Program Product

SH20-1047-4

Customer Information
Control System (CICS)
Application Programmer’s
Reference Manual

Program Numbers 5736-XX6 (DOS-ENTRY)
5736-XX7 (DOS-STANDARD)
5734-XX7 (OS-STANDARD V2)

The IBM Customer Information Control System (CICS)

is a transaction-oriented, multiapplication data base/data
communication interface between a System/360 or System/
370 operating system and user-written application programs.
Applicable to most online systems, CICS provides many of
the facilities necessary for standard terminal applications:
message switching, inquiry, data collection, order entry,

and conversational data entry.

CICS is available in three systems—two for DOS users and
one for OS users. Because the two CICS/DOS systems are
compatible with each other and with the CICS/OS system,
it is possible to start with a small data base/data communi-
cation configuration and move up through DOS into OS.

This manual provides information of interest to persons
defining, designing, and preparing application programs to
execute under CICS.

Fifth Edition (December 1972)
This edition is a major revision obsoleting SH20-1047-3.

This edition applies to Version 1, Modification Level 1, of the CICS/DOS-ENTRY
(5736-XX6) and CICS/DOS-STANDARD (5736-XX7) program products and to Version 2,
Modification Level 3, of the CICS/OS-STANDARD (5734-XX7) program product; it also
applies to all subsequent versions and modifications unless otherwise indicated in new
editions or Technical Newsletters.

If changes are made to the information herein, the edition that is applicable and current
will be indicated in the latest System/360 and System/370 SRL Newsletter (GN20-0360).

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for reader’s comments. If this
form has been removed, address comments to: IBM Corporation Technical Publications
Department, 1133 Westchester Avenue, White Plains, New York 10604. Comments become
the property of IBM.

© Copyright International Business Machines Corporation 1972

This publicaticn contains detailed infcrmaticn necessary to design
and prepare arplicaticn picgrams to execute under three IBM program
products: CICS/DCS-ENTRY, CICS/DOS-STANDARD, and CICS/0S-STANDARD
V2. It provides applicaticn programmers, system programmers, system
analysts, and system administrators with infcrmaticn concerning real-
time application programming considerations, application progran
organization, storage definition, the use of CICS macro instructions
to request supervisory and data management services, data base
considerations, and program testing and debugging.

Throughout this publication, parentheses are used in the notation
of CICS macro instructicns to indicate those operands where more than
cne applicable parameter can be specified with a single use of the
operand. Where rarentheses are not used, only one parameter at a time
can be specified as part cf the operand. An asterisk in (card) column
72 indicates that the macrc instruction is continued on the next line
(card). The first operand on a ccntinuaticn card must begin in cclumn
16.)

The words "™transaction" and "task"™ have the same ccumnotation in
CICS and are used interchangeably thrcughout this publication; the
Frocessing of a transaction may involve the execution of one or more
"prograns"™,

For further infcrmatior concerning CICS, see the fcollowing IBM
fFublications:

General Infcrmatior Manual (GH20-1028)

System Prcgrammer's Reference Manual (SH20-1043)
Terminal Operator's Guide (SH20-1044)

Operations Guide (CICS/DOS) (SH20~-1034)
Operations Guide (CICS/0S) (SH20-10u48)

Logic Manual (CICS/DOS-ENTRY) (LY20-0712)

Logic Manual (CICS/DOS-STANDARD) (LY20-0713)
Logic Manual (CICS/O0S-STANDARD V2) (LY20-0714)

All references to CICS/0S and CICS/0S-STANDARD in this publication
are references to the CICS/0S~STANDARD V2 systenm.

CONTENTS

Introduction. . . . ¢ ¢ ¢ ¢ ¢ e ¢ e+ e e 4 e e e o e 8 e .
General Description . « ¢ ¢ o 4 o ¢ ¢ o ot 4 4 e s e s e .
Real-Time Application Programming « + « « o« o« o« .
Program Structure ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 ¢ o e o e o .
Quasi~Reentrance. . . « ¢ « « o o o o o« s 4 e e e e e
CICS Transaction FIOW . « « ¢ o o o o o o o o o o o o
Application Program Organization.+ . « « ¢« + « &
Storage Definition. ¢ ¢ + ¢ ¢ 4 4 4 0 e e e 0 e
Program Initialization.+ ¢ . o . o . .
Service Invocation. ¢ ¢ ¢ ¢ v i 4 i e e e e 0 e
Assembly Time Service+ « + ¢ v o e e e e e .

Supervisory and Data Management Services.

Storage Definition. . . . ¢« ¢ . . 0 0 e e e e ..
Symbolic Storage Definitions. . . . + « ¢ & ¢ ¢« ¢ & o o .
Common System Area (CSA). + + ¢ ¢ ¢ ¢ o+ « s o o« o o «
Task Control Area (TCA) « « « « o o o o o o o s o o o =
Transaction Work Area (TWA) . . . ¢ ¢ & o & o o o o o &
Assembler Language Application Programming.
Static Storage Definition . . . « ¢« « « ¢+ ¢ 4 o e . .
Dynamic Storage Definition. e . e e e e

Example of CICS Assembler Language Appllcatlon Program.
ANS COBOL Application Programming« « &+ « o « & o« &

Static Storage Definition & . . .
Dynamic Storage Definition. . . . + « & & « ¢ o « « o &
Example of CICS ANS COBOL Application Program
PL/I Application Programming. . . « « « & « o s o o o o &
Static Storage Definition« ¢ + ¢ v ¢ 4 e e e .
Dynamic Storage Definition. . . . e e e e e e e e

Example of CICS PL/I Application Program e e e e e e

Service INVOCAtiON: v o o ¢ ¢ o o o o o o o o o o o o .
Task Services . . ¢ o o o o s o s s e o + 4 e e
Initiate a Task (ATTACH) e o e e e e s e e e e e e
Change Priority of a Task (CHAP) e e e e e e e e e e
Synchronize a Task (WAIT) e e

Single-Server Resource Synchronlzatlon (ENQ/DEQ). e e e
Purge a Task on System Overload (PURGE/NOPURGE)

Storage Services. e e e ee e
Obtain and Initialize Maln storage (GETMAIN) e e e e
Release Main Storage (FREEMAIN) . . o ¢ & « & « o o « @

Program Services. . . ¢ v v ¢« o ¢ o o e o o« 4 6 e e o e 0
Pass Program Control Anticipating Subsequent Return (LINK)
Transfer Program Control (XCTL) . ¢ v & ¢ « &+ o o o o @
Load the Specified Program (LOAD) . .+ ¢ « &« &« « « o o &
Return Program Control (RETURN) . . . ¢ ¢ « & o o« & «
Delete a Loaded Program (DELETE). . . . © e s e o = =
Abnormally Terminate a Transaction (ABEND). o e e s e e

Dump Services e e e & e o e e
Dump Transaction Storage (TRANSACTION) e e e e e e e
Dump CICS Storage (CICS). v v « o &+ « o o o o o o o o =«
Dump Transaction Storage and CICS Storage (COMPLETE). .
Dump Partial Storage (PARTIAL). . . + + + « « o o o« « =

Terminal Services e e e e e e e e e e e
Write Data to a Termlnal (WRITE) e e e e e e e e e e

Read Data from a Terminal (READ). . .

Synchronize Terminal Input/Output for a Transaction (WAIT)

Converse with a Terminal (CONVERSE) . . v v v o o o o &
Page Data to a Terminal (PAGE). « « v v « ¢ o o o o o
File SErviCes . . ¢ v v ¢ o« ¢ ¢ o o o o o o o o o o « o

-—

_eEm 00O Noaonww

UK QR NS (T QUL Qe §

Page of SH20-1047-4 -
Revised April 11, 1973
By TNL §N20-9012

Randomly Retrieve Data from a Data Set (GET). o « « o« « « « &
Randomly Update or Add Data to a Data Set (PUT) « ¢« & o & o &
Obtain a File Work Area (GETAREA) + & o o o « 4 o o o o o o
Release File Storage (RELEASE) . . % ¢ & & o o o o o « o o o &
Initiate Sequential Retrieval (SETL) e v o o « v o o o o o « «
Retrieve Next Sequential Record (GETNEXT) . v « « « « o o « &
Terminate Sequential Retrieval (ESETL) . « v o o o o o o « o
Reset Sequential Retrieval (RESETL) e e e e
Test Response to a Request for File Services (CHECK). o ¢ e .
Transient Data Services . ¢ ¢ ¢ ¢ v ¢« o 4 o o ¢ o o o o o o o
Dispose of Data (PUT) & v v ¢ 4o ¢ ¢ o o o o o o o o o » o o o
Acquire Queued Data (GET) + « « o« « . - . . .- .
Control the Processing of Extrapartltlon Data Sets (FEOV) . .
Purge Transient Data (PURGE). « &« ¢ « ¢ o « o o = o @ s o o
Test Response to a Request for Transient Data Services (CHECK)
Temporary Storage ServiceS. « « o ¢ o ¢ o & o o o o o « 2 o o
Store Temporary Data (PUT) . v v o o o o « o o o o o a o o « =
Retrieve Temporary Data (GET) o + o o « o o o o o o o o o o
Release Temporary Data (RELEASE). « ¢ ¢ o o o o« o o o o « o

Test Response to a Request for Temporary Storage Services (CHECK)

Time SEIVICeS « v o o o o o o o o o o« o o s o o o o o o o« « o o
Time-of-Day Services (GETIME) . . v ¢ ¢ « o « o o o o o « o =
Time-Ordered Task Synchronization (WAIT, POST). . +. « v & o« &
Automatic Time-Ordered Task Initiation (INITIATE, PUT). . . .
Retrieve Time-Ordered Data (GET). o ¢ « « o « o o o « « o o o
Time-Ordered Request Cancellation (CANCEL). . « o o 2 « <« o« «
Input/Output Error Retry Capability (RETRY) . : « o o « o o &
Test Response to a Request for Time Services (CHECK).

Application Programming ConsiderationsS. « « o « « o o o o o «
Programmable Device Considerations. « « + ¢ ¢ « o o & o « o o« =
3735 ConsiderationNs v « ¢ ¢ 4 ¢ 4 e 4 4 e e s e e e s e e =
System/7 Considerations v ¢ ¢ ¢ ¢ 4 4 4 & 4 e a4 e &
Non-Programmable Device ConsiderationS. « « « o o o« o o o o o =
2260/2265 Programming ConsiderationsS. « « <« o« o« o o « « « « =
2770/2780 Programming Considerations. « « « « « ¢« o o o o o &
2980 Programming Considerations . . ¢ ¢ ¢ ¢ ¢ o o ¢ 4 o o o
~7770 Programming Considerations .« « « ¢ ¢ ¢ 4 « ¢ 4 o e o o
Creating User Exits for Asynchronous Transaction Processing . .
Coding the CRDR ExXit Routine. . « ¢ ¢ o o ¢ ¢ o o« o o o « o @
Coding the CWTR Exit Routine. . « o « o o« o &
Data Base Considerations. . . .
Segmented Records « « « « «
Indirect Accessing.
Duplicate Records
DAM Data Set Considerations
Requesting Data Language/I Services under CICS/OS . . « o e
Quasi-Reentrant Considerations with Regard to DL/T CALL
Obtaining Addresses Of PCB'S. v ¢ ‘v o o« o o o o o o o o o o «
Building Segment Search Arguments (SSA'™S) « ¢ ¢ « o « = « o«
Acquiring an I/0 WOTK AT@a. « « « s o o o o o o o o o o o o &
Issuing the DL/T CALL &+ ¢ o o« o o o 2 o o s « o o s o o o o «
Releasing a PSB in the CICS Application Program
Checking the Response to a Request for DL/I Serv1ces (CHECK).
DL/I Requests Written in Assembler Languadge . « « « o « o o o

. DL/T Requests Written in ANS COBOL. ¢ @« « « o o o s« o o o o «
DL/I Requests Written in PL/T . . . & & & o ¢ & ¢ 4 ¢ o o o &
Basic Mapping Support for the 3270. . . . ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o o .
Map Definition. o o o ¢ o o ¢ o ¢ o o o o o o s o o s o o o o
Offline Map Building. « + o o o « o o o o « o o o o o s o o =
Online Map Invocation . « & v ¢ ¢ o 4 o ¢ 0 4 4 e 4 e e e o .

o o 8
e o &
s s o

« s s 8 e 0
.

s & & @
.
.

0
.

Program Testing and Debugging . « ¢ o o ¢ o o ¢ o o o o o o o o
Trace Control Functions . . . « . .
Trace ON Fuanction « « « « « « .
Trace OFF Function. . « o i o«
Trace ENTRY Function.
Trace Table ¢« ¢ & ¢ ¢ ¢ o o o o« =

¢ ¢ o & o
. .
s & o o o
. .
. .
e o & o o
. .
. .
¢ o 8 o s
. 0

e s o & o
. .

. .

. .

. .

86
92

- 95

97

99
103
106
108
110
114
116
118
120
121
121
124
125
127
129
130
132
134
135
141
147
149
150
151

154
154
155
156
157
157
158
158
164
165
166
167
169
169
175
178
180
183
183
183
184
185
186
188
189
189
191
193
194
195
197
202

214
215
217
217
218
219

Appendix
Appendix
Appendix
Appendix
Appendix

Index .

-

Executable CICS Program Examples .

CICS Macro Instructions. . . .
CICS Dump CodeS. « o« o o« o =« =«

3270 Map Generation and Assembly Error Messages.

Translate Tables for the 2980.

.

-

231
243
251
255
264

273

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

INTRODUCTION

The IBM Customer Information Control System (CICS) is a

multi-application data base/data communication interface between a
System/360 or System/370 operating system and user-written application
programs. Applicable to most online systems, CICS provides many of
the facilities for standard terminal applications: message switching,
inquiry, data collection, order entry, and conversational data entry.

® o 6 9 o

Functions performed by CICS include:

Control of a mixed telecommunications network
Concurrent management of a variety of programs
Controlled access to the data base

Management of resources for continuous operation
Prioritization of processing

By eliminating many of the development requirements for such

functions of a real-time control system, CICS allows programmers to
concentrate instead on implementing appllcatlons, dramatically reducing

imp

lementation t1me and cost.

Functions needed to support a data base/data communication sysiem

and standard terminal applications are provided by the following CICS

man

agement functiomns:

Task Management - Provides its own dynamic multitasking facilities
necessary for effective, concurrent transaction processing.
Functions associated with this facility include priority scheduling,
transaction synchronization, and control of serially reusable
resources. This CICS function is in addition to the multitasking
or multiprocessing capability of the host operating systenm.

Storage Management - Controls main storage allocated to CICS.

Storage acquisition, disposition, initialization, and request

queuing are among the services and functions performed by this
component of CICS.

Program Management - Provides a multiprogramming capability through
dynamic program management while offerlng a real-time program fetch
capability.

Program Interrupt Management - Provides for the interception of
program interrupts by CICS to prevent total system termination.
Individual transactions that program check are terminated by CICS
with a dump (if Dump Management is used), thus preventing the entire
CICS partition/region from terminating. Under CICS/0S, supports

the runaway task control function of CICS Time Management.

Time Management - Provides control of various optional task
functions (system stall detection, runaway task control, task
synchronization, etc.) based on specified intervals of time or the
time of day.

Dump Management - Provides a facility to assist in analysis of
programs and transactions undergoing development or modification.
Specified areas of main storage are dumped onto a sequential data
set, either tape or disk, for subsequent offline formatting and
printing using a CICS utility program.

e Terminal Management - Provides polling according to user-specified
line traffic control as well as user requested reading and writing.

This facility supports automatic task initiation to process new
transactions. The testing of application programs is accommodated by
the simulation of terminals through sequential devices such as card
readers, line printers, disk, tape, etc.

e Pile Management - Provides a data base facility using direct access

and indexed sequential data management. This function supports
updates, additions, random retrieval, and selective retrieval
(browsing), of logical data on the data base. Optional access to
the Data Language/I (DL/I) facility of the IBM Information
Management System (IMS/360) is also provided under CICS/0S. Use

of DL/I requires installation of the IMS/360 Version 2, Modification

Level 2 (or later) Data Base System {(5734-XX6).

e Transient Data Management - Provides the optional queuing facility
for the management of data in transit to and from user defined
destinations. This function facilitates message switching, data
collection, and logging.

e Temporary Storage Management - Provides the optional general purpose
"scratch pad" facility. This facility is intended for video display

paging, broadcasting, data collection suspension, conservation of
main storage, retention of control information, etc.

In addition to these management functions, CICS provides systenm
service programming to identify "terminal operators, to give dynamic

control of the entire system to a master terminal, to display real-time
system statistics, to intercept abnormal conditions not handled directly

by the operating system, to provide basic mapping support for the 3270
Information Display System, and to end operation by gathering summary
statistics, closing data sets, and returning control to the operating
systen.

GENERAL DESCRIPTION

FEAL-TIME AFPLICATICN PRCGRAMMING

In the conventional batch processing envircnment, the application

rrogrammer plans a series of runs to edit batches of input transactions,
update master files (data sets), and write output reports. To optimize
total run time and streamline the cycle, he must concentrate on careful

manipulation of data. In accomplishing this, the data beconmes
intricately tied to his prcgram logic and is of 1little value to other
applications.

Application
Data Sets One
Application

Reports

Operating System

Figure 1. Conventional batch processing

The real-time data basesdata ccmmunications (DB/DC) environment
differs from the conventicnal batch processing environment primarily
in the amcunt and types of concurrent activities that are likely to
cccur within the system at a given time., Whereas a batch processing
systenm schedules each application independently and provides data
support unique to each application, a DB/DC systenm controls many
transactions arriving on a random nonscheduled basis and provides an
integrated data base suppcrting each application.

| 1
Data Seve(al ‘
Base Applications

Cics

Operating System

Figure 2. Transaction processing of CICS

In the past, the successful systems have been known as:

Online information systenms

Real-time infcormational systems
Teleprocessing systenms

Data bases/data ccmmunication systems

o 5 3 @

These systems required the user to develop a control system that would:

» Host a teleconmnmunicaticn netwerk of mixed devices

e Concurrently manage a wide mixture of transactions being serviced
by a variety cf prcgrams

e Provide effective ccntrolled access to the data base

o Effectively manage resources, such as main storage, to keep the
syster in continuous operation

e Prioritize the use of the processing facility

» Provide other real-time facilities necessary for the sugport of
the applications and tte envircament

e Provide the ancillary system service functions necessary for the
successful implementation of data base/data communicaticn systems

e Provide rapid response to the terminals

CICS solves many of these complexities for the application programmer
ty managing data centrally (in a data base) on behalf of all
applications. This shifts the burden of system management
considerations frcm the applicaticn programmer to the system programmer
and allows the applicaticn programmer to concentrate instead on the
application.

A key consideration in the selection of a data base/data
communicaticn system is *hat it be aprropriate for today's needs and
have the growth pctential that characterizes the DR/DC environment.
CICS is intended to address precisely that consideration; that is,
CICS is a family of systems that provides a DB/DC interface to the
IBM System/360 and System/370 at most levels of the product line,
providing a clearly visible growth or migration path as the user's
envircnment dictates.

Figure 3 shows how the CICS data base surports the information needs
cf esach application, indegendently and concurrently.

User File tnquiry File Change Repprt Request

Device (
‘]

[
::;;lri::sion Program A Program B Program C
]]
1 Y [
cics Data Base Management
[Operating System]
A
|
S o
i A I By
'S (N (B
I Data l I Data ; : Data l
PO I et set |
Data Base I A | I g | | ¢ |
L__J N S

Figure 3. CICS data fase concept

ERCGRAM STRUCTURE

The user's applicaticn programs are processed concurrently by CICS
as transactions (tasks). Although applicaticn rrograms may be as large
as 32K bytes, it is recommended that each application program be
developed modularly and kept to a minimum size. Large application
rrograms can prevent the lcading of other required precgrams during
the operation of CICS and thus deqrade the overall system performance.

CICcSs facilitates the modularity of applicaticn programs by allowing
prcgrams to easily communicate with other rrograms through the execution
cf CICS macrc instructions. Since application pregrams dc not contain
input/output areas or transaction work areas, a 4K application program,
when assembled, could ¢ontain as many as 1000 machine instructionmns.

Application programs can be written in Assembler language, ANS
COBOL, or PL/T to execute under CICS. Regardless of the language used,
it is strcngly recommended that the application programmer allow CICS
to perform all supervisory and data management services for his
applications by issuing CICS macro instructions to invoke the desired
services. Although the application programmer is not precluded from
direct communication with the operating system, the results of such
action are unpredictaltle and perfcrmance may be affected. Such action
would also have a limiting effect on migration from CICS/DOS to CICS/0S,
if this were ever desired.

An application program writtem in PL/I must consist of an external
(MAIN) procedure. Internal procedure CALL's are allowed in a CICS
rrogram; €xternal CALL's are not.

CUAST~-REENTRANCE

Applicaticn prcgrams must be coded so that they are "serially
reusable" tetween entry and exit points of the program. Entry and
exit points of an application program coincide with the use of CICS
macro instructicns, since an application program tempcrarily loses
ccntrol after it begins executing only upon execution of a, CICS macro
instruction. A serially reusable portion of an application program
is executed by only one transaction at a time, and must initialize
and/or restore any instructions or data that it alters within itself
during execution.

This required quality of applicaticn programs written to run under
CICS is called "guasi-reentrance", since the programs need not meet
System/360 or System/370 specifications fcr true reentrance. Quasi-
reentrance allows a single copry of a user-written applicaticn program
to be used to process several transactions ccacurrently, thereby
reducing the requirement for multiple copies of the same program in
main storage.

If intermediate exits are taken in an applicaticn program, all
switches, data, and intermediate results needed upon subsequent return
to that transacticn must te retained in a unique storage area such
as the Transaction Work Area (TWA). The application programmer must
provide that unique intermediate storage area by symbolically defining
it in his prcgram (as described in the section on "Symbolic Storage
Cefinitions").

A serially reusable applicaticn program that has no intermediate
exits alsc has the guality of quasi~reentrance.

CICS TRANSACTION FLOW

CICS executes in a multitasking mode of operation. Therefore,
whenever a transaction (task) is waiting for I/O conmpletion, other
CICS transactions may ccntinue to execute.

Figure 4 illustrates CICS multitasking where the same application
rrogram is used ky three different transactions (A, B, and C). The
application program performs a data base read and a subsequent write.

Sclid lines indicate that the transaction is executing; broken lines
indicate that the transaction is waiting.

TASK A
TASK B

TASK C

Figqure 4., CICS muititasking

®igure S illustrates the lcgical flow of a typical transaction
through CICS.

PROGRAM DATA MESSAGE
LIBRARY BASE LOG

TERMINAL | TASK PROGRAM USER STORAGE FILE TRANSIENT
CONTROL CONTROL CONTROL PROGRAM CONTROL CONTROL DATA
DECQ?E MSG
VERIFY TRANSACT
INIT&ATE TASK REQUEST
L3 WORK STORAGE »GET STORAGE
SCHED NEW TASK<e
DISPATCH TASK
l— — L-SELECT PGM
LOAD PGM
WAIT —<———r BUILD DATA
- | SET SEARCH
KEY | REQUEST
» INPUT AREA
GET STORAGE=—=r=-
READ FILE
R
WAIT —= |
4.1 .
REQUEST |
TERMINAL AREA opr
-
BUILD TERMINAL S'ORAGE
ouTPUT _
BUILD' ACTIVITY
RECORD PUT ACTIVITY
I _RECORD TO
LOG |
WAIT =
— o
PSS 1 REQUEST J
| TERMINAL WRITE
: RETURN
TERMINATE
: TRANSACTION“““‘”‘"J FREE
| ‘ » TRANSACTION
1 STORﬁeE
n
l
' TERMINATE
; TASK
SCHEDULE
WRITE

Figure 5. CICS transaction flow

AEPLICATICN EFQGEAM ORGANIZATION

The source library supplied with CICS contains symbolic storage
definitions cf CICS contrcl areas, work areas, and I/0 areas. It is
strongly recommended that the application programmer use these
definitions in his prcgramming rather than develop actual or direct
displacements. This protects the applicaticn program in the event
cf any relccation of CICS.

For the PL/I programmer, the source likrary contains numerous BASED
structures of CICS centrcl arcas. These dummy sections are available
to the user through use of the %INCLUDE statement. The ANS COBOL
rrogrammer makes use of these definitions through use of the COPY
statement in the Linkage Section of the Data Division. These
definitions are discussed in the Storage Definition section of this
manual.

In the initialization section of the applicaticn program, the
application programmer must establish a symtolic base address for his
rrogram as this is not done by CICS prior to entry. Register 12 is
reserved by CICS to contain the address of the Task Ccntrcl Area (TCA)
for this task. Register 13 is reserved to contain the address of the
Common System Area (CSA). These registers are initialized by CICS
prior to entry and must be preserved throughout the execution of the
Frogram. For ANS COBOL and PL/I, this situation is resolved by CICS
and is of no concern to the application programmer.

Registers 15 through 11 are available to the user and are kept
intact when a CICS macro instructicn is issued; the contents of register
14 are destroyed any time a CICS macrio instruction is issued.

The status of all registers upon program entry or upon return to
a program is as fcllowus:

REGISTERS 15 through 11 12 13 14

Initial Unknown TCA CSA User progran

program entry address

LINK Linked from TCA CSA User program
registers address

XCTL Transfer contrcl TCA CSA User progran
from registers address

10AD Unchanged TCA CSA Next segquential

instruction

RETURN Linked from TCA CSA Next segquential

registers instruction

Even though register 14 contains the program entry address,
it is not advisable to use register 14 as the base register

[6)

it

i®
.

since it is used by CICS to service requests for CICS supervisory
and data management services.

SERVICE INVOCATION

ASSEMBLY TIME SERVICE.

The DFHCOVER macro instruction is used to request the Assembler
cr Compiler to print a cover page on two consecutive pages. 1In this
way, the application program listing may be torn off with one of the
cover pages face up. Pertinent infcrmation (for example, program nanme,
date, time of assembly, remarks, etc.) may then be written on the cover

page.

The DFHCOVER macro instruction requires nc operands and should
appear with ncthing else cn the card.

If the DFHCOVER macro instruction is coded as part of an application
rrogram written in Assembler language, it shculd be coded as the first
instruction in the program. If desired, however, this macro instruction
may be coded after anything that is not vital to the listing (such
as the TITLE card).

If the DFHCOVER macro instruction is coded as part of an ANS COBOL
application program, it shculd te ccded preceding the IDENTIFICATION
DIVISION card.

The PL/I Compiler prints the first card of the source deck as a
header on each page of the source listing. This means that when the
CFHECOVER macro instruction is part of a PL/I applicaticn program, the
first card should te a Comments Card containing information the
application programmer wants printed as a header. The second card
should contain the DFHCOVER macro instruction. The actual PL/I code
should begin on tte third card of the source deck.

Since column 1 is used by the DFHCOVER macro for line and page
spacing under PL/I, cclumn 1 must be defined as reserved for control
characters and columns 2-72 must be defined as available for data.

This is accomplished through the #*PROCESS card for CICS/DOS and the

EXEC card for CICS/0S. For further infcrmation concerning PL/I compile-
time services, see the publication DOS PL/I Optimizing Compiler
Programmer's Guide (SC33-C008) or the publication QS PL/I (F)
Programmer's Guide (GC28-6594).

The examples contained in Appendix A shcw how the DFHCOVER macro
instruction is used.

SUPERVISORY AND LATA MANAGEMENT SERVICES

The various CICS supervisory and data management services are invoked
through use of CICS macrc instructions. These macro instructions are
written in Assembler language and, as all Assembler language
instructicns, are written in the fcllowing format:

Nanme Operaticn Operands Compents
blank DFHIxxxx One cr mcre operands

or separated by ccmnas
symbol

The name field of a CICS macrc instruction must be left blank if
the macreo instruction is used in conjunction with a high-level language

10

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

(ANS COBOL or PL/I); if a label is desired for the macro instruction,
it may be placed on the card preceding the macro instruction.

The operation field of a CICS macro instruction must begin before
card column 16 and must contain the three-character combination "DFH"
in the first three positions of the operation field. Up to five
additional characters can be appended to DFH to complete the symbolic
name for the appropriate program or table. Since DFH is reserved for
CICS macro instructions, no other statement may begin with this
three-character combination.

The operand field of a CICS macro instruction contains one or more
operands separated by commas. In this publication, parentheses are
used to indicate those operands where more than one applicable parameter
(keyword and otherwise) can be specified with a single use of the
operand. Where parentheses are not used, only one parameter at a time
can be specified as part of the operand; a choice must be made in the
case of more than one applicable parameter. Since a blank character
indicates the end of the operand field, the operand field must not
contain blanks except after a comma on a continued card or after the
last operand of the macro instruction. The first operand on a
continuation card must begin in column 16.

When a CICS macro instruction is coded on more than one card, each
card containing part of the macro instruction (except the last card)
must contain a character (for example, an asterisk) in column 72
indicating that the macro instruction has been continued on the next
card.

See the section "Service Invocation™ later in this publication for
a detailed description of how CICS macro instructions are used to
request CICS supervisory and data management services. See Appendix
B for a listing of the CICS macro instructions that may be used by the
application programmer.

The use of CICS macro instructions in a PL/I application program
precludes the use of the following PL/I features:

1. The multitasking functions: COMPLETION, STATUS, PRIORITY.

2. The multitasking options: PRIORITY, TASK, EVENT, REPLY.

3. The PL/I statements: READ, WRITE, GET, PUT, OPEN, CLOSE,
DISPLAY, SORT, DELAY, ON.

The use of CICS macro instructions in a PL/I optimizing compiler
application program also precludes the use of the following options:

1. REPORT, FLOW, GONUMBER, GOSTMT.

The use of CICS macro instructions in an ANS COBOL application
program precludes the use of the following ANS COBOL features:

1. Environment and Data Division entries normally associated with
the data management services.

2. File Section of the Data Division.

3. Special features: SORT, REPORT WRITER, SEGMENTATION, EXHIBIT,
TRACE, DISPLAY, and ACCEPT. (DISPLAY and ACCEPT can be used in
conjunction with the system console.)

4, Options that may lead to the issuance of a STXIT (AB) SVC or
STAE SVC: FLOW, STATE, STXIT, or SYMDMP for CICS/DOS; FLOW or
STATE for CICS/0S.

Separate ANS COBOL routines or separate PL/I routines may not be
link edited together. Separate Assembler-language routines may be link
edited together, however, the CALLed routine must conform to CICS
application program requirements. CICS provides the user with the LINK

11

Page of SH20-1047-4

Revised Aprit 11, 1973

By TNL SN20-9012 :
facilities to provide the necessary

and XCTL (transfer control)
CICS macro instructions should not be

communication between programs.
coded within an ANS COBOL statement, since each ANS COBOL statement

generated by a CICS macro instruction is terminated by a period.

12

STORAGE DEFINITION

SYMBCLIC STORAGE DEFINITICKNS

CICS defines a number of main storage arcas which the apglication
rrcgram can use during execution. These storage areas are of three
types:

1. Ccntrcl areas
2. Work areas
3. Ingut/output areas

Information is stored and retrieved from these areas by CICS and Ly
arplicaticn programs.

Some of the storage areas are statically created by CICS during
System Initialization and others are dynamically acquired and released
during execution of the system. Some of the areas are acquired or
created by CICS; scme are acquired directly by the application program;
and some are acquired by Ekoth CICS and the application program.

All CICS storage areas, with the exception of the Terminal Control
Table terminal entry (TCITE), consist of two logical and unique
sections, The contrcl section is used primarily by CICS; the user's
section is defined and used exclusively by applicatiocn programs. This
logical division always 2=xists except for the TCTTE, whether the storage
is statically created (for example, the Common System Area) or
dynamically acquired (for example, a Terminal Input/Output Area).

CICS provides a set cf symbclic storage definitions (dummy sections)
to describe the layout of the control secticn of all the applicable
storage areas. These storage definitions are contained in the CICS
litraries and, when combined with a user-defined layout of the user's
section cf the storage areas, provide symtolic addressing to the storage
areas.

The Storage Acccunting field is perhaps the most important field
in the contrcl section of the CICS storage areas. (See "Storage
Accounting Area" belcw.) This f£igld, present in all CICS storage areas
except the CSA and TCTTE, is always located in the first eight Lytes
cf every storage area.

Note: The applicaticn prcgrammer must be aware that the Storage
Accounting field exists in all dynamic storage he acquires,
and he must take particular care not to alter or destroy the
information in it. If the informaticn is altered or destroyed,
an abncrmal terminaticn of CICS occurs.

Two of the ccntrcl areas, the Common System Area (CSA) and the Task
Ccntrol Area (TCA), are required to be symbolically defined in every
applicaticn prcgram; the third control area (TCTTE), the work areas,
and the I/C areas are selected at the option of the user. It is the
user's resronsibility tc ccpy symbclic storage definitions into his
rrcgram for the required ccntrol areas as well as for any of the other
storage areas he requires. TFigure 6 lists the CICS storage areas,
indicating which are control areas, which are work areas, and which
eare I/0 arecas; it alsc indicates which are acquired by the user and
which are acguired by CICS.

13

ACQ'D | ACQ'D
CONTROL | WORK I/0 BY BY
AREAS AREAS | AREAS USER CICS
Common System Area (CSA) X X X
Task Control Area (TCA) X X
Transacticn Work Area {TWA) X X
File Work Area (FWA) X X
Storage Accounting Area (SAA) X X
Terminal I/0 Area (TIOA) X X X
Transient Data Input Area (TDIA) X X
Transient Data Output Area (TLOA) X X
Temporary Storage I/O0 Area (TSIOA) X X X
File I/0 Area (FIOA) X X
Terminal Control Table
Terminal Entry (TCTTE) X X

Figure 6. CICS storage areas

Depending on the programming language used, one of the fcllowing
statements is required to copy a symbolic storage definition into an
applicaticn program.

1. Assembler language COPY statement of the form:

COFY nane
2. ANS COBCL COPY statement of the form:
01 name COPY name.
specified in the Linkage Secticn of the Data Division
3. PL/I preprocessor statement of the form:
% INCLUDE (name);

In addition tc copying the appropriate symbolic storage definitions
into his rrcgram, the arplication programmer must establish
addressability for these storage definiticns. He does this by
specifying a symbolic tase address for each storage area, thereby
effectively marping the symbolic storage definition over the storage
area. Derending on the programming language used, one of the following
statements must be used tc establish addressability after the dymnamic
main storage has been acquired:

1. Assembler language statement of the fornm:

L syrbolic base address register,TCASCSA

2. ANS CCBCL statement of the fcrm:

MOVE TCASCSA TO symtolic base address.

3. PL/I based rointer variable of the form:

syntolic base address=TCASCSA;

TCASCSA is a four-byte field that contains the address of the dynamic
rain stcrage area that was acquired.

14

Figure 7 contains the symbclic names used in copying the storage
area control section definitions and the symbolic base addresses used
in establishing addressability.

SYMBOLIC NAMES BASE LOCATOR ASSEMBLER LANGUAGE
FOR OR GENERAL PURPOSE
CICS STORAGE AREA ABBREVIATION DEFINED STORAGE BASE ADDRESS REGISTER REGISTER ASSIGNMENT
Common System Area CSA DFHCSADS CSACBAR 13
Common Work Area CWA User defined CSACBAR 13
Transaction Control Area TCA DFHTCADS TCACBAR 12
Transaction Work Area TWA ; User defined TCACBAR 12
File Work Area FWA DFHFWADS FWACBAR *
Storage Accounting Area SAA DFHSAADS SAACBAR *
Transaction Input/Qutput Area TIOA DFHTIOA TIOABAR *
File Input/Output Area FIOA DFHFIOA FIOABAR *
Transient Data Input Area TDIA DFHTDIA TDIABAR *
Transient Data Output Area TDOA DFHTDOA TDOABAR *
Temporary Storage Input/Output
Area TSIOA DFHTSIOA TSIOABAR *
_Terminal Control Table
_Terminal Entry TCTTE DFHTCTTE TCTTEAR *
Application Program Storage - - User defined *
* Any register except 12, 13, and 14 which are utilized by CICS.

Figure 7. Symbolic names and base addresses of CICS storage areas

All storage that is acgquired ky the application prcgram through
the CICS Storage Management facility is controlled by a technique that
chains together all storage associated with a particular transaction.
(See the section "Storage Accounting Area".) This feature allows CICS
to release all main storage associated with a transaction, either upon
tequest from the user or when the transaction is terminated, normally
cr abnormally.

The Common System Area (CSA) is the head of the chain, the address
cf which is provided by CICS. The CSA points to the Task Control Area
(TCA) which in turn points to several of the other storage areas.
Figure 8 illustrates tle chaining of CICS storage areas and indicates
the symbolic tase address used to locate each storage area.

15

CICS LosIcAL RELATIONSHIPS

Cics ——>CEACBAR
CIS) e —=
Comon HANAGEMENT =TT >(TCACBAR)
s MODULES s = areacBaR) 1<TASK C)
YS 4
TE CSACDTA — 1 (TCACBAR) (1ask B) RN \
AreA C | (task A) T ———
DFHCSADS j 3 L
TRANSACT TON o
CoMMoN - FACIL! Fi [
? A ConTroL ARea | TCRRCRAT CAFCAAA\N] ACILITIES FOR TASK
York H DERTCADS . [——————"FACILITIES FOR TASK B
AREA e
FaciLiTies CoNTROL TCAFCAA TCTTEAR
AssoCIATED AREA
Aporess TeRMINAL CONTROL
TABLE TERMINAL
ENTRY
DFHTCTTE TCTTEDA TIOABAR
DFHTIOA
A T el
t f | 12 BYrES . | eos |
STORAGE CONTROL TCASCSA
S A -~
TORAGE ~a
\\
(SAACBAR)
DFHSAADS
-~
8 BYTES | . .
T
‘/,v FWACBAR
FiLe CoNTrOL /// ,._DFHF“A AD,S
0
TCAFCAA =7 —~ -
AReA AppRess . ~~ 16 BYTES | .
N s
\\
™ FI0ABAR
DEHFI0A
o~ el —
0S-64 BYTES
D0S-72 BYTES «) R
N~ — N
(lﬁ BYTE FILLER DEFINED)
BY USER FOR 0S ISAM
EXTRAPARTITION GET
—_—— T T —
yd /)&TDIABAR \\\
AR DFHTDIA Y
PPN
TRANSIENT DATA . 5"3“\ 05-40 BYTES
TCATDAR == - l J
AREA ADDRESS s \\\\\ DOS- 12 BYTES . ”
~ur
S
TDOABAR
DFHTDOA
e et
12 BYTES | . .
TEMPORARY STORAGE
DATA AREA TCATSDA \ AFTER GET
BEFORE PUT TSI0ABAR
DFHTSI0A
S (=12 BYTE
t«8 BYTES+ LLub . ~
' N
|
TRANSACTION WoRK AREA | ™ * * THIS AREA 1S DEFINED AFTER THE DFHxxxxx. THE PL/I anp CCBOL
l PROGRAMMER MUST COMPLETE THE BASED STRUCTURE (SYMBOLIC STORAGE
! DEFINITIONS) BY WRITING STATEMENTS WITH A LEVEL NUMBER GREATER
THAN 1. THE ASSEMBLER LANGUAGE PROGRAMMER MUST WRITE DS
{ STATEMENTS.
|
l ** TCAFCAA.TCATDAA, anp TCATSDA ARE NOT STORED IN SEPARATE WORDS
(ALL THREE POINTERS ARE STORED IN THE SAME WORD)
Figure 8, CICS storage areas are chained together

16

The following sections describe the major CICS ztorage areas. The
fields of special significance for the application rrogrammer are
discussed in detail. .

CCMMON SYSTEM AREA (CSA)

The CSA is an area of static storage that contains areas and data
required for the operation of CICS. It alsc contains a user-defined
Ccmmon Work Area (CWA) that can te used at the discretion of the user
for the retention cf temporary data, for the accumulation of statistics,
for the passing of parameters, etc.; this work area can be accessed
or altered by any number of tasks.

Since the work area of the CSA is availabie to any task while it
has ccntrcl cf the system, it is not advisable for an application
prcgram to use this area for retention of data while it is requesting
CICS services (for example, File services). OUnder these circumstances,
ancther tramnsaction might get ccntrcl and possibly destroy the data.
However, if the user has designed his applicaticn programs so they
are all aware of a common, user-established format within the CSA work
arca, there is no reason why the work area cannot be shared by several
tasks. An example of this might be a statistics accumulator that is
updated by more than one transaction.

Data contained in the CSA that is required for the cperation of
CICS includes:

1. CICS save areas

2. Addresses of CICS management programs

3. Control system and user statistics accumulators
4. Addresses of CICS system ccntrol tables

5. Conmon system constants

6. System control parameters

The fields of the CSA that are of particular significance to the
application programmer are as follows.

CSACTODB: This four-byte binary field contains the time of day in
hundredths of a second. The time of day is updated periodically daring
task dispatching, its accuracy depending upon the task mix and frequency
of task switching occurrences.

CSATODP: This four-byte field of the form HHMMSSt+ contains the time

of day in packed decimal fcrmat tc tenths of a second. The time of

day is updated periodically during task dispatching, its accuracy
¢epending uron the task mix and frequency of task switching occurrences.

CSAWABA: This field represents the beginning of the Common Work Area
(CWA) and provides dcubleword storage alignment for it. The entire
work area is initially set to binary zeros. The size of the work area
is determined by the user at system dgeneration time.

17

TASK CONTECL AREA (TCA)

The TCA is an area of main storage acquired dynamically by CICS
when the task (transacticn) is originated by Task Control. It is used
to represent the current status of the task and is part of a chain
of TCA's crganized by dispatching priority. During the execution of
the task, the user has the capability of changing the priority through
Task Management services; the TCA is then repositioned accordingly.

The TCA provides the fcllowing for its associated task:

1. Register save areas

2. Unique fields (parameter areas) for ccmmunicating requests to
CICS

3. Address of the related Facility Contrcl Area (FCA)

4. Task storace chain addresses

When a task is initiated in CICS, the TCA exists until the task
is terminated. The TCA provides no space fcr any residual data such
as statistics; however, the TCA can be extended to include a Transaction
Work Area (TWA), the size of which is determined by the user to meet
the needs cof the transaction. (See the section "Transaction Work
Area',)

The TCA ccnsists of three logical sections:

1. CICS system control section
2. Conmnmunicaticn secticn
3. Transaction Work Area (opticnal)

The CICS system contrcl section contains control addresses and data
needed by CICS to control the task. Access to this section is limited
to CICS management programs, CICS service programs, and user-written
service programs.

The communication section is used by CICS and by user-written
applicaticn programs for ccmmunication between the task and CICS
management programs and service progranms,

The optional Transacticn Work Area is reserved for the exclusive
use of the task.

In those cases where a task is initiated from a terminal (nearly
always the case), CICS places in the TCA the address of the Terminal
Ccntrol Table terminal entry (TCTTE) associated with the terminal.
The TCTTE, in turn, contains the address of the Terminal Input/Output
Area (TIOA). The TCA alsc contains the address of either a Single
Event Ccntrcl Block or the address of an Event Contrcl Blcck list.

The fields of tke TCA that are of particular significance to the
application programmer are as fcllows.

TCAFCAAA: This four-byte field contains the address of the Facility
Ccntrcl Area associated with the facility that initiated the
transaction., This field can contain the address of a Terminal Control
Table terminal entry, the address of a Destination Control Table entry,
cr the address of an automatic task initiator control area.

If the user's application program is to communicate with the
terminal, TCAFCAAA must ccntain the address of the appropriate Terminal
Ccntrcl Tadle terminal entry (TCTTE). This allows the user's
application program to reference any data in the TCTTE.

18

TCAPCPI: This eight-byte field contains the identification of the
requested program. The program identification is left-justified and
nust meet whatever requirements there are for a label used in a library
of the operating systenm.

There must be an entry in the Processing Program Table (PPT)
containing the prcgram identificaticn. This field (TCAPCPI) can be
filled pricr to issuing a DFHPC TYPE=XCTL, DFHPC TYPE=LINK, DFHPC
TYPE=LOAD, or DFHPC TYPE=LCELETE macro instruction. If the user's
applicaticon prcgram places the program identification in TCAPCPI prior
to the execution of the macro instruction, the PROGRAM=name operand
should be omitted from the macro instructionmn.

The program identification can be placed in the TCAPCPI field prior
to issuing a CFHEPC TYPE=LINK macro instructiocn when an application
rrogram is testing to determine to which program to link. On the basis
of the test, the application program should place the program
identification in the TCAPCPI field and then execute a DFHPC TYPE=LINK
macro instruction without the FROGRAM=name operand. Using this
technique, the user's arplication program uses one macro instruction
t¢ link tc many different prcgrams.

TCAPCAC: This four-byte field contains the terminaticn code for the
DFHPC TYPE=ABEND macro instruction. The terminaticn code must be left-
justified and must be the user's termination code. The £field can be
filled by the user's program pricr to issuing the DFHPC TYPE=ABEND
macro instructicn; in this case, the ABCODE=YES operand must be coded.

The termination code is placed in the TCAPCAC field prior to the
execution of the DFHPC TYFE=ABEND macro instruction when the user's
applicaticn program is testing to determine which type of termination
is desired.

TCASCSA: This four-tyte field contains the address of the storage
cttained after the execution of a DFHSC TYPE=GETMAIN macro instruction
and must also ccntain the address of the storage to be released prior

to the execution of a DFHSC TYPE=FREEMAIN macro instruction. The
applicaticn programmer must remember that the first eight bytes at

this address are always the Storage Accounting Area used by CICS Storage
Management. Care should bte taken never to alter the contents of this
area.

The address of the storage obtained frcm a DFHSC TYPE=GETMAIN macro
instruction is autcomatically placed in the TCASCSA field except when
a conditicnal GETMAIN request (COND=YES) has been issued and storage
is not available. In this case, CICS Storage Management places binary
zeros in this field and returns ccntrol to the user. The user's
applicaticn program must specify a symbolic bkase address for the storage
area and must move the storage address located at TCASCSA to this
symbolic tase address. The fcllowing are examples of the coding
required.

STATE DS CL3

19

CSECT
BALR 1G,0
USING *,10

DFHSC TYPE=GETMAIN
I 5,TCASCSA

LINKAGE SECTION.

02 WORKREG PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 WOEK.

02 STATE PICTURE XXX.

ERCCEDURE DIVISION.
MOVE CSACDTA TC TCACBAR.

DFHSC TYFE=GETMAIN
MOVE TCASCSA TC WORKREG.

DECLARE 1 WCRK BASED (WCRKREG),

2 STATE CHAR(3);

DFHSC TYPE=GETMAIN
WORKREG=TCASCSA;

When storage is to be released, the storage address must be placed

in the TCASCSA field prior to the execution of the DFHSC TYPE=FREEMAIN
macro instruction. The fcllowing are examples of the coding reguired.

STATE DS CL5

20

CSECT
BALR 10,0
USING *,10

ST 5,TCASCSA
DFHSC TYPE=FREEMAIN

LINKAGE SECTION.

02 WORKREG PICTURE S9(8) USAGE IS COMPUTATIONAL,

02 STATE PICTURE XXX.

e

PROCEDURE DIVISION.
MOVE CSACDTA TC TCACBAR.

MCVE WOERKREG TQO TCASCSA.
DPHSC TIYFPE=FREEMAIN

For PL/I:

CECLARE 1 WORK BASED (WORKREG),

) 2 STATE CHAR(3);

TCASCSA=WORKREG;
DFHSC TYFPE=FREEMAIN

TCALCNB: This two-byte field contains the length (in bytes) of the
main storage area to be dumped by Dump Control. This field can be
filled by the user'!s application prcgram, prior to execution of the
CFHDC TYPE=PARTIAL macro instruction, with a hexadecimal representation
cf the nunter of bytes requested.

TCASCNB: This two—-byte field contains the number of storage bytes
requested. This field can be filled by the user's application progranm
with a hexadecimal representation of the number of bytes requested
pricr to execution of the DFHSC TYPE=GETMAIN macro instruction. If
the user's arplication program places a value in this field prior to

21

the execution of a DFHSC TYPE=GETMAIN macio instruction, the
NUMBYTE=value operand must be cmitted. When the storage is obtained, :
the TCASCNB is overlald w1th a’ portlon of the addrecs of the storage '
oktained.

TCASCIB: This one-byte field cortains the bit configuration for the
initialization of main storage. The field can be filled by the user's
application program with the desired bit configuration prior to the
execution of a DFHSC TYPE=GETMAIN macro instruction, in which case

the INITIMG=YES cperand must be coded.

TCAFCDI: This eight-byte field contains the data set identification
fcr the data set to which a record is to ke written or frcm which a

record is to be retrieved. The user's application program can place
the data set identification in this field prior to the execution of

a DFHFC TYPE=GET or a DFHFC TYPE=SETIL macro. instruction.

The data set identification must correspond exactly with the user-
established identification of the required data set (as previously
established in the File Ccntrcl Table) and must be left-justified when
the user's application prcgram places the identification in the TCAFCDI
field. Tf this field is filled prior to the execution of the DFHFC
macro instruction, the DATASET=name operand must be omitted.

TCAFCRYI: This four~byte field contains the address of the user's
record identification field when making a request for CICS File
Management services. The user's application program can place the
address in this field pricr to the execution of a DFHFC TYPE=GET, DFHFC
TYPE=PUT, CFHFC TYPE=SETL, or DFHFC TYPE=GEINEXT macro instruction.

The RLIDADR=symbcl cperand is omitted if the TCAFCRI field is filled
Frior to the execution of the macro instruction.

TCAFCSI: This eight~kyte field contains the segment set identification.
The user's application program can place the segment set identification
in this field prior to issuing the DFHFC TYPE=GET, DFHFC TYPE=PUT,

TFHFC TYPE=SETL, or DFHFC TYPE=GETNEXT macrc instruction.

The segment set identification must match the usersestablished
identification of the requested segment set (as previously established
in the File Contrcl Table) and must be left-justified when the user's
application prcgram places the identification in the TCAFCSI field.

If this field is filled prior to execution of the DFHFC TYPE=GET or
DFHFC TYPE=PUT macro instruction, the SEGSET=YES operand must be coded
as part of that macro instruction.

TCAFCAI: This eight-byte field contains the symbolic identification
cf the first index data set to be searched in an indirect accessing
hierarchy. The user's applicaticn rrogram can place the desired
indirect access identification (as previously established in the File
Ccntrol Table) in the field prior to the execution of a DFHFC TYPE=GET
macro instruction. When the user's application program places the
identification in the TCA¥CAI field, it must be left~justified and
the INDEX=YES cperand must be coded as part of the macro instruction.

TCAFCAA: This four-byte field contains the address of the File
Input/Output Area (FIOA) cr File Work Area (FwWa).

22

TCAFCTR: This one-byte field contains the type of File Control
request/resgonse. Request codes are set by issuing the DFHFC macro
instruction. Responses are automatically placed in the TCAFCTR field
by File Management after completion of the event requested.

TCATDTR: This one~byte field contains the type of Transient Data
Control request/response. Request codes are set by issuing the DFHTD
racro instruction. Responses are automatically placed in the TCATDTR
by Transient Data Management field after completion of a transient
data event.

TCATSTR: This one-byte field contains the Temporary Storage Control
request/response. Request codes are set by issuing the Temporary
Storage macro instructicn DFHIS. Responses are automatically placed
in the TCATSTR field by Temporary Storage Management after completion
cf a temporary storage event.

TCAICTR: This one-byte field contains the Interval Ccntrol
request/response. Requests cocdes are set by issuing the Interval
Ccntrol macro instruction DFHIC. Responses are automatically placed

in the TCAICTR field by Time Management after completion of an Interval
Ccntrol service request.

TRANSACTION WORK AREA (TWA)

The TWA is an extemnsion of the TCA and is created at the option
of the user to prcvide a work area for a given tramsaction (task).

The TWA can be used for the accumulaticn of data and intermediate
results during the execution c¢f the transaction. It can also be used
when the amcunt of working stcrage for a transaction is relatively
static, when data must be passed between user-written application
rrograms, or when data must be accessed by different programs during
transacticn processing. ©During multiple entries of data for a
*ransaction, the applicaticn prcgrams might retain the data in the
TWA. -

Where the TWA is desired for a given transaction, it is the
responsibility cf the application programmer to define storage for
the TWA imnmediately fcllowing his symbolic storage definition of the
TCA. The size of the TWA is specified in the Program Control Table
entry for each transaction identification. Therefore, the size of
the TWA can vary by transaction type according to the user's needs.
For information on establishing the TWA, see the Program Control Table
in the System Programmer's Reference Mapual.

=S S e i i e e 2

ASSEMBLER LANGUAGE ABFLICATION PRCGRAMMING

The Assenmbler language programmer must define stcrage for the CICS
ccntrol areas and any other CICS storage areas required for the
rrocessing of his program. He accomplishes this by using the Assembler
language COPY statement to (1) copy the arpropriate symbolic storage
definitions into his prcgram and (2) specify the names of the storage
arcas being defined. All registers are at his disposal, except for
registers 12, 13, and 14 (which are used by CICS).

23

STATIC STORAGE DEFINITION

During CICS initialization, the CSA is statically allocated as part
of the CICS Nucleus. For each terminal with which communication is
to occur, the Terminal Control Table terminal entry (TCTTE) is included
in the statically allocated Terminal Control Table (TCT). The
applicaticn programmer must provide symbolic storage definition for
the CSA and TCTTE (if needed) by using the COPY statement in his
Frogram.

Ccmmon System Area (CsSa)

The statement
COPY DFHCSALS

copies the symbeolic storage definition for the CSA and assigns register
13 as the base register.

If thes user has generated a CSA with a work area, he may wish to
include his cwn symbolic definitions for that area following the COPY
DFHCSADS statement. For example:

COPY DFHCSADS
BUCKET1 DS F
BUCKETI2 DS F
TEMPNAME DS CL8

The statement
COEY DFHICITE

copies the symtolic storage definition for the TCTTE. This symbolic
definiticn is necessary when the user desires to obtain the address
of the terminal I/0 area (TCTTEDA) or to request a Terminal Control
service via the DFHTC macro instructicn. The user must code an EQU
statement prior to the COPY statement to set up a base register for
the TCTTE, equating the label TCTTEAR to a prcgram register. The
following is an example of the coding required:

TCITEAR EQU 5
COPY DFHTCITE

DYNAMIC STORAGE LCEFINITION

During initiaticn and execution of a transaction (task), the TCA,
TIOA, and other stocrage areas required by the transaction are
dynamically allocated by CICS Storage Management, either upon request
from the applicaticn program cr upon request from a CICS management
function. The applicaticn rrcgrammer must provide symbolic storage
definition for these storage ar2as by using the COPY statement in his
Frogranm,

Task Control Area (TCA)

The statement

COPY DFHICADS

24

copies the symbolic storage definition for the TCA (excluding the CICS
control section) and assigns register 12 as the base register. 1If

the user's aprplication prcgram uses a Transaction Work Area (TWi),

DS statements for that storage area must immediately follow the COPY
statement. The fcllowing is an example of the coding required to
symbolically define storage for both the TCA and TWHA:

COPY DFHICADS
NAME DS CL20
STREET DS CL20
CITY Ds CL10
STATE DS Ci3

If it is necessary for the Assemkler language programmer to obtain
access to the CICS system control section of the TCA, a copy of the
symbolic storage definiticn for the entire TCA may be obtained by using
the statement

DFHTCA CICSYST=YES

in place of the statement COPY DFHTCADS. Addressability to the
communicaticn section of the TCA and to the Transaction Work Area (TWA)
is provided automatically by CICS through register 12. Addressability
to the CICS system control sectior must be provided by the application
programmer; for example:

L WRKREG,TCASYAA
USING DFHSYTCA,WRKREG

DROP WRKREG

The statement
COPY DFHTIOA

copies the symbolic storage definition for the CICS control section

of the TIOA., It is desirable that this storage definition precede

the user's definition of a terminal input or output message. The user
nust code an EQU statement prior tc the COPY statement to set up a
tase register fcr the TIOA, equating the label TIOABAR to a program
register. The following is an example o0f the coding required:

TIOABAR EQU 9

COPY DFHTIOA
NAME Ds CL20
STREET DS C1L20

DS C1LS

DFHSC TYPE=GETMAIN,NUMBYTE=XX,CLASS=TERMINAL
L TIOAEAR,TCASCSA

25

The statement
COPY DFHFIOA

copies the symbolic storage definition for the CICS ccntrol section

of the FIOA. This storage definition should precede the user's defined
layout of a file input cr output area when reading an unblocked record
without updating or segmenting, when reading blocked records without
deblccking, or when checking response codes for the appropriate abnormal
response. The user must code an EQU statement prior to the COPY
statement to set up a base register for the FIOA, equating the label
¥FIOABAR to a program register. The FIOA is autcmatically acgquired

ty Pile Management whenever a request is made by the user to access

a data base data set. If ISAM data is being retrieved under CICS/0S,

a 16-byte filler must be defined prior to the user's data definition.
The following is an example of the coding required:

FICABAR EQU 7

COPY DFHFIOA

DS 16X 0S ISAM FILLER
NAME Ds CL20
STREET DS CLS

File Hork Area (FWA)
The statement
COPY DFHPWADS

copies the symbolic storage definition for the CICS ccntrol section

of the FWA. This storage definition should precede the user's defined
layout of a file record area when r=ading or updating an existing
tlocked or segmented record, when adding a new record to a file, or
when retrieving records using the browse feature. The user must code
an EQU statement prior to the COPY statement to set up a base register
for the FWA, equating the label FWACBAR tc a program register. The
fcllowing is an example of the coding required:

FWACEAF EQU 7
COPY DFHFRADS
_ NAME Ds CL20
STREET DS CL30
ZIECODE DS CLS

ERERARERIT oSS sl So=o

The statement
COPY DFHTLIA

copies the symbclic storage definition for the CICS control section

of the intrapartition TBIA. It is desirable that this storage
definition precede the user's defined layout of the message area used
for a transient data GETI. The user must code an E(U statement prior
to the COPY statement to set up a base register for the TDIA, equating
the label TDIAEAR to a program register. The fcllowing is an example
of the coding required:

TDIABAR EQU 9

COPY DFHTLIA
NAME DS €120

26

STRFET DS cL20

-
-

Transient Data Qutput Area (TDOA)
The statement
COPY DFHTLOA

copies the symbolic storage definition for the CICS ccntrcl section

cf the intrapartition TDOA. Fecr consistent documentation of the user's
arplicaticn program, this storage definition should precede the user's
defined layout of the message area for a transient data PUTI. The user
nust code an EQU statement pricr to the COPY statement to set up a

tase register for the TDOA, equating the label TDOARAR to a progran
register. The address of the length field labeled TDOAVRL is given

to Transient Data Contrcl either through the TDADDR operand or by
rlacing it in the TCA at TCATDAA. The fcllowing is an example of the
ccding required:

TDOAEAR EQU 9
COPY DFHTLOA
TIME Ts CL4

DATE DS PL3
INTERM DS CL4
OUTTERM DS cLY

DPHSC TYPE=GFTMAIN,CLASS=TRANSDATA,NUMBYTE=XX
1 TDCABAR,TCASCSA

CFHID TYPE=PUT,DESTID=POST,TDADDR=TDOAVRL

Tepporary Stcrage Input/Output Area (TSIOA)

COPY DFHISIOA

copies the symbolic storage definition for the CICS ccntrcl section

of ths TSIOA. This storage definition should precede the user's defined
layout of the input/output work areas for temporary storage. The user
must code an ECU statement prior to the CCPY statement to set up a

kase register for the TSIOA, equating the label TSIOABAR tc a program
register. The address of the length field labeled TSIOAVRL is given

to Temporary Stcrage Contrcl either through the TSCADDR=parameter
operand of the DFHTS macrc instruction or by placing it in the TCA

at TCATSDA. tThe fcllowing is an example c¢f the coding required:

27

TSIOABAR EQU 6
CQOPY DFHISIOA

PACENO D5 PL2

TITLE DS CL30

LINE1 DS CL70
DFHTS TYPE=GET
1 TSICABAR,TCATSTCA
SH TSIOABAR,=H'8!

Storage Accounting Area (SAA)

S r el =< - ——— ———

The statement

CCPY DFHSAADS

copies the symbclic storage definition for the SaAA.

This storage

definiticn shculd precede the user's defined layout of a unigue work

area he will use within his applicaticn progranm.

The user must code

an EQU statement prior to the COPY statement to set up a base register

for the SAA, equating the label SAACBAR tc a program register.

The

fcllowing is an example of the coding required:

SAACBAR ECU 9
COPY DFHSAADS
SYMBLA ECU *
NAME DS CL59
STREET DS CIL15%
SYMBLE ECU *~SYMELA
CFHSC

CLASS=U3ER

L SAACEAR,TCASCSA

EXAUPLE OF CICS ASSEMBLELS LANGUAGE

Figure 9 illustrates an Asserbler
under CICS. The frogram issues four
a question of the terminal operatcr,
acquires some storage, and sends the
terminal. (The line numbers are not

23

TYPE=GRTMAIN,INITIMG=CO,NUMBYTE=SYMELR,

APPLICATION FROGERAHM

language program written to run
CICS macro instructions, asks
receives a reply, dynamically
operatcr's message back to the
part of the program.)

01 BASEREG ELU 2
02 TICTTEAR EQU 1
C3 TIOAEAR EQU 10

ou CCPY CLFHCSADS

05 CCPY TFHTICADS

N6 LENGTH DS H

07 MESSAGE TS CLu9

c8 CCPY DFHTCTTE

09 CCPY DFHTIOA

10 MESSG DS CLud

11 CSECT

12 BALR BASEREG,D

13 USING *,BASEREG

14 L TCTTEAR,TCAFCAAA
15 L TICAEAR,TCTTEDA
16 MvC MESSG,=C'WHAT LANGUAGE AM I CCDED IN!
17 MVC TIOATDL ,=H"'27"
18 DFHIC TYPE=(WRITE,REAL,WAIT)
19 L TICAERR,TCTTEDA
20 MvC LENGTH,TIOATDL
z1 Mvce MESSAGE,MESSG

22 DFHSC TYPE=GETMAIN,

Zz3 CLASS=TERMINAL,
24 INITING=U4D,

25 RUMBYTE=40

26 L TIOABAR,TCASCSA
27 ST TIOAEAR,TCTTEDA
28 MVC MESSG,MESSACGE

29 MVC TIOATCL ,LENGTH
-30 DFHIC TYPE=WRITE

21 CFHPC TYPE=RETURN

32 LTIORG

33 END

Figure 9. Example of CICS Assembler language application program

A discussion of the significance of each of the lines of Figure
9 follows.

SIATEMENT NUMBER DESCRIPTION
01 Assigns base register for progranm.
02-03 Ascsigns base registers for TCTTE and TIORZ
symbclic storage definitions
04-05 Copies CSA and TCA symbolic storage definitions.
06-07 Defines fields in TWA as save areas to provide
for quasi-reentrance.
08-09 Copies TCTTE and TIOA symbolic storage
definitions.
10 Defines message area in TIOA.
11-13 Begins program; establishes addressability
for program.
14 Establishes addressability: for TCTTE.
15 Establishes addressability for TIOA.
16 Moves message tc output area of TIOA.
17 Moves length of message to data length field
cf TIOA.
18 CICS macro instruction that writes message

to terminal, waits fcr operatort's reply, and
rcads operator's reply.

19 Establishes addressability for new TIOA using
address in TCTTE.

3*

29

STATEMENT NUMBER DESCRIPTION

L L RIp P 2L T s PSS A S T)4

20-21 Saves the message and the length of the
message in the TWA save areas.
22-25 CICS macro ianstructicn that requests 40 bytes
cf terminal type storage initialized to rlanks.
26 Establishes addressability for new TIOA

(address of newly-acgquired storage area is in
TCASCSA field of the TCa).

27 Places address of new storage area in TCTTE.
28-29 Moves the message and the length of the message
frcm THA save areas.
30 CICS macro instruction that writes message
tc terminal.
31 CICS macro instruction that returns control
to CICS and terminates this task.
32-323 Required for Assembler language.

el SSSSS SLASSSLsSSa seSsaeas

The applicaticn programmer who programs in ANS COBOL must define
storace fcr the ccntrcl areas and any other storage areas required
for the processing of his prcgram. He accomplishes this (1) by use
of the COPY statement in the Linkage Section of the Data Division to
copy the symbolic storage definitions intc his program and specify
the names cf the storage areas being defined and (2) by use of the
MOVE statement in the Procedure Division to establish addressability
through the mcving of symkclic storage addresses from omne location
tc ancther.

The programmer uses normal ANS COBOL code with the exception that
(1) CICS macrc instructicrns must be used to invoke CICS services and
(2) the unique stcrage areas provided by cor acquired thkrough CICS
should be used for the retertion of data. The Working Storage section
cf an ANS COBOL prcgram shculd only be used to contain data constants.
Variatle data should ke placed in the CICS Transacticn Work Area (TWA)
cr in an area of main storage acquired via the DFHSC TYPE=GETMAIN macro
instruction.

In the CICS/TOS-ENTRY system, a fresh ccpy of the program is used
each time the task is rclled tack in after a rcllout. Therefeore, any
data fields established in the prcgram before rcllout occurs must be
reestablished after subsequent rollin.

See the secticn "Supervisory and Data Management Services" for a
listing of ANS COBCL features that may not lre used.

The statement
01 TFHELLDS COPY DFHELLDS.

must be thte first statement in the Lirkage Section of the Data Division.
This statement ccpies the symtclic storage definiticn for the Linkage
Secticn Base Locator (BLL) which provides the means whereby an ANS

COBOL program can request dynarically acquired CICS storage areas.
Included in this definiticn is the symbelic base address for the CSA
and TCA.

If the ANS CCBCL programmet desires to use CICS storage areas cther
than the CSA and TCA, immediately fcllowing the COPY statement for
the BLL he must ccde statements of the form

02 name EICTURE S9(8) USAGE IS COMEUTATICNAL.

30

Page of SH20-1047-4

Revised April 11, 1973

By TNL SN20-9012
where "name" is the symbolic base address used to locate a specific
storage area. These 02 statements must be coded in the same order as
the corresponding 01 statements coded subsequently.

If the user is going to communicate with the system via a terminal,
he needs a Terminal Input/Output Area (TIOA) and a Terminal Control
Table terminal entry (TCTTE). The following is an example of the coding
required in the Linkage Section of the Data Division:

01 DFHBLLDS COPY DFHBLLDS.
02 TCTTEAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COPY DFHTCADS.
01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COPY DFHTIOA.

If the user wishes to access a series of chained storage areas (areas
that contain a pointer to the next area in the chain), he must establish
addressability to each new storage area in the chain by inserting a
paragraph name immediately following any MOVE statement that establishes
addressability but prior to the next sequential statement. For example:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 USERPTR PICTURE S9(8) USAGE IS5 COMPUTATIONAL.

01 DFHTCADS COPY DFHTCADS.
02 TWAFIELD PICTURE X (U4).

01 USERAREA.
02 FIELD PICTURE X (4).
02 NEXTAREA PICTURE S9(8) USAGE IS COMPUTATIONAL.

PROCEDURE DIVISTION.

MOVE NEXTAREA TO USERPTR.
ANYNAME.
MOVE FIELD TO TWAFIELD.

In this example, storage areas are chained, each of which is mapped
or defined by USERAREA. The first MOVE instruction establishes
addressability to the next area in the chain. The second MOVE
instruction moves data from the newly addressed area, but only because
the paragraph name precedes the second MOVE instruction; in the absence
of the paragraph name, data is moved from the previously addressed area
rather than from the new area. Note that a paragraph name is not needegd -
if addressability to an area is obtained via a field in some other area
(for example, the TCA).

If the object of an "OCCURS DEPENDING ON" clause is defined in the
linkage section, special consideration is required to ensure the correct
value is used at all times. In the following example, FIELD-COUNTER
is defined in the linkage section and if the MOVE FIELD-COUNTER TO

31

Page of SH20-1047-4

Revised April 11, 1973

By TNL §N20-9012
FIELD-COUNTER statement is missing, unpredictable results will occur
when referencing DATA.

LINKAGE SECTION.
01 DFHFWADS COPY DFHFWADS.

02 FIELD-COUNTER PIC 9 (4) USAGE IS COMPUTATIONAL.
02 FIELDS PIC X(5) OCCURS 1 to 5 TIMES

DEPENDING ON FIELD-COUNTER.
02 DATA PIC X (20).

PROCEDURE DIVISION.

DFHFC TYPE=GET, etc.
MOVE TCAFCAA TO FWACBAR.
MOVE FIELD~COUNTER TO FIELD-COUNTER.
MOVE DATA TO TWA-FIELD.

The extra MOVE statement to FIELD-COUNTER causes COBOL to
re-establish the value it uses to compute the current number of
occurrences of FIELDS and therefore, can correctly determine the
displacement of DATA.

An area defined in the Linkage Section that is greater than 4095

bytes in length requires special consideration. Required are an extra
02-level statement under DFHBLLDS and an extra statement to establish

31,1

addressability. For example, if a FWA (File Work Area) exceeds #4095
bytes, the following is an example of the code required:

LINKAGE SECTION
01 DFHBLLDS COPY DFHBLLDS.

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL,
02 FWABR1 PICTURE S9(8) USAGE IS COMPUTATIONAL.

-

01 DFHFWADS COPY DFHFWADS.
02 FIELD1 PICTURE X (4000).
02 FIELD2 PICTURE X (1000).
02 FIELD3 PICTURE X (400).

PROCEDURE DIVISION.

DFHFC TYPE=GET, *

MOVE TCAFCAA TO FWACBAR.
ADD 4096 FWACBAR GIVING FWABR1.

If an application program is to be compiled under CICS/0S using the
Full ANS COBOL V4 Compiler (5734-CB2) with the optimization (OPT)
feature, a special compiler control statement must be inserted at
appropriate places within the program to obtain addressability to a
particular area of main storage. This control statement has the form:

SERVICE RELOAD fieldname.
where "fieldname" is the symbolic name of a specific storage area, and
wvhere "fieldname" is also defined in an 01-level statement in the
Linkage Section. The first two statements of the Procedure Division
must always be

SERVICE RELOAD DFHBLLDS.
SERVICE RELOAD DFHCSADS.

Statements such as:

MOVE TCAFCAAA TO TCTTEAR.
SERVICE RELOAD DFHTCTTE.

or

SUBTRACT 8 FROM TCASCSA GIVING TSIOABAR.
SERVICE RELOAD DFHTSTOA.

might be used to establish addressability for a particular storage
area. (Note that the SERVICE RELOAD statement must always be used.)

To establish addressability to the TCA, the following statements
must be coded:

 MOVE CSACDTA TO TCACBAR.
SERVICE RELOAD DFHTCA,

32

Note that the RELOAD statement specifies DFHTCA, not DFHTCADS.

If the applicaticn rrogram is to use the Data Language/I (DL/I)
facilities of CICS/QS as well as the V4 ANS COBCL Compiler, the first
fcur statements of the Procedure Division must be

SERVICE RELCAD DFHBLLDS.
SERVICE KELOAD DFHCSADS.
MOVE CSAOPFTLA TO CSAOPBAR.
SERVICE RELOAD CSAOQOPFL.

STATIC STCEAGE DEFINITION

During CICS initialization, the Ccmmon System Area (CSA) is
statically allocated as part of the CICS Nucleus. PFor each terminal
with which cormunication is to occur, the Terminal Control Table
terminal entry (TICTTE) is included in the statically allocated Terminal
Ccntrol Table (TCT). The ANS COBCL progratmer must provide symbolic
storage definition for the CSA and TCTTE (if needed) as fcllows.

Cemmon System Area (CSA)
The statement
01 DFHCSADS COPY DFHCSADS.

copies the symkolic storage definition for the CSA. Addressability
for the CSA is included.

If the user has appended a Common Work Area (CWA) to the CSa,
immediately fcllowing the COPY statement in the Linkage Section he
must define the record layout of the CWA. The following is an example
of the coding required:

01 CFHCSADS COPY DFHCSADS.
02 CWA PICTURE X (400).
03 FIELD1 PICTURE X (4).

Jermipnal Ceptrol Takle Terpipal Entry (ICITE)

The statement
01 DFHTCTTE CGPY DFHICTTE.
copies the synmtclic storace definition for the TCTTE and mus*t be present
in all programs requesting communication with a terminal. The user
must code the statement
MOVE TCAFCAAA TO TCTTEAR.
in the apprapriate place in the Procedure Division to
establish addressability for the TCTTE.
CYNAMIC STORAGE DEFINITION
During initiaticn and execution of a transacticn (task), the Task
Ccntrcl Area (TCA), the Terrinal Input/Output Area (TIOA), and other
storage areas required by the transaction are dynamically allocated

by CICS. The ANS CGBCL programmer must provide symbolic stcrags
definition for these storage areas as fcllows.

33

S2Z2 XSS E=ms==

The statement
01 DFHTCALS COPY DFHTICADS.

copies the symbolic storage definition for the TCA. The user must
code the statement

MOVE CSACDIA TC TCACEAR.

as the firgt statement in the Procedure Division tc establish

addressability fcr the TCA.

If the user desires to append a Transaction Work Area (TWA) to the
T™CA, immediately fcllowina the COPY statement in the Linkage Section
te must define the record layout of the TWA. The following is an
cxample of the coding required:

01 DFHICADS COPY DFHTCADS.
02 TWA PICTURE X (40).

Termipal Input/Qutput Area {TIOA)
The statement

01 DFHTICA COPY DFHTIOA.

copies the symkclic storage definition for the CICS ccntrcl secticn

cf the TICA and must be present in all prcgrams that use terminal input
records or that cutput records to a terminal. The fcllowing is an
example of the coding required to define the record(s) in the TIOA:

01 DFHTIOA COPY DFHTIOA.
02 TRANSID PICTURFE ¥XXX.
02 TICAMSG PICTURE X(20).

The user must establish addressability for the TIOA in the Procedure
Division of his prcgram by coding in the afprropriate place either the
statement

MOVE TCITIBLA TC TICAEAR.
cr the statement

MOVE TCASCSA TIC TICAEAR.,
The latter statement is ussd to establish addressatility for a new
TIOA acquired dynamically through use of a DFHSC TYPE=GETMAIN macro
instructicn and should be coled immediately following the last operand
of that macro instructicn.
File Input/Qutput Area (FIOA)

The statement

01 DFHFICA COPY DFHFIOA.

34

copies the symbolic storage definition for the CICS ccntrol section
of the FIOA and must be present in all programs requesting a "read
without aupdate”™ for an unblocked, unsegmented data set. If ISAM data
is being retrieved under CICS/0S, a 16-byte filler must be defined
pricr to the user's data definition. The fcllowing is an example of
the coding required to define the record(s) in the FIOQA:

01 DFHFICA COPY DFHFIOA.
02 FILLER PICTURE X(16). NOTE OS ISAM FILLER.
02 KEY PICTURE ¥(6).
02 NAME PICTURE X (20).
02 FIOAREC PICTURE X (74).

The user must code the statement
MCVE TCAFCAA TO FICREAR.

in the agppropriate place in the Procedure Division of his program to
establish addressability for the FIOA.

File Work Azea (FWA)
The statement
01 DFHFWALS COPY DFHFWADS.

copies the symkolic storage definition for the CICS ccntrcl section

cf the FWA and must be present in all programs performing file activity
with the excertion of a "read without update" from an unblocked,
unsagmented data set. The fcllowing is an examgle of the coding
required to define the record(s) in the FWA:

01 DFHFWADS COPY DFHFWADS.
02 KEY EICTURE X(6).
02 NAME PICTURE X{20).
02 FWAREC PICTURE X (24).

The user must code the statement
MOVE TCAFCAA T0O FWACEAR.
in the aprropriate place in the Procedure Division of his program to
establish addressability fcr the FWA.
Transient Data Input Area (TDIA)
The statement
01 CFHTDIA COPY DFHTDIA.
copies the symbolic storage definition for the CICS ccntrcl section
cf the intrapartition TLCIA and must be present in all prcgrams

requesting a GET for transient data. The following is an example of
the coding required to define the record(s) in the TDIA:

35

01 DFHTLCIA COPY DFHTDIA.
02 MESSAGE PICTURE X(25).

The user must code the statement
MOVE TCATDAA TO TDIAEBAR.

in the aprropriate place in the Procedure Division of his program to
establish acddressability fcr the TLIA.

Iransient Data Qutput Area (TDOA)
The statement
01 CFHTLCOA COPY DFHTDOA.
copies the symbolic storage definition for the CICS ccntrcl section
cf the intrapartition TDOA and shculd bes present in all programs
requesting a PUT to transient data. The following is an example of
+he coding required to define the record(s) in the TDOA:

21 TFHTIDCA COPY DFHTLOA.
02 MESSACE PICTURE X (20).

The user must code the statement
MOVE TCASCSA TC TDCAEBAR.
in the argprcpriate place in the Procedure Division of his program to

establish addressability for the TDOA.

Temporary Storage Inpui/Qutrut Azea (TSIOA)

01 DFHTSICA COPY DFHTISIOA.

copies the symkolic storage definition for the CICS ccntrcl section

of the TSIOA and should be rresent in all programs using temporary
storage. The fcllowing is an example of the coding required to define
the record(s) in the TSICA:

01 DFHTSIOA COPY DFHISIOA.
02 LATA PICTURE X(190).

To estaktlish addressability for the TSIOA, the user must code in
the approrriate place in the Proc2dure Division of his prcgram the
statements

MOVE TCATSTLA T0O TSIOAEAR.
SUETRACT 8 PRCM TSICARAR.

if the request is a GET frcm temporary storage., or the statement
MOVE TCASCSA TO TSIOABAR.
if the request is a PUT tc temporary storage and the user has just

dynamically acquired an I/0 area. 1In the case of a PUT, the symbolic
address of the data is located at TSIOAVRL.

36

Stcrage Accounting Area (SAR)

The statement
01 DFHSAADS COPY DFHSAADS.

copies the symkclic storage definiticn for the SAA. This storadge
definiticn shculd precede the definiticn of user storage acquired
through the DFHSC TYPE=GETMAIN,CLASS=USER macro instruction. The

fcllowing is an example of the coding reguired to define the record(s)
in the SAA:

01 DFHSAADS COPY DFHSAADS.
02 NAME EICTURE X (20).
02 SAAREC PICTURE X (10).

.
The user nust code the statement
MOVE TCASCSA TO SAACEAR.

in the arpropriate place in the Procedure Division of his program to
establish addressability for the SAA.
EXAMPLE OF CICS ANS COBOL APPLICATICN PEOGRAM

Figure 10 illustrates an ANS COBOL program written to run under
CICS. The rrcgram issues four CICS macro instructions, asks a question
of the terminal operator, receives a reply, dynamically acquires some

storage, and sends the operator's messagz: back to the terminal. (The
line numbers are not part cf the program.)

37

IDENTIFICATION DIVISION.

02 PRCGRAM-ID.

03 "CELSPRB'.

ou ENVIRCNMENT DIVISICN.

15 DATA CIVISIQN.

06 LINKAGE SECTION.

17 01 DFHRLIDS COPY DFHBLLDS.

8 02 TCTTEAR PICTURE S9(8) USAGE IS CCMEUTATIONAL.
09 02 TICAFASF PICTURE S9(8) USAGE IS CCMEUTATIONAL.
10 01 DFHCSaDS COPY DFHCSADS.

1 01 DFHTCADS COPY DFHTCADS.

12 02 SAVE-LENGTH PICTURE S9(8) USAG® IS COMPUTATIONAL.
13 C2 SAVE-MESSAGE PICTURE X (49).

14 01 DFHICITTF COPY DFHICTTE.

15 01 DFHTICA COPY DFHTIOA.

16 02 TICAMSG PICTURE X (40).

17 ERCCEDURE DIVISION.

18 MCVE CSACDTA TO TCACBAR.

19 MOVE TCAFCARR TC TCTTEAR,

20 MOVE TCTITEDA TO TTOABAR.

Z1 MOVE 'IS THIS A COBOL OR A PL/I PROGRAM' TC TIOAMSG.
22 MOVE 33 T TICATDL.

23 DFHTC TYPE= (WRITF,READ,WAIT)

24 MOVE TCTITEDA TO TIOAEBAR.

25 MCVE TICATDL TO SAVE~LENGTH.

26 MCVE TICAMSG TO SAVE-MESSAGE.

27 DFHSC TYPF=GETMAIN,

28 NUMBYTE=40,

29 INITING=L4O,

30 CLASS=TERMNINAL

kR | MOVE TCASCSA TO TIOABAR.

32 MOVE TICAEAR TO TCTTEDA.

33 MOVE SAVE-MESSAGE TO TICAMSG., NOTE MCVE MSG TCO I/0O ARFA.
34 MOVE SAVE-LENGTE 10 TIQATDL.

35 CFHTC TYPE=§RITE

36 DFHPC TYFE=RETURN

Figure 10.

Example of CICS ANS COBOL application prcgranm

A discussion of the significance of each of the lines of Figure
10 £fcllows.

38

NUHBEE DESCRIPIION

Required for ANS COBCL.

Start of Iinkage Section.

Copies symkclic storage definiticn for BIL;
ccrtains addresses of CICS storage areas.

Ad¢ addresses for TICITE and TIOA (required

for statements 14 and 15).

Corpies symkclic storage definition for CSA.
Cories symbclic storage definition for TCA.
Defines save areas in TWA to ensure reentrance
(SAVE~-LENGTH and SAVE-MESSAGE are used to

save orerator's rerply).

Copies symbclic storage definition for TCTTE.
Cories symbclic storage definition for TIOA.
PDefines message area in TIOA.

Required for ANS COBOL (start of Procedure
Division).

Establishes addressability for TCA, TCTTE, and
TIOA (CICS establishes addressability for BLL
and CsSa).

Page of SH20-1047-4
Revised April 11, 1973

By TNL SN20-9012
21 Moves message to output area of TIOA.
22 Moves length of message to data length field of
TIOA.
23 _ CICS macro instruction that writes message to

terminal, waits for operator's reply, and reads
operator's reply.

24 Establishes addressability for new TIOA using
address in TCTTE.
25 Saves length of message in TWA.
26 Saves messade in TWA.
27-30 CICS macro instruction that requests 40 bytes

of terminal storage initialized to blanks
(terminal storage is chained to Terminal Control
Table).

31 Establishes addressability for new TIOA (address
of newly-acquired storage area is in TCASCSA
field of the TCh).

32 Places address of new storage area in Terminal
Control Table.

33 Moves message to output area (TIOA).

34 Moves length of message to output area.

35 CICS macro instruction that writes message to
terminal.

36 CICS macro instruction that returns control to
CICS.

PL/I APPLICATION PROGRAMMING

The PL/I programmer must define storage for the CICS control areas
and any other CICS storage areas required for the processing of his
program. He accomplishes this by using a statement of the form

%INCLUDE (name);

to (1) copy the appropriate symbolic storage definition into his program
at the place where the %INCLUDE statement appears and (2) specify the
name of the storage area being defined.

The source code provided by CICS in response to a %INCLUDE statement
is in the form of based structures. These structures describe the
attributes of the storage areas and include pointer variables that
provide the addresses of the actual locations in storage that the
structures describe.

A PL/I program written to run under control of CICS must be written
with the following considerations and restrictions:

1. Include the REENTRANT option in the initial PROCEDURE statement
to satisfy the CICS requirement that code be quasi-reentrant.
For example: PL1PROG: PROCEDURE OPTIONS (MAIN,REENTRANT);

2., Use CICS macro instructions to request all CICS services.

3. PL/I object modules from separate compilations cannot be
link-edited into a single executable program. For subprogram
- linkage, use the DFHPC TYPE=LINK macro instruction.
See the section "Supervisory and Data Management Services" for a
listing of PL/I features that may not be used.
STATIC STORAGE DEFINITION
During CICS initialization, the Common System Area (CSRA) is

statically allocated as part of the CICS Nucleus. For each terminal

39

with which communication is to occur, the Terminal Control Table
terminal entry (TCTTE) is included in the statically allocated Terminal
Control Table (TCT). The PL/I programmer must provide symbolic storage
definition for the CSA and TCTTE (if needed) as follows.

39.1

Common System Area (CSA)
The statement
%INCLUDE (DFHCSADS) ;

copies the based structure that symbolically defines the CSA.
Addressability for the CSA is included.

To define areas in the work area portion of the CSA, the PL/I
programmer must provide, immediately following the %INCLUDE (DFHCSADS)
macro instruction, coding such as the following:

DECLARE 1 DFHCSAWK BASED (CSACBAR),

2 CSAFILL CHAR(512),
2 USERLBL1 attributes,

2 USERLBLn attributes;

Terminal Control Table Terminal Entry (TCTTE)

The statement
%INCLUDE (DFHTCTTE) ;

copies the based structure that symbolically defines the TCTTE and must
be present in all programs requesting communication with a terminal.
Addressability for the TCTTE is included.

DYNAMIC STORAGE DEFINITION

During initiation and execution of a transaction (task), the Task
Control Area (TCA), the Terminal Input/Output Area (TIOA), and other
storage areas required by the transaction are dynamically allocated by
CICS. The PL/I programmer must provide symbolic definition for these
storage areas as follows.

