
IBM $y11tsm/Sl£J Timi lh~ng Syslatn

FORTRAN· IV Cumpllwr

'!'his publi~~tic>n.desctibes th~ t.pte:tnal
togj.c of the JPJ4 · ~Y.steld/360 Tflti~ §baring
BJ~t~. (TSS/:3,~8) FORTRAN IV c0~ner.

Th+s ~9f!M·,Ji·dCJi~ man~! .i~. di.r~~~ tb
th~ IBM PH~9ME ~fi91ilee~ ~ i~ .. respons~
i~!.• f~r 9f~f'.fJJ ~inten~~~ . It can·. be
»§@4 t9 l9~§~~ §P@~if~c ~~~~ pf the pr9~
"~1H1, -~~- i~ · ~.J!U.i,••· ~~ F'!lffE t<l). _!t!la~e
~ttm;t •~e'~ ~g ~ qg~~~ pJ:ocj:iaJCt
U§tj.n~·, ff"~!"MI l-@sj.~ !1tl.9~lon is not
~~s•ty f.9f "'~~-·-o~tYml i8'I u~e. ...

I

Fi.le ·'No. ·s3~h-2s
F<>rm ·:y:a;;;...201~:.-1

Ptom-a::m .J. nMc
" .·-~~-~-. --~~

Secon4 Edi:tit>n :.(Jahuacyf~'i97oJ:'

, ·i.h*~~i~-~~ ;,~7j~; i;~~s~~·-9~,. an~:·:~a.Jt~.qq>°:lete, Form Y4Br
2019"'-0· and· Tecb:itlicar·Newslettei;s· YZS;i"'~57·i~=.3,i8;-3068, Y28- ·
3082, Y28-3087, Y28-3091, and"Y28-~0'i)7'.: "-" · 'c

... ·.·~ ~-~ --·· ·--~ ·~ ~-:. __ ... i~ .. · ·.~. ~. \'·.· .. ~ · ~ ~:;. : :; .. ff~ .. ~:~-:~tc." ~,. ~:: ..:.:.:.
Ch<;t..Jl9~S ?~ t:.,~ ac~u.aJ.:t ~g~~ ar~ .j.ndi'~!-~ ·¥· follows: A

bullet <• > ne~ t:o ·a. -pa~e-:"il:urrrbE!r ihdi,~~~ j';,h~t the page has
been substantially .revised and should"'f>eLreviewed in its
entirety. A bulll:':!t next to the caption of· an illustration
indicates substantial revision of the illustration. A vert
ical bar in the left ·margin shows the locat_ion of a specific
change; such revis.i,on bars are usual.ly not shown on a page
having a bullet next to the page number.

This edit.ion is cu~r:ent with Version 6, Modification O,. of
IBM System/360 Ti.me Shct.dng System (TSS/360) alld will remain
in effect for all subsequent versions or modifications of
TSS/360. Significant changes or additions to ~is.publica
tion will be provided in new editions or T'echnical Newslet
ters. Before using this pu,blication in connection with the
O{:>eration of IBM systems, refer to the latest edition o~ ~
System/360 Time Sharing System:: Addendum, Form C28-20113, f.or
the editions of pub1ications that are applicable and current.

Specifications contained herein are subject to change from
time to time. Any such change will be reported in subsequent
revisions or Technical Newsletters.

This Pub.lication was prepared for production using an IBM
computer to, update the text and to control. the page and· line
format. Page impressi.ons for photo-offset printi_ng were
ol:;>tained from, an lBtl 14.03 Printer using a special· print
chain.. ·

Requests for copies. of IBM publications should: be ma.de· to
your IBM representative or tio th,e IBM branch offi·ce serving
yo~r lO~li ty.~ . -

A fo~ for re~er's conments appears· at the back of this
p~licatioµ. Ac:idr~ss any a4cU,t.iona1 conmentS concerning the
C9ntents of this p~plication to IBM corpox-ation, Time Sharing
Systein/360 Procjz:amming Publi~ations, Department 643 ~ ·Neigh
borhood Road. Kingston, N. Y. 12401

c Copyr.ight Intex-national ~usiness Machin~·- corporation 1967,
1970

This publication describes the internal
logic of the FORTRAN IV compiler.

Section 1 introduces the compiler's
structure, briefly explaining the primary
functions of each major divi~ion and
describing the interrelationships of these
divisions.

Sections 2 through 7 describe the six
major divisions: they explain the logic
required to implement the basic functions
and objectives and provide a frame of
reference for the program listings. Common
data, such as tables and wt>rk areas, are
discussed only to the extent required to
understand the logic of the major·· divi
sions. Flowcharts compatible with the
level of coverage are also provided, as are
nesting charts which show the linkages
among the subroutines that compose a major
division; they show the called and calling
relationship among the subroutines. In
support of the nesting charts are decision
tables that show the calling relationship
among the slibroutines. and indicate the eon
ditions under which subOrdinate subroutines
are called.

All flowcharts for the routines are in
Section 8 , grouped in . the saine order as ·the 1

routines are presented in the text.

The appendixes contain additional
reference material.

PREFACE

PREREQUISITE READING

Understanding the material contained in
this manual requires knowledge of the
information contained in the following
manuals:

IBM system/360 Time Sharing system: IBM
FORTRAN IV, Form C28-2007•

IBM System/360 Time Sharing System:
concepts and Facilities, Form
C28-2003

IBM System/360 Time Sharing System:
system Logic summary, Form Y2s~2009

Manuals recommended for a fuller unde
rstanding of this manual are:

IBM.System/360 Time Sharing system:
Command system User's Guide, Form
C28-2001

IBM system/3~0 Time Sha.J:"inq System:
Linkage Editdr, Form c2s-2oos

IBM system/360 Time-.sharinq sys.t.em:
A§sembler Langliage;. Form -~~~.:-::2(1;f)O

IBM: system/360 Time .Sharing system: ··
As~eaU:>ler>.Oset .. Macrc(. Instt.rict.ions,
Fotln c2s.-~~P0.4.;'.. -~,· . 1 . '..;;"{- ·· .•. - ; · .· ·:

IBM system/3.60 Time ·sharing system:
·: . FORTRl\N· . Programmer:~ s Gtiide, ~-~rm·:

n2·s:.:.zo2s.. . .(. . •· .. ·' ' .· ~ ' 1
':- .~ .; ·:~ . _. ;• .--:: .. ~ ~:· ~ •.· .::· ~

SECTION 1: INTRODUCTION
Object Program Modules •
Subprogram Calls in OP14 Text •
Object Program Documentation •
compiler Interfaces

Interface With LPC • • • • •
Interface With Virtual Storage
Allocation • • • • • • • • • • •
Interface with Data Management •
Compiler/Service Routines Interface

organization of the Compiler •
compiler Executive Routine •
Phase 1
Phase 2 • • • •
Phase 3
Phase 4
Phase 5 • • • •

SECTION 2: EXECUTIVE •••••
Introduction • • • •
General Infornation

Macro Instruction Usage
Linkage conventions
Register Notation and conventions
Storage Map • • • • • • • • • • •
Brief Routine Description • • • •
Use of the Phase Controller PSECT

1
1
1
2
2
2

2
2
2
3
3
3
4
6
7
7

8
8
8
8
8
9
9
9

(EXCOM) by other Exec Routines •••• 11
Service External Inter£ace • • • • • • • 11
source Statement Preparation •.••••• 12
Phase and Interpnase-~ile Controller:
The compiler Work Areas and Intercom •
Compiler Edit Lines • • • • • • • •
compiler Diagnostic Inf ornation

• 12
17

•• 17
19

• • 20
20

Miscellaneous • • • • • • • • •
Routine Descriptions • • • • • •

CEKTA -- Phase Controller (PBC)
CEKTC -- Get Next.source Statement
(GNSS) • • • • • • • • • • •
CEKTD -- Process Terminal
Modifications ·(MOD) · • • • •
CEKTE -- Receive Diagnostic

• • 24

•• 26

Message (RDM) • • • • • • • • • • • 28
CEKTF -- Constant Filers (CONFIL) • 28
CEKTH -- Master Input/Output (MIO) • 32
FORTRAN to GETLINE Call • 32
GETLI NE Entry • • • • • • • 32
Line Number to GETLINE • • • • 32
Line Number From GETLnrn •
Length of Line • • •
source Line • • •
Altered Line Table
GETLINE to FORT~ Return
FORTRAN to PUTDIAG Ca 11 • • • •
PUTDIAG Entry • • • • • •
POTDIAG to FORTRAN Return

Operation • • • • • • • • •
CEKTI Analyze console Source Line
(ANALYZ) • • . • • • • • • • • •
CEKTJ ~- Inspect a Console
Character (INSCON) •••••

32
33

•• 33
• • 33
• • 33

33
•• 33

• 33
• 33

• 35

• • 35

CONTENTS

CEKTK -- Move a Line to the List
Data Set (LDMOVE) • • • •
CEKTL -- Build a List Data Set
Buffer (BUILD) • • • .• • •
CEKTM -- Flush a List Data Set
Buffer (FLUSH) • • • •
CEKTQ -- Compiler File Dump
(COMDUMP) • • • • • •
CEKTS -- Compiler Line Dump
(LINPUMP)

SECTION 3: PHASE 1

• 35

• 36

• 36

• 36

• 36

39
Introduction • • • • • • • • • • • • 39

40
41
41
41

Program Representation File (PRF)
Begin Program Entry
Subprogram Entry
Alternate Entry
Label Definition Entry
Equation Entry •
GO TO Entry
Assigned GO TO Entry • • • • • •
Computed GO TO Entry •
ASSIGN Entry • • • • •

• • 41
41
41
41

• • 41
41
42 Arithmetic IF Entry

Logical, IF Entry •••
CALL Entry • • • • • •
Argument Oef inition Entry
RETURN Entry • • • • • • •

• • • • • 42
• • • • • 42

• 42
• 42

Begin Loop Entry .• • • • • • 42
'End Loop Entry • • • • • • • • • •
CONTINUE Entry • • • • • • •

• 42
• 42

READ, READ Without Unit, and READ
With NAMELIST Entries
WRITE and WRITE ifith NAMELIST

• 42

Entries • • • • • • • • • • • • • • 42
PRINl' and PUNCH Entries • • • • • • 43
Input/Output List Representation
in th~, PRF Entry • • • • • • • • • • 4·3
End 'List Entry .. • • • • • • • • • • 43
END FILE. REWIND, and BACKSPACE
Entries • • • • • • • • • 43
STOP Entry • • • • • ••• • 43
PAUSE Entry • • • • • • • • • • 43
End. Program Entry • 43

Expression File .• • 43
Subscri·pt Express ions

Storage.Specification Tables i.

Dimension Table
Namelist Table • • •

• 43
• 43
• 44

44
• 44 Storage Class Table.

Format Processing
Alphameric constants
Data .Processing

.• • • • • 44
• 44

• • . • • • 44
cross Reference Index .Li.st •

Phase 1 Routines,.Functional
oes·cripti'on • • • • • • • •

• 45

4'5
Pass 1·staternent Processors
Pass 2 ~tatement Processors
Expression Processing. and

• 45
... 45

Tr ans la ti on • • • . • • • • •
source Extraction and Conversion •
Loop Processing Service Routines •

.. 45
• 45
• 45

CEKOK -- STOP and' PAUSE Statement
PF Entry Processor (STOP) •• 159
CEKNW -- Arithmetic Expression
Generator (AGEN) •••••••••• 159
CEKML -- Expression Tree Builder
CTRBLD) •••••••••••••• 159
CEKNE -- Weight Subroutine (WGHT} .161
CEKOB -- Common Expression Usage
Count (CSX) • .. • • • • • • • ..162
CEKM: -- Real Plus Generator
(RPLUS) • • • • • • • • • • • .162
CEKMB -- Real Multiply Generator
(RMUL) • • • • • • • • • • • • .162
CEKMA -- Real Divide Generator
CRDIV) · .163
CEKMF -- Integer Plus Generator
(IPLUS) • • • • • • • • • .163
CEKME -- Integer Multiply
Generator <IMPLY) • • • • • • .164
CEKMD -- Integer Divide 3enerator
(IDVDE) • • • • • • • • • • • .164
CEKOV -- Add by Load Address
(LADDR) • • • • • • • • • • • .o 164
CEKM; -- Complex Plus Generat~r
(CPWS) • • • • • • • • • • • .165
CEKOF -- Complex Multiply
Generator (CMUI,) • • • • • .165
CEKOG -- Complex Divide Generator
(CD.IV) • • • • • • • • • • • • • • ~ 166
CEKMB -- Relational Expression
Generator CRLTNL) • • • • • • .166
CEKMI -- Logical Expression
Generator (ANDOR) • • • • .167
CEKMJ -- Maximum Operator
Generator (MAX) • • • • • .167
CEKMK -- External FUnction
Generator (FUNC) • • • • • • • .168
CEKNJ -- Conuna Operator Processing
Subroutine (COMMA) ••••••••• 169
CEKOM -- Open FUnction Control
Routine (DCOM) • • • • • • • • • • .170
CEKOI' -- Open FUnction Processing
Routine (OPEN1) ••••••• 170
CEKOU -- Open function Processing
Routine < OPEN2 > • • • • • • • 171
CEKOX -- Open Function Processing
Routine (OPEN3) ••••••• 171
CEKOY -- Open Function Processing
Routine (OPEN4 > • • • • • • .171
CEKOZ -- Open Function Processing
Routine (OPENS) ••••••• 171
CEKOM2 -- Open Function Processing
Routine (OPEN6) • • • • • • • • • • .171
CEKM\7 -- Memory Access Routine
(MEMC) • • • • • • • • • • • .172
CEKOP -- Load covering Adcon
Routine (COVER) • • • • .172
CEKMZ -- Local Branch Generator
CSADDR) •••••••••••••• 172
CEKNV -- Labeled Branch Generator
(LBIJ • • • • • • • • • • • • • • .173
CEKOS -- Operand Fetch
complement/Store Routine (FETCH) •• 173
CEKND -- Select Operand Routine
(SELOP) • • • • • • • • • •• 173
CEKNF -- Select Position for
operation (SLPOS) .175

CEKOW -- Select One Operand in a
Register (SLONE) • • • • • • • • • .175
CEKNB -- Determine Availability of
Register for Multiplication CSELGM) 176
CEKNA ~- General Register
Availability for Integer Divide
(SELGD) • • • • • • • • • • • • • .1 77
CEKOC -- Operand Status Routine
(KEY) • • • • • • • • • • • • • • • 1 77
CEKOR -- Single Operand Locating
Routine (KEY1) • • • • • • • • • .1 77
CEKMR -- Search General Registers
(FNDAR) • • • • • • • • • • • • • .178
CEKMS -- Search Floating Registers
CFNDFR) • • • • • • • • • • • .178

CEKM"w -- Operand Processing
Routine (OPND) • • • • • • • • • .17 8
CEKMY -- Result-Register Operand
Processing Subroutine (RSLT) • • .179
CEKNG -- Select Single General
Register (SELSlU • • • • • • • • • .180
CEKNH -- Select Even/Odd General
Register Pair (SELDR) ••••••• 181
CEKMQ -- Select Floating Register
(SELFR) • • • • • • • • • • • • • ..181
CEKMM -- Make Initial Assignment
to G~neral Register (ASAR) ••••• 181
CEKMN -- Make Synonym Assignment
to General Register CASARS) •• 182
CEKMO -- Make Initial Assignment to
Floating-Point Register CASFR) ••• 182
CEKMP -- Make Synonym Assignment to
Floating Register (ASFRS> •• 182
CEKMT -- Find Temporary Storage
(FNDWS) • • • • • • • • • • • • • • 18 3

CEKMX -- Release Temporary Storage
(RLS~S) • • • • • • • • • • • • • .18 3

CEKON -- Register Storage Clear
Routine (FLUSH) • • • • • • • • • .18 3
CEKNI -- Code File Output
Subroutine (INSOT) • • • • • • • • .18 4
CEKOQ -- Edit for Code File (EDIT) .184

SECTION 7: PHASE 5 ••••••••••• 186
Introduction • • • • • • • • • • • • • .186
Object Program Module (OPM) •••••• 187

Program Module Dictionary (PMD) ••• 187
PMD Heading • • • • • • • • • • • .187
Control Section Dictionary (CSD) •• 189

Internal Symbol Dictionary (ISO) ••• 194
Heading • • • • • • • .194
Section Name Table • • • • • •• 194
Statement Number Table • • • .194
Symbol Table • • • • • • • • •• 194

Routine Descriptions • • • • • • .195
CEKSA -- FORTRAN Compiler OUtput
Generator (PHASES) ••••••••• 195
CEKSB -- Object Program Module
Builder (BUILD) •••••••••• 198
CEKSC -- Common Control Section
Generator (CMSEC) • • • • • • .199
CEKSF -- Code Control Section
Generator (COSEC> ••••••••• 200
CEKSG -- PSECT Builder (PRSEC) ••• 203
CEKSD -- Preset Data Processor
(SPECS) • • • • • • • • ·.206
CEKSH -- Internal Symbol Dictionary
Generator (ASSIST) ••••••••• 206

CEKSI -- Object Program
Documentation (EDIT) •••••••• 207
CEKSJ -- Symbol Table Sort (SYMSRT) 211
CEKSE -- Output Page Heading
(PHEAD) • • • • • • • • • • •
CEKSL -- Constant Conversion
(CONCV) • • • • • • • •
CEKSK -- cross Reference List

. 212

• 212

Routine (CRFSRT) • • " •. 212

SECTION 8: FLOWCHARTS .214

APPENDIX A: INTERPHASE TABLE AND FILE
FORMATS • • • • • • • • • • • • • • 6 31
Program Representation File CPRF> • • .631
Storage Specification Tables • • •• 636
Preset Data Tables • • • • • • .639

Entry Formats • • • • • • •• 639
Storage Class Table CSTCLTB) •••••• 641
Program File CPF> Formats output by
Phase 3 • • • • • • • • • ••••• 641

Field Identifiers • • • • • • 642
Entry Formats •• 642

Code File Format • • • • .645
Symbol Table • • • • • • • •• 645

General Format • • • • •• 645
Specific Descriptive.Part Formats
of Intrinsic and Library Functions .646
Constant Format • • • • • • .648
Label Format • • • • • • • • • 649
Address Constant Format •• 649

Intercom Table • • • • • • • • • 650

APPENDIX B: TSS/360 LINKAGE CONVENTIONS 657
Introduction • • • • • • • • • • • .657
co~ventions For Type I Linkages
(Standard> • • • • • • • .657

Register Conventions • • .657
Save Area • • • • • • .657
Parameter List, Type I Linkage ••• 658
Type I Linkage, Return and Entry
Linkage and Return Code

RestriCted Linkage Con~entions •
Scope and Applicability of

.658

.658

Restricted Linkage ••••••••• 658
Register usage and Assignment in
Restricted Linkage • • • • • • • • .658

.659

.659-
Macro ·Instruction Support

INVOKE MaCJ;O •
STORE Macro • • • •
RESUME Macro • •

APPENDIX C: FORTRAN INTERNAL MACRO

• • • 660
•• 660

INSTRUCTION USAGE • • • • • • • • .662

APPENDIX D: LIST OF MA.:fOR TABLES
REFERENCED BY FORTRAN ROUTINES • • .664

APPENDIX E: MODULE DICTIONARY • • 66 7

~PENDIX F: LINKAGE EDITED COMPILER
ROUTINES LISTED BY CODED IABELS
(MODULE NAMES) •• 679

INDEX •• 684

ILLUSTRATIONS

FIGURES

Figure 1. FORTRAN IV Compiler
External References • • • • • • 3
Figure 2. Compiler Component
Organization • • • • • • • • • 4
Figure 3. Compiler Information Flow 5
Figure 4. Compiler Interfaces 12
Figure 5. Source-Statement-
Preparation Modules • • • • • • • 13
Figure 6. summary of Phase and
Interphase File Control Activities 14
Figure 7. Symbol Table Stora9e Layout 15
Figure 8. Process Compiler Edit Line
Function • • • • • • • • • • • • • • 16
Figure 9 • Compiler Diagnostic
Features • • • • • • • ~ • • • • • • 19
Figure 10. Testing for Diagnostic
Input and Processing Diagnostic
Information Lines • • • • • • • • • 20
Figure 11. Processing Diagnostic
Information Following Return From Each
Pha.se • • • • • • • • • • • • • • • • • 21
Figure 12. Processing of Unexpected
Interruptions During Compilation ~ • • • 22
Figure 13. Phase 1 Interface 39
Figure 14. Phase 1 Storage •••••• 40
Figure 15. Phase 1 Nesting Chart • • • 47
Figure 16. Symbol Table Save Area ••• 55
Figure 17. component Storage Area •• 13
Figure 18. Phase 2 Nesting Chart 82
Figure 19. Phase 2 General Flow ••• 84
Figure 20. Sort Table Entry •••••• 84

Figure 21. Variable List, Group
Connection List, and Group Table
Entries • • • • • • • • • • • •
Figure 22. Phase 3 Nesting Chart
Figure 23. Phase 3 Storage Map
Figure 24. Expression Tree
Figure is. Name Table •
Figure 26. MRM Table •••••
Figure 27. MRMFR Table
Figure 28. Loop Table
Figure 29. Phase 4 Nesting Chart
Figure 30. Phase 4 Master Control
Figure 31. I/O Initialization

. . s
.10

•• 10
•• 13
• .13
• .13
• .13
• .13

••• 14
•• 15

Parameter List • • • • • • • • • • 15:
Figure 32. I/O Initialization Control
Bytes • • • • • • • • • • • .151
Figure 33. Stack Table Entry •• 16C
Figure 34. INSOT Input Parameters •• • 18l
Figure 35. Format of PMD Entry •• 18f
Figure 36. FORTRAN Internal Symbol
Dictionary ••••••••••••••• 19L
Figure 37. Phase 5 Nesting Chart ••• 19E
Figure 38. Phase 5 General Flow •••• 199
Figure 39. Output Listing Format
<Part 1 of 2> • • • • • • • • • • • • • 209
Figure 40. CEKTD. Compiler Exec
Process Terminal Modifications (Part 1
of 4) •••••••••••••••• 651
Figure 41. Alphabetically Sorted
Listing of Intercom Items. With
Displacements (Part 1 of 2) ••• 655

Table 1. Executive Storage Map • • •
Table 2. Work Area A Storage Layout
Table 3. Work Area B Storage Layout
Table 4. Work Area c Storage Layout
Table 5. Preparation of Constant
Receiving Area by CONFIL • • • • • • • • 29

10
. 15
• 15
• 15

Table 6. Constant Chain Anchors and
Table Bases • • • • • • • • • • • • 30
Table 7. CONFIL Storage Assignment
No-Hole Branch Tal:tl~ TFNOHO • • • • • • 30
Table 8. CONFIL Storage Assignment
Hole Availability Table • • • • • • • • 31
Table 9. CONFIL Storage Assignment
Byte Alignment Branch Table TFBAL
Table 10. Phase 1· Decision Table

• 32

(Part 1 of 8) ••••••••••••• 48
Table 11. Encoding of FORMAT Symbols • 58
Table 12. Translation of Format Codes • 59
Table 13. Operator Precedence • • • • • 66
Table 14. EXPF Entries (Real Base> • • 69
Table 15. Library Function Names • • • 71
Table 16. Assemble Components
Character Table • • • • • • • • • • • • 74
Table 17. Assemble components
Decision Table • • • • • • • • • 75

TABLES

Table 18. Asstgnment/Nonassignment -
Character Table • • • • • • • • • • • • 7 8
Table 19. Assignment/Non.assignment
Precedence Table •••••••••••• 78
Table 20. Nonassignment Type Statement
Identification • • • • • • • • • • • • • 79
Table 21. Statement ID Numbers • • 79
Table 22. Phase 2 Decision Table ••• 83
Table 23. Phase 3 Decision Table
(Part 1 of 4) •••••••••.. 102
Table 24. Phase 4 Decision Table
(Part 1 of 12) ••••••.•••••• 141
Table 25. Operand Conversion Function
Decision Table • • • • • • . • • • • • .160
Table 26. Complex Division Left
Operand Conversion FUnction Dec.ision
Table • • • • • ••••••• 161
Table 27. Operand Types Processed by
CMUL • • • • • • • • • • • • .165
Table 28. Operand Types Processed by
CDIV • • • • • • • • • • • • .166
'I' able 29. Phase 5 Decision Table
(Part 1 of 3) ••••••••••••• 196

CHARTS

Chart AA. Executive Overall Flow --
CEKUA (Page 1 of 2) •••••••••• 216
Chart AB. Phase Controller <PHC) --
CEKTA (Page 1 of 5) •••••••••• 218
Chart AC. Get Next Source Statement
(GNSS) -- CEKTC (Page 1 of 4) ••• 223
Chart AD. Process Terminal
Modifications (MOD) -- CEKTD (Page 1
of 2) ••••••••••••••••• 227
Chart AE. Receive Diagnostic Message
(ROM) -- CEKTE • • • • • • • • • • • • • 229
Chart AF. Constant Filers (CONFIL> -
CEKTF (Page 1 of 8) • • • • • • • • • • 230
Chart AG. Master Input/Output Routine
(MIO) -- CEKTH (Page 1 of 2) •••••• 238
Chart AH. Analyze console source Line
(ANALYZ) -- CEKTI .(Page 1 of 2) • 240
Chart AI. Inspect a Console Character
(INSCON) -- CEKTJ • • • • • • .. .242
Chart AJ. M:>ve a Line to a List Data
Set (LDM>VE) -- CEKTK •• 243
Chart AK. Build a List Data Set
Buffer (BUILD) -- CEKTL •• 244
Chart AL. Flush a List Data Set
Buffer (FLUSH) -- CEKTM ••• 245
Chart AM. Phase 1 Main Loop CPBlM) -
CEKAD (Page 1 of 4) •••••••••• 246
Chart AN. Assignment Statement
Processor CEQUA) -- CEKAK •• 250
Chart AO. EXTERNAL Statement
Processor CEXTE) -- CEKAM •• 251
Chart AP. GO TO Statement Processor
(GOTO) -- CEKAQ (Page 1 of 4) •• 252
Chart AQ. IF Statement Processor (IF)
-- CEKAR (Page 1 of 2) ••••••••• 256
Chart AR. Type Statements Processor
(TYPE) -- CEKAS (Page 1 of 4) ••• 258
Chart AS. DIMENSION Statement
Processor CDIMN) -- CEKAU ••• 262
Chart AT. COMMON Statement Processor
(COMM) -- CEKAV (Page 1 of 3) • • • • • 263
Chart AU. EQUIVALENCE Statement
Processor (EQUI) -- CEKAY (Page 1 of 2) 266
Chart AV. DO Statement Processor (DO)
-- CEKAZ • • • • • • • • • • • • • • • • 268
Chart AW. ASSIGN Statement Processor
(ASS!) -- CEKBC (Page 1 of 2) • • • • • 269
Chart AX. File Control .Statement
Processor (FCON) -- CEKBD (Page 1 of 2) 271
Chart AY. Input/Output statement
Processor CRwIO) -- CEKBE (Page 1 of 6) 273
Chart AZ. FORMAT Statement Processor
(FORM) -- CEKBF (Page 1 of 6) .279
Chart BA. PAUSE, STOP, RETURN
statement Processor CPSR) -- CEKBG
(Page 1 of 4) • • • • • • • • • • • 285
Chart BB. NAMELIST Statement
Processor CNAML) -- CEKBH (Page 1 of 2) 289
Chart BC. BLOCK DATA Statement
Processor (BLDA) -- CEKBI ••••••• 291
Chart BD. DATA Statement Processor
(DATA) -- CEKBM • • • • • • • • • • • • 29 2

Chart BE. IMPLICIT Statement
Processor CIMPL) -- CEKBN (Page 1 of 3) 29~
Chart BF. Subprogram Entry statement
Processor (SOBE) -- CEKBS (Page 1 of 5) 296
Chart BG. END Statement Processor
(END) -- CEKAL ••••••••••••• 301
Chart BB. Executable Statements, Pass
2 (EXEC2) -- CEKAX • • • • • • • • • • • 302
Chart BI. Subprogram Entry
Statements, Pass 2 (SUBE2) -- CEKBT •• 303
Chart BJ. CALL Statement, Pass 2
(CALL2) -- CEKBV • • • • • • • • .304
Chart BK. Subscript Processor (SOBS)
-- CEKAG (Page 1 of 6) ••••••••• 305
Chart BL. Expression Processor CEXPR)
-- CEKAI (Page 1 of 13) • • • • • .311
Chart BM. Conversion Subroutine
(CNVRT) -- CEKAN (Page 1 of 3) • • • 324
Chart BN. Statement Function
Definition (SFDEF) -- CEKBK .327
Chart BO. Statement Function
Expansion (SFEXP) -- CEKBL (Page 1 of
2) • • • • • • • • • • • • .328
Chart BP. Function Classifier CFNCLS)
-- CEKBX •••••••••••••••• 330
Chart BQ. Library Function Selector
(LIBN) -- CEKBY • • • • • • • • • .331
Chart BR. Constant Arithmetic
Subroutine (ARITB) -- CEKCB ••• 332
Chart BS. Term Processor CTEMPRO)
CEKCG ••••••••••••••• 333
Chart BT. Actual Argument Service
Routine (AARG) -- CEKCR .334
Chart BU. Constant Arithmetic
Interrupt (CHKINT) -- CEKCS •• 335
Chart BV. Extract Source Character
(ESC) -- CEKAB ••••••••••••• 336
Chart BW. Assemble Components CACOMP)
-- CEKAE (Page 1 of 8) • • • • • • • • • 337
Chart BX. File Real Constant CFLRC)
-- CEKCB •••••••••••••••• 345
Chart BY. Insert variable in Symbol
Table (IVST) -- CEKCI ••••••••• 346
Chart BZ. Decimal to Binary Integer
Conversion (ICNV) -- CEKCN • • • .347
Chart CA. Decimal to Floating Binary
Conversion (FCNV) -- CEKCP ••••••• 348
Chart CB. Begin Loop Processor
(BG~LP) -- CEKBA (Page 1 of 2) ••••• 349
Chart cc. End Loop Processor CENDLP)
-- CEKBB •••••••••••••.•• 351
Chart CD. Check Limits (CKLIM) --
CEKCJ ••••••••••••• 352
Chart CE. I/O List Processor (IOLST)
-- CEKBW (Page 1 of 4) ••••••••• 353
Chart CF. Format Label Processor for
I/O Statements (FLABL) -- CEKCD .357
Chart CG. Read Transfer Processor for
I/O Statements (RTRAN) -- CEKCE •• 358
Chart CB. FORMAT or NAMELIST
Processor (FNAME) -- CEKCF ••••••• 359

Chart CI. Initial Value Data
Specification Processor (IDAI'A)
CEKAB (Page 1 of 2) • • • • • • • • • • 360
Chart CJ. Initial- Value Processor
(!VAL) -- CEKCL (Page 1 of 6) •• 362
Chart CK. Array Dimension
Specification Processor <ARDIM) --
CEKAF (Page 1 of 2) • • • • • • • • 368
Chart CL. Label String Processor
CLBSTR) -- CEKCC • • • • • • • • • .370
Chart CM. Statement of Identification
(SID) -- CEKAC • • • • • • • • • • • • • 371
Chart CN. Statement Label Processor
CLABL) -- CEKAJ (Page 1 of 2) •• 372
Chart co. Fallthrough Determination
(FALTH) -- CEKBQ •••••••••••• 374
Chart CP. Diagnostic Message
Generator (ERR) -- CEKCA (Page 1 of 4) .375
Chart CQ. Memory Assignments for
Variables (VSCAN) -- CEKJC (Page 1 of
11) •••••••••••••••••• 379
Chart CR. Process Label References
and Definitions (FSCAN) -- CEKJB (Page
1 of 8) • • • • • • • • • • • • • • • .390
Chart cs. Label Reference Processor
CRTNl) -- CEKJD • • • • • • • • • • • • 398
Chart CT. Label Reference Processor
(LAB) -- CEKJE (Page 1 of 2) •••••• 399
Chart cu. Diagnostic Message
Generator (DX) -- CEKJH (Page 1 of 2) .401
Chart CV. Phase 3 Master control
Routine -- CEKKR (Page 1 of 4) • • .403
Chart cw. PRF Processing Routine --
CEKKU (Page 1 of 12) • • • • • • • • • • 407
Chart CX. End Loop PRF Entry Routine
-- CEKKC (Page 1 of 2) ••••••••• 419
Chart CY. Begin Loop 1 PRF Processor
-- CEKKV (Page 1 of 3) ••••••••• 421
Chart CZ. Begin Loop 2 PRF Processor
-- CEKKW (Page 1 of 3) ••••••••• 424
Chart DA. Expression scan Routine --
CEKKE (Page 1 of 3) •••••••••• 427
Chart DB. Copy and Edit an Expression
-- CEKLF (Page 1 ·of 5) • • • • • • • • • 430
Chart DC. Push Primitive Operand
Routine -- CEKKF (Page 1 of 2) ••••• 435
Chart DD. Variable Compute Point and
Remove Level Routine -- CEKKG CPage 1
of 2) ••••••••••••••••• 437
Chart DE. Operand List Expression
Formation Routine -- CEKKL ••••••• 439
Chart OF. Triad File Manipulation
Routine -- CEKKH (Page 1 of 2) ••••• 440
Chart DG. Search and Insert Triads --
CEKKP ••••••••••••••• 442
Chart DH. canonical Form Routine --
CEKKN (Page 1 of 2) •••••••••• 443
Chart DI. Expression Removal and
commonality Determination Routine --
CEKKI (~age 1 of 5) •••••••••• 445
Chart DJ. Establish Common Expression
-- CEKKK • • • • • • • • • • • • • 450
Chart DK. Check Commonality -- CEKKJ .451
Chart DL. Label Common Expressions -
CEKLA • • • • • • • • • • • • 452
Chart DM. File CRT Entries -- CEKLE •• 453
Chart DN. Expunge a Removabie
Expression -- CEKLD • • • • • • .454

Chart DO. Subscript Expression
Revision Routine -- CEKKM (Page 1 of 3) 455
Chart DP. Acquire Entry From Compute
and Removal Table -- CEKKA ••••••• 458
Chart DQ. Polish Expression
Generation Routine -- CEKKB (Page 1 of
5) •••••••••••••••••• • 459
Chart DR. save Popularity Counts for
Register Assignment -- CEKKO •••••• 464
Chart os. File Constant and covering
Adcon -- CEKLB • • • • • • • • • .465
Chart DT. Loop Test-Expression
Generator -- CEKLI (Page 1 of 6) •••• 466
Chart DU. Entry Point Processor (ENT)
-- CEKOD (Page 1 of 2) • • • • • • • • • 472
Chart DV. Referenced label PF Entry
Processor (LABEL> -- CEKNU ••••••• 474
Chart ow. Equation PF Entry Processor
(EQUAT) -- CEKMJ •••••••••••• 475
Chart DX. Arithmetic IF PF Entry
Processor (AIF) -- CEKNK (Page 1 of 5) .476
Chart DY. Logical IF PF Entry
Processor (LIF) -- CEKNL •••••••• 481
Chart DZ. ASSIGN PF Entry Processor
(ASSGN) -- CEKNS •••••••••••• 482
Chart EA. Assigned GO TO PF Entry
Processor (AGO) -- CEKNQ • • • • • - • • • 483
Chart EB. Computed GO TO PF Entry
Processor (CGO) -- CEKNR •••••••• 484
Chart EC. CALL Statement Processor
(CALL) -- CEKOL • • • • • • • • • • • • 485
Chart ED. RETURN Processor (RTRN)
CEKOE (Page 1 of 3) ••••••• 486
Chart EE. Begin Loop 1 PF Entry
Processor (BLl) -- CEKNM. • • • • .489
Chart EF. Begin Loop 2 PF E;ntry
Processor (BL2) -- CEKNN (Page 1 of 9) .490
Chart EG. Begin Loop 3 PF Entry
Processor (BL3) -- CEKNO (Page 1 of 3) .499
Chart EH. End Loop PF Entry Processor
(ENDLP) -- CEKNP (Page 1 of 6) ••••. 502
Chart EI. I/O Statement PF Entry
Processor (RD) -- CEKOH •••••••• 508
Chart EJ. I/O List Element PF Entry
Processor (!LIST) -- CEKOI (Page 1 of
2) • • • • • • • • • • • •••• • 509
Chart EK. End List PF Entry Processor
(NDLST) -- CEKOJ •••••••••••• 511
Chart EL. STOP and PAUSE Statement PF
Entry Processor (STOP) -- CEKOK .512
Chart EM. Arithmetic Expression
Generator (AGEN) -- CEKNW (Page 1 of 2> 513
Chart EN. Expression Tree Builder
(TRBLD) -- CEKML (Page 1 of 2) ••••• 515
Chart EO. Weight Subroutine (WGHT) --
CEKNE • • • • • • • • • • • • • • • 517
Chart EP. Comm.on Expression Usage
count (CSX) -- CEKOB (Page 1 of 3) ••• 518
Chart EQ. Real Plus Generator <RPLUS)
-- CEKMC (Page 1 of 3) e • • • • • .521
Chart ER. Real Multiply Generator
(RMUL) -- CEKMB (Page 1 of 2) •• 524
Chart ES. Real Divide Generator
(RDIV) -- CEKMA (Page 1 of 2) ••• 526
Chart ET. Integer Plus Generator
(IPLUS) -- CEKMF •••••••••••• 528
Chart EU. Integer Multiply Generator
(IMPLY) -- CEKME (Page 1 of 3) ••••• 529

Chart "EV. Integer Divide Generator
(IDVDE) -- CEKMD • • • • • • • • • 532
Chart EW. Add by Load Address (IADDR)
-- CEKOV (Page 1 of 2) ••••••••• 533
Chart EX. complex Plus Generator
(CPLOS) -- CEKMG (Page 1 of 3) ••••• 535
Chart EY. complex Multiply Generator
(CMUL) -- CEKOF (Page 1 of 2) ••••• 538
Chart EZ. complex Divide Generator
(CDIV) -- CEKOG (Page 1 of 2) •• 540
Chart FA. Relational Expression
Chart FB. Logical Expression Generator
(ANDOR)-CEKMI ••••••.••••• 542A
Generator (RLTNL) -- CEKMB ••••••• 542
Chart FC. Maximum Operator Generator
(MAX) -- CEKMU ••••••••••••• 543
Chart FD. External Function Generator
(FUNC) -- CEKMK (Page 1 of 3) ••••• 544
Chart FE. comma Operator Processing
Subroutine (COMMA) -- CEKNJ (Page 1 of
3) ••••••••••••••••••• 547
Chart FF. Open Function Control
Routine (DCOM) -- CEKOM •••••••• 550
Chart FG. Open Function Processing
Routine (OPEN1) -- CEKOT (Page 1 of 6) .551
Chart FH. Open Function Processing
Routine (0PEN2) -- CEKOU (Page 1 of 3) .557
Chart FI. Open Function Processing
Routine (OPEN3) -- CEKOX (Page 1 of 3) .560
Chart FJ. Open Function Processing
Routine (0PEN4) -- CEKOY (Page 1 of 4) .563
Chart FK. Open Function Processing
Routine (OPENS) -- CEKOZ (Page 1 of 6) .567
Chart FL. Open Function Processing
Routine (OPEN6) -- CEKOM2 (Page 1 of 2) 573
Chart FM. Memory Access Routine
(MEMAC) -- CEKMV (Page 1 of 2) ••••• 575
Chart FN. Local Branch Generator
(SADDR) -- CEKMZ •••••••••••• 577
Chart FO. Labeled Branch Generator
(LBL) -- CEKNV • • • -• • • • • • • 578
Chart FP. Operand Fetch
complement/Store Routine CFErCB) --
CEKOS ••••••••••••••• 579
Chart FQ. Select Operand Routine
(SELOP) -- CEKND (Page 1 of 2) ••••• 580
Chart FR. Select Position for Operand
(SLPOS) -- CEKNF (Page 1 of 2) ••••• 582
Chart FS. Select One Operand in a
Register (SLONE) -- CEKOW (Page 1 of 4) 584
Chart FT. Determine Availability of
Register for Multiplication (SELGM) --
CEKNB (Page 1 of 2) • • • • • • • 588
Chart FU. · General Register
Availability for Integer Divide
(SELGD) -- CEKNA • • • • • • • • .590

Chart FV. Operand Status Routine
(KEY) -- CEKOC ••••••••••••• 591
Chart FW. Single Operand Locating
Routine (KEYl) -- CEKOR •••••••• 592
Chart FX. Search General Registers
(FNDAR) -- CEKMR • • • • • • • • • • • • 593
Chart FY. Search Floating Registers
(FINDFR) -- CEKMS ••••••••••• 594
Chart FZ. Operand Processing Routine
(OPND) -- CEKNW (Page 1 of 2) ••••• 595
Chart GA. Result-Register Operand
Processing Subroutine (RSLT) -- CEKMY .597
Chart GB. Select Single General
Register (SELSR) -- CEKNG (Page 1 of 2) 598
Chart GC. Select Even/Odd General
Register Pair (SELDR) -- CEKNH (Page 1
of 2) ••••••••••••••• 600
Chart GD. Select Floating Register
(SELFR) -- CEKMQ (Page 1 of 3) ••••• 602
Chart GE. Make Initial Assignment to
General Register (ASAR) -- CEKMM • .605
Chart GF. Make Synonym Assignment to
General Register (ASARS) -- CEKMN .606
Chart GG. Make Synonym Assignment to
Floating Register (ASFRS) -- CEKMP ••• 607
Chart GB. Find Temporary Storage
(FNDWS) -- CEKMT •••••••••••• 608
Chart GI. Release Temporary Storage
(RLSWS) -- CEKMX •••••••••••• 609
Chart GJ. Register Memory Clear
Routine (FLUSH) -- CEKON •••••••• 610
Chart GK. Code File output Subroutine
(INSOT) -- CEKNI •••••••••••• 611
Chart GL. Object Program Module
Builder (BUILD) -- CEKSB •••••••• 612
Chart GM. common control Section
Generator (CMSEC) -- CEKSC • • • • .613
Chart GN. Code Control Section
Generator (COSEC) -- CEKSF (Page 1 of
3) •••••••••••••••••• • 614
Chart GO. PSECT Builder (PRSEC)
CEKSG • • • • • • • • • • • • • • • 617
Chart GP. Present Data Processor
(SPECS) -- CEKSD • • • • • • • • • .618
Chart GQ. Internal Symbol Dictionary
Generator (ASSIST) -- CEKSH •••••• 619
Chart GR. Object Program
Documentation (EDIT) -- CEKSI (Page 1
of 3) ••••••••••••••• 620
Chart GS. Symbol Table Sort (SYMSRT)
-- CEKSJ •••••••••••••••• 623
Chart GT. Constant Conversion (CONCV)
-- CEKSL • • ••••••••••• 624
Chart GU. cross Reference List
Routine (CRFSRT) -- CEKSK (Page 1 of 5) 625

The TSS/360 FORTRAN IV compiler is
implemented in accordance with the conven
tions and requirements for systems programs
in the TSS/360 environment. It is relocat
able, reenterable, closed, nonprivileged,
and nonresident.

The compiler organization and inf orma
tion flow are designed particularly for
processing in the time-sharing environment.
Wherever possible, to reduce the "page
turning" load on TSS/360, the intermediate
data is organized and processed serially,
in file form, rather than in a form requir
ing random access. The presence of the
entire file in virtual storage ensures fast
access to its contents; repeated references
to the same virtual storage page, inherent
in serial processing, reduces the number of
pages needed in rapid succession.

While primarily a conventional batch
processor, the compiler contains special
features making it especially suitable for
conversational, terminal-oriented opera
tion. The compiler syntax analysis per
forms statement-by-statement error checking
of the source program as it is input
through the Language Processor control pro
gram CLPC). Diagnostic messages are
returned to the user's terminal via LPC,
and each appears at the terminal following
the listing of the statement in which the
error was detected. LPC gives the user the
opportunity to correct the error, whether
it be in the last statement processed, or
in some earlier statement. Then LPC in
forms the compiler of whether a change was
made and if so, which lines are affected.
If only the last statement was changed, the
compiler "forgets• the effect of the last
statement and begins compilation with the
statement replacing it. otherwise, the
compiler, under direction of LPC, restarts
compilation from the beginning of the
source program module. In this manner the
most conmon errors, those local to the last
statement processed, may be corrected with
minimum loss of time.

After the END statement has been pro
cessed by the first phase, the compiler's
second phase may detect errors of a more
global nature (undefined statement labels,
illegal DO-loop flow, etc.). The resulting
error messages are passed to-LPC, but now
LPC does not allow the user to supply
correction lines. When the compiler's
second phase is complete, LPC gives the
user the opportunity to correct errors or
to go on. If errors are corrected, the
compiler will recompile from the beginning

SECTION 1: INTRODUCTION

of the stored source data set, and another
conversation is possible. Otherwise, com
pilation proceeds to termination through
the rema.ining compiler phases.

Detailed information concerning the con
versation between terminal user and compil
er is included in the description of the
Compiler Executive routine (Exec>, which
interfaces with LPC.

OBJECT PROGRAM MODULES

The compiler produces an object program
module (OPM) consisting of a program module
dictionary CPMD>, an optional internal sym
bol dictionary USO) , text <the binary
instructions and constants), and a- list of
externa 1 names.

The PMD contains heading- information,
used to identify the module, and a control
section dictionary (CSD) for each control
section occurring in the module. The CSD
specifies which text entries require loader
address computations or satisfaction of ex
ternal references or references to other
control sections. A complete specification
of the PMD format is given in Section 7.

The ISD is a table of source language
symbols <not subprogram references>, the
attributes associated with those symbols,
and the control section and relative loca
tion within control section assigned to
each. The ISD information is used by the
Program control System (PCS) to relate the
user symbols with the definitions in the
OPM. A complete specification of the ISD
format is given in Section 7.

SUBPROGRAM CALLS IN OPM TEXT

The text does not contain the machine
instructions that actually perform the
input/output of data; nor does it contain
the machine instructions to perform the
more involved mathematical calculations
such as those for finding the square root
or the logarithm. The text also does not
contain the machine instructions that actu
ally perform such services as handling
sense lights, overflows, underflows, excep
tions, dumps, and the STOP, PAUSE, and CALL
EXIT statements. The set of binary
instructions produced by a compilation con
tains code for calls to library subprograms
to perform these functions.

Section 1: Introduction 1

These subprograms are all permanently
stored in SYSLIB, and consist of:

• FORTRAN I/O library subprogra~. FOR
TRAN I/O source statements (READ,
WRITE, BACKSPACE, ENDFILE, REWIND,
PRINI' or PUNCH) cause the compiler to
insert, in the object code, calls to
the appropriate FORTRAN I/O Library
subprograms. Other FORTRAN I/O subpro
grams are used to execute the CALL
DUMP, CALL POOMP7 -€ALL EXIT, STOP and
PAUSE statements. Note: There are
several service subprograms (STOP,
PAUSE, CALL DUMP, CALL PDUMP, CALL
EXIT) in the FORTRAN I/O group which do
not, strictly speaking, perform I/O.
These subprograms, however, were
included in the FORTRAN I/O group
because·they use the FORTRAN data con
version routines. These subprograms are
described under •service Subprograms•
in FORTRAN IV Library Subprograms.

• Mathematical Subprograms. These sub
programs are used for the more compli
cated mathematical procedures. They
are used to perform the explicitly
referenced functions (for example, the
sine function in X=SIN(Y) as well as to
do the more involved computations for
mathematical statements which do not
explicitly reference a function Cf or
example, the exponentiation in the
statement X=Y••U. See FORTRAN IV
Library Subprograms for information on
these subprograms.

• The Service Subprograms that handle
exceptions, pseudo-sense lights, over
flows, underflows, and divide checks.
For information on these, see FORTRAN
IV Library Subprograms.

OBJECT PROGRAM DOCUMENTATION

In accordance with user-specified or
defaulted options, the compiler produces
the following documentation:

2

• A listing of the source program.

• An object program storage map giving
the storage layout of the object
program.

• A list of source program symbols and
their storage equipments.

• A cross-reference listing relating sym
bols and statement numbers to the
source line numbers of the statements
in which they were referenced or
def in ed.

• A listing of the object module in a
representation very nearly in a form

that might have been produced by the
assembler.

I
Phase 5 of the compiler either places this
information in the list data set, which is
stowed by LPC, or writes it on SYSOUT.

COMPILER INTERFACES

All interface with LPC and other exter
nal routines is in the compiler Executive
routine (Exec>.

INTERFACE WITH LPC

The Compiler Executive routine may be
called by LPC at either of two points and
may itself call LPC at either of two points
(see Figure 1).

The two compiler entries are called INI
TIAL and CONTINUE. LPC calls the INITIAL
entry to pass the user options to the com
piler and to initiate the first stage of
the compilation (Phases 1 and 2). LPC
calls CONTINUE to complete the compilation
after the first stage is finished. The
compiler return from CONTINUE informs LPC
of the size of the OPM's elements, so that
LPC can dispose of them.

The compiler calls LPC at either of two
places during the first stage (before the
compiler returns to LPC from the INITIAL
call). The first, GETLINE, is used to
obtain a source line. The second, PUTDIAG,
is used to pass a source error diagnostic
message to LPC. PUTDIAG may also be used
after the first stage.

INTERFACE WITH VIRTUAL STORAGE ALLOCATION

The compiler obtains virtual storage for
the symbol table and other interphase files
via GETMAIN; to release the storage, it
uses FREEMAIN. (See Appendix A for a
description of the interphase files,
including the symbol table.)

INTERFACE WITH DATA MANAGEMENI'

The compiler maintains the list data set
by means of the virtual access method
CVAM). The compiler issues OPEN, SETL,
PUT, and CLOSE macro instructions to pro
duce this data set.

COMPILER/SERVICE ROUTINES INTERFACE

The compiler •time-stamps• (includes the
relative calendar time in) each object pro
gram module COPM) control section that it
produces. It also includes the date and

1 1~

Initial Continue
Entry Entry

·~
.~ ·~ ·~

GETMAIN FREEMAIN OPEN SETL

GET LINE

p

·~ 1

PUT CLOSE EBCDTIME

PUTDIAG

~

.~

REDTIM

LPC

FORTRAN
Compiler

Other Routines
External to
the Compiler

Virtual Memory Allocation Data Management (VAM) Service Routines

(Direction of arrow indicates sense of subroutine call. }

Figure 1. FORTRAN IV Compiler External References

time as identification on each sheet of
listing that it produces. To do this, the
compiler calls two service routines:
REDTIM and EBCDTIME. REDTIM returns the
time (in milliseconds elapsed since March
1, 1900), which is used to time-stamp the
control sections and as input to EBCDTIME,
which edits it into the EBCDIC representa
tion of time of day for inclusion in the
listing.

ORGANIZATION OF THE COMPILER

The compiler has six major components:
a multifunction compiler executive and five
compiler phases. The major functions of
each component are summarized here; later
sections describe each component in detail.

COMPILER EXECUTIVE ROUTINE

compiler Executive <Exec> has six
functions:

1. Interface with the compiler's
environment.

2. Prepare the source statements for pro
cessing by Phase 1.

3. Control and order the operation of the
phases <see Figure 2).

4. Prepare edited lines for output.

5. Provide compiler diagnostic
information.

6. Provide miscellaneous services.

During a compilation, various tables and
lists are constructed to contain the
results of the operation of each phase and
to serve as input to the next phase <see
Figure 3).

PHASE 1

Phase 1 performs the source program syn
tactic analysis, detection and diagnosis of
errors, and translation of the source pro
gram into a multitabular representation.
Each identifier or constant is given an
entry in the symbol table (format is shown
in Appendix A). Initial values from DATA
and type statements, dimension information
for arrays, NAMELIST information, and
alphameric constants are stored in the pre
set data table (Appendix A). Information
concerning references to, and definitions
of, symbols and statement numbers is stored
in the cross reference table. Information
collected from COMMON and EQUIVALENCE
statements is stored in the storage speci
fication list.

The most significant processing, from
the point of view of later optimization and
code generation, concerns the treatment of
executable statements,· statement numbers,
and arithmetic expressions.

section 1: Introduction 3

Executive Phase
Controller -
Initial Entry

Enter

•
Initialize
Compiler.
Open List
Doto Set.

~
PHASE 1

Translate Source.
Find Errors.

'
PHASE 2

1------· ----
Make Storage
Assignment.
Find Global
Errors.

,,
Exit

Executive Phase
Controller -
Continue Entry

Enter

PHASE 3

Perform Global
Optimizations

PHASE 4

Generate Code

PHASE 5

Build OPM.
Prepare Object
Program Listing.

Wrap-up
Compiler.
Close list
Data Set.

c- Exi;-)

to LPC to LPC

Figure 2. Compiler Component Organization

Each executable statement and statement
number is placed in the program representa
tion file (PRF) which, when scanned in the
order it was formed, is a skeletal outline
representation of the source program. In
addition to the fields that distinguish the
items from each other, the PRF entries con
tain pointers to the appropriate expression
representation file CERF> entries (see
below), to symbol table entries for
variables, constants, and statement num
bers, and to other PRF entries as appropri
ate to the individual type of entry.
Detailed formats of the PRF and ERF are in
Appendix A.

Each expression is placed in the expres
sion representation file CERF> in tabular
form. The ERF form of the expression is a
parenthesis-free notation in which, reading
from left to right, each operand occurs in
the order in which it occurred in the orig
inal expression: each operation follows its
associated operand pair. The form is

4

referred to as •right-hand Polish,• or
simply "Polish.• See "CEKAI -- Expression
Processor CEXPR),• in Section 3.

Each of the operator items includes
information about its type and a code to
indicate which operation is represented.
Each variable or constant item includes
information about its type and a symbol
table pointer. This pointer is the means
of reaching the associated symbol table
entry and serves to associate the item with
other items representing the same variable
or constant while distinguishing it from
other items.

The detailed description of Phase 1 is
in Section 3.

PHASE 2

Phase 2 has five functions:

1. Make storage assignments in the OPM to
all variables that are not formal
arguments of a subprogram.

2. Detect and diagnose illegal flow in DO
nests.

3. Indicate that the DO-loop index vari
able requires materialization (must be
maintained in its storage cell) in a
loop that contains an exit.

4. Detect and diagnose references to
undefined statement numbers (labels).

5. Determine definition points (points at
which a value may be changed) of COM
MON variables and subprogram
arguments.

COMMON variables are assigned storage in
the order dictated by their appearance in
the source program, in their appropriate
COMMON blocks, and are given as much space
as indicated by their individual DIMENSION/
type combinations.

Non-COMMON variables that do not appear
in EQUIVALENCE statements are assigned
storage such that all scalars appear first,
followed by all one- then two-dimensional
arrays, etc. For any given dimensionality,
variables of the same type appear together;
those requiring less storage precede those
requiring more. In this way, a maximum of
address-constant sharing is obtained in the
object program.

The relative relationships of storage
assignments of variables appearing in EQUI
VALENCE statements is determined, and these
variables are assigned storage within the
appropriate COMMON block, or at the end of
the non-COMMON group, as required.

Symbol
ERF PRF Table

l~ • •
Source _ ... PHASE 1 --"'
Program .

t t ,~

Symbol Storage
Preset Storage Cross-

Table Specifica- PRF
Data Specifica- Reference

tion List tion List Table

~ •t - PHASE 2 ~

, ~

Symbol Symbol
PRF

Table ERF PRF Table

~ ~ ~ -- PHASE 3 ~

, ,~ t
Formal Formal

Symbol PF
Argument Symbol

PF Argument
Table Ad con Table Ade on

list List

•t 1 1t -- PHASE 4

.~ ,~

Symbol
Cross- Symbol Code
Reference Table File Table
Table

,
-- PHASE 5

j ~

~ .t

Object

Code Preset OPM
Program
Docu-File Data
mentation

Figure 3. Compiler Information Flow

Section 1: Introduction 5

Variables that do not appear in COMMON
statements but appear in EQUIVALENCE state
ments in conjunction-with COMMON variables
are flagged as appearing in COMMON.

After a storage assignment is made, its
assignment CSLOC) within storage class
(STCL) is recorded in the symbol table.
Non-COMMON variables are assigned storage
class 6, blank COMMON storage class 9, and
labeled COMMON storage class 10 to as high
as 127 in the order of first appearance of
the corresponding labeled blocks in the
source program.

In the OPM storage, classes 3 through 8
will be accumu1ated by Phase 5 and become
the module's PSECT in the object program.
These classes include alphameric constants,
address constants, NAMELISTs and parameter
lists, non-COMMON variables, global <unre
leasable) temporary storage, and local ten
porary storage, in that order. The COMMON
blocks (storage classes greater than 8)
become individual control sections in the
OPM where the block name becomes the con
trol section name. such control sections
are combined with control sections of like
name from other modules, before execution
(during linkage editing or loading}.

Information concerning the remaining
functions of Phase 2 is in Section 4.

PHASE 3

Phase 3 performs the global optimiza
tions to be done in the code generated by
Phase 4 and establishes address coverage
for all quantities referred to from
storage.

Phase 3 determines which arithmetic
expressions can be computed only once and
then saved for later uses. It also deter
mines the range of statements over which
expressions are not redefined by the
definition of one or more of their com
ponents. If the occurrence of an expres
sion in that range is contained in one or
more DO loops which are also entirely con
tained in that range, Phase 3 determines
the outermost such loop outside which such
an expression may be computed, and moves
the expression to the front of that DO
loop. Only the evaluation process is
removed from the loop; any statement number
and/or store process is retained in its
original position. The moved expression is
linked to a place reserved for that purpose
in.the program-representation-file entries
corresponding to the beginnings of DO
loops.

6

In the statements

1 A= B+C
2 Y = A+B
3 A= A*2
4 Z = A+B
5 X = B+C

the occurrences of expression B+C in state
ments 1 and 5 are determined to be conunon
because neither B nor c has an intervening
definition. rhe expression identification
corresponding to the plus operator will be
changed from •operator• to •common expres
sion• (CSX). A CSX has the properties of
the original operator <e.g., here the plus
operator code is retained>, with the addi
tional property that it represents a
•named• expression. The CSX item contains
a field reserved for the expression name
(this name is actually a monotonically
increased number>, that is identical only
for identical expressions. In statements 2
and 4 above, the expression A+B is not a
csx because of the intervening definition
of A in statement number 3. Both plus
operators retain their •operator• identity;
neither becomes a •named• expression.

consider the statements

DO 1 I = 1, 10
A = B+C
Y = E+F

1 F = A

Because there are definitions of neither
B nor c within the DO loop, the expression
B+C is given a •name•, and the named ex
pression is linked to the beginning of the
DO statement, so that Phase 4 generates the
expression once, outside the loop. The
occurrence of the expression inside the
loop is replaced by a •residue item• (see
ERF description in Appendix A) that has the
same •name• as the removed expression.
Note that expression E+F is neither named
nor removed because of the definition of F
in statement 1.

Phase 3 creates two new operators, both
arising only from subscripts. The first is
called a base/index split operator or •?
operator•; its right operand is a residue
(computed outside a DO loop>, and its left
operand is an expression that is local to
the DO loop. Phase 4 places one quantity
in a base register and the other in an
index register when generating a storage
reference to the subscripted quantity.

The second operator is called the recur
sive operator or •1 operator•; its right
operand is the initial value of a subscript
<induction variable dependent> constituent
that is to be computed recursively over a
DO loop, and its left operand is the •step

expression•, a quantity to be added to the
recursive expression after each pass
through the loop. -<The induction variable
is the variable referenced in the DO state
ment of the loop. In the DO statement
shown above, I is the induction variable.)

Phase 3 merges the ERF and PRF with some
modification to form the PF <see Appendix
A). This file is the primary output of
Phase 3.

Detailed inf ormeion about the functions
of Phase 3 is in Section 5.

PHASE 4

Phase 4 performs the code generation
function. Its input consists primarily of
the PF and symbol table, and its output is
the code file which represents, completed
machine instructions and additional editing
information.

Phase 4 performs a scan of the PF. Pro
cessing is triggered by the various PF
items and by the expressions they may
reference. A set of tables is JDaintained
that reflects the contents of the various
general and floating registers at any time.
When the generation of an expression is
required, the register tables are searched,
and if any constituent operand of the ex
pression is in a register, it is generally
used from that register, rather than from
storage. Partial results are stored in
temporary storage only when a register is
needed for some other purpose and there is
no better choice of register than the one
containing the partial result, or when the
partial result is a CSX that has later uses
and the operation about to be performed
will change the value of the register con
taining the common expression.

Phase 4 is a collection of PF entry pro
cessing routines, arithmetic generators

tailored to the various operators and ex
pression types; and service routines to
maintain register storage, partial result
storage, and CSX storage, to select and
assign registers, to determine when
operands are no longer needed, to assign
and release temporary storage, etc. The
detailed description of Phase 4 Cin Section
6) indicates the relationships among these
routines and provides a much more compre
hensive description of the operation of
this phase.

PHASE 5

Phase 5 collects the information from
the various compiler-generated storage
classes and forms a code/numeric-constant
sharable CSECT, a PSECT, and as many COMMON
CSECTs as there are declared COMMON blocks.
This information, and information (obtained
from the Symbol Table> making up the
optional ISD, constitutes the object pro
gram module.

Optionally, Phase 5 also produces an
assembler-like listing of the object pro
gram code obtained from the Code File, a
storage map, and a cross reference listing
indicating the various source-program iden
tifiers and the lines in which they were
referenced or defined. The user's selec
tion of these options is passed from LPC to
the compiler Executive and thence through
the INTERCOM table to Phase 5.

Section 7 contains the detailed descrip
tion of Phase 5.

Note: Routine descriptions in Sections 2
through 7 occasionally ref er to registers
as •p1 •, . •p2•, •p3•, etc. such register
notations are taken directly from the list
ing, where they appear in EQU instructions
and other instructions.

Section 1: Introduction 7

SECTION 2: EXECUTIVE

INTRODUCTION

The compiler executive (Exec) contains
all routines in the compiler that either
provide an interface between the compiler
and the environment in Which it resides or
provide a service needed by more than one
compiler phase (Chart AA). Functions per
formed by the Exec routines fall logically
into the following categories:

1. Service external interfaces.

2. Prepare source statements.

3. Control the compiler phases and inter-
phase files.

4. Process compiler edit lines.

5. Provide compiler diagnostic inf orma-
tion.

6. Provide miscellaneous services.

This discussion of the Exec is divided
into seven sections: an initial section
entitled •General Information,• followed by
sections dealing individually with the
above six categories.

GENERAL INFORMATION

This section contains general informa
tion of value to understanding the computer
executive. Topics discussed are:

1. Macro instruction usage.

2. Linkage conventions.

3. Register notation and conventions.

4. Storage map.

5. Brief routine description.

6. Use of the phase controller PSECT by
other Exec routines.

MACRO INSTRUCTION USAGE

The Exec routines, like all compiler
routines, make heavy use of macro instruc
tions: both •user• macro instructions
(such as CALL, SAVE, RETURN -- those
described in Assembler User Macro Instruc
tions) and •system• macro instructions
(those used only by the exec). User macro
instructions are not discussed here. The

8

term macro instructions as used in this
discussion means •system macro
instruction.•

Appendix c lists a brief summary of all
exec macro instructions; the following
paragraphs group them by function.

1. Macro instructions concerned with the
compiler diagnostics features: CEKTO,
CEKTG, CEKV3 and CEKVS.

2. Macro instructions written to provide
module PSECTs and DSECTs: CE:KU7,
CEKT8, and CEKT9.

3. The CEKVU macro instruction contains
all VAM macros.

4. All uses of the GETMAIN and FREEMAIN
macro instructions are contained in
the macro instructions CEKVC and
CEKV9, respectively.

5. The macro instruction CEKVA issues the
system macro instriictions EBCDTIME and
REDTIM.

6. The CEKU9 macro instruction simplifies
the processing associated with output
of a message describing a source
statement error detected by any Exec
modules.

7. The macro instructions CEKTX, CEKV7,
and CEKVS define all V-R con pai.rs and
issue the CSECT and PSECT lines, for
all Exec modules.

use of all other Exec macro instructions
is obvious upon inspection of Appendix c
and the assembly listings.

LINKAGE CONVENTIONS

All linkages by the compiler are Type I.
(See Appendix B, •TsS/360 Linkage Conven
tions•). The linking mechanism is either
by means of the CALL, SAVE, and RETURN
macro instructions or by the INVOKE, STORE,
and RESUME macro instructions; there are no
hand-coded linkages. All exec routines,
linked to by other exec or compiler rou
tines through a CALL macro instruction, set
return codes in general register 15 before
returning. These codes are:

code
-0-

4

8

Description
Normal return.

If a phase suspects a system error,
it returns to the phase controller
with a code of 4. No phase current
ly issues this return code.

The •compiler cannot continue
Abort• code. Table overflow is the
usual cause. The phase will return
to the phase controller with a
return code of a, causing the phase
controller to make a •FORTRAN cannot
continue• return to LPC.

16 A compiler restart is to be executed
(see comment below>. Programs
called by the phase controller are
to return with this code if, upon
calling an exec subroutine, a code
of 16 was returned by the
subroutine.

A return code of 12 is treated identi
cally to a code of a. Return code of 16 is
expected only during Phase 1 processing: in
all other places it is treated as a code of
a. A return code from a compiler module
greater than 16 is never expected, is not
tested for, and will produce unpredictable
results.

REGISTER NOTATION AND CONVENTIONS

The TSS/360 register notation standards
Csee also Appendix B) describe a division
of registers into parameter registers (Pl
through P6), volatile registers CVl and
V2), nonvo1ati1e registers CN1 through NS>,
and linkage registers (Ll through L3).
This standard is f ol1owed in al1 Exec
modules, with the minor exception that
absolute register notation is used where it
should be made clear that other registers
may not be used. Examples are registers O
and 1 in the ED instruction and registers
loaded by the system macro instructions and
macro processors.

Use of all registers is summarized in
the prologue contained at the beginning of
each assembly listing.

The CEKSZ macro instruction issues all
EQUs for general and floating registers.

STORAGE MAP

Table 1 shows the approximate size of
each control section in the Exec and the
GETMAIN areas used for interphase files.
The manner in which the compiler modules
are link-edited will, of course, dictate
the order in which modules are loaded and
the storage required.

BRIEF ROUTINE DESCRIPTION

The routines in the Executive are
described briefly below. The description
includes the docwnentation module name
(five characters, in parentheses, with the
letters CEKT as the first four characters) ,
preceded by the name generally used
throughout the Executive documentation.
The type of linkage to the routine is
described, and a note is given describing
conditions if the routine is an assembly
module (is assembled separately from all
other modules), as well as a documentation
module. CA documentation module may or may
not represent a separate assembly.)

I 1.

2.

3.

Phase Controller -- PHC (CEKTA, docu
mentation and assembly module).

The Phase controller is a Type I link
age subroutine and is the interface
between the (LPC) and the five compil
er phases. All LPC calls enter PHC,
and the phases may be called only by
PHC. PHC initializes the work area
and conmtUnication module as required
for each phase, furnishing addresses
of tables, pointers in these tables,
etc. PHC prepares all parameters for
return from the LPC to FORTRAN calls.

PHC does not call the LPC entries GET
LINE or PUTDIAG, nor does it operate
on the list data set in any way.
These operations are all performed by
the master input/output module <see
below>.

Get Next source Statement -- GNSS
(CEKTC, documentation and assembly
module).

This Type I linkage subroutine obtains
complete source statements for Phase 1
of the compiler. The source state
ments are composed of lines furnished
GNSS by the LPC GETLINE entry. Facil
ity is included for conversational
modification of statements already
received. GNSS uses restricted link
ages internally.

Process Terminal Modification -- MOD
(CEKTD, documentation and assembly
module).

MOD is a Type I linkage subroutine
whose purpose is to assist GNSS in the
formation of source statements when
conversational corrections have been
made to the source statement. It
accomplishes this by analyzing the
relation between the line number of a
line to be corrected Cor inserted) and
the line numbers of statements already
received by the compiler.

Section 2: Executive 9

Table 1. Executive Storage Map
r----------------~---------------T--------------------T------------------------------1 I Module I Code I PSECT I
1--------------------------+-----------+---------------------i
I Phase Controller (CEKTA>, I (16, 000 bytes> I Save Area I
I (PSECT for CEKTA is the I I (76 bytes> I
I Work Area and communica- I I I
I tion Module, CEKTB) I I I
1-----------------------+- -+---------------i
I I I I
I I I Inter-Exec I
~-----------------------------+--------------i Communication I
I I I and work area and I
I I I Intercom (13, 000 bytes) I
~------.---------------+-- -+-- ------------i
I I I Symbol Table• I
I I I (20 pages -- 81, 920 bytes) I
1----------------------+--------+------ ---------i
I I I Work Area A* I
I I I <60 pages> I
~--------------------------+-------- I ----i
I I I Work Area B* I
I I I <60 pages> I
1---------------------------+ -------+------------------i
I I I Work Area c• •** I
I I I <32 pages> I
~-------------------- .. --------i
I Get-Next--source Statement I (1600 bytes) I save Area, misc. I
I < CEKTC) I I (128 bytes> I
1------------------+ --+--- -i
I Process Terminal Modifica- I (2048 bytes} I Save Area, misc. I
I tions (CEKTD) I I (128 bytes) I
1---------------------+----------+---- ----i
I Receive Diagnostic Message I (300 bytes> I Save Area, misc. I
I < CEKTE) I I (128 bytes> I
1------------------------+------------+------------------------i
I constant Filers (CEKTF) I (4096 bytes> I Save Area, misc. I
I I I c12s bytes> I
1------------------------+------------+-------- -------i
I Master Input/Output (CEKTH> I (4096 bytes> I (600 bytes> I
~--------------------------.L.----------------L--------------------------i I * These areas are obtained using GETMAIN. I
I ** See Table 4 for the allocation 0£ Work Area c for the output Module. I
L--1
4. Receive Diagnostic Message -- RDM

(CEKTE, documentation and assembly
module).

Any module in the compiler (including
Exec modu1es> that adds a diagnostic
message to the user's output does so
through RDM. The message may go to
the list data set, the conversational
console, or both. The LPC entry PUT
DIAG is used for console messages.

s. Constant Filers -- CONFIL (CEKTF,
documentation and assembly module).

10

Several of the compiler phases must
add information concerning numeric,
address, and label constants to the
symbol table. The filing of these
constants is performed. for the phases
by CONFIL, through a Type I linkage.
CONFIL also includes an entry which

creates numbers used to mark points in
the code for the phases and then files
these numbers as label constants.

6. Master Input/Output -- MIO (CEKTH,
documentation and assembly module).

All input/output operations are con
trolled by MIO. These operations
include:

a. Calling GETLINE for source lines

b. Calling PU'l'DIAG for diagnostic
message output to the conversa
tional console

c. Opening, closing, and adding
source and diagnostic messages to
the list data set

MIO contains six Type I linkage
entries and uses restricted linkages
internally.

7. Analyze console Source Line -- ANALYZ
(CEKTI, documentation module).

This restricted linkage subroutine is
invoked by GNSS to determine where the
statement number and first text
character are in a console line, and
how many text characters are included
in the line. ANALYZ is assembled into
GNSS.

8. Inspect a console Character -- INSCON
(CEKTJ, documentation module).

This restricted linkage subroutine is
invoked by ANALYZ to determine if a
console character is a tab, numeric,
blank, or other character. INSCON is
assembled into GNSS.

9. Move a Line to the List Data Set -
LDM>VE (CEKTK, documentation module>.

LDK>VE is a restricted linkage subrou
tine, invoked by MIO to move a line
from a buffer to the list data set.
LDMOVE counts lines in the ·current
page and, when required, restores the
page and adds a page heading. LDMOVE
is assembled into MIO.

10. Build the List Data Set Buffer -
BUILD (CEKTL, documentation module>.

BUILD is a restricted linkage subrou
tine, invoked by MIO to move a line to
either a list data set buff er or the
list data set. The buff er will be
emptied when its capacity is exceeded,
or when information contained will not
be replaced due to conversational
corrections. BUILD is assembled into
MIO.

11. Flush the List Data Set Buffer -
FLUSH (CEKTM, documentation module>.

This restricted linkage subroutine is
invoked by MIO, to move all lines in a
list data set buffer to the list data
set. FLUSH is also invoked by GNSS,
through the BFLUSH entry to MIO.
FLUSH is assembled into MIO.

12. Compiler Dump -- COMOOMP (CEKTQ, docu
mentation and assembly module).

This Type I linkage module is called
by the Phase Controller when a file is
to be dumped in hexadecimal. such
dumps are produced only when the com
piler is in the diagnostic mode.

13. Dump Line Preparation and Output -
LINDUMP (CEKTS, documentation and
assembly module).

LINDUMP is called in diagnostic-mode
processing only, using a Type I link
age. LINDUMP prepares one line of
information and adds it to the list
data set.

USE OF THE PHASE CONTROLLER PSECT (EXCOM)
BY orHER EXEC ROUTINES

The first two pages of the Phase Con
troller PSECT contain information required
by other routines in the Exec. A defini
tion of this PSECT is supplied to all Exec
routines by including a DSECT for the Phase
controller PSECT. cover for this OSECT is
obtained by loading the address of the
Phase controller PSECT from a word in
intercom <Exec modules are always passed
the location of intercom wben called>. The
term 'excom' (Exec communication region) is
used by Exec routines to ref er to the Phase
Controller's PSECT.

SERVICE EXTERNAL INTERFACE

The compiler's external interfaces are:

1. Entrances from Language Processor con
trol (LPC)

2. Calls on LPC to get a source line or
produce a diagnostic line

3. Macro instructions to get and free
main storage

4. Macro instructions to operate on a VAM
data set

5. Macro instructions to obtain the time
at which the compilation is beginning

Figure 4 shows the above interfaces.
For each interface, the Exec routine
involved is identified. Note that all
calls on LPC are centralized in the Master
Input/Output (MIO) routine as are all calls
on VAM <except one, the call by LINDUMP,
which is issued only if the compiler is in
the diagnostic mode, as discussed in the
section •compiler Diagnostic Information•>.

Routines concerned with external inter
f aces are:

1. Phase Controller (PHC,CEKTA).

2. Master Input/Output (MIO,CEKTH).

3. Dump Line Preparation and output
(LINDUMP,CEKTS).

Section 2: Executive 11

LPC VAM PROCESSING PROGRAMS

GETLINE PUTDIAG
OPEN and CLOSE (Entry Point (Entry Point is PUT

in CFADBl) CFADCl) SETL Macros Macro Macro

5 ~ 1p J j 1p

~nitiaj----1 ~Continue]-- ~Early- J ·-
Call Call End Call -

l l ~ ·~ '
PHCINIT PHCCONT PHCEE The The The The

The Dump Line

(Entry (Entry (Entry LINEIN DIAGOUT LDOPEN LDCLOSE
(Restricted Preparation
Linkage) and Output Point is Point is Point is (CEKTHC) (CEKTHD) (CEKTHA) (CEKTHB) LO MOVE Module CEKTAA) CEKTAB) CE KT AC) Entry to Entry to Entry to Entry to Entry to (LINDUMP, MIO MIO MIO MIO MIO CEKTS)

Phase Controller (PHC, CEKT A) Master l~u!L_Ou!e_ut Modulel_MIO_L CEKTH)

• ·~ ·~ ~

GET MAIN FREEMAIN EBCDTIME REDTIM
Macro Macro Macro Macro

Macro Processing Programs, Excluding VAM Macros

Figure 4. compiler Interfaces

Details concerning activities of the
Executive routines that use and prepare
information passed across the interfaces
are given under •Routine Descriptions,• in
this section.

SOURCE STATEMENT PREPARATION

The purpose of the routines described in
this section is to prepare complete FORTRAN
source statements for processing by Phase 1
of the compiler. This preparation is
accomplished by obtaining lines through the
services of the LPC entry GETLINE, combin
ing these lines as appropriate (continua
tion lines may exist), and informing Phase
1 of the location of a complete source
statement, and the statement label (if
any). If the compiler is in conversational
mode, the terminal user may request that
changes be made to a line (or lines> pre
viously sent to the compiler. In such an
event, the Process Terminal Modifications
routine (MOD) determines if the correction
was such that the entire program must be
recompiled, or if the preceding or current
statement is to be ignored or modified and

12

compilation continued. Two routines par
ticipate in the preparation of source state
ments: Get Next Source Statement CGNSS,
CEKTC) and Process Terminal Modification
Lines CMOD,CEKTD). These routines have no
other functions.

Figure 5 illustrates the general rela
tionship between the source-statement
preparation routines and other routines in
the compiler.

PHASE AND INTERPHASE FILE CONTROLLER: THE
COMPILER WORK ARFAS AND INTERCOM

The Phase Controller CPHC,CEKTA) per
forms the functions of calling the five
compiler phases. Associated with each call
on a phase are a number of miscellaneous
operations concerning the files used by the
phases as their medium of information
exchange; these operations are also per
formed by PHC. The phase control operation
is a simple one and consists principally of
calling each phase in its turn, checking
the return code to see if the following

Enter

GNSS

~~:1:stl~~~ a} _ -..... ----L-.--~

!Request for a}
~ngle line

LINEIN
(CEKTHC)
Entry to
MIO

GETLINE
(CFADBI)
Entry to L PC

Control
Passes Bock
to GNSS

Return to
Phase l

MOD

Figure 5. source-Statement-Preparation
Modules

phase should be cal1ed, and returning pa
rameters to LPC f ol1owing the calls on
Phases 2 and 5.

Figure 6 summarizes the order and condi
tions of calls on the phases and shows the
GETMAIN and FREEMAIN activities. In Figure
6 and in other figures below the abbrevia
tions for interphase files are used. These
abbreviations are:

CF
CRL
EF(or ERF)

ENL

code file
cross reference list
Expression (representation>

file
External name list

ISO
OPM
PF
PMD
PRF
SPL

Work areas

Internal symbol dictionary
Output module (text}
Program file
Program module dictionary
Program representation file
storage specification list

See below

Note that all file descriptions given
below are for the purpose of summarizing
the obtaining, use, and freeing of storage.
For detailed descriptions of the contents
of all files, see Appendix A.

The term •work area" is used to refer to
an area in virtual storage that is logical
ly reused: that is, one phase uses the
area, and PHC then makes an area of the
same size available to the next phase, etc.
Tables in this work area are cleared out
when they are no longer needed. The number
of pages obtained for each work area is
determined by a constant assembled into the
PHC PSECT; this number was also given in
the storage map description.

Tables 2, 3, and 4 give miscellaneous
information concerning the three work
areas. Figure 1 shows the symbol table
storage layout.

Probably the most important interphase
file in the compiler is the file ref erred
to as intercom. A detailed description of
the contents of intercom is given in Appen
dix A; general information on use of this
area follows. The intercom area contains
512 bytes.. All information required by the
Executive and any phase, or to be passed
between phases (excluding large lists,
files, etc.>, is passed by means of the
intercom area. Intercom is not obtained by
a GETMAIN, but is assembled into the phase
controller PSECT. The sequence of intercom
use is as follows:

1. The phase controller initializes
intercom as required before each call
on a phase and makes the location of
intercom known to the phase via the
calling sequence.

2. The phases move the 512 bytes to
intercom from the phase controller to
an area within the phase. The phases
modify this area during their opera
tion. If a phase calls an executive
routine, it furnishes the executive
routine with the location Cin the
phase> of intercom, so that intercom
may be updated by the executive rou
tine called.

3. Before returning to the phase con
troller, the phase moves the up-to
date intercom from the area within the
phase back to its original area in the
phase controller.

section 2: Executive 13

Start

- - - ---{LPC Initial Cal~

Get Main for
Work Area B

Get Main for
Work Area A

Get Main for
Symbol Table

Get Main for
Work Area C

Call Phase 1

Call Phase 2

Return

Yes Get Main
for MIO
Buffers

Get Main for
the Phases'
Internal Files

C3

No

Start

---(LPC Continue Call]

Clear SPL
(Work Area B)

Initialize Formal
Argument AD CON
Information for
Phase 3

Call Phase 3

Clear PRF
and EF
(Work Area A)

Call Phase 4

Add Size of
Work Area A to
Pages Available
for Object
Module Text

No

Add Pages Normally
Allocated to ISO to
Text

Figure 6. Summary of Phase and Interphase File Control Activities

14

Clear PF
(Work Area B)

Call Phase 5

Free All Main Except
that Port of the
Object Module Area
Used by Phase 5

(Return)

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Table 2. Work Area A Storage Layout

Name Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
1,3

EF
6 TABLO EF EF CF CF

(Base and

l l
1

2-byte top in
(Base, Top

lntertom)4 and Upper t

Limit in

+ t
r

Intercom)
(Base and

l
2-byte top in (Not used
Intercom)415 by Phase 2)

TBAHl
2

PRF PRF PRF ~

NOTES:

1. TBALO is the CF Base and the initial CF Top. See Intercom TECFB, TECFT.

2. TBAHI is the CF Upper Limit. See Intercom TECFU.

3. Direction of increasing addresses is from the top to the bottom of the table.

4. The EF and PRF bases are identical, and are located approximately midway
between TBALO and TBAHI. See Intercom TEEFB, TEPRFT, TEEFT, TEPRFT.

5. The address of the first word filed in the PRF is in TEWAAH in Intercom.

6. The EF is also referred to as the ERF.

Table 3. Work Area B Storage Layout

Name Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

TBBLO Storage Storage • PF External
Specification Specification Name list
list (Base, list {Base and Top
Top and in Intercom}
Limit in

TBBMl Intercom)
- - t-- ___.., - t-- .I...- -I 1-- +--

TBBM2 PF PMD
(Base and (Base and
2-byte Top Top in

TBBM3
and Upper Intercom}
limit 3,9

- ----1-- #?-l~rcom) - t--
TBBM4 OPM

(Base and
Top in

TBBM5
Intercom)

-)--- - -- --+----t-- -
TBBM6 ISO

(Base and
TBBHI Top in

Intercom)
j 1

NOTES:
1. TBBLO is the SPL and PMD Base. It is also the initial SPL and PMD Top.

See Intercom TESPLB, TEP MOB, TESPLT.
2. TBBHI is the SPL and ISO Upper Limit. See Intercom TESPLU.
3. Computed by PHC.
4. If required, PHC will GETMAIN rather than use Work Area B.
5. Must Start on a Page Boundary.
6. Not needed if no ISO is requested by the problem programmer.
7. Direction of increasing addresses is from the top to the bottom of the table.
8. The allocation of Work Area B to the four Phase 5 Areas is:

I PMD -- 12 pages ENL -- 2 pages
OPM -- 80 pages ISO -- 20 pages

9. The PF top is initially set to TBBLO. The PF upper limit is TBBHI.

Table 4. Work Area c Storage Layout

Name Phase l Phase 2 Phase 3 Phase 4 Phase 5

TBCLO l,S
Preset Data Preset Data Preset Data Preset Data Preset Data
(Base and (Not Used) (Not Used) (Not Used)

l
Top in

l l l
Intercom)

TBCM

* TBCM
2 Formal

Argument
Ad cons
(Base and
Top in

3 Intercom)

TBCM
3

TBCM
4 (Bose and 1 1

A ' ~
Top in
Intercom)

Cross- {Not Used) (Not Used) (Not Used)

Reference

List416 CRL CRL CRL CRL

TBCHI

NOTES:
1. TBCLO is the Preset Data Base and (initially) Top. See l~tercom

TEPSDB, TEPSDT.

2. TBCHI is the CRL Bose and {initially) Top. See Intercom TECRLB, TECRLT.

3. The Formal Argument Adcon Bose and Top are set by PHC prior to entering
Phase 3. See Intercom TEFAAB, TEFAAT.

4. This area is not required if the cross-reference-list option is not chosen
by the problem programmer.

5. Direction of increasing addresses is from the top to the bottom of the table •

6. Must start on a double-word boundary.

~bolic Name Descr!f.tion

Symbol Tables entries for the 49
TBSIF Intrinsic Functions (assembled in)

TBS LO
Symbol Table Low -- first item
filled will have the first word of
its descriptive part put here

Descriptive Part Entries, next avail-
able word referenced with TEDES Tl

i ID, FLAGS I ETC Direction of :

lncreas- Descriptive Name
SLOC, STCL ing Part Part

Addresses Filing Filing

t
VALUE

i i t LINK, OPP

Name Part entries, lost used word
referenced with TENAMT2

Symbol Table High -- first item
TBSHI filed wi II have the first word of its

name part put here

l The address of the first "ID, FLAGS, ETC" word filed is in TEDESB in Intercom.
2 The address of the first "LINK/OPP" word filed is in TENAMB in Intercom.

Figure 7. Symbol Table Storage Layout

section 2: Executive 15

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Enter

tAll Diagnostic l
---------- Messages Processed j'

on This Path
.----~--~

Receive
Diagnostic
Messages
Routine

(ROM, CEKTE)

Output
Diagnostic
Line Entryto
MIO (DIAGOUT,

CEKTHC)

Output
Diagnostic
Message to
LPC (PUTDIAG,

CFADCI)

Yes

Enter Enter

Get - Next -
Source Statement
Routine
(GNSS, CEKTC)

..........

..... ~All Output Lines Other j
Output Line Thon Diagnostic Messages
Receiver Entry Processed on This Poth
to MIO
(OLR, CEKTHE)

BUILD-
Restricted
Linkage Entry in
MIO, Builds the
Output Line

LDMOVE-
Restricted
Linkage Entry to
MIO, Output the
Line using the
PUT Macro

(Return)

Add Line to a
MIO Buffer, for
Outputting When
Line is Committed
to Com pi lotion.

Fiqure 8. Process compiler Edit Line F\lllction

16

Enter

Compiler
Phase 5

Enter

Line Just Committed
Will Be the New
T entoti ve Line. Con
venationa 1 Corrections
May Hove Caused the
Previous Line Passed to
Phase 1 to Be Either
Forgotten or Committed
for Compilation. Test
to See Which.

Flush Output
Line Entry to
MIO (BFLUSH,
CEKTHF)

Flush
Restricted
Linkage Entry
to MIO

Will Invoke
LDMOVE to Move
Lines in Previous
Source Statement
from MIO Buffer
lo List Dato Set.

Return

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

COMPILER EDIT LINES

The compiler produces two types of out
put: edited lines, to be transmitted to
the terminal, list data set, or both; and
the object module, constituting the com
piled program ready for loading and execu
tion. output of the first type is prepared
in the following places in the compiler:
ROM (diagnostic messages from phases>, PHC
(heading lines and warning diagnostics
associated with diagnostic mode process
ing>, GNSS CSOURCE~!1.nes and associated
diagnostic messages>, CONFIL (file overflow
diagnostics>, and OLR (Phase 5 edit lines).
Figure 8, •process compiler Edit Line Func
tion• describes the path of compiler edit
lines in more detail. output of the second
type is prepared completely by the compiler
Phase 5 and is passed to LPC at the phase
controller's return to the LPC continue
call. Preparation of this output is
described in Section 7 •phase s•; the man
ner of returning the information to LPC was
described earlier in •phase and Interphase
File Controller.•

The use of the MIO buffers deserves spe
cial mention. If the compilation is con
versational, the phase controller <using
GETMAIN) obtains two pages for the MIO
buffers. These buffers will contain the
source lines in the source statement cur
rently being formed by GNSS and in the
statement previously passed to Phase 1, but
not yet committed to compilation. When a
statement is committed to compilation, the
associated source lines are added to the
user's listing Cif any). Following return
from Phase 1 to the phase controller, these
two pages are released.

COMPILER DIAGNOSTIC INFORMATION

The compiler contains built-in facili
ties for diagnosing compilation problems.
These facilities consist principally of the
ability to request hexadecimal dumps of
interphase files and phase PSECTs following
return from each phase. These dumps may
not be directed to the terminal; they are
issued to the list data set by use of a PUT
macro. If the user has requested no edit
options, there will be no list data set.
In this case the diagnostic mode may not be

entered. If the user attempts to do so the
message "DIAGNOSTIC MODE NOT ALLOWED AS NO
EDIT OPTIONS SELECTED• will be printed at
the terminal.

It is also possible to alter the size of
the main storage obtained prior to compila
tion, in order to measure the effect of
large, unused pages of virtual storage, and
to exercise the file-overflow tests of the
compiler. These features are all contained
within nacres in the Exec routines and,
thus, may be removed from the compiler by
modification of these macro instructions.
(See the General Information section for a
description of all macros.) The diagnostic
featur·es do not affect the reenterable
characteristic of the compiler. It is
nearly impossible for a user to inadver
tently request diagnostic output from the
compiler, as information not normally
available to the user must be known to pro
duce such output. If the diagnostic mode
is entered, the warning message •coMPILER
IS IN THE DIAGNOSTIC MODE· will be-produced
at the terminal Cif in conversation> and on
the list data set. Figure 9 describes the
diagnostic features.

The procedure for requesting diagnostic
information is:

1. Load the Phase Controller CPHC), and a
new PSECT for PHC, with the PCS
statement:

LOAD CEKTAR

2. Set the PHC PSD:T byte TEDIAG to ' Y'
(diagnostic mode allowed) with the PCS
statement:

3.

4.

SET CEKTAR.<X'11C5') = 'Y'

The first source line supplied to the
compiler must be:

Col.
1 - 6
(blank>

Col.
7
DIAGNOSTIC

Col.
17 - end
Anything

The two lines f ollQwing the DIAGNOSTIC
line contain dump and other request
information. The content of the second
and third lines is described below.

section 2: Executive 17

I

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Diaqnosti c Line 2:
r------~---------T~--1 Col wnn I Name ~ I Description
~------+----------+---·
1 ITDPHAZ Cl> If O, compilation will terminate prior to calling Phase 1.2

2

3

4

5

10

I
ITDPHAZ (2) If O, compilation will terminate prior to calling Phase 2.2
I
f TDPHAZ (3) If O, compilation will terminate prior to calling Phase 3.2
I
ITDPBAi (4) If 0, compilation will terminate prior to calling Phase 4.2
I
ITDPHAZ (5) If O, compilation will terminate prior to calling Phase 5. 2

I
ITDLOG
I
I

If Y, a message will be written when each phase is called, and when
.return is made from each phase.

31-40 TDBUGl Requests file edits upon return from a Phase, as follows Cthe numbers
1 through 10 correspond to columns 31-40 for Phase 1, 41-50 for Phasei
2, etc>.

41-50

I No. Description
1 If Y, edit Intercom; edit the EF and PRF, after Phases 1

through 3; the CF after Phase 4 and 5.

2 If Y, edit the Symbol Table.

3 If Y, edit Storage Class Table.

4 If Y, edit the phase's PSECT and the contents of the internal
file used by the phase (Phase 5 does not use this file).
If blank or 0 produce no PSECI' edit. If X, edit the
(3 pages) PHC PSECT.

5 F.clit the SPL and PF in Phases 1 through 4, the PMD, OPM, ENL
and ISO if in Phase 5.

6 Edit the Preset Data, Formal Argument Adcons, and the cross
Reference List.

17
I

If Y, do not give file edits for RC = 0 return from each phase
Cwill only give edits if RC*O or an unexpected interruption
occurs>. I

I
18-10 Not used.
I
I
I
1same as 31-40, but inspected after return from Phase 2.
I

151-60 ISame as 31-40, but inspected after return from Phase 3.
I I
f 61-70 tsame as 31-40, but inspected after return from Phase 4.
I I I
171-80 fSame as 31-40, but inspected after return from Phase 5. I
~------1----------L------~--~ 11. Label of field in PHC PSECT in which the value punch in the corresponding columns I
I is stored. I
f2. If the column is blank or any character other than 0 (zero), compilation will not I
I be terminated. I
L---J

18

Diagnostic Line 3: Allows the user to al
ter the number of .lines to be obtained by
PHC in its GETMAINs. The relation between
columns in line 3 and the files for which
main storage is obtained is given below.
If the four columns associated with a file
are blank, the number of pages obtained
will be the number assembled into the PHC
PSECT.

r-------r----------T----------------------1
I I PHC PS~~ I
I Column! Name I File I
~-------+----------+----------------------~

15-18 TDAPAG Pages in Work Area A

19-22 TDBPAG Pages in 'iiork Area B

23-26 TDCPAG Pages in Work Area c

27-30 TDPPAG Pages in PMD

31-34 TDOPAG Pages in OPM

35-38 TDEPAG Pages in ENL

39-42 TDIPAG Pages in ISD

43-46 TOMI OP Pages in MlO Buffers

47-50 TDSYMP Pages in Symbol Tablet
-------~----------i ______________________ J

Note that, following the processing of
the three diagnostic information lines, the
source lines are read as in a normal
compilation.

Figure 10 summarizes the determination
of diagnostic mode and the initialization
performed if in this mode. Figure 11 sum
marizes the processing performed at each
phase call. Figure 12 shows compiler
action if in the diagnostic mode and an
unexpected interruption occurs.

MISCELLANEOUS

The miscellaneous modules are those used
by any routine in the compiler that causes
a diagnostic message to be added to the
user's terminal and/or listing output, and
files information concerning a numeric,
label, or address constant in the symbol
table.

The Receive Diagnostic Message (ROM,
CEKTE) routine is passed information
describing a diagnostic message to be pro
duced. RDM will send this message to the
terminal if the user is in conversational
mode and will add the message to the user's
listing if he has requested any list out
put. Figure 8 shows the general relation
ship between ROM and other modules in the
compiler.

Enter

Ready to Cal I
a Compiler
Phase

Output a
Message
Saying the
Phase Was
Called

Output a Message Saying
the Phase Returned, and
Giving the Retum Cade

!continue with} _____
14

_____ ..

~rocessing

(Exit)

Figure 9. Compiler Diagnostic Features

Section 2: Executive 19

Obtain and Edit
the First
Source Line

Set TDBUGA to
0, to Note Not
in Diagnostic
Mode

\
\

Issue Macros Such
that Interrupts

-------1~ will Send Control
to IA800

Set TDBUGA to
1. Note Now
in Diagnostic
Mode.

RDM

Output "In
Diagnostic Mode"
Message

Reod and Edit
Diagnostic
Line 1

\\{Not in J
Diagnostic
Mode

LINEIN

Read the First
Source Line to
Be Compiled.

Move Columns"?
from This Line to
the PHC PSECT

Reod and Edit
Diognostic
Line 2

fEnd of Diagnostic}-----
~ode Initiation

(.------'Ex"----.,i t)
Check Fields of 4
Columns Each Be
ginning in Col. 15.
If the Fields Are
Non-Blank, Con
vert Them to Binary
and Move to the
PHC PSECT.

Figure 10. Testing for Diagnostic Input
and Processing Diagnostic
Information Lines

The Constant Filers (CONFIL, CEKTF) rou
tine is called when information concerning
a constant is to be filed in the symbol
table for use by a later compiler phase.

20

ROUTINE DESCRIPTIONS

Exec routines bear mnemonic titles as
well as coded labels. The 5-character
coded labels begin with the letters CEKT;
the fifth letter identifies a specific
module. Various entry points to a routine
are identified by a sixth letter added to
the coded label; for example, the coded
label for the Master Input/Output routine
is CEKTH, and there are entry points CEK
THA, CEKTHB, etc.

There are no hardware configuration
requirements for any of the Exec routines.
All these routines are reenterable, nonres
ident, nonprivileged, and closed.

CEKTA -- Phase Controller (PHC)

The Phase Controller is the interface
between the outside world and the compiler
phases. It receives the LPC to FORTRAN
initial, continue, and early-end calls,
prepares for the compiling run, calls the
phases as subroutines, and returns to LPC
when compilation is terminated (successful
ly or unsuccessfully>. See Chart AB.

ENTRIES: The Phase Controller has three
external entry points:

LPC to FORTRAN Initial
(ENTRY name is CEKTAA)

Register 1 contains the address of the
parameter list.

Register 13 contains the address of
the LPC save area to be used by
FORTRAN.

Register 14 contains the return
address.

Register 15 contains the v-type Adcon
for the FORTRAN initial entry initial
ization routine Ci.e., the entry point
address>.

[Symbol] CALL FORTRAN initial entry-symbol
(15)

C,Cmodule name - addr,
batch/conversational
indicator - addr, F option
table - addr,
list data set
DCB - addr)]

Phase 1

Enter

Yes

Skip the
Call of
This Phase

Exit

Set TDCACT
to I to Mark

>---------~ the Phase to
No

Be Called

Invoke to
Log the
Phase On

Call Phase I
Save Return
Code in
TDRC

TDTIME(T A720)

Invoke to
Log the
Phase Off

Restore
Return
Code (RC)

TDDMPX
Give Any
File Edits
Re uested

No

Yes

Continue
With
Processing

Exit

TD STOP
Invoke to Give

:>-Y_e_s--~ Edits and
Terminate
Compilation

Exit

Figure 11. Processing Diagnostic Information Following Return From Each Phase

Section 2: Executive 21

TABOO

Enter

Output a Message
Giving The Type
of Interrupt
That Occurred,
Where, and Other
Misc Information

TDDMPX

Give File Edits
as Directed by
The 10 Columns
For The last
Phase Called

Exit

Figure 12. Processing of Unexpected Inter
ruptions During Compilation

FORTRAN Initial Entry
Entry point name for FORTRAN initial
entry.

List Data Set Name
Specifies the address of the module
name.

Batch/Conversational Indicator
Specifies the address of a 1-byte
field which contains 00000000 (for
batch) or OOOOOOOl·Cfor conversa
tional).

F Option Table
Specifies the address of an 8-byte
option table, where each byte may be
Y, N, or other. The default chosen by
FORTRAN is shown in parentheses:

byte 1
byte 2
byte 3
byte 4

byte 5
byte 6
byte 7
byte 8
byte 9

ISD option <produce) (N)
source listing option CY)
object listing option (N)
cross reference listing
option (N)

symbol table edit option (N)
storage map option (N)
BCD option (N)
public CSECT attribute (N)
List Data Set option (N)

List Data Set DCB

22

Specifies the address of the data con
trol block for the list data set.

LPC to FORTRAN continue
(ENTRY name is CEKTAB)

[Symbol] CALL FORTRAN continue entry -
symbol

(15)

C, (list data set exists
indicator - addr,
length of PMD - addr, PMD -
addr, length of TXT - addr,
TXT - addr, length of ISD -
addr, ISO - addr, external
name list - addr)J

FORTRAN Continue Entry
Entry point name for FORTRAN continue
entry.

List Data Set Exists Indicator
Specifies the address of a 1-byte
field which will contain 00000000 (for
no list exists) or 00000001 (for- list
exists) when FORTRAN returns to LPC
normally.

Length of PMD

PMD

Specifies the address of a pointer to
a 1-word field that contains a binary
number when FORTRAN returns to LPC
normally. This will be a count of the
number of bytes in the PMD which FOR
TRAN is giving to LPC.

Specifies the address of a pointer to
the area which will contain the PMD
when FORTRAN returns to LPC normally.

Length of Txr

TXT

Specifies the address of a pointer to
a 1-word field that will contain a
binary number when FORTRAN returns to
LPC normally. This will be a count of
the number of bytes in the TXT which
FORTRAN is passing to LPC.

Specifies the address of a pointer to
the area which will contain the TXT
when FORTRAN returns to LPC normally.

Length of ISO

ISO

Specifies the address of a pointer to
a 1-word field that will contain a
binary number when FORTRAN returns to
LPC normal1y. This will be a count of
the number of bytes in the TXT which
FORTRAN is passing to LPC.

Specifies the address of a pointer to
the area which will contain the ISO
when FORTRAN returns to LPC normally.

External Name List
Specifies the address of a pointer to
the area which contains the external
name list when FORTRAN returns to LPC
normally. (Each external name in the
list is an 8-byte field.)

LPC to FORTRAN Early End call
(ENTRY name is CEKTAC)

Register 1 contains the address of the
parameter list, if any.

Register 13 contains the address of the LPC
save area to be used by FORTRAN~

Register 1~ contains the return address.

Register 15 contains the V-type Adcon for
FORTRAN early end Ci.e., the entry point
address).

[Symbol] CALL FORTRAN early-end
entry-symbol

(15)

[,(list exists indicator -
addr>l

FORTRAN Early-End Entry
Entry point name for FORTRAN early-end
entry.

List Exists Indicator
Specifies the address of a 1-byte
field which will contain 00000000 (for
no list exists) or 00000001 (for list
exists) when FORTRAN returns to LPC
normally.

ROUTINES CALLED: The phase controller
calls the five compiler phases, MIO, and
CONFIL.

The calling sequence from the phase con
troller to these programs is a standard
call with the address within PHC of the
intercom area in the parameter list.

EXITS: The phase controller has three
exits which correspond to the three
entries.

Return Linkage to LPC from FORTRAN Initial

[Symbol] RETURN

Upon return from FORTRAN initial,
register 15 contains a code which LPC
interprets as follows:

Code
-0-

Type of Return
Normal. LPC will query user
before continuing if in conver
sational mode. LPC will call
FORTRAN continue if in noncon
versa tiona l mode.

4

8

FORTRAN cannot continue. LPC
will query user, if in conver
sational mode, but will not
allow him to continue unless he
first modifies the source data
set. LPC will call FORTRAN'S
early-end routine in both con
versational and nonconversa
tional modes.
Abnormal end LPC will not query
user and will not call FORTRAN
again. FORTRAN never issues
this return.

Return Linkage to LPC from FORTRAN Continue

[Symbol] RETURN

Upon this return, register 15 contains a
code which LPC interprets as follows:

Code
-0-

4

8

12

16

Type of Return
No errors

Minor errors (chance
of a correct source
program still quite
high)
Major errors (all or
parts of source state
ments were omitted)
No object module (prob
ably table overflow
within the compiler>
Any highly abnormal
condition -- partial
object module may have
been produced. FORTRAN
never issues this
return.

Parameter
Inf ornetion
Filled In
List. exists
indicator

Length of
PMD

PMD-length
of TXT

TXT-length
of ISD

ISO-exter
nal name
list

Same as for
code = O

Same as for
code = 0

List exists
indicator

Indetermi
nate

Return Linkage to LPC from FORTRAN
Early-End

[Symbol] RETURN

Upon return from FORTRAN'S early-end
routine, register 15 contains a code which
is interpreted by LPC as follows:

Code
-0-

4

Type of Return
Normal

A normal condition

Parameter
Information
Filled In
List exists
indicator

Indetermi
nate

Section 2: Executive 23

OPERATION: At the initial call, the Phase
Controller fetches the compiler parameters
from the LPC parameter list, obtains
storage for the work areas using GETMAIN,
and initializes the excom and intercom
regions of the Phase Controller's PSECT.
CThe information furnished by LPC is
described above under "entries.• Items
initialized in excom and intercom are
described in the description of these
regions.) The items initialized include
compiler options; module, main entry point,
and deck identification names; list data
set items (this and all interfacing between
Exec and Data Management is performed by
the Master Input/Output module MIO); and
various flags, switches, and pointers.

Next, initialization for other executive
modules and Phase 1 is done. This is also
the point at which control may be returned
by Exec if conversational corrections to
the source program were extensive enough to
require a restart of compilation. After
initialization, Phase 1 is called.

Following appropriate initialization,
Phase 2 is called, followed by the return
to LPC from FORTRAN Initial. LPC.now
enters the Phase controller at the FORTRAN
continue entry if the user continues. If
the program is a BLOCK DATA program, Phase
5 is entered. otherwise, Phases 3 and 4
are successively initialized and entered.

Phase 5 is then called, produces its
output <using MIO's OLR subroutine for list
data set lines), and returns to the Phase
Controller.

Following terminal processing, such as
data set closing, preparing return parame
ters for LPC, and freeing ma.in storage, the
compilation is ended by a return to LPC.

Return parameters to LPC were described
under "Exits.• These parameters are pre
pared prior to returning to the initial
call and the continue call. At return to
the initial call, the parameter may
specify:

1. Normal return. This return will be
made even if serious program errors
occurred; terminal users will, of
course, have been advised of any such
errors.

2. FORI'RAN wants to abort the compilation
due to table overflow or some other
condition that makes continuing the
compilation inadvisable without modi
fying the source program.

3. An abnormal condition -- FORTRAN may
not be called again.

24

At return to the continue call, the return
parameter may specify:

1. No errors in the source program.

2. Minor errors.

3. Major errors (source lines probably
truncated or omitted).

4. Table overflow.

5. An abnormal condition.

The early-end entry to the Phase Con
troller may be reached from LPC if the com
pilation cannot continue or if the user
does not want to continue. Reasons for
inability of the compiler to continue
include:

1. Source errors so serious that follow
ing phases cannot reasonably operate.

2. Storage overflow in a compiler table.

3. An abnormal condition.

In all these cases, appropriate error mes
sages are given. Terminal processing, such
as closing data sets and freeing main
storage, is then performed and return is
made to LPC.

CEKTC -- Get Next Source Statement (GNSS)

GNSS obtains a source statement from the
input data set, using the services of LPC,
and presents it to Phase 1 for processing.
Modifications to lines already received are
taken into account in determining what
source statement is fetched. see Chart AC.

RESTRICTIONS: Several assumptions underlie
the processing done by GNSS: A line in
card form is assumed to be in the tradi
tional FORTRAN format; a c in column 1
means a comment: a nonblank or nonzero
character in column 6 means a continuation;
the statement number is in columns 1-5; and
the body of the line is in columns 7-72.
Columns 73-80 may contain card identif ica
tion, etc., and will be contained in the
source deck edit on the list data set.

The required format for key.board input
is described in the documentation of the
ANALYZ subroutine <module CEKTI), given
later in this chapter.

An END statement is a line whose body
consists only of the letters E, N, and D.
Embedded blanks are allowed. A line meet
ing this description that is in fact con
tinued CEND FILE, for example, ~th FILE in
a second line) will be treated as an END
statement, and further FORTRAN statements
will be ignored.

ENTRIES: The only entry point (CEKTCA) to
GNSS is standard subroutine call from Phase
1. Phase 1 obtains the required V-con/R
con pair from intercom. The parameter list
furnished GNSS by Phase 1 contains one
address -- the location within Phase 1
where the phase moved intercom when called
by Phase Controller. This address is
required by GNSS, as GNSS will change items
in int er com.

ROUTINES CALLED: GNSS calls the MIO sub
routine LINEIN for source lines. LINEIN
places all infor:nation required by GNSS in
excom. ·rhe GETLINE, CALL, and RETURN
statements are described in the MIO
documentation.

GNSS calls the executive subroutine MOD
when GETLINE specifies the terminal user
has requested that lines be altered. The
MOD R-con and V-con are in excom. The
linkage to MOD is standard; the parameter
list is as follows:

LIST DC A(PINCOM) Location of intercom
in Phase 1.

MOD places a number in register 15 des
ignating the action to be taken by GNSS:

Code
-0-

4, 8, 12

16

20

24

28

Action
Obtain a new statement.
Not expected -- GNSS will
return to caller if these codes
are present.
Restart required. Return to
caller with a return code of
16.
The current statement must be
reformed completely.
MOD got the first line of the
new statement and left informa
tion concerning this line in
excom.
MOD met end-of-data-set in
reading a line.

Using a standard call, GNSS calls the
executive subroutine ROM when an error mes
sage is to be issued. The ROM V-con/R-con
pair is in intercom. The linkage is stan
dard with the following parameter list:

LIST DC A(PINCOM) L.ocation of intercom
in Phase 1.

Specify the message
C see the RDM docu
mentaL ion) •

GNSS calls the OLR entry to subroutine
MIO when a line is to be added to the
source listing. The MIO v-con/R-con pair
is in excom. The linkage to MIO is stan
dard. The parameter list is as follows:

LIST DC A(PINCOM) Location of intercom
in Phase 1

DC AC TEXT) Location of output
line

DC AC LENGTH) Line length
DC ACLINENO) Line number, PL4

format

GNSS calls the MIO subroutine BFLUSH, to
flush a buffer by adding its contents to
the list data set. The linkage is stan
dard. The parameter list contains the
address of intercom in Phase 1 and the
flushing parameter.

EXITS: The only exit from GNSS is a stan
dard return to Phase 1, with the return
code in register 15 set as described in the
executive module.

OPERATION: The primary responsibility of
GNSS is to set the necessary information
for Phase 1 to process a statement. This
information consists of the line number and
statement number fields in the intercom
area and the text character string in the
area indicated by the intercom text
pointer.

Certain internal flags and switches~ con
trol the flow of GNSS:

TDTERM - This excom flag is raised (set to
1) before the first line of a
statement is obtained and lowered
<set to 0) until the terminal line
of a statement is detected.

TDFORM - This excom switch indicates the
form (C for card, K for keyboard)
of the preceding line of a state
ment. It is set by the first line
of a statement and reset when a
statement started in keyboard form
switches to card form.

TDOVER - This excom flag is raised when a
single statement runs over 1320
characters. Subsequent lines of
such a statement are not passed to
Phase 1.

TEMEC This intercom item, maximum error
code, will be set to 8 if input
lines are ignored due to an error
detected by GNSS.

Using the LINEIN entry of MIO, GNSS
calls the LPC subroutine GETLINE repeatedly
for source lines until a complete statement
has been assembled. In addition to
assembling a source statement, GNSS sets
the intercom items: the line number of the
first line CTESLNO) and the statement num
ber (TESTNO). GNSS also detects END state
ments <and sets the intercom item TEEND to
mark this> and sets the excom indicators

Section 2: Executive 25

TDU, TDPU, TDAPU, TDPUF, and TDAPUF for use
by the process ter~nal modifications sub
routine (MOD).

Card and keyboard lines are processed
differently, due to their different con
tinuation conventions and formats. The
processing of the first line of a statement
is also different from the processing of a
continuation line. For the latter, the
initial character (TOLE) and the length
CTDNUMC) of the body of the line text must
be found. For an initial line, this is
done only after the line number and state
ment number have been placed in inLercom.
As the input lines are received from GET
LINE, they are added to the internal files
area TCTEXl. When a complete source state
ment has been formed in this area, the end
of-statem.ent character X'FF' is added to
the statement in this area, and the inter
com item TEVSTB is set to the address of
TCTEXl for the use of Phase 1.

calls on GE.TLINE in conversational mode
may result in the terminal user's request
ing that one or more lines be altered. If
so, subroutine MOD is called to determine
appropriate action. MOD may raise the FOR
GET flag to inform Phase 1 that the state
ment currently held in a tentative status
by Phase 1 should be removed from all
tables, as it will be replaced. In this
case, GNSS will call GEl'LINE again to
obtain a source statement for Phase 1, etc.
If the tentative statement is to be
accepted, MOD will direct GNSS to ask for
new lines without having raised the FORGET
flag. MOD may also direct GNSS to return
to the Phase Controller requesting a
restart. This occurs when the terminal
user wants to alter a line that.Phase 1
cannot •forget• -- a line permanently added
to the Phase 1 tables. In such a case, the
next call on GETLINE will again request the
first source statement of the program.

When GNSS is initially entered in con
versational compilation, the current values
of TDBOLO and TDBNEW are interchanged.
After the exchange, TDBOLD contains the
address of the buffer filled with source
lines, and corresponding diagnostic mes
sages, for the statement obtained on the
previous GNSS call. TDBN:&l is the buffer
address for the buff er to be filled on the
current call.

At exit from GNSS in conversational
operation, the FORGET flag is checked. If
its value is zero, the statement is not to
be •forgotten• so the statement in the
bUff er whose index is TDBOLD is to be added
to the list data set. If the FORGET flag
is 1, the line is to be forgotten and is
not added to the list data set.

26

If GNSS encounters an end-of-data-set
return code from GETLINE, the user omitted
the END card from his source code. GNSS
creates an END statement and returns to
Phase 1 normally.

As an example of GNSS operation, consid·
er the case where input is card only. A
card is obtained, via LINEIN. If the line
is a conunent line, it is added to a list
data set buff er via OLR; LINEIN is then
called for another line. If the card is
not a comment line, the status of the
TDTERM flag is inspected. This flag is se1
to one upon entry to GNSS so that the line
is written via OLR. Inspection for a con
tinuation line is made. If the card is not
a continuation card, several operations ar~
performed, then inspection for an END card
is made. If the card is an END card, two
flags are raised. The text is then moved
to the Phase 1 bUffer. The TDTERM flag is
then tested again. If down, LINEIN is
called for a new line, and the chart is
reentered. If TDTERM is up, the EOS Cend
of-source-statement> sequence is entered,
at which point the end-of-statement
character is added and return made to
Phase 1.

Certain tests made by the code are not
shown in the flowchart, due to their repet
itive nature:

1. Before OLR is called to add a line to
a list data set buffer, the TESLO flag
is checked. If TESLO is not equal to
Y, no source listing was requested ana
the call is not made.

2. All executive subroutines called by
GNSS return with a return code of O,
4, 8, or 16, as described earlier in
the General Information section. GNSS
tests this code, and if it is nonzero,
return is made to Phase 1 at once,
with the return code unchanged.

Continuation inconsistencies (a con
tinuation card line received as the initial
line of a statement, or a noncontinuation
card line received after a keyboard line
indicating continuation> produce diagnostic
messages and cause the line in question to
be ignored. If a statement contains too
many characters, a diagnostic message is
produced and trailing lines of the state
ment are ignored.

CEKTD -- Process Terminal Modifications
(MOD)

MOD is called by GNSS when GNSS is
informed by LPC that a modified line has
been entered from the terminal.

MOD will determine the effect of this
request upon the obtaining of a source
statement by GNSS. MOD may:

1. Direct GNSS to replace part or all of
the statement currently being formed
for Phase 1.

2. Raise the FORGET flag to inform Phase
1 that the statement currently held by
it in tentative status should be
removed from the Phase 1 tables Cin
this case, GNSS will obtain a
replacement> •

3. Direct Phase 1 to return to the Phase
Controller requesting a restart of the
entire compilation.

see Chart AD.

ENTRIES: MOD has a single entry point
CCEKTDA) and is currently reached only by
GNSS, via a standard ca11. The parameter
list contains only the address of intercom
within the phase calling GNSS.

ROUTINES CALLED: MOD calls the LINEIN
entry of MIO when an altered line must be
inspected to see if it is a continuation
line.

EX~TS: MOD returns to the calling program
using a standard RETURN. A return code is
set in register 15 by MOD, as follows:

4
8

12
16
20

24

28

Description
A new statement is to be
obtained from LINEIN using the
current value at TDU <see
•operation", below> as the line
number following ~hich a line is
desired.
Suspected system error.
Compiler error.
Suspected system error.
The compiler must restart.
The current statement will be
reobtained.
A line obtained by MOD is to be
used by GNSS.
MOD met the end-of-data-set
Calso referred to as •Eos• and
•Eoos•> in obtaining a line.

OPERATION: MOD uses the following excom
items to determine its response:

1. TDU. When GNSS is called, TDU equals
TDPU and also equals the line number
of the last line of the statement
passed to Phase 1 on the previous GNSS
call. During GNSS operations, TDU is
the line number of the last line
received from GETLINE (the excom item
TDLINF, referred to in the flowchart
as "line number•).

When returning to Phase 1, TDU will
equal the line number of the last line
of the statement passed to Phase 1.

2. TDPU. When GNSS is called, TDPU
equals the line number of the last
line of the statement passed to Phase
1 on the previous call. When GNSS is
finished, TDPU is changed to the line
number of the 1ast line now being
passed to Phase 1.

3. TDAPU. When GNSS is called, TDAPU
equals the line number of the last
line of the statement prior to that
last passed to Phase 1. As only the
last passed statement can be forgot
ten, the statement containing TDAPU is
committed for processing.

When GNSS returns to Phase 1, a new
statement is being furnished. Both
TDU and TDPU contain the line number
of the last line of the statement now
being passed. TDAPU is set to the
line number of the last line of.the
statement previously passed. The FOR
GET flag directs Phase 1 to keep or
discard this previously passed
statement.

Note: TDPU is never less than TDU:
TDAPU is never less than TDPU.

4. TDPUF, the format of line TDPU.

5. T ADPUF, the format of line TDAPU •

6. TDLINO, the line number of the altered
line -- the line to replace a line in
or be inserted into the source
program.

As an example of MOD operation, consider
the case where the line number altered is
less than or equal to a line number already
committed by Phase 1 CTDLINO S TDAPU). A
restart must occur, and MOD sets a return
code accordingly for GNSS. ·

For a second example, assume the order
is (in sequence of increasing line
numbers>:

TDAPU = TDLINO
TDU = TDPU

Another possibility is one in which the
order of increasing statement numbers is:

TDAPU
TDLINO
TDPU
TDU

If line TDAPU was in card form CTDAPUF =
C) the new line could extend TDPU. The new
line is inspected. If it is in card format

Section 2: Executive 27

and a continue line, a restart is required,
as TDAPU is committed. If TDAPU was in
keyboard form, or if the new line is not in
card format and a continue line, TuLINO
cannot modify TDAPU, so no restart is
required. The next line to be requested by
GNSS will be the line following TDAPU. MOD
thus sets TDU to TDAPU and directs GNSS to
obtain a new line. The insertion of a line
preceding TDPU means that TDPU -- currently
held in a tentative status by Phase 1 -
must be •forgotten:• therefore, MOD raises
the FORGET flag.

CEKTE -- Receive Diagnostic Message (ROM)

ROM accepts a diagnostic message in the
form of a list of pointers to pieces of
text, assembles the pieces into a line
image, adds the message to the source list
ing, and -- in conversational operation -
sends it to the terminal. see Chart AE.

ENTRIES: RDM has one entry point (CEKTFA) ,
the v-con and R-con for which are found in
intercom. RDM is reached only via a stan
dard call. The parameter list is described
below with an example containing strings of
length 12 and 37 characters to be combined·
into a message by RDM:

LIST DC A(PINCOM) The location within
the current active
phase of intercom

DC A(Ll) Stri nq 1 length
DC A(Tl) String 1 text
DC A(L2) String 2 length
DC A(T2) String 2 text
DC A(ZERO) End-of-string

L1 DC FL1 '12'

Tl DC CL12' ••• '

L2 DC FL1'37'

.
T2 DC CL37' ••• '

ZERO DC FL1'0'

ROUTINES CALLED: RDM calls only the master
input/output module (MIO), at its DIAGOUT
entry. The DIAGOUT V-con and R-con are in
excom. Standard linkage is used. The
parameter list contains:

LIST DC A(Intercom>same as in ROM calls
DC A(Text) Message text
DC A(Length) Message length, bytes

EXITS: Standard return linkage is executed
to the calling program. The return code
set is whatever code was returned by MIO.

28

OPERATION: ROM first assembles the diag
nostic message as a line image from the
indicated pieces of text. The DIAGOUT
entry to MIO is then called to add the mes·
sage to the source listing, and, if the
compiler is running in conversational
operation, to transmit the message to the
terminal via PUTDIAG.

If a diagnostic message is greater than
80 characters, a diagnostic message is
added to the source listing and only the
first 80 characters of the message are sent
to MIO.

CEKTF -- Constant Filers (CONFIL)

CONFIL receives numeric address and
statement label constants, ensures that
they have a symbol table entries, and pro
vides symbol table pointers to the con
stants. See Chart AF.

CONFIL's CRL subroutine creates an
internal statement number and files this
number as a label. These labels may be
used by compiler phases to mark points in
the code.

RESTRICTIONS: Several references are made
in text and tables to the filing of con
stants of one-byte length <referred to as
•1 constants> and of length 16 <•16 con
stants). Currently, no compiler phases
require that the constant Files be able to
file *1 constants, and no code is included
for such filings, although space is left in
various tables. For *16 constants, the
only constant of such length currently is a
C*16 constant. For such constants, only •8
alignment is required. In this case, the
•16 alignment <not space creation> code
exists, but is not entered. Similarly, c•a
constant filing uses *4 alignment code.
The planning for these constants is based
on the possibility that future modifica
tions to the compiler would require the
ability to file them.

ENTRIES: The CONFIL subroutines are
reached via a standard call. The V-con and
R-con values are available to the calling
programs in intercom. Prior to calling a
CONFIL routine CCRL excluded), the calling
program places the constant to be filed in
the intercom area TECONS. Upon return,
CONFIL will have filled in the intercom
item TEPNTR and will have set TEGNU (and,
for CRL, TELINO).

The CONFIL entry points, entry symbol,
and corresponding TECONS initialization are
given in Table 5.

Table 5. Preparation of Constant Receiving Area by CONFIL
r------~T--------T--------------r------------------------r-----------------------------1
I Entry I CONFIL I CONFIL V-Con I I I
I Symbol I Name I <Intercom> I Description I TECONS Contents I
~-----~+--------+--------------+------------------------+-----------------------------~

CEKTFB CONI2 I T£VI2 IFiles I*2 constants Constant to TECNSl I
CEKTFC CONI4 I TEVI4 I Files I*4 constants Constant to TECNSl I
CEKTFD CONR4 I TEVR4 I Files R*4 constants Constant to TECNSl I
CEKTFE CONR8 I TEVR8 IFiles R*8 constants High order 4 to TECNSl I

I I Low Order 4 to TECNS2 I
CONC8 I TEVC8 IFiles c•a constants Real 4 to TECNS1 I

l -- I Imag. 4 to TENCNS2 I
CEKTFF

CEKTFG CONC16 TEVC16 Files C*l6 constants High Order real 4 to TECNS1 I
Low Order real 4 to TECNS2 I
High Order imag. 4 to TECNS31

CEKTFI FLAD4 TEVFL4 Files storage class
constants other than

4
Low Order imag. 4 to TECNS4 I
Constant to TECNSl I

I
R-cons I

CEKTFJ FLADS TEVFL5 Files storage class 5 constant to TECNS1 I
constants I

CEKTFK FLADVR TEVVR Files V-con, R-con pairs Constant to TECNS1 I
CEKTFL FLL TEVFLL Files labels Label to TECNSl I
CEKTFM CRL TEVCRL Creates & files labels I
--------~--------~--------------~------------------------'------------------------------J

ROUTINES CALLED: CONFIL calls ROM if over
£ low occurred in the symbol table storage
class table.

EXITS: CONFIL executes a standard return
linkage to the calling program. A return
code is set in register 15 as follows:

Code
-0-

8

Meaning
Normal
Symbol table or storage class 4
(the adcon page) overflow

CONFIL returns with register 15 contain
ing zero or, if ROM was called, containing
whatever code was returned by ROM.

OPERATION: CONFIL initially determines if
a constant of the type being filed has pre
viously been filed. This determination is
made by inspecting the appropriate anchor
for the chain in which the constant would
be included. The constant types, their
anchors, and the base of the tables con
taining the anchors are shown in Table 6.

If the appropriate anchor is empty <con•
tains X'80--' meaning End-of-Chain), the
constant is added to the symbol table, the
storage class table is updated, and the
anchor is made to point to the new entry.
(This pointer, like all pointers in the
symbol table, is a 2-byte offset from the
symbol table base>.

If the anchor is not empty, the chain to
which it points is searched until either an
identical constant is found or an end-of
chain indicator is found. If the constant
has previously been filed, return is made
with a pointer to the descriptive part of

the previously filed constant. If the con
stant is not already in the chain, it· ~s
added, the storage class table is updated,
and the previous end-of-chain entry is
altered to point to the new entry.

Much of the code in CONFIL is shared' by
all constant filers. Not all constants are
created identically, however. The major
differences are:

1. The value part of the name part
entries for 8- and 16-byte constants
are longer Cby 4 and 12 bytes, respec
tively) than for 2- and 4-byte
constants.

2. The descriptive part for label con
stants is 12 bytes, rather than 8
bytes.

3. Adcons in storage class 5 \<list-entry
adcons> are added to the erid of the
chain, without searching for an iden
tical previous occurrence.

4. The code that searches the chains is
divided into three sections for great
er speed. The sections search chains
for constants of length 2 and 4, 8,
and 16 bytes, respectively.

s. One constant filer CFLADVR> files two
identical constants -- a v-con and an
R-con. The V-con is filed in the
adcon storage class 4 chain; the R-con
is filed in the R-con chain. The v
and R-cons will occupy adjacent loca
tions in storage class 4, in the order
V-con, R-con.

Section 2: Executive 29

6. Create Label CCRL) creates a label,
stores it in TECNSl, then files this
label.

The possibility exists that constants in
storage class 4 could be given locations in
the storage class such that "holes• would
exist. For example, addition to the
storage class of three constants of 16
bytes, 4 bytes, and 16 bytes, respectively,
in that order and with byte alignment,

would create a 12-byte "hole". CONFI~
fills such holes with items filed later, a~
described in Tables 7, 8, and 9.

CONFIL checks for symbol table overflow
and storage class overflow, which can occuJ
only in storage class 4. If either occurs,
the TEOFLO item is set in intercom and
return is made to the calling program with
a return code of 8. A message is given by
CONFIL in such an event.

Table 6. Constant Chain Anchors and Table Bases
r-------------r------------~-------------r-------------------------T-------------------1
I CONFIL I I I Table Base I
I Name I Constant Type Filed I Anchors Cin Excom> I C in Intercom) I
~-------------+---------------------------+-------------------------+-------------------~
I CONI2 I I*2 I TCCHT (1) I TECBTB I
I CONI4 I 1*4 I TCCHT (2) I I
I CONR4 I R*4 I TCCHT (3) I I
I CONR8 I R*8 I TCCHT (4) I I
I coNca I c•s I TccaT cs> I I
I coNc16 I c•16 I TCCBT <6> I I
I FLADVR I R-Cons (STCL = 4) * I TCCHT C7 > I I
I FLAD4 I Adcons CSTCL = 4) I TCCHT (8) I I
I FLAD5 I Adcons (STCL = 5) I TCCHT (9) I I
I FLL,CRL I Labels I TCLHT (1-16> I TELHTB I
~-------------i ___________________________ i _________________________ i-------------------~

I *STCL means Storage class I
L---J

Table 7. CONFIL Storage Assignment No-Hole Branch Table TFNOHO
r-----~-----------------------------T---------T---------T---------T---------T---------1
I Length Constant Being Filed I *1 I •2 I *4 I *8 I •16 I
~-----~-----------------------------+---------+---------+---------+---------+---------~
I corresponding Register P-3 Value I O I 4 I 8 I 12 I 16 I
~---------------------------r---------+---------+---------+---------+---------+---------~
I current Alignment of I I I I I I I
I Next Space in Storage I I I I I I I
I Class 2 I •1 I TF610 I TF620 I TF630 I TF640 I TF650 I
I ~---------+---------+---------+---------+---------+---------~
I I *2 I TF610 I TF610 I TF660 I TF665 I TF670 I
I ~---------+---------+---------+---------+---------+---------~
I I *4 I TF610 I TF610 I TF610 I TF675 I TF680 I
I ~---------+---------+---------+---------+---------+---------~
I I *8 I TF610 I TF610 I TF610 I TF610 I TF685 I
I ~---------+---------+---------+---------+---------+---------~
I I •16 I TF610 I TF610 I TF610 I TF610 I TF610 I
~------~-------------------~--------_i ________ _i _______ __i _________ i_ ________ ~---------~

Examples of Table Use:

1. An *4 constant is being filed and the alignment in Storage Class 2 is also •4.
Branch to TF610. (No holes produced in Storage Class.)

2. An *4 is being filed, and the alignment is •8. Branch to TF610. (No holes
produced).

3. An •8 is being filed and alignment is •2. Branch to TF665, at which point an •2
(and *4 if six bytes are required to create •8 alignment> hole will be made
available as a result of •8 alignment being produced for the constant.

---J

30

Table 8. CONFIL Storage Assignment Hole Availability Table
r-----------------------------------~---------------T--------T--------T--------T--------1
I Length Constant Being Filed I *1 3 I *2 3 I *4 I *8 I
t------~---~-+--------+--------+--------+--------~
I Corresponding Register P-3 Value I 0 I 4 I 8 I 12 I
t---------------------T-----T--------T-----T--------4--------4--------4--------4--------~
I Available Hole I *8 I *4 I *2 I *1 I
t------~-------------+-----+--------+-----+--~

TDHOLE = 0 I I I I TF590 TF590 TF590 TF590 I
~-----+--------+-----+--~

1 I I I I x TF511 TF590 TF590 TF590 I
~-----+--------+-----+--~

2 I I I x I TF521 TF522 TF590 TF590 I
~-----+--------+-----+--~

3 I I I *X I *X TF511 TF522 TF590 TF590 I
~-----+--------+-----+---------~----------------------------------~

4 I I x I I TF541 TF542 TF544 TF590 I
r-----+--------+-----+--~

5 I I x I I x TF511 TF542 TF544 TF590 I
~-----+--------+-----+--~

6 I I x I x I TF521 TF522 TF544 TF590 I
r-----+--------+-----+--~

7 I I x I x I x TF511 TF522 TF544 TF590 I
~-----+--------+-----+--~

8 I x I I I TF581 TF582 TF584 TF588 I

~-----+--------+-----+-----------------------------------~--------~
9 I x I I I x TF511 TF582 TF584 TF588 I

~-----+--------+-----+--~
10 I x I I x I TF521 TF522 TF584 "' TF588 I

~-----+--------+-----+--~
11 I x I I x I x TF511 TF522 TF584 :'-TF588 I

~-----+--------+-----+--~
12 I x I x I I TF581 TF542 TF544 TF588 I

t-----+--------+-----+-------------------------------~------------~
13 I x I x I I x TF511 TF542 TF544 TF588 I

~-----+--------+-----+--~
14 I x I x I x I TF521 TF522 TF544 '•'TF588 I

~-----+--------+-----+--~
15 I x I x I x I x TF511 TF522 TF544 TF588 I

t-------------------4----4--------.L-----.L---~
I I
I Examples of Table Use: I
I I
I 1. An *4 constant is being filed, no *4 constant hole is available <no X under *4 in I
I the Available Hole columns), and no *8 hole is available. Branch to TF590, where I
I space will be taken by increasing the size of the Storage Class. I
l I
I 2. An *2 constant is being filed, no *2 hole is available, but an *4 hole is avail- I
I able. Branch to TF542, at which point part of the *4 hole will be used, with the I
I unused part of the hole assigned to the *2 hole. I
I I
I 3. Not implemented. I
L--J

Section 2: Executive 31

Table 9. CONFIL Storage Assignment Byte
Alignment Branch Table TFBAL

r----------------------------T------------1
I Alignment of Next I I
I Available Byte I I
~------------~------------~ I
I Address Bits I I Number I
1---T---T---T---~ Constant I Loaded I
I 8 I 4 I 2 I 1 I Length I Into N4 I
~---+---+---+---+------------+------------~

*16 80
x *1 0

x •2 20
x x *1 0

x •4 40
x x •1 0
x x •2 20
x x x *l 0

x •8 60
x x *1 0
x x *2 20
x x x •1 0
x x •4 40
x x x *1 0
x x x *2 20
x x x x •1 0

___ i,__._L __ _.. ___ L------~----L------------J

CEKTH -- Master Input/Output (MIO)

All communication between interface pro
grams supplying source 1ine input to and
producing edited line output for the com
piler is accomplished my MIO. The compiler
I/O operations are:

1. Calls on LPC GETLINE

2. Calls on LPC PUTDIAG

3. Opening of, additions to, and closing
of the list data set

See Chart AG.

ENTRIES: The entry points to MIO are
listed below. All are reached by standard
calls.

Entry Name
LDOPEN CEKTHA
LDCLOSE CEKTHB
LINE IN CEKTHC
DIAGOUT CKTHD

OLR CEKTHE

32

List in Parameter List
(Address>
Intercom
Intercom
Intercom
Intercom, line address,
4-byte character count.
Intercom, line address,
4-byte character count,
and flag.

The flag item will be zero
or a PL4 format line num
ber, with the following
results.

Zero. The output line
will begin in column 1 of
the list data set line.

BFLUSH

Lines presented are
expected to be preceded by
a carriage control
character.

PL4. The output line will
begin in column 10 of a
list data set line. The
first nine characters will
be XXXXXXXBB, where X = a
numeric digit, and B =
blank. A carriage control
character of a blanks is
associated with this line.

CEKTHF Intercom, Flag. Flag is
4, 8, or 12 for flushing
old, new, or both buffers,
respectively.

ROUTINES CALLED: MIO calls the LPC entries
GETLINE and PUTDIAG and uses data manage
ment through VISAM I/O macro instructions.

The CALL and RETURN statements for.MIO
calling GETLINE and PUTDIAG are given
below.

FORTRAN to GETLINE Call

Register 1 contains the address of the
parameter list.

Register 13 contains the address of the
FORTRAN save area to be used by GETLINE.

Register 14 contains the return address.

Register 15 contains the V-type Adcon
for GETLINE (i.e., the entry point
address>.

Csymbol1 CALL GETLINE entry-symbol, (line
number

GETLINE Entry

(15)
to GETLINE-addr, line number
from GETLINE-addr, length of
line-addr, source-addr,
altered line number-addr)

Entry point name for GETLINE.

Line Number to GEI'LINE

Specifies the address of a 1-word field
containing a packed decimal number. (FORTRAN
is requesting a source line which follows
the line with this number.)

Line Number From GETLINE

Specifies the address of a 1-word field
which will contain a packed decimal number
when GETLINE returns to FORTRAN normally
(i.e., return code= 0). This will be the

line number of the source line which GET
LINE is giving to FORTRAN.

Length of Line

Specifies the address of a 1-word field
~hich will contain a binary number when
GETLINE returns to FORTRAN normally. This
~ill be a count of the number of characters
in the source line which GETLINE is giving
to FORTRAN. This count will include the
format character (see source line below>.

Source Line

Specifies the address of a field which
will contain the address of the source line
when GETLINE returns to FORTRAN normally.
This line will contain a maximum of 150
characters. The first character will be 0
or 1 (hexadecimal), depending upon whether
the line is card or keyboard, respectively.

Altered Line Table

Specifies the address of a 1-word field
which will contain Cin packed decimal for
mat> the line number of the lowest line
modified when GETLINE returns to FORTRAN
with a return code of 4.

GETLINE to FORTRAN Return

[Symbol] RETURN

Upon return from GETLINE, register 15
contains a code which may be interpreted as
follows:

Code
-0-

4

8

12

Type of Return
Normal <source line
has been obtained).

Lines have been
altered.
Batch -- EDOS <End-of
oata-set. GETLINE was
asked for a line after
the last line in the
data set>.
•abend-type•

FORTRAN to PUTDIAG Call

Parameter
Inf opnation
Filled In
Line number
from
GETLINE.
Length of
line.
Source line
Altered
Line number
None.

Indetermi
nate.

Register 1 contains the address of the
parameter list.

Register 13 contains the address of the
LP save area to be used by PUTDIAG.

Register 14 contains the return address.

Register 15 contains the V-type adcon
for PUTDIAG Ci.e., entry point address).

[symbol] CALL PUTDIAG, entry - symbol
(15)

C,Cmessage-addr, length of
message-addr, correction
request indicator-addr)J

PUTDIAG Entry

Entry point for PUTDIAG.

Message

Specifies the address of an area which
contains the message.

Length of Message

Specifies the address of a 1-word field
which contains, in binary, the number of
bytes in the message.

Correction Request Indicator

Specifies the address of a 1-byte field
which indicates whether the message is to
go to SYSOUT immediately (00000000) or is
to be stacked by LPC and output as a·
correction request at the next entry" to
GETLINE (00000001).

PUTDIAG to FORTRAN Return

[Symbol] RETURN

Upon return from PUTDIAG, register 15
contains a code which may be interpreted as
follows:

code
-0-

12

Type of Return
normal
•abend-type•

EX~TS: MIO exits to the calling program
using a standard linkage. A return code is
set in register 15 as follows:

Code
-0-

4

OPERATION

Description
Normal return.
GETLINE or PUTDIAG returned with
an •abend-type• value in regis
ter 15. The program calling MIO
will return to its caller with a
return code of 4 , unti 1 the
phase controller is reached.
The phase controller will then
return to LPC with a return code
of 4.

MIO has six entry points. These are
described below.

Section 2: Executive 33

1. List Data Set Open Entry -- LDOPF.N

The phase control~er enters at LDOPEN
to open the list data set. Opening
wi11 not occur again, unless FORTRAN
is reached at its initial entry or a
restart occurs. Restart will cause
the list data set to be closed, and
then reopened, thus discarding the
contents of the previous list data
set.

2. List Data Set Close Entry -- LDC.LOSE

3.

The phase controller enters at LDCLOSE
to close the list data set. Lines
held in the list data set buff er (see
ORL below> are output before closing.

Get a Line From LPC Entry LINEIN

This entry is used by the exec subrou
tine CEKTC CGNSS) when a source state
ment is being .formed for Phase 1 of
the compiler. LINEIN will call the
LPC subroutine GETLINE and pass the
results to GNSS via excom.

When processing card lines, GNSS
requests the first line of each state
ment twice, once to determine that the
previous statement is not to b~ con
tinued, and once to obtain the first
line of the new statement. LINEIN
does not issue two calls on GETLINE
under such circumstances. Rather,
LINEIN saves the line after the first
request, in anticipation of the second
request.

If GETLINE sets register 14 to note an
abnormal end condition, LINEIN returns
to GNSS with a return code that will
force an abnormal end return by Phase
1 to the phase controller, followed by
an abnorma 1 end return by the phase
controller to LPC.

4. output a Diagnostic Message Entry -
DIAGOUT

34

Any executive subroutine or any phase
wishing to output a diagnostic message
may do so by calling the receive diag
nostic message subroutine, ROM. RDM
forms the message and adds it to the
terminal (unless in batch operation>
and list data set Cif any>, using the
DIAGOUT entry to MIO. In cases where
executive modules have access to a
complete line, they call DIAGOUT
directly, for increased efficiency.

During Phase 1 operation, diagnostic
messages will frequently be output
concurrently with addition of source
lines to the list data set by the MIO
entry OLR (see below>.

If the computer is running in conver
sational mode, OLR does not output
source lines as soon as they are
received, as a terminal correction may
require deletion of lines. Instead,
lines are stacked in one of the two
MIO buffers (obtained by a PHC GET
MAIN). Diagnostic messages concerning
these lines are also stacked, in the
same buffers, and added to the list
data set only when the source line
causing the diagnostic is added to the
list data set.

5. Output Line Receiver -- OLR

This entry is used by PHC <Phase Con
troller>, GNSS, and Phase 5 of the
compiler to add source lines to the
list data set.

OLR operation when called from any
where except GNSS is quite simple; as
lines to be added to the list data set
will never be replaced. GNSS use, on
the other hand, is more complex, since
both the previous statement processed
by Phase 1 and the current statement
being prepared for Phase 1 may be
deleted, due to conversational correc
tions. In such a case, the source
lines for these statements must not be
added to the list data set. This pur
pose could be accomplished by retain
ing the entire source program in vir
tual storage. The procedure adopted
by OLR is to stack source lines <with
diagnostic messages and conunent lines
received concurrently> in buffers
until the source statement is irrevo
cab1y committed to inclusion in the
Phase 1 tables and, thus, to further
processing by following phases.

The possibility exists that the capac
ity of any reasonably-sized buff er
will be exceeded, due to an abnormally
large number of comment lines con
tained within a source statement. In
such a case, a message will be added
to the list data set, to the effect
that the statement will be repeated if
corrected at the terminal.

6. Flush the Buffer -- BFLUSH

This entry is used by GNSS to move a
source statement and associated diag
nostic messages from an output buff er
to the list data set. This operation
is performed only when it is deter
mined that the statement cannot be
replaced through conversational
corrections.

CEKTI Analyze console source Line CANALYZ)

ANALYZ, which is-assembled into GNSS
CCEKTC), analyzes a console-furnished
source line to determine the location in
the string of the statement nwnber Cif any>
and the text. The statement number is
moved to intercom; the location of the
first text character and the number of text
characters are returned to the calling pro
gram GNSS. See Chart AH.

ENTRIES: ANALYZ is reached only from GNSS,
via a restricted linkage INVOKE. All
information required by ANALYZ is in inter
com. ANALYZ returns with TOLE in N3, and
TDNUMC in V2.

ROUTINES CALLED: ANALYZ invokes subroutine
INSCON (CEKTJ) for inspection of individual
characters.

Information placed in registers for
INSCON is:

Register
P2

V2

contents
LASTC, the address of the first
character beyond the last text
character.
I, the address of the last
character inspected by INSCON.

ANALYZ initializes V2, which is updated
by INSCON. P2 is used, but not changed by
INSCON.

EXITS: ANALYZ returns to GNSS via a
RESUME, with no registers set. All infor
mation required by GNSS is in excom.

OPERATION: ANALYZ is invoked by GNSS with
information in excom giving the line length
CTDLONG) and the address of the area con
taining the line (TDLADD). There are too
many possible legitimate combinations of
text characters to describe all ANALYZ
operations in writing, but the ANALYZ flow
chart (Chart AY) gives all logic paths.

Ref er to FORTRAN Programmer's Guide,
•Appendix A: Entry and Correction of FOR
TRAN Source Statements,• for information
concerning the format of source stateme~ts.

CEKTJ -- Inspect a Console Character
(!NSCON)

INSCON is assembled into GNSS; its func
tion is to inspect a character in a console
source line to determine if it is tab, nu
meric, blank, or other. See Chart AI.

ENTRIES: INSCON is invoked by subroutine
ANALYZ via restricted linkage. Information
required by INSCON is all in registers pre
pared by ANALYZ, as follows:

Register
P2

V2

Contents
LASTC, the address of the first
character beyond the last text
character.
I, the address of the last
character inspected prior to
INSCON entry.

INSCON alters Pl and P3 for use by the
calling program.

ROUTINES CALLED: None

EXITS: INSCON returns to the calling pro
gram with a RESUME, with a code in RC as
follows:

code DescriEtion
-0- Not used.

4 INSCON could not inspect a
character, as the end of line
was exceeded.

8 The next character was a tab.
12 The next character was numeric.
11 The next character was blank.
20 The next character was not tab,

numeric, or blank.

OPERATION: INSCON tests the address next
character in the console line to see if the
line end has been reached. If so, the RC =
4 return is taken; if not, the character is
converted, inspected, and return made .with
the RC code set appropriately.

CEKTK -- Move a Line to the List Data Set
CLDMOVE)

LDMOVE is assembled as part of the mas
ter input/output module and is invoked by
MIO via restricted linkage to move a line
from a buffer to the list data set. LDMOVE
counts lines moved, restores the page, and
adds a page heading when required. See
Chart AJ.

ENTRIES: LDMOVE is reached from the MIO
subroutines FLUSH and BUILD, via an INVOKE.
All information required by LDMOVE is in
excom, intercom, the MIO PSECT, or regis
ters Nl and N2:

N1 = text address
N2 character count

ROUTINES CALLED: LDMOVE uses the VISAM PUT
macro instruction to add lines to the list
data set.

EXITS: LDMOVE sets no registers for invok
ing programs. Return is via a RESUME.

OPERATION: LDMOVE determines whether a new
page is to be started, and, if so, moves
the page heading from the internal files
area to the list data set. The new page
number is included in this heading.

Section 2: Executive 35

LDMOVE adds the line to the list data
set, updates line counters, and returns.

CEKTL -- Build a List Data Set Buff er
(BUILD)

BUILD is assembled as part of.the master
input/output module and is invoked b~· MIO
via restricted linkage to move a line to a
list data set buffer or the list data set.
This buff er is emptied using FLUSH (see
CEKTM) when full, when the list data set is
to be closed, or when a source statement is
committed to further compilation. (See
Chart AK.)

ENTRIES: BUILD is reached from the DIAGOUT
and OLR entries to MIO, via an INVOKE.
Programs, invoking BUILD, set registers as
follows:

Nl = the address of the line to be
processed

N2 = the number of characters in this
line

ROUTINES CALLED: BUILD may enter LDMOVE or
FLUSH via an INVOKE. No registers are set
for, or expected to be set by, these
subroutines.

EXITS: BUILD returns to its caller via a
RESUME, with no registers set.

OPERATION: When BUILD is called in batch
mode, it invokes LDMOVE at once, to move
the line directly to the list data set.

In conversation, BUILD checks first to
see if the list data set buff er currently
being built is full; if it is, FLUSH is
called. The line is then added to one of
the MIO buffers.

CEKTM -- Flush a List Data Set Buffer
(FLUSH)

FLUSH is assembled as part of the Master
Input/output module and is invoked to flush
one or both of the list data set buffers by
moving all lines resident in the buffers to
the list data set. See Chart AL.

RESTRICTIONS: Register P6 must be set for
FLUSH, as follows:

P6
4

8
12

Description
Flush the old buff er
Flush the new buffer
Flush both buffers

ENTRIES: FLUSH is reached from the MIO
entry BFLUSH, LDCLOSE, and BUILD via an
INVOKE. All items required by FLUSH are in
excom, intercom, or the MIO PSECT.

36

ROUTINES CALLED: FLUSH invokes LDMOVE. No
registers are set for, or expected from,
this invocation.

EXITS: FLUSH returns via a RESUME, with no
registers set for the calling program.

OPERATION: FLUSH determines "if the buffer
contains any lines to be removed; if it
does, FLUSH repeatedly invokes LDMOVE until
the buffer is empty. Otherwise, FLUSH
returns at once.

CEKTQ -- Compiler File Dump (COMDUMP)

COMDUMP prepares hexadecimal dumps of
compiler internal files, as part of the
compiler diagnostic feature processing.

ENTRIES: COMDUMP contains one entry point,
CEKTQA.

ROUTINES CALLED: COMDUMP calls LINDUMP at
its CEKTSA entry, by means of the CEKTG
macro.

EXITS: COMDUMP always makes a RETURN to
the calling program, with no return code
set.

OPERATION: COMDUMP is called with three
parameters: the address of intercom and
the low and high addresses of the area for
which a hexadecimal dump is to be prepared.
The COMDUMP,output lines are issued via the
CEKTG macro instruction. This macro
instruction issues a call on the LINDUMP
module, which in turn issues a VISAM PUT to
pass the line to the compiler user.

An error message is given and no dump is
produced if the parameters have the second
address greater than the third.

CEKTS -- Compiler Line Dump (LINDUMP)

LINDUMP is called by the macro CEKTG,
after CEKTG sets up parameters for the
call. LINDUMP then forms one or more lines
in accordance with parameters passed, and
issues these via the VISAM PUT macro
instruction.

ENTRIES: LINDUMP contains one entry point,
CEKTSA.

ROUTINES CALLED: The PUT macro instruc
tion, issued by LINDUMP, leads to an
external call.

EXITS: COMDUMP always makes a RETURN, with
no return code set.

OPERATION: Before describing LINDUMP, a
description of the CEKTG macro instruction
will be given.

Use of CEKTG

CEKTG can be used by macro instruction,
in the forms:

1. CEKTG AREA,FORMAT,SIZE
Cone area, one format>

where:

AREA - may be any symbol defined
in the program or a term
such as DCRN), where o is
any displacement and RN
any register.

FORMAT - may be:

0 or x
1 or F
2 or H
3 or c
4 or Q
5 or B

SIZE

for hexadecima.l
for fullword integer
for halfword integer
for character
for quarter-¥K>rd integer
for binary

- may be any absolute or
relocatable expression of
up to eight characters.
It is the byte size of
AREA.

If FORMAT is c and SIZE is 133, only
132 characters are printed, and the
first character is used to control
printer skipping and spacing as
follows:

1 = Skip to new page before print
ing the line

0 Space one line before printing
the line

+ = Space two lines before printing
the line

••• and any other character is ignored.

If AREA falls in the range 0 to 15, it
is assumed to relate to an index reg
ister (general-purpose). SIZE then
means the number of bytes, starting at
the left-most (high-order> byte of
that register. Wrap-around takes
place, and the registers are printed
as they were before the macro instruc
tion was executed.

2. CEKTG A1,F1,A2,F2, •••• A6,F6
Cup to six areas and formats>

where:

A1,A2, ••• A6 -- may be as specified
for AREA above.

F1,F2, ••• F6 -- consist of a single
letter, followed by an integer
number in the range 1 to 999. The
letter may be:

X for hexadecimal
F for fullword integer
H for halfword integer
Q for quarter-word integer
c for character
B for binary
N for name-indicator Csee comment

below)

Unless, and until, an N-type format is
encountered, each area is printed
separately on one or more lines, with
the address of the area indicated, and
the format letter shown. The area
associated with the N-type format is
printed in characters, starting at
print position number 1. Other areas
following the N-type format are
printed alongside, up to a print line
limit of 120 characters: additional
lines are used if required. There
will be spaces between individual
items (bytes, halfwords, or full
words) of multiple areas.

A1,A2, ••• A6 may refer to general
purpose registers, if they fall in the
range 0-15. (See discussion on using
the single-area CEKTG, above.)

There is no print control option with
multiple areas.

The format parameters always specify
length in bytes.

The standard CEKTG output line starts
with REF, followed by the hexadecimal
return address in the calling program, fol
lowed by ADR, followed by the decimal
address of the area being printed, followed
by the hexadecimal address of the area
being printed, followed by a format letter
CX, F, H, Q, or B), followed by data items •
The data items are separated by spaces,
except in the case of the Q format.

When a single area is printed in
character format, or when multiple areas
follow a name area Csee above>, the stan
dard indication is dropped, and data starts
at print position 1.

Except when using character format,
there is always one space between the out
put of successive entries to CEKTG.

The CEKTG macro instruction saves and
restores all registers around the call.

This is the initial PRF entry generated
at the initialization of Phase 1

CEKTG -- Calling Sequence

1. The calling sequence for the single
area CEKTG is as fallows:

Section 2: Executive 37

LA
LA
L
CALL

O,N SEI' FORMAT CONTROL
1,PARAM POINT TO LIST
15,-ADCEKT
ClS), MF= CE, Cl))

PARAM DC ACAREA)
DC A(SIZE)SIZE IS IMMEDIATE

VALUE
ADCEKT ADCON IMPLICIT,EP=CEKTSA

••• where the parameter N is a number
in the range 0-5 (see notes on single
area CEKTG macro instruction above).

2. The calling sequence for the multiple
area CEKTG is as follows:

LA
LA
L
CALL

PARAM DC
DC
DC
DC

0,6 SET MULTIPLE AREA
l,PARAM POINT TO LIST
15,ADCEKT
(15) ,MF= CE, (1))

A(Al) FIRST AREA
CL4' Fl' FIRST FORMAT
A(A2) SECOND AREA
CL4'F2' SECOND FORMAT

NOPR 0 END OF LIST
ADCEKT ADCON IMPLICIT,EP=CEKTSA

The parameters required for LINDUMP to
prepare line(s) as described above are
stored by CEKTG in intercom. CEKTG then
calls LINDUMP. LINDUMP inspects these
parameters, and builds one line of output.
This output is issued via a VISAM PUT, a
second line is prepared if requested, and
so on.

38

INTRODUCTION

Phase 1 performs the initial scan of the
source program, ana1yzes it for syntactical
correctness, and encodes the information
for subsequent pEoeessing. Figure 13 il
lustrates the operation of Phase 1.

On entrance from the compi1er executive,
Phase 1 initializes itse1f, calls GNSS to
get the first source statement, and enters
its main loop.

The main loop is traversed once for each
source statement. It classifies the state
ment and ca1ls an appropriate subroutine to
process the statement. On return from an
individual statement processor, GNSS is
called for the next source statement. GNSS
indicates, by the forget flag, whether the
statement just processed should be compiled

!EndStatement -

B

Figure 13. Phase 1 Interface

Enter

Initialize

Get Next
Source
Statement

Statement Processors

Delete
Statement

No

SECTION 3: PHASE l

or ignored due to action by a conversation
al user. In the latter case or if the
statement just processed contained serious
errors, the results of processing that
statement are expunged from all tables and
output files, and the loop is reentered at
the top to process the new statement just
obtained. Otherwise, final housekeeping
appropriate to the old statement is per
formed, and the loop is reentered at the
top.

The processing for a statement includes
producing appropriate output. Executable
statements cause entries in the program
representation file (PRF). Declarations
may set fields in symbol table entries or
produce output in the stoage specification
list or preset data file. In addition,
certain statements may affect Phase 1
internal tables and flags.

Section 3: Phase 1 39

Access to the source text is through two
subroutines: ESC and-ACOMP. ESC supplies
the next character on request. ACOMP sup
plies a pair of consecutive items: the
first is a variable name, function name,
constant, or statement number (label); the
second is a delimiter. ACOMP calls subrou
tines to make symbol table entries, convert
constants to binary, etc.

Statements containing arithmetic or log
ical expressions cali"t:he subroutine EXPR
to process these expressions into Polish
notation, which is output in the expression
representation file (ERF). The subroutine
SUBS processes subscripts, as a special
category of expressions for EXPR and the
statement processors.

When source program errors are detected
by Phase 1, the subroutine ERR is called to
prepare a diagnostic message and transmit
it to the executive subroutines ROM. The
message is determined by the parameters
presented to ERR. A parameter may indicate
a piece of prestored text to be included in
the message or may direct the subroutine to
obtain information from the compiler's
tables (e.g., a name from a symbol table
entry> and insert it in the message.
Depending on the entrance used, ERR will
also set the local maximum error code and
may raise the delete flag.

After recognizing and processing the
source program END statement, Phase 1
returns control to the executive.

Phase 1 has one PSECT that provides
working storage for all Phase 1 modules.
This PSECT is contained in module PHIM
(CEKAI> and is organized as shown in
Figure 14.

Phase 1 creates entries in the inter
phase files and tables listed below.

PROGRAM REPRESENTATION FILE (PRF)

The PRF consists of the executable ele
ments of a source program. PRF entries are
linked (chained) together in the sequence
of their generation. Additional linking
connects PRF entries by types.

Definition point analysis connects each
definition point of each variable, connects
the definition points of any formal argu
ments, and connects the definition points
of all COMMON variables. variables are
defined when used as:

1. The expression to the left of an equal
sign in an arithmetic or logical
statement.

40

1 Page

Page 1

Page 2 {

Page 3

Page 4-S {

PSECT

SAVE AREA (19 Words)

Phase 1 Working Storage
(3508 Bytes)

Exec Intercom
(512 Bytes)

Phase I Internal Working Storage

HSTCK (Operator Stack for EXPR)
LEVTAB (Level Table for IOLST)
(3328 Bytes)

SXS (Subexpression Stack for EXPR)
LPTAB (Left Parenthesis Table for IOLST)
(768 Bytes}

Symbol Table Save Area

CSTK (Constant Stack for EXPR)
(256 Bytes)

TTRM (Tentative Term Table for SUBS)
(768 Bytes)

DOSTCK (Do Loop Stack for BGNLP)
(1024 Bytes }

LBLTBL (Alternate Return Laoels for CALL)
(2048 Bytes)

SFEF (Statement Function Expansion Area)
(110,480 Bytes)

Figure 14. Phase 1 storage

2. An induction variable of a DO
statement.

3. A variable in an input list.

4. An argument of an external subprogram.

(All COMMON variables are defined when an
external subprogram reference occurs in the
source program.)

Statement number processing establishes
the branching structure of the source pro
gram. Statement number definitions are
entered in the PRF and are linked. All
statement numbers referenced as branch
points are linked.

DO statement processing establishes the
looping structure of the source program.
The beginning and terminating points of
each loop are connected to each other and
to other loop delimiting points. In addi
tion to the loops specified by the source

program, a fa1se loop is indicated before
the first executable statement of the
source program. This provides a position
in the PRF for computation of expressions
that are effectively constants in the
program.

The program representation file, as
generated by Phase 1, consists of the fol
lowing types of entries. Additional
entries are added by succeeding phases.

Begin Program Entry

This is the initial PRF entry generated
at the initialization of Phase 1. Program
type is set to indicate a main program.
This setting is changed by the occurrence
of a subprogram (SUBROUTINE or FUNCTION)
statement. This entry is the terminal
entry of the LINK chain.

Subprogram Entry

This multiple-purpose entry is a global
(external) entry point. As such, it is
linked into the label definition chain
within the PRF. It has a pointer to the
symbol table entry of a subroutine or f unc
tion name and a pointer to a 1ist of symbol
table entries of the formal parameters of
the subprogram. This list specifies the
order of oc01rrence of the formal parame
ters. This is a fa1se loop level entry.
It is the primary entry point of a program.

Alternate Entry

This entry is generated for each occur
rence of an ENTRY source statement and
identifies a secondary entry point for a
program. It is a global (external> entry
point. As such, it is linked into the
label definition chain within the PRF. It
is a false loop level entry. It has point
ers to the symbol table for the entry name
and for entries of the f o:rmal parameters.

Label Definition Entry

The label definition entry is generated
for each occurrence of a statement number
in the source language and for each
compiler-generated statement number. Label
definition PRF entries mark possible entry
points for local <internal) flow control.
To facilitate the flow analysis by Phase 2,
they are linked to the preceding entry
point.

Equation Entry

This entry is generated from a FORTRAN
assignment statement (arithmetic or logi-

cal). It contains a pointer to the expres
sion representation file CERF) entry repre
senting the expression to the 1eft, and
another for the expression to the right, of
the equal sign. An assignment statement is
a variable definition point for the
assigned-to identifier; it may be a common
definition point if the defining expression
contains a reference to an abnormal func
tion. An •abnormal• f 1m.ction subprogram is
one which does any of the following:

1. Refers to or changes the value of any
COMMON variable.

2. Changes the value of any of its
arguments.

3. causes input or output.

4. Does not always return the same value
when called with the same arguments.

All external functions are treated as
abnormal by the compiler.

GO TO Entry

A GO TO entry is generated for each
occurrence of a GO TO source statement.
Each is linked to the preceding label
referencing PRF item, forming the
referenced label chain used by Phase 2.

Assigned GO TO Entry

This entry is generated for each occur
rence of an assigned GO TO source statement
and contains a list of the statement num
bers which may be assigned to the variable.
Each statement number in the list is pre
sumed to be referenced at this entry and,
therefore, is linked to the preceding label
referencing PRF item for analysis by Phase
2.

computed GO TO Entry

Each occurrence of a computed GO TO
source statement causes an entry that con
tains a list of the statement numbers to
which control can be trans!erred. Each
label in this list is assumed to be
referenced at this entry and therefore, is
linked to the preceding label referencing
PRF item for analysis by Phase 2.

ASSIGN Entry

This entry is generated for each occur
rence of an ASSIGN source statement. It is
considered neither a reference to the label
specified nor a redefinition of the
assigned variable. Bence, the PRF entry is

Section 3: Phase 1 41

not linked into the label reference chain
or into the definition point chain. This
entry is applicable to code generation
only.

Arithmetic IF Entry

This entry is generated for each occur
rence of an arithmetic IF source statement.
Each label specified is assumed to be
referenced at this entry. This item is
linked to the preceding label-referencing
PRF item. A label value of zero indicates
fall-through to the next executable state
ment. If the expression contains a
reference to an abnormal function, this
item serves as a redefinition point for all
COMMON variables and is linked into the
COllDDOn definition chain within the PRF.
The test expression is in the ERF.

Logical IF Entry

This entry, generated for each occur
rence of a logical IF source statement,
combines the logical expression part with a
conditional branch part to make the PRF
entry very similar to the arithmetic IF.
If the conditional statement is not a
simple GO TO source statement, the expres
sion is negated, a label is generated, and
a transfer true to the generated label is
indicated. This item is linked to the pre
ceding label referencing PRF item. If the
expression contains a reference to an
abnormal function, this item serves as a
redefinition point for all COMMON variables
and is linked into the COMMON definition
chain within the PRF.

CALL Entry

Statement numbers specified as actual
arguments of a CALL source statement are
entered into a list in a PRF entry. Each
label in the list is assumed to be
referenced at this PRF entry. Hence, CALL
PRF entries are linked to the preceding
label referencing PRF entry. The occur
rence of a CALL source statement, which is
a reference to an abnormal function, is a
redefinition point for all COMMON variables
and is linked into the COMMON definition
chain within the PRF.

The occurrence of a CALL source state
ment also effects the generation of an
argument definition point PRF entry for
each actual argument of the call that is a
simple or subscripted variable. Each of
these PRF entries is linked to the previous
definition point of the argument.

42

Argument Definition Entry

This entry is generated for each actual
argument of an external reference (a call)
that is a simple or subscripted variable.
Each entry is linked into the definition
chain of the particular variable.

RETURN Entry

This entry is generated for each occur
rence of a RETURN source statement within a
subprogram. STOP PRF entries are generated
for RETURN statements occurring within a
main program. These entries are either
explicit or implicit references to global
(external> labels. As such, they are
linked to the preceding label referencing
PRF entry.

Begin Loop Entry

For each DO statement, each implied DO
statement, and around the total PRF exclud
ing global (external> entry points, there
are begin and end loop PRF entries. For
each begin loop three successive PRF
entries are made. Having three entries
facilitates the optimization processing of
Phase 3. Loop PRF entries are interlinked.
Each begin loop links to the previous begin
loop and end loop PRF entries. The begin
loop entry is also linked to ~ts own end
loop PRF entry.

End Loop Entry

This entry is generated upon completion
of the processing of a statement with a
label that matches the last label in the DO
pushdown list. An end loop entry is linked
to the corresponding begin loop and to the
previous loop PRF entry, begin or end.

CONTINUE Entry

An entry is included only to show pres
ence of CONTINUE statements in the source
program.

RFAD, READ Without Unit, and READ With
NAMELIST Entries

An entry is generated for these source
input statements. READ statements having
either an EOF label or an ERR label speci
fied are linked into the label reference
chain of the PRF.

WRITE and WRITE With NAMELIST Entries

These are generated by WRITE source
statements.

PRINT and PUNCH Entries

These are degenerate (particular> cases
of WRITE source statements.

Input/output List Representation in the PRF
Entry

Each entry is a redefinition point when
the list is associated with a READ state
ment. Begin and End Loop PRF entries from
implied DOS are appropriately interspersed.
A list sequence of PRF entries follows the
I/O PRF entry with which they are to be
associated.

End List Entry

This is a control entry in the PRF
sequence to indicate the termination of an
I/O list sequence to the code generation
phase.

END FILE, REWIND, and BACKSPACE Entries

An entry is generated upon occurrence of
each of these statements in the source
program.

STOP Entry

This entry is generated upon occurrence
of a STOP statement in the source program
or for a RETURN statement appearing in a
main program.

PAUSE Entry

This entry is generated upon occurrence
of a PAUSE in the source program.

End Program Entry

PRF control entry to indicate the end of
the PRF.

EXPRESSION FILE

The expression file consists of individ
ual strings of entries which are operands
and operators in the usual right-hand
Polish notation. These strings represent
all arithmetic and logical expressions
occurring in the source program and any
subscripts that are not constants. Expres
sion file entries are generated by the fol
lowing statements: equation, arithmetic
and logical IF, READ, WRITE, PRINT, PUNCH,
RETURN with variable index, ASSIGN,
assigned and computed GO TO, and CALL. An

entry may consist only of an operand, as is
the case with the entries for ASSIGN, GO
TO, RETURN, etc., statements.

Subscript Expressions

For subscript expressions, especially
those containing loop variables, the occur
rence of a loop variable causes its initial
value to be incorporated into the expres
sion. Also, the array item length is in
corporated into the expression, so that the
expression can be used directly in address
computation. Wherever possible, terms are
combined in order to increase efficiency.
Finally, two additional plus operators are
included before the special subscript
operator to facilitate processing by Phase
3.

Special representations in the ERF are
shown below.

FUnction and subroutine references:

F(x)
F(x,y)
F<x,y,z)

x F
x y
x y

F
z F

Max and Min function references:

AMAX1CX,Y, Z)
AMAXO(I, J, K)

Subscripts:

X Y MAX Z MAX
I J MAX K MAX FLOAT

array - variable item with offset
and flag

subscript - sum of products
expression

subscript -
operator

STORAGE SPECIFICATION TABLES

The storage specification tables consist
of two types of entries: a common entry
and an equivalence entry. A common entry
is made for each occurrence of a COMMON
statement in the source program and repre
sents each variable and its particular
storage class (blank or named COMMON) in
the statement. An equivalence entry is
made for each occurrence of an EQUIVALENCE
statement in the source program and repre
sents the variables in each EQUIVALENCE
group and their offsets, if any.

Section 3: Phase 1 43

The way an equivalence entry is made
depends on the dimension information pre
ceding or following the equivalence
statement.

In the event that dimension information
for a particular variable (DIMENSION, COM
MON or TYPE statement) or that a sub
scripted variable in the EQUIVALENCE state
ment contains only a single subscript, the
offset in EEl or EE6 is computed.

EE2-5 or EE7-10 are not used.

The type field in EEl or EE6 indicates
the type of variable.

When dimension information does not pre
cede the EQUIVALENCE statement and a sub
scripted variable in the EQUIVALENCE state
ment contains more than one subscript, EE1
or EE6 contains the number of subscripts.
In this case EE2 or EE7 are required, and
EE3-5 or EE8-10 may be required.

The type field in EEl or EE6 is set to
'FF'~ indicating that this variable con
tains the number of subscripts in EE1 or
EE6 followed by EE2 or EE7 and possibly
EE3-5 or EE8-10.

DIMENSION TABLE

The dimension table consists of entries
in the preset data reference set. An entry
is made for each array dimension specif ica
tion occurring in the source program.
These specifications may occur in DIMEN
SION, COMMON, or explicit type statements.
If the array is not a formal argument, the
entry represents the number of dimensions,
total size, and the dimension products of
the array. If the array is a formal argu
ment, the entry represents the number of
dimensions and the individual size specifi
cations (value for a constant or symbol
table pointer for a variable).

NAMELIST TABLE

The namelist table consists of entries
in the preset data reference set. Each
entry consists of a set of symbol table
pointers to the variables in a given NAME
LIST. An entry is made for each occurrence
of a namelist name in a NAMELIST statement.

STORAGE CLASS TABLE

Phase 1 also adds certain information to
the storage class table. Each COMMON block
name occurring in a COMMON statement is
entered into the storage class table and
causes the count containing the number of
COMMON block names to be updated. Also,

44

for each occurrence of a FORMAT statement
or a literal constant <except as initial
values in a DATA or Type statement>, the
alphameric storage class counter is incre
mented by the number of bytes in the format
or literal constant.

FORMAT PROCESSING

Format labels are entered into the sym
bol table and marked as defined. The cur
rent value of the alphameric storage class
counter is entered as the storage location
in the descriptive part of the symbol table
entry.

The alphameric format information,
including the initial open parenthesis and
the terminal closing parenthesis, is output
as an alphameric table entry in the preset
data-ref erence set. The location of this
entry is entered into the descriptive part
of the label symbol table entry. The
alphameric storage class counter is incre
mented by the number of bytes of alphameric
information.

The alphameric table entry consists of
an identification element, an alphameric
element, and either a termination element
or a continuation element. All alphameric
table entries are linked together. As each
new entry is made after the initial entry,
the terminal ID is changed to continuation,
and the new entry location is entered as
the continuation link.

ALPHAMERIC CONSTANTS

A label is generated for each occurrence
of an alphameric constant as an actual
argument of a subroutine call. This label
is entered into the symbol table, in a
manner analogous to a format label. The
entrance constitutes both the definition
and the reference of this label. The
storage class is set to 3, and the current
value of the class-3 location counter is
entered into the label symbol table entry.
The location counter is incremented by the
size of the literal constant. An alphamer
ic entry is made in the alphameric table
(see •Format Processing•>.

Literal constants occurring as preset
data are processed in the same manner as
numeric constants occurring as preset data.

DATA PROCESSING

Each DATA statement and each data speci
fication within a type statement produces a
data entry in the preset data reference set
transmitted to Phase 5. Each data entry
consists of a variable element, one or more

value elements, and a continuation or ter
minal element. The variable elements have
a pointer to the variable sy~bol table
entry. The variable elements within a data
entry are linked together. The continua
tion element links the data entries togeth
er. The address of the first data entry is
in the intercom region.

CROSS REFERENCE INDEX LIST

If the user has selected the cross
reference option, each occurrence of a
statement number or variable identifier in
a progra~ causes an entry to be made in the
cross reference index list. Each entry in
this list consists of a symbol table point
er to the element name or label value, the
line number of the occurrence, and an indi
cator. The indicator specifies that the
occurrence is an assignment or a defini
tion, rather than the usage of or reference
to the element.

A variable identifier entry is marked as
assigned when it occurs, as follows:

1. To the left of the equal sign in an
assignment statement.

2. To the left of the equal sign in a DO
statement.

3. In an ASSIGN statement.

4. As an element of an input list.

5. As an element of a NAMELIST referenced
by a READ statement.

Statement number entries are marked as
defined when the label PRF entry is made.
All other occurrences of e~ements are usage
or reference entries.

PHASE 1 ROUTINES, FUNCTIONAL DESCRIPTION

Phase 1 routines can be grouped accord
ing to tne function they perform. A brief
description of the function of each group
and the routines belonging in each group
follow.

Pass 1 Statement Processors

These modules control the analysis and
encoding of each of the various FORTRAN
source statements. The modules are EQUA,
EXTE, Gore, IF, TYPE, CONT, DIMN, COMM,
EQUI, DO, ASS!, FCON, RWIO, FORM, PSR,
NAML, BIDA, DATA, IMPL, BLNK, SOBE, CALL,
and END.

Pass 2 Statement Processors

Due to the conversational nature of the
compiler, certain operations pertaining to
the processing of a statement are best
delayed until it is sure the statement will
not be deleted. These modules perform the
final encoding and housekeeping operations
for each of the various FORTRAN source
statements. The modules are DCL2, EXEC2,
BLDA2, IMPL2, SUBE2, CALL2, and STFN2.

Expression Processing and Translation

These routines perform the analysis and
encoding of arithmetic and logical expres
sions wherever they may occur. Two of
these routines are devoted exclusively to
subscript processing. They are SUBS and
TR~_pRo. The other routines are EXPR,
CNVRT, SFDEF, SFEXP, FNCLS, LIBN, ARITH,
AARG, and CHKINT.

Source Extraction and Conversion

These routines perform the chara~ter-by
character source analysis of the ba.S.ic lan
guage elements (variables, constant~, and
labels) and any conversions required. They
also file these elements in the symbol
table as required. The routines are ESC,
ACOMP, FLRC, IVST, ICNV, FCNV, and ~LIC.

Loop Processing service Routines

The routines that perform the analysis
and encoding of loops whenever they occur
are BGNLP, ENDLP, CKLIM, and CLLIM.

I/O Statement Processor service Routines

These routines perform analysis and
encoding of parts of I/O statements for
RWIO. The routines are IOLST, FLABL,
RTRAN, and FNAME.

Initial Value Processing Service Routines

These routines analyze and encode the
initial values occurring in the explicit
type and DATA statements; they are IDATA
and IVAL.

Miscellaneous Service Routines

There are a number of routines that per
form specific functions as required by
various statement processors and other rou
tines. These routines and their functions
are as follows:

Section 3: Phase 1 45

ARDIM - analyze and encode the dimension
specifications for an array when
encountered in a dimension, common
or type statement.

LBSTR - process the label string as encoun
tered in the assigned and computed
GO TO statement.

SID - classify each source statement and
assign its ID number.

IABL - encode statement labels and deter
mine if any loops are ended.

FALTH - determine if a statement number
reference was to the next sequen
tial statement and mark the
reference for possible later
optimization.

ERR - generate a diagnostic message and
add it to the output data set.

ROUTINE DESCRIPTIONS

Phase 1 routines bear mnemonic titles as
well as coded labels. The five-character
coded labels begin with the letters CEK;
the fourth and fifth letters identify a

46

specific routine. Various entry points to
a routine are identified by a sixth
character appended to the coded label. Any
mnemonic name beginning with the letters
TEV refers to an Executive routine or entry
point, rather than to a Phase 1 routine.
The corresponding coded label is given in
parentheses immediately following the
mnemonic.

There are no hardware configuration
requirements for any of the Phase 1 rou
tines. All these routines are reentrant,
nonresident, nonprivileged, and closed.
Except for entry to the constant Arithmetic
Interrupt routine CCEKCS), which uses stan
dard linkage, all entries must be by
restricted linkage conventions. Each Phase
1 routine has only one exit; there are no
special exits for error conditions.

Phase 1 is composed of 65 routines. The
relationships of these routines are shown
in the following nesting chart (Figure 15)
and decision table (Table 10). The rela
tionships are shown in terms of levels; a
called routine is considered to be one
level lower than the calling routine. The
nesting chart is drawn to show only link
ages to the fourth level. Phase 1 main
loop is considered to be level 1.

Cll
('I)
(')
rt
g
w

"t1
::r
Pl
(I)
Cl)

~

.i=
-.I

l'lj Level
{ l.Q

c::
11
Cl>

~
U'1 .
"ti

re-
en
('I)

~

z
('I)
en
rt
'5
()
:::r
Ill
t;
rt

3 [

4

Table 10. Phase 1 Decision Table (Part 1 of 8)

Routine:-----------~Phase 1--Level: 1------------
r--------T-------------------------T---------T-----------~------------------------------1
I I ICalled I I
IRoutine I Usage IRoutines I Calling Conditions I
~--------+-------------------------+---------+--~
PHlM I Phase 1 Main Loop I SID I To identify the type of source statement. I

I IEQUA ITo process logical and arithmetic assign- I
I I ment statements. I
IEXTE !To process EXTERNAL statements. I
!GOTO ITo process GO TO statements. I
IIF !To process Arithmetic and Logical IF I
I I statements. I
TYPE !To process type declaration statements. I
CONT !To process CONTINUE statements. I
DIMN !To process DIMENSION statements. I
COMM !To process COMMON statements. I
EQUI I To process EQUIVALENCE statements. I
DO ITo process DO statements. I
ASSI !To process ASSIGN statements. l
FCON ITo process BACKSPACE, END FILE, and REWIND

RWIO

FORM
PSR

NAML
BLDA
DATA
IMPL
BLNK
SUBE

CALL
END
DCL2

EXEC2

BLDA2

IMPL2

SUBE2

CALL2
STFN2

ESC
IVST

I statements.
ITo process READ, WRITE, PRINT, and PUNCH
I statements.
!To process FORMAT statements.
I To process PAUSE, STOP, and RETURN
I statements.
!To process NAMELIST statements.
ITo process BLOCK DATA statements.
I To process DATA statements.
ITo process IMPLICIT statements.
ITo process blank source statements.
ITo process ENTRY, FUNCTION, and SUBROUTINE!
I statements. I
ITo process CALL statements. I
ITo process END statements. I
!To terminate processing of various I
I declaration statements. I
ITo terminate processing of executable I
I statements. I
!To set program type for BLOCK DATA I
I statements. I
ITo perform final housekeeping for IMPLICIT
I statements.
ITo make PRF entries for ENTRY, FUNCTION,
I and SUBROUTINE statements.
ITo adjust the CALL PRF entry.
ITo terminate processing of Statement
I Functions.
I To obtain next source character.
ITo make Symbol Table entry for alphameric
I names.

ERR !To generate diagnostic messages.
TEVGNS ITo get next source statement.

(CEKTC) I
--------L-------------------------i---------i--

48

Table 10. Phase 1 Decision Table (Part 2 of 8)

Routine:------------Phase 1--Level: 2------------·
r--------y-------------------------T---------T--1
I I !Called I I
!Routine I Usage IRoutines I Calling conditions I
~--------+-------------------------+---------+--~
I SID I Source statement I ESC I To obtain next source character. I
I I identification IERR ITo generate diagnostic messages. I
~--------+-------------------------+---------+------------------~-----------------------~
I EQUA I Equation statement I LA.BL I To process statement label. I
I I processol:..-. I EXPR I To translate source language expressions I
I I I I into Po1ish Notation. I
I I I ERR I To generate diagnostic messages. I
~--------+-------------------------+---------+--~ I EXTE I EXTERNAL statement I ACOMP !To assemble source characters into basic I
I I processor I I components. I
I I I ERR I To generate diagnostic messages. I
~-------+----------------------~+---------+--~
IGOTO IGO TO statement IESC !To obtain next source character. I
I I processor IACOMP !To assemble source characters into basic I
I I I I components. I
I I f LA.BL I To process statement labels. I
I I I LBSTR I To process a string of labels. I
I I IERR !To generate diagnostic messages. I
~--------+-------------------------+---------+--~
(IF IIF statement processor jESC ITo obtain next source character. I

11 I IACOMP !To assemble source characters into basic I
I I I I components. I
I I IEXPR (To translate source language expressions I
I I I I into Polish Notation. I
I I I LA.BL I To process statement labels. I
I I I ERR I To generate diagnostic messages. I
I I I TEVCRL I Exec routine that creates a label for a I
I I I (CEKTFM>I code file. I
~--------f-------------------------+---------+-------------------------------------~~---~
I TYPE I Explicit type statement I ESC I To obtain next source character. I
I I processor IACOMP ITo assemble source characters into basic I
I I I I components. I
I I I ARDIM I To process dimension specifications for an I
I I I I array. I
I I IIDATA ITo process initial value data for type andl
I I I I DATA statements. I
I I I ERR I To generate diagnostic messages. I
~--------+---------------------~---+---------+--~
I CONT I CONTINUE statement I ESC I To obtain next source character. I
I I processor ILABL ITo process statement labels. I
I I I ERR I To generate diagnostic messages. I
~--------+-------------------------+---------+--~
f DIMM IDIMENSION statement fACOMP f To assemble source characters into basic I
I I processor I I components. I
I I IARDIM ITo process dimension specifications for anl
I I I I array. I
I I I ERR I To generate diagnostic messages. I
~--------f-------------------------+---------+--~
ICOMM !COMMON statement IACOMP ITo assemble source characters into basic I
I I processor I I components. I
I I IARDIM f To process dimension specifications for ant
I I I I array. I .
I I IERR ITo generate diagnostic messages. I
~--·---+------------------------+--------+-------------------------------------~ I EQUI I EQUIVALENCE I ESC I To obtain next source character. I
I I statement processor IACOMP ITo assemble source characters into basic I
I I I I components. I
I I ISUBS !To translate subscript expressions into I
I I I I Polish Notation. I
I I IERR ITo generate diagnostic messages. I
L--------..L----------------------...L.--------.L--J

section 3: Phase·l 49

Table 10. Phase 1 Decision Table (Part 3 of 8)

Routine:------------Phase 1--Level: 2--(Cont'd)-
r--------,--------------------------T---------T--
I I !Called I
IRoutine I Usage !Routines I Calling Conditions
~--------+-------------------------+---------+--
1 DO IDO statement IACOMP ITo assemble source characters into basic
I I processor I I components.
I I I LABL I To process statement labels.
I I I BGNLP I To process Begin Loop information.
I I I ERR I To generate diagnostic messages.
~--------+-------------------------+---------+--
1 ASSI fASSIGN statement IESC ITo obtain next source character.
I I processor I ACOMP I To assemble source characters into basic
I I I I components.
I I I LABL I To process statement labels.
I I I ERR I To generate diagnostic messages.
I I I TEVFLL I Exec routine that makes Symbol Table entry
I I I (CEKTFL) I for created label.
~--------+-------------------------+---------+--
1 FCON IFile control statements IACOMP ITo assemble source characters into basic
I I processor (BACKSPACE, I I components.
I I END, FILE, REWIND> ILABL ITo process statement labels.
I I I ERR I To generate diagnostic messages.
I I I IVST I To make Symbol Table entries for alphamer-
1 I I I ic names.
~--------t-------------------------+---------+--·

RWIO I/O statements IACOMP tTo assemble source characters into basic
processor (READ, WRITE, I I components.
PRINT, PUNCH) ILABL ITo process statement labels.

I IOI.ST I T-o process list elements for READ, WRITE,
I I PRINT, and PUNCH statements.
IERR ITo generate diagnostic statements.
IFLABL tTo process FORMAT statements.
f RTRAN tTo process ERR and END labels.
IFNAME f To process variable FORMAT designators or
I I NAMELIST names.
IIVST f To make Symbol Table entries for alphamer-
1 I ic names.
ITEVI4 !Exec routine that files an Integer *4
I (CEKTFC) I constant.

~--------+-------------------------+---------+--J
IFORM fFORMAT statement IESC ITo obtain next source character.
I I processor IERR f To generate diagnostic messages.
I I I TEVFLL I Exec routine that makes Symbol Table
I I I (CEKTFL) I entries for created labels. I
~--------+-------------------------+---------+--~
f NAML INAMELIST statement IACOMP fTo assemble source characters into basic I
I I I I components. I
I I I ERR I To generate diagnostic messages. I
~--------+-------------------------+---------+--~
I BLDA I BLOCK DATA I ESC I To obtain next source character. I
I I statement processor I ERR I To generate diagnostic messages. I
~--------+-------------------------+---------+--~
I DATA I DATA statement IACOMP fTo assemble source characters into basic I
I I processor I I components. I
I I J SUBS I To translate subscript expressions into I
I I I I Polish Notation. I
I I I IDATA I To process initial value data for type and I
I I I I DATA statements. I
I I fERR fTo generate diagnostic messages. I
~--------+-------------------------+---------+--~
I IMPL I IMPLICIT statement I ESC tTo obtain next source character. I
I I processor IACOMP f To assemble source characters into basic I
I I I I components. I
I I I ERR I To generate diagnostic messages. I
L--------L-------------------------L---------i--J

so

Table 10. Phase 1 Decision T~ble (Part 4 of 8)

Routine:------------Phase 1--Level: 2--CCont'd)--
r--------T-------------------------T---------T--1
I I !Called I I
!Routine I Usage !Routines I calling Conditions I
r--------+-------------------------+---------+--~
IBLNK !Blank statement IERR ITo generate diagnostic messages. I
I I processor I I I
r--------+-------------------------+---------+--~
ISUBE !Subprogram entry IACOMP ITo assemble source characters into basic I
I I statements processor I I components. I
I I (ENTRY, FUNCTION, IERR tTo generate diagnostic messages. I
I I SUBROUTINE) ITEVCRL fExecute routine that creates a label for I
I I I CCEKTFM>I the code file. I
r--------+-------------------------+---------+--~
I CALL I CALL statement I LABL I To process statement labels. I
I I processor I EXPR I To translate source language expressions I
I I I I into Polish Notation. I
r--------+-------------------------+---------+--~
I END I END statement I ENDLP I To encode the End Loop entries. I
I I processor f PSR (To process PAUSE, STOP, and RETURN I
I I I I statements. I
I I fERR ITo generate diagnostic messages. I
r--------+-------------------------+---------+--~
I DCL2 I Declaration statements I none I I
I I final processing I I I
r--------+-------------------------+---------+--~
IBLDA2 I BLOCK DATA statement I none I I
I I final processing I I I
r--------+-------------------------+---------+--~
I IMPL2 I IMPLICIT statement I none I I
I I final processing I I I
r--------+-------------------------+---------+--~
ISUBE2 I Subprogram entry I none I I
I I statements final I I I
I I processing I I I
r--------+-------------------------+---------+--~
f CALL2 ICALL statement final IEXEC2 ITo terminate processing of executable I
I I processing I I statements. I
r--------+-------------------------+---------+--~
ISTFN2 !Statement function fnone I I
I I statement final I I I
I I processing I I I
L--------~-------------------------~---------i--J

Section 3: Phase 1 51

Table 10. Phase 1 Decision Table (Part 5 of 8)

Routine:------------Phase 1--Level: 3-----------
r--------T-------------------------T---------T--,
I I f called I I
!Routine I Usage IRoutines I Calling Conditions I
~--------+-------------------------+---------+--i
jPSR !PAUSE, STOP, RETURN IACOMP ITo assemble source characters into basic I
I I statement processor I I components. 1
I I I LABL I To process statement labels • I
I I I ERR I To generate diagnostic messages. I
I I I TEVCRL I Exec routine that creates a label for the I
I I I CCEKTFM>I code file. I
~--------+-------------------------+---------+--i
IEXEC2 !Executable statements IENDLP jTo encode the End Loop entries. I
I I final processing I FALTH I To check for references to current label. I
~--------+-------------------------+---------+--i
EXPR Process expression IACOMP ITo assemble source character into basic I

I I components. I
ISUBS ITo translate subscript expressions into I
I I Polish Notation. I
CNVRT f To convert constants to new type. I
FNCLS I To determine proper class of a function. I
LIBN ITo select appropriate Library Function I

I name. I
SFDEF ITo make entries in the Statement Function I

I Expression File. I
SFEXP ITo make entries in the Expression File. I
AARG ITo make Argument Definition entries 1n thet

I P~. I
ERR I To generate diagnostic messages. I
CHKIN!' ITo treat floating point overflow and I

I divide checks. I
~--------+------~------------------+---------+--i
IARDIM !Process array dimension IESC tTo obtain next source character. I
I I specification IACOMP ITo assemble source character into basic I
I I I I components. I
I I I ERR I To generate diagnostic message. I
~--------+-------------------------+---------+--i
I !DATA I Process initial data IERR jTo generate diagnostic message. I
I I specifications f IVAL jTo process constants as initial values in I
I I I I type or DATA statements. I
~--------+-------------------------+---------+--i
I IOLST I Process I/O statement I ESC I To obtain next source character. I
I I list jACOMP ITo assemble source character into basic I
I I I I components. I
I I !SUBS ITo translate subscript expressions into I
I I I I Polish Notation. I
I I IBGNLP ITo process Begin Loop information. I
I I I ENDLP I To encode End Loop entries. I
I I IERR ITo generate diagnostic messages. I
I I I IVST I To make Symbol Table entries for alphamer-1
I I I I ic names. I
~--------+-------------------------+---------+--i
I FLA.BL I Proces~ FORMAT state- I ERR I To generate diagnostic message. I
I I ment number in I/O jTEVFLL !Exec routine that makes Symbol Table I
I I statement I (CEKTFL>I entry for created label. I
~--------+-------------------------+---------+--i
IRTRAN IProcess END and ERR IACOMP ITo assemble source characters into basic I
I I statement numbers I I components. I
f I in READ statements IERR ITo generate diagnostic message. I
1--------+-------------------------+---------+--i
IFNAME IProcess FORMAT and IERR ITo generate diagnostic message. I
I I NAMELIST name in I I I
I I uo statements I I I
~--------+-------------------------+---------+--i
ILBSTR IProcess label string in IESC ITo obtain next source character. I
I I Assigned and Computed IACOMP ITo assemble source characters into basic I
I I GO TO statements I I components. I
I I I ERR I To generate diagnostic message. I
'--------i-------------------------~---------~-----------------------------------·-------J

52

~ , ' ' to:

Table 10. Phase 1 Decision Table (Part 6 of 8)

Routine:------------Phase 1--Level: 4-----------
r--------T-------------------------T---------T--,
I I 1ca11ed I I
!Routine I Usage IRoutines I calling conditions I
~--------+-------------------------+---------+--~
!SUBS I Process subscripts IACOMP !To assemble source characters into basic I
I I I I components. I
I I !ERR !To generate diagnostic message. I
I I ITEMPRO lTo process a tentative subscript term pre-I
I I I I pared by SUBS. I
I I ITEVI4 !Exec routine that files an Integer•4 I
I I I CCEKTFC) I constant. I
~--------+-------------------------+---------+--~
ILABL f Process statement number IERR ITo generate diagnostic message. I
I I I TEVCRL I Exec routine that creates a label for the I
I I I <CEKTFM>I code file. I
~--------+-------------------------+---------+--~
IBGNLP !Process and generate IACOMP ITo assemble source characters into basic I
I I Begin Loop elements I I components. I
I I I CKLIM I To check loop parameters for validity. I
I I I ERR I To generate diagnostic message. I
I I I TEVCRL I Exec routine that creates a label for the I
I I I (CEKTFM>I code file. I
~--------+-------------------------+---------+--~
IENDLP !Generate End Loop ICLLIM !To remove loop parameter information from I
I I I I Symbol Table. I
~--------+-------------------------+---------+--~ I FALTH I oet ermine fall- through I ERR I To generate diagnostic message. I
I I on GO TO and IF I I I
I I statements. I I I
~--------+-------------------------+---------+------------------------------------~-----i
ISFDEF !Initialize for statement IESC !To obtain next source character. I
I I function definition IACOMP !To assemble source characters into basic I
I I I I components. ·. I
I I IERR ITo generate diagnostic message. I
~--------+-------------------------+---------+------------------------------------~-----~
I SFEXP I Expand Statement t.ACOMP I To assei;nble source characters into basic I
I I FUnction reference I I components. I
I I IERR fTo generate diagnostic messages. I
~--------+-------------------------+---------+--------------------------~---------------~
I FNCLS I Classify function name I none I I
~--------+------------------~------+---------+--------------------------------------~---~
IIVAL f Process initial values inlESC !To obtain next source characters. I
I I DATA or type lACOMP tTo assemble source characters into basic I
I I statements I I components I
I I I CNVRT I To convert constants to new type. I
I I I ERR I To generate diagnostic message. I
~--------+-------------------------+---------+--~
IAARG f Process function !none I I
I I argument I I I
~--------+-------------------------+---------+--~
I CHKINT I Check for arithmetic I none I I
I I interrupt during I I I
I I expression processing I I I
L--------i-------------------------i---------i--J

Section 3: Phase 1 53

Table 10. Phase 1 Decision Table (Part 7 of 8)

Routine:------------Phase 1--Level: S-----------
.--------T-------------------------T---------r--1
I I I Called I I
!Routine I Usage !Routines I calling Conditions I
~--------+-------------------------+---------+---i
ACOMP Assemble component IESC ITo obtain next source character.

(operand-operator pair) IFLRC ITo file real and complex constants in Sym-
1 I bol Table.
IIVST ITo make Symbol Table entries for alphamer-
1 I ic names.
IICNV ITo convert a decimal integer to a binary
I I integer.
IFLIC ITo file integer constants in the Symbol
I I Table.
IERR ITo generate diagnostic message.
ITEVCRL IExec routine that creates a label for the
I CCEKTFM> I code file.

~--------+-------------------------+---------+--i
ICNVRI' IChecks types and convertslLIBN ITo select appropriate Library Function I
I I constants I I name. I
I I IARITH ITo perform all constant arithmetic. I
I I f ERR I To generate diagnostic message. I
~--------+-------------------------+--~------+--i
fTEMPRO IProcess subscript term f ERR ITo generate diagnostic message. I
~--------+-------------------------+---------+--i
I CRLIM I Check loop parameters I ACOMP I To assemble source characters into basic I
I I for correctness and I I components. I
I I validity I ERR I To generate diagnostic message. I
1---------+-------------------------+---------+--i
I CLLIM I Clear flags on loop I none I I
I I parameters at End Loop I I I
L-----.J.-----------------------.J.--------.J.--------------------------------------J
Routine:------------Phase 1--Level: 6------------
r------~---------------------T-------T--1
I ESC I Extract source character I none I I
~--------+-------------------------+---------+--~
ILIBN ISelect Library FUnction IIVST ITo make Symbol Table entries for I
I I name I I a lphameric names. I
I I I ERR I To generate diagnostic message. I
~------+------------------------+---------+----------------------------------~-------i FLRC File real constant in f FCNV To convert a decimal constant to floating

Symbol Table I binary.
IERR To generate diagnostic message.
f TEVR4 Exec routine to file a Real•4 constant.
I (CEKTFD)
ITEVR8 Exec routine to file a Real•8 constant.
I (CEKTFE)
ITEVC8 Exec routine to file a Complex•8 constant.
I CCEKTFF)
ITEVC16 Exec routine to file a complex•16
I constant.
I CCEKTFG)

~--------+------------------------+--------+--i IFLIC !File integer constant in IICNV ITo convert a decimal integer to a binary I
I I Symbol Table. I I integer. I
I I IERR fTo generate diagnostic message. I
I I ITEVI4 f Exec routine to file an Integer•4 I
I I I CCEKTFC) 1constant. I
1------+-------------------------+--------+--i I ARITB I Perform constant I ERR I To generate diagnostic message. I
I I arithmetic during ICHCBGA I I
I I expression scan I CHCBRC I I
I I ICHCBIA IFORTRAN Math Library exponentiation I
I I ICHCBRA I routines. I
I I ICHCBMC I I
L--------.J.------------------------.1---------.J.--------------------------------------J
54

·. ~

Table 10. Phase 1 Qecision Table (Part 8 of 8)

Routine:------------Phase 1--Level: 7-----------
r--------T-------------------------T---------T--1
I I (Called I I
!Routine I Usage !Routines I Calling Conditions I
~--------+-------------------------+---------+--~ I IVST I File variable name in I ERR I To generate diagnostic message. I
I I Symbol Table I I I
~--------+-------------------------+---------+--~
IFCNV (Convert floating-point IICNV tTo convert a decimal integer to a binary I
I I number from decimal I I integer. I
I I to binary. (ERR (To generate diagnostic message. I
L--------~-------------------------~---------~--J

Routine:------------Phase 1--Level: 8-----------
r--------T-------------------------T---------r--1
I ICNV I convert integer from I none I I
I I decimal to binary.· I I I
~-------+-------------------------+---------+--------------------------------------~---~
IERR IGenerate diagnostic fTEVRDM !Exec routine that issues a diagnostic I
I I message I (CEKTE) I message. I
L--------~-------------------------~---------~--J

CEKAD -- Phase 1 Main Loop (PH1M)

PHlM controls the identification, analy
sis, and encoding of source data in Phase
1. See Chart AM.

ENTRIES: PH1M has one entry point CEKADl.
Exec intercom base is expected in parameter
register P2 •

EXIT: No output parameters.

OPERATION: PH1M performs all initializa
tion for Phase 1. This includes generation
of a begin program PRF item, followed by
the begin loop PRF items for the false
loop. Following initialization, a source
statement is read, identified, analyzed,
and encoded by calling appropriate subrou
tines. At this point, the next source
statement is read, and the forget and
delete £lags are tested. If either the
forget flag <set by GNSS) or the delete
flag <set by any of the statement process
ing subroutines) is raised, the previously
encoded statement is deleted. The state
ment deletion is accomplished by resetting
appropriate items in intercom from their
respective backup values. These backups
are set for each statement prior to state-

. ment processing. The symbol table is
restored for variable items, through use of
a symbol table save area (Figure 16).
Backups for al1 variable symbol table
entries except the NAME, OPP, LINK, TYPE,
and LINKF items are entered into the save
area, and if deletion is required, these
backups are used to restore the symbol
table entries. After deletion, the next
statement is processed.

BKPB1 BPNTR1

BKPB
2 BPNTR

2

;:\

BKPBN BPNTRN

BKPB - Backup Byte for Symbol Table change
BPNTR - Byte Pointer into Symbol Table for BKPB

~

Figure 16. Symbol Table Save Area

"'"..:l-

...

If the statement is not deleted, the
appropriate subroutine is called to com
plete the processing for that statement.
All tables which may have been updated are
then checked for overflow. If no overflow
occurred and the statement just processed
was not an END statement, control is trans
ferred to the beginning of the loop, to
process the next statement.

CEKAK -- Assignment Statement Processor
T§QU'A>

EQUA analyzes and encodes logical and
arithmetic assignment statements. See
Chart AN.

ENTRIES: EQUA has one entry point (CEKAKl)
and no input parameters.

Section 3: Phase 1 55

EXIT: No output parameters.

OPERATION: EQUA generates an equation PRF
entry and than calls the Expression Scan
subroutine. If the expression is a state
ment function definition, the PRF entry is
deleted, and the statement ID nwnber is
changed from assignment to statement
function.

CEKAM -- EXTERNAL StctE"ement Processor
CEXTE)

EXTE analyzes and encodes the EXTERNAL
statement. See Chart AO.

ENTRIES: EXTE has one entry point (CEKAMA)
and no input parameters.

EXIT: No output parameters.

OPERATION: EXTE checks to see that the
statement is not in a BLOCK DATA program
and is not the conditional statement of a
logical IF. If not, the statement is
scanned, and the variables listed are
marked as •external function• in the symbol
table. If the statement is in a BLOCK DATA
program or is the conditional statement of
a logical IF, an error message is produced
and the scan is terminated.

CEKAQ -- GO TO Statement Processor (GOTO)

GOTO analyzes and encodes all forms of
the GO TO statement. See Chart AP.

ENTRIES: GOTO has one entry point (CEKA
QA) • with no input parameters

EXIT: No output parameters.

OPERATION: After calling the Label Pro
cessing routine, GO'l'O determines whether
the statement is an unconditional GO TO,
assigned GO TO, or computed GO TO. In each
case, the appropriate PRF entry is made.
If an unconditional GO TO is the condition
al statement of a logical IF, the sign of
the ERF entry for the logical IF is
changed, and the GO TO label value is
inserted as the true transfer label in the
logical IF PRF entry. For the assigned and
computed GO TO, internal subroutine LBSTR
is called to process the label list into
the PRF entry.

CEKAR -- IF Statement Processor (IF)

IF analyzes and encodes the arithmetic
and logical IF statements. See Chart AQ.

ENTRIES: IF has one entry point (CEKARA),
with no input parameters.

EXIT: No output parameters.

56

OPERATION: After calling the label pro
cessing routine, IF generates an arithmeti<
IF PRF entry. It then calls upon the
Expression Processing routine to analyze
and encode the conditional expression. If
the expression type is logical, the
logical-IF indicator is set and the PRF
entry ID is changed to logical IF. A non
source label is created and entered as the
•true• transfer label in the PRF entry. If
the expression type is arithmetic, the
three transfer labels are entered in the
PRF entry.

CEKAS -- Type Statements Processor CTYPE)

TYPE analyzes and encodes the type
statements, including INTEGER, REAL, COM
PLEX, LOGICAL, and DOUBLE PRECISION. See
Chart AR.

ENTRIES: TYPE has five entry points, each
of which requires no input parameters. The
five entry points are INTE (CEKASI> for the
INTEGER statement, REAL (CEKASR) for the
REAL statement, COMP (CEKASC) for the COM
PLEX statement, LOGL (CEKASL) for the LOGI
CAL statement, and DOBP (CEKASD) for the
DOUBLE PRECISION statement.

EXIT: No output parameters.

OPERATION: A type switch is set to show
which type statement is used. Where the
statement is not DOUBLE PRECISION, TYPE
scans it for a length indication; if there
is a length indication, the type switch is
adjusted to show the length. TYPE then
continues the scan, picking up variables
and making entries in the symbol table to
specify the variable type. If the variable
is dimensioned, TYPE also makes entries in
the dimension table to specify array
length. If a dimension specification is
encountered <indicated by a variable fol
lowed by a left parenthesis), the Dimension
Scan routine is called to process the
dimension. If an initial value specifica
tion is encountered <indicated by a slash),
the Data Scan routine is called to process
the initial values.

CEKAT -- CONTINUE Statement Processor
(CONT)

CONT analyzes and encodes the CONTINUE
statement.

ENTRIES: CONT has one entry point (CEKAT1)
and no input parameters.

~: No output parameters.

OPERATION: CONT calls the label processing
subroutine to convert the label, if any,
and to see if any loops are ended. The
logical IF indicator is tested to see if
this is the conditional statement of a log-

ical IF statement, and a warning message is
issued if it is. A CONTINUE PRF entry is
made, and the statement scanned to see that
the remainder of the statement is blank.

CEKAU -- DIMENSION Statement Processor
CDIMN)

DIMN analyzes and encodes the DIMENSION
statement. See Chart AS.

ENTRIES: DIMN has one entry {CEKAUA), with
no input parameters.

EXIT: No output parameters.

OPERATION: DIMN first checks to see that
the DIMENSION statement is not a condition
al statement of a Logical IF. It then pro
ceeds to scan the statement ca1ling the
dimension specification processing routine,
to process the dimension values as they are
encountered for each variable. Appropriate
diagnostics are generated if any source
errors or incongruities are encountered.

CEKAV -- COMMON Statement Processor {COMM)

COMM analyzes and encodes the COMMON
statement. See Chart AT

ENTRIES: COMM has one entry point (CEKAVl)
with no input parameters.

EXIT: No output parameters.

OPERATION: COMM first checks to see that
the COMMON statement is not a conditional
statement of a logical IF. If this is the
case, it then opens the common list entry
and begins the scan of the statement. com
ponents are acquired with the assemble com
ponents routine, and variables are entered
into the common 1ist. The symbol table
entry common flag is raised, and, if the
variable is followed by a left parenthesis,
the array dimension specification processor
routine is called to process the dimension
values.

Variables enclosed in slashes initiate a
search of the storage class table for named
COMMON blocks, and if any are found, the
storage class is appropriately set. Other
wise, the name is entered as a named COMMON
block, and a new storage class is estab
lished. If there are two slashes without
an intervening variable, the storage class
will be set to 9 for blank COMMON.

Appropriate diagnostics are generated if
any source errors or incongruities are
encountered.

CEKAY -- EQUIVALENCE Statement Processor
CEQUI)

EQUI performs the analysis and encoding
for the EQUIVALENCE statement. See Chart
AU.

ENTRIES: EQU I has one entry point (CEKAYA)
and no input parameters.

EXIT: No output parameters.

OPERATION: EQUI determines that the state
ment is not the conditional statement of a
logical IF. If this is the case, the head
ing information for the equivalence table
is entered into the storage specification
table~ Source elements are acquired with
ACOMP and analyzed for syntactical correct
ness. Variables are entered into the
equivalence table as they are encountered,
and subroutine SUBS is called to determined
any offsets indicated by a left parenthesis
following a variable. If an offset cannot
be completed because the dimension infortta
tion (TYPE, COMMON, or DIMENSION statement)
has not yet been specified for an equiva
lence variable, the actual subscripts are
stored in the Storage Specification List.

Appropriate diagnostics are generated if
any source errors or incongruities are
encountered.

CEKAZ -- DO Statement Processor {00)

DO analyzes and encodes the DO state
ment. see Chart AV.

ENTRIES: DO has one entry point (CEKAZl>
and no input parameters.

EXIT: No output parameters.

OPERATION: DO determines that the state
ment is not the conditional statement of a
logical IF. If it is not, A COMP is called
to acquire the label for the end loop. If
the label value is satisfactory, BGNLP is
called to process the loop variable, range,
and increment. Appropriate diagnostics are
generated if any source errors or incon- -
gruities are encountered.

CEKBC -- ASSIGN Statement Processor CASSI)

ASSI analyzes and encodes the ASSIGN
statement. see Chart AW.

ENTRIES: ASS I has one entry point (CEKBCA)
and no input parameters.

EXIT: No output parameters.

OPERATION: ASS I generates a PRF entry for
the ASSIGN statement and then scans the
source characters. ACOMP is called to
acquire the assigned label and the vari-

Section 3: Phase 1 57

able. The intervening characters "To• are
checked individually after c~lls on ESC.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBD -- File Control Statement Processor
(FCON}

FCON analyzes and encodes the BACKSPACE,
END FILE, and REWIND statements. See Chart
AX.

ENTRIES: FCON has three entry points:
BKSP (CEKBDl}, ENDF (CEKBD2), and REWI
(CEKBD3) for the BACKSPACE, END FILE, and
REWIND statements, respectively. FCON has
no input parameters.

EXIT: No output parameters.

OPERATION: FCON has three entry points and
sets a switch to one of three values,
depending upon which entry was taken. A
PRF entry is generated and the switch set~
ting entered in that entry, to indicate
whether the source statement was BACKSPACE,
END FILE, or REWIND. ACOMP is called to
acquire the unit number, which is entered
into the PRF entry. The I/O initialization
library routine entry name (CHCIAl} is
filed in the symbol table and marked as
class external.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBE -- Input/Output Statement Processor
(RWIO)

RWIO analyzes and encodes the READ,
WRITE, PRINT, and PUNCH statements. See
Chart AY.

ENTRIES: RWIO has four entry points: READ
(CEKBEl), WRIT (CEKBE2), PRNT (CEKBE3), and
PUNC (CEKBE4), for the READ, WRITE, PRINl',
and PUNCH statements, respectively. RWIO
has no input parameters.

EXIT: No output parameters.

OPERATION: RWIO has four entry points.
Each entry point generates a PRF entry
corresponding to the type of source state
ment. For the READ statement, RWIO first
determines whether or not it is a READ
without unit statement. For all state
ments, the Assemble Components routine is
called to acquire statement components as
required. If no FORMAT reference is given,
the FORMAT pointer in the PRF entry is set
to X'8000'.

If a NAMELIST reference is given in
place of a FORMAT reference, the PRF ENTRY

58

ID is changed accordingly. For the READ
statement, END and ERR condition transfer
options are checked and entered into the
PRF if present. If they are not given, th~
statement number items in the PRF are set
to zero. Subroutine IOLST is called to
process the list elements if required. ThE
I/O Initialization Library routine's entry
name CCHCIA1> is filed in the symbol table
and marked as class external.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBF -- FORMAT Statement Processor (FORM)

FORM analyzes and encodes the FORMAT
statement. See Chart AZ.

ENTRIES: FORM has two entry points:
CEKBFl, for Phase 1 FORMAT statement pro
cessing, and SYSPFMI', for FORTRAN I/O-time
FORMAT statement processing. CEKBFl has nc
input parameters; SYSPFMT has the followin~
input parameters:

P2 FIO Translate Table
P3 Address of FORMAT statement
P4 FORMAT table output area

EXITS: Only the normal. exit is made, with
no output parameters.

OPERATION: FORM begins by determining that
the statement is not the conditional. state
ment of a logical IF statement and not
inside a BLOCK DATA program. If this is
the case, the statement label is then con
verted to its binary value and filed in the
symbol table Csee Table 11).

The FORl'fAT table is initialized in the
Preset Data area, and encoding of the FOR
MAT statement begins.

Table 11. Encoding of FORMAT Symbols
r-----~--------~---T--------------------1
I Character I ID Code I
~--------------------+------------------~~

o-9 1 I
A,I,L,Z 2 I
D,E,F 3 I
G 4 I
n s I
P 6 I
T 1 I
x a I
+,- 9 I
/ 10 I
c 11 I
> 12 I

13 I
14 I
1s I

EOS 16 I
Other I 17 I ____________________ i ____________________ J

The encoding consists of filling out a
FORMAT table Csee Table 12), through which
the compiler communicates format informa
tion to FORTRAN I/O routines. An entry is
placed in the table whenever a valid FOHMAT
statement code is found. In addition, syn
tax is checked, and diagnostics are issued
for errors. FORMAT statement processing
continues after diagnostics.

FORM terrninates~t:.ae scan when it finds a
level-zero right parenthesis.

Table 12. Translation of Format codes

FORMAT
CODE FORMAT TABLE ENTRY

SIZE BYTE BYTE BYTE
(BYTES) 0 1 2

STRING

CEKBG -- PAUSE, STOP, RETURN Statement
Processor CPSR)_

PSR analyzes and encodes the PAUSE,
STOP, and RETURN statements. See Chart BA.

ENTRIES: PSR has four entry points: PAUS
(CEKBGl), STOP (CEKBG2), and RETU CCEKBG3)
for the PAUSE, STOP, and RETURN statements,
respectively, and ESTOP CCEKBG4) for the
call by the END statement processor (ENO).
None of the entry points has input
parameters.

BYTE B~TE I BYTE
3 5

CHARACTER STRING
H LENGTH+2 X'O' LENGTH AS MANY BYTES AS NEEDED (MAX 255)

I 1 X'l'

REPEAT
x 2 X'2' COUNT

T 2 X'3' w

SCALE
p 2)< '4' FACTOR

NEST
) 2 X'5' LEVEL

NEST REPEAT
(3 X'6' LEVEL COUNT

REPEAT
A 3 X'7' COUNT W-1

REPEAT
z 3 X'S' COUNT W-1

REPEAT
L 3 X'9' COUNT W-1

REPEAT
I 3 X'A' COUNT W-1

f

REPEAT I
G 4 X'B' COUNT W-1 D

REPEAT
F 4 X'C' COUNT W-1 D

REPEAT
D 4 X'D' COUNT W-1 D

REPEAT
E 4 X'E' COUNT W-1 D

SPECIAL ADDRESS OF CHARACTER l H 6 X'F' LENGTH STRING

Section 3: Phase 1 59

EXIT: No output parameters.

OPERATION: PSR has fo~r entry points, one
each for the PAUSE, STOP, and RETURN state
ments, and one for a call from the END
statement processor Cto generate a stop
when there is flow into an E~YD statement).
A PRF entry is generated for the PAUSE,
STOP, and RETURN statements, respectively.
An appropriate literal constant is filed
for the pause and stop entries and for a
return entry in a main program. A call
from the END statement processor causes a
stop PRF entry to be generated. The pause
and stop library routine entry names are
filed in the symbol table and marked as
class external.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBH -- NAMELIST Statement Processor
CNAML)

NAML analyzes and encodes the NAMELIST
statement. See Chart BB.

ENTRIES: NAML has one entry point (CEKBHl)
and no input parameters.

EXIT: No output parameters.

OPERATION: NAML first checks to see that
the statement is not the conditional state
ment of a logical IF or in a BLOCK DATA
program. NAML then gets the Namelist name,
which must be enclosed in slashes. After
the Namelist name is checked for correct
class; a Namelist table entry is made and
the symbol table pointer for each variable
in the list is entered into the table.
Appropriate diagnostics are printed for any
source errors or incongruities encountered.

CEKBI -- BLOCK DATA Statement Processor
CBLDA)

BLDA analyzes and encodes the BLOCK DATA
statement. see Chart JC.

ENTRIES: BLDA has one entry point (CEKBI1)
and no input parameters.

EXIT: No output parameters.

OPERATION: BLDA first detennines that the
statement is not the conditional statement
of a logical IF. If this is the case, BLDA
checks the program type code to determine
whether it is unknown. If it is, a normal
exit is taken; otherwise, BLDA prints a
diagnostic and exits.

If the statement is the conditional
statement of a logical IF, BLDA prints a
diagnostic and exits.

60

CEKBM -- DATA Statement ~rocessor (DATA)

DATA analyzes and encodes the DATA
statement. See Chart BO.

ENTRIES: DATA has one entry point (CEKBMl)
and no input parameters.

EXIT: No output parameters.

OPERATION: DAI'A first checks to see that
the statement is not the conditional state
ment of a logical IF statement. The
variables in the statement are then
extracted and entered into a parameter
list, until a slash is encountered. sub
routine IDATA is called at entry DDATA to
process the initial value specifications
for the list of variables. The process is
repeated until an end of statement or a
source error is encountered. Appropriate
diagnostics are printed if any source
errors or incongruities are encountered.

CEKBN -- IMPLICIT Statement Processor
CIMPL)

IMPL analyzes and encodes the IMPLICIT
statement. See Chart BE.

ENTRIES: IMPL has one entry point (CEKBNl)
and no input parameters.

EXIT: No output parameters.

OPERATION: IMPL first determines that the
statement is not the conditional statement
of a logical IF statement. The implicit
type table is then copied into a temporary
hold area, where it can be modified without
destroying the current status of the table.
The type specification is extracted from
the source statement and identified, and
the corresponding type code is established.
The letters being typed are then extracted
and used as a index to modify the implicit
type table in the temporary hold area.

CEKBR -- Blank Statement Processor (BLNK)

BLNK processes a blank source statement.

ENTRIES: BLNK has one entry point (CEKBR1)
and no input parameters.

EXIT: No output parameters.

OPERATION: BLNK first checks the logical
IF indicator. If it is nonzero, a diag
nostic is printed to the effect that no
conditional statement is given for a logi
cal IF statement. If the logical IF indi
cator is zero, the label field is checked
to see if it was blank. If so, a normal
exit is taken; otherwise, a diagnostic mes
sage is printed.

CEKBS -- Subprogram Entry Statements
Processor CSUBE)

SUBE analyzes and encodes the ENTRY,
FUNCTION, and SUBROUTINE statements. See
Chart BF.

ENTRIES: SOBE has two entry points: ENTR
(CEKBSl) and FUNC and SUBR (CEKBS2) for the
ENTRY FUNCTION, and SUBROUTINE statements,
respectively. None of the entry points has
input parameters.

EXIT: No output parameters.

OPERATION: SUBE has an entry point for
each of the three statements it processes.
For the ENTRY statement, the program type
is checked to ensure that it is a subpro
gram. If the no flow flag is down (indi
cating that the previous executable state
ment transfers control only to the current
statement), a label is created and filed,
and the symbol table pointer is entered
into the PRF. This is done so that a
branch around the ENTRY statement can be
generated. The DO level is also checked
for zero, to ensure that the ENTR~ state
ment does not occur within a DO loop.

For FUNCTION and SUBROUTINE statements
the program type is checked to ensure that
it is unknown, thus indicating that no
statement except an IMPLICIT statement has
preceded it.

The PRF entries for these statements are
built in a temporary area, due to their
variable length. The entries assembled by
this routine are then copied into the PRF
as permanent entries during Pass 2, in sub
routine SUBE2.

The entry name is acquired and classi
fied. For the FUNCTION statement the type
option is processed and coded if given.
The dummy arguments are then scanned and
entered into the PRF. The symbol table
entries for each argument are flagged, and
the symbol table pointers are entered into
the storage class table.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBU -- CALL Statement Processor (CALL)

CALL analyzes and encodes the CALL
statement.

ENTRIES: CALL has one entry point (CEKBUl)
and no output parameters.

EXIT: No output parameters.

OPERATION: CALL first calls LABL to pro
cess the statement label, ifone is pre-

sent. CALL then generates a PRF entry for
the CALL statement. Finally, the expres
sion scan routine (EXPR) is called to ana
lyze and encode the subroutine name and the
arguments.

CEKAL -- END Statement Processor (END)

END performs the required processing for
an END statement. See Chart BG.

ENTRIES: END has one entry point (CEKALl)
and no input parameters.

EXIT: No output parameters.

OPERATION: If the statement is the condi
tional statement of a logical IF statement,
a diagnostic is produced and control is
returned to the caller. If the program
type is BLOCK DATA, the data flag is
checked and control is returned to the
caller. For all other conditions the
executable flag and the DO loop level are
checked. If the DO loop level is nonzero,
enough end loop PRF entries are generated
to reduce it to zero. Then the end loop
for the false loop is generated. If the
ISO option is on, the false loop is set to
•unsafe.• ·rhe no flow flag is checked to
see if execution flow has been terminated.
If it has not, a stop PRF item is
generated. Finally, an end program PRF
item is generated and control is returned
to the caller.

CEKAW -- Declaration Statements, Pass· 2
(DCL2)

DCL2 performs the housekeeping opera
tions and terminates the processing for the
following declaration statements: COMMON,
DIMENSION, EQUIVALENCE, EXTERNAL, NAMELIST,
COMPLEX, DOUBLE PRECISION, INTEGER, LOGI
CAL, REAL, FORMAT, and DATA.

ENTRIES: DCL2 has two entry points, COMM2
(CEKAW1) and DCL2 (CEKAW2), neither of
which has an input parameter.

EXIT: No output parameters.

OPERATION: DCL2 sets the program type to
"main• if it was unknown. In any case, the
implicit flag is set to 1 before returning
to the caller. A special entry for the
COMMON statement also updates the total
number of named COMMON blocks in the
storage class table before joining the path
for other declaration statements.

CEKAX -- Executable Statements, Pass 2
CEXEC2)

EXEC2 performs the housekeeping opera
tions and terminates the processing for the
executable statements. See Chart BB.

Section 3: Phase 1 61

ENTRIES: EXEC2 has two entr~ points, FL2
(CEKAX2) and NF2 (CEKAXl), neither of which
requires any input parameters. FL2 is the
entry point for the following statements:
assignment, ASSIGN, BACKSPACE, CONTINUE,
END FILE, PAUSE, PRINT, PUNCH, REWIND,
WRITE, DO, READ, and CALL. NF2 is the
entry point for the following statements:
STOP, RETURN, GO TO, and arithmetic IF.

EXIT: No output parameters.

OPERATION: EXEC2 has two entry points:

1. For statements that do not transfer
control to statements other than the
ones immediately f ollowi.ng them.

2. For statements that do transfer con
trol to statements other than the ones
immediately follo~ing.

If the logical IF indicator is not on,
the entry for the second class (above>
raises the no-flow flag, indicating that
the next executable statement must have a
label or there is a logical flaw in the
source program. The remaining operations
are common to both entries.

If the executable statement flag is
down, it is raised and the program type is
checked. If the program type is unknown,
it is set to •ma.in• before EXEC2 returns to
the caller. If the executable statement
flag was up, the fall-through processing
routine is called to optimize the code in
case fall-through occurs from any statement
which causes branching. The logical IF
indicator is then tested. If it is on, the
created label for the conditional GO TO
statement is entered into the PRF. The end
loop processing routine is called to test
for and process any end loops.

CEKBJ -- BLOCK DATA Statement, Pass 2
(BLDA2)

BLDA2 sets the program type for the
BLOCK DATA statement.

ENTRIES: BLDA2 has one entry (CEKBJl) and
no input parameters.

EXIT: No output parameters.

OPERATION: BLDA2 sets the program type
code to BLOCK DATA and exits.

CEKBP -- IMPLICIT Statements, Pass 2
(IMPL2)

IMPL2 performs the final housekeeping
for the IMPLICIT statement after it is
accepted.

ENTRIES: IMPL2 has one entry point
CCEKBP1) and no input parameters.

62

EXIT: No output parameters.

OPERATION: IMPL2 copies the implicit type
table back from a temporary hold area where
it was updated by IMPL and sets the implic
it flag to 2.

CEKBT -- Subprogram Entry Statements, Pass
2 (SUBE2)

SUBE2 sets the program type code and
makes the permanent PRF entries for the
ENTRY, FUNcrION, and SUBROUTINE statements.
See Chart BI.

ENTRIES: SUBE2 has three entry points:
ENI'R2 (CEKBTl), FUNC2 (CEKBT2), and SUBR2
(CEKBT3>: none of which has input
parameters.

EXIT: No output parameters.

OPERATION: SUBE2 has a unique entry point
for ENTRY, FUNCTION, and SUBROUTINE state·
ments. For the ENTRY statement the number
of entry points total is incremented. The
FUNCTION and SUBROUTINE statements set the
program type code to the appropriate value.
The remaining operations are performed for
all three of the possible statement
entries.

An end loop for the false loop is
generated, after which the PRF entry is
copied from its temporary area into the
PRF. A new begin loop for a false loop is
then generated, and the number of alternate
returns total is updated.

CEKBV -- CALL Statement, Pass 2 (CALL2)

CALL2 adjusts the CALL PRF entry to
insert the statement numbers for the
alternate returns. see Chart BJ.

ENTRIES: CALL2 has one entry point
CCEKBVl) and no input parameters.

~: No output parameters.

OPERATION: If the count of alternate
returns in intercom CTENAR) is zero, a
normal return is taken. If the count is
nonzero, the PRF entries for the argument
definition points and the CALL are moved up
by the appropriate number of words. The
statement numbers are then inserted in the
CALL PRF entry. During the pass through
the argument definition point PRF entries,
the FDP fields in the symbol table are
updated if required. The statement numbers
are also entered into the cross reference
list.

CEKBZ -- Statement Function uefinition,
Pass 2 (STFN2)

STFN2 performs the housekeeping opera
tions and terminates the processing for the
Statement Function.

ENTRIES: STFN2 has one entry point
(CEKBZ1) with no input parameters.

EXIT: No output parameters.

OPERATION: STFN2 restores symbol table
class and flag fields of variables which
were used as statement function arguments.
It then checks the program type and, if it
is unknown, sets it to •main.• Then STFN2
returns to the caller.

CEKAG -- Subscript Processor (SUBS)

SUBS scans subscripted variables and
translates the subscript expressions into
the internal language (Polish notation>
form. See Chart BK.

ENTRIES: SUBS has one entry point (CEKAGl)
with no input parameters.

EXIT: No output parameters.

OPERATION: A subscripted variable has the
form:

A (S.s., S2 , ••• , Sn>

where:

SUBS expands the subscripts into a single
expression of the form:

S*L-L+S2 *L*d1-L*d1 + ••• +Sn*L*d.s.*···*dn_1
-L•d1* ••• *dn-1

where:

L = length in bytes of an array element
d = ith dimension of N-dimensional array

Constant terms and like variable terms
are combined, and the resultant expression
is translated into Polish notation for out
put to the expression representation file
CERF).

SUBS operates in two stages. The first
stage scans the source, term by term, and
makes up tentative output terms which are
stored in an area called Tl'RM. A subrou
tine called TRMPRO checks TTRM and adds the
contents to a list (TERMS) if it cannot
combine the new term with one already in
TERMS.

The second stage (PUTOUT) translates the
terms of TERMS into Polish notation and
puts them in ERF.

Each tentative output term of TTRM has
the following format:

0 8 16 31

Constant

4-bit
*

Symbol Table Pointer to
Type Code Variable or 0

4-bit
Variable Dimension or 0 Type Code

~ A
~//\.. .f/
'V v

4-bit
Variable Dimension or 0 Type Code

* If Induction Varioble = ULEV; otherwise= 0

Each entry of a term is one word. The
number of entries per term is

NUMDM+l

where:

NUMDM = number of dimensions.

A typical term of subscript s is

The •constant" entry is the product of all
the constant factors of the term. The
variable entry is the symbol table pointer
to V , or to zero if V is missing from
term. The variable dimension entries are
symbol table pointers to any of the d <i =
1, ---, K-1) that are variable.

Terms of TERMS have the same format as
TTRM, except that all nonzero entries are
moved to the top of a term.

During the course of processing a sub
script, branches are mad~ to NEWTRM, SCAN,
and LOOP within the main loop of SUBS.

NEWTRM updates the dimension product
(DMPR) with an entry from dimension table,
if the entry is a constant: otherwise;
NEWTRM enters the symbol table pointer of
the variable dimension in TTRM. NEWTRM
then branches to SCAN.

Section 3: Phase 1 63

SCAN puts DlvJ.PR in TTRM and calls subrou
tine TRMPRO. which adds constant terms to
offset of array name entry in ERF or pro
cesses variable terms as explained earlier.
SCAN then calls ACOMP (assemble component
routine> for the next operand-operator
pair.

LOOP tests all operators that separate
terms in a subscript expression. If a
right parenthesis is found, LOOP branches
to PUTOUT. If a comma is found, LOOP
branches to NF..'WTRM. If a plus or minus
sign is found. TNEG is set accordingly.
LOOP then calls ACOMP.

SUBS begins processing by entering the
array name in ERF. Various flags and coun
ters are initialized, and a branch is made
to SCAN. ACOMP is called, and a subscript
term put in TERMS. If the term contains a
loop variable, a new term is generated,
containing the lower limit of the loop
variable in place of the loop variable. A
branch is made to LOOP to check the opera
tor. This process is repeated until the
loop finds a right parenthesis which sig
nals end of subscript. and a branch is made
to PUTOUT.

If the statement ID is DATA or EQUIVA
LENCE. PUTOUT determines that there are no
entries in TERMS. Otherwise, PUTOUT puts
the entries from TERMS into the ERF. If a
term contains a loop variable, the variable
is entered into ERF ahead of the constant.
If the statement IO is EQUIVALENCE and
dimension information from a TYPE, COMMON
or DIMENSION statement had not yet been
specified for an equivalence variable, SUBS
processes each subscript on an equivalence
variable, and saves the subscript and sign,
if any. for subsequent processing by EQUI.

CEKAI -- Expression Processor CEXPR)

EXPR translates the source language
expression into the internal language
(Polish notation) expression. See Chart
BL.

ENTRIES: EXPR has one entry point (CEKAil)
with no input parameters.

EXIT: No output parameters.

OPERATIC~: Subroutine EXPR is the arith
metic and logical expression scanner, and
produces in the Expression File CEF) the
internal-language equivalent of a FORTRAN
IV expression in the source program. EXPR
scans expressions on the left and right
side of equation statements, the condition
al expression in IF statements, and the
subroutine name and argument list in CALL
statements.

64

EXPR sees the source language through
ACOMP (assemble components) which provides
EXPR with an operand-operator pair (com
ponent) each time it is called.

The internal-language expression is con
tained in EF as a string of operators
(delimiters> and operands in right-hand
Polish notation. An oversimplified state
ment, then. of EXPR's task is •to transfer
operators from their position between their
operands to a position following their
operands.• This implies that, in scanning
over the source expression and putting the
internal form in EF, an operator must be
held back during the scanning and putting
out of its second operand (which may be a
large expression itself). Two main tables,
HSTCK and sxs. are used by the subroutine
largely for just this purpose. Each incom
ing operator is placed in the HSTCK until
required for output. SXS contains informa
tion about the operands that have been put
out.

To oversimplify again, the syntax of
algebraic expression requires that opera
tors and operands should alternate, as in
•x•Y+z•. This is reflected in EXPR in that
the subroutine is always in one of two
states. controlled by the condition of a
cell HS. The H state means, roughly, that
the last item scanned went into the HSTCK
(i.e., was an operator) so an operand can
be expected next. The S state means that
the last item scanned caused an entry in
sxs (i.e., was an operand) so an operator
can be expected next. Clearly, the scan
should begin in the H state and end in the
s state.

The situation is, in reality, much com
plicated by the presence in expressions of
unary operators (such as the logical nega
tive .NOT.), function calls, subscripted
variables, and parentheses. These compli
cations are best described by examining
EXPR's methods for handling them. These
methods are variations on, or elaborations
of, the basic idea.

The main loop of EXPR begins with a call
on ACOMP for the next component of the
source-language expression. The charac
teristics of the next component determine
the processing it receives, after which the
subroutine returns to the top of the main
loop to obtain the next component. Some
objects are illegal if received when the
subroutine is in the H state; some are
illegal in the S state; and. a few are le
gal in either state, but have their meaning
determined by the state during which they
arrive. Each object processed sets the
state for the next. From this viewpoint,
there are four classes of objects: H to S,
those that are legal in the H state and
leave the subroutine in the s state; H to

H, those that are legal in the H state and
leave the subroutine in the H state; s to
S, those that are legal in the s state and
leave the subroutine in the s state; and s
to H, those that are legal in the s state
and leave the subroutine in the H state.

The two basic classes most easily
handled by EXPR are H to S and S to ri. The
other two classes handle the more compli
cated situations involving functions
<except functions as arguments), and spe
cial operators (i.e., parentheses, unary
operators, equal sign, and end of
statement>.

H to S Class

Constant: When a constant item is
received from ACOMP, a constant entry is
made in EF and SXS with the appropriate
type.

~imple Variable: A simple variable is
processed like a constant.

Array variable: When an array item is
received, the next operator is checked for
a left parenthesis. If one is not found,
the array is treated like a simple vari
able. If the parenthesis is found, EXPR
calls the subroutine SUBS, which processes
the subscript and enters the array variable
into EF.

Function as Argument: when a function
item is received and is not the first item
of a CALL statement, it may be a function
used as an argument to another subprogram.
The item is accepted as such if the next
operator is either a comma or a right
parenthesis, and the top item in HSTCK is a
comma or semicolon (see function call in •a
to H Class• below>. If the function is
subject to automatic typing, it is checked,
and the function name changed, if neces
sary, before outputting to EF and sxs.

s to H Class

This class contains the comma and all
the binary operators: arithmetic, rela
tional, and logical. When an item for one
of these operators is received by EXPR, it
is compared with the top item of HSTCK. If
this new item represents an operator of
lesser precedence than the top item, the
HSTCK operator is output to EF and is
appropriately processed. It is then
removed from the HSTCK, and the new item is
compared with the new HSTCK top item. This
process continues until an item of less
precedence is brought to the top of the
HSTCK (the bottom of the HSTCK will always
look like such an item>, at which ·point the
new item is added to become the top item of
the HSTCK, unless it is a comma or equal
sign, in which case it receives special

treatment. Comparisons include a check for
illegal pairs.

Table 13 explains operator precedence
table, called PRECTAB. The operators that
appear at the top of each column are the
new itexr.s that can legally come from ACOMP.
The operators that appear at the beginning
of each row are the items that can appear
at the top of HSTCK. Indexes to the action
taken when a new item is compared with a
HSTCK item are given as elements of the·
table. The various actions taken are dis
cussed after the table.

s to s Class

Right parenthesis and end of statement
(EOS) are the only items which are received
from ACOMP is the s state and leave EXPR in
the same state. See Table 13 for further
discussion.

H to H Class

Left parenthesis, .NOT., and unary+ or
- are the only legal operators that can be
received from ACOMP in the H state. See
Table 13 for further discussion.

Explanation of PRECTAB

001:

002:

DD3:

004:

DDS:

DD6:

Illegal operator pair.

New operator has greater precedence
than HSTCK item. New operator is put
in HSTCK.

New > meets (. Left parenthesis is
deleted from HSTCK.

New EOS meets =. This indicates that
the right side of the equation state
ment has been processed. EXPR calls
subroutine CNVRT, which uses the last
two entries in SXS and EF to check for
legal type mix and enters a conversion
function in EF so that the expression
type on the right side will conform to
the variable type on the left side.
If expression is a constant, it is
converted to variable type.

New = meets BOT. This indicates that
the variable on the left side of the
equation statement has been processed.
The equation PRF entry is updated and
the variable is linked into VDP chain.
The = operator is put in HSTCK.

New) meets BOT. This indicates that
an IF statement has been processed.

Section 3: Phase 1 65

(l)
C.> s::
QJ
'O
Q)
0
QJ
M
~

M
0
.µ
rd
M
(l)

°' 0

.
M
~

QJ
.....
..0 m
E-4

~
!::::

~

u
f-4
Cl)

::c:

+

-
I

*
* *
..

=
(

BOT

.LT.

• LE

.EQ.

.NE

.GE.

.GT.

.NOT.

.AND.

.OR.

UN+

UN -

;

..
SF

MAX

+ - I

DD13 OD13 DD2

14 14 2

13 13 13

13 13 13

13 13 13

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 \ 2

2 3 2

2 2 2

2 2 2

22 22 22

23 23 23

2 2 2

2 2 2

2 2 2

2 2 2

• **) =
002 D02 0013 OD13 DOI

2 2 14 14 1

13 2 13 13 1

13 2 13 13 1

13 2 13 13 1

2 2 11 10 1

2 2 11 10 1

2 2 1 1 1

2 2 3 1 1

2 2 6 1 5

2 2 16 16 1

2 2 18 18 1

2 2 16 16 1

2 2 17 17 1

2 2 19 19 1

2 2 16 16 1

2 2 21 21 1

2 2 20 20 1

2 2 20 20 1

22 2 22 22 1

23 2 23 23 1

2 2 12 8 1

2 2 12 9 1

2 2 24 24 1

2 2 25 26 1

NEW OP~RAIOR
(EOS • LT. . LE. . EQ. . NE .

DD2 DD13 DDI3 0013 0013 0013

2 14 14 14 14 14

2 13 13 13 13 13

2 13 13 13 13 13

2 13 13 13 13 13

2 1 2 2 2 2

2 1 2 2 2 2

2 4 2 2 2 2

2 1 2 2 2 2

2 7 2 2 2 2

2 16 1 1 1 1

2 18 1 1 1 1

2 16 1 1 1 1

2 17 1 1 1 1

2 19 1 1 1 1

2 16 1 1 1 1

2 21 2 2 2 2

2 20 2 2 2 2

2 20 2 2 2 2

2 22 22 22 22 22

2 23 23 23 23 23

2 1 2 2 2 2

2 1 2 2 2 2

2 1 2 2 2 2

2 1 1 1 1 1

.GE. .GT. .NOT . .AND .

0013 0013 001 0013

14 14 1 14

13 13 1 13

13 13 1 13

13 13 1 13

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 16

1 1 1 18

1 1 1 16

1 1 1 17

1 1 1 19

1 1 1 16

2 2 2 21

2 2 2 20

2 2 2 2

22 22 1 22

23 23 1 23

2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 \

. OR.

DD13

14

13

13

!3

2

2

2

2

2

16

18

16

17

19

16

21

20

20

22

23

2

2

2

2

UN+

DPl

1

1

J

I

2

2

2

2

2

2

2

2

2

2

2

2

2

2

l

1

2

2

2

2

UN-

ODI

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

2

2

2

2 "° "'

DD7:
New EOS meets BOT. This indicates
that a CALL statement has been
processed.

DD8 AND DD9:

DD10:

New, meets; or;;. This indicates
that the first of several arguments
has been processed. The • is put in
HSTCK C,, for intrinsic functions).
Subroutine AARG is called to determine
if argument should be linked into VDP
chain. ARG type is put in sxs.

New, meets , or ,,. This indicates
that the N'th argument of a function
call has been processed. Subroutine
AARG is called <see 008) to check
argument type, increment the argument
count, and output, or ,, to EF.

0011 and 0012:
New> meets • or ;. This indicates
that the last argument has been pro
cessed Conly one argument in function
call if HSTCK item is ;. subroutine
AARG is called Csee 008 and 0010).
The correct number and type of argu
ments are checked. Functions with
class LIBA call subroutine LIBN, which
selects a function name based on the
argument type. Functions with class
OPEN A use table FNUM to select a
function number. The function is out
put to the EF followed by a : or :: EF
entry.

0013 through 0023:
New operator has less or equal prece
dence. This means that the HSTCK item
is to be output to EF. The HSTCK item
may be one of the following:

Unary + or - or .NOT. operator.
Binary arithmetic, relational, or

logical operator.

The unary +, -, and .NOT. are the
simplest to output. The top item in
SXS is their operand and is checked
for legal type; then, the last EF
entry has its sign changed for unary -
and .NOT.

For a binary arithmetic, relational,
or a logical operator, the top two
entries in sxs represent its operands.
In addition to putting an operator
item in EF, the processing requires
replacing the two operands in sxs with
a single entry for the result of the
operations.

The types of the operands are checked
for legal combinations. The top sxs
item is deleted, and the next sxs item
is given a subexpression class with

DD24:

DD25:

0026:

the maximum type of the two operands.
A relational operator is assigned
Logical*4 type.

A binary arithmetic operator is also
checked for constant operands. If
both sxs operand entries are class
constant, the arithmetic called for by
this operator will be done on the last
two EF entries. The subroutine CNVRT
does constant arithmetic and type
checking for binary-arithmetic
operators.

If the HSTCK item is a-, .NE.,.LE.
or .GE., it is changed to a +,.EQ.,.
GT. or .LT., respectively, and the
sign of the last EF entry is changed.
Then the above processing is done.

New , or > meets SF. This indicates
that an argument of a statement func
tion has been processed. EXPR calls
subroutine SFEXP Cat entry point
SFEXPC) which continues processing the
statement function expression.

New > meets MAX. This indicates that
all arguments have been processed in a
MAX/MIN function. The argument type
is checked and the last MAX operator
is put in EF. The top three bytes of
the multiple byte entry for MAX/MIN
function are deleted from HSTCK. The
top item of HSTCK is now C, unary -,
or a conversion function which was
entered in HSTCK by the function-call
processing.

New , meets MAX. This indicates that
an argument of MAX/MIN function has
been processed. The argument type is
compared with the type in HSTCK. If
this is first argument processed, and
automatic typing is called for, the
argument type is put in HSTCK. The
comma flag is set, and the sign of
last EF entry is changed if the MIN
f1ag is set. The MAX operator is put
in EF, except after the first
argument.

Function/Subroutine call

A function call is recognized if one of
the following conditions exists:

1. The item is an external, intrinsic, or
library function with the next item a
left parenthesis. Six bytes are added
to HSTCK. Bytes 1 and 2 contain Sym
bol Table pointer to function entry.
Byte 3 contains type of arguments
observed. Byte 4 contains number of
arguments observed. Byte 5 contains

Section 3: Phase 1 67

flag for argument definition PRFs (set
to 1 if abnormal function) • Byte 6
contains semicolon operator.

For external functions, the ABN flag
is set in the PRF entries for IF and
equation statements. This flag is
used by Phase 2 to find common def ini
tion points. EXPR then calls ACOMP
for the next component.

2. The item is the first item of a CALL
statement. The subroutine flag is
raised in the symbol table, and the
function is handled the same as case 1
if the next item is a left parenthe
sis. If the next item is EOS, the
function is entered in EF as a no
parameter function.

3. The item's class is •unknown• or
•unJcnown function• and the next item
is a left parenthesis. EXPR calls the
subroutine FNCLS, which determines the
class of the function (OPEN, OPENA,
external, LIB, LIBA, or MAX). FNCI.S
sets the function flag and appropriate
class in the symbol table and returns
to EXPR. If the function class is
external, library or intrinsic the
function is processed like case 1. If
the function is a member of the MAX
MIN family, it is processed as
described in case 4.

4. The item is a member of the MAX-MIN
family. Members of the MAX-MIN family
require special treatment. They are
interpreted not as fllllctions, but in
terms of a new operator, MAX, which is
like + in that it takes two operands
and has its type determined by the
type of its operands. MIN is ex
pressed by changing the signs of MAX
and its operands. A conversion func
tion is entered in HSTCK per case 1,
if needed; otherwise, a left parenthe
sis is put in HSTCK. Either of these
HSTCK items will correctly terminate
the MAX function processing after the
last argument has been processed. A
unary - is then put in HSTCK if f unc
ti on is MIN. This will negate the
last MAX operator in EF. The next
HSTCK byte contains two flags: a MIN
flag <set if MIN function), and a
comma flag (set after first argument
processed). The next byte contains
argument type required by function CFS
if automatic typing>. The top byte
contains the operator MAX. EXPR then
calls ACOMP for the next component.

5. The item is a statement function.

68

EXPR calls the subroutine SFEXP <at
entry point SFEXPI>, which initializes
and controls the statement function
processing. EXPR's machinery is used

to process the statement function
arguments.

CEKAN -- Conversion Subroutine (CNVRT)

CNVRT converts constants to new type, if
specified, and checks legal type mixes for
arithmetic and logical expressions, and
across the equal sign in assignment state
ments. See Chart BM.

ENTRIES: CNVRr has two entry points:
CNVRT (CEKANl), which is called by EXPR to
perform all functions mentioned above, and
CNVRTD (CEKAN2) which is called by IVAL and
is concerned only with converting constants
to the type of the variables into which
they will be stored.

Input Parameters:

P2 Variable Symbol Table Pointer
(CNVRTD entry only)

PS HSTCK address (CNVRT entry only>
P6 SXS address (CNVRT entry only>

EXIT: PS contains the HSTCK address, and
P6 contains the sxs address.

OPERATION: The types of the top two
operands in sxs, SXS(J) and SXS(J+l>, are
compared by using the table CNVTAB, and
appropriate action is taken. The action
taken depends on whether the top HSTCK item
is= or+, /, * or**·

If the HSTCK item is =, then SXS(J) is
the operand on the left side in an assign
ment statement or a variable of a DATA
statement, and SXS(J+l) is converted to the
type of SXS(J), if they are different. If
SXS(J+l) is a constant, CNVRT converts the
constant, and files the new constant in the
symbol table and EF. If SXS(J+l) is not a
constant, the appropriate conversion func
tion is entered in EF. Symbol table and EF
entries are not made for DATA statement.·

If the top HSTCK item is an arithmetic
operator <except••>, the two operands are
checked to see if they are constant. If
just one operand is constant, it is con
verted to the maximum type of the two, if
different. If both operands are consta~t,
one is converted to the maximum type, if
different, and subroutine ARITH is called.
It combines the constants according to the
HSTCK operator. The new constant is filed
in the symbol table and EF. A special case
occurs if the operand types are R*8 and
c•s. The maximum type in this case is
C•16, and all constants are converted to
this type.

There are three cases to consider if the
HSTCK item is:

1. Both exponent and base are constant.

2. The base is a real or integer variable
and the exponent is an integer con
stant in the range O through 16 for
integer base, or -16 through +16 for
real base.

3. Neither of the above cases.

For case 1, the subroutine hRITH is
called and constanta""rithmetic is
performed.

For case 2, a series of one or more spe
cial open functions are entered in the EF
from a table called EXPF (Table 14). This,
in effect, causes the power to be expanded
as a series of products of the base multi
plied by itself. Another special open
function (RECIP) is also entered in EF, to
take the reciprocal of the power if the
exponent is negative and the base is real.

For case 3, the subroutine LIBN is
called (at entry point LIBNX} #hich selects
the appropriate exponential library f unc
tion. Upon return from LIBN, the function
is entered in the EF.

Table 14. EXPF Entries (Real Base>

CEKBK -- Statement Function Definition
CSFDEF)

SFDEF enables EXPR to translate a state
ment £unction expression into Polish nota
tion and to store the translated expression
in the statement function expression file
(SFEF). See Chart BN.

ENTRIES: SFDEF has one entry point
(CEKBK1) with PS = HSTCK(I) address and P6
= SXSCJ) address as input parameters.

EXIT: PS contains the HSTCK address, and
P6 contains the sxs address.

OPERATION: SFDEF scans the argument list
and temporarily changes the class and flag
fields of all symbol table entries whose
names are the same as the dummy arguments.
The class is changed to •statement function
argument• and the flag field to contain an
off set to be used in locating the argument
in ARGSTCK Csee SFEXP routine). These
fields are restored after EXPR finishes
scanning the expression. In scanning the
argument list, SFDEF checks for legal argu
ments and maximum number of arguments:.

r--------------T--~~----1
I Exponent I Entries I
~--------------t-------T-------T-------T-------T-------T-------T-------T-------T--------~
I 2 I SQ I ; ; I Term. I I I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 3 I Cube I ; ; I Term. I I I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 4 I SQ I ; ; I SQ I ; ; I Term. I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 5 I FIFI'H I ; ; I Term. I I I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 6 I SQ I ; ; I Cube I ; ; I Term. l I l I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 1 I SEVEN I ; ; I Term. I I I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 8 I SQ I ; ; I SQ I ; ; t SQ I ; ; I Term. I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 9 I Cube I ; ; I cube I ; ; I Term. I I I I I

~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 10 I SQ I ; ; I FIFTH I ; ; I Term. I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 11 t 11 I * * I Term. I I I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 12 I SQ I ; ; I SQ I ; ; I Cube I ; ; I Term. I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 13 I 13 I * * I Term. I I I I I I I
~--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 14 I SQ I ; ; I SEVEN I ; i I Term. I I I I I
~-------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~
I 15 I cube I ; ; I FIFTH I : ; I Term. I I I I I
~--------------+--~----+-------+-------+-------+-------+-------+-------+-------+--------~
I 16 I SQ I ; ; I SQ I ; ; I SQ I ; : I SQ I ; ; I Term. I
~--------------~-------~-------~-------~-------.l.-______ i _______ i _______ i _______ i ________ ~

!The base type is attached to semicolon entries. I
L---J

Section 3: Phase 1 69

After completion of argument scanning,
SFDEF alters the EF pointer and base, so
that EXPR will enter-the expression into
SFEF. SFDEF then returns to EXPR, which
processes the statement function expres
sion. Upon completion of expression pro
cess ing, the EF pointer and base are
restored.

CEKBL -- Statement Function Expansion
(SFEXP)

SFEXP inserts a statement function
expression into EF when the function is
referenced in arithmetic or logical expres
sion, and uses EXPR to process the actual
arguments. See Chart BO.

ENTRIES: SFEXP has two entry points: SFE
XPI CCEKBLl) and SFEXPC (CEKBL2). The
input parameters are PS = HSTCK(I) address
and P6 = SXS(J) address.

EXIT: PS contains the HSTCK address, and
P6 contains the SXS address.

OPERATION: There are two entry points to
SPEXP: SFEXPI, which is the entry, to the
initializing portion, and SFEXPC, which is
the entry to the expansion portion.

The initializing part scans the argu
ments and stores a pointer to the first
character of each argument in the source
statement. It also stores a pointer CSFEP)
to the function expression in SFEF, and a
pointer to show EXPR where to resume scan
ning the source after the statement func
tion has been expanded. These pointers are
stored in a portion of the SFEF called
ARGSTCK. An •sF• item is entered in HSTCK,
which enables EXPR to process the function
arguments one at a time. After the ini
tializing is complete, SFEXP begins expand
ing the function by entering SFEF entries
into EF, using SFEP as a pointer. When a
statement function argument entry is found,
the offset of this of this entry is used to
obtain the correct argument pointer from
ARGSTCK. This pointer is stored in SOURCE,
and SFEXP returns to EXPR, which processes
the argument. When a •, • or ">•meets the
•sF• item in HSTCK, the argument has been
processed and EXPR calls SFEXP Cvia SFEXPC
entry). SFEXP checks the actual argument
type with the dununy argument type. If the
type is correct, SFEXP resumes transferring
SFEF entries to EF until another argument
entry is found. This cycle is repeated
until an end of expression entry is found
in SFEF. This terminates expansion, and
SFEXP returns to EXPR with the SOURCE
pointer set to scan the remainder of the
statement following the statement function
reference.

70

CEKBX -- Function Classifier (FNCLS)

FNCLS determines the proper class of a
function whose class was originally
•unknown• or •unknown function.• See Chart
BP.

ENTRIES: FNCLS has one entry point
CCEKBX1) and no input parameters.

EXIT: No output parameters.

OPERATION: A function with "unknown" or
•unknown function" class is assigned one of
the following classes: LIBA, LIB, OPEN,
OPENA, MAX, or external.

If the function name is found in the
LIBA name list (library function with auto
matic typing> and its type is not frozen,
it is given LIBA class. If its type is
frozen, then it is classed external. ·

If the function name is found in the LIB
name list, and its type is not frozen or
its type is the same as the library func
tion, then it is classed LIB. If the type
is different, it is classed external.

If the function name is not in the LIBA
or LIB name lists and its class is unknown
function Ci.e., delcared in an EXTERNAL
statement>, it is classed external.

If the function is in the intrinsic
function name list (includes OPEN, OPENA,
and MAX class functions), and its type is
not frozen or its type is the same as the
intrinsic function, then the symbol table
name part of the function is linked to the
intrinsic function descriptive part. If
the function type is different, it is
classed external.

If the function name is not found in any
of the three lists, LIBA, LIB, or intrin
sic, it is classed external.

CEKBY -- Library Function Selector CLIBN)

LIBN selects the appropriate library
function name, based on the argument type.
see Chart BQ.

ENTRIES: There are three entry points:
LIBN (CEKBY1> , LIBNA CCEKBY2), and LIBNX
CCEKBY3). P = SXSCJ) address is the input
parameter.

EXIT: P6 contains the sxs address.

OPERATION: LIBN has three entry points,
LIBN, LIBNA, and LIBNX. LIBN and LIBNA are
the entry points for functions with auto
matic typing. LIBNA is the entry for auto
matic functions being used as arguments.
LIBNX is the entry point for exponential
library function selection.

Using the argument type and the function
index, the proper function name is selected
(see Table 15). The function name is
inserted in the symbol table, and the
descriptive part entries filled if class is
unknown.

Table 15. Library Function Names
r---------T-------------------------------1
IAutomaticl Argument Type I
IFunction ~-------T-------T------~-------1
IName I R*4 I R*8 I C*8 I C*l6 I
~---------+-------+-------+-------+-------~
I EXP I EXP I DEXP I CEXP I CDEXP I
~---------+-------+-------+-------+-------1
l LOG I ALOG I DLOG I CLOG I CDLOG I
~---------+-------+-------+-------+-------~
I LOGIO I ALOGIOI DLOGIOI CLOGIOICDLOGIOI
~---------+-------+-------+-------+-------1
I ATAN I ATAN I DATAN I 0 I 0 I
~---------+-------+-------+-------+-------1
I SIN I SIN I DSIN I CSIN I CDSIN I
~---------+-------+-------+-------+-------~
I cos I cos I DCOS I ccos I cocos I
~---------+-------+-------+-------+-------~
I SQRT I SQRT I DSQRT I CSQRT I CDSQRT I
~---------+-------+-------+-------+-------~
I TANH I TANH I DTANH I 0 I 0 I
~---------1-------~-------L-------~-------t
I Implicit Exponential Functions I
~--------~-------------------------------~
I Base I Exponent Type I
I Type ~-------T------~T-------T-------~
I I I*2 I I*4 I R*4 I R*8 I
~---------+-------+-------+-------+-------~
I I*2 I FJXPJ I FJXPI I F'JXPR IFJXPD I
~---------+-------+-------+-------+-------1
I I*4 I FIXPJ I FIXPI I FIXPR IFIXPD I
~---------+-------+-------+-------+-------~
I R * 4 I FRXPJ I FRXPI I FRXPR I FRXPD I
~---------+-------+-------+-------+-------1
I R*B I FDXPJ I FDXPI I FDXPR IFDXPD I
~---------+-------+-------+-------+-------~
I C*8 I FCXPJ I FCXPI I 0 I 0 I
~-~------+-------+-------+-------+------~
I C*16 I FCDXJ I FCDXI I 0 I 0 I
L---------~-------~-------~-------~-------J

CEKCB·-- Constant Arithmetic Subroutine
(ARITH)

ARITH performs all constant arithmetic.
See Chart BR.

ENTRIES: ARITH has one entry point
CCEKCBl) with input parameters as follows:

P2, P3
FO, F2
FO, F2

FO thru F6

Integer Constants
Real Constants
Comp1ex Constants of
type C*8
Complex Constants of
type C*16

EXIT: No output parameters.

OPERATION: If the operator is **, the
appropriate FORTRAN library function is
called, based on the type of the base and
exponent. If the operator is +, •, or/,
ARITH does the arithmetic necessary based
on operator and operand type.

ARITH may be called upon to perform
arithmetic which will cause overflow or
divide check exceptions to occur. In order
to diagnose these situations properly, sys
tem macro SIR is called to enable module
CEKCS to trap these interruptions and set
appropriate flags. Prior to exit, system
macro instruction DIR is called to disable
these interruptions.

CEKCG -- Term Processor (TRMPRO)

TRMPRO processes a tenative subscript
term prepared by SUBS and either combines
it with a previous term or adds it tp the
TERMS list. See Chart BS.

ENTRIES: TRMPRO has one entry point
CCEKCGl), with the address of TTRM and

TERMS in PS as input parameter.

EXIT: There is a single output parameter:
the address of TERMS in PS.

OPERATION: If the tentative term has no
variable factors, its constant factor is
combined with OFFSET. If the tentative
term has the same variable factors as a
previous term already in TERMS, the terms
are combined by adding their constant fac
tors. Otherwise, the tentative term is
added to TERMS as a new term.

TRMPRO checks for too large a sulscript
expression.

CEKCR -- Actual Argument Service Routine
CAARG)

AARG performs certain functions in con
nection with actual arguments of function
and subroutine calls. See Chart BT.

ENTRIES: AARG has one entry point (CEKCR1)
and two input parameters: the address of
last HSTCK entry in PS, and the last SXS
entry in P6.

EXIT: PS contains the address of HSTCK,
and P6 contains the address of sxs.

Section 3: Phase 1 71

OPERATION: AARG puts an argument defini
tion entry in the PRF_ for a variable as
argument of an abnormal subprogram. If
this is not the first argwnent (comma flag
up), the type is checked and a conuna C,> or
double comma C,,> operator is put out to
the EF.

CEKCS -- Constant Arithmetic Interrupt
(CHKINT)

CHKIN'r provides for treatment of inter
ruptions from ARITH and sets flags for
issuance of a proper diagnostics. See
Chart BU.

ENTRIES: This routine is called by the
standard linkage convention. There are
three entry points:

CEKCS1

CEKCS2

CEKCS3
(CHKINT)

Set flag for divide
check interruptions
Set flag for exponent
overflow interruptions
Return flags
to caller

Entry CEKCS3 returns the interruption
f 1ags to the fields specified in the param
eter list, which is one word long and con
tains the address at which to store the two
flag words. No other input or output pa
rameters are used.

EXIT: No output parameters.

OPERATION: The CHXINT routine is called by
ARITH to enable and disable CEKS, for
fielding of exponent overflow and divide
check interruptions during constant arith
metic. Any interruptions due to divide
checks or exponent overflow cause the sys
tem interruption processor to enter CHKINT
at entries CEKCSl or CEKCS2, where a flag
will be set, indicating that an interrup
tion has occurred. On an exponent over
flow, the contents of the Rl register in
the ISA save area is set to infinity before
exiting.

This routine is called at entry CEKCS3
by EXPR after a complete expression has
been processed, to see if any of the above
interruptions occurred.

CEKAB -- Extract source Character CESC)

ESC is used to obtain the next source
character. See Chart BV.

ENTRIES: There are two entry points: ESC
CCEKABl> returns the next nonblank source
character; ESCB (CEKAB2) returns the next
source character, including blanks. One
input parameter, the address of the next
available character in the source string,
is passed by value in parameter register
P3. The high-order 24 bits of parameter

72

register Pl are expected to be zeros. This
routine uses only registers Pl, P2, and P3.
The contents of any other registers except
the linkage registers are not destroyed.

BXIT: output parameters are:

1. Original source character, in register
Pl.

2. Internal code source character, in
register P2.

3. Updated source pointer, in register
P3.

OPERATION: Input source data stored in the
compiler intercom region is transmitted to
the requesting routine, one character at a
time. As each source character is
extracted from the source input data, a
translation is made from either EBCDIC or
BCD character codes. This translated.
character set is a dense set value and is
used for identification purposes only. The
original character set is used for variable
names in the symbol table and preset data
in the object program. Values of the dense
set are as follows:

Character Dense code
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
c 12
D 13
E 14
F 15
G 16
H 17
I 18
J 19
K 20
L 21
M 22
N 23
0 24
p 25
Q 26
R 27
s 28
T 29
u 30
v 31
iii 32
x 33
y 34

z 35
$ 36

Blank 37
+ 38

39
/ 40

* 41
CNot Used) 42

) 43
44

= 45
46

EOS 47
48

, 49
(Not Used) 50

& 51
Others 52

CEKAE -- Assemble Components (ACOMP)

ACOMP assembles source characters into
basic components for syntactical analysis.
See Chart BW.

ENTRIES: ACOMP has one entry point
CCEKAE1) with no input parameter.

EXI!: No output parameters.

OPERATION: Each request for next com
ponents returns an operand and the operand
delimiter. The possible operand types are
variable, constant, label, and null. The
delimiter may be any of the arithmetic,
logical, or relational operators, the right
or left parenthesis, the connna, the end-of
statement, or the label terminator
delimiter.

The assembled elements are placed in the
component storage area of intercom (see
Figure 17). source characters, both origi
nal and converted forms, are acquired by
request to the extract source routine. The
converted internal code is used as an index
into the assemble components character
table Csee Table 16). By branching upon
the value derived from the components
character table, using the decision table
status as the base, the appropriate action
may be effected (see Table 17).

As variables are assembled, a symbol
table hash index from the variable hash
table is derived for use by INVST in filing
the name in the symbol table.

As constants are assembled, their type
is determined and appropriate filing rou
tines invoked.

CID CTYP CFLG CLNG

CSTP CHSH CDLM

CVAL

CVAL (Cont.)

Figure 17. Component Storage Area

Legend for Figure 17

Field
CID

CTYP

CFLG

CLNG

CSTP

CHSH

CDLM

Description
Component ID:

Null = 0
Variable 1
Constant = 2
Label = 3

Operand Type Code in Hexadecimal
Unknown = 00
Integer *2 = 12
Integer *4 = 32
Real •4 = 33
Real *8 = 73
complex •8 = 74
Complex •16 F4
Logical *1 = 01
Logical •4 = 31
Literal 02

Flags

Length of CVAL in bytes
(maximum = 256)

Symbol Table Pointer for Operand

Variable Hash Total

Component Delimiter Code
+ = 0

= 1
/ = 2

* = 3
** = 4
) = 5

= 6
= = 7
(8
EOS 9
.LT. = 10
.LE. = 11
.EQ. = 12
.NE. = 13
.GE. 14

Section 3: Phase 1 73

I

CVAL

.GT.

.NQT.

.AND.

.OR.
a

15
16
17
18
19 (Label Delimiter>

Component Operand -- Value or
Name

Table 16. Assemble Components Character
Table

r--------------------T--------------------1
I Internal Code I Component Code I
t--------------------+--------------------~

o I 1 I
1-9 I 2 I
A-$ I 0 I

+ I 4 I
I s I

* I 6 I
I 3 I
I 7 I

' I a I
/ = () , EOS I 9 I

Others I 10 I
--------------------~--------------------'

CEKCH -- Fi1e Real Constant (FJ~C)

FLRC f i1es real and comp1ex constants in
the symbol table. See Chart BX.

ENTRIES: FLRC has one entry point (CEKCH1>
and no input parameters.

EXIT: No output parameters.

OPERATION: FLRC calls FCNV to convert the
constant to floating binary. If the con
stant is not part of a complex constant and
the "don't file• flag is down, the constant
is filed in the symbol table.

If the constant is the real part of a
complex constant, the value is saved and
the routine returns to the caller. If the
constant is the imaginary part of a complex
constant, the real and imaginary parts are
combined as· a single constant. If the
•don't file• flag is down, the rea1 and
imaginary parts are also filed in the sym
bol tab1e.

Appropriate diagnostics are generated if
the types of the two parts of a complex
constant do not agree. The parts are made
to agree with the larger type.

CEKCI -- Insert Variable in Symbol Table
(IVST)

IVST finds or makes a symbol table entry
for an alphameric name. See Chart BY.

ENTR~ES: IVST has one entry point (CEK
Cil), with no input parameters.

74

EXIT: No output parameters.

OPERATION: IVST uses the name hash value
to select a chain anchor in the variable
hash table. If the chain is not empty, the
chain entries are searched for one with the
present name. If the chain is empty or an
entry is not found, a new entry is made for
this name and added to the chain. The sym
bol table descriptive part pointer for the
found or made entry is set in CSTP.

CEKCN -- Decinal to Binary Integer
conversion CICNV)

ICNV converts a decimal integer to a
binary integer. See Chart BZ.

ENTRIES: ICNV has one entry point (CEKCNl)
and no input parameters.

EXIT: No output parameters.

OPERATIO~: ICNV performs the conversion by
extracting the digits from left to right,
multiplying the intermediate value by 10
for each digit, and adding that digit to
the intermediate value. A maximum of 16
digits is allowed, and the result is a dou
bleword binary integer. The first word of
the result is placed in the second word of
CVAL, and the second -word of the result is
placed in the first word of CV"AL.

CEKCP -- Decimal to Floating Binary
conversion CFCNV)

FCNV converts a decimal constant to
floating binary. See Chart CA.

ENTRIES: FCNV has one entry point (CEKCPl)
and no input parameters.

I EXIT: No output parameters.

OPERATION: FCNV calls ICNV to convert the
decimal digits to a binary integer. This
integer is then converted to floating point
and norma1ized. The number is then scaled,
to account for the exponential and frac
tional portions. Appropriate diagnostics
are generated if the exponent and magnitude
ranges are exceeded.

CEKCQ -- File Integer Constant CFLIC)

FLIC files integer constants in the sym
bol table.

ENTRIES: FLIC has one entry point
(CEKCQl).

EXIT: No output parameters.

