File No. S360-48
GY28-2022-2 ;

Program Logic

Version 8.1

IBM System/360 Time Sharing System
Time Sharing Support System

This publication describes the internal logic of the
IBM Systems/360 Time Sharing Support System (TSSS), a
system—-recovery tool for the IBM System/360 Time
Sharing System (TSS/360). The intended audience is
those personnel involved in TSSS maintenance and those
system programmers involved in altering the design of
TSSS.

TSSS services allow the system programmer to gather
data for analyzing system software errors and to
correct these errors dynamically. TSSS also provides
services for monitoring and testing TSS/360.

This publication begins with an Introduction. The
main body of the text provides module descriptions for
Environment (interface with TSS/360), Language
{processing TSSS commands), and I/0 (input and outgput)
routines. Flowcharts give greater detail of the
program logic than provided in the body of the
publication. Appendixes contain additional detailed
material for reference.

Prerequisite Publications

The reader should be familiar with the information
contained in:

IBM System/360 Time Sharing System: Time Sharing
Support System, GC28-2006.

Third Edition (September 1971)

This is a major revision of, and makes obsolete,
GY28-2022-1 and Technical Newsletters GN28-3154 and
GN28-3122. The flowcharts and module directory have been
updated and reorganized and a number of editorial changes
have been incorporated.

Changes to pages are indicated by a bar (]) in the margin at
the left of the text. The bar indicates that the adjacent
text contains a change.

This edition is current with Version 8, Modification 1, of
the IBM Systems/360 Time Sharing System (TSS/360), and remains
in effect for all subsequent versions or modifications of
TSS/360 unless otherwise noted. Significant changes or
additions to this publication will be provided in new
editions or Technical Newsletters. Before using this
publication, refer to the latest edition of IBM System/360
Time Sharing System: Addendum, GC28-2043, which may contain
information pertinent to the topics covered in this edition.
The Addendum also lists the editions of all TSS/360
publications that are applicable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
printer using a special print chain.

Request for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
the IBM Corporation, System/360 Time Sharing System Programming
Publications, Department 643,

Neighborhood Road, Kingston, New York 12401.

@& Copyright International Business Machines Corporation 1968, 1970, 1971

PREFACE

This publication describes the internal
organization and operation of the
System/360 Time Sharing Support System
(TsSs). The information in this document
is directed to those service personnel and
system programmers responsible for
maintaining TSSS. These individuals are
assumed to be thoroughly familiar with the
System/360 Time Sharing System (TSS/360).

This publication consists of four major
parts:

e An Introduction, which describes the
function and internal structure of TSSS
as a whole, including its interface
relationships with TSS/360. This
section introduces the concept of dual
structuring between a resident support
system and a virtual support system, as
well as describing the qualifications
of a TSSS user. In order to be
acceptable to the system, the user
requires system programmer authority
(authority codes O and P).

e A Body, which is divided into three
functional groups: Environment,
Language, and I/0, each consisting of
introductions and module descriptions.
Each division is discussed in terms of
the functions it performs. This
section also discusses common data,
such as tables, control blocks, and
work areas, but only to the extent
required to understand the logic of the
modules themselves. The Environment
(RSS and VSS) describes the program
logic involved in interfacing with
TSS/360, with particular regard to
interruption handling, and in
maintaining internal control for the
entire component. Language, in
describing the processing of the TSSS
commands, shows the means of
interfacing with the TSSS user. TSSS
I/0 is described in the third group.
This publication, in discussing each
module that implements a specific
division's function, provides a frame
of reference for the comments and
coding supplied in the program listing.

s The Flowcharts, which provide a logic
description of greater detail than that
found within the second section.
Because this publication represents a
complete system, the flowcharts are
presented as a comprehensive unit, and,

accordingly, are drawn to present the
system logic as a single entity.

s The Appendixes, which contain
additional material for reference. In
particular, the common data is
described here in greater detail than
within the body of the manual.

If more detail about the programming
techniques used is required, the reader
should refer to the comments, remarks, and
coding in the TSSS program listings.

PREREQUISITE PUBLICATIONS

The external characteristics of TSSS and
the syntax and use of its language are
defined in the Systems Reference Library
publication IBM System/360 Time Sharing
System: Time Sharing Support System,

GC28-2006. The reader is assumed to be
throughly familiar with the contents of
that publication as the two TSSS
publications are directed to the same
audience.

Knowledge of the information in the
following publications is required for a
full understanding of this manual:

IBM Systems/360 Principles of Operation,
GA22-6821

IBM Systen/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
System Logic Summary, Program Logic
Manual, GY28-2009

In addition, the following publications
are essential to a complete understanding
of the interrelationships described in this
manual, and are available for reference:

IBM Systems/360 Time Sharing System:
Resident Supervisoxr, Program Logic
Manual, GY28-2012

IBM System/360 Time Sharing System:
Task Monitor, Program logic Manual,
GY28-2041

IBM System/360 Time Sharing System:
System Control Blocks, Program Logic
Manual, GY28-2011

IBM System/360 Time Sharing System:
System Programmer's Guide, GC28-2008

IBM System/360 Model 67 Functional
Characteristics, GA27-2719

iii

CONTENTS

INTRODUCTION « o e o & o s o s @
A Dual System: RSS and VSS e+ e e e e e e s
TSSS USEYS o « o « 2 o © s o o o s o a o «» o
TSSS Services . . « o« « e o e * e o o o =

Processing the AT Command. e e a4 e e e e e

TSSS Machine Configuration
TSSS Structure . . . « o « e s o o o e =
Conventions and General Cons1derat10ns PR

TSSS ENVIRONMENT . . . & o o o o o o « o « =

RSS

Vss

VSsS

TSSS LANGUAGE PROCESSING . .
Introduction . . e« o s o
Modes of Operatlon e e e .
Processing TSSS Input . . .
Attributes o . .

Environment « « « ¢« ¢ ¢ o o 2 o o o o o
RSS Activation and Deactivation
Interruption Handiing
Message ProcedUre€S . « « « + « s s o o =
Attributes « e e .

RSS External Interrupt Processor (CEHAE)
RSS Inter-CPU Communications (CEHCC) . .
RSS Loader (CEHBL) . ¢ ¢ « ¢ o« o o o o =
External Page Location Address Translator
RSS Program Interrupt Processor (CEHAP) .
RSS I/0 Interrupt Processor (CEHAD) . . .
RSS Channel Interrupt Processor (CEHAC) .
RSS SVC Interrupt Processor (CEHAS) . . .
RSS SVC Service Processors (CEHDR) . . .
RSS Real Core Access (CEHCA)
RSS VM Access (CEHCB)« e e .
RSS Message Writer Routine (CEHCM) « o
RSS Disconnect (CEHBD)
RSS Unloader (CEHBU) . . ¢ ¢ « « ¢ « o «
RSS Exit (CEHBE) e e e o o e @ o e s e @
Environment, Real Storage . . . « « « . .
LOGON RSS/VSS SVC Processor (CEHDL) . . .
RSS Interrupt Switching (CEHCS)
Find TSI (CEHCF) B,
Queue VSS Interrupt (CEHCQ) e 4 e e e o =
VSS Command SVC Processor (CEHDV)
Virtual Memory AT SVC Execution Processor

TSP Asynchronous Interrupt Processor (CEHAQ)

VSS Exit (CEHDE) e e o o e @ % s e o o =
Environment, Virtual Storage
Attributes - -
VSS Activate Interrupt Processor (CZHNV)

VSS Status Save Routine (CZEPS)
VSS External Interrupt Processor (CZHNE)

VSS Program Interrupt Processor (CZHNP) .
VSS Real Core Access (CZHPA)
VSS VM Access (CZHPB) . . . « e e e
VSS Message Writer Routine (CZHNM) « e .
VSS Restore Status (CZHPR) . « « . « « .

3
.
3
s & 4 3
.
LT SR)
.

.
.

Language Processing Routines

AT SVC ProceSsor {(CEHJA/CZHZA)
Language Control (CEHLC/CZHXC)
Source to Polish (CEHLP/CZHXP)
Scan Control (CEHLS/CZHXS) e e o s e e ®
RSS Symbol Resolution (CEHMS)
VSS Symbol Resolution (CZHWS)

(CEHDA;

$ s & ¢ & 2 s .

LR T)

L T Y

LI Y T 'Y

VU W b

. 0 8

$AT and SPATCH Format (CEHJF/CZHZIF)
$TASK and $STATUS Format Routine (CEHJH/CZHZH)
REMOVE Command Processor {(CEHRKR/CZHYR)

Literal Resolution (CEHLL/CZHXL) . ¢« « « ¢ 2 o o o« o« s = « « o« « 53
Operator Functions (CEHLA/CZHXA) e e o e e o o o s« « o 54
Address to Symbol Resolution (CEHMA/CZHWA) « e « s« o o o s o s o 55
AT Command Processor (CEHKA/CZHYA) e o 4 o s e + e« = o e « s« « « 55
DEFINE Command Processor (CEHKE/CZHYE) . . « o« « « 2 o « o« « « « 57
QUALIFY Command Processor (CEHKQ/CZHYQ) . . ¢ o « o« 2 2 « « « « « 58
RSS CONNECT Command Processor (CEHKW) . . . ¢ o « o « o « o« « « « 59
COLLECT cCommand Processor (CEHKC/CZHYC) « « « e e » « 59
SET Command Processor (CEHKS/CZHYS) . . « - 60
PATCH Command Processor (CEHKP/CZHYP) - - 61
DUMP and DISPLAY Commands Processor (CEHKD/CZHYD . - 61
The Format Subroutine . . « +« « o o = o « o« « - 62
Memory Map Format (CEHMM/CZHWM)« « . . -

e & ¢ & 2 0 W s
¢« & 5 & 3 0 s
s ¢ & & & & 2 s 0
& & & & » & o & s
¢ & o 8 0 8 s & &

. . L[] . [L] . L] [}
[}
W

8 & 8 0 & &t a8 4 0 s s
S 5 & & 0 b & 8

CALL and END Commands Processor (CEHKL/CZHYL) . 66
DISCONNECT Command Processor (CEHKM/CZHYM)- . . 66
STOP Ccommand Processor (CEHKT/CZHYT) .« « ¢ o o « o o =« .« . . 66
RUN Command Processor (CEHKN/CZHYN) ¢ o « « « &« « o« o » 67
TSSS I/0 <« o o « « o o o o o o o o o a v a o = o s s « « s « s o« » « 68
INEYOAUCEION « v ¢ ¢ e ¢ o ¢ e o o o o o o o« o o o o o o o s+ = « o . 68
NOXrmal ProCeSSiNg « o« « o o 2 o o o o o« « « « o« o = s s « s o« « o « « 68
Attributes and Characteristics ¢ ¢ ¢ ¢ ¢« ¢ o . . . 68
RSS/VSS 1/0 Control (CEHEA/CZHSA) - . . e o s « 2 « o o « o 11
Direct Access Device Access Method (CEHFAICZHTA) « e e e e s e o 11
Console Access Method (CEHFB/CZHTB) . o« ¢ « o o « o o« = o o « « « 12
Sequential Access Method (CEHFC/CZHTC) . . ¢ o o o o o o« « « « » 12
Telecommunications Access Method (CEHFD/CZHTD) . « « « « « « « - 713
I/70 Editor (CEHFE/CZHTE) . &« o o o o o o o a o o o o o o o o« « « 13
RSS 1/0 Initiation (CEHEB) e o o e« @« o » a o e o s s s e o s o o I8
VSS I/0 Initiation/Posting (CZHSB) . « & ¢ « o « « o« o « = « « « 15
RSS/VSS I/0 Completion (CEHHA/CZHVA) « e o = e o o o e = e « « o« 15
The I/0 Error Recovery Subsystem e 4 e e e« e o « « o« 16
RSS/VSS Error Scan and Recovery (CEHGE/CZHUE) e e o 2 e e o « « « 16
The I/0 Error Recovery Routines “ « o« o « o 18
RSS/VSS Direct Access Device Error Recovery (CEBGA/CZHUA) e o e « 79
RSS/VSS Console Error Recovery (CEHGB/CZHUB) e e e o o 19
RSS/VSS Sequential Access Device Error Recovery (CEHGC/CZHUC) . - 80
RSS/VSS Telecommunications Error Recovery (CEHGD/CZHUD) 80

TSSS FLOWCHARTS =« . o o o a o o o o 2 o o o« o o 2 o « o« « @

APPENDIXES =« « « o o o o o o o @« o o » s o o o o a o s o« » « o « « <171

APPENDIX A: TSSS MODULE DIRECTORY « « &« « « ¢ o o o o o« o o o o « « 172
APPENDIX B: THE RSS LOAD FUNCTION TABLES . « « « ¢ ¢ « o « « « . 176
Segment Table e o e e s o o = « <176
Segment Two Page Table (TSS Pageable Table) .«176

Segment Two External Page Table (RSS External Page Table)
Segment Three Page Table . . . « o 4 e e
Segment Three External Page Table (Symbol chtlonary Table)
Segment Four External Page Table (External Work Area Table)

« & a & a
[]
[
~J
~

TSS External Page Table (CHAEXT) .« o« o « « « o = 2 = « = = .178
APPENDIX C: THE TSSS I/0 SYSTEM TABLES . ¢ ¢ 2« 2« « o o « =« « « « « 2179
The Device Allocation Table (CHRAECX) . . . « ¢ o 2 « o = « « o« <179
The Active Device Table . . & o o o « 2 o « 2 a o « o« » = =« « » o181
The I/0 Request Control Block (CHAECW) . . ¢ &« ¢ ¢« 2 « « « « « 182
APPENDIX D: POLISH STRING CONSTRUCTION TABLES . « 2 « « = « « s« « « 2185
Table of Delimiters and Allowable Characters in Hexadecimal . . .186
Table Of COAES < 4 o o o o 2 2 o o 2 s = o s« s =« « »« « « = « « 2187
Action Code MAatITiX . o o o o o « o o s 2 = o o « a =« « o =« » « 2187
APPENDIX E: LANGUAGE CONTROL BLOCKS, BUFFERS, AND TABLES . « « . « .189

Input Device Table (CHALCR) . ¢« ¢ « o o « « o o « « « o« » « « « .189
Buffers e e e s o o o % s s+ = e e e s e e » = e « 2189
Qualify Table (CHAKQD) e o e e » o o @« o o o e w a = « o o 2190
The Symbol Control Block (CBAMSW) e e e o 2 4 o o o =2 s +« = e« o« <190
The AT Tables (CHARTB) . « ¢ o « o « s = « =« s« = a« o « s« o « » «192
The Patch Table (CHAKPW) .« <« «. +. o« « o = o « « o o o s » o« = « 2193
The SP Symbol Tables (CHASPM) . . ¢ ¢ o v 2 2o o « « o« « =« « « » 2193
APPENDIX F: THE SAVE AREAS . . . e e o s e o a e s e « « o o « 2194

TSS/RSS Status Save Area (CHAESV) « e e s e s e = e e = o e = = <194
TSS/VSS Status Save Area (CHAEVS) . . v v « o « = o« o =2 o« « « « <197

APPENDIX G: THE SVC CODES v« « ¢ « o « o o o o o o o o s o o« o o« « « 2199
APPENDIX H: TSSS FIELDS IN TSS/360 TABLES « « « « « « « « « « « = « 2200
APPENDIX I: MESSAGES BY MODULE USAGE .« « « 2 o o o o o o s o « o « 2202
GLOSSARY = 2 o o o « 2 o o o o s o a o s o a o = o =« o = « o« « s« o 2204

INDEX « 2 o ¢ o o o o o o s o a o o s« o= s o » o« a o o« o o o o =« « « 2207

ILLUSTRATIONS

Figure 1. TSSS OVEXVIEW . v ¢ ¢ ¢ ¢ ¢ o o o o o o « « s =
Figure 2. TSSS commands and their functions
Figure 3. A conceptual approach to AT processing for TSSS
Figqure 4. TSS/360 LOGON task interface with TSss
Figure 5. Overview of RSS environment « .« « « .
Figure 6. The Loader tables e e s e e e e e s « o .
Figure 7. Overview of VSS environment and real storage
Figure 8. The VSS activation processor « . .
Figure 9. Overview of VSS environment, virtual storage
Figure 10. Overview of TSSS language e 4 e e e s e e @

R T S S TR S S S TR Y
R R T T T R S S S Y
e« & & & 2 s 2 8 0 3
=Y
=

¢« & & & 5 5 0
e & & & 0 & & v v s 0

Figure 11. The Symbol Control Block (SCB) . . « <« « . . - 42
Fiqgure 12. The AT Relocation Area . . « « « o « o« « « « « « « o o 45
Figure 13. The operator, name and symbol strings in polish

CONSEYUCLION o v 4 ¢ ¢ o o o o o s « = o s o o » v « o = » = =« « «» « 48
Figure 14. The polish string partially constructed e e o o o o « o 49
Figure 15. The completed polish string- . .« . « « 50
Figure 16. The scan control parameter list for llteral resolutlon . 50
Figure 17. The scan control parameter list for operator functions

and keyword execution - e ¢ o o e s o s o o s a s s = s o 51
Figure 18. RSS System Symbol Table e e s e o o s e = e = e o s e o « 52
Figure 19. VSS System Symbol Table e o o o o 4 s o e o s o e & = « 53
Figure 20. ATS iN VSS . & v ¢ « « 2 « = = = 2 2 o a o s« o o » « = « 56
Figure 21. Overview of TSSS I/0 processing e ¢ e ®w o o = o o o =« =« 69
Figqure 22. Overview of the TSSS I/0 error recovery system 70
Figure 23. Entries and exits from Error Scamn e« o o o = o 17
Fiqure 24. The Relationship between the Segment Table and the

Segment Page Tables c o o e - . . e o o 2177
Figure 25. An entry in the TSS External Page Table (CHAEXT) « o o« <178
Figure 26. The Symbol Control Block e o » % s e s s e s e o o « 191

Figure 27. The AT Table Header e« o o e o 8 s a e e s = e @

CHARTS

Chart 01. RSS External Interrupt Processor (CEHAE)« . « « . . 82
Chart 02. RSS Status Save Routine (CEHCH) « . . <« « « « « « 83
Chart 03. RSS Status Save Routine (continued) 84
Chart 04. RSS Inter-CPU Communications (CEHCC) . « « « « « « « « - . 85
Chart 05. RSS Loader (CEHBL) . « ¢« « « « « « e o o s s« « o = o » 86
Chart 06. RSS/VSS External Page Location Address Translator

(CEHBT/CZHRT) . « o o o 2 a a o o s o o = o o o o o s s « s « « « o « 87
Chart 07. RSS Program Interrupt Processor (CEHAP) « . . 88
Chart 08. RSS I/0 Interrupt Processor (CEHAD) . . . « « « « « « . . 89
Chart 09. RSS Channel Interrupt Processor (CEHAC) « 90
Chart 10. RSS SVC Interrupt Processor (CEHAS) . . ¢« « « o « « « « « 91
Chart 11. RSS SVC Service Processors (CEHDR) . . . « ¢ o« ¢« « « « & o 92
Chart 12. RSS Real Core Access (CEHCA) . . « o ¢ « o o« « « « « « =« & 93
Chart 13. RSS Virtual Memory Access (CEHCB) . . . <« ¢« ¢ ¢ ¢« « « « « 94
Chart 14. RSS VM Access (continued) . .« « « & ¢ o« o o ¢« « o « « « « 95
Chart 15. RSS Message Writer (CEHCM) . . ¢ . ¢ o ¢ o o « o o « o« « « 96
Chart 16. RSS Disconnect (CEHBD) . <« « o « o o 2 o « o o o o « « o« « 97
Chart 17. RSS Unloader (CEHBU) . . ¢ o ¢ « o o o o s o« e« o« « o« » =« « 98
Chart 18. RSS Exit (CEHBE) e o e e e « o « o « o « 99
Chart 19. LOGON RSS/VSS SVC Processor (CEHDL) e e e o + s s s« = « <100
Chart 20. RSS Interrupt Switching (CEHCS) . . . ¢« ¢ ¢ « o « « « « 2101
Chart 21. Find TSI (CEHCF) e e o s e o e o s s s e s o « 2102
Chart 22. Queue VSS Interrupt (CEHCQ) e o s a o s e« s s = e« e e o <103
Chart 23. VSS Command SVC Processor (CEHDV) « o e o - - <104
Chart 24. Virtual Memory AT SVC Execution Processor (CEHDA) « « « <105
Chart 25. TSP Asynchronous Interrupt Processor (CEHAQ)106
Chart 26. VSS Exit (CEHDE) . . o & <« o« o « o = « « o« o o s o« « « =« <107
Chart 27. VSS Activate Interrupt Processor (CZHNV)108
Chart 28. VSS Activate Interrupt Processor (continued)109
Chart 29. VSS Status Save (CZHPS) . ¢ ¢ o « ¢ 2 ¢ o o« o o « « « o« <110
Chart 30. VSS External Interrupt Processor (CZHNE) « « « « 111
Chart 31. VSS Program Interrupt Processor (CZHNP)112
Chart 32. VSS Real Core Access (CZHPA) . . < v o ¢ o o o « « « « « 2113
Chart 33. VSS Virtual Memory Access (CZHPB) . . . « « « « « « « . .118
Chart 3%. VSS Message Writer (CZHNM) ¢ ¢ o « % « o « « « « <115
Chart 35. VSS Restore Status (CZHPR) . . . ¢ ¢ <« ¢ o « » 2 =« « « = 2116
Chart 36. RSS/VSS AT SVC Processor (CEHJA/CZHZA) . « + o« o « « « « <117
Chart 37. RSS/VSS AT SVC Processor (continued)118
Chart 38. RSS/VSS Language Control (CEHLC/CZHXC) . . ¢« . « « « « - -119
Chart 39. RSS/VSS Source to Polish (CEHLP/CZHXP) . « .« « « « « =« « 120
Chart 40. RSS/VSS Scan Control (CEHLS/CZHXS) . . ¢ o« o 2 2 « = « « =121
Chart 41. RSS Symbol Resolution (CEHMS) ¢ o & o o o « « « <122
Chart 42. VSS Symbol Resolution (CZHWS) <« ¢« . « « ¢ « « « 2123
Chart 43. RSS/VSS Literal Resolution (CEHLL/CZHXL) o < +124

Chart 44. RSS/VSS Operator Function (CEHLA/CZHXA) (Arlthmetlc
OpPEratorsS) .« ¢ o v o o o o« o o o o o o o o o « o o o o o » e - « <125
Chart 45. RSS/VSS Operator Functions (Boolean, Relational and

Range OperatorS) .« . v v «c o o o o o o o o« o « s o a s =« = o« = =« = 2126
Chart 46. RSS/VSS Operator Function (Subscript Operator)127
Chart 47. RSS/VSS Operator Functions (Offset and Indirect
Addressing Operators) . « ¢« o o o o 2 2 o = o o o s o »

s e e s« s « 2128
Chart 48. RSS/VSS Operator Functions ($ID, Attributes, and IF

OPEratorS) ¢ o o o ¢ o o o « o o o o s s s s o s s o o s s « « =« « <129
Chart 49. RSS/VSS Address to Symbol Resolution (CEHMA/CZHWA)130
Chart 50. RSS AT Command Processor (CEHKA) . . . « o « o « « « « « 131
Chart 51. VSS AT Command Processor (CZHYA) . . + ¢ o o o « « « « » 2132
/ Chart 52. RSS/VSS DEFINE Command Processor (CEHKE/CZHYE)133
Chart 53. RSS/VSS QUALIFY Command Processor (CEHKQ/CZHYQ)134
Chart 54. RSS CONNECT Command Processor {(CEHKW) s e o = <135
Chart 55. RSS/VSS COLLECT Command Processor (CEHKC/CZHYC) e« o o « <136
Chart 56. RSS/VSS SET Command Processor (CEHKS/CZHYS)137
Chart 57. RSS/VSS PATCH Command Processor (CEHKP/CZHYP)138
Chart 58. RSS/VSS DUMP/DISPLAY Commands Processor (CEHKD/CZHYD) . <139
Chart 59. RSS/VSS DUMP/DISPLAY Commands Processor: Format
SUDroutine . . o ¢ ¢ o o o « o s 2 o o s 2 = o o« o a o s » o a » o 2140
. Chart 60. RSS/VSS Memory Map Format (CEEMM/CZHWM)141
’ Chart 61. RSS/VSS AT/SPATCH Format (CEHJF/CZHZF) « o s e e e = @« <142
Chart 62. RSS $STATUS/S$TASK Format Routine (CEHJH) « . - . .143

vii

Chart 63.
Chart 64.
Chart 65.
Chart 66.
Chart 67.
Chart 68.
Chart 69.
Chart 70.
Chart 71.
Chart 72.
Chart 73.
Chart 74.
Chart 75.
Chart 76.
Chart 77.
Chart 78.
Chart 79.
Chart 80.
Chart 81.
Chart 82.
Chart 83.
continued)
Chart 84.
Chart 85.
Chart 86.
Chart 87.

VSS S$TASK Format Routine (CZHZH) « o o o o <144
RSS/VSS REMOVE Command Processor (CEHKR/CZHYR) e o = e « o185
RSS/VSS CALL/END Commands Processor (CEHKL/CZBYL)146
RSS/VSS DISCONNECT Command Processor (CEHKM/CZHYM)147
RSS/VSS STOP command Processor (CEHKT/CZHYT)148
RSS/VSS RUN Command Processor (CEHKN/CZHYN)149
RSS/VSS 1I/0 Control (CEHEA/CZHSA) e e o o @ . «150
RSS/VSS Direct Access Device Access Method (CEHFA/CZHTA) .151
RSS/VSS Console Access Method (CEHFB/CZHTB)152
RSS/VSS Sequential Access Method (CEHFC/CZHTC)« «153
RSS/VSS Telecommunications Access Method (CEHFD/CZHTD) . -.154
RSS/VSS Telecommunications Access Method (continued) . . .155
RSS/VSS I/0 Editor (CEHFE/CZHTE) . . +. ¢ ¢ o« « o« o« « o « 156
RSS/VSS 1/0 Editor (continued) ¢« « <« « « « « . . .157
RSS I/0 Initiation (CEHEB) . . « « o « « = o o« « = « « « 158
VSS I/0 Initiation/Posting (CZHSB) . . ¢ « o« « o« « « « = 159
VSS I/0 Initiation/Posting (continued)160
RSS/VSS I/0 Completion (CEHBA/CZHVA) . ¢ « o o « « « « =« .161
RSS/VSS Error Scan and Recovery (CEHGE/CZHUE)162
RSS/VSS Error Scan and Recovery (Intervention Required) .163
RSS/VSS Error Scan and Recovery (Intervention Required -

. © e o o o o ® o s e s = = + o @« o - e e o < - 164
RSS/VSS Direct Access Device Error Recovery (CEHGA/CZHUA) 165
RSS/VSS Direct Access Device Error Recovery (continued) .166
RSS/VSS Congole Error Recovery (CEHGB/CZHUB)167
RSS/VSS Sequential Access Device Error Recovery

(CEHGC/CZHUC) « <« & « o o o o o « « o o o o = = s 2 s « « « = « « « 2168

Chart 88.

(continued)

Chart 89.

viii

RSS/VSS Sequential Access Device Error Recovery
e e & 4 a 4 o a e @ e o s e o e s e e o s e = = = o = + 2169

RSS/VSS Telecommunications Error Recovery (CEHGD/CZHUD) .170

The Time Sharing Support System (TSSS)
is a systemrecovery tool for the IBM
System/360 Time Sharing System (TSS/360);
it allows the system programmer to gather
data for analyzing system software errors
and to dynamically correct those errors.
TSSS also provides services that the system
programmexr can use to monitor and test
TSS/360.

TSSS resides within TSS/360, but TSSS
operation is nearly independent of TSS/360.
Conversely, when TSSS is not in use, TSS/
360 executes without TSSS participation.
Points of interaction between TSS/360 and
TSSS are pointed out in this publication.

A DUAL SYSTEM: RSS AND VSS

TSSS comprises two systems. As Figure 1
shows, TSSS consists of the Resident Sup-
port System (RSS) and the Virtual Support
System (VSS), which share a control nucle-
us. An overview of TSSS is shown in Figure
1.

The TSSS control nucleus is loaded with
the TSS/360 Resident Supervisor by TSS/360
Startup. The control nucleus processes
interruptions and activates either RSS or
VSS, as requested. When RSS is activated,
TSS/360 execution is suspended. VSS, which
is part of each task's initial virtual
storage (also called Initial Virtual
Memory), is activated within a specified
task, and only the execution of that task
is suspended during VSS execution.

RSS has independent language-processing
and input/output routines that enable it to
operate as a stand-alone, non-time-shared
program. VSS executes in virtual storage
with similar language processing and I/0
routines.

RSS is dependent only on hardware and on
a minimal interface with TSS/360, while VSS
is dependent on the TSS/360 Resident Super-
visor and a part of the Task Momitor. VSS
is independent of other virtual storage
programs, both privileged and non-
privileged. RSS is not time-siliced,
whereas VSS executes within a task that is
time-sliced. However, VSS can call upon
RSS to perform certain functions that it
cannot perform for itself; RSS is activated
and TSS/360 execution is suspended while
the function is performed.

RSS includes the TSSS control nucleus,
which comprises the routines that are per-

INTRODUCTION

manently resident in real storage. The
remainder of RSS is transient (resident on
the TSS/360 auxiliary paging volume) and is
dynamically paged when needed through use
of the paging exception program interrup-
tion.

Interruption handling by the control nu-
cleus is usually conducted with dynamic
address translation (DAT) inactive (bit 5
of the extended PSW is 0). DAT is inactive
for the VSS activation and deactivation
performed by the control nucleus. However,
when RSS is being activated, DAT is made
active, and the remainder of RSS executes
with DAT active. The transient RSS modules
are regarded as "virtual®™ in order to main-
tain the addressability of RSS. When a
paging exception occurs, causing a page of
RSS to be paged in, and during subsequent
processing, DAT must be active in order to
translate these virtual or transient
addresses into their real main storage
counterparts.

RSS executes in supervisor state, em-—
ploying only one CPU. (In a duplex system
the other CPU is placed in wait state.)
VSS executes in privileged mode.

TSSS USERS

Only system programmers (authority codes
O and P) may use TSSS. For convenience
here, the TSSS user is referred to as a
system programmer, which is sometimes
abbreviated SP. A user of RSS is called a
master system programmer (MSP). He is con-
nected to the system via the external
interruption key on a CPU control panel
(2150 console). There can be only one MSP
connected at a given time. A user of VSS
is called a task system programmer (TSP).
He is connected to the system via the VSS
command or via MSP intervention. There can
be only one TSP connected and associated
with a given task at a given time; the
total number of TSPs may be as large as the
number of current conversational tasks.

TSSS éERVICES

The TSSS command language provides a
variety of services that the system pro-
grammer may use. Whether he is the MSP or
a TSP makes 1little difference in regard to
the service and how it is requested through
the command language.

Introduction 1

o
=
i
=
=
S
&
=
E
&
&

B

TSSS

Communication ma
SVC Interruption

LT TPTTITTT

Figure

1.

TSSS Control
Nucleus (resident)

RSS Environment
Routines

1/0
Error Recovery
Subsystem

RSS /0
Routines

RSS Language
Routines

TSSS overview

Task System
Programmer

other devices

Master System
Programmer

RSS
residence
volume

other devices

Legend:
BERBEE [nterrupts

Program Linkage

.,
I

T

1
| Command |Function |
1 } ¥}
LB T - 1
| AT | Designates a dynamic statement and when it is to be executed. |
| | |
| CALL | Initiates the execution of a prestored set of command statements. i
| |]
| COLLECT | Moves data from one area to another. |
| i |
| CONNECT | Causes a TSP to be connected to VSS at a task's terminal. (Valid for |
| | an MSP only.) |
| | !
| DEFINE | Enables the &P to define temporary symbols and allocates storage when |
| | necessary. |
1 | |
DISCONNECT	Removes the SP capability from the terminal, restores TSS/360 (except
	for patches), and permanently transfers control to TSS/360.
DISPLAY	Writes on his terminal data requested by an SP.
	I
DUMP	Writes on a specified output device data requested by an SP.
I	
END	Terminates reading of prestored statement sets.
IF	Designates a conditional statement, whereby execution of the statement
i	is dependent on the predetermined condition.
PATCH	Alters the ccntents of a data field and keeps a record of the patch.
QUALIFY	Establishes implicit RM (real memory), VM (virtual memory), or global
	qualification for subsequent operands.
] REMOVE	Deletes ATs and their associated dynamic statements, or deletes
	patches.
RUN	Causes control to revert to TSS/360; AT SVCs can then be executed.
I]	
SET	Alters the contents of a data field.
I	
sTOP	cCauses TSS/360 or a specific task to halt and control to be given to
	the issuing SP.
L i J

Figure 2.

The TSSS commands (sometimes called
"keywords™ when language processing is
under discussion) request the services of
TSSS; these are summarized in Figure 2.
(The word "command®™ may mean only the key-
word, or it may include the operands. The
term "command statement™ may imply more
than one command, and is used synonymously
with "input string.®™)

The TSSS services can be requested from
a terminal or by an AT command. The TSSS
AT command designates that the remainder of
an input statement is a dynamic statement
and indicates when it is to be executed.
Many of the TSSS internal functions result
from the use of the AT command. Since sev-
eral sections of this publication are
involved in the description of AT proces-
sing, an overview is provided here.

TSSS commands and their functions

PROCESSING THE AT COMMAND.

Figure 3 shows the steps in processing
an AT command. The following paragraphs
supplement the figure. After being trans-
lated into an SVC, the AT is implanted by
either RSS or VSS in (1) the real storage
of the TSS/360 Supervisor, (2) a task's
virtual storage, or (3) shared virtual
storage. Implanting overlays an existing
instruction, and this original instruction
is saved. The instruction that is overlaid
by an AT SVC must not be altered by TSS/
360. An AT control block (ACB) is built to
keep a record of the implanted AT, and it
is stored, with the dynamic statement, in
an AT table. A given AT SVC may represent
a number of stored statements.

The SVC code for a particular AT command
is determined by (1) the type of storage,

Introduction 3

2anb1y

"€

SSSI 103 butrsseoooad Iv o3 yoeoxdde fenidoouod ¥

START

SYSTEM PROGRAMMER
KEYS IN AT COMMAND

STATEMENT

REQUESTS ADDITIONAL
INPUT VIA'S

SYSTEM PROGRAMMER
KEYS IN RUN COMMAMND

|
AT COMMAND
STRING MAY
REQUIRE
COMMUNICATION
WITH ANY INPUT
MODE.

SYSTEM
PROGRAMMER
MAY TAKE

| CONTROL AND

| CONTINUE
Q J PROCESSING .

LANGUAGE
CONTROL

RUN COMMAND
15 PROCESSED
8Y VARIOUS
LANGUAGE
ROQUTINES

TRANSLATES COMMAND

STRING TO POLISH STRING

~ SOURCE
70 POLISH
SCAN AND PROCESS
POLISH STRING
SYMBOL AND
SCAN LITERAL
CONTROL RESOLUTION
OPERATOR

AT HAS BEEN
IMPLAMNTED

FUNCTIONS

AT COMMAND
PROCESSOR

RETURN TO ENVIRONMENT AFTER
PROCESSING RUN COMMAND

PROCESS
AT SVC

AT SVC
PROCESSOR

RETRIEVES

COMMAND
STRING
FROM AT
TABLE
PROCESS AT
COMMAND
STRING
COMMAND
STRINGS
EXHAUSTED
RUN
PROCESS
RETURN SVC

L

AT PROCESSING
COMPLETED

TESS
ENVIRONMENT

——

RELEASE CONTROL
TO 1887360

A PAGE

SAVES OVERLAID [NSTRUCTION AND
AT COMMAND STRING IM AT TABLE;
IMPLANTS AT SVC ON PAGE OF
- TS5/360 EXECUTABLE CODE.

(4096 BYTES)

OF TS5/360 CODE

AT SVC

TSSS 1S ACTIVATED
WHEN AT SVC IS
EXECUTED

IMPLANTS OVERLAID
INSTRUCTION AND
RETURN SvC

RELEASE CONTROL
TO POINT OF
IMPLANTATION

SPECIAL AREA FOR
EXECUTING OVERLAID
INSTRUCTION AND
RETURN SvC

TSSS ACTIVATED
WHEN SVC EXECUTED

OVERLAID INSTRUCTION

RETURN $VC
i

RELEASE CONTROL TO POINT OF INITIAL INTERRUPTION OR
TO AN ADDRESS DESIGNATED BY A RUN COMMAND OPERAND.

real or virtual, in which it is implanted,
and (2) whether RSS or VSS implants it.
When TSSS is deactivated, and TSS/360 or
the task resumes execution, the implanted
AT SVC may be encountered and executed. As
a result, either RSS or VSS is activated,
depending on the AT SVC code.

The dynamic statement is executed fol-
lowing the execution of the AT SVC, unless
the AT SVC was implanted in shared virtual
storage by a task other than the currently
executing task, and it represents a dynamic
statement that is designated by the SP as
not applicable to the executing task.

If the AT SVC represents more than one
dynamic statement, each dynamic statement
is checked for applicability. After all
applicable dynamic statements have been
executed, TSSS is deactivated, and control
is returned to TSS/360 in the following
manner.

A return SVC is implanted immediately
following the instruction that was overlaid
by the original AT SVC in a block of
storage. The instruction counter of the
PSW that will be loaded to resume TSS/360
execution is set to point to the overlaid
instruction. TSSS is deactivated and con-
trol is returned to TSS/360, which executes
the original instruction and the return
SVC. Either RSS or VSS is reactivated and
restores the PSW instruction counter to the
original next sequential instruction. Pro-
cessing of the AT command is completed when
TSSS is deactivated.

TSSS MACHINE CONFIGURATION

TSSS is usable with the same configura-
tions of CPUs, main storage units, and con-
trol units as TSS/360. The I/0 devices
supported are:

e 1050 Data Communication System -- 1052
Printer Keyboard and 1056 Card Reader
only, attached wvia 2702 Transmission
Control Unit

e 2741 Communication Terminal, attached
via 2702

e 1052-7 Printer Keyboard
e 1403-2 Printer
e 1403-N1 Printer

e 2401 Magnetic Tape Unit, Models 1, 2,
and 3

¢ 2311 Disk Storage Drive

e 2301 Parallel Drum

e 2314 Direct Access Storage Facility

e 2540 Card Read Punch -- Reader Only

* Tel 33 or etype Model 351 KSR teletype-
writer (a product of the Teletype
Corporation) attached via 2702

e The 2702 Transmission Control

TSSS STRUCTURE

The components (modules) of TSSS make up
three logical units:

1. RSS and VSS environment (including the
control nucleus).

2. RSS and VSS language processing.

3. RSS and VSS I/0 {(including the I/0
error subsystem).

Figure 1, shown earlier, depicts this
structure.

The environment unit handles control and
service functions, the language unit pro-
cesses input from the TSSS user, and the
I/70 unit performs I/0.

In the language and I/0 units most RSS
functions and VSS functions are identical,
and thus many pairs of modules are nearly
duplicates, except for external names; they
are sufficiently similar to be described
together. Within the environment, however,
most of the TSSS modules are unique in
function and structure. The introductions
to the separate units provide greater
detail about the structure of RSS and VSS,
as described in those sections.

CONVENTIONS AND GENERAL CONSIDERATIONS

Certain functions are performed in the
same way for all three logical units of
TSSS. Consequently, they are described
here and not discussed separately for each
unit.

Messaqge Handling: When an error condition
is detected by a TSSS routine, the parame-
ters for requesting output of an error mes-
sage are placed by the encountering routine
in register 0. The originating module is

iTerminals that are equivalent to those
explicitly supported may also function
satisfactorily. The customer is respons-
ible for establishing equivalence. IBM
assumes no responsibility for the impact
that any changes to the IBM-supplied pro-
grams or products may have on such
terminals.

Introduction 5

identified by these parameters, as well as
in the message text. Unless the routine
that detected the error calls the message
routine directly, the presence of an error
condition is indicated by passing a return
code in register 15 to the calling routine.
This return code, as well as the original
message parameters, may be passed back
through a number of routines. The message
parameters are defined in the module
descriptions for the RSS and VSS message
routines (CEHCM and CZHNM, respectively).
The routines that actually call these mes-
sage routines are Language Control (CEHLC/
CZHXC) , Scan Control (CEHLS/CZHXS), the
Loader (CEHBL) the AT SVC Processor (CEHJA/
CZHZA), and, in the case of "intervention
required,”™ Error Scan and Recovery
(CEHGE/CZHUE) .

Note that all TSSS messages are diag-
nostic; no messages regquire SP responses.
Appendix I lists message numbers and the
modules that request output of each mes-
sage. The messages themselves are shown in
Appendix B of the Systems Reference Library
publication IBM System/360 Time Sharing
System, Time Sharing Support System,
GC28-2006.

Register Usage: TSSS employs the following
conventions in assigning general purpose
registers. TSSS does not use the floating-
point registers.

0 -1 Parameter registers

2 - 12 Work and base registers

13 Save area address register;
usually the PSECT register

14 Return register

15 Link register; return code

register

Naming and Notation: The following conven-
tions regarding the naming of modules and
notation apply throughout TSSS:

e All return codes are given in decimal.

e TSSS module identifiers (IDs) are
module names in the format CEHxy for

RSS and CZHxy for VSS, where "x" repre-
sents a letter in the range A through M
for RSS and N through Z for VSS. The
value of "y" is any alphabetic charact-
er, except that the letters I and O are
not used. Note that these conventions
do not apply to the TSS/360 module
identifiers referred to in this
publication.

s Two module IDs separated by a slash
(for example, CEHKP/CZHYP) designate
the RSS and VSS versions, respectively,
of a logical module for which there is
a single module description (though not
always a single flowchart). Two
modules with similar functions, one in
RSS and the other in Vss, for which
there are separate module descriptions,
may be referred to jointly with a comma
between the module IDs (for example,
CEHCM, CZHNM).

e Entry point and CSECT names are stan-
dardized throughout TSSS. The main
entry point is the module identifier
followed by the letter A; all subsi-
diary entry points are represented by
the module identifier followed by one
of the letters B through M. If an
entry point is referred to but not spe-
cifically called out in this publica-
tion, the entry point in guestion is
the primary entry point. A primary
entry point has the form: CEHxyA or
CZHxyA. All subsidiary entry points
are specifically noted.

e Table identifiers immediately following
the table names in the form “"VSS Status
Save Area (CHAEVS)"™ refer only to the
DSECTs. If the CSECT is to be referred
to, the identifier is as follows: VSS
Status Save Area (CSECT:CHBEVS). For
further detail see the introduction to
the Appendixes:

Module Attributes: Groups of modules often

have identical attributes. Whenever the
module descriptions for such a group are
preceded by introductory text, the common
attributes are listed in that introduction
and are not necessarily repeated within
each module description.

TSSS Environment modules acquire and
release system control through activation
and deactivation procedures (including
interruption processing) and maintenance of
status indicators. At any time after TSS/
360 Sstartup, the MSP may or may not be con-
nected, and one or more TSPs may be con-
nected. Connection and connected are used
throughout this publication to denote MSP
or TSP capability at a terminal. The
implication is that RSS or VSS was success-
fully invoked and that the disconnect func-
tion has not been performed for the con-
nected user. Connection is the result of
initial activation, and disconnection is a
result of final deactivation.

Activation and deactivation consist of
those procedures that make RSS or VSS
available and unavailable to the SP. These
terms imply entry to and exit from RSS
execution mode or VSS execution mode, which
may occur repeatedly during a SP's con-
nected period (or terminal session). Dur-
ing this period RSS or VSS may be activated
and deactivated any number of times. TSS/
360 (for RSS) or the task (for VSS) is made
correspondingly inactive or active. The
basic purpose of the TSSS environment is
controlling these functions. (RSS and VSS
communication is also a function of the
TSSS environment.)

TSSS LOGON Interface: When an SP activates
TSSS by logging on at an idle terminal, a
LOGON task is created for that terminal
alone. It provides the input parameters
for TSSS to determine whether the LOGON
request is RSS or VSS. The LOGON task
exits to TSSS by remotely executing an SVC
81 instruction, which results in an attempt
to activate RSS or VSS by the LOGON RSS/VSS
SVC Processor (CEHDL). 1In VSS, or if acti-
vation fails, the TSSS LOGON Processor
returns to the LOGON task via LPSW (old SVC
PSW) with a return code. Figure 4 illus-
trates this occurrence. If a RUN command
is executed during a given terminal session
with RSS, the return is also to the LOGON
task with a return code of zero. This
situation is called an "intervening run."
For all other cases (the return code is not
zero), including, for RSS, a Disconnect
situation without an intervening run, the
LOGON task exits to LOGOFF.

However, if the return code is zero,
indicating in VSS a successful LOGON and in
RSS an intervening run, the LOGON task puts
itself into a wait state by issuing the
TSS/360 TWAIT macro instruction. TWAIT
also has the advantage of releasing any

TSSS ENVIRONMENT

LOGON
TSSS Request

4

Build MCB with MCB = Message Control
SVC 81 in first Block

two bytes

y
Provide MCB with
sending and receiving
task IDs and symbolic
device address

RSS Set MCB flag to
X'FF' to indicate
LOGON RSS

VSS

Set MCB flag to
X'00' to indicate
LOGON VSs

Execute
SVC 81

Reentry via
old SVC PSW

* LEGEND:
Y

Register 15 =
C TWAIT) 0: in RSS, intervening run
In VSS, LOGON successful

4: MSP already connected
8: TSP already connected
12: Invalid Task 1D

16: Disconnect without intervening run

Figure 8. TSS/360 LOGON task interface
with TSSS

TSSS Environment 7

auxiliary storage on drums by moving pages
to the auxiliary disk storage. When, fol-
lowing this action, the SP signals the end
of his terminal session through the DISCON-
NECT command, TSSS causes the TWAIT to be
terminated by queuing an external interrup-
tion for the LOGON task.

Environment Functions: Aside from inter-
ruption handling, which involves several
functions, TSSS Environment has four gener-
al functions:

e Activation and deactivation of RSS.

e Activation and deactivation of VSS at
the contrcl nucleus (real storage)l
level.

e Completion of VSS activation, and
initiation of deactivation, at the task
(virtual storage) level.

¢ Performing services upon request from
RSS5 or VSS.

The description of TSSS Environment that
follows is divided into three sections; the
groups of modules that perform each of the
environment functions are described under
separate headings. For convenience the
interruption processors, the service func-
tions, and the RSS message routine are
included with the first group, "RSS
Environment.®” Certain of their functions
are repeated as necessary. The VSS Message
Writer is included with the third group,
"VSS Environment, Virtual Memory."

RSS ENVIRONMENT

Entry to the RSS Environment is gained
via TSS/360 Supervisor-loaded PSWs. After
determining that a hardware interruption
belongs to RSS, the TSS/360 Resident Super-
visor loads a PSW from the SYSRSS field of
the TSS/360 System Table (CHASYS). This
PSW contains the primary entry point of the
appropriate RSS interruption processor.
(For a description of SY¥SRSS, see Appendix
H.)

The TSS/360 Resident Supervisor performs
a short save into the Prefix Storage Area
(PSA) before loading the PSW. Thus, the
status saved by RSS into the TSS/RSS Status
Save Area (CHAESV) from the PSA is the sta-
tus of the system at the time of the hard-
ware interruption.

The VSS Environment routines that reside
in virtual storage process virtual (simu-
lated) interruptions; the part of the con-
trol nucleus having a VS5 environment func-
tion processes a number of SVC interrup-
tions.

The full range of TSSS interruption han-
dling is effective only after RSS has been
activated. Conseguently, RSS activation is
discussed first, followed by a generalized
description of interruption handling.

RSS Activation and Deactivation

when the RSS Environment modules acti-
vate RSS, they:

1. Save the TSS/360 status in the TSS/RSS
Status Save Area (CHAESV).

2. Force the other CPU into wait state,
if in a duplex configuration.

3. Link to the language routines to pro-
cess input, except for a special case
(see "VSS Service Request®).

This activation sequence is shown as a
part of RSS Environment in Figure 5.

The transient RSS modules are paged as
they are referred to. Paging requires
space in real storage, which is obtained
dynamically by writing one TSS/360 Resident
Supervisor page onto the residence device
for each transient RSS page that is brought
into real storage. Deactivation of RSS
reverses this process, although all tran-
sient RSS is paged out at one time.

There are three circumstances under
which RSS is activated:

e The MSP has initiated activation (ini-
tial connection) or has signaled RSS to
reactivate and accept input from his
terminal.

¢« An AT (actually an SVC) implanted by
RSS or by VSS in real storage has been
executed, which requires RSS to be
active in order to process a command
statement.

¢ VSS has signaled that it requires ser-
vice from RSS; the third step in the
RSS activation sequence is omitted in
some cases, as described under "VSS
Service Request."

MSP Intervention: The MSP connects to RSS

by pressing a CPU interruption key, which
preempts the operator's terminal and tem-
porarily dedicates it to RSS. The manual
key external interruption is delivered to
and processed by the RSS External Interrupt
Processor (CEHAE). Only one MSP can be
connected at a given time.

ATs Implanted by RSS: The AT SVCs

implanted in real or virtual storage by
RSS, cause activation of RSS each time an
AT SVC is executed. The execution of an AT

‘ TS5/360 >

External interruptions SVC Interruptions 64-95, inclusive

Save all R55 No
ave d Activation — To VSS Activation
TSS/360 Request
status v (VSS Activation
is shown in
Figure 8.)
RSS RSS SVC
External Interrupt
Interruption Processor
Processor Force other
. CPU into
wait state

RC =

DISCONNECT

RC =
DISCONNECT

RsS SVCs RSS Real Core
. Access and RSS
Language Control Disconnect RSS SvC Virtual Memory
Function Service Access
Processors
SVCs
67,68,
69,71,72
. RSS L RSS AT SVC
Language Routines ,/ Exit Execution
RC =RUN Function RC =RUN

SvC 70

Language AT
Implanting
and Executing

Return Control
to TSS,/360

{:Thif block is expanded T55,/360
in Figure 10.)

Figure 5. Overview of RSS environment

TSSS Environment 9

causes execution of a stored dynamic state-
ment to take place, after which deactiva-
tion of RSS normally is automatic. A STOP
command in the dynamic statement causes RSS
to remain active.

VSS Service Reguest: VSS cannot access
real storage; it must call upon RSS to move
data into a buffer (a page at a time) or
back to the original location. VSS also
calls upon RSS to implant an AT in real
storage, using the RSS language area rather
than moving the designated page to and from
the buffer. 1In either case, the request is
delivered to RSS by execution of an SVC
instruction, and RSS is deactivated upon
completion of the requested operation.

