e L
S S
e S

L e
T

>

e

N
N

N

L
S

N
S

o

Third Edition (March 1991)

This edition applies to Version 2 Release 1 Modification 2 of the IBM licensed program Customer Information
Control System/Multiple Virtual Storage (CICS/MVS), program number §665-403, and to all subsequent versions,
releases, and modifications until otherwise indicated in new editions. Consult the latest edition of the applicable
IBM system bibliography for current information on this product.

This book is based on the Intercommunication Guide for CICS/MVS 2.1, SC33-0519. Changes from that edition are
marked by vertical lines to the left of the changes.

Order publications through your IBM representative or the I1BM branch office serving your locality. Publications
are not stocked at the addresses given below.

A form for reader’'s comments appears at the back of this publication. If the form has been removed, address
your comments to:

International Business Machines Corporation, Department 6R1H,
180 Kost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information {development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

~ When you send information to IBM, you grant {BM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright international Business Machines Corporation 1977, 1991. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Special notices

The following paragraph does not apply to the United Kingdom or any country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow discltaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this
publication is not intended to state or imply that only IBM’s program or other
product may be used. Any functionally equivalent program that does not infringe
any of IBM’s intellectual property rights may be used instead of the IBM product.
Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

This book is intended to help you to understand how to get CICS systems to
communicate with other systems. It contains guidance about
intercommunication.

The following terms, denoted by an asterisk (%), used in this publication, are
trademarks or service marks of IBM Corporation in the United States or other
countries:

ACF/VTAM, CICS/ESA, CICS/MVS, CICS 08/2, CICS/VM, CICS/VSE
Displaywriter, IBM, MVS/XA, IMS/ESA, System/360, VTAM.

® Copyright 1BM Corp. 1977, 1991 iii

Preface

What this book is about
This book is about:

* Multiregion operation: communication between CICS/MVS* systems running
in different address spaces of the same processor.

* Intersystem communication: communication between a CICS/MVS system
and other systems or terminals in a data communication network that
support the logical unit type 6.1 or logical unit type 6.2 protocols of IBM*
systems network architecture (SNA).

Logical unit type 6.2 protocols are also known as advanced
program-to-program communication {(APPC).

Who should read this book
This book is for anyone who is involved in the planning and implementation of
CICS intersystem communication (ISC) or multiregion operation (MRO).

What you need to know to understand this book

It is assumed throughout this book that you have experience with single CICS
systems. The information it contains applies specifically to multiple-system
environments, and the concepts and facilities of single CICS systems are, in
general, taken for granted.

How to use this book
Initially, you should read part 1 of this book to familiarize yourself with the
concepts of CICS multiregion operation and intersystem communication.

Thereafter, you can use the appropriate parts of the book as guidance and
reference material for your particular task. The structure of the book is shown
overleaf.

* |BM Trademark. For a list of trademarks, see page iii.

© Copyright IBM Corp. 1977, 1991 v

Book structure

Concepts and facllities ... 1—75
contains an introduction to CICS intercommunication and describes the
facilities that are available. It is intended for evaluation and planning
purposes.

Installation ... 77—88
describes those aspects of CICS installation that apply,particularly to
intercommunication. It also contains some notes on IMS system definition.
This part is intended to be used in conjunction with the CICS/MVS
Installation Guide.

Resource definition ... 88— 158
provides guidance for resource definition. It tells you how to define links to
remote regions, how to define remote resources, and how to define the local
resources that are required in an intercommunication environment. It is
intended to be used in conjunction with the CICS/MVS Resource Definition
(Online) manual and the CICS/MVS Resource Definition (Macro) manual,

Application programming ... 159—285
describes how to write application programs that use the CICS
intercommunication facilities.

Recovery and restart ... 287 — 308
describes those aspects of recovery and restart that apply particularly in the
intercommunication environment. It is intended to be used in conjunction
with the CICS/MVS Recovery and Restart Guide.

Link services ... 309— 336

deals with supplementary aspects of installation and control.
Appendixes ... 339442
Glossary ... 443—447

Index ... 449

vl CICS/MVS 2.1.2 intercommunication Guide

CICS/MVS 2.1.2 library

General Evaluation and
planning
CICS Library Guide
Brochure

GC33-0356-04
Master Index

GC33-0503-00

CICS General

SC33-0513-01 Information

User’s Handbook

GC33-0155-01

Facllities and Planning

SX33-6061-01 Guide

Messages and Codes

SC33-0504-01

SC33-0514-02

Release Guide

GC33-0505-03

Data Tables General

Information
SC33-0684
Service Programming
Problem CICS Application

Determination Guide Programming Primer

SC33-0674-00

SC33-0516-01

Diagnosis Handbook

Application
Programmer’s
Reference

LX33-6062-01 SC33-0512-01

Diagnosis Reference

LY33-6077-00

Data Areas

LY33-6078-00

Administration Special topics

Intercommunication
Guide

Installation Guide

SC33-0506-01
Customization Guide

SC33-0518-02

Recovery and Restart
Guide
SC33-0507-02

Resource Definition

SC33-0520-01

(Online)
Performance Guide

SC33-0508-01

Resource Definition

SC33-0521-01

(Macro) XRF Guide

SC33-0509-02 SC33-0522-02

CICS Communicating
with CICS 0S/2

Operations Guide

SC33-0510-01
CICS-Supplied

SC33-0736-1

Transactions Data Tables Guide

S5C33-0511-01 SC33-0632-01

Version 1 books

CICS/VS Application
Programmer’s Reference
Manual (Macro Level)
(SC33-0079)

CICS/0S/VS IBM 3270 Data
Stream Device Guide
(SC33-0232)

CICS/OS/VS IBM
4700/3600/3630 Guide
(SC33-0233)

CICS/OS/VS IBM 3650/3680
Gulde {SC33-0234)

CICS/OS/VS IBM
3767/3770/6670 Guide
(SC33-0235)

CICS/OS/VS IBM
3790/3730/8100 Guide
(SC33-0236)

Preface

vil

Books from related libraries

Systems network architecture (SNA)

e Concepts and Products, GC30-3072

s Technical Overview, GC30-3073

* Sessions Between Logical Units, GC20-1868

* Formats, GA27-3136

* Network Product Formats, LY43-0081

* Format and Protocol Reference Manual: Architecture Logic, SC30-3112

* Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2,
SC30-3269
Format and Protocol Reference Manual: Distribution Services, SC30-3098
Transaction Programmer’s Reference Manual for LU Type 6.2, GC30-3084.
LUG6.2 Reference: Peer Protocols, SC30-6808
Transaction Processing Concepts and Facilities, GC33-0754

VTAM
* VTAM Programming for LU6.2, SC31-6410
* VTAM Resource Definition Reference, SC31-6412

IBM system center publications
* CICS Advanced Program-to-Program Communication Support, G320-0579
* Advanced Communications Function Products Installation Guide, GG24-1557.
* SNA APPC in a Peer CICS/VS Environment, GG24-1656
* An Introduction to Advanced Program-to-Program Communication (APPC),
GG24-1584
* IBM System/36 APPC Implementation Guide, GG24-1693.

IMS
* CICS/VS to IMS/VS Intersystem Communication Primer, SH18-6247 through
SH19-6254
* |MS/VS Version 2 Programming Guide for Remote SNA Systems, SC26-4186.

CICS/VM

* CICS/VM General Information, GC33-0571
* CICS/VM System Support and Administration, SC33-0573.

CICS 0S8/2
« CICS 0S/2 System and Application Guide SC33-0616.

vill cics/MVS 2.1.2 Intercommunication Guide

Contents

Speclalnotices e iii
Preface e v
Book structure L vi
CICS/MVS 2.4.2library e e vii
Books from related libraries L. viii
Summaryofchanges XV
Questionnaire e xvii
Part 1. Concepts and facllities e 1
Chapter 1.1. Introduction to CICS intercommunication 3
Applications of CICS intercommunication 6
Chapter 1.2. Multiregion operation 9
Applications of multiregion operation 10
Conversion from single region system e e e e e 11
Batching of workinan MRO region, 12
Chapter 1.3. Intersystem communication 13
Connections between systems e 13
Intersystem sessSiONs e e e 14
Establishing intersystem sessions 19
Chapter 1.4. CICSfunctionshipping 21
Design considerations 22
The mirror transaction and transformer program 24
Function shipping — examples 28
Chapter 1.5. Asynchronous processing 33
Asynchronous processing methods 34
Asynchronous processing using START/RETRIEVE commands 35
System programming considerations 0 0oL 40
Asynchronous processing — examples Lo 40
Chapter 1.6. CICS transactionrouting 45
Automatic transaction initiation o oo L 46
Basic mapping support e e 52
The routing transaction (CRTE) e 53
System programming considerations oo oL 54
Chapter 1.7. Distributed transactionprocessing 55
Why function shipping and transaction routing are not enough 55
Why distributed transaction processing?, 57
What is a conversation and what makes it necessary? 57

© Copyright IBM Corp. 1977, 1991 ix

MRO or LUTYPEG.2? e 62

LUTYPE6.2 mapped or basic? e e 63
Availability of DTP facilities 64
Design concepts e e e e e 64
Part 2. Installation 77
Chapter 2.1. Installation considerations for multiregion operation 79
Installing the CICS type 2 SVC routine e e e e e e 79
Adding CICS as an MVS subsystem 79
Modules required for MRO e e e 79
MRO modules in the link packarea 80
Logging on to the IRC access method 80
Chapter 2.2. Installation considerations for intersystem communication 81
Modules required for ISC e e e e 81
Operating system requirements 82
ACF/VTAM definition for CICS 82
Considerations forIMS 84
Part 3. Resource definition and master terminal operation 89
Chapter 3.1. Defining links to remote systems 91
Naming the local CICS system - 92
Identifying remote systems L o o 93
Defining links for multiregion operation 94
Defining logical unittype 6.1 links 102
Defining CICS-to-CICS LUTYPE6.1links 102
Defining CICS-to-IMS LUTYPEB.1links 108
Defining logical unittype 6.2 links 116
Indirect links for transaction routing e e e 126
Chapter 3.2. Defining remote resources 133
Local and remote names forresources 133
CICS function shipping e 134
AsSynchronous processing o it i it e e e e 138
CICS transactionrouting 139
Distributed transaction processing, . 150
Chapter 3.3. Defining localresources 151
Defining communication profiles 151
Architected processes e e 153
Selecting the required PCT and PPT entries 155
Intrapartition transient data queues and remote transactions 157

X CICS/MVS 2.1.2 Intercommunication Guide

Part 4. Application programming 159

Chapter 4.1. Application programming overview 161
Programming languages e 161
Terminology e e e 161
Chapter 4.2. Application programming for CICS function shipping 163
Filecontrol e e 163
DL/A .. O 164
Temporary storage 164
Transientdata e 164
Function shipping exceptional conditions 165
Chapter 4.3. Application programming for asynchronous processing 167
Starting a transaction on aremote system 167
Retrieving data associated with a remotely-issued start request 168
Chapter 4.4. Application programming for CICS transaction routing 169
Chapter 4.5. CICS applications for logical unit type 6.2 mapped

conversations e .17
Application design L 171
Considerations for the front-end transaction 173
Considerations for the back-end transaction 177
The conversation 178
Sending and receiving error indications L. 181
Synchronization points L o . 183
Sending and receiving signals oo 200
Freeingthe session 200
The EXEC interface block (EIB), 201
Command sequences on LUTYPE6.2 mapped conversations 203
State diagrams e 204
Migration of LUTYPE6.1 applications to LUTYPE6.2 links 217
LUTYPEG.2 release considerations 219
Chapter 4.6. CICS applications for logical unit type 6.2 unmapped

conversations e 221
CICS commands for unmapped LUTYPE6.2 conversations 221
Session data and return and errorcodeso 222
EXEC CICS GDS commands ittt 225
Comparisons between LUTYPE6.2 mapped and unmapped conversations . 231
The unmapped conversation 231
Command sequences on LUTYPEG.2 unmapped conversations 233
State diagrams L e 234
Chapter 4.7. CICS-to-CICS distributed transaction processing for MRO and

LUTYPEB.1 e 245
Applicationdesign 245
Considerations for the front-end transaction 246
Considerations for the back-end transaction e . 249
The conversation e 251

Contents Xl

Freeing thesession e 254

The EXEC interface block (EIB) 254
Command sequences for CICS-to-CICS sessions 256
State diagrams L e e e 257
Restrictions for multiregion operation 261
Chapter 4.8. CICS-to-IMS applications 263
The design of CICS-to-IMS ISC applications 263
Asynchronous processing i it e e e e 265
Distributed transaction processing 271
Part5. Recoveryandrestart 287
Chapter 5.1. Recovery and restart in interconnected systems 289
Syncpoint exchanges e e 290
Action following failure during the indoubt period e e 295
Recovery for LUTYPE6.2 connections 299
Intersystem communication and emergency restart 302
Error handling programs for intercommunication 303
Database interlock e 303
Problem determination 304
Recovery and restart with non-CICS systems, 305
Chapter 5.2. Intercommunicationand XRF 307
Part 6. Linkservices e 309
Chapter 6.1. Security in the intercommunication environment 311
Planning for intercommunication security 313
Implementing intercommunication security 314
Bind-time security 315
Link security e e 319
Usersecurity e 320
Securing transactions and resources 324
CICS function shipping security 325
Transaction routing security o e 326
Use of MVS cross-memory services 327
Chapter 6.2. Master terminal operations for LUTYPEG.2 connections -~ 329
Acquiringaconnection e 329
Controlling sessions with the SET MODENAME commands 332
Releasing the connection 333
SUMMArY . L e e e e 336
xH cics/Mvs 2.1.2 Intercommunication Guide

Appendix A, Rules and restrictions checklist 339

Appendix B. Sample application programs 343
Sample 1 — temporary storage queue transfer 345
Sample 2 — remote file browse L. 358
Sample 3 — remote record retrieval, . 376
Sample 4 — CICS to CICS or IMS conversation 389
Sample 5 — CICS to IMS conversation 395
Sample 6 — CICS to IMS (demand pagedoutput) 401
Appendix C. CICS mapping to the LUTYPE6.2 architecture 413
Supported optionsets L 413
Command-mapping for basic conversations 414
Command-mapping for mapped conversations 423
CICS implementation of control operatorverbs 431
CICS deviations from LUTYPES.2 architecture 440
Effects of CICS deviations on the transaction programmer 441
Glossary e 443
Index e e 449

Contents Xill

A

Summary of changes

This edition is based on the CICS/MVS Intercommunication Guide (SC33-0519-1),
and incorporates updates and revisions as well as enhancements introduced by
CICS/MVS 2.1.1 and CICS/MVS 2.1.2. These enhancements are described in the
CICS/MVS Release Guide.

The opportunity has also been taken to correct errors and incorporate readers’
comments.

All changes that are new in this edition, other than editorial changes, are
marked by revision bars in the left margin, like this paragraph.

The “Intercommunication and XRF” chapter has been added to Part 5, Recovery
and Restart.

A new Part 6, called “Link services”, has been created. This incorporates the
Security in the intercommunication environment chapter and the expanded
material headed Master terminal operations for LUTYPE6.2 connections, which
originally formed part of chapter 3.4.

© Copyright IBM Corp. 1977, 1991 Xv

Questionnaire

CICS/MVS Version 2 Release 1 Modification 2 Publication No. SC33-0519-02
intercommunication Guide

To help us produce books that meet your needs, please fill in this questionnaire. A reader’'s comment
form is aiso included at the back of this book should you want to make more detailed comments.
Whichever form you use, your comments will be sent to the author's department for review and
appropriate action.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

1. Please rate the hook on the points shown below

The book is:

accurate 1 2 3 4 5 inaccurate
readabhle 1 2 3 4 5 unreadable
well laid out 1 2 3 4 5 badly laid out
well organized 1 2 3 4 5 badly organized
easy to understand 1 2 3 4 5 incomprehensible
adequately illustrated 1 2 3 4 5 inadequately fllustrated
has enough examples 1 2 3 4 5 has too few examples
And the book as a whole?
excellent 1 2 3 4 5 poor
2. Which topics does the book handle well? 3. And which does it handle badly?

E-

. How could the book be improved?

5. How often do you use this book? Less than once a month? OO Monthly? O Weekly? O Daily? O
6. What sort of work do you use CICS for?

7. How long have you heen using CICS? years/months

8. Have you any other comments to make?

Thank you for your time and effort. No postage stamp necessary if mailed in USA. (If you are outside
the USA, please mail this form to your local 1BM office or representative who will be happy to forward
your comments or you may mail directly to either address in the Edition Notice on the back of the title
page.) Be sure to print your name and address below if you would like a reply.
LT 1) T I 1 A X T S

COMPANY s oo vunasnnsorusesnssarsanassasoesnoeronseensessAIANrESSsseurvussrrevassnrsesrssonasssstonsssnossssorsassnssssases

R T S

Readers’ Comments

SC33-0519-02

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

POSTAGE WILL BE PAID BY ADDRESSEE

Iinternational Business Machines Corporation

- Department 6R1H

180 KOST ROAD
MECHANICSBURG PA 17055-0786

Please do not staple

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Fold and Tape

Cut o
Along

Cut or
Along |

Part 1. Concepts and facilities

This part of the manual describes the basic concepts of CICS
intercommunication and the various facilities that are provided.

“Chapter 1.1. Introduction to CICS intercommunication” on page 3 defines CICS
intercommunication, and introduces the two types of intercommunication:
multiregion operation and intersystem communication. It then describes the
intercommunication facilities that CICS provides. These are:

¢ CICS Function Request Shipping
* Asynchronous Processing
* CICS Transaction Routing
« Distributed Transaction Processing (DTP).
“Chapter 1.2. Multiregion operation” on page 9 through “Chapter 1.7.

Distributed transaction processing” on page 55 then describe each of these
topics in more detail, as follows:

“Chapter 1.2. Multiregion operation” on page 9
“Chapter 1.3. Intersystem communication” on page 13
“Chapter 1.4. CICS function shipping” on page 21
“Chapter 1.5. Asynchronous processing” on page 33
“Chapter 1.6. CICS transaction routing” on page 45

“Chapter 1.7. Distributed transaction processing” on page 55.
v

@ Copyright iBM Corp. 1977, 1991 1

Chapter 1.1. Introduction to CICS intercommunication

In this book, it is assumed that you are familiar with the use of CICS as a
stand-alone system, with associated data resources and a network of terminals.
Instead, we are concerned with the role of CICS in a multiple-system
environment, in which CICS can communicate with other systems that have
similar communication facilities. We have called this sort of communication
CICS intercommunication.

CICS intercommunication is, then, communication between a local CICS system
and a remote system, which may or may not be another CICS system.

Intercommunication methods

There are two ways in which CICS can communicate with other systems:
intersystem communication and mulitiregion operation.

Intersystem communication

For communication between systems that are in different hosts, you require an
SNA access method, such as ACF/VTAM*, to provide the necessary
communication protocols. Communication between systems via SNA is called
intersystem communication (ISC).

Note: This form of communication can also be used between systems in the
same host processor, via the application-to-application facilities of ACF/VTAM.

The SNA protocols that CICS uses for intersystem communication are Logical
Unit Type 6.1 (otherwise known as LUTYPE 6.1) and Logical Unit Type 6.2
(otherwise known as LUTYPE 6.2 or Advanced Program-to-Program
Communication (APPC)). Additional information on this topic is given in
“Chapter 1.3. Intersystem communication” on page 13.

CICS/MVS Version 2 Release 1 Modification 2 can use ISC to communicate with
the following systems: '

Any CICS/MVS Version 2 system
CICS/ESA*

CICS/08/VS Version 1 Release 7
CICS/DOS/VS Version 1 Release 7
CICS/VSE* Version 2 Release 1
CICS/VM*

CICS 08/2*

IMS/VS Version 2 Release 1
IMS/VS Version 2 Release 2
IMS/ESA* Version 3 Release 1

* |BM Trademark. For a list of trademarks, see page lil.

© Copyright IBM Corp. 1977, 1991 3

* Any system that supports LUTYPEG6.2 (APPC) protocols. This includes
LUTYPEG.2 single session terminals, such as:
— Displaywriter*
— Scanmaster
— System/36
— System/38.

Multiregion operation

For CICS-to-CICS communication in the same MVS image, CICS provides an
interregion communication facility that is independent of the SNA access method.
This form of communication is called muitiregion operation (MRO).

CICS/MVS Version 2 Release 1 Modification 2 can communicate via MRO with
other CICS/MVS Version 2 systems, with CICS/ESA systems, and with
CICS/OS/VS release 1.7.

Intercommunication facilities

In the multiple-system environment, each participating system can have its own,
local, terminals and databases, and can run its local application programs
independently of other systems in the network. In addition, it can establish links
to other systems, and thereby gain access to remote resources. This
mechanism enables resources to be distributed among and shared by the
participating systems.

CICS intercommunication provides four basic types of facility:

CICS Function Request Shipping

¢ Asynchronous Processing

CICS Transaction Routing

Distributed Transaction Processing (DTP).

These facilities are not universally available for all forms of intercommunication.
The circumstances under which they can be used are shown in Table 1.

Table 1. Availability of intercommunication facilities

Facliity LUTYPEG.2 LUTYPE6.2 LUTYPEG.1 LUTYPESG.1 MRO
(CICS) {non-CICS) (CICS) (IMS)

Function Request Shipping Yes No Yes No Yes

Asynchronous Processing Yes No Yes Yes Yes

Transaction Routing Yes No No No Yes

Distributed Transaction Yes Yes Yes Yes Yes

Processing

4 CICS/MVS 2.1.2 Intercommunication Guide

CICS function request shipping

This facility enables an application program to access a resource owned by
another CICS system. Both read and write access are permitted, and facilities
for exclusive control and recovery/restart are provided.

The remote resource can be:

* A file or a DL/l database
¢ A transient data queue
* A temporary storage queue.

Remote transactions are also considered to be resources, and can be initiated
by requests from a local application program. This form of request shipping is
called asynchronous processing in this book.

Application programs that access remote resources can be designed and coded
as if the resources were owned by the system in which the transaction is to run.
During execution, CICS ships the request to the appropriate system.

Asynchronous processing

This facility enables a CICS transaction to initiate a transaction in a remote
system and to pass data to it. The data can include the name of a local
transaction that is to be initiated by the remote system to receive the reply. The
reply is not necessarily returned to the task that initiated the remote transaction,
and no direct correlation between requests and replies (other than that provided
by user-defined fields in the data) is possible; therefore the process is
asynchronous.

From the CICS point of view, asynchronous processing is a form of function
shipping, in which interval control START requests are shipped to and received
from remote systems. Functionally, it is similar to distributed transaction
processing (see below) in that it allows processing to be distributed between
systems.

CICS transaction routing

This facility enables a terminal that is owned by one CICS system to run a
transaction that is owned by another CICS system. Similarly, a transaction that
is started by automatic transaction initiation (ATI) can acquire a terminal that is
owned by another CICS system.

Transaction routing is available between CICS systenis connected either by
interregion links (MRO) or by LUTYPES6.2 (APPC) links.

Distributed transaction processing (DTP)

This facility enables a CICS transaction to communicate with a transaction
running in another system. The transactions are desighed and coded explicitly
to communicate with each other, and thereby to utilize the intersystem link with
maximum efficiency.

The communication in distributed transaction processing is, from the CICS point
of view, synchronous, which means that it occurs during a single invocation of
the CICS transaction and that requests and replies between two transactions can

Chapter 1.4. Introduction to CICS intercommunication 5

be directly correlated. This contrasts with the asynchronous processing
described previously.

Applications of CICS intercommunication

The CICS intercommunication facilities enable you to implement many different
types of distributed data processing. This section describes a few typical
applications. The list is by no means exhaustive, and further examples are
presented in the other chapters of this part.

Multiregion operation enables two CICS regions to share selected system
resources, and to present a “single-system” view to terminal operators. At the
same time, each region can run independently of the other, and can be protected
against other-region errors. Various possible applications of MRO are described
in “Chapter 1.2. Multiregion operation” on page 9.

CICS intersystem communication, together with an SNA access method
(ACF/VTAM) and a network control program (ACF/NCP/VS), enables resources to
be distributed among and shared by different systems, which can be in the same
or different physical locations. '

Figure 1 on page 7 shows some typical possibilities.

Connecting regional centers
Many users have computer operations set up in each of the major geographical
areas in which they operate. Each system has a database organized towards
the activities of that area, and its own network of terminals able to inquire or
update the regional database. When requests from one region require data from
another, without intersystem communication, manual procedures have to be
used to handle such requests. The intersystem communication facilities allow
these “out-of-town” requests to be automatically handled by providing file

- access to the database of the appropriate region.

Using CICS function shipping, application programs can be written to be
independent of the actual location of the data, and able to run in any of the
regional centers. An example of this type of application is the validation of
credit against customer accounts.

Connecting divisions within an organization

Some users are organized divisionally, with separate systems, terminals, and
databases for each division: for example, Engineering, Production, and
Warehouse divisions. Connecting these divisions to each other and to the
headquarters location improves access to programs and data, and thus can
improve the coordination of the enterprise.

The applications and data can be hierarchically organized, with summary and
central data at the headquarters site and detail data at plant sites. Alternatively,
the applications and data can be distributed across the divisional locations, with
planning and financial data and applications at the headquarters site,
manufacturing data and applications at the plant site, and inventory data and
applications at the distribution site. In either case applications at any site can

6 CICS/MVS 2.1.2 Intercommunication Guide

access data from any other site, as necessary, or request applications to be run
at a remote site (containing the appropriate data) with the replies routed back to
the requesting site when ready.

Connecting regional centers

¢ Data hase partitioned
by area

North - .
* Same applications run
in each center

s All terminal users can
access applications ar
data in all systems

Terminal operator and
Central applications unaware of
e . location of data

T » Qut-of-town requests
routed to the
appropriate system

South

L 0COCO

Connecting divisions: distributed applications and data

* Data base partitioned
Head ‘ by function
Financial eadquarters
and — * Applications partitioned
Planning by function

* All terrminal users and
applications can access
data in all systerns

- - * Requests for nonlocal
data routed to the

Warehouse Work Plant appropriate system
Orders

Figure 1 (Part 1 of 2). Examples of distributed resources

Chapter 1.1. Introduction to CICS intercommunication 7

Hierarchical division of data base

0

Summaries
Planning

Plant A

Production
Status Report

Parts
Cross-

Reference
Work
Order

Plant B

1/

N

|

Head Office . ‘/\

Order and
* Schedules

NN

Plant C

~7

Connecting division: hierarchical distribution of data and application

High priority
applications
and data

Low priority
or backup
applications
and data

~

\ High priority

applications
and data

Figure 1 (Part 2 of 2). Examples of distributed resources

8 CICS/MVS 2.1.2 Intercommunication Guide

-]

]

Summaries and
central data at
HQ, detail data
at plant
location

Order processing
at HQ: orders
and schedules
transmitted to
plants of
production
status

Plants and
summaries of
production
status to HQ
(for example,
overnight)

Access to data
from HQ or
Plant possible
if required

Improved
response through
distributed
processing

Chapter 1.2. Muitiregion operation

CICS Multiregion Operation (MRO) enables CICS systems that are running in
different address spaces of the same MVS image to communicate with each
other. MRO does not support communication between a CICS system and a
non-CICS system such as IMS.

ACF/VTAM and SNA networking facilities are not required for MRO. The data
transfers between address spaces are made either by a CICS-supplied
interregion program running in supervisor state, or by means of MVS
cross-memory services,

The support within CICS that accomplishes region to region communication is
called Interregion Communication (IRC). IRC is implemented through support in
CICS terminal control management modules and by use of a CICS-supplied
interregion program (DFHIRP) loaded in the link pack area (LPA) of MVS.
DFHIRP is invoked by a type 2 supervisory call (SVC).

MVS cross-memory services can be selected as an alternative to the CICS type 2
SVC mechanism. In this case, DFHIRP is used only to open and close the
interregion links.

The CICS IRC support utilizes a Service Request Block (SRB) routine.

Note: IRC is also used by CICS/MVS for support of IMS DB batch regions
accessing DL/l databases controlled by CICS through CICS’s Shared Database
facility and for support of the Data Dictionary program product.

The intercommunication facilities available via MRO are:

* Function request shipping

* Transaction routing

¢ Asynchronous processing

¢ Distributed transaction processing.

There are some restrictions for distributed transaction processing under MRO
that do not apply under ISC.

Installation of CICS multiregion operation is described in “Chapter 2.1.
Installation considerations for multiregion operation” on page 79.

© Copyright 1BM Corp. 1977, 1991 9

Applications of multiregion operation

This section describes a number of typical applications of mulitiregion operation.

Extended recovery facility (XRF)

The CICS/MVS XRF Guide provides examples of the various types of XRF
configuration that are possible using MRO.

Program development

Time-sharing

The testing of newly-written programs can be isolated from production work by
running a separate CICS region for testing. This enables the reliability and
availability of the production system to be maintained during the development of
new applications, because the production system remains up even if the test
system terminates abnormally.

By using function request shipping, the test transactions can access resources of
the production system, such as files or transient data queues. By using
transaction routing, terminals connected to the production system can be used to
run test transactions.

The test system can be brought up and taken down as required, without
interrupting production work. During the cutover into production of the new
programs, terminal operators can run transactions in the test system from their
regular production terminals, and the new programs can access the full
resources of the production system.

If one CICS system is used for compute-bound work, such as APL or ICCF, as
well as regular DB/DC work, the response time for the DB/DC user can be
unduly long. It can be improved by running the compute-bound applications in a
lower priority address space and the DB/DC applications in another.

Transaction routing allows any terminal to access either CICS system without the
operator being aware that there are two different systems.

Reliable database access

In your installation, it may be possible to divide your applications into two sets;
one containing applications that are known to be completely reliable, and one
containing applications that can possibly bring the CICS system down.

With MRO, you can define two CICS regions, one of which owns the unreliable
applications, and the other the reliable applications and also the database. The
fewer applications that run in the database-owning region, the more reliable this
region will be. On the other hand, the cross-region traffic will be greater, so
performance can be degraded. You must balance performance against
reliability.

10 cICS/MVS 2.1.2 Intercommunication Guide

You can take this application of MRO to its limit by having no user applications
at all in the database-owning region. The online performance degradation may
be a worthwhile trade-off against the elapsed time necessary to restart a CICS

region that owns a very large database.

Departmental separation

MRO allows various departments of an organization to have their own CICS
systems. Each can bring up and take down its own system as it requires. At the
same time, each can have access to other departments’ data, with access being
controlled by the system programmer. A department can run a transaction on
another department’s system, again subject to the control of the system
programmer. Terminals need not be allocated to departments, since, with
transaction routing, any terminal could run a transaction on any system.

Multiprocessor performance

With MRO, using several CICS systems, the user can take advantage of a
multiprocessor, and allow any terminal to access the transactions and data
resources of any of the systems. Transaction routing presents the terminal
operator with a single system image; the operator need not be aware that there
is more than one CICS system.

The system programmer can assign transactions and data resources to any of
the connected systems so as to balance the load and achieve optimum
performance.

Virtual storage constraint relief

in some large CICS systems, the amount of virtual storage available can become
a limiting factor. In these cases, it is often possible to relieve the virtual storage
problem by splitting the system into two or more separate systems with shared
resources. All the facilities of MRO can be used to help maintain a
single-system image for end users.

Note: If you are using DL/I databases, and wish to split your system to obtain
virtual storage constraint relief, you should consider using IMS data sharing,
rather than CICS function shipping, to share the databases between your CICS
address spaces.

Conversion from

single region system
Existing single-region CICS systems can generally be converted to muitiregion
CICS systems with little or no reprogramming.

CICS function request shipping will allow an existing command-level application
to continue accessing existing data resources after either the application or the
resource has been transferred to another CICS region. Applications that use
function request shipping must conform to the rules given in “Chapter 4.2.
Application programming for CICS function shipping” on page 163, which may
necessitate program modification in some cases.

Chapter 1.2. Multiregion operation 11

CICS transaction routing will allow an existing command-level or macro-level
application to be run from an existing terminal after either the application or the
terminal has been transferred to another CICS region. The restrictions that
apply in this case are given in “Chapter 4.4. 'Application programming for CICS
transaction routing” on page 169.

in all cases it will be necessary to define an MRO link between the two regions
and to provide local and remote definitions of the shared resources. These
operations are described in “Part 3. Resource definition and master terminal
operation” on page 89.

Batching of work in an MRO region

In some MRO configurations, a CICS region may frequently enter the wait state
because it has no incoming MRO requests to handle and no other work to do.
The next incoming MRO request will then carry the overhead invoived in getting
CICS out of the wait state, and possibly of returning it to the wait state when the
request has been dealt with.

This overhead can often be reduced by delaying the posting of a region until
several incoming MRO requests are outstanding. The region can then be posted
and can handle all the outstanding requests before it returns to the wait state.

You can specify the number of MRO requests that are to be batched in this
manner by means of the MROBTCH operand of the system initialization table
(SIT). The number can have a value in the range from 1 to 255. The default is 1,
meaning that no batching is to occur.

The maximum time that a region is allowed to remain in the wait state is
specified in the ICV operand of the SIT. If you use MRO batching, you should
choose an ICV value to ensure that MRO requests are not unduly delayed in a
lightly-loaded system.

12 cICS/MVS 2.1.2 Intercommunication Guide

Chapter 1.3. Intersystem communication

The data formats and communication protocols required for communication
between systems in a multiple-system environment are embodied in IBM
Systems Network Architecture (SNA). The CICS implementation of intersystem
communication is effectively an implementation of this architecture.

It is assumed that you are familiar with the general concepts and terminology of
SNA. Some books on this subject are listed under “"Books from related
libraries” on page Vviii.

Connections between systems

This section presents a brief overview of the ways in which systems can be
connected together for the purposes of intersystem communication. There are
three basic forms to be considered:

1. ISC within a single processor
2. ISC between physically adjacent processors
3. ISC between physically remote processors.

A possible configuration is shown in Figure 2.

Any APPC ACF /NCP ACF/NCP
(LU6.2) —>
System 3745 3745
ACF /VTAM ACF/VTAM ACF /VTAM
CICS/MVS CICS/MVS CICS/MVS
CICS/MVS IMS CICSMVS
MVS /XA* MVS /XA MVS/XA

Figure 2. A possible configuration

* |BM Trademark. For a list of trademarks, see page iil.

® Copyright I1BM Corp. 1977, 1991 13

Single processors

ISC within a single processor (intrahost ISC) is possible through the
application-to-application facilities of ACF/VTAM or ACF/TCAM.

In an MVS system, you can use intrahost ISC for communication between two or
more CICS/MVS systems or between, for example, a CICS/MVS system and an
IMS system.

From the CICS point of view, intrahost ISC is indistinguishable from ISC between
systems in different VTAM* domains.

Physically adjacent processors
An IBM 3725 or 3745 communications controller can be configured with a
multiple-channel adapter which enables you to connect two VTAM or TCAM
domains via a single ACF/NCP/VS. This configuration may be useful for
communication between:

1. A production machine and a local but separate test machine
2. Two production machines with differing characteristics or requirements.

Direct channel-to-channel communication is available between systems that
have ACF/VTAM Version 2 Release 1 (or a later release) installed.

Remote processors

This is the most typical configuration for intersystem communication. Each
participating system can be appropriately configured for its particular location,
using MVS or Virtual Storage Extended/Advanced Functions (VSE/AF), CICS or
IMS, and one of the ACF access methods such as ACF/VTAM.

Intersystem sessions

CICS uses ACF/VTAM to establish, or bind, logical-unit-to-fogical-unit (LU-LU)
sessions with remote systems. Being a logical connection, an LU-LU session is
independent of the actual physical route between the two systems, and a single
intersystem link can carry multiple independent sessions. Such sessions are
calied parallel sessions.

The formats and protocols used for intersystem sessions are those of Logical
Unit (LU) Type 6, and the sessions are known as LUTYPEG sessions. Each
session partner is also called an LU Type 6. LUTYPES links support parallel
sessions and negotiable binds, and use specific types of function management
headers (FMH).

CICS supports two types of LUTYPEG session, both of which are defined by IBM
Systems Network Architecture:

o LUTYPEG.1 sessions
* LUTYPEB.2 sessions.

* IBM Trademark. For a list of trademarks, see page iil.

14 cics/Mvs 23.2 Intercommunication Guide

LUTYPEG.1

The general term chosen for the LUTYPEB.2 protocol is Advanced
Program-to-Program Communication (APPC).

LUTYPEB.1 is the term used to refer to the logical unit that was formerly called
LUTYPEB. The “.1” is used to distinguish it from LUTYPEBS.2.

The keyword LUTYPEG has been retained in some CICS system generation and
resource definition macros to preserve compatibility with earlier releases. In
contexts where it is necessary to distinguish between LUTYPEG6.1 and LUTYPEG.2,
the keyword LUTYPESG refers to LUTYPEG.1. In other contexts, it refers generically
to both LU types. '

The characteristics of LUTYPEG sessions, and the formats of the associated
function management headers, are described in Systems Network Architecture
publication Sessions Between Logical Units. Details of the CICS implementation
of LUTYPEG are given in the CICS/MVS Diagnosis Reference manual.

Currently, LUTYPEB.4 sessions are supported by CICS and by IMS, and can be
used for CICS-to-CICS and CICS-to-IMS communication.

LUTYPEG6.2 (APPC)

Like LUTYPEG.1 sessions, LUTYPES.2 sessions can be used for data
communication between transaction processing systems. However, LUTYPEG.2
provides an architecture within which not only host- or system-level products,
but also device-level products, can communicate.

At the interhost communication level, it offers facilities over and above those
provided by the LUTYPEG.1 architecture. At the same time, it provides defined
subsets which enable device-level products (LUTYPE6.2 terminals) to
communicate with host level products (and also with each other). LUTYPE6.2
therefore represents both an upwards and downwards extension of the
LUTYPEG.1 facilities.

LUTYPEG.2 sessions can be used for CICS-to-CICS communication, and for
communication between CICS and other LUTYPEG.2 systems or terminals.

The following paragraphs provide an overview of some of the principal
characteristics of the LUTYPEG6.2 architecture.

Data stream

The data stream employed for LUTYPE6.2 communication is the SNA generalized
data stream (GDS). In GDS, data is preceded by a header field (LLID) that
specifies the overall length of the data (LL) and an identification of the data type
(ID). The data type for user application data is X'12FF'.

Chapter 1.3. Intersystem communication 15

Application programming interface

LUTYPEB.2 is the first SNA LU type to have a defined application programming
fanguage in which conversations can be coded. Details of this SNA-defined
language are given in the Systems Network Architecture publication Transaction
Programmer’s Reference Manual for LU Type 6.2.

As a CICS user, you do not need to use this language directly; CICS provides a
command-level language to enable you to write application programs that hold
LUTYPES6.2 conversations.

Two types of LUTYPESG.2 conversation are defined:
1. Mapped conversations

In mapped conversations, the data passed to and received from the
LUTYPEB.2 APl is simply user data. The user has no knowledge of the GDS
headers, and is not responsible for building or interpreting them.

2. Unmapped conversations

In unmapped conversations (also known as basic conversations) the data
passed to and received from the LUTYPE6.2 API contains GDS headers. The
user is responsible for building and interpreting the LL and ID fields.’
Unmapped conversations are used principally for communication with
device-level products that do not support mapped conversations, and which
possibly do not have an application programming interface open to the user.

in CICS, unmapped conversations are written using EXEC CICS GDS commands.
Details of these commands and the way in which they are used are given in
“Chapter 4.6. CICS applications for logical unit type 6.2 unmapped
conversations” on page 221.

Mapped conversations are written using normal EXEC CICS commands. Details
of these commands and the way in which they are used are given in “Chapter
4.5. CICS applications for logical unit type 6.2 mapped conversations” on

page 171.

The CICS commands provided for mapped and unmapped conversations are
basically implementations of the LUTYPEG.2 verbs described in the architecture.
The mappings between CICS commands and LUTYPES6.2 verbs are given in
Appendix C, “CICS mapping to the LUTYPEG.2 architecture” on page 413.

Synchronization levels
LUTYPEG.2 provides for three different levels of synchronization:

Level 0 (none)
This level is for use when communicating with systems or devices that do
not support synchronization points, or when no synchronization is required.

Level 1 (confirm)
This level allows conversing transactions to exchange private
synchronization requests.

The commands involved are SEND CONFIRM, which is used by one
transaction to inform the other that it requires a response, and ISSUE

16 ciCS/MVS 2.1.2 Intercommunication Guide

CONFIRMATION, which is sent in reply to SEND CONFIRM. (Either ISSUE
ERROR or ISSUE ABEND can be used as a negative response to the SEND
CONFIRM command.)

Apart from the transmission of these commands, no architected or
CICS-provided function is involved.

Level 2 (syncpoint)
This level is the equivalent of full CICS syncpointing, including rollback.

The commands involved are usual CICS syncpointing commands SYNCPOINT
and SYNCPOINT ROLLBACK. Level 1 synchronization requests can also be
used. '

For complex syncpointing situations, where many intersystem sessions are
involved, the ISSUE PREPARE command can be used to prepare all the
session partners for the syncpoint before syncpointing starts. This technique
is described in “The ISSUE PREPARE command” on page 196.

The maximum synchronization level that can be used on an LUTYPE6.2 session
is governed by the level supported by the more restrictive of the two logical
units. With this constraint, the actual synchronization ievel that will be used can
be specified by the transaction that initiates the conversation. If the second
transaction does not expect to operate at the same level, the conversation
cannot be held.

LU services manager

Multi-session LUTYPEB.2 connections use the LU services manager. This is the
software component responsible for negotiating session binds, session activation
and deactivation, resynchronization, and error handling. It requires two special
sessions with the remote LU called the SNASVCMG sesslions. When these are
bound, the two sides of the LU-LU connection can communicate with each other,
- even if the connection is out-of-service for users.

A single-session LUTYPE6.2 connection has no SNASVCMG sessions. For this
reason, its function is limited. [t cannot, for example, support synchronization
level 2.

Process initialization parameter data

When a transaction initiates a remote transaction on an LUTYPEB6.2 session, it
can pass data in the form of process initialization parameter (PIP) subfields. PIP
subfields are formatted as follows:

Lijee| PIP1 |L2{e0| PIP2 tnjoe| PIPn

where Ln is a halfword binary integer specifying the length of the subfield.

The length includes the length field and the two reserved bytes; that is,
Ln = length of PIPn + 4.

Chapter 1.3. Intersystem communication 17

Class of service

PIP data is of concern only to the two transactions involved. It is not used for
CICS-to-CICS communication, but it may be needed for communication with
some other APPC systems. The meaning assigned to PIP data is defined by the
APPC system concerned. :

CICS provides facilities to enable a transaction to send PIP data to or receive
PIP data from a remote transaction. These are described in Part 4.

The CICS implementation of LUTYPES.2 includes support for “class of service”
selection.

Class of service (COS) is an ACF/VTAM facility that allows sessions between a
pair of logical units to have different characteristics. This provides a user with
the following function:

1. Alternate Routing — Virtual Routes for a given COS can be assigned to
different physical paths (Explicit Routes).

2. Mixed Traffic — different kinds of traffic can be assigned to the same Virtual
Route and, by selecting appropriate transmission priorities, undue session
interference can be prevented. '

3. Trunking — Explicit Routes can use parallel links between certain nodes.

In particular, sessions can take different Virtual Routes, and thus use different
physical links; or the sessions can be of high or low priority to suit the traffic
carried on them.

in CICS, LUTYPEG.2 sessions are specified in groups called modesets, each of
which is assigned a modename. The modename must be the name of a VTAM
LOGMODE entry (also called a “modegroup™), which can specify the class of
service required for the session group. (See “ACF/VTAM LOGMODE table
entries for CICS” on page 83.)

Limited resources

For efficient use of some network resources (for example, switched lines), SNA
allows for such resources to be defined in the network as limited resources.
Whenever a session is bound, VTAM indicates to CICS whether the bind is over
a limited resource. When a task using a session across a limited resource frees
the session, CICS unbinds that session if no other task wants to use it.

Both single and parallel sessions may use limited resources. For a
parallel-session connection, CICS does not unbind LU service-manager sessions
until all modegroups in the connection have performed initial CNOS exchange.

The use of limited resources is effective only if the systems at both ends of the
connection support this function. This is because a CICS system without support
for limited resource does not recognize the available connection state. That is
the connection state in which there are no bound sessions and all are unbound
because they were over limited resources.

18 CICS/MVS 2.1.2 Intercommunication Guide

Establishing intersystem sessions

Before traffic can flow on an intersystem session, the session must be
established, or bound. CICS can be either the primary (BIND sender) or
secondary (BIND receiver) in an intersystem session, and can be either the
contention winner or the contention loser. The contention winner in an LU-LU
session is the LU that is permitted to begin a bracket at any time. The
contention loser is the LU that must use an SNA BID command (LUTYPE6.1) or
LUSTATUS command (LUTYPE6.2) to request permission to begin a bracket.

The number of contention-winning and contention-losing sessions required on a
link to a particular remote system can be specified by the system programmer.

For LUTYPEG.1 sessions, CICS always binds as a contention loser.

For LUTYPES.2 links, the number of contention-winning sessions is specified
when the link is defined (see “Defining logical unit type 6.2 links” on page 116).
The contention-winning sessions are normally bound by CICS, but CICS will also
accept bind requests from the remote system for these sessions.

Normally, the contention-losing sessions are bound by the remote system.
However, CICS can also bind contention-losing sessions if the remote system is
incapable of sending bind requests.

Single sessions to LUTYPEG.2 terminals are normally defined as contention
winners, and are bound by CICS. In this case, CICS will accept a negotiated
bind in which it is changed to the contention loser.

Session initiation can be performed in one of the following ways:

1. By CICS during CICS initialization for sessions for which
AUTOCONNECT(YES) or AUTOCONNECT(ALL) has been specified (see
“Chapter 3.1. Defining links to remote systems” on page 91).

2. By a request from the CICS master terminal operator.
3. By the remote system with which CICS will communicate.

4. By CICS when an application explicitly or implicitly requests the use of an
intersystem session and the request can be satisfied only by binding a
previously unbound session.

Chapter 1.3. intersystem communication 19

Chapter 1.4. CICS function shipping

CICS function shipping allows CICS command-level application programs to:

* Access files and DL/l databases managed by other CICS systems by
shipping requests for file control or DL/I functions.