OPERATION: FLIC calls ICNV to convert the
constant to integer binary. If the "don't
file" flag is down, the integer is then

Table 17. Assemble Components Decision Table
r------T------r------T------T------T------T------T------T------T------T------T-------1
I I r I I I I I I I I EOS I Non I
I Code I A-$ I O I 1-9 I . I + I I * I I & I/= <, > I FORTRAN I

s ~--~t---o--r--~--t---2--t---;--r---;--t---;--t---6--t---;--t---;--t---;--r--io---1
~:-~------+------+------+------+------+------+------+------+------+------+-------~

T I 0 I A I D I F I I I z I z I zz I AZ I AC I z I E I
~------+------+------+------+------+------+------+------+------+------+------+-------~

A I 1 I B I B I B I u I c I c I cc I E I E I c I E I
1------+------+------+------+------+------+------+------+------+------+------+-------~

T I 2 I G I D I F I v I H I H I cc I E I E I H I E I
~------+------+------+------+------+------+------+------+------+------+------+-------~

u I 3 I G I FF I FF I v I H I H I cc I E I E I H I E I
~------+------+------+------+------+------+------+------+------+------+------+-------~

s I 4 I JIM IM IE IE IE IE IE IE IE IE I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 5 I K I E I E I L 1 E I E I E I E I E I E I E I
~---.;..._-+------+------+------+------+------+------+------+------+------+------+-------~
I 6 I N I MM I MM I s I T I T I cc I E I E I T I E I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 7 I E I 0 I 0 I E I p I Q I E I E I E I E I E I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 8 IE I 0 I 0 IE IE IE IE IE IE IE IE I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 9 I E I R I R I s I T I T I cc I E I E I T ·1 E I
~----+------+------+------+------+----+-----+-----+----+------+----+-------i
I 10 I E I E I E I s I T I T I cc I E I E I T I E I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 11 I x I E I E I E I E I E I E I E I E I E I E I
~------f------f------+------+------f------f------+------f------f------f--~· ~-f---T---i
I 12 I ~ I M I M I s I T I T I cc I E I E I T I E I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 13 I E I E I E I AB I z I z I zz I E I E I z I E I
1------+------+------+------+------+------+------+------+------+------+------+-------i
I 14 1 y I 0 I 0 I E I p I Q I E I E I E I E I E I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 15 I AY I AY I AY I AY I AY I AY I AY I AX I AY I AY I AY I
1------+------+------+------+------+------+------+------+------+------+------+-------i
I 16 I AT I AT I AT I AT I AT I AT I AU I AT I AT I AT I E I
~------+------+------+------+------+------+------+------+------+------+------+-------i
I 17 I E I E I E I E I AV I AV I AV I E I E I AV I E I
1------+------+------+------+------+---+------+------+------+------+----+-------i
I 18 I E I E 1 E I AB I z I z I zz I E I E I z I E I
L------L------L------~------L------L------~------~----L------L------L------L-------J

filed in the symbol table. A diagnostic is
generated if the constant exceeds 231-1.

CEKBA -- Begin Loop Processor (BGNLP>

BGNLP analyzes and encodes the begin
loop information for the DO statement and
for implied loops within an I/O list. See
Chart CB.

ENTRIES: BGNLP has one entry point (CEK
BA1) and no input parameters.

EXIT: No output parameters.

OPERATION: BGNLP begins by making a call
on ACOMP to acquire the induction variable
for the loo\:). If the characteristics of
the induction variable are satisfactory,
flags are set to indicate the special use
of this variable for the duration of the

loop. Calls are then made on subroutine
CKLIM to acquire, analyze, and appropriate
ly code the lower loop limit, upper loop
limit, and the loop increment, if present.
If the loop increment is not given, the
pointer for integer 1 is supplied. A non
source label is created and filed in the
Symbol Table for the loop top, and the
begin loop PRF entries are generated.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBB -- End Loop Processor (ENDLP>

ENDLP encodes the end loop entri.es for
explicit loops specified by a DO statement
and'for implied loops within an I/O list.
See Chart cc.

Section 3: Phase 1 75

ENTRIES: ENDLP has one entry point
CCEKBBl) and no input- parameters.

EXIT: No output parameters.

OPERArION: The end loop PRF entry is
generated, and successive calls for the
four loop parameters are made on subroutine
CLLIM. If the loop parameter is a vari
able, CLLIM determines whether this is the
lowest loop in which ,,it.._ is active. If it
is, CLLIM clears the symbol table flags and
indicators which distinguish the variable
for the duration of a loop.

CEKCJ -- Check Limits (CKLIM)

CKLIM checks DO loop parameters for
validity. See Chart CD.

ENTRIES: CKLIM has one entry point
(CEKCJl) and one input parameter: symbol
table pointer to loop induction variable in
Pl.

EXIT: No output parameters.

OPERATION: For each lower limit, upper
limit, and increment of a DO statement or
I/O loop, CKLIM verifies that the limit is
either a variable or constant integer. For
a variable the symbol table entry is marked
to indicate the level of end loop at which
the unredef inable property of a loop limit
should be terminated.

CEKCK -- Clear Limits (CLLIM)

CLLIM removes information from the sym
bol table entries for loop parameters at
the loop end.

ENTRIES: CLLIM has one entry point
CCEKCKl) and one input parameter: symbol
table pointer to loop parameter in P2.

EXIT: No output parameters.

OPERATION: For a variable loop parameter,
if the loop being ended is the outermost
loop in which this variable is a parameter,
CLLIM clears the ULEV field and lowers the
•must not be defined• flag in the variable
symbol table entry.

CEKBW -- I/O List Processor (IOLST)

IOLST analyzes and encodes the list ele
ments for READ, WRITE, PRINT, and PUNCH
statements. See Chart CE.

ENTRIES: IOLST has one entry (CEKBWl) and
no input parameters.

EXIT: No output parameters.

76

OPERATION: IOLST makes two scans over the
list elements. The first scan detects and
codes the presence of any implied loops.
The second pass classifies the variables
Cif required), generates the EF and PRF
entries, and generates the begin and end
loop entries, as required. The I/O trans
mission and end transmission library rou
tine entry names are filed in the symbol
table and marked as class external.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKCD -- Format Label Processor for I/O
Statements CFLABL)

FLABL processes a FORMAT statement num
ber, as used in an I/O statement. see
Chart CF.

ENTRIES: FLABL has one entry point
(CEKCD1) and no input parameters.

EXIT: No output parameters.

OPERATION: FLABL checks the label, files
it in the symbol table, and fills in the
LABF field in the PRF entry being built.

CEKCE -- Read Transfer Processor for I/O
Statements CRTRAN)

RTRAN processes ERR and END labels, as
used in I/O statements. See Chart CG.

ENTRIES: RTRAN has one entry point (CEK
CEl), with no input parameters.

EXIT: No output parameters.

OPERATION: RTRAN performs the necessary
checking and sets the PRF entry fields for
the error <ERR> and end of file (END) con
dition transfer labels.

CEKCF -- FORMAT or NAMELIST Name Processor
CFNAME)

FNAME processes variable FORMAT designa
tors or NAMELIST names, as used in I/O
statements. see Chart CH.

ENTRIES: FNAME has one entry point
CCEKCF1), with no input parameters.

EXIT: No output parameters.

OPERATION: For a namelist name FNAME sets
the ID and LABN fields in the PRF entry
being built. For a variable FORMAT, FNAME
sets the LABF field.

CEKAH -- Initial Value Data Specification
Processor (!DATA)

!DATA analyzes and encodes initial value
data for the type <integer, real, complex,
and logical) and DATA statement processors.
See Chart CI.

ENTRIES: !DATA has two entry points, TDATA
(CEKAHl) and DDATA (CEKAH2), for calls by
the type and DATA statements processors,
respectively. The input parameter for
TDATA is a symbol table pointer for the
variable in parameter register P2. The
input parameters for DDATA are a parameter
list address in parameter register P2 and
the number of items in the parameter list
as fullword, right-justified binary value
in parameter register Pl. The parameter
list is made up of 2-word items. The first
~ord is a symbol table pointer, and the
second word is a fullword off set value.

EXIT: No output parameters.

OPERATION: IDATA has two entry points, one
for calls by the type statements and one
for calls by the DATA statement. After
initialization, each entry point calls on
internal subroutine !VAL, which processes
the actual value specifications.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKCL -- Initial Value Processor CIVAL)

!VAL processes constants used as initial
values in Type or DATA statements. See
Chart CJ.

ENTRIES: !VAL has two entry. points, !VAL
(CEKCLl) and IVALl (CEKCL2). Input parame
ters are the symbol table pointer of vari
able in P2 and the current preset data top
in P6.

EXIT: output parameters are

P5 = 0 if constant not entered into data
table

= 1 if constant successfully entered
into data table

P6 = Updated Preset Data Top

OPERATION: !VAL first checks the variable
to which the initial value is being
assigned and opens the preset data entry.
It then joins with entry point IVALl to
process the initial data. If a repetition
factor is present, it is converted and
placed in the preset data entry. The ini
tial value constant is then processed, con
verted, and added to the preset data entry.

CEKAF -- Array Dimension Specification
Processor (ARDIM>

ARDIM analyzes and encodes the dimension
specifications for an array, when encoun
tered with a DIMENSION, COMMON, or type
statement. See Chart CK.

ENTRIES: ARDIM has one entry point (CEKA
FA) and one input parameter. The symbol
table pointer of the array name is required
in parameter register P2.

EXIT: ARDIM returns with parameter regis
ter P2 unchanged. No other parameters are
returned.

OPERATION: If the array name class is
•unknown• or •simple variable,• it is
changed to •array variable,• and the dimen
sion values are scanned. If the class is
already array variable, the source charac
ters, through the next right parenthesis,
are spaced over before returning to the
caller.

The dimension values may be either
integer constants or integer variables. If
they are constants, the appropriate dimen
sion table entry is made, depending upon
whether the array name is a subprogram
argument. If they are variables, the
dimension values and the array name',must
both be subprogram arguments. If so, the
symbol table flags are appropriately:. set to
reflect the use of this variable as ~ vari
able dinension, and a dimension table entry
for a variable dimension is made.

CEKCC -- Label String Processor C LBSTR>

LBSTR processes a string of labels, as
encountered in assigned and computed GO TO
instructions. See Chart CL.

ENrRIES: LBS TR has one entry point (CEKC
CA) and one input parameter: P2 contains
the PRF address of the line number field of
the PRF entry being formed.

EXIT: output parameters are

P2 = contains the source character fol
lowing the right parenthesis of
label string.

P3 = contains the PRF address of the
last label added.

P4 contains the count of the number of
labels in the string.

OPERATION: For each label ACOMP is called
for the label value. The value is checked
and added to the PRF entry being built.
When a right parenthesis is found, LBSTR
returns.

Section 3: Phase 1 77

CEKAC -- Statement of Identification (SID)

SID is used to identify the type of
source statement. See Chart CM.

ENTRIES: SID has one entry point (CEKACl),
and no input parameters are required.

EXIT: One output parameter, the statement
ID number, is returned in parameter regis
ter P2.

OPERATION: An initial recognition is made
to identify the statement as either an
assignment or a nonassigrunent statement
<see Table 18). A precedence table (Table
19) is used, from which new status values
are extracted and used for branching. Non
assignment statements are analyzed further,
until a unique identification is made.
This is done in two steps. First, the
first two characters of the name are
matched against List 1 <see rable 20). If
this does not yield a unique identifica
tion, the first four characters of the name
are matched against List 2 <see Table 20).
The resulting ID numbers are shown in
Table 21.

CEKAJ -- Statement Label Processor CLABL>

LABL processes the statement label and
determines if any loops are ended. See
Chart CN.

ENTRIES: LABL has one entry point (CEKA
JA) , with no input parameters required.

EXIT: No output parameters.

Table 18. Assignment/Nonassignment
Character Table

r-----------------T-----------------------1
I Internal Code I Identification Code I
~-----------------+-----------------------.~

A-G I 2
H I 1
I 2

J-K 1
L 2
M 1
N 2
0 1
p 2
Q 1

R-S 2
T-V 1

il 2
X-Z,$ 1
0-9 3

(4
) 5

6
= 7

EOS* 8
' 10

All Others 9
1-----------------~-----------------------~ I, *EOS ~ End of Statement I
'---J
OPERATION: LABL checks to ensure that the
statement to be processed is not a condi
tional statement of a Logical IF and is not
inside a BLOCK DATA program. If this is
the case, the label is converted to its
binary value. If the statement is in a
BLOCK DATA program or is a conditional
statement of a Logical IF, an error message
is produced, and the scan is terminated.

Table 19. Assignment/Nonassignment Precedence Table
r--~-T------T------T------T------T------T------T------T------T------,.-------1
I ID I 1 I 2 I 3 I 4 I s I 6 I 1 I s I 9 I 1 o I
I code I I I I I I I I I I I
~------+------+------+------+------+------+------+------+------+------+------i

s I I I I I I I I I I I I
T I 1 I 9 I 2 I 10 I 10 I 10 I 10 I 10 I 11 I 10 I 10 I
A ~------t------t------f------t------f------f------f------f------+------t------~
Tl 2 I 2 I 2 I 2 I 3 I a I a I 1 I a Is I a I
u ~------+------+------+------+------+------+------+------+------+------+------~
s1 3 I 4 I 4 Is I a I 6 I 3 I a I a I 3 I a I

78

~------+------+------+------+------+------+------+------+------+------+------~
I 4 I 4 I 4 I 4 I a I 6 I 3 I a I a I 3 Is I
~------+------+------+------+------+------+------+------+------+------+------~
I 5 I a I a Is I a I 6 I 3 I a I a I 3 I a I
~------+------+------+------+------+------+------+------+------+------+------~
I 6 I a I a Is I a I a I a I 9 I a I a I a I
~------+------+------+------+------+------+------+------+------+------+-----~~
I 1 I 1 I 1 I 1 I 9 I 9 Is I 9 I 9 I 9 I 9 I
L-----~------~------~------i ______ i ______ i------~------~------~------i------J

8 - Nonassigrunent Exit
9 - Assignment Exit

10 - Error Exit
11 - Blank Statement

Table 20. Nonassignment Type Statement
Identif i~ation

r--------T-----------------T--------------1 I I I # Characters I
I List 1 I Statement Name I in Name I
~-----~+-----------------+--------------~

IF IF I 2
GO GO TO I 4
DO * I
co * I
WR WRITE I 5
RE * ~.-..
FO FORMAT 6
CA CALL 4
DI DIMENSION 9
AS ASSIGN 6
NA NAMELIST 8
EQ EQUIVALENCE 11
LO LOGICAL 1
IN INTEGER 1
IM IMPLICIT 8
EX EXTERNAL 8

EN *
BA BACKSPACE 9
SU SUBROUTINE 10
FU FUNCTION 8
PR PRINT 5
PU PUNCH 5
BL BLOCK DATA 9
DA DATA 4
ST STOP 4
PA PAUSE 5

~--------+-----------------+--------------~
I I I # Characters I
I List 2 I Statement Name I in Name I
~--------+-----------------+--------------~
I READ I READ I 4 I
I END Eosl END I 3 I
I COMM I COMMON I 6 I
I RETU I RETURN I 6 I
I REWI I REWIND I 6 I
I CONT I CONTINUE I 8 I
I ENDF I END FILE I 7 I
IREAL IREAL I 4 I
I COMP I COMPLEX I 1 I
I ENTR I ENTRY I 5 I
I DOUB I DOUBLE PRECISION(15 I ~ ________ ..._ ________________ ..._ __________ ~
I * Not unique. I
L----------------~-------~--------------J

If the label field is nonzero, a label
definition PRF entry is generated, and the
DO loop pushdown l.ist is scanned to see if
any I.oops are terminated. If the no-flow
flag is up, the no-flow indicator in the
PRF entry is set.

If the label field is blank and if the
no-flow flag is up, a diagnostic is
printed, indicating that the statement is
not accessible. If the ISP option is on,
TEVCRL is called to create a label, and
processing continues with forming the PRF
entry.

CEKBQ -- Fall.through Determination CFALTH)

FALTH is cal.led by EXEC2 to determine if
a label reference in the statement preced
ing the current one refers to the current
statement. see Chart co.

ENTRIES: FALTH has one entry point (CEKB
QA) and no input parameters.

EXIT: No output parameters.

OPERATION: FALTH checks to see if the cur
rent statement was labeled. If it was not,
a normal exit is taken. If it was labeled,
the PRF links are followed until the l.abel.
definition entry is reached. The statement
number in the label. definition PRF entry is
saved, and the link foll.owed to the pre
vious PRF entry. If that PRF entry is a
label definition or an argument definition
entry, the link is followed to the next
entry, and so on. If the PRF entry- is any
of the GO TO entries, or a CALL, arithmetic
IF, READ, or READ with namelist entry, the
label references in the statement are•
matched with the statement number saved
from the label. definition. If a match is
found, the l.abel reference number is set to
negative.

The occurrence of a negative state~ent
number in succeeding phases results in
object code optimization. If the PRF entry
is other than those mentioned above, a
normal exit is taken.

Table 21. Statement ID Numbers

r---------~--~-------------------T----1
I I ID I I ID I
I Executablel No.I Nonexecutable I No.I
~-----------+----+-------------------+----~

BLANK I 0 BLOCK DATA 18
ASSIGNMENT 1 COMMON 19
ASSIGN 2 DATA 20
BACKSPACE 3 DIMENSION 21
CONTINUE 4 END 22
END FILE 5 ENTRY 23
PAUSE 6 EQUIVALENCE 24
PRINT 7 EXTERNAL 25
PUNCH 8 FORMAT 26
REWIND 9 FUNCTION 27
WRITE 10 IMPLICIT 28
READ 11 NAMELIST 29
CALL 12 SUBROUTINE 30
STOP 13 COMPLEX 31
RETURN 14 DOUBLE PRECISION 32
GO TO 15 INTEGER 33
IF 16 LOGICAL 34
DO 17 REAL 35

STATEMENT FUNCTION 36* ~ _____ ___,_ __ __..._ _______________ J._ __ i

l*This ID is never set by SID, but is set I
I by FYPR. I
L----------------------------------J

Section 3: Phase 1 79

CEKCA -- Diagnostic Message Generator (ERR)

ERR generates diagnostic messages for
the statement processors wnenever any
source errors are encountered. See Chart
CP.

ENTRIES: ERR has four entry points. ERRl
(CEKCAA) is used for warning messages, ERR2
CCEKCAB) is used for serious error mes
sages. ERRD CCEKCAC) is used for serious
error messages associated with statement
deletion, and ERR3 CCEKCAD) is used for
fatal error messages associated with abor
tive end of compilation. The input parame
ter for all entry points is the message
number in register P2.

EXIT: No output parameters.

OPERATION: This routine prepares a parame
ter list for the compiler executive subrou
tine RDM (CEKTE), and calls ROM to put out
a diagnostic message. The parameters for
ROM are determined by the message number
presented to this routine. Each message
number indicates a list of four halfword
indicators. Each nonzero indicator either
specifies a piece of prepared text, whose
length and location are to be added to the
RDM parameter list, or specifies a· code
branch to perform a special operation to
obtain material for the RDM parameter list.
A message number for which indicators have
not been provided causes a special ROM pa
rameter list to be prepared, giving the
message number.

The local maximum error code is updated by
this routine, according to the entry used.
The delete flag is raised when the ERRD
entry is used.

80

INTRODUCTION

Phase 2 performs several major func
tions. Storage assignments are made for
all source program variables, taking into
account the effects of COMMON, EQUIVALENCE,
and DIMENSION statements. The source pro
gram flow and DO loop structure are ana
lyzed to verify that all referenced labels
are defined, to determine that all flow
across loop boundaries is legal and to mark
loops for materialization of the loop vari
able (keeping it in its memory cell>, or
for marking the loop unsafe (minimum opti
mization) when flow conditions demand it.

ROUTINE DESCRIPTIONS

Phase 2 routines bear mnemonic titles as
well as coded labels. The 5-character
coded labels begin with the letters CEKJ;
the fifth letter identifies a specific rou
tine. Various entry points to a routine
are identified by a sixth character, a
digit, added to the coded label; for
example, the coded label for the diagnostic
message generator variable routine is
CEKJH, and there are entry points CEKJHl,
CEKJH2, and CEKJH3. When reference is made
to a compiler executive routine or entry
point, the mnemonic title is used, followed
immediately by the corresponding coded
label enclosed with parentheses.

There are no hardware configuration
requirements for any of the Phase 2 rou
tines. All these routines are reenterable,
nonresident, nonprivileged, and closed.
Except for PHASE2 CCEKJA), which uses stan
dard, type I linkage, all Phase 2 routines
use restricted linkage.

The relationships of routines in this
phase are shown in the following nesting
chart (Figure 18) and decision table (Table
22). The relationships are shown in terms
of levels; a called routine is considered
to be one level lower than the calling rou
tine. Phase 2 controller PHASE2 is consid
ered to be level 1.

CEKJA -- (PHASE2)

PHASE2 controls the overall processing
of Phase 2. See Figure 19.

ENTRIES: This routine is entered using
standard, type I linkage. It calls the
other routines used in Phase 2 by

SECTION 4: PHASE 2

restricted linkages. It has one entry
point, CEKJA1, and one parameter, the
executive intercom region.

EXITS: PHASE2 has one normal exit to Exec.

Abnormal exits are converged to the Exec
with return codes CRC) 8 and 4. Return
code 8 specifies an irrecoverable condition
and is referred to mnemonically as the
ABORT return code. Machine or compiler
errors CMCERR) are indicated by return code
4.

OPERATION: On entrance from Exec, PHASE2
initializes itself and invokes the two main
routines: VSCAN and FSCAN. (See Figure
19). VSCAN makes storage assignments using
the storage specification list for inforrca
tion about COMMON and BJUIVALENCE state
ments. FSCAN scans the PRF to perform the
flow and loop analysis.

CEKJC -- Storage Assignments for Variables
(VS CAN)

VSCAN makes storage assignments for all
variables in a source program, and consists
of three parts: VSCANl, VSCAN2, and
VSCAN3. See Chart CQ.

ENTRIES: VSCAN has one entry point
(CEKJC1) and is invoked by PHASE2. There
are no input parameters.

EXITS: VSCAN returns to the Phase 2 execu
~ with the normal, ABORT, or MCERR
return codes.

OPERATION: VSCAN assigns storage space for
all variables. Assignments are made in
certain storage classes. The status of
each storage class is kept up to date in
its storage class table entry <see Appendix
A). Non-COMMON variables are assigned in
storage class 6, blank COMMON in storage
class 9, and named COMMON in as many of
classes 10-127 as are needed. Each symbol
table variable entry has its STCL field
filled with the appropriate storage class
and its SLOC field filled with an assign
ment relative to the bas·e of that storage
class. The storage class table entry for
each class includes the number of bytes
already assigned in that class; the entry
also indicates the next available space.

Section 4: Phase 2 81

Level

1[

2

3

.[
{

VS CAN

FORMAT LAB

DX

ROM

Figure 18. Phase 2 Nesting Chart

82

PHASE 2

FSCAN

RTNl

ISP FLL FLL

Table 22. Phase 2 Decision Table

Routine:-----------~Phase 2---Level: 1 -----------
r--------T-------------------------T---------T--1
I I !Called I I
!Routine I Usage fRoutines I Calling Conditions I
~--------+-------------------------+---------+--~
IPHASE2 fControls the operation of IVSCAN !Entered unconditionally to make the memory!
I I Phase 2. I I assignments. I
I I IFSCAN !Entered unconditionally to scan the PRF tol
I I I I perform the flow and loop analysis. I
L--------i-------------------------.l---------.l--J
Routine:------------Phase 2---Level: 2 -----------
r--------T------------------~------T---------T--1
fVSCAN fMakes the memory assign- IDX !If an error condition is found, entered t
I I ments for all variables.I I to print the error message. I
~--------+-------------------------+---------+--~
FSCAN Does the flow and loop RTNl IEntered for each label reference to place

analysis including label I an entry in the Symbol Table.
processing, illegal LAB !Entered for each label reference to check
transfers, unsafe loops, I the legality of transfers into and out
and COMMON and formal I of loops.
argument definition ISP !Entered for each label reference to check
points. I for a proper Symbol Table entry.

FORMAT !Entered for each I/O statement reference
Ito a FORMAT number to check for a proper
!Symbol Table entry.

TEVFLL IAn Exec routine entered for each label
(CEKTFG) I definition to file an entry in the

I symbol table.
IDX !Entered when an error condition is found
I I to print the error message • ._ _______ i_. ________________________ .L, _________ .L, ___ _

Routine:------------Phase 2---Level: 3 -----------
r--------T-------------------------T---------T--1
IRTNl !Places label references ITEVFLL IAn Exec routine entered to make the label I
I I in the Symbol Table. I (CEKTFL) I entry in the Symbol Table. I
t--------+-------------------------+---------+--~
IIAB IChecks the flow as !ISP !Entered for each label reference to de- I
I I related to DO loops. I I termine if a legitimate Symbol Table I
I I I I entry exits. I
I I IDX !Entered if an error condition is found to I
I I I I print out the error message. I
~--------+-------------------------+---------+--~
!FORMAT IChecks to see that refer-IDX !Entered if an error condition is found to I
I I enced FORMAT statements I I print out the error message. I
I I are properly defined I I I
I I in the Symbol Table. I I I
L--------.l-------------------------.l---------.l--J
Routine:------------Phase 2---Level: 4 -----------
r--------T-------------------------T---------T--1
f ISP IChecks to see that refer-IDX IEntered if an error condition is found to I
I I enced statement labels I I print out the error message. I
I I are properly defined in I I I
I I the symbol table. I I I
L--------.l-------------------------.l---------.l--J
Routine ------------Phase 2---Level: 5 -----------
r--------T-------------------------T---------T--1
f DX !To generate the error IRDM !An Exec routine entered for each error l
I I message I (CEKTE) I to print the line. I
I I I I I
L--------L-------------------------.l---------.l--J

Section 4: Phase 2 83

Phase 2

Enter

Phase 2
Initialization

VS CAN
Assign
Storage to
Variables

Label and
Loop Bounder
Error

Exit

Exit

Figure 19. Phase 2 General Flow

All symbol table entries except con
stants and labels are relinked from the
hash-table-based chains used in Phase 1.
The variables of each storage class now
form a chain, linked in order of assign
ment. External reference, namelist, and
entry entries form three additional chains.

Description (VSCANl): All chains based on
the variable hash table are scanned, and
each entry is examined. Those marked as
external reference, namelist, or entry are
linked into their appropriate chains.
Those marked variable but flagged as COMMON
or EQUIVALENCE are ignored, since they will
be processed later. Those marked variable
but flagged as formal argument are also
ignored. All other nonvariable entries are
ignored.

For each non-COMMON, non-EQUIVALENCE,
non-formal-argument variable encountered,
an entry in a sort table is made (see
Figure 20) containing the number of dimen
sions, the type size mask, the amount of
storage required, the type indicator, and
the symbol table pointer. When all symbol
table entries have been scanned, the sort
table is sorted to increasing value of
these fields. The result is that all

84

0 4 8 16 31
r----T----T-------------------------------1
I ND I TM I sz I
~----i----f------------T------------------~
I TY I Unused I VAR I
L---------i------------i------------------J

ND Number of dimensions (0-7)
TM Type/size mask:

0 Logical*! 3 Real•4
1 Integer*2 7 Real*8
3 Logical*4 7 Complex•8
3 Integer•q F Complex*l6

SZ Total storage requirement
TY Type: 1 Logical

2 Integer
3 Real
4 complex

VAR Symbol Table name part pointer

Figure 20. Sort Table Entry

simple Cundimensioned) variables come
first, then all 1-dimensional arrays, etc.
Within a dimensionality, variables of the
same type fall together, those requiring
less storage preceding those needing more.

The variables are then assigned in the
sorted order, to maximize the possibility
for sharing address constant cover and sub
scripts between variables. The assignments
are made in storage class 6, with each
variable being assigned to the next avail
able byte on a boundary suitable for the
type. At the same time, the variable sym
bol table entries are linked into the vari
able chain.

Description (VSCAN2): VSCAN2 scans the
storage specification list, processing the
COMMON variables and providing preliminary
processing for variables appearing in EQUI
VALENCE statements. The information from
COMMON statements filed in the storage
specification list is scanned. Each vari
able is given an assignment (STCL and SLOC)
in the storage class for its COMMON block
and linked into the symbol table chain for
that block. The size of the block is
increased for each variable by the space
required for the variable.

If the available assignment for a COMMON
variable is not at the proper boundary
(halfword, fullword, doubleword) for the
type, a warning message is produced. Cin
the object program storage layout all
storage classes will start on a doubleword
boundary.>

As the storage specification list is
being scanned and COMMON variables ara pro
cessed, the information from EQUIVALENCE
statements also receives preliminary pro
cessing. The material appearing in a set
of parentheses in an EQUIVALENCE statement
is called a group; group numbers are

assigned to groups sequentially, in order
of occurrence. As an EQUIVALENCE entry is
encountered, VSCAN2 must determine whether
a variable is of the type 'FF'. If so,
VSCAN2 computes the off set by searching for
dimension information in the Dimension
Table <whose specifications may occur in
DIMENSION, COMMON or explicit TYPE state
ments). If insufficient or no dimension
information is found, an E level diagnostic
is issued and an off set is computed by
defaulting to the first subscript. Pro
cessing continues to the next variable or
group, if any, until all groups in the
EQUIVALENCE statement are exhausted.

If a variable is of the type 'FF' and
dimension information permits an offset to
be computed, VSCAN2 overlays the last sub
script entry (EE2, EE3, EE4 or EES> with
the newly formed EE1. With this technique
VSCAN2 can consistently step through tne
EQUIVALENCE entries by an increment of one
Cl). For each occurrence of a variable in
an EQUIVALENCE statement, an entry is made
in the variable list (see Appendix A for
variable list format). The entry consists
of the symbol table pointer, the group
number, and the offset in bytes, and repre
sents the equation

(base of group) = (base of variable) +
offset

Base-of-group and base-of-variable are
unknowns. Base-of-variable represents the
eventual storage assignment to be ~ade for
the variable. Base-of-group represents the
assignment which would be made to a vari
able appearing in the group with no
subscript.

Description (VSCAN3): After the storage
specification list scan is completed, the
variable list is sorted by increasing or
der, with the symbol table pointer as the
major key and the group, there will be con
secutive entries for that variable in the
sorted list. These consecutive entries in
dicate connections between different
groups. See Figure 21.

The sorted list of variables is scanned.
In the case of consecutive pairs involving
the same variable, each such pair repre
sents a pair of equations:

(base of group1) = (base of
variable) + of fset1 ,

Chase of group2) = Chase of
variable) + offset2 ,

where the number of group 2 ~ number of
grOUP1•

Variable List Entry

0 16 31
r--------------------T--------------------1
I VAR I GPV I
~--------------------i--------------------~
I OFS I
L---J
VAR Symbol rable name part pointer
GPV EQUIVALENCE group number
OFS Off set in bytes

Group Connection List Entry

0 16 31
r--------------------T--------------------1
I GPl I GP2 I
~--------------------i--------------------~
I DSPL I
L---J
GP1, GP2 Group numbers
DSPL Displacement

Group Table Entry

0 16 24 31
r--------------------T---------T-----~----1
I GPl I STCL I MAXS I
~--------------------i---------i-----~----~
I DSPL I
L---J
GP1 Group number
STCL Storage class
MAXS Maximum byte boundary over group
OSPL Displacement

Figure 21. Variable List, Group Conn~ction
List, and Group Table Entries

Eliminating the base-of-variable gives
the equation

(base of group2) = (base of group1) +
(offset2 -offset1) ,

which is represented by an entry in a new
list, the group connection list, consisting
of group number1 , group number2 , and a dis
placement computed as of fset2 minus
offset1.

After completion of this scan, the group
table is initialized. It contains one
entry per group, and will eventually indi
cate, for each group, the lowest numbered
group with which it is connected and its
displacement from the base of tht group.
Each entry consists of a group number and
displacement, representing the equation

Chase of group;) = (base of group > +
displacement , J

Section 4: Phase 2 85

and is initialized t9

(base of groupj>
0 .

(base of groupj) +

Each group connection entry is processed
against the group table. The group
connection entry gives the equation

C base of group~>--= Cbase of group i) +
displacement1

and the group table entry for group gives
the equation

Cbase of groupk> = (base of groupj> +
displacement2 •

Comparing the numbers of groupi and
groupj, there are three possible cases.

case 1. i<j The group connection entry
relates groupk to a lower-numbered group
than that with which it is already con
nected. Group) and displacement2 are
saved, and the group table entry for
groupKis changed to indicate

(base of groupK) = (base of group;> +
displacement!. •

If k = j Cas initially>, no further pro
cessing is needed. However, if k > j,
e1iminating base-of-groupk from our two
equations gives a new group connection
entry representing

(base of groupj) = (base of group 1 > +
(displacement1 - displacement2> •

This entry is formed and processed against
the group table entry for groupj•

case 2. i = j. If displacement1 = displa
cement2, this entry is consistent but
redundant, and needs no processing.

Case 3. i > j. The group table entry
relates groupK to a lower-numbered group
than the group connection entry. Elimina
ting base-of-groupk from the two equations
gives a new group connection entry
representing

(base of groupj> =(base of group)> +
(displacement2 - displacement1) •

This entry is formed and processed against
the group table entry for groupi.

After the group connection list has been
processed, a final pass is made over the
group table. Each entry represents an
equation

86

Chase of groupr> = (base of groups> +
disp1acement1

If the earlier entry for
groups indicates

Chase of group 5) = Cbase of groupt> +
displacement2 ,

then substitution yields

Cbase of groupr> = Cbase of groupt> +
Cdisplacement1 + displacement 2) •

This substitution is carried out for each
entry to which it applies.

The group table is now in final form and
ready for use. The variable list is
scanned again. Each entry represents

(base of variable) = (base of groupm>
- off set •

The group table entry for
groupm represents

(base of groupm> = (base of groUpn> +
displacement •

Substitution yields

(base of variable> = Chase of groupn>
- (off set - displacement>

and the variable entry is changed to repre
sent this equation. (If two consecutive
entries for the same variable occur, both
must transform to the same new entry.)
This entry now relates the variable to the
base of the lowest-numbered group in the
connected set of groups in which the vari
able occurs.

During this scan the STCL field in the
symbol table entry for each variable is
checked. This field is zero for a non
COMMON variable, but indicates the COMMON
block for a variable which has already been
assigned in the COMMON processing. If any
variable in a group is in a COMMON block,
the group table entry receives the appro
priate storage class; otherwise, this entry
is set to storage class 6. Also during
this scan, the size of the largest variable
in a group Cl, 2, 4, 8, or 16 bytes> is
associated with the group.

The variable list is sorted by decreas
ing order, with the group number as the
major key and the offset as the minor key.
<The offset may be negative, so the sort
must use algebraic comparisons.> This sort
brings together the variables within the
same group and arranges them in order of
storage assignment.

Now the list is scanned, and assignments
are made for each variable. For each non
COMMON group the current size of storage
class 6 is adjusted to the proper byte

boundary for the largest variable in the
group. The first variable in the group
(the one with the largest offset> is given
this assignment, and edch successive vari
able is assigned to this location plus the
difference of maximum-off set minus the
-variable's-offset. Also for each vari
able, its size (total size if an crray> is
added to its assignment, and tne maximum of
these over each group is used to update the
size of storage class 6 when all the group
variables have been processed. Each vari
able is linked to the end of the non-COMMON
variable chain.

For a group including a COMMON variable,
that variable is located and its existing
assignment is taken as a group base.

Each variable is given, as an assign
ment, the assignment of the base COMMON
variable plus the difference of COMMON
variable-offset minus variable-offset. A
check is made for negative assignments and
assignments to improper byte boundaries.
Each variable assigned is linked into the
chain for the COMMON block, in order of
increasing assignment. If the size of the
COMMON block is increased by these assign
ments, the storage class table entry is
updated.

In addition, as the assignments are made
for common variables, checks are made to
ensure that those appearing in DATA state
ments are permissible.

0 16

VSCAN detects and issues diagnostic mes
sages for source program errors related to
storage assignments for variables. These
include inconsistencies in EQUIVALENCE
relations and assignments forced by COMMON
or EQUIV~LENCE statements that place
variables on byte boundaries which are not
proper for the variable type.

VSCAN may issue a diagnostic message and
branch to PHASE2 with the ABORT code if the
internal tables used for sorting exceed the
maximum available space. VSCAN may branch
to the Phase 2 executive with the MCERR
code if certain conditions are detected
which must be due to machine or compiler
error.

If the !SD option is OFF, another symbol
table scan is made to fin1 interfering
variables. In each storage class, the
variables are scanned in order of storage
assignment by following the existing chains
built by VSCAN. For each variable,·the
storage assignment plus the size is com
pared with the storage assignments of suc
ceeding variables. When overlap is ,
detected, the "Equivalence Flag• in the
symbol table description part is raised and
the variables are linked, using the FBP
anchor field in the symbol tab1e entries,
in a chain of interfering variables for
that storage class. At the end of VSCAN,
these chains are anchored in a new table,
•Intble•, which has the format below.

31
IN'l'BLE FORMAT r---------~---------T------------------------1

I No. of named I Not used I
I commons I here I
~--------------------+------------------------~
I SYMTAB Anchor I 8000 I
I Storage Class 6 I <flag for later use> I NON-COMMON VARIABLES
~---------~---------+~----------------------~
I SYMTAB Anchor I 8000 I
I Storage Class 9 I I BIANK COMMON VARIABLES
~---------~~-------+------------------------~
I SYMTAB Anchor I 8000 I
I Storage Class 10 I I FIRST NAMED COMMON
~-----------~-------+------------------------~
I I I
I I I
~--------------------+------------------------~
I SYMTAB Anchor I 8000 I
I Storage Class N I I !AST NAMED COMMON
~---------~---------+------------------------~
I SYMTAB I PRF I
I<------ ------>!<--------- --------->!
I PART I PART I
I I I
I I I
I I I
I I I

Section 4: Phase 2 87

CEKJB -- Process Label References and
Definitions {FSCAN> · -

FSCAN is in two parts:

FSCANl - is concerned with labels which
must be entered into the zymbol
table and marked if referenced in
the source program.

FSCAN2 - is concerned with the following:
undefined label references and
illegal flow conditions across DO
loop boundaries, unsafe loops and
the need for materialization, and
definition points for COMMON and
formal arguments.

See Chart CR.

ENTRIES: FSCAN has one entry point
(CEKJBl) and is invoked by the Phase 2
executive.

EXITS: FSCAN returns to the Phase 2 execu
tive with the normal, ABORT, or MCERR
return codes. There are no parameters.

OPERATION: FSCANl constructs symbol table
entries from label references and label
definitions, together with information per
taining to each label. One scan is made
over the PRF, by simultaneously progressing
along three separate chains. These chains
are as follows:

1. CLNK chain -- Links all transfer of
control statements in the PRF. For
each different place to which control
can be transferred, there is a label
reference.

2. LLNK chain -- Link label definition
entries in the PRF.

3. PDLNK chain -- All DO statements have
a begin loop (BL3) and a special entry
end loop CENDL) in the PRF, just prior
to the next executable statement out
side the loop. These are the loop
boundary items, and all such items in
the PRF are linked into a loop bounda
ry chain called the PDLNK chain.

After any chain entry has been pro
cessed, the three links Cone for each
chain> are compared. The chain having its
next entry closest to the present scan
position in the PRF is selected for pro
cessing next.

When a GLNK chain entry is selected,
each label reference (there are NOEL of
them> is placed in the symbol table and
denoted as a ref erence~l label. The number
of references is given by the NOEL field.
The LLNO field in the PRF is changed to
contain the pointer to the label entry in

88

the symbol table. A negative label value
indicates a reference to the next statement
and is not marked •referenced."

When an LLNK chain entry is selected,
the label is placed in the symbol table,
together with corresponding level and pla
teau values, and the LLNO field in the PRF
is changed to contain the label address in
the symbol table. Multiply defined labels
are detected in this scan.

When a PDLNK chain is selected, the
level and plateau values are incremented
and saved, and the level value is placed
into the LEV field of the PRF.

Two tables, formed during FSCAN1, are
used during FSCAN2 for detection of illegal
flow conditions:

The Barrier Table

0 15 16 31
r~------------------T--------------------1
I PLAT I LEV I
L--------------------i-------------~-----J

The Innermost Loop Table

0 15 16 31
r--------------------T--------------------1
I !Symbol Table Pointer!
I PLAT I (May be O; entered I
I !during scan number I
I 12> I
L--------------------i--------------------J

The plateau value is entered into the
innermost loop table whenever a BL3 entry
is preceded by an ENDL entry. The level
and plateau values are entered into the
barrier table whenever a BL3 entry is fol
lowed by an ENDL entry.

A plateau is any area between loop
boundary entries. The PRF link to a loop
boundary entry (End Loop or BL3) is used as
a name for the plateau which starts with
that entry.

FSCAN2 is concerned primarily with three
things:

1. Discovering any label references which
are not defined.

2. Processing DO loop items for flow
conditions.

3. Forming the CDP and ADP chains.

These three processes are carried out si
multaneously while FSCAN2 is scanning the
PRF along the ILNK chain (which links
together successive PRF items>.

Label Processing

If the current item in the PRF scan is a
label reference item, each symbol table
pointer associated with the labe1 reference
is used to locate the define bit in the
symbol table for that particular label
reference. If the define bit is not on,
this particular label is not defined, and
an appropriate error diagnostic is given.
This particular PRF item is then deleted
from the ILNK chain-.--..

Label definition items are similarly
checked, to see if they have been
referenced (i.e., the reference bit is set
in the symbol table). If not, this item is
deleted from the LLNK chain. After this
scan the LLNK chain will link together suc
cessive label definitions for referenced
labels only. Label definition items which
have been referenced are checked for the
no-flow condition. If the no-flow bit is
set in the symbol table, a diagnostic is
issued indicating that the statement cannot
be reached.

Flow Precessing

If the current item in the PRF scan may
cause an illegal flow condition to occur,
the item will be investigated for all such
conditions, and a diagnostic given if any
is found.

The flow processing is broken into two
areas for investigation. These conditions
are described below. •Level zero• denotes
a plateau. not inside any DO loop.

1. Jumps from or to Level Zero

Jumps from Level Zero. If the jwnp is
not to an innermost loop or to level
zero, a· diagnostic is given. If the
jump is to an innermost loop, the pla
teau and symbol table pointer of the
definition are entered into the E loop
list.

Jumps to Level Zero. If a jump is
made to level zero from an innermost
loop, the plateau value of the label
reference is entered into the X Loop
List. In this case, all intervening
levels from the label reference to the
level preceding the label definition
are marked as materialized in the
•Materialization List.•

2. Juq;>s other than those from or to
Level Zero

Jumps into Loops (Jumps to Higher
Levels). A jump from a level other
than level zero to a label definition
whose level is greater than that of
the label reference is an illegal jump

into a loop, and an appropriate diag
nostic message is given.

Jumps out of Loops (Jumps to the same
or Lower Levels). If a jump is made
(from a reference level other than
level zero) to a label definition
whose level is less than or equal to
that of the label reference, the bar
rier table must be inspected for any
plateau values with level lower than
that of the definition intervening
between the plateau value of the label
reference and that of the label
definition. If there are no such pla
teau values between these limits, the
jump is legal. If there is such an
intervening plateau value between
these limits, a diagnostic message is
given, indicating an illegal jump into
a loop. All loops from the reference
level to the definition level are
marked •materialize.•

DO Loop Processing

1. Unsafe Loops

Two lists are formed during FSC~~2:

E Loop List -- consists of p,lateau
values of label definitions which
occur at an innermost loop, .. and
are referenced from level zero.

X Loop List -- consists of plateau
values of label references which
occur at an innermost loop.

Every entry in the E loop list should
also be in the X loop list; therefore,
each innermost loop entered from level
zero a1so has a jump out of this
innermost loop to level zero. If this
condition is not met, an appropriate
diagnostic is given. A third scan is
made over the PDLNK chain. If any
entries exist in the E loop list,
those end loop entries which lie
between the plateau values of the
label reference and the label defini
tion are marked as unsafe.

2. RETURN Loops

Loops containing RETURN statements are
marked •materialize• if the loop vari
able is in COMMON or is a formal argu
ment called by name.

3. Definition Point Chains

The CDP chain connects PRF entries
which must be considered as definition
points for all COMMON variables or
formal arguments. An entry is linked
in this chain if the statement
involves a call on an abnormal func-

Section 4: Phase 2 89

tion or subroutine Cone which may
redefine co~~lONl, or if a formal argu
ment is explicitly assigned a new
value.

The ADP chain connects PRF entries
which must be considered as definition
points for all formal arguments. An
entry is linked in this chain if a
COMMON variable is explicitly assigned
a new value (and the entry is not
already in the CDP chain>.

The processing of interfering variables
takes place during the second PRF scan.
Chains of the interfering variables within
each storage class are formed within the
PRF and anchored in the second halfword
(the PRF part) of the corresIJonding lntble
entries. When a variable is being defined,
that is, wherever ID= 5 (equation>, ID= D
<argument definition point>, ID= 10 <Begin
Loop 2), or ID= 21 (Input list Element),
the equivalence flag in the symbol table
descriptive part for the variable is
checked. If the flag is raised, the
storage class of the variable is used to
locate the correct Intble entry. The vari
able is added to its chain by setting the
VDP field to the PRF part of the Intble
entry, and the chain's anchor is updated by
setting the PRF part of the Intble entry to
the ILNK field.

The interfering variable chains are
reversed during the reversing of the CDP
and PDLNK chains. Another table of the
same size as Intble, LNKSAVE, is used to
hold the saved links. During the chain
reversal, the chain whose current link is
in the highest location is chosen for
reversal at each step. The set of inter
fering variable chains is searched to find
the highest link, and the result is com
pared with the current CDP and PDLNK links
to find the highest current chain link.

After the chain reversals, Intble is
scanned for storage classes containing in
terfering variables. These symbol table
chains of variables are followed and FDP
anchor fields are set to the beginning of
the PRF VDP chain for that storage class.

A half word cell •LXT" is used to hold a
symbol table pointer and a flag "ACGTFL" is
used to indicate that the current PRF item
is either an assigned or a computed GO TO
statement.

ACGTFL is lowered before starting FSCAN2
and raised at each computed CID 8) or
assigned (ID 7) GO TO item before calling
IAB (CEKJE) and lowered when returning from
LAB.

LXT is set to 8001 at each end-loop item
<ID12) unless the global flag is raised

90

(i.e., loop is flagged "Innermost no
calls"). In this case, LXT equals 8000.
At each begin-loop-2 item CID 10), the cur
rent value of LXT is put into the EXITLB
field and the LXT is set to 8001.

CEKJD -- Label Reference Processor CRTNl>

RTNl places label references in the sym
bol table. See Chart cs.

ENTRIES: RTN1 has one entry point, CEKJDl.
Input parameters are

Pl Number of label references in
PRF item

P2 Index to first label number in
PRF item

EXITS: RTNl returns to the invoking rou
tine with the normal or ABORT return code.

OPERATION: RTN1 checks the sign of the
label number. If the sign is positive, it
is replaced by the pointer to the cor
responding symbol table entry, and the sym
bol table entry is marked as "referenced."
If the sign is negative, indicating a
reference to the next statement, it is
replaced by the symbol table pointer, but
is not marked as "referenced.•

Negative values appearing in arithmetic
IF statements are simply replaced with
X'8000' to indicate fall-through.

CEKJE -- Label Reference Processor (LAB)

LAB checks flow as related to DO loops.
See Chart CT.

ENTRIES: LAB has one entry point, CEKJEl.
Input parameters are

Pl Number of label references in
PRF item

P2 PRF index to first symbol table
pointer

P5 Pointer to PRF item

EXITS: Only the normal exit is made, with
no output parameters.

OPERATION: LAB checks the legality of
jumps from and into DO loops, as described
under •p1ow Processing• in FSCAN.

The materialization list is marked as
required, the necessary X loop and E loop
list additions are made, and appropriate
diagnostics are given when illegal flow
conditions are detected.

LXT and ACGTFL are processed at the two
points where a branch out of a loop is
detected to a level of zero or greater than
zero. If LXT equals 8000 or if LXT equals

the Symbol Table pointer for the current
label, and if ACGTFL is down, tnen set LXT
to equal the Symboi Table pointer for the
current label, and omit marking the I'iAT
stack for the currently innermost level.
Otherwise set LXT to 8001.

CEKJF -- Statement Label Reference
Inspection CISP)

ISP determines whetner referenced state
ment labels are properly defined.

ENTRIES: ISP has one entry point, CEKJFl.
Input parameter is

P2 -- PRF index to symbol table
pointer

OPERATION: The symbol table item of the
referenced label is checked to see if it is
marked •ctefined.• If it is not, a diag
nostic is issued and the undefined flag is
raised. ISP is not entered to check the
validity of FORNAT label references. A
diagnostic is issued and the undefined flag
is raised when erroneous references to FOR
MAT !ables are encountered.

CEKJG -- Format Reference Inspection
(FORMAT)

FORMAT determines whether referenced
FORMAT statements are properly defined.

ENTRIES: FORMAT has one entry point,
CEKJG1. Input parameters are

P2 PRF index to symbol table
pointer

PS Pointer to PRF item

OPERATION: The associated symbol table
entry of the referenced label is checked to
see if it is marked •defined.• If it is
not, a diagnostic is issued and the unde
fined flag is raised. A diagnostic is also
issued and the undefined flag is raised if
the class of the label item is not FORMAT.

CEKJH -- Diagnostic Message Generator COX)

OX generates diagnostic messages whenev
er error conditions are encountered. See
Chart cu.

ENTRIES: DX has three entry points:
CEKJHl, CEKJH2, CEKJH3. The input parame
ters, for all three entry points, are

Pl
P2,P3

rhe Phase 2 diagnostic code
Pointers to the symbol table
or PRF item from which infor
mation is to be extracted.

EXITS: Only the normal exit is made, with
no output parameters.

OPERATION: OX generates a diagnostic mes
sage by operating on a parameter list, from
which another parameter list is generated
for ROM. An input parameter may be one of
two types. The first type is a parameter
which merely points to a piece of prepared
text. In this case, the address of Q,,.· .. word
containing the text length in characters
and the address of the text are entered
into a parameter list for ROM.

The second type is a parameter which
specifies that a certain predefined o.pera
tion is to be performed. In this case, an
indexed branch on the parameter is ma.de to
the operation to be performed. Each .of the
operations extracts specified information
from some table or file, such as the symbol
table, performs any conversions required,
and makes appropriate entries in the param
eter list for ROM.

A parameter word containing zeros indi
cates the end of the input parameter list,
and RDM is called to output the diagnostic
message.

Section 4: Phase 2 91

SECTION 5: PHASE 3

INTRODUCTION

The major function of Phase 3 is global
optimization, which is the process of mini
mizing the number of object code instruc
tions to be generated by Phase 4. There
are four categories of global optimization.

1. Removable Expressions. A •removable
expression• is one whose individual
operands do not have •definition
points• inside the loop. A definition
point is a statement in which the
variable has, or may have, a new value
stored in it (e.g., appears on the
left-hand side of an equal sign). In
removing an expression, Phase 3 does
not remove the left-hand side of an
assignment statement nor a label. The
•store• operation remains inside the
loop.

In the following example the expres
sion (B+C) is removable from the indi
cated loops, but the expression (A+D)
is not, since the variable A has a
definition point inside the loop
(statement 10).

10
20
30

DO 30 I=l,N
A=B+C
E=A+D
CONTINUE

2. Common Expressions. Two occurrences
of an expression are considered to be
common if the value of the expression
cannot change between the occurrences,
i.e., there are no definition points
for any of the variables involved and
there is no intervening referenced
label.

92

In the following example, the occur
rences of A+B in statements 10 and 30
are considered common with each other,
but not with the occurrence in state
ment 40 because there is an interven
ing referenced label. That is, state
ment label 40 (which is referenced
from statement 60) intervenes between
the occurrence of A+B in statement 30
and its occurrence in statement 40.
Labels 20 and 30 intervene between the
occurrence of A+B in statement 10 and
its next occurrence; however, since
neither label 20 or 30 is referenced,
the occurrences are considered to be

3.

common. The expression (C+(A+B)) can
not be marked common in statements 10
and 30 because the value of c changes
Ci.e., has a definition joint) in
between, at statement 20.

10 D=C+(A+B)
20 C=D+F
30 E=C+(A+B)
40 IFCA+B)50,10,70
50 A=F+E
60 GO TO 40

Subscript Expressions. Subscript ex
pressions determine which individual
element of a dimensioned array is
referenced. The expression may con
tain four types of constituents:

a. An address constant Cadcon)

b. Induction variable parts

c. Removable parts

d. Nonremovable parts

Each subscript has exactly one asso
ciated adcon. It is determined from
the base address of the array variable
itself and the collection of constant
terms (done by Phase 1).

The induction variable is the variable
referenced in the DO statement of the
loop. In the statement

DO 10 I=l,N

I is the induction variable (also
referred to as the loop variable>.

For the removable and nonremovable
parts the same criteria are applied,
as described in •Removable Expres
sions• above.

In the following example, the terms of
the subscripts involving I and J are
induction variable parts (statements
30 and 40). Removable terms are found
in statement 30. The terms involving
N are removable from both 1oops, and
the terms involving I are removable
from the inner loop (statement 2
loop).

rhe subscript terms involving ~ in
statement 20 are nonremovable because
of the M definition point in statement
10.

1
2

10
20
30
40
50

DO 50 I=l,K
DO 40 J=l, I.A
M=J+3
Z(M)=A+M
X (I) =Z (N) +Y(N)
Y(J)=Y(J)+M
CONTINUE

~- DO loop control. It is a Phase 3
responsibility to determine the method
that is going to be used by Phase 4 to
generate the loop control instruc
tions. The f ollo:.tlng are the types of
loop control and the criteria for
each.

a. BXLE on recursive.

This loop is controlled by a BXLE
instruction of the form:

BXLE Rl,14,LOOPTOP

where Rl contains the recursive
expression that has been initial
ized to zero at the loop top,
register 14 contains the increment
to be added to the recursive, and
register 15 contains the test
value.

The requirements for this type of
loop are:

• There must be no reason to
materialize the induction vari
able: e.g., the ISO option must
be off, and the induction vari
able must not appear in the loop
outside of a subscript.

• Loop must be save, innermost,
with no external calls. This is
necessary since Phase 4 is going
to globally assign registers 14
and 15.

• There must not be branches out
of the loop to more than one
label. If there is a branch to
only one label, the induction
variable is materialized on the
exit path.

• There must appear in the loop at
least one subscript expression
containing the induction vari
able as the least-removable
term. The coefficient of the

recursive must be a positive
constant.

The following is an example of a
BXLE on recursive loop:

REAL*4 A (10)
REAL*8 B (10)

DO 10 I = 1,10
10 BCI) = B(I)+A(I)

In the example, both recursives
are candidates for the BXLE, but
the recursive on B, having more
uses in the loop is selected.

b. BCTR loop.

This loop is controlled by a BCTR
instruction of the form:

BCrR 15,14

where register 15 has been ini
tialized at the loop top with the
count of times through the loop,
and register 14 contains the
address of the loop top.

The BCTR loop requirements .:are:

• Induction variable does not need
materialization.

• Loop must be save, innermost,
with no external calls.

The BCTR instruction is never
selected if the loop also contains
the recursive requirements to
qualify for a BXLE on recursive
loop.

An example of a BCTR loop is:

DO 10 I=J,K,L
10 B(I) = BCI)+A(I)

Since the loop step (and hence the
recursive increment> is not a con
stant, the loop does not qualify
for BXLE on recursive.

c. Materialize and BXLE on induction
variable.

This loop is controlled by a BXLE
instruction of the form:

BXLE 1,14,looptop

where register 1 contains the
induction variable, register 14
contains the loop step, and
register 15 contains the test
value that has been created by
Phase 4. The instruction at LOOP
TOP is always a store out of

Section 5: Phase 3 93

94

register 1 into the induction
variable. The prime requirement
of this loop is that the induction
variable mus-t be materialized;
when a loop fails the requirements
for the other loop control
methods, it i0 always material
ized, since there is no other way
to count the loop.

Phase 4 recognizes two versions of
this loop. One, when the loop is
innermost, safe, and has no
external calls. In this case reg
isters 14 and 15 can be globally
assigned in the loop. Otherwise
temporary storage must be used to
save and restore the registers.
Two examples of the BXLE-on
induction-variable loop are:

DO 10 I = 1,10
IF CI .EQ. 1) GO TO 10
ACI> = O.

10 CONTINUE
DO 20 I = 1,10
IF CI .EQ. 1) GO TO 20
A(I) =SQRT (A(!))
20 CONTINUE

In both cases, I must be material
ized since it is referenced out
side of a subscript. In the first
example, registers 14 and 15 can
be globally assigned. In the
second, they cannot be because of
the call to the SQRT function.

d. compare and Test Recursive.

This loop is controlled bi a com
pare and branch-not-equal CBNE) of
the form:

CLR R1,R2
BNE LOOPTOP

where R1 contains a recursive
value; R2 contains the test value
initialized outside the loop and
Cin this example> is globally
assigned. If R2 did not have
enough weight to be globally
assigned, then the compare would
be to temporary storage.

The only requirements for this
loop is that there must be no need
for materialization, and there
must be at least one recursive ex
pression Ca subscript term con
taining the induction variable).
An example is:

DO 10 J = 1,10
DO 10 I = 1,10

10 ACI,J) = 0.0

The outer loop, where j is the
induction variable, will be con
trolled by a compare and branch.

5. Global Register Assignment. In order
to facilitate minimizing generated
instructions, Phase 3 considers cer
tain items for permanent assignment to
registers across a loop. The selec
tions are made by maintaining a popu
larity count for each item. The count
is weighted for each type of candi
date, considering the value of having
it ~lobally assigned versus the value
of not having it globally assigned.

a. Adcons. Neight = 5.

b. Removable integer expressions.
Weight = 5.

c. Recursive expressions. Weight =
10.

d. constant steps on recursive ex
pressions. Weight = 3.

e. Expressions for testing the end of
a compare-and-branch loop. Weight
= 5.

Some items that are used for generat
ing loop control instructions do not
follow the normal selection methods.
For example, in a loop where registers
14 and 15 will be globally assigned by
Phase 4, the items in those registers
will mot be considered for assignment
by Phase 3. In a BXLE on-recursive
loop, Phase 3 always gives global
assignment to the recursive expres
sion, but never to the constant step
on the recursive or to the test value.

Phase 3 also considers one floating
point quantity to be pseudo-globally
assigned into FP register 6.

This assignment can take two forms.

a. Where the variable or subscripted
variable on the left of the equal
sign can be kept in FP register 6
through the loop, and stored when
the loop is completed.

The requirements for this assign
ment are:

• Loop must be innermost, with no
external calls.

• ISD option must be off.

• Loop must contain only one assi
gnment statement, plus any num
ber of blank or CONTINUE
statements.

• Loop must contain no complex
nonremovable operation or 2-
argumen~ intrinsic fwiction.

• Assignment variable must be real
and.must not be flagged "inter
fering" in the symbol table.

• If the assignment variable is
subscripted, the subscript must
be removable to at least BLl of
the inner loop.

• If the assignment variable is an
array element, references on the
right side of the equal sign
must be to the same element, or
to an element which is known to
never be the same. The loop is
flagged only if all references
are to elements known to be
either the same element or never
the same element. For example:

A(I) = A(I) + A(I+l)

On the right of the equal sign
A(I) is flagged as being in FP
register 6, but ACI+l) is not
flagged. The loop is flagged
for global assignment, since A
(I+l) can never reference the
same element as A(I).

In the following examples, the
loop is not flagged:

A(3) = A(I)
A(l) = A(J)

In this case, since it is not
known whether I can equal 3 or
whether I can equa 1 J, the loop
is disqualified.

The reason for this restriction
is that the array element on the
left will not be updated in
storage if it is globally
assigned. Therefore, it is
necessary to know at compile
time which references to array
elements on the right should
obtain values from storage and
which should obtain values from
the globally assigned registers.
If this determination cannot be
made, a global assignment is not
made.

The first 3 requirements are
determined by Phase 1, the last
4 by Phase 3. If all requir~
rnents are met, the begin-loop
entries are flagged for Phase 4,
along with each EF item on the
right-hand side that matches the
assignment variable.

b. When a loop does not meet the
requirements of Ca>, one optimiza
tion which might still be per
formed is to select a floating
point quantity that can be loaded
into FP register 6 outside the
loop.

The requirements for this optimi
zation are that the loop must be
innermost, safe, with no external
calls.

In its backward scan over the
loop; Phase 3 selects the candi
date that is last processed. This
candidate is deleted if a
referenced label is reached, or if
the current candidate appears as
an assignment variable. In all
cases, the candidate must be a
simple, real variable or a simple,
real constant.

In addition to the major function of
Phase 3, many other functions are per
formed. A more complete description of
Phase 3 is listed below.

1. The program file CPRF) is scanned
backwards. The expression file CERF)
is scanned, when required, for t.he PRF
i tern; and, a triad table is created
for internal use with one entry.for
each unique expression. An operand
pushdown table COPT1) is created to
assist in scanning the ERF. Th~ PRF
and ERF are modified to form the PF
and EF, which are treated separately
by Phase 3. These files are relinked
in the forward direction and inter
leaved into a new program file (PF)
that is the input for Phase 4.

2. All variable and constant entries in
the ERF are changed, with the OFFSET
field replaced by a reference to an
address constant and an immediate
value of the displacement. The adcon
is represented by a new type of entry
introduced into the symbol table.

3. All subscripts are rearranged. The
adcon for the variable is placed in
the expression, which is rearranged to
remove the largest sUbexpression from
loops, to handle loop variables by
recursion, and to make use of double
indexing.

4. common expressions are recognized and
named. The point at which they are
last used is marked.

Section 5: Phase 3 95

5. Expressions that can be computed out
side of loops for use inside
(•removed•) are recognized and named.
They are inserted in the EF at the
loop top and removed from the EF
inside, leaving a short •residue•
entry there.

6. Expressions that can be computed by
recursive additions around a loop are
identified, and one Cfor each loop>
for use as a test of the loop is
determined. Tn€°"initial value, step
values, and test value expressions are
formed and treated as other expres
sions (see items 4 and 5 above).

7. Quantities that are to be placed in
registers and kept there over loops
are determined and specified. These
may be integer arithmetic operations,
subscript expressions, or address con
stants. They are determined on the
basis of total time saved and number
of registers that can be used for such
purposes.

8. Each statement label entry in the sym
bol table is changed to contain a
reference to an address constant (see
item 2 above>. The adcon entry is
given an estimated value based on the
estimated location, which is then
cleared.

9. The formal arguments have variable
adcons that must be computed at the
preamble of a subprogram. These are
listed in the formal argument adcon
table (FAAT) for Phase 4. (The format
of FAAT is explained in the module
description •cEKKS Phase 3 storage
(PSECT). ")

A general description of the procedures
used by Phase 3 to carry out its functions
is given in the following paragraphs.

Phase 3 makes a backwards scan over the
PRF, rewriting it. By means of the links
in the PRF, each value a variable assumes
can be analyzed to determine the loops from
which that variable can be removed and a
point at which it can be first used in com
putation. This point is preliminary and
can be moved if the PRF scan reaches a
point where the value may change. Each
reference to the ERF string from PRF
entries causes a local forward scan over
the ERF. An operand pushdown table is
built and used during this scan. All
operators are entered into the triad table
for coIDlIDnality determinations. Certain
operators are put in a compute and removal
item table (CRT). Subscript expressions in
the ERF are scanned twice. First, deter
minations of computation points, removal
levels, and use of loop variables are maAe.

96

Then the ERF is sorted into a new order,
new operators are introduced, and the
address constant is introduced into the
expression. Finally, this new ERF is
scanned again, and entries are made in the
triad table and the compute and removal
item table, as for other expressions.

For DO loop processing, Phase 3 main
tains a set of loop tables for use in
determining global register assignments,
identifying loop variables, and determinin~
removal levels.

MEMORY REFERENCE PROCESSING

During the processing of Phase 3, all
references to variables and constants
<including address constants> are replaced
by references to an address constant and a
displacement. Adcons are supplied for eact
storage class, with orie separate adcon for
each 4080 bytes. Adcons are supplied only
when needed and are entered into the symboJ
table to be shared with all other parts of
the program. Negative adcons <e.g.,
storage class base -4080) are allowed.

In computing the values for adcon and
displacement, Phase 3 uses the storage
class, the assigned location within that
class, and, in some cases, the offset from
that location supplied by Phase 1. At all
times the FORTRAN object program makes use
of one register that can cover the special
page, part of which is assigned to adcons.

The adcon reference and displacement arE
placed in the Polish string for the vari
able. In addition, the reference to the
original variable entry in the symbol tablE
is kept for purposes of editing in Phase 5.
When a subscript expression modifies a
variable and the adcon is referenced in
that expression, the adcon reference from
the variable in the Polish string remains
zero.

Whenever constant subscripts result in
reference to other than the first byte of
an array but no subscript expression
occurs, a special subscripting operator is
entered in the triad table. This operator
is called the 11 @• or "Addressing• operator.
This operator is strictly internal to PhasE
3; it is used only in the triad, not in thE
EF, to distinguish between references to
other than the first byte of an array.

COMMON EXPRESSIONS

A common expression is one that is used
more than once, but needs to be computed
only once. Phase 3 determines the exis
tence of these in most cases; it gives eacl
a distinct identifying number (name) and

marks one occurrence of this expression in
the last Polish st+ing in which it occurs
as "last use.• Three seoarate determina-
tions must be made: -

1. It must be determined which expres
sions are identical in form.

2. It must be determined that occurrences
are necessary or •valid" Ci.e., two
occurrences as part of the same larger
common expression require only one use
of the smaller expression>.

3. It must be determined that the ex~res
sion cannot change in value between
occurrences.

Identity is determi~ed by the triad
table. Every expression is changed to a
triad (operator plus references to its two
operands> that is identical for identical
expressions. For each expression the triad
table is searched to determine whether the
expression is already there; if it is not,
it is inserted. If the expression is
already in the table, it may be a common
expression, depending upon the results of
the other two determinations.

The determination of the occurrence of
two valid uses is made by another
algorithm: whenever an expression occurs
after the first time and either is part of
a larger expression that is occurring for
the first time or stands alone in a state
ment, this is the second valid occurrence.
When this situation exists, it becomes
necessary to mark previous occurrences
<sometimes, in a previous larger expres
sion, there may be more than one that were
not all valid). This is done by keeping a
pointer in the Triad Table entry to the
"last occurrence.• Whenever an unnamed
expression is entered or located in the
triad table, a reference to the triad is
made in the ERF string entry. Then, when
an ERF string entry is copied into the EF
without receiving a name, the pointer in
the triad table is set to point to this EF
string. At the time an expression is
named, the EF string pointed to by the
triad table entry is scanned, and the
occurrences of this expression in that str
ing are recognized by the reference to the
triad. The field used for that triad
reference is now used for the name.
Whenever a name is entered in an EF entry,
the expression is changed to indicate a
named expression; and, if this is "last
occurrence,• the "last use• flag is turned
on. If a second valid occurrence occurred
in the same string as the first, the "last
occurrence• field is X'8000'. In this
case, the "last use• bit is turned on in
the current EF, and other occurrences are
named later when the ERF string is copied
into the EF.

In order to determine that the value of
an expression does not change, Phase 3 must
consider the component of each expression.
Every variable entry in the symbol table
has pointers (FDP and BOP) to forward-and
backward-linked chains in the PRF of its
definition points. There are also linked
chains for definitions of COMMON variables
and definitions of arguments. COMMON
variables are defined at their own defini
tion points. Arguments are defined at
every definition point for any argument and
for COMMON definition points. Every vari
able is also marked when it is a loop para
meter over any loop in the current nest,
and it is, therefore, of fixed value over
that loop. The loop tables indicate the
range of every loop in the current nest <in
terms of PRF entries) and indicate which
loops are •unsafe" <have entry points from
an outer loop). By scanning this informa
tion, Phase 3 can determine which loop, if
any, is the outermost loop from which ex
pressions containing on1y this variable can
be removed. This level is entered in the
symbol table entry for the variable as the
RLEV field <removal level). If the nearest
definition point (forward) lies outside a
loop from which the variable cannot pe
removed, the forward compute point (FCP) is
set just inside that loop; otherwise, it is
set at the nearest definition point '
forward.

This determination does not take into
account all possibilities that may limit
the range of commonality. The other, limi
tations are the occurrence of referenced
labels, the occurrence of loop endings of
unsafe loops, and the occurrence of the FCP
<determined above> inside a new loop.
These are determined as the PRF is scanned
further and are used to terminate the range
of the commonality if it has been set up or
to prevent its being set up.

The mechanism for keeping track of the
range and terminating commonality is the
compute and remove item table. Here every
named expression has an entry that is keyed
to the FCP (or the removal point> in the
PRF. These are scanned in parallel with
the PRF. For compute point entries the
range of commonality is terminated when the
point is reached. Whenever a loop end or a
referenced label is reached that might
limit the range of commonality of some
entries, this table is consulted and the
commonality terminated. Commonality is
terminated by removing the name from the
triad table entry and appropriately marking
that entry.

When a common expression is named, it
must be determined that referenced labels

Section 5: Phase 3 97

or terminating loop ends have not inter
vened between the "last occurrence" and
this one. This can be checked by the loop
tables and the backward chain of referenced
labels. If such intervention has occurred,
the expression is not named, and the cur
rent EF string becomes the last occurrence.

REMOVING EXPRESSIONS FROM LOOPS

Computing time can be saved when an
expression that occurs within a loop can be
computed outside that loop for use inside.
Expressions that contain the loop variable
and are common over the loop comprise a
special case. Since a new occurrence is
introduced at the point of removal, expres
sions that are removed are always treated
as common, even if they occur only once
within the loop. However, for purposes of
producing better object code, it is not
always desirable to remove an expression
from Level 0 <the false loop> if its only
occurrence is at Level O. Therefore, such
an expression is treated as not removable
at its first occurrence. If there are
other occurrences, the first is marked com
mon with them and the expression is treated
as a normal removable expression.

Some of the mechanism for handling
removal is discussed above in the explana
tion of the determination of the removal
level CRLEV) of expressions. If an expres
sion is part of a larger expression that
can be removed, it is ignored within the
loop and treated at the loop top when the
larger expression is inserted there for
computation outside the loop. If an expres
sion can be removed but the expression
that contains it cannot, or if it stands
alone, it is removed. At the first occur
rence of the expression within the loop, it
is removed after it is given a name, after
commonality with any previous occurrence
(outside the loop) is established, and af
ter last usage is marked. Removal consists
of placing a pointer in the compute and
removal table at BL1, marking the triad
entry properly, and replacing the Polish
Expression in the EF by a residue entry
with the expression name.

A special type of removal expression
occurs when an induction variable is
involved in an expression that is not in a
subscript. Here the variable has a compute
point inside the loop CBL3) and is remov
able from the inner level. When such an
expression is encountered, either as a com
mon expression or a removal item from an
inner loop, a special test inside the com
monality routine allows the expression to
be common, despite the possible interven
tion of labels. These items are removed to
BL2, after their commonality is established
and their last use marked. It is possible

98

for such an expression to occur only as a
residue and to occur elsewhere as a named
expression that is still present.

When the removal point is reached at
BLl, BL2, or BL3, the Polish expression is
reconstructed from the triad table and
inserted in the EF, except for subexpres
sions that may be further removed. At this
time, the commonality of all expressions
and the removability of all subexpressions
is treated in the same manner as expres
sions that occur elsewhere in the code.

OPrIMIZING SUBSCRIPT COMPUTATION

Terms involved in the subscript expres
sions are divided into four categories:

1. An adcon

2. Induction variable Cor recursive)
terms

3. Removable terms

4. Nonremovable terms

The adcon for the subscript expression
is always determined by Phase 3 from the
SLOC field of the array variable and the
offset that computed Phase 1.

The terms of the expression are grouped
according to the four types and then sorted
by removal level. The adcon is always the
most removable entry. The induction vari
able or recursive terms are considered spe
cial within a removal level group. A
recursive expression is one that increases
by a fixed amount each time through a loop.
These expressions are treated specially, in
that they are considered removable only to
begin loop-2 of a level rather than to
begin loop-1 as for a normal removable
expression. Therefore, if two terms of a
subscript expression have the same removal
level but one is a recursive term and the
other is not, the recursive term is consid
ered less removable for the purposes of
sorting the terms.

Special operators are introduced into
the expression to separate the groups of
sorted terms. A recursive operator(!) is
used to mark the induction variable terms
internally for Phase 3. Another special
operator, the base/index split operator
(?),is used to separate the nonremovable
terms from all the removable terms. If
there are no nonremovable terms, but there
is a term of the form 'I a *' where I is
the induction variable of an innermost loop
with no external calls, and 'a' is a con-

stant or a multiply expression (only possi
ble if the array-has adjustable dimen
sions), then 'I a•' is converted to 'a o!'
and the major operator is converted to a
'?'. The? operator can appear only once
in any subscript expression, and it is
passed on to Phase 4 to indicate that a
base-index method can be used to reference
this array. All other terms are connected
by plus signs.

The best method for explaining this
function of Phase 3 is by the use of expres
sion diagrams. The diagram, called a
•tree,• can show the exact relationship of
all terms of an expression. By convention,
the left-hand operand of an operator repre
sents the left-most term of the original
FORTRAN expression. Therefore, the expres
sion (A+B) is written.

+

I \
A B

and the expression (B*A)+C is written

+

I \
*
I\

c

B A

With this basis, the subscript expression
processing can be examined further. In the
following discussion, all constants are
referred to as CONST and all address con
stants as ADCON, since their actual values
are not relevant. The operator that links
the subscript expression to the array vari
able is the colon (:). A reference to the
variable A(l) that comes into Phase 3 is
essentially the same under any conditions.
However, the Phase 3 output to Phase 4
depends on the conditions of the variable
I. The four possible output expressions
are:

;="
A +

.. / 'AocoN
/"

CONST I

In this case, I is removable but is not an
induction variable.

..
/"'

ADCON

CONST

In this case, I is nonremovable.

A/:"'?

/ ':\ocoN

/"
CONST ZERO

In this case, I is the induction variable
of an inner loop with no calls.

In this case, I is the induction variable,
but the loop does not qualify to have a
split subscript as in Cc>.

To show the gathering of terms according
to removal level, the tree for the variable
B(I1,J2,I3,Jl,I2,J3) is shown:

/ '"-._
8 /?------

/ +~* + / +-----------
/ \. I \. * / "'-* -----------

coNsr 13 CONST JJ / \ / "' / +"""

CONST 12 CONST J2 /+~OCON

/\ ;\
CONST 11 CONST JI

Il and Jl -- removable furthest to level
1; i.e., they are the most removable
(the lower the removal level, the
more removable the item is>,

I2 and J2 -- removable to level 2,
13 and J3 -- not removable.

None are induction variables.

section 5: Phase 3 99

Therefore, the completely general sub
script expression for an array variable
appearing at level n can be described as
follows:

/·~ Array Variable

A Collection of All {~erms Not Removable)

I

Vrom ~:el n. . .:----- ?"'
'A Split Subscript if "-.

~he Induction Variable) I
orLevelMisthe J ~ ~
Least Removable Term.~ ~

~
A Collection of All Terms) +
"nvolving the Induction ~ '\.
:Variable for Level n. '\.

I

(
A Collection of All Terms Removable to) ~ \
Begin Loap-1 of Level n. '

\
(A Collection of All Terms Involving the Induction)} ------I\
Variable for Level (n-1). ~

(
A Collection af All Terms Involving the Induction)---------+
Variable of Level 1. \

(
A Collection of All Terms Removable to Begin Loap-1 of) +

Levell. ~\
(A Collection of All Terms Removable to Begin Loap-1 of Level 0).

AOC ON

If there are no terms of the type indi
cated, the associated operator does not
appear and, all terms below it are moved
up. The only possible occurrence of the ?
operator is immediately below the colon.
Therefore, if there are any nonremovable
terms, the right-hand operand of the colon
is a question mark, since the adcon is
always considered removable. Therefore,
the operands of a question mark are always
cat~gorized in the same manner: the left
hand operand is the index expression and
the right-hand operand is the base expres
sion <always removable>, thus setting up
the base/index method of addressing tor
Phase 4.

The form shown above for the generalized
subscript expression is used only internal
ly to Phase 3. In the final form all
removable and recursive expressions are
replaced in the EF by a residue entry that
indicates to Phase 4 the name of the
removed expression. The removed expres-
s ions are then attached to the appropriate
BLl. or BL2.

Two passes are made across each sub
script expression in order to accomplish
the optimization.

During the ERF scan the occurrence of a
subscripted variable is indicated by a flag
for that variable set by Phase 1. This
flag is checked immediately after the adcon

lOU

has been formed, and at that time the adcon
is saved for later use. During the first
scan, triads in the triad table are left
unchanged with regard to occurrence flags,
and new entries are marked as having no
occurrences since the last compute point.
During this pass no changes are made in the
compute and remove item table. When a + is
reached, the operand pushdown table con
tains entries representing a string of
operands to be added to form the subscript
expression (in addition to any earlier
entries). The remaining + and : operators
are ignored on this first scan, which is
terminated at this time.

The rearrangement subroutine (CEKKM}
determines the number of operands <includ
ing the one it inserts: i.e., the adcon>
and sorts entries in the operand list. It
then moves the ERF strings representing
these operands to a temporary area. The
program that moves them back in resorted
order operates at two levels: one for the
individual operand expression and another
for each block of expressions that have the
same sort key. At the end of each such
block, an operator (+, !, or ?> is placed
in a pushdown list and later used to con
nect this block to the others. Sufficient
+ operators are inserted in the string at
the end of each block to connect the
operands in the block. Tests are made to
determine the location of the adcon. The
main ERF scan is reset to start again at
the beginning of the subscript expression.
Phase 1 has inserted two extra + operators
following the : to allow for the insertion
of the adcon and the proper operator (+, !
or?}.

LOOP VARIABLE EXPRESSIONS

The induction variable is always given a
forward compute point at begin loop-2 of
its respective loop~ When an induction
variable is recognized inside a subscript,
it causes the recursive operator as
explained above. When an induction vari
able is recognized outside of a subscript,
the materialize flag is set for the loop
and special processing is applied to common
expressions involving the induction vari
able. The special ; operator is also used
whenever an indµction variable occurs out
side a subscript. This is necessary to
distinguish references inside and outside
its loop and to prevent erroneous marking
of common expressions.

When the begin loop-3 entry is reached
at the loop top, all expressions removed to
begin loop-2 are examined. All those that
do not have an exclamation point as the
major operator are really BL3 items. A
flag indicates whether any labels have
occurred in the loop. If none have

occurred, the nonsubscript loop variable
expressions are common within the loop and
require no special-treatment at the loop
top, except to terminate the range of their
commonality. If a label has occurred,
these expressions must be computed at the
loop top just inside the loop. They are
reconstructed in the EF and attached to BL3
for this purpose.

The recursive expressions are attached
to BL2, with modification to perform the
recursion optimally. Each recursive ex
pression is considered in two parts. The
right-hand operand of the exclamation point
can be an expression or an adcon; it repre
sents the initial value of the expression.
The left-hand operand represents the amount
by which the recursive expression is
stepped at the bottom of the loop. Phase 3
locates the induction variable in the step
expression and replaces it with the step
parameter of the loop.

When the materialize flag is on for a
loop, Phase 4 tests for the end of the loop
with the loop parameters. When the
materialize flag is not on for a loop,
Phase 3 creates a test expression from one
of the recursive expressions for use in
testing the end of the loop.

GLOBAL REGISTER ASSIGNMENT

The general registers are used for
integer arithmetic expressions, subscript
expressions, adcons for variables and con
stants, address constants for control
transfers, and other purposes. Phase 3
considers certain uses of them for per
manent assignment over one or more loops
and if the most time can be saved this way,
makes such permanent assignment. (The
actual register to be used is determined by
Phase 4.) A limit (currently 8) exists for
the number that can be assigned to ensure
that sufficient registers remain to allow
Phase 4 to generate efficient code.

When the loop lists are initialized at
any end loop PRF entry, a null chain is set
up of candidates for global assignment over
that loop. Whenever any expression occurs
as a candidate, the chain is searched and
that expression is found or inserted. A
popularity count associated with this usage
is added to the cumulative popularity count
for that expression over the current loop.
At the loop top CBLl) these entries are
sorted by popularity, and the process of
determining successful candidates is
started.

The loop lists have a linked chain con
necting all the loops one level higher
Cinner) and parallel to each other. The
process of determining successful candi-

dates at this level, readjusting the lists
for these internal loops, and placing the
results for Phase 4 requires that there be
three passes over the chain of internal
loops.

A first pass over the chain of parallel
inner loops actually determines a success
ful candidate. For each inner loop, a test
is made to determine whether the expression
has already been assigned globally or if
the total count of global registers is less
than maximum. If neither condition pre
vails, the candidate cannot be assigned
globally, and it is removed from the outer
loop list. A. count is kept for the outer
loop (there may be no inner loops); and, if
that count reaches the maximum, the
remainder of the list is removed.

Immediately after the first pass, a
second pass over the chain of inner loops
is made for each successful candidate at an
outer loop. This pass updates each intern
al list by increasing the count for that
inner loop, if the candidate was not pre-
sent in the inner loop. ·

The final pass over the chain of inner
loops is made after the outer loop candi
date list has been exhausted. This :pass
takes the assigned global expressions
remaining for each inner loop <those that
are not global in the outer loop) and links
them into the chain of the outer loep.
This makes a candidate available through an
unsafe loop to level 0.

Phase 3 also selects, for Phase 4, one
floating point constant or Cin its backward
scan> one floating point variable which is
referenced in an inner, safe loop with no
external calls. Phase 4 will load this
quantity into a register outside the loop.

ROUTINE DESCRIPTIONS

Phase 3 routines bear only coded labels.
These 5-character labels begin with the
letters CEK; the fourth and fifth letters
identify a specific module. Various entry
points to a module are identified by a
sixth character added to the coded label;
for example, the coded label for the Phase
3 master control routine is CEKKR, and
there are entry points CEKKRA and CEKKRE.
Any mnemonic name beginning with the let
ters TEV refers to a compiler executive
routine or entry name, rather than to a
Phase 3 routine. The corresponding coded
label is given in parentheses irrunediately
following the mnemonic.

There are no hardware configuration
requirements for any of the Phase 3 rou-

Section 5: Phase 3 101

tines. All these routines are reentrant,
nonresident, nonprivileged, and closed.

The relationships of routines constitut
ing this phase are shown in the following
nesting chart (Figure 22) and decision
table (Table 23). The relationships are
shown in terms of levels; a called routine
is considered to be one level lower than
the calling routine. Phase 3 Master Con
trol routine is considered to be level 1.

All except the Phase .3 PSECT (CEKKS) and
the Phase 3 Master control Routine CCEKKR)
use restricted linkage, are entered by the
INVOKE macro instruction, and return to the
calling routine by the RESUME macro
instruction.

Level
I

2

3

4

5 CEKKO

TEVl4

CEKKC

6 TEVFL4

Figure 22. Phase 3 Nesting Chart

Table 23. Phase 3 Decision Table (Part 1 of 4)

Routine:------------Phase 3---Level: 1 -----------
r--------T-------------------------T---------T--1
I I I Called I I
!Routine I Usage f Routines I Calling conditions I
~--------+-------------------------+---------+--~
CEKKR I Directs the sequence of I CEKKU I To edit each PRF entry. I

I processing prior to ICERKB !To generate removed, recursive, and induc-1
I editing of each of the I I tion variable expression at loop tops. I
I PRF/ERF entries into I CEKKA I To search the Compute and Remove Table for I
I PF/EF output. I I Triad entries pointing to the current I
I I I PRF entry. I
I ITEVRDM ITo print a diagnostic message when an I
I I I error condition is encountered in any I
I I I part of Phase 3. I
I ICEKKO !To tally popularity for global register I
I I I assignment of recursive expressions. I

________ ..L_ ________________________ i _________ i---------------------------~--------------J

102

Table 23. Phase 3 Decision Table {Part 2 of 4)

RoUtine:------------Phase 3---Level: 2 -----------
r--------T-------------------------T---------T--1
I I I called I I
IROutine I Usage IRoutines I Calling Conditions l
~--------+-------------------------+---------+--~
ICEKKU !To edit each PRF entry ICEKKE !When an ERF expression is to be processed.I
I I into an equivalent PF ICEKKV lTo process the Begin Loop-1 PRF entries. I
I I entry perf arming the I CEKKW I To process the Begin Loop- 2 PRF entries. I
l I necessary functions to ICEKKC !To process the End Loop PRF entries. I
I I accomplish this. In ICEKKO ITo tally global register popularity for I
I I addition uses subrou- I I the code covering Adcon. I
I I tines to edit the asso- f TEVFL4 tTo file a Symbol Table entry for an Adcon I
I I ciated ERF entries intol {CEKTPI>I to cover branches in the object code. I
I I the EF format I I I
~--------+-------------------------+---------+--~
ICEKKB fTo generate rer,oved ICEKLB fTo file an Adcon entry in the Symbol Tablet
I I expressions at Begin I I covering a variable and compute the I
I I LOop-1; recursive I I displacement. I
I I expression at Begin ICEKKO !To tally the popularity for global I
I I LOop-2; and induction I I register assignment for Adcons and I
I I variable expression at I I integer expressions. I
I I Begin fTE.VI4 f To file a Symbol Table entry for a new I
I I I CCEKTFC) I generated constant for recursive I
I I I I expressions. I
L--------J.-------------------------i---------i--J
Routine:------------Phase 3---Level: 3 -----------
r--------T-------------------------T---------T------------------------------------~-----1
CEKKE Controls the processing ICEKKF Entered when a primitive is encountered inl

of an expression in the I the ERF to generate the OPTl entry and I
by the use of subrou- I modify the ERF entry. I
tines, and the editing ICEKKH To create a Triad entry when an operator I
into the EF. I ERF entry is encountered. I

ICEKKI Entered for each operand of an expression.I
ICEKKM Entered to process a subs~ript expression I
I when the first plus is encountered. I
ICEKKL Entered when an expression's operands havet
I been processed to generate an OPT1 entryl
I for the expression. I
ICEKLF Entered when the complete expression has I
I been processed to move it from the ERF I
I to the EF. I

~--------+-------------------------+---------+--~
ICEKKW ITo process the Begin ICEKLI !Entered when a test expression is to be I
I I LOop-2 PRF entry. If thel I generated for the loop. I
I l loop is to be material- lCEKLB !Entered to file a covering Adcon and I
I I ized, loop parameters I I determine the displacement for each loopl
I I are put into the EF; I I parameter when the loop is materialized. I
I I otherwise, a test ex- f CEKKO ITo tally popularity for global reg- l
l I pression is generated byl I ister assignment for the induction vari-1
I I subroutine. I I able if the loop is materialized. I
~--------+------~--~---------------+---------+--~
I CEKKV I To process the Begin I None. I I
I I Loop-1 PRF entries. I I I
I I Determines which candi- I I I
I I dates are to be globally I I I
I I assigned. I I I
r--------+-------------------------+---------+--~ I CEKKC I To process the End Loop I CEKKA I To find those Triads whose Forward I
I I PRF entries I I Compute Point falls within the loop so I
I I I I they can be deleted. I
I I I CEKKG I Entered for each loop parameter to deter- I
I I I I mine the removal level and the forward I
I I I I compute point. I
L--------J._---------------------~--i---------i--J

Section 5: Phase 3 103

Table 23. Phase 3 Decision Table (Part 3 of 4)

Routine:------------Phase 3---Level: 4 ------------
r--------~-------------------------T---------T--1
I I I Called I I
!Routine I Usage !Routines I Calling Conditions I
~--------+-------------------------+---------+--~
CEKKI To process each operand cEKKJ ITo determine if two expressions can be

of an expression. If it I considered as common.
is primitive, the Adcon CEKKK I Entered to name each common and removed
is considered for global I expression.
assignment. If it iti an CEKLE I Entered for removable expressions to file
expression, it is con- I as entry in Compute and Remove Table.
sidered for removability CEKLD !Entered for removable expressions to
or conunonality. I replace the expression with a residue

I entry in the ERF.
CEKKO ITo tally popularity for global register

I assignment for Adcons and removable
I integer expressions.

~--------+-------------------------+---------+--~
ICEKKA ITo search the Compute andf None. I I
I I Remove Table for Triads I I I
I I which fall within the I I I
I I requested PRF limits. I I I
~--------+-------------------------+---------+--~
ICEKKL ITo form an entry in the INone. I I
I I OPT1 representing an ex- I I I
I I pression as an operand. I I I
~--------+-------------------------+---------+--~
I CEKLF I To copy the edited ERF I None. I I
I I entries for an expres- I I I
I I sion from the ERF to the I I I
I I EF, inserting the newly I I I
I I created entries where I I I
I I indicated. I I I
~--------+-------------------------+---------+--~
fCEKKF ITo update the Symbol ICEKKG !Entered for each variable ERF item to findl
I I Table entry of a vari- I I its removal level and forward compute I
I I able Cby subroutine), tol I point. I
I I change the ERF entry to I CEKLB I Entered for each variable ERF item to file I
I I reference an A.dcon and I I a covering Adcon in the Symbol Table I
I I displacement, and to I I and compute the displacement. I
I I form an entry in the I !Entered when a dummy c•at•> Triad is I
I I OPT1 for the operand. I I generated for an induction variable or I
I I Also, a dummy expression I I a variable with an associated offset, I
I I is generated for special I I to file the entry in the Triad Table. I
I I conditions. I I I
~--------+-------------------------+---------+--~
ICEKKH ITo generate a Triad from ICEKKN IEntered for all expressions except those I
I I an ERF operator and two I I inside subscripts to put the operands I
I I operands in the OPT1. I I into canonical form. I
I I I CEKKP I Entered for all expressions to file the I
I I I I Triad entry or locate its previous I
I I I I existence. I
~--------+-------------------------+---------+--~
ICEKKM ITo revise a subscript !None. I I
I I expression to include I I I
I I the Adcon and optimize I I I
I I the loop variable and I I I
I I removed expressions. I I I
~--------+-------------------------+---------+--~
I CEKLI I To generate and insert I CEKLB I Entered for each loop parameter which not I
I I into the EF a test ex- I I a constant to file a covering adcon in I
I I press ion to be used at I I Symbol Table and compute displacement. I
I I bottom of a loop to testlCEKKO ITo tally popularity for global register I
I I for the end conditions I I assignment for covering adcons and inte-1
I I of the loop. I I ger expressions. I
I I ITEVI4 ITo file a Symbol Table entry for a con- I
I I I (CEKTFC>I stant generated from the combination of I
I I I I other constant forms in the test I
I I I I expression. I
L--------.1.-------------------------i---------i--J

104

Table 23. Phase 3 Decision Table C Part ~'4 of 4)

. ~ .

Routine:------------Phase 3-------~-~--~---------------------------Level: 5 ------------
r-----~T-------------------------T---------T--1
I I I called I I
tRoutine I - Usage (Routines I Calling Conditions I
~--------+-------------------------+---------+--~
ICEKKJ ITo determine if two oc- !None. I I
I I curences of an expres- I I I
I I sion are common. I I I
~--------+-------------------------+---------+--~
I CEKLD I To replace a removed I tJone. I I
I I expression in the ERF I I I
I I with a residue entry. I I I
~--------+-------------------------+---------+--~
ICEKKO ITo find a GIRL entry and !None. I I
I I add in the new popular- I I I
I I ity count or, if none I I I
I I already exist, to createl I I
I I a new GIRL entry. I I I
~--------+-------------------------+---------+--~
I CEKKN I To put the operands of an I None. I I
I I expression into canoni- I I I
I I cal form to facil.i tate I I I
I I finding common expres- I I I
I I si ons. I I I
~--------+-------------------------+---------+--~
I CEKKK I To assign a name to a I CEKIA I Entered when a previous occurrence of the I
I I conunon or removed I I expression is to be marked common in EF. I
I I expression, and by sub- ICEKLE !Entered for every named expression to filel
I I routine 1) put the name I I an entry in the Compute and Removal I
I I into the previous occur- I I Table at the forward compute point of I
I I rence of a common ex- I I the expression. I
I I pression, and 2) file I I I
I I a CRT entry for the I I I
I I expression. I I I
~--------+-------------------------+---------+--~
ICEKKP !To enter new expressions INone. I I
I I into the Triad Table, I I I
I I locate conunon Triads, I I I
I I and delete obsolete I I I
I I Triads. I I I
~----~---+-------------------------+---------+--~
I CEKKG I To determine the removal I None. I I
I 1 level and forward com- I I I
I I pute point for a vari- I I I
I I able and store the I I I
I I information in its I I I
I I Symbol Table entry. I I I
l--------.1.-------------------------~---------~--J

Routine:------------Phase 3---Level: 6 -----------
r--------T-------------------------T---------T--1
ICEKLB tTo file a covering Adcon ITEVFL4 !Entered for each variable to file cover- I
I I entry in the Symbol I CCEKTFI> I ing Adcon . in the Symbol Table. I
I I Table, compute a vari- I I I
I I ables's displacement, I I I
I I and file entries in the I I I
I I Formal Argument Adcon I I I
I I · Table I I I
~--------+-------------------------+---------+--~
I CEKLA I To replace a removed I None. I I
I I expression's ERF repre- I I I.
I I sentation with a residue I I I
I I entry. I I I
~--------+-------------------------+---------+--~
I CEKLE I To file an entry in the I None. I · I
I I Compute and Removal I I I
I I Table at the indicated I I I
I I PRF location. I I I l ________ i _________________________ i _________ i __ J

Section 5: Phase 3 105

CEKKS -- Phase 3 Storage (PSECT)

This routine supplies storage for Phase
3.

A brief description of most table and
item formats follows. Most other variables
will occupy one word. The Phase 3 Storage
map is shown in Figure 23.

Phase 3 Loop Tables

1.

2.

1st page

LEV - 1 full word, contains the level
of the current loop.

Current Nest Table (CNT) (Fixed, 55
entries long):

0 15 16 31
r-----------------r------------------1
I TLINK I PLINK I
L-----------------.L.-----------------J
TLINK

PLINK

Loop in current nest, this
level (PLP)
Chain of parallel loops, next
level (PLP)

CNT is 224 bytes~ the 55 allowable
entries require 220 bytes, and the
false loop over the whole program
accounts for the remaining four bytes.

Save Area - 76 bytes

Constants and Masks - 48 bytes

Address Constants - 200 bytes

Individual Save Areas - 500 bytes

Linked Chains - 36 bytes

Temp Storage - 240 bytes

Dummy Table Entries - 64 bytes

Flags - 17 bytes

Current Nest Table - 224 bytes

OPTl Table - 1024 bytes

HASH Table - 1024 bytes

(Not Used)

Intercom - 512 bytes

2nd page Error Messages - 378 bytes

Special Type Table - 18 bytes

Dummy Parallel Loop Table entry for 1
- l 1 level -12 bytes

Work Area Used far Temporary Storage, Triad Table,
Parallel Loop Table, Global Register List Table,

SERF Table, and Compute and Removal Table-56,844
bytes

Poge.J-16 {

Reentrant Code

Executable Code Plus Constanls -10,000 bytes

Figure 23. Phase 3 Storage Map

106

3. Parallel Loop Table (PLP)

0 15 16 23 24 31
r-----------------T------------------1
I BL3PT I BLlPT I
~-----------------+------------------~
I ENDLPT I GPLNK I
~-----------------+---------T--------~
I PLINK I GPN I PLPFLGS I
~-----------------+---------i--------~
I BL2PI' I IVAR I
L-----------------~------------------J

BL1PT,BL2Pr, Begin-loop entries CPRF)
BL3PT
ENDLPT
GPLNK

PLINK

GPN

PLPFLGS

IVAR

End-loop entry (PRF>
Chain of global register
expressions
Link in parallel loop
chain
Number of global register
expressions
80 = Labels occurred in

the loop
40 Unsafe loop
20 = Materialize loop

variable flag
10 = Parameter
08 = Global flag
04 = BXLEREC flag
02 = ONEASN flag
Symbol Table entry of the
induction variable

Global Register List (GIRL) <Linked,
Permanent>

0 15 16 31
r--------------------T--------------------1
I GLBL I GPLNK I
~--------------------+--------------------~
I POP I Not Used I l ____________________ i ____________________ J

GLBL The name of a global expression for
this loop, or a Symbol Table pointer
for an Adcon. The name will have
7000~ added to it to distinguish it
from a pointer

GPLNK Link in global register chain

POP Popularity count for candidates

Link Pointers

During the PRF scan in Phase 3, chains
of PRF items occur in pairs, one going for
ward (unprocessed) and one going backwards
(has been relinked by Phase 3 in opposite
direction>. Phase 3 keeps a pair of point
ers to head each chain. Compute point
entries are processed before the PRF entry
to which they are attached.

r----------------T-----~-----T--------1
I · IPRF !ForwardlBackwardl
I Chain - I Field I Head I dead I
~-----------------+-----+-------+--------~
!Variable Defini- IVDP IFDP IBDP I
I tion I I (SYl-!) 1 l (SYM) 1 I
I Common Definition ICDP ICFDP ICBDP I
IPRF Entries IILNK !FLINK IBLINK I
ILabel Definitions ILLNK ILFDP ILBDP I
~------------------i-----i-------i--------~
l 1 These fields exist for each variable andl
1are in the symbol table entry for that I
I variable. ,.... _.._ I
L---J

Operand Pushdown

Type 1 Entry - For Generating Triad Table

0 78 15 16 31

r--------------------T------------~-------,
I OPTRD1 I OPTFCP I
~--------------------+--------------------~
I OPCNT I OPOLSH I
~---------T----------f--------------------f
I OPRLEV I OPFLGS I Not Used I
L---------i----------i--------------------J
OPTRDl

OPTFCP
OPTCNT
OPOLSH

OPRLEV
OPFLGS

Name
OPFI

OPSIGN
OPLVF

OPPLF
ATF
RSEF

IVARF

Reference to Triad Table or Symbol
Table
Forward Compute Point
Length of expression in Polish
ERF pointer to Polish expression
(right end)
Removal Level
There are seven flags:

Bit Setting Meaning
a- 0 OPTRDl is a Symbol

Table Pointer =
Primitive

1 OPTRDl is a Triad
Table Pointer

9 1 Sign Flag
10 1 Loop Variable

Flag
11 1 ERF Insert Flag
13 1 At Operator Flag
14 1 Removable Subexpres-

sion Flag
15 1 Induction Variable

Flag

Type 2 Entry - For Generating Expression
File Entries for Removed
Expressions

0 7 8 OPTSN 15 16 31
r-------------T-------------T-------------,
I OPI'SW I OPTSN I OPTTRD I
l-------------i-------------i-------------J
OPT SW Switch, used to determine the

stage of processing an item

OPTSN

OPTTRD

Sign, used to store sign of the
operand
A Triad or Symbol Table pointer
(determined by OPTSW setting)

Triad Table Entry

8 16 18 24 26 31
r-------------------T--T--T----T--T--T----1
I I I I I I I I
I 1~1·-lj ININI I
I l"l cl l"I s::t I
I TRLNK I ~ I -~I OP I ~ I -~I OP I
I 18 1(/)l I IU)I I
I I I I I I l I
~-------------------+--i--i----i---L--.l----~
I TROPl I TROP2 I
~-------------------+---------------------~
I TRNAME I TRFCP I
~---------.---------+----------.----------~
I TRFLAG I TRRLEV I TRTYPE l TR2NDF I
L---------~---------L----------~----------J

TRLNK

TRFil, TRFI2

SIGNl,
SIGN2
OP

TROPl

TROP2
TRNAME

TRFCP
TRFLAG
TRRLEV
TR TYPE

Links to next entry in a chain
from a hash table.
File Indicator 1, File Indica
tor 2
Sign for OPl and OP2,
respectively
Operator--Same as code in EF
Form 2 format
First operand (Triad or Sym
bol) Cfor : and a,
displacement]
Second operand (Triad or
Symbol) For : and a, variable
(symbol). Also see TRTYPE,
below.

NAMEF = 0, link in chain of
OF LAG = 1 Triads for last

occurrence here.
NAMEF = o, link to new Polish
QFLAG = 0 expression for

last occurrence.
NAMEF = 1 name of this

expression.

Forward compute point CPRF)
See TRTYPE, below.
Removal level
The ID field from the ERF
entry of the operator is saved
to determine the type of
expression.

(See Code and Type fields in
the EFID in EF form 1 format>

The search key for entering the triad
table consists of the seven fields: OP,
OPl, OP2, FI1, FI2, SIGNl, and SIGN2.

Section 5: Phase 3 107

r-------------,------------------,------------------T----------------------------1
TRFLAG I Flag Name_ I Bit Position I 0 Meaning I 1 Meaning I

l--------------+---------------+-----------------+----------------------------i I ZEROF I X'80' I No Reference I Other I
I I I since Compute I I
I I I point I I
l--------------+-----------------+------------------+----------------------------i I FIRSTF I X'40' I Other I First reference I
I I I I since compute I
I I I I point I
1-----------+--------------+-------------+----------------------i
I NAMEF I X'20' I <see NAME I I
I I I above> I I
1-----------+----------------+---------~-----------------------i
I QFLAG I X'10' I Other I This EF location to I
I I I I be saved in I
I I I I Triad I
l----------+--------------+------------+----------------------------i I REMOVF I X'08' I Other I Has been removed I
I I I I I
I LUF I X'04' I Other I EF 'Last-use' bit I
I I I I has been set I
I NCOMPF I X'02' I Other I Expression not removable I
I I I I on its own I
I I I I I
I COMAF I X'Ol' I Other I Operator is a I
I I I I connna, double comma, I
I I I I or question mark I
1-----------+---------------+---------------+---------------------------i TR2NDF I FRCFLG I x•eo• I Other I Exp. must be I
I I I I generated at BL3. I
l------------+--------------+-----------------+-----------------------------t I CPFLAG I X'40' I Other I Level Zero I
I I I I removable expression. I
l--------.~----+----------------+------------------+--------------------------i I CRTF I X'20' I Other I I
l----------+-------------+------------+----------------i I TRLVF I X'10' I Other I I
1-----------+----------------+------------------+----------------------------i I SPLTTRD I X' 08' I Other I Special BXLE on I
I I I I Recursive Triad I
1-------------+---------------+-----------------+----------------------------i I COMAF I X'Ol' I Other I I ,__ ________ .L_ ______________ _J,, ______________ .J._ _______________________ J

Polish Insertion Entries

When an integer is an operand of a non
integer expression, Phase 3 inserts a float
operator by means of two entries in the ex
pression file, a primitive •FLOAT• con
ne<:ted by the operator •FUNCTION.• Prior
to the time that the ERF is copied to the
PF, insertions are indicated by entries in
a linked file SERF. An entry to this file
is as follows:

0 15 16 31
r---------------,---------------1
I SLNKT I ILNKT I
~---------------.l.--------------i I Word 1 I
l-----------------------------i I Word 2 I
L----------------------------------J
108

SLINKT
ILNKT

Word 1
and

WORD 2

Link to next entry in this chain
Link to ERF entry this insert
precedes

A normal ERF entry

compute and Removal Item Table

0 15 16 31
r-------------T------------1
I FCP I CPLNK I
~-------------+--------------------i I not used I TRIAD I ,__ _____________ .J.___ ______________ J

FCP

CPL INK
TRIAD

Forward compute point
<or removal point)

Link to other entries
Expression in Triad Table

For insertions a hash table is entered,
using the low orde~ n-bits of FCP and link
ing to a chain. Entries in the chain are
sorted on FCP (highest first). Later in
sertions precede earlier insertions. The
table is scanned by a pointer which is syn
chronized with the PRF scan for removal of
entries at the proper time. Removal
entries are distinguished by having FCP at
Begin Loop-1 PRF entries.

Hash Table for Compute and Removal Table
(CRT) and Triad Entries CHCRT)

Those entries serve as dummy first
entries for the linked chains of CRT
entries and for the linked chains of triad
entries. This table has 256 entries.

3 15 16 31
r--------------------.--------------------1
I LINK I CPLNK I
L--------------------~------------~-------J

LINK For Triad items the fields OPl and
OP2 are added together, multiplied
by 4, and the low-order 12 bits of
that result are used as the index
into this table.

CPLINK For CRT items the low-order 12 bits
in a PRF address form the index
into this table.

Formal Argument Adcon Table

Some adcons assigned to storage class 4
are actually not constants but are
variables which must be computed by the
preamble at any entrance of the subroutine.
These are the adcons ref erring to storage
classes 128 through 253 reserved for the
parameters (dummy arguments>, one per argu
ment. In order to specify these adcons to
Phase 4 for preamble generations, a list is
prepared by Phase 3. The entries to this
list are

0 7 8 15 16 31
r----------T---------T~-------------------,
I Not Used I STCL I Sym. I
L----------~---------~--------------------J

STCL

Sym

Storage Class

Symbol Table pointer
for the Adcon

CEKKR -- Phase 3 Master Control Routine

This is the entry point from the Exec.
The intercom area is initialized. The
PSECT is moved into the GETMA.IN area; and
the adcons that point to areas within the
PSECT are relocated. The work area is
initialized, necessary parameters stored,
and proper registers filled. The proper
subroutines are entered for processing each

PRF item. These items are scanned in
reverse order. When the end of the PRF is
reached, CEKKU sets a flag, and CEKKR
returns to the Exec. All errors found by.
other routines of Phase 3 are handled by a
special entry in CEKKR. See Chart CV.

ENTRIES:

CEKKRA This is the point where the Exec
enters Phase 3 by a standard link
age (CALL macro instruction>.

CEKKRE This is the error exit for all rou
tines within Phase 3. The entry is
made by restricted linkage (INVOKE
macro instruction). The only pa
rameter is in register P2. This is
a pointer to the error message pa
rameter list.

EXITS: The routine exits to the Exec by a
standard linkage (RETURN macro instruc
tion>. The value in register L3 indicates
whether it is a normal return <value = 3)
or an abort return <value= 8).

The routine detects no error conditions
of its own, but does handle the erro~s of
all the other routines of Phase 3.

OPERATION: Opon entry, the standard .. ,proce
dure is used to save the registers and lo
cate the PSECT belonging to Phase 3. The
intercom area is moved from the exec.•, s
PSECT to Phase 3's PSECT. Register .Nl is
loaded with the intercom location. After
the PSECT has been moved into the GETMAIN
area, the location of the first page of the
GETMAIN area is loaded into register Ll.
The location of the second page of the GET
MAIN area, which is the new intercom loca
tion, is loaded into register Nl. Register
N2 is loaded with the first available loca
tion in the working storage area. The
location of the first entry in the PRF is
calculated and put into register PS. The
location of the first available word in the
PF is calculated and put into P6. The
limit of the PF is calculated and saved in
PFLIM.

The CEKKA subroutine is invoked, for
each PRF item, until no qualifying entry in
the compute and removal table is found.
For each CRT entry returned by CEKKA, CEKKB
is entered if the current PRF entry is a
Begin Loop 1, 2, or 3 item. If it is not,
the CRT entry is deleted from the table.

Each begin loop 3 item goes through the
CEKKA circuit twice, first pointing to
itself then pointing to the begin loop 2
PRF entry. On the first pass, a qualifying
CRT entry returned from CEKKA is deleted if
the forward compute point is less than the
current PRF location, or if the FRCFLG is
not on in the triad entry and the •1abel"

Section 5: Phase 3 109

flag is zero in the PLP entry. Otherwise,
CEKKB is entered to generate the expres
sion. On the second pass, the CRT entry is
deleted if the operator of the traid is not
an ! (indicating a recursive expression).
For the recursive expression triads, a flag
is set indicating that this loop need not
be materialized. Then, the popu1arity of
the expression is.increased by CEKKO. When
CEKKA returns a zero in register P2, the
flag for the first begin loop 3 pass
CHOLDB3) is checked. If it is on, the
second pass is set up and the flag turned
off. During the second BL3 pass, all
recursives are examined to determine if
there is a 'BXLE on recursive• candidate.
The following checks are made:

1. The recursive must be a special split
subscript. That is, the least remov
able part of the subscript must be the
induction variable.

2. The step on the recursive must be a
positive constant. Note that the loop
step is not included in the subscript
expression at this time. CEKKB
inserts it at BL2 processing.

3. The loop step must be a constant.

4. The loop must not be marked for
materialization.

Of all the candidates passing the require
ments, the one with the highest popularity
count is retained.

At the end of the second pass, if a BXLE
recursive was selected, the CRT entries are
relinked so that the selected recursive is
the one last seen by Phase 4, and the one
for which the test expression will be
created by CEKLI.

CEKKO is then called to increase the
popularity of the recursive to the maximum,
to ensure its global assignment by CEKKV.
When both passes at begin loop 3 have been
completed, the materialized byte is checked
to see if a recursive expression was found.
If none was found and the global flag is
off, or if the ISD option is on in inter
com, the materialize flag is set in the PLP
item.

For each completion of the CEKKA cir
cuit, the ID of the PRF entry is checked
for a •1abe1• or an •alternate entry• item.
For labels, the •referenced• flag in the
symbol table is tested. If it is on, CEKKA
is entered and all the CRT entries deleted.
For alternate entries, all CRT entries are
deleted by using CEKKA and pointing to
X'7FFF' or to the absolute beginning of the
PRF. No triads can be carried past an
alternate entry. Upon completion, or if
the PRF entry was not one of those two, the

110

CEKKU routine is invoked. Upon return f ron
CEKKU, the end flag (ENDIT) is checked. If
it is off, the routine returns to enter
CEKKA again for the next PRF item. If the
end flag is on, Phase 3 ends. The regis
ters are restored, and return is made to
the executive by standard linkage (RETURN
macro instruction>.

At the entry point for errors CCEKKRE),
the executive subroutine CEKTE is called to
output the error message. Upon return,
register L3 is set to 8, to indicate an
abort condition. The routine exits through
the same procedure as for a normal exit.

CEKKU -- PRF Processing Routine

This routine manipulates the PRF entry
into its proper PF format, performs any
necessary linking, and writes the entry
into the PF. See Chart cw.

ENTRIES: The entry point is CEKKUA.
Register PS contains the location of the
current PRF entry, register P6 contains the
location of the next available word in the
PF, register Nl covers the Intercom ar~a,
and register Ll covers the work area.

EXITS: Register PS contains the location
of the next PRF entry, register P6 contains
the location of the next PF word, register
Nl covers the intercom area, register N2
covers the unused working storage, and
register Ll covers the work area.

Two error conditions are detected:

1. An illegal ID in the PRF.

2. The PF table overflowed.

For all cases register P2 is set with
the location of an error message parameter
list in the PSECT, and the standard phase
error processor CCEKKRE) is invoked.

OPERATION: The registers are saved by the
STORE macro. The ID code of the PRF is
converted to an index by multiplying it by
four. An internal branch table is used to
direct the routine to the proper processing
section. If the ID is zero, or greater
than the maximum, the error exit is taken.

Each item is processed by rearranging
Cif necessary) the fields of the PRF to
conform to the PF format. In many cases
entire fields are deleted; in other cases
fields are modified (refer to the format
diagrams of the PF items in Appendix A).

1. Begin Program CID= X'l'). The end
flag CENDIT> is set. If the program
being compiled is a main program, a
dunmy ENTRY statement is inserted into
the PF. Return is to CEKKR.

2. Enter CID = X'2'> and Alternate Entry
(ID= X'3'). -For a subprogram entry
<ID = 2) the end flag CENDIT) is set
to mark the end of the PRF. Each
argument symbol table index (ASTX) is
used to obtain the corresponding
storage class (STCL) from the symbol
table. These are stored in the PRF.
The label relink Ca Phase 3 internal
subroutine described below> subroutine
is entered. Upon return, the length
o.f the PF entry is computed and the
Variable Move routine Ca Phase 3 in
ternal subroutine, described below) is
entered. ·

3. Label Definition (ID= X'4'). The
label relink subroutine is entered.
Upon return, the label flag bit in the
PLP entry of the current loop level is
turned on if the •Reference• flag is
on in the symbol table. The fields
are packed and the Two-Word Move rou
tine Ca Phase 3 internal subroutine,
described below> is entered.

4. Equation (ID= X'S'). EXSN (expres
sion scan subroutine, a Phase 3 inter
nal subroutine, described below> is
entered for OPD1. Upon return, the
symbol table location stored by CEKKE
is used to enter the Variable Relink
subroutine. EXSN is then entered for
OPD2. Upon return, the Common Relink
subroutine is entered. Upon return,
the fields are rearranged and the
Four-Word Move routine entered.
(Variable Relink, Common Relink, and
Four-Word Move are all Phase 3 inter
nal subroutines, described below.>

5. GO TO (ID= X'6'). The symbol table
index of the label (LLNO) is used to
enter the Adcon Assignment subroutine.
Upon return, the fields are rearranged
and the Three-Word Move routine is
entered. (Adcon Assignment and Three
Word Move are both Phase 3 internal
subroutines and are described below.)

6. Assigned GO TO (ID= X'7'). The num
ber of label elements (NOEL) is used
to find the line-number word <LINO),
which is moved to the third word of
the entry. The OPD field is used to
enter EXSN. The AVAR field is moved
up two bytes, and the Three-Word Move
routine is entered.

7. Computed GO TO (ID= X'8'). The OPD
field is used to enter EXSN. The
fields are rearranged, with the LLNOs
being packed into two bytes. The new
length is computed, and the Variable
Move routine entered.

8. ASSIGN (ID= X'9'). The OPD is used
as a parameter for entry to the EXSN

routine. On return, the Three-Word
Move routine is entered.

9. Arithmetic IF CID= X'A'). EXSN is
entered with the test value (TVAL).
Upon return the Common Relink subrou
tine is entered. Upon return, the
Adcon Assignment subroutine is entered
for the three branch points. The
fields are then rearranged and the
length set at 20 bytes. The variable
move is then entered.

10. Logical IF (IO= X'B'). EXSN is
entered with the test value. Upon
return, the Common Relink subroutine
is entered. The last two words are
moved up one word. The Adcon Assign
ment subroutine is entered. Then the
Four-Word Move routine is entered.

11. CALL (ID= X'C'}. The fields are
rearranged, with the LLNOs being
packed into two bytes. The new length
is computed, and the Variable Move
routine entered.

12. Argument Definition Point (ID= X'D').
The VAR field is converted to a, symbol
table location, and the Variable
Relink subroutine is entered. Upon
return, the Two-Word Move routine is
entered.

13. RETURN (IO= X'E'). The RIND field is
checked. If it is nonzero, the'RVAR
field is used as a parameter to enter
the CEKKE routine. Upon return, or if
RIND was zero, the RVAR field is moved
forward two bytes, and the Three-Word
Move routine entered.

14. Beqin Loop 1 CID= X'F'). CEKKV is
entered. Upon return, the length is
set at 28 bytes and the Variable Move
routine entered.

15. Begin Loop 2 CID= X'10'). CEKKW is
entered. Upon return, the Four-Word
Move routine is entered. The Four
Word Move routine adds the IVAR and
EXITLB pointers to make the BL2 a
five-word entry.

16. Begin Loop 3 (ID = X'll'). The RMVAL
word is obtained from the PSECT and
put into the PRF entry. A hexadecimal
8000 is put into RMVAL. The subrou
tine to relink coDDDon is then entered.
On return, the CDP and GLAB fields are
rearranged to the PF format. If the
level is not zero, the Adcon Assign
ment subroutine is entered. The flags
are then checked. If the 'global'
flag is on, indicating an inner loop
with no external calls, and the loop
is safe, the symbol table pointer for
the current floating point candidate

Section 5: Phase 3 111

is put in the PF. The candidate
pointer is then-replaced with X'8000'.
The Three-word Move routine is
entered.

17. End Loop (ID X'12'). CEKKC is
entered. The symbol table pointer for
the current floating point candidate
is replaced with X'8000'. Upon
return, the One-Word Move routine is
entered. COne~ll<5rd Move is a Phase 3
internal subroutine and is described
below.>

18. CONTINUE (ID= X'13'). No processing
is necessary, so the Two-Word Move
routine is entered directly.

19. READ (ID= X'14') and W<ITE CID=
X'17'). The flag field is checked to
see if the LABF field is an EF point
er. If it is, the EXSN routine is
entered. Upon return or. if it was not
an EF pointer, the UNIT field is used
to enter EXSN. Upon return, the ID is
checked. If it i~ a WRITE entry, the
Three-Word Move routine is entered.
For a READ, the ERR and EOF fields are
packed into one word and the Four-Word
Move routine entered.

20. READ CID= X'l6'), PRINT CID= X'19'),
and PUNCH CID= X'lA'). The flag
field is checked. If it indicates
that the LABF is an EF pointer, the
EXSN routine is entered. Upon return
or if LABF is a symbol table pointer,
the Three-Word Move routine is
entered.

21. READ with NAMELIST CID= X'15') and
WRITE with NAMELIST CID= X'l8'). The
UNIT field is used as a parameter to
enter the EXSN routi~e. If the entry
is a WRITE with NAMELIST, the Three
Word Move routine is entered. For the
READ with NAMELIST entry the fields
are rearranged, with ERR and EOF being
packed into two bytes. Then the Four
Word Move routine is entered.

22. output List Element CID= X'lB').
EXSN is entered with OPD. Upon
return, the Two-Word Move routine is
entered.

23. End List (ID= X'lC'). The One-Word
Move routine is entered directly.

24. File Control CID= X'lD'). The UNIT
field is used as the parameter on an
entry to EXSN.

25. STOP (ID= X'lE') and PAUSE 'ID=
X'1F'). The Three-Word Move routine
is entered directly.

112

26. End Program (ID = X' 20'). rhe One
Word Move routine is entered directly.

27. Input List Element (ID= X'21'). EXSN
is entered. Upon return, the symbol
table location generated by CEKKE is
used to enter the Variable Relink sub
routine. Upon return, the Common
Relink subroutine is entered. Nhen
finished, the Three-Word Move routine
is entered.

28. Adcon Assignment Subroutine. The sym
bol table pointer, assumed to be in
register P2, is converted to an
address. The storage class of the
entry is checked. If it is equal to
255, the routine returns to the call
er. If not equal to 255, it is set to
255. Register P2 is set to zero, and
CEKLB is entered to file the constant.
The pointer to the symbol table entry
for the adcon is moved from the PSECT
CTEPNTR) to the symbol table entry
being processed. The parameters are
set, and CEKKO is entered to tally the
popularity of the adcon for global
register assignment. Return is to the
calling routine.

29. Label Relink Subroutine. The pointer
of the current PRF entry CFPT) is com
pared to the forward label link
CLFDP). If they are not equal, the
routine returns. If they are equal,
the label field of the PRF CLINK) is
converted to the PF chain, and the
current LLNK saved as LFDP.

30. common Relink Subroutine. The pointer
of the PRF entry is compared to the
forward common link (CFDP). If they
are equal, the PRF field is chained
and the PRF pointer is saved. The
routine then returns to the caller.
If they are not equal, the PRF pointer
is compared to the forward formal
argument link. (AFDP). If these are
not equal, the routine returns. If
these are equal, the PRF field is
linked, and the PRF link is saved.

31. Variable Relink Subroutine. The PRF
pointer is compared to the forward
definition field in the indicated sym
bol table entry. If they are not
equal, the routine exits. If they are
equal, the forward and backward
definition fields of the symbol table
are relinked, and the forward link
saved.

32. One-Word, Two-Worj, Three-Word, and
Four-Word Move Routines. The PF loca
tion is moved to register P3 and
increased by the indicated number of
bytes (4, 8, 12, or 16). Then the
Special Move subroutine is entered.

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Upon return, the proper number of
words is transferred from the PRF
table to the PF table. The PF loca
tion is then updated by the proper
number of bytes. The Exit Routine is
then entered.

33. Variable Move Routine. The indicated
length (i.e., number of bytes to be
moved) is put on the next full-word
boundary. The PF location is put into
register P3 and the length added to
it. The Special Move subroutine is
then entered. Upon return PRF entry
is moved in blocks of 256 bytes or
fewer. The PF location is then
increased by the length, and the Exit
Routine entered.

34. Special Move Subroutine. The extent
of the new PF entry <register P3) is
compared to the PL limit (LIMSAV) for
PF table overflow. If the table limit
is exceeded, the error exit is taken.
If not, the PF link field (!LINK) is
updated, and return is made to the
calling routine.

35. EXSN - Expression Scan Subroutine.
The ERF location is obtained from the
indicated location, and CEKKE is
entered. Upon return, the EF location
is stored in the indicated field. The
PRF location is restored, and return
is to the entering routine.

36. Exit Routine. The forward and back
ward links for the PRF and PF are
updated. The current PRF location is
calculated. The routine then exits to
CEKKR by a restricted linkage (RESUME
macro instruction> •

CEKKC -~ End Loop PRF Entry Routine

This routine processes the end loop
entries in the PRF table. It sets up the
loop tables for the loop, terminates com
monality of expressions as required, marks
loop variables appropriately, and deter
mines their compute points if necessary.
see Chart ex.

ENTRIES: The entry point is CEKKCA.
Register PS contains the location of the
current PRF entry, register Nl covers the
intercom area, register N2 contains the
location of the first available word in the
working storage area, and register Ll
covers the work area.

EXITS: Registers NJ through L2 are
restored. Registers PS, P6, and Nl return
unchanged. Register N2 reflects any use of
working storage by pointing to the new
first-available word.

This routine uses the working storage
area of the PSECT. An error condition
exists if this area is overflowed. The
Phase 3 error exit (CEKKRE> is taken.

OPERATION: The level (LEV - see "Phase 3
Loop Tables•> is increased by 1, and a new
PLP entry is generated and linked into the
CNT Table. If the current loop is safe,
all entries in the CRT (found by CEKKA)
below the BL3 of the loop are deleted. If
the loop is unsafe, level zero is checked.
If level zero is safe, all CRT entries to
BL3 of level zero are deleted.

The •active induction variable" flag is
turned on in the symbol table entry of the
loop induction variable. The current level
is stored as ULEV, and the forward compute
point is set at BL2 of the loop. For the
three loop parameters, CEKKG is entered to
set the ULEV and FCP. Upon return, these
entries are checked to ensure that the ULEV
is at least the current loop and FCP is at
BL1 of the loop. Also, if any of the loop
parameters is an i~duction variable for a
previous loop, that loop is set for
materialization.

CEKKV -- Begin Loop 1 PRF Processor

This routine processes the begin loop;· 1
entries in the PRF. The global register
candidates are computed and moved into the
PRF. Since this is the end of the process
ing for a loop, the level <LEV - see "Phase
3 Loop Tables•> is reduced by 1. See Chart
CY.

ENTRIES: The entry point is CEKKVA.
Register PS contains the location of the
current PRF entry, register N1 covers the
intercom area, and register Ll covers the
work area.

EXITS: Registers P6, Nl, N2, and Ll are
the same as when entered. Register PS
points to the BL1 work area in the PSECT
(BLlWORK).

This routine uses the working storage
area of the PSECT. If this area is over
flowed, an error condition exists. The
Phase 3 error exit (CEKKRE) is taken.

OPERATION: Upon entry, the 2-word PRF BLl
item is moved from the PRF to the BLl work
area in the PSECT, and register PS is
loaded with that location. (This is done
because the BLl entry to be created for the
PF will be 28 bytes long. If the PRF is
near the end of the allotted area, working
in the PRF could cause errors by accessing
past the end on the legitimate PRF area.>
The line number is moved from the second
word to the seventh. The loop level <LEV>
is used to find the PLP location through
the CNT table. The PLP flags are moved to

Section 5: Phase 3 113

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

the PRF entry. The global register candi
date counter (GPN) is saved and the field
cleared in the PLP. If the original GPN is
zero, there are no global register assign
ments, and the routine skips to the end.

For the sort, a temporary table (the
first entry of which is set to zero) is set
up in working storage with the following
format for each entry:

0 15 16 31
r--------------------T--------------------1 I GIRL Pointer I Popularity Count I
L--------------------i--------------------J
THE GPLINK chain is followed from the PLP.
The GIRL entries are then picked up one at
a time to be stored in the table at the
point where the popularity count of the
next item in the table is less than the
popularity count of the current GIRL entry.
The table is pushed down at that point, and
the new entry is inserted. The entry for
the first or lowest negative popularity is
stored inunediately preceding the end of the
table. When the end-of-chain is encoun
tered, the sort is completed. The GPLINK
chain is now relinked so that the entries
are encountered in order of decreasing
popularity.

Now each candidate is checked to see if
global assignment can be accomplished. In
order to be globally assigned, each inner
loop must have the same candidate already
globally assigned, or have fewer than the
maximum number of registers assigned (8).
Starting with the most popular candidate,
each inner loop is checked to see if there
can be global assignment. If there cannot
be, the candidate is deleted from the
GPLINK chain. If there can, the GPN of the
current loop is increased by 1. Also, each
loop in which it is not already globally
assigned has its GPN increased by 1.

When either the candidate list is
exhausted or the GPN of the current loop
reaches the maximum, the search is com
pleted. An X'8000' is stored in the GPLINK
of the last entry as the end-of-chain. The
GLBL fields in the BLl entry are preset to
x•aooo•. Then the GPLINK chain is followed
to the end storing the GLBL field into the
BLl entry.

For each of the parallel inner loops,
the GPLINK chain is followed. Each entry
is compared to each GPLINK entry in the
current loop. If an entry is found in an
inner loop which is not in the current
chain, it is linked into the current chain,
and the GPN is increased by 1. This allows
a GLBL to go from level •n• to level •n-2•
with no occurrences in level •n-1•.

Since this is the end of the loop pro
cessing, the CNT table entry is set to
X'8000' for both the TLINK and PLINK
fields. The pointer to the removed expres
sion generated by CEKKB is moved from RMVAL

114

in the PSECT to the BL1 entry and X'SOOO'
is stored in RMVAL. The loop level (LEV)
is reduced by 1. The exit is then taken.

CEKKW -- Begin Loop 2 PRF-Processor

This routine processes the begin loop 2
entries in the PRF. The EF entries for the
loop parameters generated for mat~rialized
loops. If a test value exists, the test
expression is generated by entering CEKLI.
See Chart CZ.

ENTRIES: The entry point is CEKKWA.
Register PS contains the location of the
current PRF entry, register Nl covers the
intercom area, and register Ll covers the
work area.

EXITS: Register PS, P6, Nl, and N2 are the
same as when entered. Registers NJ through
L2 are saved and restored.

Two errors are detected:

1. The PF table overflowed.

2. An illegal type code found in the sym
bol table.

For all cases the Phase 3 error exit
(CEKKRE) is taken.

OPERATION: The registers are saved by the
STORE macro instruction. The link to the
Polish chain (RMVAL> is moved from the
PSECT to the PRF, and the value x•aooo• is
stored in RMVAL. The symbol table pointer
of the induction variable <IVAR> is con
verted to a symbol table location. The
pointer to the current PRF entry is com
pared to the forward definition point (FDP)
of the symbol table. If they are equal,
the FDP and BDP fields are relinked.

The PLP flags are checked to determine
which path the processinq then follows:

1. If the materialize flag is on, the
symbol table pointer for IVAR is con
verted to a location. The PRF pointer
is stored in the symbol table entry as
the forward compute point. The unde
fined level (UN.LEV) field is set to
55, and DUNL (a Phase 3 internal sub
routine> is entered.

The expression file and DUNL subrou
tines are entered for the initial
value (BEG), the final value (END),
and the increment value <INC). The
link to each expression is stored in
the proper place in the PRF.

2. If the GLOBAL flag is on, but the BXLE
on recursive flag is off, the EXITLB
field is checked. If EXITLB is not
equal to x•aooo•, the materialize flag

is set; in either case, processing
continues as in 1.

3. If the BXLE on recursive flag is on,
the constant step on the recursive is
deleted as a global assignment candi
date. This is accomplished by calling
CEKKO with a zero weight, then return
ing to CEKKO with a weight equal to
(-TOTPOP). If EXITLB is not X'8000',
a PF entry is generated for the induc
tion variable and the initial value
via FEFP. The adcon for the exit
label then has its popularity reduced
by 5.

CEKLI is then called to generate the
test expression for the recursive.

4. If none of the above conditions pre
vail, CEKLI is called to generate a
test expression.

The routine then exits.

File EF and Point CFEFP) Subroutine

This subroutine <internal to CEKKW) is
used to file an adcon in the symbol table
for the 1oop variables. The routine is
entered with a symbol table pointer in
register P1, which is converted to a loca
tion in register P4. The location (SLOC)
is divided by 4096 (to put it on a page
boundary>. The remainder is stored as the
displacement of the EF entry. The result
plus the storage class CSTCL) are stored
for the executive subroutine.

Then the subroutine CEKTFI is entered to
file the adcon. The cell TEPNTR contains
the pointer to the symbol table. This is
stored in the EF entry. The type and ID
are also stored in the EF entry. The
pointer to the EF is put into register P2.
Register P6 (the PF location> is updated by
two words. Return is then made to the
calling routine.

Delete the Undefined Level CDUNL)
Subroutine

This internal subroutine resets the
undefined level CULEV). It is entered with
the symbol table location in register P4.
The variable class is found, and its ULEV
checked against the loop level. If ULEV is
equal to or greater than the loop level,
ULEV, is set to 55. If ULEV is smaller,
the forward compute point is checked
against FLINK. If FCP is less than or
equal to FLINK, the ULEV is set to 55, and
the routine exits. If FCP is greater than
FLINK, the routine exits.

CEKKE -- Expression Scan Routine

This is the main control routine for a
series of subroutines which scan an entry
in the expression file CERF), put it into
canonical form, generate or locate triad
table entries for all expressions and sub
expressions, update symbol table entries as
necessary, determine commonality and remov
ability, rearrange and expand subscript
expressions, generate adcon entries as
needed, and rewrite the ERF as part of the
program file CPF). See Chart DA.

ENTRIES: The entry point is CEKKEA.
Register P2 points to the last ERF entry of
the expression to be processed. Register
PS contains the location of the current PRF
entry. Register P6 contains the location
in the PF.

EXITS: Register P2 points to the last ERF
entry made in the PF. Register Nl is
returned unchanged. Register P6 points to
the new location in the PF. Register N2
points to the new first available word of
working storage.

OPERATION: Upon entry the ERF pointer,
passed in Register P2, is converted into an
ERF location. If the pointer is an
X'8000', the exit is taken. It is assumed
that the location is the "right-end• 9r
major operator of an expression, or a.· prim
itive Ca constant or variable). A counter
is set to 1, and the expression is scanned
backward Cf rom high core to low> to f:ind
the "left-end• (or beginning>. The ID of
each entry in the ERF is examined. !£ it
is an operator, the counter is increased by
1. If it is a primitive (anything other
than an operator>, the counter is reduced
by 1, the ERF location is reduced by eight
bytes, and the next entry is checked. When
the counter reaches zero, the beginning of
the expression has been found, and the ERF
location is saved in LOWERF. When a sub
script expression is being scanned, special
conditions exist. Since CEKKM must insert
two entries into the ERF, two extra plus
operators have been inserted by Phase 1
immediately preceding the colon operator.
Therefore, when a colon is encountered dur
ing a scan, the ERF location is reduced by
16 bytes in order to skip the pluses, which
are not part of the expression.

Once the left-end has been determined,
the control words and flags are set to ini
tial conditions. Register PS is loaded
with the -1 entry of the OPTl, so that
CEKKF will start at the first entry point.
Register P2 contains the ERF location of
the left-most or first entry of the
expression.

The general processing scheme is to
check the ID of the ERF item pointed to by

Section 5: Phase 3 115

register P2. If the ERF ID indicates a
primitive, CEKKF is invoked. CEKKF forms
an entry in the OPTl Table for the primi
tive. Upon return the current ERF location
is compared to the end or right-end loca
tion. If they are not the same, the ERF
location (P2) is increased by eight bytes
to point to the next item of the expres
sion, and its ID is checked.

If the ERF ID indicates an operator
entry, the subscript switch CSWCHSB) is
checked. If it is set to 1, the subscript
expression is on the first pass. The
operator is checked for a plus. If it is a
plus, the first pass is completed and CEKKM
is invoked. Upon return from CEKKM, the
conditions have been reset for another com
plete pass over the subscript expression,
so the process of checking each ERF ID is
restarted. The switch SWCHSB is set to
zero, so that the second pass appears as
normal processing.

If SWCHSB is zero or, if the operator is
not a plus, CEKKB is entered to form and
file a triad generated from the operator
and the last two OPTl entries. Upon return
from CEKKB, CEKKL is entered under one of
two conditions:

1. The triad is removable from the cur
rent loop, and the triad flag indi
cates that it has already been
removed, except for expressions
removed to BL3 (i.e., FRCFLAG is on).

2. SWCHSB is set to 1, indicating the
first pass over the subscript
expression.

CEKKL forms a new OPTl entry for the
previously created triad, so that it will
be an operand of the next operator. Upon
return from CEKKL, the insert flag CINSW)
is checked. If this flag is nonzero, there
was a •Float• function inserted by CEKKN.
In this case, CEKKL has restored condi
tions, so CEKKH is now entered to form
another triad, and processing is continued
from there. If INSW is zero, the routine
loops back to check for the end of the
expression.

After the return from CEKKH, if neither
of the two above conditions exists, CEKKI,
is entered, with register P4 pointing to
the first (or lower) of the last two OPTl
entries. CEKKI operates on the operands of
each triad. For primitive operands adcons
are counted for global register assignment
where appropriate. For triad operands the
removability and commonality are determined
and the necessary action taken (naming,
creating residues, etc.). Upon return from
CEKKI, the flag SWCHFL is checked. If it
is nonzero, a •Float• insert was made by
CEKKN, in which case CEKKL is entered.

116

Upon return from CEKKL, CEKKH is reentered
for a new triad as before.

If SWCHFL is zero, register P4 is set to
point to the last OPrl entry (the second of
the two operands), 'and CEKKI, is reentered.
Upon return from CEKKI, CEKKL is entered.
Upon return from CEKKL, the INSW is tested
with the same branches as described
previously.

When the right-end of the expression is
reached, register P3 is set to point to a
dummy triad entry <which represents the
•equals• operator). CEKKI is then entered
to process the last entry in the OPTl
table. Upon return from CEKKI, CEKLF is
entered to copy the ERF string into the PF,
inserting any float functions as necessary.
Upon return from CEKLF, the JOINTE chain is
followed. This chain points to triad
entries which need the location in the PF
to be saved in the name field of the triad.
The chain starts with JOINTE and is con
tinued in the name field of each triad in
the chain. When an end-of-chain CX'8000')
is found, the exit is taken.

CEKLF -- Copy and Edit an Expression

The function of CEKLF is to copy an ex
pression from ERF into the PF. During this
process null entries will be deleted, spe
cial expression file entries will be
inserted, and any expressions which have
been named as common will be changed to so
indicate, if necessary. See Chart DB.

ENTRIES: This routine is entered at CEKLFA
with the following input parameters:

P2 Location of the right-end of the
expression in the ERF

P3 = Location of the left-end of the
expression in the ERF

P6 = Location of next available entry
in the PF

EXITS: Register P4 contains the location
of the last entry made in rhe EF portion of
the PF. Register P6 contains the updated
next available work in the PF. If the PF
is filled during the copying, the Phase 3
error exit is taken.

OPERATION: Initially, the SETFIAG is
checked. If it is turned on, indicating
that the left end of an assignment state
ment is being copied, the 'global load'
flag is checked in the PLP. If it is on,
the GFLSw is set to 3, indicating that this
loop may have a removed floating-point can
didate. The SERF cell contains the loca
tion of the first insert entry. If SERF is
zero, there are no insert entries. In this
case, the insert location is set to
X'FFFFFFFF' to prevent any insertions. If
there are insert entries, the location of

the first entry is loatled from SERE'. The
insert location is loaded for comparison
·~ith the ERF location. If the ERF location
is equal to the insert location, the SERF
entry is moved into the l'F. The ID field
is then checked for an •operator.• If it
is an operator, tne triad location is
loaded and the name flag checked. If it is
on, the name is moved from the triad to the
EF entry and the ID is changed to •csx."
In any case, the PF location is updated to
the next location~.-..The location of the
next SERF entry is loaded, and the routine
returns to load and check its insert
locations.

When the insert location is not equal to
the ERF location, the ID of the ERF entry
is checked for a null ID. If it is null,
the entry is not put into the PF, but the
routine skips to update the ERF location.

If the ID is not null, it is checked for
an operator. If it is an operator, the
following checks are made.

1. If it is either a complex operator or
an intrinsic-function-argument opera
tor, the GFLSW is turned off.

2. If it is a colon operator, and the
COLONF flag is on, it is checked to
see if this is a removed floating load
candidate. The COLONF flag is set
when an array operand is processed and
meets the 'removed floating point
quantity' requirements. The SET FLAG
is checked to determine whether the
expression is the left or right end of
the assignment statement.

If this is the left end of the assign
ment statement, the removal level of
the subscript operand is checked. If
it is removable from the current loop,
the GFLSW is set to 2, indicating that
a subscripted variable appeared to the
left of the equal sign. The
subscript-triad pointer is saved for
comparison when the right end of the
equal sign is processed.

If the SETFLAG is off, then the right
end of the equal sign is being pro
cess ed. The GFLSW is checked. If it
equals 1, it is set to zero. This
means the statemnet A(3) = A(I) will
not be considered for global assign
ment in floating-point register 6.

The subscript triad is then compared
to the one saved from the left end.
If they are not equal, the GFLSW is
set to zero. This protects the state
ment A(J) = ACI) from being consi
dered. The adcon-displacements of the
two array items are then checked. If
they are equal, the colon operator is

flagged for Phase 4. If they are not
equal, the colon operator is not
flagged and the GFLSW is left
unchanged. This allows the statement
ACI> = ACI+3) to be recognized as an
allowed condition in that the elements
being referenced will never be the
same.

In any case, the triad name is moved
to the ERF entry, and the ERF is
copied to the PF.

If the ERF entry is an operand, it is
checked for a variable. If it is a vari
able and the SETFLAG is on, it is examined
for being a removed floating-point-quantity
candidate. The requirements are that it
must be REAL*4 or REAL*S, and must not have
the INTERFERING flag set in its symbol
table entry. ·

The ERF flags are then checked to see if
the quantity is a subscripted variable. If
not, GFLSW is set to 1, indicating a simple
variable to the left of the equal sign. If
it is a subscripted varialbe, COLONF is set
to one, indicating that the next colon
operator processed corresponds to this
array operand.

If the SETFLAG is off, GFLSW is checked.
If it is set to 2, and the symbol table
pointer matches the saved one, the ERF flag
is checked to see if it is a subscripted
variable. If not, GFLSW is set to zero.
This disallows A(I) = AC3).

If GFLSW is set to 1, the symbol table
pointer matches the saved one, and the ERF
flag indicates a subscripted variable,
GFL.SW is set to zero. If it is not sub
scripted, and the adcon displacement equals
the saved one, the ERF operand item is
flagged for Phase 4.

In all cases, the ERF is copied to the
PF. The next available word in the PF
(register P6) is updated. The ERF location
is increased by eight bytes and compared to
the right-end location. If they are not
equal, the routine loops back to check for
an insertion. If they are equal, the ex
pression has been copied. The new PF loca
tion is converted to a pointer and stored
in TEPFT. If the SETFIAG is off and GFLSW
is set to 1 or 2, CEKKO is called to reduce
the popularity of the subscript or adcon by
the number of times the item was flagged.
CEKKO is called a second time to increase
the popularity of tne item on the next
outer loop by a weight of 10. The pointer
to the EF for the left end of the expres
sion is then stored in GBLREAL for CEKKU.

If the SETFLAG is on, the pointer to the
expression in the PF is saved, and exit is
taken.

Section 5: Phase 3 117

CEKKF -- Pushdown Primitive Operand Routine

The functions of the CEKKF are to update
the symbol table entry of an operand Cif a
variable), to change the ERF entry to
reference an address constant and displace
ment, to create a dummy expression <~
operator> if required, and to form an entry
in the operand push-down list (OPT> from
the information created in these processes.
See Chart DC.

ENTRIES: This routine is entered at CEKKFA
by restricted linkage <INVOKE macro
instruction). Register P2 contains the
location of the current entry in the ERF.
Register PS contains the location of the
current OPI'1 entry.

EXITS: This routine returns to CEKKE by
the restricted linkage (RESUME macro
instruction>. Registers P2, P5, and P6 are
returned unchanged.

OPERATION: The OPTl location is stepped to
the next entry and the area is cleared.
The current ERF pointer (register P2) is
stored in the Polish (OPOLSB) field. The
forward compute point (OPTFCP) is set to
X'7FFF', which forces it to the beginning
of the object program. If the ID of the
ERF item indicates a loop variable, the
loop variable flag (OPLVF) is turned on.
The count field (OPCNT) is set to 1 <since
this routine is only entered for primi
tives). The symbol table pointer for the
primitive is moved from the ERF to the OPI'l
(OPTRD1). The left-end switch (DSWT) is
tested. If it is zero, the symbol table
location is stored in DEFSYM for CEKKU and
the switch set to nonzero. If the flag
(SET FLAG) is nonzero, the operand being
processed is an assignment value. If its
symbol table pointer is equal to the cur
rent floating point candidate for Phase 4,
the candidate is deleted. The sign flag
(OPSIGN) in the OPT1 entry is set to agree
with the sign in the ERF.

Next, CEKKG is entered to determine the
forward compute point CFCP) and undefined
level CUI.EV) of the primitive. However,
CEKKG is not entered for loop parameters,
functions, and constants. Loop parameters
receive special processing (see below>.
FUnctions go directly to the exit, leaving
the OPRLEV set to zero, and the OPTFCP set
to X'7FFF'. The fields are the same for
constants, but they do get the remainder of
the processing in order that an adcon may
be filed for them.

For ERF entries that are flagged 'split
subscript', the FCP and ULEV are trans
ferred from the symbol table entry for the
induction variable. The symbol table

118

pointer was temporarily put in the EF adcon
halfword by CEKKM for this purpose.

Upon return from CEKKG <or the loop pa
rameter processing), the FCP and ULEV are
moved from the symbol table to OPTFCP and
OPRLEV, respectively, in the OPTl entry. A
•storage location• is formed by adding the
SLOC field from the symbol table to the
offset word in the ERF. This, along with
the storage class (STCL) from the symbol
table, is used as a parameter to enter
CEKLB, which files a covering adcon in the
symbol table.

When control is returned from CEKLB, the
subscripted variable flag is checked in the
ERF. If it is on, a special processing
section is entered (see below>. If the
flag is not on, the pointer to the adcon
entry in the symbol table is stored in the
ERF (in EFADCON). Special processing is
then given to variables with an offset of
nonzero and to loop variables, to insert an
@operator (see below>. For all oth~rs,
the type is checked. If it is real, and
neither a subscripted nor a class array
item, its symbol table pointer is saved as
the current floating point candidate in
GBLREAL. The exit is then taken.

"AT• Operator Insertion

The i operator is used to distinguish
between different bytes of an array for
constant-subscript items. <In other words,
it is to distinguish between A (3) and
A(5).) It also makes occurrences of the
loop variable inside the loop different
from references outside the loop. This is
accomplished by forming a dummy triad, with
the operator an a. The displacement is
stored as the first operand CTROPl), so
that only references to the same byte of an
array will be common. The prototype triad
is formed, and CEKKP is entered to file it
in the TRIAD Table. Upon return, the triad
pointer is stored in the OPTl table and the
indicator (FI) set for a triad. The a flag
(ATF) is set in the OPTl to mark this as a
dummy triad. The exit is then taken.

Subscripted Variable Processing

The remaining entries in the ERF, up to
the first+ preceding the :, are inside the
subscript. These entries require two
passes for complete processing. For the
first pass special paths are taken in
CEKKE, CEKKH, CEKKF, CEKKI, and CEKKL. The
switch (SWCBSB) is set to 1, to mark the
first path. In addition, the symbol table
pointer to the adcon covering the array,
the SLOC of the adcon, and the symbol table
pointer of the array variable are saved for
CEKKM. A branch back to check for a opera
tor is made.

Loop Parameter Processing

If SWCHSB is set to 1 the processing is
inside a subscript. The loop variable flag
in the ERF ID is cleared. This makes a
loop variable look like a loop parameter.
on the second pass the loop variable will
get the special loop parameter processing,
but not the special ~ processing, and the
loop will not be materialized (see below).
The main section is entered just after the
return from CEKKG.

If SWCHSB is set to zero, processing is
outside a subscript. If the loop variable
flag is on in the ERF, the loop level is
extracted from the ERF ID field, and used
to set materialize flag in the PLP table of
the proper loop

For all loop parameters the ERF ID is
changed to variable or constant, with the
proper type code from the symbol table.
The main section is reentered just after
the return from CEKKG. CCEKKG shoula not
be entered for loop parameters, since the
end-loop routine, CEKKC, has put in the
proper FCP and ULEV, and CEKKG is not set
to recognize the special case.)

CEKKG -- Variable compute Point and Removal
Level Routine

The purpose of this routine is to deter
mine the forward compute point and removal
level for a variable. see Chart DD.

ENTRIES: The entry point is CEKKGA.
Register P1 contains the symbol table
pointer for the variable to be processed.

EXITS: Register P4 contains the symbol
table location of the variable processed.
Registers Pl, P2, P4, and P5 are returned
unchanged.

OPERATION: If the symbol table entry for
the variable has the •not computable• flag
on, the variable is an adjustable dimen
sion: therefore, the varible cannot be
redefined across 1evel zero. If level zero
is safe, the undefined level flag CUL~V) is
set to zero; otherwise, ULEV is set to 1.

If the •not computed flag• is not on,
the FCP in the symbol table entry of the
variable is compared with the current PRF
pointer CFPT). If the FCP is smaller than
the FPT, the FCP is still valid. The ULEV
field is obtained from the symbol table
entry and compared with the current loop
level CLEV). If ULEV is larger than the
current level, it is still valid and the
routine returns to the invoking routine.
If ULEV is not larger than the current
looplevel, the new undefined level is
determined by checking the FCP against the
PRF pointer of the BL3 entry of each loop

from the current ULEV to the current loop
level. If the FCP is greater (above in the
PRF} than the BL3 entry of a loop, that
level is made the undefined level. If no
level is found for which the FCP is out
side, the current level plus 1 is made the
undefined level. This means that any
expression involving this variable cannot
be removed from the current loop.

In the case where the FCP is not smaller
than the FPT, a new FCP and ULEV must be
determined. First, a tentative forward
compute point, TFCP Cin the PRF), and a
tentative backward compute point, TBCP Cin
the PF), are determined. Two types of
variables are present:

1. Normal Variables. The forward defini
tion point CFDP) and backward defini
tion point CBDP) from the symbol table
entry are set as the tentative compute
points.

2. Variables in Common. For the TFCP,
the lower of the FDP and the forward
definition point of the conunon q~ain
CTECPAN) is used. For the TBCP,'' the
higher of the BDP and the backward
definition point of the conunon chain
(CBDP} is used.

Once the TFCP and TBCP are fixed, ~he
removal level is determined. This is, the
first safe loop between ULEV and the .cur
rent loop for which TFCP is higher th~n the
BL3 PRF entry for the loop, and for which
TBCP is lower than the end loop PF e~try.
In other words, there is no definition
point inside the loop. If the TBCP is
inside the loop but TFCP is outside, the
TFCP is reset to the BL3 point before the
next higher loop is tested.

When the removal level is determined, it
is stored as ULEV in the symbol table, and
TFCP is stored as the FCP.

CEKKL -- Operand List Expression Formation
Routine

CEKKL produces an entry in the OPTl table,
representing an expression, formed from an
operator and the last two operands in the
operand list (which are thereby deleted>.
See Chart DE.

ENTRIES: This routine is entered at CEKKLA
with the following input parameters:

P3 Address of expression in triad
table

P5 = Index into OPT table
P2 Current ERF pointer

Section 5: Phase 3 119

EXITS: Register P2 points to the updated
current ERF entry. Register P5 contains
the updated OPI'l entry location. Registers
P3 and P6 are unchanged.

OPERATION: A new OPT1, created to repre
sent the previous triad, is formed from
information in the triad entry and the last
two OPT1 entries. I replaces the lower of
these two entries.

The location of the triad is converted
to a pointer and stored in the new OPTl
entry. The FCP and RI.EV are moved from the
triad to the OPTl.

The OPFI is set for a triad entry.
COPFI refers to the triad table entry Fl or
F2 with which the phase is currently con
cerned.) The sign flag is moved from the
SIGNOP cell in the PSECT (stored by CEKKH).
If the loop variable flag COPLVF) is on for
either of the two OPTl entries, it is set
for the new OPTl entry.

The cell SWCHFL indicates whether CEKKN
made an insert of a float function during
the processing of the previous expression.
If SWCHFL is zero, no insertion was made.
If SWCHFL is nonzero, it contains the ERF
location of the entry to which the float is
to be applied.

CEKKL tests SWCHFL. If it is zero, the
ERF location in register P2 is converted to
a pointer and stored in the OPT1 entry
OPOLSH. The count fields COPCNT) from the
two OPTl entries are added together, the
total increased by 1, and the result stored
in the new count field. This gives the
number of EF entries in the expression to
this point (used by CECKM and CEKLD). The
exit is then taken.

If SWCHFL is nonzero, the contents are
put into register P2 as the ERF location,
and SWCHFL is cleared to zero. The byte
INSW is set to nonzero, to indicate to
CEKKN that a float function was inserted on
the previous entry. The two OPCNT fields
are added together, but not increased by 1
before being stored in the new OPCNT. This
is because the float operator is not in the
ERF, but in the SERF.

CEKKH -- Triad File Manipulation Routine

The purpose of CEKKH is to locate or
insert in the triad table an entry formed
from an operator entry in the expression
file and two operands in the operand push
down table. See Chart OF.

ENTRIES: The entry point is CEKKHA.
Register P2 contains the location of the
ERF entry of the operator of the expres
sion. Register PS contains locations of
the current OPTl entry.

120

EXITS: Register P3 contains the triad
location. Registers P2, PS, and P6 are
unchanged.

OPERATION: Immediately upon entry, CEKKH
calls CEKKN to put the operands into canon
ical form. Upon return from CEKKN, a pro
totype triad entry is generated in working
storage from the last two entries in the
OPTl table and the operator in the ERF. If
the operator is a semicolon, a function is
involved. The lower address entry in the
OPTl is assumed to be the function. The
symbol table entry for this item is checked
for a library function. If it is not a
library function, the expression is not
removable. This nonremovability is forced
by setting the RLEV in the Triad to 55.
Also, the expression can be common only
with a similar expression in the same
statement. This commonality is forced by
setting the forward compute point CFCP) to
the current PRF location plus 1. Before
the next PRF item is processed, the triad
entry will be deleted by CEKKR.

For all operators other than semicolons,
'?',and for library functions, the removal
level CRLEV) in the triad is set as the
higher of the two OPTl entries of the
operands. The triad prototype is now com
pleted, so CEKKP is entered to find a com
mon triad or to file the prototype as a new
entry.

If the operator is '?', and both of its
operands are removable , the RLEV in the
triad is set to LEV+l so that the triad
appears nonremovable. This is necessary
since both operands of the'?' are con
stants for the split-subscript expression,
yet the expression for the base/index split
is by nature nonremovable.

After control is returned from CEKKP,
the name flag of the triad indicated by
CEKKP is checked. If the flag is on, the
triad is already correct. If SWCHSB is off
Cset to 1), the expression is being pro
cessed for subscripts for the first pass;
therefore, the exit is taken. If SWCHSB is
not 1, the name in the triad and the triad
pointer are put into the EF entry.

CEKKP -- Search and Insert Triads

CEKKP enters new expressions in triad
table, locates old ones, and removes obso
lete ones. See Chart DG.

ENTRIES: The entry point is CEKKPA.
Register P2 contains the ERF location of
the operator of the expression. Since a
prototype triad has been built in the work
ing storage area, register N2 will contain
its location.

EXITS: Register P3_contains the location
of the triad. Register P2 is unchanged.
Register N2 is the same or is updated to
point to available working storage.

OPERATION: Upon entry CEKKP locates at the
point indicated by register N2 the proto
type triad, which was put together by
CEKKH.

The triad entries are linked together
through a hash table CTRIH). The hash
table index is formed by adding together
the OP1 and OP2 fields of the triad (these
are either symbol table pointers or other
triad pointers> and reducing the sum to
modulo 1020 (X'3FC'). The resulting hash
table entry is the anchor for a chain of
triad entries. This chain is followed
until an end-of-chain or a matching triad
entry is found.

As the chain is follo#ed, the forward
compute point CFCP) of each triad is first
compared with the current PRF location
(FPT). If the FPT is higher than the FCP,
the compute point has been passed in the
PRF and the triad is now obsolete. Thus,
this triad should not De considered as a
candidate for commonality with the proto
type. The triad is relinked out of the
chain, so it is permanently unavailable as
a common expression.

If the triad is still active (FPI' not
greater than FCP), the key fields are com
pared to the prototype's fields for common
expressions. For two triads to be common,
the following fields must match exactly:
OPDl, OPD2, Fil, FI2, SIGNl, SIGN2, OP, and
RLEV. If a match is found, the location is
put into register P3 and the exit taken.

CEKKN -- Canonical Form Routine

CEKKN puts an expression into a canonic
al form so that expressions differing only
in nonessential variations will be reco
gnized as common. See Chart DH.

ENTRIES: The entry point is CEKKNA.
Register P2 contains the location of the
ERF entry for the operator of the expres
sion. Register P5 contains the location
ofthe OPTl entry for the second Cor right>
operand of the expression.

EXITS: Registers P2, P5, and P6 are
returned unchanged unless there was a float
function inserted, in which case P2 points
to the EF insert in the work area and P5
points to the generated OPT1 entry for the
insert.

OPERATION: If the operator is not plus,
multiply, divide, greater than, less than,
AND, OR, or equal, the routine exits. For
plus, multiply, and divide, the type is

checked. If the operator is a Real•4 or
Real•8, the types of each operand are
checked. If one type is Integer•2 or
Integer*4, a Float function is to be
inserted in the EF at that point. The cur
rent ERF location is stored in SWCHFL, and
P2 set to point at the preset EF entry for
the function in working storage. The
necessary OPTl entries are inserted and the
routine exits. On the next entry INSW
indicates that the last entry had a .float
insert, thus preventing another from being
inserted, and normal processing continues.

The processing is an attempt to make as
many triads common as possible. This is
done by always putting the smaller OPD
field as OPDl and by moving any minus signs
up to the operators (since the operator
sign does not affect commonality, but the
operand sign does>.

CEKKI -- Expression Removal and commonality
Determination Routine

The function of CEKKI is to determine
commonality or removability of an expres-,..
sion, to make entries in the compute and
remove table (CRT), to mark last occur
rences, and to tally popularity counts.
See Chart DI.

ENTRIES: The entry point is CEKKIA. This
routine uses the two common registers of
Phase 3: N1, covering intercom and the .. ··
rest of the second page of the phase PSECT:
and N2, covering the unused area start ·
point of the phase PSECT. Input parameters
are

P2 = ERF location
P3 = Address of triad entry is

dominant operator
P4 = OPT entry address this operand

EXITS: This routine has one normal exit.
Except for catastrophic returns to the
Phase 3 abort point, there are no other
exits and no output parameters.

OPERATION: This routine processes one
operand of a triad on each entry. Upon
entry, CEKKI loads the ERF location from
the OPT entry. If the operand is a primi
tive or an Q operator, the conditions are
tested for counting the popularity of the
covering adcon for global register
assignment.

The adcon is not counted for any one of
the following conditions:

1. The •adcon• field of the EF is
x•aooo•.

2. The I/O flag, set by CEKKU, is on.

Section 5: Phase 3 121

3. The variable is an array variable.

4. The processing is in the first pass of
a subscript.

5. The operand is part of a normal
expression.

6. The EF entry is a function.

7. The triad entry is a removed
expression. "" _._

8. The triad entry is a common
expression.

If the triad is removable to level zero
and is occurring at level zero, the adcon
is counted when the expression occurs for
the first time. If it is not occurring for
the first time, the count is set to -5 to
reduce the previous count, since the expre
ssion will now be removed. CEKKO is used
to tally the popularity.

If the indicated operand is an operator
<other than a or ,>, it is checked for com
monality or removability. An expression is
considered removable if its removal level
is not greater than the current loop level.
If the removable expression has not expres
sion has not been named, CEKKK is entered
to give it a name. If the last-use f1ag
has not been set, it is now set. If the
forward compute point for the expression is
above the begin-loop-1 entry of the current
loop, CEKLE is entered to file a compute
and-remove table entry at begin loop 1 to
insure expression generation at the loop
top. The expression is replaced in the EF
by a residue in CEKLD. Finally, if the
expression is integer and not part of a
larger removable expression, it is tallied
by CEKKO as a candidate for global register
assignment.

If the expression is not removable, it
undergoes the following processing. If it
is named, no further processing occurs. If
this is the first occurrence, it is linked
into the JOINTE chain. This chain causes
the PF location to be stored in the last
occurrence field of the triad entry by
CEKKE. If this is not the first occur
rence, the next larger expression is
checked for commonality. If the larger
expression is connnon, the current expres
sion is not processed further except to
insure that it is in the JOINTE chain. If
the next larger expression is not common or
if this is its first occurrence, the cur
rent expression is checked by CEKKJ for
commonality. If the current expression is
common, it is named by CEKKK and the last
use bits are set.

Expressions involving the induction
variable are processed for removability in

122

a special manner. If the removal level is
higher than the current level, the expres
sion is not removable. If the removal
level is lower than the current level, the
expression is removable. If the removal
level is equal to the current level, anoth
er test is used to determine removability.
The forward compute point for the expres
sion is compared to the begin loop 1 PRF
location of the current level. If the FCP
is higher than or equal to BLl, the expres
sion is treated as removable. If it is
less than BLl, it is treated as a special
nonremovable.

CEKKJ -- Check Commonality

CEKKJ determines whether any entries in
the PRF between first and second occur
rences of an expression rule out their
being common. See Chart DJ.

ENTRIES: The entry point is CEKKJA.
Register P2 contains the ERF location of
the operator of the expression. Register
P3 contains the location of the triad entry
for this expression.

EXITS: There are two exit points from
CEKKJ. The •common• exit (KJ900) returns
with a return code of nonzero. The "not
common• exit (KJ950) returns with a return
code of zero. Registers P2, P3, P4, PS,
and P6 are returned unchanged.

OPERATION: This routine is entered if
there have been two occurrences of the same
expression, the current one is not remov
able, and the expression is unnamed. The
name field of the triad entry contains the
PF pointer to the previous occurrence
(which was inserted by the JOINTE chain at
the end of the processing by CEKKE>. If
the name field contains an X'8000', the
previous occ•.irrence is in the statement
currently being processed. In this case
the expressions must be common, so the
•conunon• exit is taken.

If the name field is not x•aooo•, the
pointer to the last label definition point
in the PF (LBDP) is compared with the PF
pointer to the last expression. If the
label pointer is higher, then a label has
intervened and the expressions cannot be
common. The •not common• exit is taken.

If the label pointer was not higher than
the PF pointer, the expressions still may
not be common if the end loop of an unsafe
loop intervenes between the two occur
rences. The end loop location <found in
the PLP Tables> of each loop in the current
nest is checked down to level zero. If the
end loop is between the two occurrences,
the •unsafe• flag of the PLP is checked.
If it is on, the •not common• exit is then
taken. If the flag is not on, the next

lower level is checked until an end loop
entry is found which is lower than the pre
vious occurrence (the level zero end loop
location will always be lower). Then the
•common• exit is taken.

CEKKK -- Establish Common Expression
Routine

This routine's purpose is to assign a
name to an expression, to put that name in
the previous occurrence that is common, and
to enter the name in the CRT at the forward
compute point. See CharL DK.

ENTRIES: The entry point is CEKKKA.
Register P2 contains the ERF location of
the operator of the expression. Register
P3 contains the triad entry location.

EXITS: Registers P2, P3, P4, P5, and P6
are unchanged.

OPERATION: Upon entry, CEKKK loads the
last assigned name from TENCSX and adds 1
to it to create a new name. The new name
is checked for a value greater than 4095.
If it is greater, the error exit is taken.
If the name has a value of 4095 or less, it
is stored in TENCSX as the new last-used
name.

If the QFLAG of the triad is zero or if
the name field of the triad is not x•aooo•,
the name contains a PF pointer to the pre
vious use of the expression. The pointer
is loaded in a register, and the expression
name is stored in the name field. Then
CEKIA is entered to mark the previous
occurrence as 'CSX' and •1ast-use.• If the
QFLAG is on or if the name field is
x•aooo•, CEKLA is not entered, because the
last occurrence is in the current
statement.

Upon return from CEKLA or if it was
skipped, the name flag is turned on in the
triad.

The forward compute point is loaded into
a register from the triad to file a compute
and removal table (CRT) entry at that
point. CEKLE is entered to file the CRT
entry. Upon return from CEKLE, the exit is
taken.

CEKLA -- Label common Expressions

When it is determined that an expression
is a common expression, this routine
locates in the PF the previous occurrence,
labels it •csx,• and marks it as last
usage. See Chart DL.

ENTRIES: The entry point is CEKLAA.
Register Pl contains a PF pointer for the
major operator of an expression containing
a common subexpression. Register P3 con-

tains the location of the subexpressions
TRIAD entry.

EXITS: Register Pl, P2, P3, P4, PS, and P6
are returned unchanged. There are no out
put parameters.

OPERATION: The location of the expression
in the EF containing the previous occur
rence is computed. A counter is started
with a value of 1. The ID of each EF entry
in the expression is checked, starting from
the right end <major operator> and going to
the left end. If the entry is a primitive,
the counter is reduced by 1, the EF loca
tion is reduced by 8, and the next entry is
checked. If the entry is a 'CSX' (common
expression), the count is increased by 1,
and the next EF entry checked.

When an operator is encountered in the
EF, the triad pointer saved in the EF
CEFTRD> is compared with the pointer to the
current triad. If they do not match, the
count is increased by 1 and the next EF
entry checked.

If the triad pointers match, the name is
moved from the triad to the EF. The ~opera
tion code in the ID field of the EF entry
is changed to a CSX Cthe type is reta,ined).
The last use flag is set in the triad and
in the EF.

There can be more than one occurrence of
the triad within an expression, if it is a
subexpression of two larger expressions
which are also connnon. Therefore, eci,_ch
expression must be scanned to the end:. The
end is reached when the counter is reduced
to zero. Then the exit is taken.

CEKLE -- File CRT Entries

CEKLE locates a previously filed entry,
if present, or files a new entry in the
compute and remove table. See Chart OM.

ENTRIES: The entry point is CEKLEA.
Register Pl contains a PRF pointer, indi
cating where the compute and remove point
is. Register P3 contains the location of
the triad entry.

EXITS: Registers Pl, P2, P3, P4, PS, and
P6 are returned unchanged.

OPERATION: The PRF pointer to the filing
location is converted to a hash table
index, by taking the PRF location module
1020. The chain from that hash entry is
followed until one of the following condi
tions exists:

1. An end-of-chain is encountered, which
causes the entry to be inserted as the
last entry in the chain.

Section 5: Phase 3 123

2. The same triad entry is found, which
causes an exit.

3. A PRF pointer is found that is less
than or equal to the indicated point
er. This causes the entry to be
inserted into the chain at this point.
The PRF pointers should be in descend
ing order as the chain is followed out
from the hash table.

CEKLD -- Expunge a Removable subexpression

This routine replaces a subexpression
with a series of null entries and one resi
due entry, indicating the expression by
name. see Chart DN.

ENTRIES: The entry point is CEKLDA.
Register P2 contains the ERF location of
the operator of the expression. Register
P3 contains the triad location. Register
P4 contains the OPTl entry location for the
expression.

EXITS: Registers P2, P3, P4, PS, and P6
are returned unchanged.

OPERATION: The count field from the OPTl
entry indicates the nwnber of EF entries in
the expression. This number is reduced by
1, multiplied by 8 (for eight bytes per EF
entry>, and subtracted from the •right-end•
location to give the •1eft-end• location.
These two locations are used as limits to
check the SERF chain for inserts. When the
insertion point into the ERF falls between
the two limits, that SERF entry is deleted
by relinking the SERF chain. When the end
of-chain is encountered, the ends of the
SERF chain are restored.

Each ERF entry in the expression is then
checked. If the ID indicates a residue,
the last use flag on the ERF entry is
checked. If it is on, the triad location
is loaded and the last use flag in the
triad is c1eared.

The ID is then set to null (zero>, which
causes CEKLF to skip the entry when copying
the ERF into the PF.

When the right end is reached, the ID is
set to a residue and the exit taken.

CEKKM -- Subscript Expression Revision
Routine

This routine's purpose is to revise a
subscript expression to include the address
constant as a term and to be optimal as
regards computation with loop variables and
removable expressions. See Chart DO.

ENTRIES: The entry point is CEKKMA.
Register P2 contains the ERF locations of
the first + operator encountered in the

124

subscript expression. Register PS contain~
the current OPTl entry location.

EXITS: Register P2 contains the ERF loca
tion of the first operand of the sorted
subscript expression. Register PS containE
the OPTl location for the first entry of
the sorted subscript expression.

OPERATION: This routine is entered when
the preliminary scan has reached the first
of a string of+ signs prior to the:. It
counts these to determine the range of the
expression to be revised, and the number of
operand entries in the OPT Table which are
involved. Then it sorts these entries in
OPT on removal level, loop variable indica
tor, and forward compute point. A new OPT
entry is preset for the new operand
(address constant). The entire Polish str
ing, including the preformatted address
constant entry, is copied into working
storage. From there it is copied back in
the new order, in blocks of operands .•

Each block consists of all operands with
the same removal level and loop variable
indicator. For each b1ock a string of +
signs with the maximum type code, is placed
in a pushdown list and copied into the
revised string to connect the operands
within that block. For each block, an
operator is set aside in a pushdown list:
the operator being ! if the loop variable
flag is raised, or + otherwise. The push
down list of block operators is moved into
the revised string when the removal level
drops below the current level, and the
pushdown list is reinitialized with the ?
operator. When a'!' operator is
selected, if a '?' has not been put on the
block operator list, then the induction
variable is the least removable term. If
the loop is innermost with no external
calls (i.e., the GLOBAL flag is on) a split
subscript is created. This is done by tak
ing the expression in the ERF which has the
form:

IVAR OPND2 *
where OPND2 can be a constant or an expres
sion, and changing it to the form

OPND2 ZERO

where ZERO is an ERF operand for the con
stant O. A '?' operator is then added to
the block operator list so that it will
split the removable parts of the expression
(e.g., the adcon) from the recursive. When
all blocks have been moved, the pushdown
list of block operators is moved into the
revised string.

CEKKA -- Acquire En~ry from Compute and
Removal Table

This routine locates one entry in the
compute and removal table which falls
within a given range of PRF location£, if
at least one such entry exists. See Chart
DP.

ENTRIES: The entry point is CEKKM.. Reg
ister P2 contains the location of a byte,
four bytes in front of a CRT pointer. Reg
ister P3 contains the hash table index of
the original entry point Calso in ·LOCHCR).
Register P4 contains the limiting rRF loca
tion. Register Nl convers the intercom
area, and register Ll covers the work area.

EXITS: If register P2 is zero, no valid
entry was found. Otherwise, register P2
contains a pointer to the CRT table.
LOCCRT contains the previously fo11nd CRT
entry (used for deleting>. Registers PS
and P6 are returned unchanged.

OPERATION: Upon entry, CEKKA saves the
register P2 in the cell LOCCRT Cthe proce
dure is also done when the routine loops
around). This is tne location of either an
HCRT entry or a CRT entry. (See nHash
Table for Compute and Removal Table and
Triad Entries•.) The location is used to
relink the chain and to delete an entry
from the CRT.

The pointer to the next CRT entry is
checked for an end-of-chain. If it is not
an end-of-chain, the location of the indi
cated entry is loaded into register .P2.
The forward compute point in the CRT entry
is compared to the limiting p~· location
<register P4). If the FCP is not higher
than the limiting PRF location, a legiti
mate CRT entry exists, and the exit is
taken.

If the FCP is higher than the limiting
PRF location or if the CRT pointer was an
end-of-chain, register P2 is set to zero,
so that any exits will indica.te "no valid
entry found.• The limiting PRF location is
converted to a hash index and compared to
register P3 in order to determine if the
search should be continued. If they are
equal, the limiting PRF location is checked
against the current PRF location, to deter
mine if the entire table should be checked.

If the limiting PRF location is within
1024 bytes of the current PRF location, the
search is completed and the exit is taken.
If not, the entire table must be searched.
In this case, or if the limiting hash index
does not equal register P3, register P3 is
checked to see if the top of the HCRT has
been reached (255). If it has, register P3
is set to zero, the bottom of the HCRT. If
not, 1 is added to the index to examine the

next hash entry. The index is then com
pared to the cell LOCHCR, which contains
the original index. If they are equal, the
entire table has been searched and the exit
is taken. If they are not equal, the new
HCRT location is loaded into register P2,
and the routine returns to the top to save
this value in LOCCRT.

CEKKB -- Polish Expression Generation
Routine

The function of CEKKB is to convert an
expression from triad table format to
expression file CERF) format to be placed
in the program file. It is used to reform
removed and loop control expressions. see
Chart DQ.

ENTRIES: The entry point is CEKKBA. Reg
ister P2 contains the location of the triad
pointer for the start of the expression.
Register P5 contains the location of the
current PRF entry. Register P6 contains
the location of the next available word in
the PF Cused to store the EF entries>.
Register Nl covers the intercom area, reg
ister N2 points to the first available word
in working storage, and L1 covers the:rwork
area.

EXITS: Register P6 points to the new; first
work in the PF. Register N2 points to the
new first word in working storage. R~gis
ters PS and Nl are the same as when ,
entered. Registers N3, L2, and P2 through
P4 are saved and restored. A pointer;. to
the last EF entry filed is in RMVAL.

Three error conditions are detected in
this routine:

1. overflow of the program file.

2. overflow of the working storage area.

3. An illegal type code in the symbol
table.

For all conditions, the standard Phase 3
error exit (CEKKRE) is taken.

OPERATION: This routine uses an operator
pushdown list CType 2) of its own to build
a left-hand Polish string from the triad
table entries. It follows the left COPl)
branch of each expression until a primitive
is reached, then it takes the first right
branch (OP2) above the primitive and
repeats. The output expression is formed
in the program file and is followed by a
field <RMVAL) which links it in a chain of
expressions connected to a BLl, BL2, or BL3
entry.

The dummy operator @, which is intro
duced for a constant subscript or an induc
tion variable outside a subscript, is

Section 5: Phase 3 125

deleted in this routine, and the two
operands <variable and adcon> are combined
to produce one variable entry in the
Polish. If the induction variable is rec
ognized (in a subscript, not under the @>,
it is replaced with the increment expres
sion, and, if that is a constant, the pro
duct of two constants is replaced with a
new constant.

When the right operand of a triad
flagged as 'split subscript' is recognized,
special processing takes place. As in
normal subscript expressions, the loop step
is introduced into the expression; constant
arithmetic being done #here required. If
the split subscript is also the 'BXLE on
recursive' candidate, the symbol table
pointer to the constant recursive step is
saved so that its GIRL entry can be deleted
by CEKKW.

For a special begin loop 2 entry (BL2GT
is on>, a dummy triad entry is built in
working storage and pointed to by a new
OPT2 entry. The program is repeated to
file a test expression in the EF.

CEKKO -- Save Popularity Counts for
Register Assignment

The function of this routine is to cre
ate new entries as needed in the list of
expressions to be considered for global
register assignments and to keep a popu
larity of usage courit. See Chart DR.

ENTRIES: This routine is entered at CEKKOA
with the following register assignments:

Pl Weight
P2 = Address of Triad entry, symbol

Table entry of Adcon, or expres
s ion name

P3 = Indicator (0 = Symbol entry, 1 =
Triad entry, 2 = expression name>

P4 Level in which the popularity is
to be counted.

EXITS: Registers PS and P6 a.re returned
unchanged.

The new GIRL entries are stored in work
ing storage. If working storage is over
flowed, the Phase 3 error exit is taken.

OPERATION: Upon entry CEKKO checks the
indicator in P3. If it is set to zero,
register P2 contains a symbol table pointer
which is to be saved. If the indicator is
set to 1, P2 contains a triad pointer. In
this case the triad location is computed,
and the name field is loaded into P2. If
the indicator is set to 2, the name is
already in P2. In both cases, a X'7000' is
added to the name, so that Phase 4 can dis
tinguish names from symbol table pointers.

126

The location of the PLP table entry for
the level given in register P4 is deter
mined. The GPLINK chain points to GIRL
table entries for the loop; this chain is
followed until an end-of-chain or until the
GLBL of a GIRL entry matches register P2.

If a match is found, the weight (regis
ter Pl) is added to the popularity count in
the GIRL entry, and the exit is taken.

If the end-of-chain is found, a new GIRL
entry is linked into the GPLINK Cit will be
the new end-of-chain). Register P2 is
stored as the GLBL, and the weight is
stored as the popularity count. The exit
is then taken.

CEKLB -- File Constant and Covering Adcon

The function of this routine is to file
a constant, compute and file its covering
adcon, and compute the displacement. See
Chart DS.

ENTRIES: The entry point is CEKLBA. · Reg
ister Pl contains the 4-byte address con
stant (adcon> to be filed in the symbol
table format of SLOC and storage class
(STCL). Register P2 contains either the
ERF location of where the adcon pointer is
to be stored or zero if the adcon pointer
should not be stored. Register P4 contains
the symbol table location of the original
entry for which the adcon is being filed.

EXITS: Registers P2, P4, PS, and P6 are
returned unchanged.

When the return code found in register
L3 in nonzero, and error occurred in the
executive subroutine. The Phase 3 error
e.xi t is taken.

OPERATION: Upon entry CEKLB saves the
storage class byte (STCL), which is assumed
to be the right-most byte of register Pl.
The parameter is put into an even-numbered
working register and shifted into the fol
lowing odd-numbered register, with the sign
being extended so that the SLOC value is
right-justified in the odd-numbered regis
ter. This value is now divided by the
value 4080, which represents the number of
bytes covered by an adcon. The result is a
page number in the even-numbered register
and a displacement in the odd-numbered reg
ister. If the sign of the resulting dis
placement is negative, the page number is
reduced by 1 and the displ~cement is
increased by 4080. If subscripts are being
processed CSWCHSB*O> or if the EF location
(register P2) is zero, the displacement is
not saved; otherwise, it is stored in the
indicated EF entry.

In either case, the page number is mul
tiplied by 4080, to compute the page bound-

ary location~ The result is the new SLOC,
which is shifted, and the saved STC!. is
inserted in the right-rr.ost byte. 'lhe
resulting word is stored in TECNSl for the
executive subroutine which is now ~ntered.
The executive subroutine checks the symbol
table, to see if an entry has already been
filed for the parameter. If one has not, a
new entry is created in the symbol table.

Upon return from the executive subrou
tine, the return ~oJl_e <register L3) is
tested. If it is nonzero, an error
occurred in the executive subroutine and
the error exit is taken. If the return
code is zero, the symbol table entry for
the parameter (input in register P4) is
checked to see if the item is a formal
argument. If it is not, the exit is taken.
If it is a formal argument, the cell TEGNU
in Intercom is checked. If TEGNU is non
zero, a new adcon was filed for the last
parameter. In this case, an entry is made
into the formal argument adcon table
(FAAT). The location of the next available
entry in FAAT is found in TEFAAT in inter
com. The adcon's symbol table pointer in
TEPNTR in intercom is moved to FAAT. The
STCL is moved from the argument's symbol
table entry to the FAAT entry. The FAAT
location is increased by four bytes, to
point to the next entry, and restored in
TEFAAT. The exit is then taken.

CEKLI -- Loop Test-Expression Generator

This routine generates the test expres
sion, used for determining the end of a DO
loop, by modifying the last recursive
expression. See Chart DT.

ENTRIES: The entry point is CEKLIA. Reg
ister P6 contains the EF point for the next
entry, register Nl covers the intercom
area, register N2 contains the next avail
able word in the work area, and register Ll
covers the PSECT •

EXITS: Register P6 points to the new next
entry in the EF; registers Nl, N2, and L1
are unchanged.

OPERATION: The location of the recursive
expression to be used for generating the
test expression is found in the word EFSAV.
It was saved as CEKKB regenerated the
recursive expression at the BL2 entry. The
form of the recursive expression is assumed
to be:

where

COPl) (OP2)

OPl can be a constant or an expression
OP2 can be an adcon, residue, expres

sion, or constant

The location given in EFSAV points to
the ! operator. By using a backward scan,
the start and end of OP2 are found and
saved. OPl is then copied into the EF, and
its last use flag is cleared in the origi
nal expression.

If the loop is not marked as BXLE on
recursive, a new term is inserted into the
expression to generate an expression of the
following form:

where

(Qpl) <r> * COP2) +
the ! l

[the + replaces

T is an expression of the form

U - L + S --s--
u = Upper limit
L = Lower limit
s = Step size

This routine will perform constant
arithmetic wherever possible to reduce the
T expression. The following cases a+e
considered.

1. L = Constant, U
Constant

A new constant,

t = U-L+S, --s-

Constant, S

is calculated. Two subcases then
exist:

a. If OPl is a constant, a new con
stant t 2 = t • OP 1 is formed,
filed in the symbol table, and
entered in the EF to replace OP1
forming

Ct2> (OP2) +

b. If OPl is not a constant, t is
filed in the symbol table and
inserted to form the expression

(Qpl) (t) * (OP2) +

2. L = Constant, u = Constant, s
Variable

A constant, t = U - L, is calculated,
filed in the symbol table, and
inserted to form

(OP1) (tS + S /) * (OP2) +

3. L = Variable, U = Constant, S
Constant

Section 5: Phase 3 127

A constant, t = U + s, is calculated
and filed in the_ symbol table. Two
subcases are considered:

a. If the step size is 1, the divide
is omitted to form the expression

(OP1) (t L +) * (OP2) +

b. If the step size is not 1, the
expression is

(OP1) Ct L + s /) * (OP2) +

4. L = Constant, u = Variable, s =
Constant

A constant, t = s - L, is calculated
and filed in the symbol table.

a. If step is equal to 1, the expres
sion formed is

COPl) CU t + 1MAX) * (0P2) +

b. If step is not equal to 1, the
expression is

(OPl) (U t + S / lMAX) * (OP2) +

5. L = Variable, u = Variable, s =
Constant

6.

128

a. If step is equal to 1, the expres
sion formed is

COPl) cu L s ++ 1MAX) * (OP2) +

b. If step is not equal to 1, the
expression generated is the same
as given in 6 (beloiV").

L Variable, u = Constant,
s = Variable

L = constant, u = Variable,
S = Variable

If

L Variable, U = Variable,
s = variable

The full expression is inserted to
form the expression

(OPl) (U I. s ++ s / lMAX) • (OP2)

the loop is marked as a BXLE on

+

recursive, the recursive expression has the
form:

constantl constant2

where constant1 is the value that is put
into register 14 by Phase 4, and constant2
is zero, the initial value of the
recursive.

The test expression generated has the
form:

constant3 U L + *
where constant3 represents a new constant
generated by dividing constant! from above
by the loop step.

When both the upper and lower values are
constants, the test expression is merely
one constant EF item.

In either case, an EF item for constant3
is created, and its pointer is set in the
INC field of the BL2. This is used by
Phase 4 when the loop is "materialized on
exit.•

An internal subroutine, SETUP, is
entered to generate an EF entry for each of
the three loop parameters. A flag is set
for each parameter, to indicate whether it
is a constant or a variable. These flags
are then tested to determine which case
exists, and the proper subsection is
entered to generate the test expression.

INTRODUCTION

The objective of Phase 4 is to produce
from the program file (PF), which is its
primary input, a representation of the
object program in a form very close to
machine code, the code file, which is its
primary output. Other output consists of
entries made in the symbol table; parameter
list entries and V/R adcon-pair entr~es
arising from external references; location
counter values associated with statement
labels; numeric constants filed as comple
ments of constants filed as complements of
constants referenced in the PF.

The major functions of Phase 4 are pri
marily oriented about source program state
ments and expressions as they are repre
sented in the PF. A documentation module,
or component, is associated with each of
these major functions.

PHASE 4 PROCESSING

Processing is directed by the phase con
troller CPHAS4), which simply performs a
single scan of the PF. During this scan
PHAS4 passes control to the particular PF
entry processor appropriate to the identi
fication of each PF entry encountered. Its
sole functions are to perform this scan, to
select the processors, and to terminate
Phase 4 processing when the end program
item is encountered in the PF. The follow
ing list indicates the relationship between
the source language statements and the PF
entry processing routines:

Routine
Name
E~

LABEL

EQUAT

AIF

source Language Features
Processed

Main program or subprogram main
or alternate entry -- entry pro
logue generation.

Source- or compiler-created
statement label.

Arithmetic statement.

Arithmetic IF statement.

LIF Logical IF statement.

GOTO Unconditional GO TO statement.

ASSIGN ASSIGN statement.

AGO Assigned GO TO statement.

CGO

CALL

RTRN

BLl

BL2

BL3

END LP

RD

OLIST

NDLST

STOP

SECTION 6: PHASE 4

Computed GO TO statement.

CALL statement.

RETURN statement.

DO statement

All I/O statements. Generate
transmission initialization call.

Piny I/O statement that includes a
list. Generates list element
transmission call(s).

Any I/O statement that includes a
list. Generates termination
call.

STOP and PAUSE statements.

A major component of Phase 4 is the
arithmetic generator, AGEN. Its function
is to generate code to evaluate the expres
sions that are represented in the PF. AGEN
is called to process the operands of any PF
statements which may reference either gen
eral arithmetic expressions or subscript
expressions.

AGEN is primarily a control routine
which directs the activities of expression
operator generating routines. These lower
level routines are tailored to process
specific arithmetic operators, or even
specific operator/type combinations. These
routines, as well as the higher level PF
entry processing routines, make use of a
collection of service routines, which are
cate<Jorized and whose functions along with
those of the higher level routines are sum
marized below.

EXPression Generator Control Routines
AGEN Expression generator control.
TRBLD Expression tree formation.
WGHT Order of evaluation determination.
CSX Common expression usage count

determination.

Expression Operator Generating Routines
RPLUS Real addition and subtraction.
RMtJL Real multiplication.
RDIV Real division.
IPLUS Integer addition and subtraction.
IMPLY Integer multiplication.

Section 6: Phase 4 129

IDVDE
LAD DR

CPLUS
CMUL
CDIV
RLTNL
ANDOR
MAX
FUNC

COMMA

DCOM

OPEN1} OPEN2
OPEN3
OPEN4
OPENS
OPEN6

Memory
MEMAC
COVER
SAD DR
LBL
FETCH

Integer division.
Special addition by means of LA
instruction. -
complex addition or subtraction.
Complex multiplication.
Complex division.
Relational operations.
Logical operations.
Maximum and minimum operations.
External function reference
operations.
External function argument
processing.
Open function processor selector.

Inline Copen> function
processors.

Reference Covering Routines

Operand~Ref erence Optimizing Routines
SELOP
SLPOS
SLONE
SELGM
SELGD

Operand Locating Routines
KEY
KEY1
FNDAR
FNDFR

Operand-Usage Processing Routines
OPND
RSLT

Register Selection Routines
SELSR
SELDR
SELFR

Register Assignment Routines
ASAR
ASARS
ASFR
ASFRS

Temporary storage Allocating Routines
FNDWS
RLSWS

Miscellaneous Routines
INS OT
FLUSH
EDIT

130

Expression Generation

The first stage of expression generation
converts the expression form, in which each
binary operator is preceded by first its
left and then its right operand, to a tree
form Csee Figure 24). In expression form
the relationship between operator and
operand is implicit in the ordering of the
expression. In tree form the relationship
is made explicit by linking each operator
to its operands with explicit address
pointers. The tree is also backlinked so
that each nonprimitive operand <operator>
is linked to the operator upon which it
depends. The tree is now equivalent to a
push-down table with space at each level
<tree node) to record information about the
generation status at that node.

During the process of conversion to tree
form, conversion function operations are
introduced, where necessary, to obtain type
compatibility between the operands of cer
tain of the operators. This is done to
reduce the number of individual cases pre
sented to the expression-operator
generators.

When the expression tree has been
created, the order in which the component
operations of the expression are to be
generated is determined. The language
rules require that expressions be asso
ciated from left to right. This associa- -
tion is explicit in the expression form
input to Phase 4, and converting to tree
form does not change this association.
However, it does allow easy change in order
of computation at any level in the tree.
For example, consider the expression

(A*B} + (C+D)

which is represented by Phase 1 as

AB*CD++

If generation is to proceed directly
from the latter, the easiest and most
natural way to proceed would be first to
compute A*B, then C+D, and then to add the
two partial results. However, the language
does not require this ordering.

The expression in tree form is written

A B c D

VARIABLE OR CONSTANT

0 4 8 10 12 14 16

Word 1 ID TYPE u F F F F F :\ Symbol Table Pointer
6 5 4 3 2

l

0 16 20

0 I ADC ON

I
0 I Displacement

OPERATOR

0 4 8 10 12 14 16

0

2

0

OP

0

0

ID

TYPE

Figure 24.

BLINK

16

LOP ROP

8 11 13 15 17

REG
MMR R Priority Number or

s s 0 Weight

16 20

ADC ON Displacement

identifies the Tree Table entry :

1 = Operator
2 = Common Expression
3 = Adcon
5 = Variable
6 =Constant
7 =Function
8 =Residue

identifies the entry type:

1 = Logical *1
2 = Logical *4
3 = Integer *2
4 = Integer *4
5 = Real *4
6 = Real *8
7 = Comp lex *8
8 = Complex *16

Expression Tree

31

31

Word

31

31

31

FUNCTION

0 4 8 10 12 14 16 31

ID TYPE u
F F F F FIF Function Number of
6 5 4 3 2r Symbol Table Pointer

COMMON EXPRESSION

0 4 8 10 12 14 16 31

+I TYPEI
u l:J~l*l*I BLINK

0 16 31

21 LOP ROP

0 8 16 31

OP Unassigned Weight

0 16 31

01 ~-----N--A_M_E--Ta_b_l_e_P_o_i-nt_e_r ____ .._ _______ u_n_as_s_i_g_ned ________ __.

RESIDUE

0 4 8 10 12 14 16

ID TYPE u F F F F F F
NAME Table Pointer

6 5 4 3 2 1

u unassigned

F6 Vo flag

FS use secondary temp.

F4 examined

F3 weighted

F2 computed

Fl sign

BLINK link to first byte of operator of next
node up {back-link)

LOP link to first byte of left operand

ROP link to first byte of right operand

OP operator code

REG register (if R = l)

M in memory

MS memory sign

in register

RS register sign

Section 6: Phase 4

31

131

Given this form, with direct address
links as indicated, it is no easier to com
pute first along one -branch ~f the highest
level operator than it is along the other.
Thus, this representation allows a choice
of order of computation based upon criteria
which are designed:

1. To minimize the numbers of active par
tial results and thereby to use fewer
registers.

2. To favor computation of denominators
before numerators in order to avoid
unnecessary loads and stores.

3. To compute first along paths contain
ing function references so as to mini
mize the possibility of having to
store partial results Which are in
registers volatile with respect to the
function calls.

The order of computation is determined by
the routine WGHT which assigns at each tree
node a priority number (or weight) and
records it in the tree.

Starting with the major operator of the
tree, AGEN examines the left and right
operands. If neither is primitive Ca vari
able, a constant, or an already computed
operator>, the link is followed from the
operator to its higher weighted operand.
If the weights are equal, then arbitrarily
the left link is followed. This new, lower
level, operator is then examined in the
same manner. If at any time only one
operand is primitive, the other link is
followed. The search is concluded when an
operator with two primitive operands is
found. At this point generation for the
operator proceeds.

The operator code and expression type
are used to select an expression-operator
generator, and the appropriate module is
invoked.

The expression-operator generator is
tailored to the operation to be performed
and to the types of its operands, with con
sideration given to the location of
operands <in registers or storage); the
requirement for even/odd register pairs;
the availability of the register containing
an operand; the selection of which operand
register is to contain the result; etc.
Lower level routines are invoked for
various functions: to select registers; to
determine when operands are no longer
needed and to free the registers in which
they reside; to protect an operand by mov
ing it to another register before the con-

132

tents of the former register are altered;
to assign temporary storage and store
operands in temporary storage for later
use; to obtain cover for and assign B2, X2,
and D2 instruction fields for storage
references to operands; to record the loca
tion of the operation result for later
reference in generation; etc.

When the expression-operator generator
has completed its task, it returns control
to the arithmetic expression generator,
which marks the tree node •computed"
<primitive).

The subscript connector (:), open func
tion argument connector <,,>, recursive
operator(!), and base/index connector(?)
require no generation, and the tree node at
which one of these occurs in simply marked
"computed•. The back-link is inspected
next. If it is null (zero), generation is
complete and return is made to the module
that called the arithmetic expression·
generator. If the back-link is not null,
it is followed to the next higher level
operator, from which point generation pro
ceeds as above.

Expression Storage

Whenever a noncommon operation is com
plete, whenever a noncommon operand is
loaded into a register without the inten
tion of immediately operating upon it, or
whenever a quantity is stored in temporary
storage, a record of the transaction is
made. If the operand is being loaded into
a register, the corresponding register
number is recorded at the appropriate node
of the expression tree. If the operand is
being stored, the temporary storage assign
ment is recorded in the tree. Note, howev
er, that such information concerning
variables and constants is not recorded in
the tree. Thus, the expression tree con
tains the current location of any computed
noncommon partial result.

Common-Expression Storage

Whenever a transaction such as the above
involves a common expression, the transac
tion record is made in the Name Table
(Figure 25). Each common expression has a
name (number) which is its identification.
Associated with each distinct common ex
pression is a Name Table entry which is
used to record the location of the common
expression in the same way that the expres
sion tree is used to record the location of
noncommon expressions.

0 2 4 6 8 12 14 16

s
Word 3 u C T

GC S l REG MM
0 E u s

0

21

0

legend

u
co
STEP
G
c
s

p

ADC ON

Secondary temp ADCON

unassigned
Operator is a colon
loop increment
globally assigned
computed
secondary temp assigned

RR
s

I

16

0

16

0

LU
REG
M
MS
R
RS

CSX USAGE COUNT

20

I
20

Displacement

Displacement

last use
register (if R = l)
in memory
memory sign
in a register
register sign

NLNK link to loop Table entry of last use of recursive increment, if
applicable; otherwise, zero.

TYPE EF Type Code

Figure 25. Name Table

Register Storage

31

31

I
31

Two tables are used to keep a running
record of the contents of the arithmetic
registers. The MRM table (Figure 26) con
tains one entry for each of general regis
ters 1 through 15 <since general register 0
is used simp1y as a transient register and
its contents are never retained, this reg
ister is not represented in the MRM table).
The MRMFR table (Figure 27) contains one
entry for each of the four floating-point
registers. MRM is the symbol applied gen
erically to the register tables, and often,
when no confusion can resu1t, MRM is used
interchangeab1y for .MRM and MRMFR.

The two tables have generally similar
structures. The first word of each entry
contains two status indicators, the first
of which indicates whether the register is
available for selection. The second indi
cator records whether or not the general

register is globally assigned over the
scope of a DO loop, or whether or not a
floating-point register CO or 4) is linked
as a complex quantity pair to the next
higher register. This first word applies
to the register as a whole.

Word 2

Word l

Word 0

I
I

0 78 15 16

MRM3 LINK

MRMDIS
Displacement

31

M
G
B
L

I I
L--------------~
I I
I I
I I
1---------------1
I I
I I
1----------- -----'
I I
I I
I . I
1---------------1
I I
I I
I I ,----------------,
I I
I I
L _____________ _J

Legend

MSL 0 = Selectable
1 Nonselectable

MGBL 0 = Nonglobal
1 = Global

MRM2 ID

.MRMI'YP EF rype Code

BUSY 0 = Inactive
1 Active

MRM6 0 True Sign
1 Negated

Initial
Entry

First
Synonym
Entry

Second
Synonym
Entry

Third
Synonym
Entry

Word 2 occurs once for each general regis
ter. Words 0 and 1 occur four times for
each general register.

Figure 26. MRM Table

Section 6: Phase 4 133

Word 2

0

0

I
I

7 8 15 16

MRM3 LINK

MRMDIS
Displacement

31

I I
I I
r----------------~
I I
I I
I I , ________________ _j

I I
I I
I I
f--------- -- ------I
I I
I I
I I
,----------------!
I I

I I
I I
~--------------~

I I
I I
L- ------ ________ __J

Legend

MSLF 0 Selectable

Initial Entry

First

Synonym
Entry

Second
Synonym
Entry

Third
Synonym
Entry

1 = Nonselectable

MRMFL 0 = Not Linked
1 = Linked

MRMF2 ID

MRMTYP EF Type Code

BUSYF 0 = Inactive
1 = Active

MRMF6 0 = True Sign
1 = Negated

Word 2 occurs once for each floating regis
ter. Words 0 and 1 occur four times for
each floating register.

Figure 27. MRMFR Table

Next, for each entry, is a set of four
pairs of words; the first pair is called
the initial entry and the rest, synonym
entries. The initial entry may or may not
be active; but, whenever there is at least
one active synonym, the initial entry is
active. Whenever a quantity is loaded into
and assigned to a register, or computed in
and assigned to a register, a record is

134

made in the initial entry of the appropri
ate MRM table entry to indicate the pres
ence of the assigned quantity in the corre
sponding register. Synonym entries are
sometimes made for quantities which appear
on the left-hand side of arithmetic state-·
ments. Consider, for example, the sequence
of statement:

1 A= B
2 C A
3 D B

The quantity B is loaded into some reg
ister, and an assignment for B is recorded
in the initial entry of the corresponding
MRM table entry. The store into A causes
the insertion of A into the first synonym
entry. In statement 2, A is found to be in
a register, so no load is generated, simply
a store into c which ·is then recorded in
the second synonym entry. In statement 3,
B is found to be in a register so a store
into D is generated, and D is recorded in
the third synonym entry.

When an attempt is made to record a
fourth synonym, the first Coldest) synonym
entry is erased, the remaining two are
moved up one slot, and the new synonym is
recorded in the third synonym position.
The initial entry is never changed by this
procedure.

Whenever a quantity which has a current
MRM table entry changes value, the corre
sponding position of the appropriate entry
is vacated. If an initial entry thus
becomes empty, the first active synonym is
installed as the initial entry; or if there
are no active synonyms, the MRM entry
becomes empty.

General Register Selection

The general registers are used to con
tain virtual storage addresses and to per
form address arithmetic and integer, logi
cal, and relational computations. General
registers 1 through 11 and 14 and 15 are
treated as equivalent for purposes of reg
ister selection, with the single exception
that if there is no other basis upon which
to make a selection, the lowest numbered
available register is selected arbitrarily.
General register 13 is used to cover the
first page of the object program PSECT
<sometimes called the adcon page>, and gen
eral register 12 is used to cover local
temporary storage. Both of these registers
are made unavailable for any other use
simply by raising their MSL and MGBL flags
in the corresponding MRM Table entries.
General register 0 may be used in the nor
mal way as a member of the 0/1 register
pair, but register 0 itself may never be
selected or assigned. It is used only in
extremely local context.

In certain situations use of registers
1, 14, and 15 is r_estricted. For example,
when at the top of a DO loop an address
constant must be loaded into a register and
assigned globally to that register over the
scope of the loop, none of these three
registers is selected because of its spe
cially required use in the subroutine link
ages. otherwise, the register selection
routines make their selection on the basis
of the register contents.

The general criteria for selection of
registers involve the relative cost of hav
ing to reload the quantity which is in the
registers at the time of selection. Clear
ly, if a register is empty, it is a prime
choice for selection. In turn a register
which contains a constant whose absolute
value is less than 4096 and which therefore
may be reconstructed with a relatively fast
IA <load address) or SR <subtract register>
instruction is likewise a good selection.
On the other hand, registers which contain
partial expression results (opE;rators) are
the poorest choices since they must be
stored in temporary storage and later
fetched from there. A register which con
tains an unstored common expression is a
somewhat better choice, since while the
partial result is known to be last used in
the current expression, the common expres
sion has more than one use and may there
fore have to be stored eventually, so that
not storing it now may only be postponing
the inevitable.

The general register selection routines
apply these criteria by determining the
contents of each register by an examination
of its corresponding MRM table entry. A
weight is assigned to each register accord
ing to those criteria, and the register
with the highest weight is selected.

Storage Reference Processing

Cover is obtained for storage references
(simple and subscripted variables, con
stants, and temporaries) and most branches
by one of two subroutines: !'..E~AC and
COVER. MEMAC is a more general routine
which is used to obtain cover for a
reference to any given expression tree
quantity. COVER is used in situations
where it is known that all that is needed
for cover is an adcon, and the symbol table
pointer for the adcon is at hand.

consider first the expression A+B in
which neither A nor B is in a register and
which is represented in expression tree
form as:

+

/~
A B

The plus generator first selects a
floating-point register, say 4, in which to
perform the addition. It then requests
from MEMAC cover for A. The latter routine
recognizes that the operand is a variable.
It obtains the adcon pointer from the vari
able item and searches the MRM table for a
register containing that adcon. If one is
found, the values X2 = O, B2, and D2 are
returned, where B2 is the register and 02
is the displacement indicated in the vari
able item. If the adcon is not in a regis
ter, MEMAC selects one and loads the adcon
into it. It then returns X2, B2, and 02 as
above.

The plus generator will now generate the
instruction

LE 4 , 02 (0 I B2)

MEMAC is then entered to obtain cover for
B. In similar fashion it returns new
(although possibly the same) values of B2
and 02, and the plus generator produces

AE 4 , 02 <O, B2)

consider next the expression X + Y<I>
where X and Y are of type REAL*4, Y .. is an
array, and I is neither a loop index vari
able nor removable from a DO loop. The ex
pression is represented in the expression
tree as:

4

where the effective displacement, D2, is
given in the variable item Y, and the rest
of the storage assignment and subscript
off set has been subsumed in the item indi
cated by •adcon•. It should also be
pointed out that if generation is now tak
ing place for the plus operator, generation
of all lower level operations has taken

Section 6: Phase 4 135

place -- in particular, the formation of
the product 4•I.

MEMAC is first asked for cover for X
which -- as before -- results in generation
of, perhaps,

LE 2,D2(0,B2)

where D2 plus the contents of B2 is the
address of x.

Then MEMAC is asked for cover for the
right operand of the plus, the subscript
connector C : operator> • MEMAC looks
beneath the colon and finds a base/index
connector <? operator>. Each of the
operands of the ? operator is now indivi
dually obtained in general registers, eith
er by locating the quantity in a register,
or by selecting a register and loading the
quantity as above. D2 is obtained from the
variable item Y, and the registers contain
ing the left and right operands of the ?
operator are returned as X2 and B2, respec
tively. The plus generator now completes
the addition by generating

AE 2, D2(X2,B2)

Subscripted variables containing only
expressions that are removed from and com
puted outside a DO loop have the form

Variable Expression

where the right-hand operand of the colon
operator is the removed expression. In
this case, the expression is not introduced
by a ? operator, and MEMAC simply ensures
that the expression is in a register, as
above, and returns D2 from the variable
item, X2 = O, and B2 as the register con
taining the removed expression.

DO Loop Processing

The generation associated with DO loop
control, removed expressions, and recursive
expressions is governed by the begin loop
1CBL1), begin loop 2 (BL2>, begin loop 3
CBL3), and end loop PF items. The pro
cesses performed and the code generated at
BLl. and BL2 are •out of the loop•; that is,
they are considered as loop initialization
and are performed only once prior to entry
to a loop, not each time through the loop.
BL3 and end loop mark the scope of the
loop, and any code generated or processing
done therein is considered to be within the
loop.

136

The BLl entry contains a list of as many
as eight quantities Cadcons or common ex
pressions> that are to be globally assigned
to.general registers across the upcoming
loop. This list is scanned and transcribed
to the current level of the loop push-down
table, or loop table <see Figure 28). Dur
ing this process, for each entry which is a
common expression, the G (globally
assigned) flag of the corresponding name
table entry is set.

After the global assignment list has
been transcribed to the loop table, a
second list is scanned. This is a linked
list of removed, nonrecursive common ex
pressions in the PF. Each of these expres
sions is presented to the arithmetic ex
pression generator for processing. This
generation completes the processing at BLl.

The processing at BL2 generates the com
putations associated with recursive expres
sions, assures that all quantities which
are to be globally assigned in the loop are
now in registers and globally assigned, and
clears register storage in all registers
which contain quantities not to be globally
assigned. If any such quantity is not also
in storage (not a variable, constant, sub
scripted variable, or a previously stored
common expression>, temporary storage is
obtained, and the quantity is stored.

Recursive expressions are those whose
highest level operator is the recursive
operator (!). A recursive expression is a
constituent of, or perhaps all of, an
effective relative address. The recursive
operator has been introduced in a subscript
expression in place of any + operator whose
left-hand operand is a function of a loop
induction variable. At the same time, the
occurrence of the induction variable has
been replaced by the induction variable
increment size specified in the correspond
ing DO statement. The recursive expression
is to be initialized outside the loop and
incremented after each pass through the
loop. The recursive operator has the pro
perty that its right-hand operand is the
initial value of the corresponding recur
sive expression, and its left-hand operand
is the increment to be applied to the ex
pression at the end of the loop.

A loop table entry is made for each
recursive processed at BL2. The entry con
tains the name of the recursive Cthe recur
sive is always a common expression> and an
expression-tree-like item representing the
increment to the recursive entry. This
information is retrieved from the loop
table at the loop end in order to increment
the appropriate recursive expression.

One block
per loop level

TEMPI

LLINK

LLABL

LIVA

LIVS

LINCD

~ ,w;...

LTESTA

LTESTS

LPGRI

LPGR3

LPGR5

LPGR7

16 31

ACN

LRCSV

~~1~1~_mQrn~
LIVD

LINCA

LINCS

LTESTD

LOADF

LPGR2

LPGR4

LPGR6

LPG RB

31

31

31

31

Word II

10

Word 2

Word I

Constant

Variable

WordO

Word 1

Operator

Word 0

Word 1

Common

Expression

Word 0

Figure 28. Loop Table

Legend for Figure 28

TEMPl

LLINK

LRCSV

LLABL

Byte number of lowest temporary
assigned at next outer DO Loop.

Link to Loop Table entry for next
outer DO Loop.

Number of recursive expression to
be incremented at this end DO.

Symbol Table pointer to compiler
created label marking beginning of
DO scope. Not applicable to level
zero loop.

FLAGS

Mask
value

LMTRZ X' 01'

MTZEX X'02'

RCSV X'04'

X'08'
BTR X'lO'

GBL X'20

TEMP X'40'

X'80'

Meaning

Loop variable material
ized; there is no test
expression. Otherwise,
loop variable not materi
alized; last recursive
expression is followed by
a test expression.
Loop variable is to be
materialized (calculated)
on exit from loop.
BXLE on recursive. Loop
controlled at loop bottom
by BXLE instruction.
Not used.
Loop controlled at loop
bottom by BCTR
instruction.
Registers 14 and 15 may
be globally assigned over
loop. Loop bottom
instruction will be BXLE
1,14,d (B1).
Registers 14 and 15 must
be put in temporary
storage before loop is
entered, and must be
restored at loop bottom
before the BXLE 1,l,.4,d
<Bl) is generated.':
Not used.

LIVA Loop variable covering-Adcon
pointer.

LIVD Loop variable 02 field.

LIVS Loop variable Symbol Table pointer.

LINCA Variable or constant increment
covering-Adcon pointer.

LINCD Variable or constant increment 02
field.

LINCS Variable or constant increment Sym
bol Table pointer.

LTESTA Variable or constant upper limit
covering-Adcon pointer.

LTESTD Variable or constant upper limit 02
field.

LTESTS Variable or constant upper limit
Symbol Table pointer.

LPGRl Up to 8 globally assigned
quantities.

Section 6: Phase 4 137

LPGR8
LPGRi = 8000 marks end of list.

LPGRi<7000 indicates Adcon Symbol
Table pointer.

7000<LPGRi<8000 indicates common
expression whose name is
LPGRi-7000.

LRNAME common expression name of recursive
expression.

LlD

1
2 =
5 =
6

ID of increment or test expression:

Operator
Common Expression
Variable
Constant

LTYPE Type of increment or test
expression:

3 = Integer•2
4 = Integer•4

LSYM Symbol Table pointer of variable or
constant increment.

LCON Symbol Table pointer of Adcon cov
ering constant or variable incre
ment or temporary assigned to
increment or test expression.

LOIS 02 field for variable, constant, or
temporary reference.

s Tree sign of increment or test ex
pression operator at creation of
expression.

LNAME Name of increment or test expres
s ion if a common expression.

L L = 1 if last use of increment or
test expression was encountered
prior to Loop end; otherwise, L
= o.

When the recursive processing is com
plete, the BL2 PF entry is examined to
determine whether materialization of the
loop induction variable is required. Such
materialization implies that the value of
the induction variable will be maintained
in the storage location assigned to it. If
materialization is indicated, instructions
are generated to load the initial value of
the induction variable into a general reg
ister and store it into its assigned loca
tion. Symbol Table pointers to the induc
tion variable, increment quality, and upper
limit quantity are now recorded in the
appropriate loop table fields.

If materialization is not indicated, the
arithmetic expression generator is called
to generate the •test expression.•

138

It is assumed that whichever recursive
expression has been processed last will
also be processed last at the end of the
loop <incremented there>, and that this
recursive will be tested against the test
expression to determine whether the loop
has been traversed the requisite number of
times. The information identifying the
test expression is added to the loop table
following the entry for the last recursive
expression, in just the same manner.

Next, any quantity to be globally
assigned over this loop and not already so
assigned is processed. If it is already in
one of general registers 2 through 12, the
corresponding MRM table entry is marked
"globally assigned•. If it is in some
other general register, or not in a regis
ter at all, then one of the registers 2
through 12 is selected and made available,
and the quantity is loaded into the
selected register. Finally, all the
floating-point registers and any general
registers that are not now globally
assigned are stored and cleared if their
contents are not already in storage, or are
cleared, otherwise. This completes the
processing at BL2.

At BL3, four tasks are performed.
First, the compiler-created statement
label, uarking the first instruction inside
the loop, is placed in the code file and is
identified by an entry in the loop table.
Second, the arithmetic expression generator
processes any expressions (dependent upon
the induction variable) which may have been
removed to BL3. Third, any temporary
storage locations assigned at this loop top
or at the next higher level are protected
from reuse within the loop. Finally, the
loop table is •pushed downn one level,
ready to record information about any inner
loop that may be encountered.

When an end-loop item is encountered in
the PF, the loop table is •popped up• one
level so that the information regarding the
loop now ending is once again in evidence.
Instructions are generated to increment
each recursive expression listed in the
loop table entry by the amount specified
therin. Next, the end-of-loop test is
generated. If materialization was required
for this loop, instructions are generated
to increment and test the induction vari
able and to branch conditionally (BNL) to
the loop top. If materialization was not
required, the last recursive incremented is
now tested against the test expression, and
a conditional branch CBNE) to the loop top
is generated.

Next, the global assignment list is
scanned, and for each entry the global
assignment flag of its corresponding MRM
table entry is cleared. Finally, all tern-

poraries assigned to tne next outer DO
level and released-within the loop now end
ing are made available for reassignment.

ROUTINE DESCRIPTIONS

Phase 4 routines bear mnemonic titles as
well as coded labels. The 5-character
coded labels begin with the letters CEK;
the fourth and fifth letters identify a
specific routine. Most routines have only
one entry point; for those that have mul
tiple entries, both the coded labels and
the mneIIDnics are given for the alternate
entries. Any mnemonic name beginning with
the letters TEV refers to an Exec routine
or entry point, rather than to a Phase 4
routine. The corresponding coded label is
given in parentheses immediately following
the mne11Dnic.

There are no hardware configuration
requirements for any Phase 4 routines. All
these routines are reentrant, nonresident,
nonprivileged, and closed. All except
Phase 4 Master Control CCEKNX) use the
restricted linkage conventions. Return
codes and output parameters, if any, are
noted in the routine descriptions that fol
low Table 24.

The relationships of routines constitut
ing this phase are shown in the following
nesting chart (Figure 29) and decision
table <Table 24). rhe relationships are
shown in terms of levels; a called routine
is considered to be one level lower than
the calling routine. Phase 4 Master Con
trol is considered to be level 1.

Section 6: Phase 4 139

~ "'lj LEVEL
~ ..,.

l [
0 l.Q

c:: I PHAS4
I"!
Cl)

I\.)
\Q .
tog

f~~ I I NDLST I I a I 0 I EJ I 8 I EJ ~ I I GOTO! I I AGO I I I LABEL en
Cl)

~

z I I RD I I 011sr I I I I AIF I I I Bll I I BL3 I I I EQUAT I I ASSGN I I ENDLP I I STOP
Cl)
Cl).
rt" ..,.
::s

l.Q

()

3 [

::r

B I AGEN I I ASARS I B Ill
I"!
rt"

IPLUS RPLUS AN DOR RLNTL RMUL IDVDE CDIV COMMA·

4

LAD DR CPLUS MAX IMPLY CMUL RDIV FUNC

I SELGD I I SLONE I I OPENl I I I OPEN3 j I I OPENS I I I FETCH

51

[o;EN2 [~ a EJ I OPEN4 j I OPEN6

L

,..

~ B B B B I MEMACI B I SADDR I 61 I SELGM I ~ L

J I OPND I I FNDER I I COVER I L

a [B EJ I RLSWS I I FNDAR I

9 [I FNDWSI B EJ

Table 24. Phase 4 Decision rable (Part 1 of 12)

Routine:----------~-Phase 4---Level: l------------
r-------T--------------------------T--------T---1
I I I KOUtines I I
I Routine! Usage I Called I calling Conditions I
r-------+--------------------------+--------+---~
PHAS4 Phase 4 master controller (:SNT ITo generate main program, subprogram, or I

I I entry prolo:Jue. I
ILABEL ITo process Statement Label definition. I
IEQUAT ITo generate for arithmetic statement. I
I GOTO I To generate unconditional GO TO. I
AGO I To generate assigned GO TO. I
CALL I To generate CALL. I
RTRN ITo generate epilogue. I
BLl I To generate removed expressions. I
BL2 ITo generate recursives and make global I

I assignments. I
BL3 I To generate DO 1oop top. I
ENDLP (To generate for end of DO loop. I
OLIST (To generate for I/O list. I
NDLIST ITo generate for end of I/O list. I
RD ITo generate for I/O initialization. I
INSOT ITo make code file entry. I
CGO ITo generate computed GO TO. I
ASSGN !To generate ASSIGN. I
AIF ITo generate arithmetic IF. I
LIF !To generate logical IF. I
STOP I To generate STOP and PAUSE statements. I
TEVRDM I To issue diagnostic message. --1

-------L--------------------------i--------i---J
Routine:------------Phase 4---Level: 2----------~~

r------~--------------------------T--------T---1
IENT !Generate main program, IINSOT ITo make code file entry. I
I I subprogram, or entry I LBL I To generate for branch to label. I
I I prologue. I LINK I To generate load of V /R Adcon pair. I
I I ISELSR jTo select single general register. I
I I I ASAR I To assign a general register. I
I I I FNDAR I To search general register table. '"I
I I ITEVI4 (To file an INTEGER*4 constant. I
I I f TEVFL4 ITo file an address constant. I
t-------+--------------------------+--------+---~ I LABEL I Process Statement Label I INSor I To make code file entry. I
I I definition. IFLUSH fTo reset and/or transfer register table I
I I I I entry. I
r-------+--------------------------+--------+---~
EQUAT Generate for arithmetic I AGEN I To generate expression.

statement. ISELSR ITo select single general register.
f SELFR (To select single floating register.
IMEMAC ITo get cover for storage reference.
IEDIT fTo set comment item for code file.
I ASAR I To ass~gn a general register.
f ASFR f To assign a floating register.
IASARS ITo assign a general register synonym.
f ASFRS fTo assign a floating register synonym.
I OPND I To process operand.
f INSOT JTo make code file entry.
IKEY1 f To determine status of single operand.
ITEVI2 f To file an INTEGER*2 constant.
ITEVI4 !To file an INTEGER*4 constant.
ITEVR4 f To file a REAL*4 constant.
ITEVR8 ITo file a REAL*8 constant.
ITEVC8 ITo file a COMPLEX•8 constant.
(TEVC16 (To file a COMPLEX*l6 constant.

-------i--------------------------i--------L---

Section 6: Phase 4 141

Table 24. Phase 4 Decision Table (Part 2 of 12)

Routine:------------Phase 4---Leveli 2-CCont'j)---
r-------,---------------------------T--------T---1
I I I Routines I I
IRoutinel Usage !Called I Calling Conditions I
r-------+--------------------------+--------+---~
!GOTO !Generate unconditional IINSOT I To make code file entry. I
I I GO TO. ILBL jTo generate for branch to label. I
~-------+--------------------------+--------+---~
IAGO !Generate assigned GO TO. ISELSR jTo select single general register. I
I I ._ -- !COVER jTo load specified Adcon into any general I
I I I I register. I
I I IINSOT fTo make code file entry. I
~-------+--------------------------+--------+---~
ICGO IGenerate computed GO TO. IINSOT fTo make code file entry. I
I I I FNDAR I To search general register table. I
I I ISELSR f To select single general register. I
I I I MEMAC I To get cover for storage reference. I
I I I AGEN I To generate expression. I
I I I SADDR I To get local branch cover. I
I I I TEVFL4 I To file an address constant. I
I I ITEVFL5 ITo file a parameter list entry. I
I I I TEVCRL I To create a label for the code file. I
I I I TEVFLL I To make Symbol Table entry for created I
I I I I label • I
r-------+--------------------------+--------+---~
!ASSIGN !Generate ASSIGN. IINSOT ITo make code file entry. I
I I IMEMAC ITo get cover of storage reference. I
I I ITEVFL4 ITo file an address constant. I
r-------+--------------------------+--------+---~
IAIF IGenerate arithmetic IF. IAGEN ITo generate expression. I
I I I FNDAR I To search general register table. I
I I IFNDFR ITo search floating register table. I
I I IMEMAC ITo get cover for storage reference. I
I I ISELSR ITo select single general register. I
I I I SELFR I To select sing le floating register. I
I I I ASFR I To assign a floating register. I
I I I ASAR I To assign a general register. I
I I I INSOT I To make code file entry. I
I I IOPND ITo process operand. I
I I I LBL I To generate for branch to label. I
r-------+--------------------------+--------+---~
ILIF !Generate for logical IF. fAGEN ITo generate expression. I
I I I OPND I To process operand. I
I I I FNDAR I To search general register table. I
I I IFNDFR ITo search floating register table. I
I I I MEMAC I To get cover for storage reference. I
I I I INSOT I To make code file entry. I
I I I ASAR I To assign a general register. I
I I I LBL I To generate for branch to label. I
~-------+--------------~-----------+--------+---~
ICALL I Generate CALL. IAGEN jTo generate expression. I
I I I INSOT I To make code file entry. I
I I I SADDR I To get local branch cover. I
I I I LINK I To generate load of .v /R Adcon pair. I
I I ITEVFL4 jTo file an address constant. I
I I ITEVFLS I To file a parameter list entry. I
I I ITEVCRL ITo create a label for the code file. I
I I ITEVFLL ITo make Symbol Table entry for created I
I I I I label. I
r-------+--------------------------+--------+---~
IRTRN fGenerate epilogue. IINSOT ITo make code file entry. I
I I I FNDAR I To search general register table. I
I I IFNDFR ITo search floating register table. I
I I ITEVFL4 jTo file an address constant. I
L-------L--------------------------i--------i---J

142

Table 24. Phase 4 Decision Table (Part 3 of 12)

Routine:------------Phase 4---Level: 2-CCont'd)---
r-------T--------------------------T--------T---1
I I I Routines I I
I Routine! Usage I called I Calling Conditions I
r-------+--------------------------+--------+---~
I BLl I Generate removed I AGEN I To generate expression. I
I I expressions. IINSOT jTo make code file entry. I
I I I OPND I To process operand. I
r-------+--------------------------+--------+--------------------------------------~----~
BL2 Generate recursives and IKEYl !To determine status of single operand.

make global I OPND I To process operand.
assignments. I RSLT I. To protect operand.

!COVER !To load specified Adcon into any general
I I register.
IFNDAR ITo search general register table.
!FLUSH ITo reset and/or transfer register table
I I entry.
IAGEN !To generate expression.
IMEMAC ITo get cover for storage reference.
IINSOI' fTo make code file entry.
ISELSR ITo select single general register.
I ASAR I To assign a general register.
I FNDWS I To get next available temporary star.age.
IPH4MES ITo make table overflow error exit.

r-------+--------------------------+--------+---~
I BL3 I Generate 00 loop top. I AGEN I To generate expression. I
I I IINSOT ITo make code file entry. I
I I I OPND I To process operand. I
I I IFNDWS !To get next available temporary storag~. I
I I I COVER I To load specified Adcon into any generp.l I
I I I I register. I
I I I PH4MES I To make table overflow error exit. I
r-------t--------------------------+--------+-------------------------------------~~----~

ENDLP Generate for end of DO SELSR f To select single general register.
loop. MEMAC I To get cover for storage reference.

INSOT f To make code file entry.
FNDAR ITo search general register table.
OPND ITo process operand.
COVER ITo load specified Adcon into any general

I register.
ASAR ITo assign a general register.
KEY1 !To determine status of single operand.
EDIT I To set comment item for code file.
LBL fTo generate for branch to label.
RLSWS ITo release temporary storage.
PH4MER ITo make ma.chine/compiler error exit.

r-------+--------------------------+--------+---~
I RD I Generate for I/O I INSOT I To make code file entry. I
I I initialization. I SELSR I To select single general register. I
I I ISELFR ITo select single floating register. I
I I ILINK ITo generate load of V/R Adcon pair. I
I I I TEVFL4 I To file an address constant. I
I I I TEVFLS I To file a parameter list entry. I
I I I TEVVR I To file a V/R address constant pair. I
t-------+--------------------------+--------+---~
I OLIST I Generate for I/O list. I LINK I To generate load of V/R Adcon pair. I
I I I SELSR I To select single general register. I
I I I INSOT I To make code. file entry. I
I I I AGEN I To generate expression. I
I I I MEMAC I To get cover for storage reference. I
I I I OPND I To process operand. I
I I ISELFR ITo select single floating register. I
I I ITEVFL4 ITo file an address constant. I
I I I TEVFLS I To file a parameter list entry. I
I I ITEVVR ITo file a V/R address constant pair. I
L-------i--------------------------i--------i---J

Section 6: Phase 4 143

Table 24. Phase 4 Decision Table (Part 4 of 12)

Routine:------------Phase 4---Level: 2-(Cont'd>---
r-------r--------------------------T--------T--
I I I Routines I
IRoutinef Usage I Called I Calling Conditions
t-------t--------------------------+--------+---·
INDLST I Generate for end of I/O ILINK ITo generate load of V/R Adcon pair.
I I list. I I
t-------+--------------------------+--------+---i
ISTOP I Generate for STOP and IINSOT tTo make code file entry. I
I I PAUSE statements. ISELSR jTo select single general register.
I I I SELFR I To select single floating register.
I I f TEVFL4 jTo file an address constant.
I I I TEVFLS I To file a parameter list entry.
I I I TEVVR I To file a V /R address constant pair.
L-------'---------------------------i--------i---j
Routine:------------Phase 4---Level: 3-----------
r------~--------------------------T-------~---1
ILINK !Generate load of V/R ISELFR jTo select single floating register. I
I I Adcon pair. ISELSR ITo select single general register. I
I I I INSOT I To make code file entry. I
I I I TEVFL4 I To file an address constant. I
I I f TEVVR ITo file a V/R address constant pair. I
t-------+--------------------------+--------+-----------------~-------------------------~
AGEN Generate expression. TRBLD f To convert Polish expression to tree form.

WGHT I To determine order of computation.
CSX ITo count common expression uses.
IPLUS ITo generate integer addition.
LADDR jTo generate addition with LOAD ADDRESS.
RPLUS iTo generate real addition.
CPLUS ITo generate complex addition or

I subtraction.
IMPLY ITo generate integer multiplication.
RMUL jTo generate real multiplication.
CMUL f To generate complex multiplication.
IDVDE jTo generate integer division.
RDIV f To generate real division.

ICDIV ITo generate complex division.
fRLTNL !To generate relational operations.
f ANDOR f To generate logical AND or OR.
IMAX jTo generate for MAX operator.
I COMMA I To get function argument in storage with
I I correct sign.
f FUNC ITO generate function call.
I DCOM I To select open function module.

t-------+--------------------------+--------+---~
IASARS !Assign a general register fNone I I
I I Synonym. I I I
t-------+--------------------------+--------+---~
IASFRS f Assign a floating registerlNone I I
I I synonym. I I I
L------~--------------------------i--------i---J

Routine:------------Phase 4---Level: 4-----------
r-------.--------------------------T-------~---1
I TRBLD I Convert Polish expression I None I I
I I to tree form. I I I
t-------+--------------------------+--------+---~
I WGHT I Determine order of I None I I
I I computation. I I I
t-------+--------------------------+--------+---1
I CSX I count common expression I None I I
I I uses. I I I
L------~--------------------------i--------i---J

144

Table 24. Phase 4 Decision Table (Part 5 of 12)

Routine:------------Phase 4---Level: 4-(Cont'd)---
r-------.--------------------------T--------T---1
I I I l<outines I I
IRoutinel Usage I Called I calling Conditions I
r-------+----------------~---------+--------+---~
!PLUS fGenerate integer addition. KEY !To determine status of two operands.

I SLONE !To optimize storage-register
I I operand-situation.
I SELOP ITo optimize storage-storage
I I operand-situation.
I SLPOS !To optimize storage-register
I I operand-situation.
I SELSR ITo select single general register.
I ASAR jTo assign a general register.
I ~£MAC ITo get cover for storage reference.
I EDIT I To set comment item for code file.
I OPND I To process operand.
I RSLT I To protect operand.
l INSOT !To make code file entry.

~-------t--------------------------+--------+-------------------------------~---------~
ILADDR !Generate addition with IKEYl !To determine status of single operand. I
I I LOAD ADDRESS. IRSLT !To protect operand. I
I f I OPND I To process operand. I
I I I ~.SAR I To assign a general register. I
I I I INSOT I To make code file entry. I
I I I SELSR I To select sing le general register. I
I I IMEMAC ITo get cover for storage reference. I
I I I EDIT I To set comment item for code file. I
~-------+--------------------------+--------+---~
RPI.US Generate real addition. IKEY To determine status of two operands.

ISELOP To optimize storage-storage
I operand-situation.
IOPND To process operand.
IINSOT To make code file entry.
ISLPOS To optimize register-register
I operand-situation.
ISELFR To select single floating register.
IMEMAC To get cover for storage reference.
IRSLT To protect operand.
IASFR To assign a floating register.
IEDIT To set comment item for code file.

~-------+--------------------------+--------+---~
CPI.US Generate compleK IKEY ITo determine status of two operands.

addition or subtraction. fASFR I To assign a floating register.
I OPND I To process operand.
IINSOT ITo make code file entry.
ISELFR f To select single floating register.
f MEMAC !To get cover for storage reference.
IRSLT f To protect operand.
ISELOP ITo optimize storage-storage
I I operand-situation.
IEDIT f To set comment item for code file.
f SLPOS ITo optimize register-register
I I operand-situation.
ITEVR4 I To file a REAL*4 constant.
ITEVR8 !To file a REAL*8 constant.
ITEVC8 f To file a COMPLEX*8 constant.
ITEVC16 ITo file a COMPLEX•16 constant. _______ i __________________________ i ________ i __ _

Section 6: Phase 4 145

Table 24. Phase 4 Decision 'I'able (Part 6 of 12) ·

Routine:------------Phase 4---Level: 4-(Cont'd>---
r-------T--------------------------T--------T---1
I I I Routines I I

IRoutinef Usage I Called I Calling Conditions
~-------+--------------------------+--------+---1

IMPLY Generate integer KEY ITo determine status of two operands.
multiplication. SLONE !To optimize storage-register

SLPOS

SELOP

SELSR
EDIT
IN SOT
OPND
RSLT
ME MAC
ASAR
FLUSH

I operand-situation.
ITo optimize register-register
I operand-situation.
tTo optimize storage-storage
I operand-situation.
ITo select single general register.
ITo set comment item for code file.
ITo make code file entry.
ITo process operand.
ITo protect operand.
ITo get cover for storage reference.
ITo assign a general register.
ITo reset and/or transfer register tab1e
I entry. I

SELDR ITo select even/odd register pair. I
~-------+--------------------------+--------+------------------------------------~------~

RMUL Generate rea1 KEY f To determine status of two operands.
multiplication. MEMAC ITo get cover for storage reference.

OPND I To process operand.
RSLT ITo protect operand.
EDIT I To set comment item for code file.
SLPOS ITo optimize register-register

SELOP

SLONE

I operand-situation.
ITo optimize storage-storage
I operand-situation.
ITo optimize storage-register
I operand-situation.

INSOT ITo make code file entry.
SELFR ITo select sing1e floating register.
ASFR ITo assign a floating register.

~-------+--------------------------+--------+---~
CMUL Generate complex IKEY ITo determine status of two operands.

multiplication. ISELFR ITo select a floating register.
I ASFR I To assign a floating register.
IMEMAC fTo get cover for storage reference.
I EDIT I To set comment item for code file.
IINSOT ITo make code file entry.
I OPND I To process operand.
IRSLT ITo protect operand.
ISELOP tTo optimize storage-storage
I I operand-situation.
ISLPOS f To optimize register-register
I I operand-situation.
!SLONE I To optimize storage-register
I I operand-situation.

~-------+--------------------------+--------+---~
IDVDE Generate integer division.IKEY To determine status of two operands.

ISELOP To optimize storage-storage
I operand-situation.
IMEMAC To get cover for storage reference.
IEDIT To set comment item for code file.
!SLONE To optimize storage-register
I operand-situation.
ISELGD To determine whether to divide in place.
ISELDR To select even/odd register pair.
IINSOT To make code file entry.
IOPND To process operand.
IRSLT To protect operand. ______ _L __________________________ i ________ i __ _

146

Table 24. Phase 4 Decision Table (Part 7:of 12)

Routine:------------Phase 4---Level: 4-(Cont'd)---
r-------r---------~----------------T--------T---,
I I I r.:outines I I
!Routine! Usage I Called I calling conditions I
~-------+--------------------------+--------+---~
IIDVDE !Generate integer division.jASAR ITo assign a general register. I
I (Cont'd) I FLUSH I To reset and/or transfer register table I
I I I I entry • I
I I I SEL.SR I To select sing le general register. I
~-------~--------------------------+--------+---~
IRDIV Generate real division. !KEY ITo determine status of two operands.
I -"" ISELFR !To select single floating register.
I I ASFR I To assign a floating register.
I IMEMAC !To get cover for storage reference.
I IEDIT ITo set comment item for code file.
I I OPND I To process operand.
I I RSLT I To protect operand.
I IINSOT ITo make code file entry.
I ISELOP jTo optimize storage-storage
I I I operand-situation.
I !SLONE ITo optimize storage-register
I I I operand-situation.
~-------+--------------------------+--------+---~
CDIV Generate complex IKEY ITo determine status of two operands.

division. IMEMAC f To get cover for storage reference.
I EDIT I To set comment item for code file.
I OPND I To process operand.
I RSLT I To protect operand.
ISELOP ITo optimize storage-storage
I I operand-situation.
!SLONE ITo optimize storage-register
I I operand-situation.
IASFR ITo assign a floating register.
ISELFR ITo select single floating register.
I INSOT jTo make code file entry.

~-------+--------------------------+--------+--------------------------~-----------~---~
COMMA Get function argument in IFETCH fTo fetch complement and/or store operand.

memory with correct IMEMAC ITo get cover for storage reference.
sign. (SELSR (To select single general register.

IINSOT ITo make code file entry.
!ASAR ITo assign a general register.
IOPND f To process operand.
ISELFR ITo select single floating register.
IFNDWS tTo get next available temporary storage.
IASFR ITo assign a floating register.
ITEVI4 jTo file an INTEGER*4 constant.
ITEVR4 jTo file a REAL*4 constant.
ITEVR8 ITo file a REAL*8 constant.
ITEVC8 f To file a COMPLEX*8 constant.
fTEVC16 jTo file a COMPLEX•16 constant.

~-------+--------~-----------------+--------+---~
fFONC Generate function call. f SELSR ITo select single general register.

f SELFR !To select single floating register.
(ASAR !To assign a general register.
IINSOT ITo make code file entry.
IMEMAC jTo get cover for storage reference.
f OPND ITo process operand.
I EDIT I To set comment item for code file.
!COVER I To load specified Adcon into any general
I I register.
!COMMA ITo get function argument in storage with
I I correct sign.
IRLSWS !To release temporary storage.
I ASFR I To assign a floating register.
ITEVFL4 jTo file an address constant.
ITEVFL5 !To file a parameter list entry.
ITEVVR ITo file a V/R address constant pair.

-------1.--------------------------~--------~-------------------------------------~-----

Section 6: Phase 4 147

Table 24. Phase 4 Decision Table (Part 8 of 12)

Routine:------------Phase 4---Level: 4-Ccont'd)---
r-------r--------------------------T--------.---1
I I I Routines I I
I Routinel Usage I called I Calling Conditions I
~-------+--------------------------+--------+---~
RLTNL Generate relational KEY jTo determine status of two operands.

operations. SLONE ITo optimize storage-register
I operand-situation.

SLPOS ITo optimize register-register
I operand-situation.

SELOP jTo optimize storage-storage
I operand-situation.

SELSR ITo select single general register.
MF.MAC ITo get cover for storage reference.
EDIT !To set comment item for code file.
INSOT jTo make code file entry.
OPND I To process operand.
RSLT I To protect operand.

ISADDR jTo get local branch cover.
fLBL ITo generate for branch to label.
jASAR jTo assign a general register.
IASFR jTo assign a floating register.
ISELFR jTo select single floating register.

~-------+--------------------------+~-------+---~
ANDOR Generate logical AND or IKEY !To determine status of two operands. I

OR. JSELOP fTo optimize storage-storage I
I I operand-situation.
ISLONE !To optimize storage-register
I I operand-situation.
jSLPOS jTo optimize register-register
I I operand-situation.
ISELSR !To select single general register.
IMEMAC I To get cover for storage reference.
I INSCYI' I To make code file entry.
I EDIT I To set comment item for code file.
!ASAR jTo assign a general register.
I OPND I To process operand.
IRSLT jTo protect operand.
ILBL jTo generate for branch to label.

~-------+--------------------------+--------+---~
I DCOM I Select open function I OPENl I To generate selected open functions. I
I I module. IOPEN2 ITo generate selected open functions. I
I I I OPEN3 I To generate selected open functions • I
I I IOPEN4 ITo generate selected open functions. I
I I I OPENS I To generate selected open functions. I
I I IOPEN6 ITo generate selected open functions. I
~-------+--------------------------+--------+---~
MAX Generate for MAX IKEY ITo determine status of two operands.

operator. ISELOP ITo optimize storage-storage
I joperand-situation.
ISLPOS ITo optimize register-register
I I operand-situation.
ISLONE ITo optimize storage-register
I I operand-situation.
IMF.MAC f To get cover for storage reference.
IEDIT ITo set comment item for code file.
I OPND I To process operand.
I RSLT I To protect operand.
IINSOT ITo make code file entry.
ISELSR ITo select single general register.
I ASAR I To assign a general register.
IASFR jTo assign a floating register.
f SELFR ITo select single floating register.
ISADDR ITo get local branch cover.

-------'---------------------------i--------~---

148

Table 24. Phase 4 Decision Table (Part 9 of 12)

Routine:------------Phase 4---Level: 5------------
r-------T--------------------------T-------~---,
I I I Routines I I
I Routine! Usage I called I Calling Conditions I
~-------+--------------------------+--------+---~
OPEN1 Generate selected open IINSOT ITo make code file entry.

functions. IASAR jTo assign a general register.
IKEY ITo determine status of two operands.
jOPND ITo process operand.
ISELSR ITo select single general register.
ISELFR jTo select single floating register.
IASFR ITo assign a floating register.
IMEMAC ITo get cover for storage reference.
IRSLT ITo protect operand.
IEDIT ITo set comment for code file.
SADDR ITo get local branch cover.
PH4MER ITo make machine/compiler error exit.

OPEN2 Generate selected open OPND ITo process operand.
functions. FLUSH ITo reset and/or transfer register table

I entry.
KEY ITo determine status of two operands.
EDIT ITo set comment item for code file.
SELFR ITo select single floating register.·
SELDR ITo select even/odd register pair.
INSOT ITo make code file entry.
ASFR ITo assign a floating register.
SELSR ITo select single general register.

!ASAR ITo assign a general register.
IMEMAC ITo get cover for storage reference.
IRSLT ITo protect operand.
IPH4MER !To make machine/compiler error exit. I

~-------+--------------------------+--------+-------------------------------------~-----~
OPEN3 Generate selected open IEDIT ITo set comment item for code file. :

functions. ISELSR ITo select single general register.
IKEY1 ITo determine status of single operand~
IINSOT ITo make code file entry.
I ASAR I To assign a general register.
ISELDR ITo select even/odd register pair.
ISELFR ITo select single floating register.
I MEMAC I To get cover for storage reference.
I ASFR I To assign a floating register.
IOPND ITo process operand.
I RSLT I To protect ope rand.
IPH4MER ITo make machine compiler error exit.

~-------+--------------------------+--------+---~
OPEN4 Generate selected open IINSOT !To make code file entry.

functions. IASAR ITo assign a general register.
IKEY1 !To determine status of single operand.
IFNDFR ITo search floating register table.
I SADDR I To get local branch cover.
ISELFR ITo select single floating register.
IASFR ITo assign a floating register.
IMEMAC ITo get cover for storage reference.
IRSLT ITo protect operand.
IOPND ITo process operand.
IKEY ITo determine status of two operands.
I EDIT I To set comment i tern for code file.
ISELSR ITo select single general register.
IPH4MER ITo make machine/compiler error exit.

______ _i, __________________________ ~--------~---J

Section 6: Phase 4 149

Table 24. Phase 4 D~cision Table (Part 10 of 12)

Routine:------------Phase 4---Level: 5-(Cont'd)---
r------"-T--------------------------T--------T---,
I I I Routines I I
IRoutinel Usage I Called I Calling Conditions I
~-------+--------------------------+--------+---~
OPENS Generate selected open IASFR !To assign a floating register. I

functions. IKEYl !To determine status of single operand. I
I OPND I To process operand. I
ISELFR jTo select single floating register. I
I EDIT I To set comment item for code file. I
f COVER !To load specified Adcon into any general I
I I register. I
ISELSR !To select single general register. I
I MEMAC I Get cover for storage reference. I
fSELDR ITo select even/odd register pair. I
I INSOT I To make code file entry. I
IASAR ITo assign a general register. I
IRSLT ITo protect operand. I
IPH4MER !To make machine/compiler error exit. I
f TEVR4 fTo file a REAL*4 constant. I
ITEVR8 !To file a REAL*8 constant. I

~-------+--------------------------+--------+---~
OPEN6 Generate selected open OPND f To process operand.

functions. RSLT ITo protect operand.
KEYl ITo determine status of single operand.
EDIT I To set comment item for code file.
SELSR !To select single general register.
ASAR I To assign a general register.
INSOT !To make code file entry.
SELFR ITo select single floating register.
MEMAC I To get cover for storage reference.
SELDR !To select even/odd register pair.
ASFR I To assign a floating register.
PH4MER !To make machine/compiler error exit.

~-------+--------------------------+--------+---~
ILBL IGenerate for branch to IFNDAR ITo search general register table. l
I I label. ISELSR ITo select single general register. I
I I I INSOT I To make code file entry. I
I · I I ASAR I To assign a general register. I
~-------+--------------------------+--------+---~
I SELGD I Determine whether to I None I I
I I divide in place. I I I
~-------+--------------------------+--------+---~
ISLPOS f Optimize register-registerlSELGM fTo get multiplicand in proper register. I
I I operand-situation. I I I
~-------+--------------------------+--------+---~
ISLONE !Optimize storage-register ISELGM !To get multiplicand in proper register. I
I I operand-situation. I I I
~-------+--------------------------+--------+---~
I SELOP I Optimize storage- I None I I
I I storage operand- I I I
I I situation. I I I
~-------+--------------------------+--------+---~ I FETCH I Fetch/complement and/or I SELSR !To select single general register. I
I I store operand. I I I
I I I SELFR I To select sing le floating register. I
I I IASAR fTo assign a general register. I
I I I ASFR I To assign a floating register. I
I I I EDIT I To set comment item for code file. I
I I I COVER I To load specified Adcon into any general I
I I I I register. I
I I I INSOT I To make code file entry. I
I I I MEMAC I To get cover for storage reference. I
L-------L--------------------------~--------i---J

150

Table 24. Phase 4 Decision Table (Part 11 of 12)

Routine:------------Phase 4------~----------------------------------Level: 6------------
r------~--------------------------T--------T---1
I I I Routines l I
IRoutinel Usage I Called I Calling Conditions I
t-------+--------------------------+--------+---~
ISELGM !Get multiplicand in ISELSR (To select single general register. I
I I proper register. (INSOT !To make code file entry. I
t-------+----------------;.._--------+--------+---~
ISELDR I Select even/odd register ISELSR ITo select single general register. I
I I pair. I I I
t-------+--------------------------+--------+---~
ISELFR I Select single floating IFNDWS ITo get next available temporary storage. I
I I register. (COVER ITo load specified Adcon into any general I
I I I I register. I
I I I INSOT I To make code file entry. l
I I ITEVFL4 ITo file an address constant. I
t-------+--------------------------+--------+---~
(ASFR I Assign a floating register.None I I
t-------+--------------------------+--------+---~
I EDIT I Set comment item for I None I I
I I Code file. I I I
~-------+--------------------------+--------+-----------------------------------~-------~
(KEY (Determine status of two IFNDAR (Two search general register table. I
I I operands. I FNDFR I To search floating register table. I
t-------+--------------------------+--------+---~
IKEYl I Determine status of IFNDAR ITo search general register table. I
I I single operand. IFNDFR (To search floating register table. l
t-------+--------------------------t--------+---~
IMEMAC (Get cover for memory ISELSR ITo select single general register. I
I I references. (INSOT (To make code file entry. I
I I ICOVER (To load specified Adcon into any general I
I I I I register. I
I I IFNDAR ITo search general register table. I
I I IASAR I To assign a general register. I
~-------+--------------------------+--------+-------------------------------------~-----~
I RSLT I Protect operand. I COVER I To load specified Adcon into any gener.al I
I I I I register. I
I I I OPND I To process operand. I
I I IFNDAR I To search general register table. I
I I IASAR !To assign a general register. I
I I l INSOT I To make code file entry. I
I I IFLUSH !To reset and/or transfer register table I
I I I I entry· I
I I I FNDWS I To get next available temporary storage. I
t-------+--------------------------+--------+---~
(SADDR (Get local branch cover. IINSOT (To make code file entry. I
I I ISELSR ITo select single general register. I
I I I ASAR I To assign a general register. I ·
L-------i--------------------------i--------i---J

Routine:------------Phase 4---Level: 7-----------
r------~--------------------------T--------T---1
(OPND (Process operand. IRLSWS jTo release temporary storage. I
t-------+--------------------------+--------+---~
IFNDFR ISearch floating register !None I I
I I table. I I I
t-------+--------------------------+--------+---~
!COVER !Load specified Adcon into ISELSR tTo select single general register. I
I I any general register. I FNDAR I To search general register table. I
I I IINSOT !To make code file entry. I
I I IASAR ITo assign a general register. I
L-------~--------------------------i--------i---J

Section 6: Phase 4 151

Table 24. Phase 4 Decision Table (Part 12 of 12)

Routine:------------Phase 4---Level: 8------------
r-------T--------------------------T--------T---1
I I I Routines I
IRoutinel Usage I Called I Calling Conditions
~-------+--------------------------+--------+---1
IASAR !Assign a general !None I I

I I register. I I I

~-------+--------------------------+--------+---~
ISELSR I Select single general IFLUSH ITo reset and/or transfer register table I
I I register. "'.-. I I entry. I
I I IFNDWS !To get next available temporary storage. I
I I I INSOT I To make code file entry. I
I I ITEVFL4 ITo file an address constant. I
~-------+--------------------------+--------+---~ I RLSWS I Release temporary I None I I
I I storage. I I I
~-------+--------------------------+--------+---~
I FNDAR I Search general register I None I I
I I table. I I I
L-------'---------------------------i--------i---J
Routine:------------Phase 4---Level: 9-----------
r------~--------------------------T--------T-------------------~-----------------------,
IFNDWS !Get next available ITEVFL4 !To file an address constant. · I
I I temporary storage. I I I
~-------+--------------------------+--------+---~
I FLUSH I Reset and/or transfer I None I I
I I register table entry. I I I
~-------+--------------------------+--------+---~
IINSOT !Make code file entry. !None I I
L-------'---------------------------i--------i---J
Routine:------------Phase 4------------------------------------Level: Executive Routines
r------~--------------------------T--------T---1
ITEVFL4 I File an address constant. I I I
~-------+--------------------------+--------+---~
I TEVFL5 I Fi le a parameter list I I I
I I entry. I I I
~-------+--------------------------+--------+---~
I TEVVR I Fi le a V /R address I I I
I I constant pair. I I I
~-------+--------------------------+--------+---~
ITEVI2 IFile an INTEGER*2 I I I
I I constant. I I I
~-------+--------------------------+--------+---~
I TEVI4 I File an INTEGER*4 I I I
I I constant. I I I
~-------+--------------------------+--------+---~
ITEVR4 IFile a REAL*4 constant. I I I
~-------+--------------------------+--------+---~
ITEVR8 1Fi1e a REAL*8 constant. I I I
~-------+--------------------------+--------+---~
ITEVC8 IFile a COMPLEX*8 I I I
I I constant. I I I
~-------+--------------------------+--------+---~
ITEVC16 f File a COMPLEX*16 I I I
I I constant. I I I
~-------+--------------------------+--------+---~
I TEVRDM I Issue a diagnostic I I I
I I message. I I I
~-------+--------------------------+--------+---~
I TEVFLL I Make symbol table entry I I I
I I for created label. I I I
~-------+--------------------------+--------+---~
ITEVCRL ICreate a label for the I I I
I I code file. I I I
L-------~--------------------------i--------i---J

152

CEKNX -- Phase 4 Master Control CPrlAS4)

The main object of PHAS4 is to perform a
serial scan of program file entries and to
select the appropriate statement processor
for each PF entry. See Figure 30.

ENTRIES: PHAS4 is entered at its external
entry point, CEKNXl, from the phase con
troller via standard linkage. It expects
to receive the base of the compiler's
intercom as a parameter. There are three
additional entry points, PH4MES, PH4MER,
and PH4XER, which are used only by Phase 4
subroutines upon a detected compiler error
or suspected machine error.

EXITS: PHAS4 has four exits to the phase
controller.

OPERATION: Upon entry from the phase con
troller, PHAS4 copies the compiler's inter
com into the phase's PSECT. Three nonvola
tile registers are established as phase
wide conunon registers and initialized to:

1. Symbol Table Base (Nl)

2. Expression Tree Base CN2)

3. Name Table Base CN3)

The following areas are cleared:

1. Name Table

2. Temporary Storage Utilization Matrix

Program file entries are processed
sequentially. The ID of each PF entry is
used to select the statement processor.
After processing the last PF entry, PHAS4
restores the compiler's intercom and
returns to the phase controller.

CEKOD -- Entry Point Processor CENT)

Subroutine ENT is used to generate the
preamble at an entry point. See Chart DU.

ENTRIES: The entry point is CEKODl. ENT
expects a pointer to the PF item (describ
ing the entry) in register P2.

EXITS: Normal exit only.

OPERATION: For all three types of entries
-- entry at the beginning of a main pro
gram, main entry of a subprogram, and
alternate entry of a subprogram -- ENT
generates code necessary to save registers
and establish PSECT cover as follo~s:

STM
L
ST
ST
LR

14,12,12(13)
14,72(0,13)
14,BC0,13)
13,4(0,14)
13,14

An address constant which covers local
temporary storage is then filed in the sym
bol table, and the instruction

L ~2,n(0,13)

is generated Cn is the storage class 4
assignment of the Adcon just filed).

In addition to this •canned" code, which
is common to all entries, ENT generates
additional instructions depending upon the
type of the entry.

In a main program the •canned" code is
appended by a call to the Task Initializa
tion Subroutine CHCDBl.

Presence of a parameter list upon an
entry into a subprogram requires ENT to
generate the necessary code for object time
parameter processing. A program file (PF)
item describing a subprogram main entry
triggers sorting of the Adcon list in the
formal argument adcon table <ref erred to by
Phase 4 as FAAL and by Phase 3 as FAAT).
The sort arranges the entries in the FAAL
in the order of argument numbers CANO).
(Note: ANO is a local abbreviation ori.ly,
used to define the uses of ANO in asso
ciated flowcharts.) Several entries with
the same ANO are sorted according to the
values of the adcons (A), as given in .. their
corresponding symbol table entries. ,_

~ii.~

Each parameter, as indicated by its
argument number (the argument number equals
STCL minus 128) in the PF item, is matched
against the ANOs in the FAAL, and ENT
generates code to combine adcon values with
the value of the matching parameter and to
store the completed parameter address into
the appropriate location (SLOC), as given
by the adcon symbol table entry.

A branch around the preamble is
generated by ENT for alternate entries not
preceded by STOP, RETURN, or branches (GO
TO, IF, etc.).

CEKNU -- Referenced Label PF Entry
Processor (LABEL)

LABEL is called by the PF scanner to
process a referenced label program file
entry. See Chart DV.

ENTRIES: Entry is to CEKNUl, with a point
er to a referenced label PF entry in regis
ter P2.

EXITS: Normal exit only. The output of
LABEL is an updated symbol table entry for
the label.

Section 6: Phase 4 153

PHAS4 (CEKNX)

Enter

nitiali.ze
Adcoru
rbls. & Regs.
Obtain First
PF Entry

Figure 30.

154

ENT

ENTRY
Processor

LAS El
- 4 Referenced

label
Processor

EOUAT

Equation
Processor

GOTO

GOTO
Processor

AGO

Assigned GO
TO Processor

CGO

Computed GO
TO Processor

ASSGN

ASSIGN
Processor

AIF

Arithmetic
IF Processor

LIF

Logical IF
Processor

CALL

CALL
Processor

Null IF Entry
No Processing

RTRN

-RETURN
Processor

Bll

Begin Loop 1
Processor

BL2

Begin Loop 2
Processor

® 1
XL
A2

XL
Al

XM
Bl

Phase 4 Master Control

BL3

Begin Loop 3
Processor

ENDLP

End Loop
Processor

Null PF
Entry No
Processor

RD

READ
Procest;or

RD

READ with
name list
Processor

RD

READ Card
Processor

RD

WRITE
Processor

RD

WRITE with
name list
Processor

RD

PRINT
Processor

RD

PUNCH
Processor

OUST

Output List
Processor

NDLST

End List
Processor

RD
END FILE,
REWIND,
BACKSPACE
Processor

STOP

STOP
Processor

STOP

PAUSE
Processor

End of
Program
Processor

Compiler Error

Enter

Call ROM,
Give Error
Message. Set
up Error Code
in Reg. 15

OUST

Input List
Processor

Suspected
Machine Error

Enter

Set Up Error
Code in
Register 15

Error Detected
by an Exec
Subroutine

Enter

Obtoin Next
PF Entry

Restore
Intercom

Exit

OPERATION: LABEL stores the current con
tents of the location counter in the
storage location field of the label's sym
bol table entry. The symbol table entry's
storage class field is set to 1 (code
file). Next, the symbol table pointer to
the adcon entry is followed, and the
storage class field of the name part of the
adcon is examined. If it is equal to 1,
exit is made: otherwise, the storage class
field is set to 1, and the current contents
of the location counter is stored in the
value 1 field. All entries in the
floating-point MRM table are cleared. All
nonglobally assigned general register
entries are cleared. control then returns
to the PF scanner.

CEKMJ -- Equation PF Entry Processor
(EQUAT)

EQUAT is called by the PF scanner to
process an equation program file entry.
See Chart ow.

ENTRIES: Entry is to CEKMJl, with a point
er to an equation PF entry in register P2.

EXITS: Normal exit only.

OPERATION: EQUAT first processes the right
side of the equation by calling on AGEN and
the appropriate lower level subroutines.
Code is generated to produce the result,
and to load it in a gen~ral or floating
register. At this point all register table
entries for variables and/or subscripted
variables, except the right side entry for
the current equation, are cleared to pre
vent potentially conflicting register usage
arising through the use of EQUIVALENCE
statements or other possible indirect vari
able definitions. AGEN is then called
again to produce code, if necessary, for
the left side of the eq~ation. Next, the
appropriate store instruction is generated
to store the right side into the resultant
address specified. OPND is called once for
each side, to check for any final usages of
common expressions. If the right side is a
final usage of a CSX or a noncornmon expres
sion, the register containing it is
assigned to the left side result. Other
wise, a synonym entry is made for the left
side appropriate to its type. control is
then returned to the PF scanner.

CEKNK -- Arithmetic IF PF Entry Processor
(AIF)

AIF is called by the PF scanner to pro
cess an arithmetic IF program file entry.
see Chart ox.

ENTRIES: Entry is to CEKNKl, with a point
er to an arithmetic IF PF entry in register
P2.

EXITS: Normal exit only.

OPERATION: AIF first processes the arith
metic expression by invoking AGEN which
generates any code necessary to form the
expression in an appropriate general or
floating register. Next, the three trans
fer points are checked for fall-through
condition (i.e., the label on the following
statement matching one or more of the
transfer points). No conditional branching
code is generated for a transfer point
where fall-through exists. Finally, the
required conditional branch instructions
are generated. Whenever possible, the con
ditional branch instructions are ordered
such that transfer to points which are cur
rently covered are executed first.

CEKNL Logical IF PF Entry Processor

LIF is called by the PF scanner to pro
cess a logical IF program file entry. See
Chart DY.

ENTRIES: Entry is to CEKNLl, with a point
er to a logical IF PF entry in register P2.

EXITS: Normal exit only.

OPERATION: LIF first determines the nature
of the logical operand by means of a call
on AGEN, with the logical IF flag set. If
the logical operand is a noncommon or com
mon subexpression just computed, AGEN
generates the appropriate code for loading
and testing the logical operand and for
branching around the logical IF object
statement, if necessary. If, however, the
logical operand is a variable, constant,
residue, or common expression computed pre
viously, LIF generates the required code.

CEKNT -- GO ro PF Entry Processor (GOTO)

GOTO is called by the PF scanner to pro
cess to GO TO program file entry.

ENTRIES: Entry is to CEKNTl, with a point
er to a GO TO PF entry in register P2.

EXITS: Normal exit only.

OPERATION: GOro supplies the required
operation code and label symbol table
pointer for LBL, which then generates the
loading of any necessary adcons and the
branching code. ·

CEKNS -- Assign PF Entry Processor (ASSGN)

ASSGN is called by the PF scanner to
process an ASSIGN statement program file
entry. See Chart oz.

Section 6: Phase 4 155

ENTRIES: Entry is to CEKNSl, with a point
er to an ASSIGN PF e~try in parameter
register P2.

EXITS: Normal exit only.

OPERATION: ASSGN first creates an adcon to
cover the label being referenced. Next, a
load of the adcon is generated. Cover is
obtained for the assigned variable, and a
store instruction is generated to place the
adcon in the assigned variable's location.

CEKNQ Assigned GO TO PF Entry Processor

AGO is called by the PF scanner to pro
cess an assigned GO TO program file entry.
See Chart EA.

ENTRIES: Entry is to CEI<NQl, with a point
er to an assigned GO TO PF entry in parame
ter register P2.

EXITS: Normal exit only.

OPERATION: AGO selects a register for
loading of the assigned variable. cover is
obtained for the assigned variable. Code
is generated to load the assigned variable
into the selected register and to branch
unconditionally on the address contained
therein. The register table entry for the
assigned variable is cleared, and control
is returned to the PF scanner.

CEKNR computed GO TO PF Entry Processor

CGO is called by the PF scanner to pro
cess a computed GO TO program file entry.
See Chart EB.

ENTRIES: Entry is to CEKNRl, with a point
er to a computed GO TO P~, entry in parame
ter register P2.

EXITS: Normal exit only.

OPERATION: CGO first generates an adcon to
cover the transfer list. The adcon's posi
tion in the adcon page is saved for future
use in CGO. A label,which will be placed
as the first element in the transfer list,
is generated. The transfer produced is to
the next statement following the computed
GO TO. The label is accessed at object
time when the computed GO TO index is found
to be out of range. After the label has
been generated, an adcon is filed to cover
each element in the transfer list, includ
ing the generated label element. Next,
code is generated to load the computed GO
TO index variable in a register, if neces
sary, and test for the out-of-range condi
tion. A register is then selected for the
transfer list pointer, and code is
generated to accomplish the appropriate

156

transfer. Prior to exit, the register
table entries made in CGO are cleared, and
the current contents of the location count
er and a storage class of 1 (code) are set
in the generated label symbol table entry.

CEKOL -- CALL Statement Processor (CALL~

The objective of subroutine CALL is to
generate object code for a CALL statement.
See Chart EC.

ENTRIES: The entry point is CEKOLl. CALL
expects a pointer to the program file entry
in parameter register P2.

EXITS: Normal exit only.

OPERATION: For a CALL statement with a pa
rameter list, the object code is generated
in subroutine FUNC Cvia AGEN>. Calls to
subroutines without parameters are pro
cessed by subroutine CALL.

In any case, subroutine CALL generates
the code to process optional returns·
(RETURN i), if applicable.

CEKOE -- REI'URN Processor (RTRN)

The objective of subroutine RTRN is to
generate the code for a RETURN statement.
See Chart ED.

ENTRIES: The entry point is DEKOEl. RTRN
expects a pointer to the appropriate pro
gram file entry in parameter register P2.

EXITS: Normal exit only.

OPERATION: Subroutine RTRN generates code
to reestablish the caller's PSECT cover,
reload general registers, set the low-order
bit in the caller's forward link to 1, and
set general register 15 with a return code.
Either of two different instruction
sequences is constructed, depending upon
the return code being a constant (including
no return code) or a variable.

CEKNM Begin Loop 1 PF Entry Processor

BLl is called by the PF scanner to pro
cess a begin loop 1 program file entry.
See Chart EE.

ENTRIES: Entry is to CEKNM1,with a pointer
to a begin loop 1 PF entry in parameter
register P2.

EXITS: Normal exit only.

OPERATION: BLl scans the global reserva
tion list, which is part of the BLl PF
entry, looking for CSX entries. For each
CSX entry found, the global assignment bit
in the CSX's corresponding name table entry

is set. If the loop is unsafe, the global
temporary flag is set. The list of removed
expressions is then processe1, by calling
AGEN to generate code for each removed
expression in the list. When all list
entries have been so processed, control is
returned to the PF scanner.

CEKNN Begin Loop 2 PF Entry Processor
CBL2)

BL2 is called b~the PF scanner to pro
cess a begin loop 2 program file entry.
see Chart EF.

ENTRIES: Entry is to CEKNNl, with a point
er to a begin loop 2 PF entry in parameter
register P2.

EXITS: Normal exit is at the termination
of begin loop 2 PF entry processing. Exit
is via PB4MES in case of loop table
overflow.

OPERATION: The BL2 processor generates
code for computing all recursive subscript
expressions. Processing is divided into
two main sections. The first involves the
generation of code to produce the initial
value and increment expressions for each
recursive expression. The second section
produces the test value code.

Initial value processing is performed to
ensure that code is generated to produce
the initial value and load it either into a
global register, if required, or into tem
porary storage. Increment processing per
forms the same functions for the increment,
and, in addition, makes the appropriate
entry in the loop table.

After the initial value and increment
are processed for each recursive expres
sion, the materialization flag is tested.
If materialization is required, code is
generated to load the beginning value of
the induction variable in storage. The
induction variable, increment, and end
values are stored in the loop table. If
materialization is not required, code is
generated to produce the test value and
store it or globally assign it, as
required.

The final processing in BL2 rescans the.
global reservation list. All adcons and
csx•s listed are globally assigned and
loaded into registers, and all remaining
active expressions in the general and
floating registers are assigned temporary
storage. control then returns to the PF
scanner.

CEKNO Begin Loop 3 PF Entry Processor

BL3 is called by the PF scanner to pro
cess a begin loop 3 program file entry.
see Chart EG.

ENTRIES: Entry is to CEKNOl, with a point
er to a begin loop 3 PF entry in parameter
register P2.

EXITS: Normal exit is at the termination
of begin loop 3 PF entry processing. Exit
is via PH4MES in case of loop table
overflow.

OPERATION: BL3 is responsible for process
ing all induction-variable-dependent common
expressions which can be removed to just
inside the loop top. Initially the temp
bit matrix is searched locating the lowest
available temp byte. BL3 then enters the
loop top label's symbol table pointer in
the loop table, then updates relevant
fields within the symbol table entry for
the loop top label. Next, the chain of
induction-variable-dependent expressions is
processed. Code is generated to produce
each expression in the chain. After all
expressions in the chain have been pto
cessed, control returns to the PF scanner.

CEKNP -- End Loop PF Entry Processor\'
(ENDLP)

ENDLP is called by the PF scanner:1 to
process an end loop program file entry.
See Chart EH. ;~

ENTRIES: Entry is to CEKNPl, with a point
er to an end loop PF entry in parameter
register P2.

EXITS: Normal exit is at the termination
of end loop PF entry processing. Error
exit is via PH4MER in the event that a
globally assigned quantity is found not to
be in a register.

OPERATION: The end loop PF entry processor
commences by scanning the recursive entries
in the loop table. For each entry code is
generated to load the recursive expression
in a register, if necessary, and increment
it. After all recursive entries have been
processed, the materialization flag in the
loop table is tested. If materialization
is not required, code is generated to com
pare the last recursive expression pro
cessed against the test value and to trans
fer control appropriately. If materializa
tion is required, code is generated to load
the induction variable <if necessary>,
increment it, store the new value back in
the induction variable's storage cell, com
pare the new value of the induction vari
able against the test value, and transfer
control appropriately.

Section 6: Phase 4 157

Next, the global assignment list in the
loop table for this level is examined. For
each CSX entry the global assignment bit in
the CSX's name table entry is cleared. The
global assignment bit in the register table
entry for the CSX is cleared. For each
adcon entry, the global assignment bit in
the register table entry for the adcon is
cleared. Upon completion of this task, the
location of the highest assigned temp,
saved at exit from BL2, is restored; and,
control is returned to the PF scanner.

CEKOH -- I/O Statement PF Entry Processor
(RD)

The I/O statement PF entry processor is
called by the PF scanner whenever READ,
WRITE, PRINT, PUNCH, or file control PF
entries are encountered. see Chart EI.

ENTRIES: Entry is to CEKOHl, with a pointer
to the pf entry in parameter register P2.

EXITS: Normal exit only.

OPERATION: The I/O statement PF entry pro
cessor is responsible for the generation of
a standard linkage to the I/O initializa
tion routine. Prior to generation, a pa
rameter list <see Figure 31) is constructed
to provide the information required by the
initialization routine at object time.
After the standard linkage code is gener
ated, all floating register table entries
for registers 1, 14, and 15 are cleared.
control then returns to the PF scanner.

CEKOI -- I/O List Element PF Entry
Processor COLIST)

OLIST is called by the PF scanner to
process an I/O list program file entry.
see Chart EJ.

ENTRIES: Entry is to CEKOil, with a point
er to an I/O list element PF entry in pa
rameter register P2.

EXITS: Nornel exit only.

OPERATION: OLIST is responsible for the
generation of a standard linkage to the
list item processor. Prior to generation,
a parameter list is constructed to provide
the information required by the list item
processor at object time. In addition, if
required, code is generated to compute the
effective address of the list item at
object time. Upon completion of all
required generation, all floating register
table entries and general register table
entries for registers 1, 14, and 15 are
cleared. control then returns to the PF
scanner.