Task Control Area (TCA)

The statement
%INCLUDE (DFHTCADS);

copies the based structure that symbolically defines the TCA and
establishes addressability.

The latter part of the based structure consists of a DECLARE
statement that is not terminated by a semicolon. The user must complete
the declaration of the TCA structure by supplying a dummy ending (for
example, a semicolon) or, if a Transaction Work Area (TWA) is desired,
by supplying further declaration. The following is an example of the
coding required:

%INCLUDE (DFHTCADS) ;
2 TWA CHAR (40);

40

Terminal Input/Output Area (TIOA)

The statement
%INCLUDE (DFHTIOA);

copies the based structure that symtolically defines the CICS control
section of the TIOA and establishes addressability. This statement
must be present in all prcgrams that use terminal input records or
that output records to the terminal. The application programmer must
ccmplete the declaration c¢cf the TIOA structure by supplying a dumnmy
ending (for example, a semicolon) or by supplying further declaration
of the input/cutput area. The following is an example of the coding
required:

%INCLUDE (DFHTIOA);
2 NAME CHAR(20),
2 STREET CHAR(20);

DFHSC TYPE=GETMAIN, *
NUMBYTE=XX, *
CLASS=TERMINAL

TIOABAR=TCASCSA; /* TCASCSA FIELD OF TCA CONTAINS ADDRESS

OF NEWLY-ACQUIRED STORAGE */

File Input/Output Area (FIOA)

The statement
%INCLUDE (DFHFIOA);

copies the based structure that symbolically defines the CICS control
section of the FIOA and must be present in all programs requesting

a "read without update" fcor an unblocked, unsegmented data set (file).
The user must ccmplete declaration of the FIOA. He must establish
addressability for the FIOA using the statement

FIOABAR=TCAFCAA;

If ISAM is being retrieved under CICS/0S, a 16-byte filler must be
defined pricr toc the user's data definition. The following is an
example of the coding required:

%INCLUDE (DFHFIOA);
2 PILL CHAR(16), /%0S ISAM FILLER%*/
2 NAME CHAR(20),
2 ADDR CHAR(20) ;

FIOABAR=TCAFCAA;

41

File Work Area (FWA)
The statement
%®INCLUDE (DFHFWADS);

copies the based structure that symbolically defines the CICS control
section of the FWA. This statement should precede a user-declared
file record area when reading or updating an existing blocked or
segmented record, when aéding a new record to a data set (file), or
when retrieving records using the browse technique. The user nmust
ccmpleta declaration of thke FWA. He must establish addressability
for the FWA using the statement

FWACBAR=TCAECAA;
The following is an example of the coding required:

%INCLUDE (CFHFWALS);
2 NAME CHAR (20),
2 ADDR CHAR (20);

FWACBAR=TCAFCAA;

Trapsient Data Ipput Area (TDIA)

The statement
%INCLUDE (DFHTDIA) ;

copies the Lased structure that symbolically defines the CICS control
section cf the intrapartition TDIA and must be present in all programs
requesting a GET for transient data. The user must complete declaration
of the TDIA. He must establish addressability for the TDIA using the
statement

TDIABAR=TCATDAAL;
The following is an example of the coding required:

XINCLUDE (BFHTDIA);
2 MSG CHAR(40);

TDIABAR=TCATLCAA;

Irapsient Data Qutput Area (TDOA)
The statement
%¥INCLOLCE (DFHTDOA) ;
copies the based structure that symbolically defines the CICS control
section of the intrapartition TDOA and should be present in all programs

42

requesting a PUT to transient data (for consistent documentation of
the user's programs). The user must complete declaration for the TDOA.
He must establish addressability for the TDOA using the statement

TDOABAR=TCASCSA;
The fcllowing is an example of the coding required:

%INCLUDE (DFHTDOR) ;
2 TIME CHAR(2),
2 DATA CHAR(3),
2 INTERM CHAR(4),
2 OUTTERM CHAR(4);

CFHSC TYPE=GETMAIN, *
NUMBYTE=XX, *
CLASS=USER

TDOABAR=TCASCSA;

Temporary Storage Input/OQutput Area (TSIOR)
The statement
%INCLUDE (DFHTSIOA);

copies the based structure that symbolically defines the CICS control
section of the TSIOA and should be present in all programs using
temporary storage. The aprlicaticn programmer must complete declaration
for the TSIOA. He must establish addressability fcr the TSIOA using
ccding such as:

DCL TSIOAEAA FIXED BIN(30) BASED (TSIOAEAB);
TSICABAR=TCATSIA;
TSTIOAEBAB=ADDR (TSIOABAR) ;
TSICAEAA=TSIOAEAA - 83

if the request is a GET from temporary storage, or the statement

TSIOABAR=TCASCSA;

if the request is a PUT tc temporary storage, and the user has djust
dynamically acquired the I/0 area. 1In the case of a PUT, the symboli
address of the data is located at TSICAVRL.

The statement
%INCLUDE (DFHSAADS);

copies the based structure that symbolically defines the SAA and shouyld
be present in all prcgrams reguesting stcrage through use of the DFHSC
TYPE=GETMAIN,CLASS=USER macro instruction. This statement should
rrecede the definition of user storage. The application programmer

rust complete declaration for the SAA. He must establish addressability
for the SAA using the statement

SAACEAR=TCASCSA;

43

The following example illustrates the coding required:

V%INCLUDE (DFHSAALS) ;
2 MSG CHAR(40);

DFHSC IYPE=GETMAIN,

*
NUMBYTE=60, *
CLASS=USER

SAACBAR=TCASCSA;
EXAMPLE OF CICS PL/1 APPLICATION PROGRAM
Figure 11 illustrates a PL/I program written to rum under CICS.

The program issues four CICS macio instructiomns, asks a question of

the terminal operator, receives a reply, dynamically acquires some

storage, and sends the operator's message back to the terminal. (The

line numbers are not part of the prcgram.)

01 PL1FRCG: ERCCEDURE CPTIONS (MAIN,REENTRANT) ;

02 %INCLUDE (DFHCSALS);

03 ®INCLULCE (LDFHTCALS):

cu 2 SAVE?LENGTH BINARY FIXED (195),

05 2 SAVE_MSG CHAR (40);

c6 $INCLULCE (DFHTCTTE) ;

7 %INCLUDE (DFHTIOA) ;

Cc8 2 TICAMSG CHAR(40);

Cc9 TICAMSG='IS THIS A COBCL OF A FL/I PHCGRAM';

10 TIOATDL=33; ’

11 DFHTC TYFE=(WRITE,REAL,WAIT)

12 TIOAEAR=TCITEDA;

13 SAVE_LENGTH=TIOATDL;

14 SAVE_MSG=TIOAMSG;

15 DFHSC TYPE=GETMAIN, *

16 KUMBYTE=40, *

17 INITIMG=40, *

18 CLASS=TERMINAL

19 TICABAR=TCASCSA;

20 TCTTEDA=TIOAEAR;

21 TICAMSG=SAVE_MSG;

22 TICATDL=SAVE_LENGTH;

23 DFHTC TYPE=WRITE

24 END;

Fiaure 11. Example of CICS EL/I application program

44

A discussion of the significance of each of the lines of Figure

11 follows.

STATEMENT NUMBER

01

02
03

o0u-05

06
07
08
09
10

1M

12
13-14

15-18

19

20
z21-22
23

24

DESCRIETION

Required for PL/I. EEENTRANT opticn

specified to meet requirement of CICS that
code be quasi-reentrant.

Retrieves synbclic storage definition for CSA
and establishes addressability.

Retrieves symbclic storage definition for TCA
and establishes addressability.

Defines the TWA and terwmirates the DECLARE
statement. SAVE_MSG and SAVE_LENGTH are used
to preserve the operator's reply.

Retrieves symbolic storage definition for
TCTTE and establishes addressability.
Retrieves symbolic storage definition for TIOA
and establishes addressability.

Cescrites I/0 area for terminal message and
terminates the DECLARE statement.

Places message to lke sent to operator in the
TICA.

Places the message length in the terminal data
length field of the TIOA.

Writes the message to the terminal, waits for
the cperator's reply, and reads the operator's
reply.

Reestablishes addressability for the TIOA
using address in the TCTIE.

Saves the operator's message and message length
in the TCA.

CICS macro instructicn that requests 40 bytes
of terminal storage initialized to blanks
{terminal storage is chained to Terminal Contro
Table).

Establishes addressability for the new TIOA
(the address of the newly acquired storage is
in the TCASCSA field of the TCh).

Places address of new TIOA in Terminal Control
Takle.

Moves message and length of message to output
area (TIOA).

CICS macro instruction that sends operator's:
message back to the terminal.

Return ccntrecl to CICS.

1

45

CICS provides superviscory and data management services through CICS
management fprcgrams., These services and related management programs
are as follows:

Task services - Task Management

Storage services - Stcrage Management

Program services - Prcgram Management

Dump services - Dump Management

Terminal services - Terminal Management

File services - File Management

Transient data services - Transient Data Management
Temporary storage services - Temporary Storag¢ Management
Time services - Time Management

Each of the CICS management programs performs the following Lkasic
functions:

1. Analyzes the specific service request of applicaticn programs
or other CICS rrograms. ’

2. Performs the requested service by communicating with the
operating system, as necessary, through macrc instructions.

3. Retains the status of each service request until the service
is provided.

4, Maintains statistical informatiocn that can be used to evalulate
system rerfcrmance.

IASK SERVICES

Task Management provides the capability to procsess transactions
(tasks) concurrently. Transactions are scheduled, through Task Ccntrol,
and are processed according to priorities assigned by the user. Control
of the central processing unit (CPU) is given to the highest priority
task that is ready to be rrocessed. Control of the CPU is returned
to the operating system when nc further work can be done by CICS or
by the user-written aprlicaticn rrogranms.

When a transaction is initiated in CICS, Task Control dynamically
allocates storage for the Task Contrcl Area (TCA), attaches the TCA
to the TCA chain according to priority, obtains the initial program
identification frcm the Program Control Table (PCT), and transfers
contrcl tc Prcgram Control.

The Task Management macic instruction (DFHKC) is used to regquest
any of the following services:

Initiate a task.

Change the priority of a task.

Synchrcnize a task.

Synchronize the use of a resource by a task.

Purge a task on system overload (if the optional stall
protection feature has been installed).

NEWN -
L

46

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012
The following operands can be included in the DFHKC macro
instruction: ‘

DFHKC TYPE=ATTACH, . *
FCADDR=symbolic address, *
TRANSID=name

DFHKC TYPE=CHAP, *
PRTY=priority value

DFHKC TYPE=WAIT, *
DCI=SINGLE,LIST,DISP, ' *
ECADDR=symbolic address

DFHKC TYPE=ENQ,DEQ, *
QARGADR=symbolic address, *

QARGLNG=number
DFHKC TYPE=PURGE,NOPURGE

The number of tasks that can be active within the sytem at a given
time is limited by the availability of main storage and/or by the
"maximum number of tasks" control. A new task is not initiated by CICS
unless sufficient main storage is available to process it. 1Imnstead,
the request to initiate a task is queued (stored) until sufficient main
storage becomes available.

INITIATE A TASK (ATTACH)
Task initiation within CICS is invoked by issuing the

DFHKC TYPE=ATTACH, *
FCADDR=symbolic address, *
TRANSID=name

macro instruction. This macro instruction causes Task Control to obtain
the controlling area for a task and insert that task within priority
sequence. This macro instruction is intended to be used by other CICS
control modules, but is also available for use by the application
programmer to initiate additional tasks. Any additional tasks initiated
by the application programmer must terminate themselves through use of
the Program Control (DFHPC) RETURN macro instruction.

FCADDR= specifies the symbolic address of a facility control area.
This is typically the address of the attaching task's TCA or a reserved
field in the CSA. The purpose is to establish communication between
the attaching task and the attached task.

TRANSID= specifies the transaction identification of the attached
task.

If the DFHKC TYPE=ATTACH macro instruction is used by the application
programmer, he has the responsibility to provide the facility control
area address and transaction identification required by CICS to initiate
a new task. He can accomplish this in either of two ways: (1) by
including the FCADDR=symbolic address operand and TRANSID=symbolic name
operand in the DFHKC TYPE=ATTACH macro instruction to statically assign
to fields in the TCA a facility control area address and a transaction
identification for the duration of the task, or (2) by coding two
instructions, prigor to issuing the DFHKC TYPE=ATTACH macro instruction,
that provide the capability to dynamically assign to fields in the TCA
a facility control area address and a transaction identification. (See
the discussion of the TCA in the section "Storage Definition".)

47

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

The specified task will not be attached if the transaction
identification is not in the PCT or the program name is not in the PPT.
If this situation exists or the attached task ABEND, a message is sent
to the operator, but the attaching task will not be notified of the
condition. Therefore the TYPE=ATTACH macro instruction must be used
with extreme caution by the application programmer.

For all transactions associated with a terminal, the Facility Control
Area address is the address of the TCTTE for the terminal. This address
provides access to control information contained in the Terminal Control
Table necessary for communication between the program logic and the
terminal.

Although it is possible to attach a task directly to a terminal by
using the ATTACH macro instruction, the application programmer or user
should consider utilizing one of the following methods:

e Automatic task initiation through Transient Data Management

e Automatic task initiation through Time Management (Interval Control
program)

e Tdentification of the transaction ID to be used with the next input
message from the terminal by means of DFHPC TYPE=RETURN macro
instruction.

The following flowchart shows Task A attaching Task B and
synchronizing the processing steps of both tasks through use of the
facility control address passed to the newly created task at attach
time. Note that Task B is a non-terminal oriented task, therefore
unable to use Terminal Control macros. TFCADDR specifies the address
of Task A's TCA; ECB1 and ECB2 are fields in the TWA for Task A.

47,1

TASK A

ATTACH TASK B

WAIT ON ECB1

(Note 1)

IF TASK'B’

IS LOWER IN
PRIORITY T
BECOMES
ACTIVE HERE

PROCESSING STEP 2

POST
ECB2

GIVE UP CONTROL
BY A WAIT OR PC
RETURN

AND POINT

FCADDR TO

ECB1
|F TASK’B' IS
HIGHER IN

— —— — PRIORITY,IT

BECOMES
ACTIVE HERE

TASK ‘A’ IS AWARE
THAT TASK ‘B’ HAS
COMPLETED

PROCESSING STEP 1.

TASK B

OBTAIN ADDRESS
OF ECB1 AND
ECB2 BY USE OF
ADDRESS NOW

IN TCAFCAAA

PROCESSING STEP 1

POST ECB1 TO MAKE|
[TASK 'A’
DISPATCHABLE

WAIT ON ECB2
(Note 2)

TASK 'B' IS AWARE
OF COMPLETION
OF BOTH STEP 1
AND STEP 2

Note 1;

TASK 'B’ GIVES
UP CONTROL HERE

___ __TASK'B' REGAINS

CONTROL HERE

PROCESSING
STEP3

If TASK B is not attached
(e.g. Trans 1.D. not in PCT},
orif TASK B ABENDS,ECB 1

may never be posted.

Note 2; If TASK A ABENDS, ECB2

may never be posted.

47.2

Most tasks running under CICS are initiated (attached) at a terminal
and are thus associated with a terminal. Tasks initiated by CICS
management programs (for example, automatic task initiation of Transient
Data Control) may or may not be associated with a terminal. If not
associated with a terminal, the Facility Control Area address can serve
as a pointer to additional facility control information required for
the execution of the task. TFor example, it can be the address of an
entry in the Destination Control Table that is associated with a
hardware resource (terminal, data set, etc.).

The transaction identification is used only for the current ATTACH;
it is not carried in the TCA for the duration of the task.

The following example illustrates the coding required to statically
provide a facility control area address and transaction identification:

DFHKC TYPE=ATTACH, INITIATE NEW TASK *
FCADDR=FACCTL, USER'S FCA ADDRESS *
TRANSID=TRN1 TRANSACTION IDENTIFICATION

The following examples illustrate the coding required to dynamically
provide a facility control area address and transaction identification.

For Assembler lanquage:

MVC TCAKCTI,=CL4'TRN1? TRANSACTION IDENTIFICATION
MVC TCAKCFA,=A(FACCTL) USER'S FCA ADDRESS
DFHKC TYPE=ATTACH INITIATE NEW TASK

For ANS COBOL:

MOVE *'TRN1' TO TCAKCTI. NOTE TRANSACTION IDENTIFICATION.
MOVE FACADR TO TCAKCFA. NOTE USER'S FCA ADDRESS.
DFHKC TYPE=ATTACH INITIATE NEW TASK

For PL/I:
TCAKCTI='"TRN1'; /*TRANSACTION IDENTIFICATION*/
TCAKCFA=FACADR; /*USER'S FCA ADDRESS*/
DFHKC TYPE=ATTACH INITIATE NEW TASK

CHANGE PRIORITY OF A TASK (CHAP)

The dispatching priority of an existing task can be changed by
issuing the

DFHKC TYPE=CHAP, *
PRTY=priority value :

macro instruction. This instruction is used to replace the priority
value contained in the TCATCDP field of the TCA with a value specified

48

ty the applicaticn prcgrammer. This value must be specified in the
range 0-2t55, where 255 represents the highest priority.

The application programmer can change the priority of a task in
either of two ways: (1) by including the PRTY=priority value operand
in the DFHKC TYPE=CHAP macrc instruction to statically assign to the
TCATCDP field a new dispatching priority for the duration of the task,
or (2) by coding a single instruction, prior to issuing the DFHKC
TYPE=CHAP macro instruction, that provides the capability tc dynamically
assign to the TCATCDP field a new priority value as often as desired
within a given task.

A compute bound task can vcluntarily relinquish ccntrol to all tasks
cf equal or higher priority by issuing a

DFHKC TYPE=CHAP
macro instruction. No priority value is specified.

The fcllowing example illustrates the coding required to statically
assign a new task dispatching priority value:

DFHKC TYEE=CHAP, CHANGE PRIORITY OF THIS TASK *
PRTY=255 NEW PRTIORITY VALUE

The fcllowing examples illustrate the coding required to dynamically
assign a new task-dispatching priocrity value. Note that this value

can be specified as a binary, decimal, or hexadecimal number, depending
cn the programming langquage used.

MVI TCATCDE,X'FF!' ASSIGN NEW PRICRITY VALUE

DFHEKC TYPE=CHAP CHANGE PRICRITY OF THIS TASK

For ANS CCEQL:

MOVE 255 TO TCATCDE. NOTE ASSIGN NEW FRIOCRITY VALUE.

DFHKC TYPE=CHAP CHANGE PRICRITY OF TIHIS TASK

¥or BL/X:

TCATICDP=255; /*¥ASSIGN NEW PRIORITY VALUE*/

DFHKC TYPE=CHAP CHANGE PRIORITY OF THIS TASK

SYNCHRONIZE A TASK (WAIT)
The application prcgrammer can synchronize a task with the completion

cf one or mcre events related to the same task or tc another task by
issuing the

49

CFHKC TYPE=WAIT, *
LCI=SINGLE,LIST,DISP, *
ECADDR=symbclic address :

macro instruction. This macrc instruction provides a method of directly
relinquishing contrcl tc some other task until such time as the event (s)
teing waited cn are completed. It also allows a task to be designated
as "dispatchable" to voluntarily relinguish control to tasks of a

ktigher dispatching priority.

The applicaticn programmer must specify the circumstances under
which synchrcnization of a task is to occur by including the DCI=keyword
crerand (dispatch control indicator) in the DFHKC TYPE=WAIT macro
instruction.

If the task is to be synchronized with the completion of a single
event or an event of a 1list of events, the application programmer must
specify the symtclic address of either the single event control area
or the list of event control areas. He can accomplish this in either
cf two ways: (1) Lty including the ECADDR=symbolic address operand in
the DFHKC TYPE=WAIT macro instruction, or (2) by coding a single
instructicn, pricr to issuing the DFHRC TYPE=WAIT macro imstruction,
that places the event contrcl address in the TCATCEA field of the TCA.
In either case, the contrcl area(s) referenced must ccnform to the
fcrmat and standard pcsting ccnventions associated with the operating
system (for example, ECB's in 0S/360, CCB's in DOS/360).

Felinguish Ccntrcl to a Task of Higher Priority

The DFHKC TYPE=WAIT,DCI=DISP macro instruction is used by the
applicaticn prcgrammer tc vcluntarily relinquish ccntrcl to a task
of higher dispatching pricrity. Control is returned to the waiting
task if nc other task of a higher priority is ready to be processed.

The following is an example of the coding required to voluntarily
relinquish contrcl to a task c¢f higher dispatching pricrity:

DFHRKC TYPE=WAIT, RELINQUISH CONTRCL OF CICS *
CCI=TISP AND REMAIN DISPATCHABLE

Note: When binary synchrcncus communication lines are part of the
user's confiquration, it is possible for these communication
lines to time out if "excessive" CFU time is required by the
aprlicaticn prcgram. One way to alleviate this ccandition is

to have the applicaticn program issue a DFHKC TYPE=WAIT,DCI=DISP
macro instruction to voluntarily relinquish control before the
line time out can cccur.

The DPHKC TYPE=WAIT,LCCI=SINGLE macro instruction is used by the
applicaticn programmer tc synchronize a task with the completion of
a single event initiated by the same task or by another task.

The symbclic address of the appropriate event contrcl area nmust
be provided in either of two ways: (1) by including the ECADDR=symbolic
address operand in the DFHKC TYPE=WAIT,DCI=SINGLE macre¢ imstruction,
cr (2) by coding a single instruction, prior to issuing the DFHKC
TYPE=WAIT,DCI=SINGLE macro instruction, that places the address of
the event contrcl area in the TCATCEA field of the TCA. The control
arca referenced must confcrm to the format and standard posting
ccnventions asscciated with the operating systen.

50

The
a task
of the

following is an example of the coding regquired to synchronize
with a single event, statically providing the symbclic address
appropriate event ccntrol area:

DFHRC TYPE=WAIT,
LCI=SINGLE,
ECADDR=EVENTCTL

RELINQUISH CONTRCL OF CICS *

WAIT ON SINGLE EVENT
ADDRESS OF EVENT CONTROL AREA

The
a task
cf the

fcllowing are examples of the coding required to synchronize
with a single event, dynamically providing the symbolic address
arrropriate event control area.

—— mEmLleaesSas s

ST SINGADDR,TCATCEA

-

PLACE SYMBCLIC ADDRESS IN TCA

DFHKC TYFE=WATIT,
DCI=SINGLE

RELINQUISH CONTROL OF CICS *
WATT ON SINGLE EVENT

153]

9r ANS COBCL:

MOVE SINGADDR TO TCATCEA.

NOTE PLACE SYMBOLIC ADDR IN TCA.

DFHKC TYPE=WAIT,
CCI=SINGLE

RELINQUISH CONTRCL OF CICS *
WAIT ON SINGLE EVENT

TCATCEA=SINGADDR;

/*¥PLACE SYMBCLIC ADDRESS IN TCRA*/

CFHRKC TYPE=WAIT,
LCI=SINGLE

RELINQUISH CONTRUL OF CICS *
WAIT ON SINGLE EVENT

Synchronize a Task with a List of Events

The DFHKC TYPE=WAIT,DCI=LIST macro instruction is used by the
applicaticn programmer to synchronize a task with the completion of
an element of a list of events. This list consists of a series of
contiguous four-byte fields, each field containing the symbclic address
of a single event control area., The last four-byte field of the list
ccntains hexadecimal F's.

The symbolic address of the appropriate list of event ccntrol areas
must be provided in either of two ways: (1) by including the
ECADDR=symbclic address operand in the DFHRKC TYPE=WAIT,DPCI=LIST macro
instructiocn, or (2) by coding a single instruction, prior to issuing
the DFHKC TYPE=WAIT,DCI=LIST macro instruction, that places the address
of the list c¢f event ccntrcl areas in the TCATCEA field of the TCA.

The control area recferenced by each entry in the list must conform
to the format and standard posting conventicns associated with the
operating system.

The following is an example of the coding required to synchronize

a task with a list of events, statically .providing the symbclic address
f the aprrcpriate 1list of events:

51

DFHRC TYPE=RAIT, RELINQUISH CONTRCL OF CICS *
DCI=LIST, WATT ON A LIST OF EVENTS *
ECADDR=TCPCLIST ADDRESS OF LIST OF EVENTS

The following are examples of the coding required tc synchronize

a task with a list of events, dyndmically providing the symbolic address
cf the appropriate list of events.

ST LISTADDR,TCATCEA PLACE SYMBECLIC ALDRZSS IN TCA
DFHKC TYPE=WAIT, RELINQUISH CONTRCI OF CICS *
DCI=LIST WAIT ON A LIST OF EVENTS

For ANS CCEOL:

MOVE LISTADRDR TO TCATCEA. NOTE PLACE SYMBGCLIC ADDR IN TCA.

PFHRC TYPE=WAIT, - RELINQUISH CONTRCL OF CICS *
CCI=L1IST WAIT CN A LIST OF EVENTS
For PL/I:
TCATCEA=LISTADDR; /*PLACE SYMBCIIC ADDRESS IN TCA*/
DFHKC TYPE=WAIT, RELINQUISH CONTRCL CF CICS *
CCI=11IST WAIT ON A LIST OF EVENTS

SINGLE-SERVFR FESCURCE SYNCHRONIZATION (ENC/DEQ)

In the CICS envircnment where tasks (transactions) are processed
cencurrently, it is sometimes desirable tc protect a given resource
frcm concurrent wuse by ancother task. The applicaticn programmer can,
ry adhering tc an installaticn convention, give sole ccntrol of a
serially reusable resource to a single task until that task is
ccmpletely finished with that resource. He can accomplish this by
issuing the

DFHKC TYEE=ENQ, *
CARGADR=synmtclic address, *
CARGLNG=number

macro instruction, identifying the resource. This macro instruction,
vhen executed, cauvses the task to be synchrcnized with the availability
of the specified resource; control is returned to the task when the
Iesource is available. When all prcgrams accessing a resource adhere
to the convention of "enqueing upcn" the resource, that resource is
afforded this "single-server" protection.

When a single-server resource is being used ty a task and other
tasks concurrently "enquene'" upon the same resource, the first task
to issue the DFHKC TYFE=ENQ macro instructicn receives the resourece
when it beccmes available. Thke other tasks obtain the resource, in
turn, in the order in which they enqueue upon it.

(8]
N

The application programmer can release single-server protection
frem a resource by issuing the

DFHKC TYPE=DEQ, *
CAFGADR=symrbclic address, *
CARGLNG=number

macro instruction. Task Ccntrol automatically "dequeues" all active
single-server rescurce prctection requests associated with that task
uron termination of the task.

When issuing the DFHKC TYPE=ENC macro instruction, the application
prcgrammer must identify the single-server resourcs he is enqueuing
upon by using either of the f£cllowing methods:

1. Specify a symbclic main storage address that represents the
single-server resource. If this method is used, the application
rrcgrammer must provide the syrbclic rain stcrage address by
including the QARGADR=symbclic address operand in the DFHEC
TYFE=ENQ macro instructicn or by coding ins+*ructions, prior
to issuing the DFHKC TYFE=ENC macro instruction, that place
the address in the lcw-crder three bytes of the four-byte TCATCOQA
field of the TCA. He must place binary zeros in the high-crder
Lyte.

2. Prcvide a unique argument, limited tc¢ 255 bytes and contained
at a specified symtclic main storage address, that identifies
the resource. If this method is used, the applicaticn programmer
must provide the symtolic main storage address of the argument
alcng with the length of the argument, by including the
QARGADE=syrktclic address and QARGLNG=number operands in the
CFHKC TIYEE=ENQ macrc instructicn or by coding instructions,
prior to issuing the DFHKC TYPE=ENQ macro instruction, that
place the symbclic address in the low-order three bytes of the
four-byte TCATCQA field of the TCA and the length of the argument
(in bytes) in thke tigh-order byte.

The following are examples of the coding required to enqueue upon
a single-server resource using method 1.

DFHKC TYPE=ENQ, ENQ CN SINGLE-SERVER RESOURCE *
CAKGADE=CSAHAEA SPECIFY SYMBCLIC ALDRESS
OR

LA VWORKREG,CSAWABA
ST WCEKREG,TCATCQA

DFHRC TYEE=ENQ

For ANS CCECL:

01 DFHCSALS COPY LFHCSADS.
02 CSAWAEA PICTURE X (50).

DFHKC TYFE=ENC, ENQ CON SINGLE-SERVER RESOURCE *
CAKGADR=CSAWAEA SPECIFY SYMECLIC ADDRESS

53

g

or PL/I:
%INCLUDE DFHCSALS;
CFCLAREF 1 DFHEXCSA BASEL
2 FILLER CHAR (512),
2 CSAWABA CHAR (50);

DFHKC TYPE=ENQ,
CAKGALR=CSAWAEA

OR
TCATCCA=ADLR (CSAWABA) ;

CFHAKC TYPE=ENQ

The fcllowing are examples of the coding reguired to

(CSACBAR) ,

ENC ON SINGLE-SERVER RESOURCE

SPECIFY SYMECLIC ALLRESS

a single-server resource using method 2.

DFHRKC TYFE=ENQ,
CAFGATE=SOCSECNO,

CARGLNG=9

oR
LA WOKKREG,SOCSECNO
ST WCFKREG, TCATCQA

MVI TCATCQA,S

DFHKC TYEE=ENQ

(2]

or ANS COEOL:
DPHKC TYEE=ENQ,
CARGADR=SOCSECNO,

CARGLNG=9

For BL/I:

DFHRC TYEE=ENQ,
CARGADR=SOCSECNO,
QARGLNG=9

OR

%INCLUDE DFHTCADS;

CECLARE 1 DFHEXTCA BASED
2 FILLER CHAR (20),
2 TCATCQAL BIT (8);

-

TCATCQA=ADLR (SCCSECNO) ;
TCATCQAL="00001001"'B;

54

(TCACBAR}),

engueue ufron

CFHKC TYEE=ENQ

Substituting "DEQ"™ for "ENQ" in these examples illustrates the ways
in which the aprlication programmer can release single-server protection
frcm a rescurce prior tc termination of tha associat=3 task.

PURGE A TASX ON SYSTEM OVERLOAD (FURGE/NOEUEGE)

Certain overload ccnditicns can cccur in CICS where all of a given
system resource (for examgple, main storage) has been allocated and
where each task reguires still more of that resource. The result is
a situaticn where no task is able to continue procgssing and no new
task can ke initiated; the system stalls.

If the optiocnal stall protecticn feature was provided during systenm
generation, CICS has the capability to detect certain system overlcad
conditions ard take corrective acticn. Corrective action consists,
in part, of purging (deleting) the lowest priority task in the systen
that is designated as purg=able.

A task is initially defined as purgeable or not purgeable by the
user in the Program Control Table (PCT) entry associated with the
transaction jidentification for that task. The application programmer
can dynamically change the purgeability status of a task by issuing
the

DFHKC TYFE=PURGE
macro instruction to indicate the task is purgeable, cr the
DFHKC TYEE=NOPURGE

macro instructicn to indicate the task is not purgeable. The designated
status remains in effect until ancther change is initiated or until
the task is terminated.

The DFHKC TYPE=PURGE and DFHKC TYPE=NOPURGE macro instructions have
no e€effect on the execution of a task if the stall praotection feature
is nct provided Ly the user during system generation.

STORAGE SERVICES

Storage Management ccntrols all dynamic main storage for CICS and
for the user-written application prcgrams. Requests to acquire or
release main storadge are communicated to Storage Ccntrol via a CICS
macro instruction.

CICS management programs issue requests for main storage to provide
input/output areas, prcgram lcad areas, and user-defined work areas
needed to process a transaction. The user's application program can
issue requests for main storage to provide intermediate work areas
and any cther main storage not automatically provided by CICS but
needed to process a transaction. Amny main storage acquired by the
user's application program can be initialized to whatever bit
configuration the user desires; for example, to binary zeros or EBCDIC
tlanks.

A1l main storage associated with a transaction is chained. This
allows CICS to release all main storage assocjated with a transaction

55

upon request by the user cr when the transaction is either normally
cr aknormally terminated. Main storage is accounted for as follows:

1. Task Ccntrcl Areas (TCA's) are chained off the Ccmmon Systenm
Area (CSp).

2. Transaction storage is chained off the Task Control Ar=a (TCAh).

3. Terminal storage is chained off the TICTTE (the TCTTESC field
is the crigin of the Terminal Input/Output Area (TIOA) chain;
the TCTTELA field contains the address of the current TIOA
regardless of the pcsition of that TIOA on the chain).

4. Prcgram storage is acccunted for in the Program Processing Table
(EET) .

5. Suspended tasks are accounted for ky the suspending progran
(Task Ccntrcl, Storage Contrcl, Tempcrary 5torage Control).

If there is insufficient main storage to satisfy a storage
acquisition request, Storage Ccntrcl causes the processing of that
task to ke delayed ky rlacing it in a "wait" queue until sufficient
main storage bheccmes available. 1In the meantime, no new tasks are
initiated by CICS until the "short cn storage" condition is alleviated.
The only excerticn to this method of allocating main storage occurs
in the CICS/DOS-ENTRY system where, under certain circumstances, a
"short on storage condition causes the transaction to ke abnormally
terminated unless ths COND=YES operand has teen ineluded in the DFHSC
TYPE=GETMAIN macro instruction. (See the section "Purge a Task on
System Overload" fcr corrective action that can be taken if a "system
stall" condition cccurs.)

The Storage Management macrc instruction (DFHSC) is used to request
any of the following services:

1. Acquire and initialize main storage.
2. Release main stcrage.

The fcllowing cperands can be included in the DFHSC macro
instruction:

CLFHSC TYPE=GETMAIN,
INITIMG=number,YES,
NUMBYTE=number,
COND=YES or (YES,symkolic address) or
(NO,syntclic address),
CLASS=TERMINAL,USER,TRANSDATA,TEMPSTRG

DFHSC TYPE=FREEMAIN,
RELEASE=ALL

CBTATIN AND INITIALIZE MAIN STORAGE (GETMAIN)
Requests for main storage are made by issuing the

DFHSC TYPE=GETMAIN,-
INITIMG=number,YES,
NUMBYTE=number,
COND=YES or (YES,symtclic address) or
(NO,synbclic address),
CLASS=TERMINAL,USER,TRANSDATA,TEMPSTRG

macro instruction. This instruction is used by the application
programmer to oktain main storage of a specified size and class and
is used, cpticnally, to initialize that storage to whatever bit
configuration the application prcgrammer desires. The address of the
storage area obtained upon execution of this instruction is

56

#* H ¥ %

* 3 % # »

automatically placed in the TCASCSA field of the TCA by CICS; the
storage itself is doublewcrd aligned.

Whenever the applicaticn programmer uses the DFHSC TYPE=GETMAIN
macro instruction, he must do the fcllowing:

1.

2.

3.
u.

5.

Specify the class of storage desired using the CLASS=class
operand in conjunction with the DFHSC TYPE=GETMAIN macro

instruction.

Calculate the number of bytes required and either specify that
amcunt in the NUMBYTE=number operand, or dynarically place it

in the TCASCNB field before issuing the DFHSC macro instruction.
Specify a symbolic base address for the storage area.

Move the storage address located at TCASCSA to the symbolic
base address. (This address always points to the Storage

Acccunting Area.)

Copy the symbolic storage definition for the agpropriate
input/cutput area or Storage Accounting Area prior to the
symbolic definition of the user's program storage area.

The fcllowing is an example of the coding required to request a
nev area of main storage:

DFHSC TYPE=GETMAIN,
INITING=00,
NUMBYTE=1024,
CLASS=TEFMINAL

CBTAIN NEW STORAGE AREA
INITIALIZE WITH BINARY ZEROS
SIZE OF STORAGE REQUESTED
CLASS OF STORAGE REQUESTED

The fcllowing are examples cf the coding required to dynamically
request a new area c¢f main storage.

=22 P I 22

MVI TCASCIB,B'0’
MVC TCASCNB,=H'1024"

DFHSC TYPE=GETMAIN,
INITIMG=YES,
COND=YES,
CLASS=TERMINAL

CLC TCASCSA,=F*'0°?

BE NOSTRG

L TICAEAR,TCASCSA

MOVE 0 TO TCACSIB.
MOVE 1024 10 TCASCNB.

DFHSC TYPE=GETMAIN,
INITIMG=YES,
CCND=YES,
CLASS=TERMINAL

IF TCASCSA EQUAL 0 GO 1IC
MOVE TCASCSA TO TICAEAR.

INITIALIZE WITH BINARY ZEROS
SIZE OF STORAGE REQUESTED

»

CETAIN NEW STORAGE ARERA
INITIALIZE WITH BINARY ZEROS
RETURN CONTRCL IF NO STORAGE
CLASS OF STORAGE REQUESTED
CHECK TCASCSA FIELD FOR ZEROS
BRANCH TO NOSTRG IF NO STORAGFE
LOAD REGISTER IF STORAGE FOUND

NCTE INITYALIZE WITH BINAKY ZEROS.
NOTE SIZE CF STORAGE REQUESTED.

CBTAIN NEW STORAGE AREA
INITIALIZE WITH EINARY ZEROS
RETURN CONTROL IF NO STORAGE
CLASS OF STORAGE REQUESTED

NOSTRG.

* % 3

* %

*

57

For BL/I:
TCASCIB=0; /*INITIALIZE WITH EINARY ZEROS*/

TCASCNB=1024; : /*SIZE OF STORAGE EEQUESTED*/

DFHSC TYPE=GETMAIN, OBTAIN NEWN STORAGE AREA *
INITIMG=YES, INITIALIZE WITH BINARY ZEROS *
COND= (NO, NOSTRG) , RETURN CONTRCL IF NO STORAGE *
CLASS=TERNINAL CLASS OF STORAGE REQUESTED

TTICAEAR=TCASCSA; /*¥LOAD REGISTER IF STORAGE FOUND*/

The DFHSC TYPE=GETMAIN macro instruction can include the following
operands.

INITIMG: This operand is used to initialize am acquired storage area
to the bit configuration specified in hexadecimal, for examrple, to
tinary zeros (00) or EBCDIC klanks (40). The aprlication programmer
can, at his opticon, place the initialization value in the TCASCIB field
of the TCA prior to the execution of the DFHSC TYPE=GETMAIN macro
instruction; in this case the INITIMG=YES coperand must be included

in the macro instruction.

KUMBYTE: This operand is used to specify the size of the storage area
being requested. A value up to 65535 can be specified. The application
programmer can, at his option, indicate the number of storage bytes
requested prior to execution of the DFHSC TYPE=GETMAIN macro instruction
by placing this value in the TCASCNB field of the 7CA; in this case

the NUMBYTE=number operand is omitted.

lote: Derending upon the class of storage specifizd (see the CLASS
operand below), CICS Storage Management automatically increments
the amount of stcrage requested to allow for the Storage
Accounting Area (SAA) and other control infocrmation. For
CLASS=USER and CLASS=TERMINAL (TIOA) storagc, the exact number
of bytes required should be specified. For CLASS=TRANSDATA
(TCIA and TDOA) and CLASS=TEMPSTRG (TSIOA) class of storage,

the amcunt requested must include four additicnal bytes to allow
for a rcrtion of the CICS control informaticn.

COND: This operand is used by the applicaticn programmer to
conditionally acquire main stcrage. Control is always returned to
the user, even if the storage requested is not available. If storage
ig not available, the TCASCSA field of the TCA is filled with binary
zZeros.

The COND=YES operand causes ccntrol to be given to the instruction
immediately fcllowing the LFHSC TYPE=GETMAIN macro instruction. If
the application programmer uses this operand, he must check the TCASCSA
field for zeros to determine whether the requested storage area was
acquired.

The COND=(YES,symbclic address) operand causes CICS5 to test whether
cr not the requested storage was acquired. If storage was acquired,
CICS causes a branch to the location specified in the symkolic address
rarameter; if storage was not acquired, control is returned to the
applicaticn program at the instruction immediately following the DFHSC
TYPE=GETMAIN,COND=(YES,symkolic address) macro ins*ruction.

The COND=(NO,symbclic address) operand causes CICS to test whether
cr not the requested storage was acquired. If storage was not acquired,

58

CICS causes a branch to the lccation specified in the symbclic address
rarameter; if storage was acquired, control is returned to the
applicaticn program at the instruction immediately following the DFHSC
TYPE=GETMAIN,COND= (NO,synbolic address) macro instruction.

CLASS: This orerand is used to specify the class of storage being
requested. If the task itself dcoes not release acquired storage when

it is nc lcnger needed, the storage is released by CICS upon termination
of the task. CLASS must be coded with one of the following parameters:
TERMINAL, USEEF, TRANSDATA, cr TEMESTRG.

CLASS=TERMINAL specifies a storage area to be used for terminal
ingut/output (TIOA). This area is chained to the Terainal Control
Table terminal entry. All requests for storage related to terminal
input/output must specify this class.

CLASS=USER srecifies a storage area to be associated with the user's
applicaticn program and used by that program. This area is chained
+o the TCA asscciated with the task in which the storage is requested.

CLASS=TRANSDATA specifies a transient data record storage area
(TTIA, TDOA). This area is chained to the TCA associated with the
task in which the storage is requested and is used by Transient Data
Ccntrcl.

CLASS=TEMESTRG specifies a temporary storage input/cutput area
(TSIOA). This area is chained to the TCA associated with the task
in vhich stcrage is requested and is used by Temporary Storage Control.

The CLASS=USER, CLASS=TRANSDATA, and CLASS=TEMPSTRG specifications
have essentially the same effect; that is, the number of bytes acguired
is always eight more than the number specified in the NUMBYTE operand
(to allow for the storage accounting field), and the storage is always
chained off the TCA. The cnly advantage of using the CLASS=TRANSTCATA
cr CLASS=TEMPSTRG specification instead of the CLASS=USER specification
is fer the purpcse cf code documentation. ‘

RELEASE MAIN STORAGE (FREEMAIN)
Previously acquired main storage is released by issuing the

DFHSC TYPE=FREEMAIN, *
RELEASE=ALL

macro instruction. If the task itself does not release acquired
storage, the storage is released bty CICS upon termination of the task.

If the application programmer uses the DFHSC TYPE=FREEMAIN macro
instructicn to release a single storage area, he must place the address
,of that area in the TCASCSA field of the TCA prior to the execution
of the DFHSC TYPE=FREFMAIN macrc instruction. 3If all terminal storage
acquired ty means cf the DFHSC TYPE=GETMAIN,CLASS=TERMINAL macro
instruction is to ke released, the RELEASE=ALL operand can be coded
in ccnjunction with the DFHSC TYPE=FREFEMAIN macro instructicn to achieve
that result; in this case it is not necessary to place any address
in the TCA.

The following is an example of the coding required to release all
main storage currently allocated to a specific terminal:

DFHSC TYPE=FREEMAIN, *
RELEASE=ALL RELEASE AI1L TERMINAL STORAGE

59

The following are examples of the coding required to release a
single mair stcrage area:

ST TICAEAR,TCASCSA PLACE STORAGE AREA ADDRESS IN TCA
DFHSC TYPE=FREEMAIN RELEASE STORAGE AREA

For ANS CCEQOL:
MOVE TIOABAR TO TCASCSA. NOTE PLACE STRG AREA ADDR IN TCA.
DFHSC TYPE=FREEMAIN RELEASE STORAGE AREA

For PL/I:
TCASCSA=TIOABAR; /*¥PLACE STORAGE AREA ADDRESS IN TCA*/
DFHSC TYPE=FREEMAIN RELEASE STORBAGE AREA

FRCGRAM SERVICES

All program communication within CICS is accomplished by Program
Management through Program Control. Requests for program services
are communicated to Program Ccntrcl via CICS macro instructions.

User-written apfplicaticn programs must ke coded so that they are
"serially reusatle" between entry and exit points c¢f the program.
Entry and exit pcints of a prcgram coincide with the use of CICS macro
instructions, since an application program temporarily loses control
after it begins executing cnly upon execution of a CICS macro
instruction. A serially reusable portion cf an applicaticn progran
is executed by c¢nly one transaction at a time, and must initialize
and/or restore any instructions or data *that it alters within itself
during execution.

This required quality of applicaticn programs written to run under
CICS is called "quasi-reentrance", since the prcgrams need not meet
System/360 or System/370 specifications feor true reentrance. Quasi-
reentrance allows a single copy of a user-written applicaticn program
to be used to process several transactions concurrently, thereby
reducing the requirement for multiple copies of the same program in
main storage.

Transactions can share the use of ccmmon work areas. However, each
transaction requires the use of a unique intermediate storage area,
such as the Transacticn Work Area (TWA), to retain information needed
upon subsequent return to that transaction. The applicaticn programmer
must provide that intermediate storage area by symbolically defining
it in his progranm.

CICS automatically saves program control information and general
furrose registers, when applicable, in the Task Control Area (TCA).

60

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012
CICS automatically saves program control information and general
purpose registers, when applicable, in the Task Control Area (TCA).
CICS automatically restores dgeneral purpose registers, as necessary,
to return control to a program.

The Program Management macro instruction (DFHPC) is used to request
any of the following services:

1. Link one user-written application program to another,
anticipating subsequent return to the requesting program.

2. Transfer control from one user-written application program to
another anticipating no return to the requesting progranm.

3. Load a designated application program or table into main storage
and return control to the requesting progranm.

4. Return control from one user-written application program to
another or to CICS.

5. Release a previously loaded application program from main
storage. .

"6. Abnormally terminate a transaction and its related task.

The following operands can be included in the DFHPC macro
instruction:

DFHPC TYPE=LINK, *
PROGRAM=name

DFHPC TYPE=XCTL, ‘ *
PROGRAM=name.

DFHPC TYPE=LOAD, *
PROGRAM=name, *
LOADLST=NO

DFHPC TYPE=RETURN, *

TRANSID=transaction code

DFHPC TYPE=DELETE, *
PROGRAM=name

DFHPC TYPE=ABEND, ' *
ABCODE=value,YES :

Application programs running under CICS are executed at various
logical levels. For example, where one user-written application program
is linked to another, the linked-to program is considered to reside at
the next lower logical level. Where control is simply transferred from
one application program to another, the two programs are considered to
reside at the same logical level. Figure 12 illustrates this difference
between program linkage and transfer of program control.

Parameters can be passed from one program to another through
user-defined storage areas, for example, the Transaction Work Area
(TWA), the Terminal Input/Output Area (TIOA), the Terminal Control
Table Terminal Entry (TCTTE), or the File Work Area (FWA).

61

cics
Program
Control
Application| LINK
Program
A
1\ RETURN
XCTL
Application Application
Program Program LINK
B [
sT_RETURN —l XCTL
\ 4
Application Application
Program Program
D E ABEND
RETURN
Figure 12.

Application programs are executed at various logical levels

62

FASS PROGRAM CCNTRCL ANTICIPATING SUBSEQUENT RETURN

(LINK)

Program contrcl is passed from a user-written application program
at one logical level to a user-vwritten aprlication program at the next

lower logical level in response to

DFHPC TYPE=LINK,
EECGFAM=name

macro instruction. When the DFHPC
executed in the linked-to progranm,
initiating the linkage at the next

The applicaticn programrer must

the

TYPE=RETURN macro instruction is
control is returned to the program
sequential (executable) instruction.

provide the name (identification)

of the prcgram to which ccntrol is passed. He can do this in either
cf two ways: (1) by including the PROGRAM=name operand in the DFHPC
TYPR=LINK macro instructicn, or (2) by coding a single instruction,
prior to issuing the DFHPC TYPE=IINK macro instruction, that places
the program name in the TCAPCPI field of the TCA. This same progranm
name must alsoc have been placed in the Prccessing Program Table (PPT)
pricr to executiocn of CICS. '

The following is an example of the coding required to request a
link to another applicaticn program:

DFHPC TYPE=LINK, *
ERCGFAM=FROG1

The following are examples of the coding required to dynamically
link to another applicaticn program.

Assemkbler language:

MVC TCAPCPI,=CLB8'EROG1"

ELACE LINKED-TO FROGRAM NAME IN TCA

DFHPC TYEFE=LINK LINK TO PFOGEAM AT NEXT LOWER LEVEL

id
o
[[2]
i
()

CCECL:

MOVE 'PROG1' TO TCAPCPI. NCTE LINKED-TO PROGRAM NAME TO TCA.

DFHPC TYEFE=LINK LINK TO PROGRAM AT NEXT LOWER LEVEL

For EL/I:

TCAPCPI='FROG1"';

/*FLACE LINKED-TC PRGM NAME IN TCAX*/

DFHPC TYPE=LINK LINK TO PROGRAM AT NEXT LOWER LEVEL

63

TRANSFER ERCGFAM CCNTROL (XCTL)

Program ccntrcl is transferred from one user-written application
program tc another at the same logical level in resronse to the

DFEPC TYPE=XCIL,
ERCGRAM=nane

racro instructicn. The prcgram frcm which control is transferred is
released. Any return from the transfered-to program is to a program
from which there was an exit at the next higher lcgical level. If
there is no user-written aprlication program at the next higher logical
level, control is returned to CICS Program Control.

The application programmer must provide the name (identification)
of the program to which contrcl is transferred. He can do this in
either of twc ways: (1) by including the PROGRAM=name operanrd in the
DFHPC TYPE=XCTL macrq instruction, or (2) by coding a single
instructicn, prior to issuing the DFHPC TYPE=XCTL macro instruction,
that places the prcgram name in the TCAPCPI field of the TCA. This
same program name must also have been placed in the Processing Progran
Table (PPT) prior to execution of CICS.

The following is an example of the coding required to request a
transfer of control *to ancther application program:

CFHPC TYPE=XCTL,
EROGFAM=PROG?2

The fcllowing are examples of the coding required to dynamically
transfer contrcl tc another applicaticn prcgram.

Iy
10
I
lie
itn
=

ssembler

anguage:

Mvc TCAPCEI,=CL8'ERCG2' ELACE TRANSFERRED-TC PRGM NAME IN TCA

.

DFHPC TYFPE=XCTL TRANSFER FROGRAM CCNTROL

[l
lo
2]

ANS CCECL:

MOVE 'YEROG2' TO TCAPCPI. NOTE TRANSFERRED-TO PRGM NAME TO TCA.

-

DFHPC TYPE=XCTL TRANSFER FRCGERAM CCNTROL

For RL/X:
TCARCEI='FROG2'; /*¥PLACE PROGR2AM NAME IN TCA*/
DFHEC TYPE=XCTL TRANSFER PROGRAM CONTROL

64

LOAD THE SPECIFIED ERCGRAM (LCAD)

Programs or tables are fetched frcm the library where they reside
and are loaded intc main stcrage in response to the

LCFHPC TYFE=LOAD, *
FEROGKAM=name, *
LCADLST=NO

macro instruction, identifying the program to be loaded. This facility
is used to (1) lcad a program that will be used repeatedly, thereby
reducing system overhead through a cne-time load, and (2) load a *able
cr some ncn-executatle code tc which ccntrol is definitely not to be
passed.

The lcaded program remains in rain storage until the DFHPC
TYPE=DELETE macro instruction is issued or until the transaction that
issusd the LOAD is terminated, either ncrrally cr abnormally (unless
LOADLST=NO was specified). If the LOADLST=NO operand is used, the
loaded program is to remain resident until it is deleted by the user.
CICS returns the address of the lcaded program to the user in the
TCAPCLA field of the TCA. Note that the LOADLST operand is not
available in the CICS/DCS-ENTRY systenm.

The application programmer must provide the name (identificaticn)
cf the prcgram to te loaded. He can do this in either of two ways:
(1) by including the PROGRAM=name operand in the DFYPC TYPE=LOAD macro
instructicn, or (2) by coding a single instructiosn, pricr to issuing
the DFHPC TYPE=LOAD macro instruction, that places the prcgram name
in the TCAPCPI field of ths TCA., This same prograr name must also
have been placed in the Prccessing Program Table (PPT) prior to
execution of CICS.

The following is an example of the coding required to load a user-
written arplicaticn prcgram:

DFHPC TYPE=10AD, *
PRCGRAM=FPROG3

The following are examples of the coding required to dynamically
load user-written applicaticn prcgrams.

Mvce TCAPCPI,=CLB8'ERCG3* FLACE PROGRAM NAME IN TCA

DFHRPC TYPE=LOAD LOAL THE SPECI¥IFD FROGRAM

2]
1o
%}

ANS CCEOL:

MOVE 'PROG3' TO TCAPCPI. NOTE PLACE PRGM NAMNE IN TCA.

DFHPC TYPE=LOAD LOAL THE SPECIFIEC ERCGRAM

65

Ior BL/I:

4

TCAPCEI='"TEROG3'; /*¥PLACE ERCGRAM NAME IN TCA%x/

DFHPC TYFE=LOAD : LOAL THE SPECIFIED PROGRAM

FETURN PROGRAM CCNTKCL (FETURN)

Program control is returned to the next higher logical level in
response to the

DFHEC TYPE=RETURN, *
TRANSID=transaction code

macro instruction. The execution of this macro instructicn causes
ccntrcl to ke returned to the program at the next higher logical level,
restoring the registers and releasing save areas for the lower-level
rrogram. The program tc which ccntrol is being returned must have
relinquished contrcl urcn execution of a DFHPC TYPE=LINK macro
instruction and must reside cne logical level higher than the progranm
returning ccntrcl. Upcer normal terminaticn of transaction processing,
ccntrol is returned to CICS Program Contrcl. (Figure 12 shows how
applicaticn prcgrams are executed at various logical levels.)

The aprlicaticn programmer can, at his option, aiter the *ransaction
identification for the next prcgram associated with that terminal in
either of two ways: (1) by including the TRANSID=transactiocn code
cperand in the LFEPC TYPE=RETURN macro instructicn, or (2) by coding
a single instruction, pricr tc issuing the DFHPC TYPE TYPE=RETURN macro
instruction, that places the new transaction identification in the
TCANXTID field of the TCA.

Note that the TFRANSID operand has no zffect if a default transaction
code has Leern assembled into the Terminal Ccntrol Table terminal entry
(ICTTE) .

Any higher-level program specifying a TRANSIT overrides the TRANSID
specification of a lcower-level prcgram. TCANXTID is unaltered if
TRANSID is nct coded.

The DFHPC TYPE=RETURN macro instruction can be used to terminate
any tasks initiated by the application programmer through use of the
Task Ccntrol (DFHKRC) ATTACH macrc instruction.

CEIETE A LCADED FKCGRAM (IFLETE)

A program previcusly lcaded through use of the DFHPC TYPE=LOAD,
LOADLST=NO macro instruction is deleted (released) by the

DFHPC TYPE=DELETE, *
ERCGFAM=nane

macro instruction.

The application prcgrammer must provide the name (identification)
cf the prcgram to be deleted. He can do this in either of two ways:
(1) by including the FROGEAM=name operand in the DFHPC TYPE=DELETE
macro instructicn, or (2) by coding a single instruction, prior to
issuing the DFHPC TYPE=DELETE macro instruction, that places the prcgram
rame in the TCAPCPI field of the TCA.

66

The following is an example of the coding required tc delete a user-
written applicaticn program grevicusly loaded with the LOADLST=NO
specificaticn:

DFHPC TYPE=DELETE, *
FROGRAM=EROGH

The fcllowing are examples of the coding required to dynamically
delete user-written applicaticn rrecgrams rreviously loaded with the
I0ADLST=NO specification. '

[27)
e}
1=
I

ssembler language:

Mvc TCAECPI,=CL8'FROG8' PLACE PRCGRAM NAME IN TCA

DFHPC TYPE=DELETE DELETE THE SPECIFIED PROGRAM

MOVE YDPREG4' TO TCAPCPI. NOTE PLACE PRGM NAME IN TCA.

°

DFEPC TYPE=DELETE DEIETE THE SPECIFIET PROGRAHM
¥or EI/I:

TCAPCEI='PROG4"; /*PLACE PROGRAM NAME IN TCA*/

DFHPC TYPE=DELETE DELETE THE SPECIFIED PROGRAM

ABNORMALILY TERMINATE A TRANSACTION {ABEND)

The application prcgrarmer can abnormally terminate a transaction
and its related task by issuing the

DFHPC TYPE=ABEND, *
ABCODE=value,YES

macro instructicn. In the situation where a task is attached ty another
task, cnly the task that issues the ABEND is terminated. The main
storage associated with the terminated transaction is released.

The applicaticn programmer can, at his cption, request a dump of
main storage related to the terminated transaction. He can accomplish
this in either of two ways: (1) by including the ABCODE=value operand
in the DFHPC TYPE=ABEND macro imstruction, cr (2) by coding a single
instructicn, prior to issuing the DPHEC TYPE=ARENL,ABCODE=YES macro
instructicn, that places a four-character aknormal termination code
in the TCAPCAC field of the TCA. This abnormal termination code is
rlaced in the output dump by Dump Ccntrol when providing the formatted
storage dump and should be unique so as to be informative concerning
the condition that caused the abend. 1If the ABCODE operand is not
included in the DFHPC TYPE=ABEND macro instruction, no dump is taken.

67

The following is an example of the coding regquired to abnormally
terminate a transaction and its related task and also request a dump
cf related main storage:

DFHPC TYPE=ABEND, *
ABCODE=1234

The following are examples of the coding required to dynamically
terminate a transacticn and its related task and at the same time
request a dump c¢f related main storage.

For Assemkler language:

Mvc TCAPCAC,=CL4"' 1234" PLACE TERMINATION CODE IN TCA

CFHPC TYPE=ABEND, TERMINATE PGRM, TRANS, & TASK *
ABCQLE=YES USE ABCODE ALREATY SPECIFIED

For ANS CCBCL:

MOVE '1234' TO TCA®BCAC, NOTE TERMINATION CODE TO TCA.
DFHPC TYPE=ABEND, TERMINATE PGRM, TRANS, & TASK *
ABCOTE=YES USE ABCODE ALREALY SPECIFIED
For EL/I:
TCAPCAC="1234"; /*PLACE TERMINATION CODE IN TCA*/
DFHPC TYPE=ABEND, TERMINATE PGRM, TRANS, & TASK *
AECOLE=YES USE ABCCDE ALREADY SPECIFIED

LUME SERVICES

Dump Management provides the capability, through Dump Ccntrol, to
dump specified areas of main storage onto a ssquential data set, either
tape or disk. This data set contains only the infcrmation pertinent
to the user's transacticn or arplication program, and is subsequently
fcrmatted and printed offline (or while the dump data set is closed)
using a CICS utility prcgram (DFHDUE).

Requests for dump services are communicated to Dump Control via
CICS macrc¢ instructions. Dump Ccntrol then executes, at the priority
of the requesting program, under control of the requesting program's
TCA, saving and restoring registers from this TCA. After the requested
dump service has been provided, ccntrol is returned to the next
executable instruction in the requesting rrcgram.

Dump Ccntrcl operates as a serially reusable program resource with
cnly one service request teing processed at a time. If additional
requests fcr dump services are made while a dump is in progress, the
tasks associated with those service requests are delayed (suspended)
and are placed in a "hcld" status until the dump is completed.
Remaining dump requests are serviced on a first in first out (FIFO)
tasis.

68

The Dump Management macro instruction (DFHDC) is used to request
any of the following services:

Dumr main storage areas related to a transaction and its
associated task (or any cther main storage areas).

Dump all CICS management mcdules and tables.

Dump transaction-oriented storage areas and CICS management
modules and tables.

Dump selected main storage areas related to the requesting task.

The fcllowing operands can be included in the DFHDC macro
instruction:

DFHDC TYPE=TRANSACTION, *
DMECODE=value

D¥EDC TYPE=CICS, *
DMECCDE=value

CFHDC TYPE=COMPLETE, *
CMICODE=value

DFHDC TYPE=PARTIAL, *
LIST=TERMINAL,PROGRAM,SEGMENT,TRANSACTION, *
LMECCDE=value

To ensure a dump of the TIOA following a Terminal Control write,
the application programmer must issue a SAVE and WAIT with the
DFHTIC TYPE=WRITE macro instruction that precedes the DFHDC macro
instruction. Since the Communications Area in the requesting
task's TCA is used for Dump Control, the informaticn provided

in that area prior to the dump will be overlaid.

DUMP TRANSACTION STORAGE (TRANSACTICN)

The applicaticn prcgrammer can request the dump of all main storage
areas related to a transaction and its associated task by issuing the

DFHDC TYEE=TRANSACTION, *
DMECODE=valuz

macro instruction. This dump is ncrmally used during the testing and
debugging of user-written application programs. CICS automatically
provides this service in the event the related task is abncrmally
terminated.

The following storage areas ar€ dumped by CICS in response to the
TFHDC TYPE=TRANSACTIION macrc instruction:

Task Ccntrcl Area (TCA) aad, if applicable, the Tramsaction
Work Area (IWAd).

Common System Area (CSA), including the user's porticn of the
CSA (CWa).

Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY
system.

Trace Table.

Contents cf general purpose registers upon entry to Dump Control
from requesting task.

Either the Terminal Contrcl Table terminal entry (ICTTE) or
the Destinaticn Control Table entry associated witkh the
requesting task.

A1l transaction storage areas chained off the TCA storage
accounting field.

69

8. All program storage areas containing user-written application
rrogram(s) active cn behalf of the requesting task. (In the
CICS/DOS-ENTRY system, only the program in main storage is
dumped.)

9. Register save areas (RSA's) indicated by the RSA chain off the
TCA.

10. 1All terminal storage areas (TIOA's) chained off the Terminal
Ccrtrol Takle terminal entry (TCTTE) for the terminal associated
with the reguesting task (if any).

The application programmer can, at his cption, provide a four-
character dumr code, which identifies the dump, by including the
DMECODE=value operand in the DFHDC TYPE=TRANSACTION macro instruction.
This user-specified code is printed out with the requested dump and
should be unique sc as to be infcrmative concerning the condition that
caused the dump.

The following example illustrates the coding required to request
a dump of transaction storage:

DFHDC TYPE=TEANSACTION, REQUEST TRANSACTION STORAGE DUMP *
CMECCDE=D010 USER-SPECIFIED DUMF CODE

DUM? CICS STORAGE (CICS)

The application programmer can raquest a dump of all CICS management
rodules and CICS ccntrol takles by issuing the

DFHDC TYPE=CICS,) *
DMECODE=value

macro instruction. This dump is typically used in a testing situation
where the first dump taken is a CICS dump to ascertain the base of
the test; subsequent dumps are usually of the TRANSACTION type.

The applicaticn programmer can, at his option, provide a four-
character dump code, which identifies the dump, by including the
LMPCODE=value operand in the CFHDC TYPE=CICS macro instruction. This
user-supplied code is printed out with the reguested dump and should
te unique so as to be infcrmative concerning the ccndition that caused
the dump.

The fcllowing example illustrates the coding required to request
a dump of CICS management modules and CICS control tables:

DFHDC TYPE=CICS, REQUEST CICS STORAGE DUMP *
CMECODE=D020 USER-SPECIFIED DUME CODE

DUMP TRANSACIION STORAGE ANC CICS STORAGE (COMPLETE)

The applicaticn prcgrammer can request a combination CICS and
TRANSACTION dump Ly issuing the

DFHDC TYEF=COMPLETE, *
DMECODE=value

macro instruction. This dump might be apprcpriate if requested in
limited numbers during execution of a task. Since CICS management
modules and CICS control tables are primarily static areas, one CICS
dump and a number of TRANSACTION dumps would be a more efficient testing
aid than a ccrmparable numker of CCMELETE Jdunmps.

70

The application programmer can, at his cption, provide a four-
character dumg code, which identifies the dump, by including the
CMECODE=value operand in the LFHDC TYPE=CCMPLETE macro instruction.
This user-supplied code is printed out with the reguested dump and
should be unique so as to be informative concerning the condition that
caussd the dunmp.

The following example illustrates the coding reguired to request
a combination CICS and TRANSACTION dump:

DFHDC TYPE=COMPLETE, REQUEST CCMELETE STORAGE DUMP *
DMECODE=D03) USER-SPECIFIED DUMF CODE

DUMP PARTIAL STORACE (PARTIAL)

The application programmer can request a dump of selected main
storage areas, related te the requesting task, by issuing the

CLFHDC TYPE=PARTIAL, *
LIST=TERMINAL,PROGRAM,SEGMENT,TRANSACTION, *
CMECCDE=value

macro instruction. This type of dump can be used during the testing
and debugging of user-written application programs. It includes only
those types of stcrage areas specified.

The applicaticn programmer must indicate what types of storage areas
he wants dumped. He accomplishes this by specifying in the LIST operand
cf the CFHLC TYFE=PARTIAL macro instructicn cne or more of the following
rarameters: TERMINAL, PRCGERAM, TRANSACTION, SEGMENT.

The applicaticn programmer can, at his option, provide a four-
character dump code identifying the dump ky including the CMPCODE=value
cperand in the CFHDC TYPE=PARTIAL macro instruction. This user-
specified ccde is printed out with the requested dump and should be
unique so as to be informative concerning the ccndition that caused
the dump. If more than one parameter is included in the LIST operand,
a single dump ccde can be used to identify the entire dump.

A discussion of the parameters that can ke included in the LIST
crerand of the DFHLC TYPE=PARTIAL macro instructicn follows.

TERMINAL: This keyword parameter is used tc include in the PARTTIAL
dump all stcrage areas associated with the terminal. These storage
areas are as follows: :

1. Task Ccntrcl Area (TCA) and, if applicable, the Tramsaction
Work Area (TWA).

2. Ccmmon System Area (CSA), including the user's porticn of the
CSA (CHA).

3. Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY
system.

4, Trace Table.

5. All terminal storace areas (TIOA's) chained off the Terminal
Ccntrcl Table terminal entry (TCTTE) for the terminal associated
with the requesting task.

6. Contents of general purpose registers upon entry to Dump Control
frcm the requesting task.

7. Either the Terminal Control Table terminal entry (TCTTE) or
the Destdination Control Table entry associated with the
requesting task.

71

The following example illustrates the coding required to request
a PARTIAL storage dump including all terminal storage areas:

CFHDC TYPE=PARTIAL, REQUEST PARTIAL STORAGE DUMP *
LIST=TERMINAI, AEEAS ASSOCTIATED WITH TERMINAL *
CMECCDE=DTML USER~SPECIFIED DUMP CODE

FROGRAM: This parameter is used to inclnude in the PARTIAL dump all
Frogram storage areas associated with this task. These storage areas
are:

1. Task Ccntrcl Area (TCA) and, if applicable, the Transaction
Work Area (TIWA).

2. Common System Area (CSA), including the user'®s porticn of the
CsS2 (CwWh).

3. Task Extension Area (TX3)--aprrlies only to the CICS/DOS-ENTRY
systen. '

4. Trace Table.

5. All program storage arcas containing user-written application
prcgram(s) active cn kehalf of the requesting task.

6. Register save areas (RSA's) indicated by the RSA chain off the
TCA.

7. Contents of general purpose registers upon entry to Dump Control
frcm the requesting task.

8. Either the Terminal Ccntrol Table terminal entry (TCTTE) or
the Destinaticn Control Table entry associated with the
requesting task.

The following example illustrates the coding required to request
a PARTIAL storage dump including all program storags areas associated
with this task:

DFHDC TYPE=PARTIAL, REQUEST PARTIALI STORAGE TUMP *
LIST=FEOGRAH, ERCGRAM STORAGE AREAS *
CMPCOCE=DEGHN USER-SPECIFIED DUMFE CODE

TRANSACTION: This parameter is used to include in the PARTIAL dump
all transaction stcrage areas associated with this task, typically
ir combination with other types of storage areas such as TERMINAL or
FROGRAM.

The fcllowing storage areas are dumped by CICS in response to the
IFHLC TYPE=PARTIAL,LIST=TRANSACTION macro instruction:

1. Task Ccntrcl Area (TCA) and, if applicable, the Transaction
Work Area (TWA).

2. Cormon System Area (CSA), except for the usesr's portion of the
CSaA (CWa).

3. Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY

, system.

4., Trace Table.

5. Contents of general purpose registers upon entry to Dump Ccntrol
frcm the requesting task.

6. PBither the Terminal Control Table terminal entry (ICTTE) or
the Destinaticn Contrcl Takle entry associated with the
requesting task.

7. All tramsaction storage areas chained off the TCA storage
accounting field.

The following example illustrates the coding required to request

a PARTIAL storage dump that includes, along with all program storage
areas, all transaction storage areas associated with this task:

72

DFHDC TYPE=PARTIAL, REQUEST PARTIAL STORAGE DUMP *

LIST=(TRANSACTICN, AREAS ASSOCIATED WITH TRANSACTICN *
EROGRAWN) , EROGRAM STORAGE AREAS *
CMECODE=DTEP USER-SPECIFIED DUMP ‘CODE

SEGMENT: This parameter is used to include in the PARTIAL dump any
area of main storage specified. For example, use cf this parameter
enables the applicaticn prcgrammer to dump the area of main storage
used for cormunication between the Terminal Abnormal Condition program
(DFHTACP) and the Terminal Error prcgram (DFHTEP). In addition, the
fcllowing stcrage areas are provided:

1. Task Ccntrcl Area (TCA) and, if applicable, the Transaction
Work Area (TWA).

2. Common System Area (CSA), including the user?!s porticn of the
CsSa (CwWa).

3. Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY
system.

4. Trace Table.

5. Contents of general purpose registers upon entry to Dump Control
frecm the requesting task.

6. Either the Terminal Control Table terminal entry (TCTTE) or
the Destinaticn Control Talkle entry associated with the
requesting task.

The application programmer must code two instructions, prior to
issuing the DFHLDC TYPE=PARTIAL,LIST=SEGMENT macro instructicn, that
rlace the address of the main storage area to be dumped into the TCADCSA
field of the TCA and the length of the area to be dumped into the
TCADCNB field of the TCA.

The following are examples of the coding required to include in
the PARTIAL dump any area of main storage.

For Assenmkler language:
ST R5,TCADCSA ELACE STOFAGE ADDRESS IN TCA
MVC TCADCNB,=H'16384" ELACE LENGTH OF AREA IN TCA
DFHDC TYPE=PARTIAL, REQUEST PARTIAL STORAGE DUMP *
LIST=SEGMENT, DOMP AREA PREVIOUSLY SPECIFIED %
DMECODE=DMSA USER-SPECIFIED DUMP CODE
For ANS COBOL:
MOVE R5 TO TCADCSA. NOTE PLACE STEG AUDRESS IN TCaA,
MOVE 16384 TO TCALCNB. NOTE PLACF LENGTH OF AREA IN TCA.
DFHDC TYPE=PARTIAL, REQUEST PARTIAL STORAGE LDUMP *
1IST=SEGMENT, DUMP AREA PREVIOUSLY SPECIFIED *
DMPCODE=DHSA USER-SPECIFIED DUMP CODE
For PL/I:
TCALCSA=R5; /*¥PLACE STORAGE ADDRESS IN TCA*/
TCADCNB=16384; /*PLACE LENGTH OF AREA IN TCA*/

73

#*

DFHDC TYPE=PARTIAL, REQUEST PARTIAL STORAGE DUNP
LIST=SEGMENT, DUMP AREA PREVIOQOUSLY SPECIFIED *
CMECODE=DHMSA USER-SPECIFIED DUNP CODE

TEBMINAL SERVICES

Terminal Management prcvides communicaticn between the terminals
and user-written arplicaticn prcgrams through Terminal Control.
Terminal Control is responsible for the pclling and addressing of
terminals, code translaticn, transaction initiation, task and line
synchronization, and the line control necessary to read from or write
to a terminal. The user-written application program is thus relieved,
as much as possible, from having to ccntrcl the physical terminal
envircnment.

Requests for terminal services are communicated to Terminal Ccntrol
via CICS macro instructions. Houe€var, when such requests are issued
in an aprlicaticn rrogram, Terminal Control is not entered directly.
Instead, indicators are set in the Task Ccntrol Area (TCA) and in the
Terminal Ccntrol Table (TCT) which allow Terminal Cecntrol to provide
the requested service({s). Individual applicaticn programs thus
interface with a terminal logically and symtolically.

Terminal Ccntrcl operates as a system-provided task, contending
with user-provided tasks in the system. It executes under control
of its cwn TCA and is the highest-priority task in CICS. Terminal
Ccntrcl is always the first task to be dispatched by CICS; it scans
the TCT and provides whatever services are requested.

The Basic Telecommunications Access Method (BTAH) is used by CICS
for most terminal management. The Telecommunications Access Method
(TCAM) can opticnally be specified. However, the Sequential Access
Method (SAM) is used where key-driven terminals are to be simulated
ty sequential devices such as a card reader. The Graphics Access
Method (GAM) is used only in the CICS/OS-STANDARD system to support
lccal 2260 terminals.

The multipunched character 0-2-8 must be used in each physical
input record immediately fcllowing the last data character to
simulate the "end of block" (EOB). For sequential devices,
the last entry in the input stream must be 'CSSF GOODNIGHT'

to provide a logical close. For MFT/MVT users of the CICS/0S-
STANLCARD system having blocked SYSIN or SYSOUT, overriding DD
cards must be provided for those CICS data sets being used to
simulate terminals.

Note

fos

The Terminal Management macro instruction (DFHTC) is used to request
any of the fcllowing services:

1. ¥Write data to a terminal.

2. Read data from a terminal.

3. Synchronize terminal input/output for a tramsaction.

4. Ccnverse with a terminal. '

5. Transmit a page of data to a terminal.

6. Transmit tc the common buffer of a 2980 General Banking Terminal
Systen.

7. Test for the presence of a passbook in the 2980 General Banking
Terminal System Models 1 and 4.

The following operands can 'be included in the DFHTC macro
instruction:

74

DFHTC TYPE=(WRITF,WRITEL,READ,READL,WAIT,ERASE,SAVE,OIU,
DISCONNECT,RESET,READB,COPY,ERASEAUP,CBUFF,
PASSBK,TRANSPARENT,PSEUDOBIN, NOTRANSLATE),

LINEADR=number,YES,
CTLCHAR=hexadecimal number,YES,
DEST=symltolic name,YES,
ECF=symbclic address

% ¥ ¥ x

TFETC TYPE=(GET,PUT,ERASE,SAVE,TRANSEARENT, PSEUDOBIN),
LINEADR=number,YES,
CTLCHAR=hexadecimal number,YES,
DEST=symkolic nanme,YES,
EOF=symbclic address

* % # %

DFHTC TYPE= (PAGE,SAVE),
LINEADR=number,YES,
CTLCHAR=hexadecimal number,YES,
DEST=symbkolic name,YES

#* 3 *

DFHTC TYPE=(CONVERSE,ERASE,SAVE), *
LINEADR=number,YES,
CTLCHAR=hexadecimal number,YES, *
DEST=symbolic name,YES

*

DFHTC EOF=symbclic address

WRITE, WRITEL, READ, READL, WAIT, ERASE, SAVE, OIU, DISCONNECT,
RESET, READB, COFY, ERASEAUE, TRANSEARENT, PSEUDUBIN, and NOTRANSLATE
are cptional keyword parameters and may be specified in any combination
cr in any order, as applicable. Each parameter, independent of its
rosition, affects the setting of an associated bit in the Terminal
Ccntrol Tatle Terrminal Entry (TCTTE) so the order in which each
rarameter is specified has nc effect on the meaning. For example,
(WRITE, REAT, SAVE) is equivalent to (WRITE, SAVE, READ) and (SAVE,
WRITE, READ) etc. CBUFF and PASSEK are stand-alone parameters that
have implied writes and waits. GET, PUT, PAGE, and CONVERSE are used
for coding convenience; they are combinations of the other parameters
as focllows:

1« GET - same as READ, WAIT

2. PUT - same as WRITE, WAIT

3. PAGE - same as ERASE, WRITE, READ, WAIT
4. CONVERSE - same as WRITE, READ, WAIT

Note: ¥When coding an agpplication program in ANS COBOL, a WAIT must
be included with every READ, READL, WRITE, WRITEL, READB, COPY,
and ERASEAUP, excest in the case of the final WRITE of the
grcgtam.

The DISCCNNECT parameter is used by the application programmer to
treak the line ccnnection between the terminal and the computer; it
-arrlies only to switched lines. If the terminal is a buffered device,
the data in the buffer(s) is lost.

The RESET parameter is used by the applicaticn programmer to
relinquish use of the ccmmunicaticn line; it aprlies cnly to binary
synchronous terminals. W®When RESET is used, the next BTAM type of
operation will be a read or write initial.

The READE parameter is applicable only tc the 327C Infcrmation
Display System and is used by the application programmer to read the
entire contents of the 3270 buffer. Data transmission starts at buffer
location 0 and continues until the contents of the entire buffer have
teen read. All character and attribute sequences (including nulls)

75

appear in the input data stream in the same order as they occur in
the 3270 kuffer.

Note: Because of relatively long transmission times required to
transmit the entire contents of a remote 3270 Information Display
Station buffer, it is recommended that the READB parameter te
used mainly for test and diagnostic purposes and that the COPY
parameter be used, where possible, in all other cases. Excessive
use of the READB parameter may cause degradation of performance
on the line.

The COPY parameter is applicable only to the remote 3270 Information
Display System and is used by the applicaticn programmer to copy the
format and data ccntained in the kuffer of another terminal attached
to the same 3271 Ccntrol Unit, The physical address of the device
to be copied is provided as the first and only character in the output
data area (TIOADBA); TIOATDL must bke set to 1. The Copy Control
Character (CCC), which ccntrols and defines the copy functicn to be
rerformed, is suprlied through the CTLCHAR operand. The COPY parameter
cannot be included with a WRITE, ERASE, or ERASEAUP parameter in the
same macro instruction,

The FRASEAUP parameter is applicable only to the 3270 Information
Display System and is used by the applicaticn programmer to issue an
"erase all ungrotected™ ccmmand. The following functions are performed
in response to this command:

1. All unprotected fields are cleared to nulls (X'00').

2. The modified data tags in each unprotected field are reset to
Zero.

3. The cursor is positioned to the first ungrotected fielad.

4. The keybcard is restored.

The ERASEAUP parameter cannot be included with a4 WRITE, ERASE, or
COPY parameter in the same macrc instruction. Note that no data streanm
is supplied for this ccmmand.

The CBUFF parameter is applicable only to the 2980 General Banking
Terminal System and is used by the application programmer to place
a message in the common buffer of the 2972 Terminal Ccntrocl Unit.
The 2972 associated with the current Terminal Control Table terminal
entry (TCTTE) receives the ocutput message.

Note: The output message is translated according to the 2980 model
being described by the current TCTTE. If more than one model
of the 2980 is attached *o a 2972 Terminal Unit, the contents
of the ccmmen buffer are intelligitle only for the 2980 model
for which the message was translated. Since shift characters
are added to the message by CICS during translation, the message
length is dependent upon the contents of the message. The
maximum message length is 23 characters, including shift
characters.

The PASSBK parameter is applicable only to the 2980 General Banking
Terminal System and is used by the applicatiocn programmer to cause
output to be printed on a bankiang passbook. If a passbook is not
rresent, pripting does nct occur and an error message is sent to the
terrinal orperator.

The TRANSPARENT parameter is applicable only to the System/7 and
is used by the applicaticr prcqrammer to indicate that the data is
not to be translated on either a READ or WRITE. For further information
ccncerning System/7 programming considerations, see the section
"Applicatien Programming Coasiderations®,

76

The PSEUDOBIN rarameter is applicable only to the System/7 and is
used by the applicaticn prcgrammer to indicate that the data is to
te translated cn both a READ and WRITE. Translatien is from System/7
pseudo-binary representaticn to hexadecimal representation on a READ,
and from hexadecimal representation to System/7 pseudo-binary
representation on a WRITE. For further information ccncerning System/7
frogramuing considerations, see the section "Aprlication Programming
Considerations",

The NOTRANSLATE operand is applicable only to the 3735 Programmable
Buffered Terminal, and is used by the applicaticn programmer to prevent
translaticn of FDP records which are to be transmitted to a 3735 using
ASCIY transmission code. PFor further information, see the section
“Applicaticn Programming Considerations".

The LINEADR operand is used to specify that writing is to begin
cn a specific line of a 2260 or 2265 screen. It is the responsibility
cf the application prcgrammer to provide the hexadecimal equivalent
of a line number in the range 1-12 (FO0-FB) for the 2260 or 1-15 (FO-
FE) for the 2265. He can accomplish this in either of two ways: (1)
ry including the LINEADR=rumber orerand in the DFHTC macro instruction,
or (2) by coding a single instructicn, prior to issuing the DFHTC macro
instructicn, that places the line number in the TIOALAC £field of the
current TIOA. If the latter method is used, the LINEADR=YES operand
must ke included in the DFHTC macro instruction. For further
informaticn ccncerning the use of this operand, see the section
"Application Prcgramming Considerations".

The CTLCHAR operand is applicable only to the 3270 Information
Display System. If a DFHIC TYPE=WRITE macro instruction is issued,
this operand is used to provide the hexadecimal representation of the
Write Control Character (WCC) which controls the requested write
cperation. If a DFHTC TYEE=COPY macro instruction is issued, this
cperand is used tc provide the hexadecimal representation of the Copy
Control Character (CCC) which contréls and defines the copy function
to be performed.

If CTLCHAR=YES is specified, the appropriate bit configuration must
have been previcusly moved to the TIOACLCR field of the TIOA., If only
the functions defined by the WCC are to be performed (that is, no data
stream is to be supplied), the TIOATDL field of the TIOA must have
teen previcusly set to zero.

If the CTLCHAR operand is omitted, the following functions are
assumed for the WCC and CCC.

WCC: Reset all modified data tags to zero.
Restore the keyboard.

CCC: Copy the contents of the entire buffer (including nulls).

The DEST cperand is applicable only to TCAM. If a DFHTC TYPE=WRITE
macro instruction is issued, the DEST operand can ke used to send a
message to a destination cther than the scurce terminal. Typically
this operand could be used to route messages to:

1. The master terminal (if TCAM is used)
2. A list of terminals if a TLIST macrc was coded in the TCAM MNCEPE.

The DFHIC TYPE=WBITE,DEST=symbelic name macro instruction determines
the destination of the message by CICS placing the symbolic name in
the four-byte TCTTE field labeled TCTTEDES for processing by the
Terminal Control program. The DFHTC TYPE=WRITE,DEST=YES macro
instructicn allows the user to dynamically select a destination by
placing the destination in the four<byte TCTTE field labeled TICTTEDES

77

Ericr to issuing the WRITE macro instruction. 1If DEST is not specified,
the default action is tc move the scurce terminal ID located in the
TCTTETI field to the output message to prcvide a TCAM destinaticn nanme,
sending the message back to the source terminal.

The EOP=symbolic address operand is used *o specify a routine in
the application prcgram which is to receive control when an =2nd-of-
file condition has been received cn batch input frem a 3735. The
special initializaticn macro instruction, DFHTC EOF=symbolic address,
has been rrovided to test for the ead-of-file condition upon the initial
ccnnection to a 3735. This macro instructicrn must be included in the
initialization section of the '3735' transaction before subseguent
[PHTC macro instructions are issued.

Note: When the EOF conditicn occurs, the TIOATDL field of the TIOA
passed tc the application program contains binary zeros to
indicate that the TIOA ccntains no valid data.

Applicable only to terminals attached to a 2848 Display Control
Model 21 or 22, the READL and WRITEL parameters are used by the
application programmer to ccntrol the locking and unlocking of the
terminal keykoard after a read or write event. READL is applicable
cnly to CICS/0S but may be used in CICS/DOS applicaticn programs if
upward compatibility with CICS/0S is a consideraticn; it causes the
keyboard to remain locked at the ccmpletion of data transfer. WRITEL
causes the keyboard to rerain locked if previously locked, or remain
unlocked if previcusly unlccked. (WRITE always leaves the keyboard
unlocked.)

If DFHTC macro instructions are issued in the following sequence,
+the keyboard is lccked or unlocked as indicated:

CICS/DOS CICS/0S

REAT
WRITEL
READL
READL
WRITEL
WRITEL
WRITE
WRITEL
WRITEL
READ
WRITE
READL
READ
WRITEL

NS aaQr e B e
QaracaagHbHraa

Before terminal services can be requested in an application fprogranm
via the DFHTC macic instruction, it is the responsibility of the
application programmer to provide iastructicns that do the following:

. Symbolically define the TCTTE and TICA by copying the arpropriate
storage definitions (DFHTCITE and DFHTIOA) provided by CICS.
(It is assumed that the storage definiticns for the CSA and
TCA have already been copied, as described in the section
"Storage Definition",) ,

2. Establish adfiressability for the TCTTE and TICA by specifying
a symbolic base address for the TCTTE and TIOA, respectively.
The application programmer must obtain the tase address of the
TCTTE from the TCAFCAAA field of the TCA and place it at TCTTEAR.
Having estaklished addressability to the TCTTE, he must obtain
the base address of the TIOA from the TCITEDA field of the TCTTE

78

and place it at TICABAR. The application programmer now has
access by field name to any field in the TCTITE or TIOA.

CICS allows one or more TIOA's to be associated with a terminal
at a given time. If a TIOA is obtained in an application program via
the DFHSC TYPE=GETMAIN,CLASS=TERMINAL macro instruction, the address
of the TIOA cttained is autcmatically placed in the TCASCSA field of
the TCA. The aprlication programm=r must set up a base register for
this TYOA and must place the address at TCASCSA into the base register.

