
Program Product

SH20-1047-4

Customer Information
Control System (CICS)
Application Programmer's
Reference Manual

Program Numbers 5736-XX6 (DOS-ENTRY)
5736-XX7 (DOS-STANDARD)
5734-XX7 (OS-STANDARD V2)

The IBM Customer Information Control System (CICS)
is a transaction-oriented, multiapplication data base/data
communication interface between a System/360 or System/
370 operating system and user-written application programs.
Applicable to most online systems, CICS provides many of
the facilities necessary for standard terminal applications:
message switching, inquiry, data collection, order entry,
and conversational data entry.

CICS is available in three systems-two for DOS users and
one for OS users. Because the two CICS/DOS systems are
compatible with each other and with the CICS/OS system,
it is possible to start with a small data base/data communi­
cation configuration and move up through DOS into OS.

This manual provides information of interest to persons
defining, designing, and preparing application programs to
execute under CICS.

Fifth Edition (December 1972)

This edition is a major revision obsoleting SH20-104 7-3.

This edition applies to Version 1, Modification Levell, of the CICS/DOS-ENTRY
(5736-XX6) and CICS/DOS-STANDARD (5736-XX7) program products and to Version 2,
Modification Level 3, of the CICS/OS-STANDARD (5734-XX7) program product; it also
applies to all subsequent versions and modifications unless otherwise indicated in new
editions or Technical Newsletters.

If changes are made to the information herein, the edition that is applicable and current
will be indicated in the latest System/360 and System/370 SRL Newsletter (GN20-0360).

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form has been provided at the back of this publication for reader's comments. If this
form has been removed, address comments to: IBM Corporation Technical Publications
Department, 1133 Westchester Avenue, White Plains, New York 10604. Comments become
the property of IBM.

<S> Copyright International Business Machines Corporation 1972

This publication contains detailed infcrmation necessary to design
and prepare aF~licaticn programs to execute under three IBM program
~roducts: CrCS/DOS-ENTRY, CrCS/DOS-STANDARD, and ClCS/OS-STANDARD
V2. It provides applicaticn programmers, system programmers, system
analy~ts, and system administrators with information concerning real­
time application programming considerations, application program
organization, storage definition, the use of crcs macro instructions
to reguest supervisory and data management services, data base
considerations, and program testing and debugging.

Throughout this publication, parentheses are used in the notation
of crcs macro instructicns to indicate those operands where more than
cne applicable parameter can be specified with a single use of the
operand. Where parentheses are not used, only one paxameter at a time
can be specified as part of the operand. An asterisk in (card) column
72 indicates that the macro instruction is continued on the next line
(card). Tbe first operand on a continuation card must begin in column
16.

The words "transaction" and "task" have the same ccnnotation in
ClCS and are used interchangeably throughout ~this pUblication; the
Frocessing of a transaction may involve the execution of one or more
"programs u •

For further information concerning CICS, see the following IBH
Fublications:

General Infcrmation Hanual (GH20-1028)
System programmer's Reference Manual (SH20-1043)
Terminal O~erator's Guide (SH20-1044)
Operations Guide (CrCS/DOS) (SH20-1034)
Operations Guide (CICS/OS) (SH20-1048)
Logic Manual (CrCS/DOS-ENTRY) (LY20-0112)
Logic Manual (CICS/DOS-STANDARD) (LY 20-0713)
Logic Manual (CrcS/OS-STANDARD V2) (LY20-0114)

All references to eICS/OS and ClCS/OS-STANDARD in this publication
are references to the CICS/OS-STANDARD V2 system.

CONTENTS

Introduction. . . .

General Description
Real-Time Application Programming •

Program Structure . . .
Quasi-Reentrance ...
CICS Transaction Flow •

Application Program Organization •.
Storage Definition. ~ • . • • . . • • • • •
Program Initialization. • •
Service Invocation. • • . . . • . .

Assembly Time Service
Supervisory and Data Management Services.

Storage Definition. . . • • . .
Symbolic Storage Definitions ..

Common System Area (CSA). . •
Task Control Area (TCA) • . • .
Transaction Work Area (TWA) . • •

Assembler Language Application Programming.
Static Storage Definition • . • . . • . ••
Dynamic Storage Definition. • .•.
Example of CICS Assembler Language Application Program.

ANS COBOL Application Programming . • . • . • • • . • • • •
Static Storage Definition•..•••.•.
Dynamic Storage Definition. •
Example of CICS ANS COBOL Application Program

PL/I Application Programming•.
Static Storage Definition
Dynamic Storage Definition
Example of CICS PL/I Application Program. •

Service Invocation. •
Task Services . . . • • • . . • . • . . • . . . • •

Initiate a Task (ATTACH). ••
Change Priority of a Task (CHAP) •.
Synchronize a Task (WAIT) •
Single-Server Resource Synchronization (ENQ/DEQ).
Purge a Task on System Overload (PURGE/NOPURGE)

Storage Services. • . • . • • •
Obtain and Initialize Main Storage (GETMAIN).
Release Main Storage (FREEMAIN) . •

Program Services.•
Pass Program Control Anticipating Subsequent Return (LINK).
Transfer Program Control (XCTL) . . • • • .
Load the Specified Program (LOAD) . • • •
Return Program Control (RETURN).• . . . • .
Delete a Loaded Program (DELETE). . • • . . . • • • .
Abnormally Terminate a Transaction (ABEND).

Dump Services • • .
Dump Transaction Storage (TRANSACTION). .
Dump CICS Storage (CICS). . • • • . . . •
Dump Transaction Storage and CICS Storage (COMPLETE).
Dump Partial Storage (PARTIAL). . . . • • •

Terminal Services•. • . • . .
Write Data to a Terminal (WRITE).•.
Read Data from a Terminal (READ). . . . • .
Synchronize Terminal Input/Output for a Transaction (WAIT).
Converse with a Terminal (CONVERSE)
Page Data to a Terminal (PAGE). . • . •

File Services • • • . • •

3
3
6
6
7

10
10
10
11
11
11

13
13
17
18
23
23
24
24
28
30
33
33
37
39
39
40
44

46
46
47
48
49
52
55
55
56
59
60
63
64
65
66
66
67
68
69
70
70
71
74
80
82
83
83
83
83

Page of SH20-1041~4
Revised April 11, 1973
By TNL SN20-9012

Randomly Retrieve Data from a Data Set (GET) ••.
Randomly Update or Add Data to a Data Set (PUT)
Obtain a File Work Area (GETAREA) . • • .
Release File Storage (RELEASE). • .• •
Initiate Sequential Retrieval (SETL).
Retrieve Next Sequential Record (GETNEXT)
Terminate Sequential Retrieval (ESETL). •
Reset Sequential Retrieval (RESETL)
Test Response to a Request for File Services (CHECK). • • • .

Transient Data Services ••••
Dispose of Data (PUT) • • • • • • • • • • • • • •
Acquire Queued Data (GET) • • • • • • • • • • • • • •
Control the processing of Extrapartition Data Sets (FEOV)
Purge Transient Data (PURGE). • • • • • • • • • • • • • • • • • .
Test Response to a Request for Transient Data Services (CHECK) .•.

Temporary Storage Services. • .
Store Temporary Data (PUT). • • •
Retrieve Temporary Data (GET)
Release Temporary Data (RELEASE). •
Test Response to a Request for Temporary storage Services (CHECK)

Time Services • • • • • • • • • • • • . • • • • • •
Time-of-Day Services (GETIME) • . • . • • • • • .••••
Time-Ordered Task Synchronization (WAIT, POST) •.•..•
Automatic Time-Ordered Task Initiation (INITIATE, PUT) ••
Retrieve Time- Ordered Data (GET).. • . • • • . • • • .
Time-Ordered Request Cancellation (CANCEL). • • •
Input/Output Error Retry Capability (RETRY) • • •
Test Response to a Request for Time Services (CHECK). • • • • . •

Application programming considerations.
Programmable Device Considerations. • •

I 3135 Considerations •••.•••••
System/1 consi dera tions • • . • • • •

Non-programmable Device Considerations.
2260/2265 programming Considerations.
21}0/2180 Programming Considerations.
2980 Programming Considerations • • •
1710 Programming considerations • • • . • • •

Creating User Exits for Asynchronous Transaction processing
Coding the CRDR Exit Routine.
Coding the CWTR Exit Routine.

Data Base Considerations. •
Segmented Records • • • • • •
Indirect Accessing. . • • •
Duplicate Records • • • • • •
DAM Data Set Considerations •

Requesting Data Language/I Services under CICS/OS
Quasi-Reentrant Considerations with Regard to DL/I CALL's
Obtaining Addresses of PCB's. • • '. • • •
Building Segment Search Arguments (SSA's)
Acquiring an I/O Work Area. • • • • • • •
Issuing the DL/I CALL • • • • • • • • • •
Releasing a PSB in the CICS Application Program • • • •
Checking the Response to a Request for DL/I Services (CHECK).
DL/I Requests Written in Assembler Language •
DL/I Requests Written in ANS COBOL ••
DL/I Requests Written in PLII ••

Basic Mapping Support for the 3210.
Map Definition ••••
Offline Map Building •••
Online Map Invocation •

Program Testing and Debugging •
Trace Control Functions

Trace ON Function • •
Trace OFF Function. • • •
Trace ENTRY Function.

Trace Table • • • • • •

... .

86
92
95
91
99

103
106
108
110
114
116
118
120
121
121
124
125
121
129
130
132
134
135
141
141
149
150
151

154
154
155
156
151
151
158
158
164
165
166
161
169
169
115
118
180
183
183
183
184
185
186
188
189
189
191
193
194
195
191
202

214
215
211
211
218
219

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

Index • • •

Executable CICS Program Examples .
crc S Macro Instruct ions. • • • • •
crcs Dump Codes. • • • • • • • • • •
3210 Map Generation and Assembly Error Messages ••
Translate Tables for the 2980.

231
243
251
255
264

213

Page of SH20-104 7-4
Revised April 11, 1973
By TNL SN20-90 12

The IBM customer Information Control System (CICS) is a
multi-application data base/data communication interface between a
System/360 or System/370 operating system and user-written application
programs. Applicable to most online systems, CICS provides many of
the facilities for standard terminal applications: message switching,
inquiry, data collection, order entry, and conversational ~ata entry.

Functions performed by CICS include:

• Control of a mixed telecommunications network
• Concurrent management of a variety of programs
• Controlled access to the data base
• Management of resources for continuous operation
• Prioritization of processing

By eliminating many of the development requirements for such
functions of a r€al-time control system, CICS allows programmers to
concentrate instead on implementing applications, dramatically reducing
implementation time and cost.

Functions needed to support a data base/data communication system
and standard terminal applications are provided by the following CICS
management functions:

• Task Management - Provides its own dynamic multitasking facilities
necessary for effective, concurrent transaction processing.
Functions associated with this facility include priority scheduling,
transaction synchronization, and control of serially reusable
resources. This CICS function is in addition to the multitasking
or multiprocessing capability of the host operating system.

• Storage Management - Controls main storage allocated to CICS.
Storage acquisition, disposition, initialization, and request
queuing are among the services and functions performed by this
component of CICS.

• Program Management - Provides a multiprogramming capability through
dynamic program management while offering a real-time program fetch
capability.

• Program Interrupt Management - Provides for the interception of
program interrupts by CICS to prevent total system termination.
Ind~vidual transactions that program check are terminated by CICS
with a dump (if Dump Management is used), thus preventing the entire
CICS partition/region from terminating. Under CICS/OS, supports
the runaway task control function of CICS Time Management.

• Time Management - Provides control of various optional task
functions (system stall detection, runaway task control, task
synchronization, etc.) based on specified intervals of time or the
time of day.

• Dump Management - Provides a facility to assist in analysis of
programs and transactions undergoing development or modification.
Specified areas of main storage are dumped onto a sequential data
set, either tape or disk, for subsequent offline formatting and
printing using a CICS utility program.

1

• Terminal Management - Provides polling according to user-specified
line traffic control as well as user requested reading and writing.

1,1

This fa~ility supports automatic task initiation to process new
transactions. The testing of application programs is accommodated by
the simulation of terminals through sequential devices such as card
readers, line printers, disk, tape, etc.

• File Management - Provides a data base facility using direct access
and indexed sequential data management. This function supports
updates, additions, random retrieval, and selective retrieval
(browsing), of logical data on the data base. optional access to
the Data Language/I (DL/I) facility of the IBM Information
Management System (IMS/360) is also provided under CICS/OS. Use
of DL/I requires installation of the IMS/360 Version 2, Modification
Level 2 (or later) Data Base System (5734-XX6).

• Transient Data Management - Provides the optional queuing facility
for the management of data in transit to and from user defined
destinations. This function facilitates message switching, data
collection, and logging.

• Temporary Storage Management - Provides the optional general purpose
"scratch pad" facility. This facilit~ is intended for video display
paging, broadcasting, data collection suspension, conservation of
main storage, retention of control information, etc.

In addition to these management functions, CICS provides system
service programming to identify "terminal operators, to give dynamic
control of the entire system to a master terminal, to display real-time
system statistics, to intercept abnormal conditions not handled directly
by the operating system, to provide basic mapping support for the 3270
Information Display System, and to end operation by gathering summary
statistics, clos~ng data sets, and returning control to the operating
system.

2

In the conventional batch processing environment, the application
Frogrammer Flans a series of runs to edit batches of input transactions,
update master files (data sets), and write output reports. To optimize
total run time and streamline the cycle, be must concentrate on careful
manipulation of data. In accomplishing this, the data becomes
intricately tied to his prcgram logic and is of little value to other
applications.

One
Application

Operating System

Figure 1. Conventional batch processing

Inputs

Reports

The real-time data base/data ccmmunications (DB/DC) environment
differs from the conventicnal batch processing environment primarily
in the amount and types of concurrent activities that are likely to
occur within the system at a given time. Whereas a batch processing
system schedules each application independently and provides data
SUfport unique to e~ch application, a DB/DC system controls many
transactions arriving on a random nonscheduled basis and provides an
integrated data base supporting each application.

3

Data
Base

Several
Applications

CICS

Operating System

Figure 2. Transaction processing of eres

In the past, the successful systems have been known as:

• Online information systems
~ Real-time informational systems
• Tele~rocessing systems
• Data base/data communication systems

These systems required the user to develop a control system that would:

• Host a telecommunication network of mixed devices
• Concurrently manage a wide mixture of transactions being serviced

by a variety of programs
• Provide effective controlled access to the data base
• Effectively manage resources, such as main storage, to keep the

syste~ in continuouE operation
• Prioritize the use of the processing facility
• Provide other real-time facilities necessary for the support of

the applications and tbe environment
• Provide the ancillary system service functions necessary for the

successful implementation of data base/data communication systems
• Provide rapid response to the terminals

CICS solves many of these complexities for the application programmer
ty managing data centrally (in a data baSE) on behalf of all
applications. This shifts the burden of system management
considerations frcm the application programmer to the system programmer
and allows the a~flication programmer to concentrate instead on the
application.

A key consideration in the selection of a database/data
communication system is that it be appropriate for today's needs and
have the growth totential that characterizes the DB/DC environment.
eICS is intended to address precisely that consideration; that is,
eIes is a family of systems that provides a DB/DC interface to the
IBM System/360 and Systemj370 at most levels of the product line,
froviding a clearly visible growth or migration path as the user's
environment dictates.

Figure 3 shows how the Cles data base sUfports the information needs
of each application, indefendently and concurrently.

4

User

Device

Application
Programs

CICS

Data Base

Figure 3.

File Inquiry File Change Repprt Request

Program A Program B Program C

Data Base Management

Operating System

CICS data tas€ concept

5

FEOGRAM STRUCTURE

The user's applicaticn programs are processed concurrently by CICS
as transactions (tasks). Although applicaticn Frograms may be as large
as 32K bytes, it is recommended that each application program be
developed modularly anq kept to a minimum si~e. Large application
Frograms can prevent the loading of other required programs during
the operation of CICS and thus degrade the overall system performance.

CICS facilitates the modularity of applicaticn programs by allowing
Frograms to easily communicate with other Frograms through the execution
of tICS macro instructions. Since application programs do not contain
input/output areas or transaction work areas, a 4K application program,
when assembled, could ~ontain as many as 1000 machine instructions.

Application programs can be written in Assembler language, ANS
COBOL, or PL/l to execute under ClCS. Regardless of the language used,
it is strengly recommended that the application programmer allow CICS
to perform all supervisory and data management services for his
applications by issuing Cles macro instructions to invoke the desired
services. Although the application programmer is not precluded from
direct communication with the operating system, the results of such
action are unpredicta~le and performance may be affected. Such action
would also have a limiting effect on migration from CICS/DOS to CTCS/OS,
if this were ever desired.

An application Frogram written in PL/I must consist of an external
(MAIN) procedure. Internal procedure CALL's are allowed in a CICS
Frogram; external CALL's are not.

~UASI-REENTRANeE

Application ~rcgrams must be coded so that they are "serially
reusable" between entry and exit points of the program. Entry and
exit points of an applicat~n program coincide with the use of Cles
macro instructions, sinc~ an application program temporarily loses
centrol after it begins executing only upon execution of a.ClCS macro
instruction. A serially reusable portion of an application program
is executed by only one transaction at a time, and must initialize
and/or restore any instructions or data that it alters within itself
during execution.

This required quality of application programs written to run under
CICS is called "quasi-reentrance", since the programs need not meet
System/360 or System/370 specifications fer true reentrance. Quasi­
reentrance allows a single copy of a user-written application program
to be used to process several transactions ccncurrently, thereby
reducing the requirement for multiplB copies of the same program in
main storage.

If intermediate exits are taken in an applicatien program, all
switches, data, and intermediate results needed upon subseguent return
to that transacticn must be retained in a unique storage area such
as the Transaction Work Area (TWA). The application programmer must
provide that unique intermediate storage area by symbolica~ly defining
it in his prcgram (as described in the section on "Symbolic Storage
Definitions") •

A serially reusable application program that has no intermediate
exits also has the quality of quasi~reentrance.

6

CICS TRANSACTION FLOW

CICS executes in a multitasking mode of operation. Therefore,
whenever a transaction (task} is waiting for I/O completion, other
CICS transactions may ccntinue to execute.

Figure 4 illustrates CICS multitasking where the same application
~rogram is used by three different transactions (A, B, and C). The
application program performs a data base read and a subsequent write.
Selid lines indicate that the transaction is executing; broken lines
indicate that the transaction is waiting.

TASK A

TASK B

TASK C

Figure 4. CICS multitasking

Figure 5 illustrates the logical flow bf a typical transaction
through CICS.

1

PROGRAM {
LIBRARY

r::;:r
~
~

MESSAGE (
LOG

TERMINAL
CONTROL

DECODE MSG ,
TASK
CONTROL

VERIFY TRANSACT

\
PROGRAM
CONTROL

USER
PROGRAM

STORAGE
CONTROL

FILE
CONTROL

INIT~ATE TASK REQUEST
'----~WORK STORAGE -t-------f-----.,..GET STORAGE

SCHED NEW TASK~----t------+-----'I
DISPATPH TASK

L---.SELECT PGM ,
WAIT

LOAD P1GM
BUILD DATA
SET SEARCH

~------t-------~
KEY I REQUEST

WAIT

'----t------~ INPU~ AREA

GET 1TORAGE READ FILE
['" REC01D

REQUEST . ..--+--------1---1

TERMINAL AREA GET
I I~

BUILD TERMINAL STORAGE
OUTPUT • I I
BUILD' ACTIVrry

'1

TRANSIENT
DATA

RECORD PUT ACTIVITY
I'-_--t-_____ t-___ --+~RECORD TO

LOG I
WAIT

~~)--~------~----~----~----~~I
r - - - - - - - - - - - - - - - - - REQUEST ...---1-____ --/ ____ --+ __ --1

I TERMINAL WRITE
I t
: TERMINATE RETUR,

I TRANSA1CTION FREE
I I'-----+------~TRANSACTION
: STOR~GE

I
I

~
TERMIN~TE
TASK

SCHEDULE
WRITE

Figure 5. CICS transaction flow

8

The source library supplied with CICS contains symbolic storage
definitions ef CICS contrel areas, work areas, and IIO areas. It is
strongly recommended that the application programmer use these
definitions in his pregramming rather than develop actual or direct
displacements. This protects the applicatien program in the event
cf any relecation of CICS.

For the FL/I programmer, the source litrary contains numerous BASED
structures of CICS contrel areas. These dummy sections are available
to the user through use of the ~INCLUDE statement. The ANS COBOL
programmer makes use of these definitions through use of the COPY
statement in the Linkage section of the Data Division. These
definitions are discussed in the storage Definition section of this
manual.

In the initialization section of the application program, the
application programmer must establish a symtolic base address for his
~rogram as this is not done by CICS prior to entry. Register 12 is
reserved by CICS to contain the address of the !ask Centrol Area (TCA)
for this task. Register 13 is reserved to contain the address of the
Common System Area (CSA). These registers are initialized by CICS
prior to entry and must be preserved throughout the execution of the
program. For ANS COBOL and PL/I, this situation is resolved by CICS
and is of no concern to the application programmer.

Registers 15 through 11 are available to the user and are kept
intact when a CICS macro instruction is issued; the contents of register
14 are destroyed any time a CICS macro instruction is issued.

The status of all registers uFon program entry or upon return to
a program is as follows:

1 REGISTERS 15 through 11 12 13 14

Initial Unknown TCA CSA User program
program entry address

LINK Linked from TCA CSA User program
registers address

XCTL Transfer control TCA CSA User program
from registers address

LOAD Unchanged TCA (SA Next sequential
instruction

RETURN Linked from TCA (SA Next sequential
registers instruction

]Q~~: Even though register 14 contains the program entry address,
it is not advisable to use register 14 as the base register

9

since it is used by CICS to service requests for CICS supervisory
and data management services.

ASSEMBLY TIME SERVICE

The DFHCOVER macro instruction is used to request the Assembler
er Compiler to print a cover page on two consecutive pages. In this
way, the application program listing may be torn off with one of the
cover pages face up. Pertinent infcrmation (for example, program name,
date, time of assembly, remarks, etc.) may then be written on the cover
page.

The DPHCOVER macro instruction requires no operands and should
appear with ncthing else cn the card.

If the DFHCOVER macro instruction is coded as part of an application
program written in Assembler language, it should be coded as the first
instruction in the program. If desired, however, this macro instruction
may be coded after anything that is not vital to the listing (such
as the TITLE card).

If the DFHCOVER macro instruction is coded as part of an ANS COBOL
application program, it should be coded preceding the IDENTIFICATION
DIVISION card.

The PL/I Compiler prints the first card of the source deck as a
header on each page of the source listing. This means that when the
tFHCOVER macro instruction is part of a PL/l application Frogram, the
first card should be a Comments Card containing information the
application programmer wants printed as a header. The second card
should contain the DPHCOVER macro instruction. The actual PL/I code
should begin on tte third card of the source deck.

Since column 1 is used by the DFHCOVER macro for line and page
spa~ing under PL/I, celumn 1 must bE defined as reserved for control
characters and columns 2-72 must be defined as available for data.
This is accomplished through the *PROCESS card for eICS/DOS and the
FXEC card for ClCS/OS. For further information concerning PL/I compile­
time services, see the publication ~g~ R1LI Q2!~mizi~g ~Qm~ile~
F~Qg~gm~§~!§ gYig~ (SC33-C008) or the publication Q§ ~1LI (I)
FIQg~gm~~~~§ g~i£~ (GC28-6594).

The examples contained in Appendix A shew how the DFHCOVER macro
instruction is used.

SUPERVISORY AND tATA ~ANAGEMENT SERVICES

The various CICS supervisory and data management services are invoked
through use of eICS macro instructions. These macro instructions are
written in Assembler language and, as all Assembler language
instructions, are written in the following format:

blank DFHJXXXX
or

symbol

One cr mere operands
separated by commas

The name field of a CTes macrc instruction must be left blank if
the macro instruction is used in conjunction with a high-level language

10

Page of SH20·1047·4
Revised April 11, 1973
By TNL SN20·9012

(ANS COBOL or PL/I); if a label is desired for the macro instruction,
it may be placed on the card preceding the macro instruction.

The operation field of a CICS macro instruction must begin before
card column 16 and must contain the three-character combination "DFH"
in the first thre~ positions of the operation f{eld. Up to five
additional characters can be appended to DFH to complete the symbolic
name for the appropriate program or table. Since DFH is reserved for
CICS macro instrtictions, no other statement may begin with this
three-character combination.

The operand field of a CICS macro instruction contains one or more
operands separated by commas. In this publication, parentheses are
used to indicate those operands where more than one applicable parameter
(keyword and otherwise) can be specified with a single use of the
operand. Where parentheses are not used, only one parameter at a time
can be specified as part of the operand; a choice must be made in the
case of more than one applicable parameter. Since a blank character
indicates the end of the operand field, the operand field must not
contain blanks except after a comma on a continued card or after the
last operand of the macro instruction. The first operand on a
continuation card must begin in column 16.

When a CICS macro instruction is coded on more than one card, each
card containing part of the macro instruction (except the last card)
must contain a character (for example, an asterisk) in column 72
indicating that the macro instruction has been continued on the next
card.

See the section "Service Invocation" later in this publication for
a detailed description of how CICS macro instructions are used to
request CICS supervisory and data management services. See Appendix
B for a listing of the CICS macro instructions that may be used by the
application programmer.

The use of CICS macro instructions in a PL/I application program
precludes the use of the following PL/I features:

1. The multitasking functions: COMPLETION, STATUS, PRIORITY.
2. The multitasking options: PRIORITY, TASK, EVENT, REPLY.
3. The PL/I statements: READ, WRITE, GET, PUT, OPEN, CLOSE,

DISPLAY, SORT, DELAY, ON.

The use of CICS macro instructions in a PL/I optimizing compiler
application program also precludes the use of the following options:

1. REPORT, FLOW, GONUMBER, GOSTMT.

The use of CICS macro instructions in an ANS COBOL application
program precludes the use of the following ANS COBOL features:

1. Environment and Data Division entries normally associated with
the data management services.

2. File Section of the Data Division.
3. Special features: SORT, REPORT WRITER, SEGMENTATION, EXHIBIT,

TRACE, DISPLAY, and ACCEPT. (DISPLAY and ACCEPT can be used in
conjunction with the system console.)

4. Options that may lead to the issuance of a STXIT (AB) SVC or
STAE SVC: FLOW, STATE, STXIT, or SYMDMP for CICS/DOS; FLOW or
STATE for CICS/OS.

Separate ANS COBOL routines or separate PLII routines may not be
link edited together. Separate Assembler-language routines may be link
edited together, however, the CALLed routine must conform to CICS
application program requirements. CICS provides the user with the LINK

11

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

and XCTL (transfer control) facilities to provide the necessary
communication between programs. CICS macro instructions should not be
coded within an ANS COBOL statement, since each ANS COBOL statement
generated by a CICS macro instruction is terminated by a period.

12

CICS defines a number of main storage areas which the a~~lication
fregram can use during execution. These storage areas are of three
types:

1. Centrel areas
2. Work areas
3. Infut/output areas

Information is storEd and retrieved from these areas by CICS and ty
applicatien programs.

Some of the storage areas are statically created by CICS during
System Initialization and others are dynamically acquired and released
during execution of the system. Some of t~e areas are acquired or
created by ClCS; some are acquired directly by the application program;
and some are acquired by toth CICS and the application program.

All CICS storage areas, with the exception of the Terminal Control
~able terminal entry (TC1TE), consist of two logical and unique
sections. The control section is used primarily by CICS; the user's
section is defined and used exclusively by application programs. This
logical division always exists except for the TCTTE, whether the storage
is statically created (for exam~le, the Common System Area) or
dynamically acquired (for example, a Terminal Input/Output Area).

CICS provides a set of symbelic storage definitions (dummy sections)
to describe the layout of the control section of all the applicable
storage areas. These storage definitions are contained in the CICS
lirraries and, when combined with a user-defined layout of the user's
section ef the storage areas, provide symtolic addressing to the storage
areas.

field is perhaps the most important field
the CICS storage areas. (See "Storage

The storage Accounting
in the contrel section of
Accounting Area" below.)
except the CSA and TCTTE,
cf every storage area.

This field, present in all CICS storage areas
is always located in the first eight bytes

~ot~~ The application programmer must be aware that the Storage
Accounting field exists in all dynamic storage he acquires,
and he must take particular care not to alter or destroy the
information in it. If the information is altered or destroyed,
an abnermal termination of CICS occurs.

Two of the control areas, the Common System Area (CSA) and the Task
Central Area (TCA), are required to be symbolically defined in every
application program; the third centrol area (TC~TE), the work areas,
and the l/C areas are selected at the option of the user. It is the
user's resfonsibility to cepy symbolic storage definitions into his
prcgram for the required centrol areas as well as for any of the other
storage areas he requires. Figure 6 lists the CICS storage areas,
indicating which are control areas, which are work areas, and which
are I/O areas; it ~lso indicates which are acquired by the user and
which are acquired by CICS.

13

Aco'n ACOin
CONTROl WORK I/O BY BY
A.Ell2 AjEA~ !:E]A~ _J12JH! _£I£~

Common System Area (CSA) X X X
~ask control Area (TCA) X X
Transaction Work Area (TWA) X X
File Work Area (FWA) X X
Storage Accounting Area (SAA) X X
Terminal I/O Area (TIOA) X X X
Transient Data Input Area (TD!A) X X
Transient Data Output Area (TtOA) X X
Temporary Storage I/O Area (TS1OA) X X X
File I/O Area (FlO A) X X
Terminal Control Table

Terminal Entry (TCTTE) X X

Figure 6. CICS storage areas

Depending on the programming language used, one of the following
statements is required to copy a symbolic storage definition into an
application program.

1. Assembler language COpy statement of the form:

COFY name

2. ANS COBOL COpy statement of the form:

01 name COpy name.

specified in the Linkage section of the Data Division

3. PL/I preprocessor statement of the form:

~ INCLUDE (name);

In addition to copying the appropriate symbolic storage definitions
into his ~regram, the application programmer must establish
addressability for these storage definitions. He does this by
specifying a symbolic case address for each storage area, thereby
effectively mapping the .symbolic storage defi~ition over the storage
area. Depending on the programming language used, one of the following
statements must be used to establish ~ddressability after the dynamic
main storage has been acquired:

1. Assembler language statement of the form:

L symbolic base address register,TCASCSA

2. ANS caBeL statement of the ferm:

"OVE TeASCS! TO symtolic base address.

3. PL/I based pointer variable of the form:

symtolic base address=TCASCSA;

TCASCSA is a four-byte field that contains the address of the dynamic
Rain storage area that was acquired.

14

Figure ? contains the symbolic names used in copying the storage
area control section definitions and the symbolic base addresses used
in establishing addressability.

SYMBOLIC NAMES BASE LOCATOR ASSEMBLER LANGUAGE
FOR OR GENERAL PURPOSE

CICS STORAGE AREA ABBREVIATION DEFINED STORAGE BASE ADDRESS REGISTER REGISTER ASSIGNMENT

i;ommon .,§ystem ~ea CSA DFHCSADS CSACBAR 13

i;ommon ~ork.Area CWA User defined CSACBAR 13

.Iransaction £ontrol Area TCA DFHTCADS TCACBAR 12

Iransaction ~ork !!!ea TWA User defined TCACBAR 12

file :Work Area FWA DFHFWADS FWACBAR *
,§torage .Accounting Area SAA DFHSAADS SAACBAR *
Iransaction !nput!Qutput !!!ea TIOA DFHTIOA TIOABAR *
.file lnput!Qutput ~rea FIOA DFHFIOA FIOABAR *
Iransient .Qata Input !!!ea TDIA DFHTDIA TDIABAR *
.Iransient Rata Qutput ~rea TDOA DFHTDOA TDOABAR *
.!emporary ,§,torage !nput!Qutput

Area TSIOA DFHTSIOA TSIOABAR *
Terminal Control Table
- .Iermi;al ~ntry TCITE DFHTCTTE TCTTEAR *
Application Program Storage - - User defined *

* Any register except 12, 13, and 14 which are utilized by CICS.

Figure 7. Symbolic names and base addresses of eICS storage areas

All storage that is acguired by the application frcgram through
the CICS storage Management facility is controlled by a technique that
chains together all storage associated with a particular transaction.
(See the section "Storage Accounting Area".) This feature allows CICS
to release all main storage associated with a transaction, either upon
request from the user or when the transaction is terminated, normally
or abnormally.

The Common System Area (eSA) is the head of the chain, the address
of which is frovided by CICS. The CSA points to the Task Control Area
(TCA) which in turn points to several of the other storage areas.
Figure 8 illustratES tte chaining of CICS storage areas and indicates
the symbolic base address used to locate each storage area.

15

CICS LOGICAL RELATIONSHIPS

CICS ---........ CSACBAR

COMMON

SYSTEM

AREA

DFHCSADS

COMMON

1.10RK

AREA

MANAGEMENT /.~_ - ___
MODULES ~ ~ ~TCACBAR)
CSACDTA - - CTCACBAR) B)

(

POINTERS TO CICS ____ - - - - ~

1 <i ~~~;...~~r?c~~-----FACILITIES FOR TASK C

t CWA • FACILITIES FOR TASK B

I...-..-.

FACILITIES CONTROL

ASSOCIATED AREA

ADDRESS

STORAGE CONTROL

STORAGE ADDRESS

FILE CONTROL

AREA ADDRESS

TRANS lENT DATA

AREA ADDRESS

TEMPORARY STORAGE

DATA AREA

TRANSACTION WORK AREA

I
I
I
I
I
~

TCAFCM

TCATDM

TWA

I
L-..

t-----:::- TIOABAR
1-------1 l~

--.......

~ll~2~B~IT~ES_I~ __________ ~~

"
'(SMCBAR)

1 DFHSAADS

I~~~B~IT=ES~I ______ ~ __ ~~

,FWACBAR

--/,// 1 DFHFWADS ,.--------
- , I 16 Bms I

"
' FIOABAR l ____ ~ ___

~I ___ ~_~_=~~~_~_~_~~~ __ I~~~~ __ ~.~

EXTRAPARTITION GET

(
16 BYTE FILLER DEFINED)

BY USER FOR OS ISAM

/....---------..
/

DFHTDIA

............ ''''UT

'--... TDOABAR

! DFHTDOA

~1~_2_BY_TE_S~I~ __ ~ ______ ~~

* THIS AREA IS DEFINED AFTER THE DFHxxxxx. THE PLII AND COBOL

PROGRAMMER MUST COMPLETE THE BASED STRUCTURE (SYMBOLIC STORAGE

DEFINITIONS) BY WRITING STATEMENTS WITH A LEVEL NUMBER GREATER

THAN L THE ASSEMBLER LANGUAGE PROGRAMMER MUST WRITE DS

STATEMENTS.

** TCAFCM. TCATDM. AND TCATSDA ARE NOT STORED IN SEPARATE WORDS

(ALL THREE PO I NTERS ARE STORED I N THE SAME WORD)

Figure 8. eles storage areas are chained together

16

The following s€ctionsdescribe the major CICS atorage areas. The
fields of special significance for the application Frogrammer are
discussed in detail.

eCMMON SYSTEM AREA (eSA)

The eSA is an area of static storage that contains areas and data
required for the operation of crcs. It alsc contains a user-defined
Cemmon Work Area (CWA) that can be used at the discretion of the ~ser
for the retention ef temporary data, for the accumulation of statistics,
for the passing of parameters, etc.; this work area can be accessed
or altered by any number of tasks.

Since the work area of the CSA is available to any task while it
has centrel of the system, it is not advisable for an application
Frogram to use this area for retention of data while it is requesting
CICS services (for example, File services). Under these circumstances,
another transaction might get centrel and possibly destroy the data.
However, if the user has designed his application programs so they
are all aware of a common, user-established format within the CSA work
area, there is no reason why the work area cannot be shared by several
tasks. An example of this might be a statistics accumulator that is
updated by more than one transaction.

Data contained in the CSA that is required for the operation of
CICS includes:

1. CleS save areas
2. Addresses of crcs management programs
3. Control system and user statistics accumulators
4. Addresses of CICS system centrol tables
5. Common system constants
6. System control parameters

The fields of the eSA that are of particular significance to the
application programmer are as follows.

CSACTODB: This four-byte binary field contains the time of day in
hundredths of a second. The time of day is updated periodically during
task dispatching, its accuracy depending upon the task mix and frequency
of task switching occurrences.

CSATODP: This four-byte field of the form HHMMSSt+ contains the time
of day in packed decimal 'fermat to tenths of a second. The time of
day is updated periodically during task dispatching, its accuracy
cepending uFon the task mix and frequency of task switching occurrences.

CSAWAEA: This field represents the beginning of the Cemmon Work Area
(CWA) and provides dcubleword storage alignment fer it. The entire

work area is initially set to binary zeros. Tbe size of the work area
is determined by the user at system generation time.

17

lASK CONTEOL AREA (TCA)

The TCA is an area of main storage acquired dynamically by CICS
when the task (transaction) is originated by Task Control~ It is used
to represent the cu~rent status of the task and is part of a chain
of TCA's crgani2ed by dispatching priority. During the execution of
the task, the U$er has the capability of changing the ~riority through
Task Management services; the TCA is then repositioned accordingly.

The TCA ~rovides the fcllowing for its associated task:

1. Register save areas
2. Unique fields (parameter areas) for communicating requests to

CICS
3. Address of the related Facility Control Area (FCA)
4. Task storage chain addresses

when a task is initiated in CICS, the TCA exists until the task
is terminated. lhe TCA provides no space for any residual data such
as statistics; ho~ever, the TCA can be extended to include a Transaction
Work Area (TWA), the size of which is determined by the user to meet
the needs of the transaction. (See the section "Transaction Work
Area".)

The TCA consists of three logical sections:

1. CIes system control section
2. Communicaticn section
3. Transaction Work Area (optional)

The CICS system contrel section contains control addresses and data
needed by crcs to control the task. Access to this section is limited
to CICS management programs, CICS service programs, and user-written
service programs.

The communication section is used by CICS and by user-written
applicaticn programs fer ccmmunication between the task and crcs
management programs and service programs.

The optional Transaction Work Area is reserved for the exclusive
use of the task.

In those cases where a task is initiated from a terminal (nearly
always the case), Cles places in the TCA the address of the Terminal
Central Table terminal entry (TCTTE) associated with the terminal.
,he TCTTE, in turn, contains the address of the Terminal Input/Output
Area (TIOA). Ihe TCA alsc contains the address of either a Single
Event Centrel Block or the address of an Event Control Bleck list.

The fields of tee TCA that are of particular significance to the
application programmer are as fellows.

TCAFCAAA: This four-byte field contains the address of the Facility
Centrel Area associated with the facility that initiated the
transaction. This field can contain the address of a Terminal Control
Table terminal entry, the address of a Destination Control Table entry,
or the address of an automatic task initiator control area.

If the user's application program is to communicate with the
terminal, TCAFCAAA must centain the ad~ess of the aFpropriate Terminal
ccntrel ~able terminal entry (TCTTE). This allows the user's
application program to reference any data in the TCTTE.

18

TCAPCPI: Tbis eight-byte field contains the identification of the
requested program. !he program identification is left-justified and
must meet whatever requirements there are for a label used in a library
of the operating system.

There must be an entry in the Processing Program Table (PPT)
containing the pregram identificatien. This field (TCAPCPI) can be
filled prier to issuing ~ DFHPC TYPE=XCTL, DFHPC TYPE=LINK, DFHPC
TYPE=LOAD, or DFHPC TYPI=DELETE macro instruction. If the user's
application Fregram places the program identification in TCAPCPI prior
to the execution of the macro instruction, the PROGRAM=name operand
should be omitted from the maCIO instruction.

The program identification can be placed in the TCAPCPI field prior
to issuing a DFEPC TYPE=LINK macro instruction whe~ an application
Frogram is testing to oetermine to which program to link. On the basis
of the test, the application Frogram should place the program
identification in the TCAPCPI field and then execute a DFHPC TYPE=LINK
macro instruction without the PFOGBAM=name operand. Using this
technique, the user's application'program uses one macro instruction
to link tc many different programs.

TCAPCAC: This four-byte field contains the terminaticn code for the
DFHPC TYPE=ABEND macro instruction. The termination code must be left­
justified and must be the user's termination code. The field can be
filled by the user's program prior to issuing the DFHPC TYPE=ABEND
macro instruction; in this case, the ABCODE=YES operand must be coded.

The termination code is placed in the TCAPCAC field prior to the
execution of the DFHPC TYFE=ABEND macro instruction when the user's
applicaticn program is testing to determine which type of termination
is desired.

1CASCSA: This four-tyte field contains the address of the storage
attained after the execution of a DFHSC TYPE=GETMAIN macro instruction
and must also contain the address of the storage to be released prior
to the execution of a DFHSC !YPE=FREEMAIN macro instruction. The
application programmer must remember that the first eight bytes at
this address are always the storage Accounting Area used by CICS storage
Management. Care should be taken never to alter the contents of this
area.

The address of the storage obtained from a DFHSC TYPE=GETMAIN macro
instruction is automatically placed in the TCASCSA field except when
a conditicnal GETMAIN request (COND=YES) has been issued and storage
is not available. In this case, cres Storage Management places binary
zeros in this field and returns centrol to the user. The user's
applicaticn pIogram must specify a symbolic base address for the storage
area and must move the storage address located at TeAseSA to this
symbolic tase address. The fellowing are examples of the coding
required.

WORK DSECT
USING *,5

STATE DS CL3

19

CSECT
BALR 10,0
USING *,10

DFHSC TYPE=GETMAIN
L 5, 'lCASC SA

LINKAGE SECTION.

02 WORKREG PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 WOEK.

02 STATE PICTURE XXX.

ERCCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

DFHSC TYFE=GETMAIN
MOVE TCASCSA TO WOBKREG.

DECLARE weRK BASED (WORKREG),

2 S'IATE CHAR (3) ;

DFHSC TYPE=GETMAIN
WOBKREG=TCASCSA;

When storage is to be £eleased, the storage address must be placed
in the TCASCSA field prior to the execution of the DFHSC TYPE=FREEMAIN
macro instruction. The fcllowing are examples of the coding required.

20

WORK DSECT
USING *,5

STATE DS C15

CSECT
BALR 10,0
USING *,10

ST 5,~CASCSA

DFHSC TYPE=FREEMAIN

LINKAGE SECTION.

02 WORKREG PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 WORK.

02 S~ATF, PICTURE XXX.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE WOBKREG TO TeASCSA.
DFHSC !YPE=FREEMAIN

lQf R1Ll:

tECLARE 1 WORK BASED (WORKREG),

2 STATE CHAR (3) ;

!CASCSA=WORKREG;
DFHSC TYP!=FREEMAIN

TCAtCNB: This two-byte field contains the length (in bytes) of the
main storage area to be dumped by DumF Control. This field can be
filled by the user's application prcgram, prior to €xecutidn of the
DFHDC TYPE=PARTIAL macro instruction, with a hexadecimal representation
of the numter of bytes r€~uested.

1CASCNB: This two-byte field contains the number of storage bytes
requEsted. This fi€ld can be filled by the user's application program
with a hexadecimal representation of the number of bytes requested
Friar to execution of the DFHSC TYPE=GETnAIN macro instruction. If
the user's aFFlication program places a value in this field prior to

21

the execution of a DFHSC 'IYPE=GETMAIN macro instruction, the
NUMBYTE=value o'peran'd must he cm'ittad. When' the storage is obtained~ ,
the TCASC;N.B is 'overlaid with a portion of the ad'.dress of the storage f

obtained.

TCASCIB: 'This one-byte field contains the bit configuration for the
initialization of main storage. The field can be filled by the user's
application program wit h the desired hit configuration pri:or to the
execution of a DFHSC TYPE=GETMAIN macro instruction, in which case
the INITIMG=YES operand must be coded.

TCAFCDI: This eight-byte field contains the data set identification
for the data set to which a record is to be written or from which a
record is to be retrieved. The user's application program can place
the data set identification in this field prior to th~ execution of
a DFHPC TYPE=GET or a DFB]C TYPE=SETL macro instruction.

The data set identification must correspond exactly with th€ user­
established identification of the required data set .(as previously
estatlished in the File Centrol Table) and must be left-justified when
the user's application prcgram places the identification in the TCAFCDI
field. If this field is filled prior to the execution of the DFHFC
macro instruction, the DATASET=name operand must be omitted.

TCAFCRI: This four-byte field contains the address of the user's
record identification field when ~aking a request for CICS File
Management services. The user's ~pplication program c~n place the
address in this field prier to the execution of a DFHYC TYPE=GET, DFHFC
'YPE=PUT, [FHFC TYPF=SETL, or DFHPC TYPE=GE1NEXT macro instruction.
The RtIDADR=symhel operand is omitted if the TCAFCRI field is filled
prior to the execution of the macro instruction.

TeAFCSI: This eight-byte field contains the segment set identification.
The user's application program can place the segment set identification
in this field prior to issuing the DFHFC TYPE=GET, DFHFC TYPE=PUT,
tFHFC TYPE=SETL, or DFHFC TYPE=GETNEXT macrc instruction.

The segment set id~ntificatioD must match the us~r7established
identification of the requested segment set (as previously established
in the File Contrel Table) and must be left-justified when the user's
application prcgram places the identification in the TCAFCSI field.
If this field is filled prior to eXEcution of the DFHFC TYPE=GET or
DFHFC TYPE=PUT macro instruction, the SEGSE!=YES operand must be coded
as part of that macro instruction.

TCAFCAI: This eight-byte field contains the symbolic identification
cf the first index data set to be searched in an indirect accessing
hierarchy. The user's apFlicaticn program can place the desired
indirect access identification (as previously established in the File
Ccntrol Table) in the field prior to the execution of a DFHFe TIPE=GET
macro instruction. When the user's application program places the
identification in the TCAFCAI field, it must be left~justified and
the INDEX=YES cperand must be coded as part of the macro instruction.

TCAFCAA: This four-byte field contains the· address of the File
Input/Output Area (FIOA) cr File ~ork Area (FWA).

22

TCAFCTR: This one-byte field contains the type of Fila Control
request/res~onse. Request codes are set by issuing the DFHFC macro
instruction. Res~onses are automatically placed in the TCAFCTR field
by File Management after completion of the event reguested.

TCATDTR: This one-byte field contains the type of Transient Data
Control request/response. Request codes are set by issuing the DFHTD
macro instruction. Res~onses are automatically placed in the TCATDTR
by Transient Data Management field after completion of a transient
data event.

1CATSTR: This one-byte fi€ld contains the Temporary storage Control
request/response. Request codes are set by issuing the Temporary
storage macro instruction DFH~S. Responses are automatically placed
in the TCATSTR field by Temporary storage Management after completion
of a temporary storage event.

TCAICTR: This one-byte field contains the Interval Control
request/response. ReqUests codes are set by issuing the Interval
Centrol macro instruction DFHIC. Responses are automatically placed
in the TCAICTR field by Time Management after completion of an Interval
Centrol service request.

TRANSACTION WORK AREA (TWA)

The TWA is an extension of the TeA and is created at the option
of the user to previde a work area for a given transaction (task).

The TWA can be us~d for the accumulaticn of data and intermediate
results during the execution of the transaction. It can also be used
when the amount of working stcrage for a transaction is relatively
static, when data must be passed between user~vritten application
programs, or when data must be accessed by different programs during
transaction ~rocessing. During multiple entries of data for a
transaction, the applicaticn pregrams might retain the data in the
TWA.

Where the TWA is desired for a given transaction, it is the
responsibility cf the application programmer to define storage for
the TWA immediately following his symbolic storage definition of the
TeA. The size of the TWA is specified in the Program Control Table
entry for each transaction identification. Therefore, the size of
th~ TWA can vary by transaction type according to the user's needs.
For information on establishing the TWA, see the Program Control Table
in the ~y~~~ ~I~9Ig~~I!~ ~sl~~~D£§]s»y!l.

The Assembler language programmer must define storage for the CICS
centrol areas and any other eICS storage areas required for the
~rocessing of his program. He accomplishes this by using the Assembler
language COpy statement to (1) copy the a~propriate symbolic storage
d~finitions into his program and (2) specify the names of the storage
areas being defined. All registers are at his disposal, except for
registers 12, 13, and 14 (which are used by CICS).

23

STATIC STORAGE DEFINITION

During CICS initialization, the CSA is statically allocated as part
of the CICS Nucleus. For each terminal with which communication is
to occur, the Terminal Control Table terminal entry (TCTTE) is included
in the statically allocated Terminal Control Table (TCT). The
application programmer must provide symbolic storage definition for
the CSA and TCTTE (if needed) by using the COpy statement in his
program.

The statement

COpy DFHCSADS

copies the symbolic storage definition for the CSA and assigns register
13 as the base register.

If the user has generated a CSA with a work area, he may wish to
include his own symbolic definitions for that area following the COPY
DFHCSADS statement. For example:

COpy DFHCSADS
BUCKIT1 DS F
BUCKE!2 DS F
TEMPNAME DS CLa

The statement

COpy DFHTCTTE

copies the symrolic storage definition for the TCTTE. This symbolic
definition is necessary when the user desires to obtain the address
of the terminal I/O area (TCTTEDA) or to request a Terminal Control
service via the DFHTC macro instruction. The user must code an EQU
statement prior to the COpy statement to set up a base register for
the TCTTE, equating the label TCTTEAR to a prcgram register. The
following is an example of the coding required:

TC!TIAR EQU 5
COpy DFHTC~TE

DYNAMIC STORAGE DEFINITION

During initiaticn and execution cf a transaction (task), the TCA,
TIOA, .and other stcrage areas required by the transaction are
dynamically allocated by eICS Storage Management, either upon request
from the aFplicaticn program or upon request from a CICS management
function. The applicaticn Frcgrammer must provide symbolic storage
definition for these storage areas by using the COPY statement in his
Frogram.

The statement

COPY DFH!CADS

24

copies the symbolic storage definition for the TCA (excluding the CICS
control section) and assigns register 12 as the base register. If
the user's application prcg~am uses a Transaction Work Area (TVA)~
DS statements for that storage area must immediately follow the COpy
statement. The fellowing is an example of the coding required to
symbolically d-efine storag€ for both the TCA and TWA:

NAl'lE
STREET
CITY
STATE

COpy
DS
DS
DS
DS

DFH'ICADS
CL20
CL20
CL10
CL3

If it is necessary for the Assembler language programmer to obtain
access to the CICS system control section of the TCA, a copy of the
symbolic storage definitien for the entire TCA may be obtained by using
the statement

DFHTCA CICSYST=YES

in place of the statement COpy DFHTCADS. Addressability to the
communication section of the TCA and to the Transaction Work Area (TWA)
is provided automatically by CICS through register 12. Addressability
to the Cles system cont~ol section must be provided by the application
programmer; for example:

L WRKREG,TCASYAA
USING DFHSYTCA,WRKREG

DROP WRKREG

The statement

COpy DFHTIOA

copies the symbolic storage definition for the CICS control section
of the TIOA. It is desirable that this storage definition precede
the user's definition of a terminal input or output message. The user
must code an EQU statement prior to the COpy statement to set up a
tase register fer the TIO!, equating the label TIOAEAR to a program
register. The following is an example of the coding required:

TIOABAR EQU
COpy

NAME DS
STREET DS

DS

9
DFHTI0A
CL20
CL20
CL5

DFHSC TYPE~GETMAIN,NUMBYTE=XX,CLASS=TERMINAL
L TIOAEAR,TCASCSA

25

The statement

COpy DFHFIOA

copies the symbolic storage definition for the CICS centrol section
of the PIOA. This storage definition should precede the user's defined
layout of a file input or output area when reading an unblocked record
without updating or segmenting, when reading blocked records without
deblocking, or when checking response codes for the afpropriate abnormal
response. The user must code an EQU statement prior to the COpy
statement to set up a base register for the PIOA, equating the label
~IOAEAB to a program register. The FI0A is autcmatica1ly acquired
ty File Management whenever a request is made by the user to access
a data base data set. If lSAM data is being retrieved under CICS/OS,
a 16-byte filler must be defined prior to the user's data definition.
The following is an example of the coding required:

FICAEAB EQO
COpy
DS

NAME DS
STREET DS

The statement

COpy DFHFWADS

1
DFHFIOA
16 X
Ct20
CL5

OS ISAM FILLER

copies the symbolic storage definition for the CICS centrol section
of the PiA. This storage definition should precede the user's defined
layout of a file record area when r9ading or updating an existing
tlocked or segmented r€cord, when adding a new record to a file, or
when retrieving records using the browse feature. The user must code
an EQU statement prior to the COPY statement to set up a base register
for the FWA, equating the label PWACBAR tc a program register. The
fel10wing is an example of the coding required:

FWACEAB

NAME
S'IREET
ZIPCODE

EQO
COpy
DS
DS
DS

The statement

COpy DFHTtIA

1
DPHFWADS
CL20
CL30
CL5

copies the symbolic storage definition for the CICS control section
of the intrafartition TUlA. It is desirable that this storage
definition precede the user's defined layout of the message area used
for a transient data GEl. The user must code an BCU statement prior
to the COpy statement to set upa base register for the TDI!, equating
the label TDIABAR to a program register. The fcllowing is an example
of the coding required:

26

TDIABAR EQU
COpy

NAME DS

9
DFHTIlA
CI,20

S!BFE1 DS CL20

lIg~si~n!]g!g ~~!EY! !I~~ (TDOA)

The statement

COpy DFH!tOA

copies the symbolic storage definition for the CICS centrel section
ef the intraFartition TDOA. Fer consistent documentation of the user's
applicatien Frogram, this storage definition should precede the user's
defined layout of the message area for a transient data PU!. The user
must code an BQU statement prier to the COpy statement to set up a
tase register for the TDOA, equating the label TDOABAR to a program
register. The address of the length field labeled TDOAVRL is given
to Transient Data Contrel either through the TDADDR operand or by
Flacing it in the TCA at lCATDAA. The fcl10wing is an examFle of the
ceding required:

TDOAEAR EQU 9
COpy DFH~DOA

TIME DS CL4
DATE DS PL3
INTEBM DS CL4
OU~TERM DS C14

DPHSC TYPE=GETMAIN,CLASS=~RANSDAIA,NUMBYTE=XX
I ~DCAEAR,TCASCSA

DFHTD TYPE=PUT,DESTID=POST,TDADDR=TDOAVRL

The statement

COpy DfH1Sl0A

copies the symbolic storage definition for the CICS centrel section
of the TSIOA. Thi~ storage definition should precede the user's defined
layout of the input/output worX areas for temporary storage. The user
must code an EQU statement prior to the CCPY statement to set up a
tase register for tne TSIOA, equating the label TSIOABAR tc a program
r~gister. The address of the length field labeled TSIOAVRL is given
to Temporary storage Contrcl either through the TSCADDR=param~ter
operand of the DFHTS macre instruction or by placing it in the TCA
at TCATSDA. 1he fellowing is an example of the coding required:

27

TSIOAEAR EQU 6
COpy DFH'ISI0A

PAGENO DS l?L2
TI'ILE DS C130
lINE1 DS CL70

DFHTS TYPE=GET
L TSICAEAR,TCATSt~

SH TSIOABAR,cH'S'

'rhs statement

CCPY DFHSAADS

copies the symbclic storflge definition for th'e SA!. This storage
aefiniticn shculd precede the user's defined layout of a unique work
area he will use within his aFplicaticn program. The user must code
an EQU statement prior to the COpy statem~nt to set up a base register
for the SAA, equating the label SAACBAR tc a Frogram register. The
fcllowing is an example of th£ coding required:

SAACBAR

SYMBLA
NAME
STREET
SYro18LB

EQU 9
COPY DFHSAADS
ECU * DS CL50
1)S Cl15
ECU *-SYM~LA

DFHSC TYPE=G~TMAIN,INITIMG=CJ,NUMBY1E=SYMELB,
eLA~S=USER

L S~AC~AR,TCASCSA

EXA~PLE OF CIeS ASSE~BLE5 LANGUAGE APPLICATION FBOGRAM

Figure q illustratEs an Asserobler language program written to run
under CIC~. ThE frogram issues four CICS macro instructions, asks
a question of the terminal operatcr, receives a reply, dynamically
acquires some storagE, and sends the operatcr's message back to the
t€r~inal. (!he line numbers are not part of the program.)

28

o 1 BASEREG ECU 2
02 'ICTTEAR EQU 1 1
03 'IIOAEAB EQU If)
04 CCPY DFHCSADS
05 COPY DFHTCADS
1)6 LENGTH DS H
07 MESSAGE DS CL40
C8 COpy DFHTCTTE
09 CCPY DFHTIOA
10 MESSG DS (L40
1 , CSECT
12 EALR EASEREG,O
'3 USING *,EASEREG
14 L TCTTEAR,TCAFCAAA
15 L TICAEAR,TCTTEDA
16 MVC MESSG,=C'WHAT LANGUAGE AM I CODED IN'
17 MVC 'IlOATDL,=H' 27'
18 DFH'IC TYPE=(iRI'IE,READ,WAIT)
1C} L TIOAEAR,TCTTEDA
20 M-VC LENGTH,'IIOATDL
L 1 MVC MESSAGE,MESSG
22 DFHSC 'IYPE=GETMAIN,
23 CLASS=TERr1INAL,
24 lNITIMG=40,
25 NUMBYTE=/+,O
26 L TIOABAR,'!CASCSA
27 ST '!IOAEAR,TCTTEDA
28 MVC MESSG,MESSAGE
29 MVC 'IlOATDL ,LENGTH

,30 DFHIC 'IYPE=WRITE
31 DFHPC 'IYPE=RETURN
32 L'IORG
33 END

Figure 9. Example of CleS Assembler language application program

A discussion of the significance of each of the lines of Figure
9 follows.

~1!1]~]]! lYMB]]

01
02-03

04-05
06-07

08-09

10
11-13

14
15
16
17

18

19

Assigns base register for program.
Assigns base registers for TCTTE and TIOA
symbolic storage definitions.
Copies CSA and TCA symbolic storage definitions.
Defines fields in TWA as save areas to provide
for quasi-reentrance.
Copies TCTTE and TIOA symbolic storage
definitions.
Defines message area in TIOA.
Begins program; establishes addressability
for program. .
Establishes addressability for TC'I'!E.
Establishes addressability'for TIOA.
Moves message to output area of TIOA.
Moves length of message to data length field
of TIOA.
Cles macro instruction that writes message
to terminal, waits fer oferatoT.·s reply, and
reads oferator's reply.
Establishes addressability for new TIO! using
address in TCTTE.

*
*
*

29

~O-21

22-25

26

27
28-29

30

31

32-33

Saves the message and the length of the
message in the TWA save areas.
cres macro instructicn that requests 40 bytes
of terminal type storage initialized to clanks.
Establishes addressability for new TIOA
(address of newly-acquired storage area is in

TCASCSA field of the TCA).
Places address of new st9rage area in TCTTE.
Moves the message and the length of the message
frcm TWA save areas.
eIeS macro instruction that writes message
tc terminal.
cres macro instruction that returns control
to crcs and terminates this task.
Required for Assembler language.

The application programmer who programs in ANS COBOL must define
storase for the contrel areas and any other storage areas required
for the processing of his prcgram~ He accomplishes this (1) by use
of the COpy statement i~ the Linkage section of the Data Division to
copy the symbolic storage definitions inte his program and specify
the names cf the storage areas being defined and (2) by use of the
~OVE statement in the Procedure Division to establish addressability
through the mcving of symtelic storage addresses from one location
tc another.

The programmer uses normal ANS COBOL code with the exception that
(1) CICS macre instructicns must be used to invoke CIes services and
(2) the unique storage areas provided by or acquired through crcs
should be used for the rete~tion of data. !he working storage section
cf an ANS COBOL pregram shculd only be used to contain data constants.
Variacle data shoulc be placed in the CICS Transaction Work Area (TWA)
cr in an area of main storage acq~ired via the DFHSC TYPE=GETMAIN macro
instruction.

In the CICS/tOS-ENTRY system, a fresh cefY of the frogram is used
each time the task is relIed tack in after a rollout. Therefore, any
data fields established in the prcgram before rollout occurs must be
reestablished after subsequent rollin.

See the seetien "Supervisory and Data Management Services" for a
listing of ANS COBeL features that may not te used.

':he statement

01 DFHEl1DS COpy DFHELIDS.

must be tte first statement in the Linkage section of the Data Division.
This statement copies the symtelic storage definitien for the Linkage
secticn Base Locator (BLL) which provides the means whereby an ANS
COBOL program can request dyna[ically acgQired CICS storage areas.
Included in this definiticn is the symbolic base address for the CSA
and TCA.

If the ANS cesel programmer desires to use crcs storage areas ether
than the CSA and TCA, immediately fcllowing the COPY statement for
the BLL he must cede statements of the form

02 name fIC~URE 59(8) USAGE IS COMPUTATICNAL.

30

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

where "name" is the symbolic base address used to locate a specific
storage area. These 02 statements must be coded in the same order as
the corresponding 01 statements coded subsequently.

If the user is going to communicate with the system via a terminal,
he needs a Terminal Input/Output Area (TIOA) and a Teiminal Control
Table terminal entry (TCTTE). The following is an example of the coding
required in the Linkage section of the Data Division:

01 DFHBLLDS COpy DFHBLLDS.
02 TCTTEAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COpy DFHTCADS.
01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COPY DFHTIOA.

If the user wishes to access a series of chained storage areas (areas
that contain a pointer to the next area in the chain), he must establish
addressability to each new storage area in the chain by inserting a
paragraph name immediately following any MOVE statement that establishes
addressability but prior to the next sequential statement. For example:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 USERPTR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COpy DFIlTCADS.
02 TWAFIELD PICTURE X(4).

01 USERAREA.
02 FIELD PICTURE X (4) •
02 NEXTAREA PICTURE S9(8) USAGE IS COMPUTATIONAL.

PROCEDURE DIVISION.

MOVE NEXTAREA TO USERPTR.
ANYNAME.

MOVE FIELD TO TWAFIELD.

In this example, storage areas are chained, each of which is mapped
or defined by USERAREA. The first MOVE instruction establishes
addressability to the next area in the chain. The second MOVE
instruction moves data from the newly addressed area, but only because
the paragraph name precedes the second MOVE instruction; in the absence
of the paragraph name, data is moved from the previously addressed area
rather than from the new area. Note that a paragraph name is not needed
if addressability to an area is obtained via a field in some other'area
(for example, the TCA).

If the object of an "OCCURS DEPENDING ON" clause is defined in the
linkage section, special consideration is required to ensure the correct
value is used at all times. In the following example, FIELD-COUNTER
is defined in the linkage section and if the MOVE FIELD-COUNTER TO

31

Page of SH20-1047-4
Revised April 11, 1973
By TNL 8N20-90 12

FIELD-COUNTER statement is missing, unpredictable results will occur
when referencing DATA.

LINKAGE SECTION.
01 DFHFWADS COpy DFHFWADS.

02 FIELD-COUNTER PIC 9(4) USAGE IS COMPUTATIONAL.
02 FIELDS PIC X(5) OCCURS 1 to 5 TIMES

DEPENDING ON FIELD-COUNTER.
02 DATA PIC X (20) •

PROCEDURE DIVISION.

DFHFC TYPE=GET, etc.
MOVE TCAFCAA TO FWACBAR.
MOVE FIELD-COUNTER TO FIELD-COUNTER.
MOVE DATA TO TWA-FIELD.

The extra MOVE statement to FIELD-COUNTER causes COBOL to
re-establish the value it uses to compute the current number of
occurrences of FIELDS and therefore, can correctly determine the
displacement of DATA.

An area defined in the Linkage section that is greater than 4095
bytes in length requires special consideration. Required are an extra
02-level statement under DFHBLLDS and an extra statement to establish

31,1

addressability. For example, if a FWA (File Work Area) exceeds 4095
bytes, the following is an example of the code required:

LINKAGE SECTION
01 DFHBLLDS COPY DFHBLLDS.

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 FWABR1 PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHFWADS COpy DFHFWADS.
02 FIELD1 PICTURE X(4000).
02 FIELD2 PICTURE X(1000).
02 FIELD3 PICTURE X(400).

PROCEDURE DIVISION.

DFHFC TYPE=GET,

MOVE TCAFCAA TO FWACBAR.
ADD 4096 FWACBAR GIVING FWABR1.

*

If an application program is to be compiled under CICS/OS using the
Full ANS COBOL V4 Compiler (5734-CB2) with the optimization (OPT)
feature, a special compiler control statement must be inserted at
appropriate places within the program to obtain addressability to a
particular area of main storage. This control statement has the form:

SERVICE RELOAD fieldname.

where "fieldname" is the symbolic name of a specific storage area, and
where "fieldname" is also defined in an 01-level statement in the
Linkage Section. The first two statements of the Procedure Division
must always be

SERVICE RELOAD DFHBLLDS.
SERVICE RELOAD DFHCSADS.

statements such as:

or

MOVE TCAFCAAA TO TCTTEAR.
SERVICE RELOAD DFHTCTTE.

SUBTRACT 8 FROM TCASCSA GIVING TSIOABAR.
SERVICE RELOAD DFHTSIOA.

might be used to establish addressability for a particular storage
area. (Note that the SERVICE RELOAD statement must always be used.)

To establish addressability to the TCA, the following statements
must be coded:

32

MOVE CSACDTA TO TCACBAR.
SERVICE RELOAD DFHTCA.

Note that the RELOAD statement specifies DFHTCA, not DFHTCADS.

If the application Frogram is to use the Data Language/I (DL/I)
facilities of CICS/OS as well as the V4 ANS COBOL Compiler, the first
feur statements of the Procedure Division must be

SERVICI RELOAD DFHBLLDS.
SERVICE RELOAD DPHCSADS.
MOVE CSAOPFtA TO CSAOPBAR.
SERVICE RELOAD CSAOPFL.

STATIC STOEAGE DEF~NITION

During CICS initialization, the Cemmon System Area (CSA) is
statically allocated as part of the CICS Nucleus. For each terminal
with which co~munication is to occur, the Terminal Control Table
terminal entry (lCTTE) is included in the statically allocated Terminal
Ccntrol Table (TCT). The ANS COBOL prograffrrer must provide symbolic
storage definition for the CSA and TCTTE (if needed) as fellows.

The statement

01 DFHCSADS COpy DFHCSADS.

copies the symtolic storage definition for the CSA. Addressability
for th~ CSA is included.

If the user has appended a Common Work Area (CWA) to the eSA,
immediately fellowing the COpy statement in the Linkage Section he
must 1efine the record layout of the CWA. The following is an example
of the coding required:

01 DFHCSADS COpy DFHCSADS.
02 CWA PICTURE X(400).

03 FIELD1 PICTURE X(4).

The statement

01 DFHTCTTE COpy DFHTCTTE.

copies the symbclic storage definition for the TCTTE and must be present
in all programs reques~ing communication with a terminal. The user
must code the statement

MOVE lCAFCAAA TO TCTTEAR.

in the appropriate place in the Procedure Division to
establish addressability for the TCTTE.

DYNAMIC STOFAGE DEFINITION

During initiaticn and execution of a transaction (task), the Task
Centrel Area (TCA), the Ter~inal Input/Output Area (TIOA), and other
storage areas required by the transaction are dynamically allocated
by CICS. 1he ANS COBOL Frogrammer must provide symbolic storag~
definition for these storage areas as fellows.

33

The statement

01 DFHTCADS COpy DFE~CADS.

copies the symbolic storage definition for the TCA. The us~r must
code the ~tatement

MOVE CSACDTA TO TCACEAB.

as the first statement in the proc~dure Division te e~tablish
addressabflIty for the TCA.

If the user de~ires to append a 1ransaction Work Area (TWA) to the
TCA, immediately fcllowing the COpy statement in the Linkage Section
be must define the record layout of the TWA. The following is an
exam~le of the coding reguir~d:

01 DFH1CADS COpy DFHTCADS.
02 TWA PICTURE X(40).

The statement

01 DFHTICA COpy DFHTIOA.

copies the symbolic storage definition for th~ ClCS centrol section
of the ~ICA and must be present in all programs that use terminal input
records or that outFut records to a terminal. The following is an
exam~le of the coding required to define t.he record(s) in the TIO!:

01 DFHTIOA COpy DFHTIOA.
02 TEANSID PICTURE XXXX.
02 TICA~SG PICTURE 1(20).

The user must establish addressability for the TIOA in the Procedure
Division of his Frogram by coding in the aFFropriate place either the
statement

MOVE TCTTELA TC TICAEAR.

or the statement

MOVE TeASeSA Te 1ICAEAR.

~he latter statement is used to establish addressatility for a new
TIOA acquired dynamically threugh use of a DFHSC TYPEzGETMAIN macro
instruction and should be coled immediately following the last operand
of that macro instruction.

The statement

01 DFHFICA COpy DPBFIOA.

34

copies the symbolic storage definition for the cres centrol section
of the FIOA and must be present in all programs requesting a "read
~ithout update" for an unblocked, unsegmented data set. If ISAM data
is being retrieved under CICS/OS, a 16-byte filler must be defined
prier to the user's data definition. The following is an example of
the coding required to define the record(s) in the FIOA:

01 DFHFIOA COpy DFHFIOA.
02 FILLER PICTURE X(16).
02 KEY PICTURE J(6).
02 NAME PICTURE X(20).
02 FIOABEC PICTURE X(74).

The user must code the statement

MOVE TCAFCAA TO FICAEAR.

NOTE as ISAM FILLER.

in the dFpropriate place in the Procedure Division of his program to
establish addressability for the FIOA.

The statement

01 DFHFWACS COpy DFEFWADS.

copies the symtolic storage definition for the CICS centrel section
of the FWA and must b€ present in all fIograms Ferforming file activity
with the exception of a "read without update" from an unblocked,
unsegmented data set. The fcllowing is an €xamFle of the coding
required to define the record(s) in the FWA:

01 DFHFWADS COPY DFHFWADS.
02 KEY FIC!URE X (6) •
02 NAME PICTURE 1(20).
02 FWAREC PICTURE X(24).

The user must code the statement

MOVE TCAFCAA TO FWACEAR.

in the aFFropriate place in the Procedure Division of his program to
establish addressability for the FWA.

The statement

01 DFHTDIA COpy DFHTDIA.

copies the symbolic storage definition for the CleS centrol section
cf the intraFartition TDIA and must b€ present in all programs
requesting a GE1 for transient data. The followin9 is an example of
the coding required to define thE r€cord(s) in th~ TDIA:

35

01 DFETC!A COPY DFHTDIA.
02 ~ESSAGE PICTURE X(25).

The user must code the statement

MOVE ICAIDAA TO TDIAEAR.

in the aPFropriate place in the Procedure Division of his program to
establish acdressability fer the TrIA.

The statEment

01 CFHTtOA COpy DFHTDOA.

copies the symbolic storage definition for the CICS centrel section
of the intraFartition TDOA and sheuld be prEsent in all programs
requesting a PUI to transient data. The following is an example of
the coding required to define the record(s) in the TDOA:

J1 rFHTDOA COPY DFHTrOA.
02 MESSAGE PICTURE 1(20).

~he user must code the ~tatement

MOVE TCASCS! TO TDCAEAR.

in the aFFrcpriate place in the Procedure Division of his program to
establish a1dressability for the TDOA.

The statement

01 DFHTSIOA COpy DFHTSIOA.

copies the symtolic storage definition for the CICS centre1 section
of the TSIOA and should be Fresent in all programs using temporary
storage. The fcllowing is an example of the coding required to define
the record(s} in the ISlOA:

01 DFHTSIOA COpy DFHISIOA.
02 tATA PICTUR~ X(10).

To establish addressability for the TSIOA, the user must code in
the a~pro~riate place in the Procadure Division of his program the
statements

MOVE TCA1S£A 10 TSIOAEAR.
SUETRACT 8 FROM ISICABAR.

if the request is a GET frcm temporary storage. or the statement

~OVE TCASCSA 10 ISIOABAR.

if the request is a PUT tc temporary storage and the user has just
~yna~ically acquired an I/O area. In the case of a PUT, the symbolic
address of the data is located at TSIOAVRL.

36

The statement

01 DFHSAADS COpy DFHSAADS.

copies the symtclic storage definition for the SAA. This storage
definiticn shculd precede the definition of user storage acquired
tnLough the DIHSC TYPE=GE~MAIN,CIASS=USER macro instruction. The
fcllowing is an €XamFle of thE coding required to define the record{s)
in the SAA:

01 DFHSAADS COpy DFH~AADS.

02 NAME PICTURE X (20) •
02 SAAFEC PIC~URE X (10) •

The user must codE the statement

MOVE !CASC5A 10 SAACEA~.

in the aFFropriate place in tbe Procedure Division of his program to
Establish addressability for the SAA.

~XAMPLE OF CICS ANS COBOL APPIICA!ICN PFOGRAM

Figure 10 illustrates an ANS COBOL program written to run under
(rcs. The FLcgram issues four CICS maCLO instructions, asks a question
of the terminal oFerator, receives a reply, dynamically acquires some
storage, and sends the operator's rne~saq~ back to the terminal. (The
line numbers are not part cf the fIogram.)

37

I) 1
02
03
04
')5
06
")7
C8
09
10
11
12
13
14
15
16
17
18
19
20
~ 1
22
23
24
25
26
27
28
29
30
:3 1
22
33
34
35
36

IDENTIFICATION DIVISION.
PRCGRAM-ID.

'CBLSPRB' ..
ENVIRONMEN! DIVISICN.
DATA tIVISTON.
LINKAGE SECTION.
01 DPHE11DS COpy DfHBLLDS.

02 TC~TEAR PICTURE S9(8) USAGE IS CC~IU!ATIONAL.
02 TICAEAE PICTURE SQ(8) USAGE IS CCMPUTATIONAL.

01 DFHCSADS COpy D1HCSADS.
01 DFHTCADS COpy DFHTCADS.

02 SAVE-LENGTH PICTURE S9(8) USAG~ IS COMPUTATIONAL.
C2 SAVE-MESSAGE PICTURE X(40).

01 DFH!C1TE COpy DFHTCTTE.
01 DPHTICA COpy DFHTIOA.

02 TICAMSG PICTURE X(40).
PRCCEDURE DIVISION.

MOVE CSACD!A TO TCACBAR.
MOVE TCAECAAA TC TCTTEAR.
MOVE !Cl!EDA TO ~IOABAR.

MOVE 'IS THIS A COBOL OR A PIII FFOGRAM' TO TIOAMSG~

MOVE 33 10 TIOA!DL.
DFHTC !YPE=(WRITE,READ,WAIT)

MOVE TC1!EDA TO TIOABAR.
MeVE lIOATDL TO SAVE-LENGTH.
MCVE 'IICAMSG 10 SAVE-MESSAGE.

DFHSC lYPE=GETM~IN,
NUMBY'IE=40,
INITIMG=40,
CLASS=TEBi1INAL

MOVE lCASCSA TO TIOABAR.
MOVE TIOAEAR !O TCTTEDA.
MOVE SAVE-MESSAGE TO TICA~SG. NOTE MOVE MSG TO I/O AREA.
MOVE SA~E-LENG1E 10 lIOATDL.

tPHTC !YPE=WRITE
DFHPC TYPE=RETURN

"'iqure 10. Example of CICS ANS COBOL application program

A discussion of the significance of each of the lines of Figure
10 fellows.

38

01-05
06
07

08-('9

10
11

12-13

14
15
16
17

18-20

Required for ANS COBOL.
start of linkage section.
Co~ies symtclic storage d~finitien for BIL;
certains addresses of crcs storage areas.
Adc addresses for TC7TE and TIOA (required
for statements 14 and 15).
COFies symbelic storage definition fer CSA.
COFies symbelic storage definition for TCA.
Defines save areas in TWA to ensure reentrance
(SAVE-LENGTH and SAVE-MESSAGE are used to
save oFerator's reply).
Copies symbclic storage definition for TCTTE.
Copies symbclic storage definition for TIOA.
Defines message area in TIOA.
Required for ANS COBOL (start of Procedure
Division) •
Establishes addressability for TCA, TCTTE, and
lIOA (CrCS establishes addressability for BLL
and CSA).

*
*
*

Page of SH20-104 7-4
Revised April 11, 1973
By TNL SN20-9012

21
22

23

24

25
26

27-30

Moves message to output area of TIOA.
Moves length of message to data length field of
TIOA.
CICS macro instruction that writes message to
terminal, waits for operator's reply, and reads
operator's reply.
Establishes addressability for new TIOA using
address in TCTTE.
Saves length of message in TWA.
Saves message in TWA.
CICS macro instruction that requests 40 bytes
of terminal storage initialized to blanks
(terminal storage is chained to Terminal Control
Table) .

31 Establishes addressability for new TIOA (address
of newly-acquired storage area is in TCASCSA
field of the TCA) ~

32

33
34
35

36

places address of new storage area in Terminal
Control Table.
Moves message to output area (TIOA).
Moves length of message to output area.
CICS macro instruction that writes message to
terminal.
CICS macro instruction that returns control to
CICS.

The PL/I programmer must define storage for the CICS control areas
and any other CICS storage areas required for the processing of his
program. He accomplishes this by using a statement of the form

% INCL UDE (nam e) ;

to (1) copy the appropriate symbolic storage definition into his program
at the place where the %INCLUDE statement appears and (2) specify the
name of the storage area being defined.

The source code provided by CICS in response to a %INCLUDE statement
is in the form of based structures. These structures describe the
attributes of the storage areas and include pointer variables that
provide the addresses of the actual locations in storage that the
structures describe.

A PLII program written to run under control of CICS must be written
with the following considerations and restrictions:

1. Include the REENTRANT option in the initial PROCEDURE statement
to satisfy the CICS requirement that code be quasi-reentrant.
For example: PL1PROG: PROCEDURE OPTIONS (MAIN, REENTRANT) ;

2. Use CICS macro instructions to request all CICS services.

3. PL/I object modules from separate compilations cannot be
link-edited into a single executable program. For subprogram
linkage, use the DFHPC TYPE=LINK macro instruction.

See the section "Supervisory and Data Management Services" for a
listing of PL/I features that may not be used.

STATIC STORAGE DEFINITION

During CICS initialization, the Common System Area (CSA) is
statically allocated as part of the CICS Nucleus. For each terminal

39

with which communication is to occur, the Terminal Control Table
terminal entry (TCTTE) is included in the statically allocated Terminal
Control Table (TCT). The PL/I programmer must provide symbolic storage
definition for the CSA and TCTTE (if needed) as follows.

39.1

The statement

%INCLUDE (DFHCSADS);

copies the based structure that symbolically defines the CSA.
Addressability for the CSA is included.

To define areas in the work area portion of the CSA, the PL/I
programmer must provide, immediately following the %INCLUDE (DFHCSADS)
macro instruction, coding such as the following:

DECLARE 1 DFHCSAWK BASED (CSACBAR),
2 CSAFILL CHAR(S12),
2 USERLBL1 attributes,

2 USERLBLn attributes;

The statement

%INCLUDE (DFHTCTTE);

copies the based structure that symbolically defines the TCTTE and must
be present in all programs requesting communication with a terminal.
Addressability for the TCTTE is included.

DYNAMIC STORAGE DEFINITION

During initiation and execution of a transaction (task), the Task
Control Area (TCA) , the Terminal Input/Output Area (TIOA), and other
storage areas required by the transaction are dynamically allocated by
CICS. The PL/I programmer must provide symbolic definition for these
storage areas as follows.

The statement

%INCLUDE (DFHTCADS);

copies the based structure that symbolically defines the TCA and
establishes addressability.

The latter part of the based structure consists of a DECLARE
statement that is not terminated by a semicolon. The user must complete
the declaration of the TCA structure by supplying a dummy ending (for
example, a semicolon) or, if a Transaction Work Area (TWA) is desired,
by supplying further declaration. The following is an example of the
coding required:

40

%INCLUDE (DFHTCADS):
2 TWA CHAR (40) ;

The statement

~INCLUDE (DFHTIOA);

copies the based structure that symbolically defines the CICS control
section of the TIOA and establishes addressability. This statement
must be present in all pIC grams that use terminal input records or
that output records to the terminal. The application programmer must
cemplete the declaration ef the TIOA structure by supplying a dummy
ending (for example, a semicolon) or by sUPFlying further declaration
of the input/output area. The following is an example of the coding
required:

%INCLUDE (DFHTIOA);
2 NAME CHAR (20) ,
2 S'IBEET CHAR (20) ;

DFHSC TYFE=GETMAIN, *
NUMBYTE=XX, *
CLASS=TERMINAL

TIOABAR=TCASCSA; 1* TCASCSA FIELD OF TCA CONTAINS ADDRBSS
OF NEWLY-ACQUIRED STORAGE */

The statement

%INCLUDE (DFHFIOA);

copies the based structure that symbolically defines the ClCS control
section of the PIOA and must be present in all programs requesting
a "read without update" fer an unblocked, unsegmented data set (file).
The user must cemplete declaration of the FIOA. He must establish
addressability for the FIOA using the statement

FIOAEAR=TCAFCAA;

If ISA!! is being retrieved under CICS/OS, a 16-byte filler must be
defined prier to the user's data definition. The following is an
example of the coding required:

~INCLUDE (DFHFIOA);
2 F IL L C H A R ('6) ,
2 NAME CHAR (20) ,
2 ADDR CHAR (20) ;

PIOABAR=TCAFCAA;

/*05 ISAM FIILER*/

41

The stat€ment

~INCLUDE (DFHFWADS);

copies the based structurE that symbolically defines the CICS control
section of the PilA. This statement should precEde a user-declared
file record area when reanlng or updating an existing blocked or
segmented record, when adding a new record to a data set (file), or
when retrieving records using the browse technique. The user must
ccmplet~ declaration of the FWA. He must establish addressability
for the FWA using the statement

FWACBAR=TCAFCAA;

The following is an example of the coding required:

~INCLUDE (DPHPWAtS);
2 NAlfE CHAR (20) ,
2 ADDR CHAR (20);

PWACBAR=TCAFCAA;

'l'he statement

~INCLUDE (DFHTDIA);

copies the based structure that symbolically defines the CICS control
section cf the intrapartiticn TDIA and must be present in all programs
requesting a GE! for transient data. The user must complete declaration
of the TDIA. He must Establish addressability for the TDIA using the
statement

TDIABAR=!CATDAA;

The following is an example of the ~oding required:

.INCLUDE ~BPHTDIA);
2 l!5G CHAR (LJO) ;

TDIAB1R=TCATtAA;

~~gD§j§D! ~~!g Q~!RY! ~~! (TDOA)

The statE.ent

'INCLUCE (DPHTDOA);

copies the based structure that symbolically defines the eICS control
section of the intrapartition TDOA and should be present in all programs

requesting a PUT to transient data (for consistent documentation of
the user's programs). ThE user must complete declaration for the TDOA.
He must establish addressability for the TOOA using the statement

TDOAEAR=TCASCSA;

The fcllowing is an example of the coding required:

%INCLUDE (DFHTDOA);
2 TIME CHAR(2),
2 DATA CHAR(3),
2 INTERM CHAR(4),
2 OUTTERM CHAR(4);

DFHSC TYPE=GETMAIN,
NUMBY1E=XX,
CLASS=USER

TDOABAR=TCASCSA;

The statement

%INCLUDE (OFHTSIOA);

*
*

copies the based structure that symbolically defines the CICS control
section of tbe TSIOA and should be present in all programs using
temporary storage. The apFlicaticn programmer must complete declaration
for the TSIOA. He must establish addressability fer the TSIOA using
ceding such as:

DeL TSIOAEAA FIXED BIN(30) BASEO"SIOABAB);
TSICAEAR=TCA'IStA:
TSIOAEAE=ADDR (TSIOABAR) ;
TSIOAEAA=TSIOAEAA - 8;

if the request is a GET from temporary storage, or the statement

TSIOABAR=TCASCSA;

if the request is a PUT tc temporary storagE, and the user has just
dynamically acquir,ed the I/O area. In the case of a POT, the symbolic
address of the data is located at TSIOAVRL.

The statement

%INCLUDE (DFHSAADS):

copies the based structure that symbolically defines the SA! and should
be present in all programs requesting storagE through use of the DFHSC
!YPE=GETMAIN,CLASS=USER mac~o instruction. This statement should
precede the defi-nition of user storage. 'Ihe application programmer
Rust complete dEclaration for the SAl. He must establish addressability
for the SAA using the statement

SAACEAR=TCASCSA:

43

The following example illustrates the coding required:

~INCLUDE (DFHSAADS);
2 MSG CHAR (40) ;

DFHSC iYPE=GETMAIN,
NUMBY'IE=60,
CLASS=USER

SAACBAR=TCASCSA;

EXAMPLE OF Cles ~L/I APPLICATION PROGRAM

Figure 11 illustrates a PL/I program written to run under Cles.
The program issues four ClCS macro instructions, asks a question of
the terminal operator, receives a reply, dynamically acquires some
storage, and sends the operator's message back to the terminal. (The
line numbers are not part of the prcgram.)

o 1
02
03
04
05
C6
07
C8
C9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

PL1PRCG: PRCCEDUBE OPTIONS (MAIN,REENTRANT);
%!NCIUDE (DFHCSADS);
~INCIUD! (DFHTCADS);

2 SAVE LENGTH BINARY FIXED (15),
2 SAVE:MSG CHAR (40);

%INCLUDE (DFHTCTTE);
%INCLUDE (DFHTlOA);

2 TICAMSG CHAR(40};
TlCAMSG='IS !HIS A COBCL OE A FLII PEOGRAM';
'IIOA'IDL=33;
DFHTC TYPE=(WRlTE,READ,WAIT)
TlOAEAl1=TC'I'IEDA;
SAVE_LENGTH=TIOATD1;
SAVE_M~G=TIOAMSG;

DFHSC TYPE=~ETMAIN,
NUMBY'IE=40,
INITIMG=40,
CLASS=TERMINAL

TICAEAB=TCASCSA;
TC'I'IEDA=TIOAEAR;
TICAMSG=SAVE_MSG;
TIOATDL=SAVE_LENGTH;
DFHTC TYPE=WRITE
END;

FiCl11re 11. Example of CICS PLII application program

44

*
*

*
*
*

A discussion
11 follows.