¢ Transfer data to or from transient data and temporary storage queues in
other CICS systems by shipping requests for transient data and temporary
storage functions.

* Initiate transactions in other CICS systems, or other non-CICS systems that
implement SNA LU Type 6 protocols, such as IMS, by shipping interval
control START requests. This form of communication is described in
“Chapter 1.5. Asynchronous processing” on page 33.

Applications can be written without regard for the location of the requested
resources; they simply use file control commands, temporary storage
commands, and so on, in the normal way. Entries in the CICS resource
definition tables allow the system programmer to specify that the named
resource is not on the local (or requesting) system but on a remote (or owning)
system.

An illustration of a shipped file control request is given in Figure 3 on page 22.
In this figure, a transaction running in CICSA issues a file control READ
command against a file called NAMES. From the file control table, CICS
discovers that this file is owned by a remote CICS system called CICSB. CICS
turns the READ request into a suitable transmission format, and then ships it to
CICSB for execution.

In CICSB, the request is passed to a special transaction known as the mirror
transaction. The mirror transaction recreates the original request, issues it on
CICSB, and passes the acquired data back to CICSA.

The CICS recovery and restart facilities allow resources in remote systems to be
updated and attempt to ensure that when the requesting application program
reaches a synchronization point, any mirror transactions that are updating
protected resources also take a synchronization point, so that changes to
protected resources in remote and local systems are consistent. The CICS
master terminal operator is notified of any failures in this process, so that
suitable corrective action can be taken. This can be a manual process, or be
effected by user-written code.

® Copyright IBM Corp. 1977, 1991 21

CICSA : CICSB
DFHFCT DFHFCT
TYPE=REMOTE v TYPE=FILE
SYSIDNT=CICB FILE=NAMES
FILE=NAMES
EXEC CICS READ CICS MIRROR
FILE(NAMES) ISC or MRO transaction
TERMINAL INTO (XXXX) (issues READ
. session command and
passes data
’ back)

Figure 3. Function shipping

Design considerations

File control

User application programs can run in a CICS intercommunication environment
and make use of the intercommunication facilities without being aware of the
location of the file or other resource being accessed. The location of the
resource is defined by the system programmer in the appropriate CICS table
(details are given in “Chapter 3.2. Defining remote resources” on page 133).

The resource definition can also specify the name of the resource as it is known
on the remote system, if it is different from the name by which it is known
locally. When the resource is requested by its local name, CICS substitutes the
remote name before sending the request. This facility is useful when a
particular resource exists with the same name on more than one system but
contains data peculiar to the system on which it is located.

Application programs can also name remote systems explicitly on commands
that can be function-shipped, by using the SYSID option. If this option is
specified, the request is routed directly to the named system, and the resource
definition tables on the local system are not used. The local system can be
specified in the SYSID option, so that the decision whether to access a local
resource or a remote one can be taken at execution time.

Intercommunication allows access to BDAM or VSAM files located on a remote
CICS system. OPEN and CLOSE are not supported. Both inquiry and update
requests are allowed, and the files can be defined as protected in the system on
which they reside. Updates to remote protected files will not be committed until
the application program issues a syncpoint request or terminates successfully.
Linked updates of local and remote files can be performed within the same
logical unit of work, even if the remote files are located on more than one
connected CICS system.

22 CICS/MVS 2.1.2 Intercommunication Guide

—— e —— e —

DL/

Caution is needed when designing systems where remote file requests using
physical record identifier values are employed, such as BDAM, VSAM RBA, or
files with keys not embedded in the record, because of the need to ensure that
all application programs in remote systems have access to the correct values
following addition of records or reorganization of these types of file.

You can improve data access time by using the optional CICS data tables
feature. CICS supports both user-maintained and CICS-maintained remote data
tables under MRO. However, CICS does not support creation of a local data
table from a remote source data set. To simulate this, you will have to load
local user-maintained data tables from a remote file by having an empty dummy
VSAM data set as the source data set. You can then, for example, load the data
table with its data by using a transaction that browses the remote file and writes
the records to the local table.

For further information on data tables, see the CICS/MVS Data Tables Guide.

Function shipping allows a CICS transaction to access IMS DB databases
associated with a remote CICS/ESA, CICS/MVS, or CICS/OS/VS system, or DL/I
DOS/VS databases associated with a remote CICS/VSE or CICS/DOS/VS system.
{See “Chapter 1.1. Introduction to CICS intercommunication” on page 3 for a list
of systems with which CICS/MVS 2.1.2 can communicate.)

As with File Control, updates to remote DL/l databases are not committed until
the application reaches a syncpoint. With IMS DB, it is not possible to schedule
more than one PSB per logical unit of work, even when both PSBs are defined to
be on remote systems. Hence linked DL/l updates on different systems cannot
be made in a single logical unit of work.

The PSB directory list (PDIR or DLZACT) is used to define a PSB as being on a
remote system. The remote system owns the database and the associated PCB
definitions. When DL/| access requests are made to another processor system
by a CICS/MVS system but no local requests are made, it is not necessary to
install IMS DB on the requesting system.

Temporary storage

Transient data

Intercommunication enables application programs to send data to, or retrieve
data from, temporary storage queues located on remote systems. A temporary
storage queue is specified as being remote by means of an entry in the local
TST. If the queue is to be protected, its queue name (or remote name) must also
be defined as recoverable in the TST of the remote system.

An application program can access intrapartition or extrapartition transient data
queues on remote systems. The Destination Control Table (DCT) in the
requesting system defines the named queue as being on the remote system.
The DCT entry for the queue in the remote system specifies whether the queue
is protected, and whether it has a trigger level and associated terminal.

Chapter 1.4. CICS function shipping 23

Extrapartition queues can be defined (in the owning system) as having fixed,
variable, or undefined length records.

Many of the uses currently made of transient data and temporary storage
queues in a stand-alone CICS system can be extended to an interconnected
CICS system environment. For example, a queue of records can be created in a
system for processing overnight. Queues also provide another means of
handling requests from other systems while freeing the terminal for other
requests. The reply can be returned to the terminal as soon as it is ready, and
delivered to the operator when there is a lull in entering transactions.

If a transient data destination has an associated transaction, the named
transaction must be defined to execute in the system owning the queue; it can
not be defined as remote. If there is a terminal associated with the transaction,
it can be connected to another CICS system and used via the transaction routing
facility of CICS.

The remote naming capability enables a program to send data to the CICS
service destinations, such as CSMT, in both local and remote systems.

The mirror transaction and transformer program

CICS supplies a number of mirror transactions, each of which corresponds to a
particular “process” name. Their transaction identifiers are CSM1, CSM2, CSM3,
CSMS5, and CSMI' . All these transaction identifiers map to a single mirror
program DFHMIR.

Details of the individual mirror transactions are given in “Chapter 3.3. Defining
local resources” on page 151. In the rest of this book, they are referred to
generally as the mirror transaction, and given the transaction identifier CSM*,

The following description of the mirror transaction and the transformer program
is generally applicable to both ISC and MRO function shipping. There are,
however, a number of differences in the way that the mirror transaction works
under MRO, and a different transformer program is used. These differences are
described in “MRO function shipping” on page 26. ‘

The mirror transaction executes as a normal CICS transaction and uses the CICS
terminal control program facilities to communicate with the requesting system.

1 If you are using MRO, LU6.1 or LU6.2 Synclevel(2) paraliel sessions, CICS runs transaction CSM! with program DFHMIR. If
- you are using an LUB.2 single-session connection, or an LU6.2 parallel-session connection that supports only synchronization
level 1, CICS runs transaction CVMI with program DFHMIRVM. The difference is in the way syncpolinting is handled. Unless
otherwise stated, all references to CSMI/DFHMIR also refer to CVMI/DFHMIRVM.,

24 CICS/MVS 2.1.2 Intercommunication Guide

In the requesting system, the command level EXEC interface program (for all
except DL/i requests) determines that the requested resource is on another
system, calls the function-shipping transformer program DFHXFP to transform
the request into a form suitable for transmission, and calls on the
intercommunication component to send the request to the appropriate connected
system. For DL/I requests, part of this function is handled by CICS DL/l interface
modules.

The intercommunication component uses CICS terminal control program
facilities to send the request to the mirror transaction. The first request to a
particular remote system on behalf of a transaction will cause the
communication component in the local system to precede the formatted request
with the appropriate mirror transaction identifier, in order to attach this
transaction in the remote system. Thereafter it keeps track of whether or not the
mirror transaction terminates, and reinvokes it as required.

The mirror transaction uses the function-shipping transformer program DFHXFP
to decode the formatted request and executes the corresponding command. At
completion of the command the mirror transaction uses the transformer program
to construct a formatted reply, and returns this to the requesting system. On
that system the reply is decoded, again using the transformer program, and used
to complete the original command level request made by the application
program.

If the mirror transaction is not required to update any protected resources, and
no previous request updated a protected resource in its system, the mirror
transaction will terminate after sending its reply. However, if the request causes
the mirror transaction to change or update a protected resource, or the request
is for any DL/I PSB, it will not terminate until the requesting application program
issues a synchronization point request or terminates successfully. When the
application program issues a synchronization point request, or terminates
successfully, the intercommunication component sends a message to the mirror
transaction which causes it also to issue a synchronization point request and
terminate. The successful synchronization point by the mirror transaction is
indicated in a response sent back to the requesting system, which then
completes its synchronization point processing, so committing changes to any
protected resources. If DL/l requests have been received from another system,
CICS issues a DL/I TERM call as a part of the processing resulting from a
synchronization point request made by the application program and executed by
the mirror transaction.

The application program is not constrained in the order in which it accesses
protected or unprotected resources, nor is it affected by the location of protected
resources (they could all be in remote systems, for example). When the
application program accesses resources in more than one remote system, the
intercommunication component invokes a mirror transaction in each system to
execute requests on behalf of the application program. Each mirror transaction
follows the above rules for termination, and when the application program
reaches a synchronization point, the intercommunication component exchanges
synchronization point messages with those mirror transactions that have not yet
terminated (if any). This is referred to as the multiple-mirror situation.

Chapter 1.4. CICS function shipping 25

The mirror transaction uses the CICS command level interface to execute CICS
requests and the DL/l CALL interface to execute DL/l requests. The request is
thus processed as for any other transaction and the requested resource is
located in the appropriate resource table. If its entry defines the resource as
being remote, the mirror transaction’s request is formatted for transmission and
sent to yet another mirror transaction in the specified system. This situation is
referred to as "chained-mirror.” It is strongly recommended that the system
designer avoids defining a connected system in which chained mirror requests
will occur, except when the requests involved do not access protected
resources, or are inquiry-only requests.

MRO function shipping

For MRO function shipping, the operation of the mirror transaction is slightly
different from that described in the previous section.

Reusable mirror tasks

For ISC function shipping, mirror tasks are terminated when they have no further
work to do, and each new invocation of the mirror transaction requires a new
mirror task to be attached. For MRO, however, the mirror task is detached from
the interregion link when it has no further work to do, but is suspended rather
than terminated.

The “suspend” command issued by the mirror transaction carries a fixed timeout
value of 2 seconds, so that the task is detached if it has not been reused when
this time expires. This mechanism allows the number of reusable mirror tasks
to vary dynamically according to the current interregion traffic. The trade-off in
overheads associated with attaching and detaching mirror tasks and maintaining
suspended tasks is thus optimized.

The timeout value specified on the suspend command is fixed by the
implementation, and cannot be altered.

Suspended mirror tasks are eligible to service any function shipping request on
an interregion link. A mirror task attach is thus necessary only when a
suspended mirror task is not available.

Long-running mirror tasks

Mirror tasks are normally terminated (or suspended) as soon as possible, to
keep the number of active tasks to a minimum and to avoid holding on to the
session for long periods.

However, for some applications, it is more efficient to retain both the mirror task
and the session until the next synchronization point, even though this is not
required for data integrity. For example, a transaction that issues a large
number of READ FILE requests to a remote system may be better served by a
single mirror task, rather than by a separate mirror task for each request. In this
way, the overheads of allocating sessions on the sending side and attaching
mirror tasks on the receiving side can be reduced.

26 CICS/MVS 2.1.2 Intercommunication Guide

Mirror tasks that wait for the next syncpoint, even though they logically do not
need to do so, are called long-running mirrors. They are applicable to MRO
links only, and are specified, on the system on which the mirror will run, by
coding MROLRM =YES in the system initialization table. A long-running mirror
is terminated by the next syncpoint (or RETURN) on the sending side.

Figures 5 and 6 show the action of the mirror for MROLRM =NO and
MROLRM =YES respectively.

Suspension and resumption of mirror tasks

A mirror task is required to service any incoming request that specifies the CICS
mirror transaction CSMi or one of the architected processes CSM1, CSM2,
CSM3, or CSM5. A mirror task can be obtained in one of two ways:

1. By resuming a suspended mirror task, if one is available.

2. By attaching a new mirror task in the normal way.

When a mirror task has no further work to do, it issues a syncpoint if necessary,
and calls the monitoring program just as if it were terminating. It is then
disconnected from the interregion link and, normally, suspended with a 2-second
timeout value.

The maximum number of mirror tasks that can ever be created in a CiCS region
is equal to the number of receive sessions that are defined to other CICS
regions, although this number is unlikely to be approached in practice.

The number of suspended mirror tasks peaks whenever a large number of
mirror tasks finish within the 2-second timeout period. For example, to reach 100
suspended mirror tasks would require sufficient function shipping requests to
attach 100 mirror tasks, and for ail these tasks to finish and be suspended within
a two-second period, with no additional requests to cause resumption of a
suspended task.

You can limit the number of suspended mirror tasks in your system by means of
the MAXSMIR operand of the system initialization table. If the suspension of a
mirror task would cause the MAXSMIR value (default 999) to be exceeded, the
mirror task is terminated instead.

Other conditions that can cause a mirror task to be terminated rather than
suspended are:

¢ CICS is “short-on-storage”.
¢ The maximum task count has been reached.
* Interregion communication is being closed (CEMT SET IRC CLOSED).

In this case, all suspended mirror tasks are resumed and allowed to
terminate.

Suspended mirror tasks contribute towards the maximum task count.

Chapter 1.4. CICS function shipping 27

The short-path transformer

CICS use a special transformer program for function shipping over MRO links.
This transformer program is designed to optimize the path length involved in the
construction of the terminal input/output areas (TIOA) that are sent on an MRO
session for function shipping. It does this by using a private CICS format for the
transformed request, rather than the architected format defined by SNA.

CICS uses the short-path transformer to ship file control, transient data,
temporary storage, and interval control (asynchronous processing) requests.
The short-path transformer is not used for DL/l requests. The shipped request
always specifies the CIC8S mirror transaction CSMI; architected process names
are not used.

Function shipping — examples

This section gives some examples to illustrate the life time of the mirror
transaction and the information flowing between the application and its mirror
(CSM*). The examples contrast the action of the mirror transaction when
accessing protected and non-protected resources on behalf of the application
program, over MRO or ISC links, with and without MRO long-running mirror
tasks. Further details can be found in the CICS/MVS Diagnosis Reference
manual.

Note: In the following examples, references to the suspension and resumption
of the mirror apply only to MRO function shipping (see “Reusable mirror tasks”
on page 26).

System A Transmitted Information System B

Application Transaction

EXEC CICS READ Attach CSM*,
FILE('RFILE') 'READ' request
> | Attach mirror transaction

Perform READ request

'READ' Reply,lLast
Free session. Reply is < Free session. Terminate
passed back to the mirror.

application, which
continues processing.

Figure 4. ISC function shipping — simple enquiry. Here no resource is being changed the session is freed and
the mirror task is terminated immediately.

28 CICS/MVS 2.1.2 Intercommunication Guide

System A

Application Transaction

.

EXEC CICS READ
FILE('RFILE")

Free session., Reply is
passed back to the
application, which
continues processing.

Transmitted Information

Attach CSM*,
'READ' request

'READ' Reply, Last

System B

{DFHSIT MROLRM=NO}

Attach (or resume) mirror
transaction.
Perform READ request

Free session. Terminate
mirror,

Figure 5. MRO function shipping — simple enquiry. Here no resource is being changed. Because long-running
mirror tasks are not specified, the session is freed by system B and the mirror task is terminated immediately.

System A

Application Trahsaction

EXEC CICS READ.
FILE('RFILE")

Hold session. Reply is
passed back to the
application, which
continues processing.

Transmitted Information

System B

Attach CSM*,
'READ' request

'READ' Reply

‘Perform READ request

{DFHSIT MROLRM=YES}

Attach (or resume) mirror
transaction.

Hold session. Mirror task
waits for next request.

Figure 6. MRO function shipping — simple enquiry. Here no resource is being changed. However, because
long-running mirror tasks are specified, the session is held by system B and the mirror task waits for the next

request.

Chapter 1.4. CICS function shipping 29

System A Transmitted Information System B

Application Transaction

EXEC CICS READ UPDATE Attach CSM*,
FILE('RFILE") ces 'READ UPDATE' request
. > | Attach (or resume) mirror
transaction
. 'READ UPDATE' reply
Reply passed to application < Perform READ UPDATE
. Mirror waits
EXEC CICS REWRITE 'REWRITE' request :
FILE('RFILE") > | Mirror performs REWRITE
'REWRITE' reply
Reply passed to application <
. Mirror waits, still holding the
. enqueue on the updated record
EXEC CICS SYNCPOINT 'SYNCPOINT' request,last
>
Mirror takes syncpoint, releases
+ve response the enqueue, frees the session,
Syncpoint completed < and terminates.

Apptication continues

Figure 7. Function shipping — update. Because the mirror must wait for the REWRITE, it becomes long-running
and does not terminate until SYNCPOINT is received. Note that the enqueue on the updated record would not be
held beyond the REWRITE command if the file was not recoverable. '

30 cics/MVS 2.1.2 Intercommunication Guide

System A

Application Transaction

EXEC CICS READ UPDATE
FILE('RFILE') cee

Reply passed to application

EXEC CICS REWRITE
FILE('RFILE")

Reply passed to application

EXEC CICS SYNCPOINT

Application is abended and backs
out.
Message routed to CSMT

Transmitted Information

Attach CSM*,
'"READ UPDATE' request

'READ UPDATE' reply

<

'REWRITE' request

'REWRITE' reply

<

'SYNCPOINT' request,last

>

-ve response
<

Abend message
< -

System B

Attach (or resume) mirror
transaction.

Perform READ UPDATE

Mirror waits

Mirror performs REWRITE

Mirror waits

Mirror attempts syncpoint but
abends (logging error, for
example). Mirror backs out and
terminates.

Session freed

Figure 8. Function shipping — update with ABEND. This is similar to the previous example, except that an abend

occurs during syncpoint processing.

Chapter 1.4. CICS function shipping

31

Chapter 1.5. Asynchronous processing

Asynchronous processing provides a means of distributing the processing that is
required by an application between systems in an intercommunication
environment. Unlike distributed transaction processing, however, the processing
is asynchronous.

in distributed transaction processing, a session is held by two transactions for
the period of a “conversation” between them, and requests and replies can be
directly correlated.

In asynchronous processing, the processing is independent of the sessions on
which requests are sent and replies are received. No direct correlation can be
made between a request and a reply, and no assumptions can be made about
the timing of the reply. These differences are illustrated in Figure 9.

System A System B
Synchronous Processing (DTP)
TRAN]1 —< >— TRAN2 TRAN1 and TRAN2 hold synchronous
conversation on session.
Asynchronous Processing
TRAN3 TRAN4

TRAN3 initiates TRAN4 and sends
request. At a later time, TRAN4
initiates TRAN5 and sends reply.
TRANS No direct correlation between
executions of TRAN3 and TRANS.

Figure 9. Synchronous and asynchronous processing compared

A typical application area for asynchronous processing is online inquiry on
remote databases; for example, a credit rating check application. A terminal
operator can use a local transaction to enter a succession of inquiries without
waiting for a reply to each individual inquiry. For each inquiry, the local
transaction initiates a remote transaction to process the request, so that many
copies of the remote transaction can be executing concurrently. The remote
transactions send their replies by initiating a local transaction (possibly the
same transaction) to deliver the output to the operator terminal. The replies
may not arrive in the same order as the inquiries were issued; correlation
between the inquiries and the replies must be made by means of fields in the
user data.

© Copyright IBM Corp. 1977, 1991 33

“In general, asynchronous processing is applicable to any situation in which it is
not necessary or desirable to tie-up local resources while a remote request is
being processed.

Asynchronous processing is not suitable for applications that involve
synchronized changes to local and remote resources; for example, it cannot be
used to carry out simultaneous linked updates to data split between two
systems.

Asynchronous processing methods
In CICS, asynchronous processing can be done in either of two ways:
1. By using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote
system in much the same way as you would in a single CICS system. This
type of asynchronous processing is essentially a form of CICS function
shipping, and as such, it is transparent to the application. The systems
programmer determines whether the attached transaction is local or remote.

If you use the START command for asynchronous processing, you can
communicate only with systems that support the special protocol needed for
function shipping; that is, CICS itself and IMS.

A CICS transaction that is initiated by a remotely-issued start request can
use the RETRIEVE command to retrieve any data associated with the
request. A task that is not associated with a terminal can access only the
single data record associated with the original start request. A task
associated with a terminal can retrieve many data records. Each data
record comes from a START command, specifying the same transaction and
terminal.

2. By using distributed transaction processing (DTP).

This is essentially a cross-system method and has no single-system
equivalent. You can use it to initiate a transaction in a remote system that
supports one of the DTP protocols.

When you use DTP to attach a remote transaction, you also allocate a
session and start a conversation. This permits you to send data directly and,
if you want, to receive data from the remote transaction. Your transaction
design determines the format and volume of the data you exchange. For
example, you can use repeated SEND commands to pass multi-record files.

When you have exchanged data, you can terminate the conversation and quit
the local transaction, leaving the remote transaction to run on independently.

The procedure to be followed by the two transactions during the time that
they are working together is determined by the application programming
interface (API) for the protocol you are using. LUTYPEG.2 is the preferred
one, although you must use LUTYPEB.1 if you want to communicate with IMS.
You may want to take advantage of the flexible data exchange facilities by
employing this method across MRO links too.

Whatever protocol you decide to use, you must observe the rules it imposes.
However short the conversation, during the time it is in progress, the

34 cieS/MVS 2.1.2 Intercommunication Guide

processing is synchronous. In terms of command sequencing, error
recovery and syncpointing, the normal DTP rules apply.

Note: If the remote transaction has been defined with RSLC(YES) or
RSLC(EXTERNAL), it cannot access any resources after it has freed the
session that is its principal facility.

In both forms of asynchronous processing (and also in synchronous processing),
a CICS transaction can use the CICS ASSIGN command, plus possibly an
examination of the EIB, to determine how it was initiated.

CICS-to-IMS communication includes a special case of the DTP method
described above. Because it restricts data communication to one SEND LAST
command answered by a single RECEIVE, this book refers to it elsewhere as the
SEND/RECEIVE interface. The circumstances under which it is used are
described in “Chapter 4.8. CICS-to-IMS applications” on page 263.

The remainder of this chapter is devoted to asynchronous processing using
START and RETRIEVE commands. Distributed transaction processing is
described in “Chapter 1.7. Distributed transaction processing” on page 55.

Asynchronous processing using START/RETRIEVE commands

CICS interval control is described in the CICS/MVS Application Programmer’s
Reference manual. The interval control commands that can be used for
asynchronous processing are:

* START
¢ CANCEL
* RETRIEVE.

Starting and canceling remote transactions

The interval control START command is used to schedule transactions
asynchronously in remote CICS and IMS systems. The command causes an
“attach” FMH and a concatenated “scheduler” FMH to be sent with the data to
the remote system; that is, the command is effectively “function shipped”. If the
remote system is CICS, the mirror transaction is invoked in the remote system to
issue the START command on that system. The FMH DSECTs are defined in the
CICS/MVS Data Areas manual.

For CICS-to-CICS communication, you can include time-control information on
the shipped START command in the normal way, by means of the INTERVAL or
TIME option. A TIME specification is converted by CICS to a time interval,
relative to the local clock, before the command is shipped. Because each end of
an intersystem link may be in a different time zone, it is usually better to think in
terms of time intervals, rather than absolute times, for intersystem
communication.

Note particularly that the time interval specified on a START command specifies
the time at which the remote transaction is to be initiated, not the time at which
the request is to be shipped to the remote system.

Chapter 1.5. Asynchronous processing 39

A START command shipped to a remote CICS system can be canceled at any
time up to its expiration time by shipping a CANCEL command to the same
system. The particular START command is uniquely identified by an identifier
(REQID) which you can specify on the START command and on the associated
CANCEL command. The CANCEL command can be issued by any task that
“knows” the identifier. :

Time control cannot be specified for START commands sent to IMS systems;
INTERVAL(0) must be specified or allowed to defauit. Consequently, start
requests for IMS transactions cannot be canceled after they have been issued.

Passing information with the START command
The START command has a number of options that enable information to be
made available to the remote transaction when it is started. if the remote
transaction is in a CICS system, the information is acquired by means of a
RETRIEVE command. The information that can be specified is summarized in the
following list:

* User data — specified in the FROM option.

This is the principal way in which data can be passed io the remote
transaction.

For CICS-to-CICS communication, additional data can be made available in a
transient data or temporary storage queue named in the QUEUE option. The
queue can be on any CICS system that is accessible to the system on which
the remote transaction is executed.

The QUEUE option cannot be used for CICS-to-IMS communication.
* A “terminal” name — specified in the TERMID option.

For CICS-to-CICS communication, this is the name of a terminal that is to be
associated with the remote transaction when it is initiated. The terminal
might be defined on the region that owns the remote transaction and not be
owned by that region. If so, it is acquired by the automatic transaction
initiation (ATI) facility of transaction routing (see “Automatic transaction
initiation” on page 46).

The global user exits XICTENF and XALTENF can be coded to cover the case
where the terminal is shippable but not yet defined in the region that owns
the remote transaction. See “Shipping terminals for automatic transaction
initiation” on page 48.

For CICS-to-IMS communication, it is a transaction code or an LTERM name.

* A transaction name and an associated terminal name — specified in the
RTRANSID and RTERMID options.

These options provide the means for the remote transaction to pass a reply
to the local system, by specifying a transaction that is to be invoked and a
terminal that is to be associated with it.

The use of any of these options is optional.

36 CICS/MVS 2.1.2 Intercommunication Guide

Passing an APPLID with the START command

If you have a transaction that can be started from several different systems, and
is required to issue a start command to the system that initiated it, you can
arrange for all of the invoking transactions to send their '~cal system APPLID as
part of the user data in the START command. A transac ..sn can obtain its local
APPLID by means of an ASSIGN APPLID command. (Note that this command
returns the generic name of the applid.)

The transaction that is started can then find its own, local, SYSID for the passed
APPLID by means of an EXTRACT TCT command, and name that SYSID in the
START command that it issues in reply. This approach cannot be used for MRO
connections, because the EXTRACT TCT command is not supported.

Improving performance of intersystem START requests
In many enquiry-only applications, sophisticated error-checking and recovery
procedures are not justified. Where the transactions make enquiries only, the
terminal operator can retry an operation if no reply is received within a certain
time. In such a situation, the number of messages to and from the remote
system can be substantially reduced by means of the NOCHECK option of the
START command. Where the connection between the two systems is via VTAM,
this can result in considerably improved performance. The price paid for better
performance is the inability of CICS to detect certain types of error in the START
command.

A typical use for the START NOCHECK command is in the remote enquiry
application described at the beginning of this chapter on page 33.

The transaction attached as a result of the terminal operator's enquiry issues an
appropriate START command with the NOCHECK option, which causes a single
message to be sent to the appropriate remote system to start, asynchronously, a
transaction that makes the enquiry. The command should specify the operator’s
terminal identifier. The transaction attached to the operator’s terminal can now
terminate, leaving the terminal available for either receiving the answer or
initiating another request.

The remote system performs the requested enquiry on its iocal database, then
issues a start request for the originating system. This command passes back
the requested data, together with the operator’s terminal identifier. Again, only
one message passes between the two systems. The transaction that is then
started in the originating system must format the data and display it at the
operator’s terminal.

If a system or session fails, the terminal operator must reenter his enquiry, and
be prepared to receive duplicate replies. To aid him, either a correlation field
must be shipped with each request, or all replies must be self-describing.

An example of intercommunication using the NOCHECK option is given at the
end of this chapter in Figure 11 on page 42.

The NOCHECK option is always required when shipping of the START command
is queued pending the establishment of links with the remote system (see “Local
queuing” on page 38), or if the request is being shipped to IMS.

Chapter 1.5. Asynchronous processing 37

Including start request delivery in a logical unit of work

The delivery of a start request to a remote system can be made part of a logical
unit of work by specifying the PROTECT option on the START command. The
PROTECT option indicates that the remote transaction must not be scheduled
until the local one has successfully completed a synchronization point. (it can
take the synchronization point either by issuing a SYNCPOINT command or by
terminating.) '

Successful completion of the syncpoint guarantees that the start request has
been delivered to the remote system. It does not guarantee that the remote
transaction has completed, or even that it will be initiated.

If the remote system is IMS, no message must cross the link between the START
command and the synchronization point. Both PROTECT and NOCHECK must be
specified for all IMS recoverable transactions.

Deferred sending of START requests

Local queuing

For START commands with the NOCHECK option, whether or not PROTECT is
specified, CICS defers transmission of the request to the remote system until one
of the following events occurs:

* The transaction issues a further START command (or any function shipping
request) for the same system

* The transaction issues a SYNCPOINT command

* The transaction terminates (implicit syncpoint).

The first, or only, start request transmitted from a transaction to a remote system
carries the begin-bracket indicator; the last, or only, request carries the
end-bracket indicator. Also, if any of the start requests issued by the transaction
specifies PROTECT, the last request carries the syncpoint-request indicator.
Deferred sending allows the indicators to be added to the deferred data, and
thus reduces the number of transmissions required.

The sequence of requests is transmitted within a single SNA bracket and, if the
remote system is CICS, all the requests are handled by the same mirror task.

For IMS, as stated in the previous section, no message must cross the link
between a START request and the following syncpoint. Therefore, you cannot
send multiple START NOCHECK PROTECT requests to IMS. Each request must
be followed by a SYNCPOINT command, or by termination of the transaction.

When a local transaction is ready to ship a START request, the intersystem
facilities may be unavailable, either because the remote system is not active or
because a connection cannot be established. The normal CICS action in these
circumstances is to raise the SYSIDERR condition. This can be avoided by
arranging for the request to be queued locally, and forwarded when the required
link is in service. The storing and forwarding can be carried out by user-written
transactions, or by the CICS local queuing facility.

38 CICS/MVS 2.1.2 Intercommunication Guide

CICS can provide local queuing for START commands intended to initiate
transactions on remote systems. The commands must include the NOCHECK
option, and local queuing must be specified by means of either a user exit
invoked from the CICS routine DFHISP, or the LOCALQ operand in the local
definition of the remote transaction. The user exit can specify local queuing for
all requests from the local system; the LOCALQ operand can specify local
queuing for all requests from the local system for a particular remote
transaction.

Local queuing is ineffective for START requests that specify the SYSID option.

Data retrieval by a started transaction

A CICS transaction that is started by a start request can acquire the user data
and other information associated with the request by means of the RETRIEVE
command.

In accordance with the normal rules for CICS interval control, a start request for
a particular transaction that carries both user data and a terminal identifier will
be queued if the transaction is already active and associated with the same
terminal. During the waiting period, the data associated with the queued request
_can be accessed by the active transaction by means of a further RETRIEVE
command. This has the effect of canceling the queued start request.

It is thus possible to designh transactions that can handle the data associated
with multiple start requests. Typically, a long-running transaction could be
designed to accept multiple enquiries from a terminal and ship start requests to
a remote system. From time to time, the transaction would issue RETRIEVE
commands to receive the replies, the absence of further replies being indicated
by the ENDDATA condition.

The WAIT option of the RETRIEVE command can be used to put the transaction
into a WAIT state pending the arrival of the next start request from the remote
system. Suitable precautions must be made to ensure that the transaction does
not get into a permanent wait state in the absence of further start requests.

Terminal acquisition by a remotely-initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility. Its makes no difference whether the start request was issued by a
user-transaction in the local CICS system or was received from a remote system
and issued by the mirror transaction.

Starting transactions with ISC or MRO sessions

You can name a system, rather than a terminal, in the TERMID option of the
START command.

Chapter 1.5. ‘Asynchronous processing 39

If CICS finds that the “terminal”™ named in a locally- or remotely-issued start
request is a system, it selects an available session to that system and makes it
the principal facility (see “Terminology” on page 161) of the started transaction.
If no session is available, the request is queued until there is one.

If the link to the system is an LUTYPEG6.2 link, CICS uses the modename
associated with the transaction definition to select a class-of-service for the
session.

System programming considerations

This section discusses the CICS resources that must be defined for
asynchronous processing. Information on how to define the resources is given
in “Part 3. Resource definition and master terminal operation” on page 89.

+ A link to remote system must be defined.

* Remote transactions that are to be initiated by start requests must be
defined as remote resources to the local CICS system. This is hot
necessary, however, for transactions that are initiated only by START
commands that name the remote system explicitly in the SYSID option.

« If the QUEUE option is used, the named queue must be defined on the
system to which the start request is shipped. The queue can be either a
local or a remote resource on that system.

» |f a START request names a “reply” transaction, that transaction must be
defined on the system to which the start request is shipped.

Asynchronous processing — examples

Note: In the following examples, references to the suspension and resumption
of the mirror apply only to CICS systems using MRO (see “Reusable mirror
tasks” on page 26).

40 CICS/MVS 2.1.2 Intercommunication Guide

System A
{DFHSIT MROLRM=YES}

Transaction TRX
initiated by terminal T1

EXEC CICS START
TRANSID('TRY")
RTRANSID('TRZ')
RTERMID('T1')
FROM(area)
LENGTH(1ength)

Free session. Pass return code
to application program. Continue
processing.

Attach (or resume) mirror
transaction.

(continued)

Transmitted Information

System B

Attach CSM*
'SCHEDULE' request for
transaction

'SCHEDULE' Reply,last

<

Session available for
remote requests from
other transactions in
system A or B.

Attach CSM*
'SCHEDULE' request for

transaction
<

Attach (or resume) mirror
transaction. Perform START
request for transaction TRY.

Free session. Terminate (or
suspend) mirror. Transaction TRY
is dispatched and starts
processing.

EXEC CICS RETRIEVE
INTO (area)
LENGTH(Yength)
RTRANSID(TR)
RTERMID(T)

(TR has value 'TRZ’,
T has value 'T1t)

Processing based on data
acquired. Results put into TS
queue named RQUE.

EXEC CICS STARTY

- TRANSID(TR)
TERMID(T)
QUEUE ('RQUE")

(TR has value 'TRZ',
T has value 'T1')

Figure 10 (Part 1 of 2). Asynchronous processing — remote transaction initiation

Chapter 1.5. Asynchronous processing 41

Systenm Av' Transmitted Information System B

Perform START request with
TRANSID value of 'TRZ' and TERMI
value of 'T1', '

, 'SCHEDULE' Reply
mirror waits for SYNCPOINT. >

RETURN (implicit syncpoint)
'SYNCPOINT!' request,last

<

+ve response
Free session. Terminate (or >
suspend) mirror.

Transaction TRZ is dispatched
on terminal Tl and starts
processing.

EXEC CICS RETRIEVE
INTO (area)
LENGTH(1ength)
QUEUE(Q)

Q has value 'RQUE'"

Transaction now uses function
shipping to read and then to
delete the remote queue.

- Figure 10 (Part 2 of 2). Asynchronous processing — remote transaction initiation. This example shows an MRO
connection with long-running mirrors (MROLRM) specified for system A but not for system B. Note the different
action of the mirror transaction on the two systems.

System A Transmitted Information System B

Transaction TRX
initiated by terminal T1

EXEC CICS START
TRANSID('TRY")
RTRANSID('TRZ")
RTERMID('T1")
FROM(area)
LENGTH(1ength)
NOCHECK

(continued)

Figure 11 (Part 1 of 2). Asynchronous processing — remote transaction initiation using NOCHECK

42 CICS/MVS 2.1.2 Intercommunication Guide

System A

T1 could now initiate another
transaction, but TRZ could not
start until T1 became free again.

Attach (or resume)
mirror transaction

Perform START request with
TRANSID value of 'TRZ' and TERMID
value of 'T1'. Free session.

Terminate (or suspend) mirror.

Transaction TRZ is dispatched on
terminal T1 and starts processing.

Terminate, and free terminal T1. -

Transmitted Information

System B

Attach CSM*
'SCHEDULE' request for
trans, last (no reply)

session available

Attach CSM*
'SCHEDULE' request for

‘trans, last (no reply)

<

>

session available

Attach (or resume) mirror.
Perform START request for
transaction TRY. Free session.
Terminate (or suspend) mirror.

Transaction TRY is dispatched
and starts processing.
EXEC CICS RETRIEVE
INTO (area)
LENGTH(Tength)
RTRANSID(TR)
RTERMID(T)
(TR has value 'TRZ',
T has value 'T1')

Processing based on data acquired.
Reply put in data area REP.

EXEC CICS START
TRANSID(TR)

FROM (REP)
LENGTH(1ength)
TERMID(T)

NOCHECK

(TR has value 'TRZ',
T has value 'T1')

TRY terminates

Figure 11 (Part 2 of 2). Asynchronous processing - remote transaction initiation using NOCHECK. This
“example shows an ISC connection, or an MRO connection without long-running mirrors.

Chapter 1.5. Asynchronous processing 43

Chapter 1.6. CICS transaction routing

CICS transaction routing allows terminals connected to one CICS system to run
with transactions in another, connected, CICS system. The two systems can be
connected either by MRO links or by LUTYPE6.2 (APPC) ISC links. Transaction
routing across LUTYPEG.1 links is not supported.

A terminal operator at a terminal connected to one CICS system (the
terminal-owning region or TOR) can enter a transaction code for a transaction
without being aware of the location of the transaction. If the transaction is
“remote”, CICS will route the request to the application-owning region or AOR,
and the transaction will run exactly as if the terminal were attached to the
application-owning region.

Similarly, a transaction that is started by automatic transaction initiation (ATI)
can acquire a terminal that is owned by a different, connected, system.

CICS handles all routing of requests and replies between the two systems, and
transactions can usually be designed and coded without regard to the fact that
the terminal is connected to another CICS system.

To communicate with the terminal, the application program can use the terminal
control, BMS, or batch data interchange facilities of CICS. Mapping and data
interchange functions are performed in the application-owning region. BMS
paging operations are performed on the terminal-owning region. See "Basic
mapping support” on page 52 for more information on BMS operations.

Both conversational and pseudoconversational transactions are supported. The
various transactions that make up a pseudoconversational transaction can run
on different systems.

Applications written for single CICS systems can use transaction routing without,
in most cases, any reprogramming. System errors associated with cross-system
traffic will cause the application to abend.

The relay program

When a terminal operator enters a transaction code for a transaction which is in
a remote system, the transaction that is attached executes a CiCS-supplied
program (DFHCRP) known as the relay program. This program, which always
executes in the terminal-owning region, provides the communication mechanism
between the terminal and the remote transaction.

The transaction that is attached in the terminal-owning region is a user-defined
transaction with user-defined attributes; usually those of the “real” transaction in
the remote region. However, because it executes the relay program, it is often
called the relay transaction.

When the relay transaction is attached, it acquires an interregion or intersystem

session and sends a request to the remote system to cause the “real” user
transaction to be started. In the application-owning region, the terminal is

® Copyright 1BM Corp. 1977, 1991 45

represented by a control block known as the surrogate TCTTE. This TCTTE
becomes the transaction’s principal facility, and is indistinguishable by the
transaction from a “real” terminal entry. However, if the transaction issues a
request to its principal facility, the request is intercepted by the CICS terminal
control program and shipped back to the relay transaction over the interregion
or intersystem session. The relay transaction then issues the request or output
to the terminal. In a similar way, terminal status and input are shipped by the
relay transaction to the user transaction.

Automatic transaction initiation is handied in a similar way. If a transaction that
is initiated by ATI requires a terminal that is connected to another system, a
request to start the relay transaction is sent to the terminal-owning region.
When the terminal is free, the relay transaction is connected to it.

The relay transaction remains in existence for the life of the user transaction and
has exclusive use of the session to the remote system during this period. When
the user’s transaction terminates, an indication is sent to the relay transaction,
which then also terminates and frees the terminal.

If the user application takes a synchronization point, and if it was defined as a
protected task requiring committed output messages, an indication is sent to the
relay transaction, which then takes its own synchronization point. Each of the
two CICS systems maintains its own system log. Committed output messages
are logged on the terminal-owning region.

Combined transaction routing and function shipping

A user’s transaction can be in session with only one relay transaction at a time
(because a transaction can converse with only one principal facility). But it can

 be in session with several mirror transactions and a relay transaction (it may
have several function shipping requests outstanding). A mirror transaction can
be in the same CICS system as the relay or a different one; in the former case,
the user’s transaction will be using two simultaneous sessions between the two
systems.

Automatic transaction initiation

Automatic transaction initiation (ATI) is the process whereby a transaction
request made internally within a CICS system or systems network leads to the
scheduling of the transaction. ‘

CICS transaction routing allows an ATl request for a transaction owned by a
particular CICS system to name a terminal that is owned by another, connected
system.

Although the original ATl request occurs in the application-owning region, it is
sent by CICS to the terminal-owning region for execution. Here it causes the
relay program to be initiated, with the specified terminal. The “real” transaction
is then accessed in the manner described for terminal-originated transaction
routing.

46 CICS/MVS 2.1.2 Intercommunication Guide

ATl requests are queued in the application-owning region if the link to the
terminal-owning region is not available, and subsequently in the terminal-owning
region if the terminal is already in use.

The overall effect is to create a “single-system” view of ATl as far as the
application-owning region is concerned; the fact that the terminal is remote does
not affect the way in which ATl appears to operate.

In the application-owning region, the normal rules for ATl apply. The transaction
can be initiated from a transient data queue, when the trigger level is reached,
or on expiry of an interval control “start” request. Note particularly that, for
transient data initiation, the transient data queue must be in the same system as
the transaction. Transaction routing does not enable transient data queue
entries to initiate remote transactions.

In Figure 12, transaction yyyy in system CICB can be initiated by an ATI request
that names the remote terminal CA1. The ATI request is sent to system CICA,
which owns terminal CA1. Here the terminal is acquired, and the initiation of
transaction yyyy, which is defined as remote in system CICA, causes the relay

Terminal-Owning Region

TERMINAL
(CA1)

Notes:

Application-Owning Region

(TOR) CICA (AOR) cCICB
DEFINE DEFINE
TERMINAL (CA1) TERMINAL(CAL)
REMOTESYSTEM(CICA)
DEFINE DEFINE
TRANSACTION(yyyy) TRANSACTION(yyyy)
REMOTESYSTEM(CICB)
CICS relay MRO
program or User-written
executing as LUTYPE6.2 transaction
transaction yyyy
Yyyy session

1. You can use macro-level definition or resource definition online (RDO) to define the terminal,
the transaction, and the intersystem or interregion session. See “Part 3. Resource definition
and master terminal operation” on page 889.

2. The terminal need not be defined in the application-owning region if RDO is used to define the
terminal as “shippable” in the terminal-owning region. See “Shipping terminal definitions” on
page 141.

Figure 12. Transaction routing

Chapter 1.6. CICS transaction routing 47

program to be initiated. The relay program initiates transaction yyyy in system
CICB by means of the normal transaction routing facility.

Figure 12 shows how the transaction and the terminal are defined in both
systems for straightforward ATl operation. However, if you are using shippable
terminals, CICS allows you to determine the terminal location at ATt scheduling
time.

Shipping terminals for automatic transaction initiation

System CICA can cause an ATl request to be executed in System CICB in three
ways:

1. CICA function-ships a START request to CICB.

2. CICA function-ships WRITEQ requests for a transient data queue owned by
CICB, which eventualtly triggers.

3. CICA instigates routing to a transaction in CICB, which then issues a START
or writes to a transient data queue.

If the ATl request has a terminal associated with it, CICB searches its resources
for a definition for that terminal. If it finds that the terminal is remote, it sends
the ATI request to the system that is specified on the REMOTESYTEM option of
the terminal definition. Remember that an ATl request is executed ultimately in
the TOR.

Terminal-not-known condition

To ensure correct functioning of cross-region ATI, you could define your
terminals to all the systems on the network that need to use them. However,
you cannot do this, if you are using autoinstall {see the CICS/MVS Resource
Definition (Online) manuat for information on the autoinstallation of terminals).
Autoinstalled terminals are unknown to the system until they log on, and you rely
on CICS to ship terminal definitions to all the systems where they are needed
(see "Shipping terminal definitions” on page 141). This works fine when routing
from a terminal to a remote system, but there are cases where a system is
unable to process an ATl request, because it has not been told the location of
the associated terminal.

The example shown in Figure 13 on page 49 should make this clear:

« The operator at terminal T1 selects the menu transaction M1 on CICA.

* The menu transaction M1 runs and the operator selects a function that is
implemented by transaction X1 in CICB.

- » Transaction M1 issues the command:

EXEC CICS START
TRANSID(X1)
TERMID(T1)

and exits.
» CICA function ships the START command to CICB.

* CICB now processes the START command and, in doing so, tries to discover
which region owns T1, because this is the region that has to execute the ATI
request resulting from the START command.

48 ciCcS/MVS 2.1.2 intercommunication Guide

CICA

DEFINE TRANSACTION(M1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB)

CEDA-installed or
autoinstalled terminal

DEFINE TRANSACTION(X1)

no terminals defined

definition for T1

TRANSACTION Function-shipped CICS Inter-
Mi —» |val Control
EXEC CICS START Pgm. raises
TRANSID(X1) TERMIDERR
TERMID(T1)

Figure 13. Failure of an ATl request in a system where the termid is unknown

¢ Only if a definition of T1, resulting from an earlier routed transaction, is
present will CICB know where to send the ATI request. Assuming no such
definition exists, the Interval Control Program rejects the START request with
termiderr.

The global user exits XICTENF and XALTENF

You, as user of the system, know how this routing problem could be solved, and
CICS gives you a way of communicating your solution to the system. The two
global user exits XICTENF and XALTENF have been provided. XICTENF is driven
when the Interval Control Program (DFHICP) processes a START command and
discovers the associated termid is not known to the system. XALTENF is driven
from the Terminal Allocation Program also when the termid is not known.

