
Version 8.1

IBM System/360 Time Sharing System

Assembler

File No. S360-21
GY28-2021-2

Program Logic

This publication describes the internal logic of the
IBM System/360 Time Sharing System (TSS/360) Assembler
Program (also referred to as ftthe assembler"). The
assembler processes a group of statements written
according to the rules of the TSS/360 Assembler Lan­
guage into a '1'SS/360 program module. A general
explanation of the four phases of language processing
in the assembler is provided, followed by individual
routine descriptions and flowcharts.

A general understanding of TSS/360 and the rules of
the TSS/360 Assembler Language is assumed. Prer"equi­
site to and co-references with this publication are:
IBM System/360 Time Sharing System: Concepts and Faci­
lities, and IBM System/360 Time Sharing System:
Assembler Language.

This publication is intended for use by system pro­
grammers involved in changing system code and in alter­
ing the assembler design.

Third Edition (September 1971)

This is a major reV1Slon of, and makes obsolete, GY28-
2021-1 and Technical Newsletters Y28-3100, GN28-3129, and
GN28-3138. There are numerous technical changes to this pub­
lication, both in the flowcharts and routine descriptions.
The major changes are summarized below:

• The CXD (CEVCX) routine has been added to Phase I to scan
for the presence of CXD instructions. A new address con­
stant, Q. has been introduced, and a DXD item has been
added to the main dictionary. Several routines have been
altered to process the new CXD and DXD instructions.

• The EQU instruction now permits length and type attribute
operands. The EQU (CEVQU) and EQUATE (CEVEQ) routines
have been altered to process the new operands.

• The USE/DROP {CEVUD} routine has been changed to process
a null operand on a DROP instruction. If this situation
occurs, all previously designated base registers are
dropped.

• The EBCDTIME (CEVET) routine is obsolete and has been
deleted.

This edition is current with Version 8 Modification 1 of
the IBM System/360 Time Sharing System (TSS/360), and remains
in effect for all subsequent versions or modifications of
TSS/360 unless otherwise noted. Significant changes or addi­
tions to this publication will be provided in new editions or
Technical Newsletters. Before using this publication, refer
to the latest edition of IBM Systern/360 Time Sharing System:
Addendum, GC28-2043, which nay contain information pertinent
to the topics covered in this edition. The Addendum also
lists the editions of all TSS/360 publications that are appl­
icable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre­
ssions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments appears at the back of this publication.
~t may be mailed directly to IBM. Address any additional comments con­
cerning this publication to the IBM Corporation, Time Sharing System/360
Programming Publications, Department 643, Neighborhood Rd., Kingston,
N.Y. 12401

Copyright International Business Machines Corporation 1967, 1969, 1971

The first section of this program logic
manual is an introductory discussion of the
overall concepts of the Time Sharing
System/360 CTSS/360) assembler program. A
number of sections, each associated with a
major component of the program, follows the
introduction.

In addition to a general summary of the
assembler's functions, the introduction
describes the external interfaces between
the assembler and

• Language Processor Control (LPC)

• Symbolic library service routines

• VISAM management service routines

Through its virtual memory management rou­
tines, which issue GETMAIN and FREEMAIN
macro instructions, the assembler also
interfaces with the Virtual Storage Alloca­
tion service routine (CZCGA).

section 1 describes the overall flow of
control only from the language processor
control (LPC) to the phase control level.

Sections 2 and 3 contain summary level
material; Section 2 contains summary by
phases, and Section 3 by instruction type.

Sections 4 through 10 describe the rela­
tionships between phases and routines. The
routine relationships of each major com­
ponent (phase) are shown in an illustration
following the introduction to that phase.
All routines are represented by a box and
an entry in the decision table supporting
the illustration. All relationships
between routines are shown with arrows.
Except in the introduction and in Section
1, the arrow represents a call and a return
to the routine from which the arrow points.
In the introduction and in Section 1, the
arrow represents the flow of control. In
Section 5, the arrow may represent the
recursive entry of one routine into anoth­
er. This exception is noted in the intro­
duction to Section 5.