~lAl]!1]ltI lH!J1BEB

01

02

03

04-05

06

07

08

09

10

1 1

12

13- 1 4

15-18

19

20

:21-22

23

24

of the significance of each of the lines of Figure

Requiren for PI/I. BFEN~RANT option
specified to meet requirement of CICS that
code be quasi-reentrant.
R~trieves symbolic storage definition for CSA
and establishes addressability.
Retrieves symbolic storage definition for TeA
and establishes addressability.
Defines the TWA and terminates the DECLAEE
statement. SAVE MSG and SAVE LENGTH are used
to preserve the operator's reply.
Retrieves symbolic storage definition for
!CTTE and establishes addressability.
Retrieves symbolic storage definition for TIOA
and establishes addressability.
Descrices I/O area for terminal messag€ and
terminates the DECLAR! statement.
Places message to ce sent to operator in the
~IOA.

Places the message length in the terminal data
length field of the TIOA.
writes the message to the terminal, waits for
the operator's reply, and reads the operator's
reply.
Reestablishes addressability for the TIOA
using address in tbe TCTTE.
Saves the operator's message and message length
in the TCA.
CIes maCIO instruction that requests 40 bytes
of terminal storage initialized to blanks
(terminal storage is chained to Terminal Control
Table).
Establishes addressability for the new TIOA
(the address of the newly acquired storage is
in the TCASCSA field of the TCA).
Places address of new TIOA in Terminal Control
Table.
Moves message and length of message to output
area (TIOA).
eIes macro instruction that sends operator's
message back to the terminal.
Return control to eles.

45

CICS provides supervisory and data management services through CICS
management ~rcgrams_ These services and related management orograms
are as follows:

• Task services - Task Management
• storage services - sterage Management
• Program services - Pregram Management
• Dump services - Dump Management
• Terminal services - Terminal Management
• File services - Fil~ Management
• Transient data services - Transient Data Management
• Temporary storage services - Temporary storage Management
• Time services - Time Management

Each of the CICS management programs performs the following basic
functions:

1. Analyzes the specific service request of application programs
or other CICS programs.

2. Performs the requested service by communicating with the
operating system, as necessary, through macro instructions.

3. Retains the status of each service reguest until the service
is provided.

4. Maintains statistical information that can be used to evalulate
system perfermance.

Task Management provides the capability to procEss transactions
(tasks) concurrently. Transactions are scheduled, through Task Centrol,
and are processed according to priorities assigned by the user. Control
of the central processing unit (CPU) is given to the highest priority
task that is ready to be ~rocessed. Control of the CPU is returned
to the operating system when nc further work can be done by CICS or
by the user-written applicatien programs.

When a transaction is initiated in CICS, Task Control dynamically
allocates storage for the Task Contrel Area (TCA), attaches the TCA
to the TCA chain according to priority, obtains the initial program
identification frem the Program Control Table (PCT), and transfers
contrel tc Prcgram Control.

The Task Management macro instruction (DFHKC) is used to request
any of the following services:

1. Initiate a task.
2. Change the priority of a task.
3. Synchronize a task.
4. Synchronize the use of a resource by a task.
S. Purge a task on syetem overload (if the optional stall

protection feature has been installed).

46

Page of SH20-104 7-4
Revised April 11, 1973
By TNL SN20-9012

The following operands can be included in the DFHKC macro
instruction:

DFHKC TYPE=ATTACH,
FCADDR=symbolic address,
TRANSID=name

DFHKC TYPE=CHAP,
PRTY=priority value

DFHKC TYPE=WAIT,
DCI=SINGLE,LIST,DISP,
ECADDR=symbolic address

DFHKC TYPE=ENQ,DEQ,
QARGADR=symbolic address,
QARGLNG=number

DFHKC TYPE=PURGE,NOPURGE

The number of tasks that can be active within the sytem at a given
time is limited by the availability of main storage and/or by the
"maximum number of tasks" control. A new task is not initiated by CICS
unless sufficient main storage is available to process it. Instead,
the request to initiate a task is queued (stored) until sufficient main
storage becomes available.

INITIATE A·TASK (ATTACH)

Task initiation within CICS is invoked by issuing the

DFHKC TYPE=ATTACH,
FCADDR=symbolic address,
TRANSID=name

*
*

*

*
*

*
*

*
*

macro instruction. This macro instruction causes Task Control to obtain
the controlling area for a task and insert that task within priority
sequence. This macro instruction is intended to be used by other CICS
control modules, but is also available for use by the application
programmer to initiate additional tasks. Any additional tasks initiated
by the application programmer must terminate themselves through use of
the Program Control (DFHPC) RETURN macro instruction.

FCADDR= specifies the symbolic address of a facility control area.
This is typically the address of the attaching task's TCA or a reserved
field in the CSA. The purpose is to establish communication between
the attaching task and the attached task.

TRANSID= specifies the transaction identification of the attached
task •.

If the DFHKC TYPE=ATTACH macro instruction is used by the application
programmer, he has the responsibility to provide the facility control
area address arid transaction identification required by CICS to initiate
a new task. He can accomplish this in either of two ways: (1) by
including the FCADDR=symbolic address operand and TRANSID=symbolic name
operand in the DFHKC TYPE=ATTACH macro instruction to statically assign
to fields in the TCA a facility control area address and a transaction
identification for the duration of the task, or (2) by coding two
instructions, E~iQ~ to issuing the DFHKC TYPE=ATTACH macro instruction,
that provide the capability to dynamically assign to fields in the TCA
a facility control area address and a transaction identification. (See
the discussion of the TCA in the section "storage Def'inition".)

47

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-90 12

The specifie~ task will not be attached if the transaction
identification is not in the PCT or the program name is not in the PPT.
If this situation exists or the attached task ABEND, a message is sent
to the operator, but the attaching task will not be notified of the
condition. Therefore the TYPE=ATTACH macro instruction must be used
with extreme caution by the application programmer.

For all transactions associated with a terminal, the Facility Control
Area address is the address of the TCTTE for the terminal. This address
provides access to control information contained in the Terminal Control
Table necessary for communication between the program logic and the
terminal.

Although it is possible to attach a task directly to a terminal by
using the ATTACH macro instruction, the application programmer or user
should consider utilizing one of the following methods:

• Automatic task initiation through Transient Data Management

• Automatic task initiation through Time Management (Interval Control
program)

• Identification of the transaction ID to be used with the next input
message from the terminal by means of DFHPC TYPE=RETURN macro
instruction.

The following flowchart shows Task A attaching Task Band
synchronizing the processing steps of both tasks through use of the
facility control address passed to the newly created task at attach
time. Note that Task B is a non-terminal oriented task, therefore
unable to use Terminal Control macros. FCADDR specifies the address
of Task A's TCA; ECB1 and ECB2 are fields in the TWA for Task A.

47.1

IF TASK 'B'
IS LOWER IN
PRIORITY IT
BECOMES
ACTIVE HERE

TASK A

ATTACH TASK B
AND POINT
FCADDR TO
ECB1

WAIT ON ECB1

(Note 1)

PROCESSING STEP 2

POST
ECB2

GIVE UP CONTROL
BY A WAIT OR PC
RETURN

IF TASK'B' IS
HIGHER IN
PRIORITY, IT
BECOMES
ACTIVE HERE

TASK 'A' IS AWARE

THAT TASK 'B' HAS

COMPLETED

PROCESSING STEP 1.

TASK B

OBTAIN ADDRESS
OF ECB1 AND
ECB2 BY USE OF
ADDRESS NOW
IN TCAFCAAA

PROCESSING STEP 1

POST ECB 1 TO MAKE
TASK 'A'
DISPATCHABLE

WAIT ON ECB2 I- TASK 'B' GIVES
(Note 2) UP CONTROL HERE

E
._--

TASK 'B' IS AWAR
OF COMPLETION
OF BOTH STEP 1
ANDSTEP2 ---TASK 'B' REGAINS

CONTROL HERE

r
PROCESSING

STEP 3

Note 1; If TASK B is not attached
(e.g. Trans I.D. not in PCT),
or if TASK B ABENDS,ECB 1
may never be posted.

Note 2; If TASK A ABENDS, ECB2
may never be posted.

47.2

Most tasks running under CICS are initiated (attached) at a terminal
and are thus associated with a terminal. Tasks initiated by CICS
management programs (for example, automatic task initiation of Transient
Data Control) mayor may not be associated with a terminal. If not
associated with a terminal, the Facility Control Area address can serve
as a pointer to additional facility control information required for
the execution of the task. For example, it can be the address of an
entry in the Destination Control Table that is associated with a
hardware resource (terminal, data set, etc.).

The transaction identification is used only for the current ATTACH;
it is not carried in the TCA for the duration of the task.

The following example illustrates the coding required to statically
provide a facility control area address and transaction identification:

DFHKC TYPE=ATTACH,
FCADDR=FACCTL,
TRANSID=TRN1

INITIATE NEW TASK
USER'S FCA ADDRESS
TRANSACTION IDENTIFICATION

The following examples illustrate the coding required to dynamically
provide a facility control area address and transaction identification.

MVC TCAKCTI,=CL4'TRN1'
MVC TCAKCFA,=A(FACCTL)

DFHKC TYPE=ATTACH

MOVE 'TRN1' TO TCAKCTI.
MOVE FACADR TO TCAKCFA.

DFHKC TYPE=ATTACH

TCAKCTI='TRN1';
TCAKCFA=FACAPR;

DFHKC TYPE=ATTACH

CHANGE PRIORITY OF A TASK (CHAP)

TRANSACTION IDENTIFICATION
USER'S FCA ADDRESS

INITIATE NEW TASK

NOTE TRANSACTION IDENTIFICATION.
NOTE USER'S FCA ADDRESS.

INITIATE NEW TASK

I*TRANSACTION IDENTIFICATION*I
I*USER'S FCA ADDRESS*I

INITIATE NEW TASK

The dispatching priority of an existing task can be changed by
issuing the

DFHKC TYPE=CHAP,
PRTY=priority value

macro instruction. This instruction is used to replace the priority
value contained in the TCATCDP field of the TCA with a value specified

48

*
*

*

ty the application prcgrammer. This value must be specified in the
range 0-255, where 255 represents the highest priority.

The application programmer can change the priority of a task in
either of two ways: (1) by including the PRTY=priority value operand
in the DFHKC TYPE=C&AP macro instruction to statically assign to the
TCATCDP field a new dispatching priority for the duration of the task,
or (2) by coding a single instruction, E~ig! to issuing the DFHKC
!YPE=CHAP macro instruction, that provides the capability to dynamically
assign to the TCATCDP field a new prioritj value as often as desired
within a given task.

A comput€ bound task can voluntarily relinquish control to all tasks
of equal or higher priority by issuing a

DFHKC TYPE=CRAP

macro instruction. No priority value is specified.

The following example illustrates the coding required to statically
assign a new task dispatching priority value:

DFHKC TYfE=CHAP,
PRTY=255

CHANGE PRIORITY OF THIS TASK
NEW PRiORITY VALUE

The fcllowing examples illustrate the coding required to dynamically
assign a new task-dispatching priority value. Note that this value
can be specified as a binary, decimal, or hexadecimal number, depending
cn the programming languagE used.

MVI TCATCDF,X'PP' ASSIGN NEW PRICRITY VA~UE

DFHKC TYPE=CHAP CHANGE PRICRITY OF THIS TASK

lQ~ jNS ~CE~1:

MOVE 255 TO TCATCDf. NOTE ASSIGN NEW fRIORITY VALUE.

DFHKC TYPE=CHAP CHANGE PRICRITY OF THIS TASK

19~ R1Ll:

TCATCDP=255; I*ASSIGN NEW PRIORITY VALUE*/

DFHKC TYPE=CHAP CHANGE PRIORITY OF THIS TASK

SYNCHRONIZE A TASK (WAIT)

*

The application programmer can synchronize a task with the completion
cf one or mere events related to the same task o~ to another task by
issuing the

49

DFEKC TYPE=WAIT,
tCI=SINGLE,LIST,DISP,
ICADDR=symbelie address

*
*

macro instruction. This macre instruction provides a method of directly
relinquishing contrel to some other task until such time as the event(s)
teing waited en are completed. It also allows a task to be designated
as "dispatchable" to voluntarily relinquish control to tasks of a
ligher dispatching priority.

The application programmer mu-st specify the circumstances under
wbich synchrenization of a task is to occur by including the DCI=keyword
e~erand (dispatch c~ntrol indicator) in the DFHKC TYPE=WAIT macro
instruction.

If the task is to be synchronized with the completion of a single
event or an event of a list of events, the aFplication programmer must
specify the symtolic address of either the single event control area
or the list of event control areas. He can accomplish this in either
ef two ways: (1) ty including the ECADDR=symbolic address operand in
the DFHKC TYPE=iAIT macro instruction, or (2) by coding a single
instructien, !~j~~ to issuing the DFHKC TYPE=WAIT macrO instruction,
that ~laces the event control address in the TCATCEA field of the TeA.
In either case, the contrel area(s) referenced must conform to the
fermat and standard pesting cenventions associated with the operating
system (for example, FeB's in OS/360, CCBls in DOS/360).

The DFHKC !YPE=WAIT,DCI=DISP macro instruction is used by the
applieatien Frogrammer te veluntarily relinquish centrel to a tas~
of higher dispatching pricrity. Control is returned to the waiting
task if no other task of a higher priority is ready to be processed.

The following is an example of the coding required to voluntarily
relinquish contrel to a task ef higher dispatching priority:

DPHKC TYPE=WAIT,
tCI=tISP

RELINQUISH CONTR~L OF crcs
AND REMAIN DISPATCHABLE *

]£!~: When binary synchreneus communication lines are part of the
user's configuration, it is possible for these communication
lines to time out if "excessive" CPU time is required by the
applicatien program. One way to alleviate this condition is
to have the applicatien program issue a DFHKC TYPE=WAIT,DCI=DISP
macro instruction to voluntarily relinquish control before the
line time out can occur.

The DFHKC ~YPE=iAIT,DCI=SINGIE macro instruction is used by the
applicatien programmer tc synchronize a task with the completion of
a single event initiated by the same task or by another task.

The symbelic address of the appropriate event contrel area must
be provided in either of two ways: (1) by including the ECADDR=symbolic
address operand in the DFHKC TYPE=WAIT,DCI=SINGLE macr9 instruction,
er (2) by coding a single instruction, ~iQ! to issuing the DFHKC
~YPE=WAIT,DCI=SINGLE macro instruction, that places the address of
the eient contrel area in the TCATCEA field of the TCA. The control
area referenced must conferm to the format and standard posting
cenventions associated with the operating system.

50

The following is an example of the coding required to synchronize
a task with a single event, statically providing the symbelic address
of the appropriate event control area:

DFHKC TYPE=WAIT,
tCI=SINGLE,
ECADDR=EVENTCTL

BELINQUISH CONTRCL OF ClCS
WAIT ON SINGLE EVENT
ADDRESS OF EVENT CONTROL AREA

The fcllowing are examples of the coding reguiren to synchronize
a task with a single event, dynamically providing the symbolic address
cf the appropriate event control area.

ST SINGADDR,!CATCEA

DFEKC TYFE=WAIT,
DCI=SINGLE

PLACE SYMECLIC ADDRESS IN TCA

RELINQUISH CONTROL OF CICS
WAIT ON SINGLE EVENT

~OVE SINGADDR TO TCATCEA. NOTE PLACE SYMBOLIC ADDR IN TCA.

DFHKC TYPE=WAIT,
DCI=SINGLE

IQI PLL!:

TCATCEA=SINGADDR;

DFHKC TYPE=WAIT,
tCl=SINGLE

RELINQUISH CONTRC~ OF ClCS
WAIT ON SINGLE EVENT

/*PLACE SYMECLlC ADDRESS IN TCA*I

RELINQUISH CONTROL OF ClCS
WAIT ON SINGLE EVEN~

The DFHKC TYPE=WAlT,DCl=LIST macro instruction is used by the
applicaticn programmer to synchronize a task with the completion of
an element of a list of events. This list consists of a series of
contiguous four-byte fields, each field containing the symbclic address
of a single event control area. The last four-byte field of the list
contains hexadecimal P's.

The symbolic address of the appropriate list of event centrol areas
must be provided in either of two ways: (1) by including the
ECADDR=symbelic address operand in the DFHKC TYPE=WAIT,DCI=LlST macro
instruction, or (2) by coding a single instruction, E!igi to issuing
the DFHKC TYPE=WAIT,DCl=LIST macro instruction, that places the address
of the list cf event centrel areas in the TCATCEA field of the TCA.
The control area ref€rcnced by each entry in the list must conform
to the format and standard posting conventions associated with the
operating system.

The following is an example of the coding required to synchronize
a task with a list of events, statically .providing the symbelic address
ef the a~prcpriate list of Events:

*
*

*

*

*

51

DFHKC ~YPB=WAI~,
DCI=LIST,
ECADDR=TCPCLIST

RELINQUISH CONT1CL OF ClCS
wATT ON A LIST OF EVENTS
ADDRESS OF LIST OF EVENTS

The following are examples of the coding required to synchroniz~

*
*

a task with a list of events, dynamically providing the symbolic address
af the appropriate list of events.

5T LISTADD~,~CATCEA

DFHKC TYPE=WAlT,
DCI=LIST

PLACE SYMECLIC ADDRZSS IN ~CA

RELINQUISH CONTRCL OF ClCS
WATT ON A LIST OF EVENTS

MOVE LlSTADDR TO TCATCEA. NO~E PLACE SYMBOLIC ADDE IN TCA.

DFBKC 1YPE=WAlT,
LCI=LIST

1CATCEA=LISTADDR;

DPEKC 1YPE=~AIT,

LCl=IIS~

RELINQUISH CONTRCt OF ClCS
WAIT ON A LIST O~ EVENTS

/*PLACE SYMBOLIC ADDRESS IN TCA*/

RELINQUISH CONTRCL CP ClCS
WAIT ON A LIST OF EVENTS

SINGLE-SEBVFB RESCURCE SYNCHRONIZATION (ENC/DEQ)

In the ClCS envirclIrnent where tasks (transactions) ~re processed
concurrently, it is sometimes desirable tc protect a given resource
frem concurrent ~~€ by another task. The applicatien programmer can,
ty adhering to an installaticn convention, give sale control of a
serially rsusable resourc~ to a single task until that task is
ccmpletely finished with that resource. He can accomplish this by
issuing the

DFHKC 1YfE=ENQ,
QABGADB=symbclic address,
CARGLNG=numher

macro instruction, identifying the resource. This macro instruction,
when executed, causps the task to be synchronized with the availability
of the specified Iesource; control is returned to the task when the
resource is available. When all ~Iograms accessing a resource adhere
to the convention of "enqueing Ufcn" the resource, that resource is
afforded this "single-server" protection.

When a single-~erver resource is being used by a task and other
tasks concurrently "enqueue" upon the same resource, t~ first task
to issue the DFHKC TYFE=ENQ macro instructicn receives the resource
when it becomes available. The other tasks obtain the resource, in
turn, in tbe order in which they enqueue upon it.

52

*

*

*

*
*

The application programmer can release single-s€rver protection
from a resource by issuing the

D?HKC TYPE=DEQ,
QABGADR=symhclic address,
QARGING=number

macro instruction. Task Centrol automatically "dequeues" all active
single-server resource pretection requests associated with that task
u~on termination of the task.

Wh€n issuing the DFHKC TYPE=ENQ macro instruction, the application
Frcgrammer must identify the single-server r€sourc~ he is enqueuing
u~on by using either of the fcllowing methods:

1. Specify a symbclic main storage address that represents the
single-server resource. If this method is used, the application
~rogrammer must provide the symbclic main sterage address by
including the QARGADR=symbclic address operand in the DPHRC
TYFE=ENQ macro instruction or by coding ins~ructions, ~~i2~
to issuing the DFHKC TYFE=ENQ macro instruction, that place

*
*

the address in the lcw-crder three bytes of the four-byte TCATCQA
field of the TeA. He must place binary zeros in the high-erder
tyte.

2. Previde a unique argument, limited to 255 bytes and contained
at a specified symtelic main storage address, that identifies
the resource. If this method is used, the applicatien programmer
must provide the symcolic main storage address of the argument
along with the length of the argument, by including the
QARGAtB=syrrtclic address and QARGLNG=number operands in the
DFHKC TYIE=ENQ macro instructicn or by coding instructions,
E!io~ to issuing the DFHKC TYP~=ENQ macro instruction, tha~
place the symbolic address in the low-order three bytes of the
four-byte 1CATCQA field of the TCA and the length of the argument
(in bytes) in tr.e tigh-order byte.

The following are examples of the coding required to enqueue upon
a single-server resource using method 1.

DFHKC TYPE=ENQ,
CABGADB=CSAWAEA

OR

LA WORKREG,CSAWABA
ST wCBKBEG,TCATCQA

DFHKC ~YFE=ENQ

01 DFHCSADS COpy DFHCSADS.
02 CSAWAEA PICTURE X(50).

DFHKC TYFE=ENQ,
QABGADR=CSAWAEA

ENQ eN SINGLE-SERVER RESOURCE
SPECIFY SYMECLIC ADDRESS

ENQ ON SINGlE-SERVER RESOURCE
SPECIFY SYMECLIC ADDRESS

*

*

53

'INClUDE DFHCSADS;
CECLARE 1 DFHEXCSA EASEC (CSACBAR),

2 FILLER CHAR (512),
2 CSAiiAEA CHAR (50);

DFHKC TYPE=ENQ,
CAEGAtR=CSAWAEA

OR

TCATCQA=ADtR (CSAWAEA) ;

DPEKC TYPE=ENQ

ENQ ON SINGLE-SERVER RESOURCE
SPECIFY SYMECLIC ADDRESS

The fcl10wing are examples of the coding required to enqueue u~on
a single-server resource using method 2.

54

DFHKC IYFE=ENQ,
QAFGAtR=SOCSECNO,
QARGLNG=9

OR

LA WOEKREG,SOCSECNO
ST WCFKREG,lCATCQA
MVl 'TCATCQA,9

DFHKC TYfE=ENQ

DFHKC TYfE=ENQ,
QAEGADR=SOCSECNO,
QARGLNG=9

DFHKC TYFE=ENQ,
QABGADR=SOCSECNO,
QARGLNG=9

OR

~INClUDE DFH!CADS;
DECLARE 1 DFHEXTCA BASED (TCACBAR},

2 PILLER CHAR (20),
2 TCATCQAL BIT(S);

TCATCQA=ADDB(SCCSECNO) ;
TCATCQAl='00001001'B;

*

*
*

*
*

*
*

DFHKC TYFE=ENQ

substituting "DEQ" for "ENQ" in these examples illustrates the ways
in which the apFlication FIogrammer can release single-server protection
from a L€SCUrCe prior to termination of the associated task.

PURGE A TASK ON SYSTEM OVERLOAD (PURGE/NOFUF.GE)

certain overload conditions can occur in CICS where all of a given
system resource (for examFle, main storage) has been allocated and
where each task requires still more of that resource. The result is
a situaticn where no task is able to continue proc~ssing and no new
task can te initiated; the system stalls.

If the optional stall protection featur2 was provided during system
generation, ClCS has the capability to detect certain system overload
conditions ard take corrective action. corrective action consists,
in part, of purging (deleting) the lowest priority task in the system
that is designated as purgeable.

A task is initially defined as purgeable or not purgeable by the
user in the Program Control Table (PCT) entry associated with the
transaction identification for that task. The application programmer
can dynamically change the purgeability status of a task by issuing
the

DFHKC lYPE=PURGE

macro instruction to in~tcate the task is purgeable, or the

DFHKC ~Y~E=NOPURGE

macro instruction to indicate the task is not purgeable. The designated
status remains in effect until another change is initiated or until
the task is terminated.

The DFHKC TYPE=PURGE and DFHKC TYPE=NOPURGE macro instructions have
no effect on the execution of a task if the stall protection feature
is net provided ty the user during system generation.

storage Management centrols all dynamic main storage for ClCS and
for the user-written application programs. Requests to acquire or
release main storage are communicated to Storage Centrol via a ClCS
macro instruction.

CICS management programs issue requests for main storage to provide
input/output areas, pregram lead areas, and user-defined work areas
needed to process a transaction. The user's application program can
issue requests for main storage to provide intermediate work areas
and any ether main storage not automatically provided by ClCS but
needed to process a transaction. Any main storage acquired by the
user's application program can be initialized to whatever bit
configuration the user desires; for example, to binary zeros or EBCDIC
tlanks.

All main storage associated with a t~ansactio~ is chained. This
allows CICS to release all main storage associated with a transaction

55

upon request by the user er when the transaction is either normally
cr: al:norma11y terminated. Main storage is accounted for as follows:

1. Task Centrel Areas (TCA's) are chained off the Cemmon System
Area (CS1\).

2. Transaction storage is chained off the Task control Area (TCA).
3. Ttrmina1 storage is chained off the !CTTE (the TCTTESC field

is the origin of the ~erminal Input/Output Area (TIOA) chain;
the TC'ITEtA field contains the address of the current TIOA
regardless of the pesition of that TIOA on the-chain).

4. Prcgram storage is acceunted for in the Program Processing Table
(FFTl •

5. Suspended tasKS are accounted for l:y the suspending program
(Task centrel, Storage Contrel, Temperary storage Control).

If there is insufficient main storage to satisfy a storage
acquisition request, Stor~ge Contrel causes the processing of that
task to te delayed 1:y placing it in a "wait" queue until sufficient
main storage becomes available. In the meantime, no new tasks are
initiab:cd by CICS until the "short en storage" condition is alleviated.
The only exceFtion to this method of allocating main storage occurs
in the CICS/DOS-ENTRY system where, under certain circumstances, a
"short on storage" condition causes the transaction to be abnormally
terminated unless tha COND=YES operand has teen included in the DFHSC
'IYPE=GETMAIN macro in-struc-tioD. (See the section lIPurge a Task on
System Overload" fer corrective action that can be taken if a "system
stall" condition eccurs.)

The storage Management macro instruction (DFHSC) is used to request
any of the following services:

1. Acquire and i~itialize main storage.
2. Release main storage.

The fcllowing cFerands can be included in the DFRSC macro
in st ruction:

DFHSC !YPE=GETMAIN,
INITIMG=numb~r,YES,

NUMBY!E=number,
COND=YES or (YES,symholic address) or

(NO,syml:e1ic address),
CLASS=TERMINAL,USER,TRANSDATA,TEMPSTRG

DFHSC TYPE=FREEMAIN,
RELEASE=ALL

OETAIN AND INITIALIZE MAIN STORAGE (GETMAIN)

Requests for main storage are made by issuing the

DFHSC TYPE=GETMAIN,
INITIMG=number,YES,
NUMEYTE=number,
COND=YES or (YES,symbclic address) or

(NO,symbclic address),
CLASS=TERMINAL,USER,TRANSDATA,1EMPSTRG

macro instruction. This instruction is used by the application
Frogrammer to obtain main storage of a specified size and class and
is used, cptionally, to initialize that storag€ to whatever bit
configuration the application programmer desires. The address of the
storage area obtained upon execution 6f this instruction is

56

*
*
*
*
*

*

*
*
*
*
*

automatically placed in the TeASCSA field of the TeA by CICS; the
storage itself is doublewcrd aligned.

Whenever the application programmer uses the DFHSC TYPE=GETMAIN
macro instruction, he must do the fclloving:

1. Specify the class of storage desired using the CLASS=class
operand in conjunction with the DFHSC TYPE=GETMAIN macro
instruction.

2. Calculate the number of bytes required and either specify that
amcunt in the NUMB1TE=number operand, or dynamically place it
in the TCASCNB field before issuing the DPHSC macro instruction.

3. Speci~y a symbolic base address for the storage area.
4. Move the storage address located at TCASCSA to the symbolic

base address. (This address always points to the storage
Accounting Area.)

5. Copy the symbolic storage definition for the appropriate
input/output area or Storage Accounting Area ~Ii2£ to the
symbolic aefinition of the user's program storage area.

The following is an example of the coding required to request a
new area of main storage:

DFHSC !YPE=GETMAIN,
INITIMG=OO,
NUMBY'lE=1024,
CLASS=TEBMINAL

CBTAIN NEW S~ORAGE AREA
INITIALIZE WITH BINARY ZEROS
SIZE OF STORAGE REQUESTED
CLASS OF STORAGE BEQUESTED

The fcllowing are examFles of the coding required to dynamically
request a new area of main storage.

MVI
MVC

DPHSC

CLC
BE
L

TCAseIB,B'O'
iCASCNB,=H'1024'

'IYFE=GF'IMAIN,
INI'IIMG=YES,
COND=YES,
eLASS=TERMINAL
'leASeSA,=p'O'
NOSTRG
TICAEAR,TCASCSA

12~ A]~ ~.Q]OL:

MOVE 0 TO !CACSIB.
MOVE 1024 10 TCASCNB.

DPHSC TYPE=GETMAIN,
INI'IIMG=YES,
CCND=YES,
CLASS=TERMINAL

IF 'leASeSA EQUAL 0 GO 'Ie
MOVE ~CASCSA TO TIOAEAR.

INITIALIZE WITH BINARY ZEROS
SIZE OF STORAGE REQUESTED

eETAIN NEW STORAGE AREA
INITIALIZE WITH BINARY ZEROS
RETURN CONTROL IF NO STORAGE
CLASS OF STORAGE REQUESTED
CHECK TCASeSA FIELD FOR ZEROS
BRANCH TO NOSTRG !F NO STORAGE
LOAD REGIS'IER IF STORAGE FOUND

NOTE INITIALIZE WITH BINAEY ZEROS.
NOTE SIZE OF STORAG! REQUESTED.

CBTAIN NEW STORAG! AREA
INITIALIZE WITH EINARY ZEROS
RETURN CONTROL IF NO STORAGE
CLASS OF STORAGE EEQUESTED

NOSTRG.

*
*
*

*
*
*

*
*
*

57

12. ~lLI:

TCASCIB=O;
TCASCNB=1024;

DFHSC TYPE=GETMAIN,
INITIMG=YES,
COND=(NO,NOSTRG),
CLASS=TERHlNAL

TIOAEAR=TCASCSA;

/*INITIALIZE WITH EINARY ZEROS*/
/*SIZE OF STOEAGE EEQUESTED*/

OBTAIN NEW STOEAGE AREA *
INITIALIZE WITH BINARY ZEROS *
RETURN CONTROL IF NO STORAGE *
CLASS OF STORAGE REQUESTED
I*LOAD REGISTER IF STORAGE FOUND*I

The DFHSC TYPE=GET~AIN macro instruction can include the following
operands.

INITIMG: This operand is used to initialize an acquired storage area
to the bit configuration specified in hexadecimal, for example, to
tinary zeros (00) or EBCDIC tlanks (40). The application programmer
can, at his option, place the initialization value in the TCASCIB field
of t~e TeA RIiQ~ to the execution 0= the DFHSC TYPE=GETMAIN macro
instruction; in this case the INITIMG=YES operand must be included
in the macro instruction.

NUMBYTE: This operand is used to specify the size of the storage area
being requested. A ~alue up to 65535 can be specified. The application
programmer can, at his option, indicate the number of storage bytes
requested ~Iig~ to execution of the DFHSC TYPE=GETMAIN macro instruction
ty placing this value in the TCASCNB field of the ~CA; in this case
the NU~BYTE=number operand is omitted.

~9!~1 Depending upon the class of storage specifi~d (see the CLASS
operand below), CICS Storage Management automatically increments
the amoant of stcragQ requested to allow fo~ tbe Storage
Accountinq Area (SAA) and other control information. For
CLASS=USER and CIASS=TERMINAL (TIOA) storag~, the exact number
of byteG required should be specified. For CLASS=~RANSnATA
(TDIA and TDOA) and CLASS=TEMPSTRG (TSIOA) class of storage,
the amcunt requested must include four additional bytes to allow
for a ~crtion of the CICS control "informaticn.

COND: This operand is used by the application programmer to
conditionally acquire main storage. control is always returned to
the user, even if the storage requested is not available. If storage
is not available, the TCASCSA field of the TCA is filled with binary
Zeros.

1he COND=YES operand causes centrol to be given to the instruction
imm~diately fcllowing the tFHSC TYPB=GETMAIN macro instruction. If
the application Frogrammer uses this operand, he must check the TeAseSA
field for zeros to d~termine wt.ethe~ the requested storage area was
acquired.

The COND=(YES,symbclic address) operand causes CICS to test whether
cr not the requested storage was acquired. If storage was acquired,
Cles causes a branch to the location specified in the symtolic address
~arameter; if storage was not acquired, control is returned to the
application program at the instruction immediately following the DFHse
!YPE=GETMAIN,COND=(YES,symtolic address) macro instruction.

Tbe eOND=(NO,sy~bclic address) operand causes CICS to test whether
cr not the requested storage was acquired. If storage was not acquired,

58

CICS causes a branch to the location specified in the symbolic address
parameter; if storage was acquired, contIol is returned to the
applicaticn program a~ th~ instruction immediately following the DFHSC
TYPE=GETMAIN,COND=(NO,symbolic address) macro instruction.

CLASS: This operand is used to specify the class of storage being
requested. If the task it~elf does not release acquired storage when
it is DC lcnger needed, the storage is released by CICS upon termination
of the task. CLASS must be coded with one of the following parameters:
TERMINAL, USEE, TBANSDATA, or TEMPSTRG.

CLASS=TERMINAL specifies a storage area to be used for terminal
input/output (TIOA). This area is chained to the Ter~inal Control
Table terminal entry. All reguests for storage related to terminal
input/output must specify this class.

CLASS=USER specifies a storage arEa to be associated with the user's
application program and used by that program. This area is chained
to the TCA associated with the task in which the storage is requested.

CLASS=TRANSDATA specifies a transient data record storage area
(TrIA, TDOA). !his area is chained to the TCA associated with the
task in which the storage is requested and is used by Transient Data
Ccntrel.

CLASS=TEMPSTBG specifies a temporary storage input/output area
~SIOA). This area is chained to the TCA associated with the task
jn which storage is requested and is used by Temporary storage control.

The CLASS=USER, CLASS=TRANSDATA, and ClASS=TEMPSTRG specifications
have essentially the same effect; that is, the number of bytes acquired
is always eight more than the number specified in the NUMBYTE operand
(to allow for the storage accounting field), and tbe storage is always
chained off the TCA. The only advantage of using the CLASS=TRANSrATA
er CLASS=TEMPSTRG specification instead of the CLASS=USER specification
is fer the purpose of code documentation.

RELEASE MAIN STORAGE (FRIIMAIN)

Previously acquired main storage is released by issuing the

DFRSC TYPE=FREEMAIN,
RELEASE=ALL

macro instruction. I~ th~ task itself do€s not release acquired
storage, th& storage is released by CICS upon termination of the task.

If the application programmer uses the DFHSC TYPE=FREEMAIN macro
instructicn to ~elease a single storage area, he must place the address
of that area in the TCAseSA field of the TCA ~£jQI to the execution
of the DFHSC TYPE=FRERMAIN macrc instruction. If all terminal storage
acquired ty means of the DFHSC TYPE=GETMAIN,CLASS=TERMINAL macro
instruction is to te released, the REIEASE=ALL operand can be coded

*

in ccnjunction with the DFHSC TYPE=FREEMAIN macro instructien to achieve
that result; in this case it is not necessary to place any address
in the TCA.

The following is an example of the coding .required to release all
main storage currently allocated to a specific terminal:

DFHSC TYPE=FREE~AIN,
REIEASE=ALL RELEASE All TERMINAL STORAGE *

59

The following are exam~les of the coding requir€d to release a
single main storag€ area:

ST ~IOAEAR,!CASCSA PLACE STORAGE AREA ADDRESS IN TeA

DFHSC TYPE=FREEMAIN RELEASE STORAGE AREA

!9I jNS CCEOL:

MOVE TIOABAP. TO TeASCSA. NOTE PLACE STRG AREA ADDR IN TCA.

DFHSC TIPE=FBEEMAIN RELEASE STORAGE AREA

TCASCSA=TIOABAR; /*PLACE STORAGE AREA ADDRESS IN TCA*/

DFHSC TYPE=FREEMAIN RELEASE STORAGE AREA

All program communioation within CICS is accomplished by Program
Management through Program Control. Requests for program services
are communicated to Program Ccntrol via CICS macro instructions.

User-written aF~licaticn programs must be coded so that they are
"serially reusatle" between entry and exit points of the program.
Entry and exit points of a prcgram coincide with the use of CICS macro
instructions, since an application program tempora~ily loses control
after it begins executing cnly upon execution of a CICS macro
instruction. A serially reusable portion cf an application program
is executed by only one transaction at a time, and must initialize
and/or restore any instructions or data ~hat it alters within itself
during execution.

This required quality of application programs written to run under
CICS is called nquasi-reentrance", since the programs need not meet
system/360 or System/370 speCifications for true reentrance. Quasi­
reentrance allows a single copy of a user-written application program
to be used to Frocess several transactions concurrently, thereby
reducing the requirement for multiple copies of the same program in
main storage.

Transactions can share the use of ccmmon work areas. However, each
transaction requires the use of a unique intermediate storage area,
such as the Transaction Work Area (TWA), to retain information needed
uFon subsequent return to that transaction. The application programmer
must provide that intermediate storage area by symbolically defining
it in his program.

CICS automatically saves program control information and general
Iur~ose registers, when applicable. in the Task Control Area (TCA).

60

Page of SH20·104 7-4
Revised April 11, 1973
By TNL SN20·90 12

CICS automatically saves program control information and general
purpose registers, when applicable, in the Task Control Area (TCA).
CICS automatically restores general purpose registers, as necessary,
to return control to a program.

The Program Management macro instruction (DFHPC) is used to request
any of the following services:

1. Link one tiser-written application program to another,
anticipating subsequent return to the requesting program.

2. Transfer control from one user-written application program to
another anticipating no return to the requesting program.

3. Load a designated application program or table into main storage
and return control to the requesting program.

4. Return contr6l from one user-written application program to
another or to CICS.

S. Release a previously loaded application program from main
storage.

·6. Abnormally terminate a transaction and its related task.

The following operands can be included in the DFHPC macro
in st ruct ion:

DFHPC TYPE=LINK,
PROGRAM=name

DFHPC TYPE=XCTL,
PROGRAM=name

*

*

DFHPC TYPE=LO AD,
PROGRAM=name,
LOADLST=NO

*
*

DFHPC TYPE=RETURN,
TRANSID=transaction code

DFHPC TYPE=DELETE,
PROGRAM=name

DFHPC TYPE=ABEND,
ABCODE=value,YES

*

*

*

Application programs running under CICS are executed at various
logical levels. For example, where one user-written application program
is linked to another, the linked-to program is considered to reside at
the next lower logical level. Where control is simply transferred from
one application program to another, the two programs are considered to
reside at the same logical level. Figure 12 illustrates this difference
between program linkage and transfer of program control.

Parameters can be passed from one program to another through
user-defined storage areas, for example, the Transaction Work Area
(TWA), the Terminal Input/Output Area (TIOA), the Terminal control
Table Terminal Entry (TCTTE), or the File Work Area (FWA).

6l

·+-
CICS
Program
Control

I

"
• Application LINK

Program
A

/'" RETURN l
XCTL

" ..
Application Application
Program ~ Program LINK

B C

"-

RETURN l /''''' XCTL

" ~
.4~

Application Application
Program Program -
D E AS END

I---
RETURN

Figure 12. Application programs are executed at various logical levels

62

FASS PROG~A! CCN~RCL ANTICIPA1ING SUBSEQUENT RETU~N (LINK)

Program contrel is passed from a user-written application program
at one logical level to a user-written application program at the next
lower logical level in resFonse to the

DFHPC TYPE=lINK,
FEOGFA~=name

macro instruction. When the DFHPC TYPE~RETURN macro instruction is
executed in the linked-to program, control is returned to the program
initiating the linkage at the next sequential (executable) instruction.

The application programmer must ~rovide the name (identification)
of the pregram to which centrol is passed. He can do this in either
ef tvo ways: (1) by including the PROGRAM=name operand in the DFHPC
TYP~LINK macro instructicn, or (2) by coding a single instruction,
£~~I to issuing the DFHPC TYPE=lINK macro instruction, that places
the program name in the TCAPCPI field of the TCA. This same program
name must also have been placed in the Precessing Program Table (PPT)
prier to execution of ClCS.

The following is an example of the coding required to r-equest a
link to another applicaticn program:

DFHPC TYPE=LINK,
FRCGFAM=FROG1

The following are examples of the coding required to dynamically
link to another applicatien program.

MVC TCAPCPI,=CLS'FROG1' FLACE lINKED-TO PROGRAM NAME IN TeA

DFHPC TYPE=LINK LINK TO PFOGBAM A1 NEXT LOWER LEVEL

!Q~ !J~ ~£EC1:

MOVE 'PROG1' TO TCAPCPI. NOTE LINKED-TO PROGRAM NAME TO TCA.

DFHPC TYPE=lINK LINK TO PROGRA~ AT NEXT LOWER LEVEL

*

TCAPCPI='FEOG1'; /*PlACE LINKED-TO PRGM NA~E IN TCA*/

DFHPC TYPE=LINK LINK TO PROGRAM AT NEXT LOWER LEVEL

*

63

TRANSFER IBCGEAM ceNTROL (XCTL)

Program centrel is transferred from one user-written application
~rogram tc another at the same logical level in re~ponse to the

DFHPC TYPE=XCTL,
FBCGBAM=name

macro instruction. The prcgram frem which control is transferred is
released. Any return from the transfered-to program is to a program
from which there was an exit at the next higher logical level. If
there is no user-written ap~lication ~rogram at the next higher logical
level, control is returned to ClCS Program control.

The application programmer must provide the name (identification)
of the program to which contrel is transferred. He can do this in
either of two ways: (1) by including the PBOGRAM=name operand in the
DFHPC TYPE=XCTL macro instruction, or (2) by coding a single
instructien, ~~iQ£ to issuing the DFHPC TYPE=XCTL macro instruction,
that places the pregram name in the TCAPCPI field of the TCA. This
same program name must also have been placed in the Processing Program
Table (PPT) prior to eXEcution of CICS.

The following is an example of the coding required to request a
transfer of control to anether application program:

DFHPC 1YPE=XCTL,
FROGFAM=PROG2

The fellowing arE Examples of the coding required to dynamically
transfer contrel tc another applicaticn pregram.

MVC TCAPCPI,=CL8'IRCG2' PLACE TRANSFERRED-TO PRGM NAME IN ~CA

DPHPC TYPE=XCTL TRANSFER FROGRAM CeNTROL

MOVE 'PROG2' TO TCAPCPI. NOTE TRANSFERRED-~O PRGM NAME TO TCA.

DFHPC TYPE=XCTL TRANSFER PROGRAM CCNTROL

TCAFCPI='FROG2'; /*PLACE PROGRAM NAME IN TCA*/

DFHFC TYPE=XCTL TRANSFER PROGRAM CONTROL

64

*

*

LOAD lHE SPECIFIED FBCGRA~ (LeAD)

Programs or tables are fetched from the library where they reside
and are loaded intc main storage in response to the

DFHPC TYPE=LOAD,
PROGFAM=name,
LCADLS1=NO

macro instruction, identi=ying the program to be loaded. This facility
is used to (1) load a program that will be used repeatedly, thereby
reducing system ov€rhead through a one-time load, and (2) load a table
cr some ncn-executatle code tc which control is definitely not to be
passed.

The loaded program remains in main storage until the DFHPC
1YPE=DELETE macro instruction is issued or until the transaction that
issued the LOAD is terminated, either nor [ally cr abnormally (unless
10ADLST=NO was specified). If the LOADLST=NO operand is used, the
loaded program is to remain resident until it is deleted by the user.
CICS returns the address of the loaded program to the user in the
!CAPCLA field of the ~CA. Note that thE LOADLST oFerand is not
available in the CIeS/DOS-ENTRY system.

The application prograamer must provide the name (identificaticn)
of the program to ce loaded. He can do this in either of two ways:
(1) by including the PROGRAM=name operand in the DF9PC TYPE=LOAD macro
instructicn, or (2) by coding a single instruction, ~~~£~ to issuing
the DFHPC TYPE=LOAD macro instruction, that places the program name
in th~ TCAPCPI field of the TCA. This same prograrr name must also
have been placed in the processing Program Table (PP~) prior to
execution of CICS.

The following is an example of the codinq required to load a user­
written applicaticn prcgram:

DFHPC TYPE=lOAD, *
PBCGFAM=PBOG3

The following are examples of the coding required to dynamically
load user-written applicaticn prcgrams.

!2! A§§~~~l~~ 19~9~~gg:

MVC TCAPCPI,=CLS'PBOG3' PLACE PROGRAM NAME I~ TCA

DFHPC 1YPE=10AD LOAr THE SPECIFIED PROGRAM

MOVE 'PROG3' TO TCAPCPI. NOTE PLACE PRGM NAME IN TeA.

DFHPC TYPE=LOAD LOAr THE SPECIFIED PROGRAM

*
*

65

TCAPCFI='fFOG3'; /*PIACE FBOGRAM NA~E IN TCA*/

DFHPC TYFE=LOAD lOAr THE SPECIFIED PROGRAM

FETUBN PROGRA~ CCNTBCL (BETURN)

Program control is returned to the next higher logical level in
response to the

DPHPC lYPE=BETUBN,
lRANSID=transaction code

macro instruction. The execution of this macro instruction causes
centrol to be returned to the program at the next higher logical level,
restoring the registers and releasing saVE areas for the lower-level
Frogram. The program to which control is being returned must have
relinquished contrel uFen execution of a DFHPC TYPE=lINK macro
instruction and must reside one logical level higher than the program
returning centrcl. UFon normal termination of transaction processing,
control is returned to (ICS Program control. (Figure 12 shows how
applicatien pregrams are executed at various logical levels.)

The application programmer can, at his option, alter the transaction
identification for tne next Frogram associated with that terminal in
ei ther of t~o wa ys: (1) by including the TRANSID=transaction code
operand in the tFEPC TYPE=RETURN macro instruction, or (2) by coding
a single instruction, ~flf! to issuing the DFHPC TYPE TYPE=RETURN macro
instruction, that places the new transaction identification in the
~CANXTID field of the TeA.

Note that the lBANSID operand has no effect if a default transaction
code nas teen assembled into the Terminal Control Table terminal entry
(TCTTE) •

Any higher-level program specifying a TRANSID overrides the TRANSID
specification of a lower-level prcgram. TCANITID is unaltered if
lRANSID is net coded.

The DFHPC lYPE=BETURN macro instruction can be used to terminate
any tasks initiat€d by the application programmer through use of the
Task Ccntrol (DFHKC) ATTACH macro instruction.

DELEtE A LeADED FBOGRAM ({ELITE)

A program previously loaded through use of the DFHPC TYPE=LOAD,
IOADLST=NO macro instruction is deleted (released) by the

DPHPC lYPE=DELETE,
FBCGFAM=name

macro instruction.

The application pregrammer must provide the name (identification)
cf the prcgram to be deleted. He can do this in either of two ways:
(1) by including the FROGBA~=name operand in the DFHPC TYPE=DELETE

*

*

macro instruction, or (2) by coding a single instruction, EriQ£ to
issuing the DPHPC TYPE=DELETE macro instruction, that places the program
name in the TCAPCPI field of the TeA.

66

The following is an example of the coding required to delete a user­
~ritten appli~aticn program previously loaded with the LOADLST=NO
specificaticn:

DFHPC TYPE=DELETE,
PROGRAM=FROG4

The following are examples of the coding required to dynamically
delete user-written applicaticn programs previously loaded with the
IOADLST=NO sp€cjfication.

MVC TCAFCPl,=CLS'FROGS' PLACE PRCGRA~ NAME IN TeA

DFHPC TYPE=DELETE DELETE lHE SPECIFIED PROGRAM

MOVE 'PRCG4' TO TCAPCPI. NOTE PLACE PRGM NAME IN TeA.

DFHPC !YPE=DELETE DElETE THE SPECIEIED PROGRAM

TCAPCPI='PROG4'; /*PLACE PROGRAM NAME IN TCA*/

DFHPC TYPE=DELETE DELETE lHE SPECIFIED PROGRAM

ABNORMAllY TERMINATE A TRANSACTION (ABEND)

The application prcgrammer can abnormally terminate a transaction
and its related task by issuing the

DFHPC TYPE=ABEND,
ABCODE=value.YES

*

*

macro instruction. In the situation where a task is attached ty another
task, Q~lY the task that issues the ABEND is terminated. The main
storage associated with the terminated transaction is released.

The applicaticn programmer can, at his option, request a dump of
main storage related to the terminated transaction. He can accomplish
this in either of two ways: (1) by including the ABCODE=value operand
in the DFHPC TYPE=ABEND macro instruction, cr (2) by coding a single
instructicn, ££jQ~ to issuing the DFHfC TYPE=AEENt,ABCODE=YES macro
instructien, that places a four-character abnormal termination code
in the TCAPCAC field of the TCA. This abnormal termination code is
flaced in the output dump by Dump Centrol when providing the formatted
storage dump and sbould be unique so as to be informative concerning
the condition that caus€d the abend. If the ABCODE operand is not
included in the DFHPC TYPE~ABEND macro instruction, no dump is taken.

67

The following is an example of the coding required to abnormally
terminate a transaction and its related task and also request a dump
ef related main storage:

DFHPC TYPE=ABEND,
AECODE=1234

The following are examples of the coding required to dynamically
terminate a transaction and its related task and at the same time
request a dump of related main storage.

MVC TCAPCAC,=CL4' 1234'

DPHPC !YPE=ABEND,
AECOEE=YES

!Q£ !]~ f~]~1:

MOVE '1234' TO TCA~CAC.

DFHPC TYPE=ABEND,
AECOEE=YES

TCAPCAC='1234';

.
DFHPC TYPE=ABEND,

AECODE=YES

PLACE TERMINATION CODE IN TCA

TERMINA1E PGRM, TRANS, & TASK
USE ABCODE A1REA~Y SPECIFI~D

NOTE TERMINATION CODE TO TCA.

TERMINATE PGRM, TRANS, & TASK
USE ABCODE ALREADY SPECIfIED

/*PLACE !ERMINATION CODE IN TCA*/

TERMINATE PGRM, TRANS, & TASK
USE ABCCDE ALREADY SPECIFIED

*

*

*

*

Dump Management provides the capability, through Dump central, to
dump specified areas of main storage onto a sequential data set, either
tape or disk. This data set contains only the infermation pertinent
to the user's transactien or application program, and is subsequently
fcrmatted and printed offline (or while the dump data set is closed)
using a crcs utility prcgram (DFHDUP).

Requests for dump services are communicated to Dump control via
CICS macre instructions. Dump Central then executes, at the priority
of the requesting program, under control of the requesting program's
TCA, saving and restoring registers from this TCA. After the requested
dump service has h€€n provided, centrol is returned to the next
executable instruction in the requesting pregram.

Dump centrcl operates as a serially reusable program resource with
cnly one service request being processed at a time. If additional
requests fer dump services are made while a dump is in progress, the
tasks associated with those service requests are delayed (suspended)
and are placed in a "held" status until the dump is completed.
Bemaining dump reguests ar€ serviced on a first in first out (FIFO)
tasis.

68

The Dump Management macro instruction (DPHDC) is used to request
any of the following services:

1. Dump main storage areas related to a transaction and its
associated task (or any ether main storage areas).

2. Dump all CICS management modules and tables.
3. Dump transaction-oriented storage areas ~g CICS management

modules and tables.
4. Dump selected main storage areas related to the requesting task.

The fcllowing operands can be included in the DFHDC macro
instruction:

DFHDC TYPE=1BANSACTION,
DMfCODE=value

DFEDC 1YPE=CICS,
DMfCCDE=value

tFHDC TYFE=COMPLETE,
tMICODE=valuE

DFHDC TYPE=PARTIAL,
LIST=TEBMINAI,PROGRAM,SEGMENT,TRANSACTION,
IMfCCDE=value

B2!~~ To ensure a dump of the TIOA following a Terminal Control write,
the application programmer must issue a SAVE and WAIT with the
DFHTC !lPE=iRITE maCIO instxuction that precedes the DFHDC macro
instruction. Since the communications Area in the requesting
task's TCA is used for Dumf Control, the information provided
in that area prior to the dump will be overlaid.

DUMP TRANSACTION STORAGE (TRANSACTION)

The application prcgrammer can request the dumf of all main storage
areas related to a transaction and its associated task by issuing the

DFHDC TYFE=TBANSACTION,
DMfCODE=value

macro instruction. This dump is normally used during the testing and
debugging of user-written application programs. CICS automatically
Frovides this servicE in the event the related task is abncrmally
terminated.

The following storage areas are dumped by CICS in response to the
IFHDC TYPE=TBANSACTION macrc instruction:

1. Task Centrel Area (TCA) and, if applicable, the Transaction
Work Area ('IwA).

2. Common System Area (CSA), inclUding the user's portien of the
CSA (CWA).

3. Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY
system.

4. Trace Table.
S. Contents of general purpose registers upon entry to Du~p Control

from requesting task.
6. Either the Terminal Contrel Table terminal entry (ICTTE) or

the Destinaticn Control Table entry associated with the
requesting task.

7. All transaction storage areas chained off the TeA storage
accounting field.

*

*

*

*
*

*

69

8. All ~rogram storage areas containing user-written application
program(s} active on behalf of the requesting task. (In the
CICS/DOS-ENTRY system, only the program in main storage is
dumped.)

9. Register save areas (RSA's) indicated by the RSA chain off the
TCA.'

10. All terminal storagE areas (TIOA's) chained off the Terminal
Centrol Table terminal entry (TCTTE) for the terminal associated
with the requesting task (if any).

The application programmer can, at his option, provide a four­
character dum~ code, whieh identifies the dump, by including the
D~teODE=value operand in the DFHDC TYPE=TRANSACTION macro instruction.
This user-specified code is prin~ed out with the requested dump and
should be unique so ~s to be informative concerning the condition that
caused the dump.

The following example illustrates the coding required to request
a dump of transaction storage:

DFHDC TYFE=!BANSACTION,
tMFCODE=D010

DUMP CICS STOEAGE (CleS)

REQUEST TRANSACTION STORAGE DU~P
USER-SPECIFIED DOMP CODE

The application programmer can request a dump of all CICS management
modules and CICS ccntrol tables by issuing the

DFHDC TYPE=CICS,
DM:ECODE=value

macro instruction. This dump is typically used in a testing situation
where the first dump taken is a CICS dump to ascer±ain the base of
the test; subsequent dumps are usually of the TRAh5ACTION type.

The applicaticn programmer can, at his option, provide a four­
character dump code, which identifies the dump, by including the
IMPCODE=value operand in the tFHDC TYPE=CICS macro instruction. This
user-supplied code is printed out with the requested dump and should
te unique so as to be infermative concerning the condition that caused
the dump.

The following example illustrates the coding required to request
a dump of CICS management modules ana CICS control tables:

DFHDC TYPE=CICS,
tMECODE=D020

REQUEST CICS STDRkGE DUMP
USER-SPECIFIED DOME CODE

DUMP !RANSAC!ION STORAGE ANt crcs STORAGE (COMPLETE)

~he application programmer can request a combination crcs and
1RANSACTION dump ty issuing the

DFHDC TYPF=COMPLETE,
DMJ:CODE=value

*

*

*

*

macro instruction. This dump might be appropriate if requested in
limited numbers during execution of a task. Since ClCS management
modules and CICS control tablEs are primarily static areas, one crcs
dump and a number of TRANSACTION dumps would be a more efficient testing
aid than a ccmparable numter of CC~FLETE dumps.

70

The application programmer can, at his cption, provide a four­
character dum~ cod€, which identifies the dump, by including the
tMFCODE=value operand in the tFHDC TYPE=CC~PLETE macro instruction.
This user-supplied code is printed out with the requested dump and
should be unique so as to be informative concerning the condition that
caused the dump.

The following example illustrates the coding required to request
a combination CICS and TRANSACTION dump:

DFHDC TYPE=COMPLETE,
DMfCODE=D03:)

DUMP PARTIAL STORAGE (PA~TIAL)

REQUFST CCMFLEiE STORAGE DUMP
USER-SPECIFIED DUMF CODE

The ap~lication programmer can request a dum~ of selected main
storage areas, related tc the requesting task, by issuing the

tFEDC TYPE=PARTIAL,
lIST=!ERMINAl,PROGRAM,SEGMENT,TBANSACTION,
BMtCCDE=value

macro instruction. This type of dump can be used during the testing
and debugging of user-written application programs. It includes only
those types of sterage areas specified.

*

*
*

The applicaticn programmer must indicate what types of storage areas
he wants dumped. He accomplishes this by s~€cifying in the LIST operand
of the DFEtC TYPE=PARTIAL macro instructicn one or more of the following
~arameters: TERMINAL, PRCGRAM, TRANSACTION, SEGMENT.

The applicaticn programmer can, at his option, provide a four­
character dump code id~ntifying th~ dump ty including the DMPCODE=value
operand in the DFHDC TYPE=PARTIAL macro instruction. This user­
specified cede is printed out with the requested dump and should be
unique so as to be informative concerning the ccndition that caused
the dum~. If more than one param~ter is included in the LIST operand,
a single dump cede can be used to identify the entire dump.

A discussion of the parameters that can te included in the LIST
eperand of the DFHDC TYPE=PIRTIAL macro instruction follows.

~ER~INAL: This keyword parameter is used te include in the PARTIAL
dump all stcrage areas associated with the terminal. ~hese storage
areas are as follows:

1. Task Centrel Area (TCA) and, if apFlicable, the Transaction
W01:k Al:ea ('IWA).

2. Cemmon System Area (eSA), including the user's portien of the
CSA (CVA).

3. Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY
system.

4. Trace Table.
S. All tetminal stora~e areas (TIOA's) chained off the Terminal

Centrel Table terminal entry (TCTTE) for the terminal associated
with the requesting task.

6. Contents of general Furpose registers upon entry to Dump Control
frem the requesting task.

7. Either the Terminal Control Table terminal entry (TCTTE) or
the Dest~nation Control Table en~ry associated with the
requesting task.

71

The following example illustrates the coding required to request
a PARTIAL storage dump including all terminal storage areas:

£FHDC TYPE=~ARTIAL,
LIS'I='IERM1NAI,
DMfCCDE=DTML

REQUEST PAR7IAl STORAGE DUMP
ABBAS ASSOCIATED WITE TERMINAL
USER-SPECIFIED DUMP CODE

PROGRAM: This parameter is used to include in the PARTIAL dump all
~rogram storage areas associated ~ith this task. These storage areas
are:

1. Task Centrcl Area (TCA) and, if ap~licable, the Transaction
Work Area (TWA).

2. Common System Area (CSA), including the user's porticn of the
CSA (CWA).

3. Task Extension Area (TXA)--a~pli~s only to the CICS/DOS-ENTRY
system.

4. Trace Table.
S. All program storage areas containing user-written application

pregram(s) active en behalf of the r~guesting task.
6. Register save areas (RSA's) indicated by the RSA chain off the

TCA.

*
*

7. Contents of general purpose registers upon entry to Dump control
frcm the ~equesting task.

8. Either the Terminal Centrol Table terminal entry (TCT~E) or
the Destination Control Table entry associated with the
requesting task.

The following example illustrates the coding required to request
a PARTIAL storage dump including all program storage areas associated
with this task:

DFHDC TYPE=PARTIAL,
L1 S'I=F FOGR Ali,
tMPCOtE=DPGM

REQUEST PAR'!IAI S:ORAGE rUMP
fRCGRAM STORAGE ARIAS
USER-SPECIFIED DUMP CODE

~RANSACTION: This parameter is used to include in the PARTIAL dump
all transaction stcrag€ areas associated with this task, typically
in combination with other types of storage areas such as TERMINAL or
FROGRAM.

The fcllowing storage areas are dumped by ClCS in response to the
IFHtC TYPE=PART1AL,LIST=TRANSACTlON macro instruction:

1. Task Centrel Area (TCA) and, if applicable, the Transaction
Work Area (TWA). .

2. Co~mon System Area (CSA), Except for the user's portion of the
CSA (CiA).

3. Task Extension Area (TXA)--applies only to the ClCS/DOS-ENTRY
system.

4. Trace Table.

*
*

S. Contents of general purpose registers upon entry to Dump Centrol
frcm the requesting task.

6. Either the Terminal Control Table terminal entry (~CTTE) or
the Destinaticn Control Table entry associated with the
requesting task.

7. All transaction storage areas chained off the TCA storage
accounting field.

The following example illustrates the coding required to request
a PARTIAL storage dump that includes, along with all program storage
areas, all transaction storage areas associated with this task:

72

DFHDC TYPE=PARTIAL,
LIS!=(TRANSACTION,
PROGRAM) ,
DMFCODE=DT&P

BEQUEST PARTIAL STORAGE DUMP *
AREAS ASSOCIATED WITH TRANSACTION *
EBOGR~M STORAGE AREAS *
USER-SPECIFIED DUMP (CODE

SEGMENT: This parameter is used to include in the PARTIAL dump any
area of main storage specified. For ex~mpl€, use cf this parameter
enables the applicaticn pIogrammer to dump the area of main storage
used for communication between the Terminal Abnormal Condition program
(DFHTACP) and the Terminal Error prcgram (DFHTEP). In addition, the
fellowing sterage areas are provided:

1. Task Centrel Area (TCA) and, if applicable, the Transaction
Work Area (TWA).

2. Common System Area (CSA), including the user's portion of the
CSA (CWA).

3. Task Extension Area (TXA)--applies only to the CICS/DOS-ENTRY
system.

4. Trace Table.
S. Contents of general purpose registers upon entry to Dump Control

from the requesting task.
6. Either the Terminal Co~trol Table terminal antry (TCTTE) or

the Destinatien Control Ta£le entry associated with the
requesting task.

The application programmer must code two instructions, EI12~ to
issuing the DFHDC TYPE=PARTIAL,LIST=SEGMENT macro instruction, that
place the address of the main storage area to be dumped into the TCADCSA
field of the ICA and the length of the area to be dumped into the
TCADCNB field of the TCA.

The following are examples of the codin~ required to include in
the PA~TIAL dump any area of main storage.

ST
MVC

RS,TCADCSA
!CADCNB,=H'16384'

DFHDC TYPE=PARTIAL,
LIS'I=SEGMENT,
DMFCODE=DMSA

MOVE RS TO 7CADCSA.
MOVE 16384 TO TCAtCNB.

DFHDC TYPE=PARTIAL,
I.IST=SEGMENT,
DMPCODE=DMSA

!Q~ ~lLI:

TCArCSA=RS;
TCADCNB=16384;

ELACE STOFAGE ADDRESS IN TCA
FLACE LENGTH OF AREA IN TCA

REQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
USER-SPECIFIED DUMP CODE

NOTE PLACE STBG ADDRESS IN TCA.
NOTE PLACE LENGTH OF AREA IN TCA.

REQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
OSER-SPECIFIED DUMP CODE

/*PLACE STORAGE ADDRESS IN TCA*/
/*PLACE LENGTH OF ABEA IN TCA*/

* .*

*
*

73

DFHDC TYPE=PARTIAL,
LIS!=SEGMENT,
DMFCODF=DMSA

BEQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
USER-SPECIFIED DUMP CODE

*
*

Terminal Management provides communicaticn between the terminals
and user-written aFplicaticn FIcgrams through Terminal Control.
Terminal Control is responsible for the pclling and addressing of
terminals, code tIanslaticn, transaction initiation, task and line
synchronization, and the line control necess~ry to read from or write
to a terminal. The u~e!-written aPFlication program is thus relieved,
as much as possible, from having to centrel the physical terminal
envircnment.

Bequests for terminal services are communicated to Terminal Centrol
via CICS macro instructions. How~ver, when such Iequests are issued
in an aPFlicatien Frogram, Terminal Control is not entered directly.
Instead, indicators are set in the Task Centrol Area (TCA) and in the
Terminal Centrol Tab1e (TCT) which allow Terminal Centrol to provide
the requested service(s). Indiv~dual applicaticn programs thus
interface with a terminal logically and symbolically.

Terminal Centrel operates as a system-provided task, contending
with user-provided tasks in the system. It executes under control
of its cwn TCA and is the highest-priority task in CICS. Terminal
Centrel is always the first task to be dispatched by CICS; it scans
the TCT and provides whatever services are requested.

The Basic Telecommunications Access Method (BTAH) is used by CICS
for most terminal management. The Telecommunications Access Method
(TCAM) can optienally be specified. However, the Sequential Access
Method (SAM) is used where key-driven terminals are to be simulated
by sequential devices such as a card reader. The Graphics Access
Method' (GAM) is used only in the CICS/OS-STANDARD system to support
local 2260 terminals.

The multipunched character 0-2-8 must be used in each physical
input record immediately following the last data character to
simulate the "end of block" (EOB). For sequential devices,
the last entry in the input stream must be 'CSSF GOODNlGHT'
to provide a logical close. For MFT/MVT users of the CICS/OS­
STANtARD system having blocked SYSIN or SYSOUT, overriding DD
cards must be provided for those CICS data sets being used to
simulate terminals.

The Terminal Management macro instruction (DFHTC) is used to request
any of the fellowing services:

1. write data to a terminal.
2. Read data from a terminal.
3. Synchronize terminal input/output for a transaction.
4. Ccnvers€ with a terminal.
S. Transmit a page of data to a terminal.
6. Transmit to the common buffer of a 2980 General Banking Terminal

system.
7. Test for the presence of a passbook in the 2980 General Banking

Terminal System Models 1 and 4.

The following uperands can 'be included in the DFHTC macro
instruction:

74

DFHTC TYPE=(WRITF,WRITEL,READ,READL,WAIT,ERASE,SAVE,OIU, *
DISCONNECT,RESET,READB,COPY,EEASEAOP~CBUFF, * PA5SBK,1RANSFAREN!,PSEUDOEIN,NOTRANSLATE) , * LINEADR=number,YES, * CTLCHAR=bexadecimal number, YES, * DEST=symbolic name,YES, * EOF=symbclic address

tFETC TYPE=(GET,PUT,ERASE,SAVE,TRANSFARENT,P~EUDOBIN) , * LINEADR=number,YES, * CTLCHAR=hexadecimal number,YES, * DEST=sym1::olic na me, YES, * EOF=symbolic address

DPHTC TYPE= (PAGE,SAVE) , * LINEADR=number,YES, * CTLCHAR=bexadecimal number,YES, * DEST=symbolic name,YES

DFHTC TYPE=(CONVERSE,ERASE,SAVE) , * LINEADR=number,YES, * CTLCHAR=hexadecimal number,YES, * DEST=symbolic name, YES

DFHTC EOF=symbclic address

WRITE, WRITEL, READ, READL, WAIT, ERASE, SAVE, OIU, DISCONNECT,
RESET, READB, COPY, ERASEAUF, TRANSPARENT, PSEUDUBIN, and NOTRANSLATE
are optional keyword parameters and may be specified in any combination
cr in any order, as applicable. Each parameter, independent of its
Fosition, affects the setting of an associated bit in the Terminal
Centrol Table Teruinal Entry (TCT~E) so the order in which each
Farameter is specified has nc effect on the meaning. For example,
(WRITE, REAt, SAVE) is equivalent to (WRITE, SAVE, READ) and (SAVE,
WRITE, READ) etc. CBUFF and PASSEK are stand-alone parameters that
have implied writes and waits. GET, PUT, PAGE, and CONVERSE are used
for coding convenience; they are combinations of tbe other parameters
as follo"s:

1. GET - same as READ, WAIT
2. FUT - same as WRITE, WAIT
3. PAGE - same as ERASE, WRITE, READ, WAIT
4. CONVERSE - same as VRI!E, READ, WAIT

~Q~~~ Wben coding an aFplication program in ANS COBOL, a WAIT mY§1
be included with every READ, READL, WRITE, W~ITEL, READB, COPY,
and ERASEAUP, except in thE case of the final WRITE of the
Frcgtam.

The DISCCNNECT parameter is used by tbe application programmer to
treak the line connection between the terminal and the computer; it
aFplies only to switched lines. If the terminal is a buffered device,
the d at a in the b u f f e.r (s) is los t •

The RESET parameter is used by the applicaticn programmer to
relinquish use of the ccmmunicaticn line; it applies enly to binary
synchronous terminals~ When RESET is used, the next BTAM tyP€ of
operation will be a read or write initial.

The READE parameter is applicablE only tc the 3270 Information
Display System and is used by the application programmer to read the
entire contents of the 3270 buffer. Data transmission starts at buffer
location 0 and continues until the contents of the entire buffer have
been read. All character and attributE sequences (including nulls)

75

appear in the input data stream in the same order as they occur in
the 3270 buffer.

]Q1~: Because of relatively long transmission times required to
transmit .tbe €ntire contents of a remote 3270 Information Display
station buffer, it is recommended that the READB parameter be
usen mainly for test and diagnostic purfoses and that the COPY
parameter be used, where possible, in all other cases. Excessive
use of the READB parameter may cause degradation of performance
on the line.

The COPY parameter is applicable only to the remote 3270 Information
Display System and is used by the application programmer to copy the
format and data centained in the buffer of another terminal attached
to ~he same 3271 centrol Unit. The physical address of the device
to be copied is provided as the first and only character in the output
data area (TIOIDBA); TIOATDL must be set to 1. The Copy Control
Character (CCC), which centrols and defines the copy function to be
ferformed, is sup~lied through the CTLCHAR operand. The COPY parameter
cannot be included with a WRITE, ERASE, or ERASEAUP parameter in the
same macro instxuction.

The ERASEAUP parameter is applicable only to the 3270 Information
Display System and is used by the applicaticn prog~ammer to issue an
"erase all unfrotected" cemmand. The following functions are performed
in response to this command:

1. All unprotect€d fields are cleared to nulls (X'OO·).
2. The modified data tags in each unprotecte~ field are reset to

zero.
3. The cursor is positioned to the first un~rotected field.
4. The keybcard i~ restorEd.

The ERASEAUP paLameter cannot be included with a WRITE, ERASE, or
COpy parameter in the same macre instruction. Note that no data stream
is sup~lied for this command.

The CBUFF parameter is applicable only to the 2980 General Banking
Terminal System an1 is used by the application programmer to place
a message in the common buffer of the 2972 Terminal Centrol unit.
The 2972 associateu with the gY~~~n! Terminal Control Table terminal
entry (TCTTE) receives the output message.

]Q1~: The output message is translated according to the 2980 model
being described by the current TCTTE. If more than one model
of the 2980 is attached to a 2972 Terminal Unit, the contents
of the cemmon buffer are intelligible only for the 2980 model
for which the message vas translate~. Since shift characters
are added to the message by CICS during translation, the message
length is dependent upon the contents of the message. The
maximum message length is 23 characters, including shift
characters.

The PASSBK parameter is applicable only to the 298~ General Banking
Terminal System and is used by the application frogrammer to cause
output to be printed on a banking passbook. If a passbook is not
present, pri~ting does net occur and an error message is sent to the
terrrinal of era tor.

The TRANSPARENT parameter is applicable only to tha System/7 and
is used hy the applicaticr ~reqrammer to indicate that the data is
not to be translated on either a READ or WRITE. For ·f.urther information
ccncerning System/7 programming considerations, see the section
"Applicaticn Programming Considerations fl •

76

The PS!UDOBIN ~aramet@r is applicable only to the system/1 and is
used by the applicaticn prcgramme~ to indicate that the data is to
be translated en both a READ and iRITE. Translati0n is from System/?
pseudo-binary representaticn to hexadecimal representation on a READ,
and from hexadecimal ~epresentation to System/7 pseudo-binary
representation on a WBI1E. For further information concerningSystem/1
~rogramDing considerations, SEe the section "Application Programming
Considerations".

The NOTRANSLATE operand is applicable only to the 3~35 Programmable
Buffered Terminal, and is used by the applicatien programmer to prevent
translatien of FDP records which are to be transmitted to a 3135 using
ASCII transmission code. For further information, see the section
"Application Programming Considerations".

The LINEADR operand is used to specify that writing is to begin
cn a specific line of a 2260 or 2265 screen. It is the responsibility
of the application programmer to F~ovide the hexadecimal equivalent
of a line number in the range 1-12 (FO-FB) for the 2260 or 1-15 (FO­
FE) for the 2265. He can accomplish this in either of two ways: (1)
by including the LINEADR=number operand in the DFHTC macro instruction,
or (2) by coding a single instructicn, ~i~~ to issuing the DFHTC macro
instructicn, that places the line number in the TIOALAC field of the
current TIOA. If the latter method is used, the LINEADR=YES operand
must be included in"the DFHTC macro ~nstruction. For further
informaticn ccncerning the use of this operand, see the section
"Application Prcgramming Considerations".

The C~LCHAR operand is applicable only to the 3270 Information
Display system. If a DFETC TYPE=WRITE macro instruction is issued,
this o~erand is used to provide the hexadecimal representation of the
Writ9 Control Character (WCC) which controls the requ~sted write
cperation. If a DFETC TYPE=COPY macro instruction is issued, this
operand is used te provide the hexadecimal representation of the Copy
Control Character (CCC) which contrOls and defines the copy function
to be performed.

Tf eTLCHAR=YES is specified, the appropriate bit configuration must
have been previcusly moved to the TIOACLCR field of the TIOA. If only
the functions defined by the WCC are to be performed (that is, no data
stream is to be supplied), the TIOATDL field of the TIOA must have
been previously set to zero.

If the CTLCHAB operand is omitted, the following functions are
assumed for the wee and eec.

WCC: Reset all modified data tags to zero.
Restore the keyboard.

cee: Copy the cbntents of the enti~e buffer (including null~.

The DEST c~eIand is applicable only to TCAM. If a DFHTC TYPE=WRITE
macro instruction is issued, the DEST operand can be used to send a
message to a destination ether than the scurce terminal. Typically
this operand could be used to route messages to:

1. The master terminal (if TCAM is used)
2. A list of terminals if a TLIST macrc was coded in the TCAM MCP.

The DFH1C !YPE=iBITE,DEST=symbalic namE macro instruction determines
the destination of the message by CICS placing the symbolic name in
the four-byte TCTTE field labeled TCTTEDES for proc~ssing by the
Terminal Control program. The DFHTC TYPE=WRITE,DEST=YES macro
instructicn allows the user to dynamically select a destination by
placing thp. destination in the four~byte TCTTE field labeled TC!TEDES

77

!ri£~ to issuing the WRITE macro instruction. If DEST is not specified,
the default action is to move the source terminal ID located in the
!CTTETI field to the output message to previde a TeAM destination name,
sending the message back to the source terminal.

~h~ EOF=symbolic addr€ss operand is used to specify a routine in
the application program which is to receive control when an end-of-
file condition has been received on batch input from a 3735. The
special initialization macro instruction, DFHTC EOF=symbolic address,
has been provided to test for the e~d-of-file condition upon the initial
ccnnection to a 3735. This macro instructien must be inclUded in the
initialization section of the '3735' transaction before subsequent
tFHTC macro instructions are is~ued.

]Q!~: When the EOF condition occurs, the IIOATDL field of the TIOA
passed to the application program contains binary zeros to
indicate that the !IOA contains no valid data.

Applicable only to terminals attached to a 2848 Display Control'
Model 21 or 22, the READL and WRITEL parameters are used by the
application programmer to centrol the locking and unlocking of the
terminal keyboard after a read or write event. READL is applicable
enly to CIeS/OS but may be used in CICS/DOS applicaticn programs if
upward compatibility with ClCS/OS is a consideration; it causes the
keyboard to remain locked at the cempletion of data transfer. WRlTEL
causes the keyboard to relain locked if previously locked, or remain
unlocked if previcusly unlecked. (WRITE always leaves the keyboard
unlocked.)

If DFHTC macro instructions are issued in the following sequence,
the keyboard is lecked or unlocked as indicated:

~l~~LDg~ ~l~~LQ~

READ L U
WRITEL L U
READL L L
READL L L
WR!T!L t L
WRITEL L L
WRITE U U
WRITEL U U
WRITEL U U
READ L U
WRITE U U
READL L L
READ L U
WRI!EL L U

Before terminal services can be requested in an application ~rogram
via the DFHTC macro instruction, it is the responsibility of the
application programmer to provide instructicns that do the following:

1. Symbolically define the TCTTE and TICA by copying the appropriate
storagE definitions (DFHTC!TE and DPHTIOA) provided by crcs.
(It is assumed that the storage definitions for the £SA and
TCA have already been copied, as described in the section
"StoragE Definition".)

2. Establish ad~ressability for the TCTTE and TIOA by specifying

78

a symbolic base address for the TCTTE and TIOA, respectively.
The application programmer must obtain the base address of-the
TCTTE from the TCAFCAAA field of the TCA and place it at TCTTEAR.
Having estatlished addressability to the TCTTE, he must obtain
the base address of the TIOA from the TCTTEDA field of the TCTTE

and place it at ~IOAEAB. The application programmer now has
access by field name to any field in the TC~TE or TIOA.

eICS allows one or more TIOA's to be associated with a terminal
at a given time. If a TIOA is obtained in an application program via
the DFHse TYPE~GETMAIN,CLASS=TERMINAL macro instruction, the address
of the TIOA obtained is automatically placed in the TeASeS! field of
the TCA. The application programm~r must set up a base register for
this TIOA and must place the address at TCAseSA into the base register.