158

r---1

I
I
I
I
I
I
I

Word
r-------------------------------------1

1 f Address of Data Set Reference Number I
lor 0 I
~-------------------------------------~

2 !Address of First Control Byte* I
~-------------------------------------~

3 !Address of Second Control Byte* I
~-------------------------------------~

4 !Address of FORMAT or NAMELIST I
I Statement I
~-------------------------------------~

5 !Address of Error Exit f
~-------------------------------------~

6 I Address of End-of-File Exit · f l _____________________________________ J

•See Figure 32 for format of control
bytes.

Parameter 1 is zero for PRINT and
PUNCH.

Parameters 3, 4, 5, and 6 are not
supplied for REWIND, BACKSPACE, and
END FILE.

Any or all of parameters 4, 5, and 6
may be missing for a given I/O

I statement. L_ _______________________________________ _

Figure 31. I/O Initialization Parameter
List

r---1
!First Control Byte 23 25 27 28 31
11----------------------T-T-,.-,.-T-T-T-TI
I I 0 IRIWIPf PIRIBIEIOI
11 I I I 1u1w1 I I I
IL-----------------------L-i-L-1._i_i_i_i_J
f Second Control Byte 23 25 27 29 31
I r-----------------------T-T_T_T_T_T _____ ,
II 0 IFILINIEIEI 0 I
11 I I I IRIFI I I t-______________________ i_i_i-1._i_i _____ J

IR READ E END FILE
IW WRITE F FORMAT
IP PRINT L List
IPU PUNCH N NAMELIST
IRW REWIND ER Error Exit
IB BACKSPACE EF End-of-File Exit
IE END FILE
1contro1 bytes are filed as I*4 constants. L_ __ J

Figure 32. I/O Initialization Control
Bytes

CEKOJ -- End List PF Entry Processor
(NDLST)

NDLST is called by the PF scanner to
process an end list program file entry.
NDLST also may be invoked at a second entry
point -- LINK -- to generate a standard
CALL linkage. See Chart EK.

ENTRIES: This routine has two entry
points: NDLIST (CEKOJl) and LINK (CEKOJ2).
Entry to NDLST CCEKOJl) is made with a
pointer to an end list PF entry in parame
ter register P2. NDLST calls LINK.

Alternate entry, LINK (CEKOJ2), is
entered with a symbol table pointer to the
subprogram name in register Pl.

EXITS: Normal exit only.

OPERATION: NDLST generates a standard
linkage to the I/O library List Termination
routine CCHCIU).

LINK resets the register tables for all
floating-point registers and general regis
ters 1, 14, and 15 and then proceeds to
generate the code for a standard linkage.

CEKOK -- STOP and PAUSE Statement PF Entry
Processor (STOP)

STOP is called by the PF scanner to pro
cess either a STOP or PAUSE program file
entry. See Chart EL.

ENTRIES: Entry is to CEKOK1, with a point
er to either a STOP or PAUSE PF entry in
parameter register P2.

EXITS: Normal exit only.

OPERATION: STOP is responsible for the
generation of a standard linkage to either
the STOP or PAUSE library subroutines. No
distinction is made between the two cases
within STOP, since the necessary distin
guishing information is obtained from the
same relative PF entry location in either
case. Prior to code generation, STOP con
structs a 1-entry parameter list with a
pointer to the STOP or PAUSE message. Upon
completion of code generation, all floating
register table entries and general register
table entries for registers 1, 14, and 15
are cleared. Control then returns to the
PF scanner.

CEKNW -- Arithmetic Expression Generator
(AGEN)

AGEN is used to construct expression
trees and to resolve the trees by selecting
the appropriate generators. See Chart EM.

ENTRIES: The entry point is CEKNWl • The
input parameter, in register P2, is a
pointer to the major operator of the Polish
String in the program file.

EXITS: Normal exit only. The out parame
ter, in register P2, is a pointer to the
major operator of the expression tree.

OPERATION: AGEN is invoked to generate
arithmetic expressions. AGEN uses subrou
tine TRBLD to build the expression tree
from program file entries. No more pro
cessing is required for a trivial tree
~here the major operator is either primi
tive or an already computed common expres
sion. If the tree is more complex, AGEN
invokes subroutine WGHT to assign relative
weights to the nodes of the tree. These
weights determine the sequence in which the
tree is resolved by AGEN. Before resolving
the tree, AGEN uses subroutine CSX to count
the number of occurrences of common expres
sions in the expression and to record these
counts in corresponding name table entries.

To resolve the tree, AGEN inspects the
operands at each node, starting with the
major operator. If one of the operands is
not resolved, the pointer to it is
installed as the current node pointer.
Then its operands are examined. If both
operands at a node are unresolved, the
operand with the larger weight is inspected
next. Generation occurs when a node is
reached where both operands are resolved
(primitive or already computed). AGEN
selects and invokes the appropriate genera-
tor subroutine, based upon the operaEor in
the tree entry. The generator used for
plus, multiply, and divide operators·
depends on the type (integer, real, com
plex> of operands. After generation, AGEN
marks the node and, in the case of a ·common
expression, the corresponding name table
entry •computed.•

If the result represents a globally
assigned common expression of integer type
and if it is left in a general register
other than 1, 14, or 15, AGEN sets the
global assignment flag of the corresponding
register entry in the register table.

If the backlink is present, it is
installed as the current node pointer and
the procedure is repeated by inspecting the
operands of the node.

AGEN exits after the major operator has
been processed and marked •computed.•

CEKML -- Expression Tree Builder CTRBLD)

TRBLD is entered by the arithmetic
expression generator to convert an expres
sion in the PF into tree-form representa
tion in the expression tree. The occur
rence of a common expression entry whose
last use indicator is set will cause set
ting of the corresponding bit in the corre
sponding name table entry. (See Chart EN.)

In addition, when the operators +, * and
/ combine operands. of certain mixed types,

Section 6: Phase 4 159

open conversion functions are introduced to
eliminate operand type-discrepancy.

For examp1 e:

A+B

i
/+\

/\ B

A DBLE

where A is REAL*4 and B is REAL*8.

ENTRIES: The entry point is CELMLl. TRBLD
expects a pointer to the major operator of
the expression in the PF in parameter
register P2.

EXITS: Norna.l exit only. output consists
of the expression tree, the accompanying
name table entries, and a pointer to the
major operator of the expression in parame
ter register P2.

OPERATION: The PF is scanned from the
major operator until the left-most element
of the expression has been located. This
is accomplished by initializing a counter
to zero, and by adding 1 for each operator
encountered and subtracting 1 for each pri
mitive encountered until the count becomes
negative. The primitive last encountered,
then, is the left-most element of the
expression.

Once the left-most element has been
found, the tree is built during a left-to
right scan of the PF. The push-down table
STACK is used during this process. Whenev
er a constant or variable is encountered,
the PF entry is converted to expression
tree form and placed in the next available
location in the tree. In addition, a
pointer to the tree entry position is made
at the top of the stack <see Figure 33).

0 16 31
r-------------------T-T-------------------,
I IPI I
I Unassigned I I Tree Pointer I
I IFI I
L-------------------L-L-------------------J
PF -- Primitive

Figure 33. Stack Table Entry

160

When an operator or common expression
entry is encountered, an entry is made in
the next available tree location. At this
point, the top two entries in the STACK
point to the tree entries for the left and
right operands of the operator just
entered. (See Tables 25 and 26). The two
pointers are inserted into the LOP and ROP
fields of the operator entry. In addition,
a backlink to the operator is placed in the
BLINK field(s) of whichever of the operands
is non-primitive. Now the STACK is "popped
up" two levels, and the pointer to the cur
rent tree entry is •pushed down.•

Table 25. Operand Conversion Function
Decision Table

qi
a..
>..

1-
"'0
c:
0
~
a..

0

cs: p

L*l

L*4

1*2

1*4

R*4

R*8

C*8

C*J6

L*l L*4

L*J
0 -

L*4

L*l -- 0
L*4

I 1

I 1

I I

I I

I I

1 I

Right Operand Types

1*2 1*4 R*4

1 1 I

1 1 I

1*2 1*2
0 - --1*4 R*4

1*2 1*4 - 0 ---1*4 R*4

1*2 1*4 - -- 0
R*4 R*4

1*2 1*4 R*4 -- -- --R*8 R*8 R*8

1*2 1*4 - -- 0
R*4 R*4

1*2 1*4 R*4 -- -- -
R*8 R*8 R*8

R*8 C*8 C*J6

1 1 I

1 1 1

1*2 1*2 1*2 -- - ---R*8 R*4 R*8

1*4 1*4 1*4 - - ---R*8 R*4 R*8

R*4 R*4 __. 0 --R*8 R*8

C*8
0 -- 0

C*J6

C*8 C*8 -- 0 --C*16 C*l6

C*8
0 --- 0

C*l6

The decision table contains 64 two-byte
entries.

O - No conversion necessary (98)
1 - Illegal combination of operands (99)
All Others - Function number of the corres-

ponding conversion function

Table 26. Complex Division Left Operand
Conversion Function Decision
Table

Right Operand Types

b (*8 C*l6
p

1*2 1*2

~

__.. __..
1*2

C*8 C*l6
Q.

~
"'O c:
E! 1*4 1*4
Cll
Q. 1*4 .__.. __....

0 C*8 C*l6

R*4 R*4
R*4 __.. __..

C*8 C*l6

C*8 R*8
R*8 __.... .__..

C*l6 (*16

This decision table contains 8 two-digit
function numbers.

The tree building is terminated after
the major operator of the expression has
been processed.

CEKNE -- Weight Subroutine (WGHT)

WGHT is used by the arithmetic expres
sion generator to assign to each nonprimi
tive node of the expression tree a weight
Cor priority) which will determine order of
generation. The weight is such that, in
deciding at a given node which branch to
generate first Cif neither branch has been
generated), the branch which has the larger
weight will be chosen. See chart EO.

ENTRIES: The entry point is CEKNEl. WGHT
is invoked by AGEN and expects to receive,
in parameter register P2, the expression
tree pointer to tht major operator.

EXITS: Normal exit only.

OPERATION: The following considerations
enter into the assignment of weights:

1. In order to minimize the number of
active partial results, branches are
given weights according to their
complexity.

2. In order to minimize register storing
necessitated by function calls,
branches containing such calls are
given maximum weight.

3. In order to attempt to prevent the
storage of a numerator owing to the
complexity of the denominator, since
the numerator must always exist in a
register, the denominator, or right
operand, of a division operator is
given an arbitrary boost in priority.

When WGHT is entered, the tree pointer
is set at the major operator of the expres
sion. First, the left operand is
inspected. If it is primitive, a computed
common expression, or already weighted, the
right operand is inspected. If it, too, is
one of the above, the operator at the cur
rent node is weighted, as described below.
If the left operand is none of the above,
the tree pointer is set at the left operand
entry, and the above process is repeated.
If the left operand is one of the above,
but the right operand is not, the tree
pointer is set at the right operand, and
the above process is repeated.

When, finally, both operands ar_e com
puted, weighted, or primitive, a weight is
assigned to the current node of the tree as
follo11o1:

1. If both operands are primitive or com
puted common expressions, the weight
is set to zero. ·

2. If neither operand is a primitive or a
computed common expression, then eith
er wMAX or 1 plus the maximum of the
operand weights is chosen, whichever
is less. (Note: In the description
of the Expression Tree CAppendi,-,C A>
the WMAX field is identified as
WEIGHT.)

3. If only one operand is neither a pri
mitive nor a computed common expres
sion, the weight of that operand is
chosen.

When this tentative weight has been
established, the type of operator at the
current node is determined. If it is a
function, the weight is set to WMAX. If
not, the backlink (BLINK) is followed, to
determine whether the current node is the
right operand of a division. If it is, the
weight is increased by 5 to a maximum of
WMAX. If not and if it is the right
operand of a colon, the weight is set to
zero.

When the weight computation is complete,
the current node is marked •weighted• and
the weight is stored in the tree field
reserved for this purpose. Then the back
link is tested. If it is empty, the major
operator has been weighted, and the genera
tion may proceed. If not, the backlink is
installed as the tree pointer, and the
entire process is repeated.

Section 6: Phase 4 161

CEKOB -- Conunon Expression Usage Count
(CSX)

CSX is used by the arithmetic expression
generator CAGEN) to count the number of
times each common expression occurs as an
operand in a given expression tree. In
addition subroutine CSX pushes down signs
in the expression tree to the lowest prac
tical level. See Chart EP.

ENTRIES: The entry .pg.int is CEKOBl. CSX
is invoked by AGEN and expects to receive,
in parameter register P2, the expression
tree pointer to the major operator.

EXITS: Normal exit only.

OPERATION: CSX starts at the tree base and
examines the operands at each node. The
left operand is always inspected first. A
node is marked •examined,• if both operands
are either primitive (variables, constants>
or •examined• nodes. In addition, if the
node represents a CSX, the usage count
field in the appropriate name table entry
is increased by 1. In a11 other condi
tions, the link to the current operand is
installed as the node pointer, and the pro
cess just described is repeated. If a node
represents a computed CSX, or residue, or
if the name table entry of an uncomputed
CSX shows a nonzero usage count, no further
inspection of the operands of such node is
performed, but the node is immediately
marked •examined• and the usage count is
updated. After a node has been examined
and so marked, the backlink, if present,
replaced the current node pointer. The
whole process is terminated when the major
operator of the tree has been examined.

CEKMC -- Real Plus Generator CRPLUS)

RPLUS is entered by the expression
generator to generate the addition or sub
traction of two operands of type REAL*4 or
REAL+8. See Chart EQ.

ENTRIES: The entry point is CEKMCl. The
input, in parameter register P2, is a
pointer to the current node of the expres
sion tree.

EXITS: Normal exit only.

OPERATION: The subroutine KEY is entered
to determine the location of both operands
Cin storage or registers>. If both
operands are in storage, SELOP is entered
to select the better operand to load.
SELFR is entered to select a floating-point
register. MEMAC is entered to assign B, X,
and D fields and to load cover and/or index
quantities as necessary. OPND is entered
to release temporary storage for the
operands when appropriate. An instruction
is generated to load the selected operand

162

into the selected register. MEMAC is
entered to obtain cover for the nonselected
operand. If the operands agree or disagree
in sign, an add or subtract instruction,
respectively, is generated. Finally a reg
ister memory entry is made for the current
node of the expression tree.

If only one operand is in a register,
that operand is designated as the selected
operand. RSLT is entered to store that
operand if necessary, and processing con
tinues as above from the point at which
MEMAC is entered for the nonselected
operand.

If both operands are in registers, SLPOS
is entered to select an operand register
not requiring storage if altered. After
the selection has been made, OPND is
entered, and RSLT is entered to store the
selected register if required. An RR add
or subtract instruction is now generated,
and ASFR is entered to make a register
memory entry for the current node of the
expression tree.

CEKMB -- Real Multiply Generator CRMUL)

RMUL is entered by the expression
generator to generate the product of two
operands of type REAL*4 or REAL•8. See
Chart ER.

ENTRIES: The entry point is CEKMBl. The
input is a pointer to the current node of
the expression tree, passed in parameter
regsiter P2.

~: Normal exit only.

OPERATION: The subroutine KEY is entered
to determine the location of both operands
Cin storage or registers>. If both
operands are in memory, SELFR is entered to
select a floating-point register. MEMAC is
entered to assign B, X, and D fields and to
load cover and/or index quantities as
necessary. OPND is entered to release tem
porary storage when appropriate. An
instruction is generated to load the
selected operand into the selected regis
ter. MEMAC is entered again to obtain
cover for the nonselected operand. A mul
tiply instruction is generated, and final
ly, ASFR is entered to make a register
storage entry for the current node of the
tree.

If only one operand is in a register,
that operand is designated the selected
operand. RSLT is entered to ensure storage
of the operand if necessary, and processing
continues as above from the point at which
fvlEMAC is entered for the nonselected
operand.

! :' ' 'Ii·

If both operands are in registers, SLPOS
is entered to select a register not requir
ing storage if altered. OPND is entered to
release storage and register memory for the
nonselected operand, and RSLT is entered to
ensure preservation of the selected
operand. An RR multiply instruction is
generated, and finally ASFR is entered to
make a register storage entry for the cur
rent node of the tree.

CEKMA -- Real Divide Generator (RDIV)

RDIV is entered by the expression
generator to generate the quotient of two
operands of type REAL*4 or REAL*8. See
Chart ES.

ENTRIES: The entry point is CEKMAl. The
input is a pointer to the current node of
the expression tree, passed in parameter
register P2.

EXITS: Normal exit only.

OPERATION: The subroutine KEY is entered
to determine the location of both operands
Cin storage or registers). If both
operands are in storage, SELFR is entered
to select a floating-point register. MEMAC
is entered to assign B, x, and D fields,
and to load cover and/or index quantities
as necessary. OPND is entered to release
temporary storage when appropriate. An
instruction is generated to load the divi
dend into the selected register. MEMAC is
entered again to obtain cover for the divi
sor. A divide instruction is generated,
and finally ASFR is entered to make a reg
ister storage entry for the current node of
the tree.

If the dividend is in a register and the
divisor is in storage, RSLT is entered to
ensure storage of the dividend if neces
sary, and processing continues as above
from the point at which MEMAC is entered to
obtain cover for the divisor.

If the divisor is in a register and the
dividend is in storage, SELSR is entered to
select a register other than the one con
taining the divisor. MEMAC is entered to
assign B, X, and D fields and to load cover
and/or index quantities as necessary. A
load is generated to place the dividend
into the selected register. OPND is
entered to release temporary storage and
register assigned to the divisor as appro
priate. An RR divide instruction is
generated, and ASFR is entered to assign
the selected register to the current node
of the expression tree.

If both operands are in registers, the
register containing the dividend is desig
nated as the selected register. OPND is
entered to release the temporary storage

and register assigned to the divisor when
appropriate. RSLT is entered to store the
dividend if necessary. Processing con
tinues as above from the point at which the
RR divide instruction is generated.

CEKMF -- Integer Plus Generator (!PLUS)

!PLUS generates the sum of two integer
quantities of length two or four. See
Chart ET.

ENTRIES: The entry point is CEKMFl. The
expression tree address of the plus opera
tor is expected in parameter register P2.

EXITS: Normal exit only.

OPERATION: The code generated depends upon
whether the operands are in registers or in
storage. Three cases are treated:

1. If neither operand is in a register, a
register is selected and SELOP is
entered. SELOP determines which
operand should be loaded C become the
augend or minuend); whether the load
should be performed with an L (load)
or LA or (load address) commandt
~hether an addition or a subtraction
is required; and what sign should be
associated with the result.

2. If only one Qperand is in a register,
SLONE is entered. SLONE determines
whether an addition or subtraction is
required; whether the operation may be.
performed in the register containing
the operand; and what sign should be
associated with the result. If '.the
operation may not be performed in the
register containing the operand, SLONE
indicates whether that operand should
be moved to another register before
generation of an R-X addition or sub
traction, or whether the operand in
memory should be loaded into a regis
ter before generation of an R-R addi
tion or subtraction. If loading of
the operand from storage is indicated,
SLONE specifies whether the load
should be performed with a load or a
load address instruction.

3. If both operands are in registers,
SLPOS is entered. SLPOS determines
whether an addition or subtraction
must be performed; in which, if eith
er, of the operand registers the
operation is to be performed; and what
sign should be associated with the
result. If the operations may be per
formed in neither of the operand reg
isters, SLPOS indicates which operand
should be moved, and whether the move
should be performed with a load regis
ter or a LCR (load complement)
instruction. 1

Section 6: Phase 4 163

!PLUS simply performs the generation
indicated by the output from SELOP, SLONE,
or SLPOS and assigns the operation result
to the selected register.

CEKME -- Integer Multiply Generator (IMPLY)

IMPLY generates the product of two
integer quantities of length two or four.
See Chart EU.

ENTRIES: The entry point is CEKMEl. The
expression tree address of the multiplica
tion operator is expected in parameter reg
ister P2.

EXITS: Normal exit only.

OPERATION: The code generated depends upon·
whether the operands are in registers or in
storage. Three cases are treated:

1. If neither operand is in a register,
SELOP is entered. SLOP determines
which operand should be loaded; com
plements a constant operand and files
the new value in the symbo1 table if
such a procedure will resu1t in a pro
duct with the desired sign; indicates
whether the operand may be loaded by
means of a load address instruction;
and, indicates whether an operand is a
constant power of 2 so that the other
operand may be loaded and shifted
appropriately.

2. If one operand is in a register, SLONE
is entered. SLONE complements the
storage operand and files the new
value in the symbol table if the
operand is a constant and if such a
procedure will result in a product
with the desired sign; specifies the
result sign; indicates whether the
storage operand is a constant power of
2 so that the register operand may
simply be shifted by an appropriate
amount; and, specifies whether the
operation may take place in the regis
ter or register pair containing the
multiplicand or whether that operand
must be moved to another register or
register pair before the multiplica
tion, and whether the move must be
done with a load register or a load
complement instruction.

3. If both operands are in registers,
SLPOS is entered. SLPOS selects the
operand to be used as the multiplicand
(•to• register); specifies the result
sign; indicates that one operand is a
constant power of 2 so that the pro
duct may be computed by shifting the
other operand; and indicates that the
multiplicand must be moved to another
register before the multiplication is ·
generated, specif y~ng whether the move

164

should be done with a load register or
a load complement instruction.

IMPLY simply generates the multiplica
tion as specified by SELOP, SLONE, or SLPOS
and assigns the result to the selected
register.

CEKMD -- Integer Divide Generator CIDVDE)

IDVDE is used to generate integer divi
sions of 2- and 4-byte quantities. See
Chart EV.

ENTRIES: The entry point is CEKMDl. IDVDE
expects the expression tree address of the
division operator in parameter register P2.

EXITS: Normal exit only.

OPERATION: The instructions generated
depend upon whether neither, one, or both
operands are in registers:

1. If neither operand is in a register,
SEIDP is entered. SELOP files the
complement of a constant operand in
the symbol table if this procedure
will produce the desired result sign;
returns the result sign; and, deter
mines whether the dividend may be
loaded by means of a load address
instruction.

2. If one operand is in a register, SLONE
is entered. SLONE determines the
result sign; files the complement of
an operand in the symbol table if the
operand is a constant and if such a
procedure produces the desired result
sign; determines whether the operand
should be loaded with a load address
conmand; and, determines whether the
division may proceed in the register
pair containing the numerator or it
must be moved to another register
pair.

3. If both operands are in registers,
SELGD is entered to determine whether
the division may proceed in the regis
ter pair containing the numerator or
the numerator must first be moved to
another register pair.

Depending upon the output of SELOP,
SLONE, or SELGD, instructions are generated
to perform the division, and the result is
assigned to the selected register.

CEKOV -- Add by Load Address CLADDR)

LADDR is entered by the AGEN to generate
the addition of two quantities <represent
ing a recursive test expression> by means
of a load address instruction. see Chart
EW.

ENTRIES: The entry point is CEKOVl. LADDR
expects restricted linkage convention.
LADDR is parameter-register P2 to contain
the tree address of the major operator.

EXITS: Normal exit only.

OPERATION: LADDR is given the expression
tree address of an operator whose two
operands are to be added by means of a load
address instruction. The operands are
loaded into general registers Cif not there
already) and made to have the correct signs
by means of LCR instructions when neces
sary. The two register numbers are made
the X2 and B2 fields of a load address
instruction. A third register is selected
to contain the sum. This register becomes
the R1 field of the LA instruction and may
be the same as either B2 or X2, or may
differ from both. If one of the operands
is a positive constant less than 4096, the
constant value will be used as the D2
field, in which case X2 will be zero.
Otherwise, when both X2 and B2 differ from
zero, 02 will be zero. When all fields
have been set, the instruction LA Rl,D2CX2,
B2) is generated.

CEKMG -- Complex Plus Generator (CPLUS)

CPLUS is entered by the expression
generator to generate the complex addition
of two operands. See Chart EX.

ENTRIES: The entry point is CEKMGl. CPLUS
expects, in parameter register P2, a point
er to the tree node containing the plus
operator.

EXITS: Normal exit only.

OPERATION: CPLUS generates code to perform
the addition in a manner appropriate to the
types of the two operands. Possible
operand type combinations are given in
Table 27 (CMUL). If both operands, Ca+bi)
and (c+di), are complex, the following cal
culation is performed:

Ca+bi) + Cc+di) = Ca+c) + Cb+d)i

If one operand ~ is real, the addition is
performed as follows:

r + Ca+bi) = [(r +a) + bi] •

The code generated depends upon the
operand types, signs, and locations
(storage or registers>.

CEKOF -- Complex Multiply Generator (CMUL)

CMUL is called by the expression genera
tor to generate a complex multiplication.
The combination of operand types processed
is given in Table 27. See Chart EY.

Table 27. Operand Types Processed by CMUL

~ L*l L*4 1*2 1*4 R*4 R*8 C*8 (*16

L*l N N N N N N N N

L*4 N N N N N N N N

1*2 N N N 1*2 1*2
R*4 R*8

N N N

1*4 N N N N N N 1*4 1*4
R*8 R*8

R*4 N N N N N N y R*4
R*8

N C*8 y
(*16

R*8 N N N N N

C*8 N N 1*2 1*4 y C*8 y C*8
R*4 R*4 C*16 C*16

C*16 N N
1*2 1*4 R*4 y C*8 y
R*8 R*8 R*B C*J6

N - Not processed
y - Process as given
Other - Indicated conversion function has

been supplied by the tree builder
CTRBLD)

ENTRIES: The entry point is CEKOFl. CMUL
expects, in parameter register P2, a point
er to the tree node which contains the
operation to be processed.

EXITS: Normal exit only.

OPERATION: Given complex operands, (a+bi)
and Cc+dil, CMUL performs the computation:

Ca+bi) * Cc+di> = Cac-bd) and
Cbc+ad) i.

Given real operand ~ and complex operand
Ca+bi), CMUL performs the computation:

r * Ca+bi> = Cra+rbi) •

Processing differs according to whether
neither, one, or both operands are in
floating-point registers, and according to
whether or not both operands are complex.

Section 6: Phase 4 165

If both operands are in storage and are
complex, all four floating-point registers
are used in the computation of the product.
The product's real and imaginary parts will
reside in, and be assigned to, registers 0
and 2, respectively.

If one operand is in a register pair,
all four registers will be used, and the
result will be assigned to and left in the
same register pair.

If each operand is in a register pair,
all four registers will be used, and the
result, if possible will be left in, and
assigned to, the register pair which origi
nally contained an operand already in
storage.

CEKOG -- Complex Divide Generator CCDIV)

CDIV is entered by the expression
generator to generate code to evaluate a
complex quotient. The combination of
operand types processed by CDIV is given in
Table 28. See Chart EZ.

Table 28. Operand Types Processed .by CDIV

~ L*l L*4 1*2 1*4 R*4 R*S C*S C*16

L*l N N N N N N N N

L*4 N N N N N N N N

1*2 N N N N N N
1*2 1*2
R*4 R*S

1*4 N N N N N N
1*4 1*4
R*4 R*S

R*4 N N N N N N y R*4
R*S

R*S N N N N N N
C*S y
C*16

~R*8
1*2 1*4 R*4 C*16 C*S C*8 N N
C*S C*8 C*S

y
C*l6 ~C*S

C*l6

C*16 N N
1*2 1*4 R*4 R*8 C*8 y
C*16 C*16 C*l6 C*16 C*16

166

ENTRIES: The entry point is CEKOGl. CDIV
expects input in parameter register P2,
consisting of a pointer to the tree node
containing the divide operator.

EXITS: Normal exit only.

OPERATION: Given complex operands, Ca+ bi>
and Cc+di), CDIV generates code to perform
the following computation:

a+bi
c+di

Cac+bd) + (be-ad) i

Given real divisor £ and complex numera
tor Ca+bi>, CDIV generates code to perform
the evaluation:

a+bi = a + b i
r r r

Processing depends upon whether neither,
both, or one operand is in floating-point
registers. In all but the complex/real
case, all four floating registers are used.

CEKMH -- Relational Expression Generator
CRLTNL)

RLTNL generates code to evaluate the
logical result of the relational operators
.GT., .LT., and .EQ., or to generate the
conditional branch associated with a logi
cal IF statement. The types of the two
operands of any given relational expression
must be identical and may be Integer*2,
Integer*4, Real*4 or Real*8. The type of
the result <when the result is a logical
value) is always Logical*4. See Chart FA.

ENI'RIES: The entry point is CEKMH1. RLTNL
expects the expression tree address of the
relational operator in parameter register
P2.

EXITS: Normal exit only.

OPERATION: Instructions are generated to
compare the left and right operands. As a
result of this comparsion a logical value
Ctrue or false) is generated in all but one
situation: the expression is being used to
determine the branch condition of a logical
IF statement and the expression is not a
common expression. In this case a condi
tional branch is generated to the label
specified in the logical IF PF entry.
Otherwise, the same branch type is
generated, but in this case a local branch
Ce.g., BNE*+6) which completes the con
struction of a logical value by generation
of the "false• condition. For example,
consider the generation which rrdght result
from the following cases:

(1) ~ 2)

L=B.GT.C IF CY. GT. :U GO TO 20
IA 3,1
LE O,B LE O,Y
CE o,c CE 0 •. x
BH *+6 BH 20
SR 3,3
ST 3,L

In case 1 the comparison results in set
ting general register ; to true or false.
In case 2 the comparison results in condi
tionally branching-to statement number 20.

The code generated further depends upon
the types of the operands, the signs of the
operands, and whether or not the operands
are in registers. SELOP,SLONE, and SLPOS
are used to complement constant operands,
may be loaded with the load address
instruction; determine which, if either,
operand must be complemented with a load
complement instruction; and, if the operand
to be complemented is in a register, wheth
er the operand may be complemented in that
register or must be moved to another regis
ter (register O is always used for this
purpose) before the comparison may take
place. If the generation results in the
computation of a logical result, the result
is assigned to the selected register.

CEKMI -- Logical Expression Generator
CANDOR)

ANDOR generates code to evaluate the
logical .A..~D. and .OR. operators or to
generate the conditional branch associated
with a logical IF statement. The logical
operands must have the same type but may be
either of type Logical*l or Logical*4. See
Chart FB.

ENTRIES: The entry point is CEKMil. ANDOR
expects the expression tree address of the
logical operator in parameter register P2.

EXITS: Normal exit only.

OPERATION: ANDOR generates the logical
.AND. or .OR. of two logical operands.
Logical•4, and Logical*l operations are
somewhat different. If the operation type
is Logical•4, at least one operand is
forced to be in a general register by means
of a load instruction, and Cif necessary)
the operand signs are made to match by com
plementing one of the operands. If the
operation type is Logical•l, both operands
are forced to be in general registers with
the same signs, the loads in this case
being performed with the combination sub
tract register-insert character. The logi
cal operation generated and the result sign
depend upon the expression tree operation
code and the operand signs (after any com
plementation required to force operand sign

agreement) as summarized in the following
table:

Expression Tree Operand Operation Result
0Eeration Code Signs Generated Sign

Ai.~D + AND +
AND OR

OR + OR +
OR AND

After the logical operation has been
generated, the result is assigned to the
selected register, and if either the back
link to the next higher expression in the
expression tree is not zero (indicating
that the operation generated is part of a
larger expression> or the logical IF flag
is not raised (indicating that the expres
sion is not part of a logical IF state
ment>, generation is complete. otherwise,
a conditional branch to the label specified
in the IF statement is generated. The con
dition code has been established by the AND
or OR operation generated, and the branch
instruction generated depends upon the sign
of the result and the sign of the expres
sion tree operator, as follows:

Expression Result Branch
Tree Sign Sign Operation

+ + BZ
+ BNZ

+ BNZ
BZ

CEKMU -- Maximum 012erator Generator (MAX)

MAX generates code to evaluate the maxi
mum of two quantities. The types of the
two operands must agree, but may be
Integer•2, Integer•4, Real*4, or Real*8.
Note: Phase 1 has reduced maximum and
minimum operations to maximum according to
the transformation

MIN CA,B) = -MAXC-A,-B)
or

MIN CA,B,C) =-MAXCMAXC-A,-B),-C)

and has accounted for differences in the
types of operands and results by introduc
tion of conversion functions such as

or
AMAXOCI,J)=FLOATCMAXCI,J))

MAXl (A,B)=INT(MAXCA,B))

See Chart FC.

ENTRIES: The entry point is CEKMUl. MAX
expects the expression tree address of the
MAX operator in parameter register P2.

EXITS: Normal exit only.

OPERATION: In general the generation of
the maximum operations consists of selec
tion of a register to contain the result,

Section 6: Phase 4 167

generation of an instruction to obtain one
operand in the select~d register, genera
tion of a compare instruction to compare
the two operands, generation of a condi
tional local branch (e.g., BH *+8), and
generation of a conditionally executed load
or load register instruction to obtain the
other operand in the same selected
register.

Generation varies in the obvious ways
according to operand type (integer or real)
and in addition depends upon the location
and signs of the operands:

1. If neither operand is in a register,
SELOP is entered. SELOP determines
the result sign; which operand to load
first; whether the load may be accomp
lished with the load address instruc
tion; and, whether the operand to be
loaded must be comp1emented before the
comparison is generated.

2. If one operand is in a register, SLONE
is entered. SLONE determines the
result sign; whether the operation may
take p1ace in the register containing
the operand; and, whether the operand
must be comp1emented, either in place
or while being moved to another
register.

3. If both operands are in registers,
SLPOS is entered. SLPOS determines
the result sign; which operand regis
ter is to contain the result or that
one of the operands must first be
moved to sti11 another register; and,
whether the selected operand must be
complemented, either in place or while
being moved.

Generation of instructions required to
position the operands for comparison is
performed as indicated by SELOP, SLONE, or
SLPOS. The conditional branch instruction
generated depends upon the adjusted signs
of the operands. If the signs are correct,
BNL is generated; otherwise, BNH is.

CEKMK -- External Function Generator (FUNC)

FUNC is entered by the expression
generator and by the CALL statement proces
sor to generate a function or subroutine
call. Calls upon subroutines with no argu
ments are not processed by the expression
generator and are not treated by this rou
tine. See Chart FD.

ENTRIES: The entry point is CEKMK1. FUNC
expects a pointer to the tree node contain
ing the ; operator to be passed in parame
ter register P2.

168

EXITS: Normal exit only.

OPERATION: The tree entry to be processed
is a ; operator, whose right operand is the
function name and whose left operand is
either an expression entry (representing
the one argument> or a , operator if there
is more than one operand. Upon entry, all
arguments are in storage with the desired
sign.

The current length of storage class 5 is
obtained from the Storage Class Table. The
length indicates the next available byte in
the parameter list area. A parameter list
covering adcon is formed and is entered in
the symbol table by TEVFL4. An instruction
is generated to load the adcon into general
register 1.

The leftmost (first) argument of the
function operator is located by following
left branches in the tree, until one such
branch is not an argument separator o_pera
tor (comma). Then, starting with the left
most operand, and following backlinks until
the function operator is encountered, each
argument is given the following processing,
according to its class code.

1. Constant operand

The SLOC of the covering adcon and the
displacement given in the operand item
are summed, to form a new adcon cover
ing the same storage class. The new
adcon is entered in the parameter list
via TEVFLS.

2. Variable operand

3.

If the variable is not a formal sub
program argument, it is processed in
the same manner as a constant. Other
wise, instructions are generated to
compute the effective address of argu
ment and to store that address in the
next available cell in the parameter
list.

Operator item

a. Subscripted variable

If the operand sign flag is set,
the comma processor has previously
negated the variable and put it in
temporary storage, recording the
temporary assignment in the tree.
In this case the operand process
ing is similar to that given a
constant. If the flag is not set,
instructions are generated to com
pute the effective address of the
variable and to store that address
into the next available cell in
the parameter list.

b. Other expression

The temporary covering adcon value
is added to the displacement given
in the tree, and a new adcon is
formed and added to the parameter
list by TEVFLS.

4. Common expression item

Processing is similc:r to that gj_ven an
operator, except that the information
concerning temporary assignment is
obtained from the name table, rather
than from the tree.

5. Function item

a. Function name is a formal subpro
gram argument.

Code is generated to fetch Lhe pa
rameter location from the adcon
page, where it was stored in a
subprogram entry preamble, and to
store it in the next available pa
rameter list cell.

b. Function name is not a subprogram
argument.

A V/R adcon pair is formed and
entered in the symbol table by
TEVVR. The storage assignment of
the V-type adcon is combined with
storage class 4. to form a new
adcon which points to. the V/R
pair. The new adcon is entered in
the next available cell in the pa
rameter list.

6. Residue

Processing is the same as that given a
conmon expression item.

After all the arguments have been pro
cessed, the remainder of the linkage
is generated. This consists of the
following code:

• Function being called is not a form
al argument of the calling routine.

L 14,0+4(13)
ST 14,72(13)

L 15,0(13)
BASR 14,.15

Load R-adcon
Store in caller's
PSECT
Load V-adcon
Branch

where D is the displacement with
respect to the orgin of the caller's
adcon page necessary to cover the
first byte of the 8-byte adcon pair.

• Function being called is a formal
argument.

L 15,C(13) Load pointer to
adcon pair

L 14,4(15) Load R-adcon
ST 14,72(13) store in caller's

PSECT
L 15, 0 (15) Load V-adcon
BASR 14,15 Branch

~here c is the displacement from the
adcon page origin of the cell into
which a pointer to the adcon pair is
placed in the subprogram preamble.

CEKNJ -- Conuna Operator Processing
Subroutine (COMMA)

COMMA is called by the arithmetic ex
pression generator to process the arguments
of a comma <argument separator> operator or
by the function operator processing subrou
tine to process the argument of a 1-
argument function. Its purpose is to
ensure that the operands of the cow.ma
operator or the operand of the function
operator are in memory with the correct
sign. See Chart FE.

ENTRIES: COMMA has two entry points:
COMMA (CEKNJU, entered by the Arith1,11.etic
Expression Generator, and COMA2 (CE~~J2),
entered by the FUnction Operator Processing
subroutine. COMMA and COMA2 expect in pa
rameter register P2 the expression tree
address of the comma operator and the func-
tion operator, respectively. ·

EXITS: Normal exit only.

OPERATION: The left operand of a flll,lction
operator and the right operand of a comma
operator are always processed. The left
operand of a conuna operator is processed
only if it is not itself a comma operator.
The operands processed are treated accord
ing to thei~ class:

1. A constant requires no processing if
its tree sign is plus. Otherwise, the
constant is complemented, the result
ing constant is filed in the symbol
table, and the constant item in the
tree is changed to reflect the new
associated symbol table entry.

2. A variable requires no processing if
its tree sign flag is plus. other
wise, a temporary storage location is
assigned; and, FETCH is entered

a. to load, complement, and store the
variable in temporary if the vari
able was not in a register;

b. to complement and store the vari
able in temporary if it was in a
register with the wrong sign; or,

c. simply to store the variable in
temporary if it was in a register
with the desired sign.

Section 6: Phase 4 169

The identity of the temporary-covering
adcon and displa~ement are stored in
the associated fields in the variable
item.

3. A colon operator or colon common ex
pression requires processing if its
tree sign flag is not plus. It is
treated in the same fashion a:> a vari
able. However, the identity of the
temporary-covering adcon and displace
ment are recorded in the name table if
the operand is a common expression.

4. Processing of a noncolon operator
depends upon whether or not the
operand is in storage. If it is in
storage and the storage and tree signs
agree, no action is taken. If it is
in storage and the storage and tree
signs differ, FETCH is entered to load
the operand from its temporary, to
complement it, and to store the com
plemented value in the same temporary
location. If the operand is in a reg
ister, a temporary is assigned, and
FETCH is entered to complement and
store the operand in the temporary if
the register and tree signs disagree,
or simply to store it in temporary if
they agree.

5. If a noncolon common expression is in
storage and its storage sign agrees
with the tree sign, no further pro
cessing is required. If it is in
storage and the signs disagree but the
Name Table entry indicates that a
secondary temporary has been assigned,
the tree entry's •use secondary tem
porary• flag is set.

170

If the common expression is in
storage, its Name Table storage sign
disagrees with its tree sign, and a
secondary temporary has not been
assigned, then a new temporary is
assigned, its assignment is recorded
in the secondary temporary assignment
field of the name table entry, the
name table •secondary temporary
assigned• flag is set, and the tree
entry's •use secondary temporary" flag
is set. FETCH is entered to load,
complement, and store the operand if
it is not also in a register or to
complement and store if it is already
in a register with the wrong sign.

If the common expression is not in
storage, a temporary is assigned and
the assignment is recorded in the name
table. FETCH is entered to complement
and store the expression in temporary
if its register sign disagrees with
its tree sign or sin:ply to store it if
the signs agree.

6. A function item requires no
processing.

CEKOM -- Open Function Control Routine
(DCOM)

Tnis program is called by the arithmetic
expression generator (AGEN) when a ;;
operator Copen function connector) is
encountered. The purpose of this routine
is to invoke the open function processing
module appropriate to the function number
which is given in the right-operand of the
;; operator. See Chart FF.

ENTRIES: DCOM has two entry points. The
main entry CCEKOMl) is made with the major
operator address in parameter register P2.
The alternate entry in DCOM (CEKOM2) is
physically packaged with CEKOM; but is
actually one of the six open function
modules called by DCOM, and its description
is to be found under "CEKOM2 -- Open Func
tion Processing Routine (0PEN6).•

EXITS: rhis routine produces no output.
If the function number given as input is
not among those expected, DCOM makes a
machine/compiler error exit via PH4MER.

OPERATION: rhe function number is obtained
from the r~ght-operand of the ;; operator
in the expression tree. The appropriate
open function module processing routine
entry address is obtained by a table look
up operation, indexed by function number.
The routine is then invoked. When return
is made to DCOM, DCOM immediately returns
to AGEN.

CEKOT -- Open Function Processing Routine
(OPENl)

OPENl is invoked by DCOM to process any
of the open functions, DSIGN, HDIM, IDIM,
DIM, SIGN, or DDIM. See Chart FG.

ENTRIES: Entry is to CEKOTl, with the
major operator tree address in parameter
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPENl
makes a machine/compiler error return via
PH4MER.

OPERATION: This routine performs the code
generation to effect the following
functions:

SIGNCA,B)=Csign of B) *IAI
DIMCA,B) = Max(A-B,0)

CEKOU -- Open function Processing, Routine
COPEN2)

OPEN2 is invoked by DCOM to process any
of the following open functions:

CMPLX MOD
DCMPLX HMOD

See Chart FH.

ENTRIES: Entry it to CEKOUl, ,rith the
major operator tree address in parameter
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPEN2
makes a machine/compiler error exit via
PH4MER.

OPERATION: This routine performs the code
generation to effect the following
functions:

CMPLX CA,B) is the complex quantity
whose real and ima.ginary parts are A and B,
respectively.

MOD CI ,J) I - I * J
j

where CJ denotes the integral part.

CEKOX -- Open Function Processing Routine
(OPEN3)

OPEN3 is invoked by DCOM to process any
of the following open functions:

IA.BS, DABS, ABS
and the following type-conversion
functions:

Operand Type
I*2
I*2
I*2
I*2
I*4
R*4
R*4
R*8
R*4
C*8

See Chart FI.

Result Type
R*4
R*8
C*8
C*l6
C*16
R*8
C*8
C*8
C*16
C*16

ENTRIES: Entry is to CEKOX1, with the
major operator tree address in parameter
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPEN3
makes a machine/compiler error exit via
PH4MER.

OPERATION: This routine performs the code
generation required to effect the above
functions.

CEKOY -- Open Function Processing Routine
COPEN4)

OPEN4 is invoked by DCOM to process any
of the following open functions:

AMOD HSIGN !SIGN
DCONJ AINT CONJ
DMOD

see Chart FJ.

ENTRIES: Entry is to CEKOYl, with the
major operator tree address in parameter
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPEN4
makes a machine/compiler error exit via
PH4MER.

OPERATION: OPEN4 performs the code genera
tion to effect the following functions:

MOD CA,B) = A - [~] *B

AINT CA) = integer part of A
CONJ CA+Bi) = CA-Bi)
SIGN CA,B) =sign of B *IAI

CEKOZ -- Open Function Processing Routine
(OPENS)

OPENS is invoked by DCOM to process any
of the following functions: Integer 'and
real square, cube, fifth, and seventh
powers; and, real reciprocal. See Chart
FK.

ENTRIES: Entry is to CEKOZl, with the tree
address of the major operator in parameter
register P2 and the open functions number
in parameter register P3.

EXITS: If the open function number given
as input is not among those expected, OPENS
makes a machine/compiler error exit via
PH4MER.

OPERATION: OP1!."'N5 performs the code genera
tion to effect the above functions.

CEKOM2 -- Open FUnction Processing Routine
(OPEN6>*

OPEN6 is invoked by DCOM to process any
of the following open conversion functions:

Operand Type
R*4
R*4
R*8

Result Type
1*2
1*4
R*4

Section 6: Phase 4 171

R*8
C*8
L*l
L*4
I*2
I*4
R*8
C*8
C*8
C*16
C*16
C*16
C*16
C*16

See Chart FL.

1*4
R*4
L*4
L*l
!*4
I*2
I*2
I*2
I*4
I*2
I*4
R*4
R*8
C*8

ENTRIES: Entry is to CEKOM2, with the
major operator tree address in parameter
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPEN6
makes a machine/compiler error exit via
PH4MER.

OPERATION: OPEN6 performs the code genera
tion necessary to effect the above conver
sion functions.

CEKMV -- Memory Access Routine (MEMAC)

MEMAC is entered to obtain cover for a
generated storage reference to an arbitrary
expression tree operand and to provide X2,
B2, and 02 instruction fields for the
reference. see Chart FM.

ENTRIES: The entry point is CEKMVl. MEMAC
expects the expression tree address of the
operand to be covered to be in parameter
register P2. If parameter register Pl is
nonzero, it is assumed to contain the num
ber of a general register that must remain
undisturbed by MEMAC. If no such protec
tion is desired, the contents of register
Pl must be 0.

EXITS: Normal exit only. Parameter regis
ters Pl, P2, and P3 contain X2, B2, and 02,
respectively.

OPERATION: MEMAC treats two distinct
cases: the operand requiring cover either
is or is not a subscript connector. If the
operand is not a subscript connector, X2 is
set to O, and 02 is obtained directly from
the displacement field of tree entry or the
name table entry appropriate to the class
of the operand. Likewise, the symbol table
pointer to the covering adcon is obtained;
and, if that adcon is in a general regis
ter, B2 is set equal to the register num-

*CEKOM2 is physically an alternate in mode
CEKOM.

172

her. However, if the adcon is not in a
register, a register is selected, an
instruction is generated to load the adcon
into the selected register, and B2 is set
equal to the number of the selected
register.

If the operand is a subscript connector,
D2 is set directly to the value given in
the displacement field of the left operand
of the subscript connector, and one of two
cases exists: the right operand of the
subscript connector either is or is not a ?
operator. If it is not, X2 is set to O,
the right operand of the subscript connec
tor is obtained in a general register Cby
loading it if necessary>, and B2 is set
equal to the corresponding register number.

If the right operand of the subscript
connector is a ? operator, each of the two
operands of the ? operator is treated
(first right and then left) as if it were
the single non-? operator operand of the
subscript connector. The right operand
determines 82, and the left operand (taking
care that loading of the left operand does
not disturb register B2) determines X2.

CEKOP -- Load covering Adcon Routine
(COVER)

COVER is called to obtain adcon cover
for generation of storage reference that
does not require an index field.

ENTRIES: Entry is to CEKOPl, with the sym
bol table pointer to the desired adcon in
parameter register P2. Parameter register
number Pl must have either the number of a
general register whose contents must be
left undisturbed by the potential adcon
load or zero.

EXITS: Normal exit only. The number of
the register which contains the adcon is
returned in parameter register P2.

OPERATION: COVER is given the symbol table
pointer to an adcon. It determines whether
the adcon is in a general register. If so,
the register number is returned. If not, a
register is selected, the adcon is !oded
into that register, and the selected regis
ter number is returned.

CEKMZ -- Local Branch Generator CSADDR)

SADOR is called by the relational ex
pression generator and by other routines
requiring generation of a forward branch
relative to the current value of the loca
tion counter. See Chart FN.

ENTRIES: Entry is to CEKMZl, with the
desired displacement in parameter register
P3. Up to two registers may be specified
as unavailable for use as branch cover.
These are input in parameter registers Pl
or Pl and P2.

EXITS: Normal exit only. SADDR returns
the effective displacement and a register
number in parameter registers Pl and P2
respectively.

OPERATION: SADDR expects as input a param
eter whose value is between O and 4095,
inclusive. The value represents the
desired destination in bytes, relative to
the location counter. It is assumed that
if SADDR must generate a load to cover the
destination address, the parameter value
will apply to the location counter setting
in effect after that load ha::; been
generated.

The sum (S) of the current location
counter value and the parameter value is
computed. The register table is searched
to find a register containing an adcon or a
code cover quantity whose value <v> is such
that:

V ~ S < V+4096.

If such a register is found, the register
number and displacement are returned to the
caller. The displacement, in this case, is
equal to s-v. If no such register exists,
SELSR is called to select a register (R)
into which cover may be loaded. INSOT is
called to generate the instruction BASR
R,O. ASAR is entered to make a register
table entry for the code cover quantity now
in R. R, together with the same displace
ment given as input, is output to the call
er, and exit is na.de.

CEKNV -- Labeled Branch Generator <LBL)

LBL is called to output code to branch
to a statement label and provide any neces
sary cover prior to branching. See Chart
FO.

ENTRIES: Entry is made to CEKNV1 , with one
of the types of branch operation codes in
parameter register P1 and a symbol table
label entry pointer in parameter register
P2.

EXITS: Normal exit only. The output of
LBL is via INSOT, a generated branch
instruction in the code file.

OPERATION: LBL is provided with two input
parameters: the type of branch required to
be generated, and a pointer to the symbol

table entry for the label to which the
branch is to be made. LBL then searches
the registers to determine if an appropri
ate adcon is present to cover the branch
about to be generated. If not, a register
is selected and assigned, and a load of the
adcon generated. Next, a special ID item
is created for Phase 5, to flag this as a
branch reference whose address is to be
filled in. Finally, the incomplete branch
instruction is generated.

CEKOS -- Operand Fetch Complement/Store
Routine (FETCH)

FETCH is called by the comma operator
processor to ensure that each argument of a
function or subroutine is in storage with
the desired sign. See Chart FP.

ENTRIES: The entry point is CEKOSl. Input
parameters are as follows:

Parameter
Register

Pl

P2

P3

P4

PS

Request Key
2° Fetch

Contents

21 = complement
2 2 = Store

Temp-covering adcon pointer if
store requested
Displacement relative to temp
cover if store requested.
Register number if operand is
in a register
Operand tree address

EXITS: Normal exit only.

OPERATION: FETCH generates instructions as
indicated by input options to load an
operand into a general or floating regis
ter, to complement it in that register, and
to store it in a specified temporary-cell.
The usage of floating versus general regis
ters and related instructions is dictated
by the operand type given in the expression
tree.

CEKND -- Select Operand Routine (SELOP)

SELOP is a general purpose operand opti
mizing routine which is used by all the
routines RPLUS, CPLUS, IPLUS, RMUL, CMUL,
IMPLY, RDIV, CDIV, IDVDE, RLTNL, ANDOR, and
MAX when both operands are in storage. See
Chart FQ.

ENTRIES: The entry point is CEKND1. Reg
isters Pl and P2 contain the output parame
ters from subroutine KEY (i.e., the signs
of both operands), and parameter register
P3 contains the expression tree address of
the operator whose operands are being
considered.

Section 6: Phase 4 173

r--------------T----------------------.----------------T--------------------------------1
I Register I Operation I Value I Significance I
~--------------+----------------------+----------------+--------------------------------~

PS maximum, 0 Do not complement after
relational, loading operand.

PS

PS

or logical

maximum,
relational,
or logical

multiplication
multiplication
multiplication

1

0
1

-4095

Complement after loading
operand.

Standard multiplication.
Multiply with shift.
Multiplication by 1.

P6 maximum,
relational,
or logical

irrelevant

P6 multiplication Amount of shift if shift is
indicated.

--------------L----------------------~----------------~--------------------------------J

EXITS: Normal exit only. Parameter regis
ters Pl and P2 contain the result sign CO
for plus and 1 for minus) and the expres
sion tree address of the operand to be
loaded, respectively. If bit O of parame
ter register P3 is 0, the operand is not to
be loaded with a load address instruction;
otherwise, bits 20 through 31 contain the
immediate value to be loaded by means of a
load address instruction. If the operation
is plus, the value in parameter register P4
CO or 1) indicates that an addition or a
subtraction, respectively, is to be per
formed; otherwise, the register contains
the expression tree address of the second
operand. Parameter registers PS and P6
have meaning only for the maximum, rela
tional, logical, and multiplication opera
tors as summarized in the above table:

OPERATION: The output parameters from
SELOP specify a procedure for generating
code in an optimal fashion for the given
operation and combination of operand signs.
In particular, SELOP attempts, in one of
two ways, to allow for generation of a
result whose sign matches that of the ex
pression tree node being processed. The
first way takes similar forms for the plus
and logical operators and simply involves a
choice of which operand is to be loaded.
For trees

l. A 2.

-A B -A B

the right and left operands, respectively,
would be chosen to be loaded. Similarly,
for trees

174

3. /\ 4.

-C D -C D

the left and right operands, respectively,
would be chosen. The code generated for
the cases might be

1. LE O,B 2. LE O,A
SE O,A SE 0,B

3. L 5,C 4. L 5,D
BCTR 5,0 BCTR 5,0
LCR 5,5 LCR 5,5
N 5,D 0 5,C

For the multiply and divide operators,
the operand loaded is irrelevant in deter
mining the result sign. For these opera
tors, if a direct product would not produce
the desired sign, the operands are
examined. If one is a constant, the con
stant is complemented and filed in the sym
bol table, and the tree entry for the con
stant item is modified to reflect the
change.

For any of the arithmetic operators if
the operand selected for loading is a posi
tive integer constant less then 4096 <in
deed, if there is no other basis for choos
ing which operand to load, such a constant
operand is chosen>, a parameter is returned
in the form of a flag to indicate that the
selected operand may be loaded with a load
address instruction.

In only one situation is the production
of the desired re~ult sign ignored. If the

operation is an integer multiplication, and
one of the operands is an integer power of
two, the other operand is selected for
loading and multiplication by shifting Cor
by loading only, if the operand is 1) is
indicated, regardless of the result sign.

CEKNF -- Select Position for Operation
(SLPOS)

SLPOS is a general purpose operand opti
mizing routine used by all the routines
RPLUS, CPI.US, !PLUS, RMUL, CMUL, IMPLY,
RLTNL, ANDOR, and MAX when both operands
are in registers. See Chart FR.

ENTRIES: The entry point is CEKNF1. Pa
rameter registers P1 and P2 contain the
output from the KEY subroutine (numbers of
registers containing the two operands and
the corresponding register signs>, and pa
rameter register P3 contains the expression
tree address of the operator whose operands
are being considered.

EXITS: Normal exit ionly. Parameter reg
ister Pl contains the selected operand reg
ister in the following form:

0SP1S15 P1 = selected register; use
as is.

-15g>1S-1 IPll = selected register;
move operand before using.

16SP1S31 P1-16 = selected register;
complement register before
using.

4095 Fioating-point register 0 is
selected; complement before
using.

-31SP1S-16 IPll-16 = selected register;
move and complement before
using.

Parameter register P2 contains the result
sign: 0 for plus, 1 for minus. Parameter
register P3, applicable only for plus
operator, contains 0 to indicate addition
or 1 to indicate subtraction. For a multi
plication operator, the content of P3 has
the following meaning:

0
1

-4095

perform standard multiplication.
multiply by shifting.
multiply by 1
Cno multiplication).

Parameter register P4 is of significance
only if P3 contains a 1, in which case the
contents of register P4 indicate the number
of places of shift to be generated.

OPERATION: The two registers containing
the operands are given weights according to
their contents as determined from the ID
field CMRM2) of the initial entries of the
corresponding MRM or MRMFR table entries.
Following is a tabulation of the weights
assigned:

Weight
9
8
6
5
4
3
2
1

Contents
Operator
Common Expression (last use)
Variable
Constant Less than 4096
Constant (Greater than 4095)
Address Constant
Stored common Expression
Unstored Common Expression

If the operand signs are identical, or
if the two weights are not identical and
either operand is an unstored common ex
pression which is not now being used for
the last time, no refinement of the prelim
inary weights is made. Otherwise, an
increase of 2 is made to the weight of the
operand whose register sign matches the
tree sign of the operator being generated.
This tends to increase the probability that
the result sign will be the desired sign.

For all floating-point and logical
operators, the weights are compared, the
operand with the highest weight is chosen
as the •to• operand, and the corresponding
determination of result sign is made.
Additionally, if the floating-point opera
tion is plus, the agreement or disagreement
of the operand signs determines the opera
tion, add or subtract, respectively.

The integer operators require further
tests. If the register occupied by either
of the operands is globally assigned, the
corresponding weight is complemented. Then
if the maximum weight is negative, SLPOS
specifies that one of the operands must be
moved to another register which will become
the "to• register. If moving one of the
operands with a load complement instruction
will produce the desired sign, SLPOS speci
fies that this be done.

CEKO~ -- Select One Operand in a Register
(SLONE)

SLONE is a general purpose operand opti
mizing routine used by RMUL, CMUL, IMPLY,
RDIV, CDIV, IDVDE, RLTNL, ANDOR, and MAX
when only one operand is in a register.
See Chart FS.

ENTRIES: The entry point is CEKOWl. Pa
rameter registers Pl and P2 contain the
output from the KEY subroutine (the regis
ter number and register sign of the operand
that is in a register and the storage sign
of the other operand) and parameter regis-

Section 6: Phase 4 175

ter P4 contains the expression tree address
of the operator being processed.

EXITS: Normal exit only. Parameter regis
ter P1 contains the result sign; P2 con
tains the expression tree address of the
operand in storage; and, P3 contains 0 if
the storage operand need not be loaded, 1
if it must be loaded from storage or
X'80000nnn', indicating that it should be
loaded with a load address inst'rUction
whose D2 field has the value nnn. The con
tents of parameter registers P4, PS, and P6
vary with the operator being processed:

r------~T-------------T-~---------------1
I Register I Operation I Value I
~------~+-------------+-~---------------1

P4 IMaximum, I Expression Tree

P4

P4

PS

PS

P6

P6

P6

!logical, I address of reg-
lor relational ister operand
I
I Plus
I
I
I Multiply
I
I
I
I
I Maximum,
I logical
lor relational
I
I
I
I
I
I Add,
!multiply,
!or divide
I
I
I
I
I
I
I Maximum,
I logical,
or relational

Plus

0
1

0
1

-1

Add
Subtract

:Multiply
Shift
Multiply
by 1

-1 -- Move with
Load comple-
ment

FFFFOOOO -- Move
with Load
Register

0

1

Do not move
operand
Move with
Load
Register

-1 -- Move with
Load comple-1
ment I

Desired result
sign

I
I
I
I
I

0 -- Add or sub- I
tract in I
register I

1 -- Load storage!
operand intol
a second I
register andl
add or sub- I
tract there I

I
IMultiply Length of shift I
I if P4 = 1; other-I
I wise, irrelevant I
I if P4 = 1; other-I
I wise, irrelevant I

------~i-------------i---------------~-J

176

OPERATION: For a multiplication operation
SLONE determines whether the operation may
be performed by a shift instruction. For
all operations SLONE determines whether the
operation may be performed in the register
Cor register pair) containing one operand
or if the operand must be moved to another
register Cor register pair>. SLONE also
determines the result sign and attempts to
arrive at the desired sign either by filing
the complement of a constant storage
operand in the symbol table or by determin
ing, when the register operand must be
moved to another register, whether it
should be moved with a load complement
instruction.

If the storage operand must be loaded
into a register, SLONE determines whether
the load may be performed with a load
address instruction.

CEKNB -- Determine Availability of Register
for Multiplication (SELGM>

SELGM is entered by SLONE to determine
if an integer multiplication may be per
formed in a register pair which contains a
given register, and by SLPOS to determine
whether a multiplication may be performed
in either of two register pairs. See Chart
FT.

ENTRIES: The entry point is CEKNBl. Eith
er parameter registers Pl and P2 contain
the two given registers, or Pl contains the
only given register and P2 contains -1.

EXITS: Normal exit only. For each of the
inputs in parameter registers Pl and P2,
the output contained in the same register
is either the input value if the corre
sponding register member may be used as the
Rl field of an integer multiply instruc
tion, or is negative if the corresponding
register number may not be so used.

OPERATION: If either register contains a
quantity of type Integer•2, the register is
disqualified only if it is globally
assigned. If two registers are specified,
neither is globally assigned, and they are
an even/odd pair (e.g., 2/3 but not 7/8),
neither is disqualified.

If the register number is even, it is
disqualified. If the register number is
odd, and the even numbered member of the
corresponding even/odd register pair neith
er is globally assigned nor contains an
unstored common expression, the odd num
bered register is qualified. In the
remaining case if the register number is
odd and the even numbered member of the
corresponding even/odd register pair is not
globally assigned, but is an unstored com
mon expression, the qualification of the
odd numbered register is postponed.

After the registers presented as input
to SELGM have been processed as above, each
register will have been qualified or dis
qualified or will have had its qualifica
tion postponed.

If no postponement of the qualification
of a register has occurred, exit is made
from SEUiM. If qualification of only one
of the two registers has been postponed and
the other register has been qualified, the
former register is disqualified and exit is
made.

In the remaining case, qualification of
both registers has been postponed, or there
has been one postponement and one disquali
fication. If there is at least one remain
ing general register which is not globally
assigned and does not contain an unstored
common expression, both input registers are
disqualified, and exit is made from SELGM.
Otherwise, SELSR is entered to select one
of the registers which has not been dis
qualified (thereby storing its contents);
if the other register has had its qualifi
cation postponed, it is now disqualified,
and exit is made from SELGM.

If only one register is to be considered
by SELGM, its treatment may be found from
the above discussion by assuming that it is
one of two registers to be considered, the
other of which has already been
disqualified.

CEKNA -- General Register Availability for
Integer Divide (SELGD)

SELGD is called by IOVDE when the
numerator of a quotient is in a general
register to determine whether the division
may take place in the register pair con
taining the numerator. See Chart FU.

ENTRIES: The entry is CEKNA1. Parameter
register P1 contains the register number of
the numerator. P2 contains the register
number of the denominator if the denomina
tor, too, is in a register; otherwise, it
contains -1.

EXITS: Normal exit only. Parameter regis
ter Pl contains:

1. The register number of the numerator
if division may take place in that
register, or

2. The complement of that number if divi
sion may not proceed there, or

3. Four times that number if the divisor
may proceed and numerator and
denominator are in the same register.

OPERATION: If the numerator and denomina
tor are in the same register, exit is made
from SELGD. If they are not in the same
register pair, the numerator is in an even
register that is not globally assigned, and
the next higher numbered register is not
globally assigned and does not contain an
unstored common expression, then SELGD
indicates that division may proceed in the
register pair containing the numerator.
Otherwise, SELGD indicates that the numera
tor must be moved to another register pair
before the division may take place. See
Chart NF.

CEKOC -- Operand Status Routine (KEY)

KEY is called by the real and complex +,
*• and / generators to determine the loca
tion (storage or register) of both operands
of the current operation. See Chart FV.

ENTRIES: The entry point is CEKOCl. Pa
rameter register P2 contains a pointer to
the operator tree node whose operand loca
tions are to be determined.

EXITS: Normal exit only. KEY returns in
parameter registers the indicated switching
code, the register number of each operand
in a register, and the associated register
sign indicator. The left operand register
number is right-justified in the left half
of parameter register Pl. The right
operand number is right-justified in the
left half of parameter register P2. The
register signs of the left and right
operands are right-justified in the right
halves of registers P1 and P2,
respectively.

OPERATION: KEY first processes the left
operand. If it is a variable or constant,
FNDAR or FNDFR is called to determine
whether the operand is in a register. If
the operand is a partial result, the deter
mination is made by examining its tree
entry. If the operand is a common expres
sion or residue, the determination is made
by examining the name table. With this
information, KEY constructs a 2-bit switch
ing code with the first bit indicating the
absence or presence of the left operand in
a register and the second indicating simi
lar information for the right operand. For
each operand in a register, KEY determines
the register and sign from the correspond
ing MRM table.

CEKOR -- Single Operand Locating Routine
J.KEYU

KEY1 is entered to establish whether an
operand is in a register or in storage, and
to determine the operand's register/storage
sign. See Chart FW.

Section 6: Phase 4 177

r----------------,---------T--------------------------T------------------T---------------1
I Quantity I Pl I P2 I P3 I P4 I
~----------------+--------t--------------------------+------------------+---------------~

Operator 1 Expression Tree N/A N/A
Pointer

Common 2 Name Table Pointer N/A N/A
Expression

Ad con 3 Symbol Table Pointer N/A N/A

Variable 5 Symbol Table Pointer Associated Type Code
to Covering Adcon Displacement

Constant 6 Symbol Table Pointer N/A N/A

Residue 8 Name Table Pointer N/A N/A
-----------------'---------~--------------------------~------------------L---------------J

ENTRIES: Entry is to CEKORl, with the
operand tree address in parameter register
P2.

EXITS: Upon exit parameter register P2
contains the operand's register number.if
any; parameter register P3 contains the
register/memory sign; and parameter regis
ter Pl contains a 1 if the operand is in a
register, a zero otherwise.

OPERATION: KEYl locates the operand by
means of the FNDAR of FNDFR routines if the
operand is a constant, variable, or adcon.
If the operand is an operator, the informa
tion is obtained from the expression tree.
If the operand is a common expression or
residue, the information is obtained from
the name table. If an operand is found to
be in a register, the register number and
register sign are returned, whether or not
the operand may also be in storage. If an
operand is not found to be in a register,
it is assumed to be in storage; and, the
storage sign is returned. A variable, con
stant, or adcon in storage is assumed to
have storage sign plus.

CEKMR -- Search General Registers (FNDAR)

FNDAR is used either to determine wheth
er a given quantity is in one of the gener
al registers or to determine whether there
is at least one empty general register.
See Chart FX.

ENTRIES: The entry point is CEKMR.1. If an
empty register is to be found, parameter
register Pl must contain O; otherwise,
input is required in the parameter register
as above:

EXITS: Normal exit only. If parameter
register Pl is positive, its content is the
register number containing the desired
quantity or the number of an empty regis
ter. If Pl contains the value -40, the
desired quantity is not in a register or

178

there is no empty register. Otherwise, if
the content of Pl is negative, the absolute
value of the content is the register con
taining the desired quantity, and the ex
pression sign of the quantity is negative.

CEKMS -- Search Floating Registers CFNDFR)

FNDFR is used either to determine wheth
er a given quantity is in one of the float
ing registers or to determine whether there
is at least one empty floating register.
See Chart FY.

ENTRIES: The entry point is CEKMS1. If an
empty register is to be found, parameter
register Pl must contain O; otherwise,
input is required in the parameter regis
ters as shown in the diagram.

EXITS: Only normal exit is made. If the
content of Pl is not negative and less than
8, it represents the register number con
taining the desired quantity or the number
of an empty register. If Pl contains the
value -40, the desired quantity is not in a
register or there is no empty register.
Otherwise, if Pl contains a negative num
ber, the absolute value of that number is
the number of the register containing the
desired quantity, and the expression sign
is negative. In the System/360 computers O
has no distinct complement; therefore, if
the register containing the negative ex
pression sign is register O, parameter reg
ister Pl will contain plus 8.

CEKMW -- Operand Processing Routine (OPND)

OPND is called by the various arithmetic
generators, or by the subroutine RSLT, at
the statement processing level. It is
called immediately after each reference to
an expression tree entry, as the operand of
a larger expression or as an operand from
the statement level. Its purpose is to
clear register storage and to release tern-

porary storage assigned to a partial result
or to a common expression which will not
again be referenced. If the given operand
is a subscript connector (:), processing is
somewhat different. A reference to the
subscripted variable is treated as a
reference to the subscript expression which
is said to be the operand. Further, for
this purpose there are actually two kinds
of subscript expressions -- depending upon
whether the major operator of the subscript
is a split (?) operator. The split opera
tor represents an addition (performed by
use of hardware base-index addition) of two
operands. In this case, OPND must treat
both operands of the ? operator individu
ally, rather than the operand of the
operator by itself. See Chart FZ.

ENTRIES: The entry points are CEKMWl,
CEKMW2, and CEKMW3. The input is a pointer
to the first byte of the operand represen
tation in the expression tree in parameter
register P2.

EXITS: Normal exit only.

OPERATION: Processing varies with the
class of operand presented variable or
constant, operator, common expression, and
residue.

variable and constants require no pro
cessing, and exit is made inunediately.

Operators (partials) which are not sub
script connectors are processed as follows.
If the tree •in storage• bit is set, the
subroutine RLSWS is entered to reassign the
associated temporary storage. If the •in
register• bit is set, the specified regis
ter table entry is cleared. After this has
been accomplished, exit is made.

If the operator is a subscript connec
tor, its right operand is examined. If the
right operand of the : is not a ?, and if
it is an operator, it is processed as
above, and exit is made; if it is a common
expression, it is treated as described in
the following paragraph: then exit is made.
If the right operand of the : is a ?, each
of its operands is processed as described
immediately above before exit is made.

If the given operand is a common expres
sion or residue, the "last use• bit of the
corresponding name table entry is tested.
If it is not set, no further action is
taken, since the last use of this expres
sion does not occur in the present state
ment. If, however, the bit is set, the
count field of the name table entry is
reduced by 1. If it has not reached zero,
no further action is taken. Otherwise,
register storage and temporary storage are
released by use of the name table "in
storage• and •in register• bits, in the

same manner as they were used in the opera
tor processing. When this is complete, the
name table entry is cleared, and exit is
made.

CEKMY -- Result-Register Operand Processing
Subroutine CRSLT)

RSLT is entered by the various arithme
tic generators as a substitute for entering
OPND. RSLT is called when the operand par
ticipating in an operation is in the regis
ter which is destined to contain the result
of the operation: that is, the operand is
in the •to• register. The purpose of this
routine is to ensure that if the •to• reg
ister contains an active common expression,
that expression will either be moved to
another register or stored, provided it is
not already in storage. Since RSLT calls
upon COVER, which may be required to load a
temporary-covering adcon, the status of the
noselectable bits of the result register
and any other register specified as input
parameters will be saved on entry to RSLT,
then set to nonselectable, and restored
immediately before exit. This is done to
ensure that the register selected for
temporary-cover, if any, will not be one
containing either of the operands of the
current operation. See Chart GA.

ENTRIES: The entry point is CEKMYL RSLT
expects two parameters: The first is a
tree pointer to the operand to be protected
from the operation about to be performed,
in parameter register P2. The second is
the register number of another register to
be protected against loading with temp
cover, in parameter register Pl. If R is
the given register number, R is interpreted
as follows:

If 1~~15, then R is the corresponding
general register.

If R = 0 (applicable only to the
second parameter>, then no protection
is required.

EXITS: Normal exit only.

OPERATION: On entry, the status of the
operand nonselectable indicator is manipu
lated as described above. Now OPND is
called. Upon return, if the operand is not
a common expression, it is a nonactive com
mon expression, or if it is an active com
mon expression already in storage, the non
selectable indicators are restored, and
exit is made. Otherwise, if the operand is
not of complex or real type, FNDAR is
entered to determine if there is an empty
general register. If there is, the common
expression is moved to that register by an
RR-load instruction, and ASAR is entered to
assign the expression to the register. If,
however, the type is real or complex or

Section 6: Phase 4 179

there is no empty register, FNDWS is
entered to assign temporary storage; the
assignment is entered in the name table;
COVER is entered to cover the temp; and,
the operand is stored. Now, in either
case, the status of the nonselectable bits
is restored, and exit is made.

CEKNG -- Select Single General Register
(SELSR)

SELSR is entered to select a specified
general register, to select any register in
an optimal manner, or to select in an
optimal manner any register from a speci
fied restricted set of registers. See
Chart GB.

ENTRIES: The entry point is CEKNGl. One
or two parameters may be entered in parame
ter registers Pl and P2. However, if only
one parameter is entered, it must be in Pl,
and P2 must contain 0. Specification of
the register to be selected must be desig
nated only in register Pl. If no specifi
cation of or restriction on the register to
be selected is desired, register Pl must
contain O, in which case the contents of
register P2 are irrelevant. Otherwise,
specifications and restrictions are made in
either of or both registers Pl and P2 as
follows:

r---------r-------------------------------,
I Value (V > I Meaning I
~---------+-------------------------------~
1~~15 IV= Reg. No. Do not select I

lthis register. I
I I

16 JDo not select register 1, 14, I
!or 15, and in the course of I
I selection, do not move any I
!quantity into register 1, 14, I
!or 15. I
I I

-15~V~-1 IV= -(Reg. No.> Select regis-1
lter number IVI. In the course I
tof selection, do not move any I
f quantity into register 1, 14, I
for 15. I

f-30~~-16IV = -15- (Reg. No.) Select I
I tregister number IVl-15. I
L---------~-------------------------------J

EXITS: Normal exit only. Parameter regis
ter Pl contains the number of the register
selected.

OPERATION: SELSR associates with each reg
ister a weight which is determined from the
corresponding MRM table entry as follows:

180

r--------T--------------------------------1
!Weight I Register Contents I
I Assigned I I
~--------+--------------------------------~

9 Register empty
8 Constant smaller than 4096
7 Constatn greater than 4095
6 Variable
5 Stored conunon expression
4 BASR-generated address
3 Ad con
2 Unstored common expression
1 Operator (partial result)
0 Register not selectable <either

because the MSL or MGBL flag of
the MRM Table entry is raised,
or because an input parameter to
SELSR had disqualified the
register).

--------~--------------------------------J

If there has been no request for selec
tion of a specific register, the register
with the greatest weight is chosen. If two
or more registers have the same weight and
that weight is greater than 6, the register
with the smallest register number is chos
en; however, if the smallest register num
ber among the two or more equally weight
registers is 1, then the next higher num
bered register with the same weight is
taken. If a request for a specific regis
ter has been made, that register is chosen,
regardless of its relative weight.

If the chosen register has a weight
greater than 2, the routine FLUSH is called
to reset the register storage for all quan
tities in the chosen register and to
initialize the corresponding MRM Table
entry. The initialization causes the
entire MRM table entry to be cleared except
for the MSL and BUSY flags which are left
raised.

If the chosen register has a weight
equal to either 1 or 2, the entire set of
register weights is examined to determine
if there is an empty register <weight= 9).
If there is an empty register, FLUSH is
called to transfer the register contents to
storage, to transfer the corresponding MRM
table entry contents from the chosen regis
ter to the empty register, and to initia
lize the chosen register. An LR instruc
tion is generated to move the contents of
the chosen register. If there is not an
empty register, FNDWS is called to assign a
temporary to the quantity in the chosen
register. The MRM Table is searched to
find an adcon which covers the temporary
assigned. If there is such an adcon, an
instruction is generated to store the chos
en register. If there is no temporary
covering adcon in a register, the register
weights are examined, the largest weight
which exceeds 2 is chosen, and the
temporary-covering adcon is loaded into

that register and assigned to the corre
sponding MRM Table entry. The chosen reg
ister is then stored and its MRM Table
entry initialized. If, however, no regis
ter contains such an adcon and no register
weight exceeds 2, an escape mechanism is
used.

A Load Register instruction is generated
to move the contents of the chosen register
to register 0. The temporary-covering
adcon is loaded into the chosen register
and used from there to cover the store of
register O into temporary. Final1y, FLUSH
is called to initialize the chosen
register.

CEKNH -- Select Even/Odd General Register
Pair (SELDR)

SELDR is entered to select optimally an
even/odd pair of general registers. See
Chart GC.

ENTRIES: The entry point is CEKNHl. Pa
rameter registers Pl and P2 may be used to
specify as many as two registers that must
be excluded from consideration in the
selection process. Each of the parameter
registers must either contain O, indicating
no exclusion, or a number greater than 0
and less than 16, indicating that the cor
responding general register should be
excluded.

EXITS: Nornal exit only. Parameter regis
ter Pl contains the number of the even
member of the selected even/odd register
pair.

OPERATION: A weight is assigned to each
register in accordance with its contents.
The weights are then combined in pairs to
give a combined weight for each even/odd
register pair. If a member of any pair has
been excluded from consideration, the pair
is given weight O. The register pair with
the largest combined weight is selected.
SELSR is invoked to select specifically
each member of the pair, thereby making the
pair available for use.

CEKMQ -- Select Floating Register CSELFR)

SELFR is used to select a floating-point
register or to select a pair of floating
point registers (either registers 0 and 2
or registers 4 and 6). See Chart GD.

ENTRIES: The entry point is CEKMQl. Pa
rameter register Pl contains a number which
indicates the kind of selection desired:

Value in
Pl (V)

0V6
10~V~14

v 16
v = 18

Meaning
Select register number V.
Select register pair CV-10)/(V-8).
Select either register pair.
Select any one register.

EXITS: Normal exit only. Parameter regis
ter Pl contains the number of the register
selected or the number of the lower
numbered member of the register pair
selected.

OPERATION: If a specific register is
requested, SELFR determines whether that
register, or the register pair containing
that register, must be stored. If storing
is not necessary, the register storage is
cleared, and the MRMFR table entry is
initialized by raising its MSL and BUSY
flags and clearing the rest of the entry.
If the registers must be stored, temporary
storage is assigned to the quantity in the
register and instructions are generated to
perform the storage.

If no choice of registers has been spec
ified, SELFR assigns weights to each reg
ister according to its contents and either
chooses the single register having the
highest weight or the register pair having
the highest combined weight, as appropri
ate. The selected registers are then
treated as if they were specifically
requested, as described above.

CEKMM -- Make Initial Assignment to General
Register CASAR)

ASAR is used to record in an MRM table
entry the assignment of a quantity to the
corresponding general register. See Chart
GE.

ENTRIES: The entry point is CEKMM1. Pa
rameter registers Pl through P6 contain the
following:

Pl Register number to be assigned.

P2 Expression tree ID of quantity
being assigned Cor 4 if the quan
tity being assigned is an address
generated with a BASR
instruction).

P3

P4

Expression sign.

Pointer to name table, expression
tree, or symbol table, according
to ID.

PS Displacement -- applicable only if
quantity is a variable.

P6 Type -- applicable only if quanti
ty is a variable.

Section 6: Phase 4 181

EXITS: Normal exit only. Parameter regis
ter P6 contains the address of the MRM
table entry that ASAR made.

OPERATION: ASAR sets the MRN table initial
entry fields to the ID of the quantity to
be assigned and clears the MSL flag. In
addition, the register storage entry is
made in the name table or expression tree
if the quantity being assigned is either a
common expression or an operator,
respectively.

CEKMN -- Make Synonym Assiqrunent to General
Reqist er (ASARS)

ASARS is used to record the assignment
of a quantity as a synonym entry for a
given general register. See Chart GF.

ENTRIES: The entry point is CEKMN1. Pa
rameter registers P1 through P6 contain the
following:

Pl

P2

Register member to be assigned.

Expression tree ID of quantity
being assigned Cor 4 if the quan
tity being assigned is an address
generated with a BASR
instruction).

P3 Pointer to name table, expression
tree, or symbol table, according
to ID.

P4

PS

P6

Expression sign.

Displacement -- applicable only if
quantity is a variable.

Type -- applicable only if quanti
ty is a variable.

EXITS: Normal exit only. Parameter regis
ter P6 contains the address of the MRM
table entry that ASARS made.

OPERATION: ASARS sets the fields of an MRM
table synonym entry to the ID of the quan
tity to be assigned. If there is an inac
tive synonym entry, the first synonym entry
is used. In the latter case, the register
storage is cleared for the quantity being
replaced.

CEKMO -- Make Initial Assiqrunent to
Floating-Point Register CASFR)

ASFR is used to record in an MRMFR table
entry the assignment of a quantity to the
corresponding floating-point register.

~'NTRIES: The entry point is CEKM01. Pa
rameter registers Pl through P6 contain the
following:

182

Pl

P2

P3

Register number to be assigned.

Expression Tree ID of quantity
being assigned Cor 4 if the quan
tity being assigned is an address
generated with a BASR
instruction).

Pointer to name table, expression
tree, or symbol table, according
to ID.

P4 Expression sign.

PS

P6

Displacement -- applicable only if
quantity is a variable.

Type -- applicable only if quanti
ty is a variable.

EXITS: Normal exit only. Parameter regis
ter P6 contains the address of the MRMFR
table entry that ASFR made.

OPERATION: ASFR sets the MRMFR table ini
tial entry fields to the ID of the quantity
to be assigned and clears the M.5L flag. In
addition, the register storage entry is
made in the name table or expression tree
if the quantity being assigned is either a
common expression or an operation,
respectively.

CEKMP -- Make Synonym Assignment to
Floating Register CASFRS)

ASFRS is used to record the assignment
of a quantity as a synonym entry for a
given floating-point register. See Chart
GG.

ENTRIES: The entry point is CEKMP1. Pa
rameter registers Pl through P6 contain the
following:

Pl Register number to be assigned.

P2

P3

P4

PS

P6

Expression tree ID of quantity
being assigned <or 4 if the quan
tity being assigned is an address
generated with a BASR
instruction).

Pointer to name table, expression
tree, or symbol table, according
to ID.

Expression sign.

Displacement -- applicable only if
quantity is a variable.

Type -- applicable only if quanti
ty is a variable.

EXITS: Normal exit only. Parameter regis
ter P6 contains the address of the MRMFR
table entry that ASFRS made.

OPERATION: ASFRS sets the fields of an
MRMFR table synonym entry to the ID of the
quantity to be assigned. If there is an
inactive synonym entry, the first such
entry is used. If there is no inactive
synonym entry, the first synonym entry is
used. In the latter case, tne register
storage is cleared for the quantity being
replaced.

CEKMT -- Find Temporary Storage (FNDWS)

FNDWS is entered to locate and reserve a
given number of bytes of object program
temporary storage. In Q bytes are
requested, the first of the ~ contiguous
bytes assigned will be located at a .byte
address which is an integral multiple of n.
See Chart GB.

ENTRIES: The entry point is CEKMTl. Pa
rameter register P2 must contain a 1, 2, 4,
8, or 16 to indicate the number of bytes of
temporary storage needed.

EXITS: Normal exit only. Parameter regis
ter P2 contains a symbol table pointer to
the adcon which must be used to cover a
reference to the assigned temporary
storage, and parameter register P3 contains
the displacement to be used in conjunction
with the adcon.

OPERATION: Available temporary storage is
found by searching the temporary storage
allocation matrix for an n-bit field of O's
which starts on a bit boundary location
which is the smallest integral multiple of
n. The field is filled with 1's, and the
distance in bits from the origin of the
matrix is computed. This distance repre
sents the relative byte address of the tem
porary storage location assigned. The
relative address is converted to a page
address and a displacement within that
page. An address constant is filed to
cover the page. The symbol table pointer
for this adcon and the displacement are
returned to the caller.

The preceding discussion describes gen
erally the process for assignment of tem
porary storage. Actually one of two kinds
of temporary storage may be assigned
depending upon the status of the flag
GLMODE. If the flag is raised, global tem
porary storage is assigned; otherewise,
local temporary storage is assigned.

The GLMODE flag is tested by FNDWS which
simply decides whether to search the local
or global half of the temporary storage
allocation matrix and ~hether the address

constant created should cover the local or
global temporary storage class.

CEKMX -- Release Temporary Storage CRLSWS)

RLSWS is entered to make a temporary
storage location available for reuse. See
Chart GI.

ENTRIES: The entry point is CEKMX1. Pa
rameter register Pl contains a 0 if the
temporary location being released was occu
pied by an operator, or a 1 if it was occu
pied by a common expression. Accordingly,
parameter register P2 contains the asso
ciated expression tree address or name
table address.

EXITS: Normal exit only.

OPERATION: rhe adcon pointer, its asso
ciated displacement, and the operand type
are extracted from the name table or ex
pression tree. The adcon pointer is fol
lowed to the associated symbol table entry
from which the storage class covered by the
adcon and the location within that storage
class are extracted.

If the storage class covered is global
temporary, no further action is taken, and
RLSWS exits. If the storage class is local
temporary, a group of bits in the temporary
storage allocation matrix is cleared. The
first of these bits is determined from the
sum of the displacement and address covered
by the adcon. The number of bits cleared
is determined from the operand type.

Two temporary locations are released in
the above manner if the operand is a common
expression and the name table flag •secon
dary temp assigned• is raised: otherwise,
only one temporary location is released.

CEKON -- Register Storage Clear Routine
(FLUSH)

FLUSH is invoked to initialize a given
MRM table entry or to move it from one
entry to another before initializing it.
see Cha rt GJ.

ENTRIES: The entry point is CEKONl. The
contents of parameter register P3 are
treated as follows:

contents
0
1

2

3

Action
Initialize a general register.
Move, then initialize general

register.
Initialize a floating-point

register.
Move, then initialize a

floating-point register.

Parameter register P2 may contain either
the number of the register whose MRM/MRMFR

Section 6: Phase 4 183

Table entry is to be initialized or the
address of the entry, as desired by the
caller. Parameter register Pl is irrele
vant if P3 = 0 or 2; otherwise, it contains
the number of the register to which a move
is required, or the associated MRM/MRMFR
address, again at the option of the caller.

EXITS: Normal exit only. If only initia
lization is required, parameter register P6
contains the MRM/MRMFR address of the reg
ister initialized. If a move and initia
lize are required, P6 contains the MRM/
MRMFR address of the register to which the
movement will be made.

OPERATION: The distinction between regis
ter number and MRM/MRMFR address for the
input quantities is made according to
whether their values are less than or
greater than 16, respectively. Each, which
is a register number, is converted to the
corresponding MRM/MRMFR address.

If a move is specified, the entire MRM/
MRMFR entry is moved as specified. If the
register from which the move is made con
tains operators or common expressions, the
corresponding register number fields in the
name table or expression tree entries are
altered to reflect the new register
location.

If no move is specified and the register
which is to be initialized contains opera
tors or common expressions, the correspond
ing •in register" flags in the expression
tree or name table are lowered.

Processing is completed by initializing
the specified MRM/MRMFR entry.

CEKNI -- Code File Output Subroutine
(INSOT)

INSOT is called whenever an entry is
made in the code file. see Chart GK.

ENTRIES: The entry point is CEKNil. The
input parameters to INSOT are

1. ID in parameter register P2.

2. OP <Line Number or SYMT with IDs 7 or
8) in parameter register Pl.

3. All other parameters in a 6-word area
at INSOTP (in phase's PSECT) in the
order listed in Figure 34. Each
parameter occupies one ~ord and is
right-justified.

184

ID Other Parameters Required Usage

0 OP, Rl I R2 RR Instruction

l OP, Rl, X2, 82, D2, SYMT RX Instruction

2 OP, Rl, X2, B2, D2, DISPL Local Branck{*+)

4 OP, Rl, X2, B2, D2, SYMT Temporary

Branch-Displace-
5 OP, Ml, X2, B2, D2, SYMT, ADCON ment Supplied by

Phase 5

6 OP, Rl, R3, 82, D2 RS Instruction

7 Line Number Statement Header

8 SYMT Label Definition

9 None End Program

SYMT - Symbol Table Pointer for label or primitive

Adcon - Symbol table pointer for Adcon

Line Number- Source line number from PF entry

All other symbols have the accepted System/360 meaning.

Figure 34. INSOT Input Parameters

If storage class is 1 or 8, the symbol
table pointer points to the adcon covering
the temp; otherwise, storage class field is
O, and Phase 5 obtains actual storage class
from the symbol table.

EXITS: INSOT has two exits: one normal
return and one error exit. The INSOTP area
is undisturbed except for INSOTP +17.

OPERATION: Based upon the contents of
input parameters, INSOT generates the
appropriate code file entry (given in
Appendix A). INSOT also maintains the size
of Storage Class 1 in the storage class
table, and updates the code file top in
intercom. Label definitions are not
entered in the code file if the ISD, memory
map, and object listing options are all
off.

CEKOQ -- Edit for Code File (EDIT)

EDIT may be used in preparation for
generation of an RX-type instruction via
INSOT. Its purpose is to centralize the
preparation of some of the input parameters
required by INSOT.

ENTRIES: The entry point is CEKOQl. Entry
is made with the tree address of the
operand in register P2.

EXITS: Exit is made with the operation
type code in parameter register P2. The
ISYM entry of the INSOT parameter list is
set according to the following table:

OPERATION: EDIT sets input parameters to
INSOT according to the following table:

012erand ID 012-TvEe ISYM Contents
Constant RX Symbol table

pointer
Variable RX Symbol table

pointer
Ad con RX Symbol table

pointer
Operator temp. ref. Temp- covering ad con

pointer
CSX temp. ref. Temp- covering ad con

pointer
Subscript RX Variable symbol
Connector table pointer

Section 6: Phase 4 185

SECTION 7: PHASE 5

INTRODUCTION

Phase 5 generates the output of the FOR
TRAN compiler. This output can broadly be
divided into two parts: the object program
module (OPM) and the external listings.
The object program module consists of:

1. Loading information <relocation fac
tors, external names, etc.). This
information comprises the program
module dictionary (PMD) and is used at
load time by the dynamic loader.

2. Object text (code, constants, etc.).

3. An optional list, called the internal
symbol dictionary (ISO), of the
internal symbols in the FORTRAN pro
gram for use in checkout with PCS.

4. A list of external names <entry
points, subroutine calls, etc.).

The external listings are produced in
accordance with options selected by the
user. It should be noted that the first
option (of the five listed below) must be
requested in order to receive any of the
other four. The selections are:

1. A basic output listing which consists
mainly of the names and sizes of con
trol sections in the object program
module.

2. An expanded listing of the above to
include items such as the relative
locations of labels and variables.

3. A comprehensive output that, in addi
tion to 1 and 2 (above), lists object
code and give an assembly-like listing
of the object code along with comments
identifying what type item is being
referenced. This selection also pro
duces a listing of adcons, parameter
lists, and numeric and alphameric
constants.

4. A symbol table list which gives all
the variable names in alphabetical
order with important attributes.

5. A cross reference list which gives all
the variables listed in alphabetical
order, followed by the labels, in num
eric order, showing the line numbers
where each is defined and referenced.

Thus, the function of Phase 5 can be
stated as: generating th'e OPM (i.e., con
structing the PMD, building the object pro
gram, and producing the optionally selected

186

ISO) and producing various selections of
external listings. These functions are
itemized below, together with the routines
that contribute to their development.

1. Generating the object program module

a. The program module dictionary.
The program module dictionary con
sists of heading information and
one control section dictionary
(CSD) for each control section in
the object program.

BUILD

COS EC

PRSEC

CMS EC

SPECS

Processes the heading
infor:ma.tion in the PMD.

Constructs the control
section dictionary for the
code control section.

Builds the control section
dictionary for the proto
type control section.

Constructs one control
section dictionary for
each COMMON.

Makes entries in the con
trol section dictionary of
the control section con
taining any preset data
present.

b. The Object Program

BUILD

CMS EC

SPECS

CO SEC

PRSEC

Determines the type of
program under construction
and initializes, communi
cates with other needed
routines, and post
processes the object
program.

Builds one control section
for each COMMON (named or
blank) present.

Inserts preset data (when
present) into the text of
the appropriate control
section.

Constructs the code con
trol section which con
sists of code and numeric
constants.

Constructs the prototype
control section. (The
module PRSEC should be
consulted if additional
information is desired.)

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

c. Internal Symbol Dictionary

COS EC Determines statement num
ber entries and the number
of control sections in the
object program module and
enters them into the ISD.

ASSIST R~sponsible for all
entries in the ISD except
for those made by COSEC.

2. Producing various selections of
external listings

EDIT

SYMSRT

CRFSRT

PHEAD

Optionally produces up to
three levels of output
documentation. The rou
tine itself and Figure 35
should be consulted if
more information is
desired.

Sorts and outputs an
alphabetical listing of
items in the symbol table
along with important
attributes relating to the
symbol.

Produces a listing of all
variables in alphabetical
order, followed by the
labels in numeric order,
indicating the statement
numbers where each is
defined and referenced.

Ejects to a new page and
outputs the page heading,
which consists of module
name, data, and page num
ber. PHEAD is called by
the above three routines.

OBJECT PROGRAM MODULE COPM)

The output from the compiler is known as
an object program module. This is composed
of a program module dictionary (PMD), text,
and internal symbol dictionary CISD), and
external name list (ENL).

PROGRAM MODULE DICTIONARY (PMD)

Each PMD consists of one PMD beading
plus as many control section dictionaries
(CSD) as there are control sections in the
module. Address pointers in the PMD are
initially relative to the beginning of the
PMD itself (not the PMD preface>, except
where otherwise specified. Some fields in
the PMD are filled in by the loader. These
are not set by the compiler. The PMD for
mat is shown in Figure 35.

PMD Heading

1. Length of PMD in bytes

This length does !!Q! include the PMD
preface.

2. Diagnostic Code (1 byte)

The Diagnostic code indicates the
highest level diagnostic encountered
during generation of the module by the
language processor that created it.

3. PCS Communication Indicator (1 byte>

This is a 1-byte field which is used
by the program checkout subsystem
(PCS). currently defined settings are
as follows (bits are numbered from
left to right starting with 0):

7

Version ID Flag
L-----------PCS Communication Flag

L------------Link Editor Flag

1...-------------ISD Flag

Bit O - Module bas been altered by a
non-source modification. That
is, a language processor did
not make the change.

Bit 1 - Module has an ISD associated.
This bit is set by the proces
sor creating the PMD.

Bit 2 - Module was produced by link
editing. This bit is set by
the Link Edi tor.

Bit 3 - PCS is to be called before
module is dynamically
unlinked. This bit is set by
PCS.

Bit 5 - Module was produced by the
FORTRAN compiler.

Bit 6 - FORTRAN module is a main pro
gram, not a SUBROUTINE, FUNC
TION, or BLOCK DATA
subprogram.

Bit 7 - Version ID indicator. If this
bit is set, the module version
ID is to be interpreted as a
64-bit binary number which is
the creation date of the
module. If this bit is not
set, the version ID is eight
alphameric EBCDIC characters.

Section 7: Phase 5 187

~
co
00

":!
l.Q
~

~
w
U'1 .
":!
0

~
rt
0
H\

I'd

~
gi
rt
Ii
'<

The PMD[I I PMfo";'
Prefixed
here by
either
STARTUP
or the
Dynamic
Loader.

PMD
Heading

Length of P MD in Bytes

Diag.

I
Flags

I

Length of PMD
Code Heading in Bytes

4 - Character I. D. Name

Version ID

t----------------
of Module

No. REFs for Entry 1 NO. Mods. for
Point Entry Point

Alphameric Name

!-------------------
of Module

Value of DEF

R-Value Displacement
(Created by LINK EDITOR)

[CSD LINK]

(Reserved for Future Use)

[Search Link]

Alphameric Name

!-----------------
of REF

[Value of REF J

(R-Value of REF)

[CSD LINK]

(Reserved for Future Use)

.... ~

}
For Deck
Punch out

DEF for

CSD
Heading

Definition
Table

Standard Definition (s)
Entry Point Relative

REF (s) for
Entry Point

Absolute
Complex

Reference
Table

L REF Number T Bytes Entry Point J 1 I I t°""· ,., ..

Number Bytes in CSD

Length of Control Section
in Bytes

Poge Number in Text of Page 0
of CS Text

CSECT

t------------------
Version ID

[PMD Link]

lNo. REFs into this
(Reserved) Control Section (user

count) 1

No. Relocatable No. Absolute
DEFs DEFs

No. Complex No. of External and
Internal REFs in DEFs
Reference Tobie

Attributes of C.S. No. Pages of Text

Alphameric Name

!--------------------
of DEF

Value of DEF
(Modified by Loader)

R-Value Displacement
(Modified by Looder)

[csD Link]

(Reserved for Future Use)

[Search Link]

~ ~

Alphameric Name

!--------------------
of REF

[Value of REF]

[R-Val ue of REF)

[CSD Link)]

(Reserved for Future Use)

~ ~

Modifier
Pointers for
Complex DEFs

Modifiers for
Complex DEFs

Modifier Pointers
for External REFs

Madifiers for
External REFs

Modifier Pointers
for Internal REFs

Modifiers for
Internal REFs

Virtual Memory
Page Table

No. Modifiers for Relative Location of First t-
Page 0 of PMD Modifier for PMD Page 0

~ :::

No. Modifiers for Relative Location of First
Page x of PMD Modifier for PMD Page x

LI
REF Number

T l Byte 14-

:;:: =-
No. Modifiers for Re I at i ve La cat i an of First I-

Page 0 of Text Modifier for Text Page 0

~ ::::
No. Modifiers for Relative Location of First

Page y of Text Modifier for Text Page y

Ll
REF Number

T I Byte f--

~ ::::
No. Modifiers for Relative Location of First I-
Page 0 of Text Modifier for Text Page 0

.;: =-
No. Modifiers for Relative Location of First

Page z of Text Modifier for Text Page z

Ll
REF Number

T I Byte I+

.;: :::

Page No. in Text" Page No. in Text
of Virtual Memory Page 0 of Virtual Memory Page 1

_ ... ;

Page No. in Text of Page No. in Text of
Virtual Memory Page'm-1' Virtual Memory Page 'm'

Remaining CSDs - ..J

Note: Bracketed [items are filled in by the Dynamic Loader.

Complex DEF RLD
(Note: Page x is the last
P MD page for which there
are any Campi ex
DEF modifiers)

External REF RLD
(Note: Page y is the last
text page for which there
are any External REF
modifiers)

Internal REF RLD
(Note: Page z is the last
text page for which there
are any Internal REF
modifiers)

ltj
pi

l.Q
CD

0
Hl

Gl
t-<
I\)

00
I

I\)

0
I-'
ID
I

I-'

H
en
en
s:: a
(f.l

CD
to
rt

~
tr
CD
Ii

w
0

I-'
ID
-....I
I-'

tr
lo<:

~
t-t

~
I\)

co
I

w
I-'
ID
0

4. Length of PMD Heading

This is the length in bytes of the PMD
heading.

5. 4-Character ID Name

The 4-character ID name is supplied by
the user to serve as deck identifica
tion if the module is punched into
cards. This field is currently
unused.

6. Version ID

See item 3 (bit 7 description) for
interpretation of version ID.

7. Number of REFs for the Standard Entry
Point

The DEF for the standard entry point
is always treated as a complex DEF.
This field contains the number of
REFs. It may be zero.

8. Number of Modifiers for the Standard
Entry Point

This field contains the number of
modifiers that are to be used to com
pute the DEF for the standard entry
point.

9. DEF for Standard Entry Point

This 7-word entry describes the DEF
for the standard entry point of the
module. It has the same form as the
individual DEF en~ries within the
csos. The standard entry point DEF
for the module is considered to belong
to the first PSECT of the module and
is treated the same as a complex DEF
whose ENTRY statement appears within
that PSECT. If no PSECT is declared,
the standard entry point will be asso
ciated with the first CSECT instead.
This DEF entry contains the following
subfields which are described under
"Control Section Dictionary.•

a. Alphameric name of module

b. Value of DEF

c. R-Value displacement

d. CSD link

e. Reserved for future use

f. Search link

The alphameric name is also the name
of the module.

10. REFCs> for Entry Point

11.

These correspond to the REFCs> for
complex DEFs within a CSD.

Modifier(s) for Entry Point

These correspond to the modifier(s)
for complex DEFs within a CSD.

control section Dictionary (CSD)

The control section dictionary (see
Figure 35 comprises the following
components:

1. CSD Heading

2. Definition Table

3. Reference Table

4. Relocation Dictionaries CRLDs)

5. Virtual Memory Page Table

CSD Heading

1. Number Bytes in cso

This field specifies the length of the
control section dictionary in bytes.

2. Length of Control Section in Bytes

This specifies the virtual storage
span of the control section. The
length of the virtual storage page
table is derived from this length.
For example, if the length of the con
trol section is 8192, the virtual
storage page table will contain two
pages; but if the length is 8193
bytes, the virtual storage page table
will contain three pages. This value
will be equal to the highest location
counter value assigned by the language
processor, plus 1.

3. Page Number in Text of Page 0 of cs
Text

The text for each control section in
the module occupies an integral number
of pages in its resident data set.
The text pages for all control sec
tions in a module are contiguous.
This number is the page number, rela
tive to the first page of text for
this module, of the first page of text
for this control section. (Numbering
begins with O.)

4. Version ID

This is a 64-bit binary number which
is the creation date of the control

Section 7: Phase 5 189

section expressed as the number of
microseconds that have elapsed from
March 1, 1900, until the time of con
trol section creation.

5. PMD Link

The PMD link is filled in by the load
er. It points to the beginning of the
PMD preface.

6. Number of Implicit References to this
Control Section (User Count>

This is a count of the number of REF
entries which ref er to this control
section and are linked to this CSD
through their CSD link. It is com
puted by the loader. It includes both
external and internal references.

7. Number of Relocatable Definitions

This is the number of relocatable
definitions in the definition table.
It is always at least 1, namely, the
control section DEF.

8. Number of Absolute Definitions

This is the number of absolute defini
tions in the definition table. It may
be zero.

9. Number of Complex Definitions

This is the number of complex defini
tions in the definition table. It may
be zero.

10. Number of References from this CSD

This is the sum of external and
internal references in the reference
table. It nay be zero.

11. Attributes

190

This word
attribute
section.
are shown
from left
Bit 15 is

has one bit set for each
possessed by the control
Currently defined attributes
below. Bits are numbered
to right starting with o.
not used:

a. Fixed-Length (Bit 14 off)

A fixed-length control section
will be allocated a fixed number
of pages at load time.

b. Variable-Length (Bit 14 on>

A variable-length control section
is a section of indeterminate
length and will be allocated pages
in excess of the length stated in
the CSD heading.

c. Read-only (Bit 13 on)

Read-only specifies that the con
trol section may not be stored
into. It causes storage protec
tion by means of a storage class B
assignment to all pages of the
control section. Non-read-only
and nonprivileged control sections
are assigned storage class A.

d. Public (Bit 12 on)

Control sections are not shared by
control section name alone. A
PUBLIC control section of a module
residing in a given data set
<library) is shared if another
user has access to the same data
set and module. Control sections
of a given module need not all be
PUBLIC or non-PUBLIC. Fixed
length PUBLIC control sections
with the same attributes are
assigned storage in the same as
signment. A PUBLIC control sec
tion should never contain relocat
able adcons CA, v, or R type).

e. PSECT (Bit 11 on)

If this bit is set, the dynamic
loader overrides the system pack
ing indicator and inserts this
control section as packed.

f. COMMON (Bit 10)

A COMMON section is a control sec
tion common to all modules in
which it is declared. COMMON sec
tions are more fully discussed in
the linkage editor manual and the
assembler manual.

COMMON sections are of two types:

Cl) Named COMMON sections (those
with a name not all blanks).
These are treated as fixed
length sections.

(2) Blank COMMON sections, whose
name consists of eight blanks.

FORTRAN blank COMMON is assigned
the VARIABLE and COMMON attributes
by the FORTRAN compiler.

The treatment of blank COMMON sec
tions differs from that of blank
non-COMMON sections. Control sec
tion rejection is instituted
between blank COMMON sections of
different modules whereas blank
non-COMMON sections of different
modules are treated as independent

control sections. The latter are
called unnamed control sections.

g. Privileged (Bit 9 on)

A control section with a privi
leged attribute is assigned
storage key c which provides fetch
as well as store protect. This
attribute overrides read-only.

Anything in a privileged control
section may be referenced only
when the PSW key is zero.

h. SYSTEM (Bit 8 on)

Any external symbol that appears
in a control section which has the
SYSTEM attribute cannot be
referenced by a user program
unless the symbol begins with
•sys•. Conversely, no reference
from a control section with a sys
tem attribute may be to a •user•
symbol.

i. Public Name (Bit 0 on)

This is used only by the dynamic
loader to specify nonblank control
sections whose names appear in the
SDST (shared data set table>. The
first such control section will
appear in the SDST under the
module name. A control section
may be indicated as both having a
public name and rejected.

12. Number of Pages of Text

This specifies the number of pages of
text for this control section in the
data set. It should be noted that
this generally does not correspond to
the number of pages in the virtual
storage page table. It cannot, of
course, be larger.

Definition Table

The definition table is made up of 7-
word entries, one for each external def ini
tion in the current control section.
Definitions are grouped as relocatable,
absolute, and complex in that order. The
first definition in the table is the name
of the current control section.

Relocatable definitions are external
definitions whose values may be computed as
the sum of the origin of the control sec
tion wherein they appear, and a constant.

An absolute definition is an EQU item
with an absolute value whose name has been

declared an entry point in the control sec
tion in which the name is defined.

A complex definition is either an EQU
item with a complex relocatable value;
i.e., containing external symbol(s), or a
simple relocatable definition whose ENTRY
statement appeared within a named section
other than the section in which it is
defined. The definition entry appears
within the CSD of the control section which
contains the ENTRY statement. (Note that
the origin of the same control section is
the R-value for the DEF.) The complex DEF
is required in this case, with one REF
entry that names the control section in
which the DEF symbol is actually defined.

Each DEF in the definition table con
tains the following entries:

1. Alphameric Name of DEF

This field contains the 8-character
alphameric name of the DEF.

2. Value of DEF

The value of the DEF is set by FORTRAN
and is modified by the loader in the
case of complex and relocatable
definitions. For relocatable DEFs the
value portion of the definition entry
contains the displacement value of the
symbol relative to the base of its
control section.

For absolute DEFs this entry contains
the absolute value; for complex DEFs
it contains the absolute portion of
the DEF value, which may be zero.

3. R-Value Displacement

The •displacement for R-value• word
contains the displacement of the orig
inal defining control section origin
with respect to the head of the con
trol section within the definition now
appears. This is required to compute
valid R-values for control sections
which have been COMBINED by Linkage
Editing. In creating the PMD, only
the Link Editor will ever produce a
nonzero value in this word.

4. CSD Link

The CSD link is initially zero. It is
filled in by the loader when the con
trol section is loaded as a pointer to
the beginning of the CSD in which this
DEF appears, providing neither the DEF
nor the control section has been
rejected.

5. For future use.

Section 7: Phase 5 191

6. Search Link

This field is filled by the hash
search routine of the loader. It con
tains the address of the beginning of
the next DEF entry which hashes to the
same value. It contains zero if
thereare no more DEFs with the same
bash value in this chain.

Reference Table

The reference table is made up of 6-word
entries, one for each external symbol
referenced within the control section.
Each entry contains the following:

1. Alphamer ic Name of REF

This field contains the 8-character
alphameric name of the REF.

2. Value of REF

This is filled in by the loader. It
contains the value of the DEF to which
the REF refers. If the DEF is unde
fined, it contains the address of a
portion of virtual storage wherein
reference is illegal.

3. R-Value REF

This is filled in by the loader. It
contains the virtual storage address
of the beginning of the control sec
tion wherein the DEF appears. This
value is obtained from the •R-value
displacement• word of the satisfying
DEF entry.

If the DEF is undefined, this word
contains the address of a portion of
virtual storage wherein reference is
illegal.

4. CSD Link

This pointer, initially zero, is
filled by the dynamic loader. It
points to the beginning of the CSD
wherein the DEF which defines this REF
appears. If a corresponding DEF could
not be found upon the appearance of a
REF, the CSD link is to the beginning
of the CSD wherein the REF itself
appears.

5. Reserved for future use.

Relocation Dictionary CRLD)

Three RLDs appear in each control sec
tion dictionary:

192

1. RLD for complex definitions

2. RLD for internal references

3. RLD for external references

Each RLD has the same format consisting
of modifier pointers and modifiers. The
RLD for complex definitions differs in that
pages mentioned in this table are pages of
the PMD rather than the text.

Modifier Pointer

Modifier pointers are used to designate
the application of modifiers to adcons on
appropriate pages of text (or of the PMD
for complex DEFs). The first modifier
pointer applies to the first page; the
second modifier pointer, to the second
page; etc. For an RLD there always exists
at least one modifier pointer. However,
there need not necessarily be a modifier
pointer for each page of text; the modifier
pointers may be ended at the last text page
for which there exists any modifier.

The modifier pointers consists of two
fields, in the left and right halfwords.

Left-half - Number of modifiers for page

This field contains the number
of modifiers that apply in
this page.

Right-half - Location of first modifier for
this page

This contains the location in
bytes relative to the right
half of the pointer itself for
the first modifier for this
page. If there are none, it
points to the location where
one would have appeared if
there were any.

A special note should be made
of the technique for determin
ing the length of an RLD. In
the right half of the first
pointer for an RLD, is the
location of the first modifier
for this page. In the word
preceding the first modifier
word is the last modifier
pointer for the RLD. By
adding the location of the
right half (of the last point
er) to the contents of the
right half (of the last point
er), one gets the beginning of
the last set of modifiers.
Adding to this four times the
number of modifiers in the
last set, one gets the end of
the RLD.

Modifier

The modifiers are each a fullword and
are divided into four fields:

0 2 16 20 31
r---.----------------.-----r--------------,
I L I Ref. Number I T I Byte I L ___ i ________________ i _____ i ______________ J

2 14 4 12

L
L (2 bits) is the length in bytes of
the adcon to be modified. A value of
zero indicates a fullword (4 bytes).

Ref Number

T

Reference number (14 bits) is the
ordinal number in this CSD's reference
table of the reference whose def ini
tion value is to be used in modifying
the adcon. References are numbered
starting with zero.

T (4 bits) is the operation to be per
formed in modifying the adcon by the
reference value.

The values of T currently defined are as
follows:

Byte

a. Addition CT = 1)

The definition value of the
reference at •Reference Number• is
added to the field of L bytes
starting at the indicated byte of
the page to which the modifier
applies.

b. Subtraction (T = 2)

Same as addition, except read
"subtracted from• for "added to.•

c. R-value (T =3>

The value from the "R-value" word
of the REF is stored into the
field of length L according to the
"Byte• field.

Byte C12 bits) is the displacement in
bytes (from the origin of its original
containing page) of the adcon to be
modified. It should be noted that
since PMDs are packed to word boun
daries, this displacement will be
added to an address for complex DEFs
which generally is not a page
boundary.

RLD for Complex Definitions

The format of these modifiers is as
described above. These modifiers apply to

the values of complex definitions; that is,
the byte addresses in the modifier will be
to the value words of complex DEF entries
in the definition table, and the page num
bers in the modifier pointers are for pages
of the program module dictionary itself.

RLD for Text External Reference

This relocation dictionary is in the
same form as described above. It has one
pointer for each page of program text up to
that text page which is the last to contain
an adcon, and appropriate modifiers for
each adcon in the text which refers to a
symbol defined externally to this module.
The page numbers are based on the first
page for this control section, beginning
with O.

RLD for Text Internal Reference

This is identical to RLD for text
external reference above, except that the
modifiers are to adcons in the text which
reference symbols defined within this
module, such as control section names.
This permits communication between control
sections of the same module that may be
allocated noncontiguous virtual storage.

Virtual Memory Page Table (VMPT)

This table has a half word for each page
of virtual storage beginning with page 0
and continuing upward in order.

The contents of each entry will be
either:

1. All bits if the corresponding page is
empty as a result of a DS or ORG
statement.

2. The number of the page in the text
relative to the beginning of text for
this control section if the page con
tains code or data. This value multi
plied by 4 becomes an index into both
the external and internal RLDs and is
used to select the correct modifier
pointer word for adcon relocation.

This table is the means by which the
text of the control section is related to
the virtual storage assigned the control
section. This is necessitated by the fact
that language processors do not necessarily
output a byte of text for each byte of vir
tual storage assigned; that is, large ORG
and DS statements may result in pages of
text being skipped.

If, for example, a source program were
to begin with

ORG 10000

Section 7: Phase 5 193

there would be no text output for the first
two pages of virtual storage, and the first
page of text would correspond to the third
page of the user's virtual storage. The
first two VMPT entries would be all bits,
and the third would contain zero. Within a
page, however, the bytes of text correspond
directly to the bytes of virtual storage.
Thus, in the example above, the first page
of text would represent virtual storage
locations 8192-12287, and the first 1808
bytes of the page of text would be vacant
(10000-8192 = 1808). The pages of text
will always begin on page boundaries within
the text module.

INTERNAL SYMBOL DICTIONARY (ISD)

The ISD (see Figure 36) has four sec
tions: a heading, section name table, sta
tement number table, and a symbol table.

Heading

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Bits 0-15 contain the indica
tor (8) identifying the ISD as
FORTRAN produced.

The length of the ISD in
bytes.

Contains a link to the start
of the symbol table.

The number of entries in the
section name table.

The number of entries in the
statement number table.

The number of entries in the
symbol table.

Section Name Table

All control section names and their ver
sion identifications (CSECI', PSECT, labeled
and blank COMMONS) are listed here. The
last two entries are the CSECT and the
PSECT.

Statement Number Table

For each executable statement in the
program, FORTRAN inserts an entry contain
ing the statement number and the off set
from the CSECT base. Entries for unnum
bered statements contain a statement number
of zero. The entries are arranged in
source order.

Symbol Table

The FORTRAN compiler inserts into the
symbol table a defining item for all
variables, section names, and FORMAT state-

194

Section
Name
Tobie

ISD Type (8) 1 Zero

Length of ISD in Bytes

<l to Symbol Table

Number of Section Names

Number of Stotement Number Entries

Number of Symbols

Section Nome 1 -
(Alphameric)

Version ID 1 -

....... _-:---
Section Namen

Version IDn

0 2 16 31

Statement Number

Section
Name
Entry

Statement Displacement in Control Section

Statement
Number
Entry 1

Number
Tobie

Symbol

-

Alphameric Nome -

N~mbe'. ofl Length of this Entry
Dimensions

Statement
Number
Entries 2
thru N

Entry l Section Relative Location within
Number Control Section

Length Attribute of Symbol

Dim.
Length Dimension Factor 1

--
[-

Dimension Factor n

Symbo Is { C:::::~~:::::::::-::::::=:::;:::::::;:::::::;::::::::""':~.-.~
2 thru N ._C::: _____ -______ ==i _ __.

Figure 36. FORTRAN Internal Symbol
Dictionary

ment numbers. Entries are grouped accord
ing to control section and are ordered
within each group by ascending location
counter value.

Name

Type

- Two words containing the
alphameric name of the
variable.

- Identifies the type of
variable as:

Type
Section Name
Integer
Real Number
Character Constant
(FORMAT)
Complex Nurnner
Logical

Code
-3-

4
s
6

13
14

In addition the second high-order list
in the TYPE field indicates if the variable
is a formal argument. Thus, a type code
'4S' designates the appearance of a real
variable as a formal argument.

Number of
Dimensions

Length of
Entry

- The number of dimensions
of a dimensioned variable
CO for nondimensioned
variables).

- Length in bytes for this
symbol entry.

Section Number - A number corresponding to
the order of the names in
the section table of the
!SD.

Displacement

Length

Dimension
Ty?e

Dimension

- The off set in bytes from
the control section base.

- Length attribute of the
variable.

- '00' for constant
dimension '02' for adjust
able dimension of type
Integer*2
'04' for adjustable dimen
sion of type Integer*4

- For each dimension of an
array the dimension pro
duct value is listed. The
value of the nth dimension
factor is the byte length
times the product of the
sizes of dimensions 1
through n. For arrays
that are formal arguments
the dimension factor is:

1. The dimension itself,
if constant.

2. Offset in bytes of the
appropriate adcon from
the base of object
program's PSECT, if
adjustable.

ROUTINE DESCRIPTIONS

Phase 5 routines bear mnemonic titles as
well as coded labels. The 5-character

coded labels begin with the letters CEKS;
the fifth letter identifies a specific rou
tine. Each of the routines in Phase S has
a single entry point. When reference is
made to a compiler executive routine or
entry point, the mnemonic title is used,
followed immediately by the corresponding
coded label enclosed with parentheses.

There are no hardware configuration
requirements for any of the Phase S rou
tines. They are all reenterable, nonresi
dent, nonprivileged, and closed. PHASES
<output Generator CEKSA) is entered by
standard linkage; all other Phase S rou
tines are entered by restricted linkage.

The relationships of routines in this
phase are shown in the following nesting
chart (Figure 37) and decision table (Table
29). The relationships are shown in terms
of levels; a called routine is considered
to be one level lower than the calling rou
tine. Output Generator is considered to be
level 1.

CEKSA -- FORTRAN Compiler Output Generator
(PHASES)

PHASES consists of terminal operations
of the FORTRAN compiler. Its purpose is to

1. Build the object program text and the
associated program module dictionary
CPMD).

2. construct an internal symbol dic
tionary (ISO).

3. Procuce user-selected documentation.

4. Generate entry point table.

ENTRIES: The only entry into PHASES is
from the Compiler Executive, via standard
linkage, at entry point CEKSA1. PHASES
expects to receive the base of the Intercom
as a parameter.

EXITS: Before exiting back to the Exec,
PHASES checks the upper limit for the fol
lowing items:

1. Object program text.

2. Program module dictionary.

3. Internal symbol dictionary.

4. External name table.

If the upper limit has been exceeded,
PHASES will set the error code Cin the
intercom> to nFatal" and output a diagnos
tic message.

Section 7: Phase 5 195

Level

2

3

4

PHASE 5

RLD BUILD ASSIST EDIT SYMSRT CRFSRT

MIO(OLR) MIO{OLR) MIO(OLR)

CMS EC PRSEC COS EC CONCV

MIO(OLR)

SPECS PHEAD

MIO(OLR)

Figure 37. Phase 5 Nesting Chart

Table 29. Phase 5 Decision Table (Part 1 of 3)

Routine:------------Phase 5--Level: l----------
r--------T-------------------------T---------T--1
I I jcalled I I
!Routine I Usage !Routines I calling Conditions I
~--------+-------------------------+---------+--i
PHASES To control the overall BUILD IEntered for every compilation to produce

operations of Phase 5. I text and the Program Module Dictionary
I (PMD).

ASSIST IEntered when the option is requested by
I user to generate the Internal Symbol
I Dictionary (ISD).

EDIT Entered when the option is requested by
user to produce and output the object
program module information, the memory
map, and the object code listing.

SYMSRT Entered when the option is requested by
the user to produce and output the list
ing of the sorted Symbol Table
infornation.

CRFSRT Entered when the option is requested by
the user to produce and output the Cross
Reference Listing.

RDM Entered when an error condition is
(CEKTE) encountered.

PHEAD To eject a page and print the heading for
the Table of Initialized Variables.

CONCV Entered to convert integer, real, or com-
plex values for printing.

OLR An Exec routine entered to print each line!
(CEKTHE) of the Table of Initialized Variables. I

--------~-------------------------~---------~--J

196

Table 29. Phase 5 Decision Table (Part 2 of 3)

Routine:------------Phase 5--Level: 2-----------
r--------T-------------------------T---------T--,
I I !Called I I
!Routine I Usage !Routines I Calling Conditions I
~--------+-------------------------+---------+--~
!BUILD !To produce the object jCMSEC !Entered for each COMMON block to create I
I I program module COPM) I I a Control Section in the OPM. I
I I and Program Module IPRSEC I Entered for each compilation to build a I
I I Dictionary (Pt'iD) for I I prototype control section CPSECT) for I
I I each compilation. I I the OPM. I
I I ICOSEC I Entered for each compilation to create a I
I I I I Control Section for the object code. I
~--------+-------------------------+---------+--~
!ASSIST ITo produce the Internal !None I I
I I Symbol Dictionary CISD) I I I
I I when the option is I I I
I I selected by the user. I I I
~--------+-------------------------+---------+--~
IEDIT ITo produce and output ICONCV !Entered when a constant is encountered in I
I I several user-selected I I the object code listing to convert to I
I I listings concerning the I I EBCDIC. I
I I OPM. IPHEAD !Entered when a new page of the listing is I
I I I I needed, ejects the page and prints the I
I I I I heading. I
I I I OLR I An Exec routine entered to print each line I
I I I (CEKTHE) I of the output listing. I
~--------+-------------------------+---~----+-----------~-----------------------------~
I SYMSRT I To produce and output I PHEAD I Entered when a new page of the listing is I
I I an alphabetical listing I I needed, ejects the page and prints the I
I I of all the items in the I I heading. I
I I Symbol Table. I OLR IAn Exec routine entered to print each line I
I I I (CEKTHE>I of the output listing. I
~--------+-------------------------+---------+--~
jCRFSRT ITo produce and output a IPHEAD !Entered when a new page of the listing is I
I I cross Reference List for! I required, ejects the page and prints thel
I I all symbols and state- I I heading. I
I I ment labels. IOLR IAn Exec routine entered to print each linel
I I I (CEKTHE} I of the listing. I
L--------~-~----------------------~---------~----------------------~------------------J

Routine:--------~--Phase 5--Level: 3----------
r--------T-------------------------T---------T--1
ICMSEC ITo create a Control Sec- !SPECS !Entered for BLOCK DATA subprograms to I
I I tion (CSECT) correspond-I I store the pre-set data. I
I I ing to a COMMON block I I I
I I definition. I I I
~--------+-------------------------+---------+--~
I COSEC I To produce the Control I None I I
I I Section for the object I I I
I I code and the numeric I I I
I I constants and enter some I I I
I I information into the PMDI I I
I I and ISD. I I I
~--------+-------------------------+---------+--~
IPRSEC ITo produce the prototype !SPECS !Entered if any pre-set data is present to I
I I control section CPSECT) I I store it in the noncornmon variables. I
I I for the OPM. I I I
~--------+-------------------------+---------+--~
jCONCV ITo convert constants to IPHEAD !Entered when a new page is needed to eject!
I I EBCDIC for the output I I a page and print the heading. I
I I listing. IOLR !An Exec routine entered to print each I
I I I (CEKTHE>I output line. I
L------~i-------------------------~---------~--J

Section 7: Phase 5 197

Table 29. Phase 5 Decision Table (Part 3 of 3)

Routine:------------Phase 5--Level: 4-----------
r--------T-------------------------T---------T--,
I I !Called I I
f Routine I Usage IRoutines I Calling Conditions I
~--------+-------------------------+---------+--~
ISPECS f To place the values givenlRDM !Entered if an error condition I
I I in pre-set data state- I (CEKTE) I encountered. I
I I ments into the text of I I I
I I the appropriate control I I I
I I section. I I I
~-------+-------------------------+---------+--~
IPHEAD ITo eject a page, update fOLR IAn Exec routine entered to print the I
I I the page number, form I (CEKTHE) I heading. I
I I and print the page head- I I I
I I ing, and initialize the I I I
I I line count. I I I
l ________ .._ ________________________ ~---------~--J

OPERATION: PHASES (Figure 38), activated
by a call from the exec, combines and edits
outputs from the earlier phases, to produce
the object program and the various optional
program documentation. The symbol table,
the code file from Phase 4, and several
special lists from Phase 1 are the main
sources of material.

PHASES initializes nonvolatile register
Nl with the symbol table base and thus
establishes a phase-wide common register.
It also copies the intercom into the Pha
se• s PSECT.

PHASES proceeds to construct the object
program text and the program module dic
tionary CPMD). If the ISD option has been
selected and the program is not a BLOCK
DATA subprogram, PHASES will build the
related internal symbol dictionary. After
successfully building the OPM and its
related ISD(if requested>, PHASES edits any
user-selected documentation.

Finally, PHASES restores the compiler's
intercom and returns to the phase
controller.

CEKSB -- Object Program Module Builder
(BUILD)

The purpose of subroutine BUILD is to
construct the object program module and to
BUILD a part of the internal symbol dic
tionary. See Chart GL.

ENTRIES: BUILD has only a single entry
(CEKSB1) from PHASES. BUILD expects no
input parameters other than those contained
in the phasewide register assignments.

EXITS: Normal exit only to PHASES. No
output parameters.

198

OPERATION: The object program module is a
part of the edited end product of the TSS/
360 FORTRAN compiler. More specifically,
it is that part which ultimately partici
pates in the routine execution of a task.

The object program module consists of
executable object code, and other control
and reference parameters necessary for the
relocation and execution of the control
sections contained within the OPM. From
the viewpoint of the compiler, the OPM is
the result of one complete pass through the
compiler, and thus represents a unit of
source code terminating with an END
statement.

The OPM is organized into several con
trol sections (CS), each of which has a
dictionary part CCSD) and an optional text
part. This material of the OPM is divided
into two data sets, with one set containing
the module heading and CSDs (also called
PMD), and the other set containing the text
part. The text of each control section
starts on a page boundary. Named COMMON
control sections may or may not contain
text. The OPM is designed to be compatible
with the assembler output and is suitable
for processing by the dynamic loader and
link editor.

Initialization of Module: Upon entry BUILD
initializes the object program module. The
initialization consists of:

1. Pre-processing of the PMD heading (see
Figure 3S) which includes the follow
ing of:

a. OPM name (six characters> is
obtained from the intercom region
and inserted in the 8-byte name
field Cleft-justified) of the
standard entry point (SEP).

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Enter

lnit Phase 5
Intercom. Set
Common Reg Nl
with SYMTBL
Base

Sort and Output
Cross Reference
Listing

Generate Entry
Point Table
Restore Execs
Intercom

Exit

Figure 38. Phase 5 General Flow

b. The length of the PMD heading, in
bytes is inserted in the PMD.

c. The diagnostic code field is set
to the contents of maximum error
code in the intercom region.

d. The deck ID name is obtained from
the intercom region and inserted
into the 4-character ID name
field.

e. The PCS communication indicator is
inserted, based upon the contents
of the ISD flag and whether the
module is a main program. The
FORTRAN module bit is set on.

f. The version ID is retrieved from
the intercom and inserted in the
8-byte field allocated. The PCS
communications indicator is set
when the version ID is a
time-stamp.

g. Number of references and number of
modifiers are both set to 1.

h. The name field in the reference
from the SEP is set to:

(1) Name of the CSECT, if other
than block data.

(2) CHCIWS, if block data.

i. The fields in the modifier are

Cl) Reference number and T field
are set to 1.

(2) L and byte are set to O.

2. Establishment of the number of COMMON
control sections.

3. Initializing two parameter registers,
one to the base of the first CSD in
the PMD and the other to the base of
the OPM.

Processing of COMMON Control Sections: The
CMSEC subroutine is called by BUILD
repeatedly. CMSEC generates a control sec
tion corresponding to a COMMON block. In a
BLOCK DATA subprogram BUILD terminates the
module immediately after processing COMMON
control sections.

Code and PSECT Control Sections: Subrou
tines COSEC and PRSEC produce the CSECT
control section and PSECT control section,
respectively.

Termination of a Module: Before returning
to PHASES, BUILD inserts the length Cin
bytes> of the PMD into the appropriate call
in the PMD heading.

CEKSC -- Common Control Section Generator
(CMSEC)

The purpose of CMSEC is to create a con
trol section corresponding to a COMMON
definition. CMSEC is used by BUILD. See
Chart GM.

Section 7: Phase 5 199

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

ENTRIES: CMSEC has a single entry (CEKSCl)
from BUILD.

CMSEC expects the following input para
meters, in addition to those specified in
the phase-wide register assignments:

1. A pointer to the current COMMON block
entry in the storage class table.

2. The location for building the CSD in
the PMD.

3. The base for making text entries into
the current COMMON control section.

EXITS: Before exiting, CMSEC

1. Sets the base for the next CSD entry
in the PMD. Specifically, this is the
first word boundary after the last
entry made (in the PMD) by the current
call on CMSEC. This value will be
passed back to BUILD as a register
parameter and will also be stored in
Phase S's intercom (as the current PMD
top).

2. If any text entries were made into the
current COMMON control section, CMSEC
sets the base for the next entries in
the OPM. The base will be the first
page boundary following the last page
of text of the current control sec
tion. This parameter will be passed
back to BUILD in a register and will
also be stored in the intercom as the
(current) OPM top.

OPERATION: Upon entry, CMSEC clears the
CSD heading and definition. The number of
relocatable definitions is set to 1, and
the attributes are set to indicate the type
of COMMON control section (blank or named
COMMON). The name of the COMMON block,
found in the storage class table, is
inserted Cleft-justified> in the alphameric
name of definition field. The storage
class table entry also supplies the size of
the COMMON block. The number of pages of
virtual storage is now calculated

N = Size + 4095
p 4096

and inserted in the CSD. The virtual
storage page table of the CSD is then con
structed and consists of Nphalfwords, con
taining only 1 bits.

In the case of a BLOCK DATA subprogram,
control sections corresponding to named
COMMON blocks undergo additional proces
sing. CMSEC prepares to process preset
data and calls for the SPECS subroutine.
SPECS performs the following functions:

200

1. Does the actual scan of the preset
data file.

2. Selects the appropriate DATA items.

3. Generates the necessary text pages.

4. Moves the preset data items into the
text.

5. Indicates in the virtual storage page
table those pages that contain text.

SPECS returns to CMSEC, which terminates
the control section. Termination of CMSEC
includes entering the number of bytes in
the CSD into the first word of the CSD and
the number of bytes of control section into
the second word of the CSD.

CEKSF -- Code Control Section Generator
(COSEC)

COSEC produces one of the component con
trol sections of the object program module
COPM) • In particular, it produces the con
trol section that consists of the object
code, including numeric constants. In
addition, COSEC enters information into the
program module dictionary CPMD) and
generates part of the internal symbol dic
tionary if the ISD flag is on. See Chart
GN.

ENTRIES: COSEC has a single entry CCEKSFl)
from BUILD.

Input Parameters:

1. Origin of CSECT's CSD.

2. Origin of CSECT's text.

EXITS: COSEC makes a single exit to BUILD.

output Parameters:

1. Instructions that needed their displa
cement fields filled in before being
stored into CSECT's text will be
returned to the code file in completed
form. (This is done to facilitate the
work done by EDIT, whose function is
to produce an output listing).

2. As an additional service to EDIT,
COSEC will store in Phase S's PSECT
the number of bytes of text of the
code control section and the origin of
the OPM's PSECT.

3. The top of the code control section
will be stored in a specified location
in Phase S's PSECT and will also be
passed as a parameter in a register.

4. The register that contains the hase of
the CSD for CSECT will be set to the
first word bOundary following the last
entry COSEC made. This value will
also be stored in a specified location
in Phase S's PSECT.

OPERATION:

Code Control Section: The code control
section (CSECT) consists of code and numer
ic constants.

1. Object Code. The code entries into
the CSECT are determined by an inves
tigation of the code file (generated
by Phase 4). The items of the code
file are sequentially scanned and may
be ignored or entered into the CSECT,
or they may give infornation for
determining an entry in the CSECT.
Entries into the CSECT are placed
sequentially, as they are encountered
<or determined). Three registers are
used during this operation; one
register marks the item to be investi
gated in the code file, and two regis
ters are used to indicate the avail
able byte for storage ia the CSECT.
The first byte (operation field) of
eacll item in the code file determines
the action to be taken. Following are
the actions taken for the various
possible values.

Let x represent the value of the first
byte of the item being investigated.
Then:

a. For X less than or equal to 2:

No entry is made into the CSECT.

If x is equal to 1, the location
counter of the code file is incre
mented by eight bytes; otherwise,
it is incremented by four bytes.

b. For X strictly less than 4016 and
strictly greater than 2:

The item being investigated is a
half word instruction and is placed
into the CSECT. The index regist
er for CSECT is incremented by two
bytes, and the address register of
the code file by four.

c. For X strictly less than 0016 and
greater than or equal to~4016

The item being investigated is a
fullword instruction and is placed
in the CSECT. CSECT 9 S index
register and the code file's
address register are both incre
mented by four bytes.

d. For X greater than or equal to
001 and strictly less than FE16 :

The item being investigated is a
6-byte instruction and is placed
in the CSECT. CSECT's index
register is incremented by six
bytes, and the location counter
for the code FILE scan is incre
mented by eight bytes.

e. For X exactly equal to FE16 :

The word being investigated, plus
the following two words, contains
information for determining a ful
lword entry into the CSECT.

The second word (investigated word
plus 1) is to be placed into the
CSECT after its displacement field
has been completed.

Both the first and third·words
(second half) contain pointers to
the symbol table. The first-word
pointer is to an adcon entry, and
the third-word pointer is to a
statement label entry.

The displacement is calculated by
subtracting the off set <in the
value field of the adcon) from the
assignment of the label.

The address register of the code
file is updated by twelve bytes,
and the index counter of CSECT by
four.

f. For X exactly equal to FF16 :

This is the termination code to
inform COSEC that the scan of the
code file is completed.

2. Numeric Constants. Upon completion of
the code file scan, COSEC will check
storage Class 2 in the storage class
table for the presence of numeric con
stants. In the event that storage
Class 2 is not empty, COSEC will
execute the following.

a. The first available byte for a
numeric entry into the CSEC will
be set on the first quadruple-word
boundary following the last code
entry (these zero to twelve bytes
will be filled with zero bits>.

b. The numeric constants will be
retrieved and placed in CSECT's
text, by following pointers to the
symbol table from the constant
header table.

Section 7: Phase 5 201

Control Section Dictionary Entries: (See
Figure 35) Each control section has a con
trol section dictionary (CSD) associated
with it in the program module dictionary
(PMD). The origin of CSECT's CSD will be
passed as a parameter in a register for
COSEC to make the following entries:

1. Initialize the CSD heading to all zero
bits.

2. Retrieve from the intercom the time
stamped version ID of the module and
insert it into the cso.

3. Set the appropriate word in the cso to
indicate CSECT's attributes, which are
reentrant and read only, plus PUBLIC
if indicated by the user's options.

4. Retrieve from the intercom the module
name, add a suffix (#C) to this name,
and place it in the CSD.

5. calculate and insert the length <in
pages) of CSECT into the CSD. This is
determined by subtracting CSECT' s ori
gin from its next available storage
byte, and dividing the result by 4096.
The integral portion (plus 1 if the
remainder is nonzero> is the nUmber of
pages.

6. Complete the virtual storage page
table for the cso. A halfword page
number entry will be made for each
text page of CSECT. The page number
entries will be ordinal numbers of the
form I, where I= O, •••• , n-1 (OSn-1)
and n equals the integer portion of

no. bytes of text + 4094
4096

1.· The number of bytes in the CSD will be
placed in the first word of the CSD.

8. In the second word of the cso, COSEC
will store the number of bytes of text
of the code control section.

ISO Entries: (See Figure 36) concurrent
with the building of CSECT, certain entries
will be made in the ISO, if the ISO option
is not suppressed. Initially, the number
of control sections will be calculated and
stored (right-justified) in the fourth word
of the ISO. The number of control sections
is equal to the number of COMMON control
sections plus 2 Cone for PSECT and one for
CSECT).

The number of COMMON control sections is
directly obtainable from the storage class
table. The first two bytes of the storage
class table give the number of named COM
MONS, and the tenth word (Storage Class 9)
indicates if there is a blank COMMON.

202

The nuinber of control sections, multi
plied by 16, plus 24, gives the offset (in
bytes) for the beginning of statement numb
er storage in the ISO.

During the scan of the code file, while
CSECT is being built, if the first byte of
the item being investigated has a value of
1 or 2, it may cause a statement number
entry to be made into the ISO.

1. If the value of the item is 1, the
item is a statement header and is
eight bytes long. The last four bytes
of the item contain a line number.
This line number is checked against
the last line number encountered. If
it is the same, no entry is made into
the ISO. However, if it is different,
an entry will be made into the ISO.
The statement number field in the ISO
will be set to all zero bits, and the
following word (offset field) will
have the current value of CSECT's off
set counter stored in it. In addi
tion, the new line number will replace
the old line number (for testing>, the
location counter for the ISO <marking
the next available word for a state
ment number entry> is incremented by
eight bytes, and the code file's
address counter is incremented by
eight bytes.

Note: The next paragraph outlines an
additional condition on the handling
of statement ·headers.

2. If the value of the byte being inves
tigated is 2, the item is four bytes
long, with the last two bytes of the
item containing a pointer to a state
ment label entry in the symbol table.
A test is conducted Con the class
field of the label) to see if it is a
source label. If it is, the binary
value of the label is retrieved <from
the symbol table) and placed in the
statement number field of the ISO.
The word following the label entry
will have the contents of CSECT's off
set counter stored in it. The ISO's
location counter is incremented by
eight bytes and code file's address
counter is incremented by four bytes.
Further, no entry into the ISO will be
made for the next statement header
encountered.

Note: Upon completion of statement
number entries into the ISO, COSEC
will place the number of statement
number entries made into the fifth
word of the ISO. Also, at this time
the ISD's location counter will con
tain the beginning location for symbol
entries Cin the ISO). The offset from
the base of the ISO to where the sym-

bol entries are to start will be cal
culated and stored in the third word
of the ISO.

CEKSG -- PSECT Builder CPRSEC)

The purpose of subroutine PRSEC is to
build a prototype control section for the
object program module. see Chart GO.

ENTRIES: PRSEC has a single entry (CEKSGl)
from BUILD.

Parameters expected by PRSEC, in addi
tion to phase wide register parameters, are
the base of its CSD and its text base.

EXITS: Parameters passed upon exit back to
BUILD are the PMD top and the OPM top.

OPERATION: The building of the PSECT may
be divided into the procedures discussed
below. Concepts and terminology with
respect to the program module dictionary
(PMD) are closely related to their usage in
TSS/360 Dynamic Loader, Internal Program
ming Specifications.

1. Initialization of PSECT's control sec
tion dictionary (See Figure 35)

The cso heading is cleared. The ver
sion ID time stamp is inserted in the
fourth and fifth words of the CSD.
The number of relocatable definitions
field is set equal to 1. The attri
butes field is set to indicate a
fixed-length prototype control sec
tion. The name of the module, with a
suffix #P, is inserted in the name
field of the first definition.

2. Processing of Entry Points

A special entry in the intercom region
points to the beginning of a chain in
the symbol table containing (exclu
sively> descriptions of entry points.
PRSEC follows this chain and processes
each entry as fol~ows:

a. The name of the entry is inserted
in the definition table.

b. The offset (SLOC) is inserted as
the value of DEF.

c. The number of complex definition
is increased by 1.

d. The cso index is incremented
appropriately.

e. Unusual fields are cleared to
binary zeros.

3. Construction of Reference Table

The reference table of the PSECT's CSD
contains entries similar to the
entries in the definition table.
There are two types of entries:

a. Names of control sections of this
OPM.

b. Names of external references
(entry points defined in other
modules).

Subroutine PREC first processes
references to control sections
within the module. The procedure
is similar to the processing of
entry points, except that the
number-of-references field is
incremented by 1 for each entry in
the reference table. Control sec
tion names are entered in the
order in which the control sec
tions appear in the OPM. - External
references are obtained by follow
ing a chain in the symbol table.
Reference numbers, which are the
ordinal numbers of the entries in
the reference table, are retained
for subsequent use in constructing
the relocation directories. · Each
storage class is represented by
one word starting at WORK + 100 in
the phase's intercom, and each
word contains an LA reg, d ..
instruction, where d is pre5et
with the appropriate reference
number. The reference nu~r of
an external reference is saved in
the DMLST field of the correspond
ing symbol table entry.

4. Building of Relocation Directory CRLO)
for Entry Points

Each item in the definition table,
that describes an entry point, has a
1-word relocation item in the RLD for
complex definitions. The RLD itself
starts with a list of 1-wo.rd modifier
pointers. The following steps are
performed to establish the modifier
pointer list.

For each PMD page, up to and including
complex definitions, a 1-word
modifier-pointer is inserted into the
cso. The value of each modifier
pointer is

4 (N - n) + 2

where:

N is the number of pages in the
PMD.

\

Section 7: Phase 5 203

n is the page number to which the
modifier-pointer refers.

Thus, initially, each pointer indi
cates the first RLD item.

Each RLD item has zero in its L field
and 1 in its T field, indicating a
length of four bytes for the adcon to
be modified, and specifying addition
as the modification operation. The
reference number is the ordinal number
of CSECT's reference in the reference
table. The byte address is set to the
displacement of the value field of the
complex definition ~ithin the appro
priate PMD page.

At the completion of the RLD, or at
page boundaries within the complex
definition list, the number of RLD
items pertaining to that page is
inserted, in the left half of the
corresponding modifier-pointer. The
pointer of the next modifier-pointer,
if there is one, is increased by the
current number of bytes in the RID.

5. Initia1ization of PSECT Text

The first 84 bytes of the PSECT text
are cleared. Before offsets in PSECT
of the various storage classes can be
computed, the size of NAMELIST infor
mation must be determined.

6. Calculation of NAMELIST Size

NAMELIST size is accumulated as
follows:

Symbol table entries in the non
variable name chain are scanned and
searched for NAMELIST names. Each
NAMELIST name contributes 12 bytes.
Each variable in a NAMELIST increases
the size by 16 + SN bytes, where N is
the number of dimensions. The number
of variables is obtained from the
NAMELIST name entries, and dimension
information is obtained by following
symbol table pointers from the preset
data file NAMELIST entries.

The offsets from PSECT's text base are
computed and stored temporarily in the
PSEX:T's register save area.

1. Processing of External References

204

Address constants for external
references may be present in the adcon
page, as well as parameter lists. If
the combined size of register save
area, local working area, address con
stants, and parameter lists does not
exceed one page of PSECT's text, the
RLD modifier-pointer is set to 4 (4-

byte integer> and the adcons are imme
diately processed. Otherwise, the
portion of parameter lists which is in
excess of one page is examined for the
presence of external references. If
none· are encountered, processing takes
place as above. If, however, there
are external references, the number of
additional text pages containing such
references is determined, and the
appropriate number of words in the RLD
modifier-pointer list is cleared.

Processing of external reference
adcons and the corresponding reloca
tion items in the RLD is as described
in the following paragraphs:

Adcon entries in the Symbol Table are
scanned. The value of the adcon is
tested for storage class 254 and, if
the test is successful, the corres
ponding non-variable name e.ntry .(in
symbol table) is inspected for its
class. If the class indicates extern
al reference, the name is matched
against the list of reference names in
the CSD, to obtain the ordinal number
of such matching reference. The relo
cation item is composed to contain O
in the L field, and the ordinal number
of the reference in the external
reference number field. The T field
is set to 2, and the byte field is set
equal to the offset of the adcon + 84.
Four bytes in the PSECT, starting at
the location indicated by byte field
are cleared, the number of text modi
fiers field in the appropriate
modifier-point is increased by 1, and
a pointer to the RLD is advanced by
four bytes so that the next relocation
item may be received.

External reference adcons in parameter
lists are processed in similar manner,
except that the byte field is
increased by the size of storage class
4 to give the proper offset within
PSECT.

If the external reference adcons are
distributed over several pages of
PSECT's text, a different procedure is
followed. After processing adcon
page, a counter is initialized to
determine page bowidaries within para
meter lists. At the start of each
page, the pointer in the modifier
pointer for that page is set with the
location, relative to the modifier
pointer, of the next relocation item.
rhe byte field in the relocation item
contains the displacement within the
corresponding text page.

8. Processing of Internal References and
NAMELIST Items

The number of modifier-pointers for
the RLD for internal references is
determined by the number of pages in
PSECT's text, from base to Namelists
inclusive. Processing of the RLD
entries is very similar to the proce
dure outlined under Processing of
External References. There are,
however, seveliiill differ8nces. In the
relocation item, the reference number
field is obtained as follows:

a. For adcons pertaining to storage
classes 1 and 2, the references
number is

(Number of COf'.iMON blocks) + 1

b. For adcons covering storage
classes 3, 4, 5, 6, 7, and 8, it
is

(Number of COMMON blocks) + 2

c. Adcons referring to storage
classes 9 through 127 have a
reference number = (storage class)
- 8, if blank.COMMON is present,
or (storage class) - 9, if blank
COMMON is absent.

d. Adcons that belong to one of the
storage classes from 128 through
25 3 have no RLD entry made in the
CSD; they-Will, however, cause a
word to be set to zero-bits in
PSECT's text.

In general, the value of an adcon is

Storage Class + Offset

If for any adcon (both storage classes
4 and 5) the storage class of its
value is 254, the offset part of the
value field contains a symbol table
pointer, and PRSEC obtains the value
of the offset from the symbol table
entry. In any case, the content of
the 4-byte adcon is computed as
follows:

Offset in Storage Class + Off set
of Storage Class in cs

If an adcon that points to a NAMELIST
name entry in the symbol table is
encountered, the contents of the adcon
are made equal to the SLOC of the
NAMELIST name, if assigned, or to the
next available NAM.ELIST entry. The
NAMELIST entries are processed to give
information in the format specified by
FORTRAN I/O. The location field in
each variable description of the NAME-

LIST entry is set with a symbol table
pointer to that variable for later
processing. The SLOC field of the
NAMELIST name entry is assigned as
offset in PSECT.

Adcons in parameter lists and name
lists are processed as described
before. A page count and special
handling of RLD, similar to the proce
dure mentioned in (7) above, may take
place. Adcons in NAMELIST (locations
of variables) are computed from the
appropriate symbol table entries.

9. Processing of Alphameric Information

The alphameric information will be
retrieved from the preset data file
and stored in the PSECT, beginning at
the first doubleword boundary after
the last NAMELIST entry.

10. Insertion of Virtual Storage ~age
Table

A virtual storage page table (VMPT) is
constructed and contains halfword
entries of ordinal numbers f rein 0 to
n-1, where ..!! is the number of !?ages
that contain text Cup to and including
NAMELIST). Pages corresponding- to
noncommon variables, global and local
temps are allocated by setting -'-the
corresponding number of halfwords in
the VMPT with 1-bits.

11. Processing Preset Data Stems in non
COMMON Variables

If preset data is present, subroutine
SPECS is called to select and insert
any preset data items of storage class
6 into the area of nonCOMMON
variables.

12. Termination of PSECT

Termination of PSECT consists of:

a. Storing the number of bytes in the
PSECT's text into the second word
of the cso.

b. Setting the OPM top in Phase S's
intercom to the first page boun
dary following the last text entry
in the PSECT (also passed in a
register).

c. Storing the number of bytes in
PSECT's CSD into the first word of
the cso.

d. Setting the PMD top in Phase S's
intercom to the first doubleword
boundary following the last CSD

Section 7: Phase 5 205

entry made by PRSEC (also passed
in a register) •

e. The 1ast six words of the first
100 bytes of the PSECT will be
used as masks and should contain
values Cleft-justified) as shown

Bytes Value Usage
76-79 so;- 1-word sign mask
80-87 4E1 2-word float mask
88-95 00 2-word temporary
96-99 461 1-word float mask

CEKSD -- Preset Data Processor (SPECS)

For variables whose initial values are
given, subroutine SPECS places these values
into the t~xt of the appropriate control
section. See Chart GP.

ENTRIES: Subioutine SPECS has a single
entry (CEKSD1) from either subroutine CMSEC
or subroutine PRSEC.

Input Parameters:

1. Location of virtual storage page table
in current Control section Dictionary.

2. Base of storage class in current con
trol section.

3. Storage class of items to be filed in
current control section.

EXITS: Normal exit only. SPECS returns
control to the calling program with input
parameters unchanged.

OPERATION: For the purpose of the follow
ing discussion, the following conventions
are established:

Variable

Variable

- A variable is either a simple
variable or an array
variable.

- The value of a variable is
either the initial value of a
simple variable or the ini
tial value of an element of
an array.

Preset Data - Preset data are those entries
in the preset data file (PDF>
that originated from a DATA
statement or from data speci
fied in a type specification
statement.

The preset data file is a prime source
of information used by SPECS. The preset
data entries in the PDF contain, among
other information, a link to the next vari
able in the preset data file, a pointer to
the symbol table for each variable, one or
more value entries for each variable (i.e.,

206

elements of an array>, a replication factor
for each value, and an off set entry that
indicates where the values are to be placed
from the base of the variable's storage
class.

For descriptive purposes, SPECS is
characterized in terms of retrieval and
storage.

Retrieval:

1. Subroutine SPECS is called during the
generation of a PSECT if any preset
data is present in the PDF or during
the generation of a named COMMON con
trol section of a BLOCK DATA
subprogram.

2. SPECS locates the first preset data
entry in the PDF by following a point
er given in the intercom.

3. For each variable within each p~eset
data entry, SPECS follows the variab
le's pointer to the symbol table and
tests its storage class.

Storage:

1. The values for variables of appropri
ate storage class are stored into the
text of the current control section.

2. For each page that is to have informa
tion placed on it, SPECS enters the
virtual storage page number in the
CSD.

CEKSB -- Internal Symbol Dictionary
Generator (ASSIST)

Phase 5 of the FORTRAN compiler will
test to see if the user has chosen to have
an internal symbol dictionary <ISD)
generated. In the event the user has indi
cated his desire to do so, it will be the
function of ASSIST to generate the ISO (see
Figure 36).

It shou1d be noted that no ISO will be
built for a BLOCK DATA subprogram and that
the ISD is a prerequisite for utilizing the
program control system (PCS). see Chart
GQ.

RESTRICTIONS: The first word at the begin
ning of a FORTRAN-generated ISD must have a
1 in bit 20. The rest of the word will be
zeros.

ENTRIES: Subroutine ASSIST has a single
entry (CEKSH1) from PHASES.

ASSIST has the following input
parameters:

1. Offset <in bytes) in PSECT of nonCOM
MON variables.-

2. The third word of the ISO contains the
offset from the base of the ISO for
symbol entries and is filled in by
COSEC.

EXITS: Normal e·xit only, to PHASES.
Before exiting, ASSIST stores the ISO top
into the intercom.

OPERATION: The entries in the ISD primari
ly are subdivided into control section name
entries, statement number entries, and sym
bol entries. Statement number entries are
made Cin the ISD) during the time that sub
routine COSEC is operating and will not be
discussed here.

Control Section Names: All control section
Names (CSECT, PSECT, labeled and blank COM
MON) are listed in the ISD. Immediately
following each control section name entry
in the ISO is the alphameric version ID of
the module.

Method: COMMON names <including blank COM
MON) are among the' items listed in the
storage class table. ASSIST will retrieve
these names from the storage class table
and insert them in the ISO. The name used
for the CSECT name will be the name of
module with a #C suffix, and the name used
for the PSECT name will be the module name
with a #P suffix. Cif the module name is
seven or eight characters long, it will be
truncated to six characters before the suf
fix -- #C for the CSECT name and #P for the
PSECT name -- is added.)

Symbols: Each symbol, either COMMON or
nonCOMMON <integer, real, complex, or log
ical> will have information about it placed
in the ISD. Most of the information is
obtained from the symbol table.

The information in the ISD will consist
of

Alphameric Name

Type

Number of Dimen
sions

Length of Entry

Length Attribute
of Symbol

Section Number

Obtained from the symbol
table

Obtained from the symbol
table

Obtained from the dimen
sion table

calculated

Obtained from the symbol
table

Refers to the order in
which the symbol's con
trol section name appears
in the ISD.

Off set

Dimension
constants

For variables in COMMON
control sections, the
offset is equal to the
contents of the SLOC
field assigned to the
symbol in the symbol
table.

For symbols belonging to
the PSECT, the offset
will be the contents of
the SLOC (from the symbol
table plus the off set of
nonCOMMON variables in
the PSECT. (This addi
tional off set is an input
to ASSIST.)

obtainable from the
dimension table, or none.

The symbol table has all symbols linked
according to their respective storage
classes. Initial entry to the first vari
able in the chain is accomplished by fol
lowing the pointers listed in the storage
class table.

CEKSI -- Object Program Documentation·
CED IT)

The purpose of EDIT is to edit the·
object program module at a user-selected
documentation level. See Chart GR.

ENTRIES: EDIT has a single entry (CEKSil),
from PHASES.

Upon entry, EDIT expects the following
information:

The number of bytes of the code control
section (first word of Phase S's work
area).

Origin of the OPM's PSECT (second word
of Phase 5's work area).

Parameters passed in the phase-wide as
signment of registers.

EXITS: EDIT exits to PHASES. No output
parameters.

OPERATION:

General Discussion: There are three docu
mentation levels at which an object program
module may be edited.

1. The basic level is always edited. The
user receives this documentation even
if he fails to specify one of the
higher documentation levels. The
basic level consists of:

Section 7: Phase 5 207

a. Program header, including the OPM
name and the combined size of the
CSECT and PSECT.

b. Names and off sets of entry points.

c. Names of external references.

d. Names and sizes of control
sections.

e. Names, offsets, and sizes of
storage classes, if other than
control sections.

The basic documentation level is
included in both of the higher levels.

2. The second level is generated if the
user has selected the MAP option. At
the ~AP level, the basic level is aug
mented to include (in storage order>:

a. Names and locations of labels.

b. Names, offsets and sizes of COMMON
and nonCOMMON variables.

3. The third level of OPM documentation
is obtained by exercising the LIST
option. The LIST documentation level
expands the MAP level to a full repre
sentation of the object program
module. This level adds:

a. A listing of the CSECT text,
including object code and numeric
constants.

b. A listing of the PSECT text,
including tabulation of address
constants, available information
about parameter lists, and alpham
eric constants.

Throughout the documentation, locations
and offsets are given as the number of
bytes from the corresponding control sec
tion base, in hexadecimal. All sizes, in
decimal, indicate the number of bytes.

Method: (See Figure 39) After initializa
tion, EDIT prepares the program header,
consisting of the OPM name and the size of
CSECT + PSECT, as follows:

NAME SIZE

All entry points are now listed, one
entry per line:

ENTRY NAME OFFSET IN CSECT

External references are represented by
name only:

208

EXTERNAL REFERENCES NAMEl, NAME2, NAME3,
NAME4, •••

This completes the header information,
and EDIT now processes the CSECT, if it is
present. At the basic documentation level
the CSECT is described as follows:

CSECT NAME
CODE
NUMERIC CONSTANTS

SIZE
SIZE

OFFSET SIZE

The necessary information is obtained
from the storage class table.

If the MAP level is selected, EDIT
appends a list of labels to the CODE entry

LINE NO.
xxxxx.xx
xxxxx.xx

LABEL
LABEL1
LABE~

LOC HEX
OFFSET
OFFSET

The labels are listed in the order of
their assignments and are obtained by scan·
ning the code file and utilizing the label
entries in the symbol table.

With the LIST documentation level, EDIT
generates a full expansion of the object
code, as well as constants. The general
fornat, appropriately arranged within an
assumed line of 132 print positions, is as
follows:

LINE NO. LABEL LOCATION INSTRUCTION
COMMENTS

The LINE NO, represented in statement
header entry of the code file as a packed
decimal, is edited as follows:

1. All leading zeros are suppressed.

2. In the case of integers, the decimal
point and fractional digits are
suppressed.

IABEL entries may consist of:

1. Source statement numbers.

2. Internally created labels <>99999).

3. Entry point names.

EDIT processes LABEL entries as they are
encountered in the code file.

LOCATION contains the location of the
instruction with respect to the base of the
CSECT. It is obtained from a register,
which keeps a cumulative total of bytes in
the object code.

C/)
m
0
rt
0 ::s
...J

~
°" en
lb

VI

"' 0

"°

l'lj
~
11
lb

w
"°
0

~
ttJ

~
t-t
en
rt
::i
l.Q

(5l
11

~
rt
....
"ti
'11
t1
rt

....
0
HI

"',

NAMEXXXX,VVVVVVVVl

NAME XX SIZE XXXXXXXX BYTES

ENTRY NAME LOC HEX

ENTRYl xxxxxx
ENTRY2 xxxxxx . .
ENTRYN xx xx xx

EXTERNAL REFERENCES

EXTERl EXTER2 EXTER3 EXTER4 --- --- --- ------ --- --- EXTERN

NAHEfC SIZE XXXXXXXX BYTES

COOE

'LINE NO• LABEL LOC HEX INST HEX

EXTERS

MM/DD/VY

LOC HEX 000900

INST ASSfMBLER

XX/XX/XX PAGE XXX

EXTER7 EXTER8

HH:MM/ss2

SIZE XXXXXXXX BYTES

COMMENTS

Lin Option~ XXXXXe XX

l
xxxxxx xxxxxxxx xxxxxxxx xxxx XXtXXXX(~x.xx) (iaXXXXXXXXXXXXXXXXEiXXt!eXXXXXXXXXXXXXXXXE±xx)

{LINE NO• LABEL
MapOpdon XXXXXeXX XXXXXX

N'JMERIC CONSTANTS

f YPE
C*16
1•2

List Option. R•I+

LOC HEX

xxxxxxxx

LOC HEX
xxxxxxxx
xxxxxxxx
xxxxxxxx

LOC HEX XXXXXXXX SIZE XXXXXX BYTES

VALUE
(t.xxxxxxxxxxxxxxxxE±xx,±.xxxxxxxxxxxxxxxxE±xx)
482
±e982E+l

NAHEtP SIZE XXXXXXXX BYTES MM/

REGISTER SAVE AREA

CONVERSION CONSTANTS

ADDRESS CONSTANTS

t
LOC HEX

List Option XXXXXXXX
xxxxxxxx

VERSION ID

CONTENTS HEX

xxxxxxxx
xxxxxxxx

LOC HEX 00000000

LOC HEX 0000004C

LOC HEX XXXXXXXX

CONTROL SECTION + OFFSET(HEX)

NAMEfC
NAMEf P

47
4E7

SIZE

SIZE

76 BYTES

24 BYTES

SIZE XXXXXXXX bYTES

STORAGE CLASS + OFFSET(HEX)

CODE 37
ALPHAMERIC E87

a4 Llnl'S p~r PdC.l' -------

TIME STAMP (FOR CONTROL SECTIONS ONLY)

~ tlJ ,.,. ~

~
0

11
<D

w
\.Q .
0

~
ltj

~
l;"I ,.,.
en
rt ,.,.
::s

IQ

~

m
rt

~
PJ
11
rt

tlJ

0
HI

rv -

NAMEXXXX

PARAMETER LISTS SIZE XXXXXX BYTES

l
LOC HEX

Lill Option

CONTENTS HEX

LOC HEX XXXXXXXX

CONTROL SECTION + OFFSET(HEX) STORAGE CLASS + OFFSfT(HfX)

NAMELISTS LOC HEX XXXXXXXX SIZE XXXXXX BYTES

ALPHAMERICS LOC HEX XXXXXXXX SIZE XXXXXX BYTES

ALPHA(HEX) ALPHA \LOC HEX

U.tOption ~~XX XXXXXXXX A SINGLE ENTRY MAY HAVE SEVERAL CONTINUATION LINES

NON-COMMON VARIABLES (TOTAL)

(NON-COMMON VARIABLE~

List Option J VAR I ABLE 1 i VARIABLEN

LOCAL TEMPORARY STORAGE

GLOBAL TEMPORARY STORAGE

COl'iMON NAMEl

1

VARIABLE

Lin or VAR I ABLEl
MapOpuon VARIABLE2

COMMON NAME2

(VARIABLE
Lisi or)

Map Oplion I •
COMMON NAMEN

~
VARIABLE

Liu or VARIABLE!
t.1Jp Op1ion

VARIABLfN

NAMEXXXX,VVV

LOC HEX XXXXXXXX

LOC HEX

xxxxxxxx

xxxxxxxx
LOC HEX XXXXXXXX

LOC HEX XXXXXXXX

LOC HEX XXXXXXXX

LOC HEX

xx xx xx xx
xxxxxxxx

LOC HEX XXXXXXXX

LOC HEX

LOC HEX XXXXXXXX

LOC HEX

xxxxxxxx
xxxxxxxx

SIZE XXXXXX BYTES

SIZE (BYTES)

xxxxxx

xxxxxx

SIZE XXXXXX BYTES

SIZE XXXXXX BYTES

SllE XXXXXX BYTES

SIZE (BYTES)

xxxxxx
xx xx xx

xxxxxx

SIZE (BYTES)

SIZE XXXXXX BYTES

SIZE (tiYTES)

xxxxxx

xxxxxx

~
. SYMBOL TYPE CLASS SIZE(t:JYTES) STORAGE CLASS + OFFSET

Symbol
Tai-I~ XXXXXX
Op!iC>n XXXXXX

VARIABLE!
Cross Ref.

)

SYMBOL

Un Option • . .
xxxxxxxx

COMPLEX

DEFINED

STATEMENT NO.
VARIABLE

LINE NO., LINE NO.,

16
CODE
NON-COMMON

REFERENCED

LINE No •• LINE No ••

3E8
280

XX/XX/XX PAGE XXX

An INSTRUCTION entry i s edited in two
parts. The hexadecimal representation of
the instruction, as given in the code file,
is edited first. The second part contains
an assembly-like entry of the instruction.
The operation field is translated to the
corresponding mnemonic: the operand fields
are converted to decimal integers and are
rearranged with the appropriate
punctuation.

A COMMENTS entry consists of a descrip
tion Cif available> of the second operand.
It may contain one of the following:

1. Name of a variable, where all sub
scripted variables are represented by
the array name only.

2. Label which appears as a statement
number.

3. constant, shown as a literal.

4. Address constant, edited to give
results in the form

STORAGE CLASS NAME + OFFSET

EDIT uses a descriptor entry in the code
file to obtain information for the COMMENTS
field. The descriptor trails the respec
tive instruction and points to the appro
priate symbol table entry.

The representation of numeric constants
has entries similar to the object code,
with the following exceptions:

1. LINE NO. and LABEL entries do not
apply.

2. The COMMENTS entry is omitted.

The symbol table provides EDIT with the
necessary information to list numeric
constants.

After completing the editing of the
CSECT, EDIT processes the PSECT. At the
basic documentation level, PSECT is edited
as follOW's:

PSECT NAME

REGISTER SAVE AREA
ADDRESS CONSTANTS OFFSET
PARAMETER LISTS OFFSET
NAME LISTS OFFSET
ALPBAMERIC CONSTANTS OFFSET
NONCOMMON VARIABLES OFFSET
LOCAL TEMPORARY STORAGE OFFSET
GLOBAL TEMPORARY STORAGE OFFSET

SIZE

SIZE
SIZE
SIZE
SIZE
SIZE
SIZE
SIZE
SIZE

At the MAP level, the NONCOMMON
VARIABLES entry is expanded to include
individual variable names.

NONCOMMON VARIABLES OFFSET SIZE

VARIABLE1 OFFSET SIZE
VARIABLE2 OFFSET SIZE

The LIST documentation level includes
description of alphameric constants,
address constants, and parameter lists.
For each address constant, EDIT supplies
the following information:

LOCATION/CONTENTS/CONTROLSECTION/STORAGE
CLASS

LOCATION gives the offset of the adcon
from the PSECT base. CONTENTS is the value
of the adcon. CONTROL SECTION gives the
name of the referenced control section, and
STORAGE CLASS refers to the particular
class in that control section, such as
code, numeric, alphameric, etc.

For any COMMON control section, EDIT
produces, at the basic documentation level,
the name of the section and its size. The
MAP and LIST levels expand each COMMON
entry with a listing of variables. The
format is similar to the representation of
NONCOM.MON VARIABLES in the PSECT.

The editing of COMMON cntrol sections
completes the work of EDIT on the OPM.
Symbol table and cross reference Index
option flags are examined, and, if
selected, the appropriate table is edited.

CEKSJ -- Symbol Table Sort (SYMSRT)

SYMSRT produces, upon request, an alpha
betical listing of items in the symbol
table, as shown in Figure 39. see Chart
GS.

ENTRIES: SYMSRT has a single entry
(CEKSJU from PHASES. PHASES uses the
INVOKE macro to call SYMSRT.

~: Normal exit only. No output
parameters.

OPERATION: PHASES inspects an entry in the
intercom to determine if the user desires
an output listing of items in the symbol
table. Should this option be selected,
PHASES invokes SYMSRT, which provides an
alphabetical listing of the following
items:

1. Entry names.

2. NonCOMMON variable names.

3. COMMON variable names.

Section 7: Phase 5 211

4. External names.

5. NAMELIST names.

In addition to writing the name of the
item, SYMSRT writes its type, class,
storage class, and offset from base of
storage class, where these items are
applicable.

Type

Class

- I•2, I*4, c•a, R*4, etc.

- Array variable, simple
variable, entry name,
external name, etc.

Storage Class - Code, nonCOMMON, named COM
MON, etc.

Immediately following the listing of the
items (explained in the preceding discus
sion>, a listing of labels, both source
generated and compiler-generated, are out
put in ascending order.

CE:KSE -- output Page Heading (PHEAD)

CEKSE produces the page heading for each
page of output listing generated by PHASES.

ENTRIES: PHEAD has asingle entry (CEKSEU
and is invoked by:

EDIT
SYMSRT
CRFSRT
CON CV

CEKSE expects one input parameter in
register Pl for initializing the line-count
counter. The value must be O, 1, or 2.
The value passed is subtracted from some
constant, and the line count counter is
initialized to the result.

EXITS: Normal ex.it only. No output
parameters.

OPERATION: Upon entry, CEKSE does the
following:

1. Initializes a cell in the phase's work
area that is used as a line co\lllt
counter (i.e., the number of available
lines left on the current output
page>.

2. Skips to a new page.

3. Forms and writes a page heading for
the new page. The heading consists of
the module name, the date, and the
page number. All three items may be
found in the phase's copy of the
intercom.

212

CEKSL -- Constant conversion (CONCV)

CONCV converts constants <integer, real,
or complex> to EBCDIC code for output in
documentation of a FORTRJl..N-compiled pro
gram. See Chart GT.

ENTRIES: CONCV has a single entry (CEKSLl)
and is invoked by subroutine EDIT.

Input Parameters

A parameter register passed to subrou
tine CONCV contains the address of a con
stant' s descriptive entry in the symbol
table.

EXITS: Normal exit only. No output
parameters.

OPERATION: While EDIT edits the code file
to generate the output listing, any comment
entries that ref er to constants cause EDIT
to invoke subroutine CONCV. CONCV con
verts, formats, and writes the constant and
its offset in the code control section.

A parameter register passed to subrou
tine CONCV contains the address of the con
stant' s descriptive entry in the symbol
table. From the descriptive entry, CONCV
determines the following:

1. The constant type - integer, real or
complex.

2. The length of the constant - two,
four, eight, or sixteen bytes.

3. The address of the constant itself.

4. The constant's offset from the base of
the CSECT.

The first three items are used to con
vert and write the constant in the correct
format, and the fourth item is written in
hexadecimal, as additional information for
the user.

CEKSK -- Cross Reference List Routine
(CRFSRT)

CEKSK prints a cross reference listing
for the variables <symbols) and labels,
from the list generated by Phase 1. See
Figure 39 and Chart GU.

ENTRIES: This routine has one entry point
(CEKSK1).

EXITS: Only the normal exit is made, with
no output parameters.

OPERATION: Upon entry, CRFS!{T makes a pass
across the cross reference list which was
generated by Phase 1. Each entry is
examined. If it is a symbol reference, the
symbol table pointer is used to get the
symbol name. A table of symbol references
is built in the code file with the follow
ing forne.t:

0 8 16 24 31
r---------T----------T----------T---------1
I N I A I M I E I
I X I X I Flag IN ot Used I
~---------..1.----------~----------~---------~
I Line Number I
l---1
where

•NAMEXx• is the symbol name in EBCDIC
<or BCD), lef-justified with trailing
blanks.

•Flag• indicators a reference CX'02')
or a definition CX'Ol').

•Line Number• is tht line number of
the reference or definition, in packed
decimal.

If the cross reference listing CCRL)
entry is a label reference, a table is
built in the CRL, with the format
unchanged.

After all the original entries in the
CRL have been sorted into symbols and
labels, the sorting of each list is begun.

First the symbol list is sorted in alpha
betical order, with definitions first in
increasing line numbers, followed by the
references, also by increasing line number.
The logic involved in the sorting of the
list is best explained by the accompanying
flowchart (Chart ON). In this type of sort
scheme, a •delta• is calculated which is
one-half the list size. Each entry (i) is
compared with the corresponding •i+delta•
entry. If a switch is necessary, it is
made. If a switch of two entries is made
below a certain point in the list, more
comparisions are made before stepping to
the •i+1• entry. When the bottom of the
list is reached, the delta is reduced to
half its size and the list scanned again.
When delta is zero, the sort is completed.

After the symbol list has been put into
proper order, the heading for the symbol
cross reference listing is printed. The
symbol •name• is printed on the first l'ine
of its group only. If more than one line
of printing is necessary, the rest are
single-spaced. When a new name is found,
the first line is double-spaced to separate
the groups. The line nwnbers are printed
with two spaces between the last digit of
one and the first significant digit of the
next. Leading zeros of line numbers;· are
not printed.

After all the symbol list entries have
been printed, the label list is sorted and
printed in the same manner.

Section 7: Phase 5 213

FORTRAN IV PLM (TAPE 3) 970100-3

October 15, 1969

SECTION 8 : FLOWCHARTS

Each chart in this section is referenced
from an associated routine described in an
earlier section of this manual. The charts
in this section are presented in the same
order as are the routine descriptions. Not
all routines are illustrated by charts.

The flowcharts in this manual have been
produced by the IBM System/360 Flowchart
Program (Flowchart/360), using USASI sym
bols. These descriptions of the USASI
symbols and the Flowchart/360 conventions
will simplify interpretation of the flow
charts in this manual:

SYMBOL

•••••11••········ • * • * • * • • • * •••••••••••••••••

*****B1********** *CZOZZ1 048A3*
·---------------· * * * * • * •••••••••••••••••

*****C1********** * •
* * * -CHKSVTCH- *
* •
* * •••••••••••••••••

*****D1**********
* * * * * * * • * * * * * * * * • * * * •••••••••••••••••

. *·
E1 *· . * •. . * *.

*· . * *· . * *· .•
*· . * •

.•.
F1 *·

. * *· . * BRUCH *·
· 01 · *· COHDITIOI. * .. .• •• • •

*

: ••• O •• QlQAS

: ••• 1 •• ~~~~1
: ••• 2 •• Q~QA2

: ••• 3 •• <?H~3

214

DEFINITION

The processing block indicates any processing function, or
a defined operation that causes change in value, form, or
location of information.

When this block is striped, it indicates the entry point of
a subroutine or module that is included in the flowcharts
in this manual. System/360 Flowchart automatically gene
rates a page-and-block locator (048A3 in this illustration)
that specifies the paqe with this entry point. See below
for an explanation of page-and-block locators.

When a call is made to a subroutine that is not in a flow
chart, but is described in this manual, the call is shown
in a processing block without the stripe and the subroutine's
entry point is shown.

The library or predefined process block indicates a module
or subroutine that is in the flowcharts of another PLM.
Whenever possible the entry point of the module or subroutine
is listed. Refer to the Flowchart Directory in IBM Slstem/360
Time Sharing System: System Logic Sunnnary, Form Y28- 009 •

The decision block indicates a decision- or switching-type
operation that determines which of a number of alternate
paths should be followed.

When there are more than three alternatives, a branch table
is generated •

.•.
H1 *· cznzoo 017A1 . ·-----------·.

· ·
*· . * •. ·* •. . .

•

•••J1••••••••••••..-..
•

• •
•••••••••••••••••

K1***** • * • • • • * • • • •••••••••••

A2*****
CZ OVER 004A1
·-------------· • • • •
* * •••••••••••

·····~2·········

*

* • • * • •

····~2········· •:zzooz 02sa2•
·----~----------· • • •••••••••••••••

•••• • •
: 84 :
••••

••••• •001•
• 82* • • •

When the decision process is so involved that a detailed
flowchart is required, the decision block is striped, and
the paqe-and-block locator is generated as for the pro
cessinq block.

The I/O block indicates the qeneral I/O functions, which
include (but are not limited to) the GET, PUT, READ, WRITE,
or device-control macro instructions, and the SIO instruc
tion. Wherever possible, the entry point of a macro in
struction processor is shown •

The modification block indicates an instruction or process
that changes program operation, e.q., sets a switch, modi
fies an index register, or initializes a routine.

If the modification is performed by a subroutine that is
included in a flowchart in this PLM, the modification block
is striped and a paqe-and-block locator is qenerated.

The terminal or interrupt block indicates a terminal point
in a flowchart. It is used to show start, stop, halt, delay,
or interrupt. The terminal block is always used for either
entry to a routine or for exit when a routine has completed
its processing, and will not be reentered for the same ser
vice request. This block is also used for macro instructions
such as ABEND, EXIT, and RETURN.

The terminal block will be striped if the exit is to a rou
tine that is included in a flowchart in this PLM. A page
and-block locator is automatically qenerated when this block
is striped •

The on-page connector indicates exit to or entry from a block
on the same flowchart page.

The off-page connector indicates entry from or exit to a
block on another paqe of the same flowchart. Note: Exit
to another flowchart in this PLM is indicated by a striped
block •

Pa9e-and-Block Locators

The page-and-block locator qene~a;ed for off-paqe co..~nectors
and striped flowchart blocks -rs a five-character string! The
first three characters indicate the flowchart paqe on wh1.ch
the transfer address is located. This page number is.rela
tive to the first flowchart paqe and appears in the upper
right corner of each flowchart. The last two characters
indicate the block at which the entry point is defined on
the referenced page.

Section 8: Flowcharts 215

Chart AA. Executive overall Flow -- CEKUA (Page 1 of 2)

.....
•001*
* .ai•

*
I

RESTART ~ LDCLOSE •••••a1••••••••••
•CEKT!IB 023A5* ·---------------·
CLOSE LIST DATA
* SET *

EXEC
PHASES 1-5

I

••••r1••••••••• . .
: ENTER :

l
*****G1**********
* CEKTB llODULE *
* USED FOR ilORK *
* AREAS AllD *
* COllllUNICATIOll *

I
I

t RDll
*****Hl**********
* CEKTEA 001P4* ·---------------·
* BDll IS CALLED *
TO OUTPUT DIAG-
* llOSTIC !!SGS. *

L .. •••••J1•••·······
CEKTP 002A5 ·--------------·
*CALLED TO PILE *
: COllSTAHTS :•...

l
* ****K1*********•
* RE TU Bl *

216

CEKTU

****A2********* • *
* EllTER *
• *

I .. , .. o
~mm~ •••••82••········ * IllITIALIZE *

GETllAill PROCESS
*LPC PAilAllETt:as,•
: ETC. :

-----> l ,oom
•••••c2••••••••••
:~.::~!!:!~----~~~~~=
* OPEii THE LIST *
* DATA SET *
• *

I

l :••••02•••······:
* CALL PHASE 1 *
: CALL PHASE 2 :

• *
PO!iTR.lll
IllITilL
TO LPC I

****E2********* • *
* BETURll *
* *

PHASE 1

••••12•········ . .
: ENTER :

I
1 GRSS

*****G2**********
:_:~~!=~---~~~~!:
CALL GllSS FOR A
* SOURCE LillE *
* •

I
****H2********* . .

: BETURll :

CEKTAB

****A3*********
* * * ENTER *
* *

I

I

I

LPC TO

i ~mmE •••••aJ••••••••••
!!~~~~~-~!-~!-~-=

l
•••••c3•••••••••• * FilEE ALL llAill *
* EXCEPT OBJECT *
* llODULE PASS *
* OBJECT llODDL.I! *
* TO LPC *

I
! LDCLOSE

*****D3**********
C.C:KTHB 023A5 ·---------------·
•CLOSE THE LIST *
* DATA SET *
* *

I
****Bl********* * •

: !iETURll :

PHASE 5

****F3*********
* •
* EllTER *
• *

L
*****G.3**********
::!~!!:!~----~~~~~=
* CALLED TO AOD *
•LINES TO OUTPUT*
* LISTillG *

I
* ****Hl********* *
* BET!IRll *
• *

Ct:KTAC

• ****~.4********* *
: FNTER :

I

l :••••84•••······:
*LPC TO FORTRH' *
*EARLY END FREE *
: ALL ~AIM :

················· I
I
~ LDCLOSF

*****Cli ********** *CEKTRB 023A5* ·---------------·
*CLOSE THE LIST *
* DATA SET * . .

l
I

l
* ****D4********* *
: RETURN :

CEl<TEA RD'!

* ****P4********* *
: ENTER :

I
I

l DIAGOUT
*****G4**********
:_::~!~£---~~2:~:
* ADD LINFS TO *
* LIST !HTA SET *
* AND CO!ISOLE *

I
~

****H4*********
* * : PETORK :

CEKT!lD DIAr.0 1lT

* ****F5********* *
: EN'rPR :

I
1

*****G5**********
*I? A LIST D.•TA *
*SET, ~'>D ITF~S * * TO L!ST DATA *
: S~T. :

I
I

* ·····~5********** * IF CO!IVERSA- *
: T~m~foC~f,L :
*OUTPUT CONSOLE * : ••• ~:~~~=~~ ••.• :

I
• ••••Jt:;•••••••••.
* PE'!' URN *
* *

PAGE 001

Chart AA. EXecutive overall Flow -- CEKUA (Page 2 of 2)

CEKl'CA

****A 1********* . .
* ENTER *

I
~ LINEIN

*****B1********** * CEKTHC 002H4* ·---------------· * OBTAill LINES *
* FBOI! LPC *
* GETLINE *

l .•.
C1 *·

NO • * AHY *·
1·· •. mmD .• ·• •. .. • .. • * YES

I
1 l!OD

*****D1 **********
:_::~:~~---~~~~~=
• *

I
~ .•.

E1 *· .• *· • * RETURN *·
*. CODE FROll • *

*· llOD • * •. .. ··.·*
: ••• 16 •••• 001 81

: ••• O ••••• 002 G2

: ••• 8 ••••• 002 Kl

: ••• 12 •••• 002 Kl

: ••• 4. ••• .002 Kl

: ••• 20 •••• 002 H2

: ••• 24 •••• 002 Jl

: ••• 28 •••• 002 Jl

FO.itGET
RAISED

•002•
* *G~* .
1

*****G2********** . .
•DIRECT GllSS TO *
: OBTAHN~ NEii :--,

• • I
A I

•002•
• 82*
• • •••••e2• ••••••••

.....
•002*

. . .
L __ >:¥~8fgMPrfs~:

* LIRE. *
I ··!'.:-·~~~~~~~~~~~~~~_.
I .•.
L J1 *· *****J2••········

• * *· *IF llOT FORGET- *

>*: * P~~~~~ *: ~>:mMmr11 c~5L:
*· . * * ADD l LillE TO •

*• • * *LIS? DlTA SET. *

=~~~* .:J :::TillUE:_J*****************

• • I liITR
**** ~ PROCESSING

* ****K1********* *
: RETURll :<

CEKTDA 1100

••••13••······· • *
* ENTER *

I
~ LINEIN

*****B3**********
:_::~:~:---~~~~~=
INSPECT ALTERED
* LINE *

I

l ••••c3••••••••• . .
* RETURN *

CEKTHF !!IO (BFLUSH)

••••04••······· . .
* ENTER *

I •••••!4•••······· * !!OVE 1 OR 2 *
• SOURCE LINE *
*BUFF!BS TO THE *
* LIST DATA SET *

j
****F4********* . .

* RETORll *

CEKTHC l!IO (LINE IM)

* ****H4********* *
* ENTER * ·

I
l GETLilll! •••••J4••········ • • * •

* * -CPADB1- * *
* * OBTAill A * * * *SOURCE LillE* * * • • •

j
****K4********* . .

* RETURll *

CEKTF CON!'!L

*****AS**********
* EllTFR *

I
l RD!I

•••••85••········
=-~:~!:~---~~!:~:
* OVEB!'tOll *
: llESSAG!'S :

I
*****CS**********
* RET<JRN *

PAGE 002

Section 8: Flowcharts 217

Chart AB. Phase contro1ler CPHC> -- CEKTA (Page 1 of 5)

CEKTll PHC

••••A2•········ . .
* EITEi *

LPC TO
PORTRll
IllirIAL I

•••••B2••••••••••
•ESTABLISH COYER*
* FOR IllTERCOllf *

:m"~¥ mE:
• 3 •

I •••••c2•••••••••• . .
* ZERO PSll *
* PROGRAll llASKS *
* BITS *

•003• ••••••••••••••••• .. . • D1• I
HEBE OILY - 1 IF liESTlRTillG

TA001 .•.
*****D1********** D2 *· . . .• ..
COPY PSECT PAGE 10 .• 1ST *·
* 3 OITO PAGE 2 *<---*· EITBY FOR • *
* * •.THIS OSER.• . . •. .• • ...

i"'
*****E2********** . .
•SET TDBT4 TO 1 ,•
* TO llABK BEEi *
* HERE OllCE *

I
*****F2********** . .
* llOVB IllTERCOll *
IllTO PSECT PlGE
• 3 ••.......

'"" ,!
*****G2**********
•SET TECXB TO B *

l .•.
*****H1********** H2 *·
* * .• BATCH *·
* * COIV .• OR *•
*SET TECIB TO C *<---*· COIVEl!SA- .•
* * *· TIOllAL? .• . . •. ..
·······T······· ... ,. .. r··,.
•••••J1••········ •••••J2••········
GET 2 PAGES POI * llOVB LPC *
* llIO BOPPERS *-->* PARlllETEBS TO *
* * * IITERCOll *

218

·*· Bl *· *****B4********** .• •. . .
>•:* LIS~·~lTA *:•-•o ___ >:T!OPgfI~fs:LIST:

*. SET • * * II DIC ATOR = 0 * •. •. ·* •••••••••••••••••
* JES

"'" l •••••c3••••••••••
* SET TEOPOT TO * * y. SET 1 LIST *
* EXISTS' *
*IIDICATOR TO 1 *

I
*****Dl********** . .
* IllITIALIZE *
* ITBllS *

I ,oom
*****Bl**********
CEKTBA 023A1 ·---------------· *OPEi LIST DATA *
* SET *

k.
*****Pl**********
*CEKTBE 02313• ·---------------·
*OUTPOT HEADillG *
!LIRESh~ISTOBB :•.......

I.,,.,.
*****Gl********** G4 *•
CEKTHC 02411 .• *·
•---------------• • *DIAGIOSTIC *• 110
: _READ A LIU :--->•. *• 1f281BD • * • •----,
• * •• .• •••••
••••••••••••••••• • •• • •0011• i ·:i-

. •.
H4 *·

.• Liii! *·
• •JOST READ ••. 10

*· *~IlGIOSTIC • *.---,. .. .•
•. •• •00111•

l
* YES • •:1•

LIHII •••••Jiii••········ *CEltTHC 021111* ·---------------· * RUD AID *
* PROCESS 2 *
* DIAGI. Ill'O. *

l .,. ...
*****K4**********
•C!KTHC 0211A1* ·---------------· : m~cPml! :-----.
••••••••••••••••• •004•

• A1*
• * .

PAGE 003

Chart AB • Phase Controller CPHC) -- CEKTA (Page 2 of 5)

TA0109

.....
•004•
• A1• .. .
l ...

A 1 •. . . •.
NO • • •. r-•· FIESTA RT • *

i •. . • • •••
I •.•. ·1 · ;~: : 83 :

~ T .
• •. U.100 ~ COllI4

Bl *· *****83**********
• •i>~AGtlOSTI~. *· 110 ::!~!!~----~!~~!:

•.LINES CHARGED. *-------------->•PILE COllSl'AllTS *
•.FILE SIZE.• •AllD POillTERS Ill•

•. • • ••••• * IllTERCOll •
• ... • •004• ••••••••••••••••• ··:·· I
l ""' l .•. "'" "' •••••c1•••••••••• :••••c2•••••••••: c3 •. •••••CQ.••••••••••

: Fli!E ALL llUN : * •
11

' 11& • • • • *· *· O ::!~!~~----~~~~~=
• EXCEPT llIO * * SET RC TO II *<---*· RC • *--->* •
* PAGES * * * *· • * * HEADING !.I!IES *

I
.. •.
········i········ ········i········ =~gi· .:~ ·1·: ·······T~~···

I I I :.... v
ITAOllS + TA133 .•.

L>~::i!i~:iii!i!::~ I r-:::3::·::·:··; <~ ·D:ATC:··~>:;
.. TABLE .. I • . . • I ... ····T···· ... I, ········1········· ... ;" ;; I

y l BFLUSH I •••••£1••········ ••••• , •••••••••••
* * .****E3********* * ::~!!~:----~!~~~=
:sE~Ag~SREm~Eo: ~------>•. ltETUill •• •• EllPT,.UYFOF2TRPS'JT •• * FROll Gb llAill * _ .,
....... .!........ ,..l.m.... I
!113U m: mo : ==~~!~~----~!~~~= _j
• BY FILES * * •<
*llTERUL PHASE * * RESTORE PAGE *

I ,.,.. !.. ... ,
•••••G1•********* •••••Gii*•***•****
:llOfE lllTRIISIC : ::~!~~~----~~!~!:
•ru1c. ITEllS TO • • •
* Siii. TABLE * • *

I INCLUDE IllTERCOll Ill I
1m~s11~Xh tMHo
h11TERCOll 17El!S ·*·

*****81********** HI& *· • • .• *·
llOYE IHFC. Fli.011 • * BP.AllCI' *·
•GET llAillS IITO * *· 011 RC .•
•PG. 3 OF PSECT. • *· . * . . •. .• •

1
: 83 :

: ••• 16 •••• oos 11

: ••• 12,11 •• 0011 C2

: ••• 8 ••••• 0011 03

: ••• o ••••• OOS Al

PAGE 004

Section 8: Flowcharts 219

Chart AB. Phase Controller CPHC) -- CEKTA (Page 3 of 5)

.....
•005•
**Al* .
I RESTART PCINT

TA118 V
*****A 1****•***** . .
* SET RESTART * * FLAG *

l .•.
81 •.

·* •. • * AllJ *· !IC
*·•. LI~~T~ATA 0 •• .._____,

•. ·* •••••
•. •• •003•

I
* YES * -~l*

LDCLCS! •••••c1••••••••••
CEKTHB 02315 ·---------------·
*CLOSE THE DATA *
* SET *

220

.. L
•003•
• 01*
* •
*

.....
•005•
**A~*

*
i

TA120 •*•
A3 *· .• .. ·* COllV. *· BATCH

*· OR BATCH? • *'----------
*· .• •. ..

•. ·* r ..
:••••sJ•••••••••:
*1 TO TDllERG TO *
* STOP llERGillG *
: SOURCE, DIAG. :

j "'"' •••••c3••••••••••
::~~!~!----~~~~~=
* * : BOTH BUFFERS :

I
~

*****D3**********
* * * FREE 2 llIO * * BUFFERS *'------'--~

* * * *

TA111 PP.ASE 2
*****Ac;**********
* * * * ---->: -CEKJA1-

* *
I
~

. *·
BS *·

11, 12
15 • * * *· *· I!

r---*·
v *· .• ····1 RC

*· .• t *0011*
* C2*
* * *

• 0 •••••

l
•0011•
* 03• * •

*
TA 12<1 !

:••••cs•••••••••:
CLE!\R SRL (WOP.K
: .a.PEA E) :

l
* **D'i******* * . .

* ZF.RO RC * * •
* *

I
TA 130 l

* ****!5*********•
: RETURN :

PAGE 005

Chart AB. Phase controller (PHC) -- CEKTA (Page 4 of 5)

CEKTAB PHC

• ****A3********* *
* ElllTER *

lmri~. COllTillOE

*****B3**********
* SAVE ADDR. OP *
* LIST EXISTS *

!mU¥E6 ~~~ Ill:
* EXCOll * r

·*· TA·150
C3 *· *****Cll**********

·* BLOCK *· * *
•:*soB~li~au *:•~>:cLu:aH ~foRK !___,

*· .• • * t .. .•
• • • • ••••••••••••••••• •007• i " -.!.

0

• ·:i·
*****D3********** Dii *·
* COllPOTE BASE * .•RETURN *·
* ARD TOP OP * YES • * CODE = *· B * *
PORlllL lRGUllE1'T r*· 4, 12, OR • *-->* F2 *
*ADCOI AREA FOR * *· 1b ·* * *
* PHlSE3 * *· ·* ****

········1········· : ·::·: •. :l·
PHASE 3 PnsE II

*****E3********** *****Ell* ********
*CEKKRA 188A 1 • * * ·---------------· .
* * -CEKHX1- * . . . •••• ••••• • * • •

• • •006• ••••••••••••••••• • ••••••••••••••••

: F1 : •.P.~* I Al
J. 'Il950 1 TA331 ·*• TA1110 !

F1 *· *****P2********** Pl *· *****F4*1********
• * *. * llOVE 'LIST * • * *. * *

HO ·* AllY *· * EXISTS' * 8 ·* *· 0 * CLEAR PRP A1'D *
·•. unT~ATA·•·<---: IHDicugR TO :<---*·•. RC •• *---->: EP (ll~rK AREA :

... ·* • • •. .• • • ... • • .. ••....... i YES !o&i• *->!* II, 1, 16

l
.

TA905 OLR Tl900
*****G 1 ********** *****G3* *********
CEKTHP 0211All * llOVE 'LIST *
•---------------• * EXISTS' *
* * * IllDICATOR TO *
* * * LPC * • • • *•...•.......

l ~l~
LDCLOSE * F1 * •••••e1•••••••••• • •

::~~;~~----~~~~~= •••• . .
• * • *

..... l
L •••••J1**********

>* PREE ALL llAIR *

1
* F2 *

PAGE 006

Section 8: F1owcharts 221

Chart AB. Phase controller CPHC) -- CEKTA (Page 5 of 5)

.....
•007• * A1• • * .
! PHASE 5 •••••11•········· * •

* * * -C!KSl1- *
* * * •

l .•.
B1 *•

IJ,12 ·* *·

r16•=:. llC .::*!8
•. ·*

....
* * • 82 * • *
t

·*· B2 *•
. * AIY *• 110 * *

• LIST DATA ·-->* !12 *
· SET · * * •. ·* ••••

· · ••••• • 0 •••••

[•006• l •006• * G3• * F2•
* *
T.&160 •••••c1••••••••••

* FBEE ALL lllII *
*BXCEPT POBTIOI *
*OF All!l B USED *
* Bf PHASE 5 *
* *•...

"'" I ** ** *D 1 **********
* * * RESTOBB LPC *
* DSBCT COYB.ll *
* * * *

I
*****!1**********
* llOYE THE •
LEIGTBS & BASES

:opA~ m ~11~iL :
* TO LPC *

"'" l *****F1********** • *
* llOVE LISTS *
*EXISTS IID. TO *
* LPC *
* *

!
* * * B2 *
* *

•••••c2••••••••••
CEKTBE 023A3 ·---------------· * COllPILlTIOI *
* COllPLETED *
* llBSSAGE * .•...............

l
·*· D2 *·

IJ,
116 .• •• •.•• 8

r *·•. RC .•·*--,
•. ·* •006•

***** • 0 * F2*
·006· I .. * G3* *
* *

:A 175 LDCLOSB
*****B2**********
CBltrBB 023&5 ·---------------· *CLOSB LIST DATA*
* SET *

I
.•. TA181

F2 *· *****P3********** .• •. . .
·* llET *• YES *RESTORE BC FROll*

· ERROR YET? .•---> TDTllP1 •. .• . •. .• . . • .. •
i~

·*· G2 *·
·* *· 4, 12 ·* •. 8

r-*·•. RC .•·*--,

222

•006• •. • * •006•
* G3* * 0 * P2* l * •

: H2 :->
Tl180

!****H2*********!

*llll ERROR CODE *
: TO RC :

* *•.
TA190 l<•-

••••J2••·······
* * * RBTURI *
* •

CEltTlC PBC

****All********* . .
* BllT!R *

l .• .
Bii *· . . •.

·* LYST *• 10
*· DATA SET .• •. .• .. .• • ...

[
•••••ell••••••••••
=~~!!!~----~~~~~=
* COllPILA TIOll *
* TERllillATED *
* ••.

l """"' *****Dll**********
CHTHB 023A5 ·---------------·
* *

..... I'
*****!II**********
: PR!! ALL l!lill :

I
*****PQ.**********
* RBTUPll 'LIST *
* EXISTS' *
* IllDICATOR TO •
* LPC * • *

l
* ****G4********* *
* RE TOR If *

PAGE 007

Chart AC. Get Next Source Statement (GNSS) -- CEKrc (Page 1 of 4)

CEKTCA GNSS

* ••••12••••·····.
* EN'IER *
* *

l •••••s2•••••••••• * • * • * FOilGET FLAG=O * . .
• *

l
·*· C2 *· .. •.

* * YES •* BATCH *· * E2 *<--•. PROC ? • * . . •. •. . .

*****G1**********
: mLJtmm:

: mlm~M:T :<-,
* * I
***************** I

I I

•. ·* * HO
I

l
*****D2**********
•Sli. Ti!E BUi'FEil * * PARAftEIERS *
: (TDBOLD, TDBNt:W):
:~gi· •->l

TC008
*****E2********** * LOilEB TDOVER * * RAISE TDIERll *
:mMf~~P?gh:
* BASE FOR PH 1 *•..........

I
TC009 !

*****F2********** • * * REG PS= LI11E *
: NO. :

* * I
•008•
: G2* *->I
•••• I

TCO 10 ~
*****G2********** * • * SAVE 'li!E LINE *
• NDllBER IH * * TDDSAV •

·*H1•!........ 'L H2.t*.

:cmo"~Gp'~m: 1 •• ·* *· •.
: 11n m~iLg~~ : -·· •• TD£11D!I •••• . ::.. . •. • .. •

I * O
I **** I
L •009• i >* Fl *

TCO 1.! • *·
*****J1••········ J2 ••

!aorn~L~g sTlh : YES • ··* 011 *••.
•DIAGNOSTICS POR*<---•. FIRST LIME •• • * NEXT GERLI11E * *• • *
* CALL. * *· ·* • .. •

I • 110

I '"" l " '"" •••••K 1********** *****K2********** * * *CEICTHC 021111* * LOAD liC PRO!! * •---------------• * LAST GETLillE * •OBTUI 'IHE LIME* * CALL. * * AFTER TDU •

TC011 .•.
F3 *· .• •. ·* BRANCH *·

r
>•. ON GETLINE • *

*· RC ? • * •. .• . .. •
*

=· .. o ••••• 009 91

I 11 ••••• 008 P4

I : ••• 8 ••••• 008 PS I : ... 1 008 j(3

I

.....
008
**Ki•

*

l
* ****K3********* *
* RETDRll *

'---~-~~-~-->'~~--~--'

.....
•008•
* Fii*
• * .

TC016 ! !IOD
*****!"**********
==~~!~~----~!:~!:
•D!!TE~~INE llHAT * * TO DO ABOUT * * AL'!EF ED LI!IES •

l
·*·

Gii *· .• ..
.• !!PA!ICH *· *· 011 ACT!Oll .•
· !IC ·

• .. ··
: ••• O ••••• 008 G2

: ••• 4 ••••• ooa lt3

: ••• 8 ••••• ooa n
: ... u 008 K3

: ••• 16 •••• ooe l<:3

: • •• 20 •••• 008 !!2

: ••• 211 •••• 009 ll1

: ••• 28 •••• 008 PS

.....
*008• .• 'P~· .

TC02S l
*****PS**********
* * : m:o~oJ§ ~~T :

!
*010•
•.a~• .

I!' 16, !l'JST RESTAPT

START CUR!l!!llT STPIT. OVl!R

l!Cil GOT 1ST LJllF.

!IOD llET EODS

Section 8: Flowcharts

PAGE 008

223

Chart AC. Get Next Source Statement (GNSS) -- CEKTC (Page 2 of 4)

.
i

TC015 .•.
81 •. .• ..

. * BATCH *• YES

*· PiWC? ·1 •. .• •. .•
*· .• r NO I
! I
.•. I

C1 *· I
• •G~T JmE ;-. . NO ~

*· OP NEW .•-1 *· ST. .• •. .• • ... i "'
:••••01••·······:
* TD1INT FOB *
* llOD=LINE NO. •
: JUST GOT :

•cm le
:••••! 1••·······:
*TDU = LINE NO. *
* .FROll LillEIN *
;~~~:--J
•••• ! .•.

Pl *· .. . •.
• * LillE *· YES

....
• * •009•
: BJ : * * 9:•
•••• *
! >I

•+8 • *· I TC1.20 ~
*****82********** BJ *· I *****BU**********
• • .• <BO •. I !Ini~t8~~15m :
: m~&A*~~ 1

•
6 :<~.:·cmMm ·:. j •TDTERll LINE No.•

* • •. FORllAT • * • IN·rEFCOll= ST •
* * •.CHAR).• * NO. * ·······T······· ·T;, 1 ········r······

I v I J
1 •••••c3•••••••••• f . • c4 •. •.

I : STRIP O.FF 1+6 : I .• Ell!> *· NO
• +8 CHARS. • I •. CARD • ·----i

I : : *· · * 1
I ••••••••••••••••• I •. •. . • . • I I I I r YES I
I >! I I :

DJ.··.. I ··04.!..... I
DOWN • *.. • . *· I • • RAISE • • I

r---*· TDTERll .• j • TEEllD._TDTEa!I. • I
'i *· ·* * '!'DGLOfl *

***** *· • • * * I •O 1 O• •. • • I *****T***** I
·.:1· [1·,j:!::~'l' '

:~;:;~i****~i;:;: !****E4*********! ·---------------· I . l'!OVE Tl'XT TO •
• * * TCTEX 1 "POR *
: : : PHASE 1 : ················· I ········i········ 1 I I ... I i !'3 •. •••••!'4••••······ TC113

.• *· !10 *TCSAV1 -- LAST * •. •. =mman .• · '"--l
·* *· ~ * SAVE TDU IN *

*· COllTINUE • * * LINE NO. Ill *
*. LillE • * • STllNT TO BE * •. .• *· • * •SENT TO PH. 1. * *· . • • •••••••••••••••• • •• • •011•

• CARD * BJ• l ...
.•. OLR

G1 *· *****G2**********
• • *· •CEKTHE 023A3*

• * COllllENT •. YES •---------------•
•. LillE • *---->* * •.. •. .• . . •.

* 110 •• ! .. l •008•
TC110 * G2*

:****Hl*********! * •* . .
: TOLE = 6 :

224

. L . .
* BJ *

• YES I
l J

:•• **G3*********! • * GQ *· *·
*llAX ERROR CODE * COWN • * *· UP
: = 8 : r*·•. TDTEFrt .•·*-----v
* * I *· . * ***** ••••••••••••••••• v • •• • •010•

I
..... . * 95•
•008• * *
* *G~* *

DIAGODT *
*****ff3**********
:~.:~:~~----~~~~~=

l
•008*
* G2* .. .

PAGE 009

Chart AC. Get Next Source Statement (GNSS) -- CEKTC (Page 3 of 4)

.....
•010•
* Bl* * •

.....
•010•
• .e~•

• * i I

• *· TC210 •*• TC2SO i TC200
·*Bl *· *· • .~~B!ll;• *· e !****BS*********:

• • *· 110 • *OF PREVIOUS•. CARD * ADD l!!OS CHARS *
•.CO!ITI!IUATIOH ."------------------------->•. LIRE= .•--->* TO TCTEX1 *

*· LIJIE ? • * *·KEYBOARD • * * * •. ·* •. .• • • •.
i"' ~- [

:••••c1 •••••••••: :~:;;~~····~;;:;: . ·---------------·
: TDfORll = C : :

L. •••••01••········
:::~!~: ____ ~!~~~=
* •
* • * •

l
. *·

El *· .• ..
YES • * COLUll!IS *·

I
• 1-5 BLAllK ·

*· .• •. .• • ...
[.

*****Fl**********
:::~!:~----~2~~~=
* COLUllJIS 1-5 *
SHOULD BE BLAllK
* •

l
*****G1********** . .
*llAX ERROR CODE *
* = II * . .
* •

'l TC201 .•.
H1 *· . . •.

.• OVE!l *· YES
*· *~J201j~ARS • •• ,.____, .. .•

*· . • •008• i " .. :i·
.•. RDll

I •••••nq••••••••••
:~mans• fi~~-:
* EXPECTED. HEii *
•LIJIE llILL BEGill*

:m.~mmm.:

I
*****E4**********
* * *!IAX ERROR CODE *
: = 4 :

• *

TC20J

l
009
*.a~• .

Jl •• •••••J2••········ •••••JJ••········ • ••JQ•••••••.

•••• r&ig~AC •. •. ns !11u ERROil CODE : :::!!!:~----~!~~~= * RAISE •
· •• en~~> .•·-->! = 8 :--->:11o~Mr~¥EJ~20 :--->• * TDOVER •*

•. .• ••.......
!8° t

•009• •008•
* Ell* * G2*

l
*****CS**********
UPDATE SWITCHES
* TDAPU = TDPU *
* TDPU = TCSAV1 *
•TDLAPU = TDl PO *
* TDLPU = TDLU *

I
*****DS**********
*TDAPOP = TDPOF *
*TDRUF = TDFORl'I *
* TDU = TDUSAV *
* llILL GET SAllE *
* LillE AGAill *•..........

I .• .
?5 •.

·* •.

I
ns.:• ~~5gH •:.

*· .• *· . * • .. • i "
1

A0087 • *·
FS *· .• • .

l
us.:•FORGEiTillG ·:.

*· STATEllEllT. *
•. ·*

· ·

I
ro
i BFLOSH

*****GS•*********
CEKTll1' 0211All ·---------------· * 1'LUSH RLD *
* BUFFER *
• *•...........

'l
*****RS********** • *
*!IOVE TD1TllP TO *
TD1Fill, FOR PIOD . .
• *

TC260 I
****JS*********

* R?TURll *
* (R!TURll CODE *
••••••• :~i •••••••

PAGE 010

Section 8: Flowcharts 225

Chart AC. Get Next source Statement (GNSS) -- CEKTC <Page 4 of 4)

.....
011
*.a~•

*
i LIKE JUST OBTAINED

TC101 OLR TC300 .•.ns KEYBOARD
*****82********** B3 *·
CEKTHE 023A3 • * *·
•---------------* YES • * COllllENT *·

,---: :<---*·•. LillE ? .•·* •. .•
•OOS• ***************** *· . *
* *G~* * NO . l

*****C3********** * •
* TDUSAV = LIKE *
* NO. !IA *

l .•.
••02••····· 03 *· •.

* * OOWll ·* *·
* TOKOLD = 1 *<---*· TDTERll • * . . •. •. .•

!!ARK THIS LillE AS ******,***** *· •

1

• ;p
BEillG COllTillOED FROll
A PREVIOUS LillE

• *· TC3SO !
E2 *· *****E3**********

• *FOBllAT *· * TDKOLD = 0 *
CARD • *OF PREVIOUS•. * TDFOBll = K *

r--*·•.KiHa.iio ••• • :Innc~g = nn: •. .• . .
•010• •• ·* •••••••••••••••••

• • :~· ·1,YB.lSLIZ I RESTRICTED
Liii KA GE

*****F2********** *****F3**********
=~=~!~~----~~~~!: *CALL AULIZ GET*
• • :sTito:~·lPtt01 !
:~ : !.!~!!:~I2t~t~:.:

I I
TC3S2 ·*· l OLR

* **Gl******* * G2 *• *****G3**********
* RAISE * NO .•·* AllY *·•. =~~~!~=----~!~~~=

* TOTER!! *<---*. TEXT 1 • * * *
* * A *· ·* * *

226

* * I. *· • * * *
*****j***** I *· i ·;ES *****************

I I I I
I

I H2···.. HJ·*· ••

~
.• •. . ..

·* COITIIUE *· n:s ·* All? •.
*· CHUllCTEB • * r•· TEXT ? • *

•. ? ·* *· ·*
I • • •. .. · · • ...

* IES * **** *" * KO

I I * Cll * l
L----------> I * **** * *****

' *010• .•. * es•
J2 *· • * .• •. .

* * 110 • * EXCEEDED *·
* H4 *<--*· 1320 CHlBS .•
* * *· YET ? ·* •.

* YES

1
•008•
* G2* .. .

....
* * * C4 *
* *
i . •.

C4 *· . • *·
·* EllD *· 110

· STATEllEllT ? ., •. .. •. .• • .. • r YES 1

"'" .. ,..!..... I
.. i!lISE • • I

* TE:EllD, TDGLOB * . .
* *

I< I
l

·*· E4 *· **ES*******
.• COllT. •. * •

• * CHAR II *· NO * RAISE *
·-~~s~Ei¥A~ o:.·*-->*. TOTER!! ••

*· .• • • . .. •
., YES L ...•

>! Gii :
TC33S

Fii*****
* •

* LOWER * * TOTER!! *
*

I * GS * .····.
• G4 *-> l i

TC340 ·*•
G4 *· ****•GS**********

· *. ~XCEEDED *· *· YES :cAL~Hi~"1:i~80R!:
• •• ~J2h~aps ••• •---, !r.~IA~s~bi>E11~xs :

* * f * RAISE TDOVER * I ...•.............
: ·::· :->1· 110 ----:! '

TC360 • *· *

rYES ·= ;~:;i~ii;~:~;=. I DOrWI. =. <:~!~> .. =.
•. 1320 ? •• •. • * •. .• •. • • .. •

**** * NO I***** * UP

: GS : I ·:~g!: i
•••• I * ••••• + •010•
TC3~~***Jll********•* * * B~*

• * •
* l!OVE TEXT TO *
: TCTEX1 :

* *
....... L =J

;AVE TDU II *
TCSlV1 *

*

PAGE 011

Chart AD. Process Terminal Modifications (MOD) -- CEKrD (Page 1 of 2)

CEKTDA llOD

••••1 ,
: Ell?ER :
=~~~-·->I

TD100
*****B 1 **********
=~m~i: smtf! :
*TERED LIRE 10. *
*TO TDlPO (LAST *
:~m;;u~.m:L:

l .•.
Cl *· ·* •. JES • * ALT. *·

r *• LIIE < .•
· TDlPO • •. .. • ...

..... • 10
* * I
: Dll : I i

•••••01••········
COllUBE lLTEBED
* LIIE 110. TO *

:1m ~mMw:
: •• ~1.~m:.lL •• :

I
El *·

• * <. *· 10
*· LIIE > TDPO • .. .• •. .• • .. • * YES

"'" l *****Pl**********
* Clll' TDU TO *
=~~PRivP 1fmr,,:
* ST&BTBD TO *
* BUILD CUillST *

l
·*· Gl *·

•* TDU > *• •o

.....
•012•
• A3• .. .

SEE IP ALTERED l LIIE IS ATTEllP-
TillG TO EXTERD
COllllITTED LIRE TD185

A2 *· *****Al**********
• • *· * RAISE FORGET * ****All*********

• * COllllITTID *· 110 *PLG. TDPO TDU=* * RETURll *
1>• ••• L~~MPD •• ·""--A>:Tfi£AP2·Tfi~m= :--->: (RET2~g CODE : •. .• I • TDPUF=TDAPOP. * •••••••• L •••••• • .. •

i"'
·*· B2 *•

·* ALT. *·
.•LIKE < 1ST *· llO

· LillE II ·-->
•.TEllTlTIVE.• .. .•

• •• • •012•
* YES * ,.C~*

l ,. G105 .L ... ·0

*****C2********** CJ *• Cll *·
CElTHC 024A 1 • * *• • * *·
•---------------• ·* ALT. *· YES .• *·
OBT. LIKE APTBB *• LillE = CARD .•--->•.COHillOATIOM .•
COllllITBD SHOULD •. • * *· CARD • *
• BE <. LillE * *· • * •. .• • .. • l • ::::::->]* IES

• •. • *· TD180 llOST RESTART
D2 *· DJ *• *****DI!**********

• • *· .• *· * RAISE FORGET •
•* LIIBill *· YES • * GETLillE *· * ARD RESTART *

· RC=O .•--->•. BC • *•PLAG. s16ET RC = *•1 .. .• •. .• •• •• •. • • * •
*· .·:o • .• · • ••••••••••••••••• * **** •

t
: f(J :

: ••• O ••••• 012 CJ llORll&L ****

: ••• 11 ••••• 012 81 llEll ALTERED LIIB

****E2********* : ••• 8 ••••• 012 Jll EODS

TD199

: RITDBI : : ••• 12 •••• 012 JS SYS ERR

·•. TDPU .•·--l •. .•
•• • • •013•

I
. ll!S • -:!*

TD150
*****Bl**********
* CllP < LIIE *
* 10. TO TDU- *
* LI.ST LIIB *
* BECEIYBD PBOll * * CLI * ***** ***** ••••••••••••••••• •012• •012•

I
* JI!• * JS•

.•. TD175 l l
Jl *· •••••J2********** ••Jl******* ••Jll******* ••JS*******

• * *· * llUS'l' iBPOBll * * * * * * *
.• ALT. •• 10 •CURIBIT ST. rou• • RETORI CODE • • RETURI CODE • • RET!JRI CODE ..

· LIIB > TDU .--->*•TOI.PU. TllTI.- *-->* = 20 • * = 28 * * = II •
*· • * * TIJB SI. llILL * • • • • * •

*· .• *BE IB-Ol!TlllBD • * • * * * ••...........
• n:s •••• I I l
I : .:!. :->1 I

TD160 DOl 1 T EXF.ECT
•••••11•········· ••1(2•••••••
•POlllIIG OP coaa• • • ••••f(J•••······
•ST UUPl'ECTID. * * llETUBI CODI * * *
LE&YE TDU 1.LOIE->* = 0 *->* RETIJRll •<:------------------A
* GIT < LIIE * * * * *
* IBXT. • * • ***************

PAGE 012

Section 8: Flowcharts 221

Chart AD. Process Terminal Modifications (MOD) -- CEKTD (Page 2 of 2)

.....
•013•
•.a!• .
I SEE IF ALTERED LINE IS ATTEllPTI!IG

TO CONTINUE TE!IIATIVE STATEllE!IT
v

*****Bl**********
* SEE IF IDPU- *
• LASI LI!IE 01' *
•TENTAXIVE STiit.*
•WAS CARD FORllAT*

l ' -
.•.

Cl *· .• •.

.
•013• •.er .

.
013
* * e~• .

! .•. .•. TD135

~UST !'ORGE'I' I
TENTATIVE LINE

'!'0175 ~
B3 *· B4 *· ·* *· .• ALT. *·

.• ALT. *· YES .• LINE A *· YES
• ••• LINE c1ao ••• •--->*.S?NTH~~TI0~.··-1

•. *· .• ·• *· • .. • .• ~
* 110 * !10 •••••

I
I *012*

I * •'~*
<---------~ *

TD190 ~ •••••c3••••••••••

****BS********* * R""!'UF!I *
*(RF.TURN CO!l!': = *
* 28) *

•* WAS IT *· 110
*•CARD FORllAT .~-----------

=~~S~4fH:~TfI~~ : * ****C4********* *
>* JUST OBTAillED *--->* RETURN *

*· .• . . . • .. •
* YES

j
•••••01••········
!a~mlmI~1u:
* AFTER TDPU -- *
*SHOULD GET ALT *
• LIME •

I
.•. ·*·

El *· E2 *· ·* •. ·* • . • * LI!IEill *· U:S • * GETLillE *·
· RC=O .•--->•. RD · •. . . •. .• •. .• •. .• •. . . • .. • • 110 •

j
****P1********* .. .

* RETURN *

228

: ••• O ••••• 013 B3

: ••• 4 ••••• 012 81

: ••. a ••••• o13 85

: ••• 12 •••• 013 85

* IS TO BE • • *
*PROCESSED llEXT * ***************

NORllAL

llEil ALTERED
LINE
EODS

SY SERR

PAGE 013

Chart AE. Receive Diagnostic Message (RDM) -- CEKTE

CEKTEl

****A3*********
* * * ENTER *
* * ***************

I
*****B3**********
* * * ASSEllBLE * * II ES SAGE *
* * * *

I
·*· C3 *· . . •.

·* TOO *· NO
· LOIG ? · •. . .

•. ·* •. ·* l "'
*****D3**********
CEltTHE 02313 ·---------------· * GI'l'E RDll *
* llESSAGE *

I
*****E3**********
* Tl!ONCATE *
* llESSlGE TO *
* ALLOWABLE *
* LENGTH *

I'
*****F3**********
•CBKTHD 02415* ·---------------· * lDD LINE TO *
*SOORCE LISTIIG *
* & TERllilllL *

I
****G3********* * • * RETOR.11 *

PAGE 014

Section 8: Flowcharts 229

Chart AF. Constant Filers (CONFIL} -- CEKTF (Page 1 of 8)

CEKTPB COIU2

••••1.1••······· . .
* EllTEB *

l •••••s1••••••••••
:P3 = II, P4 = II :

CEKTPG

!
•016•
• 81• . . .

COIC16

••••£1••······· . .
* EITEi *

I •••••r1•••••••••• . .
: p~11"'= 1 ~4 :

230

!
•016•
• 81*
* • .

CEKTPC COII4

••••&2•••······ * • * BITER * * •

I
*****82********** . .
* •
:P3 = 8, pq = 8 :

CEKTPI

!
•016•
• 81•
* • .

PLADll

****B2********* • * * EITEi *

I •••••r2•••••••••• • * • *
:P3 = 8, Pll = 32:

!
•016* • 81• . . .

CUT PD COllRll

••••&3••······· . .
* EITEi *

I
*****B3••••••••••
:P3 = 8, Pll = 12:

CEKTPS

j
•016•

.• 81* . . .

PLADS

****El********* • * * El'l'!B *
I

*****Pl**********
:Pl = 8, Pll " l6:

CEKTPK

!
•016• * 81* . . .

PLADVB

••••83••······· . .
• El'l'ER *

I •••••Jl•••·······
:Pl = 8, Pll = 40:

!
•016•
• 81• .. .

CEKTPE COIRB

••••111••••••••• . .
* EITEi *

I
*****Bii********** . .
: p~11"'=1~& :

CEKTPll

!
•016• * Bt•

CBL

CEKTPP COllCB

****AS********* • * * EHTER *

I
*****BS********** . .
: p~"",. 1~6 •

CBK'l'PL

!
•Ot6•
• st• . . .

PLL

****Ell********* ****1!15********* * * • • * BITE! * * HTER * * * • . *
I I

*****Pll********** *****PS**********
CREATE IEI Lii! * * * & STORE II * * * : I~H~oP :->:P3 ,. e, Pll = 118:

l
*016•
• 81•
* •
*

PAGE 015

Chart AF. Constant Filers (CONFIL) -- CEKTF (Page 2 of 8)

.....
•016• • •
•.Bi• : B3 :

TP901 l TP960 l .
*****B1********** *****83**********
: ~II c~B~i11~3g : ! sz1ace CHAI• :
•cov1Ji. TEGllU=1 • L>•. POR 111rcH •. *RESIT IP COIST •
* FOOID FIELD. * • •

l l
.•. TP962 • • .•.

C1 *· C2 *• C3 *• . • •. .• •. . . •.
• * PLADYB *· YES • * CHUI •. 110 • * •.

*· CALL ? • *--"1 *• EllD • *<---*· llATCH • • •. .• •. .• .. .• •.
* D1 *-> * * >• G1 *

.... . .
* Bii *

TP9611 1
*****B4********** .. .
* SEARCH CHAIR * * FOR !IATCH IR *<j * BOTH llORDS *

I " . •. . .
C4 *· CS •. .• •. .• • . ·* *· 110 .• CHAIN *•

*· llATCH • *--->•. EllD • *
•. . • *· . *

•. ·* •. ·* • .. •
* YES * YES

i :o;~. ·1 •0 :~m ·LY!h1. 1· YES

• • • • • <-----------'
•017•
* G1•

....
TP902 • •. Tl'9110 .• ~~Cao:·•. :••••D2••·······: :••••D3••·······:

• * FOR THIS •. 110 •LOAD 8 BYTES or• •DESC POillTER TO• *· CHUI EllP'?Y .*--->* CORSTAJT IITO * * IllTERCOll • *· ? .• •P1,P2 POB LATER* * * .. .•
*·.,.;ES ••••••-•1•••••- i~i~=:1•••••••••

....
·*• TP961

*****:C1********** E2 *· *****!3**********
*GET POIRTER TO • .• •. * TEGRU = 0 TO *
• VALUE PART OP • .• BRARCH *• •ROTE COIST HS •
llAllE PART TO BE *• 01 COISTAIT • * * ALREADY Ill *
* llEXT ADDED. • •. TYPE .• * TABLE *
*UPDATE HCHOB. • *• .• • * ········i········ •.... ········i········

:m: l :m:
* H1* .•. * C2•
* * P2 *• * *

• • • I•2, •. • ·=· i;~h11:11 • ·:~>: B3 :
•. PLL .• • * ·- .. i "

.•.
G2 • • . • ·-·=· a~:~ *:~>: Bii :

*· .• • • • ... r .•.
H2 •• . • ..

• • *· YES
• ••• c•16 •• ·*---\•

•• ·* •017• i .. ·.:i·
-·· J2 •. -· ·-• • *· YES

•. *• PLADYR •* • .__, ·-
•. •• •017• i '° '.:1·
.•.

K2 *· .• ..
• * *· JES l!~~T 11gi m~hL *· *· l'LADS ••• .__, FLADll ·- -· •. ·* •017•

• MO * Bii* i
•017•
•.B~• .

• *
*

PAGE 016

Section 8: Flowcharts 231

Chart AF. Constant Filers (CONFIL> -- CEKTF (Page 3 of 8)

.....
017
**Bl*

*

TF968 !
*****B1**********
* * * SEARCH CHAill * * FOR l!ATCH Ill *<;--------.
• ALL 16 BYTES * I : T : I

i ! 110

c1·*·.. c2· · •.• • .
• * *• 110 •* CHAill *· *· l!ATCH .*--->*• EllD .• *· ·* •. ... •. .• •. .. . • .. • • .. •

TP972
*****83**********
GET LOC OP llAllE
* PART OP LAST *
* ITEll PILED Ill *
R-CON CHAIN (Iii
* TFLST!l). *

I

i "' i "' "'" !<--------'
:••••01••·······: I :••••DJ••·······:
DESC POINTER TO * GET TRUE ADDR *
: IHTERCOll : 1<-------:0P !IAll~ 1 PART Ill:

•017•
* E4*

.................
.. L
•016•
* E3* .. .

.....
*017•
* ,.Gl* .

TF980 l
*****Gl**********
*GET LOC OF LAST•
*llAllE PART ADD. *
*SUB TO SET NEXT•<-------'
: SPOT FREE. :
:m. I
: H1,. •->I
•••• I

l'P910 •
*****H1********** TDLASTR
:11m/mE~IHD! mm~4, OR
*PILING ADCOllSE *
:sA~~AW~&o:H !

I
*****J1********** TO ADD llAllE AllD
UPDATE llAllE TOP DESC PUTS TO
* Ill IllTEllCOll * Siii TBL • x•ao• TO LillK •
GET PllTR TO llEW
*EllTllY DESCPART *

I
!****Kl*********!
* CUliREllT DESC *
: TOP TO OPP ."---------------'

232

TF988

* • .
i HERE IF FILLillG

R-CON AllD THE R-COI
AKCHOR IS llOT EllPTf

·*· E4 *· *****ES**********
.• ANY *· * *

• * R-COllS *. 110 * Pll=411 FLAD4 *
*· FILED YET • *->* AllCROR TO V1 * *· ? •• • • • •. * •••••••••••••••••

* YES !
,,,,, l :im

*****F4********** * * * • •
* SEARCH R-COH *
: CHAI!I :<~-----~ : T : [."

*****G3********** GIJ • *. *· GS. • *·
* SUB 8 FROll * • * *· • * *·
* R-COll PNTR TO • YES • * FOUND •. 110 • * END •.
SET ASSOCIATED •<---· llATCH .•--->*. CRAI1' .•

:;;:c¥: ~~mm : •. •. . . · · ·· · • • .. • • ...
I * * YES

L :m. I
>:.~:· • I 1'

• *· TP912 TF993 ~
H3 *· *****H4********** *****ff';**********

• * •. * COllPLETE DESC * *P4=114c. USED PO!l*_J
• * FILIIG *· YES *PART FILING IN * * SPEC LAL ~LADll * >•. LABELS • •--->* SYll TBL DESC * * LOGIC HAllG *
*· • • •PllTR TO TEPNTR * •V-COll OH END OP*

*· • * * FOR CALL * * PLAD4 C!IAI1' * •. ·* ••••••••••••••••• • ••••••••••••••••
r NO !
1 !~ii:

• B1* •••••JJ•••······· ••
* STORE PART OP * *
* DESC PART II *
*SY!I TBL. STORE *
*NAllE PART P!ITR *
* Iii SY!I TBL. *•......

!
•018•
* A2*
* • .

PAGE 017

Chart AF. Constant Filers (CONFIL) -- CEKTF (Page ~ of 8) PAGE 018

.....
•018•
*,.Fi• .

TFS89 1 •••••r1•••••••••• * GET NEXT *
* AVAILABLE *
*LOCATION IN L2, *
* H3 *• I
•018•
: G1. •->I

TFS;~** ~
*****G1********** * COllPUTE ENTRY *
* TO 110-HOLE *
* BRAllCH TABLE *
TFllOHO V1=V1+P3

l .•.
H1 *· .• ..

• * l!RANCil *·
· ON 114 · •. .•

•. ·* • ... • .
: ••••••••• 019

: ••••••••• 020

: ••••••••• 020

: ••••••••• 020

: ••••••••• 020

: •••• ·- ••• 0 . .:1

: ••••••••• 021

: ••••••••• 021

: ••••••••• 021

: ••••••••• 021

: ••••••••• 021

Dl

F1

F2

F3

Fii

81

B2

Bii

H1

H2

H3

.....
*016•
* A2* • * .
t

TE890 .•.
A2 *· -· •. • * STORAGE *·

*· CLASS • *
•.FILING IN.* •.. .. .

• .. ·.
: ••• 2 ••••• 018 F1

: ••• 4 ••••• 018 AS

: ••• S ••••• 018 A4

.: ••• OTHR •• 018 C2

....
*018•

* C2 *-1 * •
•••••c2••••••••••
STORAGE CLASS 2
* NEXT AVL 110RD *
* TO H3, L2 *
* CURREN'I TABLE *
* VALUE *

l
*****D2**********
* COllPUTE ENTRY * * TO HOLD AVAIL *
* TBL: TFHAVL. *
: N4=TDHOL+P4 :

l . •.
E2 *·

·* ·*· .• BRANCH *·
· ONN4 · ·- -· •.. -· ·- .-.

:: ••••••••• 018 G1

: ••••••••• 018 G1

: ••••••••• 019 B1

: ••••••••• 020 B3

: ••••••••• 019 G2

: ••••••••• 019 OS

: ••••••••• 019 G3

: ••••••••• 020 B1

: ••••••••• 019 D4

: ••••••••• 020 Bii

: ••••••••• 020 82

: ••••••••• 019 G1

.....
O 18

* .'~* .
.
018
* A5* ..

*

TF850 l
*****A4**********

I
T!'840 i

*****A 5******* *** *'113, L2=CONTENTS* !N3, 0~25~gg~m: * TABLE. SHIFT *
LEFT r, !!ASK A S
* IN 113 *

I
*****B4********** • *
* ADD 4 TO L2 & *
* UPDATE STCL=S *
: TABLE :
• *

* Ol' STCL=4 *
* TABLE. SHIFT *
LEFT & !!ASK A II
* IN N3 *

l
!

!****B'1*********!
* ADD II TO L2 f. *
* UPDAT'!: S't'CL= U *
: TABLE :

l =~~i· •->!
TP930 ·*· •••••c4••••••••••

•SLOC S STCL TO *
cs *· .• *· *SV!I TABLE. DESC* HO • * L2 > *· .• * POI'llTER TO •<---*· 11096

: T¥~mfoP : •· •. .·.
***************** *· . *

1 r YES

I I
•• !.. I
!0 ~~: i m
* * *****DS********** * *CEKTEA 01 llA3* ·---------------·

*STCL4 OVERl'LOll *
: !IE SS AGE :

***************** •••• I
!oJ~:•->I

TF9;S** i
****!5••••·····

* RETURN *
: (RETURN CODE=S):

l
*1 CONSTANTS, TDHOLE=O: *2 CONSTANTS, TDHOLE=O ***** *01'1*
*Ii CONSTANTS, TDHOLE=0-3: •8 CONSTANTS, TDHOLF.=1-7

*1 CONSTANTS, TDHOLE=1,2,3,5,7,9,11,13,15

*2 CONSTANTS, TDHOLE=2,3,6,7,10,11,111,15

*1 COllSTANTS, TDHOLE=ll

*Ii COllSTANTS, TDHOLE=8-11

*1 CONSTANTS, TDHOLE=S,12

*2 CONSTANTS, TDHOLE=8,9

*4 CONSTANTS, TDHOLE=S-7, 12-15

*8 CONSTANTS, TDHOLE=8·1S

*2 CONSTANTS, TDHOLE=li,5, 12, 13

*1 CONSTANTS, TDHOLE=2,6,10,14

* ,.B!*

*

CUliREllT ALIGHllEllT OK

BEING FILED,

BEING FILED, . 8 SEillG PIL.t:D,

*16 BEING FILED,

* 4 BEING FILED, . 6 BEING FILED,

•16 BEING FILED,

*1

•1

•1

*1

•2

•2

•2

ALIGNllENT, Cill!ATE *1 HOLE

ALIGNllEHT, CREATE •1, *2 HOLE

ALIGllllEllT, CREATE •1, *2, *4 HOLE

ALIGllllEHT, CREATE •1, *2, •4, •8 HOLE

ALIGNllEllT, CREATE *2 HOLE

ALIGllllEHT, CREATE *2, *4 HOLE

ALIGllllEllT, CREATE *2• *4, •8 HOLE

* 8 BEING FILED, *4 ALIGNllEllT, CREATE *4 HOLE

•16 BEING FU.ED, *4 ALIGNllENT, CREATE *4, •8 i!OLE

•16 BEING FILED, *8 ALIGNllENT, CREATE *8 HOLE

Section 8: Flowcharts 233

Chart AF. constant Filers (CONFIL) -- CEKTF (Page 5 of 8)

.....
•019•
**Bl* .

TF511 ! •••••e1•••••••••• . .
* NJ=TDHA1 *
: TDHOLE (* 11 =O :

ff.ERE ONLY IF STCL

.....
•019• •019* •019•
•.o!• • .o:• • .o~• . . .

TF610 !<---- TP5111' ! TP5811 !
*****01********** 113 HAS STG LOG Ill CLASS OF *****Dll********** *****OS**********
*F0.1111 113 + CURR * NUT AY lILABLE BYTE, UD llO * * * N3=TDU8 *
:cg~om ~M~· ! tiOLE Ills ummE !TDHo~~=1~w,. o! : rmmm:o !
: llITH L2. : * * : TDHOLE (*Ii) =1 :•.....
:o;;. j i I * E1 *-> • • <~~~---'

T.P513
E1***** ENTER HEBE IF l HO.LE

* * lilS A YlILlBLE
* SHIFT LEFT * N3 HAS HOLE ADDRESS

* AND llASK A 2 *
* * IllTO 113 * *

1
•018•
* C4* .. .
.....
•019•
* G1* . . .

I
TF521 ' *****G1********** . .

•11J=TDJH2 TDHOLE*
: (*21=0 :

I

234

.....
•019•
* G2* . . .

TPSIU l
*****G2********** . .
•llJ=TDHl4 TDHOLE*
: (*41=0 :

I

.
•019•
* G3* .. .

rFsa1 !
*****G3**********
* NJ=TDHA8 *
* TDHOLE (*8) =O *
* TDHA4=11J+ll •
: TDHOLF (*41=1 :

""' >l •••••113•••······· . .
* TDHA 1=113+2 *
: TDHOL! (*21=1 :

"'" ,j
•••••JJ•••······· . .
* TDHA1=113+1 *
: TDllOL! (*11 =1 :

L >: E1 :

PAGE 019

Chart AF. Constant Filers (CONFIL) -- CEKTF (Page 6 of 8)

.....
•020* *020•
•.ai• •.,e:• . .

T?582 1 'IF5ll2 l
:•••:~~~~::a••••: :•••*B2*********!
* TDHOLE (*8) ~o * * Nl=TDHA!t *
: Tmt~<=~i~ 1 : : TDHOLE (*!ti =O :

... ~, l I
TF317 <;-------'

•••••c1•••••••••• . .
• TDHA2 =N3+2 *
: TS HOLE(*..:) =1 :

1
•019•
**El*

*

.....
•020•
• .r1• .

U620 l ... ,,
* A&D 1 TO NJ *
* •

.....
*020•
* *F~* .

11'630 l
P2*****

* ADD 3 TO NJ *
I

.
•020•
• .si• .

TF522 1
•••••e3•••••••••• . .
* N3=TDHA2 *
: TDHOLE (*2) =0 :

Tl'6ll0

!
•019•
**El* .

.....
•020•
*.Fr .
!

Fl*****
* ADD 7 TO NJ * . .

* •

.....
•020•
• .e~• .

I

TF588 l
!****Bil*********:
* N3=TDHA8 *
: TDHOLE (*8) =O :

* *
..L
*019•
**El* .

.
•020•
* *P:* .

TF650 t
:••••Fil*********!
* A DD 15 TO lO *
* TDHA8=L2+7 *
: TDHOL ~ (*8) =1 :

I I

~-->' TP322 ~
!****G4*********:
* TDHA!t=L2+ 3 *
: TDHOLE (*4) =1 :

J '--~~~~~~~~~~~~~~~~~~~~~~~~~~~TF_3_2_3~~ l
*****KU**********
* TDHA2=L2+1 *
: TD~mt:n=1 :
: TDHOLE (*1) =1 :

1
•019•
.,El

*

PAGE 020

Section 8: Flowcharts 235

Chart AF. Constant Filers (CONFIL) -- CEKTF (Page 7 of 8)

.....
•021 •
* *B!* ..

!
* **81•••••••.

* • * ADD 2 TO N3 * * • * •
I

.
•021•
*.a~• .

.
•021*
• 83*
* •
*

.!. TF667 !
·*82 *·•. * **B3******* *

• * BYTES *· 6 * *
*· TO NEXT *8 .*->* ADD 6 TO 113 * •. .• . . •. • •
~~fi: •->1· 2

'IF666
.••c2••••••• •

* ..
* * ADD 2 TO 113 * *

* *

.
•021•
* Bii*
* * *
i

TF670 • *·
84 *·

• * BYTES *·
*· TO NEXT *16 • *

•. ·* •. ·*
· .·

: ••• 6 ••••• 021 83

: ••• 2 ••••• 021 C2

: ••• 10 •••• 021 DS

: ••• 14 •••• 021 D4

....
•021•

:.~:·1
TF671

D4*****
* * * ADD 14 TO *

* N3 *
* * * *

I :••••!Q.••·······:
* TDHAB=L2+6 *
: TDHOLE (*8) =1 :

* *
I ,,

* •
* TDH.l4=L2+2 *
: TDHOI,E (*4) =1 :

* *

.....
021
* DS*
* * *

TF672 1
* **DS******* *

* lDD 10 TO * * 13 * * •
* * ***********

I
*****ES**********
* * * TDHA8=L2+2 *
: TDHOLE (*8) =1 :

* * *****************

.____ ____ ,,,, _ ____,

TF326 V

TF675

.....
*021•
* Hl* * • .
!

H1***** . .
• * * AI:D 4 TO N3 * • * * •

I

.
•021•
* H2*

I

TF680 l
:****H2*********:
* ADD 12 TO N3 *
* TDHA8=L2+4 *
: TDllOLE (*8) =1 :

I
.___ __ >1

236

TF327 ~
•••••J2•••······· * •
* TDllA4=L2 *
: TDROgJw=l :

*•...........
l

•019•
* Dl* *

.
•021*
* 113• .. *

*

TF685 1
*****H3********** * ADD 8 TO 113 *
* TDH18=L2 *
*TDHOLE(*4)=1 * * L2=113 *
* *

!
*019•
* *D!*

*

*****G4********** * ..
* TDHA2=L2 *
: mogm> = 1 :

!
019
* Dl*
* * ..

PAGE 021

Chart 'AF • Constant Filers (CONFIL) -- CEKTF (Page 8 of 8)

.....
•022•
•*Bl* .

I

TF933 ! •••••a1••••••••••
* UPDATE *
DESCRIPTIVE TOP
* IN lllTERCO!I. •
*C!IP DESC TOP TO•
• NA!IE TOP. • *****
••••••••••••••••• •022•

I • c2• ..
I i HERE OllLY IF FLADVB
i ~ ~mHA~gfiD TO R-COll

• *· TF9311 • *· TF937
C 1 *· C.2 *· *****C3**********

·* •. .• *· * TDVRTO *
• • Dt:SC •. YES .• FLADVR •. YES • IllTEBCO!I •

· TOP SllALLER .--->*. CALL .•--->*TEPllTB. IS DESC*
•. ? • • *· (PF=llOJ • * • PllTR AT V-COll *

•. • * *· • * * FILING * ***** *· . • •. . • •••••••• ••••••••• •022• r NO r NO *.or

l J TF931 I
D1***** D2 *· **D4******* • • • • •• * •

• * .• SPECIAL •. NO • FETURll CODE •
IEOFLO=ll. * *· FLAD4 CALL .•-------------->* = 0 * • * •• • • • •

* • *· .. * • • ••••••••••• ·-· • * •••••••••••
I • YES I

VI RDll I I
*****E1********** IF9~~***E2*~******** Tl"932 ~
=~~~;~~----~!~~~= *TEPllTi< TO TDVR. * .****E4******"** *
• SY!IJ;OL TABLE • !uH~rLR~~¥8RE : * RETURN •
* OVEilFLC!I * *Pll TO 110 FLADVR* * *
* II ES SAGE * * 110. * ***************

1
•016•
• D1• .. .

PAGE 022

Section 8: Flowcharts 237

Chart AG. Master In~ut/Output Routine CMJ:O) -- CEKTB (Page 1 of 2)

CEKTHA LDOPEll

****A 1••••••••• . .
: ENTEli :

I
•••••a1••••••••••
* IEPAGE=1 *
* THLillE=1 *
* INITIALIZE *
* THVCAST FOR *
• LINE RE-READ *

I
:••••c1•••••••••:
•OPEN LIST DATA *
: SET :

• *
j

. •.
01 ••

YES • * BATCH *·
1*· .:llOCESSING • *. * • .. •

i"
*****E1*******~**
* IllIT BUFFER * : mm~imH:
* =O. T11BOLD. *

:mm::mm.:

I
*****Fl********** . .
•TDBllEll, TCBllEO *
: = A(THB2) :

l . •.
·*Gt *·•. * **G2******* *

• * LIST •. YES * *
*· DATA SET .•--->• TDllEilG = 0 * •. •. .• . . •.

• 110

TH103 !
I

* **H1******* *
* TDllEllG =1 *

* * * (D~~~aEfYEll * * *

·····;····· I
I I

[1:~•••J1•! _J
>: RETURN :<•....

238

CEKTHE OLR

****A3********* . .
: EllT!!R :

I
:••••BJ*********:
: N~2~mw •

I ...
C3 *· . • •.

0 •• •. r*· FLAG .•

I
•.·· • ...

i'
*****D3**********
*HEii LillE AREA =•
* BLANKS. llOYE *
* PATTERN INTO *
•1ST 8 CODES OF *
• NEii AREA •

I
*****El**********
* EDIT Ill LINE *'
* llUllBEB. RESET * :•1 IgD"f~ WE·:
* COURT. *

'"'" J ,.m •••••r3••••••••••
:~;~!~~----~~~~~=

>: :
I . • .

G3 *· *****Gii**********
• • *• * S!'T 133 *

.• PHASE 5 *· YES * CHARACTERS IN *
*· ACT I YE • *->* OSFR LIRE = *

*• • * . * BLANKS. *
*· . • • • • .• ·:o ********j****••••

"": ... ,,.L..... _J . .
: RETUR!I :<

CEKTHB LDCLOSP

* ****A5********* *
* EllT!!R *

I . •.
BS •. .. •.

YES •* BATCH *·

I
*· PROC!!SSillG • * •. .. •. .•

· ·

iw
• *· cs •. .. • .

YES .• *·
<-*· RESTARTillG • * .. .• • .. • * 1'0

l
*****DS**********
C!!KTllA 03081 ·---------------· * PLUSH BOTH * * BUFFERS *

t'2l ••• ,J
*CLOSE THE LIST *

>• DATA Sl'T *
* • * •

I
!

* ****FS********* *
* l!ETORll *

PAGE 023

Chart AG. Master Input/Output Routine (MIO) -- CEKTH (Page 2 of 2) PAGE 024

CEKTHC LI HEIM

• ••••.&1•••······.
• EHT!ll *

I .•.
B1 •.

.•ASKIIG *•
YES • * FOR SAii! *· •.LillE AS LAST ·*

•. EITR! •* •. ..
•. ·*

• HO

I GHUH •••••c1••••••••••
* • -CFADB1- * *•.........

l

CEKTHl' BFLOSH

••••Ali••••••••• . .
* EllTER *

EllTBI PlllllETER IS I
;f.o~a0~u~~to!srm~11'!'0
OP BOTH l'LOSH

*****Bii**********
*CEKTl!A 030B1• ·---------------·

l ••••c11••••••••• . .
: RETOBI :

.•. . ..
D1 *· *****D2********** Dl *·•

• * RETURN *· YES * 1109! LIHE TO * • • JOST *· JES • *
•. CODE = 0 .*-->* 1110 *-->•. GOT LIJE 0 • *->* 1'1 • •.• . . •. .• . . •. • .. • • .. .

1· 1·
TH320 • •. TH3SO • •.

E1 •. **E2******* El *· .. •. . . .• ..
• * BETOBll •. US * B!TORll CODE • • BATCH • 110

~
·- •• ~~:: .~:~~···*-->• •••••• :.:....... ·=·.· •. :~::;;:· .:,

.... : ·::· =->!
340 .•.

P1***** pq •. . . .• •.
* BETO Bl CODE * YES • • ASKED *.

>• • = 0 • * •. •. P~~T~p~ • • .• . . •. .• • .. •
llITB 10. •1 IO
BEQOBSTBD
II •2

TB310
:••••Gl******•••: :****G4*********:

•SET 10 FOB LlST* • *

L
: CALL TO C(,2) :<-:PL Ii '-1 1 TO •2:

_J ~b~IUT::LL

****H2********* . .
>* BBTDRll *<

CE KT HD DUGOUT

****AS********* . .
*· ERTER *

I .•.
85 ••

.• LIST *•
• *DATA SET & *· YES

*· BATCH
•. PROC. • * •. .• • .. •

• 110

1 •••••cs•••••••••• * • • *
* * -CPADC1- * *

l . ..
DS *· .• • .

• • RETORll *· YES *· CODE= 0 .•-> .. .• •. .• . .. •
""' i "'

BS****•
* SET RETURll •

* * CODE = Ii * * J
'l'R4~~***1'S**********

=~~ifie=um~ ~Eijt . .
~:r·····=
..... I

****GS********* . .
* RETORll *

Section 8: F1owcharts 239

Chart AH. Analyze Console source Line (ANALYZ) -- CEKTI (Page 1 of 2)

CEKTIA ANALrz

*****A 1********* *
: ENTE!l :

l
!****Bl*********!

! uMam' !~n !
: LENGTH :

!
• •. TC830 IllSCON

Cl •. *****C3**********
·* IS *• *CEKTJl 02711*

• •CURR. LINE •. NO *--------------•
*·A COllTillU- ."'--------------->• •

· lTIOll · * *
.LillE · * * ·-

• YES I
"'" \ k.,,,. .. :·-----'

*****Dl********** DJ *·
:~:~!~~----~!~~!: . * • * NEXT *· *·
* * *· CHAR. lllS ·* . . •. •. ·.

j
. •.

: ••••••••• 026 EJ

: •••• •• ••• 026 Fl
El *· .. . ·- : ••••••••• 025 C4

YES ·* RESULT *•
: ••••••••• 026 D4 r *· = OVERFLOW • *-*· .• 'UE,ELAllK •. .. ·- .. ***** *llUllERIC,

•026• IO'IHEB * E3* • * .

!
*****Gl********** *****G2**********
* IF FLT CONT. * *ADD 1 TO Y2 SO *

! mgi~~oWL :__>: iM~ff ~,g: ! : mnm. : : me~~ii?me :
l .•.

H2 *·
• *DOES V2*.

YES • * POINT *· 110

~·-;:rn~MND ?~·*--v •.
026 •. • * *026•
* f 3* * * Oil*

• *

240

.....
•025*
* Cll*
* * *

! CEKTJA
*****Cll**********
CEKTJl 02711 ·---------------·
* * • * • *

OVERFLOW

NU II ERIC

TAB,BLlllK

OTHER

PAGE 025

Chart AH. Analyze Console Source Line CANALYZ) -- CEKTI (Page 2 of 2)

TC8112 IllSCOI
*****B1********** **82*******
CEK!Jl 02711 * * ·---------------· . .

>* •<---* lDD 1 TO J *< * • • • ·······T·······
...

C1 *•
• * HEIT *·

*· CHlBlCTEB • *
*· WlS • * .. .• ·- .. .

: ••••••••• 026 B1

: •••••••• .026 BJ
: ••••••••• 026 P1

: ••• ···-· .026 J1

....
•026•
• !1 l

TC811J ••s1•••••••
*SET SWITCH *

*SHOWING LAST *
CRIB WlS TlB OB

* BLINK *
•026•

BLllK,TlB

OURPLOI

llU!BBIC

OTBE.i

: P1*l

TC846 ·*·
*****P1********** F2 *•
* BOVE IUllBER * • * *•
* JOST DETECTED * •* *· 10 : §~,mm0aa.J •>• .•. J = s .• •
: •••••• J~i •••••• : •.•..• ·• I

••• ,....... •c•:i ,.lmm.
*SET SWITCH * *CEKTJl 02711*

*SHOIIIG LAST * •----------·--•
* CHAR llS * *

* llOllEBIC * * *
I .•.

82 •.

.... . .
* BJ *

TC8SO 1 IISCOI
*****BJ**********
CBKTJl 02711 ·--------------·
;]:< . I

.• .
CJ *·

B!PTf •* RESULT *•
•• 1 •

*· • * TlB, BLllK
• •• • •026•

["'nK.~•" •ii :~L ...
* CllPT TEIT LIG *

>: s5~R~gD si~ : m~lfil xi0UEil-
TDltJllC=TO·LlSTC PIRST TEXT CHAR :m: :.;mmi;m •• :

. ~· I

"''" '(*****EJ********** *****Ell**********
* * * C!PT TDLE SO *

>: muac = o : : ~mP~mtg, :
! ! f :Tm=i~fMnf ! ,.,.::"'"'['"'"'

****PJ********* . .
* BETURll *<

* * T.lB • * RESULT *• JES * *
* l!J •<--*· = OVERPLOI .*->* EJ * . . ·- ••••• •••• ... ·* ****

•026• • •••
* J1* * OTHR . . l

TC8411 • t TC8118 DUGOUT
J1 •• •••••J2••········

• * *• *CEKTHD 024lS•
·* PBEV. *· 110 •--·-----------•

· CHlR TlB OR .---->* 'IHIIIG - 10 *
*· BLlHK • * * BLIK OR TAB *

*• • * *FOLLOIS ST.10. 1 *
*·r·;ES *********!********

.... . .
* D4 * •*•
* * K2 *· •.

•* P.iBV. *· 10 * *
· CHlB T.lB OR .->* D4 *

*• BLllK .• * * ... -· ·- .. * JES

l
* BJ *

PAGE 026

Section 8: Flowcharts 241

Chart AI. Inspect a Console Character CINSCON) -- CEKTJ

CEKT.Jl IISCO•

••••11••······· . .
* EITER *•........

l •••••e1•••••••••• . . .
* lD 1 TO V 2 TO •
•GET ADDRESS OP •
: CHAR. (I) :

I ...
Cl *· • * *· ****Cl***•***** • * COUBT = *• YES * • *·•. lfAX? ••• -------------->:HTUBll CODE=•:

•.•....... ·- .. * BO

.CO>. I
•••••01••········
: TEST CHlR (I) :•.....

I .•.
El *• .• •.

*· RESULT .• ··.-·
: ••••••••• 027 P3 TlB

: ••••••••• 027 G3 MUISERIC

: ••••••••• 021 H3 BLlllK

: •••••• ••• 021 .J3 OTHER

242

.
•021•
* Pl* .. .
1

*****Pl**********
* SET RC = 8 *
•021•
: G3•*1
*****G3**********
* SET RC = 12 •-->•.....•.......
*027•

:.::·1
*****H3**********
* SET RC = 16 •-->
•021•
• J3 ·1
•••••.J3•••·······

TC990

: : • ••••J4••.•••••••.
* SET RC = 20 •--->* RETURN *

PAGE 027

Chart AJ. !t:>ve a Line to a List Data set (LDMOVE) -- CEKTK

CEltTKA LDllOYB

••••13••······· • • • EITBB •
I .•.

B3 • •
• •PHASE S•.

YES • • ACTIYE OB • •
..-------------•.PHASE I IOT .•

*• CALLED • •
•.!IT ?.• ... •

i'°
.•. TH710 .

C3 *• *****Cli**********
• * PAGE •. * ADD 1 TO PlGB *

.• PULL OB •. !BS * 10. OUTPUT •
*· C.lllRI.lGB • *->* BBlDIIG LIIB •

•.COITBOL =. • • SKIP I LIIB. •
*• 1 1 • • * Lii! 10. = 2. •

TB750 TB7110

··.i .. ·:o •••••••••1••••••••

*****D1********** *****D2********** D3 •. *****Dli**********•
•llOYE A LIU ro • • ADD 2 TO LIIB • !BS • • •. •CB.llGB CllBilG!*
* TH! LIST DAT A *<---* 10. *<---•. = 0 ? • * *COllTROL CHAil TO•
: SET : A : : *. *· • *. • : BL.AH. :

I .i."
E3 •.

* ****B 1********* * YES • * • * *• *·
* BETOBI * *· = + 1 • * • • *· .•• • ...

• 10

"'" !<---------~
*****P3**********
* ADD 1 TO LIIB •
•10. llOYE l LillE*
* TO TB! LIST *
: DATA SET :

I
•****G3********* *

* R!TUBI *

PAGE 028

Section 8: Flowcharts 243

Chart AK. Build a List Data Set Buff er (BUILD) -- CEKTL

CE!\ TL A BUILD

•*A2******* . .
: ENTER :

*************** I

I

1 . •.
*****.81********** 82 *··
* If NEED TC * • * *. * FLUSii MI0 * YES .• BAICH *·
* EUFFERS, CALL *<---*· PROCESSING • *
• FLOSn (BOTH * •. ? • •
* BUFFSRS). * *· .• • .. -.

244

I • NO

I I
I ~ I 1H820 c2·*··- c3·*··-

I . •smm~~:a •. YEs .•a~r~Wao~i>·. YEs

1
·-.-~Ar~w~ _ •. ·--->·-~~OTHE~ LIN:.··-,

I *· ·* *· ·* I

L_
I ________ ··7·:0 ··7":0 I I I I

>I I I
I I I

TH810 V V I
*****02********** *****D3********** I
:~.:~!~~----~~~~~: :cmFn?:HAwiw: I
* llOVE THE LINE * *LINE TO ~AY GET* I
* OUT * *DUPLICATE LINES* I
* * * BUFFER. * I
***************** ***************** I I I I

I I< J

i
i I

Tfl860 i
*****E3**********

* ****E.2********* * : A~~wAafiH~R:o :
* RETURN •<---* UPDATE TONEWI *
* * * TOBNEC * ••••••••••••••• * *

PAGE 029

Chart AL. Flush a List Data Set Buffer (FLUSH) -- CEKTM

CEKT!IA FLUSH . ·-B2 *·
* ****B1********* * •• - * *· *· B
* ENTER *--->*. P6 "'-------------..
* * *· ·* •. .. .

*· .• * 11, 12
I

I
TH911 t •••••c2••••••••••

'IlilooANYTHING IN *

:o~~= BmP1.rnr:
*ADDR IN BUFFER *
• *

I
* * I
: 02 :->1

**** J TH911 ~
*****D2**********
* * * 133 = LINE *
: LENGTH TO N2 :

• *
l

*****E2**********
CEKTKA 028A3 ·---------------·

>* * l :OUTPUT THE LINE: I ********i******** I

L ...).....! 1;1
• * l!OVE TO *·

*· GO .• •. .•
*· .•

* NO I

"':~ ... " ".!. •. '"'!2· •• " : I ,, :••••OS :
:c&ui~EP 11agH : 8 • • • •• * 12 • • * .• A;YTHING ~N•. YES * ADDRESS Ill •
NEXT ADf>RESS IN<---•= P6 =•--->* A TO r6 *--->*. NEW • *--->*BUFFER 01' NF.XT *
* !IEli BUFFER * *· ·* * * *· BUFFER • * • • •. -* • • *· .• : LINE TO N1

••••••••••••••••• *· .. • ••••••••••••••••• • ..•
i j' i'"
1

1

I TH9~~***H 2 ********** l
* 0 TO OLD LINE • I

1 :m¥Tma~~PM
I * NEii BUFFER * II

I =·······;·······=

II **** . . L->: 02 :

I I I
I 'IH990 l 1'

• ****J2*********.

>: RETURN :<------------------'

PAGE 030

Section 8: Flowcharts 245

Chart AM.

COPY EXEC INTEfiCOll
INTO PHASE PSECT
LOW.i:;R EXECUTABLE

mfkWtLAgg no•
TENFA = 128 ESILOC,

~~m~ ~'aAc~~~~TE
AtCONS PO& PHASE 1
WORKING S'IO!iAGE

246

Phase 1 Main Loop (PH1M) -- CEKAD (Page 1 of 4)

CEKAt1 PHlM

• ****A2********* *
: ENTER :

I
* I

ADO 10 ~

I
I

:****83*********!
* SET BACKUPS, * 1>: RE28&Nm~s & :

I
................ . I •••• I
•031* I

L,, I * * * C3 *->!
•••••c2••••••••••
CEKAB 1 1;. 112 I

....
ADO l2***C3* **~!2uu

CEKAC1 15611 ·---------------·
*PICK UP MODULE *
: NAllE : I ·---iiiiiiiri----:

* STATEllENT :
l
i IVST •••••02•·········

:::~:!! ____ !~!~!:
* FILE llOOULE *
: NAllE :

l
. *·

E2 *· .• •.
NO • * RETURN *·

~·- ... CODE = 0 .•·*
••••• *· ... •0311• .. _ -*
* J3* * YES

I

I
I

I

• • • l I

*****P2********** I * TENINT!i=CS!P * I
!Mx 116Mi~ 1im> !
: (15) : I

I I
!****G2••·······: I
SET PRF = BEGIN I

!up&m ~~~p~6P ! I
••••••••••••••••• I

l I
•••••R2••········ I * SET: *
* CVAL='Cl'CBD 1 * * Ci1SH=66 CALL *
* GNSS * I
* * I ········j******** I

' I . ·- I J2 ·--· • . • : * c65~ 0 ~No •: .,.:.::_]
•. .•

•. -· • .. ·* * NO
I

~
*0311•
• J3•

I

1
. *·

D3 *· . . ·-
-· RETUBll *· NO

·•.CODE = 0 ··*--l
•. ·* •••••

•. • • •033•
* YES * El* .. !.. * ••

032
.,Al

*

PAGE 031

Chart AM. Phase 1 Main Loop (PB1M> -- CE:KAD (Page 2 of 4)

.....
*032•
* A1• * •

*
i

-*-
A1 *· .• •.

• * BRANCH *·
*· ON ST!IT. ID .• •. . . •. . .

• .. ··
.... !
.....
•032• * C1• . . .
1 BLNK

:••••c1•••••••••: . .
: -CEKBB1- n
•032•

* D1 *-1
*****D1***;i~~***
*CEKlK1 03512• ·---------------·

.....
•033•
• 11• .. .

: =--1
•032•

* E1 •1
ASS!

*****E1**********
CEKBC1 054A2 ·---------------·

.....
•033•
**A!* .

: =--1 . .
·~···············
•032•

* F1 •1
BKSP ,,

CEKl!D1 05611
·----~----------·

.....
•033•
•• 'l* .

: =--1
•032*
• G1 *-1

CO!IT
*****G1********** .. * . .

.....
•033•
• 11• .. .

: -CEKAT1- =--1
•032*

: H1. *l
EHDF

*****H1**********
=~~~~£~----~~~~~=

.....
•033•
•.A!* ..

: =-1
•••• •033•
•032• * l 1*
.. J1 ·1 . *

PADS •••••J1••········
•CEKBG1 07011* ·---------------·
: =-1
•032•

: K1*l
l'RNT

*****Kl**********
:~.:~~~~----~~~~!:

.....
•033•
**A!* .

: =--1
•Oj3*
* A1* . . .

.....
•032•
* A2• .. .
1 POHC

•••••12••········
•CEKB£4 059A2• ·---------------· . ·-i • * . .
••••••••••••••••• v
•032• : 82·1

REllI •••••a2••••••••••
*CEKBD3 056A3• ·---------------·

.....
*033•
**A!* .

. n
•032•

* C2 l
llRIT •••••c2••••••••••

•CEKBE2 05BA3• ·---------------·

.....
•033•
.,Al .

. n
•032•

* D2 l • *
READ

•••••D2•·········
CEKBE1 060A1 ·---------------.

.
•033•
• 11* . . .

: =-i
•032• * E2 *l

CALL
•••••!2••········

.....
•033•
• 11• .. .

* -CEKBU1- n
•032•

* F2 •-1
STOP

*****P2**********
:~!:~!:! ____ ~~~~;:

.....
•033•
* A1* .. .

= n•......
•••• •033•
•032• * A1*
: G2•l *•*

RETO
*****G2**********
CEKBG3 072A1 ·--------------·
= n
•••• •033•
032 **Al*

:.:~·1 .
GOTO

*****H2**********
=~!:~~~~----~;!~!: : ·n ...•.............
•032•
• J2 l

IP
•••••J2•••·······
=~!:!~!~----~!~!:

.....
•033•
* A1* .. .

: =-i
•032•

* K2 l
DO

*****K2**********
CEKAZ1 053A1 ·---------------·

.....
•033•
.,A! .

. n . .
• *

•033•
•• 'l*

*

.
•032•
* A3*
• * .
1 BLDA

*****A3**********
CEKBI1 076A2 ·---------------.
: =-i•..............
•032•
• 83 ·1

CO!l!I
*****83**********
=~~~~.!! ____ 2~~~!:

.
•033•
**A!*

*

. :i i
•032•

* C3 •1
DATA •••••cJ••••••••••

•CEKB!l1 077A2* ·---------------·

.....
•033•
* A1* .. .

: =--i•...........
•032•

* D3 •1 * •
DillH

*****D3**********
CEKAUl 047A2 ·---------------·

.
•033•
* A1* .. .

: =-i
•032•

* E3 •1
EllD

*****E3**********
CEKlL1 086A1 ·---------------·

.....
•033•
• .'!* .

. n
•032•
• f"3 ·1

!lfTR
•••••f"3••········
Ci!KBS1 081A2 ·---------------·

.....
•033•
**A!*

*

: =-i * •
•032•

* G3 •1 • *
*****G3***ii~~***
CEKlYl 051A2 ·---------------.

.....
•033•
• 11• .. .

: :---,
: : '
•032•
*HJ *l

ElTE
*****H3**********
CEKllll 036A2 ·---------------.

.....
•033•
• • '!* .

: :1 ••••••••••••••••• t
•032•
• J3 ·1

PORll
•••••J3••········
=~!!~!! ____ 2~~~!:

.....
•033•
•• '!* .

: :----..

.
•032•
* A4* . . .
1 IllPL •••••14••········

CEKBH1 07812 ·---------------· : :----..
••••••••••••••••• •033•
•032*
: e11.,•l

NA!IL
*****BQ**********
CEKBH1 071112 ·---------------·

* A1*
• * .

: :----v
••••••••••••••••• *033•
•••• • .'!*
~n· •
: C4**1

SUBR
*****C4**********
•CEKBS2 osuq• ·---------------. : :----v
••••••••••••••••• •033•
•••• • .'!*
•032• •

:.::·1
COllP

*****DQ**********
::~!~:: ____ 2~;~~=
: :----v
••••••••••••••••• *033•

* A1*
•032*
* E4 *l

DOBP •••••!4••········
:~.:~~:~----~~;~~=

. .
*

: :----v
.................. •033•

* A1*
•032•
• Fli l

UTE
*****F4**********
*CEKAS1 0113A 1• ·---------------·

. . .
: :----v • * •••••
••••••••••••••••• •033•

• 11•
•032•

: Gli**l
LOCL

*****G4**********
*CEKASL 043Ali• ·---------------·

* • .

: :----v
••••••••••••••••• •033•

•••• •.A:•
*032• •

: Hli*l
REAL

*****HQ**********
CEKASR Orill2 ·---------------· : :1•. '

•033•
* A1* .. .

A1.

.
••••••••••••••••• •033•
•••• • .1!*
•032• •
: Kl•*I

**** ' f"UNC
*****Kl**********
=~~!~~!----~~!~~=
: ~
***************** •O 33• * A 1• . . .

••• 0 ••••• 032 C1
• •• 1 ••••• 032 D1
••• 2 ••••• 032 E1
••• 3 ••••• 032 P1
••• II ••••• 032 G1
• •• 5 ••••• 032 H1
••• 6 ••••• 032 J1

::J:::::mn
••• 9 ••••• 032 82
••• 10 •••• 032 C2
• •• 11 •••• 032 D2

:::H::::m J~
••• 14 •••• 032 G2
••• 15 •••• 032 H2
---16 •••• 032 J2
••• 17 •••• 032 1(2
---18 •••• 032 A3
• •• 19 •••• 032 83
• •• 20 •••• 032 CJ
---21 •••• 032 D3
••• 22 •••• 032 !3
••• 23 •••• 032 P3
• •• 21i •••• 0 32 G3
• •• 25 •••• 032 H3
••• 26 •••• 032 J3
••• 27 •••• 032 K3
••• 28 •••• 032 A4
••• 2<1 •••• 032 eii
••• 30 •••• 032 Cll
---31 •••• 032 011
••• 32 •••• 032 F.4
..~33 •••• 032 P4
• •• 311 •••• 032 Gli
••• 35 •••• 032 Hll

PAGE 032

Section 8: Flowcharts 247

Chart AM. Phase 1 Main Loop CPHlM> -- CEKAD (Page 3 of 4)

.....
033
•*Al* .
i

. *· . *·
A 1 *· A2 *· . • *· . * •.

* * * A3 *
* *
!

A3*****
* * ·* •. NC ·* RETURN *· 110

· RC=O .•--->.. CODE = 12 ·*-i •.. . . •.. ..•
*: LOmGI/O :-

*· .• •.. ..• * * •.. . . • ... •
* YES * YES *****

l
.,._ I **** *034•

..... L>: El : •• Ji•
• * * l

ADO 19 -·- ·*·
Bl *· 83 *· . • • .. .• • .

YES • * EF/PRF •. • * BRANCH *·

r *• OVEllFLOW •* *· 011 ST!IT ID ·*
*· .. * •.. .•

*· .. * ***** *033•
***** * NO * C2*

:o~~: I * •
*

1
* * I * I v

. ·-Cl *· . . • .
• * LOGICAL *· YES

*· IF SWITCH=l .•-i
•. ·* •

* NO ***** I *031*
I * C3*
I * *
I * v

. ·-Dl *· ·* ...
• * ST!IT ID *· YES

· = END ·-1
*· *· .•- * I

• ... • v
* NO *****

033 * C3*
: El:-> * •*

*****C2**********
::.:~~~!----~~!~~=
: !-l • * •••••
••••••••••••••••• •034*
•033•
: D2*l i
•••••02•·········
::~~~!! ____ ~~!~!:

* 83*
* * *

: :-l
••••••••••••••••• •03'6•
•033•

* B3*
• *
* **** l •034•

AD020
*****E1**********

* E2 *-l * *
:****E2*********:

::~~!:~----~~~~!:
• *

l
. *·

Fl *·
.. . ·-- * RETURN *· NC

··CODE = 0 • * .*-i
· · I *· -* v * YES *****

I •034•
* J3•

I * *
I * v

• *·
Gl *· .. • • ..