The detailed flowcharts for the routines
are presented in Section 11, arranged in
the same order as the routine descriptions.

Section 12 describes all the tables,
table entries, and listing formats referred
to in this manual.

PREFACE

Section 13 describes the assembler's
virtual memory management routines. These
routines manage virtual storage requisition
and return, issuing GETMAIN and FREEMAIN
macro instructions when necessary.

The routine relationships are shown in
terms of levels. A called routine is con­
sidered to be one level lower than the cal­
ling routine. Every box in each routine
relationship's illustration has an Arabic
numeral in the right-hand corner, indicat­
ing the lowest level at which the module
may be called. Phase control routines are
considered to be level 1 •

The illustrations showing the routine
relationships are supported by decision
tables. Each routine in an illustration is
supported by an entry in the corresponding
decision table, which lists the conditions
under which that routine calls other rou­
tines. The decision table entries are
placed in their level order; within each
level, the entries are arranged alphabetic­
ally by mnemonic name.

Upon completion of this manual, the
reader will have a comprehensive knowledge
of the internal functions of the TSS/360
assembler program. If more detailed know­
ledge is reqUired, the program listings
should be consulted.

PREREQUISITE PUBLICATIONS

Effective use of this manual requires
knowledge of the information contained in
the following manuals:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
Assembler Language, GC28-2000

In addition. the following publications
may be consulted:

IBM System/360 Time Sharing System:
Dynamic Loader PLM, GY28-2031

IBM System/360 Tin~ Sharing System:
Program Control System PLM. GY28-2014

iii

CONTENTS

SECTION 1: INTRODUCTION ••••••••••
Purpose of the TSS/360 Assembler program
System Environment • • • • • • • • • • • • •
Organization and Overall Function of the Assembler

syntax Analysis • • • • • . • • • • •
Macro Instruction Processing •• • .
Assignment of Location Counter Values • •
Program Reordering •••• • • •
Machine Instruction Synthesis •
Post-Processing • • • • • •

Assembler Functions • •
Assembler Control Routine (Interface with LPC)

User Virtual storage Required by Assembler
Working Storage Areas • •

Work Area 1 . • • • .
Work Area 2 • •••• •
Work Area 3 •
PMD Text, ISD and External Names List Storage Areas •

Characteristics of Assembler Routines • • • • • •

SECTION 2: ASSEMBLER FUNCTIONAL DESCRIPTION
Phase I Functional Description
Phase IIA Functional Description
Phase lIB Functional Description
Phase IIC Functional Description
Phase III Functional Description
Phase IV Functional Description •

SECTION 3: ASSEMBLER FUNCTION BY INSTRUCTION TYPE
Introduction •• • •
Machine Instructions
Macro Instructions
Assembler Instructions

SECTION 4: ASSEMBLER MASTER CONTROL
Introduction • • • •

AC -- Assembler Control (CEVAC) •

SECTION 5: PHASE I •
Introduction • • • • • • • • • • •

1
1
1
2
3
3
4
4
5
5
5
5
7
7
7
7
8
8
8

• • •• 9
• • •• 9

• • • • • • 13
• 16

• • • • 20
• 22

• • 26

• 28
• • • • • 28

• 28
28

• • 28

• 32
• 32

• • 33

• 36
• 36

Routines • . •. •• • • • • • • • • • • • • • 36
36

iv

PHASE I -- Phase I Control (CEVPA) • • • •
STAN -- Statement Analyzer (CEVST) • • • •
REED -- Obtain Next Source Statement (CEVRD) ••••
GETOP Collect and Identify Operation code (CEVGP)
SUBOP -- Substitute into Operation Code Field (CEVSP)
CATOP -- String Substitution Control (CEVCP) ••••
MIP -- Machine Instruction Operand Scan (CEVMP) •
*se~ -- Basic Source Language Scan (CEVBS) •• ••
AGO/AIF -- AGO/AIF Instruction Scan (CEVGO)
ANOP -- ANOP Instruction Scan (CEVAN)
ccw -- CCW Instruction Scan (CEVCW) • • • • • • • • •
CNOP -- CNOP Instruction Scan (CEVCN)
CXD -- CXD Instruction Scan (CEVCX) .
SECT -- Control Section Instruction Scan (CEVCT)
COpy -- COPY Instruction Processor (CEVCY) ••••
DC/DS -- DC/DS Instruction Scan (CEVDC) •
EJECT -- EJECT Instruction Scan (CEVEJ) •
END -- END Instruction Scan (CEVND) • • •
ENTRY -- ENTRY Instruction Scan (CEVEY)
EQU -- EQU Instruction Scan (CEVQU) • • • •
EXTRN -- EXTRN Instruction Operand Scan (CEVXN)