The length bf the data to be read or written into a given TIOA is
found in the TIOATDL field of that TIOA. On a read operation, this
two-byte binary value is placed in the TIOATDL field hy Terminal Control
and represents the number of bytes actually read. On a write operation,
the application programmer must assign to the TIOATDL field, ~~ioI
to issuing the DFETC TYPE=WRITE macro instruction, the number of bytes
to be written.

~~~ All TIOA's have a twelVe-byte prefix for storage accounting 
and terminal contrel and a ene-byte EOB suffix. The value at 
TIOATDL does not include these 13 bytes. 

Given an idle line, CICS always initiates a write before polling 
to read. 

The following are examples of the coding required to (1) acquire 
an output storage area via the DPHSC macro instruction, (2) place the 
address of the storage area acquired into TCTTEDA, (3) place the length 
of the data to te written into TIOATDL, (4) issue a write to a 2260/2265 
terminal, erasing the screen and returning the cursor to the upper 
left corner of the screen before writing, and (5) issue a read from 
a terminal, allowIng Terminal Control to manage storage for the TIOA. 

L 
DFHSC 

L 
ST 
Mve 
MVC 

TCTTFAR,TCAFCAAA 
TYPE~GETMAIN~ 

NUMBYTE=80, 
CLASS=TEBMINAL 
TIOABAF.,TCASCSA 
TIOAEAF.,TCTT~IA 

TIOADBA(80),IATA 
TIOATDL,=H'80' 

DFHTC TYPE=(WRITE,ERASE, 
BEAD,iAIT) 

L TIOAEAR,TCTTECA 

ESTABLISH ADDRESSABILITY FOR TCTTE 
OBTAIN TIOA FOR OUTPUT tATA 

ADDRESS CF TIOA 
PLACE CUT PUT ADDRESS IN TCTTE 
PLACE rATA IN TIOA 
PLACE rATA LENGTH IN TIOATDL 

ISSUE WRITE TO 2260/2265 TERMINAL 
ERASE BEFOFE iRITE, THEN READ 
ESTABLISH ADDRESSABILITY FOR TIOA 

NOTE EST ADDRESSABILITY FOR TCTTE. 

* 
* 

* 

MOVE TCAFCAAA TO ~CTTEAR. 
DFHSC TIPE=GETMAIN, 

NUMBYTE=80, 
CLASS=TERMINAL 

OBTAIN TICA FOE OUTPUT tATA * 

MOVE TCASeSA TC TIOAEAR. 
MOVE TIOAEAR TO 1CTTEDA. 
MOVE DATA TO TIOADEA. 
MOVE 80 TO TIOATDL. 

NOTE AtDBESS OF TIOA. 
NOTE PlACE ADDE OF TIOA IN TCTTE. 
NOTE PLACE DATA IN_ TIOA. 
NOTE PLACE DATA LENGTH IN TIOATDL. 

* 

19 



DFHTC TYPE=(WRITE,ERASF, 
READ,WAIT) 

~OVE !CTTEDA TO TICAEAR 

TCTTEAR=TCA~CAAA; 

DFHSC TYPE=GETMAIN, 
NUMBYTE=80, 
CLASS=TER~INAL 

TIOAEAR=TCASCSA; 
TC!TEDA=TICAEAR; 
TIOADEA=DATA; 
TIOATDL=80; 

DPHTC TYPE=(WRITE,ERASE, 
READ,WAIT) 

TIOAEAR=TCTTEDA; 

WRITE DATA TO A TERMINAL (WRITE) 

lSSUE WRITE TO 2260/2265 TERMINAL 
ERASE BEFORE WRITE, THEN READ 
NOTE EST ADDRESSABILITY FOR TIOA. 

/*EST ADDRESSABILITY FOR TCTTE*/ 
OETAIN TICA FOR OUTPUT DATA 

/*ADDRESS OP TIOA*/ 
/*PLACE ADDR OF TIOA IN TCTTE*/ 
/*PLACE DATA IN TIOA*/ 
/*PLACE DATA LENGTH IN TIOATDL*/ 

ISSUE WRITE TO 2260/2265 TERMINAL 
ERASE EEFORE WRITE, THEN R~AD 
/*EST ADDRESSABILITY FOR TIOA*/ 

The application prcgrammer can request that data be written to a 
terminal by issuing the 

DFHTC TYPE=WRITE 

macro instruction. Before issuing this macro instruction, he has the 
responsibility to (1) place the address of the TIOA to be written into 
the TCTTEDA field of the TCTTE, and (2) place the length of the data 
to be written into the TICATDL field of the TIOA. (It is assumed that 
he has also symtolically defined the CSA, TCA, and TCTTE and has 
Established addressability for the TCTTE.) 

* 

* 
* 

* 

When the write is completed by Terminal Control, the TIOA is released 
to the dynamic storage Fcel (unless SAVE is specified} since it is 
understood that the applicaticn program has no further use for it. 
Any subsequent reference to this TIOA by the application program is 
logically in error and will produce unpredictable results. 

A TIOA can te reused by the application program after a write if 
the request to write data to a terminal is made via the 

DFHTC TYPE=(WRITE,~AVE,WAIT) 

macro instruction. In tbis case the TIO! is not released by Terminal 
Centrol. The WAIT parameter is needed to ensure that the write of 
the TIOA is complete before the area is reused. 

Mote: To ensure a dump of the TIOA following a Terminal Control write, 
the application pregrammer must issue a SAVE and WAIT with the 
DFHTC TYPE=iRITE macro instruction that precedes the DFHDC macro 
instruction. 

The application programmer can specify both a write and read 
operation in a single request by issuing the 

DFHTC TYPE=(WRITE«READ) 

macro instruction. When this instruction is executed, Terminal Control 
writes the TIOA yhose address is at TCTTEDA, waits for that write to 
te completed (an implied wait), and then issues a read from the terminal 

80 



into the area just used fer writing. since the SAVE parameter was 
not specified, one TIOA can be used repeatedly. However, a new TIOA 
is obtained for the read operation and its address placed in TCTTEDA 
when certain devices are involved or when certain conditions exist. 
For example: 

1. 2260 terminals (local and remote) 
2. Local 3270 terminals 
3. PSEUDCEIN is psecified with READ, WRITE 
4. If the ~IOA length for the WRITE instruction is less than that 

specified in the DFHTCT TYPE=LINE,TIOAL=length specification 
(binary synchronous teruinals) or in the DFH~CT TYPE=LINE, 
INAEEAL=length specification (all other terminals) 

5. certain error conditions 
6. Using a 3270 terminal in 2260 compatibility mode 
7. Using terminals with TeAM (CICS/OS only) 

Thus the user shculd gl~glg reload TIOABAR from TCTTEDA following the 
(WRITE,READ) macro instruction. A typical use for the DFHTC 

TYPE=(WRITE,READ) maCIO instruction is a conversational environment 
where the application program writes a question to the terminal, waits 
for a res~onse, and then reads the response. 

]2!~: In the case of a terminal connected to the 7770 Audio Response 
Unit, a read request that does not include the WRITE parameter 
causes the Uready" message previcusly defined in the Terminal 
Centrol Table to be written to the terminal before the read 
operation occurs. 

If both a write and read operation are specified in a singl€ request 
ty issuing the 

DFHTC TYPE=(WBITE,READ,SAVE) 

macro instruction, the TIOA used for writing is saved; a new TIOA is 
then dynamically acquired by Terminal Control for the read. The saved 
area remains chained off the TCTTE for the terminal involved and can 
te reused at a later time for either writing or reading. If this TIOA 
is reused later, the application prcgrammer must place the address 
cf the TIOA into the TCTTEDA field of the TCTTE E~1Qf to issuing the 
request to use the area. 

The manner in which the address of a TIOI is "remembered" is 
determined by the applicaticn Frcgrammer. For Example, he can store 
the address in the TWA, or he can rely on the area being accounted 
for in the TIOA storage accounting chain off the TC~TE. 

Upcn completion of a WRITE, READ, SAVE, the application programmer 
must place the value contained at TCTTEDA into TIOABAR to establish 
addressability for the newly acquired TIOA. 

Bote~ A WRITE, READ, SAVE may not be usable for the application in 
which the initial TIOA is small, as determined by the user in 
the Terminal Centrel Table line entry (TCTLE) during system 
initialization for this line, and in which subsequent TIOA's 
acquired dynamically by CICS are of larger or varying size. 
There is nc Froblem if the user always works with TIOA's of 
the same size. 

If a write to a ~260/2265 terminal is specified by issuing the 

DFHTC TYPE=(WRI~E,!RASE) 

81 



macro instruction, the screen is erased and the cursor is returned 
to the upper left ccrner of the screen before writing occurs. If the 
ERASE parameter is omitted, writing begins wherever the cursor is 
located at the time the write is issued. 

]Qi~: The ERASE parameter may be used in conjunction with either the 
WRITE or ~RITEL parameters; it may not be used separately. 
To simply erase the screen, the application programmer might 
(1) place at TeTTErA the address of storage that contains only 
a start symbol, and (2) issue a DFHTC TYPE=(WRITE,ERASE) macro 
instruction. 

The applicaticn programmer can request the positioning of frames 
for a 2760 Optical Image Unit by issuing the 

DFHTC TYPE=(WRITE,OIU) 

macro instruction. See the ~lst~~ g~gg£~~~~~~ ]§!§~~D£§ ~~~l for 
an example of an applicaticn program executed as a 2760 transaction. 

When TCAM is used, the application prcgrammer issues the 

DFHTC TYPE=WRITE, 
DEST=symcolic name, YES 

macro instruction. See the previous discussion of the DEST operand 
near the beginning of the section "Terminal Services". 

READ DATA FROM A TERMINAL (READ) 

The application programmer can request that data be read from a 
terminal by issuing the 

DFH!C TYPE=READ 

macro instruction. Eefore issuing this macro instructicn, he can place 
the address of the TIOA into the TCTTE. 

* 

If a TIOA is net provided by the application program, Terminal 
Control attempts to use existing storage if a TIOA is attached to the 
!CTTE, or, if a TIOA is not attached, Terminal Control acquires a new 
TIOA. If the length of tte existing TIOA or length of the TIOA provided 
by the applicatien program is not adequate, or if other conditions 
exist that make the TIOA upusable, the application program must always 
place the value contained at TCTTEDA into TIOABAR following completion 
cf the read to ensure a~dressability to the correct TIOA. 

A new TICA is acquired by Terminal Contrel for the read when the 

DFHTC !YPE=(READ,SAVE) 

macro instruction is issued. All TIOA's currently chained off the 
TCTTE are retained and may be subseguently reused; a new TIOA is 
dynamically acquir€d for this read (according to the length specified 
in the TCTLE) and is aad~d to the chain. 

Upon completicn of a READ, SAVE, the application programmer must 
place the valu€ contained at TCTTEDA into TIOABAR to establish 
addressability for the newly acquir€d TIOA. The number of bytes read 
is provided by CICS at TIOATDL. 

A read and write operation can be specified in a single request, 
as discussed in the previous topic, "Write Data to a Terminal". 

82 



Page ofSH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

SYNCHRONIZE TERMINAL INPUT/OUTPUT FOR A TRANSACTION (WAIT) 

In a transaction where more than one terminal operation is to be 
performed, the application programmer must ensure that the current 
terminal operation is complete before anothe~ begins. He can accomplish 
this by issuing the 

DFHTC TYPE=WAIT 

macro instruction, where the WAIT parameter is coded separately, as 
shown, or in combination with READ and/or WRITE. A PUT can be coded 
in place of a WRITE,WAIT; a GET can be coded in place of a READ,WAIT. 
A wait should be issued for each read request to ensure that the data 
has been transferred into the TIOA. 

A wait causes the execution of a task (transaction) to be temporarily 
suspended. Indicators are set in the TCT and control is returned to 
CICS. The task resumes processing when the write and/or read is 
complete. 

A wait need not be coded for a write if the write is the last 
terminal operation of the transaction. The TIOA is retained until it 
is written, even though the transaction and its associated storage may 
have already been deleted from the system. 

CONVERSE WITH A TERMINAL (CONVERSE) 

The application programmer can request a conversational mode of 
communication with the terminal by issuing the 

DFHTC TYPE=CONVERSE 

macro instruction, where CONVERSE (or CONV) is the same as WRITE, READ, 
WAIT. The execution of this instruction is always in the sequence: 
WRITE, implied wait, READ, WAIT. In the case of 2260/2265 terminals, 
writing begins wherever the cursor is located at the time this macro 
instruction is issued. 

PAGE DATA TO A TERMINAL (PAGE) 

The application programmer can request a conversational mode of 
communication with a 2260/2265 terminal by issuing the 

DFHTC TYPE=PAGE 

macro instruction, where PAGE is the same as ERASE, WRITE, READ, WAIT. 

File Management provides the capability, through File Control, to 
read a record from an existing data set (file) on a direct access 
device, update an existing record in a data set, and add a new record 
to a data set. Facilities supported by File Control include indirect 

I 
access, browsing, "duplicates" data sets, and segmented records. Note 
that while File Services supports the user's data base, Transient Data 
Services supports sequential data sets. 

Access methods supported by File Control are the Direct Access Method 
(DAM) and the Indexed Sequential Access Method (ISAM). DAM can be used 
for fixed- or variable-length records, for blocked or unblocked records, 
and for undefined records. If the user creates DAM data sets and 
des.crihe.s .. them to CICS through the File Control Table (FCT), application 
programs can access those data sets on' a logical 

83 



record level with File Control providing the blocking/deblocking 
service. 

Optional access to the Data Language/I (DL/I) facility of the IBM 
Information Management System (IMS/360) is also provided under CICS/OS. 
See the section "Requesting Data Language/I Services" for information 
concerning the use of DL/I in a CICS application program. 

All storage needed for data set operations is acquired by File 
Control in accordance with the data set descriptions previously supplied 
by the user in the FCT. The application programmer need only be 
concerned with the logical record and not with the other characteristics 
of the data set. 

An application program always operates on data in one of two main 
storage areas: (1) a File Input/Output Area (FIOA) or (2) a File Work 
Area (FWA). A FIOA is required to handle records that are read-only 
and unsegmented or unblocked. A FWA is required to handle records that 
are new, segmented, blocked, or to be updated. In addition, a FWA is 
always used in a browse operation. 

Requests for file services are communicated to File Control via CICS 
macro instructions. File Control then executes, at the priority of 
the requesting program, under control of the requesting program's TCA, 
saving and restoring registers from this TCA. After the requested file 
service has been provided (or attempted), control is returned to the 
next executable instruction in the requesting program. Upon return to 
the requesting program, tests can be made and control routed to various 
user-written exception handling routines based on the outcome of the 
requested file service. 

The File Management macro instruction (DFHFC) is used to request 
any of the following services: 

1. Randomly retrieve data from a data set. 
2. Randomly update or add data to a data set. 
3. Obtain a main storage area to create a new record. 
4. Release main storage area. 
5. Check the response to a request for file services. 
6. Initiate a browse operation. 
7. Sequentially retrieve data from a data set (browse). 
8. Terminate a browse operation. 
9. Reset the starting location of a browse operation. 

10. Release an update request. 

The following operands can be included in the DFHFC macro 
instruction: 

84 

DFHFC TYPE=GET, 
DATASET=symbolic name, 
RDIDADR=symbolic address, 
SEGSET=symbolic name,YES,ALL, 
INDEX=symbolic name,YES, 
TYPOPER=UPDATE, 
RETMETH=RELREC,KEY, 
NORESP=symbolic address, 
DSIDER=symbolic address, 
SEGIDER=symbolic address; 
NOTFND=symbolic address, 
INVREQ=symbolic address, 
IOERROR=symbolic address, 
DUPDS=symbolic address, 
NOTOPEN=symbolic address 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 



DFHFC TYPE=PUT, 
RDIDADR=symbolic address, 
SEG SET= YES, 
TYPOPER=NEWREC,UPDATE, 
NORESP=symbolic address, 
DUPREC=symbolic address, 
INVREQ=symbolic address, 
IOERROR=symbolic address, 
NOSPACE=symbolic address, 
NOTOPEN=symbolic address 

DFHFC TYPE=GETAREA, 
DATASET=symbolic name, 
INITIMG=value,YES, 
DSIDER=symbolic address, 
NORESP=symbolic address, 
INVREQ=symbolic address, 
NOTOPEN=symbolic address 

DFHFC TYPE=RELEASE, 
INVREQ=symbolic address 

DFHFC TYPE=SETL, 
DATASET=symbolic name, 
RDIDADR=symbolic address, 
SEGSET=symbolic name,YES,ALL, 
RETMETH=RELREC,KEY, 
NORESP=symbolic address, 
DSIDER=symbolic address, 
SEGIDER=symbolic address, 
INVREQ=symbolic address, 
NOTOPEN=symbolic address 

DFHFC TYPE=GETNEXT, 
SEGSET=symbolic name, YES, ALL, 
NORESP=symbolic address, 
SEGIDER=symbolic address, 
INVREQ=symbolic address, 
IOERROR=symbolic address, 
NOTOPEN=symbolic address, 
ENDFILE=symbolic address 

DFHFC TYPE=ESETL, 
INVREQ=symbolic address 

DFHFC TYPE=RESETL, 
SEGSET=symbolic name,YES,ALL, 
NORESP=symbolic address, 
SEGIDER=symbolic address 

DFHFC TYPE=,CHECK, 
NORESP=symbolic address, 
DSIDER=symbolic address, 
SEGIDER=symbolic address, 
NOTFND=symbolic address, 
DUPREC=symbolic address, 
INVREQ=symbolic address, 
IOERROR=symbolic address, 
DUPDS=symbolic address, 
NOSPACE=symbolic address, 
NOTOPEN=symbolic address, 
ENDFILE=symbolic address 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

* 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

85 



Page ofSH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

RANDOMLY RETR~EVE DATA FROM A DATA SET (GET) 

The application programmer can randomly retrieve data from a data 
set (file) by issuing the 

DFHFC TYPE=GET, 
DATASET=symbolic name, 
RDIDADR=symbolic address, 
SEGSET=symbolic name, YES, ALL, 
INDEX=symbolic name,YES, 
TYPOPER=UPDATE, 
RETMETH=RELREC,KEY, 
NORESP=symbolic address, 
DSIDER=symbolic address, 
SEGIDER=symbolic address, 
NOTFND=symbolic address, 
INVREQ=symbolic address, 
IOERROR=symbolic address, 
DUPDS=symbolic address, 
NOTOPEN=symbolic address 

macro instruction. This macro instruction is used for random read-only 
(inquiry) or update operations. The requested data record is returned 
in a File Input/Output Area (FIOA) for read-only operations with 
unsegmented, unblocked records; the data record is returned in a File 
Work Area (FWA) for update operations or for read-only operations with 
segmented or blocked records. 

CICS performs the following services in response to a DFHFC TYPE=GET 
macro instruction: 

1. Acquires the main storage area required to read a record. 
2. Reads the requested data. 
3. Locates the requested logical record • 

In addition, CICS can perform the following services, depending on 
the operands that a.re included in the DFHFC TYPE=GET macro instruction: 

1. Retrieve a record indirectly. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

2. Segment a record for inquiry (read only) and return the requested 
segments in a work area. 

3. Acquire a File Work Area of the same length as the requested 
record when the record is to be updated or when records are 
blocked or segmented. 

4. Unpack a segmented record into a work area of the same length 
as the requested record. 

Before file services can be requested in an application program via 
the DFHFC~ TYPE=GET macro instruction, the user must have previously 
defined in the File Control Table (FCT) all data sets referenced by 
the DATASET and INDEX keyword parameters and all segment sets referenced 
by the SEGSET keyword parameter. Instructions must have been provided 
in the application program that symbolically define the FIOA and/or 
FWA by (1) copying the appropriate CICS control section definitions 
(DFHFIOA and DFHFWADS) provided by CICS, and (2) providing his own 
storage definitions for the user's section of the FIOA and/or FWA. If 
ISAM data is being retrieved under CICS/OS, a 16-byte filler must be 
defined prior to the user's data definition. 

The application programmer must specify the parameters he requires 
to retrieve data from a data set. He can do this in either of two 
ways: (1) by including the parameters in operands of the DFHFC TYPE=GET 
macro instruction, or (2) by coding instructions, lli2! to issuing the 
DFHFC TYPE=GET macro instruction, that dynamically move these parameters 
to fields in the TCA. If the parameters are included in 

86 



1 

operands of the DFHFC TYPE=GET macro instruction, the applicable 
keywords are tA1ASET, RDIIADR, SEGSET, INDEX, TYPOPER, and RETMETH. 

After file services have been requested in an applicaticn program, 
addressability must be es'tablished for the required FIOA and/or FWA. 
The address of the area involved, provided by CICS at TCAFCAA, must 
te placed at FICAEAR and/or FWACBAR. The user may issue a DFHSC 
TYPE=FREFftAIN or a DFHFC TYPE=RELEASE macro instruction to free the 
FIOA or FWA, otherwise CICS will free the area upon task termination. 

If the application programmer desires to check the response to his 
request to retrieve data from a data set, he must specify the entry 
labels (symtolic addresses) he requires to access user-written exception 
handling routines. He can do this in any of three ways: (1) by 
including the entry labels in operands of the DFHFC TYPE=GET macro 
instruction, (2) by coding instructions immediately following the DFHPC 
TYPE=GET macro instruction that examine the resFonse code provided 
by CICS at TCAFCTR (TCAFCRC if the language isANS COBOL) and transfer 
centrol to the appropriate routine, or (3) by including the entry 
labels in the DFH1C TYPE=CH!CK macro instruction (which must immediately 
fellow the DFHPC TYPE=GET macro instruction). In any case, the 
applicable keywords are NCRESP, DSIDER, SEGIDER, NOTFND, INVREQ, 
IeEEBOR, DUPDS, and NCTCFFN. ~. 

A discussion of the operands that can be included in the DFHFC 
TYPE=GET macro instructien fellows. (The keywords used to access user­
written exception handling routines are discussed in the section "Test 
Response to a Request for File services".) 

DATASET: This operand is used to specify the sym~clic name of the 
primary data set to te accessed. The symtolic name must have been 
previously defined in the Pile Control Table (PCT). If the operation 
involves indirect accessing, the symbolic data set name specified by 
this operand represents th~ primary (target) data set from which a 
record is tc te retrieved. This operand can be omitted if the 
application programmer has previously placed the symbolic name in the 
TCAFCDI field of the TeA. 

RtIDADR: This operand is used to specify the symbolic address of the 
user's Record Identification field that contains the key of the record 
to be retrieved, as required by ISAM, or the block reference field, 
as required by DAM. This operand can be omitted if the application 
~rcgrammer has previously placed the address of the field in the TCAFCR! 
field of the TCA. For further details, see the section "Data Base 
Considerations". 

]g!~: There must be a unique Record Identification field for each 
data set that is to be concurrently updated by a single 
application program. Because CICS application programs must 
have the quality of quasi-reentrance, it is highly recommended 
that the Record Identification field not reside in the 
applicaticn program. 

SEGSE~: Tbe SEGSET=name operand is used to specify the symbolic name 
cf tbe segment set to LE retrieved~ The symbolic name 'must have been 
previously defined in the associated Segment Control section of the 
File control Table (PCT). 

SEGSET=YES is used whEn reading a segmented record if the application 
programmer bas previously placed the symbolic name of the segment set­
in the TCAFCSI field of the TeA. 

87 



SEGSET=ALL is used when reading a segmented record if the entire 
logical record is desired in an unpacked and aligned fermat. SEGSET=ALL 
is automatically used by CICS when updating a segmented record. The 
entire logical record is unp~cked and returned to the application 
I=rogram. 

If the SEGSET operand is omitted, and the GET is from a segmented 
data set, the logical record is returned in its packed format. 

INDEX: The INDEX=name operand specifies the symbolic name of the 
highest level index data set used in an Indirect Access hierarchy of 
ISAM and/or DAM data sets. (This index data set is the first data 
set accessed in the hierarchy.) The symbelic name must have been 
previously defined in the FCT. INDEX=YES must be coded if the 
application programmer has previously placed the sYRbolic name in the 
TCAFCAI field of the TCA. If the index data set is a DAM data set, 
it cannot be blocked. 

TYPOPER: The TYPOPER=UPDATE operand is used when a record is to be 
o~tained for updating. Tu free the area used, a DFHFC TYPE=RELEASE 
or DPHFC 'IYPE=PUT must be issueq" .. ~ If the TYPOPER=UPDATE operand is 
omitted, a read-only operation is assumed. If the record being updated 
is from a blocked DAM data set, the RETMETH operand must also be 
specified. If the applicatien pregram is to update more than one data 
set concurrently, a separate Record Identification field (RDIDADR) 
must be specified for each update request. 

RETMETH: The RETMETH operand applies only to blocked DAM data sets 
and is used to specify the argument type (deblocking method) for the 
deblocking of the data sets. The RETMETH=RELREC operand specifies 
that retrieval is to occur by relative record, where the first record 
in a block is record zero. The RETMETH=KEY operand specifies that 
retrieval is to occur by key. The RETMETH operand must be specified 
if TYPOPER=UPDATE is present. 

If the RETMETH keyword is emitted and a request to read a blocked 
DAM data set is issued, the entire physical record (block) is returned 
to the requesting program in the FIOA. 

The user's block reference field, required by DAM, contains the 
criteria for the deblocking of DAM data sets. For further details, 
SEe the section "Data Base Considerations". 

NO.:t.§: If the record being retrieved is "undefined", it is the user's 
responsibility to determine the length of the record. 

The following are examples of the coding required to do a random 
read-only (inquiry) operdtion on a record of the master data set, 
assuming tlccked or segmented xecords. 

88 



KQ!: !§§.§mblg!: l~n~B!~gg: 

COpy DFHTCADS 
KEY DS CL8 
FWACBAR EQU 7 

COpy DFHFWADS 
RECORD DS OCL350 

MVC KEY,ACCTNO 
READREC DFHFC TYPE=GET, 

DATASET=MASTERA, 
RDIDADR=KEY 

L FWACBAR,TCAFCAA 

Page of SH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

COpy TCA SYMBOLIC STRG DEFN 
RECORD IDENT FIELD IN TWA 
ASSIGN BASE REGISTER FOR FWA 
SYMBOLICALLY DEFINE FWA 
RECORD LAYOUT FOLLOWS CONTROL 
FIELD AND HAS SAME BASE REGISTER 

MOVE RECORD IDENT TO KEY FIELD 
GET RECORD FROM MASTER DATA SET 

ESTABLISH ADDRESS ABILITY FOR FWA 

* 
* 

02 FWACBAR PICTURE S9(8} USAGE IS COMPUTATIONAL. 

0' DFHTCADS COPY DFHTCADS. 
I 02 KEYF PICTURE X (8) • 

01 DFHFWADS COpy DFHFWADS. 
02 RECORD PICTURE X(350). 

PROCEDURE DIVISION. 
MOVE CSACDTA TO TCACBAR. 

I ~OVE ACCTNO TO KEYF. 
READREC. 

DFHFC TYPE=GET, 
DATASET=MASTERA, 
RDIDADR=KEYF 

MOVE TCAFCAA TO FWACBAR. 

%INCLUDE DFHTCADS; 
02 KEY CHAR (8) ; 

%INCLUDE DFHFWADS; 
02 RECORD CHAR(350}; 

KEY=ACCTNO; 
READREC: 

DFHFC TYPE=GET, 
DATASET=MASTERA, 
RDIDADR=KEY 

FWACBAR=TCAFCAA; 

NOTE DEFINE BASE REGISTER FOR FWA. 

NOTE COpy SYMBOLIC STRG DEFN FOR TCA. 
NOTE DEFINE KEY FIELD IN TWA. 

NOTE COPY SYMBOLIC STRG DEFN FOR FWA. 
NOTE DEFINE RECORD LAYOUT IN FWA. 

NOTE ESTABLISH TCA ADDRESSABILITY. 

NOTE MOVE RECORD IDENT TO KEY. 

GET RECORD FROM MASTER DATA SET * 

NOTE ESTABLISH FWA ADDRESSABILITY. 

-/*COPY SYMBOLIC STRG DEFN FO~ TCA*/ 
/*DEFINE KEY FIELD IN TWA*/ 
/*COPY SYMBOLIC STRG DEFN FOR FWA*/ 
/*DEFINE RECORD LAYOUT IN FWA*/ 

/*ASSIGN RECORD IDENT TO KEY FIELD*/ 

* 

GET RECORD FROM MASTER DATA SET * 

* 
/*ESTABLISH ADDRESSABILITY FOR FWA*/ 

The following are examples of the coding required to randomly 
retrieve a record for update on the master data set. 

89 



Page of SH20-104 7-4 
Revised April 11, 1973 
By TNL SN20-9012 

EQ~ ~§§gNQlg~ l£nguagg: 

COPY 
KEY DS 
FWACBAR EQU 

COpy 
RECORD DS 

DFHTCADS 
CL8 
7 
DFHFWADS 
OCL350 

MVC KEY,ACCTNO 
READUPD DFHFC TYPE=GET, 

DATASET=MASTERA, 
RDIDADR=KEY, 
TYPOPER=UPDATE 

L FWACBAR,TCAFCAA 

COPY TCA SYMBOLIC STRG DEFN 
DEFINE KEY FIELD IN TWA 
ASSIGN BASE REGISTER FOR FWA 
SYMBOLICALLY DEFINE FWA 
RECORD LAYOUT FOLLOWS CONTROL 
FIELD AND HAS SAME BASE REGISTER 

MOVE RECORD IDENT TO KEY FIELD 
GET RECORD FROM MASTER DATA SET 
FOR UPDATE 

ESTABLISH ADDRESSABILITY FOR FWA 

* 
* 
* 

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL. 

01 DFHTCADS COpy DFHTCADS. 
02 KEYF PICTURE X(8). 

01 DFHFWADS COpy DFHFWADS. 
02 RECORD PICTURE X (350) • 

PROCEDURE DIVISION. 
MOVE CSACDTA TO ~CACBAR. 

MOVE ACCTNO TO KEYF. 
READREC. 

DFHFC TYPE=GET, 
DATASET=MASTERA, 
RDIDADR=KEYF 

MOVE TCAFCAA TO FWACBAR. 

rQ~ R1L1: 

%INCLUDE DFHTCADS; 
02 KEY CHAR (8) ; 

%INCLUDE DFHFWADS; 
02 RECORD CHAR (350) ; 

KEY=ACCTNO; 
READREC: 

DFHFC TYPE=GET, 
DATASET=MASTERA, 
RDIDADR=KEY, 
TYPOPER=UPDATE 

FWACBAR=TCAFCAA; 

90 

NOTE DEFINE BASE REGISTER FOR FWA. 

NOTE COPY SYMBOLIC STRG DEFN FOR TCA. 
NOTE DEFINE KEY FIELD IN TWA. 

NOTE COpy SYMBOLIC STRG DEFN FOR FWA. 
NOTE DEFINE RECORD LAYOUT IN FWA. 

NOTE ESTABLISH TCA ADDRESSABILITY. 

NOTE MOVE RECORD IDENT TO KEY FIELD. 

GET RECORD FROM MASTER DATA SET * 

NOTE ESTABLISH FWA ADDRESSABILITY. 

/*COPY SYMBOLIC STRG DEFN FOR TCA*/ 
/*DEFINE KEY FIELD IN TWA*/ 
/*COPY SYMBOLIC STRG DEFN FOR FWA*/ 
/*DEFINE RECORD LAYOUT IN FWA*/ 

/*ASSIGN RECORD IDENT TO KEY PIELD*/ 

* 

GET RECORD FROM MASTER DATA SET * 

/*ESTABLISH ADDRESSABILITY FOR FWA*/ 

* 
* 



.. --r11'lf fcllowing are examFles of the coding Iequired to randomly 
retrieve a ~eccrd for update where the key for the desired record is 
unkno~n. A cross-index data set containing the master key is available, 
making it possitle to access the record indirectly~ 

COpy 
KEY DS 
'FWACEAR EQU 

CCPY 
rECORD DS 

DFH'ICADS 
CL25 
7 
DF'HFWADS 
OCL350 

MVC KEY,INDEXA 
B~ADING D~HFC TYPE=GET, 

DATASE'I=MASTERA, 
RDltADR=KEY, 
TYPOPER=UPCATE, 
INDEX=INDIRECT 

L FWACEAR,TCAECAA 

COpy TCA SYMEOLIC STRG DEFN 
DEFINE KEY FIELD IN TWA 
ASSIGN BASE RE~ISTER FOR FWA 
SYMBOLICALLY DEFINE FWA 
RECORD lAYOUT FOLLOWS CONTROL 
EIELD AND HAS SAME BASE REGISTER 

MOVE INDEX IDFNT TO KEY FIELD 
GET RECOFD FROM MASTER DATA SET 
BY FIRST ACCESSING A CROSS-INDEX 
DATA SET NAMED INDIRECT 

ESTABLISH ADDRESSABILITY FOR FWA 

* 
* 
* 
* 

D2 FWACEAR PICTURE S9(8) USAGE IS COMPUTATIONAL. 

01 DFHTCADS COpy DFHTCADS 
02 KEY FICTURE X (25) • 

01 DFHFWAtS COFY DFH'WADS. 
02 RECCRD FICTURE X(350). 

FROCEDURE DIVISION. 
MOVE CSACDTA TO TCACBAR. 

MOVE PARTNAME TO KEY. 
F1!ADREC. 

DFHFC TYPE=GET, 
DA'IASE'I=MASTERA, 
RrIrADR=KEY, 
'IYPOPER=UPDA~E, 

INDEX=INDEXAB 
MOVE ~CAFCAA TO FWAC~AR. 

NOTE DEFINE BASE REGISTER. 

NOTE CCPY SYMPOLIC STRG DBFN FOR TCA. 
NOTE DEFINE KEY FIELD IN TWA. 

NOTE CCPY SYMBOLIC STRG DEFN FOR FWA. 
NOTE DEFINE RECOBD LAYOUT IN FWA. 

NOTE ESTABLISH TCA ADDRESSABTLITY. 

NOTE MOVE INDEX IDENT TO KEY. 

GET RECORD FROM MASTER DATA SET * 
BY FIRST ACCESSING A CROSS-INDEX * 
tATA SET NA5ED INDEXAB * 

* 
NOTE ESTABLISH rWA ADDRESSABILITY. 

91 



~INCLUDE DFHTCADS; 
02 KEY CHAR (25) ; 

'INCLUDE DFBFWADS; 
02 BECORD CHAR(350); 

/*COPY SYMBOLIC STRG DEFN POR TCA*/ 
/*DEFINE KEY FIELD IN TWA*/ 
/*COPY SYMBOLIC STRG DEFN FOR FWA*/ 
/*DEFINE RECORD LAYOUT IN FWA*/ 

IfEY=PARTNAME; 
FEADREC: 

/*ASSIGN RECORD INDENT TO KEY FIELD*/ 

DFHPC TYPE=GET, 
DATASET=MASTERA, 
'RDItADR=KEY, 
TYPOPER=UPtATE, 
INDEX=INDEXAB 

F~ACEAR=TCA"PCAA; 

GET RECORD FROM MASTER DATA SET 
BY FIRST ACCESSING A CROSS-INDEX 
DATA SET NAMEr: INDEXAB I 

/*ESTABLISH ADDRESSABILITY FOR FWA*/ 

RANDOMLY UPDA!! OR AtD rATA TO A DATA SET (PUT) 

The application programmer can randomly update or add data to a 
data set (file) by issuing the 

DFHFC TYPE=PUT, 
BDIDADR=symbclic address, 
SEGSET=YES, 
lYFOPER=NEWREC,UPDATE, 
NCEE~P=symbolic address, 
DUPREC=symcolic address, 
INVREQ=symtclic address, 
IOEBROR=symbclic a1dress, 
NOSPACE=symbclic address, 
NCTCfEN=symtclic address 

macro instruction. This macro instruction is used to (1) update an 
existing record, which has been previously retrieved via the DFEFC 
lYPE=GET,TYPOfER=UPDATE macro instruction, or (2) add a new record 
to an existing data set. Note that a DFHFC TYPE=PUT macro instruction 
must never be issued without first issuing a DFHFe TYPE=GET or DFHFC 
TYPE=GETAREA macro instruction. or unpredictable results will occur. 

A File Work Area (FWA) is used to contain the record or segments 
to be written or updated. The first 16 bytes of this work area are 
the CICS control section followed by the actual record or segments. 

CICS performs the following services in response to a DFHFC ~YPE=PUT 
macro instruction: 

1. Writes updated or new records on user-defined data sets 
2. Acquires or locates the main storage and control blocks required 

to write the record 
3. Rel~ases all data set storage associated with the request to 

write 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

4. Packs a segmented Iecord, depending cn the data set organization 
and the opeIands inclUded in the DFHFC TYPE=PUT macro instruction 

B~fore file services can be requested in an application program 
via the DFP.FC TYPE=PUT macro instruction, the user must have previously 
defined in the File Centrel Table (PCT) all data sets referenced by 
the DATASET keyword parameter and all segment sets referenced by the 
SEGSET keyword parameter. The application programmer must have provided 
instructions that do the following: 

92 



1. Symtolically defin€ the FiA by (1) copying the a~~ropriate 
storage definition (D~HFWADS) provided by CIes, or (2) providing 
his ewn storage definition for the FWA. 

2. Establish addressatility for the new PWA by specifying a symbolic 
tase address for the FiA. 

3. Place the address of the FWA in the TCA at TCAFCAA. This address 
is ~rovided by CTCS in resFonse to a previous DFHFC TYPE=GET 
or DFHFC TYPE=GETAREA request. 

The application programmer must specify the parameters he requires 
to PUT data to a data set. He can do this in either of two ways: (1) 
ty including the parameters in operands of the DFflFC TYPE=PUT macro 
instructicn, or (2) by coding instructions, ~fiQ£ to issuing the DFHFC 
1YPE=PUT macro instruction, that dynamically move these parameters 
to fields in the ~CA. If the parameters are included in operands of 
the rFHFC TYPE=PUT macro instruction, the applicable keywords are 
RDIDADR, SEGSET, and TYPOPER. 

If the records being written to a data set are undefined, the 
applicatien progranmer must place the length of the record being written 
in the TeA at TCAFCURL. 

A discussicn of the operands that can be included in the DFHFC 
1YPE=PUT macroinstructicn fellows. (The keywords used to access user­
written exception handling routines are discussed in the section "Test 
Response to a Request for File Services".) 

RfIDADR: This operand is used to specify the symbclic address of the 
user's data field that contains the key, as required by ISAM, or the 
tlcck reference field, as required by DAM, of the record to be written. 
This operand can be omitted if the application programmer has previously 
~laced the symbolic address in the TClFCRI field of the TCA. Note 
that this operand must not reference a field in the FWA as the FWA 
might be freed before the actual write occurs. 

S~GSE~: !te SEGSE~=YES o~erand is used when a data set containing 
segmented records is to te added to or updated. If this operand is 
omitted, File Centrel does not perform its normal packing operation 
cn segmented records. 

~YPUPER: The TYPCPEB=N3WBEC operand must be used when adding a new 
record to an existing data set. If this operand is omitted, the dafault 
is TYPOPEB=UPDATE in which case the DFHFC TYPE=GET,TYPOPER=UPDATE macro 
instruction must pr£ced~ the DFHFC TYPE=PUT request. 

If the application programmer desires to check the resFonse to his 
request to retrieve data from a data set, he must specify the entry 
labels he requires to access user-written error handling routines. 
He can do this in any of three ways: (1) by including the entry labels 
in operands of the DFHFC 1YPE=PUT macro instructien, (2) by coding 
instructions immeaiatelv fclloving the DFHFC TYPE=PUT macro instruction 
that examine the rispon~e cede provided by CICS at TCAFCTR ~CAFCRC 
if the language is ANS COBOL) and transfer control to the appropriate 
routine, or (3) by includjng the entry labels in the DFHFC TYP~=CHECK 
macrO instruction (which usually immeaiately fellows the DFHFC TYPE=PUT 
macro instruction). In any case, the applicable keywords are NORESP, 
rUPREc, INVEEC, IOEBFOR, NOSPACE, and NOTCPEN. 

The fcllowing are examples of the coding required to randomly 
retrieve a record for updating and then return that record to the data 
set. 

93 



COpy 
KEY DS 

DPH'I-CADS 
CL8 

FWACBAR EQU 
COPY 

FECORD DS 

7 
DFHFWADS 
OCL350 

BEADUPD DFHFC TYPE=GET, 
DA'IASET=MASTERB, 
RDItADR=KEY, 
TYPOPER=UPDATE 

L FWACBAR,TCAFCAA 

(update record) 

ST FWACBAR,TCA~CAA 

WRITEUP DFEFC TYPE=PUT, 
RTIIIADR=KEY 

1.2£ A]~ ~g].Q1: 

02 FWACEAR EICTURE S 9 (8) • 

01 DFH!CADS COPY DFH!CADS. 
02 KEY FICTURE X(8). 

01 DFHFWAtS COPY DFHFWADS. 
02 RECOND PICTUNE X (350) • 

fROCEDURE DIVISION. 
MOVE CSACDTA TO TCACBAR. 

BE ADUPD. 
DFHFC TYPE=GET, 

DA'IASET=MASTERB, 
RDIDADR=KEY, 
TYPOPER=UPDATE 

MOVE TCAFeAA TO FWACBAR. 

(update record) 

MOVE PWACEAB !C TCAFCAA. 
WRITEUP. 

DFHFC TYPE=PUT, 
RI:II:ADR=KEY 

f2£ ]lLI: 

~INCLUDE DPHTCADS; 
02 KEY CHAR (8) ; 

~INCtUDE DFHFWADS; 
02 RECORD CHAR (350) ; 

94 

COpy TeA SYMBOLIC STRG DEFN 
DEFINE KEY FIELI: IN TWA 
ASSIGN .BASE REGISTER FOR PiA 
SYMEOLICALLY DEFINE PiA 
RECORD LAYOUT FOLLOWS CONTROL 
FIELD AND HAS SAME BASE REGISTER 

READ RECORD FOR UPDATE 

ESTABLISH ADDRESSABILITY FOR FWA 

PLACE FWA ADDRESS IN TCA 
WRITE THE UPIATED RECORD 

USAGE IS COMfUTATIONAL. 
NOTE DEFINE BASE REGISTER FOR FiA. 

* 
* 

* 

NOTE COPY SYMBOLIC STRG DEFN FOR TCA. 
NOTE DEFINE KEY FIELD IN TWA. 

NOTE COPY SYMBOLIC STRG DEFN FOR FWA. 
NOTE DEFINE RECORD LAYOUT IN FWA. 

NOTE ESTABLISH TCA ADDRESSABILITY. 

READ RECORD FOB UPDATE * 

NOTE ESTABLISH FiA ADDRESSABILITY. 

NOTE MOVE ADDRESS OF PiA TO TCA. 

WRITE ~HE UPDATED RECORD 

/*COPY SYMBOLIC STRG DEFN FOR TCA*/ 
/*DEFINE KEY FIELD IN TWA*/ 
/*COPY SYMBOLIC STR6 DEFN FOR FWA*/ 
/*DEFINE RECORD LAYOUT IN FWA*/ 

* 
* 
* 

* 



READUP: 
DFEFC TYPE=GET, 

DATASET=MASTEBB, 
RtltADR=KEY, 
TYPOFER=UPr.ATE 

BEAD RECORD Fc] UPtATE * 

FWACBAR=TCAFCAA; 

(update record) 

~CAFCAA=FWACBAR; 

~RITEUP: 

/*ESTAELlSH ADDRESSABILlTY FOR FWA*/ 

/*PLACE ADDR OF WORK AREA IN TCA*/ 

* 
* 

DFHFCTYPE=PUT, 
RDIEADR=KEY 

WRITE ~HE UPIATED RECORD * 

OBTAIN A FILE WCRK AREA (GETAREA) 

The application programmer can obtain an area of main storage to 
create a new record fer a data set by issuing the 

DFHFC TYPE=GETAREA, 
DA1ASET=symbclic name, 
lNlTIMG=value,YES, 
DSIDER=symtclic address, 
NOBESP=symbolic address, 
INVREQ=symtolic address, 
NOTCfEN=symbclic address 

macxc instruction. The new main storage area is a File Work Area (FiA) 
and can only be ottained through a DFHFC TYPE=GETAREA request. (A 
Storage Control DFHSC TYPE=GETMAIN request cannot be used for file 
operations.) 

crcs performs the fcllowing services in response to a DFHFC 
TYPE=GETAREA macro instruction: 

,. Acquires main storage (an FWA) for the creation of a new record. 
2. Includes and initializes the FWA control fields (a 16-byte 

prefix to the 1~A) required by File Control. 

Before the DFHFC TYPE=GETAREA is used in an application program, 
the user must have previously defined in the File ccntrol Table (FCT) 
all data sets referenced by the DATASET keyword parameter. The 
applicaticn programmer must have provided instructions that do the 
following: 

1. Symbolically define the FWA by (ll copying the appropriate 
storage definition (DFHFWADS) provided by ClCS, or (2) providing 
his cwn storagE definition for the FWA. 

* 
* 
* 
* 
* 
* 

2. Establish addressability for the new PWA by specifying a symbolic 
case address for the FiA. (The address of the area involved, 
returned by cres at TCAFCAA, must te placed at FWACBAR.) 

The application programmer must specify the parameters he requires 
to obtain a FWA. He can do this in either of two ways: (1) by including 
the parameters in operands of the DFHFC TYPE=GETAREA macro instruction, 
or (2) by coding instructions, ~IigI to issuing the DFHFC TYPE=GETAREA 
macro instruction, that dynamically move these parameters to fields 
in the TeA. If the parameters are included in operands of the DFHFC 
~YPE=GETAR~A macro instruction, the application keywords are DATASET 
and lNlTIMG. 

95 



If the application programmer desires to check the reb~0nse to his 
request tc obtain a PWA, he must specify the entry labels (symbolic 
addresses) he requires to access user-written error handling routines. 
He can do this in any of three ways: (1) by including the entry labels 
in operands of the DFHFC !YPE=GETAREA macro instruction, (2) by coding 
instructions immediately fcllowing the DFHFC TYPE=GETAREA macro 
instructicn that Examine the response code provided by CICS at TCAFCTR 
(TCAPCRC if the language is ANS CCBCL) and transfer contrel to the 
a~propriate routine, or (3) by including the entry labels in the DFEFC 
TYPE=CHECK macro instruction (which usually immediately follows the 
CFHPC TYPE=GETABEA macro instruction). In any case, the applicable 
keywords are DSIDER, NOB~SP, INVREQ, and NOTCFEN. 

A discussicn of the operands that can te included in the DFHFC 
TYPE=GETAREA macro instructicn follows. (The keywords used to access 
user-written exception handling routines are discussed in the section 
"Test Response to a Request for File Services".) 

DATASET: This operand is used to specify the symbolic name of the 
data set (fil~ to be accessed. The symbolic name must have been 
previously defined in the File Ccntrol Table (FCT). This operand can 
te omitted if the application Frcgrammer has previously placed the 
symbolic name in the TCAFCDI field of the TCA. 

INITIMG: . The INI'IIMG=value operand is used, at the option of the 
application prograwmer, to specify a one-byte hexqdecimal initialization 
value for the FWA acquired by File Control. INITIMG=YES must be used 
if the applicaticn prcgrammer has previously placed the initialization 
value in the TCASCIB fi€ld of the TCA. 

If the INITIMG keyword is omitted, the FWA is initialized to EBCDIC 
tlanks (X'40').· . •• , 

. ~ 

The following are examples of the coding required to obtain a FWA, 
build a new r€cord in the PWA, and then write the record to a data 
set. 

COPY 
KEY DS 
FWACEAR EQU 

COPY 
fECORD DS 

DFHTCADS 
CL8 
7 
DFHFiADS 
OCL350 

NEWREC DPHFC TYPE=GETAREA, 
DATASE!=I1ASTERC 

L FWACEAR,TCAFCAA 

(build new record) 

ST PWACBAR,TCAFCAA 
WRITNEW DPEFC TYFE=PUT, 

TYPCFER=NEWREC, 
RtltADR=REY 

96 

COpy TCA SYMBOLIC STRG DEFN 
DEFINE KEY FIEL~ IN TiA 
ASSIGN BASE REGISTER FOR FWA 
SYMEOLICALLY DEFINE FWA 
RECORD LAYOUT FOLLOWS CONTROL 
FIELD AND HAS SAME BASE REGISTER 

OBTAIN A PWA TO CREATE A NEW 
RECORD FOR A DATA SET 
ESTABLISH ADDRESSABILITY ~OR FWA 

PLACE ACDR OF NEW RECORD IN TCA 
WRITE THE NEW RECORD 

* 

* 
* 



02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL. 
NOTE DEFINE BASE REGISTER FOR FWA. 

01 DFHTCADS COpy DFHTCADS. 
02 KEY PICTURE X (8) • 

NOTE COpy SYMBOLIC STRG DEFN FOR TCA. 

01 DFHFWADS COpy DFHFWADS. 
02 RECORD PICTURE X(350). 

PROCEDURE DIVISION. 
MOVE CSACDTA TO TCACBAR. 

NEWREC. 
DFHFC TYPE=GETAREA, 

DATASET=MASTERC 
MOVE TCAFCAA TO FWACBAR. 

(build new record) 

MOVE FWACBAR TO TCAFCAA. 
DFHFC TYPE=PUT, 

TYPOPER=NEWREC, 
RDIDADR=KEY 

KQ£ PL/I: 

%INCLUDE DFHTCADS; 
02 KEY CHAR (8) ; 

%INCLUDE DFHFWADS; 
02 RECORD CHAR(350) ; 

NEWREC: 

NOTE DEFINE KEY FIELD IN TWA. 

NOTE COpy SYMBOLIC STRG DEFN FOR FWA. 
NOTE DEFIN~ RECORD LAYOUT IN FWA. 

NOTE ESTABLISH TCA ADDRESSABILITY. 

OBTAIN A FWA TO CREATE A NEW * 
RECORD FOR A DATA SET 
NOTE ESTABLISH FWA ADDRESSABILITY. 

NOTE ADDRESS OF NEW RECORD TO TCA. 
WRITE THE NEW RECORD 

I*COPY SYMBOLIC STRG DEFN FOR TCA*I 
I*DEFINE KEY FIELD IN TWA*I 
I*COPY SYMBOLIC STRG DEFN FOR FWA*/ 
I*DEFINE RECORD LAYOUT IN FWA*I 

* 
* 

DFHFC TYPE=GETAREA, 
DATASET=MASTERC 

FWACBAR=TCAFCAA; 

OBTAIN A FWA TO CREATE A NEW * 

(build new record) 

TCAFCAA=FWACBAR; 
WRITNEW: 

RECORD FOR A DATA SET 
I*ESTABLISH ADDRESSABILITY FOR FWA*/ 

/*PLACE ADDR OF NEW RECORD IN TCA*/ 

DFHFC TY PE=PUT, 
TYPOPER=NEWREC, 
RDIDADR=KEY 

WRITE THE NEW RECORD * 

RELEASE FILE STORAGE (RELEASE) 

The application programmer can release the storage areas acquired 
for File Control operations by issuing the 

DFHFC TYPE=RELEASE, 
INVREQ=symbolic address 

* 

* 

97 



Page of SH20-1047-4 
Revised April 11, 1973 
By TNL SN20-90 12 

macro instruction. This macro instruction is primarily used when (1) 
a record has been retrieved for update, (2) it is determined that the 
update should not occur, and (3) it is desired to release all 
encumbrances associated with the update operation (that is, FWA, FIOA, 
exclusive control) . 

.N2i.§: In the case 0 f response codes X' 01' (DSIDER), X' 04' (SEGIDER), 
X'03' (INVREQ), X'OC' (NOTOPEN), CICS does not acquire an FIOA; 
therefore TCAFCAA does not contain an FIOA address. 

To release the storage occupied by a FWA or FIOA that was returned 
to a read, either a DFHFC TYPE=RELEASE or DFHSC TYPE=FREEMAIN macro 
instruction should be issu~d. However, if a "read for update" request 
results in an error, the FIOA is returned to the user; a DFHFC 
TYPE=RELEASE macro instruction should then be issued to release any 
exclusive control emcumbrances. 

The DFHFC TYPE=RELEASE macro instruction must not be specified if 
the DFHFC TYPE=PUT macro instruction is used to write an updated record 
back to a data set. 

CICS performs the following services in response to a DFHFC 
TYPE=RELEASE macro instruction: 

1. Releases a FWA and/or FIOA. 
2. Releases exclusive control of a record retrieved for update (if 

applicable) • 

Before the DFHFC TYPE=RELEASE macro instruction is executed, the 
application programmer must ensure that the address of the FWA to be 
released has been placed in the TCA at TCAFCAA. The FIOA (if any) 
associated with it is also released. In addition, the correct record 
identification must be present in the Record Identification field 
specified in the RDIDADR operand of the DFHFC TYPE=GET macro 
instruction. 

The FWA and FIOA are automatically released at termination of the 
task, if not released earlier in response to to this macro instruction. 

If the application programmer desires to check the response to his 
request to release a FWA or FIOA, he must specify the entry label 
(symbolic address) he requires to access the user-written exception 
handling routine. He can do this in any of three ways: (1) by including 
the INVREQ operand in the DFHFC TYPE=RELEASE macro instruction, (2) by 
coding an instruction immediately following the DFHFC TYPE=RELEASE 
macro instruction that examines the response code provided by CICS at 
TCAFCTR (TCAFCRC if the language is ANS COBOL) and transfers conrol to 
the appropriate routine, or (3) by including the INVREQ operand in the 
DFHFC TYPE=CHECK macro instruction (which usually immediately follows 
the DFHFC TYPE=RELEASE macro instruction). In any case, the applicable 
keyword is INVREQ. 

For a discussion of the INVREQ keyword, see the section "Test 
Response to a Request for File Services". 

The following are examples of the coding required to request the 
release of a FWA. 

FWACBAR EQU 
COpy 

RECORD DS 

98 

7 
DFHFWADS 
OCL350 

ASSIGN BASE REGISTER FOR FWA 
SYMBOLICALLY DEFINE FWA 
RECORD LAYOUT FOLLOWS CONTROL 
FIELD AND HAS SAME BASE REGISTER 



ST FWACBAR,TCAFCAA ADDRESS OF FWA TO BE RELEASED 
DFHFC TYPE=RELEASE IN TCA AND ISSUE RELEASE REQUEST 

98.1 





1.2]; !]~ ~~.I£1: 

02 FWACBAR PICTURE S9(8) USAGE IS CO~PUTA~IONAL. 
NOTE DEFINE BASE REGISTER FOR PWA. 

01 DFHTCADS COpy DFH~CADS. 

02 RECeRt PICTURE X (350) • 
NOTE CCPY SYMBOlIC STRG DEFN FOR FWA. 
NOTE DEFINE RECORD LAYOUT IN FWA. 

fFOC!DURE DIVISION. 
MOVE CSACDlA TO TCACEAR. 

MOVE FWACBAR TO TCAFCAA. 
FISEREC. 

DFBFC TYPE=RELEAS~ 

%INCLUDE DFHTCADS; 

1INCLUDE DFHFWADS; 
02 RECORD CHAE (350) ; 

TCACEAR=CSACDlA; 
'ICAFCAA=Ft<TACBAR; 
FLSEREC: 

DFRFC TYPE=RELEASE 

NOTE ESTABLISH TCA ADDRESSABILITY. 

NOTE ADDE OF FWA TO BE RELEASED. 

ISSUE RELEASE BEQUEST 

/*COPY SYMBCLIC STRG DEFN FOR TCA*/ 

/*COpy SYMBOLIC STRG DEFN POR FWA*/ 
/*DEFINE RECORD LAYOUT IN FWA*I 

/*ESTAELISH ADDRESSABILITY FOR TCA*/ 
/*ADDRESS OF FWA TO BE RELEASED*/ 

ISSUE RELEASE REQUEST 

INITIATE SEQUENTIAL RETRIEVAL (SElL) 

The application programmer initiates a seguential retrieval operation 
en a data set by issuing the 

DFRFC TYPE=SE':rl, 
IAIASET=symtolic name, 
RDIDADR=symbclic address, 
SEGSE!=symbolic name,YES,ALL, 
BETME!H=RELREC,KEY, 
NCBESP=symbclic address, 
DSIDER=symtclic address, 
SEGIDER=symtclic address, 
INVREQ=symtolic address, 
NCTCPEN=symhclic address 

macro instruction. This macro instruction is used cnly to initiate 
a sequential retrieval operation and must be issued before any GETNEXT 
macro instruction. It is used to establish the starting position 
within the data set where the browse operation is to begin. 

Records are always r€turned to the application program in a File 
Work Area (PWA). The FWA returned by CIes follo~ing a SETL request 
is unique for the duration of that p~rticular sequential operation. 
Should the applicaticn program issue another SETL request, for the 
same or another ~ata set, a different FWA will ce created by CICS. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

99 



- Thus it is pcssible for a single application pregram to be concurrently 
trowsing the same data set at several different locations. 

Note that during a browse operation on a segmented data set, the 
original FWA (that is, the one allocated by the 5ETL request) may be 
replaced with a different PWA if a segment set specified in a GETNEXT 
request requires a larger PiA than the segment set specified in the 
SETL request. In this situation, the application programmer should 
not rely on the same rWA being returned f~om a GETNEXT request as was 
specified when the GETNEXT request was issued. The address of the 
a~propriate FiA is always located in the TCA field labeled TCAFCAA 
upon return from a GETNEXT request. 

CICS performs the fellowing services in response to a DFHFC TYPE=SETL 
macro instruction: 

1. Acquires the main storage I/O areas and work areas to be 
associated with this browse operation. 

2. Preserves the segment set name (if any) as th€ default segment 
set to be used if none is specified in subsequent GETNEXT 
requests. 

3. Returns the FWA a1dress in the TeA field l~beled TCAFCAA. 

Before the SETL macro instruction can be u£ed, the user must have 
previously defined in the File C~ntrol Table (PCT) the data set 
referenced by the DA!ASET operand and all sEgment sets referenced by 
the SEGSET operand. The application programmer should have also 
~rovided instructiens which do the following: 

1. Symbolically define the FWA by (1) copying the CICS control 
section definition (DFHFWACS) provided by CICS, and (2) providing 
his cwn storage definition for the user's sec~ion of the FWA. 

2. Estatlish addressability for the F~A by specifying a symbolic 
base address for the FiA, typically following the DFHFC macro 
instruction. (The address of the FWA, provided by CICS at 
TCAFCAA, must be placed at PWACBAR upon normal returti from the 
SETL. ) 

A discussion of the operands that can be used with the DFHFC 
~YPE=SETL macro instructicn fellows. (The keywords used to specify 
user-written exce~tion handling routines are disc~ssed in the section 
"Test Response to a Request for rile Services". These keywords include 
NOBESP, DES1DER, SEGIDER, INVBEQ, and NOTCPFN.) 

DATASET: This operand is used to specify the symbclic name of the 
data set cn which seguential retrieval is to be initiated. The symbolic 
name must have been previcusly defined in the File control Table (FeT). 
This operand can te omitted if the application Frcgrammer has previously 
plac€d the symhclic data set name in the TCA field, labeled TeAreDI. 

RtIDADR: This operand specifies the symbclic address of the user's 
B~cord Identification field which contains the specific or generic 
(partial) key as required by 15AM, or the block reference as required 
by DAM. This operand can be omitted if the application programmer 
has previously placed the address ~f the field in the TeAFCRI field 
of the TeA. A generic key is one in which the user supplies only the 
significant characters of a desired group of keys, padding the remainder 
of the key field with blanks er binary zeros. 

Fer an ISAM data set, the browse operation begins at the first 
record with a key equal to or higher than the key provided in the 
user's Record Identificaticn field. For example, a generic key 
specification of "D6420000" would cause sequential Frocessing to begin 

100 



at the first record with a key containing D642xxxx, regardless of the 
characters represented by the Xl s. (A key field of all binary zeros 
weuld therefore carise sequential precessing to begin at the first 
logical reccrd of the dataset.) 

For a DAM data set, the user's Record Identification field must 
contain a specific blcck reference (for example, TTR, MBBCCHHR, etc.) 
which conforms to the acceptatle addres~ing method defined for that 
data set. (For further details, refer to the section "Data Base 
Considerations".) processing begins with the specified block and 
continues with each subsequent block until the browse operation is 
terminated. If the DAM data set contains blocked records, processing 
begins at the first lo~ical record of the first block and continues 
with each subsequent logic~1 record. 

The information supplied by the user in the Record Identification 
field is preserved by CICS for use when GETNEXT requests are issued. 
~he Record Identification field is used by CICS during subsequent 
GETNEXT operations and should not be released by the application 
Frogrammer. CICS places ·the identification of each record into this 
field as the record is retrieved in response to a GETNEXT request. 

This feedback, piaced into the Record Identification field by CICS, 
is always in a form which completely identifies each record. (Refer 
to the sectien "Data Base Considerations" for furth~r infcrmation 
concerning the Record Identification field.) For example, assume a 
browse operation is to start with the first logical record of a blocked, 
keyed DAM data set. Before issuing the DFHFC TYPE=SETL macro 
instruction, the user should place the TTR (assuming that is the 
addressing method) of the first block into the Record Identification 
field. After executing each DFHFC TYPE=GETNEXT macro instruction, 
CICS places the complete logical record identification intb the Record 
Identification field. After the first GE~NEXT, the Record 
Identification field might contain: 

COC001BLOCK1REC1 

where "C00001" represents the TTR value, "BIOCK1" represents the block 
key, and "REC1" represents the record key. 

SEGSE!: !his operand is used to specify the symbolic name of the 
default segment set te te retrieved during a browse operaticn involving 
seg'mented records. This segment set is used automatically by CICS 
if the user fails to specify a segment set name on subsequent GETNEXT 
service requests. The segment set identified by a SETL macro 
instruction is always used as the default segment set throughout a 
browse operation unless altered by a RESETL macro instruction. The 
symbolic name must have been previously defined in the associated 
segment Control section of the File central Table (FCT). 

SEGSET=YES is used if the aFplication programmer has dynamically 
placed the symbolic name of the segment set in the TCA field labeled 
TCA!CSI prior to issuing the DFHFC TYPE=SETL macro instruction. 

SEGSET=ALL is used if the application programmer wishes all segments 
of a record returned in an unpacked and aligned format. 

If the SEGSE! operand is omitted, and the data set contains segmented 
Iecords, the logical record is returned in its packed format. 

RETMETH: Applicable only to blocked EDAM data ~ets, the RETMETH operand 
is used to specify the format of the logical record identification 
that is placed in tbe user's Record Identification field by CICS each 

101 



time the next logical record is retrieved in a browse operation. If 
RETM!TH=RELREC is specified, the one-byte binary relative record number 
is provided. If BETMETH=KEY is specified, the logical record key is 
Frovided; however, the records must have embedded keys. 

For example, if a user is browsing a blocked EDAM data set (non­
keyed) and the second logical record from thE second physical block 
cn the third relative track vas just read in response to a GETNEIT 
Iequest, the Record Identification Field would contain: 

X'OCC20201' 

upon return to the user, where "0002" represents the track, "02" 
Iepresents the block, and "01" represents the logical record within 
the block. 

The following is an example of the coding required to initiate a 
trcwse operation. 

FWACEAR EQU 
COpy 

FECORD DS 

START 

KEY 

EBBOR 

CSEC'I 

DPHPC 

L 

DS 
DC 
DC 
DS 

7 
DFHFWADS 
OCL3S0 

TYPE=SETL. 
DA'IASE'I=MASTER, 
RDIDADR=KEY, 
NCTOFEN=EBROR 
FWACEAR,TCAFCAA 

OCLS 
CiS'JONES' 
XL3'OO' 
OH 

ASSIGN BASE REGISTER FCB FWA 
PEFINE CONTROL SECTION OF FWA 
RECORD LAYOUT 

INITIATE BROWSE 

CHECK FOR ERRORS 

INI~IAt KEY DESIGNATION 
PARTIAL KEY 
PADDING 
ENTRY TO EBROR ROOTINE 

02 FWACEAR PICTURE S9(8) USAGE IS COMPUTATIONAL. 

01 DFHTCADS COpy DFHTCADS. 
02 KEY PICTURE X(8). 

01 DFHFWADS COpy DFHFWADS. 
02 RECCED PICTURE X(350). 

FBOCEDUR! DIV~SION. 
MOVE CSACD7A TO TCACEAR. 

102 

NOT! DEFINE BASE REGISTER FOR FWA. 

NOTE COpy SYMBOLIC STRG DEFN FOR TCA. 
NOTE DEFINE KEY FIELD IN TWA. 
NOTE COpy SYMEOLIC STRG DEFN FOR FWA. 
NOT! DEFINE RECORD LAYOUT IN FiA. 

NOTE ESTABLISH TCA ADDRESSABILITY. 

* 
* 
* 



MOVE 'JONES' TC KEY. 
START. 

D!H~C TYPE=SETL, 
DA'IASE'I=MASTER, 
RDItADR=KEY, 
NCTC]:EN=EBROR 

MOVE TCArCA! TO FWACEAB. 

EBROR. 

I.Q! PLL1: 

%INCLUDE DFHTCADS; 
02 KEY CHAB (8) ; 

~INCLUDE DFHFWADS; 
02 RECORD CHAR (350) ; 

KEY='JONES'; 
START: 

DFHFC TYPE=SETL, 
DA'IASE"I=MASTER, 
RIltADR=KEY, 
NC'IOFEN=EBROR 

FWACBAR=TCAFCAA; 

EBROR: 

INITIATE BROWSE 

CHECK FOR EBRORS 

/*COPY SY~BOLIC STRG DEFN FOR TCA*/ 

/*COPY SYMBOLIC STRG DEFN FOR PWA*/ 
/*DEFINE RECORD LAYOUT IN FWA*/ 

INITIATE BROWSE 

CHECK FCR ERRORS 

RETRIEVE NEXT SEQUENTIAL RECORD (GETNEXT) 

Once the application pIcgrammer has issued a DFEFC TYPE=SETL macro 
instructicn to initiate a browse operation, he may request the next 
(or first) sequential record by issuing tbe 

DFEFC TYPE=GETNEXT, 
SEGSE'I=symbolic name,YES,ALL, 
NORESP=symbolic address, 
SEGIDER=symbclic address, 
INVREQ=symtolic address, 
IOEBROR=symbclic address, 
NOTCPEN=symbclic address, 
ENDFIIE=symtclic address 

macro instruction. When the first GETNEX~ request is iSSU2d following 
a SETL request for an ISAM data set, eles acquires the first logical 
record with a key equal tc cr higber than the key presented by a 

* 
* 
* 

* 
* 
* 

* 
* 
* 
* * 
* 
* 

103 



previous SETL; for a DAM data set, CICS acquires the first logical 
record specified by the user. When initiating a browse operation on 
a tAM data set, the user must provide a specific record reference. 
Each subsequent GETNEXT request, whether for an ISAM or DAM data set, 
causes CICS to acquire the next logical record in sequence. 

Before issuing the DFHFC TYPE=GETNEXT macro instruction, the 
applicaticn ~Logramm~r must place the address of the FWA associated 
with the particular operation in the TCA field labeled TCAFCAA. If 
the application ~rogram has initiated multiFle browse operations, it 
must keep track of the FiA associated with each operation and refer 
to a specific FiA when requiring services related to that brQwse. 

CICS performs the fcllo~ing services in response to a DFHFC 
!YPE=GE!NEXT macro instruction: 

1. Retrieves the next sequential record and places it in the FWA 
specified by the user at TCAFCAA. 

2. Places the record identification (key, block identification, 
etc.) of the record just retrieved into the users Record 
Identification field which was specified in the DFHFC TYPE=SETL 
request. (Refer to the discussion of Record Identification 
field feedtack under the RDIDADR operand.) If the user wishes 
to issue a ~andom "read for update" on the record just returned, 
he need only specify the address of the Record Identification 
field in his GET request. 

In addition, CICS can perform the follcwing services, depending 
cn the operands included in the DFHFC TYPE~GETNEXT macro instruction. 

1. Present the user with the segments as specified in the GE7NEXT 
request. 

2. Present the user with the segments as specified in the SETL 
request if no segment set is specified with the GETNEXT request. 

3. If the FWA is not large enough to process a segment set specified 
in the GETNEXT request, dispose of the old FWA and acquire a 
new one large enough to process the new request. 

A discussion of the operands that can be included in the DFHFC 
7YPE=GE!NEXT macro instruction follows. (The keywords used to access 
user-written exception handling routines are diSCUSSed in the section 
"Test Response to a Request for File Services".) 

SEGSE!: This operand is used to specify the symbolic name of the 
segment set which is to be retrieved from the next sequential record. 
If this operand is not i~cluded in the DFEFC TYPE=GETNEXT macro 
instruction, ClCS will use thE default segment set name that may nave 
been specified in the DFHFC TYPE=SETL macro instructicn. 

If this operand is omitted on a GFTNEXT operation and if SEGSR~ 
was specified in the DFEFC TYPE=SETL macro instruction, the eight­
character default segment identification, as specified in the SETL 
macro instruction, is returned at TCAFCST uFon normal completion of 
the GETNEXT. 

SEGSET=YES is used if the application programmer has dynamically 
placed the segment set naree in the TeA field labeled TCAFCSI prior 
to issuing the DFHFC TYPE=GE~NEXT macro instruction. 

S!GSET=ALL is specified if the applicaticn programmer wishes all 
segments returr.ed in an unpacked and aligned format. 

104 



The following is an example of the coding necessary to retrieve 
the next sequential record in a bro~se operation using segmented 
records. 

19~ A§.§.§.mbl~!; l~.DgJJ.£gg: 

COpy DFH'ICADS 
KEY DS ex 
FWACBAR ECU 7 

COpy DFHFWADS 
rECORDA DS OCL350 

CSECT 
MVC 

INITIAL DFEFC 
KEY (8) , = 8 X' 00' 
TYPE=SETL, 
DA'IASET=MASTER, 
SEGSET=A, 
BDIDADR=KEY 

L FWACBAR,TCA"FCAA 

ST FWACE~R,TCArCAA 

rFF.FC TYPE=GETNEXT 

ST FWACEAR,TCAFCAA 
DFEFC TYPF=GETNEXT, 

SEGSE'!=B 

COpy TCA SYMBCLIC STRG DEF~ 

DEFINE KEY FIELD IN TWA 
ASSIGN FYlA EASE REGISTER 
DEFINE CIeS CONTROL SECTION OF 
DEFINE RECORD LAYOUT IN tWA. 

START AT BEGINNING OF DATA SET 
INITIATE BROWSE 

SET DEPAULT SEGMENT SET 

ESTABLISH FWA BA~E 7EGISTER 

GET NEXT SEQUENTIAL RECORD 

GET NEXT BECOBD 
WITH SF.GMENT B 

FWA 

02 FWACBAB PICTURE S9(8) USAGE IS COMFU'IATIONAL. 

NOTE DEFINE BASE REGISTER POR FWA. 

01 DFHTCADS COPY rFH'ICADS. NOTE COpy SYMBOLIC STRG DEFN FOR TCA. 
;:) 2 KEY PICTURE 59 (lB) ~SAGE IS COMPUTATICNAL. 

Cl DFHFWADS CCPY DFHFWADS. 
02 FECCFD PICTURE X(350). 

fBOCEDURE rIVISION. 
MOVE CSACD1A TO TCACEA3. 

MOVE 0 TO KEY. 

DFHFC '!YPE=SETL 

NOTE DEFINE KEY FIELD IN TWA. 

NOTE COpy SYMBOLIC STRG DEFN FOR PiA. 
NOTE DEFINE RECO~D LAYOUT IN PWA. 

NOTE ESTAELISH TCA ADDRESSABILITY. 

NOTE START AT BEGINNING OF DATA SET. 

INITIALIZE EEORS! 

* 
* 
* 

* 

* 

105 



DA'IASE'!=M I\STER, 
SEGSE-'T=A, 
RI: LCADR= KEY 

MOVE TCAFCAA TC FWACEAR. 

MOVE FWACEAR TO TCAFCAA. 
DEEFC TYPE=GETNEXT 

MOVE FWACEAR TO TCAFCAA. 
DFHFC TYPE=GETNEX!, 

SEGSET=B 

%INCLUDE DFETCADS; 
02 KEY BINARY FIXED (8,0) ; 

~INCLUDE DFHFWADS; 
02 BECORI: CHAR (350) ; 

KEY=O; 

DFHFC TYPE=SETL, 
DA'IASE'I=MASTER, 
SEGSET=A, 
rn::lrADR=KEY 

FWACBAR=TCAFCAA; 

TCAFCAA=FWACBAB; 
DFEFC 'IYPE=GETNEXT 

'IC~FCAA=FWACEAR; 

DEEFC TYPE=GETNEXT, 
SEGSET=B 

SET DEFAULT SEGMENT SET 

NOTE ESTAELISH PWA ADDRESSABILITY. 

GET N~X'I SEQUENTIAL RECORD. 

GET NEXT FECORD 
WITH SEGMENT :3 

/*COpy SYMBCLIC STRG DE~N FOR TCA*/ 
/*DEFINE KEY FIELD IN TWA*/ 

/*COPY SYMBOLIC STEG DEFN FOR FWA*/ 
/*DEFINE BECOFD LAYOUT IN FWA*/ 

/*START AT BEGINNING OF tATA SET*/ 

INITIALIZE BROWSE 

SET DEFAULT SEGMENT SET 

I*~STABIISH PWA ADDBESSABILITY*/ 

GE~ NEXT SEQUENTIAL RECORD 

GET NEXT RECORD 
WITH SEGMENT B 

TERMINATE SEQUENTIAL RETRIEVAL (ESETL) 

The application prcgrammer may terminate a bIowse operation by 
issuing tbe 

106 

DFEFC 'IYPE=ESETl, 
INVREQ=symtclic addx€ss 

* 
* 

* 

* 
* 
* 

* 

* 



macro instruction. Befor€ the macro is issued, the programmer must 
Ensure that the TCA field labeled TCAFCAA contains the address of the 
~ile Work Area (FWA) associated ~ith the crcwse operation he wishes 
to terminate. In response to an ESETL request, Cles will release all 
I/O and work areas associated with the browse operation. 

The following is an example of the coding necessary to terminate 
twc concurrent browse operations. 

1'.91; !§.§.§l!!Bl.§f l~'!!.9.!!gg~: 

FWACELL 1 

* FWACEIL2 

* FWACBAR 

rECORD 

COPY DFHTCADS 
DS A 

DS A 

EQU 7 
COPY DFHFWADS 
DS OC1350 

CSECT 

MVC TCAFCAA,FWACEIL1 
tEPFC TYPE=ESETL 
MVC TCAFCAA,FCACEl12 
DFEFC TYPE=ESETL 

COPY TCA SYMBOLIC STFG DEFN 
CCNTAINS ADDR OF F~H. USED 
FOR FIRST BROWSE OPERATION 
CCNTAINS ADDR OF FWA USED 
FOR SECOND BROWSE OPERATION 
ASSIGN FWA BASE REGISTER 
DEFINE FWA SYMBOLIC STORAGE DEFN 
DEFINE EECORD 

MOVE BROWSE 1 FWA ADDR TO TCA 
ISSUE ESETL MACRO INSTRUCTION 
MOVE BROWSE 2 FWA AtDR TO TCA 
ISSUE ESETL HACRe INSTRUCTION 

02 FWACBAE PIC~URE S9(8) USAGE IS COMPUTATIONAL. 

NOTF DEFINE BASE REGISTER FOR FWA. 

C1 DFHTCADS COPY DFHTCADS. 
02 FWACELL1 PIC!URE S9(8) 
02 FWACEIL2 PICTURE S9(8) 

01 DFEFWAIS COPY DFHFWADS. 
02 BECCED PICTURE X(350). 

NOTE COtY SYMBOLIC STRG DEFN FOR TCA. 

MOVE FWACELL1 !O TeAFCAA. 
DFEFC !YPE=ESETL 

MOVE FWACEIL2 to TCAFCAA. 
DFRFC 'IYPE=ESETL 

E.9.I E1Ll: 

~INCLUDE DFHTCADS; 
02 FWACEI11 FCINTER; 
02 F~ACELL2 POINTER; 

%INCLUDE DFEFWADS; 

USAGE IS COMPUTATICNAL. 
U~AGE IS COMPUTATIONAL. 

NOTE COpy SYMBOLIC STRG DEFN POR FWA. 
NOTE DEFINE RECORD LAYOUT IN PWA. 

NOTE PEEF~RE to END FIRST BROWSE. 
TERMINATE FIRST EBOWSE. 

NOTE PREPARE TO END 2ND BROWSE. 
TERMINATE SECOND BROWSE. 

/*COPY SYMBCLIC STRG DEFN FOR TCA*/ 

/*COPY SYMBOLIC STRG DEFN FOR FWA*/ 

107 



02 RECORE CHAR (350) ; 

TCAFCAA=FWACEIL1; 
DPHFC TYPE=ESETL 

TCAFCAA=PWACElL2; 
D~EFC TYPE=ESETL 

RESET SEQUENTIAL RETRIEYAL (RESETL) 

/*DEFINE RECORD LAYOUT IN FWA*/ 

/*MOVE BROWSE1 IWA ADDE TO TCA*/ 

/*MOVE BROWSE2 FWA ADDE TO TCA*/ 

Once a browse operation has been initiated with ~ SETL ~equest, 
the application ~rcgramm€r may~ at any time prior to issuing the ESETL 
reguest, reset the search argument to seme record ~ther than the next 
seguential record. He can accomplish this by issuing the 

DFEFC TYPE=RESETL, 
S£GSE!=symholic name,YES,ALL, 
NCRESP=symbelic address, 
SEGIDER=symbclic address 

macro instruction. Prior to issuing the request, the application 
programmer should ~lace the address of the a~~repriate PWA into the 
TCA field labeled TCAFCAA and place the new record identification in 
the Record Identification field specified through the EDIDADR operand 
jn the original SETL request. 

The use of the BESE~L macro instruction allows the application 
~rogrammer to avoid issuing an ESETL request felloved by another SETL 
request, and causes CICS to use the same I/O and work area. Upon 
return from the RESETL request, th€ TCA field labeled TCAFCAA contains 
the address of a new PWA which the user can use for the browse 
operation. 

The 'RESETL request allows the user to "skip" through his data set 
in a browse operation with the least possible overhead. 

SFGSE7.: ~his operand allows the user to re~lace the default segment 
set identification specified at SETL. If this operand is omitted, 
the SEGSET specifiEd in the last SETl or RESETL for this browse 
operation is used. 

SEGSET=YES is used if the application programmer ha~ dynamically 
placed the symbolic name of the segment set in the TCA field labeled 
TCIFCSI ~rior to issuing the DFHFC TYPE=RESETL macro instruction. 

SEGSET=ALL is used if the application Frogrammer wishes all segments 
of a record returned in an un~acked and aligned format. 

The following is an example of the coding necessary to reset the 
search argument and the default segment set for a browse operation. 

COpy 
KEY DS 
FWACEAR EQU 

COpy 
FECORD 1 DS 

108 

DFHTCADS 
D 
7 
DFHFW.ADS 
OCL350 

COpy TCA SYMBOLIC STRG DEFN 
DEFINE KEY FIELD IN TWA 
ASSIGN FWA EASE REGISTER 
,COpy FWA DSECT 
DEPINE BECORD WITH SEGSET A 

* 
* 
* 



O:RG 
FECORD2 DS 

CSECT 
MVC 
DFF-FC 

L 

:RECORD1 
OCL250 

KEY (E) ,=8X' 00' 
TYPE=SETL, 
DA'IASET=MASTER, 
RDIDADB=KEY, 
SEGSE'I=A 
,FWACEAR, TCAiCAA 

ST FWAC~AR,TCAFCAA 

MVC KEY(R) ,=CL8'SMITH' 
DFEFC TYPE=RBSETL, 

SEGSE'!=B 
L FWACBAR,TCAfCAA 

DEFINE RECORD WITH SEGSET B 

INITIALIZE K~Y FIELD 
ISSUE INITIAL SETL MACRO 
FOB DA'IASET "MASTER" 
INITIAL SEARCH ARG=O 
FOE SEGSET=A 
ESTABLISH ADDRESSABILITY TO FWA 

STORE PiA AtDR IN TCA 
ESTABLISH NEW SEARCH ARGUMENT 

* 
* 
* 

ISSUE RESETL MACRO * 
NEW SEGSET ID 
ES!ABLISH ADDRESSABILITY TO FiA 

02 FWACBAR PICTURE S9(8} USAGE IS COMPUTATIONAL. 

NOTE DEFINE BASE REGISTER FOR FWA. 

01 DFHTCADS COpy DFHTCADS. NOTE COpy SYMBOLIC STRG DEFN FOR TCA. 
02 KEY PICTURE 59(18) USAGE IS COMPUTATIONAL. 

02 FILLER REDEFINES KEY. 
03 KEYC PICTURE X (8) • 

01 DPHFWADS COPY DFHFiADS. 
02 RECOBDl PICTURE X(350). 

01 DFEFWA REtEFINES DFHFWADS. 
02 CICSPAR'I PICTURE X(*). 
02 RECORD2 PICTURE X{250). 

MOVE 0 TO KEY. 
DFHFC TYPE=SETL, 

DA'IASET=MASTER, 
RDItADR=KEY, 
SEGSE"T=A 

MOVE TCAFCAA TO FWACEAR. 

MOVE FWACBAR TO TCAFCAA. 
MOVE 'SMITH' TO KEYC. 
DFHFC 'IYPE=RESETL, 

SEGSET=B 
MOVE TCAFCAA ~O FWACBAR. 

NOTE DEFINE KEY fIELD IN TWA. 

NOTE COPY SYMBOLIC STRG DEFN FOR FiA. 
NOTE DEFINE RECORD WITH SEGSET A. 

NOTE CREA'IE STRG DEFN FOR FWA. 
NOTE PLACE LENGTE OF FiA HERE. 
NOTE DEFINE RECORD WITH SEGSET B. 

ISSUE INITIAL SETL MACRO INSTR * 
FOR DA~ASET "MASTER" * 
INITIAL SEARCH ARG=O * 
FOR SEGSET=A 
NOTE ESTABLISH ADDRESSABILITY TO FiA. 

NOTE STOBE FiA ADDRESS IN TCA. 
NOTE ESTABLISH NEW SEARCH ARGUMENT. 
ISSUE RESETL MACRO INSTRUCTION * 
NEW SEGSET ID 
NOTE ESTABLISH ADDRESSABILITY TO FWA. 

109 



!2J; ]1L1: 

~INCLUDE DFHTCADS; 
02 KEY EINARYFIXED(8,0); 

tECLARE 01 DFHXTCA EASED (TCACBAR) , 
02 FILL CHAR(*), 
1)2 KEYC CHAR (8) ; 

~INCLUD! tFHFiADS; 
02 BECCFD1 CHAR (350) ; 

tECLARE 01 DFHXFWA EASEt(!WACBAR), 
02 FILL CHAR(*), 
02 BECORD2 CHAB(250): 

KEY=O; 

/*COPY SYMBOLIC STRG DEFN FOR !CA*I 
/*DEFINE KEY AS BINARY*/ 

I*PLACE LENGTH OF TCA HERE*/ 
/*DEFINE KEY AS CHARACTER*I 

/*COpy SYMBOLIC STRG DEFN FOR PiA*1 
/*DEFINE RECORD WITH SEGSET A*I 

/*PLACE LENGTH OF PWA HERE*/ 
I*DEPINE EECORD VITH SEGSET B*~ 

/*SET KEY VALUE TO ZERO*I 
DFEFC TYPE=SETL, 

DA'IASE!=MASTER, 
. RtltADR=KEY" 

SEGSE'I=A 
FWACBAR=TCAfCAA; 

ISSUE INITIAL SETL MACRO INSTR * 
FOB DATA SET "MASTER" * 
INITIAL SEARCH ARG EQUALS ZERO * 

TCAFCAA=F~~ACBAR ; 
KEYC='SMITH'; 

FO!( SEGSET A 
/*ESTABLISH ADDRESSABILITY FOR FWA*/ 

/*STORE FWA ADDR IN TCA*/ 
/*ESTABLISH NEW SEARCH ARGUMENT*/ 

DFEFC TYPE=RESETL, 
SEGSE'!=B 

FWACBAR=TCAFCAA; 

ISSUE RESETL MACRO INSTRUCTION * 
NEW SEGSET ID 
/*~STAELISH ADDRESSAEILITY TO FWA*I 

!EST EESFCNSE TO A REQUEST FOR FILE SERVICES (CHECK) 

One of the ways the application proqrammer can test the response 
tc a request for file services is by issuing the 

DPHrC 'IYPE=CHFCK, 
NCBESP=symbolic address, 
tSIDER=symtolic address, 
SEG~DER=symtolic address, 
NOTFND=symbelic address, 
tUFREC=symkclic address, 
!NVREQ=sym~clic address, 
lOEBBOR=symtclic address, 
DUPDS=symbelic address, 
NOSPACE=symhclic address, 
NCTCFEN=symtclic address, 
ENDFILE=symtclic address 

macro instruction, which ~rovides for the testing cf response codes 
and the routing of contrel to the appropriate user-written exception 
handling routines. This maCLe instruction ~Lovides an exception 
handling facility that can be used in the manner of a subroutine. 

CICS automatically places the appropriate response code in the TCA 
at TCAFCTR (TCAFCRC if the language is ANS COBOL) after completion 
of the file service requested. The application programmer ~must specify 
the entry labels (symcolic addresses) he requires to access the 
a~propriate exceptiori handling routines previously supplied.by the 
user. 

110 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 



Page. of SH20-104 7-4 
Revised April 11, 1973 
By TNL SN20-9012 

tf the application programmer does not,use the DFHFC TYPE=CHECK 
macro instruction, he can specify the entry labels in either of two 
other ways: (1) by including the entry labels in operands of any other 
DFHFC macro instruction, or (2) by coding instructions immediately 
following the DFHFC macro instruction that examine the response code 
provided by CICS at TCAFCTR (TCAFCRC if the language is ANS COBOL) and 
transfer control to the appropriate routine. 

The response codes are as follows: 

£ON12!11Q!! !~~JH:m_L E] !E~ £Q~Q1 R1L! 

NORESP X'OO' 12-0-1-8-9 00000000 
DSIDER X'01' 12-1-9 00000001 
SEGIDER X'04' 12-4-9 00000100 
INVREQ X'08' 12-8-9 00001000 
DUPDS X'OA' 12-2-8-9 00001010 
NOTOPEN X'OC' 12-4-8-9 00001100 
ENDFILE X'OF' 12-7-8-9 00001111 
IOERROR X'80' 12-0-1-8 10000000 
NOTFND X'81' 12-0-1 10000001 
DUPREC X' 82' 12-0-2 10000010 
NOSPACE X'83' 12-0-3 10000011 

If the DFHFC TYPE=CHECK macro instruction is used by the application 
programmer, it normally follows another DFHFC macro instruction. The 
applicable keywords are NORESP, DSIDER, SEGIDER, NOTFND, DUPREC, INVREQ, 
IOERROR, DUPDS, NOSPACE, NOTOPEN, and ENDFILE. 

EQi§~ When an exception condition occurs (for example, NOTFND, IOERROR, 
or DUPREC), the FIOA is retained; the FIOA contains the address 
of the FCT data set entry that produced the exception condition. 
The FIOA address is returned to the user at TCAFCAA. Before 
issuing other File Control requests, the user should free the 
storage occupied by the FIOA through use of the DFHFC 
TYPE=RELEASE macro instruction. 

If the application programmer does not check for a particular 
response to his service request, and if that exception condition occurs, 
program flow proceeds to the next sequential instruction. 

A discussion of the operands that can be used to test the response 
to a request for file services follows. 

NORESP: Specifies the entry label of the user-written routine to which 
control is to be passed in the event no errors occur on a file 
operation. NORESP signifies "normal response" rather than "no 
response". 

DSIDER: Specifies the entry label of the user-written routine to which 
control is to be passed if the data set specified at TCAFCDI cannot be 
located in the File Control Table. DSIDER signifies "data set 
identification error". 

SEGIDER: Specifies the entry label of the user-written routine to 
which control is to be passed if the segment set specified at TCAFCSI 
cannot be located in the File Control Table. SEGIDER signifies "segment 
set identification error". 

III 



Page of SH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

NOTFND: Specifies the entry label of the user-written routine to which 
control is to be passed in the event of an unsuccessful retrieval of 
a record based on the search argument provided (key or block reference). 
NOTFND signifies a "record not found" situat:i,on. 

DUPREC: Specifies the entry label of the user-written routine to which 
control is to be passed in the event an attempt is made to add a record 
to the data set in which one already exists with that key. DUPREC 
signifies "duplicate record". 

INVREQ: Specifies the entry label of the user-written routine to which 
control is to be passed in the event a file operation is attempted that 
is not provided for (or allowed) according to the data set entry 
specifications in the FCT. INVREQ signifies "invalid request". The 
address of the appropriate File Control Table entry is returned at 
TCAFC!A. 

IOERROR: Specifies the entry label of the user-written routine to 
which control is to be passed in the event an unusual event occurs 
during a file operation. When an I/O event error code is not covered 
by one of the CICS error classes (for example, NOSPACE, NOTFND), it is 
considered an 1/0 error. The user's routine may check the actual error 
codes in the FIOA (FCFIOBEX in the case of DAM or BDAM, FCFIOEX in the 
case of ISAM), the address of which is returned in the TCA field labeled 
TCAFCAA. Since these error codes are access method and operating system 
dependent, the user should be aware that checking these codes in his 
application programs would have a limiting effect on migrating those 
application programs from CICS/DOS to CICS/OS, if this were ever 
desired. 

DUPDS: Specifies the entry label of the user-written routine to which 
control is to be passed in the event the record just retrieved on an 
indirect access is from the duplicate data set rather than from the 
prime (master) data set. The duplicate record is processed by the 
user-written routine rather than allowing the record to be processed 
by main line code as a prime data set record. DUPDS signifies 
"duplicate data set". 

NOSPACE: Specifies the entry label of the user-written routine to 
which control is to be passed in the event no direct access space is 
available for adding records to a data set. When this condition occurs, 
the original user record is returned in a File Work Area (FWA) the 
address of which is at TCAFCAA. The main storage location of this FWA 
may be different from that for the FWA acquired in response to the 
DFHFC TYPE=PUT macro instruction (which was issued to add the record). 
This error code is not applicable when adding records to DAM non-keyed 
data sets. 

NOTOPEN: Specifies the entry label of the user-written routine to 
which control is to be passed in the event the requested data set is 
not open. This error condition can occur after any file service request 
except RELEASE, ESETL, and RESETL because data base data sets can be 
dynamically closed at any time without regard to outstanding activity 
on the data set. 

ENDFILE: Specifies the entry label of the user-written routine to 
I which control is to be passed in the event an end-of-file condition 

112 



is detected during the sequential retrieval (browse) of records from 
a data set. This condition occurs only after a GETNEXT request. 

The following are examples of the coding required to examine the 
response code provided by CICS at ~CAFCTR (TCAFCRC if the language 
is ANS COBOL) and transfer control to the appropriate user-written 
error hanoling routine. 

GOOD 

tFHFC 

ClI 
BE 
CLI 
BE 
CLI 
BE 

DS 

'IYPE=GET, 
DA1J:ASE'I=MASTER, 
FDIEAtR=KEY 
TCAFCTR,X'OO' 
GOOD 
TCAFCTR,X'SO' 
EEEOE 
TCAFCTR,X'CS' 
ERROR 

OH 

EEROR DS OH 
DFHPC 1J:YPE=ABEND 

DFHFC TYPE=GET, 
DA 'IASE'I=MASTER-, 
RDltADR=KEY 

IF TCAFCRC=' , THEN GO 
IF TCAFCRC=' , THEN GO 
IF TCAFCRC=' • THEN GO 

GOOD. 

EEBOR. 
DFHPC TYPE=ABEND 

TO GOOD. 
TO ERROR. 
TO EBROR. 

where the value specified within single quotes is a multipunch code 
for the required hexadecimal value. For e~ample, a hexadecimal 00 
has a multipunch code of 12-0-1-8-9. 

19]; ].1Ll: 

DFHFC 'IYPE=GET, 
DA'IASET=MASTER, 
RDIDADR=KEY 

IF TCAFCTR='OCCOOOOO'B THEN GO TO GOOD; 
IF TCAFCTR='lCCCOOOO'B THEN GO TO EREOR; 
IF TCAFCTR='OOOO1000'B THEN GO TO ERROR; 

* 
* 

* 
* 

* 
* 

113 



GeOD: 

EFBOR: 
DFHPC TYPE=ABEND 

Transient Data Management provides, through Transient Data Control, 
a generalized queuing facility where data can be queued (stored) for 
subsequent internal or external processing. Selected units of 
information, as specified by the application programmer, can be routed 
to or from predefined symbolic destinations, either intrapartition 
or extrapartition. 

Intrapartition destinations are queues of data on direct access 
devices develc~ed for input to one or more programs running 
asynchronously (concurrently) as separate tasks; they are internal 
to the CICS partition/region. Data directed to or from these internal 
destinations is called intrapartition data and may consist only of 
variable-length records. Intrapartition destinations can be associated 
with (1) a terminal (to accomplish message switching or to route data 
to a terminal other ~han the originating terminal), (2) an output data 
set, or (3) an application program under the control of CICS. 

The intrapartition queue is reusable. An option permits the user 
to indicate, ty symbolic destinaticn, whether Transient Data space 
management is tc ccntrol the reuse of tracks associated with a 
particular destination identification (DESTID), or whether the releasing 
of track space is to be contrclled through the Transient Data PURGE 
macro facility. Note that if Transient Data space management is not 
used, intrapartition queues continue to grow, irrespective of whether 
the data has been read, until the user purges them. 

Extrapartition destinations are queues (data sets) that are external 
to the CICS Fartition/region, residing on tape or direct access devices. 
Data directed to or from these external destinations is called 
extrapartition data and may consi~t of sequential records that are 
fixed or variable length, blocked or unblocked. The record format 
specification is described in the Destination Control Table in the 
~1§!~~ g~Qg~s~~~~~~ ]~!~~§~£~ Ma~~g!. 

Intrapartition and extrapartition destinations can be used as 
indirect destinaticns which are symbolic references to still other 
destinations. This facility provides some flexibility in program 
maintenance in that an installation can be changed, giving a destination 
a new symbolic name, without recompiling existing programs. These 
~rograms can be allowed to route data to the previously existing 
symbolic name; however, the previously existing symbolic name is now 
an indirect destination that refers to the new symbolic name. 

Requests fer tIansient data services are communicated to Transient 
Data Control via CICS maCIO instructions. Transient Data Control then 
executes as a service program, at the priority of the requesting 
Frogram, under control of the requesting program's TCA, saving and 
restoring registers from this TeA. After the requested transient data 
service has been Frovided (or attempted), control is returned to the 
next executable instruction in the requesting program. Upon return 
tc the requesting program, tests can be made and control routed to 
various user-written error handling routines based on the outco~e of 
the requested transient data service. 

114 



The Transient Data Management macro instruction (DPHTD) is used 
to request any of the fellowing services: 

1.' Acquire data from a predefined symtolic source which references 
a data set, a program, or a terminal. 

2. Direct data to a predefined symbolic destination which references 
a data set, a prcgram, or a terminal. 

3. 'Controlthe processing of extrapartition data sets. 
4. Check the response to a request for transient data services. 

CICS routes a variety of messages generated by CICS programs or 
tasks to Transient Data Contrel. For example, Terminal Control detects 
a line or ter~inal preblem (not related to a user-provided task) and 
routes contrel to the CICS Terminal Abnormal Condition program 
(DFHTACP). DFHTACP then generates a message to symbolic destination 

CSTL (terminal log) and/or to symbolic destination CSMT (mast€r 
terminal) • 

Destinations must have been previously established in the Destination 
Centrol Table (neT) for all user and CICS destinations. Lack of a 
destination definition results in the loss of data sent to these 
destinations. 

For intrapartition destinations, CICS provides the option of 
automatic task initiation. Automatic task initiation is accomplished 
by setting a nonzero trigger level for a particular destination. When 
the number of entries (PUT'S from one or more programs) in the queue 
(destination) reaches a specified level, the transaction is 
automatically initiated and a program given contrel te process the 
data in that queue. The program that has been automatically initiated 
must issue repetitive GET's to deplete the queue. 

Once the queue has been depleted, a new automatic task initiation 
cycle begins. That is, a new task is scheduled for initiation when 
the specified trigger level is again reached, whether er not execution 
of the prior task has terminated. 

If an automatically initiated task does not deplete the queue, 
access to the queue is not prevented. If the task is normally or 
abnorma~ly terminated before the queue is emptied, and if the 
destinaticn is a terminal, the same task is reinitiated regardless 
cf the trigger level. However, if the destination is a data set (file), 
the task is not reinitiated until the specified trigger level is 
reached. If the trigger level of a queue is zero, no task is 
automatically initiated. 

The following operands can be included in the DFHTD macro 
instructicn: 

D"FHTD !'YPE=PUT, 
DEST1D=symbolic name, 
'ID ADDR=symbolic address, 
NOBESP=symbolic address, 
IDEBFOR=symbclic address, 
IOERBOR=symtclic address, 
NOTOPEN=symbclic address, 
NOSPACE=symtclic address 

* 
* 
* 
* 
* 
* 
* 

. 115 



D..FHTD TYPE=GET" * 
DES'IID=symholic name, 
NORESP=symbolic address, 
QUEZEFO=symbclic address, 
IDEBBOR=symcclic address, 
IOEBROR=symbclic address, 
NOTOEEN=symbclic address 

DFHTD TYPE:;FEOV, 
DES'IID=symbolic name, 
NORESP=symbolic address, 
IDEEFOR=symbclic address, 
NOTOFEN=symcclic address 

DFH!D lYPE=PURGE, 
DESlID=symbolic name, 
IDEBFOR=symbclic address, 
NORESP=symbolic address 

DFHTD !YPE=CHECK, 
NCRESP=symbolic address, 
QUEZEEO=symbclic address, 
IDEBBOR=symbclic address, 
IOEEEOR=symbclic address, 
NOrrOfEN=symbclic address, 
NOSPACE=symbclic address 

DISPOSE OF DA'IA (PUT) 

The application programmer can direct transient data to a predefined 
symbolic d€stina~ion by issuing the 

DFHTD TYPE=PUT, 
DES'IID=symbolic name, 
TDADtR=symbclic addres~, 
NCBESP=symbclic address, 
IDEBBOR=symbclic address, 
IOEBROR=symbclic address, 
NCTCFEN=symtclic address, 
NOSPACE=symbclic address 

macro instruction. Destinations are intrapartition if associated with 
a facility allocated to the CICS partition/region and extrapartition 
if the jata is directed to some destination that is external to the 
CIes partition/region. If the data is intrapartition, a copy of the 
TDOA symbclic storage definition (DFHTDGA) should be included and all 
references to the output area should be made via a register (TDOABAR) 
~hich peints to the beginning of the area. 

If the data is variable length, whether intrapartition or 
extrapartition, tbe first four bytes of the data (LLbb) contain the 
cata length, where LL is a two-byte binary length field (the value 
of which includes the length of the data plus the four bytes for the 
length field) and bb is r€com~ended to be a two-byte field of binary 
zeros. 

The application programmer must specify the parameters he requires 
to dispose of transient data. He can do this in either of two ways: 
(1) by including the parameters in operands of the DFHTD TYPE=PUT macro 
instruction, or (2) by coding instructions, ,friQ,I to isslling the DFHTD 
~YPE=PUT macro instruction, that dynamically move these parameters 
to fields in the TeA. If the parameters are included in operands of 
the tFHTD TYPE=PUT macro instruction, the applicable keywords are 
D!STID and !DADDR. 

116 

* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 



A discussion of the operands that can be included in the DFHTD 
!YPE=PUT macro instructicn follows. (The keywords used to access user­
written exception handling routines are discussed in the section "Test 
Response to a Request for Transient Data Services".) 

DESTID: specifi€s the symbolic destination name (which is the name 
cf an entry in the nCT) tc which the data is to be routed and queued. 
The destinaticn name can be coded in th~ macro instruction or 
dynamically loaded in the TCA at location TCATDDI. 

TrADDR: Specifies the address of the data to be written. This can 
ce provided by coding the symbolic name of the area in the macro 
instruction or by dynamically loading the address of the area in the 
~CA at location ~CATDAA. Transient Data Control does not release this 
area after the output of the data. The address points to the first 
four bytes of the output area which, for variable length records and 
intrapartition data, must contain the length of the record. This 
length includes both the length of the data and the length field (of 
the form LLbb) • 

The following are examples of the coding required to write data 
to a predefined symbolic destination. 

'IDOABAR 

!;!TA 

EQU 
COpy 
DS 

MVC 
MVC 
MVC 
:CFHTD 

7 
DFHTtOA 
CL10 

TDOAVRI,LENGTH 
tA'IA,ME5SAGE 
TCATCDI,=C'CSML' 

'IYPE=PUT, 
TDADDR='IrCAVRL 

02 TDCAEAF PICTURE 59(8) USAGE IS CCMFU'IATIONAL. 

MCVE LFNG~H TO TtOAVRL. 
MOVE MESSAGE ~O DATA. 
MOVE 'CS~L' TO TCATDDI. 
DF H'ID ! YPF.!=PUT , 

rrr.ADtR=TtOAVRL 

* 

* 

117 



For PL/I: 

~INCLUD! DFHTDOA; 
2 DATA CHAR(10); 

TDOAVRL=LENGTH; 
DATA=MESSAGE; 
'ICATDDI='CSML'; 

DFHTD TYPE=PUT, 
TDADtR=TDOAVRL 

ACQUIRE QUEUEt DATA (GET) 

The applicaticn programmer can acquire transient data from a 
predefined symbolic source by ceding the 

DFHTt TYFE=GE'I, 
DES~lD=symbolic name, 
NORESP=symtolic address, 
QUEZERO=symbclic address, 
IDEEFOR=symbolic address" 
lOEBFCR=symbclic address, 
NOTCFEN=symtclic address 

macro instruction. The address of the data acquired is returned in 
the TCA at TCATDAA. 

If the data is Extrapartition, the address peints to the first word 
of the data area. For variable-length records, the first four bytes 
of the data contain the length (LLbb) as specified for variable-length 
data set s. 

If the data is intrapartition, the address of the data acquired 
~cints tc a CICS input area defined by DFHTDIA. The field TDlAIRl 
contains the length (data length plus the l€ngthof the length field). 
In the case of either intrapartition or extrapaxtition data, the data 
must be meved to be used in any other input/output operation. 

If the user issues a subsequent DFHTD TYPE=GET macro, the Transient 
Data I/O area from the previous GET will be reused, thus data to be 
saved should be moved to a user area. 

]Q1~: The application prcgrammer should not attempt to free storage 
acquired by the Transient Data Contrel pIogram in response to 
a DPHTD TYPE=GET macro instruction. This storage is freed by 
CICS in the case of intrapartition data, or by the operating 
system in the case of extrapartition data. An attempt to free 
storage acquired for extrapartition data may result in an 
abnormal termination of CICS, since the storage area address 
returned by Transient Dat~ Control points to storage that is 
not part of the CICS dynamic storage subpool. 

The application programmer must specify the parameterS he requires 
to acquire transient data. He can do this in either of two ways: 

* 

* 
* 
* 
* 
* 
* 

(1) by including the parameters in operands of the DFHTD TYPE=G!T macro 
instruction, or (2) by coding instructions, £ri£~ to issuing the DFHTD 
TYPE=GET macro instruction, fhat dy.namically move these parameters 
to fields in the ~CA. If the parameters are included in operands of 
the DFHTD TIPE=GE! macro instruction, the applicable keyword is DESTID • 

• i 

118 



A discussion of the DESTID operand follows. (The keywords used to 
access user-written exception handling routines are discussed in the 
section "Test Response to a Request for Transient Data Services".) 

DESTID: Specifies the symbolic destination name (the name of an entry 
in the DCT) fTom which data is to be retrieved. The name can be 
specified in the macro instruction or by dynamically loading it in the 
TCA at location TCATDDI. 

The following are examples of the coding required to read a record 
from an intrapartition data set. 

TDIABAR EQU 
COpy 

MVC 
DFHTD 
L 

7 
DFHTDIA 

TCATDDI,=C'CSML' 
TYPE=GET 
TDIABAR,TCATDAA 

02 TDIABAR PICTURE S9(8) USAGE IS COMPUTATIONAL. 

01 DFHTDIA COPY DFHTDIA. 

MOVE 'CSML' TO TCATDDI. 
DFHTD TYPE=GET 

MOVE TCATDAA TO TDIABAR. 

%INCLUDE DFHTDIA; 
2 DUMMY CHAR(1) 

TCATDDI='CSML'; 
DFHTD TYPE=GET 
TDIABAR=TCATDAA; 

In th~ above examples, if the record is to be read from an 
extrapartition data set, the address passed to the user at TCATDAA is 
the address of the actual data. However, since the DFHTDIA symbolic 
storage definition is being used, the address must be adjusted to point 
to the CICS control area preceding the actual data. Therefore, 
immediately following the instruction that moves the contents of TCATDAA 

119 



Page of SH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

to TDIABAR, another instruction must be added. The following examples 
which apply to CICS/OS are applicable TO CICS/DOS if '40' is replaced 
by '8'. 

The examples are for variable-length records where the first byte 
of the data is actually the LLbb field. Therefore, if the retrieved 
record is fixed format, the value in the examples must be 12 and 44. 

]Qig~ This bSECT is intended to be used for intrapartition data. The 
values are subject to change in future versions of CICS. No 
DSECTs are provided for extrapartition data. 

SH TDIABAR,=H'40' 

SUBTRACT 40 FROM TDIABAR. 

DCL TDIABAA FIXED BIN(30) BASED(TDIABAB); 
TDIABAB=ADDR (TDIABAR) ; 
TDIABAA=TDIABAA - 40; 

If the extrapartition data set is blocked, alignment requirements 
are the user's responsibility. The DFHTDIA DSECT assumes doubleword 
alignment for the start of the LLbb field in variable records, or for 
the start of the data if fixed records are processed. 

CONTROL THE PROCESSING OF EXTRAPARTITION DATA SETS (FEOV) 

The application programmer can create a "forced end of volume" 
situation on an extrapartition magnetic tape data set (file) by issuing 
the 

DFHTD TYPE=FEOV, 
DESTID=symbo1ic name, 
NORESP=symbolic address, 
IDERROR=symbolic address, 
NOTOPEN=symbolic address 

macro instruction. This macro instruction is used to cause the 
rewinding and unloading of a magnetic tape reel; the next tape reel 
must then be reloaded. 

DESTID: Specifies the symbolic address of the destination against which 
"forced end of volume" is to be applied. 

Noig~ This facility must be used with caution since CICS operation is 
halted until the new tape reel has been reloaded. 

For a discussion of the NORESP, IDERROR, and NOTOPEN operands, see 
the section "Test Response to a Request for Transient Data Services." 

* 
* 
* 
* 

The following are examples of the coding required to create a "forced 
end of volume" situation on an extrapartition magnetic tape data set. 

120 



MVC TCATDDI,=C'CSML' 
DFHTD TYPE=FEOV 

120.1 





MOVE 'CSM~' TO TCAT~DI. 
tFH'ID TYPE=FEOV 

TCATDDI='CSML'; 
tFHTD TYPE=FEOV 

PURGE TRANSIENT DATA (PURGE) 

When transient data associated with a particular intrapartition 
destination (queue) is ne lenger needed, the application programmer 
can purge the data associated with that destination by issuing the 

DPHTD lYPE=PURGE, 
DESTID=symbolic name, 
IDEBBOR=symtclic address, 
NOBESP=symbclic address 

macro ipstruction, which causes all storage associated with the 
destinaticn te be frEed (erased and deallocated). 

For destinations designated as non-reusable in the Destination 
Contrel Table, the DFHTDlYPE=PURGE macro instructicn 1Dust be used 

* 
* 
* 

to free storage ~ssociated with the destination. otherwise, the storage 
remains allocated to the destination, and the data associated with 
the destinaticn ccntinues-to grow until the allocated storage is 
entirely used or until the storage is freed via this macrc instruction. 

A discussion of the DESTID operand follows. For a discussion of 
the IDEBROR o~erand, SEe the sEction "Test Response to a Request for 
Transient Data Services". 

DESTID: Specifies the symbelic destination name (the name of an entry 
in the Destination Control Table) associated with the transient data 
to be purged. The destination name can be coded in the macro 
instruction or dynamically loaded in the TCA at location TCATDDI. 

lEST RESPONSE TO A REQUEST FCR TRANSIENT DATA SERVICES (CEECK) 

One of the ways the applicaticn ~rogrammer can test the response 
te a, request fer transient da ta services is by issuing the 

DFHTD lYPE=CHECK, 
NOEESP=symbclic address, 
QUEZRFO=symbclic address, 
IDEBROR=symbclic address, 

* 
* 
* 
* 

121 



IOEBBOR=symbclic address, 
NOTCFEN=symtclic address, 
NOSPACE=symbclic address 

macro instruction, which provides for the testing of response codes 
and the rcuting of contrcl to the appropriate user~written exception 
handling routines. This macrc instruction provides an exception 
handling facility that can be used in the manner of a subroutine. 

CICS automatically places the appropriate response code in the TCA 
at TCATDTR (TCATDBC if the language is ANS CCBOL) after completion 
cf the transient data service requested. The application programmer 
must specify the entry labels (symbelic addresses) he requires to 
access the appropriate exception handling routine previously supplied 
t:y the user. 

If the application programmer does not use the tFHTD TYPE=CHECK 
macroinstruction, he can specify the entry labels in either of two 
other ways: (1) by includinq the entry labels in operands of any other 
rFHTD macro instruction, or (2) by coding instructions immediately 
following the DFH1D macro instruction that examine the response code 
provided by CICS at lCA7D1R (lCATDRC if the language is ANS COBOL) 
and transfer contrel to the aFpropriate reutine. 

The response codes are as fcllows: 

~Q]Ql110N ~~~]1!]!1] !]~ ~~BC1 l:1Ll 

NOFESP X'OO' 12-0-1-8-9 aoaooooo 
QUFZEEO X'Ol' 12- 1-9 eeCOOO01 
IDEBEOB X'02' 12-2-9 COOOOO1O 
ICEEBOR X'04' 12-4-9 COOO0100 
NOTCPEN X'C8' 12- 8-9 CCOO1000 
NOSPACE X' 10' 12-11-1-8-9 00010000 

If the tEHTD TYPE=CHECK macro instructicn is us€d by the application 
~roqrammer, it should usually immediately fellow ancther DFHTD macro 
instruction. The applicable keywords are NORESP, QUEZERO, IDERBOB, 
ICERROR, NOTOFEN, and NOSPACE. 

* 
* 

If the application programmer does not check for a particular 
response tc his service ~equest, and if that exception condition occurs, 
Frcgram f1cw proceeds to the next sequential instruction. 

The operands that can ce used to test the resFonse to a request 
fer transient data services are as follows. 

NORESP: s~ecifies the entry label of the user-written routine to which 
central is to be passed in the event ne errcrs occur during a data 
set (file) operation. NOEESP signifies "normal r-esponse n rather than 
"no response t '. 

CUFZEEO: Specifie~ the entry label of the user-written routine to 
which cantrel is ta be passed when the destination (queue) accessed 
ty a GET is fcund to be empty. This response applies to both 
intrapartition and extrapartitien input queues. 

IDEFBOR: Specifies the entry label of the user-written routine to 
which contrel is to be ~assed in the event the symbolic destination 
identification referenced by a GET, PUT, or FEOV cannot be found. 

122 



ICEFFOR: Specifies the entry label of the user-written routine to 
which centrol is to be passed in the event an input/output error occurs 
en a data record and the data record in error is skipped. Transient 
Data returns an IeEBROR indication as leng as the queue (destination) 
can te read, after which a QUEZERO response is returned; queue 
pIocessing may then be restarted. 

NOTOPEN: Specifies the entry label of the user-written routine to 
which centrel is to be passed in the event a destination is closed. 

NOSPACE: Specifies the entry label of the user-written routine to 
which central is to be passed when it is determined that nc more space 
Exists on a particular intrapartition queue or that the write request 
cannot be serviced. If the NOSPACE response is received, more data 
should not be written to t~is queue as it could be lost. 

The following are examples of the coding required to examine the 
r~spons€ code provided by CICS at TCATDTR (TCATDRC if the language 
is ANS CCBCI) and transfer control to the appropriate user-written 
~xception handling rontine. 

E2f ~§§.§.ml!l'§f 1~D9y~g§.: 

GOOD 

GOOD. 

tFETD 'IYPE=GE'I, 
DES'IID=CSML 

CT~I TCATDTR,X'OO' 
BE GOOD 
DFFFC TYP"E=AEEND 
DS OH 

r"FHTD TYPE=GET, 
DES'IID=CSML 

IF TCATtBC=' , THEN GC TO GOOD. 
DFHFC 'IYPE=ABEND 

where the value specified within single quotes is a multiFunch code for 
the required hexadecimal value. For example, a hexadecimal 00 
has a multipunch code of 12-0-1-8-9. 

GOOD: 

DFETD TYPE=GET, 
DES'IID=CSML 

IF TCATDTR='CCCOOOJO'B TEEN GO TO GOOD; 
DFHFC TYP1!=ABEND 

* 

* 

* 

123 



Temporary storage Management provides the facility, through -Temporary 
storage Contrel, that enables user-written application programs to 
store temporary data in main storage or on auxiliary storage (DASD). 
Temporary data is stored, retrieved, and released using a unique 
symbolic name (up to eight characters) assigned to the data by the 
originating task. 

Data stored in temporary storage can remain intact beyond the time 
that the originating task is terminated. That is, the originating 
task may be terminated and its transaction storage released; however, 
the data stored in temporary storage is still available under the 
symbolic name with which it was stored. The data remains intact until 
it is released by the user (the originating task or any other task). 
Temporary data can be accessed any number of times until it is released. 

When temporary data is released, the space it occupies becomes 
reusable. If the data was stored in main storage, the area is released 
and returned to the available dynamic area. If the data was stored 
en auxiliary storage, the physical block becomes available and can 
~e reused for other data. 

Temporary data can be retrieved by the originating task or any other 
task using the unique user-supplied name. To avoid conflicts due to 
duplicate names, a naming convention must be devised by the user; for 
€xample, by afpend~ng the operator identificaticn, terminal 
identification, or transaction identification as a prefix or suffix 
to the user-supplied symbolic name. 

When retrieving data, Temporary Storage Control always searches 
for the data in main storage before it searches in auxiliary storag€. 

Except in the CrCS/DOS-ENTRY system, main storage is used by 
Temporary storage Control to store small amounts of data (up to 256 
bytes) for short periods of time. For example, main storage might 
be used to pass data from task to task or for unique storage that 
allows programs to meet the requirement of CICS that they be quasi­
reentrant (serially reusatle between entry and exit points of the 
program). If a request is made to store more than 256 bytes of data 
in main storage, the request automatically defaults to auxiliary 
storage. 

Auxiliary storage is used ~y Temporary Storage Control to contain 
data greater than 256 bytes in length and/or data that is to be kept 
for extended periods of time. Auxiliary temporary storage can also 
be used when reusable storage space is req~ired. 

possible uses of auxiliary storage by Temporary Storage Control 
include: 

1. Video paging. A task could retrieve a large master record from 
DASD, format it into several screen images, store the screen 
images on Temporary Storage auxiliary storage, and then ask 
the terminal operator which "page" (screen imaqe) is desired. 
The user can provide coding (as a generalized routine or unique 
to a single application) to advance page by page, advance or 
back up a relative number of pages, etc. 

2. A "suspend data set". Assume a data collection task is in 
progress on a certain terminal. The task reads in one or more 
units of input and then allows the terminal operator to interrupt 
the process. If no interruption occurs (some kind of coded 
input), th~ task repeats the data collection process. 

124 



If the operator interrupts the data collection stream with the 
coned input, the data collection task could output its 
"incomplete" data to Temporary storage and terminate the task. 
The terminal is now free to enter a completely different 
transaction (perhaps a high-priority inquiry). When the terminal 
is available to continue the data collection operation, the 
operator initiates the task in a "resume" mode, causing the 
task to recall its suspended data from temporary storage and 
continue as though it had not been interrupted. 

3. An application that accepts input data which will be used for 
output on a preprinted form. 

The Temporary storage Management macro instruction (DFHTS) is used 
to request any of the fcllowing services: 

1. Acquire data from a symbolic source in main or auxiliary storage. 
2. Send data to symbolic storage in main or auxiliary storage. 
3. Release data from main or auxiliary storage. 
4. Check the response to a request for temporary storage services. 

The following operands can be included in the DFRTS macro 
instructicn: 

DFHTS TYPE=PUT, 
tA'TAID=name, 
TSDADDR=symbclic address, 
S~ORFAC=AUXILIARY,MAIN, 

NCBESP=symbolic address~ 
INVREQ=symholic address 

DFE'IS 'IYPE=GET, 
I:ATAID=name, 
TSDADDR=symbclic address,YES, 
RELEASE=YES,NO, 
NCRESP=symbolic address, 
IDEEEOB=symbclic address, 
IOEREOB=symbclic address 

DFETS !YPE=RELEASE, 
DA!AID=name, 
NCRESP=symbolic address, 
IDERROR=symbclic address 

DFHTS TYPE=CHECK, 
NCBESP=symbolic address, 
IDEBROR=symhclic address, 
IOERROR=symbclic address, 
INVREQ=symholic address 

STORE TEMPORARY tATA (PUT) 

The application programmer can send temporary data to a symbolic 
source in main or auxiliary storage by issuing the 

DFHTS TYPE=PUT, 
tA'IAID=name, 
TSDAtDR=symbclic address, 
STORFAC=AUXILIARY,MAIN, 
NORESP=symbolic address, 
INVREQ=symtolic address 

rnacIO instruction. The temporary data must have the standard variable~ 
length format, with the data length specified in the first four bytes 
(LLbb) followed by the data. LL is a two-byte binary length field 

* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 
* 

125 



(the value of which includes the length of the data plus the four bytes 
for the length field) and bb is recommended to be a two-byte field 
cf binary zeros. 

The application programmer must specify the parameters he requires 
to store temporary data. He can do this in either of two ways: (1) 
by including the ~arameters in operands of the DFHTS TYPE=PUT macro 
ins-tructicn, or (2) by coding instructions, Eri2!: to issuing the DFHTS 
'tYPE=PUT macro instruction, that dynamically move these parameters 
to fields in the TeA. If the parameters are included in operands of 
the DFH'IS TYPE=PDT macro instruction, the applicable keywords are 
DATAID, TSDADDR, and STORFAC. 

A discussion of the operands that can be included in the DFHTS 
~YPE=PUT macro instruction follows. (The keywords used to access user­
written exception handling routines are discussed in the section "Test 
Response to a Request for Tem~orary storage Services".) 

DATAID: Specifies the unique alphameric name (one to eight characters) 
to be assigned to the tem~orary data to be stored. This operand can 
be omitted if the applicaticn programmer has previously placed the 
unique alphameric name in the TCATSDI field of the TCA. 

lSDADDR: Specifies the symbolic address (halfword aligned) of the 
temporary data to be stored. This operand can be omitted if the 
application programmer has previously placed the address in the TCATSDA 
field of the TCA. The data area is not released by the temporary data 
PUT. 

STORFAC: Specifies whether the temporary data is to be stored on 
auxiliary storage (AUXILIARY) or in main storage (MAIN). The default 
is STOR~AC=AUXILIARY. Any data greater than 256 bytes in length is 
automatically placed on auxiliary storage regardless of the user's 
request. 

The following are examples of the coding required to write a record 
to temporary storage. 

'ISIOABAR 

DATA 

126 

EQU 7 
COPY DFHTSIOA 
DS CL10 

HVC 
HVC 
DFHTS 

'ISIOAVRL,LENGTH 
tATA,MESSAGE 
lYPE=PUT, 
tATAID=UNIQNI1E, 
!SDADDR=TSIOAVRL 

* 
* 



.l.Q1; !]~ ~OB.Q1: 

02 TSIOABAR PICTURE 59(8) USAGE TS COMPUTATIONAL. 
01 DFHTSIOA COpy DFHTSIOA. 

02 DATA PICTURE X(10) • 

MOVE LENGTH TO TSIOAVRL. 
MOVE MESSAGE TO DATA. 

DFHTS TYPE=PUT, 
DATAID=UNIQNME, 
TSDADDR=TSIO~VRL 

~INCLUDE DFHTSIOA; 
2 DATA CHAR (10) ; 

TSIOAVRL=lENGTH; 
DATA=MESSAGE; 
DPH'IS crYPE=PUT, 

DATAID=UNIQN ME, 
TSDADDR='ISIOAVRL 

R~TRIEVE TEMPORARY EATA (GET) 

The application programmer can retrieve temporary data from a 
symbclic source in main or auxiliary storage by issuing the 

DFS'r-S TYPE=GET, 
tATAID=name, 
TSDADDR=symbclic address,YES, 
RELEASE=YES,NO, 
NO~ESP=symbolic address, 
IDEREOR=symbclic address, 
IOERROR=symbclic address 

macro instruction. Data retrieved from temporary storage is placed 
in either a user-J;rovided storage area or an area (transaction storage) 
acquired for th€ user by Temporary storage Control. 

The application programmer must specify the parameters he requires 
to retrieve temporary data. He can do this in either of two ways: 
(1l by including the parameters in operands of the DFHTS TYPE=GET macro 
instruction, or (2) by coding instructions, ]~iQ~ to issuing the DFHTS 
TYPE=GET macro instruction, that dynamically move these parameters 
to fields in the 'ICA. If the parameters are included in operands of 
the DFHTS TYPE=GET macro instruction, the applicable keywords are 
DATAID, TSDADDR, and RELEASE. 

A discussion of the operands that can be included in the DfHTS 
TYPE=GET macro instruction follo~s. (The keywords used to access user­
written exception handling routines are discussed in the section "Test 
Response to a Request for Temporary storage Services".) 

* 
* 

* 
* 

* 
* 
* 
* 
* 
* 

121 



DATAID: Specifies the name assigned to the temporary data at the time 
it was placed in temporary storage. This operand can be omitted if 
the application programmer has previously placed the name in the TCATSDI 
field of the TCA. 

!SrADDR: Specifies the symbolic name of the user-provided storage 
area into which the temForary data is to be read (or moved). 
TSDADDR=YES must te coded if the application programmer has previously 
Flaced this symtolic address in the TCA at TCATSDA. If this operand 
is omitted, Temporary storage Control obtains a storage area, moves 
or reads temporary data into the area, and returns the address of the 
area to the user in the TCA at TCATSDA. 

RELEASE: Specifies whether the data is to be released following this 
acquisition. The default is RELEASE=NO. 

The following are examr-les of the coding required to read a record 
from temporary storage. In these examples, the data is moved to the 
area defined by the u~er in the TSDADDR operand. If the TSDADDR operand 
is omitted, the data is moved ilito a storage area obtained by Temporary 
storage Control, and the address of the storage area is returned to 
the user at 1CA1SrA. 

lSIOAEAB EQU 
COpy 

7 
DFHTSIOA 

128 

DFHTS 1YPE=GET, 
DAIAIt=UNIQNME, 
1SDADDR=TSIOAVRL 

02 !SIOABAR prCTURE S9(8) USAGE IS COMPUTATIONAL. 

01 DERTSICA COpy DFHTSIOA. 

DFH1S TYPE=GET, 
DATAID=UNIQNME, 
TSDADDB=TSIOAV~L 

* 
* 

* 
* 



~INCLUDE D~HTSIOA; 
2 DATA CHAR(10); 

DFHTS 'IYPE=GET, 
DATAID=UNIQNME, 
!SDADDR=TSTOAVRL 

RELBASE TF.M~OBABY tATA (RELEASE) 

The applicaticn p~ogrammer can release temporary data from main 
or auxiliarv stcragE by issuing the 

DFHTS TYPE=REL~ASE, 
DA'IAID=name, 
NORESP=symbolic address, 
IDERROR=symbclic address 

macro instruction. If the data was stored in main storage, the area 
is fre€d and returned to the available dynamic area. If the data was 
stored in auxiliary storage, the space is made available for other 
data. 

Temporary data should be released at the earliest possible time 
to avoio suspended tasks. 

A discussion of the tATAID=name operand of the DFHTS TYPE=RELEASE 
macro instruction fellows. (The keywords used to access user~written 
Exception handling ~outiues are discussed in the section "Test Response 
to a ReqUEst for TemForary storage Services".) 

DATAID: Specifies the name assigned to the data to be released from 
temporary storage. This cperand can be omitted if the application 
Frogrammer has previously placed the name in the TCATSDI field of the 
'1'CA. 

The following are examples of the coding required to release a 
rEcord frcm tempola~y storage. 

MVC 'ICATSDI,=C'UNIQNMF.' 
DFH'IS ~YPE=RELEASE 

MOVE 'UNIQNME' TO 'ICATSDI. 
DFH'IS IYPE=RELEASE 

'ICA'ISPI='UNIQNME'; 
DFHTS 'IYPE=RELEASE 

* 
* 

* 
* 
* 

129 



1EST RESPONSE TO A R!QUEST FCR TEMPORA~Y STORAGE SERVICES (CHECK) 

One of the ways the application programmer can test the response 
to a request for temporary storage services is by issuing the 

DFHTS TYPE=CHECK, 
NOBESP=symtclic address, 
IDEBBOR=symbclic address, 
IOEBFOR=symbclic address, 
INVREQ=symtolic address 

* 
* 
* 
* 

macro instruction, which provides for the testing of response codes 
and the routing of control to the appropriate us~r-written exception 
handling routines. This macro instruction Frovides an exception 
handling facility that can be used in the manner of a subroutine. 

ClCS automatically places the appropriate response code in the TCA 
at TCATST1 (TCATSRC if the language is ANS COBOL) after completion 
(f the temporary storage service requested. The application programmer 
must specify the entry labels (symbolic addresses) he requires to 
access the apprcpriat€ exception handling routine previously supplied 
by th€ user. 

The response codes are as fellows: 

~QBQ1TIQ] ~~~~]]11B !!~ ~g]Q1 E1LI 
NOFESP X'OO' 12-0-1-8-9 caaaaooo 
!DEE~OR X'02' 12-2-9 00000010 
IOFEROR X'04' 12-4-9 00000100 
INVREQ X'20' 11-0-1-8-9 00100000 

If tbe application programmer does not use the DFHTS TYPE=CHECK 
macro instruction, h€ can specify the @.ntry labels (symbolic addresses) 
in either cf two other ways: (1) by including the entry labels in 
operands of any other DFH~S macro instruction, or (2) by coding 
instructions immediately fcllowing the DFHTS macro instruction that 
examine the response code provided by CICS at TCA~SIR (TCATSRC if the 
languag~ is ANS COBOL) and transfer control to the afpropriate routine. 

If the DFHTS TYPE=CHECK macro instruction is used by the application 
~rogrammer, it shculd usually immediately fellow another DFRTS macro 
instruction. The applicable keywords are NORESP, IVERROR, IOERROR, 
and INVREQ. 

If the application programmer does not check for a particular 
response t~ his service request, and if that exception condition occurs, 
program flew proceeds to the next saquential instruction. 

The operands that can be used to t~st the response to a request 
fer temporary stcrage services are as ~ollows. 

NORESP: Specifies the entry label of the user-written routine to which 
control is to be passed in the event no errors occur during a Temporary 
Storage GET, PUT, or RELEASE. NORESP signifies "normal response" 
rather than "no resFonse". 

IDERROR: Specifies the entry lab~l of the user-written routine to 
which control is to be passed in the event the symbolic destination 
identification referenced by a GET or RELEASE cannot be found in either 
main storage or auxiliary storage. 

130 



IOE]ROR: Specifies the Bntry label of the user-written routine to 
which centrol is to be passed in the event an inpqt/output error occurs 
during a GET operation en auxiliary storage. 

INVREQ: Specifies the entry label of the user-written routine to which 
control is to be passed in the event (1) a PUT is requested for data 
whose length is equal to zero or is greater than the block size of 
the auxiliary data set, or (2) the request is otherwise determined 
to be invalid. 

The following are examples of the coding required to examine the 
response code provided by CICS at TCATSTR (TCATSRC if the language 
is ANS COBOL) and transfer control to the aFpropriate user-written 
exception handling routine. 

19]; A§§§ID£l§I l~D~~~~: 

GOOD 

GeOD. 

DFHTS TYPE=GET, 
DATAID=UNIQN ME, 
TSDADDR=YES 

eLI 'I'CATS'IR,X'OO' 
BE GOOD 
DFHPC TYPE=ABEND 
DS OR 

DFHTS TYPE=GET, 
DATAID=UNIQNME, 
TSDADDR=YES 

IF TCATSRC=' , THEN GO TO GOOD. 
tFHPC TYPE=ABEND 

where the value specified within single quotes is a multipunch code 
for the required hexadecimal value. For example, a hexadecimal 00 
has a multipunch code of 12-0-1-8-9. 

GOOD: 

DFHTS TYPE=GET, 
DATAID=UNIQNME, 
'ISDADDR=YES 

IF TCATSTR='CCCOOOOO'B THEN GO TO GeeD; 
DFBPC TYFE=ABEND 

* 
* 

* 
* 

* 
* 

131 



Time Management provides the capability, primarily througn Interval 
Central and Task Control, to control various task fUnctions based on 
the time ef day OT on intervals of time. Time services include: 

1. Establish the partiti~n/region exit time interval when CICS 
voluntarily relinquishes control tc the opera~ing system. 

2. Provid~ system stall detection and corrective action (optional) 
based on the expiration of a user-provided time interval, in 
conjunction with other sym~toms of a system stall condition. 

3. Provide runaway task detection and corrective action capabilities 
(optional) based on the expiration of a user-provided time 
interval with an executing application program apparently in 
a logical loop. 

4. Provide time of day in binary or packed decimal representation. 
S. Previde task synchronization based on time-dependent events. 
6. Provide automatic time-ordered task initiation with associated 

data retention and recovery support. 

The services enumerated in items 1-3 are CICS system services and 
require no action on the part of the application programmer. The 
services enumerated in items 4-6 are available to the application 
programmer through use of the Interval Control macro instruction 
(DFHIC) • 

The following operands can be included in the DFHIC macro 
instruction: 

132 

DFHIC 1YPE=GETIME, 
FCBM=EINAFY,PACKED, 
TIMADB=symbclic address,YES, 
NORESP=symbolic address, 
INVREQ=symbolic address 

DFHIC TYPE=WAIT, 
INTBVAL=numeric value,YES, 
1IME=numeric value,YES, 
EEQID=name,YES, 
NCFESP=symbolic address, 
INVREQ=symtolic address, 
EXPIRD=symbolic address 

DFHIC TYPE=POST, 
INTRVAL=numeric value, YES, 
TIME=numeric value,YES, 
BEQID=name,YES, 
NOBESP=symbolic address, 
INVREQ=symbolic address, 
EXPIRD=symbolic address 

DFHTC TYPE=INITIATE, 
INTRVAL=numeric value,YES, 
TIME=numeric value, YES, 
REQID=name,YES, 
1RANSID=name, 
TRMIDNT=name,YES, 
NCRESP=symbolic address, 
INVREQ=symtolic address, 
1RNIDER=symbclic address, 
TRMIDER=symbclic address 

DFHIC 1YPE=PUT, 
INTRVAL=numeric value,YES, 
TIME~numeric value,YES, 

*. 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 



BEQID=name,YES, 
lRANSID=name, 
TRMIDNT=name,YES, 
ICDADDR=symbclic address, YES, 
NORESP=symtclic addiess, 
INVREQ=symbolic address, 
TRNIDEP=symbclic address, 
TRMIDER=symtclic address, 
IOEBBOR=symbolic address 

DFHIC lYPE=GET, 
lCDADDR=symbclic address,YES, 
NCBESP=symbolic address, 
INVREQ=symtolic address, 
ENDDA!A=symbolic address, 
NO!FND=symtclic address, 
IOEBBOR=symbclic address 

DFHIC TYPE=RETRY, 
NORESP=symbolic address, 
INVREQ=symbolic address, 
NOTFND=symbolic address, 
IOERROR=symtclic address 

DFHIC lYPE=CANCEL, 
FEQID=name,YES, 
NOEESP=symbclic address, 
INVREQ=symbolic address, 
NOTFND=symbelic address 

DFHIC TYPE=CHECK, 
NORESP=symbolic address, 
INVREQ=symto~ic address, 
EXPIRD=symbolic address, 
TRNIDER=symbclic address, 
TRMIDER=symbclic address, 
IOERROR=symbclic address, 
NOTFNU=symbolie address, 
ENDDA1A=symhclic address 

In the course of normal operation, ClCS maintains the current time 
of day within the Common System Area (CSA); in binary form at CSACTODB, 
and in packed decimal ferm at CSATODP. These values are updated during 
task dispatching to reflect the time of day maintained by the operating 
system. The accuracy of these values deFends ufon the task mix and 
frequency of task switching occurences. 

Since the time of day maintained by the operating system can be 
changed either by the operating system (fer examfle, as resetting the 
clock to zero at midnight) or by the console operator, CICS must 
recognize the situation where a "negative" change in the time of day 
has occurred, and must adjust expiration times maintained by ClCS 
accordingly. 

If the optional time adjustment feature of CICS Time Management 
is not included in ClCS, any change to the operating system time of 
day involving midnight is represented by crcs as a value larger than 

* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

the previcus value (for example, 1:00 a.m. is represented as 2500 
hours). If the optional time adjustment feature is included in CICS, 
and if either the time-crdered task synchronization feature or automatic 
task initiation feature of CICS Time Management is also included, any 
chang€ to the operating system time of day is automatically reflected 
in the expiration times maintained by CICS. 

133 



In the case of ClCS/OS, when the operating system time of day is 
set to zero at midnight (and tbe time adjustment feature has been 
included in CICS), CICS/OS adjusts the expiration tim€s of day it 
rraintains and then resets its time of day to zero. In the case of 
both CICS/OS and CICS/DOS, when the operating system time of day is 
changed by the conscle operator to a value less than the previous 
value, CICS adjusts the expiration times it maintains to reflect the 
negative value and then resets its time of day to the time of day 
maintaine~ by the operating system. The optional time adjustment 
feature thus makes it possible for CICS to be operated on a continuous 
round-the-clock basis. 

!IME-OF-DAY SERVICES (GETIME) 

In the course of nermal operation, CICS maintains the current time 
of day in twc fcr~s within the Common System Area (CSA); in binary 
form at CSACTODB; and in packed decimal ferm at CSATODP. These values 
are updated periodically during task dispatching, their accuracy being 
dependent u~on the task mix and frequency of task switching occurrences. 

Tasks can obtain a more current time of day by issuing the 

DPHIC !YPE=GETIME, 
PCRM=BINARY,PACKED, 
TIMADR=symhclic address,YES, 
NCRESP=symbolic address, 
INVREQ=symbolic address 

macro instruction. This macre instruction causes one or both forms 
of the time of day to be updated in the CSA and, optionally, places 
the requested fcrm of the time of day in a user-specified locatio~. 
A discu~sion of the operands that can be included in the DFHIC 
TYPE=GE~IME macro instructicn follows. (The keywords used to access 
user-written exception handling routines are discussed in the section 
"Test ResFonse to a Request for Time Services".) 

~ORM: This optional operand is used to indicate which representation 
cf time of day is desired. The default is FORM=BINARY. 

FORM=PACKEt is used to indicate that the packed decimal 
representation cf the time of day is desired. The packed decimal 
representation is expressed as a four-byte Fositive signed value of 

* 
* 
* 
* 

the form FHMMsst+ where the seconds are truncated to tenths of a second. 
The use of this operand causes both the packed and binary 
representations of the time of day to be ~pdated and retained in the 
eSA. 

~g!~~ As a performance consideration, it should be taken into account 
th~t lengthy conversion routines are executed each time the 
PORM=PACKED operand is used. 

FCBM=BINARY is used when the tinary repr~sentation of time of day 
is desired. The tinary representation is expressed as a four-byte 
Fositive value in hundredths of a second. ~he use of this operand 
causes only the binary representation of time of day to be updated 
and retained in the eSA. 

1IMADR: This opticna1 operand is used when the requested time of day 
is tc be return~ to a user-defined four-byte location. The application 
programmer can accomplish this in either of two ways! (1) by including 
the TIMADR=symholic address operand in the DFHIC TYPE=GETIME macro 
instructicn, or (2) by coding a single inst~Q~tinP~IiDI-±o icsuL~g~-----------------

134 



~.QI !]~ ~OB.Q1: 

02 TSIOABAB PICTURE 59(8) USAGE TS COMPUTATIONAL. 
01 DFHTSICA COpy CFHTSIOA. 

02 DATA PICTURE X(10). 

MOVE LENGTH TO TSIOAVRL. 
MOVE MESSAGE TO DATA. 

DPHTS TYPE=PUT, 
DATAID=UNIQNME, 
TSDADDR=TSIOAVRL 

12]; .f1Ll: 

'INCLUDE DFHTSIOA; 
2 DATA CHAR(10); 

TSIOAVRL=LENGTHi 
DATA=MESSAGE; 
DPH'! S '!YPE=PUT, 

DATAID=UNIQNME, 
'I SDADDR='I SIOAVRL 

RtTRIEVE TEMPORARY tATA (GET) 

The application programmer can retrieve temporary data from a 
symbclic source in main or auxiliary storage by issuing the 

DFHTS TYPE=GET, 
tATAID=name, 
TSDADDR=symbclic address,YES, 
RELEASE=YES,NO, 
NOBESP=symbolic address, 
IDEBBOR=symbclic address, 
IOERROR=symbclic address 

macro instruction. Data retrieved from temporary storage is placed 
in either a user-~rovided storage area or an area (transaction storage) 
acquired for the user by Temporary storage Control. 

The application programmer must specify the parameters he requires 
to retrieve temporary data. He can do this in either of two ways: 
(1) by including the parameters in operands of the DFHTS TYPE=GET macro 
instruction, or (2) by coding instructioRs, ]Ii£! to issuing the DFHTS 
TYPE=GET macro instruction, that dynamically move these parameters 
to fields in the 'ICA. If the parameters are included in operands of 
the DFHTS TYPE=GET macro instruction, the applicable keywords are 
DATAID, TSDADDR, and RELEASE. 

A discussion of the operands that can be included in the DfHTS 
TYPE=GET macro instruction folIo liS. (The keywords used to access user­
written exception handling routines are discussed in the section "Test 
Response to a Request for Temporary storage Services".) 

* 
* 

* 
* 

* 
* 
* 
* 
* 
* 

127 



DATAID: Specifies the name assigned to the temporary data at the time 
it was placed in temporary storage. This operand can be omitted if 
the application prcgrammer has previously placed the name in the TCATSDI 
field of the TeA. 

~srADDR: Specifies the symbolic name of the user-provided storag~ 
area into which the temForary data is to be read (or moved). 
TSDADDR~YES must te coded if the application programm~r has previously 
Flaced this symtolic address in the TeA at TCATSDA. If this operand 
is omitted, Temporary storage control obtains a storage area, moves 
or reads temporary data into the area, and returns the address of the 
area to the user in the TeA at TCATSDA. 

BELEASE: Specifies whether the data is to be released following this 
acquisiticn. The default is RELEASE=NO. 

The following are examr.les of the coding required to read a record 
from temporary storage. In these examples, the data is moved to the 
area defined by the u~er in the TSDADDR operand. If the TSDADDR operand 
is omitted, the data is moved into a storage area obta.ined by Temporary 
storage Control, and the address of the storage area is returned to 
the user at teATS!A. 

'I5IOAEAR EQU 
COpy 

7 
DFHT5IOA 

128 

DFH'IS 'IYPE=GET, 
DATAI:C=UNIQNME, 
'ISDADDR=TSIOAVRL 

02 '!SIOABAR PTCTURE 59 (8) USAGE IS COMPUTATIONAL. 

01 DEHTSICA COpy DFHTSIOA. 

DFH'IS 'IYPE=GET, 
DATAID=UNIQNME, 
'ISDADDR=TSIOAV~L 

* 
* 

* 
* 



%INCLUDE DFHTSIOA; 
2 DATA CHAR (10) ; 

DFHTS 'IYPE=GET, 
DATAID=UNIQNME, 
1SDADDB=TSIOAVRL 

R!LBASE TEM~OBAEY tATA (RELEASE) 

The applicaticn programmer can release temporary data from main 
or auxiliarv stcrage by issuing the 

DFHTS TYPE=REL~ASE, 
DA'IAID=name, 
NOBESP=symbolic address, 
IDERROR=symbclic address 

macro instruction. If the data was stored in main storage, the area 
is freed and retprned to the availabl€ dynamic area. If the data was 
stored in auxiliary storage, the space is made available for other 
data. 

Temporary data should be released at the earliest possible time 
to avoid suspended tasks. 

A discussion of the tA1AID=name operand of the DP9TS TYPE=RELEASE 
macro ins~ruction fellows. (The keywords used to access user~written 
Exception handling routines are discussed in the section "Test Response 
to a ReqUEst for TemF(n:ary storage Services".) 

DATAID: Specifies the name assigned to the data to be released from 
temporary storage. This cperand can be omitted if the application 
~rogrammer has previously placed the name in the TCATSDI field of the 
TCA. 

The followina, are examples of the coding required to release a 
record frcm tempoIary storage. 

MVC 'ICATSDI,=C'UNIQNMF.' 
DFHTS 1YPE=RELEASE 

MOVE 'UNIQNME' TO 'ICATSDI. 
DFH'IS TYPE=RELEASE 

'ICAISDI='UNIQNME'; 
DFHTS IYPE=RELEASE 

* 
* 

* 
* 
* 

129 



1EST RESPONSE TO A B~QUEST FCR TEMFOBA~Y STORAGE SERVICES (CHECK) 

One of the ways the application programmer can test the response 
to a request for temporary storage services is by issuing the 

DFHTS TYPE=CHECK, 
NOBESP=symcclie aduress, 
IDEBFOR=symbelic address, 
IOEBBOR=symbclic address, 
INVREQ=symtolie address 

macro instruction, which provides for the testing of response codes 
and the routing of control to the appropriate user-written exception 
handling routines. This macro instruction Frovides an exception 
handling facility that can be used in the manner of a subroutine. 

CICS automatically places the appropriate response code in the TCA 
at TCATST] (TCATSRC if the language is ANS COBOL) after completion 
(f the temporary storage service requested. The application programmer 
must specify the entry labels (symbolic addresses) he requires to 
access the approp£iate exception handling routine previously supplied 
by thE user. 

The response codes are as fellows: 

~QB~lTIQ] ~~~~~]1E] !]~ ~g]Q1 RbLI 
NOFESP X'OO' 12-0-1-8-9 COOOOOOO 
!DEB~OR X'02' 12-2-9 00000010 
IOFRROR X'Q4' 12-4-9 00000100 
INVREQ X'20' 11-0-1-8-9 00100000 

If the application progrdmmer do€s not use the DFHTS TYPE=CHECK 
macro instruction, he can specify the ~ntry labels (symbolic addresses) 
in either o~ two other ways: (1) by including the entry labels in 
operands of any other DFHTS macro instruction, or (2) by coding 
instructions immediately fcllowing the DFHTS macro instruction that 
examine the reSponse code provided by CICS at TCATSIR (TCATSRC if the 
languag~ is ANS COSOL, and transfer cont~ol to the aFpropriate routine. 

If the DFHTS TYPE=CHECK macro instruction is used by the application 
~rogrammer, it shculd usually immediately fellow another DFHTS macro 
instruction. The applicable keywords are NORESP, IDERROR, IOERROR, 
and INVREQ. 

* 
* 
* 
* 

If the application programmer does not check for a particular 
response t~ his service request, and if that exception condition occurs, 
program flew proc€eds to the next sequential instruction. 

The operands that can be used to t9St the response to a request 
for temporary storage services are as ~ollows. 

NOBESP: Specifies the entry label of the user-written routine to which 
control is to be passed in the event no errors occur during a Temporary 
Storage GET, PUT, or RELEASE. NOBESP signifies "normal response" 
rather than "nc resFonse". 

IDEBROR: Specifies the entry label of the user-written routine to 
which control is to be passed in the event the symbolic destination 
identification referenced by a GET or RELEASE cannot be found in either 
main storage or auxiliary storage. 

130 



IOE]ROR: Specifies the ~ntry label of the user-written routine to 
which centrol is to be passed in the event an input/output error occurs 
during a GET operation en auxiliary storage. 

INVREQ: Specifies the entry label of the user-written routine to which 
control is to be passed in the event (1) a PUT is requested for data 
whose length is equal to Z€IO or is greater than the block size of 
the auxiliary data set, OI (2) the request is otherwise determined 
to be invalid. 

The following are examples of the coding required to examine the 
response code provided by eICS at TCATSTR (TCATSRC if the language 
is ANS COBOL) and transfer contrel to the aFpropriate user-written 
exception handling routine. 

19.I; A§§~IDfl§~ lEDE~~g: 

GOOD 

GeOD. 

DFHTS TYPE=GET, 
DATAID=UNIQN ME, 
TSDADDR=YES 

CLI TCATS'IR,X'OO' 
'R1:" 
~J- GOOD 
DFHPC TYPE=ABEND 
DS OH 

DFHTS TYPE=GET, 
DATAID=UNIQNME, 
TSDADDR=YES 

IF TCATSRC=' , THEN GO TO GOOD. 
tFHPC TYPE=ABEND 

where the value specified within single quotes is a multifunch code 
for the required hexadecimal value. For example, a hexadecimal 00 
has a multipunch code of 12-0-1-8-9. 

GOOD: 

DFHTS TYPE=GET, 
DATAID=UNIQNME, 
'ISDADDR=YES 

IF TCATSTR='CCCOOOOO'B THEN GO TO GOeD; 
DFBPC TYFE=ABFND 

* 
* 

* 
* 

* 
* 

131 



Time Management provides the capability, primar.ily through Interval 
Centrol and Task Control, to control various task fUnctions based on 
the time ef day o~ on intervals of time. Time services include: 

1. Establish the partiti~n/re9ion exit time interval when CICS 
voluntarily relinquishes control tc the opera~ing system. 

2. Provid~ system stall detection and corrective action (optional) 
based on the expiration of a user-provided time interval, in 
conjunction with other sym~toms of a system stall condition. 

3. Provide runaway task detection and corrective action capabilities 
(optional) based on the expiration of a user-provided time 
interval with an exe6uting application program apparently in 
a logical loop. 

4. Provide time of day in binary or packed decimal representation. 
5. Previde task synchrenization based on time-aependent events. 
6. Provide automatic time-ordered task initiation with associated 

data retention and recovery support. 

The services enumerated in items 1-3 are CICS system services and 
require no action on the part of the application programmer. The 
services enumerated in items 4-6 are available to the application 
~rogrammer through use of the Interval Control macro instruction 
(DFHIC) • . 

The following operands can be included in the DFHIC macro 
instruction: 

132 

DFHIC 1YPE=GETIME, 
FCBM=EINARY,PACKED, 
TIMADB=symbclic address,YES, 
NORESP=symbolic address, 
INVREQ=symbolic address 

DFHIC TYPE=WAIT, 
INTRVAL=numeric value,YES, 
'IME=numeric value,YES, 
EEQID==name,YES, 
NCFESP=symbolic address, 
INVREQ=symlolic address, 
EXPIRD=symbolic address 

DFHIC TYPF;=POST, 
INTRVAL=numeric value,YES, 
TIME=numeric value,YES, 
BEQID=name,YES, 
NOBESP=symbolic address, 
INVREQ=symbolic address, 
EXPIRD=symbolic address 

DFHIC TYFE=INITIATE, 
INTRVAL=numeric value,YES, 
TIME=numeric value, YES, 
REQID=name,YES, 
'tRAN SID=name, 
TRMIDNT=name,YES, 
NCRESP=symbolic address, 
INVREQ=symtolic address, 
1RNIDER=symhclic address, 
TRMIDER=symbclic address 

DFHIC 'IYPE=PU'I, 
INTRVAL=numeric value,YES, 
TIME~numeric value,YES, 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 



EEQID=name,YES, 
TRANSID=name, 
TRMICNT=name,YES, 
ICDADDR=symbclic address,YES, 
NORESP=symbclic address, 
INVREQ=symbolic address, 
TRNIDEP.=symbclic address, 
TRMIDER=symtclic address, 
IOFBBOR=symbolic address 

DFHIC TYPE=GET, 
ICDADDR=symtolic address, YES, 
NCBESP=symbolic address, 
INVREQ=symtolic address, 
FNDDA!A=symbolic address, 
NOTFND=symtclic address, 
IOEBRoR=symbclic address 

DFHIC TYPE=RETRY, 
NORESP=symbolic address, 
INVREQ=symbolic address, 
NOTFND=symbolic address, 
IOERROR=symtclic address 

DPHIC lYPE=CANCEL, 
EEQlD=name,YES, 
NOEESP=symbolic addIess, 
INVREQ=symcolic address, 
NOTFND=symbelic address 

DFH~C TYPF=CHECK, 
NORESP=symbo1ic address, 
INVREQ=symbo~ic address, 
EXPIRD=symbolic address, 
TRNIDER=symbclic address, 
TRMIDER=symhclic address, 
IOERROR=symbclic address, 
NOTFND=symbolic address, 
FNDDATA=symbclic address 

In the course of normal operation, eICS maintains the current time 
of day within the Common System Area (CSA); in binary form at CSACTODB, 
and in packed decimal fcrm at CSATODP. These values are updated during 
task dispatching to reflect the time of day maintained by the operating 
system. The accuracy of these values de~ends ufon the task mix and 
frequency of task switching occureDces. 

Since the time of day maintained by the operating system can be 
changed either by the operating system (fer examrle, OS resetting the 
clock to zero at midnight) or by the console operator, elCS must 
recognize the situation where a "negative" change in the time of day 
has occurred, and must adjust expiration times maintained by eIes 
accordingly. 

If the optional time adjustment feature of eres Time Management 
is not included in CleS, any change to the operating system time of 
day involving midnight is represented by eICS as a value larger than 

* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

the previeus value (for example, 1:00 a.m. is represented as 2500 
hours). If the optional time adjustment feature is included in CleS, 
and if either the time-ordered task synchronization feature or automatic 
task initiation feature of Cles Time Management is also included, any 
change to the operating system time of day is automatically reflected 
in the expiration times maintained by CICS. 

133 



In the case of CICS/OS, when the operating system time of day is 
set to zero at midnight (and t~e time adjustment feature has been 
included in CICS), CICS/OS adjusts the expiration tim€s of day it 
rraintains and then resets its time of day to zero. In the case of 
both CIeS/OS and CICS/DOS, when the operating system time of day is 
changed by the conscle operator to a value less than the previous 
value, ercs adjusts the expiration times it maintains to reflect the 
negative value and then resets its time of day to the time of day 
maintaine~ by the operating system. The optional time adjustment 
feature thus makes it possible for eres to be operated on a continuous 
round-the-clock basis. 

~IME-OF-DAY SERVICES (GETIME) 

In the course of nermal operation, CIes maintains the current time 
of day in twc ferRs within the Common System Area (CSA); in binary 
form at CSACTODB; and in packed decimal form at CSATODP. These values 
are updated periodically during task dispatching, their accuracy being 
dependent u~on the task mix and frequency of task switching occurrences. 

Tasks can obtain a more current time of day by issuing the 

DFHIC !YPE=GETIME, 
FCRM=BINARY,PACKED, 
TIMADB=symbclic address, YES, 
NCRESP=symbclic address, 
INVREQ=symbolic address 

macro instruction. This macre instruction causes one or both forms 
of the time of day to be updated in the CSA and, optionally, places 
the requested ferm of the time of day in a user-specified locatio~. 
A di~cu~sion of the operands that can be included in the DFHIC 
TYPE=GETIME macro instructicn follows. (The keywords used to access 
user-written exception handling routines are discussed in the section 
"Test Res~onse to a Requeat for Time Services".) 

~ORM: This optional operand is used to indicate which representation 
of time of day is dEsired. The default is FORM=BINARY. 

FORM=PACKEt is used to indicate that the packed decimal 
representation ef the time of day is desired. The packed decimal 
representation is expre~sed as a four-byte ~ositive signed value of 

* 
* 
* 
* 

the form FHMMsst+ where the seconds are truncated to tenths of a second. 
The use of this operand causes both the packed and binary 
representations of the time of day to be ~dated and retained in the 
CSA. 

Ng1~~ As a performance consideration, it should be taken into account 
thqt lengthy conversion routines are executed each time the 
FORM=PACKED operand is used. 

FCRM=BINABY is used when the tinary repr£sentation of time of day 
is desired. The tinary representation is expressed as a four-byte 
~ositive value in hundredths of a second. ~he use of this operand 
causes only the binary representation of time of day to be updated 
and retained in the CSA. 

~IMADR: This opticnal operand is used when the requested time of day 
is to be return~ to a user-defined four-byte location. The application 
programmer can accomplish this in either of two ways: (1) by including 
the TIMAPR=symbolic address operand in the DFHIC TYPE=GETIME macro 
instructien, or (2) by coding a single instruction, prior to issuing 

134 



tbe DFRIC TYPE=GETIME macro instruction, that dyna~ically moves the 
address to the TCAICDA fiEld of the TCA. If the latter is used, the 
TI~ADR=YES operand must also ce included in the DPHIC TYPE=GETIME macro 
instruction. If this operan1 is omitted, only the appropriate fields 
in the CSA are updatea. 

The following is an example of the coding required to request the 
time of day: 

D?RIC TYPE=GETIME, 
FOBM=PACKED, 
TIMAtR=CLOCK 

REQUEST CUBREN! TIME-OF-DAY * 
PACKED tECIMAL FORM * 
SYMBCLIC ADDRESS FOR RESPONSE 

The fcllowing are exam~les of the coding required to dynamically 
request the time of day. 

MVC TCAICDA,=A(CICCK) 

DFHIC T1PE=GETIME, 
rOBM=PICKED, 
TIMAtR=YES 

MOVE ALDR FC~ RESfONSE TO TCA 

REQUEST CijFFENT TIME-OF-tAY 
PACKED DECIMAL FORM 
RESPONSE ADDRESS GIVEN 

* 
* 

MOV~ CLOCKADR TO TeAICDA. NOTE MOVE lODE FOR RESP TO TCA. 

DFHIC TYPE=GE~IME, 
FOFM=PACKED, 
TIMADR=YES 

TCAICDA=ADDR(CLOCK) ; 

DFHIC TYPE=GFTIME, 
FCRM=PACKED, 
TIMADR=YES 

REQUEST CURRENT TIME-OF-DAY 
PACKED tECI~AL FORM 
RESPONSE ADDR~SS GIVEN 

/*MOVE ADDR FOR RESP TO TCA*/ 

REQUEST CURRENT TIME-OF-DAY 
PACKED DECIMAL FORM 
RESPONSE ADDRESS GIVEN 

~IME-ORDERED TASK SYNCHRONIZATION (WAIT, POST) 

The task synchronization feature of CICS Time Management provides 
the capability to either delay the processing of a task until a 
specified time occurs or to signal a processing task when a specified 
interval cf time has elapsed. It also supports the cancellation of 
a pending time-ordered synchronization event by another task. (See 
"Time-Ordered Request CancellaticD" later in this section.) 

D~lgy !h~ R!£~gg§~ng 2f ~ !s§~ (WAIT) 

The application prcgrarrmer can request that the processing of a 
task be suspended until a given time p.xpires by issuing the 

* 
* 

* 
* 

135 



DFHIC TYPE=WAIT, 
INTRVAL=numeric value,YES, 
~IME=numeric value,YES, 
FECID=name,YES, 
NCRESP=symbclic address, 
INVREQ=symtolic address, 
EXPIRD=symbolic address 

* 
* 
* 
* 
* 
* 

macro instruction. This macro instruction causes the task to 
temporarily suspend its own processing, and to resume control at a 
specified time of day or after a specified interval of time has elapsed. 
It supersedes and cancels any previously initiated DFHIC TYPE=POST 
request for the task. 

The application programmer must specify the parameters required 
in ~ither cf twc ways: (1) by including the parameters in operands 
of the DPHIC TYPE=WAIT macro instruction, or (2) by coding instructions, 
~~ic~ to issuing the DFHIC TYPE=WAIT macro instrUction, that dynamically 
move these parameters to fields in the TCA. If the parameters are 
included in operands of the DFHIC TYPE=WAIT macro instruction, the 
applicable keywords are INTRVAL, TIME, and REQID. (The keywords used 
to access user-written exception handling routines are discu~sed in 
the section "Test Response to a Request for Time Services".) 

The numeric value specified in either the INTRVAL operand or TIME 
operand is used by CICS to calculate the time of day the requested 
time service is to be provided. If the calCUlated time of day is the 
same as the current clock time, or up to and including six hours 
preceding the current clock time, the specified time is considered 
to have ela~sed (occurred) and the requested service is provided 
immediately. If the calculated time of day is in advance of the current 
clock time, the requested service is provided when the specified time 
cccurs. If the calculated time of day precedes the current clock time 
ty more than six hours, the requested service is p~ovided the next 
day at the specified time. 

BQ1~~ Users of eIcS/oS must be aware that the current clock time is 
reset to zero each day to represent midnight.. CICS makes no 
attempt to calculate a time of day based on a clock time less 
than zero. 

INTRVAL: This operand is used to specify the interval of time a task 
is to be suspended in resFonse to a DFHIC TYPE=WAIT request. The 
interval of time is specified as a numeric value of the form HHMMSS, 
where HH represents hours from 00 to 99, MM represents minutes from 
CO to 59, and SS represents seconds from CO to 59. This numeric value 
is added to the current clock time by CICS when the DFHIC TYPE=WAIT 
macro instruction is executed to calculate the time of day (clock time) 
at which the posting is to occur. Th€ minimum value that may be 
specified is one second. 

The numeric value can be specified in the DFHIC TYPE=WAIT macro 
instruction, or it can be dynamically moved to the TCAICRT field of 
tbe TCA ELi2! to issuing the DFHIC TYPE=WAIT macro instruction. In 
the latter case, the INTRVAL=YES operand must be included in the macro 
instruction. 

The INTRVAL operand and TIME operand are mutually exclusive and 
may not be used in the same macro instruction. 

TIME: This o~erand is used to specify the time of day at which the 
~rocessing of a task is to begin. The time of day is expressed as 
a numeric value of the form HHMMSS, where HH represents hours from 

136 



00 to 99, ~M represents minutes frcm 00 to 59, and 5S represents seconds 
from 00 to 59. 

The numeric value can Be specitied in the DFHTC TYPE=WAIT macro 
instructicn, cr it can be dynamically moved to the TCAICRT field of 
the TCA £fiQ~ tc iss~ing the DFHrC TYPE=WAIT macro instruction. In 
the latter caSE, the TIME=YES operand must be included in the macro 
instructicn. 

The TIME operand and TNTBVAL operand are mutually exclusive and 
may not be used in the same macrc instruction. 

BEQID: Each time-ordered request has a unigue Request Identification 
assigned to it. Its purpose is to provide a means of symbolically 
identifying the request and any data associated with it. Un18ss 
otherwise instruct~d, CICS generates a unique Reguest Identification. 

The cptional BEQID operand allows the user to supply the unique 
Request Identification as part of the DFRIC TYPE=WAIT service request 
in either of twc ways: (1) by specifying a maximum of eight characters 
in the REQID cperand, or (2) by dynamically moving an eight-byte Request 
Identification to the TCAICQID field prior to issuing the DPHIC 
TYPE=WAIT macro instruction. In the latter case, the REQID=YES operand 
must be included in the macro instruction. 

~he REQID operand should be used when a task issues the DFHIC 
!YPE=WAIT macro instructicn, if the application Frcgrammer wishes to 
provide another task with the capability of cancelling the unexpired 
WAIT request. (See the discussion of the DFHIC TYPE=CANCEL macro 
instruction.) 

The following is an example of the coding required to temporarily 
suspend the processing of a task for a specified period of time: 

DFHIC TYPE=WAIT, 
IN!RVAL=500, 
EECIE=GXLBZQMR 

DELAY !ASK ~ROCESSING, 
WAIT 5 MINU!ES 0 SECONDS 
UNIQUE REQUEST ID 

The fcllowing are exam~les of the coding required to dynamically 
request the suspension of a task until a specifiBd time of day. 

MVC TCAICRT,=PL4'12Q500 ' MVC !CAICQID,UNIQCODE 

DFHIC !YPE=iAIT, 
TIME=YES, 
REQID=YES 

MOVE 124500 TO TCAICRT. 
MOVE UNICCCDE TO TCAICQID. 

DPHIC TYPE=WAIT, 
TIME=YES, 
BEQID=YES 

MOVE 12:q5 TO TCA 
UNIQUE REQUEST ID TO TeA 

DELAY TASK PROCESSING 
EXPIRATION TIME GIVEN 
UNIQUE ID GIVEN 

NOTE MOVE 12:45 TO TCA 
NO~E UNICUE REQUEST ID TO TCA. 

DElAY TASK FBOCESSING± 
EXPIRATION TIME GIVEN 
UNIQUE ID GIVEN 

* 
* 

* 
* 

* 
* 

137 



!Q.f i.1Ll: 

TCAICRT=124500; 
TCAICQID=UNIQCODE; 

DFHIC TYPE=WAIT, 
'IIME=YES, 
EECID=YES 

I*MOVE 12:45 TO TCA*I 
I*UNIQUE BEQUEST ID TO TCA*I 

DELAY 'IASK FROC~SSING 
EXPIRATIONTI~lE GIVEN 
UNIQUE ID GIVEN 

5J..91!gl .:th~ ~~l?i];~:tj,Q.n .2:£ .9 ~J2.§~j, .. t~§g ~i.!!!~ (FaST) 

The'ap~lication programmer can request that CICS indicate to a 
processing task wben a given time has expired by issuing the 

DFHIC TYPE=POST, 
IN'IRVAL=numeric value,YES, 
TIME=numeric value,YES, 
BECID=name,YES, 
NOBESP=symbolic address, 
INVREQ=symcolic address, 
EXPIBD=symcolic address 

macro instructicn. In response to this macro instruction, CICS sets 
a series of bits in a Timer Event control Area available to the user 
for testing. Tbe address of the Timer Event Control Area is returned 
to the requesting task in the TCAICTEC field after issuing the DFHIC 
TYPE=POST macro instruction. 

The Timer Event Control Area provided by eICS is a four-byte storage 
area initialized to binary zeros at the time the DFHIC TYPE=POST macro 
instruction is issued. When Cles determines that the specified time 
has expired, byte 0 is set to a hexadecimal 40 and byte 2 is set to 
a hexadecimal 80 (the other bytes are set to zero). This ferm of 
~osting is compatible with the ccmpletion code postings performed by 
the operating systems. ~he Timer Event Control Area can be used as 

* 
* 

* 
* 
* 
* 
* 
* 

the Event Centrel Area referenced in a DFHKC TYPE=WAIT macro 
instruction. (SEe the discussion of task synchronization in the section 
"Task Services".) 

The Timer Event Control Area provided to the user is not released 
or altered (except as described above) until the first of any of the 
fcllowing events eccur: 

1. The task issues a subsequent DFHIC TYPE=WATT, DFHIC TYPE=POST, 
DFHIC TYFE=INITIATE or DFEIC TYPE=PUT macro request. 

2. The task issues a DFHIC TYPE=CANCEL macro request on behalf 
of its own previously issued DFHIC TYPE=POST request (this 
releases the storage area occupied by the Timer Event Control 
Area) .. 

3. The task terminates, normally or abnormally. 

A task can only have one DFHIC TYPE=POST request aetive at any given 
time. Any DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC TYPE=INITIATE, or 
tFHIC TYPF=PUT request supersedes and cancels a previously issued DFHIC 
TYPE=POST request madE by the task. 

BQ!~l The expiration of any CICS time-ordered event is determined 

138 

by eICS when it is performing its task dispatching function. 
Therefore, for "posting" to occur, the application programmer 
must ensure that the task relinquishes centrol of CICS before 
each tes~ing of the Timer Event Contrcl Area. This can be done 



directly by issuing the DFHKC TYPE=WAIT macro instruction (see 
the discussion of task synchronization in the section "Task 
Services") or indirectly by requesting a CICS service which 
in turn initiates a task service on behalf of the task. 

The application programmer must specify the parameters required 
in either of two ways: (1) by including the parameters in operands 
of the DFHIC TYFE=POST macro instruction, or f2) by coding instructions, 
~!iOI to issuing the DFHIC TYPE=PoST macro instruction4 that dynamically 
move these parameters to fields in the TCA. If the parameters are 
included in operands of the DFHIC TYPE=POST macro instruction, the 
applicable keyworas are INTRVAL, TIME, and REQID. (The keywords used 
to access rrser-written Exception handling routines are discussed in 
the section "Test Response to a Request for Time Services".) 

The numeric value specified in either the INTRVAL operand or TIME 
operand is used by CICS to calculate the time of day ~he requested 
time service is to be provided. If the calculated time of day is the 
same as the current clock time, or up to and including six hours 
preceding the current clock time, the specified time is considered 
to have elapsed (occurred) and the requested service is provided 
immediately. If the calculated time of day is in advance of the current 
clock time, the requested service is provided when the specified time 
occurs. If the calculated time of day precedes the current clock time 
ty more than six hours, the requested service is provided the next 
day at the specified time. 

\ .. Users of CICS/OS must be aware that the current clock t1me 1S 
reset to zero each day to represent midnight.'\CICS makes no 
attempt to calculate a time of day based on a clock time less 
than zero. 

INTRVAL: This operand is used to specify the interval of time that 
is to elapse in response to a DFHIC TYPE=POST request. The interval 
of time is specified as a numeric value of the form HHMMSS, where HH 
represents hours frcm 00 to 99, MM represents minutes from 00 to 59, 
and SS represents seconds from 00 to 59. This numeric value is added 
to the current clock time by CICS when the DFHIC TYPE=POST macro 
instruction is executed to calculate the time of day (clock time) at 
which the task. is to be resumed. The minimum value that may be 
Epecified is one second. 

The numeric value can be specified in the DFHIC TYPE=POST macro 
instructicn, or it can be dynamically moved to the TCAICRTfield of 
the TeA n.i~. to issuing the DFHIC TYPE=POST macro instruction. In 
the latter case, the INTRVAL=YES operand must be included in the macro 
instruction. 

The INTRVAL operand and TIME operand are mutually exclusive and 
may not be used in the same macro instruction. 

TIME: This operand is used to specify the time of day at which the 
posting action in respo.nse to a DFHIC TYPE=POST request is to occur. 
The time of day is ~xprEssEd as a numeric value of the.form HH~MSS, 
where HH represents hours from 00 to 99, MM represents minutes from 
00 to 59, and SS represents seconds from 00 to 59. 

The numeric value can be specified in the DFHIC TYPE=POST macro 
instructicn, or it can be dynamically moved to the TCAICRT field of 
the TeA n~iQI to issuing the DFHIC TYPE=POST macro instruction. In 
the latter case, the TIKE=YES operand must be included in the macro 
instruction. 

139 



The TIME operand and INTBVAL operand are mutually exclusive and 
may not be used in the same macro instruction. 

BEQID: Each time-ordered request has a unique Request Identification 
assigned to it. Its purpose is to provide a means of symbolically 
identifying the request and any data associated with it. Unless 
otherwise instructed, CICS generates a unique Request Identification. 

The optional REQID operand allows the user to s~pply the unique 
Request Identification as part of the DFHIC TYPE=POST service request 
in either of two ways: (1) by specifying a maximum of eight characters 
in the REQID operand, or (2) by dynamically moving an eight.byte Request 
Identificaticn to the TCAICQID field ]£iQ~ to issuing the DFHIC 
TYPE=POST macro instruction. In the latter case, the REQID=YES operand 
must be included in the macro instruction. 

If the REQID operand is omitted from the DFHIC TYPE=POST macro 
instructicn, the unique Request Identification generated by CICS is 
teturnedto the user in the TCAICQID field. 

The following is an example of the coding required to request that 
Cles signal the task when a specified interval of time has elapsed: 

DFHIC TYPE=POST, 
INTRVAL=30 

SIGNAL WHEN INTERVAL PASSES 
INTERVAL IS 30 SECONDS * 

The following are examples of the coding required to dynamically 
request that CICS signal the task when the specified time of day occurs. 

MVC TCAICRT,PACKTIME 

DFHIC TYFE=FOST, 
TIME=YES 

MVe UNIQCODE,TCAICQID 

IQ~ ANS ~~BOL: 

140 

MOVE PACKTIME TO TeAICRT. 

DFHIC TYFE=POST, 
TIME=YES 

MOVE TCAICQID TO UNIQCODE. 

TCAICRT=PACKTIME; 

DFHIC TYPE=POST, 
TIME=YES 

UNIQCODE=TCAICQID; 

STORE CALCULATED EXPIR TIME 

SIGNAL WHEN TIME OCCURS 
EXPIRATION TIME GIVEN 
SAVE CICS UNIQUE REQUEST ID 

NOTE STORE CALC EXPIR TIME. 

SIGNAL WHEN TIME OCCURS 
EXPIRATION TIME GIVEN 
SAVE CICS UNIQUE REQUEST ID 

/*STORE CALCULATED EXPIR TIME*/ 

SIGNAL WHEN TIME OCCURS 
EXPIRATION TIME GIVEN 
SAVE CICS UNIQUE REQUEST ID 

* 

* 

* 



AUTOMATIC TIME-ORDERED TASK INITIATION (INITIATE, PUT) 

This feature of Time Management allows a task to initiate another 
task at seme future time and, optionally, to pass data to that task. 
The automatic task initiation services available through DFHIC macro 
instructions include: 

1. Request that a task be initiated at some future time. 
2. Request that data be stored for a task which is to be initiated 

at scme future time. 

The application programmer can request that another task be initiated 
at some future time by issuing the: 

DFHIC TYPE=INITIATE, 
INTRVAL=numeric value,YES, 
TIME=numeric value,YES, 
REQID=name,YES, 
TRANSID=name, 
TRMlDNT=name,YES, 
NORESP=symtolic address, 
INVREQ=symbclic address, 
TRNIDER=symbclic address, 
TRMIDER=symbclic address 

macro instruction. Through the use of this macro instruction the 
applicaticn programmer provides the symbolic Transaction Identification 
of the task to be initiated at seme future time and other information 
pertaining to the task. ClCS queues the request until the specified 
time occurs. Then, as soon as all necessary reSOULces are available 
(for example, a terminal) , the task is initiated. only one task is 
initiated if multiple DFHIC TYPE=INITIATE requests (all for the same 
transaction and terminal) expire at the same time or prior to terminal 
availability. The DFHIC !YPE=INITIATE macro instruction is used when 
no data is to be passed to the future task. It supersedes and cancels 
any previously initiated DFHIC TYPE=POST request for the task. 

The applicaticn programmer must specify the parameters required 
in either of two ways: (1) by including the parameter~ in operands 
of the tFEIC TYPE=INITIATE macre instruction, or (2) by coding 
instructicns, RIiQ~ to issuing the DFHIC TYPE=INITIATE macro 
instruction, that dynamically move these parameters to fields in the 
TeA. If the parameters are included in operands of the DFHIC 
TYPE=INITIATE macro instruction, the applicable keywords are INTRVAL, 
TIME, REQlD, TRANSID, and ~RMIDNT. (The keywords used to access user­
written exception bandling routines are discussed in the section "Test 
Response to a Request for Time Services".) 

The numeric value specified in eitber the INTRVAL operand or TIME 
operand is used by CICS tc calculate the time of day the requested 
time service is tc be provided. If the calculated time of day is the 
same as the current clock time, or up to and including six hours 
preceding the current clock time, the specified time is considered 

* 
* 
* 
* 
* 
* 
* 
* 
* 

to have ela~sed (occurred) and the requested service is provided 
immediately. If the calculated time of day is in advance of the current 
clock time, the requested service is provided when the specified time 
c~curs. If the calculated time of day precedes the current clock time 
ty mOIe than six hours, the requested service is provided the next 
day at the specified time. 

]Q1~1 Users of CICS/OS must be aware that the current clock time is 
re~et to zero each day to represent midnight. CICS makes no 

141 



attempt to calculate a time of day based on a clock time less 
than zero. 

INTRVAL: This operand is used to specify the interval of time after 
which the task is to be automatically initiated in response to a 
DPHIC=TYPE=INITIATE request. The interval of time is specified as 
a numeric value of the form RHMMSS, where HH represents hours from 
00 to 99, M~ represents minutes from 00 to 59, and 55 represents seconds 
from 00 to 59. This numeric value is added to the current clock time 
cy CICS when the DFHIC TYFE=INITIATE macro instruction is executed 
to calculate the time of day (clock time) at which the task is to be 
automatically initiated. The minimum value that may be specified is 
cne second. 

The numeric value can be specified in the DFHIC TYPE=INITIATE macro 
instruction, or it can be dynamically moved to the TCAICRT field of 
the TCA .E.Ii.2~ to issuing the DFHIC TYPE=INITIATE macro instruction. 
In the latter case, the INTRVAL=YE5 operand must be included in the 
macro instruction. 

The IN~RVAL operand and TI~E operand are mutually exclusive and 
may not he used in the saBe macro instruction. 

TIME: This operand is used to specify the time of day at which the 
task is to be autcmatically initiated in response to a DFHIC 
TYPE=INITIATE request. The time of day is expressed as a numeric value 
of the form HH~MSS, where HH represents hours from CO to 99, MM 
represents minutes from 00 to 59, and SS represents seconds from 00 
to 59. 

The numeric value can be specified in the DFHIC TYPE=INITlATE Macro 
instructicn, or it can be dynamical1y moved to the TCAlCRT field of 
the TCA R~io~ to issuing the DFHlC TYPE=INlTIATE macro instruction. 
In the latter case, the TI~E=YES operand must be included in the macro 
instruction. 

The TIME operand and lNTRVAL operand are mutually exclusive and 
may not be used in the same macro instruction. 

BEQID: Each time-ordered request has a unique Request Identification 
assigned to it. Its purpose is to provide a means of sy~bolically 
identifying the request. Unless otherwise instructed, ClC5 generates 
a unique Request Identification. 

The optional REQID operand allows the user to supply the unique 
Request Identification as part of the DFHIC TYPE=INITlATE request in 
either of two ways: (1) by specifying a maximum of eight characters 
in the REQID operand or (2) by dynamically moving an eight-byte Request 
Identificat~cn to the TCAICQID field Rrio£ to issuing the DFHIC 
TYPE=INITIATE macro inst~uction. In the latter case, the REQID=YES 
c~erand must he included in the macro instruction. 

If the REQID operand is omitted from the DPHIC TYPE=INITIATE macro 
instruction, 'the unique Request identification provided bj CICS is 
returned to the user in the TCAICQID field. 

TRANSID: This operand is used to supply the symbolic Transaction 
Identification of the future task. This operand can be emitted provided 
the applicaticn ~rogrammer has placed the symbolic Transaction 
Identification in the TCAlCTI field prior to issuing the DFHIC 
TYPE=INITIATE macro instruction. CICS vali-dates the symbolic 

142 



Transaction Identification through a scan of the Program Control Table 
at the time ~f the initial macro request, providing a response code 
at TCAICTR (TCAICRC if the language is ANS COBOL) without servicing 
the request if it fails tc locate a matching Transaction Identification. 

TRMIDNT: This operand is used when the future task must communicate 
with a terminal. The symbolic Terminal Identification can be included 
in the tFHIC TYPE=INITIATE macro instruction, or can be dynamically 
moved to the TCAICTID E~i2! to issuing the DFHIC TYPE=INITIATE macro 
instruction. In the latter case, the TRMIDNT=YES cperand must be 
included in the macro instruction. Cles validates.the symbolic Terminal 
Identification through a scan of the Terminal Centrol Table at the 
time of the initial macro request, providing a response code at TCAICTR 
(TCAICRC if the language is ANS COBOL) without servicing the request 
if it fails to locate a matching Terminal Identification. The TRMIDNT 
operand is omitted from the DFHIC TYPE=INITIATE macro instruction if 
no association with a terminal is required. 

The following is an example of the coding required to request 
autom-atic initiation of a task not associated with a terminal without 
passing data to the task: 

DFHIC TYPE=INITIATE, 
INTRVAL=10000, 
TRANSID=TRNL 

REQUEST TASK INITIATION 
IN ONE HOUR 
TRANSACTION IDENTIFICATION 

The following are examFles of the coding required to dynamically 
request automatic initiation of a task associated ~ith a terminal 
without passing data to the task. 

12I ~§§§m~!§~ 19D9uag~: 

MVC TCAICRT,=PL4' 1eOOO', 
MVC ~CAICTI,=CL4'TRN1' 
MVC TCAICTID,=CL4'STA5' 

DPHIC TYFE=lNITIATE, 
INTRVAL=YES, 
TRHIDNT=YES 

MVC UNIQCODE,TCAICQID 

E2I A.B.§ ~~~1: 

MOVE 10000 TO ~CAICRT. 
~OVE 'TRN1' TO TCAICTI. 
MOVE 'STASI TO TCAICTID. 

DFHIC TYPE=INITIATE, 
INT~VAL=YES, 

TRMIDNT=YES 
MOVE TCAICQID TO UNIQCODE. 

TCAICRT=10000; 
TCAIClI='~RN1'; 
TCAICTID='STA5'; 

MOVE ONE HOUR TO TCA 
TRANSACTION ID TO TCA 
TERMINAL ID TO TCA 

REQUES~ TASK INITIATION 
INTERVAL OF TIME GIVEN 
TERMINAL ID GIVEN 
SAVE CICS UNIQUE REQUEST ID 

NOTE MOVE CNE HOUR TO TCA 
NOTE TRANSACTION ID TO TeA 
NOTE TER~INAL ID TO TCA 

REQUEST TASK INITIATION 
INTEBVAL OF TIME GIVEN 
TERMINAL ID GIVEN 
SAVE CICS UNIQUE REQUEST ID 

I*KOVE ONE HOUR TO TCA*I 
I*TRANSACTION ID TO TCA*I 
I*TERMINAL ID TO TCA*I 

* 
* 

* 
* 

* 
* 

143 



DFHIC TYPE=INITIATE, 
INTRVAL=YES, 
'IRMIDNT=YES 

UNIQCODE=TCAICQID; 

ls§k lDi1~31~gn ~j!h Qg~~ (PUT) 

REQUEST TASK INITIATION 
INTERVAL OF TIME GIVEN 
TERftINAL ID GIVEN 
SAVE CICS UNIQUE REQUEST ID 

Supported by CICS Temporary storage Management, this facility allows 
th€ a~plicaticn programmer to pass data to another task that is to 
be initiated at some future time by issuing the 

DFHIC 1:YPE=PUT, 
INTRVAL=numeric value, YES, 
TIME=numeric value,YES, 
BEQID=name,YES, 
TBANSlD=name, 
TRMIDNT=name,YES, 
lCDADDR=symtclic address,YES, 
NORESP=symbolic address, 
INVREQ=symtolic address, 
TRNIDER=symbclic address, 
TRMIDER=symtclic address, 
IOEBROR=symbclic address 

macro instruction. This macro instruction is used to provide the 
symbolic Transaction Identification, the location of the data to be 
stored, and other information applicable to the task to be initiated 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

at some future time. CICS stores the data and queues the request until 
the specified interval of time has elapsed or the specified time of 
day has occurred. As scon as all necesSary resources are available 
(for example, a terminal) the task is initiated. 

The DFHlC TYPE=PUT macro instruction is used only when data is to 
te passed to a task to be initiated at some future time. It supersedes 
and cancels any previously initiated DFHIC TYPE=POST request of the 
task. 

If the task to be initiated at some future time is associated with 
a terminal, the initial DFHIC TYPE=PUT request catrses the task to be 
initiated at the specified time. Subsequent PUT's, with the same 
Terminal id~ntification, Transaction Identification, and expiration 
time as the initial PUT, are used to store data for subsequent retrieval 
by the initiated task. (SEe the section "Retrieve Time-Ordered Data".) 

If the task to be initiated at some future time is not associated 
with a terminal, each DFHle TYPE=PUT request results in a task being 
initiated at the specified time. That is, only one physical data 
record is passed to the initiated task. (See the section "Retrieve 
Time-Ordered Data".) 

The application programmer must specify the parameters required 
in either of two ways: (1) by including the parameters in operands 
of the DFHIC 1:YPR=PUT macro instruction, or f2) by coning instructions, 
E!12! to issuing the DFHIC TYPE=PUT macro instruction, that dynamically 
move these parameters to fieldS in the TCA. If the parameters are 
included in operands of the DFHlC TYPE=PUT macro i~struction, the 
applicable keywords are INTRVAL, TIME, REQID, TRANSID, TRMIDNT, and 
ICtADDR. (The keywords used to access us~r-written exception handling 
rou tines are dis'cussed in the section "Test Response to a Request for 
Time Services".) . 

144 



The numeric value specified in either the INTRVAL operand or TI"E 
operand is used by CICS to calculate the time of day the requested 
time service is to be provided. If the calculated time of day is the 
same as the current clock time, or up to and including six hours 
preceding the current clock time, the specified time is considered 
to have elapsed (occurred) and the requested service is provided 
immediately. If the calculated time of day is in advance of the curreRt 
clock time, the requested service is provided when the specified time 
occurs. If the calculated time of day precedes the current clock time 
by more than six hours, the requested service is provided the next 
day at the specified time. 