UP • * FORGET *·
,-*.. FLAG -*
I •.. .. *
I *· ·*
v ·- ·* ***** * DOWN

•034*
• .c~• . !

!****H 1*********!
* SET !!AX ERR *
:r:~~IL 1m m; :
·················

l

* * : -CEKAiil- :-----,

• * ***** ***************** •034•
•••• * .e~•
•033• *

: F2. ·-,

**** ~
*****F 2**********
:::~~!! ____ ~~~~!:

:-----,
* • • ••••
................... •034•

•••• • • ei•
•033• *
: G2* *-,
**** !
:****G2*********: . .
: -CEKBP1- !----::! •.
***************** *O 34* * .si• .

AC030 ·*· ·*•
Jl *· J2 *· .. . •.. ..• •.

·* DELETE *· DCWll ·* ST!!T. *· NO * *
*· FLAG • *---->*- ID = 0 • *-->* A3 * ··.. ..·· •.... ...·· · ·

*· .• *· .•
* UP * YES

l i
•034* *031*
• C3* * C3*
* • * *
* *

248

•. .• •. . .
•. ·*

*
J ..
* * ...
• *
*

•033*
.D!

*

!
*****DQ**********
::~~~!!----~~~~!:
: :-----,
••••••••••••••••• •034•

• 83*
•033•
: Ell•l ~

*****!"'********** * * * *

* * .
: -CEKBJ 1- :-----v
••••••••••••••••• •03Q•

**** * .e~•
•033• *

:.::··1
!****Pfl.*********! .
* -CEKAll2- !----::! ••
••••••••••••••••• •034*

**** * .si•
•033• •
: G4•l •••• +
*****Gfl**********
CEKBT2 088A2 ·---------------· : :---:! ..
••••••••••••••••• •034•

**** * * B~*
•033• •

:.::·1
•••••P.4•••·······
::~!~!~----~~~~~= : ·n
•••• •0311*
O 33 *•ll•3*
: Jll.•-, *
•••• I e3 • v :••••J4••·······:
* * -CEKBZ 1- * . : --, ... ' .. ••••••••••••••••• +

•034•
* !>3* • * .

••• 11 •••• 033 C2
• • • 12 •••• 033 Dll
••• 13 •••• 033 D2
••• 14 •••• 033 D2
• •• 15 •••• 033 D2
••• 16 •••• 033 D2
• •• 17 •••• 033 C2
••• 18 •••• 033 F.11
••• 19 •••• 033 E2
• •• 20 •••• 033 Fii
••• 21 •••• 033 F4
••• 22 •••• 033 Pll
••• 23 •••• 033 F2
••• 211 •••• 033 Pll
• •• 25 •••• 033 !'II
••• 26 •••• 033 Pll
••• 27 •••• 033 Gii
••• 2!l •••• 033 G2
••• 29 •••• 033 P4
••• 30 •••• 033 Hll
••• 31 •••• 033 pQ
••• 32 •••• 033 P4
••• 33 •••• 033 Pll
••• 311 •••• 033 Pll
••• 35 •••• 033 Fii
••• 36 •••• 033 Jll

PAGE 033

Chart AM. Phase 1 Main Loop (PH1M) -- CEKAD (Page 4 of 4)

.....
034
* .e;•

*
!

·*· B3 *·
·* • ..

NO • * RETURN *·
~-----------•. CODE= 0 •*

•. • *
*· . *

· · * YES
I

•034• I
* CJ *->I
* * I
**** v AD200 ·*· ·*•

C3 *· C4 *·
• *EFTOP >*. • * *·

YES ·* PRFTOP OR *· NO .* STORAGE *· NO
,---•. SSTOP > • *--->*.SPECIFICATION.*--,
I *· SSLill • * •.OVERFLOW • * I

***** I *· ·* *· ·* I
•034• I *· ·* *· ·* I • * D~ * I .. • y ES I

* I I
I I I
I I< I
~ ERR3 I . *· I

*****D2********** ! 03 *· t
CEKCAD 100A4 • * *· I

V •---------------• YES • * PDTOP > *· I
.--*SET RETURN CODl*<---*· CRTOP • *<-----------~
I * = 8 * *· . *
I * * *· . *
I ***************** *· . * * NO

I I
~

AD230 ·*·
E3 *·

.. • *· • * FORGET *• UP

*· *· FLAG • * • *--i CUR VAL OE = BACKUP:

· · I mH6~~~ ~~N~6PPmK·
•• .. ·;owN I ~};fiNT~ilf> fMAICcHoas. I I iis~NT6t Tgg.LggP~E:m

v I ~JtG;.N ~mmo~y~ 6%.
F3·*· •. I AD

5 22 Fll**********
·* *· I * * • * DELETE *· Ui? V *RESTCRE ANCHOP.S*

· FLAG .•---> FROll BACl".-IJP *
· · * * .. .• . .

*· .• ***************** * DOWN I
I I

J 1
•* G3 *· *· :****G4*********!

NO • * LAST *· *Ri:.STORE SYllBOL *
v--*·*· S~fp:~;gT·*·* : TABLE ITE!IS :

***** •. .. • * •
•031 * *· . • ***************** * 93* * YES I

• *. I ,I

t AD520 i
* **H3******* * :;;•;g~:~::~•;;;:

* RETURN CODE * * COllT. LIN!\'. *
* * = 0 * * : (B~;~~ab, = :

*********** *****************
•••• I I :03~: ·~>I .. L.

AD2:~·· ! !~2!!
:•***J 3••·······: .
*II' MODULE NAllE *

------------>:CLAS~o = zJ~6 SET:
I
I

1
•*K3******* : ~6i/la~og~o : .****K"*********.

: EXFC 8f~~ERCOI! :--->: :=:~::*****:

PAGE 034

Section 8: Flowcharts 249

Chart AN.

CEKAK1 EQUA

* ****A2********* *
: .ENTER :

l
*****B2**********
CEKAJA 157A 1 ·---------------·
* * :IF RC#O, RETURN:

l •••••c2••••••••••
*EQUATION ENTBY *

:PR~go~R~6s5fiPB:

:.~m,:m~d:.:

l

Assignment Statement Processor (EQUA) -- CEKAK

• *· • *· AK022
D2 *· DJ *· *****D4**********

·* *• ·* *· *CEKCAD 160A4*
• * STATEllENT *· UP • * *· 2: *---------------*

.PUllCTIOll FLAG.•--->. SPET:SPLEY .•--->*
•. ? .• •. • * •

•. ...• *· .• • • •.;. . . •.
* DOllll * < I
I I I
I •••••E3••········ '
I :sgi1E~~~x~=Tb!D: * ****N********* * : E~m~ ~m~ : : R!TURll (RC=8) :

* BE~BS * ***************•... ----->' AK010 +
* **F3******* *

* * s ET RC=O * *
• *
l

* ****G3********* *
RETURN

250

PAGE 035

Chart AO. EXTERNAL Statement Processor (EXTE) -- CEKAM

CEKAllA EXT!!

••••&2••······· . .
• ENTER *

I
. .
: Bii :
i -•. . ..

• • B~ROG •. •. :~;;~ir···~~~~j: .• 84 •• •. :•es••••**• •
• * TYPE = *· YES •--------------• • * CDLll = *• YES * *

• •• ~LOCKi°U:A.•.*->: :--. *·•. POS ? •• ·*--->* * SET RC= 0 * *
•. .. • • • •. ·* • • • .. • • .. • r· i.,

C2 *• *****C3********** *****C4**********
•* *· *CEKCAC 160A3* *CEKCAC 16013*

<~wi¥g~r; o. >-110 ___ >:---------------:-->l :---------------:

•. ..• • • • * :-:;• ~~ .
1
. ;ES ***************** ********!*********

....
Al!006

*****D2********** **D4*******
CEKAE1 12212 * * ·---------T-----· • • * * >* SET PC = 12 *
IF RC=O, RETURN * *

.I. I<-~
*****E1********** E2 *·
•CEKCAC 160A3* • * •. ****Ell*********
•--------------• NO • * CID = *. * *
* *<---*· VAR ? .• * RETORB * . . ·- .• •. -. • l * YES l

* J3 * Al!D08 • *· All020 • *· ·*· * * P2 *- F 3 *• Fii *· *****!"S**********
**** ·* *· ·* *· ·* CLASS *· *CEKCAB 160A2*

.: • (C~~~rs = *:._110 ___ >.:. OllK/M *: ._110 ___ >.: * E~~:Tne =OR*: .~_o __ >:---------------:
*· UNK ? • * *· • * *· LIBA ? • * * * •. *· .• •. •• •. . • • •••••••••••••••• i "' i '" i "'

G2. •. •. I •••••G4••········ -· •. . .
·* COl!l!ON *· HO I •RAISE EXTERRAL *

*· BLOCK FLAG ·*1 *• FLAG (CSTP) •. *· UP ? ·* * *
•.. • . • II •••••••••••••••••

T"' I ._I -----

·*· IAll016 H2 •. *****H3*•********
·* *· * SET CLASS *

·* l'ORllAL •. YES * (CSTP} TO OH *
*· -~RGO!!ENT ? ••• ·--->: EXm.nr~tAG :

* • ._ ... • * : •••• J~~IfL ••••• :

•1110 : ·:;· =->!<
• ••••• <------------'

Al!100 •••
*****J2********** J3 *·
CEKCAB 160&2 ·* *· ****
•---------------• • * CDLll = *· YES * * * * •. • ? • •-->• 02 • • • *· . • • • . . •. ..• ········r········ •. r. :o

• 02 • • 84 * • * • • •••.•

PAGE 036

Section 8: Flowcharts 251

Chart AP. GO TO Statement Processor (GOTO) -- CEKAQ (Page 1 of 4)

CEKAQA GOTO

*****A 1 •******** *
: ENTEU *
*****•********* I

I
I
I

~ LABL *+10 • *·
*****Bl********** 82 • ...
=~~~~~~----~~~~2: . * .. * CDUI = *· *· YES . * I>*. EOS .•----,~ * •.. ·* v • *· .. • • ••••
***************** *· .. • •038• I i NO •.Bl*

I I I *

V

I I I

I

.. t
!****Cl*********: . * C2 *· *·
* RAISE DON'T * * * YES ; ~m. F~~¥uR~F ; I ·=. .:·---v - - ·.. ..· ••••••••••••••••• *· • • •040*

I * NO * Bl* l I l ...
~ I ·*· AQ400 ·*·

* IF ENO LOOP * ·* *· ·* *· ****
·····01·········· I 02 ... 03 ••

CO!!NTER#O CALi. • * *· YES • * *· NO * *
• ERR1 ch1 • I •. .•--->•. cIO=NULL? .•-->* E2 •
* ACOll f * •. • * *· • * * *
* * • *· ·* ••••••••••••••••• • .. ~. *· .•

l J ::::: :-,j " l "'
. *· AQ050 ~ EBRO V LBSTQ

El *· *****E2********** =~:~~~~****;;;:j:
• * • * *· *· YES =~=~~~~----!~~~~= •---------------*

*· RC=O • * * *<l * * *· * * * : : :IF RC#O, liETUR!I:
. *· • • . ••••••••••••••••• • ••••••••••••••••

*1 NO I I I
1 !0W•->I I I
I =••• * I I ~

I
I GTERR ~ II . *·

* **F2******* * • * F3 *· * •
* * I NO • * IS *·

I I
.. SET RC=12 .. '--*· Cl!ARA.CTER I ·*
• * *· .•

I • ••••••••••• • •· •..• ·•
I I i YES

I I I
I I I
I AQ420 ~
~ f *****G3**********

* ****Gl*********.. I : UPDATE SOURCE :

: liETUliN :<~ : pgHPfco~~EN : ' : :
I I

I I
I I

I .!.
113 *· ·* •.

NO • * *· YES

'---------------*· *· *· RC=O • * • *. *-----::1**
• .•• * :~ij!! .

252

PAGE 037

Chart AP. GO TO Statement Processor (GOTO) -- CEKAQ (Page 2 of 4) PAGE 038

.....
•038•
* 81* .. .
t

AQ100 • •.UGTO
81 • •

• * CID= *·

•:\:::::;::~:~ >lNO

• *· AQ150 ERRD
Cl *· *****C2**********

• * • * O< CVAL *· *· NC ==~~=~: ____ !~~~~= *****CJ**********
*· S 99999 AND • *->* *->* RETURN *

•.COLI!= EOS.• * * * * •. .• • •. * •••••••••••••••••

"'" J"' 01 •. •••••02•········· .• •.. . .
• * LOGICAL *· NO * USE PRl'COV TO *

· IF SllITCH=O .--->*GET LOGICAL IF *
*· .• * PR!' ENTRY *

• ·* • * •.
* YES t

I 1
*****E1********** *****E2**********
*!!AKE PR!' ENTRY * *CHlHGE SIGll OP *
ILLNO=CVAL LINK *EF ENTRY IND.I- *

:rgpm~ mfgt: ! !~APMM9~ih!
*BY UGTO ESTiii. * * SET CRLBL=O *

..... I, i
*****F1**********
:Ua~f0Hf1hm:
* Ill CROSS- *
* REFERENCE *
LIST=CVAL. R=O.

I
~

* ****H1********* *
: RETURN :

section 8: Flowcharts 253

Chart AP. GO TO Statement Processor (GOTO) -- CEKAQ (Page 3 of 4)

.....
•039•
•*Bl• ..
l

AQ500 • *·
Bl *· .. . • ..

• • CID=VAR *· NO

•. 1 • •-------1 ·-·-·r;:·· I
AQ510 .•. 4 ER!lD

Cl *· *****C2********** . • *· *CEKCAC 160A3*
• • crYP = •. NO ·---------------· *· INTEGER ? • *--->* * ·- •.. •..

• YES L
l

....
•037•

>* !'2 -•. D1 *· *****D2********** .. . •. . .
• * CLASS •. HS • SET CLASS *

·- ._ 1cm1? = •• • *--->: dmP vrn :
•. -· . .

·- j. :o ········i········
J 1

El •. *****E2**********
.• CLASS *· • *

.:*sl~~H'v1R ·:~>!W~M~~M~fi:
•. ? • • * FLAG * ·- .. • . . ·-

*****B3**********
RAISE TYPE PRO-
*ZEii FLAG (CSTPI, *

l
>*llAKE PRF ENTRY,*

*EF ENT i!Y, LINK * * IN GLNK CHAIN *
I I
I !
I :••••cJ•••••····:
I • UPDATE PR!'TOP •

I
* !IY NOEL + 3 *

I
l

: WORDS. :
I
!

*****03••········
*IF COLI! t< EOS *
:cmo~8~~6Ai~~ :
*ESrLOC BY CGTO *
• ESTI!IATE *

l
* ****E3********* *
: RETORN :

*********••••••

ro
4 EiiRD ,,

:~:~~~~----2~~~~=
..... ,,.I.mi... I
=~~~~~~----!~~~!:

254

1
•037•
•• !'~· .

.___. .
'* •

PAGE 039

Chart AP. GO TO Statement Processor (Goro> -- CEKAQ (Page 4 of 4)

.....
•0110•
• 81• .. .
1

AQlOO • *· AGTO EBBD e1 •. •••••e2••••••••••
• * *· *CEKCAC 160Al*

.• CID=VAR *· RO •---------------•
•. ? .•--->•

·- .• * •. .• . . •.
* YES 1
l ~=m:

* P2*
*****C1********** * * . . . :IP mi Mo* 11

·:
I -..

D1 *· *****D3**********
-· *· • * • * CLASS *• YES * SET CLASS *

·- •. <c~u1 1= •• ·"'-------------->: slim1 ,I~ :
•. .• . . •.
l " I

AQ5211 • *·
.•EtLAS;· *· !****El*********:

.:*sl~m1 ,1R *: us >migMmom:
*· * • ? • *. * : PLAG (CSTP) : ·-

""' J" .,,,. I
P1 *· *****Pl**•*******

·* CLASS *· * *
.: * J8W~AftE *: n:s >:!.Po ~L~ILlc~m :

· ? - A * * .. .• l . . *· .• • ••••••••••••••••

,,. C, .. mi... • • ._,J J
.• CLASS *· *CEKCAA 16011* *RAISE TYPE PRO-*

* •• * (CBSRTAYP) V=AR *.· ~>:--------------: * ZEH FLAG.._ SET *
•• " ? • • • • :cmL=g1n11 ~s..:.:

*· • * * * *IP Rl:#O, RETURll * •.
i :: ..

*****H1**********
=~~~~~~----!~~~~=

l
•Ol7•
* P2* .. .

.•. ERRD e11 •. •••••es••••••••••
• * *· *C!KCAC 16013* . * CHAR IS *· 110 •·--------------• >•. (? .•--->• • •. .••

* Y!S 1
.,,,. l ::m

•••••cq.•••••••••• • •
* DPDATE SOURCE * *

:L&m:EIJ m~.:
: RETORll. :

I
*****D4********** . .
•IP CHAR IS !OS,*
: CALL ERR2 :

I
*****Ell**********
*UPDATE PBP TOP *
BY IOEL+3 WORDS
:s~i!'R~;~h~A~~ :
* ENTRY *

I
*****P4**********
* LIIK II GLllK *
* CHA:Ill, DPDATI! *
*!STLOC BY AGTO *
* !STillAT! *•........

l
****Gii********* . .

: R!TURB :•...

Section 8: Flowcharts

PAGE 040

255

Chart AQ. IF Statement Processor <IF) -- CEKAR (Page 1 of 2)

CEKA.iA IF

****A1********* * •
: ENTER :

I
*****81 ••••••••••
:.::~~~~----2~?~2:

AR100 •••••a2••••••••••
:::~~!2----~~~~2:

* IF RC .. O, *
: RETURN. :

I I
>* *
:Ir RC .. 0, RETURN:

********j**"'*****

•••••c1••••••••••
* llAKE ARITH Ii' *
:mc5~~8lisPii.:
* GLliK CilAill *
* *

I
~ •••••01••········ * •

*UFDATE PBF TOP *
: BY 7 llORDS :

* *
l

*****El**********
:::~~~2 ____ 2~2~~=
* * :IF ac .. o, RETURN:

l
·*· F1 *·

.-·CHAR=·-. y:esl
· (? ·---' •. . . •. . . • ...

* NO
**** I
•041* I * G1 ._>I

•

• • I
AR080 V Ei.iRD I

*****G 1 ********** J
:::~=~=----2~~~~= : :<--
* *

I
I

I
~

****Hl*********
:REm~ ~RmRN :

256

I

l
*****C2**********
* USE PRFCOV TO *
GET IF PRF ENT,
* GET EF EllTRY *
* IJIDICATED BY *
* TVAL *

l
• *· AR300 • *· LIF

D2 *· DJ *·
·* EF *· ·* *· • * ENTRY *· YES .• LOGICAL *· 110 * *

· TYPE=LOG ---->*. IF SWITCH=O .*-->* G1 *
•. ? .• •. ? .• • • •. .• *· . • • •••

• •• * *· ·* r· i'"
• * E2 *· *· !****E3*********!

NO ·* ALPHA- *· YES * CHANGE PRl' ID *

•- •. mfiE~ 11?.•-*I rM~GfiH m_ : •. ·-..... ..!.. • ••••••••.••.••.•
•042* I
* ·:i·

·*·
F3 *· .• *· ·* COND *· NO

*· CODE = 0 ? • *I *· .• •. . . • .. •
i YES I
I I

I I
•••••GJ•!........ I
:p~~ m:TEgoHL: I
!LI~~ v ~P L~L ll~=os: I
* CRLBL * I
***************** I

I
*****H3**********
*SET LOGICAL IF *
! 511?MEi1~~=~· !
*SOUi!CE POINTER *

: •••••• :1 ••••••• :

I
*****J3**********
* * * UPDATE ESTLOS * •er LIF ESTI!IATE•
* . *
* •

I<

1
* ****K3********* *
: RETURN :

PAGE 041

Chart AQ. IF Statement Processor (IF) -- CEKAR (Page 2 of 2)

.....
•0112•
* 81* .. .

ARllOO l
*****B 1 ********** .. .
* IP END LOOP *
:cou NT~~~~ 1 CALL:

I
:••••c1•••••••••:
* RAISE DON'T *
:l!'ILE l!'~~t• SET :

I
AR450 !<:~~~~~~~~~~~~~~~~~~~~-.

•••••01••········
::~~~~~----!!!~!! . .
IF RC#O, iiETUBN

! .•.
Et *· • * •.

110 • * CID = *·

r *• CONST AND .•
*· C'lYP=INT • * ·- .. •

***** * YES

=~:1: 1
. •.

Ft *· . . •.
NO ·* OCCVAL *·
1·· •. s 99999 ? •• ••

I *· • * v *· . * ***** * YES
:

0m I • • • I
~

*****G 1********** * • * SET LINO *
: (I) =CVAL :•.............

l
*****H1**********
:Irarlim=Ih~F:
* IN CROSS- *---* REl!'LIST=CVAl.. * * ADD t TO I. *

I

I
I 1 YES

E2. *·•. E3 • .. *·
.. • •. . • *· • * *· YES • * CDLll = *·

I >*- I ~ 3 ? .. *--->•.. , ? • *
•. ·* *· ·* •. .• •. .• • ... • • .. •

* NO * NO

l l
•0111•

Aas22 ••• F2••········ •.G!*
:IF CD~~tt EOS, : *

: &~mPmz:8t:
* BY AIF ESTiii. *

l
* ****G2********* *
: RETURN :

PAGE 042

Section 8: Flowcharts 257

Chart AR. Type Statements Processor (TYPE) -- CEKAS (Page 1 of ">

CEKAS 1 INTE

• ••••11•••······.
: EllTER :

I
* **81******* *

* SF.T TYPSll=I * *. *" ••

CEKASR REAL

* ***•A2********* *
* ENTER * ···············

l
* **B2******* *

* SET TYPSll=ll *
• * *4 •• ... ,;..;..-. ..

l
*****C2********** * RAISE DOll'T *

CEKASC CO!IP

****A3********* . .
: EllTER :

I
•**83*******•

* SET TYPSll=C *
• • •8 •

* * ***•••••*••

CEKASL LOGL

* ****A4********* *
: ENTER :

l
* **84******* *

* SET TYPSW=L *
* *II * . .

• *
······••***

'"-------->:mf ~~~GfFT~~N=<------------------"

258

: = O, RETUllll : .•.....•.........
l .•.

D2 *· .. • . • * CHAR = *· NO

•••• * •• ··--, •. .•
•• ·* •01111* i "' ·.:1·

•••••!2•········· * UPDATE SOURCE *
: ~mTm111~HU :
* RC=O RETURN *

l
·*· ·*· AS010 EPRD

P2 *· P3 *· *****P4**********
• * *· • * *· *CEKCAC 160A3* ·* CID = *· KO • * CID = *· 110 •-----------·---• *· LABEL .•--->*· CONST .•--->* *

•·•. .•·• •·•. .•·• l : : ·- I
• YES • YES I
I I .. !.. i ~ I •01111•

Aso2i •• •G2•••••••••• G3 • *· •. I *•I'~*
IPCVALOKl'OB ·* *· I *

: m~h~D~g~; :<~•:* cp~N = *:.~
* CALL ERR2 * *• • * • * •• .• ·······T······· ·-.-·

. •.
H2 *· ·* •

YES ·* COLI! = *· KO
~·· *· ALPHA • * .•--, •. -·

•0114• *· . • •0116* * E2* * * Cll*

CEKASD DOBP

•****AS•••••••••*
* E!fTER

I

I
R5*****

SET TYPSW=R
* •8 RAISE * * !>ON'T P!LF.
• FLAG

.. L
•0411• • .s~· .

PAGE 043

Chart AR. Type Statements Processor CTYPE) -- CEKAS (Page 2 of 4)

.....
•044•
• .s~• .
l

AS998 ERRD AS100 .•.TSCA!I
*****B1********** B2 *·
•CEKCAC 160A3* • * *·
•---------------• 110 • * LOG IF *· • *<---*· SWITCH=O ? .• . . •.. .• . . •. ·- ...

* YES
**** I
•044* J ! c2.•->1

ASl~~** i TSCA!l1
*****C2**********
:=:~~~~----~~!~~= . . :IF RC=O, RETURN:

l
.•. AS1011 ·*· .•. AS106

02 *· 03 •. 04 * . • * *· . * *· . *CLASS =• . * **DS******* *
• • *· YES • * CLASS *• 110 • *ENTFY POINT•. 110 * SET TYPSWl •

·- •• CID=VAR _ ... •--->*·d~~msr •• -·--->• ••• O\~~~uLE_ •• •--->•.= TY~~~~ Q = ••
•. ..• *H - • •. .• • • ••• • •. . • *· .• •••••••••••

* NO * YES * YES I
I I I I
I i v I
i ***** ***** I •046• •046• v

ERilD * Cll* * C4* • *·
*****E2********** * * * * i:;c; *·
CEKCAC 160A3 * * • * *·
•---------------• • * COL!! = *· NO

: : •·•. • .• ··1
• • *· . • • •• !.
ii;i~:::1········· .. (" :::i:
**** ~

*****P'5**********
****P2********* * * * RETURN * * !F SIONO = *

>!~:::::he~:.:.! : ogmEEUE~.' :
1

I
AS 110 i ~CO!!P

*****GI)**********
CEKAE1 122A2 ·---------------·
* * *I!' RC=O, 9ET!l''N*
• *

section 8: F1owcharts

PAGE 044

259

Chart AR. Type Statements Processor (TYPE) -- CEKAS (Page 3 of 4)

.....
045
**Bl*

*
l -...

B1 *·
• * CID = *· • * CONST AND *· NC

·~TIP ? INT·*·*-----t
*· .• ***** *· ·* *046*

*YES *.,C~*

l
*****D1 ********** *H CVAL OK FOR * * TYPSil, ADJUST *
TYPSWL. IF NOT, * CALL ERR2. *
* * *****************
•045• I
:..:: .. *->!

*

AS 202 • *· AS2 50 • *· AS260 • *·
_.,Et •.... ..~fAss *;•. .•Etus;· ...

• * TYPE *· DCliN • *LIB, OPEN, *· NO • * JQt i< ARRAY*. YES
*• *~ROZER FLA?*.*->*. ;~3t• !l~p~A:* • *--->*·2. (QfT~fy~!=~· j

· • *· ·* *.SWL? ·* • • • • *· .. •

·

1

1
..:ir:.. !

.*FOR!IAL ARG *· YES

I *· .~\~~lQ1'P 11
...... ,

I, ··.~.!; ·:~· !I:

AS204 i
*****G 1 ********** *****G3**********
• IF mm = • :E:~~EAmsmG : I
:TH~1.<Q~f i~~~ : • PRODUCT FOR .. I
: CALL ERR.2 : :BYTES OF TYPSliL: I

***************** ***************** I

260

I I I

... !.. I II

•046• l
... Bl* *****H3••········ I

• :SET Dl!LST QI == I
POINTERS T~ llEll I
• ENTRY * I : : :

AS300

I I
I< •

l
J3***** * SET TYPE * • * <i~ISE Tm:L•* •

* FROZE!! FLAG *
••••• J~i •••••

1
•046•

. •.Bl* .

PAGE 045

Chart AR. Type Statements Processor (TYPE) -- CEKAS (Page 4 of 4) PAGE 046

.....
•046•
• ,.B!*

*
i

AS310 • *· AS400 • *· AS450 • *·
B1 *· B2 *· 63 *· • • •.. - • •. .. * • . • * COLI! = *· NO • * COLI! = *· NO • * COLI! = *• YES

·• (.. -~>•.. / .•·--A->*.•. .•·*--.-.. !.,. *****

·····-.-;~:· I ····-.-;~: I ·· .. f ;~· =~~~= =~~!=
I I vii 1

1
I * ;

! ARDill I I • !_ AS990 ! ER!!O
*****C1 ***·~;~··· *****C2•••······· I . * C3 •. *· :~;:~i~····;:~:;:
::::~~:~-------~!: I : IF s I~NO = : I • • END 01' •. NO ·---------------·
* .. I . DOUBLE PREC, • I *· STATEllENT ·*--->• • :I!' RC#O, RETURN: : CALL ERB 1 : I ·-.. .•·• : : ••••••••••••••••• I ·········1 ··•····· I *· .. • *****************

l I * YES I

I
I I I I l
I I I v

! ACOllP I i I I =~:::
····•01•········· ! ASll i2 ... D2**•;~u~.. I ~ •• P~·
:::.:~~.:! ____ !!~~!: :::.:~~~! ____ .!~~~!: I • ····~m:;•****. •
• * I . • I • (RETURN CODE • :u Rc,io, RETURN! :u ac,io, RETURN! I * :2~•••••• * I T....... I

<~.·E·~.,~_!_~:.>."' I imm:~:~m11I 1,1 *.. :11' ac,io. RETURN:
i '° l I

*****F1••········ F2···.. I
CEKCAC 160A3 .• *· ~
•---------------• NO • * CID = *· YES
* *<---•. NULL .•
* • *· ·* * • •. -· ·- .-·

!
*044•
•• !'~• .

Section 8: Flowcharts 261

Chart AS. DIMENSION Statement Processor (DIMN>

CEKAOA Dillll

****A2********* . .
: EllTEB :

I
EBBD -*·

*****Bl********** 62 *·
CEKCAC 16013 • * *.
•---------------• NO • * LOGICAL *·

.---* *<---•. IF SWITCH = ·*
I * * *· O? .•
I * * *· .. •
I ***************** *· . * I 1· YES

I 10100

I
I * **C2******* *

* RAISE DON'T *
I * FILE FLAG *

I

I = :~::;::1······
AOl 10 ACOllP

•••••02••········
:::~~:! ____ !!!~!: . .

I
:IF RC .. 0, RETORll:

l
EBBD • *· ACOl!P

*****El********** E2 *· *****E3**********
:::~~~: ____ !~~~~= 110 . * • * CID = *· *· :::~~:!_ ___ !!!~!:••.....•....... • .. • .•...............

i"' · I

CEKAU

<-: :<---·-.. VAR? •• •• l>:IP Rc .. o. RETUBll:

EBRD A0120 • *· • *· ERRD
*****Fl********** F2 *· F3 *· *****Fii**********

I *CEKCAC 16013* • * *· • * *· *CEKCAC 160A3*

:---------------:<---"-o<. co~~ = .> II <. ~~~L? .>-110--->:---------------=,
I
I * * *· • * *· .• * *

I

••••••••••••••••• •. • • •. • • • ••••••••••••••••

iYES I iYES I
I ! AD130 i ARDill I 101110 • :.

I ••••Gt••······· =~~::~~··~·~;~:~: I .• G3 *· •. •
* RETURll * :---------------:__J •= * CD~~ = *: *.:.::__>: 02 :

'->:~:::::he~:.:.: :IF RC"O, RETUBH: *· *· • *. * * **** *

262

••••••••••••••••• •• . • I

J" "" 1' H3 *· *****H4**********
.• *· *CEKCAC 16013* ****H5*********

• * *· 110 •---------------• * RR'l'n!lll *
*· *• EOS? • •• •--->: :--->: (RETIJR~ 2fODF. = : ·-

AU150
i "'

••••J3********* * RETUR!I * : ::::::2~~~::.:.:

PAGE 047

Chart AT. COMMON Statement Processor (COMM) -- CEKAV (Page 1 of 3)

CEKAV 1 COllll

****A 1********* • *
: ENTER :

l .•. s1 •. •••••a2•••••••••• • • •. * OPEN CCllllO!i •
• * LOGICAL *· YES *LIST ENTi<f: ID=*

•. ,.~F SW~TCH : *. •---> :m11K=~1N~A~~E :
*· • * •DONT Fif.E FLAG * •.

* NO
I

I
AV810 t ERRD •••••c1••••••••••

CEilCAC 160A3 ·---------------· . .
• *
•0118• I
:.:: • •-> l
••••01•········ * RETURN *

* (RETURN CODE = *
* 1~) *

l
•••••c2••••••••••
SET !iCOll=NO. 01"
* COllllON BLOCKS *

:im~~8~F ~m :
* RETURN *

I
I

i
·*• .•. AVB20 ERPD

02 *· DJ •.. *****Dfl**********
YES • * • * CID = *· *· =O • •" * CDLll = *· *· NO =~~~~~:----~~~~~= * *
r*·•. VA:f~~LE ••• •--->•... I .•• •--->: :---,;>: 'l1 :

I *· ·* *· · * • • I ****
! *•.·;, *·.·;ES ***************** I
•0119• I **** I I
* B4* I •04d* I

• • I • E3 •-> I
• I • •
AV820 ~ ERRD AVO~~** ~ ACCPIP I

•••••E2••········ *****E3•••······· I
CEKCAC 160A3 •CEKAE1 122A2* ·---------------· ·---------------.
* : : IF R~~lJ~NO, I

•••••••••••••••• : : ••••••••••••••• : J

1 • ••••• !' I
L>: Dl :

1

,
..... • •• •. A V830 ERRD I

F 3 •. *****F4**********
• * *CEKCAC 160A3* •= * CDL' = *: *-No ___):---------------:__J

*· .• * • •• . • * * • •• * •••••••••••••••••
* YES

l •.
G3 *• Gii *· . . ·- .• • .

• * CID = •. YES • * 1"0RllAL *· !'l!S
· VAR .•--->•. A~GllllE!IT ·------~

*· . • *· FLAG * •. • ...
* NO * MO
I I

I I
~ !

AV120 .•. ·*• AV020
*****H2********** H3 *· Hll *• **H5*******
* * • * *· • * CLASS *· * RAIS... *

SET K = 9 :<~•: • ~~fL = *: • •= * El~U~h =OR*: •-NO--->* •com~ mg!': • *
: •... ..·• ··~?Nc~ro~.·· •icsTP~ ~!':Tr.•

********j******** *· *. :o *· * • ;FS ******1 *****
i I I

····· I I .. : ••
:o:~: AY920 • ERRD V EPRD : 0~1:
• • •••••J3•••······· •••••Jct••········ • * * *CEKCAC 160A3* *CEKCAC 160A3* * ·---------------· ·---------------· * • •

I ••••••
L>• 01 •L . .

: Dl :

PAGE 048

Section 8: Flowcharts 263

Chart AT. COMMON Statement Processor (COMM) -- CEKAV (Page 2 of 3)

.....
049 *049*
•Bl *.B!*

* *
t< t

·*· ·*· 1 AV070 ·*·
·*Bl *·.. -*B2 *·.. •**53* *****• ·*94 *· ••

AV030

·* IS *· YES ·* CVAL = *· NO * INCREMENT I * ·* CDLM = *· NO
• .. *. NCC"? •--->• ... ~TCLTB(I) :.·*--->*• BY 1 •* 1>*.•. (? ••• •--,.

•· •..• ·• •· • • ••••••••••• • I •· •. ·*. :~~;:
*1 NO i YES I • YES *. B~*

I I I I *

AV040 i I II ! ARDIN
*****Cl********** I *****C4**********
* * I I :.::~~:~----!~!~!:* :rnL!Tmmh =: 1
: NLOM BY 1 : I I :IF RC#O. RETURN:

·······*i······*· I l *······*i***·····

J. AVOSO t I t ACOl'IP
01 :••••02•••••••••: I •••••o4••••••••••

• * 0 * NCOl'I < *· *· YES * *
1

1 *:::~~:~----!~~~~*:
· 118? .--->* SET K = 9 + 1 *

· · * * I *IF RC#O, RETURN• •. ..• • • • • * • * ••••••••••••••••• ••••••••••••••••• • •

i NO ;~i~: *->I 1,, I =~!~=
i ERRD A VO~~** ~ ACOl'IP v I NO

*****E1********** *****E2********** ' E4• *· *· ES.*•*·
:::~:~: ____ !~£~!! :::~~_:~----2~±~~! I . *-* CID = *· *· YES • • • * cHss *· •.
* * • * I *· lllJLL ·*--->•. S!l'IPL'!: OP -·
: SET RC = 8 : :IF RC#O, RETURN: *·*· ·*·* *- .. :RRAY :.·*
***************** ****************• I *· • * *· • *

I
i

*****Fl**********
: RETURN :

264

I ,I j NO j n:s

V
I I I •• !....

I l •o5o•
P2. *· *· I AV

9 l2***F4***i~~2..... * * D~*
• * •. I *CEKCAC 1fj0A3* *

·* CJ:D = *·.._Y_E_s ___________ __,1 :---------------: *·.. VAR? ... • * *
*· .. • • *

*· . • ***************** * NO I

1,' **!**
048

*****G2•~*~222*** \ oi *
:<::~:~'=----!~£~~= *
* * * •
* * *****************

* .. L
•OqS*
* .. ol*

*

PAGE 049

Chart AT. COMMON Statement Processor (COMM) -- CEKAV (Page 3 of 3)

AV075
:••••a 1•••••••••:

.....
•o<;o• .. ~~· .
i .•. AV100

.
•050• * Q4* .- .

* I
!

B2 •. BQ *·
.. * ·- • * *· • Ser CAL;>S • YES • • CLASS •. • * cru~ = •. YES r: (CSTr) IC VAR :<----• ..• ;CSTP)= UN::.·• 1>*.•. , .•·*---,.*****

J • • •.. ..• I *· .. •
I •••• •• *********** * * I *· . * *0'49* I 7 NO I 7 NO *. T
I I I I *

'
I ~ ~ .!. I !

AV080 C2 * *****C3***~~:~*** ' C4• *· •.
• • ·- •CEKCAB 160A2* I .• • • • * VAR Oli •. NO •---------------• I • * COLI" = *· Y!'S

*·. Af.RAY •• -•--->: :-->1 *·•. / .•·*~
-* * * I *· ·* ***** *· ·"' ***************** I *· ·* *048* * YES I * !10 * 33*

•oso• I I I *. *
• o,: *->I I I
* * I I I
**** v 1 v

AV0tl5 .•. AV880 E?R2 I ·*· AV910 F.RRD
D2 *·· *****D3********** I T)4 ·- *****05**********

·* *· *Ci-;KCAiJ 160A2* I .• *· *CF.KCAC 1f0A3• • * COMllON *· UP •---------------• I • * COLI" = *· NO •---------------•
*· FLAG • •--->• *-->I *· FOS • •--->•

*· . * * * I *· . * * *· .. • • * I *· ·* * * *· .. * t *· . • • ••••••••••••••••
* DOWN I * YES
I I I

I I I

v I I
I -•. I ~

E2 *· I **"'4*******
I .•·*INITIAL• No I •*sETFLAr;O!/*
I *• DATA FLAG .•-, I * LAST COl!llO!I • I •. UP .•.. I 1' •psr WOFD = z·
I *· ... * I *********** I 7 YES I I I

I I I I
IAV890 ErtR2 J I ! l t =~~~m····~~~::: .A~oRA~E*. I I • ****m;;.;***** • .-= .. ---------------=<--~-==·= • ~~mi(= ·:. 1

1
1 •• (RETnR

0
N, CODE = ••

I * *· CCl!!ION' .• j

t : ••••••••••••••• : •. ·- .. • .. • I ****•··········
I • NO I

II I I
~

' :****G2*•*******!
•IP PilOGRAM TYPE* * = BLOCK DATA, *
: CALL EilR:l :

!<---~
I

~
AV090 • •.

H2 •.. *****H3**********
• *FOR!IAL *· * RAIS<: COl!llON *

• * APG FLAG •. NO * FLAG (CSTP~ *
>*· •• mm •--->:llgv~~R~Oh~N:

•. ·* * rLAG=O * *· . • • ••••••••••••••••
* YES I
I I

I l
I I

AV930 ~ ERR2 i
*****J2••········ •••••JJ••········
•CEKCAB 160A.<• • St.T sroHGE • I

:---------------: : 3i~~6f tAhE : __ j
* * *P'llN1't.~ = <..:STP * A
* * • • I ***************** ••••••••••••••••• j

I
.. ! ..
•OQ8•
•• !>!* .

Section 8: Flowcharts

PAGE 050

265

Chart AU. EQUIVALENCE Statement Processor (EQUI) -- CEKAY (Page 1 of 2)

CEKAYA EQOI

• ••••112••·······.

: ElltEB :
l

EBBD •*•

.
•051•
* B4* • *

*

*****B1********** B2 *·
U200 l lCO.llP

*****B4**********
•CEK CIC 16013* • * *. ::.!:!~~~----2!!~!: •---------------• 110 • * LOGICAL *•

<---· Il' IllD = 0 • * . •. .• • • •. ·*
>: Il'R~~u:11°• : •

266

* YES

.. .,. l
•••••c2•••••••••• . .
:sETL~i~I~o;BL =:
• *
:~H··->l

AY100 •••••02•········· *TBL ID = BQOIY *
*EQV. TER.11. CODE• I •= O. 11=0. CALI *

:.:~ilr~=::.J=

E2 ·-.• •.
·* CHlB = *• YES ·- (. •. -· •.

[
•••••r2••••••••••
CEKClC 16013 ·--------------· • * • *

I
ERBD 'lJ210 • *·

*****C3********** Cll *·
CEKCAC 16013 • * *· •--------------•* 110 • * CID = *·

<---· VAB ·* •. • .. • i "'
U210 . ·-Dll *· *****DS********** .• •. . .

• * CLlSS *• YES * SET CLASS *
*· *· (~m~wi .•·*--->: (CSTP) TO V&R. :

•. .• •
i"

ERRD U220 ·*·
*****E3********** E4 *·
CEKClC 160A3 • * CLASS *·

<-:---------------:<---11-0.:· ~mu OB ·:.
• * *· ABBAY • *
* * *·VAR. ·* • ...

* YES

I

~--------->! ""' .!:---------~
G2***** *****G3********** Gii *·

* * * * ! ::~~:~: ____ 2~~~~= YES • * • :~g~ll~t1~· *·

•• SET RC = 12 .. <---: :<---·-•. mm .• ·• •. .••........... • .. •

l

. 10

"'l2l .. .-...
****82********* * ADD 1 TO !I. * * * *BAISE EQUI'f l'IG*

: mm : :J~~m· ~ 1~sn~:
••••••••••••••• !I!t~J~l.:.Il£!.:

.. L
•052•
• .ai• .

PAGE 051

Chart AU. EQUIVALENCE Statement Processor (EQUI) -- CEKAY (Page 2 Of 2)

AY287

.... . .
: 14 :
! .•.

A4 *· • * *• ****AS*********
YES • * CDLll = •. * •

•052•
*.Bi•

••••• *. . * ••••••••••••••• ~··.:-' (COlllll~•·* : R!!TURR :<l
•051• *· .• * Bii* * HO .

!
.•. SUBS

B1 •. •••••B2••••······
.• *· *CEKAG1 09013• ·= * CDLfE;~. ·: ~>:---1;-&c:-;-ii---:

*• PlREI) • • * BET!IBll * •. .• -·
i<" I

AY280 • •. .•.
C1 *• C2 •. *****Cl********** . • •. ·* *· • •

liO • • SPEQIY ·- ·-·· SP~QI,v *· •• ~>: EQT!ITY+P2E <m. = :
1*· = 1 -· ·- .• • •

1 ·· ·· ·r .: .. .,,.. ·· ·· t · : r :
I :••••01•=·······: :••••D2••·······: :••••D3•••······:

I
I :. SPEQIY = o • : EQ

0mm1
= : : EQ~~mw :

I!........ "'?l J.l;ill..!.
I : uooocT = : :~:~~~~----!!!~!! !s~m:G1ms0! :

I : liUl!BEB * 3 : : I~E~~R; 0 :<---:EQU~+~~m~ Y1 :
• • • * • •

'1 ,........ ·······r······· ·················
• •. ERRO :••••11•········: -·'2 •. •. =~~;~1~····;6~:;:

I • QUOTIEllT = * YES • * CID = *· RO •---------------•
\ :.paoou~~ ~IYIDEo:. •. *· NULL •• • •--->: DIAGROSTtc 25 ! I •. -· • •

I
I ·····.::r:·.·_··· ·.···~:::::....... ·······-r···--·

- ****G3*********
• • •. US * PRODUCT= * • *

· REl!AINDER .--->* PIODUCT+9 * * RETURN * •. •. .•
I ··.·:o ••••••••i••••••••

.. ,., I :·::·=
*****H1********** * * . .
* fRODUCT = * • •
: fBODUCT+6 :-->: 14 :

AY285
• ••J1•••••••.

* STEP GRP *
• * CllT:aJiBhBY • •

. L . .
: 14 :

*.. 1 *
: BS :

···· l lY300 • *· AJ010 ERRD a11 •. •••••as••••••••••
• * *· *CE!l:CAC 160A3* . * CDL!I = *· 110 •---------------• •. I . *--->* .,__. •. .• . . •. .• . . • .. •
i "'

• *· ERR1 c4 •. •••••cs•••••••••• .• *· *CE!l:CAA 160A1* . * *· HO •---------------*
•. II> 1 .•--->* •. .• . •. .• * • •.

* YES

I
AY320 l

*****D4********** . .
* SET !IUftBEI Ill * * GROUP = II * * • • *

l<:-----1
~ ESC

*****Ell**********
CEKAB1 121A2 ·---------------· * IF RC # 0 *
• RETURI *

l
·*· F4 *• .• ..

• • CDL!I = *• YES •. *·, (COllllA) • *. *--+
•.

•• • • •051• i .. ·.:i·
AJ330 .•.

Gii *•
.• *·

• • CDLll = *· 110 * •
•. EOS • *-->* BS * •• •• • * •. .• i "'
*****Bii********** . .
*SET TERI! CODE =•
: 1 :

I
••••Jll••······· * RETtJl!I *

: (RETUR~) CODE = :•......

Section 8: Flowcharts

PAGE 052

267

Chart AV. DO Statement Processor (DO) -- CEKAZ

CEKAZ1 DO LABL
*****AJ**********

****A1********* *CEKAJA 157A1*
* • ·------~---.-----·

: *****::~::*****: r>:U' RC,.O, RETURN: l I ·······r······
• * *· * IF EllD LOOP *

81. •. •• II •••••BJ••········

·= \l~;ic~L 0 ·: Y_E_s _____ __;.~ ... ------1 :E~~~·I"~bD CtL~o:
·•. .•· :EllD LOOP COUNT.:

•.
• NO I

'"' j "" *****C1********** *****CJ**********
•CEKCAC 160AJ• * RAISE DOll'T *
•---------------• *FILE FLAG CALL *
* * *ACOllP. Il" RCt<O. *
* * * RETORR *•....

l .J ..
••••01••······· .• ••

: !::~::!if~::.:. !<1 •= :. *· mEL. *. :: *lYES

•. ·* • 110

l .•.
EJ *·

110 ·* CID = *·

268

l
·· ... cORSTAllT •• ••

·- ·*

j"'
I ·:::-=-·-.... I<--•.• .. ~:~E~:~.· .··
I f'

AZ14 ERRD ! AZ05 *
*****G2********** GJ

0

• *·
CEKCAC 160A3 • * *·
•---------------• llO • * 0 < *• <--: :<---•. •. c;t%9§ • • • •
* • •• .• •

i"'
HJ***** . .

* LOWER DOH'T *
* FILE FLAG *

I .•.
JJ •• .• •.

·* LEGAL *· YES
*· DELillITER • * •.. .•

*· .• • .. • * llO

"" l *****K3**********
=~~!~~~----!~~~~=_____________.•...............

*****G4**********
!s~i mu REi: :

>* ENTRY IR *
•CROSS-REF LIST *
* = CYAL *•..•.......

I
t BGRLP

*****H4**********
CEKBA 1 1J4A1 ·---------------· . .
:IF RC=O RE'l.'UR!I :

I
*****J4••········ . .
•IF CDLll = EOS, *
* CALL FRR2. * • * * ••.......

l
****K4*********

* RETURN *
: (RETURll COOE=O):

PAGE 053

Chart AW. ASSIGN Statement Processor (ASSI) -- CEKBC (Page 1 of 2)

CEKBC1 ASS!

* ****A2********* *
: ENTER :

I .. ,. ''°" m *****B2********** *****B3**********
:~:~~~~----!~~~!: =~~~!!~----~!~~~= . . r>· . :IF RC=O, RETORN: :IP RC#O, RETORll:

l I l
=~~~~Ggpfi:UYP~~= •• ··cuss >· .. YES • *
•••••C2•••······· I CJ···.

TOP RAISE DOll'T *· FORllAT ? • *-->* E1 *
* PILE PLlG * *· .• * * : •.••.••••.••••• : I •. .. . •.• I I •1110

~ ACOllP I BC064
*****D2********** *****D3**********
:::~~~!----~~~!~! : SET CLASS TO :

***** !xr RC=O RETURll : : sooacE :
•054• ••••••••••••••••• • ••••••••••••••••

-.:i· l I
BC011 t ERRD ·*• V

*****E1********** E2 *· *****E3**********
CEKCAC 16013 • * *· * *
•---------------* NO • * CID = *· * *

:<---*· *· LAB IL • *. * :SET !LAB = FllTR:

• * •. .• • • • .. •
i"' I

EC030 • *· ~ ESC
F2 *· ~ *****P3**********

• * • * D< CVlL *· *· YES =~~~~!! ____ !~!~!:
•. ~99999 .• * •

*· •. •••• :xr RC#O, RETURN: • .. ••..........
[. .I.

*****G2********** G3 *•

:~:~~~~----!~~~~= . * • * CHAii = *· *· YES
* * *· 'T' • * . . •. . .
• • •. ·* • ... l . 110

: H2 !->• I
**** l I !ERR BC090 ~ ERRD

*****83••········
****H2********* *CEKClC 16013*

* RETURll * •---------------•
'-------->* (RETURN CODE *<---* *

* ••••• :l:L •••••• * : :

ESC
*****!4••········
=~~~~~~----~!!~!:

'

>• • :IP RC=O, RETURll:
I I

• *· ERRD
P4 *· *****F5**********

• * *· *CEKCAC 16013* • * CHAR = *· 110 •---------------•
•... • 0' ••• •--->: :---,

· · * * I *· • * ***************** I
• YES I

"'22 L...... 'i

1

: gmua~0mf :

1111

:1co11hT~~.RC#O,:
I I

• *· ERRD I
R4 •. •••••RS••········ I

• * *• *CEKCAC 160&3* . * Cill = *. NO •---------------•
*• VlR. • *->* *->

*· .• * * ! *· .• • • . .. •
* YES * ***:
I • H2•
~ . .

••••• ****
•055•
* A1* ..

*

Section 8: Flowcharts

PAGE 054

269

Chart AW. ASSIGN Statement Processor (ASS!) -- CEKBC (Page 2 of 2)

BC120

.....
•055•
* Al* .. .
! .•.

Al *· .. . • .
. * *· NO

*· *~IYP=I•4 ? • *. *---l
•.. .•

*· .• •054• i "' . ·:i·
BC140•.. .•. . •.

Bl *· B2 *· 63 *· B4 *·
.• •. • • •.. • * •. .• *·

·* CLASS = *· NO .• CLASS = *· 110 ·* CLASS = *· NO .• Cl.ASS = •. 110
• •• :IllPL~ VAR:.·*---->• ••• ONKNOVN ? •• ·*--->• ••• Fg:~p~N ••. •--->*.•. AR!IAY ? .•·*-~

*· .. • •. ..• •. . • *· ·* ••••• • .• * ... • • *· . • *· . * *05ll• * YES * YES * YES * YES * Rl * I I I I * •

BC160). BC150 l BC170 ! ERRl c1 •. •••••c2•••••••••• •••••c4••••••••••
• * llUST- *· * * *CEKCAA 160A 1*

I I I I •
YES.: *ormsMiEo ·:. : sEMm~ETo : I :---;;:;;1;;;;----:

I
*·FLAG UP ?. * * * I * UNSUBSCRIPTED *

· • * * I * AR PAY *
*· . * ***************** I ***************** r NO '

'"'" .. J:.... I *.RAISE !!UST-.. I
* NOT-Bl.-DillEN- *
* SIONED FLAG • I
* *

I
IBC190 J:-

E1 *·
L ·* llOST- *· • * llO'r-B:E- *· OF

>*. 2~FiliE~ FLA:* •___, ·- .• *· ·* •054• * 001111 • El* I •••
BCl 90 !

*****F1**•*******
• RAISE DEFINED *
:RAmGFmTnPE:

: u~tth <~m;~ :
I

*****G1**********
SET VAR = EFTOP * GEii El' ENTRY * :su ggmEg~~P.:
* CALL ERR2. *

I
*****H1********** * IF C60PT = Y, * * CHANGE CROSS- *
REF. LIS'r EllTRY
* TO 'DEFillED' *
* •

I •••••Jl••••······ . .
* UPDUE EST - * * LOC BY ASSIGll * * ESIIllATE *

I
****Kl********* * RETURll *

: (liETURN CODEsO):

270

PAGE 055

Chart AX. File Control Statement Processor (FCON) -- CEKBD <Page 1 of 2)

CEKBDl BKSP

****A 1••••••••• . .
: ENTER :

I
I
t

••a1•••••••
* * SET N = 2 * * • • *

I
I

CEKBD2 ENDF

****A2********* . .
: ENTER :

I
I
i

* ••a2•••••••.
.. * * * SET N = 0

"

CEK~D3 REwI

****A3*********
" " * ENTER •
• *

'
I
~

* **83******* *

* ..
" SET N = 1 *

I
I
I

* .
!<•~~~~~~~~~~~~~~~~~--'

BD010 ~ LACL
•••••c1••••••••••
Ct; KAJA 157A1 ·---------------· • * :u RC#O RETURN :

I •••••01•········· * FILE CGNTROL * * ENlRY TO PR1'. * * SEI l'NSll = N * * U FDA TE fiiF'IOP *
I

' "°" .•. *****El********** E2 *· *****PU**********
CEKAEl 122A2 .• *· * - *
•---------------• • * *· YES *Sl'T CLASS (CSTP} *
* * r>•. CLASS ICSTP) • * >*TO SillPLE VAR. *
IF ilC#O, RETURN *· = UNK. .• * * -· r······ 1.00,, ·r· ... :: T

F1 *· I 1'2 *· **Fii*******
* * ver I •* *• *RAISE "UST *

.:•. c~~R = • *: .::::__i .: •c;A~H~f P1 *:•YES >*" DI~~~s~511Eo "*
·•. .•· *·•.VAR •• •·* *•FLAG (CSTP)**

•. .. • .. •
• 110 " NO I I 1

1 •• !... I I
•057• g-
•• a~• G2·"· •. I . . . • . • : ·~Lmmw ·: rn >I

*· NAllE • *
*· .• I • .. • I

l
* NO I

~
•*• BD170 ERR1 BD030 •*•

H2 *· *****~fl********** P4 *• ••Kc;******* .• *· *C!!!KCAA 160A1* ·* *· * *
•:*CL~SH~HPI*:•~>:---------------:_>•:* CTYP=I*ll ":.~_Fs __ >* • !Im~ ma "•

•.. YAB. ·* * * *· •* * * *· .. • • • •. • • • • •.. •.
* NO * NO I

I I ... L
I I •057*
~ E&RD BD120 ~ El!RD * B3*

*****J2********** *****JU********** * *
*CEKCAC 160A3• *CE!ICAC 160A3* * ·---------------· ·---------------· * • •
* • *

t<.~~~~~~~~~~~~~~~~~~~~--
••••K2••·······

* l!ETUB!t * * (R!!!TOnll CODE *
• =12) •

PAGE 056

Section 8: Flowcharts 271

Chart AX. File control Statement Processor (FCON) -- CEKBD (Page 2 of 2)

.....
051
* *s~•

.
*057•
• .si•

* •
! I

BOlJ() EOOUO ·*· ~0050 ~
=~ ~~~i~ ... ·;:~:~: • 82 •.. :·~;~:f :·~;.;~~··:
•---------------• NO • * *· * SET UNIT=EF. * : :<----·- .:ol'!mw ~.·· r>:TOP E~~~~Rm EF:
• • •• ·* I • QUANT=CSTP •
***************** •.. .. * I *****************

I • YES l I
I I I I
I t I !
I . *·· I *****C3**********

···*~~yp >· .. HS I :~hr0 ~~R2. E~~f :
I *· *· IN'I. .·*--' * CVAL = *

I • . . • ::~:~~;:it~:::.:
I *·(:0 I
I I I

II ! ERRD ! IVST
** ***D2****** **** *** **D 3********** I :::~:~: ____ 2~~~~: ::~~::2 ____ 2~2~!:

I :rF RC ~o, RETURN: I : : ········i········
I !
I v FERR E3. *· *· *****EU**********
I ****E2********* . * *· * * L_ * dETUP.N * • * *· YES *SET CLASS (CS?P) *

---->: (ilErm, CODE :<1 *· .:~A~mm~ *. *--->: TO EXT"!'!IAL :

••••••••••••••• I •. •. . • . • : :
I * NO I

I I I
II aoo10 J !

F3 *· *****FU**********
• * *· *SET TEIOIN= CSP*

• •CLASS (CSTP) *· YES * UPDATE ESTLOC *
*· = • *--->*BY !"ILE CONTROL*

*·EXTERNAL • * * ESTIMATE *
· · * •

*· . • ***************** * NO I

I I
I I

I I
80160 V ERRD I

*****G3********** V
CEKCAC 160A3 ****GU*********
•---------------• * RETURN *

......___: : : (O.BTU!'N coo::=O):

* * *************** *****************

272

PAGE 057

Chart AY. Input/Output Statement Processor (RWIO) -- CEKBE (Page 1 of 6)

CEKBE2 WRIT

* ****A3********* *
: ENTER :

I
I
~ LABL

*****B3**********
CEKAJA 157A1 ·---------------·
* * :IP RC¢0, RETURN:

I

I
*****C3**********
* RAISE DON'T *
*FILE FLAG NL=O. *
* CALL ACOllP IF *
: dC¢0, RETURN :

l
ERRD ·*· **** *D2********** DJ *·

CEKCAC 160A3 ·* *·
*---------------• NO • * CID = *·

<---· NULL • * • •. • * • * •. • • • ...
I * YES

I l
I BE010 ·*· I E3 •. :••••EU••••·····:
I .•. * CDLll = *· •. YES *WRITE ENTRY TO •
I •-.. < * ••. •--->:*PilF. u~g~TE PRF• ••
I *· .
I

• * •••••••••••••••••
• •"No I

I I I
I I V
I i ***** I •060*

I ERRD *•F2•*
*****P3**********

I
r=~~:~: ____ !~£~~; .
.................

I I I >

****G3********* * RETURN * * (!!l!TURM CODE *
* ••••• ~!;~ •••••••

Section 8: Flowcharts

PAGE 058

273

Chart AY. Input/Output Statement Processor CRWIO) -- CEKBE (Page 2 of 6)

CEK BEJ PiiNT

••••A 1•******** . .
: ENTEB

I
I

!
•••••s1••••••••••
•SET PRFID = 2 5 *

I

CEKBU PUNC

* ****A2*•****•** *
: EllTER :

I
i

:••••s2•••••••••: . .
:sET PRFID = 26 :

""' !<----------·
•••••c1••••••••••
:~:! ~~~----~~! ~~:
• IF RC # O, *
• RETURN *

l
*****Dl**********
* RAISE DOll'T *
•FILE FLAG. CALL*
*ACOllP IF RC#O, •
: RETUllN :

I
!****El*********:
: E~mT{~um :
: UPDATE P.ilFTOP : I *059•
• F1 •->

BE210
:****Pl*********!
* UPDATE ESTCOG •
:BY rnmm1.cH :

BE220
*****E3**********
• SET CVAL = *
*'CHCIA 1 1 CHSH =•

1
>•70, CALL IVST. •
:rF ac .. o, RETORll:

I I
I !

·*· P3 *· *****P!l********** -· •. . .
• * *· YES *SET CLASSJCSTP) *
·-.:~Agmm> .• ··--->: TO EXTE NAL :

*· . • • • .. . ·;, ·······r·······
".!. •. ".......... j .. ,,, ,)... • "

• •. •CEKCF1 144A1• I .• ... • *
• • CID = *· YES •---------------* .•<:LASS (CSTP) *· YES * SET TEIOIN = •

· VAR- .--->* •--> •. = .•--->* CSTP * *. . * *IF RC#O, RETIJRN* •.EXTERNAL • * * * •.. •. ··:·=·••••... ··;·:. ·······r·······
. t BE670 l ERRD PE240 • *· BE215

H 1 *• *****H2********** *****H3********** H4 *·
• • •. *CEKCDl 142A1* *CEKCAC 160A3* .• *·

•• • Cg~~T: *:~>:---------------:__J :---------------: >••* COLI! = *·*YES
0

•... .•·* :IF liC~O, ilETIJRll: : =--- ·*·... • .. ••• ---::: ••
•.. ... • ••••••••••••••••• •. • • *063• ; " i " '.'.l'

BE590 l ERRD • *• llE640 EP!!D
*****J 1 ********** J4 *· *****JS**********
:~:!~~~----2~~~~= . *•*COLI! = *· *· 110 =~~~~~~----!~~~~=
* * *· F.OS ·*--->* *

: : •. •. ..·· : : • .. •
• ••••• I
• K1 ._>I
* *

~
****K 1*********

* RETURN *
* (RETURN CODE *
• =12) • ···-···········

274

i "'
****KU********* * RETtJR!I *

: (RETtJIHI CODE=O):

1
: K1 :

PAGE 059

Chart AY. .Inp•"t/Output Statement Processor CRWIO) -- CEKBE (Page 3 of 6) PAGE 060

Cl!KBE1 READ

••••A1••••••••• . .
• EITER • . .
·······r·····

•••••81••········
*RAISE DORT PILE•

:mD·~=~~A~A2t :
*LABEL IP RC#O, •
* .RETORR • .., _._

·······r::~:··
•••••c1••••••••••
•CEUE1 122A2• ·---------------· . .
•IP RCilO, RETORR••

l
.•. BE010 02.•... BE522***DJ***!~:2***

•*D
1

*• •.. YES •"*cDLll = *·•. 110 =~~~~~! ____ !~!~!:
•=* ~~fL= :*->*: •. *->: 1 .. •. .-. . . ·-.. - : :

*· •" 10 • ••YES

l l •••••11••········ :·:::fi2::;:;·;~·: : m¥ umuio : *PRP. UPDATE PRP*
•P!iP. UPDATE PRF• • TOP PRPTOP TO •

: TOP : = .. i.i.=.~.o.!* llC*E8.~.~.~ ••• :• .
1 :m. I • F2 *->

•059• ••••
• P1• B.E020 • • •••••P2•••••••••• . . .

* UPDATE ESTLOC • * BY RUD-WRITE *
• ESTilllTE • . . ·······T·······
•••••G2****•••••• . .
• SET='CHCil1 1 *
: mt1moRP:

I .•.
*****H1•••••••••• 82 *• . . -· •.
• SE:l' CLASS * !ES • * CLASS •.
: ~m£hl0 :<---•. •. cm~t1i .•.• •

T'
BE0211 J2···.. •••••JJ ... !:=2 •••

• •c~lSS (CST;j *· 10 =~~!~~~----!~~~!:
"' :; .*->•
··.pnau~.·· : :

L
· ... •

• YES

026 ' ""' *****K2•••••••••• •CEK&E1 122A2• ·---------------· >• •
•IF aci10. llETOl!I* . . ········i········

•061•
• B2• .. .

••••"P••········
• RETORI * I': ""!!H, "" : I

I

Section 8: Flowcharts 275

Chart AY. Input/Output Statement Processor CRWIO) -- CEKBE (Page 4 of 6)

.....
•061•
• .e~• .
t

·*· BE050 ·*· ·*· CONTll
82 *· 83 *· Bii *· *****!'!"**********

·* *· •* *· ·* *· *CBKTl'G 015!'1*
·* CID = *· NO ·* CID = *· YFS ·* CTYP = *· YES •---------------*

· VAR ·--->*. CONST. ·*--->*. INT. .•---->* *
·•. .•· *·•. .•·* *·•. .•·* :IF RC#O, P!TfJRN:

• •• • • .• • •. ·* ••••••••••••••••• * YES * NO * 110 I

I I I I . t ERBD BE560 t ERRD BE060 !
:****C1 *********: ·* C2 *· *· =~~:~~~****;:~:;: =~::~i~****;:~:;: :•;;~if;•;;;~;:•:
* SET CLASS * YES • * CLASS *• •--------------• •---------------• *SET U!IIT=FFTOP. *
* lCSTP) TO *<---*· (CSTP) = ·* * * * * *GENi;:!U"'E'. EP Ell'!'*
: S llPLE VAR : *·,.. ONK •• •·* : : : : :s~T QUA!IT=PNTR :

********j******** •-j ·:o ********j******** ::::::·•j******** •••••••••••••••••

I : Dll :->1
I + I •••• I

BE035 + BEOJO • *· I I
D1***** D2 *· I 9

*RAISE llUST * ·* CLASS *· ****D4*********

* * DI=~isMMEo * •<~•= * <~n~h = *: • .__ ______ >:. (RE¥~_··~1 S2)R~ODE :.
* FLAG (CSTP) * *· VAR • *

• • •. ,..:fr ••••••••••••••• •
i"

·*·
E2 *·

• * CLASS *·

[
"'<.~'.~~;~.->

...... J
:I; fim J~~TP):
* CALL EiiR1. fF *

I :NOT, CALL ERRD :

········~········

11.__ ''"li J ~ ! ItAtP~a;o:"" !
----.>* UPDATE EFTOP. *

:s~ia0~Pt~mP·:
l .•. . ..

:••;:¥2~~:;;*!**! • * R3 *· *· • * HlJ *. *· :****H~ ******** •:

276

CSTP lUISE FIRll • * COLI! = *· NO • * CDLll = *· YES * SE'!' LA~F = *
* TYPE FLAG *--->*. .*--->*. ·*--->• X' 8000'
* (CSTP) * *· ·* * ·* • • * •. • • •. .• • * •. . . •.

* YES * !10

::!;: l
* * B ! * *****Jll**********

* =~~~~~~----~~~~~=
*
* * *

l
• *
: Dll :

I
..! ..
063
* .f!i•

*

PAGE 061

Chart AY. Input/Output Statement Processor (RWIO) -- CEKBE (Page 5 of 6) PAGE 062

BE090 • *· !'E590
A3 *· *****A4********** • • *· *CC:KCAC 160A3•

.• CID = •. 110 •---------------* r-->• .•. CONST. ..·*--->: ommuc :--,
***** I *. • • * !!ESSA GE •
=~~!= t *·*•;ES *****************

.. II I
BE070 l ! CEKCD1

•••••Bl••••······ I •••••BJ•••·······
:~:~~:! ___ !~~~~= I :::~:~~----~~~~!!

;~:.:~:~:.::::::; l ;~: .. :~:~:.::::::;
l I I
I I I
i I ! ·*· I BE110 .•. I

•• Cl •• *· I .• C3 •. •. I
• * CID = *• NO I • • DELillITEii *· YES ,I

• ••• VAR •• •·* r>* .•. (CDLf) = ••• •---l

•· •..• ·• I *· *· .• ·• =~~~= I
• YES I • ~o • • H ~· 1,I

I I I •
~ I ~
• FNAllE I • ElE600 1' 01

00

• * *****D2********** 03• • •.. *****D'I**********
•• • ;ELillITE:· *· 110 ::~~:!! ____ !~~~~= I .• · ;TATEllEN~- *· 110 ::~~:~: ____ !~~~~= v

· (COLI!) = .•---> *--' *· ID (SIDNO) = .•--->• G~NEP.ATE *--,
*· •. •=• • !IF ac .. o, BETURN! • •• _PEAD •• ·• ! OI~~~~~Hc : I

*· . * **** ***•********* *· • * ***************** I * YES * YES I
l I l

J J BG570 :II
El *· !****E2*********: E3 *· *****!4**********

•• ·;TATEllEN~· *· YES * SEr LABF = • *• ;ELI!!ITE:· *• NO ::~~:~: ____ !~~~~= !
BE080

·- .. ~D ~HENO)~ .. --->: X'd000' ·- •• (COL~) = •• ··--->: ommHc :--,
•• •.. • • • • : : •• •. . .- * : ~~;;~~: •••• : I

~ NO I * YES I
I I vi I I I I

SE58il ~ ERliD I I

:mm::::2~m: 1 =~~~m::::mm 1
•GENERATE DIAG- * I * * I
NOST IC MESSAGE • I .•IF i.c .. o. PETURN.. I
• • I I : ········;········ '

I I I

II BEl.20 .!.
G3 *· . . • .

• *IDEllTIFH'.R *· YES * * '-------->•. (<.:VAL)= .•-->* JI! * *· 'END' • * * * •. ·* •••• • ... i "
. •.

H3 *· . . • . • ••P.4••····· *
• *IDENTIFIER *• YES * SET PEND = * •· ... <~uw .• · ·--->•. 1

• •
*· ... * •••••••••••

* NO I
I ,.**** * I

1 :.~:.:->I
Bl!o10 BE130 ! RT!!All

•••••J 3••········ *****J4••········
::~~:~~----!~~~~= ::~~::! ____ !~~~~=
* GEllEliATE * * *
.. DIAGNOSTIC • *IF ac .. o, RETURN•
* II ESSA GE * * •

I t I ••.•.
i :~i~:

****K3********* * * RETURN * '--------------------:>• (RETUl.lli CODE *<-----------~
• =1.t) *

Section 8: Flowcharts 277

Chart AY. Input/Output Statement Processor CRWIO) -- CEKBE (Page 6 of 6)

.....
•063•
• 82• .. .
i .•. .•.

81 •. 82 • • . • •. .• ..
YES • * *· 110 • * *•

r *· DELIIUTEB .•<---*· DELillITEB .•
•. ~~DLll) = _L. • •.•!COLI!)••.•

• .. • • .. • :::!:: •i 110 "" ~ YES

EBRD BE140 ! ACOllP
*****Cl•••••••••• *****C2**********
•CEKClC 16013* •CEKll!1 122&2• ·---------------· ·---------------·
* • •IF BC#O, BETDBll• * • • • •..........•....

. L I . .
• K2 • • *· 8E150 • *· BE620 El!RD
• • 02 •. o3 •. •••••o•••••••••••
•••• • • •. ..• •. •CEKClC 160A3*

• • •. YES .•IDERTIFIER *· 110 •---------------•
•. •. EID = 0 ••• *--->•. •. ''ilU\ = ••• *--->: : •. .. . •....•..........

• 110 * YES !
.. l. I ·.··K·2· ••

BE630 ERRD
*****E1•••••••••• E2 *· **El******* * *
CEKCAC 16013 .• *· * * ****
•--------------• 110 .•IDEITIFIER *· * SET FERD = * :<---·· •. ''i~Ck\ = .• •• * • 1

• • . . •. ••.
i"'

••r2••••••• . .
* SET FEllD = *

• 0 •
"''° 1<.-i-TB_l_I _______ ~

•••••G2**********
CEKCE1 14312 ·--------------· . . :IF BC#O, BETORM: *****
••••••••••••••••• •063•

I
* H3*

l *(
• •. BE170 • *• 8!190 lCOl!P

H2 *· H3 *· *****Hli**********
• * •. • * *· •CEK&E1 12212*

•* *· YES • * lllllELIST •. 110 •---------------•
•• •• mm~Er •• ··--->· .• ~LlG A'L1= •• -·--->:J:P BC#O, BETUill: '· .• .. .• . . • .. •

·1 NO •••• ·1 YES I •063• • J3 •->

EBBD BE1;~ .. •
•••••J2••········ •••••J3••········ •••••Jll••········ *CEKCAC 16013* * * * *
•----·--------• • LOllEB DOl'T * * IF CID # IULL *
• • *FILE FLAG. CALL* *OR CDLll # EOS, *
* • • IOLST. * * CALL EBB2. ••....
=·::·=->I I I

****K2********* ****Kl********* ****Kli*********
• B!TDBI • * • • R!TURll *

'--------.>: .!:::mL~::: .. : : ::::::• : : !::::::.~:::::~:

278

PAGE 063

Chart AZ. FORMAT Statement Processor (FORM) -- CEKBF (Page 1 of 6) PAGE 064

C.EKBP1 FOR!!

•****A 1********* *
: ENTER :

I
. *· BF530

Bl *· *****B2**********
• *LOGICAL*. *CEKCAC 160A3* ****B3*********

• * IF *· NC •---------------• *RETURN (liETURI *
• •• ~NDIC~TOR=?.·*--->: ERROR l!ESSAGE :--->: CODE = 12) :

•.•... ·-r" I
• •. eF540 I

Cl •.. *****C2**********_J • * *· *CEKCAC 160A3•
• * PROGRAll *· YES •---------------•

· TYPE=BLCCK .--->* *
*· DA TA • * * ERROR l!ESSAGE * ·- • •

* NO

I
:••••Dl*********:
* PROCESS *
:sTl'IE!IEHT LABEL:

I
:••••E1*********:
* INITIALii.E *
: FO!il!AT TABLE :

l
!****Pl*********!
* GEl FIRST * * SOUiCE *
: CHABAClEll :

I
.•. BIP430

G1 *· *****G2**********
• * *· *CEKCAC 160A3* ****G3*********

• • LEPT *• NC •---------------• * * *· PARENTHESIS .•--->• •--->• RETURll •
*· .• * ERROR l!ESSAGE * * * ·- •. -·

* YES

l _____ --- ---·------------------------

.....
•064* • e•• .. .

BIF310 !
*****B4**********
CEl(CAB 160A2 ·---------------· . .
* E:!!ROR !IESSAG! * I *064* * Cll *->
: ••• • <---

BIF~ll •• cll••········ 1 • * * GET NEXT *
: CHARACTER : I
• * I ········j········J· I

~ . •.
Dll *· . . •.

•* IS IT *· 110 *· DEL IllITER ? • * •. .•
· · * YES

.. ! ..
•065•
* C2* * • .

.....
•0611•
• .s~• .

BIP100 >!
:••••85*********:
* G'!T lllJllllllR *
!PllECEfHfG (IP :

I
·*· cs •• .. • .

• * BllAllCH *• *· 011 FOP!IA'!' .• *· TYPP • * •. .•
• .. ··
i

* • . . • *. .

C5 •••• H ••••• 066 81
••• X ••••• 065 G'i
••• P ••••• Ofl'i !'II
••• T ••••• 065 Gii
••• ALZI •• 067 Bii
••• G ••••• 067 !Ill
••• D!P ••• 067 Bii
••• + ••••• OfS G1
••• - •••••. 065 G2
••• 1 ••••• 068 B4

:::i':::::m :~
:::,os:::m ii
••• OTRR •• 064 84

section 8: Flowcharts 279

Chart AZ. FORMAT Statement Processor (FORM) -- CEKBF (Page 2 of 6)

••••• +
•06S•
•.G!*

* I

BIF165 !
G1*****

* * * CLEAR llillOS *
* FLAG *
* *

280

• *
1

•0611• * BS•
* * .

.....
•06S*
• B2*
• * .

BIF105 t
*****B2********** . .
* GET NEXT *

CHABACTER :<------------
* •
=~:;. I * C2 *->

l!IF111 •*•
·*C2 *·•. ***CJ********

• * *. YES * SET COl!llA *
· COllllA .•---> FLAG * •• ·* • • •.

• .•. :o ·····1·····
,,,,,, l :•m

•••••02•········· * • * • •
* BACK UP OllE *
* CHARACTER *
• *
* *

!
0611
* BS*
* * *

..... -
•06S•
* G2* • *

*

BIF170 !
G2***** • *

* SET llI!ltlS *
* FLAG * . .

* *
!

•0611•
* BS* .. .

:m: /
* GJ* • * .

BIF190 !
*****G3********** * •
*INSERT CODE Ill *
: FOBllAT TABLE :•............

l
*****HJ********** . .
STEP PAST TABLE
* ENTRY * . .
• *

. L . .
• B2 •

• •••• p
•06S• •.a:• .

Bil1110 1
•••••B4•••······· . .
*IllSERT CODE Ill *
: FORl!AT TABLE :

l •••••c4•••••••••• . .
* SET SCALE *
FACTOR Ill TABLE . .
• *•..........

I ...
D4 *• *****D5********** •• *· • •

.• llillUS *· YES * SET SCALE *
*· FLAG 011 .•--->*FACTOR NEGATIVE*

•. * * • .. .• . . • .• ·:o ********j****••••

""" l< *****E4********** . .
STEP PAST TABLE * EllTRY *

***** T
•06S•
•G~ .

BIF1115 !
*** **G4 ********** * •
*INSERT CODE Ill *
* FORl!AT TABLE *
* •
* *

l
*****H4**********
* SET T COUIT * . .
* •

l •••••JI!••········ . .
STEP PAST TABLE
* FHTRY * * • * ••..

. L . .
* C2 *

••••• x
•065•
* GS* .. .

BIF13S !
!****GS*********:
*IllSl!RT CODI! IN *
* FORllAT TABLl! * . .
• *

I
!****HS*******~*:
* SET L EHGTH IN *
: TABLE :

l
!****JS*********:
•STEP PAST TABLE*
* E'ITRY *

J
• !!2 •

PAGE 065

Chart AZ. FORMAT Statement Processor (FORM) -- CEKBF (Page 3 of 6) PAGE 066

***** H •066*
•• B!* .

aii'130 1
:••••e1•••••••••:
•INSERT CODE IN •
: FOR!IAT TABLE :

I
:••••c1•••••••••:
* SET LENGTH IN *
* TABLE *

I
. *· BIF3110

D 1 *· *****02********** *****D3**********
• * *· *CEKCAB 160A2* * *

• * LENGTH *· NO •---------------• * SET llAXI!llJll *
*· *· OK ? •• ·*-->: ERROR llESSAGE :->: LEllGTH :

•. -• * • • • • .. •
* YES

[<------------'
!****E1*********:
* I!ISl!RT HEX *
CHARACTERS INTO
: TABLE :

I
!****P1*********!
STEP PAST TABLE
: ENTRY :

.. L
•065•
• 82*
• * .

.....
*066•
•• 8!*

*
I

BIF180 ~
!****B4*********:
*INSERT CODE Ill *
: FORllAT TABLE :

I
!****C4*********:
* SET REPEAT *
:cou!IT (IF un :

l
!****D4*********:
SET PARENTHESIS
: LEVEL :

I
·*· E4 •. •••••~5••••••••••

• * *• *CEKCAB 160A2*
•* SYllTAI *· 110 •---------------•

*· OK ? • *--->* *
*• *· ·*. * : ERROR !!ESSA GE :

*· • • ***************** * YES
I

I<.-----'
~

*****Pll********** • *
STEP PAST TABLE
: EllTRY :

..L
•0611•
• .s~• .

Section 8: Flowcharts 281

Chart ~z. FORMAT Statement Processor (FORM) -- CEKBF (Page ~ of 6)

.....
*067•
* •B!*

*

BIF185 1
:****B1*********!
*IHSEBT CODE IN *
: FOlillAT TABLE :

l
*****C1********** . .
SET PAR.ENTHESIS
* LEVEL * . .
* •

I
*****D1********** . .
STEE PAST TABLE
: ENTRY :

• *
l

• *· Bil'J30
El •. *****E2********** • * *• •CEKCAB 16012* . * SY !IT AX *· !IC •--------------•

· OK ? .•---> *
*· • * * ERROR llESSAGE * •. .• . . ·r.. r

BIF186 .•. .•.
F1 *· l'2 *·

• * *• • *IS 'IRIS*.
·* IS THIS *· US • *EliTBI Jl'ROll *· 110

·.~ LEVEL 0 :.---->• ••• COllP~LER .•"°'-l

282

•. .• .. .•
·- .• •. -· •069• * 110 * YES * !12* l I * * 1 .
•065•
* B2*
* * *****G2********** . . .

GE? llElCT
CHARACTER
I

.•. BIFllllO
H2 *· *****H3**********

:,, -* *· *CEKCIA 160A1*
.• TEST IF *· llO •---------------•

- *· EOS ? .*->* *
*· • * • ERilOB llESSAGE * •. ..• . . ·-r. ;ES ········r····· ...

.....
•069• •069•
* B2* * 82*

mm =~~;: i;5;!G'
Bll'160 * * B~* .

i
!****B4*********:
*IllSP.RT CODE IN *
: FORllAT TABLE :

l
!****CIJ*********:
* SET REPEAT *
:coun (IF UYI :

l •••••n•••••••••••
: GET II FIELD :

I
·*• BIFllOO

E4 *· *****~5**********
·* *· •CEKCAB 11;0A2*

. * IS II *• 110 •---------------•
*· FIELD • *--->* •

*·PRESENT ? • * * l'RROP llP.SSAGI'. * •.
*· i •;ES ********I********

i
.....
•0611•
* Cll*

*****Pll********** * • . . .
* SET W-1 IllTO *
: TABLE :

l
*****GU********** . .
STP.P PAST ENTRY
: SO FAR :

l .•.
Hll *· .• • . • * IS THIS *· HS

• .•. '~";nzr .• · ·---=---,
*· .• •••••

*· .• •065•
* 110 * C2* !

*068•
•.Bl*

*

PAGE 067

Chart AZ • FORMAT Statement Processor (FORM) -- CEKBF CPaqe 5 of 6)

.....
O<'>d
•• !ll* .
!

i!IP151 -•- -•-
81 •. B2 ·- •••••83••········

- * *· • * *· *CEKCAE 160A2*
• * 'IEST IS *· NC • * IS THIS *· NO •---------------• *· DECillAL .'*--->*- A 'G' ENTRY .•--->* *

•- l?CINT ? • * *· ? .• * EaROii !!ESSAGE * .. -· •. •. . . • .. -.
* YES * YES I
I I I
I ! I

1
••••• ..~ ••
•065• •0611*
* C2* * Cll*

:••••cl•••••••••: • • • • • • . .
: GET D FIELD :

l -·-.. * 0 ls D *· *. =~~:~~~*0*;60:;: !****DJ*********!

***** QUOT"
•068• ... "'~· ..

I
l'IF175 ~

:••••eri•••••••••:
•INSERT CO!lE Ill *
: FOR!IAT TABLE :
• ••••• I
• Cll •->I
* * I

PIF1 ;~•• ~
:****C4*********:
* GET NEXT •
* CHAR ACTE!I *
:rNCLllDING BLANK:

I

!
. *· - •.

Oii *· 05 • • .• •.. .• ..
• • FIELD *· YES •---------------• *SET D EQUAL TO * -· rs IT ·- NO -· IS IT ·- YES
-~~R~nLfiH~K J-->: ERROR llESSAGE :--->: W-l :
' •• .• • • • *

·•. QUOTE ? .•·--->•-.. EOS ? •
0
·*1

•. . . •. .• *· • • • •••••••••••••••• *· . • • .. • * KO I * YES * 110

L 1
I I

9IF178 VI l ~
:****El*********:
* SET D INTO *
: UBLE FNTf<Y :

I
t

:****F1*********!
*STEP "AST REST *
:oF rABLE ENT SY :

I
.. ! ..
•0&5• • .,c;• .

:****H2*********:
BIP173

!****H3*********!

?!!177
!****F"4*********! :••••~5*********!
* GET !IEXT * * IKCPE!IE!I'!' *
* CHARACTER * r>*: COUNTS

0
!INCL!JDING BLANK!

1 ••••••••••••••••• I ········r········
I I
I I . *· I V

F4 *· I *****Pt;********** . • •. I • •
• * IS IT *· ~ * STORE CHU Jll *

. 0 ~LSO 'UOTE.•. : l'O'!llAT TAP!.E :

•. .•
• 110

* **** • I
: Gil :-->I
•••• 1

Bil"179 ~
*****G4********** . .
* GET LENGTH OF *
: THIS STRING :

l
~

··- !'!1'380

.L . .
: Cll :

H4 *· *****P.5**********
.• *• *CV.KCAA 1FOA 1*

STEP PAST TABLE * INSEaT LENGTH * YES • * LF.!IGTI! *· NO •---------------• * ENTRY •<---* IM PllT TABLE •<---*· OK ? .•--->• • : : : : t *· *· • 0 • * : !'!RROR !!!?SS AG? :

***************** ***************** I *· .. * *****************

.. L
•065•
* .s~• .

I * I
I t
:,' :••••J5•••······:

* SET LENGTH 1'0 *
: llAXI!'!U~ :

.~
: ('!4:

PAGE 068

Section 8: Flowcharts 283

Chart AZ. FORMAT Statement Processor (FORM) -- CEKBF (Page 6 of 6)

.....
•069• •069•
•Bl * *B~*

• *
I i

BIF 300 ~ BIFSOO • *·
*****B1********** 82 •.. *****B3********** *****B4**********
=~~~~~~----~~~~~= _.··rs l'His·· •• YES : GET FORMAT : : STO!IE IN : ,.**••llS•••··
• *---->•. A COllPILEB .•--->* TAi:ILE LENGTH •--->• ALPHAllE!'IC *---->* RETURN *
• ERROR "ESSAGE * *· ENT6Y ? .• * * * TABLE * * * .. * *· .. • • • • • •••••••••••••••

284

.................. *· . • ••••••••••••••••• • ••••••••••••••••
• NO

BIF504 l ••••c2••••••••• . .
* BETURll *

PAGE 069

Chart BA. P~USE, STOP, RETURN Statement Processor (PSR) -- CEKBG (Page 1 Of 4)

Ci:KBG1 PAUS

****A1********* * •
: ENTER

I
I
I
I

i
*****B1********** * SET *
*CVAL='l:HCili3', *
* CHSH=911, *
: PRFID=31. :

I
I
I
I

I
I
I

CH. BG2 STOP BG060

****A.2********* !****AU*********:
• • • SFT I = 0 !I = •
: ENTER : r-- >: 255 :

••••••••••••••• 1 : ••••••••••••••• :

I i I
i 1

1

1
8G065 !

*****82********** *****94•••·······
* SE! CVAL= * II * *

'CHCIW2' * I >: CYAL!§~v~HAR :

~~~nns. I I : CHAPACTER) : 

: •• :.:::-......... I i ••••••••••••••••• 
! I, I I 
I I i 

EG010 ~ I I • *· BG';20 E~F!) 
:m;~~::::!~~~!: I I .. · · cq ·- ··... m :m~~~::::!;~~~: 

>• IF Rc .. o, * I I •. I>!I -·---->• •--., 
: RETU!ill. I I *· •. . .. ·• : : I 
••••••••;•••••••• 

1

t I *· • ·;o ••••••••••••••••• 1 

I I I l 
I I I l 
I II I I I i I v ESC I 

:;ig;m~&:mF: 1' 1 =~;;;zgr··~;~~;: 1 
• PRF !OP. CALL • I I ·---1;:-i;c::-0:----: I 
•IVST. IF ac .. o, .. I RFT'111~- • I 

: ... u~H~~~*****: I I !***"***********: I 
I ~,' I 

1
! 

4 ~ 
E2. •. *· I i::q ••• ·- ! 

NO •• -· CLASS •••• !YES •• -·CHAP = •••• I 
~------*· •. =~~~~b~N .•·* L--•... DIGIT .•·* l 
I •· ....... • •· •..• -· l * YES * ~O 

1 I I 
BG020 • *· i J. llG520 ERFO 

F1 •.. *****F2********** !ll *· *****!'S********** • * *• * * • * *· *CEKCAC 1f0A3* 

<. E1~tm~ . >~ :SEfo cmmw): <:=!!AP.=' ~OS' .>-NO--->:---------------: 

*• ·* I * * *· ·* * * 
• • I ················* •. ·* ******•·········· . *. NO I • y ES I 

I ._I ---->1 I I 

I I !I I 
I vi 1 YES 11 

BGSOO ~ EHRD • 
*****G1 ****•***** :••••G2*********: • * G3 • • *· *· !****GU*********: 

1

1 

=~~~~~~----2~~~~= * IF END LOOP * • * *· *SET CL!IG=I- IF * I 
• •couNT = o CALL • r>•. cHAR=DIGrr • • :r>s, CALL ERR1 : I 

* : : ERR 1 : I *. . * • • I ••••••••••••••••• ••••••••••••••••• I •. • ..• ·• ••••••••••••••••• I 

I I • NO I .... II • 1 1 :m. • 1 .L. I I I '-->: G2,. H" :->1 
* * BG040 YI ESC V I 
: HS : *****H2********** l H3 • *· *· :****H4*********: ! 

**** =~~~~~2 ____ 2!~~!! I . • . • *· *· YES • • * .... ~~~;;;·····. I 
* IF RC•O, *---' *· CHAR='EOS' .•--->* SET CNT = 0 *--->*(R1!T0R!I COOF = *<--' 
* RETUFll. * *· • * * * * 12) * • • *· . • • • • •••••••••••••• ................. • .. • ................ . 

* NO 

I 
BGOSO ~ ACOl!i' ••• ••J 3• ••••••••• 

:~;~~~2----~!!~!: 
* * :IF ~C=O, l\ETURN: ................. 

Section 8: Flowcharts 

PAGE 070 

285 



Chart BA. P~USE, STOP, RETURN Statement Processor (PSR) -- CEKBG (Page 2 of 4) 

CEKBG4 ES TOP 

••••12••······· . . 
: ENTER : ............... 

l 
*****B2********** 
• SET CVAL= * 
• 'CHCill2' * 
* CHSH=93. CALL * 
* IVST * . . ................. 

l .•. 
C2 *· .• •. <. Ai~UL:i . >lYES •. .• • ... • 

i" 
BG

6 :2 ••• D1•••H~~... 02··· •. I 
•CEKCAB 160A2* • * •. 
•---------------• llO • * CLASS *· 
: sE~ogggall :<---·· •. =mmll •• •• . . •. .• 
•••••••••1••****** *· r ;ES 

*****E2*!******** 
****El********* * * 

: RETURN : :sE~ocum~~p1 : . . . . ............... . . ................. 
..... I' 

*****F2********** 
• STOP EllTRY TO * 
•Pl!F, UPDA'IE PliF * 
* TOP SET * 
* CVAL='EllD', * 
• CLllG=J • ..............•.. 
•••• I 
:

0H··->I 
• • I 

BGOJO.. ~ CRL 
*****G2********** 
•CEKTFll 015E4* ·---------------· . . 
•IF RC=O, RETURN• . . ................. 

l 
*****H2********** 
•CVAL TO PRESET * 
•DATA EllTilY: SET* * SYll. T01. * : mn~:m:a: ................. 

l •••••J2••········ 
!co~~~fi~k~g6oo ! 
!s~~~mT~l&~s : 

*****F3********** 
*IF lALPHl=8000, * 
* SET AlLPHA * 

,->:=m0~611~F Lm·: 

1 
:.m:mmm .. : 

I I 

I l 
I *****G3********** . . 

* SET * 

I • ALllKA=fDTOP._ * 
* UPDATE PDTOl' * . . 

I 
.••.••.•••.•.••.• 
.... I 

I •071• 
* HJ *->! . . .... 

BG100 •*• EFRD 
HJ *· *****H4********** 

.• *· *CEKCAC 160A3* 
• * *· NO •---------------• 

*• CDLll=FOS • •--->• * .. . . . •. .. . . 
*·i•;ES ********!********* 

BG105 1 •••••J3••········ • • ••••J4••······· 
* UPDATE ESTIOC * * RETUt!N * 
* BY STOP-PAUSE * * (RETllRN CODE = * 
• ESTillATE • * 12) * * CllTB(J) * ••.•••.••.••••••. I 

l I 

. . .............. . ................. 
l 

286 

*****K2*********J . . 
* UPDATE STG * : ms~smm~. * - • .................. 

****Kl********* 
* RETURN * 
* (RETURll CODE = * 
• 0) • . ............. . 

PAGE 071 



Chart BA. PAUSE, STOP, RETURN Statement Processor (PSR) -- CEKBG (Page 3 of 4) 

CEKBGl BETO 

****A1********* • * * ERTE~ . ............... 
I 

*****B1********** * RAIS£ DON'T * 
*.PILE i"LAG. CALL• 
*LABL. IF RC#O, * 
: RETURll. : ................. 

. .... 
•072• •.a:• . 
! 

• *• BG520 "PRD 
B4 *· *****S!IEi********** . * *· •CEKCAC 160A 3* 

• * COllPOllEllT *• !10 •---------------• 
•. (CID) = .•--->* 

*· CONST ·* * 
•. ·* • • 

*·i·;ES ********j******** 

! I 

•••••cJ•••••••••• c11···. I . . .• · .. 
* SET l!SG=CSTP. * YES • •TYPE {CTYP~=*· 
:It'cm"~;~~?P· :<---• .• ~LPHAl!ER1 :.·· I 

'"" I •••••c1•••••••••• . . 
* IF EllD LOOP • 
: CCOll~t2~ CALL : 

• * ................. 
L, .. 

: ••••••••••••••• : •· •..• ·• I 
I j'0 

I 
y I I 

:;m 1 1 
*****D1********** 
:~!~~.!:! ____ !!!~!: 
• IP RC 11.E. 0, * 
* RETURN. • 
• * 

• Hl• BG530 + ERRD I * * *****D4********** 
* *CEKCAC 160A3* ·---------------· 

* * ................. 
I 

1 . •. I BG120 l 
El *· *****E3********** 

• • *· * STOP ENTRY TO * 
Yt:S ·* COllEOllEllT *· * PBF SET CYAL= * 

I
*· (CIDl = .• * 'CHCIW2' * 

*· llUL .• * CHSH=93 * •. .• . . • .. • ................ . 
J" L,, 

BG150 
P1 *· *****F3********** .•. ·~me~11•. •. n:s :::!:!! ____ !~!~!: 

• .. • :osaOUTIIE •• • .___, :IF RC=O, RETURN: .. .. ..... . . 
• •• • •073• ••••••••••••••••• 

• " .• ·r I 
II ''"li ... ".l.im... . ..... .,.......... ". · ... 

:~:!:~~----!~~~!: : SET CLASS : YES • *. • * • *· 

I : : : ~mn1I0 :<---• .• :~m~g~p~. · • 
• * * • •. •• I ••••••••••••••••• ••••••••••••••••• *· .·:o 

I .J._ d'"'li ...• J........ ..,,, .) .. _ 
L .• •. * SET CYAL= * .• *· 

• • Pi!OGilll •. YES • 'iETORI' * YES .• CLASS *· 
>• ••• nPE=uI11_.. : cL~g03t=~~u :<---·· .. =~mKLu.··· •. .. . . .. . . • .. • ................. • .. • 

• 110 1 * 110 

: ••••••••••••••• : I 

L.------' 
! 

••••!4••······· * RETURN * 

I
>* (RETUPI COD! = * 

• 12, * ................ 

I 

I ..... I 
86115 ! :0~1: ER!ID LJ •••••J1••••······ • • •••••JJ••········ 

* * * *C!KCAC 160Al* * SET iillD•O, • •---------------• 
: BYAft.=O. : : * . . . . ................. . ............... . 

1 ..... 
•073• 
•• l!l* 

* 

PAGE 072 

Section 8: Flowcharts 287 



Chart BA. PA.USE, STOP, RETURN Statement Processor (PSR) -- CEKBG (Page 4 of 4) PAGE 073 

...... 
•073• 
* A1• • * . 
! 

.•. EG160 ·*· ·*· !lG170 
·*A1 *·•. ..*A2 *·•.. ..•AJ •..... :****A~•********! 

• * COllPOllEHT *· NO • * COllOPllEllT *· YES • * *· YES *S~T CLASS (CSTP) * 
*·•. (~~g~T= .•·*--->*·,.. (C~~~ = _,.·*--->•.,.:LA~gJ~STP~•·*-------------->:.To SI!!PLE VAR. : 

•. . . •. ... . •. . . . . • ... • •. ·* • ... • ................ .. 
• YES * NO • NO I I I I 
I I I I 

I ! E:R-:- J BG180 ! 
*****82********** BJ *· **B5******* 

I •CEKCAC 160A3* • * *· *RAISE P!UST * I :---------------: .:•cL~mmP> ·:._Y_Es _____________ >** Dr~~~si5Nro •• 

I * * *· VAR ·* *•!'LAG (CSTP) * * 
I : ••••••••••••••• : •.. • . * ••••••••••• 

I I **** • ·.,·1 ·NO I 
L! K.2 : I 

• ••••. I 
• *· l!G530 ERRD • *· BG610 ERl!1 I c1 •. •••••c2•••••••••• cJ •- •••••cCJ•••••••••• 

* *· •CEKCAC 160A3* ·* *· •CEKCAA 160A1* 
• * TYPE *· 110 •---------------• .• CLASS *· YES •---------------* I 

•• •• (CTI§~= •• ·*-->: : ·-.J~~·w.,~a.···--->: I 
•. ·* * • •. .• • * ,I •. . . ................. •. .. . . ............... . 

• YES L . NO I I 

I >:::!:: 1 I I i ERRD • •. I I 
:··;;¥1:;:;:~···: :~;~m····;~~:j: .. DJ •. •. I :: 
* RV AR=CVAL fF * •---------------• NO • *CLASS (CSTP) *· I 
: cvuEgfi 1 ~hL ! ! :<---• ••• =F2:~poN_,.·* I 
: ••••••••••••••• : : ••••••••••••••• : •· •..• ·• 1 

L •... i YES I 

288 

>! HJ : !<----------'----------~ •••• v 
ERRD BG190 • *· 

*****E2********** E3 *· 
•CEKCAC 160A3* • * •. 
•---------------* NO • * TYPE *• 

<-: :<---*·•. (CTn~ = .•·* 
• * *· .. • .................. *· .• 

* YES 

I 
BG193 V 

*****F3********** 
*RAISE FIR!! TYPE* 

: l'H¥ Jm~~: : 
: UPDATE EFTOP : ................. 

I 

I 
~ 

*****G3********** 
*SET RVA!l=EFTOP * 
* GENERATE EF * 
* ENTRY: SET * 
: QUANT=CSTP. : ................. 
•••• I 
•073* I 
: HJ* *->1 
•••• v 

BGSSO ERRD BG220 ·*· 
*****H2********** HJ *· 
•CEKCAC 160A3* • * *• 
•---------------• NO • * *· 
* *<---•. DELI!!ITEB • * 
* * •.CDLl!=EOS • * . . •. . . ................. . .. • 

I 
* YES 

J I ····•JJ••········ 
Ill : UPDATE ESTLOC : 

• • I 
: K.2 :->1 

I •••• I 

L ****K.2*!******* 
* RETURN * 

>• (RETOilll CODE = * * 12) • ................ 

* BY RETURN * 
: ESTI!!ATE : ................. 

I 
****K3********* 

* RETURN * * (RETU!lN CODE = * 
• 0) • . ............. . 



Chart BB. NAMELIST Statement Processor CNAML) -- CEKBH (Page 1 of 2) PAGE 074 

***** •074• 
**A~* .. 

I 
I 
I 

CEKBH1 NAllL BH010 V ACOllP 
*****A3********** 

* h**A2********* * ==~~~~! ____ !~~:~: 
• ••••• ::::: ..... ! i>!n· nc~o, ar:ru1rn! 

I l ***************** I I I 

I I l 
I I I 

t I t 
Bil100 .Cit!W ·*· I ·*• BH130 !'PRD 

*****El********** S2 *... t R3 *· *****P4********** 
•CEKCAC 1b0A3* ·* I ·* *· *CF.KCAC 160A3* 
•---------------• NO ·* LOG IF *· I .*COlltOllE!IT A*. NO •---------------• 

.-• 'SIATEllENT ON •<---•. IND. =O .• I *· VARIABLE .•---->* • NAllE !IOT • .. --, 
I * LOGICAL IF' * *· .• *· (CID=VAR) ·* * !'OUND' I 
J * * *· - • • * • * 
I ***************** *· .. * I .. • .. • *. ***************** 
I i YES l 7 YES 

I,.... ..., .t I l 
1 :~;~~w···;z~:~: ... c2 

•• ... , :;;·;:ti;·~~i~~;: 
V •---------------* YES ·* PttOG!iAl'I *· I * ON, l'!AaK NAME * 
1 : • ~IMR"mA H :<---·· .. :YP5a~OCK.... 1 : AS 1 gEk!=HION : 
I * FROG' * *· • * I * * 
I ***************** *· ... • I ***************** I * NO I I 
I I I I 

I, ! ACOllP I .t BH1110 ER~:> 
*****D2********** t 03 *· *****DU********** 

I *CEKAEl 122A2* I ·* *· *CEKCAC 11l0A3* 
1 •---------------• I .: * 1cs~~~~~NK *: .,_!lo ___ >!-;ii!~£-i!"is-e"E"E;-:_, 
I :IF RC#O, liETUiiN: I *· .• *USED' OR 'NA!IF * I 

t ••••••••••••••••• : *· •. . • · * :;;.~~:~:~! .... :: I I I I * YES I 
I I I I I 

I I I I I 
I t I ~ I 
I E2···.. I E3···.. BHl~2 ... F4***~~~2... I 
1 YES •• -~Cl!FONEN;·.. 1 .*·:mmT •• •• YES ::.::~~~=----!~~~~= t 
1 1 

... ~uLL 0 ,ccID ~.-· •1 *·/LAGU~CSTP~.- ·--->: ·11~~Mr A :--, 

I • . I •. ·* * ARGU!IFNT' * I . ... . . . •. . . ................... I 
* NO * NO 

I I I 1' I I 
I I t l 
I I F2···.. I !****F3*******••: 

I I . .. . .. *· •. Y~S I * SE'I CLASS • 

I I •. •· mmw ... -·--~ : ~mns¥0 
• 

i I •. • ...... * ................. . 

I I f' l 
I : •••••G3• ••••••••• 

I I * SET N=O * , :mgg~<mns: : 
I I : P=CSTP : 

1 I ·· ·~:::r::· ··· 
II I . • *· YFS 

I 
•· •. ~~mf;;e .•. •-, 

II II 

*· ... • ....... 
*· .• •075• * !10 * B2* 

I * * 
I * 

I '----------->I 

I BH1.l0 ! Ea?D 
•••••J 3••········ 

I ::.::~=~=----!~~~~= 
t : '/ NOT FOOMD' : 

I. ·······T····· .. 
I I I v 
I • ····~~;~;;·····. 

>: :::~~:1~e~:.:. :<.-------------' 

D4. !IA '!l'LTST' 

Section 8: Flowcharts 289 



Chart BB. NAMELIST Statement Processor (NAML) -- CEKBH (Page 2 of 2) 

. .... 
•075• 
• .e~• . 

l!H020 1 ACOllP •••••e2•••••••••• 
==~~~~.! ____ !!!~!: 
: II' R~~URNO, : . . ................. 

I 
• •. Bfl060 .•. 

C2 •. CfJ • • .. • •. . . . . 
• * CID = *· lfO * CID - • MO 

•. VAR .•-------------->•= NULL- =1 .. .• •. .• •. .• .. . . • .. • • .. • 

i"' i"' I 
.•. • •. !BH130 'P.l!RD 

D2 ·- •••••DJ•••······· Dll •. •••••Ds•••······· 
• * *· * * • * *· *CEKClC 16013* 

• • CLASS *· YES • SET CLASS * • * CDII! = •. MO •---------------• 
• •• !CS'IP) UNK ••• •--->: sl~m>vi~. *·.~ OaEggLll =··*--->: ·~~iiio~OT : .. .. . . .. .• . . • .. • ••••••••••••••••• *· • • • •••••••••••••••• l '0 '! YES 

Ei<R2 BH030 .•. BH190 ER!!2 
*****!1********** E2 *· *****P4********** 
*CEKCAB 16012• • *SillPLE *· *CEKCA!! 16012* 
•---------------• NO .• OB ARlilJ *· •---------------• : ommnc :<---• .• ~lBfilg~ Pll.•·* :·~~11nm~Tj/": 
* llESSAGE * *· • * *' Nl!IE !IOT •• ................. • .. • ................ . 

290 

• YES 

l<-------~-~ 
BHOSO .•. BH170 EBR2 

P2 •. *****P3********** 
• *POBlllL *· *CEKClB 16012* . * ARGUllENT *· YES •--------------• 

• •• ~L~~I~~gTP~ •• •--->: 'll~SMt l 
*· .• • ARGUllERT' * ·-r· ........ r .... .. 

l 
****PS********* 

* !l!TUR1' * 
: (R!T!JR~ 2fODE = : ............... 

l 

•••••G2••········ I 
• SET NAl!ELIST • I 
: cmLfDJH\ ~O : 
* N. * . . ········r········ 1 I 

<--------B-HO_S_S--+ .•. ""' 1 ERPD 

H2 *· Hli *· *****HS* ******** .• *· . * *· *CEKClC 16013* * * YES ·* *· . * CDill = *· NO •---------------• 
: 82 :<--*·•. CDL!I =, .•·* r>•... EOS ••• •--->: ''r8~N6'1'0T : .... •. -· •. .. . . • ... • • .. • ................ . 

* NO * YES 

I I I 
.... tjJ........ ,,-·-._ I ·.··••JI .. ! ........ . . . .• •. ~ 
*SET llOllENT (P) * • * CDLll = •. NO * * * = II *--->•. / • • UPDAT! PDTOP * . . .. .• . . . . •. .. . . ................. •. . . . ............... . 

* YES 

! ..... 
•01ri• 
... 1~· . 

I 

I 
****K4********* 

* RETURN * 
: (P.ETUP~) CODE ~ : ............... 

!IJ. l'OUllD' 

PAGE 075 



Chart BC. BLOCK DATA Statement Processor (BLDA) -- CEKBI 

CEKBI 1 9LDll 

••••A2********* . . 
: Ell'IER ............... 

l 
.•. BI100 C:RRD 

82 *· *****B3********** 
• •LOGICAL•. *CEKCAC 160A3• 

• • IP •. 110 •---------------• •.• ~:~1caTo~. = •• •--->: ;1 .. . . ................. I 

.... J.:::.... II . . 
• IP IftELICIT * I 
:FLAG E&~L CALL : I 
·······r······ I 

BIO 10 02. ·- ·- BI 1~2 ••• D3•••~::f... I 
• * • * PROGRA/• *· 110 =~~~~~~----!~~~~= ~ 

•. TYPE = • *--->* *l *· UNK NCllll • * * * . . . . . ·~ ... - ................ . 
l "' I 
l I :••••E2••••·····: I 

• CALL ESC. IP • I 
• CHAa. = Eos. • j 
: CALL ER&2 : 

***************** I 

I I 
1< 
I 

~ 
****F2********* * aETURll * 

: (RETUR~) CODE = : ................ 

PAGE 076 

Section 8: Flowcharts 291 



Chart BO. DATA Statement Processor (DATA) -- CEKBM 

CEKBl!l DATA 
*****A3********** 

****A2********* * SET * 
: mu : >: p~m~smH = : 
* • I * TYPE PROZEll * ............... I : •. n~~.J~iin •• : 

l I I 
EilRD • *· . *· 

:~;:~~~***•;:~:~: ... fgGic:i.•. ·*BJ *· *· !****B4*********! 
•---------------* 110 • * IP *· • * *· NO * SET OPST * 
* *<---*· INDICATOR = • * *· DELillITER • *--->* (LST (II) = 0 * 
* * *· 0 ·* *.(CDLllJ=(.* * * • • •. ..• *· . • * • ••••••••••••••••• *· .. • *· . * ••••••••••••••••• 

292 

* YES * YES I 
* ****. I I I 
: C2 :->1 l ! •••• > 

e11010 Bll020 SUBS B~030 • *· 
**C2******* *****C3********** *****CCI.********** CS *· 

* * *CEKAG1 090A3* * * • * *· 

• : Rm~Ii~t~T : • =.~;-:~:~:-:~:~~~=. : ADD 1 TO I :--->•: :. ~mRf;~p. :: ·~ 
•••••••••••• * ••••••••••••••••• : ••••••••••••••• : '· •. .• . • ' 

! ·:;•:_>I 11 l* ~o :-:;~ . . .... .... 
e1101s ACOllP ·*· 

*****D2********** *****D3********** *****D4********** DS *· 
::.:~~.:! ____ !::~:: * SET * *CEKAH1 1115A2* ·* *· 
• • : mm:THHE : •---IP-Rc#o~----:<~•:* DELIPIITER *:• 
:u ac .. o, liETURll: : DON~IA~~L!! : * RETURN. : *-,£~DLllJ=~.·· .•..•.•......•..• .......•.•..•.... ·············•*•• . . . . 

I I I * NO 
I l ! ~ * ••••• 

E2·*· ·- I *****E3***~~22~.. *****Ell********** : GJ : 
• * • * *· *· YES ::.:~~;! ____ !::~!: :s::!~!! ____ !!:~!! **** 

*• COl!POHEllT • *---' *CALL ACOllP. IF * * * 
*-J~ID)=V~~-· : RC .. 0, RETURN. : :IP Rc .. o. RETURN: 

•. . . .•............... . ............... . 
* NO I I I . l 

::;~s:~=----!~~~~= . * • ~OllPOllE;;- *· YES • * -~OllPONE;;• *· 110 

Bll110 ! ERRD * j ·*· 

I *****P2********** P3• • * FCJ * 

I * 'llAllE 1101' * *· (CID) =NULL • * *· (CIDJ =llULL • •·--------. 
I : POUND' : •••• ..-· ·-.. ..-· 

:II 

................. ·- .. . •. . . ' 

I * NO * YES I 
* * I •••••• I I 
: G2 :->I : .::. :->1 l ,I 

I v 5111 ~2 ••• G3***H~~... Gil··· •• 
••••G2********* *CEKCAC 16013• .• •. •••• I 

* RETURN * •---------------• • * *. YES * * 
~------>*(RETURN CODE = *<---* *· DELIPIITER .*-->* C2 * * 12) * * •.(CDLl'I)=,.* * * 

*************** * * *. . * **** I ................. .. . . I 
* NO 

I 
.!. B!l130 i ERPD 

HlJ *• *****He;********** 
·* *· *CEKCAC 1E0lt3* 

• * DELI!'IITER *· NO •---------------• 
*· (CDLll) =EOS • *--->* 

*· ·* * 1 ,NOT POUND' •. .• . . •. . . . ............... . 
* YES I 
I I 

'1 .L. • * * G2 * 
v * * ••••J4••••····· •••• 

* RETURN * 
: (RFTUP~) CODE = : ............... 

PAGE 077 



Chart BE. IMPLICIT Statement Processor (IMPL) -- CEKBN (Page 1 of 3) 

CEKBll1 
•••••A3********** *RAISE DONT FILE* 
* FLAG COPY • 

Bll020 
:****A4*********: 
* UPDATE SOURCE * . ••••12•········. 

• ENTER * . . ............... ,--->!Tlm1~arim~ : 1>: POINTER : 

II :::::**T******* 

: BJ* *->I 

.!. !lN010 ! 
·* B2 *· *· :****B3*********! 

NO • LOG IP • *SET I = 1 CVAL * 

l
•=•-~:D. = ~ ••• :* : = BLANKS : 

•. . . . ............... . 
• YES I 

l I l * BN01S V ESC I c2· .. • •••••c3•••••••••• 1 

I * •• •CEKAB1 121A2* I 
~·= * EXE~~mLE. *:. r> :---------------: 
I • "'' • I :" •<"; ""''! I I 1 ..... t:: I I ········;········ ' 

1
1 . 11 D)... I 

I 
·*

02
• ••• •••• oowA I .• ·•CHA?. = • ••• YES I 

I •= * I!!FLICIT *---' *· * OR ( • •~ 
•. FLAG • *. I •. . . I •. •.:. .... -• •. *· .•.• 

I I * UP * NO 

! l--->1 I 
I EN100 ~ ERRD f 

*****E2********** :****E3*********: 
I :::~=~=----2~~~~= *SET CVAL (I) = • 
L-->• 'llOT FIRST * *CHAR. ADD 1 TO * 

: STATE!!EllT' : : I. : ................. . ............... . 
l . •. 

PJ *· 
1 .. .,.,, .... -··. *· *· 
~.. I< 8 .• •. . . 

. ............... . 
j ... 

Bii *· 
·* •. . * BRANCH *· *· ON CVAL • • 

*· ·* *· .• • .. · . 
: ••••••••• 078 DS 

: ••••••••• 078 ES 

: ••••••••• 078 FS 

: ••••••••• 078 GS 

: ••••••••• 078 Gii 

•. .. . . .... 
• •• • •078• * llO • Gii* 

I ·: 
I I 

! EBRD Bll102 i ERRD 
*****G3********** *****Gli********** 
:::~:~=----!~~~~= :::~=~=--- .!~~~~= 
• * 1 IllCORR ECT TYPE* 
* * NAllE 1 * . . . . ................. . ............... . 
.... ...!....... 1,1 

* RETllBll * '-------->: (RETUR~ 2fODE = :<-------' ............... 

1 IllTEGER' 

'Rl'AL' 

'COllPLEX' 

'LOGICAL' 

OTH~R ..... 
•078• 
* D5* * • . 
! 

* **05******* * 
* SET TYPSll = * 

*• I*ll •*t 

• * I 
*********** I •••• I 

;::::·1 I 
* **!5******* * I 

* SET TYPSll = * ~ 
* R * 4 *---. 
•• • • f 

*********** I 

:m. I 
*I'S *l I :.... I 

• ••FS•••••••. I 
* SET TYPSll = * * c • e •-, . . ' * I 

*********** I •••• I 
;:~::·1 l 

• ••GS•••••••. I 
* S'!T TYPSll = * Ill 

*• L*ll •* 

• •••••••••••. I 
,< ___ _J 
~ 

B,030 . *· RS • • . • .. 
. * IS CDLll *· NO 

•• = "!" ··-i *· .• .. . . • .. • 
* YES ***** 
I •079• 
I • 112• v •• 

••••• * 
•079• 
•.a~• 

* 

Section 8: Flowcharts 

PAGE 078 

293 



Chart BE. IMPLICIT Statement Processor (IMPL) -- CEKBN (Page 2 of 3) 

. .... 
•079• 
• 82• .. . 
l .•. 

82 ·-.. •. (•=: .. :::i_: ... > 
i"' 
V lCOllP •••••c2•••••••••• 

•CEKAE1 122A2• ·---------------· * IF RC # O, • 
: RETURN : ................. 

l .•. 
D2 •. -· •. NO • * CID = •. <--*· CONST. .• .. .• •. .• • ... • * YES 

l 
BH108 .EBRD ·*· 

*****E1********** E2 •. 

===~=~=----!~~~~= ~ NO .•·*cTYP = *·•. •<---*· INT. .• . ·- .• . . ·- .• ................. • .. • 
* YES 

I 
*****F2********** * • 
mJmL'I~~~ll 0 ff: 
:NOT, CALL ERR2-: .............•..• 

I 
BN032 - *· 

G2 *· . • •. ·* CDLll = *• YES 
*· ( ·* •. . . 

*· .. • • ... • 

i ::., 
*****H2********** 

===~=~=----!~~~~= • * 
* * * * ................. 

I 
••••J2••······· * RETURN • 

. .... 
•079• 
* .ai• . 

BHOllO t ESC 
•••••83••········ 
==~~~~~----!.!!~~= . . 
········_ 1.·_········ 

811110 ERRD I
>: I~E~ij~!IO, : 

C3 *· *****Clio********** 
I .•.• CHAR = *· •. NO ===~=~=----!~~~~= 

*· ·* * I I *· ALPHA OR S • *--->• *•---, 
•. •. . • . • : ••••••••••••••• : I 

...... J.:::.... I 
: SET K = CHAR. : I 
:cA~L 0 ;s~h~& 11 Rc: . . ................. 

l ... 
E3 •. *****Eli********** .• .. . . 

• * CHAR = *· NO *SET ITEi! P(K) =• 
*· - • *--->• TYPSll • •• .• • * •. . . . . 

* • i •;ES ********i******** 

l 
..... 
•080• 

811050 ESC * D2* 
*****P3********** * * 
*CEKAB1 121A2* * ·---------------· 
: IF a:~u:No, : ................. 

1 ..... 
•080• 
• 82• .. . 

'------->•(RETURN CODE = •<-----------------------' 
* •••••• l~L •••••• * 

294 

PAGE 079 



Chart BE. IMPLICIT Statement Processor CIMPL) -- CEKBN (Page 3 of 3) 

..... 
•080• 
• .e~• . 
l 

3N110 lii<RD .•. •••••el•••••••••• a2 • .. 
*CEKCA<.: 160AJ• .• •. 
•---------------• NO • * CrlAR. = •. 

I
* *<---•. ALi?HA OR $ • * 
• • *· ? • * . . •. ..• 

I ***************** • ... * 
1 

r YES 

I I 
I i BN114 ERil1 
J aN1 l~•••c1•••;:~~... c2. • .. •.. •••••cJ•••••••••• 
I :~~!~~~----!~~~~: < .•• -. • ••• = :~:~~~~----!~~~!: 
1 : :<---·-.. ~mrnit.-·--->:, ISSUE WARNING: 

I : •••••••••••••• *: •. •. .. • .. • : ••••••••••••••• : 
I I * > I 

>I :m. I 1 v ··02 •-> 
• ••••• :.... <-----------' 
*• K4 *• BN054 + :••••02••·······: 

>:md:E~~dK\ :ro: I: K. : 

1 ········r········ 
l l 
I,., _._.,,-···-... _ 
•-•. K < L .• •.. .• 

*· .• • .. • 
• NO 

I 
i ESC .•. 8N116 ER'lD 

*****P2********** F 3 *· *****F4********** 
=~=!~~_! ____ !~!~!: . ••*CHAR = *· •. NO =~~!~~~----!~~~~= 
•.* IF -~~U~NO, •.* r>•. •. ) ? • •• •--->: :-1 •.. .. . . ................. . .. • ................ . I I . YES I 

I 
1, I i I I 

G2··· •. I ••***G3.!.H;.... I 
• •" * CHAil = *· •. NO I =~~!~~! ____ !~!~!: I 

·- • • .. ~ • IF RC # o. I 
*· *· .•· • : RETURN •. .. . . ............... . 

• Y!S I 

.. L I 
•079• ~ 
•.ai• H3·*·•. . .• •. 

·* Cl!AR = *· YES 

*···.. . .. -···~ ... 
•. • • •078• 

• !10 * B3• l .... 
·*· 911118 El!~I> J3 •. •••••J4••········ 

•* *· •CEKCAC 160A3* • * CHAii = •. NO •---------------• 
*· EOS .•--->* • .. . . . . •. .• . . •. . . . ................ . 

• YES I 

I • ..... • I 

! 
• Kii *->I 
* ••••• l 

****K3********* ****K4********* 
• RETURN • * Pl!TITRN * I 
:(RETUR~) CODE = : :(RETURhfODE = :<--' ............... . ............. . 

Section 8: Flowcbarts 

PAGE 080 

295 



Chart BF. Subprogram Entry Statement Processor CSUBE) -- CEKBS (Page 1 of 5) 

C EK6S 1 ENT& 

*****AL********** 

: ENTEfi : ................ 
I 
I 

I 
~ 

BS500 ERFD • *· 
*****El********** 82 • .. 
*C EKCAC 1<>\l A3* • * PROG. *. 
•---------------• NO • *TYPE = l'UNC*. r:• ENrn~GHll~AH :<----*·~~ SUBROU'l"I~~-* 

l . . •. -• ................. • ..... 
* YES 

I I 
I I 
I I 
I eso 10 ~ 
I *****C.2********** 
I * * I *ALTEliNA'IE ENTRY* 
I * PRF ENTRY TO * 
I * TEMP * 
I • * 

I 
••••••••••••••••• 

I I 
I t 
i .. • .. 
I •.••••D1*********•* 02 • .. 

l -· • .. * SET PLAB = * YES .• NO FLAG *· 
: x•aooo• •<---•. FLOW UP .• I : ...... T ...... : ·-····r:: .. 

I BS020 i 
I
I :·•••E2••·······: 

*CALL CRL II' RC * 
:~P~1B a~rme~ET: 

I ················· 

CEK BS2 FU'l'C, SUBR 

* ****A4********* * 
: ENTER : ............... 

I 
I 
f 
f 

! !'S520 ERBD 
94 *· *****Be;,********** • * *· *CEKC.l.C 1~0A l* 

. * PPOGRAll *· NO •-----------···-• 
• •• ~YPF = 'INK: •• ·---->:SIJ~~mmN~O"' :--1 •. • • * "IRST' • I 

*· ·* ***************** I * H'S I 
I I 
f I 
I I 

! 
:****C4*********: 
* H IMPLICIT * 
*FLAG = 2, CALL * 
: "RR 1. : 

***************** 
I 
I 

esoqo ~ :·•••ri4••·······: 
* SUBPROGPAll * 

~-----------:>•ENTPY PnF ENTPY* 

I 
I 
I 

I 

I 
I 

: TO "'E~P : ................. 
I 
1 

. *· !15530 l'RR!J 
~U *· *****Ee;.********** ·* *· *C"KCAC 160A 3* • * LOGICAL *· NO •-----------·---• II 

·-.~!' IND. = ?.··--->: 'E6~mPIF~N :--, 
*· * * * I • •• * ••••••••••••••••• ' 

* Y!'S f , I 
I I 

I I 
V ACO~P l 

*****F4********** 
•CEKAE1 122n• 

I 
I 
I 
I 

I 
I -~- II 

G2 * 
eso3o 

•---------------• I * IF ?C ~ O, * f 
: PFTCTRN : ***** f 
••••••••••••••••• •001• I 

• • c;~• I 
• f 

f ,' 

~SS'iO i ':PPD I 
G4. ·•. •••••GC)••******** I • * *· *C'lKCAC 1*'0A 3* I 

296 

• * I I 
~------>•:* DO=LfiV *·.~ •.. ..• 

•. -· • ..... 
* NO 

I 

! EliRD 
*****H2********** 
:::~=~=----!~~~~= . . . . . . ................. 
•••• I 

* * I * J2 *->I 
* • I 
**** I 

' ••••J2••······· * liETURN * 
>•(RETURN CODE = * 
••••••• i~i ••••••• 

YES • * CID = *· NO •--------------·* V 
~------•... VAR _ •• •--->*.• '~M:o~oT :--, 
I *· ·* * I 
I * * ***************** I I . *. I 

l l 
*****H3********** HU•*·*. t * ~ARK VARIABLE * . * *· f 
* AS DEFINITION • • * CLASS *· NO I : 5Mo:Er~ 5~ :--->• .•. ic5~k~ = •• • ·- 1 : ••••••••••••••• : •. • ..• ·• I I 

* YES f I 
I I 

1
1 

! I I 
. *· BS560 i EBPD I 

• •Jq *·•. =~~~m**•*~~;:;: I 
• * ALL *. NO •--------------·• I *· FLAGS DOWN • ·---->• . NA~'l ns!m •-->I 
•• •••• •• : BE""OR~· : I 

*·*•;ES ***************** * ... ~: 

J.. : .~:: 
•082• 
•.a~• . 

PAGE 081 



Chart BF. Subprogram Entry Statement Processor (SOBE) -- CEKBS (Page 2 of 5) 

**A3******* 
*SET TYPSW =* 

• FTYPE RA.ISE • 

* FLAG • !
>* DONT FILE * 

••••• • * 
•082• ••••••••••• .. :~· I 
t ~ 

.. *· .. •. 
*****B1********** B2 *· B3 *· 
• SET CLASS • .• *· • * *· 
: PRJ~m1 Ei~RY =<---

11
-
0 .:* Fil~2~¥o~ ·:. ·* CDLll = •. NO 

: PNi~~~;tP. : •..... .•·* *·•.. * .•·*1 
••••••••••••••••• ~ ......, _. *· • .. * • I 

I * YES * YES I 
I I I 

I I vi I BS050 ~ 
I *****C2********** *****C3********** :s:ra wm~m1 : : Ibo~m = : 
I * PN llAllE * *PRECISION, CA LL* 
I : im~~m: : : ERR1. : 

I ._ ..... ;········ 

1

• ·······T···· ... 
I . ·- BS055 ! ACOllP 
., 02 ·- *****03********** 

.• *· ~ •CEKAE1 122A2* 
YES • * PTYPE = *· 110 •---------------• 

I 

'

*· 0 .• * IF RC ~ 0, * 
*· ·* * RETURN * 

•. ·* • * • .. ·* ••••••••••••••••• 

I I • I 
1, I .:. 

I ·*E3 *· *· 
NO .• CID = *· I .---------·· •. CONST ••• •• 

I I •. • • 

I

I I I ·-.-;ES 

I I J 
I I I NO ••• •;:yp :··· •. 
I I I< •• •• IllT. •••• 

I ! I .. •. :·;;; 
I 

I I 1 

II 

I BS570 ~ ERRD • *· 
*****G2****'****** G3 *· 

I :::~=~=----!~~~~= HO • * • * CVAL *· *· 
* *<---*· SUITABLE ·* 
* 151 * •.FOR 'IYPSW.* 

I * * *· • * I I ................. . ... • 
I I • YES 

I •••• I 

I I : H2 =->1 
* •••• * I I 

J 

~ **H3•:..... I 
I * ****~~;;:;***** * • * ADJUST * * I I . (RETURN CODE = * • • TYPSli • I · ...... m •••••• • ••••••••••• : I 

I 5so10 ••J3•······ I I * SET TYPE • I 

II 

.·<mn=m~11 
• .. <__. 

* FROZEN FLAG * 

* •• H:~~~ ••• * 
I 

~------------------->! 
l!S090 

!****K2*********! 
BSOBO •*· 

K3 *· -· .. *SET I = O, llALR* YES .• CDL!t = *· 
= 0 •<---•. ( .• . •. .• .. . •. .• ••••••••••••••••• *· •• 

* NO 

! 
**** * * : 65 : 

**** 

**** * * 
: B'> : 

! 
BS580 ER!!O • *· 

*****84********** B'1 *· 
*CEKCAC 160A3* • * *· :---------------:< ___ N_O •= * CD~6s = *. * 
* 161 * *· 
* * *· ................. 

I 

.L 
* • 
: H2 : 

. 
* Y~S 
I 

! . •. 
cs *· 

. * *· • * S!D'IO = *· YFS *· !'UNCTION • *---, 
•. *· .• . • I 

*· . * I * NO I 
I I 

I I 
I I 
v I 

• •. I 

·*D5 •••• I 
YES • * SID NO = *. 

I
*· SUBROUTINE ·* I 

*· • * I *· . * I 
I *· •· :o I 

I l I 
I . •. I 
I E'i *· I 

IYES •• ··PROGRA!!··.. I 
<-*· TYPE = SYB- • * 

I *· ROUTINE • * 

I *· • .. •· * I I *NO I 
1
1
.,,,, [ .. ,, I 

*****PS********** I 

I :::~=~~----!~~~~: I 
: 32 :<--' I : ••••••• i ....... : 

I I 

I I 
l'l'l085 + 
I *****G5********** 
I : : L->: SET NARG = 0 : 

* * ................. 
.. L 
•083• 
•• J!* . 

Section 8: Flowcharts 

PAGE 082 

297 



Chart BF. Subprogram Entry statement Processor (SOBE) -- CEKBS (Page 3 of 5) 

..... . .... 
•083• •083• 
•• Ai• •• A~· . . 
t I 

BS095 ACOllB • •. BS600 l ERRD 
*****A1********** A2 •.. *****A3********** 
=~~~~~~----!!!~!: . • .• CLASS •- •. NO ::=~~~~----!~~~~= 
• IF RC P 0, • 1>• ... (CS0T11 PK~ = ... ·*--->: : 
: ilETUR!I : I •. . . • • 
·······T······· '1, ·r.. ;:~~:~:1········· 

.•. 8S167 ~ 
Bl •. **!12******* 

NO • *. * CID = ·- •. I *. r8~~~f *. * ····u;;::····· * 

r •. y All .• I * ARGUll!llT FLAG * • (RETlJBlll CODE *<l 

.. !.. . • .•. ;;: . ....••...... . ......••.•..•• •. . . I . (CSTP) • • =12) • 

=~:1= 1 j l l'.!!:·-1 I 
c1 · •. •. c2" •- •. as6~2•••c3 ... ~:~~••• I 

• *POlilllL •. • * •. •CEKCIC 16013* I 
.• AliGUllEHT •. NC .• TENFA < •. NO •---------------• I 

•. FLAG (CSTP) ·* *· 254 .•--->• 'TOO !IAllY *---' 
*· UP ? .• •. .• • FORllAL • *· .• •. .• * A!!GUllENTS' • ... . . ·- .. . ............... . 

• YES * YES 

65100 J I 
D1 •.. *****D2********** 

HO - ••• SIDNO = •. ·- !Uir~~cu~s~p~a: 

I
•. ENTi!I • * •TEHPA. SET STG * 

•. • • *CLASS TABLE ARG* 

•· ._ .• · • ::.mMmm.: 
• YES I 

1 I 
··- BS110 t 

E1 •. *****E2********** 
• * IS *· • • • : • ,mm11Ia ·: •-110--->:s~Msno 'f1 ro : 

•. 'IHIS STNT. • * II. • •. .. * • • •.. . . . ............... . 
. 
1 

YES ;~n: ._J 
I •••• l 
18S670 ERRD 85120 .•. 

l =~~:m .... ~:~:;: _.n ·- ·-
• •---------------• • * COL!! = •. NO 
'-->• 'NAllE ALREADY• •. .•-------------

• UGUllEll'I IHIS * •. . * 
• STATEllEllI' * *· ·* ................. • ..... 

298 

! .... . . 
: 83 : 

* YES 

.L . . 
: Al : .... 

..... 
•083• 
• 05* 
* • . 

• •. !'S610 1 l"RRD 
04 *· *****D5********** • * •. *CEKCAC 16013• 

• • CDLll = •. 110 •---------------• 

!
>•... ) .•·*--->: '•Fgg11t• llOT : 

•. .• . . •. . . . ............... . 
• YES I 
I i 

I i •••• 
I * * • 83 • 

*****Fil********** * * . . .... 
• * 
* SET llARG = !I * . . 
• * . ............... . 

""" I "." *****Pll********** 
:~.:~~.:~ ____ !!!~~= 
* 11'' PC ~ O, * RETIJRll . . 
·~··············· 

l .•. 
Gii *· . . • . . • cro = •. 110 *· !llJLL .•------~ •. .• •. .. 
·-.-;ES I 

l I 
• •. 85620 ~ EPR2 

Rll *· *****!i5********** 
.• •. *C"KCAB 160A2* • * COL!! = *· 110 •---------------* 

•. !!OS .•--->* 'EXTRANEOUS • •. • * *CHA RACTEP AFTT>!I• 
•. .• • l' • .. . . . ............... . 

• YES 
**** I 

:ow._>1 
* * .... 

85140 
•••••Jll••········ . . 
*SET P~F EllTRY =• 
* TESL HO *<-------' . . . . ................. 

I 
****KU********* • RETURN • : .. ~:::::~i ~::: .. : 

PAGE 083 



Chart BF. subprogram Entry statement Processor CSUBE) -- CEKBS (Page 4 of 5) PAGE 084 

..... 
•0811* 
**Bl* . 
! 

BS150 .•. 
81 • • 

• * • • 
• • CID = *· 110 

*·•. llULL .•"*-l 
•. ·* ••••• 

• •• • •081• i "' .. :~· 
• *· • *· . •. ERR 1 

C1 •. C2 ·- CJ *· •••••cu•········· •* *· .• *· •* *· •Cl!KCU. 160A1* 
• * CDLll = *· YES • * PROGRAI! *· 110 • * SID HO = *· 110 •---------------* 

*· * .•--->•. TYPE = SUB- .*->•. SOBROOTIHE • *->* * 
*· • * *· BOOTillE • * *· • * * * •. . . •. .• •. .. . . •• • • *· •• •• • • • •••••••••••••••• 

* HO * YES * YES ! 
I I ..... 

BS170 J. BS6110 EBBD BS160 > :og~: 
D1 *· *****D2********** *****DJ********** * * 

• * *· *CEKCAC 160AJ• * * * 
-* CDLI! = *· llC •---------------• * * 

*· *· / • •" *---->:• 11111~0g:EI,' llOT : : ADD 1 TO HALT : 
•. ·* • • • • ·-.. ;.. ·······T······· ·········1········ 
l ""' '"'' '"" *****E1 ********** *****E3********** •CEKAE1 122A2* *CEKAE1 122.&2* ·---------------· ·---------------· * IP RC # O, * * IF RC # 0, * 

* BETUBll * * RETURN * • * • • ................. . ............... . 
l l 

. *· - •. 
F1 *· F3 *· . . •. .• •. 

110 .• CID = *· .• CID = *· YES 

r *· VAR. .• *· llULL ·*-l •. . . .. ..• •. -· •. .• ..... 
•. •• • •• • •083• 

***** * YES * 110 * 1"2* 

=~!~= i I ... . ..... l 
•085• 
* 82* BS610 !RRD 
* * *****G3********** 

* ****G2********* *CEKCAC 160A3* 
* RETURH * •---------------• 
: (RET~~~I CODE :<---: '' r8M• llOT : ............... . . ................. 

Section 8: Flowcharts 299 



Chart BF • Subprogram Entry Statement Processor (SOBE) -- CEKBS (Page 5 of 5) 

..... 
*OBS* 
* 82* .. . 
i 

. •. ·*· 
82 ·- 83 • • 

• •FORl'IAT *· •* *· 
• * ARGUl'IENT *· NO • * CLASS *· NO 

• •• ~LAG0JCSTP~··*--->• ••• (Cij~~~ = .•·*---, 
*· .• •. . • • •••• 

•. • * *· .• • •083• 

ES180 •

*•!.YES *l YES * •:~· 

8S187 
C2 *· **C3******* 

·* *· * RAISE * 
NO • * SIDNO = *· * FORl'IAL * 

*· ENTBY ·* * ARGUl'IEllT FLAG * *·•. .•·* *• (CSTP) •* 
• .... • .......... . i ... I 
·*· .•. 

D2 *· 03 *· • * IS *. . * *· 
·* ARGUl'IEllT *· 110 .• TEllFA < *· 110 

*· ALREADY IH ·*1 *·•. 254 .•.*--. *.THIS STl'IT.* 9' 
*· -· *· ·* ••••• 

*· ·* I *· .• •083* 
* YES I * YES * C3* 

I I l * * 
8S670 > l ERRD I * 

*****E2********** I *****EJ••········ 
:~:!~~~----!~~~~! mMTitJc~T¥b ~: 
* • NAllE ALREADY * I * TEllFA SET STG * 
* ARGUl!EllT THIS * *CLASS T8L ARG =* 

: •• mmm; ••• : :.~m.mm~ •• : 

I .,,.. 'l 
I 

*****P3********** 

II 

hM5 Ho <~>TO ! 
: N. : ................. 

l 
I G3

• *· *· ACOl!P *****GU********** 
• * *· *CEKAE1 122A2* • * CDLl'I = *· YES •---------------• 

I •·•. / .• -•--->.: I~E¥lia:0 • 
I *· • * 
I *· . * 

i

i .
1
, NO 

85650 ERRD 
*****H3********** 

l 
·*· 1'4 •. 

****H2********* *CEKCAC · 160A3* . • *· 
* RETURll * •---------------• ·* CID = *· YES 
*(RETURN CODE = *<---* * 
••••••• HL •••••• * :· / llOT FOUND • : *· *·*·NULL • * • *. *---:::** ................. *· . * •083• 

* 110 * F2* 
I * * 

•• !.. • 
•083• 
* .o~• 

* 

300 

PAGE 085 



Chart BG. END Statement Processor (END) -- CEKAL 

CEKAL 1 END 

•****A1********* * 
: ENTER : ............... 

I 

l 
-•.. -·· Bl *· il2 *-•. *· .. • •. 

- * LOGICAL *· YES .• ildANCH *· 
*· IF SWITCH = .*---->*. ON PROGRAft ·* 

*· 0 ·* *· TYFE ·* 
·- ·* *· .. • *· .. • • ... * 

* NO * 

I 
AL901 l ERRD 

•••••c1 •••••••••• 
=~~~ ~~: ____ !~2~~= 
................. 

I 

I 
~ ••••01•········ *RE!URN (RETURN * 

: CODE = 12) : ............... 

: ••••• - • - • 086 D4 

: •• •• ••••• 086 F5 

: ••••••••• 086 D2 

: ••••••••• 086 P2 

UNKNOWN 

BLOCK DATA 

FUNCTION 

OTHER ..... 
•086• 

•••• * .02• 
•086• * 
:.~~· ·-i \ 

ALO 10 • *· ALOOO t ER!12 
02 *· *****D4********** .. -;m1m·- .. YES ::~~~~~----!~~~~= 

*· ~~NCT~~N NA~~-•--, : ommnc : 
•· ..... ·• I : .... ~H~!~~ •••• : 

* NO I I 
I I I 

I II I 

1 I vi 
V ERR2 I •••••E2•••······· I .···••RU••········. *CEKCAil 160A2* 

•---------------• * SET PROGRAft * : D~im~Hc * I : TYPE TO l!AIN : 

: •••. 2~ii~~;..... : •••••••.•.•.••• : 

;~H:._J I 
ALO~o** J. ERR.! AL024 ~ 

P2 *· *****13********** *****F4********** 
·* *· *CEKCAB 1&0A2* *PRF = F!ID LOOP * 

• *EXECUTABLE *· DOWN •---------------* *UPDATE PRF TOP * 
*· STATEftENT • *--->* GENERATE *--->*IF NO !'LOii FLAG* 

*· •. FLAG _ •• • : DIA~~gn~c : : :oowh0cgi0pa1: 
*· ·* ***************** I ***************** 

• UP I I 
I I I ..----->! I I 

AL02 2 G2- •• *· I *****G4*! •••••••• 

·* *· I * * 
•:* DOLijV = *:•YES j !o~F I~~R~PH~~E: 

•. ·- -· .• : LOOP UNSAl'l!. : ... . . . ............... . 
I ( I 
IAL90J ~ v 
I *****H2********** *****H4 ********** 
I =~~EL:.66Fc:om : : sET PRF = END : 
~•21. CA.LL ENDLP. * *PP.OGRAft OPDATF * 

: IF R~~U;Mo, : : PRF TOP. : ................. . ............... . 
I 

..... 
•OBfi* 
* "PC.• .. 

* 

AL030 ! 
*****F5********** * IF DA'!'A !'LAG * 
:Dow~!:Tc~as~RF2! 

.--. (T".!NTP.) = O. * 
I • * 
I ***************** I 
I 

I 
I 
I 

I 
I 
I 

I 
l 
I 

I I ··••J4••······· I * R!'TtJR!I * * ( RP.TUP!I CODE = *<--' 
* 0) * ............... 

Section 8: Flowcharts 

PAGE 086 

301 



Chart BH. Executable Statements, Pass 2 (EXEC2) -- CEKAX 

CEKU1 111"2 CEKll2 1'L2 

****A2•*•••···· ••••AJ••······· . . . . 
* EllTER * * EllTER * 
* * • * ............... . ............. . 

I ..... I 
*****82********** *****BJ********** 
* IP LOG IP * *CEKBQA 159A2* 
: emicco = F~bw :_>:--IF-RC-;-o:---: 
* FLAG. * * RETft-. * . . . . ··········-····· ·······T······· 

302 

·*· CJ *• 
.•LOG IP *· 

• *SWITCHED OB*. YES 

*· CRLBL = ·*1 •. 01 .• •. .. • .. • r 
*****DJ********** 
* POT LABEL DEF * 
* EllTR! II PRP * 
:m~~E: m~om 
* LIRK CHAIR. * ................. 

""' !'. .... •••••EJ•••······· 
*CEKllP1 287A2* ·--------------· 
* * * * * * ................. 

I .•. 
PJ *· .. . . 

• *EXECUTABLE *• OP 
*· ST&TEllEIT • 1 *· FLAG? • * •. .. 

•. ·* i oon 

*****GJ********** 
* RAISE EIECUT- * * ABLE STllT. * * FLAG. IP PROG * 
!T!PETO g:~. SET: ........•........ 

&:11:050 l' 
****H3********* * RETORll * : !:::~:h~~~:.:.: 

PAGE 087 



Chart BI. subprogram Entry statements, Pass 2 (SUBE2) -- CEKBr 

CEKBT1 ENTR2 CEKBT2 l."UNC2 CEKBT3 SUl!R2 

••••A 1********* ****A2********* ****Al********* • * • • • • 
: ENTER : : ENTER : : ENTER : ............... .............•. . ............. . 

l I l 
* **B 1 ;~;**** * * **B2******* * ***Bl******** 

*IftPLICIT l'L.l.G* * SET P80GR1" • * SET PROGR.l.ft * 
* = 1 LOWER NO • * TYPE TO * * TYPE TO • 

*l'LCil l'L.1.G .I.DD* * FUNCTION * * SUBROUTINE • 
*1 TO llOEllT. * • • • • ........... ........... . ......... . 

.____I __ 1 __ .1 

~ •••••c2•••••••••• 
*FALSE EllD LOOP * 
* TO PRP. II.I.BK * 
*LOOP UllSAl'E IF * 
* ISD OPTION IS * 
* ON. * ................. 

'"" l •••••D2••········ 
* COPY TEllP TO • 
* PRl' UPDATF • 
: PRl"i~~~O~=NK : . . ................. 

l •••••!2••········ . . 
* UPDATE ESTLOC • * FALSE BEGill * 
* LOOP TO PRP * . . ................. 

l 
*****F2********** . . 
* UPDATE ESTLOC • * ADD lilLT TO • * llOALT. * . . ................. 

l 
****G2********* * RETURN * 

* (llETDRN CODE = * 
• 0) • ............... 

PAGE 088 

Section 8: Flowcharts 303 



Chart BJ. CALL Statement, Pass 2 (CALL2) -- CEKBV 

CEKBV1 CALL2 

••••12•••••••** .. . 
: ENTER : ............... 

l 
·*· B2 *· .• •. 

·* llfl *· YES 
*· ILTERlllTE .-------------~ 

*· RETORllS ? ·* 
*· ·* ... • 

i" •••••c2•••••••••• 
*OPDATE PRF TOP.* 
•COllPOTE IDDB OF* 

:m~m mam: 
* TO CALL ENTRY * ................. 

l 
**D2******* . . 

* SET II = * 
* * L-lllLT * * . . ........... 
=·:; .. =->I .. . .... 

BV010 ·*· 
E2 *· -· •. •=* ~DdU *:.,YES 

•. .• 
*· ·* ... . • 

i~ 
*****P2********** 
* llOVE ARG. DEF * 
*POIHT PRF ENTRY* * OP BY NALT * 
: ilORDS. : ...•............. 

l 
*****G2********** 
*ILNK Ill) = ILllK * * (L) -llALif. ID (II)* 

: VIR ,~r J,l~ (L) : .................. 
l 

BV020 • *· 
*****111********** H2 *· 
• • -· *· 
!81fPfEa~D~11;u:<---"-0 •: * /~&S~bv *: • 
* * •.. .• . . •. . . 
********j******** *· * 0 ;ES 

I 

304 

•••••J2••········ * • 
!vW 1W-1ULi ! 
* * ...•............. ....____,! 

* **K2******* ~ 

• SET L = * 
* * ILllK (L) * * 

* * ........... 
1 .... . . 

: E2 : .... 

BV030 •••••c3•••••••••• 
* llOVE CALL PBF * 
* ENTRY OP BY * 

l>*llALT ilORDS. SET* 

1 
mm=u~mt.: 

I l 
I *****D3********** :rm fLH~m ! : 

•=GLll' 1l> cEx~A~ t. 
=~~~J~I B'E~l~T : . ............... . 

l 
*****E3********** 
* * *SET L = Pl!FCOV-* 

!PD~a~, 1¥L~K 1: : ................. 
'"" ,[ 

*****F3********** 
* SET LLNO * 
* ~11+2+11 =LABEL * 
: O. ~~ I ~DD 1 : 

* * . ............... . 
j 

*****G3********** 
*IF CROPT=Y~ LBL* 
:m1h~cu~Dm-: 
*CROSS-REF LIST * 
* TOP. * 

l 
....... T .... m 

. *· IBVObO 
H3 *· *****Hll********** 

.• *· * • • * I = OR *· YES *UPDATE EST LOC * 
*· GREATER • *->* BY CltL EST!- * 

•.THAN MALT.* *llATE. CALL P'L2.* *· .• • • ··.·· ·······l······· 
• ••••J4•••••••••. 
: RFTORR : ...•........... 

PAGE 089 



Chart BK. Subscript Processor (SOBS) -- CEKAG (Page 1 of 6) 

CEKAG1 SUBS 

* ••••A3••••••••• * 
: ENTER : ............... 

.. ,,. .... ,..... I 
*****B 1 ********** ****B2*********• * **B3******* * 
=~~~~~~----~~£~~= * * RAISE DON'T * 

. .... 
•090• 
* 84* • * 

* 
I 

AG030 ~ 
!****B4*********: 

:N~~~g~~~~no~~D:--->: RETURN : • FILE FLAG • * 
* VARIABLE' * *************** * * ............•.... . ......... . 

J_ :'. "''" "" ·- ·- ). ·-

>: rm (~r~&!ik : 

I * TTR!l(1) =O * 
* * ········;········ 

I I 
I I 

.. • •. • • •. . • *· 
·* IS STllT *· liO ·* DOES *· liO ·* IllYOKED *· YES 
·-.~QUIVALEllC~··*<---··._ CH~~y= •• ·*<---··._ BY EXPli •• -·---, .. .. .. .. .. .. I 

I :···•c4•:·······: 
*CALL TR!IPRO. IP* 
* RC#O, RETURN. * 
: SET TllEG=+ : .... • .. . . . .. • 

* YES * YES * 

I l I 
i AGO 11 * I *****D 1********** 02 • • *· *****Dl********** • • .• •• • * 

: NUl'IDll = 1 : .:* STA~~gEllT *:•~>:GErA~i ~e~~YOP : 
• • ·- .• • • t : ............... : ·-.l~· : ..... T ..... : 11 

:••••E3*********! I I 
• CONVERT 8-BIT * '1 I : TY PE TO II-BIT : . . ········i:······· J I 

AG012 i I 
!****P3*********! I 

* • 
:sET EF = ARRAY : . . ................. 

I 
AG014 >1 

*****G3********** • * * GET Diii LIST * * ADDRESS. SET * 
: MDllDll = NVllD. : ................. 

I 
***•*Hl********** 
* IF' STATEllEllT * 

: ms~0m~- : 
* PliOZEN FLAG * 
: •••• J~~In ..... : 

~~~~~~~~~~~~~~~~~A-G-0-18~~>! 
•••••J2•········· •••••J3••········ * TTRR,0-llUl'IDll~ * *VDl'I = Pl!G FLAG *
:=~6 SDI11m~t =<---= (C~ms me=:
* bPFSET=O, * *EllTRY, VARCT = * • * • o. •

I
*****K2********** : sxsmn;m :
:sxu~·~> 1!o"jRll, .. :--------------'
* •

.................
:~;~. l * D4 *->

AG031 ACOllP •••••o•••••••••••
CEKAE1 122112 ·---------------· * •
:IF RC#O, RETURI:

I
·*• AG133

FQ *· *****~5********** . . •. . .
·* CID = *· 110 * S!!T TT'lll (0) = *

·•. CONST .•·--->: D!IPR :---,

· · * * I *· .• ••••••••••••••••• v
* YES ***** ! =~:~=

·*· AG912 ERPD
Fii *· *****P'S**********

• * *. *CEKCAC 160 A 3*
·* CTYP = *· 110 •---------------*

*· I *4 ·*--->* '11011-!NTEGER *
· · * CONSTANT Ill * *· ·* * SUBSCR!PT' * *· .• •••••••••••••••••

* YES

I
AG032 1

*****G4********** I
:rp mtoh~m: ****GS********* • *
: TTRll maCVAL* : : RETURN :

I
·*· 1111 *· . . •.

·* COL!! = *• YES ··.. . .. ··--. *· •• • ••••
· · •094• i " . ·:i·

:••••J4•••······:
:mL Tm~gi~ojp:
: RC#O, RETURN :

t
•091•

**Bl*
*

PAGE 090

Section 8: Flowcharts 305

"L

Chart BK • subscript Processor (SUBS) -- CEKAG (Page 2 of 6)

lG033

.....
•091• • .az• .
i

• *• 1G037 .•. AG039 .•.
B1 •. Bii •. 85 • •

• • •• CDLll = •. •. 110 •••• CID " •. •. !'ES •• ;, ·n~lnL;· •• 110
·•. + OB _ ••• ------------------------->•. YlliilBLE .•--->.OR SOBEXPRES-.•1 *· •* *· SIOI • • •. .• •. .• •. .• • ... • •. .. • .. •

J_::· "-·-._ .. ,,. J.:~ J.:::i... I
·* *· ·* *· .• *· *Cl'!KCA.A 16011*

•:* umsLE *:~>•:* =E~~m) *: NO •=*= ~~~m11r *:•.!.!.:____>:---------------: ·- .• ·- .• •. •.• •. .• . .
• D1 *->

AG035 o1·*· •. ••02••••••• •••••oJ•••!ll!... 139 os· •. •

:~;~ ...
1
.-;Es ••

1
.-;ES ··.L·:o ········i·:·······

• * *• * * •CEKCll 160l 1* • • •
.:• oP~~~~J) *:• •* S~TEn~~i~ * *->:---------------=--> .•· CDLll = • •. Y!S

•. .• • * * • >•... I .• ·•--i •. •. .• •. -.•......... • .. •
• • NO *****

: ••••••••• 091 Gii ERBTRll

: ••••••••• 091 G1 Yl&IlBLE OR SOBUPRESSIOI

: ••••••••• 091 G2 HTRll

: ••••••••• 091 D1 C<lNSTANT

.....
•091• *091• •091•
•G! * *G~* •.G:• . . .

lG034 ! 1 lG135 AG036 l
G 1 ***** ••G2******* **G3******* *****Gii **********

•* s;TEnm> *.___>•* ~E~l~mu *•--->•* SET S~S(J) •. __ v_>:SET TllEG = CDLll*
* '* • * *SOBEXPliESSIOI* I * n • • * • • • • •

I :o;;:
* Dll* .. .

EJl1i1
*****H1**********
CEKC.U 160l 1 ·---------------· . *-----------------~-------' : 158 :

306

l =~:!=
.•.

!!5 •• .. •. < .. ~DL~ = ••• >~
•. ·* ~ • 1'0 •••••

I :o~~: .. .
ERRD •••••rs••••••••••

•CEKCAC 16013• ·---------------· * GE1'ERATE • * DilG1'0STIC *
• "ESSAGE *

!..
****GS********* . .

* 'IETUR1' *

PAGE 091

Chart BK. Subscript Processor (SUBS) -- CEKAG (Page 3 of 6)

.....
•092• • •
• .B~• : B4 :

AG020 J.NEll'IRll ·*· AG021 1 AG024 ·*·
_.,e2 •... .•B3 •... :••••B4•••••••••: •• ss • •••

-* liUllDI! = *• NO ·* DIHCNT *· YES *ADD 1 TO DI!ICllT* ·* Diii *· NO
• 4 .•--->. < NUl!DI! .•--->* G!T Diii ENTRY * r>•. l!llTRT CON.ST ·*-,

•••• •••• •••• •••• : (DillCNT) : •. ·* I••........••.... .. •. I

""°' J"' --i ::.. J ! i ~· II
•• C2 ·- •. =~i~~i~**··;~~:;: •• Cll *· •. I !***•C5•••······: I .:· mm ·=·-iYES :---------------: .:· DI~~RFLAG ·:.~ • llULTIPLY D~PR •

1 *· • * *DIAGNOSTIC 132 * *· • * : BY VALUE :

•. •. . • . • : ••••••••••••••• : •. •. . • . • : ••••••••••••••• : r r NO • ••••• 1 r 0011• 1 1

1 : .::.: I l I
•••••D2••········ AGOi~***D4••········ JIGO~~-••DS••••······ J
• • ****D3********* * * I * SET TTRll *
• • • • • SET DllPR = * A1'1JllDll+2- •
: SPEQIV = 1 : RETURN : : VALUE I :T~~ ~=n =~igp 1 :< . • ..•....•..•..•• . . I • TO VlRCT •

I >I

AG028 l
*****E2********** *****!-;**********
:

0mm ~ESP· : >: UR~~;<~~T= :
: : : SXS(J) := NTRN !J
................. i

I --· •090•
* Bii*
• * .

. •. . •.
F2 •- *****P3********** P4 *· .• •. . . .• • . !****FS*********:

• * *· YES * * • * CVAL = *· NO * *
· NEGATIVE .•---> NEG= 0 *--->*. 0 .•--->* SUB = CVAL+1 *

•.SUBSCRIPT.* * * *· ·* * *• . . •.. ,,.. ·:r, ················· ..,,., ··r.. ·······T·······
G2 ·- ·.··••G4••········. I -· • . • * CVAL = *· YES * *

·- 0 • • >.• SUB = 1 •• I - •. .. •. -· . . • .•. :o •••••••••••••••••

l """ !<---~
:••••H2•••••••••: !****R4*********:
* * * llAKE SOB •
: SUB ~ CVAL-1 : : lll!GATIVE :

1 !
•093• •093•
•A! *•.A!*

• *

PAGE 092

section 8: Flowcharts 307

Chart BK. Subscript Processor (SUBS) -- CEKAG (Page 4 of 6) PAGE 093

***** ••••
•093• • •
• *! !* : Al :

I !
!G020C i !G20LP • *· !G20LL ·*·

:****A 1 *********: •*A 3 *· *· • * A4 *· *· !****AS*********!
* • ·* *· RO • * CVAL = *· MO * *
:TEllE' (I) =SUB: *· •• NEG= 1 •• ·*->*... 0 •• ·*---->:.soB = CVAL-1 :

• • •. •• •. • • * • ••••••••••••••••• *· . • •. . • • ••••••••••••••••

I i"' i"'
:••••E1••·······: :••••BJ•••······: I
• * * •
: I = I + 1 : : REG = 0

* * • • ·······T-····· ·······T·······
*****Cl********** cJ· •• *· AG2~~s •• c11•········· I . . .• •. . .
* llU!ISIJB = * ·* CVAL = *• YES * *
* llU!ISOB+ 1 * *· 0 • *--->* SOB = 1 * . . •. .• . . • • •. • • * • •. I . " I

,,. •· •. "'m •• ., ••• 1mi.. • ••••• J........ '"i;:.............. I
• * *· •CEKAE1 122!2* * * * *

.:· Nugs~B ·:~>:---------------· : SOB= CVAL+1 =--->= mM~~ =------->I .. -· I •. .• • • * • • • .. . -:.. ········r······ ··············-· -··············· I
l ••lD" .•.

*****El********** E2 *· ES *·
CEKClC 160!3 • * *· ****!4***•***** • * *•
•---------------* ·* CDLll *· 110 * * * * ·* CDL!I = *· YES
* * *· 1 + 1 OR '-' .*-->* J2 * ------->* RETUBR * *• 1

•' (COllllA) ·*-i
*DilGllOSTIC 132 * *· ·* * * I . * *· ·*• •. ,......... 1~ I EllllD AG020G ,. "I~ ::::;

P2 *· *****Pl* ******** *****P4* ******** PS *·
****F1********* • * *· *CEKCAC 160!3* *CEKClC 160!3* ·* *·

* * • * CIO = *· NO •---------------• •---------------• 1'0 • * CDLll = *·
* BETOBll * *· NOLL .•--->* * " *< * 'I' !RIGHT *
***************** *·*· ·*·* :DIAGNOSTIC 137 : :DIAGNOSTIC 136: ---

0

• •• :AREM} .•·*·
•• • • ••••••••••••••••• ••••••••••••••••• • •• *

.i."' i"'
G2 *· *****Gl********** *****GS********** .. • •. * • • •

• * CDLll = *· YES * * * *
· 1 - 1 ·--->* MEG = 1 * * TEllP = SOB *

•... ·* • * • * •. ...• ·-r :o _j................. ········1·········
AG020J i EllR1

*****82********** *****RS******.****
CEKCl! 160! 1 * *
•---------------* • llUllSOB = *
:DilGIOSTIC 158 :< : NUllSUB+l :
• • • *

;=::=~:!......... ······:I:······
**** *09S•

lG020L J 2.•... JJ·*·•. *****Jll***~~~2*** * *P!*
• * *• • • *• *CEKClC 160!3* *

• * CTYP = *· llO • * CTYP = *· NO •---------------•
· I 2 .*->*. 1 •II .*--->* *

• · *· • * *DIAGNOSTIC 137 *
*· . • •. ...• • * •• . • •. ·* •••••••••••••••••

* YES • YES I
.:L. l
: A3 :

**** ****Kii.********* • *
• R1'TUB1' *

308

Chart BK. Subscript Processor (SUBS) -- CEKAG (Page 5 of 6)

AG130

.....
•094•
•*A~*

*
!

. ·-A2 *·
E:tR'I ERi! • *. ~gm:n~~- *· YES

.-·-:~mmri .. ~.-·-,
I *· ~*
I *· • *
1 rTERll

I I
l AG131 l ••a2•••••••

I * * * SET SIS (J) *
<-* = CON *

I *• .*

AG042 . •.
A3 *· .• • .. !****At&*********:

• • CLASS *· YES * SET CLASS = *
1>•. *· <ij~~&bwN •• -*--->:sr11PLE VA!!IABLE:

I *· .. * * *
I *· .. * *****************
I * NO I I I

I I
l ~ I
IAG043 83··-.. AG044 ••B4•! •••••

I . * CLASS *· * RAISE *

1

1 .: ;r11~:sm~ o:: •~>.;c:-E~~~ii~~6iic:o * •
*· FTN SUB •• * * FLAG (CSTP) *

I •. ~~":.·· •••••••••••• *
l j NO I

I I ~ AG917 i ERR2 AG045
•••••c2•••••••••• J J c3· *· •. •••••C«t•••••••••• •••••cs••••••••••
* * I I . * ·- •CEKCAB 160A2* • * * SET SXS(JI = * I ·* CLASS *· YES •---------------* * SET TT'll! (1~4 *

I
: ERR Uft;.tALL r_, ·· .. (C~H~y= •• -·--->: !)~immc :---->:csTPv,.~g!j!_ 1 .0 :<-,

I

·········1 .••..... J 7. =~. : 2H~~2~ : =·······r······= I
I ~ ~I I I ! I .**** * I

IAG132 ACOllP I : E1 : •••••Dll********** ·*· I

L :~~::~1····;:;:~: Ios •·•. 1
>::r;-REruiiii-coiii-: 1 :sE~L~~e7cm1 = :<~•:* u~~~b *:. '!

* * :..:.~:.:::::: .. : : : *• 0 !CSTP) •• ·* II
: E1 : I ********j******** *· *. :o

**** •094* I I 1, I
I : E2* *->I I

I **** ' >1 ,I
AG915 ~ EliED AG040 • *· • *· AG046 V TRl!PRO

*****E1 ********** E2 *· E4 *• *****1!5********** I
:::~:~: ____ !~~~~: NO •• ·* CID= *·.. n:s •• ·*RETURN •.. :cc:KcG1 11sA1; I
* GENERATE •<---•. VAR ·* *· CODE = 0 =•<---·---------------. I
* DIAGNOSTIC * *· ·* *· ·* * *
* II.ESSA GE * *· • * *· • * * * ••••••••••••••••• • .. -· *· .• •••••••••••••••••

I * YES * NO

I, I I I

I I I AG041 ! AG050 t' I
·*F2° • *· *· • **F4******* * I

I .:· cTm = *:~ ·: VA~~¥u~~ 1 :- I
I •·•. _.·· . • • ... •
I i " I
I AG916 ~ ERRD ·*·

*****G2********** Git *•
J *CEKCAC 16013* • * LOOP *·

I :---GENERATE----: • * VARIABLE *· OFF
* DIAGNOSTIC * *·•. ctM~) .•·*--y

I * llESSAGE * •• • * *****
1 ········r········ • .. · •091•

I ,I i " -.:1·
i *****Hit********** RS•*·*·

****H2********* * * • * *·
* * I *SET CSTP= LOlll'R* • * CLASS *· ~
: mua11 :<___. :unM~~M~s!!::--->·- •. mmL! .• ·• •. .•

* NO

I

AG052 !
*****JS**********
: snLfi~Rwi1 :
* DllPRf 4T!'ll (1 I * * =O, . F PC #0, * * R!TURN *

!
•091*
* 1!1* * •

*

PAGE 094

Section 8: Flowcharts 309

Chart BK. Subscript_Processor (SUBS) -- CEKAG (Page 6 of 6)

.....
•095*
* B1*
* * .
l

AG060 • *·
81 *· . . •.

YES • * OlltCllT *•

r *· =MUllOll .• •. ..
*· .•

:::::: i"
lG920 • *·

C1 *• . . •.
110 • * STllT. *·

1*· ID=BQUIY • *
I •- . • I ····t:
I 01· *· *· . . •.

I < .. ::~~:: ... ::~>
~·110

><922 >I
*****E1**********
CEKCU 16011 ·---------------· * GBIEBATE *
* OllG1'0STIC *
* llBSS.lGE *•.....
~oH: *->j

lG062 • *·

310

F1 *·
·* STllT. *· 110

• •• ~o=~iW o~.·.___
•. .• i "'

*****G1**********
! ~~TT=~~B~=b :
:TRllCll~;g6 C.lLL. :•..••.....

l
****H1*********

* RETURI * : !::~~:!~e~:.:.:

AG064
A2*****

* SET EP *
* ABBAY *

I
>•. mG;:~Fssu ••

* 1. *
I .•.

B2 *·
·* TRl!CllT *· YES * *

· = 0 ·-->* Gii • •. . . . •. ..• • .. • * 110

'"" l *****C2********** • * ! msiT~~-
•

j, _ ___,
lG071 .•.

02 •• . . • .
• • TERllS *· YES

·•. (JI =O ·· .. .• • ... r
*****E2**********
SET STlRCT=O, I
•=1f.IP LOOP Y R *
: P ~j= U[bo~ET :
* YAR.STlRCT =1 *

I
* **F2******* * . .

* * ADD 1 TO I *
I

*****G2**********
* FILE CCllSTAllT *

:F~8MHPmn :
*TO EP. ADD1 TO *
* STABCT. *

I
*****H2**********
:g0~E¥~smJgo:
SET EP=YAR ITEll
*OF TEBllS (J+I) *
* lDD1 TO I. *

I •••••J2••••······
•IF STlRCT=1~SET*

: E~~~Pm~c¥1 :
UITIL STABCT=1,
*ADD1 TO PLOSCT *

110 l<

AX079 **K2*****f'* KJ• • *•
• • ·* •. * &DD 11011011 + * ·* J = *· YES

* 2 TO J *--->•. TRllCllT ?- • * . . •. ··.··

AG080 PL SOOT
•••••!4••········

!sU ~~~s~T~~b.:
>* REDUCE PLOSCT * * BY 1. *

I
*****Fii**********
* ITEi! PF WITH *
* TYPE OP ARRAY *
*RAISE SUBSCRIPT•
: FLAG :
•••• I

: Gii :->1
AG0811

••Gll******* . .
* SET HS=S. *

* LOllPR DOllT *
* PILE FLAG *

I .•.
HI! *·

****PS*********
* RETORll *
* (P!TORll CODE = *
* 12) • •..............

A

I
AG900 l ERR3

*****GS• ********
=~~!~~~----!~£~~=
• * •...............

i,.,
HS• • •.• • ..

.• STl!T *· 1'0 ·* EP/SP1'P *·
*· IO=I/0 STl!T • *--->*. OVE!!FLOll • * •. .• •. .. *· . • • .• • .. • • .. • * TES * 110

••0i1 •• .,..!........ l
* * ****JS*********
• IllCR!llEllT • * RETORll •
* ESTLOC *--->* (RETORll CODP = * • • * 12) *

PAGE 095

Ch.art BL. Expression Processor (EXPR) -- CEKAI <Page 1 of 13)

CE KAI 1 EXP ii

****A 1********* . .
: ENIEB :

I
Bl*****

*INITIALIZE *
*****B5********** . .
* Tl'' SYll TllLl'll * • •Ie:o~=~h~~o~·· •

* STPNLV=O, *
* CSTKXP=O * ~--------------------------->: l'LAGE~~i.CALL :---,

L,,
•••••c1••••••••••
=~~~~~! ____ !!~~!:

: ••••••••••••••• : I

I
AI011 l NO .•. AI0115 i I

CJ• • *· CU *· :****C'i*********:
I

•• •• COllllON ·- *· YES •• •• l'ORllAT *· •• NO • SET CLASS = • I

I
>•. BLOCK llAllE • •--->•. ARGO II ENT • •--->• EXT"!RNAL • I *· . • •. .• • • ·- I ... • • .. •

• ~ YES I

. *·
D1 *· .. •.

YES • * EliROR *·
1*· FLAG UP ·*

I
•. •. ..·.

•. ·* * NO

I I
I . !.

E1 *·
I ·* *· NG I •· •. s·grm~T_ •. ..__l
I *· • * *****

I
I 'f" =::i=

AI010 .•.

I
J,,,

I F1 *· P2 *· I
I . • *· • •SYllBOL •. Vft~ I

• * IS CID *· YES • *TABLE CLASS*. ~ I • .•. VARIABLE •• ·*---->•-:. unhoe u~~-·
I •. • ..• ·• •. • ..• -· I • NO • OTHB

I l :~fr*->!
II AI912 ~ EBRD AI9~~** * ERBD

*****G1********** *****G2**********
CEKCAC 16013 *CEKCAC 160A3•

I •---------------• •---------------•

I : : : : I•.........
I :~H·._>I _J I :.... !

I
. ••ii1•••••••.

* RETURN CODE *
• • = 12 • •< . .

I i:ii~:r···
* IF STATEllENT *

I I I
! E:RRD AI012 ! !

=~~:~~~·**·~:o:;: :··••D5••·······: I
~------=---------------: :Sii:"' CDP = !'LAG :<_J

• • • *
l . •.

i;:s •. .• •. :****E'J*********!
* NO PABAllETER * JES • * IS !!~XT *·
*CALL OUTPUT TO *<---*· Dl!!LillI'!'F.R • *
* EP * *· EOS • * • * •. .• ········1········· •. i" :o

•102•
• 82•

*****PU********** * * . . .
* IP CVlL = *
'EXIT' RAISE MO
: !'LOW !'LAG :
=~;:. I
* G14 *->
:.... t

AI BOO t
*****G•********** * 0 ERPOR COD!. *
* GET STATEllEIT * * PRF UTR. SET *
OPD2 OP PPF= El'
* PllTB. * *****
••••••••••••••••• •09fi• I .. t

• *• AIBSO i
H4 *· *****H'7o**********

.• *· * SET l'STLOC= *

.: • -E~F Big~DP ·=·-"0--->= Utm;rr : •.> !llX !P • * * FACTOR. Cll.LL *
*· • * * CHKI1'T. * ·r::. ·······r······

*****J4********** *****J5********** t9ii::.J1••········
>:I~a~~Il:isPT!<;------------------'

CEll:CIC 160A3 * * •---------------* * II' EP.!!OR PLAG *
* * *UP. CALL EPF2. *

: BACK DP :

I
****K1*********

: .liETD~~dfBROR :

.)... l
* H1 * . .
**** ****K5********* * BETD'IN * : ::::::2i~~~:.:.:

PAGE 096

Secti.on 8: Flowcharts 311

Chart BL. Expressi?n- Processor (EXPR> -- CEKAI (Page 2 of 13)

.•. ·*·
A2 *· *****A3********** All *·

·* *· * IP' Cl<OSS-REP' * .*BRANCH *·
·* CID *· YES * FLAG UP. !!ARK * .• 011 SY!IBOL *·

· · *REF LIST. SAVE * *· CLASS • * I
>*. VARIABLE .*->* VAR Ill CROSS *--->*. TABLE ·*

***** *· • * * SYll TBL PNTR * *· . *
•097• J •. -· • .. • . ·:!· 1· 110 ••••••• ~
t : 097 E4

.•. AI912 ERRD : ••••••••• 097 E3 e1 •. •••••e2•••••••••• .
• • *· *CEKClC 160A3* •••••••••• 097 D3 * •• * STAT

1
E
0

11EllT *·. YES :---G°"-11~-T-E----:< •
•.EQUAT:IOll ·* * c!f(;~~~TIC * l ••••••••·• 097

DJ
*· .• * llESSAGE * : ••••••••• 096 G2 .. -·

•••• • 110 I

: C1 =->1 '
•••• •096•

AI024 • *· * H1 *
C1 *· * * . . ·- . • • BRAllCH *·

*· 011 CID .• ·- -. •. -· *· .- •

: ••••••••• 098 81

: ••••••••• 098 B2

: ••••••••• 098 Bii

: ••••••••• 099 B1

VARIABLE

COliSTlNT

llULL

llfl!L

AI007

.....
•097•
* .c~• .
l

·*· D3 *·
I Vb~ •• -·CDLll = ·- ••
~.. •(n ·* •. . . •. .•

•. •• •097•
* 110 * Ell*

i~ii: •->1 ·l
AI021 • *· • *·

E2***** E3 *• Ell *• * • •• •• .• *·
* SET DEPillED * 110 .• IS 11011- *· 110 • * IS llEXT *·

* FLAG II *<---•. REDEPillED • •<---*· DELillITER • *
*SYllBOL TABLE * *·FLAG SET ·* *• "(" .• • • *· .• •. .• -. ·- ..

l
•099•
•.ai• .

* YES * YES

""' I "'" l *****P3********** *****P'4**********
CEKCAC 16013 * *
:---;:;EiiEu:ri----: ! ~~M!' ml'. !
* DIAGNOSTIC * * SP'DEP. *
* II ES SAGE * * *

J.. I
•096•
• 61• ·*· * * G4 *· . .. •.

·* IS *· YES

UllKllOllN

ARRAY

P'UllCTION SUBRTll. llA!l E

SillPLE

OTHER

•. • :RRogP PUG.•. •---v

312

.. .•
·- •• •096•

.... ~~ii:*->* l NO * * ~ Z*

AI023 lCOllP
*****H4**********
CEKAE1 122A2 ·---------------· * ASSEllBLE *
* CO!IPOBEllTS *

l
·*· JQ *·

110 •* IS *· YES

r *· ERROR PLlG .*-----.
*· UP • * 9 •. .•

*· . • •096• •••••• • •.Jz•
: C1 : *

PAGE 097

Chart BL. Expression Processor (EXPR) -- CEKAI (Page 3 of 13) PAGE 098

.....
*098•
* B1*
!

AI048 • *·VARIABLE
Bl *· .. . •.

YES • * *·

r*· HS=H ·* •.
***** * NO •099• I
..• ai• I

* i EBRO
•••••c1••••••••••
:~:!~~~----2~~~~=
* GENERATE
* DIAGNOSTIC
* KESSAGE *

... L
•096•
* Hl* .. .

.....
•096• •096*
* B2* * Bii*
l CONSTANT !

AI047 • *.OPERAND AI905 ERRD AI090 • *· DELillI'l'ER • *·
B2 *· *****B3********** B4 *· B5 *·

·* *· *CEKCAC 160A3* ·* *· .• *·
• * *· YES •---------------• • * *· NO • * IS COLI! *· NO

"-... HS=S •• ··--->: o~i~=8~Hc ·-.. HS=H •• ·*--->• ••• (OR. NOT ••• ··--,
*· .• * llESSAGE * *· • * *· * 1 •• • • ••••••••••••••••• •• • • •. • • v

* NO I * YES * YES *****

l I •••• I I •103•

I ... !.. ;02g:•->I ·.~!*
~ *09r AIO;;·· . !. i ERRD •••••c2•••••••••• • •H• • c" •. •••••cs••••••••••

* ADD1 TO J.SET * * .• *· *CEKCAC 160A3*
•sxs IJ) =CONSTANT• • • BRANCH •. ·---------------·
ENTllY El'=OOTPUT I>*. ON • * * GETIERATE *
* OPERlND,HS=S * •.DELillITER.• * DIAG~OSTIC *
ADD 2 TO CSTKTP *· • * * !!ESSAGE * ········i········ .. ~ -. ········r········

I I : ... ±- •••• 098 E5
,, *096• ·*· I : ••• NOT ••• 103 Al * 1'1*

• * *· * * : ••• (••••• 103 A 1 * D2 *· *****D3**********_j * *
•:* L~~p~~All *:•.:.::____>: p5fiTHC~o : : ••• OTHR •• 098 Ell

• CSTKL!! · *CONSTANT ENTRY * •.
·~

* NO

I

AI902 l EllRD
*****E2**********
*CEKCAC 160A3• ·---------------· * GENEiiATE *
* DIAGNOSTIC *
* !!ESSAGE *

l
****P2*********

* llETURN *
: (RETUR:) CODE = :

**** *098•

* E4 l • *
**** AI907 ERRD
*****E4**********
=~~!=~~----~~~~~=
* GENERATE *
* DIAGNOSTIC *
* !!ES SAGE *

.. L
*096•
* Hl*
* • .

.
•098•
• !!5• ..

*

1
!****ES*********:
* CHANGE *
* DELillITER TO *
: ONARY.+,- :

Section 8: Flowcharts 313

Chart BL • Expression Processor CEXPR) -- CEKAI (Page 4 of 13)

.....
•099•
•.Bl* .
i

AI042 • •.LABEL AI905 ERRD
B1 •. *****B2**********

• • *· *CEKCAC 16013•
.• CDLll *· JES •---------------•

•. ALPHA .*--->* GEIERATE *
•. • • * DI&GIOSTIC *

*• • * * !IESSAGE *

•. • ·:o ········r········
I :m:

• H1•· •••••c1•••••••••• • • . . .
*ADD 1 TO llALT. *
• SET sr. 110. •
: (ULT) = LABEL :

I .•.
D1 •.

.• HSTCK *·
• *(I) = CCllH•. llC

•. OB • --..------.
•.SEl!IICOLOll. * •. .• ... •

* JES

.,,.. I
*****E1**********
•GET SUBPBOGBlll •
* llAllE SJllBOL •
* TABLE POIITBB *
• l'BOll HSTCK •

I -·· l'1 • • . • • . • • *· JIS
• l'UICTIOI .-------· FLAG OP • • .. .•

*· .• r·
.•.

G1 • • . • •.
YES .• •.

r *· CDLll , .• •. . .. •. ..
~ .• I

••••• • llO I
:om l . .

• • *• U931 EBBD

314

e1 •. •••••e2••••••••••
• • •. *CEKCAC 160A3• • * *· NC •-------------·•

•• ·- CDLll I .•• *--->: oimMUc :
•. • • • llESSAGB *

··r;BS ········r········
i •••••

•096•
* H1*

••J1••••••• ••
* SET HS=S *

l
•105•
• 1!1• .. .

.
•099•
* B3* .. .
! VARIABLE

UOSO .•.OPERARD
83 ••

• *BRAllCH *·
.• 01 SYllBOL *·

• TABLE ·
*· CLASS • *

• .. ··
: ••••••••• 100 B2 UllKIOlll

: ••••••••• 100 D3 SillPLE AllD l'DICTION SOBPROGRAll RAllE

: ••••••••• 100 BS ARRIJ

: ••••••••• 101 B 1 STATE!IEIT POllCTIOI

: ••••••••• 101 83 STITEllBllT l'OllCTION IPG •

: ••••••••• 102 B2 EXTEBllL l'UICTIOI

: ••••••••• 101 G2 IllTRIISIC l'OICTIOR (OPEi) AllD OPElll

: ••••••••• 101 G3 LIBBIBJ POllCTIOR (LIB) AID LIBI

: ••••••••• 101 Bii llll/llII POMCTIOll

: ••••••••• 100 B1 UMKIOU POllCTIOll

: ••••••••• 099 H3 lllllELIST OR EllTRJ

.
•099•
* H3• .. .
! ERRD

*****H3**********
•CEKCIC 16013• ·---------------·
• GERERITE *
• DilGROSTIC *
* II ES SAGE *

!
•096•
* H1• . . .

PAGE 099

Chart BL. Expression Processor (EXPR) -- CEKAI (Page 5 of 13) PAGE 100

.....
•100• •100• •100*
•.Bl* •.e~• •.e~• . . .

1 mm~" 1 ! I • OllKMOVll
AI056 ~ FllCLS AI055 • *·VARIABLE AI058 AI067 ARRAY

:~;::~~****~~~:2: . * 82 *· * • !****83*********: !****95*********!
•---------------* • * llEXT *· 110 * SE'I CLASS TO * *SAVE CROSS REI'.*
DETE!i!IIllE CLASS<l *· DELillITER (.•--->* SillHE * *• LIST TOP •*
* OF FUllCTIOll * *· ·* * • . . •. .• •

)... I J.::' I I
110 •• ·* IS •... ~ •• ··co1111011 •... rl
r-• .• :RRO~/LAG ••• • • •• ~L~r~G"aP. * .•
~ •· •..• ·• ·· •... ·• ~~=

***** * YES * YES D3*
•099• l ,• I ••• •.s3.•

1
I l ?U NCrIOll • :~;:: I ~m0m!IE

•.Jl* •••••D2•••H~~... 1.uo&o **D3••·;~:~LE VARIABLE

* ::~~~~: ___ _!~~~~= ~ **RAISE DOii 'T * *
* GEllERATE * I>* Diii. FLAG *
* DIAGllOSTIC * * *
* llESSAGE * * *

.. L II I
•096•
•.H.1 • I *****E3**********

* *ADD 1 TO J.SET * I

:nm.<~~rvUPE : I
*FROZEN FLAG Ill * 1· * SY!! TBL. *
:;~~·.J I

I
! ... * I v

AI062 + . *· . •.
*****F3********** I'll *· 1'5 *· •. .• •.
* WRITE OPERAND * YES • * CDLll : *· 110 • * NEXT *·

I
Oii El', SET HS=S ,.. , • *<---•. DELI!HTER. (• * . . •. .• •. •. •. . . • ... I I • NO • Y~S

I I •098• I l l
I

AIO&e G 3 .:::-~:- • I Gii·*·.. AI069 Gs·*· ••

• * *· I .• •. .• *·
YES .• *· V YES • * COLI! : *· YES • * *·
<-*· HSTCK=, .•<---•.) ·* 1*· STAT!llENT .•

· · *· .• *· =ST.FN •• •
I *· ·* *· .• *· .• I * • • • :o * • • • :o I * • • • :o

I ,,J .. "'ltI.mi... 1

1

..... ,J.im ...
I •* *· *C!KCAA 160A1* *CEIUG1 090A3*

YES ·* HSTCK= *· 110 •---------------* •---------------•
<-*· SEllICOLON • *--->* GE!IERAT! * * PP.OC!SS *

*· • * * DIAGNOSTIC * * SOBSCRIPTS *
*· . • • ll!SSAG! • I ·······-r······· I ·······r·······

AI921 ERRD J .•.
*****Jll********** JS •.
CEKCAC 160A3 • * *·
•---------------• • * ERROR *· NO : Dir~=~~Hc :< •. •. FLAG UP ••• ·--,

: •••• 2u~~~i : • .•..• · • i
I * YES *****

I
:0~4:

v ••
•096•
•• I!!* i

* ****KS********* * • * !XIT *

Section B: Flowcharts 315

Chart BL • Expression Processor (EXPR) -- CEKAI (Page 6 of 13)

.....
•101•
• 81*
• *
* I STATEllEll'I
V FOllCTIOll

.....
•101•
* B3* ..

*
I STATEllEllT + FIJllCTIOll

AI070 • *· BEFEBEllCE AI917 ERBD AI071 • *.ARGIJllEllT
81 •• *****B2********** 83 *• . . •. *CEKCAC 16013* • * *•

YES ·* CDLll = *· •---------------* 110 • * STATl!!l!ERT *·

•. .• I ·- (-· :co11~m~1H,oa•:<---*·l?ro~m~P~I·*
•. ·* • • •. ·* .. . •

• 110

um J .,.,
•••••ct••••••••••

········1········· .. r ..
C3*****

~~~~=----!~~!~! ****C2********* * * 
* BETURR * * * 

* GEIEBATE n * DIAGBOSTIC * * !!ESSA GE * ................. : ~::::::~~~~:.:,.: ***ADD 1 TO J * * * 

I 
..... 
•096• 
* H1* * • 

SPEIP1 * 
*****D1********** 

==~~~~----!!~!~: 
>* EXPAllD * 

* STATEllEllT * 
* FOllCTIOll * ................. 

I 
·*· E1 *· .. •. -* EB.BOB *· HS 

*· *· FLAG OP • *.-------.. 
•. .• ..... 

*· • • *096• 
• 110 • J1. l - ... ..... 

•097• 
* H4* .. . 

..... 
•101• 
* G2* 
* * . 
i 

AI923 ER.RD AI083 • *· 
*****G1********** G2 *• 
*CEKCAC 16013* .• *· 
•--------------• 110 • * DELill = *· * •<---•. { ·* * • •. .• . . •. .• 
********i******** *· i •;ES 

..... ! 
•096• 
* H1* -• • •••••e2•••••••••• 

* * SET HSTCK * 

: eHmi~i1 : 
* =SBl!ICOLOll * 
* * ..•.............. 

I 

. ......... . 
l 

*****D3********** 

:nmaiP~il~iiY,: 
* EF=STATEllEllT * 
* FIJllCTIOB ABG. * : •• nmi.m~ •• : 

! 
***** •098• 
* .c:• 

* 

. .... 
*101• 
* G3* 
• * . 
i 

AI084 • *· 
G3 *· . . •. < .. :EL~ll ~ •• >~ 
•. .. ' * YES ***** 

I : 1m 
I • •. 
~ 

!****H3*********: 
* SET RSTCK * ! (I+5) =O ! . . . ............... . 
=~~i· •->l * • .... 

AI081 •••••J 3* ********* • * 
* SET RSTCK * 

: sm~bi:o11 * ..........•...... 

""' l *****Kl********** 
*SET HSTCK {I+1) * 

-------->!&s¥fi~t 1i~4~: ! :esm <~·~~ i?· : 

316 

..•.............. 
! ..... 

•097• 
* Rfl• .. . 

AI072 

. .... 
•101• 
* B4* 
* * * 
l 11u111r11 

• *· FIJllCTIOI AI923 
B4 •. •••••as•••••••••• 

• * *· * IF FU!IC. FLAG * ·=· CDL~ = ·:._110 ___ >:11ESm~ m. IP: 
*· *· .•·* : ll;g§foiE1s11 : •. ·* ••••••••••••••••• 

* YES 1 
1 :o;:: 
••• * Jl* 

C4 *· * * .• •. . 
• *COllVERSIOB *· 110 

*· FUBCTIOH • *--------.., 
*· HEEDED .• •. . . . ... 

j"' "'" l *****D4********** *****DS********** 
* COllVERSIOll * * * 
* FUJICTIOB * *ADD 1 TO I. SET* 
:es~~PH~ lo TO ! ! RSTCK (I) = I ! 
* I. * * * ............•.... . ............... . 

(, _ ___, 

AI074 •*• AI076 
Eli *· *****ES********** 

• * *· * SET HSTCK * 

.: * F~u. UP *: •-110--->:Ji;A~ =i~~o ,r~~G: 
*• •* * I. * •. .. . . .. -· ................ . r· 

*****F4********** * SET RSTCK * 

!esmn:2r~-m! 
*FLAG. ADD 2 TO * 
* I. * .........•....... 
j,_ 

*****Gfl********** 
* SET RSTCK * 
*(I•1)=ARG TYPE,* 

! m:x1~fi·~>To ! 
* I. * ................. 

t ..... 
•097• 
* R4* • * . 

PAGE 101 



Chart BL. Expression Processor CEXPR) -- CEKAI (Page 7 of 13) 

..... 
*102* 
* .s~• 

* I 
! EXTERNAL 

AI078 .•.FUNCTION 
82 *· -· •. YES ·* TYPE *· 

I
*· FROZEN FLAG ·* 

•.. UP ·* *· .• ·- .• * NO 

I I 
I t 

* **C2******* * 
* SET 'TYPE * 

* FROZEN' FLAG * 
*!II SY!! TABLE** ........... 

I L..---->1 
t 

AI080 • *· 
02 *· 

·* •. • * *· NO 

..... 
*102* 
* .e:• 

* 
----->! FUNCTION AS 

AI085 • *· ARGU!!EllT 
84 *· 

·* *· r·:: .. :::,:: ... > 
i" 

• *• ERRD 
C4 *· *****CS********** 

·* *· *CEKCAC 16013* 
• * DELI!!. *· NO •---------------* 

*·•. IS I .•·*--->: D~mm¥c 
*· • * * !!ESSAGE * *· ·* ••••••••••••••••• 

* YES 1 
L..---->1' ..... 

•096• 
AI086 .•. * H1* 

04 *· * • .• •. . 
YES •* *· 

*· DELI!!ITER = ·*'-------------' 1*· HSTCP: (I) = ·* 
*· ( ·* *· .• ..... • 

i"' 
-*-

1!2 *· -· •. NO • * FUNCTION *· 

I
*· SUBPROGRAM ·* 

*· FLAG ON • * 
*· ·* • .. • 

I [, 
I *****F2********** 

::~~:~~----~~~~~= 

l L ........... J 

""' '] 
*****G2********** 
* * :sET HS~<jK (I+S): 

• * • * ..............•.. 
l 

*****H2********** 
* II' CDP FLAG * 
*DOllN~ RAISE CDP* 

: l'LAd m.m: ................. 
.. L 
··101* 
*.Ji• .. 

I •· •. ' , .• -· 
I ·-.-;o 

l 
• *· ERRD 

Ell *· *****l!S********** 
·* *· *CEP:CAC 160A3* 

. * *· NO *---------------• 
·-.~m~mo11 ... ·*--->: DmmHc 

*· • * * !IESSAGE * •. ·* ••••••••••••••••• 
.__ ___ > * YES ! 
.,,., l :•m 

*****FIJ********** * * 
* * * 
* IP EXTERNAL * 
*FLAG DOllR CAIL * 
* !!RR 1 * 
* * ................. 

l 
AI088 ·*· LIBllA 

G4 *• *****GS********** 
•* SJll *· *CHBY2 116A3* 

• * TABLE *• YES •---------------* 
*· CLASS= • *--->*SELECT LIBRARY * 

*. LISA • * * FUNCTION * •. .. . . ··i·:. .. ..... T ....... 
AI089 l .•. 

*****Hll********** HS *· . . . . .. 
*ADD 1 TO J. SET* YES • * Rl!TUR!I *· 
:s~m1 =vHM~·:<---·· •. coDE = o .• ·• . . •. .• ········1········ ·-1. ;o 

***** ••••• 
•100• •096* * 1'3• • J1• • * * • . . 

PAGE 102 

section 8: Flowcharts 317 



Chart BL. Expression Processor (EXPR> -- CEKAI (Page 8 of 13) 

..... 
•10J• 
• 11• .. . 
t 

AI100 •*· 
11 •• 

• •BBARCB *· 
.• OR *· *· PBECEDERCE • * 
*· TABLE • * .. . .. ·-.·· 

: •• •••• ••• 10" BJ 

: ••••••••• 10ij B1 

: ••••••••• 104 P2 

: •• •••• ••• 104 BS 

: ••••••••• 10s B4 

: ••••••••• 104 BJ 

: ••••••••• 10" pij 

: •• •••• ••• 107 B4 

: ••••••••• 10ij B2 

: ••••••••• 10ij PS 

: ••••••••• 10S B2 

:. ·-· ••••• 105 B1 

: ••••••••• 10J E1 

..... 
*10J• * E1* .. . 
t .•. 

111 •• .. . . 
• • COITIIUE *· 

*• BRUCB.llG 01 • * 
*· PB.ICED •* 

•.TABLE.* 

318 

... -· 
: ••••••••• 106 1!2 

: ••••••••• 106 C2 

: ••••••••• 106 B4 

: •• - ··- ••• 106 Bii 

: ••••••••• 106 B4 

: ••••••••• 106 B4 

: •• ·-·-·· .107 B1 

: ••••••••• 107 BJ 

: ••••••••• 107 B1 

: ••••••••• 107 HJ 

=---· ..... 108 .B2 
: ••••••••• 108 BJ 

=----·-·-- 108 B4 

BEii D!LillITBR BAS GR!lTEll PllECEDBICE THU HSTCK (I) ITEll 

ILLEGAL OPEllATOll P.l.lB 

BEV 'BOS' llEETS '"'' (RIGHT S.lDB OP EQUITIOI S.TlTEllEBT PllOCBSSBD) 

BBll 1 ,' l!BBTS '(' 

llEll ')' llEBTS 'BOT' (J:P STlTEllBIT BXPBESSIOI PllOCl!SSED) 

BEii lll!BTS 1 BOT 1 (LEPT S.lDE OP EQUATIOI 51'1.TEllBIT PROCBSSl!D) 

BEii ',• l!EETS ',• (PIBST OP SEfEBl.L lBGUllEITS PROCESSED) 

IBll 'IOS' l!EBTS 'BOT' (ClLL STlTEllBIT OB STlTEllEIT PURCTIOI PROCESSED) 

BEii ', 1 llBl!TS 1 ,' OB 1 ,, 1 (ITR lBGOllEIT PROCBSSEDI 

llEll ',' llEBTS DOUBLE SBllICOLOI (1ST OP SEYl!Bl.L lRGUllBITS PBOCBSSl!D) 

BEii 1 ) ' llEETS SEllICOI.01 OB DOUBLE SEllICOLOB (OILY 011! lRGUllEIT) 

IEll ')' llEl!TS 1 , 1 OR 1 ,. 1 {LI.ST l.llGUlll!IT PROCESSED) 

OTHER 

HSTCK (I) ITEll IS -

HSTCK(I) ITEll IS +, *• /, ** 
HSTCK(I) ITEll IS .LT., .EQ., .GT. 

HSTCK (I) 

HSTCK(I) 

HSTCK(I) 

BSTCK(I) 

BSTCK (I) 

HSTCK (I) 

BSTCK(X) 

ITBll IS .IE. 

ITB.11 IS .I.E. 

ITEi! IS .GE. 

ITEi! IS .&ID., 

ITEi! IS .IOT. 

ITBll IS UIABT + 

ITBll IS UllBT -

.OR. 

IEi ') 1 llEETS 1 11lX 1 (lLL HGUll!ITS OR 1111/llII PUICTIOR PROCESSED) 

llEll •,• OB 1 ) 1 llEETS 1 SP 1 (ITS lBGUllBIT OP STl.TElll!IT PUICTXOI PROCBSSEDI 

llEll 1 1 llEETS 'llAX' (ITS AIGOlll!IT OP llAX/IUB PllBCTIOI PROCESSl!D) 

11. (Dl!LII!, HSTC!l'. (I) I 

PAGE 103 



Chart BL. Expression Processor CEXPR) -- CEKAI (Page 9 of 13) 

..... . .... 
•1011• •1011• 
•.el• • .e~• . . 

PAIR I 1 
ILLEGAL DiLillI'lER I ,llEETS,OB,, 

AI908 ERRD U125 • •••••e1•••••••••• •••••e2•••••••••• 
=~~!~~~----!~~~~= :m0~511~A Bhlc; : 
* * •=1. CALL AARG. * 
• * *lDD 1 TO I. SET• 
• • • HS=H. * ................. . ..•............. 

1 ! ..... . .... 
•096• •097• 
•• "!* •• "2* . . 

..... . .... 
•1011• •1011• 
**Fl* • *F~* . . 
1 

I 'EOS 1 

+ llEETS= 

AI917 ERRJ lilOJ .•. 
*****Fl********** F2 *· 
•CEKCAD 160All* • * *· 
•---------------• RO • * *. 
:COllat~Pmoa•:<-A--·-.. I=

1 
•• •• . . .. .• ........•........ • ... l * YES 

:~;:: l 
* Hl* 

* • **G2******* . . . 
* U.DOCE J Bf * 

• 1. • . . . . ........... 
l ... 

82 ·-.• •. 
RO .• *• 

•• J=l •• ·- .• .. -· •. -· * JES 

l "' .. •••••J2••········ 
*CEUR1 109A2• ·---------------· . . . . . . ...........•..... 

l 

..... 
•1011• 
* BJ• .. . 
l 

=llEETS 1 BOR 1 

AI1011 
*****BJ********** 
: GH,28mm : 
:m~DsU,mti : 
* PROCESSOR * . ........•..•.... 

I 

AI102 

. .... 
•1011• 
• es• . . . 
l 
) l!l!ETS ( 

***BS******** 
* REDUCE I Bf * 

• 1 • . . . . . ......... . 
! . .... 

.•. AI911 ERRD 
•097• 
* Hll* 

C3 *· •••••Cll********** .. . • * •. *CEll:CAC 160A3* 
• * IS PRF *· 10 •---------------• *· ID= • •--->* 

•.EQUATIOR • * * •. .• . . • .. • ............•.... 
• ns l 
I :~;:: 

• 81• 
*****DJ********** * • 
* SET DPD l=El' * * * POUTER LIBK * 
•IITO VDP HAii. * 
•SET CDP=SYllBOL * 
* TBL PllTR * ................. 

REW DELillITEB 
RAS GREATER 
PBl!CEDEllCE UH HSTCK (I) 

*****Pl********** 
*lDD 1 TO I. SET* 

: =m~mh. : 
* HS=R * . . ................. 

1 ..... 
•097• 
* Bii• .. . 

..... . .... 
•1011• •1011• * Pll* • PS• . . . . . . 
! ,llEETS, l 6mn 

SEl!I 
AI122 AI120 COLON 

*****Fii********** *****PS********** * * • • 
* SET HSTCll: * * Sl!T RSTCI\' * 
: (I+l)=, : : (I+l)=,, : . . . . ................. . ............... . 
:;o:. I I * Gii *-> • • <----------.J .... 

AI123 
!****Gil*********: 
* REDUCE I et 1 * 
*SET COll!IA FLAG * 
•=O. CALL llRG. * . . . ...........•.... 

I 
*****Bii********** 
*SET HSTCKJI+J) * 
:=mM~+ .. r~P,: 
*ADD 1 to I. SET* 
* HS=H * ................. 

! . .... 
•097• * Hll* .. . 

... .•. 
K2 *• Kl *• 

.• •. .• IS *· 
fllS .• ERROR *• HO • * StATEllEllT *· YES r-*• *· FLAG OP ••• •--->•. *• IDFB~T. • .·•--. 

••••• •• •• *· •• • •••• 
•096• •• • .. ... ... •096• 
* Jl* • * 10 * HS* • • l •• • + • ..... 

•096• * Gii• .. . 

Section 8: Flowcharts 

PAGE 104 

319 



Chart BL. Expression Processor (EXPR) -- CEKAI (Page 10 of 13) 

..... 
*105• 
•.al• 

* I ) llEErS, 
I OR,, 

AI130 ~ 
!****El******•**! 
* R.EtUCE I BY 7 * 
•SET C06!1A FLAG * 
: =1. CALL AARG : .................. 

. .... 
•105• 
* *B~• . 

I 

AI128 ! 
*****B2********** 
*REDUCE I BY 6. * 
:s;~ m~~ 1!j4J: 
*='fY~E OF hs (~) * 
* COM!IAC FLAG=/ * . ............... . 

I I 

AI110 

. .... 
*105• 
* .e:• . 

I ) !IEETS 'BOT' 

~ 
·*• H926 ~RRD 

eci *· *****BS********** 
••• * •. *· NO ::~~~~~----!~~~~= 

*· •. srg~un .•. *--->: :--1 
*· . * * * I • ... * ••••••••••••••••• v 

* YES ***** 
I •096* 

AI132 ~ ~ AABG 

! .. :2· 
. *· ** ***C 1*f'******** *****C2********** C4 *· 

* RES EI SY llBOL • *CEKCR 1 119A2* . . •. 
* TABLE POINTER * •---------------• NO • * *· YES 
* FRO!! HSTCK *<---* * v--*· *· J=l ... ··---i 
:.~~:!Jt:~e~: .. : :.. ............. : ••••• •. ·* ••••• 

* 104* *· • • *096* 

l 
**Fl* * * .,G:• 

* • 

·*· AI136 .•. AI929 ERRD 
Dl *· 03 *· *****D4********** 

• * *· • * IS *· *CEKCAC 160A3* ·=. EX!EiNAL *: NO >•=·~g~~~cl1;g~ *:._No ___ >:---------------: _ _, 
*· FN. CALSS. * *·OF A RGS. • * * * V •. • * •• • * • • ••••• 

•.. .. • •.. .. • ••••••••••••••••• *096• 
* YES * YES * Hl* .... I I • * 

•105• I • 
: El .. -> 
•••• I v 

AI134 ~ AI138 • *· .•. 
*****E1********** !2 •.. !3 *· *****F4********** * * ·* *· .*SYllBOL *· * * 
* SET SXSJJ)= * YES .•HSTCK~I+3) *· YES .•TABLE CLASS*. OPERA *SELECT Fii. 110. * 
:sm~:rm M~0:<---·-._ T¢P~· •• -•<---·-._=OPf~e0R •• ··--->: mMmr : 
• • •• ..• •. • • * • ................. ·- . . ... . . . ............... . I ... ·m· l 

I J ,.., um l .,., .•. '"" "" *****F1********** *****12********** *****P3********** P4 *· *****P5********** 
*OUTPUT FUNC. EF* *CEKCAC 160A3* *CEKBY1 116A1• .• •. *CEKCAC 160A3* 
*HSTCK lI+6) TO • •---------------• •--------------• • * ILLEGAL *· YES •---------------• 

•
:El'zJH; g~ !!i6)*: : : : • ••• ARG. TYPE ••• *--->: : 

• • • • •• .• * • ········r········ ········r········ ········i········ .. i. :o ········1········ 
••••• ••••• I ! ••••• 

320 

• 106• •096• ~ *096* 
• *f!i* • Hl* ·*· *.,fl!* 

* * * * • * G3 *· *· !****G4*********! * 
NO • * RETURN *· *IJSIMG FUNCTION * 

v--·- •. CODE =O ... •• :.N~isWPmm .: ..... •. . . 
•096• ·- .. • • •••••••••••••••• 
• Jl * * YES I 
*: l <-----------' .... . . 

* El * • * .... 

PAGE 105 



Chart BL. Expression Processor (EXPR) -- CEKAI (Page 11 of 13) PAGE 106 

CEKIN2 CllVRTD CEKAll1 CNVRT 

****A1********* . . 
: ENTER : ............... 

I 
**B1******* 

* SET I & * 

• :J=Mx~11J~~ =: • . .. ........... 
I 

••••12•········ * • 
* Ell'IER * . . ..............• 

I 

l<~--' 
**C1******* 

• * 
* SET llUTYP * 

* = TYPE SXS * 
• (J+1) • . . ........... 

l . •. 
D1 *• *****D2********** 

• * TYPE *· * * 
•:* mm1t *:~>: ms~A~mL~.: 

*· 1 • * * TYPE SXS (J+1) * 
*· .• • • ·-r,, ·······r ...... 

All001 • *· All955 ERRD 
E1 *· *****E2********** 

• * *· •CEKCAC 160A3* 
• * llAXTYP *· llC •---------------• 

*· L1 - C1o .*---->* llESSAGE 110. = * *· . • • 100 • •. •• * • ·r,, ........ , ........ . 
P1 *· • * *· ****P2********* 

** • * *· YES * BETUBll * 

I •.+,/ OR * ·* * 12) * r-*· BS'ICK II) = ·1 * (RE'IURll CODE = * 

l *· • ..• ·• ••••••••••••••• 
•••• • = ....... .. • t • 110• * A3 * * El* * • • • .... ..... . 

•110* 
• 84* 
* • . 

.... 
* • 
: AJ :-, 
•••• t 

. *· AN95S ERRD 
AJ *· *****A4********** 

• * *· *CEKCAC 160A3* ****AS********* 
• * LEGAL *· 110 •---------------• * RFTTJRll * 

*· llIX • *--->* llESSAGE NO. = *---->*(RETURN CODF = * *· . • • 100 * •. 12) • •. ... . . . ............. . •. . . . ............... . 
* YES 

l 
ANllOO .. •• . *· 

83 *· Bii *· • * •. .. * •. • ••• 
·* SXSJJ~ *· YES • * *· NO * * 

·- •• CONS A 'I •• -·--->•- •• mm~~ .• -•-->: GJ : 
•. .• .. .• .... .. . • • ... 

1
* NO ~~gz: *-> •

1 
YES .... 

AN402 . *· All805 ·*· 
CJ *· Cll *· 

• * *· • * TYPE *· 
.. :• sxs J+l *:•"o .:• sx~g~ = •:.ns 

•.co11JTAll~ ·* -i •.SXS(J+1) .• ~ •. ·* •. . • • •••• 
*· ·* *· ·* *111* 

* YES **** * 110 * E3* 
I • * I * * 

! : H3 : ! * .... ~ 

.•. . • . 
DJ *· Dll *· 

·* POllER *· ·* *· 
YES ·* BEAL OB *· • * TYPE *· YES 

I
*· BASE ·* *· SXS IJl .•------.. 

*· COllFLEX ·* .*• COllI'LEX ·* v •. ·* •. . • • •••• 
*· ·* *· ·* •111* 

*1110 i 110 * * :~ • .. : .. 
I *111* 

• *• * C3* 
E3 *· * * 

·* POllER *· * 
HO .*INTEGER AND* • 

<-•.LT. OR ROT= ·* 
*· s 16 • * *· •• 

*· .• 

i"' 
. *· F3 *· *****F4********** 

. * IS *· * * ·* POllEB *• 110 *SAVE PROll LAST * 
•. llEGATIVE AllD .•--->*EP EITRY REDUCE* 

*· SXS (J) • * * EPTOP BY 1. * 
*·Ill- t. * * * 

't' :-:;· ::~ ·1· ;ES ......... 1 ......... . 
.... 

500 
**G3******* *****GIJ********** 

* * *GET APPROPRIATE* 
* DECRt:llEllT * * EXPP ENTRIES * 

>* CSTCK POillTE.it * *OSillG EXPOHE11T * 
* * * VALUE * . . . . ........... . ................ . 

: ·:; .. =->l I 
* * i .... 

lll502 LIBU 
*****Kl********** *****H4********** 
*CEKBJ3 116All* *EXPUID POllER AS* 
•---------------• * SERIES OP * 
* IF RC # O, * * PRODUCTS OP * 
* BETURll. * * BASE * . . . . ................. . ............... . 

I j, _ ___, 
'~ ANll08 ·*· ! 

*****J3********** Jll *· *****JS* ******** 
*llAKE COllllA & Fii* .• *· * * 

! m;amLf~rP ! •:* mI, *:•-"0--->mMFc~·11~W! 
*PUllC SET HSTCK * *· ·* * ENTRY * 

: ••••• Jl~.: ••••• : *· •. • • -• : ••••••••••••••• : I • YES 

.. !.. l 
•111* 
* G2* A!1410 
* * *****Kii********** * * IF EXPONENT * 

*MEG(: SET El' E¥·* 
: R~s~~KF11 i ~E :--, U!a~!s~~T~~(W"~TP.QUAL 
*DOUBLF s~11\coL.. I 
***************** V AJ. BRANCH 011 CllVTAB 

:;;;: TYPE ( SXS (J), SXS (J+D] 

**I"~* 1'3. TEGER 

* 

Section 8: Flowcharts 321 



Chart BL. Expression Processor CEXPR) -- CEKAI (Page 12 of 13} 

..... 
*107* 
* Bl* . . 

* 

..... 
•107• 
* BJ• .. . 

+ !S NOT ! I HSTCK (I) 

AI162 AI166 •*• 
• **81•••••••. 83 •• 

* REDUCE J BY • 110 •• ··sxs(JI •• •• 
* 1 * ~------*· LOGICAL ·* • • I •. TYPE •• 

AI 168 ~ 
• * C1 *· *· !****C3*********: 

• ·•···. i.r_ ···· • 1- ·· ·r ;: 
• * *· YES *CHANGE SIG!f 01' * 

•. •• J = 
0 .• · *---l :.Lmug PA:y 1 • •• .. .• ..... 

•. • * • 104• ••••••••••••••••• 

01 *· * * 

J" . ·::· II :•11: 
• *SXSjJ)C*• * ·=. Sf5JI~lt. *: ... N_c ______ > I 

*· TYPE •* •. . . • .. • i "' 
*****El********** 
: s~M1~m : 
* SXS JJ~ TIPE * 
: sx ( + 111 : ................. 

1 ..... 
•106• 
* *F:• . 

..... . .... 
•.ai• **Hi* 

• * 
I 8STCK (II I HSTCK II) + IS UN.lRY + + IS UMAllY-

•107• l •107• 

AI 160 .•. AI909 ERRD 1!161 •*• 
81 *· *****R2********** 83 *· 

• * *· *CEKClC 16013* • * *• 

•: * r2~~W~m *:~>:-;ii:i:i'Gii:-ii'Pe-:<---11-0 •:* I2~gdJhPE *: • 
*· ·* * llIX' * *· ·* •. .• . . •. .• •. ... ................. • .. • 

l
r YES ! .

1 

YES ..... 
•096• 
* H1* ••J1••····· • • •••••JJ••········ . . . . . 

* REDUCE I BY * *CH&llGE SIGll 01' * 
* 1. * *LAST BP ElfTRY. * 

* * * REDUCE I BY 1 * . . . . ........... . ............... . 
1 ! ..... . .... 

•103• *103• 
* Al* * Al* . . . . 

* • 

322 

. .... 
•107• 
* 64* . . . 
l 'EOS' "EETS 'BOT' 

AI115 .•. AI936 !"RFD 
84 *· *****B5********** 

·* *· *CEKCAC 160'3* 
• * *· NO •---------------• 

*· STATEllEllT • *--->* * 
*·ID = CALL.* * * *· .• • • 

*·tES I ...... ::[****** 
~ I •o96• 

* ~ *•H•l* C4° 
0 *. .• •. . 

·* LAST EF *• NO 
*· =SEllICOLOll • * 

•. ·* 
*· ·* *• ·* * Tl!S 

l ..... 
•096• 
* *G:* . 

PAGE 107 



Chart BL. Expression Processor CEXPR) -- CEKAI (Page 13 of 13) 

..... 
•108• 
• .B~• . 
I 

AI171 • 
* **B2******* * 

* REDUCE I BY * 
* * 3 * * 

* ........... 
1 

AI933 ERRD • *· 
*****Cl********** C2 • .. 
*CEKCAC 160A3• .• *• 
•---------------• NO • * COl'lllA *· •<---*· FLAG UP • * . •. .• . . •. ..• 
********i******** •. r ;ES 

••••• t 
•096• • 
• Ht• ·*· • * D2 *· • ..• *· • * ARG *· 110 

...... 
•t 08• 
• * B~* 

* 

AI 170 l SFEXPC 
*****B3********** 
*CEKBL2 114A2* ·---------------· 
* * * . ................. 

I 
! 

. *· C3 •. . . • .. • * IS •. 110 
*· ERROR FLAG • •1 *· UP • • •. .• •.. • • v 

* YES ***** 

I :0m 
v * • ..... . 

•096• 
• *Ji• .. 

. .... 
•t 08• • .e:• . 

AI180 ! :••••84••·······: 
*REDUCE I BY 3. * 
: SET = H. : 

* * .................. 
l . • . 

C4 *· . . .. 
• * ARG *· YES ·· .. m~J' .• ··-1 

•. • ..• ·• I 
• 110 I 

l I 
. •. 

011 • • 
• • *· 

110 • * IS ARG *· 
*·TYPE= SXS .••------~ 

'

*·•. sn~iAL .•·* I •. (J) ·* •. .• 
•.; .. 

• ns 

l 
*****E2********** 
*IF CLASS SXS (J) * 
: RED11gfimh : 
* BY 2. * * • ................. 

I 

AI175 l 
*****P2********** 
*IF l'IU FLAG IS * 
:uP(J/~:~iEE~IGll: 
: EllTRY : ................. 

j 
*****G2********** 
* * : m. "m~~pj: 
* BY t. * 
* * ................. 

.. L 
•106• 
* *G~• . 

I •. . • 
I *·.·;ES 

"'ll ••• ,,.l.1m... I .. .l. .. 
=~~~:~~----!~~~~= i !fO • * • * TYPE *· *· 
: :<---• .•. g~cW .• ·• . . •. .• .......•......... • ... 

* YES 

I 
*****F4********** • * 
*SET ARG TIPP = * 
: TYPE SXS (J) : . . ................. 

l
l<---

AI182 
*****G4********** 
*IF CLASS SXS (JI* 

: REo~g~s~mh : 
* BT 2. • 
* * ................. 

I 
AI184 i 

*****HO********** 
*IF l'IIll FLAG IS • 
:up 61 c~HiEE~IGll! 
* EllTRY. • 
* * ................. 

I 
AI183 .•. 

**J3******* J4 *· *****JS********** 
* * ·* *· *SETH(H3l=l!f(* * SET COl!llA * 110 • * CO!ll!l •. YES * I•ii~ = llAX, !1~9 * 

•• FLA¥o too 2 * *<---·· •. FLAG UP •• -·--->: DfkDl'lijT.f~=t : 
* * *· .• *llEDUC! J BT t. * ·····r····· ·-· ·· ········i········ ..... . .... 

•104• •106• * G4* * G3* • • * • 
.. * 

Section 8: Flowcharts 

PAGE 108 

323 



Chart BM. Conversion subroutine (CNVRr> -- CEKAN (Page 1 of 3) 

l!STCK (I) 
+,•,/,** 

..... 
*106• 
• 82• .. 

* I ~~T~K (I) 

AI140 ' *****B2********** 
*CHANGE SIGH ON * * LAST EF EHTiiY * 
*SET HSTCK (I) = * 
: +. : ................. 
~:~~: •->l 

AI141 
* ••c2••••••• • 

* REDUCE J BY * 
• 1 •• . . ............ 

l 
·*· 02 *-.• *· YES • * *· 

r--*·•. J=O .•·* 

***** •. -· *104* *· •• 

*•!Z* l* HO 

CHVRT 
*****E2********** 
*CEKAll1 109A2* ·---------------· . . . . 
* • .................. 

l 
. *· 

F2 *· . . •. 
YES • * ERROR *· 

. .... 
•106• •.a:• . 

I r¥:~~!at IS 
I LE.NE.GE. 

AI148 + 
• **84•••••••. 

* P.EDOCE J BY * 
• * 1 * . . . ......... . 

I 
. *· F.!!R3 

C4 *· *****C5********** 
.• *· *CEKCAD 160A4* 

• * *· YES *---------------• 
*· J=O • *--->* * ... ·* • • •. . . . . • •• * ••••••••••••••••• 

* HO 

l 
~RR3 AI150 ·*· 

*****D3********** D4 *· 
*CEKCAD 160A4* .•SXSjJI *· 
•--------------• YES .• SXS ( +1~ *· 
! :<---*· .~0goh~t~x1. • · * 
* * •.TYPES.* ········r········ .... :o 

:m: j 
* H1* * * **E~******* * • * 

•• ;Eromw4 •• 
* TYPE * * • . ......... . 

~;~i: •->! .... 
AI154 ·*· AI156 

F4 *· **F5******* 
• * ARE *· * * 

r--*·•. FLAG OP .•·* 
NONE ·* SXSjJl { *· OllE * !!EDUCE * 

r--*• SXS~ +1\' .•--->* CSTKTP !IY 1. * 
I ·-~~II TAR ••• • • • *. ••••• •. • * ••••• 

*096* *· ·* *106* 
* J 1* * HO **G*3* • .- I • 

.!. AI1'12 l 
I *· . * *********** i-· 

AI158 
G2 *· *****G3********** **G4******* 

·* *· • * . . 
• * CONS'IANT *· NO * SET SXS (J) * 

*· ARIGHllETIC .*->* =SUBEX CLASS * 
* REDOCE * 

* CSTKTP BY 2. * 
*· FLAG OP • * * * * * *· - * • * •. . . . ..........•..... 

* YES I 

I :m. I 

!
I : HJ* *->1 

**** AI146 AI143 
*****H2********** *****H3********** 
: m~i~ ~YA'~ : :oofbOh~S~jUII: 
: sE~Ni~T~~an : :am~~' l~PL :<------------------' 
*CONSTAH1 EHTiiY * * * ................. . ............... . 

I I 
' i ..... . .... 

•103* *103• 
*A1* *A1* 
• • * * 
* * 

324 

PAGE 109 



Chart BM. conversion Subroutine (CNVRr> -- CEKAN (Page 2 of 3) 

..... 
*110* 
**Bl* .. 
t ··-B1 *· 

.*BRANCH *· 

AN9110 

***** *110• 
* .s~• . 
t 

·*· AN950 ERR3 
pq *· *****BS********** 

****B3********* • *ERA NCH *· *CEKCAC 160A3* 
• * ON CNVTAB *· 

*·!~~MJn,<j~··· 
* RETURN *SAllE TYPE ·* ON CNV'TAB *· ILLEGAL •---------------• 
:<RETUR~l CODE = :<---*·.:m (J!W~··*--->: !'IESSA~~ 1 No. = : 
••••••••••••••• •. • * • • *· . ··.·· 

: ••••••••• 110 H1 

: ••••••••• 110 01 

:._ ••••••• 111 B2 

: ••••••••• 110 F1 

SAii E TYPE 

llIX IS (R8,C8) OR (C8,R8) 

ALL OTHER LEGAL TYPE llIX 

ILLEGAL TYPE llIX 

.... 
*110• 
: Dl * * 

AN2;~** l .•. 
**D1******* D2 *· 

* * ·* ARE *· * SEI llAXTYP * .*SXSJJI AND *· !10 
•• = c • 16 .*--->•-._M11~H~~ .• ----v 

* • •. •• • •••• 
••••••••••• •· •• • •111• 

* YES * B2* 
I * * I .. 

AN216 ~ 
!****E2*********! 
* CONVERT BOTH * 

: m~A~D~ 1g =~ 
***** •110• 

. . ..... 
••••••••••••••••• •111* 

•.Fl* 

* I 

! ERRD 
*****P1********** 
*CEKCAC 160A3* ****F2********* 
•---------------• * RETURN * 
• eESSAGE NO = *-->* (RETORN CODE = * 
: 100 : ........... H~ ......... .. ................. 

AN018 

..... 
•110* 
... "!* .. 
t -... 

Hl *· . * ARE *· 
• •sxs JJ~ AND *· NC 

·- •. ~~llh~~~ .• -·---l 
*· .• • •••• 

•• -· •109* 
• NO **Cf* l .. 

·*• AN022 
J 1 •. •••••J2••········ 

• * *· * IF SXS (J) OR * ·=· oPrm A ·:...:::__>:mmn1cg~m:: 
*·CONSTANT • * * POINTER * •. .. . . • .. -. . ............... . 

• 110 

I 
I 

*.Er .. 

*· . • • •••••••••••••••• 
*LEGAL 

I 

I 

I 
I 

l 
·*· Gii *• .• •. 

I ••••cCJ••••••••• * Rf.TIJPN * 
: (RETUR:) CODE = : ............... 

!****GS*********! 
·* rs •. NO • OU'l'PUT • 

*· •• c5~~~i~T ••• •--->:Fu~gm~sig"E? :-1 

AN702 
AM710 

*· ·* * * I 
*· • * ***************** I • YFS I 
I I 
~ I 

.•. ' 
• * *· * COllV'EFT * 

HQ. *· *****R".'********** ! 
• * *· YES * CONSTANT Ill * 

*· *· nA~EmL *. *--->: cs-rg~s 1~> TYPE :-, 
•. •• * • •. . . . ............... . 
[ " 

•••••J4••········ 
*CONVERT LAST EF* 
* ENTRY TO * 
* CONSTA!IT llITH * 

=~m gb11H~m: . ............... . 
I 
1<------~---~~ 
l 

****KU********* • RETURN * 
~--------------------------->: (RETOR~) CODE = : ............... 

Section 8: Flowcharts 

PAGE 110 

325 



Chart BM. Conversion Subroutine (CNVRT) -- CEKAN (Page 3 of 3) 

...... 
•111• •.e;• . 
l 

A11074 • *· A11700 • •. ARITHllETIC OPERATOR 
B1 *· 82 *· . . •. -· •. 

110 ·* IS SXS *· 110 .• IS SXS *· 

l
•· ... d~shJ~ .•. •<---•· ... coa!~~llT .... • •. .• .. .• ..... 

... • • .. _ •• •111• 

i"' i"' ·r 
1 I c2 .•-.. Assoo c3 .•... 111a~: ••• c4•••••••••• 

• * *· • * *· *CONVERT LAST EP* 
·* IS SIS *· YES .• REVERSE *· 110 * !llTRY TO * 
*·•.cJ~sh2~ .•·*--->•- •• FLAG UP .•·*--->: comA¥MITH : 

•. -· •. .. . . •. .. •. . . . ............... . 
• RO • TES I 

.J.. . ..... J....... I 
_.··REYERsE·· •• •o :crnPiF11~~iRi0: I 

•• FLAG UP ·1 . TO CORSTAllT • I 

• *· AN702 
E1 *· *****E2********** *****!3********** 

• * *· * USE CS'ICK TO * *CALL AB ITH. SET* 

I ·······1·;;:·· I ~'.l!~=:,:~.~:::.: _J1 

•=* BEnRSE *:~>:smPn mar: :m<~~·n~BB~~K:< 
•.FLAG UP? ·* * TO 1111 'IYPB * *UP EF FllTR BY 1• 

*· .• * * * ENTRY. • 

... L-;ES i;ii~:~:,.......... . ....... , ........ . 
.... 

708 
**F2******* *****F3********** 

* * *PILE llEV CONST.* 
* D.!CREllBIT * * CONST TO LAST * 

>* CSTCK POillTBR *< * !P EllTl!I. SET * * * * CORST lBITH * * * * FLAG. * ........... . ........•....... 
~~H: *->! I .... 

lN710 
*****G2********** * * ****G3********* 

~------~---->= SE~Ai 1irJ~1 = =--->= (RETmu~~DE = : * • • 0) • . . .............. . ................. 

326 

PAGE 111 



Chart BN. Statement Function Definition (SFDEF) -- CEKBK 

CEKBK 1 SFDEF 

•****A 1********* * 
: ENTER : ............... 

l 
!****El*********! 
*SET SID NO = ST.* 
: Fii : 

BK90<i :••••83••·······: 

.... 
* • 
: Bii : .... 
! . •. 

Bii *· . . •. 
* llESSAGE NO. = * !10 .• *· 

-------* 117 *<---*.CID=VARIABLE .• . . . . . 
: ••••••••••••••• : ' .... : ••••••••••••••• : *· •..•• • 

I i ... 
. *· BK906 • *· 

.. *Cl *· *· !****C3*********: • *~~ SY==*· 
• xcurFL • YES * llESSAGE 110. = • YES • *TABLE CLASS*. 

•" UP • 1 <--* 93 *<---•. =ST. Fii • * . • .. •. . • . • . I : : *· •. ARG •••• ·- -· I ................. ·- -. 
J" t' '"°' I l " 

Dl *· *****D2********** j *****D4********** 
•• ·\oG IF •. •. YES : !IESSAGE 110. = : ~ !c~Us;~~l!H0~i : 

*· *· FLAG UP .•·*--->: 186 =1 !AR~f.A~y~Im~!' : 
*• • * * * * ARGCNT * •.. .. ................. . ............... . 

i .. I 
BK0 •• 1~···E1•!......... I Ell··· •• . . •. . ... 

•I.f LABELED FLAG* I • * •. YES • * 
*.,•UP, CALL ERF2. :., II *·•. C!IL!I=, .•·*-->: G1 : 

•. .• .... ................. • ... 
I 

*****P1********** 
*SET SYll TBLCL= * 
:sTF~~h~EhiaPE: 
: ARgm5M~ VE : ................. 
: ·::· :->,. .... 

BK012 
**G1******* . . 

* ADD 1 TO • 
* * ARGCH'l * * . . ........... 

I 
. *· EK903 

H 1 *· *****H2********** .• •. . . 
• * *· YES * "ESSAGE NO. = * 

•. ARGC!IT>25 .*-->* 124 * •. . . . . 
•. • • * * •. . . . ............... . 

* !10 
I 

l ACO!IE •••••Jl•••······· 
==~~~~! ____ !!!~!: 
* • :u Rc,.o, BErun: ................. 

I 

.L . . 
: B4 : .... 

""' l '. ... •••••J2••········ 
*CEKCAC 160A3* ·---------------· * • 
* * • * ................. 

I 
****K2******'*** 

* RETURll * 
: (R ETO d' 

2
fODE = : ............... 

'1 .:.1 _NO 

BK905 I :••••F 3••·······: .• P4 •.•. 
I • llESSAGE NO. = * 110 • • ·-

1

<--L .... ::: ..... .r-A,--·· ... ~:~"~:_. .... 
* YES 

I ........ L~ .... 
I :::~~~! ____ !!!~!! 
I !u RC#O, REroRll! 
I * * I ....... r .... .. 

HQ•*·* *****F!S********** 
* 

0

* *ADD 1 TO J. S"T* 
.: •• CRAnCTE!!. ·:. >:sx~tt!~Hg~AijT ·: 

*· ·=· .• I • E'ITRJ. EFTOP= * 
•. • .. • .• I : ••••• ~:~: •••••• : 

* YES I I 

I I J 
•••••J4********** ' *****JS******•••• 
*SET STllT. l'OllC. *_J *S!!T ':lE"BS="FllS,* 
:s~:P.Gm: :my: : ~~0~~~,m~~; : 
* TO I. SET * : SFFT : 

:.~;t~~j!L:~:; •• : ***************** 

I 
l 

••••ac:5••······· 
* RFT"'lll * * (RET!JRll COD!' = * 
* 0) * ............... 

PAGE 112 

Section 8: Flowcharts 327 



Chart BO. Statement Function Expansion CSFEXP) -- CEKBL (Page 1 of 2) 

CEKBL 1 SFEIPI 

* ••••12••·······. 
* EllTER * . . ............... 

*****A3********** 
:ARGSTi~ (~) lDD1: 

*DON'T FhE FLG * 
***************** I.

>! sMmcKms! ! 

''' l<:-.-c~--r-.,~~~~~~~~~~~~~~~~~~~~~~~~-, 
*****R3********** :e.:t~~*'~'" "".f* ... **$*"*~ 

I 
BL9~1 ·*· 

"* ... ·**Bl******"'*** 32 *· 
* * . * IS *· *CEKAE1 122A2* 

I >
*=---------------.** *A 1'ln 1 T'fl ! . S 'C"~* 

: HSTCW: (!) = (. : 

l l ~-.. ' ..... ~ ......... : : ................ : 
l I . J ""' ... '"" CSJ.•l!'.5 

*****C2********** C3 *· Cll *· 

• H.C:SSAGE 110. = * NO ·* ;>TAT:.llf;NT *· 

I
* 127 *<---*· FUNCTION .• 
* * *· DEFINED , * 
* • •. ·* 

I ******** ................ .,,.. •. ·* 
:"' ~ES 

* HSTCK(I+1,2)= * .• *· ·* *· ·* · *· 
:m~dgT)K~~+~): •=* COLI!=, *:•-"0--->•:* COLI! = *:.,_110 ___ >•:* COL~ = *:• 

:11rnc11~00~ ADD ~: *· •• • .. • • *· •• • •• * *· •. • •• * 
••••••••••••••••• • .. • •. ·* *· ·* 

i
i i "' . "' i" 

·*· Bt016 .•. II 
*****02********** 03 •• 05 "· 
! s~nxs~~~i~: ! No • • • * Is "· •. • • • *cot11 = *· •. 110 I 
:100 sJTT~=~n111v: I <-*· *· HST~~'I) • *. * *• *· :P.05 • * ·*~-

: ... JmrL••••=J ·- ··1··;;: ·· ·· (: I 
BL906 ·*· + I I *****El********** E2 *• ***·~•E3********** *****Ee;********** 

: MESSAGE HO. = : HO •• ·* STFllLY • .... YES :1.~~GJT~~ ~h ~ET: : llf!SSAGF. MO. = : 
130 :<---*·•. !!O 24 ·*·* :ARG~=¥~"§~3kE : : 122 : . . ·- .. . . . . I 

***************** • * •••••••••1•••••••• •••••••• •• ·1·.·.······ I >I .. · 

328 

.. .. :. "~ ~ I l ?3 *· - I 
.. :t ->. I 

j ~~: .{)u2S~ *:• 

I .. .• ••••• *· . * 
•113• •. ·* 

I 
* * G~* **** j YES 

* •113• I 
I : Gl * •->! 

I
I f **** 

BL950 + Ei ~L"Oll 
****•Gi••~·*" .. · ~'"'"" *****G3********** 
*CEKCAC 1oOA3* * * 
•---------------• * llESSAGE 110. = * ....... ------>: :<---: 1211 : 
• * • • ................. .. ............... . 

I 
****H2********* 

* RETURll * 
* (EETURll CODE = * 
* •••••• !:~ ...... . 

I 
' I I 

• ~. I 
G4 *· -».;'i.~***** _J .• .. . . 

• * HSTCK *· NO * REDUCE I BY * *· (I) = SF .•--->* 1 * 
*· .• * * *· ·* * • .. . . . ......... . 

* YES 

""" l *****H4********** . . 
*ADD 1 TO K SET * 
: AR~~6~~~~) : 

.:••·············· 
I 
·*· Jll *· .. • . 

• * SFET > *• YES 
*·•. K .•·*--v 

•. ·* ••••• 
• •• • •1111• 

* 110 •.8!* I . 
~ ERR3 

*****K4********** 
*CEKCAD 160All* ****K5********* •---------------* * RETUllll * * *--->* (!'FTUllN CODF = * 
• • • 8) • . . .............. . ................. 

PAGE 113 



Chart BO. Statement Function Expansion (SFEXP) -- CEKBL (Page 2 of 2) 

..... 
•1111• 
**Bl* . 
! 

•**B1****•**• 

C.EKBL2 SFEXPC 

****A2********* . . 
: ENTER : ............... 

l 
• *· BL903 ERR3 

B2 *· *****B3********** 
·* *· *CEKCAD 160All* 

.... . . 
* Ali * * • .... 
l 

·*· . •. 
All *· A'i *· 

·* *· ·* *· • * SID = *· YES • * SFEF *· 110 
·- •• mm~:T •• -·--->•- •• OVERFLOW _ ••• , ·· .... ·· ·· .... ·· ~ 

BL030 

i "*I YES ::::; 

•*• .. RR3 
B4 *· *****BS********** 

YES • * • * EF =I*2 *· *· ::~:s:~~----~~~~~= • * EF/SFEF *· YES •---------------* 
*· OVERFLOW ·*--->* * •. ..• * • 

* ADD 1 TO * 
* ABGCN'I r-*· •. v~Nri:~F .• ·• ! I ·- .. -. . . : ............... : *· .• * • •. . . . ................ . 

J i" 
C1 *· *****C2********** 

• * *· *GET SFE!' OSI NG * 
NO -* AdGCNT *· *LEY (STFllLV) IF * 

r-*· = NO. OF • * * CLASS SXS (J) = * 
j *· ARGS • * : cg~m~PR~~U~E : t *· •.. . • . • • •••••••••••••••• 

••••• * YES I 
. ! 

I 
l 

* ****C3********* * 
* RETU!iN * 
* • ............... 

=: J~= I 
BL0111 .•. BL90S 

*****01********** D2 *· *****D3********** :sn ~l!~.1~T~~~v: • •IS TYPE•. • • 
•SFE~ USING LEV * .:· sxHi~ = ·:._Ko ___ >: ~ESSA~~SNO. = : 
: (STFNLV) : *· *~RG (J) ·* ·* : : ................. •.:. .. . ............... . 
: •::• :->11 •1 YES **!** 

•••• •113* 
BL020 * G2* 

**El******* *****E2********** * * 
* IllCREllENT * *REDUCE J BY 1. * * 

*Sl'.EF TO lll!XT * * IF SFEF SIGN * 
•• :e:x~hsUoN • •<---:FLAG g~hNCHANGE: 

* ENTRY * * * ........... . ............... . 
I 
~ 

• *· BL026 
P1 *· *****F2********** 

• * IS *- * * -*EN'IRY A ST.*· NC * * 
*· FN. ARG oa .*--->*SET EF = ENTRY • 

•- TElill IR A- • * * * 
•.Tiull • * * * ... . . . ............... . 

i YES I **** 

! L>! All : 

**** .•. EL024 
G1 *· *****G2********** 

• * *· * SET SOURCE = * 
•= * WHICH? *: ~-0-->=RE~iT ~ !l~~~~l! I: 

*· •* * REDUd STPllf.V * 
*· · * * BY 1 * ·-r;.. ·······T······· 

! I 
•••••Hl••········ I 
* SiT SOURCE = * 
*A&G,1) ~ ARGSTCK* I 
: L~P.Et rm:>= : ................. 
1<--~ 

BL022 i 
• ••J1•••••••. 

* LCllER DON'T * 
* FILE FLAG * . . .. . ........... 

.•. 
F3 *· 

·* IS *· 110 ·* VARIABLE *· I 

r *• ACTIVE LOOP .*<--' 
*• PARA!IETEll. * 

•. ·* *· .• 
**** * YES 

: E1 : I .... ! 
!****G3*********: 
•SE? EF TO FORll2* 
* ID Il' IND. * 
:vAR., SET FLAG : ................. 

L ..•. . . >: 1!1 : 

**** 

i " I 
BLOllO Cl!·*·•. ~ 

• * *· ****CS********* . * EF= *· NO * * 
*· A BHORllAL • *! * RF.TURN * *. l'UllCTIOH • * * * •. . . . ............. . 

*· ·* * YES **** 

I : "1 : 

i **** 
** D 4 * * * *** * ** ***D 5* ** **** * ** * RAISE CDP * *BACKUP !!:F OV!'!P * 

* FLAG. SET * * SUBSCRIPT * 
* ABNOR!!AL Ill * * l!XPRESSION '1'0 *-, 

*• PR... .. : ARRAY. : I 
••••••••••• ••••••••••••••••• I 

: •::• :->l All ,I' 

**** YES 

BLO*:~***Ell**********• ES• • *· .. •. 
* 9ACKUP EF ONE * NO • * COLON *· 
* ENTRY * r•· OPERATOR •* • • •. • * 
• • *· ·* ................. • ... I •••• • 

I : E1 : Al 

v •••• 
·*· BL065 1 NO 

Fii *· F5° 
0

•. 

·* *· ·* *· • * *· NO • * *• 
*· OPERATOR • *--->•. VARIABLE • * 

* ·* A *· • * ··-·r;: I ·-·-i:_;;_: __ __. 

Gii·*·* ~ *****G'i*!******** 

.•·* ••• •• 110 : llAK! ARG. DEP : 
*• COllllA .• * ENTRY Ill PRF * 

*· ·* * * .. .. . . *· • * ••••••••••••••••• 
* YES l 
!I •••• . . 

!****Hll*********! : .::.: 

* BACKUP EF ONE * 
* ENTRY * 
• * • * ..... ••••••••••••••••• • * I = .;:.= 

.•. BLOSS i 
• * J4 *• *· :••••JS• ****•••: 

• * *. YES * !IA~E ARG. M!F * 
*· VARIABLE ·*--->• ENT!!Y Ill PRF * ··.. ..·· : : *· ·* ••••••••••••••••• 

I 
****Kl********* 

* .ilETURll * * (RETURll CODE = * 

:·· .. ,, ......... : ,J :~ "'l2 .... J ....... . 
* BACKUP EF TO • NO • * •• COLOll •. ·- YES :uc~g&s~~I~;l'!R : ....... ~~.~ ..... . * E);D OF •<---*· OPERATOR • *--->* EXPR'l!SSIOll TO * * EXPRESSIOll * *· • * * AFPAY * * • •. .• • • ................. •. . . . ............... . 

I * 
! .... . . 

* Eli * * • .... 

Section 8: Flowcharts 

PAGE 114 

329 



Chart BP. 

C!KBX1 FHCLS 

••••12••······· . . 
* Ell'IEB * . . .........•..... 

Function Classifier (FNCLS) -- CEKBX 

I •••••e2•••••••••• . . 
*SEARCH 'IlBLE OF* 
* LIBRARY lllD * 
*OPEii FUllCTIONS * . . ..........•...... 

I . •. 
C2 *• .• • .. 

• • IAllE *· 10 * * *· FOUllD .*->* E3 * ·- .. . . .. .• .... • .. • i "' 
• *· BX024 • *• 02 •. o3 •. :••••011•••••••••: 

•• -· CVAL ·-._ YES •• ··rs TYPE·· •• RO • SET FN. TYPE : 

·-•. m'M' .• --->•-.. ~~mr .• ··--->: CST~mL<11 : ·- ...... -· ·· .... ·· ................ . i RO :-:;· :->.,<YES I 
v •••• 

E2. *· *· BX0!~***!3********** 
·* *· * SET CLASS * •=* cmss= *:~>:mn1 m~Bm!': 

·- <u11nin • • 1 • l'UllCTIOI l'LlG • 

·- ·- .• ·• I : ••••••••••••••• : i "' 
.•. 

l'2 •. . . •. 
NO .• IS TYPE *• 

*· FROZBll ·* 
•. (CSTP) .• •. .• ·- .. * YES 

I 
i 

G2·*· .•• 
• * RH. *· 

.• TYPE *• 110 

··._ <1~sm2 
•• •• .... .• • .. • * YES 

"'" 'l •••••e2•••••••••• 
* SET DPP * ****H3********* : m:m~sm, =--->= (RETmu~~DE = : 
:PNTR (FN MO (II l! * ******~~******* * 
........... ******** 

330 

PAGE 115 



Chart BQ. Library Function Selector CLIBN) -- CEKBY 

C!KBYl J:.IBll 

••••11•········ . . 
* ERTER * . . ............... 

I 
t 

• •. BY901 l!RRD a1 •. •••••e2•••••••••• 
.• *· *CEKCAC 160A3* • * *• NC •---------------• •· ._ ~mx~m .• · *--->: 
•. -· . . .. r.. . ........ 1········ 

••cl••••••• • • ••••c2••••••••• * SET T= * * RETORll * 
* •:xs(JLTPE -:• • : !:::::he::.:.! ........... 

CEKB!2 LIBllA 

••••&3••······· . . 
* EllTER * . . ............... 

I 
••Bl******* . . . . 

* SET T=O * . .. .. . ....•...... 

C!KBY3 

* ****A4********* * 

* ERT!R * . .. . ............. . 

I 
**B4******* 

*SET T= !XP * 
• • I~fiU;?~1s!! • • 
* * TYPE+S * * . ......... . 

,,,,, ,, _______________________________ J 

*****D1********** . . 
* GET POICTIOM • * Hiii!: LIBlllll * 
: (IllDEX,T) : .........•....... 

l 
• *· BY901 EBRD 

El •. *****!2********** 
• * *· *CEKCAC 160A3* •=:. UllE=O .::...!.:.:____>:--------------~: ·- -· . . •. . . . ............... . 

• 110 

..... ,,.!.mi... . I 
*CEKCil 131A2* ****Fl********* •---------------• * RETORR * 
!u RC#O, RETUBR: : !:::::1~e::.:.: 

·······T······· i 
• •. • *• BY902 l !RRD 

G1 *· G2 *• *****G3• ******** 
.• SYll *· ·* *• *C!KCAC 16013* 

.•lABLE Cl.ASS•. 110 .• •. HO •---------------• 
•.OP PUIC. llAllE.*-->•. CUSS=LIB .•--->* * 

*· =UMKROllM • * *· • * • • •. . . .. -· . . •. . . ·- .. . .............•.. r •m 

*****81********** 
•Siii TBL: CLASS=• 
* LIB Pll AllG * 
:T~g~=~Piem, : . . ....•............ 

'"" ,, _________ _.. 

•••••J1••········ . . 
*SET CSTP= SYll. • 
•TBL. EHR. POi • 
: POllC. llAllE : ................. 

I 
****K1********* * ilBTURll * : !!!:::2L~~:!.:.: 

PAGE 116 

Section 8: Flowcharts 331 



Chart BR. Constant ~rithmetic Subroutine (ARITH) -- CEKCB 

CEKCB 1 ARITH 

****A 1********* . . 
• ENTER • 
* • ............... 

l :••••a1•••••••••: 
•CALL SIR !IACRO • 
: (CEKCSli) : . . ................. 

l 
• •. CBliOO .•. 

C1 •. C2 •. 
• * •. • *BBAllCH •. 

·* *· YES .• TYPE OF *· 
•-.~PERHOB = ... -•--->*.•.EX~M~h .•·* 

*· .. • ·- .. • •.. .. . • ... • 
• 110 * 

l 
·*· 

Dl *· 
.*eRAllCH *· • * Oii *· 

•. Ol'EliATOli, .• 
•. OPEl\AllD ·* 

*·TYPE • • ... ·· 
: ••••••••• 117 Jl 

: ••••••••• 117 J2 

: ••••••••• 117 JJ 

: ••••••••• 117 Ali 

: ••••••••• 117 B4 

: ••••••••• 117 Cli 

: ••••••••• 117 Dli 

=---------117 1!4 

: ••••••••• 117 G4 

: ••••••••• 117 FJ 

: ••••••••• 117 cs 
: ••••••••• 117 DS 

: ••••••••• 117 ES 

: ••••••••• 117 FS 

: ••••••••• 117 GS 

+,Iii 

•,Iii 

/,Iii 

+,RS 

•,RS 

/,RS 

+,C16 

•, 16 

/,C16 

OTHER 

CB 100 l 
•••••J1• ......... . 

A 

ca1~2•••J2•1•••••••• . . . . * • 
•SET FCOll =l+B. • 

r>* IF OVERFLOW, * 
: CALL ERR2. : ................. .. 

•117• 

:.m 

332 

r>:SET FCOll = A*B : . ............... . . . 
*117• 

:.~~= 

Ill, Ill 

I4,RS 

RS,Ill 

RS,RS 

C16,I4 

..... 
•117• 
* F3* .. . 
! ERRJ 

*****F3********** 
=~~~~~~----~~~~~= . . . . . . ................. 

l 
****G3*********. 

* RETU!ill * 
:(RETURN CODE=lll: 

·······••••*··--

A 

CB1 :2•••JJ*1*******! . . 
r>:SET FCOM = A/B : . ............... . . . 

•117• 
:.~;: 

. .... 
*117* 
**A~* . 

I 
I 

C9200 ~ 
*****A.4••••······ . . 
• * 
:sET !'CON = A+e :--------

• * . ............... . .... 
•117• 
: Bl.I** 

**** l 
CB220 :••••su•••••••••: . . 

:st:T !'CON = A*!l :-->~----

* • • •••• 
••••••••••••••••• *117* 

•••• • • c~• 
•117• • 
: cli •• , I 

CB2;~•• ~ CB410 V 
:••••cu•••*•••••: :••••cs•••••••••: 
* * * CALL l'IXPI * 
:SET FCON =A/!!. :-->I !LIBPARJ P.OUTINE:1 

::::············· I ::::············· I 
•117• •117• 
* Dll ..._, I • D5 • 

=••• * I * * l l CB300 i ICB4;~·· 
*****DU********** *****D5********** 
* CO~PUTE: * * * * JA+C~ +I (B+!l) • I • CALL l'IXPD • 

L:~::::::~:::J--> l .~::. :::::.:::::.::~l 
***.. I **** •117• •117• 

:.::~ ·1· :.:! . ·1 
CB320 CBllJO 

!****E4*********: :****ES******lft.**! . 
CO!IPUTE: * * CALL FXDPI. * 

I(BC+ADI * * * . UC-SDI+ * *LIBRARY ROUTI!!Rn : ............... : I : ............... : I 

:m. I 

I 
: !'5.. I .... l 

*****F4•••······· CA4:2 ••• vs·········· t 
: SET REAL= : I : CALI FDXP[l : ~ 
*A*C-B*D, I!!AG= *--> *LIBRARY RO!TTINl':*l 
: B*C+A*D : : : ................. . ............... . .... . .. . 
•117• •117• 
: Gil*l : GS**--. 
•••• •••• J 

CB310 CBllSO ~ 
*****Gil********** *****Ge;********** 

: J~;imm~~, : I Lmi,F~g~fm: 1 
: (C+DI). (C-DT) : I : : I ................. . ............... . 

l 
*****H4********** 
* SFT DIVIDEND= * : mm. Jcsm =·--> 
*RFAL & IllAG !N * * FCOll. * ................. 

I< I 

1 
!****HS*********: . .. 
*SET FCON = A**B* . . 
* * . ............... . 

""' :! •••••J5••········ . . 
*CALL DIR llACRO * 
: (CE~CS5) : 

* * . ............... . 
l 

*****KS********** 
* PETU!lll * . . ............... 

PAGE 117 



Chart BS. Term Processor (TEMPRO) -- CEKCG 

CEKCG1 TE II FRO 

*****A 1********* * 
: EN'IER ............... 

CG010 
B 1 *· *****B2********** *****B3********** 

• * *· * * * * ****BQ********* ·* *· YES *IF TNEG=O, ADD * * iF llOr, SOB * * F~TURll * 
*· *·· VARCT=O • •" *--->: Tr~~nbTO :--->: mgm,, ~~Oii :--->: (RETUFN CODE=O): 

•. .. . . . . . . ............. . • .• * ••••••••••••••••• • •••••••••••••••• 
* NO 
I 

CG012 i 
:••••c1•••••••••: 
* * : SET !=1 

* • .................. 
l 

• *-
D1 *· ·* WILL *· 

YES • * NEW TERI! *· ,-*. OVERFLOW ·* 
I *· !ABLE ? -* 
I *· ·* 
V' ·- •• 

.... 
• * 
: C2 =-1 .... 

CG017 V 
* **C2******* * 

* INITIALIZE * 
•• !=1 .•<~~~~~~~~~~~~~~~~~~ 

* * I . ... T.... I 
f CG01tl t 1 Y~S 
I D2 *· CGO.O:O **D3******* D4. • *· 
I • * TERI! *· • * • * *· 

I .:· d~~1h: ·:.-N°--->• * NUl!DU~~~ TO J * *--->•:* l10f.~ 116LD *:. 
I *· TRll-CNT) .• * * *· 'I"Elll'IS ? • * 

·- ? ... * * • *· ·* 
**** * NO * YES * 110 

·1 .. . * ••••••••••• *· • * 
* * I 
: G4 : I 

' l l 
*****E1 ********** * NEii TERI! = * 
*TEB!IS + Ti111CNT0• 

~ *****E2********** :****F4*********! I ; ADD 1 TO I ~ ~ UPDATE TRl!C!IT ~ :J=JtwTmm, I : .................. ] ................. . ............... . 
1 I I ..... . 
I ,,.1. ·- ..... ,,.......... q: .::.: 

I 
I 

I .,n • * *• *CONSTANT OF OLD* 

L.'.'..'.:'..:• I > K ? *:•~>: TER~F ~~~f5T· : 
*· .• * +(CONST. OF * 

*· *· •· .-· : ••••• ~~~~ •••••• : 

I I 

ICG016 ~ 
*****G1********** 

I : : 
I * ADD 1 TO I * 
I * * 
I * * 
I ***************** I I 

I ! 
I a1· *· *· 
f "n •* • * I ) *• *• 
~*. NUllDll ? • * •.. .. . •.. . . • ..... • * YES 

!****H2*********: 

* * r>: UPDATE TR!ICNT : 

I ••••••••••••••••• 
I ....... * I 

I I • J2 •-> 
~ • •••• • <~~~~~~~~~~· 

CG022 ·*· ~CG019 ~ 
J1 *· ••J2******* • • •... * • 

• * A NY *· NC * * *· !!ORE GLD • * SE'I RC=O * 
*· TER!IS ? • * * ·- .• . . *· -· ••••••••••• 

• YES I 
;'!:·: l 
**** * ****K2********* * 

: RETURN : ............... 

.... 
* * 
: G4 : .... 

CG030 i ER'lD 
*****GlJ********** 
==~~=~:----~~~~~= • * 
: SET ~C=12 : ................. 

l 
* ****H4********* * 
: !iETU!'ll : . ............. . 

PAGE 118 

Section 8: Flowcharts 333 



Chart BT. Actual Ar~ument Service Routine CAARG) -- CEKCR 

CEKCBl RDP 

• ****A2********* * 
: .EN'IER : ............... 

I . *· CR010 • *· 
B2 *· BJ *· .• .. .• • . 

• • STATEl!EN'.I •. YES • • CLASS •. NO 
•. 10= ST. .•--->•. SXS (JI= .•1 

•. FN. .• A •.COllSTA!IT .• •. -· •. . . .. . • • .. • * NO • YES 

-")_ ·-.. :···~ J ....... : I 
.• HSTCK •. NO * CSTKP-2 TO 

•. (I+5) =1 .•--> * CSTKTP •.. .. . 
•. -· . . ·r.. ········r ..... 

• •. CB011 •*• CB020 
02 *· DJ *· .. * IS *· . * *• ****Dll********* * •:*umm OB*=•~> •:* P~mf *:•-

110--->= RETURN • 
*• ABBAY • • •. • * • • •. .• .. .• .............. . 

·- .• *· .• i... r 
.... -·· E2 *· E3 *• 

-· IS ·- .•TYPE or•. 
•:*e~"8U1=~~n*:•~> •:* s~~l~~= *:•Y!'S 

*· *~LlG o!.·* *· *· (I+3) .•· * l ... • .... 
* 110 * NO 

..... ,,.!........ . ... .,, .!. ...... . 
* ARGOllEllT * * • * CEPillITION TO * • NOll-OlfIPOlill • :m r~MAST EP! I : r~~Mo~¥+~f : 

1 ········i········ I ················· 
""'!.. ... Jlc"H .... J: ...... , 

* RAISE • •HSTCK (I+4~ +1 TO• 
• •DEfP~M[j!G • :e~5ct <~~eh~-1: 
* tABLE • *CLASS TO SXSllJ) • . . . . 

334 

........... . ................. . 
I 

*****R3********** * OUTPUT • : wmm~.w: 
: IS .OBu : ................. 

I 
• ••••J3••••·····. 
: BETOH : ............... 

PAGE 119 



Chart BU. Constant Arithmetic Interrupt (CHKINT> -- CEKCS 

CEKCS1 CEKCSl 

*****Al********** 
: r.N!Eli : ................ 

l 
**Cl******* * SET FLAG * * !'CR DIVIDE * * CHECK * * IllTERRUPT * . . ............. 

CEKCS2 CEKCS2 CEKCSJ CH KINT 

* ****A2••••••••• • * ••••A3********* * 
: EN'IER : : ENTER : ............... . ............. . 

I I 

[ I 
••B2••••••• II 

* SET FLAG * 
*FOR ElCPOllEliT * Ill * OVEliFLOll * 
• * IliIEilliUPT * * ........... 

I I 
i t 

••c2••••••• ••c3••••••• * SE'! * * SET * * CONTENTS 01' * * PARA!IETER * * R1 Ill A SAVE * * LIST=FLAGS. * 
• • ~=Ht1rT; * * * * FLAGS=O * * ........... . ......... . 

CEKCS4 CH KINT 

• ••••J._4••••·····. 
: ENTn : . ............. . 

I 
I 

I 
:****C4*********: 
* ISSUE "SIR" * 
:!!ACRO. l'LAGS=O : . . ................. 

C~Kcso, CHKTNT 

• ••••A.';••••••••• • 
: ~N'!'EP : . ............. . 

I 

I 

I 
I 
I 

I 
I 
i 

:••••cc;•••••••••: 
* ISSUE "DIR" * 
: !'!ACRO : 

* • . ............... . 
! I 

'--~~~~~~~~~~~~~~~~~~~~>!<.~~~~~~~~~~~~~~~~~~~~-' 

t 
* ****D3********* * 
: RETUBll : ............... 

Section 8: Flowcharts 

PAGE 120 

335 



Chart BV. Extract ~ource Character (ESC) -- CEKAB 

CEKABl ESC CEKAB2 ESCB 

****A2•******** ****A3********* * • * • 
: ENTER : : ENTER : ............... . ............. . 

------" I ~ ~ 
**B2******* **B3******* . . . . 

• • * * 
* ADD 1 TO P3 * * ADD 1 TO P3 * 
• * • * • • .. ........... . ......... . 

l l I C2° *· *· **C3******* 
·* *· NO * SET Pl= *• 

~... mr *· ·--->•. CHAR (PJ) •• 

336 

• *·=' ElLAllK' .•· * 
•. • • • *********** * ·- .-. l 

*****D3********** 
* II' CODESil=Y * 
•SBT P2=TBL2~~1) * 

: 1 ~E~0~ma1\ : 
: ..... HlL •••••• : 

l 
****E3********* 

* RETURN * 
: (RETUR~I CODE = : ............... 

PAGE 121 



Chart BW. Assemble Components (ACOMP) -- CEKAE (Page 1 of 8) 

CEKAEl ACO!IP 

****A2********* 
* * * EN!E8 * 
* * ............... ..... . .... 

I *122* *122* 
1 • .s~• • .s:• 
I • • 

~1 I I 
AEOOO ~ AE150 ! D AE110 ! A 

!****B2*********: !****B3*********! *****B4********** 
• * •SET CID = CONST* :cVA~n, ;=~ASH= : 

:sn P3 = SOURCE: 1=~Tfi: STh~s II; ~= : mitc~Pmr : 
* * * * * TABLE (CHAi'I) * ................. ................. . ............... . 

I I I •122• I 
* C2 •->I l * • I I 

AEO~~** 4 
* SET STATUS=Dl * 
* CID,C!YP,CL * *ADD 1 TO I. SET* : mr~m:~g: : : STATUS = 1 : 

* CSGN=O * * * 

. .... 
•122• 
**A~* 

* 
! 

AF.120 • *· 'l ,c; •. 
.• *· • * *· !'tO 

*• *· T = 6? • *. •--, 
*- • * 

*· ·* * Vf.5 
I 
I 
I 
I 

A!l123 ! "RRl 
*****B'i********** 
*C~KCJH 160U* ·---------------· * !IESSAGE liO. = * 
: 11 : 

***************** I 

1<---~ 

AE122 ! 
*****C"********** * ADD CPA'l TO * 
: cv~tm ~~~A" : 
* ADD 1 TO I * * • 

•••••c2•••••••••• I' <-------------*•••••c4••••••••••. 

:::: ... T....... ii *················ [ 
:1~~: *->I 
**** I ! 

AE010 ~ ESC l AE122 ·*· 

***************** 

*****D2********** J O') *· 
===~~~! ____ !~!~!: t . • *· 
* •<------------------------Y_E_s •: * o~\I2ss? *· • 

***** :IF RCfEO, hElORN: *· *· • *. * 
•122• .................. •. ·* ··r 1 iNO 

A£030 4 ESCB AE020 4 ~ ERRD 
*****E1********** *****E2********** *****ES********** 
:::~~~~----!~!~~= : GE~HmM~o~ : :::~=~=----!~~~~= 
* *--->* COHVERSION * * :IF iiC#O, llE!URN: : TABL3 * :11RSSAGE N0.=10 : 

••••••••••••••••• .................. ***************** 

l 
!****F2*********: 
* LGCATIO!I= * 
*DECISION TABLE * 
: (STATUS,CODE) : ................. 

I .•. 
G2 *· ... • *· • * BRANCH *• *· ON LOCATION .• 

*· •. -· ·* ·-.·· 
i 

***** * • 
*. • •• 

* 

I 
I 

! 
****F5********* * RP~lJR!" * 

: (RETIJR ~ 
2

fODE = : 

*************** 

r.2 •••• A ••••• 122 311 
••• fl ••••• 122 A'i 
••• C ••••• 12R Al 
.•. cc •••. 12~ 112 
••• D ••••• 122 113 
••• R ••••• 123 !IQ 
••• F ••••• 123 85 
••• "F •••• 123 C~ 
••• G ••••• 125 01 
••• R ••••• 12'i G~ 
... I •.... 123 fi'i 
•••Joo o oo 1211 D1 
••• K ••••• 1211 !12 
••• L ••••• 12U '13 
••• !I ••••• 125 S'i 
••• !!!! •••• 125 C'i 
• •• 'I.•••. 125 R3 
••• o ••••• 12c; '!1 
••• !' ••••• 125 J? 

:::g:::::m ~& 
••• s ••••• 125 J'i 
••• '!' ••••• 126 '13 
••• u ••••• 129 A 1 
••• V ••••• 129 A2 
••• W ••••• 129 A3 
••• X ••••• 129 D2 
••• Y ••••• 129 All 
••• z ••••• 12R A2 
••• zz •••• 121 J1 
••• AZ •••• 127 J2 
••• AY •••• 127 ~2 
••• AX •••• 127 01 
••• AT •••• 128 A3 
••• AV •••• 127 !l'i 
••• Afl •••• 127 J3 
••• AYJ •••• 128 All 
••• ~c •••.• 121 Jll 

Section 8: Flowcharts 

PAGE 122 

337 



Chart BW. Assemble Components (ACOMP) -- CEKAE (Page 2 of 8) 

. .... 
•123• * B2* .. . 

AE1110 ! CC 
*****82*** ••••••• . . . . 
*SET SOUBCE = PJ• . . . . ................. 

! 
IVST .•. 

*****C1********** C2 *· 
*CEKCil 131A2* .• *• 
•---------------• YES • * CID = *• * •<---*· VAR ·* 
•IF ac .. o. RETUBI• •. • • . . •. .. ................. •. -· 

338 

* NO 

'"" ! •••••02•••······· . . . . 
: SEr CLllG = 1 : . . ................. 

I .•. 
E2 *· .. • .. 

I
m•::_.:::;:~·_;:. 

• •. FLIC 
F2 *· *****F3********** 

I .• ·- • • 
.:· s~Aus ·:~>: Rc~~~ci~:run : •.. ..• . . ·- -· . . 

*· i ·~ES ********j******** 

A!11ili ! 
*****G2********** . . 
*SET CTYP = R * * 
: q, : . . .................. 

""' 'l .. " *****H2********** 
*CEKCH1 130A2* ·---------------· . . 
•IF ac .. o. RETURN• . . ................. .._____,,, 
•••••J2•••······· . . . . 
•SET STATOS = 16•<------~ . . . . ................. 

1 ..... 
•122• 
* D2* .. . 

. .... 
*123* 
• .e!• . 

AE160 ! E •••••84••········ . . 
* ERROR CODE = * * ERROR TABLE * 
*(CODE, STATUS) * . . . ............... . 

I 

"'" l .. ., *****CU********** 
=~~~~~~----~~~~~= . . . . . . ................. 

I 

. .... 
•123• 
•• q~· . 

A~170 l F 
•••••85•••······· * SET CII> = * 
*COllST, CTYP = I* 

: ;T~TijS==O~ : . ............... . 
;:~!:·->I 

Al!!180 
:••••cs•••••••••: 
:mecn~ tI~o = r! 
* • . ............... . 

l .•. 
05 *· .• *· 

·* *· < •. t = 256 •• , 

I 

.. •. *· .• · •·• ~ 
• > ••••• 

I . :1~~= .. 
* 

FPRD 
•••••P.s•••••••••• 

****Pq********* *CEKCAC 1fi0A3* 
• RF.TURN * •---------------• : !:::~:M~::.:. :<---: : ................. 

..... 
•123• 
*.ff~• . 

AE210 l I 
*****H5********** * • 
: mTtlS==Ol : 

* * . ............... . 
l ..... 

•122* 
*.[I~· . 

PAGE 123 



Chart BW. Assemble Components (ACOMP) -- CEKAE (Page 3 of 8) PAGE 124 

..... 
*124• 
•.B!* . 

AE220 1 J 
:••••B1*********: 
*SE! CVAL = CHAR* 
: ACD 1 TO I : . . ................. 

l .•. 
C1 *· . .. .. 

'

us.:• cv~~. = •:. ·- .. •. .• •. -. i " 
I
I 01·*· •. 

.. • •. •=* CV~~,= *:lllC 

L:
··. ..-· ... 

* YES 

>I I 
AE221 ' I *****E1********** 

*SET EiiAllCH = A * 

:coJWtm ~ i.: I • • 4 • . . ................. 
I< J 
I 

AE222 ! ..... ,, ......... . . . . . 
:sET STATUS = 5 : . . ................. 

1 ..... 
•122• 
• 02• .. . 

..... 
•1211• 
• .s~• . 

AE2l0 1 K •••••s2•••••••••• . . :ma cm ~I~O = :r! . . . . ....•..........•. 
I 
. ·-C2 *· -· • .. NO • * *• 

r*· I l! 2~6 ·* •. .. •. .• • ... • 
***** * YES 

=1~~= I .. . 
ERi!D •••••02•········· •CEKCAC 160A3* ·---------------· . . . . . . ...............•. 

I 

lE2110 

. .... 
•1211• 
* BJ* .. . 
! .•.L 

BJ *· .• •. 

~
'"< .. ::;:;; .. > 

1111 • *· AE250 ·*· AE251 
·*CJ *· *· ·* C4 *· *• !****C5*********! 

• * fiRARCi! *• LL • * CVAL = *· YES * SET CSTP = * 

I 
*· 011 BRlllCll .•--->•. 'TRUE' .*---->•S'l'Rll" S'l'ATIJS = * 

•. •. . • . • •. *· .•. * : 1J : 
•• •• •. ·* ••••••••••••••••• 
> •

1 
LA * llO 1 . .... 

•122• 
AE2111 • *• * D2* 

DJ *· * * • * CVAL *• * 
• •LOGICAL OR *· NO 

*· !!ELATIOllAL • •1 •.OPERATOR • * 
•. ·* *· .• * YES 

...... J....... II 
*COllYERT LOGICAL* * Oil RELATIONAL * 
* OP TO SPECIAL * 
*CODE. SET CDLll * •= SPECIAL CODE * ................. 

1 ..... 
•128• 
• .B!* . 

.•. 
Fii *· *****ES********** .. •. . . 

• * CVAL = *· YES * SET CSTP = * 
*· 'FALSE' .•--->*S"ALSE STATUS =* *· .• • 1J • .. .. . . 

·-r=o ······::c ...... 
I •122• 

U252 + ER!ID * D2* 
*****F4********** • * 
*CEKCAC 160A3* * 

I •---------------• 
'-->* • . . . . . ..........•..... 

I 
****G4********* 

* RF.TORR * 

"'------------------>: !:::::!~e~:.:.: 

Section 8: Flowcharts 339 



Chart BW. Assemble components (ACOMP) -- CEKAE (Page 4 of 8) 

..... ..... . .... 
•125• •125• •125• 
•.Bl* • .ai• •.a:• 

* * * 
I l I 

.!.G AE280 .•.II •*• AE260 ! ~ AE190 
81 •. 83 *· B4 *· *****B5********** . . •.. . . ·- . . .. . . 

YES • * SIOliO = *• • * CHAR = *· 110 • * CHAR = *· YES *SET CID = CO'fS'l'* 
1*·• DO •• • *·•. 'D' ••• •--->*.•. 'E' •• •--, :~?~PSTA~U;~~·! 

'1 -·-··r:~·· ·· ... h.-;~: ····.,,·=~·· =·::·: ~;~~:····1,·······= 

I 
! . **** * : cs.*-> 

• *· I AE27~·· v !11' 
C1 •.. *****C';•********* • .. *· • • 

110 .• IVALF *• *ADD 1 TO J SET * 
>1*· *· =0 • * • * *CVAL (I) = CHAR* 

! •. •. . • . • :m: : •• :~~.:.:~.: ... : 
: ·;:·: 1· YES *. ~i· I l .... !<_J 

·*· AE281 V FRRD • *· 
• * 01 *• *· :****D2*********! :****03*********: :~;:~~~****~:~:;: • * DS •. •. 

·* CHAR = *· !ES *SET J = 0 CLllG * *SET CTYP = R * * •---------------• ·* *· NO 
•... 'D' •• ·*-->: = I :--->: 8 : : : *·•. I ~ 256 .•·*! ·- .• . . . . . . •. . . ·- .• ..........•...... ................. ................. • .. . 

l. NO • • ' t' i YES :~m 
• E3 •->I I *. * . ..... ' 

• *· AE282 + V ERR!:! 
• *E1 *· *• !****E2*********! :****E3*********! ****E4********* =~::~i~****;:~:;: 

AE191 

• * CHAR = *· YES *SET CTYP = R * * *SET CSTP + 1 = * * RETURll * •---------------• 
*· 'E' .*-->*4 J = 0 CLllG = n *J. STATUS = 1. * *(RETURN CODE= *<---* * 

*• •* * I * * SET 'E' FLAG * * 12) * * * •. •• • • • • ••••••••••••••• * * *· • • ••••••••••••••••• ••••••••••••••••• • •••••••••••••••• 

1
* KO * **** * : •::•: ! . . .... . .... 

•••• •122• 
* F2 ~ * * 

AE192 F1.•... AE1~~***P2********** *•D~* 
·* *· *REDUCE P3 BY 1 * * 

-* CHAR. = *• 110 * SET CID = * 
*·*· 'H' •• ·*--->! CHA~A~Eb_PHA =1 ·- .• . . ..... 

*- ·* ***************** •125• i YES I ·.:i· 
:~m tE200 l * * •••••G3********** * * SET CLNG = I, * 

* COLI! = CHAR * ..... 
*125• 
* Ht* 
• * 
* 

AE290 1 
*****H1********** 
* SET CHSH = * 
* CHAR. CTYP = * 
*'REAL' STATUS =* 
: 9 : ................. 

340 

! ..... 
*122• 
* 02* 
* • 
* 

..... 
*125• 
* .J~• 

* 

A!300 1 p :••••J2••·······: 
* * *SET STA'IUS = 8 * 
* * . . ................. 

1 ..... 
*122* 
* D2* 
* * * 

>• CALL FLIC IF * 
: ac .. o, RTK : ................. 

.. L 
*128* •.sz• . 
. .... 
*125* •• Ji• 

* 

AE
3l2 ... J3•L~ ..... . . . 

*SET CFLG=l!IMUS * 
* STATUS = 8 * 
* * * * ................. 

.. L 
•122* 
•.o~• 

* 

. .... 
*125• 
* .J:• 

* 

AE320 1 R 

*****J~·········· • * 
*SET CHSH = CHSH* * * 10 + CHAR. * 
* STATUS = 10 * 
* * ................. 

.. L 
•122* 
* 02* 
* * . 

. .... 
*125• 
•• J~• 

* 

AE330 ! S 
*****JS********** 
*CLIB = I CSTP +• 
* 1 = J CTYP = * * 'R!'!.llL' CALL * 
*PLRC. tl' llC .. O, * 
* '!ET * . ............... . 

I 
*****KS********** 
*SET BRA!fCH = A * 
! ~mK~V~L =O : 
: STATDS = 5 : ................. 

! ..... 
•122* 
• .o~• 

* 

PAGE 125 



Chart BW. Assemble components (ACOMP) -- CEKAE (Page 5 of 8) 

..... 
•1.!6• 
•.a~• . 

I 

AE.3110 ! :•••*83••·······: 
*SET COLI! = CllAR* 
*CLNG = I CSTP + * 
: 1 = J : ................. 

I 

l 
AE3~?.**Cl**"H~~... AE3116 c2···.. c3···.. AE3115 c11··· •• 

*CEKCAC 160A3* • * *· • * *· • * *· 
•---------------• NO • * COLI! = *· 2 • * BRANCh *· 1 • * CDL!I = *• YES 

•
: SET F:C = 12 •.*<---*·•. • ... •<---* •• ?N ~~~~LEX ••• •--->*.•. ...•------~ ·- .• •. . . ... .• .................. • .. • *· ·* *· ·* l 

I * YES * 0 * NO 

I 1' I I 
I ~ FLilC .!. 1 EilRD I 
I
: •••••02••········ D3 •. •••••Dfl.••········ I 

==~~=_!!! ____ !~~~~= NO • *•*COL!! = *· •. ==~~=~: ____ !~~~~= 

I

I !HTR~TAr3s ~Ela! 1*· ... .• ·* : r : ...... T ...... : I · · ·-r ;;: : ...... T ...... : 
1

1

1 

->I I ! ! 
VI I . •· I E3 *· 

•****E2********* • I NO •• ·"sroHo = *·.. .****~;;;;;••••• • 
* RETURN * >r*· EXECUTABLE • * * (RETUFN CODE - * 
* ••••••••••••••• * *· •. .. • · * * •••••• 2~L •••• :. * 

1
. • ..... 

• •••• * • YES I 
: .~!.: 1 I 

F 3. •. •. **Fii******* >I' .. ·- . . 
• * HST CK *· YES * REDUCE I BY * 

*· (I) = ( • *--->* 1 SET COllPLEX *'-------
*· • * * FLAG = 1 * •. . • • • I •.. . . . ......... . 

* NO I 
.. J .... _ I 

* * NO • * HSTCK *· I 
: J3 :<--*· ... (I) = •-• .•·* 11 .... •.. -· 

·r,, ..,.. ..,., I .. " 
HJ *· **Hli******* *****HS********** • * *· *REDUCF I BI* *CEKCR1 1301'2* 

• * HSTCK *· YES *2 RAISE SIGN * •---------------* 
*• (I-1) = '(' ·*--->* FLAG SET *--->* IP' RC # O, * 

*· • * *CO!IPLEX FLAG * * RETURN * 
• •• • • =1 • * • .. -. ........... . ............... . 

* ....... * , .. NO I 
* J3 •-> ~ • * ••••• 
**** *122* 

AE3118 PLP.C * C2* 

=~~:m····m:2: ..... ·: 
·---------------· • * 
* IP RC # 0, *<--* J 3 * 
* RETORll * * * * • • ••• .........•....... 

l ..... 
•128• 
* 81• 

.. * 
* 

PAGE 126 

Section 8: Flowcharts 341 



Chart BW. Assemble c;omponents CACOMP) -- CEKAE (Page 6 of 8) 

..... 
•127• 
• 81* .. ..... 

•127• 
• .e~• . . 

n450 1 Hee U440 J.u u4111 EIBD 
•••••B1********** 82 •. •••••Bl********** 
*CEltAB2 121l3* .• *• •CEKCAC 160A3• e---------------• . • CRAB = *• !ES •-------·-------• 
• * •. EOS .•--->* 'I•COllPLETE * 
* * *• • • • ALPHAllERIC • * * •. .• • PIELD' • ................. •. .. . ....•........... 

J ....... ~r: 
C1 •. •••••C2********** .. .. . . 

.:• cgA~i ·:~>:ma~'U»<f>,(i: 
*• •* * I * .. .. . . • .. ·:., ••••u•T-•u• 

I -·· *****D1********** D2 *· . . .. .. 
•REDUCE P3 Bl 1 * • • *• 10 
:sn STUDS = 11: ··._ I <! 256 ••• ----, . . •.. .• ..... 
••••••••••••••••• •• •• •122• 1 • YES • E1• ..... I ... 

•122• 
• 02* ERRD 

* • *****B2********** 

. .... 
•127• 
• BS• . . 
• 
l 

AE602 ERRD u•no .•.u 
•••••B4•••••••••• 85 •. 
•CEKClC 160A3• • • •. 
•---------------• YES • • •. • •<---•. I= 0 ··* • • •. ·* . . •. . . ................. . ... 

[~ 
*****CS********** 
• SET CLllG = 1 • * COL!! = CHAR • 
• CALL CRL. II' • 
: !IC#O, RETOB1' : .•....•..•.....•. 

l 
•••••D5•••••••••• . . 
• SET CLASS = • 
• l'ORlllT * . . . . ................. 

I 
* •CEKCAC 160A3• ••••!4********* •••••!S**•••••••• 

• SET SLOC=STG * 

..... 
•127• • J1• .. . 

AE420 l ZZ •••••Jt••········ . . . . 
•SET STATUS "' 16• . . . . .......•......... 

342 

1 ..... •122• 
• 02• . . . 

•--------------• • RETURI • : -=-------------->:~:::::hr:::.:.: ................. 

..... 
•127• • J2• . . . 

AE430 ! AZ •••••J2••········ •sz:r I " 0 CID ... 
•COISTHT CTYP =• 
•LITERAL STATUS • 
• = 15 • . . ................. 

! . .... 
•122• 
• 1!1• .. 
• 

..... 
•127• 
• J3• . . . 

lESOO ! AB •••••JJ••········ •SE'.f Z = 0 CVlL * 
*"' BLARIC, BRAICH* *• l (LA) STATUS • 
• = s • . . ................. 

i ..... 
•122• 
• D2• . . . 

. .... 
•127• • J4• . . . 

A.!!510 ! AC :••••J4••·······: 
•SET CID=tlBEL I* 
: = 0 STlTUS•B : . . . ............... . 

1 . .... 
•122• 
• 02• 
• * . 

=~~l~~E~g• omt: 
*l!ITBL llT. UP- • 
*DATE STG Ct C'r1'* . ............... . 

I •••••'!'5•••······· 
* IP lALPHA• • 

: ~;m~~h~~t : 
!co~~ mk=~5ioP: ................. 

I 
*****GS•••••••••• . . 
• SET • 
• ALAIKA=PDTOP * 
: UPDlTI! PDTOP : ................. 

1 ..... 
•120• 
• et• .. . 

PAGE 127 



Chart BW. Assemble Components (ACOMP) -- CEKAE (Page 7 of 8) 

..... 
•128• 
•• Al* . 

AE130 l c 
*****A1********** * SET COLI! = * 
•CnAa. CALL IVST• 
• IF ac # o, • 
: RETUliN : ................. 

..... 
*128• 
* A2* .. . 

AE1110 1 Z 
•••••12••········ . . . . 
*SET CDL!I = CP.AR* . . . . ................. 

. .... 
•128• 
•• Ai• . 

At1180 1 AT 
:****A3*********! 
•R~DUCE P3 BY 1 * 
:s!!T CDLll = '*' : . . . ............... . 

. .... 
*128• * All• . . . 

AE1190 i AU 
:••••A4*********: 
* SET CDLll = '* * . .. . . . . . . ............... . 

•••• I I •128• I 
• 81 •->f : ... · ~<-------------------------------J 

AE590 • *·.EX A£5911 .•. AE597 • *· 
81 •. B2 *• 83 *· **Bii******* 

• * *· • * *· • * CID = *· * * 
0 • * BRANCH *· 2 - * CID = *· NO • * COllSTAllT *· YES * SET COllPLEI * 

I
*· ON COllPLEX .*-->*- JIULL .•--->•. AllD CTYPE = ·*--->* FLAG= 0 *--------.. 

*· FLAG • * *· • * *. COllPLEI • * * * ·- -. •. . . •. . . . . • .. • • .. • • .. • .......... . 
* 1 * YES * NO 

I ••••• ,,.l.mi... c)... "'1! •• oe..l.mi ... 
I *CEKCAC 160A3* • * *· *CEKCAC 160A3* 
l •---------------• + • * BRANCH *· OTHR •---------------* 

l .. • ·- .• • .. 
I * * r•- ON CDLll .•--->* • 

I : ••••••••••••••• : ·- • ••• -· : ••••••••••••••• : 
I ....... • - I 
I :1g: 1• I • • • I 

I ••02••••••• I 
I .. RAISE SIGN • • I 

* FLAG * I 
I * I 
I • •• • I 

I
I ·::c··· j 

•122* 
* C2* ... I • ••••!3•••••••••. . . ............... 

I 
>• RETURN * 

L------------------------------------------------> 
AE591 

*****PS********** 
* * * * *SET SOURCE = P3* 
* * * * ....•............ 

I 
****GS********* * RETURI * : ::::::2i~~::.:.: 

PAGE 128 

Section 8: Flowcharts 343 



Chart BW. Assemble ~omponents (ACOMP) -- CEKAE (Page 8 of 8) 

..... 
•129• 
* 11* 
• * 
* 

..... 
•129• 
• 12• . . . 

..... 
•129• 
• 13• .. . ***** •129• 

* .1~· . 
..... 
*129* 
**A~* 

* 

AEJSO 1 D AE600 1 lE360 1 ! 
U370 .•.11 U390 l iuc 

•••••11•········· 
* SET CLIG = I * 
* CAJ.L IVST. IP * 

•••••12••········ . . 
* SET CSTP = I * 

13 •• .• .. 
YES • * CHIB = *• 

•••••lit••········ • * 
•-CEll'.CQ1- IF RC * 

*****AS********** • * 
* SET CTTP = * 

r:~c =# o~' sHME~: 
• 11 • ................. r :suros 0 12 .J =: . . ................. r *• 'O' ·* .. .. •. .• *· .• r * # O, RET SBT * 

:cnL = E I = 1. : . ............... . *LITl!!RAL CLIG = * 
* l: CALL ICJV * 
* * . ............... . ..... 

•122• 
• 02• . . . 

..... 
•122• 
• .n~• . ... 

•••••81••········ 82 ·-. . .• .. 
*SET STATUS = 111* YBS •* CHAR = *• 

••••• • 110 
*125• * DJ• .. . 

. ... 
* • * D1 * . . .... l 

·*· *****84********** 85 *· • • ·* *· *SET I = C'flL I * JES • * 0 < *· 
* = 0 *<---*· CVllL :S 2SS .• * 
• * •. •• . . .. .• 

;::::;::•1•••••••• •. ·1· ;o 

*SET 1 E1 FLAG *<---*· 'B' .•<--------' r. . .. .. 
• * •. -· ................. . ... 

••••• • 110 

:1m I .. . 
AE380 :••••c2•••••••••: 

* SET CLllG = I. * 
* CALL PLIC. II' * * RC # 0, RE'J: * 

**** AEllll2 
1!601 ESC8 U602 EBRD •••••cri•••••••••• •••••cs•••••••••• 

•CEKA82 12113* *CEKCAC 16013• ·---------------· ·---------------· . . . . . . . . .... . . . . . . . . ................ . ................. . ............... . 
l • ••••• =~~;. . . .... 

• D1 • I 
l * D2 *-> 

AE382 AE38i .•. 
*****D3********** 04 *• . . .• .. *****D1********** *"***D.c.4 ********* . . . . : mscm~~ X :< ___ 11_0.:• CH~gS= *:• 
* BY 1 * *• •* . . .. .. -····-r······ ··.·: .. 

:m,~am¥o5 ~ :< ___ :sET=1ai'.1~iscvu: r. 5 • * • 
* * • • ................. . •...........•... ..... 

•1211• 
• 82• .. . ... ..... I .... l 

E3 *· *****Ell********** **ES******* 
• * *· *Cl!:KClC 16013* * * 

.• *· JES •---------------• * * 
*• I < R "! * *--->* SET RC= 12 * •. .. . . . . •. ·* • • • • •. ·* ••••••••••••••••• • •••••••••• 

•1110 :·::·: 
* • .... 

ESC 
*****P3********** 
*CEKA81 12112* ·---------------· * • . . . . ................. 

I .•. 
*****G2********** GJ *· * • ·* •• 
* * YES • * CHAR = *· 
*SET COLll = CHAB*<---*· DELillITEB • * • • •. ·* . . .. .• ········1········ ... ·:o I 

:;m ..,.. l .... 
* * *****H3********** 
* =~~!~~~----!~~~~= * ****HS*******U * 

: .... -------------->: Rl!:T!JRR : . . .............. . ................. 

PAGE 129 



Chart BX. File Real Constant (FLRC) -- CEKCH 

CEKCH1 FLRC 

****12********* 
* * * EllTEB * 
* * ............... 

l "" •••••a2•••••••••• 
::.:~:!2 ____ 2~~~!: . . 
* * . . ................. 

l 
• *· • *· CH050 

Cl *• C2 *• *****C3********** .• •. .• .. . . 
YES • * DOii' T *• 0 • * BlllllCH *· 2 * SIGll FLAG TO * 

, •••• FIL~/LAG_.-•<---• •• ?N ~~:~ux_ •. *--->: SIGN (CVlLJ : I ····.·:~· ·· .... ( : ...... T ...... : 
I ..... .,.!........ "':i .... ,.I........ ,,··· .. 
I !clh c~m~:4b : :cm m~H~fAG : . * *· 

I :cm=~m
8cALL: :To m~mws1: 1=·=:. cmp: .>l> 

* * *CO!IPLEI FLAG=2 * *· • * ................. ................. ·- .. 
I I l * < 

I""' I I .. ., °"" "" *****El********** *****El********** *****EIJ********** 

: 1~s¥~~0PN~=: : : ::::m;~g::·:·: j :=.:~=~~T-CT~~;~!: >:=.:~=~~----2~~~!: 
: : * ******2~******* * : STYP : : 8 : ................. ................. . ............... . 

CH015 >!

1 

I ""' F3.l:*. CH110 F4.!... CH130 
*****P5********** 

****F1********* .• *· ·* *· * SET CVAL 1102 * * RETORll * •* DON'T *• 011 ·* BRANCH *· R*ll *=llD1 CVALll01 = * 
*(RETURN CODE = * *· FILE FLAG • *--->*. 01' CTYP • *--->*T!!CO!IS WD1 CTYP* 

• ••••••~~••••••• • ~ •. •. • • • * *· •. . • · • : • c•e : .. -· .. . . . ............... . 
j°" j"' 
-~ ' *****G2********** GJ *· *****Gii********** 

*SET TEC01'S 1102 * • * *· * S!!T CVAL 1102 * 
* =CVAL llD1 * R*ll ·* BBlllCH *· * =llD1 1104=WD2 * 
* CTYP=C*B CALL *<---*· OJI CTYP • • *llD1=TECOllS llD1 * 
* COllCB * *· • * *llD2=TECOllS llD2 * 
* * *· • * * CTYP=C•16 * 

""""j"""" c.... ·r·· rn::"'"l_··_·_·_·_·· _______ _, 
*****H3********** **H4******* 
* SET TECOllS * * * 
* llD3-li=CVAL * * * 
*CTYPE=C*16 CALL* * SET RC=O * 
* COllC16 * * * . . . . .•.....•......... . ......... . 

-------C-HO-%-~-.-•• -J-,:L.._. I 
• • ••••Jll********* 

: 
1ts¥~0h~r =--->:<RETgi~0~~o!! = : : : · ...... ~~ ........ . ................. 

PAGE 130 

Section 8: Flowcharts 345 



Chart BY. Insert Variable in Symbol Table (IVST) -- CEKCI 

CEKCI1 IVST 

••••A.2••······· . . 
: ENTER : ............... . ... 

I 
. . 

' :.::.: 
a2· •. •. cioi2.••B3•!•••••••• . . •. . . 

• * HASH *· YES * SET iilSH~X) = * 
···.TEaH~u .• -·--->: NPTO :--, 

•. -. . . • .. • ................ . 
• NO 

I ••••*C2••••······ . . :••••c3•••••••••: 
*SET I= (LINK (I) I * * SE:i: I * 
* •4+BASE * . . . . r CHAS~iW •4 •: ................. ..............•.. 

CI010 i~ 
D3. • *· 

'<---~ t .•. 
D2 *· -· ·- . . •. ·=· =11mm, ·:._110 ___ >·=· T~mm ·:. 

•. .• ·- .. .. .• •. .• • .. • .... 
* YES • YES 

""' l cmo I :••••E2*********! :••••E3*********! 

: STP(Cr;iPP(I) : : SET1M~~!~I = : . . . . ........•........ . ............... . 
J C>O.. • I< 

F2 *• *****P'3********** 
• * *· •SET I= (llPTOP-31 * 

!
YES•:* Fim1 *:• :•~m~~,m~~I : 

*· .• *llPTOP BY 3. SET* 
*· .• • llP-DPTOPllDS=O * • .. • ................ . .... . . 

: GS : .... I ro ,I 

CI07S l J *****G1*********! G2 *· *****G3********** : ~=h~t~~ ~g • YES _.··cuss=··.. • SET UllE~I)= • 
• TYPE P'ROll . •<---•. LIB OR om .• :g~~gJ~ 1 1RoPP~o: 

C!090 i EPR2 
*****GS********** 
=~~!~~~----~~~~~= 

* SYllBOL TABLE • *· .• * DPTOP. SET J= * * • . 
: ............... : •. •• • • • * :J~~~H":2::~~!.: . 

346 

• NO I 
l J l 

*****H2********** *****H3********** 
!s1~i8L rmLPTo! :s~M!~K [ < 3~TP! ***RS******** 

* TnR11 OFF * * TYPI'! Ill * * lcl =DPP~'r) ~ ID * 
: INTERCOll : !l~~EOJl: m l~l =: 
••••••••••••••••• • •••• • ~ •••• i •••• 

* X-BEF OP""ION *~ . . . . ........... 
..!... I 
* 83 * • *• CIOSO .•. 
• * J3 *· •••••Jll********** JS •. 

.... . . : ~s: .... 
•••• •••• DPTOP > •. •. 110 ! 1 iA~0U?'b~n : .• ·• X-!11'" •. •. YFS '-------------------.>•. NPTOP • •--->* IM CROSS-REP' •--->•. OV!''RPLOW • •1 

*· • * * LIST =STP (C) * *· • * •. • • • • •. ·* • .. • ................. •. .. . 
* JES **** * 1'0 * ***! 

I * * l * <;S• 
* KS •->1 * * . . ..... .... 

CI080 ERll3 
*****K3********** 
=~~!~~£---~~~~~= * ••••K'>********* * 
* * * RET"Rll * 
: SET !IC = 8 : * *************** * 
***************** A 

PAGE 131 



Chart BZ. Decimal to Binary Integer Conversion (ICNV) -- CEKCN PAGE 132 

CEKC111 ICNV 

****A2********* * • 
: ENT EB : ............... 

I 
••s2••••••• * • 

• SET 
* * ll=CL!IG, Y=O 

* * • ........... 
I 

1 
. *· Cll060 

C2 *· !****C3*********! 
.•·* *·•. YES * * *· N=1 .*->* SET V=CVAL(1) * •. .. . . .. • .... ·· : ............... : 

• KO I 
I 
~ I ·*· 

02 •• I 
F·<.:.;.;;>·1 I 

C!IOOS t :••••E2••········: I 
: ~~,g~1~hs¥;, : 
: : ................. 

I 
I 
I 

CN010 ~ 
*****F2********** * • * llOLTIPLY V BY * 
!J8 ~D~Dgv,Lw I: 
* * .................. 

I 
·*· 

G2 *· 
.•I > NP *· 

• *IP 110 GOTO *· 
*-CN010(XR,ET) .• .. .• •. ..• ·- -· I * YES 

·---->' 

11<------------------~ CHOllO 
*****H2********** 
* * . . 
* SET CVAL=V * • * • * ................. 

I ••••J2••••····· * i!ETORll * 
: (R!TU~nl CODE = : ............... 

Section 8: Flowcharts 347 



Chart CA. Decimal to Floating Binary Conversion (FCNV) -- CEKCP 

CEKCP1 PCHV 

••••12•········ 
* * * ENTER * 
* * ............... 

I 
l ICNV •••••a2•••••••••• 

*CEKCN1 132A2* ·---------------· 
*SET CHARACTER- * 
* ISTIC AND * * llOPllALIZE * ................. 

l 
*****C2********** 
*IP POllER llOT Ill* 
*RANGE, CALL EllR* 

: pJ~hAig m : 
* ALLOWABLE * ................. 

l •••••02•••······· . . 
*ADJUST COllSTAllT* 
*TO ACCODKT FOR * 
* EXPOllEllT * 
• * ................. 

l 
·*· E2 *· ... • *· 

·* BRAICH *· R*8 * * *· 011 C'UPE .•-->* H3 * •.. ...• . . *· ·* •••• 
·- • * i ... 
. ·-P2 *· -· ·-NO • * *· 

I
*• CLllG>7 ·* ·- -· •. .• 

I ·r,, 
I G2·*· ·- •••••G3********** 

I -· 'E' •• •• OPP :SET CTIP = R • : 

I 
•= * FLAG • *---->* * 

•. -· • * •• -· * • ·- . . . ............... . 
I ·1 011 **** I 
I * * 

I 
* '13 *-> 

CP060 ERR2 CPO:o*** * i 
I *****H2********** *****H3********** 
I *CEKCAB 160A2* * * 

I :-------:-------: : dh cmrnr * . . . . ................. . ................ . 
I { I 

CP070 i 
****J2********* 

* RETUBll * 
* (RETDRll CODE = * 

* •••••• 2L ••••••• * 

348 

PAGE 133 



Chart CB. Begin Loop Processor (BGNLP) -- CEKBA (Page 1 Of 2) 

CEKBA 1 BGNLP .•. i>A18 ERRD 
A2 *· *****A3********** 

***•*A 1 ********* * • •" * *· *· !10 :::~:~:----~~~~~= 
: ENTER :--->*-•• DOLEV<55 •• -·--->:'llA~o mmesLE:-------- I 
••••••••••••••• •. - • • EXCEEDED I • I ·-r,, ................. :,1 

*****B2********** 
:Aggp~1~~o~m: : 1

1 * DOSTK (DOF-NT} = * 
*CVAL CALL ACOllP* 1 
:u.:~:2hmm: 1 

I I 

l I 
··- BA1.., ERRD I 

• * CID=VAR *· NO •---------------• 
•• c2 ·-._ =~~~~~r··~:~:;: >'II 

*· ? .•--->*'LOOP VARIABLE: * *· .• •NAllE NO~ GIVEN'* 
*· . * * * I 

_.J::::_ ................. 11, 

YES ·* *· 
,---•. CTYP=INI*2 •* I I ·-·-·· j-:~·-· 1,: 

.•. BA13 Ei<RD 
E2 •.. *****E3********** 

• * •- *CEKCA<.: 1 &OA3* I 

.: * crY P= 1Nr•11 *: ._No ___ >!;-i:ooP-VARIAELE-:'------------> 11 
*· ? •* * !IOT INTZGER 1 * •. ...• • • I 

* YES 
·- .. . ..•..•.....•..•.. I 

'----->I 
I 

-L BA03 I 
F2 •... *****F 3********** 

BAO 1 

-· *· * • • * CLASS *· YES * SET CLASS TO * 
•- *- UllKllOWN ? ·* .•--->: VARIABLE : ·- .. • . . *· ·* •••••••••••• • •• 

•1 NO : GJ :_J 
• • I •••• v 

• •- BAOll • *· 9A 111 ER9D 
• * G2 *· *· • * G3 * • *· :~;~m****~:~:;: 

- * CLASS *· lCES • * NCN- *· YES •---------------• 
*· SillPLE ? .•--->•. ?.EDEPINABLE ·*--->* 'U~DEPINA!!LE * 

•. • * *·FLAG UP ?. * * VAR. USED "OR * 
*· ·* *· ·* * LOOP VAR.' * ·- . . •. . . . ............... . 

• NO * NO I 

l 'L :~;;. I 
>* A2 * I :.... ' 

a2· •. •- •****H3•••~~:!... I 
.• ·- •CEKCAA 160A1• •••• I 

• * CLASS *· YES •---------------• * * I 
•-._ Al!RAY ? _ •• •--->: Loot 8 ;~~I~BLE :-->: G3 : I 

*· .• * NON-STANDARD * **** I ·- -• ••••••••••••••••• I 
* NO 
I 
I I 

~ I 
BA02 J2_._ ·- BA2~ .... J3 .... ~~=2... ~ I 

• * *· *CEKCAC 160A3* ****Jll********* J 
.:· ruigigN ·:._Ho ___ >:-;o;:;iii!isi:i--: ___ ): RE~gg~=tW· :< 

•. NAllE ? • * * NAllE USED FOR * * * 
*· •* * LOOP VARIABLE * *************** • .... • ................ . 

* YES 

.L . . 
: G3 : .... 

PAGE 134 

Section 8: Flowcharts 349 



Chart CB. Begin Loop Processor (BGNLP) -- CEKBA (Page 2 of 2) 

..... 
•13~* 

**A~* 

* 

! •••••12•········· 
:~5MLf:fi~Tm: 
*IVE HR llOT BE* 

:0mW~cmz~": ••••••••••••• 1 ••• 

l •••••e2•••••••••• 
: e~Amptao~§- : 
*REF LIST EllTBY * 
* .!'ROii RE.!' TO * 
* OE.!'IllITIOll * ................. 

I 
:••••c2•••••••••: 
* SET OOSTK * 
: (OOPllT+ll) =CSTP: 

* • ................. 
I 
l 

BA15 EBRO l!AOS ·*· 
*****01********** 02 ·-
*CEKCAC 160A3* • * *· 
•---------------* 110 • * CDLll = *· 
* '=EXPECTED *<---*· '"' ·* 
* AFTER LOOP * *· • * 
* VARIABLE' * *· ·* 
********!********* *• i •;ES 

l CKLill •••••!2•••······· 
****E1********* *CEKCJ 1 137 A2* 

* BETORI * •---------------• 
:<RETOBf2fODE = : :nTR~bgfKeEm:: 

*************** * T+6L =CS~P • i ....... i"""" 
Bl16 l EBRD ·*· 

*****F1* ******** P2 *· 
•CEKCAC 160A3* .• *· •---------------* NO • * CDLll *· : a~tw~wu;~g :<---•. •. =·,. . •.• 
* PlRAllETERS' * *· .* ................. • .. • 

* YES 

I 
! CKLill 

*****G2********** 
*CEKCJ1 137A2* ·---------------· 

• •. BA06 
A3 •. *****All********** • * *· * SET OOSTK * 

• * COLI! *• NO * (DOPNT+10) = SYll* 

r>•. =',' • *--->• TAB PNTR .!'OR * 
•. • * * I*ll * •• • • * * •. . . . ............... . 

* YES 

I ...... ,.I.mu .. 
I :::~:::!2 ____ 2~~~~: 
I *IF RCllO RETURN* I :sET + vgs~mgP!IT: I ••••••• L ••••••••• 

I I 
1 BA07 r-C-RL ________ __. 

•••••c3•••••••••• 
*CEKTPll 01SEll* 
·---------------* . . :u RCllO, RETURN: . ............... . 

I 
*****D3********** 
* SET OOSTK * 
:<oo~grm& m: 
*BL 1,BL2 EllTRIES* * TO PRF • ................. 

I 
*****E3•••••••••• 
: s5~pm~0~m : 
*PJTR BLJ ~NTRY * 
* TO PR!i' SET * 
*OOSTK=Pfl.!' ENTRY* ................. 

I 
:****F3*********: 
*UPOAT E PR.!' TOP.* 
* PRF TCP TO * 
: POLllK ANCHOR : ................. 

I .•. 
G3 *· .• •. 

:IF ~~~of>omORN:--' 
·* I/O *• YES 

*·,.:LAG RAISE~*. *1 

:.mm:mm.: 

350 

•. .• I 
•· .·;o I 

I 
:****H3*********: 
*SAVE PRPTOP Ill * 
* POLNK CHAill * 
: AllCHOR : ................. 

!<---' 
BA 10 ' •••••JJ•••······· * UPDATE ESTLOC * 

* BY BEGill LOOP * 
• EST. SET * 

==Em~mmbE: ................. 

I 
****K3********* * RETIJRN * : .~:::::2L~~~: .. : 

PAGE 135 



t- cJ) R. TR.A .0 1:JZ" C C/> f-1 PI L Ll 
fO-J\.+ "3:(. 

Chart cc. End Loop Processor (ENDLP) -- CEKBB PAGE 136 

CEKBB1 EllDLP EB02 

••••11••······· :••••12••·······: :··;~)~~==·~;··: 
• • * SET D0f!IT=4• • *BLJ. UPDATE PBl"* 
• EBTER • r>•DOLEV !!AK! EID •--->*TOP. PRl' TOP TO• 
• • *LOOP PRP EX'IBI.• * PDLNK AllCHOR * ............... . . . . I ................. . ............... . 

. i. I l 
a1 •. I •••••e3•••••••••• .• •. . . ·= \cc/~gT. = ·: ~> !Hr I~~A~Ll~ m: ..... '. j.: ;: . . I :::~:.::!.::::::: 

1 I •••••CJ•! •••••••• 
••••ct••••••••• I •szr csTJ?=DOSTK • 
:(RETmo~~DE =: mmr~~D~cm: 
* 0) * * FLAG (CSTP) • * ••••••••••••••• • * ................. 

I l 
j • •. 
l DJ *• 
: .• • • llA~E *· *· OFF 
j *· *· L~~~T~tAG • *. •------~ 

j ···r;·1 I 
I ••El•! ••••• 

I 
•LOWER NAii! • I * LIST FLAG * 

•• 1~~mhmP. · 
1

1 

*FLAG Ill •• ........... 
I I I 
I aeo~****Fl•!•••••••• aaoss F11.!. •. 

I 
*CALL CI.LI!!. SET* • * *• 
*CSTP=DOSTK £6+ * NO • • ISD *· 
:cLf¥~~Th~A C~?P:<-A--*· *·OPT IOI 01' • *. * 
•=DOSTK jS+DOfllT) • I •. . . I ...•.•. j*****••• I • •• ·;l!!S 

I ..... J........ I ) ... 
j *CALL CLLill SET • I . • •. 

*CSTP=DOSTK I 1 O+ * YES • * I/0 *· 
l * DOPRT) CALL * ,<--*· LOOP • * ; * CLLill ilEDUCE * *· • * 
i * DOL!:V BY 1 * *· • * 

, ·······r····· 1 ·r, 
**H3******* L **f!4******* •**Mc·*******• . . . . 

* REDUCE END * * SET UNSAP'! • * Rl'!'\'ORN COD'P. * 
* LOOP CNT. BY • * LOOF FLA!; 011 * r--->* = 0 * 
•. ' •. • • • • I •. • • ..••.•••••• •.••...•••• I ••••••••••• 

,,.!.._ ''"!................ i, I 
.• •. • • ••••J5••······· 

• * EllD *· YES * UPDATE ESTLOC * • RET!J!l!I * 
•. LOOP CllT. = .•--->• l!Y l!!ID LOOP .____. I>* (R'P.'!'llll!I COD?' = • 

*• 0 • * * ESTI~A'!'E * * 11) * •. . . . . . ............. . .. . • ................ . 

.. .J. ::.. . ............ I 
..._ ___________ ,_!s.:• DOLr l? ·:._•o ___ >.· RETU~ll,/OD! ·._J 

•• . • * • •. .. . . • .. ·. . ......... . 
1'!3. !!ID Lr"OP· PR" 'P.•"'"Y 

Section 8: Flowcharts 351 



Chart CD. Cb eek Limits ( CKLIM) -- CEKCJ PAGE 137 

CEKCJ1 CKLII! 

• ****A2********* * 
* ENTER * 
* * •••*•·········· 

I .c ... 
•••••e2•••••••••• 
::~~~..:2 ____ !!!~!: 
! If' R~~DRN o, ! 
* ~ .,..... • ................. 

I 
CJtJ EiUiD .•. 

*****C1********** C2 *· 
*CEKCAC 16013* ·* LOOP *· 
•--------------• YES -* PARAl!ETFR *• 

I
* *<---*· fCSTPl = LOOP.* 
*ERROR CODE = 64* °"· VAR ·* . . •. .• .................. ·- .• 

I 1· 
I D2···._ CJ0 2 DJ···.. Dll··· •• 

I • * *· . * *· • * *· I • * CTJP = *• YES • * CID = *· NO • * CID = *· 110 * * 
I *· I!IT. .*--->*. CONST ·*--->*. VAR ·*-->* G2 * 

I • ... _ _.·· •·•. .•·• •·•. .•·• • • 
I *· ·* *· ·* *· ·* 

L,, .... .I... ""' J"' .i..., 
I *****E1********** E2 *· EJ *· Eli *• 
~ ::~~:~: ____ !~£~~= YES _.-·CID= •••• -··'"cnL > •• •• YES YES •• ·~c~urs=·· •• 
r--* ERROR CODE = *<---*- VAR. ·* *• 0 ·*- ,*· Sil!PLE VAR. ·* 

1 : 191 : ·-.. •••• *·.. .•·• ·-~~.rgic:.·* 
I ***************** ··.·:o *·.·:o *·.·:o 

I ..... ,, ... mi... ,) .• _ "'l •••• ,J........ 1 ,.J._ ,,-·- .. 
+ ::~~:~: ____ !~£~~= YES •• •• CID = •••• ::~~:~: ____ !~~~~= I .. ·· *· •• 110 •• ·* *· •• NC' 

* *<---*· CONSTAifT ·* I* * *· = UN!'; ·*--->•. = 'RR~Y *---, 

l *BBROR COD<: = 24* *· ·* *ERROR CODE = 65• *· • • *· • *. I 
* * *· ·* * * I *· ·* *· ·* ••••••••••••••••• *· .. • I ••••••••••••••••• I I *· • * •• • * I 

I * •••• * i 110 l, I ' li YES ·I, Y"P.S l 

I : G2 :->1 ' I ' I 

I CJ1 t •••• ' EBBD '1 I ICJOll CJ07 ~ FBR1 I 
*****G2********** *****Gii********** *****GS********** 
::~~:~: ____ 2~~~~= I : SET CLASS : :::~:~~----!~£~!: ',' 

I ·.·ERROR CODE = 20.: I ' : (CSTP) TO vu. : : : 
I I I I * * * * I I ********j:******* I 11 *******:j******** *******T******* I 
I I I I * ****. ' 
I I I CJ06 + * J3 * I 

I
I I I ••R4••••••• • * I 

I * * **** 
I

I * RAISE !!UST- * 

111 •••• I ••• !IOT;f f;;DI!! ••• . . I ........... I 

II cm :.r I ..... ,..!........ . .... ,, ... mi... I 
****J3********* *IF NOT DEF FLAG* *C"KCAC 160A J• 

I I : (BETmu~gDE = =<---=mh m m: : ,._.;_·-----------• 
I 

* ******2L******* * ! TYP~Lt~~ZEll : : !RROR 1 ~goE = r__, ................. . ............... . 

I ~ 
****K2********* 

• RETIJBI * 
L------------>*(RETDRif CODE=* 

••••••• !~~ •••••• * 

352 



Page of GY2~2019-1 Issued February 1, 1972 by TNL GN28-3215 

Chart CE. X/O List Processor (XOLST) -- CEKBW (Page 1 of 4) 

CEltJ!if1 J:OI.ST 

••••A2••••••••• • • 
• ENTER • . . 
.... ""r-··· 

••B2••••••• . . 
• J:NJ:TJ:ALJ:ZB • 

*• LBVf.c~' •* . . ..... [ 
••••*C2••········ •Cl!ltABl. • ·------------· 
: ll'~O, : . . 
·······T······· 

.•. BW64 
02 •• ••03••••••• .• •. • • ••••Dll••······· 

• • • • YES • SET PRF • • RETURN • 
•. CHARACTER .------>* PI.AG PORNO •----->*(RE'l'URR CODB ,. • 

*• JDS • • • LJ:ST. • • 0) • .. .. . . . ............. . .. .. . ......... . 
:m. i• NO 
• E2 •-> . . .... 

BW02 E2. •. • • BWOll E3. •. • • BW06 Ell•*••• •••••ES•••••••••• .. .. .. .. .. .. . . • • •.NO .• •.NO .• •.NO • • 
•. CHARACTER= .•-------->•. CHARACTER .•-------->•. C~BR .•---. • LPTAD=LCOP •---. 

*• '}' •• •• 1, I •• •• : •• ! . . l .. .. .. .. .. .. . . .. .. .. .. .. .. . ....•.........•. .... r· r J... =:~ i .. =:~= 
•••••P1•••••••••• P2 •. •••••Pl•••••••••• Pl! •. PS 0 

• •. . . .. .. . . .. .. .. .. 
: MBSS~f NO. = =<----~•:* LEV= 0 *:• ==cB ~=: •=* LCO'"' *:•~----->•:* LEVEL=O *:• . . .. .. . . .. .. •. .. . . .. .. . . .. .. .. .. ................. .. .. ................. .. .. . .. . ! •NO •YES •YES 

t::·: 1 .... 1 ..,, 1 
• • ••G2••••••• •••••ta•••••••••• •••••GS•••••••••• .... . . . . . . 

• LEV "' LEV • • MESSAGE NO. '" • • MESSllGE NO. = • • -1 • • uo • • 70 • . . . . . . . . . . . . 
·····1·:=~------- ~iii~:::1·::=:=: _____ :=]-······ .... 

F!M79 ERRD •••••B2•••••••••• •••••Bii•••••••••• 
•CDAB1 • •CEltCAC • ·--------------* ·------------· 
: :u~o. : : : . . . . ······::r··- ·····-·1········· 

• B2 • . . •••• ••••Jll••······· 
• RBTUD • 
• UlftllRB CODB = • 
• 12) • .......•••.•... 

Section 8: Flowcharts 353 



Page of GY28-2019-1 Issued February 1r 1972 by TNL GN28-3215 

Chart CE. 

BW08 

..... 
•139• 
• Bl• ·r 

I/O List ~rocessor (IOLST) -- CEimW (Page 2 of 4) 

.•. BWOl .•. .•. BW71 Bl •. B2 •. Bl •. •••••BS•••••••••• .. .. .. •. .• .. . . 
• • IS •. NO • • IS •. YES • • •. NO • MESSAGE NO. = • 

•. CBARAc.r.BR .•------>•. CHARACTER .•------->*. LEV = 0 .•----------------------------->• 184 • 
•. 'I' ·• •. EOS .• •. .• • • .. .• .. .. •. .. . . 

•·1• •;ES •·.·:o •·1··;ES ••••••••1•••••••• 
..... 
•138• 
• Bii• •••••cl•••••••••• •••••Cl•••••••••• • • 

• • •RAISE I/O FLAG • • 

!~AlcFkff¥?.J·: : gg~~sf~': 
• • •BllD POillT COORT• 
• • • SET LPCNT = 0 • ·····-···1·-······ ii~=:1········· .... 

BW12 ACOMP •••••Dl•••••••••• •••••Dl•••••••••• 
• • •CBltABl • 
• ADD 1 TO LEV. • •-------------• 
:sn ~~~LBV>: : u~;.o, : . . . . 
~iii~:::1·:=:=---------- ........ 1········· .... 

BW09 ESC .•. •••••El.••········ El •• •CEDBl • •• •• 
•---------------• • • CID "' •. NO 
: I!'R~O, : •... VAR ••• •----V . . .. .. . .... 
••••••••r••••••• •.•.YES :1~~ 

..... 1 · .. 
•138• 
• E2• .•. • • •••••P2•••••••••• Pl •. 

• • CANCEL LAST • • • • • a:r:J ~m&.x~=<----~·=· ~.- ·:.~-----. 
• OH • •. .• V . . .. .. . .... 
••••••••••••••••• •• •• •1110• 

• • B~ .... . . 
• Gl •--. 

···•• • I BWlll -6' ACOllP •••••Gl••········ •cEXABl. • 

. . 
• 

... 
Gii •. .. .. 

. ... . .. 
• FS • . . .... 
! ACOMP •••••PS•••••••••• 

*CEKAEl • ·--------------· 
• IP RC * 0, • 
• RETURN • . . ....... T ....... 

. .. 
GS •. . . .. ·--------------· -->*:• CD~,= •: .!~-. .•CID= •.YES 

354 

-------------->: IP~=-0, : . . 
""'"]"""" 

.•. 
Bl •• .. .. 

.. .. ! .. .. .... 
• YES ••••• 

• G4• .. . l 
•1111• 

. .. 
Bii •. .. . . 

• • lRD •. YES ·=· ~.- ·:.~-- •. COMMA • •---. .. .. .. .. .. .. 
•ms 

... ,. 1 
•••••.:n••········ 
• SBT BIB> LOOP • •cootr.r = 1 CALL • 
: END~ HTRC • : . . 
i~ii::::1········· 
• • •••• BWllO .•. 

Kl •. .. . . 
• • CDLll • •. YES 

•. 'l' .•------. •• •• v .. .. . .... 
•• •• •1111• 

• YES • A2• i .. · .... . . 
•PS• • • .... 

.. .. ! .. .. . ... 
• NO ••••• 

I •••• •141• . . . ~· ..,>• Gl * • • . . . .... 

•... NULL ••• •--i· .. . . . ... 
1
qo :·;;: . . . ... 

ERRD •••••BS•••••••••• 
•CEKCAC • ·---------------· . . . . . . .. ...... r ....... 
•••*JS••••••••• • RE'l'URll • 

* (RE'l'IJRN a>DB = • • 12) • ............... 

PAGE 139 



Paqe of GY28-2019-1 Issued February 1, 1972 by TNL GN28-3215 

Chart CE. l/O List Processor (IOLST) -- CEKBW (Page 3 of 4) 

..... 
•140• • B2• .( 

BW15 .•. •••••Bl•••••••••• B2 •. 
:SET CLASS(CSTP): YES •• ·• CLASS *·•. 
•TO SIMPLE VAR. •<--------•. (CSTPl = .• 
• • *• UNK .• . . .. .. ................. . ... r BW17 • •. BW26 . •. BW30 • •. 

C2 •. C3 *• C5 • • 
• • CLASS •. • • •. • • CLASS • • 

PAGE 1110 

• • (CSTP) = *• NO .• CLASS •. NO • • (CSTP) = •. YES 
•. SIMPLE .•--------~. (CSTP>= .•--------------------------------->•. FUNCTION .•---. 

•. VAR. • • •. ARRAY • • • • NAME • • i .. .. •. .. .. .. .. .. .. .. . ... 
BW18 l

'YE r 
1
. NO : •:;: 

.•. ERRD • •••= 
••D2••••••• D3 •. •••••Dll•••••••••• •••••05•••••••••• 

•RAISE MUST • • • •. • • *CEKCAC • 
• NOT BE • .• CDLM = *. YES •SAVE CSTP ADD 1• •---------------• ---------------->-• ~~~~Ef .. •... ( ••. •------->: TO LPCNT : : : . . •. .. . . . . 

:-:::;::1······ ··1· ·:o ······~·1········· ................ . 
.... BW20 BW28 SlJBS •••••E2•••••••••• •••••E3•••••••••• •••••Ell•••••••••• 

• UPDATE EFl'OP • • GEN EF ENTRY • •CEKAGl • 
• GENERATE EF • •FOR SHORT FORM • •--------------• : ~~~ :<-------=~~ ~~ftp : :~i&~ ~toRE: 
• • • • • CSTP. • _:·--··r .. ···· _:······:::···-·· ........ r: ... 

F2 •. F3 •. •••••Fii•••••••••• 
.• •. .• JIJST •. •CEKCAC • ••••F5••••••••• 

• • SII:IID = •. YES • •NOT BE DE- • • YES • --------------• • RETURN • 
. •. *· READ ••• •-------~·.:f~~ .•. •------->: :-------->:<RETURf2fODE = : .. .. .. .. . . . ............. . .. .. .. .. . ............... . r r •••••G2•••••••••• •••••G3••••••+••• 

• OUTPUT LIST • • INPUT LIST • 
•ELEMENT TO PRF • •ELEMENT TO PRF • 

:o=~P~,! :2P~P<~f ~i: 
• PRl'TOP • • (C:STP)"'PRFTOP • ···············- ....... T .... '" 

Bii38 

•••••B3••········ •CDP/VAR ~ CSTP • 
: ~y~gJD: 
*UPDATE BST LOC • 
• AllD Plll"l'OP • 

········1········· 
••J2••••••• •••••J3•••······· 

··wsB FIRM·. : ~~~!·! 
• • TT~M'tAG • •<-------:~ liiiIN~p : . . . . ·····1····· ....•.•...•...... 

..... 
•139• 
• K3• .. . 

Section 8: Flowcharts 355 



Page of GY28-2019-1 Issued February 1, 1972 by TNL GN28-3215 

Chart CE. I/O List Processor (IOLST) -- CEKBW (Page 4 of 4) 

BWll2 

..... 
•llJl• 
• A2• •• 
r ... 

A2 •• .. . . 
• • CDLM = *· YES •·•. . . . . •. •-------v .. .. . .... 

•. •• •139• i •o • ·~l' 

... 
B2 •. .. .. 

• • CDLM = •. YES 

BR:·'·'• .'i'~, • ,.•-----~~----1 _ 
C2 *• •••••Cl•••••••••• 

.• *• •CEKCAC * 
• • CDLM = •. MO •---------------• 

•. EOS .•-------->* •-----. .. .• . . .. .. . . •. .. . ............... . r •••••D2•••••••••• 
• SET • 
• CVAL='CBCIEl' • 

: ~'~lVi~ : 
• RTN • ....... T._ .... 

BWll6 .•. •••••El•••••••••• E2 •. . . .. .. 
• SET CLASS • YES • • CLASS •. * (CSTP) TO •<--------•. (CSTP) = .• 
• EXTERNAL • •. UNKNOWN • * . . .. .. ................. . ... 

I'° 
F2·*·•. •••••F3•••~••• 

.• *• •CEKCAC • 
• • CIASS •. NO •-------------• 

•. (CSTP) = .•-------->• •----> 
•.EXTERNAL .• • • .. .. . . .. .. . ............... . 

~.. r •••••G2•••••••••• 
• SET CVAL = • 
•'CBCIOl' CHSB =• ---------------->• 90. CALL IVST • 
: IF RCotO, RET : ....... T ....... 

BWSO .•. •••••Bl•••••••••• 82 •. . . .. .. 
• SET CLASS * YES • * CLASS • • 
• (CSTP) TO •<-------•. (CSTP) = .• 
• EXTERNAL • •. UNKNOWN • • . . .. .. ..............•.. . ... 

I'° 
.•. ERRD J2 •. •••••J3••········ 

BWS2 

. .... 
•1111• 
• BS• .. 
1 .•. 

BS •. 

PAGE 

.. . . 
NO .• CID = •. 

141 

-· [----·· .. ··1;;···· 
•••••CIJ•••••••••• CS •. 
•CEKCAC • .• • • 
•-------------• NO • • CDLM = •. • •<--------· . ( .• . . .. .• . . .. ... ................. . .. • 

..... 
•1111• 
• GIJ• .. . 

BW70 l ERRD •••••Gii•••••••••• 
•CEKCAC • ·---------------· . . . . . . ................. 

<----------

r •••••DS•••••••••• . . . . 
•ADD l TO LPCNT • . . . . ········r······ 

. .. 
ES •. .. .. 

.• LPTAB •. YES 
•. (LPCNT) = 0 .•---. 

•·•. ..·• I .. .. ~ 
•NO ••••• .. . l :1~~= 

•••••FS•••••••••• 
•SAVE COP SOURCE* 
• PNTR. SOURCE • 
• PNTR=LPTAB. • 
• CALL BGNLP IF • 

:~.:.i.imm.: 

.•. 
GS •. .. .. 

.• CDLM= •.NO .. ) .•---. 
•... ..·• I .. .. ~ 

l
• YES :•::: . . .... 

•••••BS•••••••••• . . 
• SAVE SOURCE • 
• POINTER • . . . . ········1········ ..... 

•139• 

• • •. •CEKCAC * •••e.JIJ••••••••• 

• .D;• . 
• • CLASS • • NO •---------------• • RETURN • 

•. (CSTP) = .•-------->* •-------->•(RB'l'ORN CODE = • 
•.EltTERNAL • • • • • 12) • .. .. . . . ............. . .. .. . ............... . 

·~· r •••••K2•••••••••• 
• RESTORE END • ••••D••••••••• 
• LOOP CRT. END • • RB'l'URN • 

---------------->*LIST ENT TO PRF*-------->*IRETORN CODE= • 
• UPDATE PRFTOP • • 0) • . . .............. . ................. 

356 



Cbart CF. Format Label Processor for I/O Statements. (FLABL) -- CEKCD PAGE 142 

CEKCD1 FLABL 

••••11••······· 
* * * ENTER * 
* * ............... 

I 
l 

• *· CD100 EBBD 
B1 *· *****B2********** 

·* *· *CEKClC 16013* 
• * CTYP = *• HC •-------------* * * 

*·•. IHT. ..·*->: :--->** SET RC= 12 .•-, 

•. •. . • . • :.,-• ..-. ••••••••• : • •••••••••••• I 

i"' I 
•*· CD125 ERl!D ! 

• * C1 *• *· =~~:~i~****;6~:~: * **C3******* *• •****Cll*********• 
• * 0 < *• HO •---------------• * 

*· CVAL !> .*---->* *->* SET RC = 0 *--->* RETIJRN * 
·- 99999 - • • • • • • • •. • • * * • • ••••••••••••••• • .. • ................. . ......... . 

..... J.:::.... 1 

* **B3******* * 

*CEKTFL 0151!5* ·---------------· • * . . . . ................. 
I 

• *· CDO 10 • *· ERRD 
E1 *· E2 *· *****E3* ******** 

.. * *· • * *· *CEKCAC 16013* 
·* CLASS *· NO • * CLASS *· NO *---------------• 

*·*· <PG~~: 1 = • .-·*->• .•. <~~~~i~ = •• ·*--->: * .. .• .. . . . .... • .. .. . ............... . 
* YES * YES 

I 
*****P1********** 
* * * SET CLASS * 

(EN'.i:R.) TO * 
FOil!IAT * 

.. * ................. 
""' [<:-----------' 

*****G1********** 
* SE'.£ LABF=l'llTB * 

:M m:~;h~'m 
*CROSS REF. LIS'.£* 
* * ................. 

I 

I 
****H1********* 

* liETORll * 
* (liETURli CODE = * 
• •••••• ~L ••••••• • 

Section 8: Flowcharts 357 



Chart CG. Read Transfer Processor for I/O Statements (RTRAN) -- CEKCE 

CEKCE1 RT RAN 

* ****A2********* * 
: ENT EB : ............... 

l 
:••••a2•••••••••: 
!aH;uH0~~T~Pyh: 
! a. : .................. 

l 
• *· CE100 ERRD 

C2 *· *""***C3********** -* *· *CEKCAC 1E>OA3* ·* COLI! = *• 110 •---------------• *· '=' ·*--->* EXPECT '= 1 
"-*· . * * Al'TER l:'llD OR * *· •* * E~R * •. . . . ............... . 

* YES 

I 
l ACOllP •••••02•········· 

==~~~~2----~!~~!: 
* IF RC i< O, * * PETUt<ll * 
* * ................. 

l 
i 

CE020 • *· 
E2 *-·* •. -* CID = *- !10 

*• CONST .•-------·i •. .. •. ..• • ... • * YES 

I I 
: CEllO ERRD 

1'2- -._ *****FJ•········· I 
• * - * CTY P = •-*• 110 ==~~=~=----!~~~~= ~ • ****~~;;;;***** * 

*· r11r. • *->* • LABEL NOT *-->• (RET!lRN CODE = • 
*· ·* * FOUND' • • 12) • •.. ·* • • ••••••••••••••• ·- .. . . ................ . i "' 

• *· CE135 ERRD 
G2 •- *****G3********** ·* *· *CEKCAC lbOAJ* • * O< *· 110 •---------------• 

•- CVAL< 99999 -*--->*'LABEL NO. TOO • *- .• *BIG' OR 'LABEL * 
•. ·* • VALUE rs A o• • •... .. . . ............... . 

* YES I 

I I t I 

*****H2••········ I 
:sg mD==c~h.: II !sU mD=-.c~1L ! ................. 
..... J........ l 
:~ro~~~mhsP~! • ****11~;~;:·····. : mhram :--->: (tlETUR~I CODE = : 
* FLAG • *************** .................. 

358 

PAGE 143 



Chart CB. FORMAT or NAMELI:ST Processor (FNAME) -- CEKCF 

Ci.KCP1 nAllE 

* ****A1••••••••• • 
: EN'IEli : ............... 

I 
~ -•. 

81 •. .. • .. 
• * Cl.ASS *· NO 

*· .J~~H~s! .• · *------------------------
•. • * • .... 

* YES 

I 
I 

CF030 V 
!****Cl•••••••••: 
•sEr Nl. = 1 LABN• 
: = CSTP : . . ................. 

I 
i 
~ 

• *· .. •. 
01 ·- 02 ·-... •.. -· •. • * SIDNO = *· NO -* S!D!iC = •. !iO *·•. iiRI?E .*--->*-. !!EAD .•-, •.. .. ... . .. ·- ..... . l •. .. . . ..... 

* YES * YES 

I I 
CF040 i J llCF050 •••••£ ,.......... £2 •.. •••••!3••········ 

:CHANGE PRFIO TO: _,.-* nE.ID *· *· YES i :::~:~:----~~~~~= 
* WiilTE ii ITH * *· iilTHOijT .•--->* 1 NAl!ELIST NOT * * NAllELIST * *· UNIT .• * ON !;(EAO OR * 
* * *· ~• * WRITE' * ••••••••••••••••• • .. -* ••••••••••••••••• 

I 
! ..... ,, ......... . 

*IF IND YAii FLAG• :u rts¥AmG Nw.-: 
* SYll ToL Ell'IliY * * Or IND. VAli- * ................. 

I 
I 
I 

I 
I 
L_ 

* NO 

I 
4 

*****F2********** 
• !!AKE A:iGO!IE!iT * * DEF EN'IRY IN * * PRF F03 EACH • 
* ELEllENT IN * 
:.~~mm.m .. : 

I 
I 
I 
I 

~ 
*****G2********** 
*IF !!UST NOT eE * 
*DEF FLAG UP ON * 
*UIY ELEl!EllT IN * 
:NAl!EL~~~\ CALL : ................. 

I 
i 

:••••H2*********! 
*CnANGl! l?RFID TO• 
* READ WITil * 
: ?;AllELIST : ................. 

I 

I ---->1<----------
1 
~ Ci0115 

••••J2••······· 
• BET UR II * 
• (l!ETU~ll CODE = * 
• 0) • ............... 

. *· .•s" •.. :••••st;•••••••••: 
• • CLASS •. Y''S • 5F.T C{.~_ss • 

>•.•.cc~~~~ = ••• •---->: sl~~W vI?. : 
* • • • •. .. . ················* i NO II 

i 
• •. CFO 15 i CF010 

C"4 *• **C'i******* 
.• CLASS •. *RA!SE !'IUS'f· * 

.:· 1m~h= ·:.:_"'S-->•* !JI~~;sf~~Fl'\ •• 
*· VA!'. .• • "LAG (CSTI') * •. .• . . •. . . . ......... . 

V

i 1:0 I 
~ 

. *· C~020 • *· 
!'4 •. D'i •. . * CLASS *· . • • . 

•• (CSTP) = •. Y"S •• rs VAR. *· NI'.' 
*.AFRAY VA~. OF.*--->*. I LOOP PA" •• •--, 

*· 1'1! NA~E • * *· . * I 
*· ·* *· • * I *· • * *· • * I • NO • \'F!' I 

I I l 
I I 

~ C!'100 i I •••••:-4•••······· •••••J;-5••••••···· 
:_:~~_:~:----~~~~~= ::~~:~:----~~~:~: I 

: 154 : q" : I 
=·······i·······= =·······i·······= I 

I l I 
I • ····;~;~;;·····. 
I : (RF.TUR~ 2fODI' = : 
I .............. . 

V *****G5********** 
****GU********* * 'JPDAT! ~FTO~ * 

* PFTURN * *Sl!'I' LABF=F.1''l'OP * 
* (PPTUPN CODE = •<---*C'lEAT!' E!" ENTRY*<-' * 0) * * QUAN'!'=CSTP U" * 
*************** * ?PF '!l'LAG * ................. 

Section 8: Flowcharts 

PAGE 144 

359 



Chart CI. Initial Value Data Specification Processor (IDArA> -- CEKAH (Page 1 of 2) 

CEKAH1 TDATA 
••••A.2••······· . . 

: ENTER : ................. 
I 
i 

•••••s2•••••••••• 
:sf~DNtv~mlE· : 
• CALL IVAL. IF * 
• RC,00 RElURN * 
• * ................. 

....--------~>[ -·· 
I 

C2 ~ 

.. • *· .* NO *· YES .. "'"''"" ·1 
'1'., ·-.. ·r;··· I 

•••••02•········· . . • ADD NO!IBER * * ¥ALOES * 
I *PROCESSED TO N * 

I :***************: 

1

1

, .,.L. '"'12 ••• ,, •••••••••• 
.. • .. *CDLM = *· •. YES ~ : SET NO. OF * 

•-.. I .•·*--->: um¥PPoT~P 
*·.. • .. • : ••••••••••••••• : 

l T' I 
*****F1.l.n~;i** F2·*· *· ~ 
=~~~~~~----~~~~~= YES • * .• CDL!I = *· *· * ****~~;;::••••• * 

:<---*·•. • .•·* :(aETIJP~) CODE = : 
• * •. -· ••••••••••••••• ••••••••••••••••• • .... * 

360 

* NO 

I 
AHO ~2***G2*t~~~2***' 

•CEKCAC 160A3* ·---------------· . . . . . . ................. 
l 

l 
****H2********* * RETURN * 

: (BETO R~ if ODE = : ............... 

PAGE 145 



Chart CI. Initial Value Data Specification Processor UDA:rA) -- CEKAH (Page 2 of 2) PAGE 146 

CiKAH2 iJDATA 

****A 1********* .. .. 
: ENT ES : ................. 

I 

I 
1 

.·•01••••···. . . 
*•SET I=l !1=0 .,* . .. ........... 

I 
1<---

AH 100 ! 
*****Cl********** 
• SE'I OFFSET= * 
: OFS~AmHI)) : 

:rJH:'W ~m~.: 
··~·············· 

1

1:. . ..... 

I 
: 03 : 

v I :r 
.... AH025 ., IAH110 i iSC 

.•DlNO. •. •. :••••oi••*******! I =~~:ai****1~1:~: 
.: * fii~mHo = *:._n_s __ >: upgm mm : I :---------------: 

*• 0 • * * * I *IF RC#O, RETUll!I* •. ..• • • I I .. * ..•. :o ·······~7········ I I ................. . 
I I 11 I 
I I 11 I 

•••••el•!•••••••• ! I I .!. 'tt120 I I .• E3 *· •. :··••1'4••••·····: :A08d ~g- 110~ r.: • ••••E.;i•••······. I I .• CHAR = •• YES * UPDATE SOURCE • * .. 
• VALUJ::S = 1. • * RETURN * I I *· / .•--->* POINTER. RC=O *-->* K4 * 
: UPDATE l?DTOP : * ....................... I I *· ... . •·• : : * .... .. 
.................. A •'' I • . .. • • •••••••••••••••• 

I I • NO 

II I I 

J An130 I l '1 . !. AHl 12 ESC F1 •.. •••••Pl••········ I F3 *· *****P'll••········ • * *· * * • * *· *C"'.K AB 1 12 H 2* 
.:* coi.; = *: • .:::__>:E~~2~"~trc~g,.1: ., ,· .:* c~S~rE *:._Y.c:_s __ >:---------------· •• 

*· .. * * * * * A * •. ·- -• . • : ................ : . •. •. . • . • . I : ................ : 

i" II !'° I I 
G,-··.. G2···... I ' G3·"-.. l G4··· •. 

.. • *· .. * •.. I • * *· . * •. ·* COLI! = *· YES ·* • ..• YES! I NO ••• • CHAEORS= •. I .• CHA~ = •. Y":S *. * *· 1 .•--->•. II < I! - L-- ·* *· QUOTE .•-->* Dl * 
•.. • * •.. ·* A *· • * *· • * * * 

*· ·* *· ·* I *· ·* I *· ·* **** 

·-r=o ··r=o I ... (P,S .11, ·r, 
I I l I v 

AH050 ' ERRD ' ERB2 I I I • •. *****Hl••········ •••••H2••········ I P.O. •. 
::~!:~: ____ !~~~~= ::~!:~~----2~~~!: I I MO •••• CHAR = •. •. 
* * * * I L---•. EOS .• 
: su r.c= 1..: : : : I 1 •. •. _. • • 

***************** ***************** I 1' *· .. ;vs 
~~~~~__.• I 