The Terminal Allocation Program schedules requests resulting both from the
eventual execution of a START command and from the transient data queue
trigger mechanism. This means that a START command could result in an
invocation of both exits.

The program you provide to service one or both of these global user exits has
access to a parameter list containing the following information:

* Whether the ATl request resulted from: a START command with data, a
START command without data, or a transient data queue trigger.

¢ Whether or not the START command was issued by a transaction which had
been the subject of transaction routing.

Chapter 1.6. CICS transaction routing 49

* Whether or not the START command was function shipped from another
region.

* The identifier of the transaction to be run.
* The identifier of the terminal the transaction should run with.

* The identifier of the terminal associated with the transaction that issued the
START command, if this was a routed transaction, or the identifier of the
session, if the command was function shipped. Otherwise blanks are
returned.

* The netname of the last system the START request was shipped from or, if
the START was issued locally, the netname of the system last
transaction-routed from. Blanks are returned if no remote system was
involved.

* The sysid corresponding to the previous parameter.

When it returns from the global user exit, your program tells CICS whether the
terminal exists and, if it does, you supply either the netname or the sysid of the
TOR. CICS sends the ATI request to the region you specify. As a result, the
terminal definition is shipped from the TOR to the AOR, and transaction routing
proceeds normally.

There is now a solution to the problem of Figure 13 on page 49. It is only
necessary to write a small exit program that returns the CICS-supplied
parameters unchanged and sets the return code for netname returned.

The events that follow are shown graphically in Figure 14 on page 51:

1. The interval control program accepts the START command and signals
acceptance to the issuing system if this is required. It then processes the
start request and finds no terminal defined, and so takes the XICTENF exit,
which supplies the required netname.

2. After the specified interval has expired, or immediately if no interval was
specified, the terminal allocation program tries to schedule the ATI request.
It finds no terminal defined and takes the exit XALTENF, which again supplies
the required netname. '

3. The ATl request is shipped to CICA. CICA allocates a relay transaction,
establishes a transaction routing link to transaction X1 in CICB, and ships a
copy of the terminal definition for T1 to CICB.

The terminal not known condition can arise in DFHALP during restart; that is,
before the user has had a chance to enable any global user exits. If you want to
intervene here too, you specify the name of the exit program on the SIT
parameter ALEXIT. This facility applies to both warm start and emergency start.

Of course, the example above shows only one of many possibie configurations.
More complex situations can arise in multi-region networks, but if you have
understood the basic solution to the problem, it should be possible for you to
apply it generally.

50 cics/MVS 2.1.2 Intercommunication Guide

CICA

DEFINE TRANSACTION(M1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB)

CEDA-installed or

autoinstalled terminal

definition for T1

cICB

DEFINE TRANSACTION(X1)

no terminals defined

. TRANSACTION Function-shipped CICS Inter- Exit program
. M1 » [val Control |—»| returns
. EXEC CICS START Pgm. drives |4—]| netname
. TRANSID(X1) XICTENF exit "CICA"
. TERMID(T1) l
. cIics ATI request CICS Termnl. Exit program
. initiates < Allocation |—| returns
. transaction shipped to CICA Pgm. drives |4— netname
. routing XALTENF exit "CICA"
. CICS relay Transaction routing TRANSACTION
XX XYY 3 transact&on <4 » xl sscccoe
link established .
between T1 and Xi, .
and terminal v
definition for T1
shipped over copy definition for
terminal T1

Figure 14. Resolving a terminal-not-known condition on a START request

Chapter 1.6. CICS transaction routing * 51

Resource definition

You do not have to be using autoinstalled terminals to make use of the exits
XICTENF and XALTENF. The technique also works with CEDA-installed terminals,
if they are defined with SHIPPABLE(YES) specified.

It is important to remember that, although there is no need to have all terminal
definitions in place before you operate your network, other definitions are
essential. All links between systems must be fully defined, and remote
transactions must be known to the systems that want to use them.

The AOR must have a direct link to the TOR. In other words, the sysid or
netname that you pass back to CICS from the exit program must not be for an
indirectly connected system.

The exit program for the XICTENF and XALTENF exits

How your exit program identifies the TOR from the parameters supplied by CICS
can only be decided by reference to your system design. In the simplest case,
you would hand back to CICS the netname of the system that originated the
START request. In a more complex situation, you may decide to give each
terminal a name that reflects the system on which it resides.

The CICS/MVS Customization Guide has details on how to code the exit
program. A sample program is also available.

Basic mapping support

The mapping operations of BMS are performed in the system on which the
user’s transaction is running. The mapped information is routed between the
terminal and this transaction via the relay transaction, as for terminal control

operations. »

For BMS page building and routing requests, the pages are built and stored in
the user transaction’s system. When the logical message is complete the pages
are shipped to the terminal-owning region (or possibly regions if they were
generated by a routing request) and deleted from the user transaction region.
Page retrieval requests are processed by a BMS program running in the system
to which the terminal is connected.

BMS message routing to remote terminals and operators

You can use the BMS ROUTE command (see the CICS/MVS Application
Programmer’s Reference manual for details of the BMS ROUTE command) to
route messages to remote terminals. You cannot, however, route a message to
a selected remote operator or operator class unless you also specify the
terminal at which the message is to be delivered.

52 cics/MVS 2.1.2 intercommunication Guide

Table 2. BMS message routing to remote terminals and operators
LIST Entry OPCLASS Result

None specified Not specified The message is routed to
all the remote terminals
defined in the originating

system
Entries specifying a Not specified The message is routed to
terminal but not an the specified remote
operator terminal
Entries specifying a Specified The message is delivered
terminal but not an to the specified remote
operator terminal when an operator

with the specified
OPCLASS is signed on

None specified » Specified The message is not
delivered to any remote
operator

Entries specifying an (lgnored) The message is not

operator but not a delivered to the remote

terminal operator

Entries specifying both a (Ilgnored) The message is delivered

terminal and an operator to the specified remote

terminal when the
specified operator is
signed on.

Table 2 shows how the possible combinations of route list entries and OPCLASS
operands govern the delivery of routed messages to remote terminals. In all
cases, the remote terminal must be defined in the system that issues the ROUTE
command (or a shipped terminal definition must already be available; see
“Shipping terminal definitions” on page 141). Note that the facility described in
“Shipping terminals for automatic transaction initiation” on page 48 does not
apply to terminals addressed by the ROUTE command.

The routing transaction (CRTE)

The routing transaction (CRTE) is a CICS-provided transaction that enables a
terminal operator to invoke transactions that are owned by a connected CICS
system. It differs from normal transaction routing in that the remote transactions
do not have to be defined in the local system. However, the terminal through
which CRTE is invoked must be defined on the remote system (or defined as
“shippable” in the local system), and an entry for the terminal operator is
usually required in the remote systems sighon table. CRTE can be used from
any 3270 display device.

To use CRTE, the terminal operator enters:
CRTE SYSID =xxxx[,TRPROF = {DFHCICSS|profile-name}]

where xxxx is the name of the remote system, as specified in the CONNECTION
operand of the DEFINE CONNECTION command (or the SYSIDNT operand of the

Chapter 1.6. CICS transaction routing 53

DFHTCT TYPE=SYSTEM macro), and profile-name is the name of the profile to
be used for the session with the remote system (see “Defining communication
profiles” on page 151). The transaction then indicates that a routing session has
been established, and the user enters input of the form:

yYYyyz22272...

where yyyy is the name by which the required remote transaction is known on
the remote system, and zzzzzz... is the initial input to that transaction.
Subsequently, the remote transaction can be used as if it had been defined
locally and invoked in the ordinary way. All further input is directed to the
remote system until the operator terminates the routing session by entering
CANCEL.

In secure systems, operators are normally required to sign on before they can

invoke transactions. The first transaction that is invoked in a routing session is
therefore usually the signon transaction CSSN; that is, the operator signs on to
the remote system.

Although the routing transaction is implemented as a pseudoconversational
transaction, the terminal from which it is invoked is held by CICS until the
routing session is terminated. Any ATl requests that name the terminal are
therefore queued until the CANCEL command is issued.

The CRTE facility is particularly useful for invoking a master terminal transaction
(CSMT or CEMT) on a particular remote system. It avoids the necessity of
defining the remote CSMT or CEMT in the local PCT with a different name. CRTE
is also useful for testing remote transactions before final installation.

System programming considerations

You will have to perform the following operations to implement transaction
routing in your installation:

1. Install MRO or ISC support, or both, as described in “Part 2. installation” on
page 77.

2. Define MRO or ISC links between the systems that are to be connected, as
described in “Chapter 3.1. Defining links to remote systems” on page 91.

3. Define the terminals and transactions that will participate in transaction
routing, as described in "Chapter 3.2. Defining remote resources” on
page 133.

4. If you want to route to shippable terminals from regions where those
terminals might be not known, code and enable the global user exits
XICTENF and XALTENF as described in the CICS/MVS Customization Guide.

5. Ensure that the required communication profiles, transactions, and programs
are included in the program control table and the processing program table,
as described in “"Chapter 3.3. Defining local resources” on page 151.

54 cics/MvS 2.1.2 Intercommunication Guide

Chapter 1.7. Distributed transaction processing

Like asynchronous processing, which is described in “Chapter 1.5.
Asynchronous processing” on page 33, distributed transaction processing (DTP)
provides a means of distributing the processing required by an application
between two or more systems in an intercommunication environment.

In contrast with asynchronous processing, however, DTP provides synchronous
communication. In CICS intercommunication, this means that a session is
acquired and held by two transactions for the period of a “conversation”
between them. Because the transactions have exclusive use of the session,
messages that pass between them as part of the conversation can be directly
correlated, and each transaction can carry out processing that depends directly
on the results of a previous stage of processing performed by the other.

Synchronous communication also enables actions taken by the conversing
transactions to be made part of the same logical unit of work. Synchronization
points taken by one transaction can force corresponding synchronization points
in the other, so that changes made to local and remote resources can be
coordinated.

DTP is the most powerful, flexible, and complex of the CICS intercommunication
facilities. This chapter introduces the concepts of DTP, “Chapter 4.5. CICS
applications for logical unit type 6.2 mapped conversations™ on page 171 through
“Chapter 4.8. CICS-to-IMS applications” on page 263 give detailed descriptions
of DTP programming.

Why function shipping and transaction routing are not enough

l

| Function shipping gives you access to remote resources and transaction routing
| lets a terminal communicate with remote transactions. At first sight, these two

| facilities may appear sufficient for all your intercommunication needs. Certainly,
| from a functional point of view, they are probably all you do need. In the real

| world, however, there are always design criteria that go beyond pure function.

| Machine loading, response time, continuity of service, and economic use of

| resources are just some of the factors that affect transaction design.

Consider the following example:

I

| A hypermarket chain has many branches, which are served by several

| distribution centers, each stocking a different range of goods. Local stock
| records at the branches are updated online from point-of-sale terminals.

| Sales information has also to be sorted for the separate distribution

| centers, and transmitted to them to enable reordering and distribution.

® Copyright IBM Corp. 1977, 1991 55

Without thinking too much about it, an analyst might decide to use function
shipping to write reorder records to a remote file, at the appropriate distribution
center, at the same time that the local stock records are updated by the
point-of-sale terminals. This method has the virtue of simplicity, but must be
rejected for several reasons:

1. Data is transmitted to the remote systems irregularly in small packets. This
means inefficient use of the links.

2. The transactions associated with the point-of-sale devices are competing for
sessions to the remote distribution centers. This could mean unacceptable
delays at point-of-sale.

3. Failure of a link results in a catastrophic suspension of operations at a
branch.

4. Intensive intercommunications activity, for example at peak periods, causes
reduction in performance at the terminals.

Now consider the solution where each sales transaction writes its reorder
records to a transient data queue. Here the data is quickly disposed of, leaving
the transaction to carry on its conversation with the terminal.

It is seldom that restocking requests have any urgency, so that it may be
possible to delay the sorting and sending of the data until an off-peak period.
Alternatively, the transient data queue could be set up to trigger off the sender
transaction when a predefined data level is reached. Either way, the sender
transaction has the same job to do.

Again, one might be tempted to use function shipping to transmit the reorder
records. After the sort process, each record could be written to a remote file in
the relevant remote system. However, this method is not ideal here either. The
sender transaction would have to wait after writing each record to make sure
that it got the right response. Apart from using the link inefficiently, waiting
between records would make the whole process impossibly slow. This chapter
tells you how to solve this problem, and others, using distributed transaction
processing.

The flexibility of DTP can, in some circumstances, be used to achieve improved
performance over function shipping. Consider an example in which you are ’
browsing a remote file to select a record that satisfies some criteria. If you use
function shipping, CICS ships the GETNEXT request across the link, and lets the
mirror perform the operation and ship the record back to the requestor.

This involves two flows, and a significant amount of data, on what may be a very
busy network. If the browse is on a large file, the overhead can be unacceptably
high. One alternative is to write a DTP conversation that ships the selection
criteria, and returns only the keys and relevant fields from the selected records.
This reduces both the number of flows and the amount of data sent over the link,
thus reducing the overhead as compared to the function-shipping case.

56 cICcS/MVS 2.1.2 Intercommunication Guide

Why distributed transaction processing?

I

| In a multisystem environment, data transfers between systems are necessary

| because end users need access to remote resources. In managing these

| resources, network resources are used. But performance suffers if the network
| is used excessively. There is therefore a performance gain if application design
| is oriented toward doing the processing associated with a resource in the

] resource-owning region.

| DTP lets you process data at the point where it arises, instead of overworking
| network resources by assembling it at a central processing point.
There are, of course, other reasons for using DTP. Here are some of them:
* It allows some measure of parallel processing to shorten response times.

* It provides a common interface to a transaction that is to be attached by
several different transactions.

particularly on non-CICS systems.

* |t provides a buffer between a security-sensitive file or database and an

I

I

I

I

| * |t enables communication with applications running on other systems,

[

|

| application, so that no application need know the format of the file records.
I

* It enables batching of nonurgent data destined for a remote system.

What is a conversation and what makes it necessary?

I

| In DTP, transactions pass data to each other directly. While one sends, the other
| receives. The exchange of data between two transactions is called a

| conversation. Although several transactions can be involved in a single

| distributed process, communication between them breaks down into a number of
| self-contained conversations between pairs. Each such conversation uses a

| CICS resource known as a session.

Conversation initiation and transaction hierarchy
A transaction starts a conversation by requesting the use of a session to a
remote system. Having obtained the session, it causes an aftach request to be
sent to the other system to activate the transaction that is to be the conversation
partner.

A transaction can initiate any number of other transactions, and hence,
conversations. In a complex process, a distinct hierarchy emerges, with the
transaction that was started by the terminal at the tip of the pyramid. Figure 15
on page 58 shows a possible configuration. Transaction AAAA is attached over
the terminal session. Transaction AAAA attaches transaction BBBB, which, in
turn, attaches transactions CCCC and DDDD. Both these transactions attach the
same transaction, SUBR, in system CICSE. This gives rise to two different tasks
of SUBR.

Chapter 1.7. Distributed transaction processing 57

CICSA

Transaction AAAA

cIcss

Transaction BBBB

CICSC ‘ cICcsD

Transaction CCCC Transaction DDDD
CICSE

Transaction SUBR Transaction SUBR

Figure 15. DTP in a multisystem configuration

The structure of a distributed process is determined dynamically by program; it
cannot be predefined. Notice that, for every transaction, there is only one
inbound attach request, but that there can be any number of outbound attach
requests. The session that activates a transaction is called its principal facility.
A session that is allocated by a transaction to activate another transaction is
called its alternate facility. Therefore, a transaction can have only one principai
facility, but any number of alternate facilities. '

When a transaction initiates a conversation, it is the front end on that
conversation. Its conversation partner is the back end on the same
conversation. It is normally the front end that dominates, and determines the
way the conversation goes. You can arrange for the back end to take over if you
want, but in a complex process, this can cause unnecessary complications. This
is further explained in the discussion on synchronization later in this chapter.

58 cics/MVs 2.1.2 Intercommunication Guide

A conversation transfers data from one transaction to another. For this to
function properly, each transaction must “know” what the other intends. It is
therefore necessary to design, code, and test front end and back end as one
software unit. The same applies when there are several conversations and
several transaction programs. Each new conversation adds to the complexity of
the overall design.

In the example on page 55, the DTP solution is to transmit the contents of the
transient data queue from the front end to the back end.: The front end issues a
SEND command for each record that it takes off the queue. The back end issues
RECEIVE commands until it receives an indication that the transmission has
ended.

In practice, most conversations simply transfer a file of data from one
transaction to another. The next stage of complexity is to cause the back end to
return data to the front end, perhaps the result of some processing. Here the
front end is programmed to request conversation turnaround at the appropriate
point.

Control flows and brackets

During a conversation, data passes over the link in both directions. A single
transmission is called a flow. Issuing a SEND command does not always cause
a flow. This is because the transmission of user data can be deferred; that is,
held in a buffer until some event takes place. The LUTYPE6.2 architecture
defines data formats and packaging. CICS handles these things for you, and
they concern you only if you need to trace flows for debugging purposes.

The LUTYPEG.2 architecture defines a data header for each transmission, which
holds information about the purpose and structure of the data following. The
header also contains bit indicators to convey control information to the other
side. For example, if one side wants to tell the other that it can start sending,
CICS sets a bit in the header that signals a change of direction in the
conversation.

To keep flows to a minimum, nonurgent control indicators are accumulated until
it is necessary to send user data, when they are added to the header.

Chapter 1.7. Distributed transaction processing 59

— — — — —— —

The LUTYPEG.2 architecture defines acronyms for all control indicators. Here are
the ones you will meet in this book:

Table 3. LUTYPEG6.2 control indicators — sample

Acronym | Name Meaning

BB BEGIN_BRACKET Start a conversation.

BIND | BIND_SESSION Request session bind negotiation.

CcD CHANGE_DIRECTION Receiver cah now send.

CEB CONDITIONAL_END_BRACKET End conversation.

CNOS CHANGE_NUMBER_OF_SESSIONS Renegotiate change to number
and character of available
sessions.

CTD COMMITTED Recoverable resources have been
committed.

FGT FORGET Syncpointing activity on this

_ transaction is complete.

PTC PREPARE_TO_COMMIT Start of syncpointing activity.

RB ROLL_BACK A transaction within the
distributed process wants to
return recoverable resources to
the state they were in at the last
actual or implied syncpoint.

RC REQUEST_COMMIT This transaction is ready to
commit its recoverable resources.

In complex procedures, such as establishing syncpoints, it is often necessary to
send control indicators when there is no user data available to send. This is
called a control flow.

BEGIN_BRACKET marks the start of a conversation; that is, when a transaction is
attached. CONDITIONAL_END_BRACKET ends a conversation. End bracket is
conditional because the conversation can be reopened under some
circumstances. A conversation is In bracket when it is still active.

For DTP, MRO is not unlike LUTYPEG6.2 in its internal organization. In fact, it is
based on LUTYPEG.1, which is also a SNA-defined architecture.

Conversation state and error detection

As a conversation progresses, it moves from one state to another within both
conversing transactions. The conversation state determines the commands that
may be issued. For example, it is no use trying to send or receive data if there
is no session linking the front end to the back end. Similarly, if the back end
signals end of conversation and the front end has seen the end bracket, the front
end cannot be in a state to receive more data.

Either end of the conversation can cause a change of state, usually by issuing a
particular command from a particular state. CICS tracks these changes, and
stops transactions from issuing the wrong command in the wrong state.

60 cics/MVs 2.1.2 Intercommunication Guide

Synchronization

~There are many things that can go wrong during the running of a transaction.

The conversation protocol helps you to recover from errors and ensures that the
two sides remain in step with each other. This use of the protocol is called
synchronization.

Synchronization allows you to protect resources such as transient data queues
and files. Whatever goes wrong during the running of a transaction should not
leave the associated resources in an incorrect state.

Examples of use

Suppose, for example, that a transaction is transmitting a queue of data to
another system to be written to a DASD file. Suppose also that for some reason,
not necessarily connected with the intercommunications activity, the receiving
transaction is abended. Even if a further abend can be prevented, there is the
problem of how to continue the process without loss of data. It is uncertain how
many queue items have been received and how many have been correctly
written to the DASD file. The only safe way of continuing is to go back to a point
where you know that the contents of the queue are consistent with the contents
of the file. However, you then have the problem of restoring the queue entries
on the one side, and of deleting the corresponding entries in the DASD file on
the other side.

The cancelation by an application program of all changes to recoverable
resources since the last known consistent state is called rollback. The physical
process of recovering resources is called backout. The condition that exists as
long as there is no loss of consistency between distributed resources is called
data integrity.

There are cases where you may want to recover resources, even though there
are no error conditions. Consider an order entry system. While entering an
order for a customer, an operator is told by the system that the customer’s credit
limit would be exceeded if the order went through. Because there is no use

‘continuing until the customer is consulted, the operator presses a PF key to

abandon the order. The transaction is programmed to respond by returning the
data resources to the state they were in at the start of the order.

Taking syncpoints

If you were to log your own data movements, it would be possible for you to
arrange backout of your files and queues. However, it would involve some very
complex programming, which you would have to repeat for every similar
application. To save you the trouble, CICS arranges resource recovery for you.
Logical unit management works together with resource management in ensuring
that resources can be restored.

The points in the process where resources are declared to be in a known
consistent state are called synchronization points, often shortened to syncpoints.
Synchronization points are implied at the beginning and end of a transaction. A
transaction can define other syncpoints by program command. All processing
between two syncpoints belongs to a logical unit of work (LUW).

Chapter 1.7. Distributed transaction processing 61

Taking a syncpoint commits all recoverable resources. This means that all
systems involved in a distributed process erase all the information they have
been keeping about data movements on recoverable resources. Now backout is
no longer possible, and all changes to the resources since the last
synchronization point are made irreversible.

Although CICS commits and backs out resources for you, the service must be
paid for in performance. You might have transactions that do not need such
sophistication, and it would be wasteful to employ it. if the recovery of resources
is not a problem, you can use simpler methods of synchronization.

The three synchronization levels
The LUTYPEG.2 architecture defines three levels of synchronization:

* Level 0 — NONE
e Level 1 — CONFIRM
e Level 2 — SYNCPOINT

| At sync Ievel'O, there is no system support for synchronization. It is
| nevertheless possible to achieve some degree of synchronization through the
| interchange of data, using the SEND and RECEIVE commands.

| If you select sync level 1, you can use special commands for communication
| between the two conversation partners. One transaction can confirm the

| continued presence and readiness of the other. The user is responsible for
| preserving the data integrity of recoverable resources.

| The level of synchronization described earlier in this section corresponds to sync
| level 2. Here system support is available for maintaining the data integrity of
| recoverable resources.

| CICS implies a syncpoint when it starts a transaction; that is, it initiates logging
| of changes to recoverable resources, but no control flows take place. CICS

| takes a full syncpoint when a transaction is normally terminated. The abending
| of a transaction causes rollback. The transactions themselves can initiate

| ‘ syncpoint or rollback requests. However, a syncpoint or rollback request is

| propagated to another transaction only when the originating transaction is in

| conversation with the other transaction, and sync level 2 has been selected for
| the session between them.

| Remember that syncpoint and rollback are not peculiar to any one conversation
| within a transaction. They are propagated on every conversation that is
| currently in bracket.

MRO or LUTYPEG.2?

I

| You can program DTP applications for both MRO and LUTYPEB.2 links. The two
| conversation protocols are not identical. Although you seldom have the choice

| for a particular application, an awareness of the differences and similarities will
| help you to make decisions about compatibility and migration.

62 cCICS/MVS 2.1.2 Intercommunication Guide

You must use LUTYPEB.2 for communication between systems in different MVS
images. If you want to set up a link between two CICS systems in the same MVS
image, you can use MRO, LUTYPEG6.2, or both. However, MRO always has a
performance advantage over LUTYPEG.2.

Table 4 points out the main differences between the two protocols.

Table 4. MRO compared with LUTYPE6.2

MRO LUTYPEG.2

Function realized within CICS. Depends on VTAM or similar.

Non-standard architecture SNA architecture

CICS to CICS links only Links to non-CICS systems possible

Runs within single MVS image. Communicates across multiple MVS
images.

Sync level 2 forced for the Sync level 0, 1, or 2 can be selected.

conversation. _

PIP data not supported. PIP data supported.

Data transmission not deferred. Deferred data transmission.

Partner transaction identified in Partner transaction defined by

data. CONNECT PROCESS command.

RECEIVE can only be issued in RECEIVE causes conversation

receive state. turnaround when issued in send

state on mapped conversations.

No expedited flow possible. ISSUE SIGNAL command enables
expedited flow.

WAIT command has no function. WAIT command causes transmission
of deferred data.

LUTYPE6.2 mapp

ed or basic?

APPC conversations can either be mapped or basic. If you are interested in
CICS-to-CICS applications, you need only use mapped conversations. Basic
conversations (also referred to as “unmapped”) are useful only when
communicating with systems that do not support mapped conversations. These
include some APPC devices.

The two protocols are similar. The main difference lies in the way user data is
formatted for transmission to the other side. In mapped conversations, you
merely send the data you want your partner to receive. In basic conversations,
you have to add a few control bytes to convert the data into an SNA-defined
format called a generalized data stream (GDS). You also have to include the
keyword GDS on EXEC CICS commands for basic conversations.

Chapter 1.7. Distributed transaction processing 63

Table 5 summarizes the differences between mapped and basic conversations.

Table 5. LUTYPEG.2 conversations — mapped compared with basic

Mapped : | Basic

The conversation partners only Both partners must package the
exchange data that is relevant to the user data before sending and
application. unpackage it on receipt.

All conversations for a transaction Each conversation has its own area
share the same EXEC Interface for state information.

Block for status reporting.

The transaction can handle The transaction must test for
exceptional conditions or let them exceptional conditions in a data
default. : area set aside for the purpose.
A RECEIVE command issued in send A RECEIVE command is illegal in
state causes conversation send state.

turnaround.

Transactions can be written in any of | Transactions can be written only in
the supported languages. Assembler language.

Availability of DTP facilities

CICS DTP facilities are provided through the command-level interface of the
CICS Terminal Control program. No special DTP facilities are provided at the
macro level. Application programs can be written in COBOL, PL/l, or assembler
language.

For CICS-CICS communication, DTP can be used between any CICS systems
coupled by MRO, LUTYPEG.1, or LUTYPEB.2 links.

For CICS-IMS communication, DTP can be used between CICS and some types
of IMS transaction (for example, RESPONSE MODE transactions), but only when
CICS is the front end. When IMS is the front end, it always uses asynchronous
processing to initiate CICS transactions. Communication between CICS and IMS
is possible only on LUTYPEBG.1 links.

Desigh concepts

Overview of the application programming interface

This section provides an overview of the application programming facilities
provided for distributed transaction processing, and of some of the basic
protocols associated with DTP conversations. Fuller information is given in
“Part 4. Application programming” on page 159.

64 CICS/MVS 2.1.2 Intercommunication Guide

Acquiring a session to the remote system

A front-end transaction acquires a session to a remote system by executing an
ALLOCATE command. Normally, only the name of the remote system is
specified on the command, and CICS selects an available session for the
transaction. The name of the session, or conversation, is then made available to
the transaction.

Specific sessions can also be named for communication on LUTYPEG.1 links, but
this is not normally necessary. System names, rather than session names, must
be used for session allocation on MRO or LUTYPEG.2 links.

Facilities exist for the transaction to specify what action is required if a session
is not available; either to wait until a session is available or to continue
processing.

The PROFILE option can be used on the ALLOCATE command to specify a set of
terminal control processing options. Profiles are generated by the system
programmer in the Program Control Table. They determine such factors as
whether an FMH received from the other system is to be included in the
application program’s input data area, and whether automatic journaling is to be
used. For LUTYPEG6.2 links, they can also specify the modeset name of a group
of LUTYPE®G.2 sessions, thereby enabling a particular class of service to be
selected for the session.

Depending upon the circumstances, CICS sometimes ignores profile
specifications. For example, INBFMH is always used for MRO sessions. Also,
LUTYPEB.2 FMHs are never passed to application programs, regardiess of the
profile specification. Further information on profiles is given in “Defining
communication profiles” on page 151.

Initiating the back-end transaction
After the session has been allocated, the front-end transaction can initiate the
back-end transaction.

For CICS-CICS communication on MRO or LUTYPEG6.1 links, this is done by the
first SEND or CONVERSE command issued by the front-end transaction. The
name of the back-end transaction is sent either as the first four bytes of the first
message to the remote system, or as part of an SNA-defined field, called an
“attach” function management header (FMH), that is transmitted with the first
message. A BUIL.D ATTACH command exists to enable the transaction to build
an LUTYPE6.1 attach FMH.

Because IMS does not use the convention of a transaction name in the first four
bytes of data, an attach FMH must always be built to initiate CICS-IMS DTP.

For LUTYPEG.2 sessions, CICS provides a special command, CONNECT
PROCESS, which is used before the first SEND or CONVERSE command, and
which builds an LUTYPE6.2 FMH to initiate the back-end transaction. All
LUTYPE6.2 FMHs are handled by CICS; a CICS transaction never has to build
them, nor can it receive them.

Chapter 1.7. Distributed transaction processing 65

To assist in migrating DTP applications from LUTYPE6.1 to LUTYPEB.2 links, CICS
will accept a transaction name in the first four bytes of data and build a suitable
LUTYPEG.2 attach header. CONNECT PROCESS should, however, always be
used for new applications.

The conversation

The front-end and back-end transactions communicate by executing SEND,
RECEIVE, or CONVERSE commands. The front-end transaction must always
specify the name of the session on these commands. This is hot necessary for
the back-end transaction, because it is communicating with its principal facility.

The MRO or ISC session between the transactions follows the SNA half-duplex
flip-flop protocol. This means that at no time can both transactions attempt to
send messages together. One transaction must be in send state while the other
is in receive state.

The front-end transaction is always in send state when it acquires the session,
and the back-end transaction is always in receive state when it is initiated.

A change of state is usually initiated by the transaction currently in send state. It
can do so by executing a CONVERSE or a SEND INVITE command. Both of these
commands invite the transaction that is in receive state to send. (In an
LUTYPES.2 conversation, a partner in receive state can initiate a change of state
with an ISSUE ERROR command, as explained below).

On ISC sessions, a transaction in receive state can request the one in send state
to reverse the states by executing an ISSUE SIGNAL command. This causes
CICS to transmit an SNA SIGNAL command, which carries an SNA code that
means “request change-direction”, to the other transaction. CICS indicates
receipt of the command by raising the SIGNAL condition in the send-state
transaction. A transaction can change to receive state (by issuing a SEND
INVITE command) following receipt of the signal command, though it is not an
error not to do so. ISSUE SIGNAL is not supported on MRO sessions.

For LUTYPESG.2 sessions, there are two additional commands that enable either
transaction to inform the other that an error has occurred, irrespective of
whether they are in send or receive state. They are ISSUE ERROR and ISSUE
ABEND.

ISSUE ERROR causes EIBERR to be set in the transaction that receives it. If this
command is issued by a transaction that is in receive state, the send/receive
states of the two transaction are reversed. This enables the issuing transaction
to send additional information about the error.

On mapped conversations, ISSUE ABEND causes the conversation to abend. A
CICS transaction that issues abend can free the session and continue normally.
A CICS transaction that receives a conversation abend can also continue
normally provided that it is designed to handle the TERMERR condition. The
defauit action for TERMERR is to abend the transaction.

66 cICcS/MVS 2.1.2 Intercommunication Guide

(J

Synchronization points

On MRO or LUTYPEB.1 sessions, either transaction can initiate a synchronization
point when it is in send state, by issuing a SYNCPOINT command. This causes
an indication to be sent to the other transaction to specify that it too must take a
syncpoint.

On LUTYPESB.2 sessions, the way in which a synchronization point can be taken
is governed by the synchronization level that is established for the conversation.

For level 0 conversations, no synchronization is possible.

For level 1 conversations, the commands SEND CONFIRM and ISSUE
CONFIRMATION (together with ISSUE ERROR or ISSUE ABEND) are available to
enable the transactions to exchange private synchronization protocols. CICS
syncpointing mechanisms are not involved in these exchanges. This is the
maximum synchronization level permitted for LUTYPEG.2 single-session links.

For level 2 conversations, full CICS syncpointing is available, including
SYNCPOINT ROLLBACK. The level 1 commands SEND CONFIRM and ISSUE
CONFIRMATION can also be used on level 2 conversations.

The maximum synchronization level available on an LUTYPES.2 session is
dependent on the capabilities of the communication system, which is determined
when the session is bound. All sessions to any particular system are therefore
bound at the same maximum synchronization level. The synchronization level
for a specific conversation (which cannot exceed the maximum allowed for the
session) must be specified on the CONNECT PROCESS command.

CICS always uses synchronization level 2 for transactions that have been
migrated from LUTYPEG.1 but have not been modified to include a CONNECT
PROCESS command. For this reason, it is not possible to run these applications
over an LUTYPEB.2 single-session link.

Freeing the session

A session is explicitly freed by a FREE command that specifies the session
name. The transaction that is in send state must issue the command; an
indication is then sent to the other transaction to specify that it should now free
the session.

A session is implicitly freed when one of the transactions ends, provided that it
is valid for the transaction to free the session at that time.

SNA vconsiderations

The information given in “Part 4. Application programming” on page 159 will
enabie you to construct valid command sequences for DTP applications.
However, an understanding of the SNA protocols and corresponding data flow
control indicators used by CICS for DTP, and their relationship with CICS
commands and command options, will enable you to understand why the rules
are necessary, and can help you to design efficient and error-free applications.

Although MRO sessions do not use the services of an SNA access method, they
do, at the user level, employ SNA formats and protocois. With some exceptions,

Chapter 1.7. Distributed transaction processing 67

which are pointed out in the text, the following sections apply equally to MRO
sessions.

With the exception of certain commands that can cause messages to be
transmitted “against the flow” (such as ISSUE SIGNAL) the session and
transaction states in DTP are dictated by indicators sent by whichever
transaction is currently in send state, In the receiving transaction, the arrival of
a particular indicator causes an appropriate field to be set in the EIB.

The SNA indicators of direct concern are:

end-bracket
The beginning and the end of a conversation between two transactions are
indicated by begin-bracket and end-bracket indicators. A conversation is, in
other words, an SNA bracket.

Only end-bracket need be considered. The bracket is begun automatically
when the back-end transaction is initiated by one of the methods described
previously.

change-direction
In SNA half-duplex flip-flop protocol, the change-direction indicator is sent by
the send-state transaction to reverse the direction of flow on the session. It
causes the send-state transaction to switch to receive state and the
receive-state transaction to switch to send state.

syncpoint-request
A syncpoint-request indicator is sent on the session to indicate that the
send-state transaction is taking a syncpoint and that the receive-state
transaction must also take a syncpoint.

To understand the flows of these indicators on the session, you must consider
two aspects of the CICS implementation of DTP:

1. Under what circumstances the indicators are generated ready for sending

2. Under what circumstances the indicators are actually transmitted.

How SNA indicators are generated
‘The change-direction, syncpoint-request, and end-bracket indicators can be
generated:

"~ » Explicitly as a result of a CICS command or command option
* Automatically by CICS because it detects that one is needed.

The change direction indicator changes the issuing transaction from send state
to receive state, and the other transaction from receive state to send state. It is
generated explicitly by one of the following:

A SEND command with the INVITE option
A CONVERSE command.

On ISC sessions, CICS will supply the missing change direction indicator if you
use a SEND command (without INVITE) followed by a RECEIVE command. On
MRO sessions, however, you must use either CONVERSE or SEND INVITE.

68 cCics/MVS 2.1.2 Intercommunication Guide

M
L

A syncpoint-request indicator is generated explicitly by a CICS SYNCPOINT
command, or automatically at task termination, provided that the session is still
in bracket-state. The session is in bracket state if the end-bracket indicator has
not been transmitted, even if it has already been generated.

An end-bracket indicator is generated by one of the following:
A SEND command with the LAST option
A SEND command followed by a FREE command
A SEND command followed by termination of the task

A RECEIVE command which causes EIBRECV to be turned off (X'00')
followed by a FREE command or by termination of the task.

When SNA Indicators are transmitted

To optimize the use of ISC sessions, CICS implements deferred output
processing for SEND commands. This means that a command is not sent across
the link until either an internal buffer becomes full, or CICS knows that the
conversation is turning around. A consequence of this is that application
programs must not make any assumptions about the physical data flows between
the partners in a conversation. If such assumptions are made, the transaction
does not work correctly when environmental conditions alter the pattern of
physical data flows.

Deferred output often enables CICS to add SNA indicators to waiting data before
it is transmitted, and the number of transmissions required on the session is
thereby reduced. The addition of indicators to deferred output is sometimes
called piggy-backing.

For LUTYPESG.2 sessions, further optimization is achieved by accumulating as
much data as possible in an internal CICS buffer before actually transmitting it
across the link. Thus the data from a series of SEND commands is transmitted
only when the buffer becomes full or when the transmission must be forced (for

“example, if SEND WAIT is encountered). This additional optimization does not

affect the number of flows that are “seen” at the application programming
interface; LUTYPEB.1 and LUTYPEG.2 are equivalent in this respect.

Deferred output is not implemented for MRO sessions. This can lead to a
difference between the number of transmissions required on an ISC link and the
number required on an MRO link when the same command sequence is
executed. This in turn leads to a difference in the humber of RECEIVE
commands that the receiving transaction must issue to receive both the data and
the indicators.

—— Important

You must not make any assumptions as to the state of a DTP conversation.
You must always test the EIB flags after each command to determine the
current state, and act accordingly.

Chapter 1.7. Distributed transaction processing 69

A further difference between ISC and MRO links caused by deferred output is
that some command sequences that are valid for ISC sessions are invalid for
MRO sessions.

As an example, consider the following command sequence:

EXEC CICS SEND FROM(data-area) INVITE
EXEC CICS SYNCPOINT
EXEC CICS RECEIVE INTO(data-area)

On ISC links, the INVITE option generates the change-direction indicator, but the
sending of the message is deferred. The transaction is therefore still in send
state, and the following SYNCPOINT command is valid. CICS adds the
syncpoint-indicator to the deferred output. The output data, the change-direction
indicator, and the syncpoint-request are sent in a single transmission.

On MRO links, because there is no deferred output, the output data and the
change-direction indicator are sent immediately. The transaction changes to
receive state, and the following SYNCPOINT command is invalid.

Output is not deferred if the SEND command has the WAIT option; the message
is transmitted immediately. Use of the WAIT option therefore removes one of the
implementation differences between ISC and MRO distributed transaction
processing. However, on ISC links, it can lower efficiency by increasing the
number of flows that are required.

The WAIT option can sometimes be used to allow input and output on the
session to be overlapped with processing in the transaction. The following
sequence shows how this can be done:

EXEC CICS SEND FROM(data-area) INVITE WAIT

(Non-CICS programming statements)
EXEC CICS RECEIVE INTO(data-area)

Because of the WAIT option, execution of the non-CICS programming statements
will not begin until execution of the SEND is complete. However, transmission of
the input data from the remote system can overlap the processing of these
statements. Without the WAIT option, execution of the SEND would not start until
processing reached the RECEIVE statement, so no overlapping would be
possible.

The WAIT option can also be used to force end-bracket to flow on the session,
and so prevent the session from being involved in syncpointing activity. In the
command sequence:

EXEC CICS SEND FROM(data-area) LAST WAIT
EXEC CICS RETURN :

the LAST option causes end-bracket to be generated and the WAIT option
causes it to be transmitted. The session is therefore not involved in the implicit
syncpoint caused by the RETURN statement.

70 CICS/MVS 2.1.2 Intercommunication Guide

Design hints

The two transactions involved in a DTP conversation should, if possible, be
designed as a requester or main routine and a server or subroutine. In general,
the front-end transaction will be the requester, and the back-end transaction the
server. '

The logic should be contained as far as possible in the requester. This
transaction should pass requests to the server only as necessary. The server
should return its response to the requester, and then wait for another request.
Attempts to distribute the logic between the two transactions, thus making them -
into peers, are likely to lead to complex design problems. If the roles of the two
systems need to be reversed, it is generally preferable for an independent
second pair of transactions to be invoked, rather than for the requester and
server roles of a single pair of transactions to be reversed.

Programming example
As an example of distributed program design, consider the LUTYPE6.2 mapped
conversation shown in Figure 16.

Front-End Transaction Back-End Transaction
EXEC CICS ALLOCATE

EXEC CICS CONNECT
PROCESS SYNCLEVEL(2)

EXEC CICS CONVERSE ————> | EXEC CICS RECEIVE
D — EXEC CICS SEND LAST
EXEC CICS FREE EXEC CICS RETURN

(transaction abends
because syncpoint
request is ignored)

Figure 16. An incorrect LUTYPEG6.2 mapped conversation

In this figure, the front-end transaction:
1. Allocates a session.

2. Uses a CONNECT PROCESS command to initiate the back-end transaction at
synchronization-level 2.

3. Uses a CONVERSE command to:
‘a. Send a message to the back-end transaction.
b. Receive a reply.

4. Frees the session.

This apparently simple conversation fails because the back-end transaction’s
SEND LAST command does not flow until the RETURN statement is executed.

Chapter 1.7. Distributed transaction processing 71

The RETURN statement causes an implicit syncpoint, which goes with the
end-bracket indicator. The front-end transaction ignores the syncpoint request,
and abends.

You can correct this conversation in a number of ways:

1. By coding SEND LAST WAIT instead of SEND LAST in the back-end
~ transaction. This forces LAST to flow, so that no syncpointing takes place on
the session.

2. By understanding that syncpoint-request will be received, and coding EXEC
CICS SYNCPOINT before the FREE command in the front-end transaction.
This approach is not recommended.

3. By examining the EIB values and taking the appropriate action. This method
allows all the possibilities to be catered for, and does not rely on a detailed
knowledge of the ways in which the flows are generated.

The previous example can be modified to include EIB testing as shown in
Figure 17 on page 73.

More, or fewer, EIB tests than those shown may be needed, depending on the
type of session that is being used and possibly on what the other transaction is
designed to'send. To determine what tests are required, refer to the appropriate
chapter in “Part 4. Application programming” on page 159.

72 CICS/MVS 2.1.2 Intercommunication Guide

Front-End Transaction
EXEC CICS ALLOCATE

EXEC CICS CONNECT
PROCESS SYNCLEVEL(2)

EXEC CICS CONVERSE
Save the EIB values,

Test EIBSYNC - it's

Back-End Transaction

EXEC CICS RECEIVE
Save the EIB values.

Test EIBSYNC — it's

Xt00' in this
example, so
SYNCPOINT is not
required.

X'FF' in this
example, so we must:

EXEC CICS SYNCPOINT

Test EIBFREE — it's
X'80' in this
example, so FREE
is not required.

Test the saved
EIBFREE - it's

X'FF' in this
example, so we must:
Test EIBRECV — it's

EXEC CICS FREE X'00' in this
(or terminate) example, so we can
send:

EXEC CICS SEND LAST

——<—- | EXEC CICS RETURN

Figure 17. The corrected LUTYPE6.2 mapped conversation

Muitiple LU type 6 sessions

A transaction may initiate several transactions in other systems. The design of
applications using such transactions is likely to be very complex unless it is
highly structured. The least complicated design will probably be a
requester/server tree, in which each transaction acts as the requester for all
transactions for which it is the originating node, and the first transaction to be
initiated is the requester for the whole tree.

The requester/server concept is particularly important in relation to
synchronization points in a tree of transactions. Unless these are originated by
the transaction that is the requester for the whole tree, they are unlikely to be
successful. They are originated at the top of the tree, then propagated down the
whole tree.

Any transaction issuing a synchronization request must be in send state with
respect to all its LU Type 6 sessions, except those for which either a
synchronization point has been requested (EIBSYNC set) or which have been
freed by the transaction at the other end of the session (EIBFREE set). If an

Chapter 1.7. Distributed transaction processing 73

attempt is made to take a synchronization point when these conditions do not
hold, the transaction making the attempt will be abended, which will lead to all
transactions in the tree being abended.

‘Advanced program-to-program communication (APPC) supports both the
requester/server and peer/peer application models. Each model requires its
own design to handle data flows and syncpointing. Individual transaction design
should take account of the overall network design. If each program tests the EIB
flags, and always reacts correctly to the current state of the conversation, results
should be accurate.

Queue transfer
The following special considerations apply to transactions intended to transfer
queues of data between systems.

» The sending transaction should be designed as the requester and the
receiving transaction as the server.

» For simplicity of design, a separate pair of transactions should be used for
each queue to be transferred.

» The requester transaction should not send large numbers of records without
first obtaining confirmation from the server transaction that it is attached and
is processing the records successfully (perhaps by using the CONFIRM
option for LUTYPEB.2 conversations).

* For large queues, take synchronization points at regular intervals, unless
performance is a crucial consideration.

* For large queues, use the pacing facilities of VTAM to avoid flooding the
network. Alternatively, use frequent synchronization points, which have a
similar effect to pacing.

« |t will probably be advisable for the receiving transaction to store the
incoming data on either a transient data or a temporary storage queue,
rather than to update permanent storage as the records are received. The
design will be simpler, because the updating will be a separate operation
and because error recovery will be easier.

* Consider how transmission should be restarted if an error occurs when the
queue has been partly transmitted. There is a basic choice to be made
between continuing from the point at which the error occurred and
retransmitting the whole queue.

CICS to non-CICS systems

CICS can communicate with transactions running in other types of system,
provided they implement a suitable subset of the SNA LU Type 6 protocols. This
includes IMS. It is necessary, however, for the designer of such applications to
understand in detail the SNA data flow control commands and protocols
generated by the other system.

In.some cases CICS transactions converse with the remote system, rather than
with user written transactions running in that system. CICS transactions
converse with the DC component of IMS, for example, so the protocols and data
formats of that component must be understood and complied with.

74 CICS/MVS 2.1.2 Intercommunication Guide

Other systems may allow direct communication with their transactions. It is then
necessary to know the protocols generated by user-written code in the
transactions. In particular, it is necessary to know how BB (begin bracket), EB
(end bracket) and CD (change direction) indicators are generated and responded

to.

In any case, the following problems will need attention during the design of the
application.