~~~ Users of CICS/OS must be aware that the current clock time is 
reset to zero each day to represent midnight. CICS makes no
attempt to calculate a time of day based on a clock time less
than zero.

INTBVAL: This operand is used to specify the interval of time after
which the task is to be automatically initiated and/or data made
available to the task in response to a DFHIC TYPE=PUT request. The
interval of time is specified as a numeric value of the form HHM~SS,
where HH represents hours from 00 to 99, M" represents minutes from
00 to 59, and SS represents seconds from 00 to 59. This numeric value
is added to the current clock time by C!CS when the DFHIC TYPE=PUT
macro ins~ruction is executed to calculate the time of day (clock time)
at which the task is to b~ automatically initiated and/or data made
available to the task. The minimum value that may be specified is
one second.

The numeric value can be specified in the DPHIC TYPE=PUT macro
instruction, or it can be dynamically moved to the TCAICRT field of
the TCA ~iQ~ to issuing the DFHIC TYPE=PUT macro instruction. In
the latter case, the INTRVAL=YES operand must be inCluded in the macro
instruction.

The INTRVAL operand and TIME operand are mutually exclusive and
may not be used in the same macro instruction.

TI~E: This operand is used to specify the time of day at which the
task is to be automatically initiated and/or data made available to
the task in response to a DFH1:C TY·PE=PUT request. The time of day
is expressed as a numeric value of the form HHHMSS, where HH represents
hours from 00 to 99, MM represents minutes from 00 to 59, and SS
represents seconds from 00 to 59.

The numeric value can be specified in the DFHIC TYPE=PUT macro
instruction, or it can be dynamically moved to the TCAICRT field of
the TeA R~i~~ to issuing the DFHIC TYPE=PUT macro instruction. In
the latter case, the TI~E=YES operand must be included in the macro
instruction.

The TIME operand and INTBVAL operand are mutually exclusive and
may not be used in the same macro instruction.

REQID: Each time-ordered request has a unique Request Identification
assigned to it. Its purpose is to provide a means of symbolically
identifying the request and any data associated with it. Unless
otherwise instructed, CICS generates a unique Request Identification.

The optional REQID operand allows the user to supply the unique
Request Identification as part of the DPHIC TYPE=PU! service request
in either of two ways: (1) by specifying a maximum of eight characters

145

in the REQID operand, or (2) by dynamically moving an eight-byte Request
Identificaticn to the TCAICQID field EIi2~ to issuing the DFHIC TYPE=PUT
macro instruction. In the latter case, the REQID=YES operand must
be includEd in the macro instruction.

If the REQID operand is omitted from the DFHIC 1YPE=PUT macro
instruction, the unique Request Identification generated by CICS is
returned to the user in the TCAICQID field. The unique Request
Identification becomes the symbolic name assigned to the data stor€d
by CICS when servicing the DFHIC TYPE=PUT request.

~RANSID: This operand is used to supply the symbolic Transaction
IdeQtification of the task to. be initiated at some future time. This
operind can be omitted provided the application programmer has placed
the symbolic Transaction Identification in the TCAICTI field BIiQ~
to issuing the DFHIC TYPE=PUT macro instruction. CICS validates the
symbolic Transaction Identification through a scan of the Program
Control Table at the time of the initial macro request, providing a
response code at TCAICTR (TCAICRC if the language is ANS COBOL) without
servicing the request if it fails to locate a matching Transaction
Identification.

TRMIDNT: This operand is used when the task to be initiated at some
future time must communicate ~ith a terminal. The symbolic Terminal
Identification can be coded in the macro instruction, or can be
dynamically moved to the TCAICTID field EIi2I to issuing the DFHIC
TYPE=PUT macro instruction. In the latter case, the TRMIDNT=YES operand
must be included in the macro instruction.

CICS validates the symbolic Terminal Identification through a scan
of the Terminal Control Table at the time of the initial macro request,
providing a response code at TCAICTR (TCAICRC if the language is INS
COBOL) without servicing the request if it fails to locate a matching
Terminal Identification. The TRMIDNT operand is omitted from the DFHIC
TYPE=PUT macro instruction if no association with a terminal is
required.

ICDADDR: This operand is used to supply the location of the data to
be stored for the task that is to be initiated at some future time.
The data must have the standard variable-length format, with the data
length specified in the first four bytes (LLbb) followed by the data.
LL is a tWO-byte binary length field (the value of which includes the
length of the data plus the four bytes for the length field) and bb
is recommended to be a two-byte field of binary zeros. The symbolic
address can be coded in the DFHIC TYPE=PUT macro instruction, or can
be dynamically moved to the TCAICDA field E!~Q~ to issuing the DFHIC
TYPE=PUT macro instruction. In the latter case, the ICDADDR=YES operand
must be included in the macro instruction.

The following is an example of the coding required to request
automatic task initiaticn and/or request that time-ordered data be
made available to a task associated with a terminal:

DFHIC TYPE=PUT,
TIME=173000,
!RANSID=TRN2,
TRMIDNT=STA3,
ICDADDR=DATAFLD

REQUEST TASK INITIATION
TIME IS 5:50 PM
TRANSACTION IDENTIFICATION
TERMINAL IDENTIFICATION
DATA ADDRESS

The following are examples of the coding required to dynamically
request automatic task initiation and/or request that time-ordered
data be made available to a task associated with a terminal.

146

*
*
*
*

HVC TCAI~RT,PACKTIME
HVC TCAICQID,UNIQCODE
Mve TCAICTI,=CL4'TBN2'
MVC ~CAIC!ID,=CL4'STA3'
HVC TCAICDA,=A(DATAFLD)

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
BEQID=YES,
IcrADDR=YES

MOVE PACKTIME TO TCAICRT.
MCVE UNIQCCDE TO TCAICQID.
MOVE 'TRN2' TO TCAlC!I.
MOVE 'STA3' TO TCAlCTID.
MOVE DATADtR TO TCAlCDA.

DFHIC TYPE=PUT,
'IIME=YES,
TRM1DNT=YES,
BEQID=YES#
ICtADDR=YES

TCAICRT=PACKTIME;
TCAICCID=UNIQCODE;
TCAIC'II=' TBN2' ;
TCAICTID='STA3';
TCAICDA=ADtR (DATAFLD) :

DFHIC TYPE=PUT,
TIME=YES,
TRMIDNT=YES,
BEQID=YES,
ICDADDR=YES

RETRIEVE TIME-ORDERED DATA (GET)

CALCULATED ElPIR TIME TO TCA
UNIQUE REQUEST ID TO TCA
TRANSACTION ID TO TCA
TERMINAL ID TO TCA
ADDRESS OF DATA TO TCA

REQUEST TASK INITIATION
EXPIRATION TIME GIVEN
TERMINAL ID GIVEN
UNIQUE REQUEST ID GIVEN
DATA ADDRESS GIVEN

NOTE CALC EXPIR TIME TO TCA
NOTE UNIQUE REQEST ID TO TCA.
NOTE TRANSACTION ID TO TCA.
NOTE TERMINAL ID TO TCA.
NOTE ADDRESS OF DATA TO TCA.

REQUEST TASK INITIATION
EXPIRATION TIME GIVEN
TERMINAL ID GIVEN
UNIQUE REQUEST ID GIVEN
DATA ADDRESS GIVEN

/*CALC EXPIR TIME TO TCA*/
/*UNIQUE REQUEST ID TO TCA*/
/*TRANSACTION ID TO TCA*/
/*TERMINAL ID TO TCA*/
/*ADD~ESS OF DATA TO TCA*/

REQUEST tASK INITIATION
EXPl~ATION TIME GIVEN
TERMINAL ID GIVEN
UNIQUE REQUEST ID GIVEN
DATA ADDRESS GIVEN

Tasks can retrieve expired time-ordered data by issuing the

DFHIC TY PE=GET,
ICDADDR=symbclic address, YES,
NORESP=symbolic address,
INVREQ=symbclic address,
ENDDATA=symbclic address,
NOTFND=symbolic address,
IOEBBOR=symbclic address

macro instruction~ This service is supported by the CICS Temporary
storage Management facility.

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*
*
*

147

Only data from an expired DFHIC TYPE=PUT request can be accessed
via the DFHIC TYPE=GET maCIO instruction. All data stored via the
DFHIC TYPE=PUT macro instruction must be retrieved via the DFHIC
~YPE=GET macro instruction.

Each originating DFHIC TYPE=PUT request symbolically identifies
the Transaction Identification of the task to receive the data, and
if applicable, symtolical1y identifies the terminal a~sociated with
the task's operation. When CICS services a DFHIC TYPE=PUT request,
it dces so in two steps; it first queues the request for automatic
task initiation at a specified time and then stores the data. When
the specified time occurs, the task is ready to be initiated, and the
stored data is then available for retrieval.

A task not associated with a terminal that is initiated as a result
cf an expired DFBle TYPE=PUT request can access only the single data
record a~sociated with the original request, and dces so by issuing
the tFHIC TYPE=GET macro instruction. An end-of-data condition occurs
in re~Fonse to the DFHIC !YPE=GET request when all data records have
been retrieved for this task. The storage occupied by the data
associated with the task is released upon execution of the DFHIC
TYPE=GET request, or upon termination of the task (normally or
abnormally).

A task associated with a t€rminal that is initiated as the result
of an expired DFHIC TYPE=PUT request, or that is active on the terminal
at the time of expiraticn of a DFHlC TYPE=PUT request, can access all
data records associated with the other expired DFHIC TYPE=PUT macro
requests, each having the same Transaction Identification, and Terminal
Identification as the operating task. Therefore, a task associated
with a terminal can retriev~ all the expired data destined for the
terminal and task by issuing consecutive DFHIC TYPE=GET requests.
Each expired data record is presented to the task in expiration time
sequence. The automatic task initiation request associated with each
1ata Iecord retrieved is canceled by the DFHIC TYPE=GET request for
that data, and the storage occupied by th~ data is released at the
same time.

CICS provides an end-of-data res~onse at TCAICTR (TCAICRC if the
language is ANS COBOL) when all expired data has been exhausted. CICS
releases the storage occupied by the single data record associated
with an expired DFHIC TYPE=PUT request, if that request also resulted
in' initiating the task and the task terminated (normally or abnormally)
without retrieving the data. Subsequent expired DFHIC TYPE=POT
requests, specifying the same Terminal Identification and Transaction
Identification, result in new tasks being initiated unless the data
associated with the expired PUT request bas been retrieved in resFonse
to a DFHIC TYPE=GET request.

The application programmer must specify the parameters required
in either of two ways: (1) by including the parameter in operands of
the DFHIC TYPE=PUT macro instruction, or (2) by coding the instruction,
I~i2~ to issuing the DFHIC TYPE=PUT macro instruction, that dynamically
moves the parameter ,to thE field in the TCA. If the parameter is
included in the operand of the DFHIC ~YPE=PUT macro instruction, the
applicable keyword is ICDADDR. (The keywords used to access user­
written exception handling routines are discussed the section "Test
Response to a Request for Time Services".)

ICDADDR: This cpt~onal operand is used to specify the location of
the storage area Frovided by the user into which the data is to be
placed. The symbolic address can be coded in the DFHIC TYPE=GET macro
instruction, or it can be dynamically moved to the TCAICDA field prior
to issuing the tFBIC TYPE=GET maCIO instruction. In the latter case,

148

the ICDADDR=YES cferand must be included in the macro instruction.
~he storage area provided by the user must be large enough to contain
the four-byte length field (LLbb) and data record. If this operand
is omitted, a storage area is acquired by CICS that is large enough
to contain the four-byte length field (LLbb) and data record. Its
address is returned to khe user in the TCAICDA field.

~be fcllowing is an example of the coding required to request
retrieval of a time-ordered data record:

DFHIC TYPE=GET,
ICDADDR=DATAFLD

RE~RIEVE TIME-ORDERED DATA
USE~-fBOVIDFD rATA AREA

~he following are examples of the coding requir€d to dynamically
request retrieval of a time-ordered data record.

MVC TCAICDA,=A(DATAFLD)

DFHIC TYFE=GET,
ICDADDR=YES

MOVE rATADtE TO TeAICDA.

DFHIC TYPE=GET,
ICDADDR=YES

TCAICDA=ADrR(tATAFLD):

DFHIC TYPE=GET,
ICDADDR=YES

DATA FIELD ADDR TO TCA

RETRIEVE TIME-OBDER!D DATA
DATA FIELD ADDRESS GIVEN

NOTE DATA FIELD ADDE TO TCA.

RETRIEVE TIME-ORDERED tATA

I*DA~A FIELD ADDR TO TCA*I

~ETRIEVE TIME-ORDERED DATA

TIME-CRDEBED REQUEST CANCELLATION (CANCEL)

The application prograremer can request that a previously issued
time-ordered service request (DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC
TYPE=!NITIATE, or DlHIC TYPE=PUT) be canceled by issuing the

DFHIC TYPE=CANCEL,
BEQID=name,YES,
NCRESP=symbolic address,
INVREQ=symbolic address,
NOTFND=symbolic address

macro instruction. The effect of the cancellation is dependent ufon
the presence or absence of the REQID operand in the DlHIC TYPE=CANCEL
request and on the type of service request being canceled.

*

*

*

*

*
*
*
*

149

The keywords used to access user-written exception handling routines
are discussed in the section "Test Response to a Request for Time
Services".

REQID: This operand is required when identifying the unexpired time­
crdered request issued by a task other than the cancelling task, and
can be supplied by the application programmer in either of two ways:
(1) by specifying the unique Request Id€ntificatio~ in the BEQID
operand, or (2) by dynamically moving the unique Request Identification
to the TCAICQID field EI1g! to issuing the DPHIC TYPE=CANCEL macro
instruction. In the latter case, the REQID=YES operand must be included
in the macro instruction.

~gD~gl gn ID~~I~31 ~~ntrol gQST ~~~~1

A DFHIC TYPE=POST request can be canceled by the originating task
or by another task through use of the DFHIC TYPE=CANCEL macro
instruction.

When the originating task cancels a previously issued DFHIC TYPE=POST
request, the HEQID operand must te emitted from the cancellation
request. The cancellation request can be made eitber before or after
expiration cf the original request. In either cas~, the storage
occupied by the Timer Event Control Area is released and all reference
to the original request is removed from the system.

When a task other than the originating task cancels a previously
issued DFHIC TYfE=POST request, the REQID operand ~s required. The
effect of the cancellation is the same as an early expiration of the
original DFHIC TYPE=POST request. That is, the originating task's
Timer Event Control Area is posted as though the original-expiration
time had teen reached.

~gD~~! gD ID!~~~gl ~Q~!~~l]A11 ~~g~~§!

A DFHIC TYPE=WAIT request can only be canceled prior to its
expiration, and only by a task other than the originating task (the
originating task being suspended for the duration of the request).
The REQID operand is required. The effect of the cancellation is the
same as an early expiration of the original DFRIC TYPE=WAIT request.
That is, the originating task resumes control (based on its normal
dispatching priority) as though the original expiration time had been
reached.

~3n£g! gD 1D1§~Xg! ~Qntro! 1111111] Q~ gQl]~que§~

Any cancellation of a previously issued DFHIC TYPE=INITtATE or DFHIC
TYPE=PUT request requires that the REQID operand be included in the
tFHIC TYPE=CANCEL macro instruction. The effect of the carrcel1ation
is to remove the original request from the system, treating the original
request as though it had never been made. The caricellation request
is effective cnly prior to expiration of the original request.

INPUT/OUTPUT ERSOR RETRY CAPABILITY (RETRY)

When the response to a previously issued DPHIC TYPE=GET macro
instruction indicates an I/O error, the application programmer can
issue the

150

DFHIC tYPE=BETRY,
NOBESP=symbclic address,
INVREQ=symbolic address,
NOTFND=symbolic address,
IOERROR=symbclic address

*
*
*
*

macro instruction, requesting that CICS retry the retrieval operation.
(ICS attempts to perform the retrieval operation on the data record
(whose symbolic eight-character identification is contained at TCAICQID)
using the data area specified at TCAICDA. These fields are preset
by CICS at the time the I/O erlor response was returned to the user.

The keywords used to access user-written exception handling routines
are discussed in the section "Test Response to a Request for Time
Services".

!EST RESPONSE TO A vEQUEST POR TIME SERVICES (CHECK)

One of the ways the application programmer can ~est the response
to a requEst for time services is by issuing the

DFHIC TYPE=CHECK,
NOBESP=symbolic address,
EXPIRD=symbolic address,
IOEBBOR=symbclic address,
TRNIDER=symtclic address,
TRMIDER:symbclic address,
NOTPND=symbolic address,
ENDDATA=symbclic address,
INVREQ=symtolic address

macro instruction. it provides for the testing of response codes and
the routing of control to the appropriate user-written exception
handling routines. This macro instruction provides an exception
handling facility that can be used in the manner of a subroutine.

CICS automatically places the appropriate response code in the TCA
at TCAICTR (TCAICRC if tbe language is ANS CCBeL) after completion
of the time service requested. The application programmer must specify
the entry labels (symbclic addresses) he requires to access the
appropriate exception handling routines previously supplied by the
user.

If the application programmer does not use the DFHIC TYPE=CHECK
macro instruction, he can specify the entry labels in either of two
other ways: (1) by including the entry labels in operands of any other
IFHIC macro instruction, or (2) by coding instructions immediately
following the DFHIC macro instruction that examine the response code
provided by CICS at TCAICTR (TCAICRC if the language is ANS COBOL)
and transfer contrcl to the appropriate routine.

The response codes a~e as follows:

£Q]DITIQ1! jSSlllLEj! !.l~ ~.Q~.Q1 fiLl
NORESP X'OO' 12-0-1-8-9 00000000
ENtDATA X' 0 l' 12-1-9 COOOOO01
IOEBRon X'04' 12-4-9 0OOOOlCO
TRNIDEB X' 11 ' 11 ... 1-9 00010001
TllMIDER X' 12' 11-2-9 00010010
EXPIRD X'20' 11-0-1-8-9 00100000
NOT!ND X'81' 12-11-0-1 10000001
INVBEQ X'FP' 12-11-0-7-8-9 11111111

*
*
*
*
*
*
*
*

151

If the TYPE=CHECK macro instruction is used by the application
programmer, it should usually immediately fellow another DFHIC macro
instruction. The applicable keywords are NORESP, RIPIRD, IOERROR,
TENIDER, TRMIDER, NOTFND, ENDDATA,and INVREQ.

If the application programmer does not check for a particular
response to his service request, and if that exception condition occurs,
program flow proceeds to the next sequential instruction.

T~e operands that can be used to test the response to a request
for time services are as follows.

NORESP: specifies the entry label of the user-written routine to which
centrol is to be passed in the event no errors occur. NOBESP signifies
"normal response" rather than "no response".

EXPTED: Specifies the entry label of the user-written routine to which
control is to te passed in the event the time specjfied in a DFHIC
TYPE=POST or DPBIC TYPE=WAIT request had already expired at the time
the request was issued.

TOERROR: Specifies the entry label of the user-written routine to
which control is to be passed in the event an input/output error occurs
during a DFHIC 'IYPE=GET or DFHIC TYPE=PUT operation on auxiliary
storage. The DFHIC TYPE=BETRY macro instruction can be used in
cennection with the GET type of error handling routine.

TRNIDER: Specifies the entry label of the user-written routine to
which control is to be passed in the event the symbolic Transaction
Identification specified in the DFHIC TYPE=INITIATE or DFHIC TYPE=PUT
request is not found in tbe Program Contrel Table (PCT).

~RMIDER: Specifies the entry label of the user-written routine to
which control is to be passed in the event the symbolic Terminal
Identification specified in the DFHIC TYPE=INITIATE or DFHIC TYPE=PUT
request is net found in the Terminal Control Table (TCT).

NOTFND: Specifies the- entry label of the user-written routine to which
control is to be passed in the event the Request Identification
specified in the DFHIC TYPE=CANCEI macro instruction fails to match
an unexpired time-ordered request. It is also applicable to DFHIC
TYPE=GET or DFHIC TYPE=RETRY requests and signifies that the time­
ordered data stored for retrieval through the DFHIC TYPB=PUT macro
instructior. cannot be located using the unique Request (data)
Identification contained in TCAICQID at the time of this response.

For example, the "data not found" condition occurs on a retrieval
operation if some Frior task retrieved the data stored under that
symcolic identification directly through Temporary storage facilities
and then released the data area. This condition also occurs if the
Request Identification associated with the original DFHIC TYPE=PUT
request fails to remain a unique identification.

ENDDATA: Specifies the entry label of ~he user-written routine to
which centrol is to be passed in the event ne more data is stored for
the task issuing a DFHIC TYPE=GET request. It can be considered a
normal end-of-file response when retrieving sequential time~ordered
data records.

'52

INVREQ: Specifies the entry label of the user-written routine to which
control is to be passed in the event the operational CICS does not
support the cptional requEsted service. It may also indicate that
an invalid type of request code was received for processing by the
Interval Control prcgram.

153

When BTA~ is used by eIes for programmable binary synchronous
communication line management, eles initializes the communication line
with a BTA" read initial (TI); the terminal response must be a write
initial (TI) or the equivalent. If a user-written application program
then issues a read, eles issues a read continue (TT) to that line;
if the program then issue~ a write, eles issues a read interrupt (RVI)
to that line.

The programmable terminal response to a read interrupt must be "end
of transmission" (EOT), except that the EOT response may be preceded
by writes to exhaust the contents of output buffers so long as the
input buffer size (specified previously by the user during preparation
of the Terminal eentrol Table) is not exceeded by this data. CICS
issues a read continue until it receives an EOT, or until the input
message exceeds the size of the input buffer (which is an error
condition) • .

After receiving an EOT, eIes issues a write initial (TI) or the
equivalent (depending on the type of line). The programmable terminal
response must be a read initial (TI) or the equivalent.

If another write is issued by the application program, eICS issues
a write continue (TT) to that line. If the program issues a read after
it has issued a write, eles turns the line around; the program must
have relinquished use of the line through a write reset (TR). (eTeS
does not recognize a read interrupt.)

To ensure that binary synchronous terminals (for example, System/360,
1130, 2780) remain coordinated, eles processes the data collection
or data transmission transaction on a line to completion before it
polls the other terminals on that line.

Note: Since the Cles system service programs (Sign On/Sign Off, Master
Terminal, etc.) do not insert binary synchronous control
characters into the data stream, these programs cannot be used
with the 2780 Data Transmission Terminal or the 2980 General
Banking Terminal System.

The type of response required on the part of eIes and the user­
written programmable terminal program to DFHTC macro instructions
issued in a user-written application program is as follows:

154

DFHTC TYPE=READ
DFHTe TYPE=WRITE

DFHTC TYPE=WRITE
DFHTC TYPE=READ

DFHTC TYPE=RESET

(note 2)
(note 3)

(note 4)

~~ (note 1)

READ INITIAL (TI)
READ CONTINUE (TT)
READ INTERRUPT (RVI)
READ CONTINUE (TT)
WRITE INITIAL (TTl
WRITE CONTINUE (TT)
WRITE RESET (TR)
READ INITIAL (TT)
WRITE RESET (TE)

l~EMIBAL PROQ]!~

WRITE INITIAL
WRITE CONTINUE
WRITE RESET

READ INITIAL
READ CONTINUE
READ eONTIl7UE
WRITE INITIAL

Cles issues the equivalent of the macro instruction shown,
depending upon whether the communication line is switched

Page of SH20-1047-4
Revised April 11, 1973
By TNL SN20-9012

or non-switched. The user-written programmable terminal
program must issue the equivalent of the BTAM operation
shown.

An RVI sequence is indicated by the DECFLAGS field of the
Data Extent Control Block (DECB) being set to X'02' and a
completion code of X'7F' being returned to the Event Control
Block (ECB).

The read continue is issued only if the "end of transmission"
(EOT) character is not received on the read interrupt.

write reset is issued only for point-to-point terminals.

3735 CONSIDERATIONS

The 3735 Programmable Buffered Terminal is supported by CICS/OS and
CICS/DOS-STANDARD as explained below.

The 3735 transaction is attached by CICS upon receipt of input from
a 3735. Data is passed to the application program in 476-byte blocks;
each block (one buffer) may contain multiple logical records. The
final block may be shorter than 476 bytes; however, zero-length final
blocks are not passed to the application program. If the block contains
multiple logical records, the user's application must perform any
necessary deblocking functions and the gathering of partial logical
records from consecutive reads •.

It is recommended that the user spool input data from a 3735 to an
intermediate data set to ensure that all data has been captured before
deblocking and processing that data.

The application must follow 3735 conventions and read to end-of-file
before attempting to write PDP's (Form Description Programs) or data
to the 3735. For this reason, the EOF=symbolic address operand must
be used with each DFHTC TYPE=READ re~uest. When the EOF branch is
taken, the user may begin to write FDP's or data to the 3735, or,
optionally, request CICS to disconnect the line.

It is possible that the 3735 will transmit the end-of-file condition
immediately upon connection of the line. For this reason the user must
code the initialization request (DFHTC EOF=symbolic address) before
issuing any other Terminal Control requests in his program.

The user is responsible for formatting all special message headers
for output to the 3735 (for example, SELECTRIC, POWERDOWN). If FDP's
are to be transmitted to a 3735 with ASCII transmission code, the
NOTRANSLATE operand must be included in the DFHTC TYPE=WRITE request
for each block of ?DP records.

The user must issue a DFHTC TYPE=DISCONNECT macro instruction when
he has exhausted the output to be transmitted to the 3735. If the
application program ends during Batch write mode prior to issuing the
DISCONNECT request, CICS forces a 3735 "receive abort" condition and
all data just transmitted is ignored by the 3735.

155

In automatic and time-initiated transactions, all of the
considerations contained in the section "3735 Transactions - Autoanswer"
apply when CICS dials a 3735 with the exception that the DFHTC
EOF=symbolic address macro instruction is not used.

155.1

CICS connects the line and allows the user to indicate the direc~ion
of data transfer by means of his first Terminal Control request. The
user is cautioned, however, that if his first request is a WRITE and
the 3735 has data to send, the 3735 causes the line to be disconnected.

SYSTEM/7 CONSIDERATIONS

The implementation of System/7 support treats the System/7 as any
other programmable terminal. Transactions are normally initiated from
the System/7 by issuing a four-character transaction code as in the
following example:

TRNID
*
*
*
*
*
*
*
TRAN

wXMIT
PBER
PLEX

#IOLT
#IOLT

PEQU
PDC
PDC

CHECK PEQU

TRNID
ERROR

3,CHECK,/0000,TRAN,2

3,

CHECK,
10000,
TRAN,
2

* IA6D2
ICAOE

*

TRANSMIT TRANSACTION CODE
BRANCH IF CONDITION ERROR CODE
WAIT FOR COMPLETION

GENERATE I/O LIST
RETURN CONTROL ON INTERRUPT
LEVEL 3
RETURN CONTROL AT LOCATION CHECK
TRANSMIT MESSAGE IN BCD MODE
MESSAGE LOCATED AT TRAN
MESSAGE TWO WORDS LONG
TRANSACTION ID
='TR'
='N7'

TEXT FOR SUCCESSFUL COMPLETION

In this example, the transaction identification is transmitted in
BCD mode. Pseudo-binary mode ~ay only be used while communicating with
an active CICS transaction; it can never be used to initiate the
transaction. Note that the message length is given as the number of
words to be transmitted and not as the number of characters.

When a transaction is initiated on a System/7, CICS services only
that System/7 for the duration of the transaction; all other System/7's
on that line are locked out for the duration of the transaction to
provide most efficient use of the line. Therefore, it is highly
recommended that CICS application progr~ms be designed for the
multipoint System/7 so that their execution is of short duration.

It is an MSP/7 standard that the first word (two characters) of
every message received by the System/7 be an identification word. All
identification words beginning with "w" (X'20') are reserved for futur~
use by CICS.

When the PSEUDOBIN parameter is specified as part of an input
request (for example, DFHTC TYPE=(READ,PSEUDOBIN», the TIOA provided
by the application program must be at least twice the length of the
data to be read. For example, if 20 System/7 words (40 bytes) are to
be read, the data area of the TIOA must be at least 80 bytes in length.

156

When the PSEUDOBIN parameter is specified as part of an output
request, Terminal control always obtains a new TIOA and frees the old
TTOA unless SAVE was specified. Therefore, on a DFHTC
TYPE=(WRI~E,READ,PDEUDOBIN) request, the application program must
reload the TIOA address (from TCTTEDA) to access the input aata from
the System/7.

In the case of a System/? on a dial-up (switched) line, the
application program must initially transmit a four-character terminal
identification. (This terminal identification is generated during
preparation of the TCT through use of the DFHTCT TYPE=TERMINAL,
~R~IDNT=parameter specification.) CICS then responds with either a
"ready" message, indicating that the terminal identification is valid
and that the System/? may proceed as if it were on a leased line, or
an INVALID TERMINAL IDENTIFICATION" message, indicating that the terminal
identification sent by the System/? did not match the TRMIDNT=parameter
specification.

Whenever CICS initiates the connection to a dial-up System/7, CICS
write~ a null message consisting of three idle characters prior to
starting the transaction. As a result of this message transmission,
a data check message may be recorded on the CICS (host) system console.
~his occurs if there is no program resident in the System/? capable
of supporting the Asynchronous Communication Control Adapter (ACCA)
as is normally the case when the task to be initiated by CICS is to
IPL the System/? Although the BTAM error routines cause a data check
message to be printed at the CICS console, CICS ignores this error
and continues normal processing.

If a prcgram capable of supporting the ACCA is resident in the
System/7 at the time of this message transmission, the data check will
not occur.

When a disconnect is issued to a dial-up System/?, the 'busy' bit
is sometimes left on in the ACCA's interrupt status word. If the line
connection is reestablish9d by dialing from the System/? end, the
'busy' condition of the ACCA prevents message transmission from the
System/? To overcome this problem, the system/? program must reset
the ACCA after every disconnect before message transmission is
attempted. This may be accomplished by issuing a PIO instruction to
reset the ACCA. The following instruction accomplishes this:

PWRI 0,8,3,0 RESET ACCA

This procedure is not necessary when the line is reconnected by CICS
(that is, by an automatically initiated transaction).

This section includes various considerations for the application
programmer as he designs applications for non-programmable terminals.

2260/2265 PROGRAMMING CONSIDERATIONS

The following is an example of the coding required to write data
to a 2260/2265 terminal and specify the screen line address where the
write is to begin:

DFHTC TYPE=WRITE,
LINEADR=10

WRITE DATA TO A TER~INAL SCREEN
STARTING AT THIS SCREEN LINE *

'5?

~he following are examples of the coding required to write data
to a 2260/2265 terminal and dynamically determine the screen line
address where the write is to begin.

MVI TIOALAC,X'FO'

DFHTC TYPE=WRITE,
J~INEADR=YES

E2!: !l!~ COBOl!:

MOVE 240 TO TIOALAC.

DFHTC TYPE=WRITE,
LINEADR=YES

!Q!: .R1Ll:

TIOAtAC=240;

DFHTC TYPE=WRITE,
LINEADR=YES

WR!TE STARTING AT SCREEN LINE 1

WRITE DATA TO A TERMINAL SCREEN
STARTING LINE ALREADY SPECIFIED

NOTE PLACE STARTING LINE IN TIOA.

WRITE DATA TO A TERMINAL SCREEN
STAP~ING LINE ALREADY SPECIFIED

/*START ~RITE AT SCREEN LINE 1*/

WRITE DATA TO A TERMINAL SCREEN
STARTING LINE ALREADY SPECIFIED

2770/2780 PROGRAMMING CONSIDERATIONS

The 2770 Data Communication System and 2780 Data Transmission
~erminal recognize a read interrupt and respond by transmitting the
contents of the I/O buffer. After the contents of the buffer have
been transmitted, the 2770 or 2780 responds to the next rp.an continue
with an EOT. If the I/O buffer is empty, the 2770 or 2780 transmits
an EaT. CICS issues a read interrupt and read continue to relinquish
use of the line and to enable the user to write to the 2770 or 2780.

Input from a 2;70 or 2780 consists of one or more logical records.

*

*

*

CICS provides the user with one logical record per read request. Note
that the size of a logical record cannot exceed the contents of one
buffer.

output to a 2780 requires that the application programmer insert
the appropriate "escape sequence" for component selection associated
with the output message.

A read issued to a 2770 causes a logical re~ord to be presente"
to the application program. If the input spans multiple buffers,
multiple reads must be issued by the application program.

158

2980 PROGRAMMING CONSIDERATIONS

When writing application programs to service the 2980 General Banking
Terminal System, the application programmer must be aware of the
passbook control considerations described in this section.

Two one-byte fields of the Terminal Control Table terminal entry
(TCTTE) may be interrogated by the application program while servicing
passbook requests from the 2980. These fields are:

1. TCTTETAB, which contains the binary representation of the number
of tabs necessary to position the print element at the passbook
area.

2. TCTTEPCF, which contains the indicators (flags) necessary for
passbook control operations. The indicators TCTTEPCR and
TCTTEPCW indicate whether or not the passbook is present on
a read or write operation, respectively. The same indicators
are used to indicate the presence of the auditor key on the
2980 !'1odel 2.

By testing indicators TCT~EPCR and TCTTEPCW, positive control can
be maintained by th€ application program with regard to the absence
or presence of a passbook during an update operation. However, care
must be taken to never alter these indicators or unpredictable results
may occur.

If the passbook is present on a read (entry) operation, the ~CTTEPCR
indicator is turned on (set to a binary one). In this case, the
application program generally issues a write operation back to the
passbook area to update the passbook. After the write operation, the
application program must check the TCTTEPCW indicator to ensure that
the passbook was present at the time the write occurred. If the
TCTTEPCW indicator is off (set to a binary zero), the passbook was
not present and the write operation did not occur. However, the data
sent to the terminal (and not printed because of the "no passbook"
condition) is returned to the application program in its original form
~or subsequent retransmission.

When the "no passbook" condition occurs on a write, CICS allows
an immediate write to the terminal. The application program should
generally write an error message to the journal area of the termipal
informinq the 2980 operator of this error condition. Then CICS
automatically causes the transaction to wait for 23.5 seconds before
continuing execution to allow the operator to insert the required
passbook.

After reqaining control from CICS following the writing of the error
message, the application program can attempt another write to the
passbook area after ensuring that the print element is positioned
corr9ctly in the passbook area. ~his is generally accomplished by
issuing two carrier returns follo~ed by the number of tabs required
to move the print element to the correct position. The specification
of the correct number of tabs may be acquired from the field at
TC'rTE'rAB.

If the TCTTEPCW indicator is still off following the second attempt
to write to the passbook area, the application program can send another
~rror message or take some alternate action (for example, place the
t9rminal "out of service").

159

In summary, all writes to the passbook area are conditional. That
is, all writes require the presence of the passbook before they can
be successfully executed. Therefore, a read operation cannot be
combined with a passbook write. For example, a

DFRTC TYPE=(WRITE,READ,WAIT)

macro instruction is an invalid request for 2980 terminal services
involving the passbook area.

!Qte: The application programmer should not insert shift characters
in output data since this is done automatically by CICS. CICS
removes shift characters from input data.

Segmented writes are supported for both the journal area and the
passbook area. Journal area segmented writes are limited in length
by the hexadecimal halfword value that the user stores in TIOATDL.
Passbook segmented writes are limited to a one~line logical write to
ensure positive control of the passbook as it spaces (indexes) past
the bottom of the passbook.

For example, consider a 2982 buffer length of 48 and a 2980 Model
4 loqical write (print) area of 100 characters per line. The user
can write a logical record (DFHTC TYPE=PASSBK) of 100 characters to
this area and it will be segmented by CICS because of buffer size.
~he user is required to insert the passbook indexing character (X'25')
as the 1~§1 character written in anyone logical write to the passbook
area. This is done to control passbook indexing and thereby achieve
positive control of passbook presence.

I~ the message contains embeddded passbook index characters and
the logical length of the message is such as to cause segmenting, the
write terminates if the passbook spaces past the bottom of the passbook;
the remaining segments are not printed.

SHIFT CHARACTERS: Shift characters are handled by the Terminal Control
program and are of no concern to the application programmer. They
are stripped from input messages and are added to output messages as
required. Data can be written in any mix of uppercase, lowercase,
or special characters. (See the 2980 Translate Tables in Appendix
'E.)

JOURNAL INDEXING: Journal indexing is the responsibility of the
application programmer. Carriage returns (X'15') may be inserted
anywhere in the logical message.

?ASSBOOK INDEXTNG: passbook indexing requires special consideration
by the application programmer to control bottom line printing on the
passbook. (See the section "Passbook Control for the 2980" and the
section "Segmented Writes Control for the 2980".)

TAB CHARACTERS: The tab character (X'05') is also controlled by the
application programmer. The number of tabs required to position the
type element to the first position of the passbook is located in the
TCTTE at TC~TETAB. This value is specified by the user when generating

160

the Terminal Contro~ Table and may be unique to each terminal. Other
tab characters are inserted as needed to control output format.

~ISCELLANEOUS CHARACTERS: Turn page, message lite, openchute, and
special banking characters can be used by the application programmer
as needed. (See the 2980 Translate Tables in Appendix E.)

AUDITOR KEY MODEL 2: Presence of the Auditor key is controlled through
use of the DFHTC TYPE=PASSBK macro instruction and may be used in a
manner similar to that for passbook control. (See the section "Passbook
Centrol for the 2980).

2980 ~ODEL NU~BER: The TCTTETM field of the ~erminal Control Table
terminal entry (TCTTE) contains the 2980 model number expressed as
a hexadecimal value (X'01', X'02', X'04'). CICS uses the model number
to select the correct Translate Table for each of the 2980 models;
therefore, the user cannot alter this field.

COMMON BUFFER: Common buffer writes (DFHTC TYPE=CBUFF) are translated
to the receiving TCTTE model character set. If more than one 2980
model type is connected to the 2972 Control Unit, the lengths are
automatically truncated if they exceed the buffer size.

The high-level languaq9 application programmer must concern himself
with the following fields of the DFHTCTTE structure when writing
programs to run on a 29RO General Banking Terminal system:

FI'EL]2

TCWJ'T"ETAB
TC'J'TEPCF
TCTTESID
TCTTETTD

Number of tab characters (binary)
Passbook control field
station identification
~odel 4 teller identification

This section discusses one way to manipulate these fields.

As discussed in the section "Passbook Control for the 2980", the
application programmer is expected to read TCTTETAB to determine the
correct number of tab characters to place in his output data. The
following examples show hoy this might be done in ANS COBOL and PLII
programs, respectively.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 DFH29BO COpy DPH2980.

LINKAGE SECTION.
01 D~HBtLDS COpy DFH~LLDS.

02 TCTTEAR PICTURE 59(8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

161

162

01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COpy DFHTIOA.

02 DATA PICTURE X(20).
02 FILLER REDEFINES DATA.

03 TAB1-1 PICTURE X.
03 DATAl PTCTURE X(19).

02 FILLER REDEFINES DATA.
03 TABl-2 PICTURE X.
03 TAB2-2 PICTURE X.
03 DATA2 PICTURE X(18).

PROCEDURE DIVISION.

IF TCTTETAB = TAB-ONE GO TO ONETBCH.
IF TCTTETAB = TAB-TWO GO TO TWOTBCH.

ONE'l'BCH.
MOVE TABCHAR TO TAB1-1.
MOVE TOTAL TO DATAl.

T1iJOTBCH.
~OVE TABCHAR TO TABl-2, TAB2-2.
MOVE TOTAL TO DAT~2.

~INCLUDF DFHTIOA;
2 DATA CHAR (20);

DECLARE 1 USERTIOA_' BASBD (TIOABAR),
2 TIOAFILL CHAR (12),
2TAB1_1CHAR (1),
2 DATA 1 CHAR (19);

DECLARE 1 USERTIOA_2 BASED (TIOABAR),
2 TIOAFILL CHAR (12),
2 TAB 1_2 CHAR (1),
2 TAB2_2 CHAR (1),
2 DATA2 CHAR (18);

%INCLUDE DFH2980;

IF (TCTTETAB = TAB_ONE) THEN GO TO ONETBCH;
IF (TCTTFTAB = TAB_TWO) THEN GO TO TWOTBCH;

ONETBCH: TAB1_1 = TABCHAR;
DATAl = AMOUNT;

TWOTBCH: TABl 2 = TABCHAR;
TAB2:2 = TABCHAR;
DATA2 = AMOUNT;

In the ANS COBOL example, the structure DFH2980 is copied in the
Working storage Section; in the PL/I example, DFH2980 is included
following the INCLUDE statements for the based structures. DFH2980
contains constants that may be used when writing application programs
for the 2980.

The application programmer is also expected to test the TCTTEPCF
field to determine whether there was a passbook present on a read or
write. TCTTEPCR and TCTTEPCW are located in DFH2980 to aid in this
testing.

To test the TCTTEPCF field in ANS COBOL, statements such as the
f.ollowing might be used:

MOVE TCTTEPCF TO HCLDPCF.
IF HOLDPCFB = (HOLDPCFB I TCTTEPCW) * TCTTEPCW
THEN GO TO BOOK-FOR-PRESENT-WRITF.

substituting TCTTEPCR for TCTTEPCF allows the ANS COBOL programmer
to test for the presence of a passbook on a read. (HOLDPCF and HOLDPCFB
are also part of DFH2980.)

To test the TCTTEPCF field in PL/T, statements such as th~ following
might be used:

IF (TCTTEPCF I TCTTEPCW) THEN GO TO
BOCK-PRE SENT-WRITE;

substituting TCTTEPCR for TCTTEPCF allows the PL/I programmer to test
for the presence of a passbook on a read.

To test the station identification and to determine whether the
normal station or alternate station is beinq used, values are pre-
defined in DFH2980 of the form: .

STATION-#-A O~ STATTON-#-N (for ANS COBOL)

STATION_#_A OR STA~ION_#_N (for PL/I)

where # is any integer (0 through 9) and A and N signify alternate
and normal stations. The values are one-byte character values and
can be compared to TCTTESID in an IF statement.

To test the teller identification on a 2980 Model 4, the TCTTETID
field is defined asa one-byte character value; therefore it can also
be tested in an IF statement.

Twenty~three special characters are defined in DFH2980 that may
te referenced by the name SPECCHAR-X (ANS COBOL and PL/I) where "I"
is an integer (0 through 23). Seven other characters are d~fined with
names which imply their usage; for example, TABCHAR. For further
information on these 30 characters, see Appendix E.

163

Following are the names defined in DFH2980 for ANS COBOL:

ST.l\ TION-O-N
STA'T'ION-O-A
STA'l'ION-1-N
STATION-1-A
STATION-2-N
STATION-2-A
STATION-3-N
STATION-3-A
STATION-4-N
STATION-4-A
S'!'ATION-5-N
STATION-5-A
STATION-6-N

STATION-6-A
STATION-7-N
STATION-7-A
STATION-8-N
STATION-8-A
STATION-9-N
STATION-9-A
TAB-ZERO
TAB-ONE
TAB-TWO
TAB-THREE
TAB-FOUR
TAB-FIVE

TAB-SIX
TAB-SEVEN
TAB-EIGHT
TAB-NINE
HOLDPCFB
DFHFILL
HOLDPCF
TCTTEPCR
TCTTEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR

MSGLIT'E
BCKSPACE
TRNPGE
SPECCHAR-1
SPECCHA"R-2
SPECCHAR-3
SPECCHAR-4
SPECCHAR-5
SPECCHAR-6
SPECCHAR-7
SPECCHAR-8
SPECCHAR-9
SPECCHAR-10

Following are the names defined in DFH2980 for PL/I:

STATION 0 N
STATION: 0:: A
STATION_1_N
STATION 1 A
STA1'ION:2:N
STATION_2_A
STATION 3 N
STATION:3:A
STATION 4 N
STATION-4-A
STATION-S-N
STATION:S:A
STATtON 6 N
STATION:6:A
STATION_7_N

STATION 7 A
STATION:S:N
STATION S A
STATION:9:N
STATION_ 9_A
TAB_ZERO
TAB_ONE
TAB_TWO
TAB_THREE
TAB_FOUR
TAB_FIVE
TAB_SIX
TAB SEVEN
TAB_EIGHT
TAB_NINE

TCCTEPCR
TCTTEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR
MSGLITr.
BCKSPACE
TRNPGE
SPECCHAR 1
SPECCHAR 2
SPECCHAR:3
SPECCF-fAR 4
SPECCHAR-S
SPECCHA R_6

7~70 PROGRAMMING CONSIDERATIONS

SPECCHAR 7
SPECCHAR-S
SPECCHAR-9
SPECCHA-a:10
SPECCHAR 11
SPECCHAR-12
SPECCHA~-13
SPECCHAR:14
SPECCHAR 15
SPECCHAR-16
SPECCHAR-17
SPECCHAR-18
SPECCHAR-19
SPECCHAR:20
SPECCHAR_21

SPECCHAR-11
SPECCHAR-12
SPECCHAR-13
SPECCHAR-14
SPECCHAR-1S
SPECCHAR-16
SPECCHAR-17
SPECCHAR-18
SPECCHAR-19
SPF.CCHAR-20
SPECCHAR-21
SPECCHAR-22
SPECCHAR-23

SPECCHAR 22
SPECCHAR:23

Even though CICS does not distinguish between any of the special
cones (characters) that may be entered at an audio terminal (for
example, the 2721 Portable Audio Terminal), an application program
is not precluded from performing special functions upon encountering
these codes. For example, the following special hexadecimal codes
may be entered from a 2121 Portable Audio Terminal:

1S.~,!

CAJ,L END
CNCL

V"ERIFY
RP~

EXEC
F1
F2
1"3
1"4
1"5
(\0
000
IDENT

37**
18
3B** or 7B
2D
3D
26**
B1
B2
B3
B4
B5
AO
3B** or BO
11, 12, 13, or 14 plus two other characters

For further information concerning the 2721, see the publication
~721 ~Q~~~l~ Aygj£ l~~iDgl Com~~! ~§§£~iE1ion (GA27-3029).

164

The following special hexadecimal codes may be entered from a
Touch-Tone 1 telephone:

* #

CO]]

AO
3B** or BO

1Trademark of the American Telephone & Telegraph Co.

The * and t characters of a Touch-Tone telephone correspond to the 00
and COO characters, respectively, on a 2721 Portable Audio Terminal.

The above codes denoted by a double asterisk cause a hardware
interrupt and are in the Terminal 1/0 Area (TIOA) immediately following
the data; the codes are not included in the data length.

]Qi~: The # and 000 characters cause an Eor (~'3~') hardware interrupt
unless the Eor Disable feature (#3540) is installed on the 7770
Audio Response Unit Model 3. Tn this case, at the option of
the user, either or both of the # and 000 characters do not
cause a hardware interrupt and are presented in the TIOA along
with the rest of data and are included in the data length.

If, after receiving at least one character from a terminal, no other
characters have been received by the 7770 for a period of five seconds,
the 7770 automatically generates an "end of inquiry" (EOI) hardware
interrupt that ends the read operation.

If the Asynchronous Transaction Processing facility is us~d, the
Input Processor (CRDR) and the output PrOC8ssor (CW~R) are employed
to transfer data to and from CICS. ~he two programs accomplish the
transfer of data without regard to its content. Por example, any
terminal-dependent characters in an output stream must have been put
there by the user's transaction.

However, it may be desirable to perform some preprocessing or
postprocessing on the terminal data. Such processing might be for
~urposes of:

1. Validity and limit checking
2. Removing or inserting device dependencies
3. Summarizing or formatting
4. Provide additional communication with CICS

These and other services can be accomplished through the use of
the user exits provided by CRDR and CWTR. During data input to crcs,
CRDR offers each transmitted record to a user-written exit routine
imm~diately after it is received. CWTR offers each record to a user­
written exit routine immediately after it has been deblocked from. its
Transient Data input area.

All records are made available to the user routine, including
delimiter records.

The exit routine is invoked by specifying its program name suffix
in the C~DR or CWTR initiating the message. Por example:

CRDR EXIT=MD,NAME=WICHITA

165

causes CRDR to load the program named DFHXITMO (where DFHXIT is the
standard ~xit routine base name and MD is the suffix) and pass each
record to that routine while building a batch named WICHITA.

Similarly, the statement:

CWTR NAKE=FINDLAY,TERMID=(TKLA,TMLB,TKLC),EXIT=DI

causes CWTR to load the program DFHXITDr. and pass each output record
(associated with the output of batch ?INDtAY) to the routine before
it is transmitted to the terminal.

One additional point should be noted concerning records given to
the CWTR ~xit routine. The messages being sent in response to a STATUS
requ~st are passed to the routine. For example:

CWTR NAKE=SUNYVALE,STATUS,EIIT:CN

causes the m~~sage concerning the status of a batch named SUNYV~LE
to be passed to DFHXITCN. This permits the user-written exit routine
tq augment the status message. All CIC~ service macro instructions
may be used in the exit programs.

COPING TH!CRDR EXIT ROUTINE

The CRDR Input Processor uses the following basic TCA work area
definitions:

COpy DFHTCADS
~WAREC DS A Address of record to be inserted
TWAIA DS A Address of user work area
TWAIND DS X Indicators
TWAXTRTN EQU 1'80' Exit program return indicator

DS 31 Reserved
DS 20F Reserved

These fields (plus any adaitional fields) should be defined by the
user-written exit routine within the limits specified in the PCT entry.
Information is passed between CRDR and the exit routine by means of
this TCA work area.

Upon initial entry to the exit routine TWAIA and the TWAITRTN bit
are zero. On all entries, TWAREC is zero. All modification of the
TIAXTRTN bit must be done either by the instruction 01 TWAIND,TWAITRTN
or the instruction NI TWAIND,255-TWAITRTN. The user exit must take
care not to modify the bits in the TWAIND field used by CWTR.

On all entries to the exit routine, register contents are:

15 Exit routine entry address
14 Exit routine return address
13 CSA address
12 TCA address

8 TIOA address of las~ message read
7 BCA address

The only registers that cannot be used in the routine are registers
12 and 13. The other registers are saved before exiting and are
restored by CRDR upon return. The Batch Control Area (BCA) is described
in the symbolic storage definition named D~HBCADS.

166

The exit routine must be enterable at two points. The first entry
is for routine initialization and is made via an Assembler BALR 14,15
instruction. This is done only once so that turning on-the TWAXTRTN
bit does not cause a reentry to occur. The message in the TIOA is
the CRDR transaction-invoking message.

All subsequent entries to the exit routine are made via an Assembler
BAL 14,4(15) instruction. This entry is made after each message is
read.

The exit routine entry coding might appear as follows:

DFHXITAB

INIT

MSGP

CSECT
USING
B
B
DROP
USING

LR

LR

*,15
INIT
MSGP
15
DFHXITAB,10

10,15

10,15

If the record just read is to be accepted without change or is to
have its contents altered, it can be done in the TIO~ and return made
to CRDR via a BR 14 instruction. TWAREC and the TWAXTRTN bit should
remain zero.

Tf the length of the record just read is to be changed, it can be
done in the TIOA by altering the TIOATDL field. TWAREC and the TWAXTRTN
bit should be zero. If the record is to be lengthened such that it
won't fit in the TIOA, the record must he built in a user-defined work
area as a standard variable-length record. (The record in the TIOA
is not a standard VLR since the value in TIOATDL is four less than
a VLR count.) The address of the count field (LLbb) is then put into
TWAREC and control is returned to CRDR.

When the exit routine once again gains control, TWAREC is zero and
a new message is in the TIOA. A work area used to alter records may
te defined in the TeA work area or acquired dynamically through use
of a CICS DYHSC TY~E=GETMAIN macro instruction. If acquired
dynamically, its address m~y be stored at TWAWA.

To insert records into the input stream, each new record must be
built in an exit routine work area, its address placed at TWAREC, the
TWAXTRTN bit set on, and control returned to CRDR. The new record
is inserted and control is returned to the exit routine with TWAREC
set to zero and the TWAXTRTN bit left unchanged. After all new records
have been inserted in this manner, the TWAXTRTN bit must be set to
zero and control returned to CRDR with TWAREC containing zero. The
original message in the TIOA is placed into the input stream and a
new message is read from the terminal.

If the original message in the TIOA is to be deleted, control must
be returned to CRDn with TWAREC containing the address of F'O'.

167

CODING THE CWTR EXIT ROUTINE

The CWTR Output Processor uses the following basic TCA work area
definitions:

COPY DFHTCADS
TWANX~EC DS A
TWAREC DS A
~WAWA DS A
~WAIND DS X
TWAXTRTN EQU X'80'

DS 3X
DS 30F

These fields (plus any additional fields) should be defined by the
user-written exit routine within the limits specified in the PCT entry_
Information is passed between CWTR and the exit routine by means of
th~ TCA work ar€a.

Upon initial entry to-the exit routine, TWAWA and the TWAXTRTN bit
are zero. On all entries TiAREC is zero, and TWANXREC points to the
variable-length record which is to be transmitted to the output
terminal. Any modification of the TWAXTRTN bit must be done on a bit
level since other bits in TWAIND are used by CiTR.

The first four bytes of a variable-length record contain a two-byte
length field and, occasionally, two bytes of control information.
In the case of the record to be handled by CiTR, the first of these
two control bytes (byte three of the record) contains the byte that
would ordinarily be moved to TCTTEOS by the DFHTC macro instruction.
The second control byte (byte four of the record) applies only to
records that are destined for a 2260 Display station or a 3270
Information Display System; this control byte corresponds to the TIOALAC
or TIOACLCR field. If the destination terminal is a 3270 and the
TIOACLCR field is not applicable, X'C3' (the default value) must be
moved into this control byte.

If the length of the record is to be changed, the two control bytes
probably are not affected and the information from the original record
can be used. However, building a new record requires that one or both
of these control bytes be properly constructed.

On all entries to the exit routine, register contents are:

15 Exit routine entry address
14 Exit routine return address
13 CSA address
12 TCA address

7 BCA address

The only registers that cannot be used in the routine are registers
12 and 13. -The other registers are saved before exiting and restored
by "cl~TR upon return.

The exit routine must be enterable at two points. The first entry
is for routine initialization and is made via an Assembler BALR 14,15
instruction. This is done only once so that turning on the TWAXTRTN
bi+. does not cause a reentry to occur. Also, there is no message
located by TWANXREC.

All subsequent entries to the exit routine are made via an Assembler
BAL 14,4(15) instruction. This entry is made after each message is
debl~cked and is about to be transmitted.

168

The exit routine entry coding might appear as follows:

DFHXITAB

INIT

MSGP

CSECT
USING
B
B
DROP
USING

LR

LR

*,15
INIT
MSGP
15
DFHXITAB,10

10,15

10,15

If the record about to be written is to be accepted without change
or is to have only its contents altered, it can be done in its current
area located by TWANXREC. Return to CWTR is made with a BR 14
instruction; TWAREC and the TWAXTRTN bit should be zero.

If the length of the record is to be altered, it must be done by
replacing the record located by TWANXREC with the altered record.
The altered record must be built in an exit routine work area as a
standard variable-length record. The address of the new record must
be put into TWAREC and control returned to CWTR. The new, altered
record replaces the old record. When the exit routine once again gains
control, TWAREC is zero and a new message is located by TWANXREC.

If the new record just described is to be insert~d into tbe output
stream in addition to the record at TWANXREC, the TWAXTRTN bit must
be set to one prior to returning to CWTR. The new record (pointed
to by TWAREC) is sent to the terminal and control is returned to the
exit routine with ~WANXREC pointing to the original record; TWAREC
is zero. This permits the exit routine to continue inserting records
into the output stream until return to CWTR is made with the TWAXTRTN
bit and TWA~EC set to zero.

Deleting a record can be done by returning centrol to CiTR with
TWAREC containing the address of F'O'.

If dynamic storage is required by the exit routine, it can be
acquired from Storage control and saved by putting its address in
TWAWA.

SEGMENTED RECORDS

An optional feature of CICS File Management allows the user to
create and define a data set containing segmented records. A segmented
record is one in which the components of the, record have been identified
(symbolically) and grouped according to some logical relationship such
as function or frequency of use.

The identifiable groups are called segments. A segment is one or
more adjacent fields within a record. Some segments appear in all
records (for example, those segments containing identification or major
record control fields), while other segments apply only to, and appear
in, certain records. Before the application programmer can use

169

segmented records in his program, the structure and individual segments
of a segmented data set must have been previously defined by the user
in the File control Table.

Segmented records offer numerous advantages. Having organized and
defined the segments of a data set, the user can group them into segment
sets and retrieve any set (or group) of segments by symbolically
identifying that set. Since an individual segment can be a member
o~ any number of segment sets, the user gains a high degree of
flexibility in the retrieval process. Because only a part (a segment
set) of a logical record is requested, CICS can extract just the
requested segments, pass them to the processing program, and free the
main storage required for the entire logical record or block at the
earliest possible time.

A saving in DASD space can be realized when segmenting is used with
variable-length record format, since CICS File Management always
compresses (packs) a segmented record before writing it to direct
access. The space normally required for missing segments is thus
eliminated, as are the slack bytes created when aligning segments in
main storage.

With fixed~length records, compression causes the unused space to
~e consolidated at the end of the record. For example:

• Logical record as defined by the user in the File Control Table

tROOT I SEG2 I SEG3 I SEG4 I SEG5 I SEG6 J

• Logical record as it appears on DASD with missing segments

I RO
OT I S EG 3 I S E G

5
Ili:\l\\\\\\' i'";\;i:,~:'~ \:"::\;i:\i'ii\:;i~;~;i:~\\\\\\\\\\\l\\'

~he following general rules apply to the use of segmented records:

1. Segmented records can be used with either ISAM or DAM organized
data sets.

2. Segmented records can be used with any record format (that is,
fixed, fixed blocked, variable, undefined) but ar~ primarily
advantageous with variable-length records.

3. A Rata set that contains s~gmen~ed records may not also be an
index data set in an indirect accessing hierarchy. The two
CTCS features are mutually exclusive for anyone data set.
ijowever, the primary (target) data set in an indirect accessing
hierarchy may contain segmented records.

4. Every segment that could appear in a record, whether or not
it actually exists in a particular record, must be defined in
the File Control Table.

It is the user's responsibility to describe, for each segmented
data set, all segments within a logical record. Each segmented data
set is first described in the File Control Table just as any other
data set. That is, its basic characteristics must be described so
that CICS Pile Management can physically access it (for example, block
gize, logical record length, key length, etc.). As an addendum to
this basic data set descriptive section, the user must describe the
segmented structure of the data set.

Every segment (any number of adjacent bytes up to a maximum of 255)
must be defined, even if it does not exist in every logical record.

170

~hile it is not required that every logical record contain every
segment, every logical record must contain at least the root (control)
segment.

The root segment is a uniquely defined segment that must appear
at the beginning of each logical record. It contains as a minimum:

1. ~he length of the record, if variable-length records are being
used. This is a fullword (four bytes) of the form LLbb, where
LL is the record length and bh is two bytes reserved for system
use.

2. Segment indicators, which indicate the presence or absence of
p.ach segment in the record. Segment indicators are discussed
in greater detail below.

Tn addition, the "root segment could contain any other information
that might aid in the processing of the record by the user (for example,
a major control field such as an account number).

The following is an example of a segmented record and the root
(control) segment.

LOGICAL RECORD

CONTROL SEGMENT SEGMENT 2 SEGMENT 3 SEGMENT 4
--- ---SEGMENT - - - - - - - -I LLbb I ACC'1? NUM (INDICATORS I OTTiER CONTROL INFO 1

The sequence of th~ segments within a logical record must be fixed.
~hat is, a segment may not change position in relation to the other
seqments of the record. Each segmen+. can be fixed or variable in
l~ngtb. If the segment is variable in length, then the first byte
must contain the length, in binary, of the segment, not including the
l~nqth byte. Thus the maximum data length of a variable-length segment
is 254 bytes instead of 255. The number of bytes in a fixed-length
segment or the maximum length of a variable-length segment is supplied
to CICS File Management as part of the segment definitions in the File
control 'l'ab1e.

Each segment has its own characteristics and these can be different
from other segment definitions. ~ach segment can have a different
length than other segments, and, if defined as variable length, can
change as a result of an update. Segments may be added or deleted;
CICS File Management compresses and expands the record accordingly.

CICS Pile Management provides for the user to specify the alignment
requirements of each segment when that segment is brought into main
storage. This alignment may be on a one-byte, two-byte, four-byte,
or eight-byte boundary. The default alignment is on a one-byte
boundary. When the segmented record is written to direct access, any
residual space (slack bytes) caused by alignment is eliminated by CICS
~ile Management through the compress (packing) function.

2~gmgni Ingi~siQ£§

Segment indicators are the means by which CICS File Management and
~he processing program specify, and determine, the presence or absence
of specific segments within a logical record. There are two types
of indicators available to the user; it is his responsibility to choose
the type he wishes to use and to define his data sets accordingly.
~~qardless of the type of indicator, the following general rules apply
to the use of segment indicators in processing the segmented record:

171

1. Segment indicators are always located in contiguous bytes within
the root (control) segment. Note that every logical record
contains a root segment and that the root segment is always
a part of any segment set brought into main storage. Therefore,
the segment indicators are always accessible to the user.

2. The location of the indicators within the root segment is defined
by the user in the File Control Table as being some displacement
from the beginning of the root. segment.

3. There must be one indicator for each segment which is defined,
other than the root segment. The position of the indicator
determines which segmeht it represents. since the root segment
does not require an indicator, the first indicator represents
the first segment following the root segment (segment 2), the
second indicator represents the second segment following the
root segment (segment 3), etc.

4. When retrieving segment sets, it is the user's responsibility
to test the appropriate indicator to determine if a specific
segment is present. He should never assume a segment is present
simply because it was requested as part of a segment set.

S. When adding or deleting segments from a record, it is the user's
responsibility to reset the appropriate indicator to reflect
the change.

BI~ TYPE SEGMENT INDICATORS: with the bit type indicator, each segment
is represented by a bit position in the segment indicator field. One
byte of indicators must be provided within the root segment for each
eight segments in the logical record. If a given bit indicator is
cn (binary 1), the corresponding segment is present in the logical
record.

If a given bit indicator is off (binary 0), the corresponding segment
is absent from the logical record. The following are examples of bit
type segment indicators:

IROOT (CONTBOL) SEGMENT ~I~~---DATA SEGMENTS----~.~I

1111100001 jSEG2 SEG3 SEG4 SEGSI

1 Byte of
Bit Indicators

InOOT SEGMENT-------t .. ~li-'II1II1----DATA SEGMENTS .1
\'11100001 tLI SEG21LISEG31LISEG41LISEGSI

IROOT SEGMENT -----t I ... ---DATA SEGMENTS ----.......... 1
I \1 011COOO I 1 SEG2 I SEG4 I SEG5 SLACK I

DISPLACEMENT TYPE SEGMENT INDICATORS: with the displacement type
indicator, each segment is represented by one halfword (two-bytes)
in the segment indicator field. In any given halfword indicator, a
value of zero indicates the corresponding segment is absent from the
logical record. A nonzero value (binary) in any given halfword
indicates that the corresponding segment is present and represents
the displacement of the segment from the beginning of the logical
record when the segments are packed.

Any displacement value which is placed in the halfword indicators
when building a new record or adding and deleting segments from an

172

existing record, may be modified by CICS File Management when it
compresses (packs) the segments before writing the record to direct
access. Whenever CICS packs segmented records, it places the
displacement value of each segment into the corresponding halfword
indicator (if displacement type indicators are being used). However,
CICS File Management does not change these displacement values when
unpacking a segmented record or when extracting selected segments of
a segment set.

The user should not rely on the displacement values in order to
access segments he has retrieved in a segment set; he should only use
them as zero/nonzero indicators to determine whether or not a requested
segment is presen t. (See "Main storage Processing of Segmented
'Recortis".l

~he following example illustrates the basic concepts and
considerations when using displacement type segment indicators.

1. The following is the segmented record built by the user in main
storage which is to be added to a segmented data set:

CCNTFOL
INFORMATION

20 BYTES 10 BYTES 8 BYTES 8 BYTES 5 BYTES

DATA DATA
SEGMENT3 SEGMENTS

The user has placed data in three of the four d€fined segments
and indicated their presence by placing a nonzero value in the
corresponding halfword displacement indicators. Any nonzero
value may be used (the 1 is only an example).

2. Before writing the record to the direct access data set, CICS
File Management compresses the segments and" modifies the
displacement indicators so that the above record would appear
as follows before being written to DASD:

20 BYTES 10 BYTES 8 BYTES 5 BYTES 8 BYTES
, ' " , ~

CONTROL DATA DATA EMPTY
INFORMATION

ROOT SEGMENT2 SEGMENT3 SEGMENTS
SEGMENT

3. ~hen retrieving a segment set from the above record, the root
segment is included as part of the segment set without any
modification. If the user were to request a segment set from
the above record (consisting of the Root Segment and Segment3),
the data he would receive might appear as follows:

CONTROL
INFORMATION

173

When a segment set is requested from a segmented data set, the data
is always placed into a File Work Area (FWA). The length of this FWA
is variable depending upon the segments retrieved and their att.ributes.
ijowever, it is not the users responsibility to determine this length
since CICS File Management automatically calculates it and acquires
the FWA through CICS storage Management. A CICS-provided symbolic
storage definition (DFHFWADS) can be used in conjunction with a user-
defined layout to map the FiA. .

The FWA consists of control fields (used by CICS Management
functions) and a data area into which the requested segments are placed
by File Management. The format of the retrieved segments within the
data portion of the FiA is always in a fixed format. That is, space
is provided in the FWA and alignment requirements are met for each
segment in the requested segment set, even though a segment may be
missing. (For variable-length segments, the maximum space is provided.)
It is the user's responsibility to test the appropriate segment
indicators to determine the presence or absence of a segment. Note
that an update request on a segmented data set causes CICS File
Management to automatically use the universal segment set "ALL" when
retrieving the record.

The following illustrations should help clarify the various
considerations discussed thus far concerning main storage processing
of segmented records.

174

1. Logical record as defined by the user in the File Control Table:

I ROOTSEG I SEG2 I SEG3 I SEG4 I S~G r; I SEG6 I SEG7 I SEG8 I SEG9 I

2. Logical record as it appears on DASD. Assume variable-length
records and bit type segment indicators:

LLbb 11010100 SEG2 SEG3 SEG5 SEG71

ROOT SEGMENT

3. Logical record as it appears in the FWA after retrieval of a
segment set (read-only) which included Root Segment, SEG2, SEG6,
SEG1, SEG8:

11010100
SEGMENT

4. Logical record as it appears in the PWA after a retrieval for
update (SEGSET=ALL):

1101 0100
SEGMENT

5. Logical record as it appears in the FWA after the user has added
segments 4 and 8 and deleted segment 3. The indicators have
been adjusted by the user to reflect the change.

10110110
SEGftENT

6. Logical record as it appears on DASD after packing:

ILLbb\1011 01'0 'DATAIDATAlDATA\DATAIDATAI
BOOT SEGKENT SEG2 SEG4 SEG5 SEG7 SEG8

Once each segment has been defined (name and attributes specified),
the user can specify as many segment sets as he desires. A segment
set is a grouping of the root segment and at least one or more .
individual segments. tike the individual segments, the segment set
is given a symbolic name which is used by the application program when
processing a segmented data set. Any retrieval from a segmented data
set is always by segment set.

Assume a logical record in a segmented data set has been defined
as containing the following symbolic segments:

ROOTSEG
SEGKENT2
SEG!ENT3
SEG!ENT4
SEGMENTS
SEGKENT6

The user might wish to define the following segment sets:

~]§~E]1 ~El ~~

SEGSETA

SEGSETB

'§EfH~EB!§

BOOTSEG
SEGKENT2
SEGKENT4

ROOTSEG
SEGMENT3
SEGMENT4
SEGPlENT5

Whenever a segmented data set is defined in the File Control Table,
a universal segment set is automatically generated which includes all
segments defined for that data set. The symbolic identification of
this universal segment set is "ALL", and is automatically used by CICS
File Management whenever the application program requests a "read for
update" from a segmented data set. In other words, an update operation
on a segmented data set §l!~~~ causes all segments to be presented
to the user, regardless of the segment set specified by the user.

IND!RECT ACCESSING

Indirect accessing, an optional data base feature in CICS, provides
for the use of cross-index data sets to access another data set. The
data set that is accessed by an index data set is known as the "primary"
or "target" data set. This feature allows the user to furnish the
search argument for an index data set along with the identification
of the primary data set. CICS, utilizing the user-defined index
strtrcture, carries out the search, involving as many levels (index
data sets) as defined by the user, and ultimately retrieves the prime
data required.

The following general rules apply to the Indirect Accessing feature:

175

1. A primary data set can have any number of index data sets.
This is useful when multiple cross references to a master record
exist.

2. Any data set can be both an index and a primary data set. The
logical record content" of any data base data set is user-defined
and constructed, and therefore may contain certain master record
information as well as a search argument for another data set.

3. There is no logical limit to the number of index levels (data
sets) that the user may define in an index hierarchy. For
example, data set A is an index to data set B which is an index
to data set C which is an index to data set 0, etc.

4. An indirect access hierarchy can be any combination of ISAM
and DAM data sets. "

5. An index data set may not also contain segmented records. The
two CICS services are ~utually exclusive for anyone data set.
However, a primary data set, which an index data set accesses,
could have segmented records if it were not defined also as
an index data set.

6. An index data set cannot reference more than one primary data
set unless the index data set is multiply defined in the File
Control Table.

7. If the index data set is a DAM data set, it may not be defined
as blocked. However, the primary data set may be defined as
blocked EDAM.

The following is an example of a simple two-level indirect access
hierarchy. The retrieval search begins with the index data set CATLOG#.
The primary data set being accessed (and from which data is to be
returned to the requesting program) is PARTNO. The search argument
to be used in accessing the index data set (CATLOG#) is CN222. The
contents of the record-located bv the search of the index data set
(CATLOG', contains the search argument for the next data set (12345
~or search of PARTNO). The primary data set (PARTNO) is searched and
~he data record returned to the requesting program.

TRANSACTION
PROCBSSING
PROGRAM

DFHFC TY PE=GET,
TNDEX=CATIOG#,
DATASET=PARTNO,
RDIDADR=)

CN222~

CATLOGt

It is the user's responsibility to create and maintain all data
sets in his data base, and to define all data sets (both index and
primary) in the File Control Table. Each data set, whether it is an
index and/or primary data set, is first described as a primary data
set in the File Control Table. That is, its basic physical
characteristics must be defined so that CICS File Management may access
it (for example, BLKSIZE, LRECL, KEY tEN, etc). If the data set is
to be further used as an indirect access data set, it must also be
defined with the following information:

1. The primary data set for which this data set is an index.

176

2. The location of the search argument, within the logical record
of this data set, to be used for accessing the primary data
set (or the next index data set).

If the user creates and properly defines an index hierarchy for
indirect accessing, CICS File Management will service any request
requiring use of that hierarchy, provided the requesting application
program adheres to the following general rules and considerations:

1. ~he symbolic name of the first index data set to be searched
in the retrieval process must be specified through the INDEX
operand of the DFHrC macro instruction. This data set can be
any index data set in a hierarchy of indexes, not necessarily
the highest level index data set. It can also be the primary
data set being accessed without the use of an index data set.
However, in the latter case, the DATASET operand must be used
instead of the INDEX operand.

2. The symbolic name of the primary data set from which data is
to be ultimately retrieved and returned to the requesting program
must be specified through the DATASET operand of the DFHFC macro
instruction. Any number of intervening data sets can be used
in the search; however, the user specifies only the first and
the last data set. It is possible for the user to limit a
search to only a portion of an index hierarchy; that is, it
is not necessary to search an entire index hierarchy.

3. The search argument to be used by CICS File Management to access
the first referenced data set must be specified through the
RDIDADR operand of the DFHFC macro instruction. This search
argument is either an ISA~ key or a DAM Record Identification
?ield. ~f multiple levels of index data sets are involved,
CICS File Management acquires a search argument for the next
data set from the logical record of each successive data set.

When stepping through a series of index data sets, CICS File
~anagement uses the requesting program's Record Identification field
(specified in the RDIDADR operand) to store the search argument for
each successiv~ data set to be searched. It is the user's
responsibility to ensure that this field is as large as the largest
search argument that will be used in any given retrieval operation.

~he following is an example of the above consideration in a three­
level indirect accessing hierarchy. The search argument provided by
the processing program is used to access the first index data set
(CA~LOGt) that provides the search argument for a second index data
set (PARTNO) that provides the search argument for the primary data
set (VENDOR) from which the data record is retrieved and returned to
the user. Since the search argument retrieved from the second index
data set (PARTNO) is eight bytes in length (V0000996), the user's
~€cor.d Identification field (RDIDADR) must be at least eight bytes
in length even though it initially contains only the five-byte search
argument (CN222) for the first index data set.

T~ANSACT10N PROCESSING
PROGRAM

DFHFC TYPE=GET,
INnEX=CATLOG#,
DATASET=VENDOR,
RDTDA~

ICN222 I

CATLOG#

PARTNO

VENDOR

177

DUPLICA~E RECORDS

An optional feature of the indirect accessing approach to data base
retrieval is the capability to indicate that a search argument in an
index data set, which would normally reference the primary data set,
instead references a "duplicates" data set. The need for or use of
duplicates data sets may best be described as follows.

Assume that the application program requires access to an index
data set organized by street address to obtain the name of the occupant
at that address. The occupant's name is then used to access a primary
data set organized by name.

For single occupancy, no problem exists. However, for multiple
occupants, the index data set cannot directly eguate a street address
to a primary data set record. Instead, the search argument field in
the index record indicates that multiple occupants (duplicates) exist
and that the search argument provided references a duplicates data
set rather than the primary data set.

CICS Pile Management retrieves the referenced record from the
luplicates data set and returns it to the application program with
a response code indicating a duplicates record. The duplicates record
may contain further information, which the application program can
use to more accurately retrieve a requested master record.

If an index data set is to indicate that there can be duplicate
keys for entries in the primary data set that it references, the user
must have previously included the necessary information in the File
control Table entry which describes the index data set. The index
data set record must contain in the first byte of the search argument
field a unique one-byte duplicates indicator (user-defined). Care
must be taken to ensure that this indicator is a unique code, which
cannot be the same as the first byte of a normal search argument for
the primary data set.

The rest of the search argument field contains the search argument
used by pile ~anagement to retrieve a record from the duplicates data
set. This record has user-defined and user-constructed information
that the application program can use to select the appropriate primary
data set record. The following is an example of a search argument
field in an index record that reflects duplicates:

SEARCH ARGUMENT FOR
DUPLICATES RECORD

OR
SEARCH ARGUMENT FOR
NEXT LEVEL OF INDEX

The search argument for the duplicates data set must meet the same
search argument format requirements as those for a normal cross-index
data set. Note that the length of the search argument used to access
a duplicates data set is one byte smaller because of the duplicates
indicator.

The following is an example of an index hierarchy with a duplicates
data set. The application program begins the retrieval by accessing
the index data set (PARTNAM) and ultimately accesses the primary data
set (PARTNO). The search argument (GISMO) provided by the application
program is a valid one for the index data set (PARTNAM), but it provides
a recor1 containing a duplicates flag.

118

When the duplicate indicator is detected, CICS File Management uses
the new search argument (from the PARTNAM data set) to access the
1uplicates data set (DUPLNAM), returning the duplicates record to the
application program.

In this example, the part name (GISMO) is not unique since there
are several types of GISMO's in the part number (PARTNO) data set.
The requesting program must provide more qualifying data concerning
which GISMO is desired.

TRANSACTION PROCESSING
PROGRAM

DFH'FC TYPE=GET,
INDEX=PARTNAM,
DATASET=FARTNO, RDIDA:J
GISMO

PARTNAM PARTNO

The record retrieved f~om the duplicates data set in the example
might appear as follows:

GISMO LARGE f 9121 MED SMALL
PARTNAM DESC PARTNO DESC PARTNO DESC PARTNO

~he application program might formulate a message to be routed to the
inquiring terminal asking the terminal operator to make a choice.
Por example:

PART NAME REQUESTED HAS MULTIPLE ENTRIES

~LEASE SELECT SPECIFIC PART NUMBER

PART NAME D'ESCRIP PART NUMBER

GISMO LARGE 9123

MED

SMALL 0.944

Once the terminal operator has made a selection, the processing
program can make a direct retrieval from the primary (PARTNO) data
set.

Note that if the index record in the above example had not contained
a duplicates indicator, CICS File Management would have used the search
argument to access the primary data set (PARTNO) and retrieve the
requested data.

179

t~M DATA SET CONSIDERATIONS

The Record Identification field is the means by which the application
program communicates to CICS File control the identity of the specific
record which is being sought. (See the discussion of the RDIDADR
operand as it applies to the DFHFC macro instruction.) For ISAM
organized data sets, this field is relatively simple in structure since
it contains only the key of the logical record. However, for DAM
organized data sets the Record Identification field structure is a
bit more complex, since it is necessary for the application program
to supply the block reference information, physical key (if keyed data
sets are being used), and the deblocking argument (if blocked data
sets are being used).

~o1~: If more than one browse operation or update operation is to
be concurrently performed by a single application program, a
unique Record Identification field must exist for each operation.

The Record Identification field for DAM data sets is really a
concatenation of three sUbfields, identified as follows:

180

1. Block reference

2.

The physical identifier of the DAM block, is specified by the
RELTYPE operand of the File Control Table and may be one of
the following:

a. Relative Block (CICS/OS only) three-byte binary (RELTYPE=BLK)
b. Belative Track and Record - two-byte TT, one-byte R

(RELTYPE=HEX)
c. Relative Track and Record (zoned decimal format) six-byte

!TTTTT, two-byte ER (RELTYPE=DEC)
d. Actual address - eight-byte "BBCCHHR (RELTYPE omitted)

lX!l'!P1E

BY't'E 0 2 3 4 5 6 7 8

REI.BIK 'I Relative block (OS only)
(binary)

T T R t Relative track and record

T T T T T T R RI Relative track and record
(zoned decimal)

M B B C C Ii H RI Actual

Physical key

The physical key is required only if the data set being accessed
is written with recorded keys. This key must be the same length
as specified in the BLKKEYL parameter for the File Control Table
(PCT) entry which defines the data set. It must immediately
follow the block reference information, which can be any of
the above.

EX.,A!!P1l!

BYTE 0 2 3 456 7 8

RELBLK#IKEY ••• (Crcs/os only)
T T RIKEY •••
T T T T T T R R IKEY ••.
M B B C C H H R I REY •••

3. Deblocking argument

The deblocking argument is required only if the data set contains
blocked records and the user wishes to retrieve a logical record
from within a block. It is not mandatory that the user deblock
every physical record; he may wish to retrieve the entire block.
The deblocking argument may be either a key or a relative record
number. The user's choice is specified in the RETMETH operand
of the DFHFC macro instruction. If present, the deblocking
argument must imme1iately follow the physical key (if present)
or the block reference (if the physical key is not present).

If the deblocking argument is a key, it must be the same length
as specified in the KEYLEN parameter of the File Control Table
(FCT) entry which describes the data set. Note that the key
used for deblocking need not be the same size as the physical
record key (BLKKEYL). If the deblocking argument is relative
record number, it is represented by a one-byte binary number,
with a value of zero representing the first logical record of
a block.

]!!!MP,1] (physical key = 6 bytes, deblocking key = 3 bytes)

BYTE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RELBlK (CICS/OS only) Search By Relative Block
Deblock By Relative Record

RELBLK (CICS/OS only) Search By Relative Block
Deblock By Key

~T ___ T~. __ R~~ ____ ~K~E~Y~ __ ~ ____ ~K~E~Y~ Search By Relative Track
Key, Deblock By Key

M B B C C H H R RN Search by Actual In
Deblock By Relative Record

T T T T T T R R KEY

T T R Search By Relative Track &
Record, Deblock by Key

When adding new records to DAM data sets, the application programmer
should be aware of the following considerations and restrictions:

1. The addition of undefined or variable-length records (keyed
or non-keyed) requires the user to indicate the track on which
the new record is to be added. If space is available on the
track, the new record is written following the last previously

181

written record, and the record number is placed in the "R"
portion of the user's Record Identification field. The track
specification may be in any of the acceptable formats except
relative block. If zoned decimal relative format is used, the
record number is returned as a two-byte zoned decimal number
in the seventh and eighth positions of the Record Identification
field.

Tn the CICS/DOS system, an attempt to add a variable-length
or undefined record is limited to the single track specified
by the user. If not enough space is available on that track,
a "no space available" error is returned to the user who may
then try to add the record on another track. Under these
circumstances, the record is returned by the user in an FWA,
the address of which is at TCAFCAA. The user need only modify
the track identification and issue another DFHFC TYPE=PUT,
TYPEOPR=NEWREC macro instruction to add the record on another
track.

In the CICS/OS system, the extended search option allows the
record to be automatically added to another track if no space
is available on the specified track. Under these circumstances,
the location at which the record was added is returned to the
user.

2. The addition of keyed fixed-length records to DAM data sets
requires that the data set first be formatted with dummy records
or "slots" into which new records may be added. (A dummy record
is signified by a key of hexadecimal 'PF's; in CICSjOS, the
first byte of data contains the record number.)

3. Por non-keyed, fixed-length records, the exact physical block
reference must be given in the Pecord Identification field.
The data in the new records is written in the exact location
specified, destroying whatever was previously recorded at that
location.

4. For keyed, fixed-record additions, only the track information
is used as a starting location for the search of a dummy key

182

and recorrt. When a dummy key and record is found, the new key
and record replaces it, the exact location at whiqh the new
r~cord is located is returned to the user in the block reference
subfield of the Record Identification field.

For example, suppose a user wishes to add a keyed, fixed-length
record to his DAM data set. He determines (through some
algorith~ that the search is to start et relative track 3.
His Becord Identification field might look like the following:

~ K~EPy.HA
T T R

When control is returned to the user, his Record Identification
field might reflect the fact that the record was added on
relative track 4, record 6.

o 4 6 ALPHA
TTR rn-

5. When adding records of undefined length, the length of the
physical record must be placed in the TCA at TCAFCURL in a two­
byte binary format. When an undefined record is retrieved,
it is the user's responsibility to determine its length.

6. When adding variable length records to a BDAM file, it is the
responsibility of the application programmer to insert the Block
Length.

The ap~lication programmer can request Data Language/I (DL/I)
services under CICS/OS through CALL's written according to DL/I
specifications or by issuing a DFHFC macro instruction. In response
to such requests, control is passed to a CICS-DL/I interface routine
that acts as an interface between the CICS application program and
the OL/1 request handler in a DL/1 task (which is an OS subtask of
CICS). This routine performs validity checks on the CALL list, sets
up DL/I to handle thi~ particular request, and passes control and the
CALL list to OL/I. When the interface regains control, it returns
control to the calling program unless a DLjI pseudo-abend has occurred,
in which case the CICS transaction (task) is abended.

QUASI-RfENTRANT CONSIDERATIONS WITH REGARD TO OL/I CALL'S

Under IMS, programs are not required to be reentrant since only
one transaction can use a particular program 'at anyone time. In CICS,
if several transactions are being serviced which require the use of
cne application program, one copy of the program is executed in a
reentrant manner by several CICS subtasks. Therefore, OL/1 areas that
will be modified (such as PCB pointers, I/O work areas, and Segment
~earch Arguments) may not be placed in either static storage or working
storage. Storage for PCB pointers, Segment Search Arguments, and work
areas must be obtained from C1CS dynamic storage by each transaction
using the program. (See the section "Quasi-Reentrance".)

The four steps to requesting DL/I data base services are as follows:

1. Obtain addresses of PCB's used by the application program.
2. Acquire storage for segment search arguments (SSA's)

if they are to be used in the CALL.
3. Acquire I/O work areas for DL/I segments processed by the

program.
q. Issue the DL/I CALL.

OBTAINING ADDRESSES OF PCB's

An application program that uses the CICS-DL/I interface references
dat.a bases by means of Proqram Communication Blocks (PCB's). In the
~rogram Specification Block (PSB) for the program, there is one PCB
~or each data base. In a DL/I environment, upon entry, the application
program receives the addresses of the PCB's of the data bases it uses.
~ince C!CS handles application programs as main programs and not as
~ubprograms, the PCB aadress~s cannot be obtained via entrt conventions
hut must be obtained by the application program before it makes any
DL/,! CALL's. '

To successfully process DL/I CALL's within CICS transactions, the
PSB for the transaction must be scheduled and the PCB addresses must
te obtained before any DL/I CALL's are made. If they are not obtained,
any DL/I CALL's made return an INVREQ (invalid request) indicator.
!!Ihe scheduling process gives the transaction exclusive control of the
PSB. This prevents other transactions from updating segment types
that this transaction is updating.

183

A transaction may schedule only one PSB at a time. An attempt to
schedule a second PSB while one is still scheduled causes the INVREQ
indicator to be returned.

To schedule the desired PSB and obtain PCB addresses, the application
programmer uses a special form of the DPHFC macro instruction:

DFHFC TYPE=(DL/I,PCB),
PSB=psbname,symbolic address,YES,
HORESP=symbolic address,
IHVBEQ=symbolic address

A discussion follows concerning the operands that can be included
in this macro instruction.

TYP~: TYPE=(DL/I,PCB) indicates a request for PCB addresses.

PSB: This operand is used to specify the name of the PSB to be used.
The name can be the actual name enclosed in quotes, or the name of
an eight-byte field containing the name of the PSB, padded to the right
with blanks. If the application programmer wishes to enter the PSB
name in the TCADLPSB field befor~ the CALL, he specifies PSB=YES.
If this operand is omitted, the name of the program associated with
the transaction in the PCT is used as the PSB name.

NOBESP: This operand is used to specify the label to be branched to
if the ~SB was located and the PCB addresses were returned. If the
PSB could not be scheduled, or if this operand is omitted, processing
continues with the next sequential instruction.

INVREQ: This operand is used to specify the entry label of a user­
written routine to be given control under any of the following
conditions:

1. When an attempt is made to schedule a PSB while the transaction
is still using a previously scheduled PSB.

2. The PSB name specified is not in the PDIR (PSB Directory) list.
3. The PSB or one of its associated DMB's (Data Management

Blocks) does not exist in the Application centrol Block (ACE)
Library.

4. One of the DMB's associated with the PSB is not in the DDIR
(DMB Directory) list.

If the PSB has been located, the TCADLPCB field contains the address
of a list of PCB addresses which is in the sequence in which the PCB
addresses were specified during the PSBGEN of this PSB. If the PSB
cannot be found, TCADLPCB contains zero. If the PSB pool or DMB pool
is too small to hold the requested blocks even when no other PSB's
or DMB's are in their pools, the transaction is terminated with the
DLPA abend code; DL/I pseudo-abend code 992 or 993 is placed in the
transaction's TCA at TCADLECB and the pseudo-abend message is sent
to destination CSMT.

BUILDING SEGMENT SEA!CH ARGUMENTS (SSA's)

Segment Search Arguments (SSA'S) can be used in a DL/I CALL to
identify a specific segment, or, if qualified, to identify the range
of values within which a segment exists. If used, SSA's are built
by the application programmer before a DL/I CALL is issued. See the

1B4

*
*
*

1~~L]2~ !EE£1i£s!i2n R~Qg~2mm~ng Rei~~~n£~ ~~~1 for information
concerning how to build an SSA.

In a DL/I application program~ SSA's are built in fixed storage
within the program. In a CICS application program, SSA's must be built
in dynamic storage to maintain the quasi-reentrance of the program.

The storage acquired to build the SSA's is addressed as follows:

1. For Assembler language programs, the address should be placed
in the register that establishes addressability for the SSA
dynamic storage.

