'TRANSACTION TERl!IBATED' TO MSG20

ftOVE DFHBftBRY TO !SG2A
EXEC CICS SEND MAPC'XDFHCMK') END-EXEC

462 CICS/yS APRM (Cl)

EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC.
ENDA.

16 EXEC CICS RETURN END-EXEC.
GOBACK.

Appendix E. Sample Programs (COBOL) 463

PROGRA! NOTES

1. The exit for the clear key is set up.

2. The program exits are set up.

3. The screen is erased and the map is displayed at the terminal.

4. This command maps in the customer number, part number, and
quantity.

5. The input areas on the map have the modified data tag set on in
case they need to be sent back for reinput, should an error occur
in entering data.

6. The input is tested, and erroneous fields are brightened, whilst
the modified data tag is still set on. The user should add further
editing necessary to ensure only valid orders are accepted.

7. If there is a data error, the message 'DATA ERROR - REBNTERI,
having been stored on the screen with a dark attribute character,
is brightened.

8. The file control READ reads the record into a record area in order
to find whether a particular record exists.

9. The input from the map is moved to the queue area.

10. The transient data WRITEQ obtains a log ar&a, and writes this
record to a sequential file.

11. If an error message is left on the screen, the screen is cleared
and only the map is sent.

12. The entered fields, having been mapped in and processed, are
erased, and the screen is ready to receive more input.

13. If the customer number entered was not found, the message 'NUMBER
NOT FOUND - REENTER', having been stored on the screen with a dark
attribute character, is brightened.

14. If no fields were entered, the message 'DATA ERROR - RBENTER', also
having been stored on the screen with a dark attribute character,
is bright9ned.

15. On an error (notes 3, 4, 8, 10, 11, and 15) a dump is taken, and
the message 'TRANSACTIOB TER!INATED ' is moved to the top message
area.

16. The program ends.

464 CICS/VS APR! (CL)

Order Entry Queue Print Sample Program (COBOL)

DESCRIPTION

This transaction is invoked by entering the transaction-id 'CCOM' at the
terminal. The program checks to see whether it was started from a
terminal or the printer. If from a terminal, (that is, the op~rator is
starting this transaction for the first time) the program starts the
transacti'on at the printer in one hour. (This time interval could be
changed using EDP for demonstration purposes.) The operator may then
press RESET and CLEAR and enter another transaction. If from the
printer, the program executes and starts again in one hour. If there
are no items on the queue, a message indicating that the queue is empty,
is sent to the warehouse. The last communications with the warehouse
occurs not later than 1500 hours. This transaction is also started when
the number of items on the queue 'L860 1 reaches 30.

The trigger level may be changed using the CSMT command, as follows:

CSMT TRIGGER,n,DESTID=L860

where n is the destination trigger level (any integer from 0 through
32767) •

This program reads items off the queue IL860', until the queue is
empty. Should the queue have been empty initially, a message is sent to
the warehouse. Using the number from the queue as a key it reads the
file PILE!, and checks the amount field to see if the customer is good
for credit on this order. If he is, the number, name, address, part
number and quantity are moved to the map XDFHCML and this is sent to the
printer. If he is not, the time, date, queue-item, and a comment field
are moved to a data area, this may be used for later processing. A
message is then sent to the warehouse indicating that the queue is
empty. The EIBTI!E is then updated and if the time is before 1400
hours, the transaction is started in one hour.

Appendix E. Sample Programs (COBOL) 465

SOURCE LISTING

IDENTIFICATION DIVISION.
PROGRAM-ID. XDFHCCOM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 Q-LENGTH PIC S9(4) COMP.
01 LOGORD.

02 LOGTIME.
03 LDAY PIC 59 0) COMP-3.
03 LTIM! PIC 59(7) COMP-3.

02 LITEM PIC X(22).
02 COMMENT PIC X(ll) VALUE 'ORDER ENTRY'.
02 FILLER PIC X(51) VALUE SPACES.

01 XDFHCMLO COpy XDFHCML.
01 FILEA COPY FILEA.
01 L860 COpy L860.
01 DFHBMSCA COpy DFHBMSCA.
PROCEDURE DIVISION.

1 EXEC CICS HANDLE CONDITION ERBOR(ERROBS)
QZERO ~NDA) END-EXEC.

2 IF EIBTRMID HOT = 'L860' THEN
GO TO TIME.

MOVE LOW-VALUES TO XDFHCMLO.
Q-READ.

MOVE 22 TO Q-LENGTH.
3 EXECCICS READQ TD IBTO(L860) LENGTH (Q-LENGTH)

QUEUE('L860') END-EXEC.
MAP-BUILD.

4 EXEC CICS READ DATASET('FILEA') INTO (FILEA) RIDFLD (CUSTIO)

5 IF AMOUNT > 1$0100.00' THEN
MOVE ADDRX TO ADDRO
MOVE NAME TO NAMO

6 MOVE PARTNO TO PARTO
MOVE NUMB TO NUMBO
MOVE ITEM TO LITEM
MOVE QUANTITY TO QUANTO

END-EXEC

7 EXEC CICS SEND MAP ('XDFHCML') ERASE PRINT L80 END-EXEC
GO TO Q-READ

ELSE
MOVE EIBDATE TO LDAY

8 MOVE EIBTIME TO LTI!E
MOVE ITEM TO LITEM

9 EXEC CICS WRITEQ TD QUEUE ('LOGA')
FROM (LOGORD) LENGTH (92) END-EXEC

GO TO Q-READ.
ERRORS.

10 EXEC CICS DUMP DUftPCODE('ERRS') END-EXEC.
GO TO FIN.

ENDA.
11 MOVE LOW-VALUES TO XDFHCMLO

MOVE 'ORDER QUEUE IS EMPTY' TO TITLEO
12 EXEC CICS SEND aAP('XDFHC~L') DATAONLY ERASE PRINT L80

END-EXEC.
TIME.

13 EXEC CICS ASKTI!E END-EXEC.
14 IF EIBTI!E NOT > 140000 THEN
15 EXEC CICS START ~RAHSID('CCO!') IHTERVAL(10000)

TERMID('L860') EBD-EXEC.
FIN.

16 EXEC CICS RETURN END-EXEC.
GOBACK.

466 CICS/VS APR! (CL)

PROGRAM NOTES

1. The program exits are set up.

2. The terminal-id is tested to see whether this transaction was
started from a terminal or at the printer.

3. The queue item is read into the program.

4. The file control READ reads the record into a record area so that
the amount may be checked.

5. The amount is tested.

6. If it is over $100, the record on the queue is moved to the map
XDFHCML. This test is only a suggestion; a suitable form of
editing should be inserted to ensure ~alid orders are sent to the
warehouse.

7. The map XDFBC~L is sent to th~ printer.

8. If the order is not valid for this account, the racord on the queue
is moved to a data area, together with the terminal-id associated
with the entering of this piece of data, the time, and date.

9. The transient data WRITEQ obtains a log area, and writes this
record to a sequential file.

10. On an error (notes 3, .", 1, 9, 10, 12 and 15) a dump is taken.

11. When the queue is empty, a message is moved to the map area.

12. The map is displayed on the screen.

13. The current time-of-day clock is updated.

1". The current time-of-day is tested.

15. If the current time is not past 1"00 hours, the transaction is
started again in one hour at the warehouse printer.

16. The program ends.

Appendix E. S~mple Programs ~OBOL) q61

Report Sample Program (COBOL)

DBSCRIPTIO~

The report saaple program produces a report that lists all entries in
the data set 'FILEA' for which the amount is less than or equal to
$50.00.

The program illustrates page building techniques and the use of the
terminal paging facilities of BMS.

The transaction is invoked by entering the transaction code REPT.
The program does a sequential scan through the file noting each entry
that obeys the search criterion. The pages are built from four maps
which comprise mapset XDFBCMD, using the paging option so that the data
is not displayed immediately but instead is stored for later retrieval.
The BEADING map is inserted at the head of each page. The detail map
(XDFHCMD) is written repeatedly until the overflow condition occurs.

The FOOTING map is then written at the foot of the page and the HEADING
map written at the top of the next page. The command to write the
detail map that caused overflow is then repeated. When all the data has
been written the FINAL map is written at the bottom of the last page and
the transaction terminated.

The terminal operator then enters paging commands to display the
data, clearing the screen before entering each paging coa.and.

468 CICS/VS APRM (CL)

SOURCE LISTING

IDENTIFICATION DIVISION.
PROGRAft-ID. REPOBTC
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 lOilIft PICTURE X (8) VALUE 1$0050.00 1 •
11 KEINUft PICTURE 9(6) VALUE O.
71 PAGEN PICTURE 9(3) VALUE 1.
11 OPINSTR PICTURE X(22) VALUE IENTER PAGING COftM1NDS.I.
01 XDFHCftDI COPY XDFHCftD.
01 FILEA COpy FILEA.
PROCEDURE DIVISION.

1 EXECUTE CICS HANDLE CONDITION ERROR (ERRORS)
OVERFLOW(OFLOi) ENDFILE(ENDFILE) END-EXEC

2 MOVE LOW-VALUE TO PAGENA
KOVE PAGEN TO PAGENO

3 EXEC Cles SEND ftAP(IHEADINGI) ftAPSET(IXDFHCftDI) ACCUM
PAGING ERASE END-EXEC

4 ftOVE 0 TO KEYNUM.
5 EXEC CIes STARTBR DATASET (IPILEAI) RIDFLD(KEYNUB) END-EXEC.

REPEAT.
6 EXEC CICS READNEXT INTO(FILEA) RIDFlDCKEYNU~)

DATASETC1FILEAI) END-EXEC
7 IF STAT EQUAL HIGH-VALUE GO TO REPEAT.

ftOVE AftOUNT TO AKOUNTO
8 IF AMOUNTO GREATER THAN LOWLI! GO TO REPEAT.

BOVE LOW-VALUE TO XDFHCKDO
9 MOVE AMOUNT TO AMOUNTO

MOVE NUMB TO NUMBERO
MOVE NA!E TO NAMEO
GO TO SEND-RECORD.

OFLOW.
10 EXEC CICS SEND K1PC 1FOOTING') MAPSET('XDFBCftD')

MAPONLY ACCUS PAGING END-EXEC
ADD 1 TO PAGEN
MOVE PAGEN TO PAGENO

11 EXEC CICS SEND K1P('HEADINGI) MAPSET(IXDFBCMDI)
AceUK PAGING ERASE END-EXEC.

SEND-RECORD.
12 EXEC CICS SEND KAP(IXDPHCKDI) MAPSETCIXDFHCKD')

Accua PAGING END-EXEC
GO TO REPEAT.

ENDFILE.
13 EXEC CICS SEND M1P(IFINAL') MAPSETC1XDFHCKD')

KlPONLY Accua PAGING END-EXEC
14 EXEC CICS SEND PAGE END-EXEC
15 EXEC CICS SEND TEXT FROK(OPINSTR) LENGTH(22) ERASE END-EXEC
16 EXEC CICS ENDBR DATASETC'FILEA') END-EXEC
11 EXEC CICS RETURN END-EXEC.

ERRORS.
18 EXEC CICS HANDLE CONDITION ERROR END-EXEC
19 EXEC CICS PURGE MESSAGE END-EXEC
20 EXEC CICS ABEND ABCODEC'ERRS') END-EXEC.

Appendix E. Sample Programs ~OBOL) 469

PROGRAf! NOTES

1. The program exits are set up.

2. The attribute byte for the page number is cleared.

3. This Bf!S request sets up the heading in the page build operation.

4. The initial key value is set up for the START BROWSE command.

5. This command starts the browse through the file, at a record whose
key is equal to or greater than that specified.

6. This command reads the next record on the file into the file area.

7. If the record is coded as deleted, it is treated as not found.

8. The search criterion for creating the report is that the customer
has less than or equal to $50.

9. Fields are moved from the file area to the map area.

10. The Bf!S request sets up the footing in the page build operation.

11. The Bf!S request sets up the heading in the page build operation.

12. The customer detail map is set up.

13. When the END OF FILE condition is raised, the last map is built.

14. The page is sent to the terminal operator.

15. A message is sent to the term inal.

16. The BROWSE operation is ended.

17. The program ends.

18. On an error, the label to branch to on the ERROR condition is
reset.

19. Any pages waiting to be displayed at the terminal are purged.

20. The program raises an abend condition, a dump is taken and the
program ends.

470 CICS/VS APRM (CL)

Sample Maps and Screen Layouts for COBOL Sample Programs

XDFBCftA KAP DEFINITION

!APSET DFB!SD TYPE=&SYSPAB!,!ODE=INOUT,CTRL=(FREEKB,FRSET), *
LANG=COBOL,TIOAPFX=YES,EXTATT=KAPONLY,COLOR=BLUE

XDFBCftA DFHKDI SIZE=(12,40)
DFB!DF POS=(1,10),LENGTB=21,INITIAL='OPERATOR INSTRUCTIONS', *

HILIGBT=UNDERLINE
DFB!DF POS=(3,1),LEBGTB=29,IBITIAL='OPERATOR INSTR ENTER !EN*

U'
DFBKDF POS=(4,1) ,LENGTB=38,INITIAL='FILE INQUIRY ENTER IHQ*

Y AND NUrtBER'
DFHKDF POS=(S,1),LENGTB=38,INITIAL='FILE BROWSE ENTER BRW*

SAND NUKBER'
DFB!DF POS=(6,1),LENGTB=38,IHITIAL='FILE ADD ENTER ADD*

SAND NU!BER'
DFB!DF POS=(1,1) ,LENGTB=38,IHITIAL='FILE UPDATE - ENTER UPD*

T AND NU!BER'
!SG DFBKDF POS=(11,1),LENGTB=39,INITIAL='PRESS PAl TO PRINT--PRESS*

CLEAR TO EXIT'
DF8!DF POS=(12,1),LEBGTH=18,IBITIAL='EBTER TRABSACTIOB:'
DF8KDF POS=(12,20),LENGTH=4,ATTRB=IC,COLOR=GREEN, *

BILIGHT=REVEBSE
DFHKDF POS=(12,2S) ,LENGT8=6,IBITIAL='NUftBER'

KEY DFBrtDF POS=(12,32) ,LENGTB=6,ATTRB=NU!,COLOR=GREEN, *
BILIGHT=REVEBSE

DF8!DF POS=(12,39) ,LENGTH=l
DFB!SD TYPE=FIBAL
END

XDFBCMA SCREEN LAYOUT

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER MENU
+FILE INQUIRY - ENTER IHQY AND NU!BER
+FILE BROWSE ENTER BRWS AND NUKBER
+FILE ADD ENTER ADDS AND NUKBER
+FILE UPDATE - ENTER UPDT AND lUMBER

+PRESS PAl TO PRIBT--PRESS CLEAR TO EXIT
+ENTER TRANSACTIOI:+XXXX+BUKBER+XXXXXX+

Appendix E. Sample Programs (COBOL) 471

XDFHCMB MAP DEPINITION

MAPSET DFBI1SD TYPE=SSYSPAR! ,I!ODE=INOUT ,C'rRL= (FH EERB, FRSET), *
LANG=COBOL,TIOAPFX=YES,EXTATT=MlPONLY

XDFHCMB DFBMDI SIZE=(12,40)
TITLE DFHMDP POS= (1,15) ,LENG'fH=12

DFHMDF POS=(3,1),LENGTH=a,INITIAL='NUftBER:',COLOR=BLUE
NUMB DFHMDF POS=(3,10),LENGTB=6

DFHMDP POS=(3,17),LENGTB=1
DFHMDF POS=(4,1),LENGTH=8,INITIAL='NAME: ',COLOR=BLUE

NAME DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UNPROr,IC)
DFHM DF POS= (4,31) , LENGTH=l
DFBMDF POS=(5,1),LENGTH=8,INITIAL:'ADDRESS:',COLOR=BLUE

ADDR DFHMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
DFHMDF POS=(5,31),LENGTB=1
DFHMDF POS=(6,1),LENGTH=a,INITIAL='PHONE: ',COLOR=BLUE

PHONE DFHMDF POS=(6,10),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(6,19),LENGTH=1
DFHMDF POS=(7,1),LENGTH=8,INITIAL:'DATE: ',COLOR=BLUE

DATE DFHMDF POS=(7,10),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(7,19),LENGTH=1
DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUN'r DFHMDF POS= (a, 10) ,LENGTH=a ,ATTRB=NUM
DFHMDF Pos=(a,19),LENGTH=1
DFHftDF POS=(9,1~,LENGTH=8,INITIAL='CO!MENT:',COLOR=BLUE

CO~MENT DFHMDF POS=(9,10),LENGTH=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGl DFBMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39

DFHMSD TYPE=FINAL
END

XDFHCMB SCREEN LAYOUT

+XXI1XI1XXXII

+NUMBER: +XIXIIX+
+NAME: +XI11111XXI111XII11XI+
+ADDRESS:+IXXIIIXXXXXXXXIXXIXX+
+PHONE: +XXXXIXll+
+DATE: +11111Xl1+
+A~OUNT: +IIXIXIX1+
+COMMENT:+XIXXIXXXX+

+XXXXXXXXIXXXXXXXXXXXXXXXXXXXXIXXXIXXXX
I+XXIXXXXXXIXXIXXIXXXXXXXXXIXXXXXXXXXXXX
L -----J

472 CICS/V S A PRM (CL)

IDFHCMC MAP DEFINITION

HAPSET

IDFHCMC
DIR

NUMBERl
NAMEl
AMOUNTl
NUMBER2
SAME2
AMOUNT2
NUMBERJ
NAME3
AKOUNT3
NUKBER4
NAKE4
AKOUNT4
MSGl

MSG2

DFHftSD TYPE=&SYSPARft,ftODE=INOUT,CTRL=(FREEKB,FRSET),
LANG=COBOL,TIOAPFI=YES,EITATT=MAPONLY

DFHKDI SIZE=(12,40)
DFHKDF POS=(l,l) ,LENGTH=l,ATTRB=IC
DFHMDF POS=(1,3) ,LENGTH=l
DFHKDF POS=(1,15) ,LENGTH=11,INITIAL='FILE BROWSE',

HILIGHT=UNDERLINE,COLOR=BLUE
DFHMDF POS=(3,1) ,LENGTH=6,INITIAL='NUMBER',COLOR=BLUE
DFHKDF POS=(3,17),LENGTH=4,INITIAL='NAKE',COLOR=BLUE
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT',COLOR=BLUE
DFHKDF POS=(4,1),LENGTH=6
DFHMDF POS=(4,9),LENGTH=20
DFHKDF POS=(4,30),LENGTH=8
DFHMDF POS=(5,1),LENGTH=6
DFHKDF POS=(5,9) ,LENGTH=20
DFHMDF POS=(5,30) ,LENGTH=8
DFHMDF POS= (6,1) ,LENGTH=6
DFH~DF POS=(6,9),LENGTH=20
DFBaOF POS=(6,30) ,LENGTH=8
DFHKDF POS=(7,1),LENGTH=6
DFHMDF POS= (7,9) ,LENGTH=20
DFB~DF POS=(7,30),LENGTH=8
DFHMDF POS=(11,1) ,LENGTH=39,

INITIAL='PRESS PFl OR TYPE F TO PAGE FORWARD'
DFHMDF POS=(12,1),LENGTH=39,

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHKSD TYPE=FINAL
END

IDFHCMC SCREEN LAYOUT

+FILE BROWSE

+NUMBER +NAME +AKOUNT
+IXXXXX +IIIIXXIIXIXXXXXXXXXI+IIXXXX
+IXXXXX +XXXIXXXXIIXXXXXXIXII+XXIXXX
+XIXXXX +XXXXXXXIXXIXXXXXXXXX+XXIXXI
+XIXIXX +XXXIXIIIXXXXXXIXIXXX+XXXAIX

+PRESS PFl OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKWARD
+XXXXXXXXXIXXXXIXIXXIXXXXXIIXXXXXXIXIXX
+1111111XXIIIXIIXIXXXIXXI11111X11111111

L-

*

*

*
*

Appendix E. Sample Programs (COBOL) 473

IDFHC~D ~AP DEFINITION

~APSETD

IDFHCMD
NUMBER
NAME
AMOUNT
HEADING

PAGEN

FOOTING

FINAL

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=~REEKB,FRSET),
LANG=COBOL,STORftGE=AUTO,EITATT=~APONLY,COLOR=BLUE

DFHMDI SIZE=(1,40),COLOR=GREEN
OFHMDF POS=(1,1),LENGTB=6
DFBMDP POS=(1,9),LBNGTH=20
DFHKDP POS=(1,30),LBNGTH=8
DFHMDI SIZE={3,40),HEADER=YES
OFBMDP POS=(l,S) ,LENGTB=18,INITIAL='LOW BALANCE REPORT',

HILIGHT=UNOERLINE
DFHMDF POS=(1,30),LENGTH=4,INITIAL='P1GE'
DFRMDP POS=(1,35),LENGTH=3
DFHMDP POS=(3,1) ,LENGTH=6,INITIAL='NU~BER'
OFBKDF POS=(3,17),LENGTH=4,INITIAL='N1KE'
DFH~DF POS=(3,32),LENGTB=6,INITIAL='AMOUNT'
DFHKDI SIZE=(2,40) ,TRAILER=YES,JUSTIFY=LAST
DFHKDF POS=(2,10),LENGTH=25,

INITIAL='CONTINUED ON NEIT PAGE ••• •
DFRMDISIZE=(2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,10),LENGTH=14,INITIAL='END OF REPORT.'
DFHMSD TYPE=FINAL
END

IDFBCKD SCREEN LAYOUT

LOW BALANCE REPORT PAGE IIX

NUMBER NAME AMOUNT
IXXIAI XXXIIXIXIXIIIXXIXIXX XXXIIIXI
XIXIXI IXXIXXXIIXXIXXXXIXXX IXIXXXIX

(REPEAT TOTAL OF 19 TIMES)
XXXIII IXXIXXXXXIXXXXXXXIXX XXXXIXXX
XXX XXX XXXXXXIXXXXXXXIXIXXX XIIXIIII
XXXIXX XXXXXXXXIXXXXXIXXIXI XXXXXXXX

CONTINUED ON NEXT PAGE •••

474 CICS/VS APRM (CL)

*

*

*

XDFBCftK ftAP DEFINITION

MAPSET DFHftSD TYPE=SSYSPARft,KODE=INOUT,CTRL=(FREEKB), *
TIOAPFX=YES,LANG=COBOL,EXTATT=ftAPONLY

XDFBCftK DFHftDI SIZE=(12,qO)
DFH~DP POS=(Ol,10),LENGTH=11,ATTRB=(BRT,ASKIP)6 *

INITIAL=IORDER ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE
MSGl DFHftDF POS=(03,Oq),LENGTH=26,ATTRB=(DRK,ASKIP), *

INITIAL='NU~BER NOT FOUND - REENTER',COLOR=RED, *
H IL IGHT=BLINK

KSG2 DFHKDF POS=(OQ,OQ),LENGTH=22,ATTRB=(DRK,ASKIP), *
INITIAL='D1Tl ERROR - REENTER' ,COLOR=RED, *
HILIGHT=BLINK

DFHKDF POS=(05,OQ) ,LENGTH=09,ATTRB=PROT, *
INITIAL=INUKBER :'

CUSTNO DFHMDF POS={05,lQ),LENGTH=06,ATTRB=(IC,NUM)
DFHMDF POS=(05,21) ,LENGTH=Ol
DFHKDF POS={06,OQ),LENGTH=09,ATTRB=PROT,COLOR=BLUE *

INITIAL='PART NO :'
PARTNO DFHMDF POS={06,lQ),LENGTH=06,ATTRB=NUM

DFHKDF POS=(06,21) ,LENGTH=Ol
DFHMDF POS=(01,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE *

INITIAL=IQUANTITY:'
QUANT DFHMDF POS=(01,lQ),LENGTH=06,ATTRB=NUft

DFHMDF POS=(01,21),LENGTH=Ol
DFHMDF POS=(09,Ol),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE *

INITIAL='PRESS ENTER TO CONTINUE, CLEAR TO QUIT'
DFHftSD TYPE=FINAL
END

XDFHCKK SCREEN LAYOUT

+ORDER ENTRY

+NUMBER NOT FOUND - REENTER
+DATA ERROR - REENTER
+NUftBER :+XXXXXX+
+PART NO :+XIXXIX+
+QUANTITY:+XIXXXX+

+PRESS ENTER TO CONTINUE, CLEAR TO QUIT

Appendix E. Sample Programs (COBOL) Q15

XDFHC!L flAP DEFI NITION

ftAPSET DFHflSD TYPE=&SYSPARft,ftODE=OUT,
TIOAPFX=YES,LANG=COBOL

XDFHC!L DFHflDI SIZE=(05,80)
TITLE DFHflDF POS=(Ol,Ol),LE~GTH=43,

INITIAL=' NUM BER NAME
NUMB DFHftDF POS=(02,Ol),LEN~TH=06
NAM DFHftDF POS=(02,12),LENGTH=20
ADDR DFHftDF POS=(02,37),LENGTH=20

DFHftDF POS=(03,Ol),LENGTH=09,
INITIAL='PART NO : .