The length 0f the data to be read or written into a given TIOA is
fcund in the TIOATDL field of that TIOA. On a read operaticn, this
two-byte binary value is placed in the TIOATDL field hy Terminal Control
and represents the number of bytes actually read. On a write operation,
the application programmer must assign to the TIOATDL field, prior
to issuing the DFETC TYPE=WRITE macro instruction, the number of bytes

to be written.
Note: All TIOA's have a twelve-byte prefix for storage accounting

and terminal contrcl and a cne-byte EOB suffix. The value at

TICATDL dces nct include these 13 bytes.

Given an idle line, CICS always initiates a write before polling
to read.

The following are examples of the coding required to (1) acquire
an cutput storage area via the DFHSC macro instruction, (2) place the
address of the storage area acquired into TCTTEDA, (3) place the length
of the data to te written into TIOATDL, (4) issue a write to a 2260/2265
terminal, erasing the screen and returning the cursor to the upper
left corner of the screen before writing, and (5) issue a read from
a terminal, allowing Terminal Control to manage storage for the TIOA.

L TCITEAR,TCAFCAAA ESTABLISH ADDRESSABILITY FOR TCTITE

DFHSC TYPE=GETMAIN, OBTAIN TICA FOR OUTPUT LATA *
NUMBYTE=80, *
CLASS=TERMINAL

L TIOABAR,TCASCSA ADDRESS CF TIOCA

ST TICAEAR, TCTTELA PLACE CUTPUT ADDRESS IN TCTTE

MVC TIOADBA (80),LATA PLACE TATA IN TIOA

Mvc TIOATDL,=H'80" PLACE TATA LENGTH IN TIOATDL

DFHIC TYPE=(WRITE, ERASE, ISSUE WRITE TO 2260/2265 TERMINAL *
READ,RAIT) ERASE BEFOFE WRITE, THEN READ

L TICAEAR, TCTTELA ESTABLISH ADPDRESSABILITY FOR TIOA

For ANS COEBOL:
MOVE TCAFCAAA TO TCTITEAR. NOTE EST ADDRESSABILITY FOR TCTTE.
DFHSC TYFE=GETMAIN, OBTAIN TICA FOR OUTPUT LATA *
*

NUMBYTE=80,
CLASS=TERMINAL

MOVE TCASCSA TC TIOAEAR.
MOVE TIOAEAR T0 TCTTEDA.

MOVE DATA TO

TIOADEA.

MOVE 80 TO TIOATDL.

NOTE ALDERESS OF TIOA.

NOTE PIACE ADDE OF TIOA IN TCTTE.
NOTE PLACE DATA IN TIOA.

NOTE PLACE DATA LENGTH IN TIOATDI.

79

DFHTC TYPE=(WRITE, ERASE,
READ,WATIT)
MOVE TCITECA TO TICAEAR

For PL/I:

TCTTEAR=TCAFCAAA;
DFHSC TYPE=GETMAIN,
NUMBYTE=80,
CLASS=TERMINAL
TIOCAEAR=TCASCSA;
TCITEDA=TICAEAR;
TIOADEA=CATA;
TIOATDL=80;

DFHTC TYPE= (WRITE, ERASE,
READ,WATT)
TIOAEAR=TCTTEDA;

ISSUE WRITE TO 2260,/2265 TERMINAL
ERASE BEFOKE WRITE, THEN READ
NOTE EST ADDRESSABILITY FOR TIOA.

/*¥EST ADDRESSABILITY FOR TCTTE*/
CETAIN TICA FOR OUTPUT LCATA

/*ADDRESS OF TIOA*/

/*PLACE ADDR OF TICA IN TCTTE*/
/*PLACE DATA IN TIOA*/

/*PLACE TATA LENGTH IN TIOATDL*/

ISSUE WRITE TO 2260/2265 TERMINAL
ERASE BEFORE WRITE, THEN READ
/*EST ADDRESSABILITY FOR TIOA*/

WRITE DATA TO A TERMINAL (WRITE)

The applicaticn prcgrammer can request that data be written to a
terminal by issuing the

DFHTC TYPE=WRITE

macro instruction. Before issuing this macro instruction, he has the
responsibility to (1) place the address of the TIOA te be written into
the TCTTEDA field of the TCTITE, and (2) place the length of the data
to be written into the TICATDL field of the TIOA. (It is assumed that
he has also symtolically defined the CSA, TCA, and TCTTE and has
established addressability for the TCTTE.)
1

When the write is completed by Terminal Control, the TIOA is released
to the dynamic stcrage pccl (unless SAVE is specified) since it is
understood that the applicaticn rrogram has no further use for it.
Any subsequent reference to this TIOA by the application program is
logically in error and will prcduce unpredictable results.

A TIOA can te reused by the application program after a write if
the request to write data to a terminal is made via the

DFHTC TYPE=(WRITE,SAVE,WAIT)

macro instruction. In this case the TIOA is not released by Terminal
Ccntrol. The WAIT parameter is needed tc ensure that the write of
the TIOA is complete before the area is reused.

To ensure a dump of the TIOA following a Terminal Ccntrol write,
the application prcgrammer must issue a SAVE and WAIT with the
DFHTC TYPE=WRITE macro instruction that precedes the DFHDC macro
instruction.

Note:

The aprlication programmer can specify both a write and read
cperation in a single request by issuing the

DFHTC TYPE=(WRITE,READ)
macro instruction. When this instruction is executed, Terminal Control

writes the TIOA whose address is at TCTTEDA, waits for that write to
te completed (an implied wait), and then issues a read from the terminal

80

into the area just used fcr writing. Since the SAVE parameter was
not specified, one TIOA can be used repeatedly. However, a new TIOA
is obtained for the read operation and its address placed in TCTTEDA
when certain devices are involved or vwhen certain conditions exist.
For example:

1. 2260 terminals (local and remote)

2. Local 3270 terminals

3. PSFUDCBIN is psecified with READ, WRITE

4, If the TIOA length for the WRITE instruction is less than that
specified in the DFHTCT TYPE=LINE,TIOAL=length specification
(binary synchronous terminals) or in the DFHICT TYPE=LINE,
INAKEAL=length specification (all other terrminals)

5. Certain error conditions

6. Using a 3270 terminal in 2260 compatibility mode

7. Using terminals with TCAM (CICS/0S only)

———

(WRITE,READ) macro instruction. A typical use for the DFHTC
TYPE= (WRITE,READ) macic instructicn is a conversational environment

where the application program writes a question ta the terminal, waits

for a resgonse, and then reads the response.

Note: 1In the case of a terminal connected to the 7770 Audio Respcnse
Unit, a read request that dces not include the WRITE parameter
causes the "ready" message previcusly defined in the Terminal
Ccntrol Taktle to be written to the terminal before the read
operation occurs,

If both a write and read operation are specified in a single request

ty issuing the
DFHTIC TYPE=(WRITE,READ,SAVE)

macro instruction, the TIOA used for writing is saved; a new TIOR is

then dynamically acquired by Terminal Control for the read. The saved

area remains chained off the TCTTE for the terminal iamvolved and can

te reused at a later time for either writing or reading. If this TIOA

is reused later, the application prcgrammer must place the address
of the TIOA into the TCTTEDA field of the TCTTE prior to issuing the
request to use the area.

The marner in which the address of a TIOA is "remembered" is
determined by the applicaticn prcgrammer. ¥For example, he can store
the address in the TWA, or he can rely on the area being accounted
for in the TIOA storage accounting chain off the TCITE.

Upcn completion of a WRITE, READ, SAVE, the application programmer
must place the value contained at TCTTEDA into TIOABAR to establish
addressability for the newly acquired TIOA.

Note:; A WRITE, READ, SAVE may not be usable for the application in
which the initial TIOA is spall, as determined by the user in
the Terminal Ccntrcl Table line entry {(TCTLE) during system
initialization for this line, and in which subsequent TIOA's
acquired dynamically by CICS are of larger or varying size.
There is nc problem if the user always works with TIOA's of
the same size.

If a write to a 2260/2265 terminal is specified by issuing the

DFHTC TYFPE=(WRITE, ERASE)

81

macro instruction, the screen is erased and the cursor is returned

to the upper left ccrner of the screen before writing occurs. If the
ERASE parameter is omitted, writing begins wherever the cursor is
located at the time the write is issued.

Note: The ERASE rarameter may be used in conjunction with either the
WRITE or WRITEL parameters; it may not be used separately.
To simply erase the screen, the application programmer might
(1) place at TCTTELA the address of storage that contains only
a start symbol, and (2) issue a DFHTC TYPE= (WRITE, ERASE) macro
instruction.

The applicaticn programmer can request the positioning of frames
for a 2760 Optical Image Unit by issuing the

DFHTC TYPE=(WKRITE,OQOIU)

macro instruction. See the System Programmer's Reference Manual for
an example of an applicaticn program executed as a 2760 transaction.

When TCAM is used, the applicaticn prcgrammer issues the

DFHTIC TYPE=WRITE, *
DEST=symkolic name, YES

macro instruction. See the previous discussion of the DEST operand
near the beginning of the section "Terminal Services".

READ DATA FRCM A TERMINAL (READ)

The application prograrmer can request that data be read from a
terminal by issuing the

DFHIC TYPE=READ

macro instruction. Before issuing this macro instructicn, he can place
the address of the TIOA into the TCTTE.

If a TIOA is nct provided by the application program, Terminal
Control attempts to use existing storage if a TIOA is attached to the
ICTTE, or, if a TIOA is not attached, Terminal Control acquires a new
TIOA.. If the length of tle existing TIOA or length of the TIOA provided
by the applicaticn program is not adequate, or if other conditions
exist that make the TIOA upusable, the application program must always
rlace the value contained at TCTTEDA into TIOABAR following completion
cf the read to ensure addressability to the correct TIOCA.

A new TICA is acquired by Terminal Contrcl for the read when the
DFHTC TYPE= (READ,SAVE)

macro instruction is issued. A1l TIOA's currently chained off the
TCTTE are retained and may be subsequently reused; a new TIOA is
dynamically acquired for this read (according to the length specified
in the TCTLE) and is addsd to the chain.

Opon completicn of a READ, SAVE, the application programmer must
place the value contained at TCTTEDA into TIOABAR to establish
addressability for the newly acquired TIOA. The number of bytes read
is provided by CICS at TIOATDL.

A read and write operaticn can be specified in a single reguest,
as discussed in the previous topic, "Hrite Data to a Terminal".

82

Page of SH20-10474
Revised April 11, 1973
By TNL §N20-9012

SYNCHRONIZE TERMINAL INPUT/OUTPUT FOR A TRANSACTION (WAIT)

In a transaction where more than one terminal operation is to be
performed, the application programmer must ensure that the current
terminal operation is complete before another begins., He can accomplish
this by issuing the

DFHTC TYPE=WAIT

macro instruction, where the WAIT parameter is coded separately, as
shown, or in combination with READ and/or WRITE. A PUT can be coded
in place of a WRITE,WAIT; a GET can be coded in place of a READ,WAIT.
A wait should be issued for each read request to ensure that the data
has been transferred into the TIOA.

A wait causes the execution of a task (transaction) to be temporarily
suspended. 1Indicators are set in the TCT and control is returned to
CICS. The task resumes processing when the write and/or read is
complete.

A wait need not be coded for a write if the write is the last
terminal operation of the transaction. The TIOA is retained until it
is written, even though the transaction and its associated storage may
have already been deleted from the systemn.

CONVERSE WITH A TERMINAL (CONVERSE)

The application programmer can request a conversational mode of
communication with the terminal by issuing the

DFHTC TYPE=CONVERSE
macro instruction, where CONVERSE (or CONV) is the same as WRITE, READ,
WAIT. The execution of this instruction is always in the sequence:
WRITE, implied wait, READ, WAIT. In the case of 2260/2265 terminals,
writing begins wherever the cursor is located at the time this macro
instruction is issued.

PAGE DATA TO A TERMINAL (PAGE)

The application programmer can request a conversational mode of
communication with a 2260/2265 terminal by issuing the

DFHTC TYPE=PAGE

macro instruction, where PAGE is the same as ERASE, WRITE, READ, WAIT.

FILE SERVICES

File Management provides the capability, through File Control, to
read a record from an existing data set (file) on a direct access
device, update an existing record in a data set, and add a new record
to a data set. Facilities supported by File Control include indirect
access, browsing, "duplicates" data sets, and segmented records. Note
that while File Services supports the user's data base, Transient Data
Services supports sequential data sets.

Access methods supported by File Control are the Direct Access Method
(DAM) and the Indexed Sequential Access Method (ISAM). DAM can be used
for fixed- or variable-length records, for blocked or unblocked records,
and for undefined records. If the user creates DAM data sets and
describes them to CICS through the File Control Table (FCT), application
programs can access those data sets on a logical

83

record level with File Control providing the blocking/deblocking
service.

Optional access to the Data Language/I (DL/I) facility of the IBM
Information Management System (IMS/360) is also provided under CICS/OS.
See the section "Requesting Data Language/I Services" for information
concerning the use of DL/I in a CICS application program.

A1l storage needed for data set operations is acquired by File
Control in accordance with the data set descriptions previously supplied
by the user in the FCT. The application programmer need only be
concerned with the logical record and not with the other characteristics
of the data set.

An application program always operates on data in one of two main
storage areas: (1) a File Input/Output Area (FIOA) or (2) a File Work
Area (FWA). A FIOA is required to handle records that are read-only
and unsegmented or unblocked. A FWA is required to handle records that
are new, segmented, blocked, or to be updated. In addition, a FWA is
always used in a browse operation.

Requests for file services are communicated to File Control via CICS
macro instructions. File Control then executes, at the priority of
the requesting program, under control of the requesting program's TCA,
saving and restoring registers from this TCA. After the requested file
service has been provided (or attempted), control is returned to the
next executable instruction in the requesting program. Upon return to
the requesting program, tests can be made and control routed to various
user-written exception handling routines based on the outcome of the
requested file service.

The File Management macro instruction (DFHFC) is used to request
any of the following services:

Randomly retrieve data from a data set.

Randomly update or add data to a data set.

Obtain a main storage area to create a new record.
Release main storage area.

Check the response to a request for file services.
Initiate a browse operation.

Sequentially retrieve data from a data set (browse).
Terminate a browse operation.

Reset the starting location of a browse operation.
10. Release an update request.

s & s & & o o

.

WCONOTNEWN =

.

The following operands can be included in the DFHFC macro
instruction:

DFHFC TYPE=GET,
DATASET=symbolic name,
RDIDADR=symbolic address,
SEGSET=symbolic name,YES,ALL,
INDEX=symbolic name,YES,
TYPOPER=UPDATE,
RETMETH=RELREC, KEY,
NORESP=symbolic address,
DSIDER=symbolic address,
SEGIDER=symbolic address,
NOTFND=symbolic address,
INVREQ=symbolic address,
IOERROR=symbolic address,
DUPDS=symbolic address,
NOTOPEN=symbolic address

O O O I 3 I I

84

DFHFC

DFHFC

DFHFC

DFHFC

DFHFC

DFHFC

DFHFC

DFHFC

TYPE=PUT,
RDIDADR=symbolic address,
SEGSET=YES,
TYPOPER=NEWREC, UPDATE,
NORESP=symbolic address,
DUPREC=symbolic address,
INVREQ=symbolic address,
JOERROR=symbolic address,
NOSPACE=symbolic address,
NOTOPEN=symbolic address

TYPE=GETAREA,
DATASET=symbolic name,
INITIMG=value,YES,
DSIDER=symbolic address,
NORESP=symbolic address,
INVREQ=symbolic address,
NOTOPEN=symbolic address

TYPE=RELEASE,
INVREQ=symbolic address

TYPE=SETL,

DATASET=symbolic nanme,
RDIDADR=symbolic address,
SEGSET=symbolic name,YES,ALL,
RETMETH=RELREC, KEY,
NORESP=symbolic address,
DSIDER=symbolic address,
SEGIDER=symbolic address,
INVREQ=symbolic address,
NOTOPEN=symbolic address

TYPE=GETNEXT,

SEGSET=symbolic name,YES,ALL,
NORESP=symbolic address,
SEGIDER=symbolic address,
INVREQ=symbolic address,
IOERROR=symbolic address,
NOTOPEN=symbolic address,
ENDFILE=symbolic address

TYPE=ESETL,
INVREQ=symbolic address

TYPE=RESETL,

SEGSET=symbolic name,YES,ALL,
NORESP=symbolic address,
SEGIDER=symbolic address

TYPE=CHECK,
NORESP=symbolic address,
DSIDER=symbolic address,
SEGIDER=symbolic address,
NOTFND=symbolic address,
DUPREC=symbolic address,
INVREQ=symbolic address,
IOERROR=symbolic address,
DUPDS=symbolic address,
NOSPACE=symbolic address,
NOTOPEN=symbolic address,
ENDFILE=symbolic address

3 # ¥ 3% H H 3 3

H# O O #

#* #O3 H ¥ O ¢ # % 3 O 3 ¢ I # *

#*

H#oH O # H K # *

85

Page of SH20-10474
Revised April 11, 1973
By TNL SN20-9012

RANDOMLY RETRIEVE DATA FROM A DATA SET (GET)

The application programmer can randomly retrieve data from a data
set (file) by issuing the

DFHFC TYPE=GET,
DATASET=symbolic name,
RDIDADR=symbolic address,
SEGSET=symbolic name,YES,ALL,
INDEX=symbolic name,YES,
TYPOPER=UPDATE,
RETMETH=RELREC, KEY,
NORESP=symbolic address,
DSIDER=symbolic address,
SEGIDER=symbolic address,
NOTFND=symbolic address,
INVREQ=symbolic address,
TOERROR=symbolic address,
DUPDS=symbolic address,
NOTOPEN=symnbolic address

H# O3 Ik 3 H 3 H H H 3 ¥ 3 # It

macro instruction. This macro instruction is used for random read-only
(inquiry) or update operations. The requested data record is returned
in a File Input/Output Area (FIOA) for read-only operations with
unsegmented, unblocked records; the data record is returned in a File
Work Area (FWA) for update operations or for read-only operations with
segmented or blocked records.

CICS performs the following services in response to a DFHFC TYPE=GET
macro instruction:

1. Acquires the main storage area required to read a record.
2. Reads the requested data.
3. Locates the requested logical record .

In addition, CICS can perform the following services, depending on
the operands that are included in the DFHFC TYPE=GET macro instruction:

1. Retrieve a record indirectly.

2. Segment a record for inquiry (read only) and return the requested
segments in a work area.

3. Acquire a File Work Area of the same length as the requested
record when the record is to be updated or when records are
blocked or segmented.

4. Unpack a segmented record into a work area of the same length
as the requested record.

Before file services can be requested in an application program via
the DFHFC TYPE=GET macro instruction, the user must have previously
defined in the File Control Table (FCT) all data sets referenced by
the DATASET and INDEX keyword parameters and all segment sets referenced
by the SEGSET keyword parameter. Instructions must have been provided
in the application program that symbolically define the FIOA and/or
FWA by (1) copying the appropriate CICS control section definitions
(DFHFIOA and DFHFWADS) provided by CICS, and (2) providing his own
storage definitions for the user's section of the FIOA and/or FWA. If
ISAM data is being retrieved under CICS/0S, a 16-byte filler must be
defined prior to the user's data definition.

The application programmer must specify the parameters he requires
to retrieve data from a data set. He can do this in either of two
ways: (1) by including the parameters in operands of the DFHFC TYPE=GET
macro instruction, or (2) by coding instructions, prior to issuing the
DFHFC TYPE=GET macro instruction, that dynamically move these parameters
to fields in the TCA. If the parameters are included in

86

cperands of the DFHFC TYPE=GET macic instruction, the applicable
keywords are LCATASET, RCILADR, SEGSET, INDEX, TYFOPER, and RETMETH.

After file services have been requested in an applicaticn program,
addressability must be established for the required FIOA and/or FWA.
The address of the area involved, provided by CICS at TCAFCAA, must
te placed at FICAEAR and/or FWACBAR, The user may issue a DFHSC
TYPE=FREFMAIN or a DFHFC TYPE=RELEASE macrc instruction to free the
FIOA or FWA, otherwise CICS will free the area upon task termination.

If the application programmer desires to check the response to his
request to retrieve data from a data set, he must specify the entry
labels (symltolic addresses) he requires to access user-wWwritten exception
handling routines. He can do this in any of three ways: (1) by
including the entry labels in operands of the DFHFC TYPE=GET macro
instruction, (2) by coding instructions immediately following the DFHFC
TYPE=GET macro instruction that examine the restonse code provided
by CICS at TCAFCTR (TCAFCRC if the language is ANS COBOL) and transfer
centrol to the appropriate routine, or (3) by including the entry
labels in the DFHFC TYPE=CHECK macro instruction (which must immediately
fcllow the DFHFC TYPE=GET macro instruction). In any case, the
applicable keywords are NCRESP, DSIDER, SEGIDER, NOTFND, INVREQ,
ICERFROR, DUPDS, and NCTCEEN. -

A discussion of the operands that can be included in the DFHFC
TYPE=GET macrc¢ instructicn fcllows. (The keywords used to access user-
written exception handling routines are discussed in the section "Test
Respronse to a Request for File Services".)

DAMTASET: This operand is used to specify the symbclic name of the
rrimary data set to te accessed. The synlolic name must have been
rreviously defined in the Pile Control Table (PCT). If the operation
involves indirect accessing, the symbolic data set name specified by
this operand represents the primary (target) data set from which a
record is tc te retrieved. This operand can be omitted if the
application programmer has previcusly placed the symbolic name in the
TCAFCDI £ield of the TCA.

RTIDADR: This operand is used to specify the symkclic address of the
user's Record Identification field that contains the key of the record
to be retrieved, as required by ISAM, or the block reference field,

as required by DAM. This operand can be omitted if the application
rrcgrammer has previously placed the address of the field in the TCAFCRI
field of the TCA. For further details, see the section "Data Base
Considerations"™,

Note: There must be a unigue Record Identification field for each
data set that is to be concurrently updated by a single
application program. Because CICS applicaticn programs must
have the quality of quasi-reentrance, it is highly recommended
that the Record Identificaticn field not reside in the
applicaticn prcgranm.

SEGSET: The SEGSEI=name operand is used to specify the symbolic name
cf the segment set to ke retrieved. The symbclic name nust have been
previously defined in the associated Segment Control section of the
Pile Control Table (FCT).

SEGSET=YES is used when reading a segmented record if the application

rrcgrammer has previously placed the symbolic name of the segment set.
in the TCAPCSI field of the TCA.

87

SEGSET=ALL is used when reading a segmented record if the entire
logical record is desired in an unpacked and aligned fcrmat. SEGSET=ALL
is automatically used by CICS when updating a segmented record. The
entire logical record is unpacked and returned to the application
Frogranme.

If the SEGSET operand is omitted, and the GET is from a segmented
data set, the logical record is returned in its packed format.

INDEX: The INDEX=name operand specifies the symbolic name of the
highest level index data set used in an Indirect Access hierarchy of
ISAM and/or DAM data sets. (This index data set is the first data
set accessed in the hierarchy.) The symbclic name must have been
previously defined in the FCT. INDEX=YES must be coded if the
application programmer has previocusly placed the symbolic name in the
TCAFCAI field of the TCA. If the index data set is a DAM data set,
it cannot ke blocked.

TYPOPER: The TYPOPER=UPDATE operand is used when a tecord is to be
oktained for updating. To free the area used, a DFHFC TYPE=RELEASE

or DFPHFC TYPE=PUT must be issued, If the TYPOPER=UPLATE operand is
cmitted, a read-only operation is assumed. If the record being updated
is from a blccked DAM data set, the RETMETH operand must also be
specified., 3If the applicaticn prcgram is to update more than one data
set concurrently, a separate Record Identification field (RDIDADR)

must be specified for each update request.

RETMETH: The RETMETH operand applies only tc blocked DAM data sets
and is used to specify the argument type (deblocking method) for the
deblocking of the data sets. The RETMETH=RELREC operand specifies
that retrieval is to cccur by relative record, where the first record
in a block is record zero. The RETMETH=KEY operand specifies that
retrieval is to occur by key. The RETMETH operand must be specified
if TYPOPER=UPDATE is present.

If the RETMETH keyword is cmitted and a request to read a blocked
DAM data set is issued, the entire physical racord (block) is returned
to the requesting program in the FIOA.

The user's block reference field, required by DAM, contains the
criteria for the deblocking of DAM data sets. PFor further details,
see the section "Data Base Considerations".

Note: TIf the record being retrieved is "undefined", it is the user's
responsibility to determine the length of the record.

The following are examples of the coding required to do a randonm

read-only (inquiry) operation on a record of the master data set,
assuming klccked or segmented reccrds.

88

For Assembler langquage:

COPY DFHTCADS
KEY DS CL8
FWACBAR EQU 7

COPY DFHFWADS
RECORD DS 0CL350

MvC KEY,ACCTNO
READREC DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEY
FWACBAR, TCAFCAA

[

|
10
[[a}
I
=
[1%]

COBOL:

o
N

-
-

01 DFHTCADS COPY DFHTCADS.
02 KEYF PICTURE X (8).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PICTURE X (350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE ACCTNO TO KEYF.
READREC.
DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF
MOVE TCAFCAA TO FWACBAR.

For PL/I:

%INCLUDE DFHTCADS;

02 KEY CHAR (8);
%INCLUDE DFHFWADS;

02 RECORD CHAR (350);

KEY=ACCTNO;
READREC:
DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEY
FWACBAR=TCAFCAA;

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

COPY TCA SYMBOLIC STRG DEFN
RECORD IDENT FIELD IN TWA

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET *

ESTABLISH ADDRESSABILITY FOR FWA

FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD IDENT TO KEY.

GET RECORD FROM MASTER DATA SET *

NOTE ESTABLISH FWA ADDRESSABILITY.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/ ‘
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*¥ASSIGN RECORD IDENT TO KEY FIELD*/

GET RECORD FROM MASTER DATA SET *
*

/*¥ESTABLISH ADDRESSABILITY FOR FWA*/

The following are examples of the coding required to randomly
retrieve a record for update on the master data set.

89

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

For Assembler language:

KEY
FWACBAR

RECORD

READUPD

COPY DFHTCADS

DS CL8

EQU 7

COPY DFHFWADS
DS 0CL350

MvC KEY,ACCTNO

DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEY,
TYPOPER=UPDATE

L FWACBAR,TCAFCAA

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET *
FOR UPDATE

*

ESTABLISH ADDRESSABILITY FOR FWA

FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COPY DFHTCADS.

02

01 DFHF
02

KEYF PICTURE X (8).

WADS COPY DFHFWADS.
RECORD PICTURE X (350).

PROCEDURE DIVISION.

MOVE

MOVE
READREC.

MOVE

CSACDTA TO TCACBAR.

ACCTNO TO KEYF.

DFHFC TYPE=GET,
DATASET=MASTERA,
RDIDADR=KEYF

TCAFCAA TO FWACBAR.

%INCLUDE DFHTCADS;

02 KEY CHAR (8)

%INCLUDE DFHFWADS;
02 RECORD CHAR(350) ;

KEY=ACCTNO;

READREC:

DFHFC TYPE=GET,

FWACBAR=

90

DATASET=MASTERA,

RDIDADR=KEY,
TYPOPER=UPDATE
TCAFCAA;

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD IDENT TO KEY FIELD.

GET RECORD FROM MASTER DATA SET *
*

NOTE ESTABLISH FWA ADDRESSABILITY.

/%¥COPY SYMBOLIC STRG DEFN FOR TCA*/
/*¥DEFINE KEY FIELD IN TWA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*¥ASSIGN RECORD IDENT TO KEY FIELD*/

GET RECORD FROM MASTER DATA SET *

3*

*

/*ESTABLISH ADDRESSABILITY FOR FWA*/

-

v

" *THY fcllowing are examples of the coding required to randomly
retrieve a reccrd for update where the key for the desired record is
unknown. A cross-index data set containing the master key is available,

making it possitle to access

¥or Asssmbler
COPY
KEY DS
FWACRAR EQU
CCPY
TECORD DS
MVC

READING DF¥HFC

|2t
10
2]
i
Iz
197}
;)
le)
lto
1o
]
(X

(]
N

F

%]

DFHICADS
CL25

7
DFHEFWADS
0CL350

KEY, INDEXA
TYPE=GET,
DATASET=MASTERA,
RDICADR=KEY,
TYPOPER=UPLATE,
INDEX=INDIRECT
FWACEAR,TCAFCAA

01 DFHTCADS COPY DFHTICADS
02 KEY EICTURE X(25).

01 DFHFWALS COEY CFHFWADS.
02 RECCRD EICTURE X (350).

-

EROCEDURE DIVISICN.
MOVE CSACDTA TO TCACBAR.

MCVE FARTNAME TO KEY.

FEADREC.

DFHFC TYPE=GET,

DATASET=MASTERA,
RLITADR=KEY,
TYPOPER=UPLATE,
INDEX=INDEXAB

MOVE TCAFCAA TO FWACTAR,

the record indirectly.

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA

ASSIGN BASE REGISTER FOR FHA
SYMBOLICAILY DEFINE FWA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE INDEX IDENT TO KEY FIELD
GET RECCFD FROM MASTER TATA SET
BY FIRST ACCESSING A CROSS-INDEX
DATA SET NAMED INDIRECT

ESTABLISH ADDRESSABILITY FOR FWA

NOTE

NOTE
NOTE

NOTE
NOTE

NOTE

NOTE

GET

ACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

DEFINE BASE REGISTER.

* % 3 #

CCPY SYMBOLIC STRG DEFN FOR TCA.

DEFINE KEY FTELD IN TWA.

COPY SYMBOLIC STRG DEFN FOR FWA.

DEFINE RECORD LAYOUT IN FWA.

ESTABLISH TCA ADDRESSABILITY.

MOVE INDEX IDENT TO KEY.

RECORD FRCM MASTER DATA SET

BY FIRST ACCESSING A CROSS-INDEX

CAT2

NOTE

SET NAHED INDEXAB

ESTABLISH ¥WA ADDRESSABILITY.

o4

91

]

For PL/

%¥INCLUDE DFHTCADS; /*COFY SYMBOLIC STRG DEFN FOR TCA*/

02 KEY CHAR(25): /*DEFINE KEY FIELD IN TWA*/
%INCLUDE DFHFWADS; /%COPY SYMBOLIC STRG DEFN FOR FWA*/

' 02 RECORD CHAR(350); /*DEFINE RECORD LAYOUT IN FWA*/
KEY=PARTNAME; “ /*ASSIGN RECORD INDENT TO KEY FIELD*/
FEADREC: - o

DFHFC TYPE=GET, GET RECORD FROM MASTER DATA SET *
CATASET=MASTERA, BY FIRST ACCESSING A CROSS-INDEX *
RDILADR=KEY, CATA SET NAMEL INDEXAB | *

%*

TYPOPER=UPLATE,
INDEX=INDEXAB
FWACBAR=TCAFCAA; /*ESTABLISH ADDRESSABILITY FOR FWA*/

RANDCMLY UPDATE OR ALD LCATA TO A LCATA SET (PUT)

The application programmer can randomly update or add data to a
data set (file) by issuing the

DFHFC TYPE=PUT,
RDIDADR=symbclic addrsss,
SEGSET=YES,
IYFOEER=NEWREC,UPDATE,
NCFESP=symbolic address,
DUPREC=symtolic address,
INVREQ=symntkclic address,
JOERROR=symbclic address,
NOSPACE=symbclic address,
NCTCEEN=synkclic address

I H H

macro instruction. This macro instruction is used to (1) update an
existing record, which has been previously retrieved via the DFEFC
TYPE=GET,TYPOEER=UPDATE macrc instruction, or (2) add a new record

to an existing data set. Note that a DFHFC TYPE=PUT macro instruction
must never be issued without first issuing a DFHFC TYPE=GET or DFHFC
TYPE=GETAREA macrc instruction, or unpredictable results will occur.

A File Work Area {PWA) is used tc contain the record or segments
to be written or updated. The first 16 bytes of this work area are
the CICS contrcl section fcllowed by the actual record or segments.

CICS performs the following services in response to a DFHFC TYPBE=PUT
macro instruction:

1. Writes updated cr new records on user-defined data sets

2. Acquires or locates the main storage and control blocks required
to write the record

3. Releases all data set storage associated with the request to
write

4, Packs a segmented record, depending cn the data set organization
and the operands included in the DFHFC TYPE=PUT macro instruction

Before file services can be requested in an application program
via the DFEFC TYPE=PUT macro instruction, the user must have previously
defined in the File Ccntrcl Table (FCT) all data sets referenced by
the DATASET keyword parameter and all segment sets referenced by the
SEGSET keyword parameter. The application programmer must have provided
instructions that do the following:

92

1. Symkolically define the FPWA by (1) copying the aprropriate
storage definition (DFHFWADS) provided by CICS, or (2) providing
his cwn storage definition for the FWA.

2. Establish addressaltility for the new FWA by specifying a symbolic
tase address for the FWA.

3. Place the address of the FWA in the TCA at TCAFCAA. This address
is provided by CICS in resgonse to a previous DFHFC TYPE=GET
or DFHFC TYPE=GETAREA request.

The application programmer must specify the parameters he requires
to PUT data to a data set. He can do this in either of two ways: (1)
ty inciuding the parameters in operands of the DPHFC TYPE=PUT macro
instructicn, or (2) by coding instructions, prior to issuing the DFHFC
TYPE=PUT macrc instruction, that dynamically move these parameters
+o fields in the TCA. If the parameters are included in operands of
+he TLFHFC TYPE=PUT macro instruction, the applicable keywords are
RDIDADR, SEGSET, and TYPOPER.

If the records being written to a data set are undefined, the
applicaticn progranmer must place the length of the record being written
in the TCA at TCAFCURL.

A discussicn of the operands that can be included in the DFHFC
TYPE=PUT macrc -instructicn f£cliows. (The keywords used to access user-
written exception handling routines are discussed in the section "Test
Response tc a Request for File Services".)

RLTITADR: This operand is used to specify the symbclic address of the
usar's data field that contains the key, as required by ISAM, or the
Ylcck reference field, as requirsd by DAM, of the record to be written.
This operand can be omitted if the applicaticn programmer has previously
rlaced the symkclic address in the TCAFCRI field of the TCA. Note

that this operand must not reference a field in the FWA as the FWA

might be freed before the actual write occurs.

SEGSET: The SEGSEI=YES orerand is used when a data set containing

segmented records is to ke added tc or updated. If this operand is
omitted, File Ccntrcl does not perform its normal packing operation
cn segmented records.

TYPOPER: The TYPCPER=NEWREC cperand must be used when adding a new
record to an existing data set. If this operand is omitted, the dafault
is TYPOPER=UPLCATE in which case the DFHFC TYPE=GET,TYPOPER=UPDATE macro
instruction must precede the LCFHFC TYPE=PUT request.

If the application programmer desires to check the resronse to his
request to retrieve data from a data set, he must specify the entry
labels he requires to access user—~written error handling routines.

He can do this in any of three ways: (1) by including the entry labels
in operands of the DFHFC TYPE=PUT macro instructicn, (2) by coding
instructions immediately fcllowing the DFHFC TYFE=PUT macro instruction
that examine the respons2 ccde provided by CICS at TCAFCTR (TCAFCRC

if the language is ANS COBOL) and transfer control to the appropriate
routine, or (3) by including the entry lakels in the DFHFC TYPE=CHECK
macro instruction (which usually immediately fcllows the DFHFC TYPE=PUT
macro instruction). In any case, the applicable keywords are NOKESP,
CUPREC, INVKE(, IOEFFOR, NOSPACE, and NOTCEEN.

The fcllowing are examples of the coding required to randomly

retrieve a record for updating and then return that record to the data

set.

93

——— e E s o

COPY DFHTICADS
KEY DS CL8
FWACBAR EQU 7

COPY DFHFWADS
FECORD LS 0CL350

.

READUPL DFHFC TYPE=GET,
DATASET=MASTERB,
RCITADR=KEY,
TYECFER=UPDATE

1 FWACBAR, TCAFCAA
- {(update record)
ST FWACBAR, TCAFEAA

WRITFUP DFEFC TYEE=PUT,
RCITADR=KEY

[
10
[[a]
f
i
['e)
10
(oY)
le}
It
X}

(=}
[}

FPWACEAR EICTURE SS(8).

01 DFHTICADS COPY DFHICADS.
02 KEY EICTURE X(8).

01 DFHFWALS COPY DFHFWADS.
02 RECORD EICTURE X (350).

FROCEDURE LIVISION.
MOVE CSACDTA TO TCACBAR.

.
-

READUPD.
DFHFC TYPE=GET,
DATASET=MASTERB,
RDIDADR=KEY,
TYPOPER=UPDATE
MOVE TCAFCAA TO FWACBAR.

. (update record)

MOVE FWACEAR TC TCAFCAA.
WRITEUP.
DFHFC TYPE=PUT,
RCILCADR=KEY

For PL/I:
%INCLUDE DFHTCADS;

02 XKEY CHAR(8);
YINCLUDE DFHFWADS;

02 RECORD CHAR (350);

94

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELL IN TWA

ASSIGN BASE REGISTER FOR FWA
SYMEOLICALLY DEFINE FWA

RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

READ RECCRD FOR UPDATE

*
*

ESTABLISH ADDRESSABILITY FOR F@A

PLACE FWA ADDRESS IN TCA

WRITE THE UPIATED RECORD ¥*

USAGE IS COMEUTATIONAL.
NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECCRD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

READ RECORD FOR UPDATE *
*
B 3
*
NOTE ESTABLISH FWA ADDRESSABILITY.
NOTE MCVE ADDRESS OF FWA TO TCA.
WRITE THE UPLATED RECORD *

/*¥COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/

/*¥COPY SYMBOLIC STRG DEFN FOR FWA*/
/*¥DEFINE RECCRD LAYOUT IN FWA*/

.
-

READUP:

DFEFC TYPE=GET, READ RECORD FCE UPLATE *

DATASET=MASTERB, ' *

RLCILCADR=KEY, *
TYPOPER=UPLATE

FWACBAR=TCAFCAA; /*ESTAELISH ADDRESSABILITY FOR FWA*/

. (update record)

TCAFCAA=FWACBAR; /*PLACE ADDR OF WORK ARFA IN TCA*/
WRITEUP:
DFHFC TYPE=PUT, WRITE THE UPIATED RECORD *
RCILADR=KEY

OBTAIN A FILE WCRK AREA (GETAREA)

The application programmer camn obtain an area of main storage to
create a new record fer a data set by issuing the

DFHFC TYPE=GETAREAR,
DATASET=symbclic nanme,
INITIMG=value,YES,
DSIDER=symkclic address,
NCRESP=symkolic address,
INVREQ=symkoli¢ address,
NOTCEEN=symbc¢lic address

#* 3 3¢

macrc instruction. The nev main storage area is a File Work Area (FWA)
and can cnly be ottained through a DFHFC TYPE=GETAREA request. (A
Storage Contrcl DFHSC TYPE=GETMAIN request cannot be used for file
cperations.)

CICS performs the fcllowing services in response to a DFHFC
TYPE=GETARER macrc instructicn:

1. Acquires main storage (an FWA) for the creation of a new record.
2. Includes and initializes the FWA control fields (a 16-byte
prefix to the F¥WA) regquired by File Control.

Before the DFHFC TYPE=GETAREA is nused in an application program,
the user must have previously defined in the File Ccntrol Table (FCT)
all data sets referenced by the DATASET keyword parameter. The
applicaticn pregrammer must have provided instructions that do the
fcllowing: ’

1. Symbolically define the FWA by (1) copying the appropriate
storage definition (DFHFWADS) provided by CICS, or (2) providing
his cwn storage definition for the FWA.

2. Establish addressability for the new FWA by specifying a symbolic
tase address for the FWA. (The address of the area involvad,
returned ky CICS at TCAFCAA, must ke placed at FWACBAR.)

The application programmer must specify the parameters le requires
to obtain a FWA. He can do this in either cof two ways: (1) by including
the parameters in operands of the DFHFC TYPE=GETAREA macro instruction,
or (2) by coding instructions, prior to issuing the DFHFC TYPE=GETAREA
macro instruction, that dynamically move these parameters to fields
in the TCA. 1If the parameters are included in operands of the DFHFC
TYPE=GETAREA macro instruction, the application keywords are DATASET
and INITING.

95

If the application programmer desires to check the res,onse to his
request tc ckbtain a FWA, he must specify the entry labels ({symbolic
addresses) he requires to access user-written error handling routines.
He can do this in any of threce ways: (1) by including the entry labels
in operands of the DFHFC TYPE=GETAREA macro instruction, (2) by codiag
instructions immediately fcllowing the DFHFC TYPE=GETAREA macro
instructicn that examine the respcnse code provided by CICS at TCAFCTR
(TCAFCRC if the language is ANS CCBCL) and transfer contrcl to the
appropriate routine, or (3) by including the entry labels in the DFEHFC
TYPE=CHECK macro instruction (which usually immediately follows the
CFHFC TYPE=GETAREA macro instruction). 3In any case, the applicable
keywords are DSIDER, NOEESP, INVREQ, and NOTCEEN.

A discussicn of the operands that can te included in the DFHFC
TYPE=GETAREA macro instructicn follows. {The keywords used to access
user-written excertion handling routines are discussed in the section
"Test Response to a Request for File Services",)

DATASET: This operand is used to specify the symbolic name of the
data set (file) to be accessed. The symbolic name must have bheen
previously defined in the File Ccntrol Table (FCT). This operand can
te omitted if the applicaticn prcgrammer has previously placed the
symbclic name in the TCAFCDI field of the TCA.

INITIMG: - The INITIMG=value operand is used, at the option of the
application programmer, to specify a one—byte hexadecimal initialization
value for the FWA acquired by File Control. INITIMG=YES must be used

if the aprlicaticn prcgrammer has previously placed the initialization
value in the TCASCIB field of the TCA.

If the INITIMG keyword is omitted, the FWA is initialized to EBCDIC
klanks (X'40'). ° . .
: . 1Y
The following are examples of the coding required to obtain a FWA,
build a new record in the PWA, and then write the record to a data
set.

For Assemtler language:

COPY DFHTCADS COPY TCA SYMBOLIC STRG DEFN
KEY DS CL8 DEFINE KEY FIELD IN THA
FWACBAR EQU 7 ASSIGN BASE REGISTER FOR FWA
COPY DFHFWADS SYMECLICALLY DEFINE FWA
FECORD DS 0CL350 RECORD ILAYOUT FCLLOWS CONTROL
- FIELD AND HAS SAME BASE REGISTER
NEWREC DFHF¥C TYPE=GETAREA, OBTAIN A FPWA TO CREATE A NEW *
DATASET=MASTERC RECORD FOR A DATA SET
L FWACEAR,TCAFCAA ESTABLISH ADDRESSABILITY ¥OR FWA
. (build new recorqd)
ST FWACBAR,TCAFCAA PLACE ALDR OF NEW RECORD IN TCA
WRITNEW DFEY¥C TYEE=PUT, WRITE THE NEW RECORD *
TYPCEER=NEWREC, *

RLCICADR=KEY

96

For ANS COBOL:

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COPY DFHTCADS.
02 KEY PICTURE X (8).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PICTURE X (350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

-

NEWREC.
DFHFC TYPE=GETAREA,
DATASET=MASTERC
MOVE TCAFCAA TO FWACBAR.

. (build new record)

MOVE FWACBAR TO TCAFCAA.
DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEY

For PL/I:

%INCLUDE DFHTCADS;

02 KEY CHAR(8);
%INCLUDE DFHFWADS;

02 RECORD CHAR(350) ;

NEWREC:
DFHFC TYPE=GETAREA,
DATASET=MASTERC.
FWACBAR=TCAFCAA;

. {build new record)

TCAFCAA=FWACBAR;
WRITNEW:
DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEY

RELEASE FILE STORAGE (RELEASE)

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

OBTAIN A FWA TO CREATE A NEW *
RECORD FOR A DATA SET
NOTE ESTABLISH FWA ADDRESSABILITY.

NOTE ADDRESS OF NEW RECORD TO TCA.
WRITE THE NEW RECORD *

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

OBTAIN A FWA TO CREATE A NEW *
RECORD FOR A DATA SET
/*¥ESTABLISH ADDRESSABILITY FOR FWA*/

/*¥PLACE ADDR OF NEW RECORD IN TCA*/

WRITE THE NEW RECORD *

The application programmer can release the storage areas acquired
for File Control operations by issuing the

DFHFC TYPE=RELEASE,

INVREQ=symbolic address

97

Page of SH20-1047-4

Revised April 11, 1973

By TNL SN20-9012

macro instruction. This macro instruction is primarily used when (1)
a record has been retrieved for update, (2) it is determined that the
update should not occur, and (3) it is desired to release all
encumbrances associated with the update operation (that is, FWA, FIOA,
exclusive control).

Note: In the case of response codes X'01' (DSIDER), X'04' (SEGIDER),
X'03' (INVREQ), X'0C' (NOTOPEN), CICS does not acquire an FIOA;
therefore TCAFCAA does not contain an FIOA address.

To release the storage occupied by a FWA or FIOA that was returned
to a read, either a DFHFC TYPE=RELEASE or DFHSC TYPE=FREEMAIN macro
instruction should be issued. However, if a "read for update" request
results in an error, the FIOA is returned to the user; a DFHFC
TYPE=RELEASE macro instruction should then be issued to release any
exclusive control emcumbrances.

The DFHFC TYPE=RELEASE macro instruction must not be specified if
the DFHFC TYPE=PUT macro instruction is used to write an updated record
back to a data set.

CICS performs the following services in response to a DFHFC
TYPE=RELEASE macro instruction:

1. Releases a FWA and/or FIOA.
2. Releases exclusive control of a record retrieved for update (if
applicable).

Before the DFHFC TYPE=RELEASE macro instruction is executed, the
application programmer must ensure that the address of the FWA to be
released has been placed in the TCA at TCAFCAA. The FIOA (if any)
associated with it is also released. In addition, the correct record
identification must be present in the Record Identification field
specified in the RDIDADR operand of the DFHFC TYPE=GET macro
instruction.

The FWA and FIOA are automatically released at termination of the
task, if not released earlier in response to to this macro instruction.

If the application programmer desires to check the response to his
request to release a FWA or FIOA, he must specify the entry label
(symbolic address) he requires to access the user-written exception
handling routine. He can do this in any of three ways: (1) by including
the INVREQ operand in the DFHFC TYPE=RELEASE macro instruction, (2) by
coding an instruction immediately following the DFHFC TYPE=RELEASE
mracro instruction that examines the response code provided by CICS at
TCAFCTR (TCAFCRC if the language is ANS COBOL) and transfers conrol to
the appropriate routine, or (3) by including the INVREQ operand in the
DFHFC TYPE=CHECK macro instruction (which usually immediately follows
the DFHFC TYPE=RELEASE macro instruction). In any case, the applicable
keyword is INVREQ. '

For a discussion of the INVREQ keyword, see the section "Test
Response to a Request for File Services".

The following are examples of the coding required to request the
release of a FWA.

For Assembler language:

FWACBAR EQU 7 ASSIGN BASE REGISTER FOR FWA
COPY DFHFWADS SYMBOLICALLY DEFINE FWA
RECORD DS 0CL350 RECORD LAYOUT FOLLOWS CONTROL

FIELD AND HAS SAME BASE REGISTER

98

ST FWACBAR,TCAFCAA
DFHFC TYPE=RELEASE

ADDRESS OF FWA TO BE RELEASED
IN TCA AND ISSUE RELEASE REQUEST

98.1

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

s o .

C1 DFHTCADS COPY DFHTCADS.
02 RECCRT EICTURE X (350).

EFOCEDURE DIVISiON.

MOVE CSACDTA TO TCACEAR.
MOVE FWACBAR TO TCATFCAA.
FISEREC.
DFHEFC TYPE=RELEASE
For PL/I:

%¥INCLUDE TFHTCADS;

FINCLUDE DFHFWADS;
02 RECCRD CHAR(350) ;

TCACBAR=CSACDIA;
TCAFCAR=FWACBAR;
FLSEREC:

DFHFC TYPE=RELEASE

NOTE DEFINE BASE REGISTER FOR FWA.

CCFY SYMBOLIIC STRG DEFN FOR FWA
DEFINE RECQRD LAYOUT IN FWA.

NOTE
NOTE

NOTE ESTABLISH TCA ADDRESSABILITY.

NCTE ADDF OF FWA TO EE RELFASED.

ISSUE RELEASE REQUEST

/*¥COPY SYMBCLIC STRG DEFN FOR TCA*/

/*COPY SYMBCLIC STRG DEFN FOR TFWAX/
/*DEFINE RECORD LAYOUT IN FWA*/

/*ESTABLISH ADDRESSABILITY FOR TCA*/
/*ADDRESS OF FWA TO BE RELEASED*/

ISSUE RELEASE REQUEST

INITTATE SEQUENTIAL RETRYEVAL (SETL)

The applicaticn prcgrammer initiates a sequential retrieval operation

cn a data set by issuing the

DFEFC TYPE=SETL,
CATASET=synkclic name,

RDIDADR=symbclic address,
SEGSET=symbolic name,YES,ALL,

EETMETH=RELREC,KEY,

NCRESP=symbclic address,
DSIDER=symtclic address,
SEGIDER=syntclic address,
INVREQ=syntclic address,
NCTCEEN=symbeclic address

macro instruction.

This macro instruction is used cnly to initiate

a sequential retrieval operation and must be issued before any GETNEXT

macro instruction.

It is used to establish the starting position

within the data set where the browse operation is to begin.

Records are always returned to the application program in a File

Work Area (FWld). The FWA returned
is unique for the duration of that

by CICS following a SETL request
particular sequential operation.

Should the applicaticn program issue another SETL request, for the

same ¢r another data set,

a different FWA will te created by CICS.

9

3 3% 3 3 3 ¥ ¥ % ¥

9

Thus it is pcssible for a single application prcgram to be concurrently
trowsing the same data set at several different locatioms.

Note that during a brcwse operation on a segmented data set, the
original FWA (that is, the cne allocated by the SETL request) may be
replaced with a different FWA if a segment set specified in a GETNEXT
request requires a larger FWA than the segment set specified in the
SETL request. 1In this situation, the application programmer should
not rely on the same FWA being returned from a GEINEXT regquest as was
specified when the GETNEXT request was issued. The address of the
arpropriate FWA is always located in the TCA field labeled TCAFCAA
upon return from a GETINEXT request.

CICS performs the fcllowing services in response to a DFHFC TYPE=SETL
macro instruction:

1. Acquires the main storage I/0 areas and work areas to be
associated with this browse operation.

2. Preserves the segment set name (if any) as the default segment
set to be used if none is specified in subsequent GETNEXT
reguests.

3. Returns the FWA address in the TCA field labeled TCAFCAA.

Before the SETL wacre instructicn can be used, the user must have
rreviously defined in the File Ccentrol Table (FCT) the data set
referenced by the DATASET operand and all segment sets referenced by
the SE¥GSET operand. The application prcgrammer should have also
provided instructicns which do the following:

1. Symbolically define the FRA by (1) copying the CICS control
section definition (DFHFWALS) provided by CICS, and (2) providing
his cwn storage definition for the user's sec*ion of the FHA.

2. Estatlish addressability for the FWA by specifying a symbolie
base address for the FWA, typically following the DFHFC macro
instruction. (The address of the FWA, provided by CICS at
TCAFCAA, must ke placed at FWACBAR upon normal return from the
SETL.) ' :

A discussion of the operands that can be used with the DFHFC
TYPE=SETL macro instructicn fcllows. (The keywords used to specify
user-written exception handling routines are discussed in the section
"Test Response to a Request for Pile Services". These keywords include
NORESP, DESIDER, SEGIDER, INVREC, and NOTCPEN.)

DATASET: This operand is used to specify the symbclic name of the

data set cn which sequential retrieval is to be initiated. The symbolic
name must have been previcusly defined in the File Control Table (FCT).
This operand can te omitted if the application precgrammer has previously
placed the symbclic data set name in the TCA field labeled TCAFCDI.

RLIDADR: This operand specifies the symbclic address of the user's
Record Identification field which contains the specific or generic
(partial) key as required by ISAM, or the block reference as required

ty DAM. This operand can be omitted if the application programmer

has previously placed the address of the field in the TCAFCRI field

cf the TCA. A generic key is one in which the user supplies only the
significant characters of a desired group of keys, padding the remainder
of the key field with blanks cr binary zeros.

Fer an ISAM data set, the browse operation begins at the first
record with a key equal to or higher than the key provided in the
user's Record Identificaticn field. For example, a generic key
specification of "D6420000" would cause Sequential processing to begin

100

at the first record with a key containing D6#42xxxx, regardless of the
characters represented by the x's. (A kxey field of all binary zeros
wculd therefore cause sequential proccessing to begin at the first
logical reccrd of the data set.) '

For a DAM data set, the user's Record Identification field must
contain a specific blcck reference (for example, TTR, MBBCCHHR, etc.)
which conforms to the acceptatle addressing method defined for that
data set. (For further details, refer to the section "Data Base
Considerations™.,) Processing begins with the specified block and
continues with each subsequent block until the browse operation is
terminated. If the DAM data set contains blocked records, processing
begins at the first locgical record of the first block and continues
with each subsequent logical record.

The informaticn supplied by the usér in the Record Identification
field is preserved by CICS for use when GETNEXT reguests are issued.
The Record Identificaticn field is used by CICS during subsequent
GEINEXT orerations and shculd not be released by the application
Frogrammer. CICS places -the identificaticn of each record into this
field as the record is retrieved in response to a GETNEXT request.

This feedback, placed into the Record Identification field by CICs,
is always in a form which completely identifies each record. (Refer
to the secticn "Data Base Considerations" for further ianfcrmation
concerning the Record Identification £ieid.) For example, assume a
browse operation is to start with the first logical record of a blockegd,
keyed TAM data set. Before issuing the DFHFC TYPE=SETL macro
instruction, the user shculd place the TTR (assuming that is the
addressing method) of the first block into the Record Identification
field. After executing cach DFHFC TYPE=GETNEXT macro instruction,
CICS places the complete lcgical record identification into the Record
Identification field. After the first GETNEXT, the Record
Identification £ield might contain:

C(OCOO1BLOCK1RECH

where "C00001" represents the TTR value, "BLOCK1" represents the block
key, and "REC1I" represents the record key.

SEGSET: This operand is used to specify the symbolic name of the _
default segment set tc te retrieved during a browse operaticn involving
segnented records. This segment set is used automatically by CICS

if the user fails to specify a segment set name on subsequent GETNEXT
service requests. The segment set identified by a SETL macro
instruction is always used as the default segment =et throughout a
browse operation unless altered by a RESETL macro instruction. The
symbolic name must have been previously defined in the associated
Segment Ccntrol section of the File Ccntrol Table {FCT).

SEGSET=YES is used if the applicaticn programmer has dynamically
rlaced the symkolic name c¢f the segment set in the TCA field labeled
TCAFCSI prior to issuing the LCFHFC TYPE=SETL macro instruction.

SEGSET=ALL is used if the application programmer wishes all segments
of a record returned in an unpackeé and aligned format.

If the SEGSET operand is omitted, and the data set contains segmented
records, the logical record is returned in its packed format.

RETMETH: Applicable only tc¢ klocked BDAM data sets, the RETMETH operand
is used to specify the format of the logical record identification
that is placed in thke user's Record Identification field by CICS each

101

time the next logical record is retrieved in a browse operation. If
RETMETH=RELREC is specified, the one-byte binary relative record number
is provided. If RETMETH=KEY is specified, the logical record key is
provided; however, the records must have embedded keys.

For example, if a user is browsing a blocked EDAM data set (non-
keyed) and the second logical record from the second physical block
cn the third relative track was just read in response to a GETNEXT
request, the Record Identification Field would contain:

Xxr0cc20201°
upon return to the user, where "0002" represents the track, "0o2v

represents the block, and "01" represents the logical record within
the block.

The following is an example of the coding required to initiate a
trcwse operation.

For Assembler language:

——— RESs

FWACBAR EQU 7 ASSIGN BASE REGISTER FCR FWA
COPY DFHFWADS DEFINE CONTROL SECTICN OF FWA
FECORD DS 0CL350 RECORD LAYOQUT
CSECT
START DFHFC TYPE=SETL, INITIATE BROWSE
DATASET=MASTER,
RDICADR=KEY,
NCTCEEN=ERROR CHECK FOR ERRORS
L FWACEAR,TCAFCAA
KEY Ds 0CL8 INITIAL KEY DESIGNATION
nC CL5'JONES® PARTIAL KEY
DC XL3'00" PADDING
EREOR DS 0H ENTRY TO EEROR ROUTINE
For ANS COEOL:
02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
. NOTE DEFINE BASE BEGISTER FOR FPRA.
01 DPFHTCALS COFY LFHTCADS. NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
02 KEY PICTURE X(8). NOTE DEFINE KEY FIELD IN TWA.
01 DPHFWADS COPY DFHFWADS. NOTE COPY SYMEOLIC STRG DEFN FOR FWA.
92 RECCFD EICTURE X (350). NOTE DEFINE RECORD LAYOUT IN FWA.

EROCEDURF DIVISION.
MOVE CSACDTA TO TCACEAR. NOTE ESTARLISH TCA ADDRESSABILITY.

102

#* ¥ *

MOVE 'JONES! TC KEY.
START.
D¥H¥C TYPE=SETL, © INITIATE BROWSE
- DATASET=MASTER,
RDICADR=KEY, :
NCTCEEN=ERROR CHECK FOR ERRORS -
MOVE TCAFCAA TO FWACEAR.

ERROR.

For PL/I:
XRINCLUDE DFHTCADS; /¥COPY SYMBOLIC STRG DEFN FOR TCA*/
02 KEY CHAR(®);

%INCLUDE DFHFWADS; v /*COPY SYMBOLIC STRG DEFN FOR FuAx/
02 RECORD CHAR (350) ; /*DEFINE RECORD LAYOQOUT IN FWA*/

KEY="JONES"';
START:
DFHEFC TYPE=SETL, INITIATE BROWSE
DATASET=MASTER,
REICADR=KEY,
NCTIOFEN=ERROR CHECK FCR ERRORS
FWACBAR=TCAFCAA;

-
-

EKROR:

RETRIEVE NEXT SECUENTIAL RECORE (GETNEXT)

Once the application prcgrammer has issued a DFHFC TYPE=SETL macro
instructicn to initiate a browse operation, he may request the next
(or first) sequential record by issuing the

DFEFC TYPE=GETNEXT,

SEGEET=symbolic name,YES,ALL,
NCRESP=symbolic address,
SEGIDER=symbclic address,
INVREQ=symkolic addxess,
JOERROR=symbclic address,
NOTCBEN=symkclic address,
ENDFILE=symkclic address

macro instruction. When the first GETNEXT request is issued following
a SETL request for an ISAM data set, CICS acquires the first logical
record with a key equal tc cr higher than the key presented by a

3

3

3 % 3 & % # 3%

103

previous SETL; for a DAM data set, CICS acquires the first logical
record specified by the user. When initiating a browse operaticn c¢n
a CAM data set, the user must provide a sgpecific record reference.
Fach subsequent GETNEXT request, whether for an ISAM or DAM data set,
causes CICS to acquire the next logical record in segquence.

Before issuing the DFHFC TYPE=GETNEXT macro instruction, the
applicaticn programmer must place the address of the FWA associated
with the particular operation in the TCA f£i<ld labeled TCAFCARA. If
the application program has initiated multiple browse operations, it
rust keep track of the FWA associated with each operation and zefer
to a specific FWA when requiring services related to that brewse.

CICS perfcrms the fcllowing services in response to a DFHFC
TYPE=GETINEXT macroc instruction:

1. Retrieves the next sequential record and places it in the FWA
specifiecd by the user at TCAFCAA,

2. Places the record identificatiocon (key, block identification,
etc.) of the record just retrieved into the users Record
Identification field which was specified in the DFHFC TYPE=SETL
request. (Refer to the discussion of Record Identification
field feedkack under the RDIDADR operand.) If the user wishes
tc issue a randcm "read for update™ on the record just returned,
he need only specify the address of the Record Identification
field in his GET request.

In addition, CICS can perform the follcwing services, depending
¢cn the operands included in the DFPHFC TYPE=GETNEXT macro instruction.

1. Present the user with the segments as specified in the GETNEXT
request,

2. Present the user with the segments as specified in the SETL
request if no seqgment set is specified with the GETNEXT regquest.

3. If the FWA is not large enough to process a segment set specified
in the GETNEXT request, dispose of the old FWA and acquire a
new one large enough tc process the new request.

A discussion of the operands that can te included in the DFHFC
TYPE=GETINEXT macro instruction follows. (The keywords used to access
user-written exception handling routines are discussad in the section
"Test Resronse to a Request for File Services".)

SEGSET: This operand is used to specify the symbolic name of the
segment set which is to be retrieved from the next sequential record.
If this orerand is not included in the DFHFC TYPE=GETNEXT macro
instruction, CICS will use the default segment set name that may have
been specified in the DFHFC TYPE=SETL macro instructicau.

If this operand is omitted on a GFTNEXT operatiaon and if SEGSET
was specified in the DFHFC TYPE=SETL macro instruction, the eight-
character default segment identification, as specified in the SETL
macro instruction, is returned at TCAFCST urcn normal completion of
the GETNEXT.

SEGSET=YES is used if the application programmer has dynamically
rlaced the segment set name in the TCA field labeled TCAFCSI prior
to issuing the DFHFC TYPE=GETNEXT macro instruction.

SEGSET=ALL is specified if the applicaticn programmer wishes all
segments returred in an unpacked and align=d fcrmat.

104

The following is an example of the coding necessary to retrieve
the next sequential record in a browse operation using segmented

records.

FWACBAR

FECORDA

INITIAL

CSECT

MvVC

DFEFC

ST
DFEFC TYPF=GEINEXT,

DFHFWADS
CCL350

KEY (8) ,=8X'00"
TYPE=SETL,
DATASET=MASTER,
SEGSET=A,
RDIDADR=XKEY

FWACRBAR,TCATFCAA

FWACEAR,TCAFCARAA
TYPE=GETNEXT

FHACEAR,TCAFCAA

SEGSET=B

For ANS CCRBCL:

02 FPWACBAR PICIURE S9(8) USAGE

C1 DFHTCADS COPY CFHICALS.
72 KEY ETICTURE S9(18) USACE IS

C1 DFHFWYALS CCPY DFHFWADS.
02 EECCED FICTURE X (359).

EROCEDURE LIVISION.
SACDTA TO TCACEAR,

MOVE

MOVE

C

0

TO

KEY.

DFHFC TYPE=SETL

COPY TCA SYMBCLIC STRG DEFN

DEFINE KEY FIELD IN TWA

ASSIGN FWA BASE REGISTER

DEFINE CICS CONTROL SECTION OF FWA
DEFINE RECORD LAYOUT IN TFWA.

START AT BEGINNING OF DATA SET
INTTIATE BROWSE *

#*

SET DEFAULT SEGMENT SET *

ESTABLISH FWA BASE PEGISTER

GET NEXI SEQUENTIAL RECORD

GET NEXT RECORD *
WITH SEGMENT B

IS COMEUTATIONAL.
NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
COMPUTATICNAL.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYCUT IN FWA.

NOTE ESTAELISH TCA AUDRESSABILITY.
NOTE START AT BEGINNING OF DATA SET.

INITIALTIZE BROWST *

105

DATASET=MASTER,

SEGSET=A,

RCILADR=KEY
MOVE TCAFCAA TC FWACEAR.

MOVE FWACEAR TO TCAFCAA.
DFHFC TYPE=GETNEXT

MOVE FWACEAR TO TCAFCAA.
DFHFC TYPE=GETNEXT,
SEGSET=B

fid

or

Yoy

%INCLUDE TFHTCADS;
02 KEY BINARY FIXED(8,0);

&

-

%INCLUDE DFHFWADS;
02 RECORL CHAR (359);
KEY=0;

DFHFC TYPE=SETL,
DATASFI=MASTEER,
SEGSET=1,
RCILADR=KEY
FWACBAR=TCAFCAA;

TCAFCAA=FWACBAR;
DFEFC TYPE=GETNEXT

TCAFCAA=FWACEAR;
DFEFC TYPE=GETNEXT,
SEGSET=B

SET DEFAULT SEGMENT SET

NCTE ESTABLISH FWA ADDRESSABILITY.

GET NEXT SEQUENTIAL RECORD.

GET NEXT KECOERD
WITH SEGMENT 3

/*¥COPY SYMBCLIC STRG DEFN FOR TCAX/
/*DEFINE KEY FIELD IN TWAX/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECOEFD LAYCUT IN FWA%/

/*START AT BEGINNING OF DATA SET*/

INITIALTIZE BERCWSE

SET DEFAULT SEGMENT SET

/*¥ESTABLISH FWA ADDRESSABILITY*/

GET NEXT SEQUENTIAL RECORD

GET NEXT ERECORD
WITH SEGMENT B

TERMINATE SECUENTIAL RETRIEVAL (ESETL)

The applicatien prcgrammer may terminate a browse operation by

issuing the

DFHFC TYPE=ESETL,

INVREQ=symkclic address

106

#* %

macro instruction. Before the macro is issued, the programmer must
ensure that the TCA field labeled TCAFCAA contains the address of the
File Work Area (FWA3) associated with the trcwse operation he wishes
to terminate. In respcnse to an ESETL request, CICS will release all
I/0 and work areas associated with the browse operation.

The following is an example of the coding necessary to terminate

twc ccncurrent browse operations.

For Assembler language:

CCEY DFHICADS CoPY TCA SYMBGLIC STRG DEFN
FWACELL1 DS A CCNTAINS ATDR OF FWA USED
* FOR FIRST BEOWSE OPERATION
FWACELIL2 DS A CCNTAINS ADDR OF FWA USED
* FOR SECOND BROWSE OPERATICN
FWACBAR EQU 7 ASSIGN FWA BASE REGISTER
COPY DFHFWADS DEPINE FRA SYMBOLIC STORAGE DEFN
FECORD DS 0C1350 DEFINE EECORD
CSECT
Mve TCAFCAA,FWACELLA1 MCVE BROWSE 1 FWA ADDR TO TCA
CFEFC TYPE=ESETL ISSUE ESETL MACRC INSTRUCTICN
MvC TCAFCAA,FCACELL2 MOVE BROWSE 2 FWA ACDR TO TCA
DFHFC TYPE=ESETL ISSUE ESETL MACRC INSTRUCTION

02 FWACBAER PICTURE S9(8) USAGE IS COMPUTATIONAL.
. NOTEY DEFINE BASE REGISTER FOR FWA.
C1 DFHTCADS COPY DFHICADS. NOTE COFY SYMBOLXIC STRG DEFN FOR TCA.

02 FWACELL?1 PICIURE S9(8) USAGE IS COMPUTATICNAL.
02 FWACEIL2 PICTURE S9(8) USACE IS COMPUTATIONAL.

01 DFHFWALS COPY DFHFWADS. NQTE COEY SYMBOLIC STRG DEFN FOR FWA.
02 RECCED EICTURE X (350). NOTE DEFINE RECORD LAYOUT IN FWA.
MOVE FWACELL1 TO TCAFCAA. NOTE PEEFARE TO END FIRST BROWSE.

DFH¥C TYPE=ESETL TERMINATE FIRST EROWSE.
MOVE FWACELL2 TO TCAFCAA. NOTE PREPARE TO END 2ND BROWSE.
DFHFC TYPE=ESETL TERMINATE SECOND BROWSE.
For PL/I:
%TNCLUDE DFHTCADS; /*¥COPY SYMBCLIC STRG DEFN FOR TCA*x/

02 FWACEII1 ECINTER;
02 FWACELL2 PCINTER;

.

%INCLUDE TCFHFWADS; /*COPY SYMBOLIC STRG DEFN FOR FWA*/

107

02 RECOERTL CHAR(3590); /*DEFINE RECORD LAYOUT IN FWA*/

TCAFCAA=FWACELL1; : /*MOVE BROWSE1 ¥WA ADDR TO TCA*/
DFHFC TYPE=ESETL
TCAFCAA=FWACELL2; /*MOVE BROWSE2 FWA ADDR TO TCAa*/

DFEFC TYPE=ESETL

RESET SEQUENTIAL RETRIEVAL (RESETI)

Once a browse operation has been initiated with a SETL request,
the arpplication prcgramner may, at any time prior to issuing the ESETL
request, reset the search argument to scme record other than the next
sequential record. He can accomplish this by issuing the

DFEFC TYPE=RESETIL,)
SEGSET=symbolic name,YES,ALL,
NCRESP=symkclic address,
SEGIDER=symbclic address

macro instruction. Prior to issuing the request, the application
programmer shculd rlace the address of the aprrcpriate FWA into the
TCA field labeled TCAFCAA and place the new record identification in
the Record Identificaticn field specified through the RDIDADR operand
in the criginal SETL request.

The use of the RESETL macro instruction allows the application
Frogrammer to avoid issuing an ESETL request fcllowed by another SETL
request, and causes CICS to use the same I/0 and work area. Upon
return frcm the RESETL request, the TCA field labeled TCAFCAA contains
the address of a new FWA which the user can use for the browse
operation.

The RESETL request allows the user to "skip" through his data set
in a browse operation with the least possikle overhead.

SFGSET: This operand allows the user to rerlace the default segment
set identification specified at SETL. If this operand is omitted,
the SEGSET specified in the last SETL or RESETL for this browse
operation is used.

SEGSET=YES is used if the application programmer has dynamically
placed the symbolic name of the segment set in the TCA field labeled
TCAFCSI prior to issuing the DFHFC TYPE=RESETL macro instruction.

SEGSET=ALL is used if the applicaticn programmer wishes all segments

of a record returned in an unracked and aligned format.

The fcllowing is an example of the coding necessary to reset the
search argument and the default segment set for a browse operation.

COPY TDFHTCADS COPY TCA SYMBOLIC STRG DEFN
KEY DS D . DEFINE KEY FIELD IN-TWA
FWACRAR EQU 7 ASSIGN FWA RASE REGISTER

COPY DFHFHWADS COPY FWA DSECT R
FECORD1 DS 0CL350 DEFINE RECORD WITH SEGSET A

-

108

3*

ORG

RECORDA1
FECORD2 DS 0CL250
CSECT
MvVC KEY (8) ,=8X'00"

DFRFC TYPE=SETL,
DATASET=MASTER,
RCIDADR=KEY,
SEGSETI=A

L FWACEAR,TCAFCARA

ST FWACEAR,TCAFCAA

MVC KEY (8) ,=CL8'SMITH'

DFEFC TYPE=RESETL,
SEGSET=B

L FWACBAR, TCAFCARA

¥or ANS CCEOL:

02 FWACBAR PICTURE S9(8) USAGE

01 DFHTCADS COPY DFHTCADS.
02 KEY PICTURE $9(18) USAGE IS

02 FILLER REDEFINES KEY.
03 KEYC PICTURE X (8)..

01 DFHFWADS COPY DFHFWADS.
02 RECOERD!1 PICTURE X (350).

01 DFEFWA RECEFINES DFHFWADS.
02 CICSPART PICTURE X (*).
02 RECORD2 PICTURE X(250).

MOVE 0 TC KEY.

DFHFC TYPE=SETIL,
DATASET=MASTER,
RCITADR=KEY,
SEGSET=A

MOVE TCAFCAA TO FWACEAR.

MOVE FWACBAR TO TCAFCAA.

MOVE *SMITH' TOC KEYC.
DFHFC TYPE=RESETL,
SEGSET=B

MOVE TCAFCAA TC FWACBAR.

DEFINE RECORD WITH SEGSET B

INITIALIZE KEY FIELD

ISSUE INITIAL SETL MACRO *
FOR DATASET "MASTER" *
INITIAL SEARCH ARG=0 *

FOR SEGSET=A
ESTABLISH ADDRESSABILITY TO FWA

STORE FWA ATLDR IN TCA

ESTABLISH NEW SEARCH ARGUMENT
ISSUE RESETL MACRO *
NEW SEGSET ID

ESTABLISH ADDRESSABILITY TO FWA

IS COMPUTATIONAL.

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.

COMFUTATIONAL.

NOTE DEFINE KEY FIELD IN TWA.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA,
NOTE DEFINE RECORD WITH SEGSET A.
NOTE CREATE STRG DEFN FOR FWA.

NOTE PLACE LENGTE OF FWA HERE.

NOTE DEFINE HECORD WITH SEGSET B.
ISSUE INITIAL SETL MACRO INSTR *
FOR DATASET "MASTER" *
INITIAL SEARCH ARG=0 *

FOR SEGSET=A

NOTE ESTABLISH ADDRESSABILITY TO FWA.

NOTE STORE FWA APDRESS IN TCA.

NOTE ESTABLISH NEW SEARCH ARGUMENT.
ISSUE RESETL MACRO INSTRUCTION *
NEW SEGSET ID

NOTE ESTABLISH ADDRESSABILITY TO FWA.

109

For PL/I:
%INCLUDE DFHTCADS; /*COPY SYMBOLIC STRG DEFN FOR TCA*/
02 KEY BINARY FIXED(8,0); /*DEFINE KEY AS BINARY*/
CECLARE 01 DFHXTCA BASED (TCACBAR),
02 FILL CHAR(*), /%PLACE LENGTH OF TCA HERE*/
N2 KEYC CHAR(8); /*DEFINE KEY AS CHARACTER¥*/
%INCLUDE CFHFRADS; /*COPY SYMBOLIC STRG DEFN FOR FWA*/
02 RECCED1 CHAR(350); /*DEFINE RKECORD WITH SEGSET A*/
TECLARE Q01 DFHXFWA BASEL (FWACBAR),
02 FILL CHAR(*), /*PLACE LENGTH QF FWA HEREX*/
02 RECORD2 CHAR(250); /¥DEPINE EECORD WITH SEGSET B*/
KEY=0; o /*SET KEY VALUE TO ZERO*/
DFEFC TYPE=SETL, ISSUE INITIAL SETL MACRO INSTR *
DATASET=MASTER, FOR DATA SET YMASTER"™ %
RIILADR=KEY,. INITIAL SEARCH ARG EQUALS ZERO %
SEGSET=2A FO% SEGSET A
FWNACBAR=TCAFCAA; /*ESTABLISH ADDRESSABILITY FOR FWHA*/
TCAFCAA=FWACBAR; : /*STORE FWA ADDR IN TCA*/
KEYC='SMITH'; /*ESTABLYSH NEW SEARCH ARGUMENT*/
CFHFC TYPE=RESETL, ISSUE RESETL MACRO INSTRUCTIOCN %
SEGSET=B NEW SEGSET ID
FWACBAR=TCAFCAA; /*ESTABLISH ADDRESSABILITY TO FHA*/
TEST KESECNSE TO A REQUEST FQOR FILE SERVICES (CHECK)
One of the ways the application programmer can test the response
tc a request for file services is by issuing the ,
DFEFC TYPE=CHECK, *
NCBESP=symbolic address, *
. LSIDER=symkolic address, *
SEGIDER=symkoclic address, *
NOTFND=symbclic address, *
LUEREC=symkclic address, *
INVREQ=symkclic address, *
I0ERROR=synmkclic address, *
DUPDS=symbclic address, *
NCSPACE=symbclic address, *
E 3

NCTCEEN=symkclic address,
ENDFILE=synkclic address

macro instruction, which provides for the testing cf response codes
and the routing of contrcl to the appropriate user-written -exception
handling routines. This macrc instruction provides an exception
handling facility that can be used in the manner of a subrcutine.

CICS automatically places the appropriate response code in the TCA
at TCAFCTR (TCAFCRC if the language is ANS COBOL) after completion
" of the file service requested, The application programmer must specify
the entry labels (symtolic addresses) he requires to access the
appropriate exception handling routines previously supplied: by the
user. o

110

Page of SH20-10474

Revised April 11, 1973

By TNL §N20-9012

If the application programmer does not.use the DFHFC TYPE=CHECK

macro instruction, he can specify the entry labels in either of two
other ways: (1) by including the entry labels in operands of any other
DFHFC macro instruction, or (2) by coding instructions immediately
following the DFHFC macro instruction that examine the response code
provided by CICS at TCAFCTR (TCAFCRC if the language is ANS COBOL) and
transfer control to the appropriate routine.

The response codes are as follows:

CONDITION ASSEMBLER ANS COBOL PL/I

NORESP X*00°" 12-0-1-8-9 00000000
DSIDER X'01? 12-1-9 00000001
SEGIDER Xxrout 12-4-9 00000100
INVREQ Xt08¢" 12-8-9 00001000
DUPDS X*'0Ar 12-2-8-9 00001010
NOTOPEN Xtoce 12-4-8-9 00001100
ENDFILE X'0F? 12-7-8-9 00001111
IOERROR . Xv80¢ 12-0-1-8 10000000
NOTFND Xt81¢ 12-0-1 10000001
DUPREC X182¢ 12-0-2 10000010
NOSPACE Xrg3¢ 12-0-3 10000011

If the DFHFC TYPE=CHECK macro instruction is used by the application
programmer, it normally follows another DFHFC macro instruction. The
applicable keywords are NORESP, DSIDER, SEGIDER, NOTFND, DUPREC, INVREQ,
IOERROR, DUPDS, NOSPACE, NOTOPEN, and ENDFILE.

Note: When an exception condition occurs (for example, NOTFND, IOERROR,
or DUPREC), the FIOA is retained; the FIOA contains the address
of the FCT data set entry that produced the exception condition.
The FIOA address is returned to the user at TCAFCAA. Before
issuing other File Control requests, the user should free the
storage occupied by the ¥IOA through use of the DFHFC
TYPE=RELEASE macro instruction.

If the application programmer does not check for a particular
response to his service request, and if that exception condition occurs,
program flow proceeds to the next sequential instruction.

A discussion of the operands that can be used to test the response
to a request for file services follows.

NORESP: Specifies the entry label of the user-written routine to which
control is to be passed in the event no errors occur on a file
operation. NORESP signifies "normal response" rather than "no
response",

DSIDER: Specifies the entry label of the user-written routine to which
control is to be passed if the data set specified at TCAFCDI cannot be
located in the File Control Table. DSIDER signifies "data set
identification error".

SEGIDER: Specifies the entry label of the user-written routine to
which control is to be passed if the segment set specified at TCAFCSI
cannot be located in the File Control Table. SEGIDER signifies "segment
set identification error".

111

Page of SH20-1047-4

Revised April 11,1973

By TNL SN20-9012

NOTFND: Specifies the entry label of the user-written routine to which
control is to be passed in the event of an unsuccessful retrieval of

a record based on the search argument provided (key or block reference).
NOTFND signifies a "record not found" situation.

DUPREC: Specifies the entry label of the user-written routine to which
control is to be passed in the event an attempt is made to add a record
to the data set in which one already exists with that key. DUPREC
signifies "duplicate record".

INVREQ: Specifies the entry label of the user-written routine to which
control is to be passed in the event a file operation is attempted that
is not provided for (or allowed) according to the data set entry
specifications in the FCT. INVREQ signifies "invalid request". The
address of the appropriate File Control Table entry is returned at
TCAFCAA.

TOERROR: Specifies the entry label of the user-written routine to

which control is to be passed in the event an unusual event occurs
during a file operation. When an I/0 event error code is not covered

by one of the CICS error classes (for example, NOSPACE, NOTFND), it is
considered an I/0 error. The user's routine may check the actual error
codes in the FIOA (FCFIOBEX in the case of DAM or BDAM, FCFIOEX in the
case of ISAM), the address of which is returned in the TCA field labeled
TCAFCAA. Since these error codes are access method and operating systen
dependent, the user should be aware that checking these codes in his
application programs would have a limiting effect on migrating those
application programs from CICS/DOS to CICS/0S, if this were ever
desired. :

DUPDS: Specifies the entry label of the user-written routine to which
control is to be passed in the event the record just retrieved on an
indirect access is from the duplicate data set rather than from the
prime (master) data set. The duplicate record is processed by the
user-written routine rather than allowing the record to be processed
by main line code as a prime data set record. DUPDS signifies
"duplicate data set".

NOSPACE: Specifies the entry label of the user-written routine to
which control is to be passed in the event no direct access space is
available for adding records to a data set. When this condition occurs,
the original user record is returned in a File Work Area (FWA) the
address of which is at TCAFCAA. The main storage location of this FWA
may be different from that for the FWA acquired in response to the
DFHFC TYPE=PUT macro instruction (which was issued to add the record).
This error code is not applicable when adding records to DAM non-keyed
data sets.

NOTOPEN: Specifies the entry label of the user-written routine to

which control is to be passed in the event the requested data set is

not open. This error condition can occur after any file service request
except RELEASE, ESETL, and RESETL because data base data sets can be
dynamically closed at any time without regard to outstanding activity

on the data set.

ENDFILE: Specifies the entry label of the user-written routine to
Iwhich control is to be passed in the event an end-of-file condition

112

is detected during the sequential retrieval (browse) of records from
a data set. This condition cccurs only after a GEINEXT request.

The following are examples of the coding required to examine the
response code provided by CICS at TCAFCTR (TCAFCRC if the language
is ANS COBOL) and transfer contrcl to the appropriate user-written
error handling routine.

For Assembler language:

CFHFC TYPE=GET,
DATASET=MASTER,
FDILACR=KEY

CLY TCAFCTR,X'00"

BE GOOD
CLT TCAFCIR,X'80°"
BE EEEOR
CLI TCAFCTR,X'(C8"
BE EREKOR

GOGD DS OH

EEROR DS OH

DFHPC TYPE=ABEND

DFHFC TYPE=6ET,
CATASET=MASTER,
RDITADR=KEY
IF TCAFCRC=' ' THEN GC TO GOOD.
IF TCAFCRC=' ' THEN GO TO ERROR.
IF TCAFCRC=' ' THEN GO TG ERROE.

GCCD.

ERROR.
DFHPC TYPE=ABEND

where the value specified within single quotes is a multipunch code
for the required hexadecimal value. For example, a hexadecimal 00
has a multirunch code of 12-0-1-8-9.

For BL/I:

DFHFC TIYPE=GET,

DATASET=MASTER,

RDIDADR=KEY
IF TCAFCTR='00(00000*B THEN GO TO GOOD;
IF TCAFCTR='1CCC0000'B THEN GO TO EREKOR;
IF TCAFCTR='00001000'B THEN GO TO ERROR;

113

GCOD:

EFEOR:
DFHEC TYPE=ABEND

JBANSIENI DAIA SEBRVICES

Transient Data Management provides, through Transient Data Control,
a generalized queuing facility where data can be queued (stored) for
subsequent internal or external rrocessing. Selected units of
information, as specified by the application programmer, can be routed
to or frcm predefined symbolic destinations, either intrapartition
or extrapartition.

Intrapartition destinaticns are queues of data on direct access
devices develcped for input to cne or more programs running
asynchronously (ccncurrently) as separate tasks; they are internal
to the CICS partition/region. Data directed to or from these internal
destinations is called intrapartition data and may consist only of
variable-length records. Intrapartition destinations can be associated
with (1) a terminal (to accomplish message switching or tc route data
to a terminal other than the criginating terminal), (2) an output data
set, or (3) an application prcgram under the control of CICS.

The intrapartition queue is reusable. An option permits the user
to indicate, ty symkolic destinaticn, whether Transient Data space
management is tc ccntrol the reuse of tracks associated with a
particular destination identification (DESTID), or whether the releasing
of track space is to be contrclled through the Transient Data PURGE
macro facility. Note that if Transient Data space management is not
used, intrapartition queues continue to grow, irrespective of whether
the data has been read, until the user purges thenm.

Extrapartition destinaticns are queues (data sets) that are external
to the CICS partition/region, residing om tape or direct access devices.
Cata directed to or from these external destinations is called
extrapartition data and may consist of sequential records that are
fixed or variable length, blocked or unblocked. The record format
specification is described in the Destination Control Table in the

- =S

Intrapartition and extrapartition destinations can be used as
indirect destinaticns which are symbolic references to still other
destinations. This facility provides some flexibility in program
maintenance in that an installation can be changed, giving a destinatiomn
a new symtclic name, withcut reccmpiling existing programs. These
Frograms can be allowed to route data to the previously existing
symbolic name; however, the previously existing symbolic name is now
an indirect destination that refers to the new symbolic nanme.

Requests fcr transient data services are communicated to Transient
Lata Control via CICS macro instructions. Transient Data Control then
executes as a service program, at the priority of the requesting
Frogram, under control of the requesting rrcgram's TCA, saving and
restoring registers fxcm this TCA. After the requested transient data
service has been rrovided (or attempted), control is returned to the
next executable instruction in the requesting program. Upon return
tc the requesting program, tests can be made and control routed to
various user-written error handling routines based on the outcome of
the requested transient data service.

114

The Transient Data Management macro instruction (DFHTD) is used
to request any of the fcllowing services:

1. Acquire data from a predefined symltolic source which references
a data set, a prcgram, or a terminal.

2. Direct data to a predefined symbolic destination which references
a data set, a prcgram, or a terminal.

3. 'Contrcl the processing of extrapartition data sets.

4. Check the response to a request for transient data services.

CICS routes a variety of messages generated by CICS programs or
tasks to Transient Data Ccntrcl. For example, Terrinal Control detects
a line or terwinal prcblem (not related to a user-provided task) and
routes contrcl to the CICS Terminal Abnormal Condition progran
(DFHTACP). DFHTACP then gencrates a messade tc symholic destination
CSTL (terminal log) and/or to symbolic destination CSMT (master
terminal).