Deactivation of RSS: The deactivation of
RSS occurs automatically, as described
above, or is the result of the processing
of a RUN or DISCONNECT command by the lan-
guage routines. The RSS Exit (CEHBE) and
RSS Disconnect (CEHBD) routines provide for
unloading the transient RSS routines,
reloading the saved supervisor pages,
restarting the CPU that was halted in a
duplex configuration, and transferring con-
trol to TSS/360.

Interruption Handling

All SVC interruptions in the range 64-95
and all manual key interruptions are deliv-
ered to the TSSS control nucleus for pro-
cessing. In addition, after RSS has been
activated, RSS I/0O Control and all program
interruptions are directed to the control
nucleus.

The TSS/360 Interrupt Stacker recognizes
the above interruptions as belonging to
TS8SS and delivers them by loading a new
PSW. As a result of this procedure, there
actually are two sets of new PSWs. (A
reference to a "new PSW" in a module
description must be considered in context;
the reference may be to either a hardware-
loaded or a supervisor-loaded new PSW.)

INTERRUPTION PROCESSORS: The following
discussion introduces the interruption pro-
cessors of the TSSS control nucleus.

1/0 Interruptions: Two types of I/0 inter-
ruptions may be received after RSS has been
flagged active; they are directed to the
RSS I/0 Interrupt Processor (CEHAD):

1. With each initiation of an I/0 opera-
tion, RSS waits for its completion and
processes the resulting synchronous
(expected) I/0 interruption before
proceeding.

2. An asynchronous interruption that is
caused by an Attention from the MSP

10

terminal, with RSS executing, is re-
corded but processed later by a non-
environment routine. (Any other asyn-
chronous I/0 interruption belongs to
TSS/360 and is queued by the TSS/360
Interrupt Stacker.)

The status of a interruption -- expected
or not expected -- is recorded in the TSSS
Active Device Table (SADT). SADT is a part
of the TSS/360 System Table (CHASYS) for
RSS, and a part of TSS/VSS Status Save Area
(CHAEVS) for VSsS.

SVC Interruptions: All TSSS SVC interrup-
tions are initially directed to the SVC
Interrupt Processor (CEHAS), which reco-
gnizes two types: those that activate RSS
and those that do not.

The execution of AT SVCs in real storage
and the service requests from VSS to RSS
(via SVCs) are described under "RSS Activa-
tion and Deactivation."

Program Interruptions: Program interrup-
tions occurring when RSS is active are de-
livered to the RSS Program Interruption
Processor (CEHAP). Code 17 program inter-
ruptions indicate that an addressed page
(with dynamic address translation active)
is not in main storage; the RSS Loader is
called to read the excepted page. Code 5
program interruptions, if they occur while
the RSS Real Core Access routine is in con-
trol, indicate a recoverable addressing
exception. To correct this error, this
information is transmitted to the routine
that called RSS Real Core Access. All
other program interruptions are treated as
major error conditions (see Chart 06).

Message Procedures

All error conditions for which a message
is sent to the system programmer's terminal
are handled identically within this group
of modules. An error message word is
created in register 0 (as described under
"RSS Message Writer"), and return code 4 is
passed back to the calling routine in
register 15.

Attributes

The interruption handling and RSS acti-
vation and deactivation modules described
individually below are nonrecursive, seri-
ally reusable, and they execute in supervi-
sor state. The attributes listed within
each module description are: (1) residency
and (2) the state (active or inactive) of
dynamic address translation (DAT).

RSS External Interrupt Processor (CEHAE)

Chart 01

The RSS External Interrupt Processor
directs the activation, and, subsequently,
the deactivation of RSS for the MSP. The
interruptions which cause direct or
indirect entry to this module are as
follows:

1. Main operater's terminal: An external
interruption from a CPU manual inter-
ruption key.

2. Remote terminal: An asynchronous I/0
interruption (attention) from the MSP.

ATTRIBUTES: Resident. DAT inactive upon
initial entry, until control is returned

from the call to the Status Save routine

(CEHCH) .

ENTRIES: In normal processing, entry is at
CEHAEA via the TSS/360 Supervisor-loaded
interruption key PSW from the system table
(CHASYS). If an external interruption is
pending when RSS Disconnect {(CEHBD) or RSS
Exit (CEHBE) receives conitrol, this module
is entered at CEHAEB to handle the external
interruption.

MODULES CALLED: Under normal conditions:

Module Name and ID
RSS Inter-CPU Com—

Reason Chart ID
Force other CPU o4

munications into halt and

(CEHCC) transfer

RSS Status Save Save TSS/360 02
{CEHCH) status

RSS Language Control
(CEHLC)

Invite input and 38
direct the pro-
cessing of it.

Under an error Condition:

Indicate restart 15
in progress or
storage print
failure.

RSS Message Writer
(CEHCM)

KSS Unloader (CEHBU) Unlcad RSS in an 17
activation retry
attempt.

RSS Loader (CEHBL) Loac all 05

transient RSS.

EXITS: Under normal conditions exit from
this routine is either to RSS Exit (CEHBE}
or to RSS Disconnect (CEHBD), depending on
the return code from Language Control.
Language Control returns control to the

External Interrupt Processor upon encount-
ering and processing a RUN or DISCONNECT
command, indicating which it was with a
return code of zero or four, respectively.

OPERATION: The External Interrupt Proces-
sor checks lock byte CEHEAK to determine
whether RSS is active in the other CPU. If
it is, a loop is entered to await the Halt
and Transfer operation.

If CEHAEK is off, this routine checks
whether RSS is active. If RSS is not
active, it is loaded and activated. The
system table is set to show RSS active, the
SYSERR lock byte CEAIS15 is saved, and the
system is checked for duplex operation. If
more than one CPU is in operation, the
interruption processor calls the inter-CPU
communications module (CEHCC) to initiate a
Halt and Transfer operation in the other
CPU by means of a Write Direct.

After this is done, or if only one CPU
is in operation, the RSS Status Save module
(CEHCH) is invoked to save CPU status.

When Status Save returns control the
cause of the interruption is checked. An
area in the TSS/RSS Status Save Area
(CHAESV) records terminal information if a
remote MSP is connected to the system. If
this area contains only zeros, the terminal
information must be filled in for the main
operator terminal. If a remote MSP is con-
nected, the input device table entry is
filled in with the remote terminal
information.

CEHLC is then invoked to direct the pro-
cessing of input. Normal termination
occurs when the MSP requests either a run
(CEHBE) or a disconnect (CEHBD).

If RSS is active at the time of the
interruption, the origin of the interrup-
tion must be determined. If it comes from
a CPU other than the one executing RSS, it
is ignored (the external old PSW is
loaded). 1If the interruption comes from
the CPU executing RSS, and was received
while this CPU was in the error wait state,
it indicates that a Halt and Transfer
operation attempted upon the othexr CPU was
unsuccessful, and control is passed to
CEHCH to save TSS status. When this module
returns control, CEHBL is invoked to resume
normal processing.

If the error wait flag is not on, and an
external interruption is pending, TSSS is
restarted. If no external interruption is
pending, a flag is set to show this one as
pending, and processing is resumed by load-
ing the external old PSW.

TSSS Environment 11

RSS Status Save Routine (CEHCH)
Charts 02,03

This module saves TSS/360 status informa-
tion in a predefined RSS save area (DSECT
CHAESV) when RSS is activated, and loads
any pages needed to activate RSS. The sta-
tus information will be restored at RSS
exit to reestablish TSS/360.

ATTRIBUTES: This module is resident, and
executes with DAT active.

ENTRIES: This module is entered at CEHCHA
by the RSS SVC Interrupt Processor (CEHAS)
and the RSS External Interrxrupt Processor
(CEHAE) upon activation of TsSS.

MODULES CALLED: TSS Write Shared Pages
(CEAMW) is called to free shared pages for
RSS use.

EXITS: Exit is to the calling routine.

OPERATION: Some 0of the TSS status informa-
tion that must be saved by this routine is
contained within the Prefix Storage Area
{PSA) of the CPU on which RSS is activated.
This information includes:

1. 014 PSWs (PSAEOP, PSASOP, PSAPOP,
PSAMOP, PSAIOP)

2. New PSWs (PSAENP, PSASNP, PSAPNP,
PSAMNP, PSAINP)

3. Current TSI Pointer (PSATPT)
4. Channel Address Word (PSACAW)
5. Channel Status Word (PSACSW)

6. Interrupt Codes (PSAEIC, PSASIC, PSAP-
Ic, PSAMIC, PSAIIC)

7. Registers 15 through 4 as they were
saved by the Interrupt Stacker at the
time of interruption (PSAISS)

This routine saves additional machine data
which was present at the time of interrupt:

1. Current PSW (that is, the o0ld PSW
stored at the time of interrupt).

2. Remaining registers. (These registers
are not used by any routine between
the time of interruption and being
saved by CEHCH.)

3. Floating point registers.

4. Control registers.

This module initializes the Loader

SIORCB (an SIORCB set aside for Loader
usage) with V-type address constants which

12

it copies from the primary SIORCB (used by
the I/0 area for normal processing).

After the save operations, this module
builds the page tables for segment two
(transient portion of RSS to be paged in)
and segment three ({(symbol dictionary for
use by RSS).

If the transient portion of RSS is
greater than the pageable portion of the
Resident Supervisor, then RSS, when acti-
vated, will determine the number of pages
still needed and dynamically build page
tables for them in segment two and segment
three. This is done in three steps. First
the storage block table is used to get
pages from the unassigned chain. If more
pages are needed, this module calls TSS
Write Shared Pages {CEAMW) in order to free
shared pages for RSS use. If still more
pages are required, the task status indexes
are searched to find available private
pages for RSS use. If still more pages are
needed, a major system error is declared.

RSS Inter-CPU Communications (CEHCC)

Chart 04

The function of this routine is to cause
all but the primary CPU (that is, the CPU
which executed an RSS activation SVC or
received a manual key external interrupt)
to be forced into a halt and transfer,
thereby giving RSS complete system control.

ATTRIBUTES: This module is resident and
executes with DAT active.

ENTRIES: Inter-CPU has the following three
entry points;

CEHCCA: 1Initial entry. This entry point
is used by SYSERR.

CEHCCB: The RSS External Interrupt Proces-
sor (CEHAE) and the RSS SVC Inter-
rupt Processor use this entry
point.

CEHCCC: This is the transfer point for the
Halt and Transfer write direct
option. The subject CPU executes
a wait loop in this portion of the
module.

MODULES CALLED: This module calls the TSS
Inter-CPU Communication routine (CEAIC) to
issue a write direct against the subject
CPU.

EXITS: If the routine was entered at
CEHCCA or CEHCCB to initiate a Halt and
Transfer operation, and if the operation
was successful, a return code of zero is
placed in register 15, and control is

passed to the calling routire. If the Halt
and Transfer operation was unsuccessful,
the error wait state is entered.

If the routine was entered at CEHCCC as
the transfer address, return at the end of
RSS activation is to the calling routine.

OPERATION: When this module is entered at
CEHCCA by SYSERR, it first checks the lock
byte CEHAEK. If this is on, a loop is
entered to await the halt and transfer
operation.

If CEHAEK is off, the module tests and
sets the SYSERR lock byte (CEAIS15), and it
is here {(CEHCCB) that the R3S modules CEHAE
and CEHAS enter the module. If the SYSERR
lock byte is on, indicating that the other
CPU is in halt and transfer, control is
returned to the calling routine.

If the SYSERR lock is off, the number of
active CPUs in the system is loaded. The
ID of the object CPU is obtained for
reference. If the first CPU 1D referred to
is that of the CPU currently executing RSS,
then the next one is referred to. If the
CPU being inspected is not the object CPU,
a flag is checked to determine whether or
not it is available. If it is, its ID is
loaded, the transfer point within this
module (CEHCCC) is passed, and control is
given to the TSS Inter-CPU Communications
Module (CEAIC) for the Write Direct. When
CEAIC returns control, a test is made to
determine whether the Halt and Transfer was
successful. If it was, and the RSS lock
byte (RSSLCK) is on, a code of zero is
placed in register 15, and control is
returned to the calling routine. If it was
not, a l-second loop is entered to await
the completion of the operation. If the
Halt and Transfer is not successfully com-
pleted within one second, the Error Wait
PSW is loaded, and the syster is placed in
the error wait state. Otherwise, the RSS
lock (RSSLCK) is set off, flags are set to
indicate that the write direct was received
and that the subject CPU is halted, and a
code of zero is returned to the calling
routine.

If the CPU is not the object CPU and it
is not available, the RSS lock is tested.
If it is on, the CPU is considered to be
halted. If it is coff, again the 1-second
wait loop is entered, and processing con-
tinues as above.

A CPU that is being halted passes con-
trol to CEHCC at CEHCCC. This module then
saves the CPU's general and control regis-
ters, turns on the RSS lock byte (RSSLCK}),
and enters a loop by testing the SYSERR
lock and branching back to that test until
the lock goes off. This means that RSS has
been deactivated and the subject CPU may

restore its registers and resume normal
processing.

RSS_Loader (CEHBL)

Chart 05

Under normal conditions this routine reads
in one non-resident RSS page or TSS5/360
Symbol Dictionary page and writes a TSS/360
Supervisor pageable page. The Loader is
normally called as the result of a paging
exception, at which time it reads in the
excepted page. If called as the result of
a restart attempt, this module pages in all
the transient RSS modules, writing cut as
many supervisor pages as necessary.

ATTRIBUTES: This module is resident and
executes with DAT active.

ENTRIES: This module is entered at CEHBLA
by the Program Interrupt Processor (CEHAP)
if a paging exception occurs. The follow-
ing parameters are passed to it:

Reg. 0 A page table entry pointerx

Reg. 1 External work area table entry
pointer

Reg. 2 An external page table entry
pointer

Reg. 3 TSS external page table entry
pointer

During a restart attempt, this module is
called by the RSS External Interrupt Pro-
cessor (CEHAE). In this case no parameters
are passed.

MODULES CALLED: The loader calls:

Module Name and ID Reason Chart ID
RSS External Page To locate the 06
Location Address physical
Translator (CEHBT) location of

the input

address.
RSS 1/0 Control To write out 09
(CEHEA) a page of

TSS/360 or

read in a

page of RSS.
RSS Message Writer To indicate a 15

(CEHCM) load failure.

Input to I/O Control is the Loader SIORCB
with the designated input or output device,
the external device page number, and the
storage location specified.

EXITS: Exit is to the calling routine.
OPERATION: The paging process involves
writing one page of the TSS/360 Supervisor
onto an external device, and then reading a

TSSS Environment 13

transient RSS page into the vacated space.
For normal dynamic paging the Loader gets
the addresses of the load function tables
from the RSS Program Interupt Processor as
input parameters. These entry pointers in-
dicate the next available slots in the load
tables into which the Loader may record the
page transaction.

If the Loader is called during restart
it gets the addresses of the load function
tables from the RSS Segment Table. The
address of the RSS Segment Table is placed
in control register 0 by the RSS Status
Save routine (CEHCH).

TSS Startup is responsible for building
all but one of the tables used by the Load-
er {(that is, the RSS Segment Table, the TSS
Pageable Table, the RSS External Page
Table, a Segment Three Page Table and
External Page Table for the supervisor sym-
bol dictionary, and the External Work Area
Table). Figure 6 shows the content and

function of each table. The Loader builds
and maintains the TSS External Page Table
(CHAEXT). (See Appendix B for a detailed
description of the Loader Tables.)

Load Function Execution: After initializa-

tion, the Loader calls I/0 Control to write
out the supervisor page. The current entry
in the External Work Area Table provides
the output device identification and target
address, while the current entry in the TSS
Pageable Table designates the current
storage location of the supervisor page.
Following the Write, this module builds an
entry for the supervisor page in the TSS
External Page Table.

This module then links to I/0 Controi,
which reads the requested page of transient
RSS. The current entry in the RSS External
Page Table contains the input device iden-
tification and the page's current storage
location on an external device, while the
current entry in the TSS Pageable Table is

v -—-T - T 1
| Table Name] Contents i Function |
—— O - {
| RSS Segment Table { One entry for each seg- | To provide entries for segments {
{ | ment number, totaling | two, three, and four point to the |
| | five. | TSS pPage Table, Segment Three |
{ | | Page Table, and the External Work |
| | | Area Table, respectively. §
| i | {
| TSS Pageable Table { A list of addresses of the | To determine which pages can be {
{ | TSS/360 Supexrvisor pages | written out, and into which loca- |
	that can be written out.	tions in real storage RSS pages
	An "in storage" indicator.	can be read.
RSS External Page	A list of auxiliary storage	To locate each page of transient
i Table	addresses of the direct { RSS and to cause it to be read.	
	access device location for	(The Loader determines the origin
{	each RSS page (where it	of this table by manipulating the
{	resides).	pointexr to the TSS Pageable Table.)f
		i
Segment Three Page	A list of addresses of the	To provide target addresses for
Table	symbol dictionary pages.	a page of the symbol dictionary.
Segment Three	A list of addresses of	To allow access to the symbol
External Page	the external device	dictionary pages to be read. i
{ Table	location of each page of	i
(Symbol Dictionary)	the symbol dictionary.	
		{
External Work Area	A list of addresses of	To provide target addresses for
Table	available direct access	each TSS/360 page list in the
i	storage.	TSS Pageable Table.
{		
TSS External Page	The external and the	To enable the Unloader to replace
Table (created { internal (main storage)	each page of TSS/360 when RSS is	
by the Loader)	addresses of each page	deactivated.
(CHAEXT)	that is written out, the	
H	name of the direct access]
	device on which it	i
j resides, and the page's	{	
	protection keys. {]	
L 1 —_ L 4
Figure 6. The Loader tables

the target storage address (the address of
the supervisor page just written out).

Following a successful read operation,
the Loader flags the corresponding entry in
the TSS Pageable Table as "in storage"™ (bit
12 is set to zero), to indicate that the
supervisor page has been replaced by an RSS
page. If the Loader was called as the
result of an attempted restart, it decre-
ments its loop control count, updates the
table pointers to point to the next entries
in each table, and loops through the same
logic until all the transient RSS pages
have been read into main storage. Other-
wise the paging operation is finished.

(In the restart paging procedures, after
the non-resident RSS load is completed,
this module pages in the supervisor symbol
dictionary. The loop count is governed by
a Startup-supplied number. The loop logic
is the same as the RSS load, except that
the symbol dictionary PT and the symbol
dictionary XPT replace the 1TSS Pageable
Table and the RSS External Page Table.
Loader continues using the External Work
Area Table and the TSS External Page Table,
serially.)

The

After the paging operation, this module
saves the pointers to the last-used entries
in the External Work Area Table and the TSS
External Page Table in the TSS/RSS Status
Save Area (ESVEWPGE and ESVIEPE, respec-—
tively). The pointers are available to the
Program Interrupt Processor (CEHAP) and the
RSS Unloader (CEHBU).

The table entries represented by these
pointers indicate (1) the next available
address on the direct access device used to
save the supervisor pages, and (2) the next
available slot in which a record of the
write-out of a supervisor page can be
created. The Program Interrupt Processor
calculates the other two pointers needed as
input to this module if a paging exception
occurs.

If an error indication follows an
attempt to write or read a page, this
module sets the error parameters, restores
the table pointers to the origins of the
tables, and calls RSS Message Writer to in-
dicate a paging failure. Vhen control
returns from RSS Message Writer, the Loader
exits to the TSS/360 System Errcr Processor
(CEAIS).

External Page Location Address Translator
(CEHBT/CZHRT)

Chart 06

This module translates the two-byte rela-
tive page number of an External Page

OPERATION:

Address Woxrd received as input into a phys-
ical I/0 data location.

ATTRIBUTES: This routine is resident and
executes with DAT active.

ENTRIES: This module is called by the
Loader (CEHBL), the Unloader (CEHBU), RSS
Real Core Access (CEHCA), the Operator
Functions routine (CEHLA/CZHXA), and RSS VM
Access (CEHCB). It expects an External
Page Address Word as an input parameter
{register 0) if the device specified is a
disk.

Register 0:

T Al 1
Symbolic Device |Seg |Relative |

fior e A e

¥
|
| Address jNo. |Page |
{ } | Number |
L L i 1
0 16 20 24 31

If the device specified is a drum (2301),
the input required is the symbolic device
address and a "head and slot™ number.

Register 0:

Head and Slot
Number

1] T
| Symbolic Device |
| Address |
L) 8

e e e 2ok

0 15 16 31

MODULES CALLED: None.

EXITS: Exit is to the calling routine. If
the operation is successful, this module
passes the following return parameters:

Register 1:

r) T 1
{ Bin | Cylinder |
| ¥ + T 1
| B i B i c | C |
L. i i i J
(] 7 8 15 16 23 24 31
Register 2:

¥ T 1
| Head | Record ID |
L 4 3
1 3 T 1 T 1
| H i H | H | |
L 4L L L]
0 7 8 15 16 23 24 31

If the device specified is a drum (2301),
the output is the head and record ID only,
as shown in register 2.

If RSS is being loaded and
unloaded, this routine uses the symbolic
device address in the input External Page
Address Word as a search argument to find
the corresponding entry in the resident
portion of the TSSS Device Allocation Table
(SSDAT). If RSS is not being loaded or
unloaded, this routine uses the same search

TSSS Environment 15

argument to find the corresponding euntry in
the non-resident portion of the TSSS Device
Allocation Table (SSDAT). It copies the
device type for later use.

This module checks the input relative
page number to ensure that it does not
exceed the address range for the specified
device:

Device Name Device Type Range
Drum Storage 2301 0-899
Disk Storage Drive 2311 0-1623
Direct Access

Storage Facility 2314 0~6495

If the relative page number is acceptable,
and if the device is a 2311 or 2314, this
module uses the device type to determine
which subroutine it will use to find the
cylinder number. The selected subroutine
finds the cylinder number by dividing the
input relative page number by the number of
pages that can be placed on a cylinder.

The remainder of this division is used as a
search argument to locate a track and a
record ID for the designated address. This
search takes place on a separate table for
each device. These tables are maintained
by this module in the following format
(four bytes per entry):

0 Track and ID

i
or ID only |

T
o o o
(=]

N |

8 24 31

i
!
0

Output from the division and search proce-
dures is a physical data address of the
form CHHR, corresponding to the input sym-
bolic device address. On completion of the
requested operation, this module returns
control to its calling routine (see
"Exits").

For a 2301, input beccmes output without
the search procedures described above and
without additional translation. The input
is first checked for validity.

If this module recognizes one of the
following error conditions, it executes the
error return procedures, passing the listed
return code. Such an error is recognized
as a TSSS system error.

Hexadecimal
Error Condition Error Numbers
Invalid paging device cc0902
type
Invalid 2301 symbolic cc0Aa02

address

16

Invalid 2311 symbolic cc0B02
address

Invalid 2314 symbolic cclCc02
address

Device not in the SSDAT cc0202

where cc = the last two characters of the
module identifier.

The error numbers are passed in register U;

the first digit is the class code and the
second digit is the message number.

RSS Program Interrupt Processcor (CEHAP)

Chart 07

The Program Interrupt Processor receives
and processes program interruptions that
occur while RSS is active.

ATTRIBUTES: This module is resident and
executes with DAT active.

ENTRIES: TSS/360 delivers the interruption
to this module at CEHAPA when RSS is
active, via the Supervisor-loaded RSS pro-
gram PSW (SYSRS1 in TSS System Table).

When the RSS SVC Interrupt Processor
{CEHAS) or the RSS SVC Service Processors
module (CEHDR) encounters a TSSS system
logic error, it exits to the Program Inter-
rupt Processor at CEHAPB. . CEHAPB is the
entry point that defines the TSSS System
Logic Exror Processor subroutine. The
input parameter for this subroutine is a
two-character module identifier in bytes 2
and 3 of Register 1.

MODULES CALLED: If entry to this module
resulted from a paging exception program
interrupt, this module calls the RSS Loader
{CEHBL) to read in the excepted page. It
passes .the following parameters:

Reg. 0 A page table entry pointer

Reg. 1 An gxternal work page table entry
pointer

Reg. 2 An external page table pointer

Reg. 3 A TSS external page table entry

pointer

The page table and external page table may
be for either segment 2 or segment 3
addresses.

If this module is entered as the result
of an internal system logic error ic calls
RSS Message Writer (CEHCM, Chart 15).

EXITS: (1) If entry to this moduie
resulted from a paging exception, and the
reguested load is successful, this module
exits by loading the cold program PSW (loca-
tion X*'28%'). {23 If entry to this module
resulted from an addressing check whils RSS
Real <Core Access (CEHCA) was executing,
this module exits to the routine that
callzd Real Core Access. (3) Under any
other condition this module recognizes a
major error and exits to RSS Exit.

OPERATION: This module distinguishes
betwean interruptions caused by either a
paging exception (interruption code 17) or
an addressing exception !code 5}, and all

cther interrupticns.

Coder 17: “Pdglng exceyt:on means that an
addressed page is not in main storage.
This program interiuptlon is delivered to
BS5 whenever RSS is active. This module
lin¥s to the RSS Loader, which reads the

excepted page intoc main storage. This
capability allows RSS5 tc execute with only
those RSS pages that are necessary for
execution in main storage.

The Program Interrupt Processcr checkq
for a vaiid address by testing the reloc
ticn address register (control register z;,
A walid address in this case is a segment
twe or three address. If£ the address is
invalid this modile exits to the TS3/360
System Error Processor.

This module uses the address of the
excepted page as an index to search the
appropriate page table (that is, Segment 2
Paye Table or Segment 3 Page Table). The
crigin of the page table is an entry in the
RSS Segment Table. When it finds the entry
for the excepted page, this module puts the
address in register zero. Using the page
table entry's displacement from the page
table origin, this module locates the
corresponding entry in the corresponding
external page table (called here the RSS
External Page Table and the Symbol Dic-
tionary External Page Table). The page
table entry indicates the location into
which the excepted page is to be loaded,
while the external page table entry indi-
cates the current location of the excepted
page on an external device.

If this is the first time in a given
terminal session that a paging exception
has occurred, this module initializes the
load tables pointers from the RSS Segment
Table (address in control register 0). For
any time after the first, this module
updates the pointers to the External Work
Area Table (Register 1) and the TSS Extern~-
al Page Table (Register 3) by referring to
the RSS Status Save Area (ESVEWPGE and ESV-
TEPE, respectively). These pointers indi-
cate the next available entries in each

table, as maintained and saved by the RSS
lcader, at the end of the icad function.
The two entries indicate the location on a
direct access device into which a TS8/360
Supervisor page may be written {(ESVEWPGE)
and a location in which a record of chis
Supervisor page's location on the external
device may be kept (ESVTEPE).

This module calls the RSS Loader to load
the page that caused the exception. When
the Leoader returns contrxrol, this module

restoresn the input registoers and loads the
old program PSW.

Code 5: If an addressing exception cocours
this module tests the “real core access in
controli® flag in the status save area (ESV-
RCAPY. If the flag is on, this module
determines which rowtine called RSS Real
Corwz Access (CEHCAY and returns to thls
calling routine, passing back exror parame-
ters to indicate the addressing error.

This permits canceliation of the operation
that cailed upon Rezl Core Access, with
notification to the System Programmer and
without a major system errox.

If the f£lag is not on, or if any condi-
vion other than the ones already discussed
exists, this module branches to its intern—
al subroutine, the TS5SS System Logic Error
Processor, which 1s entered at CEHAPB.

System Logic Erxror: This subroutine calls

ATTRIBUTES:

the RSS Message Writer module (CEHCH) to
print out & system logic errcr message.
Input te the message routine is a message
contrel word.

On return from the RSS Mesgage Writer,
this Sbb!bhtlnﬁ modifies the exit PSW to
allow external and 1/0 interruptions and
tests if the prograw is in problem state.
If it is not, this zubroutine sets the walt
bit on before exiting tc CEHBE. It then
exits to RSS FExit (CEHRE) to unlcad RES and
restore control to TSS/360. This internal
subroutine mavy alsc be called by the RSS
SVC Service Processors module {(CEHDR).

RSS 1I/0 Interrupt Processor (CEHAD}

Chart 03

This routine processes all RSS 1I/0 inter-
ruptions. It (1} determines whether the
interruption was synchronous or asynch-
ronous, {2} sets the appropriate indicator,
and (3) stores the attendant program and
channel status information.

This routine is resident and
executes with DAT active.

TSSS Environment 17

ENTRIES: This routine is entered from the
TSS/360 Interrupt Stacker at CEHADA via the
TSS/360 Supervisor-~loaded RSS I/0 PSW (SYS-
RS3 in TSS/360 System Table) when an RSS
I/0 interruption occurs. It expects no
input parameters.

MODULES CALLED: None.

EXITS: This routine exits by loading the
I/0 o0ld PSW (location X'38').

OPERATICON: This module checks both entries
in the TSSS Active Device Table (SADT),
which is a portion of the TSS/360 System
Table (CHASYS) to determine if the I/O
interruption is synchronous (expected). If
it is synchronous, this module sets the
"synchronous interruption received" flag
{SYSIRM) in the corresponding SADT entry.
It stores the I/0 old PSW and the CSW in
the SADT, masks I/0 interruptions, and
exits via the I/0 o0ld PSW to the point of
interruption.

If the interruption is from the Atten-
tion key, this routine sets the “attention
received™ flag (SYSARM) in the correspond-
ing entry of the SADT, stores the PSW and
the CSW, and exits. If the interruption is
an asynchronous interruption other than an
Attention, it is ignored.

kSS Channel Interrupt Processor (CEHAC)

This module initiates RSS activation as a
result of an MSP asynchronous interruption
{attention). (See Chart 20.)
ATIRIBUTES: This module is resident and
executes with DAT inactive.

ENTRIES: This module is entered at CEHACA
trom the T3S5/360 Channel Interrupt Proces-
sor or from the LOGON RSS SVC Processor
{CEHDL). {(The TSS/360 routine loads the
&S5 Channel Interrupt PSW, SYSRS5, from the
T55/360 System Table.)

MODULES CALLED: None.

EXITS: This module exits to TSS/360 by
joading the new external PSW, which simu-
lates a manual key extermal interruption.
TSS/360 then delivers control to the RSS
External Interrupt Processor (CEHAE).

OPERATION: This routine disables all but
machine check interruptions. It sets the
"MSP attention received®™ flag in the System
Table {CHASYS) to indicate an asynchronous
interruption.

This routine modifies the external old
PSW (location X'18°') to contain the address

18

of the TSS/360 Queue Scanner. As a result,
when the RSS Exit routine (CEHBE) loads the
external old PSW at the end of RSS opera-
tions to return control to TSS/360, the
Queue Scanner gets control instead of the
TSS/360 routine that was in control at the
time of the interruption.

This module then sets the manual key
interruption code in the new external PSW
and loads it. The new external PSW con-
tains the address of the TSS/360 Recovery
Nucleus to which all external interruptions
are normally delivered. On recognizing the
manual key interruption codey the TSS/360
Recovery Nucleus passes control to the RSS
External Interrupt Processor (CEHAE) by
loading a field (SYSRS4) from the TSS/360
System Table (CHASYS). The RSS External
Interrupt Processor continues the RSS acti-
vation procedures.

RSS SVC Interrupt Processor (CEHAS)

Chart 10

This module is called when TSS/360 encoun-—
ters a TSSS SVC interruption (SVC codes
65-95, inclusive). This module may initi-
ate and direct RSS activation. SVCs 65-79
force RSS activation, halting TSS/360; SVCs
80-95 do not. This module verifies the
validity of the SVC issued, detexrmines
which module supplies the requested service
and links to it.

ATTRIBUTES: This module is resident and
executes with DAT inactive.

ENTRIES: This routine is entered from TSS/
360 at CEHASA via the RSS SVC PSW (SYSRS2
in the TSS System Table). The SVC inter-
ruption code is stored in the Prefix
Storage Area (PSA).

MODULES CALLED: If RSS is to be activated,
this routine calls the following modules,
expecting a return from each.

Module Name
and ID Requested Function Chart ID
RSS Inter-CPU Force a wait state o4

Communications on the subject CPU
(CEHCC)
RSS Status Save all TSS Status 02,03

Save (CEHCH)

If a nonprivileged user issues a privileged
SVC, this module calls the Queue VSS Inter-
rupt routine (CEHCQ) and exits to the TSS
Queue Scanner (CEAJQ).

EXITS: Depending on the SVC code it
encounters, and whether the SVC has been
correctly issued, this module exits to one

of the following modules:

RSS SVC Service Processors (CEHDR)

Module Name and ID SVC Code Chart ID
RSS SVC Service 65-73 11
Processors (CEHDR)

RSS/VSS LOGON 81 19
Processor (CEHDL)

VM AT Execution SVC 80,84,85 24
Processor (CEHDA)

VSS Command SVC 83 23
Processor (CEHDV)

VSS Exit (CEHDE) 82 26
TSS Queue Scanner 86

(CEAJQ)

The routines given control by SVCs
80,83, 84, and 85 return to the gqueue
scanner.

OPERATION: Because TSSS SVCs can be
executed in either CPU in a duplex configu-
ration, TSSS must guard against an attempt
to execute an SVC in both CPUs at one time.
Accordingly, this module sets an activation
indicator before honoring requests to acti-
vate RSS (SVCs 65-79). Upon entry, the
module tests the indicator and, if it is
on, enters a loop to await the Halt and
Transfer operation.

(Note: The CPU executing the wait loop
will momentarily be forced into wait state
by the RSS activation procedures executed
by the other CPU. When the waiting CPU is
restarted, the activation indicator will be
off, and this routine's wait loop will then
be broken.)

If RSS is not being activated, and the
SVC interruption code exceeds 79, this
module calls one of the resident SVC pro-
cessors listed under "Exits".

If the RSS activation flag (ESVTASP) is
on, a loop is entered until it goes off.
It is then turned on, and the validity
checks are made. 1If the supervisor call
old PSW or the service routine priority
flag indicates that the user is privileged,
all validity checks are bypassed. If the
user has issued an SVC that is available to
a nonprivileged user, this module branches
to the appropriate processing routines to
activate RSS. If he has issued any other
SVC, the Queue VSS Interrupt routine and
the TSS Queue Scanner receive control.

SVCs 65, 66, and 70 require that a Load
Real Address be performed on the contents
of register 1 as they were at the time of
the SVC. If this operation fails, or if
SVCs 87-95 (unassigned) have been issued,
this module exits to the Error Processor
(CEHAP).

ENTRIES:

Chart 11

Each of the routines that make up this
module performs a service for RSS or VSsS.
Each recognizes one of the following SVC
codes as a request for service.

SVC 65 Get real storage for VSs

SVC 66 Put real storage for VSS

svc 70 Submit a VSS-supplied command
string to RSS Language Control
(CEHLC) for processing.

svc 67 Resume processing after AT
execution in RM

SVC 68 Resume processing after RSS AT
execution in VM

SVC 69 Execute AT in real storage for
RSS or VSS

svc 71 Execute AT in virtual storage
for RSS

SvVC 72 Execute AT in shared virtual
storage for RSS

svCc 73 Determine whether input virtual
storage page is shared

ATTRIBUTES: This module is nonresident and

executes with DAT active.

This module is called by the RSS
SVC Interrupt Processor (CEHAS) at entry
point CEHDRA. A branching table uses the
input SVC code as an index to the specific
service routine. The routines require the
following input parameters:

Input Input Parameters for SVC
SVC code Service Routine
SVC 65 Reg. 0 -- real address of the
requested page
Reg. 1 -- real address of the
virtual paging
buffer
Reg. 2 -— a Qualify Table
entry
SVC 66 Reg. 0 -- real address of the
destination page
Reg. 1 =-- real address of the
virtual paging
buffer
Reg. 2 -- a Qualify Table

entry

TSSS Environment 19

Reg. 3 -- in bytes two and
three, the piece of
data overlaid by the
sSvC

svc 70 1 -- real address of the
first byte of the
command string

Reg.

svCc 73 Reg. 1 -- virtual address of

requested page
Reg. 2 -- X'CC*' in byte 0

svCs 67,68,
69,71,72

No parameters required.

MODULES CALLED: Each routine calls specif-
ic modules to perform its requested
function.

Module Name Requested Responsible
and ID Function SVC code(s)
RSS Real Core Perform the re- 65,66

Access (CEHCA) quested get/put
operation on a

page of real

storage.
RSS AT sVC Process AT- 67,68,69
processor implanted command 71,72
{CEHJA) string or return

SVC.
RSS Language Process VSS- 70
Control supplied command
{CEHLC) string.
RSS Virtual Determine if 73
Storage Access 1input page is
(CEHCB) shared
EXITS: Under normal conditions exit is

either to RSS Exit (CEHBE) or RSS Discon-
nect (CEHBD), as requested. If this rou-
tine encounters an invalid SVC code, it
exits to the RSS Program Interrupt Proces-
sor (CEHAP) at CEHAPB. CEHAPB is the entry
point of the TSSS System Logic Error Pro-
cessor subroutine.

OPERATION: These routines operate on the
parameters saved in the TSS/RSS Status Save
Area by the RSS SVC Interrupt Processor in
order to perform a service for either RSS
or VSS. The SVC processors do not perform
the actual work for the requested opera-
tion. Instead they supply the correct
parameters toc the operating routines --
Real Core Access, RSS VM Access, and the AT
SVC Processor.

The routine that processes SVC 70 --
submitting a VSS-supplied command string to
RSS Language Control (CEHLC) for processing
-~ moves 260 bytes into the RSS Language
buffer, simulating terminal input. This
includes a 4-byte field containing the

20

actual length of the command string and 256
bytes of input. This routine turns on the
"input in storage™ flag in the input Device
Table (CHALCR} and the AT execution flag
(ESVATXM) in the RSS Status Save Area
{CHAESV). This module then calls Language
Control to process the input string, insur-
ing that Language Control returns to it
when SVC 70 processing is completed, rather
than inviting additional input from the
terminal. By using SVC 70, VSS may implant
and remove specified AT SVCs in real
storage for a TSP.

The routine that processes SVC 73--
determining if an input VM page is shared--
passes the "CC' flag in the high ordexr byte
of register 2 when it calls RSS VM Access
(CEHCB). This flag causes RSS VM Access to
supply all the information that it normally
does for a get request, without actually
performing the get function. Upon return,
this module substitutes the registers 1 and
15 supplied by RSS VM Access for the task’'s
registers 1 and 15, as saved in the RSS
Status Save Area (CHAESV).

After completing its requested function,
each SVC processor exits as regquested. If
one of these processors encounters an
error, it passes error return parameters
back to VSS by altering the stored register
contents.

RS5S Real Coxre Access (CEHCA)

Chart 12

This routine makes available, upon request,
a designated page of TSS/360 real storage.
The page may be an RSS page, a saved page
that was overlaid by RSS, or a Supervisor
page currently in main storage.

ATTRIBUTES: This module is resident and
executes with DAT active.

ENTRIES: This module is called by the RSS
SVC Service Processors (CEHDR), DUMP/
DISPLAY Commands Processor (CEHKD), the AT
Command Processor (CEHKA), and the SET Com~
mand Processor (CEHKS). Registers 1 and 2
contain the input, as follows:

Register 1:

{ T T 1
| "get/put®| | Real Core Segment]
jindicator| | and Page Number i
| i L §
0 7 8 19 20 31
Register 2:
F T T L)
fgqualify | | CpPU {
jindicator| i ID |
L L L 3
] 7 24 31

where qualify indicator may be either RM
unqualified or RM qualified (see
appendix E) real storage, and
CPU_ID may be either 1, 2, 3, or i4.

Note: This input parameter is only rele-
vant if the input address in register 1 is
zero, thus referring to a Prefixed Storage

Area in any CPU.

MODULES CALLED: In order to read or write
a page of storage, Real Core Access calls
the External Page Location Address Transla-
tor (CEHBT) and RSS I/0 Control (CEHEA).

EXITS: Exit is to the calling routine.

OPERATION: This routine determines if the
request is for an RSS or TSS/360 page.

If the request is for an RSS page and if
the input address is a valid RSS address,
this routine checks the input get/put flag.
If a get function is requested, this rou-
tine moves the contents of the designated
page into the paging buffer; if put, it
moves the contents of the paging buffer
into the designated location.

If the request is not for an RSS page
and if the address is a valid real storage
address, this routine sets pointers to the
top of the TSS External Page Table (CHAEXT)
and searches for an address matching the
input address. If no match is found, the
requested page is in storage. This routine
moves either the contents of the page into
the paging buffer (get), or the contents of
the paging buffer into the input address
(put).

If the input segment and page numbers
are zero, this module tests register 2 for
RM qualified or unqualified.

If RM is qualified and a valid CPU ID
has been specified {(one that exists in the
current configuration) this module uses
either the primary or alternate prefix of
the CPU specified to address the requested
page. The primary and alternate prefixes
of each CPU are listed in the CPU Status
Table (CHACST), which resides within the
PSA of each CPU. If neither prefix is
available, an error is recognized.

If a match is found, the TSS/360 page
has been saved on an external device. This
routine calls the External Page Location
Address Translator routine to find the
physical location of the data. On return,
this module initializes an SIORCB and calls
RSS 170 Control (CEHEA). RSS I/0 Control
performs the external get/put function as
requested.

Note: The get is not in lieu of the paging
performed by the Loader. An RSS page not
in main storage will cause a paging excep-
tion when the move is first attempted.

If the operation is completed success-
fully, this module returns to the calling
routine. For the use of the RSS Program
Interrupt Processor (CEHAP), this routine
turns the "real core access active™ flag
(ESVRCAP in Status Save Area) on at entry
and off at exit.

If the input address is not valid or if
this routine receives an error return from
either of the called modules, it executes
the error return procedures.

RSS VM Access (CEHCB)

Charts 13,14

This module enables an MSP to refer to a
virtual storage page. The functions of
this module are:

1. To develop the real location of the
input virtual storage address (VMA).

2. To indicate to the calling routine
whether the VMA is in shared storage.

3. To load the specified page into an RSS
buffer or move a page from the buffer
back to its prior location, as
requested.

ATTRIBUTES: This module is nonresident and
executes with DAT active.

ENTRIES: This routine is called by the RSS
SVC Service Processors (CEHDR), the AT SVC
Processor (CEHJA), the AT Command Processor
(CEHKA), the DUMP/DISPLAY Commands Proces-
sor (CEHKD), and the SET Command Processor
(CEHKS) at entry point CEHCBA. This module
expects the following input parameters:

Reg. 1 -- a virtual storage address

Reg. 2 -- Byte 0 indicates the operation
to be performed: X'AA'=get,
X'BB'=put, X'CC'=shared page
determination, X'DD*=bring in
XTSI.

Byte 1 is unused.
Bytes 2 and 3 contains task ID
compatible with the TSS task ID
field in the TSI (TSITID).
If Byte 0 = X*CC', bytes 2 and 3 will con-
tain a task ID of zero.

TSSS Environment 21

MODULES CALLED: If the task ID is not
zero, this routine calls the Find TSI rou-
tine (CEHCF). To read or write external
pages of virtual storage, this routine
calls the External Page Location Address
Translator (CEHBT) and I/0 Control (CEHEA).
Real Core Access (CEHCA) is also called if
the VM page resides in real storage.

EXITS: Exit is to the calling routine.

OPERATION: This routine uses the input
task ID to find the TSI by calling the Find
TSI routine. If the TID field of register
2 is zeros, this routine extracts the cur-
rently active TSI pointer from the Prefix
Storage Area (PSA). A flag in the TSI
indicates if the XTSI is in real storage.

If the XTSI is not in real storage, this
routine gets the external address of the
first XTSI page from the TSI and causes it
to be read into real storage. It then
checks for valid input segment and page
numbers. If they are valid, this routine
determines if the Segment Table (ST) and
the Auxiliary Segment Table (AST) are con-
tained within the page of the XTSI current-
ly in real storage. If either is not, the
missing table is read into real storage.

This routine then computes the appropri-
ate ST entry from the ST origin and the
input segment number. The ST entry con-
tains a pointer to the origin of the appro-
priate Page Table (PT), and a count of the
number of pages in the PT.

This routine determines if the required
segment is in shared storage by testing a
flag in the AST entry. If the segment is
not shared, this routine uses the PT point-
er in the ST to reference the appropriate
PT. If it is shared this routine uses the
Shared Page Table (SPT) number in the AST
to search the Resident Shared Page Index
(RSPI) for a match. The matching entry in
the RSPI contains a pointer to the origin
of the PT for the shared segment.

The page tables may be in the XTSI page
if there was sufficient space on the XTSI
page after the ST and AST were built. If
the page tables are not in the XTSI, a Page
Table Page (PTP) exists for the input seg-
ment. This routine determines the external
location of the PTP from the AST entry and
causes the PTP to be read into real
storage. Each PTP is composed of a number
of entries, each comprising a header, the
PT, and the External Page Table (XPT).

This routine searches the PTP headers for
an entry matching the input segment number.
(From this entry it later determines the
appropriate XPT entry to have it read into
real storage.)

22

If the input virtual address in register
1 is wvalid, this routine tests register 2
to determine if the input condition is
*cct. If it is, this module bypasses the
get/put function. If the entry condition
is not 'CC' this routine tests a flag in
the PT to determine if the corresponding
page is in real storage. If the requested
page is already in real storage, this rou-
tine calls Real Core Access (CEHCA) to per-
form the internal get/put function as
requested. If it is not, this module cal-
culates the External Page Table (XPT) entry
from the PT entry. Using this entry as an
input parameter, this module.calls the
External Page Location Address Translator
to determine the physical page location.
When control returns, this module links to
I/0 Control to complete the get/put opera-
tion with a physical read or write.

On successful completion of the
requested operation, this module returns to
its calling routine. If the segment was
shared, this routine returns an indication
to this effect and the SPT number.

ERRORS: The following error conditions
result in a return to the calling routine
with a return code of four in register 15
and message parameters in register O0:

1. Error return from any called routine.

2. The segment number of the input VMA is
greater than the Segment Table length
(invalid vMa).

3. The page number in the input VMA is
greater than the Page Table length
(invalid vMA).

4. The page is unavailable {(in transit,
TWAIT, or unprocessed by loader). A
page of zeros is returned to the cal-
ling routine.

RSS Message Writer Routine {(CEHCM)

Chart 15

This routine is called when an error
condition is detected within RSS for which
a diagnostic message is to be written to
the system programmer. The messages are
divided into four classes:

Class 0 I/0-generated messages

Class 1 User (SP) errors

Class 2 TSSS system errors

Class 3 LoadersUnloader
failures

The messages normally are written on the
SP's terminal.

ATTRIBUTES: This module, including Class 3
messade texts, is resident. It executes
with DAT active.

ENTRIES: This module is called by those
routines responsible for posting error con-
ditions (generally Language Control and
Scan Control), at CEHCMA. Register 0 con-
tains the identification code of the module
that encountered the error, a message numb-
er, and class code for the requested
message.

Reg. 0 Character Hexadecimal

F L] |} 1
|2-Character Module|Msg. |Message Class |
i Identifier | No. | Code {
L i L J
0 16 24 31

CEHCMB is used by Error Scan and Recovery
(CEHGE/CZHUE) when it is impossible to
write a message because of a total I1I/0
failure. This module then exits to the
TSS/360 System Error Processor.

MODULES CALLED: This module calls 1/0 Con-
trol (CEHEA) to write the message at the
terminal.

EXITS: Exit is to the calling routine.
OPERATION: RSS Message Writer uses the
message class code and the number as an
index to get the desired message text.
Class 0, 1, or 2 message texts reside in a
transient RSS module. This routine places
the module identifier in the message test,
builds an SIORCB, and links to RSS 1I/0 Con-
trol to write the message. One or more
lines of output may be printed, but this
module calls RSS I/0 Control only once for
each messade, unless the error occurred in
AT mode.

The module identification code consists
of the last two alphabetic characters in
the Module ID. For example, RSS Language
Control's module ID is CEHIC. The identi-
fication code which it places in register
0, as input to this module, is LC.

Class 0 messages (I/0-generated mes-
sages) may require additional lines of out-
put containing. further information defining
the error. The I/0 error recovery routines
flag the corresponding indications (message
control flags) in the SIORCB to show the
information that should be printed and move
the correct information into the SIORCB.
This routine checks the message control
flags in the SIORCB and sets up the corres-
ponding fields as additional message lines.
The additional information may include any
or all of the following:

ATTRIBUTES:

Symbolic device address
Seek address

Physical path address
CSW

PSW

Sense data

Alternate path

Channel logout area

An I/0 error which occurs during the mes-
sage processing results in an attempt to
write the original message to the Opera-
tor's terminal (retry), except in the case
of SP Attention received. This message,
accompanying a return code of four results
in a return to the calling routine, which
will recall Message Writer to print the
Attention received message.

The symbolic device address of the
operator's terminal is the first entry of
the TSSS Device Allocation Table (SSDAT).

A failure in the Write to the operator's
terminal causes an exit to the TSS/360 Sys-
tem Error Processor.

If TSSS is in AT mode, this routine
calls RSS I/0 Control to write the original
command string from the command input buff-
er onto the System Programmer's terminal.

RSS Message Writer is only a means of
informing the system programmer of unusual
conditions that may occur during RSS execu-
tion. The SP, after interpreting the diag-
nostic information, must make the necessary
corrections; RSS requires no response.

Message Writer output format:
CEHidxxx 24-Character Message Text

where id represents the module that encoun-

tered the error and xxx represents the

class code and message number.

See Appendix I for a complete list of

messages.

RSS Disconnect (CEHBD)

Chart 16

This module disconnects an MSP prior to
exiting from RSS; this module is called
upon all occurrences of a DISCONNECT
command.

This module is resident and
executes with DAT active.

TSSS Environment 23

ENTRIES: This routine is called by the RSS
External Interrupt Processor (CEHAE) and
the RSS SVC Service Processors (CEHDR) if
return code 4 (DISCONNECT) has been passed
from Language Control. The entry point is
CEHBDA.

MODULES CALLED: If the MSP is remote this
routine calls the RSS Unloader (CEHBU),
TSS/360 Supervisor Core Allocation
(CEALO1), and the TSS/360 Queue GQE on TSI
routine (CEAAF).

EXITS: Exit is to the main RSS Exit entry
point -- CEHBEA (see Chart 18). If an
external interruption is pending, this
module exits to RSS External Interrupt Pro-
cessor at CEHAEB.

OPERATION: If an external interruption has
been queued, (ESVQXT in the RSS Status Save
Area is on) this module turns off ESVQXT
and links to the RSS External Interrupt
Processor (CEHAE) at CEHAEB. If no inter-
ruption is pending, this module determines
if the DISCONNECT command came from a
remote MSP by testing the "manual key
interruption®™ field in the TSS/RSS Status
Save Area (ESVMSPM). If this field is not
void, the MSP activated the system with the
manual interruption key at the console.
This routine clears the "manual key activa-
tion™ field in the RSS Status Save Area
(ESVMSPM) and exits to RSS Exit (CEHBE) at
its primary entry point (CEHBEA).