How the required transaction is to be attached in the remote system. It may
be necessary to send an attach header, in which case the remote transaction
could have a name up to 8 characters long.

The structure of the messages passing between the local and remote
transactions, and how any mapping component of the remote system is to be
used.

The possible replies to each type of request, together with the SNA
indicators that may need to be present on the request and replies.

Ensuring that the SNA indicators are followed precisely by the transactions
at both ends of a session.

Which transaction or transactions may end a conversation.

Whether synchronization points are to be used, and if so, whether they are to
be on single or multiple sessions. The remote system may support only
single session synchronization points.

Chapter 1.7. Distributed transaction processing 75

Part 2. Installation

This part of the intercommunication guide discusses the installation
requirements for a CICS system that is to participate in intersystem
communication or multiregion operation. You should be familiar with the
general requirements for CICS installation, which are described in the CICS/MVS
Installation Guide. You may also have to refer to the CICS/MVS Resource
Definition (Macro) manual for information on coding the CICS system
initialization table (SIT) and to the CICS/MVS Customization Guide for
information on coding CICS system generation macros.

“Chapter 2.1. Installation considerations for multiregion operation” on page 79
describes the CICS installation requirements for multiregion operation.

“Chapter 2.2. Installation considerations for intersystem communication” on
page 81 describes the CICS instaliation requirements for CICS intersystem
communication. It also contains notes on the installation requirements of
ACF/VTAM and IMS when these products are to be used with CICS in an
intersystem communication environment.

® Copyright IBM Corp. 1877, 1991 77

Chapter 2.1. Installation considerations for multiregion operation

This chapter discusses those aspects of installation that apply particularly to
CICS multiregion operation.
To use CICS MRO, you must:

1. Install the CICS Type 2 SVC

2. Define CICS as an MVS subsystem

3. Ensure that the required CICS modules are included in your CICS system

4. Place some modules in the LPA.

Installing the CICS type 2 SVC routine

Multiregion operation requires the CICS interregion communication modules to
run in supervisor state to transfer data between different regions.

CICS uses a normal supervisor call to a bootstrap SVC routine which is supplied
on the pregenerated system load library (CICS212.LOADLIB) under the name
DFHCSVC. You will have to link edit this routine into your system nucleus.
Information on how to do this is given in the CICS/MVS Installation Guide.

The number of the supplied SVC is 216. You can change the number of the SVC
if required; details are given in the CICS/MVS Installation Guide.

Adding CICS as an MVS subsystem

Multiregion operation with CICS/MVS requires OS/VS Subsystem Interface (SSl)
support. You must therefore install CICS as an MVS subsystem. The procedure
for doing this is detailed in the CICS/MVS Installation Guide.

Modules required for MRO

The standard pregenerated system supplied on the CICS distribution volume
includes a pregenerated version of each of the CICS management modules
required to support multiregion operation.

You must include the following management programs in your system (by using
the SIT or startup overrides):
* The EXEC interface programs. (Specify EXEC=YES or allow it to default.)

These programs are not required if you have no command-level application
programs. The only MRO facility available in this case is transaction routing.

» The intersystem communication programs. (Specify ISC=YES.)
* A terminal control program generated by DFHSG PROGRAM=TCP.

@ Copyright IBM Corp. 1977, 1991 79

All versions of TCP contain support for interregion communication. The
other requirements for the terminal control program will depend upon your
total installation requirements. See the CICS/MVS Customization Guide for
information on how to generate a suitable version, and the CICS/MVS
Resource Definition (Macro) manual for information on coding the SIT
operands. ’

¢ The system recovery program. (specify SRT=YES or SRT=xx, where xx is
the suffix of your system recovery table.)

Refer to the CICS/MVS Installation Guide to obtain the suffixes, if any, of the
pregenerated versions of these programs.

MRO modules in the link pack area

For multiregion operation, there are certain modules which, for integrity reasons,
must be resident in the shared area or loaded into protected storage.

You must place the following module in link pack area {(LPA) of MVS.

e DFHIRP — the CICS Interregion Communication Program.
Module DFHCRC, the interregion communication ESTAE exit module, can be
placed in the LPA to enable it to be shared by CICS address spaces. However, if

it is not in the LPA, it is always loaded into protected storage in the CICS
address space.

Logging on to the IRC access method

Before a CICS system can use the MRO facilities it must “log on” to the IRC
access method. You can specify that CICS is to log on when it is initialized by
coding IRCSTRT=YES in the SIT or the startup overrides. If this is not done, the
CEMT SET IRC OPEN command must be used to effect the log on.

80 cICs/MVS 2.1.2 Intercommunication Guide

Chapter 2.2. Installation considerations for intersystem

communication

This chapter discusses those aspects of installation that apply particularly when
CICS is used in an intersystem communication environment. It also contains
notes on the installation requirements of ACF/VTAM and IMS when these
products are to be used with CICS in an intersystem communication
environment.

The information on ACF/VTAM and IMS given in this chapter Is for guidance only.
Always consult the current ACF/VTAM or IMS publications for the latest
information. Some publications references are given under “Books from related
libraries” on page viil.

Modules required for ISC

The standard pregenerated system supplied on the CICS distribution volume
includes a pregenerated version of each of the CICS management modules
required to support intersystem communication. It is therefore not normally
necessary to do a system generation to add basic ISC support to your system. A
partial regeneration is necessary, however, if you wish to add DL/l support; this
is discussed later in this chapter.

You must include the following management programs in your system (by using
the SIT or initialization overrides): :

¢ The EXEC interface programs. (Specify EXEC=YES or allow it to default.)

These programs are not required if you have no command-level application
programs. The only ISC facility available in this case is transaction routing
(LUTYPEG.2 links only).

¢ The intersystem communication programs. (Specify ISC=YES.)

* The terminal control program generated by DFHSG PROGRAM=TCP. A
version specifying ACCMETH=VTAM, CHNASSY =YES, and
VTAMDEV = LUTYPES is required.

The other requirements for the terminal control program will depend upon
your total installation requirements. See the CICS/MVS Customization Guide
for information on how to generate a suitable version, and the CICS/MVS
Resource Definition (Macro) manual for information on coding the SIT
operands.

Refer to the CICS/MVS Installation Guide to obtain the suffixes, if any, of the
pregenerated versions of these programs.

If, for any reason, you have to perform a partial or complete system generation,
VTAM =YES must be specified, or allowed to default, on the DFHSG
TYPE=INITIAL macro.

® Copyright IBM Corp. 1977, 1991 81

Installing DL/I facilities

If your system is required to access DL/I databases, you will have to regenerate
some of the pregenerated CICS management programs.

There are three types of DL/| access to be considered:

1.

Your system will access only local DL/l databases

2. Your system will access only remote DL/| databases
3. Your system will access both local and remote DL/I databases.

Each of these access types requires a different combination of CICS modules to
be generated. Details on how to do this are given in the CICS/MVS Instaliation
Guide.

If only remote access is required, DL/| need not be installed and an IMS licence
is not required.

Operating system requirements

There are no special operating system requirements for CICS intersystem
communication.

A‘CFIVTAM definition for CICS

When you define your CICS system to ACF/VTAM you should include the
following options on the VTAM APPL statement:

MODETAB =logon-mode-table-name

This option should name the VTAM logon mode table that contains your
customized logon mode entries (see "ACF/VTAM LOGMODE table entries for
CICS” on page 83). You may omit this operand if you choose to add your
MODEENT entries to the IBM-supplied default logon mode table (without
renaming it).

AUTH =(ACQ,SPO,VPACE[,PASS])

ACQ is required to allow CICS to acquire LUTYPE 6 sessions. SPO is
required to allow CICS to issue the MVS MODIFY vitamname USERVAR »
command (see the CICS/MVS XRF Guide for further information). VPACE is
required to allow pacing of the intersystem flows.

PASS is required if you intend to use the EXEC CICS ISSUE PASS command,
which passes existing terminal sessions to other VTAM applications.

VPACING =number

This option specifies the maximum number of normal-flow requests that
another logical unit can send on an intersystem session before waiting to
receive a pacing response.

Care is needed in the selection of a suitable pacing count. Too low a value
can lead to poor throughput because of the number of line turnarounds
required. - Too high a value can lead to excessive storage requirements.

82 cCICS/MVS 2.1.2 Intercommunication Guide

¢ EAS=number
This option specifies the number of network addressable units that CICS can

establish sessions with. The number must include the total number of
parallel sessions for this CICS system.

e PARSESS=YES
This option specifies LUTYPEG6 parallel session support.
¢ SONSCIP=YES

This option specifies session outage notification (SON) support. SON
enables CICS, in certain cases, to recover a session following session fallure
without requiring operator intervention.

« APPC=NO

For ACF/VTAM Version 3.2 and above, this is necessary to allow CICS to use
VTAM macros.

For further information, see the Advanced Communication Function Products
Installation Guide manual.

ACF/VTAM LOGMODE table entries for CICS

For LUTYPEB.2 sessions, you can use the MODENAME operand (see “Defining
logical unit type 6.2 links” on page 116) to identify a logmode entry that in turn
identifies the required entry in the VTAM class-of-service table. Every
modename that you supply when you are defining LUTYPEB.2 links must be
matched by a VTAM LOGMODE name. All that is required are entries of the
following form:

MODEENT LOGMODE=modename
MODEEND

An entry is also required for the LU services manager modeset (SNASVCMG).

MODEENT LOGMODE=SNASVCMG
MODEEND

If you plan to use autoinstall for single-session LUTYPE6.2 (APPC) terminals,
additional information is required in the MODEENT entry. Details are given in
the CICS/MVS Customization Guide.

For CICS-to-IMS links that are cross-domain, you must associate the IMS

LOGMODE entry with the CICS APPLID, (the generic applid for XRF systems),
using the DLOGMOD or MODETAB option.

Chapter 2.2. Installation Considerations for ISC 83

Considerations for IMS

If your CICS installation is to use CICS-to-IMS intersystem communication, you
- must ensure that the CICS and the IMS installations are fully compatible.

The following sections are intended to help you communicate effectively with the
person responsible for installing the IMS system. They may also be helpful if
you have that responsibility. You should also refer to “Chapter 3.1. Defining
links to remote systems” on page 91, especially the section on defining
compatible CICS and IMS nodes. For full details of IMS installation, refer to the
installation guide for the IMS product.

ACF/VTAM definition for IMS
When the IMS system is defined to VTAM the following options should be
included on the VTAM APPL statement:

+ AUTH=(ACQ,VPACE)

ACQ is required to allow IMS to acquire LUTYPE 6 sessions. VPACE is
required to allow pacing of the intersystem flows.

* VPACING =number

This option specifies the maximum number of normal-flow requests that
another logical unit can send on an intersystem session before waiting to
receive a pacing response. An initial value of 5 is suggested.

e EAS=number

The number of addressable units must include the total number of parallel
sessions for this IMS system.

* PARSESS=YES
This option specifies LUTYPEB parallel session support.

For further information, see the Advanced Communication Function Products
Installation Guide manual.

ACF/VTAM LOGMODE table entries for IMS

IMS allows the user to specify some BIND parameters in a VTAM logmode table
entry. The CICS logmode table entry must match that of the IMS system. IMS
uses the mode table entry specified here in order of priority:

1. The MODETBL parameter of the TERMINAL macro

2. The mode table entry specified in CINIT

3. The DLOGMODE parameter in the VTAMLST APPL statement or the MODE
parameter in the IMS /OPNDST command

4. The ACF/VTAM defaults.

84 ciCS/MVS 2.1.2 Intercommunication Guide

Figure 18 shows a typical IMS logmode table entry:

LUBNEGPS MODEENT LOGMODE=LUBNEGPS, NEGOTIABLE BIND
PSNDPAC=X'01", PRIMARY SEND PACING COUNT
SRCVPAC=X'01", SECONDARY RECEIVE PACING COUNT
SSNDPAC=X'01", SECONDARY SEND PACING COUNT
TYPE=0, NEGOTIABLE
FMPROF=X'12', FM PROFILE 18
TSPROF=X'04", TS PROFILE 4
PRIPROT=X'B1', PRIMARY PROTOCOLS
SECPROT=X'B1', SECONDARY PROTOCOLS
COMPROT=X"'70A0", COMMON PROTOCOLS
RUSIZES=X'8585", RU SIZES 256
PSERVIC=X'060038000000380000000000' SYSMSG/Q MODEL

MODEEND

Figure 18. A typical IMS logmode table entry

It is very impottant that the values specified in the MODEENT entry are
acceptable to IMS. For further information, see the programming guide for the
relevant release of IMS that you are using.

IMS system definition for intersystem communication .

This section summarizes the IMS ISC-related macro instructions and parameters
that are used in IMS system definition. You should also refer to “Defining
compatible CICS and IMS nodes” on page 108. For full details of IMS
installation, refer to the installation guide for the IMS product.

The COMM macro instruction

APPLID =name
specifies the applid of the IMS system. For an IMS Version 1 system, and for
an IMS Version 2 system generated without XRF support, this is the name
that is specified in the NETNAME operand of DEFINE CONNECTION or
DFHTCT TYPE =SYSTEM when you define the IMS system to CICS.

However, for an IMS Version 2 system with XRF, the CICS NETNAME operand
should specify the USERVAR (that is, the generic applid) that is defined in
the DFSHSBxx member of IMSVS.PROCLIB, not the applid from the COMM
macro.

RECANY = (number,size)
specifies the number and size of the IMS buffers that are used for VTAM
“receive any” commands. For ISC sessions, the buffer size has a 22-byte
overhead. It must therefore be at least 22 bytes larger than the CICS buffer
size specified in the SENDSIZE operand of DEFINE SESSIONS or the BUFFER
operand of DFHTCT TYPE =TERMINAL for the intersystem sessions.

This size applies to all other ACF/VTAM terminals attached to the IMS
system, and must be large enough for input from any terminal in the IMS
network.

Chapter 2.2. Installation Considerations for ISC 85

EDTNAME =name
specifies an alias for ISCEDT in the IMS system. For CICS-IMS ISC, an alias
name must not be longer than four characters.

The TYPE macro instruction
UNITYPE=LUTYPES6
must be specified for ISC.

Parameters of the TERMINAL macro can also be specified in the TYPE macro if
they are common to all the terminals defined for this type.

The TERMINAL macro instruction
The TERMINAL macro identifies the remote CICS system to IMS. It therefore
serves the equivalent purpose to the DEFINE CONNECTION command or the
DFHTCT TYPE =SYSTEM macro in CICS.

NAME =name
identifies the CICS node to IMS. It must be the same as the APPLID name of
the CICS system (the generic applid for XRF systems).

OUTBUF =number
specifies the size of the IMS output buffer. It must be equal to or greater
than 256, and should include the size of any function management headers
sent with the data. It must not be greater than the value specified in the
RECEIVESIZE operand of the DEFINE SESSIONS commands or the RUSIZE
operand of the CICS DFHTCT TYPE =TERMINAL macros for the intersystem
sessions.

SEGSIZE =number
specifies the size of the work area that IMS uses for deblocking incoming
messages. We recommend that you use the size of the longest chain that
CICS may send. However, if IMS record mode (VLVB) is used exclusively,
you could specify the largest record (RU) size.

MODETBL =name
specifies the name of the VTAM mode table entry to be used. You must omit
this parameter if the CICS system resides in a different SNA domain.

OPTIONS =[NOLTWA|LTWA] .
specifies whether Log Tape Write Ahead (LTWA) is required. For LTWA, IMS
will log session restart information for all active parallel sessions before
sending a syncpoint request. LTWA is recommended for integrity reasons,
but it can carry a performance overhead.

OPTIONS =[SYNCSESS|FORCSESS]
specifies the message resynchronization requirement following an abnormal
session termination. SYNCSESS requires both the inbound and the outbound
sequence numbers to match (or CICS to be cold started) to allow the session
to be restarted. FORCSESS allows the session to be restarted even if a
mismatch occurs. SYNCSESS is recommended.

86 CICS/MVS 2.1.2 Intercommunication Guide

OPTIONS =[TRANSRESP|NORESP|FORCRESP]
specifies the required response mode.

TRANSRESP
specifies that the response mode will be determined on a
transaction-by-transaction basis.

NORESP
specifies that response-mode transactions are not allowed. In CICS
terms, this means that a CICS application cannot initiate an IMS
transaction by using a SEND command, but only by means of a START

command.

FORCRESP
forces response mode for all transactions. In CICS terms, this means
that a CICS application cannot initiate an IMS transaction by using a
START command, but only by means of a SEND command.

OPTIONS =[OPNDST|NOPNDST]
specifies whether sessions can be established from this IMS system.

{COMPT1|COMPT2|COMPT3|COMPT4} = {SINGLEn|MULTIn}
specifies the IMS components for the IMS ISC node. Up to four components
can be defined for each node. The input and output components to be used
for each session are then selected by the ICOMPT and COMPT operands of
the SUBPOOL macro.

The following types of component can be defined:

SINGLE1
Used by IMS for asynchronous output. One output message is sent per
SNA bracket. The message may or may not begin the bracket, but it
always ends the bracket.

SINGLE2
Each message is sent with the SNA change-direction indicator (CD).

MULT1
All asynchronous messages for a given LTERM are sent before the
bracket is ended. The end-bracket (EB) occurs after the {ast message for
the LTERM is acknowledged and dequeued.

MULT2
The same as MULT1, but CD is sent instead of EB.

SESSION=number
specifies the number of parallel sessions for the link. Each session is
represented by an IMS SUBPOOL macro and by a CICS DEFINE SESSIONS
command or a DFHTCT TYPE =TERMINAL macro.

Chapter 2.2. Installation Considerations for ISC 87

EDIT=[{ NOJYES}][,{ NO|YES}]
specifies whether user-supplied physical output and input edit routines are to
be used.

The VTAMPOOL macro instruction
The SUBPOOL macro heads the list of SUBPOOL macros that define the
individual sessions to the remote system.

The SUBPOOL macro instruction
A SUBPOOL macro is required for each session to the remote system.

NAME =subpool-name
specifies the IMS name for this session. A CICS-IMS session is identified by
a “session-qualifier pair” formed from the CICS name for the session and the
IMS subpool name.

The CICS name for the session is specified in the SESSNAME operand of the
DEFINE SESSIONS command or the TRMIDNT operand of the DFHTCT
TYPE=TERMINAL macro for the session.

The IMS subpool name is specified to CICS in the NETNAMEQ operand of the
DEFINE SESSIONS command or the NETNAMQ operand of the DFHTCT
TYPE=TERMINAL macro.

The NAME macro instruction
The NAME macro defines the logical terminal names associated with the
subpool. Muitiple LTERMs can be defined per subpool.

COMPT = {1|2|3}4}
specifies the output component associated with this session. The component
specified determines the protocol that IMS ISC will use to process messages.
A SINGLE1 output component is strongly recommended.

ICOMPT ={1/2|3]4}
specifies the input component associated with this session. When IMS
receives a message, it determines the input source terminal by finding the
NAME macro that has the matching input component number. A COMPT1
input component must be defined for each session that CICS uses to send
START commands.

EDIT=[{ NOJYES}][,{ ULC|UC}]
The first parameter specifies whether the user-supplied logical terminal edit
routine (DFSCNTEO) is to be used.

The second parameter specifies whether the output is to be transiated to
upper case (UC) before transmission or not (ULC).

88 ‘CICS/MVS 2.1.2 Intercommunication Guide

Part 3. Resource definition and master terminal operation

This part tells you how to define the various resources that may be required in a
CICS intercommunication environment.

CICS holds its resource information in tables (for example the Terminal Control
Table, or the File Control Table) that are loaded during CICS startup. You can
define resources by coding CICS table definition macro instructions or, for some
resource types, by using resource definition online (RDO). You should refer to
the CICS/MVS Resource Definition (Online) manual and the CICS/MVS Resource
Definition (Macro) manual for details of these procedures.

“Chapter 3.1. Defining links to remote systems” on page 91 tells you how to
define links to remote systems. The links can be MRO links, LUTYPEG6.1 links to
remote CICS or IMS systems, or LUTYPEG.2 links to remote CICS systems or to
other LUTYPESG.2 (APPC) systems or terminals.

“Chapter 3.2. Defining remote resources” on page 133 tells you how to define
remote resources to the local CICS system. The resources can be:

* Remote files

* Remote DL/I PSBs

¢ Remote transient data destination
* Remote temporary storage queues
* Remote terminals

* Remote transactions.

“Chapter 3.3. Defining local resources” on page 151 tells you how to define
local resources for ISC and MRO. In general, these resources are those that are
required for ISC and MRO and are obtained by including the relevant functional
groups in the appropriate tables. However, you do get the opportunity to modify
some of the supplied definitions and to provide your own communication
profiles.

@ Copyright IBM Corp. 1977, 1991 v 89

Chapter 3.1. Defining links to remote systems

This chapter tells you how to define communication links to other systems or to
other CICS regions.

You can use either resource definition online (RDO) or macro-level resource
definition to define links to remote systems. Both methods are described in this
chapter.

Four basic types of link are described:

1. Links for multiregion operation

2. Links to remote systems using logical unit type 6.1 protocols

3. Links to remote systems using logical unit type 6.2 (APPC) protocols
4. Indirect links for CICS transaction routing.

Links using the ACF/VTAM application-to-application facilities are treated exactly
as though they are intersystem links, and can be defined as either LUTYPEG.1 or
LUTYPE®G.2 links.

Introduction to link definition
The definition of a link to a remote system consists of two basic parts:

1. The definition of the remote system itself
2. The definition of sessions with the remote system.

If the remote system is CICS, or any other system that uses resource definition
to define intersystem sessions (for example, IMS), the link definition must be
matched by a compatible definition in the remote system. For remote systems
with little or no flexibility in their session properties (for example, LUTYPEG.2
terminals), the link definition must match the fixed attributes of the remote
system concerned.

You are recommended to use resource definition online to define links to remote
systems.

Resource definition online (RDO)

With resource definition online, the definitions of the remote system and the
sessions are always separate, and are not associated with each other until they
are installed.

The remote system is defined by the DEFINE CONNECTION command. Each
session, or group of parallel sessions, is defined by the DEFINE SESSIONS
command.

For single-session APPC terminals, an alternative method of definition, using
DEFINE TERMINAL and DEFINE TYPETERM, is available.

© Copyright IBM Corp. 1977, 1991 91

Macro-level resource definition

With macro-level resource definition, remote systems are defined by means of
the DFHTCT TYPE =SYSTEM macro.

For MRO and LUTYPES.1 links, the sessions are, in general, also defined in the
TYPE=SYSTEM macro. In some circumstances, however, you can (or even
must) write separate TYPE =TERMINAL macros for the individual sessions; these
are described in the appropriate sections of this chapter.

For LUTYPEG.2 (APPC) links, the DFHTCT TYPE =SYSTEM macro is used to
define the remote system. Each group of sessions is then defined by means of a
DFHTCT TYPE=MODESET macro. However, a single session to an APPC
terminal is defined by means of a DFHTCT TYPE =SYSTEM macro.

Naming the local CICS system

Each of your CICS/MVS systems requires three names: a generic application
identifier (APPLID), a specific application identifier, and a system identifier
{SYSIDNT).

The APPLIDs of the local CICS system

A CICS/MVS system requires two APPLID names: a generic name and a specltlc
name. The names are specified in the APPLID operand of the system
initialization table:

DFHSIT
APPLID=(generic-id,specific-id)

The default value for the generic-id is DBDCCICS. The default value for the
specific-id is the value of the generic-id. Either or both of these values can be
overridden during CICS start-up.

As explained in the C/ICS/MVS XRF Guide, the active and alternate systems in an
XRF pair of CICS systems must have the same generic applid and different
specific applids. Note that a CICS system initialized with XRF =NO still has a
generic and a specific applid, even if they have the same value.

For ISC, the generic APPLID of a CICS system is the name by which it is known
in the intercommunication network; that is, its NETNAME.

For MRO, CICS uses the generic APPLID name to identify itself when it signs on
to the CICS interregion SVC, either during startup or in response to a SET IRC
OPEN master terminal command.

All APPLIDs in your intercommunication network should be unique. Also, if you
plan to use the CICS Monitoring Facilities with SYSEVENT reporting to the
resource measurement facility (RMF), you must ensure, particularly in an MRO
environment, that the first four characters of the APPLIDs are unigue.

92 CcicS/MVS 2.1.2 Intercommunication Guide

The SYSIDNT of the local CICS system

The SYSIDNT of a CICS system is a one-to four-character name known only to
the CICS system itself.

It is obtained (in order of priority) from:

1. The startup override.
2. The SYSIDNT operand of the DFHSIT macro.
3. The default value CICS.

The CICS active and alternate systems that have the same generic applid must
also have the same sysidnt.

The SYSIDNT of your CICS system may also have to be specified in the DFHTCT
TYPE =INITIAL macro if you are using macro-level resource definition. The only
purpose of the SYSIDNT operand of DFHTCT TYPE =INITIAL is to control the
assembly of local and remote terminal definitions in the terminal control table.
(Terminal definition is described in “Chapter 3.2. Defining remote resources” on
page 133.) The sysidnt of a running CICS system is always the one specified in
DFHSIT (or the default or override value).

Identifying remote systems

As well as having a SYSIDNT for itself, a CICS system requires a SYSIDNT for
every other system with which it can communicate. SYSIDNT names are used to
relate session definitions to system definitions; to identify the systems on which
remote resources, such as files, reside; and to refer to specific systems in
application programs.

SYSIDNT names are private to the CICS system in which they are defined; they
are not known by other systems. In particular, the SYSIDNT defined for a remote
CICS system is independent of the SYSIDNT by which the remote system knows
itself; you need not make them the same.

The mapping between the local, private, SYSIDNT assigned to a remote system
and the APPLID by which the remote system is known globally in the network is
made when you define the intercommunication link. For remote CICS/MVS
systems, this is the generic APPLID.

Resource definition online

DEFINE CONNECTION(sysidnt) The local name for the remote system
NETNAME (applid) The (generic) applid of the remote system

Macro-level resource definition:

DFHTCT TYPE=SYSTEM,
SYSIDNT=sysidnt, The local name for the remote system
NETNAME=applid The (generic) applid of the remote system

In both cases, if NETNAME is omitted, the sysidnt is taken to be the applid of the
remote system. Each sysidnt name must be unique in a CICS system.

Chapter 3.1. Defining links to remote systems 93

Defining links for multiregion operation

This section describes how to define an interregion communication link between
the local CICS system and another CICS region in the same processor.

You can use RDO to define a CONNECTION-SESSIONS pair. Alternatively, you
can use a single DFHTCT TYPE =SYSTEM macro instruction to create a pool of
parallel sessions between the local and the remote CICS system.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. SEND sessions
are used to carry an initial request from the local to the remote system and to
carry any other data flows associated with the initial request. Similarly, RECEIVE
sessions are used to receive initial requests from the remote system.

Interregion communication protocols are basically similar to SNA protocols, and
an initial request is a request that carries a begin bracket indicator. However,
there is no concept of bidding on an interregion link, so that initial requests can
never be sent on a RECEIVE session. You should keep this fact in mind when
you decide how many send and receive sessions you will require.

You must always specify at least one send session and one receive session.

Resource definition online
The RDO definition for an MRO link is shown in Figure 19 on page 95. (This
figure also shows the macro form to show how the operands are related.)

For RDO, you define the connectlon and the associated group of sessions
separately. The two definitions are individual “objects” on the CICS system
definition file (CSD), and they are not associated with each other until the group
is installed. The following rules apply for MRO links:

1. The CONNECTION and SESSIONS must be in the same GROUP.

2. The SESSIONS must have PROTOCOL(LU61), but the PROTOCOL operand of
CONNECTION must be left blank.

3. The CONNECTION operand of SESSIONS must match the sysidnt specified for
the CONNECTION.

4. Only one SESSIONS definition can be related to an MRO CONNECTION.

You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for
the link. Cross-memory services are used only if the other end of the link also
specifies cross-memory. To select the CICS Type 2 SVC for interregion
communication, use ACCESSMETHOD(IRC).

As explained earlier in this chapter, the sysidnt is the local name for the CICS
system to which the link is being defined. The NETNAME must be the name by
which the remote,system is known to IRC (CICS interregion communication), that
is, its applid as defined in the system initialization table (SIT) (or, in an XRF
environment, its generic applid). If you do not specify a NETNAME, sysidnt must
satisfy this requirement.

94 CICS/MVS 2.1.2 Intercommunication Guide

RDO Definition Macro-Level Definition
DEFINE DFHTCT TYPE=SYSTEM
CONNECTION(sysidnt) »SYSIDNT=sysidnt
GROUP (groupname)
ACCESSMETHOD (IRC | XM) ,ACCMETH={IRC| (IRC,XM)}
NETNAME (name) » NETNAME=name
SECURITYNAME (name) s XSNAME=name
INSERVICE (NO)
DEFINE
SESSIONS (csdname)
GROUP(groupname)
CONNECTION(sysidnt)
PROTOCOL (LUB1)
RECEIVEPFX(prefix1) »RECEIVE=(prefix1,numberl)
RECEIVECOUNT (number1)
SENDPFX (prefix2) » SEND=(prefix2,number2)
SENDCOUNT {number2)
OPERPRIORITY (number) ,OPERPRI=number
OPERRSL (number) »OPERRSL=number
OPERSECURITY (number) » OPERSEC=number
IOAREALEN(value) , TI0AL=value
SESSPRIORITY (number) » TRMPRTY=number
INSERVICE(NO) » TRMSTAT='0UT OF SERVICE'

Figure 19. Defining an MRO link

You must specify the number of SEND and RECEIVE sessions that are required
(at least one of each) and you must also specify prefixes to allow the sessions to
be named.

With RDO, the prefixes and the number of sessions are specified separately (for
example, in SENDPFX and SENDCOUNT).

A prefix is a one-character or two-character string that is used to generate
session identifiers (TRMIDNTs). The count specifies the number of parallel
sessions that is required. The combination of the prefix and the count must not
exceed four characters.

For example:

RECEIVEPFX(RR)
RECEIVECOUNT (10)

generates 10 receive sessions with identifiers RR1 through RR10.

RECEIVEPFX(R)
RECEIVECOUNT (150)

generates 15U receive sessions with identifiers R1 through R150.

Chapter 3.1. Defining links to remote systems 95

Example of MRO link definition: The following example shows a typical definition
for an MRO link.

DEFINE
CONNECTION(CICB) local name for remote system
GROUP{groupname) groupname of related definitions
ACCESSMETHOD (XM) cross-memory services
NETNAME(CICSB) global name of remote system
SECURITYNAME(OPA)
INSERVICE (NO)

DEFINE
SESSIONS (csdname) unique csd name
GROUP (groupname) same group as the connection
CONNECTION(CICB) related connection
PROTOCOL (LU61)
RECEIVEPFX(RB)
RECEIVECOUNT (5) 5 receive sessions RB1 through RB5
SENDPFX (SB)
SENDCOUNT(3) 3 send sessions SB1 through SB3
OPERPRIORITY (35)
OPERRSL(1)
OPERSECURITY (15)
TOAREALEN(300) minimum TIOA size for sessions
SESSPRIORITY(1600)
INSERVICE(NO)

Figure 20. MRO link definition example — RDO

Macro-level resource definition
The macro-level definition for an MRO link is shown in Figure 19 on page 95.
(This figure also shows the RDO form to show how the operands are related.)

You can specify ACCMETH=(IRC,XM) to select MVS cross-memory services for
the link. Cross-memory services are used only if the other end of the link also
specifies cross-memory. To select the CICS type 2 SVC for interregion
communication, use ACCMETH=IRC.

As explained earlier in this chapter, the sysidnt is the local name for the CICS
system to which the link is being defined. The NETNAME must be the name by
which the remote system is known to IRC (CICS interregion communication), that
is, its applid as defined in the system initialization table (SIT) (or, in an XRF
environment, its generic applid). If you do not specify a NETNAME, sysidnt must
satisfy this requirement.

You must specify the number of SEND and RECEIVE sessions that are required
(at least one of each) and you must also specify prefixes to allow the sessions to
be named. With macro-level definition, the prefixes and the number of sessions
are both specified in the same operand (for example, in SEND).

96 CICS/MVS 2.1.2 intercommunication Guide

A prefix is a one-character or two-character string that is used to generate
session identifiers (TRMIDNTs). The count specifies the number of parallel
sessions that is required. The combination of the prefix and the count must not
exceed four characters.

For example:
RECEIVE=(RR,10)

generates 10 receive sessions with identifiers RR1 through RR10.
RECEIVE=(R,150)

generates 150 receive sessions with identifiers R1 through R150.

Example of MRO link definition: The following example shows a typical definition
for an MRO link.

DFHTCT TYPE=SYSTEM,
ACCMETH=(IRC,XM), cross-memory services

SYSIDNT=CICB, local name for remote system
NETNAME=CICSB, global name of remote system
RECEIVE=(RB,5), 5 receive sessions RB1 through RB5
SEND=(SB, 3), 3 send sessions SB1 through SB3

XSNAME=0PA,

OPERPRI=35,

OPERRSL=1

OPERSEC=15,

TI0AL=(300), minimum TIOA size for sessions
TRMPRTY=100

TRMSTAT='0UT OF SERVICE'

Figure 21. MRO link definition example — macro-level

Choosing the access method for MRO

|

] You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for
| an MRO link. Cross-memory services are available only if both ends of the link
| select it; otherwise ACCESSMETHOD(IRC) is used. ACCESSMETHOD(IRC) uses
| the CICS type 2 SVC for communication between the address spaces.

The use of MVS cross-memory services:

I

| * Reduces the path length for communication

| ¢ Uses less MVS CSA storage (as shared buffers are not needed) than SVC
| operation

| * Requires CICS address spaces to be non-swappable.

|
|

However, MVS cross-memory services can create a security exposure (see “Use
of MVS cross-memory services” on page 327).

Chapter 3.1. Defining links to remote systems 97

Defining compatible MRO nodes

An MRO link must be defined in both of the systems that it connects. You must
ensure that the two definitions are compatible with each other. For example, if
one definition specifies 6 sending sessions, the other definition requires 6
receiving sessions.

The following sections describe how the operands of the two definitions are
related to each other. Three types of definition are shown:

1. Resource definition online used in both systems.

2. Macro definition used in both systems.

3. RDO used in one system and macro definition used in the other.

The compatibility requirements are shown in Figure 22 on page 99, Figure 23 on
page 100, and Figure 24 on page 101.

98 cCICS/MVS 2.1.2 Intercommunication Guide

CICSA CICSB
DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT
JAPPLID=CICSA —1—
—4— 4APPLID=CICSB
DEFINE
CONNECTION(CICB) ——2— DEFINE
——8—— CONNECTION(CICA)
GROUP(PRODSYS) —3—
——9— GROUP(TESTSYS)
ACCESSMETHOD (IRC)
ACCESSMETHOD (IRC)
NETNAME(CICSB) ——l—
——1— NETNAME(CICSA)
SECURITYNAME(OPA)
SECURITYNAME (OPB)
INSERVICE(NO)
INSERVICE(NO)
DEFINE
SESSIONS (SESSO1) DEFINE
SESSIONS (SESS02)
GROUP(PRODSYS) —3—
~——0—— GROUP(TESTSYS)
CONNECTION(CICB) —2—
—8—— CONNECTION(CICA)
PROTOCOL (LU61) S
—5—— PROTOCOL (LU61)
RECEIVEPFX(TR)
RECEIVEPFX(PR)
RECEIVECOUNT (8) —6—
——7—— RECEIVECOUNT (16)
SENDPFX(TS)
SENDPFX(PS)
SENDCOUNT (10) —]—
—6—— SENDCOUNT(8)
Related operands are shown by the numbered paths, all of which
pass through the central connecting 1ine.

Figure 22. Defining compatible MRO nodes — RDO

Chapter 3.1. Defining links to remote systems

CICSA CICsB

DFHTCT TYPE=INITIAL
DFHTCT TYPE=INITIAL

,APPLID=CICSA ——1—
——2— ,APPLID=CICSB

DFHTCT TYPE=SYSTEM
DFHTCT TYPE=SYSTEM
»ACCMETH=IRC
»ACCMETH=IRC
»SYSIDNT=CICB
»SYSIDNT=CICA

s NETNAME=CICSB —2—

—1— yNETNAME=CICSA
+RECEIVE=(namel,nn) —3—

—4— »RECEIVE=(name2,mm)
» SEND=(name3,mm) —A4—

——3— »SEND=(name4 ,nn)

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 23. Defining compatible MRO nodes — macro-level

100 cics/MVS 2.1.2 Intercommunication Guide

CICSA CICSB
DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT
JAPPLID=CICSA —1—
—4— 4APPLID=CICSB
DEFINE
CONNECTION(CICB) —2—
DFHTCT TYPE=SYSTEM
GROUP (PRODSYS) —3—
4ACCMETH=IRC
ACCMETH(IRC)
,SYSIDNT=CICA
NETNAME(CICSB) —4—
—1— JNETNAME=CICSA
SECURITYNAME (OPA)
» XSNAME=0PB
INSERVICE(NO)
' ——6— ,RECEIVE=(PR,10)
—b5— »SEND=(PS, 8)
DEFINE , TRMSTAT='0UT OF SERVICE'
SESSTONS(SESSO1) '
GROUP (PRODSYS) —3—
CONNECTION(CICB) —2—
PROTOCOL (LU61)
RECEIVEPFX(TR)
RECEIVECOUNT(8) —5—
SENDPFX(TS)
SENDCOUNT (10) R e
Related operands are shown by the numbered paths, all of which
pass through the central connecting 1ine.

Figure 24. Defining compatible MRO nodes — mixed RDO and macro

Chapter 3.1. Defining links to remote systems 101

Defining logical unit type 6.1 links

LUTYPEBG.1 links are necessary for intersystem communication between CICS
and IMS. You can also define LUTYPEG.1 links between CICS systems.
However, you are advised to use LUTYPE6.2 links for CICS-to-CICS
communication whenever possible.

Methods of defining LUTYPEG.1 links

Both resource definition online and macro-level resource definition offer two
methods of defining LUTYPEG6.1 sessions. However, you are recommended to
use RDO.

Resource definition online
With RDO, a DEFINE CONNECTION is always required to define the remote
system. The sessions, however, can be defined in either of the following ways:

1. By using a single DEFINE SESSIONS command to define a pool of sessions
with identical characteristics. This is the most convenient method for
CICS-to-CICS communication.

2. By using a separate DEFINE SESSIONS command to define each individual
session. This method must be used to define sessions with systems such as
IMS which require individual sessions to be explicitly named.

Macro-level resource definition
Using macro-level definition, the two methods are:

1. Using a single DFHTCT TYPE =SYSTEM macro to define a pool of sessions
with identical characteristics. This is the most convenient method for
CICS-to-CICS communication. ’

2. Using a DFHTCT TYPE=SYSTEM macro to define the remote system,
followed by DFHTCT TYPE =TERMINAL macros to define the individual
sessions. This method must be used to define sessions with systems such
as IMS which require individual sessions to be explicitly named.

Defining CICS-to-CICS LUTYPE®6.1 links

This section describes how to define a pool of LUTYPEB.1 sessions of identical
characteristics.

This method of link definition is the most convenient for CICS-to-CICS ISC links.
If, however, you have a requirement for sessions of differing characteristics, you
can use the definition method described under “Defining CICS-to-IMS LUTYPEBG.1
links” on page 108.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. A SEND session
is one in which the local CICS is the secondary (that is, bind receiver) and is the
contention winner. A RECEIVE session is one in which the local CICS is the
primary (that is, bind sender) and is the contention loser. When CICS allocates a
intersystem session to the remote system, it always tries to allocate a contention

102 cICsS/MVS 2.4.2 Intercommunication Guide

winner. Only if no contention winners are available will it select a contention
loser. It will then have to bid for permission to begin a bracket.

To avoid the overhead of bidding, you should base the numbers of SEND and
RECEIVE sessions on the expected directions and frequencies of flows between
the two systems.

Resource definition online
The RDO definition for an LUTYPEG.1 link is shown in Figure 25 on page 104.
(This figure also shows the macro form to show how the operands are related.)

For RDO, you define the connection and the associated group of sessions
separately. The two definitions are individual “objects” on the CICS system
definition file (CSD), and they are not associated with each other until the group
is installed. The following rules apply for LUTYPEG.1 links:

1. The CONNECTION and SESSIONS must be in the same GROUP.
2. Both the CONNECTION and the SESSIONS must have PROTOCOL(LU61).

3. The CONNECTION operand of SESSIONS must match the sysid specified for
the CONNECTION.

The AUTOCONNECT and INSERVICE operands
The AUTOCONNECT operand on the DEFINE CONNECTION command has no
function for a LUTYPEG.1 connection.

On the DEFINE SESSIONS commands, AUTOCONNECT(YES|ALL) specifies that
CICS is to bind all the sessions of the group as part of the initialization of the
system. For this to take effect, however, INSERVICE(YES) must also be specified
on the DEFINE CONNECTION command.

INSERVICE(NO) on the DEFINE CONNECTION command initializes sessions to an
out-of-service state only if AUTOCONNECT(NO) is specified in the associated
DEFINE SESSIONS command.

Each CICS system binds its own contention losers; that is, its receive sessions.
At the same time, it passes an indication to request the remote system to do the
same. In this way, all sessions are bound in one operation.

Macro-level resource definition

The form of the TYPE=S8YSTEM macro used to define a pool of LUTYPE6.1
sessions is shown in Figure 25 on page 104. (This figure also shows the RDO
form to show how the operands are related.)

Chapter 3.1." Defining links to remote systems 103

RDO Definition Macro-Level Definition
DEFINE DFHTCT TYPE=SYSTEM
CONNECTION(sysidnt) »SYSIDNT=sysidnt
GROUP(groupname)
NETNAME (name) s NETNAME=name
ACCESSMETHOD (VTAM) +ACCMETH=VTAM
PROTOCOL (LU61)
DATASTREAM(USER | 3270 | ,DATASTR={USER|3270|
SCS|STRFIELD| SCS|STRFIELD|
LMS) LMS}
RECORDFORMAT (U] VB) ,RECFM={U|VB}
SECURITYNAME (name) » XSNAME=name
DEFINE
SESSIONS (csdname)
GROUP (groupname)
CONNECTION(sysidnt)
PROTOCOL (LU61)
RECEIVEPFX (prefix1) ,RECEIVE=(prefix1,numberi)
RECEIVECOUNT (number1)
SENDPFX (prefix2) »SEND=(prefix2,number2)
SENDCOUNT (number2)
SENDSIZE(size) ,BUFFER=size
RECEIVESIZE(size) yRUSIZE=size
BUILDCHAIN(Y) »CHNASSY=YES
AUTOCONNECT (YES|NO) [, CONNECT=AUTO]
INSERVICE(YES)
OPERID (operator-id) »OPERID=0perator-id
OPERPRIORITY (number) »OPERPRI=number
OPERRSL (number) ~,OPERRSL=number
OPERSECURITY (number) »OPERSEC=number
IOAREALEN (value) s TI0AL=value
SESSPRIORITY (number) s TRMPRTY=number
» TRMSTAT=TRANSCEIVE

Figure 25. Defining an LUTYPEB.1 link

Defining compatible CICS LUTYPEG6.1 nodes

When you are defining an LUTYPEB.1 link between two CICS systems, you must
ensure that the definitions of the link in each of the systems are compatible.

The following sections describe how the operands of the two definitions are
related to each other. Three types of definition are shown:

1. Resource definition online used in both systems.
2. Macro definition used in both systems.
3. RDO used in one system and macro definition used in the other.

The compatibility requirements are shown in Figure 26 on page 105, Figure 27
on page 106, and Figure 28 on page 107.

104 cICs/MVS 2.1.2 Intercommunication Guide

CICSA

DFHSIT TYPE=CSECT

,APPLID=CICSA

DEFINE
CONNECTION(CICB)
GROUP(PRODSYS)
ACCESSMETHOD (VTAM)
PROTOCOL (LU61)
NETNAME (CICSB)
SECURITYNAME (OPA)

DEFINE
SESSIONS (SESSO1)
GROUP (PRODSYS)
CONNECTION(CICB)
PROTOCOL (LU61)
RECEIVEPFX(TR)
RECEIVECOUNT (8)
SENDPFX(TS)
SENDCOUNT (10)
RECEIVESIZE(jjj)?

SENDSIZE(KKk)?

do not match.

_.___8_._

—0—o

_6___

cicss

DFHSIT TYPE=CSECT

,APPLID=CICSB

DEFINE .
CONNECTION(CICA)
GROUP(TESTSYS)
ACCESSMETHOD (VTAM)
PROTOCOL (LU61)
NETNAME (CICSA)
SECURITYNAME (OPB)

DEFINE
SESSIONS (SESS62)
GROUP(TESTSYS)
CONNECTION(CICA)
PROTOCOL (LU61)
RECEIVEPFX (PR)
RECEIVECOUNT (10)
SENDPFX (PS)
SENDCOUNT (8)
SENDSIZE(§j4)?

RECEIVESIZE (kkk)!?

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 CICS will negotiate RECEIVESIZE and SENDSIZE at BIND time if they

Figure 26. Defining compatible CICS LUTYPEG.1 ISC nodes — RDO

Chapter 3.1. Defining links to remote systems

105

CICSA cICSB

DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT

sAPPLID=CICSA =1
—2— »APPLID=CICSB

DFHTCT TYPE=INITIAL
DFHTCT TYPE=INITIAL
+SYSIDNT=(sysa)
,SYSIDNT=(sysb)

DFHTCT TYPE=SYSTEM
DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,ACCMETH=VTAM
,SYSIDNT=CICB
,SYSIDNT=CICA

»NETNAME=CICSB —2—

—1— » NETNAME=CICSA
»RECEIVE=(namel,nn) —3—

—4— »RECEIVE=(name2 ,mm)
+»SEND=(name3,mm) —4—

—3— » SEND=(name4,nn)
»RUSIZE=jjj? —5—

—6— ,RUSIZE=kkk?
+BUFFER=kkk! —6—

55— ,BUFFER=jjj?

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 CICS will negotiate RUSIZE and BUFFER at BIND time if
they do not match.