Destinations must have been previcusly established in the Destination
Ccntrol Table (DCT) for all user and CICS destinations. Lack of a
destination definition results in the loss of data sent to these
destinations.

For intrapartition destinations, CICS provides the option of
automatic task initiaticn. Automatic task initiation is accomplished
by setting a nconzero trigger level for a particular destination. When
the number of entries (PUT's from one or more programs) in the queue
(destinaticn) reaches a specified level, the transaction is
automatically initiated and a program given contrcl tc process the
data in that queue. The prcgram that has been automatically initiated
must issue repetitive GET's to deplete the queue.

Once the queue has been depleted, a new avtomatic task initiation
cycle begins. That is, a new task is scheduled for initiation when
the specified trigger level is again reached, whether cr not execution
cf the prior task has terminated.

If an automatically initiated task does not deplete the queue,
access to the queue is not prevented. If the task is normally or
abnormally terminated before the gueue is emptied, and if the
destinaticn is a terminal, the same task is reinitiated regardless
cf the trigger level. However, if the destination is a data set (file),
the task is not reinitiated until the specified trigger level is
reached. If the trigger level of a queue is zero, no task is
automatically initiated.

The following operands can be included in the DFHTD macro
instructicn: :

DFHTD TYPE=PUT,

DESTID=symbolic nane,
TDADDR=symbolic address,
NORESP=symbolic address,
IDERECR=synbclic address,
I0ERROR=symkclic address,
NOTOFEN=symbclic address,
NOSPACE=symkclic address

* % # ¥ % o

- 115

CFHTD TYPE=GET,
DESTID=symbolic nanme,
NORESP=symkclic address,
CUEZEFO=symbclic address,
IDERROR=symtclic address,
IOERROR=symbclic address,
NOTCEEN=symkclic address

3 % # 3

CFHTD TYEE=FEQV,
DESTID=symbolic name,
NORESP=symbolic address,
IDERFOR=symnbclic address,
NOTOEEN=sywnkclic address

#* 3 # R

*

DFHTID TYPE=PURGE,
DESTID=symbolic nanme,
IDERFOR=synmbclic address,
NORESP=symbolic address

#* ¥

CFHTD TYPE=CHECK,
NCRESP=symbolic address,
QUEZERO=symbtclic address,
IDERROR=symbclic address,
TO0EFEOR=symbclic address,
NOTQEEN=symkclic address,
NOSPACE=symbclic address

O3 ¥ ¥ o ®

DISPCSE OF DATA (PUT)

The application programmer can direct transient data to a predefined
symtolic destination by issuing the

DFHTD TYPE=PUT,

DESTID=symbolic nanme,
TDADLR=symbclic address,
NORESP=symbclic address,
IDERRCR=synbclic address,
I0ERROR=symbclic address,
NCTCEEN=synkclic address,
NOSPACE=symbclic address

3 3 3 3¢ 3 #

macro instruction. Destinations are intrapartition if associated with
a facility allocated to the CICS partition/region and extrapartition
if the data is directed to some destination that is external to the
CICS partition/region. If the data is intrapartition, a copy of the
TDOA symbclic storage definition (DFHTDOA) should be included and all
references to the output area should be made via a register (TDOABAR)
which pcints to the beginning of the area.

If the data is variable length, whether intrapartition or
extrapartition, tke first four bytes of the data (LLbb) contain the
data length, where LL is a twc-byte binary length £ield (the value
of which includes the length of the data rlus the four bytes for the
length field) and bb is recommended to be a two-byte field of binary
Zeros.

The application programmer must specify the parameters he requires
to dispose cof transient data. He can do this in either of two ways:
(1) by including the parameters in operands of the DFHTID TYPE=PUT macro
instruction, or (2) by coding instructions, rrior to issning the DFHTD
TYPE=PUT macro instruction, that dynamically move these parameters
to fields in the TCA. If the parameters are included in operands of
the LFHTD TYPE=PUT macro instruction, the applicabls kXeywords are
DESTID and TDADDR.

116

A discussion of the operands that can b=z included in the DFHTD
TYPE=PUT macro instructicn follows. (The keywords used to access user-
written exception handling routines are discussed in the section "Test
Response to a Request for Transient Data Services".)

DESTID: Specifies the symbolic destination name (which is the name
cf an entry in the DCT) €c which the data is to be routed and queued.
The destinaticn name can be coded in the macro instruction or
dynamically loaded in the TCA at location TCATDDI.

TLCADDR: Specifies the address of the data to be written. This can

te provided by coding the symtolic name of the area in the macro
instruction or by dynamically loading the address of the area in the
TCA at location TCATDAA. Transient Data Control does not release this
area after the output of the data. The address points to the first
four bytes of the output area which, for variable length records and
intrapartition data, must contain the length of the record. This
length includes both the length of the data and the length field (of
the form 1Lbb).

The following are examples cf the coding required to write data
to a predefined symbolic destinatiocn.

TDOABAR EQU 7
COPY DFHTCOA

DATA DS crL1e
MvVC TDOAVRI ,LENGTH
MvcC LCATA,MESSAGE
MvC TCATCDI ,=C'CSML®

CFHTD TYPE=PUT,
TDADDR=TNCAVRL

02 DCAEBAF PICTURE S9(8) USAGE IS CCMFUTATIONAL.

e« & 13 o o

MCVE LENGTIH TO TLOAVRL.
MOVE MESSAGE TO TCATA.
MOVE 'CSML' TO TCATDDI.
DFHTD TYPE=PUT,
TRADCR=TILOAVRL

117

For PL/I:

%INCLUDE LFHTDOA;
2 DATA CHAR(10);

TDOAVRL=LENGTH;
DATA=MESSAGE; ,
TCATDDI='CSML'; - v
CFHTD TYPE=PUT,
TDADTR=TDOAVRL

ACQUIRE QUEUEL DATIA (GET)

The applicaticn prcgrammer can acquire transient data from a
predefined symktolic source by ccding the

DFHTL TYPE=GET,
DESTID=symbolic nanme,
NORESP=symkolic address,
CUEZERO=synbclic address,
IDEFFOR=symbclic address,
ICEREFCR=synkclic address,
NOTCEEN=symnkclic address

macro instruction. The address of the data acquired is returned in
ths TCA at TCATDAA.

If the data is extrapartition, the address pcints to the first word
of the data area. For variable~length records, the first four bytes
of the data contain the length {LLLb) as specified for variable-length
data sets.

If the data is intrapartition, the address of the data acguired
Foints tc a CICS input area defined by DFHTDIA. The field TDIAIRL
contains the length (data length plus the length of the length field).
In the case of either intrapartiticn or extrapartition data, the data
must be mcved to be used in any other input/output operation.

If the user issues a subsequent DFHTD TYPE=GET macro, the Transient
Data I/0 area from the previous GET will ke reused, thus data to be
saved should be moved tc a user area.

Note: The applicaticn prcgrammer should not attempt to free storage
acquired by the Transient Data Ccntrcl program in response to
a DPHTD TYPE=GET macro instruction. This storage is freed by
CICS in the case of intrapartition data, or by the operating
system in the case of extrapartiticn data. An attempt to free
storage acquired for extrapartition data may result in an
abnormal terminaticn of CICS, since the storage area address
returned by Transient Data Ccntrol points to storage that is
not part of the CICS dynamic storage subpool.

The applicaticn prcgrammer must specify the parameters he requires
to acquire transient data. He can do this in either of two ways:

#* % % % 3 *

(1) by including the parameters in operands of the DFHTD TYPE=GET macro

instruction, or (2) by coding instructions, fprior to issuing the DFHTD
TYPE=GET macro instruction, that dynamically move these parameters
to fields in the TCA. If the parameters are included in operands of

the DFHTD TYPE=GET macro instructicn, the applicable keyword is DESTID.

118

A discussion of the DESTID operand follows. (The keywords used to
access user-written exception handling routines are discussed in the
section "Test Response to a Request for Transient Data Services".)

DESTID: Specifies the symbolic destination name (the name of an entry
in the DCT) from which data is to be retrieved. The name can be
specified in the macro instruction or by dynamically loading it in the
TCA at location TCATDDI.

The following are examples of the coding required to read a record
from an intrapartition data set.

For Assembler language:

TDIABAR EQU 7
COPY DFHTDIA
MvVC TCATDDI,=C'CSML!
DFHTD TYPE=GET
L TDIABAR,TCATDAA

For ANS COBOL:

02 TDIABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTDIA COPY DFHTDIA.

MOVE 'CSML' TO TCATDDI.
DFHTD TYPE=GET
MOVE TCATDAA TO TDIABAR.

%INCLUDE DFHTDIA;
2 DUMMY CHAR(1);

TCATDDI='CSML';
DFHTD TYPE=GET
TDIABAR=TCATDAA;

In the above examples, if the record is to be read from an
extrapartition data set, the address passed to the user at TCATDAA is
the address of the actual data. However, since the DFHTDIA symbolic
storage definition is being used, the address must be adjusted to point
to the CICS control area preceding the actual data. Therefore,
immediately following the instruction that moves the contents of TCATDAA

119

Page of SH20-1047-4
Revised April 11, 1973

By TNL SN20-9012 . :

to TDIABAR, another instruction must be added. The following exanples
which apply to CICS/0S are applicable TO CICS/DOS if '40' is replaced
by '8°'.

The examples are for variable-length records where the first byte
of the data is actually the LLbb field. Therefore, if the retrieved
record is fixed format, the value in the examples must be 12 and 44.

Note: This DSECT is intended to be used for intrapartition data. The

_____ values are subject to change in future versions of CICS. No
DSECTs are provided for extrapartition data.

For Assembler lanquage:

SH TDIABAR,=H'40'

For ANS COBOL:

SUBTRACT 40 FROM TDIABAR.

For PL/I:

DCL TDIABAA FIXED BIN(30) BASED(TDIABAB) ;
TDIABAB=ADDR (TDIABAR) ;
TDIABAA=TDIABAA - 40;

If the extrapartition data set is blocked, alignment requirements
are the user's responsibility. The DFHTDIA DSECT assumes doubleword
alignment for the start of the LLbb field in variable records, or for
the start of the data if fixed records are processed.

CONTROL THE PROCESSING OF EXTRAPARTITION DATA SETS (FEOV)

The application programmer can create a "forced end of volume"™
situation on an extrapartition magnetic tape data set (file) by issuing
the

DFHTD TYPE=FEOV,
DESTID=symbolic name,
NORESP=symbolic address,
IDERROR=symbolic address,
NOTOPEN=symbolic address

#* H H *

macro instruction. This macro instruction is used to cause the
rewinding and unloading of a magnetic tape reel; the next tape reel
must then be reloaded.

DESTID: Specifies the symbolic address of the destination against which
"forced end of volume" is to be applied.

This facility must be used with caution since CICS operation is
halted until the new tape reel has been reloaded.

Note

For a discussion of the NORESP, IDERROR, and NOTOPEN operands, see
the section "Test Response to a Request for Transient Data Services."

The following are exanmples of the coding required to create a "forced
end of volume" situation on an extrapartition magnetic tape data set.

120

For Assembler language:

MvC TCATDDI,=C'CSML'
DFHTD TYPE=FEOV

120.1

MOVE 'CSML' TO TCATITLDI.
CFHTD TYPE=FEOQV

[
lo
(3]
Lv]
%
o o o |4

TCATDDI="'CSML';
LFHID TYPE=FEOV

PURGE TRANSIENT DATA (PURGE)

When transient data associated with a rarticular intrapartition
destination (queue) is nc lcnger needed, the application programmer
can purge the data associated with that destination by issuing the

CFHTD TYPE=PURGE, ; *
DESTID=symboclic name, *
IDERROR=symkclic address, *

NORESP=symkclic address

macro instruction, which causes all storage associated with the
destinaticn tc be freed (erased and deallocated).

For destinations designated as non-reusable in the Destination
Contrcl Table, the DFHID -TYPE=PURGE macro instructicn wmust be used
to free storage associated with the destination. Ctherwise, the storage
remains allocated to the destination, and the data associated with
the destinaticn ccntinues - to grow until the allocated storage is
entirely used or until the storage is freed via this macrc instruction.

A discussion of the DESTID cperand follows., For a discussion of
the IDERROR operand, see the section "Test Response to a Request for
Transient Data Services".

DESTID: Specifies the symbclic destination name (the name of an entry
.in the Destination Control Table) associated with the transient data
to be purged. The destination name can be coded in the macro
~instruction or dynamically loaded in the TCA at lccation TCATDDI.

TEST RESPONSE TO A REQUEST FCR TRANSYENT DATA SERVICES (CEECK)

Cne of the ways the applicaticn programmer can test the response
tc a request for transient data services is by issuing the

CFHID TYPE=CHECK,
NCRESP=symbolic address,
QUEZEFO=symbclic address,
IDERROR=symbkclic address,

¥* # ¥ 3

I0ERROR=symbclic address, *
NOTCEEN=symtclic address, *
NOSPACE=synbclic addzess .

macro instruction, which provides for the testing of response codes
and the rcuting of contrcl to the appropriate user-written exception
handling routines. This macrc instruction provides an exception
handling facility that can be used in the manner of a subroutine.

CICS automatically places the appropriate response code in the TCA
at TCATDTR (TCATDRC if the language is ANS CCBCL) after completion
cf the transient data service requested. The application programmer
nust specify the entry labels (symkclic addresses) he requires to
access the appropriate exception handling routine previously supplied
ty the user.

If the application programmer does not use the LFHTD TYPE=CHECK
macro instruction, he canmn specify the entry labels in either of two
other ways: (1) by including the entry lakels in operands of any cther
IFHTD macro instruction, or (2) by coding instructions immediately
fcllowing the DFHID macro instruction that examine the response code
rrovided by CICS at TCATDIR (TICATDRC if the language is ANS COROL)
and transfer contrcl to the appropriate rcutine.

The response codes are as fcllows:

CONDITION ASSEMBLER ANS COBCL BL/1

NOFESP X100 12-0-1-8-9 00200000
QUFZERO X101 12-1-9 €0C00001
IDERROR xvo2°' 12-2-9 €0000010
ICEFROR X'our 12-4-9 ¢0000100
NOTCEEN X'08!* 12-8-9 €C001000
NOSPACE Xt10° 12-11-1-8-9 £60100C0

If the TFHTID TYPE=CHECK macrc instructicn is used by the application
rrogrammer, it shculd usually immediately fcllow ancther DFHTD macro
instruction. The applicable keywords ars NCRESP, QUEZERO, IDERROR,
ICFRROR, NOTOEEN, and NOSPACE.

If the application programmer does not check for a particular
response tc his service request, and if that exception condition occurs,
rrcgram flcw proceeds to the next sequential instruction.

The operands that can ke used to test the response to a request
fcr transient data servicas are as follows.

NORESP: Svecifies the entry label of the user-written routine to which
ccntrol is to be passed in the event nc errcrs cccur during a data

set (file) creration. NORESP signifies "normal response" rather than
"no response'.

CUFZERO: Specifies the entry lakel of the user~written routine to
which contrcl is tc be passed when the destination (queue) accessed
ty a GET is fcund to be empty. This response applies to both
intrapartition and extrapartiticn input gueues.

IDEFEOR: Specifies the entry label of the user-written routine to
which contrecl is to be passed in the event the symbelic destination
identificaticn referenced by a GET, PUT, or FEOV cannot be found.

122

ICEFFOR: Specifies the entry label of the user-written routine to
which ccntrol is to be passed in the event an input/output error occurs
cn a data recerd and the data record in error is skipped. Transient
Data returns an ICERROR indicatiocn as lcng as the quene (destination)
can te read, after which a QUEZERO response is returned; queue
rrocessing may then be restarted.

NOTOPEN: Specifies the entry label of the user-written routine to
which ccntreol is to be passed in the event a destination is closed.

NOSPACE: Specifies the entry label of the user-written routine to
which ccntrol is to be passed when it is determined that nc more space
exists on a particular intrapartition gueue or that the write request
cannot be serviced. If the NOSPACE response is received, more data
cshould not be written toc this queue as it could be lost.

The following are examples of the coding required to examine the
rasponse code provided by CICS at TCATDTR (TCATDRC if the language
is ANS CCBCl) and transfer contrcl to the appropriate user-written
cexception hanpdling routine.

For Assenmbler language:
TCFHTD TYPE=GET, *
DESTID=CSML
CLI TCATDTR,X'00!

BE GCOD
CFEEC TYPE=ABEND
C00D DS oH

CFHTD TYPE=GET, *
DESTID=CSML
TF TCATLRC=' ' THEN GC TO GOOD.
DFHEC TYPE=ABEND
GOOD.

where the value specified within single quotes is a multipunch code for
the required hexadecimal value. For example, a hexadecimal 00
has a multipunch code of 12-0-1-8-9.

For PI/I:
CFBTD TYPE=GET, *
DESTID=CSML
IF TCATDTR='C{CC00J0'B THEN GO TO GOGD;
DFHEC TYEE=ABEND
GQCD:

123

TEMEORARY STORAGE SERVICES

Temporary Storage Management provides the facility, through Temporary
Storage Contrcl, that enables user-written applicaticn programs to
store temporary data in main storage or on auxiliary storage (DASD).
Temporary data is stored, retrieved, and released using a unique
symbolic name (up to eight characters) assigned to the data by the
originating task.

Data stored in temporary storage can remain intact beyond the time
that the originating task is terminated. That is, the originating
task may ke terminated and its tramsaction storage released; however,
the data stored in temporary storage is still available under the
symbolic name with which it was stored. The data remains intact until
it is released by the user (the originating task or any other task).
Temporary data can be accessed any number of times until it is released.

When temporary data is released, the space it occupies beconmes
reusable. If the data was stored in main storage, the area is released
and returned to the available dynamic area. If the data was stored
cn auxiliary storage, the physical block becomes available and can
ke reused for other data.

Temporary data can be retrieved by the originating task or any other
task using the unique user-supplied name. To avoid conflicts due to
duplicate names, a naming convention must be devised by the user; for
example, by arpending the operator identificaticn, terminal
identification, or transaction identification as a prefix or suffix
to the user-supplied symbclic name.

When retrieving data, Temporary Storage Control always searches
for the data in main storage before it searches in auxiliary storage.

Except in the CICS/DOS-ENTRY system, main storage is used by
Temporary Storage Control to store small amounts of data (up to 256
bytes) for short periods of time. For example, main storage might
be used to pass data from task to task or for unique storage that
allows programs to meet the requirement of CICS that they be quasi-
reentrant (serially reusalkle Lketween entry and exit points of the
program). If a request is made to store more than 256 bytes of data
in main storage, the request automatically defaults to auxiliary
storage.

Auxiliary storage is used Lty Temporary Storage Control to contain
data greater than 256 bytes in length and/or data that is to be kept
for extended pericds of time. Auxiliary temporary storage can also
be used when reusable storage space is reqyired.

Possible uses of auxiliary storage by Temporary Storage Control
include:

1. Video paging. A task could retrieve a large master record from
DASD, format it into several screen images, store the screen
images on Temporary Storage auxiliary storage, and then ask
the terminal operator which "page" (screen image) is desired.
The user can provide coding (as a generalized routine or unique
to a single application) to advance page by page, advance or
back up a relative number of pages, etc. ,

2. A "suspend data set"., Assume a data collection task is in
progress on a certain terminal. The task reads in one or more
units of input and then allows the terminal operator to interrupt
the process. If no interruptiaon occurs (scme kind of coded
input), the task repeats the data collection process.

124

If the orerator interrupts the data collection stream with the
coded input, the data ccliection task could output its
"incomplete" data tc Temporary Storage and terminate the task.
The terminal is now £ree to enter a completely different
transaction (perhaps a high-priority ingquiry), When the terminal
is available to continue the data collection operation, the
operator initiates the task in a "resume" mode, causing the
task to recall its suspended data from temporary storage and
continue as though it had not been interrupted.

3. An application that accepts input data which will be used for
output on a preprinted form.

The Temporary Storage Manadgement macro instruction (DFHTS) is used
to request any of the fcllowing services:

1. Acquire data from a symbolic source in main or auxiliary storage.
2. Send data to symholic storage in main or auxiliary storage.

3. Relcase data from main or auxiliary storage.

4. Check the response to a request for temporary storage services.

The following operands can be included in the DFHTS macro
instructicn: ,

DFHTS TYPE=PUT, *
CATAID=nanme, *
TSDADDR=symbclic address, *
STORFAC=AUXILTIARY, MAIN, *
NCEESP=symbolic address, *
INVREQ=symlkolic address

DFHTS TYPE=GET, *
CATAID=name, *
TSDADDR=synbclic address,YES, *
RELEASE=YES, NO, *
NCRESP=symbclic address, *
IDEFROR=symbclic address, *
IOCEREOR=synbclic address

DFHTS TYPE=RELEASE, *
DATAID=name, *
NCRESP=symbolic address, *
IDERROR=symbclic address

DFHTS TYPE=CHECK, *
NCRESP=symbolic address, *
IDEREOR=symkclic address, *
IOERROR=symbclic address, *
INVREQ=symbolic address

STORE TEMPORARY DATA (PUT)
The aprlicaticn programmer can send temporary data to a symbolic
source in main or auxiliary storage by issuing the

DFHTS TYPE=PUT, *
CATAID=nanme, *
TSDALDR=symbclic address, *
STORFAC=AUXILIARY, MAIN, *
NORESP=symbolic address, *

INVREQ=symkclic address
macro instruction, The temporary data must have the standard variable-

length format, with the data length specified in the first four bytes
(L1bb) fcllowed by the data. 1L is a two-byte binary length field

125

{the value of which includes the length of the data plus the four bytes
for the length field) and bb is recomnended to be a two-byte field
cf binary zeros.

The application programmer must specify the parameters he requires
to store temporary data. He can do this in either of two ways: (1)
ty including the rarameters in operands of the DFHTS TYPE=PUT macro
instructicn, or (2) by coding instructions, prior to issuing the DFHTS
TYPE=PUT macro instruction, that dynamically move these parameters
to fields in the TCA. If the parameters are included in operands of
the DFHTS TYPE=PUT macrc instruction, the applicable keywords are
DPATAID, TSDADDR, and STORFAC.

A discussion of the operands that can be included in the DFHTS
TYPE=PUT macro instruction follows. (The keywords used to access user-
written exception handling routines are discussed in the section "Test
‘Response to a Request for Temporary Storage Servicas",)

DATAID: Specifies the unique alphameric name (one to eight characters)
to be assigned to the temporary data to be stored. This operand can
ke omitted if the applicaticn prcgrammer has previously placed the
unique alphameric name in the TCATSDI field of the TCA.

TSDADDR: Specifies the symkolic address (halfword aligned) of the
temporary data to ke stored. This operand can be omitted if the
application programmer has previously placed the address in the TCATSDA
field of the TCA. The data area is not released by the temporary data
PUT.

STORFAC: Specifies whether the temporary data is to be stored on
auxiliary storage (AUXILIARY) or in main storage (MAIN). The default
is STORFAC=AUXILIARY. Any data greater than 256 bytes in length is
automatically placed on auxiliary storage regardless of the user's
request.

The following are examples of the coding required to write a record
to tenporary storage.

lexg

or Assembler language:

TSIOABAR EQU 7
COPY DFHTSIOA
TATA DS CL10

MVC TSIOAVRL ,LENGTH

MVC CATA,MESSAGE

DFHTS TYPE=PUT,
CATAID=UNIQONHME,
TSDADDR=TSIQAVRL

126

For ANS COBOL:
02 TSIOABAR PICTURE S9(8) USAGE IS COMBUTATIONAL.
01 DFHTSICA COPY CFHTSIOA.
02 DATA PICTURE X(10).

MOVE LENGTH TO TSIOAVRL.
MOVE MESSAGE TO DATA.
DFHTS TYPE=PUT, *
DATAID=UNICNME, *
TSDADDR=TSIOAVRL

For PL/I:
%INCLUDE DFHTSIOA;
2 DATA CHAR(10);

TSIOAVRL=LENGTH;
DATA=MESSAGE;

DFHTS TYPE=PUT, . *
DATAID=UNIQNME, *
TSDADDR=TSIOAVRL

RETRIEVE TEMPCRARY TLATA (GET)

The application programmer can retrieve temporary data from a
symbclic source in main or auxiliary storage by issuing the

DFHTS TYPE=GET,
LATAID=name,
TSDADDR=symbclic address,YES,
RELEASE=YES, NO,
NORESP=symbolic address,
IDERROR=symbclic address,
IOERROR=symbclic address .

* % 3 3

macro instruction. Data retrieved from temporary storage is placed
in either a user-grovided storage area or an area (transaction storage)
acquired for the user by Temporary Storage Control.

The application programmer must specify the parameters he requires
to retrieve temporary data. He can do this in either of two ways:
{1) by including the parameters in operands of the DFHTS TYPE=GET macro
instruction, or (2) by coding instructiomrs, prior to issuing the DFHTS
TYPE=GET macro instruction, that dynamically move these parameters
to fields in the TCA. 1If the parameters are included in operands of
the DFHTS TYPE=GET macro instruction, the applicable keywords are
CATAID, TSDADDR, and RELEASE.

A discussion of the operands that can be included in the DFHTS .
TYPE=GET macro instruction follows. (The keywords used to access user-
written exception handling routines are discussed in the section "Test
Response to a Request for Temporary Storage Services".)

127

DATAID: Specifies the name assigned to the temporary data at the time
it was placed in temporary storage. This operand can be omitted if

the application prcgrammer has previously placed the name in the TCATSDI
field of the TCA.

TSCADDR: Specifies the symbolic name of the user-provided storage
area into which the temporary data is to be read (cr moved).
TSDADDR=YES must ke coded if the application programmer has previously
rlaced this symtolic address in the TCA at TCATSDA. If this operand
is omitted, Temporary Storage Control obtains a storage area, moves

or reads temporary data into the area, and returns ths address of the
area to the user in the TCA at TCATSDA.

RELEASE: Specifies whether the data is tc be released following this
acquisiticn. The default is RELEASE=NO.

The following are examrtles of the coding required to read a record
from temporary storage. 1In these examples, the data is moved to the
area defined by the user in the TSDADDR operand. If the TSDADDR operand
is omitted, the data is mcved iuto a storage area obtained by Temporary
Storage Control, and the address of the storage area is returned to
the user at TCATSTLA.

TSIOAEAR EQU 7
CorY DFHTSIOA
DFHTS TYPE=GET, *
DATAIC=UNIQNME, *

TSDADDR=TSIOAVRL

For ANS COBCL:

02 TSIOABAR PTCTURE S9(8) USAGE IS COMPUTATIONAL.

01 DEHTSICA COPY DFHTSIOA.

DFHTS TYPE=GET, *
DATAID=UNICQNME, *
TSDADDR=TSIOAVRL

128

]
lo
(3}

BL/1:

%INCLUDE DFHTSIOA;
2 DATA CHAR(10);

DFHTS TYPE=GET, *
DATAID=UNIQNME, *
TSDADDR=TSTIOAVRL

RELEASE TEMECFRAERY [ATA (RELEASE)

The applicaticn programmer can release temporary data from main
or auxiliarv stcrage by issuing the

DFHTS TYPE=RELT®ASE, *
DATAID=name, *
NCRESP=symkolic address, *

IDERROR=symbclic address

macro instruction. If the data was stored in main storage, the area
is freed and returned to the available dynamic area. If the data was
stored in auxiliary storage, the space is made available for other
data.

Temporary data should Lke released at the earliest possible time
to avoid suspended tasks.

A discussion of the CATAID=nams operand of the DFHTS TYPE=RELEASE
macro instruction fcllows. (The keywords used to access user-written
exception handling routines are discussed in the section "Test Response
to a Reguest for Tempcrary Storage Services",)

DATAID: Specifies the name assigned to the data to be released from
tempcrary storage. This cperand can be omitted if the apgplication
rrogrammer has previcusly placed the name in the TCATSDI field of the
TCA.

The following are exanples of the coding required to release a
record frcm temporary storage.

—_——= EEoSsaS=S

Mvc TCATSDI,=C*UNICQNMF!
DFHTS TYPE=RELEASE

5]
10
I
[
bz
(1%
e}
10
5]
Ig}
i
(X

MOVE 'UNIQNME® TOQ TCATSDI.
DFHIS IYPE=RELEASE

2]
10
[}

EL/1:

TCATSDI="UNICNME';
DFHTS TYPE=RELEASE

129

TEST RESPONSE TC A REQUEST FGCR TEMEFORARY STORAGE SERVICES (CHECK)

One of the ways the applicaticn programmer can test the response
to a request for temporary stcrage services is by issuing the

DFHTS TYPE=CHECK,
NORESP=symkclic address,
IDERFOR=synbclic address,
IOERROR=symbclic address,
INVREQ=symkolic address

#* % ¥ %

macro instruction, which rrovides for the testing cf response codes
and the routing of contrcl to the appropriate user-written exception
handling routines. This macro instructicr provides an exception
handling facility that can be used in the manner of a subroutine.

CICS automatically places the appropriate response code in the TCA
at TCATSTR (TCATSRC if the language is ANS COBOL) after conmpletion
¢f the temporary storage service requested. The application programmer
must specify the entry labels (symbolic addresses) he requires to
access the apprcocpriate exception handling routine previously supplied
by the user.

The response codes are as fcllows:

CONDITION ASSEMBLER ANS COBOL PL/I

NGEFESP X100 12-0-1-8-9 €00000600
TDEEROR X102 12-2-9 00000010
IOERROR XToye 12-4-9 00000100
INVREQ X'20°" 11-0-1-8-9 00100000

If the application programmer does not use the DFHTS TYPE=CHECK
macro instruction, he can specify the entry labels (symbolic addresses)
in either c¢f two other ways: (1) by including the entry labels in
operands of any other DFHTS macro instruction, or (2) by coding
instructicns immediately fcllowing the DFHTS macro instruction that
examine the response code provided by CICS at TCATSIR (TCATSRC if the
language is ANS COBOL) and transfer control to the appropriate routine.

If the DFHTS TYPE=CHECK macro instruction is used by the application
rrogrammer, it shculd usually immediately fcllow another DFHTS macro
instructicn. The applicable keywords are NORESP, IDERROR, IOERROR,
and INVREQ.

If the application programmer does not check for a particular
response to his service request, and if that exception condition occurs,
gprogram flcw proceeds to the next saquential instruction.

The operands that can be used to test the response to a request
fer temporary storage services are as follows.

NORESP: Specifies the entry label of the user-written routine to which
control is to be passed in the event no errcrs occur during a Temporary
Storage GET, PUT, cr RELEASE. NORESP signifies "normal response"
rather than "nc resgonse",

IDERROR: Specifies the entry label of the user-written routine to
which control is to be passed in the event the symbolic destination
identification referenced by a GET or RELEASE cannot be found in either
main storage or auxiliary storage.

130

ICEFROR: Specifies the €ntry label of the user-written routine to
which ccntrel is tc be passed in the event an input/output error occurs
during a GET operation cn auxiliary storage.

INVREQ: Specifies the entry label of the user-written routine to which
control is to ke passed in the event (1) a PUT is requested for data
whose length is egqual tc zero or is greater than the block size of

the auxiliary data set, or (2) the reguest is otherwise determined

to be invalid.

The following are examples of the coding required to examine the
resronse code provided by CICS at TCATSTR (TCATSRC if the language
is ANS COBOL) and transfer contrcl to the arpropriate user-written
exception handling routlne.

For Assepkler language:
DFHTS TYPE=GET, *
DATAID=UNIQNME, *
TSDADDR=YES
CLT TCATSIR,X'00?

BE GoOD
DFHPC TYPE=ABEND
GOOD DS 0H

DFHTS TYPE=GET, *
DATAID=UNIQNHE, *
TSDADLR=YES
IF TCATSRC=' ' THEN GO TC GOOD.
CFHPC TYPE=ABEND
GCOD.

where the value specified within single quotes is a multigpunch code
for the required hexadecimal value. TFor example, a hexadecimal C0
has a multipunch ccde of 12-0-1-8-9.

For PL/I1:
DFHTS TYPE=GET, *
CATAID=UNIQNME, *
TSDADDR=YES
IF TCATSTR='CCCONCOO'B THEN GO TO GCCD;
DFHPC TYPE=ABEND
GOOD:

131

IIME SERVICES

Time Management provides the capability, primarily through Interval
toc control various task functions based on
Time services include:

Ccntrol and Task Control,
the time ef day or on intervals of time.

1‘

4.
5.
6.

The

Establish the partition/region exit time interval when CICS
voluntarily relinquishes control tc the operating system.
Provide system stall detection and corrective action (optional)
tased on the expiration of a user-provided time interval, in
conjunction with other symptoms of a system stall condition,

Provide runaway task detection and corrective action capabilities

(crtional) based on the expiration of a user-provided time
interval with an executing application program apparently in

a logical lcop.

Provide time of day in binary or packed decimal representation.
Prcvide task synchrcnizaticn based on time-dependent events.
Provide automatic time-~ordered task initiation with associated
data retention and recovery support.

services enumerated in items 1-3 are CICS system services and
require no action on the part of the application programmer.
servicas enumerated in items 4-6 are available to the application
rrogrammer through use of the Interval Contrcl macro instruction

(DFHIC) .

The following operands can be included in the DFHIC macro

instruction:

DFHIC

DFHIC

DFHIC

DFHIC

DFHIC

TYPE=GETIME,
FCRM=FINARY,PACKED,

TIMADR=symbclic address,YES,

NORESP=symkolic address,
INVREQ=symbolic address

TYPE=WAIT,

INTRVAL=numeric value,YES,
TIME=pumeric value,YES,
KEQID=name, YES,
NCRESP=symbolic address,
INVREQ=symkolic address,
EXPIRD=symbolic address

TYPE=POST,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
NORESP=symbolic address,
INVREQ=symbeclic address,
EXPIRD=symbolic address

TYPE=INITIATE,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
TRANSID=name,
TRMIDNT=nanme,YES,
NCRESP=symbolic address,
INVREQ=symkolic address,
TRNIDER=symbc¢lic address,
TRMIDER=symbclic address

TYBEE=PUT,

INTRVAL=numeric value,YES,

TIME=numeric value,YES,

* ¥ O K o * #* % ¥ #

3 ¥ ¥

3 3 % 3 6 3 ¥

* *

132

REQID=name,YES,

TRANSID=nane,
TRMILCNT=name,YES,
ICDADDR=synbclic address,YES,
NORESP=symkclic address,
INVREQ=symbclic address,
TRNIDER=symbkclic address,
TRMIDER=symtclic address,
JOERROR=symkclic address

3 3% 3 % 3 H ¥ #

DFHIC TYPE=GET,
ICDADDR=symkclic address,YES,
NCEESP=symtolic address,
INVREQ=symkolic address,
ENDDATA=symbolic address,
NOTFND=symkclic address,
IOERROR=symbclic address

LK D R A R

DFHIC TYPE=RETRY,
NORESP=symbolic address,
INVREQ=symtolic address,
NOTFND=symbolic address,
IOEKROR=symkclic address

#* # ¥ ¢

DFHIC TYPE=CANCEL,
FEQID=name,YES,
NCEESP=symbolic address,
INVREQ=symkolic address,
NOTFND=symkclic address

¥* 4 * 4%

DFHIC TYPE=CHECK,
NOEESP=symbolic address,
INVREQ=symtolic address,
EXPIRD=symbclic address,
TRNIDER=symbclic address,
TRMIDER=symbclic address,
IOERROR=symkclic address,
NOTFND=symtolic address,
ENDDATA=symbclic address

* 3% 3 ¥ ¥ # I

In the course cf normal cperation, CICS maintains the current time
of day within the Common System Area (CSA); in binary form at CSACTODB,
and in packed decimal fcrm at CSATODP. These values are updated during
task dispatching to reflect the time of day maintained by the operating
cystem. The accuracy of these values derends upon the task mix and
frequency of task switching occurences.

Since the time of day maintained by the operating system can be
changed either by the operating system (fcr example, OS resetting the
clock to zero at midnight) or by the console operator, CICS must
recognize the situation where a "negative™ change in the time of day
has occurred, and nust adjust expiration times maintained by CICS
accordingly.

If the cptional time adjustment feature of CICS Time Management
is not included in CICS, any change to the operating system time of
day involving midnight is represented by CICS as a value larger than
the previcus value (for example, 1:00 a.m. is represented as 2500
hours). If the optional time adjustment feature is included in CICS,
and if either the time~crdered task synchronization feature or automatic
task initiaticn feature of CICS Time Management is also included, any
change to the operating system time of day is automatically reflected
in the expiration times maintained by CICS.

133

In the case of CICS/0S, when the operating system time of day is
set to zero at midnight (and tke time adjustment feature has been
included in CICS), CICS/0S adjusts the expiration times of day it
raintains and then resets its time of day to zero. In the case of
both CICS/0S and CICS/DO0S, when the operating system time of day is
changed by the conscle operator to a value less than the previous
value, CICS adjusts the expiration times it maintains to reflect the
negative value and then resets its time of day to the time of day’
maintained by the operating system. The optional time adjustment
feature thus makes it possible for CICS to be operated on a continuous
round-the-clock basis.

TIME-OF-DAY SERVICES (GETINME)

In the course cf ncrmal operation, CICS maintains the current time
of day in twc fcrms within the Common System Area (CSA); in binary
form at CSACTODB; and in packed decimal fcrm at CSATODP. These values
are updated periodically during task dispatching, their accuracy being
dependent upon the task mix and frequency of task switching occurrences.

Tasks can obtain a more current time of day by issuing the

DFHIC TYPE=GETIME,
FCRM=BINARY,PACKED,
TIMADR=symbclic address,YES,
NCRESP=symkclic address,
INVREQ=symkolic address

3 3 # 3

macro instruction. This macrc instruction causes one or both forms
of the time of day to be updated in the CSA and, optionally, places
the requested fcrm of the time of day in a user-specified loccation.

A discussion of the operands that can be included in the DFHIC
TYPE=GETIME macro instructicn follows. (The keywords used to access
user-written exception handling routines are discussed in the section
"Test Resronse to a Request for Time Services",)

FORM: This optional operand is used to indicate which representation
cf time of day is desired. The default is FORM=BINARY.

FORM=PACKEL is used to indicate that the packed decimal
representation c¢f the time of day is desired. The packed decimal
representation is expressed as a four-byte positive signed value of
the form FHMMSSt+ where the seconds are truncated to tenths of a second.
The use of this operand causes both the packed and binary
representations of the time of day to be updated and retained in the
CSA.

¥ote: As a performance consideration, it should be taken into account
that lengthy conversion routines are executed each time the
FORM=PACKED operand is used.

FCRM=BINARY is used when the tinary representation of time of day
is Jdesired. The Linary representation is expressed as a four-byte
Fositive value in hundredths of a second. The use of this operand
causes only the binary representation of time of day to be updated
and retained in the CSA.

TIMADR: This opticnal operand is used when the requested time of day

is tc be returned to a user-defined four-byte location. The application

programmer can accomplish this in either of two ways: (1) by including

the TIMADR=symbolic address operand in the DFHIC TYPE=GETIME macro

instructicn, or (2) by coding a single instruction, prior to isswing ———— — —

134

02 TSIOABAR PICTURE S9(8) USAGE IS CCMPBTATIONAL,
01 DFHTSICA COPY CFHTSIOA.
02 DATA PICTURE X(10).

MOVE LENGTH TO TSIQAVRL.
MOVE MESSAGE TQ DATA.
DFHTS TYPE=PUT, *
DATAID=UNICNME, *
TSDADDR=TSIOAVRL

For PL/I:

®INCLUDE DFHTSIOA;
2 DATA CHAR(10):

TSIOAVRL=LENGTH;

DATA=MESSAGE;

DFHTS TYPE=PUT, , *
DATAID=UNIQNME, *
TSDADDR=T SIOAVRL

RETRIEVE TEMPCRARY CATA (GET)

The application programmer can retrieve temporary data from a
symbclic source in main or auxiliary storage by issuing the

DFHTS TYPE=GET,
CATAID=nane,
TSDADDR=symbclic address,YES,
RELEASE=YES, NOC,
NORESP=symbolic address,
IDEREOR=symbkclic address,
IOERROR=symbclic address .

* o % o3 R

macro instruction. Data retrieved from temporary storage is placed
in either a user-provided storage area or an area (transaction storage)
acquired for the user by Temporary Storage Control.

The application programmer must specify the parameters he requires
to retrieve temporary data. He can do this in either of two ways:
(1) by including the parameters in operands of the DFHTS TYPE=GET macro
instruction, or (2) by coding instructioms, prior to issuing the DFHTS
TYPE=GET macro instruction, that dynamically mové these parameters
to fields in the TCA. If the parameters are included in operands of
the DFHTS TYPE=GET macro instruction, the applicable keywords are
DATAID, TSDADDR, and RELEASE.

A discussion of the operands that can be included in the DFHTS
TYPE=GET macro instruction follows. (The keywords used to access user-
Wwritten exception handling routines are discussed in the section "Test
Response to a Request for Temporary Storage Services".)

127

DATAID: Specifies the name assigned to the temporary data at the time
it was placed in temporary storage. This operand can be omitted if

the application prcgrammer has previously placed the name in the TCATSDI
field of the TCA.

TSLADDR: Specifies the symkolic name of the user-provided storage
area into which the temporary data is to be read (cr moved).
TSDADDR=YES must te coded if the applicaticn programmer has previously
rlaced this symktolic address in the TCA at TCATSDA. If this operand
is omitted, Temporary Storage Control obtains a stcrage area, moves

or reads temporary data into the area, and returns thes address of the
area to the user in the TCA at TCATSDA.

RKELEASE: Specifies whether the data is tc be released following this
acquisiticn. The default is RELEASE=NO,

The following are examtles of the coding required to resad a record
from temporary storage. 1In these examples, the data is moved to the
arca defined by the user in the TSDADDR operand. If the TSDADDR operand
is omitted, the data is mcved iuto a storage area obtained by Temporary
Storage Control, and the address of the storage area is returned to
the user at TCATSLA.

TSTOAEAR EQU 7
COPY DFHTSIOA
DFHTS TYPE=GET, *
DATAIC=UNIQNME, *

TSDADDR=TSIOAVRL

oy
O
I
I
=

|
!

02 TSIOABAR PYCTURE S9(8) USAGE IS COMPUTATIONAL.
01 DEHTSIGA COPY DFHTSIOA.

DFHTS TYPE=GET, *
DATAID=UNIQNME, *
TSDADDR=TSIOAVRL

128

For BL/I:

%ZINCLUDE DFHTISIOA;
2 DATA CHAR(10);

DFHTS TYPE=GET, *
CATAID=UNICNME, *
TSDADDR=TSIOAVRL

RELEASE TEMEGCRAKY LCATA (RELEASE)

The applicaticn programmer can release temporary data from main
or auxiliarv stcrage by issuing the

DFHTS TYPFE=RELEASE, ; *
DATAID=name, %
NORESP=symrkolic address, *

IDERROR=symbclic address

macro instruction. If the data was stored in main storage, the area
is freed and returned to the available dynamic area. If the data was
stored in auxiliary storage, the space is made available for other
data.

Temporary data should ke released at the earliest possible time
to avoid suspended tasks.

A discussion of the TATAID=name operand of the DFYTS TYPE=RELEASE
macro instruction fcllows. (The keywords used to access user»written
exception handling routines are discussed in the section "Test Response
to a Regquest for Tempcrary Storage Services",)

DATAID: Specifies the name assigned to the data to be released from
tempcrary storage. This cperand can be omitted if the apglication
programmer has previcusly placed the name in the TCATSDI field of the
TCA.

The following are exanmples of the coding required to release a
record frcm temporary storage.

¥or Assentler languagde:

TCATSDI,=C*UNICUME?
TS TYPE=RELEASE

ool @]

b
10
I
[
bz
1)
(2]
le}
54}
i3]
[
.

'UNIQNME' TQ TCATSDI.
TS IYPE=RELEASE

D¥

2
@]
o<
td

5501
1o
]
(I
)

EL/

TCATSDI="UNICNME';
DFHTS TYPE=RELEASE

129

TEST RESPONSE TO A REQUEST FCR TEMPORARY STORAGE SERVICES (CHECKX)

One of the ways the applicaticn programmer can test the response
tc a request for temporary stcrage services is by issuing the

DFHTS TYPE=CHECK,
NORESP=symkclic address,
IDEFECOR=symbclic address,
JOERKOR=symbclic address,
INVREQ=symtolic address

¥ ¥ 3

macro instruction, which provides for the testing of response codes
and the routing of contrcl to the appropriate user-written exception
handling routines. This macro instructicre provides an exception
handling facility that can be used in the manner of a subroutine.

CICS automatically places the appropriate response code in the TCA
at TCATSTR (TCATSRC if the language is ANS COBOL) after completion
¢f the temporary storage service requested. The application programmer
must specify the entry labels (symbolic addresses) he requires to
access the apprcopriate exception handling routine previously supplied
hy the user.

The response codes are as fcllows:

CONDITION ASSEMBLER ANS COBOL PL/I

NOEFESP Xv00¢ 12-0-1-8-9 00000600
IDERROR X021 12-2-9 0000010
IOERROR X1oqge 12-4-9 00000100
INVREQ X'20¢ 11-0~-1-8-9 00100000

If the application programmer does not use the DFHTS TYPE=CHECK
macro instruction, he can specify the entry labels (symbolic addresses)
in either cf two other ways: (1) by including the entry labels in
operands of any other DFHTS macro instruction, or (2) by coding
instructicns immediately fcllowing the DFHTS macro instruction that
examine the response code provided by CICS at TCATSIR (TCATSRC if the
language is ANS COBOL) and transfer contrtol to the arpropriate routine.

If the DFHTS TYPE=CHECK macro instruction is used by the application
rrogrammer, it shculd usually immediately fcllow another DFHTS macro
instructicn. The applicable keywords are NORESP, IDERROR, IOERROR,
and INVREQ.

Tf the application programmer does not check for a particular
response to his service request, and if that exception condition occurs,
program flcw proceeds to the next ssquential instruction.

The operands that can be used to test the response to a request
fer temporary storage services are as follows.

NORESP: Specifies the entry label of the user-written routine to which
control is to be passed in the event no errcrs occur during a Temporary
Storage GET, PUT, cr RELEASE. NORESP signifies "normal response"
rather than "nc response",

IDERROR: Specifies the entry label of the user-written routine to
which control is to be passed in the event the symbolic destimation
identification referenced by a GET or RELEASE cannot be found in either
main storage or auxiliary storage.

130

TOERROR: Specifies the entry label of the user-written routine to
which centrel is tc be passed in the event an input/output error occurs
during a GET operation cn auxiliary storage.

INVREQ: Specifies the entry label of the user-written routine to which
contreol is to ke passed in the event (1) a PUT is requested for data
whose length is egqual tc zero or is greater than the block size of

the auxiliary data set, or (2) the reguest is otherwise determined

to be invalid.

The following are examples of the coding required to examine the
resronse code provided by CICS at TCATSTR (TCATSRC if the language
is ANS COBOL) and transfer contrcl to the arpropriate user-Written
exception handling routine.

=S [WBEI oS mSS

DFHTS TYPE=GET, *
DATAID=OUNIQNMNE, *
TSDADDR=YES

CLTY TCATSTIR,X' 00"

BE GOOD
DFHPC TYPE=ABEND
GOQD DS 0H

.
.

For ANS CCBCL:

DFHTS TYPE=GET, *
DATATID=UNICNME, *
TSDADLR=YES
IF TCATSRC=' ' THEN GO TC GCOD.
CFHPC TYPE=ABEND
GCOD.

-

where the value specified within single guotes is a multigunch code
for the required hexadecimal value. For example, a hexadecimal 00
has a multipunch cocde of 12-0-1-8-9.

5]

or PL/i:

DFHTS TYPE=GET, *
CATAID=UNICNME, *
TSDADDR=YES
IF TCATSTR='CCCONCOO'B THEN GO TO GCCD;
DFHPC TYFPE=ABEND
GOOD:

131

IIME SERVICES

Time Management provides the capability,
Ccntrol and Task Control,
the time ef day or on intervals of time.

a,
5
6.

primarily through Interval

tc control various task functions based on
Time services include:

Establish the partition/region exit time interval when CICS
voluntarily relinquishes control tc the operating systenm.
Provide system stall detection and corrective action (optional)
tased on the expiration of a user~provided time interval, in
conjunction with other syamrtoms of a system stall condition.
Provide runaway task detection and corrective action capabilities
(crticnal) based on the expiration of a user-provided time
interval with an executing application program apparently in
a logical lcop.
Provide time of day in binary or packed decimal representation.
Prcvide task synchrcnizaticn based on time-dependent events.
Provide automatic time-ordered task initiation with associated

data retention and recovery support.

The services enumerated in items 1-3 are CICS system services and

require no action on the part of the application prcgrammer.

The

servicas enumerated in items 4-6 are available to the application
programmer through use of the Interval Control macro instruction
(DFHIC) . :

Th2 following operands can be included in the DFHIC macro
instruction:

132

DFHIC

DFHIC

DFHIC

DFHIC

DFHIC

TYPE=GETIME,
FCRM=FINARY,PACKED,

TIMADR=symbclic address,YES,

NORESP=symbolic address,
INVREQ=symbolic address

TYPE=WAIT,

INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name, YES,
NCRESP=symbolic address,
INVREQ=symkolic address,
EXPIRD=symbolic address

TYPE=POST,

INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
NORESP=symbolic address,
INVREQ=symtkolic address,
EXPIRD=symkolic address

TYPE=INITIATE,
INTIRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
TRANSID=nanme,
TRMIDNT=nanme,YES,
NCRESP=symbolic address,
INVREQ=symbolic address,
TRNIDER=symbclic address,
TRNIDER=symbclic address

TYPE=PUT,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,

3 # *

% % 33 # 3 # I % #

* 3 3 3 H# # o ¥ *

9 #*

REQID=name,YES,

TRANSID=nanme,
TRMIENT=name,YES,
ICDADDR=synbclic address,YES,
NORESP=symtclic address,
INVREQ=symbclic address,
TRNIDER=symkclic address,
TRMIDER=symnkclic address,
JOEREOR=symtolic address

3 % 3 ¥ # K ¥ #

DFHIC TYPE=GET,
ICDADDR=symlclic address,YES,
NCRESP=symtolic address,
INVREQ=symtolic address,
ENDDATA=symbolic address,
NOTFND=symkclic address,
IOERKOR=symbclic address

* O ¥ H ¥ H#

DFHIC TYPE=RETRY,
NORESP=symbolic address,
INVREQ=syntolic address,
NOTFND=symbolic address,
JOERROR=symkclic address

#* 3 ¢ ¢

DFHIC TYPE=CANCEL,
KEQID=name, YES,
NCEESP=symbolic address,
INVREQ=symtolic address,
NOTFND=symbclic address

3% ¥ 3% %

DFHIC TYPE=CHECK,
NOEESP=symbolic address,
INVREQ=symtolic address,
EXPIRD=symbclic address,
TRNIDER=symbclic address,
TRMIDER=symbclic address,
JOERROR=symkclic address,
NOTFND=symkolic address,
ENDDATA=synbclic address

% 3 3 3 3 3

In the course c¢f normal cperation, CICS maintains the current time
of day within the Common System Area (CSA); in binary form at CSACTODB,
and in packed decimal fcrm at CSATODP. These values are updated during
task dispatching to reflect the time of day maintained by the operating
system. The accuracy of these values derends ugon the task mix and
frequency of task switching occurences.

Since the time of day maintained by the operating system can be
changed either by *the operating system (fcr example, 0S resetting the
clock to zero at midnight) or by the conscle operator, CICS must
recognize the situation where a "negative™ change in the time of day
has occurred, and must adjust expiration times maintained by CICS
accordingly.

If the cptional time adjustment feature of CICS Time Management
is not included in CICS, any change to the operating system time cf
day involving midnight is represented by CICS as a value larger than
the previcus value (for example, 1:00 a.m. is represented as 2500
hours). If the optional time adjustment feature is included in CICsS,
and if either the time~crdered task synchronization feature or automatic
task initiaticn feature of CICS Time Management is alsoc included, any
change to the operating system time of day is automatically reflected
in the expiration times maintained by CICS.

133

In the case of CICS/0S, when the operating system time of day is
set to zero at midnight (and the time adjustment feature has been
included in CICS), CICS/0S adjusts the expiration times of day it
raintains and then resets its time of day to zero. In the case of
both CICS/0S and CICS/D0OS, when the operating system time of day is
changed by the conscle operator to a value less than the previous
value, CICS adjusts the expiration times it maintains to reflect the
negative value and then resets its time of day to the time of day
maintained by the operating system. The optional time adjustment
feature thus makes it possible for CICS to be operated on a continuous
round-the-clock basis.

TIME-OF-DAY SERVICES (GETIME)

In the course of ncrmal operation, CICS maintains the current time
of day in twc fcrms within the Common System Area (CSA); in binary
form at CSACTODB; and in packed decimal fcrm at CSATODP. These. values
are updated periodically during task dispatching, their accuracy being
dependent upon the task mix and frequency of task switching occurrences.

Tasks can oktain a more current time of day by issuing the

DFHIC TYPE=GETIME,
FCRM=BINARY,PACKED,
TIMADR=symbclic address,YES,
NCRESP=symkclic address,
INVREQ=symbolic address

#* # # 3%

macro instruction. This macrc instruction causes one or both forms
of the time of day to be updated in the CSA and, optionally, places
the requested fcrm of the time of day in a user-specified lccation.

A discussion of the operands that can be included in the DFHIC
TYPE=GETIME macro instructicn follows. (The keywords used to access
user-written exception handling routines are discussed in the section
"Test Restonse to a Request for Time Services",)

FORM: This optional operand is used to indicate which representation
cf time of day is desired. The default is FORM=BINARY.

FORM=PACKEL is used to indicate that the packed decimal
representation c¢f the time of day is desired. The packed decimal
representation is expressed as a four-byte rositive signed value of
the form FHMMSSt+ where the seconds are truncated to tenths of a second.
The use of this operand causes both the packed and binary
representations of the time of day to be updated and retained in the
CSA.

Note: As a performance consideration, it should be taken into account
that lengthy conversion routines are executed each time the
FORM=PACKED operand is used.

FCRM=BINARY is used when the tinary representation of time of day
is desired. The Lkinary representation is expressed as a four-byte
positive value in hundredths of a second. The use of this operand
causes only the binary representation of time of day to be updated
and retained in the CSA.

TIMADR: This opticnal operand is used when the requested time of day

is tc be returned to a user-defined four-byte location. The application
rrogrammer can accomplish this in either of two ways: (1) by including
the TIMADR=symbolic address operand in the DFHIC TYPE=GETIME macro
instructicn, or (2) by coding a single instruction, prior to issuing

134

the DFHIC TYPE=GETIME macro instruction, that dynamically moves the
address to the TCAICPA field of the TCA. 1If the latter is used, the

TIMADR=YES operand must also ke included in the DFHIC TYPE=GETIME macro

instruction. If this operand is omitted, only the appropriate fields
in the CSA are updated. :

The following is an example of the coding required to request the
time of day:

DFHIC TYPE=GETIME, REQUEST CURRENT TIME-OF-DAY *
FORM=PACKED, PACKED CECIMAL FORM *
TIMATR=CLOCK SYMBCLIC ADDRESS FOR RESPONSE
The fcllowing are examples of the coding required to dynamically
request the time of day.
For Assemkler language:
MVC TCAICTLA,=A(CLCCK) MCVYE ALDR FCR RESEONSE TO TCA
DFHIC TYPE=GETIME, REQUEST CUFRENT TIME-OF-CAY *
FORM=PACKED, PACKED DECIMAL FORM *
TIMALR=YES RESEONSE ADDRESS GIVEN
For ANS CCECL:
MOVE CLOCKADR TO TCAICTA. NOTE MOVE ADDR FOR RESFEF TO TCA.
DFHIC TYPE=GETIME, REQUEST CURRENT TIME-OF-DAY *
FOFM=PACKED, PACKED LCECIMAL FORM *
TIMADR=YES RESEONSE ADDRESS GIVEN
For PL/I:
TCATICLCA=ADLR (CLQOCK) ; /*MCVE ADDR FOR RESP TO TCA*/
DFHIC TYPE=GETIME, REQUEST CURRENT TIME-OF-DAY *
FCRM=BACKEL, PACKED DECINAL FORM *
TINADR=YES RESPONSE ADDRESS GIVENW

TIME-ORDEREL TASK SYNCHRONIZATION (WAIT, POST)

The task synchronization feature of CICS Time Management provides
the capability to either delay the processing of a task until a
specified time cccurs or tc signal a processing task when a specified
interval cf time has elapsed. It alsc supports the cancellation of
a pending time-ordered synchronization event by another task. (See
"Time-Ordered Request Cancellaticn" later in this section.)

Delay the Processing cf a Task (WAIT)

—_— a==Zx==xa= -

The application prograrmer can request that the processing of a
task be suspended until a given time expires by issuing the

135

- DFHIC TYPE=WAIT,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
FECID=nanme, YES,
NCRESP=symbclic address,
INVREQ=symkolic address,
EXPIRD=symbolic address

¥ % % I 3 #

macro instruction, This macro instruction causes the task to
temporarily suspend its own processing, and to resume control at a
specified time of day or after a specified interval of time has elapsed.
It supersedes and cancels any previously initiated LCFHIC TYPE=POST
request for the task.

The application programmer must specify the rarameters required
in either cf twc ways: (1) by including the parameters in operands
of the DFHIC TYPE=WAIT macro instruction, or (2) by coding ianstructioas,
rricr to issuing the DFHIC TYPE=WAIT macro instruction, that dynamically
move these parameters to fields in the TCA. If the parameters are
included in operands of the DFHIC TYPE=WAIT macro instruction, the
applicable keywords are INTRVAL, TIME, and REQID. (The keywords used
to access user-written exception handling routines are discussed in
the section "Test Response to a Request for Time Services".)

The numeric value specified in either the INTRVAL operand or TIME
orerand is used by CICS tc calculate the time of day the regquested
time service is to be provided. If the calculated time of day is the
same as the current clock time, or up to and including six hours
preceding the current clock time, the specified time is considered
to have elarsed (occurred) and the requested service is provided
immediately. If the calculated time of day is in advance of the current
clock time, the requested service is provided when the specified time
cccurs., If the calculated time of day precedes the current clock time
ty more than six hours, the requested service is provided the next
day at the specified time.

Note: Users of CICS/0S miist be aware that the current clock time is
reset to zero each day to represent midnight. CICS makes no
attempt to calculate a time of day based on a clock time less

than zero. i

INTRVAL: This operand is used to specify the interval of time a task
is to be suspended in response to a DFHIC TYPE=WAIT request. The
interval of time is specified as a numeric value of the form HHMMSS,
where HH represents hours frcm 00 to 99, MM represents minutes from

€D to 59, and SS represents seconds from C0 to 59. This numeric value
is added to the current clock time by CICS when the DFHIC TYPE=WAIT
macro instruction is executed to calculate the time of day (clock time)
at which the posting is to cccur. The minimum valus that may be
specified is one second.

The numeric value can be specified in the DFHIC TYPE=WAIT macro
instructicn, or it can be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=WAIT macro instruction. 1In
the latter case, the INTRVAL=YES operand must be included in the macro
instruction.

The INTRVAL operand and TIME operand are mutually exclusive and
ray not be used in the same macro instruction.

TIME: This orerand is used to specify the time of day at which the
frocessing of a task is to begin. The time of day is expressed as
a numeric value of the form HHMMSS, where HH represents hours from

136

€0 to 99, MM represents minutes frcm 00 to 59, and SS represents seconds
from 00 to 59.

The nuheric value can Be specitied in the DFHIC TYPE=WAIT macro
instructicn, cr it can be dynamically moved to the TCARICRT field of
the TCA prior tc issuing the DFHIC TYPE=WAIT macro instruction. 1In
the latter case, the TIME=YES orerand must be included in the macro
instructicn.

The TIME operand and INTRVAL operand are mutually exclusive and
may not ke used in the same macrc instruction.

REQID: EFach time-crdered request has a unigque Request Identification
assigned tc it. Its purpose is to provide a means of symbolically
identifying the request and any data associated with it. Unless
ctherwise instructeéd, CICS generates a unique Request Identification.

The cptional REQID operand allows the user to supply the unigque
Kequest Identification as part of the DFHIC TYPE=WAIT service request
in either of twc ways: (1) by specifying a maximum of eight characters
in the REQID cperand, or {2) ty dynamically moving an eight-byte Request
Identificaticn to the TCAICQID field prior to issuing the DFHIC
TYPE=WAIT macro instruction. In the latter case, the REQID=YES operand
must be included in the macro instruction.

The REQID operand should be used when a task issues the DFHIC
TYPE=WAIT macro instructicn, if the application prcgrammer wishes to
rrovide another task with the capability of cancelling the unexpired
WAIT request. {See the discussion of the DFHIC TYPE=CANCEL macro
instruction.)

The following is an example of the coding required to temporarily
suspend the processing of a task for a specified period of time:

D¥HIC TYPE=WAIT, DELAY TASK PROCESSING, *
INTRVAL=500, WAIT 5 MINUTES O SECONDS *
EECITL=GXLBZQMNR UNICUE REQUEST ID

The f£cllowing are examrles of the coding requircd to dynamically
request the suspension of a task until a specified time of day.

For Assepbler languagde:

MVC TCAICRT,=PL4'124500" MOVE 12:45 TO TCA

MVC TCAICQID,UNIQCODE UNIGUE REQUEST ID TO TCA

DFHIC TYPE=WAIT, DELAY TASK PROCESSING *
TIME=YES, EXPIRATION TIME GIVEN *
RECID=YES UNIQUE ID GIVEN

For ANS COPOL:

MOVE 124500 TO TCAICRT. NOTE MOVE 12:45 TO TCA

MOVE UNICCCDE TO TCAICQID. NOTE UNICUE REQUEST ID TO TCA,

DFHIC TYPE=WAIT, DELAY TASK EROCESSINGt *
TIME=YES, FXPIRATION TIME GIVEN _ *
FEQID=YES UNIQUE ID GIVEN

137

For PL/I:

TCAICRT=124500; /*MOVE 12:45 TO TCA*/

TCAICQID=UNIQCODE; /%UNIQUE REGUEST ID TO TCA*/

DFHIC TYPE=WAIT, DELAY TASK EROCESSING *
TIME=YES, EXPIRATION TINE GIVEN *
FECID=YES UNIQUE ID GIVEN

Signal the Expiration of a Specified Time (EOST)

The aprlicaticn programmer can regquest that CICS indicate to a
processing task when a given time has expired by issuing the

DFHIC TYPE=POST,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
RECID=name,YES,
NORESP=symbolic address,
INVREQ=symnkolic address,
EXPIRD=symtolic address

¥ % H # 3 H

macro instructicn. In response to this macro instruction, CICS sets
a series of bits in a Timer Event Control Area available to the user
for testing. The address of the Timer Event Contrcl Area is returned
to the requesting task in the TCAICTEC field after issuing the DFHIC
TYPE=POST macro instructicn.

The Timer Event Control Area provided by CICS is a four-byte storage
area initialized to binary zeros at the time the DFHIC TYPE=POST macro
instruction is issued. #®hen CICS determines that the specified time
has expired, byte 0 is set to a hexadecimal 40 and byte 2 is set to
a hexadecimal 80 (the other bytes are set to zero). This fcrm of
rosting is compatible with the ccmpletion code postings performed by
the operating systems. The Timer Event Ccntrol Area can be used as
the Event Ccntrcl Area referenced in a DFHKC TYPE=WAIT macro
instruction. (See the discussion of task synchronizaticn in the section
"Task Services".) ’

The Timer Event Control Area provided to the user is not released
or altered (except as described akove) until the first of any of the
fcllowing events cccur:

t. The task issues a subsequent DFHIC TYPE=WAIT, DFHIC TYPE=POST,
DFHIC TYFE=INITIATE or DFHIC TYPE=FUT macro regquest.

2. The task issues a DFHIC TYPE=CANCEL macro request on behalf
of its own previously issued DFHIC TYPE=POST request (this
releases the storage area occupied by the Timer Event Control
Area).

3. The task terminates, normally or abnormally.

A task can only have one DFHIC TYPE=POST request active at any given
time. Any DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC TYPE=INITIATE, or
CLFHIC TYPE=PUT request supersedes and cancels a previously issued DFHIC
TYPE=POST request made by the task.

Note: The expiration of any CICS time-ordered event is determined
by CICS when it is performing its task dispatching function.
Therefore, for "posting" to occur, the application programmer
must ensure that the task relinguishes control of CICS before
each testing of the Timer Event Contrcl Area. This can be done

138

directly by issuing the DFHKC TYPE=WAIT macro instruction (see
the discussion of task synchronization in the section "Task
Services") or indirectly by requesting a CICS service which

in turn initiates a task service on behalf of the task.

The application programmer must specify the parameters required
in either of two ways: (1) by including the parameters in operands
of the DFHIC TYEE=POST macro instruction, or (2) by coding instructioms,
prior to issuing the DFHIC TYPE=POST macro instruction, that dynamically
move these parameters to fields in the TCA. If the parameters are
included in operands of the DFHIC TYPE=POST macro instruction, the
applicable keywords are INTRVAL, TIME, and REQID. (The keywords used
to access user-written exception handling routines are discussed in
the section "Test Response to a Request for Time Services".)

The numeric value specified in either the INTRVAL operand or TIME
operand is used by CICS to calculate the time of day the requested
time service is to be provided. If the calculated time of day is the
same as the current clock time, or up to and including six hours
preceding the current clock time, the specified time is considered
to have elapsed (occurred) and the requested service is provided
immediately. If the calculated time of day is in advance of the current
clock time, the requested service is provided when the specified time
cccurs. If the calculated time of day precedes the current clock time
Yy more than six hours, the requested service is provlded the next
day at the specified time.

Note: Users of CICS/0S must be aware that the curreﬁt clock time is
reset to zero each day to represent midnight. \CICS makes no
attempt to calculate a time of day based on a clock time less
than zero.

INTRVAL: This operand is used to specify the interval of time that
is to elapse in response to a DFHIC TYPE=POST request. The interval
of time is specified as a numeric value of the form HHMMSS, where HH
represents hours frcm 00 to 99, MM represents minutes from 00 to 59,
and SS represents seconds from 00 to 59. fThis numeric value is added
to the current clock time by CICS when the DFHIC TYPE=POST macro
instruction is executed to calculate the time of day (clock time) at
which the task is to be resumed. The minimum value that may be
specified is one second. ' .

The numeric value can be specified in the DFHIC TYPE=POST macro
instructicn, or it can be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=POST macro instruction. 1In
the latter case, the INTRVAL=YES operand must be included in the macro
instruction.

The INTRVAL operand and TIME operand are mutually exclusive and
pay not be used in the same macro instruction.

TIME: This operand is used to specify the time of day at which the
posting action in response to a DFHIC TYPE=POST request is to occur.
The time of day is expressed as a numeric value of the .form HHMMSS,
where HH represents hours frcm 00 to 99, MM represents minutes from
00 to 59, and SS represents seconds from 00 to 59.

The numeric value can be specified in the DFHIC TYPE=POST macro
instructicn, or it car be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=POST macro instruction. 1In
the latter case, the TIME=YES operand must be included in the macro
instruction.

‘ 139

The TIME operand and INTRVAL operand are mutually exclusive and
may not be used in the same macro instruction.

REQID: ©Each time-order¢d request has a unique Request Ydentification
assigned to it. 1Its purpose is to provide a means of symbolically
identifying the request and any data associated with it. Unless
otherwise instructed, CICS generates a unique Request Identification.

The optional REQID operand allows the user to supply the unigque
Request Identification as part of the DFHIC TYPE=POST service request
in either of two ways: (1) Ly specifying a maximaum of eight characters
in the REQID operand, or (2) by dynamically mcving an eight~byte Request
Identificaticn to the TCAICQID field prior to issuing the DFHIC

TYPE=POST macro instruction. In the latter case, the REQID=YES operand
must be included in the macro instruction. :

If the REQID operand is omitted from the DFHIC TYPE=POST macro
instructicn, the unique Request Identification generated by CICS is
teturned to the user in the TCAICQID field.

The following is an example of the coding required to request that
CICS signal the task when a specified intexrval of time has elapsed:

DFHIC TYPE=POST,
INTRVAL=30

SIGNAL WHEN INTERVAL PASSES *
INTERVAL IS 30 SECONDS

The following are examples of the coding required tc dynamically
request that CICS signal the task whern the specified time of day occurs.

For Assembler language:

MVC TCAICRT,PACKTIME

.

DFHIC TYEE=POST,
TIME=YES
MVC UNIQCODE,TCAICCID

For ANS COBOL:

MOVE PACKTIME TO TCAICRT.

DFHIC TYEE=POST,
TIME=YES
MOVE TCAICQID TO UNIQCODE.

TCAICRI=PACKTIME;

DFHIC TIYPE=POST,
TIME=YES
UNIQCODE=TCAICQID;

140

STORE CALCULATED EXPIR TIME

SIGNAL WHEN TIME OCCURS *
EXPIRATION TIME GIVEN
SAVE CICS UNIQUE REQUEST ID

NOTE STORE CALC EXPIR TIME.

SIGNAL WHEN TIME OCCURS *
EXPIRATICON TIME GIVEN
SAVE CICS UNIQUE REQUEST ID

/*STORE CALCULATED EXPIR TIME*/

SIGNAL WHEN TIME OCCURS *
EXPIRATION TIME GIVEN
SAVE CICS UNIQUE REQUEST ID

AUTOMATIC TIME-ORDERED TASK INITIATION (INITIATE, PUT)

This feature of Time Management allows a task to initiate another
task at scme future time and, coptionally, to pass data to that task.
The automatic task initiation services available through DFHIC macro
instructions include: ‘

1. TRequest that a task be initiated at some future tinme.
2. Request that data be stored for a task which is to be initiated
at scme future time.

Task Initiation Without Data (INITIATE)

The application programmer can request that ancther task be initiatead
at some future time by issuing the:

DFHIC TYPE=INITIATE,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
TRANSID=nane,
TRMIDNT=nanme,YES,
NCRESP=symlolic address,
INVREQ=symbclic address,
TRNIDER=symbclic address,
TRMIDER=symbclic address

3% 3 3 3 #F % ¥

macro instruction. Through the use of this macro instruction the
applicaticn rrogrammer provides the symbolic Transaction Identification
of the task to be initiated at scme future time and other information
rertaining to the task. CICS queues the request until the specified
time occurs. Then, as soon as all necessary resouvces are available
{for exanmnrle, a terminal), the task is initiated. Only one task is
initiated if multiple DFHIC TYPE=INITIATE requests (all for the same
transaction and terminal) expire at the same time or prior to terminal
availability. The DFHIC TYPE=INITIATE macro instruction is used when
no data is to Le passed to the future task. It supersedes and cancels
any previously initiated DFHIC TYPE=POST request for the task.

The applicaticn programmer must specify the parameters required
in either of two ways: (1) by including the parameters in operands
of the LFHIC TYEE=INITIATE macrc instruction, or (2) by coding
instructicns, prior to issuing the DFHIC TYPE=INITIATE macro
instruction, that dynamically move these parameters to fields in the
TCA. TIf the parameters are included in orerands of the DFHIC
TYPE=INITIATE macro instruction, the applicable keywords are INTRVAL,
TIME, REQID, TRANSID, and TRMIDNT. {The keywords used to access user-
written exception handling routines are discussed in the section "Test
Response to a Request for Time Services".)

The numeric value specified in either the INTRVAL operand or TIME
operand is used ty CICS tc calculate the time of day the requested
time service is tc be provided. If the calculated time of day is the
same as the current clock time, or up to and including six hours
preceding the current clock time, the specified time is considered
to have elarsed (occurred) and the requested service is provided
immediately. If the calculated time of day is in advance of the current
clock time, the requested service is provided when the specified time
cccurs, If the calculated time of day precedes the current clock time
ty more than six hours, the requested service is provided the next
day at the specified time. ’

Note; Users of CICS/0S must be aware that the current clock time is
reset to zero each day to represent midnight. CICS makes no

141

attempt to calculate a time of day based on a clock time less
than zero.

INTRVAL: This operand is used to specify the interval of time after
which the task is to be automatically initiated in response to a
DFHIC=TYPE=INITIATE request. The interval of time is specified as

a numeric value of the form HHMMSS, where HH represents hours from

00 to 99, MM represents minutes from 00 to 59, and SS represents seconds
from 00 tc 59. This numeric value is added to the cuarrent clock time

Lty CICS when the DFHIC TYFE=INITIATE macrc instruction is executed

to calculate the time of day (clock time) at which the task is to be
automatically initiated. The minimum value that may be specified is

cne second.

The numeric value can be specified in the DFHIC TYPE=INITIATE macro
instruction, or it can be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=INITIATE macro instruction.

In the latter case, the INTRVAL=YES operand must be included in the
macro instruction.

The INTRVAL operand and TIME operand are mutually exclusive and
may not be used in the same macro instruction.

TIME: This operand is used to specify the time of day at which the
task is to be autcmatically initiated in respomse to a DFHIC
TYPE=INITIATE request. The time of day is expressed as a numeric value
of the form HAMMSS, where HH represents hours from CO0 to 99, MM
represents minutes from 00 to 59, and SS represents seconds from 00

to 59.

The numeric value can be specified in the DFHIC TYPE=INITIATE macro
instructicn, or it can be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=INITIATE macro instruction.

In the latter case, the TIME=YES operand must be included in the macro
instruction.

The TIME operand and INTRVAL operand are mutually exclusive and
may not be used in the same macro imnstruction.

REQID: Each time-ordered request has a unique Request Identification
assigned to it. Its purpose is to provide a means of symbolically
identifying the regquest. Unless ctherwise instructed, CICS generates
a unique Request Identificaticn.

The optional REQID operand allows the user to supply the unique
Request Identification as part of the DFHIC TYPE=INITIATE request in
either of two ways: (1) by specifying a maximum of eight characters
in the REQID operand or (2) by dynamically moving an eight-byte Request
Identificaticn to the TCAICQID field prior to issuing the DFHIC
TYPE=INITIATE macro instruction. In the latter case, the REQID=YES
crerand must ke included in the macro instruction.

If the REQID operand is omitted from the DFHIC TYPE=INITIATE macro
instruction, 'the Unique Request identification provided by CICS is
returned to the user in the TCAICQID fielgq. '

TRANSID: This operand is used to supply the symbolic Transaction
Identification of the future task. This operand can be cmitted provided
the applicaticn rrogrammer has placed the symbolic Transaction
Identification in the TCAICTI field prior to issuing the DFRIC
TYPE=INITIATE macro instruction. CICS validates the symbclic

142

Transaction Identification through a scan of the Program Control Table
at the time of the initial macro request, providing a response code

at TCAICTR (TCAICRC if the language is ANS COBOL) without servicing

the request if it fails tc locate a matching Transaction Identification.

TRMIDNT: This operand is used when the future task must communicate
with a terminal. The symbolic Terminal Identification can be included
in the TFHIC TYPE=INITIATE macro instruction, or can ke dynamically
moved to the TCAICTID prior to issuing the DFHIC TYPE=INITIATE macro
instructicn. In the latter case, the TRMIDNT=YES cperand must be
included in the macro instruction. CICS validates the symbolic Terminal
Jdentification through a scan of the Terminal Ccntrol Table at the

time of the initial macro request, providing a response code at TCAICTR
(ICAICRC if the language is ANS COBOL) without servicing the request

if it fails to locate a matching Terminal Identification. The TRMIDNT
operand is omitted from the DFHIC TYPE=INITIATE macro instruction if

no association with a terminal is required.

The fcllowing is an example of the coding required to request
automatic initiation of a task not associated with a terminal without
passing data to the task:

DFHIC TYPE=INITIATE, REQUEST TASK INITIATION *
INTRVAL=10000, IN ONE HOUR *
TRANSID=TRNL TRANSACTION IDENTIFICATION

The following are examples of the coding required to dynamically
request autopatic initiation of a task associated with a terminal
without passing data to the task.

_——= IAREIDEssx =28

MVC TCAICRT,=PLU4*1C000°, MOVE ONE HOUR TO TCA

MVC TCAICTI,=CL4'TRN1® TRANSACTION ID TO TCA

MVC TCAICTID,=CLY4*STA5' TERMINAL ID TO TCA

DFHIC TYEE=INITIATE, REQUEST TASK INITIATION *
INTRVAL=YES, INTERVAL OF TIME GIVEN *
TRMIDNT=YES TERMINAL ID GIVEN

MVC UNIQCODE,TCAICQID SAVE CICS UNIQUE REQUEST ID

For ANS CCBCL:

MOVE 10000 TO TCAICRT. NOTE MOVE CNE HOUR TO TCA

MOVE 'TIRN1' TO TCAICTI. NOTE TRANSACTION ID TO TCA

MOVE 'STA5' TO TCAICTID. NOTE TERMINAL ID TO TCA

DFHIC TYPE=INITIATE, REQUEST TASK INITIATION *
INTRVAL=YES, INTERVAL OF TIME GIVEN *
TRMIDNI=YES TERMINAL ID GIVEN

MOVE TCAICQID TO UNIQCODE. SAVE CICS UNIQUE REQUEST ID

For BL/I:

TCAICRT=10000; /*MOVE ONE HOUR TO TCA*/

TCAICTI='IRN1'; ‘ /*TRANSACTION ID TO TCA*/

TCAICTID='STAS?'; /*TERMINAL ID TO TCA*/

143

DFHIC TYPE=INITIATE, REQUEST TASK INITIATION *

INTRVAL=YES, INTERVAL OF TIME GIVEN *
TRMIDNT=YES TERMINAL ID GIVEN
UNIQCODE=TCAICQID; SAVE CICS UNIQUE REQUEST 1ID

Task Ipitiation with Data (PUT)

Supported by CICS Temporary Stcrage Management, this facility allows
the arplicaticn programmer to pass data to another task that is to
be initiated at some future time by issuing the

DFHIC TYPE=PUT,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
TREANSID=nanme,
TRMIDNT=name,YES,
ICDADDR=syntclic address,YES,
NORESP=symkolic address,
INVREQ=symtolic address,
TRNIDER=symbclic address,
TRMIDER=symkclic address,
IOERROR=symbclic address

3 % 36 % 6 3 %

macro instruction. This macro instruction is used to provide the
symbolic Transaction Identificaticn, the location of the data to be
stored, and other information applicable to the task to be initiated

at some future time. CICS stores the data and queues the request until
the specified interval of time has elapsed or the specified time of

day has occurred. As scon as all necessary resources are available
{for example, a terminal)} the task is imitiated.

The DFHIC TYPE=PUT macro instruction is used only when data is to
te passed to a task to be initiated at some future time. It supersedes
and cancels any previously initiated DFHIC TYPE=POST request of the
taske.

If the task to be initiated at some future time is associated with
a terminal, the initial DPHIC TYPE=PUT request causes the task to be
initiated at the specified time. Subseguent PUT's, with the same
Terminal identification, Transaction Identification, and expiration
time as the initial PUT, are used to store data for subsequent retrieval
by the initiated task. (See the section "Retrieve Time-Ordered Data".)

If the task to be initiated at some future time is not associated
with a terminal, each DFHIC TYPE=PUT reguest results in a task being
initiated ‘at the specified time. That is, only one physical data
record is passed to the initiated task. (See the section "Retrieve
Time-Ordered Data™.)

The application programmer must specify the parameters required
in either of two ways: (1) by including the parameters in operands
of the DFHIC TYPE=PUT macro instruction, or (2) by coding instructions,
prior to issuing the DFHIC TYPE=PUT macro instruction, that dynamically
move these parameters to fields in the TCA. If the parameters are
included in operands of the DFHIC TYPE=PUT macro instruction, the
applicable keywords are INTRVAL, TIME, REQID, TRANSID, TRMIDNT, and
ICCADDR. (The keywords used to access user-written exception handling
routines are discussed in the section "Test Response to a Request for
Time Services".)

a4

The numeric value specified in either the INTRVAL operand or TIME
operand is used by CICS to calculate the time of day the requested
time service is to be provided. If the calculated time of day is the
same as the current clock time, or up to and including six hours
preceding the current clock time, the specified time is considered
to have elapsed (occurred) and the requested service is provided
immediately. If the calculated time of day is in advance of the curresmt
clock time, the requested service is provided when the specified time
cccurs. If the calculated time of day precedes the current clock time
by more than six hours, the requested service is provided the next
day at the specified time.

Note

Users of CICS/0S must be aware that the current clock time is
reset to zero each day to represent midnight. CICS makes no
attempt to calculate a time of day based on a elock time less
than zero.

INTRVAL: This operand is used to specify the interval of time after
which the task is to be automatically initiated and/or data made
available to the task in response to a DFHIC TYEBE=PUT request. The
interval of time is specified as a numeric value of the form HHMMSS,
vhere HH represents hours frcm 00 to 99, MM represents minutes from

00 to 59, and SS represents seconds from 00 to 59. This numeric value
is added to the current clock time by CICS when the DFHIC TYPE=PUT
macro instruction is executed to calculate the time of day (clock time)
at vwhich the task is to be automatically initiated and/or data made
available to the task. The minimum value that may be specified is

cne second.

The numeric value can be specified in the DFHIC TYPE=PUT macro
instruction, or it can be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=PUT macro instruction. 1In
the latter case, the INTRVAL=YES operand must be included in the macro
instruction.

The INTRVAL operand and TIME operand are mutually exclusive and
may not be used in the same macro instruction.

TIME: This operand is used to specify the time of day at which the
task is to be automatically initiated and/or data made available to

the task in response to a DFHIC TYPE=PUT request. The time of day

is expressed as a numeric value of the form EHMMSS, where HH represents
hours from 00 to 99, MM represents minutes from 00 to 59, and SS
represents seconds from 00 to 59.

The numeric value can Le specified in the DFHIC TYPE=PUT macro
instruction, or it can be dynamically moved to the TCAICRT field of
the TCA prior to issuing the DFHIC TYPE=PUT macro instruction. 1In
the latter case, the TIME=YES operand must be included in the macro
instruction.

The TIME operand and INTRVAL operand are mutually exclusive and
ray not be used in the same macro instruction.

REQID: Each time-crdered request has a unique Request Identification
assigned to it., 1Its purpose is to provide a means of symbolically
identifying the request and any data associated with it. Unless
otherwise instructed, CICS generates a unique Request Identification.

The optional REQID operand allows the user to supply the unique

Request Identification as part of the DFHIC TYPE=PUT service request
in either of two ways: (1) by specifying a maximum of eight characters

145

in the REQID cperand, or (2) by dynamically moving an eight-byte Request
Identificaticn to the TCAICQID field prior to issuing the DFHIC TYPE=PUT
macro instruction. 1In the latter case, the REQID=YES operand must

te included in the macro instruction.

If the REQID operand is omitted from the DFHIC TYPE=PUT macro
instruction, the unique Request Identification generated by CICS is
returned to the user in the TCAICQID field. The unique Request
Identification becomes the symbolic name assigned to the data stored
by CICS when servicing the DFHIC TYPE=PUT request.

TRANSID: This operand is used to supply the symbolic Transaction
Identification of the task to. be initiated at scme future time. This
operand can be comitted provided the application programmer has placed
the symbolic Transaction Identification in the TCAICTI field prior

to issuing the DFHIC TYPE=PUT macro instruction. CICS validates the
symbolic Transaction Identification through a scan of the Progran
Control Table at the time of the initial macro request, providing a
response code at TCAICTR (TCAICRC if the language is ANS COBOL) without
servicing the request if it fails tc locate a matching Transaction
Identificaticn.

TRMIDNT: This operand is used when the task to be initiated at scme
future time must communicate with a terminal. The symbolic Terminal
Identificaticn can be coded in the macro instructicn, or can bhe
dynamically moved to the TCAICTID field prior to issuing the DFHIC
TYPE=PUT macro instruction. 1In the latter case, the TRMIDNT=YES operand
must be included in the macro instruction.

CICS validates the symbolic Terminal Identification through a scan
of the Terminal Ccntrol Table at the time of the initial macro request,
providing a restonse code at TCAICTR (TCAICRC if the language is ANS
COBOL) without servicing the request if it fails tc locate a matching
Terminal Identification. The TRMIDNT operand is omitted from the DFHIC
TYPE=PUT macro instruction if no association with a terminal is
required.

ICDADDR: This operand is used to supply the location of the data to
te stored for the task that is to be initiated at some future time.
The data must have the standard variable-length format, with the data
length specified in the first four bytes (L1bb) followed by the data.
1L is a two-byte binary length field (the value of which includes the
length of the data plus the four bytes for the length field) and bb
is recommended to be a two-byte field of kinary zeros. The symbolic
address can be coded in the DFHIC TYPE=PUT macro instruction, or can
be dynamically moved to the TCAICLA field prior to issuing the DFHIC
TYPE=PUT macro instruction. In the latter case, the ICDADDR=YES operand
must be included in the macro instruction.