If the DISCONNECT command came from a
remote MSP, this module clears the "MSP
connected” field (ESVMSPCNJ) in the RSS Sta-
tus Save Area and then clears the TSSS
Active Device Table (SADT). This module
links to the RSS Unloader (CEHBU) to page
out RSS and restore TSS/360. When control
returns, if no error occurs, this module
sets the TSS External Page Table (CHAEXT)
to all hexadecimal F's and clears the poin-
ters to the page tables.

This module then tests the "intervening
run" flag (ESVNVRUN) in the RSS Status Save
Area. If the flag is set to X'FF' a RUN
command has not been issued during the cur-
rent terminal session. This module indi-
cates the condition of "no intervening run"
by setting register 15 to 16. It then sets
ESVNVRUN to X'00', restores the TSI pointer
in the Device Group Table, and exits to RSS
Exit (CEHBEB).

If ESVNVRUN is set to X'0F', one or more
RUN commands have been issued during the
current terminal session. This module
links to Supervisor Core- Allocation
(CEALO1) to request a storage block large
enough to build a General Queue Entry (GQE)
and a Message Control Block (MCB). On
return this module builds a GQE in the
external interruption format (byte 59 =

24

X'FF'), sets up an MCB with MCBCD1 equal to
X'S5F', and calls the TSS/360 routine Queue
GQE on TSI (CEAAF) to queue an interruption
that will terminate the LOGON1 module's
TWAIT condition. (For an explanation of
the TWAIT condition in the LOGON1 module,
see "VSS Environment Part 1.%) This module
sets the exit PSW equal to the address of
the Queue Scanner, so that the interruption
will be issued. This module then sets
ESVNVRUN to X'00', restores the TSI pointer
in the Device Group Table, and exits to RSS
Exit (CEHBERE).

RSS Unloader (CEHBU)

Chart 17

This module restores the TSS/360 Supervisor
to its state preceding the activation of
RSS. To do this it causes the saved TS5/
360 pages to be paged in, after writing out
any changed, transient RSS pages ontoc an
external device. These operations altern-
ate on a page-by-page basis.

ATTRIBUTES: This module is resident and
executes with DAT active.

ENTRIES: The Unloader is called by RSS
Exit and RSS Disconnect (CEHBD) at CEHBUA.
In a restart procedure the Unloader is
called by the RSS External Interrupt Pro-
cessor {(CEHAE).

MODULES CALLED: This module calls RSS 1I/0
Control (CEHEA) to read TSS/360 or write
RSS pages. Input to I/0 Control consists
of an SIORCB with the external and the real
storage addresses. The External Page Loca-
tion Address Translator (CEHBT) is also
called to calculate the physical location
of the data to be read or written, before
I/70 Control is called.

EXITS: Exit is to the calling routine.
OPERATION: The Unload process is a loop,
governed by the number of entries in the
TSS Pageable Table and the Symbol Page
Table defined under "RSS Loader (CEHBL)"
(see Charts 05 and 18). This routine sets
the table pointers to the first entries in
the TSS Pageable Table and the TSS External
Page Table (CHAEXT). Page count is the
length of the TSS Pageable Table. This
routine checks an entry in the Page Table,
and if the "in storage"™ bit is zero, the
page of storage is RSS and must be
exchanged for a TSS/360 Supervisor page.

If the "in storage™ bit is one, the pointer
is updated to point to the next entry.

If the page of storage defined by the
table entry is RSS, this module further
checks to determine if restart was in pro-
gress (ESVPROI in the RSS Status Save Area
is on). If restart was in progress the

write operation is bypassed. If restart
was not in progress, this module checks the
RSS page to determine if it was changed
during RSS execution by testing the
"changed®™ bit in the protection keys for
the page. 1If it was changed this module
gets the corresponding entry in the RSS
External Page Table and requests a one-page
write by linking to RSS I/0 Control. If
the block of storage was not changed, the
write operation is bypassed.

This module now requests a page read by
RSS 1I/0 Control. The TSS External Page
Table contains both the storage address and
the external location of the overlaid TSS
Supervisor page. This module flags the
corresponding TSS Pageable Table entry as
"not in storage," and restores the protec-
tion keys for the TSS page from the TSS
External Page Table.

The Unload loop control checks are in
the following order:

1. Page counter equal zero?
2. Symbol table unlcad in process?

The second is determined using a switch
(ESVSTUN): when "on" it indicates that the
symbol unload is in prncess; when "off"
that transient RSS is being unloaded. This
module turns ESVACT on after it completes
the unloading for transient RSS and resets
the table entry pointers to the beginnings
of the tables. (The switch is turned off
prior to exit from the Unloader.)

When all the RSS nonresident pages have
been unloaded, and the corresponding TSS
Supervisor pages restored, the Unloader
unloads the Supervisor Symbol Dictionary,
using the same loop logic, with the excep-
tion that previous references to the TSS
Pageable Table are now to the Symbol Page
Table.

Before returning to the calling routine,
this module determines whether the RSS
Loader used pages from the Core Block
Table. If it did, those pages must be
placed on the unavailable chain of the Core
Block Table.

RSS Exit (CEHBE)

Chart 18

This module restores TSS/360 status and
returns control to TSS/360 from RSS,
unloading RSS if necessary.

ATTRIBUTES: This module is resident and
executes with DAT active.

ENTRIES: This module is called by the RSS
External Interrupt Processor (CEHAE) and
the RSS SVC Service Processor (CEHDR) at

CEHBEA if either of them receives a RUN
indication from Language Control. This
module is also called by RSS Disconnect
(CEHBD) at CEHBEA, for a local MSP or, if
the disconnecting MSP is remote, Disconnect
calls this module at CEHBEB.

MODULES CALLED: If unloading RSS is neces-
sary, this module calls the RSS Unloader
(CEHBU). RSS Exit also links to the TSS/
360 Inter-CPU Communications module (CEAIC)
to restart the other CPU, if the configura-
tion is duplex.

EXITS: This module exits to TSS/360 by
loading the current PSW (the old PSW that
was stored when RSS was activated) from the
TSS/RSS Status Save Area (ESVCPSW), or by
calling the Queue Scanner (CEHJQ). If an
external interruption is pending, this
module exits to the RSS External Interrupt
Processor (CEHAE) at CEHAEB.

OPERATION: If RSS Exit is entered at
CEHBEA it checks for an external interrup-
tion pending and branches to the External
Interrupt Processor if it finds one.
Otherwise, it calls the RSS Unloader
(CEHBU) to page out the transient RSS
modules and restore the TSS/360 Supervisor.
(If entered at CEHBEB from RSS Disconnect,
this function has already been performed.)
Oon return of control from the unloader, if
the unload operation was unsuccessful, a
major system error is declared. If unload-
ing was successful, this module sets the
TSS External Page Table (CHBEXT) to all
hexadecimal F's, and clears the pointers to
the page tables.

If the RUN command was preceeded by a
LOGON, the intervening run flag (ESVNVRUN)
is set to indicate this fact. It is then
determined whether the system was running
in duplex mode or not. If it was, then
information from the Inter-CPU communica-
tions module (CEAIC) save area is used to
restore the second CPU's status and restore
it to normal operation by turning the RSS
lock byte off. The status of the main CPU
is then also restored. If the exit address
is that of the Queue Scanner, this module
turns off the wait bit, resets the control
bits, and branches to the Queue Scanner.

If the exit address is not that of the
Queue Scanner, this module determines if
the exit PSW is in the problem state. If
it is in the problem state, and an external
interruption is pending, exit is to the
TSSS External Interrupt Processor (CEHAE).
Otherwise, exit is to the Queue Scanner.

If the PSW indicates the supervisor state
and an external interruption is pending,
again exit is to CEHAE. If no external
interruption is pending, however, this
module exits via a load PSW on the exit PS¥
to the point of interruption in TSS.

TSSS Environment 2!

VSS ENVIRONMENT, REAL STORAGE

A specific portion of the TSSS control
nucleus is responsible for activating and
deactivating VSS for a specified task. The
modules involved are thus logically a part
of VSs environment but are physically a
part of RSS (resident in real storage);
they bear RSS-type module identifiers
(CEHxy) .

Three procedures can initiate activation
of VSs for the purpose of connecting a TSP:

1. The VSS command of the TSS/360 command
language is used at the SYSIN terminal
of a logged-on task.

2. The CONNECT command of RSS is used by
the connected MSP, specifying a task
to which the TSP shall be connected.
A TSP cannot be connected to an idle
terminal by the CONNECT command.

"Connected" implies TSP capability at a
terminal, whether or not the TSP is using
VSS; the connected state is ended only by
disconnecting (normally via the DISCONNECT
command). Figure 7 shows the real storage
activation procedures.

The VSS command indicates that the con-
nected TSP has preempted the task's SYSIN
terminal, until he issues a RUN command.
When a RUN command is executed, the termi-
nal again serves as the task's SYSIN termi-
nal. For an Attention to be delivered to
TSS/360, however, it must be followed imme-
diately by end-of-block (this is sometimes
referred to as a "void command™). Other-
wise, an Attention reactivates VSS and
dedicates the terminal to it instead of to
the task.

The CONNECT command indicates that the
connected TSP has control and the task's
SYSIN terminal is locked out until a RUN
command is issued. When a RUN command is
executed, the task's SYSIN terminal is
again available to the task. VSS may be
reactivated at any time with an Attention
from the TSP terminal.

VSS initial activation (via any of the
ways described above) involves the follow-
ing steps; subsequent activation involves
all but the first step:

1. PFinding the Task Status Index (TSI)
for the specified task by linking to
the Find TSI routine (CEHCF).

2. Building and saving a duplicate TSI so
that the task may be restored when VSS
is deactivated.

3. 1Initializing and setting fields in the
original TSI to indicate to TSS/360

26

(This Figure is an
expansion of parf
of Figure 8.}

‘ T55/360 ’

SVCs 64-95

L

RSS SvC
Interrupt Processor

|—————— To RSS Activation
{RSS Activation
is shown in
Figure 5.)

acfivation
request

SVCs 80, 81, 82, 83, 84, 85

Find the subject

task's TSl
The VSS SVC
Interrupt
Processors Activate or
CEHDA ° e ted
Py as requeste
CEHDE

Build and queue
a VSS activate/
deactivate
interruption

In activation,
build and queue
an external

interruption with

an MCB attached

TSS/360

Overview of VSS environment and
real storage

Fiqure 7.

that VSS has been activated for the
specified task.

4. Building and queueing a General Queue
Entry (GQE) as a "VSS activate inter-
rupt® for the task.

5. Building and queuing an external
interruption for the task with an MCB
containing TSP terminal information.

6. Returning control to the TSS/360 Queue
Scanner.

This activation sequence is initiated by
an SVC resulting from LOGON VSS, by an SVC
resulting from TSS/360 processing of the
VSS command, or by the RSS CONNECT command
processor. In the latter case, in which
the MSP initiates activation, a RUN or DIS-
CONNECT command must be issued by the MSP
before control passes to the Queue Scanner.

Two interruptions are required in the
VSS activation sequence. The first, the
*activation" interruption, contains a code
which indicates the activation circum-
stances (for example, code 0 for LOGON) to
the VS5 routines at the virtual storage
level. The second, the "external"™ inter-
ruption, indicates that there is an MCB in
the Interrupt Storage Area (CHAISA) which
contains the TSP terminal information.
TSS5/360 moves the MCB into the task's ISA
when it executes the external interrupt,
but, in so doing, it overlays task status
information. For this reason, two inter-
ruptions are queued. The receipt of the
activation interruption prior to the MCB-
bearing external interruption causes the
VSS Activation Interrupt Processor (CZHNV)
to store the entire ISA in a special PSECT,
CZHPSR, thus preserving the task status.
The VSS activation sequence is shown in
Figure 8.

Subsequent activation of VSS (the TSP
remains connected but has relinquished con-
trol with the RUN command) is initiated
either via execution of an AT SVC or with
an Attention from the TSP. 1In the latter
case, unlike AT SVCs, the activation upon
receipt of the asynchronous interruption
has the same results as initial activation
-— the TSP has control at his terminal
until he issues a RUN or DISCONNECT
command.

An AT SVC may have been implanted in
shared virtual storage or in private virtu-
al storage; either type activates VSS. 1In
shared virtual storage, execution of an AT
SVC by any task activates the VSS of that
task, whether or not the task in control is
the "parent” task (the task whose VSS
implanted the AT SVC) or is a task with a
TSP connected.

If a shared virtual storage AT has glob-
al qualification, execution of the SVC by
each task causes execution of the asso-
ciated dynamic statement after VSS is acti-
vated within the task. If an AT does not
have global qualification but the SVC is in
shared virtual storage, the VSS of each

non-parent task is deactivated as soon as
qualification is determined.

Activation of VSS, by whatever means and
at whatever time, involves saving a copy of
the TSI and thus saving any pending task
interruptions. VSS interruptions are
queued to the working TSI and processed as
long as VSS is active; upon VSS deactiva-
tion, pending task interruptions are again
pointed to by the original TSI.

Each of the SVC processors and the TSP
Asynchronous Interrupt Processor, as VSS
activation routines, exit to the TSS/360
Queue Scanner and do not regain control.
Deactivation is signaled from the VSS
environment area via SVC 82, the processing
of which completes deactivation of VSS and
restoration of the task's status.

ATTRIBUTES: Each of the routines in this
part of the environment area is resident,
non-recursive, serially reusable, and
executes with Dynamic Address Translation
(DAT) inactive.

LOGON RSS/VSS SVC Processor (CEHDL)

Chart 19

This module activates RSS for an MSP or,
within a specified task, VSS for a TSP as
the result of an SVC 81 being executed by
the TSS/360 LOGON1 module.

ENTRIES: The RSS SVC Interrupt Processor
(CEHAS) directs control to this module at
entry point CEHDIA.

This wodule expects as input parameters
a Message Control Block (MCB) containing:

1. The Task IDs (TID) of the sending and
receiving tasks

2. The Symbolic Device Address (SDA)
3. An RSS/VSS indicator.

These parameters are provided by the TSS/
360 LOGON task created for the two-terminal
case. (S5ee "TSSS Environment, TSSS LOGON
Interface.®)

MODULES CALLED: This module calls the fol-
lowing modules for each of the listed entry
conditions:

Entry condition
1. RSS LOGON

Modules called
None

2. VSS LOGON Find TSI routine
(CEHCF)

RSS Interrupt Switching
{CEHCS)

Queue VSS Interrupt

(CEHCQ)

TSSS Environment 27

REQUEST FOR VSS DEACTIVATION (This area is expanded

in Figure 9.)

| EXECUTE SvC82
Vss
RESTORE
STATUS |

~ Virtual Memory

CALLED DEVICES
' EXIT ON COMPLETION
| OF PROCESSING

PROCESSING

] COMPLETE. vss
e : ACTHATE
- VSS LANGUAGE HNTERRUPT
CAND PROCESSOR
L VSS/O e e : .
PROCESS MCB FROM

© O ROUTINES -

EXTERNAL INTERRUPTION

TSP

ACCEPTSP
-~ AND CALLED
 DEVICE INPUT

ACTIVATE
VSS

ANDPROCESSIT = . e e e o — e
FOR VSS ACTIVATION EXTERNAL
BY A TSP : INTERRUPTION IS PART
REQUEST V5SS 'Zfé{f;& s OF ACTIVATION
ACTIVATION SVSTEM
OF:
360 iy
T55/360 USER TERMINAL LOGON é’;’éﬂ‘gﬁ‘&
OR AN IDLE TERMINAL. : :
THIS TERMINAL BECOMES 3
THE TSP TERMINAL AFTER i ; :
V5SS ACTIVATION.
55 ACTIVAT ISSUE SVC (TASK-MONITOR)
~'r T55/360 INTERRUPT STACKER
LOAD TS55 SVC PSW z -
FROM SYSTEM TABLE © I} .
a = “
ACTIVATION VIA RSS CONNECT COMMAND . . 2 B (9
(RSS MUST BE ACTIVATED Rss SVC (This area is & g =
INTERRUPT expanded in = o =
BEFORE CONNECT CAN BE USED) PROCESSOR Figure 7.) Z z =
A 4 - jg
- — - T = e
) } ACTIVATE VSS e S =
CONNECT ACTS g = o)
CONNECT AS OTHER Z > =
Vss RSS ACTIVATION ROUTINES —>1 FIND THE o w g
> LANGUAGE TASK STATUS ; z =
ROUTINES THE VSS le—] INDEX z 2 Z()
ACTIVATION < o (4
ROUTINES I} = |~
1N REAL o = <
STORAGE SWITCH ¥ 2 <
INCLUDING INTERRUPTIONS é 755,/360 155/360 ':? ‘ >
THE CONNECT| [BETWEEN & QUEUE DISPATCHER » L
COMMAND TASK AND V5SS < SCANNER AND 175 & |9
PROCESSOR % AND THE SUBROUTINES | Z 1z
> QUEUE INCLUDING 3 | <
QUELE A PROCESSORS TASK O 1
vsus u INTERRUPTION | £ I
ACTIVATE CONTRCL ’2
INTERRUPTION ; N
MAY ACTIVATE 1=
OR |
DEACTIVATE |
CONNECT WSS QUEUE |
INVITES RETURNS TO ITS AS REQUESTED EXTERNAL
INPUT | CALUNG ROUTINE QUEST INTERRUPTION y
T wIT B | |
MSP ITH MC oo
S _— - e
MSP ’ {
gsIhETA’?oEE | LANGUAGE RETURNS | RELEASE CONTROL TO 755/350 |] o
l TO ENVIRONMENT]
,
RSS RELEASE CONTROL TO TSS/360
ENvIRONMENT | FEL o 0_T55/ '
ROUTINES
ESCAPE TO OTHER
TASKS ON VSS
NOTE: DEACTIVATION
THE DIAGRAM 15 READ COUNTER-CLOCKWISE,
STARTING AT THE TS5/360 USER'S TERMINAL.
Figure 8. The VSS activation processor

28

3. Invalid LOGON Supervisor Storage
Allocation (CEALO1)
Queue GQE on TSI
(CEARF)

EXITS: This module exits to the TSS/360
LOGON task for all VSS LOGON attempts, as
well as for an invalid RSS LOGON attempt
via LPSW (old SVC). In the case of a valid
RSS LOGON, this module exits to the Channel
Interrupt Processor (CEHAC).

OPERATION: This module tests the RSS/VSS
indicator in the Message Control Block
(MCB). If the indicator is RSS, this rou-
tine takes the first steps toward activat-
ing RSS {see "Interruption Handling and RSS
Activation™). If no MSP is connected, this
routine places the symbolic device address
(SDA) of the MSP's terminal in the first
two bytes of the "MSP connected® field of
the TSS/RSS Status Save Area (ESVMSPCN);
the device code is placed in the third
byte, and the fourth byte is set to indic-
ate that an MSP is connected.

| S T T]
| Symbolic Device |Device | "mMSP i
| | | connected” |
| Address | code | £flag |
L i i ¥ |
0 16 24 31

This module then saves the Task Status
Index pointer from the Device Group Table
(CHADEV) into an RSS Status Save Area field
(ESVDVTSI). This TSI pointer is created
for the LOGON task as a result of the MSP
LOGON attempt. This module substitutes
X'000003*' as the MSP TSI pointer in the
Device Group Table, and saves the LOGON
task's task ID in the ESVTSKID field of the
Status Save Area.

In order to record the intervening run
situation if it occurs, this module sets
the "intervening run"™ flag (ESVNVRUN) in
the Status Save Area to X'FF'. (If a RUN
command is executed, the RSS Exit module
sets this flag to X'0F'.)

After completing initialization for RsSs
activation this module exits to the RSS
Channel Interrupt Processor (CEHAC).

If the indication is VSS, this module
calls the Find TSI routine (CEHCF), using
the task ID from the MCB as an input para-
meter. If the input "receiving" task ID is
valid, processing continues. If no TSP is
connected, and VSS is not active, this rou-
tine calls the RSS Interrupt Switching rou-
tine (CEHCS), passing a pointer to the
found TSI (register 1) and an "activate"
indicator (zero in register 2) as parame-
ters. Upon return of control, this routine
sets the "two-terminal® flag in the TSI and

sets the symbolic device address from the
input MCB into the TSISDA field of the TSI.

This module then links to the Queue VSS
Interrupt mocdule (CEHCQ) at CEHCQA to build
and queue a V5SS activate interruption GQE
(code 0). On return of control, this
module again calls the Queue VSS Interrupt
module, but at entry point CEHCQB, to build
and queue an external interruption which
has an MCB attached for the subject task.
The MCB contains TSP information which will
be used subsequently by the VSS Activate
Interrupt Processor (CZHNV) to initialize
the device tables.

Upon return of control, this routine
saves the "sending" TSI pointer from the
Device Group Table in the RSS Status Save
Area. This TSI pointer is assigned to the
LOGON task. It is replaced by the "receiv-
ing" task's TSI pointer. The "receiving”
task is the task within which VSS is to be
activated. This module then sets register
15 to zero to indicate successful LOGON,
and exits to the TSS/360 LOGON task via
LPSW (0ld SVC). (See Figure 4 for a
description of the LOGON task interface
with TSSS.)

The following error conditions are rec-
ognized by the LOGON RSS/VSS SVC Processor
and cause it to reject the LOGON request
and return to the LOGON task (via LPSW)
with an appropriate non-zero return code.

1. MSP already connected RC=4
2. TSP already connected to

receiving task RC=8
3. Invalid Task ID return

from Find TSI module. RC=12

(If an MSP disconnects without an interven-
ing RUN command, after logging on, the RSS
Disconnect module insures that the LOGON
task receives a return code of 16 to indic-
ate the situation.)

RSS Interrupt Switching (CEHCS)

Chart 20

By saving the Task Status Index (TSI)
information for the current task and by
setting the "VSS active™ fields in the ori-
ginal TSI, this module activates VSS. Dur-
ing subsequent processing, any reference to
the current TSI will apprise the TSS/360
Supervisor of VSS activation within the
subject task. This module performs an
equivalent "deactivation” function in which
it restores the saved TSI information.

ENTRIES: This module is called at CEHCSA

by the RSS/VSS LOGON SVC Processor {(CEHDL),

the VM AT Execution SVC Processor (CEHDA),

TSSS Environment 29

the VSS Command SVC Processor (CEHDV), VSS
Exit (CEHDE), and the RSS CONNECT Command
Processor (CEHKW). It expects as input
parameters: (1) a code indicating the
reguested operation (register 0), and (2) a
pointer to the current TSI {(register 1).

MODULES CALLED: In order to build (activa-
tion) or return (deactivation) a duplicate
TSI, this module calls Supervisor Core
Allocation (CEALO1l) or Supervisor Core
Release (CEAL(O2), respectively.

EXITS: Exit is to the calling routine.

OPERATION: This routine first tests the
input "activation/deactivation™ code in

register 0.

Activation (Code = 0): This routine links
to the Supervisor Core Allocation routine,
requesting a TSI-size block of storage. On
return of control, it copies the input TSI
in the allocated block. This routine
places the address of the duplicate TSI in
the "VSS alternate TSI pointer™ field of
the input TSI (TSIVTP). It then sets the
"VSS active®” flag in the input TSI (TSIVS).
By setting the General Queue Entry (GQE)
pointer (TSIFPQ), the task interruption
count field (TSITIC), and the pending flags
(TSIPMF) to zero, this routine dequeues all
previously queued interruptions for the
subject task, as recorded in the input TSI.
The saved, duplicate TSI maintains a record
of the task's pending interruptions. BAas a
result, the input TSI is assigned to VSS.

Deactivation (Code = 4): This module
resets the "VSS active"™ flag in the input
TSI. It gets the address of the saved,
duplicate TSI from the input TSI (TSIVTP).
By referring to the duplicate TSI, this
routine restores the count field, the pend-
ing flags, and the GQE pointer in the input
TSI. This routine returns the storage
allocated to build the duplicate TSI to
TSS/360 by linking to the Supervisor Core
Release routine (CEALO2). This deactiva-
tion process restores the task its state
prior to the VSS activation request.

Find TSI (CEHCF)

Chart 21

Given a valid task ID, this routine deve-
lops a pointer to the corresponding Task
Status Index (TSI).

ENTRIES: This module is called at CEBRCFA
by the RSS CONNECT Command Processor
(CEHKW) , RSS VM Access {(CEHCB), RSS Discon-
nect (CEHBD), and the RSS/VSS LOGON SVC
Processor (CEHDL). A wvalid task ID must be
in bytes two and three of register 1.

30

MODULES CALLED: None.

EXITS: Exit is to the calling routine.
CPERATION: This module serially searches
the active list of TSIs within the system,
and, if necessary, the inactive list of
TSIs. This routine compares the task ID
field of each TSI (TSIID) against the task
ID it received as input. If this routine
finds a match, it passes a pointer to the
identified TSI as a return parameter to the
calling routine.

1f, after searching both the active and
inactive TSI lists, this module does not
find a match, it stores a "task not found”
message control word in register 0, and
executes the error return procedures.

The pointers to the first and last TSIs
in both the active and inactive lists are
maintained in the TSS System Table
(CHASYS).

Queue VSS Interrupt (CEHCQ)

Chart 22

This module builds and queues General Queue
Entries (GQEs) on an input Task Status
Index (TSI) in which the "VSS active"
fields have been set. As a result, either
a VSS activate interruption or a VSS exter-
nal interruption is delivered to the task
represented by the input TSI.

ENTRIES: This module is called at CEHCQA
by the LOGON VSS SVC Processor (CEHDL), the
VSS Command SVC Processor (CEHDV), the VM
AT Execution SVC Processor (CEHDA), the TSP
Asynchronous Interrupt Processor (CEHAQ),
and the CONNECT Command Processor (CEHKW)
to queue an activation interruption. As
input parameters this module expects (1) a
pointer to the TSI (register 0), and (2)
the requested interruption code in bytes 2
and 3 of register 1.

This module is called at CEHCQOB by the
LOGON VSS SVC Processor (CEHDL), the VSS
Command SVC Processor (CEHDV), the VM AT
Execution SVC Processor (CEHDA), and the
CONNECT Command Processor (CEHKW) to gqueue
an external interruption for VSS. No input
parameters are expected.

MODULES CALLED: In order to build and
gqueue a GQE, this module calls two TSS5/360
routines: Supervisor Core Allocation
(CEALO1) and Queue GQE on TSI routine
{(CEAAF) .

EXITS: Exit is to the calling routine.
OPERATION: If entered at CEHCQA, this rou-
tine saves its entry parameters and calls
the Supervisor Core Allocation routine, re-

guesting 64 bytes of storage. On return of
control, it builds a GQE in the allocated
storage, using the general format for an
external interruption General Queue Entry.
This routine places the address of the TSI
in the "TSI pointer" field (GQETSI) and the
VSS interruption code in the "external
interruption code®™ field (GQEINT) of the
General Queue Entry.

When it has completed construction of a
GQE, this routine calls the Queue GQE on
TSI routine (CEAAF) at CFAAF2 to queue the
GQE as a VSS activation interruption.
CEAAF2 is a special entry point reserved
for VSS use. On return of control, this
module returns control to its calling
routine.

For a list of the VSS activation inter-
ruption codes and the purpose of each, see
"VSS Activation Interrupt Processor
(CZHNV) . "

If entered at CEHCQB this module calls
Supervisor Core Allocation, requesting a
block of storage large enough to build a
GQOE and a Message Control Block (MCB).

This block of storage is 152 bytes long.

On return of control, this module builds a
GQE for an external interruption and
attaches an MCB. The MCB is the same in
all cases and contains the task ID from the
TSITID field of the TSI and the symbolic
device address from the TSIDDA field of the
TSI. If the XTSI is not in storage, this
module calls RSS VM Access to bring it into
main storage and then stores the control
registers in the last eight words of the
MCB in order to pass them to VSS.

This module then sets the external
interruption code and calls the Queue GQE
on TSI module (CEAAF) at CEAAF2 to queue
the external interruption. On return of
control, this module exits to its calling
routine.

When called at CEHCQC, this module calls
CEALO1 for a 64-byte GQE area, which it
sets to zero. Then the TSI pointer is
placed in the GQE along with program inter-
ruption code 52. This module then calls
the Queue GQE on TSI module, (CEAAF), and
on return of control from CEAAF, returns
control to the calling routine.

VSS Command SVC Processor (CEHDV)

Chart 23

This module activates VSS as the result of
successful execution of the VSS command by
the TSS/360 command language system. The
Command System executes an SVC 83 to invoke
the TSSS control nucleus.

ENTRIES: SVC 83 is received by the RSS SVC
Interrupt Processor (CEHAS), which directs
control to this module at CEHDVA.

MODULES CALLED: This module calls the RSS

Interrupt Switching routine (CEHCS) to ac-

tivate VSS, and Queue VSS Interrupt (CEHCQ)
to queue a VSS activate interruption and to
queue a VSS external interruption.

EXITS: Exit is to the Queue Scanner.
OPERATION: This module locates the current
task's TSI via a pointer in the Prefix
Storage Area (PSATPT). This module uses
the TSI to determine the symbolic address
of the SYSIN device (TSISIN). A pointer to
the TSI (register 1) and an "activate”
indicator (zero in register 0) are the
input parameters to the RSS Interrupt
Switching routine. Upon return of control,
this module sets the "TSP connected" bit in
the TSI (TSIVT). It sets the symbolic
device address of the TSP terminal field in
the TSI (TSISDA) equivalent to the TSISIN
field.

This module links to the Queue VSS
Interrupt module (CEHCQ) at CEHCQA to build
and queue a VSS activate interruption GQE
{code 1). On return of control, this
module again calls the Queue VSS Interrupt
module, but at entry point CEHCQOB, to build
and queue an external interruption which
has an MCB attached for the subject task.
The MCB contains TSP information which will
be used subsequently by the VSS Activate
Interrupt Processor (CZHNV) to initialize
the device tables. Upon return of control,
this module exits to the Queue Scanner.

As a result of this module's operation,
an activation interruption (code 1) and an
external interruption are queued against
the current task. The authority of the
user who issued the V5SS command and the
absence of another TSP for this task are
checked by TSS5/360 before SVC 83 is
executed.

Virtual Memory AT SVC Execution Processor
(CEHDA)

Chart 24

This module activates VSS as a result of
execution of an AT SVC previously implanted
in private virtual storage or shared virtu-
al storage by VSS for a TSP.

ENTRIES: The RSS SVC Interrupt Processor
{CEHAS), upon recognition of an SVC code
80, 84, or 85, calls this routine at
CEHDAA.

TSSS Environment 31

MODULES CALLED: 1In order to activate VSs
this module calls the RSS Interrupt Switch-
ing routine {(CEHCS) and the Queue VSS
Interrupt subroutine (CEHCQ).

EXITS: Exit is to the Queue Scanner.
OPERATION: This module receives SVCs 80,
84, and 85. SVCs 80 and 85 are the AT SVCs
implanted in private virtual storage or
shared virtual storage, respectively.
84 is implanted by the AT SVC Execution
Processor to signify the completion of AT
SVC processing. This routine saves its
entry condition for later reference.

SVC

This module uses the Task Status Index
(TSI) pointer in the Prefix Storage Area
(PSATPT) to locate the current TSI. A
pointer to the TSI (register 1) and an
"activation®™ indicator (zero in register 0)
are the input parameters, which this rou-
tine passes to the RSS Interrupt Switching
routine. On return of control, this module
tests its saved entry condition to deter-
mine the appropriate VSS activate interrup-
tion code. It calls the Queue VSS Inter-
rupt subroutine at CEHCQB to build and
queue the appropriate VSS interruption --
code 2 for SVC 80, code 4 for SVC 84, or
code 6 for SVC 85. The interruption code
indicates to the VSS Activate Interrupt
Processor (CZHNV) which SVC condition
caused the activation procedures.

On return of control, this module again
calls the Queue VSS Interrupt module, but
at entry point CEHCQB, to build and gqueue
an external interruption which has an MCB
attached for the subject task. The MCB
contains TSP information which will be used
subsequently by the VSS Activate Interrupt
Processor (CZHNV) to initialize the device
tables. This module then exits to the
Queue Scanner.

TSP Asynchronous Interrupt Processor

(CEHAQ)
Chart 25

This module receives and processes a TSP
asynchronous interruption (Attention) from
a terminal to which a TSP is connected when
TSS/360 is running. It initiates the reac-
tivation of VSs for that TSP.

ENTRIES: The TSS/360 Queue GQE on TSI rou-
tine (CEAAF) recognizes a TSP Attention and
enters this module at CEHAQA by loading the
RSS Queue GQE on TSI PSW from the TSS/360
System Table (SYSRS6).

MODULES CALLED: This module calls the RSS
Interrupt Switching routine (CEHCS), if
necessary, and calls the Queue VSS Inter-
rupt subroutine (CEHCQ).

32

EXITS: Exit is to the Queue Scanner.
CPERATION: If the fields in the TSI that
indicate the VSS-active state have not
already been set, this routine calls RSS
Interrupt Switching to activate them. On
return, or if VSS has already been acti-
vated, this routine links to Queue VSS
Interrupt to build and queue a VSS Activate
Interrupt. Since the interruption that
caused activation is an Attention, the
activation interruption is a code 3
interruption.

Note: Since a TSP Attention dues not
require TSP terminal information to be ini-
tialized, an MCB is not required. Conse-
quently, no external interruption is queued
for this condition.

VSS Exit (CEHDE)

Chart 26

This module restores the current task to
its pre-interruption state, and deactivates
VSS as requested by the VSS RUN or DISCON-
NECT commands. It also processes a "voigd®”
command request.

ENTRIES: The RSS SVC Interrupt Processor,
upon recognition of an SVC 82, links to
this module at entry point CEHDEA. As
input parameters, this module requires: a
code in register 0 indicating the requested
exit condition; the virtual storage address
of the task status save area in register 1
(the first two bytes of the status save
area have been saved in register 2); and
the virtual storage address of the TCT
(Terminal Control Table) slot.

MODULES CALLED: This module calls the RSS

Interrupt Switching routine (CEHCS) to
deactivate VSS. If the requested exit con-
dition indicates a DISCONNECT or "void"
command, this routine calls the Supervisor
Core Allocation routine (CEALO1) and the
Queue GQE on TSI routine (CEAAF) to build
and queue an interruption for the task.
EXITS: Exit is to the Queue Scanner.
OPERATION: This module issues a Load Real
Address instruction for the address of the
task's status save area it received as an
input parameter in register 1 and saves
that address. It then calls the RSS Inter-—
rupt Switching routine (CEHCS), passing it
a pointer to the Task Status Index (regist-
er 1) and a "deactivate®™ indicator (4 in
register 0) as input parameters. On return
of control, it checks the saved input code:

Code Meaning
0 RUN
[DISCONNECT
8 Void

12 Program interruption and
disconnect

If VSS exit was requested by a RUN com-
mand, the task status (as it is recorded in
the VSS paging buffer) is stored in the
task's XTSI. BAny changes or VSS-implanted
AT SVCs remain unchanged.

If the originating command was a "void"
command, this routine builds a GQE with an
MCB attached and calls the Queue GQE on TSI
routine (CEAAF) to queue a TSS/360 Atten-
tion interruption for the task.

If the exit condition is a program
interruption and disconnect, the Queue VSS
Interrupt routine (CEHCQ) is called to re-
quest program interruption 52. Processing
then continues in the same manner for both
a disconnect and a program interruption and
disconnect. The "TSP connected™ bit in the
Task Status Index is turned off.

This module checks to see if VSS is con-
nected and, if it is, stores the task sta-
tus in the TSI and exits to the TSS Queue
Scanner. If VSS is not connected, the real
address of the TCT slot is loaded, and the
exit code is again checked. If it is a
void, the "reissue I/0" flag is turned off.
The task status is then saved in the TSI,
and this module exits to the Queue Scanner.

VSS ENVIRONMENT, VIRTUAL STORAGE

As noted under "VSS Environment, Real
Storage,™ the activation of VSS is
initiated at the real storage level by a
group of resident modules in the control
nucleus. A VSS activation interruption is
processed at the virtual storage level when
the task receives its next time slice. If
the activation interruption code signifies
an Attention, the interruption is processed
immediately, resulting in activation if VsSS
is not currently executing. Otherwise,
activation procedes as follows:

1. A flag is set in the VSS Status Save
Area to indicate that the VSS activa-
tion sequence is in progress.

2. A flag is set in ‘the Interrupt Storage
Area (CHAISA) to indicate to the Task
Monitor that VSS is active.

3. The ISA and its associated task status
are saved.

4. Interrupts are enabled via LVPSW.

When interruptions are allowed, the ex-
ternal interruption queued by the resident
modules in the control nucleus is delivered
to the VSS External Interrupt Processor.

Since the external interruption is in the
activation sequence, the VSS External
Interrupt Processor delivers the interrup-
tion to the VSS Activate Interrupt Proces-
sor. The activation segqguence continues as
follows:

5. Flags are set in the VSS Status Save
Area to indicate (1) that VSS is
active, {2) conversational mode or AT
mode, and (3) one-terminal or two-
terminal case.

6. If the activation is an initial con-
nection, the Language Input Device
Table (CHALCR) is initialized from
information in the Message Control
Block appended to the external inter-
ruption's General (Queue Entry. In any
case, if the activation is in conver-
sational mode, Language Control is
then called; if in AT mode, the VSS AT
Execution Processor is called instead.

7. Upon return from Language Control
(with a RUN, DISCONNECT, or "void com-
mand® indication), task status is
restored and linkage is made to the
VSS deactivation routine in real
storage via execution of sSvVC 82.

If VSS is already active, the processing
of a TSP attention at the virtual storage
level is a wvariation of Attention process-—
ing in the above sequence. In that case,
when the Attention interruption is pro-
cessed, a flag is set to mark the interrup-
tion as "received®; then the old VSS VPSW
is loaded.

The interaction between the VSS environ-
ment routines in virtual storage is shown
in Figure 9.

If Language Control returns an indica-
tion that a "void command"™ was executed
(EOB without any input, without prior con-
tinuation character), the exit from virtual
processing (via SVC 82) is unchanged. The
real storage VSS Exit routine recognizes
the exit condition and queues a TSS/360
Attention against the restored task.

Other VSS environment processing in vir-
tual storage includes the forcing of a DIS-
CONNECT because the task is being logged
cff; acceptance of a virtual program inter-
rupt, code X'30', in order to notify the
TSP of an error (addressing an I/0 device
not allocated to the task); and the VSS
Real Core Access function, which passes pa-
rameters to RSS Real Core Access via the
execution of an SVC.

The VSS Message Writer routine is analo-
gous to the RSS Message Writer routine.

TSSS Environment 33

Activate Interruption

resulted from:
LOGON VSS
VSS command

CONNECT command
VM AT execution
TSP Attention

VSS Activate
Save Entire Interrupt
{SA and Processor
Associated Entry Point
Task Status CZHNVA

Language
Control

Language
Routines

{This block is expanded
in Figure 10.)

LVPSW

!
I
l
I
!

VSS Activate
Interrupt
Processor
Entry Pt
CZHNVF

AT
Execution

(This Figure is an

expansion of part
of Figure 8.)

Activate
interrupt

This line shows
processing for external
interruptions.
External interruptions
result from:

Activation sequence

ABEND

LOGOFF

XSEND

Activation
sequence in
progress

© Yes

Yes
2 Save entire

1SA and
associated
task status

VSS External
VSS AT SVC Interrupt
Execution Processor
Processing (CZHNE) Language
routines with
DISCONNECT

parameters

RC =RUN, DISCONNECT or "void"

Figure 9.

34

DISCONNECT]
Restore all command
associated processor

task status

Execute
SvC 82

RC = DiISCONNECT

Overview of VSS environment, virtual storage

Attributes

The VSS environment modules described in
the following section are, as with the
remainder of VS3, resident in the Initiail
Virtual Memory of the task. They are seri-
ally reusable and nonrecursive, and they
execute in privileged mode.

VSS Activate Interrupt Processor (CZHNV)

Charts 27,28
This module:

1. Accepts and processes the VSS activate
interruptions in the VSS activation
sequence that are queued by the resi-
dent modules in the control nucleus.

2. Processes the external interruptions
in the VSS activation sequence.

3. Accepts and processes, when VSS is
active, all unexpected SVC, asynchro-
nous, timer, and data set paging
interruptions.

In the activation sequence this module
saves task status, examines the code asso-
ciated with the activation interrupt,
determines the state of VSS, and takes the
appropriate action.

ENTRIES: Primary entry to this module is
defined by the instruction address of the
new VSS VPSW; the entry point name is
CZHNVA. This module is called at CZHNVA by
the TSS/360 Dispatcher when an activate
interruption occurs. This module is also
called at CZHNVF by the VSS Extermnal Intexr-
rupt Processor (CZHNE) when it has encoun-
tered an external interruption in the VSS
activation sequence.

The following entry points are used when
VSS is executing and the TSS/360 Dispatcher
recognizes one of the listed conditions:

Entry Point Entxy Condition

CZHNVB Unexpected SVC interruption
CZHNVC Asynchronous interruption
CZHNVD Timer interruption

CZHNVE Data set paging interruption

MODULES CALLED: This module calls the TSS/
VSSs Status Save routine (CZHPS), when pro-
cessing the activate interruption. When
processing the external interruption, it
calls either the VSS AT SVC Processor
(CZHZA) or VSS Language Control (CZHXC),
depending on the activation condition.

EXITS: Exit from this module depends on
the entry condition.

1. If this module is entered at CZHNVA it
generally exits by loading the old
VPSW. This, in effect, enables inter-
ruptions for the subject task, allow-
ing the external interruption to be
executed. However, on TSP Attention,
this module performs the activation
sequence without an extermnal interrup-
tion, and exits to VSS Restore Status,
except when VSS is already executing,
in which case it exits by loading the
old VPSH.

2. If this module is entered at CZHNVF on
an external interruption it exits to
VSS Restore Status (CZHPR).

3. If this module is entered at CZHNVB,
CZHNVD, or CZHNVE, it exits to VSS
Restore Status with a return code of
zero (RUN).

4. If this module is entered at CZHNVC,
it exits by locading a virtual PSW.

OPERATION: When entered at CZHNVA this
module checks for activation interruption
code 3 (TSP attention). If the interrup-
tion was caused by a TSP attention, and VSS
was not already active, the VSS active flag
is set on, and the CKALOC macro is issued.
If the return code from CKALOC indicates a
successful operation, control is passed to
VSS Language Control (CZHXC). When control
returns, this module exits to VSS Restore
Status CZHPR. If VSS was active at the
time that the attention interruption was
received, the TSP "attention received®" flag
is turned on, the registers are reloaded,
and the module exits via a Load PSW
instruction.

If the interruption is not a TSP atten-
tion interruption, the VSS activation
sequence is performed. The "VSS active"
flag is set in the Interrupt Storage Area
(CHAISA), and VSS Status Save (CZHPS) is
branched to in order to save task status at
the time of VSS activation. When control
is returned from Status Save, external
interruptions are enabled and the module
exits by loading the virtual old PSW.

When this module is entered at CZHNVF
from the VS5 External Interrupt Processor
(CZHNE), it checks the interruption codes
in bytes two and three of the-virtual old
PSW. If the code is zero (resulting from a
LOGON VSS command), the TSP device is added
to the task device list. If the code is
one (VSS command) or five (RSS CONNECT),
processing then continues in the same way
as for code zero -- a test is made for VSS
connected. If VSS is connected, this
module branches to an internal subroutine.

TSSS Environment 35

For code one, this subroutine checks for
outstanding synchronous I/0 interruptions.
If there are any, the WAIT macro is issued,
and at its completion, the check for 1/0
interruptions is made again. If there are
none, the CKALOC macro is issued to check
for MIT operation in the active devices and
assume ccntrol of I/0. For codes 0 and 5,
the synchronous I/0 interruptions check is
omitted. If the CKALOC return code indi-
cates a successful operation, control is
returned to that portion of the module that
branched to this subroutine via register
eight. If CKALOC operation was unsuccess-
ful, the VSS Message Writer Routine (CZHNM)
declares a permanent I1/0 error, and control
is returned to the calling routine.

After the CKALOC processing, or if VSS
was not connected, the "VSS connected"™ flag
is set in the ISA, the Qualify Table is
initialized, and the address of the physic-
al path for the device is placed in the
SADT. Then the SSDAT is searched for the
SDA. If the SDA is not found, a system
error is issued, and control is passed to
VSS Restore Status. When the SDA is found,
the ADDEV macro is issued to add the device
to the task device list, and this routine
branches to the internal subroutine
described above.When Language Control
returns, exit is to VSS Restore Status.

If the interruption code is 2, 4, or 6,
the "VSS active"™ flag is set in the TSS/VSS
Status Save Area. If VSS is connected, the
subroutine that checks for synchronous I1I/0
interruptions outstanding and issues CKALOC
is called. After CKALOC has successfully
completed its operation, or if VSS was not
connected, control is passed to the VSS AT
Execution Processor (CZHZA). When control
returns, exit is to VSS Restore Status.

When the entry is at CZHNVB, the result
of an unexpected SVC interruption, a SYSER
is issued, and exit is again to VSS Restore
Status with a return code of zero (RUN).

An asynchronous I/0 interruption results
in this module's being called at entry
point CZHNVC. The SADT is searched for a
device entry matching the one which
received the interruption. When one is
found, if the interruption was expected,
the "asynchronous interruption received"”
flag is turned on, and exit is to the point
of interruption via a Load Virtual PSW
instruction. If the interruption was not
expected, a new asynchronous I/0 interrup-
tion virtual PSW is loaded to pass control
to the Task Monitor.

An unexpected external (timer) interrup-
tion results in this module's being entered
at CZHNVD where a SYSER is issued, and con-
trol is passed to VSS Restore Status with a
RUN return code. When CZHNVE is the entry

36

point, an unexpected data set paging inter-
ruption has occurred, and a SYSER for a
major software error is issued. Exit is
again to VSS Restore Status with a return
code of zero.

V5SS Status Save Routine (CZHPS)

Chart 29

This routine saves TSS/360 status for the
task within which VSS is being activated or
within which it is operating.

ENTRIES: This routine is callied by the VSS
Activate Interrupt Processor (CZHNV) and by
the VSS External Interrupt Processor
(CZHNE) at CZHPSA.

MODULES CALLED: None.

EXITS: Exit is to the calling routine.

OPERATION: Saving the relative T55/360
task status involves saving the entire
Interrupt Storage Area (CHAISA) into a spe-
cial CSECT (CZHPSR) and then moving the
required data from the ISA into a prede-
fined Status Save Area (CHAEVS) within VSS.
The required data includes:

1. The virtual new PSWs

2. The virtual o014 PSWs

3. General purpose registers

4., Floating point registers

5. Control registers

6. The current virtual PSW (that is,

interruption code and instruction

counter).

For further information concerning the TSS/
VSS Status Save Area see, Appendix F.

VSS External Interrupt Processor (CZHNE)

Chart 30

This module accepts and processes the VSS
external interruptions that occur while VSS
is active.

ENTRIES: This module is entered at CZHNEA,
which is defined in the new external VPSWH.
Entry to this routine may be from the TSS/
360 Dispatcher on a VSS external interrupt,
or it may be the result of a type 1 call
from the TSS/360 LOGOFF or ABEND modules.

MODULES CALLED: This routine calls the VSS
Status Save routine (CZHPS) and VSS Lan-
guage Control (CZHXC).

EXITS: If the external interruption is a
part of the activation sequence, this rou-
tine exits to the VSS Activate Interrupt
Processor (CZHNV) at CZHNVF. Otherwise
this module exits to the VSS Restore Status
routine (CZHPR).

]| OPERATION: On entry, this module sets the
*input mode" flag in the Input Device Table
(CHALCR) to indicate a special entry condi-
tion to Language Control, which it then
calls. As an input parameter this module
moves an 1ll-byte data field into CHALCR.
The data used as input to Language Control
consists of a one-word length field
(X'0000000A') and a text field initialized
with the DISCONNECT command.

To indicate successful processing of the
DISCONNECT command, Language Control
returns code of four. If the saved entry
condition is code 16, this module exits to
VSS Restore Status with an output parameter
of 16 to request a "disconnect and return
to calling routine™ as the VSS exit condi-
tion. If the saved entry condition is not
16, this module exits to VSS Restore Status
with an output parameter of 12 to regquest
an XSEND disconnect as the exit condition.

VSS Program Interrupt Processor (CZHNP)

Chart 31

This routine processes the VSS program
interruptions that occur while VSS is
executing.

ENTRIES: When the TSS/360 Program Inter-
rupt Processor encounters a VSS program
interruption, it calls this module at
CZHNPA by loading the new program VPSW.

MODULES CALLED: None.

EXITS: The occurrence of a code 30 (hexa-
decimal) program interruption causes exit
to be made to a special entry point within
VSS I/0 Initiation/Posting {(CZHSBC).
Otherwise this module exits by loading the
old program VPSW.

OPERATION: This module determines if the
interruption code is X'30'. (An attempt by
VSS 1/0 control to perform I/0 on a device
not allocated to the task caused the pro-
gram check.) In this case, this routine
places a return code of four in register 15
and exits to a point within VSS I1I/0
Initiation/Posting. The I/O calling rou-
tine will then be returned a message con-
trol word so that the system programmer may
be informed of the I/0 failure.

If this module encounters a paging
exception interruption (code 17), it sets
up an error message parameter and returns

to the routine that called the routine that
caused the paging exception.

If this module encounters an addressing
exception {(code 5) when VSS VM Access
(CZHPB) is in control, it sets up an error
message parameter and returns to the rou-
tine that called VSS VM Access. In both
cases, this module sets a return code of 8
in register 15 to indicate an invalid vir-
tual storage address.

If anything else caused the interrup-

tion, this module effectively ignores it,
exiting via LVPSW.

VSS Real Core Access (CZHPA)

Chart 32

This routine initiates communication with
RSS in order to access real storage while
operating in a task environment.

ENTRIES: This module is called at CZHPAA
by those VSS modules wishing to acquire or
replace a page of real storage. These
modules include the VSS copies of the
REMOVE (CZHYR), SET (CZHYS), and DUMP/
DISPLAY (CZHYD) Command Processors. Input
to this routine is:

Register 1:

1
jreal storage page

r ¥ 1
|get/put | |
|and segment number |
i J

|indicator|
L 1

0 7 8 19 20 31

Register 2:

r T
|qualify |
|indicator|
L i

e e e

|
CPU ID |
]
i

0 7 24 31

where "qualify indicator" is either RM qua-
lified or RM unqualified and
CPU ID is either 1, 2, 3, or &.

MODULES CALLED: None.

EXITS: Exit is to the calling routine.
OPERATION: TSSS does not allow any direct
violation of the real/virtual boundary.
Thus, this routine invokes RSS to acquire
or replace a page of real storage for VSs.