PART DFHMDF POS=(03,11),LENGTH=06
DFHMDF PO.s=(04,Ol),LENGTH=09,

INITIAL='QUANTITY:'
QUANT DFH!DF POS=(04,11),LENGTH=06

DFBftDF POS=(05,Ol),LENGTH=1,
INITIAL= • ,

DFBMSD TYPE=FINAL
END

XDFHCML PRINT LAYOUT

+NUMBER NAME
+XXXXXX +XXXXXXXXXXXXXIIXXIIX
+PART NO:+IXXXIX
+QUANTITY:+XXXXIX
+X

476 CICS/V S APRM (eL)

ADDRESS
+IIXXXXXXXXXXXIXXXXXX

*

* ADDRESS'

*

*

*

Additions to Tables for COBOL Sample Programs

PPT

The following entries were made for the sample maps:

DFHPPT TYPE=ENTRY,PROGRAM=XDFHCMA
DFHPPT TYPE=ENTRY,PROGRAM=XDFBCMB
DFHPPT TYPE=ENTRY,PROGRAM=XDFHCMC
DFHPPT TYPE=ENTRY,PROGRAM=XDFHCMD
DFHPPT TYPE=ENTRY,PROGRAM=XDFBCMK
DFHPPT TYPE=ENTRY,PROGRAM=XDFHCML

The following entries were made for the sample programs:

PCT

DFHPPT TYPE=ENTRY,PROGRAM=XDFBINST,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,PROGRAM=XDFHCALL,PGMLANG=COBOL
DFHPPT TYPE=ENTRY,PROGRAM=XDFHBRWS,PGftLANG=COBOL
DFBPPT TYPE=ENTRY,PROGRAM=XDFHOREN,PGMLANG=COBOL
DFBPPT TYPE=ENTRY,PROGRAM=XDFHCCOM,PGMLANG=COBOL
DFBPPT TYPE=ENTRY,PROGRAM=XDFHREPT,PGMLANG=COBOL

The following entries were made for the sample programs:

DCT

DFBPCT TYPE=ENTRY,TRANSID=MENtJ,PROGRAM=XDFHINST
DFBPCT TYPE=ENTRY,TRANSID=INQY,PROGRAM=XDFHCALL
DFRPCT TYPE=ENTRY,TRANSID=ADDS,PROGRAM=XDFBCALL
DFHPCT TYPE=ENTRY,TRABSID=UPDT,PROGBAM=XDFHCALL
DFHPCT TYPE=ENTRY,THANSID=BRWS,PROGRAft=XDFHBRWS
DFHPCT TYPE=ENTRY,TRANSID=OREN,PROGRAM=XDFBOREN
DFHPCT TYPE=ENTRY,TRANSID=CCOM,PROGRAM=XDFHCCOM
DFHPCT TYPE=ENTRY,TRANSID=REPT,PROGRAM=XDFBREPT

The following entry was made:

DFHDCT TYPE=INTRA,DESTID=L860,TRIGLEV=3Q,TRANSID=CCOM,
DESTFAC=TERMINAL

*

Appendix E. Sample Programs ~OBOL) 411

Record Descriptions for COBOL Sample Programs

FILEA RECORD DESCRIPTION

The FILE! record description is used by the sample programs and is of
the following format:

01 FILE!.
02 FILEREC.

03 STAT PICTURE I.
03 NUMB PICTURE I (6) •
03 NAME PICTURE 1(20).
03 ADDRI PICTURE X (20) •
03 PHONE PICTURE X(8).
03 DATEI PICTURE X(8).
03 A80UNT PICTURE X(8) •
03 COMMENT PICTURE 1(9).

LOGA RECORD DESCRIPTION

The LOGA record description is used by the sample programs when an audit
trail is written to a transient data file. It has the following format:

01 LOGA.
02 LOGHDR.

03 LDAY PICTURE 9 0) COMP-3.
03 LTIME PICTURE 9 (7) COMP-3.
03 LTERML PICTURE X(q).

02 LOGREC.
03 LSTAT PICTURE I.
03 LHUMB PICTURE 1(6).
03 LNlaE PICTURE 1(20).
03 LlDDR PICTURE 1(20).
03 LPHONE PICTURE X (8) •
03 LDATE PICTURE 1(8).
03 LAMOUHT PICTURE X(8).
03 LCOMaENT PICTURE X(9).

L860 RECORD DESCRIPTION

The L860 record description is used by the O~der Entry Queue Print
sample program when it writes to the TD queue 'L860'. It has the
following format:

01 L860.
02 ITE!!.

03 CUSTNO PICTURE X(6).
03 PARTNO PICTURE X(6) •
03 QUANTITY PICTURE X~).
03 TERMID PICTURE X(4).

478 CICS/VS APRM (Cl)

Appendix F. Sample Programs (PL/I)

This appendix consists of sample CICSjVS application programs written in
the PL/I language. The BKS maps and file record descriptions used by
the sample programs are included after the sample programs.

The sample maps include examples of how the COLOR, EXT1TT, and
HILIGHT attributes are specified in the map definition macros. However,
due to production limitations, the associated screen layouts do not show
the effects of these attributes; they show how the maps would be
displayed on, for example, a 3211.

Specifying EXTATT=M1PON1Y enables attributes to be added without
changing the application program. Any attribute, that specifies a
facility not availanle at the terminal, will be ignored.

The sample programs illustrate basic applications that can serve as a
framework for the installation's first programs. Each program has a
description and program notes. The program listings are of source code.
Numbered coding lines correspond to the numbered program notes.

All transactions are initiated by the terminal operator entering a
four-character transaction code. (In account number must also be
entered, except in the case of the operator instruction sample program.)

There are six sample programs, as follows:

• Operator Instruction Sample Program

• Update Sample Program

• Browse Sample Program

• Order Entry Sample Program

• Order Entry Queue Print Sample Program

• Report Sample Program

All the sample programs operate on a sample VS1M or IS1! file which
must first be created using a program provided on the library. The file
consists of records containing details of individual accounts. The
programs are used to display, alter, update, or browse through the
entries. For information on how to create the sample VS1M or ISAM file
refer to the CICS/VS System Programmer's Guide.

All the sample programs are for use with the IBM 3210 Information
Display System.

Executing the Sample Programs

Once CICS/VS is running, 3210 users can enter the following transaction
id1s:

Appendix F. Sample Programs (PL/I) 479

PMNU
PINQ
PADD
PUPD
PBRW
paRD
pea!
PREP

Display other transaction id1s (except paRD, pcoa, and PREP.)
Display an entry.
Create a new entry.
Update an entry.
Browse through entries.
Order entry.
Print order entry queue.
Display a report ~ntries not greater than $50).

Not~: The transaction peOM should be used once in the morning, after
which it will invoke itself at the printer in one hour (unless the time
is 1400 hrs or after) •

480 CICS/VS lPRM (CL)

Operator Instruction Sample Program (PL/I)

DESCRIPTION

To begin 3270 operations, a terminal operator must enter a transaction
code of PftNU. Whenever the screen is cleared this transaction code must
be reentered, as no data is accepted from an unformatted screen.

The instruction program displays map XDFHP~A containing operator
instructions. This map lists the PL/I CICS/VS sample applications and
the transaction codes (with the exception of PORD and PCO~ which are
entered onto a clear screen), and provides space for entering the code
and an account number.

SOURCE LISTING

INSTRCT:PBOC OPTIONS (aAIN) ;
1 EXEC CICS SEND ftAP (IXDFHPMAI) MAPOBLY ERASE;
2 EXEC CICS RETURN;

END;

PROGRA~ NOTES

1. The Bas command erases the screen and displays map XDFHPaA.

2. RETURN ends the program.

Appendix F. Sample Programs (PL/I) 481

Update Sample Program CPL/I)

DESCRIPTION

The update sample program combines the facilities of file update, file
add and file inquiry.

The update program maps in the account number and reads the file
record. The required fields from the file area, and a title depending
on the invoking transaction-id, are moved to the map area. In the case
of the file add function being required, the number entered onto map
XDFBPMA, and a title are moved to the map area of XDFHPMB. Then
XDFHPMB, containing the record fields, is displayed at the terminal. If
the function of this transaction is file inquiry, the program ends here.

The update program then reads and maps in the record to be added or
updated, and edits the fields. The sample program only suggests the
type of editing that might be done. The user should insert editing
steps needed to ensure valid changes to the file. Those fields which
have been changed are moved to the file area. Fields are moved to the
transient data area. The file record is then either added or updated,
depending on the function required of the program. Either the message
'FILE UPDATED' or 'RECORD ADDED' is inserted in XDPBPMA and the map is
transmitted to the terminal.

This program demonstrates a pseudo-conversational programming
technique, where control is returned to CICS/VS together with a
transaction-id whenever a response is requested from the operator.
Associated with each return of control to CICS/VS is a storage area
containing details associated with the previous invocation of this
transaction.

482 CICS/VS APRM ~L)

SOURCE LISTING

PALL:

1
2

3

4

5

PROC(COMPOINT) OPTIONS(MAIN);
DCL MESSAGES CBAR(39);
DCL coaLEN FIXED BIN(15);
DCL KEYNUM PICTURE' (6)9';
%INCLUDE XDFHPKA;
~INCLUDE XDFHPKB;
%INCLUDE FILEA;
~INCLUDE LOGA;
'INCLUDE DFHBMSCA;
DCL CBSTR CHAR(256) BASED;
DCL COMPOINT PTR;
DCL COMMAREA LIKE FILEA BASED(COMPOINT);
IF EIBCALEN~=O THEN GO TO READ_INPUT;
EXEC CICS HANDLE CONDITION ERROR (ERRORS) MAPPAIL(PKNU);
ALLOCATE COKMAREA;
EXEC CICS RECEIVE MAP ('XDFBPMA');
IF KEYL=O THEN GO TO NOTFOUND;
KEYNUft=KEYI;
SUBSTR~DDR (XDFHPMBO)->CHSTR,l,STG(XDFHPMBO»

=LOW(STG(XDFHPMBO»;
IF EIBTRNID='PADD' THEN

DO;
TITLEO=IFILE ADD';
MSG30='ENTER DATA AND PRESS ENTER KEY';

6 NUMBO,COMMAREA.NUMB=KEYI;
7 AMOUBTA='J';

8
9

10

11

12

13

14

AKOUNTO='$OOOO.OO';
COMLEN=7;
CALL MAP_SENO;
GO TO crCS_CONTROL;

END;
ELSE
IF EIBTRNID='PINQ'

I EIBTRNIO='PUPoa THEN
DO;

EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND);
EXEC CICS READ OATASET('FILEA') INTO ~ILEA)

RIDFLD(KEYNUM);
IF FILEA.STAT=HIGH(l) THEN GO TO NOTFOOND;
IF EIBTRNID='PINQI THEN

DO;
TITLEO='FILE INQUIRY';
MSG30='PRESS ENTER TO CONTINUE';
CALL MAP_BUILD;
CALL MAP_SEND;
EXEC CICS RETURN TRANSID('PMNU');

END;
ELSE

END;
ELSE

DO;
TITLEO='FILE UPDATE';
MSG30='CBANGE FIELDS AND PRESS ENTER';
COKKAREA.FILEREC=FILEA.FILEREC;
CALL MAP_BUILD;
CALL MAP_SEND;
COMLEN=80;
GO TO CICS_CONTROL;

END;

GO TO ERRORS;
MAP_BUILD: PROC;

NUKBO=FILEA.NOMB;
NAMEO=FILEA.NAME;

Appendix F. Sample Programs (PL/I) 483

ADDRO=FILEA.ADDRI;
15 PHONEO=FILEA.PHONE;

END;

DATEO=FILEA.DATEI;
AMOUNTO=FILEA.AMOUNT;
COMMENTO=FILEA.CO!MENT;
RETURN;

MAP SEND: PROC;
1~ EXEC CICS SEND MAP (IIDFHP"S') ERASE;

RETURN;
END;
READ INPUT:

17- EXEC CICS HANDLE CONDITION ~APF&IL(NOTaODF) DUPREC(DUPREC)
ERROR (ERRORS) NOTFND(NOTFOUND);

18 EXEC CICS RECEIVE MAP (IIDFHPMB') ;
IF EIBTRNID=IPUPD' THEN

DO;
19 EIEC CICS READ UPDATE DATASET('FILEA') INTO(PILEA)

RIDFLD(COMaAREA.NUMB) ;
20 IF STRING (FILE1.FILEREC),=STRING(COMMAREA.FILEREC) THEN

DO;
MSG10=IFILE ALREADY UPD~TED - REZNTERI;
MSG1A=DFBBMBRY;

21 MSG3A=DF8BMDAR;
CALL KAP_BUILD;

22 EXEC CICS SEND MAPC1XDFHPKB') DATAONLY;
COMMAREA.FILBREC=FILEA.FILEREC;
COMLEN=80;

23

24

GO TO CICS_CONTROL;
END;

ELSE

END;
ELSE

DO;
FILEA.ST1T=IUI;
MESSAGES='FILE UPDATEDI;

END;

IF EIBTRNID='PADDI THEN
DO;

FILEA.STAT='AI;
MESSAGES=IRECORD ADDED';

END;
ELSE _

GO TO ERRORS;
IF NAMEL=O &

ADDRL=O &
25 PHONEL=O &

DATEL=O &
AMOUNTL=O &
COMftENTL=O THEN
GO TO HOTMODF;

IF EIBTRNID='PADDI THEN
IF VERIFY (NAMEI,'ABCOEFGHIJKLMNOPQRSTUVWIYZ .1),=0 THEN

GO TO DATA_ERROR;
IF EIBTRNID=I~UPD' THEN IF NA~EL'=O THEN

IF VERIFY(NAMEI,IABCDEPGHIJKLMNOPQRSTUVWIYZ .'),=0 then
GO TO DATA_ERROR;

IF EIBTRNID=IPADDI THEN
FILEA.NUMB=COMMAREA.NUMB;

IF NAMEL,=O THEN FILEA.NAME=NAMEI;
IF ADDRL,=O THEN FILEA.ADDRX=ADDRI;

26 IF PHONEL,=O THEN FILEA.PHONE=PHONEI;
IF DATEL,=O THEN FILEA.DATEX=DATEI;
IF A~OONTL'=O THEN FIlEA.AMOUNT=AMOUNTI;
IF COM~ENTL'=O THEN FILEA.COMMENT=COMKENTI;

484 CICS/VS APRM (Cl)

LOGREC=FILEA.FILEREC;
LDAY=EIBDATE;

27 LTIllE=EIBTII1E;
LTERl1L=EIBTRI1ID;

28 EXEC CICS WRITEQ TD QUEUE('LOGA') FROK(LOGA) LENGTH(92);
IF EIBTRNID='PUPD' THEN

29 EXEC CICS REWRITE DAT1SET('FILE1') FROM(FILEA);
ELSE

30 EXEC CICS WRITE DATASET('PILEA') FROMWILEA)

GO TO Pl1NU;
DATA ERROR:

- MSG3A=DFHBI1BRY;

RIDFLD(COMMAREA.NUl1B);

31 MSG30='DATA ERROR - CORRECT AND PRESS ENTER';
32 NAKEA, ADDRA, PHONEA, DATE!, AMOUNTl, COMMENTA=DFHBMFSE;
33 EXEC CICS SEND MAP('XDFHPaB') D1TAONLY;

IF EIBTRNID='PADD' THEN coaLED=7;
ELSE CO!!LEN=80;

CICS_CONTROL:
34 EXEC CICS RETURN TRANSID(EIBTRNID) COl1KAREA(COMKAREA)

NOTKODF:
35 MESSAGES='FILE NOT MODIFIED';

GO TO PMNU;
DUPREC:

36 MESSAGES='DUPLICATE RECORD';
GO TO PKNU;

NOTFOUND:

LENGTH (COMLEN) ;

37 KESSAGES='INVALID NUMBER - PLEASE REENTER';
GO TO Pl1NU;

ERRORS:
38 EXEC CICS DUMP DUMPCODEC'ERRS');

MESSAGES='TRANSACTION TERMINATED';
PliNU:

SUBSTR(ADDR(XDFHPMAO)->CHSTR,l,STG(XDFHPMAO»
=LOW(STG(XDFHPMAO»;

39 MSGA=DFHBMBRY;
MSGO=!1ESSAGES;

40 EXEC CICS SEND KAPC'XDFHPMA') ERASE;
41 EXEC CICS RETURN;

END;

Appendix F. Sample Programs (PL/I) 485

PROGRAM NOTES

1. The length of the CO!MAREI is tested.

2. The program exits are set up.

3. Map XDFHPaA is received.

4. The account number is saved.

5. If the program is invoked by the transaction-id 'P1DD', a title and
command message are moved to the title area.

6. The record key is moved to the map area and to the COMMAREA.

7. In the case of the PADD transaction, the amount field has the
modified data tag and the numeric attribute byte set on so only
numeric data can be entered. If no data is entered, the field
contains the original data if it has not been modified when the
contents of map XDFHPMB are mapped in.

8. The exit for the record not found condition is set up.

9. The file control READ reads the file record into the file area.

10. If the record is coded as deleted, it is treated as not found.

11. If the program is invoked by the transaction-id 'PINQ', a title and
command message are moved to the map area.

12. This invocation of the program ends.

13. If the program is invoked by the transaction-id 'PUPD', a title and
command message are moved to the map area.

14. The file record is moved to CO!!AREA and the length of the CO!!AREA
to be returned is set up.

15. The fields from the file area are moved to the map area.

16. The screen is erased and &ap XDFHPMB is sent to the terminal.

17. The program exits are set up.

18. This command maps in the contents of the screen.

19. The file control READ UPDATE reads the file using the number from
the last invocation of this program which is stored in CO!MAREA.

20. The fields from the last invocation are checked against those on
the current file record.

21. A message and attribute bytes are moved.

22. The contents of map XDFHP!B are sent to the terminal.

23. The message 'FILE UPDATED' is moved to MESSAGES.

24. The message 'RECORD ADDED' is moved to MESSAGES.

25. Any required editing steps should be inserted here. A suitable
form of editing should be used to ensure valid records are placed
on the file.

486 CICS/VS APRM eCL)

26. The record to be written to the file is created.

21. The record fields, date, time, and terminal identification are
moved to the transient data area.

28. This record is written to a transient data file.

29. The updated record on the file is rewritten.

30. The added record is rewritten to the file.

31. An error message is nvved.

32. 'Ihe fields from the map have the modified data tag attribute set so
that data is still in those fields when the map is received.

33. The contents of map XDFHiMB are sent to the screen.

34. Control is returned to CICS/VS together with the name of the
transaction to be invoked when an attention key is pressed at the
terminal, and data associated with this transaction is returned in
the C~A.

35. If no fields were nodified, the message 'FILE NOT MODIFIED' is
moved to MESSAGES.

36. If a duplicate record condition exists, the message -DUPLICATE
RECORD- is moved to MESSAGES.

31. If the file record was not found; the message ·IN~D NUMBER -
PLFASE REPNTER- is moved to MESSAGES ..

38. On an error (notes 3, 9, 12, 16, 18# 22, 28, 29, 30; 33, 34, and
40) a dump is taken and the message 'TRANSACTION TERMINATED- is
moved to messages.

39. The bright attribute is turned on and MESSAGES is moved to the map
area.

qO. The screen is erased and map XDFHPMA is transmitted to the screen.

41. The program'ends.

Appendix F. Sample Programs (PL/I) 481

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Browse Sample Program (PL/I)

DESCRIPTION

The browse program sequeiltia11y retrieves a page·· or set of records for
disp1ay, starting at a point in a fi1e specified by the terminal
operator. Depressing thePF1 key or typing in F causes retrieva1 of the
next page or paging forward. If the operator wishes to reexamine the
previous records displayed, depressing the PF2 key or typing B a110ws
paging backward ..

To start a browse, the account number is mapped in and stored in a
four entry key tab1e in working storage. To retrieve a page, the key of
the first record of that page is a11 that need be maintained in the
table. The va1ues in the key table are shifted right, so that the table
is primed for the next page. A map area is obtained to move the fields
from each record. The starting point of the browse is then established,
the first record is read, and its fields are moved to the nap area. As
many successive records as can be shown on the screen are then read and
set up. The sample program shows four records to a page (four lines) •
If conditions dictate disp1aying other than four lines, READNEXT and
associated conunands shou1d be added or deleted. If only one record can
be acconmodated; browse is stil1 possib1e.

After viewing the first page, the operator may indicate page forward
through the PF1 key or by typing F. The program· proceeds directly to
bui.1ding the next page, as the key table is already conditioned. The
browse may continue for as long as is desired (or unti1 the end of the
file is reached) •

. If the operator wishes to page backward with the PF2 key or by typing
B, the key tab1e entries are shifted 1eft, so that the· prEW;ious page is
retrieved.. The program- re sets the browse starting pasi tion and branches
back to the main routine to construct a page. The backward browse
depends on the number of keys that may be stored in the key table. If
more than two page backwards in a sequence are required, the four entry
key table should be expanded.

The operator may cancel a browse at any time by depressing the clear
key.

Key Table example

The fo1lowing are the field functions:

FLDA
FLDB
FLOC
FLDD

- Next page forward
- Current page being viewed
- Previous page
- Page before previous page

(+ additional backward paging keys, if needed)

Assume that the file contains the following records, and there will
be two records to a page for display:

14 17 18 20 25 28 I... I ...

The operator keys in 15, indicating that the browse shoul.d start with
the first record equa1 to or greater than 15. The program stores 15 in
FLDA and FLDB.

488 CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

1.5
FLDA

15
FLOB

o
FLDC

o I
FLDD

The program reads records 17 and 18 from the file and displays them
at the terminal. '!he last record (18) is stored in FLDA, to be ready
for a page forward.

18
FLDA

15
FLDB

o
FLOC

o
FLDD

The operator presses PF1 or types F to page forward and display the
next page. The program uses FLDA . (18) to retrieve records 20 and 25.
These are displayed after the keys are shifted right. The last record
read (2~ is stored in FLDA.

25
FLDA

18 . I 15
FLDB FIDC

o
FLDD

Additional page forward requests would cause the table entries to be
shifted right, and it new entry stored in FLDA. Entries in FWD are
dropped during the shift right.

The operator presses PF2 or types B to page backward and display the
previous page of two records. The keys are shifted left to place the
starting key of the previous page displayed (15) in FLDA and FLDB. FLDD
is moved to FLDC, and zeros are moved to FLDD.

15
FLDA

15 I. 0
FLDB FLOC

o
FLDD

The program uses FLDA to retrieve records 17 and 18, which are then
displayed. '!he last record (18) is stored in FLDA for the next page
fo:r:ward •

18
FLDA

15
FLDB

o
FLOC

o
FLOD

The operator is viewing the first page that was requested ,after
paging forward one page and then paging backward to the starting page.
The sample program does not permit paging beyond the starting page, so
that the operator may only page .forward at this point or cancel the
browse by pressing the clear key. Although browse permits paging
forward to the end of the file, paging backward is limited by the number
of table entries. The four-entry table allows going back two pages. If
this is insufficient, a larger. table will allow further backward paging.

Appendix F. Sample Programs (PL/I) 'l89

SOURCE LISTING

BROWSE: PROC OPTIONS (MAIN) ;
DCL I FIXED BIN (15) ;
DeL MESSAGES CHAR (39) INIT (' ') ;
DCL (FLDA,FLDB,FLDC,FLDD) PIC'999999' INIT (0) ;
DCL STRING CHAR (256) BASED;
"INCLUDE XDFHPMA;
"INCLUDE XDFHPMC;
"INCLUDE FILEA;
"INCLUDE DFHBMSCA;

1 EXEC C1es HANDLE CONDITION ERROR (ERRORS)
MAPFAIL (PMNU)
NOTFND (NOTFOUND)
ENDF1LE (ENDFILE) ;

2 EXIOC! CIes RECEIVE MAP ('XDFHPMA ') ;
3 EXEC CI CS HANDLE AID CLEAR (PMNU)

4 FLDA=KEYI;

PF1 (pAGE_FORWARD)
PF2 (pAGE_BACKWARD) ;

5 EXEC CICS STARTBR DATASET ('FILEA') RIDFLD (FLDA) ;
PAGE FORWARD:

FWD=FLDC ;
6 FLDC=FLDB;

FLDB=FLDA;
BUILD: 1=1;

SUBSTR (ADDR (XDFBPMCO) ->STRING ,1 ,STG (XDFHPMCO» = LOW (STG (XDFHPMCO» ;
NEXT LINE:

7 EXEC CI CS RFADNEXT INTO CFILEA) DATASEl' ('FILEA') RIDFLD (FLDA) ;
8 IF STAT=HIGB (1.) THEN GOTO NEXT_LINE;
9 IF 1=1 THEN DO; NUMBER10=NUMB;

END;
ELSE

NAME10=NAME;
AMOUNT10=AMOUNT;

1.0 IF 1=2 THEN DO; NUMBER20=NUMB;
NAME20=NAME;
A.l«)UNT2 O=AMOUNT;
END;

ELSE
IF 1=3 THEN DO; NUMBER30=NUMB;

NAME30=NAME ;
AMOUNT30=AMOUNT ;
END;

ELSE
IF 1=4 THEN DO; NUMBER40=NUMB;

NAME40=NAME;
AMOUNT40=AMOUNT;

END;
I=I+1;
IF 1-1=5 THEN GOTO NEXT LINE;

DISPLAY_RECORD: -
11 EXEC CI as SEND MAP ('XDFHPMC ') ERASE ;

REPFAT:
12 EXEC C!CS RECEIVE MAP ('XDFHPMC') ;

IF DIR! = 'F' THEN GOTO PAGE FORWARD;
IF DIRI = 'B' THEN GOTO PAGE:BACKWARD;
GO'ro PMNU;

ENDFILE:
MSG10='END OF FILE';

13 MSG2A=DFHBMBRY;
GOTO DISPLAY_RECORD;

PAGE BACKWARD:
14 IF Fr.oc=o THEN GOTO TOO FAR;

FLDA=FLDC; -

490 C!CS,lVS APRM (CL)

t')rder Entry Sample Program (PL/I)

DESCRIPTION

The order entry sample application accepts input relating to the
ordering of parts from a warehouse. When sufficient orders have been
accumulated in the headquarters of a business, these are automatically
sent off to a warehouse, or some other distribution point.