The following is an example of the coding required to request
automatic task initiaticn and/or request that time-ordered data be
made available to a task associated with a terminal:

DFHIC TYPE=PUT, REQUEST TASK INITIATION *
TIME=173000, TIME IS 5:30 PM *
TRANSID=TRNZ, TRANSACTION IDENTIFICATION *
TRMIDNI=STA3, TERMINAL IDENTIFICATION *
ICDADDR=DATAFLD DATA ADDRESS

The following are examples of the coding required to dynamically
request automatic task initiation and/or request that time-ordered
data ke made available to a task associated with a terminal.

146

For Assembler language:

MVC TCAICRT,PACKTIME
MVC TCAICQID,UNICCCDE
MVC TCAICTI,=CLU4'TEN2'
MVC TCAICIID,=CL4'STA3!
MVC TCAICDRA,=A (DATAFLD)

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICCALDR=YES

MOVE PFACKTIME TO TCAICRT.
MCVE UNICCCDE TO TCAICQID.
MOVE 'TRN2' TO TCAICTI.
MOVE 'STA3' TO TCAICTID.
MOVE LDATADLR TO TCAICDA.

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICCADDR=YES

Yor PL/I:

TCAICRTI=PACKTIME;
TCATICCID=UNIQCODE;
TCAICTI='TRN2';
TCAICTID=*STA3';
TCAICDA=ADLR (CATAFLD) ;

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
REQID=YES,
ICCADDR=YES

CALCULATED EXPIR TIME TO TCA
UNIQUE REQUEST ID TO TCA
TRANSACTION ID TO TCA
TERMINAL ID TO TCA

ADDRESS OF DATA TO TCA

REQUEST TASK INITIATION
EXPIRATION TIME GIVEN
TERMINAL ID GIVEN
UNICUE REQUEST ID GIVEN
DATA ADDRESS GIVEN

NOTE CALC EXPIR TIME TO TCA

NOTE UNICUE REQEST ID TO TCA.

NOTE TRANSACTION ID TO TCA.
NOTE TERMINAL ID TO TCA.
NOTE ADDRESS QF DATA TO TCA.

REQUEST TASK INITIATION
EXPIRATICN TIME GIVEN
TERMINAL ID GIVEN
UNICUE REQUEST ID GIVEN
DATA ADDRESS GIVEN

/*CALC EXPIR TIME TO TCA*/
/*UNICUE REQUEST ID TO TCA*/
/*TRANSACTION ID TO TCA*/
/*TERMINAL ID TO TCA*/
/*ADDRESS OF DATA TO TCA*/

REQUEST TASK INITIATION
EXPIRATION TIME GIVEN
TERMINAL ID GIVEN
UNIQUE REQUEST ID GIVEN
DATA ADDRESS GIVEN

RETRIEVE TIME-CRDERED DATA (GET)
Tasks can retrieve expired time-ordered data by issuing the

DFHIC TYPE=GET,
ICDADDR=symbclic address,YES,
NCRESP=symkolic address,
INVREQ=symtoclic address,
ENDDATA=symbclic address,
NCTFND=symkolic address,
IOERROR=symkclic address

macro instruction. This service is supported by the CICS Temporary
Storage Management facility.

* % 3 #

LK IR IR

3 3 3 »

% 3 & % % *

147

Only data from an expired DFHIC TYPE=PUT request can be accessed
via the DFHIC TYPE=GET macro instruction. All data stored via the
DFHIC TYPE=PUT macro instruction must be retrieved via the DFHIC
TYPE=GET macro instruction.

Each originating DFHIC TYPE=PUT request symbolically identifies
the Transaction Identification of the task to receive the data, and
if applicable, symtolically identifies the terminal associated with
the task's operaticn. When CICS services a DFHIC TYPE=PUT regquest,
it dces so in two steps; it first queues the request for automatic
task initiation at a specified time and then stores the data. When
the specified time occurs, the task is ready to be initiated, and the
stored data is then available for retrieval.

A task not associated with a terminal that is initiated as a result
cf an expired DFHIC TYPE=PUT request can access only the single data
record associated with the original request, and dces so by issuing
the CFHIC TYPE=GET macro instruction. An end-of-data condition occurs
in response to the DFHIC TYPE=GET request when all data records have.
been retrieved for this task. The storage cccupied by the data
associated with the task is released upon execution of the DFHIC
TYPE=GET request, cr upon termination of the task (normally or
abnormally).

A task associated with a terminal that is initiated as the result
of an expired DFHIC TYPE=PUT request, or that is active on the terminal
at the time of expiraticn of a DFHIC TYPE=PUT request, can access all
data records associated with the other expired DFHIC TYPE=PUT macro
requests, each having the same Transaction Identification, and Terminal
Identification as the operating task. Therefore, a task associated
with a terminal can retrieve all the expired data destined for the
terminal and task by issuing consecutive DFHIC TYPE=GET requests.
Fach expired data record is presented to the task in expiration time
sequence. The automatic task initiation request associated with each
data record retrieved is canceled by the DFHIC TYPE=GET request for
that data, and the storage accupied by the data is released at the
same time.

CICS provides an end-of-data response at TCAICTR (TCAICRC if the
language is ANS COBOL) when all expired data has been exhausted. CICS
releases the storage occupied by the single data record associated
with an expired DFHIC TYPE=PUT request, if that request also resulted
in initiating the task and the task terminated (normally or abmnormally)
without retrieving the data. Subsequent expired DFHIC TYPE=PUT
requests, specifying the same Terminal Identification and Transaction
Identification, result in new tasks being initiated unless the data
associated with the expired PUT request has been retrieved in resronse
to a DFHIC TYPE=GET request.)

The applicaticn programmer must specify the parameters required
in either of two ways: (1) by including the parameter in operands of
the DFHIC TYPE=PUT macro instruction, or (2) by coding the instruction,
Erior to issuing the DFHIC TYPE=PUT macro instruction, that dynamically
moves the parameter .to the field in the TCA. If the parameter is
included in the operand of the DFHIC TYPE=PUT macro instruction, the
applicable keyword is ICDADDR. (The keywords used to access user-
written exception handling routines are discussed thke section "Test
Response to a Request for Time Services".)

ICDADDR: This cptional operand is used to specify the location of

the storage area provided by the user into which the data is to be
placed. The symbclic address can be coded in the DFHIC TYPE=GET macro
instruction, or it can be dynamically moved to the TCAICDA field prior
to0 issuing the LFHIC TYPE=GET macro instruction. 1In the latter case,

148

+the ICDADDR=YES crerand must be included in the macro instruction.
The storage area provided by the user must be large enough to ccntain
the four-byte length field (LLbb) and data record. If this operand
is omitted, a storage area is acquired by CICS that is large enough
tc contain the four-byte length field (LLbb) and data record. Its
address is returned to the user in the TCAICDA field.

The fcllowing is an example of the coding required to request
retrieval of a time-ordered data record:

DFHIC TYPE=GET, RETRIEVE TIME-ORDERED DATA *
ICCADLCR=DATAFLD USER-EROVIDEL LATA AREA

The following are examples of the coding required to dynamically
request retrieval of a time-ordered data record.

MVC TCAICDA,=A(DATAFLD) DATA FIELD ADDR TO TCA
TFHIC TYPE=GET, RETRIEVE TIME-~-OKDERED DATA *
ICDADRR=YES DATA FIELD ADDRESS GIVEN

MOVE LATADLE TO TCAICDA. NOTE DATA FIELDT ADDR TO TCA..

DFHIC TYPE=GET, RETRIEVE TIME~ORDERED LATA *
ICDADDR=YES

For RL/I:
TCATICLA=ADLR (CATAFLD); /*TATA FIELD ADDR TO TCA%*/
DFHIC TYPE=GET, RETRIEVE TIME-ORDERED DATA *

ICDADDR=YES

TIME~-CRDERFED REQUEST CANCELLATION (CANCEL)

The applicaticn programmer can request that a previously issued
time—-ordercd service request (DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC
TYPE=INITIATE, or TFHIC TYPE=PUT) be canceled by issuing the

DFHIC TYPE=CANCEL,
REQID=name,YES, ‘
NCRESP=symkolic address,
INVREQ=symkclic address,
NOTFND=symkolic address

¥#* % # #

macro instruction. The effect of the cancellation is dependent uron
the presence or aksence of the REQID operand in the DFHIC TYPE=CANCEL
request and on the type of service request being canceled.

149

The keyvords used to access user-written exception handling routines
are discussed in the section "Test Response to a Request for Time
Services".

REQID: This operand is required when identifying the unexpired time-
crdered request issued by a task other than the cancelling task, and

can be supplied by the aprlication programmer in either of two ways:

(1) by specifying the unique Request Identification in the REQID
cperand, or (2) by dynamically moving the unique Request Identification
to the TCAICQID field prior to issuing the DFHIC TYPE=CANCEL macro
instruction. In the latter case, the REQID=YES operand must be included
in the macrc instruction.

Cancel an Interval Control POST Regquest

A DFHIC TYPE=POST request can be canceled by the originating task
or by another task through use of the DFHIC TYPE=CANCEL macro
instruction.

When the originating task cancels a previously issued DFHIC TYFE=POST
request, the REQID cperand must ke cmitted from the cancellation
request. The cancellation request can be made either before or after
expiration cf the original request. In either case, the storage
cccupied by the Timer Event Control Area is released and all reference
to the original request is removed from the systen.

When a task other than the originating task cancels a previously
issued DFHIC TYEE=POST request, the REQID operand is required. The
effect of the cancellation is the same as an early expiration of the
original DFHIC TYPE=POST request. That is, the originating task's
Timer Event Control Area is posted as though the original expiration
time had Lkeen reached.

Cancel an Interval Control WAIT Reguest

A DFHIC TYPE=WAIT request can cnly be canceled prior to its
expiraticn, and cnly by a task other than the originating task (the
originating task being suspended for the duration of the request).
The REQID operand is required. The effect of the cancellation is the
same as an early expiration of the original DFHIC TYPE=WAIT request.
That is, the originating task resumes control (based on its normal
dispatching priority) as though the original explratlon time had been
reached.

Cancel an Interval Control INITIATE or PUT Regquest

Any cancellation of a previously issued DFHIC TYPE=INITIATE or DFHIC
TYPE=PUT request requires that the REQID operand be included in the
CFHIC TYPE=CANCEL macro instruction. The effect of the cancellation
is to remove the original request from the system, trzating the original
request as though it had never been made. The cancellation request
is effective cnly prior to expiration of the original request.

INPUT/OUTPUT ERFOR RETRY CAPABILITY (RETRY)
When the response to a previously issued DFHIC TYPE=GET macro

instruction indicates an I/0 error, the application programmer can
issue the

150

DFHIC TYPE=RETRY,
NORESP=symbclic address,
INVREQ=symbolic address,
NOTFND=symkolic address,
IOERROR=symbclic address

#* % ¥ #

macro instruction, requesting that CICS retry the retrieval operation.
CICS attempts to perform the retrieval operation om the data record
(vhose symbolic eight-character identification is contained at TCAICQID)
using the data area specified at TCAICDA. These fields are preset

by CICS at the time the I/0 erior response was returned to the user.

The keywords used to access user-written exception handling routines
are discussed in the section "Test Response to a Request for Time
Services".

TEST RESPONSE TC A FEQUEST FOR TIME SERVICES (CHECK)

One of the ways the application programmer can *est the response
to a request for time services is by issuing the

DFHIC TYPE=CHECK,
NORESP=symbolic address,
EXPIRD=symbolic address,
JOERROR=symrbclic address,
TRNIDER=symkclic address,
TRMIDER=symbclic address,
NOTFND=symbolic address,
ENDDATA=symbclic address,
INVREQ=symtkolic address

% 3 I ¥ G ¥

macro instruction. It provides for the testing of response codes and
the routing cf control to the appropriate user-written exception
handling routines. This macro instruction provides an exception
handling facility that can be used in the manner of a subroutine.

CICS automatically places the appropriate response code in the TCA
at TCAICTR (TCAICRC if the language is ANS CCBCL) after completion
of the time service requested. The application prcgrammer must specify
the entry labels (symbclic addresses) he requires to access the
arpropriate exception handling routines previously supplied by the
user.

If the application programmer does not use the DFHIC TYPE=CHECK
macro instruction, he can specify the entry labels in either of two
cther ways: (1) by including the entry labels in operands of any other
IPHIC macro instruction, or (2) by coding instructions immediately
following the DFHIC macro instruction that examine the response code
provided by CICS at TCAICTR (TCAICRC if the language is ANS COBOL)
and transfer contrcl to the appropriate routine.

The response codes are as follows:

CONDITION ASSENBLER ANS CCBOL PL/T

NORESP X'00°" 12-0-1-8-9 €0000000
ENCDATA X101 12-1-9 €0000001
IOERROR X104 12-4-9 00000100
TRNIDER X1 11-1-9 00010001
TRMIDER Xt 120 11-2-9 00010010
EXPIRD X020 11-0-1-8-9 00100000
NOTFND x'81° 12-11-0-1 10000001
INVREQ X'FF? 12-11-0-7-8-9 11111111

151

If the TYPE=CHECK macrc instruction is used by the application
programmer, it should usually immediately fcllow another DFHIC macro
instructicn. The applicable keywords are NORESP, EXPIRD, IOERROR,
TRNIDER, TRMIDER, NOTFND, ENDLCATA, 'and INVREQ.

If the application programmer does not check for a particular
response tc¢ his service request, and if that exception condition occurs,
program flow proceeds to the next sequential instruction.

The operands that can be used to test the response to a request
for time services are as follows.

NORESP: Specifies the entry label of the user-written routine to which
ccntrocl is to be passed in the event no errcrs occur. NOKESP signifies
"normal response" rather than "no resgonse”.

EXPIRD: Specifies the entry label of the user-written routine to which
control is to Le passed in the event the time specified in a DFHIC
TYPE=POST or DFHIC TYPF=WAIT request had already expired at the time
the request was issued.

JOERROR: Specifies the entry label of the user-written routine to
which control is to be passed in the event an input/output error occurs
during a DFHIC TYPE=GET or DFHIC TYPE=PUT operation on auxiliary
storage. The DFHIC TYPE=RETRY macro instruction can be used in
ccnnection with the GET type cf error handling routine.

TRNIDER: Specifies the entry label of the user-written routine to
which contrcl is to be passed in the event the symbolic Transaction
Identification specified in the DFHIC TYPE=INITIATE or DFHIC TYPE=PUT
request is not found in the Program Contrcl Table (PCT).

TRMIDER: Specifies the entry label of the user-written routine to
which control is to be passed in the event the symbolic Terminal
Identification specified in the DFHIC TYPE=INITIATE or DFHIC TYPE=PUT
request is nct fcund in the Terminal Contriol Table (TCT).

NOTFND: Specifies the entry label of the user-written routine to which
centrol is to ke passed in the event the Request Identification
gpecified in the DFHIC TYPE=CANCEI macro instruction fails to match

an unexpired time-ordered request. It is also applicable to DFHIC
TYPE=GET or DFHIC TYPE=RETRY requests and signifies that the time-
crdered data stored for retrieval through the DFHIC TYPE=PUT macro
instructior cannot be located using the unique Request (data)
Identificaticn contained in TCAICQID at the *time of this response.

For example, the "data ncot fcund" condition occurs on a retrieval
cperation if some prior task retrieved the data stored under that
symkolic identification directly through Temporary Storage facilities
and then released the data area, This condition also occurs if the
Request Identification associated with the original DFHIC TYPE=PUT
request fails to remain a unique identification.

ENDDATA: Specifies the entry label of the user-written routine to
which ccntrol is to be passed in the event nc mcre data is stored for
the task issuing a DFHIC TYPE=GET request. It can be considered a
normal end~of-file response when retrieving sequential time-ordered
data records.

152

INVREQ: Specifies the entry label of the user-written routine to which
control is to be passed in the event the operational CICS does not
support the crticnal requested service. It may also indicate that

an invalid type of request code was received for processing by the
Interval Control prcgran.

153

FROGRAMMABLE DEVICE CONSIDERATIONS

When BTAM is used by CICS for programmable binary synchronous
communication line management, CICS initializes the communication line
with a BTAM read initial (TI); the terminal response must be a write
initial (TI) or the equivalent. If a user-written application program
then issues a read, CICS issues a read continue (TT) to that line;
if the program then issues a write, CICS issues a read interrupt (RVI)
to that line.

The programmable terminal response to a read interrupt must be "end
of transmission" (EOT), except that the EOT response may be preceded
by writes to exhaust the contents of output buffers so long as the
input buffer size (specified previously by the user during preparation
of the Terminal Ccntrol Table) is not exceeded by this data. CICS
issues a read continue until it receives an EOT, or until the input
message exceeds the size of the input buffer (which is an error
condition). '

After receiving an EOT, CICS issues a write initial (TI) or the
equivalent (depending on the type of line). The programmable terminal
response must be a read initial (TI) or the equivalent.

If another write is issued by the application program, CICS issues
a write continue (TT) to that line. If the program issues a read after
it has issued a write, CICS turns the line around; the program must
have relinquished use of the line through a write reset (TR). (CICS
does not recognize a read interrupt.)

To ensure that binary synchronous terminals (for example, System/360,
1130, 2780) remain coordinated, CICS processes the data collection
or data transmission transaction on a line to completion before it
Folls the other terminals on that line.

Note: Since the CICS system service programs (Sign On/Sign Off, Master
Terminal, etc.) do not insert binary synchronous control
characters into the data stream, these programs cannot be used
with the 2780 Data Transmission Terminal or the 2980 General
Banking Terminal Systenm.

The type of response required on the part of CICS and the user-
written programmable terminal program to DFHTC macro instructions
issued in a user-written application program is as follows:

APPLICATION PROGRAM CICS (note 1) TERMINAL PROGRAM
READ INITIAL (TI) WRITE INITIAL
DFHTC TYPE=READ READ CONTINUE (TT) WRITE CONTINUE

DFATC TYPE=WRITE (note 2) READ INTERRUPT (RVI) WRITE RESET
{note 3) READ CONTINUE (TT)

WRITE INITIAL (TT) READ INITIAL
DFHTC TYPE=WRITE WRITE CONTINUE (TT) READ CONTINUE
DFHTC TYPE=READ (note 4) WRTITE RESET (TR) READ CONTINUE
READ INITIAL (TT) WRITE INITIAL
DFHTC TYPE=RESET WRITE RESET (TR)
Note_1: CICS issues the equivalent of the macro instruction shown,

depending upon whether the communication line is switched

154

Page of SH20-1047-4

Revised April 11, 1973

By TNL SN20-9012
or non-switched. The user-written programmable terminal
program must issue the equivalent of the BTAM operation
shown.

Note 2: An RVI sequence is indicated by the DECFLAGS field of the
Data Extent Control Block (DECB) being set to X'02' and a
completion code of X'7F' being returned to the Event Control
Block (ECB).

Note 3: The read continue is issued only if the "end of transmission"
(EOT) character is not received on the read interrupt.

Note 4: Write reset is issued only for point-to-point terminals.
3735 CONSIDERATIONS
The 3735 Programmable Buffered Terminal is supported by CICS/0S and

CICS/DOS-STANDARD as explained below.

3735 Transactions - Autoanswer

The 3735 transaction is attached by CICS upon receipt of input from
a 3735. Data is passed to the application program in 476-byte blocks;
each block (one buffer) may contain multiple logical records. The
final block may be shorter than 476 bytes; however, zero-length final
blocks are not passed to the application program. If the block contains
multiple logical records, the user's application must perform any
necessary deblocking functions and the gathering of partial logical
records from consecutive reads..

It is recommended that the user spool input data from a 3735 to an
intermediate data set to ensure that all data has been captured before
deblocking and processing that data.

The application must follow 3735 conventions and read to end-of- flle
before attempting to write FDP's (Form Description Programs) or data
to the 3735. TFor this reason, the EOF=symbolic address operand must
be used with each DFHTC TYPE=READ request. When the EOF branch is
taken, the user may begin to write FDP's or data to the 3735, or,
optionally, request CICS to disconnect the line.

It is possible that the 3735 will transmit the end-of-file condition
immediately upon connection of the line. For this reason the user must
code the initialization request (DFHTC EOF=symbolic address) before
issuing any other Terminal Control requests in his progranm.

The user is responsible for formatting all special message headers
for output to the 3735 (for example, SELECTRIC, POWERDOWN). TIf FDP's
are to be transmitted to a 3735 with ASCII transmission code, the
NOTRANSLATE operand must be included in the DFHTC TYPE=WRITE request
for each block of FDP records.

The user must issue a DFHTC TYPE=DISCONNECT macro instruction when
he has exhausted the output to be transmitted to the 3735. If the
application program ends during Batch Write mode prior to issuing the
DISCONNECT request, CICS forces a 3735 "receive abort" condition and
all data just transmitted is ignored by the 373S5.

155

3735 Transactions - Autocall

In automatic and time-initiated transactions, all of the
considerations contained in the section "3735 Transactions - Autoanswer"
apply when CICS dials a 3735 with the exception that the DFHTC
EOF=symnbolic address macro instruction is not useqd.

155.1

CICS connects the line and allows the user to indicate the direction
of data transfer by means of his first Terminal Control request. The
user 1s cautioned, however, that if his first request is a WRITE and
the 3735 has data to send, the 3735 causes the line to be disconnected.

SYSTEM/7 CONSIDERATIONS

The implementation of System/7 support treats the System/7 as any
other programmable terminal. Transactions are normally initiated from
the System/7 by issuing a four-character transaction code as in the
following example:

DXMIT TRNID TRANSMIT TRANSACTION CODE
PBER - ERROR BRANCH IF CONDITION ERROR CODE
PLEX WAIT FOR COMPLETION -

#T0LT 3,CHECK, /0000, TRAN, 2

[N R

TRNID |
#IOLT GENERATE I/O LIST
3, ‘ RETURN CONTROL ON INTERRUPT
LEVEL 3
CHECK, RETURN CONTROL AT LOCATION CHECK
/0000, TRANSMIT MESSAGE IN BCD MODE
TRAN, MESSAGE LOCATED AT TRAN
2 MESSAGE TWO WORDS LONG
RAN PEQU * TRANSACTION ID
PDC /A6D2 =1TR! :
PDC /CAOE =TNT7!
CHECK PEQU * TEXT FOR SUCCESSFUL COMPLETION

In this example, the transaction identification is transmitted in
BCD mode. Pseudo-binary mode may only be used while communicating with
an active CICS transaction; it can never be used to initiate the
transaction. Note that the message length is given as the number of
words to be transmitted and not as the number of characters.

When a transaction is initiated on a System/7, CICS services only
that System/7 for the duration of the transaction; all other System/7's
on that line are locked out for the duration of the tranmnsaction to
provide most efficient use of the line. Therefore, it is highly
recommnended that CICS application programs be designed for the
multipoint System/7 so that their execution is of short duration.

It is an MSP/7 standard that the first word (two characters) of
every message received by the System/7 be an identification word. All
identification words beginning with "a" (X'20') are reserved for future
use by CICS.

When the PSEUDOBIN parameter is specified as part of an input
request (for example, DFHTC TYPE=(READ,PSEUDOBIN)), the TIOA provided
by the application program must be at least twice the length of the
data to be read. For example, if 20 System/7 words (40 bytes) are to
be read, the data area of the TIOA must be at least 80 bytes in length.

156

When the PSEUDOBIN parameter is specified as part of an output
request, Terminal Control always obtains a new TIOA and frees the old
TTOA unless SAVE was specified. Therefore, on a DFHTC
TYPE=(WRITE,READ,PDEUDOBIN) request, the application program must
reload the TIOA address (from TCTTEDA) to access the input dAata from
the System/7.

In the case of a System/7 on a dial-up (switched) line, the
application program must initially transmit a four-character terminal
identification. (This terminal identification is generated during
preparation of the TCT through use of the DFHTCT TYPE=TERMINAL,
TRMIDNT=parameter specification.) CICS then responds with either a
"ready" messagde, indicating that the terminal identification is valid
and that the System/7 may proceed as if it were on a leased line, or
an INVALID TERMINAL IDENTIFICATION message, indicating that the terminal
identification sent by the System/7 did not match the TRMIDNT=parameter
specification.

Whenever CICS initiates the connection to a dial-up System/7, CICS
writes a null message consisting of three idle characters prior to
starting the transaction. As a result of this message transmission,

a data check message may be recorded on the CICS (host) system console.
This occurs if there is no program resident in the System/7 capable

cf supporting the Asynchronous Communication Control Adapter (ACCA)

as is normally the case when the task to be initiated by CICS is to
IPL the System/7. Although the BTAM error routines cause a data check
message to be printed at the CICS console, CICS ignores this error

and continues normal processing.

If a prcgram capable of supporting the ACCA is resident in the
System/7 at the time of this message transmission, the data check will
not occur.

When a disconnect is issued to a dial-up System/7, the 'busy' bit
is sometimes left on in the ACCA's interrupt status word. 1If the line
connection is reestablished by dialing from the System/7 end, the
'busy' condition of the ACCA prevents message transmission from the
System/7. To overcome this problem, the System/7 program must reset
the ACCA after every disconnect before message transmission is
attempted. This way be accomplished by issuing a PIO instruction to
reset the ACCA. The following instruction accomplishes this:

PWRI 9,8,3,0 RESET ACCA
This procedure is not necessary when the line is reconnected by CICS

(that is, by an automatically initiated transaction).

NON-PROGRAMMABLE DEVICE CONSIDERATIONS

This section includes various considerations for the application
rrogrammer as he designs applications for non-programmable terminals.
226072265 PROGRAMMING CONSIDERATIONS

The following is an example of the coding required to write data
to a 2260/2265 terminal and specify the screen line address where the

write is to begin:

DFHTC TYPE=VWRITE, WRITE DATA TO A TERMINAL SCREEN *
LINEADR=10 STARTING AT THIS SCREEN LINE

157

The following are examples of the coding required to write data
to a 2260/2265 terminal and dynamically determine the screen line
address where the write is to begin.

For Assembler language:

-_

MVI TIOALAC,X'FO! WRITE STARTING AT SCREEN LINE 1
DFHTC TYPE=WRITE; i WRITE DATA TO A TERMINAL SCREEW *
LINEADR=YES STARTING LINE ALREADY SPECIFIED
For ANS COBOL:
MOVE 240 TO TIOALAC. NOTE PLACE STARTING LINE IN TIOA.
DFHTC TYPE=WRITE, WRITE DATA TO A TERMINAL SCREEN *
LINEADR=YES STARTING LINE ALREADY SPECIFIED
For PL/I:
TIOALAC=240; /*¥START YRITE AT SCREEN LINE 1%/
DFHTC TYPE=WRITE, WRITE DATA TO A TERMINAL SCREEN *
LINEADR=YES STARTING LINE ALREADY SPECIFIED

2770/2780 PROGRAMMING CONSIDERATIONS

The 2770 Data Communication System and 2780 Data Transmission
Terminal recognize a read interrupt and respond by transmitting the
contents of the I/0 buffer. After the contents of the buffer have
been transmitted, the 2770 or 2780 responds to the next read continue
with an EOT. 1If the I/0O buffer is empty, the 2770 or 2780 transnmits
an FOT. CICS issues a read interrupt and read continue to relinguish
use of the line and to enable the user to write to the 2770 or 278C.

Input from a 2770 or 2780 consists of one or more logical records.
CICSs provides the user with one logical record per read request. VNote
that the size of a logical record cannot exceed the contents of one
buffer.

Output to a 2780 requires that the application programmer insert
the appropriate "escape sequence" for component selection associated
with the output message.

A read issued to a 2770 causes a logical record to be presenteAd

to the application program. If the input spans multiple buffers,
nultiple reads must be issued by the application program.

158

2980 PROGRAMMING CONSIDERATIONS

Passbook Control for the 2980

When writing application programs to service the 2980 General Banking
Terminal Systenm, the application programmer must be aware of the
passbook control considerations described in this section.

Two one-byte fields of the Terminal Control Table terminal entry
(TCTTE) may be interrogated by the application program while servicing
passbook requests from the 2980. These fields are:

1. TCTTETAB, vwhich contains the binary representation of the number
of tabs necessary to position the print element at the passbook
area.

2. TCTTEPRCF, which contains the indicators (flags) necessary for
passbook control operations. The indicators TCTTEPCR and
TCTTEPCW indicate whether or not the passbhook is present on
a read or write operation, respectively. The same indicators
are used to indicate the presence of the auditor key on the
2980 Model 2.

By testing indicators TCTTEPCR and TCTTEPCW, positive control can
be maintained by the application program with regard to the absence
or presence of a passbook during an update operation. However, care
must be taken to never alter these indicators or unpredictable results
may occur.

If the passbook is present on a read (entry) operation, the TCTTEPCR
indicator is turned on (set to a binary one). In this case, the
application program generally issues a write operation back to the
passbook area to update the passbook. After the write operation, the
application program must check the TCTTEPCW indicator to ensure that
the passbook was present at the time the write occurred. If the
TCTTEPCW indicator is off (set to a binary zero), the passbook was
not present and the write operation 4id not occur. However, the data
sent to the terminal (and not printed because of the "no passbook"
condition) is returned to the application program in its original form
for subsequent retransmission.

When the “no passbook" condition occurs on a write, CICS allows
an immediate write to the terminal. The application program should
generally write an error message to the journal area of the terminal
informing the 2980 operator of this error condition. Then CICS
automa*tically causes the transaction to wait for 23.5 seconds before
continuing execution to allow the operator to insert the required
passbook.

After regaining control from CICS following the writing of the error
message, the application program can attempt another write to the
passbook area after ensuring that the print element is positioned
correctly in the passbook area. This is generally accomplished by
issuing two carrier returns followed by the number of tabs required
to move the print element to the correct position. The specification
of the correct number of tabs may be acquired from the field at
TCTTETAB.

If the TCTTEPCW indicator is still off following the second attempt
to write to the passbock area, the application program can send another
2TTOr message or take some alternate action (for example, place the
terminal "out of service").

159

In summary, all writes to the passbook area are conditional. That
is, all writes require the presence of the passbook before they can
be successfully executed. Therefore, a read operation cannot be
combined with a passbook write. For example, a

DFHTC TYPE=(WRITE,READ,WAIT)

macro instruction is an invalid request for 2980 terminal services
involving the passbook area.

Note: The application programmer Should not insert shift characters

T in output data since this is done automatically by CICS. CICS
removes shift characters from input data.

Segmented Writes Control for the 2980

Segmented writes are supported for both the journal area and the
passbook area. Journal area segmented writes are limited in length
by the hexadecimal halfword value that the user stores in TIOATDL.
Passbook segmented writes are limited to a one-line logical write to
ensure positive control of the passbook as it spaces (indexes) past
the bottom of the passhook.

For example, consider a 2982 buffer length of 48 and a 2980 Model
4 logical write (print) area of 100 characters per line. The user
can write a logical record (DFHTC TYPE=PASSBK) of 100 characters to
this area and it will be segmented by CICS because of buffer size.
The user is required to insert the passbook indexing character (X'25')
as the last character written in any one logical write to the passbook
area. This is done to control passhook indexing and thereby achieve
positive control of passbook presence.

If the message contains embeddded passbhook index characters and
the logical length of the message is such as to cause segmenting, the
write termirates if the passbook spaces past the bottom of the passbook;
the remaining segments are not printed.

-Data Handling for the 2980

SHIFT CHARACTERS: Shift characters are handled by the Terminal Control
program and are of no concern to the application programmer. They

are stripped from input messages and are added to output messages as
required. Data can be written in any mix of uppercase, lowercase,

or special characters. (See the 2980 Translate Tables in Appendix

E.)

JOURNAL INDEXING: Journal indexing is the responsibility of the
application programmer. Carriage returns (X'15') may be inserted
anywhere in the logical message.

PASSBOOK INDEXING: Passbook indexing requires special consideration
by the application programmer to control bottom line printing on the
passbook. (See the section "Passbook Control for the 2980" and the
section "Segmented Writes Control for the- 2980".)

TAB CHARACTERS: The tab character (X'05') is also controlled by the
application programmer. The number of tabs required to position the
type element to the first position of the passbook is located in the
TCTTE at TCTTETAB. This value is specified by the user when generating

160

the Terminal Control Table and may be unique to each terminal. Other
tab characters are inserted as needed to control output format.

MISCELLANEOUS CHARACTERS: Turn page, message lite, openchute, and
special banking characters can be used by the application programmer
as needed. (See the 2980 Translate Tables in Appendix E.)

AMDITOR KEY MODEL 2: Presence of the Auditor key is controlled through
use of the DFHTC TYPE=PASSBK macro instruction and may be used in a
manner similar to that for passbook control. (See the section "Passbook
Centrol for the 2980).

2980 MODEL NUMBER: The TCTTETM field of the Terminal Control Table
terminal entry (TCTTE) contains the 2980 model number expressed as

a hexadscimal value (X'01', X'02', X'04'). CICS uses the model number
to select the correct Translate Table for each of the 2980 models;
therefore, the user cannot alter this field.

COMMON BUFFER: Common buffer writes (DFHTC TYPE=CBUFF) are translated
to the receiving TCTTE model character set. If more than one 2980
model type is connected to the 2972 Control Unit, the lengths are
automatically truncated if they exceed the buffer size.

writing High-Level lLanguage Programs for the 2980

—_— = PS4

The high-level language application programmer must concern himself
with the following fields of the DFHTCTTE structure when writing
programs to run on a 2980 General Banking Terminal System:

FIELD MEANING

TCTTETAR Number of tab characters ({(binary)
TCTTEPCF Passbock control field

TCTTESID Station identification

TCTTETID Model 4 teller identification

This section discusses one way to manipulate these fields.

As discussed in the section "Passbook Control for the 2980", the
application programmer is expected to read TCTTETAB to determine the
correct number of tab characters to place in his output data. The
following examples show how this might be done in ANS COBOL and PL/I
programs, respectively.

Zor ANS COBOL:

DATA DIVISION.
WORKING-STORAGE SECTION.
71 DFH2980 COPY DFH2980.

LINKAGE SECTION.

01 DPHBLLDS COPY DFHBLLDS.
02 TCTTEAR PICTURE S5S9(8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

161

162

01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COPY DFHTIOA.
02 DATA PICTURE X(20).
02 FILLER REDEFINES DATA.
03 TAB1-1 PICTURE X.
03 DATA1 PTCTURE X (19).
92 FILLER REDEFINES DATA.
03 TAB1-2 PICTURE X.
03 TAB2-2 PICTURE X.
03 DATA2 PICTURE X(18).

PROCEDURE DIVISION.

TAB-ONE GO TO ONETBCH.
TAB-TWO GO TO TWOTBCH,

IF TCTTETAB
IF TCTTETAB

won

ONETBCH.
MOVE TABCHAR TO TAB1-1.
MOVE TOTAL TO DATA1.

TROTBCH.
MOVE TABCHAR TO TAB1-2, TAB2-2.
MOVE TOTAYL TO DATA2.

%$INCLUDF DFHTTIOA;
2 DATA CHAR (20);

' DECLARE 1 USERTIOA_1 BASED (TIOABAR),

2 TIOAFILL CHAR (12),
2 TAB1_1 CHAR (1),
2 DATAT CHAR (19);
DECLARE 1 USERTIOA_2 BASED (TIOABAR),
TIOAFTLL CHAR (12),
TAB1_2 CHAR (1),
TAB2_2 CHAR (1),
DATA2 CHAR (18);

NN NN

%INCLUDE DFH2980;

IF (TCTTETAB
IF (TCTTETAB

TAB_ONE) THEN GO TO
TAB_TWO) THEN GO TO

ONETBCH: TAB1_1 = TABCHAR;
DATA1 = AMOUNT;

.

ONETBCH;
TWOTBCH;

TWOTBCH: TAB1_2 = TABCHAR;
TAB2_2 = TABCHAR;
DATA2 = AMOUNT;

In the ANS COBOL example, the structure DFH2980 is copied in the
Working Storage Section; in the PL/I example, DFH2980 is included
following the INCLUDE statements for the based structures. DFH2980
contains constants that may be used when writing application programs
for the 2980.

The application programmer is also expected to test the TCTTEPCF
field to determine whether there was a passbook present on a read or
write. TCTTEPCR and TCTTEPCW are located in DFH2980 to aid in this
testing.

To test the TCTTEPCF field in ANS COBOL, statements such as the
followving might be used:

MOVE TCTTEPCF TO HCLDPCF.
IF HOLDPCFB = (HOLDPCFB / TCTTEPCW) * TCTTEPCW
THEN GO TO BOOK-FOR-PRESENT-WRITFE.

Substituting TCTTEPCR for TCTTEPCF allows the ANS COBOL programmer
to test for the presence of a passbook on a read., (HOLDPCF and HOLDPCFB
are also part of DFH2980.)

To test the TCTTEPCF field in PL/I, statements such as the following
might be used:

IF (TCTTEPCF | TCTTEPCW) THEN GO TO
BOCK-PRESENT-WRRITE;

Substituting TCTTEPCR for TCTTEPCF allows the PL/I programmer to test
for the presence of a passbook on a read.

To test the station identification and to determine whether the
normal station or alternate station is being used, values are pre-
defined in DFH2980 of the form:

STATION-#-A OR STATION-#-N (for ANS COBOL)
STATION_# A OR STATION_#_N (for PL/T)

where # is any inteqger (0 through 9) and A and N signify alternate
and normal stations. The values are one-byte character values and
can be compared to TCTTESID in an IF statement.

To test the teller identification on a 2980 Model 4, the TCTTETID
field is defined as a one-byte character value; therefore it can also
bYe tested in an IF statement.

Twenty-three special characters are defined in DFH2980 that may
te referenced by the name SPECCHAR-X (ANS COBOL and PL/I) where "X"
is an integer (0 through 23). Seven other characters are defined with
names vhich imply their usage; for example, TABCHAR. For further
information on these 30 characters, see Appendix E.

163

Following are the names defined in DFH2980 for ANS COBOL:

STATION-O-N
STATION-0-2
STATION-1-N
STATTION-1-A
STATION-2-N
STATION-2-A
STATION-3-N
STATION-3-A
STATION-U4-N
STATION-4-A
STATION-5-N
STATION-5-A
STATION-6-N

STATION-6-A
STATION-7-N
STATION-7-2
STATION-8-N
STATION-8-A
STATION-9-N
STATION-9-A
TAB-ZERO
TAB-ONE
TAB-TWO
TAB-THREE
TAB-FOUR
TAB~FIVE

TAB-SIX
TAB-SEVEN
TAB-EIGHT
TAB-NINF
HOLDPCFB
DFHFILL
HOLDPCF
TCTTEPCR
TCTTEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR

MSGLITE
BCKSPACE
TRNPGE
SPECCHAR-1
SPECCHAR-2
SPECCHAR-3
SPECCHAR-U4
SPECCHAR-5
SPECCHAR-6
SPECCHAR-7
SPECCHAR-8
SPECCHAR-9
SPECCHAR-1D

Following are the names defined in DFH2980 for PL/I:

STATION_O_N
STATION_O_A
STATION_1_N
STATION_1_A
STATION_2_N
STATION_2_A
STATION_3_N
STATION_3_A
STATION_4_N
STATION_U_A
STATION_S_N
STATION_S_A
STATTON_6_N
STATION_6_A
STATTION_7_N

STATION_7_A
STATION_8_N
STATION_8_A
STATION_9_N
STATION_9_A
TAB_ZERO
TAB_ONE
TAB_TWO
TAB_THREE
TAB_FOUR
TAB_FIVE
TAB_SIX
TAB_SEVEN
TAB_EIGHT
TAB_NINE

TCCTEPCR
TCTTEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR
MSGLITE
BCKSPACE
TRNPGE
SPECCHAR_1
SPECCHAR_2
SPECCHAR_ 3
SPECCHAR_4
SPECCHAR_S
SPECCHAR_6

SPECCHAR_7

SPECCHAR_8

SPECCHAR_9

SPECCHAR_10
SPECCHAR_11
SPECCHAR_12
SPECCHAR_13
SPECCHAR_ 14
SPECCHAR_15
SPECCHAR_ 16
SPECCHAR_17
SPECCHAR_ 18
SPECCHAR_19
SPECCHAR_ 20
SPECCHAR_21

SPECCHAR-11
SPECCHAR-12
SPECCHAR-13
SPECCHAR-14
SPECCHAR-15
SPECCHAR-16
SPECCHAR-17
SPECCHAR-18
SPECCHAR- 19
SPRCCHAR~20
SPECCHAR-21
SPECCHAR-22
SPECCHAR-23

SPECCHAR_22
SPECCHAR_ 23

7770 PROGRAMMING CONSIDERATIONS

Even though CICS does not distinquish between any of the special
codes (characters) that may be entered at an audio terminal (for
exanple, the 2721 Portable Audio Terminal), an application progranm
is not precluded from performing special functions upon encountering
these codes. For example, the following special hexadecimal codes
may be entered from a 2721 Portable Audio Terminal:

KEY CODE
CALL EXND 37%%
CNCL 18
¥ 3B** or 7B
VERIFY 2D
RPT 3D
EXEC 26%%
F1 B1
F2 B2
¥3 B3
F4 B4
F5 BS
00 A0
000 3B** or BO
IDENT 11, 12, 13, or 14 plus two other characters

For further information concerning the 2721, see the publication
2721 Portable Audio Terminal Component Description (GA27-3029).

164

The following special hexadecimal codes may be entered from a
Touch-Tonel! telephone:

KEY | CODE
* AQ
3B*%* or B0

@ en s e -

tTrademark of the American Telephone & Telegraph Co.

The * and # characters of a Touch-Tone telephone correspond to the 00
and C00 characters, respectively, on a 2721 Portable Audio Terminal.

The above codes denoted by a double asterisk cause a hardware
interrupt and are in the Terminal I/O Area (TIOA) immediately following
the data; the codes are not included in the data length.

Note: The # and 000 characters cause an EOTI (X'38') hardware interrupt
unless the EOTI Disable feature (#3540) is installed on the 7770
Audio Response Unit Model 3. 1In this case, at the option of
the user, either or both of the # and 000 characters do not
cause a hardware interrupt and are presented in the TIOA along
with the rest of data and are included in the data length.

If, after receiving at least one character from a terminal, no other
characters have been reczived by the 7770 for a period of five seconds,
the 7770 automatically generates an "end of inquiry" (EOY) hardware
interrupt that ends the read operation.

CREATING USER EXITS FOR

[
len
I
Z
10
i=-]
el
=}
Z
o
=
1}
=3
]
bt
3
9
b
9}
-3
—
=}
=z
o
0
o
Q
=}
0
0
4
=
@

If the Asynchronous Transaction Processing facility is used, the
Input Processor (CRDR) and the Output Processor (CWTR) are employed
to transfer data to and from CICS. The two programs accomplish the
transfer of data without regard to its content. PFor example, any
terminal-dependent characters in an output stream must have been put
there by the user's transaction.

However, it may be desirable to perform some preprocessing or
rostprocessing on the terminal data. Such processing might be for
rurposes of:

1. Validity and limit checking

2. Removing or inserting device dependencies
3. Summarizing or formatting

4. Provide additional communication with CICS

These and other services can be accomplished through the use of
the user exits provided by CRDR and CWTR. During data input to CICS,
CRDR offers each transmitted record to a user-written exit routine
immediately after it is received. CWTR offers each record to a user-
written exit routine immediately after it has been deblocked from its
Transient Data input area.

All records are made available to the user routine, including
delimiter records.

The exit routine is invoked by specifying its program name suffix
in the CR®DR or CWTR initiating the messade. For example:

CRDR EXIT=MD,NAME=WICHITA

165

causes CRDR to load the program named DFHXITMD (where DFHXIT is the
standard exit routine base name and MD is the suffix) and pass each
record to that routine while building a batch named WICHITA,

Similarly, the statement:
CWTR NAME=FINDLAY,TERMID= (TMLA,TMLRB,TMLC), EXIT=DI

causes CWTR to load the program DFHXITDT and pass each output record
(associated with the output of batch FINDLAY) to the routine before
it is transmitted to the terminal.

One additional point should be noted concerning records given to
the CWTR exit routine. The messages being sent in response to a STATUS
request are passed to the routine. Por example:
CWTR NAME=SUNYVALE,STATUS,EXIT=CN
causes the message concerning the status of a batch named SUNYVALE
to be passed to DFHXITCN. This permits the user-written exit routine

to augment the status message. All CICS service macro instructions
may be used in the exit programs.

CODING THE CRDR EXIT ROUTINE

The CRDR Input Processor uses the following basic TCA work area
definitions:

COPY DFHTCADS

TWAREC DS A Address of record to be insertead
TWAWA DS A Address of user work area
TWAIND DS X Indicators
TWAXTRTN EQU Xv180! Exit program return indicator
DS 3X Reserved
DS 20F Reserved

These fields (plus any additional fields) should be defined by the
user-written exit routine within the limits specified in the PCT entry.
Information is passed between CRDR and the exit routine by means of
this TCA work area.

Upon initial entry to the exit routine TWAWA and the TWAXTRTN bit
are zero. On all entries, TWAREC is zero. All modification of +the
TWAXTRTN bit must be done either by the instruction OI TWAIND,TWAXTRTN
or the instruction NI TWAIND,255-TWAXTRTN. The user exit must take
care not to modify the bits in the TWAIND field used by CWTR.

On all entries to the exit routine, register contents are:

REGISTER CONTENTS

P03 24

15 Exit routine entry address
14 Exit routine return address
13 CsA address
12 . TCA address
8 TIOA address of last message read
7 BCA address

The only registers that cannot be used in the routine are registers
12 and 13. The other registers are saved before exiting and are
restored by CRDR upon return. The Batch Control Area (BCA) is described
in the symbolic storage definition named DFHBCADS.

166

The exit routine must be enterable at two points. The -first entry
is for routine initialization and is made via an Assenmbler BALR 14,15
instruction. This is done only once so that turning on:. the TWAXTRTN
bit does not cause a reentry to occur. The message in the TIOA is
the CRDR transaction-invoking message.

All subsequent entries to the exit routine are made via an Assembler
BAL 14,4(15) instruction. This entry is made after each message is
read. ,

The exit routine entry coding might appear as follows:

DFHXITAB CSECT
USING *,15

B INIT
B MSGP
DROP 15

USING DFHXITAB, 1C

INIT R 10,15

tte o o 4

R 10,15

If the record just read is to be accepted without change or is to
have its contents altered, it can be done in the TIOA and return made
to CRDR via a BR 14 instruction. TWAREC and the TWAXTRTN bit should
remain zero.

Tf the length of the record just read is to be changed, it can be
done in the TIOA by altering the TIOATDL field. TWAREC and the TWAXTRTN
bit should be zero. If the record is to be lengthened such that it
won't fit in the TIOA, the record must be built in a user-defined work
area as a standard variable-length record. (The record in the TIOA
is not a standard VLR since the value in TIOATDL is four less than
a VLR count.) The address of the count field (LLbb) is +hen put into
TWAREC and control is returned to CRDR.

When the exit routine once again gains control, TWAREC is zero and
a new message is in the TIOA. A work area used to alter records may
te defined in the TCA work area or acquired dynamically through use
of a CICS DFHSC TYPE=GETMAIN macro instruction. If acquired
dynanically, its address may be stored at TWAWA.

To insert records into the input stream, each new record must be
built in an exit routine work area, its address placed at TWAREC, the
TWAXTRTN bit set on, and control returned to CRDR. The new record
is inserted and control is returned to the exit routine with TWAREC
set to zero and the TWAXTRTN bit left unchanged. After all new records
have been inserted in this manner, the TWAXTRTN bit must be set to
zero and control returned to CRDR with TWAREC containing zero. The
original message in the TIOA is placed into the input stream and a
nevw message is read from the terminal.

If the original message in the TIOA is to be deleted, control must
be returned to CRDR with TWAREC containing the address of F'0'.

CODING THE CWTR EXTIT ROUTINE

The CWTR Output Processor uses the following basic TCA work area
definitions:

COPY DFHTCADS

TWANXREC DS A
TWAREC DS A
THAWA DS A
TWAIND DS X
THWAXTRTN EQU .X'80°
DS 3x
DS 30F

These fields (plus any additional fields) should be defined by the
user-written exit routine within the limits specified in the PCT entry.
Information is passed between CWTR and the exit routine by means of
the TCA work area.

Upon initial entry to-the exit routine, TWAWA and the TWAXTRTN bit
are zero. On all entries TWAREC is zero, and TWANXREC points to the
variable~length record which is to be transmitted to the output
terminal. Any modification of the TWAXTRTN bit must be done on a bit
level since other bits in TWAIND are used by CWTR.

The first four bytes of a variable-length record contain a two-byte
length field and, occasionally, two bytes of control information.
In the case of the record to be handled by CWTR, the first of these
two control bytes (byte three of the record) contains the byte that
would ordinarily be moved to TCTTEOS by the DFHTC macro instruction.
The second control byte (byte four of the record) applies only to
records that are destined for a 2260 Display Station or a 3270
Information Display System; this control byte corresponds to the TIOALAC
or TIOACLCR field. If the destination terminal is a 3270 and the
‘TIOACLCR field is not applicable, X'C3' (the default value) nust be
moved into this control byte.

If the length of the record is to be changed, the two control bytes
probably are not affected and the information from the original record
can be used. Howvever, building a new record requires that one or both
of these control bytes be properly constructed.

On all entries to the exit routine, register contents are:

REGISTER CONTENTS

15 Exit routine entry address
14 Fxit routine return address
13 CSA address
12 TCA address
7 BCA address

The only registers that cannot be used in the routine are registers
12 and 13. The other registers are saved before exiting and restored
by CTWTR upon return.

The exit routine must be enterable at two points. The first entry
is for routine initialization and is made via an Assembler BALR 14,15
instruction. This is done only once so that turning on the TWAXTRTN
bit does not cause a reentry to occur. Also, there is no message
located by TWANXREC.

A1l subsequent entries to the exit routine are made via an Assembler

BAL 114,4(15) instruction. This entry is made after each message is
deblpcked and is about to be transmitted.

168

The exit routine entry coding might appear as follows:

DFHXITAB CSECT
USING *,15

B INIT
B MSGP
DROP 15

USING DFHXITAB,10

INIT LR 10,15
MSGP LR 10,15

If the record about to be written is to be accepted without change
or is to have only its contents altered, it can be done in its current
area located by TWANYREC. Return to CWTR is made with a BR 14
instruction; TWAREC and the TWAXTRTN bit should be zero.

If the length of the record is to be altered, it must be done by
replacing the record located by TWANXREC with the altered record.
The altered record must be built in an exit routine work area as a
standard variable-length record. The address of the new record must
be put into TWAREC and control returned to CWTR. The new, altered
record replaces the o0ld record. When the exit routine once again gains
control, TWAREC is zero and a nevw message is located by TWANXREC.

If the new Ttecord just described is to be inserted into the output
stream in addition to the record at TWANXREC, the TWAXTRTN bit must
be set to one prior to returning to CWTR. The new record (pointed
to by TWAREC) is sent to the terminal and control is returned to the
exit routine with TWANXREC pointing to the original record; TWAREC
is zero. This permits the exit routine to continue inserting records
into the output stream until return to CWTR is made with the TWAXTRTN
tit and TWAREC set to zero.

Deleting a record can be done by returning control to CWTR with
TWAREC containing the address of F'0°.

If dynamic storage is required by the exit routine, it can be

acquired from Storage Control and saved by putting its address in
TWAWA.

DATA BASE CONSIDERATIONS

SEGMENTED RECORDS

An optional feature of CICS File Management allows the user to
create and define a data set containing segmented records. A segmented
record is one in which the components of the record have been identified
(symbolically) and grouped according to some logical relationship such
as function or fregquency of use.

The identifiable groups are called segments. A segment is one or
more adjacent fields within a record. Some segments appear in all
records (for example, those segments containing identification or major
record control fields), while other segments apply only to, and appear
in, certain records. Before the application programmer can use

169

segmented records in his program, the structure and individual segments
of a segmented data set must have been previously defined by the user
in the File Control Table.

Segmented records offer numerous advantages. Having organized and
defined the segments of a data set, the user can group them into segment
sets and retrieve any set {or group) of segments by symbolically
identifying that set. Since an individual segment can be a member
of any number of segment sets, the user gains a high degree of
flexibility in the retrieval process. Because only a part (a segment
set) of a logical record is requested, CICS can extract just the
requested segments, pass them to the processing program, and free the
main storage required for the entire logical record or block at the
earliest possible time.

A saving in DASD space can be realized when segmenting is used with
variable~length record format, since CICS File Management always
compresses (packs) a segmented record before writing it to direct
access. The space normally required for missing segments is thus
eliminated, as are the slack bytes created when aligning segments in
main storage. :

With fixed-length records, compression causes the unused space to
te consolidated at the end of the record. For example:

* Logical record as defined by the user in the File Control Table

[Room | sec2 | sEe3 | szeu | sees | sEes|

e Logical record as it appears on DASD with missing segments

IRoo'rl SEG3 I SEGS

The following general rules apply to the use of segmented records:

1. Segmented records can be used with either ISAM or DAM organized
data sets.

2. Segmented records can be used with any record format (that is,
fixed, fixed blocked, variable, undefined) but are primarily
advantageous with variable-length records.

3. A data set that contains segmented records may not also be an
index data set in an indirect accessing hierarchy. The two
CTICS features are mutually exclusive for any one data set.
However, the primary (target) data set in an indirect accessing
hierarchy may contain segmented records. '

4, EBvery segment that could appear in a record, whether or not
it actually exists in a particular record, must be defined in
the File Control Table.

Segmented Record Formats

Tt is the user's responsibility to describe, for each segmented
data set, all segments within a logical record. Each segmented data
set is first described in the File Control Table just as any other
data set. That is, its basic characteristics must be described so
that CICS File Management can physically access it (for example, block
size, logical record length, key length, etc.). As an addendum to
this basic data set descriptive section, the user must describe the
segmented s*ructure of the data set.

Every segment (any number of adjacent bytes up to a maximum of 255)
must be defined, even if it does not exist in every logical record.

170

While it is not required that every logical record contain every
segment, every logical record must contain at least the root (control)
segment.

The root segment is a uniquely defined segment that must appear
at the beginning of each logical record. 7Tt contains as a minimum:

1. The length of the record, if variable-length records are being
used. This is a fullword (four bytes) of the form LLbb, where
LYl is the record length and bb is two bytes reserved for system
use.

2. Segment indicators, which indicate the presence or absence of
each segment in the record. Segment indicators are discussed
in greater detail helow.

Tn addition, the root segment could contain any other information
that might aid in the processing of the record by the user (for example,
a major control field such as an account number).

The following is an example of a segmented record and the root
(control) segment,

LOGICAL RECORD

l CONTROL SEGMENT JV szGMENT 2 | SEGMENT 3 J SEGMENT 4
SEGMENT . T T —— — —
[LLbb | accm wow l INDICATORS | OTHER CONTROL INFO |

The sequence of the segments within a logical record must be fixed.
That is, a segment may not change position in relation to the other
segments of the record. ©Each segment can be fixed or variable in
length. TIf the segment is variable in length, then the first byte
nust contain the length, in binary, of the segment, not including the
length byte. Thus the maximum data length of a variable-length segment
is 254 bytes instead of 255. The number of bytes in a fixed-length
segmnent or the maximum length of a variable-length segment is supplied
to CICS File Management as part of the segment definitions in the File
Control Table.

Fach segment has its own characteristics and these can be different
from other segment definitions. Tach segment can have a different
length than other segments, and, if defined as variable length, can
change as a result of an update. Segments may be added or deleted;
CICS Pile Management compresses and expands the record accordingly.

CICS File Management provides for the user to specify the alignment
requirements of each segment when that segment is brought into main
storage. This alignment may be on a one-byte, two-byte, four-dbyte,
or eight-byte boundary. The default alignment is on a one-byte
boundary. When the segmented record is written to direct access, any
residual space (slack bytes) caused by alignment is eliminated by CICS
*ile Management through the compress (packing) function.

Segment Indicators

Segment indicators are the means by which CICS File Management and
*he processing program specify, and determine, the presence or absence
of specific segments within a logical record. There are two types
of indicators available to the user; it is his responsibility to choose
the type he wishes to use and to define his data sets accordingly.
Regardless of the type of indicator, the following general rules apply
to the use of segment indicators in processing the segmented recorad:

171

1. Segment indicators are always located in contiguous bytes within
the root (control) segment. Note that every logical record
contains a root segment and that the root segment is always

~a part of any segment set brought into main storage. Therefore,
" the segment indicators are always accessible to the user.

2. The location of the indicators within the root segment is defined
by the user in the PFile Control Table as being some displacement
from the beginning of the root segment.

3. There must be one indicator for each segment which is defined,
other than the root segment. The position of the indicator
determines which segmeht it represents. Since the root segment
does not require an indicator, the first indicator represents
the first segment following the root segment (segment 2), the
second indicator represents the second segment following the
root segment (segment 3), etc.

4. When retrieving segment sets, it is the user's responsibility
to test the appropriate indicator to determine if a specific
segment is present. He should never assume a segment is present
simply because it was requested as part of a segment set.

5. When adding or deleting segments from a record, it is the user's

responsibility to reset the appropriate indicator to reflect

the change.

BIT TYPE SEGMENT INDICATORS: With the bit type indicator, each segment
is represented by a bit position in the segment indicator field. One
byte of indicators must be provided within the root segment for each
eight segments in the logical record. 1If a given bit indicator is

cn (binary 1), the corresponding segment is present in the logical
record.

If a given bit indicator is off (binary 0), the corresponding segment

is absent from the logical record. The following are examples of bit
type segment indicators:

FIXED LENGTH IROOT (CONTEOL) SEGMENT F*——~——DATA SEGHENTS—————*ﬂ

SEGMENTS
1 |11110000] |sEc2 | sEc3 | sEc4 | SEGS |

1 Byte of

Bit Indicators
VARIABLE |ROOT SEGMENT :i: DATA sz-:cum:ws--»l
LENGTH
SEGMENTS 1 }11110000] {1| sEG2|1|sEG3|L| SEGH |L|[SEG5]
FPIXED LENGTH |ROOT SEGMENT -t DATA SEGMENTS ——— >
SEGMENTS | |10110000] |SEG2 | SEG4 | SEG5 | SLACK |
MISSING

DISPLACEMENT TYPE SEGMENT INDICATORS: With the displacement type
indicator, each segment is represented by one halfword (two-bytes)
in the segment indicator field. In any given halfword indicator, a
value of zero indicates the corresponding segment is absent from the
logical record. A nonzero value (binary) in any given halfword
indicates that the corresponding segment is present and represents
the displacement of the segment from the beginning of the logical
record when the segments are packed.

Any displacement value which is placed in the halfword indicators

when building a new record or adding and deleting segments from an

172

existing record, may be modified by CICS File Management when it
compresses (packs) the segments before writing the record to direct
access. Whenever CICS packs segmented records, it places the
displacement value of each segment into the corresponding halfword
indicator (if displacement type indicators are being used). However,
CICS File Management does not change these displacement values when
unpacking a segmented record or when extracting selected segments of
a segment set.

The user should not rely on the displacement values in order to
access segments he has retrieved in a segment set; he should only use
them as zero/nonzero indicators to determine whether or not a requested
segment is present. (See "Main Storage Processing of Segmented
Records".)

The following example illustrates the basic concepts and
considerations when using displacement type segment indicators.

1. The following is the segmented record built by the user in main
storage which is to be added to a segmented data set:

20 BYTES 10 BYTES 8 BYTES 8 BYTES 5 BITES

A o~
- N

CCNTEOL ‘ I l I |
INFORMATION DATA DATA EMPTY DATA J
ROOT SEGMEN SEGMFNT2 SEGMENT3 SEGMENT4 SEGMENTS
2 BYTES

The user has placed data in three of the four defined segments
and indicated their presence by placing a nonzero velue in the
corresponding halfword displacement indicators. Any nonzero
value may be used (the 1 is only an example).

2. Before writing the record to the direct access data set, CICS
File Management compresses the segments and modifies the
displacement indicators so that the above record would appear
as follows before being written to DASD:

20 BYTES 10 BYTES 8 BYTES 5 BYTES 8 BYTES

~ -~ e N——— \ 3 i -
CONTROL Izo|3o olaalDATA ' DATA I DATA l EMPTY I
| INFORMATTON | | ,
ROOT SEGNENT2 SEGMENT3 SEGNENTS
SEGMENT

3. W%When retrieving a segment set from the above record, the root
segment is included as part of the segment set without any
modification. If the user were to request a segment set from
the above record (consisting of the Root Segment and Segment3),
the data he would receive might appear as follows:

CONTROL

I]4-‘8 BYTES-—»"
| INFORMATION 20 | 30 38 | DATA

ROOT SEGMENT SEGMENT3

173

Main Storage Processing Of Segmented Records

When a segment set is requested from a segmented data set, the data
is always placed into a File Work Area (FWA). The length of this Fwa
is variable depending upon the segments retrieved and their attributes.
However, it is not the users responsibility to determine this length
since CICS File Management automatically calculates it and acquires
the FWA through CICS Storage Management. A CICS-provided symbolic
storage definition (DFHFWADS) can be used in conjunction with a user-
defined layout to map the FWA.

The FWA consists of control fields (used by CICS Management
functions) and a data area into which the requested segments are placed
by File Management. The format of the retrieved segments within the
data portion of the FWA is always in a fixed format. That is, space
is provided in the FWA and alignment requirements are met for each
segment in the requested segment set, even though a segment may be
missing. (For variable-length segments, the maximum space is provided.)
It is the user's responsibility to test the appropriate segment
indicators to determine the presence or absence of a segment. Note
that an update request on a segmented data set causes CICS File
Management to automatically use the universal segment set "ALL" when
retrieving the record.

The following illustrations should help clarify the various
considerations discussed thus far concerning main storage processing
of segmented records.

1. Logical record as defined by the user in the File Control Table:

| roorsEe | sEc2 | sEe3 | seeu |s=es | seee | see7 | swes | sEey |

2. Logical record as it appears on DASD. Assume variable-length
records and bit type segment indicators:

tibb | 11010100 SEG2 see3 | sees | sEGY

ROOT SEGMENT

3. Logical record as it appears in the FWA after retrieval of a
segment set (read-only) which included Root Segment, SEG2, SEG6,
SEG7, SEGS8:

I?WA CONTROL
[PIELDS |ILBB|1101 0100 | DATA |EMPTY|DATA| EMPTY |
ROOT SEGMENT SEG2 SEG6 SEG/ SEGS

4. Logical record as it appears in the FWA after a retrieval for
update (SEGSET=ALL):

lywa CONTROL
|[PTELDS _ |11BB{1101 0100 | DATA|DATA | {DATA| lpaTal | J
ROOT SEGMENT SEG2 SEG3 SEGH SEG5 SEG6 SEG7 SEGS SEGO

5. Logical record as it appears in the FWA after the user has added
segments 4 and 8 and deleted segment 3. The indicators have
been adjusted by the user to reflect the change.

FPWA CONTROL
PIELDS _ |LLBB{1011 0110 | para| | paTa{ DATA| IDATA| DATA) |
ROOT SEGMENT SEG2 SEG3 SEGY4 SEG5 SEG6 SEG7 SEGS SEGO

174

6. Logical record as it appears on DASD after packing:

[z1bb[1011 0110 | DaTA [DATA |DATA|DATA| DATA]

ROOT SEGMENT SEGZ2 SEGH SEG5 SEG/ SEG8

Segment Sets

Once 2ach segment has been defined (name and attributes specified),
the user can specify as many segment sets as he desires. A segment
set is a grouping of the root segment and at least one or more
individual segments. Like the individual segments, the segment set
is given a symbolic name which is used by the application program when
processing a segmented data set. Any retrieval from a segmented data
set is always by segment set.

Assume a logical record in a segmented data set has been defined
as containing the following symbolic segments:

ROOTSEG

SEGMENT2
SEGMENT3
SEGMENTU
SEGMENTS
SEGMENT6

The user might wish to define the following segment sets:

SEGMENT SET NAME SEGMENTS

- s -

SEGSETA ROOTSEG
SEGHMENT2
SEGMENTUY

* SEGSETB ROOTSEG
SEGMENT3
SEGMENTUY
SEGMENTS

Whenever a segmented data set is defined in the File Control Table,
a universal segment set is automatically generated which includes all
segments defined for that data set. The symbolic identification of
this universal segment set is "“ALL", and is automatically used by CICS
File Management whenever the application program requests a "read for
update" from a segmented data set. In other words, an update operation
on a segmented data set always causes all segments to be presented
to the user, regardless of the segment set specified by the user.

INDIRECT ACCESSING

Indirect accessing, an optional data base feature in CICS, provides
for the use of cross-index data sets to access another data set. The
data set that is acgessed by an index data set is known as the "primary"
or "target" data set. This feature allows the user to furnish the
search arqument for an index data set along with the identification
of the primary data set. CICS, utilizing the user-defined index
structure, carries out the search, involving as many levels (index
data sets) as defined by the user, and ultimately retrieves the prime
data required.

The following general rules apply to the Indirect Accessing feature:

175

1. A primary data set can have any number of index data sets.

This is useful when multiple cross references to a master record
exist.

2. 2Any data set can be both an index and a primary data set. The
logical record content of any data base data set is user-defined
and constructed, and therefore may contain certain master record
information as well as a search argument for another data set.

3. There is no logical limit to the number of index levels (data
sets) that the user may define in an index hierarchy. For
example, data set A is an index to data set B which is an index
to data set C which is an index to data set D, etc.

4. an indirect access hierarchy can be any combination of ISAM
and DAM data sets.

S. An index data set may not also contain segmented records. The
two CICS services are mutually exclusive for any one data set.
However, a primary data set, which an index data set accesses,
could have segmented records if it were not defined also as
an index data set.

6. An index data set cannot reference more than one primary data
set unless the index data set is multiply defined in the File
Control Table.

7. 1If the index data set is a DAM data set, it may not be defined
as blocked. However, the primary data set may be defined as
blocked BDAM.

The following is an example of a simple two-level indirect access
hierarchy. The retrieval search begins with the index data set CATLOG#.
The primary data set being accessed (and from which data is to be
returned to the requesting program) is PARTNO. The search argument
to be used in accessing the index data set (CATLOG#) is CN222. The
contents of the record located by the search of the index data set
(CATLOG#) contains the search argument for the next data set (12345
for search of PARTNO). The primary data set (PARTNO) is searched and
the data record returned to the requesting progran.

TRANSACTION
PROCESSING
PROGRAM
CATLOG#
DFHFC TYPE=GET,
INDEX=CATIOG#,
DATASET=PARTNO,

RDIDADR=
cuzzz'A)

PARTNO

It is the user's responsibility to create and maintain all data
sets in his data base, and to define all data sets (both index and
primary) in the File Control Table. Each data set, whether it is an
index and/or primary data set, is first described as a primary data
set in the File Control Table. That is, its basic physical
characteristics must be defined so that CICS File Management may access
it (for example, BLKSIZE, LRECL, KEYLEN, etc). If the data set is
to be further used as an indirect access Jata set, it must also be
defined with the following information:

t. The primary data set for which this data set is an index.

176

2. The location of the search argqument, within the logical record
of this data set, to be used for accessing the primary data
set (or the next index data set).

If the user creates and properly defines an index hierarchy for
indirect accessing, CICS File Management will service any request
requiring use of that hierarchy, provided the requesting application
program adheres to the following general rules and considerations:

1. The symbolic name of the first index data set to be searched
in the retrieval process must be specified through the INDEX
operand of the DFHFC macro instruction. This data set can be
any index data set in a hierarchy of indexes, not necessarily
the highest level index data set. It can also he the primary
data set being accessed without the use of an index data set.
However, in the latter case, the DATASET operand must be used
instead of the INDEX operand. '

2. The symbolic name of the primary data set from which data is
to be ultimately retrieved and returned to the requesting program
must be specified through the DATASET operand of the DFHFC macro
instruction. Any number of intervening data sets can be used
in the search; however, the user specifies only the first and
the last data set, It is possible for the user to limit a
search to only a portion of an index hierarchy; that is, it
is not necessary to search an entire index hierarchy.

3. The search argument to be used by CICS File Management to access
the first referenced data set must be specified through the
RDIDADR operand of the DFHFC macro instruction. This search
argument is either an ISAM key or a DAM Record Identification
Pield. If multiple levels of index data sets are involved,

CICS File Management acquires a search argument for the next
data set from the logical record of each successive data set.

When stepping through a series of index data sets, CICS File
Management uses the requesting program's Record Identification field
{specified in the RDIDADR operand) to store the search argument for
each successive data set to be searched. It is the user's
responsibility to ensure that this field is as large as the largest
search argument that will be used in any given retrieval operation.

The following is an example of the above consideration in a three-
level indirect accessing hierarchy. The search arqument provided by
the processing program is used to access the first index data set
(CATLOG#) that provides the search argument for a second index data
set (PARTNO) that provides the search argument for the primary data
set (VENDOR) from which the data record is retrieved and returned to
the user. Since the search argument retrieved from the second index
data set (PARTNO) is eight bytes in length (V00C0996), the user's
Record Identification field (RDIDADR) must be at least eight bytes
in length even though it initially contains only the five-byte search
argument (CN222) for the first index data set.

TRANSACTTON PROCESSING CATLOG#
PROGRAM

PARTNO

[DFHFPC TYPE=GET,
INDEX=CATLOG#,

DATASET=VENDOR, VENDOR

RDIDAiﬁj;:D
lCN222 ‘

177

DUPLICATE RECORDS

An optional feature of the indirect accessing approach to data base
retrieval is the capability to indicate that a search argument in an
index data set, which would normally reference the primary data set,
instead references a "duplicates" data set. The need for or use of
duplicates data sets may best be described as follows.

Assume that the application program requires access to an index
data set organized by street address to obtain the name of the occupant
at that address. The occupant's name is then used to access a primary
data set organized by name.

For single occupancy, no problem exists. However, for multiple
cccupants, the index data set cannot directly egquate a street address
+0 a primary data set record. Instead, the search argument field in
the index record indicates that multiple occupants (duplicates) exist
and that the search arqgument provided references a duplicates data
set rather than the primary data set.

CICS File Management retrieves the referenced record from the
juplicates data set and returns it to the application program with
a response code indicating a duplicates record. The duplicates record
may contain further information, which the application program can
use to more accurately retrieve a requested master record.

If an index data set is to indicate that there can be duplicate
keys for entries in the primary data set that it references, the user
must have previously included the necessary information in the File
Control Table entry which describes the index data set. The index
data set record must contain in the first byte of the search argument
field a unique one-byte duplicates indicator (user-defined). Care
must be taken to ensure that this indicator is a unique code, which
cannot be the same as the first byte of a normal search argument for
+the primary data set.

The rest of the search argument field contains the search argument
used by File Management to retrieve a record from the duplicates data
set. This record has user-defined and user-constructed information
that the application program can use to select the appropriate primary
data set record. The following is an example of a search argument
field in an index record that reflects duplicates:

SEARCH ARGUMENT FOR

DUPL
DUBLICATES RECORD

IND

OR
SEARCH ARGUMENT FOR
NWEXT LEVEL OF INDEX

The search argument for the duplicates data set must meet the same
search argument format requirements as those for a normal cross-index
data set. Note that the length of the search argument used to access
a duplicates data set is one byte smaller because of the duplicates
indicator.

The following is an example of an index hierarchy with a duplicates
data set. The application program begins the retrieval by accessing
the index data set (PARTNAM) and ultimately accesses the primary data
set (PARTNO). The search argument (GISMO) provided by the application
program is a valid one for the index data set (PARTNAM), but it provides
a record containing a duplicates flag.

178

When the duplicate indicator is detected, CICS File Management uses
the new search argument (from the PARTNAM data set) to access the
Auplicates data set (DUPLNAM), returning the duplicates record to the
application progran.

In this example, the part name (GISMO) is not unique since there
are several types of GISHMO's in the part number (PARTNO) data set.
The requesting program must provide more qualifying data concerning
which GISMO is desired.

TRANSACTION PROCESSING PARTNAM PARTNO
PROGRAM

DFHFC TYPE=GET,
INDEX=PARTNAHN,
DATASET=FPARTNO,

RDIDAii:;)
| ersmo [

DUPLNAM

The record retrieved from the duplicates data set in the exanmple
might appear as follows:

! grsmo | 1arcE [9123 | mEp [9872 | smarL | 9oun J
DPARTNAM DESC PARTNO DESC FPARTNO DESC PARTNO

The application program might formulate a message to be routed to the
inquiring terminal asking the terminal operator to make a choice.
Por example:

PART NAME REQUESTED HAS MULTIPLE ENTRIES

PLEASE SELECT SPECIFIC PART RNUMBER

PART NAMNE DESCRIP PART NUMBER
GISMO LARGE 9123
MED a872
SMALL oguy

Once the terminal operator has made a selection, the processing
program can make a direct retrieval from the primary (PARTNO) data
set.

Note that if the index record in the above example had not contained
a duplicates indicator, CICS File Management would have used the search
argqument to access the primary data set (PARTNO) and retrieve the
requested data.

179

TAM DATA SET CONSIDERATIONS

Record Identification Field

The Record Identification field is the means by which the application
program communicates to CICS Pile Control the identity of the specific
record which is being sought. (See the discussion of the RDIDADR
operand as it applies to the DFHFC macro instruction.) For ISAM
organized data sets, this field is relatively simple in structure since
it contains only the key of the logical record. However, for DAM
organized data sets the Record Identification field structure is a
bit more complex, since it is necessary for the application program
to supply the block reference information, physical key (if keyed data
sets are being used), and the deblocking argument (if blocked data
sets are being used). '

Note: TIf more than one browse operation or update operation is to
be concurrently performed by a single application program, a
unique Record Identification field must exist for each operation.

The Record Identification field for DAM data sets is really a
concatenation of three subfields, identified as follows:

1. Block reference

The physical identifier of the DAM block, is specified by the
RELTYPE operand of the File Control Table and may be one of
the following:

a, PRelative Block (CICS/0S only) three-byte binary (RELTYPE=BLK)

b. Relative Track and Record - two-byte TT, one-byte R
(RELTYPE=HEX)

¢c. Relative Track and Record (zoned decimal format) six-byte
TTTTTT, two-byte RR (RELTYPE=DEC)

d. Actual address - eight-byte MBBCCEHR (RELTYPE omitted)

_Riamads

RELBIK #l Relative block (0S only)

{binary)
T T R Relative track and record
T T T T T T R Rl Relative track and record

(zoned decimal)

M B B C C H H Rl Actual

2. Physical key

The physical key is required only if the data set being accessed
is written with recorded keys. This key must be the same length
as specified in the BLKKEYL parameter for the File Control Table
(FCT) entry which defines the data set. It must immediately
follow the block reference information, which can be any of

the above.

180

BYTE |0 1 2 3 4 5 6 7 8 . .,

RELBLK# |KEY... (CICS/0S only)

T T RI|KEY...

T T T T T T B R KEY...
M B B €C C H H R KEY...

3. Deblocking argument

The deblocking argument is required only if the data set containms
blocked records and the user wishes to retrieve a logical record
from within a block. Tt is not mandatory that the user deblock
every physical record; he may wish to retrieve the entire block.
The deblocking argument may be either a key or a relative record
number. The user's choice is specified in the RETMETH operand

of the DFH¥C macro instruction. TIf present, the deblocking
arqument must immediately follow the physical key (if present)

or the block reference (if the physical key is not present).

If the deblocking argument is a key, it must be the same length
as specified in the KEYLEN parameter of the File Control Table
(FCT) entry which describes the data set. Note that the key
used for deblocking need not be the same size as the physical
record key (BLKKEYL). If the deblocking argument is relative
record number, it is represented by a one-byte binary number,
with a value of zero representing the first logical record of

a block.

EXAMPLE (physical key = 6 bytes, deblocking key = 3 bytes)

BYTEf{ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RELBLK | RN [(CICS/0S only) search By Relative Block
Deblock By Relative Record

RELBLK I KEY' {CICsS/0S only) Search By Relative Block
Deblock By Key

T T R ' KEY | KEY 'Search By Relative Track
Key, Deblock By Key

M B B C C H H RIRNI Search by Actual ID
Deblock By Relative Record

T T T T T T R Rl RKEY l KEY
Search By Zoned TTR & Key
Deblock By Key

T T R l KEY l Search By Relative Track &
Record, Deblock by Key

Adding Records to DAM Data Sets

¥hen adding new records to DAM data sets, the application programmer
should be aware of the following considerations and restrictions:

1. The addition of undefined or variable-length records (keyed
or non-keyed) requires the user to indicate the track on which
the new record is to be added. 7If space is available on the
track, the new record is written following the last previously

181

182

written record, and the record number is placed in the "RY
portion of the user's Record Identification field. The track
specification may be in any of the acceptable formats except
relative block. 1If zoned decimal relative format is used, the
record number is returned as a two-byte zoned decimal number

in the seventh and eighth positions of the Record Identification
field.

In the CICS/DOS system, an attempt to add a variable-length

or undefined record is limited to the single track specified -
by the user. If not enough space is available on that track,
a "no space available" error is returned to the user who may
then try to add the record on another track. Under these
circumstances, the record is returned by the user in an FWA,
the address of which is at TCAPCAA. The user need only modify
the track identification and issue another DFHFC TYPE=PUT,
TYPEOPR=NEWREC macro instruction to add the record on another
track. : :

In the CICS/0S system, the extended search option allows the
record to be automatically added to another track if no space
is available on the specified track. Under these circumstances,
the location at which the record was added is returned to the
user.

The addition of keyed fixed-length records to DAM data sets
requires that the data set first be formatted with dummy records
or "slots" into which new records may be added. (A dummy record
is signified by a key of hexadecimal 'FF's; in CICS/0S, the
first byte of data contains the record number.)

Por non-keyed, fixed~length records, the exact physical block
reference must be given in the Record Identification field.
The data in the new records is written in the exact location
specified, destroying whatever was previously recorded at that
location. :

For keyed, fixed-record additions, only the track information

is used as a starting location for the search of a dummy key

and record. When a dummy key and record is found, the new key
and record replaces it, the exact location at which the new
record is located is returned to the user in the block reference
subfield of the Record Identification field.

For example, suppose a user wishes to add a keyed, fixed-length
record to his DAM data set. He determines (through some
algorithm) that tha search is to start at relative track 3.

His Record Identification field might look like the following:

Q.3 0 ALPHA
T TR KEY

When control is returned to the user, his Record Jdentification
field might reflect the fact that the record was added on
relative track U, record 6.

0 4 6 ALPHA
T ¥ R KE

When adding records of undefined length, the length of the
physical record must be placed in the TCA at TCAFRCURL in a two-
byte binary format. When an undefined record is retrieved,

it is the user's responsibility to determine its length.

6. When adding variable length records to a BDAM file, it is the
responsibility of the application programmer to insert the Block
Length.

REQUESTING ﬁATA LANGUAGE/I SERVICES UNDER CICS/0S

The application programmer can request Data Language/I (DL/T)
services under CICS/0S through CALL's written according to DL/I
specifications or by issuing a DFHFC macro instruction. 1In response
to such requests, control is passed to a CICS-DL/I interface routine
that acts as an interface between the CICS application program and
the DL/I request handler in a DL/I task (which is an O0S subtask of
CICS). This routine performs validity checks on the CALL list, sets
up DL/I to handle this particular request, and passes control and the
CALL list to DL/I. When the interface regains control, it returns
ccntrol to the calling program unless a DL/I pseudo-abend has occurred,
in which case the CICS transaction (task) is abended.

QUASI-RFENTRANT CONSIDERATIONS WITH REGARD TO DL/I CALL'S

Under IMS, prcgrams are not required to be reentrant since only
one transaction can use a particular program at any one time. In CICS,
if several transactions are being serviced which require the use of
cne application program, one copy of the program is executed in a
reentrant manner by several CICS subtasks. Therefore, DL/I areas that
will be modified (such as PCB pointers, I/0 work areas, and Segment
search Arguments) may not be placed in either static storage or working
storage. Storage for PCB pointers, Segment Search Arguments, and work
areas must be obtained from CICS dynamic storage by each transaction
using the program. (See the section "Quasi-Reentrance".)

The four steps to requesting DL/I data base services are as follows:

1. Obtain addresses of PCB's used by the application program.
2. Acquire storage for segment search arguments (SSAt's)
if they are to be used in the CALL.
3. Acquire T/0 work areas for DL/I segments processed by the
program.
4. TIssue the DL/I CALL.

OBTAINING ADDRESSES OF PCB's

An application program that uses the CICS-DL/I interface references
data bases by means of Proqram Communication Blocks (PCB's). 1In the
Program Specification Block (PSB) for the program, there is one PCB
for each data base. In a DL/I environment, upon entry, the application
program receives the addresses of the PCB's of the data bases it uses.
Since CICS handles application programs as main programs and not as
subprograms, the PCB addresses cannot be obtained via entry conventions
but must be obtained by the application program before it makes any
DL/Y CAllL's. .

To successfully process DL/I CALL's within CICS transactions, the
PSB for the tramnsaction must be scheduled and the PCB addresses must
te obtained before any DL/T CALL's are made. If they are not obtained,
any DPL/T CALL's made return an INVREQ (invalid request) indicator.
m™he scheduling process gives the transaction exclusive control of the
PSB. This prevents other transactions from updating segment types
that this transaction is updating.

183

A transaction may schedule only one PSB at a time. An attempt to
schedule a second PSB while one is still scheduled causes the INVREQ
indicator to be returned.

To schedule the desired PSB and obtain PCB addresses, the application
programmer uses a special form of the DFHPFC macro instruction:

DFHFC TYPE=(DL/I,PCB), *
PSB=psbname,symbolic address,YES, *
NORESP=symbolic address, *

INVREQ=symbolic address

A discussion follows concerning the operands that can be included
in this macro instruction.

TYPE: TYPE=(DL/I,PCB) indicates a request for PCB addresses.

PSB: This operand is used to specify the name of the PSB to be used.
The name can be the actual name enclosed in quotes, or the name of

an eight-byte field containing the name of the PSB, padded to the right
with blanks. If the application programmer wishes to enter the PSB
name in the TCADLPSB field before the CALL, he specifies PSB=YES.

If this operand is omitted, the name of the program associated with

the transaction in the PCT is used as the PSB name.

NORESP: This operand is used to specify the label to be branched to
if the PSB was located and the PCB addresses were returned. If the

PSB could not be scheduled, or if this operand is omitted, processing
continues with the next sequential instruction.)

INVREQ: This operand is used to specify the entry label of a user-
written routine to be given control under any of the following
conditions:

1. When an attempt is made to schedule a PSB while the transaction
is still using a previously scheduled PSB.

2. The PSB name specified is not in the PDIR (PSB Directory) list.

3. The PSB or one of its associated DMB's (Data Management
Blocks) does not exist in the Application Ccntrol Block (ACB)
Library.

4. One of the DMB's associated with the PSB is not in the DDIR
(DMB Directory) list.

If the PSB has been located, the TCADLPCB field contains the address
of a list of PCB addresses which is in the sequence in which the PCB
addresses were specified during the PSBGEN of this PSB. If the PSB
cannot be found, TCADLPCB contains zero. If the PSB pool or DMB pool
is too small to hold the requested blocks even when no other PSB's
or DMB's are in their pools, the transaction is terminated with the
DLPA abend code; DL/I pseudo-abend code 992 or 993 is placed in the
transaction's TCA at TCADLECB and the pseudo-abend message is sent
to destination CSHMT.

BUILDING SEGMENT SEARCH ARGUMENTS (SSA's)
Segment Search Arguments (SSA's) can be used in a DL/I CALL to
identify a specific seagment, or, if qualified, to identify the range

of values within which a segment exists. If used, SSA's are built
hy the application programmer before a DL/I CALL is issued. See the

184

TMS/360 Appplication Programming Reference Manual for information
concerning how to build an SSA.

In a DL/I application: program, SSA's are built in fixed storage
within the program. 1In a CICS application program, SSA's must be built
in dynamic storage to maintain the quasi-~reentrance of the progran.

The storage acquired to build the SSA's is addressed as follows:

1. TFor Assembler language programs; the address should be placed
in the register that establishes addressability for the SSA
dynanic storage.

2. For ANS COBOL programs, the address is moved to the BLL pointer
for this storage. The BLL pointer is defined under the COPY
DFHBLLDS statement in the Linkage Section and must be in the
same relative position in the BLL list as the 01 statement for
the SSA dynamic storage is among the 01 statements in the Linkage
Section. :

3. PFor PL/I, the address is stored in the variable upon which the
SSA dynamic storage is based.

After the storage has been acquired, the Segment Search Arguments
are built according to the DL/I specifications found in the IMS/360
Application Programming Reference Manual.

In a DL/I CALL statement, the names of the SSA's to be used, if
any, are specified in the parameter list., In a DFHFC TYPE=DL/I macro
instruction, the application programmer can specify the number and
names of the SSA's in different ways:

1. S5SAS=NO indicates that there are no SSA's in this CALL.

2. SSAS=(ssacoun%,ssail,ssa2,...), Wwhere "ssacount" is optiomnal,
represents either the fixed-point number of SSA's in the CALL
or the symbolic address of the fullword that contains the number
of SSA's. Specifying a field to contain the number of SSA's
providss the application programmer with flexibility in writing
one DFHFC statement to be used in many different CALL's. '"ssai",
"ssa?2", etc., are the symbolic names of the SSA's.