This module tests the input "get/put®™
indicator, it implants the appropriate SVC
in the first two bytes of the VSS paging
buffer, and executes the SVC remotely.

The resulting interruption causes RSS to

be activated and loaded. The RSS SVC Ser-
vice Processors routine (CEHDR) gets con-

TSSS Environment 37

trol after the activation procedures are
completed. As requested by the input pa-
rameters in the RSS Status Save Area (supp-
lied by this routine), RSS Real Core Access
performs the "get/put”™ operation.

For a "get™ request this module supplies
these input parameters:

Reg. O 1Input address of the requested
page

Reg. 1 Virtual storage address of the
VSS paging buffer

Reg. 2 ¢Cualify Table Entry

For a "put®™ request, this module supp-
lies the above parameters, and also saves
the two bytes of the paging buffer, over-
laid by the SVC, in bytes two and three of
register 3.

RSS Real Core Access performs the "get/
put” logic between the real address sup-
plied as an input parameter and the RSS
paging buffer. The RSS SVC Service Pro-
cessor is responsible, in case of "get”,
for moving the contents of the RSS paging
buffer into the VSS paging buffer.

If the request is "get™, this module
implants and executes an SVC 65. If the
request is "put®, this module implants and
executes an SVC 66. RSS returns control to
this module via LPSW upon completion of the
requested operation. This module then
returns control to its VSS calling routine.

VSS VM Access (CZHPB)

Chart 33

This module enables a TSP to refer to a
virtual storage page. Upon special re-
quest, this module may determine whether a
virtual page is shared or not by issuing an
svc 73.

ENTRIES: This routine is called at CZHPBA
by the AT SVC Processor (CZHZA), the AT
command Processor (CZHYA), the DUMP/DISPLAY
Commands Processor (CZHYD), the SET Command
Processor (CZHYS), VSS Symbol Resolution
(CZHWS) and the REMOVE Command Processor
(CZHYR). This module expects the following
input parameters:

Reg. 1 -- a virtual storage address

Reg. 2 -- a "get/put" indicator in byte 0
X*AR' —— get
X*'BB' -- put
X'cc' -- shared page determina-

tion request

38

MODULES CALLED: None.

EXITS: This module exits to its calling
routine. If the input request is "get",
the virtual storage page requested is in
the VSS paging buffer. If the input re-
guest is "put®™, the contents of the paging
buffer are placed at the location specified
by the virtual storage address. When appl-
icable, the shared segment indicator and
shared page table number is placed in
register 1, which is in the following for-
mat if the virtual storage address is con-
tained in shared storage:

Register 1

T

| Shared Page Table
| Number

1

Xx'o1*

o e o o

b st e ad

l
]
L

0 7 8 15 16 31
If the page is not shared, register 1 con-
tains all zeros.

CPERATION: This routine sets the VSS VM
Access active flag (EVSVMAC) in the TSS/VSS
Status Save Area (CHAEVS). This flag is
set so that addressing exceptions (code 5)
and paging exceptions (code 17) may be
handied properly by the VSS Program Inter-
rupt Processor when they are caused by VSS
VM Access.

This module then tests the "get/put”
indicator in register 1. If the request is
"get™, this module moves the contents of
the virtual storage page specified to the
paging buffer to (CZHPAR). If the request
is "put", this module moves the contents of
the paging buffer to the storage location
of the virtual storage page specified.

A special indicator (X'CC') requests the
RSS VM Access routine (CEHCB) to determine
if the page is shared. In order to invoke
the RSS VM Access routine, this module
implants and executes an SVC 73. (See "SVC
Service Processors.")

Following execution of SVC 73, or after
all the “get/put®™ processing is complete,
this module sets off the "VSS VM Access
active"™ flag and returns control to its
calling routine.

VSS Message Writer Routine (CZHNM)

Chart 34

This rontine passes diagnostic information
to the TSP. VSS diagnostic messages are
divided into three classes:

Class 0 VSS 1I/0 errors
Class 1 User (TSP} errors
Class 2 TSSS System errors

The messages are written by VSS 1I/0 Con-
trol, and the output is on the TSP's
terminal.

ENTRIES: The Message Writer routine is
called at CZHNMA by VSS Language Control
(CZHXC) and VSS Scan Control (CZHXS). As
an input parameter, this module expects a
message control word in register 0.

Register O

Character data Hexadecimal data

r T 1 1
|A 2-character | Message | Message |
jmodule identifier |Number | Class Code |
L L 3
0 15 16 23 24 31

MODULES CALLED: This routine calls VSS I/0
Control (CZHSA) to initialize the VSS I/0
system and print the message.

EXITS: Exit is to the calling routine.
OPERATION: This routine tests the "TSP
connected” flag in the Status Save Area
(EVSMODE). If no TSP is connected to the
executing task, this routine executes a
normal return to the calling routine, as if
it had successfully completed the message
operation. (As a result of AT execution
with global gqualification, VSS may be
executing within a task to which no TSP is
connected and for which no TSP terminal is
addressable for printing a diagnostic
message.)

If a TSP is connected to the task in
control, VSS Message Writer uses the input
message number and message class code as an
index to select the message text. Each of
the message classes includes messages that
contain pertinent information concerning
each type of error recognized. The TSP is
responsible for analyzing the message and
taking the appropriate action.

A given message may consist of one or
more lines of output, depending upon the
error. Each VSS message has its first line
formatted as follows:

CZHidxxx 284-character (maximum) mes-
sage text

where id represents the module that encoun-
tered the error and xxx represents the
class code and message number.

In addition, Class 0 messages (VSS 1I/0)
may have additional lines of output:

Symbolic device address
Seek address

Physical path address

CSW

PSW

Sense data

Alternate path

Channel logout area
If VSS is in AT execution mode, this module
calls VSS I/0 to print the source statement

in addition to the message text.

VSS Restore Status (CZHPR)

Chart 35

This module provides the virtual address of
the VSS Status Save Area (CHAEVS), restores
the task status, saved by the VSS Status
Save routine, and requests the restoration
of the task (the deactivation of VSS) by
executing SVC 82.

ENTRIES: This module is called at CZHPRA
by the V5SS Activate Interrupt Processor
(CZHNV) and the 'VSS External Interrupt Pro-
cessor (CZHNE). As an input parameter it
expects a code indicating the desired VSS
exit condition (RUN, "void," or
DISCONNECT) .

MODULES CALLED: None.

EXITS: This module exits by remotely
executing an SVC 82, which causes entry to
the resident environment module responsible
for deactivating VSS -- VSS Exit (CEHDE).

OPERATION: This module restores the entire
Interrupt Storage Area (CHAISA) from the
special VSS PSECT save area (CZHPSR). If
the exit condition is disconnect, this
module turns off the "VSS connected" flag
(ISAVSC) in the ISA.

This module sets the address of the VSS
Status Save Area (CHAEVS) in register 1,
saves the requested exit condition code in
register 0, and saves the contents of the
first halfword of the Status Save Area in
register 2. This module then inserts SVC
82 into the first halfword of the Status
Save Area. It then executes the SVC 82,
which will cause entry to the VSS Exit
module (CEHDE) in real storage.

This module then sets up the linkage to
VSS exit (CEHDE), and if the SDA is not
zero, issues the CKALOC macro to determine:
if the terminal is being operated under
MTT, and if not to relinguish control over
terminal I/0. If the return code from the
macro instruction is a 3, SVC 82 is issued
to return control to VSS Exit. If the
return code is not a 3, a system error is
declared.

TSSS Environment 3¢

TSSS LANGUAGE PROCESSING

INTRODUCTION

The routines that make up TSSS Language
Control perform the functions requested by
the system programmer, calling upon TSSS
170 and Environment routines for service as
needed. Language Control is linked to by
TSSS Environment whereupon input is
accepted and processed. Language Control
interfaces (via I/70) with the system pro-
grammer, depending on the commands being
issued, eventually linking back to TSSS
Environment for deactivation. Figure 10
provides an overview of TSSS Language
Control.

MODES OF OPERATION

Conversational Mode: When input is
received from the system programmer termi-
nal, the mode is "conversational™ until a
RUN or DISCONNECT command is encountered.
In this mode, a § is written at the termi-
nal upon activation, upon completion of all
operations requested by the last input sta-
tement, or upon aborting part or all of a
command statement. It signifies that TSSS
is ready to accept the next input statement
from the system programmer.

Conversational mode is ended by a CALL,
RUN, or DISCONNECT command, and is reen-
tered by an END or STOP command in call
mode, a STOP command in AT mode, or an
Attention (except for a local MSP) in run
mode. Certain error conditions also cause
resumption of conversational mode.

AT Mode: AT SVCs implanted in TSS/360 (via
execution of the AT command) upon their
execution, activate TSSS. An "AT mode" bit
is set and Language Control initiates pro-
cessing of a stored dynamic statement,
instead of reading an input device. RUN is
implied when processing of the dynamic sta-
tement has been completed, unless a CALL,
STOP, or DISCONNECT command is encountered,
or an Attention is received from the system
programmer's terminal.

Call Mode: Execution of the CALL command
causes the active entry in the Input Device
Table to be changed to contain the address
of a card reader or tape drive instead of
the system programmer's terminal. Language
Control then causes the new input device to
be read in the same way as the terminal,
until an END, RUN, STOP, or DISCONNECT com-
mand is encountered, an Attention is
received from the system programmer's ter-

40

minal, or physical end-of-file or an error
condition causes control to be returned to
the terminal (resumption of conversational
mode).

A CALL command may be executed in AT
mode. In that case, each subsequent state-
ment is processed in AT mode, even though
it emanates from a card reader or tape
drive.

Run Mode: The alternative to the TSSS
executing modes (conversational mode, call
mode, and AT mode) is run mode —-- the state
of TSSS when TSS/360 is executing but a
system programmer is still connected.

PROCESSING TSSS INPUT

The processing of input is essentially
the same for RSS and for VSS, and for all
modes. The input buffer is 256 bytes long,
although card input can be only 80 bytes in
length. Each input statement is first
translated into a polish string, before
being executed.

The Polish String: The source statement
accepted by Language Control is converted
into Polish notation, and hereafter
referred to as the "polish string™. The
polish string example, appearing in the
Source to Polish module description, illus-
trates the Early Operator Reverse Polish
used by TSSS.

This polish string is constructed in
such a way that, when it is completed and
subjected to a left-to-right scan, operands
are encountered and resolved before the
related operator is encountered, and the
requested operation performed on the data
fields .designated by the operand elements.
Keywords (all commands except IF, which is
treated internally as an operator), having
the greatest relative weight, are encoun-
tered last. Thus, the keyword execution
subroutines, which are invoked to service
the system programmer's request, have com-
pletely resolved operands with which to
work.

The SCB: The unit of common storage used
to define symbols and for passing parame-
ters between language routines is the Sym-
bol Control Block (SCB). Pointers to
skeleton SCBs, to completed SCBs, and to a
parameter list containing pcinters to the
active SCBs are the input and return
parameters.

Environment

(This block is expanded
in Figure 21.)

The 1/O System:
invites input and reads
the input device

SP Terminal

/

Language
Control

Source fo Polish:
creates polish string

Called Devices

Message Routine:
called as needed

Symbol
Resolution
(This Figure is an
Scan Control: expansion of blocks

calls the in Figures 5, and 9.)
subroutines
as required Literal
by the Resolution
polish
string

Operator Functions
(including IF)

The Keyword Execution Subroutines: 1/O as needed by

AT DUMP/DISPLAY keyword execution
DEFINE REMOVE
- QUALIFY CALL/END
CONNECT DISCONNECT
ESLLECT !;]L‘}gjp Legend: :1. Calls to the message routine are
PATCH made only for diagnostic purpose

2. Communication with the
SP Terminal and Other Devices

Main movement of control

Figure 10. Overview of TSSS language

TSSS Language Processing U1

For example, the Scan Control routine
provides a skeleton SCB for each symbol or
literal, and a pointer to each SCB as input
to the symbol and literal resolution rou-
tines. It receives the same pointer in
return, with the SCB filled in (that is,
resolved). There are 12 of these "skele-
ton™ SCBs, and they reside on the Scan Con-
trol parameter list.

Each SCB is 48 bytes long. The fields
of an SCB are used to define symbol (or
literal) attributes and to point to the
data field represented by the SCB. (It
should be noted that a data field address
is the sum of the value in the "base
address™ field and the value in the "point-
er” field, although the COLLECT command
execution routine is the only one that
manipulates the pointer field in normal
execution without the field itself being
designated an operand.) The SCB fields
also convey other information in intermod-
ule communication.

When the SCB is used as a means of re-
cording symbol definition, the SCB is
further defined by function as either a
temporary or a permanent SCB. A permanent
SCB is one used to record system symbol
definitions. These SCBs compose an
assembled symbol table of 24 entries.
(Note that $B, $P, 5L, 3T, $S, and $ID,
defined as system symbols in the TSSS Sys-
tems Reference Library publication, are
treated as operators internally.)

Temporary SCBs are those used to define
SP symbols (those created by the system
programmer with the DEFINE command). They
are created dynamically during TSSS opera-
tions and are resident on either the SP
Symbol Table or the Global Symbol Table
during a given SP's terminal session. The
data fields are identical in both types; a
permanent SCB may be copied directly into a
temporary SCB without a change in format.
(See Figure 11 for the format of the SCB;
see also Appendix E.)

Defining an SP symbol involves building
the SCB in the next space in a reserved
block of storage (the symbol table) and, if
the symbol has "independent definition" as
opposed to being an "alias," allocating the
specified amount of storage at the other
end of the table, if available. (See
Appendix E for a description of the SP Sym-
bol Table.) If sufficient space is not
available an error message is written out
to indicate it. There is one such private
symbol table for the MSP, one for each TSP,
and one global table that contains the
global SP symbols defined by all TSPs and
used with global ATs (see "RSS/VSS Dif-
ferences, " below).

42

4 bytes
Length

4 bytes
Size

4 bytes
Work Area

1 byte
Type

L) T

1 byte | 1 byte | 1 byte

Class | Flag | Keyword
! !

Flags

T—

4 bytes
Base Address

4 bytes
Pointer

1 byte
Cylinder
Number

2 bytes
Symbolic Device
Address

1 byte
Track
Number

1 byte
Device
Code

2 bytes 1 byte
Mode

Record Number

o s e s e e e e f
e e e i o S s o 20

4 bytes
Qualification

4 bytes
Backward Pointer

8 bytes
Symbol

[S e s e (e . e S s S, WA S e S QA S e e W S o GO s S, GApt S . S, SRt i W S i, S o e S w2y
bt e s s s i s s i s i e i, s it D g s, e i et . ey e ot bt s st s T e, s il s s, S it s w0

Figure 11. The Symbol Control Block (SCB)

Resolution of a symbol involves search-
ing one of the above symbol tables or the
appropriate table of TSS/360 external sym—
bols and filling in a temporary SCB
accordingly.

General Operation: 1In the general opera-

tion of TSSS language, Language Control
accepts an input command string, causes it
to be translated into polish notation, and
calls Scan Control to direct the processing
of the elements in the polish string. The
keyword execution subroutines call I/0 Con-
trol as needed to perform their functions.

These subroutines perform thorough error
checking, and, if an error occurs, execute
the "error return procedures®™ by passing a
return code in register 15 and message con-
trol word in register 0 to Scan Control.
Depending on the severity of the error,
Scan Control either: (1) calls the Message
Writer routines itself (return code 16)
and, on return, continues the scan or (2)
terminates the scan (return code 4) and
returns error parameters to lLanguage Con-

trol, so that the latter may call the mes-
sage routines.

A RUN or DISCONNECT command {or the
implied presence of one of them in certain
instances) causes language processing to
cease. These command processors use return
codes to indicate, first to Scan Control
and then to Language Control, that the
latter is to return to the Environment rou-
tine that called it. (See Figure 10.)

RSS/VSS Differences: Although the language
routines are functionally identical for RSS
and VSS, some differences in operation and
output exist. The most important dif-
ference lies with the AT command. As men-
tioned earlier, an AT command causes the AT
Command Processor to implant the appropri-
ate SVC in the location specified, save the
original instruction from that location,
and save the remainder of the source input
statement. An AT SVC may be implanted in
the real storage of the TSS/360 Supervisor,
in a task's virtual storage, or in shared
virtual storage.

In order to keep a record of the circum-
stances surrounding the implantation of an
AT SVC, the AT Command Processor builds an
AT Control Block (ACB), in which it saves
the original instruction and provides a
pointer to the dynamic statement (remainder
of the source statement). Both the ACB and
the dynamic statement are saved in an AT
Table, which is constructed dynamically in
a reserved block of storage in a manner
similar to the building of an SP symbol
table. (Each AT table is one page in
length.) If a TSP wishes to implant an AT
in real storage, RSS is activated to per-
form the service. The RSS AT Command Pro-
cessor (CEHK2) implants the AT SVC as if it
had been requested by an MSP. The records
of all RSS-implanted ATs are kept in the
MSP's AT Table.

An AT may be qualified as private or
global. In most cases, the ACBs and dynam-
ic statements of ATs implanted with a priv-
ate gualification are kept in the system
programmer's private AT Table. However,
the record of a TSP-implanted AT in shared
virtual storage is kept in the Shared Glob-
al AT Table, to which all tasks have
access.

If an AT is. implanted in shared virtual
storage with a private qualification, every
task which encounters the AT SVC executes
the SVC but does not execute the associated
dynamic statement. If this AT has global
qualification, every encountering task
executes the SVC and the stored source sta-
tement, even if a TSP has nevex been con-
nected to the encountering task. Because
there is no means of inter-task communica-
tion, all TSP globally qualified ATs are

recorded in the Shared Global AT Table, so
that the VSS routines in the encountering

task may refer to the ACB corresponding to
the executed AT SVC.

An MSP's globally qualified ATs (which
are in shared virtual storage) are no dif-
ferent from his private ATs in virtual
storage, except that execution of the
dynamic statement is dependent on
qualification.

Each SP symbol in a dynamic statement
accompanying a TSP's globally qualified AT
mast be globally qualified, so that all
tasks, by referring to the Global Symbol
Table, have access to their SCBs, as well
as to the data field which the symbol
defines.

When a system programmer issues a DIS-
CONNECT command, all AT SVCs and the
related data in the AT Tables are removed
as one of the functions of the DISCONNECT
Command Processor, with the exception of
TSP ATs implanted by RSS in real storage.

ATTRIBUTES

The RSS versions of the Language modules
are non-resident and serially reusable.
They operate in the supervisor state with
DAT active. The VSS versions are resident
in each task's IVM. They are serially
reusable and operate in the privileged
mode.

LANGUAGE PROCESSING ROUTINES

AT SVC Processor (CEHJA/CZHZA)

Charts 36,37

This routine locates a dynamic statement
supplied by the system programmer and
stored at the time of AT implantation. It
directs execution of the statement by the
language area and then provides the means
for restoring TSS/360 (the implied RUN that
ends a dynamic statement).

ATTRIBUTES: The RSS version of this rou-
tine is resident and executes with DAT
active. Both copies are serially reusable
and non-recursive. The CSECTs are
read-only.

ENTRIES: The RSS copy of this routine is
called by the RSS SVC Service Processor
(CEHAS) at CEHJAA while processing SVCs 67,
68, 69, 71, and 72. The VSS copy is called
by the VSS Activate Interrupt Processor
(CZHNV) at CZHZAA while processing SVCs 80,
84, and 85.

TSSS Language Processing 43

MODULES CALLED: This module calls RSS or
VSS Virtual Memory Access (CEHCB, CZHPB)
during the processing of an AT SVC 72 or 85
to determine the shared page number.

This module also calls Language Control
(CEHLC/CZHXC) to process the stored dynamic
statement. In RSS, when dealing with RSS-
implanted ATs in virtual storage, this
module calls RSS Symbol Resolution (CEHMS)
to locate the public CSECT for the implan-
tation of a returmn SvcC.

Under certain error conditions, this
module calls the REMOVE Command processor
(CEHKR/CZHYR) and the Message Writer rou-
tines (CEHCM, CZHNM).

EXITS: EXit is to the calling routine.
OPERATION: The current PSW (stored when

TSSS received control) is used to construct
an AT ID, which serves as an index for
searching the appropriate AT Table. If the
SVC code indicates an AT in shared virtual
storage (SVCs 72 and 85), the AT ID is the
current PSW instruction address plus one,
with the appropriate Shared Page Table
(SPT) number substituted for the 12 high-
order bits of the address. For SVCs 69,
71, and 80 the AT ID is the current PSW
instruction address. SVCs 67, 68, and 84
do not have corresponding AT Control Blocks
(ACBs) in the AT Tables.) (See Appendix
G.)

This module checks for invalid SVCs,
printing an error message for a conversa-
tional task and causing a program interrup-
tion to a nonconversational task if the SVC
issued is not wvalid. It then finds the
appropriate ACB in the system programmer's
AT Table (RSS or VSS) or the shared AT
Table (VSS only), depending on the SVC
code. If it does not find the ACB, it
rechecks the location of the AT. If the
SVC is there, it prints an error message
and returns to the calling routine. If the
SVC is not there, it just returns.

When the ACB is found, this module
checks for an SVC in shared virtual
storage. If the AT in question is not in
shared virtual storage, this module
executes the "link-out® procedures: it (1)
moves the command text and an "end of buff-
er™ character into the Language buffer area
(CHALCR), (2) turns on the "input in
storage®™ flag in the Input Device Table
(CHALCR), (3) sets the AT mode switch on,
(4) saves the old Qualify Table, (5) builds
a new Qualify Table from information in the
ACB, and (6) links to Language Control
(CEHLC/CZHXC) to process the AT command
string. All RSS-implanted ATs are executed
in this manner.

44

If the ACB is for a VSS-implanted AT in
shared virtual storage, this module checks
for global qualification. If the ACB is
qualified globally or if it is applicable
to the executing task, this module executes
the "linkout™ procedures already described.
If it is not qualified globally or is not
applicable to the task, this module
bypasses the "link-out" procedures for pro-
cessing the command statement and checks
for chaining (more than one AT command spe-
cifying a given instruction location).

This mcdule loops to examine each chained
ACB, if any are found to exist.

Upon return from the "link-out"™ to Lan-
guage Control, this module restores the old
Qualify Table and checks the condition of
the "RUN with an operand®™ flag in the
appropriate Status Save Area (ESVRNAT in
RSS, EVSRNAT in VSS). This flag is set by
the RUN Command Processor (CEHKN/CZHYN)
when it has an operand with the RUN com-
mand. If the flag is on, the AT SVC Pro-
cessor recognizes it as an unconditional
RUN request and returns control to the cal-
ling routine with a RUN return code without
executing the original instruction. It
also bypasses any chained ATs at the loca-
tion under consideration. If the flag is
not on, this module checks its return code
from Language Control. If any return code
but RUN (RC=0) occurs, this module returns
control to its calling routine, passing the
return code from Language Control. If the
return code from Language Control is ROUN,
this module relocates the AT and checks for
chaining, as already described.

When the last ACB in a chain has been
processed, the overlaid instruction (stored
in the ACB) is inspected to determine if
the operation code is LPSW or any of the
branch instructions. If it is, and no
error is likely, the operation is simu-
lated. If an error seems likely to occur
if the instruction is executed, this module
removes the AT SVC under consideration by a
call to the REMOVE Command Processor
(CEHKR/CZHYR). On return of control, it
restores the current PSW IC, turns off the
AT mode switch, and returns to the caller.

AT SVC Return Procedures: When AT SVC pro-

cessing is complete, this module locates
and examines an AT Relocation {(Execution)
Area, which in RSS is a special resident
area, and in VSS is a special CSECT with
user read/write attributes (see Figure 12).
If a slot in the AT Relocation Area is
available this module locks the slot and
begins the return procedures. The locking
guards against the situation which exists
if a program check occurs when the original
overlaid instruction is executed.

If a slot in the AT Relocation Area is
not available, this module calls the Mes-

Real Storage

T T T L] T Rj
iLock iOriginal |Return |Instruc-|Original|Pointer tojUnused |
| Byte |Imstruction|SVC | tion |AT { Lock Byte | |
| | | | Length |Location}| | |
|2 bytes|2-6 bytes |2 bytes|2 bytes |4 bytes |4 bytes {|0-4 bytes]
L —_— L L L 1 L i i |

Virtual Storage

r T T T T L) T T 1
| Lock |original jReturn |Instruc-|Original|Pointer to|Relocation Area|Unused|
| Byte |[Instruction|svcC | tion |AT {Lock Byte }|Identifier | |
i | | | Length |Location]| | |0-4 |
|2 bytes|2-6 bytes |2 bytes|2 bytes |4 bytes |4 bytes |8 bytes | bytes |
L i L 1 i L i L1 Fi

Figure 12. The AT Relocation Area

sage Writer routine (CEHCM/CZHNM) to indic-
ate that the AT SVC Relocation Area has
been filled and, on return of control, to
call Language Control to prompt the termi-
nal for further instructions.

In the return procedures, this module
moves the original instruction to the AT
Relocation Area. SVC 67, 68, or 84 (RSS
RM, RSS VM, or VSS, respectively) is placed
in the two bytes immediately following the
instruction, and portions of the ACB is
also saved in this area. The current PSW
instruction address is changed to point to
the new location of the original instruc-
tion, and this routine turns off the AT
mode switch and returns to its calling rou-
tine with return code zero. The AT reloca-
tion area is shown in Figure 12 and is for-
matted as follows:

RM: CEHJAB--8 areas, each 20 bytes
VM: CZHZAB--8 areas, each 28 bytes

AREA+0 2 bytes lock byte
+2 2-6 bytes of instruction
contiguous to this:
2 bytes of return svc
2 bytes instruction length
4 bytes AT location field
4 bytes pointer to lock byte to
be reset

in real storage:
0-4 bytes unused (dependent on
instruction length)

in virtual storage only:
8 bytes of character identifica-
tion in the form
CEHJAVAT if RSS-implanted;
CZHZAVAT if VSsS-implanted.
0-4 bytes unused (dependent on
instruction length)

When this routine is entered because SVC
67, 68, or 84 was executed, it checks the
validity of the VM AT ID and adjusts the
current PSW instruction address to point to

the instruction immediately following the
AT SVC (that is, following the overlaid
instruction). This routine then exits to
its calling routine with a return code of
zero.

Language Control (CEHLC/CZHXC)

Chart 38

Language Control requests input from a sys-
tem programmer's terminal or other input
device and directs the processing of the
source string supplied by the I/0 area.

ENTRIES: Language Control is called at
CEHLCA/CZHXCA by:

RSS External Interrupt Processor (CEHAE)
RSS SVC Service Processors (CEHDR)

VSS Activate Interrupt Processor (CZHNV)
VSS External Interrupt Processor (CZBNE)
RSS/VSS AT SVC Processor (CEHJA/CZHZA)

The calling routine must correctly initial-
ize the Input Device Table (CHALCR).

MODULES CALLED: Language Control calls:

Module Name and ID Reason for Call

170 Control 1. If input device is

(CEHEA/CZHSA) terminal, to invite
input by writing a
$ sign on the
terminal.

2. To read the input
device.

Source to Polish
(CEHLP/CZHXP)

To create a polish
string from the source
string.

Scan Control
(CEHLS/CZHXS)

To process the polish
string.

TSSS Ianguage Processing 45

Message Writer To print error

Routine messages.
(CEHCM/CZHNM)
EXITS: Exit is to the calling routine when

this module receives indication of a RUN or
DISCONNECT command from Scan Control. It
indicates this condition to the calling
routine by return codes of zero and four,
respectively. Language Control also exits
on recognition of a "void®™ command with a
return code of eight.

OPERATION: If the input data is not alrea-
dy in Language Control's input buffer, and
if the input device is a terminal, this
module invites input by causing a § to be
printed at the terminal. O©On return of con-
trol from I/70 Control, or if the input
device is not a terminal, Language Control
causes the input device to be read by a
call to I/0 Control. The input device
address is in the first word of the Input
Device Table, and the device may be the
system programmer's terminal, a card read-
er, or a tape drive. Language Control
requests a read of 256 characters (which
will include an end-of-transmission
character) into the Language input buffer
(CEHLCT/CZHXCT) .

If, on return of control from I/0 Con-
trol, the residual count is still 256, this
module recognizes the wvoid command, and
exits with a return code of eight. If the
state is RSS, this module ignores the
situation and loops back to invite input.

If an error code is returned from I/0
Control, this module calls either RSS or
VSS Message Writer to write out an error
message. Language Control recognizes a
return code of 16 from I/0 Control as an
"end of file" indication. In call mode, in
this case, Language Control performs the
end function.

Note that if TSSS is in call mode, and
an asynchronous interruption is received,
Language Control performs the end function
and causes a diagnostic message to be
printed at the terminal. On return of con-
trol from the message routine, this module
prompts the terminal for input.

After the input has been read, Language
Control calls Source to Polish to create a
polish string from the source string (see
Chart 39). If Source to Polish sends back
an acceptable return code, Language Control
links to Scan Control, which is responsible
for all subsequent language processing for
the input statement. Language Control does
not regain control until:

1. The polish string has been processed
(return code = 0).

46

2. A command is executed which requires
Language Control to request additional
input (return code = 0).

3. A RUN or DISCONNECT command is
executed {(return code = 8 or 12).

4. A major error occurs (return code =
4).

If any but the third case causes return,
this module loops back through its entire
logic as previously described (see Chart
38), although, in case of an error, this
module first causes a diagnostic message to
be written at the terminal. If return is
caused by a RUN or DISCONNECT command, this
module translates the return code into one
that is acceptable to the Environment
module that called it (zero or four), and
returns to that Environment routine.

Note that VSS Language Control is
responsible for providing a copy of the
Real Core Symbol Table (CHARST) in the IVM
of each task in which VSS is activated.
The VSS routines Symbol Resclution (CZHWS),
Address to Symbol Resolution (CZHMA), and
Storage Map Format (CZHMM) refer to this
table and must be able to address it.

Using the ISASDS pointer from the Inter-
rupt Storage Area, VSS Language Control
refers to the Shared Data Set Table
(CHASDS) and obtains a pointer to the hash
table (SDSHAS). By using the hash value of
CHBRST as a displacement into the hash
chain, this module finds the correct Shared
Data Set Member (CHASDM) from which it
obtains the address of the Shared Page
Table (SDMSPT).

This module then inserts the segment
number in the high-order half of register 1
and the shared page table address in the
low-order half of register 1, and issues an
SVC 238 to connect the segment to the
Shared Page Table.

On return of control from SVC 238, this
module appends the relative page number
(SDMFSP) to form a virtual storage address
consisting of the segment and page with
displacement of zero.

VSS Language Control saves the address,
which is now the address of the Real Core
Symbol Table, in a language save area
(CZHXCL).

Source to Polish (CEHLP/CZHXP)

Chart 39

Source to Polish scans left to right and
selects, one by one, items from a source
string and classifies each as either an

operator or an operand. It forms a polish
string from these operators and operands.

ENTRIES: This module is called at CEHLPA/
CZHXPA by Language Control (CEHLC/CZHXC).
It expects a pointer to the input string as
an input parameter.

MODULES CALLED: None.

EXITS: Exit is to the calling routine.
OPERATION: The construction of a polish
string from an input source string involves
use of three work strings:

1. An operator string
2. A name string

3. A symbol string (for symbols and
literals)

Note: All tables referred to below are
found in Appendix D.

Operator String: An operator string is a
"pushdown stack™ which can contain opera-
tors or keywords, each represented as a
halfword code. This halfword is composed
of an identifier and a weight factor, as
determined from the Tables of Codes (see
Appendix D, Table of Codes). The operator
string is initialized with an EOB charac-
ter, as this character is the "heaviest"™ of
the acceptable characters. The comparative
weight of the last item in the operator
string and the character under examination
from the source string determines whether
(1) the last item will remain in the opera-
tor string and be followed by the source
character, or (2) the last item will be
copied into the name string and be replaced
by the source character.

Name String: The name string eventually
becomes the polish string. The name string
contains operators and keywords (repre-
sented as halfword codes) after they have
been forced off the operator string. This
string also contains halfword pointers to
the symbols and literals in the symbol
string. The first byte of the pointer
halfword is always hexadecimal 80 (X'80")
to indicate that the halfword is a symbol
pointer; the second byte is the displace-
ment from the beginning of the symbol
string.

Symbol String: Each symbol string entry
contains the length of the symbol (byte 0)
and the type of symbol (byte 1), obtained
from the Table of Codes. The remainder of
the entry contains the symbol as it
appeared in the source string in EBCDIC.
Character literals have been edited by this
time.

Work Strings to Polish String: In order to

construct the polish string, this module:

1. Examines an item in the source string
and classifies it, updating the point-
er to the next item.

2. Fetches the appropriate action code
from the matrix by multiplication and
calls an internal subroutine to per-
form the function indicated by the
action code (see Table of Action
Codes) .

3. When the end-of-command or end-of-
block characters are reached, makes
the symbol string follow the name
string of halfword codes and pointers,
in order to form what is now a polish
string.

This module recognizes each item in the
source string as the result of a left-to-
right scan which stops at a delimiter. The
following are delimiters that also are
operators and are encoded immediately:

+ / ¥ = <1 > & %
The other delimiters are:

. -)Y s$ v, "*; (X*26%)

Some delimiters must be judged in context
(for example, a § following a blank may be
the first character of a system symbol, as
in $PSW, or of an operator). Source to
Polish recognizes a keyword through com-
parison with a list of acceptable keywords.
This module checks for a valid keyword syn-
tactically -- the first item following a
semicolon (end of command) must be a key-
word. If this module does not find a match
in the keyword list it indicates a syntact-
ical error to Language Control.

A period and a left parenthesis immedi-
ately following a symbol or literal is
regarded as an offset operator by Source to
Polish. When a period that is not followed
by a left parenthesis appears in the source
string, it is considered in context, and,
if it follows $RM or %VM, is regarded by
Source to Polish as the explicit qualifica-
tion operator. It is encoded as X'1B'. A
sample source string would appear as
follows:

SET $VM(13).SYMBOL=0

If the period follows the letters S$PATCH or
$AT in the source string, it indicates an
operator representing an entry in the Patch
Table or amn entry in the AT Table. Thus,
while $PATCH and $AT are system symbols,
"$PATCH."™ and "S$AT." are encoded as X'1C*
and X'1D*, respectively.

TSSS Language Processing 47

If an item in the source string is not
an operator, a system symbol, or a keyword,
Source to Polish tentatively classifies it
as:

e A symbol, if it is of eight or less
alphameric characters with an alphabet-
ic first character.

e An integer literal, if the first char-
acter of the source item is numeric.

e A literal with the proper type attri-
bute, if it is enclosed in gquotes and
preceded by A, C, L, or X.

The following paragraphs describe the
logic of the processing which follows clas-
sification and results in the creation of a
polish string from the following source
string. In a polish string (X'26') equals
EOB.

IF ABLE > 5 DISPLAY ABLE; RUN L'1000* A

The first item, "IF", is classified as an
operator and, through reference to the
Table of Codes, the module assigns it a
weight of X'0C' and a type of X'10'. As an
operator, it is compared with the last
entry in the operator string ("pushdown
stack™). The operator string is initial-
ized with an X'ODOE’', signifying an end-of-
block character (represented by the "delta"™
in the source string). The EOB is of
greater weight than the IF operator, so the
IF is entered in the operator string:

r T
Operator String | ODOE | 0Cl10
L L

Source to Polish examines the next item in
the source string and, finding it a symbol
(ABLE), enters a pointer to the symbol in
the name string; it enters the symbol
itself in the symbol string:

r T
Name String i |8000
L 1

The hexadecimal digit X'80' signifies that
the entry is a symbol, and the final X'00°*
signifies that it has a zero displacement
from the origin of the symbol string. The
first fullword of the name string is left
unused at this time. When the name string
is completed this fullword contains a
length factor.

) T T
Symbol String {0403{Cc1Cc2|D3C5
L L 1

i1t AB LE

48

The X'04' in the symbol string is a length
factor for the immediately following sym-—
bol; the X'03* is a type factor (in this
case, external or SP symbol). When the
next symkol pointer is to be added to the
name string, Source to Polish adds the two-
byte length of the pointer to the length
factor of the last symbol in the symbol
string to arrive at the displacement factor
for the next symbol's pointer.

Processing continues in the same fashion
until Source to Polish encounters the DIS-
PLAY keyword. This keyword is assigned a
weight factor of X'0C*', and a type factor
of X'05"' (see Table of Codes). This module
compares this weight against the last entry
in the operator string. The operator
string at this point appears as follows:

r T L]
Operator String | ODOE| 0C10] 0608
L L L

EOB IF >

The DISPLAY keyword's weight is greater
than that of the "greater than" character.
This module removes the "greater than"
indication from the operator string and
places it in the name string. It compares
DISPLAY against the new "last"™ entry in the
operator string. Although DISPLAY has the
same weight as the IF operator, the DISPLAY
occurred later in the source string, and it
forces IF off the operator string onto the
name string. As the DISPLAY keyword's
weight is not greater than or equal to the
weight of the EOB character, this module
copies DISPLAY into the operator string,
overlaying the position held by IF. After
Socurce to Polish resolves the next item
(the symbol ABLE), the operator string, the
name string, and the symbol string appear
as shown in Figure 13.

T
OPERATOR |
STRING: Le———beeee
_ EOB DISPLAY

r T T T T T
NAME | 8000§8006] 0608} 0C10|8009]
STRING: L 1 1 L‘ i i
PTR PTR > IF PTR
r T T T 1] T T =7 T
SYMBOL |0403{c1C2|D3C5|0105|F5 04]03|c1|C2|D3|C5
STRING: L L L L 5 41 L | R 1

1T1tAB LE 1t 5 1 t A B L E

Figure 13. The operator, name and symbol

strings in polish construction

The next character in the sequence is a
semicolon (;), which is an end-of-command
character and has the weight (X'ODOF') to
force DISPLAY off the operator string onto
the name string. As an "end" character, it
causes this module to hook-up the symbol
string to the name string, after it has
copied the end-of-command character into
the name string.

Source to Polish counts the number of
bytes in the symbol string. In this case
(15 bytes) this module attaches an unused
byte (it will contain zeros) to the end of
the symbol string. (The count must be even
so that the next polish string created from
the input source string will begin on a
halfword boundary.) This module also
counts the number of halfwords in the sym-
bol string and places this number in a
fullword at the end of the name string. It
places the total length of the name string,
including the last fullword, in the wvacant
fullword at the beginning of the name
string. The completed name and symbol
strings, when this module attaches them to
form a polish string, are shown in Figure
14.

After forming this polish string, Source
to Polish determines if the end character
is an end-of-command (semicolon) or an end-
of-block (EOB). If it is an end-of-
command, more input in the source string
exists. Source to Polish builds another
polish string for this input immediately
following the end of the existing polish
string. It leaves the first fullword fol-
lowing the existing polish string vacant,
creating the new name string after this
fullword. This module uses the same work-
ing storage to construct the new operator
and symbol strings that it used for the old
ones. In the given input string, an end-
of-block character terminates the second
polish string. After combining the name
and symbol strings, Source to Polish
returns control to Language Control, pas-
sing back a pointer to the origin of the
first polish string. The completed polish
strings appear in Figure 15.

The AT keyword is given special treat-
ment during Source to Polish operation.
Given the input string:

AT X,Y,Z DISPLAY A;STOP

Polish String:

ENTRIES:

The following is the equivalent of the
finished polish string:

oo s oy

D B A § T
X|Y|Z|DISPLAY A;STOP|AT
| B . L.

o oomen o
(ST

After placing the AT command on the opera-
tor string and representing the symbols X,
Y, and Z on the name string, Source to
Polish recognizes the next item as the key-
word DISPLAY (the beginning of the AT com-
mand's input string) and takes a special
path in which it considers the remainder of
the input string (DISPLAY A;STOP) as a
single character constant. The entry in
the name string is given the length factor
of the remainder of the source string and
the type factor of a character literal
{X*08'). Scan Control will, upon recogniz-
ing this entry in the polish string, con-
struct an SCB containing a pointer to the
character literal designated.

As a result, after Scan Control forms
its parameter list of SCBs and links to the
AT Command Processor, the SCB at the end of
the list will represent a pointer to the AT
source string, and all SCBs before the last
one will represent the locations at which
the implantation is to be made.

Scan Control (CEHLS/CZHXS)

Chart 40

Scan Control scans a polish string, passing
control and parameters to the appropriate
service routine upon the occurrence of each
symbol, literal, keyword, or operator.

Scan Control is called at CEHLSA/
CZHXSA by Language Control (CEHLC/CZHXC).
Input parameters are (1) a pointer to the
origin of the polish string and (2) a
pointer to the source string. It must also
have a list of the available Symbol Control
Blocks (SCBs).

MODULES CALLED: Scan Control calls:

Module Name and ID Parameters Passed

Symbol Resolution
(CEHMS, CZHWS)

A pointer to an SCB
containing the symbol
under consideration.

r h) T T] T 1] k] L) L) T 1] 1] k] L L] Ll 1
10010{8000{8006|0608{0C10|8009]|0C05|0DOF|0012{0403|C1C2|D3C5|0105|F504|03C1|C2D3|C500]|
L. L L L i 4 i L i i 1 1 i L 1 L | § J

cnt 1t AB L E

1t5 1 tABL E Fill

cnt ptr ptr > IF ptr DIsS- ;
PLAY
Figure 14. The polish string partially constructed

TSSS language Processing 49

Source String:

Polish String:

IF ABLE >5 DISPLAY ABLE; RUN L'1000

1 T L3 T T T T L) T T T T L] L] L3 T T 1
{0010{8000|8006|0608}0C10|{8009{0C05|0DOF|0012|0403[C1C2|D3C5{0105|F504]03C1|C2D3{C500]
L L A L L AL 1 'y 4 L L L L L i L L d

cnt ptr ptr > IF ptr DIS- ;

PLAY

AS T T] T T T T 1
{0008]8000{0C03|ODOE]| 0006|0406 | FLFO | FOFO |
i L 4L L L 1 i 3 J

cnt ptr RUN cnt 1t 10 00

Figure 15. The completed polish string

Literal Resolution
(CEHLL/CZHXL)

A pointer to the pol-
ish string entry which
contains the literal
and its length and
type attributes and a
pointer to a skeleton
SCB.

Operator Functions
(CEHLA/CZBKA)

A pointer to the
parameter list con-
taining the input
operatoxr code.

The Keyword Execu-
tion Subroutines

A pointer to the pa-
rameter list.

Message Writer
Routine
(CEHNM, CZHNM)

A message control
word.

EXITS: Exit is to Language Control. This
exit is taken when Scan Control encounters
(1) an error that makes further processing
inappropriate, (2) a RUN or DISCONNECT com-
mand, (3) the end of the polish string
(EOB), oxr {4) a command requesting addi-
tional SP input.

OPERATION: The polish string, which Scan
Control examines, is arranged so that Scan
Control encounters the symbols and literals
of a command statement before it encounters
the operators and keywords, and generally
the operators before the keywords. As Scan
control processes the symbols and literals
in the polish string, it builds a parameter
list for subsequent use by the operator
functions and the keyword execution
subroutines.

Scan Control examines each item in the
polish string. If the item is a symbol or
literal, Scan Control calls Symbol or Lit-
eral Resolution, respectively, for classi-
fication. It passes to Symbol Resolution a
pointer to the Symbol Control Block (SCB)
in which it has placed the symbol and its
qualification.

If the item is a literal, Scan Control
passes to Literal Resolution a pointer in

50

cnt 1tAB LE

1t5 1 tABL EFill

register 1 to a special parameter list that
consists of a pointer to the polish string
entry to be resolved and a pointer to the
skeleton SCB, already containing qualifica-
tion, into which the literal is to be

resolved. This parameter list is shown in
Figure 16.

r———————-= -1

|Register 1

S 3

r L}

| Pointer to | Pointer to
|entry in | skeleton
|polish string |SCB

L L

S — 1

Sample polish string entry |Skeleton |

| (empty) |

04 06 F1 FO FO FO | SCB con- |
Jtaining |

1 t i 0 00 |qualifi- |
|cation i

[— —

Figure 16. The scan control parameter 1list

for literal resolution

When Scan Control encounters a keyword
or operator, it links to the corresponding
routine, passing a pointer to the parameter
list as shown in Figure 17. The called
routine makes use of the current, filled-in
SCB(s) to perform the requested function.

The A in Figure 17 represents the point-
er passed to the Keyword Execution Subrou-
tines. B represents the pointer passed to
the Operator Functions.

The parameter list may be as long as 14
fullwords (that is, there may be as many as
12 SCBs). The extra fullword containing
the operator code is used as an index to a
branching table within the Operator Func-
tions module (see Charts BN, BO, BP, BQ,

e 4

|

T 1 T T L] %(ll 1
| An | &n |Ptr to|Ptr toj | Ptr toj
|operator| SCB | first|second| | last }
| code |count] SCB | SCB | | sCB |
L 1 L i L%\(_L 1

——— e — g

|

__________ 3

Figure 17. The scan control parameter list

for operator functions and key-
word execution

and BR) to determine which routine performs
the requested function.

If Scan Control recognizes an explicit
qualification operator (X'1B'), it links to
Operator Functions (CEHLA/CZHYA), which
checks for $RM or $VM in the input SCB.

The explicit qualification operator is
always placed in the polish string immedi-
ately before the symbol to be qualified.

If the qualification in the current SCB on
the parameter list is wvalid, this SCB on
the parameter list is reinitialized to con-
tain only this explicit qualification.

On return of control, Scan Control
retains this same SCB as input to Symbol
Resolution (CEHMS-CZHWS), in effect per-
forming all qualification procedures
itself. Symbol Resolution (or Literal
Resolution) does not alter the incoming
qualification of the SCB when it resolves
the input symbol (cor literal).

Scan Control expects one of five return
codes from its called routines: zero,
four, eight, twelve, or sixteen.

Zero indicates that processing has been
successfully completed. Scan Control con-
tinues the scan of the polish string.

Four, when accompanied by a Message Con-
trol Word in register 0, indicates that the
called routine encountered a serious error.
Scan Control returns control to Language
Control with a return code of four and
passes the Message Control Word for use as
input to the Message Writer routine.

Four without an accompanying Message
Control Word indicates that a STOP, CALL,
END, or AT command has been processed, and
indicates that termination of the scan
should be requested. An IF operator which
results in a "false" condition also returns
this code. Scan Control returns control to
Language Control with a return code of zero

to request that Language Control invite
additional input from the SP, or, if in AT
mode, that Language Control execute the
"run" procedures.

Eight indicates that a RUN command has
been executed. Scan Control returns con-
trol to Language Control to indicate this.

Twelve (X*'0C') indicates that a DISCON-
NECT command has been executed. Scan Con-
trol returns control to Language Control to
indicate this.

Sixteen (X'10°') indicates that the
called routine encountered a minor error
and has constructed a Message Control Word
in register 0. Scan Control calls the Mes-
sage Writer routine to post this error, and
on return of control continues the scan.

Scan Control also returns control to
Language Control when it reaches the end of
the entire polish string (end-of-block
character). Scan Control does little error
checking, relying on its called routines
for detailed error checking.

RSS Symbol Resolution (CEHMS)

Chart 41

This module resolves and classifies (1)
system-programmer defined symbols (SP sym-
bols), (2) system symbols, and (3) external
symbols. This module is also called by RSS
Literal Resolution to assist in resolving
address constants.

ENTRIES: This module is called at CEHMSA
by Scan Control (CEHLS) and Literal Resolu-
tion (CEHLL). The input parameter is the
address of a skeleton SCB containing the
symbol under consideration and the qualifi-
cation given it in the polish string (see
Figure 18). RSS AT SVC Processor (CEHJA)
calls this module to locate the user's
Read/Write CSECT to implant a return SVC
when the original AT SVC was in virtual
storage.

MODULES CALLED: This module calls VM
Access (CEHCB) when searching the Task
Dictionary.

EXITS: Exit is to the calling routine.
OPERATION: This module first checks wheth-
er or not the first character in the symbol
is a dollar sign, indicating a system sym-
bol. If it isn't, the MSP-defined symbol
table is seaxched. If the symbol is not
found there, it is looked for in real or
virtual storage. If it cannot be found,
the "undefined"™ flag is set on, and control
is returned to the calling routine.

TSSS Language Processing 51

T
| System
|Symbol
i

[$R

Meaning (Qualification)

General registers

Ccontrol registers
Floating point registers
Channel Address Word
Channel Status Word
Specify output device for DUMP
Current PSW

Program interruption PSW
SVC interruption PSW
External interruption PSW
I/0 interruption old PSW

]
| SMPSW Machine Check interruption old

PSW
for current SP (RM or VM)

Patcnes; analogous to $AT (RM or
VM)

Output device specification

wowr
5 8
=

output device specification

g

Specifies a TSS/360 storage map
of external symbols with their
hexadecimal addresses

Uy
g
-~
g

Real storage (RM) qualification
(dummy SCB)

Virtual storage (VM) qualifica-
tion (dummy SCB)

— W TS i, St S e (it T . S e Nt ABO mal was WN— WSO

] $TSKID Current task ID

|

| $DHDR Iabel for output of DUMP command

|
| $STATU Primary system status indicators

Primary task status indicators

o e St s Sttt oo o i i gt W Sy S oo, SO i, S S i S, o, WOV s, s, et s, WO s S s A s, SR e S g R i, . st U i S . S B, SR B, st . i, it i e, s

|
!
|
]
|
|
|
|
i
|
|
|
l
|
{
|
|
|
|
|
|
|
|
]
|
{
SAT | Dynamic statements in AT table
|
|
|
1
|
{
|
|
|
|
l
|
|
|
|
]
|
|
]
|
|
|
i
S|
|
|
L

|
| $TASK
L

Figure 18. RSS System Symbol Table

If the symbol is $AT, $PATCH, or $MAP,
the Symbol Control Block (SCB) is copied
without the qualification entry, and con-
trol is returned to the calling routine.
If it is a variable system symbol (3R, $C,
$E, PSW, SPPSW, 3IPSW, $XPSW, $SPSW, or
$MPSW), the 5CB is copied without the qua-
lification entry, and the base for the

52

ENTRIES:

OPERATION:

qualification is resolved using the CPU
Ib. If the CPU ID is not wvalid, an error
code of four is returned. If the symbol
is any other system symbol or an MSP-
defined symbol, control is returned to the
calling routine with the normal return
code of zero.

If the symbol is an external symbol in
real storage, its address, type (hex), and
class (external), are stcored in the SCB,
and control is returned to the calling
routine. If the symbol is in virtual
storage, it is located using a special
paging subroutine included in this module.
Its type and class are stored in the SCB,
and control is returned to the calling
routine.

VSS Symbol Resolution (CZHWS)

Chart 42

This module classifies and resolves system
symbols, SP symbols, and external symbols
for VSS. It is also called by Literal
Resolution to resclve address constants
for vss.