Figure 27. Defining compatible CICS LUTYPEG.1 ISC nodes — macro-level

106 CICS/MVS 2.1.2 Intercommunication Guide

CICSA cIcss
DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT
JAPPLID=CICSA —1—
—5— ,APPLID=CICSB
DEFINE
CONNECTION(CICB) —_—2
DFHTCT TYPE=SYSTEM
GROUP (PRODSYS) —3—
+ACCMETH=VTAM
ACCMETH (VTAM)
_ s SYSIDNT=CICA
PROTOCOL(LU61) —4—
F—1— sNETNAME=CICSA
NETNAME (CICSB) —5—
»XSNAME=0PB
SECURITYNAME (OPA)
—7— ,RECEIVE=(PR, 10)
—6— »SEND=(PS, 8)
DEFINE
SESSIONS (SESSO1)
_ ——8— JRUSIZE=jjj?
GROUP(PRODSYS) —3—
—9— »BUFFER=kkk!
CONNECTION(CICB) —2—
PROTOCOL (LU61) —4—
RECEIVEPFX(TR)
RECEIVECOUNT(8) —6—
SENDPFX(TS)
SENDCOUNT (10) —7—
RECEIVESIZE(jjj)? —8—
SENDSIZE(kkk) ! —9—
Related operands are shown by the numbered paths, all of which
pass through the central connecting line.
1 CICS will negotiate these values at BIND time if they
do not match.

Figure 28. Defining compatible CICS LUTYPE6.1 ISC nodes — mixed RDO and macro

Chapter 3.1. Defining links to remote systems

107

Defining CICS-to-IMS LUTYPE6.1 links

A link to an IMS system requires a definition of the connection (or system) and a
separate definition of each of the sessions.

You are recommended to use resource definition online to define links to remote
systems.

Resource definition online

The RDO form of definition for individual LUTYPEG.1 sessions is shown in

Figure 29 on page 109. (This figure also shows the macro form to show how the
operands are related.)

Macro-level resource definition

The macro-level form of definition for individual LUTYPEG6.1 sessions is shown in
Figure 29 on page 109. (This figure also shows the RDO form to show how the
operands are related.)

The TRMTYPE, TRMIDNT, SYSIDNT, NETNAMQ, and SESTYPE operands must be
coded for each session that you define. The remaining operands of

TYPE =TERMINAL can optionally be coded on the TYPE=8YSTEM macro to
provide defaults for all the defined sessions. Also, the CONNECT, DATASTR, and
RECFM operands of TYPE =SYSTEM can be coded for individual sessions if
required.

Defining compatible CICS and IMS nodes

The definition of CICS-IMS ISC links requires you to understand the relationship
between the way remote systems and sessions are defined in CICS and the way
they are defined in IMS. This section is intended to enable you to write suitable
CICS definitions and to ensure that they are compatible with the corresponding
IMS definitions.

An overview of IMS system definition is given in “Chapter 2.2. Installation
considerations for intersystem communication” on page 81. The relationships
between CICS and IMS definitions are summarized in Figure 30 on page 112
(RDO) and in Figure 31 on page 113 (macro-level definition).

RDO terms are used in the following discussion of the compatibility
requirements. Refer to Figure 29 on page 109 for the equivalent macro-level
" operands.

System names

The network name of the CICS system (its generic applid) is specified in the
APPLID operand of the DFHSIT macro. (It could be provided as an override
during CICS startup or in the APPLID operand of the DFHTCT TYPE =INITIAL
macro.) This name must be specified in the NAME operand of the IMS
TERMINAL macro that defines the CICS system.

For IMS Version 1 systems, and for IMS Version 2 systems generated without

XRF support, the network name of the IMS system is specified in the APPLID
operand of the IMS COMM macro.

108 cICS/MVS 2.1.2 Intercommunication Guide

For IMS Version 2 systems with XRF, the network name is the USERVAR that is
defined in the DFSHSBxx member of IMSVS.PROCLIB.

You must specify the network name in the NETNAME operand of the DEFINE

CONNECTION command that defines the IMS system.

RDO Definition

DEFINE
CONNECTION(sysidnt)
GROUP(groupname)
NETNAME (name)
ACCESSMETHOD (VTAM)
PROTOCOL (LU61)
DATASTREAM(USER| 3270 |

SCS|STRFIELD|

LMS)
RECORDFORMAT (U] VB)
SECURITYNAME (name)

DEFINE
SESSIONS (csdname)
GROUP{groupname)
SESSNAME (name)
CONNECTION(sysidnt)
NETNAMEQ(name)
PROTOCOL (LU61)
SENDCOUNT(0]1)
RECEIVECOUNT (1]0)
SENDSIZE(size)
RECEIVESIZE(size)
BUILDCHAIN(Y)
OPERID (operator-id)
OPERPRIORITY (number)
OPERRSL (number)
OPERSECURITY (number)
AUTOCONNECT (NO|YES)
INSERVICE (YES)
IOAREALEN(value)
SESSPRIORITY (number)

Macro-Level Definition

DFHTCT TYPE=SYSTEM

»SYSIDNT=sysidnt

,NETNAME=name
yACCMETH=VTAM

,DATASTR=({USER|3270|
SCS|STRFIELD|
LMS}H)

»RECFM={U]VB}

» XSNAME=name

Each individual session is then defined as follows:

DFHTCT TYPE=TERMINAL

o TRMIDNT=name
»SYSIDNT=sysidnt

, NETNAMQ=name

s TRMTYPE=LUTYPE6
»SESTYPE= SEND|RECEIVE

+BUFFER=size
JRUSIZE=size

s CHNASSY=YES
,OPERID=0perator-id
,OPERPRI=number
,OPERRSL=number
,OPERSEC=number
{,CONNECT=AUTO|ALL]

,TIOAL=value
s TRMPRTY=number
, TRMSTAT=TRANSCEIVE

Figure 29. Defining an LUTYPEG.1 link with individual sessions

Chapter 3.1. Defining links to remote systems

109

Number of sessions

In IMS, the number of parallel sessions that are required between the CICS and
IMS system must be specified in the SESSION operand of the IMS TERMINAL
macro. Each session is then represented by a SUBPOOL entry in the IMS
VTAMPOOL. In CICS, each of these sessions is represented by an individual
session definition. :

Session names
Each CICS-IMS session is uniquely identified by a “session-qualifier pair”, which
is formed from the CICS name for the session and the IMS name for the session.

The CICS name for the session is specified in the SESSNAME operand of the
DEFINE SESSIONS command. For sessions that are to be initiated by IMS, this
name must correspond to the ID parameter of the IMS OPNDST command for the
session. For sessions initiated by CICS, the name is supplied on the CICS
OPNDST command and is saved by IMS.

The IMS name for the session is specified in the NAME operand of the IMS
SUBPOOL macro. You must make the relationship between the session names
explicit by coding this name in the NETNAMEQ operand of the corresponding
DEFINE SESSIONS command.

The CICS and the IMS names for a session can be the same, and this approach
is recommended for operational convenience.

Other session parameters
This section lists the remaining operands of the DEFINE CONNECTION and
DEFINE SESSIONS commands that are of significance for CICS-IMS sessions.

SENDSIZE
This operand specifies the maximum request unit (RU) size that the remote
IMS system can receive. The equivalent IMS value is specified in the
RECANY parameter of the IMS COMM macro. You must specify a size that
is:

1. Not less than 256 bytes
2. At least 22 bytes less than the value in the RECANY parameter.

BUILDCHAIN(Y)
specifies that multiple RU chains are to be assembled before being passed
1o the application program. A complete chain will be passed to the
application program in response to each RECEIVE command, and the
application will have to perform any required deblocking.

BUILDCHAIN(Y) must be specified for LUTYPEG.1 sessions.

DATASTREAM(USER)
must be specified or allowed to default.

This operand is used only when CICS is communicating with IMS by using
the START command (asynchronous processing). CICS messages generated
by the START command always cause IMS to interpret the data stream
profile as input for component 1.

110 CICS/MVS 2.1.2 Intercommunication Guide

The data stream profile for distributed transaction processing can be
specified by the application program by means of the DATASTR option of the
BUILD ATTACH command.

RECORDFORMAT(U|VB)
specifies the type of chaining that CICS is to use for transmissions on this
session that are Initiated by START commands (asynchronous processing).

Two types of data handling algorithms are supported between CICS and IMS:
1. chained

Messages are sent as SNA chains. The user can use private blocking
and deblocking algorithms. This format corresponds to
RECORDFORMAT(U).

2. variable length variable blocked records (VLVB)

Messages are sent in variable length variable blocked format with a
halfword length field before each record. This format corresponds to
RECORDFORMAT(VB).

The data stream format for distributed transaction processing can be
specified by the application program by means of the RECFM option of the
BUILD ATTACH command. .

Additional information on these data formats is given in “Chapter 4.8.
CICS-to-IMS applications” on page 263.

SENDCOUNT and RECEIVECOUNT v
These operands are used to specify whether the session is a SEND session
or a RECEIVE session. (In macro-leve! definition, this is specified in the
SESTYPE = SEND|RECEIVE operand.)

A SEND session is one in which the local CICS is the secondary and is the
contention winner. It is specified by:

SENDCOUNT (1)
RECEIVECOUNT (0)

A RECEIVE session js one in which the local CICS is the primary and is the
contention loser. It is specified by:

SENDCOUNT (6)
RECEIVECOUNT (1)

SEND sessions are recommended for all CICS-IMS sessions.

You need not specify a SENDPFX or a RECEIVEPFX; the name of the session
is taken from the SESSNAME operand.

Chapter 3.1. Defining links to remote systems 111

cIcs INS

DFHSIT TYPE=CSECT COMM APPLID=SIMSA
s SYSIDNT=CICL —6— RECANY=mmm+22
»APPLID=SYSCICS —1— EDTNAME=ISCEDT
—4— TYPE UNITYPE=LUTYPEG
DEFINE ——1—— TERMINAL NAME=SYSCICS
CONNECTION(IMSR) ——3— SESSION=2
GROUP{groupname) COMPT1=
NETNAME(SYSIMS) —2—] COMPT2=
ACCESSMETHOD (VTAM) —7— OUTBUF=nnn
PROTOCOL (LU61) '
DATASTREAM (USER)
DEFINE
SESSIONS (csdname)
GROUP(groupname) VTAMPOOL
PROTOCOL(LU61) —4—]
SESSNAME (IMS1) ——5—— SUBPOOL NAME=CIC1
CONNECTION(IMSR) —3—
NETNAMEQ(CIC1) —5— NAME CICLT1 COMPT=1
SENDCOUNT (1)
RECEIVECOUNT (0) NAME CICLT1A
SENDSIZE(mmm) —6— :
RECEIVESIZE(nnn) —7—
T0AREALEN(nnn, 16364)
DEFINE ——8—— SUBPOOL NAME=CIC2
SESSIONS (csdname)
GROUP (groupname) NAME CICLT2 COMPT=2
PROTOCOL (LU61) 4
SESSNAME (IMS2)
CONNECTION(IMSR) —3—
NETNAMEQ(CIC2) —8—
SENDCOUNT (1) ——2—— DFSHSBxx USERVAR=SYSIMS
RECEIVECOUNT (0)
SENDSIZE(mmm) ——6— Note: DFSHSBxx is in IMSVS.PROCLIB.
RECEIVESIZE(nnn) —7— For non-XRF IMS systems, NETNAME
I0AREALEN(nnn, 16364) should match the APPLID from the

INS COMM macro.

This figure shows the relationship between the CICS and IMS
definitions of an intersystem link.

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 30. Defining compatible CICS and IMS nodes — RDO

112 cics/Mvs 2.1.2 Intercommunication Guide

CICS

DFHSIT TYPE=CSECT
» SYSIDNT=CICL
»APPLID=SYSCICS

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSR
,NETNAME=SYSIMS

—_—

DFHTCT TYPE=TERMINAL
» TRMTYPE=LUTYPEG

» TRMIDNT=IMS1
s SYSIDNT=IMSR

—_—
—_—3

(3]

,NETNAMQ=CIC1
+ SESTYPE=SEND
 BUFFER=mmm
4RUSIZE=nnn
» TI0AL=(nnn, 16364)

—f—p

—_—T7

»DATASTR=USER

DFHTCT TYPE=TERMINAL

(-]

» TRMTYPE=LUTYPEG 4
» TRMIDNT=IMS2
» SYSIDNT=IMSR
»NETNAMQ=CIC2
» SESTYPE=SEND

l—=2—

 BUFFER=mmm 6
sRUSIZE=nnn
» TIOAL=(nnn,16364)

INS

COMM

TYPE

TERMINAL

VTAMPOOL

SUBPOOL

NAME

NAME

SUBPOOL

NAME

DFSHSBxx

APPLID=SIMSA
RECANY=mmm+22
EDTNAME=ISCEDT
UNITYPE=LUTYPEG
NAME=SYSCICS
SESSION=2
COMPT1=

COMPT2=
OUTBUF=nnn

NAME=CIC1
CICLT1 COMPT=1
CICLTIA
NAME=CIC2

CICLT2 COMPT=2

USERVAR=SYSIMS

Note: DFSHSBxx is in IMSVS.PROCLIB.
For non—-XRF IMS systems, NETNAME
should match the APPLID from the
INS COMM macro.

This figure shows the relationship between the CICS and IMS
definitions of an intersystem 1link.

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 31. Defining compatible CICS and IMS nodes — macro level

Chapter 3.1. Defining links to remote systems

113

Defining multiple links to an IMS system

You can define more than one intersystem link between a CICS and an IMS
system. This is done by defining two or more connections (systems), with their
associated session definitions, with the same NETNAME but with different
SYSIDNTs (Figure 32 on page 115). Although all the system definitions resolve
to the same netname, and therefore to the same IMS system, the use of a SYSID
name in CICS will cause CICS to allocate a session from the link with the
specified SYSIDNT.

It is recommended that you define up to three links (that is, groups of sessions)
between a CICS and an IMS system, depending upon the application
requirements of your installation:

1. A group of sessions for CICS-initiated distributed transaction processing
(synchronous processing).

CICS applications that use the SEND/RECEIVE interface can use the SYSIDNT
of this group to allocate a session to the remote system. The session will be
held (“busy”) until the conversation is terminated.

2. A group of sessions for CICS-initiated asynchronous processing.

CICS applications that use the START command can name the SYSIDNT of
this group. CICS will use the first “non-busy” session to ship the start
request.

IMS sends a positive response to CICS as soon as it has queued the start
request, so that the session is in use for a relatively short period.
Consequently, the first session in the group will show the heaviest usage,
and the frequency of usage will decrease towards the last session in the
group.

3. A group of sessions for IMS-initiated asynchronous processing.

This group is also useful as part of the solution to a performance problem
that can arise with CICS-initiated asynchronous processing. An IMS
transaction that is initiated as a result of a start command shipped on a
particular session will normally use the same session to ship its “reply” start
command to CICS. For the reasons given in (2) above, the CICS start
command was probably shipped on the busiest session, and, because the
session is busy and CICS is the contention winner, the replies from IMS may
back up waiting for a chance to use the session.

However, facilities exist in IMS for a transaction to alter its defauit output
session, and a switch to a session in this third group can reduce backup
problems.

114 cICS/MVS 2.1.2 Intercommunication Guide

RDO definition

DFHSIT TYPE=CSECT
+SYSIDNT=CICL
»APPLID=SYSCICS

DEFINE CONNECTION(IMSA)
ACCESSMETHOD (VTAM)
NETNAME (SYSIMS)

DEFINE SESSIONS(csdname)
PROTOCOL (LU61)
SESSNAME (IMS1)
CONNECTION(IMSA)
NETNAMEQ(DTP1)

DEFINE SESSIONS(csdname)

DEFINE CONNECTION(IMSB)
ACCESSMETHOD (VTAM)
NETNAME (SYSIMS)

DEFINE SESSIONS (csdname)
PROTOCOL (LU61)
SESSNAME(IMS1)
CONNECTION(IMSB)
NETNAMEQ (ASP1)

DEFINE SESSIONS (csdname)

DEFINE CONNECTION(IMSC)
ACCESSMETHOD (VTAM)
NETNAME (SYSIMS)

DEFINE SESSIONS(csdname)
PROTOCOL (LU61)
SESSNAME (IMS1)
CONNECTION (IMSC)
NETNAMEQ(IST1)

DEFINE SESSIONS(csdname)

Macro-level definition

DFHSIT TYPE=CSECT
+SYSIDNT=CICL
»APPLID=SYSCICS

CICS-initiated distributed transaction processing

OFHTCT TYPE=SYSTEM
»ACCMETH=VTAM
» SYSIDNT=IMSA
» NETNAME=SYSIMS

DFHTCT TYPE=TERMINAL
» TRMTYPE=LUTYPEG
» TRMIDNT=IMS1
» SYSIDNT=IMSA
» NETNAMQ=DTP1

DFHTCT TYPE=TERMINAL

.

CICS-initiated asynchronous processing

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSB
,NETNAME=SYSIMS

DFHTCT TYPE=TERMINAL
, TRMTYPE=LUTYPEG
, TRMIDNT=IMS1
,SYSIDNT=IMSB
, NETNAMQ=ASP1

DFHTCT TYPE=TERMINAL

IMS-initiated asynchronous processing

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSC
,NETNAME=SYSIMS

DFHTCT TYPE=TERMINAL
» TRMTYPE=LUTYPEG
» TRMIDNT=IMS1
s SYSIDNT=IMSC
s NETNAMQ=IST1

DFHTCT TYPE=TERMINAL

Figure 32. Defining muiltiple links to an IMS node

Chapter 3.1. Defining links to remote systems

115

Defining logical unit type 6.2 links

An LUTYPEB.2 link consists of one or more “sets” of sessions. The sessions in
each set have identical characteristics, apart from being either contention
winners or contention losers. Each set of sessions can be assigned a
modename which enables it to be mapped to a VTAM logmode name and thence
to a class of service (COS). A set of LUTYPEG.2 sessions is therefore referred to
as a modeset.

You are recommended to use resource definition online (RDO) to define links to
remote systems.

Note: An LUTYPEG.2 (APPC) terminal is considered to be a special case of an
LUTYPEG.2 system that supports only a single session and which does not
support an LU services manager. There are several ways of defining APPC
terminals; further details are given under “Defining single-session APPC
terminals” on page 123. This section describes the definition of one or more
modesets containing more than one session.

To define a logical unit type 6.2 link to a remote system you must:
1. Resource Definition Online

a. Use DEFINE CONNECTION to define the remote system.
b. Use DEFINE SESSIONS to define each set of sessions to the remote
system. '

2. Macro-Level Definition

a. Write a DFHTCT TYPE=SYSTEM macro to define the remote system.
b. Write a DFHTCT TYPE=MODESET macro to define each set of sessions
to the remote system.

For all LUTYPEBS.2 links, except single-session links to LUTYPEG6.2 terminals, CICS
automatically builds a set of special sessions for the exclusive use of the LU
services manager, using the modename SNASVCMG. This is a reserved name,
and should not be used for any of the sets that you define.

If you are defining a VTAM logon mode table you should remember to include an
entry for the SNASVCMG sessions (see “ACF/VTAM LOGMODE table entries for
CICS” on page 83).

116 CiCS/MVS 2.1.2 Intercommunication Guide

Defining the remote LUTYPEG6.2 system

The RDO and macro-level forms of definition for an LUTYPEG.2 system are shown

in Figure 33.
RDO definition Hacro-level definition
DEFINE DFHTCT TYPE=SYSTEM
CONNECTION (name) ;SYSIDNT=name
GROUP(groupname)
ACCESSMETHOD (VTAM) 4ACCMETH=VTAM
PROTOCOL (APPC) , TRMTYPE=LUTYPE62
SINGLESESS(N) ,FEATURE=PARALLEL
NETNAME (name) , NETNAME=name
BINDPASSWORD (password) ,BINDPWD=password
ATTACHSEC (LOCAL| IDENTIFY| yUSERSEC={LOCAL|IDENTIFY|
VERIFY) VERIFY}
AUTOCONNECT (NO| YES | ALL) ,CONNECT={AUTO|ALL}
SECURITYNAME(value) »XSNAME=value
For LUTYPE6.1 applications on LUTYPES6.2
DATASTREAM(USER | 3270 ,DATASTR={USER | 3270 |
SCS|STRFIELD| SCS|STRFIELD|
LMS) LMS}
RECORDFORMAT (U}VB) ,RECFM={U]VB}

Figure 33. Defining an LUTYPE6.2 system

You must specify ACCESSMETHOD(VTAM) and PROTOCOL(APPC) to define an
LUTYPES.2 system. The CONNECTION name (that is, the sysidnt) and the
NETNAME name have the meanings explained in “Identifying remote systems”
on page 93.

Because this connection will have multiple sessions, you must specify
SINGLESESS(N), or allow it to default. (The definition of single-session APPC
terminals is described in "Defining single-session APPC terminals” on

page 123.)

The AUTOCONNECT operand specifies which of the sessions that are associated
with the connection are to bound when CICS is initialized. Further information is
given in "The AUTOCONNECT operand” on page 125.

If the intersystem link is to be used by existing applications that were designed
to run on LUTYPE6.1 links, you can use the DATASTREAM and RECORDFORMAT
operands to specify data stream information for asynchronous processing. The
information provided by these operands is not used by LUTYPE6.2 application
programs.

- Chapter 3.1. Defining finks to remote systems 117

Defining groups of LUTYPEG6.2 sessions

Each group of sessions for an LUTYPE6.2 system is defined by means of a
DEFINE SESSIONS command (RDO) or a DFHTCT TYPE =MODESET macro
(macro-level definition). The two forms of definition are shown in Figure 34.

Each individual group of sessions is referred to as a modeset.

RDO definition Macro-Tevel definition

DEFINE DFHTCT TYPE=MODESET
SESSIONS (csdname)
GROUP (groupname)
PROTOCOL (APPC)
CONNECTION(name) »SYSIDNT=name
MODENAME (name) ,MODENAM=name
MAXIMUM(m1,m2) yMAXSESS=(m1,m2)
AUTOCONNECT (NO| YES|ALL) ,CONNECT={AUTO|ALL}
SENDSIZE(size) [,BUFFER=size]
RECEIVESIZE(size)! [,RUSIZE=size!]
OPERID (operator-id) [,OPERID=0perator-id]
OPERPRIORITY (number) [, OPERPRI=number]
OPERRSL (number) [, OPERRSL=number]
OPERSECURITY (number) [,OPERSEC=number]
USERAREALEN(value) [, TCTUAL=value]
SESSPRIORITY (number) [, TRMPRTY=number]
TRANSACTION (name) [, TRANSID=name]

[, TRMSTAT=TRANSCEIVE]
1 Minimum value 256. In the SIT, the RAMAX value must be

greater than or equal to these values.

Figure 34. Defining a group of LUTYPEG.2 sessions

The CONNECTION operand specifies the one to four character name of the
LUTYPEB.2 system for which the group is being defined; that is, the
CONNECTION name in the associated DEFINE CONNECTION command. Note
that, for macro-level definition, the associated TYPE =SYSTEM macro must be
coded immediately before any TYPE =MODESET macros that refer to it.

The MODENAME operand enables you to specify a one-to eight-character name
that is to identify this group of related sessions. The name must be unique
among the modenames for any one LUTYPEB.2 intersystem link, and you must
not use the reserved name SNASVCMG.

118 CICS/MVS 2.1.2 intercommunication Guide

The MAXIMUM(m1,m2) operand specifies the maximum number of sessions that
are to be supported for the group. The parameters of this operand have the
following meanings:

m1
specifies the maximum number of sessions in the group. The default value
is 1.

m2
specifies the maximum number of sessions that are to be supported as
contention winners. The number specified for m2 must not be greater than
the number specified for m1. The default value for m2 is zero.

The AUTOCONNECT operand specifies whether the sessions are to bound when
CICS is initialized. Further information is given in “The AUTOCONNECT
operand” on page 125.

For macro-level definition, the operands shown in brackets ([]) can also be
coded on the TYPE=S8SYSTEM macro to provide defauit values for all the
associated modesets.

Defining compatible CICS LUTYPE6.2 nodes

When you are defining an LUTYPES.2 link between two CICS systems, you must
ensure that the definitions of the link in each of the systems are compatible.

The compatibility requirements are summarized in Figure 35 on page 120 (RDO
used in both systems), Figure 36 on page 121 (macro definition used in both
systems), and Figure 37 on page 122 (RDO used in one system and macro
definition used in the other).

Chapter 3.1. Defining links to remote systems 119

CICSA

DFHSIT TYPE=CSECT

CICSB

DFHSIT TYPE=CSECT

1 These values need not match, because
LU services managers.

3

»APPLID=CICSA —1—
—3— »APPLID=CICSB
DEFINE CONNECTION(CICB) —2—
GROUP (groupname) —10—— DEFINE CONNECTION(CICA)
PROTOCOL (APPC) GROUP (groupname)
. PROTOCOL (APPC)
ACCESSMETHOD (VTAM)
’ ACCESSMETHOD (VTAM)
NETNAME(CICSB) ~ —3—
o NETNAME (CICSA)
SINGLESESS (N) —]
: ——4— SINGLESESS(N)
BINDPASSWORD (pw) —5
—5— BINDPASSWORD (pw)
DEFINE SESSIONS(csdname) DEFINE SESSIONS (csdname)
GROUP (groupname) GROUP(groupname)
PROTOCOL (APPC) PROTOCOL (APPC)
CONNECTION(CICB) —2—
L—-l&——- CONNECTION(CICA)
MODENAME (M1) —f—]
—6— MODENAME (M1)
MAXIMUM(ss ,ww)?! —7—
—7— MAXIMUM(ss,55-ww)?
RECEIVESIZE(jjj)2 3—8—
—9— RECEIVESIZE(kkk)2 3
SENDSIZE(kkk)?2 —9—
—8— SENDSIZE(jjj)?

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

they are negotiated by the

However, a matching specification will

avoid unusable TCTTE entries, and will also avoid unexpected

bidding because of the "contention winners" negotiation.

CICS will negotiate these values at BIND time if they do not match.

These values must greater than or equal to 256.

Figure 35. Defining compatible CICS LUTYPEG.

120 CICS/MVS 2.1.2 Intercommunication Guide

2 ISC nodes — RDO

CICSA CICSB

DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT

yAPPLID=CICSA —1—
—3— »APPLID=CICSB

DFHTCT TYPE=SYSTEM
DFHTCT TYPE=SYSTEM
, TRMTYPE=LUTYPE6?2
, TRMTYPE=LUTYPE62
,ACCMETH=VTAM
ACCMETH=VTAM
,SYSIDNT=CICB —— '
e e ,SYSIDNT=CICA
,NETNAME=CICSB ~ —3——
- 1— ,NETNAME=CICSA
,FEATURE=PARALLEL
, FEATURE=PARALLEL
,BINDPWD=pw —t—
e ,BINDPWD=pw

DFHTCT TYPE=MODESET
DFHTCT TYPE=MODESET

»SYSIDNT=CICB —2—

09— »SYSIDNT=CICA
»MODENAM=M1 —5—

' —5— ,MODENAM=M1

,MAXSESS=(ss,WW)? ——6—

—6— yMAXSESS=(ss,55~ww) !
,RUSIZE=jjj? ? — 71—

—8-— ,RUSIZE=kkk?2 3
»BUFFER=kkk?2 —8—

77— ,BUFFER=jjj2

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 MAXSESS need not match, because this parameter is negotiated by
the LU services managers. However, a matching specification will
avoid unusable TCTTE entries, and will also avoid unexpected
bidding because of the "contention winners" negotiation.

2 CICS will negotiate RUSIZE and BUFFER at BIND time if they do not
match.

3 These values must greater than or equal to 256.

Figure 36. Defining compatible CICS LUTYPE6.2 ISC nodes — macro-fevel

Chapter 3.1. Defining links to remote systems 121

CICSA CICSB

DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT

»APPLID=CICSA —1—
—3— ,APPLID=CICSB
DEFINE CONNECTION(CICB) ——2—
GROUP{groupname) DFHTCT TYPE=SYSTEM
PROTOCOL (APPC)
» TRMTYPE=LUTYPE62
ACCESSMETHOD (VTAM)
sACCMETH=VTAM
NETNAME (CICSB) —_—3—
—10— »SYSIDNT=CICA
SINGLESESS (N) ——d—
—1— sNETNAME=CICSA
BINDPASSWORD (pw) ~ —5——
——4— +FEATURE=PARALLEL
——b5— +BINDPWD=pw
DEFINE SESSIONS(csdname)
GROUP (groupname)
PROTOCOL (APPC)
DFHTCT TYPE=MODESET
CONNECTION(CICB) —2—
, -—10— »SYSIDNT=CICA
MODENAME (M1) —f—
—6— sMODENAM=M1
MAXIMUM(ss,ww)? —7—
(——7— yMAXSESS=(ss,55—Ww) 1
RECEIVESIZE(jjj)2 3—8
—9— ,BUFFER=kkk2
SENDSIZE(kkk)?2 —0
—8— JRUSIZE=jjj2 3

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 These values need not match, because they are negotiated by the
LU services managers. However, a matching specification will
avoid unusable TCTTE entries, and will also avoid unexpected
bidding because of the "contention winners* negotiation.

2 CICS will negotiate these values at BIND time if they do not
match.

3 These values must greater than or equal to 256.

Figure 37. Defining compatible CICS LUTYPE6.2 ISC nodes — mixed deflinition

122 cICS/MVS 2.1.2 Intercommunication Guide

Defining single-session APPC terminals

There are three ways of defining a single-session APPC terminal, two using
RDO, and one using a macro. The recommended method is an RDO
TERMINAL-TYPETERM pair.

Resource definition online: Two methods are available with RDO. You can
define a TERMINAL-TYPETERM pair, or you can define a
CONNECTION-SESSIONS pair, with SINGLESESS(Y) specified for the connection.

Macro-level definition: You code a single DFHTCT TYPE =SYSTEM macro to
define both the APPC terminal and its single session; you must not code a
DFHTCT TYPE =MODESET macro.

No matter how it is defined, an APPC terminal is always represented by a
system entry (TCTSE) in the terminal control table, and its single session is
represented by a terminal entry (TCTTE) in the terminal control table.

Resource definition online — TERMINAL-TYPETERM pair
You can define an APPC terminal as a TERMINAL with an associated TYPETERM.
This method of definition has two principal advantages:

1. You can use a single TYPETERM for all your APPC terminals of the same
type.

2. It makes the AUTOINSTALL facility available for APPC terminals.
The basic method for defining an APPC terminal is as follows:

DEFINE TERMINAL(sysid)
MODENAME (modename)
TYPETERM(typeterm)

DEFINE TYPETERM(typeterm)
DEVICE (APPC)

Note that, because all LUTYPEG6.2 devices are seen as systems by CICS, the
name in the TERMINAL operand is effectively a system name. You would, for
example, use CEMT INQUIRE CONNECTION, not CEMT INQUIRE TERMINAL, to
inquire about an APPC terminal.

A single, contention-winning, session is implied by DEFINE TERMINAL. However,
for APPC terminals, CICS will accept a negotiated bind in which it is changed to
contention loser.

The CICS-supplied CSD group DFHTYPE contains a TYPETERM, DFHLUG2T,
suitable for APPC terminails. You can either use this TYPETERM as it stands, or
use it as the basis for your own definition.

Chapter 3.1. Defining links to remote systems 123

If you plan to use automatic installation for your APPC terminals, you will need
the model terminal definition (LU62) that is provided in the CICS-supplied CSD
group DFHTERM. You will also have to write an autoinstall user program, and
provide suitable VTAM LOGMODE entries.

For details of TERMINAL/TYPETERM definition, for details of the CICS-supplied
CSD groups, and for an introduction to automatic installation, see the C/ICS/MVS
Resource Definition (Online) manual. For details of autoinstall user programs
and VTAM LOGMODE entries, see the CICS/MVS Customization Guide.

Resource definition online — CONNECTION-SESSIONS palir
You can define a CONNECTION-SESSIONS pair to represent an APPC terminal.

The forms of DEFINE CONNECTION and DEFINE SESSIONS commands that are
required are similar to those shown in Figure 33 on page 117 and Figure 34 on
page 118. The differences are shown below:

DEFINE CONNECTION(sysidnt)

SINGLESESS(Y)

DEFINE SESSIONS (csdname)

MAXIMUM(1,1)

You must specify SINGLESESS(Y) for the connection. The MAXIMUM operand
must specify only one session, and you are strongly recommended to make it a
contention winner (as shown). CICS will then attempt to bind as a contention
winner, but will accept a negotiated bind in which it is changed to the contention
loser.

Macro-level definition
You can define an APPC terminal by means of a single DFHTCT TYPE=SYSTEM
macro:

DFHTCT TYPE=SYSTEM
s SYSIDNT=name
sACCMETH=VTAM
» TRMTYPE=LUTYPEG2
s FEATURE=SINGLE
sMODENAME=modename
s NETNAME=name
»BINDPWD=password
s USERSEC={LOCAL | IDENTIFY|VERIFY}
sCONNECT={AUTO|ALL}
s XSNAME=value

124 cics/MVS 2.1.2 Intercommunication Guide

You must specify FEATURE =SINGLE. Optionally, you can specify a MODENAME
for the session,

In addition to the operands shown, you can specify any of the optional
session-related operands that are allowed on DFHTCT TYPE =MODESET (see
Figure 34 on page 118).

The AUTOCONNECT operand
The AUTOCONNECT operand of DEFINE CONNECTION and DEFINE SESSIONS
maps to the CONNECT operand of DFHTCT TYPE=SYSTEM and DFHTCT
TYPE=MODESET in the following way:

AUTOCONNECT (NO) Omit CONNECT operand
AUTOCONNECT (YES) CONNECT=AUTO
AUTOCONNECT (ALL) CONNECT=ALL

You can use the AUTOCONNECT operand of DEFINE CONNECTION and DEFINE
SESSIONS (and of DEFINE TYPETERM for APPC terminals) to control when CICS
attempts to establish communication with the remote LUTYPES6.2 system.

Except for single-session APPC terminals (see “Defining single-session APPC
terminals” on page 123), two events are necessary to establish sessions to a
remote LUTYPEG.2 system.

1. The connection to the remote system must be established. This effectively
means binding the LU services manager sessions (SNASVCMG) and carrying
out initial negotiations.

2. The sessions of the modeset in question must be bound.

These events are controlled in part by the AUTOCONNECT operand of the
DEFINE CONNECTION command and in part by the AUTOCONNECT of the DEFINE
SESSIONS command.

The AUTOCONNECT operand of DEFINE CONNECTION

On the DEFINE CONNECTION command, the AUTOCONNECT operand specifies.
whether CICS is to attempt to bind the LU services manager sessions at the
earliest opportunity (when the VTAM ACB is opened). It has the following
meanings:

AUTOCONNECT(NO)
specifies that CICS Is not to attempt to bind the LU services manage
sessions. :

AUTOCONNECT(YES)
specifies that CICS Is to attempt to bind the LU services manager sessions.

AUTOCONNECT(ALL) ,
the same as YES; you could, however, use it as a reminder that the
associated DEFINE SESSIONS specify ALL.

The LU services manager sessions cannot be bound if the remote system is not
available. If for any reason they are not bound during CICS initialization, they
can be bound by means of a CEMT SET CONNECTION INSERVICE ACQUIRED
command. They are also bound if the remote system itself initiates

Chapter 3.1. Defining links to remote systems 125

communication. For a single-session APPC terminal, specifying
AUTOCONNECT(YES) or AUTOCONNECT(ALL) on the DEFINE CONNECTION
command has no effect. This is because a single-session connection has no LU
services manager.

The AUTOCONNECT operand of DEFINE SESSIONS

On the DEFINE SESSIONS command, the AUTOCONNECT operand specifies
which sessions are to be bound when the associated LU services manager
sessions have been bound. (No user sessions can be bound before this time.)

The operand has the following meanings:

AUTOCONNECT(NO) :
specifies that no sessions are to be bound.

AUTOCONNECT(YES) '
specifies that the contention-winning sessions are to be bound.

AUTOCONNECT(ALL)
specifies that the contention-winning and the contention-losing sessions are

to be bound.

AUTOCONNECT(ALL) allows CICS to bind contention-losing sessions with
remote systems that cannot send bind requests.

Never specify AUTOCONNECT(ALL) for sessions to another CICS system, or
to any system that may send a bind request. This could lead to bind-race
conditions that CICS cannot resolve.

If AUTOCONNECT(NO) is specified, the sessions can be bound by means of a
CEMT SET MODENAME ACQUIRED command. If this is not done, sessions are
bound individually according to the demands of your application program.

For a single-session APPC terminal, the value specified for AUTOCONNECT on
DEFINE SESSIONS or DEFINE TYPETERM determines whether CICS attempts to
bind the single session or not.

‘Note: Specifying AUTOCONNECT(ALL) may cause CICS to bind a number of
contention winners other than the number originally specified in this system.
This depends on the partner system’s reply to the request to initiate sessions
(CNOS EXCHANGE). CICS attempts to bind as contention winners any sessions
that are not designated as contention losers in the CNOS reply.

Indirect links for transaction routing

Indirect links allow transaction routing between two CICS systems even though
you have not defined a direct link between them. The only requirement is that
there is a path from one system to the other via one or more intermediate
systems.

126 cCics/MVS 2.1.2 Intercommunication Guide

—_—

Terminal-Owning

The following figure illustrates the concept of an indirect link.

Intermediate Systems

Transaction-Owning

Region Region
A B C D
Transaction Transaction Transaction Transaction
defined as defined as defined as defined on
owned by B owned by C owned by D system D

Direct 1ink Direct link
defined to D defined to C

Direct 1ink Direct link
defined to C defined to B

Indirect Indirect
Direct Tink Direct Tink 1ink defined link defined
defined to B defined to A to AviaB to AviaC
Terminal Terminal Terminal Terminal
defined on defined as defined as defined as
system A owned by A owned by A owned by A

Figure 38. Transaction routing via indirect links

This figure illustrates a chain of systems (A, B, C, D) linked by MRO or
LUTYPES.2 links (you cannot do transaction routing over LUTYPEG.1 links).

It is assumed that you want to establish a transaction-routing path between a
terminal-owning region A and an application-owning region D. There is no direct
link available between region A and region D, but a path is available via the
intermediate regions B and C. :

Chapter 3.1. Defining links to remote systems 127

To enable transaction-routing requests to pass along the path, resource
definitions for both the terminal and the transaction must be available in all four
regions. The terminal is a local resource in the terminal-owning-region A, and a
remote resource in systems B, C, and D. Similarly, the transaction is a local
resource in the application-owning-region D, and a remote resource in the
regions A, B, and C. The definition of remote terminals and transactions is
described in “Chapter 3.2. Defining remote resources” on page 133.

Note: The transaction routing path between the terminal and the transaction
must not turn back on itself. If, for example, in Figure 38 on page 127, the
transaction definition in system D is replaced by a remote definition of a
transaction in system C, the attempt to use the transaction from system A will be
abended when system D tries to route back to system C.

Why indirect links are required

As explained in "Chapter 3.2. Defining remote resources” on page 133, CICS
systems reference remote terminals by means of a unique identifier that is
formed from:

1. The APPLID of the terminal-owning region.
2. The identifier by which the terminal is known on the terminal-owning region.

To enable CICS to form the fully-qualified terminal identifier, a remote terminal
definition must specify the system identifier of a link whose NETNAME is the
APPLID of the terminal-owning region.

If there is no direct link with the required nethame, an indirect link must be
defined.

The indirect link definition has two purposes:

1. It specifies the NETNAME of the terminal-owning region.
2. It identifies the direct link that is the start of the path to the terminal-owning
region.

Thus, in Figure 38 on page 127, the indirect link definition in region D provides
the NETNAME of region A and identifies region C as the next region in the path.
Similarly, the indirect link definition in region C provides the NETNAME of region
A and identifies region B as the next region in the path. Region B has a direct
link to region A, and therefore does not require an indirect link.

Resource definition for indirect transaction routing
This section outlines the definitions required to establish a transaction-routing

path between a terminal-owning region SYS01 and an application-owning region
SYS04 via two intermediate regions SYS02 and SYSO03.

The definitions required are shown in Figure 39 on page 129 (resource definition
online) and Figure 40 on page 131 (macro-level definition). You can, of course,
use any combination of resource definition online and macro-level definition for
the various resources.

- 128 CICS/MVS 2.1.2 Intercommunication Guide

§Yso1 §$YS02 §YS03 SYSe4
T r e r
DFHSIT DFHSIT DFHSIT DFHSIT
APPLID=SYS01 APPL1ID=5YS02 APPLID=SYS03 APPLID=SYS04
L) L) : |']

Link hetween SYS581 and SYS02

! . |

Link between SYSO3 and SYS64

DEFINE
CONNECT ION(NEXT)
NETNAME ($YS02)

DEFINE
SESSIONS (csdname)
CONNECTION(NEXT)

DEFINE
CONNECTION(PREV)
NETNAME(SYSE1)

.

DEFINE
SESSIONS (csdname)
CONNECTION(PREV)

DEFINE DEFINE
CONNECTION(NEXT) CONNECTION(PREV)
NETNAME (SYS04) NETNAME (5YS03)
DEFINE DEFINE

SESSIONS (csdname) SESSIONS (csdname)
CONNECTION(NEXT) CONNECTION(PREV)

Link hetween 5YS02 and $YS03

Indirect Link from SYS04 to
$YS01, routed via SYS03

Indirect Link from
§YS83 to SYSel
routed via SYS02

DEFINE

] 1
DEFINE DEFINE DEFINE
CONNECTION(NEXT) CONNECTION(PREV) || CONNECTION(REMT)
NETNAME (5Y503) NETNAME (SYS02) NETNAME (SYS01)
. . ACCESSMETHOD

(INDIRECT)

DEFINE DEFINE INDSYS (PREV)
SESSIONS (csdname) SESSIONS (csdname) | | Lo
CONNECTION(NEXT) CONNECTION(PREV)

CONNECTION(REMT)
NETNAME (5YS01)
ACCESSMETHOD
(INDIRECT)
INDSYS (PREV)
The Terminal The Terminal The Terminal The Terminal
r T 1T 1 1
DEFINE DEFINE DEFINE DEFINE
TERMINAL (T42A) TERMINAL (T42A) TERMINAL(T42A) TERMINAL (T42A)
NETNAME (XXXXX) REMOTESYSTEM(PREV) | REMOTESYSTEM(REMT)| REMOTESYSTEM(REMT)
TYPETERM(DFHLU2) TYPETERM(DFHLUZ) TYPETERM(DFHLU2) TYPETERM(DFHLU2)

.

L

The Transaction

The Transaction

T
DEFINE
TRANSACTION(TRTN)
REMOTESYSTEM(NEXT)

.

L _J

L

1
DEFINE .

TRANSACTION(TRTN)
REMOTESYSTEM(NEXT)

.

The Transaction

The Transaction

[1 1
DEFINE DEFINE
TRANSACTION(TRTN) TRANSACTION(TRTN)
REMOTESYSTEM(NEXT) | PROGRAM(TRNP)

l | ‘

Figure 39. Defining indirect links for transaction routing — RDO

Chapter 3.1. Defining links to remote systems

129

Defining the direct links
The direct links between SYS01 and SYS02, SYS02 and SYS03, and SYS03 and
SYS04 are MRO or LUTYPEB.2 links defined as described earlier in this chapter.

Defining the indirect links v

An indirect link for transaction routing must be defined in every system in a
transaction-routing path from a terminal-owning region to an application-owning
region, except for the terminal-owning region itself and the first region in the
path (that is, the region to which the terminal-owning region has a direct link).

In the current example, therefore, indirect links must be defined in SYS04 and
SYS03. The following rules apply to the definition of an indirect link:

1. Resource Definition Online
a. The ACCESSMETHOD must be INDIRECT.
b. The NETNAME must be the APPLID of the terminal-owning region.

c. INDSYS (meahing indirect system) must name the CONNECTION name of
an MRO or LUTYPEB.2 link that is the start of the path to the
terminal-owning region.

d. No SESSIONS definition is required for the indirect connection; the
sessions that are used are those of the direct link named in the INDSYS
operand.

2. Macro-Level Definition
a. The ACCMETH must be INDIRECT.
b. The NETNAME must be the APPLID of the terminal-owning region.

c. INDSYS (meaning indirect system) must name the SYSIDNT name of an
MRO or LUTYPES.2 link that is the start of a path to the terminal-owning
region.

d. No session-related operands are required for the indirect link definition;
the sessions that are used are those of the direct link named in the
INDSYS operand.

Shippable terminals

Transaction routing ships CEDA-installed or autoinstalled terminals across
indirect links. However, the global user exits XALTENF and XICTENF (see
“Shipping terminals for automatic transaction initiation” on page 48) can be
used only if the TOR and AOR are connected directly.

Defining the terminal

Unless you plan to use shippable terminal definitions (see “Shipping terminal
definitions” on page 141), the terminal must be defined as a remote resource in
every region in the transaction-routing path except the terminal-owning region
itself.

If you do use shippable terminal definitions, you must still define all the
necessary Indirect links.

130 cCICS/MVS 2.1.2 Intercommunication Guide

SYsel1 S$YS02 SYSe3

r [f T
DFHSIT DFHSIT DFHSIT
APPLID=5YS01 APPLID=5Y502 APPLID=SYS03

ISR RN F N, R |

Link between SYSO1 and SYS82

APPLID=SYS04

.

Link between SYS03 and SYS04

DFHTCT DFHTCT DFHTCT DFHTCY
TYPE=SYSTEM, TYPE=SYSTEM, TYPE=SYSTEM, TYPE=SYSTEM,
SYSIDNT=NEXT, SYSIDNT=PREV, SYSIDNT=NEXT, SYSIDNT=PREV,
NETNAME=SYS02, NETNAME=SYSO1, NETNAME=5YS04, NETNAME=SYSO3,
Indirect Link from
SYS04 to SYSO1
Link between SYS82 and SYS03 routed via SYS03
r !
DFHTCT DFHTCT DFHTCT
TYPE=SYSTEM, TYPE=SYSTEM, TYPE=SYSTEM,
SYSIDNT=NEXT, SYSIDNT=PREV, ACCMETH=INDIRECT,
NETNAME=SYSO3, NETNAME=SYS02, SYSIDNT=REMT,
. . NETNAME=SYSO1,
INDSYS=PREV
N |
Indirect Link from
§YS63 to SYSO1
routed via SYS02
DFHTCT
TYPE=SYSTEM,
ACCMETH=INDIRECT,
SYSIDNT=REMT,
NETNAME=SYSO1,
INDSYS=PREV
| R
The Terminal The Terminal The Terminal The Terminal
f f gl I 1
DFHTCT DFHTCT DFHTCT DFHTCT
TYPE=TERMINAL, TYPE=REMOTE, TYPE=REMOTE, TYPE=REMOTE,
TRMIDNT=T42A, TRMIDNT=T42A, TRMIDNT=T42A, TRMIDNT=T42A,
NETNAME= s SYSIONT=PREV, SYSIDNT=REMT, SYSIDNT=REMT,

.