The program displays the map XDFBPMK on the screen requesting the
operator to input details regarding the ordering of certain·· parts. The
screen contains entry positions relating to the customer nuaber, the
part number and the quantity of that part required. (Any integer up to
six digits in length may be entered: the customer number must be valid,
that is, it must exist on FILE!.) When the screen has been filled, the
operator presses CLEAR to stop entering data, and ENTER to continue
entering data. The screen is then mapped in and the data is checKed,
errors being returned to the operator for reentering. When all the
input is correct it is sent to a transient data queue called IL860 1 -

which is also a terminal-id where a transaction is to be triggered when
the number of items on the queue reaches 30.

The trigger level may be changed using the CSMT command, as follows:

CSMT TRIGGBR,n,DESTID=L860

where n is the destination trigger level (any integer from 0 through
32767).

Appendix F. Sample Programs (PL/I) q93

SOURCE LISTING

PORD:

1
2

STARTA:

SEND:

PROC OPTIONS (MAIH) ;
%IICLUDE XDFHPMK;
~INCLUDE DFHBMSCA;
IINCLUDE DFHAID;
IINCLUDE L8 60;
IINCLUDE FILBA;
DCL BRTKDT CHAR(l) INITC'I');
DCL ERROR_FLAG BIP(1);
DCL WNG_MSG BIT(1) IRITC'O'B);
DCL NULL CHAR (1);
DCL DUDCHAR CHAR(10) INITC'1234567890');
DCL CHSTR CHAR(256) BASED;
EXEC CICS HANDLE AID CLEARCENDA);
EXEC CICS HANDLE CONDITION MAPFAIL(MAPFAIL) ERROR(ERRORS)

NOTFND(NOTFOUND);

SUBSTR (ADDR (XDFHPMKO)->CHSTR, 1,STG (XDFHPMKO»
=LOW(STG(XDFHPMKO»;

3 EXEC CICS SEND MAPC'XDFHPMK') ERASB;
RECEIVE:

4 EXEC CICS RECEIVE MAP ('XDFHPMK') ;
TEST:

ERROR_FLAG=IO'B;
5 CUSTNOA,PARTNOA,QUANTA=DFHBMFSE;

IF VBRIFY{CUSTNOI,'1234567890')~=O THEN DO;
CUSTNOA=BRTMDT;
ERROR_FLAG='1'B;

END;
IF VBRIFY(PARTNOI,'1234567890')~=O THEN DO;

6 PARTtfOA=BRT!DT;
ERROR_FLAG='l'B;

END;
IF VERIFY(QUANTI,'1234567890')~=0 THEN DO;

QUANTA =BRTMDT;
ERBO.R_FLAG='1'B;

END;
IF ERROR_FLAG THEN DO;

WNG_MSG='l'Bi
7 !SG2A=DFHBMASB;

GO TO SEND;
END;

8 EXEC CICS READ DATASETC'FILEA')
INTO (FILE A)
RIDFLD(CUSTNOI);

Q_BUILD:
CUSTNO=CUSTNOI;
PARTNO=PARTNOI;

9 QUANTITY=QUANTri
TERMID=EIBTRMID;

Q_iRITE:
10 EXEC CICS WRITEQ TD QUEU8('L860')

11 IF WNG_~SG THEN DO;

FRO! (L860)
lENGTH(22);

EXEC CICS SEND MAP ('XDFHP!K') !APONLY ERASE;
iNG_MSG='OIB;

END;
ELSE

12 EXEC CICS ISSUE ERASEAUPi
GO TO RECEIVE;

NOTFOUND:
WNG_l!SG='l'B;

494 CICS/VS APRM (el)

13 MSG1A=DFHBMASB;
GO TO SEND;

MAPFAIL:
WNG_MSG='1'B;
SUBSTB(ADDB(XDFBP~KO)->CHSTB,l,STG(XDFHPMKO»

=LOW (STG (XDFHP~KO));
14 KSG2A=DFHBMASB;

GO TO SEND;
ERRORS:

15 KSG20='TRANSACTION TER~INATED';
aSG2A=DFHBKBRY;

ENDA:

EXEC CICS SEND MAP(IXDFHPMK');
EXEC CICS DUMP DUMPCODE('ERRS');

16 EXEC CICS RETURN;
END;

Appendix F. Sample Programs (PL/I) 495

PROGRAM NOTES

1. The exit for the clear key is set up.

2. The error exits are set up.

3. The screen is erased and the sap is displayed at the terminal.

4. This command maps in the customer number, part number, and
quantity.

5. The input areas on the map have the modified data tag set on in
case the fields need to be sent back for reinput, should an error
occur in entering the data.

6. The input is tested, and erroneous fields are brightened, whilst
the modified data tag is still set on. The user should add further
editing steps necessary to ensure only valid orders are accepted.

1. If there is a data error, the message 'DATA ERROR - REENTER',
having been stored on the screen with a dark attribute character,
is brightened.

8. The file control READ reads the record into a record area in order
to find Whether a particular record exists.

9. The input from the map is moved to the queue area.

10. The transient data WRITBQ obtains a log area, and writes this
record to a sequential file.

11. If an error message is left on the screen, the screen is cleared
and only the map is sent.

12. The entered fields, having been mapped in and processed, are
erased, and the screen is ready to receive more input.

13. If the customer number entered was not found, the message 'NUMBER
NOT FOUND - REENTBRI, having been stored on the screen with a dark
attribute character, is brightened.

14. If no fields were entered, the message 'DArA ERROR - REBNrER', also
having been stored on the screen with a dark attribute character,
is brightened.

15. On an error a dump is taken, and the message 'rRANSACrION
TERMINATED ' is moved to the top message area.

16. rhe program ends.

496 CICS/VS APRM ~L)

Order Entry Queue Print Sample Program (PL/I)

DESCRIPTION

This transaction is invoked by entering the transaction-id 'PCO"' at the
terminal. The program checks to see whether it was sta~ted from a
terminal or the printer. If from a terminal, (that is, the operator is
starting this transaction for the first time) the program starts the
transaction at the printer in one hour. (This time interval could be
changed using EDF for demonstration purposes.) The operator may then
press RESET and CLEAR and enter another transaction. If from the
printer, the program executes and starts again in one hour. If there
are no items on the queue, a message indicating that the queue is empty,
is sent to the warehouse. The last communications with the warehouse
occurs not later than 3 '0' clock. This transaction is also started
when the number of items on the queue 'L860' reaches 30.

The trigger level may be changed using the CSMT command, as follows:

CS!T TRIGGER,n,DESTID=L860

where n is the destination trigger level (any integer from 0 through
32767) •

This program reads items off the queue 'L860', until the queue is
empty. Should the queue have been empty initially, a message is sent to
the warehouse. Using the number from the queue as a key it reads the
file FILEA, and checks the amount field to see if the customer is good
for credit on this order. If he is, the numner,name,address,part number
and quantity are moved to the map XDFHP~L and this is sent to the
printer. If he is not, the time,date,qu9ue-item and a comment field are
moved to a data area, this may be used for later processing. A message
is then sent to the warehouse indicating that the queue is empty. The
EIBTIME is then updated and if the time is before 1400 hours, the
transaction is started in one hour.

Appendix F. sample Programs (PL/I) 497

SOURCE LISTING

PCO!:

1
2

Q READ:

PROC OPTIONS (ltAIN) ;
IINCLUDE FILE!;
"INCLUDE L860;
%INCLUDE XDFHPl'!L;
DCL Q LENGTH FIXBD BIN(lS);
DCL l-LOGORD,

2 LOGTIKE,
3 LDATE FIXED DEC(7,O),
3 LTI!E FIXED DEC(1,O),

2 LITEM CHAR (22) ,
2 CO!ftENT CHAR(11) INIT('ORDER ENTRY'),
2 FILLER CHAR(S1) IRIT(' ');

DCL caSTR CHAR (256) BASED;
EXEC CICS HANDLE CONDITION ERBOR (ERRORS) QZERO (ENDA) ;
IF EIBTR!ID,='L860' THEN

GO TO TI!Ei
SUBSTR(ADDR(XDFHPMLO)->CHSTR,1,STG(XDFBPaLO»

=LOW CSTG (XDPHPl!LO)) ;

Q LENGTH=22;
3 EXEC CICS READQ TD INTO (L860) LENGTH (Q_LENGTH) QUEUE C 'L860');

!AP _BUILD:
4 EXEC CICS BEID DIT1SET('FILEI') INTO(FILEA) RIDPLD(CUSTNO);
5 IP AftOUNT>'$OlOO.OO' THEN DO;

ADDRO=ADDRX;
PARTO=PARTNO;

6 N1ftO=NA!E;
NUftBO=CUSTNO;
QUANTO=QUANTITYi

7 EXEC CICS SEND !AP('XDPHP!L') ERASE PRINT L80;
GO TO Q_READ;

END;
ELSE DO;

LDATE=EIBDATE;
8 LTIftE=EIBTI!E;

LITEft=STRINGCITEft);
9 EXBC CICS WRITEQ TD QUEUE ('LOGA') FRO! (LOGORD) LENGTH(92);

GO TO Q_READ;

ERRORS:
10

ENDA:
11

12
TI!E:

13
1'1
15

PIN:
16

END;

END;

EXEC CICS DU!P DUftPCODE('ERRS');
GO TO FIN;

SUBSTR (ADDR (XDFBPMLO)->CHSTR,l,STG (XDFHPKLO»
=LOWCSTG(IDFHP!LO»;

TITLEO='ORDER QUEUE IS EMPTY';
EXEC CICS SEND ftAPC'XDFHPftL') DATAONLY ERASE PRINT L80;

EXEC CICS ASKTIKB;
IF EIBTIME,>140000 THEN

EXEC CICS START TRINSID('PCOS') INTERVAL (10000)
TERMID ('L8 60 ') ;

EXEC CICS RETURN;

498 CICS/VS APRM (eL)

PROGRAM NOTES

1. The error exits are set up.

2. The terminal-id is tested to see whether this transaction vas
started from a terminal or at the printer.

3. The queue item is read into the program.

4. The file control READ reads the record into a record area so that
the amount may be checked.

5. The amount is tested.

6. If it is over $100, then the record on the queue is moved to the
map XDFHPML. This test is only a suggestion; a suitanle form of
editing should be inserted to ensure valid orders are sent to the
warehouse.

7. The map XDFHPML is sent to the printer.

8. If the order is not valid for this account, the record on the queue
is moved to a data area, together with the terminal-id associated
with the entering of this piece of data, the time, and date.

9. The transient data WRITEQ obtains a log area, and writes this
record to a sequential file.

10. On an error (notes 3, 4, 7, 9, 12, and 15) a dump is taken.

11. When the queue is empty, a message is moved to the map area.

12. The map is displayed on the screen.

13. The current time-of-day clock is updated.

14. The curr~nt time-of-day is tested.

15. If the current time is not past 1400 hours, the transaction is
started again in one hour, at the warehouse printer.

16. This routine ends.

Appendix F. Sample Programs ~L/I) 499

Report Sample Program (PL/I)

DESCRIPTION

The report sample program produces a report that lists all entries in
the data set 'FILEA' for which the amount entry is less than or equal to
$50.00.

The program illustrates page building techniques and the use of the
terminal paging facilities of B~S.

The transaction is invoked by entering the transaction code PREP.
The program does a sequential scan through the file noting each entry
that obeys the search criterion. The pages are built from four maps
which comprise mapset XDFHPMD, using the paging option so that the data
is not displayed immediately but instead is stored for later retrieval.
The HEADING map is inserted at the bead of each page. The detail map
(XDFHPMD) is written repeatedly until the overflow condition occurs.
The FOOTING map is then written at the foot of the page and the BEADING
map written at the top of the next page. The command to write the
detail map that caused overflow is then repeated. When all the data has
been written the FINAL map is written at the bottom of the last page and
the transaction terminated.

The terminal operator then enters paging commands to display the
data, claaring the screen before entering each paging command.

500 CICS/VS APRM (CL)

SOURCE USTING

REPORT: PROC OPTIONS(MAIB);
DCL LOWLIlI CHAR (8) INIT ('$0050.00');
DCL KEYKUlI PIC'999999' INIT(O);
DCL PAGEN PIC 1999' INIT(1);
DCL OPINSTR CHAR~2) STATIC INIT('ENTER PAGIBG COMMANDS.');
DCL STRING CBAR(256) BASED;
IINCLUDE XDFHPMD;
IINCLUDE PILEA;

1 EXEC CICS HANDLE CONDITION ERROR(ERRORS) OVERFlOW(OFLOW)
ENDFILE(ENDPILE);

2 PAGENA=LOW(l);
PAGENO=PAGEN;

3 EXEC CICS SEND MAP(IBEADING') !APSET('XDPHPMD') ACCUa PAGING ERASE;
4 KEYNUft=O;
5 EXEC CICS STARTBR DATASET ('PILEA') RIDFLD(KEYNUM);

REPEAT:
6 EXEC CICS READNEXT IITO(FILEA) DATASET('FILEA') RIDPLD(KEYNU!);
7 IF STAT=BIGH(l) THEN GOTO REPEAT;
8 IF A!OUNT<=LOWlIM THEN

DO;
SUBSTR (ADDR (XDFBPMDO)->STRIBG,l,STG(XDPHPMDO»=

LOW(STGCXDFRPlIDO» ;
AMOUNTO=AMOUNT;

9 NUMBERO=NUMB;
NAMEO=NAME;
GOTO SEND_RECORD;
OFLOW:

10 EXEC CICS SEND !tAP ('POOTING I) ftAPSET C'XDFHPMD')

P1GEN=PAGEN+l ;
PAGENA=LOW (1);
PAGENO=PAGEN;

MAPONLY lCCUa PAGING;

11 EXEC CICS SEND MAP(IHElDING') !APSET('XDFHPMD')
ACCUM PAGING ERASE;

SEND _RECORD:
12 EXEC CICS SEND MAPC'XDFHPftD') KAPSET('XDFBPftD') ACCUM PAGING;

END;
GOTO REPEAT;

ENDFILE:
13 EXEC CICS SEND MAP('FINAL') MAPSET('XDFHP!D') MAPONLY ACCU! PAGING;
14 EXEC CICS SEND PAGE;
lS EXEC CICS SEND TEXT FROM(OPINSTR) ERASE;
16 EXEC CICS ENDBR DATASET('FILEAI);
17 EXEC CICS RETURN;

ERRORS:
18 EXEC CICS BANDLE CONDITION ERROR;
19 EXEC CICS PORGE MESSAGE;
20 EXEC CICS ABERD ABCODE('ERRS');

END;

Appendix F. Sampl e Prog rams (PL/I) 501

PROGRAII NOTES

1. The program exits are set up.

2. The attribute byte for the page number is cleared.

3. This BIIS request sets up the heading in the page build operation.

4. The initial key value is set up for the START BROWSE command.

5. This command starts the browse through the file, at a record whose
key is equal to or greater than that specified.

6. This co •• and reads the next record on the file into the file area.

1. If the record is coded as deleted, it is treated as not found.

8. The search criterion for creating the report is that the customer
has less than or equal to S50.

9. Fields are Boved from the file area to the map area.

10. The BftS request sets up the footing in the page build operation.

11. The BftS request sets up the heading in the page build operation.

12. The customer detail map is set up.

13. When the END OF FILE condition is raised, the last map is built.

14. The page is sent to the terminal operator.

15. A message is sent to the terminal.

16. The BROWSE operation is ended.

11. The program ends.

18. On an error, the label to branch to on the ERROR condition is
reset.

19. Any pages waiting to be displayed at the terminal are purged.

20. The program raises an abend condition, a dump is taken and the
program ends.

502 CICS/VS APHM (CL)

Sample Maps and Screen Layouts for PL/I Sample Programs

XDFHPMA MAP DEFINITION

MAPSET DFH8SD TYPE=&SYSPARM,MODB=INOUT,CTRL=(FREEKB,FRSET) ,LANG=PLI, *
STORAGE=AUTO,EXTATT=ftAPONLY,COLOR=BLUE

XDFHPMA DFHMDI SIZE= (12,40)
DFBMDF POS=(1,10),LBNGT8=21,INITIAL='OPBRATOR INSTRUCTIONS', *

BILIGBT=UNDBRLINE
DFHMDF POS=p,1),LBNGTH=29,INITIAL='OPERATOR INSTR - ENTER PBN*

U'
DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY EBTER PIN*

Q AND NU!tBER'
DFBMDF POS=(5,1),LENGT8=38,INITIAL='FILE BROWSE ENTER PBR*

i AND NUMBER'
DFHMDF POS=(6,1),LENGTH=38,INITIAL='FILE ADD ENTER PAD*

D AND NUBBER'
DFHMDF POS=(1,1),LENGTH=38,INITIAL='FILE UPDATE ENTER Pup*

D AND NUMBER'
MSG DFHaDF POS={11,1),LENGTH=39,INITIAL='PRESS PAl TO PRINT--PRESS*

CLE AR TO EXIT'
DFHMDF POS=(12,1) ,LENGTH=18,INITIAL='ENTER TRIBSICTION:'
DFHMDF POS=(12,20),LENGTH=4,lTTBB=IC,COLOR=GREEN, *

BILIGHT=REVERSE
DFBMDF POS=(12,25) ,LE8GTH=6,INITIIL=INUBBERI

KEY DFHMDF POS=(12,32),LENGTH=6,lTTRB=NUM,COLOR=GREEN, *
HILIGHT=RE VERSE

DFHftDF POS={12,39) ,LENGTH=1
DFHBSD TYPE=FINAL
END

XDFBPMl SCREEN LAYOUT

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER paNO
+FILE INQUIRY - ENTER PINQ AND NUMBER
+FILE BROWSE ENTER PBRW AND NUMBER
+FILE ADD ENTER PADD AND NUMBER
+FILE UPDATE - ENTER PUPD AND NUMBER

+PRESS PAl TO PRINT--PRESS CLEAR TO EXIT
I+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+ L __ ----J

Appendix F. Sample Programs (PLjI) 503

XDFHPMB MlP DEFI8ITION

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *
STORAGE=AUTO,EXTATT=!APOHLY

XDFHPMB DFH!DI SIZE=(12,40)
TITLE DFH!DF PO S= (1,15) , LE HGTH= 12

DFHMDF POS=(3,1) ,LENGTH=8,INITIAL=INUMBBR:',COLOR=BLUE
NUMB DFBMDF POS=(3,10),LEHGTH=6

DFBMDF POS=~,11),LEHGTH=1
DFH!DF POS=(4,1),LEIGTB=8,INITIAL='NAME: ',COLOR=BLUE

NAME DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UHPROT,IC)
DFHMDF POS=(4,31),LENGTH=1
DFHMDF POS=(5,1),LEHGTH=8,IJITIAL='ADDBESS:',COLOB=BLUE

ADDR DFBMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
DFHMDF POS=(5,31),LENGTH=1
DFHMDF POS= (6,1) ,LEHGTH=8,INITIAL=' PHONE: ',COLOR=BLUE

PHONE DFBMDF POS=(6,10) ,LENGTH=8,ATTRB=UNPROT
DFBMDF POS=(6,19),LENGTH=1
DFHMDF .PaS=(7,1) ,LElIGTH=8,INITIAL:IDATE: • ,COLOR=BLUE

DATE DFHMDF PaS= (7,10),LENGTH=8, ATTBB=UNPROT
DFBMDF POS=(7,19) ,LENGTH=l
DFBMDF POS=(8,1),LENGTH=8,INITIAL:'AMOUNT: ',COLOR=BLUE

AMOUNT DFHMDF POS=(8,10),LENGTH=8,ATTRB=NUM
DFB!DF POS=(8,19) ,LENGTH=l
DFHMDF POS=(9,1) ,LENGTB=8,INITIAL=ICO~MENT:',COLOR=BLUE

COMftENT DFHMDF POS=(9,10),LEHGTH=9,ATTRB=UNPROT
DFHMDF POS= (9,20),LENGTH=1

MSGl DFBMDP POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39

DFHMSD TIPE=FINAL
END

XDFBPMB SCREEN LAYOUT

+XXXXXXXXXXXX

+NUMBER: +XXXXXX+
+NAME: +XXXIXXXXXXXXXXXXXXXX+
+AUDRESS:+XXXXXXXXXXXXXXXXXXXX+
+PHONE: +XXXXXXXX+
+DATE: +XXXXXXXX+
+AMOUNT: +XXXXXXXX+
+COMMENT:+XXXXXXXXX+

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXX
+XXXIXXXXXXXXXIIXXXXIXIIXXXXXXXXXXXXXXX

504 CICS/VS APRM (CL)

XDFHPMC MAP DEFINITION

MAPSET

XDFHPMC
DIR

NUMBERl
NAMEl
AMOUNTl
NUMBER2
NAME2
AMOUNT2
NUMBER3
NAME3
AMOUNT3
NUMBER4
NAME4
AMOUNT4
MSGl

KSG2

DFBMSD TYPE=&SYSPARK,ftODE=IBOUT,CTRL=(FRBEKB,FBSET) ,LANG=PLI, *
STORAGE=AUTO,EXTATT=MAPONLY

DFHKDI SIZE=(12,40)
DFBMDF POS=(l,l) ,LENGTB=l,ATTRB=IC
DFHMDF POS=(1,3),LENGTH=1
DFHMDF POS=(1,15) ,LENGTH=11,INITIAL='FILE BROWSE', *

HILIGHT=UNDERLINE,COLOR=BLUE
DFBMDF POS=(3,1) ,LENGTH=6,INITIAL='NUMBER',COLOR=BLUE
DFHMDF POS=(3,11),LENGTH=4,INITIAL='NAHE',COLOR=BLUE
DFHKDF POS=(3,32),LENGTH=6,INITIAL='A~OUNT',COLOR=BLUE
DFBMDF POS=(4,1) ,LENGfB=6
DFBMDF POS=(4,9),LENGTH=20
DFBMDF POS=(4,30),LENGTH=8
DFHMDF POS=(5,1),LENGTH=6
DFHMDF POS=(5,9) ,LENGTH=20
DFHKDF POS=(5,30) ,LENGTB=8
DFHMDF POS= (6,1),LENGTH=6
DFHMDF POS=(6,9) ,LENGTB=20
DFBMDF POS=(6,30),lENGTH=8
DFHMDF POS=(1,1),LENGTH=6
DFHMDF POS= O,9),LENGTH=20
DFHMDF POS=(1,30),lENGTB=8
DFHMDF POS=(ll,l) ,LENGTH=39, *

INITIAL='PRESS PFl OR TYPE F TO PAGE FORWARD'
DFBMDF POS=(12,1),LENGTH=39, *

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHMSD TYPE=FINAL
END

IDFHPMC SCREEN LAYOUT

+FILE BROWSE

+NUMBER +NAME +AMOUNT
+XXXXII +XXXXXXXXIXXXXXXXXXXX+XXXXXX
+XXXXX1 +XXXXXXXXXXIXXXXXIXXX+XXXXXX
+XXXXIX +XXXXXXXXXXXXXXXXXIXX+XXXXXX
+XXIX11 +XXXXXXX1XIXXXXXIXXXX+XXXXXX

+PRESS PFl OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKaARD
+XXXXXXXXXIXXXXIXIXXXXIXXXXXXXIXXIXXXXX

,+XXXXXlXIXXXXXXXXXXXXXXXXXIXXXIXXXXXXXX
L _~

Appendix F. Sample Programs ~L/I) 505

XDFHP!D !AP DEFINITION

BAPSET

XDFBP!D
NUBBER
NAME
A!OUNT
HEADING

PAGEN

FOOTING

FINAL

DFH!SD TYPE=&SYSPARB,SODB=INOUT,CTRL=(FREEKB,FRSET),
LANG=PLI,STOR1GE=AUTO,EXTATT=!APONLY,COLOR=BLUE

DFH!DI SIZE=(1,40),COLOR=GREEN
DFH!DF POS=(1,1),LEIG~B=6
DFH!DF POS=(1,9),LEHGTB=20
DFH!DP POS=(1,30),LEBGTH=8
DFHMDI SIZE=p,40),BEADER=YES
DFHMDF POS=(1,5),LBNGTB=18,INITIAL='LOW BALANCE REPORT',

BILIGBT=UNDERLINE
DFH!DF POS=(1,30),LEHGTH=4,INITIAL='PAGE'
DFH!DF POS=(1,35),LENGTB=3
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUBBER'
DFHMDF POS=(3,17) ,LENGTB=4,INITIAL='NA8EI
DFH!DF POS=(3,32),LENGTB=6,INITIAL='A!OONT'
DFH!DI SIZE=(2,40) ,TRAILER=YES,JUSTIFY=LAST
DFH8DF POS=(2,10),LENGTH=25,

INITIAL='CONTINUED ON HEXT PAGE ••• •
DFBBDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,10) ,LENGTB=14,INITIAL='END OF REPORT.'
DFH!SD TYPE=FINAL
END

XDFHPMD SCREEN LAYOUT

r---------------------------------------,
LOW BALANCE REPORT PAGE XXX

NUMBER NA!E AaOUNT
XXIX~X XXXXXXXXXIXXXXXXXXIX XXXIX III
XXXIXX XXXXXXXXXXXXXXXXXXXI IIIIXIII

(REPEAT TOTAL OF 19 TIMES)
XXXXXI XXXIXIXXIXXXXXXXIXX! XXIXIXXX
XXXXX! XIIXIXXX1XXXXXXIXXX~ XIXIXIII
XXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXX

CONTINUED ON NEXT PAGE •••

506 CICS/VS APRM (CL)

*

*

*

XDFBPMK KAP DEFINiTION

M1PSET DFH!SD TYPE=&SYSPARa,aODE=INOUT,CTRL=(FREEKB), *
TIOAPFX=YES,LANG=PLI,STORAGB=AUTO,EXTATT=!lPONLY

XDFBPKK DFHftDI SIZE=(12,QO)
DFHftDF POS=(01,10),LENGTB=11,ATTRB=(BRT,lSKIP), *

INITIAL=IORDBR ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE
SSGl DFH!DF POS=(03,OQ) ,LENGTH=26,ATTRB=(DRK,lSKIP), *

IHITIAL=INUftBER NOT FOUND - REENTERI,COLOR=RED, *
HILIGBT=BLIBK

ftSG2 DFHftDF POS=(Oq,OQ),LEIGTH=22,ATTRB=(DRK,lSKIP), *
IHITIAL=IDATl ERROR - REENTER',COLOR=RED, *
HILIGHT=BLINK

DFBKDF POS=(05,OQ),LEHGTH=09,ATTRB=PROT, *
INITIAL=INU!BER :'

CUSTNO DFB!DF POS=(05,lQ),LENGTH=06,ATTRB=(IC,HU!)
DFHftDF POS=(05,21),LENGTB=01
DFBftDF POS=(06,OQ),LE~GTH=09,ATTRB=PROT,COLOR=BLUE, *

INITI1L='PART NO :'
PARTNO DFHftDF POS=~6,lQ) ,LENGTH=06,ATTRB=NUS

DFH!DF POS=(06,21),LENGTH=01
DFHSDF POS=(01,OQ),LENGTH=09,ATTRB=PROT,COLOR=BLUE, *

INITIAL='QUAHTITY:'
QUANT DFH!DF POS= (01, lQ) ,LENG'rH=06 ,ATTRB=NUl'!