This module is called at CZHWSA
by Scan Control (CZHXS) and Literal Reso-
lution (CZHXL). It requires a pointer to
an SCB containing the symbol as an input
parameter (see Figure 19).

MODULES CALLED: This module calls VSS VM
Access (CZHPB) while searching the Task
Dictionary.

EXITS: Exit is to the calling routine.
This modules checks for type
of symbol in the same way as RSS Symbol
Resolution (CEHMS)}. If a $ appears in the
first byte of the symbol field in the
input SCB, the symbol is classified as a
system symbol. This module searches the
System Symbol Table it maintains (see
Figure 19). If the symbol is found, this
module copies the permanent SCB into the
input SCB and returns. If not, this
module sets error parameters before
returning control.

If the symbol is not a system symbol,
this module determines if the symbol has a
private or global gqualification and
searches the appropriate SP symbol table.
This table may be the TSP's private symbol
table or the Global Symbol Table to which
all TSPs have access. This routine copies
the permanent SCB into the input SCB and
returns control if it finds a match.

If the symbol is not found, this module
determines if the symbol has a real or
virtual storage qualification. If the

¥

Systemj

Symbol| Meaning (Qualification)
L

SR
{e
SE

General registers

Control registers

e s — oo, e w0t s s 204

Floating point registers

|
|
|
]
|
|

$DOUT Specify output device for DUMP

$PSW Current PSW

$SPSW SVC interruption old PSW

$XPSW External interruption old PSW

$IPSH I/0 interruption old PSW

SAPSW Asynchronous interruption old
VPSW

STPSW Time interruption old VPSW

$PPSW Recoverable Data Set Paging VPSW

Program interruption old VPSW
SAT Dynamic statements in AT table
for current SP (RM or VM)
$PATC Patches; analogous to $5AT (RM or

VM)

$10 output device specification

SvaMm Output device specification

$MAP A TSS/360 storage map of exter-
nal symbols with their hexade-—
cimal addresses

$RM(n) | Real storage (RM) qualification
(dummy SCB)

$VM(n)| Virtual storage (VM) qualifica-
tion (dummy SCB)

)
$TSKID| Current task ID

SDHDR Label for output of DUMP command

$TASK Primary task status indicators

1
5
|
|
|
a
|
u
1
|
|
|
u
|
|
s
a
|
l
!
|
l
|
| 1
|
| $PPSW2
l
|
|
s
| H
1
|
I
|
|
|
a
1
|
x
|
;
|
a
|
|
|
x
|
|
|

bt cvemccs o A o, GO o B i S o G G S g e, SO s SO iy S A S— O oo W s WD e S A s SO B S i YO ot SO (. . W S, NN e UG

|
;
|
*
x
l
|
|
|
|
;
|
|
|
l
|
:
|
|
n
|
s
|
i
|
;
1
1
|
|
|
|
a
|
s
|
1
|
;
r
|
l
l
i
9

Figqgure 19. VSS System Symbol Table

qualification is real, this module searches
the Real Core Symbol Table (CHARST) in Ini-
tial Virtual Memory. (This table is
obtained for VSS via the CNSEG macro
instruction, SVC 238. See "Language Con-
trol”, operation description.} If the sym—
bol has a VM gqualification, this module
searches the Task Dictionary Table
(CHATDY) .

If the symbol is not found, the input
SCB is flagged as undefined, and Symbol
Resolution returns to its calling routine.
If it is found, it puts the standard attri-
butes into the input SCB before it returns
control.

Literal Resolution (CEHLL/CZHXL)

Chart 43

Literal Resolution examines an entry in the
polish string which Scan Control has tenta-
tively recognized as a literal. If this
entry meets all the requirements for a 1lit-
eral, this module builds an SCB for it.

ENTRIES: Literal Resolution is a subrou-
tine of Scan Control (CEHLS/CZHXS), which
calls it at CEHLLA/CZHXLA. Input parame-
ters are (1) a pointer to the entry in the
polish string and (2) a pointer to the SCB
list, showing the location of the next
available working SCB.

MODULES CALLED: Literal Resolution calls
Symbol Resolution (CEHMS/CZHWS) if it
encounters an address constant literal. As
a parameter it passes a pointer to the SCB
containing the literal.

EXITS: Exit is to Scan Control.
OPERATION: The entry in the polish string
to which Literal Resolution is passed a
pointer consists of:

1. A byte count of the entire entry
(first byte).

2. The type of operand (second byte).

3. The literal entry, in EBCDIC (as it
appeared in the source string).

Literal Resolution uses the type factor
to pick out the internal routine which
checks the entry. If the literal is wvalid,
this module constructs an SCB for it, which
must contain a type (character, hexadeci-
mal, etc.), a literal classification,
length and size attributes, a base, and a
pointer. If the literal is an address con-
stant, this routine calls Symbol Resolu-
tion, which is then responsible for com-
pleting most of these fields in the SCB.

For each type of literal, some special
processing is required. If the literal
type is character, it was edited during
conversion from source to polish, and this
routine gives the literal the length and
size of its polish string. A location lit-
eral is permitted a field of no more than
six (RM) or eight (VM) hexadecimal digits.

TSSS Language Processing 53

This module translates from EBCDIC and
packs a hexadecimal literal, before build-
ing an SCB for it, by using an internal,
closed, serially reusable subroutine called
the Editor. This module translates and
packs an integer literal and also converts
it to binary before building an SCB for it.

Normal output from Literal Resolution is
a new SCB in the SCB list, to which this
routine passes a pointer when it returns
control to Scan Control. Detection of any
condition that reveals an invalid literal,
such as an invalid type or invalid byte
count, causes Literal Resolution to execute
the error return procedures. This module
indicates a minor error to Scan Control
(return code = 16) if the value of an inte-
ger literal exceeds 2, 147, 483, 646 (the
packed integer, converted to binary,
exceeds four bytes), or if the type is hex-
adecimal and the string contains other than
a hexadecimal digit.

With the exception of a location liter-
al, literal qualification in RSS is RM; in
VSS it is VM. Location literals may be
assigned other qualifications.

Operator Functions (CEHLA/CZHXA)

Charts 44 to 48

The operator functions are many small sub-
routines which accept parameters and oper-
ate on them. The operation performed may
be arithmetic, subscripting, comparison, or
any of the other operations allowed in the
TSSS Command Language (defined below under
"Operation®). The result of the operation
is placed in an SCB or in a work area
pointed to from an SCB.

ENTRIES: The module is a subroutine of
Scan Control, called by it at CEHLAA/
CZHXAA. Entry to the individual operator
subroutines is via a branching table. The
input parameter is a pointer to a parameter
list, containing the operator code as an
index to the branching table.

MODULES CALLED: The Operator. routines call
RSS Real Core Access (CEHCA), RSS VM Access
(CEHCB), VSS Real Core Access (CZHPA), and
VSS VM Access (CZHPB) when they perform an
operation on a data field.

In addition, the $ID routine calls
Address to Symbol Resclution (CEHMA/CZHWA)
to locate a symbol in real or virtual
storage, and the $VAM routine calls the
External Page Location Address Translator
(CEHBT/CZHRT) to resolve a physical data
location in the CHHR format.

EXITS: Exit is to Scan Control.

54

OPERATION: Each operator has a unique
number assigned to it and placed with it in
the polish string (see the Table of Codes
in Appendix D). When Scan Control calls
Operator Functions, it passes a pointer to
the parameter list, the first word of which
contains this operator code. When multi-
plied by four this code serves as an index
to the branch table, to permit entry to the
requested subroutine.

After the operation is performed (see
Charts 44 to 48 inclusive), and the result
placed in either an SCB or work area, the
SCB count is, in most cases, reduced by
one. The subroutine returns control to
Scan Control with a pointer to the SCB
list, containing a pointer to the result of
the operation. (The error checks for each
operator are shown on the logic charts.)

The acceptable arithmetic operators (see
Chart 44) are addition (+), subtraction
(=), unary minus (-), multiplication (#*),
and division (/). These operations are
performed with fixed point arithmetic
instructions.

The relational operators "greater than,”™
"equal to," and "less than"™ result in a
comparison (see Chart 45). A logical indi-
cation of "true" (X'FF') or "false™ (X'00")
is returned and also stored. It should be
noted that when the equal sign (=) is used
in a command string with certain keywords
(such as SET), it is treated as a delimit-
er, recognized by Source to Polish as such,
and never reaches Operator Functions.

The Boolean operator "logical AND"
results in ANDing two parameters (one each
from two SCBs); the "logical OR" results in
ORing two parameters; and the "logical NOT"
results in reversing the bits of a paramet-
er with the Exclusive OR instruction. (See
Chart 45.)

The IF command is an operator function
that determines if the conditions estab-
lished by the system programmer have been
met. (See Chart 48.) It tests the result
field of a previous logical operation. If
it returns a "true® indication (return code
= 0) Scan Control will continue scanning
the polish string. If the indication is
"false™ (return code = #, no message speci-
fied), the conditions have not been met,
the remainder of the polish string is
ignored, and further input is solicited.

The "%" operator provides indirect
addressing capabilities by loading the spe-
cified data field into the base address
field of an SCB. (See Chart 47.)

Subscript (left parenthesis immediately
following a symbol or literal), range (:),
or offset (a period and a left parenthesis

immediately following a symbol or literal)
result in the manipulation of a data field
within an SCB. The subscript operator (see
Chart 46) handles 3I0 and $VAM symbols.
SVAM calls the External RSS/VSS Page Loca-
tion Address Translator (CEHBT/CZHRT).
Using information supplied by the SCBs for
these symbols, the operator fills an SCB
that defines a data field on an I/0 device.

Special cases of offset (for example, a
period not followed by a parenthesis)
include explicit qualification, the Patch
Table Entry Operator, and the AT Table
Entry Operator. Explicit qualification
insures that either $RM or $VM is specified
in an SCB later to be used for symbol or
literal resolution.

The Patch and AT Table Entry Operators
accept as input a resolved symbol after all
other operations on it have taken place.
They make up $SPATCH and $AT SCBs, respec-
tively, with the pointer attribute equal to
the base address of the incoming SCB and a
zero base address.

The $B, $P, $T., $S, and §L symbols
(Chart 48) are classified externally as
system symbols. Internally they are clas-
sified as attribute operators. These
operator functions build SCBs that define
the base address, pointer, type, size, or
length attributes, respectively, for an
SP-defined symbol.

The $1ID operator calls Address to Symbol
Resolution, which searches the appropriate
table to locate the external symbol nearest
to (less than or equal to) a hexadecimal
address supplied as input. The found
alphameric symbol and its address is placed
in a buffer and pointed to by an SCB. The
buffer is 12 bytes long. (See Chart 48.)

Address to Symbol Resolution (CEHMA/CZHWA)

Chart 49

This module locates the symbol nearest to
(with an address less than or equal to) the
address of the input operand in real or
virtual storage.

ENTRIES: This module is called by the $1ID
routine of the Operxrator Functions (CEHLA/
CZHKA) at CEHMAA/CZHWAA. The input para-
meter is a pointer to an SCB containing the
address of the input operand.

MODULES CALLED: This module calls RSS and
VSS VM Access (CEHCB, CZHPB) if the quali-
fication is VM, in order to search the Task
Dictionary Tables (TDY).

EXITS: Exit is to the calling routine.

OPERATION: This module determines if the
qualification of the input address is real
storage (RM) or virtual storage (VM).

If the qualification is RM, this module
searches the Real Core Symbol Table
(CHARST) for the address closest to the
input address. The Real Core Symbol Table
is loaded into real storage by RSS and
resides in Initial Virtual Memory of a task
for vss. It is a table of extermnal symbols
and their addresses, sorted alphabetically
in ascending order.

If the qualification is VM, this module
searches the Storage Map Table (CHAMAP)
within the Task Dictionary (TDY). This
table is in ascending order of wvirtual
storage addresses.

If a match is found, the symbol name and
its address are placed in a buffer pointed
to by an SCB, and this module exits. If no
match is found, or if the input address is
less than the addresses of the beginning
entries in the respective tables, this
module executes the error return
procedures.

AT Command Processor (CEHKA/CZHYA)

Charts 50,51

The AT command allows the system programmer
to specify a location in TSS/360 running
code and a command language statement that
is to be executed immediately before the
instruction at the designated location.
This module provides this capability by
overlaying the first two bytes of the
instruction with an AT SVC. This module
also builds AT Control Blocks and makes
entries in the SP's AT Table and the Shared
Global AT Table.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKAA/CZHYAA.
Parameters expected are a pointer to a
parameter list containing an SCB count and
pointers to the SCBs, the last of which
contains the length of the command string
and a pointer to it.

MODULES CALLED: In order to refer to the
desired location, the RSS copy of this
module (CEHKA) calls one of the following:

Module Name and ID
RSS Real Core
Access (CEHCA)

Reason for Call
To locate a page of
real storage.

RSS or VSS Virtual
Storage Access
(CEHCB,CZHPB)

To locate a page of
virtual storage.

EXITS: Exit is to Scan Control.

TSSS Language Processing 55 |

OPERATION: In general, the explanation of
an AT SVC jis as follows. Tbis module tests
the AT Table to determine if there is
enough space for the AT Control Block (ACB)
and the source string for the current AT.
(Each AT Table is one page in length. See
Appendix E for a description of the AT
Table.) If all conditions are valid, this
module locates the page containing the
location specified by the input SCB, using
a storage access routine.

This module then checks for a valid
operation code in the instruction to be
overlaid. It does not overlay an SVC,
Execute, or Diagnose instruction. If the
qualification is VM, it will not overlay a
privileged instruction. A check is then
made to see if the address of the instruc-
tion is odd. If the operation code is
valid, this module saves the original
instruction in an ACB and overlays the
instruction location with the SVC code.
This module locates the source statement
with a pointer in the last SCB on the para-
meter list. It saves the source statement
at the end of the AT Table (CHAATB), and
sets a pointer to the statement in the ACB.
The ACB is constructed in the next avail-
able 28 bytes at the beginning of the AT
Table. (The format of the AT Table is
shown in Appendix E.) The ACB contains a
unique 4-byte AT ID. The AT ID for either
RSS or VSS in shared virtual storage is
composed of the shared segment number in
the high-order 12 bits, with the location
specified in the low order 20 bits. Bit 7
of the lowest order byte is set to 1 to
indicate that it is shared.

If an SVC instruction is found at the
location specified by an AT command
operand, this module determines if the SVC
represents an AT command by searching the
appropriate AT Table. If a match is found,
this module activates the chaining process,
unless the AT SVC was implanted by a dif-
ferent SP. In this case, the AT command is
rejected.

The specific SVC code to be implanted is
determined by the receiving location and
the mode of TSSS. AT SVC codes implanted
by RSS are 69 (real storage), 71 (private
virtual storage), and 72 (shared virtual
storage). The corresponding codes
implanted by VSS are 69, 80, and 85.

Before this module can implant an AT
SVC, it must determine the qualification of
the input SCB as well as the type of
storage designated. An AT SVC may be eith-
er privately or globally gualified, and the
ACB is marked accordingly after it is
determined in which AT Table the ACB will
be built. In RSS this module only refers
to the MSP's AT Table, regardless of quali-
fication or storage location. Figure 20
shows the location used in VSS.

56

-

T
Characteristics of AT [Action Taken
4

T T
Quali- | svC | Location
fication |Location |Code|of ACB
4 1 4
1} L T
RM |Real storage| 69 |MSP's AT
| }|Table

|
80 |TSP's AT
| Table

:
non-global|Private vir-|
| tual storagej

| |
|Private vir-| 80 |TSP's AT
|tual storage| jTable
| |
non-global|Shared vir- | 85
|tual storage]

| |]
|Shared vir- | 85 |Global Shar-

le}
e
o)
oy
m
et

I
|Global Shar-
jed AT Table

o —- — — —— . - oo Yo . S S . s B oot S~ o
ke i e e s et M. S et i, s . s, e et b v e

global
[tual storage] |ed AT Table
L L L

Figure 20. ATs in VSS

VSS maintains a private AT Table for
each TSP, whereas there is only one Shared
Global AT Table, which all TSPs refer to.
All encountering tasks execute an SVC 85
implanted in shared virtual storage; if the
corresponding ACB is marked non-~global,
only the task whose VSS implanted the SVC
executes the stored command string. If the
ACB is marked global, all encountering
tasks execute the command string. All AT
Tables have the same format and the same
DSECT (CHAATB). The CSECTs for the MSP's
AT Table, the TSP's AT Tables, and the
Global shared AT Table are, respectively,
CHBATBR, CHBATBVA, and CHBATRVB.

VSS does not directly implant an AT SVC
in real storage for a TSP. Instead, the
VSS version of this module builds a command
string from the input command string, and
implants and remotely executes an SVC 70,
requesting that RSS implant an AT in real
storage for it (see "RSS SVC Service Pro-
cessors™). For this reason the AT SVC code
and the location of the ACB are the same as
if an MSP had requested that the AT be
implanted. A sample command string to
accompany the SVC 70 appears as follows:

QUALIFY S$RM(x); AT $RM.L'1000'DISPLAY ABLE

where x may equal 0, 1, or 2.

If a globally qualified AT SVC is found
at the receiving location, and the
regquested AT is also globally qualified,
chaining is activated, unless the identifi-
cation of the current task differs from
that of the task which implanted the exist-
ing AT SVC. The identification of the
implanting task is recorded in the ACB for
that AT. If the task IDs are different the
current task's AT is rejected.

When the AT Command Processor completes
its operation, it returns control with a
request for additional input, which causes
Scan Control to discontinue scanning the
polish string (return code = 4, no message
specified in register 0). The following
conditions cause the AT Command Processor
to ignore the current AT request and
execute the error return procedures.

1. The number of operands is invalid.
The working SCB list must contain at
least two SCB, and the last SCB must
describe an AT command string.

2. Insufficient space remains in the AT
Table to process the current AT
request.

3. The gqualification is invalid.

4. The location for implanting the AT is
invalid.

5. BAn SVC (one that does not represent a
chainable AT), an Execute, a Diagnose
operation code, or a privileged
instruction in virtual storage already
exists at the specified location.

DEFINE Command Processor (CEHKE/CZHYE)

Chart 52

The DEFINE Command allows the system
programmer to define private symbols which
designate fields or to establish private
aliases for system symbols, external sym-
bols, or other SP-defined symbols (called
SP symbols). This module builds temporary
SCBs to record SP symbol definitions. (The
SCBs are temporary in that they exist only
for the duration of a given SP's terminal
session. See "Processing TSSS Input”.)

ENTRIES: This module is a keyword execu~
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKEA/CZHYEA.

MODULES CALLED: None.

EXITS: Exit is to Scan Control.

OPERATION: The operation of the DEFINE
command is logically divided into two sec-
tions: establishing on alias and indepen-
dent definition. The difference between
the two is that establishing an alias does
not require allocation of storage, whereas
an independent definition does.

The command format for independent
definition is:

DEFINE A.(o0,1,t,s)

where any or all of o, 1, t, and s, may be
omitted, causing the assumption of these
attributes:

offset (o) = 0

length (1) = 1 byte
type (t) = hexadecimal
size (s) = length

Zero is always assumed for offset, since
the offset must always be zero in the case
of independent definition (storage is being
allocated).

The symbol, A, must be eight characters
or less in length, begin with an alphabetic
character, and contain no blanks or special
characters. This module checks the quali-
fication of the SCB containing the symbol
and searches the appropriate symbol table.
if the symbol has not been entered before,
a new entxry (SCB) is made. In any valid
case, space is allocated for the new data
field in the opposite end of the appropri-
ate table, the working SCB count is reduced
by one to show that the symbol has been
processed, and control passes to the cal-
ling routine with a return code of zero.
Note that if the new symbol is the same as
a symbol already in the SP's'private symbol
table, any space previously allocated to
that symbol is not reused until after a
DISCONNECT command is executed.

The command format for establishing an
alias is:

DEFINE A=B. (0,1,t,s)

where A is the new name to be established
and B is some symbol which has been pre-
viously defined. B may be an external sym-—
bol, a system symbol, or another SP symbol.
The result is that the attributes of the
data field named B, as specified, are given
to the name A, and any explicit attributes
of A are ignored. All fields of the SCB
for A are overlaid by these of this copy of
the SCB for B, excepting that of the symbol
itself. The specification of o, 1, t, s is
as described under the discussion of inde-
pendent definition.

This module then searches the appropri-
ate symbol table. If a previously defined
A is found in the SP's private symbol
table, its definition is replaced by the
new definition for A. If no such defini-
tion is found, the SCB for A is placed in
the next available slot in the appropriate
table.

The Tables: When a symbol, A, is privately
defined by an SP with non-global qualifica-
tion, it is recorded in the SP's private
Symbol Table (CHASPM). All of this SP's
references to A are resolved as this data
field regardless of whether other As exist

TSSS Language Processing 57

in TSS/360. Only if the SP redefines the
symbol A privately will it be resolved with
a definition other than the original one.
Each of the symbol tables discussed here is
two pages in length.

The record of all symbol definitions by
an MSP is kept in the MSP's private Symbol
Table (CSECT:CHBSPMR), and is subject to
the restrictions already discussed.

Depending on the qualification, a TSP-
defined symbol may be recorded in either
the TSP's private Symbol Table (CSECT
CHBSPMVA) or the Global Symbol Table
(CSECT:CHBSPMVB) to which all TSPs have
access. If a TSP defines a symbol, A, with
non~global qualification and later gives it
another definition without changing the
qualification, the first definition is
lost.

However, a TSP may use a single symbol,
A, to define two different data fields, and
preserve both definitions, if one symbol is
defined under global qualification and the
other is not. But if a TSP tries to define
& symbol, A, with global gualification, and
this symbol, A, has already been defined
with global gualification, the first
definition of A is lost.

The following other conditions cause
this module to execute the error return
procedures:

1. The number of operands (SCBs) in the
working SCB 1list is not one or two.

2. Undefined alias symbol ("B" in the
format example).

3. Insufficient space in Symbol Table;
insufficient working space.

QUALIFY Command Processor (CEHKQ/CZHYQ)

Chart 53

The QUALIFY command allows the system pro-
grammer to change his state of implicit
qualification (RM, VM, or global). This
module maintains the Qualify Table (CHAKQD)
to record those changes. (The Qualify
Table appears in Appendix E.)

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control, which
calls it at CEHKQA/CZHYQA.

MODULES CALLED: None.

EXITS: Exit is to Scan Control.

OPERATION: The SCB parameter contains a

fullword storage cell (MSWUNUS) that is the
operand of the QUALIFY command.

58

The cell contains a number which may be
from X'0000' to X'FFFF', representing a
Task ID or CPU number.

In the symbol field (MSWSYMB) of the input
SCB may ke C'$RM' or C'$VM', representing
real or virtual storage. If the symbol
field is given as $VM without a Task ID
(number=zeros), the qualification is
global.

The following diagram depicts the format
of the four-byte Qualify Table:

T
Qualification|
Identifier |
i

78 31

b
Qualifier i
|
3

5 e e

If RM is specified, this module updates
the Qualify Table as follows:

1. If the number specified is zero (the
system programmer specified no CPU
number), the Qualify Table is set to
all zeros.

2. If the number specified is X'0001' or
X*0002', this module sets the qualifi-
er in the Qualify Table to either
X"000001°* or X*000002°, respectively.
It sets the identifier to X'01'. Real
storage (RM) qualification is thus
determined by a X'00' or X'01* in the
identifier field of the Qualify Table.

If VM is specified, this module updates
the Qualify Table as follows:

1. If the number is all zeros, the quali-
fication is global. This module sets
the qualifier to X'00' and the identi-
fier to X'02°'.

2. If the number is from X'0001' to
X'FFFF', the system programmer has
designated a specific task ID for VM
qualification. If the SP is a TSP,
this number must match the current
task ID. Any value, within the
accepted range, is valid for an MSP.
This module sets the qualifier to the
value of the input number and the
identifier to X'03°.

The following conditions cause this
module to execute the error return
procedures:

Storage ID is not $RM or $§VM
Invalid CPU number specified

Invalid task ID given by TSP

RSS CONNECT Command Processor (CEHKW)

Chart 54

The CONNECT command allows the MSP to spec-
ify an existing TSS/360 task within which
VSS is to be activated. The TSP is con-
nected to that task at the SYSIN terminal
for the task.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control, which
calls it at CEHKWA. The input parameter is
a pointer to the SCB list containing only
one SCB. The task number is specified as a
data field in this SCB.

MODULES CALLED: This module calls the Find
TSI routine (CEHCF), the RSS Interrupt
Switching routine (CEHCS), and the Queue
VSS Interrupt routine (CEHCQ) during the
VSS activation.

EXITS: Exit is to Scan Control.

OPERATION: This module calls the Find TSI
routine to locate the Task Status Index
(TSI) for the task specified in the input
parameter, passing a task ID in bytes two
and three of register 1. On normal return
this module checks the "TSP connected"” flag
in the TSI (TSIVT). iIf a TSP is not al-
ready connected to the designated task,
this module links to RSS Interrupt Switch-
ing to activate VSS in the TSI. Input is a
pointer to the TSI in register 1 and a code
(zero) requesting activation in register 0.

When control is returned, this module
sets the symbolic device address of the TSP
terminal in the TSI (TSISDA) equal to the
symbolic address of the SYSIN terminal
(TSISIN). It links to the Queue VSS Inter-
rupt modulé (CEHCQ) at CEHQA to build and
queue a VSS activate interruption GQE (code
5). When control is returned, this module
again calls the Queue VSS Interrupt module,
but at entxy point CEHCQB, to build and
queue an external interruption which has an
MCB attached for the subject task. The MCB
contains TSP information that will be used
by the VSs Activate Interrupt Processor
(CZHNV) to initialize, the device tables.
On return of control this module exits to
the calling routine.

This routine executes the error return
procedures on the following conditions:

The task number is invalid (as indi-
cated by the Find TSI routine); the
TSI cannot be found.

There is an invalid number of SCBs --
there must be exactly one SCB on the
input parameter list.

The "TSP connected"” flag in the TSI
(TSIVT) is on.

COLLECT Command Processor (CEHKC/CZHYC)

Chart 55

The COLLECT command moves the data from one
field to another and updates the SCB
describing the receiving field, so that any
subsequently collected data will immediate-
ly follow this data.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKCA/CZHYCA.
The input parameter is a pointer to a pa-
rameter list containing two SCBs, the first
of which must represent an SP symbol.

MODULES CALLED: This module calls the SET
Command Processor (CEHKS/CZHYS) to move the
data.

EXITS: Exit is to Scan Control.
OPERATION: If the length attribute of the
second operand (Op2) is less than or equal
to the remaining space described by the
first operand (Opl), this module sets the
length attribute of Opl equal to that of
Op2 and calills the SET Command Processor to
move the data. When control is returned,
this module increments the pointer attri-
bute of the first operand in its permanent
SCB by the length of the second operand,
and returns control to Scan Control.

If there is not enough space, this
module determines if the size attribute
(total allocated space) of Opl is greater
than or equal to the length attribute of
Op2. If it is, this module sets the point-
er attribute of Opl to zero and calls the
SET Command Processor as above. If the
length of Opl is less than the length of
Op2, this module sets the pointer attribute
of Opl to zero and the length attribute of
Opl equal to its size attribute. After
setting the length attribute of Op2 equal
to that of Opl (effectively truncating the
Op2 data field), this module calls SET to
move the data. On return of control, this
routine updates the pointer attribute for
the first operand and returas comntrol to
the calling routine with a return code of
16 (minor error) in register 15 and "over-
flow™ message parameters in register 0.

When the value of the pointer attribute
of OP1 is equal to the size attribute, or
is large enough that the length of OP2 is
greater than the remaining space in the
data field (size minus pointer), the point-
er is reset to zero before the data is
moved.

TSSS Language Processing 59

If the first operand represents a tape
drive or a printer, the pointer remains
zerco during the collect operation.

This module executes the error retorn
procedures on the following conditions:

The SCB iist received as an input pa-
rameter does not contain exactly two
SCBs.

Undefined symbol as the first operand.

Error return from SET Command
Processor.

Opl is not an SP symbol.

SET Command Processor {CEHKS/CZHYS)

Chaxt 56

This module moves the contents of a data
field described by operand 2 into the iocca-
tion described by operand 1.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS) which calls it at CEBKSA/CZHYSA. it
is also called by the COLLECT and PATCH
Command Processors. The input parameter is
a pointer to the parameter list containing
a count field and two SCBs.

MODULES CALLED: Depending on the gqualifi-
cation of the operands, this routine cails
the following modules to page in the
reguired storage areas.

dModule Name and ID Quaiification
i/70 Contrxol External
{CEHEA/CZBESA)

KSS Real Core RM (RSS)
Access (CEHCA)

V85 Real Core RM (VS55)
Access {CZHPA)

RSS Virtual Memory VM (RSS)
Access (CEHCB?

V58S Virtual Memory VM {VSS)

Access (CZHPE)

EXITS: Exit is to the calling routine.
QPERATION: If the input data is valid,
this module checks the qualification of the
operands. If an operand is either virtual
or real, the data field is located ox is
brought into real storage by a storage
access routine. If the gualification is
externai, this module links to I/0 Control
to perform the get function.

60

Bfter locating the designated page, this
module compares the length attributes of
the two operands. If thev are not equal,
the operand 2 {0p2) data field is padded or
truncated, depending on its length and
type, before this module moves the data
therein to the location specified by
operand 1 (Opl). After performing the SET
instruction, this module decrements the
count field in the parameter list by two
and returns to the calling routine.

The SET Command Processox provides a
special facility when dealing with $DOUT as
its first operand. If $DOUT is the first
operand and the second operand is external-
iy gualified, the SET Command Processor
moves the resolved external symbol (now a
symbolic device address) into the data
field $DOUT. 3SDOUT represents a data field
which is used by the DUMP/DISPLAY Command
Processor as the symbolic device address of
the device upon which a DUMP operation is
to be performed. By setting 3$DOUT=5I0, the
SP may specify any symbolic device address
that exists in the SSDAT as the symbolic
device address. (It must be the address of
a printer or tape drive for execution of a
DUMP command.}

By setting $I0=3%1I0, the £P may move data
from one device to anothexr. For instance,
a damp written on tape may be transferred
to the printer by setting $IC {(address of
the printer} equal to $I0 {address of the
tape drive). In this case, as SET reco-
gnizes the difference between a device and
a location specification for Cpi, it moves
the data until end of file is reached on
the tape. In the same manner, a card-to-
tape operation can be performed. (Note:
The SP may set one entire record on a disk
equal to another disk record, but he cannct
set the contents of entire tracks, cylin-
ders, or direct access devices egual to
other complete tracks, cylinders, or
devices.)

This module executes error return proce-
dures in the following circumstances:

The number of SCBs in the parameter list
is not two.

Operand 1 is $DOUT, and operand 2 is not
{1} an externally gualified symbol ana
(2) equal to a symbolic or actual device
address contained in the SSDAT.

Qualification of the operands is not
valid.

an undefined symbol is one of the
operands .

The length of the field addressed by OpZ2
is greater than 1096.

PATCH Command Processor (CEHKE/CZHYP)

Chart 57

The PATCH command allows the system pro-
grammer to alter the contents of a data
field in real or virtual storage, or on an
I/0 device. This module maintains suffi-
cient information about this patch in the
SP's Patch Table to enable the restoration
of the original contents of the data field.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKPA/CZHYPA.
The input is a pointer to a parameter list
that must contain pointers to two SCBs,
neither of which may be undefined.

MODULES CALLED: This module calls the SET
Ccommand Processor (CEHKS/CZHY3) to (1) move
the data specified by the first operand of
the PATCH command into the PATCH Table and
(2) move the data specified by the second
operand into the location specified by the
first operand.

EXITS: Exit is to Scan Control.
OPERATION: If all entry conditions are
valid, this module builds a dummy working
SCB list as input to the SET Command Pro-
cessor. This list, which is used to alter
the data fields, contains twc SCBs:

The first SCB describes the space in the
Patch Table into which the original data
of the data field must be moved to be
preserved.

The second SCB describes the data field
specified by the first operand of the
PATCH command, except that its length
will be the same as the length attribute
of the second operand of the PATCH
command.

This module calls the SET Command Pro-
cessor to save the information at the loca-
tion receiving the patch. On return of
control, this module again calls the SET
Command Processor, using the original SCB
list as input. SET inserts the patch.

The PATCH Command Processor constructs a
Patch Control Block (PCB) in the System
Programmer's Patch Table to completely
describe the patch. The PCB and its asso-
ciated data are the only record of the
patch and are used to restore the data
field by the REMOVE Command Processor, if
it is called.

This module executes the error return
procedures under the following conditions:

The SCB list it received as a parameter
from Scan Control does not contain two
S5CBs.

Either SCB is undefined.

The proposed patch would overlay a patch
that is identified in the Patch Table.

Insufficient space remains in the Patch
Table to save the patch record.

The SET Command Processor returmned an

error code.

DUMP and DISPLAY Commands Processor
(CEHKD/CZHYD)

Charts 58,59

DUMP/DISPLAY causes the contents of a spec-
ified data field to be written on a system
device (printer or tape drive) for DUMP or
the system programmer's terminal for DIS-
PLAY. The principal differences between
the commands are the output devices and the
line lengths.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS) which calls it at CEHKDC/CZHYDC for
DUMP and CEHKDB/CZHYDB for DISPLAY. The
input parameter is a pointer to a parameter
list containing pointers to the relevant
SCBs. (The entry point named CEHKDE/CZHYDE
is the Format entry point. Format is a
service subroutine of this module and is
called only by it.)

MODULES CALLED: This module calls:

Module Name and ID Reascn for Call

Format To prepare each print

line for output.

RSS or VSS Symbol
Resolution
(CEHMS ,CZHWS)

To resolve $DOUT as
the address of the
output device.

I/0 Control
(CEHEA/CZHSA)

To write each block
of formatted data.

$AT and $Patch For-
mat (CEHJF/CZHZF)

To format the data
fields represented by
the symbols $AT and
SPATCH.

Memory Map Format
(CEHMM/CZHWM)

To format the data
represented by the
$SMAP symbol.

S$TASK/ $STATUS For-
mat (CEHJH/CZHZH)

To format the data
represented by the
$TASK and STATUS
symbols.

EXITS: Exit is to Scan Control.

TSSS Language Processing 61

OPERATION: If the SCB represents one of
the system symbols AT, SPATCH, S$TASK,
$STATUS, OR $MAP, this module calls the
external formatting routines to process the
symbol. Otherwise, after checking for
valid input, this module calls its Format
subroutine to read in the required storage
and convert a full page of the desired data
field (DUMP) or two lines (DISPLAY) into
printable form and move it intc the print
buffer. If FPormat returns a code of zero,
it has finished formatting the data field.
A return code of eight indicates that there
is more data to be converted and moved into
the print buffer.

For each print operation this module
constructs an SIORCB containing the
requested device address, the buffer
address, and the buffer length. It links
to I/0 Control to write from the buffer
onto the specified device. When control is
returned, this module tests the return code
from Format to determine if further data
remains to be printed. If it does, this
module calls Format again and repeats the
above process until the operation is com-
pleted, at which time it returns control to
the calling routine. If the request is for
dumping a track, only 41 records can be
dumped in one operation.

On each return from I/O Control, this
module also tests the SIORCB for an Atten-
tion interruption received during the pro-
cessing. If the SIORCB is flagged "asyn-
chronous interruption received,” this
module returns to Scan Control, indicating
that an interruption of the scan is
requested, by a return code of four and a
message specified in register 0 to acknow-
ledge receipt of the Attention.

This module executes the error return
procedures as a result of an:

Invalid number of operands
Undefined symbol

Invalid storage qualification
Invalid output device specified

Error return code from the FORMAT
subroutine

Error return code from 1/0

The Format Subroutine

Chart 59

Format causes the required storage to be
read, converts the data field into print-
able form, and moves it into a print buff-
er. The length and type of the data field

62

and a dumps/display code are passed to it in
an SCB.

ENTRIES: The entry point for this subrou-
tine is CEHKDE/CZHYDE. It is called only
by DUMP/DISPLAY Commands Processor.

MODULES CALLED: For special formatting
rrocedures this subroutine calls:

Reason for Call
If the mode is RSS,
and the .qualification
of the SCB is RM, to
page in the requested
storage.

Module Name and ID
RSS Real Core
Access (CEHCA)

VSS Real Core
Access (CZHPA)

If the mode is VSS,
and the qualification
of the SCB is RM, to
page in the requested
storage.

If the mode is RSS,
and the qualification
of the SCB is VM, to
page in the storage.

RSS Virtual Memory
Access (CEHCB)

If the mode is VSS,
and the gqualification
of the SCB is VM, to
read the storage into
the paging buffer.

VSS Virtual Memory
Access (CZHPB)

I/0 Control In RSS or VSS to

(CEHEA/CZHSA) locate an external
page and to read it
into main storage.

EXITS: Exit is to the calling routine.

OPERATION: After causing the required
storage to be read, this subroutine checks
the type attribute of the input SCB to
determine how the data is to be converted
and moved into the print buffer. The work
area field of the SCB contains X'00000032°
if the command was DISPLAY and X*00000065"
if it was DUMP. When a display is speci-
fied, the buffer length is two lines (100
bytes); when a dump is specified, the buff-
er is a full page.

When a dump operation is being per-
formed, a primary header, "TSS STORAGE
PRINT," is inserted in the output buffer
before any formatting is performed. After
each 56 lines for storage dumps, a secon-
dary header is inserted in the output buff-
er. This secondary header is a variable
field of 80 bytes denoted by the system
symbol S$DHDR and located at entry point
CEHKDH/CZHYDH. After formatting is com~-
plete, the contents of this buffer are
moved to a working buffer, and this buffer
is cleared to all blanks.

Specific line formatting depends upon
the type of data:

Integer data is converted into a signed
decimal number and then converted into
printable format word by word, three (DIS-
PLAY) or six (DUMP) words of data at ten
digits (plus algebraic sign) per word for
each print line.

Character data is moved into the buffer
in continuous string, with a period used
for each non-blank character that has no
graphic.

Hexadecimal data is converted into
printable form and moved into a buffer with
four (DISPLAY) or eight (DUMP) words of
data at eight digits per word for each
print line, plus the character representa-
tion of that line of data.

An address precedes each line of data.
If the buffer is filled before all the data
is converted, this subroutine returns to
DUMP/DISPLAY with a return code of eight.
When all the data has been converted, it
returns a code of zero.

Memory Map Format (CEHMM/CZHWM)

Chart 60

This routine formats print lines or display
lines for printing a storage map when the
SMAP system symbol is used as the operand
of a DUMP or DISPLAY command.

ENTRIES: This module is called by the For-
mat subroutine of DUMP/DISPLAY (CEHKD/
CZHYD) , at CEHMMA/CZHWMA. The input param-
eter is an address of an SCB containing a
SMAP in the symbol field.

MODULES CALLED: This module calls the Vir-
tual Memory Access routine (CEHCB, CZHPB)
when referring to the Task Dictionary.

EXITS: Exit is to the calling routine.
OPERATION: If the storage map is requested
with RM qualification, the RSS version of
this module sorts the Real Memory Symbol
Table (CHARST) by address. This table,
residing in real storage for RSS and in IVM
for Vss, is ordered in ascending alphabet-
ical order. (In VSS no sort is performed.)
This module formats a one-page buffer (4092
bytes) from this table and, if the end of
the table has not been reached, returns
control to the calling routine with a
return code of eight. If the input SCB for
$SMAP is qualified character type, the
address sort in RSS is bypassed and the
table is printed alphabetically.

The symbols and addresses are returned
to DUMP/DISPLAY as follows:

data symbol blanks| address blanks

length 8 1 8

o e e e)
T T——
o e e
s
b e nds e sl

where length is the number of charactexs.

Five groups of 20 characters each con-
stitute one formatted print line. Two
groups of 20 characters each constitute one
formatted display line.

When this module reaches the last entry
in the table in RSS, it re-sorts the symbol
table into symbol order and indicates that
the end of the table was reached by a
return code of zero. The sort by address
is performed at initial entry only. In VSS
this table may be read by every task.

If a virtual storage map is requested,
this module formats the Virtual Memory Map
Table (CHAMAP) within the Task Dictionary
Table (CHATDY). The table is arranged in
order of ascending virtual storage
addresses; sorting is unnecessary.

The formatted print or display line is
the same as described for the map of real
storage. PSECT and CSECT names are listed
in ascending order of addresses, and entry
point names are listed in the order in
which they appear within the Control Sec-
tion Dictionary, with an asterisk immedi-
ately following the address.

S$AT and $PATCH Format (CEHJF/CZHZF)

Chart 61

This routine formats print lines or display
lines, using information from the AT and
Patch Tables, when the $AT or $PATCH system
symbol has occurred as the operand of a
DUMP or DISPLAY command.

ENTRIES: This routine is called by the
DUMP/DISPLAY Commands Processor (CEHKD/
CZHYD) at CEHJFA/CZHZFA. The input parame-
ter is the address of an SCB containing $AT
or $PATCH in the symbol field. The base
field of this SCB contains the address of
the AT SVC or PATCH associated with the
input symbol.

MODULES CALLED: None.

EXITS: Exit is to the calling routine.
OPERATION: This routine determines whether
the request is for $AT or S$PATCH and refers
to the appropriate control block to obtain
the information it will use to format a

TSSS Language Processing 63

print or display line. If the input system
symbol has no control block, the entire AT
or Patch Table is formatted.

Patch: This module gets the following
information from the PCB:
1. oQualification entry

2. The address of the patch and, if qua-
lification is external, the

a. symbolic device address (2 bytes)
b. cylinder number (1 byte)

c. track number (1 byte)

d. record number (1 byte)

e. offset from beginning of record (2
bytes)

3. Address of saved data in Patch Table.

This module formats the Patch data as
follows:

r T T ¥ 1
|Storage |Patch jOoriginal |[Patched]
[Qualification |Address |Data |bata |
i 5 1 i N |

No more than one set of patch data is
printed on a line, but one patch may
require more than one print or display line
when formatted.

AT: This module gets the following infor-
mation from the ACB:

1. oQualification of the AT address

2. AT SVC location

3. ©Qualification of the AT command string
4. Pointer to the text and length of text

This module formats the AT data as follows:

f T k) (] 1
| Storage | AT SVC | Text { Command |
| Qualifi- | Address | Qualifi- | Text |
] cation |] cation | |
t F} H 3 J

No more than one set of AT data is printed
on a line, but one AT may require more than
one print or display line when formatted.

When this module completes the requested
operation it returns a code of zero. Until
then, if the format area has not been used
up, this module returns a code of eight,
requesting return of control from its cal-
ling routine.

64

STASK and $STATUS Format Routine
{(CEHJH/CZHZH)

Charts 62,63

This routine formats print lines represent-
ing the various status indicators (PSWs,
registers, etc.) associated with the
$STATUS system symbol in RSS and the $TASK
system symbol in both RSS and VSS.

ENTRIES: This routine is called by the
DUMP/DISPLAY Command Processor (CEHKD/
CZHYD) at CEBJHA/CZHZHA. The input parame-
ter is the address of an SCB containing
$TASK or (in RSS only) $STATUS in the sym-
bol field. The base field contains the
subscript value which represents a task ID
for $TASK or a CPU ID for S5STATUS.

MODULES CALLED: This module calls RSS Find
TSI (CEHCF), RSS Real Core Access (CEHCA),
and VSS Real Core Access (CZHPA).

EXITS: Exit is to the calling routine.
OPERATION: The input SCB is examined to
determine the type of command being
executed. If the command is not DUMP, an
error return is made to the caller. For a
dump request, the input symbol is tested
for $TASK or $STATUS (RSS only).

For the RSS $TASK case, the subscript
value located in the base portion of the
SCB is tested for zero. The pointer to the
current TSI is fetched from the RSS Status
Save Area. If the subscript is not =zero,
the RSS Find TSI routine is called to get
the TSI address for the task ID. The TSI
is examined to determined if the XTSI has
been "swapped ocut.®” If it has, a call is
made to RSS VM Access (CEHCB) with a code
of X'DD"'" to read the XTSI into a buffer
(CEHCAT). The header portion of the XTSI
is then copied into an area of working
storage. If the XTSI was not “"swapped
out,™ RSS RM Access is called to get the
XTs1, and the XTSI header is copied into
working storage. Next, the task®'s ISA is
fetched via RSS RM Access (CEHCA), and for-
matting begins.

In formatting, data is converted to
printable characters and labeled. The data
that is formatted and the source of the
data are as fcollows:
e Task ID, User ID, TSI: from the TSI

e Task's current PSW, general control and
floating-point registers, XTSI: from
the XTSI

e 0Old virtual PSWs: from the ISA

In the case of RSS $STATUS, the sub-
script value in the base portion of the

input SCB must be 0, 1, or 2. If it is not
one of these values, an error return is
made to the caller. If the subscript value
is 0, the primary Status Save Area is used
as the source of the data. If the sub-
script value is 1 or 2, the ID of the CPU
in which RSS is active must be determined.
If the CPU ID in the subscript matches the
ID of the active CPU, the primary Status
Save Area is used. If the IDs do not
match, and the system is not in duplex
mode, an error return is made to the call-
er; otherwise, the secondary Status Save
Area is used.

Once the Status Save Area is determined,
the TSI pointer in it is retreived and the
corresponding XTSI is fetched as described
above. Formatting is then performed for
the following fields:

e Task ID, CPU ID, current PSW, all old
PSWs, CAW, CSW, general, control, and
floating-point registers: from the
Status Save Area

e TSI and XTSI: as located

For the VSS $TASK case, the task's cur-
rent TSI is fetched by locating the PSA
using VSS Real Core Access (CZHPA), taking
the current TSI pointer from the PSA and
fetching the TSI by means of VSS Real Core

Access. Formatting is then performed for

the following fields:

e The task's current VPSW, all old VPSHWs,
general, control, and floating point
registers, task ID: from the VSS Sta-
tus Save Area

e User ID and the TSI: from the TSI

The XTSI is not included in the VSS $TASK
output.

REMOVE Command Processor (CEHKR/CZHYR)

Chart 64

The REMOVE command allows the system pro-
grammer to (1) delete any AT SVC he has
implanted with the AT ‘command and restore
the original instruction, or (2) restore
the original data in any data field pre-
viously patched with the PATCH command.
This module manipulates the AT or Patch
Tables accordingly.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS) which calls it at CEHKRA/CZHYRA. It
is also called by the DISCONNECT Command
Processor (CEHKM/CZHYM) and the AT SVC Pro-
cessor (CEHJA/CZHZA).

MODULES CALLED: This module calls RSS Real
Core Access (CEHCA), RSS VM Access (CEHCB),
VSS Real Core Access (CZHPA), VSS VM Access
(CZHPB), and I/0 Control (CEHEA/CZHSA) as
required by the qualification of the SCB to
locate and make available the requested
page.

EXITS: Exit is to the calling routine.

OPERATION: If the input data is valid,
this module determines whether the removal
of an AT or patch is requested.

If the SCB specifies $AT, this module
determines the page upon which the
implanted AT is located and has it brought
into storage by one of the storage access
methods.

This module locates the AT Control Block
(ACB) and replaces the implanted AT SVC
with the original instruction. If the SCB
described a specific AT (for example,
REMOVE $AT.XYZ), this module causes the
page to be restored and, after removing the
ACB, returns control to the calling rou-
tine. If SAT was not accompanied by a pa-
rameter, this module repeats the removal
process until all ATs described in the sys-
tem programmer‘'s AT Table have been
removed. In VSS, it also searches the
Global AT Table, removing all those global
ATs whose ACBs contain the TSP's task
identification.

Note that with RM qualification, the AT
or ATs are assumed to be recorded by ACBs
in the MSP AT Table.

If, in VSS, this module is requested to
remove an AT in real storage, it builds a
command string from the input command
string, and implants and remotely executes
an SVC 70, requesting that RSS perform the
REMOVE function for a specific AT SVC in
real storage. If the address of the AT SVC
is not supplied, RSS will reject the REMOVE
request, since VSS cannot request by
default the removal of all AT SVCs and
their corresponding ACBs from real storage
and the MSP's AT Table. A sample command
string to accompany the SVC 70 appears as
follows:

QUALIFY $RM(x); REMOVE S$AT.L'1000°

where x is 0, 1, or 2.

The removal of all ATs implanted by a
specific SP, except those in real storage,
for a TSP is the process requested by the
DISCONNECT Command Processor when it calls
this module. If an error is likely in the
AT SVC processing, CEHJA/CZHZA calls this
module to remove the erroneous AT SVC.

TSSS Language Processing 65

If the SCB specifies $PATCH, this module
acquires the page containing the patched
data field and removes the Patch Control
Block (PCB). If the SCB describes a spe-
cific patch, this module causes the page to
be restored, using the same storage access
method, and returns control to the calling
routine. If the SPATCH was not accompanied
by a parameter, this module repeats the
removal process until all patches described
by the SP*'s Patch Table have been removed.

This module executes the error proce-
dures under the following conditions:

Undefined symbol
Invalid REMOVE operand

Wrong number of operands

CALL and END Commands Processor
(CEHKL/CZHYL)

Chart 65

The function of the CALL command is to
respecify the symbolic address of the TSSS
input device in order to cause the reading
of a prestored set of TSSS statements from
cards or tape. The function of the END
command is to define the end of a set of
TSSS statements invoked by a CALL command
and to restore the original symbolic device
address of the TSSS input device.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS) which calls it at CEHKLA/CZHYLA
(CALL) and CEHKLB/CZHYLB (END).

MODULES CALL.ED: None.

EXITS: Exit is to the calling routine.
OPERATION:
CALL: The input SCB contains the address

of the device to be specified as the system
input device, with a designation of the
type of literal. If the literal type is a
character, it specifies a symbolic address.
Any other designation is the actual
address. This module respecifies the pri-
mary input device in the Input Device Table
(maintained by Language Control) by insert-
ing the designated address in the first
word of the table and setting the called
device flag (LCRCAL) on.

END: The END routine reverses the work of
the CALL command. This module restores the
original symbolic device address of the
TSSS input device by referring to the
second word of the Input Device Table.

66

Both CALL and END routines exit to Scan
Control with a return code of 4, with no
message specified. This return code causes
interruption of the scamn and the system
programmer is asked for more input, except
in AT mode, when a RUN command is implied
by the execution of END. In the case of
the CALL command, Language Control {(CEHIC/
CZHXC) causes the called device to be read
without inviting input.

DISCONNECT Command Processor jCEHKM/CZHYM)

Chart 66

This module disconnects the MSP or TSP from
a terminal for which RSS or VSS, respec-
tively, has been activated. The DISCONNECT
command is a means by which the system pro-
grammer returns control to TSS/360.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKMA/CZHYMA.

MODULES CALLED: This module calls the
REMOVE Command Processor (CEHKR/CZHYR) to
remove all ATs implanted for the system
programmer who issued the DISCONNECT
command.