I l ERR!>
I *****.JU********** I :::~~~: ____ 2~~~~:
----~~~~->• •

: SE~ RC = 1.l :
I

I
• • • ••••!tti••·······.
: K4 :-->: 1lET'JRN :

A

!

Section 8: Flowcharts 361

Chart CJ. Initial Value Processor (!VAL) -- CEKCL (Page 1 of 6)

CEKCL1 !VAL

****A3********* . .
: ENTE'.il

I
1

EilR2 CL01:l .•. .•.
•••••81•••••••••• 82 •. 83 •.
•CEKCAB 160A2* • * CLASS *· • * *·
•---------------• 110 .• JVA~ = *· 110 • • CLASS *· : :<---*·•. SIAnAf9R~·*<---*· *~VA) = UNK .•·*
* • *·VAR •• • *· • * •. -·

1 •••• r YES r YES

L>: 1 ~g·. I I
: ••• • ~ I

EliR2 CL020 .•. +
*****C1********** C2 *· *****Cl**********
•CEKCAB 1o0A2* .•FORllAL *• * *
•---------------• YES • • ARGUllEllT *· * SE'I CLASS TO •
: :<---•. *· l'LAgp (VA).•. •<---:SillPLE ARIABLE :

' . . •. ..• •.

362

t i NO

••••• I
•150• •
* 84• • *· .•. CL520 !RR2

• * 02 •• 03 •. •••••!>4••········
• • • •. • •STORAGE•. *CEKCA8 160A2*

• • COllllON *• YES • • CLASS *· YES •---------------•
*· •. FLAgp (VA).•.·--->•. J:r~:;~~o~LA~~-·--->: :-~

•. .• •.
•• • • •. • • ••••••••••••••••• •150• i .. i .. . ·::·

.•. CL530 FRR2
E3 *· *****Rfl**********

• *PROGRAll•. •CEKCAB 160A2•
!ES .• TYPE = •. 110 •---------------·•

.-------•. *• gf~K •• ·*->: =~***** •.
l

• .• ·• ••••••••.•••••••• =:~~=

*

CL030 • •. CL040 • *· <:PR2
. • n •. •. :••••F3•••••••••: .• p:aRA;· •. =~~:~x~····;6~:2:

.• IllI'IIAL •. 001111 • COllPUTE • • • SUBSCRIPT *· YES •---------------•
•. DATA FLAG .•--->•AVAILABLE SPACE•--->•. OUT O!" .•---->: :

··~~A~.·•.* JA : •• ~:.:::~::~: •• : *· •. :~N~:. *. * :***************:

* UP • 110 !
I I
1 ' ••••• ! •150•

•••••G2••••······ CLo:: ••• Gll••········ •• e:•
* • * SET DATA T!IL * •
IF CLASS ~VAl # * FNTRY=YA CONT *
: m:h1 AL • :!U~Wo~~~o~~AG:

l
•••••P.4••········
:ur·~m;:~g~op:
: I~oWf.r~iT !
:.mm:.m~~.:

m" l :·•••.Jll••·······: . .
:sET DLMKA=PDTOP:

.. L
•1418•
* *B~* .

PAGE 147

Chart CJ. Initial Value Processor (!VAL) -- CEKCL (Page 2 of 6)

CEKCL2 IV AL 1 • •. ERi<1
Al *· •~•••A3**********

****A1********* ·* *· •CEKCA.11 1!>011•
• * .• VARIABLE *· 110 •---------------• * ENTER *->*· SPACE .•--->* •-,

*•••••••••****** * • .. :~AILAB~i·* : : ••=••
•• •• ••••••••••••••••• ., 50•

* YES * '311*
**** I * *
•1118• I .
: 82. •->

CLO~s** ' • *·
.,*B.2******* eJ *·
* SET CCl!FLEX * • * *·
• SHill FLAG = 0 * * CHAR = * YES

L'.!'.'.:if !!:.l ,,.: : i: ~,..: l
• •. CL066 • •. I

C2 *· C3 *·
-· *· .• •. YES .• CHAR = *• NO * CHAR = * ,--·-._ ·z· .• ·• 1·=._ ·+· _.:. I •. .. •. . .

*1119• •. • • • •••
* ll2* * !10 • YES

. . . ,,J ·-!..... I .. ,.
-· ·- I • • L . .

YES -· LOGICAL •. I l . SET TNEG = • * SET Tll?f1 = •

I
•. CONSTANT ·* *• 1 * >*• 2 •*

• 'TROE' • *

I .. \:;· 11 r··· · · ····r··· ·
I ~ I • r .

CL2 2~•••E1•········· l E2··-. I ,.cLo~i ••• E3••········
* * .. * • *· I * *
:iU.l.'ITI~ta11s(N) :<~•:* C~gm~¥ *:.~ :cmAnc~0¥~C~c:
: = 1 : •-.:FALSE:.·* : #0, RETURN :

i;ii~=r······ ·-.-· ·······r······
CL2i~::*P1*!******** p3" *· *·

•S<:T CVAL = CHAR• • * •.
• UPDATE SOUi<CE • • • CHllR = •. YF.S
:E~g~ 11Iracc!L5 ! •·•. •z• •• ··---,
• RETURN * •. • • *****
••••••••••••••••• •. • • •1.U9• I i .. -.:i·

G, • ·- •. • •• ••G2••········ ICL068 G3 ••••• .. •. • .
• * IS •. YES • S.C:T COllSTllliT • • • CHAR = •. NO •· •. mmm .• ··--->: FIELD LENGTH • '-->•... I (

1
•• ··---l •. .•

•.. ... ••••••••••••••••• • .• • •150• i '° l
1
. YES •.:i•

CL600 i .•.
*****H1********** H2 *· *****H3••••••••••
* * • * NP.EPX •. * UPDATE SOU RC! •
* CDLr. = * :5 • * LUGTH *• * SET Cl!FLX = 1 •
* Cff.\ilACTER * r-•- AVAILk .• *CALL ESC. IP RC•
: : *·•. SPAC .•·* : ii O, i!ETUBll : • .. •

I i , l
• EflR2 CL.211 i .•. CL070 •*• •••••J ,.......... :••••J2••·······: JJ •• J4 ..

:~!!5~~----~~~~~= * RESET UBP TO * • *•*CHA!! = *· *· NO • ••*CHAR = •. *· NO
• !!<:SSAGE. NO. = • • AVAIL. • •. • I • ·--->•. I+• •• ··----. : :: : I : me~~::::: .. : ·· -_ ... ·· ·· ·· :m:

di: 'l i "' "'" i "' .. ::·
* :••••K2*********: * **K 3******* * :••••K4•••••••••:

• !JPDll'U * • SET CCl!PLEX * * *
:lVllILAllLE SPACE: **SIGH FLAG = 1* *--->: UP!)llTI!! SOIJ!tCI' :---,
••••••••••••••••• ••••••••••• ••••••••••••••••• •150•

I • • ql*
.. !.. .
•1Q9•
• !l3• .. .

Section 8: Flowcharts

PAGE 148

363

Chart CJ. Initial Value Processor (!VAL) -- CEKCL (Page 3 of 6)

.....
1 llS
,.A:

*

CL220 ! •••••12•········· * •
*SET REPETITION *
: (N) = 1 :

* *
:~H·.->I
=••• * I

CL230 i
*****B2**********
* * *SET LENGTH (N) =*
* LENGTH *
: (TYPE (VA)), I=O:•........

I
·*·

.
*1119•
**Ai*

*
!

CL 170 • *· CL 590 "R !l 2
A3 *• *****All**********

• * *• *CEKCAB 160A2*
·* TNEG=O *· !10 •---------------*

·-._ ? •• ··--->: ·Imm g~Gll :----l
· · * LOGICAL) I • *****

•• -· ••••••••••••••••• *150•
* YES * 911*

**** I * *
149 I *
: 83* *->f
•••• +

CL 180 • *· CL570 EP."2
BJ •.. *****B4**********

• * *• *CEKCAB 160A2*
• * TYPE *· 110 •---------------•

·- •. L~~~hi'. ? •• -·--->: IN~mfG~km :---l
•· •..• ·• :.mmu.n; •• : :m:

rES * •::•

~
*****Cl********** C2 *· *****C3**********

* * *IP CVAL= 1 TRUE 1 * * * ·* NREP *·
* RESET NBEP = * > ·* LENGTH: *•
* AVAILABLE *<---*· AVAIL ·* *SET CVAL=l. IP *

:110T, SET CVAL=O: * SPACE/LENGTH * *· SPACE ·*
• • *· ·* ·:r

.. L
•152*
• ,.P~•

364

*****D2**********
* * * OPDATE *
AVAILABLE SPACE
* * * *

,.,., ,[,.,
*****E2**********
CEKAB 1 12112 ·---------------· * IP BC # 0, * * RETURN *
* *

I

*

·*· CL260
• * F2 *· *· !****F 3*********:

• * CHAR = *· 110 * *
· HEX DIGIT .->* UPDATE SOOBCE *

•.. ·* • • •. ..• • * •.. .•
* YES I

I [.!_ "'" .. .,
L*****G2********** G3 *· *****G4********** * * • * *· *CEKCAB 160A2*

*ADD 1 TO I SET * • * CHAR *· NO •---------------•
: CONS~~n(I) = : *·•. DELillITER_ •• *--->: CH~~~~T~~XIll :
* * *· ·* * CONSTANT' * •.

* YES I
I I

1 .. : ..
*150•
* B4*

*****H3********** * * * • * . .
:sET CDLll = CHAR:

* •
I

•*· CL610 ERl'2 J3 •.. •••••J4•••·······
- * *· *CEKCAB 160A2* • * *· y l'!S •---------------* *· I = 0 • *--->* 110 HFX DIGITS *

· · * AF1'ER 'Z' * •. ·* • • ... •
* NO

I
*****K3**********
IP T!IEG=2, CllPL * CONSTANT. SET *

! com?EmATE !
: ~~~~~ :

l
•152•
* *F~* .

I .. : ..
•1';0•

* *B:• .

PAGE 149

Chart CJ. Initial Value Processor (!VAL) -- CEKCL (Page 4 of 6)

......
•150*
•• 3!* .

.....
•150*
* PU* .. .

I t
CL075 V ACO!IP CLJOO .•. •••••e1•••••••••• ~4 •.

CBAEl 122A2 * *• •---------------* . * *. YES * * * IF P.C # J, * *• CDL~=EOS • *-->* !!4 *
: RErUR!I *·• .•·* * *
.................. •. ·*

I I ro

• *· CL620 ERRD • *.
C1 •.. *****C2*•******** C4 *·

• * *· *CE KC AC 160A3* **** • * *·
• * *· NC •---------------• * * • * CDL!'! = *. YES

· CID=CO!IST .---->* *-->• Jli * *· / .•-------*· • • • • • • *· ·* •. ... • • •••• •. ·*
*· • * ***************** *· ·* I • YES • 110 I

I •150• I I . Dli •->t I
~ : ••• * I ii . *· CLO BO • *· CL560 ERR2 CL305 V ESC CL330

D1 *· D2 *· *****03********** *****D4**********
• * *· • * *· *CEKCAil 1f,QA2* •CEKAP1 121A2* ****!l5********* • * COLI! = *· YES • * CTYP= *· NO •---------------• •---------------* * 'l"T!l"!I *

*·•. * .•·*--->•... INT .•·*---A->: :--->:IF RC#O, ?E'!'lJ?!I: :(RET'lE!f COD1'=0):

•. •.. . • .. • •. •.:. .• - • J : ••••••••••••••• : : ••••••••••••••• : •••••••••••••••

* NO * YES I I !I.II

! J I .l. "'l2 •• ..,.l •••••••. •••••E1••········ ... E2 ·-._ I .• !4 •. •. * . •
:s~611~nJN~i~11u: .• TNEG = •. No I .• •. YEs • sE'I' coL!!=cPAR •
:PLAGt~~Ein IN : *· •. 0 ••• •--> *· •. CP.AR=/ • .·*--->: UPDAiiT~OUliC" :

* CONSTANT * *· . * I *· •* * - *
***************** *- • * I *· . * *****************

I ·1 YES I ·, llO

.. L I I I
•152• ' I I • .c~• r2·*·•. I I

• _.-· O<CVAl. ·- •• NO I I
*· <2 TO 2'1TH • *---' 1'

·- ·- ·- •• -·. * ··,·, * YES

l ·'· .!.
!****G2*********! . * G3 *· •. • * Gli *. *·
*SET iiEPE'UTION * NO • * *• NO • * CHAP = •.
: (NI= CVAL : 1·-.:HAli=Quon_.·*<---·-.. 1'.05 •• -·

* * I *· ·* *· ·* ••••••••••••••••• v •• • • • •••
I **** * YES * YES

t • ***** I •••• I
• 04 • • l * •
• • ~3 •-> • !!Ii •->

***** ***** • * * I
:.

1i.l! Cl.31;**• ~ ESC CL58~*** ' E~'!D
***** H3* •••••*** * *** **H4 ********** * *CEKAB 1 121A2* •CEKCAC 1l;OA3* ·---------------· ·---------------·
: : 1>: :
: ••••••••••••••• : I : ••••••••••••••• :

I
I l •••• I

I * *

l : Jli :->
! **** I -·- I ! •• J 3 •. •. ••••J4•••······

* * YES ·* *· * RF.TTJP.11 *
: .::. :<--·- •· :~6~m~ •. • · • 1 : !:::::he::.:.:

·:c, t'

KJ *•

• • NO •• - .. ·- ·- YES I
* HJ •<--•. !::OS • *--~ •. •. .•·

Section 8: Flowcharts

PAGE 150

365

Chart CJ. Initial Value Processor (IVAL> -- CEKCL (Page 5 of 6)

.....
•151•
••A!* .
! ESC •••••11•••·······

*CEKAB1 121A2• ·--------------· . .
•IF ac,io, RETUBll•

I

i .•.
B1 *· -. •. • * *· Y!S

·•. CHAR='Z' •• ·------} .. -·
•• •• •149•

* 110 * B2* l ...
. ·-ct •. -· .. • * LOGICAL *· Y!S •. •. c~¥mP .• ·*------} .. .•

•. - • •t48• i .. ·.:i·
.•.

Dt *· -· • . • * LOGICAL *· YES •. ·-c~mm .• -*------} •. .•
•• -· •148• i .. . ·:i·
• *· CL084 .•.

Et *• E2 •. -· .. -· • . • * CHAR *• 110 • * CHAR *• KO •. =·-· _.__).. =•+• •. .• •.. ...-.. .• •. .. • ... • ·- .•

j'" i"'
••Ft••••••• ••r2•••••••

* TllEG=2 * * TllEG=t •
I no" > l cm• • •. cue• "'""'

*****G2********** G3 *· *****Gii**********
: UPDATE SOURCE : .• • * *• •. KO :~;~~;! ... -!!!~!:
* CALL ESC. IP * 1>•. CHAB= 1 C1 .*->• *< • ac,ic, RETURB • •. .• •IP BC#O, BETURB• I
* * *· •* * * I J •. '

! • Yl!S I I

! I !
~ ! :m:

H2·*· •. *****Hl********** **A~*
• • *· • UPDATE SOU ICE • •

• * CHAR = *• 110 * CllPLX=t CALL •
•. •. •z• _,.- : Esc8~~u~~,.o, : ·-

*·r;ES ********!*********

.....
•1119•
* ,.B~* JJ•*• *· CL087 Jll• •. *• . .• •. . . • .

• • *• NO • • *· NO
*· CHAI='·' • *-->•. CHAR=' + 1 • •-> •• .• •• ·* ·-• ·- •

i "' "'" i "'
Kl***** •••••Kll*********LJ

* SET CO!IPLEX * • UPDATE SOURCE *
* SIGR PLAG=t *->• POSITIOM

* * * POIRTER *

366

PAGE 151

Chart CJ. Initial Value Processor (!VAL) -- CEKCL (Page 6 of 6)

.....
*152•
* 12* * • .
i

ERBD •*•
*****11********** 12 *·
CEKCAC 16013 • * *•
·---------------· 110 • • •• *<---*· CID=CORST .• . .. -· . . ·- -·
··~···r······ :·r =.1:-=

~ •••••s2•••••••••• as·*· •.
****81********* *IF COllPLEX SIGll* • • •.

: (RE~U~ 8~0DE : :rLAGC~gh~P u: .:· 1nP~~TYP *: • .:;
• :Hi •••••• • : COllStHT : *·.. ..-· I ..••••.•. ,........ ·- •. :o I

=~~i· ·-> I • *
CL090 c2·*· *· c3· •. *· *****Cll••••······ CL 1~2•••cs•••;u:t2. I

• * *· • * llBBP *· * * *CEK112 10911*
•* *· 1'0 ·* BYTES: *· > * llESET • •---------------•

·i:YP=LITERA=•·->*·•. ~HE~ .•·*--->*.• mmm~s :* !Ii1~mi1~~6~P1'!
*• • • *· • * * YEPTED VlLUI! • ·- ••........

,.., ""' J_"' i" I crno l'
*****D1********** D2 *· *****D3********** *****DS**********
CEKCAB 16012 • * *· * * * *
·---------------=<---"-0 ·=. TNEG=O ·:. : Lu;~¥HN= : :.co~~Ln~~2l:vn.:

• *· • • • (TJPE (VA)) * -·_ -·••............
! . !ES I I

:;m l C'10J • •. cmo
* * * :••••!2*********! • *E3 *· *· !****!5*********!

*LENGTH (Ill aCLllG * YES • * *• : V0APLD~TE (I) =
0

TCCVPU :
: P~M'mm ! r•·;:YP=LOGICA!'.·* • .. I! p * . . •. -·•...

l
..... . HO I
: : :1: .1.. ;:!!: •->

!U2 CL1112
*****P2********** F3 *· *****Fii********** **P5*******
* * • * *· *CEKClB 16012* * *
:v3~gu;1 p~;~~· : HO • * *· Y!S •-------------·-• * llUSE * . . r·· .~Y£MI~h = ••• ·--->: =1>•. n~n~L (~~f A •• . . ' •. ········1········· : ·:;·: ·········L··;;;~:· •..•• , .••...

• • >• 84 •
•*• CL168

G2 *• *****G•********** *****GS**********
·* llREP *· * * * *

• • CLllG: •• • UPDAT! nu:L. • •IF UAIL. SPACE•
·- •. '~Hh .• - >: SPACJ6'?&iDATE : :nGATim CALL :

•. . . ll . . * • •.
..... .,I...... ... -:~· °"ttL..... I
* * • * *· *llAKE IBV PR!!SET• ****R5********* * RESET HEP TO • • * *• 110 *DATA !ITIY !'OB • * ll!'!TUllll * : sptmm~¥a :--->•. *· NREP•O • •" •--->: ~~g=~mD : : (RETORI CODE•O):

PAGE 152

Section 8: Flowcharts 367

Chart CK. Array Dimension Specification Processor (ARDIM) -- CEKAF (Page 1 of 2) PAGE 153

CEKAPA ARDJ:ll ·*· A2 *· . ····11·········. -•·* *·•.YES
: ENTEi! :-->*·•. CL~g~JAB) •• ·*'----------------------~ •. .• • ...

.i. .. "'",,.
e2 •. B4 •. •••••es••••••••••

• * *• .• CHECK *· * *
.• •. YES ·*'!!OST MOTE •. 001111 •INTTIALI1.:!! rr!'.•

·-.:H~~~An;..-· >•. *· B¥Lia"' •• ··--->: COUNT :
•. -· •. •• • • •. • * •••••••••••••••••

• NO * OP •••• I

l I ~:~:: ·->!
• *• AP040 APOllO l AP200 ACOllP

• * C2 *· *• !****C3** .. *****: :****C4*********: :~;~:~~****;22:2:
• * CLASS *· YES * llESSlGE 110. * * llESSAGE 10. * •---------------•

·•!AR)= ARRA~··--->: =168 : ,---:* =169 *: *.• .: ·- -· . . •.
·, 110 •••• I I •153*

t ERR2 lFO ~~~! * *-> 1 ERR2 • *·
*****D2********** *****D3********** *****D4********** D5 *·
CEKClB 16012 •CEKCAB 16012* * * . * *·
•--------------• •--------------* * llESSAGE NO. * NO • * *·
* llESSAGE 110. * * *<---* =170 *<---•.CTYP=IllT!':GER ·*
* =165 * * * A * * *· • * • • * • • • •. .••....•...... •. . .

j, I i "'
AP060 ·*· AP210 .•.

E2 *• !5 *·
-· •• ·* •.

I
YES<-.~::o."l:: .. o .. > ·=~~:~:~R~:~:::=~

* YES ***** l =::i:
.•. . *·

P2 *· *****Pll********** PS *· -·• •.

I
. * IS COLI! *· YES * II ESSA GE 110. * YES • * *·

*· •. = 'I I •• -· <--: =171 :<---·· •• CVAL=O •• ••
•. .• * • •. . • •. - • ••••••••••••••••• *· •• i .. [..

~A-P-06-5-->i !SC AP220 .•.
*****G2********** *****Gii********** G5 *·
CEKAB1 121A2 * * .• IS *·
•---------------• * CALCULATE AllD * MO • * ARRAY *·
: : : sTi~M~· :<---··~~~m115pg?.·*
• * • • *· . * ·······T······· T....... ··i·;.,

• *· AP070 .!. A!'224 i
82 *· *****H3********** Hll *. *****R5********** .• •. • * .• •. * •

• * CHAR= *• YES * UPDATE SOURCE * . * *• 110 * * *· ') • .•--->* POINTER *• OVERFLOll ·*1 *STORE 'lI!'ll':llSIOll* *- .• • •.. • • • •
·- . • • • *· ·* * • * • ••••••••••••••••• •• • • • •••••••••••••••• "f RO I * YES I

I l I I I >I I * I lP240 ! AP22B • :.

I
J2- - •. I L**•••Jll********** J'i •.

J NO .•·*CHAR = •••• ' : "ESSA GE MO. : YES •• ·;!t'IP.NS!O:· *· NO
L--• EOS * I * = 172 *<---*· OUT OF • •--,

I
t - ••• _ _ ••• - I : : • .. _RANGE ••• • I

• • ••••••••••••••••• •. • • +

L
:~H· ... J YES I * =:~i=
: ••• • I •

066 +
*****K2**********
=~~~_:~_: ____ !~~~~= * ****K3********* *

>* ~ESSlGE RO. *->* RETOBI *
• =160. • * ••....

368

Chart CK. Array Dimension Specification Processor CARDIM) -- CEKAF (Page 2 of 2)

AP300

.....
•1511•
* A1*
* * *
t

·*· A1 *· !****A2*********: .. . • .
• * IS *· NO * l!ESSAGE NO. = *

*· *· CID=VAR •• ·*----->: 170 =--:: ..
*· •. . * • * =••*************: • 1 SJ• * YES * .oi• I .

(I

AP302 B1• *· *· *****B2**********

.•. :aal~ u.*· •. NC : MESSAGE NO. = :
*-!~~~~P!ag~.--->: 16s =----:! ••

*· * * • * :.,**************: • 153*
•*.YES * .oi• l *

AP30fl c1···.. AFJ!~·••c2••········ AFJ1.! CJ·*·.. •••••c11••••••••••

"* • * CLASS *· *· US : SET CLASS : • * • * Ai<l~ENT *· *· 110 : llESS!GE NO. = :
•. *· (CSfi~~ = ••• •--->: (CSTP) VARSillP. :--->*-,.F~~Gu~cs~:~··*--->: 177 :----::: ••

•. *· • • . • ••••••••••••••••• •. . • • 153•
* NO r YES *,.D~*

1 ! .
01·*·•. DJ·*·•. !****Dli*********!

•• •• CLASS •. •. YES •• •• oEi¥Nr:D •• •• YES • llESSA~.WsNO. = •
·- •• ~~~i:> VAR •• •• ·-.:LAGU~CSTP~ •• ·--->: :--:: ••

•. ·- • • . • ·- •. . *... : ••••••••••••••• : * 153•
* NO *•DJ.,• r 0

I · l I
V AP360 'I

!****El*********: .::~~:;•;;;:.
: llESSA~g5NO. = ! .*F§gph m~ * •
: : * * FLAGS ,.*

1 ~;~ I
***** : F3 * *->
•15J• i
* ,.oi• A!'52~***PJ**********

• * * . .
* NUllD=BU 110•1 *
• * • *

I
I

1 .•. .•.
GJ *· Gii *• . . •. . . • .

• * CDLll = *· YES • * BURD < *• YES •.. •. . ". ·--->•.. 7 •----,.
• •. • • *· .• •••••

• • •. ·* •. ·* •15J•

::1i:, .!." i " -.;i·
ll2• • *· H3 *· *****!!fl********** .• •. .• •. . .

•=* CDLM=EOS *:•<---8
-
0•:* COtr,= *·• : RESET CSTP :

*· .• •. ..- : :
•. •.. •. •. -. . . . •............... i YES i YES VI

~ I •••••J2••········ v •••••J4••········ • • ••••J3••······· • •
* llESSAGE HO. = * * * * ll!SSAGE 110. = *
* 176 * * RPTURN * * 179 * -

! 1
•15J• •153•
•.oi• •.or

* *

Section 8: Flowcharts

PAGE 154

369

Chart CL. Label String Processor (LBSTR) -- CEKCC

CEKCCA LBSTR

* ****A3********* *
: ENTER :

I
~

:••••83*********: . .
: SET NOEL=O . . ••••*•••·········

I
ICC010 >! ACOllP

•••••cl••••••••••
*CEKAE1 122A2•

I
=~;-:::~:-::;::::

I J "" D3 *· *****D4**********
I • • CID= •. *CEKCAC 160!3•

I
. *CON Sr CTYP•. NO •---------------•

•.=INT &6<CVAL .•--->• *
•. <99999 • • .. • •. -. . .

I *· .. * ***************** I • YES

I I
lcc120 i
I •••••E3**********

I
• ADD1 TO NOEL *
LINO l!IOEL~ =CV AL

:go~s~m r.mL:
I *liEP ENT RY=CV AL •

lcmo .l:----
P3 •.

Iv~~ •• • * *· •.
~*- CDL~=. .• •.. -. •

• NO
I

I
!

!****G3*********:
*IP COL<'!=) CALL *
• ESC. IF NOT, * : CALL EailD :

I
****H3********* * RETORll •

=~:::::he::.:.:

370

PAGE 155

Chart CM.

CEKAC1 SID

••••A 1********* . .
: EnEF.

I
! :••••.e1•••······:

* INITIALIZE *
•SOURCE= 'IEVSTB *
: -1 :
•15o• I
• C1 •->I
• • I

AC010 i
•••••c1••••••••••
:m~ mf. mE:
: sfirij~=mh- :
: •• ~~~;~.!~~~~ •• :

!
-·-DI *· -· •. . * BRANCH •.

•. CN STA'IDS .• •. .. . •. . . ·- .·.
: ••• 1-6 ••• 156 C1

: ••• 7 ••••• 156 A3

: ••• d ••• -.156 G2

: ••• 9.- ••• 156 H2

: ••• >9 •••• 15(; J2

Statement of Identification (SID) -- CEKAC

.....
•151'•
**A~* .

I
I

AC300 i
:••**A3•••••••••:
•ExrRACT FIRST 2*
* CHARACTERS OF *
: NAME •

I
I
i

• •. ERRD
BJ *• *****E4**********

.*CO~t'ARE•. *CEKCAC 1bOA3*
• • AGAINST . *· NO •---------------• *· LIST 1: • •---->* •----,
*· .:OU!iD? • •" * : SET RC=1.! : f

••• • ~~s ••••••••••••••••• I
I f

! I
AC230 cJ·*·.. AC4:~•••Cll••••*****! I

*. * • * IS IT *· *· YES * * i *****CC:.**********
·DO ST~T- • ,.·--->: IS=17 !lC=O :--->: R".TtlRl1 :

•. -· *· . • .. ••••••••••••••••
* NO

I
i . •.

•*DJ *· *· !****DQ.*********:
• * IS IT *· NO *EXTRACT NEXT 2 *

*· UNIQUE • •--->• CHARACTERS 01' *
*· . * * ~A!!E * •. •.

i "' l
AC35? 23.•. *· AC3110 ! 4.•... *****E"i***;::z.,..

.• *· .•COl!PAR":•. *C~'<CAC 160A3*
* • YES .• IS IT *· YES • * AC.::AINST •. !10 •---------------•
* Fii *<--•. ?.EAL .•<---•. LIST 2: .•---->*
* * •.STATEl!ENl'. * *· FOIJND .• • S"'!' RC=12
•••• ·- .. • •• • • * ..•. :o •.... . ..•••••.•.••....

I : Fii :-. .L
AC3b0 AC3:o**'" * ! : Y2 :

:••••Fl*•*******! :•••• .. 4*********! • **** •
• PICK DP COUNT * *SET UP ~O SCAN *

****'" : OF wm~EfS : ,
1

>:!'OR 'FUNCTION' :

•156• ••••••••••••••••• ··········*······
... G~· I I
i l I I

AC
1

z2 ••• G2•t....... G3. •• •• I AC)~2 ... GllJ.Hi
* * •* *· I *CEKAl'1 121A2*
*RC = 0 PESTOliE * NO .• ARE •. I •---------------•

l
•SODi!CE i-OSIUOll*<---•. l'HERE !!ORE ·* I ••
* IND. ID = 1 * A •.TO SCAN ?.•
* * I *· · * I * · * j I • ;RS I •••••••••••••••••

I •••• I . I I !
I •156• I

! !i2 • •-1 I)I I ••••

AC200... ' llilRD I t I .: G2 •••
•••••H2••········ •••••HJ••········ I
•CEKCAC 160A3* * *
•---------------• *SET UP TO SCAN *

<-* * *THoEE Ri:llAI!IING*
* SET RC = 12 • *C!IARS. OF ~A~E *

: ••••••••••••••• : I : ••••••••••••••• : I
••.• I .. · I
•156• I

J AC2h~~· ._1 I AC370 1 ESC I
•••••J2••········ I •••••JJ•••······· I

I * * =~~~~~~----!!!~~= I <-: RC=O ID=O : I * f

I =::::···········= I :.. : I
l * • 1, I I

I : .:~. =1 I i I
L ••••!t:t•••······ I .•Kf~·;~-.. I

* * ~ .• 'f\'PE' *· YES I >: ilETUiill : *·•. STAT~l!::NT_,..•--~ •. . .
•• ·* .

PAGE 156

Section 8: Flowcharts 371

Chart CN. Statement Label Processor (LABL) -- CEKAJ (Page 1 of 2)

* *
: A4 :

CE KAJA LABL AJ200 . *· AJ250 l
****A 1********* *A3 • ... *· !****A4*********:

* * -* LABEL *· YES * IP !IOFLOll UP, *
: ENTER ~------>*- ALL BLANKS • *--->* LOWF.i! l'LAr.. *

*************** I
I I,
'1• ... , __
' ! ~ at"·•- a2· · *·

.. • *· .. • *· ·* LOG IP *· NO ·* PROG. *· *· SWITCH =1 .*---->*. TYPE= BLOCK .•
*· .• *· DATA ·*

*· -· •. .• ·- .. • • ... * * YES * YES
I I

I l AJ100 V ERRD ••c1••••••• •••••c2•••••••••• * * *CEKCAC 160A3* * LOG IF * •---------------• * SWITCH =2. * * *
* * RC=O * * : SET RC=12 :

***** •••••• • ••••••••••••••••

,1
4 AJ1JO

* ****D2********* *
: RETURN :

*• .• * CALL P.RR1 *
•.. ·* • * *· . * •••••••••••••••••

* NO

I
~

• ••••• I
: B4 :->I
•••• !

AJ280 • •. A.Jl 20
*****83••········ sq •. . . . * *· ••••q5••••····· . .
* L3CV=O I=1 * . .
• *
•••• I

* * I * C3 *->I
* **** * I

AJ220 ~
:••••c3•••••••••:
* GET ITH CHAR. * * FRO!! SOURCE *
: LABEL FIELD :

I . •.
DJ *· ·* •.

YES • * CHAR IS *·
•. . .

•. ·* • ... * * NO

• * !SD *· ~O * ?F.'T"UR!I *
• OPTION ON .--->* (R':'T'llRN C:Of·P. *

•• • • • =0) •
•. .• t************** • ... • im

i CRL
•••••c4**********
*CE KT Fl! 0 lSEq• ·---------------· * CH FATE NF.II *
: LABEL :

l
•158•
• • c;• .

I
*• BLANK .•

I J um

I E3 * *****!4**********
• *.*CHAR I~*·•. NO ::E~:~~----!~~~~=

I *• *· DIGIT • • • *-->: DIAGllOSTIC :--1
I •. •. .. • .. • : ••••••••••••••• : .! .. I • YES • •

J J : BU :

I :··••F3*! ••.•••• : ...•
I • SET LBCV= 10• •

I
: LBCV+ DIGIT :

I >I

AJ2JO i
* **G3******* * . .

* * A DD 1 TO I * *
l -·-H3 *· .• *· * * NO .• *·

372

* CJ *<--*· I > 5 • * . . •. -· •••• *· ... ·- -· * YES

I
!

• *· 1'RP1
J3 •.. *****JtJ••••······ .• *· *CEKCAA 160A 1* • * *· YES •---------------• *· LllCV=O .•--->* * •. .. * • •

*· . • * • ·- ·* •••••••••••••••••
* NO

!
•158•
• .s~• .

.L
* • • j\q • . .

PAGE 157

Chart CN. Statement Label Processor (LABL) -- CEKAJ (Page 2 of 2) PAGE 158

.....
•15~·

••a~• .
I

AJ300 ~
*****B2**********
:IFYc~g£1ob. SET!
*ENTaY Ill CROSS *
*REF. LIST=LBCV *
: •• 2~.~~~.~~~~ •• :

I
**** I
! 1W•->I
* * I

t
•••••c2••••••••••
*PUT LABEL DEF. * * EN~<IY IN PF.F: * * ESi.OC FIELD= *
: ESTLOC/ESPAGE :

l :••••02•········:
IF NO FLOW FLAG

!u1& m ~M~ow;
l •••••!2•········· * LINK IN LL!iK *

CHAIN. LCllER NO
*FLOll FLAG. I=O *
*END LCOP CNT=O *
:.~~~;~.~;.t~~~.:

l
AJl.<0 AJ400 .•. .•.

F2 *· F3 *· *****Fil**********
****Fl********* * *• • * *· * IF IL l.'Ollli *

: (liE~ii!gR~ODE =<---y~.:· D~L~V ·=·-!1°--->•:*:m~8gop I·=·~>: ?.AI~5 llioP 5~T:
* =0) * *· • * *· • * *COUllT=DOLEY I+l* •. . . •.

•.. ················· * * NO
A I

I I
I AJll20 !

*****G3**********
I * * I •IP IL UP~ CALL * I : m~ :

I ·······1_·_··_·_·_·_· ______ _...
I AJll 10. ••H3•! ••••••

I • •
* * ADD 1 TO I * *

* •

Section 8: Flowcharts 373

Chart co. Fallthrougb Determination CFALTH) -- CEKBQ

CEK8QA PAL TH

****A2*********
* * : EN'IER :

*159• I
·.e!{ J

82 *-
BQ050

••••Bl•••······ •* • ..
* RETURll * DGWll • * LAS EL *·
* (BETURll CODE *<---*· FLAG .•
* =0) • *- -* •. ..• .. . •

* UP

I
801

!2***C2*L******!

* P=LOCA'IIOll OP *
* CURBEllT PRP *
* ENTRY *
* *

8Q200
!****A3*********: . .

1>: L=STNO(P) :

j
I **** I •159• I • e3 •->
I • * I
I **** ~
1002:2•••03••·······: . .

: P=ILNK (P)
I

! ··-C3 *·
·* *· • * Bl!ANCH *· *· ON ID (P) • *

*· .• •.. . .

"'" J J D2 *• .. • ..
.• ID *· YES

*· (P) =DEF LBL •

• .. -.
: • - ••••••• 159 83

: ••••••••• 159 Fii

: ••••••••• 159 Gii

: ••••••••• 159 HI! •. .• •. -. *· ... * NO

l -·-*****E1• ******** E2 *· •.
* * 110 -* BEGill *·
* F=ILllK (P) *<---*· PROG • *
• • *· -· • • •.. ·* ·- -·

374

* YES

"'ii J.im ...
=~~~~~~----!~~~~=
* '!!ACHillE OB *
:co!!PILE!i ERROR•:

l
I

~
****G2*********

* RETURN *
: (BETUR:) CODE = :

: ••••••••• 159 J4

: ••••••••• 159 81

LAB DEF.• ARG DEF.

UNCOllD ASSN.• CO!IP.

CALL

ARITH IP

READ, READ WITH NA!!!!L!ST

OTP.!;:R

.....
•159•
* Ftl*
* * .

I!Q300 l !lQ350
:••••!'4••••·····: :····~c:.·········:
• * * * I=l *--->* ll=llOEL+1
: : A : : ••••••••••••••••• I •••••••••••••••••
:~;;. 1' 11 :.::•l

BQ320 i I BQ360 :··••G4•••······ :.· I • * ••r,<;•••••••. *
I=2 .~ r>** ADD 1 '!'O I •*

* I * * ::::············· I •••••••••••
•159• I I * H4 *--.
* * I I

BQ310 + •*•

r--·:::·:::····1-->1 <~:'I: > :· ·~ >~ • ... ·. ~

:~;;. II *1 ?fO :.·::·.:
• ,14 •-,
:.... f ~

BQ330 v I ·*·
!****J4*********! ·*JS *·•.

I=1 rr=3 =-->!<.~~.:· L(p;wo ·:. . •. . .
* •. • • *· •• . r··

* **K4*1***** * !**"*K"*********!

* TUR!I Ol'F NO • *C'IANGF src;11 OF *
* PLOll IN UilEL *<---* LL~fl (!'+!} *
~EF PR F EN'!'B! : :

PAGE 159

Chart CP .. Diagnostic Message Generator (ERR) -- CEKCA (Page 1 of 4)

CEKCU ER!i1

****A 1********* . .
: ENTEi<

I
i

•••••81••········ • *
LOCAL !!AX ERR =
* 111X(1, LCCAL *
* !!AX ERa) *•.

CEKCAB Elili2

•••*A2********* . .
: EllTEa :

l
!****B2*********!
LOCAL !!AX ERR =
: !!Am, E~~fAL :
•••• I

CEKCAC E'.RRD

****A3********* * •
* ENTER *
• *

I
*****B3**********
LOCAL !!AX ERR =
!11Wml~cmsE:
* DELETi:; FLAG *
• *

l

CEKCAD ERR3

*****All**********
: ENTER :

I
! :••••e4•••••••••:

*LOCAL llAX ERR =•

: P!Am, E~~fAL :
:1~~· *->I . . !<---------~-----------'

CAO~~** ~ ... :•••*C2••·······: C3 *· -· .. • * 8RANCll *· . . .__------>: NP = 0 r>*. CN .• I •. PABAllETER.•

CA676
:••••n1•••••••••:

.
I
l I

•. • .. -.··
=·········161 A1

I •••••••••• 161 A3 .•.
D2 •.

.• O< *·
*SELECT SPECIAL * NO • *l!ESSAGE NO.•.
* !!ESSA GE •<---•. S llA.lC - • *
* * •... NO. .• . . •.. -·

* YES

l
!****E2*********!
* GET FARAllETER *
* LIST FOR *
* !!ESSAGE NO. *
:1H· ·->! • * l CAO;~** :••••fl••·······: I :••••P2•••······: I

•SELECT SPECIAL • ~ * GET NEXT * I
: llESSAGE :->: PARAllE'fEli : II

i I
CA01~ GlL:~s- G2·*·.. I

• • •. ... • •. t
NO • * •. 0 .• TEST *· .:___j

r*·• NP = 0 .•·*<---*·•. PAPAHETER ••• •

I • *· .. • *· .. •
I • ... * *· . *
I * • +

**** I

I
:1~~· *->1

I
CAO ;i:::H2*********:

ADD LCCA'IlON OP
* LUGtH & tEXT *

***** : TO l!DI! LIST :
•160• •••••••••••••••••

I
·<i· •160• I

I !.~!· *->1
CA610 ~ CA013 ~

:~;;·i~~:;~~=·~;: . ••J2•••••••.
* LENGT!! & CVAL * * *
* FIELD OF *--->* ADD 1 TO !IP *
•COllECllENT AREA * * *
• TO aD!I LIST • • •

: ••••••••• 161 A4

: ••••••••• 161 AS

: ••••••••• 161 G2

: ••••••••• 161 G4

: ••••••••• 162 A2

: ••••••••• 102 B1

: ••••••••• 163 C4

: ••••••••• 163 G1

: ••••••••• 163 G2

: ••••••••• 160 J1

~ ••••••••• 160 G3

.....
*160•
* *Gi• .
l . •.

G3 *· .• •. • * Bl<ANC!I •.
*· CN • *

•. PAPAllETER. *
.... ·* • •

: ••••••••• 161 i32

: ••••••••• 161 A2

: ••••••••• 161 G1

: ••••••••• 161 G3

: ••••••••• 163 l!1

: ••••••••• 163G3

: ••••••••• 163 BQ

: ••••••••• 163 B3

: ••••••••• 163 Gil

: ••••••••• 163 BS

: ••••••••• 160 Kii

SPECIAL llESSAGE

SBVERITJ CODE ***!!

SEVERITY CODE ***P

SEVERITY CODE ***II

STA?EllEllT IDENTIFICATION

PBOGRU NAftE

CONSTANT TYPE

VAR !ABLE TYPE

VARI ABLE TYPE

!IAllE CLASSIFICATION

!IAllE FRO!! CVAL

SOURCE CHAFACTER

OTHER

SEVERITY CODE ***A

RETCJRM LOCA'!'IOI {!I 'IEX)

TEXT PIEC!

DO LOOP IND!'X VARIABLE

OPEllATOR

FUNCTIOM llA"E

ARRAY IAllE

llAC!!I!IE/COllPILER ERROR !!ET!TRN

DUPLICATE 1 NONSTAllDARD LANGUAGE PEATIJ~!'

TEXT 'CO!!llOll BLOCKS'

OTH!R
*160•

I I . !I'll*

I I

!
I > :: : •• ,)- •• •• • l.m
- *SET EliD OF liD!! * 110 .• NP < !IP *• YES * * =~~~!~~----~!~~~= .****KS**********

LIST :<----*·•. llAX .•·*-->: P2 : : :--->: ~11'.Tl!~N :

• • ·- -· •••• * • • •••••••••••••• ·-... ········:········
L___.~~~~~~~~~~~~~~~~--'

PAGE 160

Section 8: Flowcharts 375

Chart CP. Diagnostic Message Generator (ERR) -- CEKCA (Page 2 of 4)

.....
•161• •161•
* Al* * A2*

* *

CASOO 1 CA630 l
*****A 1********** *****A2********** * LENGTH LOC & * * LENGTH LOC & *
*CONVERTED TEXT * *COllVERT!lO TEXT *
* TO RDll LIST. *<---* TO ROii LISI. *
*CCNVERT R!!G F2 * *CONVERT R!!G P2 *
* FOR HEX Pli.IllT * * FOR HEX PRINT *
••••••••••••••••• *****************

.....
•161•
**Ai* .

CA510 1 :••••&3••·······:
SELECT TEXT FOR
: 'E***' :

**** l •161•
: 82,..

CA6~~** l CA511
*****82********** *****83**********
* * * FIX LINE NO. *

.
•161•
**A~* .

I
CA520 ~

!****A4*********!
*SELECT TEXT P'OR•
: 'F***• :

.
·1~1·

**A~* .
I

CA530 !
:•***Ac;*********!
SELECT TEXT P'Of!
: t W***' :
• *

:sELEr~,.H~T FOR=--->:m mGW~at =<------------------'

.....
•161•
* G1• * •

* I

CA6<W i
*****G1*********-*
* * *SET CODE BASED *
: Oii ENTRY :

* *
I
I

!
*****H1**********
* ADD LOC. OP' * * LENGTH & TEXT *
* FOR 1 11UST NOT *
:eE• 'IO ao11 LIST:

l
•••••J1••········
* DillE!ISIOllED *
P'ORllAI. ARGOllE!IT
* ENTRY NAllE *
* DO-l.OOP *

:mum ::

376

l
•160•
* *H;•

*

* * *& CONVERTED NO.*
* * * TO RDl'I LIST *
...................... *****************

.....
•161•
* G2*
* * *

CAS,.O l
*****G2**********
SELECT TEXT P'Oll * STllT ID. ADD *
LENGTH LOC. TEXT * TO RDll LIST- *
* SELECT 'STllT' *

I
.. ! ..
•160•
•.a~• .

.. L
160 * !'2•
* * .

***** •161*
* G3* • * .

I
CA660 ~

*****G3********** . .
ADD LOCATION OF
LENGTH & SPACES
* TO RD~ LIST *
* •

I
!

*****H3**********
* SET DO-LOOP *
:LmLhiiTFgp•:
*--LOOP VARIABLE *
* P'ROll DOSTK *

.. L
*163•
* .o~• .

.
•161•
* *G~*

*

CASSO 1
*****G4********** * ADO L!IG, I IM' •
* TO PO!!. GET *
*TEXT. ADD LNG, *
* TEXT TO RD'!. *
*SELECT ••

.. L
•160* •.11;• .

J1. NA!'IELTST NAP'll"

Gii. 1 !'ROGl!A!1 1 •

PAGE 161

Chart CP. Diagnostic Message Generator (ERR) -- CEKCA (Page 3 of 4) PAGE 162

.....
•162•
**A~* .

I
I

CASoO ~
:****A2*********:
* GET 'IYPE FRO!! *
:co!IPONEN'I AREA :

• 1 b2. • ••••••••••••••••

. ·:1· I
I ... _.. I

CA570 l CA561 ~ •••••81 •••••••••• •••••32••········
*GET SY ll.clOL TBL * * SPLIT TYPE *
* POINTER FRO!! * * FIELD INTO *
COllPOMENT AilEA.->* LENGTH BITS & *
* GET TYPE FRO?! * * TYPE BITS *
SYll. TBL. EliToY * *

.....
•16.2•
... Gl*

* I

CAS&.2 l
:••••G1*********:

SELECT
'UNK!IOllN'

I

1 ...
C2 *· .. • *·

• * BRANCH *·
*· Oli 'If PE • *

· l!I'IS ·

*· -· • •
: ••••••••• 16.2 Gl

: ••••••••• 162 B3

: ••••••••• 162 G4

: ••••••••• 162 BS

: ••••••••• 162 G2

: ••••••••• 162 B4

: ••••••••• 162 GJ

.....
*162•
* *G~*

* I

CA576 l
:••••G2*********:

SELECI *
•ILLEGAL' :

* *
.. L
•160•
* H2* ...

*

••••• ***** •••••
•162• *162• *162*
* * '3i* * *B:• * * B~*

• • *
I I !

CA5&3 ! CA566 t CA565 • *·
:****B3*********! !****~4 *********! • * !35 *· *•
* * * SF.LECT * ON • * CO"!!'Lf'X *·
:sELECT LOGICAL : 'COllPLEX' :<---*· *· FLAG • *. *

* • • * *· . * ••••••••••••••••• ••••••••••••••••• *· .• I I * 01'"

: CJ =->I t I • .. 1<----------------. I
CASI>;*** i 'I

•••••c3•••••••••• •••••c4•••••••••• •••••cc;••••••••••
ADD LOCA'IIOll OF *ADD LOCATION F. * * *
* LENGTH & * * LENGTH OF '*' * I * *
: snE~~~DL:m-r :--->:s~~ ... ~¥!!TtnTPOR: '---! SELECT 'SEAL' :
* * * LE!IGTH BITS * * *

UNKNOilll

LOGICAL

INTEGER

REAL

ILL!:GAL

COllPLEX

AUTO!lil'rIC

.
•162•
* *Gi•

*

CA5711 l
:****G3*********:
* SELECT *
: 'AUTOllATIC' :

* *
.. L
*160•

* .~~· .

.....
lf2
* .. G!* .
l

CA5611 • *·
•*GU *· *· !****(';5*********!

·* LENGTH *· YES * SELECT *
· !IITS = 0 • •---> • AL!''IA!IERIC' •

*· .• • * *· • * • • •.
r0 l
1 :;;~:

!****!!fl*********! * * :~•
* SFLECT
: 'INTEG!'P'

I
l

* •
: C3 :

Section 8: Flowcharts 377

Chart CP. Diagnostic Message Generator (ERR) -- CEKCA (Page 4 of 4)

.....
•16J•
**Bl* .

CA670 1
*****B1**********
:A¥8 m: me~:
* AS SET BY *
EXPRESSIOll. GET
•ITH HSTCK EllT RY•

l . •.
C1 *· *****C2**********

• * *· * SillOLATE EBBJ *
.:· cP~iWia *:._11c ___ >:E11;Wfom~w:

*· • * * ERROil * •.
•. j. ;Es ········1········

I :m:
V * C2* •••••01••········ ••

* * * •SELECT TEXT FOB*
: OPERATOR :

* •
1

•160•
* H2* ..

*

.....
•16J•
* G1* ..

*

CA590 1
*****G1**********
* GET SYllBOL *
TABL:E PllTB PllOll
COllEOllE!IT ABU.
* GET SYllBOL . *
* TAl!LE CLASS *

I
·*·

.
•16J•
* G2* .. .

I

CA600 t
*****G2**********
ADD LOCATIOll OF
* LEllGTH & CYAL *
* FIELD OF *
*COllPOllEllT AREA *

: •• !~.m.~m •• :
l •160• '->: J2. *

.....
•16J•
* B3*

CA700 1
*****BJ********** . .
!c~~M~i8m6R :
* llESSAGE *

l
•••••c3••••••••••
=~.::!!.::~----~~~~~=
* RECEIVE *
* DIAGNOSTIC *
* II ES SAGE *

I
••••DJ•••••••••

* RETUBll * : .!::~:=:~~:~: .. :

.....
•16J•
* GJ*
• *
*

CA680 1
:****G3*********:
* GET SY!IBOL *
TABLE PllTR PBOll
:co!IPOREllT AREA :

I .•.
ff 1 *• *****H2********** HJ *•

.• *· NO • * LEGAL *·
* SELECT TEXT. * .• IS *·
ADD LOCATIOlll OF YES ·* CLlSS *·
* LEllGTH & *<---*.IllTRillSIC OR .• •. . . * SELECTED TEXT * *· llAX • *

*· .• * TO ilDll LIST * *· ·*

.
*16J•
* .s:• .

CA690 !
*****BCl**********
ADD LOCATION Ol"
*LENGTH AllD I Ill •
* SUBSCRIPT 011' *
: TO P.DI! LIST :
=~~~··->I * •

CA580
•••••c4••••••••••
* GET SYllBOL *
* TABLE POillTEP *

r>*l"ROll C.O!IP01'EllT *
* AREA *
* .. *
:m. I
**** v

.
•163•
* BS*
* * *

CA720 i •••••ss•••••••••• . ..
SELECT TEXT FOR
: I CO!l!!Oll !!LOCI(I :

l
•160•
* H2* • * .

I ! Dll* *->I

CA581 • *• CA676
• • D4 •. •. :••••os•••••••••:

• * SYllBOL *· 110 * SEL'!CT *
• TABLE ID = .•---> 'llON-llA!IE' •.---.

•. 0 ·* • ! •. .•
* TES *****

CA582 I ::!~:

*****E4********** *****ES**********
* ADD LllG LOC & * * SET LEllGTH Ol" *
* SPACES TO BOii * * llAllE BT *
* LIST. ADD LNG *->* COUllTillG 1101'- *
LOC & STI! TABLE * BLAllll' *
* llAllE TO RDll * *CHARACTERS. t••...••.......

.....
*16J•
* Gii* • * .
i

CA710 • *·

1
*160•
• 112* ..

*

. * G4 *· *· !****GS*********!
• * llSLF = *· MO * *

*· 1 • *--->* !IP = 1 * •. . . . •. .• . • .. •
*I YES **!**

•160•
* .12• ..

****H4********* *
* RETURll *
* (BETURll CODE = *
••••••• ~i •••••••• I

· CLASS •

• ...
I i YES

I t
I *****J 1**********
I * *
I •SELECT TEXT FOR*

: cuss :--,

·······T~····· ·T;, J
*****J2********** *****JJ•! ••••••••
* * *ADD LOCATIOll OF*
* SELECT * * LEllGTH & *
* 'FUllC'IIOll' * * 'FOllCTIOll' TO

! : : '
I •160* I . ·:~·
I •••••K1**********

L : SELECT :
>: 'ILLEGAL' :

* ••.....

378

1
*160•
* H2* • *

*

: : : RDll LIST :
t

•160•
* H2* .. .

ES. SELECT SPAC~ •

PAGE 163

Chart CQ. Memory Assignments for Variables (VSCAN) -- CEKJC (Page 1 of 11) PAGE 164

CEKJC1 V~CAH

••••A1••••••••• . .
• ENTER •

l
*****B1**********
* SCAN SYll TSL •
* VAR C:IAIJIS. •

:FOB~N~~~ii~~m:
* CHAINS. *

l

l •••••c1••••••••••
*BUILD NOllCOllllON•
*llONF.(;UIVALEllCE *
• VAR soaT TBL ••
• SORT VAR SORT *
* TBL *

!
!

•••••01••········ . .
*SCAN SO:IT TBL. •
* ASSIGY VAR. •
:FOill VAR CHAIN.:

I

1 •••••!1•••·······
* SCAii STG SPEC *
* LIST. ASSIGll •
• CCllllON YAli. •
• FOBl! COllllON •
* CHAINS. *

I

! ,,
• BUILD *
:f~~~~Am~E,aa:
: LIST :

l
*****G1********** . .
* PROCESS *
• EQUIV ALEllCE •
: GROUPS :

l
' *****Hl********** . .

• ASSIGR *

: E~m:m~E :
I ••••J1•········ . .

: RETURN :•.........

CEKJC2 VSCAN1

* ••**A2********* *
: FNTER :

I
l •••••a2•••••••••• * INITIALIZE *

:Enm~=~Am111:
•SORT TBL CNTR=O•
* I = 0 *

I

l"'i ••• ..,,:I
I • *

*P=ITH ANCHOR OF•
:vu !IA5ll TABLE :

*****B3**********
11.:.:.::::::.J
I ! I ...
I .•cJ • .••

• * BRAllCH •.

•. . . I •. 011 CLASS (Q) • •

~::::····!, : I
•
• ••• D.2.•-> I : ••••••••• 164 OS

JC01 .•. ~ : ••••••••• 164 OS

.•D
2

•••• : ••••••••• 164 OS

I .:· ~HAr; 11~ ·:.
110

: ••••••••• 164 DS

I
I ·-..... -•.•.•

* YES

'"" .. ,,.1.
* * ADD 1 TO I • *

l
I F2·*·•.

!10-• I2: •.
.___._ 126? -· •. .•• •

* YES

l
*****G2**********
•IF ALPHA LAST "* * EllD CHAI H SET *
!Lli~mP~AAi~~T) !

I
~

•165•
• l!1• .. .

: ••••••••• 164 HS

: ••••••••• 1611 HS

: ••••••••• 164 HS

: ••••••••• 165 BJ

: ••••••••• 16S BJ

: ••••••••• 1611 Jll

NAllELIS"r

EXTERNAL SOBPROGBA!t

LIBRARY FTJllCTIOll

ENTRY

URll'.11011

STATE!IEllT FIJICTIOll

INTRillSIC FIJ!ICTIOll

SillPLE VARillBL!

ARRAY VARIABLE

FUNCTION SDBRPROGRAll llAllE

.....
*1611• •• J:• .
! •••••J••········· •CREATE FIJllCTIOll•

* EITl!Y LABEL *
IT!!!!!: SET CLASS
* = SillPL! YAR •

.. L
•16S•
• !!J• .. .

.
*1611•
• .n~• .

JC09 !
*****De:;**********
*IF ALP!IA LAST =•

!UM8:mo~~~.:

:su~:i:~~~m:.:

*****'!'5**********
• * . .
:ALPHA LAST = P :

* *

..l .,6... I
• HS* ..
• I

Jcos l\scA
!****RS*********: . .
: P = LillK(P) :

1
* 02 •

Section 8: Flowcharts 379

Chart CQ. Memory Assignments for Variables CVSCAN) -- CEKJC (Page 2 of 11)

JC18

.....
•165•
**Bl* .
!

• *· VSO.liT
81 •.

... . •.
JC21 :••••a2•••••••••:

• * SORT *· YES * INTERCOll VAR. *
· lBL CTR = .--->*ANCHOR, VLAST =*

*·· 0? • • * .EllD CHAIN *
*· .. * • * *· ... • • ••••••••••••••••

* NO I

I t
!

.....
•166•
* E1*

*****Cl********** * *
* ARBANGE SORT * *
* TBL IN *
* INCREASING *

JC02

.....
*165• *.a;• .

I
~

·*· B3 *· .• •.
JCOM

!****B4*********!
·* ARG *· UP * LINK AF.GUllENT * *· FLAG (Q) ? • *--->* ENTRY INTO * *· . * *ARGUllENT CHAii! *

*· . * • * •.. .. • ********** •••••••
* DCWN I
I I
I J,
I ***** v * 1611•

.•. .. 02•
CJ *· * * .. * •.. •

UP ·* COllllON *·
,---*. FLAG(Q)? ·*
v •.. • • : ORDER

***** •.. . *
I

JC189 l VASSN :••••01••·······:
I = 0 VAR CHAIN
:ANCHO!i=VAR (0), :

* *
I

"" ,j
!****E1*********:
* I? = VAR (I) • *
*VLAST = P. Q = *
: DDP(P). :

l
*****Fl**********
* IF ST CL SIZE * * NO'! CH PROPER *
: B~fBhz~o;osr :
* PBOPER BHDRY *

I I
IJC2o !
I *****G1**********

I
SLOCjQl = ST CL
*SIZE~6 STCL (Qb *

:=ML0snrn1 r :
I * ACD 1 TO I * l ••••••••••••.••••

I I

•16ij* *· ·*
• HS* * DOWN
* * I * I

! .•.
D3 *· .. • *·

UP • * EQUIV *·
,---•. FLAG (Q)? • *
v •.. -· ***** •.. • * •16ij• *· .•

* HS* * DOWN .. . l
*****E3********** * IF ARRAY VAR, •
• S=DllLST (Pl • S= *
*BYTES~ARRAYJSl. *
!~b§ttmM~.:

I
JC04 i

*****F 3********** * llAKE SORT TBL * : ~m:· mi+~= :
: SORT TBL CTR :

.. L
•16ij*
* *H~* .

I .•. JC22 I .• H1 •. *· :••••H2•••······:

I • * , I > *· YES * LINK (VLASTI = *

*· CCUNTEii • * * * ·- .. • . . • ... * ••••••••••••••••• I
· SORT TEL .•---> END CHAill *

r NO !
1 1 =~~::

* B1* •••••Jl•••······· ••
L . . *

* LIHK (VLAST) = *
: VAR(!) :

*

380

PAGE 165

Chart CQ. Memory Assignments for Variables (VSCAN) -- CEKjC (Page 3 of 11)

.
: AJ :
!

*****lJ********** • *
: mmp> = :

***** • • •166* *********••······

-.:1· I
JC2J 1 VSC1H2 • *· JC25E

:••••s1•••••••••: .•BJ •. *· !****B4*********! :••••ec;•••••••••:
:.a~n6°s~W~~SI**,. •=* SU~S?K *:•~>: SUBSOK = 0 =--->= m;mJ) = : ·- • • *· . * • * • • •.
~~~~:*->I 1· HO i1 .... 

JC2ll ·*· 
• * C1 *· *· !****C3******•••: !****CS*********! 

·=:~E~~0mE~~:=·~l :ETmmm~sE: : ~Tmm1 
= : 

•. .• ..... . . . . 
•• • • •169• ••••••••••••••••• • •••••••••••••••• 

[" ·.:i· I I 
·*· JC32 t 

• * D1 *• *· !****D2*********! ***DJ******** * **DS******* * 
• * *· CCIII! * * * UPDATE NJ * * UPDAT!" 113 * *·•. ID(R) •• ·*->:BYTE PRT I= 8: *• BY 6 * *• l"Y 6 •* 

*· .• • • • • •••• • • *· •• ••••••••••••••••• ••••••••••• • • • •••••••••• 

*l EOV t l : .::.: l 

* 81* ·*· JC25R DXl' ·*· 
m;: lA 

*****E1********** * * E3 *· *****Ell* ******** ES •. 
* * * •* *• *CEKJH2 1861J* ·* •. 
*EHD FLAG = R+ 1 * • * llUCRO = *· YES •-------·------·• • * UllPEU = *· !10 
* :>ROUP CT = * *· 1 • *->* * *• 1 • •--, 
: (P+2,J) a = a+a: •. •. .•. • !DIAG11osTrc 1129 : •. •. • * • I .................. .. . . ················* •. . . v 

I 
* !10 * YES **** 

~;i~: *-> l 1' : ~1: .... 
JC25 • *• JC251' DXP JC25G DXP' 

*****F1********** F3 *• *****P"********** *****F'i********** 
* P = SY!I TBLE * ·* *• *CEltJR2 19613* •CEKJH2 186A3* : nmt~~~c: :<I -::. !IE~O~l' .::~>=~::~~::::~·:;~-= :.·~::~:::;:~-:~~-=.· 
* TABLE(S) * *· ·* * * 
········. ·1·. ....... . . ................. . ............... . 

• •

0

110 i 
L =·::·= 

G1 *· *****GJ********** * * 
• * *· *CEltJH2 186&3* **** 

.: • ;Yf JS~' ~: ~l :-------------: 
*· • * *DI AG BOSTIC 1126 * •. .. ..... . . 

·- • • • 167• ••••••••••••••••• l 
. i .. YES * * :;• :;::. 

·*• JC2h:!• *l .•. JC25C 
H1 *· H2 *• *****HJ********** Hll *· **RS******* 

-• ·- -· •• • • ·* •. • * • * DillEllSIOll *• YES • * CLASS = *• HO * JIUl!Bi SUBS *3 * • * *· 110 * PRODUCT = * 
·-.:IST STR = •• -*--->• •• ~litRAY VRBL~··*-->! Pi8~~~~'!"6 :--->•-•• RE!IAUDER •• ·*-->*. PRODUCT-6 .. 

•. .• *· •• • • •. •• • • •. •• • •. • ••••••••••••••••• *· .• ••••••••••• 
* !10 • YES * YES I 

••1•• •• !.. I l •167• •167• 
* 81* * !1* JC25D 

* * * * **Jll******* ••JS******* * • • • • • 
* PRODUCT = * * UPDATE 113 * 

* PRODUCT-J *--->* BY PRODUCT * 
• • * * • • • * .......•... . ......... . 

1 .... 
* * * 13 • . . .... 

PAGE 166 

Section 8: Flowcharts 381 



Chart CQ. Memory Assignments for Variables (VSCAN) -- CEKJC (Page 4 of 11) 

..... 
*167* 
* Bl* * • 

* I ,... ..--. 
JC25K ~ 

:••••B1 •••••••••: 
*Q = PRESET DATA* 
* TABLE PllTR * 
* * * * ................. 

l 
. *· 

Cl *· 
YES • * • * NCJllD ~~~ *· *· 1·-.. =s~gs •• ·* 

I ····t· 
• *· JC25ll 

• *D1 *· *· :****D2*********: 

•= * ~u:g~gL *: ~>: 11ucHo = 1 * 
*· SUBS ·* * •. .• . . •. . . . ............... . 

* 110 

l 
•••••!1••········ 
* * * * : UllPEU = 1 : 

* • ................. 
,,,,, ,~;~~~~~~~~~--' 

!****F1*********! 
* * :sues = SOBS (S) : 

* * ................. 
l 

:****Gl*********! 
*NUllBR SUBS *4 =* 
: I, N4=LNGTH : 

* * ................. 
I 

!****Hl*********! 
* : P3 = 1 = J 

* * ................. 
I 

JC25S ·*· •• J1 *·.. :••••J2*********: 

• * SUBS *· HS * llASK OPP * 
*· NEGATIVE • "'->* NEGATIVE * •. .• . . 

382 

•. .• . . *· ·* ••••••••••••••••• 
* 110 

t .... 
• * * A3 * . . .... l :••••1t:2••·······: 

* • 
:co!IPLEllEN't suss: 

* • ................. 

. ... 
* * 
: A3 : .... 

. ... 
* * 
: A5 : 

JC25T >! :;~1: ' 
*•A5•* JC25Z1 ~ 

*****A3********** 
* * 

* !****A5*********: 
* * I *P = SYll"OL T~L * 

..___TOI'l'b~~ m. O= : :TEllP = SUBS *N4: 

* * 

I 
********j******** 

1Jc25U .!:~~~~~--~~~~~~~~--, 
83 ·- *****EIJ•••······· I -• ·- • • I • * SUBS *· YES * llASK OFF * 

*· NEGATIVE • *--->* NEGATIVE * 

·- • * * * 11 •. .• . . •. . . . ............... . 
• 110 I t I 

1

1 '"ll! • ..,J ...... ;. . .... ".! ....... . . . . . 
* TEllP= * * COl!PLEl'l!!!IT * :Dus; (~~11;sues : : suss : • • • • I ·······r······ ·······r······ 1 

D3 *· **DQ******* _J •• •• • * 
• * *· NO * * 

*· I = J .*--->* J = J+1 * •. • • * • 
•. .• * * . .. • .......•... 
i"' 

•*• JC25V 
E3 *· *****E4********** .. •. . . 

·* IS TEllP *· YES * * 
*· NEGATIVE ·*--->* NEGOP!' = 1 * •. ..• . . 

•• .• * • • .. • ................ . r· 
!****F3*********! 
* * : SOBSOK = 1 : 

* * . ............... . 
! ..... 

•166• 
* *H~* . 

................. 
I 
I 
I 

~ 
•••·•~s·••••••••• * II' TYPE(Pl °' * 
*TYP"! (Q) .t ADJUST* 
*Cll'FSl!T_JHl l'FO"I * * TYP>' II TO * 
: •••• II.:J~L •••• : 

I 
JC27 ~ 

*****CC.********** * !!AKE YAP L1'.ST * :mm m=2"~0: 
*BCNT sfG SPRC- * 

: ••• 2~~~=~:~ •••• : 

I 
·*· G5 *· .• •. * * NO • * GROUP *. 

* A5 *<--*· CT = 0 ·* . . •. . . 
*· .• • .. • * Y>'S 

I 
*****KS********** * ADD 1 TO G!lllO * * IF R NOT 0'!1 A * 
*llOllD BllDJ!Y, ADD* 
: 2 TO P : . ............... . 

l 
. *· 

JS *· .• *· 
OP •* END *· 

y--*·•. FLAG .•·* ..... •. . . 
*166• *· ·* 

* * ~Z* i DOllR 

JC30 i 
*****Kc;********** 
*EllD FLAG = R+ 1 * 
* GROUP CT = * * (R+3) ADD ll TCI * 
: R : . ............... . 

! ..... 
•166• • .. Fr . 

PAGE 167 



Chart CQ. Memory Assignments for Variables (VSCAN) -- CEK~C (Page 5 of 11) 

..... 
•168• 
• .si• . 

JC33 1 •••••e1•••••••••• : p~,,~m~~, : 
: B~~~~~~!~2 : . . ................... 

I 
! •••••c1•••••••••• m nm~a~y¥~~= 

* CALL DlC liilH * 
: DIAGNOSTIC : ................. 

l 
JC34 .•. 

D1 •. . . • .. 
• • *· YES *· STCL (Q) =O? • 
•. ·* •. . . ·- ... * NO 

"'" I !****E1*********! 
* CALL DX WITH * 
*DUG SET APOllT * * ERROR BETURll * . . ................. 

I ..... ,, ......... . 
: EXIT : ............... 

•••••s2•••••••••• . . 
->:sLo~m = B~~ CL : r : STLC fo1 =B : I ................ . 

I I 
:••••c2•••••••••: 
:ml!~~11~smei: 
• X7F * . . ................. 

I 
*****D2********** 
mD1~m~canT=: 
* AllCHOR (BB~ =P. * 
!i~!dJhLU:~.: 

I :••••!2••·······: 
* LLST(B) = P * * LINK IPI = !!ND * 
: C:HJIIll : ................. 

l . •. 
F2 *· . • ·-.• *· YES 

JCllO 
:••••sr.a•••••••••: 
* SET CLASS so~ * 1>: TO SUPLE A : 

I : ••••.•. i ....... : **** I 
I : Cll =->I 
I * •••• * I 
I

JC38 V 
:••••c4•••••••••: 
* S=BYTES FRO!! * 

I 
: TYPE(Q) : 

········i········ 
I I 

.... . . 
: cs : .... 

I 

JCll1 i 
:••••cs•••••••••: 
* SET S = * 
:Bm~rnh~(S) : . ................ . 

I r·~~~~~~~ 

IJC39 **Dli******* . . 
I 

* ADD S TO ST * * * er, SIZE (BB) * • . . ........... 
I 

**E4******* 
* * . . 

* * ADD 4 TO I . . . ......... . 
l .• . 

Fli *· .• • . 
• * (R+I) *· YES * * *· = O? • •-->* 81 * 
•. •. ..·· ..... . •. •. cm~m = ••• •·------------~ 

•. -· •. ·* 

i" .•. 
G2 *· .• .. . ... 

•=* cu~m)= *:~>: C4 : 
•.VARIABLE .• * * •. .• .... • .. • i " 

. *· 
H2 *• . • •. . ... •=* CL~~m) = *:~>: CS : 

*·VARIABLE • * • * •. -· .... • .. • 

i" •••••Ji•········· . . 
* Sl!'l llCl!RR * 
:aETu~:Lto&i 1111: . . .............•.•. 

I 
* ****K2*********• 

: EXIT : ............... 

• .. • * NO 

I 
* **GEi******* * 

* ADD I + 4 * * TO R * . . . . .....•..... 
! ..... 

•166• 
* C1* .. . 

Section 8: Flowcharts 

PAGE 168 

383 



Chart CQ. Memory Assignments for Variables (VSCAN) -- CEKJC (Page 6 of 11) 

***** •169• 

**Bl* . 
i 

.•.VSCA113 
B1 *· 

JC98 

...... 
•169• ... 9:• . 

I 

i O'IASS6 
*****B4********** 

•• ·* ECNT = *· *· YES * ****B 2********* * • * 
* *· 0? .*-->* EXIT * p = 0 •,. .. . . . *· . ... • •••••••••••••• * * ................. ·- • * * NO 

j 
•••••c1•••••••••• . . 
* SOliT VAR LIST * 
: ON VAR, GPV : . . ................. 

'"" I •••••01••••······ • * • * 
: P=OQ=O: . . ................. 

I 

I 
JC61 ·*· I 

!****C2*********! • * C3 *· *· I 
• SORT VAR LIST * YES ·* p = *· NO I * 011 GPV, OFS *<---*· ECllT? • * > • * •. •• • * •. ... • ••••••••••••••••• • ... * 

! t I 
:~m JC60 l JC55 ~ 
* * *****D3* ******** *****Dll********** * * IF SIZE(SJ > * *ADD 1 TO P.Q = * 

:SI~~X,JQ, I~ ~Us : •GPV tP) .GPY~P) = * 
• <9> • :oi§ ,Jf' sPDm : 

: ••••••••••••••• : :.i£~ •• ~==~~!Ji~.: 

I<.---.. j,_(::·: I 
I •••• ' Jcq11 ~ 

**E 1 ******* * • 
* * * * ACD 1 TO Q * 
* * ........... 

I 
·*· 

F1 *· 
I 

*****P2*1******** 
•* *· *.IF VAR(Q+1)=VAR* • * Q > *· US * (Q) ~ AJlD 1 TO P* *·•. ECKT? •• *-->! GP1(P~=GPYtQI : 

*· ·* * G~~r6o~~~jpl * •. . . . ............... . 
* NO 
I 

I 
Jcq& l OV ASS 3 

!****G 1 *********: 
* 
: Q = 0 • . . ................. 

I 
I<.---.., 

Jcq1 ~ 
!****H 1 *********: 
: m 1 T~ 8: * 
: DSPL181 = 0. * ................. 

l 
! .•. 

Jl *· • * • ... 
• • Q = ·- 110 *· GRNO? .*--

384 

*· •• •. 4o. 
• ... * * YES 

i ..... 
•170• 
* B2* • * . 

I *****F4********** 
!J~> 'PJ~sl~~Tr!! 

I' : F~ <;> v~M?~· : 

I ·······T······· 
I

I JC58 • •. 

• *Fii *·•. 
l<------11_0.:• s5cHs1 *:. 
t •. ·* 
I *· ·* *· .• * YES 

"" I *****G3*1******** G4 *• 
* • • * *· : smm, = :<~.:.. s;c~ '9' *:. 
* * *· .• * * *· .• ••••••••••••••••• • •• * 

• !10 

I 
i 

*****F4********** .... . . 
* * * IS STCL (QI ~ * 
: D3 :<--: STCL (5~: CALL : .... . . 

***************** 

PAGE 169 



Chart CQ. Memory Assignments for Variables CVSCAN) -- CEKJC <Page 7 of 11) 

..... 
*170• 
•.a~• . 

I 

JCll8 t OVASSll 
*****B2********** . . . 
: Q = 0 

• * ................. 
. ·*··. I * C2 *->f 
• •••• • ~ IJC511 .1. NO 

Jci1a .•. Jcsi***•c3•**2H;;~. l •••••c11••••••"'*** cs •. 
·*C2 *·•. * * *ADD 1 TO P. Q= * ·* *· 

·* *• YFS * * *GP1 (¥1 ADD DSPL* • * P = *· 

!
--->•. * Q = P ? •. •--->: P = o :--->:(QI STgt Di Pl ~p> :->•. •. GR110 ? • •. • 

•. ••• • • • 1uxslp =O • •. .• •. . . ................. ................. •. . . 
* NO * 'CES 

I I .• L 
I ~ ::~!: 

I ••n2••••••• . . . . . 
* * ADD 1 TO Q * 

I • • I ••••••••••• 

I I,_~-
, JCll~****E2*!******** i • • 

t 
• • 
: T = GP2 (QI : I : ............... : 

r---->l m .!. "" I 
*****F 1 * ******** F 2 *· *****F 3*********LJ 
:~:~~~2 ____ !~~~~= .• ·• GP1 •• •• No :DmJ8l~m 1~1 : 
• • •. !>GP1 l~I ? .*--->•-GP1 o -DsPt(TI 
• DIAGNOSTIC * *· • * * - S L (QI * A • • • • • • I ................. ..._ .. - ................ . 

i iYES I 
I
I JC50 .1. NO J 1' 

G1 •. G2 *· 
I ' .• •. .• •. I 
~·=·= mrn1 ?·=·<~·=· Gmn1

1 ·=· ···· ..... ···· ·····r~··· '1 

*****H2********** : aw~=mp1 : 
• TE11h~DSPL !~I • I 
:osPL (T) =DSPl (Q): ................. 

,,.!... . .... ,, .......... J ..... ..• •• * • 
: c2 :<~·=· n11 ~ 1 

= ·=·-110--->=a~&m1 1mm, : * * •. .• * BY Tl!llP2 * .... ·- .. • . . • .... ·* ••••••••••••••••• 

Section 8: Flowcharts 

PAGE 170 

385 



Chart CQ. Memory Assignments for Variables (VSCAN) -- CEKJC (Page 8 of 11) 

. .... 
•171• 
•.a~• . 

I 

JC619 l OVASS7 
*****B2********** . . . . 
* I = 1 • . . . . ...........•..... 
:m. l * C2 *-> . . .... 

JC63 QVASSG •••••c2•••••••••• . . 
* * ------->: CURGR=GPV (I) : 

JC71 I 
:****G1* *******: 
:sTcL UH (61 = : 
• * . . ................. 

* * ....... T ...... . 
-·· D2 • • . • .. 

-· *- 110 
*•*~Tc; (~U~GB~ * ·*----v ·- -· ..... •. •• •172• i "' .. :i· 
*****E2********** * IP ST CL SIZE * * KOT Cll PROPER • 

:¥g 0~~6Pl~' :m,: 
* • ....... T ...... . 
*****P2********** . . 
* XTllT = STCL * :smw o~~~~) = : ....•............ 
: ·:;· :->l .... 

- *· JC97 
G2 *· *****G3********** • * *· * * ****G4********* 

.• I = *• YES •STCL SIZE(6) = * • 
*· ECNT ? .•--->* XTllT *--->* EXIT ·- .• . . . . •. -. . . . ............. . •.. .. . ....•........... . L ... .i." 

H2 *· .. • • .. • * •• 
•.GPV (II =COBGR .• 

•. ? .• •.. . . • ... 

. ... . . 
: BS : 

JC65 ! 
•••••es•••••••••• : p:mm : 
• sL8c J~~ =BASE * 
: •• H~~j~m .... : 

l •••••cs•••••••••• 
:I~=fim~ =~RR~!·: 
*BYTES/Al!JAt IP* 

: m~ ~mm.: ............•.... 
I 

JC68 l 
*****DS•••••••••• 
: Il' S\¥\i~Q) +S> : 
* XTllT=SLO~ (Q) * * +S. * • * ................. 

I 

JC69 l 
*****ES********** 
• II' VLAST=EMD * 
:c~m6m. c~~Ill: 
•KOT LIKK (VLAST) * 
* = P. • . ............... . 

I 
*****'1"5********** • * * 'LAST = & * 
: LIK~JmElfD : . . . ................ . 

. l."' '"'' ,..--~---------~---------~ 

386 

J2 ·- ••JJ••••••• -. ... . . . ... 
•=* u:u..m =? *:•~>* * ADD 1 TO I. * •-->= G2 : *· .. • • • • • •.. -· * • • ••• •.. ... . ......... . 

• !10 

! .... . . 
* BS * 
* * .... 

PAGE 171 



Chart CQ • Memory Assignments for Variables (VSCAN> -- CEKJC (Page 9 or 11) 

..... 
•172• 
• 81• .. . 

JC72 l OVCOll :••••81••••·····: 
• I=J BLK=STCL • 
: (CUBGR) : . . ................. ..•. I . . 
: .~~. :-> ! 
•••••c1•••••••••• . . : ~~mm : . . ................. 

l 
• •- JC71i 

D1 •. *****D2•••••••••• 

Jc7!••"*B3•••£H~;.! 
• ASSN = • 

l'L.:::::; '.'.'.'.'...l 
I l 
I •••••CJ••········ 
1 :u Ms~<gbcALL! 

• ASSN=O. • : ~~m1i1 : ••••i•••• ••••••• 

l . •. 
D3 •. .. . •. -• - * •. ·- YES :o~~Sj=S~~mt : 

•. S'l:CL (0) =BLK • *-->*C=A~C~6R ( BLXI *-> 
•. ? • • *CLAST=ENDCHAill • 

-* STCL *· NO 
• ••• (Q} =BLK ?·*·~ 

*· • • • • • ... • ................ . i " 
***Bl******** . . 

• * AtD 1 TO J. • • . . .... ........... . . 
I * Cl • . . 
I •:•• 

f 1 YES 
F1·*·.... P2• • •• 

.• •. .• •. 
• • J = ·- 110 -· ·-·- ECNT ? .'"->•.GPY (J) =CURGR .• 
·- • • ·- ? •• •. .• .. -· •. . . . ... • 

i<YES •NO 

JC911 l 
*****G1********** . . 
• SET llCEiUi • 
:BETOBll CODE (II): 
.. . .................. 

I 
! 

****Hl********* . . 
• EXIT • . . ............... 

•. .• ..... 
*· ·* •1711• 

* YES * 82* I .... 
! 

*****E3********** .. . 
:.~§N;Lgm) Dt : .. . 

I 
: ............... : 

. =~;~. I :.:!· *-> 
JC11 

**F3******* * .. .. . 
• * ADD 1 TO I. . . ........... 

I 
•*• JC96 

G3 *• *****Gfl********** 
• * *· *IF XT!IT > STCL * 

-· I = ... n:s •SIZE JBLK) ,SET • 
•. *· ECllT ? •• • •--->:STCL =~UT (BLK) =~ 

•. ...• . . ..... 
I •. .. ················· •173• i .. . .:i· 
~ H3·*·•. . . •. .. •. 

•.Gi?V (I) =CURGB .• 
·- ? .• •. . . .. -· * NO 

l •••••Jl••········ *IP XT!IT > STCL • 

=~m 'm~· <m,: 
• =STllT * . . ................. 

! ..... 
•171• 
* C2• .. .. 

Section 8: Flowcharts 

PAGE 172 

387 



Chart CQ. Memory Assignments for Variables (VSCAN) -- CEKJC (Page 10 of 11) 

***** *173* 
* B2* 
* * * 
! 

JC98 • *· JC98A 
B2 *· 

• * • * !SD *· *· YES *****BJ********** 
*· OPTION ON? ·*--->* EXIT * 

• .. *· • .. • • ................ . 
• .. ·* i " 

*****C2********** 
*IllIT!ALIZATIOll:* 
*IllTAllC=EOC,K=ll, * 
:sizE '~bP~6 11=0,: 

* * ................. 
l 

*****D2********** 
: ~:mE~~~9gg5 : 
* TERll=2+110. * 
* Nl!.llFD COllllOHS * 
*I=PTR TO s.c.6 * **** 

••••••••••••••••• • * 
* * .... I 
* E3 * 

JC1 OOA : !_ JC100D ! JC100L 
E2 *· *****E3********** *****Ell********** 

.• ·\m I·· •• 110 : Zif~GEgg~v. : :r;I'.5~H~(Ih&gT: 
*· = EO~ ~ • *--->* SIZE II) FRO!! *--->*SYllTA~ tESCRIP. * 

*· ·* * TYPI! IHFO * * PAFT * .. ..• . . . . *· .. • ••••••••••••••••• • •••••••••••••••• 

: •;;• :->]* YES J .... 
JC1 OOB • *"· • *· JC1 OOP 

*****F2********** F3 *· Fii *· *****F5********** 
* GET llEXT ST. * • * *• • * *· * * 
=~~hi~Tm(~hr!<___::=•:* ~IM~Jl *:•<---N_o.:• ~L~gJI~ *:•~>:A!>D m~m TO : 
*OF IllTBLE (K) = * *· • * *· • * * * 
* EOC * *· ·* *· ·* * * I ....... T....... ·-r=· ·-· -. ·······--······· 

*****Gt*i******** G2·*· *· G3·*· *· JCt22~**Gll********** 
* K=K+ll 11~11+ 1 * ·* • • • * •. * RAISE Equrv • 
•I=PTR llEXT S.C.* HO .• K=TERll? *· ·* SLOCSI! •• YES * FLAG FDP~I~ = • 
: rnm~~OC :<---* •• !FHgT~f ST:.·* *·•~sifi1ff ~.·*--->:IHTAliC,p AC= : 
• • *· . • •. .• * • ••••••••••••••••• •.. . • *· • • • •••••••••••••••• 

j"' j" l 
JC100Z ! ! ·*· 

*****H2********** *****H3********** Hll *· 
* CHARGE EDP * *SET TOP TO llAX. * . * *· 
*FIELD OF IllT:!R·* * OF TOP & * NO • * LIHK~I~ *• 
:~5a~~~T=~amm : SI~~~)(I~=i· :<---·· •• = EO .•• •• 
* PART PTRS * * * *· . * ••••••••••••••••• ••••••••••••••••• *· • * 

I I * YES 

!
I .L .L 

• • * * 
JC98A * E3 * * P2 * • • • * 

* ••••J2•••······. **** •••• 
: EXIT : ............... 

388 

PAGE 173 



Chart CQ. Memory Assignments for Variables CVSCAN) -- CEKJC (Page 11 of 11) 

JC78 

..... 
*174• 
* *B~* .. 
t . •. 

82 •. 
.• *· * * DOWN • * DATA *· * E2 *<--•. FLAG (Al ? • * . . •.. .• 

•••• *· -· 
*· .. • * UP 

i 
DXF • *· 

*****Cl********** C2 *· 
*CEKJH1 186A2* .• *· •--------------* YES • * *· 

r * *<---*· BLK=9 ? ·* * DIAGNOSTIC * *· ·* * • •.. .. • ................. ·- ... 
**** * NO 

* * I 
: E2 : I 
•••• I 

JC80 ~ •••••02••········ 
* * *IF PROG TYPE ;. * 
* BLOCK DATA, * * CALL DX. * * • ................. 
:-::·:->I 

JC81 **** ~ 
!****E2*********! 

: 
5~¥~m;=~m : 

* * ................. 

JC83 
:••••B3*********! :••••su•••••••••: 
* IF ASSN+S> * * CLAST=C * 

1>: XT~~~I§s~E'£s. : r--: C=LINK (C) * 

I : ••••••••••••••• : I ••••••••••••••••• I I I A 

I l< j I 
I JC84 i I 
I 

!****C3*********! I 
* D=DPP(C) * I 

I =······r·····= I 
. t 1 NO JC86 

03 *· 011 • • *· *****DS********** ·* *· .• *· * LI!IK (C)=P * 
• * SLOC ~D~ *· NO • * *· YES * LINK (Pl =END * 

• ••• > ASS ••• *->* •• ~I~~fit=~!I~•·*--->: CHAI!IC~PAST=C : 

*· .• •. ·* * • •. .. . •. . . . ............... . 
I iYES * 

I JC87 ~ 
*****E3********** * IF CLAST=E!ID * * CHAIN STCL * 

I :1~~H~~~BLH8~· : 

I 
* fCLAST{ = P. * .. , ............. . 

I l *****P2••········ I •••.. , 3••········ 
:r~=~mr<~f~~y·: : LINKIP) c : 
:w~~wmms:__. : CLAST=P : 

:.~~~~.I!tfJ~tic.: : ••••••••••••••• : 

.. L 
•172• • .r;• . 

Section 8: Flowcharts 

PAGE 174 

389 



Chart CR. Process Label References and Definitions (FSCAN) -- CEKJB (Page 1 of 8) PAGE 175 

JB33 

.... . . 
: Al : .... 
!FSCAN2 

*****A 1********** 
* INITIALIZE. * 
: Imw~=g, : 
*TOP). LLh !Pl= * 
* EOC. XLOO~=O * ................. 

l 
!****B1****'*****! 
*DLOCP=O ELOOP=O• 
* LEV=-1 PLAT=O * 
: EOC=INTEBCOI! : ................. 

l ••c1••••••• • * • * 
* * ACGTPL = 0 * * 

• * ........... 
l 

•••••n1•••••••••• 
* LLMK ANCHOR * 
* PDLllK· AllCHOB * 
*ADP AllCHOB CDP * 
* A NC HO Ii * 
* * ................. 

l 
**E1*•***** 

* UNDEF. * 
* FLAG= DOWN, * * END LIST * 
* .PJ.AG=DOilN, * 
* N=O * ***** ............. •175• 

I • *F~* 

1 i 
• *· JBllO ~ l!OV 

• * F 1 *· *· !****P2*********: 
• * BRANCH *· * OTHER UPDATE * *· ON ID • *<---* PNTR' S * 
*· •. • *. * :ILNK (P) =ILNK (C~: 

• ... ·. . ............... . 
: ••••••••• 177 Bl 

: ••••••••• 177 B3 

: ••••••••• 177 Bii 

: ••••••••• 111 es 
: ••••••••• 177 J3 

GO TO 

ASSIGN 

ARITHl!ETIC IP 

CALL 

RETURN 

CEKJS1 FSCAN1 

****A3********* 
* • 
: ENTER : ............... 

l 
*****83********** 
*INITIALIZATIOll: * 
* PNTBS TO THE * 
* ORIGIN OP * 
* G=PLllK, * 
:~mm,.~m:~: 

l 
*****C3********** 
* LEVEL INDR * 
*LEVT= -1 CNTBS * 
* FOB BARBIER * 
* TB., INNEiiLP * 
* T BL=O LOOP I= 1 * ................. 
;~n:·->I .... 

..... 
•175• 
•*A!* 

* 
i 

. *· All *•. .• •. 
• * BRANCH *· 

*· ON ID .• 
*· .• •. .• ··.·· 

: ••••••••• 177 811 

: ••••••••• 179 B1 

: ••••••••• 180 B5 

: ••••••••• 179 B3 

: ••••••••• 179 Bii 

: ••••••••• 180 Bl 

: ••••••••• 180 83 

: ••• ••• ••• 178 Kii 

: ••••••••• 177 H2 

: ••••••••• 178 C3 

ARGUllEllT DEF POINT 

LABEL DEP 

BEGIN PROG!IA!! 

LOGICAL Il' 

EQUATION 

BEGIN LOOP 2 

INPUT LIST ELEllEllT 

ENDLIST 

SUBPl!OGRAll ENTRY 

OTHER 

JBO 1 • *· JB02 • *• JBOll • *• 
D3 *· Dll *• D5 *· 

• * *· . • *· . • *· 
.• *· NO ·* *· 110 ·* *· YES 

I
>*• G=L=P=EOD .•--->*. G < L ·*--->•. L < P ·*-i •.. .• •. .• •. . * •. ·* •. ·* •• .• • .. • *· .• *· ·* i "' i "' i .. l'.ij? 

: ·::·: JBOJ • *· I * 
* * Ell *· 

I **** • * *· 

I . * *• YES 
*·•. G < p .•·*---. .. .. . .... 

•. •• •176• 
PROCESS LOOP * 110 * A3* 
BNDRY CHAIN 1 * * * I 

JBOS • *· JB08 ~ 
Fii *· *****F5********** 

·* *· * IP LOOPI=1, * 
• * *· n:s * ENTER I!ITO * 

*· ID=BL3 ·*--->* lNNERLP TAB: * 
*· • * * PLATEAU=P * 

•. ·* • • *· ·* ••••••••••••••••• i ~ I 
*****Gii********** **GS******* 
* IP LOOP I=O, * * * 
* ENTEi! INTO * * REDUCE LEVT * 
* BARRIER TBL: * BY 1 LOOPI=O * 
* LEVEL=LEVT * * 
• PLATEAU=P * • • ................. . ......... . 

BEGIN LOOP 3 I I 
EllD LOOP 

READ, READ WITH NAllELIST 

WRITE, WRITE WITH NAllELIST JB07 

=----·----178 Bl 

=---------178 Bii 

=---------178 BJ 

: ••••••••• 178 J1 
IGNORE :****H3 *********: •**!!II******** L· UPDATE P: • • ADD 1 TO * 
ASSIGN GO TO, COl!PUTE GO TO : P=PDLNK :<---• *LEVT. LOOPI=\ * 

OTHER * * " * 

: • ·-·--·- .177 G1 

: ••••••••• 177 B2 

: ••••••••• 175 All ................. . ......... . 
A 

390 



Chart CR. Process Label References and Definitions CFSCAN) -- CEKJB (Page 2 of 8) PAGE 176 

..... 
•176• 
•• Al* . 
! 

JB10 ·*· 
A1 •• -· •. 

- • ·- 110 
*· ID=LABEL .---------------. 

*· DEF 1 • * •.. .• 
*· -· 

[ 
••***B1********** 
*CEKTFL 015E5* ·---------------· 
* * :IF RCtlO, EX.IT. : ................. 

I ·*· DX C1 *· *****C2********** 
·* *· *CEKJ81 186A2* 

• * *• JES •-------------• 
*· llDLTIPLY • *-->* DIAGROSTIC *--> 

*· DEFillED • * * SUPPLY IGIOBE * 
*· ·* * ID * •. .. . ............... . 

"" i " 
*****D1********** 
* IF CLASS FllT, * 
*llAKE 'SOD BCE'. * 

:sU ~~A~~om,.: 
* OR 'CB EAT ED' * .......•......... 

I 
*****E1********** 
* !!ARK 1 DEF' II * 
•Silll!OL TABLE .IF* 
* .ISD OPTIOR IS * 
* OJI PBF=SJllBOL * 
* TABLE PRTll * ................. 

I 
*****F1********** *****P2********** 
*SET ESLOC. Siii * * IF 10-FLOll II * :m UP~Mg-:___>: aml~o!~to11: 
* PLAT * *Ill SJllBOL TABLE* 
* * * ERTBI * .............••.. . ............... . 

JBJ1 

..... 
•176• 
• 81* . . . 
J ERR 

**H1******* . . 
* SET llCEBR * 

* RETORI CODE * 
* * (II) * * ........... 

I ••••J1••······· . . 
* EXIT TO EXEC * . . ............... 

. .... 
•176• 
• 82• . . . 

JB29 1 
:••••82•••••••••: 

!iMam, mt: 
* IP RCflO, EXIT * . . . ............... . 

I 
•••••J2•••······· 

!iM
0

'~~' ~Ai~ : :IF ofn:¥t mt· : 
* CBAII PllTB * ................. 

l ..... 
•175• 
* DJ• . . . 

..... 
•176• 
• AJ• .. . 
i 

JB20 • *•LABEL REFEREICE 
Al CHAIR SCAR 

- • *· •* BRAICH *· 
*• OR ID • * ·- .• .. .• 

• .. ·· 
: ••••••••• 176 GS 

: ••••••••• 176 H3 

: ••••••••• 176 H2 

: ••••••••• 176H1 

JB1J 
••DJ••••••• . . 

* IRCREllEllT * 
>* LLllK CHAIR * 

* POillTEB * . . ........... 
1 ..... 

•175• 
* D3* .. . 

..... 
•176• 
* H3* .. . 

JB25 1 
*****HJ********** 
•IP ID = LOGIP * 
:s~i'l 1B~~- It1l~'l: 
*JITl1 llITH LTBA. * 

:.u.~~=2,.~m.: 

l 
••JJ••••••• . . 

* UPDATE GLRK * 
**CHAIR POUTER** . . ........... 

t ..... 
•175• 
• .D~• . 

GO TO, ASSIGll GO TO, COllP GO TO 

ABITH IP, LOGICAL IF 

BEAD, BEAD llITH llAllELIST 

CALL 

OT HEB 

JB211 
*****Rll********** 

:I~=mt=0 h~fT : 
* BTR 1 llITH * 
•ILIO: IP BCtlO, * 
* EXIT * ................. 

l •••••J4••••······ . . 
* UPDATE GLRK * 
: CHUI POUTER : . . . ............... . 

i . .... 
•175• 
* DJ* .. . 

..... 
•176• 
* GS* .. . 

JB21 i 
*****GS********** 
* ll=IO!L. CALL * 
*RTR1 llITR LIIO. * 
:IF um~i ~mo: 
* CHAU POIRTER * .........•....... 

1 ...... 
•175• 
• D3* .. . 

Section 8: Flowcharts 391 



Chart CR. Process Label References and Definitions CFSCAN) -- CEKJB (Page 3 of 8) PAGE 177 

***** ***** ***** ASSIG!I ***** 
•177• *177• *177• •177• 
•.B!* •,.a:• •.a~• •.a~• 

* • • * 

JB41 l LABGT JB4U. 1 JB44 ! LABA JB45 ! LlBIF 
*****B 1 ********** *****82********** *****83********** *** **B4 ********** • • • * • • * • 
* * * * •-C!KJP1- (ISP) * * * 
: 11 = llOEL :<---: BAISE ACGTPL : * llITH ALAB * : NOEL = 3 : : ............... : : ............... : I: ............... : : ............... : 

I I P~z:.->! 
•••••c1•••••••••• •••••cci•••••••••• ~ LAB I JB4;:~· LA9 

::!~~!2 ____ 2~~~2: I :~~~~~2 ____ 2~.!~2: . . . . 
* llITH LABEL * * llITH LTBA * . . . . .............•... . ............... . 

I .l. 
• ••n1••••••• • .•n" • .•. 

* LOllER * YES • * *. 

............ • .. • 

* E1 *-> . . .... 
* * * lCGTFL * * * J..------------------------*· *• *~Bii = ~ ••• ·* 

:m. l ,. NO 

JB't2 • •.OUT 
El *· !****ECJ**•******: 

I>OliN .•.*ONI>EP. *·•. *CI>P=CI>P ANCHOR,* 

, •• •.•.FLAG -·· .-•< Al : CDP tmoR = : ' ·- .• .•............... 
::11: i "' l 

* * **P1******* * !****F4*********: 
* LOliEll * * !!ABK RETORll * 

* UllI>EF. FLAG * * LIST * . . . . . . . . ........... . ..•............. 
.... ~~H: -->! 

JB43 !>EL 

392 

*****G1********** * REPLACE * * PBEVIODS ILllK * 
* liI'IH CORREllT * * ILllK: • 

:mm~=~mm: 

i ..... 
•175• 
• ,.ni• . JB37 

***** •177• •.e:• . 
I 
~ ... 

H2 *· .. • . 
• * FONCTIOll *· 110 

*· *~UBPBOGBAll 0 *. *--, 
•. .• ***** ***** RETURll 

•177• *· •• •175• 
* YES * F2* • J3• 

l 
*****J2••········ . . 
* PllAll = SYllB. * 
*TABLE Pll'IR. TO * 
• EllTBY llAl!E * . . ................. 

t ..... 
•175• 
* *F~* . 

.. . . . .. 
I 

JBllB ~ LABB!I •••••JJ••········ . . 
* llABK RETUill * 
: LIST : . . ................. 

..L 
•175• 
* P2* .. . 

***** •177• 

·.:~· m0~mT 
I 

JB68A i 
*****HlJ*•******** 
=~~~~~~2 ___ 2~2~:: 
*BUILD IllTERl'EI!-* * !JIG VARIABLE * 
* VI>P CHAillS * ................. 

.. L 
•175• • .r:• . 

***** CALL 
*177• 
• es• .. . 
i 

JB47 .•.LABC 
BS *· .• *· 

·* llOEL = *· YES 
•. 0 ··--, 

*·•. .•· * I 
•. ·* ' * NO ***** 
I •175• 

* F2* .. 
I • 
v •••••cs•••••••••• . . . . 

* II = llOEL . . . ................. 
I 

LAB 
*****DS********** 
*C!KJ!1 1811A 1* ·---------------· . . 
* WITH LABEL * . . ................. 

l 
:••··~s••*******! 
* llARK RE'!'OR!I * 
* LIST * . . . . . .........•...... 

I 
*****1'5••········ 
* C!IP = CI>P * * AllCHOR, CI>P * 
* ANCHOR = ILllK * 
: (C) : . ............... . 

I 



Chart CR. Process Label References and Oef initions (FSCAN) -- CEKJB (Page q of 8) 

••••• BL3 LOOP 
•178• IT!ll 
* B1* • * . 

JB49 i LOOPB 
:****B1 *********: 

* * :sLJSV = ILBl((C): 

* • ................. 
I .•. 

C1 *• ... .. 
.• I/O *· OP 

*· FLAG ., 
*· .• •. .. ·- .• • DOllll ••••• 

l :1n: .. . 
-·· D1 •. -· •. ·* *• !IC *• llAT (LEV) = • 

*· M •* .. .. ·- .• * YES 

,.,.. I 
•••••! 1 ••········ . . 
• llABK THIS BLJ * 
: 'llAT' : . . ......•.......... 

l' 
*****F1********** 
*IllCR SUB1 l'ROll * 
*LEY. PLAT=PDLllK* 
* PDLllK=AllCHOR • 
* PDLllK * 
:m~~mmm.: 

! ..... 
•175• 
* P2* .. . 

***** llBITE 
•178• 
• J1• .. . 
1 LABllT 

JB56 FOlilllT 
•••••J1••········ . . 
* -CEKJG1- * 

***** READ 
•178• * BJ• .. . 
! LABRD 

JBS2 PORllAT 
*****83********** 
* * * -CEKJG1- * 
* llITB LABF * . . . . . ............... . 
:m. I • CJ *-> . . 
**** .•. JBSJ 

C2 *• *****C3********** -· •. . . 
• * *· YES • • 

*• ERB=O • *->*SET TO X' 8000 1 *< •. .• . . .. .. . . 
• .• ·;o ••••••••j•••••••• 

l"' J •••••D2•········· D3 •• 
*CEKJE1 18411* • * *• 
•--------------• BO • * *· • r•· EOl'=O .• . •. . . 
• • •. ·* ................. . ... 

I "- •ns 

: HJ : l 
II •::;4 ·*· 

E3 *· .• *· 
>*: * E~~=g~ *:*!ES ·- .. .. .• .... 

[ 
*****FJ********** 
*CEKJE1 184A1* ·---------------· . . . . . . ................. 

***** EllD LOOP 
•178• * BQ• .. . 
! 

JBSOC ·*• JBSOD 
Bii *· *****BS********** .• *· • • 

• * GLOBAL *. 110 * * *· FLAG UP .•--->* LXT = 8001 * *· .• • • •. ·* • • ··.·:.. ·······T······· 
I ,.,, ... ", ... •••••c11•••••••••• cs •. . . .• .. 

• * ·* I/O •. UP 
• LIT = 8000 *--->•. FLAG ? • •-i • • •. . * • * •• .• ••••••••••••••••• • .• * 

.... . . 
* Ell * . . .... 
1 •••••!4••········ *LOHR UllDP FLAG* 

*RESTORE ILllKJPI * 

!ifM~:AUt~~sf ! 
: •• :.m~.m ••• : 

!<-----. 

• 001111 ••••• I =::i= 
*****DS********** 
*IICR IIORS ADD * 
* 1 TO LEY llAT * 
* ~EVt =O. * 
:PLA -~gLll~LEV) : . ............... . 

I 
*****ES********** . . 
* POLllK=PDLllK * 
*AllCHOR PDLRK All* 
: CHOR=ILllK (C) : . ............... . 

l ..... 
JB552 • *· 

•17S• * P2* pq •• .. .. 
YES .• rLllK *· 

r •. (SI= ILllK ·* 
*• (C) ? •* .. .• 

*· .• ••••• * 110 

:1m l .. . 
·*· Gii *• .. • . 

. . . 

* * YES • • ID=BL2 *• 
• J4 •<--•. ? ·* • • •. ·* 

: ·:;· :->! .... ····1··:~· J .... 
JBS5 •*• ·*· 

HJ *• H4 *· -· •. .• • . • * EllDLIST *· 00111 • * ID = *· 110 
>•. FLAG ? • •-i *· IllPUT LIST • 

*· • * *· ELEllEllT ? • * A •. ·* •. .• *· .• • ..• 

I
* UP :;m * **** * 

1
. YES 

• • • Jli *-> . . . .... 
* * *FORllAT ARG DEF * 

* LOllER * • ITEi!. * 
* llITH LABF ---------------' 

••JJ•······ ····•JQ•········· I 
.. :mm FLAG... :im m ~Im ftJ: . . . . ............•.... ........... . ............... . 

I 
·*· K3 *· .. •. 

DOH .• URDEP *· 
~·· •• FLAG? .•·* ..... •. .• 

•17S• *· ·* 
• F2* * UP 
• *. ! .... . . 

* E4 * . . .... 

.... 
•178• 
* 1{41 . . .... 

JB39 
*****K4********** : s~~Mu~w , : 
• CDP. doList • 
* FLAG= XIOOP * 
• IIFO. • ................. 

l . .... 
*17S• 
* F2* .. .. 

PAGE 178 

Section 8: Flowcharts 393 



Chart CR. Process Label References and Definitions CFSCAN) -- CEKJB (Page 5 of 8) PAGE 179 

••••• DEF 
•179• 
• 31• .. . 

I 

l 
JB57 • •. JB58 

... a1 •.... :••••e2•••••••••: 
• • IF ~EF •. HO •LINK OF CURRENT* 

•. BIT ON ? .*--->* ENTRY =0 .... .. . . 
*· .. • • • •. . . . ............... . 

• YES I 

l 
I 

~ r-
J 

!****Cl*********! • * C2IS *· *· 
• BLllK=LLNK • NO • •NO-FLOW Ill *· 
• UICHOR. LLllK • r•.SY~BOL TABLE .• 
:ANCHOR =ILNK(C): *·•. 011 .•·* ................. •. -. 

394 

1 :m: • YES 

~ •• f ~· t ..... . 
•175• 
• F2• DX • • •••••02••········ * *CEKJH1 186A2* ·---------------· 

STATEllEllT • 
CA!lllGT BE • 

! .... H~~~;2 •••• : 

! ..... 
•175• 
• • p~• . 

••••• LOGICAL 
•179• IF 
* 33• . . . 

JB59 ! •••·••83••········ • * • * * MOEL=l • .. . . . . ............... . 
I 

.. ! .. 
•177• • .c:• . 

JB60 

***** ~QUATIO!f 
•179• •• '3:• . 
i 

. *· JB61 84 •. •••••P.5••········ • * *· * llA RK RETOR!I • ·=· ABH=O .? ·:.~-0 --l>= L~~~iio~0to~DQ : *· * *ANCHOR= ILNK (C) * •. . . . . • ... • ................ . 
* n:s I 

l 
!****Cll*********! . 
: Q=VAI' * . . . ............... . 

l . •. 
Dll •. .• .. . * A!'G. •. UP 

*· FLAG (Q) ? • •1 
*· ·* •. .• 

• •• • I 
; DOilll I 

! I 
JB62 .• • :••••!J••·······: .. !4 •• • • 

* DOllll • *. COllllOll *• *<---*· PLAG (Q) ? • * • *· .• 
CDP=O . . •. .• ................. ·- .• 

* UP 
I 

l •••••r••••••••••• . . 
*CDP=ADP AllCROR * * ADP AllCHOR= * 
: ILllll: (C) : ................. 

I I 
1<-----' 

!<---------' 
JB62A ~ 

*****G"********** 
•JBGL001 18113* ·---------------· 

~------>*BU!LD IllTF.Rl'Ell.* * VARIABLE VDP * * CHAIRS * ................. 
! ..... 

•175• 
•• P'~· 



Chart CR. Process Label References and Definitions (FSCAN) -- CEKJB (Page 6 of 8) PAGE 1ao 

JB63 

***** BllGlll LCOP2 
*190• 
• .ai• . 
!. .•. 

B1 •. . . • . • * IVAR = *· Y'ES 
*·•. E~gA~' •• -"'---t .. .• ..... 

••• • •175• i HO * •:~· 

~ 
:••••C1*********: . . 
: Q=IVAR : . . ................. 

l ... 
D1 *· *****D2********** 

• *. * ARG *· *· UP :cDIJ~~1~~) ~D~DP! 
._ •• PLAG 101 •• • *---->: Am~a;~m:· : 

*· · * * LIS'I. • 

• .. • ················· i , ... 
JB61i - *· E1 •. .. • • .. 

DOllH .• COllllOH *· 

I
*· PLAG (Q) ·* •. . . •. .. 

I • .• · ~p 

l 
*****F1********** . . 
:cowM~v~oPm: 
: ANCHOR=VL35V : ................. 

I -.. 
G1 *· 

~YES • •" * *· *· 
r-*· Rllr(LEV+1) ~• 
l *· = ZERO .• 

I •. ·- .• ·• 

JB65 r 
**H1******* * SET * 

* lllTERULlZE * 
*Bl? OF ElfTBY AT* 

* * BL35V * * ........... 
'"" ,, 

•••••J1••···~···· 
=~~~:~~! ___ ~!~~= 
*BUILD UTERFEB.• 
* VABilBLE VDP * 
* CHlllfS * .....•........... 

.. L 
•175• 
* ,.F~* . 

***** IlfPOT LIST ELEllE!fT 
•100• 
• 93• .. . 

I 

JB66 i 
*****83********** . . . . 
: Q=CDP/VlR : . . ................. 

l 
.•. JB68 

C3 *· *****Cli********** 
• • *• *IP COllllON PLAG * 

.• ARG *· DOllN *'it OP, CDP=ADR* 
•. •. PLAG (Q) • *. •--->:AIPH~~T!L~~~;~ ! 

•• • * • • ·- .• ....•............ i " 
•••••o3•••••••••• 
* !!ARK RETURN * 
* LIST CDP=COP • * ANCHOR CDP • 
* ANCHOR= • : ••• nmm •••• : 

j,____.. 
•••••!3••········ 
*JBGL001 191A3• ·---------------· 
*BUILD IHTERFER. * 
* VARIABLE VDP * 
* CHAINS * ................. 

! ..... 
•175• 
* 12* .. . 

..... 
•180• 
•.a~· . 

JB69 ! SCU3 •••••85••••······ 
* IHIT!ALIZ!' * * PSAVP2 = EOC * 
:LSHi~h~?VF.2,: 
• * . ............... . 

l :••••cs•••••••••: 
*P = APDL!fK L = * 
*ALLllK C = ACDP * 
: A = AADP : . ............... . 

l 
·*· DS *· 

.• ANY *· 
MO • •ENTRIES II' *· 

••·•. ~!o8~ .• ·• ... . . • .. • * Y"S 
I 

JB91 1 
!****ES*********! 

: Elggi hT~fEs : 
* • ................. 

I I 
I

JB70 I'S•*•*· 
.• .. 

NO ·* AllY *· 
<-*· ENTRIES Ill .• 

*· RLOOP • * •. . . • .. • 

'
"" j"' 

*****G'5********** 
I • • I *IP All EllTR'I' Ill * 

I * ELOOP !IOT Ilf * :noop. CALL !>X.: 

~ 
..........•...... 
'i •••• ,,.L ...... . 

*LOAD ElfDCRAI!fS * * INTO PSAVE2 * 
>:Ls:''f~ ... ~mb·: 
* TABLE * . ............... . 

I 
!****JS*********: 
* LOAD AllCRORS * 
* "OR P1'LllK=P, * 
: LLH=L, CDP=C : ................. 

.J.. 
*182• 
* .o~• . 

Section 8: Flowcharts 395 



Chart CR. Process Label References and Definitions (FSCAN) -- CEKJB (Page 7 of 8) PJ'.GE 181 

JBGLOOl 

****A3********* 
* * * ENTER * 
* * *************** 

II BUILD IJITERl'ERING 
VARIABLE VDP CHAIN 

! 
*****B3********** 
*SAVE V1,V2 GET * 
* l'LAGS PRO!! * 
* SY!IBOL DESCR. * * PART * 
* * .........•....... 

l 
·*· 

CJ *· .• .. 
OPl' • * *· 

*· IllTERl'ERING ·* 
*·FLAG UP? • * •. .• 

•. ·* i "' 
·*· •*~~ORA~£•. :****D4*******H: 

• * CLASS OP *· 110 *IllTBLE INDEX = * 
•. SYl'IBOL = .*->*(ST. CL. -7) *II * 

*· 6 • * * * * • • * '"""' ... r;, ....... T ...... . 
!****E3* .. *** .. *: :;:;*ii;•~;:~•:•: 
*IRTBLE INDEX = * *IllTBLE (PRl' LINK* : 4 :->:<mcmKr~mE: 
* * * PTR * ................. . ............... . 

I L------>I JBGL006 

****Pll********* 
* * * RETURll * 
* * ............... 

396 



Chart CR. Process Label References and Definitions CFSCAN) -- CEKJB (Page 8 of 8) 

**** . . 
• S4 • . . 
**** 
! 

. *· 
Bii *· .. •. 

NO • * CURRENT *· 

I
*• PDLt;K !TEii • * 

*· ;t ENDL • * •. .• 
' ·- r~ES 
I ! I . *· l • * Cll •. *· 
I .• END O!' *· HO 

*· ? .• I 
*· DUllllY LOOP .•-------..... . . 

=~~~: I ··-.:.1 ·_;;, I, 

JB76D ! 
*****02********** I Oil *· I 

:s5PiMH m': ~ NO • •i>~o6~ ~'!'E~- •. I 
•= A SYX=AllCHOR • *· <l'DLNK .• 

>•iiIGHEST ANCHOR * 1•.>1L!IK(C) AND ·* 

I * INDEX * *· • * l 
I *******••******** *· *. ;!S I 

[ ,,,, J 1,,,, I ,,,, J 
!****El* *******! ·*E2 *·•.. !****Ell*********: •*Rfs A*·•. 
•.i!ELINK VDF (SU)* YES .• A> *· *llARK THIS EllDL * YES .•ELOOP ITEi'! *· 
: CHAIN :<---• ••• C,L,P? .•·*< : ITEi! 1 1JNSAPE 1 :<---*·~~tg~m ~ ~.·* 

• • •. ·* • • *· ·* ················· ·-r· ·······:r······ ·-· · :. 
JB78 • *· JB85 JB83 V 

P2 *· *****F3********** I *****1'11********** 
-· •. • • 1 • * 

.:· A,r~P? ·: • .:::_>:c=c~t~AbH:nINK:___J< __ : P=PDLNK (Pl =<--------' 
*· • * * * A * * • • . . I . . . •. . . ................. . ............... . 

* NO 

1 I 
• •. JB84 I 

G2 *· *****G3********** I 
JB71 

·* *· * * I 
.:· A:~,P ·: • .:.::_>: R~LmKmR !_J 

*· • * * CHAIN * •.. .• . . • .. • ................. . 
* NO 

i 
JB80 • •. 

H2 *· 
·* P= *· 

• • L=C=A *· NO * * 
•. =ENDCHIUll? .•-->* 84 * ... .• . . 

•. ·* •••• 
•. ·* * JES 

"'" l *****J2••••······ . . 
*PllT VDP AllCHOii * 
*LillKS IN IllTBLE* . . . . ................. 

I 
****K2********* . . 

: EXIT : ............... 

Section 8: Flowcharts 

PAGE 182 

397 



Chart cs. Label Reference Processor (RTNl) -- CEKJD 

CEKJDl llTN 1 

****Al********* . . 
: EllTEB : ............... 

~!Jo-02--'.l. ,.. 
Bl *· *****B2********** *****B3********** 

• * •. *CEKTFL 015E5* * PllF=SY!IB. TBL * 
.• VALUE < *• llO •---------------• * PllTll. !!ARK * 

*· 0 .---->• VALUE IF RC #- "->*'llEF' IN SYl'IB. * 
•. • * * O, RETURN * * TABLE * •. • • * • • • •. . . ...........•..... . ............... . 

i"' 
JD12 -·-Cl *• *****C2********** 

• * *· *CHANGE SIGB 01" * 
• * ST. ID= *· NO *VALUE. CALL FLL* 

*· ARITH. IF .*--->* WITH VALUE.IF * 
*· • * *BC # O, l!ETURll * 

*· .• • • ,,,. ..r.. ·······T······· 
!****Dl*********: !****D2*********! 

*PllF SY!IB. TBL. * * Piil' = SY!!B. * 
*PNTR = X' 8000' * * TABLE POIBTEll * . . . . 
• * • • ................. . .•.............. 

JD10 
l ,~. [,__. 

**El******* *****E2********** 
* * * IP CLASS * 

* UPDATE PRF * *UBKllOllN SET TO * 
* fIELD POillTEJ! •<---* 'SOOllCE Oii * 

*llEDOCE N BY 1* * CREATED' * • • • * ........... . ..........•..... 
I . •. 

Fl *• 
I Uft •• •• •. ·-

L.::::._ II = 0 • * .. .• ·- .. ·- .• l "' 
****Gl********* 

* RETURN * 
* (llETURll CODE ~ * 
• 0) • ............... 

398 

PAGE 183 



Chart CT. Label Reference Processor <LAB> -- CEKJE (Page 1 of 2> 

CEKJ!1 LAB 

****A 1********* • * 
: EllTEli : ............... 
: ·::· :->l .... 

JEOOO ·*· 
81 *· 

-*SYMBOL *· 
·* TABLE *· US * * 

•. POI!ITEB = .*-->* H1 * 
*· '8000' -· • * .. .. . ... .. . • 

[ 
•••••c1•••••••••• . . . . 

-CEKJ1'1- : . . ................. 
! -·-01 •. .. • . 

• * LEY *· 110 
•- •. (RE1') = 0 • *. *---l 

•. .. . .... 
•. ·* •185• * YES * B2* .. 

* l 
JE050 ·*• .•. JE070 DX1' 

E1 *· E2 *· *****E3********** 
•* *· ·* PLAT *• *CEKJH2 11l6A3* ·= * (oEify = o *: ~>•: • '¥~nag ·:._110 ___ >:---------------: 

*· •* *· TBL •* * DIAGNOSTIC * •. . . .. -. . . • .. • •. .. . ............... . 
'"" .i. "' i "' 

F1 •. *****P2••••••**** 

110 .• ··mmr·.. :A~eopm mr~: 

r•.PLATIREP) AND.*<-.---* PNTll TC ELOOP * 
*· PLAT ·* * LIST * 

•. J~E!L · • =•••••••••••••••= :""::•: .
1 

YES . . .... 
*****G1********** 
*IF BABRIEii LEY • 
* = -1 ADD * * PLAT !Dbl TO * 
: DLCOP LIST : ................. 
~,i1: -->I .... 

JE080 
**H1******* * • 

* OPDlTE PBF * * fIELD POINTER•<------------------' 
•REDUCE II BY 1* • * ........... 

I .•. 
J1 *· . .. ·-110 .• •• 

l
*• N = 0 .• .. . . .. . . 

*· .• :-::·: j "' 
* ****K1********* * 
: EXIT : ............... 

Section 8: Flowcharts 

PAGE 184 

399 



Chart CT. Label Reference Processor <LAB> -- CEKJE (Page 2 of 2> 

..... 
•185• 
.. 82• 
• * 
* I 

l 
-*· JE0201 .•. ·*· JE020A 

B2 *· B3 *· 84 *· *****BS********** -· •. . • •. . • *· • • 
• * *· YES • * LXT = *· !10 • * LXT = *· NO * * 

*· LEV(DEF) = ·*--->•. 8000 ·*--->*• ST8CL .*---->•S~T LXT = 8001 * 
*- 0 • * *· . * *· . * A * * *· • * *· . * * * I * * 

.. ~::c.. ,,,=i .. J:::: ... : , ,,,., .. ::: c:. I ........ 1, ....... . 

•• BETllEEif •. IfO :uifiv~ ~u~~v :<~•=* A~guL ·:.~ 
·-~:ATmP A~~-1 : -1 : ·-.. •••• 1

1 

*· J~E~~ ·* i"' ....... T....... ..... t 
JEOOS DX • *· • *· JE03 0 

:~;:~~1 ****~;~:~: • * D2 *• *· •*DJ *· *· :****D5*********! 
•---------------• YES ·* BABBIEB *• ·* REF = *· 110 * !!ARK * 
* *<---*· < LEV (DEF) .• *• DEF • * >* PIATERIALIZE * 
* DIAGllOSTIC * *. • * *· • * * L tST * • • •. • • •. .• • * 
********I******** *· * • ;O *·*•;ES *******>*!********* 

..... I< 
•1811* 
* H1* JE010 ·*· .•. JE020D ·*· 

* * !!2 *• *****EJ********** Ell *· ES *· 
* • * *· * * • * *· • *BARRIER•. 

YES .• LEV *· *ADD PLAT (DEF~ * YES ·* BARRIER *• YES ·* BETll!EN *· 
.,.r.;-*· •!:E1~EF) L:~ *. * : TO OLOOP LIS :<---*· *• LEV = 1 • *. •<---*· •=LA~H,Fl ~ •. • 

"°" ,. =::i= ··:r : ...... r ..... : ····t· ,,.., ··,r~· 
•••••F1••········ 1"2 ·- I F5 •. 
*CEKJH1 186!2* •* *· ~ .• *· 
·---------------:<--Y-E_s ·= ::m~m». > >•: :~~Lmna. >~ 
: ••••••••••••••• : •• ·- .•.. •. *· . • . • l 

I * NO * YES ***** 

l l l =:.~i= ..... 
•1811* 
* H1* .•. ·*· JE010A 
* * * - * G2 *· *· . * G3 *· *· !****G4*********! !****GS*********! 

•=* ~~ao= *=•-
80
--->•:* g~CL *:~>:SFT LXT = 8001 : •.*

1 ¥8 m~e(m~ *.,* 
*· ·* *· .. * A * * *· ... * *· . * I * * * * ·- . . ·- . . I ········i········ ········r········ """ i ,., ...... J"' I I :1m 

*****H2********** HJ *• * * • • •• •• ~ * 
* LXT=STPCL * YES • * ACGTFL *· NO 
* BEFLEV= *<---*· DOllll • * 
* REFLEV-1 * *· . * . . .. .. I ........ r...... ··.·· 

• *· JEO 111 
J2 ·- •••••J4••········ -· •... . . • •REP= •.110 * !!ARK * 

*- DEF • * >* f!ATF.RI!LIZE * 
*· • * * LIST * •. -. . . *· .• • •••••••••••••••• i YES ! ..... . .... 

•1811• • 1811• 
* H1* * H1* • • * • . . 

400 

PAGE 185 



Chart cu. Diagnostic Message Generator (DX) -- CEKJH (Page 1 of 2) 

CEKJH1 DXW CEKJH2 DX!' CEKJH3 DXA 

****A2********* ****A3********* . . . . * ****A4********* * 
* EllTER * * EllTER * . . . . : ENTER : ............... . ............. . *************** 

I l l 
:•;~;et~~:~·=:~•: :•;;;B(~~:~·::~•: !****B4*********: 
* Ei\ROli COD£ TO * * ::RROR CODE TO * * SET LOCAL !!AX * 

!11WEJ:: t&m : :11n\JgoRLgm,: : ERRO!l,~ODE TO : ................. ................. . ............... . 
I i I '''' \<.~~~~~~~~~~~~~~~~~~~~-' 

•••••c2•••••••••• 
*INITIALIZE RD!! * 
*!'ARA!IETER LIST * 
:NP,;;. ot0s~sa:u: 
* HEJ,DING * ················· 

"" l !****D2*********! 
* GET NEXT * * PUiAllETEli *< 
* * * * ................. 

I 
·*· • *· JH10 

E2 *· **E3******* E4 *· *****ES********** 
• * *· * * • * *· *ADD TEXT LEllGTI!* 

·* *· NO * * • * PARA!! *· NO *AllD ADDRESS TO * 
*· PARA!IETER = .•--->* ADD 1 TO NP *--->*. TYPE=BRA!ICH ·*--->* ROii PA!UllETER * 

*· 0 • * * * *· ? • * * LIST * ·- •• • • •. .• * • ·- . . ........... ·- . . . ............... . 
·1 YES i YES =~:~. I 

v * 1'5 •-> ..... . . 
•187• **** 

JH08 ·*· * B2* JR11 ·*· 
*****F1********** 1'2 *· * * l''i *· 

:SET UP SPECIAL : YES •• •• ·-.. * YES •• •• •• •• !10 I 
* l!ESSAGE *<---*· NP = 0 ·* *· llP = 6 ·*---' 
• * ... ·* *· .• • • •. .• *· .• ••••••••••••••••• *· -· *· ·* 

1 r BO * 

I "'l •••• J........ I 
I : SET Ell> 01' : 

1 
:PARAllETER LIST r_J 

! ·······:r:::···· 
*****H2•********* 
=~~~!~~----~2~~~: 
* ISSUE * 
* DIAGllOS'?IC * 
• * .................. 

l ••••J2••······· * • 
* RETOliH * 
* * ............... 

Section 8: Flowcharts 

PAGE 186 

401 



Chart cu. Diagnostic Message Generator (DX) -- CEKJH (Page 2 of 2) 

..... 
•t87• 
• Bt• .. . 

JH20 1 :••••et•••••••••: 
:11~ii~I~KPTJvm : 

f :PAuhhR LIST : ' ................. . ..... 
•t86••••• * P5••t87• 
* ... Ct I • * .. .... 

JH30 
•••••ct•••••••••• : ~all~~ mm~: 

r
:Lnlphi~.r;Df~I-: 
*RD!! PARA!! LIST • .•........•...... ..... 

•t86• 
* PS• .. . 

..... 
•t87• 
• 82• 
* * * 
i -·· 82 ·-.. .. 

•* BRAllCH *· 
*· 011 PARlll .• .. .• •. .• • ..... 

: ••••••••• t87 Bt 

: ••••••••• t87 Ct 

: ••••••••• t87 Bii 

: ••••••••• t87 G2 

..... 
•t87• 
* G2* 
* * * 
i 

JHll9 JH38 _ .•. 

VARIABLE 

LABEL 

COl!llOll BLOCK (2) 

STOUGE CLASS 

I 

*****Gt********** G2 *· *****G3********** 
*ADD LENGTH AllD * • *STORAGE•. *ENTER STG CLASS• 
• ACDBESS OP •11c11-cc1111011. * CLlSS= *· YES * TABLE NlllE * 
• 11011-co1111011 TO •<---•. LABELLED .*->* ~LBLD COllllOll • 
:RDll PARlll LIST" : *· .~0111101. * ·* ! ~~~fL f¥s~Dll ! ................. • .. • ........•........ 

402 

1 * BLlllK CO!lllOll ! ..... I ..... 
•t86• •t86• 
• PS* JHll5 * PS* • • •••••a2•••••••••• • • 

* *lDD LEJGTH HD * * 
*ADDR TO 'BLllK • 
•cc1111011• TO RDll * 
* PAB.lll LIST * 
* * .....•........... 

t ..... 
•t86• 
* FS• • * . 

. .... 
•t87• * Bii* .. 

* 
! 

JHSO • *• JHSll e11 •. •••••es•••••••••• 
• * •. •ADD LEllGTH AllD * 

.• BLAH *· TES •ADDR OP 'BLAllK * 
*• COllll01'? • *--->•COllllOll' TO RDll • 

•. •* *PARAllETER LIST * •. •• • * ·r ,.,:······r······ 
•••••c4•••••••••• •••••cs•••••••••• 
*ENTER STG CLASS* * • 

:T~Mt"~o~m- =--->:sr.rro:1~~mRs : 
: B~~fL I¥s~D11 : : BLOCK 1'APIE : .......•......... . ............... . 

! . .... 
•t86• 
*•F~* 

* 

PAGE 187 



Ch.art CV. Phase 3 Master Control Routine -- CEKKR (Page 1 of 4) 

CEKKRA 

••••11•········ . . 
: ENTER : ............... 

I 
*****B1********** . . 
*llOVE PSECT INTO* * Gl!l!IAIN /\RllA. * 
*RELCCATE ADCONS* . . ................. 

I ••cl••••••• . . 

PRF SCAN 

KR110 . *· 
92 *· .. • • .. 

I
>•:* PR~fi = *:.~ ·-.. ...-· I ·- .. • * YES 

I 

I I 

* SET 1ST PASS * I 

..... 
•188• ·.ar . 

KR 180 ! 
*****B4********** 
*CEKKUA 192A 1* ·---------------· 

l
>:STOREI~R~FENTRY: . . 
········j******** 

I ! 
I ·*· I C<I *· 
I • * *· * INITIALIZE * * TAE.LES: HASH * 

II KR
5~2•••c2•L••••••• I 

* HOLD FLAG * I 

I . (HOLDB31 AND • I * llAtERilLIZE * 

I . * END IT = *· NO * * . . I •. 1 • *-->* R 1 • . . ........... * FLAG (!IATFL6) * I • .. •... ... • .• •••••• 

I 
••01••••••• 

* SET * 
* FOINTERS: * 

* •In§A~~N~~T~: • • ........... 
I 
1 

**E1******* 
*lNlTIALIZE * 

* CHAIN * 
* ANCHORS: * 

* BPT=8000 • 
*CBDP=8001) I* ........... 
I 

**Fl******* 
*INITIALIZE * 

*CHAill ANCHORS* 
* LBDP=8000 * 

* RllVAL=SOOO * 
* K=O * ........... 
l 

**G1******* 
*INITIALIZE * 

*CHAIN ANCHORS* 
*SERf=O SERFT=O * 

* JCINTE=8000 * . . ........... 
I 

I ········j········ I 
I ;~g~: •->I I 
I •••• I I 
I K!i155 V I 
l *****D2********** I 

I * LOCHCR=HASH * _J * TABLE INDEX * 
* F IRSTCRT=LOC. •< 
*OF 1ST CRT ITEi!* . . ................. 
•188• I 
: E2* *->, .... 

KR160 V 
*****E2********** 
•CEKKAA 2<13A2* ·---------------· 
* ACQUIRE ENTRY * 
* FROll CRT * . . . .................. 

I 
·*· F2 *• 

-· *· ·* VALID *· YES 

·-.:m!=~f0~~.··-v 
*· ·* ••••• 

•. -· •189• 
* NO * B1* 
J ••• 

! 
*****G2********** . . 
• GET PLP Loe. • 
• FO& ca&aENT • 
* LOOP LEVEL * . . 

I *· ·* I • YES 

i I I •••••Df4*: •••••••• 

I : SET END OF : 

I * PRF=LAST PRF * 
* ElfTRJ * 

I * * 
I ***************** 

I 
KR999 l 

****E4********* . . 
* RETURN * . . ............... 

• • I I 
·······T······· 

* H1 *->! l .... . . I KR100 • *· 
H1 *· . . • .. 

• * SPECIAL *· NO 

·- •• DUllPS ? •• ·*-->I •. .• • .... 
* YES 

I 

•••••J1•!........ l . . 
*SET Of SPECIAL * 
*DUllF PAiiAllETERS*---
* • . . ................. 

·*· H2 *• ·* 1ST *· 
.• PASS Sil. *· NO 

• •. *·(HOLD831 = .•·*-y 

•. -· ***** •. ·* *190• 
* YES * A 1• 

1 * •* l NO 

J2·*· *· J3" • *· KR82~***Jli********** -· ... . . •. . . ·* PllFID = *· NO •* PRFID = *· YES * LOAD 1ST LOC. * 
*· LABEL • *--->*. ALT. ENTRY • *--->* OP PPOGBAll = * 

•. ·* *· .• * X1 7FFF' * •.. -* •. ..• • ... • .. -· *· ·* ••••••••••••••••• 
* YES * 

l ..... 
•190• 
* B<I* * • . 

l . .... 
•190• 
* D4* .. 

* 
E1. ABDP=8000 

E2. RETUR!I: P2=LOCATIO!I 
OF VALID ENTRY. Tl' 
P2=0, HO EllTPY l'OtJ!ID. 
li~iEfOllPIJTE & RE!IOVl!: 

Jli. ALL ALT F.NTRY TRIAD 
E!ITRil!S !HIS'I." BE DEL"!TED 

PAGE 188 

section 8: Flowcharts 403 



Chart CV • Phase 3 Master Control Routine -- CEKKR (Page 2 of 4) 

KR600 

..... 
•t89* 
* .ai• 

* 
i . •. . .. 

.• at •... _.a2 •-.. :••••a3•••••••••: 
.• PRPID = *• 110 • • PBl'ID " *• NO *GET TRIAD LOC. * 

•... BL1 .•·..___>•... BL2 .•·..___>: {CRTR~E~ FRO!! : 

•. ·* •. -· * * •. . . • .. • ............•.... . "' .. ,, l .. .,. I ..... ~ r ... 
•••••ct•••••••••• •••••c2•••••••••• c3 •. 
•C£KKBA 24411 * * * • * *• 
•---------------• * * NO • * PRPID = *· 
•GENERATE POLISH• * RVAR = IVAR * r*· BL3 ·* 
* EXPRESSION * • * •. • * . . . .. •. .. ................. ................. . .. . 

404 

1 ! (::•: •1 YES ..... .... . ... 
•188• • • 
* E2* * H4 • • *· • • • * 03 •• . .... . . . . 

• * HOLDB3 *· YES 
·- = 1 -*--> •. . . 

•. ·* .. . • i .. 
. *· 

E3 *· .. .. 
• • TRPI1 *· NO 

*· OP='!' ? • * •. • * •. .• .. . • 
KR660 

i "' 
**P3******* * • 

* CLEAR * 
* !IATPLG6 • . . 

* * ........... 
I 

*****G3********** 
* * * WTEXPR*2 * 
: 11~mw~In; : 

: .............. :: 
I 

*****H3********** 
*CEKKOl 249A1* ·---------------· . . 
: SET TOTPOP : ................. 

.. L 
•t91• 
* B2* .. . 

KR630 ... 
84 •• 

·* • . • * TR PCP < *• TES * * 
>*. PPT • *-->• Jll * •. .• . . 

•. ••• **** 
•. ·* 

i" .•. 
C4 *· .• .. 

• • TRPCP > *• TES 
*·•. BL2PT •• ··~ •. ... . .... 

*· .• •t88• i.. ·.:i· 
... 

Dll •. 
.• *· 

• * llCO!IPI!' *• TES 

*· OP TRPLAG = ·1 *· 1 ·* •. .• *· .• 

i" . .. 
E4 *· .• • . 

•* LOOP *• RO 
*· VARI ABLE ? • *--> 

*· .• •. . .. • ... 
i"' 
.•. 

Pll *• .. •. 
YES • * l!'RCPLG *· 

I
*· OP TR PL AG = • • 

*· 1 •• •. .• • ... 
i" l ·*· Gii *• 

I ·* *· 

I 
. * PLPPLGS •. NO 

*· = LABELS ·*->I 
•.OCCURRED ·* 

l 
·· .... ·· 

**** 

1
. YES . . 

• HI! *-> • * .... 
6110 

*****Hll********** 

::~~~~~----~~~~~= 
>•GEllERATE POLISH* 

* EXPRESSION * . . ....•.....•....•. 
• ••••• I 
: Jll :->1 .... 

KR650 CRT DEL •••••J4••········ 
*CEKKRE 191A1* ·---------------· 
*DELETE Al l!RTRY*< 
* PROll CRT * . . ................. 

! ..... 
•188• 
* E2* • * 

* 

C2. LOAD INDUCTIOlf VAR. 
SYll. TBL. PRTR TO 
WORKIRG CELL ADDR. OP 
RECURSIVE VAR. 

G3. P'OR RECURSIVE !XPS, 
TALLY GLOBAL REG 
ASSIGN!IEllT IITH DOUBLE 
COOllT FOR POPULARITY 
WEIGHT 

Bii. COllPARE TRIAD'S 
PORIARD COllPUTE PT. TO 
CURRERT PR1" PRTR. 

Cll. CO!IPARE TRIAD'S FCP 
TO BL2PT I!f PPF ITEi! 

Ell. TRLVl" = 1 Ilf TRPLAG 
1 

PAGE 189 



Chart CV. Phase 3 Master Control Routine -- CEKKR (Page 3 of 4) PAGE 190 

KR700 

..... 
•190• 
**Al* 

* 
t -*· KR710A 

•*A 1 *· *• !****A2*********! 

- * HOLDBJ *· liO *GET PLP LCC. OF* *· = 1 • *--->* CURREllT LOOP * 
*· *• • *. * : LEVEL : 

• .... ................. i "' l .•. 
**B1******* B2 *· . . • * BXLE *· * • - * REC Ill *- 110 

* HIGHPOP : 0 * 
* * * • ........... 

l 
*· PLPFLGS 011 ·*1 *· ? -· ·- -· •. ·* i "' 

:••••c1•••••••••: 
*LOAC BL2PT PRl' * 
: LCC. : 

* • ................. 
I 

**D1******* • * 
* SET HOLDBJ * 

• = 2 * 
* * • t• ........... 

! ..... 
*188* 
* .o~• 

* 

·*· C2 *· -· •. YES ·* *· 
1··.~m~m ?_ ••• •. . ... 

•. ·* 

i" 
*****D2********** * • 
* RELillK CRT * 
* ITEllS * 
• * . . ................. 

'"'" 'I *****E2********** * COllELEllEllT * 
* HIGHPOP TO * 
*OBT.llI!i NEGATIVE* 
: Ii EIGHT : ................. 

I 
*****1'2********** 
*CEKKOA 249A 1* ·--------------· : :---> 
* •• ...............•. 

'""' "··· .. L .• • * 111Tl'L6 *· *• NO 

>•- = 0 ··1 ·····.(:.. I 
HJ···.. I 

• * *· I 
NO ·* ISO *· I 

I
*·*· OPTi~·.· = ••• * I 

•. -· •. ·* * YES 

.. ,,, I' 
••J3••••••• . . 

* SET llATl'L6 * 
* Ill PLPl'LGS * 
* * . . ........... 

t"' ..... .I. ..... 
* CLEAR * 

>* HOLDBJ * 
• * . . ........... 

! ..... 
•188• 
• 84* 
* * . 

..... 
*190* * B4* .. . 
! 

KR750 • *· 
B4 *· . . •. 

·* LABEL *• !10 
*· *~EFERPCED • * ·*-----i 

*· . • • •••• *· . • *188• 
* YES * Bii* 
I * * 
I * 

! 
*****C4********** * • 
* Pll = PRF LOC. * 
: OF BL3PT : 

* * ················· :;ig· *->' 

:.... t 
KR760 + 

:****Dtl*********: 
* LOCHCR = HASH * 
* TBL. INDEX * . . . . ................. 

..,,. I 
*****E4********** 
*CEKKAA 243l!.2* ·---------------· 

I
>* ACQUIRE ENTRY * 

* FRO!! CRT * 
* •• ·······T······· 

I .... ·:::;:· .... ,, 
I 

*. ENTRY FOUllD • *----. 
*· ? •• ' •. ·* ••••• 

*· ·* *188* i "' ·. ::· 
*****G4********** • * 
*LOAD TRIAD LOC.* 
: PRO!! CRT : 

I * * 

l·······r:::::· 
*****Bii********** 
*CUKRE 191A1* ·---------------· 
*DELETE EllTRIES * 
* FROll CRT * . . ................. 

Dl. SET FOR 211D PASS & 
GO TO SCAN OTHER 
'!:NT RIES 

C2. COllPARE LOC. SAVED 
AT KR1'i5 OF THE 1ST CRT 
ITEi! TO THE PllEVTOUS 
ONE SAVED 

!'2. DELET1!: GIPL Ell'!'RY 
Ol' THE !!OST POPULAR 
BXLE 011 REC (HIGHllAllE) 

Ell. RETUR!I: P2=LOCAT!ON 
OP' VALID ENTRY. II' 
P2=0, MO ENTRY l'OIJllD 

section 8: Flowcharts 405 



Chart CV. Phase 3 Master Control Routine -- CEKKR (Page 4 of 4) 

CEKKRE 

* ****A1********* * 
-*· 

A3 *· 
.•IS THE •. 

• • STEP A *· 110 
: ENTER : ............... ..... 

•191• 
* 82• 

I
>•. CONSTANT • •--,_ 

•• ? ·* y *· ... • •••• 

I •. ·* •188• 

l •••••81••········ 
* * * GET Loe. OF * 
*PREY. CRT EHTBY* 
* * * * ................. 

l :••••c1•••••••••: 
• * 
:TRFCP = x•aooo•: 
* .. ................. 

l 
!****D1*********: 
* SET CRC.i?LK Ill * 
*PR!!V. CRT EllTliY* • = x• aooo• • . .. ................. 

I •••••:z1•········· • * 
*!!AKE PREY. CRT * 
: EllTBY CURREllT : . .. ................. 

l 
****F1********* * • 

: i\ETURll : 

········••*•••• 

* * * 

KR665A ! •••••s2•••••••••• 
* * *CURRCRT = LOC. * 
*OF CURRENT CRT * 
* ITEi! * 
* • ................. 

l 
·*· C2 •. 

• •• BXLE' *· 
110 • •TRIAD FLAG *· 

r *.IH TB211DP 011 .• 
•• ? •• •.. ..• • .. • 

***** • YES 
•168• l * E2• * • 

* 
.•. 

02 *· .• •. 
110 • • PRI!IITIVE •. 

r *.1ST OPERAND ?.• ... .. 
*· ••• • ... 

***** * YES 
•188• I 
• E2* .. 

• I 
v •••••!2•••······· 

* * * GET SYllBOL • 
* TABLE POUTER * 
•OF 1ST OPERUD * .. * ................. 

l .•. 
F2 *· .• •. 

110 ·* IS IT l *· 

r *· COllSTAllT ? •* ·- -· •. -· • ... 
***** • YES 
•168• I 
* E2* 1 * • 

* 
·*· 

G2 *· 
.•IS 'IllE *· 

YES • * CONST UT *· 
r---*• NEGATIVE ·* 
v •... ? .• ..... •. -· 

406 

•188* •. • • l * E2* * HO ·.. I 
•••••H2••········ I 
* * 
!G2fiRmTLfgo~

08

!J : LEVEL : 

·······r······· 
:••••J2••·······: 
* GET SYl!BOL * * TABLE POINTER * OF LOOP STEP * 
* * .........•....... 

i "' . -:i· 
. •. 

83 *· 
.•BL3 PliF•. 

• •ITE!I FLAGS *· YES 
*·:. l!ATE~IALI~~-*-f 

•. .• ..... 
*· .• •HIS• * NO • E2• 1 . *. 
·*· CJ *• 

• *PLPFLGS* • 
·* = *· YES 

*- .. ~ATEliJ!LIZ~*·*-f ·- -· ..... *· ·* •188• * 110 * E2• 1 * .. * 

·*· DJ •. .• •. 
·* ISO *· YES 

• •• ~PTICll 011 :.·•-, ·- . . . .... 
*· ·* •188• i" .. : .. 

v 
* **E3******* * 

• TURll OB * * BXLE Oil REC • 
**Ill PLPFLGS * * ............ 

I 

i 
·*· 

F3 *· .. . ·-·* TOTPOP *• YES 
*· *~ HIGHPOP : *. *---l 

•. .. . .... 
*· ·* •188• i .. -.:i· 

!****G3*********: 
* HIGHPOP = * 
* TOT POP : ............... :: 

I 
*****H3********** 
* HIGHNAllE = • 
*TRllAllE (CURRENT• * BXLE TRIAD 1 S * 
: llAllE) : ................. 

I 
•••••J3••········ 
• HIGHCRT = * 
* CURRCliT * 
* (CURREllT CRT * 
• ITEi!) * . . . ............... . 

l 
*****K3********** 
* PREYCliT = * 
* LOCCRT * : (PRE~mr CRT :-, . . ..... 
••••••••••••••••• •188• 

• E2* ... 
* 

D2. Tli1'I1=X 1 '30'? 

Gl. S'P.T HIGHPOP = TO 
CURRENT BXLE TRI AD'S 
TOTAL POPULARITY COUNT 
AS CO!IPUT'!!O BY CFKKO 

PAGE 191 



Chart cw. PRF Processing Routine -- CEKKU (Page 1 of 12) 

CEKKUA 

****A1********* . . 
: ENTEB ............... 

I 
I 
I 

I 
KUOOS t 

!****81*********: 
* ERANCH ON Pl!F * 
: IO : . . ................. 

l . .. 
C1 *· . . •. 

• * = 1 *· YFS 
*·•.P~~~m) .•·*-1 ·- ·- .. . .. . ~ 

* NO ***** I •193• 
I • E1* t • *. 

• *· 
01 •. 

.. * ... * =2 *· *· YES 
*· (. SUBPilOGRAll • *-

1 *· ENTEY) • • ·- .. •. • • v 
* NO ***** 
I •193• 
I • E2* t ••• 

- *· 
* E1 *· *· 

• * =J *· YES 
*· (ALTERNATE ·*-i 

*· ENTRY) • * •. ..• • .... 
* NO ••••• 
I •193* 
I • C2* 
I •. • 
v -•. 

F1 *· 
• • =4 •. 

.• ILAB!L *· YES 
*· DE~INITION) .•-

1 *· ... ·- ... • ... 
* NO ***** 
I •193• 
I * .s~• l . 

. •. 
G1 *· . . ·-• * =5 *· YES 

*·•. (ECUATION·*·*-1 

*· ·* I ·- •• v 
* NO ***** 

I •194• 

! .. ::· 
. .. 

H1 *· • • =6 •• 
• * ~UNCONOI- •. YES 

*·•. IO~~t G0···*-1 ·- .... _.-· ' 
* NO ***** I •194• I •• El* 

~ . . •. 
J1 •. -. • .. • * =1 *· YES 

*· (ASSIGNED • •-1 *·· GO TO) .• ·- ... • ·- .. * NO ***** 
I •194• 

.!.. . ·:~· . . 
: C2 : .... 

. . 
: C2 : .... 
! . • . 

C2 *· .. . •. 
.• =8 *· Yl''.S 

·- •• <~g11mEo_.-·-, 
*· • * I 

·- .. • v * NO ***** 
I •194* 
I • B3• t ••• 

.• . 
02 ·-... • • .. ·* =9 *· YES 

*· (ASSIGN) • •-i ·- .• •.. .. . .. -· * NO ***** I *195* 

t . ·:l· 
. ·-E2 *· 

.•=A O!i B*. 
·* !IF *· YES 

*· STATJ!llEHT) ·*-i 
•.. -· •.. -· ·- .. • * NO ***** I *195• 

1 • ·:~· 
·*· F2 *· -· • .. • * =C *· YES 

*• (SIJBROUl'INE ·*-i 
*·• l.ALL) • * •.. -. .... • 

* NO ***** 
I :1~~: i ... 

.• . 
G2 *· .. • =o • .. 

·* (ARGUllEN"I *· YES 
*· DEFINITION) ·*-i •.. .• 

•. -· • .... 
* NO ***** 

I *196* 
**Bl* 

4 • 
.• . 

H2 •. 
.• ·-•• =E *· YES 

*• (RETURN) • •-i ·- .. •. -. • .... 
* NO ***** I •196• I •• B~· 
~ . . .. 

J2 ·-.. •. 
.• =F •. YES 

*· 1) •• 
*· (BEGIN LOOP • •-i 

•. .. • .... • 
• NO ***** I •196• 

.!.. • ·:~·· 
* * * C3 * * .. .... 

.... . . 
: C3 : 

••~.i:• 

i . .. 
C3 *· 

• • *· 
• * =10 *· YES 

.... 
* • 
: C4 : .... 
l . • . 

cu •. . . • . 
. * =1B *· YES 

*· ._<BEG~r LOO:*.•--, •• •• 
1~mrT .• ··~ ·· .... ·· ~ 

* NO ***** 

l 
. *· 

03 •. . . • .. 

•196• 
* * G!* 

* 

.• =11 •. YES 

•. ·* ••••• 
*· ·* *198• 

* NO * .'l~* 

1 * 
. *· 

OU *· 
• •=1C OR *· 

• •20 (ENIJLIST•. YES 

*· 3) •• 
*· (BEGIN LOOP ·*~ 

•.. ·* 
*·•.P~~Gml .•·*~ 

•. ·* ••••• 
• .... * •. • • •199• 

* NO ***** * NO * 112* 
I * * I * 
~ 

I •197• 
I • *Bl* 
~ . 

. *· . *· 
EJ *· EU *· ..• .. . • *· ·* =12 *· YES • * =10 *· YES 

*·._<ENO LOOP)·*·*--, 

... • .... ·· ' *·•.comM:1 •• -·~ 

* MO ***** 

1 
• *· 

FJ *· .. . .. 
*197• 
* Bii* .. . 

• * =13 *· YES 

*· .• ••••• 
• •• • *198• 

* NO * * '!:* 

1 * 
. *· 

Fii *· .. . • . 
• * =1E OR *· YES 
•-.~Fpm~r o~.-*~ 

*· I.• ***** 
*· (CONTINUE) ·*1 

*· *· .•· * I 

• .. -· ' * NO ***** 
I : 1m ! ... 

• *· 
G3 *· .• ·-.• =111 OR *· YES 

*·,.J~ J~mE ••• •~ .. . . . .... 
*· .• *196• * NO * il1* I ••• 
! 

·*· 83 •. 
.•=15 OR.*· 

• • 18 PRITE •. YES 
*-~~ RiAgE~IT~··*~ 

*·LIST).* ***** *· ·* •198• * NO * B2* 1 ... 
. .. 

J3 *· 
..·~9= 1 Si 1:· •• YES 

·-i~5~ 6hmr:,··~ •. . . . .... 
*· .• •199• * NO * !31• ! ... .... . . 
• Cll * . . . ... 

•. • • •199• 
* NO * 911* i ••• . .... 

•199• 
* .P.~• . 

I'll. If' MO, =21 (!~!'U'I' 
LIST) 

Section 8: Flowcharts 

PAGE 192 

407 



Chart cw. PRF Processing Routine -- CEKKU (Page 2 of 12) 

*****BEGIN PROGRAll 
•193* 
* B1* 
* * * 

*****SUBPROGRAll 
*193*ENTaY 
* .. e;• 

* I I 
KU 100 ~ KU110 i KU125 

*****B1•********* 
* * * SET END-OF- * 

: PHA~f1JmIT) : 

***************** I mwmE 
! 

*****82********** *****83********** * * • • 
* SET EllD-OF- * * LOAD SYl!BOL * 
: PHAifAJmrTl ! l>: TA~~~ fg~~IER : 
• • * • ................. . ................ . 
* * .... 

·*· 

•193• I I 
* C2 *->! 

KU120 
C1 *· .. • .. 

NO-* llAill *• 

I
*· PliOGRAll ? • * 

•.. -· *· .• 
I *· • * I * YES 

I 

I 

••:>1 .. ****** • * 
* SET FLINK * 

* TO 1 DUllllY * 
* ENTRY' 
* * ........... 

l 
***** •199• 
* *B2* 

* 

t999 

****F1********* . 
* * >* EllT TO CEKKR * 
* * ............... 

408 

!****C2*********! !****C3*********! 
* LOAD SY!IBOL * * !IOVE STOiiAGE * 

: T!B~MmTER : :cLAi~T~smTCL) : 
***************** ••••••••••••••••• 

I I l CADC1 
:;~;;g2••••;~0:~: * **D3******* * 
•---------------* * SUBTRACT 1 * 
* * * FROll llOllBER * 
* * *OF ARGOllENTS * • • • * ................. . ......... . 

l J 
*****E2********** E3 *· • * - • •. 
* GET llOllBER OF * 110 ·* 110. OF *· 
* ARGOllEllTS * <-*· ARGU!IENTS=O • * 
* (PRF11) * *· ? •* . . .. .• ........•..•..... •. . . 
..... ,,.!........ . .L,,, ... li ........ im ••• 
* LOAD STARTING * *KU820 202A3* 
*LOC. FOR 1 PUT' * *---------------* 

: .~i~Phm21 : A >: : ......................... I ...................... . 

l 1..... I 
G2 .. *· *· ' *•****Gq.**********• ... ... I • * NO. OF *· NO * SET PRF PllTR. * 

*·· AiiGU!IEllTS=O ·*----' * TO NEXT FOLL * 
*· ? • * * llORD * 

*· • * I * * ·- . • I •••••••••..••••••• 
* YES I '-~~~~~~~~~~~~~~~~ :;;;. 

:.:: * *-> 
KU1115 V 

!****H4*********: 
*SET PF PNTR. TO* 
*NEXT l'ULL WORD * 
* * * * ................. 
~;H: .J 
•••• I 

K01118 + :••••J4••·······: 
* llOYE ST. 110. * 
:FBOll PRF TO PF : 

* * ...........•..... 
l 

:****K4*********! 
* COllPOTE BYTE * 
: COUllT : 

* * ................. 
1 ..... 

*196• 
* .ci• 

* 

*****LA'IEL 
*193*0El'INITION 
•• 8~* 

* I 

K!J150 i LDPR 
*****B~********** 
*KUB20 202A3* ·---------------· * Pll=SYP'. TBL. * 
*LOC. 01' LABEL'S* 
* STATE~EllT NO. * . ............... . 

I 
. *· cs *· .• rs •. 

•* LABEL *· NO 
*· REF'ERl':NCFD • *I *· ? •• •. . . ··r;ES i 

l I 
·····os·········· I * * •GBLREAL=X I 8000. * 
*P4=PLP LOCATION* 
*· PL!'FLGS=::J' 80 I * 
* * 
********i:******* 

KU160 l 
*****ES********** 
* * * * PACK PRF2 
* * * * . ............... . 

l ..... 
*199* 
* .ai• 

* 

PAGE 193 



Chart cw. PRF Processing Routine -- CEKKU (Page 3 of 12) 

*****i!Nt:ONDX1 ION AL 
*19Ci*GO TO .. az• . 

*****ASSIGNED 
•194*GO TO 
• .e;• . 

I 
KU2 50 l KU270 ~ 

:••••a1•••••••••: 
• llOVE LI NE NO. * 
•FRC!I PRF ENTRY * 
: TO PF ENTRY : ................. 

I 
t CADC •••••c1•••••••••• 

=~~~£~-----~££~: 
* . 

• * ................. 
I 
! 

•••••01••········ * • 
• llOVE ST. NO. * 
*!'ROii PR!' ENTRY * 
: TC PF ENTRY : ................. 

1 ...... 
•199• 
•.a!• . 

*****B2********** . . 
*llULX. NUllBER OF• 
• ARGUMENTS • 
: (NOEL) BY Ci=X : ................. 

I 

l 
:••••c2•••••••••: 
* llOVE LINE NO. * 
: (X) p~!i~M~F TO: . ............... . 

I 

1 
!****D2*********! 
*GET OPD FROll PF* 
: ENTRY : 

* * ................. 
I 
1 EXSNl 

*****E2********** 
=~~;;~-----~~~~!! 
* * * * • * ................. 

I 
:****F2*********! 
*STORE OPD INTO * 
: PP ENTRY : . . ................. 

I 
:•***G2*********: 
*llOVE UP LAST 2 * 
: BY I ES * 
* ................. 

! ..... 
*199* 

* *B!* . 

•••••co~PUTED 
*194*GO TO 
• .s~• . 

I 
KCJ300 ! 

!****B3*********! 
*GET OPD !'ROii PF* 
: ENTRY : . . . ............... . 

I 
~ EXSN1 

*****C3********** 
=~~~~~-----=~~~!! . . 
* * • * ................. 

I 
~ 

!****D3* ********! 
• GET NO. OF * 
:ELEm~s d~OEL) : 

* * . ............... . 
I 

I 
I 
i 

*****E3********** 
* LOAD •GET' • 

: · mP~e~~~2 1 : 
* STARLING * 
* LOCATIONS * .................. 

I 
.----->I v 

HT3F3 • *· 
F3 •. 

. * ·-• * NOEL=O *· YES 

•••• ? •• ··-, 

• .. *· .• ·• i 
* ?fO ***** •••• I *193• 

•19CI• I * f!4• 
: G3 **->I • • • 

J •••• I 

I 
KU320 ~ 

!****G3*********: . . 
I :PACK ARGCJllENTS : 

* •• I ................... . 
I l 
I .•. 

H3 *· 
I "~ . *. • NOEL •. • • 
~.. EXHAUSTED ? • * •. .. . •. ... 

• ... * 
* YES 

i ..... 
*193• 
• .e~• . 

*****EQUATION 
•19(1• 

* *B~* . 
rn200 ! 

:••**P4*********! . . 
: SETFLAG=l : 

* • . ............... . 
I 
i EXSN 1 

*****C4********** 
=~~~~£-----=~~~~= . . . . . . . ............... . 

l 
• ••ou••••••• • 

• * 
* • SETF'LAG = 0 • • . . ........... 

j 
*****E4********** 
*LOAD SY!!. TBL. • 
*PNTR. (DE!'SY!I) • 
* LOAD LOC. 01'. • 
: VDP (PRF22) : . ............... . 

I .. .. 
*****Fli********** 
=~~~~~-----=~~~~= 
* * * • . . . ............... . 

I 

I 

l 
:****G4*********! 
*LOAD fOINT!'R TO* 
* OP£12 (PRP 3) • . . 
* • . ............... . 

I 
~ EXSNl 

*****HU********** 
=~~~~~-----=£=~== 
•GET LOCATION OP* 
: CDP (PRF32) : . ............... . 

I 

I 
! CDPR 

*****JU********** 
=~~~;~-----=~!~:: . .. 

PAGE 194 

G3. Sl'OllE LINE TfU!!'l'!P 
TKTO PP ".NTRY. Sl'T GET 
FOP. 'fEXT llORD. S~T PUT 
!"OR Ni;:XT l!ALT-llO"D 

Section 8: Flowcharts 409 



Chart cw. PRF Processing Routine -- CEKKU (Page 4 of 12) 

*****ASSIGN 
•195• 
• .ai• . 

KU3110 ! 
!****Bl*********! 
* GET OPD FROll * 
: FBF ENTRY : . . ................. 

I 
~ EXSN 1 •••••c1•••••••••• 

=~~!~~-----!~!~!: . . . . . . ················· 

410 

! ..... 
•199• 
*/l:• . 

*****IF STATE!IEliT 
•195• 

*****SUBROUTINE 
*195•CALL 

• .e~• .. 

KUllOO l •••••a2•••••••••• . . 
* GET CDP FRO!! * 
: PRF ENTRY : 

.. * ................. 
I 
I 

i CDPR 
*****C2********** 
=~~~~~-----!~~~!! . . . . . . ................. 

I 

l :••••02••·······: 
!F~~~ ~W{my : .. . . . ................. 

I 

l EXSN1 
*****El*****••••• 
*KU7 80 202A2* ·---------------· . . . . . . ................. 

• .s~• 
* 

• *· KUSOO ! 
.. * 83 *· *· !****B4 *********! 

·* PRFID = *· YES * GET NO. OF * 

'

>•. SUBROUTINE .•--->* ARGUllEllTS * *· CALL ? • * * (NOEL) * .. ... . . , ·r· ·······r······ 
I *****C3********** *****C4********** 

* * * LOAD LOC. OF * 
* GET ETRA FRO!I * * 1ST 'PUT' * 

I 
* PRF EllTBY * * ~PRF3) AllD * 

: : I ET' (PRFli) : ................. . ............... . 
I L, J 
I *****D3********** 04 *· 

*l<U800 20011* ·* *· 

I 
•---------------• . * NOEL=O *· YES 

•
: FI~~aAM~roN .: *· *· ? .•. *--+ 

*· . • • •••• 
••••••••••••••••• • •• • •193• 

l 
* NO * Jli• 

l * *. 
***** *1911* 

!****El*********: * • :i• 
* GET GRTA FRO!! * 
: PRF ENTRY : 

* • . ............... . 
,,.!.._ I 

•• - "' • ••• 110 I 
l "" *****F3*•******** 

*KU800 200A1* 

*· PBFID=LOGICAL.*---' 
*· IF ? .• 

•. -· ·- .• * YES 

I 
KUll50 i CADC 

*****G2********** 
*KU800 200A 1* ·---------------. 
* * * * . . ...•............. 

.. L 
•196• 

* *Hl* . 

·---------------· • * 
* * • * ................. 

.. L 
*196• 
* C3* .. 

* 

83. IF 110,=A!IITH~E'!'IC 
IF 

PAGE 195 



Chart cw. PRF Processing Routine -- CEKKU (Page 5 of 12) 

*****ARGUl!EN'I 
*196•DEF INI'IION 
**Bl* . 

KU520 ! •••••a1•••••••••• 
* * * GET LOC. VDP * 
:no11 PRF ENTRY : 

* • ................. 
I 
! 

:••••c1•••••••••: 
* LOAD SY!IBOL * 
:TABLE LOCATION : 

* • ................. 
I 
~ VDPR •••••n1•••••••••• 

!!~~~~-----:~~~~= 
• * . . ................. 

.. L 
•139* 
* ,.si• 

* 

*****BEGIN 
*196*LOOP-2 
* * G!* 

* I 

KU620 i 
*****G1********** 
=~~.!!~~----:~~~!: 
* BEGIN LOOP-2 * 
: EROCESSOli : ................. 
.... 

KU580 

*****RETUliN 
*196• 
* *B~• . 

I 

~ 
·*· 

B2 *· .• .. 
YES • * RETUR?f *· 

l
··.~¥hJ~m~.-· 

*· .• • .... ro 
I l 
I :••••c2•••••••••: 

* GET RV AR FROI! * 

I 
: PRF ENTBY : .................. 

I I 
I *****!>2.!.HHl •• 

=~~~~~-----:~:~:: . . 
• * . . ................. 

~-->I 
KU585 i 

:••••E2*********: 
*!IOVE UP LAST 2 * 
: BYTES : 

• * ................. 

~;H:·->I 
KU9110 V !ISUB • *· 

*****H1********** H2 *· 
*KU980 203A1* • * *· 

*****BEGIN 
*196*LCOP-1 
* .B~* . 

KU610 ! 
*****83********** 
*CEKKVA 206A1* ·---------------· 
* BEGIN LOOP-1 * 
: PROCESSOR : .. ............... . 
**** I 
•196• I 
!.~!·•->I 

KU970 i 
:••••c3• ••••••••: 
* ALIGN AT WORD * 
: BOUNDARY : 

* ... . ............... . 
I 
I 
~ l!SUB •••••o3•••••••••• 

!!~~~~-----!~~~!: 
• * . . . . . ............... . 

.---->! 
KU975 ·*· KU978 

E3 *· **E4******* .• •. . . 
• * BYTE *· NO * REDUCE l!YTE * 

*· COURT > ·*--->* COUNT BY 1 * 
*· 256? • * * • 

•. ..* • * 

1 ··e.. ····r· .. 
I
ll • !****P3*!*******: :****F4*********: 

* l!OVE 256 PRP * * !!OYE X NU!IBER * 
* BYTES TO PP * *OP PRF l!YTES TO* 
: : : Pl' : ................. . ............... . 

I l I l *****G3********** *****GQ********** 
*UPDATE PRF & PF* * * 

L! R~gij~pg~h : : .. wmG~oHoI~y :. 
* COUNT BY 256 * . . . . ................. . ............... . 

~~ii:*->! .... 
KU990 

*****H3********** *****H4********** 
•---------------* . * *• NO : BA~kmo 1H11K : : BACma~prm : 
: :--->* •• .:RFIO=BL2? .•·*1 

: .............. :: ·- ·- -. .. . i 
* YES **** 

! 
•••••J2••········ * llOVE 2 * 
* ADDITIONAL * 
* HALF-WORDS * 
*SAVED BJ CEKKll * 
*INTO PF f* ................. 

.. L 
* * 
: H4 : .... 

. . 
: Hll : .... 

:LOC) =c~g~EllT PF:<---: ~m!i~W~:r : 
* * * PTR) * ................. . ............... . 

I 
i 

•••••JJ•••······· :••••J4••·······: 
: l'nn~o <n~K : •OP DATE CORR ENT • 
: LOC) =~~F Piii' :--->: PF LOC . . . . ................. . ................ . 

I 

KU999 l 
* ****K4********* * 
: RFT!JR!I : ................ 

R1. Pl' LOC • 16=?1' LOC. 
STORE PRP ENTRY IllTO Pl' 
P!'ADDR • 16=PRF AD!>R 

J2. ~OVE IVARSVI!: AND 
EXITLB 

C3. AS P!IEPAR ATION FOR 
~OVING VARIABLF EH""Y 
l'ROI! Pll"' ~O 'PP 

PAGE 196 

Section 8: Flowcharts 411 



Chart cw. PRF Processing Routine -- CEKKU (Page 6 of 12) 

*****BEGIN 
*197•LOOP-3 
* Bl* 
* * * 

KU630 l 
*****B1********** * • 
*GEl PLP LCC. OF* 
* CURREllT LOOP * 
: LEVEL : ................... 

l •••••c1•••••••••• * • 
• •ca• l.'LillK • 
: (PLP) ,i:~) FLAGS: ................. 

! 
•••••01••········ . . 
* STORE RESULT * 
• IHtO PLPFLGS * 
:AND FLAGS (PF) : ................. 

I 
*****E 1********** 
* llCVE Rl!VAL * 

·*· E2 *· ·* •• 
: (PRFI Ei~Rp BL3! 
: a11nL=x•aooo• : 

·······r··· .. ·· 
*****F1********** . . l

>*:: •• ~EV=O?·*·:=•YES **t** 

·- - .. *199• * 110 • Bii• I .... 
t CADC 

*****F2********** 
!!~~££ _____ ~~£~!: 

*GET LOCATION OF* 
: CDP : 

* • ................. 
I I 
! CDPR I 

*****G 1 ********** 
*K0830 201A2• I 
c:=!:::=::; I 
:••••H1••·······: I 
*llOVE CDP & GLAB* 
*FRO!! PRF TO PF *----' 
: BL3 EllTRY : ................. 

412 

:(FILEGHW FOR: . ............... . 
l 

*****G2********** * • 
* GBLREAL * 
: (PF) =X '8000' : 

* • ................. 
l 

-*· H2 *· - * • • 
KU635 

!****H3*********! 
• * FLAGS *· NO * * 

*· (PF) =GLOBAL .•--->*GoLREAL=X'8000'* 

• .. *· *• • !· .- * Al :***************: 
• YES I 

l J 
.. t •• 
*199* _ .. _ • 9!1* 

J2 ·- * • -* ·- • • * FLAGS *· YES 
*· .~PFl~8MAF:*. * 

*· .• • .. -· i '° 
*****K2********** 
* l!OVE SUI! TBL. * 
* PllTR. FOR * 
* FLOATING LOAD * 
: (GBm'iLTi~ PF: ................. 

.. L 
*199* • .B~• 

* 

*****END 
•197*LOOP 
*. B2* 

* 

KU650 ! 
*****B4********** 
=~~~!-=~----.!~~~!! 
* SET UP LOOP * 
: TABLES : 

***************** 

l 
!****C4*********! 
• * 
*GBLR EAL=X' 8000' * 
• * 
* * ***************** 

i 
***** •199• 
* B2* • * . 

PAGE 197 



Chart cw. PRF Processing Routine -- CEKKU (Page 7 of 12) 

KU660 

*****READ OR 
*198•1iRITE 
**El* 

* 
! . •. 

Bl *· . * • .. 

*****READ OR 
•198•waITE 
* B2*WITH 
* * * NAllE LIST 

KU670 t 
!****B2* ********! 

• * FLAGS *·· YES * * 
*· (PiiF) =O? .•--->*GET UNIT (PRF) * 

*· ·* A * * • ....... ·• I : ••••••••••••••• : 
; NO I I 
I I I 
I I I 

t I I . •. I v EXSN C1 •.. *****C2********** .• *· *KU770 202A1* 
.• LABF *· YES •---------------• 

• .. (PRF)=X'80'? .•-->1 * * 
*· .. * * * •.. •-. : ............... : •. ·, · :o I I 

I I I 

=.····01·1 ........ =. I _.,)-._._ 
• * •. YES 

•GET LABF (PRF) * I *· ~~FID=; WRIT::.*--, 

: : I •. ..• I .................. I •. .. * v 

I
I * NO ***** 

I
I I :1m 

I * * 
! EXSN I l • 

** *** E 1 ********** *****E2* ********* 
=~~~~~-----!~!~!; ! :Mo~~ rn~ HW : 

-
4 * !!OVE ST •• NO. * * * (PRF) TO ST. * 

................... : : .... ~~ •• H~i .... : 

.. L 
•196• *. "l* . 

*****OUTPUT * 198*LIS r 
• • ai• 

* 

KU680 ! 
!****83* ········: 
* • 
: Gt:T OPD (PaF) : . . 
***************** 

I 
l 
~ EXSN 

*****C3* ********* 
=~~~~~-----!~!~!: 
• * * • . . 
******** ********* I 

I 
I 
t 

!****03*********: 

:M0~5 g~g !Hr1 
: 

• * ******** ......... . 

.. L 
•199• 
* .si• 

* 

*****FILE 
*198*CONTROL 
•.e~• . 

I 

KU590 l 
*****84 ********** • * * GET UNIT P'ROl'I * 
: PRF ENTRY : . . 
***************** 

I 
I 
t EXSN 

*** **CQ ********** 
=~~~2~-----~~~~!: . . . . 
***************** 

I 
.. ! .. 
•199• 
* .s~• . 

PAGE 198 

Cl. X'B0 1 =1'ND OF C'IAI!I 

Section 8: Flowcharts 413 



Chart cw. PRF Processing Routine -- CEKKU (Page 8 of 12) 

*****BEAD CUD 

: 1~mmP6s 
* * * PU!ICH 

K•J700 ! 
*****81 •••••••••• 
* • 
* UNIT * 
: (PP)=x•aooo• ! 
.. * ................. 

I .•. 
C1 *• . . .. 

YES • * FLAGS *· 

r *· (PRF)=O? .• ... _ • * 
•. -· • .. • 

• ****. • 110 

: B4 : I .... ! 
. •. 

D1 *· -. •. 
YES • * LABP *• 

r•. IPRF)=x•ao•? ·* ·- .• •. . ... 
·- • * **** * NO 

* * I 
: B4 : I •.•• i 

*****El********** • * * • 
:GET LABl' (PBP) : 

* • ................. 
I 
~ EXSll 

*****P 1 ********** *KU770 202.111* ·---------------· • * • * . . ................. 

414 

*****END LIST OR 
*199*EllD PllOGilll 
* B2* . . 

* 

KU910 t !!SOB 
*****82********** 
*KU900 203A1* ·---------------· *PF Loe. + ll=PF * 
* LOC. * • t• ..............•.. 

~~ ..... 
•196• 
* *H:* . 

*****CONTillUE 
•199• 
• .ai• . 

K0920 ! !!SUB 
*****B3********** 
*K0900 20311* ·---------------· *Pl' LOC. + S=PF * 
* LCC. * • •• ................. 

! ..... 
•196• 
* H4* 
* * . 

*****STOP OR 
*199*PAUSE 
* Bii* * • . 

KU930 !<!!SUB 
*****B4********** 
=~~~~~-----~~~~2: 
*PF Loe. + 12=PF* 
* LOC. * * •• . ............... . 

t . .... 
•196• 
* *H~* . 

*****IllPUT 
*199•LIST 
* BS* . . 

* 

KUS SO i 
*****BS********** . . 
* GET OPD FRO!! * 
* PRF EllTRY * 
* • . . . ............... . 

l ,,,, 
•••••cs•••••••••• 
*KU770 202.111* ·---------------· . . . . 
* • ................. 

I 
*****DS********** 
* LOAD SYllBOL * 
* Tl\BLE POINTER * 
* LOAD Loe. Ol' * 
* VDP • . . ················· 

I .... 
*****ES********** 
:!~~~~-----!~~~~= . 
* * • . ............... . 

I 
*****PS********** . . 
* GET CDP FRO!! * 
* PRF EllTRY • 
• * . . . ............... . 

'"" 
*****GS********** 
*KU030 201A2* ·---------------· . . . . ................. 

D1. x•ao•=EllD OF C!!Aill 

B2. STORE PRF EllTRY 
IllTO PF. PF ADD'!. + 
4=Pl' ADDR 

B3. STORE PR!' '!!!TRY 
INTO PP. PF ADDll. + 
0=PRF ADDR. 

84. STORE PR!' ENTRY 
INTO Pl'. PF ADDR + 
12=PF ADDR 

PAGE 199 



Chart cw. PRF Processing Routine -- CEKKU (Page 9 of 12) 

KU800 CALC KU795 CADC1 

*****A 1 ********* * ••••12••••····· . . 
: ENTER : ................ 

I 
I 
i 

**Bl******* . . 

* ENTER * . . ............... 

l 
• ••e2••••••• • 

TEllE. * TEllE. * 
• * FLAG=O * • * FLAG=l * * . . . . ........... . ......... . 

l.___I ___ ,j 
KU805 • *· KU818 

C2 *· 
.. * • * SYfll. *· *· YES *****CJ********** 

*· TBL. PNTR = .•--->* RETURN * 
•- x•eooo• .• • • •.. .. . ............. . ·- -· i " 

-•. 
D2 *· *****D3********** 

• *STORAGE•. * * ·* CLASS *· NO •SET SYllSTCL=255• 
*· *· (S~~~!~L) • •• •--->: TECNS1=SYllLOC : 

*· .• • • ,,. .. ·-C" ...... ·T······· 
*****E2********** *****E3********** 
* * *CEKTFI 015E2* 
*GET ADCON SYll. * •---------------• 
* TBL. PNTR. * *ROUTINE IN EX EC* * (SYllTYPE) * • TO FILE ADCO!I * 
* * *Ill SY!'IBCL TABLE* ................. . ............... . 

l 
*****F3********** . . 
* SYllTYPE=lDCO!I * 
* SYllBOL TABLE * 
* POINTER * . . ................. 

._____,j 
KU815 ·*· G3 *· .• *· !****G4*********! 

• * TEllP *· YES * VTADCN * 
*· FLAG=O? • *--->* (POPULARITY * 

*·•. .•·* : VT.)=3 : ... • ................ . 
"'" i '" ..... J ....... . 

****H3********* *CEKKOA 211911• . . . ____________ _, __ . 
* RETURN *<---*TALLY POPULAR- * 
* * * ITY COURT !'OR * 

*************** * THE ADCON * .................. 

PAGE 200 

Section 8: Flowcharts 415 



Chart cw. PRF Processing Routine -- CEKKU (Page 10 of 12) 

K0830 CDPR 

****A2********* 
* * * ENTER * 
* * *************** 

l 
·*-B2 *· *****B4********** • * *· *POT CDP POIHTER* •=* CD~EgMIN *:.,_Y_Es _____________ >: m~m m~ : 

*· ENTRY? • * * (TECPAN) * 
*· .• • • ·- • * ••••••••••••••••• 

i . l 
*****C4********** 
* POT BACKWARD * 

: Lmo 1~W> : 
:POIHTEB (PRF32): 

***************** 

KU833 -·- I D2 *• *****D4********** ·* •. *PDT CURRENT PF * • * LEGAL *· NO * POSITIOH * 
*· *· AD&N~~~Ill ·*· *-------------->: mm~DimK : 

•· • _ _ :·· : •••• 1~~2n ..... : l "' 
*****!2********** * POT ADP * * POINiEBS * : mmt m~ : 
: ••• JH~~UL •••• : 

l 
*****P 2********** * PllT BACKWARD * 
* LINK (ABDP) * 
* INTO ADP * 
* POINTEBS * 
: •••• an~~L •••• : 

l 
*****G2********** 
*PUT CllRBE!IT PF * * POSiiION * 
: m~mo1mK: 
: •••• H~~n ..... : 

KU835 

I r 
* ****H2********* * 
: RETURN : 

*************** 

416 

02. RELINK FOR!IAL 
ARGUl'IENT DEFINITION 
?OINTS 

PAGE 201 



Chart cw. PRF Processing Routine -- CEKKU (Page 11 of 12) 

KD770 EXSll KD780 l!XSN1 

*****A 1 ********* * * ****A2********* * 
: ENTER : : ENTER : ............... . ............. . 

I I 
:••••B1•••······: II 
* .. 
: CPLG=X'P' * ... -- II ................. 

I '<----' ! •••••c1•••••••••• 
* * * * * P2=PRP2 * 
* * • * ................. 

l 
*****D1********** 
*CEKKEA 212A2* ·--------------· * RETURN: * * P2=POillTER TO * 
* PF EXPRESSION * ................. 

l 
*****El********** . .. 
* STORE EP * 
*POINTER Ill ERP * * ENTRY CFLG=O * * • ................. 

I 
****F1********* 

* * * BETDRN * • * ............... 

KD820 LDPR 

****A3********* 
* * : EllTER : . ............. . 

l 
·*· B3 *· • * •. ·* LEGAL *· HO *· LABEL CHAIN • *I *· ENTRY'? ·* •. .• 

*· . * I * YES 

I 
:••••c3•••••••••: 
* FOBllARD LINK * 
: (TEmmmK : . ..........•..... 

I :••••o3•••••••••: 
* LLNK * ! <Pm~ =umre

0
: ................. 

l 
*****E3********** * BACKWARD LINK * 
: 1Lw~ammT: 
! (TEPFT) : . ............... . 

I' 
****F3********* 

* * : RETDRH : ....•.......... 

PAGE 202 

Section 8: Flowcharts 417 



Ch.art cw. PRF Processing Routine -- CEKKU (Page 12 of 12) 

KU980 !!SOB 

••••11••······· . . 
• EBTER * . . ............... 

I ... 
81 *· *****B2********** 

• * IS PF *• * * 
.• LOCATIOB *· Y.ES •GET ADDRESS OF * 

*· &BOVE .'"--->* ERROR ROUTillE * 
*• LillIT7 ·* * * .. .• . . .T;. ·········1········ 

•••••c1•••••••••• • • ••••c2••••••••• : mmr~m : : RETORI : . . . ,. . . .........•..... ................. 

I ••••01••••••••• . . 
: BETO BB : ............... 

418 

K0840 VDPR 

****All********* * • * EllTER * 
* * ............... 

I ... 
84 •. .• .. 

.• LEGAL *· llO 
*· VDP CH&Ill • * 

*• E!ITB!? .• •. .• • .. • i "' 
*****C4•••••••••• 
* PUT· VDP * 
* POINTERS * : mmt im : 
: ••• ~~!U2U •••• : 

I 
*****D4********** 
• PUT BACKWARD * 
: LIUTJsmDP) : 
:POIITER (PRP22) : . ............... . 

I 
*****Ell********** 
•POT CURREHT PF • 
* LOCATIOW * : nmILo1mK: 
: ••• ~u2=2n •••• : 

I< 
11-

••••Fll••••····· . . 
* Rl!'TURlf * . . ............... 

C2. ERROR EXIT FRO!! 
CEKKtJ TO CEKKR 

PAGE 203 



Chart ex. End Loop PRF Entry Routine ~- CEKKC (Page 1 of 2) 

CEKKCA 

• ****A2********* • 

• EllTER * . . ............... 
I 

*****B2********** *****B4********** 
• • • SY!IPLAG=x•oe• • 
• IllITIALIZE • • SY!IPCP=BL2PT • 
:TABLES CNT, PLP: >: SY ~~~~;p~EV : . .. . .. ................. . ............... . 

<<200 l l 
•••••c2•••••••••• •••••eta.•••••••••• 
*Pll=PRP LOC. OP * *KC700 205A3* 
* BL3PT • •---------------• 
• LOCHCi=HlSH • • * 
: TABLE IRDEX : : : ................. . ............... . 

'°"' ,[ I •••••02••········ •••••04••········ 
:~_:~~~~----~~~~~= :P~f;~~~q~ mp : 
: ACmPcHm: : mnmT : . .. . . ................. . ............... . 

J "'" I 
•• - • E!lLI:· •• •. YES r·••EJ•••······: mz~~:::::~mH 

•. EllTBY FOOllD .*->* IVAR = PBP3 • • * 
•.. ? .. • • • • * .. -· . . . . ·r· ....... :c···· ·······r······ 

*****P2********** P3 •. *****Pll********** . . .• •. . . 
* * -* IVAR = *• 110 * P1=PR:P5 WHERE * 
*TRFCP = x•sooo•• ·- x•sooo• ? ··--~ * PRPS = OPPER • 
* * *· ·* * LOOP Lil!IT * . . ·- .. . . ................. • ... • ................ . 

I • YES ! 
•c'li .... J........ wioo I, _________ __. 

* * ****G3********* . . . . 
* BELIHK CRT * * RETORll * • • • * . . .............. . ................. 

B2. P2 = LEV•ll, 
PLillKjPLP) = nm rn1~~!\·= 
CORRE T PtP LocATIO!I, 
P2 = P2+11, 

mm~11~l~2LliciT IOl'I, 

i~mJ~MTm~~ : 
x•aooo•f. !!LJPT = P11P2, mrw .. 2tfiR;!W~J 
POillTER GPll = 0 
mP~G~;;, ~L~mtR~) hv 
D2. RETO!l!I: P2 = 
LOCATIOll OP VALID 
l!llTRY. IP P2 = O, !10 
EllTP.Y POUJD 

84. WHERE PR:Pll = LOllER 
LOOP LI!ll'? . 

PAGE 204 

Section 8: Flowcharts 419 



cnart ex. End Loop PRF Entry Routine -- CEKKC (Page 2 of 2) 

KC700 ULTST 

****13********* 
* * * EllTEB * * •• ............... 

I 
• *· 

B3 *· 
·* *· 110 ·* SYllID *· 

*· ,._<P1lslUI-. ,.· * ·- .. *· ·* i "' ... 
C3 *• **Cll******* 

• *SYllPLlG•. * TUBW 011 * 
•:* ra~~Ttn *:•~>•* 111iffp~~zz * 

*• YABilBLE • * * PLPPLGS * 
·- •• • * •. ·* ••••••••••• 

* 110 

IC800 I 
*****D3* ********* 
*CEICKGl 22213* ·---------------· * • 
* * • • • ................. 

I .•. 
E3 *• •• *· 

.• SYllULEY *· YES *· > LEY ? •. . . .. -· •. -· i " 
*****F 3********** 
* l'ORCE REllOYlL * 
* LEVEL TO * 
*CUBBEIT LEYEL: * 
* SYllFCP=BL1PT * 
* SYllULEY=l.EY * ................. 

KC820 

[:. _ ______. 

****G3********* • * 
>* RETUBH * . . ............... 

420 

13. P1 • SYllBOL TABL! 
POIHT!R TO LOWER LOOP mu· gjPf~~OOP 
IICBEhHT YllRilBL! 

mt6sEgi·T~I m 
!HTRY) 

D3. DET!BllIBE POHlBD 
COllPUTE POIBT & R!llOVIL 
Ll!Y!L POB l YlRIABL!. 
RETU!!B:- Pll= SYllBOL 
TABLE LOCl'!'IOI POB 
IllPUT YABilBLE 

PAGE 205 



Chart CY. Begin Loop 1 PRF Processor -- CEKKV (Page 1 of 3) PAGE 206 

CEKKVl 

.••••At•••••••••• 

* EllTEB • . . ............... 

I •••••e1•••••••••• . . 
*llOYE BL1 EllTBY • 
•TO ilOBK lBEl TO* 
* Ell:PUD l'OB Pl' • . . ................. 

I •••••c1•••••••••• 
• llOVE LillE NO. * 

:Jm2~/g,Lm : 
* EllTBY • . . ................. 

I 
•••••Dt•••······· . . 
*GET PLP LOC. Ol'* 
• CUBBEllT LOOP * 
• LEVEL • . •-················· 

l 
!****E1*********! 
• STOBB PLPl'LGS * 
• INTO Pl' * . . . . .......•..•...... 

l 
•••••Ft•••••••••• 
•IF Bll:LE ON REC * 
* IN PLPFLGS IS • 
* ON, SET * 

:GmAap~ru~~P : .....•.......•... 
l 

*****Gt•••••••••• 
* SAVE 110. OF * 
• GLOBAL REGS. * 
: (GmA~l'Gw : 

• •• ................. 

l 
KY120 ·*· B2 *· -· •. 

KV130 
!****83*********! 

• * PLPFLGS •. YES •SET FOR EJIDIJIG. • 
•. = OllSAFE .*->• CLEAR COO!ITER * 

·- .. ~~01· ~;~. -. J. : .... ~:I: .... : 
*208• 

c2·•- •. * .D!• 
.•GLOBAL •. * 

• *REGISTERS? •. YES ·-._ ~m~~ _.-· 
*· •• •. -· 

KV260 
!****Bl.&*********: 
• CLEAR 'llORD * 

I
>* BEHillD LAST * 

: EllTRY : . ............... . 
l 

*****C4********** * • 
* GET NEXT GIRL * 
* POINTER • 
: (GPLINK) : . ............... . . .. I 

.. ,,, I -·-
·····D2·········· 04 •. 
• COUNTER=t. • • •END OF •. •••• 
•CLEAR tST EJITRY• .• SORT? *· YES • * 
: UI T¥m.ESORT : *· .j~~m~?l .•·*-->: E2 : 
• • *· .• • ••• ...............•. • .. • 
: ·:;• :->! v.

1 

YES .... 
KV220 

*****E2********** *****E4********** * * * RELINK GPLINK * 
* GET 1ST GIRL • •CRUii IN ORDER * 
:Loe. FRO!! GPLllK: : O~oF5annNG : . .. . . ................. . ......•......... 

.-.>! l 1ST PASS ABOOHD 
KV230 .•. KV240 KV300 IllNER LOOPS 

•*1'2 *· *· :;;;:l'g~;;•;;:;•: !****Fii*********: 
-* POP > *• YES • SORT TABLE • • GET Gll!L LOC. * 

*· POPCJIT? .•--->* POPCllT=POP • f >*l'ROll TEllP. SORT* 
*· •. t. * .• A : GllLPNT=GPLNK : : TABLE : 

·-r ·······r .. ··· ::ii: ·······r······ 
•••••G2••········ G3··· •. I ·.··••Gii••········. 
• * • • *· v,.,. ... I 
: GET miIGillL : •=* mL~~ *:.!::J =~mKGt~Lf!lm : 
* * *· • * :LOOP (l'ROl!I CllT): 

: ................ : ~ .. ··1·-. ~· ······1:······ 
•207• 

KV250 * Al* 
*****83********** * * • • * * STEP TO llEXT * 
: EHBY : . . ...•............. 

Gt. SORT GLOBAL Rl!!G. 
CAllDIDATES Ill ORDER OF 
DECREASING POPULARITY 

1'2. IP CURRENT GillL 
EllTRY'S POPULARITY 
COUNT IS GREATER THAN 
TH! HIGHEST OJIB FOUND 
SO PAR JTOP OP TEii'!' 
~¥R:foJAo~E~hPm:f IT 
TABLE. 

Section 8: Flowcharts 421 



Chart CY • Begin Loo~ 1 PRF Processor -- CEKKV (Page 2 of 3) 

KV320 

..... 
•207• 
• Al* .. . 
t .•. 

A 1 • • . • .. 
• • •. JES 

•. PLINK=X• 8000 '. *'*-------------------. 
•. 1 • • j •. t. • 211D PASS ****COIJIT 

*· • * AROIJID * LOllER 
• 110 I!lll!R * BIJ LRVEL .... I 

LOOPS * * 

KVJJO KVllOO KV460 l •••••a 1 •••••••••• •••••eJ•••••••••• ••sci••••••• . . . . . . 
•GET GPLllK FROll • • GET PLillK or • • lDD 1 TO • 
* PLP * * IllllEB LOOP * * GPI OF IllllER * 
: : : (FROll CIT) : * * LOOP * * ................. ................. . ......... . 

.I. I ... ,. .!. 
Cl *· **CJ******* Cll • • 

• • •. • ADD 1 TO • .• GPll • • 
• • •. YES • * * GPll lllD * • * JOtJTER *· 1'0 

·-2~LliK=r 800? ~. *-->! Gl : • • ,£~8gnr • .• ~o (~h~a GP~ •• 
*· t.• **** * * •.LOOP)•* •. • • ••••••••••• • •. * 

j'" I .... 
r-K-V-34_0 __ '. !. "'" . .. I 

D1 *· *****D2********** DJ *• *****Dll********** .• .. . . .• •. . . 
•* SUED *· YES •LOAD PLIBK FROll* • * *• YES *llOVE GPI (IllllER* 

*· GLBL=llEll • *--->* LlST PLP *· COIJITEB=i!? • •--i •*. L(OOOIJTPIRTOLOOGPP)ll *: *• G.i.Bi.? • * A * *• •* I!' •.. -· . . .. .• 
··1 ·· :o ········i········ ........ ·1· :o =~g~= ········1········· 

: •::•: m:O:!. :-> * * * KU90 < 
*****11********** * * *****El********** *****Ell********** . . .... . . . . 
• Gl!X GPLillK ro • • GET PLINK OF • •GET NEXT GPLIK • 
*IEXT GIRL EITBY* * IIJIEB LOOP * *FROll PLP IllltER * 
: : : (!'BOii CllT) : : LOOP : 

L
·········1········ ········1········· ········r········ .... . . 

.• r1···.... .•rJ···.... :.:!.: 
.• GPLIMK *· • * *· YES 

•. = x•aooo•1 .• ·-~~INK=rsoo?~··---, 

:::::~:(' :::::~:1··=0 =~:1: 
·-. .·· J .. ... . .... 

KV360 .•. KV420 
G1 *• *****G3********** •• •. * • 

• • GP!f < *· YfS *GET GPLllK FROll * 
*· •. 81 (llA.X.) • •" : PLP : 

•. .• . . •. .. . ............... . 
i .. ""' :l. 

•••••81••········ 8J •. 
*iiESET GPLillK TO* • * *· 
* DELETE GIRL * • * •. YES * * 
• EllTil FROll * •.GPLllK=l'8000'.•-->* eq * 
* C8Aill * *• ? • * * * . . •. ... . ... ................. . .. • 

422 

.. L 1. lfO 

•208• 
* Bl* KVllSO .•. • • •••••J2• •••••••• J3 •• 

* *RESET GPLIBK TO* • * *· 
* DELETE GIRL * YES .• SAVED •. 
* EMTBY !'BOii *<---•. GLBL=llEll .• 
• CHAII * *· GLBL? • • . . .. .• ...•............. • .. • 

i" 
*****K3********** . . 

• * * SAVE GIRL LOC * 
: G3 :<--: (GPLIMK) : .... . . ................. A 1. EACH PARALLEL LOOP 

C1. !lCH GLOBAL 

F3. Ell.CH PARALLEL LOOP 

HJ. EACH GLOBAL · 

PAGE 207 



Cb.art CY • Begin Loop 1 PRF Processor -- CEKKV (Page 3 of 3) PAGE 208 

..... 
•208• 
* A1* .. . 

KV500 l 
•••••A1••········ . . 
•SAYE LAST GIRL * 
• LOC. * . . . . ................. 
:m. I * B1 *-> . . .... 

KV520 
•••••a1•••••••••• . . 
•GH llEXT EllTB! * 
* Ill TEBP SOliT * 
* TABLE * . . ................• 

I .•. 
C1 *• 

.•ORG. t •. 
110 • * Ol' GLOBAL *· 

r *· REG. (GPlll • * 
*· !XHA OSTEI>. * 

·- ? -· *· •• 
***** * YES 
•206••••• l * F4••208• 
* * * D1 •-> . . . .... 

KV650 
•••••D1••········ 
*SET 1 1 8000 1 Ill * 
* LAST GPLillK. * 
•SET 1 1 8000 1 Ill * 
•GLBL 1 OF Pl' BL 1* 
* EllTRY. * ................. 

I 
•••••!1••········ . . 
*FILL GLBL2-8 OF* 
* PF BL1 EllTRf * 
: WITH 1 1 8000 1 : .................. 

I 
*****Fl********** 
*IF BILE 011 REC * 

:nt~1a80 ~· fo ADD: 
• HIGHllABE AllD * 
•STOBB Ill GLBL1 * ................. _,, 
•****G1********** . . 
•GET IllllER GPLllK* 
• PROB PLP * . . . . ................. 

I 
KV670 • •. 

H1 *· .• ·-
-· ·- us *• GPLBK=l' 8000 1 • 
•• ? •• •. .. 

·- ·* i " 
:••••J1••·······: I . STOBE GLBL Ill • 

l
;.::.::f :::..l 
•••••K1********** . . . . 
*GET BEIT GPLllK * . . . . ................. 

JRD PASS 
AROOllD 
IllKER 
LOOPS 

KY700 
•••••a2•••••••••• . . 
• GET PLillK OP * 
• IMBER LOOP * 
: (PROB CllT) .: **EllD Ol" 
***************** * JRD PASS 

l 
* CJ * . . .... 

~*• KV790 l KY720 
C2 *· *****CJ********** .. ·- . . 

• * COOIT!R *• YES * GPll (OOTEB • 
*· (LillORK) = • *->* PLPl =COOllT!R * 

•·i~::?•"' JA :...~.!:0

1
.::~••••= 

.•. KV800 
D2 *· *****DJ********** . • ·- . . •= ;LIBK=I' 8000 :: *YES :TLillK pfi:P AllD! 

•. .• • 1c11T1=x•8000• • .. .. . . ·r· -·····r······ 
*****!2********** *****EJ********** 
!6~iaf PmalL0~-: : 

11mL¥B~~.~0 : 
• PLIBK lllE~T • • RllVAL=X'8000 1 • : .• !:::: .. ::~ .• : :~::mu!e~t:: 

= ·::·=->! I .... 
KY740 • *• KV999 

1"2 •• 
·* *• ****PJ••••••••• 

IES .• *· * * 
*• GPLIK=l' 80001 •* * BETOBll • 

•. ? •• • • .. ... . ............. . ·- .. * 10 

Illl'1'!R EllTRI 
l"OOllD B1JT 
NOT II 
OTRl':R CHAIR 

KV760 • •. KV770 
Bii *· *****85********** 

• • *· *Liii\'. IlllER GIRL* 
• * GPLIIK *• YES * EllTRY IllTO * 

>•. = X' 8000'? .•--->* OOTER GIRL • 
*· . • * CRAill * •• .• • * ·r· ·······r······ 

*****Cl!********** **CS******• . . . . 
* GET GPLillK 01" * * ADD 1 TO • 
*llEIT GIRL EITR!• * COIJ1"l'ER • 
: : * * (LIWORK) • • ................. . ......... . 

I I .•. .•. 
DI! •. DS •. 

.• GLBL •. .• • • 
110 .• ICIJRR!ITI =•. •* COOllTER •. YES <-•. SLBL (l!XT) • • •. = GPIH!AX? • 1 •. .. •. . . *· •.• •. .• •. -· • .. • i "' . " (~'.l 

•••••!••········· * • 
* GET GPLillK OP * 
*IEIT IllEB GIRL* 
* EITRf • * • . .....•.......... 

l<----' .... 
* * * P2 • • * .... 

82. THIS PASS PILLS Itt 
GPLIK POR TRE OTHER PLP 
LOOP WITH HY GLBL Ol' 
TR! IltlER LOOPS WOT 
lPPEARIIG Ill TP! BL1 
EITR! Ol' TR! OUTER 
LOOP. 

l'2. l"OLLOll IllRl!!R GIRL 
CRAii 

¥:·TH ~sm· GnPmn 
SO LOOP TO CHECK llEX'!' 
IlllER GIRL ENTRY 

Section 8: F1owcharts 423 



Chart CZ. Begin Loop 2 PRF Processor -- CEKKW (Page 1 of 3) 

CEKKifA 

••••11••······· * • * EllIEB • * • ............... 
I 

•••••e1•••••••••• . . 
* PBF2=BllVAL * 
*RllV AL= X '8000' * "- -"-
* • . . ................. 

I •••••c 1 •••••••••• ••••*C2•••••••••• * GET SYllBOL • * BLSAV2=PllP22 * 
* TABLE LOC. OP • * CLEAR ACTIVE * 
* IllDUCTIOll J* >* IHDUCTIOll VAR • * V ABIABLE • *FLAG Ill SYllPLAG• . . . .. ................. . ............... . 

J_ l 
D1 •. •••••D2••········ 

•* *· * GET PLP * 
• * Pll?B. •. 110 * LOCATIOll AT * *· TO IVAll = • * CURREllT LOOP * 
•. x•aooo• .• • LEVEL • •. ... . . 

"'" ·-.,-:.. U•••••T······· 
*****E2********** 

****El********* * * . . . . 
* RETOBll * •PRP11 = PLPPLGS* . . . . ............... . . 

424 

................. 
I 

*****P2********** • * 
•SAVE BEG SO llOT* * DESTROYED BI * * CE KL I * • * ..•.............. 

l 
·*· Kll200 

• * G2 *· *· * **Gii******* * 
• *llATERilLIZE*. YES * REDOCE LEV * 

*· FLAG Ill .•-------------->* BY 1 * 
•.PLPFLGS =.• * • 

•. 1 ? -· • • ·- .• .......... . r I 
82 *· *****Hll********** 

• *llTZ 011 *• *Kll700 211A2* 
YES .• EXIT Ill *· •---------------• 

~·-.~LPFL~S 011_... : FI~~RAlo~~Oll : 
***** •. .• * VARIABLE * 
•211• *· • * ••••••••••••••••• . . ::· i .. I 

• •. Kif175A • *• 
•• ~fosA~·.. .•J3 •... :••••JI!•••••••••: 

.• FLAG Ill *· YES •* EXITLB *· YES * PRF22 = EF * 
*· PLP.PLGS 011 .•--->•. = x•aooo• ? .•--> * POillTER TO • 

*· ? • * *• • * * POLISH * ·- .• •.. .. . . . ... •• •. ·* ••••••••••••••••• 

~;~ 1·~ 1·ro I * K2 *-> . . .... 
Kll150A 

*****K2********** **Kl******* *****Kii********** 
*CEKLIA 251A 1* * SET llTZ * * * 
•---------------• * FLAG Ill * * llTADCll * 
*GENERATE A TEST* * PLPPLGS lllD * * (POPULARITI * 
: EXPllESSIOll : *• PF •* : llT.)=10 .: ................. ........... . ............... . 

.. L .. L 
•210• *210• 
• .F~• • .e~• 

• * 

C2. SAVE SfltBOL TABLE 
LOCATION OP IllDUCTIOll 
VARIABLE Ill BLSAV. SAVE 
VDP IN BLSU2. SAVE 
EXIT LABEL Ill EXITLB 

Kij. DOUBLE THE WEIGHT 

PAGE 209 



Chart CZ. Begin Loop 2 PRF Processor -- CEKKW (Page 2 of 3) 

..... 
•210• 
•.a~• . 
t 

*****82********** *****B4********** 
=~~~~~~----~~~~!: : STORE EP : 
* * I>* POINTER TO * • * *POLISH Ill PRP32• . .. . . ................. . ............... . 

l I 
*****C2********** *****C4********** 
• STOBE CURREllT * * * 

!P~iRk0~1dr1~~-: ! ma:YPoaT¥fic ! 
•l'ORlllRD COllPUTE* * VALUE (PRP32) * 
*POillT I* * * .................. . ............... . 

l I 
*****D2********** *****D4********** 
• GET SY!I. TBL. * *Kll700 21112• 
* PNTR. FOR • *---------------• 
*BEGINllillG VALUE* * PILE All ADCOll • 
! (P~~~I BpvocE : : FOR IllC VALUE : ................. . .....•.......... 

l I 
:::;~~2····2;;:;: :••••!4••·······: 
•---------------• *STORE EP PllTR. * 
• FILE lH lDCOll * * TO POLISH Ill * 
: FOR n~~~llillG : : PRF4 : ................. . ............... . 

l •210· I 
: :r11.•->1 
•••• + 

KllSOO ·*· 
:••••P2*********! • •Pll •. *· 

•STORE EP PKTR. * • * SY!IPDP *· 110 
: TO P~U~H Iii : *·•. = FPT ? .•·* 
• * •. • .• ...........•..... • .. • 

l 
* YES 

I 
l 

:••••G2*********! :;;:;g~•:•:~;:;~: 

:PmTn
11
PWE!ID: : VDP mm1 = : 

: VALUE (PRP4) : I : SY!IBDP=TEPPT .: 

······T······· ... ::·······1: ...... . 
*****H2********** 
*K11700 21112* ****Hll********* 
·---------------· • * 
* PILE lK ADCOll *------------~ * R!!TORK * 
* FOB EllD VALUE * * * . . .............. . .................. 

B2. SAVE POPULARITY 
COOKTS FOR GLOBAL REG. 
ASSIGll!IEllTS 

C2. SY!IFCP=PPT 
SY!IULEV=SS (l!lXI!IUI!) 

Fii. CO!IPARE PllTR. TO 
¥8emTrmA;rer <FPTJ 
DEPillITIOll POillT Ill TP.E 
SY!IBOL TABLE LOC. Ol' 
THE I!IDUCTIOll VARIABLE 

Gii. STORE SAVED VDP lS 
FORWARD DEFillITIOll 

mmTi6~R~omK:~RD 
VDP, STORE CllRREllT PP 
LOC. OP "llIS BL2 Ell"RY 
AS BDP 

PAGE 210 

Section 8: Flowcharts 425 



Chart CZ. Begin Loop 2 PRF Processor -- CEKKW (Page 3 of 3) 

Kll700 PEPP 

••••12••······· . . 
* ENTER * • • • ............... 

l :••••e2•••••••••: 
! s1~~8~1~IBLE ! 
: POINTER : ................. 

I 
•••••c2•••••••••• 

=~!:!:!~----!~~!: 
* PILE ll lDCOI * 
*II SYllBOL TABLE* . . ................. 

I 
•••••D2•········· 
* EPlDCOR = * 
* SYllBOL TABLE * 
* POIITER OP * 
: lDCOB PILED : ................. 

I 
*****E2********** * • 
*COBVEB'? SYllBOL * 
*TABLE TYPE CODE* 
•TO El' TIPE CODE* . . ................... 

.. ,,. I 
*****P2********** . . 
* llTADCll * 
:(POPU~l~fTY llT.: ...........•..... 

I .•. 
G2 *-·* • . • * CUR REIT *· US 

*• LOOP LEVEL • 
•• < 0 ? .• .. .• 

•. -· 
i" 

**:***H2********** 
=~!:~~~---!.'.!~~!! . . 
* • • •• ................. 

I 
Kll790A • •••••J2••'········ * • 

*STORE ZEP VOROS* 
* II EP POBTIOI *< 
* OP THE EP * 
* • ................. 

I 
:····

12
·········: ••••tt3••·······. 

* IICBEllEH EP * * 
* POIBT.~B Bl 2 *->* BftUBI * . . . . . . .............. . .•......•..•..... 

426 

. .... 
•211• 
* Bii* .. . 

KV125A l 
*****Bii********** 
*CE!tltOA 211911* ·---------------· • * . . 
• • • . ............... . 

I 
•••••c11•••••••••• 
*CEUOA 2119&1* ·---------------· :mmmmh: 
* AT LE1' * . ............... . 

I .•. 
Dll •. .. .. 

• * EXITLB *• YES 
•-.: x•eooo• ;.·•-y .. .• ..... 

• •• • •209• i.. ·.:j• 
*****Ell********** 
•ltll100 211&2• ·---------------· 
* PILE Al lDCOI * * FOB IVARS1'E * . . ................. 

I 
**P4******* 

* SE'? Plf * 
* IBGATIVE TO * 

*BYPASS CEKltO Ill* 
* PEPP * . . . ......... . 

I 
*****Gii********** 
•ttll700 21112• ·---------------· * PILE All ADCOI * 
* FOB BEG * . . ...•............. 

I •••••H••••••••••• . . 
* GE'? ADCOI FOR * 
* EXITLB * . . . . ................. 

I •••••JIJ••········ 
=~~~~~~----!.'.!~~!: 
* REDUCE POP OP n 
*EXITLB ADCOI BY* * S AT LEV * . ............... . . .... 

•209• 
• lt2* .. . A2. THIS SUBROUTIIE 

STORES POLISH 
EXPRBSSIOI g PILES U 
ADCOI Ill THE SYllBOL 
'?lBLE FOR TH! LOOP 
PABAll!TEBS 

H2. SA YE POPULABI'?Y 
COUITS POR GLOBAL REG. 
ASSIGlll!WTS 

Blf. G!T POP. OP 
COllSTAllT S'?EP 
(CllSTSA V!) AT LEY 

PAGE 211 



Chart DA. Expression Scan RoutiDe -- CEKKE (Page 1 of 3) 

CEKKEA 

••••12•········ . . 
• EHTER * . . ............... 

'"" ,j 
*****824¥4••••••• . . 
• STEP BACK 1 • 
• WORD Ill • 
* EXPRESSION * . .. ................. ..... 

•212• * C4• * • 
* l 

• •. KE900 KE999 1 
C2 •. *****C3********** 

- .- • • • ·- YES :oEPsi~ri 5~0 (SET: * ••••C4••······· * 
*· P2=x•aooo• ·*--->• END-OP-CHAill ·--->• EXIT * 

*· •. .•·* : PIELD) : * *************** * 

·_· ·.1_· :o ••••••••••••••••• IA 

KE130 •*· 
D2 *· D3 *· **D4* ***** .. • ·- .• •. . . 

·* EPCODE *· NO ·* *· HO * * 
*• = OPERATOR -*--->*. TERllINATOR .•--->* STEP II * 

·- -· *· 11=0 • * * • •. -· •. .• . . •. .. • .. • .......... . i"' i"' 
·*- l 

E2 *· *****E3********** 
•• -· EPOP = •• •• 110 : L~~Efbc~2oSP 2 

: 
*· SOBSCllIPT ·*1 * LEPT-HAllD END * *· • * * OP STRillG) * •. ... . . ·r,, ..,::····r ..... 
*****P2********** *****P3********** 
* * • IllITIALIZE * 
* STEP BACK 2 * * CHAIRS & * 
* llOllDS Ill * * SllITCHES: * 
: EXPllESSIOll : :sfg~~o6ps~nJ= : 

L::·::::I:::··· ::::::1:::::: . . . . 
• • * OSllT=O 111s11 .. o * 

* STEP II * * SllCHSB=O * 
* * SllCHPL=O * • • * •• ........... . ............... . 

l 
*****83********** * • 
* SBS112=0 * 
•JOillTE=x• aooo • • • * * • ................. 

l ..... 
*213• * A3* • * • 

B2. LOCATE BEGIHIIllG 

nmc;u~~Mmo~p £11 
ERP 

G3. SVCHPL IS PLOAT 
IJIS!RT SllITC11 

PAGE 212 

Section 8: Flowcharts 427 



Chart DA. Expression Scan Routine -- CEKKE (Page 2 of 3) 

..... . ... 
*213* * * 
* A3* * All * . . . . . . ... 

..--------K-E2_5_0--: !. KE610 ! 
·*A3 *· *· !****All*********! 

·* El"CODE *· YES * * 
*· = OPERATOR ·*-i •GET llEXT TRIAD * 
~ .• * * •. .• * • • .. • ................ . 

* NO ***** l 
I =!::: 

KE280 •*• 
*****B3********** Bii *• 
=~~~!!~ ___ !!~~!! . * • * * • *· YES 

!HUPi~a0~irA-! *·~?mi=•aoo~~··--v 
*ITIY! OPERAND I* *· • * ***** 
***************** *· • * *212• 

Pii: •->I 1· 10 • * ~:· 
KEll20 l KEllOO** • •• K!620 

* **C2* ***** * •*CJ *· *• !****Cll*********! 
* * NO ·* END 01" *· * SAYE PllTR TO * 

* * STEP P2 *•<---*-*~RF STRillG • *. * : llEXT TRIAD : 

428 

. . .. .• . . ••••••••••• *· .• ••••••••••••••••• 

... ,. i"' I 
!****D3* ********! !****D4*********! 

* !!AKE PREVIOUS * * TRllAllE = EF * 
: OPT1 CORREllT : : PllTR : . . . . ................. . ............... . 

l . l 
*****E3********** **E4******* 
*C!KKIA 23012* * * 
:--------------: • * cWMmG * • . . . . 
* •• * * ....•............ . ......... . 

I j;:L. 
* All * 

*****13********** * * 
*CEKLPl 215A2* **** ·--------------· 
*llOVE EXP. l"ROll * 
* ERP TO EF * 
*POSITIOll Ol' Pl'I* .................. 

83. RETUR!t: P5=CURRE1'T 
OPT 1 LOCATIOll 

El. DET!R!I!IE 
CO!!OllALITY OR 
RE!OVABILITT OF 
EIPBESSIOll 

l'3. RETURll: Pll=EF 

~~~m~1\~irmIEE~pt · 
WORD

PAGE 213

Chart DA. Expression Scan Routine -- CEKKE (Page 3 of 3)

*****PROCESS AR ****
*214*0PEBlTOli * *
* B1* * BJ *

KE750 • L KE800 l
B1 *· *****BJ**********

• * *· *CEKKHl 22 511 *
• * SiiCHSB *· NC •---------------*

•••• = 1 •• --------------->:pmu¥~:cg~RENT:
*· • * *TRIAD TBL ENTRY* •.
i "' I
.•. I • C1 *• CJ• • *·

- • •. . • *·
.• El'OP = •• NO >I '"o.:• T~Ru: ·:. •. •. •+• •• • •. .•

· · I *· ·*

moo ·r,, I !I'"" ·r,,
*****D1********** I DJ •.