3. SSALIST=YES indicates that the application programmer has built
a list of fullwords, optionally containing the number of SSA's
(which may be zero) in the first word, and the addresses of
+he SSA's in the following words, and that he has stored the
address of this list at TCADLSSA.

4., SSALIST=listname indicates that "listname" is the address of
an SSA list built by the application programmer as indicated
in item 3.

In Assembler language programs, "ssalist", "“ssacount","ssal",
"ssa2", etc., can be contained in registers by enclosing the
specification in parentheses. .

ACQUIRING AN I/C WORK AREA

A request for services in a DL/I transaction under IMS alwvays
includes the address of a work arca, either where a current segment
is contained, or where DL/I is to place the segment in a retrieval
CALL. In a CICS application program, this area must be specified in
a CALL or CALLDLI, but may be provided by the interface, if the
programm=r desires, for a retrieval type DFHFC macro request.

185

If the application programmer knows the address of the work area
+o be used in the DFHFC macro instruction, including the case where
he acquires storage for a retrieval type (Gxxx) request, he specifies
zither the name of the pointer to that storage in the WRKAREA=name
operand, or places the address of the storage in TCADLIO and specifies
JRKAREA=YES.

If the application programmer wishes to allow the interface to

obtain the work area for a retrieval-type request, he does not include
“he WRKAREA operand in the DFHFC macro request; if the request was
se~viced successfully, the address of an acquired I/O work area is

found at TCADLIO. The address at TCADLTYO is the address of the Storage
iccounting Area (SAA) preceding the retrieved data. The length of

+h: Asta is e2ight bytes less than the value found in the second halfword
of the SAA. The area becomes the responsibility of the programmer

and is not freed until he frees it or until the transaction terminates.

Note: The address of the I/0 area is specified as the address of the
Storage Accounting Area preceding the data for a DFHFC request,
or as the address of the first byte of the data area for a CALL
or CALLDLI.

ISSJYING THE DL/I CALL
A CICS application program can request DL/I services in either of
two ways: CALL's written according to DL/I specifications or DFHFC

macro requests using unique DL/I operands.

For Assembler langquage:

CALLDLI ASMTDLY, (parmcount,function,pch,vworkarea,segment
search arguments,...) or

CALLDLI CBLTDLI, (parmcount,function,pch,workarea,segment
search arguments,...)

ITn this macro instruction, which alters the contents of register
1, "parmcount" is an optional parameter. The operation code is CALLDLI
rather than CALL since the expansion of the CALL to the interface is
not the same as the ordinary expansion of a CALL. If no parameters
are specified, it is assumed that register 1 contains the address of
+he parameter list. ASMTDLI and CBLTDLI are functionally equivalent
specifications.

An alternate form of this specification is:

CALLDLI ASMTDLI,MP=(E, (register) or address) or
CALLDLI CBLTDLI,MP=(E, (register) or address)

which is written in the same format as the E-TYPE 0S CALL macro
instruction; that is, "address"™ is the address of the parameter list
or "register" contains the address of the parameter list.

Irg
10
L]

ANS COBOL:

CALL 'CBLTDLI' USING parmcount,function,pch,vworkarea,
segment search arguments,...

Por BL/I:

CALL PLITDLI (parmcount,function;pcb,workarea,
segment search arguments,...) ;

186

Note: 1In a CALLDLI or CALL statement, the "workarea" parameter must
point to the first byte of the data area.

The following macro instruction is used to specify the desired DL/I
functions to be performed, regardless of the programming language used:

DFHFC TYPE=(DL/I,function),
PCB=symbolic address, (register),
WRKAREA=symbolic address,YES, (register),
SSAS=NO, (ssacount,ssal,ssa2,...),
SSALIST=YES,NO,symbolic address, (register),
NORESP=symbolic address,
NOTOPEN=symboclic address,
INVREQ=symbolic address

3 3 3 ¥ ¥ ¥ 3

TYPE: This operand is used to specify the two- to four-byte name of
the function to be performed. If it is not specified, the function
nust have been specified in the TCADLFUN field before the DFHFC macro
instruction is issued.

PCB: The PCB=symbolic address operand is used to specify the name
of the field that contains the address of the PCB.

WRKAREA: WRKARFA=YES indicates that the application programmer has
placed the address of the work area to be used at TCADLIO.

WRRKAREA=symbclic address specifies the address of the field that
contains a pointer to the I/0 work area.

If the WRKAREA operand is not specified and this is a Gxxx request,
the CICS-DL/I Interface acquires storage for the work area and stores
the address at TCADLIO. The user must save this address upon return.
In any other type of request, the user must provide the work area.

Note: The work area whose address is specified in a DFHFC macro
instruction or whose address was previously placed at TCADLIO
includes.the CICS Storage Accounting Area prefix; the work area
specified in a CALLDLI or CAL] statement does not.

SSAS: SSAS=NO indicates that there are no SSA's used in this reguest.
SSAS=NO is the default specification.

SSAS=({ssacount, ssal, ssa2, ...) is used to specify the names of
Segment Search Arguments in this regquest (thereby creating an SSA
list). M"ssacount" is used, optionally, to specify the number of SSA's
to be used in this request; this parameter represents the address of
a fullword containing the count, or, in the case of Assembler language,
may be expressed as a numeric value. TIf the ssacount. parameter is
omitted, the ssal specification represents the first element of the
SSA list. For a further description of the SSA list, see the following
discussion under SSALIST.

SSALIST: SSALIST= symbolic address is used to specify the name of

a field that contains the address of an SSA list. The first element

of an SSA list may, optionally specify either the number of SSA's to

ke used in this request or the address of a full word containing this
value; the remaining elements represent addresses of SSA's. If the
first element of an SSA list does not represent "ssacount", all elements
of the SSA list are assumed to be addresses of SSA's; the high-order

187

bit of the last element of the list must be set on to indicate the
end of a variable-length 1list.

SSALTST=YES indicates that the user has previously placed the address
of the SSA list at TCADLSSA.

SSALIST=NO indicates that no SSA list is used in this request.
The default is SSALIST=NO.

If either WRKAREA=YFS or SSALIST=YES is specified the address of
the I/0 work area or SSA list must be placed in the TCA prior to issuing
+he DFHFC macro instruction. The TCA fields containing these addresses
are altered during the service of the request.

Note: <SSAS and SSALIST are mutually exclusive operands.

NORESP: NORESP=name is used to specify the label to which control

is to be passed after this transaction has regained ccntrol. The CICS-
DL/T Interface must have been able to pass control to DL/I and a DL/I
pseudo—~abend of the transaction must not have occurred. The user must
check the return code in the PCB to see if DL/I was able to properly
service the request. If this operand is omitted, control is passed

to the next sequential instruction.

NOTOPEN: NOTOPEN=symbolic address is used to specify the label to
which control is to be passed if this data base is logically (not
necessarily physically) closed. The PCB will not contain an AY status
code.

TNVREQ: INVREQ=symbolic address is used to specify the label of a
user~-written routine to which control is to be returned if the
transaction attempts to access DL/I without first scheduling a PSB
and obtaining PCB addresses.

Note: In Assembler language application programs certain operands
may be specified as registers and enclosed in parentheses; for
example:

1: PCB=(register) where "reg" contains the address of the PCB to
be used in this request.

2: WRKAREA=(register) where "reg" contains the address of the work
area to be used in this request.

: SSAS=((register 1), (register 2), (register 3),...) where
"register 1" contains the optional count of SSAt's, and "register
2", "register 3", etc., pcint to SSA's to be used.

4: SSALIST=(register) where "register" points to a previously
constructed SSA list (described above under SSALIST=symbolic
address) . :

RELEASING A PSB IN THF CICS APPLICATION PROGRAM
To reduce pool and intent contention, the CICS application program

may release the PSB. PBRefore making any other NDL/I CALL's, the progran
must again issue a scheduling CALL.

188

Tt is recommended that conversational programs release the PSB
before writing to a terminal so that other transactions can use the
PSB while the conversational program is waiting for an operator
Tesponse.,

A CICS application program can release a PSB for use by other
transactions by issuing a

DFHFC TYPE=(D1/I,T)
request. The PSB is released for use by other transactions, or if
not required, its pool space and associated DMB pool space may be

released. No other DL/I CAlLL's may be made in this transaction until
another scheduling (PCB) CALL is made.

CHECKING THE RESPONSE TO A REQUEST FOR DL/I SERVICES (CHECK)

To test whether or not the CICS-DL/T Interface successfully processed
+he DL/I request, the

DFHFC TYPE=CHECK, *
NORESP=symbolic address, *
INVREQ=synkolic address, *

NOTOPEN=symbclic address

macro instruction can be issued.

NORESP: NORESP is used to specify the label of the user-written routine
to which control is to he passed upon normal execution of the request.

TNVREQ: TINVREQ is used to specify the label of the user-written routine
to which control is to be passed in the event the transaction has not
scheduled a PSB and obtained PCB addresses.

NOTOPEN: NCTOPEN specifies the label of a user-written routine to
which control is to be passed in the event the requested data base
named in the PCB used in the request was logically (not necessarily
phvsically) closed. The PCB will not contain an AI status code.

The application programmer may use the DFHFC TYPE=CHECK macro
instruction following a CALLDLI, CALL, or DFHFC TYPE=(DL/I). This
macro instruction does not check for DL/I return codes in the PCB.

In the event DL/I issues a pseudo-aberd during processing of the
request, control is not returned to the transaction. The transaction
is terminated with CICS abend code DLPA.

DL/Y REQUESTS WRITTEN IN ASSEMBLER LANGUAGE

The application programmer mrust first get the PCB addresses. (There
are several examples below.) When CICS returns from servicing the
DFHFC TYPE=(DL/I,PCB) request, if the programmer loads register 1 from
TCADLPCB, his program is in the same state as after an

ENTRY DLITCBL

statement wren executing an IMS DL/I application progran.

The examples that fcllow show the options available to the

application programmer in a few of the acceptable combinations. Note
that the application program must be kept quasi-reentrant; that is,

189

addresses, etc., should not be stored in static storage. Note also
that if a DFHFC macro insturction is used. the PCB and WRKAREA operands
are used to specify the address of a pointer to the field rather than
the field itself.

For a complete discussion concerning the checking of these responses,
see the section "Test Response to a Request for File Services".

The following is an example of the coding required to request DL/I
services in an Assembler language application program.

*

ESBNAME DC

PCBPTRS
*

COPY DFHTCADS

DSECT

ECB1PTR DS F
ECB2PTR DS F

WORKAPTR DS F

»CB1

pPCB2

WRKAREA

WORKA1
SSAREA

SSA1
SSA2

*
*

* ACQUIRE STORAGE FOR WORKAREA
DFHSC TYPE=GETMAIN,...
L R2,TCASCSA

JSING WRKAREA,R2

* ACQUIRE STORAGE FOR SSA'S
DFHSC TYPE=GETMAIN,...
L R3,TCASCSA

USING SSAREA,R3

190

DSECT
DSECT
DSECT

DS 2F
DS cLuo
DSECT

DS 2F
DS CL40
DS CL20

DFHFC TYPE=(DL/I,PCB)
DFHFC TYPE=(DL/I1,PCB),
PSB='PSB14"
DFHFC TYPE=(DL/I,PCB),
PSB=psbname
MVC TCADLPSB,=CL8!'PSBA!
DFAFC TYPE=(DL/I,PCB),

L R1,TCADLPCB
USING PCBPTRS,R1

CL8'PSBNAME1!

COPY TCA DEFINITION - INCLUDES
DL/I FIELDS

NAME OF PSB TO BE USED

PCB POINTERS RETURNED BY
INTERFACE

STORAGE FOR PCB POINTERS

STORAGE FOR PRINTER IN I/O WORK
AREA
PCB DSECT

PCB DSECT

DL/I WORK AREA DSECT
STORAGE PREFPIX

WORK AREA

SSA DSECT

STORAGE PREFIX

SSA1 LAYOUT

SSA2 LAYOUT

USE PSB FOR THIS PROGRAM
GET PCB'S IN 'PSBI4? *

GET PCB'S IN SPECIFIED PSB *

PUT PSB NAME IN TCA
GET PCB'S OF PSB NAMED -IN TCA *

GET ADDRESS OF PCB ADDR LIST

REG 1 IS BASE OF PCB POINTEPS -~
USER MUST PROVIDE ADDRESSABILITY
TO PCB'S WHEN USING THEM

GET STORAGE FOR WORKAREA
REG 2 IS BASE FOR WORKAREA
TELL ASSEMBLER

GET STORAGE FOR SSA'S
REG 3 IS BASE FOR SSA'S
INDICATE TO ASSEMBLER

CALLDLI CBLTDLY, (function,PCB1,WRKAREA,SSA1,SSA2)

* CALL DL/Y VIA DFHFC MACRO -- VARIOUS EXAMPLES
*
* EXAMPLE 1
E 3
DFHFC TYPE=(DL/I,function), *
PCB=PCB1PTR, PCB IS POINTED TO *
WRKAREA=WORKAPTR, WORKAREA IS POINTED TO *
SSAS=(2,S5SA1,SSA2), SSA COUNT AND SSAS SPECIFIED *
NORESP=GOOD1 NORMAL RESPONSE BRANCH
E 3
* FXAMPLE 2
* .
MVC TCADLPCB,PCB1PTR PRELOAD PCB POINTER
LA RO, WRKAREA PICK UP WORK AREA ADDRESS
ST RO, TCADLIO STORE IN TCA
DFHFPC TYPE=(DL/I,DLET), FUNCTION SPECIFIED *
WRKAREA=YES, WORKAREA ADDRESS PRELOADED *
SSAS=NO NO SSAS
X
* EXAMPLE 3
%
MVC TCADLFUN,=CL4'GU" PRELOAD FUNCTION
DFHSC TYPE=GETMAIN,... GET STORAGE FOR SSA LIST
L R4 ,TCASCSA PTICK UP STORAGE ADDRESS
LA R4, 8 (RY) BYPASS PREFIX
LA RO, 1 GET COUNT OF SSAS
ST RO, 0 (RU) STORE IN SSA LIST
LA RO,SSA1 GET ADDRESS OF 'SSaA11?
ST RO, 4 (RY) STORE IN SSA LIST
ST R4 ,TCADLSSA STORE LIST ADDRESS IN TCA
oY 4 (rR4) ,x'80° SET ON THE END-OF-LIST BI™
DFHFC TYPE=DL/I, DL/I CALL, FUNCTION PRELOADED *
PCB=PCB1PTR, POINTER TO PCB TO BE USED *
TNTERPACE WILL PROVIDE WORK AREAX*
SSALIST=YES PROBLEM PROGRAM PROVIDES SSA LIST
L R3,TCADLIO PICK UP ADDRESS OF SUPPLIED
* WORKAREA

DL/I REQUESTS WRITTEN IN ANS COBOL

Upon program entry the ANS COBOL programmer should obtain PCB
addresses by issuing a DFHFC TYPE=(DL/I,PCB) request, After CICS
returns control, the programmer moves the TCADLPCB field to the BLL
pointer which is the base for the layout of the PCB pointers in the
Linkage Section. He then moves the addresses of the PCB's to their
BLL pointers to provide the base addresses for the PCB's. When this
is done, the program is in the same state that it would be in after
execution of the ENTRY 'DLITCBL' USING PCB1,PCB2 statement if the
program Were written for DL/I.

For an explanation of how BLL pointers to 01 statements in the
Linkage Section are defined, see the discussion of ANS COBOL application
progranming in the section "Storage Definition'.

Various examples are provided below concerning how to write DL/I
requests; only some combinations of operands are shown, but other
combinations are acceptable. ©Note that in a DFHFC request the BLL .
rointers to the PCB and work area are used rather than the actual field
names themselves. This is the only way the addresses can be passed
to DL/T.

The following is an example of the coding required to request DL/I
services in an ANS COBOL application program:

191

WORKING-STORAGE SECTION.

77 PSBNAME PICTURE X(8) VALUE 'COBOLPSB'.

77 FUNCTION-1 PICTURE X (4) VALUE 'DLET'.

77 SSA-COUNT PICTURE 9 (8) COWPUTATIONAL VALUE +2.
LINRKAGE SECTIOW.

51 DFHBLLDS COPY DFHBLLDS

02 ... POINTERS TO OTHER CICS AREAS
* NEEDED
02 B-PCB-PTRs PICTURE 9(8) COMPUTATIONAL.
02 B-PCB1 PICTURE 9(8) COMPUTATIONAL.
N2 B-PCB2 PICTURE 9(8) COMPUTATIONAL.
02 B-WORKAREA PICTURE 9 (8) COMPUTATIONAL.
02 B-SSAS PICTURE 9(8) COMPUTATIONAL.
01 DPFHCDASD COPY DFHCSADS.
01 DFHTCASD COPY DFHTCADS.
. NOTE TWO DEFINITIONS.
. NOTE OTHER AREA DEFINITIONS.
01 PCB-PTRS.
02 PCB1-PTR PICTURE 9(8) COMPUTATIONAL.
02 PCB2-PTR PICTURE 9(8) COMPUTATIONAL.
91 PCB1.
N1 PCB2.
01 WORKAREA.
N2 FILLER PICTURE X (8). STORAGE PREFIX.
02 WORKA1 PICTURE X (40).
71 SSAREA.
02 FILLER PICTURE X(8).
02 SSA1 PICTURE X (40).
D2 SSA2 PICTURE X (69).
PROCEDURE -DIVISION.
* GET PCB ADDRESSES
DFHFC TYPE=(DL/I,PCB) GET PSB FOR THIS PROGRAM

* SAVE PCB ADDRESSES IN BLL TABLE SO PCB'S CAN BE ADDRESSED
MOVE TCADLPCB to B~-PCB-~PTRS
MOVE PCB1-PTR to B-PCB1
MOVE PCB2-PTR to B-PCB2
* OPTIONALLY ACQUIRE STORAGE FOR WORK AREA
DFHSC TYPE=GETMAIN,...
MOVE TCASCSA to B-WORKAREA.
* OPTIONALLY, ACQUIRE STORAGE FOR SEGHMENT SEARCH ARGUMENTS
DFHSC TYPE=GETMAIN,...
MOVE TCASCSA to B~-SSAS.
* CALL DL/I VIA CALL
CALL 'CBLTDLI' USING FUNCTION-1,PCB1,WORKAREA,SSA1,SSA2.
* EXAMPLE 1 OF DFHFC MACRO INSTRUCTION

DFHFC TYPE=(DL/I,GHUD), FUNCTION
PCB=B-PCE1, PCB POINTER
WRKAREA=B-WORKAREA, WORKAREA POINTER

SSAS=(SSA-COUNT,SSA1,SSA2) SSA COUNT AND NAMES
* EXAMPLE 2 OF DFHFC MACRO INSTRUCTION
MOVE 'GNP' to TCADLFUN NOTE PRELOAD FUNCTION.

MOVE B-PCB1 to TCADLPCB NOTE PRELOAD PCB ADDRESS.

192

* ¥ #

DFHFC TYPE=DL/I, FUNCTION PRELOADED *
PCB ADDRESS PRELOADED *
WORKAREA TO BE ACQUIRED *
SSAS=NO NO SSA'S
MOVE TCADLIO to B-WORKAREA. NOTE SAVE ACQUIRED WORK AREA ADDR.

DL/I REQUESTS WRITTEN IN PL/I

Upon entry to his program, the PL/I application programmer should

get PCB addresses via a DFHFC TYPE=(DL/I,PCB) statement, When CICS
returns, the BASE of a structure of PCB pointers is in TCADLPCB. The
PL/I programmer must move the BASE value from TCADLPCB to the BASE

of
of

his declared structure of PCB pointers. He then loads the BASE's
all the PCB's from this structure. The program is now in the same

state that the DL/I application program would be following execution

of

the

DLITPLI: PROCEDURE (pctnamel, ...) OPTIONS (MAIN);

statement, if the program were an IMS DL/I application progran.

or

The PL/I programmer may then make DL/I requests, either via CALL's
via DL/I DFHFC macro instructions. Note that in a DFHFC request

the PCB and WRKAREA operands specify the address of a pointer to the
field rather than the field itself.

The following is an example of the coding required to request DL/I

services in a PL/I application program:

%INCLUDE DFHCSADS; /* CSA DEPINITION */
R®INCLUDE DFHTCADS; /* TCA DEFINITION - INCLUDES */

Vi
Vi

/%

/* DL/I FIELDS */
DECLARE.1 PCB_POINTERS BASED (B_PCB_PTRS),
2 PCB1_PTR POINTER,
2 PCB2_PTR POINTER;

DECLARE 1 PCB1 BASED (BPCB1), /% PCB DEFINITIONS */
2 . e e
2 cae 3
DECLARE 1 PCB2 BASED (BPCB2),
2 L)
2 eee 3
DECLARE 1 DLI_IOAREA BASED (BDLIIO), /* DL/I */
2 STORAGE_PREFIX CHAR (8), /* I-O AREA */
2 TIOKEY CHAR (6), /% DEFINITION */
2 cee
DECLARE 1 DLI_SSADS BASED (BSSADS), /* DL/I */
2 STCRAGE_PREFIX CHAR(8), /* SSA */
2 SSA1, . /% DEFINITIONS */
3 SSA1TKLT CHAR(S6),
3 oo e
2 SSA2,
3 ...
3 eee
OBTAIN PCB POINTERS */
DFHFC TYPE=(DL/I,PCB) -
SAVE POINTERS IN PCB BASES */
B_PCB_PTRS=TCADLPCB;
BPCB1=PCB1_PTR;
BPCB2=PCB2_PTR;
ACQUIRE STORAGE FOR DL/I I/O AREA */
DFHSC TYPE=GETMAIN,CLASS=USER,...
BDLITIO=TCASCSA;

193

/% OPTTONALLY ACQUIRE STORAGE IN WHICH TO BUILD SSA'S */
DFHSC TYPE=GETMAIN,CLASS=USER,...
BSSADS=TCASCSA;

/% OPTIONALLY BUILD SEGMENT SEARCH ARGUMENTS */
SSATKEY=TERMKEY;

.

/* CALL DL/I */
CALL PLITDLI (PARY_CT,DLI_FUNCTION,PCB1,IOKEY,SSA1,
SSA2);

/% EXAMPLE 1 OF DFHFC MACRO INSTRUCTION */

DFHFC TYPE=(DL/I,ISRT), *
PCB=BPCBI1, PCB POINTER *
WRKAREFA=RBDLIIO, WORK AREA POINTER *
SSAS=(2,SSA1,SS5A2) SSA COUNT AND NAMES

/* EXAMPLE 2 OF DFHFC MACRO INSTRUCTION */
TCADLPCB=BPCB1; PRELOAD PCB POINTER
DFHFC TYPE=(DL/I,GU), PCB PRELOADED *
WORKAREA TO BE ACQUIRED *
SSAS=(SSA_COUNT,SSA1,SSA2) SSA COUNT WAMES
BDLTIO=TCADLIO; /% SAVE ACQUIRED WORK AREA ADDR ¥/
/% EXAMPLE 3 OF DFHFC MACRO INSTRUCTTON */

TCADLTUN="GN'; /% PRELOAD FUNCTION %/

TCADLIO=BDLIIO; : /% PRELOAD WORKAREA ADDRESS */

DFHFC TYPE=DL/I, FUNCTION PRELOADED *
PCB=BPCB1, PCB POINTER *
WRKAREA=YES, WORK AREA ADDRESS PRELOADED *
SSAS=NO NO SSA'S

EASIC MAPPING SUPPORT FOR THE 3270

CICS provides Basic Mapping Support (BMS) for use with the IBM 3270
Information Display System. By use of BMS, the CICS application
programmer has access to input and output 3270 data streams without
the need to include any 3270 device-dependent code in the CICS
application program.

Application programs that utilize BMS under CICS remain independent
of the 3270 data stream format. They also remain compatible with
future additions of new fields to the existing input and output wmap
formats.

Two types of maps are assembled offline through use of CICS macro
instructions: (1) a physical map which is used by CICS to convert
3270 native mode data into the format desired by the application
progranmer, and (2) a symbolic description map which is used by the
application programmer to symbolically reference the data in the 3270
buffer. The CICS DFHMDI macro instruction is used to build both types
of maps; DFHMDI TYPE=MAP indicates a physical map while DFHMDT
TYPE=DSECT indicates a symbolic description map.

The user defines and names fields and groups of fields that may
te written to and received from the 3270. The assembled physical map
contains all the 3270 device-dependent control characters necessary
for the 3270 data streanm.

The symbolic description map can be copied into each application
program that uses the associated physical map. Data is passed to and
from the application program under the field names in the symbolic
description map. Since the application program is written to manipulate
+he data by referencing each field by name, altering the map format
by adding new fields or rearranging old fields does not necessarily
alter the program logic.

194

If the map format is altered, it is necessary to make the appropriate
ctanges in the macro instructions that describe the map and then
reassemble both the physical map and symbolic description map. The
new symbolic description map must then be copied into the application
rrogran and the program reassembled.

An application program has access to the input and output data
fields using the names supplied to the fields when the maps wvere
generated. The applicaticn logic should be dependent upon the named
fields and their contents but should be independent of the relative
rositions of the data fields within the screen format. If it becones
necessary to reorganize or add to a map format, the existing application
program must he reassembled to gain access to the new positions of
these data fields. Reprogramming is not necessary to account for new
fields or for the changed screen format of those fields.,

Basic Mapping Support (BMS) is availahle to application programmers
coding in PL/I, ANS COBOL, or Assembler language. Input maps describdbe
the fields which are potentially receivable from a 3270 screen; output
maps specify the format of data to be sent to a 3270 screen or printer.

By using BMS to construct and interpret the 3270 data streanms,
application programmers can insulate application programs from the
device-dependent considerations reguired to handle 3270 data streans.
If necessary, the application program has the facility to temporarily
modify the attributes of an output map or of any named field in an
output map. BMS supplies a collection of named attribute combinations
so that the application prcgram remains essentially independent of
the 3270 data stream format.

The ability to progressively add to map Aefinitions without
obsoleting 2xistinag application programs permits the design and
implementation of systems in a modular fashion with a progressive
expansion of the 3270 formats. Design and programming of the first
stages of applications can begin before later stages have even been
designed. This early implementation is protected from updates in the
screen formats.

MAP DEFINITION

ITnput Mapping

Input maps are defined using the DFHMDI and DFHMDF macro instructions
during offline map generation.

Fach field to be read must be defined as +to maximum data length
and star+ting position. This operation produces a map and a symbolic
storage definition of the TIOA data supplied by BMS.

The physical map is nsed by BMS to construct a TIOA as defined by
the symbolic storage definiticn to be returned to the user transaction.

The TIOA symbclic storage definition contains the length of the
input data followed by the data read. Space is reserved for the naximum
length defined for each field (not to exceed 256 bytes).

pPen-detectable fields have one reserved byte that contains a
hexadecimal *FFt! if the field is selected or a hexadecimal '00' if
*+he field is not selected. The length field always contains a halfword
binary one. .

The length specified may differ from the actual number of characters
in the field. TIf more data is keyed than specified, the data is

195

truncated to the number of characters requested in the map; the length
is returned as the truncated length. If less data is keyed than
specified, the remaining character positions are filled with blanks

or zeros and the length of the keyed data is returned in the length
field. The maximum length allowed for any one field is 256 characters.

Any keyed fields not defined by the map are discarded. Any fields
defined but not keyed have their length field set to zeros and the
data field set to nulls (X'00').

The program can access the length or data of any field by symbolic
labels. The length field is a halfword binary field and is addressed
by the label "fieldname.L"™ or "groupname.L". The data portion of each
field (or group of fields) is contiguous with the length field. A
group of fields, or a single field not within any group of fields,
has the data portion addressed by the name "groupname.I" or
"fieldname.I". For fields contained within a group, there are no
intervening length fields (only "groupname.L™ exists) and each field
has the name "fieldname.I".

Note that the "." is a concatenation symbol and is not used when
referencing either the data or the data length. For example, in the
case of field name XYZ, the data is referenced as XYZI; the data length
is referenc2d4 as XYZlL.

Output Mapping

Output maps, like input maps, are created offline during map
generation using the DFAMDI and DFHMDF macro instructions. Each field
to be displayed must be defined as to starting location, length, field
characteristics, and default data (if desired).

When defining fields, the user may name any field he desires to
override at execution time. Any named fields are produced in a symbolic
storage definition of the TIOA to allow symbolic reference to each
field. The user may temporarily override the field characteristics,
the data, or both field characteristics and data, by inserting the
desired changes into the TIOA under the field names in the symbolic
storage definition map which he has in his progranm.

The fields are assigned names as specified in the DFHMDF macro
instruction. The characteristic or attribute byte is named
nfieldname.A" or "groupname.A", For a field contained within a group,
the data area is given the name "fieldname.O", and there is no separate
attribute byte for the field. (Only groupnames can have an attribute
byte.) For a groupname, or a field not contained within a group, the
data area is given the name "groupname.O" or "fieldname.O". A field
not contained within a group is treated as a group containing just
a single field entry.

Note that the "." is a concatenation symbol and is not used when
referencing either the data or the data attributes. For example, in
the case of field name XYZ, the data is referenced as XYZO; the
attribute byte is referenced as XYZA.

Pen-detectable fields should be "auto skip" to prevent data from
being keyed into then.

Note; Due to the nature of the pen-detectable fields, they should
normally not be modified. However, if the data field is
modified, the first character must be a "?" or blank character;
otherwise, the field is no longer pen detectable.

196

Output field data, whether initial map data or data supplied by
the program, must not begin with a null character (X'00'). Blank
characters (X'40') should be used to position displayable data
down a field.

OFFLINE MAP BUILDING
The following macro instruction is the initial and final macro

instruction for offline map generation and is used to build the physical
map and symbolic description map:

mapname DFHMDI TYPE=DSECT,MAP,FINAL, *
TERM=3270, *
LANG=ASM,COBOL,PL1, *
BASE=name, %

F'3

MODE=IN,OUT,
CTRL= (PRINT,L40,L64,L80,HONEOM, FREEKB, ALARM, FRSET)

A1l maps must be given a user-defined map name of from one to seven
characters, beginning with an alpha character. If the map is to reside
in the CICS program load library, the map name chosen must be different
from other map names or program names in the system.

TYPE=MAP or TYPE=DSECT may be specified if this is the initial macro
instruction for offline map generation; TYPE=MAP indicates a physical
map and TYPE=DSECT indicates a symbolic description map. TYPE=FINAL
nust be specified if this is the final macro instruction.

When a symbolic storage definition is generated in response to a
DFHMDI TYPE=DSECT, MODE=IN specification, an "I"™ is appended to each
map name; when generated in response to a DFHMDI TYPE=DSECT, MODE=0UT
specification, an "O" is appended to each map name. For example:

MAP1 DFHMDI TYPE=DSECT, : %
TERM=3270, *
LANG=ASH, *

MODE=IN,...

In this example, the name generated in the symbolic storage
definition is MAP1I and must be referenced as such within the
application program. This is true irrespective of the programming
language used.

DSECT: A DSECT (symbolic storage definition) map generation run creates
the list of field names which the user copies or includes in the
application program. If the same map definition is used by application
programs written in different languages, a separate DSECT run is
required for each language to put the table of field names into the

Copy library of each language.

MAP: A MAP generation run creates the control information block used
by BMS to perform the mapping. This map is stored in the CICS program
load library and is loaded as required by BMS. The Assembler language
application programmer may generate the map in his code and pass the
address across to BMS.'

FINAL: This parameter must always be coded as part of the last macro
instruction of a map definition (after all the field definition macro
instructions). No other operands are required with DFHMDI TYPE=FINAL;
they are ignored if coded.

197

Page of SH20-1047-4

Revised April 11, 1973

By TNL SN20-9012

TERM: This operand can only contain the 3270 keyword parameter. If
this operand is omitted, it defaults to TERM=3270.

LANG: Required only for a DFHMDI TYPE=DSECT run, this operand is
ignored in the case of the DFHMDI TYPE=MAP and DFHMDI TYPE=FINAL
specifications, both of which are language independent.

BASE: The BASE=name operand is used to group symbolic storage
definitions by specifying the group name in each applicable DFHMDI
TYPE=DSECT specification. This operand is applicable onrly when the
programming language is ANS COBOL or PL/I; it is not applicable in the
case of a TYPE=MAP operation or if the programming language is Assembler
language.

The following example illustrates the use of the BASE operand:

MAP1 DFHMDI TYPE=DSECT, *
LANG=COBOL, *
MODE=IN, *
BASE=DATAREA1 ...

MAP2 DFHMDI TYPE=DSECT, *
LANG=COBOL, Co%
MODE=0UT, %*

BASE=DATAREA1 ...

The symbolic storage definitions of this example might be referenced
in an ANS COBOL application program as follows:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PICTURE S9(8) COMPUTATIONAL.
02 MAPBASE1 PICTURE S9(8) COMPUTATIONAL.

01 DFHTIOA COPY DFHTIOA.

01 DATAREAY PICTURE X (1920).
01 name COPY MAPI1I.

01 name COPY MAP20.

MAP1 and MAP2 multiply redefine DATAREA1T; only one 02 statement is
needed to establish addressability. However, the program can only
reference fields in one of the symbolic map areas at a time; to
reference fields in the other symbolic map areas, the program must
establish addressability to each of those areas.

If BASE=DATAREA1 is deleted from this example, an additional 02
statement is needed to establish addressability for MAP2; the 01
DATAREA1 statement would not be needed. The program could then
reference fields concurrently in both symbolic map areas.

In PL/I application programs, the name specified in the BASE operand
is used as the name of the pointer variable on which the symbolic
storage definition is based. If this operand is omitted, the default
name (BMSMAPBR) is used for the pointer variable. The PL/I programmer
is responsible for establishing addressability for the based structures.

198

MODE: MODE=IN specifies an input map generation. MODE=0OUT specifies
an output map generation. This operand is not required for the DFHMDI
TYPE=FINAL macro instruction.

CTRL: This operand is used to specify various control functions for
a particular output map which are allowable on certain of the 3270
devices. This operand is not required for input maps.

198.1

CTRL=PRINT, CTRL=L40, CTRL=L64, CTRL=L80, and CTRL=HONEOM are options
that relate exclusively to the printer functions. CTRL=PRINT must be
specified if the printer is to be started; otherwise, the data is sent
to the printer buffer but is not printed. CTRL=L40, CTRL=L64, CTRL=L80,
and CTRL=HONEOM are mutually exclusive options that control the line
length on the printer. The LU0, L64, and L8O parameters force a
carriage return/line feed at the end of their specified numbers of
characters, respectively. CTRL=HONEOM causes the printer to honor all
new-line (NL) characters and the first end-of-message (EM) character
that appear in displayable fields of the data stream. It is the user's
responsibility to insert these characters into displayable fields if
they are to be honored. If the NL character is omitted, a carriage
return/line feed occurs at the physical end of the carriage or at the
right margin stop, whichever is encountered first.

When a data entry key is used by the 3270 operator, the keyboard is
inhibited from entering further data. CTRL=FREEKB specifies that the
keyboard should be unlocked when this map is written out.

CTRL=ALARM is used to activate the 3270 audible alarm special
feature.

CTRL=FRSET (field reset) specifies that the modified data tags
(MDT's) of all fields currently in the 3270 data buffer are to be reset
to the "not modified™ condition before any map data is written to the
buffer. This allows the DFHMDF ATTRB specification for the requested
map to control the final status of any fields which are written or
rewritten in response to an online mapping (DFHBMS) service request.

The following macro instruction is used during offline map generation
to define individual fields within a map:

name DFHMDF
LENGTH=number,
POS=nunber,
ATTRB= (ASKIP,PROT,UNPROT,NUM,BRT,DRK,NORM,DET,IC,FSET),
JUSTIFY= (LEFT,RIGHT,BLANK,ZERO),
INITIAL='any user information?',
GRPNAME=user group name

¥* ¥ % ¥ 3 H*

Fields must be defined in ascending order based on the value
specified in the POS operand.

The name field of the DFHMDF macro instruction is optional. If
coded, the one- to seven-character name is used by the user-written
application program as a symbolic reference to the output map field
and is used to pass the data both for input and output map operations.

If the name field is omitted, symbolic reference to the field by
the application program is not possible. For an output map, omitting
the name field is appropriate when the INITIAL operand is used to
specify field contents. An input map field description with no field
name causes no symbolic storage definition entry to be generated for
the field; this prevents any access to the field by the application
program.

A1l field names and group names specified when defining fields for
a symbolic storage definition (DFHMDI TYPE=DSECT) are suffixed by CICS
with an "I" if MODE=IN specified and an "O" if MODE=0UT is specified.
The entire name, including suffix, must be used within the application
program to reference the fields, irrespective of the programming
language used.

199

Page of SH20-1047-4

Revised April 11, 1973

By TNL §N20-9012

LENGTH: This operand is used to specify the length (1 to 256 bytes)

of the individual field. Although an attribute byte is associated with
each field, its length is not included in the LENGTH value.

POS: This operand is used to specify up to 1920 individually
addressable character locations (0-1919) possible in a map. The value
specified is the location of the attribute byte that precedes each
field. For input fields, the POS=number specification should be the
same as that specified for the keyable or detectable field generated
in the output map (which is the source of this input field).

The location of the data on the device depends on the model of the
3270 being used. For the 480-character 3270, any POS=number
specification that is an integral multiple of 40 results in a new line;
any POS=number specification for the 480-character 3270 greater than
479 produces unpredictable output. For a 1920-character 3270, a
POS=number specification that is an integral multiple of 80 results in
a new line.

For printers, new lines are determined by the CTRL specification of
the DFHMDI macro instruction; the POS specification controls only those
character positions that are.in the buffer.)

All DFHMDF macro instructions must be coded in ascending order based
on the value specified in the POS operand. Otherwise, fields may be
omitted during input or output mapping operationmns.

ATTRB: This operand is used to specify the device-dependent
characteristics and attributes applicable to individual fields. .
Applicable keyword parameters are ASKIP, PROT, UNPROT, NUM, BRT, DET,
DRK, IC, NORM, and FSET. If no parameters are specified, ASKIP and
NORM are assumed. If any parameter is specified, UNPROT, NORM, and
alphameric are assumed for any field unless overridden by a specified
parameter.

The ASKIP, PROT, UNPROT, and NUM attributes are used to describe
the capability of the field to receive data. Fields with the ASKIP
attribute imply the PROT attribute; the cursor automatically skips over
the field. Data cannot be keyed into an ASKIP field. The PROT
attribute is similar to the ASKIP attribute except that no automatic
skipping of the field by the cursor occurs. The UNPROT attribute allows
a field to be keyed; the NUM attribute ensures that the data entry
keyboard is set to numeric shift for this field unless the operator
pressed the alpha shift key. The NUM attribute also prevents entry
of non-numeric data if the keyboard numeric lock feature is installed.
The ASKIP, PROT, and UNPROT attributes are mutually exclusive.

The BRT, NORM, and DRK attributes specify high intensity, normal
intensity, and non-display/non-print respectively. These attributes
are mutually exclusive.

The DET attribute specifies that a field is potentially
pen-detectable. As required for a 3270 pen-detectable field, the first
data character must be a "?", a ">", or a blank. See "IBM 3270
Information Display System Component Description', form number
GA27-2749, for the functions of these characters and other requirements
of pen-detectable fields. Note that a field which has the BRT attribute
is always potentially pen-detectable to the 3270, but is not recognized
as such by the Basic Mapping Support unless the DET attribute is also
specified. DET and DRK are mutually exclusive options. TFor input map
fields, DET and NUM are the only valid options (all others are ignored).

200

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

An input DET field has a one-byte reserved data area which is set to
X'00' when the field is unselected, or X'FF' when the field is selected.
No other data is supplied.

The IC attribute indicates that the cursor is to be placed in the
first position of this field. The IC attribute for the last field in
the map for which it is specified is the one that takes effect. 1If
the IC attribute is not specified for any fields, the default location
is zero. Specifying the IC attribute with the ASKIP attribute or PROT
attribute causes the cursor to be placed in an unkeyable field. The
FSET (field set) attribute specifies that this field should have the
modified data tag (MDT) set on when the field is sent out to the 3270.
This causes the 3270 to treat the field as if it had been modified,
meaning that on a subsequent read from the terminal, this field is read
in even though the field may not have been modified. This facility is
useful for providing duplicate information or constant information from
the screen as input. ©Note that the MDT remains on until the field is
rewritten or until an input/output map request (for example, DFHMDI
CTRL=FRSET or DFHBMS CTRL=FRSET) causes MDT's to be reset.

JUSTIFY: This operand is used to specify the format of an input field.
Normally, input fields are left-justified (JUSTIFY=LEFT), and, if the
data area is not filled, trailing blanks are inserted (JUSTIFY=BLANK).
However, numeric fields are often easier to manipulate if they are
right-justified (JUSTIFY=RIGHT) and are preceded by zeros
(JUSTIFY=ZERO). Note that LEFT and RIGHT are mutually exclusive
parameters, as are BLANK and ZERO.

In the absence of certain of these parameters, the following is
assumed:

SPECIFIED ASSUMED
LEFT BLANK
RIGHT ZERO
BLANK LEFT
ZERO. RIGHT

If the JUSTIFY operand is omitted, the following is assumed:
SPECIFIED ASSUMED

NUM attribute RIGHT,ZERO
Other than NUM
attribute LEFT, BLANK

INITIAL: This operand is used only in output map field descriptions

to supply constant or default data for a field. 1If the name field of
the DFHMDF macro instruction is not used, the user-written application
program cannot access the output field map to alter the data or its
attributes. If the name field of the DFHMDF macro instruction is used,
the INITIAL data is always in the field but is overlayed by any data

| supplied by the user under this name field specification. For fields
with the DET attribute, initial data that begins with a blank character,
n21_ or ">»" should be supplied.

GRPNAME: This operand is used to generate symbolic storage definitions
and to combine individual fields under one group name by specifying
the group name for each of the fields in the group. The fields

201

Page of SH20-1047-4

Revised April 11, 1973

By TNL SN20-9012

composing a group must be consecutive (contiguous). Each DFHMDF macro
instruction that names a field that is to belong to the group nust
include the GRPNAME operand specifying the common group name. For
example:

MAPX DFHMDYI TYPE=DSECT,...

FLD1 DFHMDF
LENGTH=20,
P0S=10,...

GRPFLDA DFHMDF LOCATE FIRST FIELD OF GROUP
LENGTH=20,
POS=81,
GRPNAME=GRP1,...

GRPFLDB DFHMDF LOCATE SECOND FIELD OF GROUP
LENGTH=20,
P0S=101,
GRPNAME=GRP1,...

FLD2 DFHMDF
LENGTH=15,
POS=161,...

In the above example, if DFHMDI TYPE=DSECT,MODE=IN is specified,
the generated names are FLD1I, GRP1I, GRPFLDAI, etc,; if DFHMDI
TYPE=DSECT,MODE=0UT is specified, the generated names are FLD1O, GRPlO,
GRPFLDAO, etc. These generated names must be used within the
application program to reference the fields.

A group of fields exists as a single field on the 3270; the
individual field names (specified in the name field of the DFHMDF macro
instruction) provide the user with access to portions of the complete
3270 field. :

Fields coded without a group name entry are considered to be group
fields consisting of a single entry.

An entry with a group name but no field name results in an error
condition.

ONLINE MAP INVOCATION

Online mapping operations are requested by issuing the DFEBMS macro
instruction. Basic Mapping Support (BMS) performs any required
input/output operations via Terminal Control. The data returned from
an input mapping operation is in TIOA format; the address of this TIOA
is found at TCTTEDA.

For an output mapping operation, if DATA=YES or DATA=ONLY, the
application programmer must first have obtained, via Storage Control,
a TIOA large enough to contain the symbolic storage definition of the
map being used. Any fields not requiring data to be passed to the
mapping operation must be set to nulls (X'00'); this is best achieved
through use of the INITIMG=00 operand of the DFHSC TYPE=GETMAIN macro
instruction. Before issuing the DFHBMS macro instruction, the address
of the TIOA must have been placed at TCTTEDA.

The following BMS services are available through use of the DFHBMS
macro instruction:

1. Input - BMS performs a READ/WAIT via Terminal Control and maps
the data (under control of the input map) into TIOA format.

202

#* ¥

* ¥*

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012
2. Output - BMS converts the TIOA to 3270 data stream format, merges
fields from the map (if desired), schedules a write operation,
and waits for completion (if requested).

3. Map - BMS maps, upon request, any 3270 input TIOA into a mapped
TIOA.

The following operands can be included in the DFHBMS macro
instruction:

DFHBMS TYPE=(IN,OUT,ERASE,WAIT,SAVE, MAP),
MAP='map name',YES,
DATA=NO,YES,ONLY,
CTRL= (PRINT,L40,L64,L.80, HONEOM, FREEKB, ALARM, FRSET) ,
CURSOR=number, YES,
MAPADR=symbolic address,YES

% * 3

TYPE: This operand is used to specify the type of mapping operation
and to request screen erase and/or write synchronization in connection
with an output operatiomn.

TYPE=IN specifies an input mapping operation. Input is accepted
from the terminal via a Terminal Control READ/WAIT request. The input
data is then mapped into the TIOA and made available to the application
program by placing the TIOA address at TCTTEDA.

After return is made to the application program from this macro
operation, the fields entered are available to the application program
under the symbolic names specified in the name fields of the input map
DFHMDF macro instructions, with the letter "I" suffixed to correspond
to the name CICS generates in the DSECT expansion.

TYPE=0OUT specifies an output mapping operation. The output TIOA
(addressed at TCTTEDA by the user) is converted to a 3270 data stream
and is written to the terminal.

TYPE= (ERASE,OUT) is used to specify that the screen is to be erased
before the output map is transmitted.

TYPE=(OUT,WAIT) is used to specify that the output operation is to
be synchronized with the completion of a write request. Since a wait
is automatically issued in response to a read request, the
TYPE= (IN,WAIT) specification is unnecessary.

Note: Multiple writes without wait may cause unpredictable results.
TYPE=MAP specifies an operation similar to an input mapping operation

(TYPE=IN) except that a Terminal Control read is not performed. 1If

TYPE=MAP is specified, the user must have placed at TCTTEDA the address

of the input TIOA containing 3270 data to be mapped. An example is

the initial TIOA given to a transaction upon entering a transaction

code.

TYPE=SAVE may be specified with any use of the OUT parameter to
indicate that the TIOA (addressed by TCTTEDA at the time the DFHBMS
macro instruction is issued) is not to be freed.

MAP: This operand is used to specify the name of the map to be used

for input or output operations. The map must reside in the CICS program
library and must have a corresponding entry in the Processing Progran
Table (PPT).

203

MAP='map name' specifies the one- to seven-character name of the
map to be used.

203.1

MAP=YES indicates that the user has placed at TCABMSHMN the
seven-character name of the map. If the name contains fewer than seven
characters, it must be left justified and padded with blanks to seven
characters.

DATA: Applicable only to output mapping operations, this operand is
used to specify one of three output mapping functions: (1) write only
default data, (2) merge default fields with user fields, or (3) write
only user data. If this operand is not specified, DATA=NO is assumed.
no user data stream to be mapped into this output map description.

(The user has not specified a TIOA.) Only the initial data (and/or
default data) specified for the output map fields is transmitted to

the terminal.

DATA=YES indicates that data specified in the user's TIOA (the
address of which is at TCTTEDA) is to be merged with the data in the
output map. Data in the TIOA overrides the initial data and/or field
characteristics in the output map.

DATA=ONLY specifies that no initial fields are to be written; only
the data supplied in the user's TIOA is to be written. ©No attribute
bytes are sent from the map to the terminal. Only attributes specified
by the user as "fieldname.A" or "groupname.A" are transmitted.

CTRL: Used in conjunction with the TYPE=0QUT operand, this optional
operand is used to temporarily override control functions specified
for a particular output map. This operand is effective as a temporary
override only for this output request.

. CTRL=PRINT, CTRL=L40, CTRL=L64, CTRL=L80, and CTRL=HONEOM are options
‘that relate exclusively to the printer functions. CTRL=PRINT must be
‘specified if the printer is to be started; otherwise, the data is sent
to the printer buffer but is not printed. CTRL=L40, CTRL=L64, CTRL=L8O,
and CTRL=HONEOM are mutually exclusive options that control the line
length on the printer. The LU0, L64, and L80 parameters force a
carriage return/line feed at the end of their specified numbers of
characters. CTRL=HONEOM causes the printer to honor all new line (NL)
characters and the first end-of-message (EM) character in the data
stream. If the NL character is omitted, a carriage return/line feed
occurs at the physical end of the carriage or at the right margin stop,
whichever is encountered first.

When a data entry key is used by the 3270 operator, the keyboard is
inhibited from entering further data. CTRL=FREEKB specifies that the
- keyboard should be unlocked when this map is written out.

CTRL=ALARM is used to activate the 3270 audible alarm special
feature.

CTRL=FRSET specifies that the modified data tag is to be reset to
the "not modified" copdition on all fields.

CURSOR: Applicable only to output mapping operations, CURSOR=number
is used to position the cursor at a particular position on the screen
upon completion of a WRITE. Any integral value in the range 0-1919
may be specified, depending upon the screen size of the 3270 being
used. This operand is effective as a temporary override only for this
output request.

CURSOR=YES indicates that the application programmer has previously
specified the desired cursor position at TCABMSCP. '

204

Page of SH20-1047-4

Revised April 11, 1973

By TNL SN20-9012
MAPADR: Restricted to application programs coded in Assembler language,
this optional operand is used to specify the address of a user-coded
map. This operand allows maps to be coded within the user-written
application program.

MAPADR=YES is used by the Assembler language programmer to indicate
that the address of the map has been placed at TCABMSMA.
Note In the case of the CICS/DOS-ENTRY system, the MAPADR operand
must not specify any address within the limits of the progranm.
Instead, the user must obtain an area of main storage via a
Storage Control GETMAIN macro instruction and then move the map
to this area.

Specifying Maps for 3270 Basic Mapping Support

The map used for input or output operations must be specified for
BMS. If the user has placed the map in the CICS program library, the
user must use the MAP='mapname' specification, or, if preferred, the
user may place the seven-character name of the map at TCABMSMN and
specify MAP=YES.

Assembler language programmers may "hard code"™ maps in their program
and place the address of the map at TCABMSMA and code MAPADR=YES. TIf
desired, the user may code MAPADR=symbolic address, where address is
the label of the hard-coded map. Caution must be exercised when BMS
is invoked and MAPADR is specified in the CICS/DOS-ENTRY system. (The
address must be in subpool O to avoid rollout.)

Maps placed in the CICS program library are accessed by BMS through

a Program Control LOAD. Therefore, the map name must be an entry in
the Processing Program Table (PPT).

Inplied Read/Write

Input and output requests result in a Terminal Control READ and
WRITE, respectively. Therefore, the user is not required to code any
Terminal Control macro instructions.

Nothing prevents the user from alternately coding native mode and
BMS operations. If desired, BMS will map a native mode input TIOA by
requesting only a MAP operation. However, for input to a non-formatted
buffer with no MAP operation requested, mapping will not be performed
and a NULL TIOA will be returned.

Note: The read that contains the transaction code and causes initiation

of the transaction is a native 3270 data stream. The MAP request
may be used to convert this TIOA to a mapped TIOA.

Using the DFHBMS Macro Instruction

Regardless of the programming language used (Assembler language,
ANS COBOL, or PL/I), the same form of the DFHBMS macro instruction is
used to request a mapping operation. In the case of ANS COBOL and
PL/I, the CICS Preprocessor resolves the macro instruction and expands
it into the statements required to invoke the mapping function.

Terminal input, which causes a task to be initiated, is stored in
the task's initial TIOA as a native mode 3270 data stream. By
requesting a MAP operation via DFHBMS, the application program is given
the capability to map this TIOA into a particular input format. The

205

format of this initial input data must correspond to that of the
requested map.

205.1

Standard Attribute List and Printer Control Characters (DFHBMSCA)

The application programmer can obtain a set of commonly used 3270
field attributes and printer control characters by copying DFHBMSCA

into his progranm.
case of Assembler language,

DFHBMSCA consists of a set of EQU statements in the

a set of 01 statements in the case of ANS

COBOL, and DECLARE statements defining elementary character variables

in the case of PL/I.

One possible use for DFHBMSCA is for the purpose

of temporarily changing attribute characters in a map.

Listed below are the field attributes/printer control characters
and corresponding symbolic names.

SYMBOLIC NAME

DFHBMPEMN
DFHBMPNL
DFHBMASK
DFHBMUNP
DFHBMUNN
DFHBMPRO
DFHBMBRY
DFHBMDAR
DFHBMFSE
DFHBMPRF
DFHBMASF
DFHBMASB

FIELD ATTRIBUTE/PRINTER CONTROL CHARACTER

3270 Printer end of message
3270 Printer new line symbol
Autoskip

Unprotected

Unprotected and numeric
Protected

High Intensity

Dark, nonprint

MDT on

Protected and MDT on
Autoskip and MDT on
Autoskip and high intensity

These attributes cannot be combined by the application programmer
in any manner.
required, the application programmer must either use the ATTRB operand
of the DFHMDF macro instruction to obtain the desired combinations or
must assume responsibility to generate new attribute combinations
offline.

If any combinations other than those listed are

Standard Attention Identifier List (DFHAID)

To test the method of initiating an incoming READ from the 3270
Information Display System, the application programmer is provided with
a set of 3270 attention identifiers (single-character variables called
AID's) that can be used to test the value at TCTTEAID. He can obtain
this set of attention identifiers by copying DFHAID into his progranm.

DFHAID consists of a set of EQU statements in the case of Assembler

language,

a set of 01 statements in the case of ANS COBOL, and DECLARE

statements defining elementary character variables in the case of PL/I.
Listed below are the symbolic names for the attention identifiers and
the corresponding 3270 function.

206

SYMBOLIC NAME

DFHENTER
DFHCLEAR
DFHPEN
DFHPA
DFHPA2
DFHPA3
DFHPF1

DFHPF12

3270 FUNCTION

Enter key

Clear key

Immediately detectable field
PA1 key

PA2 key

PA3 key

PF1 key

PF12 key

BMS TIOA Specification

Depending on the programming language used, the BMS symbolic storage
definition of the TIOA must be provided in the application program as
shown in the following examples. Note that mapnametl, mapname2, and
mapname3 in these examples are the names of modules that contain the
assembly of a BMS symbolic storage definition (TYPE=DSECT).

1. Assembler language COPY statements.

COPY DFHTIOA
COPY mapnanel

COPY mapname?2

COPY mapname3
2. ANS COBOL COPY statements for each symbolic storage definitiom.

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COPY DFHTCADS.
01 DFHTIOA COPY DFHTIOA.
01 name COPY mapnamel.

01 name COPY mapname2,

01 name COPY mapname3.

3. PL/I INCLUDE statements.

%INCLUDE DFHTIOA;

%INCLUDE mapnamet;
%INCLUDE mapname?2;
%INCLUDE mapname3;

In addition to providing the BMS symbolic storage definition for
the TIOA, the application programmer must establish addressability for
this storage definition. Depending on the programming language used,
this is accomplished as follows:

1. Assembler language ORG statement immediately preceding the
symbolic storage definition for each map, starting with the
second map. For example:

COPY DFHTIOA
COPY mapnamel
ORG TIOADBA
COPY mapname2
ORG TIOADBA
COPY mapname3

DFHSC TYPE=GETMAIN,
NUMBYTE=120,
CLASS=TERMINAL,
INITING=00
L TIOABAR,TCASCSA ESTABLISH TIOA ADDRESSABILITY

207

*

Page of SH20-1047-4
Revised April 11, 1973
By TNL §N20-9012

2. ANS COBOL 02 statements immediately following the COPY statement

for the Linkage Section Base Locator (BLL).

These 02 statements

must be coded in the same order as the corresponding 01

statements coded subsequently. For example:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TIOABAR PICTURE S9(8) COMPUTATIONAL.

02 MAPBASE1 PICTURE S$9(8) COMPUTATIONAL.
02 MAPBASE2 PICTURE S9(8) COMPUTATIONAL.
02 MAPBASE3 PICTURE S9(8) COMPUTATIONAL.

01 DFHTIOA COPY DFHTIOA.
01 name COPY mapnamel.
01 name COPY mapname2.
01 name COPY mapname3.

PROCEDURE DIVISION.

DFHSC TYPE=GETMAIN,
NUMBYTE=120,
CLASS=TERMINAL,
INITIMG=00
MOVE TCASCSA TO TIOABAR.
ADD 12 TIOABAR GIVING MAPBASE1.
ADD 12 TIOABAR GIVING MAPBASE2.
ADD 12 TIOABAR GIVING MAPBASE3.

#*

3. PL/I based pointer variable (BMSMAPBR). For example:

DCL TIOABAA FIXED BINARY(31,0) BASED(TIOABAB);

%INCLUDE DFHTIOA;

%INCLUDE mapnamel; /*EACH OF THESE MAPS IS*/
%INCLUDE mapname2; /*BASED ON THE SAME POINTER*/
%INCLUDE mapname3; /*VARIABLE - BMSMAPBR*/

DFHSC TYPE=GETMAIN,
NUMBTYE=120,
CLASS=TERMINAL,
INITIMG=00

TIOABAR=TCASCSA;

TIOABAB=ADDR (TIOABAR) ;

TIOABAA=TIOABAA+12;

BMSMAPBR=TIOABAR;

Examples of the Use of BHMS

#*

The examples in this section are based on a fairly simple screen
exercising problem and are intended to show the results of generating

symbolic storage definition maps.

208

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

In the examples, an input symbolic storage definition and an output
symbolic storage definition are illustrated for each of the programming
languages supported by CICS: Assembler language, ANS COBOL, and PL/T.
Each of these examples is dgenerated from the screen definition of the
first example; only the initial DFHMDI entry is changed.

SAMPLE DFHMDI TYPE=DSECT,LANG=ASM,MODE=IN,TERM=3270,CTRL=FREEKB
DFHMDF POS=0,LENGTH=17,INITIAL='ENTER YOUR NAME--!
NAME DFHMDF POS=18,LENGTH=18,ATTRB=(IC,UNPROT)
DFHMDF POS=40,LENGTH=17,INITIAL='WHAT IS THE DATE?'
MONTH DFHMDF P0OS=58,LENGTH=2,INITIAL='MM',GRPNAME=DATE
DAY DFHMDF P0OS=60,LENGTH=2,INITIAL="DD',GRPNAME=DATE
YEAR DFHMDF POS=62,LENGTH=2,INITIAL='YY', GRPNAME=DATE
DFHMDF P0S=80,LENGTH=26,INITIAL='SELECT YOUR FAVORITE COLOR'
BLUE DFHMDF P0S=120,LENGTH=9, ATTRB=DET, INITIAL="'?¥BLUEPYKK"
RED DFHMDF P0OS=131,LENGTH=8, ATTRB=DET, INITIAL="?¥REDYYY"
AMBER DFHMDF POS=141,LENGTH=10,ATTRB=DET,INITIAL="'?¥AMBERYY)Y"
DFHMDF POS=160,LENGTH=19, ATTRB= (PROT, BRT) ,
INITIAL='"NOW HIT A PF KEY...!®
ERROR DFHMDF POS=240,LENGTH=19, ATTRB=DRK,
INITTAL='SORRY, TRY AGAIN...'
DFHMDI TYPE=FINAL
END

Example 1. Symbolic storage definition input

209

SAMPLEI DS 0C

Example 2. Symbolic storage definition
specification

210

SPACE 2
NAMEL DS H DATA LENGTH
NAMEI DS CL18 DATA OR FLAG
SPACE 2
DATEL DS H : DATA LENGTH
DATET DS 0C GROUP DATA
SPACE 2
SPACE 2
MONTHI DS CL2 DATA
SPACE 2
DAYT DS CL2 DATA
SPACE 2
YEART DS CL2 DATA
SPACE 2
BLUEL DS H DATA LENGTH
BLUEI DS CL1 DATA OR FLAG
SPACE 2
REDL DS H DATA LENGTH
REDI DS CL1 DATA OR FLAG
SPACE 2
CLUEL DS H DATA LENGTH
CLUEI DS CL5 DATA OR FLAG
SPACE 2
AMBERL DS H DATA LENGTH
AMBERI DS CL1 DATA OR FLAG
SPACE 2
ERRORL DS H DATA LENGTH
ERRORI DS CL19 DATA OR FLAG
* % % END OF MAP DEFINITION * % %
DFHBMSKS

using LANG=ASM,MODE=IN

SAMPLEO DS 0OC

SPACE 2
NAMEA DS C USER ATTRIBUTE
DS C RESERVED
RAMEO DS CL18 DATA FIELD
SPACE 2
SPACE 2
DATEA DS CL1 USER ATTRIBUTE
DS CL1 RESERVED
DATEO DS 0C GROUP START
SPACE 2
MONTHO DS CL2 DATA FIELD
SPACE 2
TCAYO DS CL2 DATA FIELD
SPACE 2 ,
YEARO DS CL2 DATA FIELD
SPACE 2
SPACE 2
BLUEA DS C USER ATTRIBUTE
DS C RESERVED
BLUEO DS ClS DATA FIELD
SPACE 2
SPACE 2
REDA DS ¢ USER ATTRIBUTE
Ps C RESERVED
REDO DS CLS DATA FIELD
SPACE 2
SPACE 2
CLUEA DS C USER ATTRIBUTE
DS C RESERVED
CLUEO DS CLS DATA FIELD
SPACE 2
SPACE 2
AMBERA DS C USFR ATTRIBUTE
DS C RESERVED
AMBERO DS CL5 DATA FIELD
SPACE 2
SPACE 2
ERRORA DS C USER ATTRIBUTE
DS C .RESERVED
ERRORO DS CL19 DATA FIELD
SPACE 2
* % % END OF MAP DEFINITION * * *
DFHBMSKS

Example 3. Symbolic storage definition using LANG=ASM,MODE=OUT
specification

Example 4.

Example 5.

212

01

01

SAMPLET SYNCHRONIZED.
02 NAMEL COMP PIC S9(4).
02 NAMEI PIC X (18).
02 DATEL COMP PIC S9(4).
02 DATEI.

03 MONTHI PIC X (2).

03 TLAYI PIC X(2).

03 YEARI PIC X(2).
02 BLUEL COMP PIC S9(4).
02 BLUEI PIC X (1).
02 REDL COMP PIC S9(4).
02 REDI PIC X(1).
02 CLUEL COMP PIC S9(4).
02 CLUEI PIC X(5).
02 AMBERL COMP PIC S9(4).
02 AMBERI PIC X(1).
02 ERRORL COMP PIC S9(4).
02 ERRORT PIC X(19).

Symbolic storage definition using
specification

SAMPLEO SYNCHRONTIZED.

02 NAMEA PICTURE X.

02 FILER PICTURE X.

02 NAMEO PICTURE X (18).

02 DATEA PICTURE X.

02 FILLER PICTURE X.

02 DATEO.
03 ‘MONTHO PICTURE X (2).
03 DAYO PICTURE X(2).
03 YFARO PICTURE X(2).

02 BLUEA PICTURE X.

02 FILLER PICTURE X.

02 BLUEO PICTURE X(5).

02 REDA PICTURE X.

02 FILLER PICTURE X.

02 REDO PICTURE X (5).

02 CLUEA PICTURE X.

02 FILLER PICTURE X.

02 CLUEO PICTURE X(5).

02 AMBERA PICTURE X.

02 FILLER PICTURE X.

02 AMBERO PICTURE

02 ERRORA PICTURE X.

02 FILLER PTCTURE X.

02 ERRORO PICTURE X (19).

Symbolic storage definition using
specification

LANG=COBOL, MODE=IN

LANG=COBOL, MODE=0UT

CECLARE 1 SAMPLEI ALIGNED BASED (BMSMAPBR),
NAMEL FIXED BINARY (15,0),

NAMEI CHARACTER (18),

DATEL FIXED BINARY (15,0),

DATET,

3 MONTHI CHARACTER (2),

3 DAYI CHARACTER (2),

3 YEART CHARACTER (2),

2 BLURL FIXED BINARY (15,0),

2 BLUEI CHARACTER (1),

2 REDL FIXED BINARY (15,0},

2 REDI CHARACTER (1),

2 CLUEL FIXED BINARY (15,0),

2 CLUET CHARACTER (5),
2
2
2
2
2
)

NN

AMBERL FIXED BINARY (15,0),
AMBERI CHARACTER (1),
ERRORL FIXED BINARY (15,0),
ERRORI CHARACTER (19),
FILLC030 CHARACTER (1),

/* END OF MAP DEFINITION */

Example 6. Symbolic storage definition using LANG=PL1,MODE=IN
specification

DECLARE 1 SAMPLEO ALIGNED BASED (BMSMAPBR),
NAMEA CHARACTER (1),
FIIL0008 CHARACTER (1),
NAMFO CHARACTER (18),
DAT®A CHARACTER (1),
FILLOOT4 CHARACTER (1),
DATEO,

3 MONTHO CHARACTER (2),
3 DAYO CHARACTER (2),

3 YEARO CHARACTER (2),
BLUEA CHARACTER (1),
FILLO029 CHARACTER (1),
BLUEO CHARACTER (5),
REDA CHARACTER (1),
FILL0035 CHARACTER (1),
REDO CHARACTER (5),
CLUEA CHARACTER (1),
PTIIL0038 CHARACTER (1),
CLUEO CHARACTER (5),
AMBERA CHARACTER (1),
FTLLOO41 CHARACTER (1),
AMBERO CHARACTER (5),
ERRORA CHARACTER (1),
FTILOO47 CHARACTER (1),
ERRORO CHARACTER (19),
FIIL0050 CHARACTER (1);
OF MAP DEFINITION */

NN

NNV

N
3*
=]
%
I

Zxample 7. Symbolic storage definition using LANG=PL1,MODE=0UT
specification

213

PROGRAM TESTING AND DEBUGGING

Testing in the information system environment has always been
difficult. The information system, including the operating systen,
CICcS, and the user's application programs, must be responsive to many
factors concurrently. The equipment configuration includes many lines
and terminals through which requests for varied services are coming
constantly on a random, nonscheduled basis, The precise relationship
cf all programs and data set (file) activity generated from the terminal
inputs is never the same from one moment to the next.

Even at the simplest level of program testing, the implementer faces
problems. He cannot efficiently test his program from a terminal which
requires that all test data be keyed into the ‘system each time that
he requires a test shot. He cannot easily retain a backlog of proven
test data and quickly test his programs through the key-driven terminal
as program changes are made.

CICS allows the application programmer to begin testing his programs
. without requiring the use of a telecommunication device. It is possible
to specify through the Terminal Control Table that sequential devices

be used as terminals. At the same time, the Terminal Control Table

can include references to the other terminals on the system. The
segpen@ial devices are the card reader, line printer, disk, and magnetic
tape. In fact, a Terminal Control Table can include combinations of
sequential devices such as: card reader and line printer, one or more
disk data sets as input, one or more disk data sets as output. The

same table can also include references to the other terminals on the
systen.

The input data must be prepared in the form that it would come from
a terminal. A transaction identification must appear in the first
four positions of the first input for a transaction, and, if a
sequential device is being used as a terminal, a 0-2-8 punched card
code or the equivalent must fcllow the input message. The input is
processed sequentially and must be unblocked. The Sequential Access
Method (SAM) is used to read and write the necessary inputs and outputs.
The operating system utilities can be used to create the input data
sets and print the output data sets.

Consequently, it is possible to prepare a stream of transaction
test cases to do the basic testing of a program module. As the testing
progresses, the user would want to generate additional transaction
streams to validate the multiprogramming capabilities of his programs
cr to allow different transaction test cases to be run concurrently.

User-written application programs can make use of the facilities
of Dump Control and Trace Contrcl to capture the status of the programs
during testing. The Dump Control output is printed by using the CICS
Dump Utility program. For a description of the Dump Control facilities,
see "Dump Services".

At some point in testing, it is necessary to use the
telecommunication devices to ensure that the transacticn formats are
satisfactory, that the terminal operational approach is satisfactory,
and that the transactions can be processed on the terminal. The
Terminal Control Table can be altered to contain more and different
devices as the testing requirements change.

When the testing has proven that multiple transactions can be
processed concurrently and the necessary data sets (actual or duplicate)

214

for online operation are created, the user begins testing in a
controlled environment with the telecommunication devices. In the
controlled environment, the business activity should represent all
fanctions of the eventual system, but be on a smaller and a measurable
scale. For example, a company whose information system will work with
15 district offices would select one district office for the controlled
test. During the controlled test, all transactions, data set activity,
and output activity from the system would be closely measured.

Testing is a continuing process; it is nct complete when customer
conversion occurs. The entire testing cycle is repeated as the
applications are upgraded and new applications are added to the system.

mRACE CONTROL FUNCTIONS

=

The optional CICS Trace facility is designed as a debugging aid
for the application programmer. This facility makes use of a Trace
Table which is produced by requests for Trace Control services and
which consists of standard and nonstandard entries. Standard entries
are recorded in the table each time one of the following CICS macro
instructions is issued by an application program or by a CICS management
program:

1. DFHKC (Task Control)

2. DFHSC (Storage Contrcl)

3. DFHPC (Program Control)

4. DFHIC (Interval Control)

5. DFHDC (Dump Control)

6. DFHFC (File Control)

7. DFHTD (Transient Data Control)

8. DFHTS (Temporary Storage Control)

Each standard entry contains a unique ID and information which will
aid the application programmer in determining where the macro
instruction was issued and what type of request was made to the
management program. Thus, without any additional programming, the
application programmer is provided with a useful tool to aid in the
debugging process.

In addition, the application programmer may make direct, nonstandard
entries in the Trace Table by using the DFHTR macro instruction in
his application program. The user assigns his own identification and
accompanying data for each trace entry. Thus, the user could define
several unique trace entries and trace the logical path through a
particular application or group of application programs.

Trace Control is branched to by its requesting program and executes
as a service routine under the requesting program's TCA. Registers
are saved and restored. Return is always made to the next sequential
instruction in the requesting program once the regquested service has
been performed.

If the user has generated the Trace feature in his system, he nmay
dynamically control which trace entries are to be made in the table.
Trace activity is controlled by two sets of flag bytes in the CSA
(CSATRMFP1 and CSATRMF2) and one flag byte in the TCA (TCATRMF). The
reaning of the individual bits of the flag bytes is as follows:

215

fla
fla
the

of

ins

216

Bit Meaning
0 Master Flag - if off, no trace occurs.
1 System Master Flag - if off, no system entries
(ID 200-239) are traced.
2 User Master Flag - if off, no user entries
(ID 0-199) are traced.
3-7 Reserved
CSATRMF2
Bit Meaning Trace ID
0 On to trace Task Control macro instructions. X'FO?
1 On to trace Storage Control macro X*F1?
instructions. '
On to trace Program Control macro X*F2!
instructions.
3 On to trace Interval Control macro X'F3
instructions.
4 Oon to trace Dump Control macro instructions. X'F4!
5 On to trace File Control macro instructions. X'FS5¢
6 on to trace Transient Data Control macro X'F6!
instructions.
7 On to trace Temporary Storage Control macro X'F7?
instructions.

Bit 0 of the TCA flag byte (TCATRMF) is used only if the user master
g (X'20') is off in the CSA flag byte CSATRMF1., If the user master
g is off, only those user entries that are issued by tasks with

TCA flag on are traced.

The Trace Control macro instruction (DFHTR) is used to request any
the following services:

1. Dynamically allow the Trace facility to begin logging appropriate
entries into the Trace Table, ,

2. Dynamically cause the Trace facility to stop logging entries
into the Trace Table.

3. Dynamically cause a specified entry to be logged into the Trace
Table.

The following operands can be included in the DFHTR macro
truction:

DFHTR TYPE=ON, *
STYPE=SINGLE,ALL, (system symbol) ,SYSTEM,USER

DFHTR TYPE=OFF, *
STYPE=SINGLE,ALL, (system symbol) ,SYSTEM,USER

DFHTR TYPE=ENTRY,
STYPE=SYSTEM,USER,
ID=number,
DATA 1=symbol, (symbol),
RDATA 1=register, (register),
DATA2=synbol, (symbol),
RDATA2=register, (register),
DATA1TP=HBIN,FBIN,CHAR,PACK, POINTER,
DATA2TP=HBIN,FBIN,CHAR,PACK, POINTER

* 3% % 3 3 ¥ % *

TRACE ON FUNCTION

The ON function of Trace Control is used to dynamically allow the
Trace facility to begin logging appropriate entries into the Trace
Table. The application programmer invokes it by use of the

DFHTR TYPE=ONW, :
STYPE=SINGLE,ALL, (system symbol),SYSTEM,USER

macro instruction.

STYPE: 1Identifies which of the types of entries are to be traced.
The meaning of each of the parameters is as follows:

1. SINGLE, specifies that the trace capability is to be turned
on for the single transaction issuing the DFHTR macro
instruction. STYPE=SINGLE has no effect unless the USER
designation has been turned of€f.

2. AlL, specifies that the complete trace function is to be turned
onO

3. System symbol, specifies one or more of the valid systenm
functions. A special Trace Pable entry is created each time
one of the CICS macro instructions is issued. This parameter
allovws the user to selectively turn on the appropriate system
macro trace facility. The valid system symbols are:

KC Task Control (DFHKC)

SC Storage Control (DFHSC)

PC Progranm Control (DFHPC)

IC 1Interval Control (DFHIC)

DC Dump Control (DFHDC)

FC File Control (DFHFC)

TD Transient Data Control (DFHTD)

TS - Temporary Storage Control (DFHTS)

4, SYSTEM, specifies that the trace capability is to be turned
on for all entries made from within CICS, excluding the CICS
macro entries controlled by the CSATRMF2 flag byte.

5. USER, specifies that the trace capability is to be turned on
for all user entries.

TRACE OFF FUNCTION
The OFF function of Trace Control is used to dynamically cause the
Trace facility to stop logging entries into the Trace Table. The

application programmer invokes this function by issuing the

DFHTR TYPE=OFF,
STYPE=SINGLE,ALL, (System symbol),SYSTEM,USER

macro instruction.

STYPE: 1Indicates which of the types of entries are not to be traced.

Each of the parameters has the same meaning as when uséd with the DFHTR

TYPE=ON macro instruction.

217

TRACE ENTRY FUNCTION

The ENTRY function of Trace Control is used to dynamically cause
a specified entry to be logged into the Trace Table if the Trace
facility has been turned on for that type of entry. The application
programmer invokes this function by issuing the

DFHTR TYPE=ENTRY,
STYPE=SYSTEM,USER,
ID=number,
DATA 1=symbol, (symbol),
RDATA1=register, (register),
DATA2=symbol, (symbol),
RDATA2=register, (register), ‘
DATA1TP=HBIN,FBIN,CHAR,PACK,POINTER,
DATA2TP=HBIN,FBIN,CHAR,PACK,POINTER

macro instruction. .
STYPE: Indicates whether this entry is a CICS entry or user entry.

ID: Specifies the identification number to be used on this entry and
must be coded as a self-defining term. The following range of numbers
mav be coded:

0-199 with STYPE=USER
200~239 with STYPE=SYSTEM

Numhers 240-253 are reserved for system macro trace entries. 254 and
255 indicate the TYPE-ON and TYPE=OFF entries, respectively.

CATA1: Specifies the address of the data to be placed in the first
data field of the table entry. If parentheses are used, the specified
address is an address of an area that contains the address of the data.

RDATA1: Specifies the register whose contents are to be placed in
the first data field of the table entry. If parentheses are used,
the specified register contains the address of the data. RDATA?1 and
CATAT are mutually exclusive.

DPATA2: Similar to DATA1 except that it is used for the second data
field of the Trace Table entry.

RDATA2: Similar to RDATA' except that it is used for the second data
£field of the Trace Table entry.

DATA1TP: valid only for ANS COBOL and PL/I programs, this operand
specifiss the format of the data to be placed in the first data field
of the Trace Table entry. The default is DATA1TP=FBIN.

The applicable keyword parameters are HBIN, FBIN, CHAR, PACK, ahd
FOINTER, and are used as follows:

218

3 H ¥ % # K *

Specification Data Format Field Definition

DATA1TP=HBIN Halfword, binary COBOL: 9(4) CoOMP
PL/I: BIN FIX (15)
DATAITP=FBIN Fullword, binary COBOL: 9(8) COMP
PL/T: BIN FIX(31)
DATA1TP=CHAR 1 to 4 characters COBOL: X (&)
PL/I: CHAR(4)
DATA1TP=PACK 1 to 4 bytes, COBOL: 9(7) COMP-3
packed decimal PL/I: DEC FIX(7)
DATA1TP=POINTER PL/T pointer
variable

DATA2TP: Similar to DATA1ITP except that it is used for the second
data field of the Trace Table entry. The default is DATA2TP=FBIN.

IRACE TABLE

The optional CICS Trace Table consists of a variable number of
fixed-length entries and may be generated during system generation.
T+ is used to trace the logical flow of transaction activity through
+he system. Pollowing generation, the trace feature may be invoked
during system initialization by specifying the number of Trace Table
entries to be other than zero. If the Trace Table is invoked, the
address of the table is placed in the CSA at CSATRTBA.

Each entry in the table is a fixed 16 bytes in length, and is aligned
on a doubleword boundary. The table is used in a wrap-around manner
so that when the last entry is used, the next entry is placed at the
beginning of the table. The first 16 bytes of the table are a control
field for the balance of the table and contain the following
information:

BYTES CONTENTS

-3 Address of th2 current entry

-7 Address of the beginning of the table
-11 Address of the end of the table

-15 Reserved

N EFEO

1

219

The format of the individual trace entry is:

BYTES CONTENTS

0 Trace identification of entry.

1-3 Contents of register 14 at entry to the Trace progranm,
or if the ID is X'FO0' through X'F7', it is the contents
of register 14 at entry to the CICS management program
concerned.

4 If the Trace ID is one of the following, this field

‘ contains the type of request code as it relates to the

applicable CICS management progranm.

Program Irace 1D
Task Control Xt'FO?
Storage Control X'F1?
Program Control . X'F2t
Interval Control X'F3
Dump Control X'FYye
File Control X'F5!
Transient Data Control X'F6!
Temporary Storage Control) X'F7?
CICS/0S-DL/I Interface X'F8?

5-7 Transaction identification as found in the CICS control
section of the TCA. This identification is unique for
each transaction.

8-11 Data field 1.

12-15 Data field 2.

The CICS Trace Table entries are indicated in Tables 1-10 which
(For a discussion of the CICS/0S-DL/I Interface Trace Table
entries, see the section "Requesting Data language/I Services".)

follow.

220

Table 1.

Task Control

{ ! | TYPE| { | |
{ TRACE] | OF | { { |
| ID |REGISTER 14f REQ{ TRANSACTION ID | FIELD A] FIELD B |
t |]
REQUEST CODE
FROM TCATCTR
XTRO X'80' (DETACH) Not used Not used
X140 (WAIT) Dispatch Event
Control Control
Indicator Address
TCATCDC TCATCEA
X'20' (CHAP) New priority Not used
TCATCDP
Xv14' (AVAIL) Facility Not used
Control
Address
X*12*' (SCHEDULE) Terminal ID or Transaction
AID address ID TCAKCTI
TCARCTA
X'11' (Conditional Facility Transaction
ATTACH) Control ID TCAKCTI
Address
X*10' (ATTACH) Facility Transaction
Control ID TCAKCTI
Address
X'08' (RESUME) TCA (TXA) Not used
address of
resumed
transaction
X104 (SUSPEND) Not used Not used
X*02' (DEQUEUE) Queue nanme Not used
address TCATCQA
X'C1' (ENQUEUE) Queue name Not used

address TCATCQA

221

Table 2. Storage Control

! 1 | TYPE{ | | |
| TRACE]| | OF | l | |
f ID |REGISTER 14 { REQ| TRANSACTION ID | PIELD A { FIELD B =}
1 - X |
REQUEST CODE
FROM TCASCTR
X'P1¢ Bit Condition Byte Not used
0 1=GETMAIN 0 Not used
1 1=FREEMAIN 1 Initiali-
zation byte
for GETMAIN
2 1=Release all
Terminal strg 2-3 Requested
if bit 0=0 number of
and bit 1=1 bytes
1=Conditional
GETMAIN if
bit 0=1 and
bit 1=0
1=RELEASED (used
by CICS to
obtain initial
storage cushion
if bits 0,1=0
3 1=Conditional 2-3 Number of
Storage is to bytes released
be initialized following
. FREEMAIN
4 0=Subpool 0
1=Subpool 1
5 0=Unchained
storage
1=Chained storage
6 1=TCA type of
storage
7 1=Terminal type of
storage
x'cst Not used 0-3 Address off Storage
main storage accounting
acquired
X1c9o Not used 0-3 Address of Storage

222

main storage accounting
released

Table 3. Program Control

{ | {TYPE| | | |
{TRACE] | OF | i |
| TID {REGISTER 14§y REQ} TRANSACTION ID | FIELD A | FIELD B {
[I— J
REQUEST CODE
FROM TCAPCTR
X*F2°¢ X'90' (REFRESH - PPT entry " Not used
CICS/DOS-ENTRY address TCAPCTA
only)
X'84' (Conditional Program name Not used
LOAD) from TCAPCPI
X'60' (ABEND Abend code Not used
with dump) from TCAPCAC
X*40' (ABEND Not used Not used
without dump)
X'10" (RETURN) Not used Not used
X'08' (DELETE) Yot used Not used
X104 (LOAD) Program name from TCAPCPI
X'02' (XCTL) Program name from TCAPCPI
X'01* (LINK) Program name from TCAPCPI

mable 4. Interval Control

| | | TYPE| | | {
| TRACE] { OF | { I |
| TD |{REGISTER 144 REQ| TRANSACTION ID | FIELD A | FIELD B |
L |]
REQUEST CODE FROM
TCAICTR OR TCAICRC
X'F3 X*1x' (GETIME) Return time to Not used

where "x" consists
of the low-order
four bits:

user address
TCAYICDA

223

Table 4.

Interval Control (continued)

1 | | TYPE(| | |
| TRACE{ t OF | { i |
| ID JREGISTER 14) REQ}j TRANSACTION ID | FIELD A | FIELD B |
L ¥ |
REQUEST CODE FROM
ICAICTR OR TCAICRC
Bit Condition
4,5 Always zero
6 0O=Refresh CSA
Time only
1=Return time
to user
7 0=Binary format
1=Packed format
X*'2x*" (WAIT) INTRVAL or Not used
TIME value
(TCAICRT)
X'3x*' (P0OST) INTRVAL or Not used
TIME value
(TCAICRT)
where "x" consists
of the low-order
four bhits:
Bit cCondition
4 0=INTRVAL parameter
provided
1=TIME parameter
provided
5 0=No Request
ID provided
1=User-provided
Request ID
6,7 Always zero
X'4x®* (INITIATE) INTRVAL or Transaction
TIME value ID (TCAICTI)
(TCAICRT) '
X'5x' (PUT) INTRVAL or Transaction
TIME value ID (TCAICTI)
(TCAICRT)

224

where "x" consists
of the low-order
four bits:

Bit Condition

4 0=INTRVAL parameter

Table #., Interval Control {continued)

| | | TYPE] | | |
| TRACE({ OF | i | |
! ID {REGISTER 14| REQ| TRANSACTION ID | FIELD A [FIELD B {
— J
REQUEST CODE FRONM
TCAICTR OR ICAICRC
provided
1=TIME parameter
provided
5 0=No Request
ID provided
1=User-provided
Request ID
6 Always zero
7 N=Non-terminal
destination
1=Terminal
destination
X'8x' (GET) User-provided ¥ot used

data address
where "x" consists
of the low-order
four bits:
Bit Condition
4,5 Always zero
6 0=User-provided
data address
1=Return data
address to user
7 Always zero
X*990' (RETRY) v Not used Not used
X*Fx' (CANCEL) Request ID (TCATICQTID)
where "x" consists
of the low-order
four bits:

Bit Condition

[ilvays Zero
5 0=No Request
ID provided
1=User-provided
Request ID

6,7 Always zero

225

Table 5.