EXITS: Exit is to Scan Control.
OPERATION: This module simulates a REMOVE
SAT command, in that it builds an SCB con-
taining $AT in the symbol field, and calls
the REMOVE Command Processor, using this
SCB as a parameter. On return of control,
this module restores the original symbolic
device address for the TSSS input device
(the END function) in the Input Device
Table. The module also reinitializes the
pointers in the SP Symbol Tables.

This module exits to Scan Control with a

return code of 12, which indicates the suc-
cessful processing of a DISCONNECT command.

STOP Command Processor (CEHKT/CZHYT)

Chart 67

The execution of a STOP command discon-
tinues the current scan by Scan Control,
and resets the AT mode switch from AT mode
to conversational mode.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKTA/CZHYTA.
The input parameter is the address of the
working SCB list.

MODULES CALLED: None.

EXITS: Exit is to Scan Control.
OPERATION: The working SCB list contains
noc SCBs. This module resets the AT mode
switch in the Status Save Area, reverting
from AT mode.

If STOP is correctly used, this module
returns to Scan Control with a return code
of 4 and no message specified. As a
result, the current scan is discontinued,
and Language Control (CEHBLC/CZHXC) requests
additional input and reads the input
device. In CALL mode the STOP command ter-
minates the call, and requests input from
the terminal.

RUN Command Processor (CEHKN/CZHYN)

Chart 68

The execution of the RUN command causes
TSS/360 operation to resume, either where
interrupted or at a specified address.

ENTRIES: This module is a keyword execu-
tion subroutine of Scan Control (CEHLS/
CZHXS), which calls it at CEHKN/CZHYN.

MODULES CALLED: None.

EXITS: Exit is to Scan Control.

OPERATION: The working SCB list contains
either none or one SCB. If one, this
module computes the address at which TSS/
360 is to regain control (base plus point-
er) and imnserts it in the "current® PSW
(that is, the old PSW, in RSS, or the cld
VPSW, in VSS, stored when TSSS gained con-
trol). No attempt is made to verify the
instruction address. This module restores
the original symbolic device address of the
TSSS input device whether TSSS is in call
mode or not. If RUN has an operand, in RSS
it turns off the "wait state bit"™ in the
current PSW.

This module exits to Scan Control with a
return code of 8 in order to indicate that
a RUN command has been successfully pro-
cessed. If the input SCB is undefined, or
the SCB count is greater than one, this
module executes the error return
procedures.

TSSS Language Processing 67

TSSS I/0

INTRODUCTION

The TSSS Input/Output routines are con-
ceptually identical for RSS and VSS. All
synchronous I/0 operations are performed
serially and the I/O system maintains con-
trol until the requested 1I/0 operation has
been completed. In RSS, the entire TSS/360
operation waits. (TSS/360 has been halted
as a part of the RSS activation process.)
In VSS, the associated task waits, but the
remainder of TSS/360 executes normally,
since the VSS 1I/0 operation is handled at
the hardware interface level by the TSS/360
resident supervisor.

In this discussion, the modules that
process I/0 requests without need for error
handling are described first. Those
modules that perform error recovery manage-
ment are described separately as an 1I/0
subsystem. (See Figure 21 for the normal
flow of TSSS I/0 processing. For the gen-
eral logic flow of the I/0 Error Subsystem,
see Figure 22.)

NORMAL PROCESSING

The I/0 Control module provides the
interface between each routine requesting
I/0 operations (called the I/0 calling rou-
tine), and the I/0 system. The I/0 calling
routine requests a specific operation
through the parameters it passes to I1/0
Control in the TSSS Input/Output Reguest
Control Block (SIORCB). By initializing,
changing, and completing fields of the
SIORCB, and by passing a pointer to it as a
parameter, the I/0 modules communicate
between themselves on the state of the 1I/0
operation. Aside from the RSS Loader's
separate copy, only one copy of the SIORCB
is required for RSS; only one is required
for Vss. (The SIORCB is completely
described in Appendix C.)

From the parameters in the SIORCB, I/0
Control determines which TSSS access method
-- console, direct access device, sequen-
tial, or telecommunications —-- will service
the request. The chosen access method
builds a channel program for the request
and links to I/0 Initiation (CEHEB for RSS,
CZHSB for VsSS).

RSS initiates the I/0 operation direct-
ly, issuing the Start I/0 instruction, and
RSS 1I/0 routines process the resulting
interruptions. VSS initiates I/0 by build-
ing a TSS/360 1I/0 Request Control Block
{IORCB) from the input SIORCB and then

68

issuing the IOCAL system macro instruction.
TSS/360 performs the I/0 operation, and the
TSS/360 supervisor gueues the resulting
interruptions for the task, whose VSS 1I/0
routines process them.

RSS I/0 Completion receives control from
RSS I/0 Initiation after the latter has
checked for a successful start of I/0. RSS
170 Completion enters a wait loop pending
receipt of the interruption that will sig-
nal termination of the operation, altern-
ately enabling and disabling interruptions
from the channel. Only device end ter-
minates the loop. VSS I/O Initiations
Posting receives control when its next time
slice occurs, if TSS/360 has recognized and
queued a VSS I/0 device end interruption.
From the information stored in the ISA by
TSS/360, VSS Initiation/Posting posts the
results of the I/0 operation in the SIORCB
and exits to RSS/VSS I/0 Completion.

When the I/0 Completion routine pro-
cesses the I/0 interruption, it returns
control to the routine that requested the
I/0 operation with notification of success-
ful 1I/0 Completion, or, if an error condi-
tion exists, it links to the error recovery
subsystem. The 1I/0 calling routine eventu-
ally receives notification via a return
code in register 15 of the status of the
1/0 operation. If the return code is non-
zero, a message control word is passed in
register 0.

Return Code Meaning
0 Successful completion of

I/0 operation

4 Irretrievable 1/0 error or SP
Attention received

8 TSSS system logic error
12 Invalid input
16 Unit exception, (end of file)

Attributes and Characteristics

All of the TSSS 1/0 routines are reent-
erable and non-recursive. The RSS version
execute in supervisor state with DAT
active; the I/0 routines' residency is
specified within each module description.
VSS copies reside in the task's Initial
Virtual Memory and execute in privileged
mode. In the area of normal processing
there are no modules treated as subroutines
or "modules called.”

1/O Calling

(This Figure is an Routine

expansion of a

block in Figure 10.)
1/O Control return

to calling routine

/O Control

The Access Methods:

Direct Access Device
Console 1/O

Sequential Access Device Editor
Telecommunications

This path may

mean return to

{CAM and TAM, only,
call the Editor)

(This block is expanded
in Figure 22.)

either an access
method or the
|/O Editor.

1/O /O Initiation

Error
Recovery
Subsystem

If "return to
access method"
If an error occurs flag is on.

1/O Completion

If "error routine in
control" flag is on.

/0
Calling Routine

Successful 1/0O; no
flags are on,

Legend: Mainline TSSS 1/O Processing

Linkage to and from the 1/0
Error Recovery Subsystem

Figure 21. Overview of TSSS I/0 processing

TSSS I/0 69

RC =4SP Attention

RC =8 System Logic Error The

The I/O Caller

Successful 1/O

Message
Routines

1 /O Control returns
to calling routine
on error.

Perform all
non-device
dependent
error recovery

Unrecoverable 1/O Error

1/O Control

SCAN on

Required’

RC=0

"Return to

access method"
The flag is on

Access

Methods

Retry 1/O and
attempt recovery

Error
Routine in
Control

Yes

1/O Initiation

ERROR
SCAN |

THE 1/O ERROR
RECOVERY ROUTINES

Successful /0,

"error routine in
control" flag is on

1/O Completion
p (This Figure is an

expansion of a
block in Figure 21.)

Error Condition Exists

Legend:
Lines originating from the double-lined box indicate that any of the
1/O Error Recovery Routines may make such a call. Dotted lines

show rudimentary mainline 1/O processing.

Figure 22. Overview of the TSSS I/0 error recovery system

70

From ERROR

'Intervention

RSS/VSS 1/0 Control (CEHEA/CZHSA)

Chart 69

I/0 Control acts as the interface between
the I/0 user (calling routine) and the I/O
system. It determines which access method
will service the I/0 request and links to
it.

ATTRIBUTES: The RSS copy of this module is

resident.

ENTRIES: This module has two entry points:

CEBEAA/CZHSAA - Used for normal entry from
I/0 user routines.

CEHEAB/CZHSAB - Used by I/0 Initiation or
by an error recovery rou-
tine when a permanent I/0
error has been detected.

EXITS: A normal exit is to one of the

access methods, as requested by the parame-
ters in the SIORCB:

Direct Access Device

Method CEHFA/CZHTA
console Access Method CEHFB/CZHTB
Sequential Access Method CEHFC/CZHTC
Telecommunications Access

Method CEBRFD/CZHTD

Under error conditions, exit is to the I/0

calling routine.

OPERATION: I/O Control establishes a
pointer to the SIORCB to be used as input
to the I/0 system, getting the pointer from
the I/0 calling routine's save area. I/0
Control then initializes the system in
order that it will be serially reusable.

If the input data fields in the SIORCB are
valid, it uses the symbolic device address
(ECWASDA), passed by the calling routine,
as a search argument for the TSSS Device
Allocation Table (SSDAT). It moves the
SSDAT entry into the SIORCB (ECWAGDE) and
sets the pointer to the proper SADT entry.
It then exits to the access method indi-
cated by the device-defining information in
the SSDAT.

The following error conditions cause
this module to format a message control
word in register 0 and return control to
the 1I/0 calling routine with a return code
of 12.

Invalid data in the SIORCB

No SSDAT entry found for the input data

No physical path exists

Device not supported

Invalid SSDAT entry

If a permanent I/0 error occurs, this
module is called in order to try the
alternate physical path, in an effort to
bypass the error. If the alternate physi-
cal path may be used, and has not already
been tried, this module exits to the access
methods as usual. If it cannot be used,
this module exits to the 1/0 calling rou-
tine with a return code of 4, and an appro-
priate message control word, signifying
permanent I/0 error.

Direct Access Device Access Method
(CEHFA/CZHTA)

Chart 70

This module builds the channel program
required to perform the requested I/0
operation on a 2311, 2314, or 2301 direct
access device. It also initializes fields
in the SIORCB to be used by subsequent I/0
rodules.

ATTRIBUTES: The RSS copy of this module is
resident.
ENTRIES: This module is called by I/0 Con-

trol (CEHEA/CZHSA) at CEHFAA/CZHTAA.
parameters are in the SIORCB.

Input

EXITS: DNormal exit is either to RSS or VSS
I/70 Initiation (CEHEB or CZHSB), depending
on the mode. If invalid input is encoun-
tered, this module returns to the 1I/0 cal-
ling routine.

OPERATION: If the input in the SIORCB is
valid, this module determines if the I/0
request is a Read Track Format. If it is,
this module uses the input in the SIORCB to
create a CCW list containing a Seek, Set
File Mask, Read HA, Read RO, and 41 Read
Count CCWs. This module initializes the
first byte of the I/0 calling routine's
buffer with a X'29"' (decimal 41) to show
that #1 Read Counts are to be attempted.
The channel program causes the counts of
all the records on the track (up to a maxi-
mum of 41 records) to be read into the data
area specified in the input parameters.

If the request is not Read Track Format,
this module uses the input parameters to
build a C€CW 1list in the SIORCB to accom-
plish the requested I/0 operation. On a
Read request, if the "skip"™ flag is on in
the SIORCB, a CCW is built to skip the
number of doublewords listed in ECWASLEN
before beginning a read. This routine
stores the address of the first CCW to be
executed in the CAW field of the SIORCB
(ECWACAW), initializes pointers to the
first and last CCWs in the chain, and exits
to I/0 Initiation.

TSSs 170 71

The following error conditions cause
this routine to restore the user's stored
information, format a message control word,
and return control with a code of 12 to the
I/70 calling routine.

Invalid operation code in SIORCB
(ECWAOPCD)

Invalid data length specified in SIORCB
(ECWALEN) for Read Track Format

Specified device is not a 2301,
2314 direct access device

2311, ox

Console Access Method (CEHFB/CZHTB)

Chart 71

This module creates the channel program
required to -perform a requested 1I/0 opera-
tion on a 1052-7 Printer-Keyboard (commonly
called the console). It also initializes
fields in the SIORCB to be used by other
I/0 modules.

ATTRIBUTES: The RSS copy of this module is
resident.
ENTRIES: This module is called by I/0 Con-

trol (CEBEA/CZHSA) at CEHFBA/CZHTBA.

EXITS: Exit is normally to I/0 Initiation
({CEHEB-CZHESB). If an error is detected,
this module exits to the I/0 calling
routine.

OPERATION: If the input in the SIORCE is
valid, this module uses it to build CCWs in
the SIORCB to perform the requested I1I/0
operation. It stores the address of the
first CCW to be executed in the CAW field
of the SIORCE (ECWACAW).

If the request is for a read, this
module sets the "return to access method"
flag on in the SIORCB (ECWARTAM) and stores
the address of the I/0 Editor in the SIORCB
{ECWARAM) .

If the request is for a write, and the
records are blocked, the length in the CCW
will be the logical record length. This
module initializes pointers to the first
and last CCWs in the chain.

This module executes the error return
procedures (return code.12) under the fol-
lowing conditions:

Invalid operation code

Invalid length specified

72

Channel program too long

Sequential Access Method (CEHFC/CZHTC)

EXIT:

OPERATION:

Chart 72

This module builds the channel program
required to perform an I/0 operation on a
sequential device (card reader, printer,
tape drive) as requested by the input para-
meters in the SIORCB.

ATTRIBUTES: The RSS copy of this module is
nonresident.
ENTRIES: This module is called by I/0 Con-

trol (CEHEA/CZHSA) at CEHFCA/CZHTCA.

Exit is normally to I/0 Initiation
(CEHEB-CZHSB). Under error conditions,
this module returns to the 1I/0 calling
routine.

If the input parameters are
valid, this module builds CCWs in the
SIORCB to perform the requested I/0 opera-
tion. It stores the address of the first
CCH to be executed (ECWACCWS) in the CAW
field of the SIORCB (ECWACAW) and initial-
izes pointers to the first and last CCWs in
the chain.

If a request is for printing or writing
tape and if a blocking factor is present,
this module builds a list of CCWs instead
of a single CCHW.

If the request calls for a tape drive,
and the tape is seven-track, this module
builds a mode set CCW from information pro-
vided by the I/0 calling routine in ECWA-
MODE and places it in the CCW list in the
SIORCB. If the request is for a Read and
the "skip®" flag is on in the SIORCB, this
module creates a CCW to skip the number of
doublewords requested (ECWASLEN).

Under the following conditions this
nodule executes the error return procedures
(return code 12}).

The requested device is not a card read-
er, printer, or tape drive.

An invalid operation code was received
for the requested device.

An invalid forms motion byte was
received from the printer.

The Read data length exceeds 256 bytes.

The channel program exceeds allowable
length.

Telecommunications Access Method
(CEHFD/CZHTD)

Charts 73,74

This module builds the channel program to
perform an I/0 operation on those devices
supported by 2702 Transmission Control
(1051, 1056, 1052, 2741, or Teletype Model
33 or 35 KSR terminal), from the input
parameters passed to it in the SIORCB.

ATTRIBUTES: The RSS copy of this module is
nonresident.
ENTRIES: This module is called by I/0 Con-

trol (CEHEA/CZHSA) at CEHFDA/CZHTDA.

EXITS: Exit is normally to RSS or VSS I/0
Initiation (CEHEB, CZHSB). If an error
occurs, this module returns control to the
I/0 calling routine.

OPERATION: If the input parameters are
valid, this module use:s the information in
the SIORCB to create a channel program in
the SIORCB to perform the 1/0 operation.
This module stores the address of the first
CCW to be executed in the CAW field of the
SIORCB (ECWACAW), turns on the "return to
access method"™ flag (ECWARTAM), and sets up
a reentry address in a field of the SIORCB
(ECWARAM) . This module initializes poin-
ters to the first and last CCWs in the
chain. The “"issue Halt I/0 sequence™ mask
is set on in the SIORCB (ECWATS).

Before a write instruction can be
initiated, this module translates the out-
put data to convert the EBCDIC characters
to the appropriate device standard charact-
er codes.

On reentry, after a successful comple-
tion of the requested 1I/0 operation, this
module creates a channel program to issue a
PREPARE command against the terminal, if
the mode is RSS and the original request
was Write. It stores the address in the
CAW field, turns off the "return to access
method” flag, turns on the "no interruption
expected” flag in the SIORCB, and exits to
170 Initiation. The terminal is always
left in a "prepared™ state, so that the MSP
is not locked out. In VSS, if the original
request was write, this module returns
directly to the I/0 calling routine, since
the Prepare command was chained to the ori-
ginal channel program by VSS I/0
Initiation.

On reentry from a Read instruction, in
RSS this module goes to the I/0 Editor,
which translates and edits the data read
and moves it into the I/0 calling routine's
buffer before creating the channel program
for the Prepare. In VSS this module merely
exits to the I/O Editor. This module

executes the error return procedures
(return code 12) under the following
conditions:

The requested device is not attached to
a 2702 Transmission Control.

The operation code specified in the
SIORCB (ECWAOPCD) is invalid for the
requested device.

Data length of a write request is not
greater than one.

For a read request, the specified data
length exceeds 256 characters.

The channel program is too long.

I/0 Editor (CEHFE/CZHTE)

Charts 75,76

If this module is called following a read
operation, it edits the input, taking the
action requested by the data within the
input stream. If called by TAM it may also
translate device standard character codes
to EBCDIC.

ATTRIBUTES: The RSS copy of this module is
nonresident.
ENTRIES: This module is called by I/0 Com~

pletion when the following three conditions
occur:

No errors occur during I/0O processing.

The “"return to access method"™ flag is on
in the SIORCB.

The return address in the SIORCB is the
address of this module.

The Console Access Method (CEHFB/CZHTB)
turns on this flag and provides the Edi-
tor's address. This module is called by
the Telecommunications Access Method when
the operation requested is a read.

EXITS: This module exits in three possible
ways:
Destination Reason . for Exit

I/0 Initiation
(CEHEB, CZHSB)

The continuation
sequence occurs, or if
there is a "cancel", to
issue an additional
read.

Telecommunications TAM was the access

Access Method method in control and

(CEHFD/CZHTD) return is via the
address in the SIORCB
(ECWARAM) .

TSSs 1I/0 7.

Neither of the
above is true.

The I/0 Calling
Routine

OPERATION: If the Teleccmmunication Access
Method was in control, this module trans-
lates the input data from device type stan-
dard character codes to EBCDIC on a read.
If the I/0 request occurred in call mode
(the call flag, ECWACAL, is on in the
SIORCB), no edit is necessary. (In call
mode, the 1056 Card Reader is the input
device.}

Ctherwise this module performs the edit
function, removing all nonprintable charac-
ters. The following characters, or
sequence c¢f characters, require special
action. The "pound sign™ (#) is treated as
a backspace character and is interchange-
able with "backspace®™ on a 1052-7 only. On
all other devices it is recognized as a
character literal. The "left arrow" (<)} is
treated as a backspace character and is
interchangeable with "backspace™ on the
Model 33 or 35 KSR Teletypewriter.

Backspace: This module deletes the
backspace and the preceding character,
unless backspace is the first character
in the terminal read-in area, in which
case only the backspace is deleted.

Backspace, carriage return: This module
deletes all data read on the current
read instruction, up through carriage
return. If no good characters remain,
this module issues another Read instruc-—
tion. If good characters remain, the
edit is performed on them.

Hyphen, carriage return: These charac-
ters at the end of a line indicate con-
tinuation. This module deletes end-of-
block and issues another Read. Using
the hyphen provides the capability of
reading up to 256 characters in one lin-
kage to the 1I/0 system.

Following completion of its task, this
module exits according to the "Exits"™ sec~
tion of this description (see also Charts
75 and 76).

RSS I/0 Initiation (CEHER)

Chart 77

RSS I/0 Initiation converts virtual storage
addresses in the CCWs and the CAW to real
storage addresses, issues the Start I/0
Instruction, and checks for a good start.
ATTRIBUTES: This module is resident.
ENTRIES: This module is called by the RSS
access methods, error recovery modules, and
Exror Scan and Recovery (CEHGE) at CEHEBA.

74

The TSS External Machine Check Interrupt
Processor uses the entry points CEHEBB
(Start 1/0), CEHEBC (Test I/0), and CEHBD
{Halt I/0) in oxder to test the actual
instructions.

EXITS: A normal exit is to RSS I/0 Comple-
tion (CEHHA). On the occurrence of a hard-
ware failure, exit is to a special entry
point within I/0 Control (CEHEAB).

If a Load Real Address fails, control is
passed to the I/0 calling routine with a
message control word in register 0 and
return code 12 in register 15. If the "no
interruption expected"” flag is on in the
SIORCB (ECWANIE), return is to the calling
routine with return code zero in register
15.

OPERATION: This module retrieves the chan-
nel address word (CAW) from the SIORCB and
stores it in location X°48°', unless the
modified CAW flag (ECWAMCW) is set in the
SIORCB. If that flag is on, this module
creates the CAW from the ECWAACAW field.
After reconstructing the CCWs, this module
initializes the pointer to the SIORCB in
the SADT entry, pointed to by ECWASAPT, and
turns on the appropriate flags. If
requested, this module issues the "terminal
Halt I/0% instruction before executing the
Start I/0 instruction.

The SIO instruction causes the condition
code to be set. If the I/0 Initiation is
successful (condition code zero), this
module exits to I/0 Completion.

If the condition code is one, the Chan-
nel Status Word (CSW) has been stored.
This module tests the CSW for the source of
the condition code. If the CSW was stored
as the result of a TSSS operation, this
routine determines if the stored CSW
belongs to TSS/360 or TSSS. If it does not
belong to TSSS, this module simulates an
interruption to TSS5/360. When this module
regains control, it reissues Start I/0. If
the stored CSW belongs to TSSS, this module
moves the stored CSW into the SADT, turns
the "CSW stored on SI0®" flag on, and exits
to I/0 Completion.

If the condition code is two, the chan-
nel is busy. This module enables and then
disables interruptions for that channel,
and reissues the SIO instruction.

If the condition code is three, the har-
dware is not operational. The module
creates a message control word and exits to
a point within I/0 Control (CEHEAB).

VSS I/0 Initiation/Posting (CZHSB)

Charts 78,79

This module creates an IORCE as input to
TSS/360 and starts I/0 for VSS via the TSS/
360 IOCAL system macro instruction. On the
occurrence of a synchronous interruption
from the device, this module analiyzes the
status data as stored in the Interrupt
Storage Area (CHAISA) and takes the appro-
priate action.

ATTRIBUTES: This module exists only in

VSsS.

ENTRIES: This module is entered at:

CZHSBA If normal processing, from one of
the access methods; if retry is in
progress, from one of the error
recovery routines.

CZHSBB If a synchronous interruption
occurs, from the TSS/360 Queue
Scanner.

CZHSBC If a code X'"30' program check

occurs, from the VSS Program
Interrupt Processor (CZHNP).

All input required by this module is in the
SIORCB.

EXITS: There are three possible exits from
this module.

Destination Reascn for Exit
1/0 Control SIO cor HIO failed.
(CZHSRA), secon-

dary entry
point (CZHSAB)

170 calling System logic error or

routine device not allocated to
task.

I/0 Ccompletion All other conditions.

(CZHVAR)

OPERATION: This module uses the SIORCB to

create an IORCB, which consists of a fixed
section of flags and pointers, a variable
size page list, and a variable size CCW
list. This IORCB, in conjunction with the
IOCAL macro instruction, causes TSS/360 to
queue an 1I/0 request for VSS.

If any special flags are on in the
SIORCB, the corresponding flags are turned
on in the IORCB. The delivery address for
the resulting I/0 interruption is set to
the secondary entry point within this
mnodule for delivering interruptions
(CZBSBB). This module then issues the
IOCAL macro instruction, and forces time-
slice end until interrupted by TSS/360.

If the Telecommunications Access Method
built the channel program, this module con-
structs a Prepare CCW and chains it to the
original channel program.

Upon entry at CZHSBB, as the result
the synchronous interrupt, this module
examines the information stored in the
by TSS/360 to determine the success or fai-
lure of the I/0 operation. This informa-
tion includes the SIO condition code, the
TIO condition code, and the CSW. This
module exits accordingly.

of

IsA

When the VSS Program Interrupt Processor
(CZHNP) encounters a program check caused
by an attempt to perform I/0 on an unavail-
able device (Code X*30'), it calls this
module at CZHSBC. This module sets its
return parameters to indicate invalid input
(return code = 12) and returns control to
the I/0 calling routine.

RSS/VSS 1/0 Completion (CEHHA/CZHVA)

Chart 80

This module waits for and processes the
synchronous I/0 interruption, analyzes the
resulting CSW, and, if necessary, links to
Error Scan and Recovery.

ATTRIBUTES:
is resident.

The RSS version of this module

ENTRIES: This module is called by 1I/0
Initiation and, under certain conditions,
by the error recovery modules at CEHHAA/

CZHVAA. Input parameters are in the
SIORCB.
EXITS: There are four possible exits from

this module.

Destination Reason for Exit
Exrror Scan and An error exists.
Recovery

(CEHGE)

One of the error The "error route in
routines control®™ flag is on.
One of the The "return to access

access methods method” flag is on.

The I/0 calling
routine

None of the above is
true.

OPERATION: In RSS, if the CSW was not
stored at Start 170, and if the "interrup-
tion received” flag in the SADT is not on
and if the SERR AUX queue is empty, this
module waits for a device end interruption,
by enabling and then disabling the appro-
priate channel. In VSS this module

TSSS 170 75

does not receive control until the "interxr-
ruption received®" flag is on. When the CSW
is stored as a result of device end, or if
the CSW was stored at Start I/0, this
module analyzes it. If an error condition
exists, this module exits to the Error Scan
and Recovery module (CEHGE). If not, it
exits as described above under "Exits”.

In RSS, if there is data in the SERR AUX
queue, CEHHA checks the RSS active flag in
each SERR AUX gqueue. If the flag is on,
the queue is checked for CSW and sense
information; if such information is pres-
ent, the data is moved into the RSS work
areas and processing continues as in the
preceding paragraph.

THE I/0 ERROR RECOVERY SUBSYSTEM

If the I/0 Completion routine detects an
error it links to the error recovery sub-
system to attempt a retry of the operation
that caused the error. (The error recovery
subsystem is shown in Figure 22.) The
interface module within the error recovery
subsystem is RSS/VSS Error Scan and Reco-
very (CEHGE/CZHUE). This routine deter-—
mines if a given error is device dependent
or independent.

If the error is device dependent, Error
Scan invokes the appropriate error recovery
module, providing it with the necessary
information to initiate error recovery pro-
cedures (for example, sense datal). The
number of retry attempts depends on the
type of error encountered. There are four
error recovery modules, corresponding to
the four access methods:

s Direct Access Device Error Recovery
{CEHGA/CZHURA)

e Console Access Device Error Recovery
(CEHGB/CZHUB)

e Sequential Access Device Error Recovery
(CEHGC/CZHUC)

e Telecommunications Access Device Error
Recovery (CEHGD/CZHUD)

If the error is device-independent,
Error Scan and Recovery attempts the recov-
ery. If the error is corrected, the error
recovery subsystem returns control directly
to the I/0 calling routine in language or
environment or to the access method if the
"return to access method" flag is on.

The error recovery modules may be reen-
tered at several points during error recov-
ery. The reentry points within the error-
recovery modules are not referred to by
external symbolic names. The reentry
addresses are stored in the SIORCB by the
particular error recovery module, depending

76

upon which error it is processing. When
Error Scan and Recovery reenters one of the
error-recovery modules, it uses this field
from the SIORCB (ECWARTN) as a branching
address.

RSS/VSS Erxor Scan and Recovery

(CEHGE/CZHUE)

Charts 81,82,83

This module identifies the error associated
with an I/0 request, and initiates error
recovery. If the error is device-
dependent, this module invokes device-
dependent error-recovery routine, providing
it with the information needed to recover
{for example, sense data, filled-in
SICRCB)Y. If the error is device indepen-
dent, this module attempts recovery.

ATTRIBUTES: The RSS copy of this module is
resident.
ENTRIES: This module has five entry

points.

Reason of Use

I/0 Completion enters Error
Scan whenever it detects an
error.

Entry Point
CEHGEA/CZHUEA

CEHGEB/CZHUEB Unit exception occurs on

card reader cor tape drive.
CEHGEC/CZHUEC Intexrvention regquired on
any device.

“"Error Scan
Reentry
Point One"™

When an error-recovery rou-—
tine sets the “error rou-
tine in control®™ flag in
the SIORCB, it also pro-—
vides an error routine
return address. If this
flag is on when Error Scan
is entered at CEHGEA/
CZHUEA, this module exits
to the error routine's
address in the SIORCB,
which may be this entry
point within Exror Scan
itself. Entry may also be
at this point if I/0 retry
is successful and 170 Com-
pletion finds the "error
routine in control®™ flag
on.

"Eryor Scan
Reentry
Point Two"

This module sets up this
reentry point before exit-
ing to I/0 Initiation to
issue a Sense instruction.
It turns on the "error re-—
covery in control® flag and
is entered here from I/0
Completion if the operation
is successful.

r

|

|
I
|

|

T h] T T 1

| Entry/Reentry | | Exit | Returnj

|Reason for Entry | Point jReason for Exit |Destination } Code |
i i 41 1 |

T T T T 1

I70 Completion	CEHGEA/CZHUEA	Error in CSW not	I70 User	18
detects error.		found. System error. !		
	1			

No error detected;	Reentry point 1	Successful I/0 retry.	I/0 User	0
Error Scan is the		"Return to access		
"Exror routine in		method™ flag is not	i	
control™.	jon.			
. * | . l e | |

I/0 Completion	CEHGEA/CZHUERA	To reissue 1I/0 request	1I/0 Initiation	[N/A
detects error.	jor to issue SENSE.]			

|Error Scan is |Reentry point 1 |RC=12, indicating |I70 Initiation |[N/A |
{routine in control; | |retry failure. Try | | |
jcalled by itself. | jagain. | | |
| | | | |

Exrror detected jReentry point 2	1. Error is device	1. Device de-	N/a	
by I/0 Completion;		dependent.	pendent error	
SENSE command has i		recovery		
been issued.		2. Error is device	2. I/0 Initia-	N/A
	independent, retry	tion		

| | counter # 0. | | |

| |3. Exxror is device }3. I/0 Control |4 |

| | independent, retry | | |

| | counter = 0. | | |

o : l l | |

|Exror indicated | CEHGEA/CZHUEA | Permanent I/0 erxror |I/0 Control ju |
|in CSW. | | (ttry alternate path). | (special entry | |
% 1 | point) { {

|All retries have | Reentry point 1 {Try alternate path. | I/70 Control |4 |
| been attempted. | i i | |
1 | | | |

|Return from SENSE |Reentry point 2 |Exrror on SENSE. |I/0 Control | & |
jcomane: | % } L
|Permanent I/0 error |CEHGEA/CZHUEA | Exror routine in |The error re- s or |
Jor retry failure. | jcontrol. | covery routines |12 |
| | | |

I/70 retry success;	Reentry points 1	Return to access	The access	0
"return to access	and 2 jmethod.	methods		
method™ flag on.				
L L L i i J

subroutine known as the Table Scan and
Error Recovery subroutine.
scans are specified by device.

The tables it
The Table

Figure 23. Entries and exits from Error Scan
EXITS: Exits from Error :Scan are shown in
Figure 23.

OPERATION: Error Scan and Recovery (or

simply "Error Scan") is never entered at
its main entry point unless an error condi-
tion exists. It determines if the error is
a channel control or interface control
check; either condition indicates an irre-
trievable error, and Error Scan gives up
control (see Figure 23). If the error is
neither of these, this routine tests the
"error routine in control" flag in the
SIORCB, exiting to the error return address
in the SIORCB if the flag is on.

If the flag is not on, this module
determines the type of device on which the
error occurred and executes an internal

Scan and Error Recovery subroutine tests
the CSW and sense data for error conditions
in accordance with the priority established
in the appropriate scan table. If Erxror
Scan does not detect an error during the
Table Scan, a major system error has
occurred. If a device-dependent error is
detected, this module passes control to a
device-dependent error routine, as deter-
mined by the Error Scan search table (see
description of the error recovery rou-
tines). All device independent errors are
handled by the error-recovery procedures in
this module.

TSSS 1/0 77

If the error is a unit exception for the
1052-7 Printer—-Keyboard, this module
returns control to I/0 Initiation for up to
5 retries. For unit exception on the 1403
printer, this module links to the Sequen-
tial Access Device Error Recovery module
{CEHGC/CZHUC}. For unit exception on a
tape drive or card reader, this module
passes control to its own entry point,
CEHGEB, to set the end-of-file return code
of 16. For all other devices, the number
of retries specified in the scan table is
attempted.

If Error Scan detects a unit check, it
saves the original request®s information in
the SIORCB itself and modifies the SIORCB
to execute a Sense instruction, turns on
the "error recovery in control”™ flag,
inserts its second reentry point in the
SIORCB as the error routine return address,
and exits to I/0 Initiation. When control
returns, if the SENSE is unsuccessful,
Error Scan exits accordingly. If the SENSE
is successful the Error Scan processing
continues.

As part of error recovery, Error Scan
gets the retry count frowm the Scan Table,
turns on the "error routine in control®
flag, inserts its first reentry address as
the error routine's return address, sets up
the original SIORCB to reissue the original
request, and exits to I/0 Initiation.

If intervention required is the erxor,
this module passes control to its own entry
point CEHGEC. The internal subroutine at
this entry point causes a message be writ-
ten to the SP, specifying "intervention
required,™ by using two different entry
points in the RSS Message Writer routine
{CEHCM). This routine normally calls the
Message Writer at CEHCMA to write a message
to the main operator®s terminal or to the
SP terminal, as required, using entry point
CEHCMA. However, for an unrecoverable
intervention-required error, this module
calls the RSS Message Writer at CEHCMB.

If the intervention-required error
occurs on a Terminal Access Method device,
this module checks to determine if the
situation occurred on a break operation.

If it did, this module creates a channel
program to enable the device. If the
intervention~required error occurred on a
1452-7 Printer-Keyboard, this module
creates a channel program to socund the con-
trol alarm.

Error Scan regains control at its main
entry point if I/0 Completion returned a
code of 4 or 12.

Upon reentry at its first reentry point,

this module determines if the return code
is 0, 4, or 12. 1If 0, the I/0O retry has

78

been successful, and Error Scan exits ac-
cordingly. If it is 4, a permanent error
exists, and this module performs the erroxr-
exit procedure. If it is 12, the retry of
the original I/0 request failed, and unless
the retry count is now zero, Error Scan
decrements the retry count by one, and
repeats the process. If the retry count is
zero, this module performs the error-exit
procedure.

The error—exit procedure includes:

Loading a message control word in
register 0; the message is "Permanent
I/0 Error”.

Turning on the "print symbolic device
address™ flag and the "print actual
path” flag in the SIORCB.

When applicable, turning on the "print
CSW on error" flag, the "print PSW on
error®™ flag, and the "print sense info
on erxor®™ flag in the SIORCB.

Passing control to the secondary entry
point (CEHEAB/CZHSAB) in I/0 Control.

The I/0 Error Recovery Routines

These routines perform all TSSS device-
dependent error recovery. Each routine
alsc handles certain problems that are
unique to the devices for which it is
responsible. The TSSS device-dependent
error-recovery procedures are:

The error-recovery routine saves the cal-~
ling routine information from the areas of
the SIORCB that it uses foxr error recovery,
turns on the "erroxr recovery in control®
flag (ECWAERCM}, and inserts a return
address in the SIORCB. Using the informa-
tion in the SIORCB, passed to it by Error
Scan and Recovery, the error routine builds
a channel program in the SIORCB to attempt
error recovery, storing the address of the
first CCW to be executed in the CAW field
of the SIORCB. It links to I/C Initiation
{or to an access method) to try error re-
covery if necessary, then to retry the ori-
ginal request.

Upon reentry from either I/0 Completion
(CEHBA or CZHVA) or Error Scan, the error
recovery routine checks the return code. A
return code of 0 means that the I/0 has
been successfully completed, in which case
the error recovery routine may:

Restore all user information, turn off
the "error recovery in control® flag,
place a return code of 0 in register 15
to indicate successful completion, and
return either to the initial I/0 calling
routine or, if the "returmn to access

method® flag is on, to the address desi-
gnated in the SIORCB (ECWARAM).

In some cases, it builds a new channel
program and continues error recovery.

If the return code from Error Scan is 4,
a channel control check or an interface
control check has been detected, an unreco-
verable I/0 error. In this case, the rou-
tine restores the I/0 calling routine's
information, turns off the "error recovery
in control®™ flag in the SIGRCB, places a 4
in register 15, inserts a message control
word in register 0, turns on the appropri-
ate flags, and 1links to a special entry
point in I/0 Controi {CEREAB/CZHSAB) to try
the alternate path.

A return code of 12 from Error Scan
indicates a tailure for the immediate errox
retry, other than a channel control check
or an interface control check. The error
recovery routine continues error recovery,
unless the retry count is zero, in which
case it follows the procedures for return
code U.

1f a non-zero return code is received
from Error Scan during execution of I/O
that preceded the retry of the original
request, the module involved follows the
procedures for return code 4.

RSS/VSS Direct Access Device Error Recovery

request. No error recovery is required.
This module calculates how many count
fields have been read, excluding the home
address record and record 0, and replaces
the original 41 with the actual count in
the first byte of the I/0 calling routine's
buffer. It then resets the conditions,
restores the calling routine's information
and returns control to the calling routine
with zero in register 15.

I1f, however, the file protection
cccurred without the Read Track Format
operation, this module performs the proce-
dures for return code 4.

RS5/VSS Console Error Recovery
(CEHGB/CZHUR)

Chart 86

This module performs all TSSS standard
device-dependent error recovery on the
1052-7 Printer-Keyboard.

ATTRIBUTES: The RSS version of this module
is nonresident.

ENTRIES: This module is called by Error
Scan and Recovery (CEHGE/CZHUE) at:

Entry Points Reason for Entry

(CEHGA/CZHUA)

Charts 84,85

This module performs all tne TSSS device-
dependent error recovery associated with
the 2311 Disk Storage Drive, the 2314
Direct Access Storage Facility, and the
2301 Parallel Drum.

The RSS version of this module
It is serially reusable and

ATTRIBUTES:
is resident.
nonrecursive.

ENTRIES: This module is called by Error
Scan and Recovery (CEHGE/CZHUE) at:

Entry Points Reasons_for Entry

CEHGAA/CZHUAA No reccrd found
CEHGAB/CZHUAB Seek check
CEHGAC/CZHUAC Track condition check
CEHGAD/CZHUAD File protection
EXITS: Exits are defined under "The I/0

Error Recovery Routines."™

OPERATION: For all entry conditions other
than file protection, this module performs
standard TSSS error recovery. File protect
is a normal result of a Read Track Format

CEHGBA/CZHUBA Channel data check or
bus out check

CEHGBB/CZHUBB Equipment check

CEHGBC/CZHUBC Attention

EXITS: 1In the case of an Attention, this

module exits either to I/0 Completion
(CEHHA/CZHVA) or to I1/0 Initiation (CEHEB,
CZHSB); exits for all other cases are
defined under "The I/0 Error Recovery
Routines."

OPERATION: For all entry conditions other
than Attention, this module performs stan-
dard TSSS error recovery. If a control
alarm is required as part of error recov-
ery, this module sounds it before exiting.

In the case of an Attention, if the
operation was a write, this module sets on
the "asynchronous interruption received"
flag in the TSSS Active Device Table entry
(SADT). It sets the device and channel end
indicators and turns off the Attention bit
before exiting to I/0 Completion.

If the operation was a read, this module

returns control to I/0 Initiation to retry
the original request.

TSSs 1I/0 79

RSS/VSS Sequential Access Device Error
Recovery (CEHGC/CZHUC)

Charts 87,88

This module performs all the device-
dependent error recovery for the 1403-2
Printer, the 1403-N1 Printer, the 2540 Card
reader, and the 2401 Magnetic Tape Unit,
Models 1, 2, and 3.

ATTRIBUTES: The RSS version of this module
is nonresident. The module is serially
reusable and nonrecursive.

ENTRIES: This module is called by Error
Scan and Recovery at:

Entry Points
CHHGCA/CZHUCA

Reason for Entry
Noise or data check on
2400 series

CEHGCB/CZHUCB Channel data or bus out

check on 2400 series
CEBGCC/CZHUCC Unit exception or
channel 9 on the 1403-2

CEHGCD/CZHUCD Overrun or chaining
check on 2400 series
EXITS: This module exits as described

under "The I/O Error Recovery Routines.™
CUPERATION: If the operation was a read,
this module checks for noise. A noise
record is disregarded, and the original
request is reissued. For all errors other
than noise, the standard error recovery
procedures are executed.

In addition, for unit exception or c<han-
nel 9 on the printer, this module deter-
mines if all the lines have been printed.
I1f they have, this module returns to the
170 calling routines with a return code of

80

zero. Otherwise, it restarts the channel
program at the next CCW.

RS8S/VSS Telecommunications Error Recovery
{CEHGD/CZHUD)

Chart 89

This module performs TSSS device-dependent
error-recovery procedures for the devices
attached to a 2702 Transmission Control:
1051/71056/1052, the 2741 communication ter-
minal, and the 35 KSR Teletype.

ATTRIBUTES: The KSS version of this module
is nonresident. The module is serially
reusable and nonrecursive.

ENTRIES: This module is called by Error
Scan and Recovery (CEHGE/CZHUE) at:

Entry Points Reason for Entry

CEHGDA/CZHUDA Attention
CEHGDB/CZHUDB Status modifier
EXITS: If entry was for an Attention, this

module exits either to I/0 Completion
{(CEHHA/CZHVA) or to I/0 Initiation (CEHEB,
CZHSB). Other exits are defined under "The
I/0 Error Recovery Routines.”

CPERATICN: If entyy is for status modifi-
er, this module performs standard error-
recovery. If entry is for an Attention,
and the operation was a write, this module
sets the "asynchronous interruption
received™ flag in the SADT entry of the
SIORCB, turns off the Attention bit, and
turns on the device and channel end in the
SADT entxry in the SIORCB before exiting to
I/0 Completion.

1f the operation was a read, this module
returns control to I/0 Initiation to retry
the original request.

Program Logic Manual
GY28-2022-2

Time Sharing Support System

Flowcharts on pages 81-170 were not scanned.

INTRODUCTION

These appendixes provide greater detail
in certain areas than does the body of the
document. Generally, these appendixes deal
with tables and control blocks (appendixes
B through F, inclusive).

The identification in parentheses which
appears with a TSSS table name refers to
the DSECT for that table. For example, TSS
External Page Table has CHAEXT in parenthe-
sis. The following TSS/360-compatible for-
mat is used in determining CSECT names for
each table.

DSECT format is:
CSECT format is:

CHAXXX
CHBXXX

If two CSECTs exist for a single DSECT, one
each in real and virtual storage, it is
indicated as follows:

APPENDIXES

real storage CSECT:
virtual storage CSECT:

CHBxxxR
CHBxxxV

In addition, some DSECTS are represented by
two CSECTs in real storage and two in vir-
tual storage. In this case the indication
is:

primary real storage CSECT:
other rezl storage CSECT:

CHBxxXRA
CHBxXxxRB

primary virtual storage CSECT:
other virtual storage CSECT:

CHBxxxVA
CHBxxxVB

However, the name listed in this document
with the table is the DSECT, unless one of
the situations listed above occurs.

TSSS Appendixes 171

APPENDIX A: TSSS MODULE DIRECTORY

This appendix contains a list of all operating modules within TSSS in alphabetic order
by module ID. Included for each module is its module ID, its chart ID, a list of each
chart upon which it appears as a subroutine, and the modules that it calls.

¥ T T T 1
| | | Appears as a | |
| Module Name and ID | Chart ID | Subroutine on | Modules Called |
L } 4 4 d
L 4 T 1]] 1
| RSS Channel Interrupt Processor | 09 | - | None |
| (CEHAC) | | | |
¢ ¢ + + 4
| RSS I/0 Interrupt Processor | 08 { -—- | None |
| (CEHAD) | | | |
I } t + i
| RSS External Interrupt Processor | 01 | - | CEHCH, CEHCC |
| (CEHAE) | | | CEHBL, CEHLC |
| i | | CEHBU, CEHCM i
b + + t {
| RSS Program Interrupt Processor { 07 | -— | CEHBL, CEHCM |
| (CEHAP) | | | i
F { { 1 1
| TSP Asynchronous Interrupt | 25 | - | CEHCS, CEHCQ

| Processor (CEHAQ) | | | |
b t 1 : {
| RSS SVC Interrupt Processor | 10 | —_—— | CEHCH, CEHCC |
| (CEHAS) | i | CEHCQ, CEHDA |
| | | | CEHDV {
i 4 ey 4+ v
¥ . T T T 1
| RSS Disconnect (CEHBD) i 16 | -—- | CEHBU, CEALO1 |
| | | | CEAAF |
F + + + 1
| RSS Exit (CEHBE) | 18 i - | CEHBU, CEAIC !
L i 4 4 4
¥ 1 i 1 R}
| RSS Loader (CEHBL) | 05 i 01, 07 | CEHBT, CEHEA |
| | i | CEHCM |
F t + { :
RSS External Page Location { 06	06, 12, 13,	None	
Address		14, 17, 46	
Translator (CEHBT/CZHRT)			
} + + 4			
RSS Unloader (CEHBU)	17	01, 16, 18	CEHEA, CEHBT
			CEHCM !
b 4 T + :			
] RSS Real Core Access (CEHCA)	12	11, 52, 5e,	CEHBT, CEHEA
I		58, 64]
b 1 ¢ = 1			
RSS VM Access	13, 14	11, 36, 49, 51,	CEHCF, CEHBT
{ (CEHCB) | | 52, 56, 59, 61,| CEHEA

| | | 62, 64 | |
b t { + '
| RSS Inter-CPU Communications | 04 { 01, 10 | CEAIC |
i (CEBCC) | |] |
t 3 4+ 1 |
3 1 k3 ¥ |
| Find TSI (CEHCF) i 21 | 13,19,5u4 | None |
L } 4 4 |
r 1 4 T T 1
{ RSS Status Save Routine | 02, 03 | 01 | CEAMW

i (CEHCH) | | | i
t ' + ¢ t z
| RSS Message Writer {CEHCM) { 15 | o1, 05, 07, 38, CEHEA |
i | | uo0, 82 | |
L L 4 L)

172

r T T T 1
i | | Appears as a | |
| Mcodule Name and ID | Chart ID | Subroutine on | Modules Called |
i i +. 4 3
1 3 1 T T 1
| Queue VSS Interrupt | 22 | 19, 23, 24, 25,| CEALO1, CEAAF |
i (CEHCQ) | | 26, 58 | CEHCB, CEAAF2 |
b t + §— !
| RSS Interrupt Switching (CEHCS) | 20 | 19, 23, 24, 25, CEALO1, CEALO2 |
| | | 26, 54 | |
i i 4 +]
H . . T B T T 1
| Virtual Memory AT SVC Execution | 24 | - | CEHCS, CEHCQ

| Processor {CEHDA) | | | |
{ 1 4 4 y)
3 T T T 1
| VSs Exit (CEHDE) | 26 | - | CEAAF, CEHCS q
| | | | CEALO1, CEHCQ |
F t + 1 i
} RSS/VSS LOGON SVC Processor | 19 | - | CEHCF, CEHCS |
i (CEHDL) | | | CEHCQ |
b ¢ + + {
| RSS SVC Service Processor {(CEHDR) | 11 | - { CEHCA, CEHJA |
| | | | CEHLC, CEHCB i
| | | i CEHCM |
’ 1 + t 4
| VSS Command SVC Processor | 23 | —=- | CEHCS, CEHCQ

| (CEHDV) | | | |
8 4 + 4 4
r + } { .|
| 170 Control (CEHEA/CZHSA) | 69 | 05, 12, 13, 14,]| None i
| | | 15, 38, 56, 58,]| |
| | | 59, 61, 64 | |
b 1 + L |
| RSS 1I/0 Initiation (CEHEB) | 17 | Note: None of the I/0 modules

b + { except Error Scan calls |
| Direct Access Device Access | 70 | other modules as subrou- |
| Method (CEHFA/CZHTA) | | tines. These two col- |
b + 4 wumns are not applicable

| cConsole Access Method | 71] to TSSS I/0- |
i (CEHFB/CZHTRB) | | |
b + { |
| Sequential Access Method | 72 | |
| (CEHFC/CZHTC) | | |
b + i]
| Telecommunications Access | 73, 74 | i
| Method (CEHFD/CZHTD) | | {
i } 4

1] 1] 1 ‘
| I/0 Editor (CEHFE/CZHTE) | 75, 76 | {
L 4 5

[3 T 1 '
| DASDAM Error Recovery | 84, 85 |

| (CEHGA/ CZHUA) | | |
b 1 4 n
| CAM Error Recovery (CEHGB/CZHUB) | 86 |

i } d

L) ¥ 1 I
| SaM Error Recovery (CEHGC/CZHUC) | 87, 88 | |
i + 4

r t { |
| TAM Error Recovery (CEHGD/CZHUD) | 89 | |
i . 4 4 4
T T T Ll 1
| Error Scan and Recovery | 81, 82, | -——- | CEHCM, CZHNM |
| {CEHGE/DAHUE) | 83 | |]
[i 1] 1
H - T T T 4
| RSS/VSS I/0 Completion | 80 | -—- | -—

| (CEHHA/CZHVA) | | | |
t + ¢ ¥ 1
| RSS/VSS AT SVC Processor | 36, 37 | 11, 27 | CEHLC/CZBXC |
i (CEHJA/CZHZA) | i | CEHKR/CZHYR |
			CEHMS
			CEHCM, CZHNM
			CEHCB, CZHPB
1 I | | CEHCA |
L L 1 L J

Appendix A:

TSSS

Module Directory 173

Appears as a

| | 1 | |
} Module Name and ID | Chart ID | Subroutine on | Modules Called |
t 4 i L]
1 3 T T T L]
{ AT/SPATCH Format (CFHJF/CZHZF)] 61 | 58 | CEHEA/CZHSA i
i] | | CEHCA, CZHPA |
| i | | CEHCB, CZHPB |
b $ { ¢ 4
| RSS $STATUS/S$TASK i 62 | 58 | CEHCF, CEHCA |
| Format (CEHJH) | | | CEHCB |
l + + 1 i
| AT Command Processor | 50 | uo | CEHCA, CZHPA |
| (CEHKA) | | | CEHCB, CZHPB l
t + + + - 1
| COLLECT Command Processor | 55 | 4o | CEHKS/CZHYS]
| (CEHRC/CZHYC) | | | |
F t + + 1
DUMP/DISPLAY Commands Processor	58, 59	40	CEHMM/CZHWM
(CEHKD/CZHYD)			CEHJF/CZHZF
			CEHCA, CEHCB
			CZHPA, CZHPB
			CEHMS, CZHWS
l	I	CEHEA/CZHSA 1	
i		I CEHJH/CZHZH	
i 3 L i 4			
1 T T *			
DEFINE Command Processor i 52	o	None	
(CEHKE/CZHYE) 1			
b t ¢ 1 1			
CALL/END Commands Processor { 65	4o	None	
(CEHKL/CZHYL)			
b t + { 4			
DISCONNECT Command Processor } 66	40	CEHKR/CZHYR	
(CEHKM/ CZHYM)	(
k- t + f 1			
RUN Command Processor	68	40	None
i {CEHKN/CZHYN)	{		
b ¢ t + :			
PATCH Command Processor	57	4o	CEHKS/CZHYS
i (CEHKP/CZHYP)		l	
L 1 1 1 3			
T T T T 1			
QUALIFY Command Processor	53 { 40 { DNone		
} (CEHRQ/CZHYQ)			
k 1 i 1 {			
REMOVE Command Processor	64	37, 40, 66	CEHCA, CEHCB

| (CEHKR/CZHYR) | | | CZHPA, CZHPB |
| | | | CEHEA/CZHSA |
k + + + 1
] SET Command Processor | 56 } 40, 55, 57 | CEHCA/CAHPA |
| (CEHKS/CZHYS) i i | CEHCB/CZHPB |
i | | | CEHEA/CZHSA i
I i i 1l 4
r T T T ¥
| STOP Command Processor | 67 | 4o | None |
| (CEHKT/CZHYT) | | | |
t + 1 + 1
| RSS CONNECT Command Processor | 54 { 40 | CEHCF, CEHCS |
| (CEHKW) | | | CEHCQ |
I + + + i
| Operator Functions (CEHLA/CZHXA) | 4y, 45, | 40 | CEBMA/CZHWA |
| | 46, 47, | | CEHCA, CEHCB i
| { 48 | | CZHPA, CZHPB |
| | | | CEHBT/CZHRT |
! t ¢ % 1
| Language Control (CEHLC/CZHXC) | 38 | o1, 11, 27, | CEHEA/CZHSA |
i | | 36 | CEHLP/CZHXP |
{ | | | CEBELS/CZHXS {
] i | | CEHCM, CZHNM |
i L J | L E

174

r Ll T T 1
| | | Appears as a | |
| Module Name and ID | Chart ID | Subroutine on | Modules Called |
L 4 + e i]
[3 T T T Bl
| Literal Resolution (CEBLL/CZHKL) | 43 | 40 | CEHMS, CZHWS i
L i _+_ i 4
T T T 1
| Source to Polish (CEHLP/CZHXP) | 39 | 38 | None |
1 L 4 +]
r T T T ¥
| Scan Control (CEHLS/CZHXS) | 40 | 38 | CEHMS, CZHWS
| | | { CEHLL/CZHXL |
| i | { CEHLA/CZHXA |
- | | | { CEHKA/CZHYA |
| i | | CEHKE/CZHYE |
i i | | CEHKQ/CZHYQ i
- | | [| CEHKW l
| i | | CEHKC/CZHYC |
| | | | CEHKS/CZHYS |
| | { | CEHKP/CZHYP l
| | | | CEHKD/CZHYD |
| i | | CEHKR/CZHYR |
| | i | CEHKL/CZHYL i
| | | | CEHKM/CZHAYM i
|] | | CEHRN/CZHYN | |
| | | | CEHRT/CZHYT |
| | | | CEHCM, CZHNM |
F + t + {
| Address to Symbol Resolution | 49 | us8 | CEHCB, CZHPB |
| (CEHMA/ CZHWA) | | | |
F + + 1 1
| Memory Map Routine | 60 | 58 | CEHCB, CZHPB |
| (CEHMM/ CZHWM) | | | |
b t + t 1
| RSS symbol Resolution (CEHMS) | 41 | 40, 43, 58 | CEHCB |
1 - 4 4 i 4
¥ v T T R
] VSS External Interrupt Processor | 30 | - | CZHPR, CZHXC |
| (CZHNE) | | | |
F t + t .
| VSS Message Writer (CZHNM) | 3y | 36, 37, 38, 40, <CZHSA |
| | | 82 | |
1 1 4 4 1
r T 13 T 1
| VSs Program Interrupt Processor | 31 | - | None |
i (CZHNP) | | | |
% $ t + {
| VSs Activate Interrupt Processor | 27, 28 | - | CZHPS, CZHXC |
| (CZHNV) | | | CZHZA, CZHPS, |
I | | | CZHMN |
L i + 4 |
r T T T 1
| VSS Real Core Access | 32 | 56, 5%, 64 | None |
I {CZHPAR) i | | |
L 4 i [} 4
T . L] 1} ~ T 1
| VSs Virtual Memory Access | 33 | 36, 4z, 49, 51,] None |
| (CZHPB) | | 56, 59, 64 { i
1 4 'y 4 J
r LI . T T]
| VSS Restore Status | 35 | - | CEAIS |
| (CZHPR) | | I |
L 1 4 i 4
r T T T]
| VSs status sSave (CZHPS) | 29 | 27 | None |
[4 4 } 1
r ’ T T T 4
| VSs 1/0 Initiation/Posting | 78, 79 | -—- | None |
| (CZHSB) { | | |
b } + + 4
| VSS Symbol Resolution (CZHWS) | 42 | wuo, 43, 58 | czHPB {
L 1 4. } |
r + + + {
| VSS AT Command Processor (CZHYA) | 53 | u2 | CZHPB |
L 1 + 4 . |
8 T T T 1
| VSS $TASK Format (CZHZH). l 63 | 60 | cCc2zZHPA |
L i L 1 i

Appendix A: TSSS Module Directory 175

APPENDIX B: THE RSS LOAD FUNCTION TABLES

The "load function tables™ are those
used by the RSS Loader (CEHBL) to write out
pages of TSS/360, to read in pages of RSS,
and to maintain a record of the transaction
for use by the RSS Program Interrupt Pro-
cessor (CEHAP) and the RSS Unloader
(CEHBU) .