.

The Transaction

The Transaction

The Transaction

The Transaction

I
DFHPCT
TYPE=REMOTE,
TRANSID=TRTN,
SYSIDNT=NEXT

.

DFHPCT
TYPE=REMOTE,
TRANSID=TRTN,
SYSIDNT=NEXT

1|
DFHPCT

TYPE=REMOTE,
TRANSID=TRTN,
SYSIDNT=NEXT

L

DFHPCT
TYPE=ENTRY,
TRANSID=TRTN,
PROGRAM=TRNP,

Figure 40. Defining indirect links for transaction routing — macro

Chapter 3.1. Defining links to remote systems

131

The definition of remote terminals is described in “Chapter 3.2. Defining remote
resources” on page 133. The REMOTESYSTEM (or SYSIDNT) operand in a
remote terminal definition must always name a link whose NETNAME is the
APPLID of the terminal-owning region. The named link must be the direct link to
the terminal-owning region if one exists. Otherwise, it must be an indirect link.

Defining the transaction

The transaction must be defined as a remote resource in every region in the
transaction-routing path except the application-owning region itself. In all cases,
the REMOTESYSTEM (or SYSIDNT) operand must name a direct link to the next
region in the transaction-routing path. (The definition of remote transactions is
described in “Chapter 3.2. Defining remote resources” on page 133.)

Multiple transaction-routing paths

If you have a chain of three or more regions, you may wish to allow
transaction-routing between any pair of regions in the chain. The link definitions
that you will require in this case are shown in the following figure:

o o

Direct Tink
defined to B

Direct link
defined to A

Direct link
defined to D

Direct tink
defined to C

Indirect Direct link Direct 1ink Indirect
link defined defined to C defined to B link defined
to C via B to B viaC
Indirect Indirect Indirect Indirect
link defined link defined link defined link defined
to D via B to D via C to A via B to AviaC

Figure 41. Multiple indirect links for transaction routing

For your terminal and transaction definitions, you must consider each possible
transaction-routing path in turn and apply the rules that have be explained
previously:

1. Remote terminal definitions must always refer to a link definition that
specifies the NETNAME of the system that owns the terminal.

2. Remote transaction definitions must always name the next system in the
path to the system that owns the transaction; they must not name an indirect
link.

132 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 3.2. Defining remote resources

Remote resources are resources that reside on a remote system but which need
to be accessed by the local CICS system. In general, you will have to define all
these resources in your local CICS system, in much the same way as you define
your local resources, by using CICS resource definition macros or, for remote
transactions and VTAM terminals only, by resource definition online (RDO).

This chapter tells you how to define the remote resources that may be required
for CICS function shipping, CICS transaction routing, and asynchronous
processing (START command shipping). No remote resource definition is
required for distributed transaction processing. :

The remote resources that can be defined are:

1. Remote files (function shipping)

Remote DL/I PSBs (function shipping)

Remote transient data destinations (function shipping)

Remote temporary storage queues (function shipping)

Remote terminais (transaction routing) '

Remote transactions (transaction routing and asynchronous processing).

Sah LN

All remote resources must, of course, also be defined on the systems that own
them,

Local and remote names for resources

CICS resources are usually referred to by name; a file name for a file, a data
identifier for a temporary storage queue, and so on. When you are defining
remote resources, you must consider both the name of the resource on the
remote system and the name by which it is known in the local system. The CICS
definition macros for remote resources all have a RMTNAME operand to enable
you to specify the name of the resource on the remote system. If you omit this
operand, CICS will assume that the local and remote names of the resource are
identical.

Local and remote resource naming is illustrated in Figure 42 on page 134.

® Coapyright IBM Corp. 1977, 1991 133

CICSA CICSB
(Local System) (Remote System)
DFHSIT TYPE= DFHSIT TYPE=
»APPLID=CICSA —1—
—3— ,APPLID=CICSB
DFHTCT TYPE=SYSTEM
»SYSIDNT=CICR 2 DFHTCT TYPE=SYSTEM
,NETNAME=CICSB —3— »SYSIDNT=CICL
11— s NETNAME=CICSA
DFHFCT TYPE=FILE
DFHFCT TYPE=REMOTE —4—— ,FILE=FILEA
,SYSIDNT=CICR —2—
s FILE=FILEA —4—
DFHFCT TYPE=FILE
DFHFCT TYPE=REMOTE ——5-— ,FILE=FILEB
» SYSIDNT=CICR —2
,FILE=alias o
s RMTNAME=FILEB —5—
DFHFCT TYPE=ENTRY
,FILE=FILEB

Figure 42. Local and remote resource names

This figure illustrates the relationship between local and remote resource
names. It shows two files, FILEA and FILEB, which are owned by a remote CICS
system (CICSB), together with their definitions as remote resources in the local
CICS system CICSA.

FILEA has the same name on both systems, so that a reference to FILEA on
either system means the same file.

FILEB is provided with an alias hame on the local system, so that the file is
referred to by its alias in the local system and by FILEB on the remote system.
The “real” name of the remote file is specified in the RMTNAME operand. This
enables CICSA to own a local data set called FILEB.

CICS function shipping
The remote resources that you may have to define if you are using CICS function
shipping are:

1. Remote files

2. Remote DL/l PSBs

3. Remote transient data destinations
4. Remote temporary storage queues.

134 cICs/MVS 2.1.2 Intercommunication Guide

— — e o—

Defining remote files

A remote file is a file that resides on another CICS system. CICS file control
requests that are made against a remote file are shipped to the remote system
by means of CICS function shipping.

CICS application programs can name a remote system explicitly on file control
requests, by means of the SYSID option. If this is done, there is no need for the
remote file to be defined on the local CICS system.

More generally, however, applications are designed to access files without being
aware of their location, and in this case the remote file must be defined in the
local file control table.

Remote file entries in the file control table

A remote file entry in the file control table provides CICS with sufficient
information to enable it to ship file control requests to a specified remote
system. It is defined by means of a DFHFCT TYPE =REMOTE resource definition
macro. The format of this macro is given in the CICS/MVS Resource Definition
(Macro) manual and is reproduced here for ease of reference,

DFHFCT TYPE=REMOTE
s SYSIDNT=name
,FILE=name
[, RMTNAME=name]
[,KEYLEN=key-1ength]
[,LRECL=record-length]
[sRSL={0|number|PUBLIC}]

Figure 43. Defining a remote file (function shipping)

Although MRO is supported for both user-maintained and CICS-maintained
remote data tables, CICS does not allow you to define a local data table based
on a remote source data set. However, there are ways around this restriction
(see the CICS/MVS Data Tables Guide for further information).

The name of the remote system

The name of the remote system to which file control requests for this file are to
be shipped is specified in the SYSIDNT option. A link to this system must have
been defined as described in “Chapter 3.1. Defining links to remote systems” on
page 91.

The name specified in the SYSIDNT option must not be the name cf the local
system. :

Flle names

The name by which the file is known on the local CICS system is specified in the
FILE option. This is the name that is used in file control requests by application
programs in the local system.

Chapter 3.2. Defining remote resources 135

The name by which the file is known on the remote CICS system is specified in
the RMTNAME option. This is the name that is used in file control requests that
are shipped by CICS to the remote system.

If the name of the file is to be the same on both the local and the remote system,
the RMTNAME operand need not be specified. You should, however, consider
carefully the desirability of using the FILE option to provide a local alias for the
file called RMTNAME on the remote system. This technique is, of course,
essential if files of the same name reside on both systems.

Record iengths
The record length of a remote file can be specified in the LRECL option.

If your instaliation uses COBQOL, you should specify the record length for any file
that has fixed length records.

In all other cases, the record length is either a mandatory option on file control
commands or can be deduced by the command-language translator.

Defining remote DL/I PSBs
To enable the local CICS system to access remote DL/I PSBs, you must define
the remote PSBs in the local PSB directory (PDIR). The form of macro used for
this purpose is:

DFHDLPSB TYPE=ENTRY
, PSB=psbname
» SYSIDNT=name
sMXSSASZ=value
[, RMTNAME=name]

This entry refers to a PSB that is known to the IMS DB system on the system
identified by the SYSIDNT operand.

A database descriptor (DBD) entry in the local CICS DMB directory (DDIR}) is not
required if the DBD resides on a remote system.

If there are no local DL/I databases on your CICS/MVS system, all the entries in
the PDIR will be defined as remote by inclusion of the SYSIDNT operand. In this
case, you must provide an “empty” DDIR, as follows:

DFHDLDBD TYPE=INITIAL
[,SUFFIX=xx]
DFHDLDBD TYPE=FINAL

136 cICS/MVS 2.1.2 Intercommunication Guide

Defining remote transient data destinations

A remote transient data destination is one that resides on another CICS system.
CICS transient data requests that are made against a remote destination are
shipped to the remote system by means of CICS function shipping.

CICS application programs can name a remote system explicitly on transient
data requests, by means of the SYSID option. If this is done, there is no need for
the remote transient data destination to be defined on the local CICS system.

More generally, however, applications are designed to access transient data
destinations without being aware of their location, and in this case the remote
destination must be defined in the local destination control table.

A remote entry in the destination control table provides CICS with sufficient
information to enable it to ship transient data requests to a specified remote
system. It is defined by means of a DFHDCT TYPE =REMOTE resource definition
macro. The format of this macro is given in the CICS/MVS Resource Definition
(Macro) manual, and is reproduced.here for ease of reference.

DFHDCT TYPE=REMOTE
,DESTID=name
s SYSIDNT=name
[,LENGTH=1ength]
[, RMTNAME=name]
[,RSL={@|number|PUBLIC}]

Defining remote temporary storage queues
A remote temporary storage queue is one that resides on another CICS system.
'CICS temporary storage requests that are made against a remote queue are
shipped to the remote system by means of CICS function shipping.

CICS application programs can name a remote system explicitly on temporary
storage requests, by means of the SYSID option. If this is done, there is no need
for the remote temporary storage queue to be defined on the local CICS system.

More generally, however, applications are designed to access temporary storage
queues without being aware of their location, and in this case the remote
destination must be defined in the local temporary storage table.

A remote entry in the temporary storage table provides CICS with sufficient
information to enable it to ship temporary storage requests to a specified remote
system. It is defined by means of a DFHTST TYPE =REMOTE resource definition
macro. The format of this macro is given in the CICS/MVS Resource Definition
(Macro) manual, and is reproduced here for ease of reference.

Chapter 3.2. Defining remote resources 137

DFHTST TYPE=REMOTE
s SYSIDNT=name
sDATAID=character-string
[, RMTNAME=character-string]

Asynchronous processing

The only remote resource definitions needed for asynchronous processing are
for transactions that are named in the TRANSID option of CICS START
commands.

Note, however, that an application can use the CICS RETRIEVE command to
obtain the name of a remote temporary storage queue which it subsequently
names in a function shipping request.

Defining remote transactions

A remote transaction for CICS asynchronous processing is a transaction that is
owned by another system and which is invoked from the local CICS system only
by means of START commands.

CICS application programs can name a remote system explicitly on START
commands, by means of the SYSID option. If this is done, there is no need for
the remote transaction to be defined on the local CICS sysiem. However, if the
transaction may be invoked by CICS transaction routing as well as by START
commands, the remote transaction must be defined in the local program control
table to enable transaction routing.

More generally, however, applications are designed to start transactions without
being aware of their location, and in this case the remote transaction must be
defined in the local program control table.

Remote transactions that are invoked only by START commands require only
basic information in the local program control table. The form of resource
definition required for this purpose is:

RDO Definition Macro-Level Definition

DEFINE DFHPCT TYPE=REMOTE
TRANSACTION(name) » TRANSID=name
GROUP (groupname) :
REMOTESYSTEM(sysidnt-name) »SYSIDNT=name
REMOTENAME (name) [, RMTNAME=name]
LOCALQ(NO| YES) [,LOCALQ={NO| YES}]
RSL(8|number|PUBLIC) [,RSL={@|number|PUBLIC}]

Figure 44. Defining a remote transaction (asynchronous processing)

138 ciCS/MVS 2.1.2 Intercommunication Guide

Local queuing (LOCALQ) can be specified for remote transactions that are
initiated by START requests. For further details, see “Chapter 1.5.
Asynchronous processing” on page 33.

CICS transaction routing

CICS transaction routing enables a terminal that is owned by a particular CICS
region to invoke a transaction that is owned by another CICS region. The two
regions must be connected either by MRO or by an LUTYPEG.2 (APPC) link.

Both the terminal and the transaction must be defined in both CICS regions, as
follows:

1. In the terminal-owning region:

a. The terminal must be defined as a local resotirce.

b. The transaction must be defined as a remote resource.
2. In the application-owning region:

a. The terminal must be defined as a remote resource (unless a shipped
terminal definition will be available: see “Shipping terminal definitions™
on page 141).

b. The transaction must be defined as a local resource.

If indirect routing is to be used, the rules that have just been stated still apply.
In addition, both the terminal and the transaction must be defined as remote
resources in the intermediate CICS region.

Transactions can be defined either by macro-level resource definition or by
resource definition online (RDO). VTAM terminals can also be defined using
either method, but for non-VTAM terminals you must use macro-level definition.

There is no requirement for the same method to be used in the two systems
involved in transaction routing, but using the same method can simplify the
preparation of local and remote definitions for the same resource.

Not all terminals are eligible for transaction routing. The following terminals and
logical units cannot use transaction routing and therefore cannot be defined as
remote:

» APPC (LUTYPE®6.2) terminals

¢ Pooled TCAM terminals

¢ IBM 7770 or 2260 terminals

* Pooled 3600 or 3650 pipeline logical units
¢« MVS operator console.

Chapter 3.2. Defining remote resources 139

Defining remote terminals with RDO (VTAM terminals only)

Remote terminals are terminals owned by a remote system which need to be
able to run with transactions on the local system, using the CICS transaction
routing facility.

The following section tells you how to define remote VTAM terminals using RDO.
However, if the terminal-owning region is using RDO, you do not necessarily
have to define the terminal on the application-owning region. Instead, you can
arrange for a suitable definition to be shipped from the terminal-owning region
when it is required. This method is described in "Shipping terminal definitions”
on page 141.

With resource definition online (RDO), remote terminals are defined by means of
a DEFINE TERMINAL command that specifies a REMOTESYSTEM name that is
different from the SYSIDNT of the region on which the terminal definition is being
installed. Only a few of the various terminal properties need be specified for a
remote terminal definition. They are:

DEFINE
TERMINAL
GROUP

terminal identifiers
TYPETERM
REMOTENAME
REMOTESYSTEM

operator defaults
OPERRSL
OPERSECURITY

Figure 45. Defining a remote VTAM terminal (transaction routing)

The TYPETERM referenced by a remote terminal definition can be a
CICS-supplied version for the particular terminal type, or one defined by means
of a DEFINE TYPETERM command. If you are defining a TYPETERM that will be
used only for remote terminals, you can ignore the session properties, the
paging properties, and the operational propertles. You can also ignore
BUILDCHAIN in the application features.

Sharing terminal definitions

If you have two or more CICS regions within the same MVS image, they can
share a common CICS system definition file (CSD). In this case, for MRO
transaction routing, you need define each terminal only once.

The terminal must be fully defined by means of DEFINE TERMINAL, and must
have an associated TYPETERM definition, just like a local terminal definition. In
addition, the REMOTESYSTEM operand must specify the SYSIDNT of the
terminal-owning region. When such a terminal is installed on the
terminal-owning region, a full, local, terminal definition is built. On any other
system, a remote terminal definition is built.

140 cCICS/MVS 2.1.2 Intercommunication Guide

Shipping terminal definitions

If you are using RDO on a terminal-owning region that is involved in transaction
routing, you can arrange for a terminal definition to be shipped from the
terminal-owning region to the application-owning region whenever it is required.
If you use this method, you need not define the terminal on the
application-owning region.

If you require a transaction that is started by AT| to acquire a remote terminal,
you will normally have to define the terminal on the application-owning region.
For example, specifying a remote terminal in the DESTFAC =(TERMINAL trmidnt)
operand for an intrapartition transient data queue (see “Intrapartition transient
data queues and remote transactions” on page 157) does not cause a terminal
definition to be shipped from the remote system, but once a shipped terminal
definition has been received, the terminal is eligible for ATI requests.

However, CICS does allow you to cause terminal definitions to be shipped to the
AOR in support of ATl requests. If you enable the user exit XALTENF in the
AOR, CICS invokes this exit whenever it meets a terminal not known condition.
The program you code has access to parameters, giving details of the origin and
nature of the ATI request. You use these to decide the identity of the region that
owns the terminal definition you want CICS to ship. for you.

A similar user exit, XICTENF, is available for start requests that result from EXEC
CICS START. See “Shipping terminals for automatic transaction initiation” on
page 48 for more information.

To make a terminal definition eligible for shipping, you must associate it with a
TYPETERM that specifies SHIPPABLE:

DEFINE
TERMINAL (trmidnt)
GROUP(groupname)
AUTINSTMODEL (YES|NO|ONLY)
AUTINSTNAME (name)
TYPETERM(TRTERM1)

DEFINE
TYPETERM(TRTERM1)

SHIPPABLE (YES)

Figure 46. Defining a shippable terminal (transaction routing)

This method can be used for any VTAM terminal. For AUTOINSTALL terminals,
this method must be used. In effect, it gives automatic installation of remote
terminals. (For details of AUTOINSTALL, see the C/CS/MVS Resource Definition
(Online) manual and the CICS/MVS Customization Guide.)

Chapter 3.2. Defining remote resources 141

When a remote transaction is invoked from a shippable terminal, the request
that is transmitted to the application-owning region is flagged to show that a
shippable terminal definition is available. If the application-owning region
already has a definition of the terminal (which may have been shipped
previously), it ighores the flag. Otherwise, it asks for the definition to be
shipped. A shipped terminal definition is retained until one of the following
events occurs:

1. A CEDA INSTALL command causes the terminal definition on the running
CICS system that shipped the definition to be replaced or deleted.

2. The terminal is logged off on the system that shipped the definition
{autoinstalled terminals only).

3. The system that shipped the terminal definition is cold-started.

If either 1 or 2 above occurs while communication between the two systems has
been lost, the action is deferred until communication has been restored.

Defining remote terminals (macro-level definition)
Remote terminals are terminals owned by a remote system which need to be
able to run with transactions on the local system, using the CICS transaction
routing facility.

A remote terminal requires a full terminal control table entry in the remote
system, and a local terminal control table entry that contains sufficient
information about the terminal to enable CICS to perform the transaction routing.
Data set control information and line information is not required for the local
definition of a remote terminal. With resource definition macros, you can define
remote terminals in either of two ways:

1. By means of DFHTCT TYPE =REMOTE macro instructions

2. By means of normal DFHTCT TYPE =TERMINAL macro instructions preceded
by a DFHTCT TYPE =REGION macro instruction.

The choice of a method is largely a matter of convenience in the particular
circumstances. Both methods allow the same terminal definitions to be used to
generate the required entries in both the local and the remote system.

Definition using DFHTCT TYPE=REMOTE

The format of the DFHTCT TYPE =REMOTE macro instruction is given in the
CICS/MVS Resource Definition (Macro) manual, and is reproduced here for ease
of reference.

142 cicS/MVS 2.1.2 Intercommunication Guide

DFHTCT TYPE=REMOTE
,ACCMETH=access-method
s SYSIDNT=name
s TRMIDNT=name
[, RMTNAME=name]
s TRMTYPE=terminal-type

[,ALTPGE=(1ines,columns)]
[,ALTSCRN=(1ines,columns)]
[, ALTSFX=number]
[,DEFSCRN=(1ines,columns)]
[,ERRATT={NO

| ([LASTLINE] [, INTENSIFY][,color][,highlight])}]
[,FEATURE=(feature[, feature],...)]
[,OPERRSL={@] (number([,...]}]
[,OPERSEC={1| (number{,number]},...)}]
[,PGESIZE=(1ines,columns)]
[, TCTUAL=number]
[,TI0AL={value|(valuel,value?)}]
{, TRMMODL=numbercharacter]

Non-VTAM

[,DISMSG=name]
[,LPLEN={132|value}]
[,STN2980=number]

[, TAB2980={1|value}]

VTAM and TCAM SNA Only
[,BMSFEAT=(FMHPARM, NOROUTE ,NOROUTEALL ,0BFMT,0BOPID)]
[, HF=(0 | YES)]

[,LDC={1istname| (aa[=nnn],bb[=nnn],cc[=nnn],...)}]
[,SESTYPE=session-type]

[, VF={NQ|YES}]

VTAM Only

[,FF={NO|YES}]

Figure 47. Defining a remote terminal

With the exception of SYSIDNT, the operands of this macro instruction form a
subset of those that can specified with DFHTCT TYPE =TERMINAL. Any of the
remaining operands can be specified. They are ignored unless the SYSIDNT
operand names the local system, in which case the macro instruction becomes
equivalent to the DFHTCT TYPE =TERMINAL form.

A single DFHTCT TYPE ==REMOTE macro instruction can therefore be used to
define the same terminal in both the local and the remote systems. A typical
use of this method of definition is shown in Figure 48 on page 144.

Chapter 3.2. Defining remote resources 143

Local System CICSL Remote System CICSR
(terminal-owning system)
DFHSIT TYPE= DFHSIT TYPE=
APPLID=CICSL, APPLID=CICSR,
SYSIDNT=CICL, SYSIDNT=CICR,
DFHTCT TYPE=INITIAL, DFHTCT TYPE=INITIAL,
ACCMETH=VTAM ACCMETH=VTAM
DFHTCT TYPE=SYSTEM, DFHTCT TYPE=SYSTEM,
SYSIDNT=CICR, SYSIDNT=CICL,
NETNAME=CICSR, NETNAME=CICSL,
DFHTCT TYPE=REMOTE, DFHTCT TYPE=REMOTE,
SYSIDNT=CICR, SYSIDNT=CICR,
TRMIDNT=aaaa, TRMIDNT=aaaa,
TRMTYPE=LUTYPE2, TRMTYPE=LUTYPE2,
TRMMODL=2, TRMMODL=2,
ALTSCRN=(43,80) ALTSCRN=(43,80)
DFHTCT TYPE=FINAL DFHTCT TYPE=FINAL

Figure 48. Typical use of DFHTCT TYPE =REMOTE

in this example, the same terminal definition is used in both the local and the
remote systems.

In the local system, because the terminal SYSIDNT differs from that specified on
the DFHTCT TYPE=INITIAL macro, a remote terminal entry is built. In the
remote system, because the terminal SYSIDNT is that of the remote system
itself, the TYPE =REMOTE macro is treated exactly as if it were a

TYPE =TERMINAL macro.

The terminal identification is “aaaa” in both systems.

Definition using DFHTCT TYPE=REGION

If this method is used, terminals can be defined in the same way as local
terminals, using DFHTCT TYPE =SDSCI, TYPE =LINE, and TYPE =TERMINAL
macro instructions. The definitions must, however, be preceded by a DFHTCT
TYPE =REGION macro instruction, which has the following form:

DFHTCT TYPE=REGION
+SYSIDNT={name | LOCAL}

Here, SYSIDNT =name specifies the terminal-owning region. If this operand
does not name the local. system, only the information required to build a remote
terminal entry is extracted from the succeeding definitions. DFHTCT

TYPE =8DSCI and TYPE =LINE definitions are ignored. Operands of

144 ciCs/MVS 2.1.2 intercommunication Guide

TYPE=TERMINAL definitions that are not part of the TYPE=REMOTE subset are

also ignored.

A return to local system definitions is made by use of DFHTCT
TYPE =REGION,SYSIDNT =LOCAL.

A typical use of this method of definition is shown in Figure 49.

Local System CICSL

Remote System CICSR

(terminal-owning system)

DFHSIT TYPE=
APPLID=CICSL,
SYSIDNT=CICL,

DFHTCT TYPE=INITIAL,
ACCMETH=VTAM

DFHTCT TYPE=SYSTEM,
SYSIDNT=CICR,
NETNAME=CICSR,

DFHTCT TYPE=REGION,
SYSIDNT=CICR

COPY TERMDEFS

DFHTCT TYPE=REGION,
SYSIDNT=LOCAL

DFHTCT TYPE=FINAL

DFHSIT TYPE=
APPLID=CICSR,
SYSIDNT=CICR,

DFHTCT TYPE=INITIAL,
ACCMETH=VTAM
DFHTCT TYPE=SYSTEM,

SYSIDNT=CICL,
NETNAME=CICSL,

COPY TERMDEFS

DFHTCT TYPE=FINAL

* TERMDEFS COPY BOOK

L77A DFHTCT

DFHTCT

DFHTCT

L77B DFHTCT

and so on

TYPE=TERMINAL, TRMIDNT=L77A, ACCMETH=VTAM,
TRMTYPE=L3277, TRMMODL=2, CLASS=(CONV, VIDEO)
TI0AL=1500, RELREQ=(YES, YES),
FEATURE=(SELCTPEN, AUDALARM, UCTRAN) ,

TCTUAL=8, CONNECT=AUTO, TRMSTAT=(TRANSCEIVE)
TYPE=SDSCI,CU=3272,DEVICE=L3277,LINELST=(035),
DSCNAME=DDA11,BSCODE=EDCDIC
TYPE=LINE,ACCMETH=BTAM, TRMTYPE=L3277,
DSCNAME=DDA11, INAREAL=512, TRMMODL=2,BTAMRLN=1,
POOLADDR=L778 ,BSCODE=EBCDIC , DUMMY=DUMMY
TYPE=TERMINAL , TRMIDNT=L778,LVUNIT=1,
FEATURE=(SELCTPEN, UCTRAN, AUDALARM) ,
TRMSTAT=TRANSCEIVE, LASTTRM=POOL ,
TCTUAL=8,TI0AL=80

Figure 49. Typical use of DFHTCT TYPE =REGION

in this example, the same copy book of terminal definitions is used in both the
local and the remote system.

Chapter 3.2. Defining remote resources

145

In the local system, the fact that the terminal SYSIDNT differs from that of the
local system (specified on the DFHSIT macro or the DFHTCT TYPE =INITIAL
macro) causes remote terminal entries to be built. Note that although the
TYPE =SDSCI and TYPE =LINE macros are not expanded in the local system,
any defaults that they imply (for example, ACCMETH=BTAM) are taken for the
TYPE =TERMINAL expansions.

Local and remote names for terminals
CICS uses a unique identifier for every terminal that is involved in transaction
routing. The identifier is formed from the APPLID of the CICS system that owns
the terminal and the terminal identifier specified in the terminal definition on the
terminal-owning region.

If, for example, the APPLID of the CICS system is PRODSYS and the terminal
identifier is L77A, the fully-qualified terminal identifier is PRODSYS.L77A.

The following rules apply to all forms of remote terminal definition:

1. The definition must be associated with a system whose NETNAME is the
APPLID of the system that owns the terminal.

2. The “real” terminal identifier must always be specified, either directly or by
means of aliasing.

Referring to the correct nethame

You must always ensure that the system identifier named in a remote terminal
definition refers to a link whose NETNAME is the APPLID of the terminal-owning
region. In the following examples, it is assumed that the APPLID of the
terminal-owning region is PRODSYS.

146 cCICS/MVS 2.1.2 Intercommunication Guide

Resource Definition Online

DEFINE TERMINAL DEFINE CONNECTION(PD1)
REMOTESYSTEM(PD1) NETNAME (PRODSYS)

Macro-Level Definition

(Method 1)
DFHTCT TYPE=REMOTE, DFHTCT TYPE=SYSTEM,
SYSIDNT=PD1, SYSIDNT=PD1,
. NETNAME=PRODSYS,

Macro-Level Definition

(Method 2)
DFHTCT TYPE=REGION, DFHTCT TYPE=SYSTEM,

SYSIDNT=PD1 SYSIDNT=PD1,
. NETNAME=PRODSYS,

DFHTCT TYPE=TERMINAL,

Figure 50. Identifying a terminal-owning region

These rules apply even if an Indirect link Is being used (see “Indirect links for
transaction routing” on page 126). The NETNAME used must never be that of an
indirect system.

Terminal allases

The name by which a terminal is known in the application-owning region is
usually the same as its name in the terminal-owning region. You can, however,
choose to call the remote terminal by a different name (an alias) in the
application-owning region.

You will have to provide an alias if the terminal-owning region and the
application-owning region own a terminal with the same name; you cannot have
a local terminal definition and a remote terminal definition with the same name.

Chapter 3.2. Defining remote resources 147

If you use an alias, you must also specify the “real” name of the terminal as its
remote name, as follows:

Terminal-Owning Transaction-Owning
Region Region

Local Terminal Local Terminal
Trmidnt L77A Trmidnt L77A

Remote Terminal

Trmidnt R77A

Remote Name L77A

Figure 51. Local and remote names for remote terminals

You specify the remote name in the REMOTENAME operand of DEFINE
TERMINAL or the RMTNAME operand of DFHTCT TYPE =REMOTE.

Defining remote transactions

A remote transaction for CICS transaction routing is a transaction that is owned
by another CICS system and which can be invoked from the local CICS system
by a terminal owned by the local system.

You define a remote transaction in exactly the same way as you define a local
transaction, except that some of the operands are not required.

148 cCICS/MVS 2.1.2 Intercommunication Guide

In what follows, it is assumed that the online resource definition transaction
CEDA is being used. The form of the CEDA DEFINE command for remote
transactions is:

DEFINE

TRANSACTION(name)

GROUP (groupname)

[PROGRAM (name)]
[TWASIZE({Q|value})]
[PROFILE({DFHCICST |name})]
[PARTITIONSET (name)]

[STATUS ({ENABLED | DISABLED})]
[PRIMEDSIZE({@|value})]

Remote attributes
REMOTESYSTEM(name)
[REMOTENAME ({1ocal -name | remote-name})]
[TRPROF ({DFHCICSS | name})]
[LOCALQ({NO|YES})]

Scheduling
[PRIORITY({1|value})]
[TCLASS ({NO|value})]

Aliases
[TASKREQ(value)]
[XTRANID(value)]

Recovery
[DTIMOUT ({NO|value})]
[INDOUBT ({BACKOUT | COMMIT |WAIT})]
[RESTART ({NO|YES})]
[SPURGE({NO|YES})]
[TPURGE({NO|YES})]
[DUMP({YES|NO})]
[TRACE({YES|N0})]

Security
[EXTSEC ({NO|YES})]
[TRANSEC({1|value})]
[RSL({@]value|PUBLIC})]
[RSLC({NO| YES |EXTERNAL})

Figure 52. Defining a remote transaction (transaction routing)

Note: For information on the use of the INDOUBT operand, see “"Chapter 5.1.
Recovery and restart in interconnected systems” on page 289.

The name in the TRANSACTION operand is the name by which the transaction is
invoked in the terminal-owning region. TASKREQ can be specified if special
inputs, such as a program attention (PA) key, program function (PF) key, light
pen, magnetic stripe reader, or operator ID card reader, are used.

Chapter 3.2. Defining remote resources 149

The REMOTESYSTEM operand names the system to which the transaction will be
routed, and an MRO or LUTYPES.2 link to this system must have been defined.

The PROFILE operand names the profile that is to be used for communication
between the terminal and the relay transaction. The TRPROF operand names
the profile that is to be used for communication on the session between the relay
transaction and the remote, application-owning, region. Information about
profiles is given under “Defining communication profiles” on page 151.

The program associated with a remote transaction is always the relay program
DFHCRP, and the transaction is often referred to as the relay transaction (see
“Chapter 1.6. CICS transaction routing” on page 45).

The attributes that you define apply to the execution of the relay transaction in
the terminal-owning region, and not to the execution of the routed transaction in
the application-owning region.

it may also be desirable to specify some operands for control of the relay
transaction.

You can set TWASIZE to zero since the relay transaction does not require a
TWA.

You should specify transaction security for routed transactions which are
operator initiated. You do not need to specify resource security checking, since
the relay transaction does not access resources. Security is discussed in
“Chapter 6.1. Security in the intercommunication environment” on page 311.

You should code the DTIMOUT operand to cause the relay transaction to be
timed out if the system to which a transaction is routed does not respond or if a
session does not become available after a reasonable period of time.

Distributed transaction processing

There are no remote resource definition requirements for distributed transaction
processing.

150 cICcs/MVS 2.1.2 Intercommunication Guide

Chapter 3.3. Defining local resources

Defining communication profiles

When a transaction acquires an LUTYPE6.1 or LUTYPEG6.2 session to another
system, either explicitly by means of an ALLOCATE command or implicitly
because it uses, for example, function shipping, a communication profile is
associated with the communication between the transaction and the session.
The communication profile specifies the following information:

1. Whether FMHs received from the session are to be passed on to the
transaction.

2. Whether input and output messages are to be journaled, and if so the
location of the journal.

3. The node error program (NEP) class for errors on the session.

4. For LUTYPESB.2 sessions, the modename of the group of sessions from which
the session is to be allocated. (If the profile does not contain a modename,
CICS selects a session from any available group.)

CICS provides a set of default profiles, described later in this chapter, which it
uses for various forms of communication. Also, you can define your own
profiles, and name a profile explicitly on an ALLOCATE command.

The general form of the CEDA command used to define a profile is shown in
Figure 53. (For full details, see CICS/MVS Resource Definition (Online} manual).

DEFINE
PROFILE (name)
GROUP (groupname)
[MODENAME (name)]

Protocols
[INBFMH(NO|ALL)]

Journaling
[JOURNAL(NO|value)]
[MSGJRNL (NO| INPUT |OUTPUT | INOUT)]

Recovery
[NEPCLASS(@|value)]
[RTIMOUT (NO|value)]

Note: The equivalent operands are also available on the
DFHPCT TYPE=PROFILE macro.

Figure 53. Defining a communication profile

© Copyright IBM Corp. 1977, 1991 151

A profile is always required for a session acquired by an ALLOCATE command;
either a profile that you have defined and which is named explicitly on the
command, or the default profile DFHCICSA. If CICS cannot find the profile, the
CBIDERR condition is raised in the application program.

For MRO sessions that are acquired by an ALLOCATE command, CICS always
uses INBFMH(ALL), no matter what is specified in the profile.

For LUTYPES.2 conversations, INBFMH specifications are ignored; LUTYPEG.2
FMHs are never passed to CICS application programs.

Communication profiles for principal facilities

Default profiles

A profile is also associated with the communication between a transaction and
its principal facility. You can name the profile in the CEDA DEFINE
TRANSACTION command, or you can allow the default to be taken. The CEDA
DEFINE PROFILE command for a principal facility profile has more operands than
the form required for alternate facilities. Details are given in the CICS/MVS
Resource Definition (Online) manual.

CICS provides a set of communication profiles that it employs in cases where
the user does not or cannot specify a profile explicitly. The default profiles are:

DFHCICST
is the default profile for principal facilities. You can specify a different profile
for a particular transaction by means of the PROFILE option. of the CEDA
DEFINE TRANSACTION command.

DFHCICSV
is the profile for principal facilities of the CICS-supplied transactions CSNE,
CSLG, and CSRS. It is the same as DFHCICST except that DVSUPRT(VTAM)
is specified in place of DVSUPRT(ALL). You should not modify this profile.

DFHCICSE
is the error profile for principal facilities. CICS uses this profile to pass an
error message to the principal facility when the required profile cannot be
found. '

DFHCICSA INBFMH(ALL)
is the default profile for alternate facilities that are acquired by means of an
application program ALLOCATE command. A different profile can be named
explicitly on the ALLOCATE command.

This profile is also used as a principal facility profile for some CICS-supplied
transactions.

DFHCICSF INBFMH(ALL)
is the profile that CICS uses for the session to the remote system or region
when a CICS application program issues a function shipping request.

DFHCICSS INBFMH(ALL)
is the profile that CICS uses in transaction routing for communication
between the relay transaction (running in the terminal-owning region) and
the MRO or LUTYPEB.2 link.

152 cics/MVS 2.1.2 Intercommunication Guide

DFHCICSR INBFMH(ALL)
is the profile that CICS uses in transaction routing for communication
between the user transaction (running in the application-owning region) and
the interregion link or LUTYPES.2 link.

Note that the user-transaction’s principal facility is the surrogate TCTTE in
the application-owning region, for which the default profile is DFHCICST.

Refer to the CICS/MVS Resource Definition (Onfine) manual or the CICS/MVS
Resource Definition (Macro) manual for information on how to include the default
profiles in your program control table.

Modifying the default profiles

You can modify a default profile by means of the CEDA transaction or, if you are
using macro-level definition, by coding a new DFHPCT TYPE = PROFILE macro.

A typical reason for modification is to include a modename to provide class of
service selection for, say, function shipping requests on LUTYPEB.2 links. If you
do this, you must ensure that every LUTYPEG.2 link in your installation has a
group of sessions with the specified modename.

if you modify DFHCICSA, you must retain INBFMH(ALL), because it is required by
certain CICS-supplied transactions. Modifying this profile does not affect the
profile options assumed for MRO sessions.

You must not modify DFHCICSV, which is used only by certain CICS-supplied
transactions.

Architected processes

An architected process is an IBM-defined method of allowing dissimilar products
to exchange intercommunication requests in a way that is understood by both
products. For example, a typical requirement of intersystem communication is
that one system should be able to schedule a transaction for execution on
another system. Both CICS and IMS have transaction schedulers, but their
implementation differs considerably. The intercommunication architecture
overcomes this problem by defining a model of a "universal” transaction
scheduling process. Both products implement this architected process, by
mapping it to their own internal process, and are therefore able to exchange
scheduling requests.

The architected processes implemented by CICS are:

* System message model — for handling messages containing various types of
information that needs to passed between systems (typically, DFS messages
from IMS) '

* Scheduler model — for handling scheduling requests

* Queue model — for handling queuing requests (in CICS terms, temporary
storage or transient data requests)

Chapter 3.3. Defining local resources 153

Process names

* DL/I model — for handling DL/! requests

* LU services model — for handling requests between LUTYPEG6.2 service
managers.

Note: With the exception of the LUTYPE6.2 LU services model, the architected
processes are defined in the LUTYPEB.1 architecture. CICS, however, also uses
them for function shipping on LUTYPE6.2 links by using LUTYPE6.2 migration
mode.

The appropriate models are also used for CICS-CICS communication. The
exception is CICS file control requests, which are handled by a CICS-defined file
control model.

During resource definition, your only involvement with architected processes will
be to ensure that the relevant transaction and programs are included in the CICS
tables, and possibly to change their priorities.

Architected process names are one to four bytes long, and have a first byte
value that is less than X'40'.

In CICS, the names are specified as four-byte hexadecimal transaction
identifiers. If CICS receives an architected process name that is less than four
bytes long, it pads the name with null characters (X'00') before searching for the
transaction identifier.

CICS supplies the processes shown in Figure 54.

XTRANID TRANSID PROGRAM DESCRIPTION
For CICS file control
- CSMI DFHMIR file control model

For LUTYPE6.1 architected processes

01000000 CSm1 DFHMIR system message model
02000000 CSM2 DFHMIR scheduler model
03000000 CSM3 DFHMIR queue model
05000000 CSM5 DFHMIR DL/I model

For LUTYPE6.2 architected processes

06F10000 CLs1 DFHLUP LU services model
06F20000 CLSs2 DFHLUP LU services model

Figure 54. CICS architected process names

154 cics/Mvs 2.1.2 Intercommunication Guide

Modifying the architected process definitions
You will observe from the previous list that the CICS file control model and the
architected processes for function shipping all map to program DFHMIR?, the
CICS mirror program. The inclusion of different transaction names for the
various models enables you to modify some of the transaction attributes. You
must not, however, change the XTRANID, the TRANSID, or the PROGRAM
operand.

You can modify any of the definitions by means of the CEDA transaction or, if
you are using macro-level definition, by coding a new DFHPCT macro.

Interregion function shipping
Function shipping over MRO links can employ reusable mirror tasks and the
short-path transformer program (see "MRO function shipping” on page 26).

If you modify one or more of the mirror transaction definitions, you must
evaluate the effect that this may have on interregion function shipping. Any
suspended mirror task can be used to service an interregion request, and that
mirror can have been attached originally by any process name, and hence
transaction identifier.

The short-path transformer always specifies transaction CSMI. It is not,
however, used for DL/l requests; they arrive as requests for process
X'05000000', corresponding to transaction CSM5.

Selecting the required PCT and PPT entries

The profiles and architected processes described in this chapter, and other
transactions and programs that are required for ISC and MRO, are contained in
the IBM protected groups DFHISC and DFHSTAND. Details of how to include
these pregenerated CEDA groups in your CICS system are given in the
CICS/MVS Resource Definition (Online) manual. The contents of group DFHISC
are summarized in the following figure.

2 Transaction CVMI and program DFHMIRVM are also used for LU6.2 parailel connections operating at synclevel(1) and LU6.2
single-session connections.

Chapter 3.3. Defining local resources 155

JRANSACTIONS
XTRANID TRANSID PROGRAM GROUP

- CSMI DFHMIR DFHISC CICS file control model

- CVMI DFHMIRVM DFHISC Mirror program
01000000 CSM1 DFHMIR DFHISC. system message model
02000000 CSM2 DFHMIR DFHISC scheduler model
03000000 CSM3 DFHMIR DFHISC queue model
05000000 CSM5 DFHMIR DFHISC DL/I model
06F10000 CLS1 DFHLUP ~ DFHISC LU services model
06F20000 CLS2 DFHLUP DFHISC LU services model

- . CMPX DFHMXP DFHISC

- CRSQ DFHCRQ DFHISC

- CRSR DFHCRS DFHISC

- CRTE DFHRTE DFHISC routing transaction

- CSIR DFHCRR DFHISC

- CSNC DFHCRNP DFHISC

PROGRAMS
NAME GROUP

DFHCRNP DFHISC Interregion new connection manager
DFHCRSP DFHISC Interregion control initialization program
DFHCRR DFHISC IRC session recovery program.
DFHCRS DFHISC Remote scheduler program.

DFHCRP DFHISC Transaction routing relay program.
DFHRTE DFHISC Transaction routing program.
DFHCRQ DFHISC ATI purge program.

DFHMXP DFHISC Local queuing shipper program
DFHMIR DFHISC Mirror program

DFHMIRVM DFHISC Mirror program

DFHLUP DFHISC LU services program

DFHSTLK DFHSTAND ISC Link and IRC statistics program
PROFILES

NAME GROUP

DFHCICSF DFHISC Function shipping profile

DFHCICSR DFHISC Transaction routing receive profile
DFHCICSS DFHISC Transaction routing send profile

DFHCICSA DFHSTAND Distributed transaction processing profile
DFHCICSE DFHSTAND Principal facility error profile

DFHCICST DFHSTAND Principal facility default profile
DFHCICSV DFHSTAND Principal facility special profile

Figure 55. The contents of group DFHISC

156 cICS/MVS 2.1.2 Intercommunication Guide

Intrapartition transient data queues and remote transactions

Transactions

The general form of the resource definition macro for an intrapartition transient
data queue is:

DFHDCT TYPE=INTRA
,DESTID=name
[,DESTFAC={ (TERMINAL[, termid]) |FILE| (SYSTEM,sysid)}
[,DESTRCV={NO|PH|LG}]
[, REUSE={YES|N0}]
[,RSL={9 | number|PUBLIC}]
[, TRANSID=name]
[, TRIGLEV={1|number}]

Figure 56. Defining an intrapartition transient data queue

Full details of this macro are given in the CICS/MVS Resource Definition (Macro)
manual. In this section we are concerned with the CICS intercommunication
aspects of queues that:

1. Cause automatic transaction initiation (TRANSID specified)

2. Specify an associated principal facility (DESTFAC=TERMINAL or
DESTFAC=SYSTEM).

A transaction that is initiated by an intrapartition transient data queue must
reside on the same system as the queue. That is, the transaction that you
specify in the TRANSID operand must not be defined as a remote transaction.

Principal facilities

The principal facility that is associated with a transaction started by ATl can be:

¢ A local terminal
¢ A terminal owned by a remote system
* An intersystem or interregion session to a remote system.

Local terminals
A local terminal is a terminal that is owned by the same system that owns the
transient data queue and the transaction.

For any local terminal other than an LUTYPE6.2 (APPC) terminal, you need to
specify DESTFAC = (TERMINAL[termid]). If you omit termid, the name of the
queue (specified in DESTID) must be the same as the terminal name.

For a local LUTYPEG.2 (APPC) terminal, you need to specify
DESTFAC=(SYSTEM,sysid), where sysid is the system name of the terminal.
Note that the name of the conversation with the terminal is assigned when the
session is allocated. You do not know it beforehand, and therefore cannot
specify it. Once the transaction has started, the name of the conversation is
available in EIBTRMID.

Chapter 3.3. Defining local resources 157

Remote terminals

A remote terminal is a terminal that is defined as remote on the system that
owns the transient data queue and the associated transaction. Automatic
transaction initiation with a remote terminal is a form of CICS transaction routing
(see “Chapter 1.6. CICS transaction routing” on page 45), and the normal
transaction routing rules apply.

Use DESTFAC =(TERMINAL, termid) to specify the name of the remote terminal.
The terminal itself must be defined as a remote terminal, and the
terminal-owning region must be connected to the local system either by an MRO
link or'an LUTYPEG.2 link.

Remote systems

You can name a remote system in the DESTFAC =(SYSTEM,sysid) operand. The
remote system can be connected by any type of link; MRO, LUTYPES.1, or
LUTYPEG.2.

158 cCiCs/MVS 2.1.2 Intercommunication Guide

Part 4. Application programming

This part of the manual describes the application programming aspects of CICS
intercommunication. It contains the following chapters:

“Chapter 4.1. Application programming overview” on page 161

“Chapter 4.2. Application programming for CICS function shipping” on
page 163

“Chapter 4.3. Application programming for asynchronous processing” on
page 167

“Chapter 4.4. Application programming for CICS transaction routing” on
page 169

“Chapter 4.5. CICS applications for logical unit type 6.2 mapped
conversations” on page 171

“Chapter 4.6. CICS applications for logical unit type 6.2 unmapped
conversations” on page 221

“Chapter 4.7. CICS-to-CICS distributed transaction processing for MRO and
LUTYPEG.1” on page 245

“Chapter 4.8. CICS-to-IMS applications” on page 263

© Copyright IBM Corp. 1977, 1991 159

Chapter 4.1. Application programming overview

Application programs that are designed to run in the CICS intercommunication
environment can use one or more of the following facilities:

* Function shipping

* Asynchronous processing

¢ Transaction routing

» Distributed transaction processing.