• 36
• • 53

• 54
• 55
• 55
• 56

56
• 57
• 58

• • 58
• 59

• • 59
• 59
• 60

• • 61
· 61

61
• • 62

• • • • 62
62

GBLxlLCLx -- Global/Local Symbol Instruction Scan (CEVGL) •
ICTL -- ICTL Instruction Scan (CEVIC) •
ISEQ -- ISEQ Instruction Scan (CEVIQ) • •
LTORG -- LTORG Instruction Scan (CEVLG) • • • • • •
MACRO -- MACRO Instruction Scan (CEVMC)
MEND/MEXIT -- MEND/MEXIT Instruction Scan (CEVMX)
MNOTE -- MNOTE Instruction Scan (CEVMN) • • • • •
ORG -- ORG]:nstruction Scan (CEVRG) • • •
PRINT -- PRINT Instruction operand Scan (CEVPR) •
PUNCH -- PUNCH Instruction Scan (CEVPH)
REPRO -- REPRO Instruction Scan (CEVRE)
SETX -- SET Instruction Scan (CEVSE)
SPACE -- SPACE Instruction Scan (CEVCE) • • • • • • •
TITLE -- TITLE Instruction Scan (CEVTI) • • • •
USE/DROP -- USING and DROP Instructions Scan (CEVUD)
MACREF -- Macro Reference Processor (CEVRF) •
MACDEF -- Macro Definition Processor (CEVDF)
CSCAN -- Constant Scan (CEVCS) ••••••••••••••
SSCAN -- String substitution Scan (CEVSS)
EVAL -- Expression Evaluator (CEVEV)
PSCAN -- Parameter Item Analyzer (CEVPS) • • • •
EBIN Binary Self-Defining Term Generator (CEVGB)
EDEC -- Decimal self-Defining Term Generator (CEVGD)
EHEX -- Hexadecimal Self-Defining Term Generator (CEVGH)
ECHAR -- Cnaracter Self-Defining Term Generator (CEVGC)
SLIT -- Scan for Literal Operand (CEVSL)
DLPM -- Dictionary Lookup and Put (CEVLP) • • •
DEFSYM -- Define Location Symbol (CEVSY)
DIAG Diagnostic Message Processor (CEVDX)
DLKT -- Lookup Temporary Dictionary Item (CEVTK) ••••
DPUT -- Put Item in Temporary Dictionary (CEVTP) ••••
MACLKT -- Macro Name Dictionary Lookup (CEVLM)
MACPUT -- Macro Name Dictionary Put (CEVTM) •
DLKM -- Main Dictionary Lookup (CEVKM)