DFH!DF POS=(01,21),LENGTH=01
DFHftDF POS=(09,Ol),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE, *

INITIAL='PRESS ENTER TO CONTINUE, CLEAR TO QUITI
DFH!SD TYPE=FINAL
END

XDFHP!K SCREEN LAYOUT

r ~

I +ORDER ENTRY I
I I
I +NU!BER NOT FOUND - REENTER I
I +DATA ERROR - REENTER I
I +NUMBER :+XIXXXX+ I
I +PART NO :+XXIXIX+ I
I +QUANTITY:+XXIXIX+ I
I I
I+PRESS ENTER TO CONTINUE, CLEAR TO QUIT I
I •

Appendix F. Sample Programs (PL/l) 501

XDFHP!L MAP DEFINITION

!APSET

XDF8PML
TIT.LE

lIUKB
lIA!
ADDB

PART

QUANT

DFHMSD TYPE=&SYSPARM,KODE=OUT,
TI01PFX=YES,LANG=PLI,STORAGE=AUTO

DFRKDISIZE=(05,80)
DFHKDF POS=(Ol,01),LENGTH=43,

INITIAL='NU~BER NAME
DFHMDF POS=(02,Ol),LENGTH=06
DFBMDF POS=(02,12),LENGTB=20
DFHftDF POS=(02,37) ,LENGTB=20
DFH!DF POS= (03,Ol),LENGTH=09,

INITIAL='PART NO :'
DFH!DF POS=(03,11),LENGTH=06
DFHMDF POS=~4,Ol),LENGTH=09,

IBITIAL='QUAITITY:'
DFB!DF POS=(04,11),LENGTH=06
DFHMDF POS=(05,Ol),LENGTH=1,

INITIAL=' ,
DFHMSD TYPE=FINAL
END

XDFHPML PRINT FORMAT

r=
+NUKBER NAME
+xxxxxx +xxxxxxxxxxxxxxxxxxxx
+PART NO:+xxxxxx
+QUANTITY:+xxxxxx
+x

ADDRESS
+xxxxxxxxxxxxxxxxxxxx

ADDRESS'

L __ ~

508 CICS/VS APRM (Cl)

*

*

*

*

*

Additions to Tables for PL/I Sample Programs

PPT

The following entries were made for the sample maps:

DFHPPT TYPE=ENTRY,PROGRA!=XDFHPMA
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMB
DFHPPT TYPE=ENTRY,PROGRA!=XDFHPMC
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPMD
DFHPPT TYPE=ENTRY,PROGRAa=XDFHP!K
DPHPPT TYPE=ENTRY,PROGRAM=XDFHPML

The following entries were made for the sample programs:

PCT

DFHPPT TYPE=ENTRY,PROGRAM=XDPHPKNU,PG!LANG=PL/I
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPALL,PGaLANG=PL/I
DFHPPT TYPE=ENTRY,PROGRAM=XDFHPBRW,PGMLANG=PL/I
DFHPPT TYPE=ENTRY,PROGRAK=XDFHPORD,PGKLANG=PL/I
DFHPPT TYPE=ENTRy,PBOGRAK=XDFHPCO~,PG!LANG=PL/I
DFBPPT TYPE=ENTRY,PROGRAM=XDFHPREP,PGKLANG=PL/I

The following entries were made for the sample programs:

DCT

DFHPCT TYPE=&NTRY,TRANSID=P~NU,PROGRAK=XDFHPaNU
DFHPCT TYPE=ENTRY,TRANSID=PINQ,~ROGRAa=XDFHPALL
DFBPCT TYPE=ENTRY,TRANSLD=PADD,PROGBAM=XDFHPALL
DFHPCT TfPE=ENTRY,TRANSID=PUPD,PROGBAM='(DFHPALL
DFBPCT TYPE=ENTRY,TRANSID=PBRW,PROGRAM=XDFBPBRW
DFHPCT TYPE=ENTRY,TRANSID=PORD,PROGR1M=XDFBPORD
DFBPCT TYPE=ENTRY,TftANSID=PCOM,PROGRla=XDPBPCOM
DFHPCT TYPE=ENTRY,TRANSID=PREP,PROGR1!=XDPBPREP

The following entry was made:

DFHDCT TIPE=INTRA,DESTID=L860,TRIGLEV=30,TRANSID=PCOM,
DESTFAC=TERMINAL *

Appendix F. Sample Programs (PL/I) 509

Record Descriptions for the PL/I Sample Programs

FILEA RECORD DESCRIPTION

The FILEA record description is used by the sample programs and is of
the following format:

DCl 1 FIlEA,
2 FILEREC,

3 STAT CHAR(l),
3 NU!B PIC' (6) 9 • ,
3 H1!E CHAR(20),
3 ADDRX CHAR (20) ,
3 PHONE CHAR (8) ,
3 DATEX CHAR (8) ,
3 Al!OUNT CHAR(8),
3 COMl!ENT CHAR(9);

LOGA RECORD DESCRIPTION

The LOGA record description is used by the sample programs when an audit
trail is written to a transient data file. It has the following for.at:

DCL 1 LOGA,
2 LOGHDR,

3 LDAY FIXED DEC (7,0),
3 LTIaE FIXED DEC (7,0),
3 LTERl!L CHAR(q),

2 LOGREC,
3 LSTAT CHAR (1),
3 LHUMB CHAR (6) ,
3 LNA!E CHAR (20) ,
3 LADDB CHAR (20) ,
3 LPHONE CHAR(8),
3 LDATE CHAR (8) ,
3 LA!OUNT CHAR (8) ,
3 LCOMl!ENT CHAR (9) ;

L860 RECORD DESCRIPTION

The L860 record description is used by the Order Entry Queue Print
sample program when it writes to the TD queue 'L860'. It has the
following format:

DCL 1 L860,
2 ITEK,

3 CUSTHO CBAR(6),
3 PARTNO CHAR(6),
3 QUANTITY CBAR(6),
3 TERMID CHAR (4) ;

510 CICS/VS APR! (CL)

Appendix G. Sample Programs for
Distributed Transaction Processing

This appendix consists of sample CICS/VS application programs written in
the assembler language illustrating distributed transaction processing
between two CICS/VS systems, and between a CICS/VS system and an IKS/VS
system.

Distributed transaction processing (DTP) allows transactions to be
distributed to other CICS/VS (or similar) systems for processing. DTP
provides the ability to distribute not only the resources, but also the
processing of different parts of an application program, to the most
appropriate places in the user network.

Commands are provided to allow a transaction in one system to
initiate and converse with transactions in other systems in the network.
Since one transaction exists before the conversation takes place, and
since the other transaction is created by the conversation, there is a
clear direction associated with each conversation.

The transaction that initiates the conversation is called the Itfront­
end" transaction; the transaction created by the conversation is called
the "back-end" transaction.

Transaction processing can be distributed between two systems
irrespective of the number of sessions that exist between them. If more
than one session exists, both user functions and CICS/VS functions can
be distributed at the same time. However, if only a single session
exists only pne or the other type of function can be distributed.

A CICS/VS system can be connected either to another CICS/VS system,
or to the IBK Information Management System (lftS/DC). These connections
are made by logical unit type 6 (LU6) protocols.

Distributed transaction processing is controlled by the terminal
control commands ALLOCATE, FREE, BUILD ATTACH, EXTRACT ATTACH, and
POINT.

Further information about the 5RA flows that take place between
transactions is given in the CICSIVS system/Application Design Guide.

There are four sample programs, as follows:

• CICS to CICS Synchronous

• CICS to CICS (or other) Synchronous

• CICS to CICS Conversation (Synchronous)

• CICS to Other (Synchronous)

Appendix G. Sample Programs For DTP 511

CICS to CICS Synchronous Sample Program

DESCRIPTION

This sample is activated with the transaction code 'AIBL'.

The purpose of this first sample is to illustrate how an existing
application program, which runs on a single system only, can be recoded
so as to allow for part of the processing to be performed on a second
remote system. The sample provided is based upon the existing File
Browse sample application - transaction code ABRW - with which the user
is assumed to be familiar and which is described in Appendix D.

In this example, the first program handles only the interaction with
the ter_inal operator; the file to be read is on the remote system and
is accessed by a second transaction on that system. The operator enters
the key only of the record at which browsing is to start, and this key,
together with the name of the remote transaction is all that is sent
across the link. The remote transaction now reads four file records and
transmits them back to the originating system, where they are unblocked
and moved to the output map.

As soon as it has transmitted four records, or sent an error or end­
of-file message, the remote prograa terminates; the session aust be
freed, possibly to be real~ocated again later, by the local program.

For simplicity, the use of the operator instruction menu - AftNU has
been avoided. The sample taKes as input the transaction code plus data
only.

The remote transaction name plus data is all that is passed across
the link; no attach header is needed since, by default, CICS will assume
that the first field in the data received represents the transaction
name.

To illustrate the ease with which an existing application program can
be 'convert~d' to handle Distributed Transaction processing, comments
are provided for the changed code only.

512 CICS/VS APRM (Cl)

SOURCE LISTING O¥ LOCAL USER TRANSACTION

DFHEISTG
ATCHSESS
INLEN
INA REA
MESSAGES
OUTDATA
INOATA
TRAN
KEYS
FLOA
FLOB
FLOC
FLDD
HEXZERO

DSEC'r
DS
OS
OS
OS
OS
OS
OS
OS
OS
OS
DS
OS
OS
COpy
COpy
COpy

CL4
H
CL320
CL80
OCL11
OCL14
CL5
OCL24
CL6
CL6
CL6
CL6
X'OO I
XDFHAIB
DFHXFILE
DFHBflSCA

CONSTANT FOR CLEARING MAPS
DISPLAY aAP
FILE RECORD DESCRIPTION
BMS ATTRIBUTE BYTES

XDFHAIBL CSECT
MVI KEYS,XIFOI INSERT 10 1 INTO TOP BYTE OF KEYS
MVC KEYS+l (L'KEYS-l),KEYS INITIALIZE KEYS TO ZERO
8VI MESSAGES,X I 401 INSERT I I INTO TOP BYTE OF MESSAGES
MVC MESSAGES+l(LIMESSAGES-l),MESSAGES CLEAR MESSAGES FIELD

**
* * 1

2
3

4
PAGEF

*

5

6

7
8

EXEC
flVC
EXEC
EXEC

flVC
DS
flVC
EXEC
flVC
EXEC

CICS BANDLE CONDITION ERROR (ERRORS)MAPFAIL (AMNU)
INLEN,=lf I 14'

CICS RECEIVE INTO (INDATA) LENGTB(INLEN)
CICS HANDLE AID CLEAR (QUIT)

PFl (PAGEP) PF2 (PAGEB)
TRAN,=CL5 I AIBR' REMOTE 'rRANSACTION NAaE.
OB
IILEN,=B I326' 4 X 80 BYTE RECORDS PLUS FLD!.

CICS ALLOCATE SYSIO ('RE!!ll)
ATCHSESS,EIBRSRCE

CICS CONVERSE SESSIOH(ATCHSESS) FROMLENG'rH(=H 1 l1')
FROll (OUTDATA) TOLENGTH (IN LEI) INTO (IIAREA)

LA 5,INAREA
MVC FLOA,O (5) LAST KEY READ
LA 5,6 (5)
USING FILEA,S
EXEC CICS FREE SESSION('ATCBSESSI)

*

* **
MVC FLOD,FLDC
MVC FLDC,FLDB
MVC FLDB,FLDA

BUILO OS 08
LA 4,1 SET COUNTER TO 1
LA 6,XDFHAMCO R6->START OF ftAP XDFHAMC
LA 1,(XDFBAllCE-XDFHAMCO) R7 CONTAINS LENGTH OF XOPHAMC
LA 8,HEXZERO R8-> X'OOI
LA 9,LIBEXZERO R9 CONTAINS LENGTH OF HEXZERO
ICM 9,B l 100',HEXZERO XIOOI INTO TOP BYTE OF R9
MVCL 6,8 MOVE XIOOI INTO XDFHAMCO

**
* * 9 LH
NEXTLIN DS

10 CB

*

9,INLEN
OH
9 ,=H 180'

PICK UP IN~UT DATA LENGTH

< 80 BYTES RECEIVED ?

* **
BL BOTFOUND •• YES, ERBOR ftESSAGE.
CH 4,=H',1 FIRST LINE?

*

Appendix G. Sample Programs For DTP 513

I
I
I ,
I
I ,
I ,
I

BNE SEC LIN •• NO, GO TEST FOR 2ND LINE
MVC NUMBER10,NUMB MOVE NUMBER TO MAP AREA
MVC NAME10,NAME MOVE NA!E TO !AP AREA
MVC A!OUNT10,AMOUNT MOVE AKOUNT TO MAP AREA
B CONT GO CONTINUE

SECLIN CH LJ,=H I2 1 SECOND LINE?
BNE THRLIN •• NO, GO TEST FOR THIRD LINE
KVC NU!BER20,NUKB MOVE NUMBER TO KAP AREA
MVC NAME20,NAME MOVE NAME TO MAP AREA
MVC A!OUNT20 ,A!OUNT MOVE AMOUNT TO MAP AREA
B CONT GO CONTINUE

THRLIN CH 4,=H ' 3' THIRD LINE?
BNE FORLIN •• NO, GO TEST FOR FOURTH LINE
MVC NUMBER30,NUMB KOVE NUMBER TO MAP AREA
MVC NAftE30,NAME MOVE NA!E TO MAP AREA
MVC A!OUNT30,AMOUNT MOVE AMOUNT TO KAP AREA
B CONT GO CONTINUE

PORLIN CH 4,=H'4' POORTH LINE?
BNB CONT •• NO, CONTIN UE
MVC NU!BER40 ,NUMB MOVE NUMBER TO !AP AREA
MVC NAftE40,NAME ftOVE NAME TO KAP AREA
!VC A!OUNTqO, A!OUNT MOVE AMOUNT TO MAP AREA

CO NT DS 08
LA 4,1(,4) INCREMENT COUNT

**
* *

11 LA 5,80(,5) INCREMENT RECORD POINTER
S8 9,=H I 80 1 RBDUCE LENGTH.

* *
**

Cft 4,=8 1 5 1 PINISHED?
BNE BEITLIN •• NO, GO BUILD NEXT LINE

DISPREC DS OH •• YES, SEND MAP

REPEAT

PAGBB

TOOPAR

EIEC CICS SEND MAP ('XDFHAMCI) ERASE
DS OR
EXEC Cles RECEIVE
eLI DIBI,CIPI

MAP (' XDPBAltC I)

BE PAGEF
CLI DIRI,CIBI
BE PAGEB
BNE A!NlJ
DS OH
CLC FLDC(6),=C'000000'
BE TOOPAR
MVC FLDA,PLDC
avc PLDB ,FLDC
MVC FLDC , PLDD
!VC FLDD,=CIOOOOOOI

PAGE PORWARD REQUIRED?
•• YES, GO TO PAGEFORWARD ROUTINE
PAGE BACK REQUIRED?
•• YES, GO TO PAGEBACKWARD ROUTINE
•• NO, GO SEND MENU aAP
PAGEPORWARD ROUTINE
FLDC = ZEROS?
•• YES, SO RAISE TOO FAR CONDITION
•• 1'10, SET UP KEYS POR FILE

B BUILD GO BUILD MAP
DS OR GONE TOO PAR
MVI ~SG1A,DPBBMBRY BRIGHTEN MESSAGE
!VI !SG2A,DPBBMDAR DARKEN MESSAGE
EXBC CICS SBND !lP(IXDPHA!CI) D1T10NLY
B REPEAT GO GBT KAP

NOTPOUND DS OH
**
* * BCTR 9,0

12 EX 9,MOVEKSG !OVE MESSAGE TO !AP.
* *
**

B A8lfU
80VE8SG MVC ftESSAGES(O) ,0(5)
ERRORS DS OH GENERAL ERROR ROUTINE

EXEC CICS DU8P DUMPCODE(IERRSI)

514 CICS/VS APR! (CL)

AMNU
~VC

DS
MESSAGES,=CL ~IMESSAGES)ITRANSACTION TERMINATEDI
OH END ROUTINE

**
* * MVI MSG1A,DFHBMBRY BRIGHTEN MESSAGE FIELD

KVC KSG10,MESSAGES MOVE MESSAGES TO MAP AREA
13 EXEC CICS SEND MAP (IXDFHAaCI) ERASE

* * **
QUIT DS OH

EXEC CICS RETURN
END

Appendix G. Sample Programs For DTP 515

PROG&AM NOTES

1. The exit addresses to handle End-of-File and Not-Found are moved to
the remote program.

2. The local program reads in the transaction code followed by the key
at which the browsing is to be started. The read is from an
unformatted screen.

3. The action when the operator presses the CLEAR key has been changed
to cause the program to exit immediately.

ij. The name of the remote transaction which performs the file reading
is moved into the data area which will be shipped across the link.

5. A session must now be established with the remote system. (The
name of the remote system is here assumed to be 'REM1'; this name
is installation dapendent, and will be assigned by the system
programmer). The session is created by issuing the ALLOCATE
command specifying only the remote system name; the name of the
allocated session is required by the application program only in so
far as it is used in all subsequent SEND/RECEIVE commands, and it
can be found in field EIBRSRCE immediately after completion of the
ALLOCATE.

6. A CONVERSE command - which comprises both a SEND and RECEIVE - is
issued to transmit the remote transaction name and key to the
system here defined as 'REM1'. (This name is of course
installation dependent, and will be assigned by the system
programmer). Otherwise, the command options. are unchanged from
their usage in CICS/VS Release 1.4. It should also be noted that
the CONVERSE command utilizes the INTO option as opposed to SET;
this is essential because the FREE SYSID command which follows
caus€s all storage associated with the session, for example the
TIOA, to be released immediately and thus become unavailable to the
user program. With the INTO option being coded, the received data
is moved into user storage where it remains under the control of
the program. If the FREE SYSID were to be omitted, either INTO or
SET could be used; the latter would normally be preferable for
improved performance.

1. Addressability for the file records which will be returned to this
program is provided using the file record descriptor FILEA. Note
that the first six bytes of the received data contain the key of
the last record read by the remote program.

8. A session to the remote system 'REM1' will have been allocated
automatically by CICS/VS when the CONVERSE command was executed.
This session is now freed to enable it to be reused by another
application. Execution of a further CONVERSE will cause a session
to be reestablished. If it is desired to maintain the session
until the application terminates, the FREE command should be
omitted entirely, but in this case the remote program must itself
keep the session open by issuing a CONVERSE in place of its SEND
and RECEIVE commands.

9. The total length of the returned records is held in INLEN.

10. If the length of the buffer remaining is less than 80 bytes long,
assume a message, rather than a file record, has been received.

11. The buffer pointer is incremented to address the next record and
the length remaining value reduced.

516 CICS/VS APRM (CL)

12. Whatever warning message has been sent by the remote program is now
transferred to the BMS map.

13. The message will appear on the file record detail display rather
than the operator instruction menu.

Appendix G. Sample Programs For DTP 517

SOURCE LISTl~G OP REaOTE USER TRANSACTION

DFHEISTG DSECT
INLEN DS H
OUTLENG DS B
INPUT DS OCL 11
TRAN DS CL5
FLDA DS CL6
OUTBUF DS CL320

COpy DFHXFILE FILE RECORD DESCRIPTION
XDFHAIBR CSEeT

EXEC CICS HANDLE CONDITION *
ENDFILE(ENDFILE) NOTFND(NOTPOUND)

**
* * lIVC INLEN,=H'11 1 LENGTH OF INPUT DATA.

1 EXEC CICS RECEIVE INTO(INPUT) LENGTH (INLEN)

* * **
EXEC CICS STARTBR DATASET('FILEA') RIDPLD(PLDA)

SET4 DS OH
LA 4,1 SET COUNTER TO 1

**
* *

LA 5,OUTBUF ADDRESS OUTPUT BUPPER.
USIlfG PILEA,5

BEITLIN DS 08
2 EIEC CICS READNEXT INTO (FILEA) DATASET('PILEAI) RIDPLD(FLDA)

* * **
CLI STAT,XIFFI IS RECORD CODED AS NOT FOUND
BE NEXTLIN •• YES, SET UP NEXT LINE
LA 4,1(,4) INCRE~ENT COUNT
LA 5,80 (,5) INCREMElfT BUPFER POINTER
CH 4,=H'5 1 PINISHED?
BNE BRITLIN •• NO, GO BUILD NEXT LINE

DISPREC DS OH •• YES, SEND MAP
**
*

*

3 LA
SR
STH

4,OUTBUF
5,4
5,OUTLENG

NO. OF BYTES TO BE SENT

*

* **
B RETURN

ENDFILE DS OR ENDFILE IS REACHED
**
* * 4 live

LA
B

NOTFOUND DS
live
LA

0(11,S),=CL11'END OP FILE' MESSAGE
5,11 (,5)
DISPREC GO SEND MAP
08
0(29,5) ,=CL29 I INVALID NUMBER-PLEASE REENTER'
5,29(,5)

* * **
B DISPREC

RETURN DS 08
5 EXEC CICS SEND FROM(FLDA) LENGTB(OUTLENG) WAIT LAST

EXEC CICS RETURN
END

518 CICS/VS APRM (CL)

PROGRAM NOTES

1. The transaction name and record key are received.

2. A record is read direct into the output buffer for transmission.

3. The length of the data to be sent is now calculated.

4. Any warning messages needed are sent to the output buffer and the
length of the data is increased accordingly.

I 5. The records are returned across the link and the program ends,
I thereby automatically freeing its session. Should the originating
I sample be amended to cause repeated invocation of this program,
I these last two instructions could be replaced by, for example:
I
I
I EXEC CICS CONVERSE FROM~UTBUF) FROMLENGTH (OUTLENG) *
I INTO (INPUT) TOLENGTH{INLEN)
I B SET4
I

CICS to CICS (or Other) Synchronous Sample Program

DESCRIPTION

This sample is activated with the transaction code 'AICC'.

The CICS to CICS synchronous sample application program allows a
terminal operator to enter a command on the screen and have that command
transmitted to a remote system for execution. If necessary, tne remote
system responds with a request for further details, and the operator is
given the opportunity of replying.

The program is able to converse with any application on a remote
system which sends output data either one line at a time or in multiple
line format. The CICS supplied programs listed below have this
capability, thus the main purpose of this example is to provide for the
CICS system programmer a simple test transaction which will enable him
to prove easily that he is able to establish contact with a second,
remote CICS system without the need for any application program coding
on h~s part. A successful test of this sample will indicate, to the
extent of the features actually being tested, that the system network
has been correctly set up and that the Inter-System components of CICS
to allow distributed transaction processing are in order; failure will
indicate errors in set up rather than in user programming.

At the start of the program, the operator is prompted to enter the
name of the remote system to be attached, and the actual command to be
executed on the remote system whicb is entered just as if it were a
local command, for example, CSMT TAS. The program is able to handle
both single line output from the remote system and also output which
exceeds the terminal page size.