2. For ANS COBOL programs, the address is moved to the BLL pointer
for this storage. The BLL pointer is defined under the COpy
DFHBLLDS statement in the Linkage Section and must be in the
same relative position in the BLL list as the 01 statement for
the SSA dynamic storage is among the 01 s~atements in the Linkage
Section.

3. For PL/I, the address is stored in the variable upon which the
SSA dynamic storage is based.

After the storage has been acquired, the Segment Search Arguments
are built according to the DL/I specifications found in the !~~}~Q
A~ElicatiQn]~Qg~sIDming E~1g£~~ ~~nY~l~

In a DL/I CALL statement, the names of the SSA's to be used, if
any, are sp€cified in the parameter list. In a DFHFC TYPE=DL/I macro
instruction, the application programmer can specify the number and
names of the SSA's in different ways:

1. SSAS=NO indicates that there are no SSA's in this CALL.

2. SSAS=(ssacQunt,ssa1,ssa2, •••), where "ssacount" is optional,
represents either the fixed-point number of SSA's in the CALL
or the symbolic address of the fullword that contains the number
of SSA's. Specifying a field to contain the number of SSA's
provides the application programmer with flexibility in writing
one DFHFC statement to be used in many different CALL's. "ssa1",
"ssa2", etc., are the symbolic names of the SSA's.

3. SSALIST=YES indicates that the application programmer has built
a list of fullwords, optionally containing the number of SSA's
(which may be zero) in the first word, and the addresses of
the SSA's in the following words, and that he has stored the
address of this list at TCADLSSA.

~. SSALIST=listname indicates that "listname" is the address of
an SSA list built by the application programmer as indicated
in item 3.

In Assembler language programs, "ssalist", "ssacount","ssa1",
"ssa2", etc., can be contained in registers by enclosing the
specification in parentheses.

~CQUIRING AN I/O WORK AREA

A request for services in a DL/I transaction under IMS always
includes the aaar~ss of a work area, either where a current segment
is contained, or where DL/Iis to place the segment in a retrieval
CALL. In a CICS application program, this area must be specified in
a CALL or CALLDLI, but may be provided by the interface, if the
programmo.r desires, for a retrieval type DFHFC macro request.

185

If the application programmer knows the address of the work area
to be used in the DFHFC macro instruction, including the case where
he acquires storage for a retrieval type (Gxx~ request, he specifies
either the name of the pointer to that storage in the WRKAREA=name
operand, or places the address of the storage in TCADLIO and specifies
~rRKAR FA=YES.