The application programming requirements for each of these facilities are
described separately in the remaining chapters of this part. If your application
program uses more than one facility, the relevant chapter should be used as an
aid to designing the corresponding part of the program. Similarly, if your
program uses more than one intersystem session for distributed transaction
processing, it must control each individual session according to the rules given
for the appropriate session type.

Programming languages

in general, CICS application programs that use CICS intercommunication
facilities can be written in COBOL, PL/I, or Assembler language, and must use
the CICS command-level application programming interface. There are two
exceptions to these rules:

1. Macro-level as well as command-level application programs can be invoked
by transaction routing.

2. Application programs that hold LUTYPEG6.2 unmapped conversations must be
written in Assembler language.

Terminology

The following terms are sometimes used without further explanation in the
remaining chapters of this part:

principal facility
the “terminal” that is associated with your transaction when the transaction
is initiated. The more general term is used because the facility may be not a
“real” terminal but an intersystem session. CICS commands, such as SEND
or RECEIVE, that do not explicitly name a facility are taken to refer to the
principal facility. Only one principal facility can be owned by a transaction.

alternate faclility
in distributed transaction processing, a transaction can acquire the use of a
session to a remote system. This session is calied an alternate facility. It
must be named explicitly on CICS commands that refer to it. A transaction
can own more than one alternate facility.

Other intersystem sessions, such as those used for function shipping, are not
owned by the transaction, and are not regarded as alternate facilities of the
transaction.

© Copyright IBM Corp. 1977, 1991 161

front-end and back-end transactions
in distributed iransaction processing, one of the pair of conversing
transactions must be initiated first, acquire a session to the remote system,
and cause the other transaction to be initiated. This is the front-end
transaction. The transaction that the front-end transaction causes to be
initiated is the back-end transaction.

Note that a transaction can at the same time be the back-end transaction on
one conversation and the front-end transaction on one or more other
conversations.

syncpoint initiator
the transaction that initially issues a SYNCPOINT or SYNCPOINT ROLLBACK
request. The term is commonly abbreviated to initiator.

syncpoint agent
the transaction that receives a SYNCPOINT or SYNCPOINT ROLLBACK
request from a partner. The term is commonly abbreviated to agent.

162 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.2. Application programming for CICS function shipping

If you are writing a program to access resources in a remote system, you code it
in much the same way as if the resources were on the local system. Your
program can be written in PL/I, COBOL, or assembler language. Function
shipping is available only through the CICS command-level interface or through
DL/t calls or EXEC DL! commands.

The commands that you can use to access remote resources are:

1. File control commands

2. DL/I calls or EXEC DLI commands
3. Temporary storage commands

4. Transient data commands.

Interval control commands are deliberately left out of this list. For information
on this subject, see “Chapter 4.3. Application programming for asynchronous
processing” on page 167.

Your application can run in the CICS intercommunication environment and make
use of the intercommunication facilities without being aware of the location of
the resource being accessed. The location of the resource is defined by the
system programmer in the appropriate CICS table. Optionally, you can use the
SYSID option on EXEC commands to select the system on which the commana is
to be executed. In this case, the resource definition tables on the local system
are not referenced, unless the SYSID option names the local system.

When your application issues a command against a remote resource, CICS ships
the request to the remote system, where a mirror transaction is initiated. The
mirror transaction executes the request on your behalf, and returns any output to
your application program. The mirror transaction is thus effectively a remote
extension of your application program. If you would like more information on
this mechanism, read “Chapter 1.4. CICS function shipping” on page 21.

Although the same commands are used to access both local and remote
resources, there are a number of restrictions that apply when the resource is
remote. Also, some errors that do not occur in single systems can arise when
function shipping is being used. For these reasons, you should always know
whether resources that your program accesses can possibly be remote.

File control
Function shipping allows you to access VSAM or DAM files located on a remote
system.
If you use the SYSID option to access a remote system directly, you must
observe the following rules:

1. For a file referencing a keyed data set, KEYLENGTH must be specified if
RIDFLD is specified, unless you are using relative byte addresses (RBA) or
relative record numbers (RRN).

~ © Copyright IBM Corp. 1977, 1991 163

For a remote DAM file, where the DEBKEY or DEBREC options have been
specified, KEYLENGTH must be the total length of the key.

2. If the file has fixed length records, you must specify the record length
(LENGTH). '

These rules also apply if the file control table entry for the file does not define
the appropriate values.

DL/I

Function shipping allows you to access DL/l DOS/VS.or IMS DB data associated
with a remote CICS system through the DL/l CALL interface or by using EXEC
DLI commands.

Definitions of remote DL/l databases are provided by the system programmer.
There is no facility for selecting specific systems in CICS application programs.

Temporary storage

Function shipping allows you to send data to or receive data from temporary
storage queues located on remote systems. Definitions of remote temporary
storage queues can be made by the system programmer. You can, however,
use the SYSID option on the WRITEQ TS, READQ TS, and DELETEQ TS
commands to specify the system on which the request is to be executed.

For MRO sessions, the MAIN and AUXILIARY options of the WRITEQ T8
command can be used to select the required type of storage. If the queue is to
be recoverable, AUXILIARY should be selected.

For LUTYPE6.1 or LUTYPEB.2 sessions, the MAIN and AUXILIARY options are
ignored; auxiliary storage is always used in the remote system.

Transient data

Function shipping allows you to access intrapartition or extrapartition transient
data queues located on remote systems. Definitions of remote transient data
gueues canh be made by the system programmer. You can, however, use the
SYSID option on the WRITEQ TD, READQ TD, and DELETEQ TD commands to
specify the system on which the request is to be executed.

If the remote transient data queue has fixed length record, you must supply the
record length in the LENGTH option if it is not specified in the DFHDCT
TYPE =REMOTE macro, or if you use the SYSID option.

164 CICS/MVS 2.1.2 Intercommunication Guide

Function shipping exceptional conditions

Requests that are shipped to a remote system can raise any of the exceptional
conditions for the command that can occur if the resource is local. In addition,
there are some conditions that apply only when the resource is remote.

Remote system not available

At the time that a function shipping request is issued, a link to the remote
system may not be available. If this is'the case, the SYSIDERR condition is
raised in the application program.

This condition is also raised if the named system is not defined, but this error
should not occur in a production system unless the application is designed to
obtain the name of the remote system from a terminal operator.

The default action for the SYSIDERR condition is to terminate the task
abnormally. '

Invalid request

The ISCINVREQ condition occurs when the remote system indicates a failure that
does not correspond to a known condition. The default action is to terminate the
-task abnormally.

Mirror transaction abend

An application request against a remote resource may cause an abend in the
mirror transaction (for example, the requested Transient Data destination may
have been disabled by the remote CICS master terminal operator).

In these situations, the application program will also be abended, but with an
abend code of ATN! (for ISC connections) or AZI6 (for MRO connections). The
actual error condition will be logged by CICS in an error message sent to the
CSMT destination. Any HANDLE ABEND command issued by the application will
not be able to identify the original cause of the condition and take explicit
corrective action (which may have been possible if the resource was local). An
exception occurs in MRO function shipping if the mirror transaction abends with
a DL/l program isolation deadlock; in this case, the application will abend with
the normal deadlock abend code.

Note that the ATNI abend caused by a mirror transaction abend is not related to
a terminal control command, and the TERMERR condition is therefore not rais_,ed.

Chapter 4.2. Application programming for CICS function shipping 165

Chapter 4.3. Application programming for asynchronous processing

This chapter discusses the application programming requirements for
CICS-to-CICS asynchronous processing. The general information given for CICS
transactions that use the START or RETRIEVE commands is also applicable to
CICS-IMS communication. For details of the requirements of CICS-IMS
communication, however, you should refer to “Chapter 4.8. CICS-to-IMS
applications” on page 263.

A description of the concepts of asynchronous processing is given in “Chapter
1.5. Asynchronous processing” on page 33. It is assumed that you are familiar
with concepts of CICS interval control, as described in the CICS/MVS Appiication
Programmer’s Reference manual.

Starting a transaction on a remote system

You can start a transaction on a remote system by issuing an EXEC CICS START
command just as though the transaction were a local one. Remote transactions
cannot be initiated by means of macro-level interval control requests.

Generally, the transaction will have been defined as being remote by the system
programmer. You can, however, name a remote system explicitly in the SYSID
option. This use of the START command is thus essentially a special case of
CICS function shipping.

If your application requires you to specify the time at which the remote
transaction is to be initiated, remember that the remote system may be in a
different time zone. The use of the INTERVAL form of control is preferable under
these circumstances.

Exceptional conditions for the START command
The exceptional conditions that can occur as a result of issuing a START request
for a remote transaction depend on whether or not the NOCHECK performance
option is specified on the START command.

If NOCHECK is not specified, the raising of conditions follows the normal rules
for function shipping (see “Function shipping exceptional conditions” on
page 165).

If NOCHECK is specified, no conditions will be raised as a result of the remote
execution of the START command. SYSIDERR, however, will still occur if no link
to the remote system is available, unless the system programmer has arranged
for local queuing of start requests. Also, the local transaction will be abended if
the remote mirror transaction associated with the START command abends.

© Copyright IBM Corp. 1977, 1991 167

Retrieving data associated with a remotely-issued start request

The RETRIEVE command is used to retrieve data that has been stored for a task
as a result of a remotely-issued start request. This is the only available method
for accessing such data.

As far as your transaction is concerned, there is no distinction between data
stored by a remote start request and data stored by a local start request, and
the normal considerations for use of the RETRIEVE command apply.

168 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.4. Application programming for CICS transaction routing

In general, if you are writing a transaction that may be used in a transaction
routing environment, you can design and code it just as you would for a single
CICS system. There are, however, a number of restrictions that you must be
aware of, and these are described in this chapter. The same considerations
apply if you are migrating an existing transaction to the transaction routing
environment.

The program can use either command-level or macro-level, and can be written
in PL/I, COBOL, or assembler language.

Note: Information on macro-level programs is intended primarily for the
migration of existing programs to a transaction routing environment. It is
strongly recommended that command level be used for new applications.

Basic mapping support

Any BMS maps or partition sets that your program uses must reside in the same
CICS system.

In a BMS routing application, a route request that specifies an operator or an
operator class will direct output only to the operators signed on at terminals that
are owned by the system in which the transaction is executing.

Pseudoconversational transactions

The terminal

A routed transaction requires the use of an interregion or intersystem
{(LUTYPEBG.2) session for as long as it is running. For this reason, long-running
conversational transactions are best duplicated in the two systems, or
alternatively designed as pseudoconversational transactions.

Care is needed in the naming and definition of the individual transactions that
make up a pseudoconversational transaction, because a TRANSID specified in a
CICS RETURN command is returned to the terminal-owning region, where it may
be a local transaction.

There is, however, no reason why a pseudoconversational transaction cannot be
made up of both local and remote transactions.

The “terminal” with which your transaction will run is represented by a terminal
control table entry (TCTTE) which is in many respects a copy of the “real”
terminal TCTTE in the terminal-owning region. This copy is known as the
surrogate TCTTE.

The surrogate TCTTE is released when the transaction terminates. Subsequent
tasks will run using a new copy of the real terminal TCTTE. You should note
that, if the new task is started via ATI, certain fields (for example, TCTTEAID
(EIBAID) and TCTTECAD (EIBSCON)) will be meaningless and may contain either
zeros or residual data.

© Copyright IBM Corp. 1977, 1991 169

Using the EXEC CICS ASSIGN command in the AOR

Three of the options to the EXEC CICS ASSIGN command may cause an
unexpected reaction or return unexpected values. A closer look at these will
help you to understand why:

PRINSYSID
This option returns the sysid of the principal facility to the transaction. It
requires that this facility be an MRO, or an LUTYPEG.1 or LUTYPEG.2 session.
The principal facility for a routed transaction is represented by the surrogate
TCTTE, which does not meet the requirement. Therefore the INVREQ
condition is raised (as stated in the CICS/MVS Application Programmer’s
Reference manual).

Note: An EXEC CICS ASSIGN PRINSYSID command cannot be used to find
the name of the terminal-owning region.

USERID
For a routed transaction, CICS takes the userid from one of two sources,
depending on how you specified your security requirements (see
“Transaction routing security” on page 326).

If you specified preset security, by including OPERSECURITY, OPERRSL, or
both, on the definition for the remote terminal, whatever was specified for the
USERID option on the same DEFINE TERMINAL command is returned under
this option. This appears as blanks if you let the USERID option default.

CICS goes to the same source for the userid if you did not specify preset
security for the remote terminal definition but you did specify
ATTACHSEC(Local) on the DEFINE CONNECTION command for the link.

If, instead of ATTACHSEC(Local), you requested automatic signon for remote
users by specifying ATTACHSEC(ldentify) or ATTACHSEC(Verify) on the
DEFINE CONNECTION command for the link, the userid returned is the one
that was sent over the link with the attach request for the transaction.

OPERKEYS
This option returns a 64-bit mask that represents the CICS transaction
security profile of-the remote user in the local system.

If preset security was defined in the remote terminal definition, the preset
value is returned. This selection of this possibility precludes all others.

if the remote user is signed on locally as described in the explanation to
USERID above, the returned mask is the value that was defined for the user
in the signon table.

In all other cases, the user transaction security profile takes the default value
of 1.

This option cannot give any information about the user’s security status in a
remote system.

170 cICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.5. CICS applications for logical unit type 6.2 mapped

conversations

“Chapter 1.7. Distributed transaction processing.” introduces the concepts of
distributed transaction processing (DTP). This chapter tells you how to code
CICS application programs that hold high-level (mapped) conversations on
LUTYPES.2 sessions. The session partner can be another CICS system, or any
other LUTYPEG.2 system that supports mapped conversations.

There is another type of LU6.2 conversation called a basic or unmapped
conversation, and this is documented in “Chapter 4.6. CICS applications for
logical unit type 6.2 unmapped conversations.”

Application design

The starting point for the design of an LUTYPESG.2 application is provided by the
application requirements developed during the planning activity.

In general, a program that is required to hold LUTYPE6.2 conversations must be
designed as one of a pair of conversing applications, not as an isolated entity.

At the same time, you should ensure that your cics application program follows

a well-defined set of protocols, both to achieve correct operation and to deal with
unexpected situations. This means that you must at all times be aware of the
state of the session, as indicated by the settings of fields in the EXEC interface
block (EIB), and use that state information to determine what operations are
currently valid, or even mandatory.

A guide to the correct use of EIB fields and command sequences is given in
“Command sequences on LUTYPE6.2 mapped conversations” on page 203.

— Warning

Assumptions should not be made about the state of a conversation. The
application must test the EIB flags after each LUTYPE6.2 command to
determine the current state. If you follow this rule, your distributed
application can converse with, or be migrated to, other releases of CICS
without encountering significant problems.

Sessions and conversations

in the LUTYPEG.2 architecture, a distinction is made between a session, which
represents a path between two logical units, and a conversation, which refers to
exchanges between the end users of the session.

Your transaction can acquire the use of a session on which to conduct a
conversation by using the ALLOCATE command. CICS may have to acquire a
new session in order to satisfy your request, but this is incidental. Sessions are
usually long-lived, and are used in turn by many different transactions.

® Copyright IBM Corp. 1977, 1991 17

When you have acquired a session, you can begin a conversation by using the
CONNECT PROCESS command to initiate a back-end transaction. The
conversation lasts from the sending of begin bracket with the first message to
the receipt of end-bracket with the final message. In CICS transactions, you
must give up your use of the session, by issuing a FREE command, at the end of
the conversation. It is not possible to start another conversation on the same
session.

| Conversation state

| LUTYPE6.2 conversations embody the concept of a state. Each end of the

| conversation is in a particular state, and what you can do on the conversation is
| governed by its state.

| For example, only one end of the conversation is permitted to have the ability to
| send data at any time. This side is in SEND state; this forces its partner to be in
| RECEIVE state. The partner in SEND state can give up this ability (for example,

| by issuing a SEND INVITE command), thereby placing itself in RECEIVE state and
| its partner in SEND slate.

| Effective usé of LUTYPEG6.2 DTP depends on the good management of these
| states. See "Command sequences on LUTYPE6.2 mapped conversations” on
| page 203 for full details.

Synchronization levels
Three levels of synchronization are available for LUTYPEG.2 conversations:

* Level 0 — none
No synchronization can take place between the conversation partners.
¢ Level 1 — confirm

The conversation partners handle synchronization exchanges themselves.
The CICS syncpointing mechanisms are not involved.

e Level 2 — syncpoint
The equivalent of normal CICS syncpointing.
Synchronization must be at a level that both the conversation partners can
accept. The maximum level that can be used is negotiated when the session
that is to carry the conversation is bound. The level that is to be used for a

particular conversation is requested by the front-end transaction. It will be
accepted provided that:

¢ |t is not greater than the maximum allowed for the session
* |t is acceptable to the back-end transaction.

' —— Abbreviations and assumptions

| The rest of this chapter refers to synchronization levels 0, 1, and 2 as SL(0),
| SL(1), and SL(2) respectively. Unless otherwise stated, operation at SL(2)
| should be assumed.

172 CICS/MVS 2.1.2 Intercommunication Guide

CICS commands for LUTYPEG6.2 conversations
The commands that can be used to establish and hold LUTYPE6.2 conversations

are:

ALLOCATE — used by the front-end transaction to acquire a session to the
remote system.

CONNECT PROCESS — used by the front-end transaction to initiate a
conversation with a named process (or, in CICS terms, a transaction) on the
remote system.

EXTRACT PROCESS — used by the back-end transaction to access
session-related information (for example, the requested synchronization
level) in the LUTYPEG.2 attach header that caused it to be initiated.

SEND, RECEIVE, and CONVERSE — used by the conversing transactions to
send or receive data on the conversation.

SEND INVITE — used to change the state of the issuing side from SEND to
RECEIVE, and that of the partner from RECEIVE to SEND.

WAIT or SEND WAIT — used to ensure that all existing data and control
indicators have been sent to a partner before further processing is
performed.

SEND CONFIRM and ISSUE CONFIRMATION — used primarily at SL(1), but
also available at SL(2), for the exchange of private requests to show that
data has arrived and been processed correctly.

SYNCPOINT and SYN_CPOINT ROLLBACK — operates only at SL(2), and
governs synchronization of all active conversations.

ISSUE PREPARE — operates only at SL(2), and is used by a syncpoint
initiator to ensure that its agents are ready to take a SYNCPOINT.

ISSUE ERROR — used by either transaction to inform its conversation
partner that a program-detected error has occurred.

ISSUE ABEND — used by either transaction to inform its conversation
partner that it is necessary to abend the conversation.

ISSUE SIGNAL — used by the receiving transaction to request a
change-direction from the sending transaction.

FREE — used by either transaction to free the session.

Considerations for the front-end transaction

The front-end transaction is responsible for requesting a session to the remote
system and initiating the remote process with which it is to converse.
Thereafter, the conversation partners become equals.

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 173

Session allocation

An Application can get an LUTYPES.2 session to a remote system by means of
the ALLOCATE command, which has the following format:

ALLOCATE SYSID(name)
[PROFILE(name)]
[NOQUEUE]

SYSIDERR,SYSBUSY,CBIDERR

The name specified in the SYSID option must be the name of an LUTYPEG.2
intersystem link. CICS will raise the SYSIDERR condition if:)

it cannot find the named system,

* the connection is in the INSERVICE RELEASED status (that is, the
SNASVCMG sessions are not bound), or

¢ the connection is OUTSERVICE.

You can use the PROFILE option to select a specified communication profile for
the session and the ensuing conversation. The profile, which is set up during
resource definition, can contain the name of the group of LUTYPEG.2 sessions
from which the session is to be acquired, thereby enabling a particular class of
service to be selected. It also contains a set of terminal control processing
options that are to be used for the conversation.

If you omit the PROFILE option, CICS will use the default profile DFHCICSA. Note
that although DFHCICSA specifies INBFMH =ALL, this operand is ignored for
LUTYPES6.2 conversations. LUTYPEG.2 function management headers will never
be passed to your application program.

You can use the NOQUEUE (or NOSUSPEND) option to tell CICS to return control
to you immediately if it finds it has no session available for allocation. For the
purposes of this option, a session is available for allocation only if it meets all
these conditions:

¢ |t is a contention-winner
* |tis already bound
* |t is not already allocated.

The SYSBUSY code (X'D3') is set in the EIBRCODE field of the EXEC interface
block if no session is available for allocation.

If your application has executed a HANDLE command for the SYSBUSY condition
and no session can fulfil the above conditions, control is returned to the label
specified in the HANDLE command. For this, you do not need to specify
NOQUEUE and, if you do, it is overridden.

If you neither select NOQUEUE nor handie the SYSBUSY option, CICS tries to
allocate a contention-winning session that is also available and bound. If it fails,
it suspends your transaction and attempts to obtain an alternative session,
working through the following categories in order and taking the action shown,
where appropriate:

* Unbound contention winners. If one is available, it is bound.

174 CICS/MVS 2.1.2 Intercommunication Guide

* Unbound indeterminate sessions. These may be present if the combined
number of contention winners defined for both sides is less than the total
number of available sessions. If one is available, it is declared to be a
contention winner and is bound.

¢ Bound contention losers. [f one is available, a bid is issued to the partner
system for the session.

Control is passed back to your transaction as soon as a session can be
allocated. If you specify DTIMOUT on the DEFINE command for the transaction,
CICS causes an ABEND if the time-out expires before a session is allocated.
The HANDLE ABEND command lets you regain control in this event.

Both your resource configuration and your transaction design should be aimed
at avoiding long or, in the worst case, irresolvable ALLOCATE suspensions.
Single-session connections are particularly vuinerable. For more guidance, refer

1o “The AUTOCONNECT operand” on page 125 and "Chapter 6.2. Master

terminal operations for LUTYPE6.2 connections” on page 329.

The conversation identifier

When a session has been allocated, the name by which the conversation will be
known is available in the EIBRSRCE in the EIB. You should obtain this name
immediately. It is the name that you must use in the CONVID option of all
subsequent commands that relate to this conversation.

You should not make any assumptions about the name of the conversation. It
will be different for different invocations of your transaction, and bears no
defined relationship to the name that CICS uses to refer to the session that
carries the conversation.

Attaching the remote process

When a session has been acquired, the next step is to initiate the conversation
with the remote process (in CICS terms, a transaction) by means of a CONNECT
PROCESS command. This command has the following format:

CONNECT PROCESS
PROCNAME (data-area)
PROCLENGTH(data-value)
CONVID(name)
SYNCLEVEL (data-value)
[PIPLIST (data-area)
PIPLENGTH(data-value)]

INVREQ, NOTALLOC, LENGERR

The process, or transaction, that is to be connected to the other end of the
conversation is named in the PROCNAME option, and the length of the name is
specified as a halfword binary value in the PROCLENGTH option.

Four bytes are sufficient to identify a CICS transaction. However, the LUTYPE6.2
architecture allows a range of 1 to 64 bytes, leaving each product free to set its
own maximum. CICS complies by allowing 32 bytes, but this need only concerr
you if you are linked to a non-CICS system which demands longer transaction
identifiers. To attach a transaction in the remote system, you need only supply

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 1795

the operands as set out above. [f you expect a remote system to send attach
requests with names longer than four bytes, you have a choice. Because CICS
always interprets the first four bytes, you can make sure that these always
represent a transaction identifier within your system. Alternatively, you can
examine the full identifier by coding the user exit XZCATT as described in the
CICS/MVS Customization Guide.

-Note: Transaction names that begin with X'00' through X'3F!' are reserved for
use as SNA service transaction names, and cannot be used for user
transactions. For details of LUTYPEG.2 symbol string conventions, see the SNA
publication Transaction Programmer’s Reference Manual for LU Type 6.2.

The conversation on which the connect process command is to be issued must
be named in the CONVID option. The name that you use must be the name
acquired from EIBRSRCE after session allocation.

The SYNCLEVEL option enables you to specify the synchronization level that is
required for the conversation. The synchronization level required is usually
determined when the overall application is designed.

You should remember these points when you specify the SYNCLEVEL option:

* Every remote set of sessions has a maximum synchronization level
associated with it. A value of 2 is implied for a CICS system. If you want to
converse with a non-CICS system, you cannot specify a level that is greater
than the remote system can support; the CONNECT PROCESS will fail if you
do.

* If you include commands in your transaction that are inconsistent with the
synchronization level you have specified for a session, they will not involve
the remote transaction connected by that session in any way.

* You should specify SYNCLEVEL(2) only if you want both conversation
partners to participate in a syncpoint initiated by either partner. Remember
that transaction termination initiates a syncpoint without express command.

* Distributed syncpointing requires complex coding, and adds flow to the
application, increasing the network load. Do not use SL(2) unless it is
required to protect data integrity. A discussion of SL(2) operation follows at
“Syncpoint exchanges” on page 186.

The PIPLIST option specifies the process initialization parameter (PIP) data that
is to be sent to the remote system. For a description of the format and use of
PIP data, see “Process initialization parameter data” on page 17. The
PIPLENGTH option must specify the total length of the PIP list.

Automatic transaction initiation

If a transaction is to be started by automatic transaction initiation (ATI) from a
transient data trigger level with an LUTYPES6.2 session as its principat facility, the
definition of the transient data queue must specify DESTFAC=(SYSTEM,sysid),
where sysid is the sysid of the remote LUTYPEB.2 system (see “Intrapartition
transient data queues and remote transactions” on page 157). The transaction

- can acquire the name of the queue that caused its initiation by means of the
ASSIGN QNAME command.

176 cics/MVS 2.1.2 Intercommunication Guide

Execution of an EXEC CICS START command that names a remote LUTYPEG.2
system in the TERMID option causes the transaction to be initiated with a
session to the named system as its principal facility. The session is selected
from the modeset specified for the transaction, if there is one. Otherwise, the
modeset is selected by CICS.

~ The transaction starts in state 2 (Session Allocated), and continues by issuing a

CONNECT PROCESS command.

Considerations for the back-end transaction

- The back-end transaction in a conversation is initiated by the LUTYPE®6.2 attach

FMH received from the remote system and is started with the conversation as its
principal facility.

As the back-end transaction is conversing with its principal facility (that is, the
partner that did the initial ALLOCATE), the CONVID can be omitted from all
LUTYPES.2 commands. If the back-end transaction initiates its own conversation,
however, CONVID must be supplied when it is conversing with this new partner
(but CONVID can still be omitted when the transaction is conversing with its
principal facility).

Acquiring conversation-related information

You can use the EXTRACT PROCESS command to recover conversation-related
information from the attach FMH if required, but the use of this command is not
mandatory. The command has the following format:

EXTRACT PROCESS
[PROCNAME (data-area)
PROCLENGTH(data-area)]
[CONVID(name)]
[SYNCLEVEL (data-area)]
[PIPLIST(pointer-ref)
PIPLENGTH(data-area)]

INVREQ, NOTALLOC

The process name (PROCNAME) from the LUTYPEB.2 attach header, the length
of the process name (PROCLENGTH), and the requested synchronization level
(SYNCLEVEL) are returned in the specified data areas.

If you are issuing the EXTRACT PROCESS command on the principal facility,
CONVID need not be specified.

The PIPLIST option specifies a pointer reference that is set to the address of a
CICS-provided data area containing a PIPLIST (see “Process initialization
parameter data” on page 17). The pointer value is nuli if no PIPLIST has been
received.

The PIPLENGTH option returns the total length of the PIPLIST as a halfword
binary value.

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 177

Initial state of back-end transaction

The back-end transaction is always initiated in RECEIVE state. However, to
properly initiate the conversation with the front-end transaction, you must issue
an EXEC CICS RECEIVE command before you do anything else that could effect
the link (for example, a SYNCPOINT or a SYNCPOINT ROLLBACK command).

The only exception to this rule is that you can issue an EXTRACT PROCESS
command, before EXEC CICS RECEIVE, to obtain the synchronization level and
other conversation-related information.

Using the EXEC CICS ASSIGN command

You may find that two of the options to the EXEC CICS ASSIGN command return
unexpected values. A closer look at these will help you to understand why:

USERID
CICS takes the userid from one of two sources, depending on how you .
specified your security requirements.

If you specified ATTACHSEC(Local) on the DEFINE CONNECTION command
for the link, whatever was specified for the USERID option on the same
DEFINE SESSIONS command is returned under this option. This appears as
blanks if you let the USERID option default.

If, instead of ATTACHSEC(Local), you requested automatic signon for remote
users by specifying ATTACHSEC(Identify) or ATTACHSEC{Verify) on the
DEFINE CONNECTION command for the link, the userid returned is the one
that was sent over the link with the attach request for the transaction.

OPERKEYS
This option returns a 64-bit mask that represents the CICS transaction
security profile of the remote user in the local system. If the remote user is
signed on locally as described in the explanation to USERID above, the
returned mask is the value that was defined for the user in the signon table.

If no signon takes place, the user's security profile defaults to that of the
link. The link itself may be signed on, in which case the mask will be taken
from the signon table entry for the link. The other possibility is that
OPERSECURITY, OPERRSL, or both were specified on the DEFINE SESSIONS
command for the link. This preset security then determines the value
returned under this option. In all cases of default, a value of 1 is returned.

This option cannot give any information about the user's security status in a
remote system.

The conversation

The conversation between the front-end and the back-end transactions is held
using the SEND, RECEIVE, and CONVERSE commands. Detalils of these
commands for LUTYPEG.2 programs are given in the CICS/MVS Application
Programmer’s Reference manual.

Note that, for LUTYPE6.2 conversations, the use of the FROM option on the SEND
command is optional. This means that you can use the SEND command to send

178 ciCS/MVS 2.1.2 Intercommunication Guide

the change-direction indicator (INVITE option) or the end-bracket indicator (LAST
option) without naming any data for transmission.

When LUTYPES.2 commands are being used, the CONVID parameter tells CICS
which partner to talk to. If you are conversing with the principal facility, you can
omit the CONVID parameter. In all other cases, include it. To show the options,
consider this example:

—— Use of CONVID parameter

TASKA |——»| TASKB |———»| TASKC

A»B uses SEND CONVID(b)

B-»A uses SEND
B>C uses SEND CONVID(c)

C»B uses SEND

The principal facility of task A is a terminal, so it needs a CONVID when
conversing with task B.

Task B has been initiated by an ALLOCATE in task A, so task A is its
principal facility, and no CONVID is needed by task B when conversing with
task A.

Task C has been initiated by an ALLOCATE in task B, so task B is its
principal facility, and no CONVID is needed by task C when conversing with
task B. However, one is required by task B when conversing with task C.

Deferred transmission

When you issue a SEND command, CICS normally defers sending the data until it
becomes clear what your further intentions are. This mechanism enables CICS
to avoid unnecessary flows by adding control indicators, such as end-bracket
and syncpoint-request, to the data that is awaiting transmission.

For LUTYPEBG.2, CICS reduces the number of flows still further by accumulating
the data from successive SEND commands in an internal buffer. The contents of
the buffer are not transmitted until the buffer becomes full or until it is flushed by
the CONFIRM option on a SEND command or by an explicit or implicit WAIT.
However, although the data is “bunched” for transmission, each RECEIVE
command issued by the receiving transaction recovers only the data associated
with a single SEND command.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 179

The way in which LUTYPEG6.2 deferred transmission operates is shown by the
following command sequence:

SEND CONVID(CONV1) datal is placed in the send buffer.
FROM(datal) Transmission is deferred.
LENGTH(251)

SEND CONVID(CONV1) data2 is added to the send buffer.
FROM{data2) Transmission is still deferred.
LENGTH(251)

SEND CONVID(CONV1) the change-direction indicator is
INVITE added. Transmission is still deferred.

WAIT CONVID(CONV1) datal and data2 are transmitted.
data2 carries the change-direction
indicator.

RECEIVE CONVID(CONV1)

The WAIT option can, of course, be added to a SEND command to cause
immediate transmission:

SEND CONVID (CONV1)
FROM(data?)
LENGTH(251)
INVITE
WAIT

RECEIVE CONVID(CONV1)

Please remember that SEND WAIT alone is an incomplete command and is not
the equivalent of WAIT.

A further short-cut is possible by omitting the INVITE and the WAIT options. If
your transaction is in send state, and you issue a RECEIVE command, CICS will
supply any implied options and send the deferred data with the change-direction
indicator set. However, better program documentation will be achieved if you
specify the options explicitly.

The CONVERSE command always implies the sequence:

SEND INVITE
WAIT
RECEIVE

180 cICS/MVS 2.1.2 Intercommunication Guide

Using the LAST option

The LAST option on the SEND command indicates the end of the conversation.
No further data flows can occur on the conversation, and the next action must be
to free the session. However, the session can still carry CICS syncpointing flows
before it is freed.

The LAST option and syncpoint flows

if the conversation is using normal CICS syncpointing (level 2), it is eligible to
take part in CICS syncpointing activity. A syncpoint is initiated explicitly by a
SYNCPOINT command, or implicitly by a RETURN command.

If your conversation has been terminated by a SEND LAST command, without the
WAIT option, transmission will have been deferred, and the syncpointing activity

will cause the final transmission to occur with a piggy-backed syncpoint request.
The conversation will thus be automatically involved in the syncpoint.

If you do not want the conversation to be involved in the syncpoint (for example,
because you know that the remote transaction does not access any recoverable
resources) you must issue a SEND LAST WAIT command, or use the WAIT
CONVID or FREE command, to force the transmission before using a command
that causes a syncpoint.

Note: It is recommended that you initiate the last syncpoint for a conversation
explicitly (by an EXEC CICS SYNCPOINT command) rather than implicitly (by an
EXEC CICS RETURN command). '

If an explicit syncpoint request is issued and rejected by one partner, the
application is able to take the appropriate actions and issue notification of the
rejection.

However, if an implicit syncpoint request is issued and rejected by the partner,
the application has already returned control to CICS and no further action can be
taken.

Sending and receiving error indications

Two commands are provided to enable either transaction to inform the other that
an error has occurred:

* ISSUE ERROR
* ISSUE ABEND.

In general, you can use these commands at any point in your program,
irrespective of whether the conversation is in send or receive state. To
understand exactly when they can be used, you should use the state diagrams
given under “Command sequences on LUTYPE6.2 mapped conversations” on
page 203.

The use of these commands on a particular conversation always involves both of
the conversing transactions. If one of the transactions is designed to use ISSUE
ERROR or ISSUE ABEND, the other transaction must be designed to recognize
them and take the appropriate action.

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 181

The ISSUE ERROR command
The ISSUE ERROR command has the following format:

ISSUE ERROR
[CONVID (name)]

INVREQ,NOTALLOC

You can use the ISSUE ERROR command to inform the conversation partner that
something is wrong. Typically, you would use it as a negative response to a
PREPARE, SYNCPOINT, or CONFIRM request (see “Synchronization points” on
page 183). However, you can use ISSUE ERROR for any purpose required by
your application design.

After issuing an ISSUE ERROR command, you should test EIBRECYV to find the
state of the conversation. If your transaction has not received ISSUE ERROR
(see “ISSUE ERROR races”), it will be in send state on the conversation. You
can use this opportunity to send information about the error to the other
transaction. The usual continuation is to issue SEND INVITE followed by
RECEIVE, and then check the EIB in the normal way.

From Figure 66 on page 214 you will see that, after issuing ISSUE ERROR in
receive state, you should also test EIBFREE. This is necessary because the
other transaction may already have ended the conversation by a SEND LAST
WAIT command. Normally, of course, you would not design a pair of
transactions in which this sequence is possible.

ISSUE ERROR races: If your application design allows either transaction to use
ISSUE ERROR whenever they detect an error, there is a possibility that two
ISSUE ERROR commands can cross one another. |If this happens, the
transaction that wins the race goes into send state. The transaction that loses
the race goes into receive state, and receives an ISSUE ERROR received
indication.

The receipt of an ISSUE ERROR command is indicated by EIBERR, with an error
code of X'0889' in the first two bytes of EIBERRCD. These fields are set on
return from the first command you issue on the conversation after the incoming
error indication has been received by CICS.

EIBERR and EIBERRCD are visible only once. If you do not test the EIB flags
after each LUTYPEG.2 command, you will not be aware of these settings. This
will almost certainly result in the application abending.

More information on the use of ISSUE ERROR is given under “Synchronization
points” on page 183.

The ISSUE ABEND command
The ISSUE ABEND command has the following format:

ISSUE ABEND [CONVID(name)]

INVREQ,NOTALLOC

182 cCICS/MVS 2.1.2 Intercommunication Guide

The ISSUE ABEND command provides a means for you to abend the
conversation. (If the remote process is a CICS transaction, the conversation
abend will cause the TERMERR condition to be raised.) ISSUE ABEND can be
issued by either transaction, irrespective of its send/receive state, at any time
after the conversation has started. For a send-state transaction, any deferred
data that is waiting for transmission is transmitted before the abend command is
transmitted.

The transaction that issues the ISSUE ABEND command is not itself abended. It
must, however, issue a FREE command for the conversation unless it is designed
to terminate immediately.

If you issue an ISSUE ABEND command while your transaction is in receive
state, CICS will purge all incoming data until a change-direction,
syncpoint-request, or end-bracket indicator is received. If end-bracket is
teceived, no error indication is sent to the remote process, and EIBFREE is set in
your transaction, indicating that you must free the conversation.

The receipt of an ISSUE ABEND is indicated in EIBERR, with an error code of
X'0864"' in the first 2 bytes of EIBERRCD. EIBERR and EIBERRCD are visible only
once. If you do not test the EIB flags after each LUTYPE6.2 command, you will
not be aware of these settings. This will almost certainly result in the
application abending.

Synchronization points

As described in “Synchronization levels” on page 172, there are three possible
synchronization levels for LUTYPEG.2 sessions. You must distinguish between
the maximum synchronization level possible between the communicating
systems, which is determined at the time that the session is established, and the
level at which your application is designed to operate. For a front-end
transaction, you can specify the synchronization level on the CONNECT
PROCESS command:

CONNECT PROCESS
SYNCLEVEL (data-value)

Do not specify a level that is greater than the remote system can support; if you
do, the CONNECT PROCESS fails.

For a back-end transaction, you can find what synchronization level has been
requested by extracting it:

EXTRACT PROCESS

SYNCLEVEL (data-area)

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 183

The possible synchronization levels for a conversation are:

Level 0
This means that no synchronization exchanges at all are possible on the
conversation. If your transaction issues a CICS SYNCPOINT command, your
SL(0) conversations are not involved in any way.

You can still use ISSUE ERROR commands on SL(0) conversations provided
" that the other transaction is designed to receive them.

Level 1
This means that the conversation supports the LUTYPEB6.2 confirmation
protocols, which enable a pair of conversing transactions to mutually confirm
that they are in synchronism by means of the SEND CONFIRM and ISSUE
CONFIRMATION commands. CICS syncpoint requests cannot be transmitted
over SL(1) conversations; if your transaction issues a CICS SYNCPOINT
command, your SL({1) conversations are not involved in any way.

Level 2
This means that the conversation supports both confirmation protocols and
CICS syncpoint requests. If your transaction issues a CICS SYNCPOINT
command, all SL(2) conversations are involved in the subsequent
syncpointing activity.

Confirmation exchanges

Confirmation exchanges affect only a single conversation, and are available at
SL(1) and SL(2). A confirmation exchange involves only two commands:

1. The transaction that is in send state issues a SEND CONFIRM command.
2. The transaction that is in recelve state responds, if all is well, by issuing an
ISSUE CONFIRMATION command.

Negative responses to a confirmation request can be made by means of the
ISSUE ERROR or ISSUE ABEND commands.

The following sections describe these commands in more detail. The
descriptions refer to the state diagrams given under “Command sequences on
LUTYPE6.2 mapped conversations” on page 203.

Sending SEND CONFIRM
The syntax of the SEND COMMAND for LUTYPES.2 conversations is:

EXEC CICS SEND

[FROM(data-area) {LENGTH(data-value)|FLENGTH(data-value)}]
CONVID(name)

[INVITE|LAST]

[CONFIRM|WAIT]

You will see that the CONFIRM and WAIT options are mutually exclusive.
CONFIRM, like WAIT, flushes the conversation send buffer; that is, it causes a
real transmission to occur.

You can send data with the SEND CONFIRM command, and you can also specify
either the INVITE or the LAST option.

184 CICS/MVS 2.1.2 Intercommunication Guide

The state 3 — send state diagram for LUTYPE6.2 mapped conversations (see
Figure 64 on page 212) shows what happens for the possible combinations of
the CONFIRM, INVITE, and LAST options. After a SEND CONFIRM command,
without the INVITE or LAST options, the conversation is still in state 3 — send
state. If the INVITE option is used, the conversation will switch to state 5 —
recelve state. If the LAST option is used, the conversation will switch to state 10
— free session.

These state changes assume that the other transaction has responded positively
(ISSUE CONFIRMATION) to the CONFIRM request. You must always test EIBERR
after a SEND CONFIRM command (see “Checking the response to SEND
CONFIRM” on page 186).

You can achieve an effect similar to SEND LAST CONFIRM by using the
command sequence:

SEND LAST
SEND CONFIRM

You can check this sequence in the state diagrams. Note that you cannot send
data with a SEND CONFIRM command used in this way.

The form of command that you use depends on how you expect the conversation
to continue if you receive the required confirmation. You must, however, always
test for a negative response to your SEND CONFIRM command (see “Checking
the response to SEND CONFIRM” on page 186).

Recelving and replying to a confirmation request

If your partner transaction issues a SEND CONFIRM, EIBCONF is set in your EIB.
This is visible only once. If you do not test the EIB flags after each LUTYPEG6.2
command, you will not be aware of these settings. This will almost certainly
result in the application abending. Save the EIB before replying so that you can
determine the conversation state following your reply.

If EIBCONF is set, you have a number of ways of replying (see Figure 87 on
page 215):

1. You can reply positively by means of ISSUE CONFIRMATION, meaning that
all is well. After sending ISSUE CONFIRMATION, you must check the saved
values of EIBFREE and EIBRECV. This enables you to find out whether the
sender sent SEND CONFIRM, SEND INVITE CONFIRM, or SEND LAST
CONFIRM, and determines your next action.

2. You can reply negatively by means of ISSUE ERROR.

This reply puts the conversation into state 3 — send state. What happens
afterward is determined by your application design. A typical continuation is
to use SEND INVITE to pass information about the error to the other
transaction, followed by a RECEIVE and an EIB test to determine the next
action.

3. You can abend the conversation by means of ISSUE ABEND.

This makes the conversation unusable, and you must immediately issue a
FREE for the session, or, alternatively, issue EXEC CICS RETURN.

Chapter 4.5. CICS applications for LUTYPEG.2 mapped conversations 185

Checking the response to SEND CONFIRM
After issuing SEND CONFIRM (or SEND CONFIRM LAST), you must check the
response by testing EIBERR.

If EIBERR is not set, the other transaction has replied ISSUE CONFIRMATION,
and you can continue normally.

If EIBERR is set, and the first two bytes of EIBERRCD contain X'0889', the other
transaction has replied ISSUE ERROR. In this case, your conversation is in
RECEIVE state, so you should issue a RECEIVE command.

Note: If you receive an error response (EIBERRCD =X'0889"') in response to
SEND LAST CONFIRM, the LAST option has been ighored and the conversation
has not been terminated.

If the other transaction has replied ISSUE ABEND, the TERMERR condition will be
raised in your transaction. You can choose to handle this condition (or the
default condition ERROR), or you can use IGNORE or NOHANDLE to disable the
condition, and check what has happened by testing EIBERRCD (see Figure 61 on
page 209).

Syncpoint exchanges
This section describes the use of the SYNCPOINT, SYNCPOINT ROLLBACK, and
ISSUE PREPARE commands. These commands do not affect LUTYPES.2
conversations operating at SL(0) or SL(1).

The SYNCPOINT and SYNCPOINT ROLLBACK commands do not have the
CONVID option; that is, they cannot be issued to a single conversation. They
always involve all the SL(2) conversations that a transaction is holding. The
ISSUE PREPARE command enables individual conversations to be prepared for
syncpointing.

The SYNCPOINT command

No matter how many transactions are mutually connected by SL(2)
conversations, your application design should arrange for just one of them to
initiate syncpointing activity for the distributed unit of work. This syncpoint
initiator must be in send state on all its conversations when it issues the
SYNCPOINT command. Any transaction that receives the syncpoint request
becomes a syncpoint agent.

A syncpoint agent is in receive state on its conversation with the syncpoint
initiator, and becomes aware of the syncpoint request when it tests EIBSYNC
after issuing a RECEIVE command (see Figure 66 on page 214). If it decides to
respond positively by issuing SYNCPOINT, it must be in send state on all the
conversations with its own partners, for whom it has become a syncpoint
initiator. If a transaction acting as a syncpoint agent responds negatively to a
syncpoint request by issuing SYNCPOINT ROLLBACK the initiator will see this in
the EIB, which must be tested on return from the SYNCPOINT command.

Your transaction design ensures that all participating transactions are in the
correct conversation state when a syncpoint is taken. It should not be necessary

186 cCiCS/MVS 2.1.2 Intercommunication Gulde

for one transaction program to force a state change on another before issuing a
SYNCPOINT command.

| Syncpoint examples

| CICS transaction syncpointing over an LUTYPEG.2 link involves a two-phase

| commit process. This means that the flows that go to partner transactions are
| not all the same. '

| in phase 1, resources are prepared for commitment; in phase 2 they are
| committed. In conjunction with this, one partner is selected to start the phase 2
| commitment.

In this section, you should be aware of the specialized terminology used for
syncpoint exchanges. These are defined below. (The ‘flows’ are defined
according to the LUTYPES.2 architecture. For full details, see the SNA
Transaction Programmer’s Reference Manual for LU Type 6.2).

Partner

Generally means the other end of an LUTYPES6.2 conversation.
However, here we use the term to mean all LUTYPEG.2 conversations
except the one that has received a flow from an initiator.

Initiator

The end of an LUTYPEG.2 conversation that initiates the syncpoint by
sending either a ‘Prepare to commit’ or a ‘Request commit’ fiow to a
partner.