The message received from the remote system is assumed to be in SCS
form, that is, containing printable characters and new line symbols
only. Xhis is the default output format for LU6 type terminals as
produced by CICS supplied programs such as CSFE, CSMT, CSOT, CSST, or
CSTT

Appendix G. Sample Programs For DTP 519

SOURCE LISTING OF THE SENDING USER TRANSACTION

DFHElSTG DSHCT

*
* STORAGE AREA FOR EIB SESSION AND STATUS FLAGS

* XDFEIFLG DS OCL7
DFHSYNC DS C

* DFHFREE DS C

* DFHRECV DS C

* DFHSEND DS C
DFHATT DS C

*
* DFBEOC DS C

* DFHFMH DS C

*
* REMDATA
ATCHSESS
CONTROL
SBA
CDATA
MESSAGE
INLEN
OUTLEN
NEWLINE

COpy XDFHAIl

DS 2560
DS CL4
DS OCL60
DS CL3
OS CLS7
DS CL32
DS H
DS B
EQU XllS'
DFHEJECT
CSECT

IF SET, SYNCHPOINT MUST
BE EXECUTED
IF SET, TERMINAL / LU
MUST BE FREED
IF SET, RECEIVE MUST
BE EXECUTED
RESERVED
IF SET, ATTACH HEADER
DATA EXISTS AND KAY BE
ACCESSED USING EXTRACT
IF SET, ERD-OF-CBAIN
WAS RECEIVED WITH DATA
IF SET, DATA PASSED TO
APPL'N CONTAINS FMB(S)

COPY MAP

XDFHAllA
1 EXEC CICS HANDLE CONDITION MAPFAIL(MAPFAIL)

EXEC CICS HANDLE AID CLEAR (CLEAR)
MAPFAIL

2
XC MAPAI(MAPAE~APAI),!APAI CLEAR aAP
EXEC CICS SEND MAP ('KAPAI) MAPSET('XDFHAI1')

ERASE MAPONLY WAIT
3 EXEC CICS RECEIVE MAP ('MAPAI) MAPSET(IXDFHAI1')

LA S,DATAI
MVC DATABL(3+L'DATABO),DATAL
avc OUTLEN,DATAL

4 EXEC CICS HANDLE CONDITION SYSIDERR(SYSERR)

* 5 EXEC
6 EXEC

MVC
CONVERSE OS

avc
7 EXEC

MVC
DATASENT DS

*

8 CLC
BE

LH
LA
aVI
LA

CICS SEND MAP('MAPB') MAPSET('XDFHAll') WAIT ERASE
CICS ALLOCATE SYSID(SYSIDI)

ATCHSESS,ElBRSRCE
OH
INLEN,=H'204S'

CICS CONVERSE
SESSION (ATCHSESS)
FROM (0 (8))
FROM lENGTH (OUTLEN)
INTO (REMD ATA)
TOLENGTH (INLEN)
XDFEIFLG,EIBSYNC SAVE EIB VALUES

OB
INLEN,=H10'
TEST SYNC

1,INLEN
2 ,REMDATA (1)
O(2),X'13'
1,1(,1)

IF NULL RU SENT THEN
NOTHING TO SEND TO TERMINAL

ADDR BYTE AFTER DATA
INSERT CURSOR HERE

520 CICS/VS APRM (CL)

*

*
*
*
*
*

5TH 1,INlEN

*
TESTSYNC

9

TESTFREE
10

TESTRECV
11

SEND
12

*

EXEC
DS
ClI
BNE
EXEC
DS
ClI
BNE
EXEC
EIEe
DS
eLI
BNE
liVC
EXEC

HVC
B
DS
EXEC
HVC
EXEC
LB
SH
lA
B

SYSERR DS
13 ClI

BE
CLI
BE

NOlINK DS
14 MVC

MVC
B

LINKMSG De

* UNKliOWN DS
15 MVC

!tVC
B

UNK!t SG DC

* NOTCTSE DS
16 MVC

Mve
B

TCTMSG DC

*

CICS SEND TEXT FROM(RE!tDATA) LENGTB(INLEN) ACCUM
OB
DPBSYNC,X IFF I
TESTFREE

CICS SYNCPOINT
OB
DPBFREE,XIPPI
TESTRECV

CICS SEND PAGE RETAIN
CICS RETURN

OB
DFHRECV,XIFFI
SEND
INlEN,=H I20"'S'

CICS RECEIVE SESSION(IATCHSESS') INTO (REMDATA)
LENGTH (INLEN)
XDFEIPLG,EIBSYNC SAVE EIB VALUES
DATASENT
OB

CICS SEND PAGE RETAIN
OUTLEN,=a I 60'

CICS RECEIVE INTO(CONTROl) LENGTB(OUTlEN)
o ,OUTLEN
0,=H'3' REDUCE FOR LENGTH OF SBA
S,CDATA
CONVERSE

OB
EIBRCODE+l,12
UNKNOWN
EIBRCODE+1,4
NOTCTSE
OB
MESSAGE ,LINKMSG
MESSAGE+2S (4) ,SYSIDI
EXPLAIN
CL32'UNABLE TO ESTABLISH LINK TO

OH
MESSAGE,UNKMSG
MESSAGE+12(4),SYSIDI
EXPLAIN
CL32'SYSTEM NAME IS NOT KNOWN

OB
MESSAGE,TCTMSG
MESSAGE(4),SYSIDI
EXPLAIN
CL32' IS NOT A SYSTEM NAMEI

EXPLAIN DS OB
EXEC CICS SEND FROM(MESSAGE) lENGTH(=B I 32 1) ERASE WAIT

CLEAR DS OB
END

*

Appendix G. Sample Programs For DTP 521

PROGRAM NOTES

1. Set up exit for map errors and clear key.

2. The screen is erased, and the prompting map displayed at the
terminal.

3. The remote system name and command to be transmitted are mapped in.

4. Set up exit for the error conditions which may arise whilst
establishing connection to the remote system.

5. The screen is erased again and the command entered by the operator
is displayed on the top line.

6. 1 session is now allocated naming the remote system only, and its
name is obtained from EIBRSRCE.

7. A CONVERS~ command is now issued which sends the data entered by
the terminal operator to the remote system which he has specified,
then receives the resulting response from that syste.. To enable
the program to determine what action is next expected of it, the
contents of the EXEC Interface Block will have to be examined, thus
the values therein mQst be retained. The SYSID option is used
since the application is requesting that an alternate facility be
made available to it. Note that, although it is permissible to
build an attach header and transmit it using the CONVERSE com.and,
this action does not need to be taken in this case since by default
CICS/VS will assume that the first four characters of the
transmitted data contain the transaction code.

8. If the data length field for the RECEIVE component of the CONVERSE
indicates that there is data to be handled, a logical message is
built using the BMS TEXT facility for subsequent sending to the
screen. To ensure that the terminal cursor is placed on the next
available line for any further input, the 'Insert Cursor' control
character is appended to the data stream.

9. The session-oriented information transmitted across the LU6 session
by the remote transaction must now be examined to determine what
action should be taken next. The 'SYNCPOINT required' indicator in
the EXEC Interface Block is first tested and if need be the program
issues its own SYNCPOINT.

10. If the EXEC Interface Block indicates that the program should now
free the session, thereby denoting that the remote transaction has
completed successfully and has terminated the conversation, the
built logical message is sent to the screen using the RELEASE
option of the SEND PAGE command which returns control direct to
CICS/VS and thus frees the session.

11. If the EXEC Interface Block indicates that the application is to
continue receiving data from across the session, a further RECEIVE
command is issued.

522 CICS/VS APRa (CL)

12. The indicators SYNCPOINT, FREE session, or RECEIVE, do not apply,
thus by default the remote application has requested a further
transmission from this program. (In the case of the CICS/VS
supplied programs named in the description above this would imply
the receipt of a prompting message.) The program therefore sends
the logical message built to date, which will include the prompt,
to the terminal operator and receives his reply; a second CONVERSE
can then be issued across the session. Note that the 'Set Buffer
Address' control and the two buffer address bytes received from the
terminal must be bypassed before transmission across the link.

13. The SISIO error routine bas been entered. To determine the exact
cause of the error, EIBRCODE must be examined, and an appropriate
informatory message sent to the operator.

14. Some kind of error exists which prevents the link between the two
systems from being established.

15. The remote system name given by the operator is not recognized.

16. The system name given is recognized, but is not that for a remote
system.

Appendix G. Sample Programs For DTP 523

MAP DEFINITION

XDFHAI1 DFHMSD TYPE=&SYSPARM,~ODE=INOUT,CTRL=FREEKB,TIOAPFX=YES, *
LANG=ASM,STORAGE=AUTO

MAPA DFHMDI SIZE=(12,80)
DFHaDF POS=(1,1),ATTRB=ASKIP,LENGTH=33, *

INITIAL='TYPE RE~OTE SYSTEM ID AND CO~~AND'
DFH~DF POS={3,1),ATTRB=ASKIP,LENGTH=16, *

INITIAL='REMOTE SYSTEM ID'
SYSID DFHMDF POS=(3,20) ,ATTRB=(NORM,IC),LENGTH=4,INITIAL='

DFHMDF POS=(3,25),LENGTB=1
DFHMDF POS=(4,1),ATTRB=ASKIP,LENGTH=07, *

INITIAL='COMMAND'
DATA DFHaDF POS=(4,10),ATTRB=(NOR~),LENGTH=68,INITIAL=' ,

DFHMDF POS=(6,1),ATTRB=ASKIP,LENGTH=16, *
1NITIAL='THEN PRESS ENTER'

!APB DFHMDI SIZE=(12,80)
DATIB DFHMDF POS=(1,1),ATTRB=(NORM),LENGTH=68,INITIAL=' •

DFHMSD TYPE=FINAL
END

SCREEN LAYOUT

r---------------------------------------,
ITYPE REMOTE SYSTEM ID AND COMMAND
t
IREMOTE SYSTEft 1D XXXX I
ICOMMAND XXXIXXXXXXXXXXXXXXXXXXXIXXXXI
I I
ITHEN PRESS ENTER I
I I
I I
I I
L- •

524 ClCS/VS APRM (CL)

t CICS to CICS Conversation (Synchronous) Sample Program
I

DESCRIPTION

This sample is activated with the transaction code 'AISC'.

The sample will consist of a two-part program illustrating the
facility of transferring the contents of a temporary storage queue from
a local CICS system to another remote CICS system. The corresponding
transaction name to be used on the remote system is 'AISR'.

I To test the sample, a temporary storage queue may first be created on
I the local system. The operator may then refer to this queue by name or
I alternatively, if no name is given, a small 5-record queue will be built
I by the program for basic test purposes. The terminal operator at the
I local system is giv~n the opportunity of specifying details of the queue
I name, and of the remote system including the queue name that the data
I set is to be given on the remote system, thus the sample is general
I purpose in nature.

When the transfer of the queue starts, the terminal operator is
notified accordingly.

Appendix G. Sample Programs For DTP 525

SOURCE LIS~I~G OF USER TRANSAC~IOR

DFHEISTG DSECT

*
*
*

S~ORAGE AREA FOR EIB SESSION AND STATUS FLAGS

XDFEIFLG DS OCL1

* DFHSYNC DS C IF SET, SYNCBPOIHT MUST
BE EXECUTED * DFHFREE DS C IF SET, TERMINAL / LU
!lUST BE FREED * DFHRECV DS C IF SET, RECEIVE MUST
BE EXECUTED
RESERVED * DFHSEND DS C

C DFRATT DS IF SET, ATTACH BEADER
DATA EXISTS AND !lAY BE
ACCESSED USING EXTRACT
IF SET, END-OF-CHAIN
WAS RECEIVED WITH DATA
IF SET, DATA PASSED TO
APPLIN CONTAINS FKH(S)

*
* DFHEOC DS C

* DFHFMR DS C

*
RECCOUNT
INLEN
QNA!lE
ATCBSESS
MESSAGE
R4
R5
R8
R9

XDFHAI2A
1

2

lIAPFAIL
3

4
5

QLOOP

QNAl!ED
6
7
8

REMQOK
9

10

11

12

COpy XDFHAI2
DS CL3
DS H
DS CLa
DS CL4
DS CL32
EQU 4
EQU 5
EQU 8
EQU 9
DFHEJECT
CSECT
CLC
BE
EXEC
EXEC
XC
EXEC

EXEC
ClI
BNE
MVC
LA
LA
DS
EXEC
LA
BCT
DS
EXEC
EXEC
CLI
BHE
MVC
DS
EXEC
lIVC
EXEC

EXEC

MVC

EIBTRNID,=C'AISR' RECEIVING TRANSACTION?
INBPKH YES - BRANCH TO HANDLE
~~CS HANDLE AID CLEAR (CLEAR)
CICS HANDLE CONDITION MAPF1IL(!lAPFAIL)

MAPAI (l!IAPAE-MAPAI) ,!lAPAI CLEAR !lAP
CICS SEND MAP ('!lAPA') !lAPSET('XDFHAI2') ERASE MAPONlY

WAIT
CICS RECEIVE MAP('KAPAI) KAPSETC I XDFHAI2 1)

lOCAlQI,O IF TS Q IS NAMED
QNAMED WE DO NOT CREATE ONE.
LOCALQI,=CLS'TSQAISCI
R4,REC1 ADDRESS 1ST RECORD
R5,R5 LOOP COUNT
OH

CICS WRITEQ TS QUEUE (LOCALQI) PROM (0 CR4» LENG'rH (RLEN)
R4,l'REC1(R4) ADDRESS NEXT RECORD
R5,QLOOP AND WRITE IT.
OH

CICS HANDLE CONDITION ERROR (ABEND) SYSIDERR CSYSERR)
CICS READQ TS QUEUE (LOCALQI) SET (R9) LENGTH (INLEN)

REKOTQI,O REMOTE Q NA!E SPECIFIED ?
RE~QOK •• YES
RE~OTQI,=CLS'TSQAISR' •• NO, GIVE A DEFAULT
OH

CICS ALLOCATE SYSID(SYSIDI)
ATCHSESS,EIBRSRCE

CICS BUILD ATTACH
lTTACHID (,REMQI) PROCESS ('AISRI) QUEUE (REMOTQI)

CICS SEND SESSION(ATCBSESS) PRO~(O(R9» LENGTH (INLEB)
ATTACHID('RE~Q') WAIT
MTSQO,LOCALQI SET UP LOCAL TS Q NAME

526 CICS/VS APRM (el)

*

*
*

13
14

LOOP
15

QEND
16

17
18

MVC
EXEC

ZAP
EXEC
DS
EXEC
EXEC
AP
B
DS
UBPK
01
EXEC
EXEC
EXEC
B

ftSYSIDO,SYSIDI SET UP REMOTE SYSTEK ID
CICS SEND MAP('ftAPB') ftAPSET('XDFHAI2')

WAIT CURSOR (=H'80') ERASE
RECCOUNT,=P'l' UPDATE RBCORD COUNT

CICS HANDLE CONDITION ITEftERR (QEHD)
OB

CICS READQ TS QUEUE (LOCALQI) SET(R9) LENGTH (INLEN)
CICS SEND SESSION (ATCHSESS) FROft (0 (R9)) LENGTH (INLEN)

RECCOUNT,=P'l' UPDATE RECORD COUIT
LOOP START READQ/SEND LOOP AGAIN
OB
COUITO,RECCOUBT
COUNTO+5,C'0'

CICS SEND MAP('MlPC') MAPSET('XDFHAI2') WAIT
CICS DELETEQ TS QUEUE(LOCALQI)
CICS SYNCPOINT

CLEAR

* ABEID DS OB
19 EXEC CICS ASSIGN ABCODECABCODEO)

MVC RSOURCO,EIBRSRCE
20 EXEC CICS SEND MAPC'MAPD') MAPSET('XDFHAI2') ERASE WAIT

B CLEAR

* SYSERR DS
21 CLI

BE
CLI
BE

HOLINK DS
22 MVC

MVC
B

LINKMSG DC

* UNKNOWN DS
23 MVC

MVC
B

UNKMSG DC

* NOTCTSE DS
24 MVC

MVC
B

TCTMSG DC

OB
E IBRCODE+ 1,12
ONKNOWN
EIBRCODE+l,4
NOTCTSE
OB
MESSAGE,LINKMSG
~ESSAGE+28(4),SYSIDI
EXPLAIN
CL32'UNABLE TO ESTABLISH LINK TO

OH
MESSAGE,UNKMSG
MESSAGE+12 (4) ,SYSIDI
EXPLAIN
CL32'SYSTEM NAME IS NOT KNOWN

OB
MESSAGE,TCT!lSG
MESSAGE (4), SYSIDl
EXPLAIN
CL32' IS HOT A SYSTEM NAME'

* EXPLAIN DS OB

•

EXEC CICS SEND FROM(MESSAGE) LENGTH(=H ' 32 1) ERASE WAIT

* RECl

RLEN

B CLEAR

DC C'DISTRIBUTED
DC C'DISTRIBUTED
DC C'DISTRIBUTED
DC C'DISTRIBUTED
DC C'DISTRIBUTED
DS OB
DC AL2 (L 'REC 1)
DFBEJECT

TRANSACTION PROCESSING TS Q - RECORD1'
TRANSACTION PROCESSING TS Q - RECORD2'
TRANSACTION PROCESSING TS Q - RECORD3'
TRANSACTION PROCESSING TS Q - RECORD4'
TRANSACTION PROCESSING TS Q - RECORDS'

*

WAIT

IBBFMH
25

DS OB
EXEC CICS RECEIVE SET(9)
~VC XDFEIFLG,EIBSYNC
EXEC CICS EXTRACT ATTACH

CODE FOR 'RECEIVING' TRANSACTION
LENGTH (INLEN)

26
INBOUND

27
DS OB
CLC lILEN,=H'O'

SAVE EIB VALUES
QUEUECQNAME)

IF NO DATA SENT THEN

Appendix G. Sample Programs For DTP 527

BE
EXEC

TESTSYNC DS
28 CLI

BNE
EXEC

TESTFREE DS
29 CLI

BE
CLI
BNE
EXEC
avc
B

CLEAR DS
END

TESTSYNC NOTHING TO WRITE
CICS WRITEQ TS QUEUE(QNA!E) FROft(0(9» LENGTB(INLEN)

OR
DFHSYNC,X'PP'
TESTFREE

CICS SYRCPOINT
03
DPHPREE,X'FP'
CLEAR
DPHRECV,X 'PP'
CLEAR

CICS RECEIVE SET(9) LENGTH (INLEN)
XDFEIPLG,EIBSYNC SIVE EIB VALUES
INBOUND
08

528 CICS/VS APR! (CL)

PROGRAM NOTES

1. This single program contains both the sending and receiving code
and copies should be used simultaneously at both ends of the link.
This first test is to determine which of the two functions is being
executed.

2. Set up exit for clear key and to resend map on failure.

3. The screen is erased, and the prompting map displayed at the
terminal.

4. The remote system name and both local and remote temporary storage
queue names are mapped in.

5. The sending program normally expects the user to notify the name of
a local temporary storage queue to be transferred. For testing
purposes, however, the user may omit the queue name in which case a
small, 5-record queue will be built for him and named ITSQAISCI.

6. set up exit for error condition which may arise whilst establishing
connection to remote system, and for temporary storage queue
errors.

1. The first record on the local temporary storage queue is now read.

8. If the remote queue name is omitted, a default of ITSQAISRI is
supplied.

9. A session is now allocated naming the remote system only, and its
name is obtained from EIBRSRCE.

10. A transaction is to be initiated on a remote system which needs to
know the transaction name and the name to be given to the temporary
storage queue which will be created. These are detailed in the
attach header which is built at this point.

11. The contents of the first record on the local temporary storage
queue are sent across the session. The attach header just built is
prefixed onto the SEND command by means of the ATTACHID option.

12. A message is constructed and sent to the terminal operator
informing him that the copying of the queue is now taking place.

13. A count is kept of the number of temporary storage queue records
transmitted.

14. Set up exit for action to be taken at local temporary storage queue
end.

15. Continue reading the local temporary storage queue and sending
records across the session. (The attach header is not prefixed to
these subsequent records) •

16. The count of the number of records transmitted is unpacked and an
informatory message sent to the terminal operator.

17. The local temporary storage queue is deleted and the program exits.

18. A syncpoint is taken to indicate end of transmittsd data.

19. If an abend code is detected, its value is assigned, together with
details of the last resource used.

Appendix G. Sample Programs For DTP 529

20. A message wdrning of the abend is sent to the operator and the
program terminates.

21. Some kind of error exists which prevents the link between the two
systems from being established.

22. The remote system name given by the operator is not recognized.

23. The system name given is recognized, but is not that for a remote
system.

24. This represents the start of the receiving element of the program.
The first record transmitted, whiCh will contain the attach header,
is read and the contents of the EIEC Interface Block are accessed.
No SYSID or SESSION options are required on the BEAD command since
the principal facility is being addressed.

25. The name of the temporary storage queue to be created by this
program is contained in the attach header just received; it is
extracted at this point.

26. If the data length field for the RECEIVE indicates that there is
data to be handled, it is written onto the temporary storage queus.

27. The session-oriented information transmitted across the LU6 session
by the sending transaction must now be examined to determine what
action should be taken next. The 'SYNCPOINT required' indicator in
the EXEC Interface Block is first tested and if necessary the
program issues its own SINCPOINT. The sending program takes a
syncpoint to indicate end of data transmitted, and the receiving
program must test for the presence of this syncpoint indicator in
every message it receives.

28. If the EXEC Interface Block indicates that the program should now
free the session, thereby denoting that the remote transaction has
completed successfully and has terminated the conversation, this
program can itself end normally, when the session will be freed
automatically.

I 29. If th~ EXEC Interface Block indicates that the application is to
I continue receivinq data from the session, a further BECEIVE command
I is issued. If neither the SYNCPOINT, FREE session, or BECEIYE
I indicators apply, the program exits. In practice this situation
I should never occur since the sending application never sets up a
t RECEIYE.

530 CICS/YS APRM (el)

MAP DEFINITION

XDFHAI2

MAPA

LOCALQ

SYSID

REMOTQ

MAPB

MTSQ

MSYSID
MAPC
COUNT

MAPD
ABCODE

RSOURC

DFHMSD TYPE=&SYSPARM,aODE=INOUT,CTRL=FREEKB,TIOAPFX=YES, *
LANG=ASM,STORAGE=AUTO

DFHMDI SIZE=(12,80)
DFBMDF POS=(l,Ol) ,ATTRB=ASKIP,LENGTB=28, *

INITIAL='TS Q TRANSFER DRIVER PROGaA"'
DFHKDF POS=(5,Ol),ATTRB=ASKIP,LENGTH=18, *

INITIAL='LOCAL TS Q NAME ••• •
DFHKDF POS=(5,30),ATTRB=(NORM,IC),LENGTH=8,INITIAL='
DFHKDF POS=(5,39),LENGTH=1
DFHMDF POS=(7,01),ATTRB=ASKIP,LENGTH=19, *

INITIAL='REMOTE SYSTEM ID ••• •
DFHMDF POS=(7,30) ,ATTRB=NORM,LENGTH=4,INITIAL=' •
DFHMDF POS=(7,35),LEHGTH=1
DFHMDF POS=(9,Ol),ATTRB=ASKIP,LENGTH=19, *

INITIAL='REKOTE TS Q NAME ••• •
DFHMDF POS=(9,30),ATTRB=NORK,LENGTH=8,INITIAL='
DFHMDF POS=(9,39),LENGTH=1
DFHMDF POS=(11,1),ATTRB=ASKIP,LENGTH=35, *

INITIAL='TYPE VALUES ABOVE, THEN PRESS ENTER'
DFHMDI SIZE=(12,80)
DFHMDF POS=(l,Ol) ,ATTRB=ASKIP,LENGTH=13, *

INITIAL='COPYING TS Q •
DFHMDF POS=(1,15),ATTRB=NORM,LENGTH=8,INITIAL='
DFHMDF POS=(1,24),ATTRB=ASKIP,LENGTR=4,INITIAL=' TO '
DFHKDF POS=(1,29) ,ATTRB=HORM,LENGTH=4,INITIAL='
DFHMDI SIZE=(12,80)
DFHMDF POS=(2,1) ,ATTRB=NORM,LENGTH=6
DFHMDF POS=(2,8) ,ATTRB=ASKIP,LENGTH=32,INITIAL='TS Q ITEMS HAV*

E BEEN TRANSFERRED'
DFHMDI SIZE= 02,80)
DFHKDF POS=(l,l) ,ATTRB=NORK,LENGTH=4
DFHKDF POS=(1,6) ,ATTRB=ASKIP,LENGTH=23,INITIAL='ABEND HAS BEEN*

RECEIVED'
DFHKDF POS=(3,1),ATTRB=ASKIP,LENGTH=22,INITIAL='LAST RESOURCE *

USED WAS'
DFHMDF POS=(3,24),ATTRB=NORK,LENGTH=8
DFHMSD TYPE=FINAL
END

SCREEN LAYOUT

TS Q TRANSFER DRIVER PROGRAM

LOCAL TS Q NAKE ••• XXX1XXXX

REMOTE SYSTEM ID •• XXXX

REMOTE TS Q NAME •• XXXXIXXX

TYPE VALUES ABOVE, THEN PRESS ENTER
I L __ _

Appendix G. Sample Programs For DTP 531

CICS to Other Synchronous Sample Program

DESCRIPTION

This sample is activated with the transaction code IAICOI.

The CICS to other Synchronous sample is intended to illustrate a
conversation of a simple nature. It is planned to operate the sample
with a program similar to the IKS ECHO application.

At the start of the program, the operator is prompted to enter the
name of the remote system and application on that system, together with
the input data to be ECHOed back.

The response at the terminal will consist of the reECHOed data only.

The message received from the remote system is assumed to contain
printable characters only, and to be in variable length variable block
format. Each logical record is treated as representing one screen line,
and for the purposes of this sample, may not be greater than 19
characters in length.