=~~!!~~----~~~!: I YES •• ··REllOY!' •• ••
* REARRANGE * *· IN TRl'LlG = ·*
* SUBSCRIPT * *· 0 • *
* EXPBESSIOll * *· • * ••••••••••••••••• •. ·*

I I j"o
I ~ . . .• •.

* CLEAR * • * l'RC!'LG *· YES

KEBSO
*****B5**********
:::!~~~----!!~~~=

f>: REl'~:gL~PT * I
I

1, . •.
C5 *·

I
I .• ··INSW =·· •. YES

•••• 0 •• ,

•· •.. :···* i

I * NO *****
! •213*

• .ci•

I
•.•• .

I =.::.:

••E1******* I KE880 EJ··· ••

• SllCHSB • *·.~II TB~LAG :.·*------------>1

• • *· .•

······1····· . >.· ·.1_· :o I
KE820

!****P1*********: • *l'J *· *·
* SET 2110 * .• SllCHSB *· YES
•SUBSCRIPT PASS * *· = 1 • *------------
: PLAG (SBSll2) : *• *· .•·* • .. •

.. L l~ NO

•213•
• J.J•
* * * !****G3*********!

* STEP BACK 1 *
* EllTRY Ill OPT *
*

l
*****HJ**********
CEKKIA 230A2 ·---------------·
* DETERllillB *
*COllllOllALITY OB *
• RBllOYABILITY * I

J ""' J J3 •• *****J4**********
• * *· *CBKKIA 23012*

·* SllCH!'L *· YES •---------------• *· "' 0 • *--->* DET!RllillB
*· • * *CO!l!IOllALITY OB *

• · * BEllOYABILITY *

L I
CEKKLl 22411 ·--------------· * BEPOllll OPT * * TABLE *

PAGE 214

Section 8: Flowcharts 429

Chart DB. Copy and Edit an Expression -- CEKLF (Page 1 of 5)

CEKLPA

••••12••······· . .
* ENTER *

t

*215•
* Bii* .. .

•*• LP100 .•. LP200 !
B2 *· BJ *• *****Bii**********

·* *· ·* ARE *· * *
·* SET *• HO • • THERE UY *· NO •SET NO INSERTS *

• •• ~LAG:X•O•?.•.*--A-->*·•.IH~i=~S? .•·*--->: (P5z 1 -1 1
) :

•. -· -· ·-
•1 !ES ~~~i: *->!* !'ES

LP JOO ••c2••••••• •••••cJ••••••••••

* * * PS= SE RP *
* GPLSll•O * * LOCATIOI *

I 1'.~~: ~'!<---------~
LPJ20 •*•

D2***** DJ *•
* • • * IS *·

* * • * THERE A *• 110
* * GPCOUIT:O * * *· *· Ii~liT? • •" •----,.

••••••••••• •• •• •216• I i:i·
*****B2********** *****BJ**********
* GET PLP FOB * * STOBB IISBRT *
* CUBREIT LOOP * * IITO THE BP *
• LBYBL * * *•.......

I I -·· ··-P2 *· PJ *• -·
• * *· 110 10 • * BPCODE *•

•. PLPPLAGS "' • *-> r•· OPERATOR? • *
•. ONEASI? • * •. • *

•• • • *· -·

G2***** * *****GJ**********
i "' J :~ii! i "'

* * * STEP BACK ?liO *
* GPLSll=J * * EP llORDS *

430

.
l

•216•
• B1• ..

*

PAGE 215

Chart DB. Copy and Edit an Expression -- CEKLF (Page 2 of 5)

.....
•216• •216•
• 81• • 83•
! l

• *· L1'3l0 • *· Ll'llOO • *·.
81 •. 82 ·- 83 ••

• • OP. *· .• *· .• *•
.• SIGI *· YES .• OPEBAID *· YES .• !l'ID = *• YES

•. (El'SIG.Hl') = •*------>*· SIGl=
1

-
1

1 ·1 • .. l
0

0LL EHllY1
0
••*----, •. •-•? •• ·- -· y •• .• *· •• •. .• •••••

•• •• •• •• •• -· •218•

r •O 1· " j .• . .::·
.!. Ll'llS .•.

Cl *· *****C2********** Cl *• .• • .
• * OPEBAID *• l'ES * * .• El'ID = •. 110

• ••• SIGl= 1 -•1 ••• SIGIS AB~: SWITCH SIGllS : • ••
0

0PEBlTOB?
0

* • .___,
*• • * Difl'EiEllT* * *· • * ***** ··.·:o •••••••• ,......... ·r,, =::1=

Ll'l40 < .•. .•.
*****D2********** Dl *• D4 *· . . -· •. . . •.
* SET OPEBAID * • * *· 10 • • *• YES • •
* SIGll TO•+• * *• EPOP• 1 : 1 1 .•--->•. El'OP=•,,•7 .*->*!'fl• ·- .• •. .• -· • ... ,______,[i "' i ..

Sl!T EPCODE TO mm08ri
REllOYED El

PBESSIOI (CSX)

Ll'l45 • *· Ll'llOOE • *· . *•
!2 *· El *• !4 *• -· ·- .. ·- . . • . • • HllEP *· 10 .• COLOlll'G *· HO .• El'TYPE *· 110

*• 01' TB.FLAG • *• =11 • •--i *· = COllPLEI? • *-----.
•• :• 1•1 • • •• •• •• • • ' .. .••

•. •• •• •• • •• • *218•

.
1

YES

1
. YES =~!i! :-::• !-> •

1
YES • •:~·•.

*****!'2********** Pl *· **1'11******* . . .• •. . .
• • 10 -· •• • •
* EPHllE=TBIAllE * r-•· SETl'LlG=l? • * * G!'LSll,.O • * • •. •• • • . . •.•.......

I
***** * YES 1

•••• •217• t
•216• <----· 83•
* G2 *-> * *
•••• •217• •218•

LP350 * 81* * 81*
*****G2********** * * • •
* LOAD IEIT EP *
* LOCATIOI AID *
* Sl!B'P IISEBT *

I .•.
*****H1********** 92 *• . . .• •.
*LOlC ll!XT Sl!BP * 10 .• SLU:T1 *•

LOClTIOI •<---·· = x•eooo• •• . ·- -·
********i******** *·r·;ES

.....
•215• •215•
* Cl* * 811*

PAGE 216

Section 8: Flowcharts 431

Chart DB • Copy and Edit an Expression -- CEKLF (Page 3 of 5)

.....
•217• * B1* .. .
l •••••e1••••••••••

*GET BIGHT OPER. *

:~r, ~0~~· Gm~~~=
* GO TO THAT *
• SAVED TRIAD *

I HOT REllOV ABLE

• *· LPllOOll
C1 *· **C2*******

• * RLEV : *· > OR = * *
*· LEV • *---->* GPLSll = 0 *• . . • ... •

r ••01•••••••
* * GPLSll = 2 *-------

* •

LPllOOL

.
•217•
* B3* . . .
! ...

B3 *· **Bii******* .• •. . .
• * GFLSV z *· YES * *

*· 1 ? • *--->* GFLSll = 0 •---, .. .• •.
* HO

l . ..,,.,
•••••c3•••••••••• . .
•GET BIGHT OPER. *
•OF COL09 AID GO*
* TO IT *

I ...
D3 *· **Dll*******

.•COLOll 1 S•. * *
• *BIGHT OPER. *• 110 * *
·-;~~MAW1!?· ·--->•. GPLSll = 0 ·I

•. *· .• •••••••••••

i"' .•.
E3 *•

• * SAYED *•
.•EP Ill GPEF=•. HO

•.SAYED DISP IN.
•.GFADCOll ?.• ·- ..

j'"
•••••1'3••········ . .
* SET PHASE II *
* PLlG II PP = *
• x•o11• •

I
G3***** . .

* ADD 1 TO *
• GPCOUIT *

'''''' j:. ______________ __.
H3*****

--------->* COLOIPG = 0 *

432

.
!

•218•
* B1* .. .

PAGE 217

Chart DB. Copy and Edit an Expression -- CEKLF (Page 4 of 5)

LFiiOOZ

.....
*218•
• .ei•

*
i ...

81 •. -. •.
110 • * ?BIAD *• *· liAllED ? .• ·- -. •. -· .. -· • YES

l •••••c1•••••••••• . .
* •
EFlllAllE = TllllAl!E . .
* *

I
•••••n1••••****** I • SET EFCODE ro •

~
~~diHH!:!~~n;
:~;~. l * E1 *-> * • <-----.

500Z
*****E1**********
* llOVE ERF *
•EXPRESSIONS ro •

>*EF POSITION OP *
: THE PF :
* Fl *-> :m. l

LF550
:••••P1*********:

* STEP ERP *
* LOCATION TO *
* llEXT ENTRY *

I ...
G1 •.

• * IS IT *·
110 • *BIGHT HUD *· r•. EllD OP .•

• EXPBES• •
•.SIOI?.• ·- .. ***** * YES

:2m I .. .
*****H1**********
* UPDATE PP •
* LCCATIOlll TO *
*liEXT AVAILABLE *
• llOBD •

LP999 I ••••Jl••••····· . .
• BETO Bl *

*****PROCESS OPERAJID
*218•
• 82• .. .
i

LP500 • *·
82 •.

110 .• EPID = *·
*· VlRIABLE ? .•

·- ·* •. -· ·- -· ["'
·*· C2 *• -· ·-- * SETFLAG *· 110

·- •• = 1? _ •• ----, ·- -· *· .• •219•

*l YES * •::•

I~ PROCESS LEFT
.•. SIDE OP

D2 •.EQOATIOll -· ·-

[

.• <. .:::i:;~; .>
...

E2 *· -· .. 110 ·* EFTYPE *·
*• = BEAL*4 OB • *

·- •8 1 .• ·- .• ·- -· * YES

.. ,,.. I
*****P2********** . .
* GET SYllBOL *
* TABLE POillTEB *
* • * •

I
.•. ·*· LPSOOD

G2 *• G3 *· *****G4**********
·* *• • *EP PLAG•. * COLOMl"=1 *

.: • IHTERPl!RIRG *: •-
110
--->•:. SUBSCRIPTED*:~>: <nu~mT~~ mm

*· ? .• *·VARIABLE • • * LEFT SIDE) •=3
•. •• •• ? •• • • ·- -·

""" f' i ~
82••••••• **H3*****

• * * GPLSl=1 •
• • GPLSll = 0 • • • • v 1lUl£~ll 01 • *

• • • • * * Llll!'T SIDEI • *
<,__.I I

LPSOOE <---------~
•••••J3••········ . ' .
SUE llP II GPBP
• 1!'08 LATER *
* COllPARll •

PAGE 218

Section 8: Flowcharts 433

Chart DB. Copy and Edit an Expression -- CEKLF (Page 5 of 5)

*****PROCESS RIGHT-HAND
*219*SIDE OP EQUATION
* B2*
• * .
i

LP500G • *· • •.
B2 *• BJ *·

-· •. ·* •. < • * GPLSll : *· > • * COii PARE *· i<

r--··.. 1 •• -·--->•-... m.TmE •• -~
***** •. .• •. .• •••••
•218• •. • • •. • • *218• .. :i· i ~ - i . . ·:1·

LF500L ·*· .•. Ll'500X
• * C2 *· *· •*~~FLA~·*• * **Cll******* *

• * COii PARE *• 'I< .•SUBSCRIPTED•. NO * *
· SY!!. TBLE. ·-i *· VARIABLE .•--->* GPLSV = 0 *

•.POINTERS .• *· ? ·* * *
•. •• *· .• * * ·- ·* •. .• • ••••••••••

* = !!~i=
1
. YES **!**

1 *218•
·*· * Fl*

• **Dl******* * •• ~iPLA~· *· ***DJ******** * * *
* * YES • * = *· * *

* GF.LSll = 0 *<---*· SUBSCRIPTED .• * COLOllP = 1 *
* * *·VARIABLE ·* * *
* * *· ? • • * * •.

434

! * NO l ••••• I EPADCOli
*218• v
* El* • *· GPE1"+4

* * E2 *· *****EJ***·*******
• .• *· * *

i< • * COii PARE *· *SAVE DISP. PRO!!*
r--*· ~!SPLACEllEll~~- • ! Eil~~tk~Pll :

••••• *· ·* • •
•218• •. •• • ••••••••••••••••

• • ::· ., = l
•218•
* El*

P2***** * * . . .
* SET PHASE II *

* PF FLAG *
t

* **G2******* *
* ADD 1 TO *

* * GPCOUNT * *
1

*218•
* El* .. .

PAGE 219

Chart DC. Push Primitive Operand Routine -- CEKKF (Page 1 of 2)

CEKKPA

*••••A 1*******•* *
* ENTER *
• *

'"" l *****Bl**********
* * *PS=CURREllT OPTl*
* LOCATIOll *
• * * •

I
:••••c1•••••••••:
•OPTl=O OPCllT=O *
•OPRLEV=O OPACHll*
• = x•aooo• •
* •

l •••••01•········· * ..
*OPOLSH=LOC. Ol' *
* ERP ENTliY *
*OPTl'CP=X'7l'l'l' 1 *
• *•.....

l
. *·

El *· . . •.

1
110.::. u3~i~~op.>

•. . .
*· .•

* YES

..... ,,.!.
* * * tUill 011 LOOP *

I

* VAR. FLAG Ill *
: OPl'LGS :

'l Kl'110
Gl*****

* OPC!lt• 1 *

* *

....
* B3 * *
l

. *· .•. . •.
82 *· B3 *· BS *· .. • •.• •.

* * YES ·* El'CODE *· YES • * SPECIAL *· NO

I
>•= •• OSWT=l ... =•1 *·.=. COllStANT·*·*--------------->*. SPLIT .•---,

· EPl'LAG? • • I ••• •. . • •. · •. . . •. . . • ...
i .. I i" i'" I

I t I Kl'160 .. KP800 Kl'810 i I
• **C

2
*"***** * I · *c3 • • •. *· :••••cq•••••••••: .. :T•;B;LcE·~. 5 ;P;NT•;R;.; 8P*o~"R• .. " 11

* * I • * El'COOE *· YES " *

I
* *•SEt DSwt=l .,* * *· *· = ADCOll • .,·*--->:EFADCON=X' 8000': * REPLACED LOOP "

*· . * * * : VARIABLE : •.•..•.......
I J.,,, ,,.i. :: ::11: ,J

... ·\s VAR.·· •• NO l .. ·*EFCOOE •• •• JES * :nn~~fEt~0~cp:
*• All !QUUIOll ·1 *·.=. l'UllCTION·*·*--i * & RLEV Ill *

*· VAR.? • * V * SPECIAL SPLIT *
* * *· • * ***** *CONSTAKT 0 t• · · I •221•

). ::' ii .•... .J.::..... . . :i·!
• * • * El'QUAHT *· *· NO =~=~~~~----!!!~~= : TURN SPECIAL :

* - GBLREAL * *RETURN P4=SYI!. * * SPLIT El'l'LAG * · .. - .•· 1 * TBL LOC. FOR * * 01'1' *
· I. * INPUT VAR. * * *

*· .. ,·;,, i~~~~=:·i········ *•••·············
Kl'180

:••••F2*********: :••••F3*********:
* GBLREAL = * * OPTl'CP=SYllFCP *

'xaooo• : :oPBLEV=SYl!VLEV :
~ j

Kl'140 .•. .•.
G2 *· G3 *·

.*El'SIGHF*. ·* *·
• * Ol' *· YES 110 • * SY!ll'LAG *·

· · *· PARA!! • *
•. ·* •. .• , T J'

*****Hl**********
* OPTRDl = *
* El'QUAllT

*· El"l'LAG=
1
+' .•1 r*· = l'ORllAL .• .. -· • ...

*l NO =~~!!
1
.. <.-Y-ES---------------------'

Kl'260
*****H2********** *****H3**********
* SET OPSIGll Ill * * *
* OPl'LGS TO '-• * * Pl=SYllSLOC

.. * • .. * * • • •
I< •• L

•221•
Kl'150 •*• * Al*

J2 ·- .. * -· •. .
... •. 110 * * *· l!.l'ID=LOOP .*->* 83 *

•.Plfi.ll!ETEB.* * * •. .•
* YES

i
•221• •.s:•

*

~~iIULPh mm~
CUDIOlTE l'O!I Rl!llOVIIG
l'LOlTIIG LOlO

DS. OPTFCP=SYllPCP
OPBLEV=SYllVI.EV

Section 8: Flowcharts

PAGE 220

435

Chart DC. Push Primitive Operand Routine -- CEKKF (Page 2 of 2)

KP JOO

.....
•221•
•.,A!* .
i . •.

A1 •. . . •.
No .• suascarPT •-

•••••12•·········
.... . .
: .~!. =-i

KPllSO • *·
A3 . . •.

.• •. NO

1•· •. (mm, .• ·•
I ·-.~ ?.·· I . YES

I J
I

>: Pl=SY!ISTCL : . . ········i········
*· ATPLAG=l • •1 •. .• •. ..

•. ·*
• YES

I I I I
! I

i B1 *· . • •.
YES ·* Cl?FLGS *·

I
*· = LOOi? VA ii •• * ·-• • ...

• 110
J

I !
1Kl'3JO c1·•· ••

i NO • * • * EF Iil = *· •.

~
• •• ~E:tA~4 .ga • .·*

•. ·* .. -.
• YES

l
!

KF335 .•.
01 ••

. . ·-YES • • EFFLAG •.

I
*• = SUBSCRii?T .• •. .• .. .•

l .i."
El *· -· •. YES • • SY!IID = •.

I
•. ARiiAY VAR. .•• ·- -· • 110

I I
I i I -•.
i F1 *· . . .

YES • • IS VAR. •.
1*·.,~ll ~~~~TIO~··*

I •. • ..• ·•
• 110

I I

I I
I i I :··••G1••·······:

I :GBLliEA.l.=EF<;UANT: I
l : i :·J
..__--->I

I

KF350 t
H1*****

* * ATPLAG=l •

436

.

l •••••e2••••••••••
=~~~:~~----~~~~!:
*PILE COllSTUT &•
•COVERillG ADCOll •
• Ill SY!!. TBL. *

I -•.
C2 *•

.• *· MO
*• *· SllCHSB=O .•·*1

•. ·- .. -· i
* YES ****

I
• .
* 113 • . .

I ••••
KP400 ~ :••••02••·······:

* EPADCOll=ADCOll *
* SY!!. TBL l?llTR *
* • * •

I .•.
E2 *·

.•El'PLAG *·
.• = *· NO

• SIJBSCBIPTED ·-i
•. VAR. .•

•. -· • ...
I
* YES : •::•:

KP620
*****P'2••········
!s~~?E~~L~D~~~a. !
: l?B0~3¥'h~p POii :
* ADC ON) *

l
••G2******* . .

• *
* * SllCHSEi=l * *

* •

****•Bl********** I
• PO&!! SPECIAL • I
*TRIAD ENTRY FOR•
• DIJ!lllY I AT' •
* OPE;RATION *
* t• I I

..... J........ I
: TRPI1=X 1 A' : \

:Tmm;~~~~P : 1

: r·····= I
•••••D3••········ I *TROP2=SY!I. TBL. *
• PliTR. *
* TilllAllE=ADCON * I
*SYll. TBL. PllTR. *

1

•
* •

I
*****E3********** . .
* TBOPl=EPDISP *
* Ti!PCP=OPTPCP *
* TRTYPE=i!PID *
* •

I
*****Pl*******•**
:~;:~~!'.~----~!~~!:
* SEARCH & PILE *
* TRIAD * * ••

I
*****G3**********
:oPi;go ~of~EU!ITB:
* TRIAD TBL. *
: ENTRY) :
•221• I<---~
• B3 *->I l

H2*****

: ••• • I
KP999 i

* • * CFLG=O *
• IPLG=O I * • * •

* A3 *

* ****Hl********* *
* EXIT *

*****PROCESS
•221*LOOP
* * B~*PARAllETEiiS

*
i

KP700 ·*· ·*•
Bii *· B5 *· .• •. .• ..

. * *· 110 • * *. NO
· SllCHSB=O .•--->. EPID=LOOP ·*-i *• . * *· VAR. • * •. ..

· · •.. • i YES •

1
rn =~ii!

~ .
KP710 • *• 4 ctt •. •••••cs•••••••••• .• *· • •

.• *· NO *CLEAR LOOP VAR.*
*· EPID=LOOP • •1 * !'LAG Ill EPID *

· VAR. · * * •. ·* • • *· . • • •••••••••••••••• r YES I
1 I !

*****D4********** **DS*******
*GET TO CORRECT • * *
• PLP LOC. POR * * *
* LOOP LEVEL * * IPLG=l *
: < 11maltl5W~ : •. • •

I .. L
•220•
* P3* ••!4••••••• ••

* SET * •
* llATERI.lLIZE *

* FLAG II •
* * PLPPLGS * *

*****j:=-_j

!
• •. KP750

F4 *· *****PS**********
• * *· * IP SYl!TYPE = *

• *SY!IID=VAR. *· YES * IITEGER *B OR * *· OP. .*->*IITEGEB •II, SET*
•.CONST.lHT .• *RESPECTIVE EPID*

•. ·* • •
• .•. :o ········r········

... ,. I :;ij:
****•G4•********* • * * IP SY!IPLlG = * *
• INTEGER •8 OR *

;mm¥I;~·Em;
l

•220•
• .r~• .

Gl. IF VABil!ILE IS R!'!AL
COllSTlllT OB SI!IPLE

mMfL¥LBHI~o~~m
FOR BL3 OH NEIT IllfEB
LOOP

HrtI~~~K=o. TRllAl!!!=o.

FJ. RET1JP.ll: P3=PO!ITEB
TO CIJB!IENT TRIAD TABL!
ENTRY

PAGE 221

Chart DD. Variable Compute Point and Remove Level Routine -- CEKKG (Page 1 of 2) PAGE 222

CEKKGA

****A3*•******* . .
* ENTER *

I

I
KGOO 1 i

••***B3********** * •
• LOAD SYllBOL *
•TABLE LCCATION *
: -..O-.VARIABLE :

I
' .•.

C3 •.
. • *·

YES .• SYlll'l.AG •.

y--•-.:FmiifPt.·*
:22;: •. • ..•.•
• • C~• • NO . l

*****03•••······· . .
P3=LEV+1
l2=SY!ll'DP

: L3=SY!IBDP
j

KG200 • •.
*****E2********** !3 *· . . -. ..
* V2=TECPAN * YES • * SYlll'LAG *·

!13=C'9DP •<---•. = COllllOll ? • *
• •. ·* • • *· .•

I * NO
I I

I I
J !

P'2 *· *****F3********** . •. . .
. • *· NO * V2=X'71'1'1' 1

· V2=X 1 8000' ·---i •. N3=X' 8000 1

•. ? .• t •. •. . • . • l :
* YES

1
1

I l I I I
I I ~
~ I KG220 • •. KG300

*****G2********** l G3 *· *****G4********** • • . • ... • *
• * .* L2 > V2 *· NO • V2=!f3 L2=L3 *
*• V2=X 1 7Fl'l' 1 *--->•. ? .•--, I>* 113=L2 *

* *· • * I * * * * *· f. * I * •• ••••••••••••••••• ·- -• I ' •••••••••••••••••

l. m , 1 I
I I .!.

•••••H3••········ I I Hll ·-. . .. •.
: !Iii = V2 I <. L2 ~ ¥2 .>~

········r..... 1

11 ·-·r;: 1

•••••J3•••••••••• •••••J4•=········ I
! :. l : : I
• l'CI? = L2 - • NJ = V2 • I : : : :

I< I
~

!****K4*********! .
BCP = L2

!
*223•
• B2* .. .

G3. DETERllI!f! llI!f.
l'ORll llRD COllPOTE POINT

m~~I? 5'~8D!~gmlf VlRIABLd~ TO TECPlN
m~cgNTR~Rmm AND
POI!fT!R AS THE llillillUI!
l"CP.

Gii. 1. D!TER!II!I! !!AX.
BACKlllRD COl!POT~ POI!fT
IBCPI BT COllPARI!fG
SYllBl>I? TO CBDP JCO'lllOll

~m~~mo~a,~~rm~,
A!ID TAKI!IG THE RIGH!ST
POINTE!! lS THE l!U.
BCP. 2. !f3=X 1 80'll0 1 IF
!fO!f-CO!!llOll VARIA!'IL! •
113=CBDP Il' COllllO!I
mm~~~ L3=SYllBDP •

Section 8: Flowcharts 437

Chart DD • Variable Compute Point and Remove Level Routine -- CEKKG (Page 2 of 2) PAGE 223

KG700

.....
•223•
• B2• .. .
l

••B2••••••• . .
* REDUCE LEV *

* * BY 1 * *
••••••••••• *223* I ·.~:·

• *· KG800 KG950 1 c2 •. ••c3••••••• •••••c4••••••••••
•• -·LEV=·- •• YES .. ADD 1 TO •• :Pl=Pt~v~~co OP:

·-.. -1 1 _.-·--,.->•. LEV .. :b~Pm1tivU3~ : .. .• ··r· ······1····· ········r······
• *· KG850 • *·

D2 *· *****03********** D4 *·
• * *· •STORE PCP & LEV* • * •.

* * YES • * PLPFLGS *· * IllTO SYllBOL * MO • * PLP!."LGS *•
* G2 *<--•. = U!ISAFE .• * TABLE *<---*· = OMSlFE ·*
* * *· LOOP ? • * * SY!IFCP=FCP * A *· LOOP 1 • *

**** *· • * * SY!IULEV=LEV * *· .•

.:: c ... ::·····r······ :r::
• * *· ****El********* * *

.• BL3PT < *• 110 * * •P3=PLP LOC. OP *
*· FCP ? • *--> * RETORM * * LEVEL 1 *• •.

i "' I . ·-P2 *· .• •.
.•.

P4 *· .• •.
* * YES ·* EllDLP > *· YES • * TLIBK *·

<--•- •. <if~bo8~ ? •• ·* * 82 *<--*· BCP ·* • • *· .• •. ·-· .. -· * BO
* **** * I

: G2 :->I ' KG750 .•.
G2 *· -· •. • • BL3PT < *· BO

· FCP 1 .-> ·- .• •. .. • .. • i "' I

*****H2*********LJ . .
* •
* PCP = BL3PT . .
* •

438

•. .• • ...
j'°

L*****G4********** . .
* PCP = BL1P'l' *
: (P3) :

82. EllT!R '?O DET!Rllill! m rrm0l~8~"LmfL,
PROll WHICH VARIABLE
CAllllOT BE RE!IOYED

niio~ko f~~t ~~=E8fEVEL
Cll. EllTER TO DETER!IIllE
REllOVAL LEVEL FOR
"ADJUSTABLE Oill!llSIOll"
VARIABLE

Chart DE. Operand List Expression Formation Routine -- CEKKL

CEKKLA

*****Al**********
: ENTER

"'" l :··••81••·······:
• srEP BACK ONE •
: ENTRY IN OPTl :

I
:••••c1•••••••••:
*OPXBDl=POINTER *
:To T&IAD ENTRY :

* •
l

!****Dl*********! . .

.•.
B2 *·

.• OP. *·

I
>•:. p:FngcF) = *: ·1YES

·- •+•? .. • •. ..• ·- ... * NO

I ! ·····c2·········· I .. .
• SET OPSIGll Ill •
: OPFLGS TO '·' : !<-_..

I K.i.130 • *·
02 •.

I . *OPFLGS *·
• * OR *· YES

I •.OPFLGS2=LOOP .•--. l 11,· .. :~:'.i'.;;i ·. l

:•••*El*********: * •;~~·~~~;•• *
• * * VARIABLE *
: OPBLEV=TRilLEV : •• ~LV~hr~~G I:.. 1

: OPTFCP=Titi'CP :

• *

KL170
*****B4********** • *
* V l=OPCNT + *

l>L .. :::::: :~
I I

I l
. • c~~B~ •. •. :••••c5•••••••••:

I
* KL200

.:· ~i¥m *:.~-Es __ >:~J=~J~10SA~gT~:
*· 1 SWCHS B) • * A * COOllT FIELDS) *

I ··~~==~· I :*******j*******:

l I I : D5 =->I

l l I * **** * I
·*· I KL220 V

Dli *• I *****DS**********
• * FLOAT *· ~ * *

l .• IllSEiiT *· NO *OPCNT=Vl (STORE*
*· SWITCH • * •TOTAL COU!IT Ill * I .. j~:~,~:~·.. : ::::: :

lKLJOO*••...l•:::.. .J ..
·* OP I!I *· * CLEAB l."LOAT * • * TRFI 1 OF *· 110

* INSERT SWITCH * *· TRIAD = • *I
* * (SWCHFLI * * *· ~~BS~RI:I· *

"frn I ·······r······ ·····F::_J
1 KL140 ·*· I **Pl******* F2 *·

* CLEAR ALL * • * FLOAT *·
OPFLGS EXCEPT • * INSERT *· 110

* LOOP VARIABLE * *· SWITCH .*------------>

.. :::::r: ... j ·- i~::;!;;: .. I

K.i.110 l
* **F4******* *

* SET SWITCH *

* * * (IH~;h:~OR * * *

1 I
••'P'S••••••• I

* CLEll.R 2110 * I
* SUBSCRIPT * * PASS FLAG *
• (SBSll2) • I

.. ".!..... "'ll J
* SET TRIAD * * *

* INDICATOi * * OPOLSH=E.ilF *
SOPF~hf~~G Ill ! LOCATION :--------------'

...........
l

* * * DS * *

• *
..J..... ,,

• * *· YES *. IFLC.:=0? • *I I
* 110

l
! I

HS***** I * SET LOOP *
* 'IAaIABLE * * (LVPI PLAG !If *
• * OPPLGS * * I

I<
i

****JS*********
* * * EXIT *
* *

Bil. ADD THE TWO COTJNT
FIELDS TOGE'l:HER

PAGE 224

Section 8: Flowcharts 439

Chart DF. Triad File Manipulation Routine -- CEKKH (Page 1 of 2)

CEKKHA

*****A 1********* *
: ENTER

l
KH100 ·*•

B1 *· . • *·
NO • * SUBSCRIPT *·

r-*• SWITCH ·*
I *· (SiilCHSB) • *

I ·--:1-:;:
I c1·· ...
I ·* *· V NO • * *•

I
*• SBSli2=0 .•

*· .• *· .•
•. ·* I * YES

j
•••••01••········
=~~~~~~----!!~~!:
* PUT INTO *
*CANONICAL FORll *

... ,, 'I
*****E1********** * ..
* STEP BACK ONE *
* ENTRY IN OPT *
: TABLE :•...........

I
t

*****Fl**********
* INILIALIZE *
* TRIAD FIELDS *
.. raNAllE=O ..
: TRFLAG=O :

l
*****Gl**********
*!IOV E FI FLAG & *
* SIGN FLAG OF *
OPTI INTO Ti<FI1
:or TRIAD ENTRY :

I
*****H1**********
* !ICVE OPCODE *

: m8Ph~~1Ef' :
*TBFI2 OF TRIAD *
* ENTRY *

I
•••••J1**********
*llOVE FI FLAG & *
* SIGN FLAG OF *
OPT2 INTO TRFI2 :op TRIAD ENTRY :

l
*****Kl**********
llOVE SYllBOL TBL
•PNTR OF OPTRD1 *
* & OPTRD2 IHTO
* TROP1 & TROP2 *
*OF TRIAD ENTRY *

440

*****E2**********
* llOVE EFID OF *
•ERP ENTRY INTO *

l
>*TRTYPE OF TRIAD*

* ENTRY * .. * r
F2 *·

. ...
* *
: A3 :

I COl'IPARE THE
~ TWO OPERANDS

.. •. . *·
• * A3 *· * •• ~~GH!;T•. !****AS*******••:

• * *· NO • * RE!IOVAL *· NO * !IOVE f!IGHEST *
*• EFOP=CLOSED • *--->•. LEVEL OPllD .•--->•. REllOV~L LEVEL •

*· FUNCT ? • * A *· 1 ?' OPER-. * * INTO TRRLEV *

··._ .• ·• I ··~:o~.·· : :
.. YES I * YES I

I 1 .. L v *226*
KH500 ·*· I ·*· * B1*

BJ *• ~ -B4 *• * * • * *. • * ARE *· *
• * *• YES • * BOTH *· NO

*· S Yl'IID=LIB. • * *· OPERANDS • •--,
•.FUNCT. ? ·* •.REllOVABLE.• I *· . • •. ? .• •.

*1 NO CHECK CLOSED 1• YES
FUNCTION FOR t REllOVABILITY

•••••c3•••••••••• •••••c4••••••••••
FORWARD COllPUTE * *

=~~aa!0mc~aL =: : !lmRa~ :
: (FPT) + 1 : : llON-REllOVABLE :

I
*** **D3**********
* SET REllOVAL *
:L~~Ehm~E~~) :
.. 55 *

'<--------~~ KH150 ! •••••!3•••······· * ..
* ?RRLEV = *
: OPRLEV2 :

* *
L •••• •226* >: B\ *

* **F3******* *
• •OR OPFLGS2 *· YES * SET LOOP *

I
.*OPFLGS *·

· = LOOP .•---> VARIABLE FLAG *
*·VARIABLE .• * IN TR2llDF * *· ? • • * •

·"[:_:o ________ ._._._ T
KH117 ·*-

G2 *·
.*SPECIAL*.

• * SPLIT *· !10
*• EFFLAG ON ·1 ···- .. _ ?_.-··· I

* YES

I
• **H2******* * I

* SET BXLE *
* FLAG IN *

* TR2NDl' *
I

• **J2*******.
* TUR!I OFF *

* SPECIAL SPLIT *
* * EFFLAG * * ,(.----'

KH117A !
*****K2********** .. .
* ..
* SIGNOP=EFFLAG *
.. *
* *

l
.. * * 13 *
* *

SAVE SIGN OF
THE ERF

OPERATOR

PAGE 225

Chart OF. Triad File Manipulation Routine -- CEKKH (Page 2 of 2)

·KH170

.....
226
* .si•

*
i

. *· Bl *· *****82********** . • *· .. •
• * IS *· NC *!IOV E OPTFCP TO *

*· OPTFCP > • *--->• TRFCP
*· OPTFCP2 • * * •..

• YES I

l I
! I

:••••C1••••·····: I
:!IOY.E mw2 TO: ,1

KH250
*****B3********** * •
* TRllA!IE = *

r>: x•aooo• :

I : ••••••• r·······=
I I

I !
I· c3· •• ••

• * TRIAD *· • * OPCODE *· YES •· •. mmhc ... · ·--------------.

,,_~I
•••••01••········
•CEKKPA 227 A2*

··:r;· I
. *· '1 Kl!260

•*DJ *· *· ***DI.a******** ***OS********
·---------------·
• FILE TRIAD *
•ENTliY Ill TilIAD *
*TAi:ILE t•

I . •.
E1 *·

110 • * IS •.
r*· *~RIAD1 NA!IE~* .*

- ~ ··
* **** * * YES

: E2 : l
. •.

F1 *· . . • ..
YES .• *·

r *· SWCHSB=1 ? .•
•.. ·* •. .• ... •

**** * MO * * I
: K3 : I
**** I

' !****G1*********!
* •
:EFNAl!E = T llNAl!E:

* •
l
~

!****H1*********:
* EFTRD=LOC. OF *
: TRIAD :

I

• *TliFI1=ARG. *• YES * SET COl!AF * ~ * SET CO!IAF *
*· OF CLOSED • *--->* IN TR211DF *--->* Ill TRl'LG *

*· FUllC. 1 • * * * A * *
**** *· ·* * * I * * • • •. . • ••••••••••• I •••••••••••

• E2 • * NO I -----· :r · 1 .L.
l KH200 • *· KH270 • *· : H3 :

E2 *· E3 *· *****E4 ********** • * . • •• .• *· • •
I YES .• *· .• TRFI1 = *· YES * GET ERF LOC. *
, •••• SWCHSB=1 ••• ·-.~NDEX ADD :.-·--->:(oPg~~H?~srnol! :

•• TRIAD • • • * •. • * •. I

I .• OPERATOR *· YES .• TRFI1 = *· 110 .• EFCODE *· 110
·•. (TBq]I = ••• •--> • •• SUBSCRIPT?•.) *· •• = ADCOll ? •• ·*--> I ·-.... ·· ····-;-;;;· I ···-.-;;;

I
I ••••• J.::...... ".!......... Ill ".l.. _j * EFADCOll = *

* EFTRD=LCC. OF * * * * El"QUANT STORE *
• TRIAD • • rRHA1tE=EFTRD • I • SYllBOL TABLE •
* * * * * PITB Ill ADCOll *

I
................. I•.........

'------>! :-::• :->1 I

! I ..•. I I
llH220 • *• KH280 +

H2 *· ~ *****H3********** .• *· • • I . * ZEROF ·- YES • SET HCOl!PF IN • I
*· OF TRFLAG = .• * TRl"LAG •

·- 0 ? •• * •
·- - • * •

··1·=, ········r
• *• KH320 .•. J2 ·- J3 •. ••J4••••••• ... • •. . . •. . .

• • *• YES .• *• 110 * SET ZEROF & *
*· Si1CHS8=1 ... , *· Si1CHSB=1 1 .•--->* FIRST!" Ill *

*· .• *• .• * TRPLAG * *· ·* •• .• • • •. •
ro I :-:;·:->LYES I
! KH99;··· I

K2***** +
* * ****ICJ********* * CLEAB * * *

* FIRSTP OF •--->* RETOBll *
• TRFLAG • • *

B1. CO!! PARE FORil ARD
COl!PUTE POTNT OF THE 2
OPERAllDS AlfD !!OVF. THE
LOilEST FORWARD CO!IP\lTE
POillT TO THE TRIAD
Elf TRY

D1. RETORll: P3=PTR TO
CURRENT TRIAD TABLE
ElfTRY

Ell. GET LOCATION O!"
RIGHT-l!A11D END OF ERF
EXPRESSION STRING

PAGE 226

Section 8: Flowcharts 441

Chart DG. Search and Insert Triads -- CEKKP

CEKKl?A

****A2********* * •
* EHTEB * :·

I
B2***** . .

* SET IllITilL *
* BEGISTEllS *
• *

"'" ,[
•••••c2••••••••••
* * * SAVE l?BEYIOOS *
: ?BUD LOC. :

* •
I

.•. Kl?600
D2 *· *****D4**********

• * *· * FILE COllllEHT *
• * *· IES * TRIAD 41111 *

•• .~11i~~mi :.· -------------->:uuh~11Tnhu:
*· •.• * * ·- .••.... r, l

Kl?220 .•. Kl?SOO 1
E2 *• *****E3* ******** **Eli*******

-· •• • • * •
• * R > *• IBS *TllLllK = TllLIK2 * * SET LAST *

l
• TBPCl?2 (S) .->* (DELETE OBS * * USE PLlG IR *

*• • * * TRIAD) * * EPPLAG * *· •.• * • • * ... • r 1
P2 *· *****PG********** -· •. . .

• * TllPCI? = *· *CURllEHT TRLIK "*
*· TllPCl?2 (S) • * : I' 8000 1

:

Al ·: r:.. = .. ·--r·····=
G2 *· **G4******* -· •. . .

·* TROl?1 = *· * *
*· TBOl?12 (S) .• * * STEP T * *

Al ·····:c;:.. r····
H2 *· *****H4********** .•

-* TllPI1 = *· * P3=1?1Tll TO *
·- TRPI12 (S) ·* : CU¥ftfli.UPD :

Al ·····:c:.. ...:: , :
J2 *·

.•TRRLEV *• ****JG*********
-· = ·- • • *·.:llRLZV2(S)

0

. : llBTUlll : .. ·-· • .. • l "'
****K2********* . .

: BBTUBI :

442

l2. EITBRIIG: B=CUllllEIT

~?M~mPTmhoc. 4mr, r~~1Mrmme
D2. COllP&RE PllEV.
TRIAD'S LIIK TO l!XT
BITBY TO BID - OP -
CHUH

E2. COllPlBB CUBB!llT PRP
PITB TO PORlllBD COllPUTB
PT. II PREY. TBilD

P2. COllPlRB CURBHT
TRilD'S PORllllD COllPUT!
U1 m~1 p~~ PREY·

G2. COllPlRB cue.
TRilD' S OPBBAID 1 TO
PREY. TRJ:AD' S OP!RUD 1

82. COllPAllB CUR TRIAD'S

mMHoasgr·To PREY.
TRIAD'S, PILE IllD.

J2. COl'll'AB! BEllO'flL
L!YILS OP CUB. & PREY.
TRilDS. J:P TRRLEY =
~Hii'2 (SI , TREW SUB

PAGE 227

Cllart DH. Canonical Form Routine -- CEKKN (Page 1 of 2)

CEKKNA

****A2********* . .
* ENTER *

l . •.
82 • •

• *EPOP = *·
YES .• MAIC Oii *·

r--·· •• mm~~c ... •
••••• •. ? ••
•229• • •••

·.:i- i "
KN120 • *· KN999

C2 *·
•* *• ****C3*********

• * EPOP = *· 110 * *
· •+• '' OB .•--->* liETUlill *

·· .. '/' i .• ·• ·•..•...•••. • ... * YES

l .•.
D2 *·

.•EPTYPE *•
NO • * = RE AL •4 *·

r--*· •?R liE~L •8 • * ·*
...... *· .•
•229• ••••
* •!~* •

1
YES

KH130
!****E2*********:
* STEP BACK ONE *
• EllTliY IN OPT * * TABLE *•

I .•.
P2 *·

.•IHSERT *·
• *OH PREVIOUS•. HO

KH140
!****D4*********:
• GET 211D ERP • j'L .. ::1::i

. •.
E4 *•

.•EPTYP! *· **** . * = IllTEGER *· YES * *
*• *2 OR IllTEGER. *-->• K4 *

•. *4 1 •• • * •. .•
•. -· * llO

I
*****Pll********** . .
* GET LAST ERP *

*· CEKKN ENTRY.•--------------' * EITB! * ·- -· •.
* YES

!
·*· G2 *· -· •. HO .• IHSll = *·

'

• ••• •po• ? •• ·*
•. -· • ... i "'

:••••e2•••••••••:
* SllITCH 0PT1 *
* EITRIES TO *
* OiIGIMlL *•..•..•....•

Kll135
>I

••J2•••••••
• USll=O •---t

••••••••••• •229•
• 83• .. .

.
I
·*· Gii *·

.•EPTfPE *·
• * = IllTEGER *• NO

*· =~ 0~11 I'TEG~~· *------1 •.
· · •229•

I
* YES * •!l*

KM200
*****Hll********** . .
* SllI'TCH OPT1 *
* EITRIES *

I
••Jll*******

* IMSll = •po• *
: ·::· :..>j • •

K•220
*****Kii********** . .
* STORE IISEBT * * POil'T II SEllP * * E•tB! *

!
*229•
• 81• .. .

P'2. IISl-."0 ·?

PAGE 228

Section 8: Flowcllarts 443

Chart DH. Canonical _Form Routine -- CEKKN (Page 2 of 2)

.....
•229•
• .s!• .
l

!****B 1*********!
* LINK INSERTS *
:INTO SERF CHAIN:

* *
l

*****Cl**********
* * *LAST SERF ENTRY*
• = x•aooo• *
* * * *

I
*****D1********** • *
* l!OVE 'FLOAT' *
* PROTOTYPE TO *
* OPT 1 *
* *

I
*****E 1********** . .
* OPOLSH2 = *
: OPOLSH :

* •
I

•*• KR3SO
Fl *· *****F2**********

.• ·- * • • * OPSIGlll *• Y:ES * STORE EFTYPE *
•. = •+• 1 .*---->*IITO SEPID1 AllD*

*· • * A * SEFID2 *
•. ·* • * ··r- ·······r······

•••••G1••········ I *****G2**********
* SET OPSIGll = • *STOllE l"UHCTIOlll •
* •+• * * JIOllBER Illl •
* * * SEl" AC1 * * • • • ········r·····J ·······T·······
*****Hl********** *****H2**********
* • * COii POTE •
* SET SEFLG2 1111 * * REFE.REICE AllD *
: sEaF f~PY To • :sma0 nam9T1:
• * • •

444

l •••••J2••········ * •
* SllCHl'L = E.Rl' *
* J?OillTEli •
* * * *

l
****K2*********

* * * RETOlill *
* * ·-·············

.
229
* BJ*
* * *

KNSOO t K11600 ·*· Kll700 ·*·
!****BJ*********! • * Bii *. *· . *BS *· *·
* STEP BACK ONE * . * OPSIGN *· YES ·* lll'OP = *· YES
: llllTRfAi~EOPT : 1>• ••• 2 = •+• .•·*--->•... •+• ? •••• 1 * • •. ·* •. ·* •. . . • ...

I i NO i NO

c). •. •••••c..l•••••••• ,). •. 1,
• *RESULT *· * * • * *•

.•OP OPTRD12 *· YES * CHAllGE OPSIGJI * * lll"OP = *· KO I
•.- OPTBD1 > O .*-->, * AllD OPSIG112 * *: '*' OR 'I' ·*->l

•• 1 ·* • * *· ? ·* •• • • * • *· .• *· .• ••••••••••••••••• • ..•

l
* HO l

1
. YES :-:;~

• *· • *• KH720 • *·
DJ *· Dll *· DS *·

.•EPOP = *· ·* *· ·* *· .:*:Gr, ·~r;., *:•~> ·* El'OP = *· YES ·* EFOP = *· YES
*.OR GE' ?.• *·.:••,/:*; O~··*--->•... •+• ? .•·*1

•. ·* •. .• •. . *
• .. • •. .• *· ·* 1· ,. ,.

KH550 l ·*· ·*·
!****EJ*********: ·*Eli *·•. ·*ll5 *·•.
* SWITCH OPT1 * • * llPOP = *. YES YES • * OPSIG1' *·
: EllTBIES :~ *·•. :~~: ~B •• ·*-> *·•. = '+' ? .•·*
* • •• .• •. • *•......... •. .. • ... r· r

Fii •. •••••rs•••••••••• .•
110 • * EFOP = *· * *

· 'lllD' OB · * CHAllGE OPSIGll *
• 'OR' ? · * * •. ·* • • ·r., ..,::·····r

*****Gq.********** *****GS**********
* CHllllGE EFSIG1' * * CHIKGE El'SIGK *•.....

>l : ·::· :->!
KJl6~2***Hll********** 1Kll7~2***H5*******"**

* * *PUT SIGHS l"ROll *
* * * OPT EITRIES *
* IIVEBT El'OP *---->* BACK Oii EltF *
* * * ENTRIES *

l
****JS********* • * * RETURN *

* *•....

PAGE 229

Chart DI.

REllOVlL LEVEL
OP EXPR. <

CUiREllT LOOP
LEVEL ?

Expression Removal and Commonality Determination Routine -- CEKKI (Page
5)

CEKKIA

••••12•········
* * * EllTEB *
* *************** * **** FIRST OCCURRENCE SINCE

I
* * COllPUTE POINT
: Bii : ?
l

KI100 82.•... B4·*·•.

·* *· .• *· ·* *· NO ·* FIRST F *· YES
·•.b~Uin't.·---v *· OP TRPLAG=1 ·*--i

*· • * ***** *· *· ? .. *. * I
· · *231* *· ·* v

* YES * B2* * 110 * **** *
**** l IOPP1 OP * * 1 * Fii * *230* <lPPLGS=Oj * * *
: c2. •-> ****

K1120 c2·*·.. c4···.. •••cs•••••••*
.•-*EPlDCON*·•. YES .•.*CPFLlG *·•. 110 * SET TO *

· = x•eooo• ? ·'-------------, • OP TR2NDP=1 .•--->• REDUCE *
·- • * I . •. ? • * * POPULARITY

*· ••.• -· •·• :·· • ••••••••••••
* HO • •"YES !
J. '"'ii!........ (::·:

- • D2 *· •. I *CEKKJA 235A2*
.• CPLG=1 •.Y -=-Es ___________ > :----ciiic'Ks-----:

· ? ·- * COllllOllALITY *
*· *· ·*. * I * t• I .•.•••.•••.•••••• i " j

-·- ·*·
_.E2 ·-.. ~gg~aai~~ll~o:DCON .•Eli •• ••

·* EPPLAG *· n:s ARRAY VARIABLES) •• •• ••• c.011~_011_ ••• ••• .,YES *·=SUBSCRIPT•*'--------'-----
*· ? ••

•. ·- •• -· *· .•
• 110 1 •••• r 110 I
l I H->J

_.F2- ·- ·- ·- m!ZPPM~c. w~~IOR II KI 1 :.2:::PllTql •• DC •• ll ••••• ! I
• * SUBSCRIPT *· YES TO RElRRAllGEllEllT)

·-~~- JS~CPB~.-· > : (P~¥?t~3ITY :

.. ·-·
1
· c ;;;;:··r······ I

: GQ* *->I
•••• ~ I

G2··-.. IK11;2 ••• G4••········ I
• * *· *CEKKOl 249A 1 *

.• TRIAD *• IES •---------------•
·-._ 11111.ED ? .• *-------------->, : : I

•. -· ·r· I ;;;z····1:·····.. '
9 l :.::· *->

• *• KI999

·*H2 *·•. ****Hll*********
.:• = ~ri~~¥011 *:.,_n_s ___________ --::-->! RETTJRll !

•• ? •• • • •. ·- -· j"
-··

·*J
2

*·•. (Ell:PRESSIOll BEllOYABLE)
.• TllRLEY *· YES

*· *• < LEY •• ·*--------------' ·- -· ·- -· * RO

l
* Bii * * •

SAYE POPULARITY
COOllTS FOR

GLOBAL REGISTER
ASSIGllllE!ITS

Cll. LEVEL 0 'REllOYABLE
EXPRESSIOll

g~D! (~i~o~~:.1fOlll!Oll IP

Section 8: Flowcharts

1 of

PAGE 230

445

Chart DI.
5)

Expression Removal and commonality Determination Routine -- CEKKI (Page 2 of

TEST NCOllH
OP TRFLAG
FOR ~= 1

446

KI200

.....
•231*
• 82*
* * *
l -•.

82 *· -· •. .• 'AT 1 *· YES
· OPEBATOB ? ·--i ·- .•

*· ·-· ... •
* NO *****

*230• ·.er
* l . •.

C2 *· .. • •.
• * CCllAF *· YES

*· OP TR FLAG ? • •-i ·- .• •. ..• • ... •
* NO *****

I *230•
* H4*
* * l *

D2*****
* CLEAR *

•INDUCTION VAR*

* *RE~5~~R~~ehP• *

·mm.IM*

I . •.
E2 *•

• • LOOP *·
.• VARIABLE *· YES

· OPERATOR ? ·-i ·- .• *· ••• •. ·* * KO *****
I •234*

•231* I * 82*
* F2 *->I * *
: ••• * ! *

KI210 •*•
F2 *•

• *REllOVAL*.
• * LEVEL > *· YES

•.CURRENT LOOP ·*-i
• LEVEL ? · •. . ..

•. ·*
* NO *****

1
. *·

G2 *· -· •.

•233*
* 82• ..

*

• * OPRLEV *· NO
*· & LEV=O? ., •.. .• •. .•

·- .• v * YES *****

l -·· H2 *·
-· *· * * YES • •EXPRESSIO!I *•

* 83 *<--•. REllOVABLE ·*
• • ·- ? ·* •. ..• • .. • * KO

l
233
•.a~• .

•232*
* A2* ..

*

.... . .
: 83 :
l .•.

83 •• .• •.
• * *• YES

*· *~llCHSB=1 ? •• ·*~
•.

· • • •232 i " .. :i·
.• .

C3 *· ·* • . • * SBSW2=1 *· YES ,

•••• 1 •• ··~ •. ·* •••••
·- • • •232• i NO * •:~•

~
D3*****

•SET LEV. 0 *
* REllOVABLE *
·~xPCP~m lPT ••

• •• ~H~~~~ •• •

I
• *• KI213 • *·

E3 *· ES *• .• •. . . • .
• • TRIAD •• 110 • • LIJP or •. YES

·•. KAllED? .•·'-------------->*.* TRPLAG=1 ··*1
•. .• . •. . •. I

*· . • • .. *

1
* YES 1ST OCCURRENCE OP A •1 llO

LEVEL 0 EXP. IS TREATED
AS 11011-REllOVABLE

.•.
F3 •. *****PS********** .• ··=~TR~~S *·•. YES ! 5~§EL~£1ALA~T !

*· *· (TEllE
1

P) =O •• • *---1 *EPLUP I! TiPLAG*
Y * & EPFLAG * •• • * ••••• • •

•. . • •233• ••••••••••••••••• i .. -.:i·
*****G3**********
* * *LOAD PLP LOC OP*
* LEVEL ZERO * . .
* •

I
H3*****

* IKIT. *
* PARAllETEB *

* REG. P1 TO *
* BL1PT+1 *

I •••••J3•••·······
•CEKLEA 23813* ·---------------·
* t•

1
•233•
• 82•
* •
*

I'
KI21S ·*·

GS *· .• •.
• * REf!OVP *· 110

· OP TRFLAG=1 ·-i
•. ? ••

•. ·*
IF ALREADY *· • *
RE!IOVEDL DE- * YES *****
POSIT Rr:SIDIJE! *232*

~ **A~*
•233•
* A1* .. .

8~hUsy~s\ ~!F T~Ir.r 1s
PRillITIVE

D2. TRPLAG

E2. TEST OPLVF Ol'
OPPLAGS FOR 1

F2. TEST OPRLEV POI! >
~5;. R ~~o~fif.E EXPR !SS ION

83. ALL EXPRESSIONS
INSIDE SUBSCRIPTS WILL
BE REllOVED EVE!I 011 1ST
OCCIJREllCE

J3. FILE A C!IT ENTRY AT
g~~!m6vim TREAT AS

PAGE 231

Chart DI.
5)

Expression Removal and commonality Determination Routine -- CEKKI (Page

.....
•232*
**A~*

.....
*232•
* AS* .. .

KI300 l KI220 KI230 ·*· **AS*******
A2•

0

•. A3 *· * *
.• EX?. *· • * *·

. .!.. rn <~:~~m;~:.> r>·=: .. ~m~\.>,_Y_Es__________ >•:. ::!:!!:!:: .. :.
•233• *· ·* I •. .• I
* • E~* 7 NO I 7 NO * **** *
. I ~ ~ ! I : BS :->I

~ J i IKI31~*** ·~
Kr22s .•. ·*· I •••••es••••••••••

••
82

·-.. .•
83

·-.. I :GET PLP LOC OF :
-· RE!IOVP •• NO •• FIRSTF •. YES I

·- OF TRFLAG=1 •• •. OF TRFLAG=1 ··-1 FIRST OCCURRENCE •.cuRRENLTEVRELEllOVU: * * * * SINCE COl!PUT PT.
.. • . •. . • - *. . •• ·- . • . • . : ••••••••••••••• :

! "' i .. : 1 .L.,.., ·m

c2 • *· • •••••c3•!•••••••• I cs •CRT ENTRY
-· -.. •CEKKJA 23SA2* I I .• ··BL1PT <·· •. NO

• • YES •• LUF OF •. ·---------------· I I •. TRFCP ··---,
* BS •<--•. TRl'LAG=1 •* • CHECKS * I *· • * i
•••••• FILE ·- •• • .. • • : COllllONALITY .: I I •. •. . • . • I

~=~BY •.•. :o ········;········ I I • YRS I

I .J... l IJ........ I I .· COlll?ION ••• _ •• ~ I :::~=~~----~~~~~= I
• * FILE AN ENTRY * I .. ·- ·-r= :· .• I I :::.~::.1:·::::: I

I ' I KI320 •••
1 •••••E3•••••••••• ES *·

I • *: .• *· E .• *· YES
• x. 8000' • •. • •. . . TRNA!! = *· SBSll2=1 • •-i
••••••••••••••••• *· •. :o •••••

I<------ 1 :~~!:
KI233 ! • *·

:~;:m ... ··~;::;: .. Fs • •••
•---------------• • * OPFLGS *· NO

THIS EXPRESSIOI *· VAR. ? • * . . •. .• • .. •
•ASSIGI HAllE TO •· I .. = INDUCTIOI ··-i

.I. I .. f" =:~i=
G3 •. I .• • .

• *•*LOP OF *· *· YES • * R!flOYABLE *· YES
•. TRFLAG=1 ·*'------------> *·J~RCFL~ = 1~··1

•• *· .• ·• •. .• '
•-.·:o 1' •-r;o :~;;:
>I:!· .___________ •230•

KI2110 * Hfl*
* **H3•****** * * •*

* SET LUF IN *
* TBFLAG *'---~--~~~~~~--'

C3. RETlJRI: COll!!ON IF
COD! Sl!!T TO ·1

Section 8: Flowcharts

3 Of

PAGE 232

447

Chart DI.
5)

Expression Removal and Commonality Determination Routine -- CEKKI (Page 4 of

***** *233•
**A!* .

I INSEilT

KI330 i
*****A1**********
=~~~~£~----~~~~~=
* REPLACE *
*ilEllOVABLE EXP. *
* WITH RESIDUE * ·················

l
*****Bl**********
* EFNAllE=TEliAllE *
* •

RESIIJUE

*****NON-REllOVABLE
*233•EXP. PROCESSING
* .s~• ..
!

**** . ..
: 83 :

i

Kl400 "•. KI410 • *• • *· KI450
B2 *· Bl •.. 84 *· *****BS********** .• • *THIS EF•. • * *· * *

• * TRIAD *· YES .*LOC. TO BE *· 1'.ES ·* *· YES * TRNAllE2 = *
*· llAllED ? .•"--i •. .• *· *·•. s~n~DI~ •.·*--A->*.•. X=TRllAllE2 .•·*---->:Tm~~ mmK :

• :·· ' ·· .. . :·· : :
l

* NO ***** 1· I ,. I i =!:::
. •. I v I ... • *· KI600

Cl *· C2 *· C3 *· I *** **Cli**********
. • *·

YES • * *·
1*· SBSW2=0 ·*

I
•. *· .•.•

• * 1ST *·
.*OCCURRENCE *· YES

•.OF THIS EXP. .•---,

··._ ? ·-··· I
• •LEVEL O•. L* * I

• * REllOVABLE *· YES * *
*· EXPRESSIOll ·*j *GET NEXT TRIAD :

......... ? • • ... • • • I : : '1 *· ... * ·- .•

I J"
* NO

I I .•·*~~0111?;· •••• YES
·.~F TRFLAG=~.·---t

l L
•. ·* •••••

· · *230•
* NO * * H~* -->! .
i

KI360 -..
El *·

YES • * COllAF *·
r*· OF TRFLAG=l .•

i •. *. ·- .• -* .•
***** * NO •230• I
* H4* I
* * I

! . •.
Fl *· • * •.

NO • * TRRLEV2 *·
r-*· > LEV .•
I *· . *
I *· t. * v • •••

***** * YES
•230• I
* *H~*

* ! ...
Gl *· . • •.

YES • * TRTYPE *·
r--*· = INTEGER ·* I •. •2 ••

I
* *· • *. *

* NO

I
I l ...

til •. • * ••
• * TRTYPE *· NC

*· = INTEGER • ,
•. •4 ••

*· .• ·- ..

. •.
E2 *•

·* llEXT *·
YES .•EXP. 'NOT- *•

r *· COllPUTABLE' •*

·- ·* *· •.• ·- .. (:;•: i NO

.... i
. • .

F2 *· .• • .
YES ·* FIRSTP *·

1·-•. TRF~XG2=1. *. *
! *· • ..• - *

**** * NO
* * I

: .:!.: t
KI550 ·*·

G2 *· ..• ..
NO - * OPPLGS *•

I
*· = INDUCTION • *

· VAR. 1 · •.
v • •••

**** * YES

: K2 : ii
*****H2**********
CEKKJA 23512 ·---------------·
* CHECK *
* COllllONALITY * * ••

* YES *****

l

448

I •230*

>I .. :~·
v

:••••J 1 ••••·····:
* ilTEXPR *
* (POPULARITY *
: ilT.)=5 :

.•.
J2 •. -· •. r< .. ~011~011_ •• >

l ·- ...
**** * YES

: DS !**** * t
* * K2 *->I l

KI560 • *·
K2 *• .• ..

• * QFLlG *· NO
*· 01' TRFLAG=l •

•. ·* •. .. .
*· .• * YES

i
•230•
* H4* .. .

* NO
I
I * * I i : D5 :->I

·*· I KI50~... i
03 *· *****D5**********

• * *· *CEKKKA 236A 2•
• * Ol?l'LGS *· YES •---------------•

*· = IllDOCTION • * >*ASSIGll NAllE TO *

I
*· VAR. • * *THIS EXPRESSION*

· · • • ... ·:, ·······T·······

I
I J........ = =

==~~!~~----!~~~!: * SET LUl' IN *

: co~~5i~~ITY : : TRPLAG :
• •• • *

I
I ·_· ... :::1::··.·.·YES ··::::::i::::::··

* CLEAR Ql'LAG * I *· •. COllllON? • • • • • • Ill TRl'LAG •••

~:r:;· T
KI700 ! . *·

*****Gl***•****** GS *•
* * .*LEVEL O* •
TRNAllE = JOINTE 110 • * REllOVlBLE *·

r>* (LINK INTO * r---*• EXPRESSIOll • *
I : CHAIN) : •• :.. *· •.. ? ••••

***************** •230* • •.•
I * Hli* FILE Ill CRT * YES

• *232• I
• • AT BL 1 PT L ••••

>: 15 ...

i ****
* **Hl******* *

* SET Ql'LAG *
* Ill TRl'LAG * ···········

I •••••JJ•••·······
* STORE CURREllT *
*TRIAD LOCATION *
* lT HEAD OP *
: JOINTE CHAill :

!
•230•
* Hll* .. .

1'1. IF llO • REllOVAL
LEVEL 01' NEXT HIGHER
EXP < OR = CURRENT LOOP
LEVEL

C2. (l'IRSTF 01'
fiVj~;m>LuKm. SET

E2. (NCOllPP OR

mm21~T?bce: m(;
H2. RETORll: COllllOll II'
CODE SET TO 1

BJ. Ql'LAG 01' TRl'LAG=1?

E3. RETURN: COllllON IP
CODE SET TO 1

Bii. COllPlRE TRIAD LOCS
WHERE X=CUR. TRIAD LOC.
PASSED Ill P3 BY CALLillG
ROUTINE & TRllAllE2 IS IN
NEXT TRIAD

PAGE 233

Chart DI.
5)

EXP. R.EllOVABLE

Expression Removal and commonality Determination Routine -- CEKKI <Page

*****INDUCTION VARIABLE PROCESSING
•2.311•
• a2• .. .
!

KI800 -·-82 *·
. * *· YES

*• *· SWCHSB=1 .•·*~
·- • * •••••

•. -· •231•
* NO * ,.F~* l .

- *· C.2 • • . • ..
YES • • REllOVE *·

I
*· OF '.1RFLAG=1 • * •. .• ·- -· *· .• * NO

I I
I J

02 • • . • ..
• * NCOllPF *· YES

•-.~i' TRFLAG=~.··~•
· · *231* i " -.:1·

I , ::::::; ,
I

*• LEV • *----i_
•• •• v

•• - * •••••
·- • • *233*

* = * B2* I •••

t
*****P2**********
* * * LOAD PLP LOC. *
•OF CURRENT LOOP*
* LEVEL *

I

EXP. NOT
REl!OVllBLE

.•. . ..
G2 *· G3 *·

-· ·- • * • . • *EXPliESSION *· NO .• BL1PT < *• YES
•-.~EllOVABLE :,.·*--->• ••• BL3PT .•·*~

•. •. ·* ••••• •. ·* •233•

>i YES 1• !10 * •:~•

KI8li0 ~
!12***** **H3*******

SET Fi!CFLAG * *
* IN TR2!1DF ,; * * SET IV ARP * * IV lliF IN * * Ill OPFLGS * * OPFLGS * * * • * • • ·····1····· ·····r·····

•232• •233•
* A2* * 82*

• *

G2. EXPRESSIOll rs
REllOVABLE IP FORWARD
COllPUT PT. Ill TRIAD >
OR = BL1PT I'll PLP

section 8: Flowcharts

5 of

PAGE 234

449

chart DJ. Establish Common Expression -- CEKKK

IF llA!IE IS
~ao~~· h~c~~ff~ms
EXPRESSIOH AND
lltlST BE CCllllOll

IF Ii!E LAST LABEL
DEl'I!H'l'IOll POINTER
(LBDi?I IS GREATER

tHAH THE 1ST ~CtJRREllT)

m~Pf~c~h~if= A

~~m~~=~E~fp ms-
IOH IS llOT COllllOH

IF PLPl'LGS
=UHSAFE LOOP,
EXPRESSIOH
IS NOT COllllOll

450

CEKKJA

* ****A2********* *
• EllTER •

l . •.
82 •. -· • .. .• TRNAllE *· YES

•. = x•sooo•? ·*'-------------, ·- .. •. -· • •. * i '°
.•.

C2 *· .. • ..
• * LBDP > *· YES * *

•. TRllAllE .•-->* F3 • •. .• . . •. ..•
*· .. • • 110

.,,.. I
•••••02••········
• GET PLP *
• LOCATIOll OF *
• CtJRREllt LOOP •
: LEVEL :

:!.. .. _ K5900
* **E3******* *

K5999

****Ell*********
OLP > *· 110 * SET liETORI * • * *· TRlllllE ? .*->• CODE TO 1 •--->• RETORll *

* * * * A * * .. .- . . J • ·
• YES

l
.... . .

: F3 ~
KJ300 • *· KJ950

F2 •. **F3******* .• ·- . . • * UNSAFE *· YES * SET li!TORll •
•. LOOP ? • •---> * CODE TO 0 *

l
·· ... __ -· ·

• 110

: ".! :
* STEP BACK ONE * * LEVEL IH THE * * PLP *

PAGE 235

Chart DK.

DOES THE NU!!SER
OF COll!!ON SUB

EXPRESSION
NAii.ES EXCEED

llUilllJ!I OF 4095

IS THIS EF
i.OCATION TO BE

SAVED IN THE
TRIAD ?

IF TRNA!IE=
X' 8000 1 '!HERE

IS NO NA!IE FO 8
TRIAD ANO THUS

110 EF POINTEB

STO.iiE NEWLY
ASSIGNED cot;z1011
SUB-EXPi!ESSION

NA!!E

cneck Commonality CEKKJ

CEKKKA

* ••••A2********* *
* ENTER *

l
. *· KK996

B2 *· . • •. ••••sJ•••••••••
• * TENCSX *· YES * *

· > 4095 .•---> ERROR EXIT * •. .• . . •.. .• ·- ... * NO
I

KK200 l
:••••c2•••••••••:
•TEllCSX = TENCSX* STORE NEii NIJ!IBER OF NA!I!
: +1 :

* *
l

• *· KK350
D2 ·- *****D3••········ .• *· • •

•=*OF ~nt~G = *:•.!::_>:TRllAllE = TENCSX:
*· 1 ? • * A * * .. -· I . . ·- -·)_:: J
.• *· • * TRNA!IE *· YES

•. = x•aooo• ? .•
•.. -· •. .• ·- ..

j"
KK360

!****F2*********: * **F3***•*** *
* * * SET HA!IEF *

;::::::.1.::::::i ,, ::.:1::::

*****G2********** **G3*******
CEKLU 23713 •INITIALIZE * •---------------• * PlllAllETER *
* l.ABEl. THE *---' *REGISTEI! Pl TO *
* COllllON * * TliFCP
•SUB-EXPRESSION. * * *

I
*****Hl**********
*CEKLEA 23813• ·---------------· * PILE A CRT *
: EITRY AT FCP :

KK999 I ••••J3•••······ . .
: R.ETURI : .•.............

STORE NEWLY -
ASSIGNED CO!l!ON

SUB EXPRESS ION
NAiii!

Section 8: Flowcharts

PAGE 236

451

Chart DL. Label common Expressions -- CEKLA

CEKLU

.••••A3********* *
: ENTER :

l
* **B3******* *

* INITIALIZE *
**COUNTER TO 1

I •••• I . .
: C3 :->
•••• I

LA200 ~ •••••c3•••••••••• . .
* STEP BACK AM *

~----------->:EllTRY IN THE EF:

....
• *
* E2 *

I

.
I -·-03 ·-.. • .

LA300
:••••04••••·····:

• * EPCODE *• YES * Y=TP.IAD *
· = OPERATOR .•---> LOCATION FRO!! *

*· ? • * * EP * *· . • • • • .• ·:o ********j********

1 i
E.<***** E3° *• E4 *·

* * • * EPCODE=*· • * *. ILA400 ~ •. ·*·
* ADD 1 TO * YES ·* CO!lllOll *· • * COllllOll *· 110 * *

L--* CCUNTER *<---•.SUBEXPRESSION.* *.SUBEXPRESSION.•-->* E2 *
A * *· .• *• (X=Y?) ·* * * I • ••••••••••• •. • .. • .• •.•.. :·· ••••

I
* 110 * YES

"'" .. u);;- .. :··!·······:
110 .• THE *· * *

~-----------*· EXPRESSION • * *EFllA!IE = TRllAllE*

452

•. ? ·* • • *· .• • • *· .• •••••••••••••••••
* YES

Ll999 l
•****G3*********•
* RETURN *•.....

I
i

:****G4*********:
* SET EPCOOE TO *
* CO!lllON *
*SOB-EXPRESSION *

I
R4*****

* SET *
LAST-USE FLAG

* • 1ml1P •• •
l

••J4••••••• . .
* ADD 1 TO *

* * COUNTER * *
l

* •
: C3 :

EIJ. CO!IPARE TRIADS
WHERE X=LOCATION O~
COl!llOll SUB-EXPRESSION
TRIAD PASSED Ill P3 AND
Y=TRI AD LOC. Ill EF OP
EXPRESSION

PAGE 237

Chart OM. File CRT Entries -- CEKLE

CEKLEA

****A3*********
: ENTER :

l
•••••83**********
• t!ASH THE PRF * * LOC. AS INDEX *
* FOR CRT LOC. *
: (HCRT) :

~--->l
. . • . I LE200 C3 • *· *·

. * CRCPLK *· YES * * •. = x•aooo• .•-->• G3 •
•. .. * * • *· . • • ••• ·- .. * NO

I
*****03**********
* * * GET NEXT CRT * * ENTRY FRO!! •
* CRCPLK *
*

l -·· E3 *·
LE999

* •. ••••J:04********* • * X = *· YES * - *
•. CRT RAD ? • *--->• RETURN *

I
*· • • *

* •• - ***************
. *· .. · =~

I I

L F3.t* •
• * •. ·* y < •. *· CRTFCP ? • * *· .• •. . ..

*· .• * YES

* • I * G3 *->I
* **** * I

LE300 ~
*** ••G3* ********* * • * INSERT A NEii *
*EllTRI INTO THE *
* CRT * * ••
•••••••• 1j********

LE999

****Hl*********
* * * RETURN *
* *

ill. CO!IPARE TRIADS
WHERE X = TRIAD
LOCATION OF THE
EXPRESSIO!I (PASSFD IN
~~h~11Mm~~ rs THE
INDICATED IN TP.E C!IT

F3. CO!!PA!IE FOPllAR!>
COllPUTE POUTS IJHE!IE Y = LI!!ITING POINT OF THE

wRmI~~T~W~PT~~ PC~ OR !IE!!OVAL POINT
INDICATED IN THE CRT

G3. CRCPLK = LINK TO
~i;a_igT~Yi CRCPCP = Y,

PAGE 238

Section 8: Flowcharts 453

Chart ON. Expunge a Removable Expression -- CEKLD

CEKLDA

•****Al*********•
: ENTEB :

I
LD100 i LD650 .•. IQBll

:••••st•••••••••: .• slAsT •... :••••a••••••••••:
i!EDUCE OPCNT BY ·* ERF EllTllY *· YES *SET TRTYPE AHO *
** 1 *• ~ ~ 1>•. FOR THIS • *->* EPCODE TO * ~ *• EXPllES- • * * 'RESIDUE' *
* * •. SIOll • * • * ·······T······· ·T;, ········1·········

.•. .•. LD999
C1 *· C3 *·

.. * ANY *· . * •.. ****C4*********
·* SERF *· NC •* EPCODE *· 110 * *

• •• ~:~ms?~~-··*------------ • •• : .~ESIDO~-=·· .] : ****:::::: •• ***:
•. •• *· ••

.-----f' i "'
ILD200 ·*· .•.

01 *· 03 ·-

I
·* *· .• LAST- *•

• * ILNKT1 *· YES • * USE FLAG *· NO

·-.~ ~ml~F •• -------------->I ·-.. mnGI~ •• ··1
•. ••• ·- 1 ? .• ' ·r, ··1r·~ES I

• *· LD250
• * E 1 *· *· !****E2*********! !****1!3*********!

.• ILNKT1 *• YES * GET NEXT SEllP * *CL.EAi! LAST-USE *
·-.~ m~i p:.----->: IHSEllT : PLA~aHi~> Ill :

•. ·-· • * • *
·-, ... :o •••• ·····,1 ········ ········i:_··_·_·_··_·_

LD670 1 :••••F1••·······: I :••••FJ••·······:
I :. BELU~L~ERP :. 1 : s:Mpm~/O :

I • '* : :

l
·······T·······

~ l 00 .•.
• * G 1 *· *· !****G3*********:

• * SLNKT 1 •. YES * GET NEXT ERP *
*·.: x•aooo• :.-------------- : ENTRY :

*· .. • • • • .. ··•.

454

~~iTI~R~L~m! <m~ TO

~p[E~~s~~INPmEm~
ERP EllTRT TO BE DELETED
FOR THIS EXPRl!SSIOR, RO
llORI! POSSIBLE Sl!RP
INSERTS POR THIS
l!XPRl!SSIOlt

E1. IP ILllKT1 IS
GREATER THAii THI! PIRST
ERP EllTRY TO BE DELETED

~~~.T~~~ ~~~pm~;f Is 
TOO LOW TO DELETE 

P1. DELETE All IllSERT 
PROll THI! SERF TABLE 

PAGE 239 



Chart DO. Subscript Expression Revision Routine -- CEKKM (Page 1 of 3) 

CEKKllA 

****A2********* • * 
: EHTER : ............... 

l 
**B2******* *****B3********** . . . . 

* * *COllPUTE NO. OF * 
* QQFLlG=O * > * '+' OPERATORS * 
* r * (OPX) * . . . . 

*****j***** ********j******** 

I I I ! COUNT llUllBEB V 
OF '+• 
OPERATORS 

*****C2********** *****C3********** . . . . 
* NUllBEil OF '+• * *CO!!PUTE HO. OF * 
* OPERATORS * * OPERANDS * 
: (OPX) =O : : (OPHDX) : ................. . ............... . 

...----->[ J 
K11001 **D 2******* D3 *· . . . . •. 

* ADD 1 TO • * OPllDX > *· 110 
* OPX * *· *· 1 ? • * • *j 

'L "···1_...... ····t'.. I 
E2 •. Kll0~2•••E3•!.2t;H:~s I 

• •• • NEXT •. •. NO ! s~=T o~&~~Ag~s : I 
*· EFOP= 1 +' ? • * * INC REAS ING * 

*· .• * REllOVABILITY * •. -· . . • .. ·. . ............... . 
I<·-~ 

Kll002 1 
*****F3********** 
*COllPQTE 110. OF * 
* El' POLISH * 
:m~11nL Emug: 
* OPTl ENTRIES * ................. 

I 

l 
*****G3********** * • 
*CREATE OPT AND * 
*TEP ENTRIES FOR* 
* ADCOM * * • ................. 

I 
*****H3********** 
*STORE EP' POLISH* 
* ENTRIES IllTO * 
* TEllPORlBY *-> * ilORKIHG AREl * 
: ••••• JI!~L ••••• : 

. 
I 

KllO 10 ! 
•••••84••········ 
*llOVE ALL POLISH* 
•TEF ENTRIES AT * 

,->*THE SAl!E BLOCK * 

I
I : TO THE Ef' .: ................. 

!/"'" .. ".!. .... . . 
* ADD 1 TO * * BLOCK COUNT * . . . . ........... 

I 
*****DQ.********** * llOVE •+• * 
* OPEliATOR TO * 
•BLOCK OPERATOR * 
* TABLE * . . ................. 

I .•. 
Ell *· .• .. 

• * DOlll!! *• YES 
*· •. mM~T J. •. •-----, .. . . . .... 

•. •• •2111• i " .. :i· 
IKl!026 ·*· 

Fii *• 
.•CORRl!!NT•. 

YES • *OPRLEV AHD •. 

I
<-•. OPP'LAGS = • • 

•.HEIT OPT1. * 
•. ? •• • ... * HO 

I J 

I 
**Gii******* . . 

* R!DUCZ * 
* BLOCK OP!!!I! AllD * * COUNT BY 1 * . . . ......... . 

I .•. 
Hll *• 

•* BLOCK *· 
• * OP!RlllD *· YES 

*· *· COUli = 0 • •. *---v 
•. .• ..... 

*· ·* •241• 

I
• 10 • .e:• 

Kll036 • 
••• ••Jll •••••••••• . . 
* PUSH OUT LAST * 
*BJ.OCK OPERATOR * 
* EHTllY. * • * ................. 

Section 8: Flowcharts 

PAGE 240 

455 



Chart DO. subscript Expression Revision Routine -- CEKKM (Page 2 of 3) 

***** •2111• 
*.a~• . 
l 

••B2••••••• . . 
* REDUCE • 

• BLOCK COOICT •<-------
• BY 1 • I · .... T..... I 

• •. Kll022 l 
• * C2 *· *· !****C3• *******: 

.• BLOCK •. 110 *llOVE LAST BLOCK• *· COUllT=O ? .*--->•OPEiiATOR ENTRY * 
*· ·* * TO EF * •. .• * • 

*· • * ***************** * YES 

l 
K110211 ·*· D2 *· 

.•END OF *• 

[

YES•=:. OPE~~TORS .::• 

•. -· *· .• * NO 

: ..... J ....... : 
*llOVE ALL BLOCK * 
* OPEIUTOB * 
* EllXBIES TO EF * 
* * ***************** 

K11999 'I 
****F2********* * • 

* RETURN * • * 
*************** 

456 

..... 
*241* 
* Bii* .. . 
! 

Kll027 • "*· K11028 • •. 
84 •. 85 •. 

• * *· ·* •. • * CURRENT *· YES • * NEXT *• llO 
*· OPRLEV > .•--->*. OPRLEV>LEV ·*-i *· LEV ? • * *· ? • • *· •.• *· •.• •. ·* • .. * 

* NO * YES ***** 

1 
I •242* I •• :i· 

. *· Kll032 i cq. *· •••••cs•••••••••• 
.•CURRENT•. * * 

·* LVF OF *· NO * GET '+' * 
*· OPFLAGS=1 .*--->* OPERATOR * *· ? • • • • 

*· .• • • *· . • • •••••••••••••••• 
* YES ! 
1 :;:;: 

·*· * K3* 
Oil *• * * 

• * •. * 
NO ·* *· 

I
*• Q!JFLAG=1 ? • * •. .• •. .• • .. • 

I 

J"' 
E4 *· 

~I" <?:~:i'.~:> 
* YES 

........ L ...... 
* * *GET CURRENT PLP* 
: LOClTIOll : 

* * ................. 
I 

! .. gt~:~~-*· 
110 • * FLAG Ill *· 

r-*· PLPFLGS=1 ·* 
' •. ? .• I ·-.. r ;~: 

l . •. 
H4 *· ·* • . • *PREVIOUS EF*. YES 

·-.~m~,.~o~·:.·---v 
*· 1 .• ••••• 

•. • • •242* 
* !10 * B1 * 

>1· *. * 

K!l027A :••••J4••·······: 
• GE'!' • ! I • 

* OPERATOR * 
• * • * .•............... 

i ..... 
•242* * K3* • * 

* 

U~-r ~~116ihL~PT1 ENTRY 

~~hi" ll6¥ 5hmia~~T, 

PAGE 241 



Chart DO • Subscript Expression Revision Routine -- CEKKM (Page 3 of 3) PAGE 242 

..... 
*242• 
* Bl* 
• * . 
l 

*****B1 ********** * BACK UP ON! * * ENTRY TO 2ND * 
•OPEi!AND Oii NEXT• 
• CEERATOB • 
* • ................. 

I ••c1••••••• .. .. 
* INITIALIZE * * COUNTER =2 • . .. 
* .. ........... 

I ,[, I 
I K!l027B • *· 

ill *• **D2* ***** . . .. . . 
• * 1 *' *· YES * ADD 1 TO * *· OPEiiATOR ? .*--->* COUNTER * •. .• . . •. .• . . .. .. . ......... . 

j" 
••E1******* • * 

* REDUCE * 
* COUNTER BY 1 * 
* * * * ........... 

I 
·*· Fl *· .. .. 

• * *· YES 

Kll027G :••••c3•••••••••: 
* POSITION TO * 

[

>* 'COllSTAllT 0' * 
:us:ERT LOCATION: 

.:::····r······ 
*****D3********** 

I * SERIALLY llOVE * 
I * OPERANDS BACK • 

I * (TOii ARDS FROllT * 
: OFP~mm 1 : 

I m····r······ 
*****El********** 
*CEKTFC 015A2* ·---------------· * PILE COllSTAllT * 
* OP ZERO * • * . ............... . 

I 
*****P3********** * • 
* l'IOVB COllSTAllT • 

I 
*• COUNTEa=O ? • *---------------1 •. . . .. .. 

L····~::c ..... 
* ZERO TO Bl' • 
* STRillG * . . . ............... . 

I 
* * * BACK UP OllE * 
: EHTiiY : 

* * ................. 
***~*G3********** . . 
• llOVE 1 1 1 • 
*OPEUTOR TO EF * 
* STRillG * 
* * . ............... . 
=m. I * 83 *-> * * <.----------.... l 

Kll029 ·*· 
H3 *· *****ff4* ******** • * BLCCK *· * POSH ODT ALL • ·* OPERATOR *· 10 •OPERATORS PROll * 

*· TABLE BllPTY • *->*BLOCK OP!RlTOB * 
*• ? • * * TABLE TO !P * •. .• . . •. ·* ••••••••••••••••• 

* YES 

... ~ l 
*****J 3••········ . . 
: SETG~P~~ij=1. : 

* OP EU TOR • 
* * ...•............. 
~~H: *->! .... 

Kll034 
*****K3********** . . 
* llOVB OPERATOli • * TO BLOCK * 
•OPBRATOli TABLE * . . ................. 

! ..... 
*240* 
• 84* 
* • 
* 

Section 8: Flowcharts 457 



Chart DP. Acquire E~try From compute and Removal Table -- CEKKA 

CEKKAA 

****A2********* 
* * * ENTER * . . ............... 
=·:;·=->I . . .... 

KA 100 • •. 
B2 *· .• •. 

YES •* CRCPLK *· 
•. = x• eooo• .• •. .• •. .. 

*· .• r 
*****C2********** . . 
* GET HEIT CRT * 
• ENTRY * . . . . ................. 

I .•. 
D2 •. 

-· *· •• y < •• 110 
*·•. CRTFCP •• ·*------------------------

*· •.• • .. • 
• YES 

""' >l 
*****E2********** 
* CONVERT Lil!IT * 
• II P4 TO HASH * 
• TABLE EITBY * * IIDBX • . . ................. 

I 
.•. KA300 .•. 

1'2 *· 1'3 *· **1'11******* ... .. .. •. . . 
• • HASH •. 110 • • *· YES * SET X TO 0 * 
·-.;A~~M~P~.-·--A->•... 1=255 •• ·----->·. (B°i~~r OP •• 

•. ... •. .• . . •. .• •. ·* ••••••••••• 

i"' i" 
*****G2********** **Gl******* 
* SUBTRACT * * * 
•CURREllT PRPLOC. • * * 
* FROI! Lil!ITIIG * * ADD 1 TO X * 
: PBP LOC. (YI : * • * * ....... r..... .. .. 1_··_·_· ________ _, 

•*• KA420 .•. U999 
H2 *· 83 *• .• •. .• •. ••••ell••••••••• •••• 

.• RESULT *· YES • •X=STABTIIG *· YES * * * • 
*· > X *· PT • *---->* RET1JRI •<--* 811 • 

•. *· I.*.•• *· J~OCRCR~ *. * * *************** * * **** * 

458 

• .. • • ... J.:o• 
1

110 . . 
• 84 • ltA900 • • •••••J3•••······· .... . . 

* COllYERT HS8 * * TlBLI PITR * 
: (BCRTI TO ADDas: 

········i········ .... . . 
* B2 * . . .... 

D2. COllP.lRB PRP PITRS 
llBBRI Y IS LillITIIG Pill' 
LOC. P&SSBD BY ClLLUG 
ROUTIH & CRTPCP IS 
PORllUD COl!PUTI PT. II 
CRT HTR! 

!'2. X=BlSB TlBLB BBTR! 
IBDH PlSSBD II Pl 8! 
C.lLLUG ROU'fIH 

gii:BII11gghLBSS TBll 

PAGE 243 



Chart DQ. Polish Expression Generation Routine -- CEKKB (Page 1 of 5) PAGE 244 

CEKK8l 

****Al********* . . 
• E!ITER • . . ................ 

l ••s1••••••• . . 
• CLEAR • 

* * RllV.PLAG • * . . ........... 
I ••c1••••••• . . 

• INITIALIZE • 
• TO BASE OF • 

• OPT • . . ........... 
I 

**Dl******* 
* CLElB OPT * 

• ~TYPE 2 • 
•• EN ~ns~llD •• . . ........... 

I :••••.!1•••······: 
* llOV'll TBIAD • 
• POINTER FROll * 
• CRT TO OPTTBD * . . ................. 

l ... 
F1 *• 

.• TRIAD *· • * LAST USE *· 
*·•. FLAG 1 SET ·*· 

KB999 

.. .• .. . . r 
****G1********* . . 

* .llETOU * . . ............... 

us 

. .... 
•244• 
• 82• .. . 
l 

KB100 • *• K8996 
82 •. 

•• - • TiKLE •. •. YES • ••••B
3
••·······. 

>*. OVERFLOll .•--->* ERliOli EXIT * 
•• ? .• • • .. .• ..•............ • .... 

* NO 

KB110 I ••c2••••••• * • 
* CLEAR * 

* IIDICATOR * • * . . . ......... . 
I 

!****D2*********! . . 
*CLEAR Ef EITBY * . . . . ....... T ...... . 

.•. 
E2 *· 

.•IS THIS*. 
• *A PRillITIVE•. JES 

*· *· (OPT~ll=4) ·*. *------1 •. .. . .... 
•. -· •246• i "' .. :1· 
-·-P2 *· .. .. 

• • TBIAD *· 10 
*·AT FLAG 011 .-------------' 

·- ? •• •. .• • ... 
* YES 

moo l 
*****G2********** . . 
*PORll l!P PBOll l'l'* 
* TRIAD * . . . . ................. 

l ..... 
•2117• 
• J3• . . . 

•••••!4••········ . . 
* SET !!!POP CODI!! • 

>• TO RESIDUE * . . . . ...•.........•..• 
I ... 

P4 *· .• • . 
LO • * TRIAD *· HIGH 

*· * • RLl!V: LEV?•*. *--q 
•. .• ..... 

·- .• •2115• j . ·.:1· 
... 

G4 *· .• •. 
.• BL2 PRP *· 110 

*• *• ITEll ? • *. *--y 
•. .. . .... 

• •• • •245• i'" . -:i· 
... 

H4 *· 
.•CDRRBIT* • 

• *PRP. LOC < *• 110 
*• •. 'l'RIAf PCP.•.•----,. 

•. .. . .... 
•• • • •245• i "' ·.:i· 

••Jll••••••• . . 
• SBT * 

• IIDIClTOR • • * * • ........... 
'l 11:81110 ••• 

1(11 ·-• * TRIAD *• 
.• WOT *· !BS • .• :~fi&TH~8 .• .•----,. 

•. ? .• ••••• 
•• • • •245• 

• 10 • 11• t •• • ..... 
•2115• 
• 13• .. . 

Section 8: Flowcbarts 459 



Chart DQ. Polish Expression Generation Routine -- CEKKB (Paqe 2 of 5) 

***** ***** *2115* •2115* 
•,.A~* *•A~* 

* * 
I I 

KB150 ! KB180 ~ 
:•***A 1*********: !****A3*********! 
*CLEAR NEXT OPT * *SETUP El' ENTRY * 

L. .. :T ..... : l'L::::f :: ... ; 
. .. I . 

LO ·*·*Bl *·*·•. = .•·*B~~I~:·• ••• YES 
r-*· •• OPTS~:l ___ ._____, I •. LAST USE .*-> 
I ~ V *• SET ? • * 

~ •· •..• ·• =~:;: •· •..• ·• 
***** * HI * BS* * NO 
*2117• I •• 1' I • Bil* I * 
* * I . ! I ! 

:••••c1•••••••••: 1 •••••c3•••••••••• 
• SET EF'OP TO * I :SET LAST USE IN: 
* OPERATOR * * TRIAD AND El' * 
* * * ENTRY * • • • * ................. . ............... . 

l l 
. •. • *· 

Dl *· D3 *· 
-· *· . • •. 

·* TRIAD *· NC •* *· NO 
*·•. HAllED 1 .•" *·.~NDI~A~OR ~.·*--> 

*· . • •. .• • ... • *· .• * YES * YES 

l .l. 
**El******* E3 *· . . . . •. 

* CLEAR * ·* *· HO 
* REllOVF l'LAG * *· ID=RESIDUE .*-> 

* IN TRIAD * *· 1 •* 
* • •. .• ••••••••••• • •• * 

. .... 
*245* 
* A4* 
* * * 

KB700 ! 
!****A4*********! 
* IF SIGN FLAG * r>: o~LA~EJNS~~N : 

I ••••••••••••••••• 

I I 
:••••84••·······: 
* BACK UP 1 IH * 
: OPT : 

* • ................. 
l 

·*· Cli *· .• *· 
·* PAST *• YES 

*·*~ASE ~l' OP:.·•---. 

•• . • ***** *· . * *2116* * NO * Bl* I ••• 
i 

**D4******* 
* * * INCREASE * 

* OPTSll BY 1 * 
* * • * ........... 

i ..... 
*2114* 
* B2* 
* * * 

l i"' 
*****1'1********** KB1;i***1'3**********J 

: SET TO NAMED : =~~~~~~----!~~~~= 
* EXPRESSION ------------~ * COUNT * 
: (CSX) :R~~mj~RITY 01' .: ................. . ............... . 

460 

1'3. AT LEV IF BI.3. AT 
LEV-1 FOR BL2,BL1 

PAGE 245 



Chart DQ. Polish Expression Generation Routine -- CEKKB (Page 3 of 5) PAGE 246 

..... 
•2'16• 
••Bl* .. 

I 

' :••••a1•••••••••: 
* SET LINK TO * 
* LAST iiEllVD El' * 
: Ill NEXT EF WOiiD: ................. 

l 
:••••c1•••••••••: 
* SAVi LINK TO * * THIS liEllVD El' * 
: IN RllVAL : ................. 

l 
I 
~ .•. 

01 •. 
·* •. 

NO • * ~llVFLAG *· 

I
*- •• ON ? ••• • 

•. . . .. . . 
* YES 

I I 
l I 
J :****El*!*******! 

I 
*SAVE EF LCC 1'06* 
: CEKKI : 
.. .. ................. 

I >I 
I 

KB770 ! 
:****F1*********! 
*UPDATE CURRENT * 
: H POINTER : .. .. ................. 

I 
! 

!****G1*********! .. . 
• iiVAR=ENOCHN • . . . . ................. 

I 
* ****H1********* * 
: riETURN : ................ 

:****E2*********! 

KB550 

•••••PROCESS 
*246*PRillI:rlVES 
* • B~• . 
! .•. 

83 • • 
• * •. 

• • SPECIAL *• YES 
•- BXLE TRIAD • *--, 

•. ? • • I 

*· ·- ... :o. ...! •• 
I *2118• 
I * Al* ! * •• 

:••••c3•••••••••: 
* GET S Yl!BOL * 
•TABLE PTR. FRO!!* 
: TRIAD : ................. 

J . ... 
03 *· . • *· 

- * *· YES *- SPLTTRD=1 ? ·*1 

•. *· .• ·• t 
• .• • v 

* NO *"'*** 
**** I *248• 
*246* ! * Al* * E3 *-> * * .. .. . .... 

KB560 • •. 
E3 *· ·* THIS *• 

• SET SYllBOL * NO .• CURRENT *· 
* TABLE POINTER *<---"· INDUCTION • * 
*TO NEW CO NS TANT* •.VARIABLE • • 
• • •. ? •• ................. • ... 

l 
*****F2********** 
==~~~~~----!~~~!: 
* TALLll POP OF * * CONS'?AH'I llITH * 
• WGHT 2 AT LEV * ................. 

l 
* **G2******* * 

* SET * 
• • BYPASS=l • • 

* • ........... 

* YES 

1 . •. 
F3 *· 

.•IS THIS*. • * 1 ST REllVD *· NO 
*· EXPliESSION • •---, 

•. ? • • I 

···-r::: .... " I 
! I 

**G3******* I 
*.. SET • .. I 

* RllVFLAG=l • I ·. .. ****·j:...... I 
~ 

KB570 ·*· H3 •. 
.•STEP = *· 

.• V1BI1BLE *· YES 

.... . .. 
: B4 : 

KBSBO ! 
!****B4*********: 
* GET PR EV IO OS • 
: OPT ENTRY : . . . ............... . 

I 
! 

. *· 
C4 • • 

• * IS *· 
• • PREVIOUS *· NO 

·- •• g~Mmt.··--v 
•. ? • * ••••• 

*· .• *247• 
*YES •.Bl* 
1 .. 

·"'· .Oii *· . • *· • * IS IT A *· HO 
*· .. ~ONSTANT ? .•·*--v 

*· • • • •••• 
.... • •247• 

* YES * Bl• l ... 
!****Ell*********! 

:vm5E 1 ~m~\ ·: 
* "' . .. . ............... . 

I 
KB590 i COllI4 

*****'"********** •CEKTPC 01512* ·---------------· * !'ILE A NEii * * CONSTANT * . . . ............... . 
! ..... 

•2117• 
* Bl* * • . 

•. •.cJ~~T:~T • •. *--v 
•.STEP) .• ***** •. ·* •2111• i " ·.:i· 

:••••J3•••••····: 
• GET Y!LUE OF * 
• STEP * . . . . ................. 

. L 
* * 
: Bii : .... 

Section 8: Flowcharts 461 



Chart DQ. Polish Ex~ression Generation Routine -- CEKKB CPaqe 4 of 5) 

...... 
*247• 
**Bl* 

* I 

KB600 t 
!****Bl****•••••: 
* STOR.E SY!IDOL * 
* TABLE POINTER * 
: INTO EP : .................. 

1 
• *· KB6 90 

• * c 1 •. •. :••••c2•••••••••: 
• * OPEii *· YES * PUT FUNCTION * 

*· FUNCTION ? • *->* NU!IBER Ill EP * •. • * • • •• • • • * •. . . . ............... . 
* NO l 
J '"" 01 *· *****02********** .• •. . . 

.• LIBRARY *· YES * SET EPIO TO * *· FUNCTION ? .*->* FUNCTION 
*· .• * •. . . . . 

*·,.·:o •••••·::[****** 

• *· KB610 

*245* 
* .. A:* . 

Pl *· *****P2********** *****P3********** 
• * *· *CEKLBA 25011* * STOBE SYll. * 

• * *· 110 •---------------* * TABLE POINTER * 
*· ADCON ? • *->* *->* OP AOCOll INTO * 

*• • * * PILE AN AOCON * * EP * •. . . . . . . •.. . . ................. . ............... . 
~ YES I 

l J 
*****Gl********** G3 • .. 
* • ·* •. 
* * ·* *· YES 
* EFID=AOCON * *· BYPASS=1 • *I 
* * •. .• • • •. • * ········r········ .. _. -:o I 

462 

...... I 
*2115* + 
*,.A~* *****H3********** 

* ~~~~~~----~~~~~: 
* TALLY POP OP * 
* ADCOll * 

: .............. :: 
:2:;. I< * J3 •-> 
* * .... 

KB650 
**J3******* 

* * * CLEAR * 
* * BYPASS * * 

* * ........... 
I 

!****K3*********! 
• COllVERT SY!IB. • 
* ?ABLE TYPE TO * 
: EF TYPE : ................. 

l ..... 
•2115• 
* 14* 
* * * 

•••••op·rsw=o 
*247• 
* Bii* 
* * . 

*****OPTSll= 1 
*247• 
• ,.B~* . 

i i 
KB300 • *· KB450 • *· 

Bii *· BS *· . . •. . . •. 110 . * TROP1 = *· YES • * TROP2 = *. 

I
*· PRI!IITIVE ? ·* 1•· PRHIITIVE ? .• •. ·* •. . • *· .• •. . • •. • • • •• * 

I :••••J.:::•••: JI 110 
*SET OPTSil llEXT * 
: ENTBY=X'll' :< 
• * . ............... . ,,,_ 
*****Dlf.********** 
* * 
: "i~e11mPJ~~1 : 
: EllTRY : ................. 

l 
*****Elt********** 
* * *SET SN Ill IEXT * 
: ENTRY : 

* * .........•....... 
I 

*****Fii********** 
* * *BOllP OPT BY 011E* 
: EllTRY : 

* * . ............... . 
.. L. 
•2411* 
* ,.B~* 

* 

PAGE 247 



Chart DQ • Polish Expression Generation Routine -- CEKKB (Page 5 of 5) 

..... 
*24~· 
•*Al* . 

KB800A 1 
!****Al*********! 
* GET i?REVIOUS * 
: OPI ENTilY : . . ................. 

I 
~ . •. 

!ll •. 
.. * IS *· 

NO • * l'EEV LOUS *· 

r•. OPT ENTRY • • 
*· tii!llI'IIVE. * 

•. ? •• ... • 
***** * YES •24n• I 
• E3* I • • • I 

~ 
***Cl******** . 

* * BYPASS = 1 . ........... 
l ... 

01 •. 
• • lST *· 

NO • * itEllD EXPR •. 

I
*• (EFSAVE = 0) • * 

•• ? •• •. .• • .... 

I i'~ 
I . ••El•••••••. 

I • SET • 
FLG=l * * . ....... 

""" 'l !****Fl*********: 
• GET SECOlll> * 
• OP.E4AND OF *----' 
: TRIAD (OPT2) : .................. 

• *· KB800Z 
A2 *• *****A3********** .• •. . . 

• * IS Oi?T2 *· NO * GET SYllBOL * >•. PRillITIVE ? .•--->* TABLE POINTER * .... •. . . . . . . i : .... ::.:::: .... : 
.i."' J .l. 

82 ·- 83 *· ..• •. .• •. 
• * IS IT A *· NO • * IS STEP *. NO 

*· CONSTANT ? .• •. A CONSTANT .•-, 
*· .• •. ? • • J 

•. •- .• -· •. • ••• •• I 
• YES r YES 1 

l .!. ! 
!****C2*********: • * C3 *· *· 
* GET SYllBOL * YES • • IS *• 
* TABLE POINTER * r•· CONSTANT .• 
: OF STEP : *·!~LUE=t.;.• ................. • .. • 

I ***** * NO *246• I ! .. E~• I 
• •. :B8SOA ! 

02 •. *****D3********** ... *· • • . * IS STEP *· !10 * GET SYllBOL * 
•. A CONSTANT • *I * TABLE POINTER * 

*· *· ? • *. * : OF STEP : . . ................ . 
·7·m I I I 

: .... ,J ...... : '":i1 ... J ....... : j 
r~mE<mH> : : CLEA~NmT EP !<-
* • • • ................. . ............... . 

I l 
*****P 2********** *****F 3********** 
:~::~~~~----~!~~~= : STORE Sr!IBOL : 
• FILE A NEii * * TABLE POIHTER • 
: CONStAHT : :oF STEP IllTO EP: ................. . ............... . 

I I 
KB80011 i l KBBSOf 

*****G2********** *****G3********** *****G4********** 
* * * * *CEKLBA 2SOA 1* 
* STEP BACK ONE * *COllYERT SUIBOL * •---------------* 
: ENTRY IN EF : : TAB~i nn TO :->:FILE ~~~~· FOR : . . . . . . ................. ..•.............. . ............... . 

..i... I 
: AS : *****Hll********** •••• =~~~~~~----~~~~!: 

* TlLLY POP OP * 
*STEP'S 1.DCOll AT* 
* LEV·1 * ................. 

I :••••J4••·······: 
• STORE '*' * 
*OPERATOR Ill EP * 
* PORTION OP PP * . . ................. 

l 
!****Kii*********: 
* OPDATE PP * 
: LOCATIOI : . . ................. 

l ..... 
*246• 
* E3* .. . 

. . 
: AS : 

i 
*****AS********** • * 
*CLORBER OLD l'~ * 
*E!fT~Y llITH !iEI' * 
* CONSTANT • 
* * . ............... . 

I 
l 

•••••95•••••····· 
=~~~~~~----~~~~!: 
*FILE ADCON FOR * 
: NEW CONS'l'AllT : ................. 

I 

l 
*****CS********** 
* STORE SYllBOL * 
• TABLE POill'l'P.R * 
• TO !IEI! * 
* CO!ISTAllT' S * 
• II.OCON INTO EF * ................. 

I 
l 

*****DCi********** 
*CEKKOA 249A1* ·---------------· 
* TALLY POP OF * 
:coNSTA!IT AT LEV: . ............... . 

I .•. 
ES *· .• .. 

·* TRNAllE •. 110 
*·.: HIG~llA!IE 0 .·*1 

*· t.• I 
• ••• ;ES I 
I I 

' I :::::!:::::::·::: 1· 

* ENTRY Ill * 
* CllTSAVE * . .. . ............... . 

""" [' *****GS********** • * 
* OPDATE PF • 
* POillTER * . . . . . ................ . 

! ..... 
*246• 
* *E~* . 

~~hi" -rUs AEtuM~LfillE 
llITH THE HIGHEST 
POPOJ.ARI•t COUllT 

PS. SO THAT GIRL ENTRY 
CAii BE D P.Ll!TED AT !!L2 
TI!IE BY Cl!Kl"O 

section 8: Flowcharts 

PAGE 248 

463 



Chart DR. Save Popularity counts for Register Assignment -- CEKKO 

CEKKOA 

* ****A1********* * 
: ENTER : 

*************** I 

l 
. *· 

• *81 *· *· :****B2*********: 
• * IS P2 *· YES * GET TRIAD 

*· LOC. OF A .*--->* LOC'ltTMa 
*· TRIAD ? ·* * 

·- ·* * * *· .. * ***************** i NO I 
t I 

·*· K0150 ~ 
C1 *· *****C2********** 

·* PS P2 ·- *ADO x•7ooo• IO* 
.*SYll. 'i:ABLE *· NC * NAllE Ill P2 TO * 

*.Loe. OF AOCON.*->*DISTINGUISH IT * 

464 

*· ? • * *FRO!! A FOillTER * 
*· .. • * * 

*· .. * **** ************* * YES I 

L >[ 
K0200 

*****D2********** 
* GET PLP * 
* LOCATION OF * 
* CIJRREN'I LOOP * 
: LEVEL : 

***************** 

~-->l 
K0300 • *· K0420 

• *E2 • ... *· :·~~=~3;~;*;;;••: !****E4*********! 
• * GPLINK *· YES *GIRL ENTRY IllTO* * * 

*· = 1 8000 1 ? .•--->* PLP CHUN FOR·--->* GLBL = 'NAllE' * 
*· • * * THIS CURRENT * * * 

*· I.* *LOOP LEVEL I* * t* 
*. *. :o ***************** ********j******** 

J "'" I F2 *· *****F3********** *****P4********** 
• * *· *ADO POPULARITY * * * 

.:· p~~~fsP? ·:.~>:wEi&H~u~=n~cll): POP=P1 : 
*· ·* * POPULARITY * * 

* I.* *COUNT IN GIRL I* * t• 
*· . * ***************** ***************** * NO I I 

I I I 

l J K0900 l 
I *****G2********** G3 *· *****G4********** 

:GET NEXI ENTRY : .*P~PULARIT;• *· NO :GP~=~bN~lo~~~D : 
'--* IN GIRL * *· COUNT 0 OR • *I * REG. COUNT IN * * * *· llINUS .* * THE PLP) * 

• * *· •. • • * 
***************** *· . * I ***************** 

i "' I 'l 
K06:2•••H3*l*******! I K09:?•••H4*********! 

* RELINK GPLINK * I .. SAVE TOTAL * ! cHm ! I !co&~~uW~5tPoP! ..................... I .................. . 

I I I 
t 11(0999 ! 

!**"~i~=~~;~;···: I • *"**J4*********. 

: ~mTm~Al !__J * RETURN * 
* REG. COUNT IN * * * 
* THE PLP) * *************** 
*****:tr-*********** 

E2. TEST GLOBAL 
R!!GISTER CHAIN IN PLP 
EllTRY !'OR THIS LOOP 
LEVEL 

F2. llAllE IN P2 = NAPIE 
IR GLOBAL REG. L TST 
(GIRL) ? 

E3. GPLINK=GPLNK 

F3. POP=POP + llTADCN 

G3. IF YES, DELETE GIRL 
EllTRY 

"!!!II. 'RAllE' IS EITHER 
SY!IBOL TABLE POINTER TO 
ADCOR OR GIRL POINTER 
TO GLOBAL F.XPRESSION 
NA!IE 

Fii. P1 IS llEIGHT TO BE 
ADDED TO POPULARITY 
COURT PASSED TO C!!KKO 
BY CALLING ROUTillE 

PAGE 249 



Chart DS. File Constant and covering Adcon -- CEKLB 

CEKLBA 

•****A 1********* * 
ENIEll 

l 
! 

:••••a1•••••••••: 
* STCLSAVE = 
: SYllSTCL . .. ................. 

l 
:••••c1•••••••••: 
* DISPLACE!IENT * 
: SYllSLOC/11060 : . . .................. 

l 
-·-Dt *· .• •. 

NO • *REllAINDEil =*· r*· .. 1
-

1 

~IGN .• .. * 
l ·- - • 
I *· ·* I .. YES 

! I 
l ~ I :••••Et•••······: 

I
I mo~;EA~gom~r: 

: IO .ttEllAINDEit : 

L:::r······ 
l 

LB200 -·-Ft *· • • *· 
• * IS *· YES 

•.DISPLACEllENT .*----> 
*· ZERO? • * ·- .. • ... ro 

~ 
-·-Gt *· .. • *· 

• * SUBSCRIPT *· YES 
*· SWITCH .*----> 

*· (SWCHSB) • * •. = 0? •• • ... 
* NO 

LB500 
•••••z2•••••••••• . . 
*DISPLACEllENT = * 

l
>*DISPLACEllENT X * 

: 11080 : ................. 
I l 

*****F2********** . . 
* TECNSt = * 
*DISPLACEllENI + * 
: STCLSAV : . ............... . 

l 
*****G2********** 
:=:!:::!----~~~.::!: 
*ROUTINE IN EXEC* 
* TO FILE AN * 
* ADCCN * . ............... . 

! I l 
!****Ht*!*******! j 
* EFDISP = * 
: DISFLACE!IENT :--

* • ................. 
.. •. ..•. LB999 

H2 *· 83 *• .• ·- . • •. ••••P.1.1••••••••• 
• * i!ETURN *· YES • * SYllPLAG *· NO * * 

*· CODE=O ? • *--->•. = FORllAL • *--->* RETURN * 
*· .• *· ARG.? • * A * * 

• .•..•. • • .•.. •. • I ·······:······· 

.!., i"' I I 
LB996 • I I 

J3. • •• I ••••J2********* . • •. l * ERRO& EXIT - * •* MEW *· 110 
*RETURN TO EXEC * *· ADCON ? • *--

11 

• • *· . * ............... .. . . • .. • i "' 
KR995 • *· l 

•
****K2** .. * .. ** .•Me11A~ 0 

•. :•;~~~":s •;:;;;•: 
* YES • *AliG. ADCOll *· NO * IM THE PORllAL * 

* ER.ROB EXIT *<---*.LIST OVERFLOW. *--->*AP.G!JllEHT ADCOll * 
* * *· 1 ·* * LIST TA!ILE * ••••••••••••••• *· . • • • •..... . ............... . 

PAGE 250 

Section 8: F1owcharts 465 



Chart OT. Loop Test-Expression Generator -- CEKLI (Page 1 of 6) 

CEKLIA 

****Al********* 
* * * . ENTER ............... 

l 
*****B 1 ********** •CLEAR WORK &REA* 
*LCAD RECURSIVE * 
* UPR. EF LOC * 
* OP2 LOC=PRIO!i * 
* EF ENTRY * ................. 

I •••••c1•••••••••• 
* FIND OP1 LOC * 
*EXPii BEGINNING,* 
*COPY OP 1 EXJ?R. * 
*INTO TEST EX.PR.* 
*SAVE 0.1?1 PARAllS* ................. 

I 

LI2 50 l •••••01••••······ 
*LIBOO 256A1* ·---------------· 
: smwE~Im~R : 
* LI!IIT ENTRY * ................. 

l 
*****El********** 
*LI800 256A1* ·---------------· 
: mP:FLmn: 
* LillIT ENTRI * ................. 

l 
*****Fl********** 
*LI800 256A 1* ·---------------· 
: mpE;A~m : 
* VALUE ENTRY * ................. 

I 
. *· 

G1 *· 
• *BXLE ON•. 

YES • * REC. FLAG *· 

r *· ON IN l?RF BL2.* 
*• IIEll ? • * 

*· ·* • .... 
***** * NO •254* I 
* A2* I 

:••••c2•••••••••: 
*BRANCH ON OPPER* 

* TYPES * 
• * . ............... . I

>* LOWER STEP * 

I J moo 

I 02 •.. !****D3*********: 
•• ·;=CONST.:· •• !ES •T=UPPEB LIMIT- * 

*· U=CONST., • *--->* LOWER LillIT * 
*.L=CONST. •* * * 

*· -· • • •. . • ***********•••••• [ " 
-·-E2 *· ·* s = *· • * VARIABLE, *· YES 

*· U=CONST., ., 
*· L=COHST. ·* •. ..• • .. • 

* MO ***** 

l 
·*· F2 •. .• •. 

•252• 
* B2* 
* * . 

·* S=CONST., "· YES 
•.U-=VARIABLE1. L., 

*· =VABIABLi:;. * 
*· ·* . .. • 

* NO ***** 
I •252• 

* B3* 
I * • 
~ . 

·*· G2 *· 
.• s = ·-• * VARIABLE, *· YES 

•.U=VARIABLEc. L."t 
*· =V ARIABLi:;.• •. .• . .. • 

* MO ***** 
* B4* 

I ... 
EJ *· -· •. ·* IS T *· YES 

·-•. ~~~a~" .• ··~ 
*· . * ***** 

•. -· •253• i .. . ·:·· 
!****P3*********: 
* SET T = * 
: (T+STEP) /STEP : 

* * ................. 
I 

• *· LI320 
G3 *· *****Gii********** • * IS *· *LI850 256A2* 

.*OPERAHD-1 A•. HO •---------------• 
*· COllSTAllT • ·--->*FILI! T IN sn .• 

*· ? • * *TABLE AND STORE* 
*· • * * VALUE TFl' * 

• • • i I 
**H1*!***** 

l 
•252• 

* * . 
. *· 

H2 *· 

*· i •;ES ********i******** 

! 
..... 
*253• 
* All* 

*****H3********** * * 
• * _j * SET IFLAG * 

* !O ZERO * . . 
* • ........... 

466 

.• s = *· 
• * VARIABLE, *· YES 

*· U=CONST.f. L ·*-i 
*.=VARIAB E.• 

*· ·* • ... 
* NO ***** 
I *252• 

t 
* Bii* * • 

* . •. 
J2 ·-·* s = ·-• * VARIABLE,_ *· YES 

•. O=YARIABLr;, ·*-i *.L=COHST •• • .. .• • .. • 
* HO "**** 

I •252* 
* B4* 
* • \ . ··-K2 *· 

-· s = •. 
.• CONST.f. *· YES 

*·•~L~m~t E:.·•----. 

* Y=OP1 VALUE. * • 
* llULTIPLY T BY * * Y. GET OP1 IN * 
: EP. : . ............... . 

I 
•••••J3••········ 
*LI850 256A2* ·---------------. 
*FILE IN SYllBOL * 
: TABLE : ................. 

.. L 
•253• 
• .c~• 

* 

*· ... • • •••• 
*· • .. *253• 

* NO * A1* 

.. !.. * *. 
•253• 
• .. o~• . 

PAGE 251 



Chart OT. Loop Test-Expression Generator -- CERLJ: (Page 2 of 6) PAGE 252 

..... 
•252• 
• .s~• . 

I 

LI350 l •••••a2•••••••••• . . 
• T=UPPER LHIIT • 
* !!IMUS LOWER * 
: LI!!IT : ................. 

..... 
•252• 
*.a~• 

* 

LI400 1 :··••83•••······: 
* SET EFLAG TO * 
: NON-2.ERO : 

* .. ................. 

..... 
•252• • .s:• 

* 

LI410 ! 
* **B4******* * 

* SET IFLAG * 
* * TO ZERO * * 

.. * . ......... . 
l ~~<---' 

·*· 
C2 *· .• •. •=:. T>Z.po .:=-,NO 

*· .• .. . • 
* YES ***** 
I *253• 

I • -:~· 
~ •••••02••········ 

•LI850 25i>A2* ·---------------· * !'ILE T IN * 
:s¥Ym5;; T~=L~h: ................. 

I 

l 
*****E2********** 
*Lld60 256A3* ·---------------· 
• (PUT EF ENT&Y * 
* IN PF) OP * 
* TYPE=*li * ................. 

l 
t 

*****P2********** 
*LI900 25614* ·---------------· 
* * : (PUT + IM EF) : ................. 

I 

1 
* **G2******* * 

* SET TFLAG * 
* * TO NON-Z.ERO * * 

* * ........... 
1 ..... 

•253• 
• C3* 
* * . 

LI420 ~ 
*****C3********** 
::!~~~-----!~~~:: 

* (UPPER) : ................. 
l 

*****D3********** 
::!~~~-----!~~~:: 
* * : (LOWER) : ................. 

l 
*****G3********** 
::!~~~-----!~~~~= 
* • 
: (+ OP TO EF) : ................. 

l .•. 
HJ *· .• •. 

YES .• *· 
y--*· * ~FLAG72.ERO. *. * ..... .. .. 

•253• .... * 
·. :i· i " 

• ••J3••····· * 
* SET IFLAG • 

• * TO ZERO • • . . ........... 
1 ..... 

*253• 
• 83• 
* • 
* 

02. POINT TO STEP VALi!! 
l!F !llTR! · 

Section 8: Flowcharts 467 



Chart OT. Loop Test-Expression Generator -- CEKLI (Page 3 of 6) 

..... 
•253* 
*,.Al* 

* 

LISOO 1 
:****A 1*********! 
* 'I=STEP VALUE * 
* llINUS LCWER * 
: LLllIT : ..... 

•253* 

I ·r 
• *· LI520 LI580 • *· 

B1 *· *****82********** 83 *· 
• * *· *LI860 256A3* • * *· 

·* T=ZERO *· YES •---------------• -* STEP *· YES 
*· ? .*-->* (PUT PF UPPER *--->*. VALUE=1 ? ·*1 

*·•. .•·* : LIIHT Ill PF) .: l *·•. .•·* 
*· . • ••••••••••••••••• •. . • 

i NO . PH:•-> i NO 

l .... i 
*****C1********** LI

6
22***C3********** 

*LI850 256A2* *LI860 256A3* 

:---~:~:~-~;----: niiEg:r~:i~1:-: I 
: ............... : :~;j: : •.. 1:~,.1:~ .... : 

I ""° ·r I 
mm~::::mm r···02

·········: mm~::::~~m: 
* (LP=VAiiIABLE TO* * E=UPPER STEP * * * 
: PF) : : : : (DIV OP TO EF) : ·······r······ ·······r...... ······.-:i:······· 
*****E1********** *****E2********** E3 *· 
* * *LI850 256A2* ·* *· 

L::::y::..J L~::1:~::::1 r= :_ .:::;:;;:. :=. 

*****F1********** *****P2********** *****F3********** 
:~:~~~-----!~~~~= :~:~~~-----!~~~~= :~;~~~-----!~~~!: 
* * * (LOWER TO El') * *INSERT CONSTANT* 
: (TOP TO EF) : : OP TYPE=I*4 : : '/' INTO EF : ............ .. ... .... ............. . ............... . 

A:·: ...... J....... I ••••• J ....... . 
**** :~:~~~-----!~~~~=_J :~;~~~-----!~~~~= 

* * * INSERT llAX. * 
* * *OPERATOR Ill EF * . . . . ................. . ............... . ._____>, 

~ 
LI650 ·*· 

*****H2********** H3 *· 
* * •• *· 

••••• ***** 
•253• •253• 
* All* * AS* • * •• 

* * 
I i 

LI665 i LI670 ·*· 
*****All********** A5 *· 
*LI900 256All* • * IS *· 
•---------------• • *O!'ERAND-1 A*. NO 

:--->*,•. CON5¥ANT .•·*---, 

: ••••••••••••••• : •. •. . • . • I 

i i"' I 
I *****BS••········ I 

I 
: ... ., . .!. ...... : 

::~~~~~----~~~~!: I 
: (OP1~L6~kP FOR: I 
* POPULARITY * . ................ . 
•••• I 
:
2

~~: ·->1 I .... 
LI680 

•••••cs•••••••••• I * • * • 
* OP2 PF * 
* • 
* * ................. 

j I 
*****DS********** 
*CEKKOA 211911* ·---------------· 
* * * (OP2) * 
* * ....... T ...... . 
*****ES********** 
*LI900 256111* ·---------------· . . 
* (PillAL +) * * • ................. 

l 
*****PS********** • * 
* !IAl'll! TEST * 
: EXPRESSION 

* * . ............... . '(---' i 
*****GS********** 
*CEKKOA 2119A1* ·---------------. 
! (T~i£Lp~gi!> ! 
* GLOBAL POP. * ................. 

I 
*****H5********** • * 

* * YES ·* TYPE OP *· NO * * * UPDATE EF * 

468 

*SET IO TYPE=I*2*<---*- LAST OP & • *--->*SET IO TYPE=I*ll* 
* * *· OP1=I*2 ·* * * . . •. .• . . 
********i******** *· *. * ***************** 

.... 
• * * A4 * • * .... 

* LOCATIOll * . . 
* • ................. 

LI999 l 
****JS********* * • * RETORll * 

* * ............... 

!12. SET OP TYPE TO I*ll 

PAGE 253 



Chart OT. Loop Test-Expression Generator -- CEKLI (Page 4 of 6) PAGE 254 

..... 
•2511• 
•• 1~· . 

I 

LI950A ! 
*****A2********** 
*BACK UP 1 ENTRY* 
*IN PF & GET OPl* 
•SYll. TBLE. PNTB* 
* OF RECURSIVE * 
• * ................. 

l 
*****B2********** 
* GET VALUE OP * 
* THE COllSUllT * 
*RECURSIVE STEP-* 
*SAVE IN GPADCON* . . ................. 

I •••••c2•••••••••• . . 
* GET VALUE OF * 
: LOOP STEP : 

* • ................. 
I 
! 
* LI950D LI950E •*• 

* D2. • *· * :****D3*********: • * D~OllE;• *· 
• • • LOCP • * YES •UPDATE PF PNTB. * .• LI!!IT = *· YES 

••• STEP=l ? .=·--->:PAST ~¥~gesIVE :--,.->• .•. VARI~BLE •• ··~ ·. .· . . I .. .. . .•.• • • • • ••••••••••••••••• •. • • *255• 0

•

0

NO * !10 * All* 

I I 1 ... 
1 .•. 

!****El*********! . * EiPPE;· *· 
:REm~r~M~EP/: •:* vimiLE *:•~ 
: GFA&CO!I : *· *· 1 • * • * ***** 
••••••••••••••••• •. • • *255• I i " . ·::· 

v .•. 
*****F2********** Fii *· 
::!:~!:: ____ ~!~~~= .• · :11m:r-•· .. YES 

•PILE ADCOll FOR * *· LOllVAL = • *l 
: NEii CO!ISTAllT : *• ~?i~:r;:.· * ................. ··r, 

**Gfl******* . . 
* SET llLTCllD * I 

*• TO ZE~O •* . . ·····r .. 
LI950G .•. 

811 • • 
• *OP1 OF *· 

.•RECURSIVE =•. YES 
*· *· VARI~BL! • *. *--f •. .• ..... 

• •• • •255• i " ·.:i· 
•••••Jta••········ . . 
* STEP BACK 1 * 
* EllTRY Ill PP * . . . . ................. 

I 
*****Kii********** 
* llLTCRD * * 
* GFADCOll=TEST * 
* EXPRESSION * 
* COllSTAllT * 
* • ................. 

! ..... 
•255• 
• 82* .. 

* 

Section 8: Flowcharts 469 



Chart OT. Loop Test-Expression Generator -- CEKLI (Page 5 of 6) 

***** •255• 
**A~* . 
i 

LI950!1 .•. 
A2 *· *****A3********** 

·* *· *CEKTFC 015A2* 
• * OP1=0 *· NO •---------------• *· CONSTANT 7 .*--->*FILE ADCOll FOR * 

*· .• * NEW CONSTANT * •. ..• . . • .. • ................ . 
**** * YES 

:2~~: •->! .... 
LI950J 

*****82********** 
:=:~::=----~~~~~= 
*FILE ADCOll FOR * 
: llEli CONSTANT : ................... 

I 

LI950K l 
:••••c2•••••••••: 

................. 

..... 
*255• 
**A~* . 

I 
LI950S i 

!****A4*********: 
*!!OV E 2 EP liO RDS* 
* FOR UPPER * 
:VARIABLE TO PF : . ............... . 

l •••••eq.•••••••••• 
• * 
*!!OVE 2 EP WORDS* 
* FOR LOWER * 
:VARIABLE TO Pl' : . ............... . 

l 
*****C4********** * • * • 
:sET OPCODE = 0 : 

* * ................. 
*STORE PNTR. TO * 
•TEST EXPRESSIOll*<l 
:IN PP BL2 IVAB : 

I I I •••••02••········ I ·.·•••D4••········. •CEKTFC 015A2* 
•---------------* *!!OVE '+' TO El' * 
*FILE ADCON FOR * I ·. PORTION OP pp •• 
* GFADCON * . . . . ·······T······· I ·······T······· 
:••••E2••·······: I :••••Ell•••······: 
*STORE PllTR. TO * *!!OVE 0 COllSTANT* 
* END IN PF BL2 * * TO EF PORTIOM * 
: EllD : I : OF PP : ········r········ I •..•••.••.•.••.•• 

I I l ~ I :••••F2•········: I :••••Pll•••······: 
* UPDATE PP * * !IOVE !!AX '1B' * 

POillTER : : TO E6,P~~TION : : ...... T ...... : I ............... .. 
I 1' """ ,[ 
V •*****G4**********• 

*
****G2*********• 

*l!OVE '*' TO El' * 
: RETURN : '--------------: PORTIOll OP Pl' : 

470 

............... . . ................. 

PAGE 255 



Chart OT. Loop Test-Expression Generator -- CEKLI (Page 6 of 6) PAGE 256 

LI800 

****A 1 ********* • * 
: ENTE?. : ............... 

I 

l 
*****Bl********** * CLEAR EF iiO!iK • 
*A ii EA. SH!. '.i:BL. * 
•PNTR. TO EF. LD* 
*El: ENLt<r LOC. &• 

: ••• ;~2~{~!~~ ••• : 

I 
l •••••c1•••••••••• 

=~~~=~~----=~~~~= • * 
: .<ILE ADCCN : ................. 

l •••••01•········· * S'ICRE ADCON * 
• sr11. ra;.E. • 
• i?NTR. IN EF * 
: EN'IRY. : ................. 

l 
*****El********** m ~~Rf V~~r. EiF: 
* NOT, SET iffID * :ro •.:OliST I •q. : ................. 

LI830 l 
*****Fl********** 
: RETURN : ............... 

LI850 

* ****A2********* * 
* ENTER * 
* • ............... 

LI860 

* ****A3********* * 
ENTER : . ............. . 
I 
l 

!****B3•********: 
* SET INDICATOR * 

:PILE A CONSTANT: :POii< A VARIABLE : ................. . ............... . 
I I 
~ LI685 t 

:••••c2•~•••••••: :••••c3•••••••••: 
* SET INDICATOR * *SET llFili PF. LD* 
*FOR A CO II STA NT •--->* SLOC/STCL * . . . . . . . . ................. . ............... . 

I 
*****D3********** 
==~~:~~----=~~~!: .. . 
: FILE .\DCOll : ................. 

l 
*****!3********** 
*CEKKOA ;<q941• ·---------------· . .. .. . . . ........ T ...... . 
*****P3********** . . 
* STEP PF * 
* LOCATION * .. . . . . ............... . 

I 
! 

* ****G3********* * 
* RETORll * . . ............... 

LI900 

• ••••A.4••·······. 
EliTE& : . ............. . 
I 

*****B4********** * llOVE OP EF * 
*ENTllf P'ROll llOR!':* * AREA TO PF. * 
: STEP PF LOC. : . ............... . 

I 
* ••••c4••••••••• • 
: RETURN : ............... 

Section 8: Flowcharts 471 



Chart DU. Entry Point Processor CENT) -- CEKOD (Page 1 of 2> 

C:C:KOD 1 ENT 

* ****A1********* * 
: ENTER : ............... 

l 
*****81********** 
•IF fLAB PRESENT* 

:GEN~~X~EL~~hcH: 
: TO PLAB : ................. 

,,,,, I 
*****C1********** 
*CLEAR !!RI! TBLS,• 
*EXllAl!E, TR FLAG. * 
* !!ARK REG 13 * 
*'BUSY' 'SELECT-* 
:.H;,.;~mu;.: 

! :••••01•••······: 
* * : LEVEL=O 

* * ................. 
l 

*****E1********** 
*IF llOT l!Aill: SET* 

.•. LillK 
E2 *· *****E3********** 

.• *· *CEKOJ2 29613* ****Ell********* 
• * l!Aill *· YES •---------------• * * *SLOC (PllAI!) =SIZE* 

! 1H~PmL m~r: 
* IllSO:r d=LillO * ................. 

I 
l IllSOT 

*****F 1 ********** 
=~~~~~!----~~2~!: 
* ST 111,8f0,13f * 

~
>•. PROGRA!I ·*--->* GENERATE CALL *->* RETURN * 

*· .• * CHCBD1 * * * ... .. . . . . ............. . ... . • ................ . i " 
140 • •• OD200 

F2 *· *****F3********** 
• • • • ANY •. *· YES =~bR·P a~> ADC~fr : 

*· ARGU!IEllTS .•--->* LIST, SORT ST * 

:.:~;~!li:.!~~: .. : *· • * *CL Ill ARG ADCOll* 
*· • * * LIST * •.. . . . ............... . 

I : G2* *-> 

t FLADll 
*****G 1 ********** 

:m. *1 NO 1' 

1oD1:;** t OD230 V 

=~~~::~~----~!~:~: 
* l.OCAL TEl!P * 
: COVER : ................. 

I 
I 
v IllSOT I 

*****Hl********** 1 
=~~~~~!----~~2~!! 
:L0~~2fm' mER:-
* • ..•.............. 

472 

**** *G2 ********** *** **G3*** ******* *IF PLAB PRESENT* *11=0. 5 = NO. OF* 
* CALL INSOT * * ENTRIES IN * 

:ctmLmA¥bi. : : ~imLLm : 
• • * • ................. . ............... . 

I **** I 
I :2n: *-> 

•••• J 
OD235 + 

V **H3******* 
****H2********* * * * * * ADD 1 TO N. * 

* RETORll * * I=O * 
* * • • ••••••••••••••• * • . ......... . 

00240 l<.-

• ••J3••••••• * 
• * 

* ADD 1 TO I * . . 
* * .... r... I,,, 

K3•*• *• K4 • • •• 
·* •. .• *· 

•=* mmt *:•-HO--->•:* I < K *:• 
•. .• *· .• •. . • *· .• • .. • • .. • * YES * HO 

! ! ..... . .... 
*258• •258• 
* .az• • .sz• . . 

PAGE 257 



Chart OU. Entry Point Processor CENT) -- CEKOD (Page 2 of 2> 

***** •258• 
• .ai• . 

OD300 l INSOI 
*****B 1 ********** 
::.:~~~!----~~~~!: . . . . . . .................. 

I 
i FLAD4 •••••c1•••••••••• 

::.:~~:~----~!~.:!: . . . . ................. 
I 
' INSOT •••••01•········· 

::.:~~~!----~~~~!: . . . .. ................. 
l 

*****E1********** 
*SET FIRST ADCON* 
*FLAGR F=O. CALL* 

: A~~co/~gr2~ !> ................. 

.. ... 
•257• 
* H3• ..... 

A 

! YES 
00310 

82
.•... 00245 

83 
..... 

.• .. . . •. 
• * STCL !NI •. NO .• N < •. NO r>•. ·- = ANC I _ ... •--->•-... llARG ... -·---v 

*· -· •. .• ••••• 
·- • .. .._ - .. •257• i "' . . . :i· 

- ... 00320 
C2 *- *****C3********** .• •. • * 

.. :· (Am~r1 !o ·:._No ___ >: IF i'NgoT~ALL : 
*· .• • * •.. .. • • * .. r.. ·······T······· 

**D2******* *****D3********** 
• • •• =~IFF~~mE 1 , rn: 

<-•. ADD 1 TO I : v~m Wi~~. : 
* * * 'CALL FllDAR. * ........... . ............... . 

l 
*****E3********** * IF NCC NOT IN * 
:REghtAi~sg~;sR: 
: CALL ASAR. : ................. 

I 
i INSOT 

•••••1'3********** 
*CEKllI1 397A1* ·---------------· 
!Mt 0Im~: R~~-: :2i.mrn,m .. : 

I 

PAGE 258 

Section 8: Flowcharts 473 



Chart ov. Referenced Label PF Entry Processor (LABEL) -- CEKNO 

CEKN01 LABEL 

****A 1********* 
* * : ENTEa : ............... 

l 
*****Bl********** * SET LBL' S SYll * :m mcsigT~t=! 
* 1. FIND ADCOll * * EllTBY. * ................. 

I •••••c1•••••••••• 
• Ii' ADCOll HAllE * : mt: t1 §L~~; : 
* LCTB. CALL * 
:.m~Mm;. •• : 

I •••••01••········ 
m11L¥hamms: 
* FOR ALL BEGS * 
• NOT GLOBALLY * * ASSIGlli.D. * ..........•...... 

I 
****El***•***** • * 

• RETORll * 
* * ............... 

474 

PAGE 259 



Chart ow. Equation PF Entry Processor CEQUAT) -- CEKMJ 

CEAl!Jl EQUAr 

**** . . 
: AJ : .... 
! 

•••••&J••········ 
• ••••Al•••U••··. :a~~ n~~Rl:A~f-: 
: ENTER : : c~~~ohT~oC~w : 

• •• •••••••••• •• • REG. FLAG= 1. • 

l 
................ . 
•••• I 

: BJ =->1 . . .... 
!IJ501 

*****B1********** *****83********** 
• SET FLAG = 0. • •SET !!Bii REG TBL• 
•CALL INSOT jLINE• >:f;gha?"cifi: : 
: 11~ih~G~ro!G6~ : J 
:;mm'*Hu •• : • .... • 1 :.Jmh!mt.: I :.~:.: I I 

.•. llJ001 .!. j V IllSOT 
C 1 •. C2 •. •••••C3••••****** 

.• •. .• •. •CEKNil 397A1* 
• * .RIGHT •. YES • • REGISTER *· YES •---------------• 

•. SIDE IN A ."->•. SIGN = TREE .• * * 
*·REGISTER • * •. SIGH • * •STOl!E LEFT SIDE• •. .• •.. -· . . 

mos ·: c ·: c ·······r······ 
Dl •. D2 *· •••••DJ•••••••••• 

• • •. • * TYPE *· *IF TYPE COllPLEX* 
YES.:. sH~HI *:. .•LOGICAL Oil ·- YES :srg~iLI~~~~~hr: 
I •.COllSTAHT -· ·-.~OT I~TEGE~.-·, *PART. CALL OPND• 

i ··._ .• -· ··._ .. -· : .... J;un ••••• : 
. ..... ..... i· NO .ti NO I 
• 14 • • 

••••• : .:~. :-> 
llJ401 • •• • ·- ••• 

El •. E2 *· EJ *· 
• * •. .• •. .• LEFT *· 

YES •• FLOATING ·- YES .• REGISTER ·- .•SIDE vu:u-•. MO 

r •. REGISTER ·* r*· GLOBALLY ·* *· BLEf> COLON ·1 
··~:11uuu:~.·· ·-~~SIGNE~··· *··~di ~~.·· - .. . . •. .. • ... 

•••• • NO •••• • NO * YES 

: 05 : !I : AJ : I< I .... . ... 
•••••Fl•••~;;~!.. llJ02~ ... F2**•!!~~I.. llJ

6
!2 ... F3••········ I 

•CEKllGl 384A2• •CEKliil 397A1* • CLEli ALL * 
•-------------·-• •---------------• • REDEFINITIOll • 1: UY SINGLE P : * COllPL£11EllT • !Uiflf5FgA~f:6! 

~ • * ::m:m~mr:.: •REGISTER TABLES• 

= :::: ;··············.. I ..... ""!·:······· 
!IJOOJ IllSOT • *· llJ700 

•••••Gl•••••••••* G2 *· *****GJ********** 
•CEKlill 39711* ·* *· *SET SELECTABLE * 
•---------------• YES • * TYPE *· *PLAG Ill llRll BEG* 
• COllPLEllENT •<---*· COllELEX •* *EllTi?. IP PLAG * 
:IlllGINlBI PART : •••• •••• : SEil>rs:~sV:G : ········r······ ·T:o ·······T······· 

I .*****H2**********• *****H3********** 
*IP LEP'l SIDE l * 

• IP TYPl!l * •ION-COllllOll SOB•* 

•••••••••••••••** :.~~U~!,.~~~! •• : 

.... 
* • 
: All : 

**** 
! 

.•. !!J215 
A4 *· *****A5********** • * *· * IF TIP~ NOT * 

•:* SI~~E~LAG *:•~>: ~gm~~bfI~~ : 
*. SET • * * COllSTANT. * •. .• . . 

•.*.:a ********j****•••• 

J I 
BQ *· I 

• • TYPE •. I 
•• INTEGER & •. 110 * • I 

*· VALUE < ·*-->* El * 
•••• q 096 _... Al . ..... I 

• .. • 

i"' ' 
•••••cu•••••••••• 
: a~llvmgE=B~' : 
*SB. IF VALUE # * :o, GEl\PLUE Br: ................. .... 

• * 
* D5 * * • .... 

!!Jll02 i 
*****D5********** 
*IF TYPE COllPLEX* 
*Cl LL SELPR, A llY* 
* PAIR P-0. IP * 
:

11m maLP~~R: ................. 
• ••••. I 
* !5 •->1 . . .... 

llJll04 
*****!5********** 
*REG=P. IP TYPE * 
*LOGICAL 1, CALL* 
:IllSOT R~~r •REG, : . ............... . 

..... I 
•••••rs•••••••••• 
*CALL IllSOT (LOAD* 

: ¥~PiytgbLi~ : 

m~Mm:mm 

"'" ,, 
*****GS********** 
*IP TYPE IllTEGP.R* 

: c~fL L~m~Lfp : 
:110T, CALL ASPR.: ................. 

1 .... . . 
* C2 * . . .... 

!
<,-------: i~~~~11f.c~t~L : :sc~~~i610M~sT: 

.,,,. I .!. .,,., 
•••••J1••········ Jl •. •••••J••········· 
•CHUIGE SIGllS OF* • * *· *IP TYPE Ill.TBGEB* 
•ALL QOlNTITIES * ·* REG *· YES -OR LOGICAL CALL* 
: a~Mm : ·-•. ,~im .• ··--->:is~fli IM~~· : 
• • •• • • * • ······::i:::····· .. ·1· :o •••••••• , ••••••••• 

• BJ • 
* * *****KJ********** 
**** *IP Tf PE I IT EGER* ****K4********* 

: c~fLL~m~Lfp :_>: Rl!TOBll : 

:110'?, CALL lSFR.: * *************** * ................. 

PAGE 260 

Section 8: Flowcharts 415 



Chart ox. Arithmetic IF PF Entry Processor (AIF> -- CEKNK (Page 1 of 5) 

CEKNK AIF 

*****A 1********* * 
: ENTER CEKllK 1 : ............... 

I 
* **B1******* * 

* RAISE "IF" * 

• ·=oW~ g;~>. * * ............ 
I 
l AG.Ell 

*****Cl********** 
=~~~~~!----~~~~!: 
* * • * 
* * .................. 

I 
*****D1********** 
* TEST IP SIGN * 
* CALCULATING * 
* NEEDED * 
: (i10BK+12=2) : 

***************** 

I 
*****El********** 
* * * * : SET i10RK+12=0 : 

* * ................. 
I 

·*· Fl *· 
·* *· YES • * *· r·· .~A~mmN~··· 

~ ·· .... ·· 
* **** * * NO 

: .:~.: I 
NK085 i 

NK200 
*****82•••······· 
•CALL llEllAC CALL* 
*SELSR OR SELFR, * 

r
>*& ASA.II OR ASPR * 

* BY TYPE CALL * * IllSOT * ................. .... I • * * C2 *-> 
* * .... 
*****C2********** 
* CALL INSOT IP * 
*REG SIGN = TREE* 
*SIGN. IP # CALL* 

:INs~!G/i:o~llPL! ................. 
l 

• ••02•••••••. 

**** * .. 
: C3 : .... 

llK180 1 INSOT •••••c3•••••••••• 
*CEKllil J97A1* ·---------------· 
* * : GEllERATE LT : . ............... . 
=·:;·=->I 
* * **** NK182 ·*· 

DJ *· . • *· 
* * YES •* REGISTER *· 

I 
* RES.ET CFLAG *<---*· SIGll = TREE ·* 

* • *· SIGN • * 
* * •. .• 
*********** •. ·• * I * HO 

i"'l1!mr~:mm ""'. · ... J .... .. 
I L. ............ x---· ... :::.::::: ... . 
I :::~::->! 

NK272 
*****F2********** 
* C=O. IF CFLAG * 
:mfag~-maii0! 
*LTRA NOT EllPTY,* * ADD 4 TO C * ................. 

l 

·*· NK300 
Dll *· • * *· ****DS********* • * *· YES * * 

r->*. l!C C=O .*--->* EXIT *< 
I *· •* * *I I •. •. . •. * ••••••••••••• •• II 

' r HO 

I ! I 
E4. •. •. NKJ~2***E5***;~;.... I 

• * *· *CEKRV1 364A2* I • * *. YES •---------------* I 
•• •• !IC C=1 •• ··--->: OP GT~~ L = :-> 

•. ·* * * *· • * ••••••••••••••••• 

r 
• *· NKllOO LBL 

Fii *· *****PS********** 
·* *· *CEKRV1 3611A2* 

• * *· YES •---------------• 
*· !IC C=2 .*--->* OP = BE L = •-> 

*· ·* * ETRA * *· ·* • • *· ·* ••••••••••••••••• 

i" 
• *· 

Gii *· .• •. .* *· YES 
!****Gl *********! 
* CALL FllDA!i OB * 
*PllDFR BASED ON * 
: TYPE : 

*****G2********** * IF ETRA HOT * 
*EllPTY • ADD 2 TO* 
*C. IP GTl!A NOT*--------------' 
*EllPTY, ADD 1 TO* 
* c * 

*·•. !IC C=J •• ·*---,. 
*· .• ••••• 

***************** 

1 
NK140 ·*· 

Hl *· 
.•IS TEST*. ~ 

• *.Eli'.PRESSIOll *· NO 
*· Ill • 

*·REGISTER • * 
*· .• *· .• 

i"' 
·*· Jl *· . * IS *· 

................. 

• * llAJOli *· Y.ES * * 
*· OPEiiATOR .*--->* D3 * 

*· A+ • * * * •. . . . ... .... 
i" 

NK1115 • *· 
Kl *· 

• * *· • * •. 110 .. * 
*· GLOBALLY .*--->* C2 * 

*•ASSIGNED • * * * *· . * •••• • ... 
* YES 

! .... 
* * 
: C3 : 

476 

*· • * *262* i " ··:·· 
• *· NK500 LBL 

Hll *· *****H'S********** 
• * *· *CEKNV1 3611A2* . * *· YES •---------------* 

*· !IC C=ll • *--->* OP = BL L = *--' 
*· ·* * LTRA * •. ·* • • • •• * ••••••••••••••••• i " 

. •. 
J4 • • . . • . 

. * *· YES 
*·,.. !IC C=5 .•·*---,. 

*· ·* ••••• *· . * •262• * HO * B4* 

1 
. *· 

Kii *· .• • . . * *· C=6 

* * * 

*·•. ftC .•·*--, 
•. ·* ••••• 

*· . * •263• 
* C=1 * A2* 

.. !.. . * * 
•263• 
* All* 
* * * 

PAGE 261 



Chart ox. Arithmetic IF PF Entry Processor <AIF> -- CEKNK (Page 2 of 5) 

***** *262• 
*.a~• 

* I 
t 

LBL NK450 • •.C=3 
*****Bl********** B2 *· 
*CEKNV1 364A2* .• *· 
•---------------• YES ·* *· 

I
* *<---*· ETRA=GTRA .• 
* OP=BNL L=ETRA * *· ·* 
• * ... -· ' ••••••••••••••••• *· .• 

I ·1· NO 

~ .,.__ 
NK455 i FNDAR 

•••••c2•••••••••• 
::.:~~~~----~~~~!: 
* * ETRA 

I
I : ...... T ...... . 

LBL ·*· 

1 =~~~=n .... ·n::~: .• 02 
·- •• 

V •---------------* YES • * COVER *· 
r---* OP=BE L=ETRA. *<---*· IN A ·* 
I •CALL LBL. OP=l!H* •.REGISTER • * 

I 
* L=GTRA * *· • * ................. • ... 

* NO 

I I NK460 ~ 
I• :~:rrEt:~:·~~==== 

* L=GTRA. CALL * 
* LBL. OP=BE * 
: L=ETRA : ................. 

***** •262• 
* 04* 
* * * 
i 

LBL NK550 .•.C=S 
*****83********** 84 • .. 
*CEKNV1 364A2* • * *· 
•---------------• YES • * *· 

I
* *<---*· LTRA=GTRA ·* 
* OP=BNE L=LTP.A * *· • * 
* • •. • * 

I ****•············ *·. · ;o 

I "'" L.,., *****C4********** 
:::~~ ~~----~~~ ~!: 
* .. 
: LTFA : . ............... . 

I 
1 

LBL * 
*****03********** D4 • • *· 
*CEKNVl 364A2* ·* *· 
•---------------* YES • * COVER *· 

r---* OP=BL L=LTRA. *<-. ---*· IN A • * 
I *CALL LBL. OP•BH* •.REGISTER ·* 

* L=GTRA * *· . * ••••••••••••••••• • • • * 
* NO 

"'" l "' *****E4********** 
==~~~!~----~~~~!: 
* OP=B!! L=GTRA. * 
*CALL LBL. OP=BL* 

: •••• ;:~If! ••••• : 

~->! 
* ****F4********* * 

L-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>* EXIT * 
* * ............... 

I 
! 

***** *263* 
* *A2* 

* 

Section 8: Flowcharts 

PAGE 262 

477 



Chart ox. Arithmetic IF PF Entry Processor <AIF) -- CEKNK (Page 3 of 5) 

..... . .... 
•263• •263• 
•.A!• •.A~• . . 
! LBL llK600 J.C=6 

*****A1********** A2 *· 
•CEKNV1 364A2• ·* *• 
•---------------• YES • • LTRA = •. 

l
:OP=Bllil, L=LTBA :<---*·•. ETRA ••• • 

* • *· -· .................. • •• * i 110 

l NK605 ' FNDAR 
*****B2********** 
*CEK!!Rl 379A2* ·---------------· • * 
* LTBA * 
* * ................. 

l 
LBL .•. 

*****Cl****•***** C2 *· 
•CEKNV1 364A2* • * *• 
•---------------• YES • • COVER *· 
* *<---*· Ill A ·* 
* OP=BL, L=LTRA * *·REGISTER • * . . •. .• ................. • ... • I . ro 

I ...... J.m.... "'l~ ••• ,,J.m .... 
=~~!~!! ____ ~~~~!: ::.:!~!! ____ ~~~~!! 

l 
: OP=BE, L=ETRA : : OP=BE, L=ETRA : ................. . ............... . 

I ... li .... J.m ... . 
****•El•••******* =~~~~!!----~~~~!! 

>* i!ETU.illl *<---* * 

* **************~ * : OP=BL, .&..=LTRA : ................. 

478 

NK650 

. .... 
•263* 
• A4• • * 

* 
! 

.•.C=7 
A4 •. . .. •. 

• • LTRA = •. MO 
*·•. ETRA .•·*---v 

•. .• ..... 
• •• * •264* 

• YES * 81* I ••• 
t 

• •. LBL 
84 •. *****85••········ 

• • •. *CEKMV1 364A2• 
• • LTRA = •. YES •---------------• 

•... GTRA ••• •--->: OP=B, L=LTRA =1 
*· .• • • •. io. • •••••••••••••••• i 110 

NK655 l FNDAR 
*****C4********** 
=~~!~!! ____ ~~2~~= . . 
* LTRA • . . ................. 

I . *· Ml(660 LBL 
D4 •. •••••os•••••••••• 

• * •. *CEKllVl 364A2* 
• * COVER •. 110 •---------------• 

*· Ill A .•--->* • 
*·REGISTER • • * OP=BH, L=GTRA * •. .• . . •. . . . ............... . 
[ L .. 

*****!4 ********** *****ES********** •CEK1'Vl 364A2* *CEKll'fl 364A2• ·---------------· ·---------------· . . . .. 
:oP=BllH, L=LTBA : : OP=B, L=LTRA : ................. . ............... . 
. .... ...l.m.... l 
•CEKllVl 36412* ****F5*******•* 
·---------------· * • 
* •--->* RETURN *< 
* OP=B, L=GTRl • * * . . .............. . ...........•..... 

PAGE 263 



chart ox • Arithmetic IF PF Entry Processor (AIF) -- CEKNK (Page 4 of 5) 

..... 
•264• 
• .si• . 
! 

NK665 .•. NK675 -*· FNDAR 
B1 *· 53 *· *****f\4********** 

• * •. • * *· *CEK!IP1 379A2* 
• • LTRA = •. llC • * ETRA = *· YES •---------------* 

• ••• GTRA ·*·"'--------------->*.•. GTRA .•·*--->: FTP.A * 

•. .. * •. ..• • *· .• ·- . • • •••••••••••••••• * YES * 110 

l I 

1 FNDAR 
•••••c1•••••••••• 
:::~~~!----~Z~~~: 
• * 
: LTRA : .................. 

l -·· Dl •... *****D2********** 
.• *· *CEKNV1 364A2* 

- * COVER *· 110 •---------------• 
*· IN A -"--->* * 

*·REGISTER • • * OP=BE, L=ETRA • •. . . . . *· . • • •••••••••••••••• 
• YES I 

""' l m l m *****E1********** *****E2********** 
===~~!!----~~~~!: ===~~!! ____ ~~~~!: • * • • 
*OP=6NE, L=LTRA * * OP=B, L=LTRA * . . . . ................. . ............... . 
....... .l.m.... l 
===~~!!----~~~~~= * ****P2********* * 
* "--->* RETURN * 
: OP=B, L=ElRA : • ••••••******•** * .................. 

I 

NK685 l PNDAR •••••c3•••••••••• 
===~~~! ____ ~z~~!: 
• * 
: LTRA : ................. 

l 
-*· 03 •• . . • .. 

• * COVER *· NO 

*· *· REaS~Eli • • • *1 

•. *· .• .• ~ 
* YES ***** 

**** I •265• 
*264* 1 * Bl* * E3 •-> * • . . . .... 

llK690 LBL 
*****E3********** 
:::~!!! ____ ~~~~!: 
• * 
: OP=BL, L=LTRA : ................. 

I 

• •. NK680 LBL c4 •. •••••cs•••••••••• 
* *· *CEKllVt 3614A2* 

• * COVER *· NO •---------------• 
*· IN A • *--->* * 

•.REGISTER .• * OP=BE, L=!!TRA * •. .• . . 
*·*•;ES *********! ******** 

I 
V LBL ~ LBL 

*****DU********** *****DC)********** 
=~=~!!~----~~~~!: =~=~!!2----~~~~!: 
• * * • 
: OP=BL, L=LTRA : : OP=B, L•LTRA : ................. . ............... . 
....... .l.m.... l 
*CEK!IV1 364A2* ****ES**•••**** ·---------------· . . * *--->* RETURN * 
* OP=B, L=ETRA * * * . . .............. . . ............... . 

i PNDAR • *· LBL 
*****F 3********** F4 *· *****PS********** 
:::!~~!----~Z~~!: . * • * COVER *· * • !10 :::!!!2----~~~~!: 
* *--->•. IN A • *--->* * 
: ETRA : *·~=GIST!!~··* : OP=BH, L=GTRA : 
••••••••••••••••• ·- . * ••••••••••••••••• 

* YES I 
I I 

!IK695 ~ LBL l LBL 
*****G4********** *****GS********** 
=~~~~!~----~~~~!: =~~!!!! ____ ~~~~!: . . . . 
: OP=BE, L=ETRA : : OP=B, L=ETRA : ................. . ............... . 

I I 

........ l.m.... I 
:::~!!!----~~~~!: *****HS****•***** 
* *--->* RETUl>ll * 
* OP=B, L=GTRA * * • . . ...•........... ................. 

PAGE 264 

section 8: Flowcharts 479 



Chart ox. Arithmetic IF PF Entry Processor CAIF) -- CEKNK (Page 5 of 5) 

..... 
*265• 
* .sz• . 

I 

NK700 l FNDAR 
•****B 1********** 
*CEKllR1 379A2* ·---------------· 
* * : ETRA : 

**** ***********•* I 

l 
• *· NK710 FNDAR 

Cl *· *****C3********** 
• *

0 

• COVER *· •. NO :::~~~~----~Z~~_!: 
*· *· REgS~Eil • * • -------------->*.• GTRA .: 

*· .. • *· . * ******** ••••••••• 
* YES 

L" ** ** •o 1 ********** 
==~~~!~----~~~~.!: 
* * : OP=.BE, L=E'IRA : 

***************** 

I 
V FNDAR 

*****El********** 
*CEKllR1 379A2* ·---------------· . . 
* LTRA • * • .... ............. . 

I 

i 
.•. LBL 

Fl *· *****F2********** 
·* *· *CEK!IV1 361112* 

• * COVER *· NO •---------------• 
*· IN A .*---->* * 

*· REGISTEil • * * OP=BH, L=GTRA * 
•. -• * • *· . • • •••••••••••••••• 

; YES I 

l I 
NK705 V LBL V LBL 

*****Gl********** *****G2********** 
==~~~!~----~~~~~= :::~!!~----~~~~.!! 
* • • * 
* OP=BL, L=LTRA • * OP=B, L=LTRA * • • • * ················· ................ . 

I 11 ! LBL 
*****Hl********** 
::~~~!~----~~~~~: • ****H2********* * 
* *---->* RETURN * 
* OP=b, L=G'IliA * * * * • • •••••••••••••• ................. 

480 

l -•. 
03 ·-. • • . 

• * COVER *· NO 
*· IN A .•-, 

•.REGISTER • * V •.. .. * ••••• 
•. • • *2611• 

* YES * * E~* 

I • 
! LBL 

*****B3******•*** 
:::~~!2----~~~~~= 
* * : OP=BH, L=GTRA : 

***************** 

l ..... 
*****F 3********** 
*CEKllR 1 379A2* 
·---------------* • * 
: LTRA : . ................ . 

l 
• *• LBL 

G3 *· *****G4********** 
• * *· *CEKNV1 3611!2• 

• * COVER *· NO •---------------• 
*· IN A • *--->* * 

*·REGISTER • * • OP=BE, L=ETRA * 
*· ·* • * •. . . .. .............. . 

• YES I 
I 

NK715 ! LBL ! LBL 
*****H3********** *****Hll********** 
=~:~~!~----~~~~~= :::~~!~----~~~~!: 
* • • • 
* OP=BL, L=LTRA * * OP=B, L=LTRA * 
* * • • ................. . ............... . 
..... ,,.l.m.... l 
:::~!!2----~~~~~= * ••••Jll••······· * 
* •--->* RETOR!I * 
* OP=B, L=ETilA * * * * * ••••••••••••••• ................. 

PAGE 265 



Chart DY. Logical IF PF Entry Processor (L!F) -- CEKNL 

CEKNL1 L!F 

*****A 1********* * 
* ENTEf. : ................ 

!,.,,, 
**••*.21********** 
=~~~~~2----~~?~2: 
• * 
: ;.ISE ~UllBfi\ : ................. 

I 
•••••c 1•••••••••• 
•GET .i?OIN'IEii TO * 
*EX? iiESSION F ii Oii* 
* H ENTiiY. GET * 
:LGGICAi. IF fl.AG: ................. 

I '"'" ,.,,. . .. :• •••o 1 **•••••••: !~i~:¥~••••;;7:;: . * D4 •. •. :••••os•••••••••: 
* SET LAi'>El. = * •---------------• .• REGISTER *· !"ES * • 
: HRA : >: GENERA'IE LTR :--->• •• :IG~IG~PE:E .•·*---A ->:OPERATOR = BNE : 

: ••••••••••••••• : : ••••••••••••••• : •. •. . • . • I : ••••••••••••••• : 
I A • NO I 
I I I I 
I I I I 

VI AG"N I I I 
*****El********** NLl~2***E3*1*!~~~*** *****'E4*!******** : 
=~~~~~! ____ !~~~!: *CEKl!1!1 391A1* * * I 
: : :---------------: : OPERATOR = BZ :___j 
• * • * • • ................. ................. . ............... . 

1., i<---------. 
I I 

! NL160 l IJllSOT 1 IHSOT • ••F , ••••••• * I •••••F 3• ••••••••• •••••P4* •••••••• 
• CLEArt • I :~:~~.:! ____ ~2?~!: :~:~~:! ____ ~??~!! 

• ~CGICAL IF * I * * * * 
* * FLAG * • ~!II YES : GENERATE L : : GENERATE IC : ..... ...... ................. . ............... . 

I A A 

! i ... 1,.,,, 
G1···.. G2° ••• G3° ••• •••••Gll•L •••••••• 

• •CPEllANO•. .• *· ·* *· *CEKNI1 397A1* 

.:·mnmr:6/:~>•:* vHuPii *:• .:• ij~ciW *:•-"0--->:GEi!iiir!-sii-?o-: 
*· RESIOIJE .• *· REGISTEa • * *· LOGICAL • • •CLEAR SELECTED * 

*· . * •... • * •... • * * R!G * • .... :o • ..... :o *· *... • •••••••••••••••• 
I I A 

I I I 
II NL 150 ! Sl!LSR llE!!AC 

*****H2********** *****H3*1******** 
:~;~!~!----~~~~!: :~:~~!! ____ ~~!~!: 
: :--->: : 
• • * • ................. . ............... . 

I 
! L!!L 

*****ES********** 
:~:~!!! ____ ~~~~!: 
* • 
: OP=OPR L=TTPA : . ............... . 

NL100 l OPNO 
*****JS********** 
:::~~!! ____ ;~!~!! 

'--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.>: 

* * ................. 
I 
l 

****KS********* 
* * * !I ET URN * • * ............... 

PAGE 266 

Section 8: Flowcharts 481 



Chart oz. 

CEKNS1 ASSGN 

*****A 1********* * 
: ENTEii : ............... 

I 
l IHSOT •••••s1•••••••••• 

:=:~~!2----~~~~2: .. . .. . .. . .................. 
I ..... ,, ......... . 

* Sl'ORAGE * * CLA55=254. • * SLOC=SY!IBOL • 
: TAl!LE POI!iTEil : ................. 

L,. 
*****Dl********** 
:~:!!!! ____ ~2~:!: 
* * .. * 
* * ................. 

I 
:****El*********: 
* * : D= ADCOll SLOC : 

* * ................. 
I ,,,,, 

•••••r1•••••••••• 
===~!!2----~~~~2: 
• * . . 
• * ................. 

I 

l AGEN 
*****Gl********** 
===~!~2----~~~~~= 
.. * 
* * • * ................. 

I ... " *****Hl********** 
===~~!2----~~2~!: 
* • • * 
* * ................. 

I 
! EDIT •••••Jl••········ 

===~~!2----~~~~!: 
* * * * * * .................. 

I 

l IllSOT 
*****Kl********** 

ASSIGN PF Entry Processor (ASSGN) -- CEK~S 

:=:!!!2 ____ ~;~~2: * ****K2********* * 
* *----->* RETURN * . . . . . . .............. . ................. 

482 

PAGE 267 



Chart EA. Assigned GO TO PF Entry Processor (AGO) -- CEKNQ 

CEKNQ 1 AGO 

*****A 1 ********* * 
: ENTER : ............... 

l 

I ,."' 
*****B1********** 
::~~~!! ____ ~~Z~!: . . 
: LINE NUKBER : ................. 

L, ... 
•••••c1•••••••••• . . 
• -CEKOP1- * 
: GET COVEii 

.. . ................. 

I ""' •••••01••········ 
*CEK NG 1 38llA2* ·---------------· .. . 
•ASSIGN REGISTER• .. . ................. 

!..,,, 
*****El********** 
::~~~!!----~~Z~!: . . 
• LB.,AVAR * . . ................. 

I 

I"'" *****P'1********** 
==~~~!! ____ ~~z~~= . 
* BCR 15,B : ................. 

l 
!****Gl*********: 
*CLEAR REGISTER * 
•TABLE EHTB.l POii* 
: a : ................. 

! 
* ****H1********* * 
* RETUliN * .. . ............... 

PAGE 268 

Section 8: Flowcharts 483 



Chart EB. Computed GO ro PF Entry Processor (CGO) -- CEKNR 

C.C:KNiil CGO 

* ****A1********* * 
: ENTER : ............... 

l 
*****Bl********** 
•CAl..L I NSOT fLI NE* 
* NO.) SLOC=STG * 

:gcl=~?~~NL~~! : 
" LIST ADCON * 
** •• **** •• **** ••• 

I 
•••••c1 •••••••••• 
* CALL FLAD4. " 
*CALL CRL. CALL * 
*FLL. CALL PLAD * 
: 5. COUNT=NOEL : .................. 

""" I *****D1********** 
* STCL=254. * 
* SLCC=SYll TBL * 

l
>•PNTli. CALL FLA&* 

*5. i!EDUCE COUN'.£* 
* BY 1 * ................... 

I I 
I * NR1,W AGEll 

E1 • • *· *****E2********** 
I . *. * *· *· YES =~~~~!~----~~~~~= 

*· CCUNT=O .*-->* 
*· ·* * VAR •.. .• . . ··.·:, ·······T······· 

I ... 
I •••••F1 ........... P2 *· *****F 3••••······ 
I * * .• *· *R l=REG ASSIGN- * 

L! Fm:YNW : .:* REa~s~ER ·=·~>: mTco~~E~~:N : 
* XRANSFER LIST * *· • * *CALL IHSOT (LICR * : ............... : ...... ;~. : ... :i..r·····: 

"'ii .... J........ I 

484 

*CALL SELSR (SE- " 
*LECT REG). R1=1* 
•BEG ASSIGllllEllT.• I 
*CALL llEllAC (VAR)* 
* * ········i········ I 

N.it150 ! I 
!*i;*mi*:i:;··: I 
! cWvf:s~rH§ ! 
* TYPf=I*tfCALL * 
:mm~.~.,:m: 

I 
NR160 i 

*****J2********** 
*CALL INSOT : LA* 

!8J. :mi cmET!<-------' 

:r11~~!fl~s8~·01: ................. 
I 

*****K2********** *****K3********** 
* CALL SADDR, • * BR TO TR PT. * ****KIJ****•**** 
•IN SOT , SELSi! * *CALL IHSOT. CLR * * :mm ~ms~~~:--->:st~c.~tc~~T~m :--->: RETURN • 

: .... ~I'*IH~I ...... : :.~!;.;~;;.!~~~;.: *************** 

PAGE 269 



Chart EC. CALL Statement Processor (CALL) -- CEKOL 

CEKOL 1 CALL 

*****A 1********* * 
ENTEli 

l 
*****B 1 ********** •CALL lNSOT (CODE* 
*l' lLE=LINO) • SET* 
*CALL FLAG. CALL* 
* AGEN. CLEAR * : ... ;~~;.~~~~ ... : 

OL300 
*****A2********** *****A3*•******** 
* * *CALL FLAD4 CALL* 
* * *Cl<L G LBL. CALL* 

I
>* J=O * r>*FLL, FILE LBL. * • • I •CAL;. FLAD5. SET• 

:***************! I :******!:2******: 

I I I I,~ 
I OL210 v IOL250 i I 

* **B2******* * I *****B3********** I 

I * * l :ADD 1 TO N CALL: 

1

1
1 r->* ADD 1 TO J * I * FLAD5, * 

I I • • I * LLNO(N),154 • 
I I * • * • I I ••••••••••• ········;········ , 

" .. ,::l ·;:- •. I, II .... )::; •. •. " I . · .... ".I.• ... ·.· .J 1··.JH~1~tH .• ·* •-.~ mpm_.·*1 I N< NOEL I ···-;":;: ! I ···-.-:;: I 1 ·····-.-:;··· 

I I 11 I I I l 
101150 ! LINK I OL220 ! 1' 1' 

I *****Di********** .:•SH*. I*F*~1 2 s**Y*NO**N*Yll**.*.: *****D]********** :~:~~~! ____ ~;~~~= .. :cALLNm?T (LAD,: 

• GENE:i!ATE CALL • I . CLEAR LAST • I, I : 15 xHroT~~fi~R : :.. .. :::.!:~ .. **: : mom. : :m!~.h.mm: 

I I b' ********j:******* I I I 
.... .!..... I " ,)-.. I ••••• .,.!.. ..... . 

I
OL

2
00 * * J . * *· * CALL CALL * 

* * ·* *· * INSOT~BC2, * 
* * ADil 1 TO I * *- *·•. J=4 ? .•·* *DISPl ,I SO'I~SLL* 

II 

. ............. .. .. . . . .. :~::~!~~~H~ .. !~! 
A • YES I 

I I l I :••••F3*********! 

I *CALL CALL INSOT* 

1 , :'L1~tg11~:rn1 1 ·: 

l

',1 v11' ****••··r········ 
V
I 

I 
OL240 • *· 

G2 *· ****•G3********** 

I 
. •. * *· •. :sl~icWL~T~f ZE! 

*• *· I=12 • * ·* : ( ~~iE = Ph~A~L : 

*· • * : ••• H~~.1~~ •••• : .___ ______ ·:r.. I 
1
1 

il2 • • OL100 ·*· ~ 
• * , *. . * ****H3********* * 

•:* NOEL=O *:•NO * EXIT * 
•. .• • * •. . . . ............. . 

•. . . 1' * YES 

~II ........ 
•271• 
* Al* * • • ••••J2••·······. • 

* EXIT * . . ................ 

PAGE 270 

Section 8: Flowcharts 485 



Chart ED. RETURN Processor CRTRN) -- CEKOE (Page 1 of 3) 

CEKOEl 

...... 
•271• 
**A!* . 
I 
~ RTN 

****A 1********* . . 
: EllTEii : ............... 

I 
! IllSOT 

*****B 1 ********** •CEKNil 397A1* ·---------------· . . 
: CF=LillO : ................. 

I .•. 
Cl *· .• • . • * FUllCTIOll *· YES 

*· .~UBPR~GRAll • * ·*-----y 
•. . . . .... 

• •• • •272• 
* NO * Bl* 

:~H. l * • * 
: Dl * •-> .... 

OE040 • *· OE200 • *· 
Dl *· D2 *· . • •. .• *· • * *· YES • * FUNCTION *· 110 

*· *· BillD=O • *. *---->*. *~UBPR~GRAll • * ·*-----] 
•. ·* •. .• *· .• • .. • 

* NO * YES 

! ""' *****El********** 
*CEKl!Rl 379A2* ·---------------· 
:Lim~o~g'N3 ho11! 
* H EllTRY * ................. 

I 

! 
*****Fl********** * IF REGCO, CALL * 
•INSOT IL 15, SLOC!. 
*INSOT~L15 DISP * 

h:Hu~!~~Hhd 

I 
*****G1********** 
* CALL IllSOT (L * 
• 13, 4), INSO'l' IOI* 
•17 ( 13) 1 INS OT* 
* (L 14~ \2{, INSOT* 
* (Lii ,1., 1!!, 28) • * ................. 

1 
• *· OE210 

E2 *· *****E3********** 

•• •• •• •• ii,C :m~1~rr0T1~~m 
*· FUllC'.UON .•--->* (Ol 17J1~) f.1), * 

*·,;~YPE ? •• ·* :14 us l211~). : 
*· ·* ···'··'·········· * I,L I 

...... J....... I 
:c~LL Bm<L0i3: 
•17~ h ~ IHSO~JL * 

U;t~~~1~mi~.: 

[, __ ___, 

*****G2********** 
*IF RV AR=O CALL* 
*IllSOTfSB ,5,15)* 
*IF RV.la MOT E~-* 

!J!!~HMm •. : 
I I 
r-I-llS_O_T _______ __. 

*****Hl********** 
=~:~!~!----~~~!!: 
• * * BR 14 * • * ................. 

I 
! 

••••J1••······· . . 
* .uETURN * 
.. * ................ 

486 

PAGE 271 



Chart ED • RETURN Processor CRTRN) -- CEKOE (Page 2 of 3) 

..... 
•272• 
•.al• .. 
1 Fl.AJ:4 

•••••81•••······· 
==~~~!! ____ ~!~!~: 
•l'UllCTlOll VALUE • 
: COVER : ................. 

I 
• •. OE025 l'llDFR 

Cl *· *****C3********** 
• •••TYPE OF•.•. R ,c ::!~_!!:!----~~~~~= 

•. PUllCTION? .•-------------->• • 
*· • • •FUNCTION VALUE * .. .• . . •. . . . ............... . 
i :::.. J 

•••••Dl********** DJ *• 
::.!~~~!----~!!~~= . * • * IM *· *· YES 

:POMCTION VALUE : *·*·REGISTER • * • *-v . . •. .• ..... 
.................. •. . • •273• I l; NO *. :l* 

·*· 01!018 
E1 *· *****E2********** *****E3********** 

... • • IN •• •• YES :Hi.P~!l~c3~ 11 t~ : : m~lmur~ : 
•. BEGISTEll • *--->* O, ll). Il' slGll *--, * IF REG # l'VC • 

*· • • * -, CALL INSOT • I * CALL INSOT (t * 

•· •..• ·• : ••• m~.~,~4 ••• : ~ :!M~~J2,im.: 
I *271• .. 110 ...... I 
l ... ~i· 

. *· •••••l'1••········ l'J *· 
* ClLt l'llDAR!l'll * •• ··TYPE or·· •• 
: HLr~ccm ~ii : • ••• 1u11cTI011 •• ·* 
*.ilEG, CALL IllSOT* 

!.J~.H,.;~~i4 •• : * • · * 

I 
*· •• * 

: ••• R•B ••• 272 Fii 

.•. : ••• C*16 •• 272 Fii 

•• G
1 *·.. : ... a•a ••• 212 rs 

.:*o/~H~8or ·:. : ••• c•a ••. 272 l'S 
•.PUllCTIOll • * .. .• 

• .. -· 
: ••• L•ll •• • 212 H2 

: ••• I•ll ••• 272 H2 

: ••• u2 ••• 212 J2 

: ••• L•1 ••• 272 K2 

..... 
•272• 
•.a~• . 

OEO 16 l IllSOT 
****•H2********** 
::~~!!! ____ ~!Z~!! 
: L 0, D (O,l'VC) !---::!** 
••••••••••••••••• •271• .... 
•212• 
: J2 •• .... l 

OE017 IllSOT •••••J2•········· 
::!~!!!----~!2~!: 

* 01• • * 
* 

:LH O, D (0,PVC) :--,. . . ..... 
.................. •271• .... 
•212• 

* K2 •-1 . . ..... 
IN SOT 

*****K2****•***** 
*CEK 1111 3 97A 1• ·---------------· 

·* D1* .. . 

: sao~dvff o, :---::: •• 
••••••••••••••••• •271• 

* .o!• . 

PAGE 272 

Section 8: Flowcharts 487 



Chart ED. RETURN Processor (RTRN) -- CEKOE (Page 3 of 3) 

***** •273• 
* .az• . 
i 

OE031 • *· ·*· 
61 •. 83 •. 

- • *· • * • . 
• * *· + • * IS *· YES 

*· •. BE~~~~ER .•. -------------->•. •. mmEg .• · ·~ 
•.. • * *· . • • •••• 

··.·~ *· .• •271• ! i '° '.'.l' 

OE032 • *· OE036 • *· 
Cl *· C3 • • 

.. * *· • * *· • * ilRANCH •. .• BRANCH •. 
*· ON TYPE ·* *· ON TYPE • * *· ... • *· .• 

*· ·* ••••• *· ·* • .• -· :2~~= ··.·* 
: ••• C•16 •• 273 D2 

: ••• R•S ••• 273 E2 

: .•. c•s ••. 273 F2 

: ••• R•'l ••• 273 G2 

.. . 
I 

i INSOT 
*****02********** 
:::~!~!----~~~~!: . . 
: LCDR 2, R+2 : ................. 
PH:·->! .... 

OE033 IN SOT 
*****E2********** 
::.:~!~!----~~~~!: 

: ••• C•16 •• 273 D4 

: ••• R*S ••• 273 E4 

: ••. c•s .• . 213 1'4 

: ••• R*'l ••• 273 G4 

***** •273• • .o:• . 
1 INSOT 

*****D4********** 
:::~!~!----~~~~!: . . 
* LDR 2, R+2 * . . ................. 
pii: *-->! 

OE0;7** IM SOT 
*****E4********** 
•CEKNil 39711* ·---------------. 

: LCDR O,R !----::1 •• 
••••••••••••••••• •271 • 

* LOR 0, R !----::1 •• 
••••••••••••••••• •271• 

488 

.... 
•273• 
* F2 *-, 
: ••• * I 

OE034 ~ INSOT 
*****P2********** 
:::~!!2----~~~~!: . .. 
• LCER 2, P+2 * . . ................. 
:~H· ·->! . . 
**** OE035 IllSOT 
*****G2********** 
:::~!~!----~~~~2: . . 
: LCER O, R : ................. 

t ..... 
•271• 
• 01• .. . 

* Dl• * • 
* 

.... 
•273• : F4*1 .... 

OE038 IN SOT 
*****P4********** 
*CEKllil 39711* ·--------------· . . 
* LER 2, R+2 • . . 
***************** •••• I 
•273• 1 * Gii *-> . . .... 

OE039 IHSOT 
*****G4********** 
*CEKllil 397A1* ·---------------· . . 
: LER 0, R : 

***************** 

! 
***** •271• 
• .oi• 

* 

• Dl* .. . 

PAGE 273 



Chart EE. Begin Loop 1 PF Entry Processor (BLl) -- CEKNM 

C::Kll111 CEKNll1 

*****A~********** 

: ENTER : ............... 

l 
*****B2********** 
*IF !IO'I LEVEL 0 * 
*LOOP CALL INSOT* 

:J~mG~8ali. m: 
:m;.m.Hm.: 

l'~'.I. '"'" C2 *· *****C4********** 
• * *. *IF UNSAFE LOOP * 

.:· E~fRY ":._Y_Es _____________ ): l"msnTTE~~T: 
*· Elll'TY? .• *FLAG. LINK=1ST * 

•· •. . • · • :.mm~.mh.: 
* NO l l 1, 

*****0.2********** Nll070 04 • !_ *· Nll0~2***Dc;*l******** 
* IF ENTliY AN • •••• LINK •. "· NO :s~6Li~~NH~e:0 

: 
:EX~~~iSfi~f.tsET: *· EllPTY? .•--->*CALL AG~!l.SET 
*ENTRY ASG!I BIT * *· • * * LINK TO NEXT 
*FOR THIS EXPR. * *· • * * EXPRESSION * ......•.......... •. . . . ............... . 

I * YES 

I I 
. !. 11!'1030 I 

F2 *· *****E3********** V 
.•. ;NE~M~P *· •. YES ! Sy~ ~~~ f~~~y ! .****E~********* • 

*· .. ~ooi5g;osA:.·•--->: m~:c:LmB~1; : : RETURN : 
•.LIST?.• * 8000 (HEX). * *************** "·i·:o •••••***j******** 

l I 
*****F2********** I 
*COPY ENTilY INTO* I 
• COR ENTliY IN • I 
*LOOP TBL GLOBAL* 
* ASGN LIST FOR * 
* LOOP LEVEL. * 

········;········ t 
I 1 

I I I 
11111040 v I 

L:••••G2••·······: I 
*SET POINTER TO * 
* NEXT ENTRY :<------~ . ................. 

PAGE 274 

Section 8: Flowcharts 489 



Chart EF. Begin Lo~p 2 PF Entry Processor (BL2) -- CEKNN (Page 1 of 9) 

CEKllN1 BL2 

* ••••12********* * 
: ENTER : ·········¥••••• 

l 
·*· 

B2 *· ·* •. 
YES ·* LEV.;lL~ *· 

~·- •• LOOP .•·* ..... •. ... 
•276• *· .• . ·:i· i " 

:••••c2•••••••••: 
•SET LillK TO 1 ST• 
• RECURSIVE * 
* EXPRESSIOll • . . .............•... 

..... 
•275• 
• 83• .. . 

1111111 ! 
!****B3*********! 
• SAVE LINK TO " 
*PllIOR RECURSIVE• . . . . . ............... . 

I •••••c3•••••••••• . . 
* SET LillK TO * 
*llEXT RECURSIVE * 
* EXPRESSIOll * . . . ............... . 

PllOCESS INITIAL 
VALUE AllD 
IliCREllElli !<:---' 

1111003 ·*· 02 *· ·* •. 
110 ·* LINK •. 

r--*· *·VACANT ? • *. • 
••••• *· ... 
·~81• • •• • 
*•l!l* * YES . l PROCESS 

IEST VALUE 

1111200 .•. 1111210 .•. 1111212 
E2 *· *****E3•••••••••• E4 *· **E5******* 

• * llAT- *· • • .• *• * • 
110 • * ERIALIZB *· YES * =IllD PllTB SET * • * OllSAPE •. YES * SET TEllP • 

~------•. FLAG SET Ill • •--->•LOOP TABLE llTBZ•--->•. LOOP • •--->• 14-15 PLAG • 
*· BL2 PP- .• • PLAG * *· .• A * • 

I 

•.unar.• • • •. .• I • • •. .. .....•........... .. .. . .........• . i.. ..!.. 
P1 •. *****P2********** P4 *• 

• •. 1111205 • *· j :.2~2.6: 
.• *· • • .• •. • 

• * NEW •. OCWll *RESTORE POillTEJI• • • llEW *· 00111 
·- •• FLAG ••• *->: TO R~~ijisn~c : • •• l"LAG •••• 

•• •• * • •. .• ·r, ·······r······ ·r, 
**G1******* *****G2********** **G4******* 

• * SET BCTR * * =~~.lig~s~P~~gB, : * * SBT GBL * • 
* FLAG Ill LOOP * *OF El!' llAJOB OP * * 14-15 FLAG • 

• TABLE • •PBOll & TO 1 .lDD • • • 
* * * BY LOAD ADDR' • • * ........... ................. . ......... . 

I ! 
i ..... 

•276• 
1111:.!01 AGEll * B2* 

*****H2********** • * 
=~~~!!! ____ !~~~!: • . 
* IVAR : ................. 

I ... 
J2 ·- •••••J3••········ •••••Jli••········ 

·* *· * CALL CEKllT1 * * * •=* VAl~~TIH *:•-110--->:<mpT~~~y i~T:_>: mt mu~ : 
•.llEllOB! ? .• * TREE. * * • .. .. . . . . 

:~cEs ................. ······:I:······ 
•276• *276• 
* B2* * B2* . . . . . . 

490 

PAGE 275 



Chart EF. Begin Loop 2 PF Entry Processor (BL2) -- CEKNN (Page 2 of 9) 

..... 
•276• 
* B2* 
* • . 

I 

N11300 i 
*****B2*•******** *****B4********** 
*SCAN GLOBAL RES* *CALL INSOT (LR * **** 
*LIST SET i?NTR • •csx1. CALL ASAR* • • 

: TO ~Hli~IST : •'rBL GLOBAL ASGll* * * ' I>* (CSX) • SET REG *-->* G2 * 

* * • BIT * **** ................. . ............... . 
**** I 

: C2 =->1 . ..... ' 
NNJ30 c2· *· •. NN4~2•••c3•••••••••• I C4 .•. •. 

-* -• IS •• •. YES =~:iL R~hsk?A~i'n: I ••• * IS •. •. YES 
*- ENTiiY EllPTY ·1 . CSX EHTliY Ill .I__J>•. REGISTER 1, .•--, *· ? ·* *TREE AiEl. CALL* •.14, 15 ? .• I 

•· •. . • -• : •• ~;2!~ i~;n ••• : •· •. . • · • ~ 

j '° :::::: !A i 110 :::!:: 
. *· NNJSO •• NO 1111390 + 

D2 *· 03 *· **D4******* 
• * *· • *IS CSX *• *SET GLOBAL * 

110 • • IS *• • * IN l *· YES * ASSIGllllENT * 
r---*· ENTRY AN • * r>*- REGISTER • * !>*BIT IN REGISTER* 
y •. ADCOll ? • * *· ? • * *TBL ENTRY FOR* 

••*** *· .. * *... ·* * R * 
•277• *· .• I *·.·* J ******i***** 
* E 1* * YES • •.· I .. •276• 

* 03• 
~ ...... I 

E2·*·•. E3·*·•. 1 
• * IS *· • * *· 

• *A OCON IN A *· YES • * IS *· NO 
*· liEGISTEli .•--->•. REGISTER .•--

*· ? • • •. 1, 14' 15? ... •. .• •. .• ·- -· ... • 
.... .

1
, ~O : •;;• :->!* YES 

1111360 llN341 
*****F2********** *****l3********** 
* CALL SELSR, * * CALL SELSR, * 

: H¥0 lfoA¥Ui_E : : ma~l~~g~iL : 
* GLCBAL ASGll * *lSGll BIT. CLEAR* 
* BIT. * •P1 REG TBL ENT * 

~iii::~:·l········ ········r········ 
.. .. <.~---------------------' .... 

1111345 • *· NN500 
G2 *· *****G3********** 

- * ALL *· * * • *GLOBAL BES *• YES *CALL SELPR POii * 
•.LIST ENTRIES .•--->* FLOATING PT. 

*· PROC? .• * REGS. 0,2,4&6 •. .• . . ·r· ..,::······r····· 
*****ff2********** *****H3********** 
* * •SET SELECTABLE,* 
•SET PO:Ul'IEll TO * * SET IBACTIYE. * 
*NEXT LIST EllTR!* * STEP TO REXT * 
* * * BEGISTER * . . . . 
·······~[..... ········1········· 

.. . 
* C2 * ·*· 
• • J3 •. ~ .... . . •. 

•* "ORE *· YES *· R.EGS. ? • * •. .. •. . . .. .. 
• 110 

l ..... 
•278• 
•.a~• . 

Section 8: Flowcharts 

PAGE 276 

491 



Chart EF. Begin Loop 2 PF Entry Processor CBL2) -- CEKNN (Page 3 of 9) 

..... 
•277• 
• .B!* .. 
! . •. 

Bl *· • * IS *· 
• • ENTRY A *· NC 

*· *· CONS~ANT • *. *---V 
*· ·* ••••• *· . * •276• 

* YES * DJ* 

1 ... 
NN430 • *· 

Cl *· 
·* IS *· • *CCllSTAllT IN*. Y.ES 

. .. .•. 
B4 *· BS * • 

·* *· .• REG *• 
• * IS *· !10 • * GLOBALLY *· YES r->•. REGISTER 1, .•--->•. .ASSIGNED .•-i 

I •.111, 15 ? ·* *· ? .• 
I *· ·* *· ·* 
I • •• • *· ·* I 7 YES 7 NO :;;~: 

I 1 l . · :~·-
NN370 1111440 • *· •••••c4•••••••••• cs •. • • . • *· 

* RG2 = REG * • • Ill REG *· n:s 
*·A nEGISTER .•-------------------------' * OP = SELSR LR * *· WITH RIGHT • *I *· ? •• •. .. 

*· .• 
• 110 

"'" l ""' •••••ot•••••••••• 
:~:~~~!----~~~~~= 
• * . .. . . ................. 

l 
·*· ·*· 1111480 INSOT 

E 1 *· E 2 *· *****E3 ********** 
·* *· ·* *· *CEKllI1 397A1* 

·* 0 :S *· YES • * COllST = *· YF;S •-·---·-----·---• *· CCNSTAliT < .*--->*. 0 ? .•--->* * 
*· *~096 ? • *. * *· *• ·* •* : SR REG, REG : 

•. ·* •.. • ••••••••••••••••• 
* 110 * MO 1 

... " I l,,,,T =-:~·: 
•••••F1•••••••••• •••••r2•••••••••• • • 
* COllJ?UTE ADCO!i * *CEKliI1 39711* **** 
*AND DISP. FILE * •------------·--* * lDCON COVER. * * * 
* IllSOT * * LA REG, CONST * 
:H. H~,2~J~,~~L: : ••••••••••••••• : 

I I 

* * *.SIG!I? ·* • • •. ·* ········i········ .. ·. :o I 
.J._ ...... J.mii.. I 

••• *IN !IEG *· *· YES =~!~~:! ____ ~~~~!: I 
·-.~I~~G~I~HT •• ··--, : LCR REG, REG : I 

•. •. . •. • : ••••••••••••••• : I 
i HO I< l 

! FLUSH 
*****E4********** *****ES********** 
* * *CEKOH 1 396A 1 * . . ·---------------· * OP = LCR * * * 
: : : REG : ................. . ............... . 

I<---' 
i 

*****P4********** :nm, <~iu~~G· : 
: <ml em1~o:sL: 
* RG2 * ................. 

I< ~ ! -A-SA-R------------------------------------------' 

*****G 1********** 
:~:~~~!----~~!~!: 
* SET GLOBAL * 
:ASS1GNl'IENT BIT : ................. 

492 

.. L 
•276• 
* *G~* 

* 

PAGE 277 



Chart EF. Begin Loop 2 PF Entry Processor CBL2) -- CEKNN (Page 4 of 9) PAGE 278 

..... 
•278• 
* *B~* 

***** •278• 
* *B!* . . 

NN6 00 l NN660 l 
••••*B2********** *****B4********** 
* SCAN GE NL REG * * * 
•TABLE. SE! PNTil• * !!ilSET POINTER • •= 1ST iiEG TABLE* *TO 1ST GENEilAL • 
: ilN'IRY : :REG TABLE ENTRY: ... .............. . ............... . 

I I 
I I 
I I 
Ill *****C3********** *****C4*!******** 

* * *IF REG NOT ASGN* 
*SET POINTER TO * *GLOBALLY CLEAR • 

i<-------* NEXT GENERAL * * R REG Tl\BLE * 

I :aEG TABLE ENTRY: : ENTRY : 

** •••• ** •••• ** **. •• ** •••• **** ** ••• 

'"" ,J.. '"" J.:'. ) ... 
• • *· .• ALL *· ·* ALL *· 

• • f\EG *· YES • * GENL ilEG *· ~O • * GEML REG *· 
•. GLOBALLY .•--->*.TABLE EN1!iIES.*<---*.TABLE ENTRIES.* 

*.ASSIGNED • * A *. PilOCESSED.* *·PROCESSED.* 
*· ·* I *· • * *· . * 

*·.·:o I *·.·;Es *·.,·;Es 
I I I I 

l I •• !... I .•. I :2m ' 
E2 *· * * ~ - * *· • ****!4********* 

NN620 

.•CONTENXS OF*. NO * * 
•. A REG A .•--> * FETU!!N * 

*· CSX ·* * * *· .. * ••••••••••••••• 
•. ·* i "' 
-·· F2 *· 

.. • *· ·* IS CXS *· YES 
•. Iii l!E!IOilY • •--> •. .• •. . . 

•. ·* * NO 
I 
I 
I 

t 
•••••G2••········ I 
*CALL FNDiiS. PUT* 
• TE!IP ENTilY Iii * 
*TliEE AREA. CALL*---' : l!~m nm~-: ................. 

Section 8: Flowcharts 493 



Chart EF. Begin Loop 2 PF Entry Processor (BL2) -- CEKNN (Page 5 of 9) 

..... 
•279• 
**A;• . 
i 

1111520 .•. 
A2 *· .• .. 

• * RECUR- *· YES •· •. sr~; ~LAG_.··-v .. . .• ..... 
... • • •278• i " . ·::· 
.... 

B2 ·-... :rm0~1~t;&.. YES 
• ••• Ftm ~LL·*·*-----y .. .. . .... 

*· . * •278* i " ·.::· 
•••••c2•••••••••• . . 
* SET 111 lllD 15 * 
*llBll EllTiIES TO * 
*11011- SELECTABLE* 
.. * ................. 

I .... 
D2 *· .• .. 

YES • * BCTR *• 
r-*·•. FLAG UP ? •• ·* ..... .. .. 

•280• *· .• . ·:i· i " 

494 

.•. 111153/t COVER 
E2 *· *****E3********** ·* •. * • . * IS IllCB *• 110 * -CEKOP1- GET * 

*• l COIStlllT • *->* BASE POR IllCR * 
·- < 4096 •• * * •. ... . . 

*· i •;ES ********]********* 

! IllSOT IllSOT 
*****P2********** *****P3********** 
*CEKllI1 39711* *CEKllI1 397A1* ·---------------· ·---------------· . . . . 
: LA 14, IllCB : : L/LH 14,IllCB : ................. . ............... . 

1, I 
1111536 • *· MHS38 COVER 

·* G2IS *· *• :****G3*********: 
•* LillIT l *· 110 * -CEKOP1- GET * 

*· COllSTAllT < • *--->*BASE FOB LillIT * 
•. lt096 .• • .. .. .. . . 

·r::,, ·······r:::·· 
*****H2********** *****H3********** 
*CEKJI1 397.&1• *CEKII1 397.&1• ·---------------· ·---------------· . . . . 
: LA 15, LillIT : !L/LH 15, LillIT : ................. . ............... . 

[, _ __, 

NH540 ·*· Hll541t 
•• J2 ... •• !****J3••·······: 

.• GBL *· YES * SET 14-15 GBL * 
*· 111-15 FLAG .•--->* Ill 111111 

*· UP •* * •. .• . . 
*· .,. :o ········1········· 

FllDllS . &SAR 
*****K2********** *****K3********** 
=~~~~!~----~~~~!: =~~~!!~!----~~!~!: 
*GET 8 BYTES OF * * llSSIGll REGS * 
* TEllP * * 14-15 * . . . . ................. . ............... . 

1 .... .. . 
: Ali : .... 

. ... .. . 
: Ali : .... 

I 

! COVER 
:****A4*********! 
* -CEKOP1- GET * 
: BllSE FOB TEllP : 
.. . ................. 

I 

1 IllSOT 
*****8"********** 
*CEKllI1 397.l 1* ·---------------· * • 
*STll 14, 15,TEllP * . .. ..............•.. 

l 
*****C4********** 
* CLEAR 14-15 * 

: m;;ifiLm~ : 
* LOCATION Ill * 
* LOOP TABLE * . .....•.......... 

I 
.•. IllSOT 

Dli *. *****DS********** 
·* *· *CEK1'I1 397A1* 

• * IS BEG *• YES •---------------• 

I
>*. A COllSTA1'T .•--.-->* * *· < 11096 • * • LA 1, BEG * •. .. . . . .. • ................ . 

* HO 

"'" l oom •••••!it••········ . . 
* -CEKOP1- GET * 
* BASE FOB BEG * . . . . ................. 

l ""' •••••r11•••••••••• 
*CEKII1 397A1* ·---------------· . .. 
* L/LH 1 , BEG * 
* • . ............... . 

km 
*****G4********** 
*CEKllll1 391A1* ·---------------· *RECOllD IVAR II * 
*BEG 1 llRll E!lrllY* . . ................. 

l ..... 
*218• 
•.B!* . 

PAGE 279 



Chart EF • Begin Loop 2 PF Entry Processor (BL2) -- CEKNN (Page 6 of 9) 

..... 
•280• 
•• •!• . 
t 

U5'64 .•. llN5'72 .•. INSOT 
11 •. 13 •. •••••All•••••••••• 

• •IS BEG •. • • IS •. •C!KllI 1 397A 1 • 
• • l •. IC .• LillIT A •. YES •---------------• 

•. CONSTlll1:"'1 .'"--------------->•. COllSTUT < • •--->• • 
•... ..·• Al • ••• 11096?·•·* : LA 111,LIRIT : • .. • •. .. . ............... . 
,,.[' "'l: •••• ..l:m.. "'lt ..... .l.wm .. . • .. . . . . 

• • IS IllCi •. IC • -CZKOP1- GET • • -CEKOP1- GET • 
•. l COISTUI • • •BASE l"OB LillIT • 1>• BAS! l"OB BEG • •• • 1? • • • • • • 

•. -· . . . . •. .. ................. . ............... . 
J. ::· _ ... J.m~ .. _JI .... ..,..!.um .. 

• • IS •. ~EKII1 39711• •CEKII1 397A1• 

·=:~~~mv:.:=JYES r~~~~-~::~;:;;-~ r:~:~-~::~;:--~ 
• .. • ................. . ........••...... 

• • o I 
"'" l mu "'" '"" *****D1********** *****D2********** *****04********** 

• • •CEKII1 397A1• • • 
• -CEKOP1- GET • •---------------• • -CEKOP1- GET • 
*BlSE PCB LillIT • • • • BlSE POI IICR • 
: : : LA 15',LillIT : : : ................. ................. . .........•...... 

I,.~, I .. ,,, 
*****E1********** *****!4********** 
=~!!~!! ____ ~!!!!! ~~!~!! ____ ~!!!!! 

1111578 INSO'" 
*****AS******•••• 
=~~!~~! ____ ~!!!!: 

I>• • 
: SRDA 111,32 : 

·······T······· 
.•. 

B5 •• .• • . 

l
ns< .• ~srw~ •. > 

• .. • 
• 10 

i, 1 •••• .., .. L:m .. 
•C!KII 1 397A.1• ·---------------· 
L.:.:::!:~: . .Jl 

IllSOT 
*****DS********** 
•C!KII1 397A1* ·---------------· '-->• • 
• LH 1,IICP • I 
: ••••••••••••••• : I 

•CUII1 39711• ·---------------· 
: L/Ui 15,.LillIT : : l/lff 14,.IICI : I 
................. : ....... _i .. _ ...... :J 

..... ,J.imr.. II 

L.::.:::: ... i I 
... ,, I, .. ,,, ..... I« ... . 

•••••P1•••••••••• •••••1"2•••••••••• Pll •. 
• • *CEKII1 39711• • * *• ~;::rr .. m:~: 
• CLEll 11111 • •---------------• • • IS IICB *• 10 ·---------------· 
• UT&IIS FOi •<---• •. 1 COISTHT .• 
:REGS 111 UD 15': : LA 15,1 • • ••• z 1 ? •• ·* 

. . 
: LT! 15,15 : ..........•...... ..•..•........... . ... . ............... . I . . ... 

................. . ..... ,.lum.. "'ll ..... .!.i:m .. 
• • •CEKII1 397&1• •CEKII1 397&1• 
•Si? 111-15' llGBL * •---------------• •---------------• 
•II 11811 llTIIES • • • • • 
: : : BP • + 8 : : LTI 15, tll : ................. ..•.....•........ . ...........•.... 

i , I ..... I <~ •278• 
• 811• SADDR * * *****R4********** 

• •Cl!KBZ1 36JA2• ·---------------· 
'-------------------• COJl!il LOCAL • 

• BBllCR • • • ................. 

PAGE 280 

section 8: Flowcharts 495 



Chart EF. Begin Loop 2 PF Entry Processor (BL2) -- CEKNN (Page 7 of 9) 

..... 
•281• • .az• . 
! NN0:.!5 • •. • *· NN030 OPllD 

:••••al••••· .. ··: .• ~~CUR~·.. • .nIT ~ii•. :~;:;=r···;:;:;: 
*PROCESS INITIAL* YES .•SIV.E TO BE *· NO .• GLOBALLY *· YES •---------------• 
* VALUE CF * r-*· GLOBALLY .•--->•. ASSIGNi:D .•--->* * 
:aECURSIVE, INIT: ~ •. ~~SIGllE~ •. * *· • • REG .•. • : IllIT : ........ T....... :~m . · 1:.. .. r ;o ········1········· 

! AGEll * • • • • YES ! HSLT SELSR 
•••••c1•••••••••• c2 •- •••••c3•••••••••• •••••c4•••••••••• 
•CEKllWl 298.&1• ·* •. •CEKl!Y1 383A1* *CEKHG1 38IU2* 
•---------------• • • IIIT IN *· •---------------• •---------------• 

*--->*· A ilEGISTER ·* • * * * 
INIT * *• • * * IllIT * * * . . •. .• . . . . ................. • .. • ................. . ............... . 

...... "'.. J.. I ..... J ,,.,, 
*****Dl********** D2 *· *****D3********** *****D4********** 
::~~!:!----~~~~!: NO •• ·:ECURSIV;• *· ::~~!~!----~~~~!: :::::~!!!----~~!~!! 

*<---*· TO BE .• • SELECT IIIT * •GEllEHATE LR TO * 
* *·ASSIGNED • * * REGISTERS * • llEll REGISTER • . •. .. . . . . ................. . .. • ................. . ............... . 

I ..... J.:::.l.. ...l: ••• .J.mi~. _J 
I :::~.!!:! ___ 2~~~~: :::~~~!----~~!~!: 
1< : NOT 1,111, IS : :A~5I~M~miEar I ................. . ............... . 

. •. . .. " "'" ""' l .. ,., F 1 •. *****F2********** *****F3********** 
• * • * IllIT. A*·*· BO ::!~_!!!!----~~!~!: :::::!~!! ____ ~!~~~: 

*·•.CONSTANT • *. *----;>: INIT : >: 
•. .• . . . . •. . . ................. . ............... . 
i :::.. I .... l 

=~~;!!1::::~~~~1! =~~!;!~::::~~!~!: :••••Gl*********! 
• GEUBAT.E SR • • :AMfig:oI~EUh : 
: R1,B1 : • IHIT : : TABLE : ................. ................. . ............... . 

I ,.,., l ... " I 
111017 ' ASAR •••••e1•••••••••• *****H2********** *****H3********** 

:::::~~~! ____ ~!!~!! :::~!!! ___ 2~~~!! :::~!!! ____ ~~!~!! . . . . . . 
: ASSIGN Bl : : GEllEBATE LD : : COVER TEllP : ................. ................. . ................ . 

l .... j ""' •••••J2••········ •••••J3••········ 
::=~~~!----~!!~!! ::!~~!!----~~!~!: . . . . 
*ASSIGN REGISTER* * • . . . . .......•......... . ............... . 

I .. L 
•282• 

-*· * G1* 
K2 •. * * -· •. . .• GLOBAL *· 110 

'--------.>*· ASSIGllllEIT • * 
•.SPECIFIED.* 

496 

•. .• ... • 
* YES 

i ..... 
•282• 
• •G~• . 

PAGE 281 



Chart EF. Begin Loop 2 PF Entry Processor (BL2) -- CEKNN (Page 8 of 9) 

NN040 

..... 
•2132• 
* Bl* 
* * * 
! ... 

Bl *· . . •. 
. * 1:1 *· HS 

•.14, 011 15.• 
•. iiEGISTE!I 1, • ..._ ______ 1· 

····t' 
.•. l SELSR c 1 •. •••••c2•••••••••• 

• * •. *CEKNG 1 384A2* 
.• REGISTER *· YES •---------------• 

•. GLOBALLY .*--->• * 
•.ASSIGNED .• * NOT 1, 14, 15 • .. ..• . . • •• * ••••••••••••••••• 

• NO 

.. ,., I "" 
*****Dl********** 
:::~~!~----~~~~!: . . 

INIT . . ................. 
L ... 

*****El********** 
:::!~~!----~~~~!! 
* 
: INIT * ................. 

I mOT •••••02•········· 
:::~~~!----~~~~!: 
* • 
• GENLR • . . . ............... . 

I 

! ASAR 
*****E2********** 
•CEK11111 39111• ·---------------· . 
• ASSIGN REG . . ................. 

I I 
ASAR l CPND 

*****F 1********** *****P2********** 
::~~~~!----~~!~!: :::~~!! ____ ~~!~!: 
* ASSIGN SEL * * • 
• iiEGISTEli TO • • IHIT * 
• iiECU!ISIVE * • • ................. . ............... . 
•••• I •••• I 
!2g1: .J :2g~· •->I 
•••• t :..... f 

NN100 ~ AGEN NN0'43 V 
*****G1********** *****G2********** 
*CEKNlil 29811* * * 
•---------------• * RECORD GLOBAL • •<---• ASSIGNllENT Ill * 
* STEP : :REGIS'lER TABLE : ................. . ............... . 

! ... 
*****H1********** H2 *· 
*EllTEli aECURSI VE• • *" 5XLE" *· * !iAllE Ill LOOP • .• LOOP 011 *· 110 
: TABLfEmmr :--->·-~~cmm <~~-·--> 
• * •• •• ................. • .. • 

. ... . . 
: A4 : .... 
! . *· ~N0111 COVER 

A4 *· *****A5********** 
• * *· * ·CEKOP1- GFT * 

• * *· NO •COVER REGISTER * 
•. INCFEllENT < .•---->• TO LOAD 

*· 4096 .• * INC<IE!IENT 
*· ·* • *· . • • •••••••••••••••• 

• YES I 

l ,,,.,., l ,,,., 
*** **B3********** *****94 ********** *****fl5********** 
* SET CONSTANT * *CEK!II1 397A1* *CEKNI1 397A 1* 
*INCR FLAG. !!AKE* •---------------* •---------------* 

: srgg 11Emrr:I!I :1 : GE~ff:rn5. LA r---: GE~ij~m. L : ................. ~ ................. . ............... . 
A ••••• I I •275• 

l .. :i· 
YES 

!IN0114 ASAR 
C3 • • •. *****C4********** 

• * *· *CEKllll 1 391A 1• 
• • *· NO •---------------• 

*· CONSTANT < • •-, * ASSIGN * 
*· 4096 ·* i * INCllEllEHT '!'O * 

*· • * * R1'4 * • .... • ..... . ............... . 
A •275• II 

I *,.B?* ' 

1 YES * 9' 
NII 102 03 • • *· *****D4********** 

• •IS STEP•. * RECREG (PS!!CT * 
- •A CONSTANT •. :ci~Lhco~§~v~o.: 

,

1 

>•- •• ~~.ii~0 A:R

1
B.•LNO:.···* :(USED AT CEKHO): . ............... . 

l 
!****E3*********: *****Eq********** 
* R = TREE * * IVAL JPSECT * 
* REGISTER llSGN • :c;::~L~EGI~Uj~R : 
: : :VALUE (FRO!! PP): ................. . ............... . 

I I i FNDliS 
*****F3********** *****P'4********** 
•CEKllT1 394A3* *llARI". !IRll TABLE * 
•---------------• * E!ITRY FOR R14 * 
* * * "GLOBALLY * 
: GEN TEllP : : ASSIGNED" : .•............... . ............... . 

I L.. 
*****G3********** *****G4********** * * *CEKHlil 298A1* 
• !IECOliD TREE • •---------------• 
* TEllP ASGN * *IVlR FROll PP' IS* 
: : :IllPOT PARAllETER: ......•.......... . ............... . 

I .... c I .. ,, 
*****H3********** *****H1'********** 
*CEKllY1 36112* •CEKOP.1 378A1* ·---------------· ·---------------· 
* • • RESULT PRO!! * 
* * • !GEN IS INPUT * 
* * • PARAllETER * ................. . ............... . 

I l i "' 
_ .i~~:· ;o.. ~ 

.• llEXT •. 110 
•. RECURSIVE = • 

1 ..... 
•283• 

INSOT * 81* •••••J3•••••••••• •• 
*CEKllI1 397A1* * ·---------------· . . 

*• XI 80001 •* 
*· -· • ... 

* YES 

[ ,,.,. 
*****K2********** 
:::~!~!----~~~~!: 
•SELECT !IEGISTE!I* 
•14. DOll 1T FLUSH* 

:.I~.h.~:,.H .. : 
1 .... . . 

• A4 • . . .... 

• * 
* * ................. 

I 
*****K3********** 
•FLAG 1=REG SIGN• 
*ENTER STEP' TEllP* 

:'tgg~ ~~L~ *E!N: 
•LEASE RES ASGH • ................. 

! ..... 
•275• 
* .B?* . 

PAGE 282 

Section 8: Flowcharts 497 



Chart EF. Begin Loop 2 PF Entry Processor (BL2) -- CEKNN (Page 9 of 9) 

***** •283• 
* B1* .. . 
t 

• *· 1111048 SELSR 81 •.. •••••84••········ 
• *E;PRESSio:· •. 110 ::~!!~2----~~~~!: 

*· Ill A ."-------------------------->*SELECT &15 DO* 
•.REGISTER ·* *HOT !'LUSH TO 1,* 

*· *· • *. * • ••••• : •••• !:,.!~ ••••• : i "' =.~:.= I 
y 1111050 • •. 1111049 l .•. 

:**••c1•••**••••: .• c2 •-.. =~~~:i3:::·~:;~~: .•c40 s·· •. 
* SAVE REGISTER * .• REG. *· YES * "SELECTABLE" * • * TEST *· YES 
*llUllBEli INTO R2J •>•. SIGll = TREE .*---, *AllD "BUSY" BITS*<l •.EXPRESSIOll < .•--------.., 
: : *· *~IGlll ? .•·* : !'OR REG. 15 : *·•. 4096 .•·* 

·······T······· ··:·=, ········1········· ··.·=a I 
. •. l ,,,,, "°'' "" J ,,..c ""' ""' D1 *· *****D2********** *****D3********** *****04********** *****DS********** 

. *. * *· •. YES ::~!!!!----~~!~!: ::~!~!!----~~!~!: ::~!~!2----~~2~!: ::~!!!!----~~!~!: 
*·•. R2=15 ? .•· ! LCR 15,15 : 1>:PoI~~Us~~ojEST! !GETD~2h~~Dpo ! !GElln~fl'!!~t 15,: 

*· • * * J *IllPUT PARAllETEB* * * * * •.•.:a •••••••••1•••••••• ••••••••1••••••••• ••••••••1••••••••• ••••••••1•••••••• 

I .... 
SELSli . IllSOT : CJ : 

*****El********** *****E2********** **El******* *****!4********** * * 
::!!~~!----~~~~!: :c0mfPHG:u : • * "mafff1 • • ::~!~!! ____ ~~!~!: •••• 
:~gL~~~ msa 1 ~o! ;nm rnli BEG. • •mtGn&ismG* * :mmpEh~ 5 • : 

: ••• !,.!:,.!~ ••• : : ••••••••••••••• : ••••• !~ ••••• * : ............... : 

J I 
1'1 *· **Fl******* 

·* *· * SET LOOP * 
* REG * 110 * TABLE !'LAG * 

·=.~::::•::::~.=! ··.::m!!~:/ 

i"' . l 
!****G1*********! !****G2*********! * •:~~·;•;;•• * 
* * * * * LOOP TABLE * 
* OP=Li * * OP=LCli * *RECURSIVE COUllT* 
: : : : * * (LRCSYI * * ................. ................. . .......... . 

I 1< ! 
1 •••• • •••• 

• • •276• 
IllSOT * C3 * * 82* 

*****H1********** * * * * 
=~~!~~!----~~~~!: .... • 
* GEllERATE OP -·-----------
: 1s.a2 : ................... 

498 

PAGE 283 



Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190 

I Chart EG. Begin Loop 3 PF Entry Processor (BL3) -- CEKNO (Page 1 of 3) PAGE 284 

CEKNOl BLl 

••••Al•••······ . . 
.... . . 

• A2 ·--. . . i .... 
IHSO'l' 

•••••A2•••••••••• 
•CBDIIl l97A1• ·--------------. 

• ENTER • . . ...... T ...... • GENERATE BC •---. : o,o<o,o> : I ••••••••••••••••• v 

NOOOl .•. 
Bl •. •••••B2•••••••••• 

• • • • • !«>VE SYM TBL • 
• • LOOP •. NO • PNTR IN BLl • 

•. • • LEVBL=O? • •. •-------->: ~LJgFf'°2P : 
•. • • • PSECT (LOADF) • 

(::• ::~1• •;ES ••••••••1••••••••• .... 
N01l0 .•. 

•••••Cl•••••••••• C2 •. 
• OPDA:l'E LOCAL • • • •. 

.... . . 
• F2 • . . .... 

•TEMP Ll!lllGTH FOR• NO • • LOADF- •. YES 
•OUTER LOOP. POT• .--•. X'8000'? _._ __ _ 
• IN SCTSC8 • l •. . • ! . . .. .. ........•........ . ... 

l 
..... . ..... 
•285••••• •285• 
• B1••284• • Bl• • • • D2 •--. • • . . . i . .... 

NOlOO •••••Dl•••••••••• •••••D2•••••••••• 
• FIND LOlilEST • • • 
•AVAILABLE BYTE • • RETRIEVE SLOC • 
:IN T~i.&UT IN: : Ttffof"il~tg : . . . . 

~.:: .. --r...... . ...... T ....... 
•••••El•••••••••• •••••E2•••••••••• 

.... . . 
• Al • . . .... 
! COVER 

•••••Al•••••••••• . . 
• -CBltoPl - GET • 
• ADCOll LOADED • . . . . 
········c~ .. 
=~~H····mm ·--------------· 
•GENERATE FLOAT-• 
• ING LOAD FOR • 
•VAR OR CONST~ ........ [ ... 
•••••CJ••········ •-CUIC>l- ASSIGM4' 
•FLOATING REG.TO• 
• VARIABLE OR • 
• CONSTANT • • • ········1········ ..... 

•285• 
• Bl• .. . 

:POSH DOWN LOOP : : (~~FL~IJT : • •••• • 
•TABLE ONE LEVEL• • ADCON PNTR IN •----,.. Al • 

: : : LOOt~Af'B : • •••• • 
········1········· ::::::··········· 

• F2 •--

1 . . .... 
• •. N0007 N0009 COVER 

Fl •. •••••F2•••••••••• •••••Fl•••••••••• 
.• •. •PIJT LOOP'l'OP LB:i,.. • • 

YES .• LOOP •. •SYM TBL PNTR IN• * -CEl!:OPl- GB'l' • 
.--•. LEVEL =O? .• .-->4'LOOP TBL. SLOC=• .-->• BASE FOR IVAR • I • • • LCTR. STCI.-1. • • • 
V • * • • * • •GB'l' ADCON JIRTRP • • 

=·=·= ·r, ........ 1········· ········1········· 
•••• .•. INSOT 

Gl •. ••••~2•••••••••• •••••G3•••••••••• 
.• LOOP •. •IF ADCIOll VALUE • •CBDIIl l97A1• 

• •TOP ON DBL *. YES •S'l'CL=~ S'l'C:i,.. :-------------: 

•• •.BOUH~RY? •• ··----> :=19~ um1ifl· : •• ST/STH 1,IVAR •• 
• • • • • EXPR LINlt * 
1~ ....... r...... .. ...... [ ... 

Bl •. B2 •. •••••83•••••••••• 
·* •. .• *· *CBDall 391A1• 

NO • * HALF- •. • * 111: 15 •. YES •-------------• 
.--•. WORD llO-OP • • •. GBL OR TEMP· • •----- •ASSIGll RJ!IGISTBR• I • . NEEDED? • • • • • • • 1 • 
~ .. .. .. .. . . 

•••• •·.·;ES *·.·~ ••••••••1•••••••• 

:.:') 1 l<-----------. 
•••••Jl•••l~.. N0020 J2···.. •••••J3•! •••••••• 
•CBJQIIl 397ll• .• *· • CALL AGEN • 
:---------------: .:· ~1 ·:.~----~ J~u~~: 
:GENERA.TB LR O, o: •. • • • •. * : CHAIM ELBllBNT : 

••• .. •••1""'"'' : •::• ::~1• •;ES ••••••••••••••••• 
.... 

• •. N0050 11:1 •. ••tt2••••••• .• •. • • ••••tt3•••······ 
• • FOLL •. NO • CLEAR • • • 

•. WORD NO-OP .•---- • GLOBAL TBllP •----->4' RB'l'ORN • 
•. MBBDBD? • * • FLAG • • • .. .. . . . ............. . .. .. . ......... . 

• YES 

i .... . . 
• A2 • . . .... 

. .... 
•2811• * A4• . . 
l 

N0108 ••• 
A4 •. .. .. . ... 

.• BCTR •.NO • • 
•. TYPE LOOP? .•---->4' Cl • .. .. . . .. .. . ... .... 

rm 
. .. 

Bii •• 
.• LOOP • • 

• •TOP ON DEL •. YES *. WORD • •----. 
•.BOONDRY? .• .. . . .... r . .. 

C4 •. .. .. 
NO .• HALF- *· 

• ---•. liORD NO-OP • * 
•. NEEDED .• .. .. . ... 
[, 

•••••D4•••••••••• 
•CEKNil l97Al• ·---------------· . . 
:GENERATE LR 0, o: ....... T ....... 

. .. 
E4 •• .. .. 

.• FULL *· NO 
•. liORD NO-OP .•----> 

•. NEEDED? .• .. .. .... 
•YES 

:::---->1,__ "'"' , .... 
•••••F4•••••••••• •••••FS•••••••••• 
•CEKl!lll 397A1• *CEKNX1 l97A1• ·-----------· ·---------------· : Gf.'~!) BC :-------->: GBNEft;! BASE : ................. . ............... . 

l ... . . . ->• Cl • . . .... 

Section 8: Flowcharts 499 



Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190 

Chart, EG • Begin Loop 3 PF Entry Processor (BL3) -- CEKNO (Page 2 of 3) 

..... 
•28S• 
* Bl* 
* * * 
! -·· Bl *· .• •. 

llO ·* Rl'L *· 

r *· !'LAG IN Pl' • * 
*·RAISED ? • * •. .• • .. • 

***** * Y·Es 

* * * 
:2g~= I 

**C1******* 
*RAISE PSECT• 

* RGL !'LAG * 
• i:E11ornMLoB:;• ........... 

l .•. 
D1 *· 

• *OPERAllD*. 
• * ID = *• NO 

*· *· OPERtTOB • *. 

•. .• • ... 
* YES 

I 
*****El********** . . 
* POillT TO * 
* PR!CJ;DING El' * 
* EITR! * • * ................. 

I 
*****1'1********** 
* SAVE LAST OSE * 
•!'LAG UID SET TO* 
* ZEBO IN El' * 
* ERTBY * . . ................. 

( 
i AGEll 

*****G1********** 
=~~~~!!----~~!~!: 
• * . . . . 
·······T······J 

**81••••••• 
* • 

* RESTORE * 
• LAST OSE FLAG 

* Ill El' EllTRY * 
* • ........... 

500 

ll0200 AGEll 
*****82••········ 
*CEKllll 1 298A1• ·---------------· >• • . . 
* • ................. 

'"" ~ r. .. " •••••c2•••••••••• 
*CEKllV 1 •J61A2• ·---------------· 

>:GET 126l2· un: 
* • ................. 

J ,.~, 
•••••02••••••••** 
*CEKRI1 J97l1* ·---------------· 
: 6,D~~~~?B2) : ................. 

I •••••!2••········ 
* * *SET llSL Ill llRllF* 
* TABLE l'OR 
*FLOATillG REG. 6• . . ................. 

110100 

. .... 
*28S• 
* BJ* 
• * . 
! .•. 

BJ *· 
.*llATERI-*. 

• * ALIZE Oii *· 110 
>*-~~Iilt~gp O~ * •-----. 

*.TABLE.* ***** . ... . . *· • • •2811• 
* YES * Ali* * cs * . . I ••• 
! CRL 

*****Cl********* .. 
*CEKTFll 01SEll* ·--------------· 

•••••cq•••••••••• * CLEAR II.LL 11811 * 
• Ell'l'RIES FOR * 

.... 
l .•. cs •. 

.• *· • * STEP All *· YES . . 
*CREATE A LABEL * 
* • ········r······ 
*****D3********** 
* SYllBOL TABLE * 
*POillT TO LABEL * 

I
>: 110I5~i8mn : 

* GEMERAL REGS * 

····--T····~· 
*. EXACT POWER • •-i *· OF 2 ? • * •. .• • .. • 

• 110 ••••• 

I •286* 
• 02• .. 

l PllDAR * 
*****DS*******ll!.** 
*CEKllR1 379A2* 

: i:~~~AnBm : . . .................. 
I 

*****EJ********** . . 
*ADCOll FOB GLAB * 

:11.Dm ~M>"i:~m: . . . ............... . 
I 

*****PJ********** * • 
:_gL~~d~F (~~ib! 
* CELL) * . . . ............... . 

I 
*****G3********** • * 
* LLABL (LOOP * 
: TABLnpr GLAB : . . 
••••••••••••••••• J 

...... J.m .... J 
*CEltllV1 J611A2* ·---------------. 
* GENERATE B * 
* LLABL * . . . ............... . 

*****D4********** 
*IR SYl!BOL TABLE* 
*BRTRY FOB LLABL* 

!BE~IMm=:h ! 
* DEl'IllED BITS * . ....•....•...... 

l mM 
*****E4********** 
*CEKRI1 J97A1* 

·---------------· . . 
* STEP * . . . .......•........ 

l .•. 
ES *· .• •. ·---------------· • • STEP IR *· 110 

*· A REG. ? ·*-i •. .• •. ..• • .. • 
*OUTPUT LABEL TO* 
• CODE FILE * . . . ............... . 

I 
* TES ***** 

l :2m .. . 
R010S 

*****FS********** • * 
* RPREG = REG. • 

*****1'4********** 
* OBTAIN PROll * 
* l!Rl!3 LINK FOB * 
* BEG. 111 THE * 
*VALUE 01' THE DO* 
*LOOP IllCBEllERTt• 

• RO. * . . . . . ............... . . ............... . 
I 

*****G4********** 
*OBTl:U POINTER * 
*FROll LOOP .TABLE* 
* lllD RETRIEVE * 
* LOOP STEP * . . .....•.•......... 

I .•. 
Hll *· .. •. 

• * IllC = *· YES 
*· *· STEP ? • *. *--, 

•. .• ..... 
• •• • *286• i .. . ·:i· 
.•. 

Jll • • 
• •STOP 1 • • 

• * BYTE *· YES 
• •• _co1s~AllT •• ··~ 

•. .• ..... 
•• -· *286• * 110 • Bil* ! ... .... . . 
: cs : .... 

! ..... 
•286* 
* BJ* .. . 

PAGE 285 



Chart EG. Begin Loop 3 PF Entry Processor (BLJ) -- CEKNO <Page 3 of 3) 

..... 
*286• 
•.a!• . 

I 
N0135 ~ INSOT 

*****Bl"********** 
*CEKNI1 39711* ·---------------· . . 
: SR O, 0 : ................. 

I 
1 IllSOT 

*****Cl********** 
*CEKllil 39711* ·---------------· * • 
* LR 1, RECREG * . . ................. 

I ... " *****D1********** 
:~:~~!! ____ ~~~~~: 
:GEil~6RB~h~llD: . . ................. 

I 

i IJISOT 
*****E1********** 
*CEKH!l 35711* ·--------------· . . 
: DO O, S'IEP : ................. 

l 
:•***P1*********! 
* .. 

..... . .... 
•2 86• •286• 
•.a~• •.a~• 

* • 
I I 

110140 .!. l INSOT 
B2 *· *****B3********** 

.• *· *CEKNI1 39711* 
YES • * STEP = *· •---------------• 

r·· · -~?:~i~::. · ·. ·1>L .. ::.~:~ ... .J 
•••• • NO I 

: E4 : 1 
•••• t 

.•. V INSOT 
C2 *· *****C3********** 

·* *· *CEKU1 39711* 
• * STEP All *· 110 •---------------• 

*· EXACT POllER • * * * 
*· OF 2 .• * LR 1,RECREG * •. .• . . • .. • ................ . 

~:!~:*->I* YES 

1
. 

N0150 INSOT 
*****D2********** *****D3********** 
* * *CEKllI1 39711* 
* SHIFT = POWER * •---------------• 
* OF 2 * * * * * * DR O,llPREG * • * • • ................. . ............... . 

I .. ,., J 
*****E2********** *****E3********** 
•CEKNI1 39711* * * 
·---------------· * • 
* SBL RECBEG, * * HECREG = 1 *-> 
* SHIFT * * * A . . . . ................. . ............... . 

..... 
•286* 
* B4* 
* * * 

N0106 i 
***** B4********** 
* * * BUILD TREE * 

!
>*ENTRY l'OR IVAL * 

: {INITIAL VALUE) : ................. 
I J ,.," 

*****C4********** 
:::~~!2----~~2~~= 
:GE'52 X~6R l!~htND: . ........•....... 

J ,,,,, 
*****D4********** 
*CEKllI1 39711* ·---------------· 
* A/AH RECREG, * 
* IVlL * • * . ............... . 

I,.,,, 
*****!"********** • * 
* BUILD TREE * 
*ENTRY l'OR LOOP * 
:VARIABLE (IVAR): . ............... . 

l ... " *****P4********** 
*CEK!IV1 36112* ·--------------. 

: l!ECREG = 1 -.------------------------' :GEi2 x~6a Dtt 1A10: 
* * ................. ................. 

I,,,~ 
*****G4********** 
:::~!~2----~~~~2: 
:sT/ST~vUCREG, : 

* * .....•........... 
L 

*****Hll********** 
*CEKHV1 361112* ·---------------· • * 
: B EXIT : ................. 

l 
*****J4********** 
* CLEAR lLL l!IRll * 
* ENTRIES l'OR * 
* 1101-GLOBALLJ * 
* ASSIGIED * 
* GEIERlL BEGS * ................. 

.. L 
•284* 
* All* 
* .. 
* 

Section 8: Flowcharts 

PAGE 286 

501 



Chart EH. End Loop PF Entry Processor (ENDLP) -- CEKNP (Page 1 of 6) 

..... 
•312* 
* B1* ... .. 
l 

• •. l!A230 BSLT 
81 •. *****B2********** 

• * *· *CEKllY 1 383A 1* . * GLOi!AL *· 110 •---------------• 
*· FLAG UP ? .*--->* * 

*• • • * AOP • •. . . . . ·- . . . ............... . 
• YES 1 
11 ••••• 

•311* 
• *• * F4* 

C1 *· * * .. •. . 
• * l!AJOB *· YES 

*· .,?EERAIOli ? •., • ..___l 
•. ·* ••••• 

*· • .. •311• i .. -.:1· 
•••••01••········ 
*CEKllQ1 388&2* ·---------------· .. . 
: l!ARG2 : ................. 

! . •. 
E1 *· *****E2********** . • •• • * 

.:· ="~i~~:ED ·=·-110
--->:op ~A~iffU/~CDR : 

*• SIGlll ? • * * DESIRED SIGH * •. . . . . • .. • ................ . 
j"' 

:••••r1•••••••••: . . 
: OP = LER/LDR : . . ................. 

k,,,, 
*****G1********** 
::~!!!~----~~~~!: 
* GEHERATE OP • : :m~· = 

11
mg2 : ................. 

502 

.. L 
•311* •.rr 

* 

***** •312* 
.. ,.8~• 

.. 
i 

.•. !UqJO RSLT 
84 *· *****BS********** 

• * *· *CEKllY 1 383A 1* 
• * GLBFLG *. NO •---------------• 

*· UP? .•--->* * 
*· . * * AOP * •. • • * • •. . . . ............... . 

• YES 

l ... 
C4 *· .• •. • * l!AJOR *· YES 

*• •?PERATOR ? • *. *--, 
•. ·* ••••• 

*· .• •311• 

I
* NO * •:~· 

SELFR 
*****04••········ 
*CEK!IQ1 368A2* ·---------------· . . 
* RGR1 * . . ....•............ 

l .... 

! . .... 
*311• * F5• .... . 

E4 *· *****ES********** .• •. . . 
•=* ="~i~~=ED *:•--->= O~~m,t;Da : 

*· SIGH ? • * * DESIRED SIGH * 
*· .• • • • .. ·· ........•........ 
I •••••rq•••••••••• . . . . 

: OP=LER/LDR : . . ................. 
k,,., 

*****G4********** 
::~!!~!----~~~~!: 
* GElll!RATE OP * 
: RGB1 ,6 : ................. 

! ..... 
•311* 
• .r~• 

* 

PAGE 287 



Chart EH. End Loop PF Entry Processor CENDLP) -- CEKNP (Page 2 of 6) PAGE 288 

IP01S 

..... 
•288• 
• .B~• . 
i .•. 

B2 *· -· •. YES ·* LOlOP = *· r--*· .. x•sooo• •• ·• ..... .. -· 
•289• • •• • 
• 11• • 110 • . . I 

~ .•. 
C2 *· . . •. 

YES .• LDPLG = *· 
r--*· •. x• oo• • • .• 

••••• *· •• 
•289• • •• • 
* •:!* 

1
. llO 

llP002 PllOPB 
•••••02•········· 
*CEKllS1 380A2* ·---------------· * PLOlTillG * 
*REGISTER SEARCH* 
• * ................. 

l 
·*· E2 *· 

·* THE *· 
.•VARIABLE OB*. 110 

•.COHSTl!IT II l. 

llPOOll 

*· REG ·* .. .• • .. • i "' 
.•. 

P2 *· .• .. 

I
YES·=: .• ~11 PG_ •• :=· 

• ... 
* HO 

... l "'" G1 *· *****G2********** 
.• IR *• *CEKllS1 380A2* 

YES • * BEGISTER *• •--·-----------• 

r *· llITH HOPER -* *SELECT FLOATIIG* 
*· SIGll • * * BEGIS!EB 6 * •. .• . . ... • ...•............. 

••••• • 110 l 
:2m I . . 

:POOB IllSOT • *· 
*****H1********** H2 *· 
•CBUI1 397A1* .• IB *· 
•---------------• 10 .• iBGISTBR *· 
* GEHRATE LCER *<---*· llITH .PROPER •* 
•6.R OB LCDB 6 1 .ii* *· SIGll .• . . •.. .• ·······r······ ·r:~. 
•••••J1••········ •••••J2•········· 
* * *CEKII1 397A1* 
* llAKB AIUBllF * •---------------• 
* EITBIBS FOB *<---* GBIBBJ.IB LBB * 
: RBG. 6 : :6,R OB LOB 6,B : ................. . ............... . 

l ..... 
•289• 
* A1* .. . 

SELPR •••••&3••········ 
:~:!!!g! ____ !!~~!: 

>•SELECT FLOATING* 
: REGISTER 6 : ................. 

'""' 
*****83********** 
:~:~!~!----~~Z~!: 
* LOAD VARIABLE * 
* OR COllSTlllT * 
* INTO B6 * ............•.... 

l .... :••••c3•••••••••: 
•-CEKll01- lSSIGll* 

SELSR 
*****A4********** 
=~~~!~! ____ !~~~~= 

[

>•SELECT REGISTER* 
• 1 • . . ................. 

=-AQ·= I .... 
COVER 

:••••BQ*********! 
* -CEKOP1- GET * 
: BASE FOB IVAR : 

• * . ............... . 
J ,.,,, 

*****CU*******•** 
=~~~~!~----!~Z~!! . . 
: L/LH 1, IVAR : ;msUUA,~Ea28!1 

.....••.......... l ................. .... 
•288• 

..... 
•289• 
*.,Al* I : Dl•* .... l 

llP200 PHOU 

. 
•••••o3•••••••••• *****D4********** . . :~:~~~2----~Z~~~! . . . . * NPREG=1 *--> 
* IVAR * . . . . ................. . . . ............... . 

I 
·*· E3 *· .• •. 

.• IN *· JIO * * 
*· REGISTER • *-->* All * •. .• . . .. .• .... ... • 

i"' 
llP202 •*• SELSB 

Fl *· *****F4********** 
• * *• *CBKIG1 384A2* 

-* II *· 110 •---------------• *• BBGISTBR 1 • *->*SELECT REGISTER* *· .• • 1 • •. .• . . 
llP206 

··i·;.. ~······r~···· 
.•. 

G3 *· ·* •. • * WITH *· YBS * * 
*· TBUB SIGI • *->* Jll * .. .• . . .. .. . ... .. .. 

• 110 

l ""' ... *****83********** Bii •. 
*CBKII1 397A1* • *IS VAR *· 
•---------------• 10 • *II REGISTER•. 
* *<---•. IITB TRUB •* 
* LCR 1, BBG * *• SIGI ·* . . .. .• ................. . ... l * YBS 

.... :·::· !->J . . .... 
* CS * IP2011 IISOT 
• • •••••Jll••········ 

**** *CEltlil 397A1* ·--------------· . . 
: LB 1, BBG : . ............... . 

.... . . 
: cs : .... 
l 

llP208 • *· 
cs •. 

.• *· . * GRL *· YES 

I
>*. 111-15 FLAG ·*-i 

*· UP ·* .. .• 
*· .• 

* NO ***** I •289• 

l . ·:~· 
SELSB •••••os•••••••••• 

==~~!~! ____ !!~~!: . . 
* SBLl!CT 111 * . . . ............... . 

I .... . 
*****ES********** 
*CBKllG1 3811A2* ·--------------· . 

SELECT 15 * . . ................. 
l •••••rs•••••••••• . . 

:N~=!slh~bH : . . . . ................. 
I 

*****GS********** . . 
* GET TBllP * 
* LOCATIOI PRO!! * 
: LOOP TlBL! : . ............... . 

J , .... 
*****HS********** . . 
* -CBltOP1- GET * 
* BAS!! POR Tl!llP * . . . . . ............... . 

L. 
*****JS********** 
*CEltlI1 397A 1* ·---------------· . . 
!Lii 111, 1S, TBllP: . ............... . 

l .. ,., 
*****KS********** 
•CBKllX 1 39 SA 2* ·---------------· . . 
* Bl!L!lSE TEl!PS * . . ................. 

l ..... 
•289• 
• Al• .. . 

Section 8: Flowcharts 503 



Chart EH. End Loop PF Entry Processor (ENDLP) -- CEKNP (Page 3 of 6) 

NP016 

***** •289* 
•*Al* 

* 
! 

. •. -*· 
A 1 •. A2 •. 

• * *· - • *· 
.• RCSV = *· YES ·* *· YES 

*· 0 ·*--->*- l'ITRZ =O ·*-i •. . • *· .• •. . • *· .. • •. .. • *· . * 
* NO * NO ***** 
I I •288• 
I I * 03* 
I * * 
t .!. * 

*****81********** B2 *• • • .• *· 
*SET TC PROCESS * • * *· !10 
*FIRST .iiECURSIVE* *· BCTR ·*-i 
* • ·- .• . . •. -· ••••••••••••••••• ·- .. * 

I * YES ***** 
**** I I •291* 
*289• I I * G3• * Cl •-> V * * * • ••••• * 

NPOl~** i EL3 : 2~l! 
*****C1********** * * 
* !!AKE ENTRY Ill * * 
* '!REE AREA * 
*ACCORDING TO ID* 
* OF RECURSIVE * . . ................. 

I 

l 
• *• SELSR 

Dl *· *****02********** 
• * *· *CEKllG 1 384A2* 

• * *· !IC •---------------• 
*· liECURSIV.i. .*--->* * 

*· IN REG • * * 
*· ·* * *· . * ••••••••••••••••• 

* YES 

l 
*****El********** * • • * 
* B = REG ASGll. • . . . . .................. 

504 

..! .. 
•290* 
• .. sl * . 

l .. "' *****!2********** 
=~:~~!2----~~2~~= 
* . 
• * ................. 

! ""' *****12********** 
=~~~!!2_ ---~?2 ~2: . . . . 
• * ................. 

I 
.. ! .. 
*290• 
* Bl* * • . 

. .... 
•289• 
**A~* . 

I 

NP200 ! FNDAR 
*****A3********** 
:~:~~~2----~2?~~: 
* FillD IF COVER * 
* ADCON CF LOOP * 
* TOP IS IN REG * ................. 

l 
. *· 

B3 *· 
·* *· • * IN *· YES 

*· REGISTER •• 

1 .. -. 
*· ·* *· .. • i NO I 

! SELSB II 

*****C3* ********* 
:~:~.!~2----~~~~!: 
• • I * ANY REGISTER • I 
* * ***************** 

I I 
*****D3•!.!=~2I.. I 
:~:~!!2 ____ ~?Z~2: . . 
: REG, ADCOll : . ....... i........ I 

.1 ASAR 
*****E3********** 
*CEKllll1 391A1* ·---------------· 
* * :ASSIGN REGISTER: . ............... . 

1(-.1 
! 

:****F3*********: 
* * : Bl = NPREG 

* • ................. 
I 

l INSOT 
*****G3********** 
*CEKNil 397A1* ·---------------· 
: BXLEo~J~I 14, : .................. 

I 
*****H3********** 
* CLEAR Bl, 14, * 
* 15. * 
*NOii-SELECTABLE * * Ill THE llRll * 
* TABLE * ................. 

I 
~ .•. •••••J3•••••••••• J4 •. 

* llTZFLG=O * . * *· 
* EXLAB=X 1 8000 1 * • * GBL *· 110 : mg~:gggg: :--->* •• ~4-1~PFLAG ••• •~ 

:.mm.mm.: ··._ .• ·• :2;2: 
* YES * A2* 

I 
**K4******* . . 

* CLEAR 14-15 * * GBL AllD BUSI * 
*Ill llRll TABLE • . . ........... 

.. L 
•292• 
* A2* .. . 

• * 
* 

PAGE 289 



Chart EH. End Loop PF Entry Processor <ENDLP) -- CEKNP (Page 4 of 6) 

***** •290• 
• .ai• 

* 

NP025 ! EL.2 
:••••a1••*••••••: 
* !IAK~ ENT"Y IN * * 'Ii.lEE AiiEA FOil * * INCREllENT * . . ................. 

I 

1 . ... . •. 
C 1 *· C2 *· ·* *· .• "EXLE *· ·* NPCNT = *· YES ·* ON *· YES 

*·•. 1 .•·*--->• •• ~ECOR}IVE".•·*-v 
• .. • *· ·* ••••• 

•• • • *· • * *289• 
* NO * NO * A3* 
I I • * 
I I 
I I 

I NP030 .!. FNDAR INSOT 
D2 *· *****D3********** *****D4********** 

• *•INC REii ENT *· 110 •---------------• L_ * *• *CEKl!R1 379A2* .•c __ E_K_ll_I_1 ____ ~-9~_A_1*• 

----->*- *·2:E~:To~i···*--->: INCREllENT * LA :---:: •• 

•. • • .................. ••••••••••••••••• •291 • i "' l i ·.:i· 
NPO~~·••E2•*"'~~~~;.. E3. *· *· EQ. l. :~s *****!!!'5***~~u; •• 

:::~~!!----~~!~~= . * • * Ill A *· *· HO • •"*rm < *· *· NO =~~~~!2----~~2~~= 
* *· REGISTER ? • *--->*. 11096 .•---->* 

* INCilE!IEllT : *·•. .•·* *·•. .•·* : INCR * 
*******••******** *· . • •. . * ................. . l i m • 

IN SOT .•. ·*· IllSOT 
*****Fl********** F2 *• F3 *· *****F4********** 
*CEKllI1 397A1* ·* *· .• *· *CEKNI1 397A1* 
•---------------• YES ·* TREE *• ·* REG *· YES •---------------•. 
* *<---*· SIGN + •* *• SIGH+ .•--->* 
*A OR AH R, INC * *· ·* *· ·* * AB R, R2 • • *· .• •. .• • ••••••••••••••••• •. . • *· . * ••••••••••••••••• 

* HO * 110 

l .... , 1 .... , 
*****G2********** *****G3********** 
::;~!!! ____ ~~2~!: ==~~!!~2----~~2~2: 
• • • * 
:soaSHR,IllC: : SBR,il2: .................. . ................ . 

l .. L 
*291• 

*****H2***~~u... * • 0~· 
::~!~~!----~~!~!: * 

'-------->: UCilEllEHT :---:: •• 

••••••••••••••••• •291• 
* 82• .. 

* 

.. L 
•291• 
* B2* • * 

* 

I ,.m 
*****1"5********** 
::~~!!! ____ ~~~~!: 
* * * A OR AH * 
* * . ............... . 

.. L 
*291* 
* :92* 
• * 
* 

PAGE 290 

Section 8: Flowcharts 505 



Chart EH. End Loop PF Entry Processor (ENDLP) -- CEKNP (Page 5 of 6) 

..... 
•291• 
* .e~• 

* 
i 

:IP100 .•. llEllAC IllSOT 
B2 *• *****83********** *****84********** 

•• ·:Ed~srv~· •• NO :::~~!~----~~!~~= :::~~;~----~~~~~= 
*· *-A~~~~~~D .•·*--->: :.--->:* ST, STH * 

•. ? - • • •. . . ................. . ............... . 
* YES l I 

NP110 i RLSllS 
=~~::i 2 :::;•;;~•: !****CJ*********: =~~::i,****j9;:2: 
* ENTRY EXCEPT * * CLEAR NAllE * •---------------• 

: Fms:~D1m : f: Tm~EbmEs :<---: : * NO. * * * * * ·······T······· ................. . ............... . 
••02••••••• . . 

* REDUCE RCSV * 
* * BY 1 * *< . . ........... 

I .•. 
E2 *· *****E3********** 

• * *. *SET TO PROCESS * 
.• *· HO •NEXT RECURSIVE * *· RCSV=O • *--->* SAVE LOC. OF * 
•. • • • cua RECURSIVE • .. .• . . ·- .• .•............... 

* YES 1 
l :2m 

• *· * C1• 
1!'2 *· • * .. •. . 

YES .• *· 110 

••••• *· -· ••••• • •••• j
*• *· llTRZ=O • .·*---v 

•4:91• •. ·* *289• •291• 
*,.G!* * * •'~* *•G~* . . . 
J- ! 

Gl *· *****G3********** 
• * *· •SET TO PROCESS * 

• * *· !IC * TEST * 
*• BCTR .•-------------->* EXPRESSION. * 

*· • * *llAKE TREE EllTRY* 
•. .• * BY TEST ID. * •. . . . ............... . 

* YES l 
l ,,,., ""' *****H1********** *****ff3********** 

:::~~!!----~~2~~= ==~!~!! ____ :~!~!: . . . . 
* BCTR 15, 11i * * TEST * . . . . ................. . •............... 

l I .... , :••••J1••·······: 
*CLEAR 111-15 GBL* 
* IN llilll ENTBY * 

•••••Jl••••······ 
*CEKllI1 39711• ·---------------· • * . . . . ................. 

506 

1 ..... 
•292• 
•• 1~· . 

: ca, TEST : ................. 
I,... ... 

*****Kl******'**** *****K4********** 
*CEKllli1 38111• *CEKllY1 364A2* ·---------------. ·---------------· 
• *->* * 
* TEST * •OP=BIE, L=LABEL* . . . . ................. . ............... . 

1 ..... 
•292• 
• 12• .. 

* 

PAGE 291 



Chart EH. 

•****A 1 •••****** * 
: ENTER ............... 

I 
I 
I 
I 

~ 
:••••a 1 •••••••••: 

* PCJ? UP !.OOP • 
:TABLE ONE LEVEL: . .. ................. 

l 

End Loop PF Entry Processor <ENDLP) -- CEKNP (Page 6 of 6) 

..... 
·~92• 

•*A~* . 
NP300 l 

•••••12••········ 
•SE• POIN'IER TO * 
* lST ENTiiY IN • 

*****A4********** 
*SET POillTEP. TO * 
* NEXT GLOBAL * 

~------------*ASSIGN~ ENT LIST* 
* ENTRY * 

*FOR THIS l.EVEL * * * l
>•LOOi' TBL GLOt!AL* 

*ASSIGNllEST LIST* ................. . ............... . 
I I A 

•<-----' I 
1 1 NO 

82
-•-.. NP310 84 •••• 

Nl?305 

•* °'. . * ALL • • 
• * IS •. YES • *GLOBAL ASGll*. 

*· ENTRY .•-------------->•.LIST ENTRIES ·* 
*· EllHY? .• A *.PROCESSED.* .. ... I ... ? •• •. . . • ... 

• 110 * YES 

l I ! . ... I Cl • • 

. •·* LOOi? • ••• YES 

J lmoo ! .•. 
•• C2 •... :··~:r£*;;;:;*••: I :;;;;~";~;;·:;~;: ... cs ..... 

.• rs *· NO * (FIND ADCO!I • I •TBL COP BASE TO• ·* PSECT •. NO 
*· ENTRY A .•--->* i!l!!GI. CLEAR A *-->1 *VALUE RECORDED •--->•. RGL FLAG .•-, •. LEVEL=O ? .*---J •. . . •. .• .. -. 

* NO 
I 
~ ..... 

•288• 
•.a~• . 

*· CSX? • * · •REG TaL GLOBAL * * I!I LOOP TA!lLE * *·RAISED ? • * 
*· .• * ASGN FLAG * I *FOR THIS LEVEL * *· • * 

*· • * ***************** I ***************** *· · * I 7 YES I 7 YES I 
l I I I 

NP320 l I l AGEi! I 
•••••02••········ •••••DJ••········ I •••••OS•••······· I 
:A~mMi¥5HAG: :I~Lm gxR~~~ : I =~~~!!! ____ :~~~!: I 
! THL~H~o~A~~x :->:A~~~~~11~i~aHAG:___, : • I ................... ••••••••••••••••• ................... I 

I 
I I 
I I 

! llE!!AC I •••••!5••········ 
:~:~~!!----~~!~:: I 
:GET X2~l2 ARD : I ................. 

I I ! OPlll> I 
*****PS********** I 
::~~~!! ____ ~~!~!: I 

: .•..•••••..•..• 1 I 
I I 
l EDIT I 

:****GS*********! . . 
: -CEKOQ1- : . . .................. 

I 
I 

l IISOT 
*****HS********** 
:::~!!! ____ ~~~~!: 
* GElll!UTE * 
* STE/STD * : •• h~~m,m .. : 

I 
**JS******* * • 

* LOVER RGL * 
* FLAG * * • 

* * ........... 
!<---' 
! 

****KS********* 
:· Rl!TORll : . . ............... 

section 8: Flowcharts 

PAGE 292 

507 



~hart EI. I/O Statement PF Entry Processor (RD) -- CEKOH 

CEKOH1 RD 

*****A~******•*** 
ENTER : ................ 

I ""° •••• •92• ••••••••• •••••8 5••········ 
:c~5\ Imr~mE: : NAmms~~DR : 

:ueI!E1haL~ST: >: (NA~~ufIST, :--, 
•CGN rROL EY TE) • I * * I .................. I .................. I 

I 1' I 
I I 1

1 

! l NAU 
CH1z~ •• ·c2•········· Oii195 c3· • •. c11··· Of!2.l2 ••• cs•••·······. I 

•CAi..L SELSR (SP-• • * TEST *· • * *· I 
* lECl' REG 1). * .*i"OR FClil!AT *· FORll .• FEFERE!ICE *· LABEL * FOR~AT AD:JR * V 
* Fl'..il;Jli (i?AiiAI! • r->*. Oli • •--->*. TO FOli!UT = .•--->* PARA!! = STP *I 
*LIS!l t INSO'!' (L* I *· NAl!ELIST .• *· AR PAY ·* * (LABFL,2511) * 
*•••1'"•· ... u.i:J.0,•1•3t> ••• • I •. .• •.NAii! .• • • • ·- .. .... *· . * •. • * ................. . 

'
I j NONE ., YES I 
~ I I I 

. *. I ! AGEN I 
D2 ·- I •••••DCI.••········ I 

.• •. *CEKNwl 298A1* I 
• * IS DATA *· ~O *---------------* I 

*·•.SPE~HIE;J •• ··--, I : FOR!IAT ARRAY : l 
·- •• • • • * I : : ••••••••••••••• : I 

j YES 11 I I 
I I I I I I I I ! 
~ AGEN I I . *· OH205 

*****E2**•******* J f Ff.I, *· !****ES*********: I 
:::~~!! ____ !~~~!: I I .• · * IS •. •. NO • !'ORllAT ADD!! • ~ 
: mhmr: : 1 I ·· .. mm11P .• ··--->:cv~tm12.m, :--, 
* NUl!9E?. * I *· • * * * I 
***************** I J *· . * ***************** f I I, I * YFS I 

I 1' ,I i I• •<----.. 
Oii185 .•. I IOH225 ~ ! I 

:••••F 1 ••·······: .• p 2 ·-.. I =·~;·~ ~:~:·i~i;·: •••••Fti••········ I 
* .iiN ADDRESS • NO .• IS iiN •• I •SE>ECIFIED. CALL* :cAktcggvnJ~ET : '1 

* i?ARAl'IEIEii = *<---*· AN AliGUllENT • • I I * FLAD:> • • IllSOT (ST REG * 
: sn,2s4 : •••• ••• 1 : (SfP(ERii,2511)) : :1H&ti~~~axg~gIT: 1 
***************** •. . * I ***************** ***************** I 

508 

I * YES I I I, '1 
I ,I I I I 
I I I I I< I 

I ~ COVE.ii I I v 0!1220 ~ !'LADS 
1 :····G~~:;~;;~··: 1 r :··~;G~~;·;~~;;··: :·~~;~;;;~·;;~;·: 
1 •CALL coVEii (GET* 1 I :sPfiikMDhhP : 1 • ADDRESS O!' • 

! L~::m:!~f:::.; j 1 mmmh;~f ~:: ._L.:~::~!::: . ..; 
I I< I I 
I I I I 

I Ci!180 i I J 
I •*****H2**********• I H3 *· 
I I ·* *· 
I 

• Rli ADiJR;:ss • I • • IS LIST •. NO 
: PARA!!ETEii = 0 : I •. •. PRESENT •• • ·1 I : ................. : ..•..... 

I J II l"' I 
OH190 ~ V I 

*****J2********** *****J3********** I 
=~m m0~w;5: :ExmE;;m~k : I 
• ADD:<), FLA;J5 • : CALLI~~~¥VR, : I 
••• ".ji.=~~dU~3.L.R>.·.. • • I ........................... ***************** I 

I
I I< I 
! Oi12'15 I 

•••••K2•••······· I ' 
*IF 2ND CONIROL L_J ****K3********* 
*cYrE NEC. CALL * • • 
* TEVI4 (FILE * RETURN * 

:ciiF~~Y.i~A~ioa : • ••••••••••••••• • ................. 
G3. 254)) CALL LINK(TO 
CHCIA) 

PAGE 293 



Chart EJ. 

AGE~ 
•••••A1•••••***** 

I/O List Element PF Entry Processor (!LIST) -- CEKOI (Page 1 of 2) 

. 
I 

~ 
C<:KOI 1 IOLI ST OI27G • *· 

=~~~~~! ____ !~~!2: ***•*A.(;••******** 
·*A3 *·. !****.1.l:*********: 

• * D!P! NO * ?ELEASE * • •<---• ESTZ!t *· PRODUCT = • *--->*ilEGISTE<!S R~ & * 
: LIST EL.C:MESI : * *************** *· 2EG 0 • * * FD * •.. .. * * • ***** •294* *· .. * ***************** I 

I 
* YES * Re;,* .- " 

" I 

t TEVIU 

I 

I 
v 

:••••E 1•••••••••: :••••92•*******•: :****B~ *********! 
* -CB:C:J- PILE * * CALL Fl.ADS • * 

: !YPE :->: ~~t~~ (t.~~)1) * N = 1 *--, 
• I 
* I ................. . ............... . ***************** I 

I 
! r:;scr 

•••••::.1••••······ 
:~=~~~!----~~Z~!: . . 
:;.1, s;.oc (0,13): ................. 

or1so 

I 
I 

I 
~ . •. 

: ••• L•l ••• 29~ ii5 

: ••• I•2 ••• 294 35 

: ••• L•4 ••• 29" CS 

: ••• !•4 ••• 294 cs 
: ••• F.•4 ••• 294 cs 
: .... R•S ••• 29~ DS 

: .•• c•e ••• 294 os 

E.2 *· •••••=:4********** 
• * *· * LIST ~LE!E?fT * 

.• 'IESI *· COll'5'.lANT Oii 1'0 SOESC&IPT * AD~R~SS PARA'.'! * 

I 
:;;:. t 
: cs.*--. I 
..... I I 

'I I 
!****C5*********! : 

* * I ll = 2 •-->I 
• I 

* * I 
******'*********** \ 
**** I *294• I 
* '.>S •--, I 

* * I I 
V I 

!****D5*********: I 
.. • I 
• N = 3 *->I 

: : ' ::::................ I 
*29U. I * !5 *---, I 
* *' I I ...• ! I 
*****E'S*********: I 

:. I.A 1,0(0, 1) :--->• .... :::g~~N'I ••• •--. 1>: =VALg~~LVDIS, : 
• *· .• I I * • 

N = u 
• I 
•->I 
* I * I 

................... *· •. ~A3IilOLE sus!c.aIPT J ······-·········· 
I cs ARGU.!!Ell'I I I I 
I '-------------' I 
I I 

GI151 i ~E.!!AC OI200 ~ FLAD5 
•••••: 2••• ****•** ***** F4 ********** 
::~~~~2----~-=~~~: ! :LiW~i~11~~¥E : 
• * ,....->• ADDRESS * 
: LIST 2L::!IE!H : \ : PAPA!!ETER : 
••••••••••••••••• f ••••••••••••••••• 

I I I 

ll I I 
·*· INSOT ! .~. 

* G2 *· =~i;:w•**;~7~;: l • * G4 * • 
·* i2=0 *· YES •---------------• I • * IS LIST *· YES 

•. .• •ST 62, 4(0,1) * c. v 

***************** I I 
I 
I 
I 

I 
INSOT I 

:~;:;r~····;;;:~: I 
•---------------• I 

* SLL 0, ll !<--' . ............... . 
I 
I 

I 
I 
I 
I 

*· A~D !l2=0 .•--->• *-->1 • .• :.·L::~A~.NRTAYA!l·*·*------i. 
•. . . . . •. .. . .... ***** •2911* *· .. * **********•****** I *· .. * •2qs• * NO I * !10 * 32* 

I I I * * * *H~* 
I I I * * 
I I I l<----... 

CI152 i OP!lj) lor310 ~ INSOT OI320 LU!< 
..... *ii2.******•••• *****!-!3********** I •••••t!l.L*•******** *****H~·········· 
*Ci.KM•1 3d1A1* * CALL INSOT * I *CEKNI1 39n.1• *CEKOJ2 296.U• 
:---------------=--->= 1~~!: imr !__l :---------------=--->=-GE;ERATE-CALL-: 
• LIS1 ~LE~E!lr * *EI.i:.!lil~T ADDRESS* * SR O,O * * CHCIE1 * 
* * * ?A.F.A:it =O * * * * * .................. ................. ................. . ............... . 

I 
i 

*****JS********** 
: ~!TIJ~N : 

********••••••• 

PAGE 294 

Section 8: Flowcharts 509 



Chart EJ. I/O List Element PF Entry Processor (ILIST) -- ~EKOI (Page 2 of 2) 

. .... 
•295• 
".a~• . 

I 

~ -•. 
:•••*E1 ******•••: .•¥~ LI~i•. 
•OHAill SIZE OP • 110 .•ELEllEllT All •. 
• Aiii<AY •<---•. ARGUllEllT Ill • • 
• • •. DEl!AllD • • 
• • *· .• ................. • .... 