If the application programmer wishes to allow the interface to
obtain the work area for a retrieval-type request, he. does not include
~he WRK~REA operand in the DFHFC macro request; if the request was
~~~v~_("'p.d successfully, the address of an acquired I/O work area is 
~oun~ at TCADLTO. The address at TCADL!O is the address of the storage 
\ccounting ~rea (SAA) preceding the retrieved data. The length of 
+h i ~ata is eight byt0s 19ss than the value found in the second halfword 
of the ~AA. The area becomes the responsibility of the programmer 
and is not freed until he frees it or until the transaction terminates. 

~o1~: The address of the I/O area is specified as the address of the 
Storage Accounting Area preceding the data for a DFHFC request, 
or as the address of the first byte of the data area for a CALL 
or CALLDLI. 

ISSUING THE DL/I CALL 

A C1CS application program can request DL/1 services in either of 
~wo ways: CALL's written according to DL/I specifications or DFHFC 
macro requests using unique DL/1 operands. 

CALLDLI ASMTDLI, (parmcount,function,pcb,workarea,segment 
search arguments, ••• ) or 

CALLDLI CBLTDLI, (parmcount,function,pcb,workarea,segment 
search arguments, ••• ) 

In this macro instruction, which alters the contents of register 
1, "parmcount" is an optional parameter. The operation code is CALLDLI 
rather than CALL since the expansion of the CALL to the interface is 
not the same as the ordinary expansion of a CALL. If no parameters 
are sp~cified, it is assumed that register 1 contains the address of 
~he parameter list. ASMTDLI andCBLTDLI are functionally equivalent 
specifications. 

An alternate form of this specification is: 

CALLDLI ASMTDLI,MF=(E, (register) or address) or 
CALLDLI CBLTDLI,MF=(E, (register) or address) 

which is written in the same format as the E-TYPE as CALL macro 
instruction; that is, "address" is the address of the parameter list 
or "register" contains the address of the parameter list. 

CALL 'CBLTDLI' USING parmcount,function,pcb,workarea, 
segment search arguments, ••• 

~Q~ 21L1: 

186 

CALL PLITDLI (parmcount,function,pcb,workarea, 
segment search argum~nts, ••• ); 



Not~: In a CALLDLI or CALL statement, the "workarea" parameter must 
point to the first byte of the data area. 

The following macro instruction is used to specify the desired DL/I 
functions to be performed, regardless of the programming language used: 

DFHFC TYPE=(DL/I,function), 
PCB=symbolic address, (register) , 
WRKAR!A=symbolic address, YES, (register) , 
SSAS=NO, (ssacount,ssal,ssa2, ••• ), 
SSALIST=YES,NO,symbolic address, (reqister), 
NORESP=symbolic address, 
NOTOPEN=symbolic address, 
INVREQ=symbolic address 

TYPE: This operand is used to specify the two- to four-byte name of 
the function to be performed. If it is not specified, the function 
must have been specified in the TCADLFUN field before the DFHFC macro 
instruction is issued. 

PCB: The PCB=symbolic address operand is used to specify the name 
of the field that contains the address of the PCB. 

WRKAREA: WRKAR!A=YES indicates that the application programmer has 
placed the address of the work area to be used at TCADLIO. 

WRKAREA=symbclic address specifies the address of the field that 
contains a pOinter to the I/O work area. 

If the WRKAREA operand is not specified and this is a Gxxx request, 
the CICS-DL/I Interface acquires storage for the work area and. stores 
the address at TCADLIO. The user must save this address upon return. 
In any other type of request, the user must provide the work area. 

]Q!~: The work area whose address is specified in a DFHFC macro 
instruction or whose address was previously placed at TCADLIO 
includes,the CICS storage Accounting Area prefix; the work area 
specified in a CALLDLI or CALL statement does not. 

SSAS: SSAS=NO indicates that there are no SSA's used in this request. 
SSAS=NO is the default specification. 

SSAS=(ssacount, ssa1, ssa2, ••• ) is used to specify the names of 
segment Search Arguments in this request (thereby creating an SS! 
list). "ssacount" is used, optionally, to specify the number of SSA's 
to be used in this request; this parameter represents the address of 
a fullword containing the count, or, in the case of Assembler language, 
may be expressed as a numeric value. If the ssacount parameter is 
omitted, the ssa1 specification represents the first element of the 
SSA list. For a further description of the 5SA list, see the following 
discussion under SSALIST. 

5SALIST: SSALIST= symbolic address is used to specify the name of 
a field that contains the address of an SSA list. The first element 
of an SSA list may, optionally specify either the number of SSA's to 

* 
* 
* 
* 
* 
* 
* 

be used in this request or the address of a full word containing this 
value; the remaining elements represent addresses of SSA's. If the 
first element of an 5SA list does not represent "ssacount", all elements 
of the SSA list are assumed to be addresses of SSA's; the high-order 

'87 



bit of the last element of the list must be set on to indicate the 
end of a variable-length list. 

SSAL TST=YES indicates that the user has previously placed the, address 
of the SSA list at TCADLSSA. 

SSALIST=NO indicates that no SSA list is used in this request. 
~he default is SSALIST=NO. 

If either WRKAREA=YES or SSALIST=YES is specified the address of 
"the 1/0 work area or SSA list must be placed in the 1'CA prior to issuing 
~he DFHFC macro instruction. The TCA fields containing these addresses 
are altered during the service of the request. 

No1~: SSAS and SSALIST are mutually exclusive operands. 

NORESP: NORESP=name is used to specify the label to which control 
is to be passed after this transaction has regained centrol. The CICS­
DL/I Interface must have been able to pass control to DL/I and a DL/I 
pseudo-abend of the transaction must not have occurred. The user must 
check the return code in the PCB to see if DL/I was able to properly 
service the request. If this operand is omitted, control is passed 
to the next sequential instruction. 

NOTOPEN: NOTOPEN=symbolic address is used to specify the label to 
which control is to be passed if this data base is logically (not 
necessarily physically) closed. The PCB will not contain an AT status 
code. 

TNVRBQ: INVREQ=symbolic address is used to specify the label of a 
user-written routine to which control is to be returned if the 
transaction attempts to access DL/I without first scheduling a PSB 
and obtaining'PCB addresses. 

]ot~: In Assembler language application programs certain operands 
may be specified as registers and enclosed in parentheses; for 
example: 

1: PCB=(register) where "reg" contains the address of the PCB to 
be used in this request. 

2: WRKAREA=(register) where "reg" contains the address of the work 
area to be used in this request. 

3: SSAS= «register 1), (register 2), (register 3), ••• ) where 
"register 1" contains the optional count of SSA' s, and "register 
2", "register 3", etc., point to SSA's to be used. 

4: SSALIST=(register) where "register" points to a previously 
constructed SSA list (described above under SSALIST=symbolic 
address) • 

RELEASING A PSB IN THF CICS APPLICATION PROGRA~ 

To reduce pool and intent contention, the CICS application program 
may release the PSB. Before making any oth€r OL/I CALL's, the program 
must again issue a scheduling CALL. 

188 



It is recommended that conversational programs release the PSB 
before writing to a terminal so that other transactions can use the 
PSB while the conversational program is waiting for an operator 
response. 

A CICS application program can release a PSB for use by other 
transactions by issuing a 

D~HFC TYPE=(Dl/I,T) 

request. The PSB is released for use by other transactions, or if 
not required, its pool space and associated DMB pool space maybe 
released. No other DL/I CALL's may be made in this transaction until 
another scheduling (PCB) CALL is made. 

CHECKING THE RESPONSE TO A REQUEST FOR DL/I SERVICES (CHECK) 

To test whether or not the CICS-DL/I Interface successfully processed 
the DL/I request, the 

DFHFC TYPE=CHECK, 
NORESP=symbolic address, 
INVREQ=symbolic address, 
NOTOPEN=symbclic address 

macro instruction can be issued. 

* 
* 
* 

NOEESP: NORESP is used to specify the label of the user-written routine 
to which control is to be passed upon normal execution of the request. 

INVREQ: INVREQ is used to specify the label of the user-written routine 
to which control is to be passed in the event the transaction has not 
scheduled a PSB and obtained PCB addresses. 

NOTOPEN: NOTOPEN specifies the label of a user-written routine to 
which control is to be passed in the event the requested data base 
named in the PCB used in the request was logically (not necessarily 
phvsicallYl closed. The PCB will not contain an AI status code. 

Tbe application programmer may use the DFHFC TYPE=CHECK macro 
instruction following a CALLDLI, CALL, or DFHFC TYPE=(DL/I). This 
macro instruction does not check for DL/I return codes in the PCB. 
In the event DL/I issues a pseudo-abend during processing of the 
request, control is not returned to the transaction. The transaction 
is terminated with CICS ahend code DLPA. 

UL/I REQUES~S WRITTF.N IN ASSEMBLER LANGUAGE 

The application programmer must first get the PCB addresses. (There 
are several examples below.) When CICS returns from serVicing the 
DFHFC TYPE=(DL/I,PCB) request, if the programmer loads register 1 from 
TCADLPCB, his program is in the same state as after an 

ENTRY DLI~CBL 

statement w~en executing an IMS DL/I application program. 

The examples that fellow show the options available to the 
application programmer in a few of the acceptable combinations. Note 
that the application program must be kept quasi-reentrant; that is, 

189 



addresses, etc., should not be stored in static storage. Note also 
that ~f a DFHFC macro insturction is used the PCB and WRKAREA operands 
are used to specify the address of a pointer to the field rather than 
the field itself. 

For a complete discussion concerning the checking of these responses, 
see the section "Test flesponse to a Request for File Services". 

The following is an example of the coding required to request DL/I 
services in an Assembler language application program. 

COpy DFHTCADS 

* FSBNAME DC CLS'PSBNAME1' 
PCBPTRS DSECT 

* FCB1PTR DS F 
~CB2PTR DS F 

WORKAPTR DS 

nCB1 DSECT 

PCB2 

WRKAREA 

WORKA1 
5SAREA 

SSA1 
5SA2 

* 
* 

DSECT 

DS'ECT 
DS 2F 
1)S CL40 
DSECT 
DS 2F 
DS CL40 
DS CL20 

DFHPC TYPE=(DL/I,PCB) 
DFHFC TYPE=(DL/I,PCB) , 

PSB='PSB14' 
DFHFC TYPE=(DL/I,PCB), 

PSB=psbname 
MVC TCADLPSB,=CLS'PSBA' 
DFHFC TYPE=(DL/I,PCB), 

PSB=YES 
L R1,TCADLPCB 
USING PCBPTRS,R1 

* ACQUIRE S~ORAGE ~OR WORKAREA 
DFHSC TYPE=GETMAIN, ••• 
L R2,TCASCSA 
USING WRKAREA,R2 

* ACQUIRE STORAGE FOR SSA'S 
DFHSC TYPE=GETMAIN, ••• 
L R3,TCASCSA 
USING SSAREA,'R3 

* 

COpy TCA DEFINITION - INCLUDES 
DL/I FIELDS 
NAME OF PSB TO BE USED 
PCB POINTERS ,RETURNED BY 
INTERFACE 
STORAGE POR PCB POINTERS 

STORAGE FOR PRINTER IN I/O WORK 
AREA 
PCB DSECT 

PCB DSECT 

DL/I WORK AREA DSFCT 
STORAGE PF~PIX 
WORK AREA 
SSA DSECT 
STORAGE PREFIX 
5SA1 LAYOUT 
~SA2 LAYOUT 

USE PSB FOR THIS PROGRAM 
G~T PCB'S IN 'PSB14' * 
GET PCB'S IN SPECIFIED PSB * 
PUT PSB NAME IN TCA 
GET PCB'S OF PSB NAMEU IN TCA * 
GET ADDRESS OF PCB ADDR LIST 
REG 1 IS BASE OF PCB POINTEPS 
USER MUST PROVIDE ADDRESSABILITY 
TO PCB'S WHEN USING THEM 

GET STORAGE FOR WORKAREA 
REG 2 IS BASE FOR WORKAREA 
TELL ASSEMBLER 

GET STORAGE FOR SSA'S 
REG 3 IS BASE FOR SSA'S 
INDICATE TO ASSEMBLER 

CALLDLI CBLTDLI,(function,PCB1,WRKAREA,SSA1,SSA2) 

* 

190 



* CALL DL/1 VIA DFHFC HACRO -- VARIOUS EXAMPLES 

* * EXAMPLE 1 

* 

* 

DFHPC TYPE=(DLjI,function), 
PCB=PCB1PTR, 
WRKAREA=WORKAPTR, 
SSAS=(2,SSA1,SSA2) , 
NORESP=GOOD1 

* EXAMPLE 2 
* 

* 

MVC TCADLPCB,PCB1PTR 
LA BO. WRKAREA 
ST RO,TCADLIO 
DFHPC TYPE=(DLjI,DL~T) , 

WRKARIA=YES, 
SSAS=NO 

* EXAl'1PLE 3 
* 

riVC 
DFHSC 
L 
LA 
LA 
ST 
LA 
ST 
ST 

TCADLFUN,=CL4'GU' 
TYPE=GETMAIN •••• 
R4,TCASCSA 
R4,8 (R4) 
RO,1 
RO,O(R4) 
RO,SSA1 
RO,4(R4) 
R4,TCADLSSA 

PCB IS POINTED TO 
WORKAREA IS POINTED TO 
SSA COUN~ AND SSAS SPECIFIED 
NORMAL RESPONSE BRANCH 

PRELOAD PCB POINTER 
PICK UP WORK AREA ADDRESS 
STORE IN TCA 
FUNCTION SPECIFIED 
WORK AREA ADDRESS PRELOADED 
NO SSAS 

PRELOAD PUNCTION 
GET STORAGE FOR SSA LIST 
PICK UP STORAGE ADDRESS 
BYPASS PREFIX 
GET COUNT OF SSAS 
STORE IN SSA LIST 
GET ADDRESS OF 'SSA1' 
STORE IN 55A LIST 
STORE LIST ADDRESS TN TCA 
SET ON THE ENfl-OF-LIST RI~ 

* 
* 
* 
* 

* 
* 

OI 
DFH"C 

L 

4 (R4) ,X' 80' 
TYPE=DL/I, 
PCB=PCB 1PTR, 

SSALIST=YES 
R3,TCADLIO 

DL/I CALL, FUNCTION PRELOADED * 
PO!NTER TO PCB TO BE USED * 
T.NTERPACE WltL PROVIDE WORK AREA* 
PROBLEM PROGRAM PROVIDES SSA LIST 
PICK UP ADDRESS OF SUPPLIED 

* WORK AREA 

DL/I ~EQUES7S WRITTEN IN ANS COBOL 

Upon program entry the ANS COBOL programmer should obtain PCB 
addresses by issuing a DFHFC TYPE=(DL/I,PCB) request. After CICS 
returns control, the programmer moves the TCADLPCB field to the BLL 
pointer which is tbe base for the layout of the PCB pointers in the 
Linkage Section. He then moves the addresses of the PCB's to their 
BLL pointers to provide the base addresses for the PCB's. When this 
is done, the program is in the same state that it would be in after 
execution of the ENTRY 'DLITCBL' USING PCB1,PCB2 statement if the 
program were written for DL/I. 

For an explanation of how BLL pointers to 01 statements in the 
Linkaqe Section are defined, see the discussion of ANS COBOL application 
programming in the section "Storage Definition". 

Various examples are provided below concerning how to write DL/I 
requests; only some combinations of operands are shown, but other 
combinations are acceptable. Note that in a DFHFC request the BLL 
pointers to the PCB and work area are used rather than the actual field 
names themselves. This is the only way the addresses can be passed 
to DL/I. 

The following is an example of the coding required to request DLII 
services in an ANS COBOL application program: 

191 



WORKING-STORAGE SECTION. 
77 PSBNAME PICTURE XeS} VALUE 'COBOLPSBI. 
77 FUNCTION-1 PICTURE X(4) VALUE 'DLE~'. 
77 SSA-COUNT PICTURE 9{S} COMPUTATIONAL VALUE +2. 
LINKAGE SECTION. 
01 DFHBLLDS COpy DFHBLLDS 

02 POINTERS TO OTHER CICS AREAS 
* NEEDED 

02 B-PCB-PTRs PICTURE 9(8) COMPUTATIONAL. 
02 B-PCBl PICTURE 9(8) COMPUTATIONAL. 
02 B-PCB2 PICTURE 9(8) COMPUTATIONAL. 
02 B-WORKARF.A PICTURE 9(8) COMPUTATIONAL. 
02 B-SSAS PICTURE 9(8) COMPUTATIONAL. 

D1 DFHCDASD COpy DFHCSADS. 
01 DFHTCASD COpy DFHTCADS. 

NOTE TWO DEFINITIONS. 
NOTE OTHER AREA DEFINITIONS. 

01 PCB-PTRS. 
02 PCB1-PTR PICTURE 9{8} COMPUTATIONAL. 
02 PCB2-PTR PICTURE 9(8) COMPUTATIONAL. 

01 PCB1. 

01 PCB2. 

01 WORKAREA. 
02 FILLER PICTURE X(S). 
02 WORKAl PICTURE X(40). 

11 SSAREA. 
02 FILLER PICTURE X{S). 
02 SSA1 PICTURE X(40). 
02 SSA2 PICTURE X(60). 

PROCEDURE DIVISION. 
* GET PCB ADDRESSES 

STORAGE PREFIX. 

DFHFC TYPE={DL/I,PCB) GET PSB FOR THIS PROGRAM 
* SAVE PCB ADDRESSES IN BLL TABLE SO PCB'S CAN BE ADDRESSED 

MOVE TCADLPCB to B-PCB-PTRS 
MOVEPCB1-PTR to B-PCBl 
MOVE PCB2-PTR to B-PCB2 

* O~TIONALLY ACQUIRE STORAGE FOR WORK AREA 
DFHSC TYPE=GETMAIN, ••• 
MOVE TCASCSA to B-WORKAREA. 

* OPTIONALLY, ACQUIRE STORAGE FOR SEGMENT SEARCH ARGUMENTS 
DFHSC TYPE=GETMAIN, ••• 
MOVE TCASCSA to B-SSAS. 

* CALL DL/I VIA CALL 
CALL 'CBLTDLI' USING FUNCTION-l,PCB1,WORKAREA,SSA1,SSA2. 

* EXAMPLE 1 OF DFHFC MACRO INSTRUCTION 
DFHPC TYPE=(DL/I,GHU), FUNCTION 

PCB=E-PCB1, PCB POINTER 
WRKAREA=B-WORKAREA, WORKAREA POINTER 
SSAS={SSA~COUNT,SSA1,SSA2) SSA COUNT AND NAMES 

* EXAMPLE 2 OF DFHFC ~ACRO INSTRUCTION 
~OVE 'GNP' to TCADLFUN NOTE PRELOAD FUNCTION. 
MOVE B-PCB1 to TCADLPCB NOTE PRELOAD PCB ADDRESS. 

192 

* 
* 
* 



DFHFC TYPE=DL/I, FUNCTION PRELOADED * 
PCB ADDRESS PRELOADED * 
WORKAREA TO BE ACQUIRED * 

SSAS=NO NO SSA'S 
MOVE TCADLIO to B-WORKAREA. NOTE SAVE ACQUIRED WORK AREA ADDR. 

DL/I REQUESTS WRITTEN IN PL/I 

Upon entry to his program, the PLII application programmer should 
get PCB addresses via a DFHFC TYPE=(DL/I,PCB) statement. When CICS 
returns, the BASE of a structure of PCB pointers is in TCADLPCB. The 
PL/I programmer must move the BASE value from TCADLPCB to the BASE 
of his declared structure of PCB pointers. He then loads the BASE's 
of all the PCB's from this structure. The program is now in the same 
state that the DL/I application program would be following execution 
of the 

DLITPLI: PROCEDURE (pccname1, ••• ) OPTIONS (MAIN); 

statement, if the program were an IMS UL/I application program. 

The PL/I programmer may then make DL/1 requests, either via CALL's 
or via DL/I DFHFC macro instructions. Note that in a DFHFC request 
the PCB and WRKAREA operands specify the address of a RoiDte! to th~ 
lielg rather than the field itself. 

The following is an example of the coding required to request DL/I 
services in a PLII application program: 

~INCLUDE n~HCSADS; 1* CSA DE~INITION *1 
'INCLUDE DFHTCADS; 1* TCA DEFINITION - INCLUDES *1 

1* DL/I FIELDS *1 
DECLARE,1 PCB POINTERS BASED (B_PCB_PTRS), 

2 PCB1 PTR POINTER, 
2 PCB2:PTR POINTER; 

DECLARE 1 PCB' BASED (BPCB1), 
2 ••• 
2 ••• ; 

DECLARE PCB2 BASED (BPCB2), 
2 ••• 
2 ••• ; 

DECLARE 1 Dt1 IOAREA BASED (BDLIIO), 
2 STORAGE_PREFIX CHAR (8), 
2 IOKEY CHAR (6), 
2 ••• ; 

DECLARE 1 DLI SSADS BASED (BSSADS), 
2 STG~AGE_PREFIX CHAR(S), 
2 SSA1, 

3 SSA1K~- CHAR (6) , 
3 ••• 

2 SSA2, 
3 ••• 
3 ••• ; 

1* OBTAIN PCB POINTERS *1 
DFHFC TYPE=(DL/I,PCB) 

1* SAVE POINTERS IN PCB BASES *1 
~ PCB PTRS=TCADLPCB; 
BPCB1;PCB1 PTR; 
BPCB2=PCB2-PTR; 

1* ACQUIRE STORAGE FOR DL/I I/O AREA *1 
DFHSC TIPE=GETMAIN,CLASS=USER, ••• 
BDLIIO=TCASCSA; 

1* PCB DEFINITIONS *1 

1* D1/1 *1 
1* 1-0 AREA *1 
/* DEFINITION */ 

1* DL/I *1 
1* SSA *1 
/* DEFINITIONS *1 

193 



1* OPTIONALLY ACQUIRE STORAGE IN WHICH TO BUILD SSA'S *1 
DFHSC TYPE=GETMAIN,CLASS=USER, ••• 
BSSADS=TCASCSA; 

1* OPTIONALLY BUILD SEGMENT SEARCH ARGUMENTS *1 
SSA1KEY=TERMKEY; 

1* CALL DL/I *1 
CALL PLITDLI(PAFM_CT,DLI_FUNCTION,PCB1,IOKEY,SSA1, 
SSA2) ; 

1* EXA~~LE 1 OF DFHFC MACRO INSTRUCTION *1 
DFHFC TYPE=(DL/I,ISRT) , 

PCB=BPCB1, PCB POINTER 
WRKAR!A=BDLIIO, WORK AREA POINTER 
SSAS=(2,SSA1,SSA2) SSA COUNT AND NAMES 

/* EXAMPLE 2 OF DFHFC MACRO INSTRUCTION *1 
TCADLPCB=BPCB1; PRELOAD PCB POINTER 
DFHFC TYPE=(DLjI,GU), PCB PRELOADED 

WORKAREA TO BE ACQUIRED 
SSAS=(SSA_COUNT,SSA1,SSA2) SSA COUNT ~AMES 

* 
* 
* 

* 
* 

BDLIIO=TCADLIO; 1* SAVE ACQUIRED WORK AREA ADDR *1 
1* EXAMPLE 3 OF DFHFC MACRO INSTRUCTTON *1 

TCADL 'FUN=' GN' ; 
TCADLIO=BDLIIO; 
DFHFC TYPE=DL/I, 

PCB=BPCB1~ 

WRKARFA=YES, 
SSAS=NO 

1* PRELOAD FUNCTION *1 
1* PRELOAD WORKAREA ADDRESS *1 
FUNCTION PRELOADED 
PCB POINTER 
WORK AREA ADDRESS PRELOADED 
NO SSA'S 

CICS provides Basic Mapping Support (BMS) for use with the IBM 3270 
Information Display system. By use of BMS, the CICS application 
programmer has access to input and output 3270 data streams without 
the need to include any 3210 device-dependent code in the CICS 
application program. 

Application programs that utilize BMS under CICS remain independent 
of the 3270 data stream format. They also remain compatible with 
future additions of new fields to the existing input and output map 
Formats. 

Two types of maps are assembled offline through use of CICS macro 
instructions: (1) a physical map which is used by CICS to convert 
3270 native mode data into the format desired by the application 
programmer, and (2) a symbolic description map which is used by the 
application programmer to symbolically reference the data in the 3270 
buffer. The CICS DFHMDI macro instruction is used to build both types 
of maps; DFHMDI ~YPE=MAP indicates a physical map while DFHMDI 
TYPF.~DSECT indicates a symbolic description map. 

The user defines and names fields and groups of fields that may 
be writ+en to and received from the 3210. The assembled physical map 
contains all the 3210 device-dependent control characters necessary 
for the 3270 data stream. 

* 
* 
* 

The symbolic description map can be copied into each application 
program that uses the associated physical map. Data is passed to ana 
from the application program under the field names in the symbolic 
d~scription map. Since the application program is written to manipulate 
~he data by referencing each field by name, altering the map format 
by adding new fields or rearranging old fields does not necessarily 
alter the program logic. 

194 



If the map format is altered, it is necessary to make the appropriate 
c}anges in the macro instructions that describe the map and then 
reassemble both the physical map and symbolic description map. The 
new symbolic description map must then be copied into the application 
Frogram and the program reassembled. 

An application program has access to the input and output data 
fields using the names supplied to the fields when the maps were 
generated. The applicat5,cn logic should be dependent upon the named 
fields and their contents but should be independent of the relative 
rositions of the data fields within the screen format. If it becomes 
necessary to reorganize or add to a map format, the existing application 
program must be reassembled to gain access to the new positions of 
these data fields. Reprogramming is not necessary to account for new 
fields or for the changed screen format of those fiel~s. 

Basic Mapping Support (BMS) is available to application programmers 
coding in PLII, ANS COBOL, or Assembler language. Input maps describe 
+.he fields which are potentially receivable from a 32~0 screen; output 
maps specify the format of data to be sent to a 3270 screen or printer. 

By usinq BMS to construct and interpret the 3270 data streams, 
application programmers can insulate application programs from the 
device-dependent considerations required to handle 3270 data streams. 
If necessary, the application program has the facility to temporarily 
mo~ify the attributes of an output map or of any named field in an 
output map. BMS supplies a collection of named attribute combinations 
so that the application program remains essentially independent of 
the 3270 data stream format. 

The ability to progressively add to map definitions without 
obsoletinq existing application programs permits the design and 
implementation of systems in a modular fashion with a progressive 
9xpansion of the 3270 formats. Design and programming of the first 
stages of applications can begin before later stages have even been 
desiqnea. ~hj,s early implementation is protected from updates in the 
screen formats. 

MAP DBFIliITTON 

Inp~t maps are defined using the DPHMDI and DFH~UF macro instructions 
during offline map generation. 

Each field to be read must be ~efined as to maximum data length 
and star~ing position. This operation produces a map and a symbolic 
storage definition of the TIOA data supplied by EMS. 

The physical map is used by BMS to construct a TIOA as defined by 
the symbolic storage definition to be returned to the user transaction. 

The ~IOA symbclic storage definition contains the length of the 
inpu~ ~ata followed by the data read. Space is reserved for the maximum 
length defined for each field (not to exceed 256 bytes). 

pen-detectable fields have one reserved byte that contains a 
hexadecimal 'YP' if the field is selected or a hexadecimal '00' if 
~he field is not selected. The length field always contains a halfword 
binary one. 

The length specified may dif.fer from the actual number of characters 
in the field. If more data is keyed than specified, the data is 

195 



truncated to the number of characters requested in the map; the length 
is returned as the truncated length. If less data is keyed than 
specified, the remaining character positions are filled with blanks 
or zeros and the length of the keyed data is returned in the length 
field. The maximum length allowed for anyone field is 256 characters. 

Any keyed fields not defined by the map are discarded. Any fields 
~efined hut not key~d have their length field set to zeros and the 
data field set to nulls (X'OO'). 

~he program can access the length or data of any field by symbolic 
labels. The length field is a halfword binary field and is addressed 
by the label "fieldname.L"or "groupname.L". The data portion of each 
field (or group of fields) is contiguous with the length field. A 
group of fields, or a single field not within any group of fields, 
has the data portion addressed by the name "groupname.I" or 
"fieldname.I". For fields contained within a group, there are no 
intervening length fields (only "groupname.L" exists) and each field 
has the name "fieldname.I". 

Note that the "." is a concatenation symbol and is not used when 
referencing either the data or the data length. For example, in the 
case of field name XYZ, the data is referenced as XYZI; the data length 
is referenc3d as XYZL. 

output maps, like input maps, are created offline during map 
generation using the DFHMDI and DFH~DF macro instructions. Each field 
to be displayed must be defined as to starting location, length, field 
characteristics, and default data (if desired). 

When defining fields, the user may name any field he desires to 
override at execution time. Any named ~ields are produced in a symbolic 
storage definition of the TIOA to allow symbolic reference to each 
field. The user may temporarily override the field characteristics, 
the data, or both field characteristics and data, by inserting ~he 
desired changes into the TIOA under the ~ield names in the symbolic 
storage definition map which he has in his program. 

The fields are assigned names as specified in the DFH"DF macro 
instruction. The characteristic or attribute byte is named 
"fieldname.A" or "groupname.A". For a field contained within a group, 
the data area is given the name "fieldname.O", and there is no separate 
a~tribute byte for the field. (Only groupnames can have an attribute 
byte.) For a groupname, or a field not contained within a group, the 
data area is given the name "groupname.O" or "fie1dname.O". A field 
not contained within a group is treated as a group containing just 
a single field entry. 

Note that the n." is a concatenation symbol and is not used when 
referencing either the data or the data attributes. For example, in 
the case of field name XYZ, the data is referenced as XYZO; the 
attribute byte is referenced as XYZA. 

Pen-~etectable fields should be "auto skip" to prevent data from 
being keyed into them. 

Notel Due to the nature of the pen-detectable fields, they should 
normally not be modified. However, if the data field is 
modified, the first character must be a "?" or blank character; 
otherwise, the field is no longer pen detectable. 

196 



output field data, whether initial map data or data supplied by 
the program, must not begin with a null character (X'OO'). Blank 
characters (X'40') should be used to position displayable data 
down a field. 

OFFLINE MAP BUILDING 

The following macro instruction is the initial and final macro 
instruction for offline map generation and is used to build the physical 
map and symbolic description map: 

mapname DFHMDI TYPE=DSECT,MAP,FINAL, * 
TERM=3270, * 
LANG=ASM,COBOL,PL1, * 
BASE=name, * 
MODE=IN,OUT, * 
CTRL=(PR1NT,L40,L64,L80,HONEOM,FREEKB,ALARM,FRSET) 

All maps must be given a user-defined map name of from one to seven 
characters, beginning with an alpha character. If the map is to reside 
in the CICS program load library, the map name chosen must be different 
from other map names or program names in the system. 

TYPE=MAP or TYPE=DSECT may be specified if this is the initial macro 
instruction for offline map generation; TYPE=MAP indicates a physical 
map and TYPE=DSECT indicates a symbolic description map. TYPE=FINAL 
must be specified if this is the final macro instruction. 

When a symbolic storage definition is generated in response to a 
DFHMDI TYPE=DSECT, MODE=1N specification, an "I" is appended to each 
map name; when generated in response to a DFHMD1 TYPE=DSECT, MODE=OUT 
specification, an "0" is appended to each map name. For example: 

MAP1 DFHMDI TYPE=DSECT, 
TERM=3270, 
LANG=ASM, 
MODE=IN, ••• 

In this example, the name generated in the symbolic storage 
definition is MAP1I and must be referenced as such within the 
application program. This is true irrespective of the programming 
language used. 

* 
* 
* 

DSECT: A DSECT (symbolic storage definition) map generation run creates 
the list of field names which the user copies or includes in the 
application program. If the same map definition is used by application 
programs written in different languages, a separate DSECT run is 
required for each language to put the table of field names into the 
Copy library of each language. 

MAP: A MAP generation run creates the control information block used 
by BMS to perform the mapping. This map is stored in the CICS program 
load library and is loaded as required by BMS. The Assembler language 
application programmer may generate the map in his code and pass the 
address across to BMS .. 

FINAL: This parameter must always be coded as part of the last macro 
instruction of a map definition (after all the field definition macro 
instructions). No other operands are required with DFHMDI TYPE=FINAL; 
they are ignored if coded. 

197 



Page of SH20-104 7-4 
Revised April 11, 1973 
By TNL SN20-9012 

TERM: This operand can only contain the 327cr keyword parameter. If 
this operand is omitted, it defaults to TERM=3270. 

LANG: Required only for a DFHMDI TYPE=DSECT run, this operand is 
ignored in the case of the DFHMDI TYPE=MAP and DFHMDI TYPE=FINAL 
specifications, both of which are language independent. 

BASE: The BASE=name operand is used to group symbolic storage 
definitions by specifying the group name in each applicable DFHMDI 
TYPE=DSECT specification. This operand is applicable only when the 
programming language is ANS COBOL or PL/I; it is not applicable in the 
case of a TYPE=MAP operation or if the programming language is Assembler 
language. 

The following example illustrates the use of the BASE operand: 

MAP1 DFHMDI TYPE=DSECT, * LANG=COBOL, * MODE=IN, * BASE=DATAREA1 

MAP2 DFHMDI TYPE=DSECT, * LA NG=COBOL, * MODE=OUT, * BASE=DATAREA1 

The symbolic storage definitions of this example might be referenced 
in an ANS COBOL application program as follows: 

LINKAGE SECTION. 
01 DFHBLLDS COPY DFHBLLDS. 

02 TIOABAR PICTURE S9(8) COMPUTATIONAL. 
02 MAPBASE1 PICTURE S9(8} COMPUTATIONAL. 

01 DFHTIOA COpy DFHTIOA. 
01 DATAREA1 PICTURE X (1920) • 
01 name COpy MAP1I. 
01 name COpy MAP20. 

MAP1 and MAP2 multiply redefine DATAREA1; only one 02 statement is 
needed to establish addressability. However, the program can only 
reference fields in one of the symbolic map areas at a time; to 
reference fields in the other symbolic map areas, the program must 
establish addressability to each of those areas. 

If BASE=DATAREA1 is deleted from this example, an additional 02 
statement is needed to establish addressability for MAP2; the 01 
DATAREA1 statement would not be needed. The program could then 
reference fields concurrently in both symbolic map areas. 

In PL/I application programs, the name specified in the BASE operand 
is u~ed as the name of the pointer variable on which the symbolic 
storage definition is based. If this operand is omitted, the default 
name (BMSMAPBR) is used for the pointer variable. The PL/I programmer 
is responsible for establishing addressability for the based structures. 

198 



MODE: MODE=IN specifies an input map generation. MODE=OUT specifies 
an output map generation. This operand is not required for the DFHMDI 
TYPE=FINAL macro instruction. 

CTRL: This operand is used to specify various control functions for 
a particular output map which are allowable on certain of the 3270 
devices. This operand is not required for input maps. 

198.1 





CTRL=PRINT, CTRL=L40, CTRL=L64, CTRL=LBO, and CTRL=HONEOM are options 
that relate exclusively to the printer functions. CTRL=PRINT must be 
specified if the printer is to be started; otherwise, the data is sent 
to the printer buffer but is not printed. CTRL=L40, CTRL=L64, CTRL=LBO, 
and CTRL=HONEOM are mutually exclusive options that control the line 
length on the printer. The L40, L64, and LBO parameters force a 
carriage return/line feed at the end of their specified numbers of 
characters, respectively. CTRL=HONEOM causes the printer to honor all 
new-line (NL) characters and the first end-of-message (EM) character 
that appear in displayable fields of the data stream. It is the user's 
responsibility to insert these characters into displayable fields if 
they are to be honored. If the NL character is omitted, a carriage 
return/line feed occurs at the physical end of the carriage or at the 
right margin stop, whichever is encountered first. 

When a data entry key is used by the 3270 operator, the keyboard is 
inhibited from entering further data. CTRL=FREEKB specifies that the 
keyboard should be unlocked when this map is written out. 

CTRL=ALARM is used to activate the 3270 audible alarm special 
feature. 

CTRL=FRSET (field reset) specifies that the modified data tags 
(MDT's) of all fields currently in the 3270 data buffer are to be reset 
to the "not modified" condition before any map data is written to the 
buffer. This allows the DFHMDF ATTRB specification for the requested 
map to control the final status of any fields which are written or 
rewritten in response to an online mapping (DFHBMS) service request. 

The following macro instruction is used during offline map generation 
to define individual fields within a map: 

name DFHMDF 
LENGTH=number, 
POS=number, 
ATTR B= (ASKIP, PROT, UN PROT, NU M, BRT, DRK, NORM, DET, IC, FSET) , 
JUSTIFY=(LEFT,RIGH~,BLANK,ZERO) , 
INITIAL='any user information', 
GRPNAME=user group name 

Fields must be defined in ascending order based on the value 
specified in the POS operand. 

The name field of the DFHMDF macro instruct~on is optional. If 
coded, the one- to seven-character name is used by the user-written 
application program as a symbolic reference to the output map field 
and is used to pass the data both for input and output map operations. 

If the name field is omitted, symbolic reference to the field by 
the application program is not possible. For an output map, omitting 
the name field is appropriate when the INITIAL operand is used to 
specify field contents. An input map field description with no field 
name causes no symbolic storage definition entry to be generated for 
the field; this prevents any access to the field by the application 
program. 

All field names and group names specified when defining fields for 
a symbolic storage definition (DFHMDI TYPE=DSECT) are suffixed by CICS 
with an "I" if MODE=IN specified and an "0" if MODE=OUT is specified. 
The entire name, including suffix, must be used within the application 
program to reference the fields, irrespective of the programming 
language used. 

199 

* 
* 
* 
* 
* 
* 



Page of SH20-1047-4 
Revised.April 11, 1973 
By TNL SN20-9012 

LENGTH: This operand is used to specify the length (1 to 256 bytes) 
of the individual field. Although an attribute byte is associated with 
each field, its length is not included in the LENGTH value. 

POS: This operand is used to specify up to 1920 individually 
addressable character locations (0-1919) possible in a map. The value 
specified is the location of the attribute byte that precedes each 
field. For input fields, the POS=number specification should be the 
same as that specified for the keyable or detectable field generated 
in the output map (which is the source of this input field). 

The location of the data on the device depends on the model of the 
3270 being used. For the 480-character 3270, any POS=number 
specification that is an integral multiple of 40 results in a new line; 
any POS=number specification for the 480-character 3270 greater than 
479 produces unpredictable output. For a 1920-character 3270, a 
POS=number specification that is an integral multiple of 80 results in 
a new line. 

For printers, new lines are determined by the CTRL specification of 
the DFHMDI macro instruction; the POS specification controls only those 
character positions that are.in the buffer. 

All DFHMDF macro instructions must be coded in ascending order based 
on the value specified in the POS operand. Otherwise, fields may be 
omitted during inp~t or output mapping operations. 

ATTRB: This operand is used to specify the device-dependent 
characteristics and attributes applicable to individual fields. 
Applicable keyword parameters are ASKIP, PROT, UNPROT, NUM, BRT, DET, 
DRK, IC, NORM, and FSET. If no parameters are specified, ASKIP and 
NORM are assumed. If gny parameter is specified, UNPROT, NORM, and 
alphameric are assumed for any field unless overridden by a specified 
parameter. 

The ASKIP, PROT, UNPROT, and NUM attributes are used to describe 
the capability of the field to receive data. Fields with the ASKIP 
attribute imply the PROT attribute; the cursor automatically skips over 
the field. Data cannot be keyed into an ASKIP field. The PROT 
attribute is similar to the ASKIP attribute except that no automatic 
skipping of the field by the cursor occurs. The UNPROT attribute allows 
a field to be keyed; the NUM attribute ensures that the data entry 
keyboard is set to numeric shift for this field unless the operator 
pressed the alpha shift key. The NUM attribute also prevents entry 
of non-numeric data if the keyboard numeric lock feature is installed. 
The ASKIP, PROT, and UNPROT attributes are mutually exclusive. 

The BRT, NORM, and DRK attributes specify high intensity, normal 
intensity, and non-display/non-print respectively. These attributes 
are mutually exclusive. 

The DET attribute specifies that a field is potentially 
pen-detectable. As required for a 3270 pen-detectable field, the first 
data character must be a "?", a ">", or a blank. See "IBM 3270 
Information Display System Component Description", form number 
GA27-2749, for the functions of these characters and other requirements 
of pen-detectable fields. Note that a field which has the BRT attribute 
is always potentially pen-detectable to the 3270, but is not recognized 
as such by the Basic Mapping Support unless the DET attribute is also 
specified. DET and DRK are mutually exclusive options. For input map 
fields, DET and NUM are the only valId options (all others are ignored). 

200 



Page ofSH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

An input DET field has a one-byte reserved data area which is set to 
X'OO' when the field is unse1ected, or X'FF' when the field is selected. 
No other data is supplied. 

The IC attribute indicates that the cursor is to be placed in the 
first position of this field. The IC attribute for the last field in 
the map for which it is specified is the one that takes effect. If 
the IC attribute is not specified for any fields, the default location 
is zero. Specifying the IC attribute with the ASKIP attribute or PROT 
attribute causes the cursor to be placed in an unkeyable field. The 
FSET (field set) attribute specifies that this field should have the 
modified data tag (MDT) set on when the field is sent out to the 3270. 
This causes the 3270 to treat the field as if it had been modified, 
meaning that on a subsequent read from the terminal, this field is read 
in even though the field may not have been modified. This facility is 
useful for providing duplicate information or constant information from 
the screen as input. Note that the MDT remains on until the field is 
rewritten or until an input/output map request (for example, DFHMDI 
CTRL=FRSET or DFHBMS CTRL=FRSET) causes MDT's to be reset. 

JUSTIFY: This operand is used to specify the format of an input field. 
Normally, input fields are left-justified (JUSTIFY=LEFT), and, if the 
data area is not filled, trailing blanks are inserted (JUSTIFY=BLANK). 
However, numeric fields are often easier to manipulate if they are 
right-justified (JUSTIFY=RIGHT) and are preceded by zeros 
(JUSTIFY=ZERO). Note that LEFT and RIGHT are mutually exclusive 
parameters, as are BLANK and ZERO. 

In the absence of certain of these parameters, the following is 
assumed: 

LEFT 
RIGHT 
BLANK 
ZERO 

BLANK 
ZERO 
LEFT 
RIGHT 

If the JUSTIFY operand is omitted, the following is assumed: 

NUM attribute RIGHT,ZERO 
Other than NUM 

attribute LEFT, BLANK 

INITIAL: This operand is used only in output map field descriptions 
to supply constant or default data for a field. If the name field of 
the DFHMDF mac~o instruction is not used, the user-written application 
program cannot access the output field map to alter the data or its 
attributes. If the name field of the DFHMDF macro instruction is used, 
the INITIAL data is always in the field but is overlayed by any data 

I 
supplied by the user under this name field specification. For fields 
with the DET attribute, initial data that begins with a blank character, 
"7", or ">" should be supplied. 

GRPNAME: This operand is used to generate symbolic storage definitions 
and to combine individual fields under one group name by specifying 
the group name for each of the fields in the group. The fields 

201 



Page of SH20-104 7-4 
Revised April 11,1973 
By TNL SN20-9012 

composing a group must be consecutive (contiguous). Each DFHMDF macro 
instruction that names a field that is to belong to the group must 
include the GRPNAME operand specifying the common group name. For 
example: 

MAPX 

FLD1 

DFHMDI TYPE=DSECT, ••• 

DFHMDF 
LENGTH=20, 
POS=10, ••• 

GRPFLDA DFHMDF 
LENGTH=20, 
POS=81, 
GRPNAME=GRP1, ••• 

GRPFLDB DFHMDF 

FLD2 

LENGTH=20, 
POS=101, 
GRPNAME=GRP1, ••• 

DFHMDF 
LENGTH=15, 
POS=161, .•. 

LOCATE FIRST FIELD OF GROUP 

LOCATE SECOND FIELD OF GROUP 

In the above example, if DFHMDI TYPE=DSECT,MODE=IN is specified, 
the generated names are FLD1I, GRP1I, GRPFLDAI, etc,; if DFHMDI 
TYPE=DSECT,MODE=OUT is specified, the generated names are FLDIO, GRPIO, 
GRPFLDAO, etc. These generated names must be used within the 
application program to reference the fields. 

A group of fields exists as a single field on the 3270; the 
individual field names (specified in the name field of the DFHMDF macro 
instruction) provide the user with access to portions of the complete 
3270 field. 

Fields coded without a group name entry are considered to be group 
fields consisting of a single entry. 

An entry with a group name but no field name results in an error 
condition. 

ONLINE MAP INVOCATION 

Online mapping operations are requested by issuing the DFHBMS macro 
instruction. Basic Mapping Support (BMS) performs any required 
input/output operations via Terminal Control. The data returned from 
an Input mapping operation is in TIOA format; the address of this TIOA 
is found at TCTTEDA. 

For an output mapping operation, if DATA=YES or DATA=ONLY, the 
application programmer must first have obtained, via Storage Control, 
a TIOA large enough to contain the symbolic storage definition of the 
map being used. Any fields not requiring data to be passed to the 
mapping operation must be set to nulls (XIOO'); this is best achieved 
through use of the INITIMG=OO operand of the DFHSC TYPE=GETMAIN macro 
instruction. Before issuing the DFHBMS. macro instruction, the address 
of the TIOA must have been placed at TCTTEDA. 

The following BMS services are available through use of the DFHBMS 
macro instruction: 

202 

1. Input - BMS performs a READ/WAIT via Terminal Control and maps 
the data (under control of the input map) into TIOA format. 

* 
* 

* 
* 
* 

* 
* 
* 

* 
* 



Page of SH20-1047-4 
Revised April 11, 1913 
By TNL SN20-9012 

2. Output - BMS converts the TIOA to 3210 data stream format, merges 
fields from the map (if desired), schedules a write operation, 
and waits for completion (if requestedl_ 

3. Map - BMS maps, upon request, any 3270 input TIOA into a mapped 
TIOA. 

The following operands can be included in the DFHBMS macro 
instruction: 

DFHBMS TYPE=(IN,OU~,ERASE,WAIT,SAVE,MAP), * 
MAP='map name',YES, * 
DATA=NO,YES,ONLY, * 
CTRL= (PRINT,L40,L64,L80,HONEOM,FREEKB,ALARM,FRSET), * 
CURSOR=number,YES, * 
MAPADR=symbolic address,YES 

TYPE: This operand is used to specify the type of mapping operation 
and to request screen erase and/or write synchronization in connection 
with an output operation. 

TYPE=IN specifies an input mapping operation. Input is accepted 
from the terminal via a Terminal control READ/WAIT request. The input 
data is then mapped into the TIOA and made available to the application 
program by placing the TIOA address at TCTTEDA. 

After return is made to the application program from this macro 
operation, the fields entered are available to the application program 
under the symbolic names specified in the name fields of the input map 
DFHMDF macro instructions, with the letter "I" suffixed to correspond 
to the name CICS generates in the OSECT expansion. 

TYPE=OUT specifies an output mapping operation. The output TIOA 
(addressed at TCTTEDA by the 1l!")0r) iE:; converted to a 3270 data stream 
and is written to the terminal. 

TYPE=(ERASE,OUT) is used to specify that the screen is to be erased 
before the output map is transmitted. 

TYPE=(OUT,WAIT) is used to specify that the output operation is to 
be synchronized with the completion of a write request. Since a wait 

I 
is automatically issued in response to a read request, the 
TYPE=(IN,WAIT) specification is unnecessary. 

NQi~~ Multiple writes without wait may cause unpredictable results. 

TYPE=MAP specifies an operation similar to an input mapping operation 
(TYPE=IN) except that a Terminal control read is not performed. If 

TYPE=MAP is specified, the user must have placed at TCTTEDA the address 
of the inE~i TIOA containing 3210 data to be mapped. An example is 
the initial TIOA given to a transaction upon entering a transaction 
code. 

TYPE=SAVE may be specified with any use of the OUT parameter to 
indicate that the TIOA (addressed by TCTTEDA at the time the DFHBMS 
macro instruction is issued) is not to be freed~ 

MAP: This operand is used to specify the name of the map to be used 
for input or output operations. The map must reside in the CICS program 
library and must have a corresponding entry in the Processing Program 
Table (PPT). 

203 



MAP='map name' specifies the one- to seven-character name of the 
map to be used. 

203.1 





MAP=YES indicates that the user has placed at TCABMSMN the 
seven-character name of the map. If the name contains fewer than seven 
characters, it must be left justified and padded with blanks to seven 
characters. 

DATA: Applicable only to output mapping operations, this operand is 
used to specify one of three output mapping functions: (1) write only 
default data, (2) merge default fields with user fields, or (3) write 
only user data. If this operand is not specified, DATA=NO is assumed. 
no user data stream to be mapped into this output map description. 
(The user has not specified a TIOA.) Only the initial data (and/or 
default data) specified for the output map fields is transmitted to 
the terminal. 

DATA=YES indicates that data specified in the user's TIOA (the 
address of which is at TCTTEDA) is to be merged with the data in the 
output map. Data in the TIOA overrides the initial data and/or field 
characteristics in the output map. 

DATA=ONLY specifies that no initial fields are to be written; only 
the data supplied in the user's TIOA is to be written. No attribute 
bytes are sent from the map to the terminal. Only attributes specified 
by the user as "fieldname.A" or "groupname.A" are transmitted. 

CTRL: Used in conjunction with the TYPE=OUT operand, this optional 
operand is used to temporarily override control functions specified 
for a particular output map. This operand is effective as a temporary 
override only for this output request. 

, CTRL=PRINT, C1'RL=L40, CTRL=L64,' CTRL=LBO, and CTRL=HONEOM are options 
'that relate exclusively to the printer functions. CTRL=PRINT must be 
'specified if the printer is to be started; otherwise, the data is sent 
to the printer buffer but is not printed. CTRL=L40, CTRL=L64, CTRL=LBO, 
and CTRL=HONEOM are mutually exclusive options that control the line 
length on the printer. The L40, L64, and LBO parameters force a 
carriage return/line feed at the end of their specified numbers of 
characters. CTRL=HONEOM causes the printer to honor all new line (NL) 
characters and the first end-of-message (EM) character in the data 
stream. If the NL character is omitted, a carriage return/line feed 
occurs at the physical end of the carriage or at the right margin stop, 
whichever is encountered first. 

When a data entry key is used by the 3270 operator, the keyboard is 
inhibited from entering further data. CTRL=FREEKB specifies that the 
keyboard should be unlocked when this map is written out. 

CTRL=ALARM is used to activate the 3270 audible alarm special 
feature. 

CTRL=FRSET specifies that the modified data tag is to be reset to 
the "not modified" cOlldition on all fields. 

CURSOR: Applicable only to output mapping operations, CURSOR=number 
is used to position the cursor at a particular position on the screen 
upon completion of a WRITE. Any integral value in the range 0-1919 
may be specified, depending upon the screen size of the 3270 being 
used. This operand is effective as a temporary override only for this 
output request. 

CURSOR=YES indicates that the application programmer has previously 
specified the desired cursor position at TCABMSCP. 

204 



Page ofSH20-1047-4 
Revised April 11,1973 
By TNL SN20-9012 

MAPADR: Restricted to application programs coded in Assembler language, 
this optional operand is used to specify the address of a user-coded 
map. This operand allows maps to be coded within the user-written 
application program. 

MAPADR=YES is used by the Assembler language programmer to indicate 
that the address of the map has been placed at TCABMSMA. 

liQte~ In the case of the CICS/DOS-ENTRY system, the MAPADR operand 
must not specify any address within the limits of the program. 
Instead, the user must obtain an area of main storage via a 
storage control GETMAIN macro instruction and then move the map 
to this area. 

The map used for input or output operations must be specified for 
BMS. If the user has placed the map in the CICS program library, the 
user must use the MAP='mapname' specification, or, if preferred, the 
user may place the seven-character name of the map at TCABMSMN and 
specify MAP=YES. 

Assembler language programmers may "hard code" maps in their program 
and place the address of the map at TCABMSMA and code MAPADR=YES. If 
desired, the user may code MAPADR=symbolic address, where address is 
the label of the hard-coded map. Caution must be exercised when BMS 
is invoked and MAPADR is specified in the CICS/DOS-ENTRY system. (The 
address must be in subpool 0 to avoid rollout.) 

Maps placed in the CICS program library are accessed by BMS through 
a Program Control LOAD. Therefore, the map name must be an entry in 
the Processing Program Table (PPT). 

Input and output requests result in a Terminal Control READ and 
WRITE, respectively. Therefore, the user is not required to code any 
Terminal Control macro instructions. 

Nothing prevents the user from alternately coding native mode and 
BMS operations. If desired, BMS will map a native mode input TIOA by 
requesting only a MAP operation. However, for input to a non-formatted 
buffer with no MAP operation requested, mapping will not be performed 
and a NULL TIOA will be returned. 

Noi~~ The read that contains the transaction code and causes initiation 
of the transaction is a native 3270 data stream. The MAP request 
may be used to convert this TIOA to a mapped TIOA. 

Regardless of the programming language used (Assembler language, 
ANS COBOL, or PL/I), the same form of the DFHBMS macro instruction is 
used to request a mapping operation. In the case of ANS COBOL and 
PL/I, the CICS Preprocessor resolves the macro instruction and expands 
it into the statements required to invoke the mapping function. 

Terminal input, which causes a task to be initiated, is stored in 
the task's initial TIOA as a native mode 3270 data stream. By 
requesting a MAP operation via DFHBMS, the application program is given 
the capability to map this TIOA into a particular input format. The 

205 



format of this initial input data must correspond to that of the 
requested map. 

205.1 





The application programmer can obtain a set of commonly used 3270 
field attributes and printer control characters by copying DFHBMSCA 
into his program. DFHBMSCA consists of a set of EQU statements in the 
case of Assembler language, a set of 01 statements in the case of ANS 
COBOL, and DECLARE statements defining elementary character variables 
in the case of PL/I. One possible use for DFHBMSCA is for the purpose 
of temporarily changing attribute characters in a map. 

Listed below are the field attributes/printer control characters 
and corresponding symbolic names. 

DFHBMPEM 
DFHBMPNL 
DFHBMASK 
DFHBMUNP 
DFHBMUNN 
DFHBMPRO 
DFHBMBRY 
DFHBMDAR 
DFHBMFSE 
DFHBMPRF 
DFHBMASF 
DFHBMASB 

3270 Printer end of message 
3270 Printer new line symbol 
Autoskip 
Unprotected 
Unprotected and numeric 
Protected 
High Intensity 
Dark, nonprint 
MDT on 
Protected and MDT on 
Autoskip and MDT on 
Autoskip and high intensity 

These attributes cannot be combined by the application programmer 
in any manner. If any combinations other than those listed are 
required, the application programmer must either use the ATTRB operand 
of the DFHMDF macro instruction to obtain the desired combinations or 
must assume responsibility to generate new attribute combinations 
offline. 

To test the method of initiating an incoming READ from the 3270 
Information Display System, the application programmer is provided with 
a set of 3270 attention identifiers (single-character vAriables called 
AID's) that can be used to test the value at TCTTEAID. He can obtain 
this set of attention identifiers by copying DFHAID into his program. 

DFHAID consists of a set of EQU statements in the case of Assembler 
language, a set of 01 statements in the case of ANS COBOL, and DECLARE 
statements defining elementary character variables in the case of PL/I. 
Listed below are the symbolic names for the attention identifiers and 
the corresponding 3270 function. 

206 

DFHENTER 
DFHCLEAR 
DFHPEN 
DFHPA1 
DFHPA2 
DFHPA3 
DFHPF1 

DFHPF12 

Enter key 
Clear key 
Immediately detectable field 
PA1 key 
PA2 key 
PA3 key 
PF1 key 

PF12 key 



Depending on the programming language used, the BMS symbolic storage 
definition of the TIOA must be provided in the application program as 
shown in the following examples. Note that mapname1, mapname2, and 
mapname3 in these examples are the names of modules that contain the 
assembly of a BMS symbolic storage definition (TYPE=DSECT). 

1. Assembler language COpy statements. 

COpy DFHTIOA 
COpy mapname1 

COpy mapname2 

COpy mapname3 

2. ANS COBOL COpy statements for each symbolic storage definition. 

LINKAGE SECTION. 
01 DFHBLLDS COpy DFHBLLDS. 

01 DFHCSADS COpy DFHCSADS. 
01 DFHTCADS COPY DFHTCADS. 
01 DFHTIOA COpy DFHTIOA. 
01 name COpy mapname1. 
01 name COpy mapname2. 
01 name COpy mapname3. 

3. PLjI INCLUDE statements. 

%INCLUDE DFHTIOA; 
%INCLUDE mapname1; 
%INCLUDE mapname2; 
%INCLUDE mapname3; 

In addition to providing the BMS symbolic storage definition for 
the TIOA, the application programmer must establish addressability for 
this storage definition. Depending on the programming language used, 
this is accomplished as follows: 

1. Assembler language ORG statement immediately preceding the 
symbolic storage definition for each map, starting with the 
second map. For example: 

COPY DFHTIOA 
COpy mapname1 
ORG TIOADBA 
COpy mapname2 
ORG TIOADBA 
COpy mapname3 

DFHSC TYPE=GETMAIN, 
NUMBYTE=120, 
CLASS=TERMINAL, 
INITIMG=OO 

L TIOABAR,TCASCSA ESTABLISH TIOA ADDRESSABILITY 

207 

* 
* 
* 



Page of SH20-104 7-4 
Revised April 11, 1973 
By TNL SN20-9012 

2. ANS COBOL 02 statements immediately following the COpy statement 
for the Linkage section Base Locator (BLL). These 02 statements 
must be coded in the same order as the corresponding 01 
statements coded subsequently. For example: 

LINKAGE SECTION. 
01 DFHBLLDS COpy DFHBLLDS. 

02 TIOABAR PICTURE S9(8) COMPUTATIONAL. 
02 MAPBASE1 PICTURE S9(8) COMPUTATIONAL. 
02 MAPBASE2 PICTURE S9(8) COMPUTATIONAL. 
02 MAPBASE3 PICTURE S9 (8) COMPUTATIONAL. 

01 DFHTIOA COpy DFHTIOA. 
01 name COpy mapname1. 
01 name COpy mapname2. 
01 name COpy mapname3. 

PROCEDURE DIVISION. 

DFHSC TYPE=GETMAIN, 
NUMBYTE=120, 
CLASS=TERMINAL, 
INITIMG=OO 

MOVE TCASCSA TO TIOABAR. 
ADD 12 TIOABAR GIVING MAPBASE1. 
ADD 12 TIOABAR GIVING MAPBASE2. 
ADD 12 TIOABAR GIVING MAPBASE3. 

3. PLII based pointer variable (BMSMAPBR). For example: 

DCL TIOABAA FIXED BINARY (31,0) BASED (TIOABAB) ; 

%INCLUDE DFHTIOA; 
%INCLUDE mapname1; 
%INCLUDE mapname2; 
%INCLU~E mapname3; 

I*EACH OF THESE MAPS IS*I 
I*BASED ON THE SAME POINTER*I 
I*VARIABLE - BMSMAPBR*I 

DFHSC TYPE=GETMAIN, 
NUMBTYE=120, 
CLASS=TERMINAL, 
INITIMG=OO 

TIOABAR=TCASCSA; 
TIOABAB=ADDR (TIOABAR) ; 
TIOABAA=TIOABAA+12; 
BMSMAPBR=TIOABAR; 

The examples in this section are based on a fairly simple screen 
exercising problem and are intended to show the results of generating 
symbolic storage definition maps. 

208 

* 
* 
* 

* 
* 
* 



Page of SH20·1047·4 
Revised April 11, 1973 
By TNL SN20·9012 

In the examples, an input symbolic storage definition and an output 
symbolic storage definition are illustrated for each of the programming 
languages supported by CICS: Assembler language, ANS COBOL, and PL/I. 
Each of these examples is generated from the screen definition of the 
first example; only the initial DFHMDI entry is changed. 

SAMPLE 

NAME 

MONTH 
DAY 
YEAR 

BLUE 
RED 
AMBER 

ERROR 

DFHMDI TYPE=DSECT,LANG=ASM,MODE=IN,TERM=3270,CTRL=FREEKB 
DFHMDF POS=O,LENGTH=17,INITIAL='ENTER YOUR NAME--' 
DFHMDF POS=18,LENGTH=18,ATTRB=(IC,UNPROT) 
DFHMDF POS=40,LENGTH=17,INITIAL='WHAT IS THE DATE?' 
DFHMDF POS=58,LENGTH=2,INITIAL='MM',GRPNAME=DATE 
DFHMDF POS=60,LENGTH=2,INITIAL='DD',GRPNAME=DATE 
DFHMDF POS=62,LENGTH=2,INITIAL='YY',GRPNAME=DATE 
DFHMDF POS=80,LENGTH=26,INITIAL='SELECT YOUR FAVORITE COLOR' 
DFHMDF POS=120,LENGTH=9,ATTRB=DET,INITIAL='?~BLUE~~~' 
DFHMDF POS=131,LENGTH=8,ATTRB=DET,INITIAL='?~RED~~~' 
DFHMDF POS=141,LENGTH=10,ATTRB=DET,INITIAL='?~AMBER~~~' 
DFHMDF POS=160,LENGTH=19,ATTRB= (PROT,BRT), 

INITIAL='NOW HIT A PF KEY ••• ' 
DFHMDF POS=240,LENGTH=19,ATTRB=DRK, 

INITIAL='SORRY, TRY AGAIN ••• ' 
DFHMDI TYPE=FINAL 
END 

Example 1. Symbolic storage definition input 

209 



SAMPLEI DS OC 
SPACE 2 

NAMEL DS H DATA LENGTH 
NAMEI DS CL18 DATA OR FLAG 

SPACE 2 
DATEL DS H DATA LENGTH 
DATEI DS OC GROUP DATA 

SPACE 2 
SPACE 2 

MONTHI DS CL2 DATA 
SPACE 2 

DAYI DS CL2 DATA 
SPACE 2 

YEARI DS CL2 DATA 
SPACE 2 

BLUEL DS H DATA LENGTH 
BLUEI DS CL1 DATA OR FLAG 

SPACE 2 
REDL DS H DATA LENGTH 
REDI DS CL1 DATA OR FLAG 

SPACE 2 
CLUEL DS H DATA LENGTH 
CLUEI DS CL5 DATA OR FLAG 

SPACE 2 
AMBE'RL DS H DATA LENGTH 
AMBERI DS CL1 DATA OR FLAG 

SPACE 2 
ERRORL DS H DATA LENGTH 
ERRORI DS CL19 DATA OR FLAG 
* * * END OF MAP DEFINITION * * * 

DFHBMSKS 

Example 2. Symbolic storage definition using LANG=ASM,MODE=IN 
specification 

210 



SAI1PLEO DS OC 
SPACE 2 

'NAMEA DS C 
DS C 

NAMEO DS CL18 
SPACE 2 
SPACE 2 

'DATEA DS CL1 
DS CL1 

DATEO DS OC 
SPACE 2 

MONTHO DS CL2 
SPACE 2 

DAYO DS CL2 
SPACE 2 

YEARO DS CL2 
SPACE 2 
SPACE 2 

ELUEA DS C 
DS C 

BLUEO l)S CL5 
SPACE 2 
SPACE 2 

REDA DS C 
1)S C 

REDO DS CL5 
SPACE 2 
SPACE 2 

CLUEA DS C 
DS C 

CLUEO DS CL5 
SPACE 2 
SPACE 2 

AMBERA DS C 
DS C 

AMBERO DS CL5 
SPACE 2 
SPACE 2 

ERRORA DS C 
DS C 

ERRORO DS CL19 
SPACE 2 

* * * END OF KAP DEFINITION * * * 
DFHBMSKS 

USER ATTRIBUTE 
RESERVED 
DATA FIELD 

USER ATTRIBUTE 
RESERVED 
GROUP START 

DATA FIELD 

DATA FIELD 

DATA FIELD 

USER ATTRIBUTE 
RESERVED 
DATA FIELD 

USER AT'rRIBUTE 
RESERVED 
DATA FIELD 

USER ATTRIBUTE 
RESERVED 
DATA FIELD 

USRR ATTRIBUTE 
RESERVED 
DATA FIELD 

USER ATTRIBUTE 
.RESERVED 
DATA FIELD 

Example 3. Symbolic storage definition using· LANG=ASI1,I10DE~OUT 
specification 

211 



01 SAMPlEI SYNCHRONIZED. 
02 NAM!t COMP PIC S9(4). 
02 NAMEI PIC X(18). 
02 DATEL COMP PIC S9(4). 
02 DATEI. 

03 MONTHI PIC X(2). 
03 rAYI PIC X(2). 
03 YEARI PTC X(2). 

02 BLUEL COMP PIC S9(4). 
02 BLUEI PIC X(l). 
02 REDL COMP PIC S9(4). 
02 REDI PIC X(l). 
02 CLUEL COMP PIC S9(4). 
02 CLUEI PIC I(5). 
02 AMBERL COMP PIC S9(4). 
02 AMBERI PIC X(l). 
02 ERRORt COMP PIC S9(4). 
02 ERRonI PIC X(19). 

Example 4. Symbolic storage definition using LANG=COBOL,MODE=IN 
specification 

01 SAMPLEO SYNCHRONIZED. 
02 NAMEA PICTURE X. 
02 FILER PICTURE X. 
02 NAMEO PICTURE X(18). 
02 DATEA PICTURE X. 
02 FILLER PICTURE X. 
02 DATEO. 

03 MCNTBO PICTURE X(2). 
03 DAYO PIC~URE X(2). 
03 YEARO PICTURE X(2). 

02 BLUEA PICTURE X. 
02 FILLER PICTURE X. 
02 BLUEO PICTURE X(5). 
02 REDA PICTURE X. 
02 FILLER PICTURE X. 
02 REDO PICTURE X(5). 
02 CLUEA PICTURE X. 
02 FILLER ~ICTURE X. 
02 CLUEO PICTURE X(5). 
02 AMBERA PICTURE X. 
02 FILLER PICTURE X. 
02 AMBERO PICTURE X(5). 
02 ERRORA PICTURE X. 
02 FILLER P1CTUR~ X. 
02 ERRORO PICTURE X(19). 

Example 5. Symbolic storage definition using LANG=COBOL,MODE=OUT 
specification 

212 



DECLARE 1 SAMPLEI ALIGNED BASED (BMS~APBR), 
2 NAMEL FIXED BINARY (15,0), 
2 NAMEI CHARACTER (18), 
2 DATEL FIXED BINARY (15,0), 
2 DATEI, 

3 MONTHI CHARACTER (2), 
3 DAYI CHARACTER (2), 
1 YEARI CHARACTER (2), 

2 BLU~L FIXED BINARY (15,0), 
2 BLUEI CHARACTER (1), 
2 REDt FIXED BINARY (15,0), 
2 REDI CHARACTER {1l, 
2 CLUEL PIXED BINARY (15,0), 
2 CLUEI CHARACTER (5), 
2 AMBEPL FIXED BINARY (15,0), 
2 AMBEEl CHARACTER (1l, 
2 ERRORt FIXED BINARY (15,0), 
2 ERRORl CHARACTER (19), 
2 ~TLLC030 CHARACTER (1), 

1* END O~ MAP DEFINITION */ 

Example 6. Symbolic storage definition using LANG=PL1,MODE=IN 
spec ification 

DECLARE 1 SAMPLEO ALIGNED BASED (BMSMAPBR), 
2 NAMRA CH A'R ACTER (1), 
2 FIIL0008 CHARACTER (1), 
2 NAMlO CHARACTER (18), 
2 DA~!A CHARACTER (1), 
2 FILLO 0'4 CHAR ACTER (1), 
2 DATEO, 

3 MONTHO CHARACTER (2), 
3 DAYO CHARACTER (2), 
3 YEARO CHARACTER (2), 

2 BLUEA CHARACTER (1), 
2 ~ILL0029 CHARACTER (1), 
2 BLUEO CHARACTER (5), 
2 REDA CHARAC'rER (1), 
2 FILL0035 CHARACTER (1), 
2 REDO CHARACTER (5), 
2 CLUEA CHARACTER (1), 
2 14'IILO 0 39 CHARACTER (1), 
2 CLUBO CHARACTER (5), 
2 AMBERA CHARACTER (1), 
2 FTLL0041 CHARACTER (1l, 
2 AMBEFO CHARACTER (~., 
2 ERRORA CHARACTER (1), 
2 Fl1L0041 CHARACTER (1), 
2 ERRORO CHARACTEP. (19), 
2 PIIL0050 CHARACTER (1); 

1* END OF MAP DEFINITION */ 

Example 1. Symbolic storage definition using LANG=PL1,MODE=OUT 
specification 

213 



Testing in the information system environment has always been 
difficult. The information system, including the operating system, 
CICS, and the user's application programs, must be responsive to many 
factors concurrently. The equipment confi~uration includes many lines 
and terminals through which requests for varied services are coming 
constantly on a random, nonscheduled basis. The precise relationship 
ef all programs and data set (file) activity generated from the terminal 
inputs is never the same from one moment to the next. 

Even at the simplest level of program testing, the implementer faces 
problems. He c~nnot efficiently test his program from a terminal which 
requires that all test data be keyed into the ~ystem each time that 
he requires a test shot. He cannot easily retain a bac~log of proven 
test data and quickly test his programs through the key-driven terminal 
as program changes are made. 

CICS allows the application programmer to begin testing his programs 
without requiring the use of a telecommunication device. It is possible 
to specify through the Terminal Control Table that sequential devices 
be used as terminals. At the same time, the Terminal Control Table 
can include references to the other terminals on the system. The 
seguen~ial devices are the c.ard reader, line printer, disk, and magnetic 
tape. In fact, a Terminal Control Table can include combinations of 
sequential devices such as: card reader and line printer, one or more 
disk data sets as input, one or more disk data sets as output. The 
same table can also include references to the other terminals on the 
system. 

The input data must be prepared in the form that it would come from 
a terminal. A transaction identification must appear in the first 
four positions of the first input for a transaction, and, if a 
sequential device is being used as a terminal, a 0-2-8 punched card 
code or the equivalent must fellow the input message. The input is 
processed sequentially and must be unblocked. The Sequential Access 
~ethod (SAM) is u~d to read and write the necessary inputs and outputs. 
The operating system utilities can be used to create the input data 
sets and print the output data sets. 

Consequently, it is possible to prepare a stream of transaction 
test cases to do the basic testing of a program module. As the testing 
progresses, the user would want to generate additional transaction 
streams to validate the multiprogramming capabilities of his programs 
or to allow different transaction test cases to be run concurrently. 

User-written application programs can make use of the facilities 
of Dump Control and Trace Control to capture the status of the programs 
during testing. The Dump control output is printed by using the CJCS 
Dump utility program. For a description of the Dump control facilities, 
see "Dump Services". 

At some point in testing, it is necessary to use the 
telecommunication devices to ensure th~t the transaction formats are 
satisfactory, that the terminal operational approach is satisfactory, 
and that the transactions can be processed on the terminal. The 
Terminal Control Table can be altered to contain more and different 
devices as the testing requirements change. 

When the testing has proven that multiple transactions can be 
processed concurrently and the necessary data sets (actual or duplicate) 

214 



for online operation are created, the user begins testing in a 
controlled environment with the telecommunication devices. In the 
controlled environment, the business activity should represent all 
functions of the eventual system, but b~ on a smaller and a measurable 
scale. For example, a company whose information system will work with 
15 district offices would select one district office for the controlled 
test. During the controlled test, all transactions, data set activity, 
and output activity from the system would be closely measured. 

Testing is a continuing process; it is net complete when customer 
convers~on occurs. The entire testing cycle is repeated as the 
applications are upgraded and new applications are added to the system. 

The optional CICS Trace facility is designed as a debugging aid 
for the application programmer. This facility makes use of a Trace 
Table which is produced by requests for Trace control services and 
which consists of standard and nonstandard entries. standard entries 
are recorded in the table each time one of the following CICS macro 
instructions is issued by an application program or by a CICS management 
program: 

1. DFHKC (Task Control) 
2. DFHSC (storage Contrel) 
3. DFHPC (Program Control) 
4. DFHIC (Interval Control) 
5. DFHDC (Dump Control) 
6. DFHFC (File Control) 
7. DFHTD (Transient Data Control) 
8. DFHTS (Temporary Storage Control) 

Each standard entry contains a unique ID and information which will 
aid the application programmer in determining where the macro 
instruction was issued and what type of request was made to the 
management program. Thus, without any additional programming, the 
application programmer is provided with a useful tool to aid in the 
debugging process. 

In addition, the application programmer may make direct, nonstandard 
entries in the Trace Table by using the DFHTR macro instruction in 
his application program. The user assigns his own identification and 
accompanying data for each trace entry. Thus, the user could define 
several unique trace entries and trace the logical path through a 
particular application or group of application programs. 

~race Control is branched to by its requesting program and executes 
as a service routine under the requesting program's TCA. Registers 
are saved and restored. Return is always made to the next sequential 
instruction in the requesting program once the requested service has 
been performed. 

If the user has generated the Trace feature in his system, he may 
dynamically control which trace entries are to be made in the table. 
~race activity is controlled by two sets of flag bytes in the CSA 
(CSATRMF1 and CSATRMF2) and one flag byte in the TCA (TCATRMF). The 
meaning of the individual bits of the flag bytes is as follows: 

215 



o 
1 

2 

3-7 

CSA'r.Rl!F2 -----........... 

o 
1 

2 

3 

4 
5 
6 

7 

~~nin.sJ 

Master Flag - if off, no trace occurs. 
System Master Flag - if off, no syst~m entries 
(ID 200-239) are traced. 
User Master Flag - if off, no user entries 
(ID 0-199) are traced. 
Reserved 

On to trace Task control macro instructions. 
On to trace storage control macro 
instructions. 
On to tr~ce Proqram control macro 
instructions. -
On to trace Interval Control macro 
instructions. 
On to trace Dump Control macro instructions. 
On to trace File control macro instructions. 
On to trace Transient Data Control macro 
instructions. 
On to trace Temporary storage Control macro 
instructions. 

X'FO' 
X' F1' 

I' F2' 

X'F3' 

X'P4' 
X'FS' 
I'F6' 

X'F",,' 

Bit 0 of the TCA ~lag byte (TCATRKF) is used only if the user master 
flag (1'20') is off in the CSA flag byte CSATRl!Ft. If the user master 
flag is off, only those user entries that are issued by tasks with 
the TCA flag on are traced. 

The Trace Control macro instruction (DFHTR) is used to request any 
of the following services: 

1. Dynamically allow the Trace facility to begin logging appropriate 
entries into the Trace Tabl~. 

2. Dynamically cause the Trace facility to stop logging entries 
into the Trace Table. 

3. Dynamically cause a specified entry to be logged into the Trace 
Table. 

The following operands can be included in the DFHTR macro 
instruction: 

DFHT.R 

DFHTR 

DFHTR 

216 

TYPE=ON, 
STYPE=SINGLE,ALL, (system symbol) ,SYSTEM,USER 

TYPE=OF'F, 
STYPE=SINGLE,ALL, (system symbol) ,SYSTEM,USER 

TYPE=ENTRY, 
STYPE=SYSTEM,USER, 
ID=number, 
DATA1=symbol, (symbol), 
RDATA1=register, (register), 
DATA2=symbol,(symbol) , 
RDATA2=register, (register) , 
DATA1TP=HB!N,FBIN,CHAR,PACK,POINTER, 
DATA2TP=HBIN,FBIN,CHAR iPACK, POINTER 

* 

* 

* 
* 
* 
* 
* 
* 
* 
* 



~RACE ON FUNCTION 

~he ON function of Trace Control is used to dynamically allow the 
Trace facility to begin logging appropriate entries into the Trace 
Table. The application programmer invokes it by use of the 

DFHTR TYPE=ON, 
STYPE=SINGLE,ALL, (system symbol) ,SYSTEM,USER" 

macro instruction. 

STYPE: Identifies which of the types of entries are to be traced. 
The meaning of each of the parameters is as follows: 

1. S!NGLE, specifies that the trace capability is to be turned 
on for the single transaction issuing the DFHTR macro 
instruction. STYPE=SINGLE has no effect unless the USER 
desiqnation has beEn turned off. 

2. ALL, specifies that the complete trace function is to be turned 
on. 

3. System symbol, specifies one or more of the valid system 
functions. A special Trace Table entry is created each time 
one of the CICS macro instructions is issued. This parameter 
allows the user to selectively turn on the appropriate system 
macro trace facility. The valid system symbols are: 

KC Task Control (DFHKC) 
SC Sto~age Control (DFHSC) 
PC Program Control (DFHPC) 
IC Interval Control (DFHIC) 
DC Dump Control (DFHDC) 
FC File Control (DFHFC) 
TD Transient Data Control (DFHTD) 
TS Temporary storage Control (DFHTS) 

4. SYSTEM, specifies that the trace capability is to be turned 
on for all entries made from within C!CS, excluding the CICS 
macro entries controlled by the CSATRMF2 flag byte. 

S. USER, specifies that the trace capability is to be turned on 
for all user entries. 

~~ACE OFF FUNCTION 

The OFF function of Trace Control is used to dynamically cause the 
Trace facility to stop logging entries into the Trace Table. The 
application programmer invokes this function by issuing the 

DFHTR TYPE=OFF, 
STYPE=SINGLE,ALL,(system symbol) ,SYSTEM,USER 

macro instruction. 

STYPE: Indicates which of the types of entries are not to be traced. 
Each of the parameters has the same meaning as when used with the DFHTR 
TTPE=ON macro instruction. 

* 

* 

217 



TRACE ENTRY FUNCTION 

The ENTRY function of Trace Control is used to dynamically cause 
a specified entry to be logged into the Trace Table if the Trace 
facility has been turned on for that type of entry. The application 
programmer invokes this function by issuing the 

DFHTR TYPE=ENTRY, 
STYPE=SYSTEM,USER, 
ID=number, 
DATA1=symbol, (symbol), 
RDATA1=register, (register), 
DATA2=symbol, (symbol) , 
RDATA2=register, (~egister) , 
DATA1TP=HBIN,FBIN,CHAR,PACK,POINTER, 
DATA2TP=HBIN,FBIN,CHAR,PACK,POINTER 

macro instruction. 

STYPE: Indicates whether this entry is a CICS entry or user entry. 

ID: Specifies the identification numb~r to be used on this entry and 
~ust be coded as a self-defining term. The following range of numbers 
may be coded: 

0-'99 with STYPE=USER 
2~O-239 with STYPE=SYSTEM 

Numbers 240-253 are reserved for system macro trace entries. 254 and 
255 indicate the TYPE-ON and TYPE=OFF entries, respectively. 

tATA1: Specifies the address of the data to be placed in the first 
data field of the table entry. If parentheses are used, the specified 
address is an address of an area that contains the address of the data. 

RDATA1: Specifies the register whose contents are to be placed in 
the first data field of the table entry. If parentheses are used, 
the specified register contains the address of the data. FDATA1 and 
CATA' are mutually exclusive. 

DATA2: Similar to DATAl except that it is used for the second data 
field of the Trace Table entry. 

RDATA2: Similar to RDATA1 except that it is used for the second data 
field of the Trace Table entry. 

DATA1TP: valid only for ANS COBOL and PL/I programs, this operand 
specifies the format of the data to be placed in the first data field 
of the Trace Table entry. The default is DA~A1TP=FBIN. 

The applicable keyword parameters are HBIN, FBIN, CHAR, PACK, and 
POINTER, and are used as follows: 

21A 

* 
* 
* 
* 
* 
* 
* 
* 



DATA1TP=HBIN 

DATA1TP=FBIN 

DATA1TP=CHAR 

DATA1TP=PACK 

1)ATA1TP=POINTER 

Halfword, binary 

Fullword., binary 

1 to 4 characters 

1 to 4 bytes, 
packed decimal 

PL/I pointer 
variable 

COBOL: 
PL/I: 

COBOL: 
PL/I: 

COBOL: 
PL/I : 

COBOL: 
PL/I: 

9(4} CaMP 
BIN FIX (15) 

9 (8) CaMP 
BIN FIX (31) 

x (4) 
CHAR (4) 

9 (7) COMP-3 
DEC FIX (7) 

DATA2TP: Similar to DATA1TP except that it is used for the second 
data field of the Trace Table entry. The default is DATA2TP=FBIN. 

Tne optional CICS Trace Table consists of a variable number of 
fixed-length entries and may be generated during system generation. 
It is used to trace the logical flow of transaction activity through 
the system. Following generation, the trace feature may be invoked 
during system initialization by specifying the number of Trace Table 
entries to be other than zero. If the Trace Table is invoked, the 
address of the table is placed in the CSA at CSATRTBA. 

Each entry in the table is a fixed 16 bytes in length, and is aligned 
on a doubleword boundary. The table is used in a wrap-around manner 
so that when the last entry is used, the next entry is placed at the 
beginning of the table. The first 16 bytes of the table are a control 
field for the balance of the table and contain the following 
information: 

0-3 
4-7 
8-11 

12-15 

Address of the current entry 
Address of the beginning of the table 
Address of the end of the table 
Reserved 

219 



~he format of the individual trace entry is: 

~!1~~ 

o 
1-3 

4 

5-7 

8-11 
12-15 

Trace identification of entry. 
Contents of register 14 at entry to the Trace program, 
or if the ID is X'FO' through X'F7', it is the contents 
of register 14 at entry to the CICS management program 
concerned. 

If the Trace ID is one of the following, this field 
contains the type of request code as it relates to the 
applicable CICS management program. 

Task Control 
storage Control 
Program Control 
Interval Control 
Dump Control 
File Cant ral 
Transient Data Control 
Temporary storage Control 
CICS/OS-DL/I Interface 

X'FO' 
X' Fl' 
X'F2' 
X'F3' 
X'1"4' 
X'FS' 
X'F6' 
X'F'7' 
X'F8' 

Transaction identification as found in the CICS control 
section of the TCA. This identification is unique for 
each transaction. 

Data field 1. 
Data field 2. 

The CICS Trace Table entries are indicated in Tables 1-10 which 
follow. (For a discussion of the CICS/OS-DL/I Interface Trace Table 
entries, see the section "Requesting Data Language/I Services".) 

220 



~able 1. Task Control 

" ITYPEI 
,TRACEI I OF I 
I ID ,REGISTER 141 REQt TRANSACTION ID L--____________________ __ 

]].Q.Y£!~I £Qll 
FRQ~ 191£!Il 

X' 80' (DETACH) 

X' 40' (WAIT) 

X' 20' (CHAP) 

X'1Q' (AVAIL) 

X' 12' (SCHEDULE) 

X' 11 ' (Conditional 
ATTACH) 

X' '0' (ATTACH) 

X' 08' (RESUME) 

X'OQ' (SUSPEND) 

I' 02' (DEQUEUE) 

X' C , , (ENQUEUE) 

FIELD A 

Not used 

Dispatch 
Control 
Indicator 
TCATCDC 

New priority 
TCATCDP 

Facility 
Control 
Address 

FIELD B 

Not used 

Event 
Control 
Address 
TCATCEA 

Not used 

Not. used 

Terminal ID or Transaction 
AID address ID TCAKCTI 
TCAKCTA 

Facility 
Control 
Address 

Facility 
Control 
Address 

TCA (TIA) 
address of 
resumed 
transaction 

Not used 

Transaction 
ID TCAKCTI 

Transaction 
ID TCAKCTI 

Not used 

Not used 

Queue name Not used 
address TCATCQA 

Queue name Not used 
address TCATCQA 

221 



~able 2. storage Control 

" ,TYPE, 
ITRACEI I OF I 
, ID ,REGISTER 14 I REQI TRANSACTION ID 
'--_ .. 

X'F1' 

o 

1 

2 

3 

1=GETMAIN 

1=FREEMAIN 

l=Release all 
Terminal strg 
if bit 0=0 
and bit 1= 1 

l="Condi tional 
GETMAIN if 
bit 0=1 and 
bit 1=0 

1=RELEASED (used 
by CICS to 
obtain initial 
storage cushion 
if bits 0,1=0 

1=Condi tional 
Storage is to 
be initialized 

4 O=Subpool 0 

1=Subpool 

5 O=Unchained 
storage 

1=Chained storage 

6 l=TCA type of 
storage 

FIELD A 

o Not used 

1 Initiali­
zation byte 
for GETMAIN 

2-3 Requested 
number of 
bytes 

2-3 Number of 
bytes released 
following 
FREE MAIN 

7 l=Terminal type of 
storage 

X'C8' 

X'C9' 

222 

Not used 

Not used 

0-3 Address off 
main storage 
acquired 

0-3 Address of 
main storage 
released 

FIELD B 

Not used 

Storage 
accounting 

Storage 
accounting 



Table 3. Proqram Control 

I , 
I'!'RACE, 
I lD IREGISTER L-___ _ 

ITYPEI 
I OF I 

141 REQI TRANSAC~ION ID 

----------------------
FIELD A FIELD B 

X'F2' X' 90' (REFRES H - PPT entry Not used 
CICS/DOS-ENTRY address TCAPCTA 
only) 

X' 84' (Condi tiona! 
LOAD) 

X' 60' (ABEND 
wi th dump) 

X'40' (ABEND 
without dump) 

X'10' (RETURN) 

X' 08' (DELETE) 

X'04' (LOAD) 

X'02' (XCTL) 

X'01' (LINK) 

~able 4. Interval Control 

l' I TYPEI 
I~RACEI , OP , 
, ID IREGISTER 141 REQI ~RANSACTION ID L--________________________________ _ 

'X'F3' 

]~QY]~1 ~Q~~ !]Q~ 
l~ll~:rn QI! 1~AIC!i£ 

X'1x' (GETIME) 

where "x" consists 
of the low-order 
four bits: 

Program name Not used 
from TCAPCPI 

Abend code Not used 
from TCAPCAC 

Not used Not used 

Not used Not used 

Not used Not used 

Program name from TCAPCPI 

Program name from TCAPCP! 

Program name from '!'CAPCPI 

FIELD A PIELD B 

Return time to Not used 
user address 
TCAICDA 

223 



~able q. Interval Control (continuecr) 

I , 
'~~ACE' 
, ID IREGISTER 
'-

224 

ITYPEI 
I OF , 

1Q, REQI TRANSACTION ID 

4,5 Always zero 

6 O=Refresh CSA 
Time only 

1=Return time 
to user 

7 O=Binary format 
l=Packed format 

X' 2x' (WAIT) 

X'3x' (POST) 

where "x" consists 
of the low-order 
four bits: 

FIELD A 

INTRVAL or 
TIME value 
(TCAICRT) 

INTRV}.L or 
TIME value 
(TCAICRT) 

Q O=INTRVAL parameter 
provided 

l=TI ME parameter 
provided 

5 O=No Request 
ID provided 

1=User-provided 
Request ID 

6,7 Always zero 

X'4x' (INITIATE) 

X'5x' (PUT) 

where "x" consists 
of the low ... order 
four bits: 

INTRVAL or 
TIME value 
(TCAICRT) 

INTRVAL or 
TIME value 
(TCAICRT) 

4 O=INTRVAt parameter 

FIELD B 

Not used 

Not used 

Transaction 
ID (TCAICTI) 

Transaction 
ID (TCA ICTI) 



Table 4. Interval Control {continued} 

, , 
, TRACE, 
, ID ,REGISTER 

, TYPE, 
, OF , 

14, REQ' TRANSACTION ID 
~------------------~------

provided 
1=TIME parameter 

provided 

5 O=No Request 
ID provided 

1=User-provided 
Request ID 

6 Always zero 

7 O=Non-terminal 
destination 

1=Terminal 
destination 

X' Ax' (GET) 

where "x" consists 
of the low-order 
four bits: 

4,5 Always zero 

6 O=User-providen 
data address 

1=Return data 
address to user 

7 Always zero 

1'90' (RETRY) 

X'Fx' (CANCEL) 

where "x" consists 
of the low-order 
four bits: 

4 Always Zero 

5 O=No Request 
ID provided 

1=User-provided 
Request ID 

6,7 Always zero 

FIELD A 

User-provided 
da ta address 

Not used. 

Request ID 

FIELD B 

Not used 

Not used 

(TCA!CQ!D) 

225 



Table 5. Dump Control 

" ITYPEI 
fTRACEI f OF f 
f ID IREGISTER 141 REQI TRANSACTION ID FIELD A FIFLD B L_______________ __ __ __ 

~-------------- -----------------

X'F4' 

226 

.B~2.Y]~! CO]]; 
NOT USED (see fIeld A) 

~Q.N!EN!2 
I]Ql1 .T~ADC.T:!l 
(Bytes 2~3 

not used) 

TRANSACTION X'FEOO' Abend 
code 

CICS X'OOFP' 

COMPLETE X'FEFF' 

PARTIAL 

TCA X'OOOO' 

SEGMENT X'0100' 

TRANSACTION X'0400' 

TERMINAL X'0800' 

PROGRAM X'2000' 



Table 6. File Control 

, , 
,TRACEI 
, ID IREGISTER 
~------.--------

X'FS' 

ITYPEI 
1 OF 1 

141 REQI TRANSACTION ID 

£~QESI ~QQ~ FRQl1 
ICAFCIR QB 1~!l~B~ 

X'80' (GET) 

X'84' (GET W/UPDATE) 

X'40' (PUT) 

X'44' (PUT W /NEWREC) 

X'20' (GETAREA) 

FIELD A 

Page of SH20-1047-4 
Revised April 11, 1973 
By TNL SN20-9012 

FIELD B 

1 
1 
1 ___________________J 

X'28' (GETAREA W/INITIMG) 

X'10' (RELEASE 
or ESETL) Data set name from TCSFCDI 

fill fields A and B 

X'CO' (OPEN) 

X'EO' (CLOSE) 

X'FO' (LOCATE) 

X'AO' (SETL) 

X'BO' (GETNEXT) 

X'A4' (RESETL) 

227 



Page of SH20-1047-4 
Revised April 11, 1973 
By TNL SN20-90 12 

Table 7. Transient Data Control 

I I 
ITRACEI 
1 ID IREGISTER 
L--

X'F6' 

ITYPEI 
1 OF I 

141 REQI TRANSACTION ID 

X'80' (GET) 

X'40' (PUT) 

X'20' (FEOV) 

X' 10' (LOCATE) 

X'04' (PURGE) 

X'88' (GET) 

X'48' (PUT) 

Table 8. Temporary Storage Control 

1 1 
ITRACEI 
1 ID IREGISTER , 

X'F7' 

ITYPE! 
1 OF I 

141 REQI TRANSACTION ID 

]~Q]~! ~QQ~ KBQ~ 
TCATSTll QB T~AT~RC 

X' 80' (GET) 

FIELD A 

Not used 

Data address 
from TCATDAA 

Not used 

Not used 

FIELD B 

Not used 

Destination ID 
from TCATDDI 

Not used 

Not used 

Issued by the Asynchronous 
Transaction Control program 
(DFHATP) 

FIELD A FIELD B _________________J 

X' 90' (GET ADDRESS SUPPLIED) 

X' 40' (PUT) 

X'48' (PUT IN MAIN) 

X' 20' (RELEASE) 

228 

Data identification 
from TCATSDI 



Table 9. Trace Control 

1 I 
!TRACEI 
, ID ,REGISTER 

ITYPEI 
I OF I 

141 REQI TRANSACTION ID FIELD A FIELD B L-__ _ __ ____________ . ______________________ J 

X'FD' Not used 

X'F~' (Trace turn on) 

X'FF' (Trace turn off) 

Table 10. System Termination 

1 , 
tTRAC'B1 
, ID ,REGISTER 
L-

X'EF' 

ITYPEI 
I OF I 

141 REQI TRANSACTION ID 

Not used 

Number of repeated entries 
(packed decimal) in Trace 
Table 

o 
1 
2 
3 

CSATRMF1 
CSATRMF2 
TCATRMF 
RESERVED 

FIELD A 

Not used 

o 
1 
2 
3 

TCATRTR 
Reserved 
Reserved 
Reserved 

FIELD B 

Not used 

229 



Table 11. CICS-DL/I Interface 

I 
TRACEI 

ID 1 REGISTER 14 
L--

X'F8' 

230 

TYPE 
OF 

REQ 

1 
I 

TRANSACTION IDI FIELD A FIELD B 

lH!~!lES! ~Q.U! 

from TCAFCTR 

CALL type 
from 
TCADLLAN 

PCB address 

from TCADLPCB 

Bit 0 

Bits 1-2 

Bits 3-6 

Bit 7 

Off - DFHPC 
On - CALL or CALLDLI 

00 - Assembler language 
01 - ANS COBOL 
10 - PL/T 

Not used 

On - storage was acquired to build 
CALLDLI parameter list or SSA list 
in DFHFC macro instruction 



This section contains an executable application program that performs 
a limited message switching function; that is, data collection, message 
gntry, and message retrieval. The source coding is written in Assembler 
language, ANS COBOL, and PL/I. 

**************************.******************************************** 
ASS E M B L ERE X AMP L E PRO B L E M 

*********************************************************************** * TTTLF. 'crcs MESSAGE SWITCHING PROGRAM EXAMPLE' * 
DFHCOVER 

*********************************************************************** 
* * * * A P P L I CAT ION PRO G RAM * * * * 
*********************************************************************** 
* * * DUM M Y SEC T ION S * * * 
*********************************************************************** 

COPY DFHCSADS COpy COMMON SYSTEM AREA DSECT 
EJECT LISTING CONTROL CARD - EJECT 
COpy DFHTCADS COpy TASK CONTROL AREA DSECT 

'IWATSRL DS H TErIPORA RY STORAGE RECORD LENGTH 
DS H 

'!'WATDDI DS CL4 DESTINATION IDENTIFICATION 
TWAREAI DS CL4 RETRIEVE ALL INDICATOR 
~WAQEfiCI 'OS C QUEUE EMPTY MESSAGE CONTROL IND 

EJECT LISTING CONTROL CARD - EJECT 
TC'TTEAR EQU 11 TERM CONT TABLE TERM ENT ADR RG 

COpy DFHTCTTE COpy TERM CONT TABLE TERM ENTRY 
TIOABAR EQU 10 TERM I I 0 AREA BASE ADDR REG 

COpy DFHTIOA COPY TERMINAL I I 0 AREA DSECT 
1'IOADA"'A 'OS OCLBO DATA AREA 
TIOATID DS CL4 TRANSACTION IDENTIFICATION 

DS C !lELIMITER 
'rIOARRI DS OCL6 RBSUME REQUEST IDENTIFICATION 
TrOARAI1 DS OCL3 RETRIEVE ALL INDICATOR 1 
'l'IOADID DS CL4 DESTINATION IDENTIFICATION 
TIOASSF DS OCL4 SUSPEND STORAGE FACILITY IDENT 

DS C DELIMITER 
TIOAMBA DS OC TERMINAL MESSAGE BEGINNING ADDR 
TIOARAI2 DS CL3 RETRIEVE ALL INDICATOR 2 
*********************************************************************** 

SPACE 8 LISTING CONTROL CARD - SPACE 8 
TDIABAR EQU 9 TRANS DATA IN AREA BASE ADDR RG 

COpy DFHTDIA COpy TRANS DATA INPUT AREA 
EJECT LISTING CONTROL CARD - EJECT 

*********************************************************************** 
* * * * A ? P L I CAT ION PRO G RAM * * * * 
*********************************************************************** 
CreSATP eSECT CONTROL SECTION - APPL TEST PGM 

USING *,3 USING REGISTER 3 AT * 
LR 03,1U LOAD PROGRA~ BASE REGISTER 
B ATPIPIN GO TO INIT PROG INSTR ENTRY 

*********************************************************************** 
EJECT LISTING CONTROL CARD - EJECT 

*********************************************************************** 
* * * DEC L A RAT I V E S * * * 
*********************************************************************** 
~CPDIEM DC Y(MCPDEML-4l TERMINAL MESSAGE LENGTH 

DC Y (0) 
DC X'15' NEW LINE SYMBOL CONSTAN~ 

231 



DC 08X'17' HARD COpy TER~ IDLE CHARACTERS 
DC C'DESTINATION IDENTIFICATICN ERROR - PLEASE RESUB~IT' 
DC X'lS' NEW LINE SYMBOL CONSTANT 

'CPDEML EQU *-MCPDIEM TER~INAL MESSAGE TOTAL LENGTH 
** ••••• **.************************************************************* 
******.******************************** •• * ••• ** •• ****** •• ************** 
* D A T A COL L E C T ION * 
.*************************.********.**.******************************** 
DCPDCAML DC 

DC 
rCPDCAMD DC 

DCP'EODML DC 
DC 

DCPEODMD DC 

Y (L'DCPDCAMD) 
H'O' 

DATA COLL ACKNOWLEDGEMENT LEN 

C' DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BE* 
GIN DATA COLLECTION ACKNOWLEDGEMENT 
Y(L'DCPEODMD) END OF DATA MESSAGE LENGTH 
H'O' 
C' THE DATA HAS BEEN RECEIVED AND DISPATCHED TO THE DESI* 
GNATED DESTINATION END OF DATA MESSAGE 

DCPEOVML DC Y(L'DCPEOVMD) 
DC H'O' 

DCPEOVMD DC C' END OF VOLUME REQUEST HAS BEEN RECEIVED 
DC?SRAM DC Y(DCPSRAL-4) TERMINAL MESSAGE LENGTH 

DC Y (0) 
DC X' 15' NEW LINE SYMBOL CONSTANT 
DC 08X'17' HARD COpy TERM IDLE CHARACTERS 
DC C'DATA COLLECTION SUSPENSION HAS BEEN REQUESTED' 
DC X'lS' 

DCPSRAL EQU *-DCPSRAM 
NEW LINE SYMBOL CONSTANT 
TERMINAL MESSAGE TOTAL LENGTH 
TERMINAL MESSAGE LENGTH DCPRRAM DC Y(DCPFRAL-4) 

DC Y (0) 
DC X'lS' NEW LINE SYMBOL CONSTANT 
DC 08X'11' HARD COpy TERM IDLE CHARACTERS 
DC C'DATA COLLECTION RESUMPTION HAS BEEN REQUESTED AND IS ' 
DC C'ABOUT TO BEGIN' 
DC X'lS' NEW LINE SYMBOL CONSTANT 

DCPRR\L EQU *-DCPRRAM TERMINAL MESSAGE TOTAL LENGTH 