532 CICS/VS APRM (Cl)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

SOURCE LISTING OF THE SENDING USER TRANSACTION

DFHEISTG DSECT

*
* SIDRAGE

*
AREA FOR

XDFEIFLG DS OCL1

* DFHSYNC

* DFEIFREE

* DFHRECV

* DFHSEND
DFHATT

*
* DFHEOC

* DFHFMH

*

DS C

DS C

DS C

DS C
DS C

DS C

OS C

COpy XDFHAI4
COPY DFHBMSCA

R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
REMSYS DS CL8
ATCHSESS DS CL4
INLEN DS H

DFHEJECT
XDFHAI4A CSECT

EIB SESSION AND STATUS FIAGS

I F SET, SYNCHPOINl' MUST
BE EXECtJrED
IF SET, TERMINAL / LU
MUST BE FREED
IF SET, RECEIVE MUST
BE EXECt1rED
RESERVED
IF SET, A'rl'ACH HEADm
DATA EXISTS AND MAY BE
ACCESSED USING EXTRACT
IF SET, END-OF-CHAIN
WAS RECEIVED WITH DATA
IF SET, DATA PASSED TO
APPL' N CONTAINS FMB (S)

BMS ATTRIBtrrES

XC MAPA! (MAPAE-MAPAI) ,MAPAI CLEAR MAP
SENDMAP

1
2
3
4

5
6

REMAP
7

BUILD
8

DS OH
EXEC CICS SEND MAP (·MAPA·) MAPSET (·XDFHAI4·) ERASE
XC DATAI ,DATAl RE-cLEAR THE DATA AREA
EXEC CICS RECEIVE MAP ('MAPA·) MAPSEl' (·XDFHAI4·)
CLI SYSIDI,O REMOTE SYSTEM NAME GIVEN ?
BE REMAP •• NO, SEND MESSAGE TO OPERATOR
EXEC CICS ALLOCATE SYSIO (SYSIDI)
MVC ATCHSESS,EIBRSRCE
B BUILD
DS OH
MVC ERROIO (L'SYSMSG) ,SYSMSG SET UP PROMPTING MESSAGE
MVI ERROIA, DFHBMBRY . HIGHLIGHT MESSAGE
B SENDMAP AND SEND IT.
DS OH
EXEC CICS BUILD ATTACH ATTACHID ('TIMS ') RESOURCE (TRANI)

IUTYPE (=H '1 .) *
9 EXEC CICS SEND SESSION (ATCHSESS) ATTACHID (·TIMS·) FROM (DATAl) *

LENGTH (DATAL) INVITE
RECV DS OH

10 EXEC CICS RECEIVE SESSION (ATCHSESS) SET (R9) LENGTH (INLEN)
DA'D\SENT DS OH

MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES
*

LA R4,MAPBI START OF OtJrPtJr MAP
LR R6,R4
LA R5,MAPBE-MAPBI LENGTH OF MAP
XR R1,R7
MVCL R4,R6 CLEAN UP THE MAP

*

Appendix G. Sample Programs FOr DTP 533

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

11

*

CLC
BE

LA
LH

LRECL OS
LH
SR
SH
EX
LTR
BZ
AH
LA
B

SENDMAPB OS
EXEC

* TESTSYNC OS
12 CLI

BNE
EXEC

TESTFREE OS
13 CLI

BE
14 EXEC
15 CLI

BE
16 EXEC

B

* SETLlNE MVC
SYSMSG OC
EXIT DS

END

INLEN,=H'O'
TESTSYNC

R7,LlNE10
R4,INLEN
08
RS,O (R9)
R4,RS
RS,=H'S·
RS,SETLlNE
R4,R4
SENDMAPB
R9,0 (R9)
R7,LlNE20-LINE10 (R7)
LRECL
OH

CICS SEND MAP ('MAPB-)
CURSOR (=-1840·)

OH
DFHSYNC,X'FF-
TESTFREE

CI CS SYNCPOINT
OH
DFHFREE,X'FF·
EXIT

IF NULL RU SENT THEN
NOTHING TO SEND TO TERMINAL

ADDRESS 1ST OUTPUT LINE
LEN3TH OF RECEIVED DATA

LOGICAL RECORD LENGTH
REDUCE BLOCK LENGTH
PREPARE FOR EX INSTR.
MOVE LOGICAL RECORD TO MAP
END OF BL<X!K REACHED ?
•• YES, SEND THE MAP

ADVANCE TO NEXT RECORD
ADDRESS NEXT OUTPtJr LINE
GO TO MOVE NEXT RECORD

MAPSET (' XDFHAI 4') ERASE WAIT

CI CS RECEIVE SET (RS) LENGTH (INLEN)
DFHRECV ,X 'FF-
RECV

CICS CONVERSE FROMLENGTH (INLEN) SESSION (ATCHSESS)
SET (R9) 'IDLE;NGTH (INLEN) FROM (0 (RS»
DATASENT

o (O,R7) ,4 (R9) MOVE INPUT RECORD TO MAP
C'MUST SPECIFY REMOTE SYSID"
OH

534 CICS/VS APRM (CL)

*

*

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

PROGRAM NOTES

1. The screen is erased, and the prompting map displayed at the
tenninal.

2. The data area portion of the map is used to hold any error messages
sent to the terminal; this area is cleared before a RECEIVE is
issued.

3. The remote system name and data are mapped in.

4. The terminal operator now enters the remote system name.

5. If the remote system name is given, an ALLOCATE is performed on
that system, and

6. The nane of the actual session allocated is found in the EIBRSRCE
field.

7. Use the input data area of the map to advise the operator to try
again.

8. A transaction is to be initiated on a remote system which needs to
know the transaction name. This is detailed in the attach header
which is built at this point. For IMS, the -transaction name- must
be entered as the resource name; the processing name being reserved
for an attached system process (when used). Also, since IMS
requires single-chain input, the IUTYPE option is set to binary
halfword '11.

9. The data entered by the terminal operator is now sent across the
acquired ses3ion together with the previous1y built attac}l header.
The pre_senc.eefthe INVITE option indicates that a RECEIVE will
directly follow this SEND and improves perfonnance across the
session.

10. A RECEIVE is issued against the remote system to read back the
echoed data. To enable the progr~ to determine what action is
next expected of it, the contents of the EXEC Interface Block will
have to be retained.

11. If the data length field for the previous RECEIVE indicates that
there is data to be handled, it is sent to the requesting terminal.

12. The session-oriented information transmitted across the LU6 session
by the remote transaction must now be examined to determine what
action should be taken next. The SYNCPOINT required indicator in
the EXEC Interface Block is first tested and if necessary the
program issues its own SYNCPOINT.

13. If the EXEC Interface Block indicates that the program should now
free the session, thereby denoting that the remote transaction has
completed successfully and has ter.minated the conversation, the
program now exits causing an automatic freeing of the session.

14. The program receives further input data from the terminal operator.
This allows for the remote program to send, for example, a request
for further input. For simple autopaging through an output file,
pressing ENTER is all that is required.

15. If the EXEC Interface Block indicates that the application is to
continue receiving data from the session, a further RECEIVE command
is issued.

Appendix G. Sample Programs For DTP 535

16. A CONVERSE canmand is now issued which sends the data entered by
the terminal operator to the remote system which he has specified,
then receives the resulting response from that system. To enable
the program ~o determine what action is next expected of it, the
contents of the EXEC Interface Block must again be requested for
the RECEIVE.

536 CICS/VS APRM (CL)

MAP DEFINITION

XDFHAlij

MAPA

TRAN

SYSID

DATA
ERROl
MlPB
LINEl
LIBE2
LINE3
LINE4
LINE5
LINE6
LINE7
LINE8
LINE9
LINE10
MAPE
ERdOR
MAPP
OLP

DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=FREEKB,TIOAPFX=YES,
LANG=ASM,STORAGE=lUTO

DFH!DI SIZE=(24,80)
DFHMDF POS=(1,Ol),ATTRB=lSKIP,LENGTH=26,

IBITIAL='INVOKE RETURN APPLICATION'
DFHMDF POS=(3,Ol) ,ATTRB=ASKIP,LENGTH=25,

INITIAL='SUPPLY VALUES AS REQUIRED'
DFHMDF POS= (4,01) ,A.TTRB= (BRT, ASKIP) ,LENGTH=30,

INITIAL='REMOTE TRANSACTION NAME •••••• •
DFHMDF POS=(4,32),ATTRB=(NORft,IC),LENGTH=8,IHITIlL= • •
DFHMDF PO 5= (4,41),LENGTH=1
DFHMDF POS=(5,01),ATTRB=~RT,ASKIP) ,LENGTH=30,

INITIAL='REMOTE SYSTEM ID ••••••••••••• •
DFHMDF POS=(S,32),lTTRB=NORa,LENGTH=4,INITIAL='
DFBMDF POS= (5,37),LENGTH=1
DFHMDF POS=(8,Ol),ATTRB=~RT,ASKIP) ,LENGTB=34,

INITIAL='AND RETURN TRANSACTION INPUT DATA'
DFHMDF pos= (8,36), LENGTH=l
DFHMDF POS=(10,1) ,ATTRB=NORM,LEBGTH=79,INITIAL=' •
DFHMDF POS=(l',l) ,ATTRB=NORM,LENGTH=19
DFHMDI SIZE=(24,80)
DFHMDF POS= (1,1),ATTRB=NORM,LENGTH=79
DFHMDF POS=(2,1) ,ATTRB=NORM,LENGTH=79
DFHMDF POS=(3,1) ,ATTRB=NORM,LENGTH=79
DFHMDF POS=(4,1),ATTRB=NORM,LENGTH=19
DFHMDF POS=(5,1) ,ATTRB=NORM,LENGTH=79
DFHMDF POS=(6,l} ,ATTRB=~ORM,LENGTH=79
DFHMDF POS=(1,1) ,lTTRB=NORM,LENGTH=79
DFHMDF POS=(8,1),ATTRB=NORM,LENGTH=19
DFHMDF POS=(9,1) ,ATTRB=JORM,LENGTH=19
DFHMDF POS=(10,1),lTTRB=NOR!,LENGTH=19
DFHMDI SIZE=(24,80)
DFHMDF POS=(l,l) ,ATTRB=NORM,LENGTH=36
DFHMDI SIZE=(24,80)
DFHMDF POS=(24,1) ,ATTRB=NORM,LENGTH=6,INITIAL=' •
DFHMSD TYPE=FINAL
END

SCREEN LA YOUT

I """1

IINVOKE REMOTE APPLICATION I
I I
ISUPPLY VALUES AS BEQUIRED I
IREMOTE TRANSACTION NAME........ IIXIXXXXI
IREMOTE SYSTEM ID............... IXXI I
I I
lAND REMOTE rRANSACTION INPUT DATA I
I I
I IXIXXXIIXXXXXXIXXXXIXXXXXXXXIXXIXXXIXXXIXXI
I I

I

DESCRIPTION

*

*
*

*

*

*

The following sample fulfills the same requirements as that above except
that provision is made for the operator to read IMS Demand Paged Output
using Operator Logical Paging.

Appendix G. Sample Programs For DTP 531

The sample automatically reads the first logical page of the IftS
output and it is then the responsibility of the terminal operator to
signify which logical page of the output message he now requires to see.

The message received from the remote system is assumed to contain
printable characters only, and to be in VLVB (variable length variable
block) format. Each logical record is treated as representing one
screen line, and for the purposes of this example, may not be greater
than 79 characters in length.

This sample is activated with the transaction code 'AICD'.

The following functions, available to the operator, are supported by
the sallple; they should be preceded by IIP/" as if normal CICS/VS Bas
paging were being performed.

N = display the next logical page.

P = display the previous logical page.

C = redisplay the current logical page.

Enter =n, =nn or =nnn to display a specific logical page of the
message.

+n, +nn or +nnn to display the nth logical page past the
current position.

-n, -nn or -nnn to display the nth logical page before the
current position.

Press CLEAR to delete the current message from the IftS system
and CLEAR the user's screen.

538 CICS/VS APRrt (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

SENDING USER TRANSACTION

DFHEISTG DSECT
COPY XDFHAI4

* * S'IORAGE AREA FOR EIB SESSION AND STATUS FIAGS

* XDFEIFLG DS OCL7

* DFHSYNC DS C IF SRr, SYNCPOINT MUST

* BE EXECUTED
DFHFREE DS C IF SET, TERMINAL / LU

* MUST BE FREED
DFHRECV DS C IF SET, RECEIVE MUST

* BE EXECUTED
DFHSEND DS C RESERVED

* DFHATT DS C IF SET, ATTACH HEADER

* DATA EXISTS AND MAY BE

* ACCESSED USING EXTRACT
DFHEOC DS C IF SET, END~F-cHAIN

* WAS RECEIVED WITH DATA
DFHFMH DS C IF SET, DATA PASSED TO

* APPLIN CONTAINS FMH (S)
COPY DFHBMSCA BMS ATTRIBurES

R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
DPAGEREG EQU 8
R9 EQU 9

* DBLWORD DS D
INLEN DS H
REMSYS DS CL8
ATCHSESS DS CL4

* OLP DSECT
OLPCODE DS CL2
OLPVAL DS CL3

DFHEJECT
XDFHAI4B CSECT

1 XC MAPA! (MAPAE-MAPAI) , MAPA I CLEAR MAP
SENDMAP DS OC

2

3
4

REMAP
5

6

BUILD
7
8
9

EXEC CICS SEND MAP ('MAPA') MAPSET (IXDFHAI41) ERASE WAIT
EXEC CICS RECEIVE MAP ('MAPA') MAPSET ('XDFHAIIJI)
CLI SYSIDI,O REMOTE SYSTEM NAME GIVEN?
BE REMAP •• NO, SEND MSG TO OPERATOR
EXEC CICS ALLOCATE SYSID (SYSIDI)
MVC ATCHSESS,EIBRSRCE
B BUILD
DS OH
MVC ERROIO (LISYSMSG) ,SYSM&; SET UP PROMPTING MSG
MVI ERROIA,DFHBMBRY HIGHLIGHT MESSAGE
XC MAPA! (MAPAE-MAPAI) ,MAPAI RE-cLEAR MAP
B SENDMAP AND SEND IT.
DS OR
EXEC CICS IGNORE CONDITION INBFMH.
EXEC CICS HANDLE AID CLEAR (CLEAR)
EXEC CICS BUILD ATTACH

ATTACHID ('TIMS I) RESOURCE (TRANI) IU'l'YPE (=H 11 I)
•

10 EXEC CICS SEND SESSION (ATCHSESS) ATTACHID (ITIMS I) FROM (DATAl) *
LENGTH (DATAL) INVITE

EXEC CICS SYNCPOINT
11 EXEC CI CS RECEIVE SESSION (ATCHSESS) *

Appendix G. Sample Programs For DTP 539

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

12
13

* 14

15

•
16

•
RECV

*

17
18

UNPICK

19

*
*
CATFMH

20

21

*
!.RECL

22

23

MVC
CLI
BNE

SEl' (R9) LENGTH (INLEN)
XDFEIFLG,EIBSYNC
DFHArr,X'FF'
ABEND

SAVE EIB VALUES
IF NO HFADER SENT,
REMOTE SYSTEM ERROR.

EXEC CICS EXTRACT ATTACH SESSION (ATCHSESS)
QUEUE (QGETQNAM) • GET RE1«>TE QUEUE NAME.

MVC QGETNQl-M ,QGETQNAM
MVC QPURGENM,QGETQNAM

EXEC CICS BUILD ATTACH
ATTACHID C'QMOD') PROCESS(QMODEL) IurYPE (=H'l')

DS; OH
LA DPAGEREG,l 1ST LOGICAL PAGE.
EXEC CICS CONVERSE SESS ION (ATCHSESS) FROM (QGETN)

DS
MVC
LA
LR
LA
XR
MVCL

LH

XR
DS
IC
LR
AR
SR
BZ
'I'M
BO

LA
DS
LH
SR
SH
EX
LTR
BZ
AS·
LA
B

FROMLENGTH (QGETNLEN) TOLENGTH (INLEN) SET (R9)
ATTACHID ('QMOD ') FMH

OH
XDFEIFLG,EIBSYNC
R4,MAPBI
R6,R4
R5,ERRORL-MAPBI
R7,R7
R4,R6

R4,INLEN

R5,R5
OH
R5,O (R9)
R6,R9
R9,R5
R4,RS
QSTATUS
1 (R 6) ,X' 80 '
CATFMH

R7,LINE10
OH
R5,0 (R9)
R4,RS
R5,=H'3'
R5,SETLINE
R4,R4
SENDMAPB
R9, 0 C~9)
R7,LINE20-LINE10 (R7)
LRECL

START OF OUTPUT MAP

LEN:;TH OF MAP

CLEAN UP THE MAP

LENGTH OF REC'O DATA

FMH LENGTH.

POINT BEYOND FMH.
LENGTH OF ACTUAL DATA.
QSTATUS IF NO DATA.
ANY CONCATENATED FMHS ?
YES - AGAIN.

ADDRESS 1ST OUTPUT LINE

LOGICAL RECORD LENGTH
REDUCE BLOCK LENGTH
PREP~...RE FOR EX INSTR.
mVE LREC TO MAP
END OF BLOCK REACHED ?
•• YES, SEND THE MAP

ADVAl\TCE TO NEXT RECORD
ADDR NEXT OUl'PUT LINE
GO TO MOVE NEXT REC

SENDMAPB DS OR

•

*

*
*

24 EXEC CICS SEND MAP C 'MAPB ') MAPSET ('XDFHAI4 ') ERASE WAIT *
CURSOR (=H'1841')

XC ERRORO,ERRORO CLEAR ERROR LINE.

* TESTSYNCDS OH
25 CLI DFHSYNC,X'FF'

BNE TESTFREE
EXEC CICS SYNCPOINT

TESTFREE DS OH
26 CLI DFHFREE,X'FF'

·BE EXIT
27 CLI DFHRECV,X'FF'

BE ABEND

*

540 CICS/VS APRM· (CL)

Page of SC33-0077-2, . revised September 1980 by TNL SN33~268

GETOLP OS OH
28 EXEC CICS RECEIVE SET (R9) LENGTH (INLEN)

* LA R9,3 (R9)
USING OLP,R9

29 CLC OLPCODE,=C'P/'
BNE OLPERR

30 CLI OLPVAL,C·C·
BE RFADQ

31 CLI OLPYAL,C'N'
BNE TFSTPREV
LA DPAGEREG, 1 (DPAGEREG)
B READQ

•
TESTPREV OS OR

OLPVAL,C'P '
CODETEST
DPAGEREG,O
READQ

32 CLI

•

BNE
BcrR
B

CODETEST OS

*

33 LB
SB
BM

TM

BO
BCTR
LA
B

NOSIGN DS
LA

PACKINST OS
EX
EX
CVB
TM

•

Bm
LR
B

OB
R4,INLEN
R4 ,=H ' 6'
OLPERR

OLPVAL,C'O'

NOSIGN
R4,O
RS, OLPVAL+l
PACKINST
OH
RS,OLPVAL
OB
R4,OC
R4·,PACK
RS,DBLWORD
OLPVAL,C'O'

TMINUS
DPAGERm,RS
READQ

TMlNUS OS OR

* TPLUS

*

CLI OLPVAL,C· •
BNE TPLUS
LNR ·RS,RS
B NEWDPAGE

OS OB
CLI OLPv.AL,C'+'
BNE OLPERR

NEWDPAGE OS OH
DPAGEREG,RS

* REAIYJ

AR

OH

BYPASS SBA BYTES.

• P /1 REQUIRED TO START.

CURRENT PAGE AGAIN ?
YES.
NEXT PAGE REQUIRED ?
NO.
YES, SET TS ITEM NO.

PREVIOUS PAGE REQ'O ?
NO.
YES, SET TS ITEf.1 NO.

SBA + 3 CHARS.

IF ~RST CHAR. IS A DIGIT,
NO SIGN HAS BEEN GIVEN.

REDUCE LENGTH BY ONE.
ADDRESS 1ST DIGIT.
CONVERT TOTS ITEM NO.

ADDRESS 1ST DIGIT.

ENSURE NO. IS NUMERIC.
PACK PAGE .NO. AND
CONVERT TO BINARY VALUE.
IF 1ST CHAR. IS NOT A DIGIT,
IT MUST BE A SIGN.

RESEr TS rr.EM NO.

FOR 1.+'
REDUCE CURRENT PAGE NO.

SET TS ITEM m.

OS
LTR
BZ
STCM
EXEC

DPAGEREG ,DPAGEREG IF PAGE NO. IS ZERO

34

3S CLC
BNE
MVC

OLPERR THIS IS AN ERROR.·
DPAGEREG,3, DPAGENO STOlU: QUEUE REcx>RD NO.

CICS CONVERSE SESSION (ATCBSFSS) PROM tQGE~
FROMLENG'l'H (QGETLEN) TOLENGTB (INIaEN) SET (R9) . FMB
INLEN,=H' O' IF· NULL RU SEN!' ,THEN
UNPICK ANALYZE INPUT
XDFEIFLG ,EIBSYNC

*

*

*

Appendix G. Sample Programs For DTP 541

Page of SC33-o077-2, revised September 19S0 by TNL SN33-626S

B

* OC OC
PACK PACK

* OLPERR DS
36 MVC

B

* QSTATUS DS
37 MVC

LA
EXEC

B

* CLEAR DS
3S EXEC

B

* ABEND DS
MVC
EXEC

B

* SETLINE MVC

* SYSMSG DC
OLPERMSG DC
ABENDMSG DC
QSTAMSG DC

*

TESTSYNC NOTHING TO SEND

o (O,RS) ,=C'OOO' ENSURE NUMERIC.
DBLWORD,O(O,RS)

OH
ERRORO (L 'OLPERMSG) ,OLPERMSG SET UP MSG.
SENDMAPB

OH
ERRORO (L'QSTAMSG) ,QSTAMSG SET UP MSG.
DPAGERm,l

CICS CONVERSE SESSION (ATCHSES&1 FROM (QGETN) •
FROMLENGTH (QGETNLEN) TOLENGTH CINLEN) SET (R9) FMH
UNPICK

OH
CICS CONVERSE SESSION (ATCHSESS) FRa.t(QPURGE) *

FROMLENGTH CQPURGELN) TOLENGTH (INLEN) SET (R9) FMH *
EXIT

OH
ERRORO (L' ABEN~SG) ,ABENDMSG SET UP ERROR MSG.

CICS SEND MAP ('MAPB ') MAPSET ('XDFHAI4 ') *
WAIT.
EXIT

o (O,R7) ,2 (R9) MOVE LOG.REC. TO MAP.

C'MUST SPECIFY REMOTE SYSIO '
C'OPERATOR LOOlCAL PAGING ERROR - RE-TYPE'
C' PROCESSING ERROR IN REMOTE SYSTEM'
C· PAGE NO. EXCEEDS QUEUE SIZE'

* QGETN
*
QGETN DS

DC
QGETQNAM DC

*

OH
X'10060Al00001020S ' CLS I ,

QGETNLEN DC AL2 (* -QGE'IN) LENGTH •
*
• QGET

* QGET DS
DC
DC

QGETNQNM DC
DC

DPAGENO OS

* QGETLEN DC

*

OH
X'13060A04000102'
X'OS'
CLS I ,

x'02'
CL2

AL2 (*-QGET)

• QPURGE

* QPURGE OS
DC
OC

QPURGENM OC

* QPURGELN OC

* QMOOEL OS
OC
DC

OH
X'10060A06000102'
XIOS'
CLS' ,

AL2 (*-QPURGE)

OCLS
X'03'
CL7' ,

542 CICS/VS APRM (CL)

LENGTH.

LENGTH.

EXIT DS
END

PROGRA~ NOTES

OR

1. The screen is erased, and the prompting map displayed at the
term inal.

2. The remote system name and data are mapped in.

3. If the reaote system name is given, an ALLOCATE is performed on
that system, and

q. The name of the actual session allocated is found in the EIBRSRCE
field.

5. Use the input data area of the map to advise the operator to
reenter his data, correctly naming the remote system.

6. The map is recleared to ensare that all three fields are correctly
reentered.

7. When pages are returned by IKS, they are preceded by a QXFR FHB; in
this instance this FllB need not be examined, but the IRBFKB
condition will be raised by CICS/VS and should be ignored.

8. Pressing CLEAR will cause the sample to instruct IllS to delete the
demand paging queue after which the program terminates.

9. A transaction is to be initiated on a remote system; the name of
the transaction on that system is supplied via the attach FMB,
built at this point~

10. The data entered by the terminal operator is now sent across the
acquired session together with the previously built attach header.
The presence of the INVITE option indicates that a RECEIVE will
directly follow this SEND and improves performance across the
session.

I 11. A RECEIVE is issued against the remota system to read hack the IKS
I reply. I~S will initially transmit an attach FHH to signify that
I the output will now be sent at the request of the CICS/VS terminal
I operator; this header will be examined to enable the name of the
I lKS demand pa,ged output queue to be found.

12. To enable the program to determine what action should next be
performed on the session, the contents of the EXEC Interface Block,
set by RECEIVE, will have to be retained for future reference.

13. For IKS demand paging output queues, IllS sends as its initial
output an attach header. The absence of this header indica-tes an
error on the remote system.

lq. The IHS queue name is extracted. (The SESSION option is required
in this instance, since the EXTRACT relates to data sent by this
samplels alternate facility; without this option, the principal
facility, that is, the operator terminal, would be addressed.)

15. The sample will issue three types of request to the IMS queue

Appendix G. Sample Programs For DTP 5q3

a) Get Next
b) Get (specific)
c) Purge

The queue model FMHs required to perform these functions must be
completed so as to contain the appropriate lMS queue name.

16. Preceding each queue model FMH, lMS needs an attach FMH, which must
contain the queue model function as its destination process name.
The FMH is built at this point and will be used in conjunction with
all remaining commands across the session.

17. The program has to keep a notB of the page number of the logical
page being currently accessed on the IMS queue; this is to enable
the new page number to be correctly calculated each time a logical
paging command is entered by the operator. To do this, the
register 'DPAGEREG' is used to hold the current number.