I • YES I I 
I ~ j.-. 
l OI220 ~ •••••c2•••••••••• 

*INITIALIZE CON • 
*Dil!S EliODUCT• 1. • 
•PROll PRODUCT OP• 
• ALL CONSTANT • 
• Dil!EllSIONS • ................. 

l 
.•. .•. SELDR 02 ·- 03 ·- •••••011••········ • • •. • * •. *CEK!IH1 386A2* 

.• All• •. YES ·* CONSTANT •. MO •---------------• 
·- •• nmmlf.•··--->• ••• D~~m~~11 •• ··--->: SELiai g;, RO: 

*· -· *· =1 • • • • .. . • • .. • ................ . 
j'° i "' j 

OI285 . ~ OI230 l . *· OI225 IllSOT 
*****E2********** *****E3********** E4 *• *****ES********** * • • IP' MO 01" VAR * .• COii- •. •CEKllI1 397A1* 
•COllPUIE SIZE OP• •Dills=1.._sET RD•O• ... STANT DI- .. _ YES ·---------------· 
• ARRAY * • IP lfu-r~ CALL * *· l!ElfSIOll PRO .•--->* 
! ! :sEt8aAgtLHCWE : *·~?CT<llO?~·" ! LA,RO,CDP • ·······T······· ·······T······· .. ··=· .•..•...••..••.•. 

°"" moT onoo '... J l 
*****F1********** F2 *• *****P3********** *****F4********** 
:~!~!!!----~~Z~~: YEs • • • * *· •. :~Uii-0I~1~~~6~f : :c~~~ I~v1:1rru:: 
* •<---*· lRllAYSIZE .• * COVER jADCOlll ,_' * *COVER (COllSTS{ • * 
!....~!.~::~:: ..... : ·· ·· :~ 0 ~:- • • • :::!2~~l~,~M:.: :.~::~mt~:~~;.: 

510 

I * NO I I 

.. L v11 :,1 1<-------..-J 
:.2 ~ .. ~= I OI 255 ~ 

*****G2********** I *****G4••········ 
* :cmApmgm: :D~~= mr mDll: 

•CuVEliJCCNSTs<. • ,1 • (CUR AOCON). • 
•*INSOT Lc011'D cb. •• •COVER lADCOlll, • * IllSOT llORllH * 
***************** ******* ********* I 

1 I I I 
:i;:: :!. j 
"* H~* Hfl *· 

• .• !IORE *· 
·* VA!!IABLE *· YES 

*· DillEllSIONS • * 
•. ·* •. . . .. . • 

• 110 
I 

•. !:. 
•294• 
* A3* ... . 

PAGE 295 



Chart EK. End List PF Entry Processor (NDLST) -- CEKOJ 

CEKOJ1 NiiLSI 

•••••A 1••••••••• • 
: .1.NTEil ............... 

l 
1 

•••••51••········ : mt m~m~: 
• CLUii LIST • 
• .1.LEllENf Tl!N • 

: ..... ~~~: ...... : 
I 

l 
• ••••cl•••••••••• 
: EXIT : ................ 

CEKCJ2 LINK 

* ****A3********* * 
: ENTER : ................ 

l 
*****B3********** 
•SEL. AND CLEAR * 
•ALL FLT PT REG,* 
* GENL REG * 
!J!!tl!1::H ... : 

I . •. 
CJ *· *****C4********** • * IS •. * CALL * 

• •SUB-l'ROGRAI!*. YES *FLAD4 (SUB-PROG *' 
*· *· N~~t AN .•·*--->:NAii~~: mgr (L: 

*· •..• · * : •• ~~~i~~HLL ••• : 
* NO I 
I I 

I I 
OJ100 4 i'LADVR l 

*****03********** *****D4********** 
*CEKTFK 015H3* *IF SUBPROG NAftE* :---------------: :EM~~m&pm : 
:sUilPiiOGRAft NA ~E: :cA~~T IV~~b(L 14: ................. . ............... . 

I I 
~ ~ INSOT 

*****E3********** *****!4********** 
•IF SUllPiiOG NAllE* :::~~;2 ____ ~~2~2: 
:EMm~&sP~ii~.: .. 15 o a 15 • 
*CALLillSOT(L14, .. • .. ~As6 h:15

1 * 
*SLOC ST 14, 72) *' * ................. . ............... . 

I 11 1 INSOT 
*****F3********** 
==~~~;2 ____ ~22~2: * ..,...,F4**...,.,.*** * 
:L1~,nc~~~~p1 :--->: RETURN : 
• * ••••••••••••••• .................. 

PAGE 296 

Section 8: Flowcharts 511 



Chart EL. srop and PAUSE St3tement PF Entry Processor (STJP) -- CEKOK 

CE KOK 1 STOP 

****A 1********* . . 
* ENTER * • * 
*************** 

l 
*****B 1 ********** 
:m;0~N:m~m: 
*WO. CALt FLADS. * 
* GEN 110. CALL * 
*FLAD4. D=ADCON#* ................. 

l 
*****Gl********** 
* CLEAR ALL FLT • 
•REG TBL EHTliIES* 
*CLEAR GEHL REG * 
! ,, i:TlM~au ! ................. 

l 
****H1********* . . 

* RETURN * • * ............... 

512 

PAGE 297 



~hart EM. Arithmetic Expression Generator CAGEN) -- CEKNW (Page 1 of 2) PAGE 298 

CEKJIW 1 AGEN 

****A 1********* 
* * : ENTER ................ 

l •••••a1•••••••••• 
*CALL TRBLD (FOlil'I* 
* EXPLlESSIGN * 
* 'Iii EE). T=TREE * * EASE LOCATION * 
* • ................. 

I . •. 
Cl *· *****C2********** • * !!AJOli *· *IF MAJOR CP NOT* • * OPEl\ATCR *· NC *A RESIDUE, CALL* 

*· fRI!IITIYE .*-->* WGHT ~ASGN OP * 
•• •• 

1 
•• • • :mGn~.~E mf : 

•. . . ····'············ 
NW280 

7 YES l 
l ,,. ·-.. 

****Dl********* . * *· * * YES • * !IAJO & *· 
• EXIT *<---*· OPERATOR A .• 
• * •.RESIDUE ?.* ............... •. .. . .. . . 

* NO 
**** I 
*298• ! 
: E2,. *-> .... 

NW100 E2·*·,.. E3·*·•. Ell·*·• • 
• • •. •• •• • * •• 

YES ·* OP = *· NO ·* LOP STt *· NO ·* ROP srt *· YES 
~·· •. g~Etr~~x .•. •--->• .... RESOL E ? ... ··--->• .•. RESOLE? ... ·! 

***** *· ·* *· ·* *· ·* I 
: 2n: *· .. ·* •· .. ·;Es *·.·:o I 
.. *.. i I I I 

I Nll120 .!. ,1 1
1 

I F3 *· I .... ROP !Tl*·*· YES I,,· I 
I *· RESOL'lED? • *-i I 

•. •• v • • ••••• I 
I . *· .• · *299• 

I rNO •.Ai• ' 

I "'l2 .... J .... ~. . . .-!-.. I 
I : : YES •• ·•WEfg~f' •••• I 

I
I •T = RIGHT LINK •<---•. <~EIGllT ·* I 

* * *· (ROP) • * 
* * *· ·* I .................. .. . . I 

* !10 
I 1<----------' I<-----' 

I !IW 1 !2 .... Hll*! •••••••• 

I
I : T = LEFT LillK : . . . . 

********j******** 

Section 8: Flowcharts 513 



Chart EM. Arithmetic Expression Generator (AGEN) -- CEKNW (Page 2 of 2) 

..... 
•299• 
*.Al* 

* 
i 

Nli200 • •. 
A 1 *· . . • . 

• • BRANCH *· 
*· ON OPERATOR .• •• • * •. . . .. . ·· 

.. L 
* • . . . . . . 
..... 
•299• 
•.cl• . 

I 

1 RLTllL Ili'LUS I!IPLY •••••c1•••••••••• •••••c2•••••••••• •••••cs•••••••••• 
::~~~~!----~~~~!: ::.:~~!!_ ___ ~!~~!: • • ::.:!~.:! ____ ~!~~!: 
*EQUAL, Gi!i;ATER :---i * IllTEGER ADD *-->* F3 * * IllTEGER * 
:THA~~11~i~¥0PA11: I : GEllEliATOR : • ••••• : mnma : 

i~~~=l········· j1 ········:,········ I ········:!, ........ . 
AllDOi • • INTEGER RPLUS B!IUL • • INTEGER 

•••••D1••········ D2 •• •••••D3••········ •••••D4••········ D5 •. 
*CEKllI1 32881• .• *· •CEKllC1 30611* I •CEKllB1 30911• ·* •. 

:----iiii~-;ii----:_>j r>•:* W~~~E *:•~>:---iiiii-iiiii----: <--:-iiiii-iiii:riPi:r-:<~•:"' 8:k~i~E _::•<l 

!. .. ~:::.:~~: ... : II .*· •.•.•-~~:~:EX ! ... :::::::~: ... : I : ... ::::::::: ... : •. •. *···~~:Pm • • • 
:m. .299. I < I •299· 
* E1 *-l * D2* * D5* • * ...... • •••• .... 

nAX CPL US CllUL 
*****! 1********** *****E2********** *****ES********** 
*CEKllU1 329A2* *CEKllG1 32011* *CEKOF1 32311* ·---------------· ·---------------· ·---------------· 
* 'SELECT * COllliLEX ADD * * COllPLEX * 
* LARGEST' * * GEllE!IATOR * * llULTIPLY * 
* GZllEliATOR * • * ***** * GEllERATOR * 
••••••••••••••••• ••••••••••••••••• •299• ••••••••••••••••• 

• F3• I .... .. 
*299• * 

: n. • i< .... l 
COlll!l Hli260 CDIV 

=~~~:n····;;m: • ••F3**...... :~;:~~r··;2;:;: 
•---------------• * SET * *---------------• 
*l?BOCESS ARG OF * >* 'COllPUTED' *<l<--*COl!PLEX Dl:HDE * 
:CLOSED FUHCTl:Oll: • * FLAG (S) * * : GEHBRATOR : ................. ........... . ............... . 
=i;;. I =.· F;· ••• ·1 

* Gl *-1 . . .... ! 1 .... 
FUllC • *· •• COllPLEX IDVDE 

*****Gl********** G3 *· G4 *· *****GS* ******** 
::.:~~~~----~~~~~= .•i;a=gg~TI;T•. 110 • •" * BlilllCH *· •. IllTEGER ::.:!~~2----~2~~~= 
•PROCESS CLOSED >I *· & llODE FOR ., r>•. OH TYPE .•--->*IHTEGBR DIVIDE * 
* FUllCTIOll *· CSX • * *· •* * GEllERATOR * . I ·- .. .. -· . . ;;;~:•••********* *• •

1

. ~ES 

1

1.
2
;;. •.

1

. •:EAL ***************** 

*• H1**-1 * G4• 
I !***** .... ' 

DCOll • *· RDIV 
*****H1********** H3 *· *****H4********** 
::.:~~~!----~~~~!: . •i;a:mT 1:· *· m ::~!!~2----~~!~!! 
* PROCESS .__ ____________ _, *-REG 1~ 14, OR.* r• REAL DIVIDE * 
* INTRillSIC *· 15 • * * GEllEB&TOI * 
* FUllCTIOll * *• ·* * * ................. •. .. . ............... . .... 
•299• : J1.*-, .... ! 
:••••J1••·······: 
* llULL 110 * 
* PROCESSING OR *--> 
* GEllERATIOI * 
• * ................. .... 
•299• : K1·•1 .... 

LADDR 
•••••K1********** 
::!~~!! ____ ~!~~~= 
* A&D BY LOAD 
: ADD BESS : ................. 

514 

•1110 : ·;;·: . . .... 
.•. 

••J2••••••• J3 •. 
* SET * • * *· 

*iEGISTEli 11811 * YES ·* CSX *· 
* TABLE GLOBAL *<---*· GLOBALLY •* 

* ASSIGI FLAG * *· ASSIGllED • * . . .. .. ........... • ... 
.__ _________ ,i'~110 ___ _, 

1111280 1111270 ... 
K3 *· *****Kii********** 

****K2********* .• *· * * 
* * YES ·* BLINK = *· 110 * * 
* Bl!TURll •<---*· 0 • *--->* T = BLillK * . . .. . . . . ............... .. .• . . 

•• *.. ********j******** 

i ..... 
•298• 
• .z~• . 

A1 • • •• + ••••• 299 D2 

:::':::::mi~ 
••• = ••••• 299 C1 
••• > ••••• 299 C1 
••• < ••••• 299 C1 
••• l!ID ••• 299 D1 
••• OR.••. 299 D1 
••• llAX ••• 299 !1 
••••••••• 299 F1 
••• ••••• 299 G1 
•• • • ••• 299 H1 
......... 2.99 J1 
••••••••• 299 J1 
• •• ? ••••• 299 J1 
••• ! .•••• 299 J1 
••• L&. •• .299 K1 

PAGE 299 



Chart EN. Expression Tree Builder CTRBLD) -- CEKML (Page 1 of 2) 

CEK!!l.1 IliBLZ 

*••••A 1********* * 
EllTEii 

I 
•••••e1•••••••••• 
• IF !IAJOB OP A • 
• CO~EUTED CSX, • 
• CilA!IGE EF ID • 
• FRO!! CSX TO • 
* iiESIDUE • ................. 

l 
:••••c 1•••••••••: 
: 'IOMfiA~~~oa ! 
: fOillTER LV=O : ................. 

.---->! 
l!IL100 • •. 

01 *· 
*. rs .EF •. Y!S • * I 
. •. 

I 
•= PliIHiiIVE • *-->• G1 • •. . . . . .. .• • ... i " 

I .•. 
I El *· *****E2•••••••••• 
I .• ·* PF il •• •• m !igA~~ianm.If: 

I 
*· ALOO~ ~Ali .*--->•IllSER'I 'IYPI! AS • 

•.Oii PlRA!I • • * OBTAIN.ED FRO!! • 
•. ·* • SY!IBOL TABLE * •. .. . ............... . 
I 
. ., I 

!IL 110 V 
* **F1******* * • **F2******* * 

• * * iil!DDCE LV * 
* • A DD 1 TO L V • * * BY 1 * * . . . . ........... . ......... . 
• ••••• I I 
: Gl :->I I 

l **** I ~ .. o • • •. 
*****Gl********** G2 *• . . .• •. 
* * 110 •• •. 
• REDUCE ii BY 1 •<---*· LY=l .• . . •. .• . . .. -. ................. • .. • 

* YES 

I 
*****H2********** * • . . 
* T=O S=O * * • * • ................. 
=~~g· ·->I . . .... 

!IL130 !IL150 ••• •••••J2••········ Jl •. . . .• •. 
* * .• BRANCH *· 
• ADD T TO T *--->*. 011 PP (RI ID • * . . .. .. . . •. .• ..•.............. ··.·· 

: ••••••••• 300 Ell 

: ••••••••• 301 81 

: ••••••••• 301 AS 

: ••••••••• 301 cs 

..... 
•300• 
*."E!* . 
i 

!ILllOO • *· 11Lqo5 

CSX 

Eq •. *****!5********** 
•• •• IS •. •. !10 :cLRc8ij~¥Rn~cE : 

*• OPERATOR A, .•--->* 'EXAll!Nl!D' • 
*· OR A,, • * *FIELDS Ill llAllF * 

*· •* * TABLE • •. . . . ............... . 
• YES I 
I I 

i l 
*****P4********** *****PS********** 
* CHAllGE THE ID * * Il' OP=COLOll, * 

! 0iR6P~sP:t:g' : :s~6R~m5,giN~"! 
* OPERATOR * * !IA111'! TABLE * 
* * * EllTRY * ................. . ............... . 

..L I :3m ~ 
* * *****GS********** 

• • IF LAST DSE • * FLAG SET, SET * 
* LAS'!' USE PLAG * 
* Ill COR !IAll! * 
* TABLE EHTP.Y • ................. 

.. L 
•301• 
• .si• . 

OPERATOR 

RESIDUE 

PaI!IXTIVE OR l'DllCTIOll 

Section 8: Flowcharts 

PAGE 300 

515 



Chart EN. Expression Tree Builder <TRBLD) -- CEKML (Page 2 of 2) 

llLSOO 

***** *301* 
• * B!* 

* 
! 

·*· Bl *· 
• * *· . * 6Ri1Ni;H *· 

*· IO ENTilY •* 
*· l?.iiOCESSOli. * 

* ·* 
·- .·* 

**** ***** .. • •301* 
: A3: *•A~* 

**** • 

llL525 1 llL575 J. 
:****A3*********! • * AQ *· *· 
* OBTAIN TREE * • * ROP *· NO 
* PT!i. AND TYPE * *· TYPE • *--""J 
: OF CONVERSION : ··~?!!PLEX)- * I 
***************** *· .. * t 
:··· * I ; YES I 
: s3 :->I I I 
**** I ~ I llL527 ~ * 
:·~:~f3~~;:·;~··: .. a1t · •• • . I 
:CONVE~nli~ TREE:<l •:* Tm *: • .::~1 
* ENTRIES * *· COl!PLEX ? • * I 
* * *· ·* I 
***************** *· . • v 

***** •301* 
**A~* . 
I 

llL350 V RES ID UF 
*****A5********** 
* CLEAR OCCUR- * 
*RENCE COUNT A !ID* 
*J:XAllINE FIELDS * 
* IN NAllE TABL !': * 
• * ................. 

l 
*****BS********** 
* IP LAST USE * 
* FLAG SET, SE'l' * 
* LAST USE PLAG * 
* IN COR NA!!E * 
* TABLE ENTPT * ................. 

: ••••••••• 301 Dl 

: ••••••••• 301 Ali 

I I * NO **** 

:.3fr.•->I 1' I : El : 
•,+,.EQ.,.GT.,.LT.,.AND.,.OR. **** I ~ •••• 

I llLSSO v I ·*· 

**** I 
:3gJ• •->I 
• • I .... ~ 

: ••••••••• 301 C3 

: ••••••••• 301 f2 

ALL OTHER OPERATOR CODES 

ILLEGAL OPERATOR CODE 

**** •301• 
: Dl**--

**** l llL510 
*****D1 ********** 
* * *GE'I ROP AND LOE* 
: TYPES : 

* * ***********•••••• .... I * * * El *-> 
* * *·*** llL512 
*****E1********** 
* SET UP & * * CO!IBINE THE 2 * 
* TYPES AS ARG. * * FOR TYPE * 
*CONVERSION I* 
***************** 

..... 
*301* I .. ;i· 

• *· llL275 t PH411ER 
Fl *· ILLEGAL *****F2********** 

NO • * *· CCNV * * 
CONV ·* TEST *· A'ITEllFT * -NX450- * 
,· •• ~ESPONDENT_ •• •--->: llA~m~cmoR: 
~ *· • ... *... : ••••••••••••••• : 

**** * BUILD CCNVERSION 
* * I ENT RIES lllTO 
*• C3 *• I EXPRESSICN ! TREE 

·*· 
Gl *· 

-· *· . * ARE THE *· YES 
*· TIP ES R8 • *--l *·AND ca 1 •• 

*· ·* ·- .• * NO **** 
I • * 
I * 83 * 
v • * **** •••• . . 

: A3 : 

516 

*****C3********** I Cll •. 
* llAKE OPERATOR * I .• *· 
*TREE ENTRY. IF* I NO•* ARE *· 

* NAll.o TABLE * *.AND CS ? ·* 
* PRINTER * *· ·* 
***************** *· . * 

* CSX~ INSERT * ,<--*· TYPES RS •* 

.. ,,, I i "' 
*****D3********** *****D4********** 
* IF LOP * * * 
•PRillITIVE FLAG * * CALL COllV TO * 
: N¥is¥Ur. : '--!COllVE~I 1 ~•B To : 
*BACKLINK IN LOP* * * 
***************** ***************** 

I 
llL560 ! 

*****E3********** 
* IF TOP * 
*PRillITlVE FLAG * 

: N~~smr. : 
*BACKLINK IN BOP* ................. 

l 
llL565 ·*· F3 *· . . •. 

NO • * END OF *· 

r *· EXPRESSION • * 
•• '? .• •. .• *· .• 

***** * YES •300• 
•.J~* 

* l !IL250 

** **G3********* • * 
: RETURN : ............... 

•••••cs•••••••••• 
:Tg0rmlmh: 
*AND llAKE ENTRY * 
* AT TREE (Tl * 
* * ................. 

l 
*****DS********** 
:sTA~~m=~· SET: 
*PRillITIVl hAG * 
*ADD 1 TO S. ADD* 
* 1 TO R. * ................. 

I 
! 

. *· 
ES *· .• •. . * R > *· !10 

*· TOP'? ·*1 •. . . •. . . 
*· . • v 

* YES ***** 

I :33~: I ... 
i llL250 

****PS********* * • 
* EXIT * . . ............... 

PAGE 301 



Chart EO. weight Subroutine (WGHT) -- CEKNE 

CEK N~ 1 liGHT 

•****A 1***•***** * 
* ENTE F 

I 
t < A 1 

NEl 10 . *· I I NE190 

**** * * 
: 94 : 

B1 *· *****BL********** I I BU •.. *****B5********** 
_.p;~gi4ItE• ..... NC : :. .1 I ·* IS *· * * 

~ .:;rG~~D6mAN~:.:~>: ll(T)=O *·•.WE~~~f.rn -··"---->: ... :;!.OP(T) * A I *· OF A: .• * 
*· .. • * * I I * ·* * * 

*·•·~Es ***************** I f *· * • ;o ********7******** 
I I I * * I I 
I 1, I * C4 •->I ' 
I I * * I I 
v I I •••• v I 

.•. I !'IE200 ·*· I 
Cl •.. :••••C2********** I cu *· I 

•• ·~mmv~· •• NC • :__J l .• ··ll(Tl > •• •• NO 1' 

NE1..<0 

*·•.ilE~~~fED •• -•--->: r = BOP(Tl * I *· •• Wt'IAX ••• •--, 

*··-.l·;E: : ................... : ·''1 * *·.·;~: ,,· I 
* **** * I I I 
: Dli :->I I I 

~ **** I I I 
NE130 • *· I NE210 ~ I I 

.01 •. *· * **02******* * ' :.****D4*********:. I '1 

- BOTH *· YES * * I I ·- .. ~m~mi .. ··*---->*. ii(TI = 0 ••• ,1 . W(T) = llllAX * 
*· *· - *.. • **********" * I : .................... : I I 

~ NO I l I I I 
I I I !<----~ I ! ! I l<:-----------J 

NE140 ·*· NE160 I I !'IE220 ~ 
El *- **E2******* J *•****E4**********• 

• * *· * * I ,:'' • * NEITHER *· YES * li(TI = 1 • * V * llARK OP IT) * 
*· OPEilAND • *--->* llAJ1 Iii (LOP), *I *• WEIGHTED •* 

*·PRIMITIVE.* * W ROP)) * 
•. -· * • * * • • ••••••••••• I ••••••••••••••••• .. r .NO • I I 

I I I I 
I I I ! 

NE150 ~ I NE100 I ·*· 
!****Fl••·······: I .••FJ*l........ ·*F4 .... 

:• ~6~p~mnv~F : I =siiMt1 * *<---N-
0 
.: * 1Hr~Ko *: • 

• * OPE?. ANO •• I * •. • * . . .. 
***************** *********** • ... • I I * YES 

I I I 
~ I 

NE180 ·*· ~ 
G1 •.. *****G4********** 

.•ii~oEH) TH~·*· YES :I~A¥m 1 ~mL~-: 
*· . MAJOR • *- *ROP (Tl IS OP OR* 

·-~~ERATO~··· 1 :csxhrrT=llJTOP : 
·- .. * v ••••••••••••••••• 

• NO •••• I 
I * * 

- *
!_ : C4 : ~I 

NE230 
Hl *· .. * *.. ****H4********* • * IS *· YES * * *· OP(Tl A .*-

1 
* EXIT * 

*· !~NCTlO~ *. * * *************** * • .... • 
* NO * **** * I : D4 : 
'I •••• 

. *· NE190 
Jl *· ••J2******* 

.•·*N~~~Jfl*·,._ YES •*ADD 5 TO *,. 
*.OPErtAND OF A .• *---->* W(T) *-1 

*· I . * * * •. • * • • ·- .. . . ......... . 
* NO **** 
I : C4 : 
v * • .... . ... 

* • 
: B4 : .... 

Section 8: Flowcharts 

PAGE 302 

517 



Chart EP. Common Expression Usage Count (CSX) -- CEKOB (Page 1 of 3) 

CEK~.81 CSX 

* •*"'*A2********* * 
: EN'!'Eii : ................ 

l 
• •. OBOSO 

B2 *· *****83********** 
• • IS •. * INSERT TYPE • • * l1AJOii •. YES • INTO THE • *· Oi'EiiATOR A .•--->• APPROPRIATE • 

*· CSX • • * NAl!E TABLE * 
*· .• * ENTRY * ·- .• ................ . 

* llO I 
I I 

I I 
~ I 

••c1••••••• c2·*·.. I 
• • oH~~E~~UNT • • rr:s .• ·* 11Boii •. •. I 

•OF cs:. Alill llA.dK•<---•. OPERATOi< A .• I * I:IE iiESIDOE • *· iiESIDtlE • * 
•' EXAl!INED' * *· . * ... T.... ·-c, I 

I 05100 ~ 
~ :••••02•••······: 

* ****D
1 ********* * * 'I = 'Irt!E NODE * 

* EXIT * ADDRESS * . . . 
••••••••••••••• • * ................. 

518 

I 
**** I •303• I 

:.:~· *->! 
OBl 16 .•. 

E2 *· ·* SIGN •. •=* r5~~ ~~) *:•YES 

*· ~~0W1 • !· • ---:J .. 
*· .• •305• * NO * 82• I ... 

~ 
.•. 08101 .•. 

!'2 •. P3 *· 
.• -~mHh~· •. YES •• ·~mHh;· •. us 
·-.~Mma~ ~.-·--->• .•. FU~~T~OM •• ··---l 

•. -· *· . • • •••• *· .• *· .• •305• * NO * NO * 82* 
I I * * 
I I * 
~ < 

OB102 • *· 
G2 *· 

•• -:Lgur~ll;· •• YES 

*·•. liOPg~ A .•·*---v •. . . . .... 
*· • * •305• * NO * B2* l * *. 

OB103 • *· 
H2 *· -· •. ·* IS *· NO 

*· *· Oi? (T) A + • •• •-----. 
•. . . . .... 

*· • * •304• 
* YES *•8~• l . 

•••••J2••········ • * 
*PUSH DOllll SIGN * 
: TO ~gE m AllD :-----. . . ..... 
••••••••••••••••• *305• 

*.a~· . 

PAGE 303 



Chart EP. Common Expression Usage Count (CSX) -- CEKOB (Page 2 of 3) 

..... 
•3o4• 
• • 3~• . 
t 

ca10<1 .•. .•. 09106 
82. •.. ••63******* E4 •. *****95********** 

.• *· * * .•LOP (T) *· * * 
• • OP dT) = •. YES • CnA?IGE * . • i??I~!TlVE •. YES *PUSfl DCW?l SIGN * 

•. •. • 5 / •• • •--->• •srWHMt> • •--->•. •. FU~~r~oN • • .•---->: TO iiop (Tl :1 
*· .. * * * *· .. * * * I *· .. • ••••••••••• •. . • ••••••••••••••••• v 

7 so 7 NP t **** !j~~= 
I I I * •• 92• 

t I I<-* g5 * * • 
I I • • • v I 

oa11s os11.:; • •. 0~101 .•. 1 
:****Cl•*****'***! C2. •.. C4 *· I 

•.:sHGE O<(l) :o• YES •• •• rs •·•. YES •• ·;~~~Hh~·.. I 
• •o.a• •<---•- O?(!) • A~rn· .. • .----•. OP. A .• I 

• •. • • I *· F'JNC':IO~ • * I 

: ................ : •· •..• -· I •· •.•• ·• 1 
I * NO I • ~C I 
I I I I I 

'1 I l I I 
I
I ~ I i I YES 

.•. 1oa109 .•. 03112 .l. 
I .• 02 •••• I .• !:'" •••• ..'ls··. 
I • • IS •. SO I • * IS O? •. NO .• !S OP *· 
I ·- OP (Tl •o:.• .•-----, I •. or LOP (T) A .•---->•. 01' ~OP (T) ~ .• 

t • · •. . • . ..!.. I *· •· • .. • * *· •. • • · * 
I • •• • •305• I • • • •• • I ; YES •.3~· l "7°YFS • so 

l I • I I 
l
j I l i 

v I ·*· 
I :·•••<:.<• ... ••••••: l ~o • • • • ~~s o:· •. •. 
I :ciiA!iGfA~gJT> TO: .---•. or EOP(T) A •• 

I
I : : I •. •. + ..... 

***************** I *· . * I 1
1 

I * YES 
I I I 
I I I I 
1.- >I I ~<--

ca1111 v 1oa111 .•. 
*****?2********** I f4 *· 
:rusn r::ow~ SIGN : I •• ·• • .•. YFS • • 

: TO ~g~ m AN;) : I •.• ~i i~mH, ~.-·-->: BS : 

• * I *· . • •••• 
***************** I •. • * 

I I ~ NO 

~ >I 

=~:;: 09108 i 
* * :~• !****GU*********! 

*PUSH L'OWN SIG~ * 
: TO LOP(T) : . . ................. 

.. L 
•305• • .s;• . 

Section 8: Flowcharts 

PAGE 304 

519 



Chart EP. Common Expression Usage Count (CSX) -- CEKOB (Page 3 of 3) 

***** • *305• * * 

·-:~· :!m 
t A 

·*· oa120 .1.oPEiiATOR Oill 10 
B2 *· * **B3******* * • * Bii *· *· 

• *. ~~~~lHv~· *· NO * T= LEFT * • * BRANCH *· RESIDUE 
~------>*.OR 'EXAllINEO'.*--->* LINK *--->*. ON TREE .•---, 

*· ·* * * A •.ENTRY ID ·* I 

I 

I 
I 

I 
I 

I 
l 

I 

•· •..• ·• ••••••••••• I •· •..• ·• I 
* YES I * CSX I 

omo T I .I. I 
... ••c2•••••••. I C4 •. I 
• I ·* *· * T=RIGHT * I YES ·* OP(T~= *· 

•• LINK *. I , •••• COLN •• ·* I 
• ••••••••••• • t •· •. .. • · • r I I * NO I 

I 11 I I 
D2) .• _ 11 DI!.!.*. I 

.• ·~:~~Hhi· •. No I I .• ·* IS *· •. YEs4 
·-2~ 'EXUINE?~·*'------------~ I •· •. c8m±h .• ··-1 

*· .• I *· ·* I 
*·.·;Es I *·.·;o I 

J 
1

1

1 

oom .I. I 
E2 *· Ell *· 

No •• •.* If ~g~E··... j .:··:0g~~G; ~-*:•~>! F'2: 
1. ::::: ·-;-:;:_.- I ·-·-·:(:-· . ····. 
I : .:~.:->I I 

OB140 i 08127 ~ 
* *~&~:~:;~** * !****P4*********! 

* USAGE COUNT * * NAllE TABLE * * OF THE CSX BY * * ENTRY = TYPE * 
* * ONE * * : : 

*********** ••••••••••••••••• 

'---->I 
08170 ! 

* **G2******* * 

I 
.! .. 

* * 
: B2 : 

* llARK NODE * 
* * 'EXAllINED' * * I ·······,*···** 

I t 
oa100 I ·*· 

**Hl******* H2 *· * • ·* •. 
* * NO • * BLINK = *· 

*• I= BLINK **<---*·*· 0 ·*·* 

* * •• .. * * •••••••••• *· .• 
* YES 

I 
****J2********* * • 

: EXIT : ............... 

520 

PAGE 305 



Chart EQ. Real Plus Generator (RPLUS) -- CEKMC (Page 1 of 3) 

CEK l!C 1 R.iiLUS 

*••••A 1 ••••••••• * 
CEKl!C * 

I 
t K::Y 

•••••31••········ 
:::~~:! ____ ~~~~2: 

* . 
* * ................. 

l!C101 .•. llC109 ·*· 
63 *· BU *· 

• *DESIRED•. • * LEFT *· 
.• SIGN *· YES • * OPEPAND *· NO * * 

.-->*. NEGATIVE • *--->*.SIGN NEGATIVE.*-->* 03 * 
J *· •. ? • • • • •... ? • *. * • • 
I *· . * *· . * 

I 
I * NO * Yl''S 

I I I 

I I 
.!. ! J MC110 i 

C1 •.. I C3 *· *****CU********** 
.• 0; m~: :·._YES I .• ··o~mNo*· •• YES : Am;;~Im2~p: 

•.NEITHE?. IN A ·*'------------~ •.SIGN NEGATIVE.•--->* LEFT OP SIGN * 
*. REG. • * *· ? • * *AOP=ROP BOP= LOP* 

•. • • •. .• • * *· ... • • •. * ••••••••••••••••• 
* NO * NO 

I • * I 1 : D3 :->I 
• •. 11c102*** ~ 

Dl •.. *****D3********** *****D4********** 
.• e;; ~m: :· .. HS : A~~~N:Erieg~ : :cmA~ELtW 11 

·: 
* i!IGRT OP SIGN "-->*OPND (AOJ) EhfT * *·~~Fl m~· ~~-*---l OP LOP BOP ROP* ( P I s6T 

*· ·* ***** :A = = • : ~~ lb ~1 AOgE: 

·- .. • •307• ••••••••••••••••• ··········'······ * NO * 82* I 
I " * "*** I 

I * !3 ~~· •->I 
t * * I 

• *· llC106 i 
E1 *· lilGH'I OPE?AND *****EU********** 

• * *· Iii A liEGISTER * CALL llEllAC * 
• * Sf AT US *· * ~BOP!, OPMD * 

*· .~' OP?:RAND~ •• *---l * B~~O~) 7nIT :. 
•. .. . . .... 

•. • • *307• ................. . 
*BOTH OPE!lANDS* 83• I 
I IN !iEGIS'I .t:iiS * * I 

.. !.. * vi 
•301• 
*•B~* F4·*·•. 

• .• *· 
NO • * TREE *· 

1*· TOP ·* 

I ·· .......... ·* 
* YES 

I 1 
I ·*· 
I cq * *****GS********** 

·* 'IF' ·*. * * • * FLAG UP *· YES *SET OP = CE OR * 

I *· (WORK+12= • *---->* CD * 
*· X

1
01

1
) ·* * * •. ·* . * • 

J •. .. * ••••••••••••••••• 
I r KO 
L-----.)1 

I 

! 
*****H4********** 
* IF AOP SIGN= * 

!o~~tESJ~ll1D~!!fF! 
*NOT, SET OP=SE * * Of. SD. * ................. 

I<.--
~ 

•••••J4********** 
:cn;sfi~50\m : 
* (ASllG R~~ WITH * 
: AO? SIGN) • : ...•............. 

I 
* ****K4********* * 
: RF.TURN : ............... 

PAGE 306 

Section 8: Flowcharts 521 



Chart EQ . Real Plus Generator (RPLUS) -- CEKMC <Page 2 of 3) 

..... 
•307• 
•.a~· . 

I 

. .... 
•307• 
• .ai• . 

llC..:01 i I 
!IC301 ~ 

**** *B 2* ****** *** *AOPl=LOP SIGN. * 
•••••83•••······· 
*AOP 1 =ROP SIGN. * 
•AOP2=LOP SIGN. • 
*AOP=ROP. BO>? = • 
* LO;;>. 111 = ROP * 

*AOP2=ROP SIGN. * 
•AOl'=LOP. BOP = * 
• ROP. 111 = LOP * 
* REG. * ................. : ..... ~~: ....... : 

I 
I< 

l!C202 ! -----------' 
:•••*C 2·········: 
: A~J~nA~~PNo : 
: PROTEC'IIOll : .................. 

l .•. 
02 •• 

.. • *· 
YES • * AOP *· 

r-*· SIGN = BOP • * 

I 
*• .~IG!I ? • *. * 

• .. • 
* NO 

I 
.I. 

E2 *• -· .. 
NO ·* TREE *· 

I *· 'IOP ? ·* •. .• 
•. -· •. ·* * YES 

l 
·*• OPNP 

f'2 ·- *****f' J••········ ·* *· *CEK11111 3BH1• 
• * FLAG DP *• YES •---------------• 

•. ? .•--->• * *· • * * AOP * •. . . . . •. . . . ............... . 
* NO I 

,__ ____ I I •306• 

>1 '-->: E\* 
i .... 

MC190 . *· RSLT 
G2 *· *****G3********** ·* •. *CEKllYl 383A1* . * GLBFLG *· NO •---------------• *· DP ? • *--->* * 

*· . * * AOP .. .. . . .. -. . ............... . 
* YES 

l 
. *· 

H2 *· . . •. . * l!AJOS •. YES 

.. L 
•306• 
* .,E~• . 

*·*·OPERATOR • •. •---. 

•. -· ..... *· . • •306• 
* NO * E4* 
I • • 
I • 

1 SELFR INSOT 
•••••J 2••········ •••••J 3••········ 
:~;~~~!----~~~~!: ::;~~!! ____ ~~Z~!: 
* *--->•GENERATE LER OR• 
: RGR1 : : LOii RGR1,6 : ................. . ............... . 

522 

. .... 
•307• 
* 84* 
* * . 
I 

llC401 ! 
:****B4*********! 
•R1 =LOP. R2=ROP * 
: REG : 

• * . ............... . 
I 

1 SLPOS 
*****C4********** 
*CEKllF1 368A 1 * ·---------------· : sm ~gDme : 
• * ................. 

l 
·*· 

• • 011 •. •. :••••os•••••••••: 
·* TEST •. SDB • • 

•. llHETHER ADD • •--->* SP.T OP = SD!! • 
*· Oli SDI! ·* * * •. .. . . •. . * ••••••••••••••••• 

* ADD 

I :••••!'CJ••·······: 
* • 
: SET OP = ADR : 

* * ................. 
j,_. 

·*· ·* Fii *· *· !****F5•********: 

.~ REG = *· YES *SET AOP = LOP, * 
*· R 1 *--->• BOP = ROP .. .• . •. .• . . • .. • ................ . 

I. 110 •• ! .. 
•308• 

:•• **G4* •*******: * •: ! * 

: mriMJ6~~- : 
: BOP= LOP : . ............... . 

! ..... 
•308• 
* .,B!* 

* 

PAGE 307 



Chart EQ. Real Plus Generator (RPLUS) -- CEKMC (Page 3 of 3) 

..... 
•30ti• 
•.a!* . 

I 
! 

!IC~06 • *· 
81 •. 

·* *· • * Glill'LG *· NC * * 
• ..... UP ? ... *-->: F3 : .. 

*· .• 
* YES 

i 
• * • t!C<i60 • •. • •. 

C 1 * C2 *· C3 •. . . •.. . . •. . . • . 
• * tl,\JO~ *· YES • * liGR1 = *· NO • * OP-CODE *• NO 
·-.~FEc;,Aroo ?_.-*---->•..... 6 ? -·--->•. = SOR ? ·*1 

• .• •.. _.-· •·•. .•·• I 
•. . • • .... • *· - • * SO * YES * YES I 

! I I I 
~ I I 

• •. !IC<i 54 • •• ~ I 
D 1 *· 02 *· •****•03**********• 

.• *· - * *· • • BOT ii *· NO • * liGii 1 = *· NO V * COl!PLEl!ENT I 
•. H<.GS=6 ? -*---->•. 6 ? ··1 ·. l!CSIGN I •.. . . •.. "'. 

•.. "'* *· .. • • * I 
*· . • • ... * I ••••••••••••••••• I ~ YES 7 YES 1 1 

I I I I< 

** ***E 1*!*;;~~~** *****E2*!******** 1
1 l!C<i~~***E3*!******** 

*CEK!l.,;1 36812• * * * * 
·---------------· • INI:Ol\CHANGE • I . INTERCHANGE * * * * Ii.Gill AND RGH2 * * iiGR1 AllD RGR2 * 
: i<GR1 : : AOP AND ilOP : : AOP AND BOP : **** 
••••••••••••••••• .................. .................. • * 

I
I ! I • ••••• I : .:~.: 

I I • F3 *->I I 
~ I • * I ' . •. . L l!IC46S··· ~ OPNO llC<i80 • *. 

Fl *• F2 *· *****F3********** F4 *· 
·* *· ·* *· *CEKl!W1 381A1* ·* *· • * ~CSIGli= *· NO • * OP-CODE *· NO •---------------• • * TYPE *· NO * * 

*· OESliiEO .•--i *· = SOR ? .•--->* * r>•. RFAL *'I .•-->* f!S * 
•. SIGN ? • • *· .• A * BOP * I *· •• • * 

*· •. . • . • •. •.. . • .. • I : ••••••••••••••• : I *· •. . • . • • ••• r YES • y ES 1 ,
1 1 r YES 

l I I I I I I 
I I I I I I ~ 

:•**•G1•!·······: I :·•••G.2•!*******! I I I .. Gii. *· •. *· :••••GS••·······: 

• I • CO!!FL:C:llEllT * I I I • • OP = *· YES • * 
LER/LDR : I • l!CSIGll *--' I *· ADR .•---->• SET OP = AFR • 

: • l •. .• : * ········i········ II .................. '1 I ..... r. =~. ::::::·T······= 
I I I I * HS •->I 
I - v I I • * 

.'!C<153A ~ INSOT i .•. I V **** i INSOT 
*****Hl*********• ***•*H2********** fi3 *• I *****P.lt********** *****HS********** 
*CfKNI1 397A1* * * ·* *· I * * *CEK!II1 397A1* 
:--;;iiiiiii-i---:<---=CO!l~rni~~D~1G11: !"0

••• pu~ uP *·. l : sET op= SER : ___ >:---------------: 
: liGii1,6 : : : 

0

•... • .•·*· 

1

• : : : OP R1,R2 : 
••••••••••••••••• ••••••••••••••••• *· . * ••••••••••••••••• • •••••••••••••••• 

. L li"' 1 I 
: F<i : I OPHD I ! ASF" 

=~~~;~i****~~~:~: :****JS*********! 

:.-------10--P------=.--> I •-CEKl!01- ASSIGN• 
: R1 TO RESULT : 

* * I * * I ................. I ·······T······· 
["!2***K3***~;~;*** l V 

:~:~~!!----~~~~!! * .. **KS••••••u• * 
>* *-- * RETURN * 
* AOP * * * . . .............. . ................. 

Section 8: Flowcharts 

PAGE 308 

523 



Chart ER. Real Multiply Generator CRMUL) -- CEKMB (Page 1 of 2) 

CEKllB1 RllUL 

*****A 1 ********* * 
EllTEll : ............... 

I 
•••••B1 ********** *CEKOC1 377A1* ·---------------· * • 
* * * * ................. 

I . •. 
C1 *· 

.•BRANCH *· 
• * ON STATUS *· 

*· OF • * 
*·OPERANDS • * 

*· " • .... 
: ••••••••• 309 03 

: ••••••••• 309 A3 

: ••••••••• 309 A4 

: ••••••••• 309 F1 

***** •309• 
* P1* 
* * . 

I 

116400 i 
*****Fl********** 
* R1=LEPT REG * 
" l<2=RIGHT REG * 

:cmT5~¥8~ JW: 
* • ................. 

I 

1 
*****G 1********** 
mp~m gb~~~5p: 
:1 ~1 ~gh~~Im : 
* =RuP BOP=LOP * ................. 

524 

! 
***** *310* 
" B1* * • 

* 

***** •309* 
* A3* 
* • • * 

118200 ! llB300 ! 
*****A3********** *****A4********** 
* ~EG=LEPT OP. * * REG=PIGHT OP. * 
*CALL SLCllE. SET* *CALL SLONE. SET* 
* RESULT SIGll. * * RESULT SIG!I. * 
*AOP=LOP BOP=ROP* *AOP=ROP BOP=LOP* . . . . ................. . ............... . 

j, ___ __,· 
llB205 .•. 

B3 *· ·* •. 

< .. ::~'.:;; .. :=! 
.. ,,, I.,., -·· 

*****C3********** Cll *· 
*CEKllY1 383A1* ·* *· 
•---------------• YES • * "AJOR *· 

I * " I*· OPERATOR ? •• 
* AOP * *· • * . . •. .• 

I 
................. *· .• 

* 110 
!~~;. I 

NEITHEli Ill REGISTERS I : 03
• ·1 I I 

LEFT OPERAllD Ill A REGISTER llB100** ! SELFR 
*****D3********** *****Dll********** 

RIGHT OPERAND IB A REGISTER * CALL SELFR * *CEl\'.llQ1 368A2* 

BO'IH IN REGISTERS !J~Egbe!~iG~p~p: :---------------: 

:c~~f • mo~IJi~L: : l!BRG2 : ········r .. ···· ·······T······· 
. l ... 

*****E3********** E4 *· 
*IP LEFT OP llOT * ·* *· 
*SEL, SWITCH AOP* • * llBSIGll *· 110 
•BOP. CALL llEllAC* *· = DESIRED • 1 
: EJW1 r~m: : ·-.:IGll 

1
•••• I •••...••..••••.•• I ·-r;,, I 

1 ... i, .... J ....... j ·····.F~.!........ I L :ms1mt;mp: : : 
>:J~o:Vi~G~iow:< A : OP = LER/LDR : . . I . . ................. . ............... . 
.... I I I 
!38l: •->I I I 

llB 1 ;9** ~ AS.FR I ! IllSOT 
*****Gl********** *****G4********** 
* * I *CEKRI1 397A1* 
:-cm~JrEAs~~G11: L-:--"Giiiiiri-Ci?--: 
: RESULT : : m~a·=11m~2 : ··········*······ ····*···:········ I 
..... J....... : ...... .!. ...... : J 

* * *OP = LCER/LCDR * 
* RETURN * * llBSIGll = *< 
* * * DESIRED SIG! * ............... . . ................• 

PAGE 309 



Chart ER • Real Multiply Generator (RMUL) -- CEKMB (Page 2 of 2) 

..... 
•310• 
• .ai• . 
i 

1181108 • *· 
B1 *· . . • . 

• * GLBFLG *· NO * * 
•. UP ? • *-->* E4 * *· . • • • •. .• ·- .. i rn 

·*· llB408F ·*· llB408G 
Cl *· C3 *· *****C4********** . * *· • * *· *INTERCHANGE AOP* 

.:·OPE~!m ? ·: ... Y_E_s _____________ >•:* ~~~ P1 *:._No ___ >: m ~m RGR1 : 

*· ·* *· ·* * llBREG = RGR1 * •. . . •. . . . . ·- . . •. . . . ............... . i" j"' I 
. •. . !. llBll08H ! OPND 

i>l *· 03 *· *****D4********** 
·* •. ·* *· *CEK!lll1 381A1* 

• * AOP IN *· NO • * BOP IN *· NO *·--------------• 
*· ... J:(EG 6 ? _,..•--------------. *· ... REG 6 1 ••• •--->: BOP :---. 

•. ·* •. . • * * •.. • • •. . * ••••••••••••••••• 
* YES * YES 

i L • ****. 

>* G4 * • * .... . •. 
E 1 *· *****E2********** 

• * *· *INTERCHANGE AOP* 

. ... 
* • 
: E4 : 

···· l 110408! OPND 
*****E4********** 

•= • ~~~ ~Ii? *:~>= AND B~Zf> RGR1 =-----'---------
=~~~~!! ____ ~~~~!: 
* • 

*· • * *'1GR2 ilGR2* 
•. .• • = 6 • ·- . . . ............... . 

* YES 

I 
llB408A l SELPR 

*****Fl********** 
=~~~~~~----~~~~~= 

* * llBilEG : ................. 
l .•. 

G1 *· .• *· 
• * llBSIGN *· *· = DESIRED • *'-------1 *· SIGll ? • * 

···-r··· 1· 

l!Bll08C 1 
:****Hl*********! !****H2*********! 
:.. OP=LER/LDR :op ~s~ia:1:coa : 

* DESIRED SIGN * • * • • ................. . ............... . 
""'" l<-I-NS_O_T _______ __. 

*****J1•••······· 
:~=~~~~----~!Z~!: 

: BOP : . ............... . 
I 

'-----:>' 

llB409 i RSLT 
*****F4********** 
*CEKllY1 383A 1* ·---------------· 
* * * AOP * * • .................. 
::::::-,1 

1104091 V INSOT 
*****G4********** 
*CEKNI1 397A 1• 

,->!;;i:iii:iii;;i:-iiiii-Ci"R!<_J 
I * llDR R1,R2 * 
I * • I ********I******** 

I ....... I =::i= 

I 
* GElll.EBATB OP *-------------------------' 
*llBREG, 6 • .itGR1=* 

:mm.~m.: .. ~: 

Section 8: Flowcharts 

PAGE 310 

525 



Chart ES. Real Divide Generator (RDIV) -- CEKMA (Page 1 of 2) 

CEKllA 1 ROIV 

*****A 1********* * 
: ENTEli. : ............... 

l 
*****Bl********** 
* AOP=LEli'T OP * 
*AODR. BOP=RIGHT* 
* OP ADOR. CALL * 
: KEY. : ................. 

1 
. *· 

Cl *· 
• *BliANCH *· • * 011 STATUS *· 

*· OF ·* •.OPERANDS ·* •. .• • .... 
: ••••••••• 311 04 

: ••••••••• 311 BS 

: ••••••••• 311 05 

: ••••••••• 311 El 

.... 
•311• : u.•1 .... 

!1.1400 
:****El*********: 
*R1=LE.l'T OP REG * 
*R2=RIGHT OP REG* 
*SET RESULT SIGI* 
* • ................. 

526 

! ..... 
*312* 
• 84* 
* • 
* 

NEITHER IN A REGISTER 

AOP IN A REGISTER 

BOP IN A REGISTER 

BOTH IN li.EGISTERS 

. .... 
•311* 
• .s~• 

* 

1111200 1 
*****BS********** 
* * *REG=LE.l'T OP REG* * CALL SLONE * 
*(RESULT SIGN) • * 
• * . ............... . 

1 ..... 
•312* 
• .ai• 

* ..... . .... 
•311* *311• •.o:• *•D~* 

* * 

llA 100 l 111300 ! 
*****D4********** *****DS********** 
:cA~iGSELng~y : *RZ=RIGRT OP REG• 

* (SIG~f, llEllAC • ! s~'hPUo~P 1 
: 

:..!:mt£~:: ... : :mmM~mi.: 

l l 
*****E4********** *****ES********** 
* ClLL EDIT * * SET llRllP(R2l. * 
: (AO[~· oPigr : •CALL llEllllC (AOP~. 
: dEG,lOP). : :

0
mP1(AOn§5¥

1 
: 

*** .. ************ :l~~{;2:~!'!~U.: 

Pii: *->! P~i: •->I .... . ... 
llA115 111315 ·*· 

*****Fii********** .I'S *· 

:8:~k :~:lc~g~~): • * ·* GLBPLG *· *· HO 
*JBoPl,n~6T PE* •. op 1 .• 
: R D REG,BO I : *·•. .•·* 
••••••••••••••••• *· . * 

I i YES 

llA118 AS.l'B 111318 ! IlfSOT 
*****G4********** *****GS********** 
* * *CEKHI 1 39711* 
•-CEl\:1101- lSSIGH* •---------·-----• 
* REG TO lllJOR *<---* * 
: OPERATOR. : :on OB DDR R,12: ................. . ........•.•..... 
II 

A 

KP1RS OPND 
*****RS* ******** ****Rli********* *CEK!llf 1 381A1* 

: RBTUBM : :---------------:<_j 
* * * BOP * ............... . . .........•....... 

PAGE 311 



Chart ES. Real Divide Generator (RDIV) -- CEKMA (Page 2 of 2) 

CEKMP1 EHDLP 

••••12•········ . . 
* EllTER * . . ............... 

I :••••82••·······: 
* POP OP LOOP * 
!TlBLB ORE LEVEL: . . ~ ..... ................. 

I . •. ·*· 
C2 *· CJ *· -· •. .. .. ·* *· !'ES .• LEYEL 0 *· 10 *·•. BCSY=6 .•·*--->•... LOOP •• ··~ 

•. ·* •. .• ••••• 
•. •• •. •• •289• .
1 

HO •• L:ES • •:~· 

•292• 
• 12• 

•••••02•••······· •• . . . 
•SET OP FBOCESS • 
•PIBST RECURSIVE• . . . . ................. 

.. , I 
*****E2********** 
• llAICE EllTBY II • * TREE AREA * 
*lCCORDIIG TO XD• * OP RECURSIYI! • . . ................. 

I 
.•. SELSR P2 *· •••••Pl•••••••••• ·* *· •CEKIG1 38412• 

• • •• 110 ·---------------· 
•. RECURSIVE • *->• • 

•. Ill REG .• • • •. .. . . ·r.. -·····r:~:~·· 
•••••G2•••••••••• •••••Gl•••••••••• * * •CEKllY1 361&2• . . ·--------------· * R = REG lSGI • • • . . . . . . . . ········i········ ········1········· ..... 

•290• 
* B1• USOT • • •••••HJ•••••••••• 

• •CBKllX1 39711• ·--------------· . . . . . . ................. 
l ..... 

•290• 
• 81• 
* • • 

PAGE 312 

section 8: Flowcharts 527 



Chart ET. Integer Plus Generator (IPLUS) -- CEKMF 

CEKl!Fl I PLUS MF042 • *· 
*****A3********** Al.I. *· *****~5********** 

.****Al*********• : (~~~~ ~~k¥Pro: .• ··LOAD OR·· •• LOAD :CALL ME!'IAC AND: 
: ENTE& : r->* DOl~ SELSR ·--->•. LA ·*---->•EDIT FOR LOAD •• 

*************** I : (SE cT REG) : • •. • • • :·sET oP=L oR LH : 

I
I I ..........•...... .. r. ~A ········i········ 
V

II I I 

.*.KEY l!F051 V EDIT 1!1'045 V 
Bl *· *****BU********** *****85********** I

I I ! 
CEKOCl 377A1 * * * CALL INSOT (L * 

BOTH • •-----------•. NCNE * -CEKOQ 1- !'OR* * OR LH OR LAI, * 

1*· ~~i~nA omA~~· : LA : : gm l6mt =1 I *· ·* * • * OPFRAND) • 

1 • ... ·~NE ········r········ ················· 
I I I I 

l

ll I I I 
1!1'002 SLONE ). l'!F006 PSLT I 

••••*C3********** c4 •. •••••cs•••••••••• 1 I I :::~~~! ____ ~?~~!: .• ·* P!OVE *· *· NO :::~~!! ____ ~~~~!: I 
I >* FIND OUT llHAT * r->*. NEEDED .*---->* * I 
I : TO DO : I •·•. .•·• : FOR REGISTP.R : I 
I ·······r...... 1 ·r,, ........ F...... 1 
I .!. IMF036 ~ II I DJ *. *****D4********** 
I • * *· * CALL SELSR * 

I u.:· Li0~~Eg~D ·:.~ : mL5~;L~Egk· : 

1 •·•. .•·• :Lm ~m m~T: 1 

1111

11 II •. . . ·····'····'······ I r LOAD 
1 

1

1 

P!FO~i***E2*:******** 1' "'2),,.,J,,,,,., 
* CALL SELSR * * CALL P!E!IAC * 
* (SELECT REG!. • II : (AAi~~6er?1§ET : 
:E~H n~gTL~bR : *OP=A OR S l'ROll * 
* LA * * OP INFO * ················· I ················· 

111

1 '"il ••• ,,.:........ • •••• ,,.!. ...... . 
* CALL SELS R * * * 

: ~~mcT A~~~~s : : gEpj5Gf~ ~~ : 
*OP) , EDlT (FOR * * SH SECTION * 
* LOAD) * * * ••••• * ** •••• ** **. • ••••••••• ** ****. 

I I 

I 111'025 >l INSOT !IF014 1 INSOT 
I *****G1********** *****G3********** *****G4********** I :::~~!! ____ ~~~~!: :::~!!~!----~~?~!: :::~~~!----~~~~~: 
L-->* FIND OUT ~HAT * * * * * 

* TO DO * * L OR LH OR LA * *A, S, AH, OR SH• 
* • * * * • ***************** ••••••••••••••••• • •••••••••••••••• 

'"" J '"" ""' l [ ,,,, Hl *· *****H2********** *****H3********** *****H4********** 
• * *· * CALL SELSR * * CALL OPllD !OP * *CEKP!ll1 381A 1* 

• * P!OVE *· YES * 1s ELECT REG~. * *LOADED OR P!OVED* •---------------• 
•. •. NEEDED ••• ·--->: NSO~df R 0 :--->:s~=E~AI~ ~~sg~ :--->: Fogp~mr : 

* • • * * * * (AR OR SR) * * • •. .. * ••••••••••••••••• ••••••••••••••••• • •••••••••••••••• 
·~ I 

""" l '"" l .... •••••J ,.......... • •• ••JQ•••······· 
*CALL OPllD !FOB * *CEK11!11 391A1• 

:ps~Pl~~R 0f~6· • >:-sETOP-REsiii:i--: 

:.~:~~~:m.~::.: : .... :::~:: ..... : 

528 

I 
I 

1 
****K4********* . . 

* EXIT * * • ............... 

PAGE 313 



Chart .EU. Integer Multiply Generator <IMPLY) -- CEKME (Page 1 of 3) 

CEKllE 1 IllPLY 

*****A 1********* * 
: ENTER : ................ 

I 
1 

.•.KEY llE002 SLONE 
81 •.. *****li3********** 

BOTH ~~~~~~----~~~:~ GNE :~:~~~!----~~~~~= 

r-*. liHICli OPERAND."'-------------->* USE TO * 
*.IN A REG .• * DETEiillINE * 

*· .• * ACTION * *· . • • ••••••••••••• *** 
**"** * NONE I 
•316• I ,I • *: !* ' 

~ 
. *· • *· 

C3 *· C4 *· 
• * *· ·* *· *1 ·* TYPE OF *· 2** .* *· NO 

v---·-.~mmio= ••• •--->• .•. ZFP.o •• ··--.-.v ••• 
***** •. ·* *· .• •315• *· .• •. ·* *315* 
* Bl* * YES * YES **Bl* 

* .: I I • 
l v 
I :;;;: 

I l * GS* 

I I * *. I 

I I 
llE075 i SELOP I II E05ll • *· 

•••••El********** I E4 •. *****E5********** 
*CEKN01 366A1* .• *· * CALL FLUSH * 
•---------------* I • * NEED TO *· NO * ~EVF!I PAIP * 
: oM~~R~~NE : >*.•. llOV~ .•·*--->:!IE (~mktE~ULT: 
: .. ·:.!~i~~: ..... : *· •..• · * : •• ~~~:I.~2:~i •• : 

1 r YES 1 

1 I I 
• *· • *· llE063 ! !IE059 ! 

F1 *· F'2 *· *****F4********** *****F'S********** . * *· . * * • * II' !2 CALL * *CALL !IEllAC (X2 • * 
• * *1 OR •. YES • * POWER *· YES *SELSR (SEL REG).* *!!2f02~, EDIT~!'!)* 

• ... :o•Ea oF 2_.-•---->·-.~F 2 = lER~··*-v !sHo~o1§ErA~~c : 1>:s~rT11H: H ~of,! 
•· •..• ·• ··._ .• -· :m: :.um .. m .. H.: 1 :.~z:mMm .. : 

; NO r NO •• G~· 1 1 
I I • I I 
I I 11~066 v1 .1111,.061 v llE081 1 llE075 ~ llE078 w _ •••••G ,.......... •••••G2•········· •••••GJ•••······· •••••G4•••······· I •••••GS••········ 

* IF I2 CALL * *CALL SELSR (S!!:L * *CALI. INSOT (GEN• *IF COllPLEllENT * I * * 
*Si::LSi< (SEL REG).• *ilEGt~ l!E!IAC~X2j* * LOAD)• OPNO * * SET LCR. CALf. * t *CALL IHSOT (GEN* 

: ~h~~~§EP~tG : :a~~T l: Wd~ :--->: mc&omUNT : :mi~cJm ~&h:-->1 : c~m~ im1 : 
• PAIR * * SET TO LH * * * * OSAGE) * I * * 
.................. ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• l ••••••••••••••••• 

I I I I 
I I I ! 
i i I :;;;: 

•• H1·"···... :••••H2*********! •• H3···.... I · .. ~~· 
• * LA *· YES •SET UP 02, SET * YES .• OPERATION *· *1 II 

•. NEEDED • *--->* TO LA CALL r•· =POWER OF • *--._ *. - * * ED IT (I.A) *. 2 • * V •. .• • •. ·* ••••• 
•• .. • .................. •. . • •315• I 

* NO I ***** * * Gll* 
I I •315• • • I 
I l * F4• * 

llE087 ! llE083 •• * I 
*****Jl********** *****J2********** I 
* CAI.L * *CALL INSOT (GEN* _j 
*!IE!IAC (X2,B2,D2) * * L6LH OR LAIL * 
•Ei::ITlL) :>ET TO *-->* PND ~COUN·r *----------------------
: L. ~oih SET : : DO N) : 

!IE082 

................. . ............... . 

section 8: Flowcharts 

PAGE 314 

529 



Chart EU • Integer Multiply Generator (IMPLY) -- CEKME (Page 2 of 3) 

ME209 

..... 
•315• 
• .B!* . 
! POWER 2 

• •.OR *1 a 1 •. •••••s2•••••••••• . .. •.. . . 
. * LCAD *· YES * GET SELECTED * 

*· NEEDED? • *->*OPEaAND ADDRESS* 
•. • • * • 

*· .• • • *· .. * ••••••••••••••••• 
i NO ~ 
1<~~~~~~~~~~· 

!1E.215 i OPND •••••c1•••••••••• 
==~~~~2----~~2~2: 
* COUNT DOWN * 

llEOOS • •. 1'11'!027 c4 •. •••••cs•••••••••• 
• * *• *CALL SELSR (SEL * 

• * LOAD *· YES *REG) !IE!IAC JX2, * 
>•. *· NEEDED .•·*---->: ~~fD~h~DI~· : 

: OPERAND : ................. I •· •. v.

1
. :~ · :.u'*ml .i~.~:.: 

'·E019 I" ·*· !IE030 i l . •. 
01 ... . . •. 

. * *· NO •. •1 ·*'~~~~~~~~~~~~--' 

•. • * 
*· .• • •• * * YES 

1 
ME033 • *· !IE048 

El *· *****!2********** 
• * *· *CALL SELSRISEL * 

• * NEED TO *· YES *REG) t llEl!AC IX2,• 
*· LCAD .*->* B2,u2) f EDIT * 

*· *· • * • * : (L~~= hi Et1IF : •. . . . ............... . 
• MO I 
I I 

I ME051 ! 
I *****F2********** 

:tA~~ m?T omN: 

!I; 

* (COUii'.£ DOWN *---, 
* USAGE) * I 

: ................ : I 
I 
I . •. I 

G1 *· *****G2********** I 

*****D3********** D4 *· *****DS********** 
*CALL SELSR ISEL * • * *· *CALL INSET (Gl'll* 

:w~o~~MM~·:<--2.::.:* N~5~ETO ·:. : 1m~t m~ : 
: SET TO LCR : *· *· • * * : USAGE) : ·············•*** .. . . . ............... . I PH:-->1· !IO 

llE021 ~ ME6~~** RSLT 
•••••!3••········ •••••!ti••········ 
*CALL INSOT ~GEM* =~~~~!2----~~~~2: 
:LR (c~~~~· o8w:D : * TO SAVE AND • 
: USAGE) : : COUNT DOWN : ................. . ............... . 

I PH:._J 
I .... ' 

!IE008 ~ 

I 
:·~;=~~;;·;:~;;·: 
* A!IOUNT. CALL * 

'--------->* EDIT~SLL~' *<------~ 

: Ilf~~IF~f : ................. 
•••• I 
!3~': •->I 
•••• I 

!IEO 16 • "E003 

..... 
*315• 
* .,G~* . 
1 

*****Gb********** *****GS********** 
• * *· *CALL SELSR~SEL * \' 

.. :* N~6~ETO *:•.:.::..__>:R~~~L;E~E~ ToIF=---------- ! CRmM~A~l' ! :mf, snmse~R: 
>* PAIP USED, *<---*REG(, REG~(, O~ND* 

*· • * *LCR. CALL I!ISOT• 
*· .• *(LR,LCR), OP!ID* *· • • • •••••••••••••••• 

* NO 

'"" [ "" *****H 1********** 
=~~~~!~----~~~~2: 
*USE 'IO PROTECT 
:AND COUNT DOWll : ................. 

530 

=~~m~:~m~m: :.:~.::: ... ::: .. : 

l 
* ****H4•******** * 
: FXIT : ............... 

PAGE 315 



Chart EU. Integer Multiply Generator (IMPLY) -- CEKME (Page 3 of 3) PAGE 316 

..... 
•.Ho• 
• • ai• . 

I 
I 

~E093 i O?EilANDS IN A fiEGISTEil 
*****B1********** 
• CALL SLPOS * 
:AcugEmNf TO': :& •FRCll' INFO).: ................. 

I 
~ . •. 

•Cl • 

135 • • l?OllEii •. 

r*·•. C~C:~OA~D .• .. * 
i ·· •... ·· 

•••** * NO 
•315• I .. ~~· ! 

~E094 • *• llE099 
Dl *· *****02********** *****D3********** • * *· •IF •1 OR POllER • •S!!T La. IF Cl!PL* .:· NE~m? ·:~>:SE~~aihPktG).=--->= mo~~~i:/H;: 

•. .• *IF NOT, CALL * * LCR), OPND. * 
*. • * *S ELDR (2 t.EGS) • * * * . . ................. . ............... . 

7 NO I 

! ! 
•
El·*·•. r!E 1 !2***E~********** E3•*·•. 

•CEKl!Yl 3<13A1* •* *• 
NO .• •1 Oli •. *1 •---------------• YES .• POWER *· •1 

,--•. POllEii OF 2 -•--->*USE TO PROTECT* r•· .. Ol' 2 .•·*~ I •. •. . • . • :AND COU!IT DCiiN : • * ••••• 

l 
*· .• ••••••••••••••••• • • .•• · •315• 

* 2•* I ***** * NO * Gll* 
I I •315• I * • 

I I i * • F~• * I I ••••• • I 

I ~ OPNO :
3 J~: · ~ RSLT 

I *****?"1********** * * *****F3********** 
=~.:~~~2----~~2~2: * =~~~~~2----~~2~2: 

I : comiimN :---i. : 0~6wi0 • ~mr : 
I : ............... : :;~;: : .... ~~i~~=2 .... : 
1 ·.Er I 
I • I 
lllE112 ·*- llE333 l!E114 l INSOT 
I ·*Gl *·•. !**~:rt*;~;;~ .. •: *****G3********** 
LI . • SAllE •. NO * (EVEN REG) * =~~~!!2----~~?~!: 

>•. •p.mE&R~gT_ •• •--->: gg:~ s~~g~t : r>*USE TO GENERATE* 
•. • • • 'OP). • I : l!R : ·- i. ~ES ········i········ I ········r········ 

! i I =~;;: 
•••••Hl•••HH... I •.G:• 
::~~~!! ____ ~~~~~= . 
*llSE IO PiiOTECT * 
: EVEN P.EGIS'L'E!i : .................. 

I 
l<.----

llE336 ! RSLT •••••J1••········ 
*CEKllYl 383Al* ·---------------· 
*USE TO PROTECT *---------------' 
*AND COUNT DOWN * * TO REGIST.ER • ................. 

section 8: Flowcharts 531 



Chart EV. Integer Divide Generator <IDVDE) -- CEKMD PAGE 317 

CEKllDl IDVDE 

*****A 1 ********* * 
: ENTER : ................ 

I 
• *·KEY llD009 SLONE • *· 1!0010 • *· 

B 1 *· *****Bl********** 83 *· 84 *• *****B'i********** 

NONE :;~~~~----~22!~ ONE =~~~~~~----~2~~~= . ·· * *· *· YES • * • * llOVE *• *· NO :mL f'm~ mo: 

I
*. llllICH OPERAND.*--->* USE TO *--->*. DIVIDEND IN • *--->*. NEEDED .•--->*DOW~f. IP RJ NOT* 

•.IN A REG ·* *DETERllillE WHAT* •.REGISTER ·* A *· ·* *DIV,CALL !IEl'IAC * 
•. •• * TO DO * *· • * I *· ·* * & SET X2 B2 * •. . • •••• •• ••••••••••• ·- • • • • • * ••••••••••• , ••••• 

* BOTll * NO * YES I 

l I I I >l lllD069 ~ SELGD I 11!0054 ! SELDR llD012 • *· •••••c1•••••••••• •••••c2•••••••••• •••••cq.•••••••••• cs •. 
I *CEKNA 1 376A3* * * *CEKllH1 386A2* • * *· 

I 
•---------------• * SET UP TEST * •---------------* • * NEED *· NO 
* USE TO SEE IP *---->* CONDITIOllS * I . * USE TO SELECT * *· DIVISOR • *--, 
* DIVISIOll POS- * * * * REGISTER PAIR * *· LOAD ·* I 
* SIBLE * * * * * •• • • I I ................. ................. I •.••... T....... • .. -;,. I 

'"'ii •.. ,,.......... I ..... , .. !........ I ••••• ,J........ I 
L :c~~irs~~OEJFIND: I !Ih~RD~~iDm· : I :mr s~m{m~: I >*llEllAC~X2i8I~b2 * *REG. CALL llEllAC* •nsof !GEN LH~, * 

: FOR IV so ) : :~foE~,g2hsn : : AsAg~gmso : 

········c····· I ·······r······ i ;:;::;::i···i ..... J 
llD0118 ' SELDil ! llD027*** 

*****E1********•* *****E4********** *****ES********** 
*CEKNH1 386A2* *SET LR. IP CllPL* *CALL IRSOT(SRDA* 

:-iisi-io-siiici-: : SEMg¥·mL =--> : ~fi 3nPEIF ciir :< 
* REGISTER PAIR * * LR/LC~I L * *EDIT tnnf. CALL* : ............... : ~~~2JiH.~~=n.: : •• ~=~~IJ~'~n •• : 

J ""' I l 
F1 *· *****F2********** *****P'S********** 

• * *· * SET UP VALUE * *CALL OPllD ~Clf'\" * 
•= * NE~~ED *: ...:::__>:xh~2 E;~fL sgl~o: :Dmhma~r-: 

*· *· .• · * : (LA) : :sET x~6~~·1!S , : 
•.. . . ................. . ............... . 
; " I I 

..... ".!........ I ! 
:cA~t~~llA~JH• : 

1 
****GS********* 

• (LDl. s~f L. If'• I ! RETURM ! * I 2, SET LH * * * . . .............. . ········i········ I 
/<.~----------' 

110051 ~ • *· 
*****Hl********** H2 *· 
*CALL INSOT(GEH * ·* *· 
: 1ot:D 0 ~cML+ :_>.: • DI~~oE *: •-"0

------------------------' 
*DIVIDEND DOWN) * *· • * . . •. . . ................. ·- .. 

* YES 

t .... 
* * 
: ES : .... 

532 



Chart E~. Add by Load Address (LADDR) -- CEKOV (Page 1 of 2) 

!****C1*********! 

CEKOV 1 LAD DR 

* ****A2********* * 
" ENTER * .. .. 
*************** I 

l 
*****B2********** 
*LOP=LEFT OP LOC* 
* IWP=f.IGiiT OP " 
*LOC. SET X2, B2 * ! D2=0 : 

***************** 
I 

1 .•. 
C2 *· 

·* *· * * YES • * LOP A *· 
.--" il.2=CONSTANT *<---*· CONSTANT .• I : : ...... <4096 ..... 

I ****•************ *· ·* I i~ 
I I 

I ov 100 l KEY1 
I *****02********** I ::!~~~2----~~~~2: 
I .. LOP : 

I ***************** 
l I 

1"'22 ... ,,.......... ,). •. 
I :c~L~2;w;EJ:~ : •o ... ·\op IN •• •. 
I " (LOP~hfnIT *<---"· A REGISTER • " I : (LOPh;Lo~fT (L : *·.... _,.·" 
I ***************** *· . * 
I I .. YES 

I 1 l 
I :****F 1*********! !****P2*********: 

*IF f'IUIORY SIGN * * 

I ;~::~:!~:!:!::~:~ : .... :::::.::~.,..; 
I I !' 

>I t 

.... . .. 
: 93 : .... 
! .... 

·*B3 *·•. !****B4*********! 
• * ROP IN *· YES * * 

•. A REGISTER • *--->* R=FEGISTER 
*· • • *- . * • * *· . * ••••••••••••••••• 

* NO I 

I ,I I 
OVJSO ~ .!. 

*****C3********** C4 *· !****Ci)*********: 
=~"~tTi~t:Fmxc: ... ·• REG. •• ... YES • * 
* (TOP) , EDIT * *· SIGN = TREE • *---->* B2=R 

:.::~:J!~H:~: .... : *· ... :~G~.. .. . .. L .............. .. 
I * NO 

I I 
! OV260 .t OV300 

I **** I •319• '->: B2,. * 

*****03********** D4 * *****D5********** 
*IF !IEl!ORY SIGN * • * *· * * 
*" TREESIGN~CALL* ·* R *· YES *Cll.LL SELSR(ANY * 
:m~T1m1a·¥b·: •· .. j~mm ... ··--->:R~~g:rB~~hg~ : 
* ROP) B2=R * *· • * * * ••••••••••••••••• *· . * ••••••••••••••••• 

OVl 10 

I * NO I 

,.,.!,.,. I OV290 vi CEK NT 1 ! 3 ~~! oms ~ 
* * *****E4********** *****ES********** 

* * CHANGE ALL * *CEK!IIl 397A 1* 

. •. 
G3 *· 

*QUANTITY SIGNS * •---------------* 
* IN llRI! TBL. *---->* * 
* ENTRY. SET * * LCR P1,R2 * 
: •• !!,~:,.~~:? •• : : ••••••••••••••• : 

OV1'10 
*****G4********** I G2·*• *· 

• * *- • • *· * * 
I • * REG. *· NO .• R *· YES *CALL SELSR (ANY * 

1

1
1 

·-.~IG~1GPEE_ ... •--->•-... mm~i ... ··--->: 51 iimJ~~~· : 
*· ·* *· ·* * * 

1

1 ·r.. . .. ,, .. r ········i, ........... .. 

: : :Qomm ~~~Ns : I 

I 
*****H2********** *****H3********** 

X2=R * * IN llRll TABLE * I 
.. *ENTRY. SET R 1. .. I : ............... : : ... :~,.~~=~ .... : 

I J l<--
OV250 i KEY1 OVl 35 i IN SOT 

*****J2********** *****J3•••······· 
*CEKOlil 378A1* *CEKNI1 397A1* ·---------------· ·---------------· • •<---· .. 
: ROP : : LCR R1,R2 : 

••••••• *** ** •• *** ••••••••••••••••• 

. L .. . 
* B3 * .. .. .... 

Section 8: Flowcharts 

PAGE 318 

533 



Chart EW. Add by Load Address (LADDR) -- CEKOV (Page 2 of 2) 

..... 
•319• •.a;• 

* 
t 

OV400 ·*· 
•••••81********** 82 *· 
• * • *X2=0 OR•. 

* NO • * X2 *· 
ill=X2 •<---*· St:LECTABLE .• . •. .• . . •. . . ................. • ... 

534 

I 7 YES 

I OV410 • !. OV420 • •. 
C2 *· CJ *· *****C4********** 

I • * •. • * *· * CALL RSLT * 
I ·* B2 *·YES .• 82 *·NO * (ROPI, SET * 
I *· SELECTAi:ILE -*--->•. GLOBALLY • *--->* R1=B2. CALL •-1 I •. . * •. ASSIGllED .• * OPllI' (LOP) * 

I *· -· •. . • • • • .. • . • .. • ................ . 
* NO * YES 

I .... .,J........ omo ,) .• _ o"l2•••oo•••••••••• 

I : : . * • * X2=0 OR*·*· NO :CALL RSLT (LOP) : ~ 
Rl=B2 *· X2 GLOBALLY .•--->*SET R1=X2. CALL•--, 

I ········1········· ·- !~:'.:'.;;;.. : .. ::::.::::~ ... : I 
II 0

'"
5 0"ll .... J.llm.. I !****El***•*****! *CEKNG1 38qA2* 

*CALL OPllD (LOP) •* •---------------• 
------->: OPND (ROPI :<---: ANY R Rl=R : . . . . ................. . ............... . 

o•SOO !<--------------------------' 
*****F2********** * CALL IllSOT (LA * 
*R1!;D2(X2!;B2~L· * ! M~d1T61a11 ! ................. 

I 
t 

* ****G2********* * 
: RETURN : ............... 

PAGE 319 



Chart EX. Complex Plus Generator CCPLUS) -- CEKMG (Page 1 of 3) PAGE 320 

CEKllG1 CPL US 

*•••*A 1••••••••• * 
: ENTER : ............... 

I . •. 
Bl *· . . .. 

110 ·* BOtfl •. 

r•. CPEiiAllDS ·* 
•. CO!IPLEX • * .. . . • .. • 

***** * YES 
•3.21• 
•.a!• . L. 

*****Cl********** 
*C:EKOC1 377A 1* ·---------------· * • • * .. . ................. 

j 
·*· 01 •. 

• * iiHICH *· 
• *0.i?EiiAllD IN •. 

*· A l<EGISTER • * 
*· (RIGHT?) • * .. . . 

• .. ·. 
: ••• llONE •• J;<O C.2 

: ••• LEFT •• 320 F2 

: ••• YES ••• J;<O G2 

: ••• BOTH •• no ii1 

..... 
•320• 
* *Hl* . 

I 

llG~OO ! 
*****Hl********** *AOP = LOP ;;op =• 
*liOl' CALL SLfO 1 S* : <m i~s&r~1 - : : .. m:,. ~~m~~.: 

I 
I 

..... 
•320• 
* .c~• 

* I 

i SELOP •••••c2•••••••••• 
=~.::~~~!----~~~~!: 
*SELE-Ct BEST TO * 
*LOAD.SE'I RESULT* 

:.mMmm •• : 

I 
i 

*****02********** *****D3********** 
:us~~P1~~!:fgp0: :m5T:r:NTJt

0 ib·! 
*BOP=ROP. IF llOT* r>*R:i!GE&JP~,INSOT * 

:..::Mmi~: .. : 
1 

ut~n~1~~m.: 
I I .... I 
I : E3 =->1 I I •••••• 

llG 12~***E2•!••••••••_J !IG 1 !2**"E3**"*"***** 
*SET llGOPER CALL• * • 
:sm~m~ t~pl: :mt zmc~ggP): 
*CALL llEllAC(AOP). *CALL EDIT !aopl • 
*CALL OPllD (AOP) * * • ................. . ............... . .... 
•320• I :.:~··1 

!IG200 ·*· llG115 
!****P2*****••••: 
* SET AOl?=LOP * 
:aoe=m :5:=LoP:l . . ................. 
!jig· •->t . . ..... 

!IG300 
*****G2***•****** • * 
• SET AOP=iOP * 
*BOP=LOP liEG=iOG* 
• BEG 110 * .. . ................. 

'"" !< .... 
*****H2********** •CEKllY1 383A1* 

F3 *· *"***Pli**"******" 

-•·* "·•. 110 ! 8tL~oIP~~~~! ! 
• ••• llGOPER=O •• ·--->: I~mJs~Ra;D· : 

• ·•. . • · • : •• ~:ld~~:n ••• : 

•1 m ~;~g: •->! .... 
llG125 ASI'B 

*****G3*******"** *****Gii********** 
! g~L~oI:smt! : !1ss1Giicm¥~iER! 
• INSOTlAE R+2, •--->•PAIR WITH SIGI *<I 
• BOP+4 OR AD • • OP &OP * 
* i1+2 BOP+S) * • * ······'·········· ········i········ I 

! I 
·--------------..-.• * • . ••••R••········. I 
* *-->• E3 * • RETIJRI * 
• AOP * * * . . . . .... ............... .........•....... 

•••••J ,.!........ •••••J.2••········ •••••J3••········ •••••J4••········J 
m=mTs8E· .. ~J§! ! cm llSLT : : ~~T 11g~ma0611 : : ~fL~2I~smo~ : 
• IP 11of,_ii2,R1= *---->• (AOPL- CALL ·--->• ADii. IP llOT6 ·--->•TO hsL2. CALL • 
:sC¥¥t~oio~;~3i> : : OPll (BOP) : : SET o~~~ER R : :nsoT (OP R1. R2): ................. ...........•..... ................. . ............... . 

Section 8: Flowcharts 535 



Chart EX. 

***** •321* 
* .si• 

* 

llG500 t 
!****B1 *********! 
: ~5~=~g~~LmL : 
: KEY : ................. 

536 

: ••• NONE •• 322 A3 

: ••• LEFT •• 321 E3 

: ••• YES ••• 321 1!2 

: ••• ilOTH •• 321 G2 

Complex Plus Generator (CPLUS ) -- CEKMG (Page 2 of 3) 

..... . .... 
*321• •321• 
* * E~* * * E;• . . 

I I 
!IG625 ~ !!G600 ~ 

*****E2********** *****E3********** 
* * * REG=AOP REG * 
* IllTEiiCHANGE * *RESULT SIGll=AOP* 

OPERANDS *->* SIGN. TO=AOP * 
* : : TYPl!fy~~=BOP : ............•.... . ............... . 

..... 
*321* 
* *G~* . 

llG630 t 
:****G2*********: 
:~J;A~~G~EifRi~P: 
: SIGll=BOP : ................. 

I 
:••••H2*********! 
* IF AOP REAL, * 
* SWITCH OPS. * 
: SWITCH R1,R2 : ................. 

I 
!****P3*********! 
*IP AOP SIGll=BOP* 

;sr;g+ ?Se~~Be U'! . ............... . 
I 

• *· !IG615 RSLT 
G3 *· *****Gii********** 

• * REG *· *CEKl!Yl 383.l 1* 
·* OPERAND *· NO •---------------• 

*· TYPE = • *--->* * 
*· CO!IELEX • * * AOP * •. .• .. . •. . . . ............... . 

i"' J 
*****H3********** H4 *· 
:cA~~11f~L6~:gei,: •• ·* REG=2 *· •• NO 

:EDm~o~k·g~oT: •. *· oa 6 ••• •--.

1 : •• HH.mnL •• : *· *· . * •• 

! i YES ',I I ••••• t 
* Gii* llG620 SELl'R •320· L 

•••••J2••········ 
:c&~~11 gs~we1 ·! 
* INSOTlADD 6a * 
* SUB 1,R2) * 
* * ................. 

l ..... 
*320• 
*,.G~* 

* 

* • *****J4********** ***•*JS********** 
* :crn;_~f~Pum : :~:~~3~----~~~~~= 

. * (LD REG-2 PRO!I * >* * 
: RE*~(; ~~D~CE : : SELECT REG+2 : ................. . ............... . 

..... I 
*****K4********** 
*SET LINKED-PAIR* 
* PLAG Ill llR!I * 
*TABLE ENTRY POR* 
: REG : ................. 

.. L 
*322* 
* E3• 
* * . 

l ..... 
*322• 
* P3* 
* * . 

PAGE 321 



Chart EX. complex Plus Generator CCPLUS > -- CEKMG (Page 3 of 3) 

..... 
*322• 
* A3* 
* * * 
! 

·*· 
A3 *· . . •. 

YES • * AOP *· 
~------•. SIGN=BOP .• 

*· SIGN • * 
*· .• 

I • .• • I . 110 

1 '"" ~ -I •••••a2•••••••••• •••••aJ••··~··••• 
* * *SET OP=SUB, IF * 
*SET RESUL7 SIGN* * BOP SIGN= * 
* =BOP SIGN * * iiESOLT SIGN * 
* * * INTERCHANGE * 
* * * OPERANDS * ................. . ............... . 

I I 
• *· l!G545 ! 

C2 *· *****C3********** 
.• .• BOP •. *· YES :c~uRsE~~U~EG : 

*· SIGN=DESIRED • *--->*OPNDJ6tT {AO~) * 
*· SIGN • * A * IN:>OT (LOAD * 

•. • .. •.. l : ••••• ~:~;~ ••••• : r NO 1 1 

I I I J ! 
02 •.. *****D3********** 

• * *· *IF AOP NOT REAL* 
YES • * AOP A *· I *R1=REG+2 ADD 4 • 

,-•. CONSTANT ·* * OR 8 TO D2. * 

' *· •. ·*. * I ;cA~~Ap~~IWAo: 

I .. . . I ................ . r NO **** I 

I I I !
3

H* •->! I . ~ I : •••• 

I llG530 Ei. *· *· I llG5~2***EJ ********** 

I 
.•·* BOP A *·•. 110 I :m~ mac mt): 

*· CONSTANT .•-->1 * JBJP)b~HSOT * 
*· ·* * ADD R SOB • 

*· .• * EAL PARTS) * 

I ··;·;,. I ·······r······· 
I l .•. INSOT 

*****F2********** F3 *· *****F4********** 
* * • * *• *CEKNI1 397A 1• 
*INTERCHANGE AOP* ·* BOP *· NO •---------------• 
* AND BOP * *· REAL • •--->•LOAD IllAGINARY * 
* * *· • * *PART INTO REG+2* 

L:::r~···= ·---r ;;: =······r·· .. = 
l!G507 l I :3m ... 

*****G2**********_J * * G4 *• 
: rn'~ffB~I~flL : * .•·* *·•. NO 
:g211,~:8§E~O~~~A! • •• ~P=SUBTRlC:.·•--. 
* VCOll & VD15 * *• • * ***** 
••••••••••••••••• •. •• *320• 

J

* YES * * ::• 

IN SOT 
*****H4********** 
*CEKllI1 39711* ·---------------· 
* COllPLEllEIT * 
*Il!AGINARY PART * 
* • .......•......... 

l 
***** •320• 
* G4* .. . 

Section 8: Flowcharts 

PAGE 322 

537 



Chart EY. Complex Mu1tiply Generator CCMUL) -- CEKOF CPage 1 of 2) 

CEKOP1 CllUL 

••••A 1********* 
* * * ENTER 
* ................. 

l 
OllE OPERAND BEAL 
THE OTHER COllPLEX 

·*· OP200 
B1 *· *****BJ********** 

• * *· * AOP=REAL OP * 
• * BOTH *· 110 * PNTil. BOP= * 

*· OPERANDS • '""--------------->* COllPLEX OP * 
*· COii PL EX • * *PHTR. CALL KEI * .. . . . . •. . . . ............... . 

"'" [ J *****C1********** CJ *· 
::=~~:! ____ ~!!~!: . * • * BilMCH * • *• 

* *· 011 OPERAllD • * 
* *. LOCATIOI • * • • *· .• ................. . .. ·· 

l ... 
D1 *· -· • . • * BRANCH *· 

*· ON OPERAND • * 
•.LOCATION • * •. . . 

• .. ·. 
: ••• 11-11 ••• J2J BS 

: ••• R-!I ••• 3.2'1 !!2 

: ••• !l-B ••• J24 BJ 

: ••• B-B ••• 324 B1 

538 

: ••• 11-11 ••• 32'1 Bil 

: ••• B-!1 ••• 324 BS 

: ••• 11-11 ••• 324 H4 

: ••• B-B ••• 324 HS 

PAGE 323 



Chart EY. complex Multiply Generator (CMUL) -- CEKOF (Page 2 of 2) 

..... 
•324* 
•.a!• . 

..... ..... . .... 
•324• *324* *324* • • e~· * * ai• • * s:• 

* * • 
I A REGISTER PAIR A REGISTER PAIR lll!!IORY 

***** •324* 
* .s~• . 

I AOP Ilf I LEl".r OPERAND IN 1 !!IGHT OPERAND IN I BOTH Ill 

OF'l 50 ~ OF'160 OF320 V 

I EACH OPHAND Ill I A iiEGISTER 

OF170 + 
I F<:GISTF.R 

OF'400 + 
*****B1******•*** •CAJ.L SELF ii. ii, S* 

=~mEEAm" ~ .l&P: 
• =P-Q OP PN'IR • 
* ilOf=RSOP PNTR * ................. 

:••••s2•••••••••: :••••eJ•••••••••: •••••Bu•••••••••• 
* * * * :cA~ir~EL~!JiA!Y : 
:AOi'=ROP BOP= LOP: :AOP=ROP BOP=LOP: :IN~5~?t~B8& (DI: 

: ................ : : ••••••••••••••• : : •• ;,2.J~,2i~ ••• : 

,.,,, k.... I 
*****C2********** *****C4********** 
*.:_E_K~~-1 _____ 3~~A_2_** *CALL INSOT (LF * 

*Oil .LD S,D+.lli8) ,* * * llE!IAC $AOP L * 
: R, S * * IN SOT lft!" 1' * 
***************** : •• 22~;. •• !t.~~~ •• : 

*****BS********** 
*CALL RSL'I' (AOPJ * 
* SELPR (PAIR) 1 * 
* INSOT JLER uR * 

!:~~=I~t~~J:J.: 

,,.,, I 
•••••c5•••••••••• 
*CALL llEllAC (BOPJ * 

:
1m; Jrr:~~s6+ : * (!IE711DZ1 D+4, • 

: .... ~Jh~L~ •••• : 

'---,,,,, ,J l l 
*****D2********** *****D4********** *****DS********** 
:c~~~o¥5~m0St·! !gtL~or~si~x 1 :r1: 
:LDRL~~p~i/f~~T : *OPND (AOf>hoho * 

:cA~~pgPll~saOPI: 
* RESOLT 

1
ro Y-Z .. * llITll PROPER * 

:~d~,~mmm: :~mut~;!t::: : ••••• n~:i •••.• : 

...... J....... I l 
*CALL IllSOT (!IE * * ****F4********* * 

!~M~ ~"~(~~B~t: * RETURN * 
*****ES********** 

*QLD (X Lill I. IllSOT* * * 
:i~~.~=.~~.!,lL.: ••••••••••••••• 

: RETORJI : ............... 
l 

*****P2********** 
*CALL IllSOT (!IE * 

!0M8t5~m·8~·: 
::lh!:U:~m~:: 

I 
*****G2********** 
=~m msJB~~~·= 
! mia T~-~-g~G : 
* TABLE ENTRY * .................. 

l 
* **.1t1111*ff2********* * 
* RETORll * . . ................ 

..... . .... 
*324• •324• * P.4• • 115* . . . . . . 
i BOP Ill 1 BOTH Ill 

REGISTER REGISTER 

OP500 OP600 
*****114********** *****115********** 

:c~~Msmw' ·: =~~~MUT~~~~~ : 
*IllSOT (llE/llD i+D* *REG)§ IllSOTJllER* 

:J~£,n~1,2m~i: ::jb!,ntJ,£L:: 

1(.-----'1 
OP140 ! •••••Jll••········ 

:c"t~,gPlf~JA~PI •: 
• RESULT 'ro R-S • 
* llITH PROP!!B * : ••••• u~u ••••• : 

I 
*****Kil********** 
* RETUR!f * 
• * ....•.......... 

Section 8: Flowcharts 

PAGE 324, 

539 



Chart EZ. Complex Divide Generator CCDIV> -- CEKOG (Page 1 of 2) 

ci:;KOG1 CDIV 

* ****A1********* * 
: ENTEn 

*************** 
I 
I 
! . •. 

Bl •. 
.. • *· 

NO • • ilOl:i:i •. 

1·· •. 0mm~ .. ·· 
i ·· ..... ·· 

***** * YES 
•321>• I 
* Bl> I 
* • I 

:Gl 00 1 KEY 

540 

*****C1 ********** 
:::~~:!----~~~~!: 
* * . . . .. 
***************** 

I 
~ 

. *· 
01 *· 

• *EiiANCH *· 
• • ON !;;TA'IUS *· 

*· OF • • 
•.01?.C:RANDS • * 

*· * 
*· * .. * 

: ••• 1111 •••• 325 c2 

: ••• Rll •••• 325 B3 

: ••• llil •••• 34'5 E4 

: ••• RR •••• 325 B5 

***** *325* 
* E2* * .. 

* 

I 
~ 

• ****J2********* * 
* RETURN * 
* .. 
*************** 

***** ••••• 
•325• •325* 
•.a~• •.a~• 

* * 

I vi 
OG250 ~ 

*****84********** *****BS********** 
* P-QROP. CALL * * * 
•BSLT (ROPI SELFR* * * 
* la-sh lNSOT •<---*R-S=LOP P-Q=ROP* 

!!JUfob:~~h:! !... ..... _... ..... : 

j 
*****Cll********** 
:mL R 

1 :r?T lmf: 
* pER~frnl! s, sh~ • 
:.:::.~ae!: ... : 

I 
*****04********** 
*CALL INSOTPTF/* 

:ma~·l~~UtR : 
::::t~U~H~::.: 

I 
*****!4********** 
*CALL llEllACILOPI * 
*OPND (LOP) 6111SOT* 
* UIE,110 P (X * 
•131 , IllSOT (!!Ei * 
: •• ~ •• M:Mi •• : 

I 
*****FQ.********** 
:mLPI~SOIJm': 
* (llE/116 t ~0+46 8) * 
:.~::~!~~i:~:.:.: 

I 
I 
~ 

*****Gq.********** 
*CALL IllSOT JLER/* 
!LDRoMb'~ ijgT ! 
* (1 j, ) I I!lsot (DE• 

:.m.~,mmi.: 

I 
*****"" •••••••••• 
* CALL CALL * 
* ASFR_f ASGll * :mm a~/iii~.: 
* TABLE ENTRIES * ................. 

I 
i 

••••J4••······· * .. * RETURll * * .. ............... 

PAGE 325 



Chart EZ. Complex Divide Generator CCOIV> -- CEKOG (Page 2 of 2) PAGE 326 

***•* •32b* •• s:. 

OGJOO l KEY 
**•**51•••······· 
:~.:~~:2 ____ ~~~~2: . . . 
•••• ............. *** 

I 
I 
~ . •. 

C1 *· 
• •BliANCH *· 

.• CN SIA'IUS •. 
*· OF • * 
•.OPE~ANDS • * 

*· ·* 
*· *. * 

: ••• 1111 •••• .J.<b 02 

: ••• ,.M •••• 3.<6 E2 

: ••• ;1n •••• 3:<6 F2 

: ••• Ril •••• 3.<b G2 

i'<IGliT uPEnAND 
IS Rt;AL '!HE 
CTHEii CO:'IHEX 

***** •326• 

* *D!* . 
I 

l 
*****02********** *****D3********** 
: M~~6~y~p~An : :gLt rgs~i!~f{,: 
• SELFR ia-s!. ·--->• INSOT • 
* l!Ei1AC LOI' , * * (LE/LDS,D+4 OR * 
* OPND LOP * * 8 (X,B)) * ................... .. ............... . 

I 
**** I •326* I 
* E2 •-, ! * * I 

CG4~0** i RSLT OG320 
*****E2********** *****E3********** 
:::~~:2 ____ ~~~~2: :m5 ,mt~1m~: 
* *--->*JDE/DD R0 D(X, *--1 
! : : ih!gs ii<gf{ : I 
***************** ***********'***** I •••• I 
•326* I 

:.:~· ·-1 l 
OG450 ~ 

*****F2********** *****F3********** 
•REG P=ROP. CALL* * CALL INSOT * I 
* SELFil 1a-s1. • • ILE(LD R,D .. I 
• llE!IAC LOPI. ·--->• lll,Bb), INSOT • I 
::::::: ... ~~: ...... : :L:~h:r. Lr::~:.: .I 

•326• 
* G2 *-, I I 

OGS:O * l RSLT OGllSO ~ loG170 ASFR 

=~~;m··*·;;;~~= :·*~m·~:;~;···: 1 :··•·G~~;~=~~~··: 
•---------------• * (DER) DDi! R, * V • ASSIGN FESULT • *--->* P) INSOT *--->* TO R-S llI?H * * * (DEJi/bDR S ~ P) , * * PROPER SIGN * : ••••••••••••••• : : •• 2::~.J=~.~ ••• : : ............... : 

I 
! 

* ****H4********* * 
: RETURN : ............... 

Section 8: Flowcharts 541 



Chart FA. Relational Expression Generator (RLTNL) -- CEKMH 

CliKllH1 RLTNL llH084 SLPOS 
*****A3********** 

*****A 1********* * :~::~~!~----~~~~~= 
>• FIND OUT WHAT * I: re oo : 

1 1 ·······r······ 
: ENIE.il : ................. 

Ci KO~ 1 *j77A1 :~;•m•:;•;;::•: 
• •.KEY II !IH009 i 

ONE • •-----------•. BO'IH • TOP OB CSX OB * 
,--•.WHICH OPEi<ANO.•-------------' ~>*NOT LOGICAL IF • I ·-;~A RE~··· :m~Tms~w'n: 
I *· • * ********!*****'*** I . HONE 

I
' I 

llH078 018 .•. • *• •••••c2•••••••••• cJ •. c4 •. •••••cs•••••••••• 
I * CALL SELOP * • * NEED *. • * •. * * 
I * (PIND WHAT TO * I .•COllPLEllENT •. YES .• *· YES * SET !l1.<P2 = * 

>•DO). SELF/SELSR• I •. BEFORE • ·--->•. PLOATillG -·---->• 'TO• ~EG • 

I 
*• (SEL i!"EG) •,. •. COllFARE .• •. ·* * * •. .. •. .• . . I ••••••••j***'"***'" I *·i·:o •·i·:o ••••••••••••••••• 

LIH002 SLONE i I 11H021 t llH187 t 
I *****D1********** *****D2********** I *****D3********** •••**04********** 
I *CEKOW 1 370A 1 • * IP LA NEEDED * • * •SET TO RD OP * 
L>

·.--f-I_N_D __ O_U_T--W-H-AT--.· • SE'.r INSOT FO~ • •SET COllEARE TO • •IF NEED 11b0Ri * •LA. IF NOT CALL* * PROPER TYPE *<I * ACCESS~ CALL *------->1 

:.. ... :y·····= : .. :::tr:: ... : ., =······r·····= i, ::::m:i~:il:::: ,,,,, I .,,,, 
*****E 1********** *****E2********** E3 *· *****!5********** 
•:i:F NEED LA CALL* * • • • •. •Cl!KllI 1 397A 1* 

l~!~'.~~!j'.!!!~!:l if.~~~!'.~:~~:~1 < .. '. '.. ::~ •. >lm [~~~~:~~:~:~~~~~ 

"'ll •••• J ....... . 
*IF llEED llEllAC * 
*CALL llEllAC ~d, * 
*S2tD2~~ IF OT,• 
: s ~ALL ·m¥2. : I ........ F ...... , 
!****G3*********: 
* CALL INSOT " 

!cE/~~~mma1 : ................. 
. . . ""' l '"" "' **H 1******* H2 *· *****H3********** *****H4********** 

*FLIP SIGNS " ·* WAS *· *II" llEED llEllORY,* *CEKllV1 364A2* 
* IN llRll AND * YES ·* FLT. CPllD *· *ClJ.L lSAR/ASl"R • •---------------* 

* IREE/NAllE *<---*· COllPLEllENTED .•<---* (!tEllORY FOR LO) *J>* * 
* TA:SLE * *· • * •CALL OPID. SET * * BC TO LABEL * 

* * *. • * * BB CODE * * * .... T.... ..;·:, ................. ·······T······· 

II l llH039 • "· • *· 
*****J2••········ JJ •. Jll •. 
* * • *AT TREE•. • * *· 

'--------.*CALL OPllD(, SET* ·* TOP AND •. YES ·* NEED *· 110 

'L..::.:.: .... r-, .. ·-.'.T;~ · -· -. ..,:: .!:~: i :;~:~. ··1 
*****K3********** *****KQ.********** 
: {~msst~:i. : :Tm~ m0ima: * ****KSm****** * 

:ea.u~~) ,.trsoT :--->: ~m+aA~~~ :---->: RETURN : 

: ••• ~ ............ : !****~~~~~Ii •••• : . **********•*••• 

542 

PAGE 327 



Chart FB. Logical Expression Generator. (ANDOR)-CEKMI 

CEKllI 1 ANOOfi 

* ••••B1********* * 
i.NTEH : ............... 
I 

.•.KEY !II0b6 .•. !II072 SL?OS 
Cl *· C2 *· *****C3*****'***** 

CEKCCl 377A1 .• *· *C~KNF1 J68A1* 
• •-----------•. YES • • BOT~ *· YES •---------------• *· GNE o~ oOTii .*-->•. OPEi<ANDS IN .•--->• !'IND CUT WHAT •--, 

*· C P NOS IN • * *. A il EG • * * TO DO * I 
•.a REG.* *· .. * * * I ··.·:oNE ··.·:a ••••••••••••••••• I 

I I 
I I 

h~I!ii~~G~H~~H~I0o9 V SLONE. 111019 ·*· 

1
j11IOJO 

•••••Dl********** *****D2********** 03 •.. *****!'4********** : ,m5 m:¥PTO : ==~~~~!----~Z~~!: .• ·\om.u·· •. NO ~ :cliLN~~M~~~r : 

: (~~ttdE~~a, : : FINOTgu5owHAT :--A->•... 1 .• ··---A->: o~~LLifN~g¥L, : 

: ................ : : ••••••••••••••• : I *· •. . • · * I :J~~I~i.~.J~~n.: 
I I ~ m I I 
I I I I 
~ 

I I I I 
I I I ! I I I ·*· I V IMI033 

.• E 1 •. •. :·•••E2***••····: I =~~~~!~~~;~~;~~;: I :;;;·b;·~~;;:·i;: 
• • LA *· YES *CALL WI'I (FC!i • I *INS OT (SR llEG, * I * RR TYPE, CALL * 

*· NEEDED .•--->*LA), INSOI (LA)*-->1 *REGl,!ll!!UCILO) *--~ *!IE!IACIFRO!I OP),* 
*· • * * * *EDIT (LOAD) !NSO'!'* * £DII. * 

*· • * * * * (IC fiEG) , ASA!! * *SOT (N/0/NR/OR) * •.•. :o .................. I .................... ········i········ 
I I 

!1!012 I v 
*****F1********** *****F2********** I *****F4********** 
! ~i1t0mM d§ : :cm EDI'I (FOi< ! 1 :cm. 0H°m~!! ! 
•aEGffiEG). CALL *-->*LOAD)~ INSOT (I*___j *TOP & IF~ CALL * 
: !I !lt~AgOt< : : 0. IC) : :LBL(BZ 0 BNZ) : 

••••••••••••••••• .................. ***************** 

! 
!IIO"i6 ! 

*****G4********** * IF NEED OPND * 
*FOR 'TO' CALL * 
:mr(a~~ mG: 
: •••• =;~~~Ii •••• : 

! 
I 

! 
* ****H4********* * 
: FETURN : ............... 

PAGE 328 

Section 8: Flowcharts 542A 





Chart FC. Maximum Operator Generator (MAX) -- CEKMU 

CEK!IU.1° !!AX 

* ****A2********* * 
: ENTER : ............... 

I 

I 

l 
• *·KEY 

*****Bl********** 82 *· 
:cm./~5°~JFIND: NONE ;;~~:! ____ ~Z~!~ 
* SEISR/SEL~~ *<----*.ONE/BOTH OPS ·* 
* (SELECT J:<EG) * •.IN A-REG .• 
• * *· ·* ................... •. . . 

I * YES 

I I 
t !IU069 t •••••c1•••••••••• •••••c2•••••••••• 

*IF NOT NEED LA,* : npg~:lifFC~5i: : :mt ~mc1rni:: • CAL.L SLONE. * 
:rNscu}~~t~LE/ : : (FINEof~lT TO : 
**** ••••••••••••• • •••••••••••••••• 

l 
. *· llU078 

02 *· *****03********** • • •. * • 
'-------->•:* N~~~io *:•~>:RE~f~S¥H~5~L (LR! 

*· ·* * OR LCR) * •. ·* • • • .• ·:o ********j******** 

1 .•. 
E2 *· .• *· ·* *· NO 

*· CO!IPLE!IEHT -*------->1 
*· NEEDED ·* 

*· .. • • •. * * YES 

I 

llU081 ! 
*****F2********** 
* CALL RSLT * 
• I PROTECT REGI • I 
•!NSOT(LCRLLCtfi,•-------> 
: OR LCDH) • : I ................. I 

RSLT ·*• OPHD 
*****G2********** GJ *· *****G4********** 
*CEK!!Yl 38311* •* *· *CEKllll1 38111* 
*---------------• RSLT • * OPND OR *· OPND •---------•-----• 

FOR 'TO' *<---*· RSLT .•--->* l'OR 'TO' 
OPERAllD * *· • * * OPERAND . . .. .. . . ......... !,........ ""' ·1:., _J ................ . 

*****H3********** 
mL~O~E=f C nm: 

~-------.>•llEllORY Oi?~ !on•< 
: (FOR CCII ABE) : ...•............. 

I l!UOSll 
*****J3********** *****J4********** *****JS********** 
*CALL INSOT CCH/* *Il' NOT RR TYPE * *CALL INSOT(LR/ * 
*C/CE/CD/CR/CER/* *CALL llEllAC (l'OR* *L/LE/LD/LR/LEP./* 
•CDR~fSAllDB ~Bal,*->• llEllOBY OPtr ·--->•LDR! ,OPND )FP.011 • 

:~::::~m!i:: .. : :..::~:.!~~: .... : :.m~:m~m~.: 

I 
*****KS********** 
* R!TURN * . . ............... 

PAGE 329 

Section 8: Flowcharts 543 



Chart FD. External Function Generator (FUNC) -- CEKMK (Page 1 of 3) 

CEK'1K1 FUNC 

* ****A2*•••••••• * 
ENTER : ................ 

I 

I 
I 

! 
•••••02••········ 
:gLtJ~m2 <L~~ ·: 
: r~~N=~m=~~- : 

:.~~~;:~~::~=~ •• : 
I 

I 
I 

! 
•••••c2•••••••••• 
*CALL FLAi)ij (AD- * 
*COii PAR All LIST)* 
*SLESR (SEL Rl), * 
: u~g~EJf1' : ................. 

I 
I 
I 

I 
MKO 10 ~ 

:••••n2•••••••••: . >: CTR=O 

I • • 

! 

llK060 
**•••83•••······· : ~rEr: m11:h : 

!
>*ENTRIES IN GEllL* 

: REGS : 

········;········ 
I I 

I .!. !1K720 1 c3 •. •••••c4•••••••••• •••••c')•••••••••• 
I .• ·* c~3~c *· •. No :sE~At~c~ho~r: !1 ~1~tmE~~~- : I •. !IA!1EJ =SUilPROG.•--->•(FILE V/R PAIR)*---->* llA~E=F!I llA!'IE, * 

*· •. ARG •• ·* : 00r~ moioc : : cuLo~NWHf : 
I •. . • ••••••••••••••••• ·····'··········· I * YES I 
I I 
I I 
I I I 

II !IK7ll0 ! !IK772 ~ 
*****03********** *****D5********** 

I * D=SLCC ARG * * CALL !llSOT (ST * 
I *COVERING ADCOll.* * 14

6
72(13l)L * 

I * CALL IllSOT(L * * INS T{L 15,u * 
: 15, D (13)) : : (13)) : 

I ***************** ***************** I I I I 

I ! I

.!. ********j******** 

*****E1*l******** E2·*·•. I E3. •. •• *****Ell ... ~~~~I .. . . .• •. I -•. ;OllCTIO/· •. NO ==~~~;~---"'."~~~~!: 
: r = LOI.'(!) :<~•=* L~PJ;~ *:• 
• • *· .• I • ... ~A!IE=EXNAll:.··--->: ST 111, 72(13) : 
• • *· .• I •. • * * * ................. . ... 

I *· .. * ***************** 

544 

* NO 

I 
I 

MK020 i 
*****F2********** 
*CLR FLT .iiEG TBL* * CLR GEML REG * 
* rBL EllTilIES * 

!.hBbH~~m~.: 

I • YES I 
I I I 

I
I !IK7~i ••• F3•!.......... II 

*EXll.HIE = FUllC. * 
: ~mrcHL : I 
! 111,n(b,I ! I 

I ***************** \ 
I I I I I I I< LOAD !'RANCH I 
V' I I COVER (UCO!I) 

• *· ~ IllSOT 
G2 *· I *****G3********** 

·* *· I *CEKN!l 397A1* ·* OP (T) *· YES I •---------------• 

r
->*. =SE!!ICOLON -*--' * 

*·•. ·*·* : L 15,0(15) 
f •• • • • •••••••••••••••• 
I * NO I 

I I I •331• I I L->:.::·. 
I i ·*· . *· . •. 
I !****H2*********! ·*H3 *·•. ·*H:EXT *·•. ·*HS *·•. 
I • C:Al.L FARA!! • • * DUllP *· YES ·* i?ARAll •. YES ·* IS IT A •. JIO I : <¥~~mk(TfET :--->* •• :E'DUllP CAL~···---->• •• ~OLTI~LE o:.··--->• ••• CONSTA!IT •• ··---, 

I * * *· • * *· · * *· . * I I ••••••••••••••••• • •• • •. ·* *· .• I 
I * NO * NO * Y PS 

I< I< I 

l :••••JS••**•••••: I 
* CALL PARAll • I 

---------------------------------: (COJISTAJIT ZERO):<-~ . . ................. 

PAGE 330 



Chart FD. External Function Generator CFUNC) -- CEKMK (Page 2 of 3) 

***** •331• 
**Bl* . 

MK785 1 INSOI 
*****Bl********** 
*CEKNI1 3~7A1* ·---------------· . 
: BASR 14, 15 * 
**** •••• ********* 

l 
·*• llK787 ·*· SELPR 

C1 *· C2 *· *****C3********** 
• * *· . * *· *CEK!IQ 1 388A2* 

• * llAJOR *· NC • * *· YES •---------------• 
*· OPERATOR .•--->*. FUNCTION • *--->*SELECT PLOATING*-1 ...... r ;;: .. i . · l'. \;~;- • :.::::::::.::::.: I 

J I llK794 • • • !!K796 SELPR I 
D 1 *. D2 *· *****D3********** I 

• .. •• ~ .• •. •CEKllQl 388A2• I 
• * CALL *· NO • * FUNCTION *· YES •---------------• 

•. FLAG SET • •. TYPE • •--->•SELECT FLOATING• I 
*· • * *· CO!IPLEX • * * REGISTER ZERO * 

*· • * *· • * * AND TWO * *· . • ·- • • • •••••••••••••••• r YES • NO I 1 

HKllOO 

I I I 
I I I •,' ~ llK7'i9 ~ ASl"R 

' :~;·;~~~:·;~~=~:: :••••£~~:::~~~··: ' 
I :~A~r.m~rm~r: :AsnG~ummER:<_J 

1 :<LRh2~ 1 a~rLsR,: : RESULT : I •..•.......•..•.. . .......•..•..•.• 

i I 
I ~ 

****F3********* . . 
'----~~~~~~~~~~~~~~~~->: RETURN : ..... 

•331 • 
* * Gl* . 
! ·*· l!K402 

G 1 *· *****G2********** 
• * *· *FOi<!! NEW ADCON * 

............... 

llKSOO 

***** •331• 
* Gii* .. . 
l 

·*· 
Gii *· . • *· 

• * FORllAL *· NC * =STCL=SICL OP * .• *· NO 
*· SUBPROGnAll .*-->•VAR.SLOC= SLOC+* 

*· AilGUllENT • * •DISPLACE!IENT OP* 
*· · * * VAR. * *· . • • •••••••••••••••• 

* YES I 
I v 
I ••••• 
~ :3m 

*****H1********** * * 
*CALL !IE!IACJOP) •* * 
! psoTlMox' 0sr! •t' ~fa (ll >. hr• 
:.mh.m~:2 •• : 

I 

*· SUBSCllIPT ·*1 *.CON II ECTOR.* ..... •. . . 
*331• *· .• 
**ff~* * YES 

* I I ! ! I 

!IKS~~ ••• HJ••········ llK510 114. *. *. I 
*CALL llP!IAC{B6x,• ·* *· 
* DI IllSOT (Ll , * NO • * SIGll *· 
•o~xfisq&<sr o, •<---•. FLAG sE:r .• I 
! s~cl 1 ~l6gP~D o ! *· •. . • · * ...... ,.,......... •. i :£_J 

llK310 ! 
*****Jq.•••······· 

****J3********* * GETTE!IP ASGll * 
* * *FRO!! TREE. FORll* 

L------------------>* RETORll * *ADCOll.STG LOC =* 
* * * SLOC & * 

*************** * DISPLACEllENT * ................. 
! ..... 

*332• • ;e~• . 

Section 8: Flowcharts 

PAGE 331 

545 



Chart FD. External Function Generator (FUNC) -- CEKMK (Page 3 of 3) 

l?ABA!I 

****A 1********* . . 
* ENTER * • * ............... 

I 
llK200 .•. 

81 •. . • •. . * BiiAllCH *· 
*· 011 Ol?EBlND • * 

*· CLASS • * •. .• 
• .. ·· 

: ••••••••• 332 FS 

: ••••••••• 331 G1 

: ••••••••• 332 S4 

: ••••••••• 33.2 Cij 

: ••••••••• 3::t2 ii2 

!IK600 

..... 
•332• 
.. 84* 
* * * 
I COll!IOll + EXPRESSIOI ... . •. 

84 *· BS *· .• •. .. . . 
·* *· YES ·* IS SIGI *· YES 

*• SUBSCRIPT .•--->•. PLUS ·*-i 
•.COllllECTOR.• *· • * 

•. ·* *· .• ·- . . • ... 
* 110 * NO ***** 

•332* * ** R3* 
* C4 •-> >* D4 * * * 

CONSTANT 

.... l L •••• •331• . . . . . .... . ... 
VlRIABLE !IK&20 • *·RESIDUE llL&35 

C4 •. .. .. ..,. o:>· -;~'4'***_..# .. ...... ~ ... 
... "!ABKBD *• * "'~""~!?( Ff.C"• • 

• • • USE •. n:s *NA~~ ~RL ADCO!i .. 
CSX *· SECONDARY ·*---->*i>Ot!l'l'llil r. DTS- * 

*· TE!ll?' ·* * DL~C!'ll'!!N'l' FOR * 
RESIDUE *· •* *SECONDARY TF:lll? * 

FUNCTION 
•. . . . ............... . 

: ~~:• :->j* HO .... 
llK&30 

*****D4********** 
* OBTAIN FROll * 
*NA!lE TBL ADCOH * 
*POINTER & DIS- * 
* l?LACEllBHT !'OR * 
* PBillABY TEl!P * ................. 
:m. I * E4 *-> . . 
**** 

!IK405 
*****!4********** 
* GET SLOC STCL * 
* FRO!! SYllBOL * 
: TABHl:oiORll :<-------. . ..... 
***************** •332• 

I 
* FS• 

!33i· * * * 

• F4 *-> 1 * • .... 
FLA DVB llK302 FLADS llK300 

*****P2********** *****F3********** *****P4********** *****PS********** 
*CEKTFK 01583* * * * * *FORll llEll ADCOll * 
·---------------· * * •-CEKTPJ- EllTER * * STCL=STCL or * 
: FILE V/R PAIR :--->: FOR!! ADCOI :->:PARU~~laI~l:ST :<---:s~8mtsm~E- : 
* * * * * * * !!ENT OF CONST * ................. ................. ................. . ............... . 

"'li •• "J........ I ""' I 
* * ****GS********* • * • 

FOR!! ADCON * : RETURN : 

*************** A 

i" l ..... 
:.3 ~~.= l!K700 1 NO I!ISOT 

H2• • *· *****H3********** *****H"********** *****""* •••••••• 
* ·* *· * * *CEKN!1 397A1* * * 
L_->•:* su~~r~~~A!! ":.~_s __ >: :i = ~~gg~ m : ____ >:---------------=---->: Fo•:,J!g~11Y : 

#. ~ :· ~.; ~. ~ ~~: *. * : : : 3 ~ 0 ~CTR ( 1) : * ; ... -. ................. ................. . ............... . 

546 

PAGE 332 



Chart FE. Comma Operator Processing Subroutine (COMMA) -- CEKNJ (Page 1 of 3) 

CUNJl COll!IA 

*****Al********** 
* ENTER * * • 
*************** 

I . •. 
B 1 *· . . • ... 

• * LOP = *· YES *·· COl!!IA • .__, 

·-*. ·*·· I *· • * * NO 

I 
NJi)Ol 1 l!El!TRU I 

*****C 1********** 
:~~E£~-----~~!~2! j 
: LOP * 
***************** 

I 

NJ002 r l!El!TllU 
*****D1 ********** 
=~~~£~-----~~~~2: 
* 
: ROP * 
***************** 

l 
*****El********** 
: llETUllN : 

*************** 

NJ009 l!El!TllU 

* ****G1********* * 
* ENTER * 
* * ................ 

I 
& .... 

H1 *· .• *· 
·* BRANCH *· 

*• ON ID OF ·* 
*· OPERAND • * 

*· •• 
*· ·* . 

: ••••••••• 333 E3 

: ••••••••• 334 1!2 

: •••••••• • 3311 .63 

: ••••••••• 335 1!2 

: •••••• ••• 335 B3 

: •••••• •• .333 K3 

VARIABLE 

COHSTAllT 

OPERATOB 

COllllOll ElCPllESSIOH 

RESIDUE 

fUHCTlOH 

CEKNJ2 COl!A2 

* ****A3********* * 
: EN"'ER : 

*************** 
I 
i !!El!TuU 

*****83********** 
:~~~£~-----~~~~2: 
: LOP • 

***************** 

I 
* ••••c3••••••••• * 
: RETURN : 

*************** 

***** *333* 
* '!:3* 
* * * 
! 

. *· 
E3 *• 

·* *· 

I
~<. ni~GMET .> 

*· ·* •. ·* * YES 

1 I . •. NJ050 
F3 *· *****F4********** 

... ··OPERAND·· •• NO : co~HE~~~~·& : 

I *· IN A • *--->*STORE PARA!! FOR* 
*·REGISTER • * * FETCH * 

·- ·* • * 

1

1 ... r. ;ES ········i········ 
..... ".!........ I 
:si5Rsm~H~uu1: I 
* REG SIGN#TREE * I mm m ~~~~H: . ......... i.......... I 

NJ025 r 
!****H3*********: 
:miE~¥0nm~N: 
: TEllP), FETCH : . ............... . 

I l 
L ••••JJ••······· * • >* RETURN * . . ............... .... 

•333• 
: Kl.• ..... l 

NJ600 
v 

* ****K3********* * 
: RETURN : ............... 

section 8: Flowcharts 

PAGE 333 

547 



Chart FE. comma Operator Processing subroutine (COMMA) -- CEKNJ (Page 2 of 3) 

NJ305 

..... 
•334• 
• .s~• . 

. ..... 
*334• 
* .. si• 

* 
i ! 

.•. !IJ100 .•. NJ110 .•. NJlQ<; 
B2 *· B3 *· BQ. *· *****Be;********** 

.• •. .• •. .• *· •IF 11~1'!08Y SIGN=* 
.• Tl<EE •. n:s • • COLON •. NO • • OPERAND •• YES *"'llBE s TG!I, S>'.T * 

• •• ~IGN = PLU:.·•1 *·•.OPERATOR .•·*--->• ••• IN llE!IORY·•·*---->: Lgh~ll;~fc:~T, : 

•. .. • •. ·* •. * * * •• - * • • •• • • • ................ . 
* NO * YES • !10 I 

~L ! i I I 
NJ310 ' I -•. ~ I :••••c2•••••••••: . • c3 •. •. :••••c4•••••••••: I 

* COllPLEllENT J NO • * SIGN *· *CALL FNDoS. S'".T* I 
• CONSTANT r-·· FLAG SET .. • :sTO~ci/~~~2~TER: I : ...... r...... I ·- ·-·-r ;: -· : ............... : ~' 

""' . ·- """ I I •••••01•••••••••• 02 •. I •••••o3•••••••••• •••••oci•••••••••• 
•CHANGE POINl'Ea • "* *· •CALL FNDWS.SET • * IF RFG SIGN~ • ****05********* 

: m~/~~EvigE :<~•:* L6Wu *:• :Pt~1~1!~~~ ~E~tH: =~m mh m =---->= RETUR" : 
• VERSA * •. * I * CALL FETCH, * * FETC!I. CALL • • * 
• • *· .. • I . OPND • * . FETCH * *************** ••••••••••••••••• • ... * ••••••••••••••••• ················~-

! ..... ,,.!.::..... ! .,... I I * CALL CONI4 * I ••••E3••······· * 
:c6~W· o~0~S~~6! .._>: mUP.N • 

I
I :sH1~~N~¥ 11 ~n~ : • ................. · ............•.... 

I 

'l • ••••r2••••••••• * 
• Rl!TUiiN * * • ............... 

548 

PAGE 334 



Chart FE. comma Operator Processing Subroutine (COMMA) -- CEKNJ (Page 3 of 3) PAGE 335 

..... . .... 
•335• •335• 
• .8~• • .8~• . . 
. l l 

llJ200 • •. llJ21i0 • •. 82 •. 83 •. •••••e11•••••••••• 
.• *· •* *· *CALL FNDVS.SET * 

.• C0):.011 *· NO .• OPERAND *· NO * STORE. IP REG * 
*· OPERATOR .•--->*. IN llEllORY .• •--->•SIGN,.TllEE SIGll,* *· . * *· • * *SET COllPLEREllT. * *· • • *· • * * CALL FETCH. * ·- • • •• . * ••••••••••••••••• 

• YES • YES I 

1 1 I 
* NJ265 * 1 

c2· ••• c3" • • • 
• ··••cl••·······. NO_.-· SIGN ·-.. ..-·ME'P!ORY •• •• YES .·•••cq.•••······. 
* liETURll *<---•. FLAG SET. ? • * *· SIGN•? REE • *--->* PETURN * 
* * *· • * *· SIGN • * * • .............. •• • • .• *· . • • •••••••••••••• 

i ·r,, ·r, 
1 OPllD NJ205 • *. llJ210 • *· 

*****Dl* ******** D2 *• D3 •. 
*CEK!lll1 381A1* • * *· • * *· 
•---------------• YES .• SECONDARY *· YES .• SECONDARY *· 

*<---*· TEllP. .• 1•.TBllP ASSIGllED.* 
* *.ASSIGNED .• *· ? .• 

• • •• ? • • •. • • ................. ·- -. ·- .. * NO ·• !10 

"'ii .... J........ 1' "'ll. ... ,.!.. ...... 
*CALL fHDllS. PUT * *CALL FNDVS. SET* 
•SECONDARY 'tE!IP * *SECOllDARY TEllP. * 
*ASGll. & FLlG Ill* * FLAG Ill NA!IE * 
: NAllE TABLE : : TABLE : ................. . ............... . 

I I .•.. .•. 
*****Fl********** P2 *· PJ *· *****FIJ********** 
* IP REG * • * *• • *DPERAllD*. * SET STORE. IF * 
*SIGll=TREE SIGH,• YES .• OPERAllD *· •* Ill A *· YES *REG SIGll= TREE * 

:115f~ mR~iiPfF&:<---*·•.REafsha .•·" "·•. REGiflER .• ·*->! c5~~lh~~t ! 
* SlOBE * *· .• *· .• * CALL PETCH. * ................• • .. • •. .. . ..•............. 

* NO * NO 
I I 

llJ225 l llJ285 1 
*****G2********** *****G3********** • • • * 
!co11~fM~~DhD ! !co11~fM~~Dbo : 
* STORE * * STORE. * . . . . ................. . ............... . 

~------ll-J2_2_0 __ L". !<.---------~ 
*****H2********** **H3******* 
*CEKOS1 36512* * * 
•---------------• * SET * 
* * * CO!IPLEllEllT * . . . . . . . ................. . ......... . 

[ .... J ....... . 
••••J2••······· • • 

* * * llARK OPBRlllD * 
* RETORJ *<---* OSB SECOIDlBY * 
* * * T!llP * ............... . . ................. 

section 8: Flowcharts 549 



Chart FF. Open Function Control Routine (DCOM) -- CEKOM 

CEKO!! 1 DCO!I 

****Al********* 
* * 
: ENTER : ................ 

I 
. *· 

61 *· 
-· *· .• BRANCH *• 

*· ON FUNCTION • * 
*· NU!!BER ··* •. -. 

·- •• * 

: ••••••••• 336 DS 

: ••••••••• 336 ES 

_ ........... 330 F5 

: ••••••••• 336 GS 

: ••••••••• 336 HS 

: ••••••••• 336 JS 

: ••••••••• 336 El 

.... 
•336• 

oaoh::· *-l PH4!1ER 

!****E1*********: 
* : ·NX4SO· 

* ................. 
I 
~ 

****F1********* 
* * : ERROii EXIT : ............... 

550 

39,40,51,S.<,53 

42, 43, 4S, 46 

1,2,5, 12, 13, 14, 15, 17, 18, 19 ,20,22, 23,26,27,35,36, 47, 48 

33, 311, 37, 38, 41, 'Iii. 49, 54 

72, 73, 74, 75, 76, 77, 78, 79,80 

3, 4,6, 7, 8,9, 10, 11, 16,21,24 ,.<5,28, 29,30, 31, 32 

OTHER 

..... 
•336• 
* 05* 
* * * I 

I 

~ OPEN 1 
*****OS********** 
*CEKO'l'1 337A1* ·---------------· : :1 ••••••••••••••• ** 1 .... 
•336• 

: E5**1 .... 
OPE"l2 

*****ES********** 
*CEKOtJ1 3U3A 1* 

I 
I 

I 
·---------------· v : :--, 
* * I 
***************** I •••• I 
!3~~: • ...., I 
•••• t I 

V OPFll3 
*****PC)********** 
::~~~~!----~~~~!: ~ 

: ............... ;, 
•••• I 
!3~~: • ...., I 

**** I II + OPEll4 
*****GS********** 
::~~~!! .... ~~~~!: ~ 

. :I 
1~ii~:*********** 1

1 

.... l 
OPEN'> 

*****HC)********** 
::~~~:! .... ~~~~!: * 
: :--, 
: ••••••••••••••• : I 
**** •336* 
* JS *-, 
: ••• * I 

V OPEll6 
*****JS********** 
*Cl?KO!l2 35911.1* ·---------------· 
* * * * • * ................. 

I 
1< 

i 
****KS********* 

* * * RETtJRK * 
• * ............... 

I 

I 

I 
I 

PAGE 336 



Chart FG. Open FUnction Processing Routine (OPENl) -- CEKOT (Page 1 of 6) PAGE 337 

CEKOT1 OPEN1 

*****A 1********* * 
* ENTER * • * ............... 

l 
. *· 

B1 *· . . .. 
·* BRANCH *· 

*• OH FUllCTION -* *· NDllBEB • * 
*· ·* ... ·. 

: ••• .:S9 •••• J37 E1 

: ••• llO •••• JJ9 A1 

: ••• 5o •••• JJ7 E1 

: ••• 51 •••• JJ9 A1 

: ••• 52 •••• JJ8 BJ 

: ••• 5J •••• JJ8 BJ 

: ••• OTHR •• JJ7 J1 

.... 
•JJ7• 

: E1*l .... 
OT100 KEY 

*****!1••········ 
:~~~~~!----~ZZ~!! . . 
* LOP * . . ................. 

l -·· P1 *• 
.•BBAllCH *· • * ON STATUS *• 

*• OF .• 
•.OPEBAllDS • * .. .• ... • . 

: ••• !Ill •••• 337 B2 

: ••• B!l •••• 337 C2 

: ••• !IB •••• 3J7 D2 

: ••• ea •••• 3J7 E2 

..... 
•JJ7• 
• J1• .. . 
l PH4!1EB 

•••••J1••········ . . . . 
: -llX450-. . ................. 

) 

l 
****K1********* . . 

* E.BBO& EXIT * . . ............... 

.... 
•3J7• 

: D2*l .... 
OT122 

*****02********** *****DJ********** 
*BEG S=ROP.CALL * * * 
* SELPH (AllY B, * *CALL OPllD (LOP),* 
• NOT S) , OPllD •--->* Ill'SOT lLE(LD * 

:.:::n~~t~::~ .. : : .. :::.:.::.~: .. : .... I •331• 

: E2*l . ... 
OT124 OT110 Ill'SOT 

*****B2********** *****Bl********** 
* R=LOP·S=BOP * •CBKllI1 397A1• 

CALL BSLT * •---------------• 
• (Lm~r:ND :--->: LPnnh!BOR : ................. . ............... . 

I ... .•. 
F3 *• F4 *• .. •. .. • . 

• * BOP *· 110 • * BOP *• 110 * * 
*· SIGll•TBEE • •--->•. SIGN + ? • *->* 83 * 

*· SIGll ? • * *· •* * * .. .. .. .. . ... 
•. ·* •. ·* 

J."' i"' 
G3 *• *****G4********** .. •. . . 

• • BOP *• 110 * * 
*• SIGll + ? .*->* OP= BIR * .. .• . . •. .. . . :-::• ~: .

1
. ;BS ********!********* 

.... 
*****H3********** *****H4********** 
• • •CALL IJSOTiI.TBB* 
* * * /LTDR S ) * 
* OP•BllI. *--->•SADDBJDIS~ =6) •* 

:. •••••••••••••• : LJl2~h~~: .... : 

I 
•••••J4••········ 
:cALt 1fii:S~T JLIER: 
*AS~B fR!SOb) fo * * B ll!TH FllOD! * 

:.-.mr--··= 
****IC4********* . . 

* R!TOll * • * . ............. . 

Section 8: Flowcharts 551 



Chart FG. Open Function Processing Routine (OPENl) -- CEKOT (Page 2 of 6) 

..... 
•338• 
* E1* .. 

* 

OT172 l 
*****E1********** 
* l'l!=LOP l'S=ROP * 
•CALL SLBB (AOP * 
•BOPcP•i§OP, aaof>• 

:::2i!~.J~m~:~: 

l ,.,., 
•• ***P 1 * ** ******* 
::;~~!~----~~!~!: . . 
: OP P,Q : ................. 

I 
I 

I 

552 

. .... 
•338• 

. .... 
•338• 
• 83• 
* • . 

OT160 1 KEY 
*****B3********** 
::;~~:! ____ ~!!~!: 
* * : LOP : ................. 

I 
·*· 

C3 *· . . •. -* BilAllCH •. 
*· 011 OPERAllD • * 

*· STATUS •* •. .. 
• .. -· 

: ••••••••• 338 E1 

: ••••••••• 338 E2 

: ••••••••• 338 E3 

: ••••••••• 3 38 Eli 

*•E~* **** 
• •338• 

1 : E3·1 .... 
OT170 OT168 

*****E2********** *****E3********** 

:~g~ u n~~m. : :m n m?~Itt: 
*SLl!R (OP BBOP * * SLR!! (OP BROP * 
*SGll) f.llsLt ~ROPf • •SGll) ,_sstt JLOPj * : •• ~mrn.~h •• : : •• u~~m.~~ ••• : 

I .... . l . .., 
*****P2********** *****P 3********** 
*CEKl!ll1 38111* •CEKl!111 381&1* ·---------------· ·--------------· . . . . 
* LOP * * l!OP * • • • * .......•......•.. . ............... . 

LOP Ill PR, ROP Ill PS 

LOP Ill llEllOPY, ROP Ill PR 

LOP Ill PR, POP Ill llEl!ORY 

LOP Ill l!El!ORY, !!OP Ill l!El!ORY . .... 
*338• 
* E4* . . . 
1 

*****1!4********** 
*LOP, ROP IB !!Ell-• 
*ORY. CALL SLl!I! * 
* UOP BOP,OP * 
*BllOP, §Giii r. sf:L-• 

:.t~.mt.m-..: 

l 
*****P4********** 
*CALL llElllC (lOPI * 
*IllSOT ~LE/Lil Pa,* 
:oh~ic0 dA~PJ ' : 
• OPMD !eoPI. • • ••••••• J •••••••• 

.___! -->1<.-IllSOT _ ___, 

*****G3********** 
::;~~=!----~~!~!: . . 
: OP l'R,D8(X,B) : ...........•..... 

M"l >I 
*****H3********** 
* CALL SADDI! ID= * 
*161 IHSOT(BllOPD* 

!~6a1I~~~a1';H~a! : •• J.~;:.t!~ •••• : 

I ••••J3••······· . . 
* l!ETORM * . . ............... 

PAGE 338 



Chart FG • Open Function Processing Routine (OPEN1) -- CEKOT (Page 3 of 6) 

..... 
•339• 
• A 1• .. . 

OT17S t KEY ..... , , ......... . 
•CEKOC1 377"1• ·---------------· . . 
: LOP : ................. 

I ... 
Bl *• 

• •BRANCH • • 
• • O!I SUTOS •. 

•. OP .• 
•.OPE!!AllDS • • •. .. .. . ·· 

: ••••••••• 339 D1 

: ••••••••• 339 D2 

: ••• •••••• 339 A4 

: ••••••••• 339 ES 

.... 

BOTH IN !IEllORY 

LOP Ill liEGISTER R 

fiOP IN REGISTER ll 

LOP Ill R, ROP Ill S ..... 
•339• 
• .n~• 

tjH• • : Dt•l 1 .... 
SLllll OT18S SLR!! 

*****D1********** *****D2********** 
=~!!!~-----~~~~!: :~.:!~~-----~~~!!! 
• • * • . . . . 
• ~ * • ................. . ............... . 

I ..... J ""' *****!1**..,******* E2 *· •••••EJ•••••••••• 
*CEKllG1 J84A2• .• •. *CEKNG1 384A2* 
•····-·········• .• •. YES •···············* 
* * *· G.i.OBALLY .*->* 
• * •.ASSIGllED .• * ANY S . . ·- .. . . 
·······r::::·· ... ., ·r:" ·······r······ 
•••••F1********** *****P2•••••••••• *****P3•••••••••• 
*CEKIV1 36112• *CEKllY1 38311* * * 
•···············• •·········-····* *CALL IllSOT ~LR * 
: AOP : : LOP : : s.a)(!o~r· : . . . . . . 
·······r=·· ······T:::::·· ······r ..... 
•••••G1********** *****G2•••••••••• ••G3••••••• 
::!~~!2 .... ~2!!!! =~~~!!! .... ~!!!!! *. • • 
* * • •<---• SET R=S • 
: L/LH ii,Il(X,B) : : BOP : *• .. ................. ................. . .......... . 

l o... I o ... 
*****Ht•••••••••• *****H2•••••••••• 
::!~!!!----~~!!!! ::!!!!!----~~!!!: . . . . 
• lOP * * ROP • • • * • ...•............. . ............... . 

o.,,, l o.,,. I .. ... 
•••••Jt•••······· •••••J2••········ 
• • *CEKIJ:t 39711* 
• CALL ll!llAC * •·······-·-····• 
: (l!O~L6Pf PID :->: OP B,D(l,B) • ................. . ............... . 

. 
! 

ROP Ill 
REGISTER R 

OT190 SL!IR 
*****A4********** 
•OT1S4 342A3• ·---------------· . . . . 
• * ................. 

I 
·*· S!'LSR 

B4 *· •••••BS********** 
.••* R *·•. YES :::~!~2----~~~~~= 

•. GLOBALLY • *--->• 
*.ASSIGNED .• • A!IY S •. .. . . • .. • ................ . 

* 110 

onn l .... •••••c4•••••••••• 
~:~~!!.---~~~~!: . . 
: ROP : ................. 

I 
OT194 ! •••••04••········ 

:::!~!!.---~~2~~= 
* * LOP 
* • . ............... . 

I om 
*****!II********** 
•C!Kllllt 381& 1• ·---------------· . . 
* LOP * . . ................. 

J ,.,o, 
•••••cs•••••••••• 
:::!!~2----~~2 ~!: . 
• LR s, R : . ............... . 

I 

1 OPND 
*****DS********** 
*CEK!lll1 381A 1* ·---------------· . . 
* ROP * . . ················· 
:;ii·•-> I LOP IN R. * • ROP Ill S 

OT1;:•• ' SLRR 
•••••ES•••••••••• 
•OT13S 311111* ·---------------· 
* * * * * * ................. 

I 
S!!LSR • *• 

•••••P4•••••••••• PS •. 
•CEKllG1 38412* .• •. •···············* YES • • *· 
• •<---*· GLOBALLY • * 
• Alf T, BOT Q * •.ASSIGB!D • • . . .. .. 
·········1········ •. ·i·:o 

IllSOT OT198 RSLT 
*****Gii********** •••••GS•••••••••• 
•CEKllI1 397A1* *C!K!IY1 383A 1* ---------------· ·---------------· . . . . 
• LP T, P * • lOP HOT Q * . . . . •................ . ............... . 

I om• L. 
•••••Hll•••••••••• •••••HS•••••••••• 
• • •C!Kllll1 3811 t• . . ·---------------· 
• p " T • • • • • * BOP • . . . . .....•........... . ............... . 

l O"' I mM •••••Jll•••••••••• •••••JS•••••••••• 
•CEKllV1 38111• *CBKII1 397A1* ·---------------· ·---------------· • •--->• • 
: AOP : : OP P,Q : ................. . ............... . 

0,,,, 1<.--------------------------------------------------------------..1 
*****K2********** 
:ctLLx~18~1a~S; ! • ••••ic3••••••••• * 
• o>,6.s1 1r~•sor *->• aETu11 • 
• JSR R ll ASH * • • 
:. n~~~z.!2.n.: ••••••••••••••• 

PAGE 339 

section 8: Flowcharts 553 



Chart FG. Open FUnction Processing Routine (OPENl) -- CEKOT (Page 4 of 6) 

OT125 SLllll 

*****A 1********* * 
: ENTER : ............... 

I 
.•. OT130 ·*· OT130· ·*• OT133 

B 1 •. B2 *· Bii *· *****B5********** 
• * *· • * •. • • *· * S'!!T AOP=LOP, * 

.• TREE •. NC .• LOP *· NO ·* ROP *· NO * BOP=ROP * 
*·•. SIGN + •• ·"-->*·•. SIGN + .•·*-------------->• ••• SIGN + .•·*--->:BR~~'.:~~ROP~~~N : 

•. • * •. • • *· .• • * •. . . . •. . . •. . . . ............... . 
;m l"'i ,"' 

• *• OT131 

1 

C2 *• *****C3********** *****C4********** 
• * *• * SET AOP=LOP, * * SET AOP=LOP, * 

·* BOP •. NO * BOP=ROP§ * : ~~6p~~i6, : 
•• •• SIGli + •• ·*->:ea'i'~':~N~~=A~N= : •SGli='-'. OP=A• • 

*· . * • • • • *· . • ••••••••••••••••• • •••••••••••••••• 
* YES 

l •••••02••••······ 
* SET AOF=ROP, * 

: g~~p~m, =-->= G2 : 
*SGll='-', OP=S* * A * * . . . I .... ................. ~----~ 

·*· OT128 •*• OT129 
E1 *· EJ *· *****Ell********** 

• * •. • * *• * SET AOP=ROP, * 

•=* SI~~p+ *=•·-"-
0
------------->•:* SI~~p+ *:~>: ~~p~gji : 

*· ·* *· •* * SGR= 1 + 1 OP=S• * .... .• •. ·* • • ·- ... ·- ·* ••••••••••••••••• 

J"' ""' i "' 
Fl *· *****F2********** *****F3********** 

·* *· * SET AOP=LOP, : * SET AOl?=LOP, * 

.:· SI~~p. ·=~>: g~gemr.. • : gm~m. : 
*• .• •SGN=•+•, OP=A* * *SGH='-'• OP=l* * ... .• . . . . *· - * ••••••••••••••••• • •••••••••••••••• 

* * <.-------------------------------~ .... *j YES : •::• !_>l 1 
0T126 

*****G1********** 
: sE~0~~Eo~op. : • *** *G2*********. 
* BROl?=BHf., *--->* RETORli * 
*SGH='+', OP=S* * * * * • • •••••••••••••• ................. 

554 

*ACCORDING TO TYPE OF FOliCTIOli 
S = SH, S, SE OR SD 
A = AH, A, AE OB AD 

PAGE 340 



Chart FG. Open Function Processing Routine (OPENl) -- CEKOT (Page 5 of 6) 

OT135 SLBR 

*****Al********** 
* ENTER * 
* * ............... 

I 
·*· OT142 ·*· OT144 ·*· OT145 

B 1 *· B2 *· B4 *· *****BS********** 
.•·*TREE *·•.NC ... •·* LOP *·•.NO •• ·* ROP *·•.NO : ~5~=~8t~~6~=: 

*·•. S.IGN + •• ·*--->*·~- ~Gii + .••*'-------------->*.•. SIGN + ·*·*--->:p~~~·~~t'o~~I!*: 
•• • • •. • * *· • • • •... . • •• • • *· . • • •••••••••••••••• 

. "' _i_ "' .,, " i "' 
C2 *· *•***C3********** *****C4********** 

·* *• * SET AOP=LOP * * SET AOP=LOP * 
·* ROP *· NO * BOP=ROP,BRO~= * : ~~ti!~~.~f~t= : 

*· *· SIGN + J*--->:p~:;• Q~t =~;:, : *•P=R, Q=S, OP=~**• 
•.. -· • * ·- .. • ••••••••••••••••• ***************** i "' 

•••••02••········ 
* SET AOP=ROP * 
: m~Lm~f~t= :_>: G2 : 
:o=R, P=S, OP=&•: t * **** * ................. I 

E1• *· *• OT140 E)• *· *· OT1:i***Eli********** 
·* *· ·* *· * SET lOP=ROP * 

• * LOP *· NC • * ROP *· NO * BOP= LOP fr BRO~= * 
*·*· SIGN+ ·*·*-------------->*.•. SIGN+ 0 ,0 *--->:Q~:;•p~t=~;:&.: 

*· . • •. .• • • *· • * •. • • • •••••••••••••••• 
* YES * YES 

.!. """ l F1 *· *****F2********** *****F3********** 
• * *· *SET AOP=LOP, BOP* * SET AOP=LOP * 

.:* SI~gp+ ·:~>=~~~;,~t;~=:~t~: : m:Rm~f~t=: 
*·*· .•·* : S, 0 =l* : :P=B, Q=S, OP=&•: 

*· • • ••••••••••••••••• • •••••••••••••••• 

* YES l i l :::~::-> <--------------------------------' 
OT136 OT138 

•••••G1********** * SET •vP=LOP * ****G2********* 
* BOP=liuf B&OP * * * 
:p~=L, Q~~~=~P:&.:--->: RETURN : 
* , • • •••••••••••••• 
***************** 

*ACCORDING TO TYPE OP !'OllCTIOll 

f : i:: m 81 i&R 

Section 8: Flowcharts 

PAGE 341 

555 



Chart FG. Open Function Processing Routine (OPENl) -- CEKOT (Page 6 of 6) 

OT149 SLRll OT1511 SL!IR 

•****A 1********* * 
: ENTER : ............... 

l 
• *• OT1 50 

Bl *· *****82********** 
•• • * LOP *• *• 110 :5~=:~p a~ai~a;~ : 

*• SIGN + • ._>*SGN.=•-•.IF NOT* 
•. • • •OP=S• aaoP= BHH• 

*· • * * SGll='-' * 
*· i. ;ES ********j******** 

*****C1*!******** OT151 l 
!5i=~~Pa~5i~e;f. ! •****C 2••••••••• • 
•SGH= 1 +'.IF NOT *->* RETURN * 
* OP=A*BROP=BllL * * * 
* SGH=' +' * ••••••• ******** ................. 

556 

•ACCOilDillG TO TYPE OF F{JllCTIOll 
S = SH, S, SE Oli SD 
A = AH, A, AE OR AD 

*•**A3********* * • 
* ENTER * . . ............... 

I 
• *· OT156 

BJ *· *****Bii********** 
• • • * LOP •. *· 110 !5~=~~P em~e;L : 

*· SIGN + • *--->*SGll=' +•.IF !IOT * 
*· • * *OP=A* BPOP=BllR * 

*· .• * SGH=' +• * ·- . . . ............... . 
* YES 

l I 
•••••cJ•••••••••• OT157 

!oi!s~0~Rg~~:;h : .****C4********* • 

:gi~~;'a~bP~~ih :--->: RETURll : 
* SGM=•-• * *************** . ................ . 

PAGE 342 



Chart FH. Open Function Processing Routine (OPEN2) -- CEKOU (Page 1 of 3) 

CE KOU 1 

*****A 1********* * 
: EllTEB : ............... 

I 
1 .•. 

B1 *· -. •. 
• * BRANCH *· 

*· 011 FUllCTIOll • * 
*• NUllBEll • * 

*· .• .. . -. 
: ••• 45 •••• 343 E2 

: ••• 46 •••• 343 B2 

: ••• 112 •••• 343 83 

: ••• 43 •••• 343 83 

: ••• OTHR •• 343 84 

..... 
•343• 
* B2* .. . 

00100 l 
:••••e2•••••••••: 
*CHANGE OP· CODE* 
*OF "·OP TO DIV * . . . . ················· 

!. .. •••••c2•••••••••• 
*CEKOC1 37711* ·---------------· . . 
* DIV OP * . . ................. 

l •••••02•••······· . . 
* SIGll = LEFT * 
: OPERAllC SIGH : . . ................. 

l ··-

..... 
•343• 
• 83* . . . 
I 

00300 ~ 
• **83••·····. 

* T = I.OP * 
* * POINTER * * . . ........... 

L •••••c3•••••••••• 
*CEKOCl 37711* ·---------------· . . . . . . ................. 

l •••••03••········ 

. .... 
•343• 
* B4* . . . 
! PH4NER 

*****Bll********** . . 
: ·llX450· : . . . .. ................. 

I 
****C4********* . . 

* ERROR EXIT * . . ............... 

: 1~g1~mT1 : 

: ao~a¥mt' :----, . . ..... 
................... •344* 

* A 1* .. . 
E2 *· *****El********** 

·* LEFT *· * • 
• * SIGll = *· llO * CHANGE LEFT * 

*• RIGHT • *->* OPERA ID TREE * 
*· SIGN ·* * SIGN * ·- ... . . ··.·:.. ~·····T······· 

L *****P3***~~!~: •• 
*CBKllD1 31711* ·---------------· >: : . . .........•....... 

I 
- ·- 00120 - ·-

G3 *· Gii *· ·* •. .• • . 
• •QUOTIENT IN•. YES ·* SIGH = *• YES 

*• REGISTER • *--->•. DESIRl!D • *------~ 
*· 1 • * *· SIGN •* •. ·* •. .• ·- .. ·- .. I • 110 • 10 

I .. ,, J ,.... ... .. 
*****H3********** *****H4********** *****HS********** 
* * *CEKII1 39711* *CEKHil 39711* 
* DE·ASSIGI •--·--·-·-··----• •·-····-·-······* : i~mm • : LI 1,0 : : LCR 1,0 : ................. ................. . ................ . 

L •;i ••• ,Jmi .. : _J 
*-CEKlll- ASSIGN * 

>* RESOLT TO *< 
* REllAINDER * . . .......•.•..•.... 

I 
****K4********* . . 

* R!TOll * . . ............... 

Section 8: Flowcharts 

PAGE 343 

557 



Chart FH. Open FUnction Processing Routine (OPEN2) -- CEKOU (Page 2 of 3) 

..... 
*344• 
**Ai* 

* 
i 

. *· 
A 1 *· 

• *ilRANCH *· 
• * ON STA'IUS *· 

•... OF • * 
*· OPEaANDS • * 

•. • * 
·- ... * 

: ••• 1111 •••• 344 D1 

: ••• Rl'l •••• 344 D3 

: ••• llR •••• 344 02 

:.-.RR •••• 345 El 

..... 
*344* 
* *D!* . 

I 

l 
*****Dl********** 
*CALL SELFS (PAili* 

: p!a~r 11m~ : 
* (A~PJ ,_'.r&soT (LE* 
!.{;;.~,m,~LL.: 

l 
*****El********** 
:c1M 11g£11~~goP): 
*INS OT 1L!/ID 6,D* 
: ( ,B)) : ................. 
**** I 

..... 
•344• 
• .o~• . 
l BOP IN 

OU400 REGISTER •••••02••········ 
:cHMW~JB~P~ ·! 
*IF BEG NO.h~N * 
*CALL INSO-.l' LER/* 

: ..... ;2~.sdi ...... : 

""' l •••••.!2********** 
:c15ME~mA~P): 
*lNSOT !LE O~ l.D* * P, D X, B)) * * • . ............... . 

***** *344• 
• .oi• . 

I AOP IN 
I REGISTER R 

00340 ~ RSLT 
*****03********** 
:~~~~!! ____ ~~~~!: . . 
* AOP * . . ................. 

l .•. 
E3 *· *****Ell********** 

•• -· ·- •• YES :c~~L ~n~RJSEL : 
•. REGISTER • •--->* rs&T (LFR ~i * *· NO. ODD • * * LOR P,Q) * •. . . . . *· .. • • •••••••••••••••• 

i NO I 
:3~~· •->I : ••• • !<~~~~~~~~~~~~~~--. t 

OU355 1 SELFR 1' OU52'::f • *· 
Fl *· *****F2********** 

.. * *· *IF AOP SIGN=CUR• 

·= * AO~~g~G~F OF*: ~>=mMtm5ma: 
·- •• BOE' •• •• !cL8~~if~o=0~:P1: 

• ... * ••••••••••••••••• i YES I 

OU540 l ASFR l AS.FR 
•****Gl********** *****G2********** 
* -CEK!!Oi- * * -CEKll01- * 
* ASSIGN P-~ TO * * ASSIGN P-(; TO * 
* aESULT Wl'.IH * * RE- SULT WITH * 
* SIGN OF AOP * * SIGN OP CURR. * 
* • * NODE * ................. . ............... . 

I 
!<~~~~~~~~~~ 
! 

* ****Hl********* * 
: EXIT : ............... 

558 

*****F3********** 
*CEK!IQ1 38812* I 

I :--SELECT·P:Q·--: I 
I : INCLUDING R : I I ....... T ...... . 
I OU360 r-----------' 

*****G3* ********* 

L_*CALL !!E~AC (BOP)* 

;I. N~b~D j£~Pb~ LD: 
: Q,Dh,B)) : . ................ . 

PAGE 344 



Chart FH. open Function Processing Routine (OPEN2) -- CEKOU (Page 3 of 3) 

··- ·*· . *· e2 •. B3 •. B4 •. •••••es•••••••••• 
•• •• •• •• 110 •• ·\=o OB •• •• 110 •• ··a=2 01! •• •• NO :cA~~L~SLiJ~?PJ ·: 

I
>•. a=s ·*--->•- 4 ··--->•. S=2 .*->•SELPR {~-o.s< * 

*· • * *. • * *. • * * INSOT {LE!l/Lbf! • 
··._ ... -· ·- ..... ·• •· •..• ·• : ••••• i,~l •••••• : 

I .... J.:::.... "'1l ••• J.:::.... "'li •• J.:::.... . .... J.mn .. 

AOP Ill llEGISTER R I BOP IN REGISTER S 

***** 
*345* 

•.E!* I 
I BRANCHI!IG 

00500 .•.TABLE ~ 
El *• 

·* *· • * R AND S *· NO 
*· ADJACENT • 

*· . * *· •• • .... 
l"' 

* CALL OPND * •CALL RSLT (LOP)•* *CALL RSLT~ROPJ • * *CEKRI1 397A 1• 
• A'oPJ • as:c.T • • sELFR ~P-o, ai. .. • szLPR ~P-~f si • •---------------• 
: fp~S1 r.i¥~L~r : : Ig~~Tif~~~Loa: !n~b~0 it~a/f.D~: :m P.~.gR LDR: 
: ••••••••••••••• : : ••••• i,iL •••••• : : ••••• ~~~L •••••• : : ••••••••••••••• : 

I ... L .. L .. L. 
•344• •344* •344• 
* F1* * F1* * P1* 

*****D2********** * * * * * • * IF R=O OR 4 - * • * * 
*CALL INSOT,Lf:a~• 
::c.o~1Etpb~oTNO ! 
:.J~mm.~,ii.: 

1 ..... 
•344• 
* P1• 
* * * 

·*· • *· 011570 
F1 *· P2 *· *****P3********** 

• • • • •. •. HO .• • • •. •. HO :c~M if~'g'~ii0 • ! 
•... B.S •• ·*----->*·•. R=4 •• ·*--->: (lO~h6P?PHD : 

•. .• .. ..• . . 
·:c.. ,.,~ ·r.. .. .. , .. r····· 

G1 *· *****G2********** *****G3********** 
• * *· *ClLL RSLT ~lOP) •* * CALL * 

• • B=O OB •. HO •SELPB ,P-~· BLA • • INSOT JLEB/LDB • 
•••• 

4 
•• -*--->:m~'o~~~ {ioP>: :p·~L·M06.~fl!I!! •. .. . . . . 

*·*-;ES ********{******** ********I******** 

I ..... . .... 
•344• •344• 

00560 * P1* * P1* •••••e1•••••••••• • • • • . . . . 
:c•~Mstmo~i ·: 
: CALL als,plo : ................. 

l ..... 
•344• 
• F1• .. . 

PAGE 345 

Section 8: Flowcharts 559 



Chart FI. Open Function Processing Routine (OPEN3) -- CEKOX (Page 1 of 3) 

CEKOX1 OPEN3 

*****A 1********* * 
: ENTER : ............... . ... 

I : FS : 

l .. r::, 
:****81 *********! .. * 82• • *· • .. 
* BiiAllCH ON * • * *• NO 
: FUNCTION NO. : *·•. ~=~fing11_ •• •--> . . •. .• ................. . . 

I • :· I 

C1 *· C2 *· 
.l. ,.... J... J 

.;: 1b 2
' 1:: •. us _.·· •· •. 110 

·-._ \5\ah' •• -·--->•-._VARIABLE •• -· 

•. .• •. -. 
•. -· •. ·* ... NO * 

t 
-*-

01 *· .. . •. 
.• *· Y!S *·.. 26 _.-·---,. •. .• ..... 

*· - • •347• i " .. ::· 
.•. 

E1 *· . . •. 
.• *· Y!S 

•. ·- .• -*--'-l ·- ... . .... 
• •• • •347* i " . ·::· 
. ·-P1 *· -· ... • * 19~ 22, *· YES 

..... _ 3 -··*--'-l 
•. ..• ..... 

... _ -· •347• 
* NO * ,.G~* 

1 . 
-·-G1 *· . . ·-- * *• Y!S 

·-._ 20, 27 -·-*--l .. ..• ..... 
·- - • •347• 

* 110 * G4* ' ... 
l -·-H1 *· ... .. 

.• 35, 36, *· YES 
·-._ 117, 48 -··*--'-l •. .. . . .... 

·- -· •348• * OTH!i * B2* 
I * * 

1 PH411Eli * 
•••••J1•••······· . . . . 
: -111450- : . . ................. 

l 
••••K1********* . . 

* EBRO.Ii EXIT * . . ............... 

560 

01046 - ·-A3 *· *****A4********** 
.•. \op Ill •. •. NO :cA~~11~eL~gv~A): 

>•- A REGISTER • *->• OPllD !LoPl •---, 
•••• •••• : I~siTx(~{H: I •. . • .. ..... , .. J., •• i.... I 

• YES I 

l I 
OX090 • *· I 

BJ *• f 
• * *· I 

-· •. YES I 
•• 110. 15 .• I *• REGISTER • , 

·- .. _ •• ·• I 

cJ:~ l"'ii .. ,c,..,.,.,.., I ""'W"'""" 
-*P:~mT&R;G ... HO l =~mR0U~J;0it+: ~ : CLFAR llRI! : 

*· SELECTABLE • •--->* R) , I!ISOT (LR *-->*ENTRIES FOR P-Q• 
*· .• * P,P) * * * *· . • * • • • •.. • * ••••••••••••••••• • •••••••••••••••• 

* YES 

I 
*****03********** 
* CALL RSLl (llOT * 
*R+l~A SELS1ip+1• 

M~Elik~~h ;!P: 

: ....... ~ .. ~!hi •••• : 

,,,,, l<-~----------~------~-.i 
*****E3********** 
*CALL IISOT~LPB * 
: Qf>P~tI~jO (H : 

• dsodjo~~~o • •••• : •••.• u.i~ ........ : .. • 

I 
* PS * . . ..... 

OX065 OX09~ • !. 
*****F3********** *****Fii********** FS *· 

!fis&:r0 ==Jf ~!~§ : : SELSR-K!!tlC : KO .• • * IM *· *· 
* (13)1 ~hsOT (ST* : (L}~ftR~J~~~t)) :<---*·•.REGISTER .•·* 
: Q, 2 (13) I ! • * •. • * 
••••••••••••••••• ••••••••••••••••• *· .• 

I ' r !ES 

OX092 > i IKSOT 
*****G3********** *****GS********** 
•CALL IllSOT(ST!! * *CElnlI1 39711* 
!s~f.~A 1:~! 3~~~0T! :---------------: 
: (LDR,8 (13)) : :sT P, 1011 (0, 13): ................. . ............... . 

l I 
••***H3********** *****RS*****•**** 
* CALL IHSOR (AD * * * 

: M~ '~~~~i.EP ! :.s~~~g4 ~~~~j> ,<LD.! 
*CALL IHSOT (SD6 * 

: ••• =:~,1:~~ •••• : : •••.••••••••••• : 

""' I .... 1 .... ,, 
*****Jl********** *****JS********** 
* -CEKll01- * *C!ltll'I1 39711* 
* ASSIGI B TO * 01075 •---------------• 
* liESOLT llITH •<--------------* * 
: PROP!R SIGI : : lD P,80(0,13) : .................. . ............... . 

l ••••it3••······· .. . 
* EXIT * . . . ............. . 

PAGE 346 



Chart FI. Open Function Processing Routine (OPEN3) -- CEKOX (Page 2 of 3) 

I 
! AS.fR ••••c.c 1 •••••••••• * • 

* * * -CEKll01- * 
* * * * ................. 

..... 
•3117• 
* G2* .. 

* 
! 

OX30S CEKl!lt'1 01300 • *• 
*****G1********** G2 *· 
*CEKllY 1 38311• • * *• 
•---------------• YES • * LOP Ill *· 

•<---*· l REGISTER • * 
LOP * *· ·* . . •. .. ·······r·-··· ·r, 

*****ff 1********** *****H2********** 
!s~M'lEi!g~~f L : :m5,sm1 ~~iii1 : 
!J~~cl~E kP~ift : : ~f.8~r Lg~itc : 
:.~~.~U~;£dL •• ! : ••••• Jh!L ••••• : 

I I 
•••••J1••········ •••••J2•········· 
*CALL IllSOT (SER/* •ClLJ'. USO'l~LE/ * 
:s~M·Rhof¥'¥o! : LD1~d Sf§GL1 • : 
•~-Q WITH l'ROPEa* *RESUL'l io P-p= * 
: ••••• ~1~u ..... : :.m~:.n2u:1 •• : 

I ,I 
l 

••••12••······· • * 
: BBTOll : ............... 

..... 
•347• 
* Bii* .. 

* 
! 

OX200 • *· OX20S 
Bii *· *****BS********** 

••• \op IN •. •. YES =~A~~L S~LPR o~~gT: 
•• A REGISTER .*->*(LOPl6IL§oT (LD• 

•. • • • S, 8 (13) l • .. .• . . • .. • ................ . 
i " l . 

•••••c4•••••••••• •••••cs•••••••••• 
:ic~h:1tg;~~~~·: :n~~~m2~~~~~,: 
• (L0Pf6 OPHD • :nsoT (LEfi S,R) : 
: ••••• J •• :i ••••• : •••••.•.••.•••••. 

l L .. 
*****Dll********** *****DS********** 
•CALL INSOT JLE * * -CEK!I01- * 
•R,DdX·BU6A PR • : AS¥5G~ :mu : 
: (RS W~T~ PR~~Eio: * PROPER SIGI * 
* SIGll) * * * ................. . ...•............ 

L . >tt.,,.l ...... . 
>• RETURll * 

. .... 
•347• 
* Gii* . . 

* 
l 

OI3SO ••• 

. . ............... 

Gii *· *****GS********** 
•• ·\op Ill •• •• MO =~~~5Ts,mR~PPQ!: 

*• A REGISTER • *->*IISOT ~LllR 6Pl , * 

•·•. .•·• : "mnft8~J· : ,,,.. ··r.. ········r ...... 
•••••B4********** *****HS********** 
:cA~~L~m<L?P> ·: : ~'f>~xI:ro:J~E : 
•IllSOTjSDR 1. •t • * * oho Coll~LEI! • 

:iuH mJ,;~;: :.~2!2:m~m •• : 

..... J.1m... I 
* -CEK!01- * ****JS********* 
* ASSIGI RESULT * * * 
: rao~!i ~m :->: RETORll : . . .............. . ................. 

Section 8: Flowcharts 

PAGE 347 

561 



Chart FI. Open Function Processing Routine (OPEN3) -- CEKOX (Page 3 of 3) 

***** LOAD AND ABSOLUTE VALUE 
*348* OPERA TI NG GENERATED 
* 1!2* DEPEND ON Ol?ERAND TYl?E. 
*.. 6a !eoa:oa LPR READ LPR, LPER, 

t 
OX400 ·*· B2 *· *****83********** 

• •IS LOI? *· *CALL SELSii SEL-* 
.• IN A *· 110 * l!R(R~ l!E!IAC * 

*· •. :~GI~TE: •. •. *--->: (L~~t{~::~?~D (L!I •. . • ••••••••••••••••• I 
* YES 

l I 
.•. OX423 RSLT lox408 ASA'> OR ASI!? c2 •- •••••c3•••••••••• 1 •••••c4•••••••••• •••••c5•••••••••• OX420 

.• -~E6aiH/· *· NO =~:!~.!! ____ ~~~~!! ~ !ci[L 
0iN~J¥N ~PR: : ASSIGN RF.SULT : 

*· ASSIGNED ·*1 * •--->* R{.R). II! NJT r. *---->•WIT!! SIGN OF 01?* 
*. ? • * * LOP * *CA L INSOT (LnR* * TO R * 

•. • .. *.. : ••••••••••••••• : : ••••• ~,~~ ....... : : ••••••••••••••• : 
* YES A A I 

I I I I 
t I .l. 110 I I 

•••••D2••········ L D3 •. t i 
!s~H~ UklRA~: ! .• · • GLeFLG •. •. I • ****D5 ********* • 

: A~l6Pr:ND : >•. •• uP ? • • • • I : EXIT : 
* • •. • • • •••••••••••••• ••••••••••••••••• •. ·* 

I 
*****E2********** * IF OP SIGll + * :':kLa I~S~~ ~5~a: 
•cALf. hsoT (LHR* : ..... ~~,n •••.• : 

I 
t ASAR OR 

*****F2***•****** 
*CEKK!l 1/CEKl!Ol * ·---------------· * ASS IGH RESULT * 
*WITH OP SIGN TO* 
* AR * 
***************** 

l 
* ****G2********* * 
: RETURN ................. 

562 

i YES I 
i SELPB I INSOT 

*****E3********** *****E4*l******** 
*CEKllQl 388A2* *CEKNil 397A1* ·---------------· ·---------------· 
* *-->* GEii ERA TE * 
* Pl * * LER/LDR Pl,6 * . . . . ................. . ............... . 

ASl'B 

PAGE 348 



Chart FJ. Open Function Processing Routine (OPEN4) -- CEKOY (Page 1 of 4) PAGE 349 

CEKOY 1 OPEN4 

**•*Al********* * • * ENTER * • * ............... 
I 
! 

·*· 
Bl *· .• *-. * ERA NCH *· *· ON FUlllC!ION •* *· NU!!BER • * •. . . 
• .. ·· 

: •• • 37. -- .349 
: ••• 44 •••• 350 

: ••• 54. -- -~50 
: ••• 41 •••• 350 

: ·- .J3. -· .350 
: ••• 34 •••• 350 
: ••• 38 •••• 351 
: ••• 49 •••• 351 
: ••• OTBR •• 349 

..... 
•349• 
* F1* * • . 

E4 
Al 
Al 
Gl 
A3 
A3 
Al 
Al 
Fl 

! PH4!!ER 
*****P1 ********** . . 
* -llX450- * * • . . . . 
********j******** 

l 
****G1********* 

* * * EliROii EXIT * . . ............... 

. .... 
*3119* 
* .s:• 

* 
i 

OY100 ·*• SELFR 
Bl.I *· *****BS********** 

. *•*rs LOP *· *· NO :::!~g2·---~~~~= 
*• IN A • *--->* 

*·REGISTER ·* * PR •. . . . . .. r.. . ....... , ........ . 
SELFR • *· . !!E!!AC 

=~~~;g!::::H~m UP ••• • c
4 

•• •• •• m;m::::mm 
: Pl *<---*· GLBFLG • * * * 
* : *· *· * ·* : LOP * 
········j******** *· *. ;~1111 •••••••••••••••• : 

I I I i IllSOT ! RSLT 
*****03********** *****04********** *****05***~~:~*** 
::~!!!! ____ ~2!~!: :::!~_!!----~~~~!* *CEK!llll 381A1* 
* GENERATE * * : :---------------• 
: 1ER/LDR Pl,6 : : LOP : : LOP : 

········;········ ********j***••••• ••••••••••••••••• 

L 'll ..... .!.um.. . ... .,,.L:m .. 
:::~~~!----~~~~~= ::~!!!~----~2!~!: 

>* FIND IllACTI'IF •<---* * 
: FLR : : LE l"R,D (X,B) : ....... T....... . ............... . 

·*· 0!120 IllSOT 
1"4 •. *****!'5•••······· 

• * • ~llACTI'IE *• *• YES ::~!!!2_ ••• ~~!~!: 
•• •• R~gmE~ •• -·--->: L~o~~~f96 

•. ·* • • 

·-r:,M •••••••r~:::•• 
*****G4********** *****G5********** 
::~!!!2·---~~!~!: :::!!!! ____ !~!~!: 
* • • • 
:10 P'R,96 (0, 13): : AOR l"R,l"LR : 

······T::::·· ·······r······ 
*****R4********** 
*CEKII1 397A1* ·---------------· . . 
:1E l"R,96 (0,131: ................. 

orns l .,,. mM 
*****J4********** *****JS********** :-cHm:r CmG111! :::!!!! ____ !~!~!! 
*PROPER SIGN TO •<---• * 
:• FR : : AER PR,l"LD : ....... l....... . ............... . 

****K4********* . . 
* RETOill * . . ............... 

section 8: F1owcharts 563 



Chart FJ. Open Function Processing Routine (OPEN4) -- CEKOY (Page 2 of 4) 

..... 
•350• 
••A~* .. 
t 

OY.200 -*· 
A 1 •. *****A2********** 

• • *· *CALL SELF ii (FRI,• 
.• iS LOP *· NC * !IE!IAC (LOP), * 

*· Ill .*----->* OPNDO:CP) * 
•. aEGISTERS. * * IllSOT (LE/fo * 

*- • __ • • * :.~~M.Jhm •• : i YES I 
OY.ll 0 i RSLT t IllSOT 

*****B1********** *****B2********** 
*CEKl!Yl 383A1* •CEKHI 1 3S7A1• ·---------------· ·---------------· 
: LOP : :LE Fil~~Dt~ (X,B): 

: ................. : :.~~~,2::u,n •• : 

L I 
OY.205 ~ 

•••••c1•••••••••• 
*If LOP=OPSIGll * 
:mLF~~S~Tm~R: 
•CALL IN~OT (Led• 

:m2~.~=Mm.: 

l 
! ASFR •••••01•········· * -CBKl!Cl- * * ASSIGll RESULT * 

•WITH SIGN OF OP* 
* TO FRl * . . ................. 

I 
****E1********* . . 

* llETURH * . . ............... 

..... 
•350• 
* * G!* . 
t 

OY300 • *· OY305 
G1 *· *****G2********** • * *· *CALL RSL'I ~LOI.'),• 

.:* 1 5r~0 1i ·:...:::____>: a~~mAwi~a : 
*· REGISTEilS. * *PROPER SIGN TO * 

*· . * * FR2 * •. i- :o ••••••••i•••••••• 

! I 
•••••H1••········ I 
:cA~~11mrng~1 • : 
• OPHD (LOPl, • I 
:nsouL~1 Fa,D•4: 

·······'i·~······ 

..... ,,.l.mi... I 
* -CEK!!Ol- * ****J2********* 
* ASSIGN RESULT * * * 
* WITH PROPER *->* RETURN * 
* SIGH TO Fli * * * . . .............. . ................. 

564 

..... 
•350• 
* A3* ... .. 

I 
I 

OY400 V KEY 
*****A3********** 
:~:~~~2----~!Z~!! . . 
: LOP : ................. 

I 
-·-B3 *· 

• *BRANCH *· 
-* ON KEY *· 

*· OUTPUT -* *· PAliAllETER-* •. . . 
• .. ·· 

: • - • - • - ••• 3 50 !II 

: ••••••••• 3 50 D II 

=~ ......... 350 E3 

: ••••••••• 3 50 D 3 

.... 
•350• 
• 03 •-, . . i ..... 

OY450 RSLT 
*****D3********** 
•CEKllYl 38311* ·---------------· . . . . . . ................. 
•••• I 
•350• 1 • !!3 •-> . . .... 

OYll30 
****•E3********** 
:cmA~EkF~~~L!> : 
*(Al Ill~O~ ILE/LD* 
: PA,D(X,SIJ : 

***••············ ..... I 
*****F3********** 
*SET FA HON-SEL * 
* FLAG. CALL * 

:~fLm:~hR~m: ................. 

A IN !IEllORY, B IH !IF!IORY 

A IH Fl, B IH llE!IORY 

A IH llE!IORY, I.' Ill PB 

A IN FA, 8 IN F!l ..... 
•350• • .. o:• . 

I 
OYll20 ~ RSLT •••••o4•••••••••• 

*CEKl!Yl 383A1* ·---------------· . . . . . ...•............ .... I •350• 
* Ell •-> . . .... 
*****E4********** 
:cA~MErm6: 
• UI 1.I~sbf<LE( • 
: tD l"l,D(X,8) : 

········i········· 
OYllOS l 

*****F4********** 
*ClLL SELFR Sfl L * 
* I!ISOT (LER~iDH * 

: m:Aif>:g ~~) : . ............... . 
I 

*****G4********** 
* CALL * 
: ~~sgT PW? : 
•usof f16;A~ ?c• 
• 96/80 (0, 13) I • ................. 

I 
*****H4********** 
!itL~cn~2T ~aEt: 
•1311 .. hsof(l1~1 • 
: !ID l"C,t(X,B)) : ................. 

I 
OY410 ~ 

•••••J3••········ •••••J4••········ 
:::~~=!----~~!~!! :mL rl~W <m~: •****JS•••••••••• 
• HER FC.r. PB oa ·--->• (ASGH RE~hT •---->• RETURN • 
* llDR F1.:, PB * * WITH PROPER * * * 

: ••••••••••••••• : : •• ~1;:.I2.!~L •• : *************** 

PAGE 350 



Chart FJ. Open Function Processing Routine (OPEN4) -- CEKOY (Page. 3 of 4) 
PAGE 351 

..... 
•351• 
* A 1* .. . 

l 
OY500 i 

*****A 1********** 
:::!~=~----!!2~1: . . 
• LOE * . . ................. 

I ... 
81 •• 

• *illiAllCH • • 
• • Cll STATUS *• 

*· OF •* 
*• 0.l?BRAMDS • * .. . . • ... • . 

: ••• 1111 •••• 351 Dl 

: ••• a11 •••• 352 e1 

: ••• ll!i •••• 352 1'!3 

: ••• aa •••• 352 B4 

.... 
*351• 
• D1 I BOTH IN 
* * llEllORY .... 

SELSB 
•••••01•········· 
:::!~:! ____ ~~~~!: . . . . . . ................. 

I ... " *****El********** 
•CEKl!Vl 36112* ·---------------· . . 
* LO.I? * . . ................. 

I,.~, 
*****Fl********** 
:::!~!!----~~!~!: . . 
: L/LH l', D (X,B) : ................. 

I 
1 Ol'llD 

*****G1********** 
*CEKH1 38111* ·---------------· . . 
* LOP • . . ...•.....•......• 

I ..... 
*****H1********** 
:::!~:! ____ ~!~~!: . . . . . . ................. 
PH:-->t .... 

llEllAC •••••.J1•••······· *CllKllV1 36112* ·--------------· * • * ROP * * • ................. 
l ,. ... 

:~;:m····~;1:;: ~ 
:---------------~ 

: LU P,l' : ................. 

ASAR 
*****D2********** 
::~!~!!!----~~!~!: >: Q TO RO.I? : . ................ . 

I ,,,, 
*****E2********** 
•CEKl!lll 38111* ·--------------· . . 
* RO.I? * . . . ............... . 

'"~' *****F2********** :::!!!! ____ ~!!~!: . . 
: LH/IQ,D (l,B) : . .....•.......... 
:m. I • G2 *-> . . .... . .. . .. 

G2 *· GJ •. .. .. .. •. 
•* BOP *• 10 .• ROP *• !llS *· SIG•= TREE • *->•. SIGI PLUS • •-i *· SIGI •* *· ·* .. .. .. . . .. .. . ... J"' i.. :::::: 

82 *· *****H3********** .. .. . . 
.• BOP *• YllS * * 

*• SIGI PLIJS .•--->• OP • BIL * .. .. . . ·- -· . . :-::• ~~ .,-:o ••••••-1••••••••• 

. ... 
IIS01' •••••.J2••••······ •••••JJ•••······· 

• • •CBKII1 397A1* . . ·--------------· * OP=B•H *->* * 
: : : LTR Q,Q ! .......•......... . ............... . 

L ... 
*****K3********** 
*CEKllZ1 36312* ·---------------· . . 
* D=6 * . . . ............... . 

{ .... . . 
* G4 * . . .... 

.... . . 
* Gii * . . .... 
! IISOT 

•••••Gii********** 
•CBltlI1 39711• ·--------------· . . 
• 01' D(O,B) * . . . ............•... 

L.~ 
*****Hll********** 
•CHllI1 39711 • ·---------------· . . 
* Liii P,P * . . ...........•..... 

1 .... 
•••••.Jll•••······· 
•C!KM 1 39 U 1 • ·---------------· • ASSIGI B!SllL1' • 
•TO R llITB SIGI * * OF 1'11lB * . ............... . 

I 
****Kii********* . . 

• RETORI * . . ............... 

Section 8: Flowcharts 565 



Chart FJ. Open Function Processing Routine (OPEN4) -- CEKOY <Page 4 of 4) 

****• •352• 
•.a!• 

* I 

i LOP Ill 
OY600 - •. iiEGISTEli R RSLT 

B 1 *· *****B2********** 
.• R *· •CEKl!Yl 383A1* 

- * GLOBALLY •- NC •---------------* 
*· ASSIGNED • *--->* *· ? • • * LOP •• ..• * * ••• * ••••••••••••••••• 

* YES I 

I I 
OY605 i SELSli I •••••c1•••••••••• 

•CEKKG1 384A2* I 

r--------------~ 1' ................. 
I I 

•••••D1•••······· ~1:11 * CALL INSOT (LR * 
* T Ri, * •OPND (Ll:c • SET * 
: R= : ................. 

I 
1<----- ·-----

OY505 ' SELSR 
*****E 1********** 
=~~~~:! ____ ~~~~~= . . 
: ANY S, NOT ii : ................. 

566 

..... 
•352• 
* .ai• . 

I 
I ROP IN 

OY610 ~ REGISTER 
*****B3********** 
:~mc1EMf !~~~ : 
*SOT (L/LH RtDhX•* 

: ai i~mEJe? · : . ............... . 
I 
I 

***** *352• •.sr 
* I 
t OPERANDS Ill REGISTERS 

OY620 . *· R AND S 
B4 *· . • *· !****B5*********! 

• * R *· NO * CALL * ·- •. ~~mm .. ··--->:a;Lmge'<~gi> si: 
*· ... * • .. * 

*· . • ***************** i YES 

OY625 * *****C4********** 
: mLsfELm&t : 
• (LR T. R)tOPllD * 
: (LOP) • S'E R=T : ................. 1,~ 

~---------J---------~ OY555 i IllSOT 
*****04••········ 
* * . . 

LPR R, R * * * ***************** 

.J .. 
*351• 
* G2* 
* * * 

PAGE 352 



Chart FK. Open Function Processing Routine (OPENS) -- CEKOZ (Page 1 of 6) PAGE 353 

CEKOZ 1 OPENS 

****A 1*'******* . . 
* ENTEfl * . . ............... 

I 
. *· 

Bl *· . . • . 
• * BRANCH *· 

*· ON FUNCTION • * 
*· NU!!BER • * .. .• 

• .. ·· 
: ••• 72 •••• 356 E2 

: ••• 73 •••• 357 1!1 

: ••• 74 •••• 357 Bii 

: ••• 75 •••• 358 BJ 

: ••• 76 •••• 353 B2 

: ·-. 77 •••• 354 B2 

: ••• 7d •••• 354 E4 

: ••• 79 •••• 355 B2 

: ••• &0 •••• 355 B4 

: ••• OTHR •• 353 G1 

..... 
•353• 
* G1* .. . 
i PH411ER 

*****G1********** . . . . 
* -NX450- * . . . . ................. 

! 
****H1********* . . 

* E.i<ROfi EXIT * . . ............... 

. .... 
•353• 
* E2* .. . 

OZ100 l KEYl 
•••••a2•••••••••• ••B3*•••••• 
*CEKO!il 378A1• * • 
•---------------• * SET SIGN = * • ·--->• 0 • 

LCP : * * * * ..•.............. . ......... . 
l . *· SELFR 

C3 *· *****CU********** . • *· *CEK!IQ 1 38812* 
• * OPERAND *• NO •---------------• *· IN A .•--->* * 

*• REGISTE!i .• * * .. .• . . •... ... . ............... . 
i"' I 

SELFR • *· ~ llE!IAC 
*****D2********** D3 *· *****Dll********** 
*CEKllQ1 388A2• • * *• *CEKllV1 36112• 
•---------------• OP • * *. •---------------• 
• •<---*· GLBFLG • * * * 
* Pl * *· • * * LOP * . . ·- . . . . ................. •. .. . ............... . I • DOllN I 

I .... , . .,,, l ."' I .... 
*****E2********** *****E3********** *****E4********** 
*CEKHI 1 39711• *CEK!!Yt 3831 t• *CEK!1111 38111* ·---------------· ·---------------· ·---------------· * GEN EBA TE * * * * • 
* LER/LDii Pl ,6 * * lOP * * LOP * . . . . . . ...•............. ................. . ................ . 

L •:i ••• ,,.L:m.. _ ..... .I.mi .. . 
*CEKHI1 397A1* * ·• ·------------:----· . . 

>*llER R,R OB !!DR •<l* -CEKOQt- LOP * • R,a • • • • • * • ..........•...... . ............... . 
:m. I I * G3 *-> . . .... 

OZ120 AS.PR IllSOT. 
*****G3********** *****Gii********** 
* • *CEKHt 397A1* 
•-CEKll01- ASSIGN• •---------------• 
• RESULT ro B * • • 
:· ilITH S IGll : : LE/LD R, LOP : ·······•·········• ................ . 

I 
****B3********* . " * RETURN * . . ..........•.... 

section 8: Flowcharts 567 



Chart FK. Open FUnction Processing Routine (OPENS) -- CEKOZ (Page 2 of 6) 

..... 
•354• 
• B2• .. . 

oz 150 l 
•••••82****•***** 
• CALL KEYi.SET • 
• SIGN=CP SIGN • 

;oP~~i!8~~ 0sfW : ................. 
I 
r --
~ •••••c2•••••••••• 

*TEST= EXCLUSIVE* 
•CR Of' TilEE AND * 
* e;:;G/ l!E!'IO&Y * 
: SIGNS : ................. 

l 
OZ170 ·*• 

!****D1* .. ******: .• g~EBA=D•. 
* YES • * IN A *· 

Q=BEQ 110. *<---*· REGISTEa ·* 
• •. '? -· . ·- -· ••••••••••••••••• ·- ·* 

568 

* !10 

l •••••!2••········ 
:cA~~11~~Lmo>,. : 
* EDIT !LOP~ * 
:nso\J~f~L 'Q,: ................. 

I 
t ASi'R 

*****P2********** • * 
•-CEKll01- ASSIGN* 
: Q TO LOP : 

• * .................. 
I 

"'"' ,j 
!****G2*********: 
*CALL OP!iD JLOEt I* 
:~wmp~ ~i~q ................. 

..... 
•354* 
• .e~• . 

I 

OZ200 i 
*****B"********** 
:~m=Hm~m·: 
* Oil OF OPND * * REGfllE!IORY * 
* SIGN. * . ............... . 

I 
l 

. *· 
CLI *· . • *· 

OZ210 
:••••cc;•••••••••: 

·* OPE~AND *• YES * * 
*· Ill F.EGISTE!! ·*--->* Q=!!EGllO. * 

•. ? .• • * •. .. . . •. ·* ••••••••••••••••• 
* 110 

I 
*****D"********** 
•CALL s:ELFF io1 , • : m~C lt8pJ 1 

: 

:moT~5~{~D 6, : ................. 
I 

l ASFR 
*****!'II********** . . 
•-CP.Kft01- ASSIGN* 
* Q TO OPERAND * 
* • . . ................. 

,,,,, I, _________ __. 
•••••1'4••········ 
*CALL OPllDJLOPl ,• 
:snmpL~RTLA~·= 
*R, o~1,xJsoT1c11u • ! •• ~ •• ~.~'iL •••• : 

I 
*****Gil********** 
* CALL * 
: I~sgt <mb~Oli : 
: (l!d;~h P,Q). : ................. 

1 ..... 
*353• 
* .Gi• 

* 

PAGE 354 



Chart FK. Open Function Processing Routine (OPENS) -- CEKOZ (Page 3 of 6) 

..... 
•3SS• 
• 82• . . . 

OZ250 l •••••a2•••••••••• 
=~m=Hm~m-: 
*OR OP OPllD SIGll* 
:uo R~~~=EllOBY : ................. 

I 
OZ260 • *· 

!****C1*********: * C2 *· *· 
* • YES • * Ill A •. 
•Q= REGISTER 110.•<---•. REGISTER ? ·* . . •. .• 
• • *· -· ................. • ... • 

* 110 

I 
*****D2********** 
*CALL SELPB (Q), * 
: ~mcmei. : 
* IllSO~ dLE~£o • 
: •••• ~,~.?L ••••• : 

l .... :••••!2••·······: 
•-CEKll01- lSSIG11• 
* Q TO OPERlllD * 
* • * • ................. 

""' ,, 
*****P2********** 
•CALL OP11D JLOPI , • 
:smg~e LML8h ·: 
*P,Q~r,I~SOT(llER • 
: •• , •• :.?t.iL. ••• : 

I 
*****G2********** •CALL USOTJllER~• 
:11g:RP~8h ~so ! 
• (Ill~T (llER}ll~i • 
* P,QI * ................. 

! ..... 
•353• 
• G3* .. . 

..... 
•3SS• 
* Bii• .. . 

OZ300 ! 
!****Bl&*********! 
:cA~Mmfo~!T : 
: OP. SIG11 FLAG : ................. 

I 
.•. · OZ30S c11 •. •••••cs•••••••••• 

• * TYPE *• *IP OPID=DESXRED• 
• * REAL *· 10 * SIGll CALL * 

• ••• AST~~l:Slt •• ··--->: wm~·mt· : 
•· •..• ·• :.mm;Mm.: i "' 

•••••011••········ *IP OPRD=DESIRED* 
• SIGR, CALL * 

: wm!·mt·: 
:.mm;!.2m.: 

/,:---J 
OZ310 • *• OZ320 

Ell *• *****l!S********** 
.•OPERlllD*. * Sl!T Q=Rl!G RO. * 

•:* u~MEa *:•.!!:..__>! cm ~rLbm ! 
•• •• ? •• •• : J~g~> ,~gm : ··r· ··· ·· .. r····· 

*****Fii********** *****PS********** 
!c8m cifim IJ~a: * I9 g~~L£E/LD : ! a c

5
o•s ll'r\ • :m8i WmEI i,! • dsoT(DER/~h • 

* CORSTlllT * :*****?t.21******: 
********lj******** ! 

..... 
•353• * G3* 

*****Gii********** * * 
*CALL llElllC~LOP) * * 
:0Pllm0:hs8~' : 
: (D~/ D~ R,LOP) ·: ................. 

! ..... 
•353• 
* G3* . . . 

Section 8: F1owcharts 

PAGE 355 

569 



Chart FK. Open FUnction Processing Routine (OPENS) -- CEKOZ (Page 4 of 6) 

..... 
•356• 
*.a~• . 

OZllOO l 
•••••a2•••••••••• 
*SET RESDU SIGN* 

: mmoTmH : 
:CALL KEY1 (LOP)·: ................. 

I ··-•••••c1••········ C2 *· 
:cA;~lli~Lfg~C-P) ! NO ••• *0¥PtND•. *· 
*OPND(LO~).EtfT *<---*· REGISTER ·* 
:<L~~)fJI~~~~-(L/: *·•.? .•·* 
·······'••••Jr•••• • .. • 

570 

I * YES 

I I 
oz•l30 i •••••n2•••••••••• * • . . 

:P= REGISTER NO.: 

* • ................. 
I 

• *· OZll35 • *• OZllllO 
E2 *· E3 *· *****Ell********** 

• * *· . *P EJEll *· *CALL OPllD (LOP) , * 

.:· e=1 ? *:•-110--->•:*08t8a~M-1*:•~>: ~f~0h~0a~~~. : 
*· • * *· ASSIGllED • * *P=Q+ 1, B 1=Q• 1. * 

•. .• •. ? • • * • ·r.. ·r, ·······r······ 
*****F2********** *****F3********** *****f'"********** * • * * * IF TEST=PLOS, * 

: o=o : : o=P-1 : :RE~~IT0~1mL : 
: : : : :IF llOTf.R~ET OP=: ................. ................. . ............... . 

"'"' I <-R-SL_T ________ _, 

*****G2********** 
:::~~!! ____ :~:~!: . . 
: LOP : 

~------O-Z11_1_0 __ , [ ,.,,, 

*****H2********** 
:::~!!! ____ :~Z~!: . . 
: llR C, P : ................. 
:m. I 
* J2 *->I 
=••• • I 

OZll20 ~ •••••J2•········· 
: ~~II Q~gf. mt~ : 

I 
I 

: F~~AhmL :<-----------------_, 
* RESULT (TOP) • * ................. 

l 
* ****K2********* * 
: RETDRN : ............... 

PAGE 356 



Chart FK. Open Function Processing Routine (0PEN5) -- CEKOZ (Page 5 of 6) PAGE 357 

***** *357• 
*_Bl* 

* 

I 
ozq~o i 

*****B 1 ********** :m1smlAim·: 
:~m~mos~~k: 
* * ***************** 

l 
. *· 

C1 *· *****C2********** 
• •" *Ci~a~ND*. *· NC :mh mo~~~A~): 

*· REGISTER .*----->* (LOP) ,ASAP * 
*· ? • * * (ASGN Q TO LOP)* 

*· . * * OPND (LOP). * 
*· . * *************).*** * YES I 

I I 
0Zll60 i i 

:****01 **•******! :****D2*********: 
*1)='1EG ~O. CALL * *CALL EDIT (LOP),* 

!QfE~mPiM?: ! ! mom{~a Q, ! 
* * * * ***************** ***************** 

I 
>I 

OZ457 V 
!****E2*********! 
* '11=P R2=Q * 
*TE!IP=P P=R R=Q * 
* Q=TE!IP * 

* * ***************** 

l 
*****F2********** 
* * *IF TEST=O, SET * 
*OP=LR. IF NOT, * 
* SET OP=LCR. * 

* * ................. 
I 

*****G2********** 
* * 
:Q~~f~Im~T m : 
: Q,R) • : 

***************** 

1 ..... 
*356* 
•.J!* 

* 

***** *357* 
* .9~* 

* I 

OZ500 ! 
:****B4*********! 
:cm HWmi·: 
: SIGN. : 

***************** I 

I 
! 

·*· OZ510 
C4 *· *****CS********** 

.*OPERAND*. * SET Q=R1'.G !10. * 
• * TN A *· YES *CALL S ELDR~P R * 

• ••• RFGI~TER ·*·*---->: NO'h8if? Nf> : 

*· ·* * * • •• * ••••••••••••••••• 
* NO I 

J, I 
*** **04 ********** 1' *CALL S ELDP ~p, Q) * 

:s::mJ?>. A~A~tc : ,:': * (ASGN Q TO LOP)* 

: •• mrnm ... *.: 
I 

I 
! OZ507 ~ 

*** ** E4 ********** *****ES********** * * * S'!!:T R2=Q R1=R * 
*CALL FDIT (LOP),* *TE!IP=P P=!< R=Q * 

: INSO[d~(~H Q, :--->:I~s6fn'.R ~t~i2): 
* * * • ................. . ................ . 

I 

l 
*****F5********** 
: ~!H.mg~m: 
•Q,.,), INSOT ("R* 
: Q,R) • : 

***************** 

..L 
*356* 
* .J~• 

* 

Section 8: Flowcharts 571 



Chart FK. Open Function Processing Routine (OPENS) -- CEKOZ (Page 6 of 6) 

..... 
•358• 
• .ai• 

* I 

OZ550 l 
:****83*********: 
:cm HW~m·: 
: SIGN. : ................. 

l 
OZ5o0 • *· 

*****C2********** CJ *· * SET Q=REG NO. * • *OPERAND•. 
*CALL SLEDR IP R * YES • * IN A *· 
: NOT (~bf!) ?FN6 :<---*· "· i<EGI~TER • *. * . . •.. .• ................. • ... 

572 

.. 110 

l 
*****D3********** 
*CALL SELDR~P l R) • 
:sE~I~~f~ ·MRc ! 
* (ASGN Q TO LOP)* 

: •• m~.Hm ••• : 

I 
! 

!****E3*********! 
*CALL EDIT (LOP) , * 
: I NS Om(: ff Q : ................. 

I 
'--~~~~~-OZ_5_5_7~->i 

*****P3********** * SET R1=R R2=Q * 
*TE!!P=P P=R R=Q * 

:IN~oi,fVit~~2): 
:m~"I!U.~,.~ •• : 

I 
*****G3********** 
* CALL INSOT !llR * 
:s: ~l . 1mzT ~~ : 
: Q,R). : ................. 

.. L 
•356* 
•• J~• . 

PAGE 358 



Paqe of GY28-2019-1 Issued February 1, 1972 by TNL GN28-3215 

Chart FL. Open Function Processing Routine (OPEN6) -- CEKOM2 <Page 1 of 2) 

CEICOM2 OPEN6 

••••Al••••••••• . . 
• ENTER * . . ...... T ...... 

.•. 
Bl •. .. .. 

.• BRANCH *• *. ON FUNCTION • • 
•. NIJMBER .• .. .. ··c ..... . . 

* I • .. . 

OM20S 

.... . . 
• A2 • . . ·r 
.•. 

A2 •• 
.• LOP •. 

YBS • • GLOBALLY •. NO 
.--•. ASSIGNED OR .•-------------------------------------------------------------------. 

t •.NON-.• .. ... . .... 
•• •• •359• 

•••• • • Bii• . .... . . 
• H4 •359• • 
• • B2 ·--. I 
····:.-..~ ! ~ 

OM200 • *. OMlSO • • • B2 •. •••••B3•••••••••• B4 •. .. .. . . .. .. 
YES.• LOPIN •.NO * • NO.• LOPIN •.YES 
.--•. A REGISTER .•-------->* OP = L •<-------•. A REGISTER • •----------------> I •. .• • • •. .• 
~ .. .. . . .. .. 

: ·:;·: . . . . . ········1········· :;~i· ~~ ~ .. .... : ... · ~ 
OM102 .SELSR OM100 • *· OMl.10 RSLT 

•••••C2•••••••••• •••••C3•••••••••• Cll •. •••••CS•••••••••• • * •CEKllGl * . • •. *CEKMY1 * 
* * •---·-----------• NO • * LOP IN *. YES •---------------• 
• OP = LH •-------->• •<-------•. A REGIST!a .•-------->* 
• • • R • *• .• • LOP • • • • •• •• • #• 

~:·····:c.... . ...... T=.. ··.·· ........ [ .. . 
D2 •. •••••D3•••••••••• •••••DS•••••••••• 

•••• • • •. •CEKMVl * •CEKMKL * • * YES • • LOP IN •. *---------------• •-------------• 
• A2 •<----•. A REGISTER .•<--. • • .---------------->* • 
* * •. • • 1 * LOP • * LOP, S * ..... .... .. .. . . . . 

:::i: ··. .. ::~i: ........ 1········· ········1········· 
! PHllMER OPND •••••E1•••••••••• *****E3•••••••••• • • •CEltMWl • ••••ES••••••••• . . ·------------· . . 

• -NX4SO- • • • • RETlJRN • 
• • * LOP • • * . . . . .............. . 
········1·· .. ··-- ....... 1........ "'"" ·1 

11'3•*·•. •••••n• •••••••• •••••FS• .~~••• ••••Fl••••••••• .• *• •CEDII1 * •CEKMMl * 
• • •* T!'PE '" •. YBS •------------• •-------------• 
: ERROR EXIT : *• •. LOG•ll .• • •------->: OP R,DIX,B) : : ~l~HR~Uf;i• : .........•..... .. .. . .. . . .. . • •................ . ............... . 

. .. ...-.I.um.. .. .... J.lw.I .. 
•CEltlUl * •Cl!ltNil * ·----------,..---· ·--------------· -------------->* • . -->• • 
: SR R,R : : LR GR,R : ................. . ...•............ .... . . 
• 8111 ·--. 
• .... • I 

~ SELSR •••••e11•••••••••• 
•CEKNG1 * ·--------------· • • 
• GR * . . ........ [ ... 
.... .., ........... . 
•CEKMIJ. * ·--------------· . ·----
• LOP * . . ......•.........• 

Bl. •• .3 ••••• 360 01 
•• ·"· •••• 360 01 ••• 6 ••••• 360 11'3 
•• • 1. •• •• 360 B2 
••• 8 ••••• 360 F3 
• •• 9 ••••• 3S9 C4 
•• .10 •••• 3S9 Bii 

:::U::::mR~ 
••• 21 •••• 360 B2 
••• 211 •••• 360 01 

:::~a::::m Rl 
••• 29 •••• 360 B2· 
••• 30 •••• 360 F3 

:::~i::::m ~~ 
••• OTBR •• 3S9 El 

A2. SBLBCTABLB 

Fii. SXGN • EXCLUSIVE OR 
OF MEMORY SIGH AND LOP 
TRD SXGN 

CS. SXGN • EXCLUSIVE OR 
OP :RBG SXGR AND TRBI 
SIGll 

PAGE 359 

section 8: Flowcharts 573 



Page of GY28-2019-1 Issued February 1, 1972 by TNL GN28-3215 

Chart FL. Open FUnction Processing Routine (OPBN6) -- CEROM2 (Page 2 of 2) 

PAGE 360 

••••• CALL REGISTER R 
•360• 

OM300 

• B2• .. 
r 

OM350 ... B2 *· .. . . 
• • LOP IN *· NO 

•. A RBGXSTJlll .•---. 
•... ? •• ·• I .... 

[ 
•••••c2•••••••••• 
•CEKMYl • ·--------------· . . 
• LOP • ..... . . I .~::··· .. r· ... M 

Dl •. •••••D2•••••••••• 
• • •. •CALL SBLFRCfRR>• 

•• LOP XN •• NO • MEMAC CLOPS. • 
·-.~ RBG~sTER_ •• •-------->: I=cHi'°K.Ao : 

•• •• • (13)). • ··.-;.. ········r······ 
•••••B2••········ *CLEAR MRM EMTRP 
• FOR R.CAu. * 
: INS<[I.Mf_R,D: . . ................. ..... 

"'"" 1 <-------- ..... , 

•360• 
• F3• .. 
i 

• •. OM420 • •. OM425 RSLT •••••Fl•••••••••• •••••F2•••••••••• 
!~ ~~Jh ! !Rct~MfFf<Aw ! 
• (LOP)~ hiSOT ·-------->*Cm Rfteet~· 

=~id!:&~.= ::iM:rur..: 

574 

•••••G2•••••••••• •CALL SADDRU>=O• •INSOTlBR D JQ.i. • 
:R~>~smfil~ : 
• RESULT TO R) • • ········r······ 
••••B2••••••••• . . 

• RETURN • . . ............... 

P3 •. F4 •. •••••FS•••••••••• 
.• •. .• •. •CEKMYl • 

.• I.DP IN •. YES .• GLBFLG •. NO •-------------• 
•. A RBGXSTBR .•------->*. UP ? .•-------->• • 

•. ? .• •. .• • LOP • .. .. .. .. . . .. .. .. .. . ............... . 
1"° [. 

•••••G3•••••••••• •••••G4•••••••••• 
•CALL SBLFRCR), • •CBKllQl • : ~lmH.Wf1 • : :--------------: 
• XNSOT Cff ft,O • • Pl • =··-!!rm·= =··-·I:·= 
•••••83•••••••••• •••••B4•••••••••• 
• IF TYPE NOl' • •C.BKNXl • 
: x~~tx.M2 ! :--6FiERiTB"---: 
: D+8 ex.sf> •• : : LBIVLDR Pl,6 : 

...::···-·1~~;:: __ ::J~~=: _______ _ 
•••••J3••········ *-CBlUIOl- ASSIGN* 
• R TO RBSUI.T • 
• WXTB PROPER • 
• SXGN • . . 
···-··1···-.. 
••••K3••······· . . 

• RBrORll • • • ............... 



Chart FM. Mem~ry Access Routine CME~C) -- CEKMV (Page 1 of 2) 

RESIDUE, 

~HauoF 

CEKllVl llEllAC 

* ****A2********* * 
: ENTER : ............... 

I llV012 ·*· !!V812 
*****B3********** B4 •.. *****BS********** • * .• •.. * • *****B 2********** 

*SAVE SPECIFIED * 
•REG HOH-SEL BIT* 
* STATUS. SET * 
*HON-SELECTABLE * 
* ar·r & SET X=O • ................. .->:0m~~L~iEm~ : ___ ).:*HCP (T) ="?" *: .~0--->:CAL~u~mr~¥ET :_-, 

I * OPERAND • *· • • • LOADED) * I 
: ••••••••••••••• : *· • .• *.. : ••••••••••••••• : 

I i YES I 
I I ~ 

c2· *· •. ~vol~***C4*!******** *****CS•••••••••• ! 
·* •. COLON- * * * * 1 

• * BRANCH *· OPERATOR •CALL LSUB (GE'! * *CALL LSOB {Gl>T • I 

I
*• ON ID OF .•~ ! I!IDEX LOAOE!>) .,*---->.* BASE LOAD'-DI *.-->1 

*· OPERA MD • * • 
*· ·* * * * * I *· • * ***************** ***************** I 

• I CONSTANT 
*HiiIABLE OR I 

I I ..... ,,.......... . .... ,........... "'21 ••• ,,.......... I 
I I . . . . . . I 
I 

*CALL COVE.a (GET* * SET TO RETURN * *RESTORE S'!ATUS * 
'-------->: AilCON LOADED) :--->: X2,Fnto~ D2 :--->: OFR~mmE!> :<-' 

l * * * * * • 4 .................. ••••••••••••••••• • •••••••••••••••• 
I I 
i I 
J I 

j 11vo2i•••Ei********** 11voo4 ~ 
L *GET ADCOll ASGN * ****ES********* 

>:FR~BL!Rfi~~f~~E : : RETURN : 
*PLACEllE!IT FRO!! * * * 
* TREE/NAiii! TBL * *************** ................. 

I 
*****F2********** 
*IP ADCCll llOT Ill* 
*REG CALL SELSR * 
*ASARJASGll ADCOll* 

:J~2~~=~~~m~.: 

I 
*****G2********** 
* B=lDCOll BEG. * 
*RESTORE STlTllS * 
* OP * 
*11011-SELECTlBLE * 
* BIT * ................. 

I 
* ****H2********* * 
* BETORll * . . ................ 

Section 8: Flowcharts 

PAGE 361 

575 



Chart FM. Memory Access Routine CMEMAC) -- CEKMV (Page 2 of 2) 

CEK!!V2 !!V502 • •. !!V509 • *· 
A3 *· All *· ••••11••••····· .• •... .• •. 

* * ·* Ill A •. YES .* REGISTER *· YES 
: mu : I>•- ""'"' ' .•--->*. SIGN=TREE ·*1 ········

1

(..... ·-·-.. r:;·-· ·-.~:'.i.;;--· I 

i !!V510 .!. I 
•.••••a 1 ••••••••••. •••••a3•••••••••• B4 •. I * * • * REG. *· 
*SAVE REG. TO BE* * EXTRACT TE!!P. * YES • * ASSIGllED *· 
: ommT~h. : :AsmPUMR011: .-·· •• GLOB~LLY •• •• ................. : ............... : ~ •. • .. • .• 

I : G1 : I 
t 

I •••• • 110 

c1" *· *· OPERATOli, l!!YS2~***C3*!******** * :****C4*!******** 

•• ·\u11cH •• •• ~~~fog~ :,siti~T5~~~~1.: : CALL IllSOT : 
*• Cll OPERATOli • "'-*--------------' * IMSOT * * (GEllERATE LCR * ·· ·. .. . .. · · · :dm~m~:~~;:: :. ... :;::;~ ..... : 

.. oco• l J .. ,,, l .. ,., _ ._ I 
*****Dl********** D3 *· *****Dll********** 
* * • * TREE *· * NEGATE !!E!IORY * 
* CALL COVER * YES • *SIGll AGREE *· * FOR ALL * 
: (I.CAD AOCON) : ·-.~I~~G:E~oa:.·· : QO~~uTnt IN : . . •. . . . . ................. .. . . . ............... . 

* NO 
I 

!!V508 l 
!****E3*********! 
* CALL IllSOT * 
* (GEllERATE LCR * 
: R1,R1) : ................. 

..____ __ :[·-
.... 

* * 
: G1 : .... 

!!V520 1 
!****G1*********: 
* CALL SELS R * 
: (sEmMmm: . . 
***************** 

I 
*****H1********** . . 
* CALL IHSOT * 

: c~g~r~:tii, : ........•........ 

l 
• ••••J1••·······. 
* RETUill * . .. ............... 

576 

••••P3•••······ 
* * * RETURN * 
* * ............... 

PAGE 362 



Chart FN. Local Branch Generator CSADDR) -- CEKMZ 

CEKMZ 1 SAD DR 

* ****A2********* * 
: &NTER : ................ 

l :••••82••·······: 
* DSTA::J = LCTR+ * 
: DIS = 2 * 

* .................. 
I 
I 

!<•------~ NO 

MZ100 - ci···.. MZ140·**C3*******• c4" • •• 
- • •. ..• *· 

•=* ;~J~I *:•~> .. Ailil 1 TO i! * *--->•:* R = 16 *:• 

*· *· •.. • * • • • * Al * • *********** * * *· * • *· *• * • * • * 
* NO YES 

_!_ I l 
!l2 •. I *****D4********** 

.• e:mAl~' A;· •• No I :c~~Lon~r. <~~T: 
•.ADCON CF STCL.*--> *REG ASGll. CALL * 

*· = 1 ·* * I!ISOT (BASE * 
*· ·* * R. 0) * • .. -· ................ . 

• YES I I 
i 

E2_._ •. I :••••Eli••·······: 
.• ·~A~dH :· •. NO *SET CODE COVER * 

*·· CODE COVEii .•-->I *REG ENTRY WITH * 
* QUANTITY * I * SLOC=LCTR * 

• •. *· * - ~;:. l : .. *****j*******: 

.I_ JI ! ASAR 
P2 •.. *****F4********** 

• * • ;smc~> *· •. No :~:~~~~----~~!~!! 
*· SLOC. ·* * * 

*· + 4096 • • * * •. ..• * • ·- -· ................ . r YES 1 

mso l l 
:****G2•••******: ****G3********* :****Gl.J*********: . . . . . . 
: D=DSTAC-SLOC :--->: RETURll :<---: D = DIS : . . ··············· . . 

PAGE 363 

Section 8: Flowcharts 577 



Chart FO. Labeled Branch Generator CLBL) -- CEKNV 

CEKNV1 LBL 

****•A~*•******** 
: ENT En : ................. 

l •••••e2•••••••••• 
*i"OLLOll SY!! TBL * 
* >'NTR TO LABEL * 
* ENTRY. GET * 
* ADCON PNTR. * 
* CALL FNDAR * .................. 

l 
·*· -* C2 •. •.. !****C3*********: 

•* I.OCON *· NO *CALL SELSR. B =• 
*· IN A • *--->* REG ASGN. D = * 

*·~~GISTE~··* : ADCOll ASGN) : 
*· ... • • •••••••••••••••• 

• YES I 
l l ,,,., 

:··••02••·······: =~~~~!~::::~2~~~= 
: B = REG NO * : LSD O, 13 : ................. . ............... . 

I I 
NY100 l ! ASAR 

*****E2********** *****E3********** 
*X,0=6 IO=S SET * *CEKll!ll 391A1* 
* IJP SYllT & * •--------------·* 
* AOCON. CALL * * 
*USOT (GENERATE* * 

: •••• ;i~~~~~ •••• : : ••••••••••••••• : 

,,. _ ___.! 
* ****P2********* * 
: RETURN : ............... 

578 

PAGE 364 



Chart FP. Operand Fetch Complement/Store Routine (FETCH) -- CEKOS PAGE 365 

CEKOS1 FETCH 

*•**A2********* 
* * * ENT Ea * 
* • 
*************** I 

I 
t 

.. *· 
82 *· 

-* * 
NO ·* LCAD *· 

I *· OPTION ·* ... .. * ·- ... 
J • ..... • 
I * YES 

j l 
I ·*· OS010 
I C2 *· *****C3********** 

I 
. * *· *IF TYPE CO!IPL!!X* 

*· LOGICAL ·* •NOT, CALL SELFR* 

II 

.:· INTMn oR *:._No ___ >:cmes~~§Wn : 

*. • * * (A NY R) * • .... * ••••••••••••••••• r YES 
1 

I I 
I I I 

I ! SELS3 I 
I *****D2********** I I ;~~~~~~::-:~~~~~; I 
I : ................ : I 

I I I 
I l<-----------' 
IOS020 t 

:****E2*********! 
I *IF TY PE LCGICAL* 

I 
**1, CALL INSOT * 
: (S R, R) : 

I ***************** 
• I 
l I 
IOS025 ! 
J *****F 2********** 

l *CALL !IEllAC (SET * ' : m¥~·mr.o~ : 
I : ('CYPE) : ................. 
I I 

! I 
*****G2********** 
* CALL INSO'.r(OP * 

! ~tDW~·m~: ! 
*CALL INSOT (OP S* 

:m~'mMm.: 

l 
*****H2********** • * 
* ASAR/ASFR * 
*ASSIGN ilEGIS'.rER* 
: TO OPERAND : ................. 

'[ 
05100 ·*· J2 • • 

.. • *· ·* *· NO 
*· CO!IPLE!IENT .•------------

*• OPTION • * •. • * • .... 
* YES 

l 
OS 110 • *· 

!***~~l~*;i~:•••: ·*K2 * .. •.. * **K3******* * 
* INDICATOliS IN * NO • * iil:GISTER •. YES * * 
* IH•ll TA.OLE *<---•. GLO!IALLY .•--->* !i1=0 R2=R • 
*ENTiir. 5E'.r ill=it* •.ASSIGNED ·* * * 
* ii2=R * •. • * * * .................. •.. . . . ......... . 

I • I 
~'-------------------~:! .. 

* • 
: C4 : .... 

**** * • 
: C4 : 

**** 

OS135 ! •••••c4•••••••••• 
*IF TYPE LOGICAL* * SET 1<2=0. OP= * 
: ~mpmWcoP: 
* R 1, R2) * . ............... . 

I 
I 
i 

. *· I?ISOT oti •. •••••o5•••••••••• • * •. •CEKNil 397A 1* 
• * *· YES •---------------• *· TYPE=LOGICAL • *--->* * 
*· ·* * LCR R1,R1 * 

*· ·* • * • •. * ••••••••••••••••• 
* NO 

I 
OS 140 i 

*****Ell********** 
* * * IF TYPE * : mamf> ~!H: 
* .. ................. 

_,(, _ ____, 

Ill 0520~ * • * F:~:~ :· *· •. HO 

*· OPTION • *------~ 
*· ·* •. .• 

I *· • * I i YES 

1,,,2 ....... L ..... . 
1 =~wA15g~f?pm:: 

I * B2=RFG). llARK * 
*OPND IN !!EllORY * * IF OP OR CSX * ' ................ . 

I I 
I I 

I *****Hi.*!******** l 
:cA~LT~~~o~ HT : • ••••H5••••••••• • 

*TYP~ CllP~~CALL *--->* RETURN * 
:rN s~~ <g~ ·AfEllP: ................. * . ................ . 

section 8: Flowcharts 579 



Chart FQ. Select Operand Routine CSELOP) -- CEKND (Page 1 of 2) 

CEK liD 1 SELOP 

*****A 1********* * 
* ENTER * . . ............... 

l 
·*· Bl •. 

.• *· 
• * BRAllCH *· 

*• ON OPERATOR • * ·- .. •. -· • .. -· 
: ••••••••• 367 BS 

: ••••••••• 367 Bl 

: ••••••••• 366 BJ 

: ••••••••• 366 D1 

DIVIDE 

'IIllES 

llAX,RLTllL,AliD/OE 

PLUS 

**** •366• 
* Dl *-i * * .... 

llD054 • *· llD080 
D 1 *· *****D2********** 

• * •. *SELECT OPERlllt * 
• * EITHER *· 110 * llITH DESIRED * 

*· OPERAllD= • *---->* SIGH IF 1 •. COllSTAllT • * * POSSIBLE * •• .. • • * ·- . . . ........•....... 
I"' 

- ·- llD077 - ·-E 1 *· E2 *· 
• * • * *• *• HO .•"*DESIRED*·*· YES~ 

*· INTEGER • *--->*- RESULT SIGI .• .. .• ... .. 
*· . • •. -· •.. • • *· •• 

J. "' '"" i " 
Fl *· *****F2********** 

_.-·DESIRED·-._ HO :Flu n~gt=b: 
•-.~ESOLi SIG~··*--->: om~ gni~~D : 

*· . • • • •. -. . ............... . 
* YES l 
J "'" < 

G1 *· *****G2********** 
• *LA llOT *· * * 

• *POSSIBLE OR•. YES * * 
•.SIGH REVERSED.*--->* SET TO LOAJ: * 

*· BY LA • * * * •. - • * • ·- . . . ................. . 
llD055 i" 

**Hl******* . . 
* SET TO USE * * LA AllD LA * 
* * VALUE * ........... J 

'"" l<--------•••••Jr•········· 

ND045 
*****A4********** 
:sE~E~¥. c~ztfiE· : * ****A5********* * 
*llEllORY & OPER- *--->"! R!TURN * 

***** : A~~S~~¥R~i~' : * *************** * 
•366• ••••••••••••••••• 
* *9~* A 

'"" ,). •. ,). :'. '"" 
•*•*EITHER *· *· NO • * • * SIGNS *· *· YES *****BS*********• 

*· OPERAND = .•--->•. EQUAL .•--->* R!TURN * 
*· COllSTANT • * *• • * * * .. . . •. . . . ............. . ·r,, ··.·· , ,,, 

CJ···.. HDOJO cs·t<· •• . . •. .• •. 
• * INTEGER *· 110 ~ • SIGNS *· 

*• AllD LA .• >•. EQIJAL ·* 
*·POSSIBLE • • *· • * •. . • •. ·* • .. • • .. • 

.i_"' '"" . .. '"" i " 
03 •. Dli *· ••D5******* .• *· .• *· • • 

• * SIG!IS *· 110 • * DOES LA *· 110 * PILE-VALUE * 
*· EQUAL • *--->*. REVERSE • *--->* Sl!!T TO LOAD * 

•. •. ..·· ·- •. ..·· . . . . •.. • * •• • • • •••••••••• i "' ; "' 
*****E3********** . . 
*IP LA REVERSES,* 
* SET TO LOAD * . . . . ................. 

!iD005 !<-----' 
**F3******* . . 

• * 
* * SET TO LA * • . . ........... 

..... !<--------------------------------' 
*****G3********** 
* SET TO NO • 

:11E~8:~Lm:i§s : 
*OPERAND ADDRESS* 
* RESULT SIGN * . ............... . 

:sn118H 0i~os~~·: • ••••J3*********. 

!"&mw~hoigii .-------------->: RETORJI : 

* SOB * *************** ................. 

580 

PAGE 366 



Chart FQ. Select Operand Routine (SELOP) -- CEKND (Part 2 of 2) 

llD096 

..... 
*367* 
**Bl* 

* 
i 

·*· HD109 
B1 *· *****82********** 

- * *· • • • * EITHER *· 110 * SELECT illGilT * 
*· OPERAllD = • *----->* OPERAND FOR *I 

*.CONSTANT • * * LOAD * ... . . . . • •• * ••••••••••••••••• 

ND112 

. .... 
*367• 
• .e~• . 
! ... 

85 *· .• •. 
110 •• • • 

.--------------*. DIVIDl.!!ND= ·* 
•.CONSTANT • * •. . . . ... 

* Yf.S i "' = ·::·· I 
-*- ND1::···=-1 !llD960 

C1 *· *****C2********** *****C3********** • * *· *IF DESIRED SIGN* * SET RESULT * 
•* *· HO * WI1'H LOlD,SEL * * SIGH OP * 

*· INTEGER .*--->* FOR LOAD. IF *--->*ADDRESS!§~ *1, * 

l 
. *· cs •. 

.• *· • * INTEGl.!!R *· 110 

*· •. ·*· * : 11~if. mELmuE: A : Pmfc~TO~ : ·- -• ••••••••••••••••• I ••••••••••••••••• *· & LA ·*1 *.POSSIBLE ·* 
•. . * 

"· t::' •001! ••• ,, ••• ••••••• I I ·r,, I 
llD144 • •. I 

!****D4*********: .• e6T T~P•. - • *· • • I ••••D3••······· ·* *· YES * SELECT OTHER * * * 
*· *1 .*--->* OPEilllD FOR *--> * RETURN * 

*· -• •LOAD-SET FOR •1• I • * I • SELECT FOR LA • YES • •OF TREE OP •. I 
<--: LOAD :<---*·;~ Gm~DDF~*·* 

*· ·* * • • •••••••••••••• 

I 
* * *.SIGN ·* 

··_ i._· :o .••..•••••••••••• I 
ND970 

_ * E1 *· •• :·;;~i~;·~;:;:··: I 
.• POllER *· Y!S * OPERAND FOR * I *· OF 2 • *-->*LOAD-SET POllER *--> 
*· . * * OP 2 * •• ..• * • ·- • * ••••••••••••••••• 

• 110 

l -·· F1 *· -· • . • * LA *· 110 * * 
*· POSSIBLE .*-->* C2 * 

*· *· • * .. * A * **** * 
• •• * i "' 
-·-G1 *· 

• •NOT TOP•. ~ 
.*OF TREE OR *· 110 

*· LA DESIRED • 
•.SIGN llE· .* 

•.SULT • * 
•. ·* * YES 

l 
*****H1********** • * . . 
: SELECT LA "'".--------------' . . ................. 

llD124 

..•.............. • .. • 
* NO 

!
'<-----' 

J 
llD1!Z •• *E5********** . . 

•IF DESIRED SIGll* 
<------------*llOT lllTH LOAD, * 

* FILE VALUE * . . . ............... . 

-·· F3 *· *****F4**********• 
.•·*DIVISOR*·*· 110 : I~El~t~G~~R2 ' * *****PS********** 

•. *· =COllSTA»T _ •" •--->: L~HiHT~oib :->: RETDRM : 
*• • * * LOAD * *************** .. r" ................. IA 

.•. . •. 
G3 *· Gii *• *****GS* ******** 

·* *· -*llOT TOP*. * * 
• * IllTEGEll •. YES • *OP TREE OR *• !ES * SELECT FOR U * 

*· 2 AllD LA ·*--->*.LA GIVES DE· .*-->* LOAD * 
*•POSSIBLE • * *· SIRED • * * * 

*• .• •.SIGR ·* * * ·- .• *· .• ••••••••••••••••• .,,,. r· r 
*****Bl•********* *****Hll********** 
*IP 110T DESIRED * *IF DESIRED SIG11* 
* RESULT SIGR. * •WITH LOAD~ FILE* 

: mic:nul6 :--l : nm• L~AfiECT : * LOAD * * * " ......... ._... ········r······ 
****J4********* • * 

>* RETURN • 
* * ............... 

PAGE 367 

Section 8: Flowcharts 581 



Chart FR. Select Position for Operand (SLPOS) -- CEKNF (Page 1 of 2) 

CcKNF1 SLt-OS 

*•***A 1***.****** * 
: i::NTER : ................ 

I 

l 
:••••61 ·········: 
* INITIALIZE * 
• Wt.IGHT COUNT * 
: FC~ LCP, liOP : 

***************** 

I 
r---->I 

INF003 -~-
.. * C 1 *· •.. !****C2*********! **** 

I ·* OP = *· YES *WEIGHT COUNT = * * * 
•. PARTIAL .*---->• 9 *-->• J1 * •.. .. • * • * • 

I •. .. . . . **** 

I

I ·-_ •• l·.:c ................ . 

NF070 • *· 
01 *· D2 *.. *•****03**********• 

I . . •. -. *· 
• * *· YES .• LAST *·· YES *ilEIGHi' COUNT = * 

II 

*·•. OP=CSX ·*·...__>•-.. USE .•·*--->: 8 : 

•. - • *· -* • * ·- - * •. -* ••••••••••••••••• 
* NO * NO I 

I I "'ll .... J........ 
1

1 
I I :sg ~:Imo~~f : 

I, !wEi;;n ~8Me;1;1 I I ................. I 
INFOOLI ••• I I F1 ·- ·- :••••F2•••······: I 
I . •" * OP = *· YES *ilEIGaT CCU!IT = * ~ 
I *·•. VARIABLc •• ·*---->: 6 :---, 

I *- .. * * * i I *···:a .................. t 

II ,J ·- ::;·~i':;;;-·;;;: I 
•• -·OP = •• •• YES * WEIGHT co5NT • ~ 

1 ·-._ co11sTANT •• -·--->!iM&TNn6 N~E;4:-1 

NF008 

. . 
* BL! * * • 
**** 
i .•. 

84 *. **95******* 
. * *· * * .• OP *· YES * INDICATE * 

*· SIGNS SAllE .*--->* SAllE SIGN 
*· PESULT, • * * TYPE 

*· ·* *· .• 
• lfO 

I 
i 

*****C4 *** ******* 
: Hc~~11m>J~ : 
* llEIGHT TO * 
* DESIRED NODE * 
• SIGN * ................. 

. ........... 

'<---------' v 
NF016 . •. 

DLI *· .• •. • * *· YES 

•• •• FL~~~PG •• ••• *· .• • .... 
* NO 

I 
*****E4********** 
* IF OP1 GLOBAL * 
:co~~L~~MN6P1 ! 
* WEIGHT * . . ................. 

l 
*****F4********** * II' OP2 GLOBAL * 

!co~~L~~~N~N6P2 ! 
* WEIGHT * • * ................. 

I 

1<----
i 

NF018 . *· NF038 
G4 *· *****GS********** 

. * OP= *· * * 
~.:·m~~R 7AJt":·-·--->=SELE~~I8~~HEST : 

I *· • * * * I 
v •. +,. ., • • • • 

••••• *· .• • • I ·ro ················· I 
INru06 t I I *****H 1 ********** 
I * * 
I * • I :WEIGHT COUNT =3: l 
t ................. . 
I 

I : J1 :..>I 
I *••••* ~<-----~~---~--~-~-----J 

~ J1··· •• 
... • •.. **** 

• * BOTH *· YES * * 
*• OPS • *-->* BL! * 

*·WEIGHTED • * * * 
*· .. * **** 

*· .- * 

582 

*369• *· . • • •••••••••••••••• 
• B2* • * I • • L •••• I 

• •369• >:.::.. i 
.·•. 

HS .• !****H4*********! 
* INSERT RESOLT * NO .• GLOBAL *· 
* SIGN AND OP •<---•. OR !ISL ON • * * CODE * *· • * • • *· .• ••••••••••••••••• • .• * 

I 7 YFS 

I I 
I 

NFOqO V 
•••••J5********** 
* SELECT OTH'ER * * OP.IP OP NO'!' * 

I 
* DESil'!ED !IODE * : sm~Em~~n: ................. 

I I 
l •••··~s·!•••••••• 

****K4********* * * 
" RETURN :< ___ :Im~~PR~~m : 

* *************** * : SIGN,. OP CODE : ................. 

PAGE 368 



Chart FR. Select Position for Operand CSLPOS) -- CEKNF CPage 2 of 2) PAGE 369 

••••• ***** 
•369• *369• •.8:• •.sr . . 
i RLT!IL,_l!AX, ! 

• •. AND/01< N FOSO • *· * 
B2 *· *****83********** 84 *· 

• * *· *SELECT HIGHEST * • * *· 
.• SIGNS *· YES •WEIGHT. IF NEG.* NO ·* EIT!IER *· 

•. *· EQIJAL .•·*--->: IND~~g~DllOVE :-1 1*· = INTEGER .• 

·- ·- .. -· =···············= I ... ~~~s~:-··· * NO * YES 

I .,. --. I 
I ! 

NFO 26 I . NP';09 
:•··~i~~~~;~·•••: . • C4 • • •. *· :••••cs•••••••••: 
* COlll?LE!IENT * • * EITHER *· YES * SELECT OTHER * 
*NEEDED. SELECT • I ·- = 1 • ·--->• -INDICATE NO * 
: NEGATED OP : * .·* : l!ULTIPLY : ................. I ... ·- . . . ............... . 

.I_ I ""' J" "'" I D2 •. I D4 •. •••••DS*••••••••• 

YES .•·* BOTH *·•. I ·* *· * * 

1···-:~:'.''.:'.:-·-· 11 <:.'."il'::-:=~'l'iim1."l:m l 
i i " I ·:r· ·······r······ 
I .•. 1' NP539 ! . •. 
I .•E2 ·-.. I :••••E4••·······: ·*E5 •• •• 

• * ilT OR *· !10 * * *SELECT HIGHEST * . * *· NO 

l 
* OP<2 *-->* J2 * * WEIGHT * *· GLOBAL • * 

• *· .•" * * I * * *· • * •. ... • •••• I • • •. . • 
*· -· I ••••••••••••••••• ··.·;ES 

I ,,.(' ..... ,,._....... l .J._ (!:·: I _.-· .... ·-._ ... : : ... _.-· ·-._ .... 
I •- OTHER OP >1 .•--->*SELECT OTHER OP•-11·· FLOATING ·* ·- .. • . . •. . . •. .• . . .. .• I ._(° ········--······ 11 ._t 
I ·*· I 1!11"052 ••• 

ii .:•;:::CTE:-:;•:.~ 11 .:·~:::~f :~::•:._10 ______ ~ 
*.POSI7IVE ·* I *· ·* 

I ···:,··=~· I .,. I ·· .... ·· l : •::• !-> *l YES 

I 
••.• 

NF027 NP056 • •. SELGI! 

*
**H2*******• *****R4********** 85 *· 

I 
* INDICATE llO'IE * CEKll81 37411 

* INDICATE * * llEEDED.IP OP * 110 .•-----------•. 
* * llOVE llEEDED * * * llOT DESIRED *<---*· lllJLTIPL! • * : sm~mmn: *·??SSIBL~··* 

.::: .. T ... : 11 ....... :·1 ········ ·· · ~~ 
: .~~-=->l II ! "'" I 
:••••J2*********! !****Jll*********! !****JS*********! 

* SU CJP RESULT * . * IllS!l!T RESULT * *SELECT POSSIBLE* 
: SIGH :< : SIGll :<---: OP!Rl!ID : 
* • • • • • ················· ................. . ............... . 

I I 
****K2********* ****Klf.********* • • * • 

* EXIT * * EXIT * . . . . ............... . •............. 

Section 8: Flowcharts 583 



Chart FS. Select one Operand in a Register (SLONE) -- CEKO~ (Page 1.of 4) 

CEKOli1 SLOllE 

*****A 1********* * 
: EHTEB : ............... 

I ··-B1 • • 
• • *· 

.• BRAIICH *· 
•. OH Ol'ERATOii • * 

*· - • •. .• • ... . 
: ••••••••• 370 C3 

: ••••••••• 371 B2 

: ••••••••• 372 e2 

: ••••••••• 373 B2 

llU:,BLTllL, lHD/Oi 

PLUS 

TillES 

DIVIDE 

. .... 
•370• 
* C3* 
• * . 
1 -·-C3 *· ·* • . • * llEllOBY *· YES * * 

*· PLOATillG • *-->* E4 * 
·- •• * • •. .• .... .. .. 
r 

- ·- • •. 011054 • •. 
D3 *· D4 *• DS *• 

• * *· • * *• .• COllST *· 
.• *· HO • * GLOBAL *· YES .•Ill llEllORY &•. 10 

*· AID/01! • *--->•. OR !ISL 01 • *->•. LA • 
*• • * *· • * *• POSSXBLE • * •. .• .. .. .. .• ·- .. .. .. . .. • 

l
* YES : •::• :->j* HO 

1
. YES .... 

• •• 01012 ••• OW009 
E3 *· *****E4********** ES • • 

• * *• *I:P COIST XI llEll* • * *• 
• * LOGICAL *· 10 •& SIGllS OF LOP•* TES • * LA LOP *• 

*• • * * & cLI:P llEllOB! * *· SIGI • * 
*· 1 • * *BOPL FILE YALOE* r•· SIGll • ROP .• 

**** *· ·* * SIGI COllPABE * *· .• 

: .::.: *· 1• • ;!S *******:*!******** : •;~•: *· •l:_:o ___ __. 

1 •••• 
OV015 011051 •*• 011024 ·*• 011093 

:••••p1•••••••••: •• P2 •. •. • •P3 •- •. • ••F4******* * *••rs•••••••* 
* * YES .• SIGNS *· YES •* *· * IllDI:CHE 10 * * SET BOYE * 
* OBTAill YALOE •<---*· LOE=BOP .•<---•. COISTAIT ·* * LOAD, 110 llOYE * * llDIClTOB * . . ... -· •. . . . . . . • • *· .. • •. .• • • • • ................. •.. .. •. .. ........... . ......... . 

o"" i •o i" 
*****G2********** ••G3******* . . . . 
* OBTUH V ALOE * * IllDICATE * 
* COllPLEllEIT * * LOAD HEEDED * . . . . 
* • • • ....•............ . ......... . ._____,,, """ [, __ ______, 

**H2******* *****83********** 
•IllDICATE LA* *IP SIGHS OP LOP* 

*. mriA;8h1 • * :1g0~bf~~~cm.: 
* COBPLEllEHT * * IIDICA TE * 

* * * COllPLEll!IT * ........... . ............... . 
I ,j 

•••••J3•••······· 
* GET DESIRED * ****J4********* 
* SI:GI. GET * * * 
* BESOLT S IGI & *--->* RETOBB * 

! Akglif~ls ! * ••••••••••••••• • ................. 

584 

PAGE 370 



Chart FS. Select one Operand in a Register (SLONE) -- CEKO~ (Page 2 of 4) 

. *· . •. 
A3 *· 14 *· *****P.5********** 

.• • * LA *· •. YES • •
0 

*DESIRED*·•. YES : rn~1c~bE11M~ : 

••••• •. •. _ •. * •. *. . •. • : '~~ohD~€~~RY ! I
>•. POSSIBLE .•--->•. SIGN .•---->*RESULT SIGN. f.A• 

=::!= .. T :o ·-r :o ....... T ...... . 
OW100 011099 .!. I 011033 .!. I I 

•**B1•••••••. _.a2N0T•-.. BJ•. I 
* INDICATE NO * NO • * FLOATING *· l YES • *•*DESIRED*·*· f 

.. LOAD Oil !'!OJE •<---•.AND GLOllAL OR.• I *· SIGN ·* I 
* * ·- !ISL ON • * •. • I · ........... · · .. r~: 1 ·-·r~· 1 

ci' •. •. .J ••••*C3•!•••••••• 
.•-*llEllOliY *·•. YES :FILE-VALUE AllD: 

*· = CONSTANT • * !'LOP SIGN * 
*· ·* * COii PARE * .. .• . . 

*·j·;o ••••••••1••••••••• 

011118 .!. 011109 > 
D2 *· *****D3********** 

• * *· *INDICATE LOAD * 

.:· =mmD *: • .::=.._>:~M~'h11m05~: 
*• SIGN •* * ADDRESS * ·- ... • . . *· .• ••••••••••••••••• 

[ " 
*****E2********** 
*SET TO llOJB. U'* 
* REG#DESiiED * 
* SIGll SET TO * 
:c11nr,·~~~pm• : .............•... 

'----->.! 
*****P2********** 
* GET RESULT * 
* SIGN, Al>DiBSS * 
* OP llEllOliY * 
* OPERAND * . . ...........•..... 

,,,,, ~--------------------------------' 
*****G2********** 
*SET TO ADD. 11' * 
* SIGll OF LOP * 

! 111g- sU~h1.~~T ! 
* • ................. 

l 
****H2********* • * 

* RETOil * . . ..........•.... 

PAGE 371 

Section 8: Flowcharts 585 



Chart FS. Select One Operand in a Register (SLONE) -- CEKOW (Page 3 of 4) 

..... 
•372• 
• 82• .. . 

I 
I 

011127 ~ 
!****82*********! 
* SET UP !iESULT * 
: SIGN : . . 
••••••••••••••••• * • I * "'4 * I . ·:··. 

V 1 NO 
ci· *· *· 011277 C4 •• *· 011278 **C'>******* 

• * •. • * •. *INDICATE NO* 
* * YES ·* *· • * *· ....-->* * INDig~¥~ NO * * 
:.::.:<--•- •• :~OATIN~.-···J >•-.:~~~~m.~~·-· I ··m~ZmNT •• 

*· • * *· . * I *********** 

i" !"' I l 
-*· - *· I . *· 

- • 02 ·- •• .~:&i~:;~·=~· .• D4 •. •. I .• D5 • ••• 

•:"cossTANT IN•:.No ··c~~~fh~~~Eoa"•<_...:::•:"coNSTANT=1 ":• I ·" Gto~AL •.NO 
·- REG -· A • llULTIPLY • •• • • I •.•.OR !ISL ON ••• •--,1 
····.-:;: I ·····r···. ····t· : ·· ... -:;: 

""' .. ,,....... ,J... I ,,··· '· ,.· .. '· ~I ..... J........ I 
.~ofg0~iN~ N~• YES •• -• • •• _ I NO •• ·\toBAL • •• _ ••• • POWER "· •• us :sE~of0o~gUi:o1 F! I 

• MOVE/ •<---•. CONSTANT=1 .• ,.. OR !ISL ON ·* *· OF TllO - * * RESULT SIGNl * I * CCl!PL&llENT, * •. ·* •. . * *· . * • SET '1'0 CllP • * llULTIPLY • *· -* *· ·* *· •* * llOVE * 

586 

••••••••••• ._ .-=o , •.•. ;ES ._ •• :o •••••••• 
1
........ I 

F2
J ·- ', l . ::::::--> l ... : .. 

011289 F
4

• •. ~~LGll : H2 : 

.•·* POWER *·•- ~ I :~~!~!--.-~!~~~ YES **** 
• •• OF Two .-• I • .• ~ULTIPLY o~··* .... _ -·· I .. -· • .. -· • ... 

* YES • NO 

l' I I 
011273 I 1 

* **~~;·;~*** * * **G4 ******* * 
• • LOA&hNO • • I * INDICATE NO * 

• COllPLEll~NT • * •.c5~Hh~=T •* * 
• • I .. ::···i····· I ·····;····· 

• * I I l 
Oi4:~:~. :->l I 011283 > 

***H2*******• 1' *****H4********** *SET TO llOVE. IF* * INDICATE * * NOT D!SIRED • 
•• S.HIFijhg~IFT.·. : R~~Nosmf. : 

* llOVE * ........... . ............... . 

1 

••••• * ' 
• G5 •->I . . 

01112~··· ! 
*****GS********** 
*IF COllST IN !!Ell* 
* & NOT UESIFED • 

:Fm0H1ii~G~f.r p: 
* RESULT SIGN • ................. 

I 

l 
**HS******* * INDICATE, • 

• • ~gri¥"8fi • • 
* COllPLEllEllT * . . ........... 

I t ! 
~---->!<-----------------' 

~ 
:·*. *J 2 ·········: 

:,&~m\~fi~~§s : 
• * . . ................. 

I 
* ****K2********* * 
: BETUBll : ............... 

PAGE 372 



Chart FS. Select One Operand in a Register (SLONE) -- CEKOW (Page 4 of 4) 

. .... 
•373• 
• .s;• . 

OW130 l I:IVIDE 
* **B2******* * 

* SET UP * 
* * I<ESUL'I SIGN * • . . ............ 

t 

l 
·*· OW1112 .•. 0111'15 .•.SELGD 011129 

C2 *· CJ •. C4 *· *****CS********** 
.• *· • • *· CEKNA 1 376A3 *INDIC~TE llOVE. * 

• • *· YES • * *· NO • •-----------•. NO *IF RESULT N. E. * 
•-.~IVfi~~D = ••• •--->* ••• FLOATING .•·*--->*.•.DIVIDE OK.•·*---->: mm¥Estm: 

*· . • •. .. • •. . • * * 
•. .. • *· ... • *· . * ***************** * NO • YES * YES 

l 
OW133 . •. 

**D 1******* D2 * .. 
* * . * *· * INDICATE * NO .• *· t"'• LCAD ,.*<---*·,._CONSTANT .•·* 

I · ..•..•••.•. · ·-..... ·* 
• YES 

I J 
I E2 *· 
l ... • ·* *· *· NO 

I *· INTEGER ·*1 

I 
·-._ _.·· • .... i "' ' 

I -·-
! .**Fl*******• F2 *· -· •. • * YES .• LA *· 

I
* INDICATE LA •<---*· t'OSSI. ilLE .• . . ·- .. • 

* • ·- •• ........... •. -· 
* NO 
I I i<-----

1 011131 ! 
I •••••G2********** 

I 
*IF RESULT N. E. * 

!Fm~~fMI~~fp! 
* RESULl SIGR * 
* INDICATE LOAD * 

t ········r········ 
I I 

>t< 

**H2******* 
.. INDICATE 110* 

• •!lm~c~~~~f:r *. 
*SIGll. !IE!IOllY * * ADDliESS * .........•. 

I 
* ••••J2••·······. 
* llETURN * 
• * ............... 

I I 
I 

.._-------->I 
OW148 ~ 

*****04********** 
* IP llE!IORY OP= * 
•CON & RESULT # * 
* DESIRED SIGN * 
• PILE FLIP * 
* RESULT SIGN * ................. 

l ••!4••••••• . . 
* INDICATE NO * 

* LOAD * . . . . ........... 

I 

I 
**!>5******* 

* INDICATE: * 
* * RE~~L~O~¥~N, * * 

* !IE~ORY • * ADDRESS * . ......... . 
I 
! 

****ES********* • * 
: RETUPll : ................ 

Section 8: Flowcharts 

PAGE 373 

587 



Chart FT. Determine Availability of Register for Multiplication (SELGM) -- CEKNB (Page 
of 2) 

PAGE 37L 
CEKN31 SELG!I 

*****A 1********* * 
: ENTER : ............... 

I 

l .•. 
Bl • .. . • . 

• * T oiO •- NO 
*· .:EGS I~PUT •• -•---l 

•.. . . . ..... 
• •• • •375• 

• YES * .si• l . 

No002 

• •- NBOOS NB018 • *• 
Cl *· **C2******* C£1 *· * **CCi******* * 

.•·* SA;H *·•. YES •*~n~¥AH~: *• .• 0 ~Lb~~r o:· •. YES * DISQ!JALIPY * *·.. iiEG ... ·*-->*• SE~E~gN~EST .•-------------A->• ••• Gf~;:L .•·*----.,->*•R~G2 !llJLTIPLY*•--, 
... • • • REG I STER • I • • I • • I 

•... .. * *********** I • *· . * • *********** V 
.. 110 I • NO ......... 

I I I : 3 ~~: 
l I ! I . • .. 

• •. NB006 .•. 113016 I .•. I 

.•Dl •••• _.02 ·-. .••D3••·····. I .• ~~ 3E~·.. I 
•• A&JA<.:ENr ·- NO -· RE->1 ·- y,;:s • DISQUALIFY • • • NON- •• YES I 

• ••• EV~~I~DD •• -*--->*- •• i~~=A~Ega_.-•--->* *• mM~~ •• •-->1 • •• :ELECTABLE ••• •~ .. . . ·- . . I •. .• ·- . . .. .. ........... . .. . 
• YES * NO * NO 

)... .•=If .. !:G··... 1'1 I . .,,, ,)... ..,, ...... . . * •. ~ ., . * *· * INDICATE * 
.• EITHER *· YES .• NON- *· YES •* EVEN *• YES * DISOl!ALIFED * 

*· GLOBAL • *---

1 
*· SELEC'IASLE .•-- *· NEEDS .•--->*BECAlJSE STORAGE•----, 

·-.. ..-· ••• ••• ·-.:TORAG:.·· •• P~ORLE!I •• I 
*· . * I ... * *. I •.. • * ***** ****** V i "' I T' 

1

1 i ., =:~i= 
.;m~;·~;;• * l !*i;*k~i:*;~~;;•: ***Pl!******** 

•;rsS~~mpEvE=• 1 : 01mhmEo. ! • • amIW5K • • 
• REG ... I :iiEg ~~Tfo~N~PY: •tOR ~ULTIPLY .. ........... . ................. . ......... . 

I i j' ! l 
• ••••G 1••······· * II * ••••Gij•········. 

f<ETUdN ' : RETURN : 

*************** J ••••••••••••••• 

i ' I 
I 

I 
NeO 1'I I 

_.**Hl*'******• f 

• : 
0mmw : •<_J . . ........... 

588 



Chart FT. Determine Availability of Register for Multiplication (SELGM) -- CEKNB 
(Page 2 of 2) 

NBOtO 

..... 
•375• 
• .. si• . 

I 

i . •. 
61 • • 

• • RiG *· 
YES -* GLOSAL O~ •. ,...... ..-· 

! •• •• * l *·(:o 

I I 
I ~ 
I . •. 
I Cl *· 
I ...... UPE •• • .. YES 

I
I ·~ •• IN'?EGER "-•• -*--* -----'-----,I •• .. * • .. -. * NO 

I 1 
1118012 -·- .•. NBOtt 
I 01 *· 02 *· **DJ******* I . •NOT ODD•. • .. •• • • ••••Dll••••••••• 

I .:•i.iEg,.0~AHE 11*:~>•:* EV~~E~EED ·=·-110--->• >Egnm~~OR • *--->: RETURN : I • .• ?i.oaAL _ *. • • •• ~t·oi.AG: *. • * * • *************** 

I 
• .... • •.. .. . . ......... . 

* YES * YES 

>I I 
NB015 ~ NB070 ~ 

***El******** * •r~g~~:;;•• * 
* * a~m¥w~ia * • *;Em~~A~i~~~G;* 

* l!ULTIPLY * * Pi!OBLEI! * • • * • ........... . ......... . 
l 

****Fl********* . . 
* i!ETURll * .. .. ............... 

•••• I 
•375• ! : n. *-> .... 

1180211 • •. 
F2 *· **l'J******* 

• * *· * SELECT * ·=· CANDgIIES ·=·~>.;I~aG~H~PhY •• 
*· • * * STORAGE * 

*· .• *PROBLEI! REG* ·:c, ·····1······ 
G2 *· .• *· ****G3********* 

• • S?OiiAGE *· NO * * 
*· PR08LEll .•--->* iETURN * ·- .• . . •. ..• .............. . ·r.. i 

1180J2 • *· MB065 l 
H2 *· **HJ* ***** 

• * ALL *· * * 

.:m~em0:h;:.-110--->•* 0mmtP •. 
*· STORAGE ·* * * .. ..• . . • ... • .......... . 

* YES 

l 
• *· HBOllO 

J2 ... •••••JJ••········ 
.• *· *CALL IllSOT ~LR * 

.:· pffp~:s *:•~>:"mr. s~~oM0 
: 

*·PREE REG ·* * llli!I TRl!;E 08 * 
*· .• * 11AllE TABLE. * ·- -· ................ . 

i8° I 
l SELSR l 

*****K2********** **KJ******* 
*CEK!IGt J8QA2* *SELECT PAii!* ****"Q********* 
:---FREE-REG----=--->** o~monw IF**--->= RETOR11 : 
*llEEDillG STORAGE* * PiESEllT * * * . . . . .............. . ................. . ......... . 

Bt. ICOH-SELECTA!IL1! 

PAGE 375 

section 8: Flowcharts 589 



Chart FU. General Register Availability for Integer Divide (SELGD) -- CEKNA PAGE 376 

CEK NA 1 

,..****A3*•******* * 
C:N'I'E R : 

*************** 

I 
I 

i 
. *· 

83 *· 
. * *· 

YES • * DIV ISO<. *-1 ...... IN M'S~ORY_.-* 

I - •. * 
I *· . * 
I * NO 
I I 

I ! 
I
I _.c3··- •.• _ 

• •DIVIDEND & *· YES 
* .. DIVISOR IN • *-, 

I *.SAllE REG • * I 

l *· ·* I 
*· .- :o I 

I
I I I 

I I 

I I I 
! v I 

. *· I 
· 03 *· I 

I .•7>~vIDEN'1 ~- *- v::s I 
I *· DIVISOR IN - *-->I 

I
I •.SAME PAI a.• I 

*· . * I *· ·* I * NO I 
I I 

>1 I 
I I 
V I 

NAOOl • *· I 
E3 *· I 

• * *· I - * ODD REG *· YES I *- Oil GLOoAL • *-->I 
*.DIVIDEND·* I ... . • I 

··r=0 I 
! I 

-*· fNA002 
P3 *· I * **F4******* * . *P:n° G~~3:i. •• YES ~ * INDICATE 

•.OR ODD NE:EDS -*---->* DIVISION * *· STORAGE .* * I~POSSIE'LE * 
*· .. • * * ·- ·* ••••••••••• 

* NO I 
I I 

i I 
• **G3******* * ! 

* INDICATE *****GU********** 
* DIVISION *--->* il!"TURN 

* * PER~ISSIBLE * * * *************** ............ 

590 



Chart FV. Operand Status Routine (KEY) -- CEKOC 

CEKOC1 KEY 

*****Al********** 
ENTER : ............... 

l 
***El******** 

* l.CilEii * . GLBFLG * * . . ........... 
I 

l 
OCGOl -•. 

Cl *· .. . .. •=* ttGL?UP *:~] •. . . 
•. ·* • ..... 

* YES 
I 

! I 
Dl- ·- •. I -• ·- I -* OPERAND •. NO 

•- FLAGGED ? • *--> 
•- • • I 

•. .• J .• 

i"' I 
i I 

!****El*********: ' 
• iiAISE GLBFLG * I * SET: IN REG • I l: REG=6 SIGN=+ : I I ..................... I 

! 

I 

I 
I 

*****Gl********** 
* CALL CLASS- * * LEFT OPND. • 
* CODE=K Lii.EG=R *<--' 
• LSH=S CALL * 
•CLASS-RGnT OPND* ................. 

I 
i 

:****H1*********: 
* llFY K 3Y 2 & • 
* ADD 2. liREG=R * 
• RS~=S * . . ................. 

I 

10000
' l 

L * ••••J1•••······. 
>: RETJiUi : ............... 

CEKOC2 CLASS 

****A2********* . . 
* ENTER • .. . .........•..... 

I 
l ..•. 

C2 •. .. • •. 
<Jdh~~E=.>~YES •. .• 

•. ·* * NO 

l 
-•· OCllOO • *· 

D2 *- *****D3********** DI! *· 
- * *· * FOR!! SEARCH • • * •. 

• * ID OF *· YES * ITEi! WITP. * • * RE!'IOVED *. NO 
*· OPERAND= -•--->• SYllBOL TABLE *--->•. ITH! FROll .•------~ 

*•CONSTANT - • * POINTER • *· DO LOOP • * 
*· ·* * * *· • * I 

·:r, "'~·····:::······· ·r.. 1 
E2 *· E3 *· *****l4********** *****E5********** . * *· . * IN •. * * *I!' TYP!!! INTEGER* 

• * ID OF *· YES • * REGISTER •. NO * SET LD FLG = * *OR LOGICAL CALL* 
·-._mmga= ... -·--->·-.~ITT~H IN_.-·-i : X"Ol' :---->: FN~~¥(0t~iLIF : 

* .. .. • I . .. . PNDFA (OP) • .. -•. . . . . ·- . . . ................. . ............... . 
i 110 

L:i~:;·: I I 
6 •••• • 

• *· OC2 08 • *- OC009 • •. 
F2 •. P3 •. i *****F~********** PS • • 

• * •.. • * IN *· * * • * *· 
·* ID OF *· CSX -• REGISTER •. NO • * HO ·* IN 11. •. 

*· OPEi!AllD .•--->*. BIT SET IN • •--->• R=O K=O S=O •<---•. REGISTER • * 
*- -* A *· !111.!IE • * * * •. • • •. .• I •.TABLE.• * .. •. ·* 

•. •R~SIDUE •.*·;ES ********r******** •.•";ES 

I ! !' : ·::· :_>
1
1 .... . . .. . .... 

* GS * OCOG2 
* * *****GS********** **** ****G4********* * * 

* * * R=Rl!GISTFR KO * 
* RETURll *<---•K=l S=REGISTER * 
* * * SIGH * ............... . . . ............... . 

Section 8: Flowcharts 

PAGE 377 

591 



Chart F~. Single Operand Locating Routine (KEYl) -- CEKOR PAGE 378 

CE KO ii 1 KEY 1 

*••••A 1••••••••• * 
: ENTEti : ................ 

I "'" -·- -·-.••.at•••••••• .. • a~D o; .. •- .. • 83 • .. *· 
* i.CWEil • .• OPERAND •. YES .• REllOVED *· YES * SET LO!'LG = * 

GLBFLG • .-->•. VARIABLE, .•--->•. ITEi! FROll .•--->* X'Ol' * . I •.co NST OR - .. ·- DO LOOP • • • • 
* * •.ADCON.• *· .• • • ............ . .. -. •.. . . . ......... . 

I I • NO • NO I 
I I I I 
I I ,' I, 
V OR300 ! c1" •. •- 1 I I •••••c11•••••••••• . .. I I I •IP TYPE REAL OR• 

-·· RGL UP ••• NG >: ~m~E~F m; : 
·-. ? • - ·-->I I ~------ : CALL FllD&a. : ....... -. " ,' ................ . 

• YES I 
I I 1 OPERATOR I 
V ,. RESIDUE OR V 

• ,._- O.iiOOo • •. COM!ION EXPRESSION • *· OR002 
01 *· D2 *· * **03******* * ·*Dll *· *· * **D'i******* * 

.•.*OPERAND*·•. 110 l .•·* *· ... YES * .• IN A *·NO * Sit;!l=O * 
*• FLAGGED ? .*-----' *· INR = 0 .•--->* KEY = 0 *· RFGISTE" ? .•--->* KEY=O * 

·- • • *·· - • • • *· . • • • •. • • ·- -· • • •. . • • * •.. .. • ·- - * ••••••••••• *· - • • •••••••••• 
• YES • NO I • Y''S I 

I ""' l J ..... ...! .. :..... l 
:****E1*********! * **E 2******* * .. •EJ *·•.. *KEY ;1. IF REG* ****!')********* 

: am~ 1~am : •* KEY= 1 *,. < .. ll.SG~ = ••• >:1ES :srm~.+ifSi~T,:--->= RE'r'JRll 
: REG=6 SIGll=+ : * * * : SfT SIGll=1 : * *************** * ················· ........... • .... • .................. . ! r, I 

. •. l I 
F2 ·- .••FJ••••···. I .. . • .. 

• * iiSGN = *• NO * 
•. 0 • •--->* SGN = 1 I 

*· .• * I ·- ... • • I 
• .... * ••••••••••• * YES I 

I I I 

I l I 
I 

. ••••GJ••·······. I 
: 11ETUiiN I 

I ••••••••••••••• I 

""' ... ,,J ..... ·.·<-----_______ I 
* SIGN = 0 • . 

I 
'------·----->I 

i 
• ••••J2••·······. 

RETUllH : ............... 

592 



Chart FX. Search General Registers CFNDAR) -- CEKMR . PAGE 379 

CEKllR1 FllDlR 

••••A2••······· • * * EllTER * . . ............... 
l 

* **B2******* * •**BS*******• 
* IBITilLIZE * * STEP TO * 

•LOOP THRO llRll • I* llEXT EllTRY * * TABLE * * • 
4 ........... • • •••••••••••• 

.!. '"" . . . '"" J" C2 •. Cll *· CS *· .• •. .• •. .. . . 
• • •. 110 .• BUSY EO *• YES •* llRll *• 

•• ·- ID = 0 _ .--------------->•. •. ZERO ••• •--A->•.•. n~H~¥Eo •••• .. .• •. .• .. .• •. .. • .. • • .. • 

"'" '"., .i~"' .i. .. i "' 
:••••D1••·······: 02 ·- •• o~D = ·-.. :••••oS••·······: 
• COii POTE REG. • Y .ES •• • :GBl1

11D *· *· • *IllPOT ID & *• 110 * SET OOTPOT TO * 
• llOllBBi •<---•. BUSY = .• •.LillK = IllPUT .•--> * ·110 * 
• * *• ZERO • * * LINK * * * 

=···············= .. ·T~· ..... r;:· j =···············= 
l!B1SO .•. .•. 

• * E2 *· *· * **E3* ***** * • .jgT vri• . 
• * llRll *· 110 * STEP TO * . *OR TYPE AID•. 110 

*· TABLE .•--->* IEXT !ITRY * •.DISPLACEllEIT .• 
*· EXBlllSTBD.* * * *· • * •. .• . . •. .• ·- .. ........... . .. . 

i"' ... ,, i"' 
*****P2********** *****Pll********** 

*****Pl********** : : *COllPOTE REG 110.• ****PS********* 

• BBTtJBI •<---• ooTPOT = -110 • :coUL~liAPil:G =--->: BBTOPI 
• * • * * IOllBER * * * ............... . . . . . ............•. ................. . ...............• 

Section 8: Flowcharts 593 



Chart FY. Search Floating Registers (FINDFR) -- CEKMS PAGE 380 

CEKllS1 FllDFB 

* ****A2******••• * 
* Ell'IEB * 
* • ............•.. 

I 
**B2******* **B5******* . . . . 

* INI'IIALIZE * * STRP TO * 
* * * ll~~n i'.~g~E * * * r-* * llEXT ENTBY * * 

: :::r::: ... ,. .. "....... 1
1 

... % • ·:::r;:· · 
-* *• 110 ·* *· YES ·* llRll *· 

*·,._ o=ZERO •• --------------->*·•. !!USY=ZERO·*·*--,->*.•.EXH~~~l!D.•·* 
•. .• •. ·* •. •• •.. . • •. ·* *· .• 

'"" ""' .i:"' J" i m 
!****D1*********: ·* 02 *· *• • * DllID= *· *· !****D5*********! 
* COllPUTE * US ·* *· .*IllPUT ID & *· 110 * SET OUTPUT TO * 
*REGISTER llUllBEB*<----*· BUSY=ZEBO •* *• LillK=IllPUT ·*--> * -110 * 
* * *· • * *· LillK • * * * . . ·- -· •. .• . . 
********j******** *· *. :o *•*.;ES ********j******** 

"'" ,) .. _ ... J..... ...! ... 
•* *· * * .*llOT VAR* • 

• * llBll *· HO * STEP TO * • *OR TYPE lllD*. llO 
*· TABLE .*->* llEXT EHTRY * *.DISPLACEll!llT •* 

*-EXHAUSTED.• * * *· ·* 
•• -· * • •• ·* •. -· ••••••••••• •. ·* 

* YES * YES I 

..... .,,.!......... '"il ...... L...... l 
*COllPUTE REG llO. * ****1!'5********* 

I .... ,, ........ . 
!co~JtUmE~~G =--->= RETURN 
* 2-6. BEG 0=-8 * * * 

• * * • 
: RETUBH :<---: OUTPUT= -110 : ............... . . . . . ............. . .......•......... . ............... . 

594 



Chart FZ. Operand Processing Routine (OPNO) -- CEKNW <Page 1 of 2> PAGE 381 

CEK11111 OPllD 

*****Al********** 
* ENTER * . . ..........•.... 

I .•. 
B1 *· -· .. ·* BRAllCH *• 

*· 011 CLASS OP • * 
*· OPERAllD ·* ·- -. .. -· . 

: ••••••••• 381 13 

: ••••••••• 381 D2 

: ••••••••• 381 E2 

: ••••••••• 381 P2 

OPERATOR 

CSX 

RESIDUE 

VlRilBLE,COllSTllT 

1111003 

..... 
•381• • .D~• . 
t .•. 

02 •• -· ... ... *· 
*• OPERATOR=: • ·- .. *· .... 

*· ·* 

:;H··->·1110 
• * .... 

1111002 CSOP 
*****B2********** 
*CEKll113 382.\2* ·---------------· . . . . . . .................. 
:m. I * P2 *-> . . .... 
••••r2••••••••• . . 

: RETURll : ............... 

JBS 

1111001 

..... 
•381* 
* A3* .. . 
! 

·*· TROP 
13 •. •••••111••••······ 

.• *• *CEltlll2 382111* ****AS********* • * *• RO •---------------• * * 
*· OPERlTOR=: .•--->* *->* llETORI * ... ·* • • ... • .. .. . . . ............. . 

*• •* ***************** A 

~->I* YES 

1110011 
**B3******* . . 

* SET TO * 
* PROCESS R.IGHT * 

*OPl!JillD OP : * . . . ......... . 
l 

•*• 111006 CSOP 
Cl *• *****Cll********** 

• * *· *CEltllllJ 38212* 
• * RIGHT *• 10 •--------------• 

*• OPEllAllD l • *->* * 
*· '1' •* * REP OP COLOI * •. .. . . 

*· ·1· ;,, ;:::~:1········· 
•••• 1(0 

111008 **Dl******* 111013 Dll • *· *• DS • • *· . . .• .. .• .. 
* SET TO • • * COL011 l *• 10 • * I1' A *. 

* PROCESS LEFT * >•. CSX .*->*. REGISTER ·* 
*OPERAllD or ? * *· • * *· • * * • •• .• •. • • .... T.... ··r.. ··.·; .. 

••• llQ017 ·*· 
1!3 *· Ell *• 

• • *• .• STEP *• 
!ES •* OPERllD *• 10 .*BOT SH ARD•. 

*· l VARIABLE •* •.LIST USB BIT ·* 
*· .• *· SH •* •. .. .. -· .. -· .... 
i " ""' i"' 

*****P 3********** **Fii******* * IP CSX OR * * * 
! ~m~0ff ~A~~ ! • • coftl~0~f 1 * • 
* CALL TROP * * * * • * • 

m~ .. -·r··- .... f .. 
**Gl******* Gii *• . . .. •. 

* SET TO * JO .• *· 
* PROC.BSS RIGHT * *· COOIT=O • * 

*OP.BRAID OP ? * *. • * . . .. .• ..... j.... ··.·;., 
... ... I 

B2 *· Bl *• *****Bii********** . . ·- .. .. . . 
110 •* *• 110 • * CSX OJI *• * CLEAR llllB * 

r *• OP.BBATOR .•<---*· RESIDUE •* * TlBL.B EITRt * .. -· ·- .• . . .. -· .. .. . . ·- .. • .. • ................ . 
• Dll * . . . .... ·1. YES!. JBS I 
•••• <--------------------

•••••J2•••n2t... HS2~***J3***~~2t**LJ lllO!:***Jll********** 
*CBIUll2 382111* *CEltllll 38212* * * ·----------· ·---------------· . . 
* * * *CLBIR 11811 l!ITRY* . . . . . . . . . . . . ....... I;:::; ................. .. ..... :·1········ 

.... 
119029 

****Kii********* • • * RETORI * . . ............... 

section 8: Flowcharts 595 



Chart FZ. Operand Processing Routine (OPND) -- CEKMW (Page 2 of 2) 

CEKll113 CSOP 

* ****A2********* * 
* EllTEB * . . ............... 

I 
*****B2********** . . 
* EXTRACT llAllE * 
* TABLE EllTBf * 
* FR011 OPEBAllD * . . ................. 

I 
·*· C.2 *· 

·* STEP *· 
110 • • NO'I SET ARD•. 

*· 'LAST USE' ·* 
•.BI'I SET ?.* 

•. -· ·- .• 

""' [ "' 
* **D2******* * 

* a EDUCE * 
* COONT BY 1 * 
* • 
* * ........... 

I 
·*· E2 *· 

l 110 .•·*coo11T =*· •• 

I ·-._ 01 •• -· .. -· ·- .. i "' 
-·-F2 *• 

-· *· 

·- .• i YES 

·=:.:~11~:! :.-==1•0 

1111215 ll I *****G2********** 
*CALL BLSllS (PRI•* 

:mMm1 :rEi~: 

I 
:•s ... hmtAii511s: 
••• 1 ••• r .. 1... I 

1
1111203 H2.•. *· -· ·-HO ·* IR A *· 

I
*· BEGISIEB ? •* 

•. -· •. .. ·- -. 
1 .. ,,, .. J::::. 
t 

* CLEAB REG * 
* TABLE EllTRY * 

* EXCEPT GLOBAL * 
* ASSIGRllERT * I *****BIT • l__ ••••••• 

""' ,, 

596 

****K2********* . . 
* BETORll * 
* • ............... 

CEK11112 TROP 

****All********* . . 
* EllTEB * 
* * ............... 

l .•. 
Bii *· . . •. 

llO ·* Ill *• 
*· ll!l!ORY ? • * 

*· .• •. .• • .. • 
* YES 

l ... ., 
•••••c11•••••••••• 
*CEKl!X1 39512* ·---------------· . . 
:nussIGll TEl!P. : ................. ,, 

1111100 ·*· 
Dll *· . . • . 

• • Ill A *· 110 
*· REGISTER ? • * 

*· •• •. .. • .. • * YES 

"'" l *****Ell********** 
* * *CLEAR REGISTER * 
* TABLE EBTRY * . . 
• * ................. 

l' 
****Fii********* . . 

* RETDRll * 
* • ............... 

PAGE 382 



Chart GA. Result-Register Operand Processing Subroutine CRSLT) -- CEKMY 

CEKllYl RSLI 

*****A 1*•••••••• * 
* ENTER * . . ............... 

I 
1 

•••••e1•••••••••• 
• SlY! tsr OEllD • 
• REG. • 
•11011-SELECTlBLE • 
*BIT STl IUS. SET• 
•llON-SELECTlBLE * ................. 

I . •. 
Ct *· . . •. 

YES • * Sl!COllD *• 

I
*• OPElilND=O? • * 

*· -· •. -· ·- .. * NO 

I j 
I ····•01•••••····· 

• SAVE 2110 OFND * 
• REG • 
•llOH-SELECTA6Li * 
*BIT STU~DS. SE'I* 
*IOI-SELECTABLE.• .............•... 

..___>l 
llY202 1 OPllD 

*****Et********** 
=~~~!!!---~~!~!: . . . . ·······T······· 

. •. 
Pt *• 

.•OPE.\flllD• • 
• * A COllllOI *• Yl!S 

•. EIPRESSIOI • 1 •• 1 .• .. .• 
•. -· 

(::· =->1· 110 t 
• • <---~ J .... . 