******* •••• ***************.******************************************** 

SPACE 4 LISTING CONTROL CARD - SPACE 4 
********* •• ************************************************************ 
* M E S SAG E E N TRY * 
*********************************************************************** 
MEPMBA~L DC Y(L'MEPMEAMD) MSG ENTRY ACKNOWLEDGEMENT LNGTH 

DC H'O' 
MEPMEAMD DC C' YOUR MESSAGE HAS BEEN RECEIVED AND DISPATCHED TO THE * 

DESIGNATED DESTINATIOW I MESSAGE ENTRY ACKNOWLEDGEMENT 
*********************************************************************** 

SPACE 4 LISTING CONTROL CARD - SPACB 4 
********************************.************************************** 
* M E S SAG ERE T R I E V A L * 
*********************************************************************** 
MRPNM~M DC Y(MRPN~ML-4) TER~INAL MESSAGE LENGTH 

DC Y (0) 
DC X'1S' NEW LINE SYMBOL CONSTANT 
DC 08X'17' HA~D COPY TERM IDLE CHARACTERS 
DC C'THERE ARE NO MORE' 
DC C'MESSAGES QUEUED FOR THIS DESTINATION' 
DC X'1S' NEW LINE SYMBOL CONSTANT' 

~RPNM~L EQU *-MRPNMMM TERMINAL MESSAGE TOTAL LENGTH 
MRPNMQM DC Y(MRPNQML-4) TERMINAL MESSAGE LENGTH 

DC Y (0) 
DC X'lS' NEW LINE SYMBOL CONSTANT 
DC 08X'11' HARD COpy TERM IDLE CHARACTERS 
DC C'THERE ARE NO MESSAGES QUEUED FOR ~HIS DESTINATION' 
DC X' 15' NEW LINE SYMBOL CONSTANT 

MRPNQML EQU *-MRPNMQM TERMINAL MESSAGE TOTAL LENGTH 
***.******************************************************************* 

EJECT LISTING CONTROL CARD - EJECT 

232 



*********************************************************************** 
* * * IMP ERA T I V E S * * * 
*********************************************************************** 
* * * * *********************************************************************** 

DS OD STORAGE ALIGNMENT - DOUBLE WORD 
DC CL32'MESSAGE CONTROL PROGRAM' 

ATPTPTN DS OD INITIAL PROGRAM INSTRUCTION ENT 
L TCTTEAR,TCAPCAAA LOAD TERM CONT AREA ADDR REG 
L TIOABAR,TCTTEDA LOAD TER~ I/O AREA ADDR REG 
CLC =C'CSDC',TIOATID COMPARE TRANSACTION IDENT 
BE ALPDCPN GO TO DATA COLLECTION PROG IF = 
CLC =C'CSME',TIOAT~D COMPARE TRANSACTION IDENT 
BE ALPMEPN GO TO MESSAGE ENTRY PROG IF = 
CLC =C'CSMR',TIOATID COMPARE TRANSACTION IDENT 
BE ALFMRPN GO TO MESSAGE RETRIEVAL PROG 
DFHPC TYPE=ABEND, D~HPC -'TYPE = ABEND * 

ABCODE=AAP~ DFHPC - ABCODE = lAPT 
EJECT LISTING CONTROL CARD - EJECT 

*********************************************************************** 
* * A P P L I C 1 T ION LOG T C * * 
*********************************************************************** 
* * D A T A COL L E C T ION * * 
*********************************************************************** 

DC CL32'DATA COLLECTION PROGRAM' 
*********************************************************************** 
ALPDCPN 

tCPPEOV 

DS 
CLC 
BNE 
~VC 

MVC 
~VC 

DPH!S 

DFHPC 

EQD 
DFHTD 
MVC 
DPHTC 
B 

OR DATA COLLECTION PROGRAM ENTRY 
=C'RESUMEI,TIOARRI COMPARE FOR RESUME REQUEST 
DCPRRBN GO TO RESUME REQUEST BYPASS 
TIOATDL(DCPRRAL) ,DCPRRAM MOVE'TERMINAL MESSAGE TO OUTPUT 
TCATSDI(4) ,=C'CSDC' MOVE TEMP STRG DATA IDENT 
TCATSDI+4(4),TCTTETI MOVE TEMP STRG DATA IDENT 
TYPE=GET, DFHTS - ~YPE = GET * 
TSDADDR=TWATSRL, DFHTS - T S DATA ADDR = TWATSRL* 
NORESP=DCPRRNR, DFHTS - NORMAL RESP = DCPRRNR * 
RELEASE=YES DFHTS - RELEASE = YES 
TYPE=ABEND, DFHPC - TYPE = ABEND * 
ABCODE=ADCR DFHPC - ABCODE = ADCR 
* FORCED END OF VOLUME ROUTINE 
TYPE=FEOV ISSUE TRANSIENT DATA MACRO 
TIOATDL«4+L'DCPEOVMD»),DCPEOVML 
TYPE=(WRITE) 
RETURN 

****~*******~********************************************************** 
DCPRRBN EQU * 

MVC TWATDDI,TIOATIID 
MVC TCATDDI,T~A~DDI 

RESUME REQUEST BYPASS ENTRY 
MOVE DESTINATION IDENTIFICATION 

CLC TIOAMBA(4) ,=C'PEOV' CHECK FOR FORCED END OF VOLREQ 
BE DCPFEOV BRANCH TO END OF VOLUME ROUTINE 
MVC TIO~TDL«4+L'DCPDCAMD» ,DCPDCAML 

DCPFRNR EQU * RESUME REQUEST NORMAL RESPONSE 
DFHTC TYPE=(WRITE) DFHTC - TYPE = WRITE 
DFHTC TYPE=(READ) DFHTC - TYPE = READ 

*********************************************************************** 
SPACE 4 LISTING CONTROL CARD - SPACE 4 

tCPTEWN DS OH TERMINAL EVENT WAIT ENTRY 
DFHTC TYPE=(WAIT) DFHTC - TYPE = WAIT 
L TIOABAR,TCTTEDA LOAD TERM I/O AREA ADDR REG 
CLC =CIDUMP',TIOATID 
BE DCPDPTS 
CLC =C'EOD',TIOADBA 
BE DCPEXIT 
eLC =C'SUSPEND',TIOADBA 
BN! DCPSRBN 
MVC TWATSRL,=H'32' 

GO TO DUMP TRANSACTION STORAGE 
COMP DATA POR EOD INDICATION 
GO TO EXIT IF EQUAL 
COMPARE FOR SUSPEND REQUEST 
GO TO SUSPEND REQUEST BYPASS 
MOVE TEMP STRG RECORD LENGTH 

233 



DCPSRMB 

DCPSRAB 

DCPSPNR 

DCPSRBN 

MVC TCATSDI(4) ,=C'CSDC' 
MVC TCATSDI+U(4) ,TCTTETI 
CLC =C'MAIN',TIOASSF 
BNE DCPSRMB 
DFHTS TYPE=PUT, 

TSDADDR=TWATSRL, 
STORF AC=I1A TN 

B DCPSRAB 
EQU * 
DFHTS TYPE=PUT, 

TSDADDR=TWATSRL, 
STORFAC=AUXILIARY 

EQU 
DFHTS 

D"'HPC 

EQU 
MVC 
DFHTC 
B 
EQU 
MVC 
XC 
DFHTC 
LH 
LA 
S~H 

DFHTD 

DFHPC 

* TYPE=CHECK, 
NORESP=DCPSRNR 
TYPE=ABEND, 
ABCODE=ADCS 

* TIOATDL(DCPSRAL) ,DCPSRAM 
TYPE= (WRITE) 
RETURN 

* TCATDDI,TWATDDI 
TCTTEDA,TCTTEDA 
TYPE= (RRAD) 
1U,TIOATDL 
14,4(0,14) 
14,TIOATDL 
TYPE=PUT, 
TDADDR=TIOATDL, 
NORESP=DCPNRCN, 
IDERROR=DCPDIEN 
TYPE=ABEND, 
ABCODE=ADCP 

MOVE TEMP STRG DATA IDENT 
MOVE TEMP STRG DATA IDENT 

GO TO MAIN STRG FACILITY BYPASS 
DFHTS - TYPE = PUT * 
DFHTS - T S DATA ADDR = TWATSRL* 
DFHTS = STOR FAC = MAIN 
GO TO AUX STRG FACILITY BYPASS 
KAIN STORAGE FACILITY BYPASS 
DFHTS - TYPE = PUT * 
DFHTS - T S DATA ADDR = TWATSRL* 
DFHTS - STOR FAC = AUXILIARY 
AUX STORAGE FACILITY BYPASS 
DFHTS - TYPE = CHECK * 
DFHTS - NORMAL RESP = DCPSRNR 
DFHPC - TYPE = ABEND * 
DFHPC - ABCODE = ADCS 
SUSPEND REQUEST NORMAL RESPONSE 
MOVE TERMINAL MESSAGE TO OUTPUT 
DFHTC - TYPE = WRITE 
GO TO RETURN ENTRY 
SUSPEND REQUEST BYPASS ENTRY 
MOVE DESTINATION IDENTIFICATION 
RESET TERMINAL DATA ADDRESS 
DFHTC - TYPE = READ 
LOAD TERMINAL DATA LENGTH 
INCREMENT TERMINAL DATA LENGTH 
STORE TERMINAL DATA LENGTH 
TYPE OF REQ - PUT TRANS DATA * 
TRANSIENT DATA ADDRESS * 
NORMAL RESP CODE ENTRY ADDRESS * 
DESTINATION IDENT ERROR ENTRY 
DFHPC - TYPE = ABEND * 
DFHPC - ABCODE = ADCP 

*********************************************************************** 
DCPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS 

ST TIOABAR,TCASCSA STORE TERM I/O AREA ADDRESS 
DFHSC TYPE=FREEMAIN DFHSC - TYPE = FREEMAIN 
B DCPTEWN GO TO TERM EVENT WAIT ENTRY 

*********************************************************************** 
SPACE 4 LISTING CONTROL CARD - SPACE 4 

*********************************************************************** 
DCPDPTS EQU * DUMP TRANSACTION STOR ROUTINE 

DFRDC TYPE=TRANSACTION,DMPCODE=TRAN 
XC TCTTEDA,TCTTEDA CLEAR TERMINAL DATA AREA ADDR 
DFHTC TYPE= (READ) 
B DCPNRCN RETURN TO MAINSTREAM LOGIC 

*********************************************************************** 
S~ACE 4 

*********************************************************************** 
DCPEXIT EQU * EXIT 

MVC TIOATDL«4+L'DCPEODMD»,DCPEODML 
DFHTC TYPE=(WRITE) DFHTC - TYPE = WRITE 
B RETURN GO TO RETURN ENTRY 

*********************************************************************** 
EJECT LISTING CONTROL CARD - EJECT 

*********************************************************************** 
* M E S SAG E E N TRY * 
*********************************************************************** 

DC CL32'MESSAGE ENTRY PROGRAM' 
*********************************************************************** 
ALPMEPN DS OR MESSAGE ENTRY PROGRAM ENTRY 

MVC TCATDDI,TTOADID MOVE DESTINATION IDENTIFICATION 
MVC TIOATID,TCTTETI MOVE SOURCE IDENTIFICATION 
LH 1U,TIOATDL LOAD TERMINAL DATA LENGTH 

234 



INCREMENT TERMINAL DATA LENGTH 
STORE TERMINAL DATA LENGTH 

LA 
STH 
DFHTD 

DFHPC 

14,4 (0, 14) 
14,TIOATDL 
TYPE=PUT, 
TD ADDR=TIOATDL, 
NORESP=MEPNRCN, 
IDERROR=MEPDIEN 
TYPE=ABEND, 
ABCODE=AMEP 

TYPE OF REQ - PUT TRANS DATA * 
TRANSIENT DATA ADDRESS * 
NORMAL RESP CODE ENTRY ADDRESS * 
DESTINATION IDENT ERROR ENTRY 
TYPE OF REQ - ABEND PROG CONT * 
ABNORMAL TERMINATION CODE 

*********************************************************************** 
MEPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS 

MVC TIOATDL«~+L'MEPMEAMD» ,MEPMEAML 
DFHTC TYPE=(WRITE) DFRTC - TYPE = WRITE 
B RETURN GO TO RETURN ENTRY 

*********************************************************************** 
EJECT LISTING CONTROL CARD EJECT 

*********************************************************************** * M E S SAG ERE T R I E V A L * 
*********************************************************************** 

DC CL32'MESSAGE RETRIEVAL PROGRAM' 
*********************************************************************** 

SPACE 4 LISTING CONTROL CARD - SPACE 4 
*********************************************************************** 
ALPMRPN DS OH MESSAGE RETRIEVAL PROGRAM ENTRY 

r:VC TWAREAI,TIOARAI2 MOVE RETRIEVE ALL INDICATOR 
MVC TWATDDI,TCTTETI MOVE DESTINATION IDENTIFICATION 
ctc =C'ALL',TIOARAIl COMPARE ALL INDICATOR FOR ALL 
BNE MRPAI1 B 
MVC TWAREAI,TIOARAIl MOVE RETRIEVE ALL INDICATOR 
B MRPDEBN 

MRPAI1B DS 0H ALL INDICATOR 1 BYPASS 
CtC =CL4' ',TIOADID COMPARE DEST IDENT TO BLANKS 
BE MRPDEBN GO TO DEST ID = BL IF EQUAL 
MVC TUATDDI,T!OADID MOVE DESTINATION IDENTIFICATION 

MFPDEBN DS OH DESTINATION IDENT EQUALS BLANKS 
*********************************************************************** 

SPACE 4 LISTING CONTROL CARD - SPACE 4 
*********************************************************************** 
MRPGTDN DS 0H GET TRANSIENT DATA ENTRY 

MVC TCATDDI,TWATDDI MOVE DESTINATION IDENTIFICATION 
DFHTD TYPE=GET, DFHTD - TYPE = GET DATA * 

NORESP=MRPNRCN, NORMAL RESP CODE ENTRY ADDRESS * 
QUEZEBO=MRPQERN, DESTINATION QUEUE EMPTY ENTRY * 
IDERROR=flRPDIEN DESTINATION IDENT ERROR ENTRY 

D?HPC TYPE=ABEND, TYPE OF REQ - ABEND PROG CONT * 
ABCODE=A~~P ABNORMAL TERMINATION CODE 

*************************~********************************************* 
SPACE 2 LISTING CONTROL CARD - SPACE 2 

*********************************************************************** 
MBPNBCN DS OH NORMAL RESP CODE ENTRY ADDRESS 

L TDIABAR,TCATDAA LOAD TRANS DATA AREA ADDRESS 
DFHTC TYPE=(WAIT) DFHTC - TYPE = WAIT 
~VC MRPMTDI+1(1) ,TDIAIRL+l MOVE DATA LENGTH TO MOVE INSTR 

~RPMTDT ~VC TIOATDL(O) ,TDIAIRL MOVE TRANS DATA TO TERM AREA 
LR 14,TIOATDL LOAD TERMINAL DATA LBNGTH 
SH 14,=H'4' SUBTRACT ~ FROM LENGTH 
STH 14,TIOATDL STORE TERMINAL DATA LENGTH 
DFHTC TYPE=(WRITE, DPHTC - TYPE = WRITE * 

SAVE) DFHTCT - SERV REQ = SAVE AREA 
CLC =CL3'ALL',TWAREAI COMPARE RETRIEVE ALL IND TO ALL 
BNE RETURN GO TO RE~URN ENTRY IF NOT EQUAL 
MVl TWAQEMCI,X'FF' MOVE MESSAGE CONTROL INDICATOR 
B MRPGTDN GO TO GET TRANSIENT DATA ENTRY 

235 



~********************************************************************** 
SPACE 4 LISTING CONTROL CARD - SPACE 4 

~********************************************************************** 
~~PQERN DS OR DESTINATION QUEUE EMPTY EN~RY 

CLI TWAQEMCI,X'FF' COMPARE MESSAGE CONTROL IND 
BE MRPNMQMB GO TO NO MSG QUEUED MSG BYPASS 
MVC TIOATDL(MRPNQML),MRPNMQM MOVE TERMINAL MESSAGE TO OUTPUT 
B MRPWRCS GO TO WRITE & RETURN TO C S 

MRPNMQMB DS OR NO MESSAGES QUEUED MSG BYPASS 
DFHTC TYPE=(WAIT) DFHTC - TYPE = WAIT 
MVC TIOATDL(MRPNMML) ,MRPNMMM MOVE NO MORE MESSAGE TO T 0 A 

*********************************************************************** 
~RPWRCS DS OR WRITE AND RETURN TO CONT SYS 

DFRTC TYPE=(WRITE) DFHTC - TYPE = WRITR 
B RETURN GO TO RETURN ENTRY 

**~******************************************************************** 
EJECT LISTING CONTROL CARD - EJECT 

*********************************************************************** 
* * * * 
******************************~**************************************** 
DCPDI~N DS OR DESTINATION IDENT ERROR ENTRY 

~T TIOABAR,TC~TEDA STORE TERM I/O AREA ADDRESS 
MEPDIEN DS OR DESTINATION IDENT ERROR ENTRY 
~BPDIEN DS OR DESTINATION IDENT ERROR ENTRY 

MVC TIOATDL(MCPDEML),MCPDIEM MOVE TERMINAL ~ESSAGB TO OUTPUT 
DFRTC TYPE=(WRITE) D~HTC - TYPE = WRITE 

~****************************~***************************************** 
SPACE 4 LISTING CONTROL CARD - SPACE 4 

RETURN DS OR RETURN TO CONTROL SYS~EM 
DFHPC TYPE=RETURN D~HPC - TYPE = RE~URN 

************************~********************************************** 
LTORG * LITERAL ORIGIN AT * 

*********************************************************************** 
END CICSATP END OF ASSEMBLY - APPL TEST PGM 

~36 



*********************************************************************** 
COB 0 LEX AMP L E PRO B L E " 

*********************************************************************** 
DFHCOVER 
IDENTIFICAT!ON DIVISION. 
1?ROG'BAM-ID. 

'CICSATP'. 
ENVIRONMENT DIVISION. 
DA'IA DIVISION. 
WO~rING-STORAGE SECTION. 
01 MESSG1. 

02 MCPDIEM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 60. 
02 FILL1 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO. 
02 MESSAGE1. 

03 FILL2 PICTURE X VALUE IS • '. 
03 F1LL3 PICTURE X(8) VALUE IS A1L ' , 
03 FILL4 PICTURE X(SO) VALUE IS 

'DESTINATION IDENTIFICATIOW EPROR - PLEASE RESUBMIT'. 
03 FILLS PICTURE X VALUE IS ' t. 

0' MCPDEML PICTU~E 99 USAGE IS COMPUTATIONAL VALUE IS 64. 
01 DCPDCAML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 58. 
01 DCPDCAMD PICTURE X(58) VALUE IS 

, DATA COLLECTION HAS BEEN FEQUESTED AND IS ABOUT TO BEGIN' 
01 DCPEODML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 73. 
01 DCPEODMD PICTURE X(74) VALUP. IS ' THE DATA HAS BEEN RECEIVED 

'A~D DISPATCHED TO THE DESIGNATED DESTINATION ' 
01 MEPMEAML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 77. 
01 MEPMEAMD PICTURE X(77) VALUE IS 'YOUR MESSAGE HAS BEEN RECEIV 

'ED AND DISPATCHED TO THE DESIGNATED DESTINATION 
01 MESSG2. 

02 MRPNMMM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 64. 
02 FILLll PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO. 
02 MESSAGE2. 

03 FILL21 PICTURE X VALUE IS ' '. 
03 FILL31 PICTURE X(8) VALUE IS ALL I '. 
03 FILL41 PICTURE X(54) VALUE IS '~HERE ARE NO MORE MESSAG 
'ES QUEUED FOR THIS DES~INATIONI. 
03 FILL51 CPTCTURE X VALUE IS ' '. 

01 MRPNMML PICTURE 99 USAGE IS CO~PUTATIONAL VALUE IS 68. 
01 MESSG3. 

02 MRPNMQM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 59. 
02 F~LL12 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO. 
02 MESSAGE3. 

03 FILL22 PICTURE X VALU~ IS ' I. 
03 FILL32 PICTURE X(8) VALUE IS ALL' '. 
03 FILL42 PICTURE X(49) VALUE IS 

'THERE ARE NO MESSAGES QUEUED FOR THIS DESTINATION'. 
03 FILL52 PICTURE X VALUE IS ' t. 

0' MRPNQML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 63. 
LINKAGE SECTION. 

r 01 DFHBLLDS COpy DFHBLLDS. 
-{)2 - TCTTEAR PICTURE S9 (8) USAGE IS COMPUTATIONAL. 
-02 TIOABAR PICTURE S9{~ USAGE IS COMPUTATIONAL. 
02 TDIABAR PICTURE S9(8} USAGE IS COMPUTATIONAL • 

.---0' })FHCSADS COpy DFHCSADS. 
_n1 DFHTCADS COPY DFHTCADS. 

p~2 TWATDDI PICTURE 1(4) • 
. ~2 TiAREAI PICTURE X(4). 
02 TWAQEMCI PICTURE S9 USAGE IS COMPUTATIONAL~ 

·01 D"FHTCTTE COpy DFHTCTTE. 
;-01 DFHTIOA COpy DFHTIOA. 

/ /02 TIOADATA. 
_~3 FILLER PICTURE X(80). 

02 FILLER REDEFINES TIOADATA. 

237 



238 

03 EODTEST PICTU~E X(3). 
02 FILLER REDEFINES TIOADATA. 

03 !IOATID PICTURE X(4). 
03 FILLER PICTURE X. 
03 TIOADID. 

04 PILLER PICTURE X(4). 
03 FILLFR REDEFINES TIO!DTD. 

04 TIOARAI1 PICTURE X(3). 
03 FILLER PICTURE X. 
03 TIOARAI2. 

04 FILLF.R PICTURE X(3). 
03 FILLER REDEFINES TIOARAI2. 

04 TIOA~BA PICTURE x. 
01 DFHTDIA COPY DFHTDIA. 

02 TDIADBA PICTU~E X(80). 
PROCEDURE DIVISION. 
ATPIPIN. 

~~OVE CSACDTA TO TCACBAR. 
/MOVE TCAFCA!A TO TCTTEAR. 
~MOVE TC~TEDA TO TIOABAR. 

IF TIOATID = 'BSDC' GO TO ALPDCPN. 
IF TIOATID = 'BSME' GO TO ALPMEPN. 
IF !IOATID = 'BSKR' GO TO ALFMRPN. 

DFHPC ~YPE=ABEND, 
ABCODE=AAPT 

NOTE DATA COLLECTION PROGRAM ***. 
AtPDCPN. MOVE TIOADID TO TWATDDI. 

MOVE DCPDCAML TO TIOATDL. 
MOVE DCPDCAMDTO TIOADATA. 

DFHTC TYPE=(WRITE,READ,WAIT) 
DCPTEWN. 

MOVE TCTTEDA TO TIOABAR. 
IF EODTEST = 'EOD' GO TO DCPEXIT. 
~OVE TWATDDI TO TCATDDI. 
MOVE ZEROES TO TCTTEDA. 

DFHTC TYPE=(READ,WAIT) 
ADD 4 TO TIOATDL. 

DFHTD TYPF.=PUT, 
TDADDR=TIOA'!'DL, 
NORESP=DCPNRCN, 
IDEBROR=DCPDIEN 

DFHPC TYPE=ABEND, 
ABCODE=ADCP 

DCPNRCN. 
MOVE TIOABAR TO TCASCSA. 

DFHSC TYPE=FREEMAIN 
GO TO DCPTEWN. 

DCPEXIT. 
~OVE DCPEODML TO TIOATDL. 
ADD 4 TO TIOATDL. 
MOVE DCPEODMD TO TIOADATA. 

DFHTC TYPE=WRITE 
GO TO 'RETURN1. 
NOTE MESSAGE ENTRY PROGRAM ***. 

ALF~EPN. 

~OVE TIOADID TO TCATDDI. 
MOVE TCTTETI TO TIOATID. 
ADD 4 TO TIOATDL. 

DFHTD TYPE=PUT, 
TDADDR=TIOATDL, 
NORESP=MEPNRCN, 
IDERRO~=MEPDIEN 

DFHPC TY~E=ABEND, 
AECODE=Ar1EP 

MEPNRCN. 

* 

* 
* 
* 
* 

* 
* 
* 
* 



MOVE KEPMEAML TO TlOATDL. 
ADD 4 TO TlOATDL. 
MOVE MEPMEAMD TO TIOADATA. 

DFHTC TYPE=WRITE 
GO TO RETURN1. 
NOTE MESSAGE RETRIEVAL PROGRAM ***. 

ALFMRFN. 
MOVE TIOARAl2 ~O TiAREAl. 
MOVE TCTTETI TO TWATDDI. 
IF TIOARAl1 NOT EQUAL 'ALL' GO TO MRPAl1B. 
MOVE TlOARAI11 TO TWAREAI. 
GO TO MRPDEBN. 

MRPAI1B. 
l~ TlOADID EQUAL' , GO TO MRPDEBN. 
MOVE TIOADID TO TiATDDI. 

KRPDEBN. 
MRPGTDN. 

MOVE TiATDDI TO TCATDDI. 
DFHTD TYPE=GET, 

NOR'ESP=MRPNRCN, 
QUEZERO=MRPQERN, 
lDERROR=MRPDI~N 

DFHPC TYPE=ABEND, 
ABCODE=AMRP 

MRPNRCN. 
MOVE TCATDAA TO TDlABAR. 
MOVE TDIAIRL TO T!OATDL. 
MOVE TD!ADBA TO TIOADATA. 
SUBTRACT 4 FROM TIOATDL. 

D~HTC TYPE=(WRITE,WAlT,SAVE) 
IF TWAREAI NOT EQUAL 'ALL' GO TO RETURN1. 
MOVE 2S~ TO TWAQEMCI. 
GO TO MRPGTDN. 

MRPQ~RN. 
IF TWAQEMCI EQUAL 255 GO TO I1RPNMQMB. 
MOVE MRPNMQM TO TIOATDL~ 
MOVE MESSAGE3 TO TIOADATA. 
GO TO MRPWRCS. 

M'RPNI1QMB. 
MOVE MRPNMMM TC TlOATDL. 
MOVE I1ESSAGE2 TO TIOADATA. 

MRPWRCS. 
DFHTC TYPE=WRITE 

GO TO RETURN1. 
1)CPDIEN. 

MOVE TlOABAR TO TCTTEDA. 
MEPDIEN. 
MRPDIEN. 

MOVE MCPDIEM TO TIOATDL. 
MOVE MESSAGE1 TO TIOADATA. 

DFHTC TYPE=WRITE 
RETURN 1. 

DFHPC TYPE=RETURN 

* 
* 
* 
* 

239 



*********************************************************************** 
P L I I E X AMP L E PRO B L E M 

*********************************************************************** 

1* PL/I EXAMPLE PROBLEM *1 
DFHCOVER 

CrCSA~p: PROCEDURE OPTIONS (MAIN, REENTRANT) ; 
%INCLUDE DFHCSADS; 
~INCLUDE DFHTCADS; 

2 TWATDDI CHAR (4), 
2 TWAR!AI CHAR (4), 
2 TWAQEMCI BINARY FIXED (8); 

%INCLUDF DPHTC~TE; 
%INCLUDF DFHTIOA; 

2 TIOADATA CHAR (8'); 
DECLARE 1 TIOAl BASED (TIOABAR), 

2 FILL 1 CHAR (12), 
2 TIOATID CHAR (4), 
2 FILL2 CHAR (1), 
2 TIOARAll CHAR (3), 
2 FILL3 CHAR (2), 
2 TIOAMBA CHAR Cl); 

DECLARE 1 TIOA2 BASED (TIOABAR), 
2 PILLl CHAR (12), 
2 EODTEST CHAR (3), 
2 FILL2 CHAR (2), 
2 TIOADID CHAR (4), 
2 ~ILL3 CHAR (1), 
2 TIOARAI2 CHAR (3); 

%TNCLUDE DFHTDIA; 
2 "rDIADBA CHAR (80); 

DECLARF. 1 MCPDEML BINARY FIXED (15) INITIAL (60); 
DECLARE 1 MCPDIEM CHAR(60) INITIAL (' DESTINATION IDENTIFI 
CATION ERROR - PLEASE RESUEMIT '}; 
tECLARE 1 DCPBCAMl BINARY FIXED (15) INITIAL (59); 
DECLARE 1 DCPDCAMD CHAR(59) INITIAL (' DATA COLLECTION HAS BEEN RE 
QUESTED AND IS ABOUT TO BEGIN '); 
DECLARE 1 DCP"EODMl BINARY FIXED (15) INITIAL (74); 
DECLAF~ 1 DCPEODMD CHAR (74) INITIAL (' THE DATA HAS BEEN RECIEVED 
AND DISPATCHED TO THE DESIGNATED DESTINATION '); 
DECLARE 1 I1EPMEAML BINARY FIXED (15) INITIAL (77); 
DECLARE 1 MEPEAMD CHAR(7?) INITIAL (' YOUR MESSAGE HAS BEEN RECEIV 
ED AND DISPATCHED TO THE DESIGNA~ED DESTINATION '); 
DECLARE 1 MRPNMML BINARY FIXED (15) INIT1:AL (64); 
DECLARE 1 MRPNMMM CHAR(64) INITIAL (' THERE ARE NO MORE ME 
SSAGES QUEUED FOR THIS DESTINATION '); 
DECLARE 1 MRPNQML BINARY FIXED (15) INITIAL (59); 
DECLARE 1 MRFNMQN CHAR(59) INITIAL C' THERE ARE NO MESSAGE 
S QUEUED FOR THIS DESTINATION '); 

ATPIPIN: TCTTEAR = TCAFCAAA; 
TIOABAR = TCTTEDA; 
IF (TIOATID = 'PSDC') THEN GO TO ALPDCPN; 
IF (TIOATID = 'PSME') THEN GO TO ALPMEPN; 
IF (TIOATID = 'PSMR') THEN GO TO ALP~RPN; 

DFHPC TYPE=ABEND, * 
ABCODE=AAPT 

DECLARE 1 CONl CHAR (32) INITIAL ('DATA COLLECTION PROGRA~') ; 
AtPDCP~: TWATDDI = TIOADID; 

TIOATDL = DCPDCAML; 
TIOADATA = DCPDCAMD; 

DFHTC TYPE=(WRITE,RBAD,WAIT) 
DCPTE'WN: 

240 

TIOABAR = TCTTEDA; 
IF (EODTEST = 'EOD') THEN GO TO DCPEXIT; 
TCATDDI = TWATDDI; 



UNSPEC (TCTTEDA) = 0; 
DFRTC TYP~=(READ,WAIT) 

TIOATDL = TIOATDL + 4; 
DFHTD TYPE=PUT. 

TDADDR=TIOATDL, 
NORESP=DCPNRCN, 
IDEl1ROR=DCPDIEN 

DFHPC TYPE=ABEND, 
ABCODE=ADCP 

DCPNRCN: TCASCSA = TIOABAR; 
DFHSC TYPE=FREE~AIN 

GO TO DCPTEWN; 
DCPEXIT: TIOATDL = DCPEODML; 

TIOADA!A = DCPEOD~D; 
DFHTC TYPE=WRITE 

GO TO RETURN; 
DECLARE 1 CON2 CHAR (32) INITIAL ('MESSAGE ENTRY PROGRAM') ; 

ALPMEPN: TCATDDI = TIOADID; 
TIOATID = TCTTETI; 
TIOATDL = TIOATDL + 4; 

DF HTD TY PE=PUT , 
TDADDR=TIOATDL, 
}10 BESP=M. EPNRCN , 
IDE'RROR=MBPDIEN 

DFRPC TYPE=ABEND, 
ABCODE=AM'EP 

MEPNRCN: TIOATDL = MEPMEAML; 
TIOADATA = MEPEAMD; 

DFHTC TYPE=WRITE 
GO TO RETURN; 

DECLARE 1 CON3 CHAR (32) INITIAL ('MESSAGE RETRIEVAL PROGRAM') ; 
ALPMBPN: T~AREAI = lIOARAI2; 

. TiATDDI = TCTTETI; 
IF (TIOARAI1 # 'ALL') THEN GO TO MRPAI1B; 
TWAREAl = TIOARAI1; 
GO TO MRPDEBN; 

MRPAI1B: IF (TIOADID =' .) THEN GO TO MRPDEBN; 
TWATDDI ::: TIOADID; 

MRPDEBN: MRPGTDN: TCATDDI = TWATDDI; 

* 
* 
* 
* 

* 
* 
* 
* 

D~HTD TYPE=GET, * 
NORESP=MRPNRCN, * 
QUEZEBO=MRPQERN, * 
IDERROR=MRPDIEN 

DFHPC TYPE=ABEND, * 
ABCODE=AMRP 

MRPNRCN: TDTABAR = TCATDAA; 
TIOATDL = TDIAIRL - 4; 
TIOADATA = TDIADBA; 

DFHTC TYPE=(WRITE,WAIT,SAVE) 
IF (TiARRAI # 'ALL ') THEN GO TO RETURN; 
TWAQEMCI = '11111111'B; 
GO TO MRPGTDN; 

MFPQERN: IF (TWAQEMCI = '11111111'B) THEN GO TO MRPNMQMB; 
TIOATDL = MRPNQML; 

MRPNMQMB: 

MRPW'RCS: 

TIOADATA = MRPNKQN; 
GO TO RRPWRCS; 

TIOATDL = MRPNMML; 
TIOADATA = MRPNMMM; 

D~HTC TYPE=WRITE 
GO TO BETURN; 

DCPDIEN: TCTTEDA = TIOABAR; 
MEPDIEN: MRPDIEN: TIOATDL = ~CPDEML; 

TIOADATA = MCPDIEM; 

241 



DFHTC TYPE=WRITE 
'RETURN: 

END; 

242 



This section lists the eres macro instructions used to request 
~upervisory and data management services. These macro instructions 
are written in Assembler language and, as all Assembler language 
instructions, are written in the following format: 

blank DFHxxxxx 
or 

symbol 

One or more operands 
separated by commas 

The name field of a crcs macro instruction must be left blank if 
the macro instruction is used in conjunction with a high-level language 
(ANS COBOL or PL/T); if a label is desired for the macro instruction, 
it may be placed on the card preceding the macro instruction. 

Th~ operation field of a CICS macro instruction must begin befor~ 
card column 16 and must contain the three-character combination "DFH" 
in the first three positions of the operation field. Up to five 
adnitional characters can be appended to DFH to complete the symbolic 
name for the appropriate program or table. Since DFH is reserved for 
eres macro instrucitons, no other statement may begin with this three­
character combination. 

~he operand field of a CT.CS macro instruction contains one or more 
operands separated by commas. In this publication, parentheses are 
used to indicate those operands where more than one applicable parameter 
(keyword and otherwise) can be specified with a single use of the 
operand. Where parentheses are not used, only one parameter at a time 
can be specified as part of the operand; a choice must be made in the 
case of more than one applicable parameter. Since a blank character 
indicates the end of the operand field, the operand field must not 
contain blanks except after a comma on a continued card or after the 
last operand of the macro instruction. The first operand on a 
continuation card must begin in column 16. 

When a CICS macro instruction is contained on more than one card, 
each card containing part of the macro instruction (except the last 
card) must contain a character {for example, an asteris~ in column 
72 indicating that the macro instruction has been continued on the 
next card. 

In the following listing of CICS macro instructions, default 
parameters (where applicable) are indicated by an underscore. An 
asterisk in card column 72 indicates that the macro instruction is 
continued on the next card. 

DFHKC TYPE=ATTACH, 
FCADDR=symbolic address, 
TRANSID=name 

DFHKC TYPE=CHAP, 
PFTY=priority value 

* 
* 

* 

243 



DFHKC TYPE=WATT, 
DCI=SING1E,LIST,DISP, 
ECADDR=symbolic address 

DFHKC TYPE=ENQ,DEQ, 
QARGADR=symbolic address, 
QARGLNG=number 

DFHKC TYPE=PURGF,NOPURGE 

DPHSC TYPE=GETMAIN, 
INITIMG=number,YES, 
NUMBYTE=number, 
COND=YES or (YES,symbolic address) or 

(NO,symbolic address), 
CLASS=TERMINAL,USER,TRANSDATA,TE~PSTRG 

DFHSC TYPE=FREEMAIN, 
RELEASE=ALL 

!]CG]jl1 "§l].Ylf]~ 

]!I!n~ 

244 

DFHPC TYPE=LINK, 
PROGBAM=name 

DPHPC TYPE=XCTL, 
PROGBAM=name 

DFHPC TYP'E=LOAD, 
PROGRAM=name, 
LOADLST=,NO 

DFHPC TYPE=RETURN, 
TRANSID=transaction code 

DPHPC TYPE=DELETE, 
PROGBAM=name 

D"FHPC TYPE=ABEND, 
ABCODE=value,YES 

~E]YICE.§ 

DFHDC TYPE=TRANSACTION, 
DMPCODE=value 

DFRDC TYPE=CICS, 
DMPCODE=value 

DFHDC TYPE=COMPLETE, 
DMPCODE=value 

DFRDC TYPE=PARTIAL, 
LIST=TERMINAl,PROGRAM,SEGMENT,TRANSACTION, 
DMPCODE=value 

* 
* 

* 
* 

* 
* 
* 
* 
* 

* 

* 

* 

* 
* 

* 

* 

* 

* 

* 

* 

* 
* 



:]RM1NA1 SE]VI~~~ 
DPHTC TYPE=(WRIT~,WRITEL,READ,READL,WAIT,ERASE,SAVE,OIU, 

DISCONNECT,RESET,READB,COPY,ERASEAUP,CBUFF, 
PASSBK,TRANSPARENT,PSEUDOBIN,NOTRANSLATE) , 
LINEADR=number,YES, 
CTLCHAR=hexadecimal number, YES, 
DEST=symbolic name, YES, 
EOF=symbolic address 

DFHTC TYPE=(GET,PUT,ERASE,SAVE,TRANSPARENT,PSEUDOBIN), 
LINEADR=number,YES, 
CTLCHAR=hexadecimal number,YES, 
DEST=symbolic name,YES, 
EOF=symbolic address 

DPHTC TYPE=(PAGE,SAVE) , 
LINEADR=number,YES, 
CTLCHAR=hexadecimal number, YES, 
DEST=symbolic name, YES 

DFHTC TYPE=(CONVERSE,ERASE,SAVE), 
LINFADR=number,YES, 
CTLCHAR=bexadecimal number, YES, 
DEST=symbolic name,YES 

DPHTC EOF=symbolic address 

UFHFC TYPE=GET, 
DATASET=symbolic name, 
RDIDADR=symbclic address, 
SEGSET=symbolic name,YES,ALL, 
INDEX=symbolic name, YES, 
TYPOPER=UPDATE, 
RETMETH=RELREC,KEY, 
NORESP=symbolic address, 
DSIDER=symbolic address, 
SEGIDER=symbolic address, 
NOTFND=symbolic address, 
INVREQ=symbolic address, 
IOERROR=symbclic address, 
DUPDS=symbolic address, 
NOTOPEN=symbclic address 

DFHFC TYPE=PUT, 
RDIDADR=symbclic address, 
SEGSET=YES, 
TYPOPER=NEWREC,]PDA1], 
NORESP=symbolic address, 
DUPREC=symbolic address, 
INVREQ=symholic address, 
IOERROR=symbclic address, 
NOSPACE=symbclic address, 
NOTOPEN=symbclic address 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

245 



DFH'FC TYPE=GETAREA, * DATASET=symbolic name, * 
INITI~G=value,YES, * DSIDER=symbolic address, * NORESP=symbolic address, * INVREQ=symbolic address, * NOTOPEN=symbclic address 

DFHFC TYPE=RELEASE, * INVREQ=symbclic address 

DFHFC TYPE=SETL, * DATASET=symbolic name, * RDIDADR=symbclic address, * SEGSET=symbolic name,YES,ALL, * 
BETMETH=REL~F,C,KEY, * NORESP=symbolic address, * DS1.DER=symbolic address, * SEGIDER=symbclic address, * INVREQ=symbolic address, * NOTOPEN=symbolic address 

DFHFC TYPE=GETNEXT, * SEGSET=symbolic name,YES,ALL, * NORESP=symbolic address, * SEGIDER=symholic address, * INVREQ=symbolic address, * IOEBROR=symbclic address, * NOTOFEN=symbclic address, * ENDFILE=symbclic address 

DFHFC TYPE=ESETL, * INVREQ=symbolic address 

DFHFC TYPE=RESETL, * SEGSET=symbolic name,YES,ALL, * NORESP=symbclic address, * SEGIDER=symbclic address 

DFHFC TYPE=CHECK, * NORESP=symbclic address, * DSIDER=symbolic address, * SEGIDER=symhclic address, * NOTFN'O=symholic address, * DUPREC=symbolic address, * INVREQ=symbclic address, * IOFRROR=symbclic address, * nUPDS=symbolic address, * NOSPACE=symbclic address, * NOTOPEN=symbclic address, * ENDFILE=symbolic address 

IBA~~l~!l ~!lA ~]RV!~ 

DFHTD TYPE=PUT, * DESTID=symbolic name, * TDADDR=symbolic address, * 
NO~ESP=symbolic address, * IDERROR=symbclic address, * IOEP.ROR=symbcl:tc address, * NOTOPEN=symbclic address, * NOSPACE=symbclic address 

246 



DFHTD TYPE=GET, * DEST ID=sym bo lic name, * NORESP=symbclic address, * QUEZERO=symbclic address, * IDERROR=symbclic address, * IOEBROR=symbolic address, * NOTOPEN=symbclic address 

DFHTD ~YPE=FEOV , * DESTID=symbolic name, * NORESP=symbolic address, * IDEFROR=symbclic address, * NOTOPEN=symbclic address 

DFHTD TYPE=PURGE, * DESTln=symbolic name, * IDERROR=symbclic address, * NORESP=symbclic address 

n~HTD TYPE=CHECK, * NORESP=symbolic address, * QUEZERO=symbclic address, * IDERROR=symbolic address, * IOERROR= symbolic address, * NOTOPEN=symbclic address, * NOSPACE=symbclic address 

~!aH~OR.A]I ~1Q]Ag] 12ER!lCE§ 

DFHTS TYPE=PUT, * J)ATA ID=name, * TSDADDR=symholic address, * 
STORFAC=AY111IA~I,MAIN, * NORESP=symbolic address, * INVREQ=symbolic address 

DFHTS TYPE=GET, * DATA ID=name, * TSDADDR=symbclic address, YES, * RELEASE=YES,l!Q, * NORESP=symholic address, * IDERROR=symbclic address, * IOERROR=symbclic address 

DFHTS TY'PE=RELEASE, * 
DATAID=name, * NORESP=symbolic address, * IDERROR=symbclic address 

DFHTS TY'PE=CHECK, * NORESP=symbolic address, * IDEBROR=symbclic address, * IOERROR=symbclic address, * INVREQ=symbolic address 

111U~ ~~]!IC].§ 

DFHIC TYPE=GETIME, * FORM=BINARI,PACKED, * TIMADR=symbolic address, YES, * NO'RESP=symbolic address, * INVREQ=symbolic address 

247 



DFHIC TYPE=WAIT, * INTRVAL=numeric value,YES, * TIME=numeric value, YES, * REQID=name,YES, * NORESP=symbolic address, * INVREQ=symbolic address, * 
EXPIRD=symbolic address 

DFHIC TYPE=POST, * INTRVAL=numeric value, YES, * TIME=numeric value,YES, * REQID=name,YES, * NORESP=symbclic address, * 
INVR~Q=symbolic address, * EXPIRD=symbolic address 

n"Tf'HIC TYPE=INITI ATE, * INTRVAL=numeric value,YES, * TIME=numeric value, YES, * REQID=name,YES, * TRANSID=name, * TRMIDNT=name,YES, * NORESP=symbclic address, * INVREQ=symholic address, * TRNIDER=symbclic address, * 
TR~IDER=symbclic address 

DFHIC TYPE=PUT, * INTRVAL=numeric value,YES, * TIME=numeric value,YES, * REQID=name,YES, * TRAN SID=name, * TRMIDNT=name,YES, * ICDADDR=symbolic addresS,YES, * NORESP=symbclic address, * INVREQ=symbolic address, * TRNIDER=symbclic address, * TRMIDER=symholic address, * IOERtlOR=symbclic address 

DFHIC TYPE=GET, * ICDADDR=symbclic ad.dress,YES, * NORESP=symbolic address, * INVREQ=symholic address, * ENDDATA=symbclic address, * NOTFND=symbclic address, * IOERROR=symbclic address 

DFHIC TYPE=RETRY, * NORESP=symbolic address, * INVREQ=symbclic address, * NOTF}lD=symbolic address, * IOERROR=symbolic address 

DFHIC TYPE=CANCEL, * REQID=name,YES, * NORESP=symbolic address, * INVREQ=symhclic address, * NOTFND=symbolic address 

248 



UPHIC TYPE=CHECK, 
NORESP=symbolic address, 
INVREQ=symbolic address, 
EXPIRD=symbolic address, 
TRNIDER=symholic address, 
TRMIDER=symbclic address, 
IOE~BOR=symbclic address, 
NOTFND=symbolic address, 
ENDDATA=symbolic address 

DFHTR TYPE=ON, 
STYPE=SINGLE,ALL,(system symbol),SYSTEM,USER 

DFRTR TYPE=OPF, 
STYPE=SINGLE,ALL,(system symbol) ,SYSTEM,USER 

D~HTR TYPE=ENTRY, 
STYPE=SYSTEM,USER, 
ID=number, 
DATA1=symbol, (symbol), 
RDATA1=register, (register), 
DATA2=symbol,(symbol) , 
BDATA2=registp.r, (register) , 
DATA1TP=HBIN,I]IM,CHAR,PACK,POINTER, 
DATA2TP=HBIN,1]1!,CHAR,PACK,POINTER 

* 
* 
* 
* 
* 
* 
* 
* 

* 

* 

* 
* 
* 
* 
* 
* 
* 
* 

mapname DFH~DI TYPE=DSECT,MAP,FINAL, * 

name 

TERM=]11Q, * 
LANG=ASM,COBOL,PL1, * 
BASE=name, * 
MODE=IN,OUT, * 
CTRL=(PRINT,L40,L64,L80,HONEOM,FREEKB,ALARM,FRSETl 

DFHMDF 
LENGTH=number, * 
POS=number, * 
ATTRB=a]!IP,PROT,UNPROT,NUM,BRT,DRK,]OR~,DET,IC,FSETl, * 
JUSTIFY=(LEFT,RIGHT,BLANK,ZERO), * 
INITIAL='any user information', * 
GRPNAME=user group name 

DFHBMS TYPE=(IN,OUT,!RASE,WAIT,SAVE), * 
MAP='map name',YES, * 
DATA=]Q,YES,ONLY, * 
CTRL=(PRINT,L40,L64,L80,RONEOM,FREEKB,ALARM,FBSET) , * 
CURSOR=numb~r,YES, * 
MAPADR=symbolic address,YES 

DFHFC ~YPE=(DL/I,PCB), 
PSB=psbname,symbolic name,YES, 
NORESP=symbclic address, 
INVREQ=symbolic address 

* 
* 
* 

249 



250 

DFHFC TYPE=(DL/I,function), 
PCB=symbolic address, (register) , 
WRKAREA=symtolic address,Y~S,(register), 
SSAS=!Q,(Ssacount,ssa1,ssa2, ••• ) , 
SSALIST=YES,!Q,symbolic address, (register), 
NORESP=symbolic address, 
NOTOPEN=symbolic address, 
INVREQ=symbolic address 

DFHPC TYPE=(DL/I,T), 
NORESP=symbolic address, 
INVREQ=symbclic address 

CALLDLI ASMTDLI,(parmcount,function,pcb,workarea, 
segment search arguments, ••• ) or 

CBLTDLI,(parmcount,function,pcb,workarea, 
segment search arguments, ••• ) 

(CALLDLI is a special form of the CALL macro instruction for 
Dt/I CALL's in Assembler language programs.) 

* 
* 
* 
* 
* 
* 
* 

* 
* 



When abnormal conditions occur, the message 

TRANSACTION xxxx ABEND xxxx A~ xxxx 

is sent to ~ransient Data destination CSMT, indicating that the 
identified transaction attached to the identified terminal has been 
abnormally terminated. The ABEND (dump) code indicates the origin 
ar cause of the error, and may be originated by the user or by CICS. 
Pollowing are the ABEND codes for abnormal terminations initiated by 
CTCS. 

AACA 

AICA 

AKCA 

AKCD 

Abnormal Condition Invalid error code passed to DFHACP 
in the TeA at location TCAPCABR. 
A complete system dump is provided 
to assist in determining the problem. 

Interval Control A runaway task condition has been 
detected and the task is being 
abnormally terminated. The condition 
indicates a possible logical loop 
within the user's program. 

Task Control Another CICS task has requested 

Task Control 

Task Control to abnormally terminate 
this task as a result of actions 
initiated by: 

• Terminal Abnormal Condition 
program (DFHTACP); the 
appropriate messagA is found 
at destination CSMT. 

• Task Termination portion of 
the Master TArminal facility. 

The Asynchronous Transaction Control 
program (DFHATP) terminates 
asynchronous tasks when: 

• User requests deletion of a 
batch via CWTR delete option 
while CICS is actively processing 
that batch; DFHATP abnormally 
terminates the task and purges 
all remaining data from the 
queues. 

• An asynchronous task tries to 
read more data than is available; 
DFHATP abnormally terminates 
the task. 

Invalid code in the dispatch control 
indicator field. The invalid code 
can be found in the TCA at symbolic 
location TCATCDC. Valid codes 
(masks) : 

X'10' Not dispatchable (not 

251 



AKCP Task Control 

AKCR Task Control 

AKCS Task Control 

I\PCB Program Control 

APCC Program Control 

APC! Program Control 

APCL Program Control 

APCP Program Control 

APCR Program Control 

252 

X'20' 
X'40' 
X'80' 

applicable to CICS/DOS-ENTRY) 
Dispa tchable 
Wait on list of events 
wait on single event 

A stall condition has been detected 
and this task is being abnormally 
terminated. This task carries a 
code indicating it is purgeable. 

The type of request code is invalid. 
The invalid code can be located 
in the TCA at symbolic location 
TCATCTR. Valid codes: 

X'O" 
X'02' 
X'04' 
X'08' 
X' Hl' 
X' , , , 

X' , 2' 
X' 14' 
X' 20' 
X'40' 
X'80' 

Enqueue 
Dequeue 
System 
System 
Task Origination 
Syste In 

System 
System 
Priority Change 
Task Wa it 
Task Termination 

The request exceeds available Subpool 
1 storage. CICS/DOS-ENTRY only. 

An attempt was made to execute a 
PT./I program but the proper support 
was not included in DFHSAP. Por 
example, PL/T F level execution 
attempted but support generated 
only for PL/T Optimizing Compiler. 

An attempt was made to execute an 
ANS COBOL program but ANS COBOL 
support was not generated in Program 
cont role 

An attempt was made to execute a 
PLIT program but PLIT support was 
not generated in Program Control. 

There is insufficient main storaqe 
available for the requested program. 

An error occurred on the read of 
a requested program from the library. 

Task request for service is invalid. 
The invalid code can be located 
in the TCA at TCAPCTR. Valid Codes: 

X' 0,. 
X'02' 
X'04' 
X'08' 
X' 10' 
X'40' 
X'60' 

LINK 
XCTL 
LOAD 
DELETE 
RETURN 
ABEND 
ABEND with DUMP 



A1?C'l' 

APIA 

ASCR 

ASC'l' 

ATDI 

ATDT 

13MIP 

BMOP 

RM'!'T 

DT,DY 

Program Control 

Program Interrupt 

storage Control 

storage Control 

Transient Data 

Transient Data 

Basic Mapping 
Support 

Basic Mapping 
Support 

Basic Mapping 
Support 

DL/I Interface 

X'90' RETURN from Task control pgm 

A task issued a request for a program 
which is not in the PPT. The invalid 
program ID is in the TCA at TCAPCPI~ 

A program check has occurred during 
the subject task execution. The 
PSW at the time of interrupt is 
saved in,the task's TCA. 

The request for service is invalid. 
Valid codes: 

X'20' 
X'QO' 
X'80' 

-qeleased Storage 
Release storage 
Acquire Storage 

The request exceeds available Subpool 
1 storage. CICS/DOS-ENTRY only. 

The type of destination code is 
invalid. The invalid code can be 
located in the DCT at symbolic 
location TDDCTDT. Valid Codes: 

Indirect 
Extrapartition 
Intrapartition 

X'20' 
X'QO' 
X'80' 
X'90' Intrapartition with automatic 

transaction initiation 

Request for service is invalid. 
~he invalid code is in the TeA and 
can he located at TCATDTR. Valid 
codes: 

x'nu' 
X'08' 

X' 10' 

X'20' 

)C'Q!')' 

X'80' 

Purge destination 
Destination entry address 
passed to the Transient Data 
Control program 
Locate Destination Control 
Table (DCT) entry 
Forced end of volume on 
extrapartition data set 
Output service on 
intrapartition data set 
Input service on 
intrapartition data set 

An input mapping request was issued 
and the map provided was for output. 

An ou tput mapping r~,que st was issued 
and the map provided' wa~ ,for input. 

A rEquest was made for 327.0 mapping 
support and the device is not a 
3270. 

A nL/I CALL was issued under CICS/OS, 
but the DL/I Interface dummy program 
was loaded at system initialization. 

253 



254 

ULIA DL/I Interface 

DLPA DL/I Interface 

An irrecoverable error occurred 
during execution of the ClCS-Dt/l 
Interface program under ClCS/OS. 
The DLIA code is returned to all 
transactions from which DL/l CALL's 
are subsequently issued. 

A DL/l abend (or pseudo abend) 
occurred during transaction 
processing under ClCS/OS. The abend 
code is found in the TCA at TCADLECB. 

~Y§!~m !£1ion: In addition to the dump services requested by 
application programs, CICS also requests dumps for abnormal 
conditions and places specific dump codes in the dumps for ready 
identification. 

ActiQ~: Analyze the error condition indicated by the abend 
code. 



This section contains a listing of error messages applicable to 
CICS Basic ~apping Support (BMS) for the 3270 Information Display 
System. The severity of program assembly errors is indicated by codes 
~, 8, 12, and 16; codes 4 and 8 indicate an error condition that might 
not prevent program execution, while codes 12 and 16 indicate an error 
condition so severe that program execution is impossible. 

ry~HBM0r01 TYPE IS NOT VALID; DSECT ASSUMED 

12 

The DFHMDI TYPE=parameter specification 5.s 
invalid. CICS assumes TYPE=DSEC~ and continues 
to analyze the map. 

Supply a valid D~HMDI TYPE=parameter 
speCification and reassemble. 

DFHBM0002 INVALID LANG OPERAND; ASM IS ASSUMED. 

4 

~he DFHMDI LANn=parameter specification is 
invalid. CICS assumes LANG=ASM and continues 
to analyze the map. 

Supply a valid DFHMDI LANG=parameter 
specification and reassemble. 

DFHBM0003 MODE INVALID; OUT IS ASSUMED 

12 

The D~HMDI MODE=parameter specification is 
invalid. CICS assumes MODE=OUT and continues 
to analyze the map. 

supply a valid DFHMDI MODE=parameter 
specification and reassemble. 

DFHBM0005 CONFLICTING PRINTER FORMATS; HONEOM ASSUMED 

4 

The DFHMDI CTRL=parameter specification includes 
more than one of the parameters HONEOM, L40, 
L64, and L80. CICS assumes CTRL=HONEOM. 

supply required printer format specification 
via the CTRL operand and reassemble, or accept 
the default. 

255 



DFHB~0006 INVALID CTRL OPERAND IS REJECTED 

12 

The D~HMDI CTRL=parameter specification is 
invalid. CICS rejects the option specified 
and continues to analyze the map. 

Check coding of CTRL options against macro 
description and reassemble the map. 

nFHBMC007 ONLY 3270 IS VALID. ASSUMED. 

4 

The DFHMDI TERM=parameter specification specifies 
a terminal other than the 3270. CICS assumes 
TERM=3270 and continues to analyze the map. 

TEB~=3270 is the only valid specification. 
If omitted, the default is TERM=3270. 

DPHBMC007A MAFNAME IS GT 7 CHARS 

8 

The map name is greater than seven characters 
in length. 

Reduce the name to seven characters or less 
and reassemble the map. 

DFHBMC008 FIELD MACRO AFTER DFHMDI TYPE=FINAL DISCARDED 

Action: 

8 

The DFHMDF macro instruction was encountered 
after a DFHMDI TYPE=FINAL macro instruction 
and before another DFHMDI TYPE=DSECT macro 
instruction or DFHMDI TYPE=MAP macro instruction; 
CICS ignores the DFHMDF macro instruction. 

Examine macro instructions for correct sequence 
and reassemble map. 

DFHBM0009 NO LENGTH; MACRO DISCARDED 

8 

The DFHMDF LENGTH=number specification has been 
omitted. CICS ignores this field macro 
instruction and continues to analyze the map. 

Supply a valid LENGTH value (1-256) for the 
field and reassemble map. 

DFSBMOO'O NO POS; MACFO DISCARDED 

256 



The DFHMDF LENGTH=number specification has been 
omitted. CICS ignores this field macro 
instruction and continues to analyze the map. 

supply a valid POS value (0-1919) for the field 
and reassemble map. 

DPHBM0011 LENGTH OUT OF RANGE; MACEO DISCARDED 

8 

The DFHMDF LENGTH=number specification is not 
within the range 1-256. CICS ignores this field 
macro instruction and continues to analyze the 
map. 

Supply a LENGTH value within the range 1-256 
and reassemble map. 

DPHBM0013 pas OUT OF RANGE; MACRO DISCARDED 

8 

The DFHMDF POS=number specification is less 
than zero or greater than 1919. CICS ignores 
this field macro instruction and continues to 
analyze the map. 

Supply a valid POS value within the range 0-
1919 and reassemble map. 

DFHBM0014 FIELD POSITION REQIRES 3270 MODEL 2 

o 

The DFHMDF POS=number specification specifies 
a location that requires the 1920-character 
3270 (Model 2). 

Ensure that this map is never used for a 3270 
Model 1. 

DPHBM0015 OVERLAP WITH PREVIOUS FIELD 

The DFHMDF POS=number specification specifies 
a position that is within the scope of the 
preceding field definition. CICS accepts the 
specified value and continues to analyze the 
map. 

Ensure that the field overlap is acceptable. 
If not, correct by supplying a POS value that 
is at least one greater than the sum of the 
POS and LENGTH values of the previous field 
in the map. As an alternative, change the POS 
or LENGTH values of the previous field and 
reassemble map. 

257 



DFHSMr016 POS NOT IN ASCENDING SEQUENC~. MACRO DISCARDED. 

8 

The DFHMDF POS=number specification is ~ot 
greater than the POS value of the preceding 
field. CICS ignores this field macro instruction 
an~ continues to analyze the map. 

Check the POS values for the two fields and 
the order of the macro instructions and 
reassemble map. 

DPHBM001 7 IRRECOVERABLE ERROR ENCOUN~ERED BY DFH~D? 

16 

An irrecoverable situation was encountered by 
DFHMDF during map analysis. CICS abandons any 
further map analysis. 

Examine the map specification carefully for 
invalid parameters; see that the macro 
instructions are properly ordered. Correct 
any errors and reassemble map. If the error 
persists, contact your IBM representative after 
ensuring the availability of (1) a listing of 
the map analysis with the error messages, and 
(2) the input causing the error message to be 
generated. 

D?HBMC018 FIELDNAME MUST BE CODED WITH GROUPNAME PRESENT 

8 

The DFHMDF macro instruction was coded with 
a group name but the name field was not supplied. 
CICS assigns a null value to the name field 
and continues to analyze the map. 

All fields within a named group require the 
name field to be coded. Supply a unique field 
name and reassemble map. 

DFHBM0019 NO FIELD NAME. MACFO DISCARDED. 

258 

4 

The DFHMDF MODE=IN specification encountered 
an entry with no name field entry. CICS ignores 
this field macro instruct.ion and continues t.o 
analyze the map_ 

If a symbolic storage definition entry is 
required for this field, supply a name in the 
name field and reassemble map. Rejection of 
a DFHMDF MODE=TN specification with an empty 
name field may be quite valid if the same map 
generation submitted for output symbolic storage 
definition is used to generate the symbolic 
storage definition for the input from that map. 



DFHBM0020 DETECTABLE FIELD CANNOT BE CONTAINED UNDER A GROUP NAME 

8 

DFHMDF ATTRB=DET was specified for a fiel1 
contained witin a group. CICS ignores this 
field macro instruction and continues to analyze 
the map. 

Check the specifications of grouped fields 
within the map and the ATTRB specification for 
this field. Reassemble map. 

DFHBM0021 INVALID xxxxxxxx ATTRIBUT~ SPECIFIED; IGNORED 

4 

The DFHMDF ATTRB=parameter specification is 
invalid. CICS ignores the invalid specification 
ann continues to analyze the map_ 

Check the coding of the ATTRB operand and 
reassemble map. 

DFHB~0022 xxxxxxxx AND xxxxxxxx ARE INCOMPATIBLE; ASKIP ASSUMED 

8 

Conflicting attributes were specified for this 
field in the DFHMDF ATTRB=parameter macro 
instruction. CICS assumes ATTRB=ASKP and 
continues to analyze the map. 

Correct the conflicting specification of 
attributes in the ATTRB operand and reassemble 
map. 

DFHRMr023 IC REQUESTED FOR A PROTECTED PIELD 

!cti.2.n: 

4 

The DFHMDF ATTRB=parameter macro instruction 
requested insertion of the cursor within a 
protected field. CICS accepts the request and 
continues to analyze the map. 

Ensure the validity of the request for this 
field. If invalid, correct and reassemble map. 

DFHBM0024 ASKIP IMPLIES xxxxxxxx 

4 

The DFHMDF ATTRB=parameter macro instruction 
specified two attributes, one of which implied 
the other; for example, ATTRB=(ASKIP,PROT) where 
ASKIP includes PROT. CICS uses the more 
emcompassing attribute and continues to analyze 
the map. 

259 



If the more encompassing attribute is acceptable, 
no action is necessary. Otherwise, correct 
the ATTRB specification and reassemble map. 

DFHBM0025 BRT IMPLI~S DET 

4 

The DFHMDF ATTRB=parameter macro instruction 
specified the BRT attribute which also implies 
the DET attribute. CICS uses the BRT attribute 
and continues to analyze the map. 

If the BRT attribute is not required for this 
field, change the ATTRB specification and 
reassemble map. 

DFHBMC026 PROT AND NUM IMPLY ASKIP 

!cti.Q.n: 

4 

The DFHMDF ATTRB=parameter macro instruction 
specified PROT and NUM. The combination of 
these two parameters creates a field that also 
has the ASKIP attribute. 

No action is necessary; this message is 
informative only. 

DFHBM0027 ATTRIBUTE lXXXXXXX REPEATED. IGNORED. 

4 

The DFHMDF AT~RB=param~ter specification contains 
the repetition of an attribute. eICS accepts 
the repetition without action and continues 
to analyze the map. 

Eliminate the repetition to remove the error 
message (if required). 

DFHBM0028 DUPLICATE TYPE OPTION IGNORED 

o 

A duplicated map TYPE specification was 
encountered and ignored. 

No action message is necessary; this message 
is informative only. If d~sired, remove the 
duplicate specification before reassembling 
the map. 

DPHBMC029 INVALID TYPE SPECIFIED; OUT ASSUMED BY DEFAULT 

260 

8 

A type specification was found which was not 
IN, OUT, ERASE, WAIT, MAP, or SAVE. OUT is 
assumed by default. 



If OUT is not an acceptable default, correct 
the error and reassemble the map_ 

DFHBM0030 MAPNAME IS GT 7 CHARS; TRUNCATED 

12 

A map name greater than seven characters was 
encountered and truncated to seven characters. 

Correct the map name and reassemble the map. 

DFHBM0031 DATA = SPECIFIED INCORRECTLY; NO IS ASSUMED AS DEFAULT. 

8 

A data specification was encountered which was 
not YES, NO, or ONLY. DATA=NO is assumed. 

If NO is not an acceptable default, correct 
the DATA specification and reassemble the map. 

DFHBM0032 DATA SPEC NOT REQUIRED WITH THIS TYPE; IGNORED. 

4 

Initial DATA was specified for a map which is 
not specified as an output map. The 
specification is ignored. 

If it is desired that an output map be generated, 
change the TYPE specification to OUT and 
reass~mble the map_ 

DFHB~0033 CURSOR POSITION REQUIRES TYPE=OUT; THIS REQUEST IGNORED. 

A cursor specification was provided for a map 
which was not an output map. The specification 
is ignored. 

If the map TYPE was specified incorrectly, 
change the specification to OUT and reassemble 
the map. 

n~HBM0034 MAPADR SYMBOL GT 8 CHARS. 

4 

The MAPADR operand specified a name greater 
than eight characters. Only the first eight 
will be used to address the map. 

Correct the MAPADR specification and reassemble 
th-= map. 

261 



UFHBM0035 INVALID LANGUAGE ASSEMBLER ASSUMED. 

4 

The LANG operand was not ASM, COBOL, or Pll. 
BMS assumes LANG=ASM. 

If the language desired is not Assembler, correct 
the LANG specification and reassemble the map. 

DFHB'~016 INPUT SPEC WITH INCONSISTENT OPERANDS; INPUT, WAI~ ASSUM~D • 

.2~!~ri1.I: 

~§~.ni1!g: 

4 

TYPE=INPUT was specified along with OUT, ERASE, 
or MAP. These combinations are inconsistent 
and only INPUT is processed. 

If some other specification is desired, correct 
the TYPE specification and reassemble the map. 

DFHBM0037 OUTPUT SPEC WITH INCONSISTENT OPERANDS; OUTPUT, WAIT ASSUMED. 

4 

TYPE=(OUT,MAP) was specified which is 
inconsistent. 

Correct the TYPE specification and reassemble 
the map. 

DFHBM0038 ERASE SPEC WITH INCONSISTENT OP~RANDS; OUTPUT, ERASE, WAIT 
ASSUMED. 

A) Either TYPE=(ERASE,MAP} was specified or 

B) TYPE=(ERASE) was specified without OUT. 

Correct the specification and reassemble the 
map. 

DFHBM0039 SAVE REQUIRES OUT; SAVE IGNORED 

4 

The TYPE operand specified SAVE but not OUT. 

Correct the specification and reassemble the 
map. 

DFHBM0040 INVALID CURSOR POSITION DEPAULTS TO ZERO 

262 

4 

The cursor keyword specified a value less than 
o or greater than 1919 and therefore invalid 
for the 3270. 



!£tio.n: Correct the specification and reassemble the 
map. 

DFHBM0041 CURSOR POSITION REQUIRES 3270 Model 2 

o 

The cursor specification is between 480 and 
1919 and therefore only valid for a 3270 Model 
2. 

Do not try to use this map on a 3270 Model 1 
or unpredictable results will occur. 

DPHBM0042 DATA = NOT SPECIFIED; NO IS ASSUMED AS A DEFAULT. 

4 

DATA= was not specified for a TYPE=OUT 
specification. DATA=NO is assumed. 

If NO is not an acceptable default, correct 
the DATA specification and reassemble the map. 

DFHBM9999 IPRECOVERABLE E~ROR ENCOUNTERED BY D~HMDI 

!£ti2!!: 

16 

The DFHMDI macro instruction encountered an 
irrecoverable situation during map analysis. 
CT~S abandons any further map analysis. 

Examine the map specification carefully for 
invalid parameters and see that the macro 
instructions are properly ordered. Correct 
any errors and reassemble map. If the error 
persists, contact your IBM Representative after 
ensuring the availability of (1) a listing of 
the map analysis with the error messages and 
(2) the input causing the error message to be 
gent:rated. 

263 



This section contains translate tables for the following components 
of the 2980 General Banking Terminal system: 

1. 2980 Teller Station Model 1 
2. 2980 Administrative Station Model 2 
3.· 2980 Teller Station Model 4 

The line codes and CPU codes listed in these tables are unique to 
CICS and are represented as standard EBCDIC characters. 

264 



1 of 3 

2980-1 CHARACTER SET/TRANSLATE TABLE 

ENGRAVING PRINTING LINE CPU CODE 
High 

KEY Level 
No. Too(LC) Front (UC) Numeric (LCj Alpha(UC) Code Numeric(LC) Aloha (UC) Lanll. ID 

0 HSG 1 ! 1 F1 AA F1 1 
ACK 

1 SEND Q R Q 08 09 DZ 
AGAI r~ 

2 eOfH< A C A Cl C3 Cl 

3 HOLD 2 H 2 F2 C8 F2 
OVERRIDE 

4 VOID Z V Z E9 ES E9 

5 ACCT ~J Q ~J E6 08 E6 
IIIQ 

6 ACCT S T S L2 An l2 2 f 

TFR 

7 CIF 3 c 3 F3 AC r3 3 F 

8 Mise x ~ X E7 AD E7 4 

9 CLSD E X E C5 E7 C5 
ACCT 

10 :w D N D C4 AE C4 5 e 

I BOOK 

11 l'iORT 4 M 4 F4 AF F4 6 
LOAN 

12 C .j: C C3 BO C3 7 

I 
~ 13 i'lElJ R A R C9 Bl D9 8 

I ACCT 

0 14 bOOK F 5 F C6 B2 C6 9 
GAL 

15 I :~ST 5 [ 5 F5 B3 F5 10 
LOAtj 

16 V s V E5 B4 E5 11 SPEC p 

BAN 

17 SAV T B BS E3 !:lOll 0 T E3 
I 12 

265 



2 of 3 

2980-1 CHARACTER SET/TRANSLATE TABLE 

KEY ENGRAVING PRINTING LINE CPU CODE 
High-

Level 
No. Top (LC) Front (UC) Numeric (LC) Alpha (UC) Code Numeric (LC) Alpha ('JC) Lang. ID 

18 SAV G S G C7 B6 C7 13 

19 XMAS 6 C 6 F6 B7 F6 14 
CLUB 

I 

20 B 13 C2 4B C2 

21 OOA Y 15 y ES B8 E8 IS 

22 2Q H Q!2 H CS B9 C8 16 

23 /·1ON 7 " 7 F7 BA F7 17 (.; 

ORD 
I 

211 0 rl 0 r~ D5 FO 05 i 
I I 25 7 U 7 U E4 F7 E4 I 

'I 26 4 J 4 J 01 F4 01 

27 CSHR 8 r S FS BB F8 i 18 

I 
CHK 

I[ 
28 1 11 1 M D4 F1 04 I: 
29 I 8 I 8 

I 
I C9 F8 C9 

30 5 K 5 K [,2 FS D2 ! 
I 

31 CASh 9 ~ 9 F9 Be F9 19 
RECD 

32 2 , 2 , 5B F2 68 

33 9 0 9 0 D6 F9 06 

34 6 L 5 L 113 F6 [>3 

I 

I 

266 



3 of 3 

2980-1 CHARACTER SET/TRANSLATE TABLE 

II 
'I High 

KEY 1\ ENGRAVING PRINTING LINE CPU CODE Level 

No. Too(LC) Front (UC) Numeric (l C) Alpha (UC) Code Numeric(LC) Alpha(UC) Lang. ID 

35 I UTIL 0 U 0 FO E4 FO 
I BILL 

36 3 3 4lJ F3 4B 

37 DEP P + P 07 4E 07 
+ 

38 \.JI TH S - $ 5[; 60 58 
-

39 FEES - F - 60 C6 60 

40 TOTL / T / 61 U 61 

41 CASH " $ ok 5C BD 5C 20 
I Iii 

42 ,\ CASH # $ # 7'r3 BE 7B i 21 

II CHK 

43 II VAL & A-K & 50 STATION 50 

II 
ID 

44 TAB 05 05 05 TABCHAR 

II 
45 

I 
ALPHA 36 

I ENTRY 

I I 
i~Ut'1ER Ie 06 46 

!l Ei~TRY 

47 II SEND 26-ET8 J 
II 03-ETX 

48 RETURN 15 15 15 JRNLCR 

49 i'lUf-1ER I C 06 
EiHRY 

50 SPACE 40 40 40 

58 t~SGL I GmT 17 17 17 MSGLITE 

267 



1 of 2 

2980-2 CHARACTER SET/TRANSLATE TABLE 

High 
KEY ENGRAVING PRINTING LINE CPU CODE Level 
No. Too(LC) Front (UC) Numeric(I.C} Alpha(UC} Code Numeric(LC) Aloha (UC) Lang. ID 

= 
0 1 1 = Fl Fl (1) 7E (=) 

1 Q q Q 08 98 (q) 08 (Q) 

2 A a A Cl 81 (a) Cl (A) 

3 2 2 < F2 F2 (2 ) 4C ( <) 

4 Z z Z E9 A9 ( z) E9 ( Z) 

5 l~ c.:J 
z w ~i E6 A6 (w) E6 (w) 
;: 

6 S « s S E2 A2 (5 ) E2 (s) ex: 
; c.:J 

5 7 3 3 ; F3 F3 (3) 5E (; ) 
f-
z: 

8 X g x X 
I.J... 

E7 A7 (x) E7 (X) 
>-

9 E LIJ e E C5 85 (e) C5 (E) ><: 

':) 

10 D z: 
d 0 C4 84 ( d) C4 (0) 

: 
11 4 4 : F4 F4 (4 ) 7A (:) 

12 C e C C3 83 (e) C3 (e) 

13 R r R 09 99 (r) 09 (R) 

14 F f F CG 86 (f) C6 (F) 
/, c.:J 

15 5 := 5 % F5 FS (5 ) fiC (%) 
> 

16 V ~ 
V E5 AS (v) lis (v) c.:J v 

CS 
17 T f- t T z: E3 A3 (t) t;3 (T) 

0 

! 18 G c.:: 
G C7 87 (g) C7 (G) u.. g , >-

w 
19 6 ><: 6 , 

F6 F6 (6) 7D (') 

I 0 

20 D z 
b B C2 82 (b) C2 ( B) 

21 y y y E8 ( y) (v) 
;i 

A8 E8 ii 

22 H h Ii C8 88 (h) C8 (H) ! 
> I 

I 
23 7 7 > F7 F7 (7) 6E (» i) 

~ 

1;1 
24 N n N D5 95 (n) 05 (N) 

I J 
25 LJ u U E4 A4 (u) E4 (u) il 

~ 

268 



2 of 2 

2980-2 CHARACTER SET/TRANSLATE TABLE 

--
High 

KEY ENGRAVING PRINTING LINE CPU CODE Level 
No. 'Top(lC) Front (UC) Numeric(lC) Alpha (UC) Code Numeric(LC) Alpha (DC) Lang. ID 

26 J j J 01 91 (j) Cl (J) 

27 .. 8 8 F8 F8 (8 ) 5C ("<) 8 

28 1'\ m ill LJ~ 9~ (m) D4 (~~ ) 

29 I i I C9 89 ( i) C9 (I) 

30 K k K 02 92 ( k) D2 (K) 

31 ( 
(!l 9 ( F9 F9 ( 9) 4LJ (() 

9 z 

32 I ;: , I 6B 6[; (, ) 4F (I) <:( , cr: 
(!l 

33 0 z 0 0 D6 9G (0) D6 (0) I w 
t-

34 L 5 1 L iJ3 93 (1) 03 (L) 
cr: 

) u. 
(0) (» 35 >- 0 ) 1"0 ro 5(; 0 w 

"" ~ 

3G 0 ~ 4i> IjB (.) SF (~) z 

37 P p P D7 97 (p) 07 (p) 

38 ! $ ! 58 5B ($) SA (!) 
S 

39 -:- - - GO 60 (-) GO (-) 

40 ? 
/ ? 61 Gl (J) 6F ( ?) i (!l 

z 

41 ~ 
;: @ ¢ 5C 7C (@) 4A (d <:: 
cr: 

II (!l 
II 42 z # 7I:l 7B (# ) 7F (") # w 

43 + ~ & + 50 50 (&) 4E (+) 
& 0 

cr: 
u... 

44 TAB >- 05 05 05 w 
~ 

45 LOCK a 36 3G 36 z 

46 SHI FT 06 06 06 

47 BACKSPACE IG 10 16 BCKSPACE 

48 
: 

RETURN 15 15 15 

49 i, SHI FT 06 06 06 

50 i: (SPACE) 40 40 40 

53 
I 

SEND ~6-ETB i 3-ETX 

269 



1 of 3 

2980-4 CHARACTER SET/TRANSLATE TABLE 

_ .. _-_ .. t-- ---.- ••••.. - ••• -.---•. ------.--. ,--

ENGRAVING PRINTING LINE CPU CODE 
High 

KEY Level 
No. Tooo:.C) Front(UC) Numeric (L C) Aloha (UC) Code Numeric(LC) Aloha We} Lang. 1D 

0 CK i< [;9 BC 60 19 
$ 

1 Q L Q D3 D3 08 

2 A A A C1 Cl C1 

3 CK 0 C 0 C9 B7 C9 14 
# 

4 Z Z E9 4B E9 

5 w * W E6 5C E6 

6 S $ S [2 5B E2 

7 IMo 1 I 1 58 4F F1 
2 

8 X " X E7 AE E7 5 8 

Sf E E E C5 C5 C5 

10 0 ? 0 C4 6F C4 

11 I i-10 2 M 2 4B 04 F2 
1 

12 C C C C3 C3 C3 

13 R R 60 60 09 

14 F F F CG C6 C6 

15 CODE 3 r 3 E8 BB F3 18 

Ie v \l V E5 AO E5 22 

17 T 6. T E3 Al E3 23 

! 
I 

210 



2 of 3 

2980-4 CHARACTER SET/TRANSLATE TABLE 

High I 

KEY ENGRAVING PRINTING LINE CPU CODE Level I 

; 
~- .. Top(LC) Front (UC) Numeric (I.C) Alpha (UC) Code Numeric (LC) AlohaCUC) Lang. 10 

18 G G G C7 C7 C7 

19 AI·1T 4 $ 4 5C BE F4 21 

20 S B B C2 C2 C2 

21 Y / y 61 61 E8 

22 H P H 07 07 C8 

23 OB 5 a 5 08 B2 F5 9 B 

24 N N N 05 05 05 

25 (J M U E4 AF E4 6 

26 J J J D1 01 01 

27 ACCT 6 # 6 Cg 7B F6 . 
# 

28 N X til 04 E7 04 

29 I 0 I 06 06 C9 

30 K K K 02 02 02 

31 7 7 7 7 F7 F7 F7 

32 --- --- # ~ 6B BLANK 6B 

33 4 0 4 0 F4 F4 06 

34 1 L 1 L Fl F1 03 

271 



3 of 3 

2980-4 CHARACTER SET/TRANSLATE TABLE 

---.. 

KEY ENGRAVING PRINTING LINE 
High 

CPU CODE Level 
No. Top(LC) Front (UC) Numeric(LC) Alpha (UC) Code Numeric (LC) Aloha (UC) Lang. ID 

35 8 8 a 8 F8 Fa F8 I 
I 

36 0 0 FO FO 4B 

I I 
37 5 P 5 P F5 F5 07 I 

38 2 $ 2 $ F2 F2 5B 

39 9 9 9 9 F9 F9 F9 

40 --- --- f .. 7B BO 7B 7 

41 6 * 6 * F6 F6 5C 

42 3 # 3 Ii F3 F3 7B 

43 VAL & A-K & 50 50 50 

44 TAB 05 05 05 

45 ALPHA 3{j 

46 NUMERIC 06 

47 SEND 26-ETB 
03-ETX 

48 RETURN 15 15 15 

49 NUMER I C 06 

50 SPACE 40 40 40 

51 FEED 04 OPENCH 
OPEN 

272 



INDEX 

ABCODE 19,61,67-68 
ACCA INTERRUPT STATUS WORD 157 
ACCEPTABLE ADDRESSING METHOD 101 
ACCESS DEVICES 114 
ACCESS METHODS 83 
ACCESS, INDIRECT 112 
ACCTNO 89- 90 
ACTIVITIES, TYPES OF CONCURRENT 
ACDING RECORDS 112,181 
ADDITION OF KEYED FIXED-LENGTB RECORDS 181-182 
ADDITIONS, FIXED-RECORD 182 
ADDRESS XCTL 9 
ADDRESS, AREA 117,87,95,117,128 
ADDRESS, BCA 166,168 
ADDRj;:SS, FIOA 111 
ACDRESS, STRG 73 Y 
ADDRESS, PRELOAD PCB 1 ~3 Y 
ADDRESS, STORE FWA 109 
ADDRESS, USER FCA 118 
ADDRESS, PRELOAD WORKAREA 194 
ADDRESS, PROGRAM ENTRY 
ADDRESS, DATA 225 y 
ADDRESS, LINE 157-158 
ADDRESS, SYMBOLIC BASE 9,19,33 
ADDRESS, TRANSIENT DATA 234-235 
ADDRESS, USER FCA 118 
ADDRESSA3ILITY 14,25,31-34,40-43,45,80,82,87,190,198,207 
ADDRESSABILITY 15,31,78-79,81-82,89-97,99-100, 

109-110,185,198 
ADDRESSABILITY FWA 89-91,911,97,106 
ADDRESSABILITY'rCA 89-91,94,97,99,103,105 
ADDRESSES CF CICS PROGRAMS 17 
ADDRESSES OF CICS S'roRAGE AREAS 38 
ADDRESSES OF SSA'S 185,187 
ADDRESSES OF THE ACTUAL LOCA'lIONS 39 
ADDRESSES, PCB 183-18 11,187-189,191-192,194,193 
ADDRESSES, TASK S'IORAGE CHAIN 18 
AID'S • 206 
ALARM 199,2011 
ALIGNMENT 17,171 
ALPHAMERIC 200 
ALTERED RECORD 167, 169 
ALTERNATE ACTION 1 59 
ALTERNATE STATION 163 
ALTERS 6,13,19,60,66,159,201 
ANS COBOL APPLICATION PROGRl\M 10,37,163,205-206 
ANS COBOL EXAMPLE 163 
ANS COBOL FROGRAMMER 9,32 
APPLICATION CON'IROL BLOCK 1811 
APPLICATIC~ KEYWORDS 95 
APPL ICATION LOGIC 195 
APPLICATION PROGRAM, EXIT PCINTS OF AN 
APPLICATION PROGRAM CONTAINS BINARY ZEROS 78 
APPLICATION PROGRAM LISTING 10 
APPL ICATION PROGRAM, EXAMFLE OF AN 82 
APPLICATION PROGRAM, SERIALLY REUSABLE PORTION OF AN 6,60 
APPLICATION PROGRAMMER 3,9,10,23,56-59,77-78,82,87,93,96, 
98,99,141,158,160,184,186 

APPLICATION PROGRAMMING CONSIDERATIONS 77 
APPLICATION PROGRAMS 7,10,15,78,84,155,159,178 

183,194,1 S5, 197,203 
APPLICATION PROGRAMS, GROUP OF 215 
APPLICATION PROGRAMS, MODULARITY OF 
APPLICATION PROGRAMS, REQUES'l OF 
APPLICATION PROGRAMS, TESTING OF 
APPLICATIDN, SINGLE 1211 

6 
116,175 
2 

APPLICATIONS 1,3-11,6,81,125,155,195,215 
AREA DEFINITIONS 166,169 
AREA PREFIX 187 
AREA TWAIND 166 
AREA, ACQUIRED STORAGE 58 
AREA, ACDRESSED 31 
AREA, INPUT/OUTPUT 115,57,193 
AREA, AVAILABLE DYNAMIC 1211,129 
AREA, BATCH CONTROL 167 
AREA, CICS INPUT 118 
AREA, CICS TRANSACTION WORK 32 
AREA, COMMON SYSTEM 13,15,17,24,33,39-40,56, 

69,71-73,134 
AREA, COMMON WORK 
AREA, COMMUNICATIONS 
AREA, C.URRENT 169 

33 

AREA, MESSAGE 29,38 
AREA, DL/I I/O 194 

69 

AREA, DROP WRKREG TERMINAL INPU'l/OUTPUT 
AREA, ENTIRE WORK 17 
AREA, EVENT CONTROL 50-51,138 
AREA,' FILE INPU'l/OUTPU'X .311,111,84,86 

25 

AREA, FILE WORK 22,32,35,42,61,84,86,92,95,99,112 
AREA, FOUR-BYTE S'roRAGE 13 8 
AREA, INITIATCR CONTROL 18 
AREA, INTERMEDIATE S'roRAGE 6,60 
AREA, LENGTH OF THE 73 
AREA, NEW STORAGE 31,57-58,95 
AREA, ONE-BYTE RESERVED CATA 
AREA, OPTIONAL TRANSACTION WORK 
AREA, OUTPUT 26,39,45,116 
AREA, OUTPUT DATA 76 
AREA, OUTPUT STORAGE 79 
AREA, PASSBOOK 159- 160 
AREA, SIZE OF THE WORK 
AREA, SYMBOLIC NAME OF THE 
AREA, SYSTEM 14 

17 

201 

117 

18 

AREA, TASK CONTROL 14,15,18,211,33-311,40,46,56,60,69,71-74 
AREA, 'IASK EXTENSION 69,71-73 
AREA, TCASCSA FILE INPU'l/OU'lPtJ'l 25 
AREA, TEMPORARY STORAGE INPU'l/OUTPUT 111,27,36,43,59 Y 
AREA, TERMINAL INPU'l/OUTPUT 13,14,31,33-34,40-41,61,165 
AREA, TRANSACTICN WORK 6,18,23,25,34,40,60-61 
AREA, TRAN SIENT DATA I/O 118 
AREA, TRANSIENT DATA INPUT 111,35,112,165 
AREA, TRANSIENT DATA OUTPUT 111,27,36,112 
AREA, TRANSIENT CATA RECORD STOIU\GE 59 
AREA, USER 118 
AREA, USER-DECLARED FILE RECORD 
AREA, USER-DEFINED COMMON WCRK 
AREA, USER-PROVIDED I:ATA 1119 

112 
17 

AREA, USER-PROVIDED S'IORAGE 127-128 
AREAS 17-18,72,166-169,1711,183- 188,191,198,205 
AREAS, CICS S'IORAGE 13,15-17,23,32,39,192 

273 

AREAS, CCNTROL 13,32,50-51 
AREAS, DL/I 183 
AREAS, TRANSACTION-ORIENTED S'lORAGE 69 
AREAS, I/O 6,9,13-111,36,38,43,55,100 
AREAS, PROGRAM S'roRAGE 72 
AREAS, PARAMETER 18 
AREAS, STATIC 70 
AREAS, SYMBOLIC MAP 198 
AREAS, TERMINAL STORAGE 70-72 
AREAS, TRANSACTION STORAGE 69,72 
AREAS, WORK 9,13,17,60,86,1CO,108,167,183,186-187 
ARGUMENT 109-110,177-181,183,186-187,1911 
ARGUMENT TYPE 88 
ARGUMENT, LENGTH OF THE . 53,178 
ARGUMENT, SEARCH 108,112,175-179 
ASKIP 199-201 
ASKS 28,37,114 
ASM 197 
ASMTDLI 186 
ASSEMBLER 10,111,122,130,151,167,169,190-191 
ASSEMBLER LANGUAGE APPLICATION FFOGRAM, EXAMPLE OF 28 
ASSEMBLER LANGUAGE, CASE OF 187,206 
ASSEMBLY, 'lIME OF 10 
ASSOCIATED BIT 75 
ASSOCIATED DATA RETENTION 132 
ASSOCIATED DMB'S 184 
ASSOCIATED TASK 18,69 
ASSOCIATED TASK, TERMINATION OF THE 55 
ASSUMED NUM ATTRIBUTE 201 
ATTACH 117-118 
AUTOANSWER 155 
AUTOCALL 155 
AUTOSKIP 206 
AUXILIARY· rATA, BLOCK SIZE OF TEE 131 
BANKING CHARACTERS 161 
BASE OPERAND, USE OF THE 198 
BASE VALUE 193 
BASED STRUCTURE 39-43, 1E3, 198 
BASIC MAPPING SUPPORT 195,200,202 
BASIC TELECCMMUNICATIONS ACCESS METHOD 711 
BATCH PROCESSING SYSTEM 3 
.BCA 167 
BCKSPACE 164 
BDAM 112,176 
BDLIIO 193-1911 
BINARY FORM 133-1311 
BINARY VALUE 79 
BINARY ZERCS 17 ,53,55,57-58,100-101,138,159 
BINARY ZEROS, TWO-BYTE FIELD OF 116,126,1116,195 
BLANK CHARACTER 11,196-197,201 
BLANKS 30,39,45,100,1811,196,199-201,204 
BLANKS, EBCDIC 55,58,96 
BLK 180 
BLKKEYL 181 
BLKSIZE 176 
BLL 32,38-39 
BLL LIST 185 
BLL TABLE 192 
BLOCKED BDAM DA'lA SETS 101-102 
BLOCKED DAM DATA SET A8 

BLOCKED RECORDS 26,86 
BLOCKED SYSIN 711 
BMS 1911-195,197,202-205 
BMSMAPBR 198 
BOOK-FOR-PRESENT-WRITE 
BOOK-PRESENT-WRITE 
BPC!'I1 193-194 
BPCB2 193-1911 
BRANCH 156 

163 
163 

BROWSE 26,42,811,101,1011,106-107,113 
BROWSING 83 
BRT 199-200 
BSSADS 193-1911 
BTAM 74,75,1511 
BUFFER 75-77,155,158,199-200,2011 
BUFFER SIZE 160-161 
BU~FER, COMMON 161 
BYTE, ATTRIBUTE 196,200,2011 
BYTE, CONTFOL 168 
BYTE, LENGTH 171 
BYTE, RESERVED 195 
BYTES 79,116,125-126,138,146,168,170-172,177,186 
BYTES OF THE FOUR-BYTE TCATCQA 53 
BYTES OF THE OUTPUT AREA 117 
BYTES, NUMBER OF 21,57-59,79,82,171 
CALCULATE 57,136,139,141,143,142,1116,145 
CALL 6,183-186,188-189,193 
CANCEL 1311,136,138,141,144,1119-150 
CANCEL MACFO REQUEST 138 
CANCELLATION 135,1II9-15~ 
CARD 10-11 
CARD COLUMN 16 
CARD READERS 
CARD, COMMENTS 
CARD, CONTINUATION 
CA~D, EXEC 10 

11 
2,74 

10 

CARD, PROCESS 10 
CARD, TITLE 10 

11 

CARDS, OVEFRIDING DD 711 
CARRIAGE RETURN/LINE FEED 
CARRIAGE RETURNS 160 

199,2011 

CATLOG 176- 177 
CBUFF 75,161 
CCB'S 50 
CCC 76-77 
CHAIN 15,31,56,82 
CHAINED OFF 70-71 
CBAINED STORAGE AREAS, SERIES OF 31 
CHAP 47-119 
CHAR 95,97 
CHAR, DUMMY 119 
CHARACTERISTICS, DEVICE-DEPENDEN'l 200 
CHARACTERISTICS, FIELD 196,2011 
CICS CONSOLE 157 
CICS CON'IRCL AREA 11 9 
CICS CONTROL INFORMATION, POR'lICN OF THE 
CICS 'CCNTRCL MODULES 117 
CICS CONTROL SECTION 92 
CICS CONTRCL TABLES 70 
CICS DATA SETS 711 

58 

Page of S1I20·10474 
Added Jan. 5, 1973 
By TNL SN20-2983 



Page of SH20-10474 
Added Jan_ 5, 1973 
By TNL SN20-2983 

CICS DESTINATIONS 115 
CICS DUMP 10 
CICS DUMP CODES 251 
CICS ENTRY 218 
CICS ENVIRONMENT 52 
CICS EPROR CLASSES 112 
CICS FEATURES 110 
CICS FILE CONTROL 180 
CICS FILE MANAGEMENT 110,119 
CICS INITIALIZATION 24,33,39, 154 
CICS LIBRARIES 13 
CICS MACRO INSTRUCTIONS 6,10-11,60,194,243 
CICS MANAGEMENT MODULES 46,69-10 
CICS NUCLEUS 24,33,39 
CICS PARTITION/REGION 114,116 
CICS PREPROCESSOR 205 
CICS PROGRAM LIBRARY 203,205 
CICS PROGRAM LOAD LIBRARY 191 
CICS STORAGE MANAGEMENT 15,19,24,58,114 
CICS SUBTASKS 183 
C ICS SUPERVI 80R Y 10-11 
CICS SYSTEM CONTFOL 18,25 
CICS SYSTEM SERVICES 132,154 
CICS TASK 251 
CICS TEMPORARY STORAGE MANAGEMEN'I 144,148 
CICS TEMPORARY STORAGE MANAGEMENT FACILITY 148 
CICS TIME MANAGEMENT 1,133 
CICS TIME-ORDERED EVENT 138 
CICS-DL/I INTERFACE 183 
CICS/DOS 6,10-11,78,112,120,134,182 
CICS/DOS-ENTRY SYSTEM 32,56,65,69-73,124,205 
CICS/OS SYSTEM 14,182 
CICS, ABNORMAL TERMINATION OF 118 
CICS, APPLlCATICN PROGRAMS FUNNING UNDER 61 
CICS, APPROPRIATE 86 
CICS, BASEI: STRUCTURES OF 9 
CICS, CONTROL OF 39,114,139 
CICS, EXECUTION OF 63-65 
CICS, OPERATION OF 6,11,120 
CICS, OPERATIONAL 153 
CICS, OS SUBTASK OF 183 
CICS, REI.INQUISH CONTROL OF 50-52 
CICS, RELOCATION OF 9 
COBOL APPLICATION PROGRAM, EXAMPLE OF CICS lINS 38,198 
COBOL, ANS 161,163-164,186,191,195,198,205 
CODE DOCUMENTATION, PURPOSE OF 59 
CODE TRANSLATION 14 
CODE, ABNORMAL TERMINATION 61 
CODE, ACTUAL PL/I 10 
CODE, AI STATUS 188-189 
CODE, ASCII TRANSMISSION 155 
CODE, DEFAULT TRANSACTION 66 
CODE, DLPA ABEND 184 
CODE, FOUR-CHARACTER ABNORMAL TERMINATION 61-68 
CODE, FOUR-CHARACTER 'rRANSAC'IION 156 
CODE, I/O EVENT ERROR 112 
CODE, LINE 112 
CODE, MULTIPUNCH 113,123,131 
CODE, OPERATION 1 86 
CODE, SOURCE 39 

CODE, TERMINATION 19 
CODE, TRANSACTION 203,205 
CODE, UN! QUE 118 
CODE, USER-SPECIFIED 10 
CODE, 3210 DEVICE-DEPENDENT 194 
CODE, 3135 USING ASCII 'rRANSMISSION 71 
CODES, ERROR 112 
CODES, SPECIAL HEXADECIMAL 1 64-1 65 
CODES, REQUEST 23,153 
CODES, RESPONSE 96,98,111,113,122-123,130-131, 

144,143,146,151 
COMMON BUFFER 1 61 
COMMON WORK AREA, BEGINNING OF TEE 11 
COMMUNICATION CONTROL ADAP'IER 151 
COMMUNICATION LINES 50,15,154 
COMMUNICATION, CONVERSATIONAl MODE OF 83 
COMMUNICATION, PROVII:E ADr:rTION~L 165 
COMMUNICATIONS, REAL-TIME DA'IA EASE/DATA 
COMPATIBILITY 18,138,194 
COMPILER 10 
COMPILER, FULL ANS COBOL 32-33 
COMPLETE DUMPS, NUMBER OF 10 
COMPI.ETION 11,49-50,82,154,156,203 
COMPLETION CODE POSTINGS 138 
COMPLETICN, I/O 1 
COMPLETION, SUCCESSFUL 156 
COMPONENT SELECTION 158 
CONFIGURATION 22,58,77 
CONFIGURATION, BIT 55-56 
CONFLICTING ATTRIBUTES 259 
CONSIDERATION, PERFORMANCE 134 
CONSIDERATIONS, DEVICE 151 
CONSIDERATIONS, DEVICE-DEPENDENT 195 
CONSIDERATIONS, QUASI-REEN'rRANT 183 
CONSIDERATIONS, SYSTEW1 156 
CONSIDERATIONS, 2260/2265 PROGRAMMING 151 
CONSIDERATIONS, 2110/2180 PFOGRlIMMING 158 
CONSIDERATIONS, 3135 155 
CONSOLE, SYSTEM 11,151 
CONTROL, DUMP 21,61-69,71-13 
CONTROl., FILE 83-84,93,95-96 
CONTROL, INTERVAL 132 
CONTROL, PASSBOOK 161 
CONTROL, 'I-ASK 18,46-41,56,132 
CONTROL, TEMPORARY STORAGE 21,56,59,124,121-128 
CONTROL, TRANSFER PROGRAM 64 
CONTROL, TRANSIENT DATA 21,59,114-115,117,215,228 
CONTROL, TS TEMPORARY STORAGE 211 
CONTIlOL, TERMINAL 14,157 
CONVENTION, INSTALLATION 52 
CONVENTION, NAMING 124 
CONVERSE 74-15,83,245 
COPY CONTRCL CHARACTER 16 
COPYING 14-15,18 
CPU 46 
CPU TIME 50 
CPU, CONTRCL OF THE 46 
CRDR 165,167-168 
CROSS-INDEX DATA SET 91-92,175 
CSA, FIELDS OF THE 17 

1 

214 

CSA, USER FORTION OF THE 69,11-13 
CSA, WORK AREA PORTION OF THE 40 
CURRENT CLOCK TIME 134,136,139,141-142,145 
CURSOR 16,79,82-83,201,203-204 
CWA 17,33,69,11-13 
CWI'R 165-166,168-169 
DAM 83,81-88,93,100,180 
DAM BLOCK, PHYSICAL IDENTIFIER OF THE 180 
CAM DATA SETS 88,101,104,116,180-182 
DAM NON-KEYED DATA SETS 112 
DAM ORGANIZED DATA SETS 170 
DAM RECORD IDENTIFICATION FIElI: 117 
DASD 124,110,173-175 
DATA AREA 126,151-152,114,196,201 
DATA ATTRIBUTES 196 
DATA BASE 3-4,1,81-88,101,116,183,188 
DATA BASE CONSIDERATIONS 
DATA BASE/rATA COMMUNICATION SYSTEM 1,4 
CATA BASES, ADDRESSES OF THE PCB'S OF THE 183 
DATA CHARACTER 14,200 
CATA CHECK MESSAGE 1 57 
DATA COLLECTION 1-2,124-125,154 
CATA DIVISION 9,11,32,38,161,231 
DATA ENTRY REY 199,204 
DATA ENTRY KEYBOARD 200 
DATA FIELDS 32,195-196,199 
DATA HANDLING 160 
DATA INPUT 165 
DATA LANGUAGE/I 2,33,84,183 
DATA MANAGEMENT BLOCKS 184 
DATA MANAGEMENT SERVICES 6,10-11 ,32,39,46 
DATA MANAGEMENT TEMPORARY STORAGE SERVICES 46 
rATA RECORD 86,88,123,148,149,111 
DATA SET IDENTIFICATION 22 
CATA SET, CHARAC'rERISTICS OF 'IHE 84 
DATA SET, CATA EASE 26 
I:ATA SET, LOGICAL RECORD OF 'IHE 101 
DATA SET, SEGMENTED STRUCTURE OF TEE 110 
CATA SET, SEGMENTS OF A 110 
DATA SET, SYMBOLIC NAME OF THE 96,100 
DATA SETS 112,114-115,122,169-170,113,175-178,180-181 
DATA SETS, DEBI.OCKING OF THE 88 
CATA TRANSFER, COMPLETION OF 18 
DATA TRANSFER, DIRECTION OF 151 
DEBUGGING 214 
DEFAULT ACTION 
DEFAULT ALIGNMENT 
DEFAULT FIELDS 
DEFAULT LOCATION 
DEFAUL'I SEGMENT SET 

18 
111 

204 
201 

108 
DEFAULT SEGMEN'I SET NAME 
DEFINITION, DYNAMIC STORAGE 
DEFINITION, STATIC STORAGE 
DEFINITIONS, PCB 193 

104 
33,40 

24,33,39 

DESTINATION CONTROL TABLE 48,114-115,121 
DESTINATIONS 2,71-18,114-111,121-123 
DET ATTRIBUTE 200-201 

1,132 DETEC'rION, SYSTEM STALL 
DEVICE, BUFFERED 15 
DEVICES, SEQUENTIAL 2,74,214 

DFHBMS MACRO INSTRUCTION 199,202,205 
DFHBMSCA 206 
DFHCLEAR 206 
DFHCOVER MACRO INSTRUCTION 1 0 
DFHCSADS 24,32-33,40,44,54,193 
DFIIDC 69,11,13-14,215,211 
DFHDUP 68 
DFHFC MACRO 22,184,186,190,192,194 
DFHFILL 164 
DFHFIOA 26,34,41,86 
DFHFWADS NAME 26 
DFHFWADS, 26,89-90,92,95,97,99,103,,106,108,110 
DFHIC MACRC INSTRUCTIONS 23,138,141-144,152 
DFHKC 41,53,55,66,140 
DFHMDF MACBO INSTRUCTION 199,201-202 
DFHPC 19,29,63-66,123,131 
DFHPC, NAME 2114 
DFHPC, NO 244 
DFHSAADS 28,37,43-44 
DFHSC 19-20,22-23,58-59,80,194,215,211,234,238,241 
DFHSYTCA 25 
DFHTACP 13,115,251 
DFHTC 14-15,80,82,154-156,160 
DFHTCA 33- 34 
DFHTCADS 25,34,166-168 
DFHTCT 151 
DFHTCTTE 24,32-33,40,44,18,162 
DFHTD 115-116,118,120 
DFHTDIA 26,35-36,42,118-119 
DFHTDCA 21,36,42-43,116 
DFHTEP 13 
DFHTIOA 25,34,41,411,18,162,201 
DFHTS 23,28,125-130 
DFHTSIOA 21,32,36,43,128 
DIAL-UP 151 
DISCONNECT 15,155,157,245 
DISK 1-2,68 
DISPATCHING PRIORITY 49 
DISPATCHING, TASK 11,133-134 
DISPLACEMENTS 9,112-113 
DIVISION, ENVIRCNMENT 38 
DIVISION, PROCEDURE 38,89-91,94,91,99,103,105,162,192 
DL/I 2,33,84,183-184,186-194 
DL/I CALL 183-184,188-189 
DL/I INTERFACE 188 
DL/I PSEUDO-ABEND 183- 1 84 
DL/I PSEUDO- ABEND CODE 99 2 184 

DL/I REQUEST 189,191 
DL/I REQUEST HANDLER 1 83 
DL/I TASK 183 
DMB 184 
DMB DIRECTORY 184 
DMB POOL SPACE 189 
DPGM 12 
DRK ATTRIBUTES 200 
DUMMY RECORDS 182 
DUMP CODES 251 
DUMP AREA 74 
DUMP DATA SET 61-68 

PAGE 0035 



DUMP MANAGEMENT 1,67-68,71 
DUMP MANAGEMENT TERMINAL SERVICES q6 
DUMP, FORMATTED STORAGE 67 
DUMP, NO 67 
DUMP, OUTPUT 67 
DUMP, PARTIAL 71-7q 
DUMP, COMPLETE STORAGE 71 
DUMP, TRANSACTION STORAGE 70 
DUPDS 8q-85,87, 110-1 12,2q5-2116 
DUPLICATE NAMES 1211 
CUPL ICATE RECORD 112,178 
DUPLICATES 83,112,178-179,215 
DUPLICATES DATA SE'IS, USE OF 178 
DYNAMIC STORAGE FOOL 80 
ECADDR q7,50-52,2114 
ECB'S 50,155 
ELEMENT, PRINT 159 
ELEMENT, TYPE 160 
END-OF-DATA lq8 
END-OF-FILE 78,112,155 
END-OF-LIST 191 
ENDDATA 134,1117,151-152 
ENDFILE 85-86,103,110-112 
ENQ Q7,52-55 
ENTRY CONVENTIONS 183 
ENTRY LABELS 87,93,96,98,110-111,122,130,151 
ENTRY SPECIFICATIONS 112 
ENTRY, CONVERSATIONAL DATA 
ENTRY, DES'IINATION CONTROL TABLE 69,71-73 
ENTRY, FILE CCNTI<OL TABLE 178 
ENTRY, PCT 166,168 
ENTRY, TERMINAL 111,70 
ENTRY, TERMINAL CONTROL TABLE LINE 81 
ENVIRONMENT, CONVENTIONAL Bl\TCH PROCESSING 
ENVIRONMENT, CONVERSATIONAL 81 
ENVIRONMENT, DB/DC 4 
ERASE 75-76,79-82,203 
ESETL 85,106-108,112 
EVENT CONTROL AREA, TIMER 139 
EVENT CONTFOL AREAS, LIST OF 50 
EVENT CONTFOL BLOCK 155 
EVENT, COMPLETION OF THE 23 
EVENT, WRITE 78 
ElTENTS, LIST OF 51- 52 
EXAMPLES, FROGRAM 231 
EXCEPTION, USER-WRITTEN 98,110,123,130,151 
EXCLUSIVE OPTIONS 199-200,2011 
EXCLUSIVE USE 18 
EXIT ROUTINE TWAWA 166 
EXIT, CRDR 166 
EXIT, PARTITION/REGION 132 
EXPIR, CALC 1 Q 7 
EXPlRATLON TIMES 133-135,1311,150 
EXPIRD 132,1311,136,138,151-152 
EXTRAPARTITION 11 Q, 116, 118 
EXTRAPARTITION DATA SETS 115,119-120 
EXTRAPARTITION MAGNETIC Tl\PE [ATA SET 120 
FACADR 118 
FACCTL 118 
FACILITIES OF CICS/OS 33 

Fl\CILITIES, TEMFORARY STORAGE 152 
FACILITY, EXCEPTION HANDLING 110,122, no, 151 
FACILITY, TRACE 216,218,217-218 
FACILITY, TRANSIENT rATA PURGE MACRO 1111 
FCA 18 
FCACELL2 107 
FCADDR 47-48,243 
FCFIOBEX 112 
FCFIOEX 112 
FCT 83-84,86-88,92,95-96,100-101,112,180-181 
FDP RECORDS, BLOCK OF 155 
FDP RECORDS, TRl\NSLATION OF 77 
FDP'S 155 
FEATURE, ADJUSTMENT 133 
FEATURE, EOI DISABLE 165 
FEATURE, STALL PROTECTION 55 
FEATURE, SYNCHRONIZATION 133 
FEATURE, TIME ADJUSTMENT 135 
FEEDBACK 1 0 1 
FEOV 116,120-122,228,233,2117 
FIELD, RECORD IDENT 89 
FIELD, RECORD IDENTIFICATION 102 
FIELDNAME 32 
FILE CONDITION 78 
FILE CONTROL REQUESTIRESPONSE, TYPE OF 23 
FILE CONTROL REQUESTS 111 
FILE CONTROL TABLE 86,92,172 
FILE CONTRCL TABLE ROOT 170 
FILE MANAGEMENT TRANSIENT DATA SERVICES Q6 
FILE SERVICES 17 ,8Q, 86-87,92-93,96,98,100,1011,110,190 
FILE, BDAM 183 
FINAL BLOCKS 155 
FIOA H, 22, 26,311-35,41,84,86-88,98,111-112 
FlOAEAR 35,41,87 
FIXED-LENGTH RECORDS 170,182 
FORMAT, DECIMAL 180 
FORMAT, FIXED 17Q 
FORMAT, PACKED 88,101 
FORMAT, PACKED DECIMAL 17 
FORMAT, BECORD 17 0 
FORMAT, STANDA.RD VARIABLE-LENGTH 146 
FORMAT, USER-ESTABLISHED 17 
FOUR-BYTE FIELD 14,51 
FREEKB 197,199,203-204 
FREEMAIN 21,56,59- 60,87 
FRSET 197,199,201,203-204 
FSET 199-201 
FUNCTION, DLI 194 
FUNCTION, MAPPING 205 
FUNCTION, PRELOAD 194 
FUNCTION, TASK DISPATCHING 139 
FUNCTIONS, CONTFCL 198 
FUNCTIONS, OPTIONAL TASK 1 
FUNCTIONS, PRINTER 200,204 
FUNCTIONS, TASK 132 
FUNCTIONS, TRACE CONTFOL 215,218 
EWA ADDR 109 
FWA CONTFOL FIELDS 1111 
EWA DSECT RECORDl DS 108 
FWA, ASSIGN 105,107-108 

275 

EWA, DATA PORTION OF THE 
FWA, DECLARATION OF THE 
FWA, NEW 93,95 
FWA, ORIGINAL 100 

174 
42 

FWACBAR 26,87,89-91,94-100, 102-103,105,107,106, 109-110 
EWACBAR, INDEXAB 92 
FWACELL1 107-108 
FWAC ELL 2 107-108 
GENERATE ADDITIONAL TRANSACTION STREAMS 
GENERATE I/O LIST 156 
GENERATION 219 
GENERATION TIME 17 
GENERATION, OFFLINE MAP 195,197 
GENERATION, SYSTEM 55 
GENERIC 100-101 
GENERIC KEY 100 
GET'S, ISSUE REPETITIVE 115 
GETAREA 85,95-97 
GETAREA REQUEST 93,95 
GETIME 132,134-135 
GETMAIN REQUEST 95 
GETMAIN WORKREG 20 
GETMAIN, CCNDI'1.'IONAL 19 
GETNEXT 85,103,105-106,113 
GETNEXT REQUEST 100-102,104 
GETNEXT, 101,1011 
GHU 192 
GISMO 178- 179 
GONUMBER 11 
GOOD 113,123,131 
GOOD 1 191 
GOSTMT 11 

196 
202 
202 

GROUPNMm 
GRPFLDAI 
GRPFLDAO 
GRPLO 
GRPNAME 

202 
199,201-202,209,249 

GU 194 
GXLBZQMR 137 
GXXX 187 
GXXX REQUEST 187 
EALFWORD BINARY FIELD 196 
Hl\LFWOFD OF THE SAlI, SECOND 
RBIN 217-219,249 
HEX 180 
HEXADECIMAL 49,58,75,161 

186 

HHMMSS, FOl1M 136-137,139,142,145 
HHMMSST, FORM' 17 , 1 34 
HIERARCHY 88,170,177 
HIERARCHY, TWO- LEVEL INDIRECT ACCESS 
HIGH-ORDER 187 

214 

176 

HIGHER DISPATCHING PRIORITY, TA1:KS OF A 50 
HIGHER LOGICAL LEVEL 64,66 
EIGHER PRIORITY, 'TASK OF A 50 
HIGHEST PRIORITY TASK 46 
HOLDPCF 163-164 
HOLDPCFB 163-164 
HONEOM 197,200,199,203-204 
I/O lQ,107 ,183,185,187,190 
I/O BUFFER, CONTENTS OF Tim 1';8 

IC 199-201,209 
IC ATTRIBUTE 201 
ICDADDR 134,144-150,149 
ID, NEW SEGSET 110 
ID, REQUEST 225 
ID, SOURCE TERMINAL 78 
ID, TRACE 220 
IDENT, DEST 235 
IDENTIFICATION 22,63-66,100-102,104,108,147,152,170 
IDENTIFICATION DIVISION 38 
IDENTIFICATION DIVISION CARD 10 
IDENTIFICATION ERROR 111 
IDENTIFICATION FIELD 22,104,182 
IDENTIFICATION WORD 156 
IDENTIFICATION, EIGHT-BYTE REQUEST 137,140,142 
IDENTIFICATION, FOUR-CHARACTEF TERMINAL 157 
IDENTIFICATION, INITIAL PROGRAM 46 
IDENTIFICATION, MATCHING TEFMINAL 143,146 
IDENTIFICATION, MATCHING TRANSACTION • 144,146 
IDENTIFICATION, NEW TRANSACTICN 66 
IDENTIFICATION, OPERATOR 124 
IDENTIFICATION, RECORD 87,98,101,108,180 
IDENTIFICATION, REQUEST 152 
IDENTIFICATION, SEPARATE RECOFD 
IDENTIFICATION, TELLER 163 
IDENTIFICATION, TRACK 182 
IDENTIFICATION, TRANSACTION 

143-144,146,148,156 
IDENTIFICATION, UNIQUE 152 
IDENTIFICATION, UNIQUE REQUEST 

88 

23,47-48,55,66,124 

137,140,142,145-146,150 
IDEFROR -122,125,127,129-130 
IDLE 79 
IMPLEMENTATION OF SYSTEMS 195 
IMPLEMENTATION TIME 1 
IMPLIED WAIT 80 
IMS 183 
IMS/360 2,811 
lNAREAL 81 
INCREMENT TERMINAL DATA LENGTH 234,236 
INDEX 22,84,87-88,91-92,160,176-179 
INDEX DATA SET 22,88,170,175-178 
INDEX DATA SET, SEARCH OF TEE 176 
INDEX DATA SETS, MULTIPLE LEVELS OF 
INDEX DATA, USE OF AN 177 
INDEX HIERARCHY 176-178 
INDEX RECORD 178 
INDEX, LEVEL OF 178 
INDEXA 91 
INDEXAB 91-92 
INDICATION, EOD 23Q 

177 

INDICATOR 50,74,83,159,171-174,178,183 
INDICATOR os 166 
INDICATOR, BIT TYPE 172 
INDICATOR, DISPLACEMENT TYPE 
INDICATOR, INVREQ 184 
INDICATORS, BIT TYPE SEGMENT 
INDICATORS, DISPLACEMENT 
INDICATORS, TYPE SEGMENT 
INDIRECT ACCESS HIERARCHY 
INDIRECT ACCESSING FEATURE 

172 

172 
173 
172 

176 
175 

Page of SH20·10474 
Added Jan. 5, 1973 
By TNL SN20-2983 



Page of SH20-1047-4 
Added Jan_ 5. 1973 
By TNL SN20-2983 

INDIRECT ACCESSING HIERhRCHY 
INDIVIDUAL FIELDS 200-201 
INFORMATION BLOCK 197 

22,170 

INFORMATION DISPLAY SYSTEM COMPONENT DESCRIPTION 200 
INFORMATION, BLCCK REFERENCE 180 
INFORMATION, CONTROL 47 
INFORMATION, INPUT/OUTPUT AREAS 13 
INFORMATION, MASTER RECORD 176 
INFORMATION, USER-CONSTRUCTE!:: 178 
INITIAL TIOA 81 
INITIAL, CONTINUE READ 154 
INITIAL, WRITE 75,154 
INITIALIZATION 1,22,58 
INITIALIZATION REQUEST 155 
INITIALIZA'UON, SYSTEM 254 
INITIATE BROWSE 102-103,105 
INITIATE NEW TASK 48 
INITIATE REX;lUES'IS 141-142 
INITIATED TASK 144 
INITIATION 2,24,33,40,115,132 
INITIATION OF TRANSIENT I::ATA CCNTROL 48 
INITIATION REQUEST 148 
INITIATION SERVICES AVAILABLE 
INITIATION, AUTOMATIC TASK 
INITIATICN, REQUEST TASK 

141 
146,148 

143-144,146-147 
INITIATION, TASK 47 
INITIMG, USE OF THE 202 
INPUT BUFFER 154 
INPUT BUFFER, SIZE OF THE 
INPUT DATA, LENGTH OF THE 
INPUT DET FIELD 201 
INPUT FIELD, FORMAT OF AN 
INPUT FIELDS 200-201 
INPUT MAP FIELDS 200 
INPUT MAP GENERATION 
INPUT MAPPING REQUEST 
INPUT PROCESSOR 165 
INPUT STREAM 167 

198 
253 

154 
195 

201 

INPUT/OUTPUT, SYNCHRONIZE TERMINAL 
INPUT, BATCH 78 -
INPUT, PHYSICAL 74 
INPUT, READ/WRITE 205 
INPUT, RECEIPT OF 155 
INQUIRY 1,86,88 
INQUIRY, END OF 165 
INQUIRY, HIGH-PRIORITY 125 
INSERT 47,159-160,183,199 
INSERT RECORDS 167 
INSTRUCTION OI TWAINI:: 166 
INSTRUCTION, ABEND MAORO 19,67 
INSTRUCTION, ATTAOH MACRO 41,66 

74,83 

INSTRUCTION, CANCEL MACRO 137,150,152 
INSTRUCTION, CHAP MACRO 49 
INSTRUCTION, CHECK MACRO 87,93,96,98,111,122,130,151,153,189 
INSTRUCTION, CICS DERMDI MACRO 194 
INSTRUCTION, CONVERSE MACRO 83 
INSTRUCTION, COPY MACRO 77 
INSTRUCTION, DELETE MACRO 19,65-66 
INSTRUCTION, DFHBMS MACRO 202-203 
INSTRUCTION, DFHCOVER MACRO 10 

INSTRUCTION, DFHDC MACRO 69,80 
INSTRUCTION, DFHFC MACRO 23,84,100,111,180,183,187-188 
INSTRUCTION, DFHIC MACRO 132,1~1 ,153 
INSTRUCTION, DFHKC MACRO 47 
INSTRUCTION, DFHPC MACRO 61 
INSTRUCTION, DFHSC MACRO 56-57,79 
INSTRUCTION, DFHTC MACRO 24,74,77-78,154,168 
INSTRUCTION, DFHTD MACRO 23,115,122 
INSTRUCTION, DFHTS MACRO 125,130 
INSTRUCTION, DISCONNECT MACBO 155 
INSTRUCTION, DISP MACRO 50 
INSTRUCTION, DL/I MACRO 185 
INSTRUCTION, DUMP MANAGEMENT MACBO 69 
INSTRUCTION, E-TYPE OS CALL MACRO 186 
INSTRUCTION, ENQ MACRO 53 
INSTRUCTION, FILE MANAGEMENT MACRO 84 
INSTRUCTION, FOLLOWING MACRO 187,197,199 
INSTRUCTION, FREEMAIN MACRO 19-20,59,98,111 
INSTRUCTION, GETAREA MACRO 92,95-96 
INSTRUCTION, GETIME MACRO 134-135 
INSTRUCTION, GETMAIN MACRO 19,22-23,22,32,34 
56-58,167,202 

INSTRUCTION, GE'INEXT MACRO 22,99,101,104 
INSTRUCTION, INITIAL MACRO 197 
INSTRUCTION, INITIATE MACRO 141-143 
INSTRUCTION, ISSUE ESETL MACRO 107 
INSTRUCTION, ISSUE RESETL MACRO 109-110 
INSTRUCTION, LINK MACRO 19,63,66 
INSTRUCTION, LIST MACRO 51 
INSTRUCTION, LOAD MACRO 65 
INSTRUCTION, MAP MACRO 256 
INSTRUCTION, NAME MACRO 47,63- 64,66 
INSTRUCTION, NEWREC MACRO 182 
INSTRUCTION, NEXT SEQUENTIAL 9 
INSTRUCTION, NO MACRO 65- 66 
INSTRUCTION, NOPURGE MACRO 55 
INSTRUCTION, NUMBER MACRO 52-53 
INSTRUCTION, PAGE MACRO 83 
INSTRUCTION, PARTIAL MACRO 21,71 
INSTRUCTION, PASSBK MACRO 161 
INSTRUCTION, PIO 157 
INSTRUCTION, POST MACRO 138-140 
INSTRUCTION, PROGRAM MANAGEMENT MACRO 61 
INSTRUCTION, PURGE MACRO 55,121 
INSTRUCTION, RELEASE MACRO 87,98,111 
INSTRUCTION, RESETL MACRO 101,108 
INSTRUCTION, RETRY MACRO 152 
INSTRUCTION, RETURN MACRO 47,63,66 
INSTRUCTION, SEGMENT MACRO 73 
INSTRUCTION, SETL MACRO 22,100-101,103-104 
INSTRUCTION, SPECIAL INITIALIZATION ~.ACRO 78 
INSTRUCTION, STORAGE CONTROL GETMAIN MACRO 205 
INSTRUCTION, STORAGE MANAGEMENT MACRO 56 
INSTRUCTION, TASK MANAGEMENT MACRO 46 
INSTRUCTION, TEMPORARY STORAGE MANAGEY.ENT MACRO 125 
INSTRUCTION, TEMpSTRG MACRO 56 
INSTRUCTION, TERMINAL MACRO 59,79 
INSTRUCTION, TERMINAL MANAGEMENT MACRO 74 
INSTRUCTION, TRACE CONTROL MACRO 216 
INSTRUCTION, TRANSACTION COI::E MACRO 66 

276 

INSTRUCTION, TRANSACTION MACRO 69-70,72 
INSTRUCTION, TRANSIENT DATA MANAGEMENT MACRO 115 
INSTRUCTION, UPI::ATE MACRO 92·93 
INSTRUCTION, USER MACRO 37,43,217 
INSTRUCTION, VALUE !'.ACRO 69-71 
INSTRUCTION, WAIT MACRO 50,83,136-138,140 
INSTRUCTION, WRITE 81 
INSTRUCTION, WRITE MACRO 69,77,79-80 
INSTRUCTION, XCTL MACRO 64 
INSTRUCTION, YES MACRO 67,82 
INSTRUCTIONS, DFHMDF MACRO 195-196,200,202 
INSTRUCTIONS, DL/I DFHFC MACRO 193 
INSTRUCTIONS, FIELD DEFINITION MACRO 197 
INSTRUCTIONS, ISSUING CICS MACRC 
INSTRUCTIONS, SUBSEQUENT DFETC MACRO 78 
INSTRUCTIONS, TERMINAL CON'IBOL MACRO 205 
INSTRUCTIONS, THROUGH MACRO 46 
INSTRUCTIONS, TRACE TASK CONTROL MACRO 216 
INTERFACE, CICS-DLII 230 
nTTERFACE, DB/DC 4 
INTERRUPT 124,154-156,158 
INTEPRUPT, HARDWARE 165 
INTERRUPT, TIME OF 253 
INTERVAL CONTROL MACRO INSTRUCTION, USE OF THE 132 
INTERVAL CCNTJ;OL POST REQUEST 150 
INTERVAL CONTROL REQUESTIRESPONSE 23 
INTERVAL CCNTBCL WAIT REQUEST 150 
INTERVAL OF TIME 136 
INTERVAL OF TIME GIVEN 143-144 
INTERVALS OF TIME 132,136,139,142,145 
INTRAPARTITION 114,116,118,122 
INTRAPARTITION DATA SET 119 
INTRVAL 132,136-145,224,248 
INVALID REQUEST 112,160 
INVREQ 141,144,147,149,151-153,183-184,187-189 
INVREQ KEYWORD, DISCUSSION OF THE 98 
IOKEY 194 
IOLT 156 
IPL 157 
IS AM 41,83,87,93,100,104,170,177,180 
ISAM DATA SET 101,104 
ISAM, INDIRECT ACCESS HIERARCHY OF 88 
ISRT 194 
JRNLCR 164 
KEY 89-91,102-103,105,109 
KEYBOARD 76-78,199,204 
KEYC 109-110 
KEYEC DATA, LENGTH OF THE 196 
KEYLEN 176 
KEYWORD 126-127,129,134,136,139,141,145,148,150-151 
KEYWORD, CURSOR 262 
KEYWORD, INITIMG 96 
KEYWORD, RETMETH 88 
L 29,78 
L wRITE 78 
LA 191 
LAYOUT OF THE CONTROL 13 
LAYOUT OF 'THE CWA 33 
LAYOUT OF THE INPUT/OUTPUT, USl!R CEFINED 27 
LAYOUT, DEFINE RECORD 89-90,92 ,95,97 , 99,103,106,108 

LENGTH VALUE 
LENGTH, BLOCK 
LENGTH, MOVE 
LINE 81 

200,257 
183 

117 ,127 

LINEADR 75,77,157-158,245 
LINKAGE SECTION BASE LOCATOR 
LINKAGE SECTION, START OF 
LISTADDR 52 
LISTING OF ANS COBOL FEATURES 
LISTNAME 185 
LL 116,125,146,171 

32 
38 

32 

LLBB 116-118,125,146,149,167,171,174 
LOADLST 61,65-67,244 
LOCATION TCAPCAER 251 
LOCATION TCATDAA 117 
LOCATION TCATDDI 117.119,121 
LOCATION, USER-SPECIFIED 134 
LOCATOR 208 
LOGIC, MAINSTREAM 234 
LOGICAL 7,13,66,83,102,158, 16C, 170-171,174-177 
LOGICAL CLOSE 74 
LOGICAL LIMIT 176 
LOGICAL LOOP 1 32 
LOGICAL RECORD 84,88,101,103-104,158,160,170-172,177,181 
LOGICAL RELATIONSHIP 169 
LOGICAL WRITE 160 
LRECL 176 
MACRO INSTRUCTIONS 243 
MACRO, DFHCOVER 10 
MACRO, ISSUE INITIAL SETL 109 
MACRO, ISSUE RESETL 109 
MACRO, TLIST 77 
MANAGEMENT, 

AUTOMATIC TASK INITIATION FEATURE OF CICS TIME 133 
MANAGEMENT, COMMUNICATION LINE 154 
MANAGEMENT, DYNAMIC PROGRAM 1 
MANAGEMENT, FILE 2,23,114,178 
MANAGEMENT, SEQUENTIAL DATA 2 
MANAGEMENT, TASK 1 
MANAGEMENT, TEMPORARY STORAGE 
MANAGEMENT, TIME 1,23,46 
MANAGEMENT, TRANSIENT DATA 
MAP 174,194,196,195-207 
MAP DFHMDF MACRO INSTRUCTIONS, 

FIELDS OF THE INPUT 203 
MAP FORMAT 194,196,195 
MAP GENERATION 1 97 
MAP OPERATION 198,205 
MAP SPECIFICATION 258,263 
MAP, INPUT/OUTPUT 201 
MAP, OUTPUT FIELD 201 
MAP, PHYSICAL 194,196,195,197 
MAPADR 203,205 
MAPPING 197 
MAPPING OPERATION, TYPE OF 203 
MAPS, BMS 203 
MAPS, INPUT 195-196,199 

2,23,46 

MAPS, OUTPUT 195,199-201,203-204 
MAPS, TYPES OF 194 
MAP1 197-198 



MAP 2 198 
MASTERA 89 -9 2 
MAXIMUM DA'IA LENGTH 195 
!'AXlMUM LENGTH 195-196 
MAXIMUM MESSAGE LENGTH 76 
MBBCCHHR 101 
MD 166-167,201 
MDT'S 199,201,206 
MED 179 
MESSAGE AREA, USER DEFINE!: LAYOUT OF THE 26-27 
MESSAGE DFHTS 126 
MESSAGE, HEADERS 155 
MESSAGE, CRDR TRANSACTION-INVOKING 167 
MESSAGE, DESTINATION OF THE 78 
MESSAGE, ERROR 76, 1 5 9 
MESSAGE, INPUT 154,160 
MESSAGE, INVALID TERMINAL I!:EN'IIFICA'IION 157 
MESSAGE, LCGICAL 160 
MESSAGE, LOGICAL LENGTH OF 'IHE 160 
MESSAGE, OPERATOR 45 
MESSAGE, OUTPUT 25,76,78,158,160 
MESSAGE, PSEUDO-ABEND 184 
MESSAGE, SAVES 39 
MESSAGE, STATUS 166 
MESSAGE, TRANSMIT 156 
MESSAGE, WRITES 29,39 
MESSAGE, ASSEMBLY ERROR 255 
MESSAGE, ROUTE 77 
METHOD, DIRECT ACCESS 83 
METHOD, GRAPHICS ACCESS 74 
METHOD, INDEXED SEQUENTIAL ACCE1:S 83 
METHOD, TEl.ECOMMUNICATIONS ACCESS 74 
MF 186 
MI.DNIGHT 133,135 
MIGRATION PATH 4 
MINIMUM 136,139,142,145,171 
MODE 125,197-199,202,2C5 
MODIFIED DATA TAGS 76,199,201,204 
MOVE STATEMENT, USE OF THE 32 
MSGLITE 164 
NEWREC 85,92,96-97 
NONZERO 172-173 
NONZERO TRIGGER LEVEL 115 
NOPURGE 47 
NORESP 152,184,187-189,191 
NORESP, DICUSSION OF THE 120 
NORM 199-200 
NORMAL INTENSITY 200 
NOSPACE 85,92-93, 11 0-11 2,115-116,123,122-123 
NOSTRG 57-58 
NOTOPEN 115-116,118,120,123,122-123,187-189 
NOTRANSLATE 75,245 
NULL CHARACTER 197 
NULLS 75-77,196 
NUM ATTRIBUTES 200 
NUMERIC VALUE 136,139,141-142,146,145 
OFFLINE 68,194,196 
OFFLINE MAP BUILDING 197 
ONLINE 199 
ONLINE SYSTEMS 

OPERATOR REPLY 29,38-39,45 
OPERATOR, CONSOLE 133-134 
ORDERED REQUEST 150 
ORIGINATING TASK 124,150 
ORIGINATING TASK RESUMES CONTROL 150 
OS 133,180 
OS lSAM FIl.LER NAME 26 
OS/360 50 
OUT 198,203 
OUTPUT 76,125,155,158,165,197,200,203 
OUTPUT MAP DESCFIPTION 204 
OUTPUT MAP FIELDS 204 
OUTPUT $P FORMATS 194 
OUTPUT GENERATION 198 
OUTPUT MAP, ATTRIBUTES OF AN 195 
OUTPUT MAPPING FUNCTIONS 204 
OVERLOAD CCNDITIONS 55 
OVERLOAD, SYSTEM 46,55-56 
PACKTIME 140,147 
PARAMETER LIST 185 
PARAMETER, BLKKEYL 180 
PARAMETER, CBUFF 76 
PARAMETER, DATASET KEYWORD 92,95 
PARAMETER, DISCONNECT 75 
PARAMETER, ERASE 82 
PARAMETER, ERASEAUP 76 
PARAMETER, OPTIONAL 1-86 
PARAMETER, PASSBK 76 
PARAMETER, PSEUDOBIN 78,156,158 
PARAMETER, READB 75-;'';'' 
PARAMETER, RESET 75 
PARAMETER, SAVE 81 
PARAMETER, SEGS ET KEYWORD 86, 92 
PARAMETER, SSACOUNT 1 87 
PARAMETER, TRANSPARENT 77 
PARAMETER, WAIT 80,83 
PARAMETER, 3270 KEYWORD 198 
PARAMETERS, DISCUSSION OF THE 71 
PARAMETERS, INDEX KEYWORD 86 
PARAMETERS, PASSING OF 17 
PARAMETERS, STAND-ALONE 75 
PARAMETERS, WRITEL 78,82 
PARENTHESES 11,185,188 
PARMCOUNT' 1 86- 1 87 
PASSBOOK 76,159-161 
PASSBOOK CONTROL 159-161 
PASSBOOK INDEXING 160 
PASSBOOK PRESENT 163 
PASSBOOK WRITE 160 
PASSBOOK, BANKING 76 
PASSBOOK, POSITION OF THE 160 
PASSBOOK, FRESENq;: OF A 74,160,1 63 
PCB DSECT 190 
PCB POINTERS 183,190,193-194 
PCB POINTERS, BASI'; OF A STRUCTURE OF 193 
PCB POINTERS, DECLARED STRUC'IURE OF 193 
PCB POINTERS, LAYOUT OF THE 191 
PCB'S 183-184,1'86-194 
PCB'S OF PSB 190 
PCT 46,55,152,184 

277 

PDIR 184 
PEQU 156 
PERFORMANCE; DEGRADATION OF 76 
PERFORMANCE, EVALUATION- SYSTEM 46 
PERFORMANCE, SYSTEM 6 
PHYSICAL 124,180-182 
PHYSICAl. BlOCK 102 
PHYSICAL DATA RECORD 144 
PHYSICAL KEY 180 -181 
PHYSICAL RECORD 181 
PLII 164,185-186,193,195,198,205,208-209,219,231,243 
PLII APPLICATION PROGRAM, EXAMPl.E OF CICS 44 
PLII APPLICATION P110GRAMMING 39 
FLII COMPILE 10 
PLII EXAMPl.E 163,240 
PLII F 252 
PLII FEATURES, LISTING OF 39 
PLII OP'l'IMIZ ING COMPIL'ER 252 
PLII SUPPORT 252 
PLI'l'DLI, CALL 187,194 
POINTER 31,48,187,191-193 
POINTER VARIABLE 198 
POINTER, BI.L 185,1'91 
POLLING 74,79 
FOOl., DMB 184 
POOLS 184,189 
POS 199-200,202 
PRIMARY DATA SET 176-179 
PRIMARY r;ATA SET, SYMBOLIC NAME OF THE 87 
PRINT 200,199,204 
PRINTER 190,195,199-200,2011 
PRINTER CONTROL CHARACTERS 206 
PRINTERS, LINE 2,214 
PRIORITY 11,46-49,243 
PRIORITY OF A TASK 46,48-49 
PRIORITY OF AN EXISTING TASR, OISPATCHING 48 
PRIORITY SEQUENCE 47 
PRIORITY VALUE 48-49 
PRIORITY, r;ISPATCHING 18 
PRIORITY, NORMAL DISPATCHING 150 
PROCEDURE r;rVISION. START OF 38 
PROCESSING, QUEUE 123 
PROGRAM ilSSEMBLY ERRORS, SEVERITY OF 255 
PROGRAM (:A'ILOG 176 
PROGRAM CHANGES 214 
PROGRAM 9HECK 1, 2 S3 
PROGRAM COINCr-Il'E, EXIT POINTS OF A 60 