63
• 64
• 64
• 65
• 65
• 65
• 66

• • 66
• 67
• 67
• 67

• • 68
68

• • • 69
69

• • • 70
• • • 70

71
• 72

• • • 72
• 77

78
• 78
• 78
• 79

• • 79
• 79

• • 80
80

• 81
• • 81

• 82
· 82
· 82

SECTION 6: PHASE IIA • • • • • 83
Introduction • • • • • • • • •
Conversational Control • • • •
Routines • • • • • • •

~~~":Jl~ -- Phase IIA Control (CEVPB) 
PARAMAC -- Macro Parameter Processor (CEVPM) 

SECTION 7: PHASE 
Introduction 
Routines 

lIB • 

PHASE lIB 
LOCATE 
ORIGIN 
POOLIT 
EQUATE 
RESCON 
RESLIT 

-- Phase lIB Control (CEVPC) •••• 
Location Counter Assignment (CEVLC) 
Location Counter Reset (CEVGN) 
Literal Pooling Processor (CEVPL) ••••• 
ASSign Value to Name (CEVEQ) 
Resolve Conditional Alignment (CEVRS) 
Literal Resolution Processor (CEVRL} 

• • • • 83 
• 83 

83 
• 83 
• 86 

• 88 
• 88 

88 
• 88 

91 
92 

• • • • 92 
93 
93 

• • • • 94 

SECTION 8: PHASE IIC • 
Introduction 

• • • • • • • 95 

Routines • • • • 
PHASE IIC -- Phase IIC Control (CEVPD) 
USET -- USING Table Processor (CEVUP) 
DRSET -- DROP Table Processor (CEVDR) 

SECTION 9: PHASE III • 
Introduction 
Routines • • • . 

PHASE III -- Phase III Control (CEVPE) 
SLLS -- source Listing Processor (CEVSX) 

• • • • • • • • 95 
• • • • • 96 

• • • • • • 96 
• • • • • 97 

• • • • 97 

• 99 
99 
99 

• • • • 99 
.104 

GATEW -- Interface with VISAM PUT or GTWRC Macro (CEVGW) 
ENDPR -- Module Entry point Processor (CEVEP' • • • • 

• .104 
.104 
.104 MOPR -- Phase III Machine Operation Processor (CEVMO) • • • 

v 



GETVAL -- Obtain Relocatable Value (CEVGV) 
USEVAL -- Compute Using Register (CEVUV) 
LIST -- Object Program Listing (CEVLS) 
CCWTXT -- Phase III CCW Instruction Processor (CEVCC) 
PUTVAL -- Relocatable Output Value Processor (CEVPV) 
DCTXT Phase III Constant Processor (CEVDP) • • • • 
ADCON Address Constant Processor (CEVAD) • • • • • 
LITXT Phase III Literal Pooling Processor {CEVLT} 
CSDPR CSD Processor (CEVCD) • • • • • 

SECTION 10: PHASE IV 
Introduction 
Routines • • • . • . • • • • 

PHASE IV -- Phase IV Control (CEVPF) • • • • 
XREF -- Cross-Reference Listing Processor (CEVXF) 
STED -- Symbol Table Editor (CEVSR) • . • • • • • • 
ISDPR ISD Processor (CEVSD) .•.•••••• 

.105 
• .106 

.106 
• .107 

.107 

.108 

.109 

.109 

.110 

• .112 
.112 

••••• 112 
• ••••• 112 

• .112 
.114 

PMDLS Program Module Dictionary Listing Processor (CEVMD) 
.114 
.115 
.115 ISDSA ISD List Processor (CEVSA) • • • • 

SECTION 11: FLOWCHARTS 

SECTION 12: TABLES, TABLE ENTRIES, 
Main Dicticnary • • • • • 

Basic Format • • • • • • 
Absolute Value Item . • • 
Relocatable Value Item 
DXD Item 
Complex Value Item 
External Name Item 
Control section Item 
Entry Trailer Item • • • • 
Literal Item • • • • • 
Transiti ve Item • • • • 
Local Variable Symbol Items • 

LISTING FORMATS 

.116 

.260 
• .260 

.260 
• .261 

• •• 261 
.262 

• •• 263 
.264 

• .265 
.266 

• .266 
• .268 
• .268 
• .269 Global Variable Symbol Items 

Sequence Symbol Item . . . . • . • • • • • • • • • • 272 
Logical Order File CLOF) 

Machine Operation Entry • 
Macro Instruction Entry 
Literal Origin Entry 
Constant-Definition Entry • 
Origin Entry 
USING Entry 

• .272 
• .272 

.273 

.273 
• .274 

.275 