The tables used for the "write out/read
in"™ operation are built by the TSS/360
Startup procedures. They are:

Segment Table

Segment Two Page Table

Segment Two External Page Table
Segment Three Page Table

Segment Three External Page Table
Segment Four External Page Table

The Segment Two Page Table, the Segment Two
External Page Table, the Segment Three
External Page Table, and the Segment Four
External Page Table are sometimes referred
to as the TSS Pageable Table, the RSS
External Page Table, the Supervisor Symbol
Dictionary Page Table, and the External
Work Area Page Table. Startup also
reserves space for the TSS External Page
Table (CHAEXT).

To maintain a record of the load proce-
dures, the RSS Loader builds another table
-- the TSS External Page Table (CHAEXT) --
by placing entries in the table.

Segment Table

The Segment Table, consisting of five
entries of four bytes each, provides a
pointer to the Segment Page Table for each
segment number. The RSS Loader (CEHBL)
does not use the segment 0 and segment 1
entries. The segment 0 and 1 page tables
are a means of mapping virtual addresses
into real storage. When the system
operates with DAT active, some of the
modules have real storage addresses, some
have virtual addresses. The hardware uses
the segment 0 and 1 page tables to maintain
address integrity while mapping TSSS
modules into real storage. The Loader does
use the third, fourth and fifth entries,
which point to the Segment Two Page Table,
the Segment Three Page Table and the Seg-
ment Four External Page Table, respective-

176

ly. An entry in the Segment Table appears
as follows:

T T

|Length of |Pointer to the origin of the
|Segment | Segment Page Table

|Page Table]

L 1

b e e s

0 7 8 31

The diagram shown in Figure 2% indicates
the relationship between the Segment Table
and the Segment Page Tables it points to,
as this relationship is used by the RSS
Loader.

There is a one-for-one correspondence
between the entries in a given page table
and the entries in the corresponding
external page table.

Seqgment Two Page Table (TSS Pageable Table)

The. Page Table for segment two page
addresses indicates those TSS/360 Supervi-
sor read-only pages which may be written
out of real storage onto an external
device. Each vacated space provides a
location in real storage for an RSS page.
The addresses are in ascending order. It
is 30 bytes long, each entry being 2 bytes
in length.

The RSS Loader (CEHBL) refers to this
table during dynamic loading. This table
is later used by the RSS Unlocader (CEHBU)
and the RSS Program Interrupt Processor
(CEHAP) .

When a TSS/360 Supervisor page is
replaced by a transient RSS page, the Load-
er flags the entry for that page as "in
storage”, in this table, in order to main-
tain a record of the page's location. Dur-
ing RSS deactivation, when the Supervisor
page is read back into real storage, the
RSS Unloader turns off the "in storage”
flag. The Program Interrupt Processor uses
an entry in this table to calculate the
corresponding entry in the Segment Two
External Page Table, which it uses as input
to the RSS Loader.

An entry in this table is as follows:

*In storage®

T 1
Real Core Page) |
| Indicator |
i . 3

¥

l =

| Numeric
|3

0

11 12 15

bits twelve-fifteen are initialized to 1000

SEGMENT TABLE

T T
0| length| Address of Segment 0
4 4

e
L}

v T

1| length| Address of Segment 1
4 i

T

-
o ol e sy e

2] length| Address of Segment 2

g
H

Not Used by Loader

Segment 2 PT

v

4
T

-

|

|

|
-

3| length
4 4

4
4| length| Address of Segment # XPT}—q
L

-+

-

0 31

P e . — e . B o, e S S, S i W S

Address of Segment 3 PT {——————ee—n

T 1
| {
1 | |
| | |
| | |
{ b Loy
| | Segment 2 XPT |
| | |
l L 1
|
| Segment 3 PT
I B
| |
| |
t L 1
| Segment 3 XPT |
L !

Segment 4 XPT

o e wm o]

Y

Figure 24.

Segment Two External Page Table (RSS
External Page Table)

The entries in the External Page Table
for segment two addresses have a one-to-one
correspondence with the entries in the Seg-
ment Two Page Table. This table contains
the addresses of the transient RSS pages
which may be read into real storage at the
locations vacated by TSS/360 Supervisor
Pages listed in the Segment Two Page Table.
The addresses are in ascending order. Each
entry is 8 bytes in length.

The RSS Loader refers to this table dur-
ing dynamic loading if such a page caused
the paging exception. It is used later by
the RSS Unloader. This table provides an
address list for the direct access device
upon which each transient RSS page resides,
prior to loading.

An entry in this table is as follows:

r T ¥ b}
|Symbolic Device|Relative Pagej i
| Address | Number | {

3

L L 41

0 15 16 31 63

Segment Three Page Table

The Page Table for segment three page
addresses indicates those TSS/360 pages
which may be written out of real storage

Appendix B:

The Relationship between the Segment Table and the Segment Page Tables

onto an external device. Each vacated
space provides a location in real storage
for a TSS/360 Symbol Dictionary Page. The
addresses are in ascending order. It is
six bytes long, each entry being two bytes
long, although this figure is dependent on
the length of the Symbol Dictionary.

The RSS Loader (CEHBL) refers to this
table in order to load a Symbol Dictionary
if it causes a paging exception program
check. This table is used later by the RSS
Unloader (CEHBU).

When a Supervisor page is replaced by a
Symbol Dictionary page, the Loader flags
the entry in the Page Table as "in
storage™. During RSS deactivation, when
the Supervisor page is read back into
storage, the RSS Unloader turns off the "in
storage™ flag. The Program Interrupt Pro-
cessor (CEHAP) uses an entry in this table
to calculate the corresponding entry in the
Segment Three External Page Table, which it
uses as input to the RSS Loader.

An entry in this table has the same for-
mat as an entry in the Segment Two Page
Table (see the diagram for that table).

Segment Three External Page Table (Symbol
Dictionary Table)

The External Page Table for segment
three addresses has a one-to-one correspon-

The RSS Load Function Tables 177

s to i AR

dence with the entries in the Segment Three
Page Table. This table indicates the
addresses of the Supervisor Symbol Dic-
tionary pages that may be read into real
storage at the locations vacated by the
Supervisor pages listed in the Segment
Three Page Table. The addresses are in
ascending order. Each entry is 8 bytes
long; the length of the table depends on
the number of entries.

The RSS Loader refers to this table dur-
ing dynamic loading. It is used later by
the RSS Unloader. This table provides an
address list for the direct access device
upon which each Symbol Dictonary page
resides prior to loading.

An entry in this table has the same for-
mat as an entry in the Segment Two External
Page Table (see the diagram for that
table).

Segment Four External Page Table (External
HWork Area Table)

The External Page Table for segment four
is a list of available locations on a
direct access device. This list provides
the addresses of temporary storage loca-
tions in which the written-out, segments
two and three Supervisor pages can reside
while RSS is active.

This table is at least 72 bytes long; it
contains as many entries as the sum of the
entries in the Segment 2 and Segment 3 page
tables. Each entry is eight bytes long.

It is used by the RSS Loader (CEHBL) during

the write operation. When, during deacti-
vation, the RSS Unloader wishes to retrieve
the Supervisor pages and read them back
into real storage, it refers to this table
for the page's current address.

An entry in this table has the same for-
mat as an entry in the Segment Two External
Page Table.

TSS External Page Table (CHAEXT)

This table is used to define and corre-
late the real storage addresses and the ex-
ternal locations of TSS Supervisor pages
that are written out during loading. The
RSS Loader (CEHBL) builds and makes entries
in this table during dynamic loading. 288
bytes of real storage are reserved for this
table, starting on a double word boundary;
it may have up to 18 entries, each 16 bytes
long.

Additional entries or changes to this
table occur when it is later used by:

The RSS Unloader (CEHBU) to restore the
written-out Supervisor pages during RSS
deactivation

RSS Real Core Access (CEHCA) to deter-
mine the status of a requested page

The RSS Disconnect module (CEHBD) or the
RSS Exit module (CEHBE) reinitializes this
table to X'FF's.

The format of an entry in the TSS Exter-
nal Page Table is shown in Figure 25.

39 47 55 63 71 79 87 95

T R 3 h] T T T T k] T T T T]
Real		Symbolic	B	B	Cc	¢	H	B	R		Save area for
Storage		Device b i L i L 1 4 1 4 the page's									
Address }	Address		protection								
(first 12			Physical Data Location	keys							
bits only)											
L i L L L J
0 11 16 31 32 95 127
B, C, H, and R, represents a data field of 8 bits, B is the bin number, C is the cylind-

er number,

Figure 25.

178

H is a head number, and R is the record ID.

An entry in the TSS External Page Table (CHAEXT)

The TSSS I/0 System defines three
tables:

e Support System Device Allocation Table
(CHAECX)

* Support System Active Device Table
(part of CHASYS)

s Support System Input/Output Request
Control Block (CHAECW)

These tables are collectively called the
Device Assignment Tables, and are referred
to as SSDAT, SADT, and SIORCB, respective-
ly. The SSDAT and the SADT are built by
the TSS SYSGEN/STARTUP procedures, although
the SADT is completed by TSSS.

The Device Allocation Table (CHAECX)

The TSSS Device Allocation Table or
SSDAT defines certain information about the
TSS/360 devices to TSSS I/0. The VSS copy
of the SSDAT resides in IVM. The RSS copy
is divided into a resident and a transient
portion.

APPENDIX C: THE TSSS I/0 SYSTEM TABLES

The resident portion of the SSDAT com-
prises a 12-byte header and four 12-byte
entries. The first entry is contiguous
with the header and defines the main opera-
tor's terminal. The second, third, and
fourth device entries are contiguous with
the first and define the RSS residence
devices.

The remainder of SSDAT is nonresident
and is locaded by the RSS Loader (CEHBL)
when RSS is activated. This portion con-
sists of one device entry for every device
in the system, arranged in ascending order
by symbolic device address. All entries
are contiguous in the transient portion.

The SSDAT is created by TSS/360 SYSGEN/
STARTUP from information contained in the
SDAT (the TSS/360 Device Allocation Table)
and the path-finding tables. The transient
portion of this table is stored in a prede-
fined location on the RSS residence device.

The following diagram is an example of
the SSDAT header and a general device entry
in the SSDAT--resident and transient.

Appendix C: The TSSS I/0 System Tables 179

SSDAT Header--12 bytes

i
|
-

information

¥ ¥ T T
| Relative | Description | Created | Format |
| Location | of Field | By | at SYSGEN |
{ 1 1 ———— el 4
13 a
|'> T - - T T "“
| 0 to 3 | Pointer to first non- | SYSGEN/STARTUP | Virtual address pointer |
| | resident device entry | |]
4 to 7	Pointer to last non-	SYSGEN/STARTUP	Virtual address pointer
	resident device entry		
8 to 11	Reserved for use by	SYSGEN/STARTUP	Initialized to 0
	I70 system		
L L i 1]

SSDAT General Device Entry--12 bytes
[] L T T 1
| Relative | Description | Created | Format |
| Location | of Field | By | at SYSGEN i
L L L L J
: i
L 3 T T T 1
] 0O and 1 | Symbolic device | SYSGEN | sbasDA field from SDAT. If this |
| | address | | is a resident entry and TSSS |
| } | | does not reside on the resi- |
{ i | | dence device specified, this |
| | i | field has all bits on. i
l | | I : I
| 2 and 3 | Physical Path | SYSGEN | Path from path finding table. |
i | | | If this is a resident entry and |
| | | | TSSs does not reside on the |
| | | | residence device specified, |
} } | | this field has all bits on. |
| I | | |
4 and 5 Alternate physical ‘| SYSGEN Alternate path from path
phy lter |3
{ | path | { finding tables, or X'FFFF' |
| | { | if none exists. {
I			
6	Flag	SYSGEN	Byte 6 bit 0 = 1 if device is
	i	vAM-formatted. Byte 6 bit 1 =1	
	i	if device can be called.	
i 7	Reserved for future		
	%		

8 to 11 device definin SYSGEN SDADEV field from SDAT. i
7 | | |
ll 1 i 1 J

180

The Active Device Table

The Active Device Table or SADT, which exists as part of the TSS/360 System Table
(CHASYS), is used by the T5S/360 interruption filter to determine which, if any, RSS 1/0
devices are active, as well as which interruptions belong to RSS. It is also used by the
RSS I/0 Interrupt Processor (CEHAD) to determine whether an interruption is synchronous
or asynchronous. The VSS copy of the SADT resides in the TSS/VSS Status Save Area.

This table consists of two 24-byte entries, which are initially formatted by TSS/360
SYSGEN/STARTUP to all zeroes.

The format of the SADT appears below:

{ T T 1
|Relative | | |
| Location | Description of Field | Created by
L i L J
ENTRY 1 (SYSRIO)* LOCATION: CHASYS +188
i T T 1
0 and 1 {Physical Path SP terminal (SYSRPP)	Startup, Environment Area, I/0 Initiation	
2 and 3	Flags: (SYSRFL)	
	Bit 0: Interrupt expected	Startup, RSS I/0 Initiation, RSS 1I/0 In-
	(SYSII1)	terrupt Processor, RSS I/0 Completion
	1: Asynchronous interrup-	
	tion expected (SYSAI)	
	2: Interrupt received	
	(SYSIR) i {	
i	3: Asynchronous interrup-	
	tion received (SYSAR)	
	4: CSW stored on SIO	
	expected (SYSSE)	
	5: CSW stored on SIO	
	received (SYSSR)	
{4 to 7	Pointer to SIORCB (SYSRCB)	I/70 Initiation
8 to 15	CSW {SYSRCS)	I/0 Initiation -- RSS I/0 Interrupt Pro-
		cessor -- interruption.
{15 to 23	PSW (SYSRPS)	RSS I/0 Interrupt Processor —--—
		interruption I/0 Initiation
8 1. L B		
r b		
*¥*In VSS, the SADT begins at EVSRIO in the VSS Status Save Area, and all names shown as		
SYsSxxx will appear as EVSXXX.		
L (]		
ENTRY 2		
r T T - 1		
I ,	o	
0 and 1	Physical path--device other than	I/0 Initiation
	SP terminal	}
		{
2 and 3	Flags (as in ENTRY)	I/0 Initiation, RSS
		I/0 Interxrrupt
		Processor, I/0 Completion
t to 23	i	
L i J

Same as in ENTRY 1 | Same as ENTRY 1
. 4

Appendix C: The TSSS I/0 System Tables 181

The 1/0 Request Control Block (CHAECW)

The SIORCB is a table used by RSS and VSs.

It serves as the communications area

between modules requesting I/0 and the I/0 system, as well as between the I/0 system
All parameters and status indicators pertaining to a given I/0 operation are
passed in the SIORCB.

modules.

RSS SIORCB

| S T " T A T T T T T
jField |Relative|Relative | | | | |
jLength |Location|Location |Field | |Field |Field |
I(bytes)l(hex) | (decimal) | Name |Field Descrigption |Set By |Used By |
i 1 41 4 1 1 Az
3 T T Bl T ¥ T 1
| 72 | 0 | 0 | ECWASAVE |I/0 System Save Area |70 System|RSS Message i
| | | | | | |Writer |
] 1 | | | | |
} L | +48 | +#72 | ECWAPSCT |[Pointer to SIORCB jStartup } }
i l | i | | | |
i 2 | +4cC | +76 JECWASDA |Symbolic Device Address|1/0 User |I/C Control i
| | |] | | | |
| 2 | +4E | +78 | ECWAUFL1 |User flag bytes | I7/0 User |Access method |
i | | | ECWAUFL2 | | |I/0 Control |
| i | |] I | |
{ 4 | #+50 | +80 | ECWABFFR |Start Address of CCW |I7/0 User |Access method |
| | | | | and buffer area or i | |
| | | | | of data field } |]
| | | | | | | {
1	+54	+84	ECWAOPCD	Operation code as	I/0 User	Access method
i			required by access			
				methods		
{ 1	+55	+85	ECWAACMD	Actual Command Code	I/0 User	Access method
			ECWAMODE	EQU ECWAACMD, mode set		
i]]] } for 7-track tape	f i					
2	+56	+86	ECWALEN	Length in bytes of datalI/O User	Access method	
				area to be read		I70 Control
		i				
4] +58	+88	ECWALRCL	Logical Record Length	I/0 User	Access method	
i						
2	+5C	+92	ECWASLEN	Number of double words }I/0O User	Access method	
{ }			to be skipped before		{	
				reading data {		
		{				
i 2	+5E	+94	ECWARES1	{Unused	-	--
} 8	+60	+96	ECWASEEK	Seek Address	I/0 User	Access method
j 64	+68	+104	ECWASCSV	Error Scan Save Area	1I/0 System	Error Scan
i						
2	+A8	+168	ECWASDAT	Symbolic Device Address	{I/O Con-	Access method
		i	from SSDAT entry	trol	error routines	
i						
2	+AA	+170	ECWAPHP	Physical path from	I/0 Con-	I/0 Control
				SSDAT entry	trol	{
			[
i 2] +AC	+172	ECWAPHP2	Alternate physical path	I1/0 Con-	Access method	
i			i { trol jerror routines			
i						
1 2	+AE	+174	ECWAFL1	System flags from SSDAT	I/O Con-	Access method
			ECWAFL2		trol	exror routines
L	+BO	+176	ECWADEV	Device defining infor-	I1/0 Con-	Access method
		i	mation from SSDAT	trol	error routines	
L i 1 4 J 3 L i J

182

] R T R 1 1 | -1 T %
|Field |Relative|Relative | | | | f
|Length |Location]Location |Field | |Field |Field |
| (bytes) | (hex) | (decimal) | Name |Field Description |Set By |Used By i
i 1 4 4 1 — 1 L i]
L} T T 1] T T) 4
| 4 | +B4 | +180 | ECWACAW |[Channel Address Word | Access |I/0 Initiation |
| | I] | | Method | i
| i I | | | Error | i
| | | | | | routines]| {
| | | | | i | o
4	+BS8 { +184	ECWASAPT	Pointer to SADT entry	I/0 Con-	I/O Initiation	
i	i		trol	I/0 Completion		
		[
8	+BC	+188	ECWACSW	Channel Status Word	I/0 Com—-	Exrror routines
					pletion	i
)	i	
8	+C4	+196	ECWAPSW	Program Status Word	I7/0 Com-	RSS Message i
		{	{ pletion	Writer §		
						i
[[;		
2	+CcC	+204	ECWAICO1	Extended PSW		H
	i		interruption code] i		
2	+CE	+206	ECWAERCT	Error retry	Error	Error routines
					routinesj	:
a [l	‘			
8 { +DO	+208	ECWASENS	[Sense Data	Exror Scan	Error routines	
		i				
4	+D8	+216	ECWARTN	Error recovery return	device-	I/0 Completion
				address	dependent	I/0 Initiation
					Exror	Exrror Scan i
: } = 1 { |Recovery | %

H
i	+DC	+220	ECHARAM	Access method return	Access	I/0 Initiation
				address	method	I/0 Completion
						Exror routines
[1 _ i		
8	+EO	+224	ECWAACSW	Save area for CSW	Exxror	Error Routines
					routinesj	i
						i
8	+E8	+232	ECWAAPSW	Save area for PSW	Exror	Exror Routines
					routines]
			i			
i 2	+FO	+240	ECWAIC02	Extended PSW		
				interruption code		i
				save area		i
i t		l		,		
2	+F2	+242	ECWALENV	ECWALEN save area	- }I/0 Editor {	
	{		for 1/0 Editor		i	
		{				
4	+F4	+244	ECWAACAW	Save area for CAW	Exrror	Error Routines
					routinesj	and I/0
			i		Initiation i	
	{					
[+F8	+248	ECWASFRS	ECWAFRST address	Exxror	Error Routines
				save area	routines	
)	+FC	+252	ECWASLST	ECWALAST address save	Error	Exrror Routines
{	i		area	routines	i	
		i				
8	7100	+256	EWAREC	Work area		
L L L e L L L y]

Appendix C: The TSSS I/0 System Tables 183

¥ " T b R — ¥ T %
t¥igid JRelativelRelative | ; i { i
ilength |LocationiLocation ;F,ald i |Field jField |
ipytes) ! (hex) { fdecimal) { Nam {Field Description jSet By |Used By {
=1 + ¢ 1 t t 1
;24 i +108 j +264 ! ECWACLOA |[Channel Log Out Area |Error Scan|RSS Message H
i i i 5 ! |Writer, !
- § | ! i { {VSS Message {
: % i i | i |Writer |
{ i ! i i | ! !
H + . +126 i +288 P ECWABFFV | ECWABFFR save area for | -- iEditor i
! i H ! i IO Editox] i]
i i | i ! !
1 ;#1248 I %292 | ECWABAOP |Save area for actual |krror {Erroxr routines |
i i { I command code | routines} i
! i ! | !
i L+125 P +293 {ECWAAOP {Save area for op |Error {Exrror routines |
; H H | i code { routinesj i
i |) { | | |
2 I 3 i +294 | ECWAXSAV |Save area for residual {I/0 Com— |I/0 Completion |
: i i ! ! count | pletion | i
5 | ! ! ! ! |
4 Lob128 i ¥+296 P BIWASFLA | System Flag Bytes {170 System|{I1/C System '
: ! { ! | ! !
i Powl2Ce i +300 | BCWARES2 | L/70 Work Area P - {I/0 System]
‘ | : i i i i
256 +130 i +304 { ECWATRIN {Terminal Read In Area | ~—- | TAM, CAM, 1
i i i {Force doubleword | | Editor,
! i i boundary? i | I/0 User i
: 1 { ; i ! i |
i 84 ¢ t230 { +560 | ECWATORF | TORCB Flags {VSS Init- {T33/260 {
H 5 i i i iializationj i
! i | ! i
I i i +280 Io+640 | ECWAPGLS {IORCB page list [VSS Init- [TSS/360
] ; i ! H jialization| i
? | | | ; s
s 80 +2000 b +704 { ECWACCWS [Exrror recovery CCW listl|Error {Errox routines
i i j i routines! I/C Initiation
; 'a * { |
POFEC {3t a § +784 | BECWACCWF i cess method CCW list |[Access (I/0 Indtiation
! i ; i i | metiwnd (Error routines |
; é i ! ; i ?
i 4 } ;#1504 | ECWAFRST |{Pointer to first actlve,Accrbv iError routines |
: i ! H | ccw { method | !
! ! | i } | error i i
i i ! | i} routines| i
| ; | | s ! |
i i +HE4 i +1508 {ECWALAST lPointer to last active [Access i Errox routines |
; i i i cew t method [I/7C Initiation
H i i i I eryor i H
i § 1 i i routines| [
i j i i i i i]
ioizu ; +5ES8 { #1512 i - {The V-type Address i | i
s | | | constants i
! ! | ; i i i
{ v664 i +1628 {ECWALDE {End of Load Area i] i
| OIS B S i e e e e e e e i i H

P
Ly
&

APPENDIX D: POLISH STRING CONSTRUCTION TABLES

Source to Polish (CEHLP/CZHSP) con- decipher each item and to classify it,
structs a polish string through the follow- respectively. These tables are snown in
ing steps: this appendizx.

1. STEP. Source to Polish refers to the

A finished polish string is formatted as

next itew in the source string, deci- follows:

phers what it is, and assigns it a
classified type. 1.

2. WORK. Source to Polish fetches the
appropriate action code from the
Action Code Matrix by multiplication,
and performs the function requested by 2.
the action code.

3. HOOKUP. When it encounters an "end"
character, Source to Polish makes the
symbol string follow the name string
to form what is now the polish string. 3.

Source to Polish uses three tables in con-
structing the polish string: the Table of 4.
Delimiters and Allowable Characters, the

Table of Codes, and the Action Code Matrix.

It uses the first two tables during STEP to

Appendix D:

The first fullword in the polish
string contains the number of bytes in
the length of the name string, plus 4
bytes.

The Name String: A series of half-
words that are either (1) pointers to
entries in the symbol string or (2)
representations of operators and
keywords.

A fullword byte count for the symbol
string.

The Sywbol String: Each entry has a
length and type attribute, and the
EBCDIC representation of the symbol or
literal.

Polish String Construction Tables 185

An entry in a row represents the first hexadecimal digit of a source item; an entry

Table of Delimiters and Allowable Characters in Hexadecimal
in a column represents the second hexadecimal digit.

I:iq. ll -
g |t o o o =0 Q - T - - e - v el i
“0 o o © @© [=3) o =) o [~} o © o [=) =] [-]
.II..A“.. lllllllll o e s A i o o P o A e e ot e e st b i e s D st o e [———
B el e e e + - iy A® [T [- ~ -t T -l
o o o o©o -] [*) © © = [o o© = [=) (= o
o et g S i S . S o S s " g S i i P e O s, S e W e, o it S e, W e, S s o e S s iy — . WO -y
Alre W o e =~ A - - - - o o - - - I
o o ©o o © © o =] =] (=} o o [~) o (=) o
e i s e s e e s S i S s S S st T e S e S s, T e il o, WD e, . At WO S S it W St D st WY e e s SRS e, -
UOlm = =& = V& #M wz - 1 - - - - n v~
o © o o © © =) [=) o o o © o (=] = o
e st e s e e e st S e S . o . i oo . S o . —” YA o T T ot i oy P St el S Tt . P e TS e I e S st i e o
Mied = = o L A N I - I - - - - - =
c © o © o o = o} (=) [=) o © (=] o =) o
s e s ——— —— e — e " i " it O o o G N — —— — — — S F— G — caisam T o — —— W — — —— o— — -
L et = - o - - - s g - I - - - - - I
o o o ©° =] o o) =) =} o o [+ o (= o w
s e s i o e o B e Se200 et VRS Vo e e S S ity Vot oS P S St i et e S —— - — —— — o’ Ut i et —— w——— " i — -
L T T Bt R - - - o HN MN NN o O KO N O M
o o o o© [=) [=) o [=) =) o o o o o o o
s o i oo e et i e " S S o) it e S i S S St S ot il " S o e S et e S e S— o T ot ot o e S, e ot S -t
® = = = - - - - - SN o' NN H MmO QOO MO 0o
o © o o [} [=) [=] o o o o o <) o o =]
e i e T i e St St o St . St e Sl e S ot S S e g S s Y e, Ut b i s e R W o o St W s e v i et e s -]
[l A T T | - -l ! - oo ol XN w Vo MO XKoo O
o © o o (= o [=) (=) o = o o o =] < o
e s et T sy U s, T o, S gt WA S T D . s S e, WY e SO e, S Uy o s W Lt NN S . it " NV VN —- i — st WO 7o S s -
O e = B - - -t - HN oN 2N €4 MO QOO Bo woO
o o o o [=] <) o o o o o © o =] o o
v oy iy " " — et S i P o S S W s e Sty VN i T s, S i, W s S8 s e it " s Sty S s S g e S v -]
o T I I o B | - -) - QN oy PN - Mo Zo PO no
© © o o o o [~ o o o o © o =) o =]
e s ot i e S o e e S S i S o o s ottt o S e St e — et Ly e o o —] oo, et — e s 94
= B R R Ia - - - TN g~ TN - QA0 EOo DO O
o o o o o o (= o o =) o © o IS o =}
e e e s e s ot e S et i S S Sl e e S . i Wi, S S e S —— e S Y — s, Wt . e T B i il . T =
o T T I I Bl [- AN NN PN «+H VDo HO0 HO Mmoo
o o o © [} =] o o = o o o o o <) o
s e e e v e e S ot Py e S St S S, e o, S e e P W A o S o e e e O B . St i, A S, Bt i e e o S -
N et ™ = ~ - — o QAN MN N = MO MO N NO
o © o © = = (= [o o o © (=] (=] =] S
T e e e s s e s e s, o e P o i s i i e s e, e, e e . e A . Y i i . . St e e S e o e o b i 8
e = = = -l (= 4 I (L E3] Moy - - Ao mho - O
o o ©o o) o © [} o = o © [=) o o <]
e e e s e e e e e e e e e S i S o i S o Tt e o o e e o S o . i, S i, S o S e e Vo -}
O led e o m wm 1N - — - - ol - - oo
o o o o o © © o o o o o [~ o =) o
. — ek sy P ————— T — — — V—r) S ~—V—— —— n— ———" W ittt WY e T . S St it At T st € iy S e S o — i e iAbes Sooe -
©
Qo = N m ar [Ta) ¥} [o o) < m 9} =] S}] m

Table of Codes Action Code Matrix

This publication uses the following letters
to represent the arguments of the Action

0919 subscript or ¢ Code 3 indicates that the source iten
is an "end™ character. It is to
be entered as the last item in
the string; HOOKUP. Exit to
Scan Control if an EOB; continue
polish string construction if a
semi-colon.

091Aa 3B
091B . (explicit qual.)
091C $PATCH.

091D $AT. Code 4 indicates that the last operator
on the top of the stack is to be
unstacked and entered in the

name string; WORK.

091E - (unary)

T 1
| Operators Keywords Operands | Code Matrix.
k 4 a = NAME
| I b=/+
| 0301 + 0ci10 1IF 03 external | c =+ -
I | a=| ¢
| 0302 - 0co1r AT 04 hex | e = 1
i | f = <=>,
| 0203 =* 0C02 CONNECT 05 integer i g =
I [h =)
| 0204 / 0C03 RUN 06 1location | i = SOPERATORS
| I j=: %
| 0705 (0Cc04 STOP 07 adcon | k=,
i | 1 = KEYWORDS
| 0806) 0C05 DISPLAY (8 character | = ;
I
% 0607 = 0c06 DUMP 09 null i A row represents the incoming socurce item;
| | a column represents the last operator in
| 0608 > 0c07 SET 0A $ Symbol | the "push-down stack.”
| I
| 0609 < 0C08 COLLECT | a b c d e £ g h i j k 1 m
] [r—— 1
| oA0A = 0C09 PATCH | al4s 1 1 1 1 1 1 0 1 1 0 1 1}
| | bl 4 4 2 2 2 2 2 0 4 2 0 2 2}
o40B & 0COA QUALIFY	c	4 4 4 2 2 2 2 0 4 2 0 2 2	
	d	4 4 4 2 4 4 2 0 4 4 0 2 2	
ouoc	0COB DEFINE	e	4 4 4 2 0 0 2 0 0 0 0 2 2
	£f 14 4 4 2 2 4 2 0 4 4 0 9 2		
050D 0cO0C CALL	g}l 2 5 5 5 5 5 0 5 5 0 5 2}		
i h	4 6 6 6 6 6 6 0 6 6 0 0 2		
ODOE A 0C0D REMOVE	ils 2 2 2 2 2 2 0 4 2 0 2 2		
	jle 2 2 2 2 2 2 0 2 4& 0 2 2]		
ODOF ; OCOE DISCONNECT	k}jo0o 8 8 8 8 8 7 0 8 8 8 8 2		
	114 4 4 4 4 4 0 0 4 4 0 1 2		
0c10 IF 0COF END	m	4 4 4 4 4 4 0 0 4 4 0 4 3	
	L J		
oB11 , i			
	(All number codes are in hexadecimal.)		
0912 . (offset) i			
	where:		
0913 $ID 1			
	Code 0 indicates a syntax error.		
0914 %			
	Code 1 indicates that the source item		
0915 s$P	operand is to be entered in the		
i	name string; STEP; WORK.		
0916 SL i			
	Code 2 indicates that the source item		
} 0917 $s	is an operator and is to be		
	entered on the top of the		
0918 ST	operand stack; STEP; WORK.		
I			
I			
{			
{			
I			
L J

Appendix D: Polish String Construction Tables 187

188

Code 5

Code 6

indicates that the source item
is a left parenthesis. It is
compared with what preceded it
in the source string. On the
basis of this comparison a deci-
sion is made which will affect
how far the reverse scan will
come when a right parenthesis is
found.

indicates that the source item
is a right parenthesis. Opera-
tors are removed from the opera-
tor stack and entered into the
name string until a left paren-
thesis is encountered. If in
"prefix mode," the preceding
operator ("prefix®), which is
either ".", "S$L", "$S", "S$T",
"$ID", "C" (subscript), or "s$p",
is also removed from the opera-
tor stack and placed in the name
string. Both parentheses are
removed.

Code 7 indicates that the source item
is a comma; the operator is a
left parenthesis; STEP; WORK.
This effectively ignores the
source item.

Code 8 indicates that the source item
is a comma; the operator is a
keyword. Unstack all operators
until a keyword is reached. If
the keyword is AT:STEP; WORK.
Otherwise, move the keyword into
the name string; STEP; WORK.

Code 9 indicates that the source item
may be an equal sign; the opera-
tor is a keyword. If the key-
word is other than an IF, disre-
gard the equal sign:; STEP; WORK.
Otherwise go to Code 2 routine.

For a detailed explanation of the construc-
tion and format of the polish string see
the description of the Source to Polish
module.

APPENDIX E:

LANGUAGE CONTROL BLOCKS, BUFFERS, AND TABLES

This appendix describes those TSSS con-
trol blocks, buffers, and tables either
built by or used and maintained by the Lan-
guage routines. These tables include the

Input Device Table,

Qualify Table,

Symbol Control Block,

AT Control Block,

Patch Control Block,

Symbol Tables,

AT Tables,

PATCH Table, and the

SP Symbol Table.

The table name in parentheses is the DSECT
name. Generally, all the Language tables
have two CSECTs for each DSECT, one each in

real and virtual storage (see "Introduc-
tion® to the Appendixes).

Input Device Table (CHALCR)

When control passes from TSS/360 to TSSS
via the Loader module (CEHBL), two contigu-
ous words in storage having the same format
are updated. These two words constitute
the Input Device Table, which indicates to
Language Control (CEHLC/CZHXC) the device
type from which it is to receive input. A
copy exists in both real and virtual
storage, having different CSECT names.

TSSS may receive input from magnetic
tape, cards, or a terminal. Language Con-
trol invites input from a terminal by caus-
ing a $ to be printed out, before it reads
the terminal. A card reader or tape drive
is merely read.

The format of the Input Device Table is
as follows:

T

Device |Flag
Type Codel}
i

r T
| Symbolic {
| Device Address |
i L
0

e o e ad

16 17 31
where:
Device Type Code may be X'00' for a termin-

al (1050, 2741, KSR35), X'01' for a 2540

Appendix E:

Language Control Blocks,

card reader, or X'02' for a 2400

drive.

tape

The Flag byte may be set:

the device is
When it is one, the
a called device.

Bit 0. When it is zero,
an SP terminal.
device is

Bit 1. When it is zero, input must be
read in. When it is one, the input is
already in the buffer. (Register 1
points to the address of the input and
contains the byte count.)

Bit 2. When it is zero there is no con-
nected SP. When it is one there is an
SP connected.

The construction and content of the second
fullword of the Input Device Table is
identical to the first fullword. It is
used to store the primary system input
device information when a CALL command is
issued. The CALL Command Processor con-
structs a new first word for the table.

The modules which refer to this table
are:

The RSS Loader (CEHBL) and the VSS
Activate Interrupt Processor (CZHNV)
which are responsible for initializing
the table.

Language Control (CEHLC/CZHXC), which
uses it and may restore it after a CALL
command.

The CALL Command Processor (CEHKL/
CZHYL), which designates a sequential
device (called device) to replace the
first word of the table.

The END, RUN, STOP, and DISCONNECT Com-
mands Processors, which restore the
first werd of the table by referring to
the seccnd word, following a CALL
command.

Buffers
There are two language buffers:

The language input buffer (CEHLCT/
CZHXCT) is 256 bytes long, and is
assembled with Language Control (CEHLC/
CZHXC). Data from the input device is
placed into CEHLCT/CZHXCT by the I/0
System to form the input string.

and Tables

189

Buffers,

The language work area buffer (CEHCAS/
CZHPAS) is 4096 bytes long, and is
assembled with the DISPLAY Command Pro-
cessor (CEHKD/CZHYD). It is used by the
language routines to manipulate data
fields.

In addition, Real Core Access (CEHCA,
CZHPA) uses a get/put buffer (CEHCAR,
CZHPAR) on request of the language
routines.

Qualify Table (CHAKQD)

This table establishes uniqueness for
all references to elements of TSSS by the
system programmer. For every symbol, some
qualification is appended, either supplied
explicitly with the symbol or taken from
this table.

The Qualify Table is organized in two
parts -- a Qualification Identifier (1
byte) and a Qualifier (2 or 3 bytes). The
Identifier determines what interpretation
should be placed on the remainder of the
table.

The Qualify Table is one fullword and is
formatted as follows:

r T 1
|Cualificationj |
| Identifier | Qualifier |
L 1 J
0 7 31
where:

1. If the identifier is X'00°', the table
specifies real storage, using the Pre-
fix Storage Area (PSA) addressable by
the active CPU through prefixing hard-
ware; and the qualifier is all zeros.
These are the defaulted values for the
Resident Support System.

2. If the identifier is X"01°, the table
specifies real storage, using the PSA
of the designated CPU and bypassing
the prefixing hardware; and the quali-
fier is the appropriate prefix value
(or base) for the PSA.

3. If the identifier is X"'02' with X'00*
task ID, the table specifies virtual
storage, and the qualifier is =zero.
This qualification is global and per-
tains to the shared virtual storage of
all tasks. These are the defaulted
values for the Virtual Support System.
The defaulted option for the Resident
Support System is the current task, as
"global®™ has no real meaning in RSS.

4, If the identifier is X'03°, the table

specifies the private virtual storage
of a designated task, and the qualifi-

190

er is the designated task ID, which
may be a number from X*01° to X'FFFF*,
as long as the task is attached to the
system.

The Qualify Table is maintained by the Qua-
lify Command Processor, and referred to by
the majority of the Language Area modules,
in particular Symbol Resolution (CEHMS,
CZHWS) .

The Symbol Control Block (CHAMSW)

The SCB is used to define a symbol and
contains all the symbol attributes. It may
also be used to resolve a literal. During
Language Area processing, one SCB exists
for each symbol or literal in the polish
string. The SCB is built, maintained, and
used by the entire Language Area.

The format of the SCB is shown in Figure
26. The SCB is aligned on a doubleword
boundary.

The fields of the SCB represented in Figure
26 have the following meanings:

Length (MSWLEN, 4 bytes): - the number of
bytes needed to accommodate an item.

Size (MSWSIZE, 4 bytes): - the total numb-
er of the storage elements associated with
the symbol.

Work Area (MSWUNUS, 4 bytes): - a work
area for various language routines.

Type (MSWTYPE, 1 byte) - a code designating
the value as integer, hexadecimal, or
character.

Type Attribute Code -
Hexadecimal X'o1*
Character X'02°
Integer X*'03"*

Classification - (1 byte): -~ a code desig-
nating a system symbol, SP symbol, extermal
symbol, or literal.

Classification

(MSWCLASS) Code Name

) X'01* MSWSYS
SpP X*02* MSWSP
External X*03* MSWEXT
Literal X*'04' MSWLIT
Immediate data X'05* MSWNAD

Flags (MSWFLAGS, Bit Undefined Symbol

0
1 byte): Bit 1 Null SCB
Bit 2 Subject SCB
Bit 3 Data in work area
Bit 4 Physical Path
Bit 5 Cylinder # No
Bit 6 Track # desig. bit
7

Bit Record # 1is on.

Relative|Relative
Location|Location

(hex) | (decimal)
r~ + T - |
| 0 | 0 | 4 bytes |
| | i Length |
| | t 1
| + 4 | + 4 | 4 bytes
| | | Size |
| | b ——= - 1
| + 8 | + 8 | 4 bytes |
i | { Work Area |
| | t T - T T i
| +C | +12 | 1 oyte | 1 byte | 1 byte | 1 byte |
| | | Type] Class | Flags | Keyword Flags|
| | t L L L 1
| +10 | +16 | 4 bytes |
| | i Base Address |
| { - i
{ +14 | +20 i 4 bytes i
| | | Pointer |
| | * """ - T - T {
| +18 | +24 | 2 bytes | 1 byte | 1 byte |
| | | Symbolic Device Address [Cylinder Number |Track Number |
| { F——- + + 1
| +1C | +28 | 2 bytes | 1 byte | 1 byte |
| | | Record Number | Device Code | Mode |
| | b - L 4
| +20 [+32 | 4 bytes |
| | i Qualification |
I | F 1
| +24 | +36 | 4 bytes |
| | | Backward Pointer |
|] t 1
+28	+40	8 bytes
		Symbol
i L i J
Figure 26. The Symbol Control Block
Keyword Flags (MSWBLNK2): - (1 byte): Track # (MSWTRK, 1 byte)

Bit 0 More data to format dump Record # (MSWREC, 2 bytes)

Bit 1 All of AT or Patch Table

Bit 2 Record over 4096 bytes Device Code in Hex (MSWDEVC, 1 byte):

Bit 3 Set overflow condition codes for devices used

Bit 4 End of file condition from 1/0

Bit 5 One byte of instruction in ACB X*00° terminal

Bit 6 Two bytes of instruction in ACB X'o1" 2540 card reader

Bit 7 Same track indicator for X'02* 2400 magnetic tape

DUMP/DISPLAY X'03" 1403 printer
X'o4" 2311 Disk Storage Drive

Base Address (MSWBASE, 4 bytes): - the X'05" 2314 Storage Facility
high order byte address of the storage area X'06* 2301 Parallel Drum

represented by the symbol.

Pointer (MSWPTR, 4 bytes): - an additive
constant, used when computing an address,
to indicate an element of an array.

Symbolic Device Address (MSWSDEV, 2 bytes):
address of the device.

Cylinder # (MSWCYL, 1 byte)

Mode (MSWMODE,

etc., of a tape.

1 byte) the channel command
code, which determines density, parity,
See Principle of Opera-

tions Manual for IBM 2400 Series Tape

Drives,

GA22-6866.

Qualification (MSWQUAL,
tion as to whether the data field
in real storage, virtual storage,

4 bytes):

designa-
resides
or exter-

Appendix E: Language Control Blocks, Buffers, and Tables 191

nal storage; of which 1 byte = qualifica-
tion code:

Qualification Code
Real Core Unqualified X'go0"
Real Core Qualified X'01°*
Virtual Memory Unqualified X'o02*
Virtual Memory Qualified X'03"
External Storage X'oq"

and 3 bytes = a field that contains either
a prefix for real storage on a TASKID for
virtual storage.

Backward Pointer (MSWBKPT, 4 bytes): used
for system and SP symbols to point to the
original SCB.

Symbol (MSWSYMB, 8 bytes): a string of
alphabetic or numeric characters. The
actual symbol.

Two special types of control blocks are
used by TSSS Language -- the AT Controcl
Block (ACB) and the PATCH Control Block
(PCB). The Language Arxea uses these con-—
trol blocks to maintain a record of infor-
mation surrounding the implanted ATs and
PATCHes. They are built by the AT Command
Processor (CEHKA/CZHYA) and the PATCH Com-
mand Processor (CEHKP/CZHYP) and used by
the Remove Command Processor (CEHKR/CZHYR),
the AT SVC Processor (CEHJA/CZHZA), and
other language modules.

The ACB (CHAACB) is formatted as fol-
lows, aligned on a fullword boundary.

r
| ACBINB
1

| === 1 Fullword----——-—=-——=-=-= |
r 1
| ACBAID |
L 4
¥ a
| ACBLOC |
b T T 1
| ACBTID | ACBFLG | ACBLEN |
L L 1 4
T L
} ACBPTR !
I 4
U A
i ACBQUA |
i ¥
3 R)
| ACBINA |
| 1
| |
L 1

where:

ACBAID is a unique AT identifier
ACBLOC is the SVC location

ACBTID is the TSP task ID, if in VSS
ACBFIG is the flag byte

ACBLEN is the length of the text
minus one

ACBPTR is the pointer to the command
text

ACBQUA is the QUALIFY Table at the
point of implantation

192

ACBINA is up to six bytes for the
saved instruction;

ACBINB is first 2 bytes of the Quali-
fy Table

The PCB (CHAKPX) is formatted as follows,
aligned on a fuilword boundary.

- 1 Fullword----—----—------- |
r L T 1
| KPXLEN | KPXFL1 | KXPXFL2 |
¢ L L 4
| KPXQUA |
1 4
13 1
| KPXPAD i
k 1
| KPXRES i
IR 3
r L] i
i KPXSDA | KPXFST i
= T + T i
| KPXCYL | XPXTRK | KPXREC | KPXUNA |
L 1 i i 4
where:

KPXLEN is the length of the patch.
KPXFL1, KPXFL2 are unused.

KPXQUA is the Qualify Table at the
time of implantation.

KPXPAD is the patched address.
KPXRES is the address of the saved
restore data.

KPXSDA is the symbolic device
address.

KPXFST is the offset of patch from
beginning of record (2 bytes).
KPXCYL is the cylinder number (1
byte).