18. In order to open the IMS queue for output a GET NEXT command has
first to be issued; this will cause the first logical page of the
message to be returned to CICS/VS. Thereafter, GET commands will
be issued. It will be seen that the command is sent as a text
string containing an attach FaH together with the queue model F"H.
The use of the ATTACHID and FMH options should be noted.

I 19. The record sent by lMS (that is, a logical page) is now prepared
I for writing to the operator's terminal.

20. The output record received from IMS will contain the requested page
record preceded by a QXFR FKH; this Faa is not required in this
sample and is bypassed.

21. The presence of a FMH but no accompanying data in the message
returned from I~S indicates that a request has been made for a
logical page outside the dimensions of the queue size. In such
instances, IMS sends a QSTATUS FMR with the QINVCUR (invalid
cursor) flag set.

22. The output from IMS is in VLVB format; the IMS mapping function
sets one screen output line as one logical record. The following
lines of code unpack the physical record received to obtain single
logical records for transmission to the terminal via BMS.

23. One logical record is inserted and a check made for further logical
records.

24. The whole logical message is now sent.

25. The session-oriented information transmitted across the LU6 session
by the remote transaction must now be examined to determine what
action should be taken next. The syncpoint required indicator in
the EXEC Interface Block is tested and if necessary the program
issues its own SYNCPOINT.

26. If the EXEC Interface Block indicates that the program should now
free the session, thereby denoting that the remote transaction has
completed successfully and has terminated the conversation, the
program now exits causing an automatic freeing of the session.

27. If the EXEC Interface Block indicates that a further RECEIVE should
be made over the session, some kind of error has occurred, since
normally IMS will be awaiting a paging command at this point; thus
the program should be in 'send' state.

54q CICS/VS APRM (CL)

28. The operator now enters a paging command as if this were a normal
CICS/VS application.

29. The command must begin with IP/I.

30. If the current page (IP/CI) is required again, go back to reuse the
current page nu~ber in the GET com~and.

31. If the next page (IP/NI) is required, add 1 to IDPAGEREG' and issue
the GET command.

32. If the previous page (IP/Pl) is required, SUbtract 1 from
'DPAGEREG' and issue the GET command.

33. The presence of a 1+1 or I_I sign is now detected, in which case
the increment or decrement is found and either added to or
subtracted from the logical page number IDPAGEREGI. If no sign is
found, the actual value typed in is the new logical page number
required.

34. The page number of the logical record to be read next, held in
'DPAGEREGI is stored into DPAGENO and a GET command issued.

35. If the data length field indicates that no data has been sent, the
session status must be tested to determine what to do next;
otherwise, the new data will be unpacked.

36. If any error is detected in the paging command entered by the
operator, an error message is sent to him to prompt for the command
to be reentered correctly.

37. The QSTATUS F~H indicates that I~S has detected an invalid paging
request. Having sent the QSTATUS, I~S relocks the queue in
question, and it is the responsibility of the queue owner, in this
case the sample program, to open the queue again for further
processing; this is done by issuing the original GET NEXT which
will unlock the queue and resend the first logical page.

39. A queue purge request is sent to IMS to cause it to delete the
demand paging queue. This command is sent using CONVERSE since IMS
will respond to the purge request by returning a QSTATUS FMH and
the program must allow for its receipt.

Appendix G. Sample Programs For DTP 545

Additions to Tables for the Sample Programs

The following entries are required in the using system's PPT and PCT to
enable these samples to be run:

I PPT
I DFHPPT TYPE=ENTRY,PROGRAM=IDFHAMC

DFHPPT TYPE=ENTRY,PROGRAM=XDFHAll
DFHPPT TYPE=ENTRY,PROGRAM=IDFHAI2
DFHPPT TYPE=ENTRY,PROGRAM=XDFHAI4
DFHPPT TYPE=ENTRY,PROGRAM=DFHXAIBL
DFHPPT TYPE=ENTRY,PROGRAM=DFHIAIBR
DFHPPT TYPE=ENTRY,PROGRAM=DFHXAllA
DFBPPT TYPE=ENTRY,PROGR1M=DFBIAI2A
DFBPPT TYPE=ENTRY,PROGRAM=DFHIAI4A
DFHPPT TYPE=ENTRY,PROGRAM=DFBIAI4B

I
I
I
t
I
I
I ,
I

PCT
DFHPCT TYPE=ENTRY,TRANSID=AIBL,PROGRAM=DFHIAIBL,

SPGRGE=YES,TPGRGE=YES,INBFMH=ALL
DFHPCT TYPE=ENTRY,TRANSID=lIBR,PROGRAM=DFBXAIBR,

SPURGE=YES,TPURGE=YES
DFBPCT TIPE=ENTRY,TRABSID=AICC,PROGRA8=DFHXAl11,

SPURGE=YES,TPURGE=YES
DFHPCT TYPE=ENTRY,TR1NSID=AISC,PROGRAM=DFBIAI21,

SPURGE=YES,TPURGE=YES
DFBPCT TIPE=ENTRY,TRA8SID=AISR,PROGRAM=DFHXAI2A,

SPURGE=YES,TPURGE=YES,INBFMH=ALL,EXTR1CT=lTTACH
DFHPCT TYPE=ENTRY,TRANSID=AICO,PROGRA8=DFHXAI4A,

SPURGE=YES ,TPURGE=YES, I NBFMH=ALL, EXTRACT=AT'lACB
DFHPCT TYPE=ENTRY,TRANSID=AICD,PROGR1M=DFHXAI4B,

SPURGE=YES,TPURGE=YES,INBFMH=ALL,EXTRACT=ATTlca

546 CICS/VS APRM (CL)

*
*

*
*
*
*
*

Bibliography

For further information about the Customer Information Control
System/Virtual Storage (CICSjVS), refer to the following IBM CICS/VS
publications:

Customer Information Control system/Virtual storage (CICSIYS)
Version 1 Release 5:

General Information, GC33-0066

System/!££!ication Design Guide, SC33-0068

System Programmer's Reference Manual, SC33-0069

System Prog£~~~r's Guide (DOSL!2l, SC33-0070

2Y§ig~froqrammer's Guide (OliLVS), SC33-0071*

Application Programmer's Reference Kanual, (Kacro Level), SC33-0079

~!ica tion Prograllmer' s Reference Manual, (RPG-I!l, SC33-0085

IBM 3270 Guide, SC33-0096

IBM 360QLJ630 Guide, SC33-0072

IBM 3650/3680 Guide, SC33-0073

IBM 3767/3770/6670 Guide, SC33-007~

IBM 3790/3730 Guide, SC33-0075

Operator's Guide, SC33-0080

Messages and Codes, SC33-008l

Entry-Level System User's Guide (DOS/VS), SC33-0086

Problem Determination Guide, SC33-0089

Diagnosis Reference, LC33-0105

Data Areas (DOStyS), LY33-6033

Data Areas (OS/V~, LY33-603S*

!EElication PrQgrammer's Reference SummarY-j£ommand Level), GI33-6012

Master Terminal Operator's Reference Sumaary,- 5133-6011

programmina Debugging Reference Sum.ary, S133-6010

Master Index, SC33-0095*

Systems Network Architecture (SMA)

Functional Descri2iion of Logical Unit Types, GC20-l868

!YEes of Logical Unit to Logical unit sessions, GC2D-1869

*Available at the same time as CICS/OS/VS Version 1 Release 5

Bibliography 5~7

Availability of Publications

The availability of a publication is indicated by its use key, which is
the first letter in the order number. The use keys and their .eanings
are:

548

G Generally available: Provided to users of IBM systems,
products, and services without charge,in quantities to meet
their normal requirements. Can also be purchased by anyone
through IBM branch offices.

S Sold: Can be purchas~d by anyone through IBM offices.

L Licensed material, property of IB~: Available only to
licensees of the related program products under the teras of
the license agreements.

CICS/VS APRM (CL)

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

Index

Fach page number in this index refers to the start of the paragraph containing the
indexed item.

& (CL interpreter) 72
&DFHEIMX macro global bit 17

*ASM statement (assembler language) 18
*PROCESS statement (PL/I) 18

? (CL interpreter) 68

ABCODE option 47,363
ABEND (abnormal termination) 360
ABEND command 362
abnormal termination

prevention 37
reactivate an exit 361

abnormal termination recovery 359
ABEND exit processing 360
exceptional conditions 363
options 363

access to DL/I data base 108
access to system information 43

ADDRESS command 43
ASSIGN command 44
CICSjVS storage areas 43
EXEC interface block (EIB) 43
external to application program 44

ACCOUNT option 371
ACCUM option 272
activate an ABEND exit 361
adding records

to batch data interchange data set 288
to DAM data sets 91
to ISAM files 84

address
cursor 148
PCB 109

ADDI£SS command 43
AID (see attention identi!ier)
ALARM option 272
ALL option 272
ALLOCATE command 156
alternate facility 131
alternate index 88
ampersand (CL interpreter) 72
ANYKEY option 150
APOST option 20
application program logical levels 321
application-oriented information (LU6) 157
APPLID option 47
argwnent

deblocking 90
argument value 8

assembler language 8
COBOL 9
PL/I 10

ASIS option
basic mapping support 272
terminal cont~l 197

ASKTIME command 302
assembler language

argument values 8

assembler language (continued)
LENGTH option default 9
program exit 16
register contents 16
restrictions 28
sample programs 415

ASSIGN command
options 47
syntax 44

asynchronous interrupt 134
asynchronous journal output 380
asynchronous transaction processing

(ATP) 339
ATI ~ee automatic task initiation)
ATP ~ee asynchronous transaction

process ing)
ATTACBID option 197
attention condition ~ IGNAL) 142
attention identifier (AID) 149
ATTRB operand 232
attribute control character list 151
audio response unit (7770) 195
audio terminal (2721) 196
auto answer transaction (3735) 185
autocall transaction (3735) 186
automatic task initiation (ATI) 338
AUTOPAGE option 272
AUXILIARY option 350
auxiliary trace facility 368

base locator for linkage (BLL) 30
chained storage areas 31
large storage areas 32
OCCURS DEPENDING ON clauses 31
optimization feature 33

BASE operand 218
basic mapping support (BMS) 209

advantages 209
commands 209
data mapping 210
define a map 211
delete a logical message 263
device independence 209
display devices 250
exceptional conditions 281
field definition macro 231
format independence 21·0
format output without mapping 259
header maps 256
input mapping 213
input/output mapping 215
map definition macro 225
map input data 253
map output data 254
map positioning 239
map retrieval 215
map set definition macro 216
map sets 212
message recovery 250
options 272
output mapping 214

Index 549

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

ba si c mapping support (BMS) (continued)
output operations 248
output with SET option 248
overflow processing 255
page building 242
route a message 249,264
specifying maps 213
symbolic description map 245
terminal code table 249
terminal control commands 209
terminal paging 247
trailer map 256
transmit a logical message 262

batch data interchange 285
add record to data set 288
delete a record from data set 289
destination identification 286
exceptio~al conditions 294
interrogate a data set 287
options 291
read record from data set 287
request next record number 290
send data to output device 290
terminate data set abno~ally
terminate data set normally
update a record in data set 288
wait for function completion 290

batch logical unit (3770) 189
batch mode applications (3740) 187
BIF DEEDIT (built-in function) 391
BLL (see base locator for linkage)
block reference 89
BMS (see basic mapping support)
bracket protocol (LAST option) 141
browse operation 83

ending 98
read next record during 97
read previous record 97
reset starting point 98
specify starting point 96

browsing operations
DAM 92
ISAM 85
VSAM 87

BTAM programmable device 144
BUFFER option 197
BUILD ATTACH command 156
built-in function (BlF DEEDI~ 391

call DL/I data base 110
CALLDLI macro 107
cancel

abnormal termination exit 361
interval control command 309

CANCEL command 309
CANCEL option 363
CARD option 291
CBIDERR condition 205
CBL statement (COBOL) 18
CBUFF option 197
CECI transaction for CL interpreter 67
CECS transaction for CL interpreter 67
chaining

of input data 138
of output data 139

check DL/I call 112
checkout, program 53

550 CICS/VS APRM (CL)

CICS option
COBOL 19
PL/I 21

CLEAR option 150
CNOTCOMPL option 198
COBOL

argument value 9
base locator for linkage (aLL) 30
compilers supported 29
program segments 34
restrictions 29
sample programs 447

CODEREG argument 16
coding conventions 7
COLOR operand

DFHMDF 234
DFHMDl 225
DFHMSD 219

COLOR option 47
COLUMN operand 225
command

argument values 8
end-of-command delimiter 7
format 7
macro equivalents 409
syntax notation 5

command execution (CL interpreter) 71
command execution complete (CL
interpreter) 72

command language translator
data sets 13
optional facilities 18
translated code 14

conunand syntax check (CL interpreter) 70
command-level interpreter 67
commands

BMS 209
paging 251

COMMAREA option 331
common buffer, output to (2980) 166
communication area DmCOMMAREA 30
communication line, relinquishing 134
compiler option.s 19
COMPLETE option 376
conditions (exceptional conditions) 37
CONSOLE option 291
control

exclusive
DAM 92
ISAM 85
releasing (UNLOCK) 96
VSAM 86

pass with return 323
pass without return 323
return 324
trace 370

CONVERSE command 134
CONVERSE option 198
converse with terminal or LU 134
copy

displayed information 148
symbolic description map 245

copy book DFHEIBLK 16
create a journal record 381
CSA option 43
CTLCHAR option 198
CTRL operand

DFHMDI 226

Page of SC33~077-2, revised September 1980 by TNL SN33-6268

CTRL operand (continued)
DFHMSDo 219

CURRENT option 272
cursor

address 148
position 251

CURSOR option 272
CWA option 44
CWALENG option 47

DAM
~owsing operations 92
data sets 89,91
exclusive control 92

data base 107
DL/I 107,121
file control 79

data communication operations 126
data interchange (see batch data

interchange)
data mapping and formatting 210
DATA operand

DFHMDI 226
DFBMSD 219

DATA option 335
data set

batch data interchange 285
DAM 89
identification 82
I5AM 84
translator 13
VSAM 86

DATAONLY option 273
DATAREG argument 16
DATASET option 99
DATASTR option 198
DCT option 376
DEBKEY option 99
deblocking argument 90
DEBREC option 99
DEBUG option

COBOL 19
PL/I 21

debugging 53,352
default action for conditions 37
deferred journal output 380
define a map 211
definite-response protocol

batch data interchange 286
texminal control 140

DEFRESP option
batch data interchange 291
terminal control 140,199

DEL&Y command 302
delay processing of task 302
DELETE command 95
DELETEQ TD conunand 3'tI1
DELETEQ TS command 349
deleting

batch data interchange record 289
°BMS logical message 263
file control record 87,95
loaded program 325
temporary storage queue 349
transient data queue 341

DELIMITER option 47
delimiter, end-of-command 7

DEQ command 318
dequeue from resource 318
DEST option 199
DESTCOUNT option 47,255
DESTID option

ASSIGN command 47
batch data interchange 291

DESTIDLENG option
ASSIGN command 48
batch data interchange 291

destination
extrapartition 338
identification 286
indirect 338
intrapartition 337

detect an attention condition 142
device independence 209
DFHAID (see standard attention identifier
list)
DFHBMS~ ~ee standard attributejprinter
control list)

DFHCQMMAREA communication area 30
DFHEAI stub 16
DFHEIBLK copy book 16
DFHEICAL macro 14
DFHEIEND macro 14
DFHE IENT macro

CODEREG 16
DATAREG 16
defaults 16
EIBREG 16
epilog code 14
prolog code 14

DFHEIPLR symbolic register 17
DFHEISTG macro 14
DFHMDF macro instruction 231
DFHMDI macro instru.ction 225
DFHM5D macro instruction 216
DFH2980 structure 166
DFTPROF option 291
DIB (DL/I interface block) 123
direct access to records 82
disconnect a switched line 134
display device operations 147

attention identifier (AID) 149
copy displayed information 148
cursor address 148
erase all unprotected fields 148
pass opntrol on receipt of an AID 149
print displayed information 147
programming techniques 250
request input operation without
data 148

standard attention identifier list
(DFHAID) 149

standard attribute/printer control
character list ° (DFHBMS~) 151

disposition and message routing 265
distributed transaction processing

(DTP) 131
DL/I

access scheduling 108
call check 112
CALL statement 107
data base access 108
data base call 110
EXEC DLI command 121
interface block (DIB) 123

Index 551

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

DL/I (continued)
response codes 113
restrictions on ROUTE command 264
with EDF 65
work area 110

DLI option
COBOL 19
PL/I 21

DSECT type of DFHMSD macro 216
DSIDERR condition 103
DSSTAT condition 294
DTP ~istributed transaction
processing) 131

DTP sample programs 511
DUMP command 374
dump control

dump main storage 374
exceptional conditions 377
options 376

DUMPCODE option 377
DUPKEY condition 103
DUPREC condition 103

ECADDR option 310
EDF (see execution diagnostic facility)
EI option 371
EIB (see EXEC interface block)
EIBAID field 395
EIBATT field 395
EIBCALEN field 395
EIBCPOSN field 395
EIBDATE field 302,396
EIBDS field 396
EIBEOC field 396
EIBFMB field 396
EIBFN field 396
EIBFREE field 396
EIBRCODE field 397
EIBRECV field 397
EIBREG argument 16
EIBREQID field 397
EIBRSRCE field 397
EIBSYNC field 397
EIBTASKN field 398
EIBTIME field 302,398
EIBTRMID field 398
EIBTRNID field 398
end browse operation 98
end-of-command delimiter 7
ENDBR cannand 98
ENDDATA condition 314
ENDFILE condition 103
ENDINPT condition 205
ENQ command 318
ENQBUsY option 319
enqueue upon resource 318
ENTER command 369
ENTER key ~L interpreter) 74
ENTER option 150
ENTRY option 331
entry point, trace 365
ENVDEFERR condition 314
EOC condition

basic mapping support 281
terminal control 205

EODS condition
basic mapping support 281

552 CICS/VS APRM (CL)

EODS condition (continued)
batch data interchange 294
terminal control 205

EOF condition 205
EQUAL option 99
erase all unprotected fields 148
ERASE option 273

terminal control 199
ERASEAUP option 273
ERROR condition 38
ERRTERM option 273
establish a sync point 388
event

control area, timer 303
m:>nitoring point 365
waiting for 304

exceptional conditions
abnormal termination recovery 363
basic mapping support 281
batch data interchange 294
description 37
dump control 377
file control 103
HANDLE CONDITION command 38
IGNORE CONDITION command 39
interval control 314
journal control 385
list of 40
program control 332
storage control 335
task control 319
temporary storage control 352
terminal control 205
trace control 371
transient data control 343

exclusive control
DAM 92
ISAM 85
releasing (UNIDCK) 96
VSAM 86

EXEC DLI command 65,121
EXEC interface block (EIB)

description 43
fields 395

e~ecution diagnostic facility (EDF)
displays 63
EXEC DLI command 65
functions 53
installing 55
inVOking 55
program labels 64
pseudo-conversational program 64
terminal sharing 58

exit (see abnormal tennination recovery).
exit from assembler-language program 16
expanded. area ~L interpreter) 74
expiration time

notification when reaChed 303
specifying 301

EXPIRED condition 314
EXTATT operand 220
EXTDS option 48
extendedattributes 261
EXTRACT ATTACH canmand 156
EXTRACT TCT command 157
extrapartitiondestination 338

Page of SC33-0071-2, revised September 1980 by TNL SN33-6268

facil.ities
for logical units 138
for terminal.s 134
for terminal.s and logical. units 133

FACILITY option 48
facility, alternate 131
facil.i ty, principal 131
FBA (fixed bl.ock architecture) devices 81
FeI option 48
FCT option 316
FE option

COBOL 20
PL/I 21

field definition macro (BMS) 231
field edit buil.t-in function 391
fields, EIB 395
fil.e control. 81

browsing 83
DAM data sets 89
data set identification 82
deleting VSAM records 95
direct access to records 82
end browse operation 98
exceptional. conditions 103
ISAM data sets 84
multiple file operations 82
options 99
read a record 93
read next record 91
read previous record 91
rel.ease exclusive control 96
reset start for browse 98
sequential access to records

(browsing) 83
specify start for browse 96
update a record 95
VSAM data sets 86
writing new record (WRITE) 94

FINAL type of DFHMSD macro 216
fixed block architecture (FBA) devices 81
flag byte, route list 269
FLAG option

COBOL 20
PL/I 21

FMH (see function management header)
FMH option 199,310
FMHPARM opticm 213
format

conunand 1
independence 210
trace table 366

format output without mapping 259
formatting (BMS) 210
FREE command 143,157
free main storage 334
FREEKB option 273
FREEMAIN command 334
FROM option

basic mapping support 214
batch data interchange 291
dump control 376
file control. 99
interval control. 310
journal control 384
temporary storage control 350
terminal control 199
trace control 371
transient data control. 342

FROMLENGTH option 199
FRSET option 274
ful.l function logical unit
FUNCERR condition 294
function key meanings, EDF
function management header

inbound 141
outbound 141

functions of EDF 53

(3790)

59
(FMH)

191

140

general banking tenninal system (see 2980)
GENERIC option 99
get main storage 333
GErMAIN command 333
GRPNAME operand 235
GTEQ opt ion 99

HANDLE ABEND canmand 361
HANDLE AID command 149
HANDLE CONDITION command 38
header

format 260
map 256

HEADER operand
DFHMDI 227

HEADER option 274
HILIGBT operand

DFHMDF 235
DFHMDI 227
DFHMSD 220

HILIGBT option 48
HOLD option 331
BONEOM option 274
host canmand processor LU (3650/3680) 180
host conversational. (3270) LU (3650) 181
host conversational (3653) LU (3650)
HTAB operand 221

I/O work area in DL/I 110
identification

VSAM data sets 86
DAM record 89
data set 82
destination 286
ISAM record
VSAM record

IGNORE CONDITION command 39
IGREQCD condition

batch data interchange 294
BMS 281
terminal control 205

IGREQID condition 281
ILLOGIC condition 103
INBFMB condition 205
inbound FMH 141
index, alternate 88
indirect destination 338
IN[TIAL operand 236
initialize main storage 333
initiate a task (see start a task)
INXTEMGoption 335
input data

chaining of 138
unsolicited 141

input data set 13

Index 553

Page of SC33-00_77-2, revised September 1980 by TNL SN33-6268

input mapping (BMS) 213
input operation without data 148
input/output mapping (BMS) 215
inquiry logical unit (3790) 192
installing EDF 55
installing the CL interpreter 76
interactive logical units ~88
interleaving conversation with message
routing 266

interpreter
installation 76
invoking 67
screen layout 68
security rules 75
variables 72

interpreter logical unit P650) 183
interrogate a data set. 287
interval control 301

cancel interval control command 309
delay prOcesSing of task 302
exceptional conditions 314
notification when specified time
expires 303

options 310
request current time of day 302
retrieve data stored for task 307
specify expiration time 301
specifying request identifier 302
start a task 305
wait for event to occur 304

INTERVAL option
basic mapping support 274
interval control 310

INTO option
basic napping support 274
batch data interchange 291
file control 99
interval control 310
temporary storage control 350
terminal control 199
transient data control 342

intrapartition destination "337
INVERRTERM condition 281
INVITE option 138,199
INVLDC condition 281
INVMPSZ condition 281
invoking EDF 55
invoking the CL interpreter

CECI transaction 67
CECS transaction 67

INVREQ condition
basic mapping support 282
file control 103
interval control 314
journal control 385"
program control 332
temporary storage control 352

rNVTSREQ condition 314
IOERR condition

file contrOl 104
interval control 314
journal control 385
temporary storage control 352
transient data control 343

I SAM
browsing operations 85
data sets 84
exclusive control 85

554 CICSjVS APRM (CL)

"ISAM (continued)
keys 84

ISCrNVREQcondition
file control 104
temporary storage 352
transient data 343

ISSUE ABORT command 289
ISSUE ADD command 288
ISSUE COP~ command 148
ISSUE DISCONNECT canmand

disconnect a switChed line 134
teDninate a session 143

ISSUE" END command 289
ISSUE ENDFrLE command 187
ISSUE ENDOUTPur command 187
ISSUE EODS command 183
ISSUE ERASE conmand 289
ISSUE ERASEAUP camnand 148
ISSUE LOAD COmiDand 183
ISSUE NOTE command 290
ISSUE PRINT command 147
ISSUE QUERY command 287
ISSUE RECEIVE command 287
ISSUE REPLACE conmand 288
ISSUE RESET command 134
ISSUE SEND command 290
ISSUE SIGNAL canmand 134
ISSUE WAIT command 290
ITEM option 350
ITEMERR condition 352
IUTYPE option 200

.n"ILEID option 384
JIDERR condition 385
JOURNAL command 381
journal control

create a journal record 381
exceptional conditions 385
journal records 379
options 384
output synchronization 380

" synchronizing with output 382
JTYPEID option 384
JUSFIRST option 275
~SLAST option 275
JUSTIFY operand

DFHMDF 236
DPHMDI 227

"JUSTIFY option 240,274

KEYLENGTH option
batch data interchange 291
file control 100

KEYLENGTH option for remote data set 92
keys

DAM 90
ISAM 84
VSAM 86

LABEL option 363
LANG operand 221
LANGLVL option 20
LAST option

basic mapping support 275
terminal control 141,200

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

LDC operand 221
LDC option

basic mapping support 275
descri~ion of 178
terminal control. 200

LDQ1NEM option 48
LDCNUM option 48
LEAVERB option 200
LENGERR condition

batch data interchange 294
file control 104
interval control 314
journal control 385
temporary storage control 352
terminal control 205
transient data control 343