~~~g:~ ~~~~~~ LO~~' 626~ 3- 64,66,215 ,223 ,252 ,2511 

PROGRAM .CONTROL TABLE 23,46,55,152
PROGRAM CONTROL TABLE ENTRY 23
PROGRAM ENTRY 9, 1 91
PROGRAM FLCI,j 111,,122,130,152
PROGRAM IN'IERRUPT 253
PROGRAM INTERRUPT MANAGEMENT
PROGRAM IN'IERRUPTS, INTERCEP'IICN OF
PROGRA~ LINKAGE 61
PROGRAM LOAD AREAS 5~
PROGRAM MAINTENANCE 11_
PR()(;RAM MANAC;EM~~'f 1,60

PROGRAM MANAGEMENT DUMP SERVICES 46
PROGRAM NAME SUFFIX 165
PROGRAM PROCESSING TABLE 56
PROGRAM SERVICES 60
PROGRAM SPECIFICATION BLOCK 183
PROGRAM 'IESTING AND !:EBUGGIN-G 214
PROGRAM, CICS TERi>IINAL ABNORMAl. CCNDITION 115
PROGRAM, CICS UTILITY 1,68
PROGRAM, CONVERSATIONAL 189
PROGRAM, INTERVAL CONTROL 153
PROGRAM, pERIALLY REUSABLE APPl.ICA'IION
PROGRAM, SUSPENDING 56
PROGRAM, TERMINAL AllNORMAL CONDITION 73
PROGRAM, TERMINAL CONTROL 78,160
PROGRAM, TERl1INAL ERROR 73
PROGRAM, TRACE 216,220
PROGRAM, TRANSACTION CON'TPOL 251
PROGRAM, TFANSI ENT DATA CONTROL 118
PROGRAMMER, RESPONSIBILITY OF THE 186
PROGRlU'MER, SYSTEM 4
PROGRAMS, APPLICATION 180,183,190,194-195,197,

199,202-203,205,215,254
PROGRAMS, CICS MANAGEMENT 18,46,48,55,215,220
PROGRAMS, HIGH-LEVEL LANGUAGE 161
PROGRAMS, RECOMPILING EXISTING 114
PROGRAMS, USER APPLICATION 6,18-19,21-22,55,59,214
PROGRAMS, USER-WRITTEN APPLICA'IION 60-61,63-64,

69-72,74,154,199,201,205,214
PROT ATTRIEUTE 200
PRTY 47-49,243
PSB 183-184,188-190,192,249
PASB DIRECTORY 184
PSB POOL 184
PSBGEN 184
PSENAME 184,249
PSEUDOBIN 75,81,156,245
PURGE 46- 47,55- 56, 116, 121,228,244,247
PURGE/NOPURGE 55
PWRI 157
QARGADR 47,52-54,244
QARGLNG 47,52- 5 4,244
QUASI-REENTRANCE 6,29,60,183
QUASI-REENTRANT 39,45,190
QUEUE 56,114-115,121-123,144,221,231,251
QUEUE, INTRAPARTITION 123
QUEUES, EXTRAPARTITION INPUT 122
RDIDADR OPERAND, DISCUSSION OF THE 180
READ-ONLY 84,174
READIWAIT 202
READL 75,78,245
READREC 89-92
READUPD 94
REENTRANCE 38
REENTRANCE ALLOWS 6, 60
REENTRANT 39,44,124,183,240
REFRESH 223
REFRESH CSA TIME 224
REGISTER, ASSIGN BASE 98,102
REGISTER, BASE 89-91,94,96,98
RELATIVE Bl.OCR 180,182

Page of SH·1047-4
Added Jan. 5, 1973
By TNL SN20.2983

Page of SH-1047-4
Added Jan_ 5, 1973
By TNL SNZO-Z983

RELATIVE POSITION 185
RELATIVE RECORD 88
RELATIVE RECORD NUMBER 181
RELATIVE TRACK 102,180-181
RELATIVE TRACK KEY 181
RELBLK 181
RELEASE REQUEST 98-99
RELREC 84-85,87,99,102,245-2l16
RELTYPE 180
REQID 132, 13l1, 136-1l12, 1l14-147,149-150,248
REQUEST 98,120-121,150-151,190,253
RESET ACCA 157
RESET, WRITE 154-155
RESETL 85,108-110,112,227,246
RESPONSE CCDES, TESTING OF 110,123,130,151
RESPONSE, END-OF-DATA 1 lI8
RESPONSE, EOT 154
RESPONSE, I/O ERROR 151
RESPONSE, NORMAL 111,122,130,152
RESPONSE, NORMAL END-OF-FILE 152
RESPONSE, NOSPACE 123
RESPONSE, OPERATOR 189
RETMETH 84 -85,87-88,99,101-102,245- 246
RETRIEVAL CALL 186
RETRIEVAL OF A TIME-ORDERED rATA RECORD 149
RETRIEVAL 'IHROUGH 152
RETRIEVAL, ESETL RESET SEQUENTIAL 108
RETRIEVAL, RANDOM 2
RETRIEVAL, SELECTIVE
RETRIEVAL, SEQUENTIAL 100,113
RETRIEVAL, TERMINATE SEQUENTIAL 106
RETRY REQUESTS 152
REUSABLE 114
REUSABLE RESOURCES, CONTROL OF SERIALLY 1,52
REUSABLE STORAGE SPACE 124
REUSABLE, SERIALLY 6,60,124
ROLLOUT 32
ROOT 172
ROUTINE, EFROR 102
ROUTINE, EXIT 165-166,168,167-169
ROUTINE, SERVICE 215
ROUTINE, USER-WRITTEN EXIT 166
ROUTINES, ETAM ERROR 157
RSA'S 70,72
RVI 154
SAA 14,28,37,43,58,186
SAACBAR 28,37
SAMPLE PROGRAMS 231
SCHEDULING PROCESS 183
SCREEN FORMATS 195
SCREEN IMAGES 124
SEGIDER 84- 85, 87,99-100,103,108,110-111 ,245-2l16
SEGMENT DEFINITIONS 171
SEGMENT INDICATOR FIELD 172
SEGMENT INDICATORS 171-172
SEGMENT INDICATORS, SEGMENT DISPLACEMENT TYPE 172
SEGMENT SEARCH ARGUMENTS 183-185
SEGMENT SEARCH ARGUMENTS, NAMES OF 187
SEGMENT SET IDENTIFICATION 22
SEGMENT SET NAME 101,104,175

SEGMENT SET, SYMBOLIC NAME CF TEE 87,101,108
SEGMENT SETS 86,92,100-101,104,170,172-175
SEGMENT, FIXED-LENGTH 171
SEGMENT, ROOT 17 1-174
SEGMENTATION 11
SEGMENTED I:ATA SET 88,170,173-175
SEGMENTED RECORD 26,lI2,86-88,92-93,101,169-171,173-174
SEGMENTED RECORDS, USE OF 170
SEGMENTS, VARIABLE-LENGTH 174
SEQUENTIAL ACCESS METHOD 7l1,21l1
SEQUENTIAL DATA SET 1,68
SEQUENTIAL RECORD 10ll,106,105-106,114
SERVICE INVOCATION 11
SERVICES, TASK 46
SERVICES, TIME 132
SERVICES, TIME-OF-DAY 134
SERVICES, TRANSIENT DATA 120-121
SETL 22,85,99-100,102-103,105-106,108-110,227,246
SETL REQUEST 99-100,104,108
SHIFT CHARACTERS 76,160
SIGN ON/SIGN OFF 154
SINGLE-SERVER 52
SINGLE-SERVER RESOURCE PROTEC'IION REQI:ESTS
SKIP 108
SKIP, AUTO 196
SLACK 172
SORT 11
SPECIFICATION OF ATTRIBUTES
SPECIFICATION, PRINTER FORMAT
SPECIFICATION, RECORD FORMAT
SSA DFHSC TYPE 190
SSA LIST 188,230
SSA LIST, DESCRIPTION OF THE
SSA-COUNT 193

259
255

114

187

53

SSA'S 183-185,187-188,191,193-194,193,195,194,250
SSA'S, NUMBER OF 185,187
SSACOUNT 185,187,250
SSALIST 185,187-188,191,250
STALL CONDITION 252
STALL CONDITION, SYMPTOMS OF A SYSTEM
STANI:ARD ATTENTION IDENTIFIER LIST
STANDARD ATTRIBUTE LIST 206
STANDARD EXIT ROUTINE BASE NAME
STANDARD POSTING CONVENTIONS
STATEMENT NUMBER 29,31,38,45
STATEMENT, SERVICE RELOAD 32
STATISTICS 18

17

167
50-51

STATISTICS ACCUMULATOR
STATISTICS, TIME SYSTEM
STORAGE ACCOUNTING AREA

2
19,37,43,58

STORAGE ACQUISITION 1
STORAGE ACQUISITION REQUEST
STORAGE ALIGNMENT 234
STORAGE AREAS, ATTRIBUTES OF TEE
STORAGE AREAS, NUMBER OF MAIN
STORAGE AREAS, TYPES OF 71-72

56

39
13

132
206

STORAGE CONTROL 55- 56,169,202,215,222,253
STORAGE MANAGEMENT 1
STORAGE PREFIX 192
STORAGE, ACQUIRE 183,187,190,192,194

278

STORAGE, AUXILIARY 124-127,129-131,152
STORAGE, AUXILIARY TEMPORARY 124
STORAGE, CICS 70,187
STORAGE, CICS DYNAMIC 183
STORAGE, CLASS OF 57-58
STORAGE, CONSERVATION OF MAIN
STORAGE, DUMP TRANSACTION 69
STORAGE, DY"IAMIC 13,169,185
STORAGE, FREE 118
STORAGE, PROGRA~1 56
STORAGE, RELEASE ALL TERMINAL 59
STORAGE, RELEASE MAIN 59
STORAGE, SSA DYNAMIC 185
STORAGE, STATIC 183,190
STORAGE, SYMBOLIC 125
STORAGE, TEMPORARY 27,36,43,124-130
STORAGE, TEMPORARY STORAGE AUXILIARY 124
STORAGE, TERMINAL 39,45,56,59
STORAGE, TRANSACTION 56,124,127
STXIT 11
STYFE 216-218,249
SUPERVISORY, SERVICE INVOCATION CICS FROVIDES
SUSPEND 221,234
SUSPENDED TASKS
SUSPENSION OF A TASK
SVC 11

56,129
137

SWITCHED LINES 75
SYMBOL, START 82
SYMBOLIC DESCRIFTION MAP 194,196-197
SYMBOLIC DESTINATION 114,117,119,121
SYMBOLIC DESTINATION IDENTIFICATION 122,130
SYMBOLIC LABELS 196
SYMBOLIC REFERENCES 114,199

196

46

SYMBOLIC STORAGE DEFINITION MAP
SYMBOLIC TERMINAL II:ENTIFICl\TION
SYMBOLIC TRANSACTION IDENTIFICA'IION

143,146,152
142-144,146,152

SYMDMP 11
SYNCHRONIZATION, LINE 74
SYNCHRONIZATION, PROVIDE TASK 132
SYNCHRONIZATION, TASK 1,50
SYNCHRONIZATION, WRITE 203
SYSOUT 74
SYSTEM INITIALIZATION 13
SYSTEM/? 77-78,156-157
SYSTEM/7 SUPPORT, Il-(PLEMENTATION OF 156
SYSTEM/?, DIAL-UP 157
SYSTEM/?, MULTIPOINT 156
TABLE, ALLOCATED TERMINAL CONTRCL 24,33,39
TABLE, CORRECT TRANSLATE 161
TABLE, PROCESSING PROGRAM 19,63-65,203,205
TABLE, TRACE 69,71-73,215-216,218,217-219
TABLES, TRANSLATE 264
TAPE 1-2,68,114
'1'ASK 11,13,50,68,252
TASK CCNTFOL, USE OF THE 66
TASK MANAGEMENT SERVICES 18
TASK MANAGEMENT STORAGE SERVICES 46
TASK OF EIGHER PRIORITY 50
TCA -144,147-149,151,166-167,182,190,215,221,251-254
TCA FLAG 216

TCA STRUCTURE, CECLARATION OF TEE 40
TCA, CHAIN OF 18
TCA, CICS CONTROL SECTION OF THE 220
TCA, CICS SYSTEM CONTROL SECTION OF TEE 25
TCA, COMMUNICATION SECTION OF 'IHE 25
TCA, DISCUSSION OF THE 47
TCA, EXTENSION OF THE 23
TCA, FIELDS OF THE 18,100,107-108
TCA, REQUESTING PROGRAM 215
TCA, REQUESTING TASK 69
TCA, TASK 253
'I'CABMSCP 204
TCABMSMA 205
TCABMSMN 204-205
TCACBAR -34,38,54,89- 91,94,97,99,103,105,110 ,.n8
TCACSIB 57
TCADCNB 73
TCADCSA 73
TCADCTR 226
TCADLECB 184,254
TCADLFUN 191,193-194
TCADLIO 187,186-187,191,194
TCADLPCB 184,189-191,193-194,230
TCADIPSB FIELD 184
TCADLSSA 185,188,191
TCAFCAA 22,41-42,87,89-100,102-112,182
TCAFCAAA 18,79-80,233,240
'I'CAFCAI 22
TCAFCDI 22,111
TCAFCRC 87,93,96,98,110-111,113
TCAFCRI 22
TCAFCSI 22,104,111
TCAFCTR 23,87,93,96,98,110-111,113 ,227 ,230
TCAFCURL 93,182
TCAICDA 135,146-147,149,151
TCAICQID 137-138, 140,142-144,147,150-152,225
TCAICRC 144,143,146,148,151,224
TCAICRT 137-138,140,143,147,224
TCAICTEC FIELD 138
TeAICTI 143-1411,146-1117,224
TCAICTID 1Q3-144,146-147
TCAICTR 23,144,143,146,148,151,223-225
TCAKCFA 48
TCAKCTI 48
TCAM 74,77,81- 82
TeAM DESTINATION NAME 78
TCAM MCP 77
TCANXTID 66
TCAPCAC 19,67-68
TCAPCLA 65
TCAPCPI 19,63-67,253
TCAPCTR 252
TCASCIB 22,57-58
'ICASCNB 21-22,57-58
TCASCSA FIELD 19,58
TCASCSA 27 29
TCASYAA 25
TCATCDP 49
TCATCEA 51-52
TCATCQA 53-55

TCATCQAL
TCATDAA
TCATDAA,
TCATDDI
TCATDRC
TCATDTR
TCATSDA
TCATSDI
TCATSRC
TCATSTR
TCT

55
27,42,118-119,228,235,241

CONTEN'IS OF 119
117-121,233-235,238-239,241
122-123
23,122-123,228,253
27,43,128
129,233,235
130-131
23,130-131,228

24,33,39,74,83,152,157
TCTLE
TCTTE

81-82
45,56,61,66,69-73,75-76,78-82,159-161

206 TCTTEAID
TCTTEAR
TCTTEOS
TCTTEPCF
TCT'l'EPCR
TCTTEPCW
TC'ITESC FI ELD
TCTTESID
TCTTETAB
TCTTETI FIELD
TC'ITETID FIELD

29,32-33,38,78-80,233,238,240
168

159,161,163
163-164
159,163-164

56
161,163
159-162

78
163

TCTTETM 161
TDADDR 27,115-118,234- 235,238-239,241,246
TDIA 14,26,35-36,42,58-59
TDIAEAA 120
TDIABAB 120
TDIABAR 36,42,119-120,235,239,241
Tl:IADBA 241
TDIAIRL 235,241
TDOA 14,27,36,42-43,58-59
TDOABAR 27,36,116-117
TDOAVRL 27, 117- 118
T1!:MPORARY LATA, RETENTION OF 17
TEMPORARY STORAGE CONTROL REQUES'I/RESFONSE 23
TEMPORARY STORAGE SERVICES 125-127,129-130
TERMINAL CONTROL 24,74,79- 82, 202-2 03,205
TERMINAL CCNTRCL TABLE 39,45,74,81,152,161,214
TERMINAL CONTROL TABLE, PREPARA'IICN OF THE 154
TERMINAL CCNTBOL WRITES 80
TERMINAL ID 1113-1114,1117,221
TERMINAL Il:ENTIFICATION 124,146,1118,157
TERMINAL INPUT RECORDS 34,41
TERMINAL INPUT/OUTPUT 59
TERMINAL INPUT, USER DEFINI'IICN OF A
TERMINAL LCG 115
TERMINAL MANAGEMENT 1,74
TERMINAL MANAGEMENI' FILE SERVICES
TERMINAL, DESTINATION 168
TERMINAL, MASTER 77,115,154
TERMINAL, OUTPUT 168
TERMINALS, BINARY SYNCHRONOUS
TERMINALS, KEY-DRIVEN 74
TERMINALS, LIST OF 77
TERMINALS, POINT-TO-POINT
TERMINAlS, SIMULATION OF
TERMINALS, 2260 74,81
TERMINATION, SYSTEM 229

155
2

TESTING INDICATORS TCTTEPCR 159
TESTING REQUIREMENTS 214
TESTING, DEBUGGING 214
TIME 136-137,139-142,145

25

TIME MANAGEMENT ALLOWS, FEATURE CF 141
TIME SERVICES 150-151
TIME-ORDERED 133
TIME-ORDERED REQUEST 152
TIME-ORDERED SERVICE REQUEST 149
TIOA 77-83,156,158,165,167-168,195-196,202-205,207
'IICA FCRMAT 202
TIOA LENGTH 81- 82
TIOA, DUMP OF THE 69,80
TIOA, MAPPED 203,205
TlCAEAA 208
TIOABAB 208
'IIOACLCR FIELD 168
TIOADBA 76,79-80,234
TIOAL 81
TIOALAC 77,158,168
'IIOAMBA 233
TIOAMSG 38,44
TIOATDL FIELD 79,167
TIOATDL 21 29
TRACE 11,215,219,221-230
TRACE CONTROL FUNCTIONS 215
TRACE FEATURE 215,219
TRACE TABLE 219
TRANSACTION DUMP 70-71
TRANSACTION FORMATS 214
TRANSACTION ID 143-144,147,221-230
TRANSACTION INITIATION 74
TRANSACTION STORAGE, DUMP OF 70
TRANSACTION SYNCHRONIZATION 1
TRANSACTION TCA 184
TRANSACTION TEST CASES 214
TRANSACTION TYPE 70
TRANSACTION, AU'lOMATICALLY INITIATED 157
TRANSACTIONS, TIME- INITIATEt 155
TRANSDATA 27,56,58-59,244
TRANSID 47-48,61,66,132,134,141-146,243-244,248
TRANSIENT tATA DESTINATION CSHT 251
TRANSIENT tATA MANAGEMENT FIELl: 23
TRANSIENT tATA SERVICES 114-115,117,119,121-122
TRANSLATION 76-77
TRANSMISSION TIMES 76
TRANSMISSICN, END OF 154-155
TRANSPARENT 75,245
TRIGGER 115
TRMIDER 132,134,141,144,151-152,248-249
TRMIDNT 132,134,141,143-147,157,248
TRNID 156
TRNIDER 132,134,141,144,151-152,248-249
TSDADDR 27,125-129,131,233-234,247
TSIOA 14,27,36,43,58-59
TSIOABAA 43
TSIOABAB 43
TSIOABAR 28,36,43,126,128
TSIOAVRL 27,36,43,126-129
TTR 101

279

TTR, ZONED 181
T',JA 71-73,81,89-92,94- 95,97,102,105-106,109
TWA, LAYCUT OF THE 34
TWA, SIZE OF THE 23
TWAFIELD 31
TWANXREC 169
TWAQEMCI 236,239,241
TWARBAI 235,239,241
TWAREC 166-169
TWATDDI 233-235,238-241
TWATSRL 233-234
TWAWA 167-169
TWAXTRTN 166-167,169
TWAXTRTN, MODIFICATION OF THE 166,168
TXA 69,71-73,221
TYPOPER 84-85,87-88,90-97,111,245
UNDEFINED RECORDS 83,182
UNIVERSAL SEGMEN'I SET 175
UPDATE REQUEST 88
UPDATE, RESULT OF AN 171
UPDATED RECORD 94-95
UPDATING SEGMENT TYPES 183
USER EXITS 165-166
USER EXI'IS, USE OF THE 165
USER FIELDS 204
USER PROGRAM REGISTERS 9
USER STATISTICS ACCUMULATORS 4 17
USER STORAGE, DEFINITION OF 43
USER TERMINATION CODE 19
USER-DEFINED 5S, 167,176,178
UTILITIES, OPERATING SYSTEM 214
VARIABLE LENGTH 114,116-117,171
VARIABLE LENGTH RECORDS 183
VARIABLE-LENGTH 168,170,182
VARIABLE-LENGTH DATA SETS 118
VARIABLE-LENGTH RECORDS 83,114,118,170-171,174,181
VARIABLE-LENGTH SEGMENT, MAXIMUM LENGTH OF A 171
VARIABLES, ELEMENTARY CHARAC'IER 206
VARIABLES, SINGLE-CHARACTER 206
VIDEO 124
VIDEO DISPLAY PAGING 2
WAIT 47,50-52,83,132,135,137-138,149-150,203
WAIT REQUEST 136,152
WCC 77
WORKING STORAGE, AMOUNT OF 23
WORK REG 20-21
WRITE 38,44,75-78,77-83,156-158
WRITE CONTROL CHARACTER,

HEXADECIMAL REPRESENTATION OF THE 77
WRITE REQUEST 155
WRITE, COMPLETION OF A 81,204
WRITE, ISSUE 79-80
WRITEL 75,245
WRITER, BEFOR'l' 11
XCTL 11,19,61,611,223,244
ZERO SEVERITY 262
2260 77
2260 DISFLAY STATION 168
2265 77
2721 164

2770 158
2780 154,158
2972 76
2980 154,159-161,163
2980 GENERAL BANKING TERMINAL SYSTEM 76,159,161
2980 SEGMENTED WRITES 160
2980 SHIFT CHARACTERS 160
2980 TRANSLATE TABLES 160-161
2982 BUFFER LENGTH 160
3270 168,194,197-198,200-202.209,2119,254,256,262
3270 ATTENTION IDENTIFIERS, SET OF 206
3270 AUDIBLE ALARM SPECIAL FEATURE 199,2011
3270 BASIC MAPPING SUPPORT 205
3270 BUFFER 76,194
3270 BUFFER, CONTENTS OF THE 75
3270 DATA EUFFER 199
3270 DATA STREAM 194-195,203,205
3270 FORMATS, EXFANSION OF THE 195
3270 FUNCTION 206
3270 INFORMATION DISPLAY SYSTEM 2,75-77,168,206,210
3270 MAP GENERA'IION 255
3270 MAFPING SUFPORT 253
3270 OPERA'IOR 199,204
3270 PRINTER 206
3270 SCREEN 195
3735 78,155-156
7770 165

Page of SH·10474
Added Jan. 5, 1973
By TNL SN20·2983

SH20-1047·4

International Bu.lne •• Machine. Corporation
Data Proce .. lng Dlvl.lon
1133 We.tche.ter Avenue, White Plain., New York 10804
(U.S.A. only)

IBM World Trade CorporaUon
821 United Nations Plaza, New York, New York 10017
(International)

("')
c:
~ o
3
!!1
::J

6'
3
III g.
::J

("')
o
::J
q
£.
en
-<
~
(I)

3
n
g

BlliI jrechnical Newsletter

Customer Information Control System (CICS)
Application Programmer's Reference Manual

© IBM Corp. 1972

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

This Technical Newsletter provides an index (pages 273-279) to the subject manual.

Please file this cover letter at the back of the manual.

SN20-2983

January 5, 1973

SH20-1 047-4

None

IBM Corporation, Technical Publications Dept., 1133 Westchester.Avenue, White Plains, N.V. 10604

Printed In U.S.A.

~~ }eChnical Newsletter

Customer Information Control System (CICS)
Application Programmer's Reference Manual

© IBM Corp. 1973

This Newsletter No.

Date

Base Publication No.

Previous Newsletters

SN20-9012
April 11, 1973

SH20-1047-4

SN20-2983

This Technical Newsletter provides replacement pages for the subject manual. These replacement pages
remain in effect for subsequent versions and modifications unless specifically altered. Pages to be
inserted and/or removed are listed below.

Contents
1
1.1 (add)
2
11,12
31
31.1 (add)
32
39
39.1 (add)
40
47
47.1 (add)
47.2 (add)

48
61,62
83,84
85,86
89,90
97,98
98.1 (add)
111,112
119,120
120.1 (add)
155
155.1 (add)
156
197,198

198.1 (add)
199,200
201,202
203
203.1 (add)
204,205
205.1 (add)
206,207
208,209
210
227,228
New Reader's Comment Form

Vertical rules in the left margin indicate changes.

Please me this cover at the back of the manual to provide a record of changes.

I BM Corporation, Department J04, 1501 California Avenue, Palo Alto, California 94304

Printed in U.S.A.

SH20-1047-4

International Business Machines Corporation
Data Processing Division
1133 We.tchester Avenue, White Plains, New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

READER'S COMMENT FORM

Customer Information Control System (CICS)

Application Programmer's Reference Manual

SH20-l 047-4

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers) . All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

SH20-1047-4

YOUR COMMENTS PLEASE ..•

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold

•• (> •••

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

Attention: Technical Publications

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

. ~ ..

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM· World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