KPXTRK is the track number (1 byte).
KPXREC is the record number (1 byte).
KPXUNA is unused (1 byte).

The PCB and the ACB exist in both real and
virtual storage, with one CSECT each (see
*Introduction” to the appendixes).

The ACBs and PCBs are kept in tables as
records. The remaining information in the
AT and PATCH Tables completes the record of
the implantation.

The AT Tables (CHAATB)

The ACB completely identifies the AT and
contains the length of a pointer to the
command text to be executed as a resuilt of
AT SVC execution. The AT Tables contain
ACBs, as well as this command text. To
conserve space the AT Tables are filled
from lowest to highest address by ACBs, and
from highest to lowest address by command
text. Each of the AT Tables is one page
long.

Each AT Table has a header of 2 double-
words, the first word of which is composed
of a lock byte, an unused byte, and a half-

~ - T L - T T R
| lock | | counts of | address of next | current task | {
| byte |unused | remaining | available byte | ip { Unused |
i i | bytes | in table | | |
L 1 [O, L — 1]
0 7 16 32 6u 80 127
Figure 27. The AT Table Header

word containing the count of the remaining
unused bytes in the table. The second word
of the header is the address of the next
available byte into which an ACB may be
placed. The first two bytes of the second
doubleword contain the task ID of the task
whose TSSS routines are currently using the
table. The remaining six bytes of the
second doubleword are unused. The AT Table
Header is shown in Figure 27.

The use of a lock byte in the AT Table
is to guard against concurrent use by sev-
eral VSS routines. If the table under con-
sideration is locked, the VSS routine using
the table forces time slice end for the
task. If a VSS REMOVE Command Processor
finds a locked table in which the task 1ID
matches its own task ID, it recognizes the
ABEND situation, ignores the lock byte, and
removes the ACBs for the ATs implanted by
the VSS routines for that task.

Overflow causes the current and subse-
quent AT commands to be ignored; an error
message is written to the system programm-

ACB. The Patch Table is two pages long,
but the placement and format of the PCBs
and the patch restore data corresponds
exactly to the ACBs and the AT Command
text, respectively. The Patch Table has
the same type of header that the AT Tables
have. It has two CSECTs, one each in both
real and virtual storage.

The SP Symbol Tables (CHASPM)

The SP Symbol Tables record each SP'"s priv-
ately defined symbols, both independent
definition and alias establishment (see the
DEFINE Command Processor). There are three
distinct SP symbol tables, but they have
identical formats. They are (1) the MSP
Symbol Table (CHBSPMR), (2) the TSP Symbol
Table (CHBSPMVA), and (3) the Global Shared
Symbol Table (CHBSPMVB). Each symbol table
is two pages (8192 bytes) 1long.

The Symbol Control Blocks (SCBs) that
define the symbols are entered sequentially
from the origin of a given Symbol Table.
The data areas that the symbol defines are

er. The AT Tables are formatted as fol- entered in reverse sequence from the end of
lows, exclusive of the header: the same tables. 1In alias establishment,
an SCB is entered in the Symbol Table
without allocating an additional data area
ORIGIN, HEADER for it. The data area which it defines has
r T T T 1 already been moved into the SP Symbol Table
| ACB for | ACB for | i ACB for | when the initial independent definition
| AT SVC #1 | AT SVC #2 |. . .} AT SVC #n | took place. The SP symbol tables have the
3 i i 1 1 same type of header as the AT and Patch
| Command Text for AT SVC #n... { tables. A sample SP Symbol Table is shown
NS 4 as follows:
T T
| Command Text for AT SVC #2 } ORIGIN
} ‘l‘ T T k) T 1
| Command Text for AT SVC #1 | }SCB for {SCB for | |SCB for |
L 4 | SP-defined|SP-defined | | last |
[symbol A |SYMBOL B. B | | sP-defined|
In RSS there is only one CSECT for CHAATB jand a {is alias for|. . . {|symbol n |
-- the MSP's AT Table (CHBATBR). In VSS |pointer to]a and repre-| | |
there are two distinct CSECTs —-- the TSP's |symbol A's|sents A's | | |
AT Table (CHBATBVA), for which there exists |data area |data area | { |
a copy in every task, and the Shared Global } L 1 1 4
AT Table (CHBATBVB), to which all tasks | Data area defined by |
have access. The format for the ACB and | last SP symbol n |
the AT Table itself is identical for all F- 4
three tables.
' T : T
The Patch Table (CHAKPW) | Data area defined by |
] symbol A and referred to by A's |
The Patch Table serves the same function | alias, symbol B. |
for the PCB that the AT Tables do for the L]
Appendix E: Language Control Blocks, Buffers, and Tables 193

APPENDIX F: THE SAVE AREAS

The tables included here, representing the status save areas, give the names of the
major fields. For greater details see the program listings.

TSS/RSS Status Save Area {CHAESV)

This area is used by RSS ta save the status of TSS/360 during RSS activation. It also
contains certain control information necessary for RSS execution. TSS/360 status is
restored from CHAESV at RSS exit.

r= T T T T 1
| Field | Relative | Relative |] I
| Length | Location | Location | Field | |
| (bytes)}| (hex) | (decimal)| Name | Field Description {
{ } .y 4 4]
r 1 T L] 1] 1
| 8 | 0 1 0 | EsvcPsW | Current (Exit) PSW |
i | | |] ; |
{ 8 | +8 | +8 | ESVEPSW | External Old PSW |
|] | | | i
2	+10	+16	ESVEXCD	External Interrupt Code
!				
8 1 +18 1 +24	ESVSPSW	svc 01d PSW (aligned on a doubleword		
I I [boundary)		
]]				
2	+20] +32	ESVSVCD	SvC Interrupt Code	
	i		{	
} 8	+28 { +40 { ESVPPSW	Program 0l1d PSW (aligned on a doubleword		
				boundary)
			I	
2	+30	+48	ESVPMCD	Program Interrupt Code {
[
{ 8	+38	+56	ESVMPSW	Machine Check PSW (aligned on a double-
{	i] word ‘boundary)			
]]			
2) +40	+6U	ESVMKCD	Machine Check Interrupt Code i	
1 8	+48	+72	ESVYPSW	T70 01d PSW (aligned on a doubleword {
				boundary)
	o			
2	+50	+80	ESVYYCD	I/0 Interrupt Code
i				
{ 40	+58	+88	ESVxNPSW	New PSWs, where x= E=External
] '			5=SVC	
				=Program
		i	M=Machine Check	
]			Y=1/0	
} 4	+80	+128	ESvcCaw	Channel Address Word {
i		l [
8	+88	+136	ESVCSW	Channel Status Word (aligned on a double-
}	i	} word boundary) §		
i 1				
4	+90	+144	ESVTSX	Pointer to Currently Active TSI
]			
1	+94	+148	ESVNVRUN	Intervening RUN Flag Byte
i		i		
3	+95	+149	ESVDVTSI	TSI Pointer from the Device Group i
	i i	Table (CHADEV) i		
				1
i 2 I +98 { +152 | ESVTSKID | Sending Task ID {
L i i L i J

194

f T T T - T T 1
Field	Relative	Relative		
Length	Location	Location	Field	
(bytes)	(hex)	(decimal)	Name { Field Description	
F + ¥ t ¥ - :				
} 1	+9A	+154	ESVMASK	System mask to indicate 32 or 24 bit
i			mode	
1	+9B	+155	ESVLOCK2	Save area for Inter-CPU Communications
{	i	lock byte		
i]		
4 i +9C i +156	ESVEWPGE	External Work Area Page Table entry		
				pointer
			{	
4	+A0	+100 { ESVTEPE	Tss External Page Table entry pointer	
g	+A4	+i64	ESVHTRTN	Return address for Halt and Transfer

| 4 { +A8 | +168 | ESVMSPM | SP terminal information if RSS is %
| | | | | activated by manual interruption

i | |] | i
| 4 i +AC 1 +172 | ESVMSPCN | SP terminal information if connected |
| | | | | i
6l i +B0	+176	ESVGPRS	General Purpose Registers (16)	
32	+F0	+240	ESVFPRS	Floating Point Registers (4)
			{	
64	+110	+272	ESVCTRS	TSS Control Registers (15)
				i
{ 1	+150	+336	ESVACT	RSS Activation Flags
			ESVEXTR	External Interrupt (X'80*)
			ESVTASP	TSSS Activation Sequence in Progress
i			(X*40")	
			ESVMSPA H MSP Attention (X'20°')	
		} ESVSTUN	Symbol Table Unload in Progress	
i				(X*107)
			ESVRCAP	RSS Real Core Access in Progress
{	{		(X*08%)	
			ESVOUHB	Other CPU halted bit (X'04')
			ESVITSI	Inactive TSI scan bit (X'02*%)
			ESVATXIM	At Execution mode (X*'01")
			i	

| 1 | +151 | +337 | ESVSTAT | RSS status Indicators i
			ESVSTUP	Startup in Progress (X*'80°%)
{		ESVXITP	Exit in Progress (X'40')	
			ESVLUNL	Load/Unload in Progress (X'20')
i			ESVPXPR	Paging Exception Progressing (X*10%)
			ESVDPCK	Deliver Program Check (X'08°7)
			ESVWRIT	Write Direct Received (Inter-CPU) {
				(X'04")
{		ESVEWTB] Error Wait Bit —-- Inter-CPU (X'02')		
			ESVTLIP	Symbol Table Load in Progress
i [: i (x'o1*)			
1	+152	+338	ESVSTAT1	RSS Status Indicator Byte 2 {
		{ ESVPROI	Loader indicator to read only (X'80'")	
	{	ESVRNAT	RUN with operand Indicator (X'40')	
			ESVVMAP	RSS VM Access in Progress Indicator
i			i (x*20")	
			ESVTRWL	TAM Read/Write Indicator (X'10%)

| | | | ESVQXT | External interruption pending (X°08') |
| | | | |

| 1 | +153 | +339 | ESVCPU | CPU Identification i
| | | | |

| 24 | +154 | +340 | ESVSADT | save Area for Second Entry of SADT %
i { 1 l | for RSS Dynamic Load Procedures |
L L]

Appendix F: The Save Area 195

r T T R 4 L

| Field | Relative | Relative | {

{ Length | Location | Location | Field i

{ (bytes){ {(hex) | (decimal) | Name | Field Description

{ i L -4 4

3 T T T T

{ 28 | +16C | +364 | ESVUSRIO { Save Area for User Portion of

i i . | { | SIORCB during Intervention

I R |

{ 4 { +183 | +392 | ESVFLGXIO { 170 Flags stored on Intervention
I ek

{ 4 | +18cC i +396 | ESVRAMIO | Saves the SADT Entry Pointer on
i { | { | Intervention Required

| | | | |

| 12 | +190 | +400 | ESVRECIO | saves the SSDAT on Intervention
| | |] | Required

{ | I i I)

| 8 { +19cC | +412 | ESVSAPIO | Save Area Pointers

{ | | | 1

| 8 | +1AY | +420 | ESVCSWIO | cSW save area during Intervention
i | | | | Required

| | [I I _ _

{ 8 | +1AC | +428 | ESVCAWIO | CAW save area during Intervention
{ | | i | Required

{ | | { |

| | +1B4 | +436 | END CHAESV |

L i 1 f i

b o i e o — o o ot o s M — —— ks e ik o b S i st i, il et aipie. Wy sl

196

TSS/VSS Status Save Area (CHAEVS)

This area is used to save TSS status upon activation of VSs. It is also used as an
internal communications area by VSS. (CHAISA is saved in a special PSECT by itself --
CZHPSGR.)

e o e o o M s n S o s oo . o o i S M o At i M i B, M G S S S SO TS o, Gl S S VB BN o S V. S, SO S T S G P o e, St s, . anht i i, et 2o

T - T T
| Field | Relative | Relative | |
| Length | Location | Location | Field |
| (bytes)| (hex) | (decimal)l| Name | Field Description
b- $ S fomm e - -
| | | | {
| 3 l 0 | 0 | EVSCVP3W | Current YPSW
| | | | |
| 56 | +8 | +8 | EVSXVPSW | 01d VPSWs, where x =
| | |] | S (sVC)
| | | | | E (Extermnal)
| | | | | A (Asynchronous 1/0)
| | | { | T (Timer)
i | | | | N (Synchronous 1I/0)
| | | | | P (Program-PPSW)
| | | | | D (Recoverable Data Set Paging
| | | | | Error VPSW-PPSW)
| | | | |
| 8 | +40 | +64 | EVSVVPSW } O0ld VPSW
] | | | |
{ 8 | +u48 | +12 | EVSPNPSW | New Program VPSW
] | | | |
| 56 | +50 | +80 | EVSxXNPSW | New VPSWs, where x =
| | | | | S (SVC)
| | | | | E (External)
| | | | | A (Asynchronous 1/0)
| | | | | T (Timer)
| | | | | N (Synchronous I1I/0}
} | | | | R (Recover Data Set Paging)
| | | |] VvV (VSS)
| | | | |
| o4 | +88 | +136 | EVSGPRn | General Purpose Registers,
| | | | | where n = 0 through 15
| | | | |
| 32 | +#cC8 | +200 | EVSFPRS | Floating Point Registers
| | | | |
| 64 | +E8 | +232 | EVSCTRS | Control Registers
| | | | | -
i 1 | +128 | +296 | EVSMODE | VSS Status Indicators
| | | | X'80°* | VSS Active (EVSACT)
| | | | X*uo* | TSP Attention Received (EVSTSPA)
| | | | X*20° | TSP Connected (EVSTSPC)
| | | | X*io0° | One Terminal Case (EVSTRM1)
| I | | X'o08° | Two Terminal Case (EVSTRM2)
| | | | X'04° | Dynamic Mode (EVSDYNA)
| | | { x'o2°" | Conversational Mode (EVSCONV)
| i | | Xx*o1° | RUN with operand indicator (EVSRNAT)
| | | | |
| 1 | +129 | +297 | EVSMOD1 | VSS State Indicators
| i | | X'80° | VSS in activation sequence (EVSASEQ)
| | | | X'40° | VSS Virtual Memory in process (EVSVMAP)
| | | | X*20° | VSS TAM Read/Write Indicator (EVSTRWI)
| | | | X'10° |
i | | | Xx*08° |
			xTos4r
			xT02°
			xr'o1®
L g L L L

Appendix F: The Save Area 197

1]
Field |
|

L]
Relative |

Relative

T
l
|

I T i 1
i | i
| Length Location | Location Field | |
| (bytes)| (hex) | (decimal)| Name | Field Description {
L i i i i 4
r 1
| The following is a VSS SADT compatible with the SADT in CHASYS |
} T T T ¥ 1
| | | |] |
| 2 | +130 | +304 | EVSRPP | Physical path I
1 | | | |]
} 2 | +132 | +306 | EVSRFL | Flags i
		1		
4	+138	+308	EVSRCB { Pointer to SIORCB	
]	
8	+138	+#312	EVSRCS	Channel Status Word (CSW)
				[
8	+#140	+320	EVSRPS { Program Status Word (PSW)	
i]]	
24	+148	+328	-	Second RSS I1I/0 Device Entry
]]
=28	+160	+356	EVSUSRIO	save Area for User portion of SIORCB
		i	during Intervention Required i	
4	#+17C	+380	EVSFLGIO	I0 flags stored on Intervention Requiredj
I				
i L	+180	+384	EVSRAMIO { Saves SADT entry pointer on Intervention	
} g	: } Required }			
]				
12	+184	+388	EVSRECIO	saves SSDAT on Intervention Required i
]]	
{ 8	+#190 { +400	EVSSAPIO	save area pointers	
I				
8	+198	+u08	EVSCSWIO	Saves CSW on Intervention Required
8	+1A0	+416	EVSCAWIO	Saves CAW ON Intervention Required
i L L i 1 K				
L3 b}				
The following defines the save area for the MCB passed during VSS activation				
‘r] 1 T T {				
s	l	4 _		
1	+1A8	+424	EVSLNG	Message length in doublewords
				[
1	+1A9	+425	EVScoD	Flag byte
1	+1Aa	+426	EVSRCD	Return code
1	+1AB	+427	EVSCD1	MCB message code
2	+1AC	+u428	EVSSvVC	XSEND SsVC
i				I
2	+1AE	+430 } EVSSPR	Spare space	
]]		
2	+#1B0	+432	EVSSND	our task ID (EVSTSKID EQU EVSSND) {
2	+1B2	+432	EVSRcV	Receiving task ID
]				
4	+1B4	+434	EVSECB	Address of Event Control Block
] I				
0	+1B8	+438	EVSTXT	Message text i
i i				
{ 2	+1B8	+438	EVSSDA	Symbolic Device Address
i] l		
2	+1BA	+440	EVSSRSs	RSS/VSs Indicator. RSS=X'FF' VSS=X'00' i
i i | | | |
i | +1BC | +442 | ENDCHAEVS | i
[1 A k § L J

198

APPENDIX G: THE SVC CODES

Each of the SVC codes processed by TSSS is shown below, accompanied by (1) the module
responsible for implanting or remotely executing it, or both; (2) the request or opera-
tion it represents, (3) tne module or modules that processes it after the SVC Interrupt
Processor has completed its processing; and (4) the result. (SVC codes 74-79 and 86-94
are reserved.)

T T T T 1
]S | Implanteds | Indicated | Processed By | i
| cod sﬁxecuted By IRL{Utot or Operation | (sequentially)| Result |
i i 4 4
[- T = T T]
| 65 lCZdPA |bet real storage for |1. CEHDR | Requested page of real |
i | (I,E) INEE |2. CEHCA |storage in VSS paging buffer|
[i | | i
| 66 |CZuPa jPut real storage for |1. CEHDR |Contents of VSS paging buf- |
{ | (1,E5) |vss |2. CEHCA |fer are stored on external |
				device of real page
] I		
67	CEQJA	AT SVC execution in	1. CEHDR	Control returned to the
	(I only)	real storage completed	2. CEHJA	program interrupted by
				AT SVC execution
! l				
{ 68	CEHJA	RSS AT SVC execution in	1. CEHDR	Control returned to the
{	(I only)	virtual storage complete]l2. CEHJA	program interrupted by	
i {			AT SVC execution i	
			i	
69	CEHJA	Execute AT SVC in real	1 CEHDR	Command string for AT SVC
i	(I only)	storage for RSS or V3S	2. CEHJA	becomes input to CEHLC]
70	CZHYA,CZHYR	Process VSS-supplied }	1. CEHDR	SVC 69 implanted in real
{(I,E)	command string 2. CEHLC	storage for VSS or specified}		
		{	SAT removed. {	
[_ .	l _		
71	CEHKA	Execute AT in private	1. CEHDR	Command string for AT SVC
	(I only)]virtual storage for RSS	2. CEHJA	becomes input to CEHLC
72	CEHKA	Execute AT in shared	1. CEHDR	Command string for AT SVC
	(I only)	virtual storage for RSS	2. CEHJ2	becomes input to CEHLC]
{ i				
{ 73	CZHPB	Determine if input VM	1. CEHDR	Shared indication in
	(£,E)	page is shared	2. CEHCE	routine's registers.
i	‘		{ !	
80	czdya	Execute AT in private	1. CEHD2 jVSS is activated, code 2;	
] (I only)	virtual storage for VSS	2. CZHNV	AT command string becomes	
		13. CZHZA	input to CZHXC	
81	LOGON1	LOGON MSP or TSP as	CEHDIL:	1f valid LOGON attempt,
	(I,E)	indicated in MCB		SP is connected, logged-on
{				
82	CZHPR	Deactivate VSS	CEHDE	VS5 deactivated as requested;]
	(I,E)			control returned to TSS/360
83	VSS Command	Activate VSS	CEHDV	VSs activated, code 1;TSP
				connected: one terminal case]
			[
84	CZHZIA	VSS AT SVC execution	1. CEHDA	VSS is activated, code 4;
	(I only)	in virtual storage }2. CZBNV	control is then returned to	
%			completed	3. CZHZA
i				execution
	I _	r		
85	czHYA	Execute AT is shared	1. CEHDA	Vss is activated, code 6;
i | (T only) |virtual storage for VSS |2. CZHNV | AT Command string becomes |
] | | {3. CZHZA | input to CZHXC]
i 1 i L R _ 3

Appendix: The SVC Codes 199

APPENDIX H: TSSS FIELDS IN TSS/360 TABLES

Five TSS/360 tables are used in connection with TSSS operation:

e The Interrupt Storage General Queue Entry (CHAGQE)

e Prefix Storage Area (CHAPSA)

e Interrupt Storage Area (CHAISA)

* System Table (CHASYS)

Task Status Index (CHATSI).

These tables, initialized and maintained by TSS/360, are used by TSS/360 during TSSS
activation or by TSSS during its operation. Three of the takles have special fields used
only by or for TSSS, but initialized by TSS/360. This appendix lists the fields in
CHAISA, CHASYS, and CHATSI that are created for TSSS.

CHAISA

. T . T T 1

|Field |Size | |Rel. Loc. |

{ Name | (bytes)| Purpose | (hex) |

L 1 i 4+]

¥ T T T L

{Isanv | 8 |New VSS VPSW | +838 |

| ISAEF |]VSS Active Flag |[+846 |

| ISAVSC| {VSS Connected | +844 |

| i | Flag] |

L 4 1 i J

CHASYS

13 R T T T 1
| Field |Size | |Rel. Loc. |
| Name | (bytes) | Purpose | (hex) |
L 4 } 1 i |
T T v L 1
|SYSRSS | 1 |RSS Active. | +14c |
| | | | |
| | | _ | l
| SYSRSM | EQU |X'80' RSS Active Mask | i
| | | | |
| | | i I
| SYSRCT | & |RSS Communication Table Address { +150 |
| | |]]
| SYSRS1] 8 |LPSW to Enter RSS via Program Interrupt] +158 |
] | | | |
SYSRS2 { 8	LPSW to Enter RSS via SVC Interrupt	+160
		1
S¥YSRS3	8 {LPSW to Enter RSS via I/0 Interrupt	+168
	i	i
SYSRS4] 8	LPSW to Enter RSS via External Interrupt Key	+170
SYSRS5] 8	LPSW to Enter RSS via Channel Interrupt Processor	+178
i		
SYSRS6	8	LPSW to Enter RSS via Queue GQE on TSI
]		
SYSRIO	u8	RSS System Active Device Table (SADT) —-- two entries] +188
i L i 1 I §

200

CHATSI

{Field |Size T TRel. Loc. }
| Nime l(?XtES)! Purpose l (hex) j
§;;IVSS I 1 TFlags to maintain a record of VSS use of the TSI I +86 |
:TSIVS { EQU !lTSIVSS VSS Active Flag. X'80' is mask |I %
{lTSIVT { EQU {TSIVSS TSP Connected Flag. X'40' is mask i‘ }
{TSIVU g EQU {TSIVSS Separate TSP Terminal Flag X'20"' is mask : }
:TSIVTP } 4 ;vss Alternate TSI Pointer } +80 %
iTSISDA i 2 iSymbolic device address of the TSP terminal i +84 {

p— ¥]

Appendix H: TSSS Fields in TSSs/360 Tables 201

APPENDIX I: MESSAGES BY MODULE USAGE

This appendix lists the TSSS modules with the message class codes and message numbers
that each module issues. The modules are arranged in alphabetic order.

The input parameter to the message routines, the Message Control Word, is formatted as
ccyyxx, where cc is a unique two-character module identifier in EBCDIC, yy is the message
number in hexadecimal, xx is the message class code in hexadecimal. However, the output
format for a message is CEHccxyy, where CEH is a constant (CZH in VSS), cc is the two
character module identification, x is the message class code, and yy is the message num-
ber. The message class codes and message numbers are listed here in the external output
format (for example, message class 02, message number 04, appears as 204).

r T 1 r T 1
jModule ID | Message Class and Number | | Module ID { Message Class and Number {
b + 1 t + 1
| CEHAC { none | | CEHDV | none i
1 | | |] |
| CEHAD | none | | CEHEA/CZHSA | 000, 001, 002, 004, 005, }
% { 306, 307 % % } 00C. 00F %
CEHAE .
. | 1 | CEHEB | 003, 009
| CEHAP | 118, 10A, 20D, 308 i | | i
| | | | CEHFA/CZHTA | 000, 001, 002 |
| CEHAQ | none | | | |
i i | | CEHFB/CZHTB | 000, 002, 010 |
| CEHAS | none | | | i
|] i | CEHFC/CZHTC | 000, 001, 002, 00A |
{CEHBD | none | | | i
i i i | CEHFD/CZHTD | 000, 001, 002, 010 !
| CEHBE | none I | i
i | i | CEHFE/CZHTE | none i
| CEHBL | 303, 304, 305 | | | |
| I | | CEHGA/CZHUA | 006 {
{CEHBT/CZHRT | 202, 209, 20A, 20B, i | | {
i :] 20C i | CEHGB/CZHUB | 006 {
| 1 i | | |
} CEHBU | 300, 301, 302 i |CEHGC/CZHUC | 006 {
| | | | l |
{CEHCA } 117, 118] | CEHGD/CZHUD | 006 |
i | | | | |
{ CEHCB | 10a, 204 | |CEHGE/CZHUE | 006, 007 {
| | | | 1 1
{CEHCC | none | | CEHHA/CZHVA | none |
| i | | | {
| CEHCF | 109 } |CEHJA/CZHZA | 200, 201, 208, 20E {
| i | | | 1
}CEHCH | none i | CEBJF/CZHZF | 101, 102, 10A, 10E i
| | | | | |
| CEHCM | none | | CEHKA/CZHYA | 106, 107, 10E, 114, 119, i
* | N e |
| CEHCQ none
{ i | | CEBRC/CZHYC | 106, 107, 122, 124 {
{ CEHCS | none i | } i
| | | | CEHKD/CZHYD | 105, 106, 107, 10D, 10E, i
| CEHDA | none | | | 11c, 121, 128, 206 }
| | | 1 |
{ CEHDE { none i | CEHKE/CZHYE | 103, 107, 108 {
| | | | i {
| CEHDL { none i | CEHKL/CZHYL | 105, 11D, 11F i
| { | | | i
| CEHDR { 201 | | CEHKM/CZHYM | 107 {
L L 4 | L H

202

. ——

r
|Module ID
H

Message Class and Number

L] 1

| |

i ¥ |
L] 3)
| CEHRN/CZHYN | 106, 107 |
i | |
| CEBKP/CZHYP | 106, 107, 115, 116 I
| | |
| CEBKQ/CZHYQ | 107, 109, 10C, 10E i

| |
| CEHKR/CZHYR | 106, 107, 10E, 118, 11E |

| |
| CEBXS/CZaYS | 000, 106, 107, 10D, 10E, i
I | 123, 124, 206 i
| | |
| CEEKT/CZHYT | 107 1
I ! |
| CERKW | 104, 205 |

| |
|CEBLA/CZEXA | 100, 105, 106, 107, 109, }
| { 108, 10D, 10E, 10F, 118, }
i | 120, 124, 125, 126, 127, §
| | 20D |
| | |
|CEHIC/CZHXC | 106, 114, 121 i
1 | i
|CEBLL/CZHXL | 111, 124, 106 |
I | |
jCEHLP/CZHXP | 111, 112, 113, 11B |
| | i
|CEHLS/CZHXS | 205, |
| i |
|CEHMA/CZHWA | 10B I
| | I
|CEHMM/CZHEWM | 121 i
| I |
| CEBMS | 112 |
| | |
| CZHNE | none }
| | |
|CZENM | none }
I | I
|czZENP } 10a i
I | I
CZHNV	none
CZHPB	none
i	
CZHPR	none
{CZHPS	none i
	I
CZBSB	006,007,008,00B
jCZHWS | 112 |
L I . |

Appendix I:

Message Writers by Module Usage 203

GLOSSARY

For time-sharing terms not defined here,
see the glossary in IBM System/360 Time
Sharing System: Concepts and Facilities,
GC28-2003.

abort case: When TSS/360 is considered to
be aborted, as the result of the Inter-CpPU
error wait state, the abort case allows the
use of a special subset of RSS capabilities
only, restricting the MSP from the AT, CON-
NECT, DISCONNECT and RUN-functions. (See
the RSS External Interrupt Processor module
description.)

activation: Activation is a series of
operations that make RSS or VSS capabili-
ties logically available to the Systems
Programmer, either via his intervention or
via execution of an AT he previously caused
to be implanted. Activation includes sav-
ing all status pertinent to the interrupted
program; suspending execution of TSS/360
or, in VSS, the subject task, and entering
RSS or VSS execution mode. Initial activa-
tion includes connecting the SP.

AT mode: AT mode is established by setting
a flag in the RSS Status Save Area’
(ESVARXM), which occurs when an AT SVC is
executed (causing activation of TSSS).
During AT mode processing, Language Control
initiates processing of a stored dynamic
statement instead of reading an input
device.

call mode: cCall mode is established
through the use of the CALL command, which
causes the active entry in the Input Device
Table to be changed to contain the address
of a card reader or tape drive instead of
the system programmer's terminal. Language
Control initiates the reading of a sequen-
tial data set from this called device,
until a termination command is reached or
the SP terminates the data set. Call mode
can be concurrent with AT mode.

chained ATs: A chained AT is one whose AT
Control Block (ACB) shares the same
implanted AT SVC with one or more other
ACBs. Execution of the SVC causes the
chained AT command strings to be executed
sequentially. An X'80' setting in the flag
byte (ACBLOC) of an ACB indicates that
chaining has been activated for that ACB.

command: A TSSS command is the syntactical
unit that specifies a TSSS operation.

While it may be synonymous with keyword,
command generally includes the operand for
a given keyword.

204

command statement: A command statement
generally includes more than one command;
it is used synonymously with the terms
input string and command string.

connect, connection: Connection denctes
MSP or TSP capability at a terminal. It
implies that RSS or VSS was successfully
invoked and that the disconnect function
has not been performed for the connected
user. Connection is the result of initial
activation. This condition is represented
by various bit settings, which are tested
by the appropriate routines.

conversational mode: Conversational mode
is established when input is solicited from
the system programmer's terminal. The SP
terminal is the primary input device; its
symbolic device address is initialized in
the Input Device Table by the Environment
area module responsible for RSS or VSsS
activation.

control nucleus: The control nucleus is
the resident portion of TSSS and is
responsible for processing interruptions
and activating or deactivating either RSS
or VSs. It is loaded with the TSS/360
Supervisor at TSS/360 Startup.

current PSW: The current (or exit) PSW is
the TSS/360 old PSW, which was stored when
TSSS interrupted the system, and which
designates the address where control is to
be returned when TSSS is deactivated. This
PSW is stored by TSSS in the first eight
bytes (ESVCPSW) of the TSS/RSS Status Save
Area.

deactivation: TSSS deactivation is a
series of operations that restore control
to TSS/360 when TSSS is active. Deactiva-
tion is initiated by a RUN or DISCONNECT
command; it includes restoring all saved
TSS/360 or task status, disconnecting the
SP, and transferring control to TSS/360.
Deactivation in RSS also includes restart-
ing the halted CPU.

dedicate, dedicated: A terminal at which
an SP is connected is dedicated to RSS or
VSS when RSS or VSS, respectively, is exe-
cuting, in that no other program can then
be executed at the terminal.

disconnection, disconnect function: An SP
signals that he wishes to end his terminal
session by the DISCONNECT command. This
results in deactivation, as well as restor-
ing the TSSS load tables to their status
prior to TSSS activation. All ATs belong-

ing to the SP are removed as a result of
the disconnect function; all SP-implanted
patches remain, although the record of them
in the Patch Table is destroyed when the
table is reinitialized.

dynamic statement: A TSSS dynamic state-
ment is the command or command statement
accompanying an AT. It is stored in the AT
Table with the ACB, which contains a point-
er to the statement.

"get®: In TSSS a "get™ is moving the con-
tents of a designated page from an address
in real storage, or from a location on an
external device, into a buffer. Opposite
of "put.”

global qualification: TSSS global qualifi-
cation is specified by the SP and exists
when the Identifier field of the Qualify
Table is X'02', and the Qualifier field of
the Qualify Table is X'000000°*. If an AT
with global qualification (recorded in the
ACB) is implanted in a way that causes a
task other than the paremt task to encount-
er and execute the SVC, every encountering
task will also execute the stored dynamic
statement. TSSS need not have been pre-
viously activated within the encountering
task.

Inter-CPU Exror Wait State: The Inter-CPU
'~ Error Wait State exists when the Inter-CPU
Error Wait bit (ESVEWTB) is set on (X'02°)
in the TSS/RSS Status Save Area. This
error wait state occurs if the CPU that is
subject to a Halt and Transfer order (via
Write Direct) does not respond within one
second, whereupon the timer causes an ex-
ternal interruption. After the Inter-CPU
Error Wait State has been established, it
may be terminated only by a manual key ex-
ternal interrupt, at which time the abort
case is established.

keyword: Each TSSS command name except IF
constitutes a TSSS keyword, which is the
internal designation for an executable
operator portion of a command. TSSS recog-
nizes 16 keywords, each of which invokes a
keyword execution subroutine.

local MSP: If an MSP connects to RSS by
pressing a CPU interruption key, which pre-
empts the operator's terminal and tem-—
porarily dedicates it to RSS, he is called
a local MSP.

parent task: If VSS, activated within a

given task, implants an AT SVC during VSS
execution, this task is called the parent
task with regard to the implanted AT SVC.

polish, polish string: TSSS converts the
input string into an internal format known
as polish notation; the converted data is

called a polish string.
Operator Reverse Polish.

TSSS uses Early

private qualification: Private qualifica-
tion is used to denote non-global qualifi-
cation for an AT. If an AT SVC with priv-
ate qualification is implanted in shared
virtual storage, other tasks will encounter
and execute it. Only the parent task will
execute the stored dynamic statement.

"put®: In TSSS "put™ is returning the con-
tents of a given buffer to the location
from which it was fetched with a “get"™
function. Opposite of "get.*®

reactivation: Reactivation is the activa-
tion of either RSS or VSS when the SP is
already connected, but has relinquished
control to TSS/360 or to the subject task
with the RUN command.

restart: Restart is two sequential manual
key external interruptions from the CPU ex-
ecuting RSS. This manual intervention may
be the result of an apparent error condi-
tion in RSS. Restart results in dumping
TSS/360 real storage, and unloading and
completing reloading of transient RSS.
Processing then may continue as for any
activation of RSS.

run mode: Run mode is the state of TSSS
when TSS/360 {(for VSS, the task) is exe-
cuting but a system programmer is still
connected. Run mode is the alternative to
the TSSS execution modes —-- conversational,
call, and AT modes.

SADT: The TSSS Active Device Table (SADT)
is part of the TSS/360 System Table (CHA-
SYS) for RSS, and the TSS/VSS Status Save
Area (CHAEVS) for VSS.

SCB: A Symbol Control Block (SCB) is (1) a
48-byte data field in the SP's working
storage containing an SP symbol or a system
symbol, symbol-defining information, and
other related data; (2) a data field used
to pass information between lanqguage area
routines, in the same format as (1) and
often a copy of such an SCB.

SP symbol: An SP symbol is a symbol
created by the system programmer with the
DEFINE command. The definition is recorded
in an SCB, which is stored in the SP's Sym-
bol Table or, for a TSP, in the Global Sym—
bol Table.

system symbols: TSSS system symbols are a
group of 23 fixed symbols which begin with
$. These system symbols allow symbolic
reference to certain data fields or perform
certain functions when used as command
operands or within operands. The system
symbols $§B, $P, 3L, $S, 5T, and $1ID are

Glossary 205

defined as system symbols externally; they
are treated as operators internally.

VCA: A TSSS Virtual Communications Area
(VCA) is a concept used primarily for con-
venience on the TSSS flowcharts. A VCA is
any area that is used to pass information
from VSS to RSS, via a Load Real Address
instruction. For example, the VSS Status
Save Area becomes a VCA when VSS restores
task status prior to exiting.

void command: The void command consists of

an input string containing only end-of-
block characters (VSS only). Its execution

206

results in deactivation of VSS with an
Attention interruption queued to the task.
Its purpose is to permit a TSP at the
task's SYSIN terminal to communicate with
the TSS/360 Command Language Interpreter;
in run mode (when TSS/360 is active) he
presses Attention (activating VSS) followed
by the void command (RETURN).

VSS command: The VSS command is a TSS/360
command that causes an SVC 83 to be issued;
VSS is activated within the current task,
preempting the SYSIN terminal and estab-
lishing the one-terminal case.

INDEX

Where more than one page number is call mode* 40
given, the major reference is first. An CALL Command Processor, RSS/VSS 66,146
asterisk indicates that this entry is also CEHAE 11,82
a glossary entry. CEHAC 18,90

CEHAD 17,89
CEHAP 16,88
CEHAQ 32,106

$AT Format routine, RSS/VSS 63,142 CEHAS 18,91
$AT print line format 64 CEHBD 23,97
$PATCH Format routine, RSS/VSS 63,142 CEHBE 25,99
SPATCH print line format 64 CEHBL 13,86
$STATUS Format routine CEHBT 15,87
RSS 64,143 CEHBU 24,98
VSS 64,144 CcEdca 20,93
$TASK Format routine CEHACB 21,94
RS5 64,143 CEHCC 12,85
VSS 64,144 CEHRCF 30,102

CEACH 12,83-84
CEHCM 22,96
CEHCQ 30,103

abort case* 204 CEHCS 29,101
ACB 192 CEHDA 31,105
access methods 71-73 CEHDE 32,107
Activate Interrupt Processor, CEHDL 27,100
vss 35,108-109 CEHDR 19,92
activation#* CEHDV 31,104
RSS 8,10 CEHEA 71,150
VSs 26,28,33 CEHEB 74,158
Active Device table 181 CEHFA 71,151
Address to Symbol Resolution routine, CEHFB 72,152
RSS/VSS 55,130 CEdFC 72,153
addressing exception, RSS 17 CEHFD 73,154-155
alias 42 CEHFE 73,156-157
establishment of 57 CEHGA 79,165-166
asynchronous interruption processing CEHGB 79,167
I/0 error recovery 78-79 CEHGC 80,168-169
MSP (see I/0 interruptions) 18 CEHGD 80,170
TSP (see 1I/0 interruptions) 32 CEHGE 76,162-164
AT CEHHA 75,161
implanted 3,8,27 CEHJA 43,117-118
private or global 43 CEHJF 63,142
AT Command CEHJH 64,143
AT Control Block 192 CEHKA 55,131
AT data, format of 64 CEHKC 59,136
AT mode* 40 CEHKD 61,139-140
AT processing CEHKE 57,133
Command processor 55 CEHKL 66,146
in VSS 56 CEHKM 66,147
overview 3,4,8 CEHKN 67,149
procedures 44 CEHKP 61,138
SVC processor, RSS 43 CEHKQ 58,134
VM AT Execution SVC 31 CEHKR 65,145
AT relocation area &5 CEHKS 60,137
AT SVC Processor, RSS/VSS 43,117-118 CEBHKT 66,148
AT tables 192 CEHKW 59,135
attention 10 CEHLA 54,125-129
authorization code 1 CEHLC 45,119

CEHLL 53,124
CEHLP 46,120

backspace 74 CEHLS 49,121
buffers, input 189 CEHMA 55,130
bus out check 79,80 CEHMM 63,141

Index 207

CEHMS 51,122 CZHYC 59,136

CHAACB 192 CZHYD 61,139-140
CHAATB 192 . CZHYE 57,133
CHAECX 179,14 CZHYL 66,146
CHAECW 182,68 CZHYM 66,147
CHAESV 194 CZHYN 66,149
CHAEVS 197 CZHYP 61,138
CHAEXT 177,14 CZHYQ 58,134
CHAISA 200 CZHYR 65,145
CHAKPW 193 CZHYs 60,137
CHAKPX 192 CZAYT 66,148
CHAKQD 190 C2ZHZA 43,117-118
CHALCR 189 CZHZF 63,142
CHAMSW 190 CZHZH 64,144

CHASPM 193
CHASYS 200

chained ATs 206 DAT 1

channel interruption (see asynchronous deactivation 7,204

interrupt) 19 RSS 8,10

code 5 (addressing exception) 18 dedicated terminal* 204

code 17 (see paging exception) 18 DEFINE Command Processor, RSS/VSS 57,133
COLLECT Command Processor 59,136 DEFINE tables 57
Command statement* 3 deletion of data read 74

command, TSSS#* 3 delimiters 47

configuration, machine 5§ delta character used as end-of-block 48
CONNECT Command Processor 59,135 Device Allocation table 179-180
connected {(connection) 7,28 Direct Access Device Access Method routine,
Console Access Method routine RSS/VSS 71,151

RSS/VSS 72,152 Direct Access Device Error Recovery
console Error Recovery routine routine, RSS/VSS 79,165-166

RSS/VSS 79,167 directory, module 172

continuation 74 Disconnect function* 24,7,10

control nucleus* 1 Disconnect routine, RSS 23,97
communication between VSS/RSS 40 DISCONNECT Command Processor,
conversational mode 40,204 RSS/VSS 66,147

CSECT naming 171 DISPLAY Command Processor,

current PSW 204 : RSS/VSS 61,139-140

CZHNE 36,111 DSECT naming 171

CZHNM 38,115 DUMP Command Processor, RSS/VSS 61,139-140
CZHNP 37,112 duplex configuration
CZHNV 35,108-109 activation in 1,8

CZHPA 37,113 deactivation in 10
CZHPB 38,114 Dynamic Address Translation 1

CZHPR 39,116 dynamic paging 8,13,14
CZHPS 36,110 dynamic statement* 205

CZHRT 15,87
CZHsSA 71,150

CZHSB 75,159 END Command Processor, RSS/VSS 66,146
CZHTA 71,151 Environment

CZHTB 72,152 RSS 8,9

CZHTC 72,153 VSS real storage 26

CZHTD 73,154-155 VSS virtual storage 33
CZHTE 73,156-157 Environment functions 8
CZHUA 79,165-166 error recovery, I/0 76,78-79
CZHUB 79,167 Error Scan and Recovery routine,
CZHUC 80,168-169 RSS/VSS 76,162-164

CZHUD 80,170 entries and exits 77
CZHUE 76,162-164 exceptions 17

CZHVA 75,161 Exit routine

CZHWA 55,130 RSS 25,99

CZHWM 63,141 vss 32,107

CZHMS 52,123 External Interrupt Processor
CZHXA 54,125-129 RSS 11,82

CZHXC 45,119 Vss 36,111

CZHXL 53,124 external interruption key 1
CZHXP 46,120 external interruptions

CZHXS 49,121 as means of activation 8
CZHYA 55,132 to initiate restart 12

208

processing of 11
external page tables
External Page Location Address Translator,

RSS/VSS 15,87
External Page Table, TSS 178,14
External Work Area Table 178,14

fields, TSSS, in TSS/360 tables 200
file protect

as result of Read Track format 79
Find TSI routine 30,102
flowchart conventions 81
Format subroutine 62,140
functions of TSSS commands 3

"get/put” function#
global qualification

21,22
43,191

Halt I/0 instruction 73

IF operator 54,129
implanted AT 3
independent definition 42
Initial Virtual Storage (IVM) 1
input buffer 189
Input Device Table (CHALCR) 189
input string (command statement) 3
Inter-CPU Communications routine,
RSS 12,85
subroutine (CEAIC) 14
Inter-CPU Error Wait#* 14
internal structure, TSSS 2
Interrupt Storage Area (ISA) 200
saved by VSS 35
interruption filter, TSS/360 Supervisor
as 8,10
interruption handling, RSS 10
interruption queuing in VSS 30
interruption switching in VSS
activation 32
interruption switching routine, RSS
intervening run 7,29
intervention, MSP 8
intervention required 78,163-164
IOCAL macro instruction 68,75
IORCB 182,68
I/0 Completion routine, RSS/VSS 75,161
I/0 Control routine, RSS/VSS 71,150
170 devices supported 5
170 Editor routine, RSS/VSS 73,156-157
I1/0 error recovery 76,78-79
I/0 Initiation routine
RSS 74,158
vVss 75,159-160
1/0 interface, language and environment 68
I/0 Interrupt Processor, RSS 17,89
I/0 interruptions
processing by control nucleus
processing for RSsS 10,17,19
processing for MSP asynch 18
processing for TSP asynch 32
I/0 Posting routine, VSS 75,159-160
1/0 processing overview 69
I/70 return codes 68

29,101

1,10

I/0 System tables 179
1/0, TSSS 68
1/0, user-system interface 71

keyword,* usage 3

language buffers 189
Language Control routine, RSS/VSS
language processing
general 40,42
modes 40
RSS/VSS differences 43
Literal Resolution routine, RSS/VSS 53,124
litexrals 48,53-54
load function, RSS
execution 14
tables 176-178
Loader routine, RSS 13,86
Loader SIORCB, initialization 13
Loader tables 14
logical module concept 6
LOGON
activation 7
interface with TSS/360 7
RSS/VSS 7,27,29
LOGON RSS/VSS SVC Processor 27,100

45,119

machine configuration 5
manual key interruption 1,8,11
Master System Programmer 1,8
memory map print line format 66
Memory Map Format routine, RSS/VSS
message classes 22
message control block in VSS activation 27
message handling

originating module 5

use during intervention required 6

by RSS module 22-23,202

by VSS module 38-39,202
Message Writer routine

RSS 22,96

vsSs 38,115
modes of operation 40
module attributes 6
module directoxry 172
MsP 1,8
MSP intervention 8

63,141

-

name string 47
naming and notational conventions 5
noise condition 80

Operator Punctions routine,
RS5/VSS 54,125-129
operator string 47
operators 54

other CPU 8,10,12

page tables 176-178
Pageable table, TSS 176,14
paging 8

paging exception 17

Index 209

parent task#* 205
Patch control block 192
patch data, format of 64
Patch Command Processor,
Patch table 193
PCB 192
permanent SCB 42
polish processing 46-49
polish string construction table
polish strings, general 40
pound sign (#) 74
Prefixed Storage Area 12
private qualification* 43
Program Interrupt Processor

RSS 16,88

vVsSs 37,112
program interruptions 10
psa 12
pushdown stack 47

RSS/VSS 61,138

185-188

qualification codes 191
QUALIFY Command Processor, RSS/VSS 58,134
Qualify table 190,58

Gueue VSS Interrupt routine 30,103

reactivation* 205
Read Track Format instruction
access method processing of 71
I/0 error recovery processing of 79
Real Core Access routine
RSSs 20,95
vss 37,113
register usage 6
remote MSP* 8
REMOVE Command Processor, RSS/VSS 65,145
resident supervisor 1
restart* 14,15
Restore Status routine, VSS
return codes 6
return SVC in AT processing 5
RSS activation
circumstances causing 8
environment procedures 8
through ATs implanted by RSS
through MSP intervention 11
through Supervisor locaded PSWs 8
through VSS service request 10
RSS deactivation
environment processing 10
general description 8
RUN Command Processor, RSS/VSS 67,149
run mode* 40

39,116

8,10

SADT 181

save areas
TSS/RSS status 194
TSS/VSS status 197

Scan Control routine, RSS/VSS 49,121
SCB* (see Symbol Control Block)

Segment Four External Page table
Segment Table 176,14

Segment Three External Page Table 177,14
Segment Three Page Table 177,14
Segment Two External Page Table
Segment Two Page Table 176,14

178,14

177,14

210

Sequential Access Device Error Recovery

routine, RSS/VSS 80,168-169
Sequential Access Method routine,
RSS/VSS 72,153

serial I/O, concept 71

service request, VSs 10

short save into PSA 8

SIORCB* 182,68

skeleton SCB 42

Source to Polish routine, RSS/VSS
sSpP 1
SP symbols 193

definition of 42
SP Symbol Table 193
SSDAT 179-180
Start I/0 74
Status restore 39
status save areas
TSS/RSS 194
TSS/VSS 197
Status Save routine
RSS 12,83-84
vVss 36,110
STOP Command Processor,
Strings 47
structure of TSSS 5
Supervisor-loaded PSWs 8
SVC codes 199
SVC Interrupt Processor,
SVC interruptions
processing by control nucleus 10
RSS processing of 10,20
SVC codes 199,19,20
SVC Service Processor, RSS 19,92
Symbol Contrcl Block (SCB#)
format of 42
types of 190-191,40
in symbol tables 42,58
use during symbol resolution 42,50
use in scan control 42
Symbol Dictionary Table, TSS 174,14
Symbol Resoclution routine
RSS 51,122
Vss 52,123
symbol string 47
Symbol Tables
format of SP-defined 193
SP-defined 51-53
System 52-53
Symbolic Device Allocation Table, TSSS
System Logic Error subroutine 17
System programmer 1
System programmer authority 1
system symbol 51,52
System Symbol Tables
System Table (CHASYS)
as modified for TSSS 179,202
SADT as part of 18,10

RSS/VSS 66,148

RSS 18,91

52,53

Table Scan and Error Recovery
subroutine 77

tables
AT 192
AT Control Block 192
Input Device 189
I/0 Request Control Block 182
PATCH 193

46,120

182

PATCH Control Block 192
Polish String Construction
Action Code Matrix 187

Codes 187
Delimiters 186
Qualify 190
RSS External Page 177
Segment 176
Segment Three Page 177

Sp Symbol 193
Support System Active Device 181
Support System Device Allocation
{(ssSbaT) 180
Symbol Control Block 190
Symbol Dictionary 177
TSS External Page 178
TS5 Pageable 176
Task Monitor and TSSS 1
Task Status Index (TSI)
in VSS activation 27,30
vSs field in the 27
task status saved by VSS 27
Task System Programmer 1
Telecommunications Access Method routine,
RSS/VSS 73,154-155
Telecommunications Error Recovery
routine 80,170
temporary SCB 42
terminal session 7
time slice end
in VSS 1I/0 Initiation 75

transient RSS 1,8
TSP 1
TSP Asynchronous Interrupt
Processor 32,106
TSS External Page Table (CHAEXT) 177
TSSS fields in TSS/360 tables 200

TSSS input processing 40
TSSS user 1
TWAIT in LOGON task 8

unit check 78

unit exception 78

unload process 24,25
Unloader routine, RSS 24,98
users, TSSs 1

Virtual Memory Access routine
RSS 21,94-95
VSs 38,114
Virtual Memory AT SVC Execution
Processor 31,105
virtual storage, access to 21
Virtual Support System (VSS) 26
void command* 32
VSs activate interruptions
processing at virtual storage
level 27,35
queueing of
VSS activation
control nucleus processing 1
procedures that initiate 26,28
virtual storage processing 26,28
VSS command* 206)
VSS Command SV Processor
VSS Environment
real storage overview 26
virtual storage overview 33
VS5 Exit routine 32
VSS service request 10

27,30,

31,104

work string 47

Write Direct instruction, use of 14

XPT (see TSS External Page Table)

Index

211

———

GY28-2022-2

BV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

ws3sAg 3xoddng BuTIeys LWTL

‘¥*S°0 UT pa3juTag

Z-2T0C-8ZAD