LENGTH operand 237
LENGTH option

basic mapping support 276·
batch data interchange 292
default (assembler language) 9
default (PL/I) 11
dump control 377
file control 100
interval control 310
journal contr9l 384
program control 331
storage control 335
task control 319
temporary storage control 350
terminal control 201
transient data control 342

levels, application program logical 321
LIGHTPEN option 150
LINE operand 228
line, communication

disconnect a switched 134
relinquishing 134

LI~DR option 201
LINECOUNT option 22
LINK command 323
link to progJ:am anticipating return 323
list of e:x:ceptional conditions 40
LIST option

basic mapping support 276
command 1anguage translator 20

listing data set 14
load a program, table, or map 324
LOAD conmand 324
locality of reference 26-
logical device code (LDCoption) 178
logical levels, application program 321
logical message 247 .
logical record presentation 139
logical units

batch 189
conversing with (CONVERSE) 134
facilities for . 138
interactive 188
pipeline 176
reading data from

batch data in~erchange 287
terminal control 133

wri ting data to
batCh data interchange 288
terminal control 133

3270 170
3270 SCS Printer 171

logical units (continued)
327o-Display (LUTYPE2) ·172
3270-Printer (LUTYPE3) 173
3600 (3601) 177 .
3600 (3614) 179
3600pipeline 176
3650 host conversational (3270) 181
3650 host conversational (3653) 182
3650 interpreter· 183
3650 pipeline 176
3650/3680 host command processor 180
3767 interactive 188
3770 batch 189
3770 interactive 188
3190 (327 O-display) 194
3790 (3270-printer) 195
3790 full function 191
3790 inquiry 192
3790 SCSprinter 193

Lt11'YPE2 (3270-DisplayLU) 172
LUTYPE3 (3270-PrinterLU) 173
LUTYPE4

batch data interchange 285
logical record presentation 139
logical unit . 154

LUTYPE6
logical unit 155

L40 option 276
L64 option 276
LSO option 276

macro global bit &DFHEIMX 17
macro instruction

DFBMDF 231
DFHMDI 225
DFBMSD 216

macros and equivalent commands 409
macros used with commands 27
MAIN option 350
main storaqe

dumping (DUMP) 374
ini ticll.ize 333
obtain 333
releasing (FREEMAIN) .334

map definition macro 225
MM> option 276
map positioning 239·
map retrieval (BMS) 215
map set definition macro 216
MAP type of DFHMSD macro 216
MAP~IL condition 2S2
MAPONl-Y option 276
mapping

input .data (REX:EIVE MAP)· 253
output data (SEND MAP) 254,255

·maps .
assembler sample programs 439
COBOL sample programs 471
copy symbolic description 245
defininq 211
PL/I sample programs 503

MAl?SET option 276
-MARG:INS option 22
mass insert operations 87
MASSINSERT option 100
message

format, teletypewriter 146

Index 555

Page of SC33-0077-2, revised September 1980 by TNL SN33~268

message (continued)
length, teletypewriter 146
recovery (BMS) 250
routing (see routing messages)
title 266

MODE operand 221
MONITOR option 371
monitoring point (ENTER command) 365
multiple file operations 82
multithreading 25

NETNAME option 201
NEXT option 350
NLEOM option 277
NOAUTOPAGE option 271
NOCBECK option 311
NODATARECD condition 294
NOEDIT option 259,271
NOEPILOG option 19
NOHANDLE option 37
NOJBUFSP condition 385
NOLIST option 20
NONUM option 20
NONVAL condition 206
NOOPSEQUENCE option 22
NOOPT option 20
NOOPTIONS option 23
NOPASSBKRD condition 206
NOPASSBRWR condition 206
NOPROLOG option 19
NOSEQ option 20
NOSEQUENCE option 23
NOSOURCE option

COBOL 21
PL/I 23

NOSPACE condition
file control 105
temporary storage control 352
transient data control 343

NOSPIE option 19
assembler language 19
COBOL 20
PL/I 22

NOSTART condition 206
NOSTG condition 335
NOTALLOC condition 206
notation, syntax 5
NOTFND condition

file control 105
interval control 315

NOTOPEN condition
file control 105
journal control 385
transient data control 343

NOTRUNC canpiler option 33
NOWAIT option 292
NOXREF option

COBOL 21
PL/I 23

NIM option 20
NUMREC option

batch data interchange 292
file control 100

NUMTAB option 49

556 CICS/VS APRM ~L)

OBFMT operand
DFHMDI 228
DFHMSD 222

object program size 21
obtain main storage 333
OCCURS operand 237
OPCLASS option

ASSIGN command 49
BMS 211

operator class codes 266
OPERID option 150
OPERPURGE option 277
OPID option 49
OPMARGINS option 22
OPSECURITY option 49
OPSEQUENCE option 22
OPT option 20
optimization feature (COBOL) 33
options

abnormal termination recovery 363
ADDRESS command 43
ASSIGN command 41
basic mapping support 272
batch data interchange 291
dump control 376
execution time (PL/ISTAE) 34
file control 99
HANDLE AID command 150
HANDLE CONDITION command 39
interval control 310
journal control 384
program control 331
STAE (PL/I) 34
storage control 335
task control 319
temporary storage control 350
terminal control 197
trace control 371
transient data control 342
translator

assembler language 19
COBOL 19
PL/I 21

OPl'IONS option 23
OPTIONS (MAIN) specification 35
outbound FMH 141
output camnands with SET option (EMS) 248
output control (2980) 166
output data set 14
output data with extended attributes 261
output data, chaining of 139
outpu t mapping (BMS) 214
output operations in BMS 248
output to common buffer (2980) 166
OVERFLOW condition 282
overflow processing 255
overtyping EDF displays 63

PA option 150
page 247
page building

COLUMN operand 241
examples 242
JUSTIFY operand 241
LINE operand 241
map positioning 239,240
screen contents 239

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

page building (continued)
trailer area 240

PAGENUM option 49
paging

cormnands 251
terminal 247

PAGING option 278
parameter list storage 16
PASSBK option 201
passbook control (2980) 165
passing control

anticip:tting return (LINK) 323
on receipt of an AID (HANDLE AID) 149
without return (XCTL) 323

passing data
to new tasks 307
to other programs 325

PCB (program communication block) 107
PCB address 109
PCT option 376
PERFORM option 371
PF (program function) key

CL interpreter 74
EDF 57

PF option 150
PFXLENG option 384
PGMIDERR condition

abnormal termination recovery 363
program control 332

physical key 90
physical map (BMS) 211
PICIN operand 238
PICOUT operand 239
pipeline logical unit 176
PL/I

argument value 10
LENGTH option default 11
OPrIONS (MAIN) specification 35
program segments 35
restrictions 34
sample programs 479
STAE option 34
translator options 21

POINT command 157
POS operand 231
POST command 303
posting timer event control area 303
PPT option 376
PREFIX option 384
principal facility 131
PRINSYSID option 49
print displayed information 147
PRINT option

basic mapping support 278
batch data interchange 292

printer control character list 151
PROCESS option 201
PROFILE option 202
program checkout 53
program canmunication block (PCB) 107
program control

CL interpreter 75
deleting loaded program 325
exceptional conditions 332
linking to another program 323
load a pr-ogram, table, or map 324
options 331
passing data to other programs 325

program control (continued)
program logical levels 321
returning program control 324
transfer program control 323

program function key (see PF key)
program labels in EDF 64
PROGRAM option

abnornal termination recovery 363
dump control 376
program control 331
terminal control 202

program segments
COBOL 34
PL/I 35

program specification block (PSB) 107
programming techniques

COBOL 29
display devices 250
general 25
PL/I 34

programs
checking out pseudo-oonversational 64

programs, sample 415
PROTECToption 311
PS operand

DPBMDF 239
DFBMDI 229
DFHMSD 222

PS option 49
PSB (program specification block) 107
PSB release 112
PSB scheduling 109
pseudo-conversational programming 64
PSEUDOBIN option 202
PURGE MESSAGE command 263

QBUSY condition 344
QIDERR condition

temporary storage control 352
transient data control 344

quasi-reenterability 25
question mark (CL interpreter) 68
QUEUE option 202

interval control 311
temporary storage control 351
transient data control 342

queue, temporary storage 345
QUarE option 20
QZERO condition 344

RBA option 100
RDATT condition

basic mapping support 282
terminal control 206

reactivate an ABEND exit 361
read attention 162
READ command 93
reading

batch data interchange record 287
data from temporary storage queue 348
data from terminal or LU 133
data from transient data queue 340
file control record 93
next record when browsing 97
previous record in VSAH browse 97

READNEXT command 97

Index 557

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

READPREV command 97
READQ TO command 340
READQ TS command 348
RECEIVE command 133
RECEIVE MAP command 253
RECFM option 202
record

browsing 83
creating journal 381
deleting VSAM 87,95
direct access to 82
identification

DAM data sets 89
ISAM data sets 84

journal 379
reading

batch data interchange 287
file control 93
next when browsing 97
previous during VSAM browse 97

requesting next number 290
sequential access to (brows ing) 83
updating

batch data interchange 288
file control (REWRITE) 95

writing new (adding)
batch data interchange 288
file control (WRITE) 94

record descriptions
assembler language sample programs 446
COBOL sample programs 478
PL/I sample programs 510

recovery
abnormal termination 359
and debugging 352
BMS message 250
sequential terminal support 356
sync point 387

reenterability 25
register contents in assembler language 16
release a PSB 112
RELEASE command 325
RELFASE option 278
releasing

area of main storage 334
exclusive control (UNlOCK) 96

relinquish communication line 134
remote data set, KEYLENGTH option 92
REQID option

basic mapping support 278
file control 101
interval control 311
journal control 384

RESET option 363
reset start for browse 98
RESETBR command 98
RESOURCE option 203,319
resources

scheduling use of 318
sharing VSAM 88

response codes (DL/I) 113
RESTART option 49
restrictions

assembler language 28
COBOL 29
PL/I 34

RETAIN option 278
RETPAGE condition 282

558 CICS/VS APRM (CL)

RETRIEVE command 307
retrieve data stored for task 307
RETURN command 324
return facility to CICS/VS 143
return program control 324
REWRITE command 95
REWRITE option 351
RIDFLD option

batch data interchange 292
file control 101

ROLLBACK option 388
route a message 264
ROUTE command

DL/I restrictions 264
route list (LIST option) 266

format 269
status flag byte 269

routing messages (ROt1I'E) 249
disposition 265
interleaving conversation with 266
message title (TITLE option) 266
operator class codes 266
route list 266
sample sequence of commands 267

RPROCESS option 203
RRESOURCE option 203
RRN option

batch data interchange 293
file control 101

RTEFAIL condition 282
RTERMID option 311
RTESOME condition 283
RTRANSID option 312

sample program
browse (assembler language) 425
browse (COBOL) 456
brows e (PL/1) 488
operator instruction (assembler

language) 417
operator instruction (COBOL) 449
opera tor instruct ion (PL/I) 481
order entry (assembler language) 430
order entry (COBOL) 461
ord er entry (pL/I) 493
order entry queue print (assembler

language) 433
order entry queue print lCOBOL) 465
order entry queue print (PL/I) 497
report (assembler language) 436
report (COBOL) 468
report (pL/I) 500
update (assembler language) 418
update (COBOL) 450
update (PL/I) 482

schedule a PSB 109
schedule access (DL/I) 108
schedule use of resource by task 318
screen layout (CL interpreter)

command input area 68
information area 69
status area 69

SCRNHT option 50
SCRNWD option 50
SCS printer logical unit (3790) 193
securi ty rules

CL interpreter 75

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

security rules (continued)
EDF 55

SEGIDERR condition 105
segment search argument (SSA) 110
segments, program

(x)BOL 34
PL/I 35

SEGSET option 101
SEGSETALL option 101
SELNERR condition 294
send asynchronous interrupt 134
SEND command 133
send data to output device 290
SEND MAP canmand 254
SEND PAGE command 262
SEND TEXT conmand 259
SEND/RECEIVE node 138
SEND/RECEIVE protocol 138
SEQ option 20
SEQUENCE option 23
sequential access (browsing) 83
sequential retrieval (see browsing)
sequential t~nal support 356
SERVICE RELOAD statement (COBOL) 33
SESSION option 203
session-oriented information (l.U6) 157
SESSIONERR condition 206
SET option

basic mapping support 248,279
batch data interchange 293
file control 101
interval control 312
program control 331
storage control 335
temporary storage control 351
terminal control 203
transient data control 342

SHARED option 335
sharing VSAM resources 88
SIGDATA option 50
SIGNAL condition 142,207
SINGLE option 371
single threading 25
SIT option 376
SIZE operand 229
skip-sequential processing 88
SOURCE option

COBOL 21
PL/I 23

SPACE option 21
SSA (segment search argument) 110
STAE opticn (PL/I) 34
standard attention identifier list

(DFHAID) 149
standard attribute/printer control
character list (DFHBMSCA) 151

standard CICS/VS terminal support 153
start a task

passing data to new tasks 307
with terminals and data 306.1
with terminals but no data 306
without terminals 306

START command 305
STARTBR conunand 96
S~RTCODE option 50
STARTIo option 384
STATIONID option 50
status flag byte, route list 269

storage (see main storage)
storage area length 41
storage oontrol 333

exceptional conditions 335
initialize main storage 333
obtain main storage 333
options 335
release area of main storage 334

stora9~ for parameter list 16
STORAGE operand 222
STORAGE option 316
STRFIELD option 204
stub DFHEAI 16
SUBADDR option 293
SUFFIX operand 223
SUSPEND command 317
suspending task (SUSPEND) 317
switched line disconnection 134
symbolic cursor positioning 251
symbolic description map (BM51 212
symbolic register DFHEIPLR 17
sync point 387
synchronizing

journal output 380
journal output (WAIT JOURNAL) 382
terminal input/output 133

SYNCPOINT command 388
syntax notation 5
syntax style 8
SYSBUSY condition 207
SYSID option 351

ASSIGN command 50
file control 101
interval control 312
terminal control 204
transient data control 342

SYSIDERR condition 344
file control 105
interval control 315
temporary storage control 352
terminal control 207

system information, access to 43
SYSTEM option 371
system trace entry point 365
System/3 158
System/370 158
System/1 159

tables 477
assembler language sample programs 445
COBOL sample programs 477
PL/I sample programs 509

TABLES option 376
task control 317

exceptional conditions 319
options 319
schedule use of resource by task 318
suspending task (SUSPEND) 317

task identification 135
task initiation (see start a task)
TASK option 376
TCAM-supported terminals 144
TCT option 376
TCTUA option 44
TCTOALENG option 50
techniques, progrannning 25

Index 559

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

teletypewriter programming
message format 146
message length 146

TELLERID option 50
temporary storage control

deleting temporary storage queue 349
exceptional conditions 352
options 350
queue 345
read from temporary storage queue 348
typical uses of 346
write to temporary storage queue 347

TERM operand 223
TERMCODE option 51
TERMID option

interval control 312
terminal control 204

TERMIDERR condition
interval control 315
terminal control 207

terminal code table 249
terminal control 131

BMS requests 209
bracket protocol (LAST q>tion) 141
Bl'AM programmable device 144
chaining of input data 138
chaining of output data 139
converse with terminal or LU 134
definite response 140
detecting attention condition

(SIGNAL) 142
disconnect a switched line 134
display device operations 147
exceptional conditions 205
facilities for logical units 138
facilities for terminals 134
facilities for terminals and LUs 133
FMH, inbound 141
FMH, outbound 141
function mana~ment header (FMH) 140
interactive logical units 188
logical record presentation 139
LUTYPE2 (3270-Display L~ 112
options 197
pipeline logical unit 176
read attention 162
reading data from te~inal or LU 133
relinquish communication line 134
standard CICS/VS terminal support 153
synchronize terminal I/O 133
System/3 158
System/370 158
System/7 159
TCAM-supported terminals 144
teletypewriter programming 146
terminate a session 143
unsolicited input 141
write break 163
writing data to terminal or LU 133
2260 161
2265 161
2741 162
2770 164
2780 164
2980 165
3270 (BTAM or TCAM supported) 168
3270 in 2260 compatibility mode 169
3270 logical unit 170

560 CICS/VS APRM ~L)

terminal control (continued)
3270 SCS Printer logical unit 171
3270-Display LU (LUTYPE2) 172
3270-Printer LU (LUTYPE3) 173
3600 (3601) logical unit 177
3600 (3614) logical unit 179
3600 pipeline logical unit 116
3650 host conversational (3270) LU 181
3650 host conversational (3653) LU 182
3650 interpreter logical unit 183
3650 pipeline logical unit 176
3650/3680 host command processor LU 180
3660 184
3735 185
3740 187
3767 interactive logical unit 188
3770 batch logical unit 189
3770 interactive logical unit 188
3790 (3270-display) logical unit 194
37~0 (3270-printer) logical unit 195
3190 full function logical unit 191
3790 inquiry logical unit 192
3790 SCS printer logical Wlit 193
7770 audio response unit 195

TERMINAL option
basic mapping support 279
dump control 376

terminal paging 247
terminal sharing

CL interpreter 75
EDF 58

terminal-oriented task identification 135
terminating

processing of data set
abnormally (ISSUE ABORT) 289

session 143
task abnormally (ABEND) 362

time of day, requesting (ASKTIME) 302
TIME option

basic mapping support 279
interval control 312

time-initiated transaction (3735) 186
timer event control area 303
TIOAPFX operand

DFHMDI 229
DFHMSD 224

TITLE option 266,279
title, message 266
TOLENGTB option 204
trace control 365

auxiliary trace facility 368
controlling trace facility 370
exceptional conditions 311
options 371
trace entry format 361
trace entry point 365
trace facility control 366
trace flags .366
trace table format 366
user trace entry point 369

trace entry format 367
trace entry point 365
trace facility control 366
TRACE OFF command 370
TRACE ON command 370
trace table format 366
TRACEID option 371

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

trailer
format 260

trailer map 256
TRAILER operand 230
TRAILER option 279
transfer program control 323
TRANSID option

basic mapping support 279
interval control 313
program control 331

TRANSIDERR condition 315
transient data control

asynchronous transaction processing
(ATP) 339

automatic task initiation (ATI) 338
delete intrapartition queue 34.1
exceptional conditions 343
extrapartition destination 338
indirect destination 338
intrapartition destination 337
options 342
read data from transient data queue 340
write data to transient data queue 340

translated code
assembler language 14
COBOL 17
PL/I 17

translation tables for 2980 405
translator data sets

input 13
listing 14
output 14

translator options 18
assembler language 19
COBOL 19
PL/I 21

transmit a logical message 262
TSIOERR condition 283
TWA option 44
TWALENG option 51
TYPE operand 21 7

UIB (user interface block) 108
UNATTEND option 51
UNEXPIN condition 294
UNLOCK comnand 96
unsolicited input 141
update a record

batch data interchange 288
file control 95

UPDATE option 102
user interface block (UIB) 108
USER option 371
user trace entry point 365,369

VALIDATION option 51
validity of reference 26
VALIDN operand

DFHMDF 239
DFHMDI 230
DFBMSD 224

values of arguments 8
variable t:=L interpreter) 72
virtual storage environment 25
virtual storage paging 25
VOLUME option 293

VOLUMELENG option 293
VSAM

alternate index 88
browsing operations 87
data sets 86

deletion of records 87
record identification 86

exclusive control 86
keys 86
mass insert operations 87
sharing resources 88
skip-sequential processing 88

VTAB operand 224

WAIT EVENT canmand 304
WAIT JOURNAL command 382
WAIT option

basic mapping support 280
interval control 313
journal control 385
of SEND command 133
terminal control 133,204

WAIT SIGNAL command 142
WAIT TERMINAL connnand 133
waiting

batCh data interchange 290
for event to occur 304
terminal control operation 133

working set 26
WPMEDIA option 293
WRBRK condition

basic mapping support 283
terminal control 207

write break 163
WRITE canmand 94
WRITEQ TO camnand 340
WRlTEQ TS command 347
writing

batch data interchange record 288
data to temporary storage queue 347
data to terminal or logical unit 133
data to transient data queue 340
file control record 94

XCTL cOllUlBnd 323
XOPTS keyword 18
XREF option

COBOL 21
PL/I 23

2260 161

2260 canpatibility 169

2265 161

2721 196

2741 162

Index 561

Page of SC33-0077-2, revised September 1980 by TNL SN33-6268

2770 164

2780 164

2980 165
DFH2980 structure 166
output control 166
output to common buffer 166
passbook control 165
tranSlation tables for 405

3270
(BTAM or TeAM supported) 168
in 2260 compatibility mode 169
logical unit 170

3600 174
pipeline logical unit 176
3601 logical unit 177,178
3614 logical unit 179

3650
full function logical unit 184
host conversational (3270) LU 181·
host conversational (3653) LU 182
interpreter logical unit 183
pipeline logical unit 184

3650/3680
host conunand processor LU 180

3660 184

3680
full function logical unit 184
host command processor LO 180

3735 185
autoanswer transaction 185
autcx::all transaction 186
time-initiated transaction 186

3740 187
batch mode applications 187

3767 interactive logical unit 188

3770
batch logical unit 189
interactive logical unit 188

3790
full function logical unit 191
inquiry logical unit 192
SCS printer logical unit 193

562 CICS/VS APRM (CL)

3790 (continued)
3270-display logical unit 194
3270-printer logical unit 195

7770 audio response unit 195

CD
c:
:J
'tl
! ... o
o
Cl
c:
o
~ ...
;:,
u

Customer Information Control System/Virtual Storag~ (CICSIVS)
Application Programmer's Reference Manual (Command l~ve1)

SC33-0077-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts. programmers. and operators
of IBM systems. This fonn may be used to communicate your views about this publkation. They will be sent
to the author's department for whatever review and action. if any. is deemed appropriate. Comments may be
written in your own language: use of English is not required.

IBM may use or distribute any of the infom1ation you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course. continue to use the infonnation you supply.
Note: Copies of IBM publications are not stocked af tile location tv whicll tllis fonn is addressed. Please direct
allY requests for copies of publications, or for assistance in using yvur IBM s)'stem, to your IBM representative
or to the IBM branch office sen'ing your locality.

Number of your latest Technical Newsletter for this publication

If you want an acknowledgement, give your name and address below.

Name

Job Title Company

Address.

Zip

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere,Your IBM
representative or IBM branch office will be happy to forward your comments.)

SC3~-0077-2

Read~r's Comment Form

Fold and tape Please do not staple Fold and tape .. ,

BUSINESS REPLY MAIL
FIRST CLASS PERMIT 40 ARMONK, NEW YORK

Postage will be paid by addressee:

International Business Machines Corporation
Department 812HP
1133 Westchester Avenue
White Plains,. New York 10604

Fold and tape

------ .::®
--­
~ ------ - -~-------

-~- .. -
International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, N.Y. 10604

I BM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown, N. Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation

360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

IIIII No postage "
necessary
if mailed

in the
United States

Fold and tape

(")

(")
en -< en
»
"C
"C

~r
r-+
O·
::J

" (3
co
Ql
3
3
(1) ...,
VI~

:0
(1)
.......
(1) ...,
(1)
::J

~
!5:
Q)

::J
C
Q)

n o
3
3
Q)

::J
a.
r
(1)

<
~

en
(")
W w
6 o
-......I
-......I
~

§ : :~-::~ / Technical Newsletter

Customer Information Control
System/Virtual Storage (CICS/VS)
Version 1 Release 5

This Newsletter No.

Date

Base Publication No.

Previous Newsletters

Application Programmer's Reference Manual (Command Level)

© Copyright IBM Corp. 1977, 1978, 1979, 1980

SN33-6268

September 1980

SC33-0077-2

None

This technical newsletter, a part of Version 1 Release 5 (Version 1.5) of the program
product Customer Information Control System/Virtual Storage (CICS/VS), provides
replacement pages and/or additional pages for the subject manual. Pages to be
inserted and/or removed are listed below.

Title page, edition notice
v-viii
15, 16
29,30
33,34
39,40
47-52
65,66
79-82
85-88
88.1, blank (added)
93-96
99-100
107, 108

117,118
121, 122
139, 140
149,150
179,180
183, 184
197-204
225,226
239,240
253,254
259,260
265-272
277,278
305,306

306.1, blank (added)
311,312
345-348
373,374
391,392
403,404
425,426
451,452
455-458
487-490
533-536
539-542
549-562 (index)

A change to the text is indicated by a vertical line to the left of the change.

Summary of Amendments

The changes incorporated by this TNL are minor technical changes and corrections
(indicated by the vertical lines) and sundry editing and formatting changes (not
indicated).

Note: Please file this cover letter at the back of the manual to provide a record of
changes.

IBM United Kingdom Laboratories Ltd., Technical Documentation Department, Hursley Park,
Winchester, Hampshire S021 2JN, England.

SC33-0077-2

------ =:® ---- ~-...-- ----- ... - --------------- - ... -
International Business Machines Corporation
Data Processi n9 Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/ Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

()

()
CJ) -<
CJ)

»
"'0
"'0

o·
til
r-+
o·
::J

"'tl

o
CO
-c
til

3
3
~
(Jl'

::0
CD

""" CD
-c
CD
::J
(")
CD

~
til
::J
C
til

()
o
3
3
til
::J
c..
r
CD
<
CD

~
s·
r-+
CD c..
::J

C
en
?>
CJ)
()
w
w
6 a
.......
.......
N

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088.0
	088.1
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306.0
	306.1
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	replyA
	replyB
	upd-1
	xBack