••Gt••••••• G2 *· 
* RESTORE * .• *· 

• STATUS Ol • .• COOl'raO *• 10 

llY011 L -·· 
• llOllSEL:ilCTABl.E • >•. OB II ., 

• BIT OP tS1' • •.lllUIOB! 1 .• 
• O.PID BEG * *• •* ........... ·- .. I • fES •••• 

.... J l : Gt : 

l llY010 .•. 11!013 11!0111 11!100 
•••••H1********** H2 *· *****113********** *****Hll********** *****RS********** 
:u amo~~·~;g• : .• ·• TYPE •. •. n:s !u¥tiLrm

1
isG1: :c=mMJ8i5lH ! ! ClLL COVER : 

:11o•~n~E~¥ieu: ·-.;
0Hifl1°1 •• ··--->: u11HP·U

8
L• :--->: 1mi1H:l.11 :--->:11~¥6ji1m~!z : 

* BI1' STATUS * *• • * * 1111108! 1 • * * . * * * 
......... ,........ • .. ,-=o ········[:........ m•·-··....... -·····:c······ 

10 • • 

. •••••J2•••U!2H. J3 • • •. -•**Jo••••••••• ! ~ 1 
: 

••••J1********* *CEIUll1 37912• .• *• *CALL AS11111GI * **** 
: &ETOii : :--------------=--->•:*B!Gum 1 ·=~>=·~~-la. 1cM· : 
• ••••••••••••••• • . : : •• •• • • • • :11ii~a AgHf~ATI: ................. .. .. . ........•. , ..... • 

Section 8: Flowcharts 

PAGE 383 

597 



Chart GB. Select Single General aegister (SELSR) -- CEKNG (Page 1 of 2) 

CEi:\NG1 SELSii 

•
****A2********* * **A3******* * 

• * INITIALIZE • 
* ENTEa *--->* llR!I LOOP * 
• * • ................ • * 

598 

........... 
I 

! 
.•. NG010 B3 •- •••••e4•••••••••• 

. * REG= *· * * 
.:•smcm~E *:._No ___ >: As*:~dR;G8 1 • ----'-------. 

*· GLOSAL • * * 
·- .• • * *· ~ .,.._. ................. . 

* YES 
I 

! 
NGOOO . •. 

C3 *· *****C4********** ·* •. • • 
• • BUSY = *· YES * ASGWT (REG (X)) * *· 0 ? .•--->* TA9LE = 8 *-->..-----~ .. . . . . I 

*· •. . .- • : ••••••••••••••• : 
* NO I ..... 1 1 

: o3 :->I I 
* * I 1 

**** * * • 05 • . . 
**** I 

NGOO~··· .!. '9coo6 i 
·*· DS *· D3 *· *****DU********** I 

- ••• •• •. NO :ASGilT (REG (X) I : I 
*· AVAILABLt: ? .•--->* TABLE = 0 *-->I 

*· • * * * I 
•. *· .• ·• : ••••••••••••••• : I 

* YES I 
I 1 
I I 
1 1 

~ I 
NG002 • *• I 

E3 ·- *****!"********** I ·* •. * • 
·* ACTIVE *· NO *ASGllT (REG(X)) * 

*· ? .•--->• TABLE = 9 *-> 
*· ·* • • 1 • .•.. *.. : ••••••••••••••• : I 

• * *· • * ASS. *· YES *· VAL!JE GT. .*--, 
•. ijQ95 ? •• 

*· . * *· . * * NO 

l 
!****ES*********: 
:ASGW~Am~JXl·) : 

• * . . 
***************** 

• YES i >I I 

''°!!•••'3.l.••••••: ~N-G-0 :-;-;-~;-~-s:!;~~=~;*: J 
* OSE ID ?OR * * WEIGHT. * 
*INITIAL llEIGHT • *INCRE!IENT ASGllT*< 
* * * INDEX. * 
• * l . . 

····:~:r::· ·· · > ~,! ····:::r::· ··· 
.• *· YES .• TEST *· NO 

•. VARIABLE? .•----------- *· !IEXT REG. ? ·*1 *· . * •. . • 
•. • * I *· ·* ·r, I ·:c.. =:!l= 

• *· ' : DJ : 
H3 *· I * * .• •. I •••• 

: D5 :<_I_E_S •: * COllSTAllT ? *: * 

1

, 
* * •.. • • 
**** •• ·* *- •• * NO 

1 -•. 

J3 ·- I .•·* *· *· NO > • 
•. CSX? .*------------

•. • * *· .• ·- .• 

i"' ... I K3 *· •****Kij•********* 
.. • *· * * ·=· 1ma~y ? ·:.~>:ASGll~A~u~~X)) : 

•.. .. • * • 
*· .• • • ·- • * ••••••••••••••••• 

• 110 

PAGE 384 



Chart GB. Select Single General Register (SELSR) -- CEKNG (Page 2 of 2) 

NG01i. 

..... 
•3as• 
* A 1* .. . 
i 

• •.. NG028 • *· NG0314 • *• 
A 1 *· A3 *· A4 *• 

.• IllPUT *• .• *· ·* *· 
• * SPECIF I- *· NO .• INPUT = *· NO •* llEIGi!T *· HO * * *·· CA:rLONS • -------------->•. SPECIFIED • *--->•. OF l!IGi!EST .•-->* 03 * *· PRESENT • " *· REG? • * *· GT2? • * * .• •. • * •. •• *· .• •••• 

• ... * •. -· • •• • i "' i "' . "' 
.•. NG016 .•. .•. 

B 1 *· 82 •. 83 *· .. * ·- .. • *· • • • . • * SELECT *· YES • * *· NO .• llT. OF *· YES ·- ·- ::::;:;~:- .-•---"·1~::::1:;:;:. · 1 ·-·-::~1:~:-· -•------- ·-----. 
. . I ... HG061 

c1· • •. c2· • •. c3 •. •••••c4•••••••••• •••••cs•••••••••• 
• * *• • * *· l • * llT OF *• * CALL IHSOT (LR * * * 

NO .• DtLUE *· NO ·* FOil *· I .• HIGH FROll *· YES •HIGHER 1_SP REG) * *CLEAR !!R!!, SET * 
.---•. REGS 11 14, .• ]*· BEGS 11 14, .• I *· ASGllT GT .•--->•SET HEw !!EllORY *->* aosr611sL REG * 

I 
• .. ~ND 15 •• -* *••.OR 15 ••• * *·•. 2? .•·* =~~~ ~~D~~~io~~T: A : OUTP T = P.EG : 

•. • • *· - • *· - • ••••••••••••••••• • •••••••••••••••• 

I 1· <YES 1· YES : ·:;· =->1· NO l 
ING014 I NG5;j**** I 
I :;:;~D~~~~:;;·~;: :;:;~D~~~~:;;·~;: I :··~:ff*;;~:;•••: ****DS*!******* 

I : 1 ·~hJ~rsR5~l!T :__ ::6~4i~~Tmm : : am~t~~~g= : : RETURN : 

I
I :1, 1~~J~TT~a£ IN: l ~ REG ! I ' :.'.~•~•g•A•~•'I•D•~•~I •• :~.i •• ! • ••••••••••••••• • ................. . ...... T....... ·1 · 

I I •••••E2•!........ I !!3··· •• •••••Ell••········ 

*****Fl********** . . 
* SET llEIGHT OF * 

>• ilEG TO 0 ~> . . 
• * ................. 

* RESET WEIGHTS * • * *· * * 
! 0h~iiNi- ! .:• coiiUD ? *:•-'E_s __ >: DISmci~nT ! 

I •sTdic'IED REGS) • •. • • • FOR STORE • 
* IN ASGllT TBL * *· .• * * ••••••••••••••••• ·- ·* ••••••••••••••••• 

I ..... J........ J.:: ................ . 
* * • * *· * CALL IllSOT * 
: Hi~ircnp : -• aEGs5 •. 110 • ~LRREGof. sP • 
*RESTRICTED REG* *··-~6 1 3d ~K ••• •--->: 

8s~!·R~~ m : 
* * *· • * •ADCOll LOAD AllDt• ................. ·- . . . ................ . I • m I 

-N-G-02-6--:.: I 
*****Gl********** G2 *· *****Gl********** 
* SET UP EXIT * .• *• * * 
* TEST !!OYE * YES .• AllOTHEB *· 110 *SELECT HIGHEST * 
: mmu:GFOR :<---*·•-PAifmu.•" =~bi!E~6aSffic&i: . . ·- -· . . ········1········ .. _ *.. ········1········· 

•••• < 
: Al : IllSOT 
* * *****Bl********** 

**** *CEKllI1 397A1• ·-------------· * L REG TEllP. * 
* ADCOI * 
• * ................. 

''°57 l<-Il-S_O_T ____________ _.. 

•••••JJ•••······· •CUII1 39711• ·---------------· 
: STd'¥di~ AR : . . ....•............ 

l 
*****Kl********** *****K4********** 
*IF REGO STORED,* * * I 
* SELECT ADCOll * •UPDATE 'II llEllR* _j 
:llB:5:rr0gp~Ih :--->:un~0f b0i~;; .. : . . . . ................. . ............... . 

Fii. REGO STORE 

PAGE 385 

Section 8: Flowcharts 599 



Chart GC. Select EVen/Odd General Register Pair (SELDR) -- CEKNH (Page 1 Of 2) \ PAGE 386 

* * 
: A5 : 

! 
CEKNHl SELDR !IH006 • *· 

A<; •. 
·* *· * ****A2*"'******* * YES ·* ABS. *· 

: ENTER 1*·•. v:~~~ ¥T .•·* 
I •. ·* •••••••• ,....... I ··.·:o 

1 I ..... J ....... . **82••••••• 1 • • 
*INITIALIZE * l * SET *: :~~~:amfE : * I : ASGmm~>) 

.. ::::··r-.... I, : ....... i, ·······= 
* C2 *->t 

* **** * l11H010 i 
NHOO 1 c2" ·- ·- I •••••cs••········ 

• •siL~~mL~- •. YES i :sTOR:fAm?HT Ill: 
*·· *· gL~~~L? • * •• .:_:::_ _____________________ -:-->:I!ICR~:m. ASGDT: 

•... -. . ............... . 
~~~ I 
I !
~ . •.

NH002 02.•... *****DJ********** ·*DS *·• •
• * • * aUSY=O *· *· YES : SET • * IS !!RI! *· !10

*· •. ? _.-·--->: AS(i¥HUW) •. EXHAUSTED ? .- ·--,

* * *• *· .• · I •... .- • ••••••••••••••••• •• . • v
"*"NO * YES ****

l !
I : c2!

!IH004 **F.5******* :****E2*********: •I!II'l'IALIZE *
* USE ID POR * * LOOP TP.RO *
•INITIAL Ii EIGHT * * * ASG~§c~iSl'T * *
: : * ••••••••••••

l •386• I
: ps. *->I
•••• +

.•. !1!!027 !"5··· •.
·*F2 *·•. .•EITH!!R *·

.• *· YES YES .• l!EllBER OF *·
•. VARIA3LE ? .• r--* .. ~AIR ~T = ?.·*

*· -· ••••• •. .• ·- • * •387• ••• * *· . * * A2* * NO * NO * * I

I • I
~ J

Gi .. • .. *· *****G4********** GS *·
• • *· **** •HIGH ORDER P&IR* • * *·

-· •. YES • • ::f~Gm~lGm+ =<---"-o.:• E~:m~ ·:.
•-,.:ONSTANT ?.,.·*-->:AS: : OFL~pg~6E~OR: *·•. .·*

•. •- • * -• •••• ••••••••;•••••••• *· •. ;~s

•1110 •• !.. 11

•387•

• *• *•A~* *****HS**********
••

82
·-._ • :H~iMmM~P:

- • ·- !10 •WT. AS!'IBL R!!ST •
*• •- CS:< ? • •. * : OF ll~~g~i Ill :

*· .• ••••••••••••••••• ·r., I
J 2. •••••JJ••········ :••••.J5••••••···:

.-· Ill •• •• YES : SET !Hvigrli~T~~<~::
.: •-:~:oSY • ~ • .•. •--->L:::::!~::::: .. : JA : !

··~·11_0~~~~~~~~ 1

600

.....
•387•
* A2* .. .

Chart GC. Select Even/Odd General Register Pair CSELDR) -- CEKNH <Page 2 of 2) PAGE 387

.....
•387•
• 12• .. .
l

llHO 42 • ·- llH043
A2 •. ••A3••••••• *

.•·* ASGDT *·•. 110 .• STEP TO •
•••• EXHAUSTED_ •• "'->•. ~¥U iMh --~

* • • • • ••••
. •- ·1· ;;s *********** !! :i:

llH045 <
•••••e2•••••••••• . .
*SEUCT HIGHEST *
* 11!.IGHT PROll *
* ASGDll *

l -·· ·* C2 •-.. !****C3* *******:
• • EITHER *· YES * B!llOVE PAIR *

· .1.B=IOT 18 1 .->* PROll ASGDll ·- -· . ·- r·
118066 • ·-

D2 *• -· •. •* LOllER *• 10
•. *• llT <3 1 • •" ·- ..

*- -· * YES

""" l •••••E2••········ . .
•SELSB TO SELECT*
* BEG *•..

l -·-
-· p~TBE:• *• :•••;br;:;:••••:

.•PAl'.R llEllBEI*- 10 *BESET' l'.I ak• *
•• =~EDS ~TOR.l.~~-->:cLmi:m?·~b :

· • * !ISL & BOS!. * .. -· ~···
i"'

'""****G2**********
SELSR TO !'ELECT
BEG. SET OUTPUT •ro EVH HG OP •
• PAIR. *•.. ,,_
••••a2•••••••,..• . .

• RETORlo *

Section 8: Flowcharts 601

Chart GD. Select Floating Register (SELFR) -- CEKMQ (Page 1 of 3)

!****Cl*********!

CEKllQ1 SELFR

* ****A2********* *
: ENTER :

I I
: .:~. :->i

110001
62

.•. • •

• * IS *· • * REGISTER *· 110 *· SELECTABLE • * ·- .• •. .•
•. ·* * YES

l
llQ012 ·*·

C2 *· -· .. * WEIGHT OF 14 * YES ·* IS *• 1: ASSUllED :<---*·•. RE~~~~iR .•·*

t • • *· .• I ·-.-:,
: ""' l I *****D2**********

I : USE ID FOR :
*INITIAL llEIGHT *
* * * *

I
·*· E2 *· -· • . • * *· NO

• CSX ·-> ·- .• •. ... • ... i "'
·*·

I
*****P1 ********** F2 *•
* Wl!IGHT OF 7 * YES •* CSX IN *· L=::;:::r---·-·-.:::;:~ .-·-· J

!IQ010 !IQ009 ·*·
*****G 1********** G2 *· . . -· •. * * 110 ·* LINKED *•
•"ADD 3 TO WEIGHT*<---*· PAIR .*< . . ·- .. • . . ·- .• ·- ... I .. YES

"'" l l !****H1*********: !****H2*********:

602

* * * SET ASFWT AND *
:ASFllT = WEIGHT : : AU~aa~ = :
• • * ••.............

j
*****J , •••••••••• .. .
INCREllE!IT ASFWT
•EOINTEil 1 WORD *
* * ··········••it••••

l . •.
Kt *•

• * TEST *· NO
• ••• NEXT REG •• ·~

I
•••••J2••········ • *
•INCREllEllT lSFllT*
POINTER 2 WORDS
• * *

l
•389•
•B:

*

*· .. • • ••••
•. • .. •389*

* YES * B2* .. !...
* •
* B2 *

PAGE 388

Chart GD. Select Floating Register (SELFR) -- CEKMQ (Page 2 Of 3)

.....
•389•
\B~*

*
i

!IQ012 • *·
B2 *· -· • . • * INPUT = *· NO

*· *· PAIR • * • •--,
- • *390•

* YES *•B~*

I~ ------11-Qu-' z-~-.-.-.c~,:l.
*SELECl HIGllES:r *
*iiEIGHTED PAIR. *
• IP REG NEEDS *
STG, SET TO RE-
•VERSE WI ASllBL *

I I
I l
I :··z~g~::~;·:;··: I *Li;FT 2 ilIGITS ••
I : IN ml cm~HT :

I : r·····=
E1*i*** E2° *· *· • • ..

* SET TO * NO • * 'Ii!RU *·
* fiiOCESS OTHEil *<---*· iiITll BOTil ·*
* PAitl * *· PAIRS • * • • •.. ·* ·- ...

* YES
I

1
!IQ092 -·- !IQ830

F2 •- •••**F3**********
-· •• • * .:* s~~H°HsD *:._No ___ >!mfi°M1~~i~BT! -

· PAI!! · *
·- -• * *· .. • • ••••••••••••••••

""' i "' 1

1
*****G2**********
* * I •SELECT ?AH! !ND* I
:?ICKUPli~CllBI!iED: I
" * I I

I<
" •389•

llQ08" • *· l!Q722***H3**********• * * H~*
• *HZ *• *• * CJ.LL PNDliS *

•*STORAGE •.YES *(BYTES=ll,8,16*_j
·-. NEEDED -··*->: ni~p~ho11 :<

"• ·* * (lDCO~ PHTR) * . ·· r. :o ········i········
--· -·-•390• •390•
* !2* * B 1*

Section 8: Flowcharts

PAGE 389

603

chart GD. Select Flo~ting Register CSELFR) -- CEKMQ (Page 3 of 3)

.
l

••e 1•••••••
• SE'i: IN *

* ·~~~r.hi)snsH* *
• IN :iEG OP : •

• TYPE * ...•.......
I
!

•••••Cl**********
:c•i~ §~~EmLK·:
* STO~E~t INSOT *
: (StE~E!!~) BEG, :

l ...
Dl *· *****D2********•* . * •. * INCREASE * • * TY PE = *· YES •DISPLACEllEllT BY•

· 16 .->*1f2 T'.iPE. CALL• •. •. .•·• : mT~m~g;E : ······'··········
*! NO !jgo• l • ?2 *->

- •• llil840
El *• *****E2**********

•• ·;Oli~O§OT~0 •. !IC : !Im smk :
•.REGS g OTE!Eli .*->*OUTPUf = LOliEll *

•.iEG I.EEDS.• * REG OF PAiil *
· STG · * • •. i "' .. ,, •...... . .

* SET TO *
*• OTHER REG * *

* •
I
I

t
•3d9•
•• ii~*

*

604

l
****P2********* • *

liETOiHI :

.
•390•
• 93• .. .

I

!l,;)014 i
*****B3**********
• IP SPECI?IED *
:a~~G. Sfl ;gTsp :
* SEL HIGHESf *
• WEIGHTED iEG ••.........

I

! ...
C3 *·

* • * NEED *• *· NO •= STOiiAGE • *'-------*· •• .. .• • .. •
• YES

I
llill 53 !

*****D3********** :cm ~w~m-:
* BYT!s, TYPE), •
: i'LlD~~~~fOll, :

•••••••• *********

I
*****E3**********
•SET llEIUC ADCON*
DSP. C&LL COVER

!rJ~L~tr~ p ~Ep OP: . ..•.............
I

*****P3**********
•CALL IllSOTjSTE/*
:s1Mi~!rM1. !
* llEllORY' IIDI- * 1 * CATORS g SIGN *

J ""' l G3 •. *****G4**********
• * *· * CLEAR l!BllFR, * . * *· 110 * BR !AK LI!IKS *

• ••• LillKED .•·*--A->: my;;N!lm~, :
*· . * I *I!UTPUT=Sl!L Rl!G • •.. • I •••••••••••••••••

..... J.::: _JI "'" j
*ADD V2 TYPE TO * ****fill********* * DISPL&CEllEllT. * * * * CALL * * RET0211 *

:.~::mme::.: · ··············· ·

PAGE 390

Chart GE. Make Initial Assignment to General Register (ASAR) -- CEKMM PAGE 391

CEKllll1 ASAR

••••A1••••••••• . .
: EllTEa :

l
:••••Bl**•******!
:lllif INKIDh~~Gll :
: DISPLicEllEllT :

I
* ••C1******* *

* TURll BUSY *
* 01 TURll !ISL •
* OFF *

I
*****Dl**********
*UPDATE U'PROP- *
* iiIATE TABLE *
* CL:Uli SUOllYll * * EllTliI!S FOB * * liEGISTEB. • ·················· I

l
*****El**********
* li!TDBll *

section 8: Flowcharts 605

Chart GF. Make Synonym Assignment to General Register (ASARS) -- CEKMN

CEK!INl ASA RS
* ****A3********* *
: cNTER :

I

I
I

!
* ••s3••••••• •

" rsnrollliaZE •
* LOOP T~RU *
*~YN. F'Oil ilEG••

!<---------~ v
llN001 C3 .•. *·

• * *·
YES • * *•

,---*~ * ilUSY=ZEi.<O • • .•
I . •. .•
t • •• •
I * NO
I I

I I
I !
I • *·
I 03 *·

I
I
I
I

I
I
I
I
I

!'!!1010 I
* **04******* *

I • • •.
I • * llRll FOR •. NO * SET TC ~::XT •
I *· REG. .•--->* EN~RY
I *· EXP.AUSrEo.. • *
I *· • * • * I *· ... ;ES
I I
I I
I I
I !
I * ••EJ•••···· *
I .. INITIALIZE • I •.LOOPGi;rng sn.•
I •••••••••••••

I [, __ ~
I !IN002 F3···._ I
I YES • .. • • •. •. I
I<--•. CONSTANT • * I
I *· . * I
I • .. • ..• ·• I

I ; NO ',:

! I
v I I G3··-. ••G4•l

I • • •. * *
I * THRU *· NO * ST3? TO * I ·=•.WITH SYN •• -·--->•.NEXT SYNONY!I ••

I •.. ·* * *
I

•. . * •••••••••••
* YES

I I
I ! I • ••H3•••••••.

I • INITIALIZE •

II

* LOOP T!lRU * * SYN. GROUP •
• *

I '<-----. llN004 t V j. NO
.~~~~:;:·;~;. I !111003 J3··- •. J4. • •• :••**JS••••**•••:

ID,S!GN~LINK,• ~ YES .•· *· *· NO .••* *· *· YES * SELECT FIRST *
• •Dis~Lre~tien • •<--A-·- •• VARIABLE _ •• •--->•. •. THRO •• -·--->: SYllONY!! :

* * I •... ·* *· ·* * * ·····r····· I ·-· -. .. ·.. ········i········
l

*****K2*•********
:UPDA'IE 'IABLE IP: * ****KJ********* *
• N~EDED *--->* !iETOiiN *
• * • *

606

PAGE 392

Chart GG. Make Synonym Assignment to Floating Register CASFRS) CEKMP

CEKllP1 ASFRS

* ****A3********* *
* ENTER *

I
B3*****

*INITIALIZE * * LOOP THllU * * ENTRY SYNOllY!I *
* FOR REG *

!<-----.
!IP001 . *·

CJ *· . . •.
YES ·* *·

,-----•· BUSY=ZERO ·*

I *· ·- .• -· •. -* i "
·*· llP010

DJ *· **Dll* ***** • * •. • •
·* llR !!FR *· 110 * STEP TO *

*· EXHAUSTED • *--->* NEXT EllTR! *
•. • * * FOR REG *

•. ·* * * *· -* ••••••••••• i "'
* **E3******* *

* INITIALIZE *
* LOOP THRU *

S YNOllYll GROUP
I.,,., J-
l <~·=··:::STA:~ *· *: *

•. ·* *· .• ·-. · :o I

1
1 . •. • '::!: •. •. •. Jo

· liITH •
*• SYNO!IYllS • *

*· .• ... • i "'
HJ*****

* INITIALIZE *
* LOOP THBU *
~ YHOllYll GROU~

I<-~ 110
llPOOll ! llP003 • *· J" •• **J2••••••• J3 •. .. •. •••••J5••········

BDSY=1. SET • * *· ·* *· * *
* ID * YES .• *· 110 .• THRO *· YES * SELECT FIRST *
·~~mmhmE2•<--A-·- •• VARIABLE _.-·--->•- •• sY:5iV11s _.-·--->: STllOll!ll : . . I

*********** ••• • * *· *. * ********j********

I
!****K2*********: ****K3*********•
* UPDATE PROPER * *
TABLE IP llEEDED--->* RETUBll *

Section 8: Flowcharts

PAGE 393

607

Chart GB. Find Temporary Storage (FNDWS) -- CEKMT

STD

STE, STE

STE,ST

STC

SIZE & BllDRY

608

CEK!IT1 FNDllS

••••A3********* • * * EllTEil *
* *

I
·*· 83 •. . • • . • **84••••••• •

• * GLOBAL *· YES * SFT TO • *• TEllP • •--->* GLOBAL AREA * *• . • * OF llATRIX * •. .• . . •.
• NO
I

"'2i. ·~..!:....... ·1 * •
*PINO A HOLE Ill * * TE!IPORARY * * STORlGB TlBLE *
• * ········i········ I

= 614 BIT .•D3 •• ••
• * BIG *• 110

J j
= 614 BIT *· ENOUGH • *-

*· • * A

•· •..• ·• I
• YES I

1 I
E3°"

0

•. d
·* 011 •• 110 *· PROPER .•

= 32 BIT

: 8 BIT

*• BOUllDABY • * •.. .• • .. • i "'
. •.

·*F3 *·•. !****P4*********:
•* HIGHEST *· YES * SAVE THE *

*· LOCAL YET • *--->* ADDRESS * •. • • • * •. .• . . •.
* NO I

"'!!!. _J . .
*SET UP ADCOH & *
* DIS PLlCEllEllT *<
* *

I
****H3*********

* * * EXIT * * •

PAGE 394

Chart GI.

CEKl!Xt RLSllS

••••12•········ .. .
• EJITEB •

Release Temporary Storage (RLSWS) -- CEKMX

.
l -·· -·· B2 •. 83 •.

- * ·- .• • • • • •. ll:ES • • GLOBlL •. YES

•. SECOllDlll! .•--->•. ,, T!llP • •~ •. TEJIP .• •. • *
•. ·- .. -· ·- ·- .. -·
.L.. i "

••••*C3••········ • P.IllD llELElSE • ****Cll********* >: S.IZf.§T 11lf¥.I1, :_>: EXIT :
• LOCl'fIOJI. SET * * • * BITS = O. • •••••••••••••••

PAGE 395

section 8: Flowcharts 609

Chart GJ. Register Memory Clear Routine (FLUSH) -- CEKON

CEKON1 FLUSH

****A1********* • *
* ENTER * . .

I
!****B 1*********!
m11~b~~ll;Lpg~ :
*FIXED ADDRESS. *
• *

l
*****C1**********
*IF DESTillATION *
* REG & REG, *
•COllPUTE FLT OR *
*FIXED ADDRESS. *
* *

I
Dl*****

*RESET HAllE *
•TABLE OR TREE*

* FOil 'FllOll' *
* * llEG * *

I
*****E 1**********
!11~~ ~~g

1

TgE~11n!
! mE

0Mmb !
* llEl!OllY. *

I
*****F1 **********
IF LINKED PAIR,

!sEm~M~s~6a !
: UPPER llEllBEB. :

I
*****Gl**********
*RESET REG llEll- *
ORY, llSL=l BUSY
=1. OUTPIJT='TO'
•REG. IF 110 'TO'*
*RESET REG ADDR *

I
****Hl********* • * * EXIT * * •

610

PAGE 396

Chart GK. Code File Output Subroutine (INSOT) -- CEKNI

CEKNI 1 IN SOT

•****Al**********
ENTER :

I
*••Bl********

* INITIALIZE *
*" REGISTERS * *

J

l . •.
Cl *· . . •.

·* BRANCH *· *· ON ID • *
*· PARA!!ETEB. *

*· •••

: ••• IDO ••• 397 B2

: ·-. ID1 ••• 397 C2

: ·- .ID2 ••• 397 D2

: ••• ID4 ••• 397 E2

: ••• IDS ••• 397 G2

: ••• ID6 ••• 397 H2

: ••• ID7 ••• 397 J2

: ••• IDS ••• 397 K2

: ••• ID9 ••• 397 KS

NI110

* ****A5********* *
: ERRO!I EXIT :

•397• A
* * B~* I CODE PILE • I OVERFLOW

NI100
l 1 YES

B.2***** **B3******* BS• • *·
* SET * * * • * *·

* OP Rl R2. * * ADD 2 TO * ·* Cl"T > *·
0.1/.TPilf w6RD TO ·--->• LCTR~ u TO •-------------->•. CF 1JL? ·

* ,.c(1i;t !'ILE. ,.* *• C T. * * A *·•. .•·* ••••••••••• ••••••••••• I •..•
* NO

•397• I •.•. I I

:.~~··-1 ! ~' IH210 NI230 • ••c2•••••••,. •••••c4• ••••••••
* SET OPLR1,R2, * ****C5*********

,." nhiiT~~· *-------------->:826g~ ~oD2oo~- : : RETURN :

.. · !!~~::.:~~: ·.. :~m,J:I~:;!t: ···············
A

**** I !3g1:. I

NI2~~·· l ------------------.>'·,·, ••02•••••••
*SET STCL=1 * * AllD SET *

DISPLACE!IENT IN
•;ECOND WORD... I

••• : .. ••••••••• I
*397• I
: E2,.*-1 I
**** ~ I

NI1SO E2 .•.,._ ••EJ*******
1
1

• * *· •SET STCL = *
.• •. a • e AND SET • I

*· STCL .•--->•SY!IT IN SECOND >
*· *· • *. * * * WORD * * I

... I:... I
• •SEIN~T~~T7 .. • I

..

• ... s.Y !!TIN SECOND " >I * * WORD. * *
:3~J" •-, I
: I I

NI322 ••• G2•!•••••••• ••G3••••••• ••Gu•L•••••
SET 1 iiORD WITH * * * SET *
CODE FILE ID=PE * ADD II TO * * STATEllEllT *
* & ADCON PNTR. *->* Cl'T *--->•FIELD IN SECOND*
liD TO CODE FILE * * * WORD *
••••••••••••••••• ***********
•397•

:.:~··1
NillOO

*****H2********** **H3******* *
!a~:E2°p~g§al! : •• ADD II TO ..
•liD Idll TO CODE*->* LCTR, CFT *--------------'
* FILE. * * * • • * •
•397•
: J2,.* l

NISOO •••••J2••········ * OUTPUT 8-BYTE *
* ITE!I, COl>E 1, *
* WITH LillE 110. *----------------
* -ADD 8 TO CPT *

•397•
* KS* ••.•• t

•397• Y:ES
* K2* KI600 NI700
* * K2 *· *****Kl********** **K4* ***** *****KS**********

* • •" =E~sgb *· *· !10 : OUTPUT 1-WORD : * * ADD II TO * * : OUTPUT END :
l__>•.OBJ LIST 1LL .•--->*ITEi! WITH ID=2 *--->* CFT *<---* PROGRAft ITE!I. *

*· OFP? • * * AHO SY!IT. * * * * * *· .. • • • • • • • ·-...

Section 8: F1owcharts

PAGE 397

611

Chart GL. Object Program Module Builder (BUILD) -- CEKSB

CEKSB1 BUILD

****A3********* . .
* ENTER *

I •••••e3••••••••••
* IHIT.OBJECT *
* PROG llODOLE *
*PR-PROCESS OPll *
HDR. GET NO. OP
COllllON SECTIOllS

I
·*· C3 *• -. •.

110 • * COllllOI *·
· PRESEllT •

*· .• •. .• • ... * YES

'"30 l<-Cll-S-EC---.

*****D3**********
CEKSC1 39913 ·---------------· *GEllElllTE COllllOll* • cs •

I . •.
E3 *·

• • llORE *• YES
· COllllOH • ·-• ... •

i" ...
P3 *· .• .. • * BLOCK *· YES

*· Oll'l SOB • *
•. PROGRlll .•

*· •• ·- -· * NO

""' >I """ *****G3**********
CEKSF1 110011 ·---------------·
* GENERATE CODE *
:collTllOL SECTIO•:•...

I

1 PRSEC
*****83**********
C!KSG1 40312 ·--------------·
*GEIERITE PSECT *
COllTROL S!CTIOI

..... I
•••••J3••••······
* POST PROCESS *
* OPll HEIDIJG. *
*T!BllilllTE OBJ. •<
*PllOGRlll llOOOLE *

I
****K3********* . .

* RET!JH *•.......

612

PAGE 398

Chart GM. Common Control Section Generator (CMSEC) -- CEKSC

CEKSC1 CllSEC

• ••••13•••••••••.
: EllTER :

I
••aJ••••••• . .

* INITIALIZE *
* CfrllTROL *

* SECTIOll *
l •••••cJ•••••••••• • *

llOVE TillE STAllP
* TO CSD HEADER * . .
• *

I

SC110 1
*****D3**********
* Ill SERT *
*ATTRIBUTES AllD *
DEF. FillD 110.0P
• PGS Ill VII. GEii *
* VII PAGE TABLE *

I
SC120 -*·

E3 *·
• * BLOCK *·

HO ·* DATA *·

'

*• SOBPl!OGRAll .•
•. ·* •. -·

I . _i_"'
P3 *· . . •.

YES • * BLANK *·

I
*• COllllOll .• ·- .. •. .•

I •.• -:o
I I

*****G3**********
* SET OP TO *
•PROCESS PRESET *
DATA. ClLLSPECS
: (PR~m~) DATA :•.....

""' 'l *****H3**********
*POT 110. OP CSD *
* BYTES Ill 1ST. *
*CSD llD. POT 110. *
*OP CSECT BYTES *
* II 211D CSD llD *

I ••••J3••••••••• . .
* RETORll ••...........

PAGE 399

Section 8: Flowcharts 613

Chart GN. Code Control Section Generator (COSEC) -- CEKSF (Page 1 of 3)

CEKSF1 COS EC

*****Al**********
* ENTER *
* *

I ::g~: l .
·*· SFllO SF130 l COl'lllEllT

Bl *· **B2***"*** **B3******* • * *• *INITIALIZE:* * *

.: • sm~~RsEo *: •~>•~oW~m ~~., • • 1->• * sET I,.= I • • •<

*· *· "· •• · =~ * • * Al * * ****:*1 ~**** * * * • *********** * * * * *
.... i' :,.m I ·1 I ;:~!: •-> ··:··

v v 1 .. 0 ·*· 1 llO
Cl***** **C2******* C3 *· c,.·

0

*.
* * I * * ·* *• ·* *· * SET p = • I • INITIALIZE· • < - • *· > •• STATEl!ENT *·

* llUllBER OF * * JIIllDEX OF
0

! '---· C(I)-1=0 .•--->*. LABEL CII) ·*
NAllED COllllOllS *TEXT 'T'I = 0* *• ·* *• -2=0 1 ·* J * * • . * •• •• •. •• ••••••••••• ••••••••••• •• -• •. . *

I : C3 :< :•::•: 1* = *1 YES

* •] ••••
**** STATEl!EllT

• *· SF220 HEADER SF210 ·*· •*•
01 *· **D2* ***** 03 *· D.. *• I . . -.

110 * BLANK * * SET I = I + * YES ·* ISD *· ·* ISO *· YES

'

*: *· ~~~~~~T • * =• * * 8 **<-A--*· *~UPPRESSEO. * ·* *· *~UPPBESSED ·*. * A I I ·- -·
I •• .J.:::. I ii L .J. :: I
I • * • • = -•L~llE0~8. =· *· :FOLLOW POI\fTER :
I • p = P+ 1 • I ·- NEil LJ:llE • • •TO s YI'! BOL TABLE*
I * * *· 110. .• * *

l,,,, ·r··" ·-·-r-· : 1 :
L **Fl••••••• *****F3********** F.. *· I

•* SET P *• : SAVE llEll LillE: •• ·~OllPILER*·*·.::.:1
>* •.1Pmw; i+2... : NO. : •• J~OT S~URCE~ ••

• • •. ·* T... i· T....... ·r,
*****Gl********** *****G2* ******** G3 *• *****Gll.********** • * • * • • •. • •
*RETRIEVE & SET * *STORE 0 Iii WORD* # .•COITEllTS OP*. •POLLOll POINTER *
PHI = ORIGIN OF * BEGilllING PHI *<---*· WORD BEGI!I• .• * TO !UllE PART *
* ISO * * * •.llillGPHI.* * * • • • • *· = 0 .• • • ••••••••••••••••• *· - • • ••••••••••••••••

l . i' ,,,.. I
*****Hl********** *****83********** *****H4**********

*****GS*l********
* * *SET PHI = PHI +*
* 8 *
* * * *

A

I

*****HS*l********
* * * * * RETRIEVE & * *STORE OPPSET J *
*STORE P Ill ,.TH * *STORE 0 XII llORD* * STORE SOURCE * * IllTO llORD BE- *
* WORD OF ISD * *BEGillllillG PHI +* * 110. IllTO llOBD *--->*GilllHllG PHI+- &•
* * I * 8 * * BEGillllillG AT * * IllTO llORD BE- *
* * I * * * PHI * * GillllillG PHI+B * T J I r......
..... ,,..........,,.!........,,.
*SET PHI=PHI+2,. * * * *STORE Ol"FSET J *
•+ 16P (BEGillNillG * *SET PHI = PHI +* * IllTO WORD *
* LOC. FOR STGE 8 *<---*BEGilllIHG PHI +*
* OP STATEllEllT * * * ,. *
* NO. IN ISD) * * * * *

614

PAGE 400

Chart GN. Code Control Section Generator (COSEC) -- CEKSF (Page 2 of 3)

.•. SP175 •*• SP180
A2 *· A3 *• *****A"********** • * 11- 0 ii *· . * *· • *

==~~: ,>.: :~:~~:ij:;~~~ :: .~>•: :~:~:~~~:~~~ :: .~>;.:~:~::::~::::.~
• B 1 * • NO • NO I ... I I

I I I I i I HALPllORD 6-BYTE I
SF170 ·*· V INSTRUCrION 11 INSTRUCTION V

B1 *· *****B2********** *****83********** **B4******* • • •• * • • * • • = .• *· < * T(J)=C(I) * * T(J+K)=C(I+KI * * *

I
· C(I)-PE(16) .- * T(J+1)=C(I+1) * * K=0,1,2,3,",5 * * J=J+ll *

·- : 0 • • * • • • • * •. .•
I ·r ········1········· ········it······· ..];;···
I I •.aJ.• ••c2••••••• ••c3•••••••
t •• •• •• •• • I • J=J+2 ·--, • * J=J+6 I=I+8 ••

II II * * *********** * * ' * *********** • l •1100*

I •• a~· •••••
I * *"oo•
1sn22 ... D1*~~;;!!~.ptn SF230 D2··-~~li!IINATE •• c~·

t :1~~~8r ,_ ~~i~ 14f): .. * • * ISD *· *· YES *
'--->* TO S'lnBOL T. * *· SUPPRESSED •• ,

*RETRIEVE ASGR- * *· . *
* !!ENT OP LABEL * *· • * • ...

l i '°
*****E1*******•** *****E2**********
*FOLLOW POINTEB * *EllTER 110. OF ST*

:<cm~·W~~L· : : I:~o m:P~ :
* POillTER AND * * STORE PHI IN *
* FOLLOW TO * *STH llORD OP ISO* .. ···············

I
*****P1**********
llAl!E PART ENTRY
* OF ADCOR *
liETRI?:VE OFFSET
*IN VALUE FIELD *
* OP ADCOll *

l
*****G1********** . .
•SUBTRACT OFFSE'I*
:PRCll ASSIGlll!ENT:
-t •

l
*****H1*******•••
* USE RESULT TO *
* FILL Iii DIS- *
*PLACE~ERT FIELD•
* OP INSTR. BE- *

::mm.mm.:

l
•••••J1•••••••""** * TjJI =C (I+"l *
*Tl +11=C1I•St * * T J+2 =C I+6 *
: T J+3 =C I+7 :

l
*****K1**********
: I"'I+12 J=J+" :

.. L
•1100•
* CJ•
* * .

1<
i

SP2ll0 • *·
P2 *· .. • •.

YES • * llUl!ERIC *·

r *• CONSTANTS • *
· PRESENT ·

·- ·* ·- .• ***** * NO
*1102***** I
• 82**1101• 1

* * * : G2* *->
SP3110

*****G2********** . .
* CLEAR CSD *
* HEADING *

I
i

*****H2***~*******
* INSRT. NO. *
RELOC DEPS(=1~·
*ATTRIBOXES (=5 • *
ALPHAllE&IC IU B
•RLD IMPORllATIOR*•.......

j
•••••J2•········· . .
* IllSRT llO. OP *
* BYTES OP *
* CSl!CT' S TEXT *

•••••G3**********
CALC AND SET !!"'
NO. PGS CSECT' S

r
>•Tl:XT. IRSERT II * * IITO CSI>. SET *

* L=O *
• i********

1 "'!2 ••• .,.t-.. -.-.-.-.-=-------..
* INSERT L IllTO *
*CSD PAGE TABLE *
: 11=11-1 :

j
. •.

J3 •• ••Jll• •••••
• * *· * L=L+1 *

• * *· NO * IllCREllEllT *
*• 11=0 • *--->* CSD 1 S ADDRESS *

*· • * *REGISTER FOR *
*· • * *NEXT EllTR'l * ·-

j"'
*****K3**********
:oJ'if¥£~85P 11~iiE! • ****Kii********* •
* CSD INTO THE *--->* RETORI *
* FIRST WORD OP * * *
* THE CS!> * ***************•............

A2. C(I)-JP(11>0

A3. C (I) -DO (K) <O

Section 8: Flowcharts

PAGE 401

615

Chart GN. Code control section Generator (COSEC) -- CEKSF (Page 3 of 3)

.....
•402•
• 82• .. .
l •••••e2••••••••••

:zEBgPF~ga 1 ~~J) :

: R~m~ma11~ :
• ACCORDillGLY *

l ••••-c2•········· • *
•LOCATE COllSTAllT*
• HEADE!l TABLE * . .
• *•..•.......

l .•.
D2 *·

-· *· • • IllTEGEll *· 110 • .• _cmm~s .•. -
*· •• ·- .• • YES

,.,,. ,l
•••••E2••••••••••

l
•FOLLOW Pll'?ll llE-•
•TRIEVE UL AID •
•SLOC Fll SYll TBL*
•STOllE UL AT T •

l
: ... J.IOI :

F2 *· -· .. ·* •.
• LillK .• ·- .• ·- -· •. -·

["'
SF260 • *•

G2 *·
• *REAL II *•

• * BYTE •. 110

SP280 • *•
Bii *·

• •REAL 8 *·
•* BtTE *· 110

,-->•. •. c~mms. * ••
•. .•

· · * !ES

~->' SP190 + •••••ell•••••••••• *POLLOI' PBT8 BE-*
*TllEIVB VAL ABD *
SLOC FR St! TBL
* STORE VAL AT *

: ••• IJ.~:~~~ ••• :

I
·*· Dll *• . . ·-

!ES ·* *• .__ *· LIIK .•
i"'

SP300 •*•
Bii *•

•• • *ij~11nH*· •. 110
*· COISTAIT •

•. PBESEIT •*
••• * * !ES

..... ,I
*****Fii**********
FOLLOW PBTB BE-
*TRIBYB VAL lBD * : mcs~Mrm:
:.~1.mm~L •• :

l .•.
Gii *• .• ..

!ES ·* *•
*· COISTAllT .•--------------' .__ *· LIIK .•

*· PllESEIT .• ·- -· • .. • * !ES

""' >l •••••e2••••••••••
FOLLOW PllTll BE-
*TRIEVE VAL AID *
SLOC FR SYll TBL
* STORE UL AT • : ••• mm~L ••• :

I
·*· J2 •.

~ -· ·-•• *· 110
• LillK .--------' ·- -· *· .• ·-.-·

616

•. ·* • ...
• 1'0

1<---~
i

SP320 • *• Rll *•
.•COllPLEX*.

-10 .• 16-B!TB *· r--· .. cmnHs .•. • •. ..
*1101• ••••

* * :~· 1• _!!_S __ __,

SP330 <
•••••Jll••········ *POLLOll PllTI BB-•
*TllIBVB VAL AID *
•SLOC Fl S!ll TBL• * STOBB VAL lT •
: ••• Im~~~L ••• :

I ...
Kii • • . • ..

• • •. !BS
•. *· LIIK .•· ·- .•

• 10

l
•1101• * G2• .. .

PAGE 402

Chart GO. PSECT Builder CPRSEC) -- CEKSG

CEKSG1 PRSEC

••••12•········ . .
* ENTER *

l
• ••e2••••••• •

* INITIALIZE *
* PSECT 1 S CSD *

I
• *·

!****Cl*********! - * C2 *• *·
* PROCESS llAill * YES • * PROGRAll *·
* ENTRY POillT •<---*· TYPE 'llAIN' .•
• • •. ? .• ·- ..

• NO

""' [<:-----.
•••••02•••······· . .
* PROCESS lliST *
: (NmhE~mi11:

I I .. E~~:;·- .. .d
.•ENTRIES Ill *· YES

*· ENTRY CHAIN •

·- ? -· •. -· ·- -. • NO

,.,,. ,,
*****P2********** . .
* COllSTRUCT *
llEPEBEMCE TABLE

..... I
*****G2********** . .
•PROCESS RLD FOR*
* EllTBY POUTS * . .
'•....

.... . .
: Al :
! .•.

A3 *·
rBS • • OT HEB *•

'

• ADCONS ? · ·- -. *· .• • ...
* NO

I
!

SG123 .•.
Bl *· . .. •.

·* llAllE *· 110

•• •• Pmi~T •• ··-,

···-.-;;: ·I
l I

I SG 1 ~~ .. ~3.!........ 1' . .
•CALCULATE SIZE *
: OP 111111!! LISTS : I

SG400 .•.
Ali *• . . ·-• * PRESET *· lfO

*· PRESEllT • * I I
>•. ALPHA • *--,

•. .• I
I •. f ;ES

I I
I l
l ~
I

•••••84••········ * llOVE PR !SET *
*ALPHA FRO!! PDF * * IllTO PS!CT 1 S *
: TEXT :

,.,.. I'
•••••c4•••••••••• . .
* COllSTBUCT •
•VIRTUAL ll!llORY *
* PAGE TABLE * : : I

, .. ,, I' J
*****Dl********** D4 •.
• CALCULATE * • * *·
*OFFSET PR BASE * • • PRESET •. 110
: 01 Fg1a~A~~cT : •• •• PR~n!IT .•.• 1
• STOii.AGE CLASS • • • I • ... ·

""' j i "'
:••::~;;;•:~;••: :****ECI*********:
• EllTBIES Ill • • SET UP TO *
•PSBCT'S CSD POii• *PROCESS PRESET *
: IllT!BUL REFS : : DATA :•..........•..

SG139 .!. " .. ' I ... ,,,
Pl *· *****P4**********

• * *· *CEKSD1 404A 1*
• * llAllE *· 110 •---------------•

*• LISTS .•--> *PROCESS PRESET *
*· PBESEllT • * * DATA * .. .• . .

•. -· ••••••*••········

i "' '"" l'
*****Gl•********* *****Gii**********
*IllSEBT llllll!LIST• * IllSEBT !!ASK *
* IIPORllATIOI * *YALOES II BYTES*
• IllTO PSECT' S * •76 THRO 99 PRO!!*
* TEXT * * OBIGII OP *

,.,,, I<----~ : r······J · ... :llmlmt .. :
•••••82••········ . .
•PROCESS RLD FOR•
* EXTEBlllL *
• llEPEBEllCES *

1
• Al •

*****Bl•••******* *****Rll**********
* * * BITER 110. OP *
• PROCESS RLD' S * * BYTES Ill *
• POB lflllELISTS * PSECT' S CSD & *
* * * TEXT IRTO CSD *•..........

'"" j •••••JIJ••········ * CALCOLJ.TE AND *
* IlfSERT ~IllTO *
:Tai'n~oP~D o¥gp:

I
****K4********* . .

* RETURI *

PAGE 403

Section 8: Flowcharts 617

Chart GP. Present Data Processor (SPECS) -- CEKSD

CEKSDl SPEC
*****A2**********

*•***A
1********* * : SELECT FIRST :

* ENTER *-->* ENTRY Ill PDF * • * • ••....
.----->I

SD030 ·*· B:<. *·
• .t *·

• * STCL *· 110
· llATCHES ·-i •. .• *· .• ·- .• * YES ****

I * *

l : K2 :
SD040 ·*· C2 *· -· .. • * 110 *• YES

· VALOE = 0 ·-i ·- .• •. ·*
•1110 : ·:;·:

* *
SD045

*****D2**********
LOCATE PAGE AND
* DISPLACEllEllT *
* FROll VARIABLE *
* OFFSET *

"' *
...----->!

SD060 ...
E2 *· .• *· • * PAGE *· 110 * *

· ALLOCATED ·-->* K2 * ·- .• -· • .. •

i "5 -•- • •• "'" '"
*****F2********** Fl *· F4 *· *****PS**********
* * • * *· • * WILL *· *CEICTEA 0111Al*
* * • *OVE!iPLOW OF•. 110 • * TRIS ITEi! *· YES •----·----------•
* UPDATE VllPT •--->•. P.D.T. ·*--->•. CAUSE OVER- .•--->* ISSOE WARNING •
* * *· ITEi!!: .• *· PLOW ·* * llESSAGE * . . •.• • .. •

* YES • * •JIO i
I SD222•••Gl• •••••••• so160 G2·*· *· I!. ,., : •;;•:
I * PdOCESS PAGE, * • * ALL *• * * **** * LOCATE llEXT * 110 • *ENTRIES OF *· *CONSTRUCT ITEi!. *

* PAGE & ADJUST *<---•. VALOE POT OH .•<1<.------------*IHCREllEllT ITEi! *
* DISPL & * *· CURR. .• * COONT *

I •aEP.ETITIOll PCT.* *·PAGE .• * * I_ . . l

I i us ::::::

I *****H2*****•****
* * * PROCESS ALL *
* ENTRIES OF *
* CORREHT VALUE *
* •

I
SD250 .•.

J2 ·- ••J3• ••••• • • *· • •
·* llORE *· YES * SELECT NEXT *

• VALUE ·--->* VALUE *
• ElltRIES · * * .. -· . . ·- .•

* llO

: ·:;· :_>ll
SDO 15 • *· SD600

Kl***** K2 *·
* SELECT llEXt * YES .• • * !!Ol<E *· *· HO *****Kl**********

* ElltBY IH PDF •<---*· ENTRIES IH ·*--->* REtORll * * • *· PDP ·* * * • • *· -· ••••••••••••••• •

618

PAGE 404

Chart GQ. Internal Symbol Dictionary Generator (ASSIST) -- CEKSH PAGE 405

CEKSH1 ASSIST

*****A 1********* *
: ENTER :

l
*****Bl**********
•SET ll=TO NO. OF* * NAllED COllllONS *

:~:s~T~~t~ m~):
l . •.

Cl *· . . •.
NO • * BLANK *·

r *• COllllOll •*
*· PRESENT • * ... • * • .. • i "'
••01•••••••

I < N=N+1 >
L::j*****

SH100 t
El***** * SET L TO *

*LOCATION FOR *
FIRST COISllON Ill

STORAGE CLASS
* TABLE *

..->l
ISH105 .•.

Fl *• . . . ·-
I •=* N=O • •• YES

I
*·.. ..-·· ·- .. i "

*****Gl**********
* RETRIEVE FBOIS *
* LOCATION L *
*CCl!llOll NAllE AND•
: INSEiT Ill ISll :

I ·······r··
L*****H 1********'** *INSERT VERSIOll *

* ID IN ISD *
*IllCREllEllT L TO *
* LOCATIOll FOR *
* llEIT COllllOll *

SH110
*****Al********** * STORE llODULE * * NA!IE IN ISD - *

>*ONCE Foa CSECT,.
*ONCE FOR PSECT *

l
·*· 83 •. • * ANY *•

NO • * BLAllK OR *·

'

*·NA llED COllllON • *
*· ? ••

•. -· •. -.
* YES
I

I'" l! ••• ".l. * •
*PROCESS COllllOll *
: VARIABLES :

*•.....
'I SH210 V

:****D3*********!
* PROCESS CODE *
COllTROL SECTION
• *

SH29S . •.
AS *· ·* A NY *· • •NO!l-COllllON *· NO

r->*. VARIABLES ·*1
I *· ? • *
I *· . *
I *· · * I I * YES I
I I I
I I I

I ! I
I *****BS••········ I
I : PROCESS :
I * NON-COlll!O!I * I

I : VARIABLES : I I j: J
I SH380 i
1 •••••cs••••••••••
I * * I * PROCESS

I ! sim~W •
I ········r········
I,,.,, l

*****DS********** • *
*SET ISD TOP IN *
* INTERCOll *

..... J....... :,: . ..
* PROCESS *

I
!****ES*********:
* STORE LENGTH *
* AND NO. OF *
:sYl!BOLS IN ISD :

• PROTOTYPE .. I
:co!ITROL SECTION:

·······T······· I
.•. 1' P3 *•

•• •• AIY •. *· NO I
*· lRGUl!ENTS? .•------------>1 ·- .. •. -· ·- -· i "' I
:••••GJ••·······: I
*PROCESS FORl!lL * * lRGUl!EllTS ._. ____________ __.

.
I

****FS********* . .
: RETURN :

Section 8: Flowcharts 619

Chart GR. Object Program Documentation CEDIT> -- CEKSI (Page 1 of 3)

CEKSI1 EDIT

* ****A2********* *
* ENTER *
* *

I .. ,.,
*****B2**********
* -CEKSE1- *
* EJECT A PAGE *
* AllD PRINT *
* HEA&ING *
* *

l
·*·

C2 *· .• ..
YES ·* BLOCK *•

1*· DATA ·* I *· PROGliAll • *

I .. 'le
1

1sI004 i •••••02•·········
:CON~m11m PUT:
* INTO OllTPDT *
*BllFPER SIZE OP *
* CSECT + PSECT *

>I
._.S_I-00_8 __ l

*****E2********** . .
iETRIE'IE llODOLE * llAIU! AID PDT *
* IJITO BOPPER *•....

L.
*****P2**********
*CEKTHE 023A3• ·---------------· • *
: OOTPllT BOFPEB :

l
SI012 .•.

G2 *·
-· *· YES ·* BLOCK *·

r-·· .. p~~~:lll .• ·• •. .•
•408• *· • * ·.:i· i ..

620

*****H2********** • *
*LIST ALL !!llTif *
* POINTS lllD *
* OPFSETS *
• *•............

I
Sl040 • ·-

J2 *· • • *· • * EXTERllAL •. 110 *· liEPEREJICES .•-->
*• Pi!ESEllT • *

•. ·* *· .• i "'
*****K2********** . .
* LIST ALL *
* EXTEllHL *
* REPEREllCES * • *

SI064
*****A3********** • *
* PROCESS CSECT *

>* HEADING *
* INFORlllTIOR *

l
-·· 51092 .•.

83 *· Bii *• .. •.
• * llAP *• RO • * LIST *· 110

*· *· OPTIOll 011 • *. *--->• •• ?PTION 01? • *.-----,. .. .• •. .•
•• •• • •• • •407• i "'·i·

I "'ll ••• " .. :....... • . .
*IHSEBT HElDillG *
* lJIPOHlTIOI *
* IllTO BllPPER * . . .•...............

l . •.
D3 *· ·* •.

.• LIST *• 110
· OPTIOll OR • •. .• •. .• ·- .• i "'
*****E3**********
* IHSERT ADD 1 L *
* HEADIJIG *
* IllPOllllTION * * llTO BOFPBB * • *

,,,,. l< ...
*****P3**********
CBKTBE 02313 ·---------------· . .
: OUTPUT BUFFER :

l
51136 • •.

·* G3 *· *• * **G4******* *
• * LIST *· YES * PREPARE l'OR *

· OPTION 01 • •---> CODE PILE *
· · * SCll *

•. ·1· ;, (:::~:1······
SI168 .•. SI192

*****H3********** 84 *· *****RS********** • • .•rs ITEll•. • •
* SCAI COD BP ILE * • *UI CODEPILE•. YES * PORlllT AR *
OOTPUTTillG LIIB *· l LABEL OR • *---->* IlfSERT IITO *
* llUllBERS, * *· EllTRI .• * BOPPER *
* * •.IAllE •* * * ········r········ ... ·:o •••••••••••••••••

:m: l
• 13• •••

• • Jq ••
10 •* IS ITH *• v---· -~~ m1p~~~-·· •.

••07• •• •• •406•

* •:~· 1• !BS * •:1~-·----
SI108

*****KIJ********** **KS******* * • • •
* COllYERT AlfD * * IllC!t!ll'!IT *
• IISERT Ilf *---->• TO l!'IT I
* BOPPER * *CODIPILI ITBll*•.

* Rll*

PAGE 406

Chart GR. Object Program Documentation (EDIT) -- CEKSI (Page 2 of 3)

.....
•1107• *407•
•*A~* * .1i• . .
! !

SI..: 12 • *· SI380 • *·
A2 •. A3 *•

• *ITEi! IN•. • * • •
• • CODE PILE •. NO .• LIST *· NO

*· AN INSTRUC- • *--->*- OPTION ON • *] •. TICN • * •. . • •. .• •. . . •. .. . • ...
* YES • YES

,.,,,~_I J
*****B2********** 83 *·
•COllYER'I OBJECT • • • < *·
* CODE TO • .• SIXTEEN *· NO
*ALPKAllERIC AND • •.i.EPT ON CURR •• •,
* INSER'l INTO * •. PAGE • *
• !!UPPER • •. • • • .. •

I •••••c2••••••••••
* EDIT OBJECT *
• CODE TO *
• ASSEllBLY TYPE *
• AllD STOllE IN •
* BOPPER •

l
SI272 ...

D2 ••
.• NEXT •.

• * ITEi! Iii •. NO
•. CODEPILE A ·*1

•. COllllE!IT • *
· EN'CRY. .. -·

• YES
I

l PHEAD •••••c3••••••••••
* ·CEKSE1- *
• EJECT TO NEV *
* PAGE AllD *
* IllITIALIZE IT •

I

I<.---~

SI388 i
*****D3**********
* OUTPUT OFFSET *
* AND SIZE OF *
* NDllERIC *
: CONSTANTS :

;m I I I I
t I SI396 • •. **E2******* E3 •.

• INC REii ENT • • * *· * TO NEXT • NO.• LIST •.
• CODEPILE • •. OPTION 011 • •

.. ENTRY • I ·- •. -· • .. •

""' "'" .!. l "' *****Pl********** F2 *• *****F3**********
*CEKSL 1 410 A3• • *CCllllEN't•. • OUTPUT PULL *
•---------------• YES .•ENTRY REPER*. *SORTED LISTillG *
• CONVEllr COii- •<---•. TO A .• * OF llUllBERIC *
* STANT AND * •.COllSTAllT .• • CONSTANTS *
• OUT POT BUFFER * ·- - * I :...... • ••••••••••••••••• ·- -* t_ ..•...•..•

,,,,.. l i,,. 'I ,, ...
!****G1*********: :•:;;;~;;~•;:~:·: !****G~~::;;;~••:
* IllCREllEllT * * SYll TBL NAllE • • EJECT TO N!V *
* CSE.CT'S INDEX * *AND IllFO ABOOT * * PAGE AllD •
• * •ITEi! AllD POT Ill* * INITIALIZE •
* * • BOPPER * • •

I< I i OLR SIS20
*****82********** *****H3**********
CEKTHE 02313 * OUTPUT PSECT * J
:---------------: *llAllE, SIZE, SIZE*

* OU'IPOT BUFFER * =~~PE~H~t,0~!i:-
• * • OF ADCOll PG' ••.•.....

I -·-
J2 ·--· •. • • PAGE *· 110

·•. POLL .•·~
•. -·

·- -· *406•
* YES • *K~*

""' l
:****K2*********!
•-CEKSE1- EJECT *
•TO MEii PAGE AllD*
: IllITIALIZE IT : ...•.............

1
•1106•
• KS*
* * *

SISS2 • •.
Cll *· .• •.

.• LIST *· 110 >•. OPTION ON • •-1 •. _(: I
:··~~¥;~;·;~~~··: I
* LISTING OF * I
* ADDRESS I
: COllSTAllTS * I

········;········ I
I I

:••••ELI••·······: I
• O:JTPOT FULL *
* LISTI!IG OP *
PARAllETER LISTS
* *

1<---
t

SI6118 • ·-
Fii •.

.• NAii! •. 110 •· •. pmuT _ •. ._, .. ·- .. ·· I * !ES
I

= !.. = I
* OUTPUT OFFSET *
* AllD SIZE OF *
: llAllELISTS :

I<---
!

SI658 .•. ·*·
Hll •. HS *· .• •. . • *·

• • *· YES • * LIST *· NO
*• ALPHA"!RICS .•--->•. OPTIOI ON .•-i

•. PRESEllT ·* •. • * •. •• *· •• • .. • • .. • * 110 * YES •••••

i 1 =:~i=
*1108•
* D1• • *• * • JS *· • ·* < 16 • •

.•Lil!S L!FT *• NO
*· 011 CORR -•-i •. PAG! • •

· · •. ·* * YES *****

I •408•
*.Ai•

l PH!AD •
*****KS**********
* -CEKSE1- •
•EJl!CT TO A NEV * * PAGE AND •
* IllITIALIZ! *
* •

!
•1108•

•*Al*
*

section 8: Flowcharts

PAGE 407

621

Chart GR. Object Program Documentation (EDIT) -- CEKSI (Page 3 of 3)

***** *1108•
Ai* . *** *1108•

**A~*

*

SI660 l ! ··-SI732
*****A 1 ********** . .
* OUTPUT OFFSET * * AND SIZE OF * * ALPRAllERICS *
• *

I
!

·*· Bl *· . • *·

A2 *· -· •. .•NON-COllllON *· NO

I
>•. VARIABLES •• ,

*. PRESENT • *
· ·

i ·r,, I
I •••••a2•!•••••••• 1

NO • * LIST *· I ! o~~f;u!r~~F6~T ! I

r-*· CPTIOli ON • * •• • *
· · *· ·* I

* NON-COllllON *
* VARIABLES * • *

* **** * • YES

= Dl = I I J .. _ ****
v

** •••c 1 ********** . .
* OUTPUT FULL * * LISTING OF * * ALPHAllERICS * • *

•1108• I
* Dl *->i . .

t .•-*LIST OB*·•. NO

I
*· llAP OPT IOii • *I

· ON ·

SI712 • *•

1'1 ···r;;
Dl •.

• * •.
• • GLOBAL *· NO

*· *· Pm~~T -]
*· .. * *· .. ' * YES

J I
!

•••••E1••········ I * * * OUTPUT OFFSET * * AND SIZE OF *

:.::::::f :: .. : J

SI7211 ~ I Fl
0

• *·
·* *· • * LOCAL *· NO

622

..... p~~~~iT .• ·*-->I
· ·· *· .. * * YES

I I

I I
!****Gl•!·······: I
• OIHPUT OfFSET • I
* AND SIZF. OF *---"'
* LOCAL TEllPS *
* *

*****D2**********
* OUTPUT FULL *
* LISt 01' * * NOli-COllllON * * VARIABLES *
* *

l'
SI816 ·*·

1!2 *· *****!3•••······· • • •. • *
•* COllllON *· YES * ESTABLISH *

*• PRESENT • *--->* lllUllBER OP *

SI828

*· • * * COl!l!ON BLOCKS *
•. ·* • * ·-.-;, ·······T·······

I "'ll ... ,, .. :....... I . .
•OUTPUt llAllE AND• I *SIZE 01' COllllOll *
• *

I J I
II NO •• -·~:ST :~·-.. I
I
I 1*·.~AP g~TIO!I.•.*

I *· .• I I ·- .• I ,,,,, i "' I
*****H3**********
* OUTPUT llAllES *
* OFFSETS AllD *
* SIZE OP • L:::r=: ... : I

J3 •• SI816 ·*· I
* ****J 2********* * NO • •• * !!OBE *• *· YES
• RETURll *<---*· COllllOll • *--'
• • •. PRESENT • • ••••••••••••••• *· -* ·-.··

PAGE 408

Chart GS. Symbol Table Sort (SYMSRT) -- CEKSJ

CEKSJ1 l
* **A4******* * . .

* * N = 2H-2 *

l

I
I l I SJ2116 ••Bii•••••••
I • •
1 >•* ~=M/2 *•
I I

I 11 I

l I 1SJ228 J
:••••c2••••••***! \ . *cu •. *. * ••c5••••••• *
* SELECT ANCHOR * I . • *· !10 *
*OF FIRST CHAIN * *· 11=0 .•--->• K=N-11 J=O *
: P=ANCHoa : I •. •. • • . • * * •• I ... -;ES *****i*****

••• ·:;· =-. J I I : ·:;· =->1
~ I I * *

**** . *· I SJ250 ~ SJ23~···
... 02ARE ·-.. I :••••D4••·······: • ••1)5••••••• *

'
No.:\:n~~nEn ·:. I : ouTPgE~~RTEo : •• r=J •.

*· THIS. • * I * * * *
·-;~1~:-· I : ••••••••••••••• : • ••••••••••• •

; "' I I l

SYllSRT

* ****A2********* *
: Ell'TER :

I
:••••a2•••••••••:

*
N = 0 :

* *

* •

''""°.••.,.!: , I ' l"": ... J....... lsJ232 •• Es~·- •.••

l * N=H+1 T=P * I * * ·* N.UIE(TI) *· !10
* L=P+STB • I I * RETURN • •. >NAllE ('1'I+ll) • ·1 I ... ···r··... I I I r ;;; ..

j F2·*·.. ••F3•1•••••

1

,

1

1

1

1 111 sJ2 ••
112 ••• FS•!••••••••. ,1

j -· ·- * *

I .::_ ~m'~~ _>-"0--->.: p = LINK(L) :· 1 : T~mm~·7 · I'

•. -· • • I : •
I ·:r;ES ••••••••••• ·.1 I I ...•.... li········ I
SJ110 G2J. ·- I I I ••GS••••••• I

- • ARE *· I I I •• •• I • *TH.ERE llOl<E *· NO
·- CHAINS -·-------------' I •• I=I-~ •• I *· PRESENT • •

•. ·* I * * I •.. . • : I ••••••••••• I

., YES I I l !
•••••H2••········ I I . ·- •. I
• SELECT ucaoa • I • "" • I • * *OF NEXT SYllBOL * YES • * • • *·

: 02 :<--: T~~tic~g~IN : L--•. * I> 0 *. • · .. ~·· • ...
·1/0

SJ2411
JS*****

* * * J=J+2 •

* *
I . •.

KS *· . . •.
YES • * *· 110

'--~--~-~~~--~• J>K * ·... .•· --,l
*· .• • .. •

• **** • *
: os:

PAGE 409

Section 8: Flowcharts 623

Chart GT. Constant Conversion (CONCV) -- CEKSL

CEKSLt CONCV

* ****A3********* *
* ENTER *
• *

l
• *• SL030

BJ •- •••••s•••••••••••
.•·* I 2 *·•. YES : cs;nn~E& :

• CONSTANT • •---> CONVERT •
•. • * A • ACCORDillG TO •

•. .• *TYPE & LENGTH *

SL020

·:r- ·······r······
C3 *· *****C4**********

• * ·- *STORE co•sTANT *
-* I II *· YES * IllTO BUFFER & *

*• CONSTAllT .•--> * FOR!IAT *
*· • * • ACCORDING TO *

· · * TYPE & LENGTH *

SLtOO

·-i. :o ·········1········
! ISL033

D3 *· *****Dll********** • * *· * RETRIEVE CONS *
·* R4 •.YES •SLOC&ADDTO*

•. CONSTANT .•--> * IT STCL 2'S *
*· .• •OFFSET IN CSECT•

SL113

•. ...• • * .T;,, ········1·········
• •. SL035

E3 *• *****Ell**********
.• *· * COWV!RT *

•* R 8 *• IES * COISTUT' S *
•. CORSTAIT .•--> *OFFSE'T IN CS!CT*

· • * & STOI!! IllTO *
· · * SUPPER * ·T:. ·······T·······

SL120 ··- . *· F3 •. P4 •. •.
·* C 8 *• YES .• WAS *• 110

*· .• *· EDIT ? .• ·- .• •. .. *· .• •. ·* * 110 * YES

SLSOO '" '° .I. "°'" l OU G3 *· *****G4**********

•. CONSTANT .•--> *• EllTBY PRO!! • 1
• ••••G2********* • • • • I •CEll:THE 02313*
• RETORll :< ___ N_o ·= * co~si~NT ·:. !oiiTPUT-ciiiiiiii;-:
* * *· • * * LIRE (BUFFER) *• . .

*· i •;ES ********!*:*******

t~~~~~~~~~~~~

.•. OLR
H2 *· *****H3**********

• * *· *CEKTHE 02313* ****Rll*********
• * WAS *· YES •---------------• * *

*· ENTRY FROll • *--->*OUTPUT CURRENT * * RETURN *

624

*· EDIT • * * LINE * * • •. .•
•. ··=· ·······:r······

SL155 .•.
J3 ·-.• •.

•* PAGE *· llO
*· FOLL .•--> •. .• • .. •

* IES

!
*****K3**********
* ·CEKSE1· *
* EJECT TO llE11 *
* PAGE lllD ! IllITIALIZE :•........

PAGE 410

Chart GU. Cross Reference List Routine (CRFSRT) -- CEKSK (Page 1 of 5)

l

_I
I

CEKSK 1 CRPSRT

. ••••12•········.
EN'IER
I

SK100 l
:••••s2•••••••••:
* A=TECFB *
: C=B=TECRLB :

'""' l ••c2••••••• . .
* REDUCE C !!Y * .-------->.. 8 ••

l
.•. SK250

D2 *· *****D3********** • * *· •SAVE SY!! & LBL * • * END OF *· YES * LIST LillITS. *
•. CRL .•--->•FillD 110. OF SYll*

·-._ _.-· :LmrErwm~-: •..
* NO

l 1 -·-•••••! 1 * ******** E2 *· . . -. •.
GET Sll'.11 TBL LOC• NO · IS *·
•SET UP SYll LIST*<---•. EllTRY A ·*
* i!NTRY. &=9+12 * *• LABEL .• . . •. •

* YES

,.,,, I
•••••r2••••••••••
* * *REDUCE B BY 8. *

,.,,, I
;**E3******* *

* DIVIDl! II Bll'. *
• 2. •<--------. • * * •

I ··-P3 *·
.• *· • * *• YES

SK310

.... . .
: AS :
l

·*· AS *·
.•COllPARE* •

>.:*!IAl!~H~ TO·:.<
I •. (t+N) .• --,
I *· · * I I •. • • I I • "

I l I
I -·· I I BS *· I
I ·* *· I
V > • * COii PARE *· < V
1··.~mJ1~.w .. ··-1

I ····.·=·* I
I I I

I i I
1
5\020 .•. I

cs •. l
I ·* *· I . * LINE *· NO

I •· .~gJ: 1 ~I~ir::. -·---,
I *· • ••• · * I
I * YES I

~-~->I '1
I

SK350 l 1'

*****D5**********

=~mmrmnr : :', * JI+lll. EllTRY * * I+ll : SAV!. * * . EDU E I BY N *
l I

• *· I
·*ES •••• I

• * YES ·* • I * A 5 *<--*. I < 0 • • .. • •. - . . . I •. .• • ...

I
* <KO

SK370
PS*****

* • <-------------: EmhH!" : • ADD 1 TO J * *• *· N=O • *. •---l
*· . • • •••• • •• • •1112• i:i·

*****G3********** • * .. .
.. J = 1 • .. .
* •

SK300 I
H3***** .. .

* •

...........

LI ,J ..
.• I+ll *·

• • OUTSIDE *· *· LARGE OF ·* *· LIST • * .. .• • .. • i "
* I = J *<------------------
* • • *

l
• *
: 15 :

PAGE 411

section 8: Flowcharts 625

Chart GU • Cross Reference List Routine CCRFSRT) -- CEKSK (Page 2 of 5)

......
*'112•
.A! .

I
SKliOO ~

*****A 1**********
* * * * *LINE COUNT = 0 •
• *
* *

I
~ PHEAC

:••••a1•••••••••:
•·CEKSE1- EJECT •
* PAGE & PRINT *
: HEADER :

l
•••••c 1 ********** * CONTROL *
* CHARACTER = 1 •
*SPACE. SET SYll *
: LIST HEADER. :

I
~ OLR

*****Dl**********
CEKTHE 02JA3 ·---------------· . .
• PRINT *
* * *****************

I
*****E1 ********** * COllTROL *
* CHAiiACTER= 2 *
• SPACES. SET *
COl.OllN HEADERS.
* *

·······r::···· ,,
:<:~~~~~----~~~~~=
* * * PRINT * • *

A2***** • *
* REDOCE LIME •

>* COUNT BI 1 *
• * • *
~r
-·-

82 ·-.. • ..
·* LINE *· 110

*· COUNT = 0 .•
•. ·* ·- .• ·- ..
i ::: ..

*****C2********** . .
•-CEKSE1- EJECT *
* PAGE & PRINT *
* READER *

""' [' -·- SKll90
•••••D2********** D3 *· **DI!*******
:sE~ F~~g~-L8lE' : • *•*FLAG = *· *· YES * * * *
STARTING POillTS->*• REP .•--->* D'PC = 2
* Ill PRIHT LillE * A *• • * * * • ... •• • ••... . .. • r

*****E3********** *****Ell**********
* * •SK900 1115All* . . ·---------------.
* LOAD LIME llO. *--->* *
* * *COIYEBT & l!OYE * I •1114•

*•.::r1 YES

F3° • *· **P4******* . . •. . .
·* END OF *· * STEP TO *

*• LIST • *<---* llBXT STI! LIST *
*· • * * ElfTBT *

·- •• * • • •. ·* ••••••••••• • •

I
. 110 *413•

V

I lsKli20 1 :.:~=
• *· SK480 SKSOO .1. >

*
••Gl*******• L*•****G2**********• G3 *· *****G4••········ GS •.• ..

* REDUCE LINE * * SET FOR 2 * •* IS DEF *· YES * SAVE THE DEF * .• *· <
*•COUNT BY 3 * •* SPACES *• *· PRillT AREA .*->* COHDITIOllS *->*. RPC:1 ·1

*. FULL • * * * *• • *
• • • ·- . • * • *· .•

I A • !10 • = *****

• 113 *->
50 ··-

............ ••••••••••••••••• ~ •• - • ••••••••••••••••• •. • • v

1 ~
:m. l :."1.~:

•.••••H1**********. H3 *• **Hll******* .• ·- . .
!oi0Ha~~c~m~L * •: * yf~lHE *: •-110--->• • R~ic = =

2~ • •
: ENTRY : A ****• *· *• SAllE • *. * * * * * I ::ii= ·-.-· •••• T.... [

626

• *1113•

I
i

SK650 * * Hl* SK510
J:<• •• * * *****JS**********

IES .•·* ••• •• !10 * : RESTORE :
~-c. ... _ RFC= 2 _ •• ------------------------->:m~ImH~om:

•. ·* • • •.
. 1

*1113• • .r:• .

PAGE 412

Chart GU. Cross Reference List Routine (CRFSRT) -- CEKSK (Page 3 of 5)

***** •q13•
•• A~• .

I
,---~~~~~~~~~~~~~~~~-->~

I .···••A3•••·······. SK520 All··· ••

• LOAD THE ?.El'. • YES • • rs THE •. NO • • l . * *·
* PiiINT LillITS *<---*· NAllE THE ·*-->* G4 *

I * * *· SAllE • * * * • * •• ·* ••••••••••••••••• • .• ·*

I
~

SK 530 • *·
*****82********** 83 •. •.
* STEP TC NEXT * NO • * FLAG = *·
: LIST ENTRY :<---•. *· REF. ·*· *

• * *· ••

I
•.••.•••...•..••• • ...

I * YES
I I

L .L SK540 i
C2 *· **C3******* -. •. . .

• * END OF *· * *
*• THE LIST • * RFC = 1 *

•. ·* • •. ·* • * ·- r YES 1 '<-------. SK57(} i
*****03••········
* LOAD LINE NO/ *
*CALL SK900 ~CO'N-• : m~ ¥o11~En· :
* LIST ENTRY *

J •••••••••••••••••

"'l1 ••• ,J........ ,). •. I *CALL TEVOLR JPR* YES • * END OF *·
!tIW~iuNP~Yc~:<---·-.. LIST •• -•

1

. . •. .•
••••••••••••••••• •. • • •413•

.I. J" ,.,,. ·:r I
F2 *• F 3 *· Fii *. -· •. . •.. .• •.

NO • * LINE *· • * REF *· NO • * IS THE *• YES
r*·•-COUNT = o •• ·* *·.:RIHLtREA·•·*--->• ••• KA~K!iHE .•·*---' . •... -· ·- . . •. . .

·- -· *· . • • ..•

*VI PYHEESAD *I YES ::::::->1• NO

SK610 SK600
*****G2********** *****G3********** **G4******* • * • • • •
•-CEKSE1- EJECT * *SAVE COllDITIOllS* * *
: PAGhiD~=INT : : FOR LAST REF : * * RFC = 2 * •

>I •1113* I I
* H3 *->I
: ••• * t<

SK677 SK620 •
*****H1********** *****H2********** *****H3*•******** *****H4**********
*RESTORE CONDI- * * * * * *IF LINE ClfT=O, *
*TIOHS FOR LAST * •SET FOR SillGLE * *CALL TEVOL IPR * * CALL PH!AD *
POUlfD REP. CAl.L<l * SPACE * *1 Liii!~. REIIUCE*->*(EJECT PG & PR *

:::H~dmh~~.: : : :~!::.~.:::.:=.;: um~~:u:~::.:

*****JS********** . . "'" !..... ~ .. ,, .. "J.... ..".!..· ..
NO • * ARE *· lt'.ES • * THERE *· • * *• YES * RESTORE •

r *• THERE !!ORE • • *• A!IOTHE.R ·* *• DFC = 0 ·*--->* CO!IDITIO!IS Ol' *
*• DEP'S .• *• RE!'. ·* *• .• *LAST FOU!ID DEF *

•. -· ·- - • •. • • * • ::;:: •. r •;ES *· *1· :o *· i • :o ********1*********

• .. H!* I •
* t

1112 •412•
SK685 • *· * J2* * H3•

*****K1********** K2 *· * * * *
• • -· ·- * • * RESTORE * YES -* ARE •.
*CONDITIONS FOB *<---*- THERE !!ORE -*
*LAST FOO HD DEF * *· DEF' S • *

* • ·- -· ********i******** •. i. :o
.....
•1114• *1114•
* Al* * J1* * • • * • *

Section 8: Flowcharts

PAGE 413

627

Chart GU. Cross Reference List Routine (CRFSRT) -- CEKSK (Page 4 of 5)

***** •414•
•• "!* .
1 •••••11•••·······

=~~~~~-----~~~~~=
* llOVE TO THE *
* PRillT BDPPBR *

l
SK690 ·*·

B1 *· . • *·
•* IS THE *· llC

I
>*· llEU !llTBY •

*· l DEF • *
j"'

*****C1********** * LOAD LIRE 110. *
* CALL SK900 *
: (CO¥~EnI~TllOVE:

: •••• ~~H!U._..:

I
·*· D1 *·

·* *· 110 • * IS DEP. *•
<-*· PRIIT ABBA • *

• PDLL · .. .•
i"'

*****E1**********
:m~dEim 1~m
*BY 1.XP 0 CALL *

:::=i:n~;214::.:

... ,, I
*****P1 **********
*SET FOB SIIGLE *
*SPACE AID LOAD *
* DEP PRXIT *
*LXllITS STEP TO *
HEIT LIST BllTRY

I -·· G1 *· .. ·-110 •* EllD OF *·
· THE LIST • ·- .• ·- -· ·- .• ::;:.

1
.< YES

* H1 *-> • *
SK697

*****H1**********
•CALL TBVOLB (Pl! *

: imciimz :
* COURT BY OllE *
=:~:. I • J1 *->

SK700 •••••J1••········ * CCllPOTB TB! *
*llOllBEI! OP LABEL•
* LIST EITBXES
: (I) :•...........

628

SK710
••12•••••••

• * * DIVIDE H BY * I'"· :: ··
. I
I -·-B2 *· -· ·--· *· YES

·-._ • = 0 _.-·---. ·-
·- -· •415• [" . ·:i·

•••••c2••••••••••
* J=1 I=1 *

I
SK720 •*•

D2 *· -· .. YES •* I+ll *· HO
<-•. OUTSIDE ?HE •• , *· LIST ·* .. -·

A

-·· E3 *• .. ·-

!.
> .: * = tHH: m., *: < •. .• ·- -·

• =

l ··-P3 *•
> ·= • = ,n~1m, ·: .:...__> ·- -· -· . ..

l ...
G3 *· ·* LIRE *• •=* Ll~i(i~: *:~> *· (I+I) • *•

• >

,.,,. 'I
*****H3********** * SA flsUTlll fII *
*EITRI g~ •EITBY * ! (Ill B ,,SluI+I) !

I
**J3••••••• . .

* l!BDOCE I BY * • • ••..
I

SK7 llS • *· SK7110
*****K2* ******** KJ *• **Kii*******
* COllPOTI TBE I * 10 •* *· !IS * lDD 1 TO J. *

LOClTIO• •<---*· I<O • *->* I•J * . •. -·
l •

PAGE 414

Chart GU. Cross Reference List Routine CCRFSRT) -- CEKSK (Page 5 of 5)

.....
•415•
• Cl• .. .

I

SK750 ' •••••c1••••••••••
•IF PG llOT JUST •
* EJ ECT!D CALL • :pmr. '~~fl6.&R:
:.m'*m.m •• :

"'" l •••••01•••······· ~ :cm mo~~ge1:
• SET COL HDR. •
•CALL TEVOLR (PR•
• COL HDR) *

I
El*****

•REDUCE Liii!•
* COUllT BY 3. • * SET R.PC=O, •
• I=l ••. I . .

* Ft *->1
SK760

*****P1**********
* SET POR 2SI'. *
•iBDOCE LillE CllT*
•BI 1. IP 0 CALL*

::::!:~=~m~::.:

"'" l •••••G1••••******
•COIVERT LBL JI~•
:r~o EJiD~~f.rla~ !
•LOAD l'i LIIU:TS •
• POR DEPS ••...•......

I ...
Hl •• . • ..

• • IS *· 110
••• ~naiEJII ~.·*->

*· .• .. ~. i "'
•••••Jt••········
!L0MLt1~M8 <II !
: <~g·na~oM~u:
m •• m.1.12.!.:

I ...

SK770
•••••D2••········
* •
* LOAD PRUT *

1>: mm, ~OB :

I : •••••••.•.••••• :

II : •::• !->[....
fSK780 • *·
I E2 •.
I .• ·• ABE •• •. 110

SK900 SK930

*****All********** *****AS**********
* EllTEI! • • ENTER *

I I
*****B4********** •••••qS**********
• COllV!RT LINE • •SET L!llE NO. IN*
• llO. TO EBCDIC • •PR Bl!PPER STEP *
* SHIFT OFP *J>*POS IN PR LINE * • LEADillG ZEROS * * SET INDR FOR •
* * •BUFFER NOT FULL* . .. ~·····~c····· ·········1········

C4 *·
• • IS •. ••••cs•••••••••

• *THERE 110011 *• YES • *
*· II PRII!' • * RETURN *

*· Lii! • * * * •. .• • .. • r SK940
D4*****

* * ****DS*********
• SET THE * * *

* I¥DICATOR POR •--->* R!TURll *
* BUPPEB PULL * * *

*·LABELS THI! .-------------..
*· SAllE .• ·- -· •

* YES

I
*****P2**********
* LOAD LINE 110 *
*Jgl CJ.LL SK900 *
• C0¥VERT & llOVE•
* PR BUFFER). *
• ADD 1 TO I *

I
• •. SK790 SK800 OLR

G2 *· **Gl******* *****Gii********** . • *· * * •C!XTBE 023A3•
• * EllD OP *• YES * * •···············•

*· LABEL LIST • *->* RPCz2 *->* •
*· .• * * A *PRillT THE Liii! *

•. ·* • * I • * "T:. ••••••H••• I -····T·······
.•. .• .

H2 *· ****•Bl********** 84 *·
SK999

-•. *rs REF ·-•• I!S =~1~~c'Pl~fil <tn: . • . • •. •. llO RS•••······ •
· PRillT AREA .•--->•BY 1. IP 0 CALL *· RFC = 0 .•--->• RETURll *

•.*•FOLL ., * .• :PBBfDpj8i~if PG: *· *• • * • * * *************** *
*· i·=: **** * ****••••1•******** *• .,. ;l!S

>• !2 •
Sl785 •••••Jl•••······· •••••JI!•••·······

:~JM0M~8H .. ! !IP«f~Exi 1Pcm: .._ ______ ~;~!!HU2:iHtJ ;mn 4gi~ s ! T"-"
Kl •• I .. •.

.• IS *· 10
•-.~nai!JII ~.,..__..

*****Kii•••••••••• . .
*SIT FOR SIIGLll: *

•. -· • Yl!S

* SPACE *
1

* P1 *

PAGE 415

Section 8: Flowcharts 629

PROGRAM REPRESENTATION FILE (PRF)

Program R~presentation File entry iden
tification values are as follows:

Entry Name
Begin Program
subprogram Entry
Alternate Entry
Label Definition
Equation
Unconditional GO TO
Assigned GO TO
Computed GO TO
ASSIGN
Arithmetic IF
Logical IF
CALL
Argument Definition

Point
RETURN
Begin Loop 1
Begin Loop 2
Begin Loop 3
End Loop
CONTINUE
READ
READ with Namelist
READ without Namelist
wRirE
wRITE with Namelist
PRINr
PUNCH
Output List Element
End List
File Control
STOP
PAUSE
End Program
Input List Element

Field Identifiers

Identification
Code (16)

1
2
3
4
5
6
7
8
9
A
B
c
D

E
F

10
11
12
13
14
15
16
17
18
19
lA
lB
lC
lD
lE
lF
20
21

All fields marked •not usedw contain
zeros. ID appears in every item and iden
tifies the kind of item. Other fields, the
IDs of the items in which they appear, and
explanations of the fields, are:

Fie!.Q. IDs
ABN 5;A,B

AI.AB 9

ASTX 2,3

Explanation
Abnormal Function flag.

Symbol Table pointer to
label descriptive part
entry.

Symbol Table pointer to for
mal argument descriptive
part.

APPENDIX A: INTERPHASE TABLE AND FILE FORMATS

BL3Pr 12

BEG

BL1Pr

BL2PT

CDP

CEX

CNT

EDLNK

END

EOF

ERR

10,12

12

12

5, A, B,
C,11,
21

c

lE

11

10,12

14,15

14,15

ESLOC 4

PRF pointer to corresponding
Begin Loop 3.

Symbol table pointer to low
er loop limit descriptive
part pointer.

PRF pointer to corresponding
Begin Loop 1.

PRF pointer to corresponding
Begin Loop 2.

In Phase 2, zero; or a link
to the previous PRF entry
in which COMMON was rede
fined. Redefinition is
either by a call on an
abnormal subprogram or by
definition of a formal argu
ment called by name. or, a
link to the previous PRF
entry in which a COMMON
variable was defined.

EF pointer to subroutine
entry, in call C;) expres
sion, or alone if no
parameters.

No. of characters in
message.

PRF pointer to corresponding
End Loop entry.

Symbol Table pointer to up
per loop limit descriptive
part entry.

In Phase 1, label value in
binary of End-of-file
return. Negative if
reference is to next
statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

In Phase 1, label value in
binary of Error return.
Negative if reference is to
next statement.

In Phase 2, Symbol rable
Pointer to label descriptive
part entry.

Estimated location in object
program.

Appendix A: Interphase Table and File Formats 631

ETRA A

EXITLB

FLAGS 4

FIAGS 14, 16,
17,19,
lA

FIAGS 11,12

FNSW 10

GLAB

GLNK

GTRA

ILNK

INC

IVAR

LABF

LABN

632

11,12

6, 7, 8,
A,B,
C,14,
15

A

all

10,11

10,11

14,16
19 ,1A

15 ,18

Zero branch.

Symbol Table pointer to
label outside a loop
branched to from within a
loop -- Set by Phase 2 for
determining Materialize on
Exit optimization in Phase
3.

Bit 7-Statement is labeled,
but must be referenced.

Bit 1 - Non-zero indicates
no list with I/O statement
(X'80').

Bit 2 - Non-zero indicates
LABF is an expression file
Pointer (X'40').

(Left to Right)

x•ao•
X'40'
X'20'
X'lO'
x•oa•

X'04'
X'02'

X'Ol'

Labels in Loop
- Unsafe Loop
- Materialize
- Parameter
- Global Flag (inner,

no external calls>
- BXLE on Rec
- ONEASN <remove

floating load)
- IOFLAG (Phase 1)

0 for END FILJ!:
1 for RE51IND
2 for BACKSPACE

Symbol Table pointer to
created loop top label
descriptive part entry.

Link to previous PRF entry
containing a label reference

Positive branch.

Link to previous PRF entry.

Symbol Table pointer to loop
increment descriptive part
entry.

Symbol Table pointer to loop
variable descriptive part
entry.

Symbol Table pointer to
FORMAT label descriptive
part entry or Expression
File pointer to Forri: .. at vari
able name.

Symbol Table pointer to
Namelist descriptive part
entry.

LEV 11 Level of nesting of this
loop.

LINO all but Line number in packed
1,4,D, decimal.

LLNK

LLNO

LTRA

MSG

NARG

10,11,
12,lB,
lC,20,
21

2,3,4

6,7,8
c

A

1E,1F

2,3

NOEL 6,7,8,
A,B,C

ODLNK 11

ODP 7,8,9,
lB,21

OPDl 5

OPD2 5

PDLNK 11,12

In Phase 1, link to previous
PRF Entry or Label oef ini
tion entry.

In Phase 2, link to previous
PRF Entry or referenced
Label Definition entry.

In Phase 3, link to previous
PF entry or referenced label
definition entry.

In Phase 1, label number is
binary. Negative if
reference is to next
statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

In Phase 1, label value in
binary for negative branch.
Negative if reference to
next statement.

In Phase 2, Symbol Table
pointer to label descriptivE
part entry.

x•ooooaooo• if reference to
next statement.

Symbol Table pointer to
alphanumeric message des
criptive part entry.

Number of ASTX fields.

Number Of LLNO fields. Set
by phase 2 for IDs 10,11.

PRF pointer to Begin Loop 3
entry for next outer loop.

EF pointer to variable or
subscripted variable.

EF pointer to left side
variable or subscripted
variable expression.

EF pointer to right side
expression.

Link to previous PRF Begin
Loop 3 or End Loop entry.

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

PLAB 3

PLIB lF

PNAM 2,3

RIND E

RVAR E

SLIB lE

STNO 4

TTRA B

TVAL A,B

UNIT

VAR

VAR

VDP

14,15
17,18,
lD

5

D

5,D,

10,21

Entry Formats

Pointer to created Labe1
descritpive part entry if
flow into Entry statement.
set to x•eooo• if no flow.

Symbol Table pointer to
PAUSE subroutine descriptive
part entry.

Symbol Table pointer to
Entry Name descriptive part.

Return indicator.

If RIND = o, 0 for unindexed
return, or constant index.

If RIND * O, Expression File
pointer to variable.

Symbol Table pointer to STOP
subroutine descriptive part
entry.

In Phase 1, label value in
binary.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

In Phase 1, label value in
binary for true branch.
Negative if reference to
next statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

EF pointer to text
expression.

Expression File pointer to
unit designator descriptive
part entry.

Symbol Table pointer to
variable on left side.

Symbol Table pointer vari
able descriptive part entry.

Link to previous PRF entry
in which variable was
defined.

Begin Program (4 bytes>
r----------r----------T--------------------1 I ID = 1 INot Used I ILNIC = X'8000' I
'---------J.------~---L--------------------J

Subprogram Entry (Variable Length)

r---------T----------r--------------------1 I ID = 2 I NARG I ILNK I
~---------J.----------+--------------------~ I PNAM I x•aooo• I
·--------------------+--------------------~
f LLNK = x•aooo• I ASTX f

l--------------------L--------------------1
~-------------------~--------------------~ I ASTX I ASTX or Not Used I
1--------------------L--------------------~ I LINO I
L-----------------------------------J
Alternate Entry (Variable Length>
r-------~---------r--------------------1 I ID = 3 I NARG I ILNK I
l---------.l.----------+--------------------1 I PNAM I PLAB I
·--------------------+-------------------~ I LLNK I ASTX I
~------------------L-----------------1
·----------------r-----------------~ f ASTX I ASTX or Not Used I
1--------------------L-------------------1 I LINO I
L---J

I Label Definition (12 bytes>

r---------T---------r--------------------1 I ID = 4 I FLAGS I ILNK I
l---------...___-------L--------------------1
I STNO I
·---------------r------------------~ I LLNK I ESLOC I
L---------------L--------------J
Equation (10 bytes>
r-------~-------r-------------------, I ID = 5 I ABN I ILNK I
l-------J.-------+-------------1 I OPDl I VDP I
·-----------------+--------------~ I OPD2 I CDP/VAR I
r---------------1.-------------~ I LINO I
L--------------------------------------J

Unconditional GO TO (16 bytes>
r------ I ~------------------,
I ID = 6 I NOEL = 1 I ILNK I
·---------L-.-------+-------------------~ I GLNK I Not Used I
r------------------L-------~--------~ I LI.NO I
1---1 I LINO I
L------------------------------------J

Appendix A: Interphase Table and File Formats 633

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Assigned-GO-TO-(Variab1e Length) CALL (Variable Length)
r------1-------T_----------------1 r--------T---------T------------------1
I ID = 7 I NOEL I ILNK I I ID = c I NOEL I ILNK I
l---------.l.----------+--------------------1 ·---------.1.----------+--------------------i I GLNK I OPD I I GLNK I CDP I
·--------------.1.-------------1 ·------------------+-------------------~ I LLNO I I CEX I Not Used I
r---------------------------------------1 ·--------------------.1.--------------------i I LLNO I
·--i ·------------------------------------1 I LLNO I
·-------------------------------1 ·~------------------------------------i I LINO I I LLNO I
L-----------------------------------.1 ·---1 I LINO I
Computed GO TO (Variable Length) L---J
r----1-----~----------------1

I ID = 8 I NOEL I ILNK I
·-------~-------+-- -----1 ArCJWDent Definition Point (8 bytes>
I GLNK I OPD I r-------~-------T-------------------1

·--------------.1.--------------i I ID = D I Not Used I ILNK I
I LLNO I r--------.1.---------+--------------------i r-----------------------------------t I VAR I VDP I
: : L--------------.1.--------------------J ·------------------------------------f I LLNO I
.----------- ------------------1 RETURN <12 bytes>
I u~ I r------~-----~-----------------1 L--------------------------.1 I ID = E I RIND I ILNK I

1---------.1.----------+---------i
ASSXGN (12 bytes) I Not used I RVAR I
r-----~-----~---------------.

• ________ ______________ i

I J:D = 9 I Not Used I J:LNK I I LINO I
·-------.1.------+-------------i L-----------------------------------.1 I OPD I A.LAB I
1------------.1.-------------1 I LJ:NO I Begin Loop 1 (8 bytes>
L---------------------------------J r--------T---------T----------------1 I ID = F I Not Used I ILNK I
Arithmetic J:P (28 bytes>

• ________ _____ __________________ i

r------.----~-------------1 I LINO I
I J:O = A I ABN I J:LNK I L------------------------------------J l-------.l.--------+----------------1 I GLNK I CDP I ·---------------+-------------i I TVAL I Not _Used I Begin Loop 2 (16 bytes> ._ ______________ __________________ -1

r-----~------T----------------1

I LTRA I I J:D = 10 I Not Used I ILNK I
·------------ -----i 1---------.1.---------+-------------------i
I BTRA I I J:VAR I VDP I
r----------------------------1 ~-----------------+----------------i I . GTRA I I BEG I INC I
·------- ------------i 1------------------+------------------t I LINO I I END I EXJ:TLB I L------- _________ __J L---- ---.1.-----------J
Logical IP (20 bytes>
r----.-----1----------1
I J:D = B I UR I J:LNK I Begin Loop 3 (16 bytes>
r--------L--------+------------------i r----~ ~-------------1
I GLNK I CDP I I J:D = 11 I Not Used I ILNK I ·-----------+-------------i .--------.l.----------+----------------1 I TVAL I Not used I I EDLNK I PDLRK I
1--------------.1.------------1 ·------------+-----~------i I TTRA I I ODLNK I Flags I LEV I
·----------------------i r-------------+--------.l.-----------1 I LINO I I CDP I GLAB I L---------------------------J L-------------.1.----------------J
634

. 1
End Loop (24 bytes) WRITE (12 bytes)
r---------T-------~--T----~---------------, r---------T----------T--------------------1 I ID = 12 I Flags I ILNK I I ID = 17 I FLAGS I LINK I
~---------L----------+--------------------i ~---------i----------+--------------------i
I BL3PT I PDLNK I I LABF I UNIT I
~--------------------+--------------------i ~--------------------i--------------------i
I IVAR I GLAB I I LINO I
~--------------------+--------------------i L---J
I BEG I INC I
~--------------------+--------------------i WRITE with Namelist C12 bytes)
I END I Not used I r---------T----------T--------------------1
~--------------------+--------------------i I ID - 18 I Not Used I ILNK I
I BLlPT I BL2PT I ~---------i----------+--------------------i
L--------------------L--------------------~ I LABN · I UNir I

~--------------------i--------------------i I LINO I
CONTINUE (8 bytes) L---J r---------T----------T--------------------,
I ID = 13 I Not Used I ILNK I PRINr (12 bytes>
~---------i----------i--------------------i r---------T----------T--------------------1 I LINO I I ID = 19 I FLAGS I ILNK I
L---1 ~---------i----------+--------------------i

I LABF I Not Used I
~--------------------~--------------------i READ (24 bytes) I LINO I

r---------T----------T--------------------, L---------------------------------~-------J
I ID = 14 I Flags I ILNK I
~---------i----------+--------------------i PUNCH (12 bytes)
I LABF I UNIT I r---------T----------T--------------------1
~--------------------~--------------------1 I ID = 1A I FLAGS I ILNK ... I
I ERR . I ~---------i----------+--------------------i
~---~ I LABF I Not Used· ., I
I EOF I ~--------------------~--------------------i
~--------------------T--------------------1 I LINO I
I GLNK I Not Used I L---J
~--------------------i--------------------i I LINO I Output List Element (8 bytes)
L---' r---------T----------T---------------~----i

I ID = 18 I Not Used I ILNK I
~--------i----------+--------------~-----i I Not Used I OPD I

READ with Namelist (24 bytes) L--------------------i--------------------J
r--------~----------T--------------------1
I ID = 15 I Not Used I ILNK I End List (4 bytes>
~-------i----------+--------------------i r---------T----------T--------------------1 i LABN I UNIT I I ID = lC I Not Used I ILNK I
~--------------------i--------------------i L---------i----------~--------------------J
I ERR I
~---i File control (12 bytes)
I EOF I r------~----------T--------------------1
~--------------------T--------------------i I ID = lD I FNSW I ILNK I
I GLNK I Not used I ~--------i----------+--------------------i
~--------------------i--------------------i I Not Used I UNIT I
I LINO I ·--------------------~---------------------1 L---' I LINO I

L---J
STOP (12 bytes)

READ ~ithout Unit C12 bytes) r--------~----------T--------------------1 r---------T----------T--------------------, I ID = lE I CNT I ILNK I
I ID = 16 I FLAGS I ILNK I ~---------J.--------+----------------·----1
~---------L----------+--------------------i I SLJ:B I MSG I
I LABF I Not Used I ~--------------------i---------------------1
~--------------------i--------------------i I LINO I
I LINO I L------------------------~---------------J L---l

Appendix A: Interphase Table and File Formats 635

PAUSE (12 bytes)
r--------T---------~T------------------,
I ID = lF I CNT I ILNK I
~---------L----------+-------------------i I PLIB I MSG I
~--------------------L------------------~ I LINO I
L--------------------------------J
End Program (4 bytes>
r---------r-------r------------------1 I ID = 20 I Not Used I ILNK I
L---------L---------L-------------------J
Input List Element (12 bytes>
r------~--------T------------------1 I ID = 21 I Not Usedl ILNK I
~--------i--------+-------------------f I OPD I VDP I
~-----------------+------------------i I COP/VAR I Not Used I
L------------------L-------------------J

636

STORAGE SPECIFICATION TABLES

common Variable Table Format

One entry per COMMON statement starts on
a word boundary.

•

r---------T-------------------------------1 I ID = 0 .I Not Used I
~--------L-------------------------------i I Line Number I
~---------y---------T--------------------~ I TERM• I storage I Symbol Table Index I
I I Class I I
~---------i----------i--------------------i

~--------y---------T--------------------i I TERM• I Storage I Symbol Table Index I
I I Class I I
L---------i----------i--------------------J
•Non-Zero denotes terminal entry.

EQUIVALENCE Entry

One entry per EQUIVALENCE statement. Entries start on a word boundary.

r--------r--------------r--------------------------1
EQUIVALENCE I ID=l I END=O I Number in Group (2 bytes> I

f--------i--------------~--------------------------~ 4 bytes
IDENT I Line Number I

r-----L----------------T------T--------------------------i-----1
EEl I Symbol Table Pointer I Type I Offset or Number of sybscripts I 6 bytes

L----------------------L------i--------------------------------J

r-T---------------------------T-r------------------------------1
EE2-5 ISi Subscript ISi Subscript I

L-i---------------------------i-i------------------------------J

r----------------------T------T--------------------------------1
EE6 I Symbol Table Pointer I Type I Offset or Number of Subscripts I

L----------------------i------i--------------------------------J

r-r---------------------------T-r------------------------------1
EE7-10 ISi Subscript ISi Subscript I

L-i--T----------T-------------t-i------------------------T-----J
I ID=l I END=O I Number in Groups I

r----.l.----------L------T------f--------------------------i-----1
EEl I Symbol Table Pointer I Type I Off set or Number of subscripts I

L----------------------i------i--------------------------------J

r-T--------------------------~-r------------------------------1
EE2-5 ISi Subscript ISi Subscript I

L-i---------------------------i-i------------------------------J

r----------------------T------T--------------------------------1
EE6 I Symbol Table Pointer I Type I Off set or Number of Subscripts I

L----------------------..1.------i--------------------------------J

r-T--------------------------~-r------------------------------1
EE7-10 ISi Subscript ISi Subscript I

L-L--T--------~-------------+-i------------------------T _____ J
I ID=l I END=l I Number in Groups I

r----L----------L------r------f-------~------------------i-----l
EEl I Symbol Table Pointer I Type I Offset or Number of Subscripts I

L----------------------L------i--------------------------------J

r-r--------------------------~-T------------------------------1
EE2-5 ISi Subscript ISi subscript I

L-i---------------------------i-i------------------------------J

r----------------------T-----~--------------------------------1
EE6 I Symbol Table Pointer I Type I Offset or Number of Subscripts I

L----------------------i------i--------------------------------J

r-r---------------------------T-T------------------------------1
EE7-10 ISi Subscript ISi Subscript I

L-i---------------------------i-L------------------------------J

Appendix A: Interphase Table and File Formats 637

EQUIVALENCE Entry

Field Identifiers
--- Fiela--

ID

END

TYPE

Number in Group

Offset/Number of Subscripts

s

638

Explanation

1 = EQUIVALENCE entry
0 COMMON entry

1 = end of group
0 = not end of group

Identifier type may be: 1, 2

Unknown COO>
Integer *2 Cl,2)
Integer *4 (3,2)
Automatic (0,7)
Real *4 (3,3)
Real *8 C7,3)
complex *8 (7,4)
complex •16 CF,4)
Logical •4 (3,1)
Logical •1 C0,1)

Number of variables in a specified EQUIVALENCE entry

In the event that dimension information for a particular
variable (from a DIMENSION, COMMON or TYPE statement>
precedes the EQUIVALENCE statement, or that a subscripted
variable in the EQUIVALENCE statement contains only a
single subscript, the off set in EEl or EE6 is computed.

~hen dimension information does not precede the EQUIVA
LENCE statement and a subscripted variable in the EQUIVA
LENCE statement contains more than one subscript, EEl or
EE6 contains the number of subscripts. In this case EE2
or EE7 are required, and EE3-5 or EES-10 may be required.

High-order bit:

1 = negative subscript
0 = positive subscript

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

PRF.SET DATA TABLES

Field Identifiers

NUMB

BPA

vc

DM

Explanation
Number of dimensions

Bytes per array

Variable/constant switch

Integer constant value if VC = 0
Variable,Symbol,Table pointer if VC = 1

Flag (Cross Reference List> 1 - symbol table pointer definition
2 - symbol table pointer reference
3 - label value definition
4 - label value reference

Entry Formats

Dimension Table

Declared array not a formal argument

r-----r------------------------------- -1 I NUMD I BPA I
.~-----.L-------------------------------------1
I Bytes Per Entry • First Dimension I
~------------------------------------~ NUMD-1
~----------------------·------------1 I Bytes Per Entry • Product of First NUMD - 1 Dimension I
L---J

Declared array a formal argument

r------r--------. --------------------------------------1
INUMDI 0 I
~----+--------------------- _________ .,
I vc I DM I
~----J.---------------------------- -----~ NUMD .
~-----r-------- ---------- _______ .,
I VC I DM I
L------L---J

Appendix A: Interphase Table and File Formats 639

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Alphameric Table

r--------------------y------------------1 I Continuation Link I Not Used I
1-------------------J.--------------------~ I Line Number I

~-----.,.------------T------------------i IDescriptive Part Pointer Size (Bytes> I
1--------~------+----------T--------~
I I I I I
~---------+----------+----------+---------~
I I I I I
·---------.1.----------J.---------~-------~

·--------~---------r----------T---------i
I I I I I
L---------.1.----------J.----------J.---------J
Namelist Table

r-----------------r-----------------1 I Symbol Table I Symbol Table I
I Pointer of I Pointer of I
I Variable1 I Variable2 I
~-------------------J.---------------------~

~--------------------r-----------------~ I Symbol Table I Symbol Table I
I Pointer of I Pointer of I
I Variablen-1 I Variablen I

L------------------J.-------------------J
Data Table

r--------------~---------------1 I Continuation Link f Symbol Table Pointer I
~----------------J.----------T---------~ I Off set I Number I
I (3 Bytes> f of Values I

~------------------------------+----------~ I Repetitions I I
I (3 Bytes) I Length I

~---------T--------------------J.---------~

I I Constantl Number of Values I
I Type I I
~---------.1.------------------------------~ I Value I
·---------------------------------------~

·---------~----------------------------~ I Constant I I
I Type I I
~-------J.-----------------------------~
I Value I

L-------------------------------J
Cross Reference List
.------------------------------1
I Line Number I

~---------~-------------------------~ I Flag I S.T.P. or L.V. I

L--------.1.---------------------------J
EXPRF.SSION FILE (ERF OR EF)

The expression file is formed of indivi
dual strings of entries. each with the fol
lowing general format:

640

I

r---------r----------r-------------------1 I EFID I EF Flags I Content I

~---------.1.----------J.--------------------~ I Content (Continued> I
L---------------------------------------J
As described below. both the ID and the
content may take one of two forms. The
strings are the usual riqht-hand Polish
notation.

EFID - FF = Null entry

Form 1:
0 1 4 7

r-r----r----,
IOICodefTypef
L-.1.----J.----J

code: 0 Variable Type: 1 Logical (1)

2 Logical (4)
1 constant 3 Integer (2)

4 Integer (4)
2 Function 5 Real (4)

6 Real (8)

3 Residue of 7 Complex (-8)

removed 8 complex (16)
expression 9 Literal

4 Operator.
general

5 Operator.
common
or removed
expression

6 Ad con

Form 2 (loop variables or parameters only):

0 1 2 7
r-r-r------1
I I I Level I
111 I numberf

L-J.Eiv Fl~
IV Flag = Induction variable
Level Number = Loop level

EF Flags -- Both forms use EF Flags as fol
lows (left to right. beginning with high
order bit):

X'80'
X'40'
X'20'
X'lO'
X'80'

X'40'

Content

Sign indicator (EFSIGNF)
Subscript indicator (EFSUBS)
Last use flag
Short form notation in I/O list
Split recursive constant 0
(Phase 3 only>
Global f loa.ting point register
quantity

Form 1 <variables. functions, and
constants>:

·--------------------, I QUANT I
r------------------+-------------------~ I ADCON I DIS PL I
L------------------.1.---------------------J

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

I QUANT

ADC ON
DISPL

Symbol Table (Descriptive Part
Pointer> reference to variable or
constant

During Phases I and II this is the
offset; during Phase III ADCON is
made the Symbol Table reference to
Adcon and DISPL is the immediate
displacement

Note:

ADCON = 0 for subscripted variable
ADCON = FF for Adcon page

reference

Form 2 <operators):
r----------,.----------1 I I NOT I
I OP I ~USED I

r-------------------+----------1.----------i I TRIAD I NAME I
L-------------------~---------------------~
OP Operator code:

Code

TRIAD

NAME

(16) Operator
add <- by negation>
Multiply

00
01
02
04
05

06

07
08

09

+
•
/

**

f I

.EQ.

.GT.

Divide
Exponentiate
Argument of closed
function
Argument of intrinsic
function
Closed function
Equivalence <.NE. by
negation>
Greater than (.LE. by
negation>

OA .AND. Logical AND c. NOT. by
negation>

OB
10
19

, ,

.LT.

Intrinsic £unction
Subscript
Less than (.~E. by
negation>

1A .OR. Logical OR C. Nar. by
negation>

lB MAX Maximum
11

12

13

?

a

recursive add -- Phases
3 and 4
index add -- Phases 3
and 4
dwmny Cto distinguish
variables) -- Phase 3
only

Expression file reference (Phase 3)

For : operator, displacement
(Phase 3)

For coimDon or removed expression,
identifying number (Phase 3 and 4)

Storage classes 128 to 253 correspond to
formal arguments called by name. Storage
class 254 is used for locations in the code

Entry for l
Blank
Common

Entry for
First
Named
Common

STORAGE CLASS TABLE (STCLTB)

Number of Named Commons 1 Pointer to First
Non-common Variable

Number of Bytes in Storage Class I (Code)

--n- 2 (Numeric: Const.)

- .. - 3 (Alpha Const.)

,,
4 (Adc:ons)

,, 5 (Name - & Par. Lists)

__ ,,_
6 (Non-common Var.) __ ,, __
7 (Global Temps.)

,,
8 (Local Temps.) __ ,,_
9 (Blank Common)

Name

] Pointer to First Variable

Number of Bytes in Storage Class JO (1st Named Common)

Name
f.------------- f Pointer to First Vari~ble

Number of Bytes in Storage Class I I (2nd Named Com~on)

Name
1------

-r Pointer to First Variable

~ _z.
v

Number of Bytes in Storage Class n (nth Named Common)

Name

·r P!)inter to First Variable

Pointers are Offsets from• Symbol Table Base ond Indicate
Origins of Each Chain of Variable Entries. n S 127

covered by a special class of address con
stants, whose values are filled in by Phase
5.

Storage class 255 is used for estimated
locations in the code and is converted to
storage class 1 when the correct location
is entered.

Appendix A: Interphase Table and File Formats 641

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

PROGRAM FILE (PF) FORMATS OUTPUT BY PHASE l

All the program representation file
entries, except begin program (identifica
tion code 1), are modified during Phase III
and put into the program file.

Field Identifiers

The fields have the same meaning as for
the program representation file entries,
with the addition of the following:

Field
BEG

END

EXITLB

FLAGS

GLBL 1
to GLBL8

GBLREAL

642

IDs Explanation
10 Link to Polish string,

INITIAL VALUE

10

10

Link to Polish string,
FINAL VALUE

Symbol Table pointer to
label outside the loop,
where the induction vari
able must be material
ized. If loop has no
exit, then EXITLB=
X'8000'.

F,10,(Left to Right)

F

11

X'80' Labels in loop
X'40' Unsafe loop
X'20' Materialize
X'lO' Parameter
X'08' Global Flag <inner

loop, no external
calls>

X'04' BXLE on recursive
X'02' ONFASN (globally

assign FP register
6)

X'Ol' I/O implied loop

Names of global expres
sions for this loop or
Symbol Table reference,
if Adcons. The names will
have 70001 added to them
to distinguish them from
Symbol Table references.

When the ONEASN flag is
set, this field contains
a PF pointer to the left
side of an assignment
statement which can be
globally assigned to
floating-point register 6
by Phase 4.
When ONEASN flag is off,
this field contains eith
er a symbol table pointer
to a simple real variable
or constant which can be
loaded into floating
point register 6 outside
of the loop, or it con
tains x•sooo•.

INC

IVAR

IVARSVE

IABL

LLNK

PNAM

RMVAL
(Begin
Loop 1>

RMVAL
(Begin
Loop 2>

RMVAL
(Begin
Loop 3)

STCL

Entry Formats

10 Link to Polish string,
increment value

10 Link to Polish string.
If materialize flag is 1,
this is the induction
variable; otherwise it is
a test expression for the
first variable in RMVAL
chain.

10 Contains the PF pointer
for IVAR saved for
materialization on exit
loop.

4

4

2

F

10

11

2

Symbol Table reference

Link to previous
referenced label defini
tion entry.

Symbol Table entry of the
ENTRY name. This field
is '8000' if this is a
main program.

Link to chain of
removed expression in
Polish, with the format:

Insert R

Link to chain
recursive removed
expressions.

Link to chain of
conmon expressions which
would be removable but
for the loop variable.

Storage Class Number of
the respective argument.

Subprogram Entry (Variable Length>
r------T------~-----------------, I ID = 2 I NARG I ILINK I
1--------..L-------+----------------~ I PNAM I PLAB I
1------~--------f--------T------~ I S~L1 I STCLa I STCL3 I STCL I
·---------i---------L---------~--------~

1---------T----------------------------~ ISTCL I Filler When Necessary I
I N~G I I 1---------i__ ____________________________ ~

I LINO I
L------------------------------------1

Alternate Entry (Variable Length)
r--------~----------T---.-...---------------1
I ID = 3 I NARG I ILINK I
r---------i----------t--------------------~
I PNAM I PIAB I
~------~~----------t----------T---------f
I STCL1 I STCL2 I STCL3 I STCL I
~---------i----------4----------~---------~ .
r--------~-------------------------------f
f STCL I Filler ~hen Necessary I
I NAR3 I I
~---------4-------------------------------i
I LINO I
l---1
Label (8 bytes)

r--------T----------T------------------1
I ID = 4 INot Used I ILINK I
r---------i----------+--------------------~
I LABL I LLNK I
L--------------------i--------------------J
Equation (16 bytes)

r---------T----------T--------------------,
I ID = 5 f Not Used I !LINK I
t---------i----------+-------------------~
I OPDl I OPD2 I
t--------------------t--------------------f
I ~DP I VDP I
~--------------------i-------------------~
I LINO I
l---1
Unconditional 30 TO C12 bytes)
r---------T----------T------------:--------,
I ID= 6 INot Used I ILIN"'~ I
t---------i----------+-------------------~
I LABL I <Not I
I I Used) I
~--------------------i--------------------~ I LINO . I
L---J
Assigned GO TO (12 bytes>
r--------~----------T-------------------1
I ID = 7 I Not Used I ILINK I
r---------4 ----------t--------------------1
I OPD I Not Used I
r-----------------4 -------------------i
I LINO I l _____________________________________ ___J

Computed GO TO (Variable Length)
r---------T----------T--------------------1
I ID = 8 I NOEL I ILINK I
~---------4----------+--------------------f
I OPD I LLN01 I
r--------------------4-------------------~ .
~--------------------T------------------~
I LLNO I Filler ilhen I
I NOEL I Necessary I
r-----------------:--4-----------------i
I LINO I
l---------------------------------------J

ASSIGN (12 bytes>
r---------T----------T----------
1 ID = 9 INot Used I II
r---------4----------+----------
l oro I M
~--------------------4---------
1 LINO
L-------------------------------

Arithmetic IF (20 bytes>

.---------T----------T----------
1 ID = A f Not Used I II
r---------i----------+----------
1 rvAL I CI
r--------------------+----------
1 LTRA I E'l

r--------------------+----------
1 ~mA I ~

r--------------------4----------
1 LINO
L-------------------------------
Logical IF (16 bytes>
r---------T----------T----------
1 ID = B INot Used I II
r---------i----------+----------
1 TVAL I CI
~--------------------+----------
' Not Used I T'J

r--------------------4--------
1 LINO
L-------------------------------
CALL (Variable Length)

r---------T----------T----------
1 ID = C I NOEL I II

r-------i---------+--------
1 ~EX I CI
t--------------------+---------
1 LLN01 l LI

r--------------------i----------
:

r--------------------T------------
1 LLNO I Filler ~b
I NOEL I Necessary
r--------------------i------------
1 LINO
L---------------------------------
Argument Definition Point (8 byt
r---------T----------T----------
1 ID = D I Not Used I II
r---------4---------+----------
1 VM I ~

L--------------------4----------
RETURN <12 bytes)
r---------T----------T----------
1 ID = E I RIND I II

r---------4----------+----------
I RVAR I Ne

r--------------------4----------
1 LINO
L----------------------~--------

Appendix A: Interphase Table and File F

Begin Loop 1 (28 bytes> READ ~ithout Unit (12 bytes>

r---------.----------~--------------------1 r---------T----------T--------------------1
I ID = F I Flags I !LINK I I ID= 161 Flag I ILINK I
~---------L----------+--------------------i ~---------i----------+--------------------i
I RMVAL I GLBLl I 1 LABF I x•aooo• 1
~--------------------i--------------------i ~--------------------i--------------------i

I LINO I
~--------------------T--------------------i L---J
I :;LBL8 I Filler I
~--------------------i--------------------i
I LINO I WRITE (12 bytes)

L---J r---------T----------T--------------------1
I ID = 171 Flags I ILINK I

Begin Loop 2 C16 bytes) ~---------i----------+--------------------~ r---------T----------T--------------------1 I LABF I uNrr I
I ID = 101 FLAGS I !LINK I r--------------------i--------------------~ 1---------i----------+--------------------t I LINO I
I RMVAL I IVAR I L---J
~--------------------+--------------------~
I BEG I END I
~--------------------+--------------------4 WRITE with Namelist (12 bytes>
I INC I VDP I r---------T----------T--------------------1
~-----------------t------------------i I ID = 181Not Used I Ir.INK I
I IVARSVE I EXITLB I 1---------i----------+--------------------i L--------------------i--------------------J I LABN I UNIT I

~--------------------i--------------------i
Begin Loop 3 C12 bytes> I LINO I
r--------.----------T--------------------, L--J
I IO = 11 I FLAGS I ILINK I
~---------J..----------t-------------------i
I RMVAL I CDP I PRINT (12 bytes)

~--------------------t--------------------4 r---------T----------T--------------------1
I :;LAB I GLBRUL I I ID = 191 Flags I ILINK I
L-------------------i--------------------J r---------i----------+--------------------i

I LABF I x•aooo• 1
End Loop r--------------------i--------------------i r--------.----------T--------------------1 I LINO I
I ID = 121LEV I !LINK I L---J L---------i----------i-------------------_J

PUNCH (12 bytes)
CONTINUE (8 bytes> r---------T----------T--------------------1 r---------T----------T--------------------1 I ID = lAI Flags I ILINK I
I ID = lJjNot Used I !LINK I r---------i----------+--------------------i
~---------i----------i--------------------i I LABF I x•aooo• I
I LINO I r--------------------i--------------------i
L------------------------------~---------_J I LINO I

L---J
READ (16 bytes)

r-------T---------T--------------------1 Output List Element CS bytes)
I ID= 141Flags I ILINK I r---------T----------T--------------------1 1---------i----------+--------------------i I ID = lB I Not Used I ILINK I
I LABF I UNIT I ~---------i----------+--------------------i
~--------------------t-------------------i I 3PD1 I Not Used I
I EOF I ERR I L--------------------i---~----------------J
r--------------------i--------------------~
I LINO I End List (4 bytes>
L--------------------------------------_J r---------T----------T--------------------1

I ID = lCINot Used I !LINK I
READ with Na~elist (16 bytes> L---------i----------i--------------------J r---------T----------T--------------------,
I ID = 151Not Used I ILINK I File Control (12 bytes>
~---------i----------+--------------------i r---------T----------T--------------------1
I LABN I UNIT I I ID = lDI FNSW I ILINK I
~--------------------+--------------------i ~---------J..----------+--------------------i
I EOF I ERR I I Not Used I UNIT I
~--------------------i--------------------i ~--------------------i--------------------~
I LINO I I LINO I
L---J L--J

644

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190
1

ST9P <12 bytes>
r---------,.--------~---------------1 I ID = lEI CNT I ILINK I
~--------L----------f--------------------~ I SLIB I MSG I
~--------------------L-----------~--------i I LINO I
L---------------------------------------..J
PAUSE (12 bytes)

r---------T---------~--------------------1 I ID = lFI CNT I ILINK I
~--------.1.----------+--------------------i I PLIB I MSG I
~--------------------L-------------------~ I LINO I
L---------------------------------------J
End Program (4 bytes>
r---------,.--------~------------1 I ID = 20 I Not Used I ILINK = 8000 I
L--------.1.----------L----------------J
Input List Element (12 bytes>
r---------r---------~--------------------1 I ID = 21fNot Used I ILINK I
~---------L----------f-------------------i I OPD I VDP I
~--------------------+--------------------~ I CDP I Not Used I
L-------------------L---------------J

CODE FILE FORMAT

Statement Header
r---------T-------------------------------1
I 01 I o I
~--------.1.------------------------------i I Line Number I
L--------------------------------J
Label Definition
r--------T----------T-------------1 I 02 I 0 I symbol T. Pointer I
L---------.1.----------L----- --~..J
RR Instruction
r-----~-~---~----------------1 I OP I Rl I R2 I 0 I
L---------.1.----L-----L-------------------J
RX Instruction
r---------T--~---~--~----------1 I OP I Rl I X2 I B2 I D2 I
~--------+----L-----f---.1.---------------i I O IST. Class I Symbol T. Pointer I
L---------L----------L--------------------J
RS Instruction
r---------r--~----~----r-----------, I OP I Rl I Rl I B2 I D2 I
~---------f----L-----t----L----------f I O IST. Class I Symbol T. Pointert•
L---------.1.----------L-----------------J •The second word - Descriptor - of an RS
instruction is optional.

Label Reference
(Displacement Supplied by Phase 5)
r---------,.--------T--------------,
I FE I 0 I Symbol T. Pointerf 1

~------f.;.._--T----f---T-------------i I OP I R1 I X2 I B2 I 0 I
I I Mll Rll I I
~---------L---L-----f----L--------------i
I 0 I Symbol T. Pointerf 2
L---------------L--------------J 1(ADCON Entry)
2(LABEL Entry)

End of Code
r---------,.---------1 I FF I 0 I L------__..._ ____ _J

SYMBOL TABLE

The Name Part and Descriptive Part of
Symbol Table entries are placed in the same
storage area but are separated from each
other; the two parts are therefore shown
individually.

General Format

I Name Part <at higher address portion of
table>
r---------------------·---:.-:------1
I Name , I
~---- -,.----------~------i I Name(Cont'd.) I DPP I
~--- +-------------------~ I LINK I DMLST I
L-------------.1.----------------J

Field
~
LINK

OPP
DMLST

Description
Identifier name in EBCDIC
Link to next identifier
entry in chain, otherwise
X'SO--','END CHAIN'.
Descriptive part pointer.
Dimension list pointer.

Setting
Phase
--1-

1

1
1

Descriptive Part <at lower address portion
of table>
r---~---~------~-----r------~----1 I ID f not I Class I Flaqs IType I OLEV I
I = o tusedf I I I I
I 0-2 12-3 I 4-7 I s-15 116-23 I 24-31 I
r-- & I -J.-----.1.-----+----t
I· SLOC I STCL I
~----------------~-------L----i I LINKF I NUMENT I
r--------------+-----------i I FDP I LSTBDP I
L------------------L-------------------..J

Appendix A: Interpbase Table and File Formats 645

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

Field
~

Setting
Phase Description
Variable Name = 0 1

CLASS Identifier class may be: 1
0 = Unknown
1 = Simple variable
2 = Array variable
3 = Statement function
4 = External subprogram

reference
5 = open <Intrinsic func

tion reference>
6 = LIB (Library function

reference>
7 = Namelist
8 = Label - primary and

secondary subprogram
entry except primary
function name

9 = Statement function
argument

10 = OPENA (Intrinsic Fn
with automatic typing>

11 = LIBA (Library Fn with
automatic typing>

12 = MAX (MAX MIN Function)
13 = Function Name of Func

tion Subprogram
14 = Unknown Function

FLAGS One-bit indicators which
are: (Left to Right)

x•eo•
X'40'
X'20'
X'lO'
x• oe •
X'04'
X' 02'
X'Ol'

TYPE

ULEV

646

Type Frozen
Formal argument name
Not Used
Defined
Active induction variable
conmon
Equivalence or Interfering•
Nonredef inable

In Phase 1 X'02' indicates
equivalenced variable. In
Phase 2 x•o2• indicates
variables which may inter
fere with each other.

Identifier type may be:

Unknown < o., O >
Integer•2 (1, 2)
Integer•4(3,2)
Automatic <0,7)
Real•4 (3,3)
Rea1•8 (7,3)
complex•8 C7,4)
compleX*16 CF,4)
Logical•4 C3,l>
Logical•l (0,1)

1,2

Level of the lowest loop in 1,3
which this is a loop
variable or parameter.

SLOC Storage location. Byte 1
used in Phase 1 for follow
ing flags: (Left to Right)

Initial data
Must not be dimensioned
Function name
common block name
Induction Var. in Namelist

Byte 2 used in Phase 1 for:
Externa 1 Flag

STCL Storage Class 2

LINKF Link from descriptive part
to the name part. 1

2

NUMENT During Phase 1, is class if 1,2,3
NAMELIST, the number

FDP

· of list elements. During
Phase 2, the number of
words of storage required
for the array. During
Phase 3, the forward com
pute point.

Forward Definition Point.

During Phase 1, contains
the latest PRF entry in
which the variable was
defined. Durinq Phase 3
contains the current for
ward definition point.

1,3

LSTBDP If class is Namelist Label, 1,3
link to the chain of
elements of the Namelist.
During Phase 3, contains
the backward definition
point.

Specific Descriptive Part Formats of
Intrinsic and Library Functions

1. LIB (Class 5) and LIBA <class 11)
..---~------~-------,.------------T-------,
IID I Class I No. of IFunction IIndex I
I= o I I Args. I Type I I

I 10-11 2-1 I a-15 116-23 124-31 I
~---.L.------+--------+------------i-------i
IArg. Type I Extern.I I
I I Flag I I
~-----------4'--------+--------------------i I LINKF I I
t---------~--------i--------------------4
I I
L---1 Index - Used by LIBA for table lookup in
Phase 1.

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

2. OPEN (Class 5>
Assemble in

r---T-------T--------r----------r---------1 IID I Class I No. of IFunction I Functionl
I= 01 I Args. !Type I Number I

I 10-11 2-1 I a-1s 116-23 I 24-31 I
l---.L-------f--------L----------L---------~ IArg. Type I I
L-----------L-----------------------------'

Appendix A: Interphase Table and File Formats 646.1

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

The 'OPEN' class functions and their function numbers are listed in the following
table. If the function does not have a name, a description is provided.

r--------------T----------T---1 I Function No. I Name I Description I
1--------------+----------+---f

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FLOAT
DFLOAT
BFIX
IFIX,INT
DBLE
SNGL
I DINT
REAL

33 AMOD
34 DMOD
35 IABS
36 DABS
37 AINT
38 ISIGN
39 DSIGN
40 IDIM.
41 AIMAG
42 CMPLX
43 DCMPLX
44 DCONJG

Convert L•l to L•4
Convert L•4 to L•l
convert L•2 to I•4
Convert I•2 to R•4
Convert I•2 to R•B
convert I•2 to c•B
Convert I•2 to C•16
Convert I•4 to I•2
convert I•4 to c•B
Convert I•4 to C•16
Convert R•4 to C•B
Convert R•4 to C•16
Convert R•B to I•2
convert R•B to C•B
Convert R•B to C•16
convert c•B to I•2
Convert C*8 to I•4
convert c•e to R•8
convert c•e to c•16
Convert C•16 to I•2
convert C•16 to I•4
Convert C•16 to R•4
Convert C•16 to R•B
Convert C•16 to C•8

45 BMOD MOD Function with Arg Type I•2, Fn. Type I•2
46 MOD FUnction with Arg Type I•4, Fn. Type I•4
47 ABS Function with Arg Type I•2, Fn. Type I•2
48 ABS FUnction with Arg Type R•4, Fn. Type R•4
49 BSIGN SIGN Function with Arg Type I•2, Fn. Type I*2
so SIGN FUnction with Arg Type R•4, Fn. Type R•4
51 HDIM DIM Function with Arg Type I•2, Fn. Type I•2
52 DIM Function with Arg Type R•4, Fn. Type R•4
53 DDIM DIM Function with Arg Type R•S, Fn. Type R•8
54 CONJG Function with Arg Type c•a, Fn. Type c•a

L--------------~----------~---1

Appendix A: Interphase Table and File Formats 647

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

A list of special 'OPEN' class functions
for exponentiation and their function num
bers is given below:

r----------r----------,
I FUnction I Function I
I Number I Name I
~----------+----------~ I 72 I ISQ I
I 73 I !CUBE I
I 74 I !FIFTH I
I 75 I ISEVEN I
I 76 I SQ I
I 77 I CUBE I
I 78 I FIFTH I
I 79 I SEVEN I
I 80 I RECIP I
L----------L----------J

3. OPENA (Class 10).
Assemble in

1--T-------T-------,-----------y---------1
IID I Class I No. of IFunction I Index I
1= 01 I Args. IType I I
10-21 2-1 I 8-15 116-23 I 24-31 I 1---L------t--------L.;. _____ __..._ _______ i
IArg. Type I I
L----------L----------------------------J
Index is used for table lookup in Phase 1.

A list of •oPENA• class functions and
their function numbers is given below:

r---------y----------1
I Function I Function I
I Number I Name I
~----------+----------~
I 55 I MOD I
I 56 I ABS I
I 57 I SIGN I
I 58 I DIM I
I 59 I CONJG I

L----------L----------J

4. MAX (Class 12).
Assemble in

r---y-------T----------,---------y--------1
IID I Class I MIN Flag IFunction fFunctionf
I=_ 01 I I Type I Number I
10-21 2-1 I s-15 116-23 124-31 I
~---L-------+----------L---------L--------i
IArg. Type I I
L-----------L-----------------------------J
MIN Flag

raised if function is from MIN family.

FUnction Number

648

is either zero or the number of con
version function needed.

A list of •MAX" class £unctions and
their function numbers is given below:

r--------,.----------1 I Function I Function I
I Number I Name I
1----------+----------~
I 60 I AMAXO I
I 61 I AMAXl I
I 62 I MAXO I
I 63 I MAXl I
I 64 I DMAXl I
I 65 I AMINO I
I 66 I AMINl. I
I 67 I MINO I
I 68 I MINl I
I 69 I DMINl I
L----------L-------J

constant Format

I Name Part Cat higher-address portion of
table>

r--------------------, I Value I
1---------------~
I Value I
1----------------~
I Value I
1-------------~
I Value I
·----------,----------~
I LINK I OPP I
L--------L--------J

Variable Length
Maximum of 16
Bytes

Field Description
VALUE Binary value of the constant.

Value of logical constants

1 = true
O = false

LINK Link to next Constant entry in
chain. otherwise x•so--•.
'END CHAIN'

OPP Descriptive Part Pointer

I Descriptive Part Cat lower-address portion
of table>
r---~-----y--------y------------------1

I I FLAGS I TYPE I I
IID I I LENGTH, I LINKF I
I= 11 0 I ATYPE I I
10-11 2-1 I 0-15 I 16-31 I
·---L-------.1.--------L--------y---------~ I SLOC I STCL I
L----------------------------.1.----------J
Field Description

ID Constant = 1

FLAGS Available if needed

Page of GY28~2019-l, Issued September 30, 1971 by TNL GN28-3190

TYPE

LINKF

SLOC

STCL

Type of constant, which may be:
Null (0·;0)
Logical•! <O, U
Logical•4 (3, 1)
Integer•2 <1, 2)
Integer•4 (3, 2)
Real•4 (3,3)
Real•S (7, 3)
Complex• 8 (7, 4 >
Complex•16 CF,4)

Link to name part

Storage Location <off set with
respect to Storage Class ,base)

Storage Class

Label Format

I Name Part <at higher-address portion of
table)

r--, I Label I
r--------------------T--------------------~ I ~NK I ~P I
L--------------------~--------------------'

Setting
Field Description Phase

LABEL Binary value of the label ---r-;2

LINK

DPP

Link to next Label table
entry in chain, otherwise
x •so--•, 'END CHAIN'

Descriptive part pointer

1,2

1

Descriptive Part <at lower-address portion
of table)
,---T-------T--------~------~----------1 I I I I Level I Not Used I
I I I I 16-23 I 24-31 I
IID I Class I Flags •----- --------t
1= 21 I I ADCON I
10-11 2-1 I a-15 I I
~---~-----~---------.1.------- y- -----i
I SLOC I STCL I
1---------------~----~------~ I LINKF I PLAT I
L---------------------~------------------J

Field Description
ID-- Label = 2

CLASS Class of label, which may
be:

O = Unknown
1 = Source number
2 = Format number
3 = Compiler generated

Setting
Phase

1,2

1,2

FLAGS

LEVEL

ADC ON

SLOC

STCL

LINKF

PLAT

One-bit indicators which
are: (Left to Right>

Not Used
Referenced
Defined

Loop level at which the
label was defined

Reference to ADCON entry in
Symbol Table

Applicable to labels only

During Phase 1, the storage
location is assigned for
Format Labels. During Phase
4, the storage location is
assigned for statement labels
when first referenced or.
defined

Storage class, set during
Phase 1 for Format Labels or·
during Phase 4 for Statement
Labels when first referenced
or defined

Link to name part

PRF entry of the Begin or
End Loop item preceding the
statement number

Address constant Format

l Name Part Cat higher-address portion of
table> '

1,2

3

1,4

1,4

2

r-----------------------------T-----------1 I Value 1 I Value 2 I
~------------------~-------~-----------~ I LINK I DPP I
L-------------------~--------------------J
Field Description
V~l If value 2 = 254, pointer to

symbol table entry for entity to
be addressed.
If value 2 = 255, estimated
location addressed, ELSE location
addressed.

VALUE 2 Storage class of location or
entity addressed.

LINK

OPP

Link to next entry in chain, else
x•ao--•, 'END CHAIN'.

Descriptive part pointer

Appendix A: Interphase Table and File Formats 649

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN3190

I Descriptive Part Cat lower-address portion
of table> -
.---T-----T---------r-------------~------1
I ID I I FLAGS I LINKF I
I= 31 I I I
~---L-----.L---------~----------r--------~-i I SLOC I STCL I
L-----------------------------~----------J
Field Description

I-D---- Address constant = 3

FLAGS One bit indicators Cas yet
unassigned)

LINKF Link to name part

SLOC Location Con ADCON page)

STCL Storage class

4 = shared address constants

5 = unshared address constants

INTERCOM TABLE

The area ca1led •intercom• Cinterphase
£Q_nmunication> is the most widel.y used
interphase file in the compiler. This area
is 512 storage locations in length and con
tains information used by all modu1es in

650

the compiler. The structure and contents
of Intercom are shown in Figures 40 and 41.
Figure 40 is a DSECT listing for the area •
giving the Intercom items in increasing
storage location order. Figure 41 is a
listing of all items in Intercom in order
of increasing alphameric labels. In Figure
41 the relative displacement of each item
is given following the item description.

A 512-byte area for Intercom is reserved
in the Phase controller's PSECT and in the
PSECT for each of the compiler phases.
Intercom is initialized by the Phase con
troller for each compilation. When the
Phase controller calls a phase. the loca
tion of Intercom in the Phase Controller's
PSECT is passed to the phase. Each phase
copies the 512 bytes into its own PSECT.
updates the area Cin its own PSECT) as
required during processing. and copies the
512-byte area back into the Phase Control
ler• s PSECT before returning to the Phase
controller.

Many phase modules call Exec modules
during their processing. All such calls
provide the Exec module called with the
location of Intercom in the phase. The
Exec modules change the phase's copy of
Intercom as necessary. thus insuring that
changes make their way into the copy of
Intercom passed to later phases.

LOCATN OBJECT CODE ADDRl ADDR2 STMNT SOURCE STATEMENT

oco
coo
OOA
C.10
01"

Q433•CEKTEX
Clt34*•*•
0435UE~CON
0436•TEMFP
0437•TEOK IO
0438•TEVIO
043q••••
0440•••

ClC C44l•TEG~S7.
C442•TEV(;l\:S

01r 0443•
ClC C444•TEVGNS
OlC 0445•
C20 0446•

0447•TEVR0'4
r?4 0448• ·
OlA C44q•TEVROM
O'l" 0450•
02R C451•

C'l452•TEVl2
02r 0453•
C?O Olt5••TEVl2
02(0455•
C3r 0456•

0•57•TfV11!-
C'4 (458•
C2A C459•Trvl4
03' 0460•
03P 0461•

0462•TEVR4
03C C~63*
C3C (4b4•TFVR4
03(0465•
C4C 0466•

0467•TFVR8
C'4 0468•
C3P C469•TEVR8
C44 0470•
C4P C471•

0472•TEVC8
C4C 0473•
C4C 0474•T~VC8
0'(0475•
o5r 0476•

0477*TEVC16
054 047R•
04@ C47q•TfVC16
054 0480•
05@ 0481•

0482*TEVFL4
05(0483•
050 C484•TEVFL4
csr 0485•
o~o o•8&•

C487•TEVFlti
064 0488•
05A 0489•TEVFL~
06• 0490•
C~R 0491•

OS OD l:XEC INTERCOM
OBJfCT PROGQA~ NAM~~

OS BC MODULE NAfilE
OS 8C MAIN ENTRY POINT
OS 4C CtCK IDENTIFICATION
us 8C VERSION IOENTITICATION

ENTRY POINTS
PHASf CO~TROLLER ENTRY

E:t.lU •
A OCON IMPLICIT GNSS
DS OF
EQU •-12
OS ACOI
US Al<i)
A OCON IMPLICIT ROM
OS OF
EQU •-12
OS A(O)
OS ACOt
A OCON IMPLICIT CONl2
OS OF
EQU •-12
OS A(Q)

OS A(O)
A UCON IMPLICIT CONI'
OS Of
EQu •-12
DS A(O)

us •CC)
A OCON IMPLICIT CONR4
OS OF
EQU •-12
DS Alo•
OS ACO)
A OCON lfilPLICIT CONRI.'
OS OF """'
EQU •-ll ··-
us AlO)
OS ACO>
A OCON IMPLICIT CONU
us OF
euu •-1.2
OS ACO)
OS ACOI
AOCON IMPLICIT CONC16
OS OF
EQU •-12
OS ACO>
OS ACOI
AO.CON IMPLICU F'LA04
OS OF
EQU •-12
OS ACO)
OS ACOI
AOCON IMPLICIT FLAD5
OS OF
EQU •-12
DS ACO i
OS ACOI

Figure 40. CEKTD, Compiler Exec Process Terminal Modifications (Part 1 of 4)

Appendix A: Interphase Table and File Formats 651

tnCATN OBJECT CODE

r.t:C
ObC
06("

070

C74
Ot:-~
074
07E'

07C
c 1r
c1r
CPC'

CP.4

07A
Oe4
ORR

Cl3C
cqo
C<if
097
C<i(I

C.9C
c.c;r.
v9f
09F

CAC'
OA4
OAl:
OAR
OAC
ORO
(.RI,

OA~

flRC
CJCC

OC2

CC4

OC8

occ

GOO
004
006
or,11

ADD~l AOOR2 STM~T

0492•TEVVR
0493•
04c;4•TEVVR
C495*
C4%•
l"'t..97•TEVF-LL
C4~b•
C'499•TEVFLL
0500•
0501•
0502 •TF:VCRL
0503•
(1504* TEVC RL
0505*
t;50t>•
C507*Tf:VCLR
C"iC'A*
0"0Q*fF'1rLR
J510*
0511•
0512••••
0513•TESLllll'1
05l4*TESTlllC
0515*TEFrRr.
05H>*TECXP
1:517*TEVSTa
"518*THl\D
051 <;*ff:P3rlR
0520*TEP4CH
052l*TEP50~

0522••••
C523*TEVSYM
0524*TENA"T
0!>25•TEOEST
052tt•TEVHTR
C527*TELHT8
f'.1528*TECHTR
<'529•TESCTl3
C530*TEITTA
C'Hl*TEPSER
C'532*TESTE~

0533•TEXPAN

0538•TEPRF8
0539•TEPRFT
0540*TEt<EVT
0541 •TEEFB

AOC UN
OS
EUU
us
us
ADC ON
us
ei.;u
OS
OS
AuCON
l)S
EQU
us
OS
AOCUN
.JS
E:UU
us
us

OS
us
DS
us
cs
OS
us
us
OS

us
OS
l)S
OS
OS
OS
OS
OS
DS
OS

us

OS

OS

OS

OS
us
D!>
OS

l"PUCIT FLADVR
OF
•-12
AIO)
A(OI
1 MPLI CIT FLL
OF
•-12
A(O)
ACOl
IMPLICIT CRL
OF
•-12
ACO)
AlOI
IMPLICIT CLP
OF
•-12
A Cu)
A (Ci)

PL4 SOURCE LINf NO.
6C SOURCE STATEMtNT NO.
X FORGET FLAG
X CCNVERSATION/RATCH SWITC~
F SOURCE STATEMENT TEXT BASE
X EMU STATEMENT FLAG
c
c
c

V SYHBCL T•BLF BASE
H SYM~OL f jBLE ~A~E PART TOP
h SYMBOL TABLF OESC.TOP
A VARIABLE HASH TABLE BASE
A LABEL HASH TABLE BASE
A CClliSTANT HEADER TABLE BASE
A STORAGE CLASS TABLE BASE
A l~PLICIT TYPE TAN.E BASF
A EXEC'S PSECT AASE (FOR
H AlliCHOR FOP. SY~AOL TABLE

ENTRY CHAIN
H ANCHOR FOR SYMROL TABLF

XREF CHAIN

V STORAGE SPECIFICATION LIST
BASE

V SJCRAGE SPECIFICATION LIST
TOP

F STORAGE SPECIFICATION LIST
UPPEA Ll'4IT

V PAF BASE
H PRF TOP

SOURCE LIN~ INFOW~ATTO~

TABLES BASES,TOPS,A~C~oas

FILE ANO LIST BAS~S. TOPS~
ANO ANCHORS

H VISAM 'PUT' t<EV FOR CEKVU ~AC~O
V EF BASF

Figure 40. CEKTD, compiler Exec Process Terminal Modifications (Part 2 of 4)

652

IOCATN O~JECT CODE

ODC
OEC
CF"
(If 6
OH
CEC
CFO
OF4
Cf ft
OFC
lOC
lC'i

lOd

10(
llC
114
118
llC
120
124
12P
12C
12E
13(1
B2
J:!"
131-
1311
UA

11(
130
13F
13F
13F
140
141
11.2

143
144
1't5
141'>
147
14fl

)4A

lltC
140
J4C

AOORl AODR2 ST~~T

C542•TEFFT llS
C543*TEPFA US
0544•TEPFT OS
0545 •TEPFU OS
C546*TEf.FA IJS
0547•TECFT uS
0548HECFU llS
054q•TEPSA OS
055C•TEPST OS
C5 1H *TECRLB OS
C552•TECRLT OS
0553•TEFAA8 OS

C554•TEFAAT OS

0555•T~P~CB OS
05~6•TFPMOT OS
0557•TECPM8 OS
C55e•TECP~T OS
n559•TER0AS JS
0560•TEISOU OS
056l•TEISC8 OS
0562•TEJSOT OS
0563•TEGLAN OS
0564•TELLAN ilS
C:-565.rl;PDU OS
0566•TECPAN OS
0567•TEAOAN OS
C568•TEOAAN OS
0569•TEALFA OS
C570•TESTAN O~

C571••••
0572•TEMEC OS
0573•TECPUT OS
057~•TESLO us
0575•TEMlli\C OS
0576•TEMNO EQU
0577•TECCLO OS
C578•TESTEC OS
r579•TECRLO US

rsao•TEJSOO OS
058l•TEPTYP uS
0582•TENEP ilS
0583•TENAR OS
0584•TERCD OS
0585•TENFA OS

H H TOP
V PF AASF
H PF TCP
H PF UPPER LIMIT
V CCCf FILE AASE
F CODE FILE TOP
V COOE FILf UPPER Ll~IT
V PRESET CATA AASE
A P~ESET CATA TOP
V lRGSS REFERENCE LIST BASE
F CRC5S RE.FERENCE LI ST TOP
V FORMAL AAGUMf~T ADCON LIST

~ASE
f FOR~AL ARGUME~T AOCON LIST

TOP
V P,..O BASE
F PICC TOP
V Cf'M BASE
f GPfll TOP
A EXTERNAL NAMfLIST BASE
f ISC U.L. FOR PHASE 5
V ISC BASE
F ISO TOP•
H GLNK C~AIN ANCHOR
H LLNK C~AIN ANCHOR
H PCLNK C~AIN ANCHOR
H lP8 CHAIN ANCHOR
H ADP CHAIN ANCHOR
H CATA CHAIN ANCHOR
H ALPHANUMERIC CHAIN ANCHOR
H SYMBrL TABLE NAMELIST

CHAIN ANCHOR

X MAX ERROR CODE
X LIST DATA SET EXISTS FLAG
X SOURCE LISTING OPTION
X MEMORY ~AP OPTION
TE'4MO
X OBJECT C~OE LISTING OPTION
X SYl'~OL TAALE EDIT OPTl~N
X CROSS-REFERENCE LISTING

OPTION
X ISO CPTl~N
X PROGRAI' TY PE
X NCf. OF ENTRY POINTS
X NO. OF ALTERNATE RETURNS
X E&COIC/BCD INDICATOR
X NEXT FCR~Al-ARG-8Y-NA~E

Nt.
0!)86
05B7•TFIFLP OS H SYMBOL TABLE POINTER T0-

058R•TEFEU
0589•
C590*TEFFU
0.591•

1 NTR INS IC FUNCTION LIST
AOC ON IMPLICIT
OS OF
EQU •-12
OS AlO)

(.

FLAGS ANO OPTIONS

r.

r.

MI SCEllANfOUS

Figure 40. CEKTD, compiler Exec Process Terminal Modifications (Part 3 of 4)

Appendix A: Interphase Table and File Formats 653

LOCATN OBJECT CODE Al'llHC l A00R2 STfilNT SOURCE SfAHMENT

15C 015qz• OS A(OJ
154 0593•TETRUE llS H SYfllBOL TABLE POINTER TO r.

• TRUE.
1~6 C594*TEFALS OS H SY~AOL TARLF POINTER TO r.

.FALSE.
158 05'15 •TERSAV DS lbF REGISTFRS SAVE AREA r.

WHEN SUSPECTED SYSERQ
ic;~ 05%*TEPAGE &JS F CURRENT ruTPUT PAGE NO.
l9C 0597*TEOATE DS CLS UATE--MM/00/YY
lA4 0598•TECFLC llS f O'FLOW FLAGCEXEC ONLYt
lA8 059CJ*TE~CSX OS F NO.CF CGMMON SUB-fXP.NA~ES

06')(;••

lAC "" -- 0601 *TfFVAL DS H PClNTER TO FUNCTION VALUE
lAE C.602*TEPlOI\ OS c
lAF Co03*T.EP2CB us c

0604•••• cn~STANT ~ILJNG ARtA
lBO C605•HCC~S OS OD
180 C606*TEC~Sl DS F LENGTH 4 CONSTANTS
184 OM7•TECNS2 OS F LENGTH e ANO lb
UIP 06J8•TECl\IS3 OS· F LENGTH lf.
l~C Ci609*TECNS4 OS F LENGTH 16
lCC 06lO*TEPNTR OS f SYMBOL TABLE POINTER
1C4 06ll•TEGNU OS 1'. CGNSTANT ALREADY FILEO ~LG
lCP. 0612*TELINO OS ... 81~ARY LINE NO. FRO~ CRL
lCC 06l3*TEWUH us /j ACCR CF PRF lST WORD
100 C614*TEDESB OS A ACCR Of OESC.P~RT lST WORO
104 0615•TENA"8 OS A ACCR CF NA~E PART lST woqp
108 061,.,*TEOCP. OS F CATA SET DCB
lOC 0617*TECXBA OS F
lEO t'618•TEICIN OS H CHCIAl
1E7 06lO*TEICTR OS H CHCI El
1E4 0620•TE:ICEN OS H C.hCIHl
lf6 062l*TEINTR DS H INTERRUPT ROUTINE PNTR

0622•TFVGAT AOC Oh IMPLICIT
1E8 0623• OS OF
1 DC 0624*TEVGAT EQU •-1·2
1E8 0625• OS A(OI
HC C626* OS ACCJ
lFO 0627*TESOB oc AlTEGNS2-TfVGNS)
lFlt 062fl•TEIOS~ OS c
lFS 062q•TEPUPR OS c
lH: C630•TEDU'4P OS H
lFP 0631 *TE P0"1P OS H

Figure 40. CEKTD, Compiler Exec Process Terminal Modifications (Part 4 of 4)

654

CEKTEX cs OD fXEC INTERCOM BASE oon
TEADAN OS H ADP Cl-iAIN ANCHOR 134
TEALFA OS H ALPHANUMERIC CHAIN ANCHOR 138
TEBCD OS X EBCDIC/BCD INDICATOR 147
TECFB OS V CODE FILE BASE OEA
TECFT OS F CODE FILE TOP OEC
TECFU DS V CODE FILE UPPER LIMIT OfO
JECHTB OS A CONSTANT HEADER TABLf BASE ORO
TECNSl ns F LENGTH 4 CO~STANTS lAC
TECNS2 OS F LENGTH 8 AND 16 li-4
TECNS3 OS F LENGTH 16 1B8
TECNS~ OS F LENGTH 16 lBC
TECONS CS 00 lBO
TECPAN OS H CPO CHAIN ANCHOR 132
TECRlB OS V CROSS REFERENCE LIST BASE OFC
JECRLO OS x CROSS-REFERENCE LISTING OPTION (142
TECRLT OS F CRCSS REFERENCE LIST TOP lCO
TECXB OS X CONVERSATl~N/8ATCH SWITCH 007
TECXBA OS F AUOR IN LPC Of ~ATCH/CONV.IND lDC
TECAAN CS H DATA CHAIN ANCHOR 136
TEOATE OS CL8 OATE--MM/00/VV l9C
TECCB OS F .DCB AODR FkO~ LPC lnP
TECESB OS A AOOR OF DESC.PART lST WORD lOC
TEDEST OS H SYMBOL TABLE OESC.TCP OA6
TEOIAG OS C IF Y, ALLCi .. MAINT CUTPUT 1C5
TECK ID OS ltC DECK IDENTIF ICAT~ON OlC
TECUMP OS XL2 1Ft-
TEEFB OS V EF BASE OD~
TEEFT DS H EF TCP o~c
TEENO DS X ENO STATEf4ENT FLAG oc:r:
TEFAA8 CS V FOR~AL ARGUMENT AOCO~ LIST AASE X 104
TEJ=AAT OS F FOR .. AL ARGW4ENT AOCOr-. LIST TCP X 106
TEFALS CS H SYMBOL TABLE POl~TER TO .FALSE. X 15~
TEFEU OS 2A CEKTG MACRO US ES 1"0
TEFORG OS X FORGET FLAG 069
TEFVAL OS H POINTER TO FUNCTION VALUE lAC
TEGLAN CS t' GLNK CHAIN ANCHOR 12C
TEGNS2 EQU • OlC
TEGNU OS X CONSTANT ALREADY FILED FLG 1(4
TEIFLP OS H SYMBOl TABLE POINTER TO INTRINSIC fUNCTIC~ LIST X 1£A
TEINTR OS H INTERRUPT PROG PNT~ lE6
TEIOEN OS H CHCIHl 1E4
TEIOIN OS ~ CHCIAl lFO
TEJOSM OS C lf£
TEIOTR OS H CHCIEl 1E2
TEISDB CiS V ISD BASE 124
TEISDO OS X ISO CPTtoN 143
TEISDT OS F ISO TOP 128
TEISOU OS F ISO U.L. FOR PHASE 5 120
TEllTB EQU TEITTB ORS
TEITTB DS A IMPLICIT TYPE TABLE BASE
TEKEVT OS H VISA~ 'PUT' KEY FOk CEKVU M•CRO 006
TELHTB OS A LABEL HASH TABLE BASE OAC
TELINO OS F BINARY LINE NO. FRC" CR~ 1C8
TELL AN CS H LLNK CHAIN ANCHOR 12F
TEMEC 0 S X '4AX ERR CR CODE BC
TEME:P DS 8C MAIN ENTRY POINT OOf'
TEMMO OS X lllEMORY .. AP OPTION 13F
TEMNO EOU TEMMO 13F
reMODN OS 8C MODULE NAME ooc

Figure 41. Alphabetically Sorted Listing of Intercom Items, With Displacements
(Part 1 of 2)

Appendix A: Interphase Table and File Formats 655

TEN.AMI OS A
TEKML.DS H
TEN.AR OS X
TENCSI OS F
TENEP OS l
TENFA OS X
TEOCLO OS X
TEOFLD DS f
TEOPMB OS V
TEOPMT OS F
TEOPUT OS X
TEP.AGE OS F
TEPOAN DS H
TEPDMP OS
TEPFB OS V
TEPFT OS H
TEPFU OS H
TEPMOR OS V
TEPMOT CS F
TEPNTR OS F
TEPRFB OS V
TEPRFT OS H
TEPSB OS V
TEPSfB OS A
TEPST OS A
TEPTVP DS X
TEPUPR OS
TEP108 DS C
TEP2D8 CS C
TEP3DP. CS C
TEP~OB OS C
TEP5DB CS C
TERBAS OS A
TERSAV OS l6F
TESCTB OS A
TESLNO OS PL4
TESLO OS X
TE SOB DC
TESPLB OS V
TESPL T OS V
TESPLU OS F
TESTAN OS H
TESTEA CS H
TESTEO OS X
TESTNO OS 6C
TETRUE OS H
TEVC:RL CEKTX
TEVC16 CEKTX
TEVCB CEKTX
TEVFll CEKTX
TEVFl4 CEKTX
TEVFL5 CEKTX
TEVGAT CEKTX
TEVGNS CEKTX
TE:VHT8 OS A
TEVID OS BC
TEVl2 CEKTX
TEVl4 CEKTX
TEVOLll CEKTX
TEVRDM CEKTX
TEVA4 CEKTX
TEVR8 CEKTX
TEVSTB OS F
TEVSYfl\ DS V
TEVVR CEKTX
TEWAAt4 OS A
TEXRAN DS H

AOOR OF NAME PART lST WORD
SYMBOL TAlL.E fifAME PART TOP

NO. OF ALTERNATE RETURN~
NO.OF CO.U.ON su~-EXP.NAMES

NO. CF ENTRY POINTS
NEXT FORMAL-ARG-BY-NA~E NO.

OBJECT CODE LISTING CPTION
O'FLCW FLAGCE~EC O"lYt
OPM BASE
OPM TOP
LIST DATA SET EXISTS FLAG
CURRENT OUTPUT PAGE NO.
POL~K CHAIN ANCHOR

XL2
PF BASE
Pf TOP
PF UPPER LIMIT

PMO BASE
PMO TOP
SYMBOL TABLE POINTER
PRF BASE
PRF TOP

PRESET DATA BASE
EXEC'S PSECT BASE

PRESET DATA TOP
PROGRAM TYPE

c
PHASE 1--5 DIAGNOSTIC BYTES

EXTERNAL NA,ELIST BASE
REGISTERS SAVE AREA NHE~ SUSPECTED SYSEKR

STORAGE CLASS TABLE BASE
SCURCE LINE NO.

SOURCE LISTING OPTION
ACTEG~S2-TEVGNSt

STORAGE SPECIFICATIO~ LIST BASE
STORAGE SPECIFICATIO~ LIST TOP
STORAGE SPECIFICATIC~ LIST UPPER LIMIT
SYMBOL TABLE NAMELIST CHAIN ANCHOR
ANCHOR FOR SYMBOL TABLE ENT~Y CHAIN
SYMBOL TABLE EDIT OPTION

SOURCE STATEMENT NO.
SYMBOL TABLE POINTER TO .TRUE.

VARIABLE HASH TABLE 8ASE
VERSION IDENTITICATION

EXEC MODULES ACCON PAIRS

SOURCE STAT£MENT TE~T BASE
SYMBOL TABLE BASE

ADOR OF PRF lST WORD
ANCHOR FOR SYMBOL TABLE XREF CHAIN

x

x

l(

l(

x
x
x

x

x

104
OA4
146
ue
145
1"8
140
U4
114
1111
un
198
130
lf 8
oeo
OE4
OE6
lOC
110
lCO
ODO
004
OF4
OBC
OF'4
144
lF5
lAE
lAF
090
09E
09F
llC
158
084
090
13E
lFC
OC4
OCR
occ
13A
oco
141
090
154
070
048
040
068
050
05'4
lOC
OlC
OAR
014
020
028
078
018
030
038
091'
OAO
060
lCC:
OC2

Figure 41. Alphabetically Sorted Listing of Intercom Items, With Displacements
CPart 2 of 2)

656

INTRODUCTION

Linkage conventions are those conven
tions which govern communication among pro
grams. Basically, there are two types of
communication: that defined as standard
linkage, and that defined as restricted
linkage.

Restricted linkage provides highly effi
cient communication among programs which
satisfy a definitive set of requirements.
such linkage is intended for use within a
•black box• (precisely defined by the
requirements given below> which has little
or no interface with the rest of the system
(or user>, while standard linkage is the
vehicle for all other communication.

In TSS/360 all interfaces among CSECTs
which reside in virtual memory <execute
with dynamic relocation turned on>, whether
or not the CSECTs are in the same assembly,
conform to either standard or restricted
linkage. Furthermore, all linkage within a
CSECT conforms to one of these conventions.
No other mechanism for communication is
recognized. It is emphasized, however,
that the restricted linkage never has to be
used. A standard linkage is always accept
able and it is expected that the majority
of program linkage will follow the
standards.

The following paragraphs describe the
linkage conventions to which all compiler
modules must <and do) adhere. Reference is
made in this description, and elsewhere in
this PLM, to •Type I linkages.• Type I
linkage is one of several types defined for
use in compiler and other system modules.
For a complete description of all linkage
types see the systems Proqraro-!Der's Guide.

For a precise description of the macros
used for standard linkages (the CALL, SAVE,
and RETURN macros) see Assembler Users
Macro Instructions. Macro support for
restricted linkages (INVOKE, STORE, and
RESUME) is described later in this
appendix.

CONVENTIONS FOR TYPE I LINKAGES (STANDARD)

Register Conventions

General
Register

15,0
Usage

supervisor Parameter
Register

Mnemonic
SP

APPENDIX B: TSS/360 LINKAGE CONVENTIONS

1

13
14
15

Parameter List Re
gister, Supervisor
Parameter Register,
or Parameter List
Register

save Area Register
Return Register
Entry Point Register,
Return Code Register

PL

SA
R
E

It is the responsibility of the called
program to.maintain the integrity of gener
al registers 2-12 so that their contents
are the same at exit as they were at entry
to the called program. It is the calling
program's responsibility to maintain the
floating-point registers around a call.
General registers O, 1, and 13-15 must con
form to the indicated conventions.

save Area

Whenever one program calls another, the
calling program provides a save area for
use by the called program; the calling pro
gram is known as the owner of the save
area. This save area is addressed by the
save area registe·r CSA) on· entry to a
called program and is described in detail
in Assembler Users Macro Instructions; in
general the format is:

Word 1

Word 2

Word 3

- contains the length in bytes
of the save area and any
appendages to it. This field
is set by the calling program
in its own save area, and
always contains the integer 76
(in TSS/360) •

- Contains a pointer to the save
area of the calling program.
This field is set by the
called program in its own save
area. This procedure allows
all save area of active pro
grams to be linked in a
reverse chain.

Contains a pointer to the save
area of a called program after
its invocation. This field is
set by the called program in·
the calling program's save
area. This allows all save
areas of active programs to be
linked in a forward chain.
When the called program is
complete, if trace forward has
been specified, it sets the
low order bit of this field to
1 to stop the forward chain.

Appendix B: TSS/360 Linkage Conventions 657

#ord 4

word 5

- Contains the return linkage
for use ·by the called program
when it is complete. This
field is set by the called
program in the calling pro
gram• s save area.

- contains the entry point
address to the called program.
This field is set by the
called program in the calling
program's save area.

words 6-18 - Register save area. These
fields are set by the called
program in the calling pro
gram• s save area as necessary
to preserve registers O
through 12.

word 19 - contains the address of the
PSECT belonging to the called
program. This field is set by
the calling program in its own
save area.

It is clear that a program may use its
own PSECr for a save area provided that the
head of the PSECT is formatted as indicated
above. Bowever, if PSECTs are used for
save areas, a called program will not use
its own PSECT to save registers, but rather
will use the save area (PSECT) of the call
ing program.

Parameter List, Type I Linkage

~henever it is necessary for one program
to explicitly communicate information to
another program using Type I linkage, it
must do so by using a parameter list. A
parameter list is an ordered list of
addresses of information. At the time of
the CALL, the calling proqraat places the
address of the parameter list in the param
eter list register (PL). (This list is
most probab1y a list of address constants
residing in the PSECT.> See the CALL macro
expansion.

It should be noted that an active param
eter of the CALL (a parameter which is set
by the called program> is also passed in
this manner.

Type I Linkage, Return and Entry Linkage
and Return Code

It is the calling program's responsibil
ity to establish the return and entry link
aqe at the time of a call. This will norm
ally be accomplished by placing a v-type
Adcon in the entry point register using a
load instruction and then executing a
branch and store instruction which wil1
establish the return location in the return
register and pass control to the indicated
program.

658

RF.STRICTED LINKAGE CONVENTIONS

Scope and Applicability of Restricted
Linkage

A restricted linkage may only occur
between two programs if all the following
conditions are met.

1. The two programs involved must have
the same PSECr in common and it must
be contiguous; this area must be
covered at all times by the PSECT
cover register.

2. The invocation may not use or require
explicit dynamic linkage.

3. The invoked program may not be enter
able at the same point by way of a
standard linkage.

4. The invoked program may not establish
a non-volatile register as a common
register <see below>.

5. The programs involved must reside in
virtual <as opposed to real> storage.

6. The invoking and the invoked programs
must both be privileged or
non-privileged.

Register Usage and Assignment in Restricted
Linkage

There are four classes of restricted
linkage registers: parameter, volatile,
non-volatile (including common>, and link
age. These classes are now described
individually.

1. Parameter Registers and Parameter List
Registers

These registers are used explicitly to
pass information in a restricted link
age ~ from the invoking to the
invoked program and from the invoked
to the invoking program. A parameter,
in this context, may be by name or
value. These registers lliay also be
used to address parameter lists.
clearly, the content of these regis
ters must be known by implicit agree
ment among the programs involved.

Parameter registers are of the pseudo
volatile class where it is ;enerally
the responsibility of the invoking
program to insure their integrity as
necessary.

2. Volatile Registers

These registers may always be changed
at will by the invoked program. The
invoking program may never assume that
they contain any specific values after
an invocation is complete.

3. Non-Volatile (and Common) Registers

rhese registers are generally trans
parent around an invocation: that is,
a non-volatile register must be STOREd
and RESUMEd in the invoked program as
necessary to preserve their contents
(or the equivalent of STORE, RESUME).
It is possible, however, that som.e, or
all of the non-volatile registers may
be established as common registers. A
common register is a pseudo-parameter
which is known to invoked programs and
may change from invocation to invoca
tion: thus a common register need not
maintain constant value but must
retain constant function. ~hen a non
volatile register is established as a
comrnon register, all programs invoc
able by the establishing program
(directly or indirectly> must be
implicitly aware of this assignment.

In this context •Establish• means to
set aside or dedicate a register for a
particular use; this does not mean
that the register must be initialized
or modified. common register usage
must conform to tne following rules:

a. A common register may not be
established by a program invoked
with a restricted linkage; thus, a
common register may be established
only by a program CALLed ~ith a
standard linkage.

b. common registers may not be STOREd
and RESUMEd by a program invoked
with a restricted linkage unless
that program contains no linkage
to otber programs.

c. The scope of common registers
shall extend only to those pro
grams invoked while the establish
ing program is active; further
more, no common register defini
tion is known to any program
CALLed with a standard linkage
from a program invoked with a
restricted linkage.

4. Linkage Registers

The linkage registers are those regis
ters which must contain specific
information during an invocation.
rhere are three such registers which
are now described individually.

a. PSECT cover register. rhis
register must cover the common
PSECT at all times (point to the
origin of the PSECT).

b. Return register. This register is
initialized by the invoking pro
gram to the proper return location
in the invoking program. This
register must be used by the
invoked program upon completion to
return control (to the indicated
return location>.

c. The.entry point and return code
register. This register must be
initialized by the invoking pro
gram to the entry point address in
the invoked program before the
linkage takes place: it may also
be used by the invoked program to
pass a •return code• <see standard
linkage) to the invoking program.

The entry and return registers are vola
tile in the sense that the act of invoca
tion will cause their values to change.

The folloflling register assignments'have
been made for the above classes:

Function
Parameter <list> registers
Volati1e registers
Non-Volatile registers

Common registers
sequentially from

PSECT cover register
Return and entry registers

Assignment
0-5
6-7
8-12
8

13
14-15

The floating-point register conventions,
PICA, and program mask requirements are as
described for standard linkage. No special
save area format or location is committed;
this function is left to the user.

MACRO INSTRUCTION SDPPORT

The following macro instructions are
defined as support for restricted linkage.
These macro instructions are used exclu
sively when effecting a restricted linkage.

INVOKE Macro Instruction

The INVOKE macro instruction transfers
control from one program to another with a
restricted linkage. It is not possible to
specify parameters of a linkage in the
INVOKE macro as in the CALL macro. This
function is left to the user to accomplish
however he sees fit.

Appendix B: TSS/360 Linkage conventions 659

General Form

[symbol] INVOKE addr

symbol - Any programmer-defined label.

addr - Specifies the address of a
full-word which contains the
address of the program to be
invoked.

Expansion

The expansion of this macro instruction
causes linkage register 15 to be loaded
with the address at addr, linkage register
14 to be set to the return location in the
invoking program, and control to be passed
to that location specified in linkage
register 15.

Exampl~s:

1. INV:>KE A
in line
L 15,A
BASR 14,15

2. INVOKE 8(3)
in line
L 15,B(J)
BASR 14,15

STORE Macroinstruction

The STORE macro instruction causes the
indicated non-volatile registers to be
stored in the specified area.

General Form
Csymlx>l] STORE addr, (reg1 -integer

C,reg2 - integer])

symbol - Any programmer-defined
label.

addr - Specifies the address of
an area sufficient to
contain the indicated
registers.

reg1 ,reg2 - Integers specifying a
range of registers to be
stored at addr. If reg2
is not specified, only
reg1 will be stored.

Expansion

A STM <or ST, in the event that reg2 is
not specified) instruction is generated to
store the indicated register<s> at addr.

Notes:

1. It is possible to specify reg2 as 14
or 15 thus causing the linkage regis
ters to be stored.

660

2. Reg1 must be greater than or equal to
8.

3. If reg 2 is 14 or 15, a single STM will
be generated spanning register 13.
Thus, the area at addr must be of such
size as to contain this register, and
it is stored redundantly.

Examples:

1. STORE A, (9,10)
in line
STM 9, 10, A

2. STORE B, (11)
in line
ST 11,B

RESUME Macro Instruction

This macro instruction causes the indi
cated non-volatile registers to be restored
from the specified area and control to be
passed via the return register.

General Form

Csymboll RESUME Caddr, <reg1 -integer
C, reg2 -integer1>1

symbol

addr

C, RC=integerl

- Any programmer-defined
label.

- Specifies the address of
an area from which the
indicated registers are
to be restored.

reg1 , reg2 - Integers specifying the
range of registers to be
restored. If reg2 is not
specified, only reg1 ~ill
be restored.

RC

Expansion

- Specifies an integer to
be used as a return code
(0SRCS4092). RC must be
a multiple of 4.

A LM <or L, if reg2 is not specified>
instruction is generated to load the indi
cated register(s) from addr, the return
code register is loaded as necessary with
the specified integer <using a LA instruc
tion>, and a BR 14 instruction is generated
to return control to the invoking program.

Notes:

1. If the addr and register fields are
not specified, only the BR 14 instruc
tion is generated.

2. It is possible.to specify reg2 as 14
or 15 causing the li.nkage registers to
be loaded.

3. Reg1 must be greater than or equal to
8.

4. If reg2 is 14 or 15, a LM instruction
is generated spanning register 13
(thus loading it redundantly). The
user must use a certain amount of cau
tion when allowing this to happen in
order that the contents of register 13
are not destroyed.

Examples:

1. RESUME A, (9)
in line
L 9, A
BR 14

2. RESCJME RC=4
in line
LA 15, 4
BR 14

3. RESCJME
in line
BR 14

Appendix B: TSS/360 Linkage Conventions 661

APPENDIX C: FORTRAN INTERNAL ~.ACRO INSTRUCTION USAGE

The table below contains a brief description of the user macro instructions required
for assembly of compiler modules. These macro instructions are contained on the second
macro library provided the TSS/360 Assembler when assembling compiler modules. rhe first
macro library provided is that containing the system macro instructions, described in the
Assembler User Macro Instructions.

r------r----------------------------------1
!Name I Description I
t------.1.----------------------------------i
IEXECUTivE Macro Instructions I
t------r----------------------------------i
CEKTO Performs all operations concerned I

with calling a phase, including I
checking the return code, giving I
diagnostic option dumps if I
requested, and logging the phases!
on and off. I

CEKT7 Moves an option from the F-option I
table passed from LPC to FORTRAN I
at the 'Initial' call to the I
Executive PSECT. If LPC passes I
neither an 'N' nor a 'Y', the I
default value assembled into the I
phase controller module is used. I

CEKT8 Executive intercom macro. I
CEKT9 Identical to CEKT8, but contains I

os rather than DC. Used by other
Executive programs, and the 5
phases.

CEKTG Diagnostic option macro instruc
tion. Sets up calling list for
module CEKTS, and calls that
module.

CEKTr Null.
CEKTX Forms V-R con pairs, with the aid

of the ADCON macro instruction.
CEKTY Checks batch/conversation switch

in the Executive, and LPC if in
conversion. Resets switch as
appropriate.

CEKUl Converts a binary number to zoned
format, edits it under control ofl
a mask, and moves the result to al
user specified area. I

CEKU3 Used to determine, from the limits!
of a main storage file, the base I
and two- or four-byte offsets I
from the base to the limits. I

CEKU4 Null. I
CEKU5 Branches to one of five places, I

depending upon the return code inl
register 15. I

CEKU6 Establishes intercom cover in I
register N4 and cover for the I
Executives PSECT page 1 in gener-1
al register N3. I

CEKU7 Macro instruction for the Phase I
Controller PSECT. Used to gener-1
ate a DSECT in other Exec I
modules. I

ICEKU8 Osed where the test must be made I
I of a list data set exists, and, I
I if so, OLR is called. I
L------.L----------------------------------J

662

r------T----------------------------------1
IName I Description I
t------~----------------------------------~
IEXECUTIVE Macro Instructions (Continued) I
t------y-------------------~--~----------~
ICEKU9 Used to edit the line number of a
I line for which a diagnostic mes-
1 sage is to be given, move the
I number to a message area, call
I DIAGOUT to output the message,
I test the return code, and branch
I accordingly.
ICEKUX Sets up FREEMAIN calls Cusi~g
I CEKV9) for those parts of Phase 5
I files not containing the output
I module.
ICEKVl Moves addresses and lengths of
I Phase 5 created tables to LPC
I prior to the 'Continue• call
I return.
CEKV2 Determines, for GNSS, if an END

statement has been encountered.
CEKV3 Performs all operations concerned

with checking to see if the diag
nostic mode is allowed, checking
for the existence of the diag
nostic line, and, if it is pre
sent, processing the two diag
nostic request lines. Also sets
up the interruption entries.

CEKV5 Used in producing diagnostic out
put. Checks the 10-column fields
provided for each phase on diag
nostic card 1 and gives dumps
accordingly.

CEKV6 Used in producing diagnostic out
put. LOads a register with a
two- or three-character code,
then invokes a sequence of
instructions that will dump this
code plus contents of all general
registers, if so requested on
diagnostic card 1.

ICEKV7 Used to establish a CSECT (for the
I initial entry to a module>, USINGI
I statement, PSECT cover, and code I
I cover in register NS. I
ICEKV8 Similar to CEKV7, but establishes I
I the PSECT and ENTRY statements, I
I plus the 19-word save area. I
ICEKV9 Used for all FREEMAIN operations. I
I In addition to the actual FREE- I
I MAIN, records are kept in tne I
I PSECT of main storage areas I
I freed, and their size. I
L------i----------------------------------J

r------.----------------------------------1
!Name I Description I
~------.L----------------------------------1
IEXECOTIVE Macro Instructions I
-~------~---------------------------------~

CEKVA !Obtains the version of this compi-1
I lation and moves it to appropri- I
I ate edit areas. I

CEKVB JOsed in preparing diagnostic I
I information. Reached by an I
I INVOKE in macro instruction I
I CEKV6. ... -- I

CEKVC Used for all GETMAIN operations. I
Obtains parameters from the PSECTI
giving the number of pages to I
obtain, obtains them, and keeps I
records in the Phase Controller I
PSECT of pages obtained and theirl

I location. I
CEKVD Produces a complete virtual I

storage dump. Used in diagnosticf
mode processing. I

CEKVI Contains code related to control I
of unexpected interruptions dur- I
ing the compilation process. I
Entered only in diagnostic mode. I

CEKVU The data management operations I
OPEN, SETL, PUT, and CLOSE are I
all embedded in the macro I
instruction CEKVU. I

CEKZD !Establishes PSECT cover, and back-I
I ward and forward PSECT chains. I

~------.L---------------~------------------i
IPhase 1 Macro Instructions I
~------T----------------------------------1
CEKBB Saves a one- or two-byte Symbol

Table field.
CEKBC DSECT describing the Symbol Table

fields for a variable entry.
CEKBD Phase 1 PSECT.
CEKBF Updates the Cross-Reference List.
CEKBG creates a two-byte, signed Adcon

for the error routine.
CEKBB Sets up INVOKE, tests the return

code, branches conditional, and
sets up RESUME.

CEKHI Defines field used in internal
tables and flags with EQU cards.

CEKHJ tseveral DSECTs defining some
I internal tables.

CEKBL !Makes an RDM entry for the error
I routine.

CEKHM !Saves a one-byte field of the Sym-
1 bol Table.

CEKHN toses CEKHG to create parameter
I lists for the error routine.

~------.L----------------------------------1
IPhase 2 Macro Instructions I
-~------.----------------------------------1
ICEKJM !Defines the fields of internal I
I I tables by EQU cards. I
ICEKJO !Phase 2 PSECT. I
ICEKJl fChecks for a barrier between the I
I I plateau values of a reference andl
I I a definition of a statement I
I I label. I
f CEKJ2 !Marks the materia1ization list. I
L------.L----------------------------------J

r------T----------------------------------1
tName I Description I

·------~----------------------------------i f Phase 2 Macro Instructions (Continued) I
·------T-----------------------------------f
ICEKJ3 !Checks the inner loop table for a
I I reference or a definition of a
I I specified statement label.
ICEKJ4 f Marks the return list.
f CEKJ5 fRelinks a specified chain in the
I I opposite direction.
ICEKJ6 !Tests for a D-Loop or an E-Loop
I I table entry between ILINK and
I I PDLINK.
f CEKJ7 !Defines the fields of internal
I I tables by EQU cards.
f CEKJS tcreates the parameter list for the
I I error routine, DX.
ICEKJ9 fGenerates an invoke to the error
I I routine, DX.
·------.1.----------------------~-----------I f Phase 3 Macro Instructions I
~-----T-----------------------------------f
CEKKS f Phase 3 PSECT. I
CEKKK IDSECTs describing the internal I

I tables. I
CEKZB !Sets the DSECT or PSECT control I

I and specifies print options. I
LDPNT f Converts a pointer to an address I

I and loads it into a register~'· I
STPNT f Converts an address into a pointert

I and saves the result. I
EKKSB !Assembles an address as a pointer.I
EKKSC tSets an origin to a specified I

I boundary. I
CEKKD f diagnostic mode, provides dumps I

I during Phase 3 processing. I

~-------'-----------------------------------1
IPhase 4 Macro Instructions I
~------T-----------------------------------f
CEKNY !Phase 4 PSECT. I
CEKN2 ITests the return code, and I

I branches conditionally to the I
I error routine CPB4MER>. I

CEKN3 Generates the calling sequence to I
find a constant and its asso- I
ciated Adcon in the Symbol rable.1

CEKN4 Generates the calling sequences tol
obtain the location of an operandi
in the expression tree, make the I
appropriate entries in the I
internal tables, and insert the I
associated instructions into the I
code File. I

CEKNS Inserts previously specified I
sequence of instructions <canned I
code) into the Code File. I

~-------'-----------------------------------1
IPhase 5 Macro Instructions I
~------T----------------------------------~
ICEKSY f Phase 5 PSECT. I
I CEKSZ I EQU cards for the st·andard regist-1
I I er symbolic names. I
ICEKS2 IPicks up a specified number of I
I I characters from a table. I
f CEKS3 IDecrements the print control line I
I I count. I
L------i----------------------------------J

Appendix C: FORTRAN Internal Macro Instruction Usage 663

°' °' .i=

Phase 1

CEKAB
CEKAC
CEKAD
CEKAE
CEKAF
CEKAG
CEKAH
CEKAI
CEKAJ
CEKAK
CEKAL
CE KAM
CE KAN
CEKAQ
CE KAR
CEKAS
CEKAT
CEKAU
CEKAV
CE KAW
CEKAX
CEKAY
CEKAZ
CEKBA
CEKBB
CEKBC
CEKBD
CEKBE
CEKBF
CEKBG
CEKBH
CEKBI
CEKBJ
CEKBK
CEKBL
CEKBM
CEKBN
CEKBP
CEKBQ
CE KBR
CEKBS
CEKBT
CEKBU
CEKBV
CEK&W
CEKBX
CEKBY
CEKBZ
CEKCA
CEKCB
CEKCC
CEKCD
CEKCE
CEKCF
CEKCG
CEKCH
CEKCI
CEKCJ
CEKCK
CEKCL
CEKCN
CEKCP
CEKCQ
CEKCR
CEKCS

(X = Set; 0 =Referenced Only)

" c: u c:

" 0 c: .2 :a "' .Eu:- ,!:! -2! c: 2 Li:'
Nome

~~[Ji .Q c: a:::

:8 ~~~
~~ e e-~ E 0 ..0 0.. a.~

JI ... 0 x Q.I ·-o...o<U.. u I- wo<u..

(ESC)
(SID)
(PHlM) x x
(ACOMP) x
(ARDIM) x
{SUBS) x x
(IDATA) x
(EXPR) x x x x
{LABL) x x
{EQUA) x
(END) x
(EXTE) x
(CNVRT) 0 x
(GOTO) x x x x
(IF) x x
{TYPE) x
{CONT) x
{DIMN)
(COMM) x
{DCL2)
{EXEC2) x
(EQUI) x
{DO) x
{BGNLP) x x
(END LP) x
{ASSI) x x x
{FCON) x x x
(RWIO) x x x
(FORM) x
(PSR) x x x
(NAML) x
{BLDA)
(BLDA2)
(SFDEF) x
(SFEXP) x x
(DATA)
(IMPL)
(IMPL2)
{FALTH) x
(BLNK)
(SUBE) x
(SUBE2) x
(CALL) x
(CALL2) x x x
(IOLST) x x x
(FNCLS) x
(LIBN) x
(STEN2) x
(ERR) 0
(ARITH)
(LBS TR) x x
(FLABL) x x x
(RTRAN) x x
(FNAME) x x
(TRMPRO)
{FLRC)
(IVST) x x
(CKLIM) x
(CLUM) x
(IVAL) x
(ICNV)
(FCNV)
(FLIC)
(AARC) x x x
(CHKINT)

Phase 2

" _,,
~

.,
c u

0.. 0

u u ~ V> c:
.2 "' 0..

~ "' E
:~ GJ

~ 0

~~ ~~ ~
_g

E o-" 0....0 a..::o x
0 Vi~ - 0 .E ,!:! :r 0

<(I- V> 0

CEKJA

CEKJB

x 0 CEKJC
x
0 CEKJD

CEKJE
x x

0 CEKJF

CEKJG

CEKJH

x x

x

x
x

Phase 3

x
0

x x CEKKA
x x CEKKB

CEKKC
CEKKE
CEKKF

x x CEKKG
x x CEKKH

CEKKI
0 CEKKJ
x CE KKK

CEKKL
CEKKM

x CEKKN
CEKKO
CEKKP
CEKKR
CEKKS
CEKKU

0 CEKKV
CEKKW

0 CEKLA
CEKLB
CEKLD
CEKLE
CEKLF
CEKLI

x x

(X = Set; 0 ~ Referenced Only)

"'
~

0

u
Nome 0 "' _!) g>~

u.. 1 ?~ "" 0... l.'1 :··

(PHASE2) x x x
(FSCAN) x x
(VSCAN) x x
(RTNI) x x
(LAB) 0 0

(ISP) 0 0

(FORMAT) 0 0

(DX) 0 0

(X = Set; 0 = Referenced Only)

c: c:
"' 0.. 0.. a :a .2

.9~
a~

Name .Eu:- i!? g 2u::- o>
-' '.:! we:. E c:"" 0 ·m ~~ c;~

o~~ .0 =QI p
11~ ~ ~2-~ e:::c

0 0 ::> ~
V'I wo<U.. 0... I- u...1

x x x
x x

x x x
x

x
x
x

0 0

0
x
x

x

0 x 0

x x x 0
x x
x x 0 0

x
x x

x

x
0 x x

I'

·~ ~
o..·-

V> -'

*·~
~ z

.. 0

~ " u V")•'';°

0

x
0

'
•

1d .. ~p
zz a a ;;:

I-_g QI
c: &.~~ E

8g~ k: t::::a
::> 0 u.:1~ J:~ u I-

0
x

x
x x x

x

0

0 x
0 x

0
x

x
x

~

z
::;

x

QI
:a
,!:!
"O

~
0
x

x

x
x
0
0
0

0
0

x

x

~

3
0
0...

x

I
J:.

::>QI
0... :a
1~:=
i~§
0-o-

x

x
0

x
x
x

~ ro
t:IJ z
0
H
><
0

t:"4
H
en
toi

0
"'SJ

~
~

~
~
~
"'SJ

~
~
t:IJ
0

~
"'SJ
0

~

~
~
;j
H z
~

Phase 4 (X ~ Set; 0 =Referenced) Phose 4

~
i

Ill
::0 Ill

Ill ,.'! i Nome ::0
,.'! u..

~
Ill "- ::0 - "" Ill a Ill ·o,

Ill ~ cu..
::0 ~ Ji Ill ·a~
~ v u::: c :ii "-""

~ 0 ~6 Ill E ~ ·~ ,.!?
0 Ol 2 Ill "Z 11 ..!l 2 Ill

E Ill a..
E Ji l ~ 0 ll. 0 8 ::0
)... 0 z Jj _g - 0

Vl u.. I-

CEKMA (RDIV) 0 0 CEKNM

CDKMB (RMUL) 0 0 CEKNN

CEKMC (RPLUS) 0 0 CEKNO

CEKMD (IDVDE) 0 0 0 CEKNP

CEKME (IMPLY) 0 0 0 CEKNQ

CEKMF (IPLUS) 0 0 0 CEKNR

CEKMG (CPLUS) 0 0 CEKNS

CEKMH (RLTNL) 0 0 0 0 CEKNT

CEKMI (AN DOR) 0 0 CEKNU

CEKMJ (EQUAT) 0 x CEKNV

CEKMK , (FUNC) x CEKNW

CEKML (TRBLD) x x x x CEKNX

CEKMM (ASAR) x 0 0 CEKOB

CEKMN (ASARS) 0 0 0 CE KOC

CEKMO (ASFR) 0 0 x CEKOD

CEKMP (ASFRS) 0 0 0 CE KOE

CEKMQ (SELFR) 0 0 0 CEKOF

CEKMR (FNDAR) 0 CEKOG

CEKMS (FNDFR) 0 CE KOH

CEKMT (FNDWS) CEKOI

CEKMU (MAX) 0 0 0 CEKOJ

CEKMV (MEMAC) x 0 0 CEKOK

CEKMW (OPND) x x x CE KOL

CEKMX (RLSWS) 0 0 CEKOM

CEKMY (RSLT) x 0 CEKOM2

CEKMZ (SAD DR) 0 CE KON

CEKNA (SELGD) 0 0 0 CEKOP

CEKNB (SELGM) 0 0 0 CEKOQ

CEKND (SELOP) 0 0 0 CE KOR

CEKNE (WGHT) x CE KOS

CEKNF (SLPOS) 0 0 0 0 0 CE KOT

CEKNG (SELSR) 0 0 0 0 CE KOU

CEKNH (SELDR) 0 0 0 CEKOV

CEKNI (INSOT) x CEKOW

CEKNJ (COMMA) x x CEKOX

CEKNK (AIF) 0 CEKOY

CEKNL (LIF) 0 CEKOZ

(X = Set; 0 =Referenced)

~
~
Ill :a

Nome Ill ,.'!
::0
,.'! u..

~ !!;.
Ill ::; ..! ·c;,

::0 0 Ill
,.'! v u::: ""

Ill E e] Ol 2 Ill
E j 2 ~ ~ "-

(BU)

(Bl2) x
(BLJ) x
(END LP) x
(AGO) x
(CGO) x x
(ASSGN) x
(GOTO) 0

(LABEL) x
(LBL) 0

(AGEN)

(PHAS4) 0

(CSX)

(KEY) 0

(ENT) 0 0

(RTRN) 0 0

(CMUL) 0

(CDIV)

(RD) 0 x
(OLIST) 0 x
(NDLST) 0 x
(STOP) 0 x
(CALL)

(DCOM)

(OPEN~) x
(FLUSH) 0

(COVER) 0

(EDIT)

(KEYl)

(FETCH) x
(OPENl) x
(OPEN2) x
(LADDR) x
(SLONE) 0 0

(OPEN3) x
(OPEN4) x
(OPENS) x

Ill
::0

Ill ~
:ii 5

Ill

,.'! Ji
,.'!

Ill ~
E ! g.
0 z _g

x
x x x

x

x x 0

x x

x x
0 0

0 0

0 0

0 0

0

x
0

x
0 0

~ ·a.
Ill

""~ -""
~~
bi~
c

·.: Q)

8 :a
- 0 u.. I-

x

x
x
x
x

0

Lt')

'° '°
en
Q)

c:
•r-1

~
~
~
Q:

~
2
~
ltJ

g
Q)
M
Q)

IM
Q)
~

(I)
Q)

:d
RS

E-t

M
0 ·n

i
IM
0
.µ
en
j

..
Q

M
:a
~

8.
ll.

.ci::

Phase 5 (X = Set; 0 = Referenced Only)

..
:a ..2

Name ,!:? u ..
] e'.!!
E o..a
J;- - 0 .,.,

CEKSA (PHASES)

CEKSB (BUILD) 0

CEKSC (CMS EC) 0

CEKSD (SPECS) 0

CEKSE (PHEAD)

CEKSF (COS EC) 0 0

CEKSG (PRSEC) 0 0

CEKSH (ASSIST) 0 0

CEKSI (EDIT) 0 0

CEKSJ (SYMSRT) 0 0

CEKSK (CRFSRT) 0

CEKSL (CONCV) 0

Executive

All Exec routines set the Intercom and Excom.
CEKTF also sets the Symbol Table.

666

-o .,o8 V> "3~
:a E;:::. -g ~

..!! 0 J;-~ ~ t-- u:
~ -3

- 0 E g 0 c .. ~ ·£ e .2 ,, c 0 CD -e -~ 0 0 .. .s Ci u u :c Q..O

x 0

0

0 0 x x

0

0

0 0

0

APPENDIX E: MODULE DICTIONARY

The FORTRAN routines bear coded labels as well as mnemonic titles. The 5-character
coded label begins witn the letters CEK; the fourth and fifth identify the specific rou
tine. The entry points to a routine are specified by a sixth character appended to the
coded label; for example, the coded label for the Master Input/Output routine is CEKTH,
and there are entry points CEKTHA, CEKTHB, etc.

FORTRAN ROUTINES LISTED BY CODED LABELS (Part 1 of 6)
r----------T--------T--T----------T-------T-------1
I Routine I Entry I I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I ID I
~----------+--------+--+----------+-------+-------~

CEKAB Obtain-next-character ESC 1 BV

CEKAC
CEKAD
CEKAE
CEKAF
CEKAG
CEKAB

CEKAI
CEKAJ
CEKAK
CEKAL
CEKAM
CE KAN

CEKAQ
CEKAR
CEKAS

CEKAT
CEKAU
CEKAV
CEKAW

CEKAX

CEKAY
CEKAZ
CEKBA

CEKABl Get next non-blank character ESC
CEKAB2 Get next character <including blanks) ESCB
CEKACl Statement identification SID
CEKADl Phase 1 main loop PHIM
CEKAEl Assemble components ACOMP
CEKAFA Process array dimension specification ARDIM
CEKAG1 Process subscripts SUBS

CEKAHl
CEKAH2
CEKAI1
CEKAJA
CEKAKl
CEKALl
CE KAMA

CEKANl

CEKAN2
CEKAQA
CE KARA

CEKASl
CEKASR
CEKASC
CEKASL
CEKASD
CEKATl
CEKAUA
CEKAVl

CEKAW1
CEKAW2

CEKAX1
CEKAX2
CEKAYA
CEKAZ1
CEKBA1

Process initial value data IDAl'A
specification

Entry for Type statements
Entry for DATA statements
Process expression
Process statement label
Process assignment statement
Process END statement
Process EXTERNAL statement
Conversion
Converts constants to new
type and checks legal type
mixes for expressions

Converts constants to new type
Process GO TO statement
Process IF statement
Process Type statement
Entry for INTEGER statements
Entry for REAL statements
Entry for COMPLEX statements
Entry for LOGICAL statements
Entry for DOUBLE PRECISION statements
Process CONTINUE statement
Process DIMENSION Statement
Process COMMON statement
Process declatation
statements in Pass 2
Entry for COMMON statements
Entry for other declaration
statements

Process executable statements
in Pass 2

Entry for no-flow statements
Entry for flow-tbru statements
Process EQUIVALENCE statement
Process DO statement
Analyzes and encodes begin

loop information

TOAl'A
DDAl'A
EXPR
LABL
EQUA
END
EXTE
CNVRT
CNVRT

CNVRTD
GOTO
IF
·l'YPE
INTE
REAL
COMP
LOGL
OOBP
CONT
DIMN
COMM
DCL2

COMM2
DCL2

EXEC2

NF2
FL2
EQUI
DO
BGNLP

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1

1
1
1
1

1

1
1
1

CM
AM
BW
CK
AQ
CI

BL
CN
AN
BG
AO
BM

AP
AQ
AR

None
AS
AT
None

BH

CA
cc
FM

CEKBB CEKBB1 Encodes the end loop entries ENDLP 1 cc
CEKBC CEKBCA Process ASSIGN statement ASSI 1 AW
CEKBD Process file control statements FCON I 1 AX __________ i ________ i __ i __________ i _______ i _______ J

Appendix E: Module Dictionary 667•

FORrRAN ROUTINES LISTED BY CODED LABELS (Part 2 of 6)
r----------T--------T-------------------------------~-------T----------T-------T-------1
I Routine I Entry 1 I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I ID I
~----------+--------+--+----------+-------+-------~ I I CEKBDl Entry for BACKSPACE statement BXSP I
I I CEKBD2 Entry for END FILE statement ENDF I
I CEKBD3 Entry for REWIND statement REWI I
I CEKBE Process input/output statements R~IO I
I CEKBEl Entry for READ statement READ I
I CEKBE2 Entry for wRITE statement WRir I
I CEKBE3 Entry for PRINT statement PRNT I

CEKBF
CEKBG

CEKBB
CEKBI
CEKBJ

CEKBK

CEKBL

CEKBM
CEKBN
CEKBP

CEKBQ

CEKBR
CEKBS

CEKBT

CEKBU
CEKBV
CEKBW

CEKBX

CEKBY

CEKBZ

CEKCA

CEKBE4 Entry for PUNCH statement PUNCH 1
CEKBFl Process FORMAT statement FORM

CEKBGl
CEKBG2
CEKBG3
CEKBG4
CEKBHl
CEKBil
CEKBJl

CEKBKl

CEKBLl

CEKBL2

CEKBMl
CEKBNl
CEKBPl

CEKBQA

CEKBRl

CEKBSl
CEKBS2
CEKBS3

CEKBTl
CEKBT2
CEKBT3
CEKBUl
CEKBVl
CEKBWl

CEKBXl

CEKBYl
CEKBY2
CEKBY3

CEKBZl

CEKCAA
CEKCAB
CEKCAC

Process PAUSE, STOP, RETURN PSR
statements

Entry for PAUSE statement
Entry for STOP statement
Entry for RETURN statement
Stop when execution flows into END
Process NAMELIST statement
Process BLOCK DATA statement
Sets the program type for
the BLOCK DATA statement

Enables EXPR to translate
a statement function expression

Expanj-statement-functions
Statement function expansion
initialization

Statement function expansion
continuation

Process DATA statement
Process IMPI.ICIT statement
Perform final IMPLICIT
statement housekeeping

Determine if a label reference refers
to the current statement

Process a blank source statement
Process subprogram entry statements
Process ENTRY statement
Process FUNCTION statement
Process SUBROUTINE
Process subprogram entry
statements in Pass 2

Process ENTRY statement
Process FUNCTION statement
Process SUBROUTINE statement
Process CA.LL statement
Process CALL statement in Pass 2
Analyze and encode list elements for

READ, WRITE, PRINT, and PUNCH
statements

Determine the proper class
of a function

Select-library-functions
Functions with automatic typing
Functions used as arguments
Exponential library function
selection

Determine statement function
in Pass 2

Generate diagnostic messages
Warning messages <error level 1)
Serious messages (error level 2)
Serious messages associated

with statement deletion
<error level 2)

PAUS
STOP
RETU
EST OP
NAML
BLDA
BLDA2

SFDEF

SFEXP
SFEXPI

SFEXPC

DArA
IMPL
IMPL2

FALI'B

BLNK
SOBE
ENTR
FUNC
SUBR
SUBE2

ENTR2
FCJNC2
SOBR2
CALL
CALL2
IOLST

FNCLS

LIBN
LIBN
LIBNA
LIBNX

STFN2

ERR
ERRl
ERR2
ERRD

1

1
1

1
1
1

1

1

1
1
1

1

1
1

1

1
1
1

1

1

1

1

AY

AZ
BA

BB
BC
None

BN

BO

BO.
BE
None

co

None
BF

BI

None
BJ
CE

BP

BQ

l
I
I

None l

CP
I
I
I
I
l
I
I __________ ..._ _______ i_ __ _ _ ___________________ i__ ________ ~ _______ i ______ _.

•668

FORTRAN ROUTINES LISTED BY CODED IABEIS (Part 3 of 6)

r----------y------~-r----~-----------------------------------T----------T-------T-----~1
I Routine I Entry I I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I ID I
~----------+--------+--+----------+-------+-------~

CEKCB
CEKCC
CEKCD

CEKCE

CEKCF
CEKCG
CEKCB

CEKCI
CEKCJ
CEKCK
CEKCL

CEKCN
CEKCP
CEKCQ
CEKCR

CEKCS

CEKJA
CEKJB

CEKJC

CEKJD
CEKJE
CEKJF
CEKJ'G
CEKJH

CEKKA

CEKKB
CEKKC
CEKKE
CEKKF
CEKKG

CEKKH
CEKKI

CEKKJ

CEKKK
CEKKL
CEKKM
CEKKN
CEKKO

CEKCAD Fatal messages <error level 3) ERR3
CEKCBl Perform constant arithmetic ARITH
CEKCCA Process label string LBSTR
CEKCDl Process format label for FIABL

CEKCEl

CEKCFl
CEKCGl
CEKCHl

CEKCil
CEKCJl
CEKCKl

CEKCLl
CEKCL2

CEKCNl
CEKCPl
CEKCQ1
CEKCRl

CEKCSl
CEKCS2
CEKCS3
CEKCS4
CEKCSS
CEKJA1
CEKJBl

CEKJC1

CEKJDl
CEKJEl
CEKJFl
CEKJGl

CEKJB1
CEKJH2
CEKJH3
CEKKAA

CEKKBA
CEKKCA
CEKKEA
CEKKFA
CEKKGA

CEKKHA
CEKKIA

CEKKJA

CEKKKA
CEKKLA
CEKKMA
CEKKNA
CEKKOA

input/output statements
Process ERR and END labels
for input/output statements

Process FORMAT or NAMELIST name
Process subscript term
File real and complex
constants in Symbol Table

Insert variable in Symbol Table
Check loop limits
Clear loop limits
Process initial value
First value in type statement group
Other than first value in
type statement group

convert decimal to binary integer
Convert decimal to floating binary
File integer constant
Provide service in processing actual
argument

Provide for treatment of interruptions
Di vi de check
Exponent overflow
Return flags
Enable 3 interruptions
Disable 3 interruptions
control Phase 2
Process label references
and definitions

Make storage assignments
for all variables

Process label references
Process label references
Inspect statement label references
Inspect format reference
Generate diagnostic messages
Warning messages
Serious messages
Abort messages
Acquire entry from Compute

and Removal Table
Generate Polish expression
Process End Loop entries in PRF Table
Scan entry in the Expression File
Pushdown primitive operator
Determine the forward
compute point and removal
level for a variable

Manipulate Triad File
Determine commonality or
removability of an expression

Determine whether entries
in the PRF are common

Establish common expression
Form operand list expression
Revise subscript expression
Pot expression into cannonical form
save popularity counts for
register assignment

RTRAN

FNAME
TRMPRO
FLRC

1vs·r
CKLXM
CLLIM
IVAL
IVAL
IVALl

ICNV
FCNV
FI.IC
AARG

CHKINT
CEKCSl
CEKCSl
CBKINT
CHKINT
CEKINT
PBASE2
FSCAN

VS CAN

RrNl
LAB
ISP
FORMAT
DX
DXW
DXF
DXA

1
1
1

1

1
1
1

1
1
1
1

1
1
1
1

1

2
2

2

2
2
2
2
2
2
2
2
3

3
3
3
3
3

3
3

3

3
3
3
3

BR
CL
CF

CG

CH
BS
BX

BY
CD
None

CJ
AI

BZ
CA
None
BT

BU

BU
BU
Fig.19
CR I

CQ

cs
CT
None
None
cu

DP

DQ
ex
DA
DC
DD

OF
DB

DK

DJ
DE
DO
DB

----------.1.--------L--i----------L-------L-------l

Appendix E: Module Dictionary 669•

FORTRAN ROUTINES LISTED BY CODED LABELS (Part 4 of 6)
r----------,.--------T--T----------T-------T-------1
I Routine I Entry f I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I ID I
~----------+--------+--+----------+-------+-------~

CEKKP CEKKPA Search and insert triad 3 DG
CEKKR Control Phase 3 3 CV

CEKKS
CEKKU

CEKKV

CEKKW

CEKLA
CEKLB

CEKLD
CEKLE
CEKLF
CEKLI
CEKMA
CEKMB
CEKMC
CEKMD
CEKME
CEKMF
CEKMG
CEKMB
CEKMI
CEKMJ
CEKMK

CEKML
CE.KMM

CEKMN
CEKMO

CEKMP

CEKMQ
CEKMR
CEKMS
CEKMT
CEKMU
CEKMV

CEKMW

CEKMW
CEKMX
CEKMY
CEKMZ
CEKMA

CEKNB

CEKKRA standard entry by EXEC 3
CEKKRE Error exit by all Phase 3 routines 3

CEKKUA

CEKKVA

CEKKWA

CEKLAA
CEKLBA

CEKLDA
CEKLEA
CEKLFA
CEKLIA
CEKMAl
CEKMBl
CEKMCl
CEKMDl
CEKME1
CEKMF1
CEKMGl
CEKMHl
CEKMJ:l
CEKMJl
CEKMKl
CEKML2

CEKMLl
CEKMMl

CEKMNl
CEKMOl

CEKMPl

CEKMQl
CEKMRl
CEKMSl
CEKM'l'l
CEKMUl
CEKMVl
CEKMV2
CEK?'6i
CEKMW1
CEKMW2
CEKMW3
CEKMWl
CEKMXl
CEKMYl
CEKMZ1
CEKNAl

CEKNBl

Phase 3 storage PSECT 3
Manipulates the PRF entry 3
into its proper PF format

Process the Begin Loop 1
entries in PRF

Process the Begin Loop 2
entries in PRF

Label common expression
File a constant, compute
and file its covering
Adcon, and compute displacement

Expunge a removable subexpression
File CRT entries
Copy and edit an expression
Generate loop text-expression
Generate real divide
Generate real multiply
Generate real plus
Generate integer divide
Generate integer mul.tiply
Generate integer plus
Generate complex plus
Generate relational expression
Generate logical expression
Process equation program file entry
Generate external function
Generate tree entries for a con
version function
Build expression tree
Make initial assignment to

General Register
Assign to Arithmetic Register
Make initial assignment to
Floating-Point Register

Make synonym assignment
to Floating Register

Select Floating Register
Search General Registers
Search Floating Registers
Find temporary storage
Generate maximum operator
Access storage

Process operands
Process variable or constant
Process operator
Process common expression
Process operand
Release temporary storage
Process Result-Register operand
Generate local branch
Determine whether division

may take place in register
pair containing numerator

Determine availability of
register for multiplication

RDIV
RMUL
RP LOS
IDVDE
IMPLY
IPLUS
CPLOS
RLTNL
ANDOR
EQUAT
FUNC

TRBLD
ASAR

ASARS
ASFR

ASFRS

SELFR
FNDAR
FNDFR
FNDwS
MAX
MEMAC
~UB
OPND
OPND
TROP
CSOP
OPND
R~WS

RSLT
SADDR
SELGD

SELGM

3

3

3
3

3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4

4
4

4
4

4

4
4
4
4
4
4
4

4
4
4
4
4
4
4
4

4

None
cw

CY

CZ

DL
IW

ON
OM
DB
OT
ES
ER
KM
EV
EW
ET
EX
FA
FB
ow
FD
None

EN
GE

GF
None

GG

GD
FX
FY
GH
FC
FM
None
FZ

NK
NK
FZ
GI
GA
FN
FU

FT

CEKND CEKNDl Select operand SELOP 4 FQ
----------.1--------L--L------i---L-------L-------

•670

FORTRAN ROUTINES LISTED BY CODED !ABELS (Part 5 of 6)

r----------T---:-----y--T----------T-------T-------1 I Routine I Entry I I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I ID I
~----------+--------+--+----------+-------+-------~

CEKNE CEKNEl Assign a weight to each non- WGHT 4 I EO

CEKNF
CEKNG
CEKNH

CEKNI

CEKNJ

CEKNK
CEKNL
CEKNM
CEKNN
CEKNO
CEKNP
CEKNQ
CEKNR
CEKNS
CEKNT
CEKNU
CEKNV
CEKNW
CEKNX
CEKOB
CEKOC

CEKOD
CEKOE
CEKOF
CEKOG
CEKOB

CEKOI

CEKOJ

CEKOK

CEKOL
CEKOM

CEKOM2

CEKON
CEKOP

CEKOQ
CEKOR
CEKOS

CEKNFl
CEKNGl
CEKNH1

CEKNI1
CEKNI2

CEKNJl
CEKNJ2

CEKNK
CEKNL1
CEKNMl
CEKNN1
CEKN01
CEKNP1
CEKNQl
CEKNR1
CEKNSl
CEKNT1
CEKNUl
CEKNVl
CEKNWl
CEKNXl
CEKOBl
CEKOCl

CEKODl
CEKOEl
CEKOFl
CEK()G1
CEKOBl

CEKOI1

CEKOJl

CEKOJ2
CEKOK1

CEKOL1
DCOM

OPEN6

CEKON1
CEKOPl

CEKOQl
CEKORl
CEKOSl

primitive mode of the I
expression tree I

Select position for operation SLPOS 4 I FR
Select single General Register SELSR 4 I GB
Select even/odd General SELOR 4 I GC
Register pair I

Output code file INSOT 4
Error processing for code • 4
file overflow
Process comma operator
Entry for other cases
Entry for CEK!'iK when
function has only one argument

Process arithmetic IF PF entry
Process logical IF PF entry
Process begin loop 1 PF entry
Process begin loop 2 PF entry
Process begin loop 3 PF entry
Process end loop PF entry
Process assigned GO TO PF entry
Process computed GO TO PF entry
Process ASSIGN PF entry
Process GO TO PF entry
Process referenced label PF entry
Generate labeled branch
Generate arithmetic expression
Control Phase 4
count common expression usage
Determine the location of
both operands of the
current operation

Process entry point
Process RETURN
Generate complex multiply
Generate complex divide
Process input/output
statement PF entry

Process input/output list
element PF entry

Process and list PF entry
Process an end list program
file entry

Generate a standard call linkage
Process STOP and PAUSE
statement PF entry

Process CALL statement
Control selection of open
function processing

Process function numbers
3, 4, 6-11, 16, 21, 24,
25, 28-32

Clear register
Obtain Adcon cover for
generation of a reference

Edit for code file
Locate single operand
Ensure that each argument of a
function or subroutine is in memory
with desired sign

COMMA
COMMA
COMA2

AIF
LIF
BLl
BL2
BL3
END LP
AGO
CGO
ASSGN
GO TO
LABEL
LBL
AGEN
PHAS
CSX
KEY

ENT
RTRN
CMUL
CDIV'
RO

IO LIST

NDLST
NDLST

LINK
STOP

CALL
DCOM

OPEN6

FLUSH
COVER

EDIT
KEYl
FETCH

4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4 ... 4

4

4

4

4
4

4

4
4

4
4
4

GK
None

FE

DX
DY
EE
EF
EG
EB
EA
EB
DZ
None
DV
FO
EM
Fig.30
EP
FV

DU
ED
EY
EZ
EI

EJ

EK

EL

EC
FF

FL

GS
None

None
FW
FP

I CEKOT CEKOT1 Process open function OPENl 4 FG
L----------L--------i--i----------i _______ i _______ J

Appendix E: Module Dictionary 671•

FORTRAN ROUTINES LISTED BY CODED LABELS (Part 6 of 6)

r----------T--------T--T----------T-------T-------1 I Routine I Entry I I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I ID I
~----------+--------+--+----------+-------+-------~

CEKOU CEKOUl Process open function OPEN2 4 FH
CEKOV CEKOVl Add by load address LADDR 4 EW
CEXOW CEKOWl Select one operand in a register SLONE 4 FS
CEKOX CEKOXl Process open function OPEN3 4 FI
CEKOY CEKOYl Process open function OPEN4 4 FJ
CEKOZ CEKOZl Process open function OPENS 4 FK
CEKSA CEKSAl Generate FORTRAN compi1er output PHASES 5 None
CEKSB CEKSBl Build object program ~odule BUILD 5 ~L
CEKSC CEKSCl Generate common contro1 section CMSEC 5 GM
CEKSD CEKSDl Process preset data SPECS 5 GP
CEKSE CEKSEl Produce page headings for PHEAD 5 None

CEKSF
CEKSG
CEKSB
CEKSI.
CEKSJ
CEKSK
CEKSL
CEKTA

CEKTC

CEKTD
CEKTE
CEKrF

CEKrB

CEK1'I
CEKTJ
CEKTK
CEKTL
CEKTM
CEKTQ

CEKTS

CEKSFl
CEKSGl
CEKSHl
CEKSil
CEKSJl
CEKSKl
CEKSLl

CEKTAA
CEKTAB
CEKTAC
CEKTCA

CEKTDA
CEKTEA

CEKTFB
CEKTFC
CEKTFD
CEKTFE
CEKTFF
CEKTFG
CEKTFI

CEKTFJ
CEKTFK
CEKTFL
CEKTFM

CEKTHA
CEKTBB
CEKTBC
CEKTBD
CEKTBE
CEKTHF
CEltTJ:A
CEICTJA
CEICTKA
CEKTLA
CEKTMA
CEKTQ1

CEKTSA

each Phase 5 output page
Generate code control section
Build PSECT
Generate Internal Symbol Dictionary
Document object program
Sort symbol table
List cross-reference
convert constant
control compiler phases
LPC to FORTRAN initial
LPC to FORTRAN continue
LPC to FORTRAN early-end
Get next source statement

<contains CEKTI and CEKTJ)
Process terminal modification
Receive diagnostic messages
constant filers
File I*2 constants
File I*4 constants
File K*4 constants
File R*8 constants
File C*8 constants
File c•16 constants
File storage Class 4
other than R-cons

File storage Class 5 constants
File V-con, R-con pairs
File labels
Create and file labels
Provide communication

between interface programs
(contains CEKTK, CEKTL, and CEKTM)

Open the list data set
Close the list data set
Obtain a line for GNSS
output diagnostic lines
Add lines to list data set
Flush a statement buff er
Analyze conso1e source line
Inspect a conso1e character
Move a line to a list data set
Build a list data set buff er
Flush a 1ist data set buff er
Prepare hexadecimal

dumps of internal files
Form lines and issue them
via POT macro instruction

COS EC
PRSEC
ASSIST
EDIT
SYMSRT
CRFSRT
CON CV
PHC

GNSS

MOD
RDM
CONFJ:L
CONI2
CONI4
CONR4
CONR8
CONCB
CONC16
FIAD4

FIAD5
FLADVR
FLL
CRL
MIO

LDOPEN
LDCLOSE
LINEJ:N
DIAGOUl'
OLR
BFLOSB
ANALYZ
INS CON
LDMOVE
BUILD
FLOSH
CO MD UMP

LIN DUMP

5
5
5
5
5
5
5

Exec

Exec

Exec
Exec
Exec

AN
Exec

Exec
Exec
Exec
Exec
Exec
Exec

EXec

GN
GO
GQ
GR
GS
GU
GT
AB

AC

AD
AE
AF

AG

AB
AI
'AJ
AK
AL
None

None
.__ ________ .._ ________ ________________________________________ _________ ~-------'-------J

•672

FORTRAN ROUTINES LISTED BY MNEMONICS (Part 1 of 6)
r------~--T--------T--------------------------------.---~----T-------T-------1
I I Entry I I Routine I I Chart I
I Mnemonic I Point I Purpose I ID Labell Phase I ID I
~----------f--------+--------------------------------+---------+-------+-~---i
I AARG CEKCRl I Provide service in processing CEKCR 1 BT
I I actual argument
I ACOMP CEKAEl I Assemble components
I AGEN CEKNWl I Generate arithmetic expression
I AGO CEKNQl I Process assigned GO TO
I I PF entry
I AIF CEKNg'l--J Process arithmetic IF PF entry
I ANALYZ CEKTIA Analyze console source line
I ANDOR CEKMil Generate logical expression
I AROIM CEKAFA Process array dimension

ARII'H
ASAR

ASARS
ASFR

ASFRS

ASS::;N
ASSI
ASSIST

BGNLP

·BLDA
BLDA2

Bi.l
BL2
BL3
Br; IL:i
BUILD
CALL
CALL
CALL2

CDIV
CGO

CHKINT

CKLIM
CLLIM
CMS EC
CMUL
CNVRT
CNVRT

C~Wt<.'1'.J

:::c • DF."11?
CO~..M

co~

CEKCBl
CEKMMl.

CEKMNl
CEKMOl

CEKMPl

CEKNSl
CEKBCA
CEKSHl

CEKBAl

CEKBil
CEKBJl

CEKN?-:1
CEKNNl
CEKNOl
c·~ ... ~:·r ,
CEKS'.31
CEKBOl
CEKOLl
CEKBVl

i
I
I
I
I
I

CEKOGl I
CEKNRl I

CEKCSl
CEKCS2
CEKCS3
CEKCJl
CEKCKl
CEKSCl
CEKOFl

I
I
I
1
I
I
I
I
I
I
I

CEKANl I
I
I

CEKtt.N~ I

specification
Perform constant arithmetic
Make initial assignment to

General Register
Assign to Arithmetic Register
~.ake initial assignment to
Floating-Point Register

Make synonym assignment
to Floating Register

Process ASSIGN PF entry
Process ASSIGN statement
Generate Int~rnal Symbol
Dictionary

Analyzes and encodes begin
loop information

Process BLOCK DATA statement
Sets the program type for
the BLOCK DATA statement

• rJcc·-,:·; a c ..• ::.:l · sc·;:.ce
statE::c..e.ct

.:>roces~ .ue'::1 in i.oOt:· 1 PF entry
Process begin ~oop 2 PF entry
Process oegin loop 3 PF entry

u1 l.: ~d~-t dct"l set ouffer
~uilj object pro~rara module
Process CALL state.~ent
Process CAlJ, statement
Process CALL statement in
Pass 2

Generate complex divide
Process computed GO TO

PF entry
Provide for treatment of
interrupts

Divide check
Exponent overflow
Return flags
Check loop limits
Clear loop limits
Generate common control sectionl
Generate complex multiply
Conversion
converts constants to new
type and checks legal t~
mix=s for expr~ssions

:'O!""iv:.-'r-.:.s con~:,tants to new typE;
':~ !{'i'C 1 -.u."'1f> cu ... i:'i.a.e.r .1. i~e
CEKAVl I Process COMMON statement

I Process comzr..a operator
CEKN.11 I ~ntry ior other cases
CEKNJ2 I l:ntry :. or CEK1't.J:' when function

CEKAE
CEKNW
CEKNQ

CEKNK
CEKrI
CEKMI
CEKAF

CEKCB
CEKMM

CEKMN
CEKMO

CEKMP

CEKNS
CEKBC
CEKSH

CEKBA

CEKBl
CEKBJ

\:;fil<DK

CEKN!ll
CEF:NN
CEKi:~O

CEKSB
CEKRU
CEKOL
CEKBV

CEKOG
CEKNR

CEKCS

CEKCJ
CEKCK
CEKSC
CEKOF
CEKAN

CI Kr~.
CEKAV
CEK~.1

1
4
4

4
Exec

4
1

1
4

4
4

4

4
1
5

1

1
1

1

4
4
4

4
4

1

1
1
5
4
1

E·-_,_

1
4

I

Bw
EM
EA

DX
AB
FB
CK

BR
GE

GF
None

DZ
AW
GQ

CB

BC
None

r.;r ~e

EF.
EF
EG

K
GL
None
EC
BJ

EZ
EB

BU

CD
None
GM
EY
BM

Al'
FE

I I h=:. s onlt on2 :irgument I I
L---------..L--------.1.------------ ------- --------- __ ..L ________ -..L--·---··-..L-------J

Appendix E: Module Dictionary 673•

FORI'RAN ROUTINES LISTEJ 2Y Mi.~EMONICS (Part 2 of 6)
r----------T--------T~-------------------------------,.---------T-------T-------1
I I Entry I I aoutinet I Chart I
I Mnemonic I Point I Purpcse I ID Label I Phase I ID I
~----------+----~---+--------------------------------+---------+-------+-------~
I CONCV I CEKSLl I Convert constant I CEKSL 5 I Gr I
l CONFIL I I Constant filers I CEKrF Exec I AF I
I I CEKTFB I File I*2 constants I l I
l I CEKTFC I Fi~e I*4 constants I I I
I t CEKTFD I File R*4 constants I I I
I CEKTFE I File R*8 constants I I I
I CEKTFF t ~ile C* 8 constants I I I
I CEKTFG I File C*l6 constants I I
l CEKTFI I File storage Class 4 con- I I
I I stants other than a-cons I
I CEKTFJ I File storage Class 5 I
I I constants I
I CEKTFK I File v-con, ~-con pairs I
I CEKTFL I File Labels I
I CEKTFM I Create anj file labels I
l CONl' CEKATl I Process CONTINUE statement CEKAr 1 I Non€
I COSEC CEKSFl I ~enerate code control section CEKSF 5 I GN
I COVER CEKOPl I Obtain adcon cover for CEKOP 4 I None
I I gener~tion of a storage I
I I reference I
I CPLUS CEKM::il I Generate complex plus CEKMG 4 I EX
I CRFSRT CEKSKl I List cross-reference CEKSK 5 I GU
I CSX CEKORl I count common expression usage CEKOB 4 I EP
i DAI'A CEKBMl I Precess :JATA statement CEKBM 1 I BO
i DCL2 I ?rocess declaration state- CEKAW 1 I
I I ments in Pass 2 I
I CEKAwl I 2ntry for CO~i..MON statements
l CEKAW2 I Entry for otner declaration
I I statements
I DCOM I Control selection of open

DIMN
DO
DX

EDir
EDIT
END
END LP
END LP
ENf
EOOA
EQtJAT
EJtJI
ERR

ESC

I £unction processing
CEKOM2 I OPEN6 function
CEKAUA I Process DIMENSION statement
CEKAZl I Process ~o statement

CEKJHl
CEKJH2
CEKJH3
CEKOQl
CEKSil
CEKALl
CEKBBl
CEKNPl
CEKODl
CEKAKl
CEKMJl
CE KAYA

I Generate diagnostic messages
I darning messages
I Serious ~essages
I Abort messages
I Edit for code file
I Document object program
I Precess END statement
I Encodes the end loop entries
I Process and loop PF entry
I Process entry ~oint
I Process assigrur.ent statement
I Process equation PF entry
I Process EQUIVALENCE statement
I Generate diagnostic messages

CEKCAA I Warning messages <error
I level 1)

CEKCAB I Serious messages <error
I level 2)

CEKCACCI Serious messages associated
I with statement deletion
I <error level 2)

CEKCAD I Fatal messages (error
I level 3)
I Obtain next character

CEKABl I Get next non-blank character
CEKAB2 I Get next character (including

CEKOM

CEKAO
CEKAZ
CEKJB

CEKOQ
CEKSI
CEKAL
CEKBB
CEKNP
CEKOD
CEKAK
CEKMJ
CEKAY
CEKCA

CEKAB

4

1
1
2
2
2
2
4
5
1
1
4
4
1
4
1
1

1

I I l blanks> I

None
None

FF

AS
AV
co

None
GR
BG
cc
EH
DU
AN
D~

AU
CP

GO

BV

L----------~--------~--------------------------------J.---------~-------~-------J

•674

FORTRAN ROUTINES LISTED BY MNEMONICS (Part 3 of 6)
r----------T--------T--------------------------------T---------T-------T-------1
I I Entcy- I I Routine! I Chart I
I Mnemonic I Point I Purpose I ID Labell Phase I ID I
~----------+--------+--------------------------------+---------+-------+-------~
I EXEC2 Process executable statements CEKAX 1 BH
I in Pass 2
I CEKAX1 Entry for no-flow statements
I CEKAX2 i:ntry for flow-thru
I statements
I EXPR CEKAil Process expression
I EXTE CEKAMA Process EXTERNAL statement
I FALI'H CEKBQA Determine if a label ref-
1 erence refers to the current
I statement

FCNV CEKCP1 Convert decimal to f loatin3

FCON

FErCH

FLABL

FLIC
FLRC

FLUSil
FLUSH
FNAME

FUNCLS

FNDAR
FNDFR
FNDwS
F~RM

FORMA1'
FSCAN

FUNC
GNSS

Goro
GOTO
ICNV

IDAI'A

IDVDE
IF
IMPL
IMPLY
IMPL2

INS CON
IN SOT

IOLI ST

CEKBDl
CEKBD2
CEKBD3
CEKOSl

CEKCDl

CEKCQl
CEKCHl

CEKTMA
CEKONl
CEKCFl

CEKBXl

CEKMRl
CEKMSl
CEKMTl
CEKBFl
CEKJGl
CEKJBl

CEKMKl
CEKTCA

CEKAQA
CEKNTl
CEKCNl

CEKAHl
CEKAH2
CEKMDl
CEKARA
CEKBNl
CEKMEl
CEKBPl

CEKTJA
CEKNil
CEKNI2

binary
Process file control
statements

Entry for BACKSPACE statement
Entry for END FILE statement
Entry for REwIND statement
Ensure that each argument
of a function or subroutine
is in storage with desired
sign

Process format label for
input/output statements

File integer constant
File real and complex con-
stants in Symbol Table

Flush a list data set buffer
Clear register storage
Process FOiU".AT or NAMELIST

name
Determine the proper class
of a function

Search General Register
search Floating Register
Find temporary storage
Process FORMAT statement
Inspect FORMAT reference
Process label references and
definitions

Generate external function
Get next source statement

(contains CEKTI and CEKTJ)
Process GO TO statement
Process &O TO PF entry
Convert decimal to binary
integer

Process initial value data
specif iciation

Entry for Type statements
Entry for DATA statements
Generate integer divide
Process IF statement
Process IMPLICIT statement
Generate integer multiply
Perform final IMPLICIT
statement housekeeping

Inspect a console character
Output code file
Error processing for code
file overflow

CEKOil Process input/output list
I element PF entry

CEKAI
CEKAM
CEKBQ

CEKCP

CEKBD

CEKOS

CEKCD

CEK~Q

CEKCH

CEKTM
CEKON
CEKCF

CEKBX

CEKMR
CEKMS
CEKMT
CEKBF
CEKJG
CEKJB

CEKMK
GEKrc

CEKAQ
CEKNT
CEKCN

CEKAH

CEKMD
CEKAR
CEKBN
CEKME
CEKBP

CEKrJ
CEKNI

CEKOI

1
1
1

1

1

4

1

1
1

Exec
4
1

1

4
4
4
1
2
2

4
Exec

1
4
1

1

4
1
1
4
1

Exec
4

4

BL
AO
co

AX

FP

CF

None
BX

AL
GJ
CB

BP

FX
FY
GB
AZ
None
CR

FD
AC

AP
None
BZ

CI

EV
AQ
BE

None

AI
GK

EJ

----------.1--------i--------------------------------.L---------i-------i-------

Appendix E: Module Dictionary 675•

FORrRAN ROUTINES LISTED BY MNEMONICS (Part 4 Of 6)

r------~--T--------T~-------------------------------T---------T-------T-------1
I I Entry I I Routine I I Chart I
I Mnemonic I Point I Purpose I ID Labell Phase I ID I
~----------+--------+---~----------------------------+---------+-------+-------~
I IOLST I CEKBWl l Analyze and encode list I CEKBW 1 CE
I I I elements for READ, ~RITE, I
I I I PRINT, and PUNCH statements I
l !PLUS I CEKMF1 I Generate integer plus I CEKMF
I ISP I CEKJFl I Inspect statement label I CEKJF
I I references I
I IVAL I f>rocess initial value I CEKCL
I CEKCLl First value in type statement I
f group I
I CEKCL2 Other than first value in type I
I statement group
I IVST CEKCil Insert variable in Symbol
I Table
I KEY CEKOCl Determine the location of
I both operands of the
I current operation
t KEYl CEKORl LOcate single operand
I LAB CEKJEl Process label references
I LABEL CEKNUl Process referenced label

LABL
LADDR
LBL
LBS TR
LDMOVE
LIBN

LIF
LIND UMP
MAX
MEMAC

MIO

MOD

NAML
NDLST

OPENl
OPEN2
OPEN3
OPEN4
OPENS
CEKOM2

CEKAJA
CEKOVl
CEKNVl
CEKCCA
CEKTKA

CEKBYl

CEKBY2
CEKBY3

CEKNLl
CEKTSA
CEKMUl
CEKMVl
CEKMV2

CEKTHA
CEKTHB
CEKTHC
CEKTHD
CEKTHE
CEKTHF
CEKTDA

CEKBHl

CEKOJl

CEKOJ2

CEKOTl
CEKOU1
CEKOXl
CEKOYl
CEKOZ1
OPEN6

PF entry
Process statement label
Add by load address
Generate labeled branch
Process label string
~ove a line to a list data set
Select library functions
Functions with automatic
typing

Functions used as arguments
Exponential library function
selection

Process logical IF PF
Dump compiler module entry
Generate maximum operator
Access storage

Provide communication
between interface pro
grams <contains CEKTK,

CEKTL and CEKTM)
Open the list data set
Close the list data set
Obtain a line for GNSS
Output diagnostic lines
Add lines to list data set
Flush a statement buffer
Process terminal
modification

Process NAMELIST statement
Process and list PF entry
Process an end list program
file entry

Generate a standard call
linkage

Process open function
Process open £unction
Process open function
Process open function
Process open function
Process function numbers 3, 4,
6-11, 16, 21, 24, 25, 28-32

CEKCI

CEKOC

CEKOR
CEKJE
CEKNU

CEKA.J
CEKOV
CEKNV
CEKCC
CEKTK
CEKBY

CEKNL
CEKTS
CEKMU
CEKMV

CEKTH

CEKTD

CEKBH
CEKOJ

CEKOr
CEKOU
CEKOX
CEKOY
CEKOZ
CEKOM2

4
2

1

1

4

4
2
4

1
4
4
1

Exec
1

4
Exec

4
4

Exec

Exec

1
4

4
4
4

·4

4
4

ET
None

CJ

AI

BY

FV

Fw
CT
DV

CN
EW
FO
CL
AJ
BQ

DY
None
FC
FM

AG

AD

BB

EK

EK

FG
FH
FI
FJ
FK
FL

----------.1--------i----~--------------------------~---------~-------~-------J

•676

FORTRAN ROUTINES LISTED BY MNEMONICS (Part 5 of 6)
r------~--T--------T--------------------------------y---------y-------y-------1
I I Entry I I Routine I I Chart I
I Mnemonic I Point I Purpose I ID Labell Phase I ID I
~------~--+--------+--------------------------------+----~----+-------+----~-~
I OPND CEKMWl I Process operand CEKMW 4 FZ I
,I CEKMW2 I Operator processing I
' CEKMW3 I common expression operand I

PHAS4
PHASE2
PHASES

P.dC

PHEAD

PHIM
PSR

PAUS
STOP
RETO
ES TOP

PRSEC
PSECT
RD

RDI\7
ROM
RLSWS
RLI'NL
RMUL
RPLOS
RSLI'

RTN
RTRAN

Rl'RN
RWIO

SAD DR
SELDR

SELFR
SELGD

SELGM

SELOP
SELSR

SFDEF

I processing I
CEKNXl I Control Phase 4 CEKNX 4 Fig.30
CEKJAl f Control Phase 2 CEKJA 2 Fig.19
CEKSAl Generate FORrRAN compiler CEKSA 5 None

CEKTAA
CEKTAB
CEKTAC
CEKSEl

CEKADl

CEKBGl
CEKBG2
CEKBG3
CEKBG4

CEKSGl

CEKOHl

CEKMAl
CEKTEA
CEKMXl
CEKMHl
CEKMBl
CEEQCl
CEKMYl

CEKJDl
CEKCEl

CEKOEl

CEKBE1
CEKBE2
CEKBE3
CEKBE4
CEKMZl
CEKNHl

CEKMQl
CEKNAl

CEKNBl

CEKNDl
CEKNGl

CEKBKl

output
Control compiler phases
LPC to FORTRAN initial
LPC to FORTRAN continue
LPC to FORTRAN early-end
Produce page headings for
each Phase 5 output page

Phase 1 ~ain loop
Process PAUSE, STOP, and

RETURN statements
Entry for PAUSE statement
Entry for STOP statement
Entry for RETURN statement
Stop when execution flows
into END

Build PSECT
Phase 3 storage
Process input/output
statemen~ PF entry

Generate real divide
Receive diagnostic messages
Release temporary storage
Generate relational expression
Generate real multiply
Generate real plus
Process Result - Register
operand

Process label references
Process ERR and END labels
for input/output statements

Process RETURN
Process input/output
statements

Entry for READ statement
Entry for WRITE statement
Entry for PRINT statement
Entry for PUNCH statement
Generate local branch
Select even/odd General-
Register pair

Select Floating Register
Determine whether division

may take place in register
pair containing numerator

Determine availability of
register for multiplication

Select operand
Select single General
Register

Enables EXPR to translate
a statement function
expression

CEKrA

CEKSE

CEKAD
CEKBG

CEKSG
CEKKS
CEKOB

CEKMA
CEKTE
CEKMX
CEKMH
CEKMB
CEEQC
CEKMY

CEKJ'D
CEKCE

CEKOE
CEKBE

CEKMZ
CEKNB

CEKMQ
CEKNA

CEKNB

CERND
CEKNG

CEKBK

Exec

5

1
1

5
3
4

4
Exec

4
4
4
4
4

2
1

4
1

4
4

4
4

4

4
4

1

AB

None

AM
BA

GO
None
EI

ES
AE
GI
FA
ER
KM
GA

cs
CG

ED
AY

FN
GC

GD
FU

FT

FQ
GB

BN

SFEXP Expand statement functions CEKBL 1
CEKBLl statement function expansion BO

initialization __________ i ________ i ________________________________ i _________ i _______ i-~----

Appendix E: Module Dictionary 677•

FORTRAN ROUTINES LISTED BY MNEMONICS (Part 6 of 6)
r----------T--------r-------------------------------T----------T-------T-------1
I I En try t - I Routine I I Chart I
I Mnemonic I Point I Purpose I ID Labelf Phase I ID I
~----------+--------+-------------------------------+----------+-------+-------~
I I CEKBL2 I Statement function expansion BO
I I I continuation
I SID I CEKACl I Statement identification
I SLONE I CEKOWl I Select one operand in a
I I I register
I SLPOS l CEKNFl I Select position for operation
I SPECS CEKSDl Process preset data
l STFN2 CEKBZl Determine statement function

STOP

SOBE

SUBE2

SUBS
SYMSRT
TRBLD

TRMPRO
TYPE

VS CAN

iiiGBr

CEKOKl

CEKBSl
CEKBS2
CEKBS3

CEKBTl
CEKBT2
CEKBT3
CEKAGl
CEKSJ'l
CEKMLl
CEKML2

CEKCG1

CEKASl
CEKASR
CEKASC
CEKASI..
CEKASD

CEKJCl

CEKNEl

in Pass 2
?rocess STOP and PAUSE
statement PF entry

?rocess subprogram entry
statements

Process ENTRY statement
Process FUNCTION statement
Process SUBROUTINE statement
Process subprogram entry
statements in Pass 2

Process E.NTRi statement
Process FUNCTION statement
Process SUBROUTINE statement
Process subscripts
Sort Sym.ool Table
auild axpression tree
Generate tree entries for
conversion function
Process subscript term
Process Type statement
£ntry for INTEGER statements
Entry for REAL statements
Entry for CO~lPLEX statements
Entry for LOGICAL statements
Entry for DOUBLE

PRECISION statements
Make storage assignments
for all variables

Assign a ~eight to each non
pr imiti ve mode of the

CEKAC
CEKOW

CEKNF
CEKSD
CEKBZ

CEKOK

CEKBS

CEKBT

CEKAG
CEKSJ
CEKML

CEKCG
CEKAS

CEKJC

CEKNE

1
4

4
5
1

4

1

1

1
5
4

1
1

2

4

I expression tree I

CM
FS

FR
GP
None

EL

BF

BI

AQ
GS
EN

BS
AR

CQ

EO

L----------...1..--------~------------------------------L----------L-------i-------

•678

APPENDIX F: LINKAGE EDITED COt-.;.FII.ER ROUTINES LISTED BY CODED LABELS (MODULE NAMES)

r------------------T--------------------,.--------T--------------------------------------1
I I I I Rename Information I
I I I ·--------------------T-----------------~
I I I I External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine ID Label I l~dules I References Prior I Names Following I
I (Module Name> I Description IIncludedl to Linkage Editing I Linkage Editing I
r------------------+--------------------+--------+--------------------+-----------------~
I CEKWX* Compiler Executive I CEKTA I
J (EXECFTN) I CEKTC I
I CEKTD I
I CEKTE I
t CEKTF I

CEKTH I
CEKTQ I
CEKTS I

CEKWl•
(PHASEU

compiler Phase 1 CEKAB
CEKAC
CEKAD
CEKAE
CEKAF
CEKAG
CEKAH
CEKAI
CEKAJ
CEKAK
CEKAL
CEKAM
CEKAN
CEKAO
CEKAR
CEKAS
CEKAT
CEKAU
CEKAV
CEKAW
CEKAX
CEKAY
CEKAZ
CEKBA
CEKBB
CEKBC
CEKBD
CEKBE
CEKBF
CEKBG
CEKBii
CEKBI
CEKBJ
CEKBK
CEKBL
CEKBM
CEKBN
CEKBP
CEKBQ
CEKBR
CEKBS
CEKBT
CEKBU
CEKBV

I
I

------------------.1.--------------------~--------i--------------------~-----------------

Appendix F: Linkage Edited Compiler Routines 679

<Part 2 of .5>
r------------------T-~------------------'T--------T--------------------------------------1
I I I I Rename Information I
I I I ~--------------------T-----------------i
I I I I External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine ID Label I IModules I References Prior I Names Followiingl
I (Module Name> I Description IIncludedf To Linkage Editing I Linkage Editing I
~-----------------+--------------------+-.-------+--------------------+-----------------i

CEKW2
(Phase 23)

Compiler Phases 2
and 3

CEKBW
CEKBX
CEKBY
CEKBZ
CEKCA
CEKCB

CHCBMA
CEKCC
CEKCD
CEKCE
CEKCF
CEKCG
CEKCH
CEKCI
CEKCJ
CEKCK
CEKCL
CEKCN
CEKCP
CEKCQ
CEKCR
CEKCS
CEKJA
CEKJB
CEKJC
CEKJD
CEKJE
CEKJF
CEKJG
CEKJH
CEKKA
CEKKB
CEKKC
CEKKE
CEKKF
CEKKG
CEKKH
CEKIU
CEKKJ
CEKKL
CEKKM
CEKKN
CEKKO
CEKKP
CEKKU
CEKKV
CEKKW
CEKLA
CEKLB
CEKLD
CEKLE
CEKLF

CHCBGA
CH CB IA
CHCBKA
CHCBKC

CEKOGA
CEKUIA
CEKUKA
CEKUKC
CEKOMA

CEKL:I I
------------------.1.--------------------L--------~--------------------~-----------------J

680

(Part '3' of 5)
r----~-------------T-----~-------------.--------T--------------------------------------1
I I I I Rename Information I
I I I ·--------------------T-----------------~
I I I I External symbol I I
I Liri?kage Edited I I I D~f initions and I I
I Rolitllne ID Label I l!>t:>dules I References Prior I Names Followiingl
I (MOttule Name> I Description IIncludedj To Linkage Editing I Linkage Editing I
~---~---------------+--------------------+--------+--------------------+-----------------~

CEKW4• Compiler Phase 4 I CEKMA
(PHASE4) CEKMB

CEKMC
CEKMD
CEKME
CEKMF
CEKMG
CEKMH
CEKMI
CEKMJ
CEKMK
CEKML
CEKMM
CEKMN
CEKMO
CEKMP
CEKMQ
CEKMR

,, H.{).) CEKMS
CEKMT
CEKMU
CEKMV
CEKMW
CEKMX
CEKMY
CEKMZ
CEKNA
CEKNB
CEKND
CEKNE
CEKNF

Ff•) CEKNG
CEKNH
CEKNI
CEKNJ
CEKNK
CEKNL
CEKNM
CEKNN
CEKNO
CEKNP
CEKNQ
CEKNR
CEKNS
CEKNT
CEKNU
CEKNV
CEKNW
CEKNX
CEKOB
CEKOC
CEKOD
CEKOE
CBKOF
CEKOG
CEKOH
CEKOI I

---==-------------~--------------------L--------i ____________________ i _________________ J

Appendix F: Linkage Edited Compiler Routines 681

(Part 4 of 5)
r------------------T--------------------T--------T--------------------------------------1
I I I I' Rename Information I
I I I ~--------------------~----------------~
I I I I External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine ID Label I f Modules I References Prior I Names Followiingl
I (Module Name) I Description jincludedl To Linkage Editing I Linkage Editing I
~------------------+--------------------+--------+--------------------+-----------------~

CEKW5*
(CEKPfl5)

CEKUX*
CPHASE6)

Compiler Phase 5

Contains all math
ematical library.
modules required
by the compiler.

I CEKOJ
I CEKOK
I CEKOL
I CEKOM
I CEKON
I CEKOP
I CEKOQ
I CEKOR
I CEKOS
I CEKOT
I CEKOU
I CEKOV
I CEKOW
I CEKOX

CEKOY
CEKOZ

CEKSA
CEKSB
CEKSC
CEKSD
CEKSE
CEKSF
CEKSG
CEKSH
CEKSI
CEKSJ
CEKSK
CEKSL

CBCAD

CBCAF

CBCBD

CHCADI
CHCADR
CHCADW
CBCBD4
CHCBDS*

(80005)
CHCBZA
DEXP

CHCAFR
CBCAFW
CHCBZA
DLOG

DLOG10

CBCBDR
CHCBDW
CBCBDl
CHCBD2
CHCBD3
CHCBD4
CHCBDS
CHCBD5*

(B0005)

CEKUQI
CEKUQR
CEKUQW
CEKUD4
CEKB05

CEKUZA
CEKUX1*

CDEXPU)
CEKOFR
CEKUFW
CEKUZA
CEKUX2*

(OLOGU)
CEKUX3*

(DLOG100)
CEKUDR
CEKOD"
CEKUD1
CEKUD2
CEKUD3
CEKUD4
CEKUD5
CEKBD5

CHCBE1 CEKUEl
CHCBZA CEKOZA __________________ i ____________________ i--------~-------------------i _________________ J

682

(Part 5 of 5)
r------------------T--------------------,---------T--------------------------------------1
I I I I Rename Information I
I I I ~--------------------T-----------------~ I I I I External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine ID Label I IModules I References Prior I Names Followiingl
I (Module Name) I Description IIncludedl To Linkage Editing I Linkage Editing I
~------------------+--------------------+--------+--------------------+-----------------i I DVCHK CEKUXS

I CDVCHKU)
,.. +- OVERFL CEKUX4*

CHCBE

CHCBG

CBC BI

CHCBK

CBCBM

CBCBZ

SLirE

SLIT ET

CHCBER
CHCBEW
CB CB El
CHCBGA
CHCBGB
CBCBGC
CBCBGD
CHCBGR
CHCBGW
CHCBZA
CH CB IA
CHCBIB
CH CB IR
CHCBIW
CHCBZA
CBCBKA
CECBKB
CBCBKC
CBCBKD
CHCBKE
CHCBKR
CBCBKW
CBCBZA
DEXP

DLOG

(OVERFW)
CEKUX6

(SLITEU)
CEKUX7*

(SLITETU)
CEKUER
CEKUEW'
CEKUEl
CEKUGA
CEKUGB
CEKOGC
CEKUGD
CEKUGR
CEKUGW
CEKUZA
CEKUIA
CEKUIB
CEKUIR
CEKUIW
CEKUZA
CEKUKA
CEKUKB
CEKUKC
CEKUKD
CEKUKE
CEKUKR
CEKUKW
CEKUZA
CEKUXl*

CDEXPU)
CEKUX2*

CDLOGU)
CHCBMA CEKUMA
CBCBMB CEKUMB
CBCBMR CEKUMR
CHCBMW. CEKUMW
CHCBZA CEKUZA
CBCBZA CEKUZA
CBCBZR CEKOZR
CBCBZW CEKOZW

~------------------.l.-~------------------'--------..._ ___________________ i _________________ i
l*Names given in parentheses are temporary names and will be replaced by tbe preceding I
I name as soon as is feasible. Thus, module EXECFTN will become module CEKW'X, module I
I PBASE6 will become module CEKUX, entry point DEXPU will become entry point CEKUXl, I
I etc. I
L---~---J

Appendix F: Linkage Edited compiler Routines 683

When more than one page reference is
given. the major reference is first.

AARG
<see: Actual Argument Service Routine>

ACOMP
(see: Assemble components>

Acquire Entry from compute and Removal
Table

decision table 104
f lowcbart 458
routine description 125

Actual Argument Service Routine
flowchart 334
routine description 71-72

Add by IDad Address
decision table 145
flowchart 533-534
routine description 104-165

AGEN
(see: Arithmetic Expression Generator>

AGO

AIF

(see: Assigned GO to PF Entry
Processor>

(see: Arithmetic IF PF Entzy Processor>
Alpbameric constant processing 44
ANALYZ

(see: Analyze Console Source Line>
Analyze console Source Line

flowchart 240-241
overview 11
routine description 35

ANDOR
(see: LC>qical Expression Generator>

ARD IM
(see: Array Dimension Specification
Processor>

Argument Definition Point Entry
in PF 643
in PRF 42

AIU TB
(see: constant Arithmetic Subroutine)

Arithmetic Expression Generator
decision table 144
flowchart 513-514
routine description 159

Arithmetic IF entry
in PF 643
in l!RF 63"•42

Arithmetic D' PF Entry Processor
decision table 142
flowchart 476-480
routine description 155

Array Dimension Specification Processor
flo11Cbart 368-369
routine description 77

ASAR

684

(see: Make Initial Assignment to
General Register>

ASARS
(see: Make Synonym Assignment to
General Register>

ASFR
(see: Make Initial Assignment to
Floating-Point Register>

ASFRS
(see: Make Synonym Assignment to
Floating Register>

ASSGN
(see: Assign PF Entry Processor>

Assemble Components
character table 74
decision table 75,54
flowchart 337-344
routine description 73-74

ASS:I
(see: ASSIGN statement processor> .

ASSIGN entry
in PF 643
in PRF 634,41

ASSIGN PF Entry Processor
flowchart 482
routine description 155-156

ASSIGN Statement Processor
decision table 142
flowchart 269-270
routine description 57-58

Assigned GO TO entry
in PF 643
in PRF 634,41

Assigned GO TO PF Entry Processor
decision table 142
flowchart 483
routine description 156

Assignment Character Table 78
Assignment Precedence Table 78
Assignment Statement Processor

flowchart 250
routine description 55-56

ASSIST
(see: Internal Symbol Dictionary
Generator>

BACKSPACE entry in PRF 43
Begin Loop PrC>cessor

f lowchaz;t 3q9-350
routine description 75

Begin I.oop 1 entry
in PF 644
in PRF 634,42

Begin Loop 1 PF Entry Processor
decision table 143
flowchart 489
routine description 156-157

Begin Loop 1 PRF Processor
decision table 103
flowchart 421-423
routine description 113-114

Begin Loop 2 Entry
in PF 644
in PRF 634

Begin Loop 2 PF Entry Processor
decision table 143
flowchart 490-498
routine description 157

Begin Loop 2 PRF Processor
decision table 103
flo\IChart 424-426
routine description 114-115

Begin Loop 3 Entry
in PF 644
in PRF 634

Begin Loop 3 PF Entry Processor
decision table 143
flowchart 499-501
routine description 157

Begin Program Entry in PRF 633,41
BGNLP

(see: Begin Loop Processor)
Blank Statement Processor

decision table 51
routine description 60

BLDA
(see: BLOCK DATA Statement Processor>

BLDA2
(see: BLOCK DATA Statement, Pass 2)

BLNK
(see: Blank Statement Processor>

BLOCK DATA Statement Processor
decision table 50,51
f1ot1Chart 291
routine description 60-62

BL1
(see: Begin Loop 1 PF Entry Processor>

BL2
(see: Begin Loop 2 PF Entry Processor>

BL3
(see: Begin Loop 3 PF Entry Processor)

Build a List Data Set Buffer
f1owcbart 244
overview 11
routine description 36

BUILD
(see: Object Program Module Builder,
Build a List Data Set Buff er>

CALL
<see: CALL Statement Processor>

CALL Entry in PF 643
call

function 67-68
subroutine 67-68

CALL Entry in PRP 634,42
CALL Statement Final Processing

decision table 51
CALL Statement, Pass 2

flowchart 304
routine description 62

CALL Statement Processor
decision table 51,142
flowchart 485
routine description 62,156

CALL2
<see: CALL Statement Pass 2)

canonical Form Routine
decision table 105
flowchart 443-444
routine description 121

CDIV
(see: Canplex Divide Generator>

CEKAB
(see: Extract source Character)

CEKAC
(see: Statement of Identification>

CEKAD
(see: Phase 1 Main Loop)

CEKAE
(see: Assemble Components>

CEKAF
(see: Array Dimension Specification
Processor>

CEKAG
<see: Subscript Processor>

CEKAB
(see: Initial Value Data Specification
Processor>

CEKAJ:
(see: Expression Processor>

CEKAJ
<see: Statement Label Processor>

CEKAK
(see: Assignment Statement Processor>

CEKAL
(see: END Statement Processor>

CEKAM
(see: EXTERNAL Statement Processor>

CEKAN
(see: Conversion subroutine>

CEKAQ
(see: GO TO Statement Processor>

CEKAR
(see: IF Statement Processor>

CEKAS
<see: Type Statements Processor>

CEKAT
(see: CONTINUE Statement Processor>

CEKAO
(see: DIMENSION Statement Processor>

CBKAV
<see: COMMON statement Processor>

CEKAW
(see: Dec1aration Statement, Pass 2)

CEKAX
<see: Executable Statements, Pass 2)

CEKAY
(see: EQUIVALENCE Statement Processor>

CEKAZ
<see: DO Statement Processor>

CEKBA
<see: Begin Loop Processor>

CEKBB
<see: End Loop Processor>

CEKBC
(see: ASSl:GN Statement Processor>

CEKBD
(see: File Control Statement Processor>

CEKBE
(see: Input/Output Statement Processor>

CEKBF
<see: FORMAT Statement Processor>

CEKBG
(see: PAUSE, STOP, RETURN Statement
Processor>

CEKBB
(see: NAMELXST Statement Processor>

CEKBI

Index 685

(see: BLOCK DATA Statement Processor)
CEKBJ

(see: BLOCK DATA Statement, Pass 2)
CEKBK

(see: Statement Function Definition>
CEKBL

(see: Statement Function Expansion)
CEKBM

(see: DATA Statement Processor>
CEKBN

(see: IMPLICIT Statement Processor>
CEKBP .,._

(see: IMPLICIT Statements, Pass 2)
CEKBQ

Csee: Fall Through Detei:mination>
CEKBR

(see: Blank Statement Processor)
CEKBS

(see: Subprogram Entry Statements
Processor>

CEKBT
(see: Subprogram Entry Statements, Pass
2)

CEKBU
C see: CALL Statement Processor>

CEKBV
Csee: CALL Statement, Pass 2)

CEKBW
(see: I/O List Processor>

CEXBX
(see: FUnction Classifier>

CEKBY
(see: Library Function Selector>

CEKBZ
(see: Statement Function Definition,
Pass 2)

CEKCB
(see: constant.Arithmetic Subroutine)

CEKCC
(see: Label String Processor>

CEKCD
Csee: Format Label Processor for I/O
Statements>

CEKCE
(see: Read Transfer Processor for I/O
Statements>

CEKCF
(see: FORMAT or NAMELIST Name
Processor>

CEKCG
Csee: Term Processor>

CEKCB
Csee: File Real Constant>

CEKCI
<see: Insert Variabl.e in Symbol. Table)

CEKCJ
(see: Check Limits)

CEKCK
<see: Clear Limits>

CEKCL
Csee: Initial Value Processor>

CEKCN
<see: Decimal to Binary Integer
Conversion>

CEKCP
Csee: Decimal to Fl.oating Binary
Conversion>

CEKCQ

686

(see: File Integer constant>
CEKCR

<see: Actual Argument service Routine>
CEKCS

(see: Constant Arithmetic Interrupt)
CEKBB macro instruction 663
CEKBC macro instruction 663
CEKBD macro instruction 663
CEKBF macro instruction 663
CEKHG macro instruction 663
CEKBB macro instruction 663
CEKHI macro instruction 663
CEKHJ macro instruction 663
CEKBL macro instruction 663
CEKBM macro instruction 663
CEKHN macro instruction 663
CEKJA

(see: PBASE2>
CEKJB

<see: Process Label. References and
Definitions>

CEKJC
<see: Storage Assignments for
variables>

CEKJD
Csee: Label. Reference Processor>

CEKJE
<see: Label. Reference Processor>

CEKJF
<see: Statement Label Reference
Inspection>

CEKJG
<see: Format Reference Inspection)

CEKJB
<see: Diagnostic Message Generator>

CEKJM macro instruction 663
CEKJO macro instruction 663
CEKJ1 macro instruction 663
CEKJ2 macro instruction 663
CEKJ3 macro instruction 663
CEKJ4 macro instruction 663
CEKJS macro instruction 663
CEKJ6 macro instruction 663
CEKJ7 macro instruction 663
CEKJ8 macro instruction 663
CEKJ9 macro instruction 663
CEKKA

(see: Acquire Entry from compute and
Removal Table)

CEKKB
(see: Polish Expression Generation
Routine>

CEKKC
Csee: End Loop PRF Entry Routine>

CEKKD macro instruction 663
CEKKE

<see: Expression Scan Routine>
CEKKF

<see: Pushdown Primitive Operand
Routine>

CEKKG
(see: Variabl.e Compute Point and
Removal Level Routine>

CEKKB
(see: Triad Fil.e Manipul.ation Routine>

CEKKI
(see: Expression Removal and
Commonality Determination Routine>

CEKKJ
<see: Check commonality>

CEKKK
(see: Establish Conmon Expression
Routine>

CEKKK macro instruction 663
CEKKL

<see: operand List Expression Formation
Routine>

CEKKM
<see: Subscript Expression Revision
Routine>

CEKKN
<see: canonical Form Routine>

CEKKO
(see: Save Popularity counts for
Register Assignment>·

CEKKP
<see: Search and Insert Triads>

CEKKR
(see: Phase 3 Master Control Routine>

CEKKS
(see: Phase 3 storage PSECT)

CEKKS macro instruction 663
CEKKU

(see: PRF Processing Routine>
CEKKV

(see: Begin Loop 1 PRF Processor>
CEKKW

(see: Begin Loop 2 PRF Processor>
CEKLA

(see: Label CODDDOn Expressions>
CERLB

<see: File constant and covering Adcon>
CEICID

(see: Expunge a Removable Expression>
CEICLE

(see: File CRT Entries>
CEKLF

(see: Copy and Edit an Expression>
CEKLJ:

<see: Loop Test-Expression Generator>
CEKMA

<see: Real Divide Generator>
CEICMB

<see: Real Multiply Generator>
CEia«=

<see: Real Plus Generator>
CEKMD

<see: Integer Divide Generator>
CEKME

<see: lnteger Multiply Generator>
CEKMF

<see: Integer Plus Generator>
CEKMG

<see: Complex Plus Generator>
CEKMB

<see: Relational Expression Generator>
CEKMI

<see: Logical Expression Generator>
CEKMJ

<see: EqUation PF Ent:cy Processor>
CEKMK

(see: External !'Unction Generator)
CEKML

(see: Expression Tree Builder)
CEKMM

(see~ Make Initial Assignment to

General Register>
CEKMN

(see: Make Synonym Assignment to
General Register>

CEKMO
<see: Make Initial Assignment to
Floating-Point Register>

CEKMP
<see: Make Synonym Assignment to
Floating Register>

CEKMQ
<see: Select Floating Register>

CEKMR
(see: Search General Registers)

CEKMS
<see: search Floating Registers>

CEKH.l'
<see: Find Temporary Storage>

CEKMU
<see: Maximum Operator Generator>

CEKMV
<see: Memory Access Routine>

CEKMW
<see: Operand Processing Routine>

CEKMX
(see: Release Temporary Storage>

CEKJa
<see: Result-Register Operand
Processing Subroutine>

CEKMZ
<see: Local Branch Generator>

CEKNA
(see: General Register Availability for
Integer Divide)

CEKNB
<see: Determine Availability of
Register for Multiplication>

CEKND
<see: Select Operand Routine>

CEKNE
<see: Weight Subroutine>

CEKNF
<see: Select Position for Operation>

CEKNG
<see: Select Single General Register>

CEKNB
<see: Seleet Even/Odd General Register
Pair>

CEKNI
<see: Code File output Subroutine>

CEKNJ
<see: comma Operator Processing
Subroutine>

CEKNK
<see: Arithmetic IF PF Entry Processor>

CEKNL
<see: Logical IF PF Entry Processor>

CEKNM
(see: Begin Loop 1 PF Entry Processor>

CEKNN
(see: Begin Loop 2 PF Entry Processor>

CEKNO
<see: Begin Loop 3 PF Entry Processor>

CEKNP
<see: End LOop PF Entry Processor>

CEKNQ
<see: Assigned GO TO PF Entry
Processor>

Index 687

routine description 212
Constant Filers (CONFIL)

decision table 20
flowchart 230-237
overview 10
routine description 28-32 .

CONT
(see: CONTINUE state111ent Processor>

COB.r:INOE entry
in PF 644
in PRF 635.42

CONT:INUE entry to compiler Executive 2
COllrINUE Statement Processor

decision table 49
routine description 56-57

control Section Dictionary 189-191.1
conversion

decimal to binary integer 74
. decimal to floating binaxy 74

conversion Subroutine
decision table 54
flowchart 324-326
routine description 68-69

Copy and Edit on Expression
decision table 104
flowchart 430-434
routine description 116-117

COS EC
<see: Code control Section Generator>

COVER
<see: Load Covering Adcon Routine>

CPIDS
(see: Canplex Plus Generator>

CRFSRT
<see: cross Refe:c~nce List Routine)

Cross Reference Index List 45
Cross Reference Li.st Routine

decision table 197
f lowcbart 625~62'
routine description , 212-213

CSD
(see: control section dicti~ary>

CSX
(see: common Expression usage count>

DATA
<see: DATA Statement Processor>

data management interface 2
DATA statement processor

decision table 50
flowchart 292
overview 114
routine description 60

DCL2
<see: Declaration Statements. Pass 2)

DCOM
(see: Open FUnction Control Routine>

Decimal to Binary :Integer conversion
decision table 55
flowchart 347
routine description 74

Decimal to Floating Binary Conversion
decision table 55
flowchart 3118
routine description 74

Declaration statements final proces5ing 51
Declaration statements. Pass 2 61

690

Definition table 191-192
Determine Availability of Register for
Multiplication

decision table 151
flowchart 588-589
routine decription 176-177

Delete the Undefined Level Subroutine 115
Determine Fall-Through on GO TO and IF
Statements 53

diagnostic information 17-19.21
Diagnostic Message Generator

decision table 83
flowct.art. 375-378. 401-402
routine description 91

DIMENS:ION Statement Processor
deci$ion table 49
flowC:b•rt 262
routine description 57

Dimension Table. 44
DIMN

(-sge: DIMENSION statement processor>
DO

(see: · DO sta~t processor>
DO loop processing 136
DO Statement Processor

decision table SO
f lowchilrt 268--
routine description · 57

docwnentation. object program 2
Dwnp Line Preparation and output 11
DUNL Subroutine 115
DX

lsee: ~iagnostic Message Generator>

EDIT
<see: Edit for Code }'ile; Object
Program Documentation>

EDIT for Code File
decision table 151
routine descriptiorl 1aq-1ss

edit lines 11.16
BF .

(see: Expression File>
EKKSB •cro instruction 663
EUSC macro instruction 663
END

(see: END Statement Processor>
END FILE entry in PRF 43
End List entry

in PF 644
in PRF 635.43

End Li.st PF Ent~ Processor
decision table 144
f lowcbart· 511
routine description 158-159

End Loop entry
in pp 64'
in PRP 635,42

End Loop PP Entry Processor
decision table 103
flowchart 502-507
routine description 157-158

End Loop PRP Entry Routine
flowchart 419-420
routine description 113

End Loop Processor
decision table 143

Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190

flowchart 351
routine description 75-76

END LP
<see: End Loop Processor> .

End Program Entry
in PF 645
in PRF 636,43

END statement processor
decision table 51
flowchart 301
routine description 61

END LP
<see: ENDLOOP PF Entry Proce~~or>

ENT . ; ..
<see: Entry Point Processor>

Entry Point Processor . .:•/':: . !~! ·
decision table 141
flowchart 472-473
routine description i53

·:tt.:'·.,

EQUA
<see: Assignment Stat~ment Prgeessor>

EQUAT
Csee: Equation PF.Entry Processor>

Equation entry
in PF 642
in PRF 633,41

Equation PF Entry Processor
decision table 141
flowchart 475
routine description 155

Equation Statement Processor 49
EQUI

<see: EQUIVALENCE Statem~t Processor>
EQUIVALENCE Statement Processor

decision table 49
flowchart 266-267
routine description 58

ERF
<see: Expression File>

ESC
<see: Extract Source Character>'·

Establish common Expression Routine·
decision table 105
flowchart 450
routine description 123

EX COM
<see: Phase controller PSECT>

EXEC
<see: Compiler Executive>

EXEC2
<see: Executable Statement, Pass 2)

Executable statements final processing 52
Executable Statements, Pass 2

flowchart 302
routine description 61°-62

Executive
flowchart 216-217
routine description 8,2

Expand Statement FUnction Reference 53
EXPF entries 69
Explicit Type Statement Processor 4·9
EXPR

<see: Expression Processor>
Expression File 43,640-641
Expression Processor

flowchart 311-323
routine description 64-68

Expression Removal and Commonality
Determination Routine

decision table 104
flowchart 445-449
routine description 121-122

Expression Scan Routine
decision table 103
flowchart 427-429
routine description 115-116

Expression Storage 132
Expression Tree 131
Expression Tree builder

flowchart 515-516
routine description 159-161

Expunge a Removable ~pression
decision table 105
flowchart 454
routine description 124

EXTE
<see: EXTERNAL S~tement Processor>

External Function Generator
decision table 147
flowchart 544-546
routine description 168

EXTERNAL statement processor
decision table 49
f lowcbart 251
routine description 56

Extract Source Character
decision table 54
flowchart 336
routine description 72-73

Fa11througb Determination
flowchart 374 · :,
routine description 79

FALTB
(see: Falltbrough Determination>

FCNV
<see: Decimal to Floating Binary
conversion>

FCON
<see: File cont~ol Statement Processor>

PEEP Subroutine 115
. FETCH

<see: Operand .Fetch Complement/Store
Routine>

File constant and covering Adcon
flowchart 465

File constant and covering Adcon
decision table 105
flowchart 465
routine description 126-127

File control entry
in PF 644
in PRF 635

File control State•nt Processor
flowchart 271-272
routine description 58

File CRT Entries
decision table 105
flowchart 453
routine description 123-124

File EF and Point Subroutine 115
File Integer Constant

decision table 54
routine description 74-75

Index. 691

<&•~ 'l'Ba P,~)·
TJVa'C

cs~J ~ st:ae~~$i pmceaaarl
Type,,s~•---.. Y~v

f,lo1iebaxt·· 2~sa~ 2·,t..
r~i d~P;~0&" 56:: .

un~ GO '!O: entq
in.a 61!J;
u . li.ifr· 6aat

Vq:i~·.:;COU111dite P~llt:. and: R~:l·~Level
Routille.r··

decleiom~taMJe.. UJ5~
flowc:llPl:t: ~:,;,it,lf391
J:OU1di•~~~·de•aiptiori:. l:U-'

VSCAR•
· tseer: st~ Mai~ tor
Variabl~

vsc:mu. 84
VSCM12"' 8•
VS¢18·3· .,