Dump Control

| | | TYPE] | | |
{ TRACE| {f OF { | | |
| ID |REGISTER 14| REQ| TRANSACTION ID | FIELD A | FIFLD B |
[]]
REQUEST CODE CONTENTS
NOT USED FROM TCADCTR
(see field 1) (Bytes 2-3
not used)
Xrrye TRANSACTION X'FEOO' Abend
code
CICS X'COFF*
COMPLETE X'FEFF?
PARTIAL
TCA X*'0000"
SEGMENT X'0100¢
TRANSACTION X'0400?
TERMINAL X'0800"
PROGRAM X12000°

226

Page of SH20-1047-4
Revised April 11, 1973

By TNL SN20-9012
Table 6. File Control
| | | TYPE| | | i
| TRACE]| | OF | |
| ID |REGISTER 14| REQ| TRANSACTION ID | FIELD A | FIELD B |
J

REQUEST CODE FROM
TCAFCTR OR TCAFCRC

X1F51 X'80' (GET)
X'84' (GET W/UPDATE)
X'40' (PUT)
X'44¢ (PUT W/NEWREC)
X'20" (GETARER)
X'28' (GETAREA W/INITIMG)
X'10' (RELEASE
: or ESETL) Data set name from TCSFCDI
£i1l fields A and B
X'CO' (OPEN)
x'Eb' (CLOSE)
X'FO' (LOCATE)
X*A0' (SETL)
X'BO' (GETNEXT)

X'A4' (RESETL)

227

‘Page of SH20-10474
Revised April 11, 1973

By TNL SN20-9012
Table 7. Transient Data.Control
{ | | TYPE| | 1 |
| TRACE| | OF | | | |
| ID |REGISTER 14| REQ{ TRANSACTION ID | FIELD A | FIELD B |
L } []
REQUEST CODE FROM
TCATDTR OR TCATDRC
X'F6! X'80' (GET) Not used Not used
Xtu0o' (PUT) Data address Destination ID
from TCATDAA from TCATDDI
X120 (FEOV) Not used Not used
X*t10? (LOCATE) Not used Not used
X'04' (PURGE)
X'88" (GET) Issued by the Asynchronous
Transaction Control program
X'48t (PUT) (DFHATP)
Table 8. Temporary Storage Control
! | | TYPE] ({ |
| TRACE] | OF | [|
| ID |REGISTER 14| REQ| TRANSACTION ID | FIELD A { FIELD B |
1 []
REQUEST CODE FROM
TCATSTR OR TCATSRC
X'FT7 X'80' (GET)
X'90' (GET ADDRESS SUPPLIED)
X'40" (PUT) Data identification
from TCATSDY
X'48' (PUT IN MAIN)
X*'20* (RELEASE)

228

Table 9. Trace Control

| | ITYPE| S 1 |
| TRACE] { OF |
{ ID |REGISTER 14| REQ| TRANSACTION ID | FIELD A 1 FIELD B 1
|8]

REQUEST CODE

X'FD?Y Not used Number of repeated entries
(packed decimal) in Trace
Table

Byte Contents Byte Contents

X'FR! (Trace turn on) 0 CSATRMF1 0 TCATRTR
1 CSATRMF2 1 Reserved
Y'FF' (Trace turn off) 2 TCATRMF 2 Reserved
3 RESERVED 3 Reserved
Table 10. System Termination
1 i | TYPE| | | |
| TRACE] { OF | { | |
! TD {REGISTER 14y REQ| TRANSACTION ID | FIELD A i FIELD B §
L)
REQUEST CODE
X*EP* N¥ot used Not used Not used

229

Table 11. CICS~-DL/I Interface

| |
{ TRACE}
| ID | REGISTER 14

| TYPE |
{ oFr |
i

| REQ TR

i
ANSACTION ID} FIELD A FIELD B

X'F8!

230

REQUEST CODE

from TCAFCTR

Bit 0

Bits 1~2

Bits 3-6

Bit 7

CALL type PCB address
from
TCADLLAN from TCADLPCB

O0ff - DFHFC
Oon - CALL or CALLDLI

00 - Assembler language
01 - ANS COBOL
10 - PL/T

Not used
Oon - Storage was acquired to build

CALLDLI parameter list or SSA list
in DFHFC macro instruction

APPENDTIX A: EXECUTABLFE CICS PROGRAM EXAMPLES

This section contains an executable application program that performs
a limited message switching function; that is, data collection, message
antry, and message retrieval. The source coding is written in Assembler
lanquage, ANS COBOL, and PL/I. :

s ok e o oo e ol oo ok o o sl s ok o sl o e s s e st ok ook ok ok e ok o s 3k e o e ot ook ok e ok o o ok ook o ok ok o o o s ok o ok ok sk ke ke ke
ASSEMNMNBLTER EXAMPLE PROBLEM
3 o st e o ool oot o ool o o e sl ok sl ofoje s sk e ol s sl sk st ok ok ok o sk oo s ol sl o e o ook o e ke ok e o ok ok s s ok ok ok s ol ok oot ok o
* TTITLE YCICS MESSAGE SWITCHING DPROGRAM EXAMPLE! *
DFHCOVER
8ot o s fe ke ot s ok ol ol o ot ofe ok o s ok e st b e sk sk sl ol e ok b ke o sl ook ok skl ol stk ok sk ok o e ok ok ook o ot ol ok o ke okl e ke ofe okl sfeok ok
* X Xk % APPLICATTION PROGR®RAMNM * ok koK
St 3 e o o ool o ok o 3k o e ko kol ok sl o ool o sl o oo o o 3o sk e o s e st s ke sl e e o s ofe e s e o ke ot ok o o ke ke o ok o ok ke e ok e e ok o ok

* ok ok DuUMMY SECTTIONS * % %k
3 o o o otk eoleole s s otk stk ol kot ook ol 3ol o o kol o ook o sl ok ootk ok sk st oot skl ol o o ok sk ok Sk o o kol ook ek

COPY DFHCSADS COPY COMMON SYSTEM AREA DSECT
EJECT LISTING CONTROL CARD - EJECT
COPY DFHTCADS COPY TASK CONTROL AREA DSECT
TWATSRL DS H TEMPORARY STORAGE RECORD LENGTH
DS H
TWATDDI DS CL4 DESTINATION IDENTIFICATION
TWAREATI DS CLY RETRIEVE ALL INDICATOR
TWAQEMCT DS C QUEUE EMPTY MESSAGE CONTROL IND
EJECT LISTING CONTROL CARD - EJECT
TCTTEAR EQU 11 TERM CONT TABLE TERM ENT ADR RG
COPY DFHTCTTE COPY TERNMN CONT TABLE TERM ENTRY
TIOABAR EQU 10 TERM I / O AREA BASE ADDR REG
COPY DFHTIOA COPY TERMINAL I / O AREA DSECT
TIOADATA DS 0CcL80 DATA AREA
TIOATID DS CcL4 TRANSACTION IDENTIFICATION
DS C DELTIMITER
TIOARRI DS 0CL6 RESUME REQUEST IDENTIFICATION
TIOARATI1 DS 0cL3 RETRIEVE ALL INDICATOR 1
TIOADID DS CL4 DESTINATION IDENTIFICATION
TIOASSF DS ocLu SUSPEND STORAGE FACILITY TIDENT
DS C DELIMITER
TIOAMBA DS oc TERMINAL MESSAGE BEGINNING ADDR
TIOARAI2 DS CL3 RETRIEVE ALL INDICATOR 2

o 3 e o ole ok o o e 3 e e ok e ofe o sde sk e ool ol ok e ok ok e e ok o s o ale o ok ok e ok e ok ok ke e ok ok e e ofe ok ok Sk ok ke e ok ek e ke e e e e e afe sl e o e

SPACE 8 LISTING CONTROL CARD - SPACE 8
TDIABAR EQU 9 TRANS DATA IN AREA BASE ADDR RG

COPY DFHTDIA COPY TRANS DATA INPUT AREA

EJECT LISTING CONTROI, CARD - EJECT

o o sk o Sk o o o o o o s o sk sleoe ol ol ok ook e ofe e ok ok o o ok sk sk ode ol e e s s sk al s oke e e e ek o S e e e ok e e e ok e e e o o ok ek ok ok ok

* % %k %

APPLICATTION

PROGRAMN * % % X

e 3 3 e ok % sk ok s o o ok s e ok s o Ak o o o8k o ke ok e o o o ok o ok ok sk o o ool o ok ol ok ok o Sk ok o ok e g ok sk ol o sk ok ek ok e e e de e e ok ok ek ok e

CTCSATP CSECT CONTROL SECTION - APPL TEST PGM
USING *,3 USING REGISTER 3 AT *
LR 03,18 LCAD PROGRAM BASE REGISTER
B ATPIDPIN GO TO INIT PROG INSTR ENTRY
s o ook o ook s o ok o ok ok o ok ol ol 3 o o ok i e o ok o o ok o ok o ok sk ok ok ok sk ook e sk e ok s e e s ok o ot o S ok e o ok o ofe ol e ok ok e ek ok dlesk ok ok
EJECT LISTING CONTROL CARD - EJECT
o 3 e ok e e e o e o o o ok e 3 s o o ofe o o s ol o ok sk ok o vk e ok ok ok ok ok ok ofe ok o ok ok s ok e Sk ok e o ok ok sk ok Sk ok ok ke ol s ke s o ok ok o ok ok e ok ok ok
* ok % DECLARATIVES * ok k.

*****#**************#*****#**##*#*****************#*****#**************
MCPDIEM DC Y (MCPDEML-U4) TERMINAL MESSAGE LENGTH
DC Y (0)

rC X115 NEW LINE SYMBOL CONSTANT

231

DC 08x* 17" HARD COPY TERM IDLE CHARACTERS
DC C*DESTINATION IDENTIFICATICN ERROR - PLEASE RESUBMIT'

DC Xt15¢? NEW LINE SYMBOL CONSTANT
MCPDEML EQU *-MCPDIEM TERMINAL MESSAGE TOTAL LENGTH
o ok ook ek ool ol sfeote e s bt teoliole ol e oo sk ool sk s e s o ok o ok s ok s o ook oe ok sk e o ok st o e oo e s e ok s ke ok sk okl ok ok o
30k ook ok o oo o ook ook o ok ok ol ol kol e st s ookl 3k o ok o e o ofe ook o ok ok ok ok o sk ook o ok ok o okdlok ook skokok ok skl ok ok
* DATA COLLECTTION *
ke ok e e 3K o e o o o o S o o e o o oo s e o o o o o o o st ok o oo o ool ok o o ok o ke o ook e ok o o ok e ook ok ok ok ook ok okokokok
TCPDCAML DC Y (L'DCPDCAMD) DATA COLL ACKNOWLEDGEMENT LEN
pC H'O!
LCPDCAND DC C' DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BE*
GIN A DATA COLLECTION ACKNOWLEDGEMENT
DCPEODML DC Y(L*DCPEODMD) END OF DATA MESSAGE LENGTH
DC HYQ?
LCCPEODMD DC C' THE DATA HAS BEEN RECEIVED AND DISPATCHED TO THE DESI*
GNATED DESTINATION ¥ END OF DATA MESSAGE
DCPEOVML DC Y (L'DCPEOVMD)
DC H'O?
DCPEOYMD DC C' END OF VOLUME REQUEST HAS BFEN RECEIVED ¢
DCPSRAM DC Y (DCPSRAL-4) TERMINAL MESSAGE LENGTH
DC Y (0)
DC X' 15¢ NEW LINE SYMBOL CONSTANT
DC 08xv17¢ HARD COPY TERM IDLE CHARACTERS
DC C'DATA COLLECTION SUSPENSION HAS BEEN REQUESTED!
DC X115¢? NEW LINE SYMBOL CONSTANT
DCPSRAL EQU *-DCPSRAHM TERMINAL MESSAGE TOTAL LENGTH
DCPRRAM DC Y (DCPRRAL-4) TERMINAL MESSAGE LENGTH
DC Y (0)
DC X'15¢ NEW LINE SYMBOL CONSTANT
DC 08xvY17?" HARD COPY TERM IDLE CHARACTERS
DC C'DATA COLLECTION RESUMPTION HAS BEEN REQUESTED AND IS °?
DC CYABOUT TO BEGIN'
DC Xt15¢ NEW LINE SYMBOL CONSTANT
DCPRRAL ECU *-DCPRRAM TERMINAL MESSAGE TOTAL LENGTH
ok ook ook ook ookl sl sl ok ok ok o sk sk ok ok oK ook ok bk kol R o ok sk ol ok sl ook sk ok ok ook oo kol ol skokok deokoleok s ko
SPACE 4 LISTING CONTROL CARD - SPACE 4
5 s e ol sk ot e ot ok o s o ok ook ok ok s ok sl o o o o ok ok ot o ok sk sk ok e o s ok o oo o e e ok o s ok ok sk ook o s ek e ok ok okt ok
* MESSAGE ENTRY *
35 o 3ok s oo ot o o s ok o sk ol ool e olobe ok ok o ok o e ok o ok ok oo o ok o e ook ok sk ook s ool ootk ok sk ook ok ok Kok ok ok
MEPMEAML DC Y (L'MEPMEAMD) MSG ENTRY ACKNOWLEDGEMENT LNGTH
DC H'O!
MEPMEAMD DC C' YOUR MESSAGE HAS BEEN RECEIVED AND DISPATCHED TO THE *
DESIGNATED DESTINATION ! MESSAGE ENTRY ACKNOWLEDGEMENT
e e e s ook e o o o o o e ok o s o o ol o oo s s o ok ok o o ot ok ot e e o e ok ook o ok ok ok ok o o ook o sk okl ok sk kel ok sk Rk ko ko
SPACE 4 LISTING CONTROL CARD - SPACE 4
e e o o st ok o s i ook o sk ot ok s ot o ok ol o ok sk ook ok sk ok ok s ok ok sk ook o ok o sk s sk ok e o sk ok ok sk ok ok ek ok ok ke kokok
* MESSAGE RETRIGEVAL *
st ek s e odeoleofe e stk sl oo s s ok sk skl sl sk e ol ookl ol ol ook ok ok ok ook ol ok ok alokok ok ok ok ok okok ok skok ok ks ook ok
MRPNMMM DC Y (MRPNMML-4) TERMINAL MESSAGE LENGTH
pC Y (0)
DC X'15¢ NEW LINE SYMBOL CONSTANT
DC 08x*17? HARD COPY TERM IDLE CHARACTERS
DC C'THERE ARE NO MORE ¢
TC CY'MESSAGES QUEUED FOR THIS DESTINATION?!
DC Xt 15¢ NEW LINE SYMBOL CONSTANT
MRPNMML ECU *-MRPNMMM TERMINAL MESSAGE TOTAL LENGTH
MRPNMQM DC Y (MRPNQML-4) TERMINAL MESSAGE LENGTH
DC Y (0)
DC Xv15¢ NEW LINE SYMBOL CONSTANT
DC 08x'17¢* HARD COPY TERM IDLE CHARACTERS
TC C'THERE ARE NO MESSAGES QUEUED FOR THYS DESTINATION!
DC Xt 15¢ NEW LINE SYMBOL CONSTANT
MRPNQMYL EQU *-MRPNMQHM TERMINAYL MESSAGE TOTAL LENGTH
3 o 3k ok sk ook ok ok sk ook sk oot ok sk ol ok st o s o e o sk o s o e s ot oo sk s o ik ok sk s ol ok o ok ok o ool ook o e ok sk ok o ok okok ok
EJECT LISTING CONTROL CARD - EJECT

232

o e 3 3 3 e e e e ok e ke o ol s e ok e sk s o sk s sk sk s ofe sk she ofe o s ke e e e s stk e sk ol s e e ol o s st ok ok o sk ok o o o ol ok ok ol ok e ok ok o ok o ok ok

* x % IMPERATTIVES * % %
3 o ook ook ok sk ok ook o ke ol e st s ke ol oK s ol o ke o ke kot ofe s ok ol e s st ke ok o ke sk e sk o o e s ol o b o e o o e e ok ok ko ke ok
* % * K
3 5 oo o s ot o ke oo e ko e s sl e ok s ol e ook ok ol ot ksl ksl st s ok skt ok o ok sk e s sk e ok ol o oo ok o oe ot sk ok o sk sk ok o
DS 0D STORAGE ALIGNMENT - DOUBLE WORD
TC CL32'MESSAGE CONTROL PROGRAM!
ATPTPIN DS 0D INITIAL PROGRAM INSTRUCTION ENT
L TCTTEAR, TCAFCAAA LOAD TERM CONT AREA ADDR REG
L TIOABAR, TCTTEDA LOAD TERM T / O AREA ADDR REG
CLC =C'CSDC', TIOATID CCMPARE TRANSACTION IDENT
BE ALPDCPN GO TO DATA COLLECTION PROG IF =
CLC =CYCSME', TIOATID CCHPARE TRANSACTION IDENT
BE ALEMEPN GO TO MESSAGE ENTRY PROG IF =
CLC =CYCSMR', TIOATID CCMPARE TRANSACTION IDENT
BE ALEMRPN GO TO MESSAGE RETRIEVAL PROG
DF¥HPC TYPE=ABEND, D¥HPC - TYPE = ABEND *
ABCODE=AAPT DFHPC - ABCODE = AAPT
EJECT LISTING CONTRCL CARD - EJECT
ok ook o ok sk o ok ok ok ok o o o sl o o s skl ol ol ok ol ok o sl ot ok ok ok sl o ol o s ot st ol e sk ok ok ok ok ol s ke ok ook s R okokok ok K
* % APPLICATION LOGTIC * %k
0 s ot ek st e ot oo ok oot sk ok ool ook st ke ol ol ook e ke ok e ke ok o o o s ke et ook o skl e o o ol o s skl ko o ke ok skl e ke
* % DATA COLLECTTIOVN * %
0 st ok o o ok ok oot ofoRok o ool ok oo o ot sl o oo ol o o otk e ool ol ol ot ot o s ol o o e sl ok ol o ok o ok ol ok ol ke s o ke ok ek o e
nC CL32'DATA COLLECTION PROGRAM! ‘
oh e ek sk oot ok ok ok o oo sk ook ofooleol ook ool ok ok ook ok ok s ookl oot ok ok kol bl ok ook ool ok koo kol ok ok
ALPDCPN DS 0H DATA COLLECTION PROGRAM ENTRY
CLC =C'RESUME',TIOARRI COMPARE FOR RESUME REQUEST
BNE DCPRRBN GO TO RESUME REQUEST BYPASS
Mvce TIOATDL{DCPRRAL) ,DCPRRAM MOVE TERMINAL MESSAGE TO OUTPUT
MVC TCATSDI (4) ,=C*CSDC! MOVE TEMP STRG DATA IDENT
MvC TCATSDI+4 (4),TCTTETY MOVE TEMP STRG DATA IDENT
DFHIS TYPE=GET, DFHTS - TYPE = GET *
TSDADDR=TWATSRL, DFHTS - T S DATA ADDR = TWATSRL*
NORESP=DCPRRNR, DFHTS - NORMAL RESP = DCPRRNR . *
RELEASE=YES DFHTS - RELEASE = YES
DFHPC TYPE=ABEND, DFHPC - TYPE = ABEND %
ABCODE=ADCR DFHPC - ABCODE = ADCR
TCPFEQV EQU * FORCED END OF VOLUME ROUTINE
DFHTD TYPE=FEOQOV ISSUE TRANSTIENT DATA MACRO

MVC TIOATDL ((4+L'DCPEOVMD)) ,DCPEOVML
DFHTC TYPE= (WRITE)

B RETURN
oo o oo oot ool ok o oo ok ek ol o ook ook skt s o ot o ot e ol s o ool sk ook oot ool e ke e s ot ok st s ook Skt e sk ok ok ok
DCPRRBN EQU * RESUME REQUEST BYPASS ENTRY
MVC TWATDDI,TIOADID MOVE DESTINATION IDENTIFICATION
MVC TCATDDI,THATDDI
CLC TIOAMBA (4) ,=C*FEOV!? CHECK FOR FORCED END OF VOL REQ
BE DCPFEOV BRANCH TO END OF VOLUME ROUTINE
MVC TIOATDL({ (4U+L*DCPDCANMND)),DCPDCANML
DCPRRNR EQU * RESUME REQUEST NORMAL RESPONSE
DFATC TYPE=(WRITE) DFHTC - TYPE = WRITE .
DFHTC TYPE=(READ) DFHTC - TYPE = READ
o ok o 3 o o ofe e ot oot ot st sk ol oeoke st st st s s ok ofe e o st st ok oot o stk st s s sk el sk ot ok oot e sk ok ok ok ookl sk sk ok ok ek
SPACE 4 LISTING CONTROL CARD - SPACE 4§
LCPTEWN DS OH TERMINAL EVENT WAIT ENTRY
DFHTC TYPE=(WAIT) DFPHTC - TYPE = WAIT
L TIOABAR,TCTTEDA LOAD TERM I / O AREA ADDR REG
CLC =C'DUMP', TIOATID
BE DCPDPTS GO TO DUMP TRANSACTION STORAGE
CLC =C'EQOD!,TIOADBA COMP DATA FOR EOD INDICATION
BE DCPEXIT GO TO EXIT IF EQUAL
CLC =C*SUSPEND', TIOADBA COMPARE FOR SUSPEND REQUEST
BNE DCPBSRBN GO TO SUSPEND REQUEST BYPASS
MVC TWATSRL,=H'32" MOVE TEMP STRG RECORD LENGTH

233

DCPSRMB

LCCPSRAB

DCPSRNR

DCPSRBN

MOVE TEMP STRG DATA IDENT
MOVE TEMP STRG DATA IDENT

GO TO MAIN STRG FACILITY BYPASS
DFHTS - TYPE = PUT *
DFHTS - T S DATA ADDR = TWATSRL*
DFHTS = STOR FAC = MAIN

GO TO AUX STRG FACILITY BYPASS
MAIN STORAGE FACILITY BYPASS
DFHTS - TYPE = PUT , *
DFHTS - T S DATA ADDR = TWATSRL*
DFHTS - STOR FAC = AUXILIARY

AUX STORAGE FACILITY BYPASS

DFHTS - TYPE = CHECK *
DFHTS - NORMAL RESP = DCPSRNR
DFHPC - TYPE = ABEND *

DFHPC - ABCODE = ADCS

SUSPEND REQUEST NORMAL RESPONSE
MOVE TERMINAL MESSAGE TO OUTPUT
DFHTC - TYPE = WRITE

GO TO RETURN ENTRY

SUSPEND REQUEST BYPASS ENTRY
MOVE DESTINATION IDENTIFICATION
RESET TERMINAL DATA ADDRESS
DFHTC -~ TYPE = READ

LOAD TERMINAL DATA LENGTH
INCREMENT TERMINAL DATA LENGTH
STORE TERMINAL DATA LENGTH

TYPE OF REQ - PUT TRANS DATA *
TRANSIENT DATA ADDRESS *
NORMAL RESP CODE ENTRY ADDRESS *
DESTINATION IDENT ERROR ENTRY
DFHPC - TYPE = ABEND *
DFHPC - ABCODE = ADCP

st ok ok 3ol ol ok o 3 ok ook o e ok s ook ok ol ol 3k ok o ook ok s oo o i sk ool s o sk ok s o o ode s o s el o sl ok ok ok ok sk ok o o e sk ok ok e o

DCPNRCN

NORMAL RESP CODE ENTRY ADDRESS
STORE TERM I / O AREA ADDRESS
DFHSC - TYPE = FREEMAIN

GO TO TERM EVENT WAIT ENTRY

% o ok o ok ok K o 3k o ok ok o o ok ak ok 3 ok ok sl ok ke ok afe ok sk ok 3 Sk e e ofe Sk ol A sk ek Sl S s ofe sl ok o ok e ok ok ok ol ok e ok ok ok ko ok o A e sl e Ak ke

LISTING CONTROL CARD - SPACE 4

e e v k e e ofe ko o ofe ek e e e e 3k e e e s ok e e ok o dfe sk Sk 3k 3k 3 ok e o e e ok she e e 3k e ol e 3k e sk afe ok o v Sk sk ke S ok ak e e o 3k kK o ok ok ok ok %k

DCPDPTS

DUMP TRANSACTION STOR ROUTINE

CLEAR TERMINAL DATA AREA ADDR

MYC TCATSDI (4) ,=C'CSDC!
MVC TCATSDI+U (4),TCTTETI
CLC =C'MAIN',TIOASSF
BNE DCPSRMB

DFHTS TYPE=PUT,

' TSDADDR=TWATSRL,
STORFAC=MATIN

B DCPSRAB

EQU *

DFHTS TYPE=PUT,
TSDADDR=TWATSRL,
STORFAC=AUXILIARY

EQU *

DFHTS TYPE=CHECK,
NORESP=DCPSRNR

DFHPC TYPE=ABEND,
ABCODE=ADCS

EQU *

MVC TIOATDL(DCPSRAL),DCPSRAM

DFHTC TYPE= (RRITE)

B RETURN

EQU %

MVC TCATDDI, TWATDDI

XC TCTTEDA,TCTTEDA

DFHTC TYPE= (READ)

LH 14, TIOATDL

LA 14,4 (0, 14)

STH 14,TIOATDL

DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=DCPNRCN,
IDERROR=DCPDIEN

DFHPC TYPE=ABEND,
ABCODE=ADCP

DS 0H

ST TIOABAR, TCASCSA

DFHSC TYPE=FREEMAIN

3 DCPTEWN

SPACE 4

EQU *

DFHDC TYPE=TRANSACTION,DMPCODE=TRAN

XcC TCTTEDA,TCTTEDA

DFHTC TYPE=(READ)

B DCPNRCN

RETURN TO MATINSTREAM LOGIC

e o e ok s e e o o o e i o ode e o o o o 3 e el s ofe ok o ol o sl o o e ek ok st ol oo ok e ok 3k ok sl ok o ot ko sk s sl kol sk ok s ookl ke ok

SPACE 4
B S 3k s sk e s o ok ol ke ok ok o e o e o ok ofe e sfe sl sl sk ofe Sk ok ok 2k 3k ok sk s e o ol ok e o o s o e o e S 3k e o ok s o ke e ok ok ode ok ok e e ofe e e el ek ek

LCCPEXIT

EQU
MVC

B

*

EXIT

TIOATDL ((4+L'DCPEOCDMD)) ,DCPEODML
DFHTC TYPE= (WRITE)

RETURN

DFHTC - TYPE = WRITE
GO TO RETURN ENTRY

ot ok sk o e oe e ot ok sk ok ok el ool s skl sk e sl e ol o e o o ok o sk o oo o o kot i s oo ol sk e sk o e ok ok ok ok skl ok ol ok ok ke skkskok ok
EJECT LISTING CONTROL CARD - EJECT

3 e st s o e o o e s o o ool o o ol o o e Sl o ok ool o e kol kot ok o el ok ok ok sk sl sk s o sk ol ko o ok ook ok ek o sk ok ok ok ok ok

* M ESSAGTE ENTRY *

3k ok sk o ke ok o o ol ook e ot ool o o e s o s ool sl S ot o o ook e e o o o s sl e sk sk s e ok sl s e sl sk ok ook st s sl s o ok ok ol skl sk ok

DC CL32YMESSAGE ENTRY PROGRAM?
5k ok o ok ol ok ok ok sk o ok ok o ke ok sk s e st s s ke sl ok o ok el o o e ot ol sk sk ok st o ke ok s ok ok ook o ok ko ek ko o K skok ek ok

ALPMEPN DS) MESSAGE ENTRY PROGRAM ENTRY
MvcC TCATDDI,TIOADID MOVE DESTINATION IDENTIFICATION
MVC TIOATID, TCTTETI MOVE SOURCE IDENTIFICATION
LH 14, TIOATDL LOAD TERMINAL DATA LENGTH

234

LA 14,4(0,14) INCREMENT TERMINAL DATA LENGTH

STH 14, TIOATDL STORE TERMINAL DATA LENGTH
DFHTD TYPE=PUT, TYPE OF REQ - PUT TRANS DATA *
TDADDR=TIOATDL, TRANSTIENT DATA ADDRESS %
NORESP=MEPNRCN, NORMAL RESP CODE ENTRY ADDRESS *
IDERROR=MEPDIEN DESTINATION IDENT ERROR ENTRY
DFHPC TYPE=ABEND, TYPE OF REQ - ABEND PROG CONT *
ABCODE=AMEP ABNORMAL TERMINATION CODE
ke e ok ookl ool ok ot sk e ok ke ool o o ok sk ok ok o o o s okt e ot ok o ok et st st o e s oo e e ook st s o e ok e sk e o e sk ek ok e ok
MEPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS
MVC TIOATDL((4+L'MEPMEAMD)) ,MEPNEAML :
DFHTC TYPE=(WRITE) DFHTC - TYPE = WRITE
B RETURN GO TO RETURN ENTRY
8 s st e ok e o st e oot o Sk ok oo s ot ok s e st ook oo o s ool ok ke o o st s o e ok oo o o o el ok ol e ok o s ool ok st e ok ke ok o ok sk ook sk o
EJECT LISTING CONTROL CARD EJECT
4 o s o ook o ok st ok ot skl ook o ok ol o ol ool ook ol sk ok s sk o sk skt oo s e o kol ok e s sk ok o sk ok o s ok oo ook ok ok ok
* MESSAGE RETRTIEVDAL *

3 o ok S 3 ok e sde ol sk ok sk ok ok ok ok ok s s ok e s o sk ol e skl e o ook e sl o ok sk sk St ok sk ok s ok e e s sk ol ok o o ofe ok ok ok ok ok ofe ol e o ok oo ok e e

nc CL32'MESSAGE RETRIEVAL PROGRAMN'
30 e 30 ook e e et o sl kol o s kot ol ool ook ookl sk ol koo ok ool i oo ok ok okokolokokolok okl kokok

SPACE 4 LISTING CONTROL CARD - SPACE 4
e i e Sk e e S ok 3k e ok sk sk s ool ok ol o o e ke sie s s ok o o dk ok o ok e sl sl ok o o ok ok ek e ok ok ok ok e sk de ok sk e ol o ke e e ok e ok e sl ok e kol ke ok
ALPMRPN DS 0H MESSAGE RETRIEVAL PROGRAM ENTRY
MVC TWAREAI,TIOARATI2 MOVE RETRIEVE ALL INDICATOR
MVC TWATDDI,TCTTETI MOVE DESTINATION IDENTIFICATION
CLC =CYALL',TIOARATI1 COMPARE ALL INDICATOR FOR ALL
BNE MRPAI1B
MVC TWAREAI,TIOARAI? MOVE RETRIEVE ALL INDICATOR
B MRPDEBN
MRPAT1B DS CH ALL INDICATOR 1 BYPASS
CLC =CLU4' ', TIOADID COMPARE DEST IDENT TO BLANKS
BE MRPDEBN GO TO DEST ID = BL IF EQUAL
MVC TWATDDI,TTOADID MOVE DESTINATION IDENTIFICATION
MRPDEBN DS 0H DESTINATION IDENT EQUALS BLANKS
% st o s sk oo e o s o o ok st e ok e sk ok e o o sk sk sk o ok ofe sk o ok s 3k kol ok ok sk ol ol dealk ofe o o ol ok o ol o ok ok o o ok sk s ok ok ke ok ok Kok ke sk sk ok
SPACE 4 LISTING CONTROL CARD - SPACE 4
e ke o S Sk o ok o ok ok o ok sk sk e ok s ok ofe e ok ok ke ok ke sk o sk sk o ok s ook sk e ok sk ok e je ok ok o 3k o ol o ok o ok ok ok ok o kol 3ok o dfe e ik e e ok e ok o ok
MRPGTDN DS oH GET TRANSTENT DATA ENTRY
MVC TCATDDI, TWATDDI MOVE DESTINATION IDENTIFICATION
DFHTD TYPE=GET, DFHTD - TYPE = GET DATA *
NORESP=MRPNRCN, NORMAL RESDP CODE ENTRY ADDRESS *
QUEZE RO=MRPQERN, DESTINATION QUEUE EMPTY ENTRY *
IDERROR=URPDIEN DESTINATION IDENT ERROR ENTRY
DFHPC TYPE=ABEND, TYPE OF REQ - ABEND PROG CONT *
ABCODE=AMRP ABNORMAL TERMINATION CODE
9o ook o sk ofofe o ot o e sk ol ook ol o ool o ol ot o oot s sk sk o o ol ok ok sl ot ok sk e o o e ol ok o ok ook ok ot o o sk o ook e st ok o ok ek ok e ok
SPACE 2 LISTING CONTROL CARD - SPACE 2
3k o Sk o e o ofe ok o ke ko ok e sk o Sk ok o kol e Fe ok % ok sk 3k ok o ok ok ok e ol ok sk ok ok ok o o 3k ok e ik ok dfe ok Sk sfe ok sk ok ode ke ok sl o ok ofe ok ok sk ok ok sk ok
MRPNRCN DS 0H NORMAL RESP CODE ENTRY ADDRESS
L TDIABAR, TCATDAA LOAD TRANS DATA AREA ADDRESS
DFHTC TYPE= (WATIT) DFHTC - TYPE = WAIT
MVC MRPMTDI+1(1),TDIAIRL+1 MOVE DATA LENGTH TO MOVE INSTR
MRPMTDI MVC TTOATDL(0) ,TDIAIRL MOVE TRANS DATA TO TERM AREA
LH 14, TIOATDL LOAD TERMINAL DATA LENGTH
SH 14 ,=H4" SUBTRACT 4 FROM LENGTH
STH 14, TIOATDL STORE TERMINAL DATA LENGTH
DFHTC TYPE=(WRITE, DFHTC - TYPE = WRITE *
SAVE) DFHTCT - SERV REQ = SAVE AREA
CLC =CL3'ALL',TWAREAL CCMPARE RETRIEVE ALL IND TO ALL
BNE RETURN GO TO RETURN ENTRY IF NOT FQUAL
MVYI TWAQEMCI,X'FF!' MOVE MESSAGE CONTROL INDICATOR
B MRPGTDN GO TO GET TRANSTIENT DATA ENTRY

235

8 e e 3 s o o o oo ook sl e o sl sk ol ok ook e o s ok e ot s stk ok e sttt ok e ok ok ik s ok sk ol ok i ook ok skl ok ok okkok ok ko

SPACF 4 LISTING CONTROL CARD - SPACE &4
3 ok s s ook o e s ot sk ok sk sk s e ok ol ke sk ok ok s ok ok s ook ok s ol sk sl ol o ot stodoioot skl ke ok ok ok skokskok ok ok skokok ok
MRPQERN DS . 0H DESTINATION QUEUE EMPTY ENTRY

CLI TWAQEMCI , X'FF?' COMPARE MESSAGE CONTROL IND

BE MRPNMQMB GO TO NO MSG QUEUED MSG BYPASS

MVYC TIOATDL (MRPNQML) , MRPNMQM MOVE TERMINAL MESSAGE TO OUTPUT

B MRPWRCS . GO TO WRITE & RETURN TO C S
MRPNMQMB DS 0H . NO MESSAGES QUEUED MSG BYPASS

DFHTC TYPE= (WAIT) DFHTC - TYPE = WAIT

Mvc TIOATDL (MRPNMML) ,MRPNMMM MOVE NO MORE MESSAGE TO T O A
e oo o o ook o o ok ok ok ok ook ok stk ol 3 ok ook ok o skl ok okt el i ek e ok o sk kool ok stk ko akok ok ook dotekokokokok

MRPWRCS DS 0H WRITE AND RETURN TO CONT SYS
DFBTC TYPE=(WRITE) DFHTC - TYPE = WRITE
B RETURN GO TO RETURN ENTRY
oo o ook ok ook ok ok o ok ool oK ok oK o ok 3 ot i s e ok ok ok ok o sk ol o e e ot e sl o s e sk s s ol i st o ol s ok o ok sk ek el o okesleale e ok
EJECT LISTING CONTROL CARD - EJECT
3 o o s ot e o o ook o s s ol o oo ot ook o ok sl o ot o o o o e ool ol s ok okl o ok ook ot ol o s o oo ok ok ok ok ook s e e sl e e e e
* % * %
oo kot o oo ok sk skl ot o sk ol ool ok st stk o ok ok o e s e sl ootk e sk ok o sk o ok sk ol s ok ol ok ok st ek ook ok ok e ok
DCPDI®N DS 0H DESTINATION IDENT ERROR ENTRY
ST TICABAR, TCTTEDA STORE TERM I / O AREA ADDRESS
MEPDIEN DS OH DESTINATION IDENT ERROR ENTRY
MEPDIEN DS 04 DESTINATION IDENT ERROR ENTRY
MVC TIOATDL (MCPDEML) , MCPDIEM MOVE TERMINAL MESSAGE TO OUTPUT
DFHTC TYPE=(WRITE) DFHTC - TYPE = WRITE
oo o o o o s s ok ool o ko e ook ol o e ol ol sk ok o ook o ook sk o o el o s sk o e o i i ook e o ik o okl o sk o o sk ok ok ok sk ek ok ok ok
SPACE 4 LISTING CONTROL CARD - SPACE &
RETURN DS 0H RETURN TO CONTROL SYSTEM
DFHPC TYPE=RETURN D¥YHPC - TYPE = RETURN
stk ook ok ook skl oo e ok ok ool o ook ok ok ok ok e s o ok ok o okl ok ol ok ik s s oo o s o ok e st ok ik ok o s ok e ok e ok ok ok ok skok ok e
LTORG * LITERAL ORIGIN AT *
ok s ook ook o dok ok ook okl ook ook ool s ool oot ookl e i ok et sk e et e sk o sk sk o ook ok s e sk el sk ok sk ook ok ok
END CICSATP END OF ASSEMBLY - APPL TEST PGN

4 ok ok ook sk ok ok o ook o ok ool ol kel sk ok ok ok 0ok ok ot st o ok ok otk ol ok sk ko ok sl oK e ook ok o K Kok ok K oK K ok ok ok

CO0OBOL EXAMNMPLE PROBLEMN
e et ke ok ok ok ok sk ok Skl ok s s o sk sk ok ok ol ofe e s ke ko sk s s s s ook kool ok ook s ko o ok ok ok ok ok ol ok ok ok ook ok

DFHCOVER
IDENTIFICATION DIVISION.
PROGFAM-TD.
'CICSATPR!.
ENVIRONMENT DIVISTON.
DATA DIVISION.
WORFING-STORAGE SECTION.
01 MESSG1.
02 MCPDIEM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 60.
02 FILL1 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO.
02 MESSAGE1.
03 FILL2 PICTURE X VALUE TS ' ',
03 FILL3 PICTURE X (8) VALUE IS ALL * ¢,
03 FILLY4 PICTURE X (50) VALUE IS
'DESTINATION IDENTIFICATION ERROR - PLEASE RESUBMITC.
03 FILL5 PICTURE X VALUE IS ' v,
01 MCPDEML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 64.
01 DCPDCAML PICTURE 99 USAGE TS COMPUTATIONAL VALUE IS S8,
01 DCPDCAMD PICTURE X(58) VALUE IS
* DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BEGIN °.
01 DCPEODML PICTURE 99 USAGE TS COMPUTATIONAL VALUE IS 73.
01 DCEBEODMD PICTURE X (74) VALUE IS ' THE DATA HAS BEEN RECEIVED
- *AND DISPATCHED TO THE DESIGNATED DESTINATION ',
01 MEPMEAML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 77.
01 MEEMEAMD PICTURE X(77) VALUE IS 'YOUR MESSAGE HAS BEEN RECEIV
- 'ED AND DISPATCHED TO THE DESIGNATED DESTINATION .
01 MESSG2.
02 MRPNMMM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 64.
02 FILL11 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO.
02 MESSAGE2.
03 FILL21 PICTURE X VALUE IS ' v,
03 FILL31 PICTURE X(8) VALUE IS ALL ' ',
03 FILL41 PICTURE X(54) VALUE IS 'THERE ARE NO MORE MESSAG
- 'ES QUEUED POR THIS DESTINATION'.
03 FILLS1 PICTURE X VALUE IS ' °,
01 MRPNMML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 68.
01 MESSG3.
02 MRPNMQM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 59.
02 FILL12 PICTURE 99 USAGE IS COMPUTATIONAL VALUF IS ZERO.
02 MESSAGE3.
03 FILL22 PICTURE X VALOE IS ' ¢,
03 FILL32 PICTURE X(8) VALUE IS ALL ' ¢,
03 FILL42 PICTURE X(49) VALUE IS
'THERE ARE NO MESSAGES QUEUED FOR THIS DESTINATION®.
03 FILL52 PICTURE X VALUE IS ' °*.
01 FERENQML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 63.
LINKAGE SECTION.
.. 01 DFHBLLDS COPY DFHBLLDS.
-02 - TCTTEAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
-02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 TDIABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
01 DFHCSADS COPY DFHCSADS.
_01 'DFHTCADS COPY DFHTCADS.
.02 TWATDDI PICTURE X (4).
02 TWAREAI PICTURE X (4).
02 TWAQEMCI PICTURE S9 USAGE IS COMPUTATIONAL.
01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COPY DFHTIOA.
: 02 TIOADATA.
03 FILLER PICTURE X(89).
02 FILLER REDEFINES TIOADATA.

237

238

03 EODTEST PICTURE X(3).
02 FILLER REDEFINES TIOADATA.
03 TIOATID PICTURE X (4).
03 FILLER PICTURE X.
03 TIOADID.
04 FILLER PICTURE X (8).
03 FILLFR REDEFINES TIOADTD.
04 TIOARAI1 PICTURE X (3).
03 FILLER PICTURE X.
03 TIOARAIZ2.
04 TFILLER PICTURE X (3).
03 FILLER REDFFINES TIOARAI2.
04 TIOAMBA PICTURE X.
91 DFHTDIA COPY DFHTDIA.
02 TDIADBA PICTURE X (80).
FROCEDURE DIVISION.
ATPIPIN.
~MOVE CSACDTA TO TCACBAR.
- MOVE TCAFCAAA TO TCTTEAR.
_~MOVE TCTTEDA TO TIOABAR.
IF TIOATID = 'BSDC' GO TO ALPDCPN.
IF TIOATID = 'BSME' GO TO ALPMEPN.
IF TIOATID = 'BSMR' GO TO ALEMRPN.
DFHPC TYPE=ABEND,
ABCODE=AAPT
NOTE DATA COLLECTION PROGRAM *%*,
ALEDCPN. MOVE TIOADID TO TWATDDI.
MOVE DCPDCAML TO TIOATDL.
MOVE DCPDCAMD 'TO TIOADATA.
DFHTC TYPE= (WRITE,READ,WAIT)
DCPTFHN.
MOVE TCTTEDA TO TIOABAR.
IF EODTEST = 'EOD' GO TO DCPEXTIT.
MOVE TWATDDI TO TCATDDI.
MOVE ZEROES TO TCTTEDA.
DFHTC TYPE=(READ,WAIT)
ADD 4 TO TIOATDL.
DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=DCPNRCN,
TDERROR=DCPDIEN
DFHPC TYPF=ABEND,
ABCODE=ADCP
DCPNRCN.
MOVE TIOABAR TO TCASCSA.
DFESC TYPE=FREEMAIN
GO TO DCPTEWN.
DCPEXIT.
MOVE DCPEODML TO TIOATDL.
ADD 4 TO TIOATDL.
MOVE DCPEODMD TO TIOADATA.
DFHTC TYPE=WRITE
GO TO RETURN1.
NOTE MESSAGE ENTRY PROGRAM *%*x,
ALEMEPN.
MOVE TIOADID TO TCATDDI.
MOVE TCTTETI TO TIOATID.
ADD 4 TO TIOATDL.
DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=MEPBNRCN,
IDERROR=MEBDIEN
DFHPC TYPE=ABEND,
ABRCODE=ANEP
MEPNRCN.

hnn

*

3*

MOVE MEPMEANL TO TIOATDL.
ADD 4 TO TIOATDL.
MOVE MEPMEAMD TO TIOADATA.
DFHTC TYPE=WRITE
GO TO RETURNI.
NOTE MESSAGE RETRIEVAL PROGRAM #*¥*x,
ALEMREN. '
MOVE TTIOARAI2 TO TWAREAI.
MOVE TCTTETI TO TWATDDI.
IF TIOARAI1 NOT EQUAL *ALL' GO TO MRPATI1B.
MOVE TIOARAI11 TO TWAREAI.
GO TO MRPDEBN.
MRPAT 1B,
IF¥ TIOADID EQUAL ' ' GO TO MRPDEBN.
MOVE TIOADID TO TWATDDI.
MRPDEBN.
MRPGTDN.
MOVE TWATDDI TO TCATDDI.
DFHTD TYPE=GET,
NORESP=MRPNRCN,
QUEZERO=MRPQERN,
IDERROR=MRPDIEN
DFHPC TYPE=ABEND,
ABCODE=AMRP
MRPNRCN,
MOVE TCATDAA TO TDIABAR.
MOVE TDIAIRL TO TIOATDIL.
MOVE TDIADBA TO TIOADATA.
SUBTRACT 4 FROM TIOATDL.
DPHTC TYPE=(WRITE,WAIT,SAVE)
IF TWAREAYI NOT EQUAL 'ALL' GO TO RETURNI1.
MOVE 255 TO TWAQEMCI.
GO TO MRPGTDN.
MRPQFRN.
IF TWAQEMCI EQUAL 255 GO TO MRENMQMB.
MOVE MRPNMQM TO TIOATDL.
MOVE MESSAGE3 TO TIOADATA.
GO TO MRPWRCS. ’
MRPNMCMB.
MOVE MRPNMMM TC TIOATDL.
MOVE MESSAGE2 TO TIOADATA.
MRPWRCS.
DFHTC TYPE=WRITE
GO TO RETURN1.
DCPDIEN.
MOVE TIOABAR TO TCTTEDA.
MEPDIEN.
MRPDTEN. '
MOVE MCPDIEM TO TIOATDL.
MOVE MESSAGE1 TO TIOADATA.
DFPHTC TYPE=WRITE
RETURN1.
DFHPC TYPE=RETURN

* % *

239

3 ok s e o ok ok ok o sk ek ok o o o ok o ol 3k sk ok S b o 3k ok ok e e s o ol e e sde e e S ske e e S 3k ok e ke o e e ke e ok o Ak ok 3k e e e ke e o ok o e

PL/ I EXAMPTLE PROBTLEHM
s o oo oo o ok ook sk oo ol e o ok oot oot e oo o o ok ool e e st o sl sk st o s o ofe sk ok ok ok o ok sk s ok stk o ok e sk kokokok ke ok

/% PL/I EXAMPLE PROBLEM */
DFHCOVER
CTCSATP: PROCEDURE OPTIONS (MAIN,REENTRANT) ;
%INCLUDE DFHCSADS;
%INCLUDE DFHTCADS;
2 TWATDDI CHAR (4),
2 TWARFAI CHAR (4),
2 TWAQEMCI BINARY FIXED (8);
%INCLUDF DFHTCTTE;
%INCLUDE DFHTIOA;
2 TIOADATA CHAR (89);
DECLARE 1 TIOA1 BASED (TIOABAR),
FILL1 CHAR (12),
TIOATID CHAR (4),
FTLL2 CHAR (1),
TIOARAT1 CHAR (3),
FILL3 CHAR (2),
TIOAMBA CHAR (1)
I0A2 BASED (TIOABAR),
FILL1 CHAR (12),
EODTEST CHAR (3),
FILL2 CHAR (2),
TTOADID CHAR (4),
®ILL3 CHAR (1),
TIOARAT2 CHAR (3);
YTINCLUDF DFHTDIA;
2 TDIADBA CHAR (80);
DECLARF 1 MCPDEML BINARY FIXED (15) INITIAL (60);
DECLARE 1 MCPDIEM CHAR(60) INITIAL (' DESTINATION IDENTIFI
CATION ERROR - PLEASE RESUEMIT ');
TECLARE 1 DCPDCAML BINARY FIXED (15) TINITIAL (59);
DECLARE 1 DCPDCAMD CHAR(59) INITTIAL (' DATA COLLECTION HAS BEEN RE
QUESTED AND IS ABOUT TO BEGIN ');
DECLARE 1 DCPFODML BINARY FIXED (15) INITIAL (74);
DECLAR® 1 DCPEODMD CHAR (74) INITIAL (' THE DATA HAS BEEN RECIEVED
AND DISPATCHED TO THE DESIGNATED DESTINATION ');
DECLARE 1 MEPMEAML BINARY FIXED (15) INITIAL (77);
DECLARE 1 MEPEAMD CHAR(77) INITIAL (' YOUR MESSAGE HAS BEEN RECEIV
FD AND DISPATCHED TO THE DESIGNATED DESTINATION *);
DECLARE 1 MRDNMMI BINARY FIXED (15) INITTAL (64);
DECLARE 1 MRPNMMM CHAR(64) INITTAL (° THERE ARE NO MORE ME
SSAGES QUEUED FOR THIS DESTINATION ');
DECLARE 1 MRPNQML BINARY FIXED (15) INITIAL (59);
DECLARE 1 MRENMON CHAR(59) INITIAL (° THERE ARE NO MESSAGE
S QUEUED FOR THIS DESTINATION ')
ATPIPIN: TCTTEAR = TCAFCAAA;
TIOABAR = TCTTEDA;
IF (TIOATID = 'PSDC') THEN GO TO ALPDCPN;
IF (TIOATID = 'PSME') THEN GO TO ALPMEDPN;
IF (TIOATID = 'PSMR') THEN GO TO ALPMRPEN;
DFHPC TYPE=ABEND, :
, ABCODE=AAPT
DECLARE 1 CON1 CHAR (32) INITTAL ('DATA COLLECTION PROGRAM') ;
ALPDCPN: TWATDDY = TIOADID;
TIOATDL = DCPDCAML;
TIOADATA = DCPDCAMD;
DPHTC TYPE= (WRITE,READ,WAIT)

CECLARE 1

NN ENDNODNDNDNDND

DCPTEWN:
TIOABAR = TCTTEDA;
IF (EODTEST = *'EOD') THEN GO TO DCPEXIT;
TCATDDI = TWATDDT;

DCPNRCN:

UNSPEC (TCTTEDA) = 0;
DFHTC TYPE=(READ,WAIT)
TIOATDL = TIOATDL + 4;
DFETD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=DCPNRCN,
IDERROR=DCPDIEN
DFHPC TYPE=ABEND,
ABCODE=ADCP
TCASCSA = TIOABAR;
DFHSC TYPE=FREEMAIN
GC TO DCPTEWN;

DCPEXIT: TIOATDL = DCPEODML;

DECLARE 1 CON2 CHAR (32) INITIAL

ALPMEPN:

TIOADATA = DCPEODMD;
DFHTC TYPE=WRITE
GO TO RETURN;

TCATDDI = TIOADID;
TIOATID = TCTTETI;
TIOATDL = TIOATDL + 4;
DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORESP=MEPNRCN,
IDERROR=MEPDIEN
DFRPC TYPE=ABEND,
ABCODE=AMTP

MEPNRCN: TIOATDL = MEPMEAMNML;

DECLARE 1 CON3 CHAR (32) INITIAL ('MESSAGE RETRIEVAL PROGRAM') ;

TIOADATA = MEPEAMD;
DFHTC TYPE=WRITE
GO TO RETURN;

ALPMRPN: TWAREAT = TIOARAI2;

MRPAIN

" TWATDPDI = TCTTETI;
IF (TIOARAI1 +# 'ALL') THEN GO TO MRPAI1B;
TWAREAT = TIOARAI1;
GO TO MRPDEBN;

B: IF (TIOADID = ¢ ') THEN GO TO MRPDEBN;
TWATDDI = TIOADID;

MRPDEBN: MRPGTDN: TCATDDI = TWATDDI;

MRPNRCN:

MRPQERN: TF (TWAQEMCI = '11111111'B) THEN GO TO MRPNMQMB;
TIOATDL = MRPNQML;
TIOADATA = MRPNMON;
GO TO MRPWRCS;
MRPNMQMB: ;
TIOATDL = MRPNMML;
TIOADATA = MRPNMMM;
MRPWRCS :
DFHTC TYPE=WRITE
GO TO RETURN;
DCPDIEN: TCTTEDA = TIOABAR;
MEPDIEN: MRPDIEN: TIOATDL = MCPDEML;

DFHTD TYPE=GET,
NORESP=MRPNRCN,
QUEZERO=MRPQERN,
IDERROR=MRPDIEN

DFHPC TYPE=ABEND,
ABCODE=AMRP

TDIABAR = TCATDAA;
TIOATDL = TDIAIRL - 4;
TIOADATA = TDIADBA;

DFHTC TYDPE={(WRITE,WAIT,SAVE)
IF (TWAREAT # 'ALL ') THEN GO TO RETURN;
TWAQEMCI = "11111111'*B;
GO TO MRPGTDN;

TIOADATA = MCPDIEM;

('*MESSAGE ENTRY PROGRAM') ;

*3

* ¥

#*

2u1

RETURN:

DFHTC TYPE=WRITE

END;

B: CICS MACRO INSTRUCTIONS

This section lists the CICS macro instructions used to request
supervisory and data management services. These macro instructions
are written in Assembler language and, as all Assembler language
instructions, are written in the following format:

Name Operation Operands Comments

blank DFHXXXXX One or more operands
or separated by commas
symbol

The name field of a CICS macro instruction must be left blank if
the macro instruction is used in conjunction with a high-level language
(ANS COBOL or PL/T); if a label is desired for the macro instruction,
it may be placed on the card preceding the macro instruction.

The operation field of a CICS macro instruction must begin before
card column 16 and must contain the three-character combination "DFH"
in the first three positions of the operation field. Up to five
additional characters can be appended to DFH to complete the symbolic
name for the appropriate program or table. Since DFH is reserved for
CICS macro instrucitons, no other statement may begin with this three-
character combination.

The operand field of a CTCS macro instruction contains one or more
operands separated by commas. In this publication, parentheses are
used to indicate those operands where more than one applicable parameter
(keyword and otherwise) can be specified with a single use of the
operand. Where parentheses are not used, only one parameter at a time
can be specified as part of the operand; a choice must be made in the
case of more than one applicable parameter. Since a blank character
indicates the end of the operand f£ield, the operand field must not
contain blanks except after a comma on a continued card or after the
last operand of the macro instruction. The first operand on a
continuation card must begin in column 16.

%When a CICS macro instruction is contained on more than one card,
each card containing part of the macro instruction (except the last
card) must contain a character (for example, an asterisk) in column
72 indicating that the macro instruction has been continued on the
next card.

In the following listing of CICS macro instructions, default
rarameters (where applicable) are indicated by an underscore. An
asterisk in card column 72 indicates that the macro instruction is
continued on the next carad.

TASK SERVICES

DFHKC TYPE=ATTACH, *
FCADDR=symbolic address, *
TRANSID=name

DFHRC TYPE=CHAP, *
PRTY=priority value

243

DFHKC TYPE=WAIT,
DCI=SING1E,LIST,DISP,
ECADDR=symbolic address

DFHKC TYPE=ENQ,DEQ,
QARG ADR=symbolic address,
QARGLNG=number

DFHKC TYPE=PURGF,NOPURGE

STORAGE SERVICES

DFHSC TYPE=GETMAIN,
INITIMG=number,YES,
NUMBYTE=number,
COND=YES or (YES,symbolic address) or
(NO,symbolic address),
CLASS=TERMINAL,USER,TRANSDATA,TEMPSTRG

DFHSC TYPE=FREEMAIN,
RELEASE=ALL

ERCGRAM SFERVICES

DFAPC TYPE=LINK,
PROGRAM=name

DFHPC TYPE=XCTL,
PROGRAM=name

DFHPC TYPE=LOAD,
PROGRAM=name,
LOADLST=NO

DFHPC TYPE=RETUORN,
TRANSID=transaction code

DFHPC TYPE=DELETE,
PROGRAM=name

D¥HPC TYPE=ABEND,
ABCODE=value,YES

DUMP SERVICES

DFHDC TYPE=TRANSACTION,
DMPCODE=value

DFHDC TYPE=CICS,
DMPCODE=value

DFHDC TYPE=COMPLETE,
DMPCODE=value

DFHDC TYPE=PARTIAL,
LIST=TERMINAL,PROGRAM,SEGMENT, TRANSACTION,
DMECODE=value

* 3 I ¥ #

TERMINAL SERVICES

DFHTC TYPE=(WRITE, WRITEL,READ,READL,WAIT,ERASE,SAVE,OTIU,
ISCONNECT,RESET,READB,COPY,ERASEAUP, CRUFF,
PASSBK,TRANSPARENT,PSEUDOBIN, NOTRANSLATE),

DFHTC

DFHTC

DFHTC

DFHTC

FILE SERVICES

DFHFC

DFHFC

LINEADR=number,YES,

CTLCHAR=hexadecimal nunmber,YES,

DEST=symbolic name,YES,
EOF=symbolic address

TYPE=(GET,PUT,ERASE,SAVE, TRANSPARENT, PSEUDOBIN),

LINEADR=number,YES,

CTLCHAR=hexadecimal number, YES,

DEST=symbolic name,YES,
EOF=symbolic address

TYPE= (PAGE,SAVE),
LINEADR=number,YES,

CTLCHAR=hexadecimal number, vES,

DEST=symbolic name,YES

TYPE= (CONVERSE,ERASE,SAVE),

LINEADR=number,YES,

CTLCHAR=hexadecimal number, YES,

DEST=symbolic name,YES

EOF=symbolic address

TYPE=GET,
DATASET=symbolic name,
RDIDADR=symbclic address,

SEGSET=symbolic name,YES,ALL,

INDEX=symbolic name,YES,
TYPOPER=UPDATE,
RETMETH=RELREC,KEY,
NORESP=symbolic address,
DSIDER=symbolic address,
SEGIDER=symnbolic address,
NOTFND=symbolic address,
INVREQ=symbolic address,
TOERROR=symbclic address,
DUPDS=symbolic address,
NOTOPEN=symbclic address

TYPE=PUT,
RDIDADR=symbclic address,
SEGSET=YES,
TYPOPER=NEWREC,UPDATE,
NORESP=symbolic address,
DUPREC=symbolic address,
INVREQ=symbolic address,
IOERROR=symbclic address,
NOSPACE=symbclic address,
NOTOPEN=symbclic address

#* 3% * 3 * % 3 % ¥ *

3* ¥ %

3*

% 36 % 3 3 3 e b 3 I ¢ % #

% % I I 36 # ¥ ¥ #

245

DFHFC

DFHFC

DPHFC

DFHFC

DFHFC

DFHFC

DFHFC

TYPE=GETAREA,
CATASET=symbelic name,
INITIMG=value,YES,
DSIDER=symbolic address,
NORESP=symbolic address,
INVREQ=symbolic address,
NOTOPEN=symbkclic address

TYPE=RELEASE,
INVREQ=symbclic address

TYPE=SETL,

DATASET=symbolic name,
RDIDADR=symbclic address,
SEGSET=symbolic name,YES,ALL,
RETMETH=RELREC,KEY,
NORESP=symbolic address,
DSTDER=symbolic address,
SEGIDER=synbclic address,
INVREQ=symbolic address,
NOTOPEN=symbolic address

TYPE=GETNEXT,

SEGSET=symbolic name,YFS,ALL,
NORESP=symbolic address,
SEGIDER=symtolic address,
INVREQ=symbolic address,
IOERROR=symbclic address,
NOTOFEN=symbclic address,
ENDFILE=symbolic address

TYPE=ESETL,
INVREQ=symboclic address

TYPE=RESETL,

SEGSET=symbolic name,YES,ALL,
NORESP=symbclic address,
SEGIDER=symbcelic address

TYPE=CHECK,
NORESP=symbclic address,
DSIDER=symbolic address,
SEGIDER=symbclic address,
NOTFND=synbolic address,
DUPREC=symbolic address,
INVREQ=synbclic address,
IOFRROR=symbclic address,
DUPDS=symbolic address,
NOSPACE=symbclic address,
NOTOEEN=symbclic address,
ENDFILE=symbolic address

TRANSTIENT DATA SERVICES

246

CFHTD

TYPE=PUT,

DESTID=symbolic nane,
TDADDR=symbolic address,
NORESP=symbolic address,
IDERROR=symbclic address,
IOERROR=symbclic address,
NOTOPEN=symbclic address,
NOSPACE=symbclic address

* 3+ % # % % ¥

* % 3 # % d6 % I ¥ ¥ LK K IR B R 2R 3 3

O H 3 IE 3 # I

L IR 2R 3R B BE N)

DFHTD

DFHTD

CFHTD

DFHTD

TYPE=GET,

DESTID=symbolic nanme,
NORESP=symbclic address,
QUEZERO=symbclic address,
IDERROR=symbclic address,
IOERROR=symbolic address,
NOTOPEN=symbclic address

TYPE=FEOV,
DESTID=symbolic nanme,
NORESP=symbolic address,
IDERROR=symbclic address,
NOTOPEN=symbclic address

TYPE=PURGE,
DESTID=symbolic name,
IDERROR=symbclic address,
NORESP=symbclic address

TYPE=CHECK,
NORESP=symbolic address,
QUEZERO=symbclic address,
IDERROR=symbeclic address,
JIOERROR=symbolic address,
NOTOPEN=symbclic address,
NOSPACE=symbclic address

TEMPORARY STORAGE SERVICES

DFHTS

DFHTS

DFHTS

DFHTS

TIME SERVICES

DFHIC

TYPE=PUT,

CATAID=name,
TSDADDR=symbolic address,
STORFAC=AUXILIARY,MAIN,
NORESP=symbolic address,
INVREQ=symbolic address

TYPE=GET,
DATAID=nanre,

TSDADDR=symbclic address,YES,
RELEASE=YES,NOQ,
NORESP=symbolic address,
IDERROR=symbclic address,
I0OERROR=symbclic address

TYPE=RELEASE,
DATAID=name,
NORESP=symbolic address,
IDERROR=synbclic address

TYPE=CHECK,
NORESP=symbolic address,
IDERROR=symbclic address,
IOERROR=symbclic address,
INVREQ=symbolic address

TYPE=GETIME,

FORM=BINARY, PACKED,
TIMADR=symbolic address,YES,
NORESP=symbolic address,
INVREQ=symbolic address

* # 3 * % % * % H ¥ % W

* 3 %

* #* 3 ¥ # ¥ * ¥ % o

* ¥

#* ¥ ¥* ¥

* # * ®

247

2u8

DFHIC

DFHIC

DFHIC

DFHIC

DFHIC

DFHIC

TYPE=WAIT,

INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name, YES,
NORESP=symbolic address,
INVREQ=symbolic address,
FXPIRD=symbolic address

TYPE=POST,

INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name, YES,
NORESP=symbclic address,
INVR®Q=symbolic address,
EXPIRD=symbolic address

TYPE=INITIATE,
INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
TRANSID=nanme,
TRMIDNT=name,YES,
NORESP=symbcelic address,
INVREQ=svmbolic address,
TRNIDER=symbclic address,
TRMIDER=symbclic address

TYPE=PUT,

INTRVAL=numeric value,YES,
TIME=numeric value,YES,
REQID=name,YES,
TRANSID=nanme,
TRMIDNT=name,YES,
ICCADDR=symbeclic address,YES,
NORESP=symbclic address,
INVREQ=symbolic address,
TRNIDER=symbclic address,
TRMIDER=symtolic address,
TOERROR=symbclic address

TYPE=GET,

ICDADDR=symbclic address,YES,
NORESP=symbolic address,
INVREQ=symbolic address,
ENDDATA=symbclic address,
NOTFND=symbclic address,
JOERROR=symbclic address

TYPE=RETRY,

NORESP=symbolic address,
INVREQ=symbclic address,
NOTF¥D=symbolic address,
TOERROR=symbolic address

TYPE=CANCEL,
REQID=name,YES,
NORESP=symbolic address,
INVREQ=symbclic address,
NOTFND=symbolic address

#* 3% # H # #

3 0 3 3 g ¥ N % o W # # * # * I ¥ * % # * #

% % ¥ 3 * % 3 d %

3 3% 4 3

DFHIC TYPE=CHECK,
NORESP=symbolic address,
INVREQ=symbolic address,
EXPIRD=syrbolic address,
TRNIDER=symbolic address,
TRMIDER=symbclic address,
TOERROR=symbclic address,
NOTFND=symbolic address,
ENDDATA=symbolic address

3 3% 3 % 3 3 3 *

PROGRAM TESTING AND DEBUGGING

DFHTR TYPE=ON, : *
STYPE=SINGLE,ALL, (system symbol),SYSTEM, USER

DFHTR TYPE=QFF, *
STYPE=SINGLE,ALL, (system symbol) ,SYSTEM,USER

DPHTR TYPE=ENTRY,
STYPE=SYSTEM,USER,
ID=number,
DATA1=symbol, (symbol),
RDATA1=register, (register),
DATA2=symbol, (symbol),
RDATA2=Tegister, (register),
DATA1TP=HBIN,FBIN,CHAR,PACK, POINTER,
DATA2TP=HBIN,FBIN,CHAR,PACK,POINTER

3 W K ¥ I O 3%

3270 OFFLINE MAP BUILDING

mapname DFHMDI TYPE=DSECT,MAP,FINAL,
TERM=3270,
LANG=ASM,COBOL,PL1,
BASE=name,
MODE=IN,OUT,
CTRL= (PRINT,L40,L64,180,HONEON,FREEKB, ALARM,FRSET)

* % 3 3

name DFHMDF
LENGTH=numnber, -
POS=number,
ATTRB=(ASK1IP,PROT,UNPROT,NUM,BRT,DRK,NORM,DET,IC,FSET),
JUSTIFY=(LEFT,RIGHT, BLANK, ZERO),
INITIAL='any user information?',
GRENAME=user group name

4 % 3¢

2279 ONLINE MAP INVOCATION

DFHBMS TYPE=(IN,O0UT,ERASE,WAIT,SAVE),
- MAP='pap name',YES,
DATA=NOQ, YES,ONLY,
CTRL=(PRINT,L40,L604,L80,HONEOM,FREEKB,ALARM,FRSET),
CURSOR=number, YES,
MAPADR=symbolic address,YES

¥* ¥ ¥ # *

TATA LANGUAGE/I SERVICES

DFHFC TYPE=(DL/I,PCB),
PSB=psbname,symbolic name,YES,
NORESP=symbclic address,
INVREQ=symbolic address

3 %

249

DFH¥PC TYPE=(DL/I,function),
PCB=symbolic address, (register),
¥RRKAREA=symtolic address,YES, (register),
SSAS=NO, (ssacount,ssal,ssa2,...),
SSALIST=YES,NO,symbolic address, (register),
NORESP=symkolic address,
NOTOPEN=symbolic address,
INVREQ=symbolic address

DFHFC TYPE=(DL/I,T),
¥ORESP=symbolic address,
INVREQ=symbclic address

CALLDLI ASMTDLI, (parmcount, function,pcdh,vworkarea,
segment search arguments,...) or
CBLTDLI, (parmcount, function, pcb,vworkarea,

segment search arguments,...)

(CALLDLI is a special form of the CALL macro instruction for
DL/I CALL's in Assembler language programs.)

* % ¥ % # #

*

APPENDIX C: CICS DUMP CODES

When abnormal conditions occur, the message
TRANSACTION xxxx ABEND xxxx AT XXXX

is sent to Transient Data destination CSMT, indicating that the
identified transaction attached to the identified terminal has been
abnormally terminated. The ABEND (dump) code indicates the origin
or cause of the error, and may be originated by the user or by CICS.
Tollowing are the ABEND codes for abnormal terminations initiated by
CICSs.

Code Detecting Progranm Cause

AACA Abnormal Condition Invalid error code passed to DFHACP
in the TCA at location TCAPCABR.
A complete system dump is provided
to assist in determining the problemn.

ATICA Interval Control A runavway task condition has been
detected and the task is being
abnormally terminated. The condition
indicates a possible logical loop
within the user's program.

ARCA Task Control Another CICS task has requested
Task Control to abnormally terminate
this task as a result of actions
initiated by:

. Terminal Abnormal Condition
program (DFHTACP); the
appropriate message is found
at destination CSMT.

o Task Termination portion of
the Master Terminal facility.

The Asynchronous Transaction Control
program (DFHATP) terminates
asynchronous tasks when:

° User requests deletion of a
batch via CWTR delete option
while CICS is actively processing
that batch; DFHATP abnormally
terminates the task and purges
all remairing data from the
gueues.

J An asynchronous task tries to
read more data than is available;
DFHATP abnormally terminates
the task.

AKCD Task Control Invalid code in the dispatch control
indicator field. The invalid code
can be found in the TCA at symbolic
location TCATCDC. Valid codes
(masks) :

X*'10' VNot dispatchable (not

251

Code

Detecting Program

Cause

AKCP

ARCR

AKCS

APCB

APCC

APCT

APCL

APCP

APCR

Task Control

Task Control

Task Control

Program Control

Prcgram Control

Program Control

Program Control
Program Control

Program Control

applicable to CICS/DOS-ENTRY)
X'20' Dispatchable
X'40' Wait on list of events
X'80' Wait on single event

A stall condition has been detected
and this task is being abnormally
terminated. This task carries a
code indicating it is purgeable,

The type of request code is invalid.
The invalid code can be located

in the TCA at symbolic location
TCATCTR. Valid codes:

X*01* Tnqueue

X*'02' Dequeue

X'o0u* System

Xtng' Systen

X*10' Task Origination
X*11v System

Xt12¢* Systen

X*14* Systen

X'20' priority Change
X'40' Task Wait

X'80' Task Termination

The request exceeds available Subpool
1 storage., CICS/DOS-ENTRY only.

An attempt was made to execute a
P1./I program but the proper support
was not included in DFHSAP. TFor
example, PL/I F level execution
attempted but support generated
only for PL/I Optimizing Compiler.

An attempt was nade to execute an
ANS COBOL program but ANS COBOL
support was not generated in Progranm
Control.

An attempt was made to execute a
PL/T program but PL/I support was
not generated in Program Control.

There is insufficient main storage
available for the requested progranm.

An error occurred on the read of
a requested program from the library.

Task request for service is invaligd.
The invalid code can be located
in the TCA at TCAPCTR. Valid Codes:

X'01' LINK

Xt02' XCTL

X'04' TOAD

X*08* DELETE

X*'10' RETURN

X*40' ABEND .

X'60' ABEND with DUMP

Code

Detecting Progranm

ApCT

APIA

ASCR

ASCT

ATDT

ATDT

BMOP

DIL.DY

Program Control

Program Interrupt

Storage Control

Storage Control

Transient Data

Transient Data

Basic Mapping
Support

Basic Mapping
Ssupport

Basic Mapping
Support

DL/I Interface

Cause
X'90' RETURN from Task Control pgm

A task issued a request for a program
which is not in the PPT. The invaliad
program ID is in the TCA at TCAPCPI.

A program check has occurred during
the subject task execution. The
PSW at the time of interrupt is
saved in_the task's TCA.

The request for service is invalid.
Valid codes:

X120' Released Storage
X'40' Release Storage
X'80' Acquire Storage

The request exceeds available Subpool
1 storage. CICS/DOS-ENTRY only.

The type of destination code is
invalid., The invalid code can be
located in the DCT at symbolic
location TDDCTDT. Valid Codes:

X*20' 1Indirect

Xru0' Extrapartition

X*80' TIntrapartition

X'90' TIntrapartition with automatic
transaction initiation

Request for service is invalid.
The invalid code is in the TCA and
can he located at TCATDTR. Valid
codes:

X'0u' Purge destination

X'08' Destination entry address
passed to the Transient Data
Control program

X*'10' Llocate Destination Control
Table (DCT) entry

X*20' TForced end of volume on .
extrapartition data set

X*40* Output service on
intrapartition data set

X'80' TInput service on
intrapartition data set

An input mapping request was. issued
and the map provided was for output.

An output mapping request was issued
and the map provided was for input.

A request vWwas made for 3270 mapping
support and the device is not a
3270,

A DL/T CALL was issued under CICS/0S,

but the DL/I Interface dummy program
was loaded at system initialization.

253

Code Detecting Progranm Cause

DLIA DL/I Interface An irrecoverable error occurred
during execution of the CICS-DL/I
Interface program under CICS/0S.
The DLIA code is returned to all
transactions frcm which DL/TI CAll's
are subsequently issued.

DLPA DL/TI Interface A DL/TI abend (or pseudo abend)
occurred during transaction
processing under CICS/0S. The abend
code is found in the TCA at TCADLECB.

System Action: TIn addition to the dump services requested by
application programs, CICS also requests dumps for abnormal
conditions and places specific dump codes in the dumps for ready
identification.

Action: Analyze the error condition indicated by the abend

254

APPFNDIX D: 3270 MAP GENERATION AND ASSEMBLY ERROR MESSAGES

e

This section contains a listing of error messages applicable to
CICS Basic Mapping Support (BMS) for the 3270 Information Display
System. The severity of program assembly errors is indicated by codes
4, 8, 12, and 16; codes 4 and 8 indicate an error condition that might
not prevent program execution, while codes 12 and 16 indicate an error
condition so severe that program execution is impossible.

DFHBMNCO1 TYPE IS NOT VALID; DSECT ASSUMED

Severity: 12

Meaning: Th= DFHMDI TYPE=parameter specification is
invalid. CICS assures TYPE=DSECT and continues
to analyze the map.

Action: Supply a valid DFHMDI TYPE=parameter
specification and reassemble.

DFHBMCOC2 INVALID LANG OPERAND; ASM TS ASSUMED.

Severity: 4

— s e

Meaning: The DFHMDI LANG=parameter specification is
invalid. CICS assumes LANG=ASM and continues
to analyze the map.

Action: Supply a valid DFHMDI LANG=parameter
specification and reassemble.

DFHBMCOC3 MODE INVALID; OUT IS ASSUMED

Severity: 12

ESaEmma

Meaning: The DFPHMDI MODE=parameter specification is
invalid. CICS assumes MODE=0UT and continues
to analyze the map.

Action: Supply a valid DFHMDI MODE=parameter

specification and@ reassemble.
DFHBMOCNS CONFLICTING PRINTER FORMATS; HONEOM ASSUMED

Severity: 4

Meaping: The DFHMDI CTRL=parameter specification includes
more than one of the parameters HONEOM, L4090,
L64, and L80. CICS assumes CTRL=HONEOM.

Action: supply required printer format specification

via the CTRL operand and reassemble, or accept
the default.

255

DFHBMO0006

DFHBMCO0O07

DFHBMCO072A

DFHBMC 008

DFHBMC 009

DFYBMCO10

256

INVALID CTRL OPERAND IS REJECTED

ONLY 3270 IS VALID,

Severity:

Action:

12

The DPHMDI CTRL=parameter specification is
invalid. CICS rejects the option specified

and continues to analyze the map.

Check coding of CTRL options against macro
description and reassemble the map.

ASSUMED.

[

The DFHMDY TERM=parameter specificaticn specifies
a terminal other than the 3270, CICS assumes

TERM=3270 and continues to analyze the map.

TERM=3270 is the only valid specification.
If omitted, the default is TERM=3270.

MAENAME IS GT 7 CHARS

NO LENGTH;

NO POS;

Severity:

8

The map name is greater than seven characters
in length.

Reduce the name to seven characters or less
and reassemble the map.

AFTER DFHMDI TYPE=FINAL DISCARDED
8

The DFHMDF macro instruction was encountered
after a DFHMDI TYPE=FINAL macro instruction

and before another DFHMDI TYPE=DSECT macro
instruction or DFHMDI TYPE=MAP macro instruction;
CICS ignores the DFHMDF macro instruction.

Examine macro instructions for correct sequence

and reassemble map.

MACRO DISCARDED

The DFHMDF LENGTH=number specification has been
omitted. CICS ignores this field macro
instruction and continues to analyze the map.

Supply a valid LENGTH value (1-256) for the
field and reassemble map.

MACRO DISCARDED

8

DFHBMO011

DFHBM0O 13

DFHBMOO 14

DFHBMCO 15

Meaning:

Action:

LENGTH CUT OF RANGE;

e e e S

POS OUT OF RANGE;

The DFHMDF LENGTH=number specification has been
omitted., CICS ignores this field macro
instruction and continues to analyze the map.

Supply a valid POS value (0-1919) for the field
and reassemble map.

MACRO DISCARDED
8

The DFHMDF LENGTH=number specification is not
within the range 1-256.
macro instruction and continues to analyze the
map.

Supply a LENGTH value within the range 1-256
and reassemble map.

MACRO DISCARDED

8

The DFHMDF POS=number specification is less
than zero or greater than 1919. CICS ignores
this field macro instruction and continues to

analyze the map.

Supply a valid POS value within the range 0-
1919 and reassemble map.

FIELD POSITION REQIRES 3270 MODEL 2

0

The DFHMDF POS=number specification specifies
a location that requires the 1920-character
3270 (Model 2).

Ensure that this map is never used for a 3270
Model 1.

OVERLAP WITH PREVIOUS FIELD

Severity:

iy

The DFHMDF POS=number specification specifies
a position that is within the scope of the
preceding field definition. CICS accepts the
specified value and continues to analyze the
map.

Ensure that the field overlap is acceptable.
If not, correct by supplying a POS value that
is at least one greater than the sum of the
POS and LENGTH values of the previous field

in the map. As an alternative, change the POS
or LENGTH values of the previous field and
reassenble map.

CICS ignores this field

257

DFABMCO16

DFHBMCO017

DTHBMCO18

DFHBMC 019

'POS NOT IN ASCENDING SEQUENCE. MACRO DISCARDED.

Severity: 8

Meaning: The DFHMDF POS=number specification is zot
greater than the POS value of the preceding
field. <CICS ignores this field macro instruction
and continues to analyze the map.

Action: Check the POS values for the two fields and
the order of the macro instructions and
reassemble map.

IRRECOVERABLE ERROR ENCOUNTERED BY DFHMDF

Severity: 16

Meaning: An irrecoverable situation was encountered by
DFHUMDF during map analysis. CICS abandons any
further map analysis.

Action: Examine the map specification carefully for
invalid parameters; see that the macro
instructions are properly ordered. Correct
any errors and reassemble map. If the error
persists, contact your IBM representative after
ensuring the availability of (1) a listing of
the map analysis with the error messages, and
(2) the input causing the error message to be
generated.

FIELDNAME MUST BE CODED WITH GROUPNAME PRESENT

Meaning: Tha DFHMDF macro instruction was coded with
a group name but the name field was not supplied.
CICS assigns a null value to the name field
and continues to analyze the map.

Action: A1l fields within a named group require the
name field to be coded. Supply a unique field
name and reassemble map.

NO FIELD NAME. MACRO DISCARDED.

Severity: b
Meaning: The DFHMDF MODE=IN specification encountered
an entry with no name field entry. CICS ignores
this field macro instruction and continues to
analyze the map.

Action: If a symbolic storage definition entry is
required for this field, supply a name in the
name field and reassemble map. Rejection of
a DFHMDF MODE=TN specification with an empty
name field may be quite valid if the same map
generation submitted for output symbolic storage
definition is used to generate the symbolic
storage definition for the input from that map.

DFHBM0 020

DFHBMOO21

DFHBMO0022

DFHBMC 023

DFHBMOC24

DETECTABLE FIELD CANNOT BE CONTAINED UNDER A GROUP NAME

Severity: 8

Meaning: DFHMDF ATTRB=DET was specified for a field
contained witin a group. CICS ignores this
field macro instruction and continues to analyze
the map.

Action: Check the specifications of grouped fields
within the map and the ATTRB specification for
this field. Reassemble nap.

INVALID xxxXXXXXX ATTRIBUT® SPECIFIED; IGNORED

Meapning: The DFHMDF ATTRB=parameter specification is
invalid. CICS ignores the invalid specification
and continues to analyze the map.

Action: Check the coding of the ATTRB operand and
reassenble map.

XXXXXXXX AND xxxxxxxxX ARE INCOMPATIBLE; ASKIP ASSUMED

Meaning: Conflicting attributes were specified for this
field in the DFHMDF ATTRB=parameter macro
instruction. CICS assumes ATTRB=ASKP and
continues to analyze the map.

Action: Correct the conflicting specification of
attributes in the ATTRB operand and reassemble
map.

IC REQUESTED FOR A PROTECTED FIELD

Meaning: The DFHMDF ATTRB=parameter macro instruction
requested insertion of the cursor within a
protected field. CICS accepts the request ani
continues to analyze the map.

Action: Ensure the validity of the request for this
field. If invalid, correct and reassemble map.

ASKIP IMPLIES XXXXXXXX

Meaning: The DFHMDF ATTRB=parameter macro instruction
specified two attributes, one of which implied
the other; for example, ATTRB={(ASKIP,PROT) where
ASKIP includes PROT. CICS uses the more
emcompassing attribute and continues to analyze
the map.

259

DFHRM(002S

DFHBMCO026

DFHBM0027

DFHBM0028

DFHBMC 029

260

BRT IMPLIES

Severity:

Meaning:

&

If the more encompassing attribute is acceptable,

no action is necessary. Otherwise, correct
the ATTRB specification and reassemble map.

DET
4

The DFHMDF ATTRB=parameter macro instruction

specified the BRT attribute which also implies
the DET attribute. CICS uses the BRT attribute
and continues to analyze the map.

If the BRT attribute is not required for this
field, change the ATTRB specification and
reassemble map.

PROT AND NUM IMPLY ASKIP

Action:

DUPLICATE
Severity:

Meaning:

INVALID TYPE SPECIFIED;

u

The DFHMDF ATTRB=parameter macro instruction
specified PROT and NUM. The combination of
these two parameters creates a field that also
has the ASKIP attribute.

No action is necessary; this message is
informative only.

XXxxXxxxxx REPEATED. TIGNORED.

u

The DFHMDF ATTRB=parameter specification contains

the repetition of an attribute. CICS accepts
the repetition without action and continues
to analyze the map.

Eliminate the repetition to remove the error
message (if required).

TYPE OPTICN IGNORED
0

A duplicated map TYPE specification was
encountered and ignored.

No action message is necessary; this message
is informative only. If dssired, remove the
duplicate specification before reassembling
the map.

OUT ASSUMED BY DEFAULT

A type specification was found which was not
IN, OUT, ERASE, WAIT, MAP, or SAVE., OUT is
assumed by default.

DFHBMCO039

DFABMO0O31

DFHEBM0032

DFHBMCO33

DFHBMOO 34

If OUT is not an acceptable default, correct
the error and reassemble the map.

ction:

MAPNAME IS GT 7 CHARS; TRUNCATED

Severity: 12
Meaning: A map name greater than seven characters was

encountered and truncated to seven characters.

Action: Correct the map name and reassemble the map.

DATA = SPECIFIED INCORRECTLY; NO IS ASSUMED AS DEFAULT.

Severity: 8

Meaning: A data specification was encountered which was
not YES, NO, or ONLY. DATA=NO is assumed.

Action: If NO is not an acceptable default, correct

the DATA specification and reassemble the map.

DATA SPEC NOT REQUIRED WITH THIS TYPE; IGNORED.

Severity: 4

Meaning: Initial DATA was specified for a map which is
not specified as an output map. The
specification is ignored.

Action: If it is desired that an output map be generated,

change the TYPE specification to OUT and
reassemble the map.

CURSOR POSITION REQUIRES TYPE=0UT; THIS REQUEST IGNORED.

Severity: 4

Meaning: A cursor specification was provided for a map
which was not an output map. The specification
is ignored.

Action: If the map TYPE was specified incorrectly,

change the specification to OUT and reassenmble
the map.

MAPADR SYMBOL GT 8 CHARS.

Severity: 1)

The MAPADR operand specified a name greater
than eight characters. Only the first eight
will be used to address the map.

Correct the MAPADR specification and reassemble
the map.

261

DFHBM003S

DFHBM" 036

DFHBM2037

DFHBMCO38

DFHBM0039

DFHBMNCO40

INVALID LANGUAGE ASSEMBLER ASSUMED.

Meaning: The LANG operand was not ASM, COBOL, or PL1,
BMS assumes LANG=ASHM.

Action: If the language desired is not Assembler, correct
the LANG specification and reassemble the map.

INPUT SPEC WITH INCONSISTENT OPERANDS; INPUT, WAIT ASSUMED.

Severity: 4

Meaning: TYPE=INPUT was specified along with 0OUT, ERASE,
or MAP. These combinations are inconsistent
and only INPUT is processed.

tion: If some other specification is desired, correct
the TYPE specification and reassemble the map.

QUTPUT SPEC WITH INCONSISTENT OPERANDS; OUTPUT, WAIT ASSUMED.

Severity: 4

Meaning: TYPE= (OUT,MAP) was specified which is
inconsistent.

Action: Correct the TYPE specification and reassemble
the map.

ERASE SPEC WITH INCONSISTENT OPERANDS; OUTPUT, ERASE, WAIT
ASSUMED.

Severity: 4

Meaning: A) Either TYPE=(ERASE,MAP) was specified or
B) TYPE=(ERASE) was specified without OUT.

Action: Correct the specification and reassemble the
map.

SAVE REQUIRES OUT; SAVE IGNORED

Severity: 4

Meaning: The TYPE operand specified SAVE but not OUT.
Action: Correct the specification and reassemble the
map.

INVALYD CURSOR POSITION DEFAULTS TO ZERO

Severity: U

Meaning: The cursor keyword specified a value less than
0 or greater than 1919 and therefore invalid
for the 3270.

DFHBMCOU41

DFHBMOOU2

DFHBM9999

Action:

Correct the specification and reassemble the
mag.

CURSOR POSITION REQUIRES 3270 Model 2

Action:

[E=]

DATA = NOT SPECIFIED;

0

The cursor specification is between #8C and
1919 and therefore only valid for a 3270 Model
2.

Do not try to use this map on a 3270 Model 1
or unpredictable results will occur.

NO IS ASSUMED AS A DEFAULT.

DATA= was not specified for a TYPE=0UT
specification. DATA=NO is assumed.

If NO is not an acceptable default, correct
the DATA specification and reassemble the map.

IPRECOVERABLE ERROR ENCOUNTERED BY DF¥HMDI

16

The DFHMDI macro instruction encountered an
irrecoverable situation during map analysis.
CICS abandons any further map analysis.

Examine the map specification carefully for
invalid parameters and see that the macro
instructions are properly ordered. Correct

any errors and reassemble map. If the error
persists, contact your IBM Representative after
ensuring the availability of (1) a listing of
the map analysis with the error messages and
(2) the input causing the error message to be
generated.

263

APPENDIX E:

TRANSLATE TABLES FOR THE 2980

of

This section contains translate tables for the following components

the 2980
1. 2980
2. 2980
3. 2980

The line

General Banking Terminal System:
Teller Station Model 1
Administrative Station Model 2
Teller Staticn Model 4

codes and CPU codes listed in these tables are unique to

CICS and are represented as standard FBCDIC characters.