Agent

The end of an LUTYPEG.2 conversation that receives either a '‘Prepare
to commit’ or a ‘Request commit’ sent by an initiator. If the '
conversation has associated partners, it becomes the initiator for
these conversations.

One of the partners selected by an initiator to initiate the second
phase of commitment. The partner selected is random, and depends
on processing conditions.

‘Prepare to commit’
A flow sent from an initiator to an agent requesting the agent to ready
its resources for commitment.

‘Request commit’

Sent from an agent to an initiator to say that the agent has readied an
its resources for commitment, or sent by an initiator to an agent to
get the agent to commit all the resources it has previously readied.

‘Committed’

Sent from an agent to an initiator in response to ‘Request commit’, to
indicate that the agent has committed all its resources; or sent from
an initiator to an agent to say that the initiator has committed its
resources, and that the agent should undergo the second phase of
commitment and commit its resources.

|
|
I
|
I
I
|
|
I
|
I
I
I
I
I
I
|
| Last agent
I
I
l
I
I
I
I
|
I
I
I
I
I
I
I
I

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 187

‘Forget’
Sent from an agent to an initiator in response to a ‘Committed’ to
show that it has committed all its resources.

‘Rollback’ ,
Sent from an agent to an initiator to signify the rejection of a ‘Prepare
to commit’ or ‘Request commit’ request, and shows that the agent has
instead rolled back its resources. When sent from an initiator to an
agent, it tells the agent to roll back its resources.

A successful two-phase syncpoint works like this :

1. The initiator sends ‘Prepare to commit' to all its partners except oné (the last
agent).

2. The not-last agents become local initiators for their partners, and send
‘Prepare to commit’ to all of them. In this way, the syncpoint request
cascades to all distributed members of the conversations.

3. All these agents return ‘Request commit’ to their initiators.

4. The initiator now sends ‘Request commit’ to its last agent, so starting the
second phase.

5. The last agent may act as a syncpoint initiator, and so sends out ‘Prepare to
commit’ and/or ‘Request commit’ to its partners.

6. All these agents respond positively.
7. The last agent commits its resources, and replies ‘Committed’.

8. The initiator now commits its own resources, and sends out ‘Committed’ to
all its not-last agents.

9. These agents now commit their resources, and reply with a ‘Forget’ flow (this
‘Committed/Forget’ sequence is similarly cascaded).

10. When the initiator has received all the Forget flows, the syncpoint has
completed.

Figure 57 on page 189 shows the flows that result from a simple distributed
transaction executing a successful two-phase syncpoint such as the one that has
just been described.

An unsuccessful syncpoint scenario occurs when an agent, instead of returning
'Request commit’ or ‘Committed’, sends a ‘Rollback’ flow. This then forces each
level of initiator to send a ‘Rollback’ request to its partners, so backing out the
commitment process. Because the commitment process is two-phased, this
means that the local transactions either abandon the phase 1 ready-state and
back out instead, or do a direct backout.

Figure 58 on page 193 shows the flows that result from a simple distributed
transaction executing an unsuccessful syncpoint and triggering a syncpoint
rollback.

In general, you do not need to be aware of the details of these flows — just the
concepts. See "Part 5. Recovery and restart” on page 287 to obtain information
on what happens when a syncpoint exchange fails, and on how to deal with this
situation.

188 ciCS/MVS 2.1.2 Intercommunication Guide

When you follow the rule about testing the EIB flags after each LUTYPEG.2
operation, you test EIBSYNC, EIBSYNRB, and EIBRLDBK to see what has
happened throughout your distributed transaction. You do not need to know
where the syncpoint has originated; just follow the rules, and reply positively or
negatively to the request.

A: Initiator

SYNCPOINT

(1) PTC

>

(6) RC

<

(11) CTD

>

(16) FGT

<<

(7) RC

>

(16) CTD

S —

PTC - Prepare to Commit
RC - Request Commit

B: Agent of A;
Initiator
for C and E

RECEIVE
(EIBSYNC set)
SYNCPOINT

D: Last agent
"~ of A

Initiator
for F

RECEIVE
(EIBSYNC set)
SYNCPOINT

(2) PTC

<

&L —

<

(14) cTD

<

<

CTD - Committed

FGT - Forget

Figure 57. A successful distributed syncpoint

(12) CTD

——>

(3) RC

—————2>

(13) FGT

(4) PTC

>

(5) RC

—

(15) FGT

(9) CTD

C: Agent for B

RECEIVE
(EIBSYNC set)
SYNCPOINT

E: Agent for B

RECEIVE
(EIBSYNC set)
SYNCPOINT

F: Only agent
of D

RECEIVE
(EIBSYNC set)
SYNCPOINT

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 189

Note: In the following explanation to Figure 57 on page 189, the numbered
references in italics refer to the flow of control indicators across the links
and other action initiated by CICS on behalf of the transactions. The
programmer is concerned only with issuing SYNCPOINT in response to
finding EIBSYNC set.

Transaction A issues a SYNCPOINT command. It is in send state on its
conversations with transactions B and D.

(1) Transaction A has more than one partner, so it must prepare all its
partners but one (the ‘last agent’) for syncpointing by sending a ‘prepare to
commit’ flow. This is part 1 of the two-phase commit process.

Transaction B sees that EIBSYNC is set, so it issues a SYNCPOINT command.
This transaction is responding to a request from transaction A, but it also
becomes the syncpoint initiator for transactions C and E, and must ensure that
its conversations with these transactions are in send state.

(2) As a syncpoint initiator, transaction B sends ‘prepare to commit’ to
transaction C.

Transaction C sees that EIBSYNC is set, so it issues a SYNCPOINT command.
(3) Transaction C returns ‘request commit’ to transaction B.

(4) Transaction B has received a ‘prepare to commit’ from its syncpoint
initiator A, therefore the concept of a ‘last agent’ does not apply. It sends the
‘prepare to commit’ to all its other partners (only transaction E in this case).

Transaction E sees that EIBSYNC is set, so it issues a SYNCPOINT command.
(5) Transaction E returns ‘request commit’ to transaction B.

(6) Transaction B has now received ‘request commit’ from all its partners —
they have all responded positively to the ‘prepare to commit’ flow. Therefore,
transaction B returns the positive response of ‘request commit’ to its
syncpoint initiator (transaction A).

(7) Transaction A has now sent ‘prepare to commit’ to, and received ‘request
commit’ from, all its partners except the ‘last agent’. It is time to get a
commitment of all its distributed resources. Thus, it sends ‘request commit’
to its ‘last agent’, transaction D.

Transaction D sees that EIBSYNC is set, so it issues a SYNCPOINT command.
This transaction is responding to a request from transaction A, but it also
becomes the syncpoint initiator for transaction F, and must ensure that its
conversation with this transaction is in send state.

(8) Because transaction D has only one partner, it sends a ‘request commit’
flow to transaction F.

190 ciCsS/MVS 2.1.2 Intercommunication Guide

Transaction F sees that EIBSYNC is set, so it issues a SYNCPOINT command.

All the transactions have now indicated, by issuing SYNCPOINT commands, that
they are ready to commit their changes. This process begins with transaction F,
which has no agents and has responded to ‘request commit’ by issuing a
SYNCPOINT command.

(9) Transaction F commits its resources and returns ‘committed’ to
transaction D.

(10) Transaction D has received a positive response to its ‘request commit’
request, so it commits its own resources and responds positively to its
syncpoint initiator by issuing a ‘committed’ flow to transaction A.

(11) Transaction A has received a positive response from its ‘last agent’. It
can now commit its own resources. Therefore, it has to signal to all its other
partners that the second part of the two-phase syncpoint can occur, so
getting resource commitment. It does this by sending a ‘committed’ flow to
transaction B.

(12, 14) B receives the ‘committed’ flow from its initiator. Because there is no
‘last agent’ in this case, it sends a ‘committed’ flow to its partners to request
them to commit their resources.

(13, 15) The agents receive a ‘committed’ flow from their initiator. They
commit their local resources and return a ‘forget’ flow to the initiator.

(16) B has successfully completed the commitment of its own resources and
those held by its partners. It signals this success by returning ‘forget’ to its
initiator, transaction A.

The distributed syncpoint is complete and control returns to transaction A
following the SYNCPOINT command.

Negative responses to syncpoint requests

The previous discussion of the SYNCPOINT command assumed that all the agent
transactions were ready to take a syncpoint by issuing SYNCPOINT in response
to the syncpoint request (EIBSYNC set).

If, however, an agent has detected an error, it can reject the syncpoint request
by means of one of the following commands (see Figure 68 on page 215):

¢ SYNCPOINT ROLLBACK (preferred response)
* ISSUE ERROR
* ISSUE ABEND.

The SYNCPOINT ROLLBACK command (see “The SYNCPOINT ROLLBACK
command” on page 195) enables a transaction to initiate a back-out operation
across the whole distributed unit of work. When it is issued in response to a
syncpoint request, it has the following effects:

1. Any changes made to recoverable resources by the transaction that issues
the rollback request are backed out.

2. The syncpoint initiator is also backed out (EIBRLDBK set).

This will cause the syncpoint initiator to initiate a back-out operation across the
distributed unit of work.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 191

Implicit syncpoint at transaction termination

If a transaction terminates normally, CICS takes a syncpoint. If a connected
transaction rejects the syncpoint with a negative response, the terminating
transaction is correctly backed out, but, because control has already returned to
CICS, it can no longer test whether the syncpoint was successful or not.

To avoid this situation, you should code EXEC CICS SYNCPOINT and test EIB
flags before terminating.

This situation is equivalent to the one described in “The LAST option and
syncpoint flows” on page 181, which explains the consequences of not coding an
explicit SYNCPOINT (by an EXEC CICS SYNCPOINT command) before the
transaction terminates.

192 cICS/MVS 2.1.2 Intercommunication Guide

Syncpoint roliback example

A: Initiator

SYNCPOINT

Rolled Back
(EIBRLDBK set)

(1) PTC

(7) R8

(8) RB

B: Agent of A;
Initiator
for C and E

RECEIVE
(EIBSYNC set)
SYNCPOINT

Rolled Back
(EIBRLDBK set)

D: Last agent
of A,
Initiator
for F

RECEIVE

(EIBSYNRB set)

SYNCPOINT
ROLLBACK

(2) PTC

(3) RC

(6) RB

(4) PTC

(5) RB

(9) RB

PTC - Prepare to Commit RC - Request Commit RB - Roll Back

Note: A positive response (+RSP) is returned after each RB.

the sake of clarity, these have been omitted.

Figure 58. Rollback during distributed syncpointing

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations

->

C: Agent for B

RECEIVE
(EIBSYNC set)
SYNCPOINT

Rolled Back
(EIBRLDBK set)

E: Agent for B

RECEIVE

(EIBSYNC set)

SYNCPOINT
ROLLBACK

F: Only agent
of D

RECEIVE

(EIBSYNRB set)

SYNCPOINT
ROLLBACK

For

193

Figure 58 on page 193 shows the same distributed syncpoint as Figure 57 on
page 189. in this case, however, transaction E has detected an error that makes
it unable to commit, and it issues SYNCPOINT ROLLBACK when it sees that
EIBSYNC is set. This causes any changes that transaction E has made to be
backed out, and initiates a distributed rollback.

(5) E has detected an error whilst readying its local resources during the
phase 1 commit process. It therefore wants to rollback its own resources by
issuing an EXEC CICS SYNCPOINT ROLLBACK command. This means that it
has responded negatively to the ‘prepare fo commit’ request as a ‘roilback’
response is issued by CICS to its initiator, B.

{6) B now must send the ‘rollback’ request to all its other partners — only C
in this case. C reacts by rolling back its own local resources (and would
cascade the ‘rollback’ to its partners if it had any). C returns a positive
response, which has been omitted from the diagram for clarity.

(7) B has now rolled back its own resources, and ensured that all its partners
-have done the same. It replies to its initiator’s ‘prepare to commit’ request
negatively with the ‘roliback’ flow.

(8) Transaction A now receives the ‘rollback’ response, and so rolls back its
own local resources. Transaction A then sends the ‘rollback’ request to all its
partners except the one that returned the ‘rollback’ response. In this case, it
only sends ‘rollback’ to transaction D.

(9) Transaction D sees EIBSYNRB, so it issues its own SYNCPOINT
ROLLBACK, which causes the ‘rollback’ flow to its partners (transaction F in
this case).

Transaction F sees that EIBSYNRB is set, and issues a SYNCPOINT ROLLBACK
command. The distributed rollback is now complete.

This example shows how a SYNCPOINT ROLLBACK flows through the distributed
transaction, and how the EIBRLDBK (rollback has occurred) and EIBSYNRB (take
a roliback now) flags show what has happened and what should happen.

The SYNCPOINT ROLLBACK command is: the recommended negative response
to a syncpoint request (EIBSYNC set). However, ISSUE ERROR and ISSUE
ABEND are also allowed. ;

The ISSUE ERROR command, when it is issued in response to a syncpoint
request, causes the transaction that has issued the SYNCPOINT command to
abend. The abend is propagated to the other transactions in the distributed unit
of work, and dynamic backout occurs.

194 ciCS/MVS 2.1.2 Intercommunication Gulde

The transaction that issued the ISSUE ERROR command is not abended because
this conversation is placed in SEND state. However, because the partner is no
longer present, the conversation is in an unusual state. The state diagrams in
figures Figure 62 on page 210 through Figure 71 on page 216 show what you
should do next. Here is the sequence of commands to achieve an orderly
termination of the conversation on your side:

(1) EXEC CICS SEND INVITE WAIT —to go into Receive state

(2) EXEC CICS RECEIVE —to set the EIB flags
(3) Examine the EIB —EIBSYNRB & EIBFREE are set

{4) EXEC CICS SYNCPOINT ROLLBACK
(5) EXEC CiCS FREE

The ISSUE ABEND response causes the initiator to see a conversation abend.
Only consider using ISSUE ABEND in response to a syncpoint request when you
have not updated any recoverable resources in your transaction and its partners.

SYNCPOINT ROLLBACK is the preferred negative response to a SYNCPOINT
request, with ISSUE ERROR as an alternative. Do not use ISSUE ABEND unless
you have to.

The SYNCPOINT ROLLBACK command

A transaction can initiate a rollback at any time, not only in response to a
syncpoint request. If a transaction issues a SYNCPOINT ROLLBACK command,
the current logical unit of work is backed out unconditionally. In addition, the
rollback request is transmitted to all the transaction's SL(2) conversation
partners.

You can issue a SYNCPOINT ROLLBACK command irrespective of the
send/receive state of your conversations. If the rollback command is issued
when you have a conversation in receive state, incoming data on that
conversation is purged in the way described for the ISSUE ERROR and ISSUE
ABEND command.

If you receive a rollback request (EIBSYNRB set) you must respond with a
SYNCPOINT ROLLBACK command. On return from the command, you will be in
receive state.

If you are the initiator of rollback, your conversation is in send state after the
rollback has completed. Your conversation partner, after responding with
SYNCPOINT ROLLBACK, is in receive state. If, however, you and your partner
issue SYNCPOINT ROLLBACK at the same time, CICS leaves you in the opposite
state to the one you were in when you gave the command (see “CICS deviations
from LUTYPES.2 architecture” on page 440). Because this puts you in an
ambiguous conversation state, you should design your transactions to avoid
such race situations.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 195

The ISSUE PREPARE command

The use of the EXEC CICS SYNCPOINT command sends either a ‘prepare to
commit’ or a ‘request commit’ flow to all the partners; it affects the whole of the
distributed task. However, you can send the first part of the two-phase commit
process to a given partner by means of the ISSUE PREPARE command. This
enables you to ready a portion of the distributed task, or handle a negative
response sent from the partner on a conversation-by-conversation basis.

There are several reasons why you might want to do this:

1. In complex distributed transaction processing involving several conversing
transactions, an ISSUE ERROR command issued by one of the transactions
may not reach the syncpoint initiator in time to prevent it from issuing a
SYNCPOINT command and initiating some syncpoint processing for itself and
other partners. This can lead to the need for complex backout procedures
for the distributed unit of work.

You can use ISSUE PREPARE as a way of flushing any error responses from
the network.

2. You may have one or more syncpoint partners that are not completely
‘reliable’. You can use ISSUE PREPARE to check that all is well with these
partners before proceeding with a general distributed syncpoint.

The format of the ISSUE PREPARE command is:
ISSUE PREPARE CONVID(conversation-name)

From this you will see that, unlike the SYNCPOINT and SYNCPOINT ROLLBACK
commands, the ISSUE PREPARE command is directed to a specific conversation.
Your transaction must be in send state on any conversation to which it issues
ISSUE PREPARE.

Receiving and replying to ISSUE PREPARE
If a partner transaction issues an ISSUE PREPARE command, EIBSYNC will
appear in the EIB.

EIBSYNC is the same flag that is used to notify the receipt of a distributed
SYNCPOINT command. CICS does not tell you which command was issued, and
you should not make any assumptions.

Consequently, the responses to an ISSUE PREPARE are exactly the same as for
a SYNCPOINT: SYNCPOINT, SYNCPOINT ROLLBACK, ISSUE ERROR, or ISSUE
ABEND. You can therefore use subsequent ISSUE PREPARES for partner
conversations before taking the decision as to which response is appropriate.

Cheéking the response to ISSUE PREPARE
After issuing ISSUE PREPARE you must check the response by testing EIBERR.

If EIBERR is set, and the first two bytes of EIBERRCD contain X'0889', the other
transaction has sent ISSUE ERROR. In this case, your conversation is in
RECEIVE state, so you should issue a RECEIVE command and test the EIB in the
usual way. Your application design will determine what happens next.

196 CICS/MVS 2.1.2 Intercommunication Guide

If the partner transaction issued a SEND LAST WAIT command (as shown by
EIBFREE), the conversation is ended. It cannot participate in further syncpoint
activity, and you should end it by issuing a FREE command. However, if instead
your partner continued via a SEND INVITE WAIT command (the recommended
action after ISSUE ERROR), you can either free the conversation if it is not
important for syncpointing, or use SYNCPOINT ROLLBACK to initiate a
distributed rollback.

if EIBERR is set, and the first two bytes of EIBERRCD contain X'0824', the other
transaction has replied SYNCPOINT ROLLBACK. (EIBSYNRB will also be set.)

In this case, you must propagate the rollback by issuing SYNCPOINT ROLLBACK
in the usual way.

If the other transaction has replied ISSUE ABEND, the TERMERR condition will be
raised in your transaction. You can choose to handle this condition (or the
default condition ERROR), or you can use IGNORE or NOHANDLE to disable the

-condition, and check what has happened by testing EIBERRCD for X'0864°'. In

this case, the conversation is no longer usable, and the other transaction can
take no part in subsequent syncpointing activity.

If EIBERR is not set, the other transaction has issued SYNCPOINT, indicating that
it is ready for syncpointing.

If any partner has responded positively (EIBERR not set) to an ISSUE PREPARE
command, you must eventually issue either SYNCPOINT or SYNCPOINT
ROLLBACK to cause that partner to commit or backout.

ISSUE PREPARE examples
Figure 59 on page 198 shows four conversing transactions A, B, C, and D,

It is assumed that transaction A is designed to send records to transaction B and
issue a SYNCPOINT when it has sent a certain number of records. Transaction
B examines each record and decides whether to send it to transaction C or
transaction D for processing. Transactions C and D are both designed to issue
ISSUE ERROR immediately if they find an error in one of the records.

Because transactions C and D can send ISSUE ERROR at any time, transaction B
is designed to use ISSUE PREPARE to find out whether any incoming error
responses have not yet been received.

Chapter 4.5. CICS applications for LUTYPEG.2 mapped conversations 197

Transaction A Transaction B Transaction C
SEND ... RECEIVE ...
CONVID(AB) CONVID(AB)
(only EIBRECV
is set;
analyze data
and send to
C or D)
SEND ... RECEIVE ...
CONVID(BC) CONVID(BC)
(1) RC
SYNCPOINT o> | RECEIVE ...
CONVID(AB)
(EIBSYNC set)
(2) P1C
ISSUE PREPARE |-———————>| RECEIVE ...
CONVID(BC) CONVID(BC)
(EIBSYNC set)
(3) RC
(EIBERR clear) |<————— SYNCPOINT
(6) CTD
>
—
(7) FGT
Transaction D
(4) PTC
ISSUE PREPARE |————>| RECEIVE ...
CONVID(BD) CONVID(BD)
(EIBSYNC set)
(5) RC
(EIBERR clear) |<——————| SYNCPOINT
(1e) CTD (8) CTD
(No Errors) <———————| SYNCPOINT _—
P P —
(9) FGT

PTC - Prepare to Conomit RC - Request Commit CTD - Committed FGT - Forget
Figure 59. ISSUE PREPARE with positive responses

In Figure 59, there are no error responses outstanding, and both transactions
respond positively to EIBSYNC. Transaction B can therefore go ahead and issue
the SYNCPOINT command. If you compare this example with Figure 57 on

page 189, you will see that the flows generated by CICS are the same. In
Figure 60 on page 199, transaction C has issued ISSUE ERROR after receiving a
record, and transaction B sees the error on return from the ISSUE PREPARE
command. After the normal continuation after receiving ISSUE ERROR,

198 cCICS/MVS 2.1.2 Intercommunication Guide

transaction B issues SYNCPOINT ROLLBACK. The rollback is propagated in a
similar manner to that shown in Figure 58 on page 193.

Transaction A

SEND ...
CONVID(AB)

SYNCPOINT

Rolled Back
(EIBRLDBK set)

| (1) RC

(5) RB

PTC - Prepare to Commit

Transaction B

RECEIVE ...
CONVID(AB)

(only EIBRECV
is sety
analyze data
and send to
Cor D)

SEND ...
CONVID(BC)

RECEIVE ...
CONVID (AB)
(EIBSYNC set)

ISSUE PREPARE
CONVID (BC)
(EIBERR set;
EIBERRCD 0889;
EIBRECV set)

RECEIVE ...
CONVID(BC)
(Send State)

SYNCPOINT
ROLLBACK

(error)

(2) PTC

(3) RB

(4) RB

Note: The positive response (+RSP) after each RB
RB - Rollback has been omitted for the sake of clarity.

Figure 60. ISSUE PREPARE with error response

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations

Transaction C

RECEIVE ...
CONVID(BC)

ISSUE ERROR
CONVID(BC)

SEND INVITE
WALT
CONVID(BC)

RECEIVE ...
CONVID(BC)
(EIBSYNRB set)

SYNCPOINT
ROLLBACK

Transaction D

RECEIVE ...
CONVID(BD)
(EIBSYNRB set)

SYNCPOINT
ROLLBACK

199

This example shows just one of many possible application designs using ISSUE
PREPARE.

You are advised to restrict the use of ISSUE PREPARE to complex syncpointing
situations. In most cases, the use of SYNCPOINT and SYNCPOINT ROLLBACK
will be sufficient.

Sending and receiving signals

The ISSUE SIGNAL command sends an SNA signal as an expedited flow
command. This can be used by an application in receive state to notify its
partner that it needs to get into SEND state. For example, this would be useful if
too much data was currently being sent.

If an application receives an incoming signal then the SIGNAL condition will be
raised and the field EIBSIG will be set. Note that EIBSIG is sent only once. If
you miss it, or choose not to take any action in response to it, nothing happens
— the partner’'s request is hever satisfied.

Freeing the session
The command used to free the session has the following format:
FREE CONVID(name)

NOTALLOC, INVREQ

where “name” is the name of the conversation. The FREE command is normally
used to free the session after the conversation has been terminated (for
example, after SEND LAST WAIT has been issued). However, you can issue the
FREE command at any time that your transaction is in send state. CICS
determines whether the end-bracket indicator has already been transmitted, and
transmits it if necessary before freeing the session. If there is also deferred data
to transmit, the end-bracket indicator is transmitted with the data. Otherwise,
the indicator is transmitted by itself.

If you terminate an SL(2) conversation with one of these command sequences:

e SEND LAST followed by FREE
o SEND LAST WAIT
* FREE in send state.

you divide the distributed transaction into two parts which continue to execute
independently. Consequently, a subsequent SYNCPOINT or SYNCPOINT
ROLLBACK command in either part is not propagated to the other.

This means that protected resources in one part o” the divided transaction could
be committed, while those in the other part could . backed out.

200 cics/MVS 2.1.2 Intercommunication Gulde

To safeguard against this, you should always terminate sync SL(2) conversations
using the sequence:
SEND LAST

SYNCPOINT
FREE

The EXEC interface block (EIB)

Full details of the EIB are given in the CICS/MVS Application Programmer’s
Reference manual. This section highlights the fields that are of particular
significance in LUTYPE6.2 applications. For further details of how and when
these fields should be tested, or saved, refer to “Command sequences on
LUTYPEG.2 mapped conversations” on page 203.

Conversation identifier fields
The following EIB fields enable you to obtain the name of the LUTYPES.2
conversation.

EIBTRMID
contains the name of the principal facility. For a back-end transaction it is
the conversation identifier (CONVID). You must acquire this name if you
want to state the CONVID for the principal facility explicitly.

EIBRSRCE
contains the conversation identifier (CONVID) for the session obtained by
means of an ALLOCATE statement. You must acquire this name
immediately after issuing the ALLOCATE statement.

Procedural and error fields
These fields contain information on the state of the conversation and on the
various indicators that are transmitted by the conversing transaction. In most
cases, the settings relate to the session named in the last-executed RECEIVE or
CONVERSE command, and should be tested, or saved for later testing, after the
command has been issued. Further information on the use of these fields is
given in “Command sequences on LUTYPE6.2 mapped conversations” on
page 203.

EIBRECV
indicates the conversation state following RECEIVE or CONVERSE. If it is off
(= X'00'), your conversation partner is inviting you to send, otherwise you
would normally issue a further RECEIVE command. It does not necessarily
reflect receive state al any other time.

EIBCOMPL
This field is used in conjunction with the RECEIVE NOTRUNCATE command; it
is set to indicate that the data is complete.

EIBSYNC
indicates that CICS syncpointing is in progress and that the application
should issue a SYNCPOINT command.

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 201

202

EIBSYNRB
indicates that CICS syncpointing is in progress and that the application
should issue a SYNCPOINT ROLLBACK command.

EIBRLDBK
indicates that the remote transaction has sent SYNCPOINT ROLLBACK in
response to a SYNCPOINT request. The transaction that issued the
SYNCPOINT command has been rolled back.

EIBCONF
indicates that the conversation partner has issued a SEND CONFIRM
command, and that a response is required.

EIBSIG
indicates that the conversation partner has issued an ISSUE SIGNAL
command.

EIBFREE
indicates that the receiver must issue a FREE command for the session.

EIBERR
indicates that an abnormal condition has occurred. The reason is in
EIBERRCD.

EIBERRCD
contains the reason for EIBERR.

The meanings of the various EIBERRCD values are given in Figure 61 on
page 209. Three values that can arise as part of designed error-signaling in
the conversing transactions are:

* X'08240000' — the conversation partner has issued a SYNCPOINT
ROLLBACK command.

* X'08640000' — the conversation partner has issued an ISSUE ABEND
command.

* X'08890000' — the conversation partner has issued an ISSUE ERROR
command.

EIBNODAT
indicates that no application data has been received. This means that the
remote system has generated a null request unit to convey conversation
control information.

CICS/MVS 2.1.2 Intercommunication Guide <

Fields that are not applicable
The following EIB fields are not applicable to LUTYPE6.2 mapped conversations:

EIBEOC
The EIBEOC is intended for use when the user program is doing its own
chain assembly. Because chain assembly is not supported for LUTYPE6.2
conversations, EIBEOC is set on every RECEIVE command, and can be
ignored.

EIBFMH
Because function management headers (FMH) are never passed to
LUTYPESG.2 application programs, EIBFMH is never set and can be ignored.

Fields and synchronization levels

This table shows you how different fields are relevant at different levels of
synchronization. :

Table 6. EIB fields and synclevels at which they are relevant

Field name SL(0) SL(1) SL(2)
EIBCOMPL Y Y | Y
EIBCONF Y Y
EIBERR & EIBERRCD Y Y Y
EIBFREE Y Y Y
EIBNODAT Y Y Y
EIBRECV Y Y Y
EIBRLDBK Y
EIBSIG Y Y Y
EIBSYNC Y
EIBSYNRB Y

Command sequences on LUTYPEG6.2 mapped conversations

The command sequences that you use to communicate between the front-end
and the back-end transactions are governed both by the requirements of your
application and by a set of high-level protocols designed to ensure that
commands are not issued in inappropriate circumstances.

The protocols presented in this section do not cover all possible command
sequences. However, by following them, you will ensure that each transaction
takes account of the requirements of the other, and hence reduce the error rate
during program development.

The protocols are based on the concept of a number of states. These states
apply only to the particular conversation, not to your application program as a
whole. In each state, there are a number of commands that might most
reasonably be issued. After the command has been issued, fields in the EIB
must be tested in the order shown in the state diagrams, figures 62 through 71,

Chapter 4.5, CICS applications for LUTYPE6.2 mapped conversations 203

Initial states

to check on the current requirements of the conversation. The results of these
tests, together with the command that has been issued, may cause a transition
to another state, in which another set of commands becomes appropriate. -

The states that are defined for the purposes of this section are:

» State 1 — session not allocated

* State 2 — session allocated

o State 3 — send state

* State 4 — receive pending after INVITE
+ State 5 — receive state

» State 6 — receiver issue confirmation

» State 7 — receiver take syncpoint

¢ State 8 — receiver take rollback

* State 9 — free pending after SEND LAST
+ State 10 — free session.

The front-end transaction in a conversation will initially be in state 1 — session

‘not allocated — and must issue an ALLOCATE command to acquire a session.

An exception to this occurs when the front-end transaction is started by
automatic transaction initiation (ATI), in the local system, with an LUTYPE®6.2
session as its principal facility. In this case, the session is already allocated,
and the transaction is in state 2. For transactions of this type, you must
immediately obtain the conversation name from EIBTRMID if you want to be able
to name the conversation explicitly on subsequent commands.

The back-end transaction is initiated in RECEIVE state as a result of the
CONNECT PROCESS command issued by the front-end transaction. However, to
initiate the conversation properly, you must issue an EXEC CICS RECEIVE
command before you do anything else that could affect the link (for example, a
SYNCPOINT ROLLBACK command). The only exception to this rule is that you
can issue an EXTRACT PROCESS command, before EXEC CICS RECEIVE, to
obtain the synchronization level and other conversation-related information.

State diagrams

Figure 61 on page 209 through Figure 71 on page 216 are intended to enable
you to construct valid command sequences. Each diagram relates to one
particular state, as previously defined, and shows the commands that you might
reasonably issue and the tests that you must make after issuing the command.
Where more than one test is shown, they must be made in the order indicated.

The combination of the command issued and a particular positive test result lead
to a resultant state, shown in the final column.

Note that an ISSUE SIGNAL command is always valid within an allocated
LUTYPEG.2 session.

204 CiCS/MVS 2.1.2 Intercommunication Guide

Using the state diagrams
As a guide to using the state diagrams, consider a front-end transaction that is
designed to invoke a remote back-end transaction and send it some sort of
file-search criteria. The back-end transaction is expected to send each record
that matches the search criteria, and then issue a SYNCPOINT and free the
session.

Note: The use of SYNCPOINT in an inquiry-only application is normally not
required. It is included in this example only to illustrate the use of the state
diagrams. '

Allocating a session
Initially, the front-end transaction has no session to the remote system. It is
therefore in state 1 — session not allocated.

The diagram for state 1 shows that you need to issue an ALLOCATE command:
EXEC CICS ALLOCATE SYSID(RSYS)

Where RSYS is the CONNECTION name (or SYSIDNT) of the remote system.

You should now check for SYSIDERR and SYSBUSY to make sure that a session
has been allocated. If all is well, you must immediately get the conversation
identifier from EIBRSRCE, for example:

MVC CNAME,EIBRSRCE

You must name the conversation explicitly in the commands that follow. The
diagram shows that the conversation is now in state 2 — sesslon allocated.

Connecting the remote process
The diagram for state 2 shows that the next command to issue is CONNECT

PROCESS:

EXEC CICS CONNECT PROCESS CONVID(CNAME) SYNCLEVEL(2)
PROCNAME (*REMT') PROCLENGTH(4)

Here the name of the back-end transaction is REMT and level 2 synchronization
is specified. The state 2 diagram shows that, after this command, the
conversation is in state 3 — send state.

The SEND command

The next thing to do is to send the file-search criteria to the back-end
transaction. This is to be a single transmission, after which you expect to
receive the matching records from the back-end transaction. Your aim,
therefore, is to get into state 5 — recelve state, so that you can issue RECEIVE
commands.

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 205

The diagram for state 3 shows that you now have several ways of continuing
after the CONNECT PROCESS command.

1. The first possibility is to use a simple SEND command. The diagram shows
that, after a SEND command, the conversation is still in state 3 — send state,
not in the required receive state.

However, looking further down the table, you will see that you can still go
right ahead and issue your RECEIVE command. CICS will then INVITE the
back-end transaction to send (remember that the back-end transaction is
initialized in state 5 — receilve state) and WAIT to make the actual
transmission occur.

The table shows that CICS will supply the INVITE and the WAIT when you
issue a SEND followed immediately by a RECEIVE. However, if you look at
the send-state table for unmapped LUTYPE6.2 conversations (Figure 78 on
page 239) you will see that in that case you have to supply the INVITE and
WAIT options yourself.

2. The next possibility is to use SEND INVITE; that is, to specify the INVITE
explicitly. The table shows that after SEND INVITE the conversation is in
state 4 — receive pending after invite. If you look at the diagram for state 4,
you will see that you can now issue an explicit WAIT command to get to
state 5, or, as before, just issue the RECEIVE command.

3. The third possibility is to specify INVITE and WAIT explicitly on the SEND
command. The table shows that, after SEND INVITE WAIT, the conversation
is in state 5 — recelve state.

Suppose that you decide to use the third option:
EXEC CICS SEND INVITE WAIT CONVID(CNAME) FROM(QUTAREA) LENGTH(OUTLEN)

The RECEIVE commands
You are now ready to issue RECEIVE commands to get the records from the
back-end transaction: : :

EXEC CICS RECEIVE CONVID(CNAME) INTO(INREC) LENGTH(RECLEN)

The diagram for state 5 shows the tests you must make after issuing a RECEIVE

command. As you will see, there are up to six tests that you may have to make,
depending on the synchronization level established for the conversation (level 2

in this example). As well as showing which fields must be tested, the state table
also shows the order in which you must make the tests.

Because the RECEIVE command in this example did not use the NOTRUNCATE
option, you do not need to test EIBCOMPL. We are assuming that the two
transactions know the maximum length of data that they will be handling, and
that overlength data would be a logic error that would cause the LENGERR
condition to be raised. The use of the NOTRUNCATE option, together with
EIBCOMPL tests, would be appropriate in programs that are communicating with
systems or devices that can send data of no defined maximum length.

206 ciCs/MVS 2.1.2 Intercommunication Guide

After issuing the RECEIVE command (and checking for EIBCOMPL if this is
appropriate) the first thing to do is to save the EIB values. (You need the values
that were set by the RECEIVE command, and you may have to use other
commands in the meantime that can change the EIB.) The following tests should
then be made on the saved values of the EIB fields, not on the EIB itself.

The first test for level 2 synchronization is EIBCONF. If you know that the other
transaction will never issue the SEND CONFIRM command, as in this example,
you can omit this test. You are advised not to make any similar assumptions
about EIBSYNC and EIBSYNRB, but to test them after every RECEIVE command
on a synchronization-level 2 conversation. However, to keep things simple, the
syncpoint rollback test (EIBSYNRB) is left out of the following descriptlon Your
tests can then proceed as follows:

1. Test EIBSYNC
a. Set

The state 5 diagram shows that the conversation is now in state 7 —
receiver take syncpoint, so go to the state 7 diagram. Unless you want to
inform the back-end transaction about some problem, the appropriate
command is:

EXEC CICS SYNCPOINT

Using the state 7 diagram, you see that the next thing to do is to test the
saved value of EIBFREE. If this is set, the conversation is in state 10 —
free session, and you must:

EXEC CICS FREE CONVID(CNAME)

If EIBFREE is not set, you must test the saved value of EIBRECV. If
EIBRECYV is set, the conversation is back in state 5 — receive state, and
you can issue your next RECEIVE command.

If neither EIBFREE nor EIBRECYV is set, the conversation is in state 3 —
send state. This is not expected in this example, but you should test for
it and take some action; for example, ISSUE ERROR.

Note: You would expect to be in send state if, for example, the back-end
transaction was designed to use:

EXEC CICS SEND INVITE
EXEC CICS SYNCPOINT

You can check that sequence in the state diagrams to see how it works.
b. Not set
Make test 2.

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 207

2. Test EIBFREE
a. Set
The conversation is now in state 10 — free session, and you must:
EXEC CICS FREE CONVID(CNAME)
b. Not set |
Make test 3.
3. Test EIBRECV
a. Set

The conversation is still in receive state, so you can issue your next
RECEIVE command.

b. Not set

As described earlier, this is not expected in this example.

Testing EIBERR and EIBSYNRB

Other tests

The state diagrams in this section do not show the EIBERR tests for individua
commands. . ‘

EIBERR can be set at any time that your transaction is in receive state, and also
following any command that causes a transmission to the remote system. It is
safest to test EIBERR after every command. If EIBERR is set, there will be an
associated error code in EIBERRCD. EIBERRCD values are listed in Figure 61 on
page 209.

If EIBERR is set with an EIBERRCD of X'0889' (ISSUE ERROR received), your
transaction is in receive state, and you should issue a RECEIVE command.

If your application design includes the use of SYNCPOINT ROLLBACK, similar
considerations apply. When the transaction is required to execute a SYNCPOINT
ROLLBACK command, EIBSYNRB is set as well as EIBERR, with an EIBERRCD of
X'0824'.

Tests for other conditions that may possibly arise, for example, INVREQ or
NOTALLOC, should be made in the normal way. Further information on these
errors, if any, is available in EIBRCODE,

Also, if your transaction is expected to receive an incoming SIGNAL command,
you should either execute a HANDLE command for the SIGNAL condition or test
EIBSIG after each command.

208 ciCS/MVS 2.1.2 Intercommunication Guide

ALL STATES MAPPED LUTYPE6.2 CONVERSATIONS ERROR CHECKING

Errors associated with commands issued on mapped LUTYPE6.2 conversations
can occur either on the command that causes the error or on a Jater
command issued on the same conversation.

Errors cause EIBERR to be set, with an associated return code in EIBERRCD.
Some errors cause a CICS condition to be raised, which you may decide to
HANDLE or to check for in EIBRCODE. Some error indications can arise

in a planned-for manner; for example, because the other transaction is
designed to send ISSUE ERROR under certain conditions.

In general, you are advised to check EIBERR after every command, unless
you are prepared to allow your transactions to ABEND when errors occur.

Errors Associated with Connecting and Conversing with the Remote Process

EIBERRCD CICS Meaning and Notes
Condition

080F6051 | TERMERR The 1ink and/or the user failed to pass the remote
system's security checks.

084B6031 | TERMERR The specified PROCESS is not available.
084C0000 | TERMERR The specified PROCESS is not available.
10086021 | TERMERR The specified PROCESS name was not recognized.

10086031 | TERMERR PIP data was specified but the remote process does
not support it.

10086032 | TERMERR The PIP data was incorrectly specified.

10086034 | TERMERR The conversation types do not match (the remote
conversation partner is using unmapped commands).

10086041 | TERMERR The specified SYNC_LEVEL is not supported by the remote
process.

Figure 61 (Part 1 of 2). Checking EIBERRCD

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations 209

General Errors and State Indications

EIBERRCD cIcs Meaning and Notes
Condition

08240000 ; A ROLLBACK command has been received, and EIBSYNRB is
set. The conversation is in STATE 8.

08640000 | TERMERR An ISSUE ABEND command has been receiVed.

08890000 An ISSUE ERROR command has been received.
00O TERMERR The conversation has been prematurely terminated.
A0O1 TERMERR Deadlock timeout or terminal read timeout. This code

is returned instead of an AKCS or AKCT abend occurring.

Figure 61 (Part 2 of 2). Checking EIBERRCD

STATE 1 MAPPED LUTYPE6.2 CONVERSATIONS SESSION NOT ALLOCATED

Commands You Can [ssue What To Test New
(For EIBERRCD tests, see above) State

ALLOCATE [NOQUEUE] * SYSIDERR 1
SYSBUSY * 1
Otherwise 2

(obtain conversation identifier
from EIBRSRCE)

* If you want your program to wait until a session is available, omit
the NOQUEUE option of the ALLOCATE command and do not code a HANDLE
command for the SYSBUSY condition.

If you want control to be returned to your program if a session is not
immediately available, either specify NOQUEUE on the ALLOCATE command

and test EIBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY
command.

Figure 62. State 1 — session not allocated

210 cCICS/MVS 2.1.2 Intercommunication Guide

STATE 2 MAPPED LUTYPE6.2 CONVERSATIONS

SESSION ALLOCATED

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State

CONNECT PROCESS TERMERR * 3

FREE - 1

* The failure of a CONNECT PROCESS command (caused by such things as the
unavailability of the remote process or mismatched sync levels) is
usually indicated on a later command on the same conversation.

Figure 63. State 2 — session allocated

Chapter 4.5. CICS applications for LUTYPES.2 mapped conversations

211

STATE 3 MAPPED LUTYPE6.2 CONVERSATIONS SEND STATE

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State -

SEND ’ - 3
SEND INVITE - 4
SEND INVITE WAIT - 5
SEND LAST ' - 9
SEND LAST WAIT - 10
SEND CONFIRM : 3
(SYNCLEVEL 1 or 2 only) See "Checking the Response
to SEND CONFIRM®" earlier
SEND INVITE CONFIRM in this chapter. New 5
(SYNCLEVEL 1 or 2 only) states assume that EIBERR
is not set.
SEND LAST CONFIRM 10
(SYNCLEVEL 1 or 2 only)
CONVERSE Go to the STATE 5 table and make -
Equivalent to: the tests shown for the RECEIVE
SEND INVITE WAIT . command
RECEIVE
RECEIVE Go to the STATE 5 table and make -
(INVITE is sent by CICS) the tests shown for the RECEIVE
command ‘
ISSUE PREPARE EIBSYNRB 8
(SYNCLEVEL 2 only) : '
Note: If a negative EIBFREE ' 10
response is received,
EIBERR and EIBERRCD Otherwise 3

will also be set

SYNCPOINT EIBRLDBK {or ROLLEDBACK condition) 5

(SYNCLEVEL 2 only)
Otherwise 3
(transaction will ABEND if
SYNCPOINT fails)

SYNCPOINT ROLLBACK (transaction will ABEND if 3

(SYNCLEVEL 2 only) ROLLBACK fails)
WAIT CONVID - 3

Figure 64 (Part 1 of 2). State 3 — send state

212 cICS/MVS 2.1.2 Intercommunication Guide

ISSUE ERROR EIBRECV 5

Otherwise 3
ISSUE ABEND - 10

FREE - 1
Equivalent to: . ’
SEND LAST WAIT
FREE

Figure 64 (Part 2 of 2). State 3 — send state

STATE 4 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVE PENDING AFTER INVITE

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State

WAIT - 5
RECEIVE Go to the STATE 5 table and make -
Equivalent to: the tests shown for the RECEIVE

WAIT command

RECEIVE
ISSUE ERROR EIBFREE . 10

Otherwise 3

ISSUE ABEND - 10
SYNCPOINT EIBRLDBK (or ROLLEDBACK condition) 5

(SYNCLEVEL 2 only)
Otherwise 5
(transaction will ABEND if
SYNCPOINT fails)

SYNCPOINT ROLLBACK (transaction will ABEND if 3
(SYNCLEVEL 2 only) ROLLBACK fails)

Figure 65. State 4 — receive pending after INVITE

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 213

STATE 5 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVE STATE

Commands You Can Issue What To Test ' New
(For EIBERRCD tests, see above) State

RECEIVE [NOTRUNCATE] * EIBCOMPL * -
EIBCONF (SYNCLEVEL 1 or 2 only) 6
EIBSYNC ~ (SYNCLEVEL 2 only) 77
EIBSYNRB (SYNCLEVEL 2 only) 8
EIBFREE 10
EIBRECV ** 5
Otherwise 3

SYNCPOINT ROLLBACK (transaction will ABEND if 3

(SYNCLEVEL 2 only) ROLLBACK fails)

ISSUE ERROR EIBFREE 10
Otherwise 3

ISSUE ABEND - 10

*

If NOTRUNCATE is specified, a zero value in EIBCOMPL indicates that the
data passed to the application by CICS is incomplete (because, for
example, the data-area specified in the RECEIVE command is too small).

. CICS will save the remaining data for retrieval by subsequent RECEIVE

* %k

NOTRUNCATE commands. EIBCOMPL is set when the last part of the data is
passed back. If the NOTRUNCATE option is not specified, overlength data
is indicated by the LENGERR condition, and the remaining data is
discarded by CICS.

If a receive command completes with 'EIBRECV' and
'"EIBNODAT', it is implied that another RECEIVE must be
issued in order to receive additional application-level data.

Figure 66. State 5 — receive state

214 CICS/MVS 2.1.2 Intercommunication Guide

STATE 6

MAPPED L.UTYPE6.2 CONVERSATIONS

RECEIVER ISSUE CONFIRMATION

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State
ISSUE CONFIRMATION EIBFREE (saved value) 10
EIBRECV (saved value) 5
Otherwise 3
ISSUE ERROR EIBFREE (saved value) 3
Otherwise 3
ISSUE ABEND - 10

Figure 67. State 6 — receijver issue confirmation

STATE 7 = MAPPED LUTYPE6.2 CONVERSATIONS RECEIVER TAKE SYNCPOINT
Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State
SYNCPOINT EIBFREE (saved value) 10
EIBRECV (saved value) 5
Otherwise 3
SYNCPOINT ROLLBACK - 3
ISSUE ERROR (Now issue
(This will cause the other SEND INVITE WAIT (3)
transaction to abend if it followed by then
issued SYNCPOINT, but not RECEIVE) 5
if it issued ISSUE PREPARE.)
ISSUE ABEND - 10

Figure 68. State 7 — receiver take syncpoint

STATE 8

MAPPED LUTYPE6.2 CONVERSATIONS

RECEIVER TAKE ROLLB