2980-1 CHARACTER SET/TRANSLATE TABLE

10of 3

High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top(LC) Front(UC) Numeric(LC) Alpha(UC) Code || Numeric(LC) Alpha (UC) Lang, ID
[§] 3G 1 I 1 F1 AA F1 1
ACK
1 SEND Q R Q D8 D9 U8
AGAIN
2 CORK A c A C1 c3 c1
3 HOLD 2 H 2 F2 c8 F2
OVERRIDE
A vOID z v z E9 E5 EY
5 ACCT W Q v E6 D8 E6
1HQ
6 ACCT S ¥ [L2 AB L2 2
TFR
7 CIF 3 ¢ 3 F3 AC 3 3
3 MiSC X M X E7 AD E7 4
9 CLSD E X E cs E7 cs
ACCT
10 Ho] y D Cl AE cu 5
BOOK
11 I410RT [W 4 Fu AF Fu4 6
LOAN
12 c + c c3 BO c3 7
13 NEW R A R ol B1 09 8
ACCT
14 BOOK F g F c6 B2 [9
BAL
15 INST 5 T 5 FS B3 F5 10
LOAN
16 SPEC v H v £5 B4 ES 11
TRAN
17 SAV =
T
BOND B T E3 BS E3 12

265

2980-1 CHARACTER SET/TRANSLATE TABLE

20f3

High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top(LC) Front(UC) Numeric(LC) Alpha(UC) Code {| Numeric(LC) Alpha (UC) Lang. ID
18 SAV G S G c7 B6 c7 13
19 XMAS 6 T 6 Fb6 B7 Fb6 14
cLuB
20 B B c2 4B c2
21 DDA Y D Y E8 B8 ES 15
22 ® H o H cs R9 Cc8 16
23 MON 7 I 7 F7 BA F7 17
ORD
24 0 1] 0 N D5 FO oS
25 7 u 7 U E4 F7 ElL
26 y J 4 J D1 F4 Dl
27 CSHR 8 1 8 F8 BB F8 18
CHK
28 1 [1 M D4 F1 Cu
29 8 i 38 | c9 F8 (o]
30 5 K 5 K £2 FS b2
31 CASH 9 ¢ 9 Fg BC F9 19
RECD
32 2 , 2 , 68 F2 6B
33 9 0 9 0 o3} F9]3]
34 6 L 6 L 03 F6 03

266

2980-1 CHARACTER SET/TRANSLATE TABLE

3of3

il
1 High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top(LC) Front (UC) Numeric(LC) Alpha(UC) Code || Numeric(LC) Alpha(Uc) || Lang. ID
35 UTiL [} U 0 FO E4 FO
BILL
36 3 3 LB F3 LB
37 DEP P + P c7 4E 7
+
38 WITH S - $ 56 60 58
39 FEES - F - 60 Co 60
40 TOTL / T / 01 L3 61
41 cASH ¢ . 5¢ BD 5¢ 20
it
42 CASH # § # 7t BE 7B 21
CHK
43 VAL & A—K & 50 STATION 50
D
Ly TAB 0S 05 05 TABCHAR
45 ALPHA 36
ENTRY
46 NUMERIC 06
ENTRY
L7 SERD 26-ETB
03-ETX
Lg RETURN 15 15 15 JRNLCR
L9 HUMERIC 06
ENTRY
50 SPACE 40 40 Lo
58 MSGLIGRT 17 17 17 MSGLITE

267

2980-2 CHARACTER SET/TRANSLATE TABLE

1of 2

KEY ENGRAVING PRINTING LINE CPU CODE l:;\glgl
No. Top(L.C) Front (UC) Numeric(L.C) Alpha(UC) Code |l Numeric(LC) Alpha(yc) |lLang. ID
0 ; 1 = F1 F1 (1) 7E (=)
1 Q a Q D8 98 (q) D8 (Q)
2 A a A c1 81 (a) c1 (A)
3 2 2 < F2 F2 (2) 4 (<)
1 z z z E9 A (z) E9 (2)
5 W % w v £6 A6 (w) E6 (W)
6 S % s S E2 A2 (s) E2 (S)
7 3 E 3 ; F3 F3 (3) SE (;)
8 X § x X E7 A7 (x) E7 {X)
9 E “E e E cs 85 (e) cs (g)
10 D 2 d] cy 34 (d) cs (D)
11 u 4 Fuy Fu o (4) 7A (3)
12 c c c c3 83 (c) 3 (e)
13 R r R 09 9% (r) D9 (R)
14 F f F 6 86 (f) c6 (F)
15 ; § 5 % F5 F5 (5) &6C (%)
16 v g v v s A5 V) B (V)
17 T ; t T E3 A3 (t) £3 (1)
18 r.; g g G c7 87 (g) c7 (G)
19 6 = 6 ! F6 F6 (6) 70 (")
20 8 2 b B c2 82 (b) c2 (s)
21 Y y Y E8 A8 (y) E8 (V)
22 H k 1 c3 88 (h) c8 (H)
23 ; 7 > F7 F7(7) 6E (>} .
24 N n N b5 95 (n) 05 (N) h
25 U u u £l Ak () e () |

268

2980-2 CHARACTER SET/TRANSLATE TABLE

2of 2

High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top(LC) Front (UC) Numeric(LC) Alpha(UC) Code || Numeric{LC) _ Alpha(UC) |{|Lang. ID
26 J i J D1 91 (j) o1 (J)
27 H 8 8 F8 F8 (8) 5 (%)
28 m M Db 94 (m) D4 (M)
29 | i 1 c9 89 (i) cs (1)
30 K k K D2 92 (k) D2 (K)
31 é o 9 (F9 Fg (9) s ()
E
32 ! = , | 68 68 (,) WE (1)
’
&
33 0 z o 0 06 96 (o) o6 (0)
—
34 L = | L 03 93 (1) D3 (L)
[~4
35) = 0) ro FO (0) 500 ()
~
36 ? o - 4 ug o (L) 5F (7))
37 p p P 07 97 (p) D7. (P)
33 é $! 58 58 ($) 5A (1)
39 - - _ 60 60 (-) 60 (L)
40 j o / ? 61 61 (/) 6F (2)
=
41 & Z @ ¢ 5C ¢ (@) sA (¢)
&
42 p Z # " 78 78 (#) 7F (M)
-
43 + z & + 50 50 (&) e (+)
o &
w
LYy TAB > 05 05 05
V4
u5 LOCK 2 36 36 36
46 SHIFT 06 06 06
47 BACKSPACE 16 10 16 BCKSPACE
48 RETURN 15 15 15
49 i SHIFT 06 06 06
50 i (SPACE) 40 40 40
s3 || sewp A ;
i 3-ETX
1
;
|

269

2980-4 CHARACTER SET/TRANSLATE TABLE

1of 3

High
KEY ENGRAVING PRINTING LINE CPU CODE Lesel
No. Top(LC) Front(UC) Numeric(LC) Alpha(UC) Code || Numeric(LC) Alpha (UQ) Lang. ID
o] CK ¢ o] BC 60 19
$
1 Q L Q o3 D3 b8
2 A A A Cl Cl Cl
3 cK 0 ¢ o c9 B7 c9 14
#
4 Z z E9 4B E9
5 W * W E6 5C E6
6 S $ S £2 SB €2
7 IMD 1 | 1 5B 4F F1
2
8 X H X €7 AE £7 S
9 3 E E c5 c5 c5
10 0 ? a] C4 6F Ccy
11 IMD 2 M 2 48 D4 F2
1
12 C C C C3 C3 Cc3
13 R R €0 60 D9
14 F F F CG Cc6 ce
15 CODE 3 I 3 E8 BB F3 18
16 v v v €5 AO ES 22
17 T Jay T E3 Al E3 23

2980-4 CHARACTER SET/TRANSLATE TABLE

20f3

KEY ENGRAVING PRINTING LINE CPU CODE ?,Z\gr];l E
No. Top(LC) Front(UC) Numeric(LC) Alpha(UC) Code || Numeric(LC) Alpha(UQC) Lang. ID j

18 G G G c7 c7 c7

19 AMT 4 3 " 5¢C BE Fi 21

20 B B B c2 c2 c2

21 Y / Y 61 61 E8

22 H P H D7 D7 c8

23 08 5 H 5 D8 B2 F5 9

24 N N N DS D5 D5

25 4] " U E4 AF EL 6

26 J J J o1 D1 D1

27 ACCT 6 # 6 cg 7B F6 -

#

28 N X M Dl E7 I

28 1 0 | D6 D6 c9

30 K K K D2 D2 D2

31 7 7 7 7 F7 F7. F7

32 .- , , 6B BLANK 68

33 [} 0 4 0 Fl F4 D6

34 1 L 1 L F1 F1 D3

2N

2980~4 CHARACTER SET/TRANSLATE TABLE

3of 3

High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top(LC) Front (UC) Numeric(L.C) Alpha(UC) Code || Numeric(LC) Alpha(UcC) || Lang. ID
35 8 8 8 F8 F8 F8
36 0 . 0 FO FO uB
37 5 p 5 F5 FS D7
38 2 $ 2 F2 F2 58
39 9 9 9 F9 F9 F9
40 .- .- 4 78" BO 7B 7
41 6 * 6 Fé Fé 5C
b2 3 # 3 F3 F3 78
43 VAL & A-K 50 50 50
by TAB 05 05 05
45 ALPHA 36
u6 NUMER I C 06
47 SEND 26-ETB
03-ETX
48 RETURN 15 15 15
49 NUMER 1 C 06
50 SPACE) 40 40
51 FEED o4 OPENCH
OPEN

272

INDEX

ABCODE 19,61,67-68

ACCA INTERRUPT STATUS WORD 157
ACCEPTABLE ADDRESSING METHOD 101
ACCESS DEVICES 114

ACCESS METHODS 83

ACCESS, INDIRECT 112

ACCTNO 89-90

ACTIVITIES, TYPES OF CONCURRENT 3
ACDING RECORDS 112,181

ADDITION OF KEYED FIXED-LENGTH RECORDS
ADDITIONS, FIXED-RECORD 182
ADDRESS XCTL 9

ADDRESS, AREA 47,87,95,117,128
ADDRESS, BCA 166,168

ADDRESS, FIOA 11

BUDRESS, STRG 73 v

ADDRESS, PRELOAD PCB 183 y
ADDRESS, STORE FWA 109

ADDRESS, USER FCA 48

ADDRESS, PRELOAD WORKAREA 194
ADDRESS, PROGRAM ENTRY 9
ADDRESS, DATA 225 y

ADDRESS, LINE 157-158

181-182

ADDRESS, SYMBOLIC BASE 9,19,33

ADDRESS, TRANSIENT DATA 234-235

ADDRESS, USER FCA 48

ADDRESSA3ILITY 14,25,31-34,40-43,45, BO 82,87,190,198,207

ADDRESSABILITY 15,31, 78<79 81-82, 89—97 99-100
109-110, 185, 198

ADDRESSABILITY FWA 89-91,94,97, 106
ADDRESSABILITY TCA 89-91,94,97,99,103,105

ADDRESSES CF CICS PROGRAMS 17

ADDRESSES OF CICS STORAGE AREAS 38

ADDRESSES OF SSA'S 185,187

ADDRESSES OF THE ACTUAL LOCATIONS 39

ADDRESSES, PCB 183-184, 187~189, 191-192, 194,193

ADDRESSES, TASK STORAGE CHAIN 18

aIp's 06

ALARM 199, 204

ALIGNMENT 17,171

ALPHAMERIC 0

ALTERED RECORD 167,169

ALTERNATE ACTION 159

ALTERNATE STATION 163

ALTERS 6,13,19,60,66,159,201
ANS COBOL APPLICATION PROGRAM

ANS COBOL EXAMPLE 163

ANS COBOL FROGRAMMER 9,32

APPLICATION CONTROL BLOCK 184

APPLICATICN KEYWORDS 95
APPLICATION LOGIC 195

APPLICATION PROGRAM, EXIT PCINTS OF AN 6

APPLICATION PROGRAM CONTAINS BINARY ZEROS 78

APPLICATION PROGRAM LISTING 0

APPLICATION PROGRAM, EXAMELE OF AN 82

APPLICATION PROGRAM, SERIALLY REUSABLE PORTION OF AN 6,60

APPLICATION PROGRAMMER 3,9,10,23,56-59,77-78,82,87,93,96,
98,99,141,158,160, 184, 186

APPLICATION PROGRAMMING CONSIDERATIONS

APPLICATION PROGRAMS 7.10,15,78, 84,155, 159 178

10,37, 163, 205-206

183,194,1%5,197,203
APPLICATION PROGRAMS, GROUP OF 215

APPLICATION PROGRAMS, MODULARITY OF 6
APPLICATION PROGRAMS, REQUEST OF 46,175
APPLICATION PROGRAMS, TESTING OF 2
APPLICATION, SINGLE 124

APPLICATIONS 1,3-4,6,81,125,155,195,215
AREA DEFINITIONS 166,169

AREA PREFIX 187

AREA TWAIND 166

AREA, ACQUIRED STORAGE 58

BREA, ADDRESSED 31

AREA, INPUT/OUTPUT 45,57,193

AREA, AVAILABLE DYNAMIC 124,129

AREA, BATCE CONTROL 167

AREA,. CICS INPUT 118

AREA, CICS TRANSACTION WORK

AREA, COMMON SYSTEM 13,15, 17 2“ 33,39-40,56,
69,71-73,134

ARFA, COMMON WORK 33

AREA, COMMUNICATIONS 69

AREA, CURRENT 169

AREA, MESSAGE 29,38

AREA, DL/I X/0 194

AREA, DROP WRKREG TERMINAL INPUT/OUTPUT 25

AREA, ENTIRE WORK 17

AREA, EVENT CONTROL 50-51,138

AREA, " FILE INPUT/OUTPUT 3'& 41, 86

AREA, FILE WORK 22,32, 35 152,61 Bll 86,92,95,99,112
AREA, FOUR-BYTE STORAGE 138

AREA, INITTATCR CONTROL 18

AREA, INTERMEDIATE STORAGE 6,60
AREA, LENGTH OF THE 73

AREA, NEW STORAGE 31,57-58,95

AREA, ONE-EBYTE RESERVED CATA 201
AREA, OPTIONAL TRANSACTION WORK 18
AREA, OUTPUT 26,39,45,116

AREA, OUTPUT DATA 76 .
AREA, OUTPUT STORAGE 79

AREA, PASSBOOK 159-160

AREA, SIZE OF THE WORK 17
AREA, SYMBOLIC NAME OF THE 17

AREA, SYSTEM 14
AREA, TASK CONTROL 14,15,18,24,33-34,40,46,56 ,60,69,71-T4
AREA, TASK EXTENSION 69,71-73

AREA, TCASCSA FILE INPUT/OUTPUT 25

AREA, TEMPORARY STORAGE INPUT/OUTPUT 14,27,36,83,59 y
AREA, TERMINAL INPUT/OUTPUT 13,164,31,33-34,40-41,61,165
AREA, TRANSACTICN WORK 6,18,23,25,34,40,60-61
AREA, TRANSIENT DATA I/0 118
AREA, TRANSIENT DATA INPUT 14,35, 42,165
AREA, TRANSIENT DATA OUTPUT 14,27,36,42
AREA, TRANSIENT CATA RECORTD STORAGE 59
AREA, USER 118
AREA, USER~-DECLARED FILE RECORLC 42
AREA, USER-DEFINED COMMON WCRK 17
AREA, USER-PROVIDED LATA 149
ARFA, USER-PROVIDED STORAGE 127-128
AREAS 17-18,72,166-169, 174, 183- 188, 191,198, 205
ARFAS, CICS STORAGE 13,15-17,23,32,39,192
273

Page of SH20-10474
Added Jan. 5, 1973

By TNL SN20-2983
AREAS, CCNTROL 13,32,50-51
AREAS, DL/I 83
ARFEAS, TRANSACTION-ORIENTED STORAGE 69
AREAS, I/0 6,9,13-14,36, 38,“3 55,100
AREAS, PROGRAM STORAGE
AREAS, PARAMETER 18
AREAS, STATIC 70
AREAS, SYMBOLIC MAP 198
AREAS, TERMINAL STORAGE 70-72
AREAS, TRANSACTION STORAGE 69,72

AREAS, WORK 9,13,17,60,86,1¢0,108,167,183,186~187

ARGUMENT 109-110,177-181, 183, 186-187, 194
ARGUMENT TYPE 88

ARGUMENT, LENGTH OF THE * 53,178

ARGUMENT, SEARCH 108,112,175-179

ASKIP 199-201

ASKS 28,37, 44

ASM 197

ASMTDLI 6

ASSEMBLER 10,111,122,130,151, 167,169, 190- 191
ASSEMBLER LANGUAGE APPLICATICN FROGRAM, EXAMPLE OF 28
ASSEMBIER LANGUAGE, CASE OF 187, 206
ASSEMBLY, TIME OF 10

ASSOCIATED BIT 75

ASSOCTATED DATA RETENTION 132

ASSOCIATED DMB'S 184

ASSOCIATED TASK 18,69

ASSOCIATED TASK, TERMINATION OF THE 55
ASSUMED NUM ATTRIBUTE 201

ATTACH 47-48

AUTOANSWER 155

AUTOCALL 155

AUTOSK IP 206

AUXILIARY [ATA, BLOCK snz OF TEE 131
BANKING CHARACTERS 161

BASE OPERAND, USE OF THE 198

BASE VALUE 193

BASED STRUCTURE 39-43,1€3,198

BASIC MAPPING SUPPORT 195,200,202

BASIC TELECCMMUNICATIONS ACCESS METHOD 74
BATCH PROCESSING SYSTEM 3

BCA 167

BCKSPACE 164

BDAM 112,176

BDLIIO 193-194

BINARY FORM 133-134

BINARY VALUE - 79

BINARY ZERCS 17,53,55, 57-58,1oo~1o1 138, 159
BINARY ZEROS, TWO-BYTE FIELD OF 116,126,146,195
BLANK CHARACTER 1, 195 197,201

BLANKS 30,39,u5,100,1eu,196,199-2o1,20u
BLANKS, EBCDIC 55,58,96
BLK 180

BLKKEYL 181

BLKSTZE 176

BIL 32,38-39

BLL LIST 185

BLL TABLE 192

BLOCKED BDAM DATA SETS
BLOCKED DAM DATA SET 88

101-102

BLOCKED RECORDS 26,86
BLOCKED SYSIN 74

BMS 194-195,197,202-205
BMSMAPBR 98
BOOK-FOR-PRESENT-WRITE 163
BOOK-PRESENT-WRITE 163

BPCB1 - 193-194

BPCB2 193-194

BRANCH 156

BROWSE 26,42,84,101,104,106-107,113
BROWSING 3

BRT 199~200

BSSADS 193-194

BTAM 74,75, 154

BUFFER 75-77,155,158,199-200, 204
BUFFER SIZE 160-16

BUFFER, COMMON

BYTE, ATTRIBUTE 196 200,204

BYTE, CCNTFOL 168

BYTE, LENGTH 171

BYTE, RESERVED 195

BYTES 79,116, 125-126 ,138,146,168,170-172,177,186
BYTES OF THE FOUR-BYTE TCATCCA 53

BYTES OF THE OUTPUT ARFA 117 .

BYTES, NUMBER OF 21,57-59,79,82, 171 .
CALCULATE 57,136,139,141,143,142,146,145

CALL 6,183-186, 188-189,193

CANCEL 134,136,138,141,144,149-150

CANCEL MACFO REQUEST 138

CANCELLATION 135,149-150
CARD 10-11

CARD COLUMN 16 1

CARD READERS 2,74
CARD, COMMENTS 10
CARD, CONTINUATION 11
CARD, EXEC 10

CARD, PROCESS 10

CARD, TITLE 10

CARDS, CVEFRIDING DD i
CARRIAGE RETURN/LINE FEED
CARRIAGE RETURNS 160
CATLOG 176-177

CBUFF 75,161

CCB's 50

ccc 76-77

CHAIN 15,31,56,82 .

CHAINED OFF 70-71

CHAINED STORAGE AREAS, SERIES OF 31

CHAP 47-49

CHAR 95,97

CHAR, DUMMY 119

CHARACTERISTICS, DEVICE-DEPENDENT 200
CHARACTERISTICS, FIELD 196, 204

CICS CONSOLE 157

CICS CONTRCL AREA 119

CICS CONTROL INFORMATION, PORTICN OF THE 58
CICS CCNTRCL MODULES 47

CICS CONTROL SECTION 92

CICS CONTRCL TABLES 70

CICS DATA SETS 4

199,204

Page of SH20-10474
Added Jan. 5, 1973
By TNL SN20-2983

CICS DESTINATIONS 115
CICS DUMP 70

CICS DUMP CODES 251
CICS ENTRY 218

CICS ENVIRONMENT 52
CICS EPROR CLASSES 112
CICS FEATURES 170
CICS FILE CONTROL 180
CICS FILE MANAGEMENT
CICS INITIALIZATION
CICS LIBRARIES 13
CICS MACRO INSTRUCTIONS 6,10-11, 60, 194, 243
CICS MANAGEMENT MODULES 46,69-70

CICS NUCLEUS 24,33,39

CICS PARTITION/REGION 114,116

CICS PREPROCESSOR 205
CICS PROGRAM LIBRARY

CICS PROGRAM LOAD LIBRARY
CICS STORAGE MANAGEMENT 15,19, zu 58,174

170,179
24,33,39, 154

203, 205

CICS SUBTASKS 183

CICS SUPERVISORY 10-11

CICS SYSTEM CONTEFOL 18,25

CICS SYSTEM SERVICES 132,154

CICS TASK 251

CICS TEMPORARY STORAGE MANAGEMBN‘I 144,148
CICS TEMFORARY STORAGE MANAGEMENT FACTILITY 148
CICsS TIME MANAGEMENT 1,133

CICS TIME-CRDERED EVENT 138

CICS-DL/I INTERFACE 183

CICS/DOS 6,10-11,78,112,120, 134,182
CICS/DOS-ENTRY SYSTEM 32,56,65,69-73,124,205
CICS/0S SYSTEM 74,182

CICS, ABNORMAL TERMINATION OF 18

CICS, APPLICATICN PROGRAMS FRUNNING UNDER 61
CICS, APPROPRIATE 86

CICS, BASEL STRUCTURES OF

CICS, CONTROL OF 39,114, 139

CICS, EXECUTION OF 63-65

CICS, OPERATION OF 6,117,120

CICS, OPERATIONAL 153

CICS, OS SUBTASK OF 183

CICS, RELINQUISH CONTROL OF 50-52

CICS, RELOCATION OF

COBOL APPLICATION PROGRAM, EXAMPLE OF CICS ANS 38,198
COBOL, ANS

161, 163-164,186,191,195,198,205
CODE DOCUME‘NTATION, P’URPOSE OF 59

CODE TRANSLATION

CODE, ABNCRMAL TERMINATION 67

CODE, ACTUAL PL/I 10

CODE, AI STATUS 188-189

CODE, ASCII TRANSMISSION 155

CODE, DEFAULT TRANSACTION 66

CODE, DLPA ABEND 184

CODE, FOUR~CHARACTER ABNORMRL TERMINATION 67-68
CODE, FOUR-CHARACTER TRANSACTIOK 156

CODE, 1/0 EVENT ERROR 112

CODE, LINE 112

CODE, MULTIPUNCH 113,123,131

CODE, OPERATION 186

CODE, SOURCE 39

CODE, TERMINATION 19

CODE, TRANSACTION 203,205

CODE, UNIQUE “178

CODE, USER~SPECIFIED 70

CODE, 3270 DEVICE-DEPENDENT 194

CODE, 3735 USING ASCIT TRANSMISSION 77

CODES, ERRCR 112

CODES, SPECTAL BEXADECIMAL

CODES, REQUEST 23,153

CODES, RESPONSE 96,98,111,113,122-123,130-131,
144,143,146,151 .

COMMON BUFFER

CCMMON WORK AREA, BEGINNING OF TEE 17

COMMUNICATION CONTROL ADAPTER 157

COMMUNICATION LINES 50,75, 154

COMMUNICATION, CONVERSATIONAL MODE OF 83

COMMUNICATION, PROVIDE ADCITIONAL 165

COMMUNICATIONS, REAL-TIME DATA BASE/DATA 3

COMPATIBILITY 78,138,194

COMPILER

COMPILER, FULL ANS COBOL 32-33

COMPLETE DUMPS, NUMBER OF 70

164-165

COMPLETION 11,49-50, 82, 154, 156, 203
COMPLETION CODE POSTINGS 138

COMPLETICN, I/0 7

COMPLETION, SUCCESSFUL 156

COMPONENT SELECTION 158

CONFIGURATION 22,58,77

CONFIGURATION, BIT - 55-56

CONFLICTING ATTRIBUTES 259
CONSTDERATION, PERFCRMANCE 134
CONSIDERATIONS, DEVICE 157
CONSIDERATIONS, DEVICE-DEPENDENT 195
CONS IDERATIONS, QUASI~REENTRANT 183
CONSIDERATIONS, SYSTEM/7 156
CONSIDERATIONS, 2260/2265 PRCGRAMMING 157
CONSIDERATIONS, 277072780 FFOGRAMMING 158
CONSIDERATIONS, 3735 155

CONSOLE, SYSTEM 11,157

CONTROL, DUMP 21,67-69,71-73

CONTROL, FILE 83-84,93,95-96

CONTROL, INTERVAL 132

CONTROL, PASSBCCK 161

CONTROL, TASK 18,46-47,56,132

CONTROL, TEMPORARY STORAGE 27, 56,59, 124,127-128
CONTROL, TRANSFER PROGRAM

CONTROL, TRANSIENT DATA 27 59 110—115 117,215,228
CONTROL, TS TEMPORARY STORAGE

CONTROL, TERMINAL 74,157

CONVENTION, INSTALLATION 52

CONVENTION, NAMING 124

CONVERSE 74-75,83, 245

COPY CONTRCL CHARACTER 76

COPYING 14-15,78

CPU 46

CPU TIME 50

CPU, CONTRCL OF THE 46
CRDR 165,167-168
CROSS~-INDEX DATA SET

CsA, FIELDS OF THE 17

91-92,175

274

Csa, USER FCRTICN OF THE 69,71-73
CSA, WORK AREA PORTION OF THE

40
CURRENT CLOCK TIME 134,136,139, 141-142,145

CURSOR 76,79,82-83,201,203-204

CWA 17,33,69,71-73

CWTR 165-166, 168-169

DAM 83, 87-88,93, 100,180

DAM BLOCK, PHYSICAL ILENTIFIER OF THE 180
CAM DATA SETS 88,101,104,176,180-182
DAM NON-REYED DATA SETS 112

DAM ORGANIZED DATA SETS 170

DAM RECORD IDENTIFICATION FIELD 177

DASD 124,170,173-175

DATA AREA 126,151-152, 174,196, 201

DATA ATTRIBUTES 196

DATA BASE 3-4,7,87-88,101, 176,183, 188
CATA BASE CONSIDERATIONS

DATA BASE/LATA COMMUNICATYON SYSTEM 1,4
TATA BASES, ADDRESSES OF THE PCB'S OF THE 183
DATA CHARACTER 74,200

LATA CHECK MESSAGE 157

DATA COLLECTION 1-2,124-125,154

TCATA DIVISION 9,11,32,38,161,237

DATA ENTRY KEY 199,204

LATA ENTRY KEYBOARD 200

DATA FIELDS 32,195~196, 199

DATA BANDLING 160

DATA INPUT 165

DATA LANGUAGE/I 2,33,84,183

DATA MANAGEMENT BLOCKS 184

DATA MANAGEMENT SERVICES 6,10-11,32,39,46
DATA MANAGEMENT TEMPORARY STORAGE SERVICES 46
CATA RECORD 86,88,123,148,149,177

DATA SET IDENTIFICATION 22

TATA SET, CHARACTERISTICS OF THE 84

DATA SET, LATA BASE

TATA SET, LOGICAL RECORD OF THE 101

DATA SET, SEGMENTED STRUCTURE OF THE 170
TATA SET, SEGMENTS OF A 170

DATA SET, SYMBOLIC NAME OF THE 96,100
DATA SETS 112, 116- 115,122, 169-170,173,175-178,180-181
DATA SETS, DEBLOCKING OF THE B

CATA TRANSFER, COMPLETION OF 78

DATA TRANSFER, DIRECTION OF 157
DEBUGGING 214

DEFAULT ACTION 78

DEFAULT ALIGNMENT 171

DEFAULT FIELDS 204

DEFAULT LOCATION 201

DEFAULT SEGMENT SET 108

DEFAULT SEGMENT SET NAME 104
DEFINITION, DYNAMIC STORAGE 33,40
DEFINITION, STATIC STORAGE 24,33,39
DEFINITIONS, BCB 193

DESTINATION CONTROL TABLE 48,114-115,121

DESTINATIONS 2,77-78, 114-117, 121-123
DET ATTRIBUTE 200-201
DETECTION, SYSTEM STALL 1,132

DEVICE, BUFFERED

5
DEVICES, SEQUENTIAL 2,74,214

DFBEBMS MACRO INSTRUCTION 199,202,205
DFHBMSCA 206

DFHCLEAR 206

DFRCOVER MACRO INSTRUCTION 10
DFHCSADS 24,32-33,40,484,54,193

DFHDC 69,71,73-74,215,217
DFHDUP 68

DFHFC MACRO 22,184,186,190,192,194

DFHFILL 164

DFHFIOA 26,34,41,86

DFHFWADS NAME 26

DFHFWADS, 26,89-90,92,95,97,99,103,106,108,110
DFHIC MACRC INSTRUCTIONS 23,138, 141-144, 152
DFHKC 47,53,55,66, 140

DFHMDF MACEO INSTRUCTION 199,201-202

DFHPC 19,29, 63-66,123,131

DFHPC, NAME 244

DFHPC, NO 244

DFHSAADS 28,37, 4344

DFHSC 19-20,22-23,58-59,80,194,215,217 ,234,238, 241
DFHSYTCA 25

DFHTACP 73,115,251

DFHTC 74-75,80,82, 154~ 156, 160

DFHTCA 33-34

DFHTCADS 25,34 ,166-168

DFHTCT 157

DFHTCTTE 24,32-33,40,44,78,162

DFHTD 115- 116,118,120

DFHTDIA 26,35-36,42, 118-119
DFHTDOA 27,36,42-43,116
DFHTEP 73

DFHTTOA 25,34, 41,44,78,162,207
DFHTS 23,28,125-130

DFHTSIOA 27,32,36,43,128
DIAL-UP 157

DISCONNECT 75, 155,157,245
DISK 1-2,68

DISPATCHING PRIORITY 49
DISPATCHING, TASK 17,133-134
DISPLACEMENTS 9,172-173

DIVISION, ENVIRCNMENT 38
DIVISION, PROCEDURE 38,89-91,94,97,99,103,105,162,192
DL/T 2,33,84,183-184,186-194

DL/I CALL 183-184,188-189

DL/I INTERFACE 188

DL/I PSEUDO-ABEND 183-184

DL/I PSEUDO-ABENC CODE 992 184
1

DL/I REQUEST 189,191

DL/Y REQUEST HANDLER 183

DL/I TASK 183

DMB 184

DMB DIRECTORY 184

CMB POOL SPACE 189

DPGM

DRK ATT'RIBUTES 200

DUMMY RECORDS 182

DUMP CODES 251

DUMP AREA 74

DUMP DATA SET 67-68

PAGE 0035

Page of SH20-1047-4
Added Jan. 5, 1973
By TNL SN20-2983

DUMP MANAGEMENT 1,67-68, 71 FWA, DATA PORTION OF THE 174

DUMP MANAGEMENT TERMINAL SERVICES 46 FWA, DECLARATION OF THE 42

DUMP, FORMATTED STORAGE 67 FWA, NEW 93,95

DUMP, NO 67 FWA, ORIGINAL 100

DUMP, OUTPUT 67 FWACBAR 26,87,89-91,94-100, 102-103,105, 107, 106, 109-110
DUMP, PARTIAL 71-74 FWACEAR, INDEXAB 92

DUMP, COMPLETE STORAGE 71 FWACELL1 107-108

DUMP, TRANSACTION STORAGE FWACELL2 107-108

DUPDS 84-85,87,110-112, 20‘—2“6 GENERATE ADDITIONAL TRANSACTION STREAMS 214
DUPLICATE NAMES 128 GENERATE 1/0 LIST

CUPLICATE RECORD 112,178 GENERATION 219

DUPLICATES 83,112,178-179,215 GENERATION TIME 17

DUPLICATES DATA SETS, USE OF 178 GENERATICN, OFFLINE MAP 195,197

DYNAMIC STORAGE FOOL 80 GENERATION, SYSTEM 55

ECADDR 47,50-52,244 GENERIC 100-101

ECB'S 50,155 GENERIC KEY 100

ELEMENT, PRINT 159 GET'S, ISSUE REPETITIVE 115

ELEMENT, TYPE 160 GETAREA 85,95-97

END~-OF-DATA 148 GETAREA REQUEST 93,95

END-OF-FILE 78,112,155 GETIME 132,134-135

END-OF-LIST 191 GETMAIN REQUEST 95

ENDDATA 134,17,151-152 GETMAIN WORKREG 20

ENDFILE 85-86,103,110-112 GETMAIN, CCNDITIONAL 19

ENQ 47,52-55 GETNEXT 85,103,105-106,113

ENTRY CONVENTIONS 83 GETNEXT REQUEST 100-102, 104

ENTRY LABELS 87,93, 96 93 110-111,122,130, 151 GETNEXT, 101,104

ENTRY SPECIFICATIONS 1 GHU 92

ENTRY, CONVERSATIONAL DATA 1 GISMO 178-179

ENTRY, DESTINATION CONTROL TABLE 69,71-73 GONUMBER 11

ENTRY, FILE CCNTROL TABLE 178 GOOD 113,123,131

ENTRY, PCT 166,168 GOOD1 191

ENTRY, TERMINAL 14,70 GOSTMT 11

ENTRY, TERMINAL CONTROL TABLE LINE 81 GROUPNAME 196

ENVIRCNMENT, CCNVENTIONAL BATCH PROCESSING 3 GRPFLDAI 202

ENVIRONMENT, CONVERSATTIONAL 81 GRPFLDAO 202

ENVIRCNMENT, DB/DC 4 GRPLO 202

ERASE 75-76,79-82,203 GRPNAME 199,201-202, 209,249

ESETL 85,106-108,112 GU 94

EVENT CONTROL AREA, TIMER 139 GXIBZQMR 137

EVENT CONTROL AREAS, LIST OF 50 GXXX 187

EVENT CONTFOL BLCCK 155 GXXX REQUEST 187

EVENT, COMPLETION OF THE 23 HALFWORD BINARY FIELD 196

EVENT, WRITZ 78 . HALFWORD OF THE SAa, SECOND 186

EVENTS, LIST OF 51-52 HBIN 217-219,249

EXAMPLES, FROGRAM 231 HEX 180

EXCEPTION, USER-WRITTEN 98,110,123,130,151 HEXADECIMAL 49,58,75,161

EXCLUSIVE OPTIONS 199-200, 204 HHMMSS, FORM 136-137, 139,142,145
EXCLUSIVE USE 18 HEMMSST, FORM 17,134

EXIT ROUTINE TWAWA 166 HIERARCHY 88,170,177

FXIT, CRDR 166 HIERARCHY, TWO-LEVEL INDIRECT ACCESS 176
EXIT, PARTITION/REGION 132 HIGH-ORDER 187 .
EXPIR, CALC 17 HIGHER DISPATCHING PRIORITY, TASKS OF A 50
EXPIRATION TIMES 133-135, 134, 150 HIGHER LOGICAL LEVEL 64,66

EXPIRD 132,134,136,138,151-152 BIGHER PRIORITY, TASK OF 2 50
EXTRAPARTITION 114,116,118 BIGHEST PRIORITY TASK 46
EXTRAPARTITION CATA SETS 115,119-120 HOLDPCF 163-164

EXTRAPARTITION MAGNETIC TAP¥ LATA SET 120 HOLDPCFB 163-164

FACADR 48 HONEOM 197,200, 199,203-204

FACCTL 48 17 14,107,183,185,187,190

FACILITIES OF.CICS/0S 33 1/0 BUFFER, CONTENTS OF THE 158
FACTILITIES, TEMFORARY STORAGE 152 Ic 199-201,209

FACILITY, EXCEPTION HANDLING 110, 122, 130, 151 IC ATTRIBUTE 201

FACILITY, TRACE 216,218,217-218 ICDADDR 134, wu—150 149

FACILITY, TRANSIENT CATA PURGE MACRO 116 ID, NEW SEGSET

FCA 18 1D, REQUEST 225

FCACELL2 107 ID, SOURCE TERMINAL 78

FCADDR 47-48,243 ID, TRACE 220

FCFIOBEX 112 IDENT, DEST 235

FCFIOEX 112 IDENTIFICATION 22,63-66,100-102,104,108,147,152,170
FCT 83-84,86-88,92,95-96, 100-101,112,180-181 IDENTIFICATION DIVISION 38

¥DP RECORLS, BLOCK OF 155 IDENTIFICATION DIVISION CARD 10

FDP RECORDS, TRANSLATION OF 77 IDENTIFICATION ERROR 1"

FDP'S 155 IDENTIFICATION FIELD 22 104,182
FEATURE, ADJUSTMENT 133 IDENTIFICATION WORD 156

FEATURE, EOT DISABLE 165 IDENTIFICATION, EIGHT-BYTE REQUEST 137,140,142
FEATURE, STALL PROTECTION 55 IDENTIFICATION, FOUR-CHARACTER TERMINAL 157
FEATURE, SYNCHRONIZATION 133 IDENTIFICATION, INITIAL PROGRAM

FEATURE, TIME ADJUSTMENT 135 IDENTIFICATION, MATCHING TERMINAL 1“3 146
FEECBACK 101 IDENTIFICATION, MATCHING TRANSACTION 14,146
FEOV 116,120-122, 228 233 247 IDENTIFICATION, NEW TRANSACTICN 66
FIELD, RECORD IDENT IDENTIFICATION, OPERATOR 124

FIELD, RECORD IDEN’PIFICM‘ION 102 IDENTIFICATICN, RECORD 87,98,101,108, 180
FIELDNAME 32 IDENTIFICATION, REQUEST 152

FILE CCNDITION 78 IDENTIFICATION, SEPARATE RECCRD 88

FILE CONTROL REQUEST/RESPONSE, TYPE OF 23 IDENTIFICATION, TELLER 163

FIIE CCNTECL REQUESTS 111 IDENTIFICATION, TRACK 182

FILE CONTROL TABLE 86,92,172 IDENTIFICATION, TRANSACTION 23,47-48,55,66,124
FILE CCNTRCL TABLE ROOT 170 143-144,146,148,156

FILE MANAGEMENT TRANSIENT LATA SERVICES IDENTIFICATION, UNIQUE 152

FILE SERVICES 17,84,86-87,92-93,96,98,100, 10u 110,190 IDENTIFICATION, UNIQUE REQUEST 137, 140, 142, 145~ 146,150
FILE, BDAM 183 IDERROR -122,125,127,129-130

FINAL BLOCKS 155 IDLE 79

FIOA 14, 22,26, 34-35,41,84,86-88,98,111-112 IMPLEMENTATION OF SYSTEMS 195

FIOAEAR 35,41,87 IMPLEMENTATION TIME 1

FIXED-LENGTH RECORDS 170,182 IMPLIED WAIT 80

FORMAT, DECIMAL 180 IMS 183

FORMAT, FIXED 174 IMS/360 2,84

FORMAT, PACKED 88,101 INAREAL 81

FORMAT, PACKED DECIMAL 17 INCREMENT TERMINAL DATA LENGTH 234,236
FORMAT, RECORD 170 INDEX 22,84,87-88,91-92, 160, 176-179
FORMAT, STANDARD VARIABLE-LENGTH 146 INDEX CATA SET 22,88,170,175-178
FORMAT, USER-ESTABLISEED 17 INDEX DATA SET, SEARCH OF TEE 176
FOUR~BYTE FIELD 14,51 INCEX DATA SETS, MULTIPLE LEVELE OF 177
FREEKB 197,199,203-204 INDEX DATA, USE OF AN 177

FREEMATN 21,56,59-60,87 INDEX HIERARCHY 176-178

FRSET 197,199,201,203-204 INDEX RECORD 178

FSET 199-201 INDEX, LEVEL OF 178

FUNCTION, DLI 194 INDEXA 91

FUNCTION, MAPPING 205 INDEXAB 91-92

FUNCTION, PRELOAD 194 INDICATION, EOD 234

FUNCTION, TASK DISPATCHING 139 INCICATOR 50,74,83,159,171-174,178,183
FUNCTIONS, CONTRCL 198 INDICATOR DS 166

FUNCTIONS, OPTIONAL TASK INCICATOR, BIT TYPE 172

FUNCTIONS, PRINTER 200, 2ou INDICATOR, DISPLACEMENT TYPE 172
FUNCTIONS, TASK 132 INDICATOR, INVREQ 184

FUNCTIONS, TRACE CONTROL 215,218 INDICATORS, BIT TYPE SEGMENT 172

FWA ADDR 109 INDICATORS, DISPLACEMENT 173

FWA CONTROL FIELDS 174 INDICATORS, TYPE SEGMENT 172

FWA DSECT RECORD1 DS c8 INCIRECT ACCESS HIERARCHY 176

FWA, ASSIGN 105,107- 108 INDIRECT ACCESSING FEATURE 175

275

Page of SH20-1047-4
Added Jan. 5, 1973
By TNL SN20-2983

INDIRECT ACCESSING HIERARCHY 22,170 INSTRUCTION, TRANSACTION MACRO 69-70,72
INDIVIDUAL FIELDS 200-201 INSTRUCTION, TRANSIENT DATA MANAGEMENT MACRO 115
INFORMATION BLOCK 197 INSTRUCTION, UPTATE MACRO 92+93
INFORMATION DISPLAY SYSTEM COMPCNENT DESCRIPTION 200 INSTRUCTION, USER MACRO 37,43,217
INFORMATION, BLCCK REFERENCE 180 INSTRUCTION, VALUE MACRO 69-71
INFORMATION, CONTROL 47 INSTRUCTION, WAIT MACRO 50,83,136-138,140
INFORMATION, INPUT/OUTPUT AKEAS 13 INSTRUCTION, WRITE 81

INFORMATION, MASTER RECORD 176 INSTRUCTION, WRITE MACRO 69,77,79-80
INFORMATICN, USER-CONSTRUCTED 178 . INSTRUCTION, XCTL MACRO 64

INTTIAL TIOA 81 INSTRUCTION, YES MACRO 67,82

INITIAL, CCNTINUE READ 154 INSTRUCTIONS, DFHMDF MACRO 195-196, 200, 202
INITIAL, WRITE 75,154 INSTRUCTIONS, DL/I DFHFC MACRO 93
INITIALIZATION 1,22,58 INSTRUCTIONS, FIELD DEFINITION MACRO 197
INITIALIZATION REQUEST 155 INSTRUCTIONS, ISSUING CICS MACRC 6
INITIALIZATION, SYSTEM 254 INSTRUCTIONS, SUBSEQUENT DFETC MACRO 78
INITIATE BROWSE 102-103,105 INSTRUCTIONS, TERMINAL CONTRCL MACEO 205
INITIATE NEW TASK 43 INSTRUCTIONS, THROUGH MACRO 46

INITIATE REQUESTS 141-142 INSTRUCTIONS, TRACE TASK CONTROL MACRO 216
INITIATED TASK 144 INTERFACE, CICS-DL/I 230

INITIATION 2,24,33,40,115,132 INTERFACE, DB/DC 4

INITIATION OF TRANSIENT DATA CCNTROL 48 INTERRUPT 124,154-156, 158

INITIATION REQUEST 14 INTEPRUPT, HARDWARE 65

INITIATION SERVICES AVAILABI.E 1 INTERRUPT, TIME OF 253

INITIATION, AUTOMATIC TASK 146,148 INTERVAL CONTROL MACRO INSTRUCTION, USE OF THE 132
INITIATICN, REQUEST TASK 143-144,146- 147 INTERVAL CCNTFROL POST REQUEST 150
INITIATION, TASK 47 INTERVAL CONTROL REQUEST/RESPONSE 23
INITIMG, USE OF THE 202 INTERVAL CCNTRCL WAIT REQUEST 150

INPUT BUFFER 154 INTERVAL OF TIME 136
INPUT BUFFER, SIZE OF THE 154 INTERVAL OF TIME GIVEN 143-144

INPUT DATA, LENGTH OF THE 195 INTERVALS OF TIME 132,136,139,142,145
INPUT DET FIELD 201 INTRAPARTITION 114,116,118, 122

INPUT FIELD, FORMAT OF AN 201 INTRAPARTITION DATA SET 119

INPUT FIELDS 200-201 INTRVAL 132,136-145,224,248

INPUT MAP FIELDS 200 INVALID REQUEST 112,160

INPUT MAP GENERATION 198 INVREQ 161,186,147, 749, 151- 1<3,183 184, 187-189
INPUT MAPPING REQUEST 253 INVREQ KEYWORD, DISCUSSION OF THE

INFUT PROCESSOR 165 IOKEY 194

INPUT STREAM 167 TOLT 156

INPUT/OUTPUT, SYNCHRONIZE TERMINAL 74,83 IPL 157

INPUT, BATCH ISAM 41,83,87,93,100,104,170,177,180
INPUT, PHYSICAL 74 ISAM DATA SET 101,104

INPUT, READ/WRITE 205 ISAM, INDIRECT ACCESS HIERARCHY OF . 88
INPUT, RECEIPT OF 155 ISRT 194

INQUIRY 1, 86,88 JRNLCR 164

INQUIRY, END OF 165 REY 89-91,102-103, 105, 109

INQUIRY, HIGH-PRIORITY 125 KEYBOARD 76-78,199,204

INSERT 47,159-160, 183, 199 REYC 109-110

INSERT RECORDS 167 KEYETL DATA, LENGTH OF THE 196

INSTRUCTION OI TWAIND 166 KEYLEN 176

INSTRUCTION, ABEND MACRO 19, 67 KEYWORD 126-127,129,134,136,139,141,145,148,150-151
INSTRUCTION, ATTACH MACRO 47, KEYWORD, CURSOR 262

INSTRUCTION, CANCEL MACRO 137 150 152 KEYWORD, INITIMG 96

INSTRUCTION, CHAF MACRO 49 REYWORD, RETMETH 88

INSTRUCTION, CHECK MACRO 87,93, 96,98 111,122,130,151,153, 189 L 29,78

INSTRUCTION, CICS DFHMDI MACRC 194 L WRITE 78

INSTRUCTION, CONVERSE MACRO 83 LA 191

INSTRUCTION, COFY MACRO 77 LAYOUT OF THE CONTROL 13

INSTRUCTION, DELETE MACRO 19,65-66 LAYOUT OF THE CWA 33

INSTRUCTION, DFHBMS MACRO 202-203 LAYOUT OF THE INFUT/OUTPUT, USER DEFINED 27
INSTRUCTION, DFHCOVER MACRO 10 LAYOUT, DEFINE RECORD 89-90,92,95,97,99,103,106,108
INSTRUCTION, DFHDC MACRO 69,80 LENGTH VALUE 200,257

INSTRUCTION, DFHFC MACRO 23,84, 100,111, 180, 183, 187- 188 LENGTH, BLOCK 183

INSTRUCTION, DFHIC MACRO 132,151,153 LENGTH, MOVE 17,127

INSTRUCTION, DFHKC MACRO 47 LINE 81

INSTRUCTION, DFHPC MACRO 61 LINEADR 75,77,157- 158,245

INSTRUCTION, DFHSC MACRO 56-57,79 LINKAGE SECTION BASE LOCATOR 32
INSTRUCTION, DFHTC MACRO 24,74,77-78,154,168 LINKAGE SECTION, START OF 38

INSTRUCTION, DFHTD MACRO 23,115,122 LISTADDR 52

INSTRUCTION, DFHTS MACRO 125,130 LISTING OF ANS COBOL FEATURES 32
INSTRUCTION, DISCONNECT MACEO 155 LISTNAME 185

INSTRUCTION, DISP MACRO 50 1L 116, 125,146,171

INSTRUCTION, DL/I MACRO 185 LLBB 116~118,125, 146, 149, 167,171,174
INSTRUCTION, DUMP MANAGEMENT MACERO 69 LOADLST 61,65-67,248

INSTRUCTION, E-TYPE OS CALL MACRO 186 LOCATION TCAPCAER 251

INSTRUCTION, ENQ MACRO 53 LOCATION TCATDAA 117

INSTRUCTION, FILE MANAGEMENT MACRO 84 TOCATION TCATDDI 117,119,121
INSTRUCTION, FOLLOWING MACRO 187,197,199 LOCATION, USER-SPECTFIED 134
INSTRUCTION, FREEMAIN MACRO 19-20,59, 98, 111 LOCATOR

INSTRUCTION, GETAREA MACRO 92,95-9% LOGIC, MAINSTREAM

INSTRUCTION, GETIME MACRO 134-135 LOGICAL 7,13,66, 33 102 158, 16¢, 170-171,174-177
INSTRUCTION, GETMAIN MACRO 19,22-23,22,32,34 LOGICAL CLOSE 74

56-58,167,202 TOGICAL LIMIT 176

INSTRUCTION, GETNEXT MACRO 22,99,101,104 LOGICAL LOOP

INSTRUCTION, INITIAL MACRO 197 LOGICAL RECORD 84, 88 101, 103-104, 158,160, 170-172, 177,181
INSTRUCTION, INITIATE MACRO 141-143 LOGICAL REIATIONSHIP 169

INSTRUCTION, ISSUE ESETL MACRC 107 LOGICAL WRITE 160

INSTRUCTION, ISSUE RESETL MACRO 109-110 LRECL 176

INSTRUCTION, LINK MACRO 19, 63,66 MACRO INSTRUCTIONS 243

INSTRUCTION, LIST MACRO 51 MACRO, DFHCOVER 10

INSTRUCTION, LOAD MACRO 65 MACRO, ISSUE INITIAL SETL 109
INSTRUCTION, MAP MACRO 256 MACRO, ISSUE RESETL 109

INSTRUCTION, NAME MACRO 47,63-64, 66 MACRC, TLIST 77

INSTRUCTION, NEWREC MACRO 182 MANAGEMENT,

INSTRUCTION, NEXT SEQUENTIAL 9 AUTOMATIC TASK INITIATION FEATURE OF CICS TIME 133
INSTRUCTION, NO MACRO 65-66 MANAGEMENT, COMMUNICATION LINE 154
INSTRUCTION, NOPURGE MACRC 55 MANAGEMENT, DYNAMIC PROGRAM 1
INSTRUCTION, NUMBER MACRO 52-53 MANAGEMENT, FILE 2,23,174,178
INSTRUCTION, PAGE MACRO 83 MANAGEMENT, SEQUENTIAL DATA 2
INSTRUCTTON, PARTIAL MACRO 21,7 MANAGEMENT, TASK 1

INSTRUCTION, PASSBK MACRO 161 MANAGEMENT, TEMPORARY STORAGE 2,23,46
INSTRUCTION, PIO 157 MANAGEMENT, TIME 1,23,46

INSTRUCTION, POST MACRC 138-140 MANAGEMENT, TRANSIENT DATA 2
INSTRUCTION, PROGRAM MANAGEMENT MACRO 61 MAP 174,194,196,195-207

INSTRUCTION, PURGE MACRO 55,121 MAP DFHMDF MACRO INSTRUCTIONS,

INSTRUCTION, RELEASE MACRO 87,98,111 FIELDS OF THE INPUT 203

INSTRUCTION, RESETL MACRO 101,108 MAP FORMAT 194,196,195

INSTRUCTION, RETRY MACRO 152 MAP GENERATION 197

INSTRUCTION, RETURN MACRO 47,63,66 MAP OPERATION 198,205

INSTRUCTION, SEGMENT MACRO 73 MAP SPECIFICATION 258,263

INSTRUCTION, SETL MACRO 22,100-101,103-104 MAF, INPUT/OUTPUT 201

INSTRUCTION, SPECIAL INITIALIZATION MACRO 78 MAP, OUTPUT FIELD 201

INSTRUCTION, STORAGE CONTROL GETMAIN MACRO 205 MAP, PHYSICAL 194,196,195,197
INSTRUCTION, STORAGE MANAGEMENT MACRO 56 MAPADR 203,205

INSTRUCTION, TASK MANAGEMENT MACRO 46 MAPPING 197

INSTRUCTION, TEMPORARY STORAGE MANAGEMENT MACRO 125 MAPPING OPERATION, TYPE OF 203
INSTRUCTION, TEMESTRG MACRO 56 MAPS, BMS 203

INSTRUCTION, TERMINAL MACRO 59,79 MAPS, INPUT 195-196,199

INSTRUCTION, TERMINAL MANAGEMENT MACRO 74 MAPS, OUTPUT 195,199-201,203-204
INSTRUCTION, TRACE CONTROL MACRO 216 MAPS, TYPES OF 194

INSTRUCTION, TRANSACTION COCE MACRO 66 MAP1 197-198

276

MAP2 198

MASTERA 89-92

MAXTMUM DATA LENGTH 195
MAXIMUM LENGTH 195-196
MAXIMUM MESSAGE LENGTH 76
MBBCCHHR 101

MD 166- 167,201

MDT*'S 199, 201 206

MED 179

MESSAGE AREA, USER DEFINEL LAYOUT OF THE

MESSAGE DFHTS 126

MESSAGE, HEADERS 155

MESSAGE, CRDR TRANSACTION-INVOKING
MESSAGE, DESTINATION OF THE 78
MESSAGE, EFROR 76,159
MESSAGE, INPUT 154,160

MESSAGE, INVALID TERMINAL ICENTIFICATION

MESSAGE, LCGICAL 160

MESSAGE, LOGICAL LENGTH OF THE
MESSAGE, OPERATOR 45

MESSAGE, OUTPUT 25,76,78,158,160
MESSAGE, PSEUDO-ABEND 1 Bll

MESSAGE, SAVES

MESSAGE, STATUS 166

MESSAGE, TRANSMIT 156

MESSAGE, WRITES 29,39

MESSAGE, ASSEMBLY ERROR 255
MESSAGE, ROUTE 77

METHOD, DIRECT ACCESS 83

METHOD, GRAPHICS ACCESS 74

METHOD, INDEXED SEQUENTIAL ACCESS 83
METHOD, TELECOMMUNICATIONS ACCESS 74
MF

MIDNIGHT 133,135

MIGRATION PATH

MINIMUM 136,139,142,145,171

MODE 125,197-199,202,205
MODIFIED DATA TAGS

MOVE STATEMENT, USE OF THE
MSGLITE 164

NEWREC 85,92,96-97
NCKZERO 172-173

NONZERC TRIGGER LEVEL 115
NOPURGE 47

NORESP 152,184,187-189,191
NORESP, DICUSSION OF THE 120
NORM 199-200

NORMAL INTENSITY 200

NOSPACE 85,92-93,110-112,115-116,123,122-123
NOSTRG 57-58
NOTOPEN 115-116,118,120,123,122-123,187-189

NOTRANSLATE 75,245
NULL CHARACTER 197
NULLS 75-77,196
NUM ATTRIBUTES 200
NUMERIC VALUE
OFFLINE 68,194,196
OFFLINE MAP BUILDING 197
ONLINE 199

ONLINE SYSTEMS 1

OPERATOR REPLY
OPERATOR, CONSOLE
CRDERED REQUEST 150
ORIGINATING TASK 124,150
ORIGINATING TASK RESUMES CONTROL
0s 133,180

OS ISAM FIILER NAME 26
0S/360 50

ouT 198,203

OUTPUT
OQUTPUT MAP DESCRIPTION 204
OUTPUT MAP FIELDS 204

OUTPUT MAP FORMATS 194

OUTPUT GENERATION 198

OUTPUT MAP, ATTRIBUTES OF AN 195
OQUTPUT MAPPING FUNCTIONS 204
OVERLOAD CCNDITIONS 55

OVERLOAD, SYSTEM 46,55~56
PACKTIME 140,147

PARAMETER LIST 185

PARAMETER, BLKKEYL 180
PARAMETER, CBUFF 76

PARAMETER, DATASFT KEYWORD 92,95
PARAMETER, DISCONNECT 75
PARAMETER, ERASE 82

PARAMETFR, ERASEAUP 76

PARAMETER, OPTIONAL 186

PARAMETER, PASSBK

PARAMETER, PSEUDOBIN 78 156,158
PARAMETER, READB 75-%3-

PARAMETER, RESET 75

PARAMETER, SAVE 81

PARAMETER, SEGSET KEYWORD 86,92
PARAMETER, SSACOUNT 187
PARAMETER, TRANSPARENT 77
PARAMETER, WAIT 80,83

PARAMETER, 3270 KEYWORD 198
PARAMETERS, DISCUSSION OF THE 7
PARAMETERS, INDEX KEYWORD 86
PARAMETERS, PASSING OF 17
PARAMETERS, STAND-ALONE 75
PARAMETERS, WRITEL 78,82

29,38-39,45
133-134

PARENTHESES 11,185,188
PARMCOUNT 186-187
PASSBOOK 76,159-161
PASSBOOK CONTROL 159-161
PASSBOCK INDEXING 160
PASSBOOK PRESENT 163
PASSBOCK WRITE 160
PASSBOOK, BANKING 76

PASSBOOK, FOSITICN OF THE
PASSBOOK, FRESENCE OF A
PCB DSECT 190

PCB POINTERS 183,190,193-1¢%4

PCB POINTERS, EASE OF A STRUCTURE OF
PCB POINTERS, DECLARED STRUCTURE OF
PCB POINTERS, LAYOUT OF THE 191
PCB'S 183~ 184,186~ 194

PCB'S OF PSB 190

PCT 46,55, 152,184

160
74,160,163

160

76,199,201, 204
32

136,139,141~142, 146,145

150

76,12£,155,158,165,197,200,203

193
193

167

157

Page of SH-10474
Added Jan. 5, 1973
By TNL SN20-2983

PDIR 184

PEQU 156

PERFORMANCE, DEGRADATION OF 76

PERFORMANCE, EVALUATION SYSTEM 46

PERFORMANCE, SYSTEM 6

PHYSICAL 124, 180-182

PHYSICAL BICCK 102

PHYSICAL DATA RECORD 144

PHYSICAL KEY 180-181

PHYSICAL RECORD 181

PL/T 164,185-186,193,195,198,205,208-209,219,231,243

PL/I APPLICATION PROGRAM, EXAMFLE OF CICS 44

PL/I APPLICATION FROGRAMMING 39

PL/I COMPILE 10

PL/I EXAMPIE 163,240

PL/I F 252

PL/I FEATURES, LISTING OF 39

PL/I OPTIMIZING COMPILER 252

PL/I SUPPORT 252

PLITDLI, CALL 187,194

POINTER 31,48,187,191-193

POINTER VARIABLE 198

POINTER, BIL 185,191

POLLING .74,79

FOCL, DMB 184

POOLS 184,189

POS 199-200,202

PRIMARY DATA SET 176-179

PRIMARY TCATA SET, SYMBOLIC NAME OF THE 87

PRINT 200,199,208

PRINTER 190,195, 199-200,204

PRINTER CONTROL CHARACTERS 206

PRINTERS, LINE 2,214

PRIORITY 11,46-69,243

PRIORITY OF A TASK 46, 48-49

PRIORITY OF AN EXISTING TASK, DISPATCHING 48

PRIORITY SEQUENCE 47

PRIORITY VALUE 48-49

PRIORITY, CISPATCHING 18

PRIORITY, NORMAL DISPATCHING 150

PROCEDURE TCIVISION, START OF 38

PROCESSING, QUEUE 123

PROGRAM ASSEMBLY ERRORS, SEVERITY OF 255

PROGRAM CATLOG 176

PROGRAM CHANGES z1u

PROGRAM CHECK 1,253

PROGRAM COINCIDE, EXIT POINTS OF 2 60

PROGRAM CONTROL 46,60,63-64,66,215,223,252,254

PROGRAM CCNTROL LOAD 205

PROGRAM .CONTROL TABLE 23,46,55,152

PRCGRAM CONTROL TABLE ENTRY 23

PROGRAM ENTRY 9,191

PROGRAM FLOW 111,,122,130,152

PROGRAM INTERRUPT 253

PROGRAM INTERRUPT MANAGEMENT

PROGRAM INTERRUPTS, INTERCEPTICN or 1

PROGRAM LINKAGE 61

PROGRAM LOAD AREAS 5%

FROGRAM MAINTENANCE 114

PROGRAM MANAGEMENT 1,60

PROGRAM MANAGEMENT DUMP SERVICES 46
PROGRAM NAME SUFFIX 165

PROGRAM PROCESSING TABLE 56
PROGRAM SERVICES 60

PROGRAM SPECIFICATION BLOCK _ 183

PROGRAM TESTING AND DEBUGGING 214

PROGRAM, CICS TERMINAL ABNORMAL CCNDITION 115
PROGRAM, CICS UTILITY 1,68

PROGRAM, CONVERSATIONAL 189

PROGRAM, INTERVAL CONTROL 183

PROGRAM, SERIALLY REUSABLE APPLICATICN 6
PROGRAM, SUSPENDING 56

PROGRAM, TERMINAL ABNORMAL CONDITION 73

PROGRAM, TERMINAL CONTROL 78,160
PROGRAM, TERMINAL ERROR 73

PRCGRAM, TRACE 216,220

PROGRAM, TRANSACTION CONTROL 251
PROGRAM, TFANSIENT DATA CONTROL 18
PROGRAMMER, RESPONSIBILITY OF THE 186

PROGRAMMER, SYSTEM 4

PROGRAMS, APPLICATION
199,202-203,205,215,254

PROGRAMS, CICS MANAGEMENT
PROGRAMS, HIGH-LEVEL LANGUAGE
PROGRAMS, RECOMPILING EXISTING 114

PROGRAMS, USER APPLICATION 6,18-19,21-22,55,59, 214

PROGRAMS, USER~WRITTEN APPLICATICN 60~-61,63-64,
69-72,74,154,199,201,205,214

PROT ATTRIEUTE 200

PRTY 47-49,243

PSB 183-184,188-190,192,249

PASB DIRECTORY 184

180,183,190,194-195,197,

18,46,48,55,215,220
161

PSB POOL 184

PSBGEN 184

PSENAME 184,249

PSEUDOBIN 75,81,156,245

PURGE 46~-147, 55—56 116,121,228,244,247
PURGE/NOPURGE 55

PWRI 157

QARGADR 47,52-54,244

QARGLNG 47,52-54, 244

QUASI-REENTRANCE 6,29,60,183

QUASI-REENTRANT 39,45,190

QUEUE 56,114-115,121-123,144,221, 231, 251
QUEUE, INTRAPARTITION 123

QUEUES, EXTRAPARTITION INPUT 122

RDIDADR OPERAND, DISCUSSION OF THE 180
READ-ONLY 84,174

READ/WAIT 202

READL 75,78,245

READREC 89-92

READUPD 94

REENTRANCE 38

REENTRANCE ALLOWS 6,
39,448,124, 183 240

REENTRANT

REFRESH 223

REFRESH CSA TIME 224
REGISTER, ASSIGN BASE 98,102
REGISTER, BASE 89-91,94,96,98

RELATIVE BLOCK 180,182

Page of SH-1047-4
Added Jan. 5, 1973
By TNL SN20-2983

RELATIVE POSITION 185

RELATIVE RECORD 88

RELATIVE RECORD NUMBER 181

RELATIVE TRACK 102,180-181

RELATIVE TRACK KEY 181

RELBLK 181

RELEASE REQUEST 98-99

RELREC 8‘#-—85 87,99, 102,245-246

RELTYPE 18

REQID 132, 13“, 136-142, 144-147,149-150,248

REQUEST 98,120-121,150-151, 190, 253

RESET ACCA 157

RESET, WRITE 154-155

RESETL 85, 108- 110,112,227,246

RESPONSE CCDES, TESTING OF 110,123,130, 151
RESPONSE, END~OF-DATA 148

RESPONSE, EOT 154

RESPONSE, 1/0 ERROR 151

RESPONSE, NORMAL 111,122,130, 152
RESPONSE, NORMAL END‘OF-FILE 152

RESPONSE, NOSPACE 123

RESPONSE, OPERATOR 189

RETMETH 8485, 87-88,99,101-102, 245-246
RETRIEVAL CALL 186

RETRIEVAL CF A TIME-ORDERED LATA RECORD 149
RETRIEVAL THROUGH 152

RETRIEVAL, ESETL RESET SEQUENTIAL 108
RETRIEVAL, RANDOM 2

RETRIEVAL, SELECTIVE
RETRIEVAL, SEQUENTIAL 100,113

RETRIEVAL, TERMINATE SEQUENTIAL 106

RETRY REQUESTS 52

REUSABLE 114

REUSABLE RESOURCES, CONTROL OF SERIALLY 1,52
REUSABLE STORAGE SPACE 124

REUSABLE, SERIALLY
ROLLOUT 32

ROOT 172

ROUTINE, EFROR 102
ROUTINE, EXIT 165-166,168,167-169

ROUTINE, SERVICE 215

ROUTINE, USER-WRITTEN EXIT 166

ROUTINES, BTAM ERROR 157

RSA'S 70,72

RVT 154

saA 14,28,37,43,58,186

SAACBAR 28,37

SAMPLE PROGRAMS 231

SCHEDULING PROCESS 183

SCREEN FORMATS 195

SCREEN IMAGES 128

SEGIDER 84-85,87, 99—100 103,108,110-111,285-246
SEGMENT DEFINITIONS 71

SEGMENT INDICATOR FIELD 172

SEGMENT INDICATORS 171-172

SEGMENT INDICATORS, SEGMENT DISPLACEMENT TYPE 172
SEGMENT SEARCH ARGUMENTS 183-185

SEGMENT SEARCH ARGUMENTS, NAMES CF 187

SEGMENT SET IDENTIFICATION

SEGMENT SET NAME 101,104, 175

6,60,124

SEGMENT SET, SYMBOLIC NAME CF TEE 87,101,108
SEGMENT SETS 86,92,100-101,104,170,172-175

SEGMENT, FIXED-LENGTH 17

SEGMENT, RCOT 171-174

SEGMENTATION 1

SEGMENTED TATA SET 88,170,173-1175

SEGMENTED RECORD 26,42,86-88,92-93,101,169-171,173-174
SEGMENTED RECORDS, USE OF 170

SEGMENTS, VARIABLE-LENGTH 174

SEQUENTIAL ACCESS METHOD 74,214

SEQUENTIAL DATA SET 1,68

SEQUENTIAL RECGRD

104, 106, 105-106, 114
SERVICE INVOCATION 1

SERVICES, TASK 46
SERVICES, TIME 132

SERVICES, TIME-OF-DAY 134

SERVICES, TRANSIENT DATA 120-121

SETL 22,85,99-100, 102-103, 105- 106, 108-110, 227, 246
SETL REQUEST 99-100,104,108

SHIFT CHARACTERS 76, 160

SIGN ON/SIGN OFF 154

SINGLE-SERVER 52

SINGLE-SERVER RESOURCE PROTECTION REQUESTS 53
SKIP 108

SKIP, AUTO 196

SLACK 172

SORT 1

SPECIFICATION OF ATTRIBUTES 259

SPECIFICATION, PRINTER FORMAT 255

SPECIFICATION, RECORD FORMAT 114

SSA DFHSC TYPE 190

SSA LIST 188,230

SSA LIST, DESCRIPTION OF THE 187

SSA=COUNT 193

SSA'S 183-185, 187-188,191,193-194, 193,195, 194,250
SSA'S, NUMBER OF 185,187

SSACOUNT 185,187,250

SSALIST 185, 187- 188 191,250

STALL CONDITION
STALL CONDITION, SYMP’!‘OMS OF A SYSTEM 132
STANCARD A'ITENTION IDENTIFIER LIST 20

STANDARD ATTRIBUTE LIST 206
STANDARD EXIT ROUTINE BASE NAME 167
STANDARD POSTING CONVENTIONS 50-51

STATEMENT NUMBER 29,31,38, ’45
STATEMENT, SERVICE RELOAD
STATISTICS 18

STATISTICS ACCUMULATOR 17
STATISTICS, TIME SYSTEM
STORAGE ACCOUNTING AREA
STORAGE ACQUISITION 1
STORAGE ACQUISITION REQUEST 56
STORAGE ALIGNMENT 234 B
STORAGE AREAS, ATTRIBUTES OF TEE 39
STORAGE ARFAS, NUMBER OF MAIN 13
STORAGE AREAS, TYPES OF 71-72
STORAGE CONTROL 55~56, 169,202,215,222,253 .
STORAGE MANAGEMENT 1

STORAGE PREFIX
STORAGE, ACQUIRE

2
19,37,43,58

192
183,187,190,192,194
278

STORAGE, AUXILIARY 124- 127,129~ 131 152

STORAGE, AUXILIARY TEMPORARY 12
STORAGE, CICS 70,187

STORAGE, CICS DYNAMIC 183

STORAGE, CIASS OF 57-58

STORAGE, CONSERVATION OF MAIN 2
STORAGE, DUMP TRANSACTION 69
STORAGE, DYNAMIC 13,169,185
STORAGE, FREE 118

STORAGE, PROGRAM 56

STORAGE, RELEASE ALL TERMINAL 59
STORAGE, RELEASE MAIN 59

STORAGE, SSA DYNAMIC 185

STORAGE, STATIC 183,190

STORAGE, SYMBOLIC 125

STORAGE, TEMPORARY 27,36,43,124-130
STORAGE, TEMPORARY STORAGE AUXILIARY 124
STORAGE, TERMINAL 39,u45,56,59
STORAGE, TRANSACTION 56,124,127
STXIT 11

STYPE 216-218, 249

SUPERVISORY, SERVICE INVOCATION CICS FROVIDES 46
SUSPEND 221,234

SUSPENDED TASKS 56,129

SUSPENSION OF A TASK 137

sve 1

SWITCHED LINES 75

SYMBOL, START 82

SYMBOLIC DESCRIFTION MAP 194, 196-197
SYMBOLIC DESTINATION 114,117,119,121
SYMBOLIC DESTINATION IDENTIFICATION
SYMBOLIC LABELS 196

SYMBOLIC REFERENCES 114,199
SYMBOLTC STORAGE DEFINITION MAP
SYMBOLIC TERMINAL IDENTIFICATION
SYMBOLIC TRANSACTION IDENTIFICATION

122,130

196
143,146,152
142-148,146, 152

SYMDMP T

SYNCERONIZATION, LINE T4

SYNCHRONIZATION, PROVIDE TASK 132
SYNCHRONIZATION, TASK 1,50

SYNCHRONYZATION, WRITE 203

SYSOUT 74

SYSTEM INITIALTZATION 13

SYSTEM/7 77-78,156-157

SYSTEM/7 SUPPORT, INPLEMENTATION OF 156

SYSTEM/7, DIAL-UP 157

SYSTEM/7, MULTIPCINT 156

TABLE, ALLOCATED TERMINAL CONTRCI 24,33,39

TABLE, CORRECT TRANSLATE 161

TABLE, PROCESSING PROGRAM 19,63-65,203,205
TABLE, TRACE 69,71-73,215-216,218,217-219

TABLES, TRANSLATE 264

TAPE 1-2,68,114

TASK 11,13,50,68,252

TASK CCNTKCL, USE OF THE 66

TASK MANAGEMENT SERVICES

TASK MANAGEMENT STORAGE SERVICES 46
TASK OF BIGHER PRIORITY

TCA -144,147-149, 151, 166~ 167 182,190,215, 221, 251-254
TCA FLAG 216

TCA STRUCTURE, LCECLARATION OF TEE 40
TCA, CHAIN OF 18

TCA, CICS CONTROL SECTION OF THE 220
TCA, CICS SYSTEM CONTROL SECTION OF THE 25
TCA, COMMUNICATION SECTION OF THE 25
TCA, DISCUSSION OF THE 47

TCA, EXTENSION OF THE 23

TCA, FIELDS OF THE 18,100, 107-108

TCA, REQUESTING PROGRAM 215

TCA, REQUESTING TASK 69

TCA, TASK 253

TCABMSCP 204

TCABMSMA 205

TCABMSMN 204-205

TCACBAR -34,38,54,89-91,94,97,99,103,105,110,238
TCACSIB 57

TCADCNB 73

TCADCSA 73

TCADCTR 226

TCADLECB 184,254

TCADLFUN 191,193-194

TCADLIO 187,186-187,191, 194

TCADLPCB 184,189-191,193-194,230
TCADLPSB FIELD 1

TCADLSSA 185,188,191

TCAFCAA 22,41-42,87,89-100, 102- 112,182
TCAFCAAA 18.79-80,233,2u0

TCAFCAT

TCAFCDT

TCAFCRC 87 93 96,98, 110-111,113
TCAFCRT

TCAFCST 22 108,111

TCAFCTR 23,87,93,96,98,110-111,113,227,230
TCAFCURL 93,182

TCATCDA 135, 146-147,149,151

TCATCQID 137-138, 140, 142~ 144, 147,150~ 152, 225
TCAICRC 144,143,146,14€,151,224
TCAICRT 137-138, 1uo 143,147,224
TCAICTEC FIELD

TCATCTI 143-148, 1us 147,224

TCAICTID 143- 1084, 166-147

TCAICTR 23,144,143, 146,148,151, 223-225
TCAKCFA 48

TCAKCTI 48

TCAM 74,77, 81-82

TCAM DESTINATION NAME 78

TCAM MCP 77

TCANXTID 66

TCAPCAC 19,67-68

TCAPCLA 65

TCAPCPT 19,63-67,253

TCAPCTR 252

TCASCIB 22,57-58

TCASCNB 21-22,57-58

TCASCSA FIELD 19,58

TCASCSA 27 29

TCASYAR 25

TCATCDP 49

TCATCEA 51-52

TCATCQA 53-55

TCATCQAL 55

TCATDAA 27,42,118-119, 228,235,241
TCATDAA, CONTENTS OF 119

TCATDDY 117-121,233-235, 238-239, 241
TCATDRC 122-123

TCATDTR 23,122-123, 228,253

TCATSDA 27,43,128

TCATSDI 129,233,235

TCATSRC 130-131

TCATSTR 23,130-131,228

TCT 24,33,39,74,83,152,157

TCTLE 81-82

TCTTE u5,56,61,66,69-73,75-76,73—82,159—151
TCTTEAID

TCTTEAR 29 32-33 38,78-80,233,238,240
TCTTEOS 168

TCTTEPCF 159,161,163

TCTTEPCR 163-164

TCTTEPCW 159,163-164

TCTTESC FIELD 56

TCTTESID 161,163

TCTTETAB 159-162

TCTTETI FIELD 78

TCITETID FIELD 163

TCTTETM 161

‘TDADDR 27,115-118,234-235, 238~-239, 241, 246
TDIA 14, 26,35-36,42,58-59

TDIAEAA 120

TDIABAB 120

TDIABAR 36,42, 119-120, 235, 239, 241
TDIADBA 241

TDIAIRL 235,241

TDOA 14,27,36,42-43,58-59

TDOABAR 27,36, 116-117

TDOAVRY, 27,117-118

TEMPORARY [ATA, RETENTION OF 17
TEMPORARY STORAGE CONTROL REQUEET/RESFONSE 23

TEMPORARY STORAGE SERVICES 125-127,129-130
TERMINAL CONTROL 24,74,79-82,202-203,205
TERMINAL CCNTRCL TABLE 39, “5,7’# 81,152,161, 21“
TERMINAL CONTROL TABLE, PREPARA’IICN OF THE 1
TERMINAL CCNTFOL WRITES
TERMINAL ID 1113-1!3",1"7,221
TERMINAL ITENTIFICATION 124,146,148, 157

1

‘TERMINAL INPUT RECORDS 3‘6,“

TERMINAL INPUT/OUTPUT

TERMINAL INPUT, USER DEFINI'IICN OF A 25
TERMINAL LCG 115

TERMINAL MANAGEMENT P

TERMINAL MANAGEMENT FILE SEFVICES 46
TERMINAL, DESTINATION 16

TERMINAL, MASTER 77,115, 15u
TERMINAL, OUTPUT 168

TERMINALS, BINARY SYNCHRONOUS 154
TERMINALS, KEY-DRIVEN u
TERMINALS, LIST OF 77

TERMINALS, POINT-TO-POINT 155
TERMINALS, SIMULATION OF 2
TERMINALS, 2260 74,81
TERMINATION, SYSTEM 229

TESTING INDICATORS TCTTEPCR 159
TESTING RECUIREMENTS 214

TESTING, DEBUGGING 214

TIME 136-137,139-142,145

TIME MANAGEMENT ALLOWS, FEATURE CF 1481
TIME SERVICES 150-151

TIME-ORDERED 133

TIME-ORDERED REQUEST 152

TIME-ORDERED SERVICE REQUEST 9

TIOA 77-83,156,158,165,167-168,195-196 ,202-205,207
TIOA FCRMAT 2

TIOA LENGTH 81-82

TIOA, DUMP OF THE 69,80
TIOA, MAPPED 203,205
TICAEAA 208

TIOABAB 08

TIOACLCR FIELD 168
TTIOATBA 76,79-80,234
TIOAL 1

TIOALAC 77,158,168
TIOAMBA 233

TIOAMSG 38,44

TIOATDL FLELD 79,167
TIOATDL 21 2

TRACE 11,215,219,221-230

TRACE CONTROL FUNCTIONS 215

TRACE FEATURE 215,219
TRACE TABLE 219
TRANSACTION DUMP 70-71

TRANSACTION FORMATS 214
TRANSACTION ID 143-144,147,221-230
TRANSACTION INITIATION 74

TRANSACTION STORAGE, DUMP OF 70
TRANSACTION SYNCHRONIZATION 1
TRANSACTION TCA 184

TRANSACTION TEST CASES 214

TRANSACTION TYPE 70

TRANSACTION, AUTOMATICALLY INITIATED 157
TRANSACTIONS, TIME-INITIATEL 155
‘TRANSDATA 27,56,58-59,244

TRANSID 07-‘48 61,66, 132,13’3 141-146, 243-244,248
TRANSIENT CATA DESTINATION CSMT 25

TRANSIENT CATA MANAGEMENT FIELL

TRANSIENT TATA SERVICES 114-115, 117 119,121-122

TRANSLATION 76-77

TRANSMISSION TIMES 76

TRANSMISSICN, END OF 154-155

TRANSPARENT 75,245

TRIGGER 115

TRMIDER 132,134,141,1446,151-152,248-249
TRMIDNT 132,134,141, 143-147, 157,248
TRNID 56

TRNIDER 132,134, 141, 144, 151-152, 248-2049
TSDADDR 27,125-129,131,233-234,247
TSTOA 14,27,36,43,58-59

TSTOABAR 43

TSIOABAB 43

TSIOABAR 28,36,43,126,128

TSTOAVRL 27,36,43,126-129

TTR 101

279

TTR,
TWA

TWA,
WA,

Page of SH-10474
Added Jan. S, 1973
By TNL SN20-2983
ZONED 181
71-73, 81,89-92,94~95,97,102,105-106,109
LAYCUT OF THE 34
SIZE OF THE 23

TWAFIELD 31
TWANXREC 169

TWAQEMCI
TWAREAX
TWAREC
TWATDDI
TWATSRL
TWAWA
TWAXTRTN
TWAXTRTN, MODIFICATION OF THE

TXA

TYPOPER
UNDEFINED RECORDS

236,239,201

235,239,201
166-169

233-235,238- 241

233234
167-169

166-167,169
166,168
69,71-73,221

84-85, 87-88,90-97,111,245

83,182

UNIVERSAL SEGMENT SET 175
UPDATE REQUEST 88
UPDATE, RESULT OF AN 171

UPDATED RECORD

94-95

UPDATING SEGMENT TYPES 183

USER
USER
USER
USER
USER
USER
USER

USER-DEFINED

EXITS 165-166

EXITS, USE OF THE 165

FIELDS 204

PROGRAM REGISTERS 9
STATISTICS ACCUMULATORS 4 17
STORAGE, DEFINITION OF 43
‘TERMINATION CODE 19
55,167,176,178

UTILITIES, OPERATING SYSTEM 214

VARIABLE LENGTH

14, 116—117 m

VARIABLE LENGTH RECORDS

VARIABLE-LENGTH

168, 170,182 18

VARIABLE-LENGTH DATA SETS

VARIABLE-LENGTH RECORDS

83, 11“ 118,170-171,174,181

VARIABLE-LENGTE SEGMENT, MAXIMUM LENGTH OF A 171
VARIABLES, ELEMENTARY CHARACTER 206
VARIABLES, SINGLE-CHARACTER 206

VIDEO

124

VIDEO DISPLAY PAGING 2

WAIT
WAIT
wee

47,50-52,83,132,135,137-138,149-150,203
REQUEST 136,152
77

WORKING STORAGE, AMOUNT OF 23

WORKREG
WRITE

20-21
38,44,75-78,77-83,156-158

WRITE CONTROI CHARACTER,
HEXADECIMAL REPRESENTATION OF THE 77
WRITE REQUEST 155

WRITE, COMPLETION OF A
WRITE, ISSUE

81,204
7980

WRITEL 75, 245
WRITER, REFORT

2770
2780
2972
2980
2980
2980
2980
2980
2982
3270
3270
3270

© 3270

3270
3270
3270

3270
3270

7770

1,19,61, 611 223 248
SEVERITY 26 .
77

DISFLAY STATION 168
77

164

158
154,158

76

154,159-161,163
GENERAL BANKING TERMINAL SYSTEM
SEGMENTED WRITES 160
SHIFT CHARACTERS 160
TRANSLATE TABLES 160-161
BUFFER LENGTH 1
168,194,197-198,200- 202 209, 249,254,256,262
ATTENTION IDENTIFIERS, SET OF 206
AUDIBIE ALARM SPBCIAL FEATURE
BASIC MAPPING SUPPORT 205
BUFFER 76,194
BUFFER, CONTENTS OF THE 15
DATA EUFFER 199
DATA STREAM 194-195,203, 205
FORMATS, EXFANSION OF THE 95
FUNCTION 206
INFORMATION DISPLAY SYSTEM
MAP GENERATION 255
MAFFING SUFPORT 253
OPERATOR 199,20‘0
PRINTER
SCREEN 19

78, 155’156

165

76,159,161

199,208

2,75-77,168,206,210

SH20-1047-4

JIBIM

®
International Business Machines Corporation
Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
(International)

(SD1D) WaISAS [0UOD UOHIBULIOMU| JBWOISND

-LpOL-OZHS "Y'SN W pajulid WHIVY

J]
BM Technical Newsletter This Newsletter No. SN20-2983

Date January 5, 1973
Base Publication No. SH20-1047-4
File No.
Previous Newsletters None

Customer Information Control System (CICS)
Application Programmer’s Reference Manual

© IBM Corp. 1972
This Technical Newsletter provides an index (pages 273-279) to the subject manual.

Please file this cover letter at the back of the manual.

IBM Corporation, Technical Publications Dept., 1133 Westchester Avenue, White Plains, N.Y. 10604

Printed in U.S.A.

a . :
BM Technical Newsletter | This Newslotter No. SN20-9012

Base Publication No. SH20-1047-4

Previous Newsletters SN20-2983

Customer Information Control System (CICS)
Application Programmer’s Reference Manual

© IBM Corp. 1973
This Technical Newsletter provides replacement pages for the subject manual. These replacement pages

remain in effect for subsequent versions and modifications unless specifically altered. Pages to be
inserted and/or removed are listed below.

Pages

Contents 48 198.1 (add)
1 61,62 199, 200
1.1 (add) 83, 84 201,202

2 85, 86 203

11,12 89,90 203.1 (add)
31 97, 98 204, 205
31.1 (add) 98.1 (add) 205.1 (add)
32 111,112 206, 207
39 119, 120 208, 209
39.1 (add) 120.1 (add) 210

40 155 227,228
47 155.1 (add) New Reader’s Comment Form
47.1 (add) 156

47.2 (add) 197,198

Vertical rules in the left margin indicate changes.

Please file this cover at the back of the manual to provide a record of changes.

1BM Corporation, Department J04, 1501 California Avenue, Palo Alto, California 94304

Printed in U.S.A,

SH20-1047-4

HEN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International) i

Y-LY0L-0ZHS 'V'SN Ul palulld [enuepy souasagay ‘Boud uoneosiiddy — (S31D)

READER’'S COMMENT FORM

Customer Information Control System (CICS) SH20-1047-4
Application Programmer’s Reference Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 1BM. If you wish a reply, be sure to include your name and address.

essecevroec e

R

seseesssssssesoase

ceemoevssvscone

COMMENTS

fold fold

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.,
FOLD ON TWO LINES, STAPLE AND MAIL.

SH20-1047-4

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your M

system should be directed to your 1BM representative or the 1M branch office serving your
locality.

...

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

jenuepy aosuaisasay ‘boug uonesiddy — (SJ19)

Attention: Technical Publications

..

TSIV

International Business Machines Corparation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. anly]

IBM.World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

t-LVOL-0ZHS 'V'S'N Ul palulid