· .•• 275 

.276 PRINT Entry • • 
SET Entry ••• . • • . • • • • .276 
Alignment Specification Entry 
Diagnostic Message Entry • • . • 
MNOTE* Entry 

. • • • • • • • .277 

TITLE Entry • • • • • . . • 
END Entry • • • • • • • • • 
General Format for LOF Entry 

Global Section Macro Chain (GSM) 
Macro Name Dictionary • • • • • 
Operation Code Table • • • . • 
Machine Operations Requirements Table • • 
Using-Register Tables • . • • • 
Macro Level Dictionary (Temporary Dictionary) • 

Item Types • • • • • • • • • • • • 
Comments •••••••.• • • • • • • 

Source Line Storage Control •• ••••• 
Pseudo-Dictionary Item for Current Location Counter • 
Constant Item Format • • • • • • • • • • 
Virtual Memory Management Table (VMTABLE) 
Source Program Listing 
Symbol Table Listing • • • • . • • • • 
Cross-Reference Listing • • • • • • 
Internal Symbol Dictionary (ISD) Listing 

vi 

• ••• 277 
.278 

• ••••• 278 
· • • • • .279 

.279 
.280 

• • • • • .281 
.281 
.282 
.283 

• • • .284 
.285 

• • .291-
• .292 
• .292 

• ••• 293 
• .293 

.294 
• .•• 295 

.296 
• .297 



Program Module Dictionary (PMD) Listing • 
Object Program Listing •••• • • • 
Internal Symbol Dictionary (ISD) 

Heading • . . • • • 
Section Name Table 
Using Tables •••• 
symbol Table •• • • 

Program Module Dictionary (PMD) 
PMD Heading • • • • • 

Control Section Dictionary (CSD) 
CSD Heading • • • • 
Definition Table 
Reference Table • 
Relocation Dictionary (RLD) 

Modifier Pointer • • • • • 
Modifier ••• • • • • • • 
RLD for Complex Definitions 
RLD for Text External Reference • 
RLD for Text Internal Reference • 

Virtual Memory Page Table (VMPT) 

SECTION 13: VIRTUAL MEMORY MANAGEMENT •• 
Purpose of Virtual Memory Management Routines • 
How Virtual Memory Management Works • • • • 
Routines • • • • • • • • • • • • • • • • • • • 

VMGET -- Get VM Working Storage (CEVGM) • • 
VMFREE -- Free VM Working storage (CEVFM) • 
VMCLEAN -- Assembler Cleanup (CEVCU) 

Changing storage Request Constants 
caution • • . • • • 
Overflow Diagnosis • • • • • 

APPENDIX A: ASSEMBLER REGISTER USAGE • • 

APPENDIX B: RELATIONSHIP OF DOCUMENTATION MODULES TO ASSEMBLY 
MODULES •• 

APPENDIX C: ASSEMBLER LIMITATIONS 
Object Program 

PMD •• 
Text 
ISD • 

Source Statements 
Macros • . • • 

Maximum Stat.ement Length 

APPENDIX D: ACRONYMS 

APPENDIX E: LIST OF MAJOR TABLES AND WORK AREAS REFERENCED BY 
ASSEMBLER ROUTINES • • • • 

INDEX •• 

• .297 
.298 

• .300 
.300 

• .300 
.300 
.300 

• .304 
.304 
.307 

• .307 
• .309 

.309 
• .310 

.310 
• .310 

.311 

.311 

.311 

.311 

.312 
• .312 

••• 312 
.312 
.312 

. • • .313 
.313 

• .314 
.314 

• • • .314 

.316 

.317 

• •• 319 
• .319 

.319 
• .319 
• .319 

.319 

.319 

.319 

.320 

.335 

.338 

vii 



ILLUSTRATIONS 

Figure 1-
Figure 2. 
only) . 
Figure 3. 
Figure 4. 
Figure 5. 
Figure 6. 
Figure 7. 
Figure B. 
Figure 9. 
Figure 10. 
Figure 11-
Figure 12. 
Figure 13. 
Figure 14. 
Figure 15. 
Figure 16. 
Figure 17 • 
Figure 18. 
Figure 19. 
Figure 20. 
Figure 21-
Figure 22. 
Figure 23. 
Figure 24. 
Figure 25. 
Figure 26. 
Figure 27. 
Figure 28. 
LTORG, EQU) 
Figure 29. 
Figure 30. 
Figure 31. 
Figure 32. 
Figure 33. 
Figure 34. 
Figure 35. 
Figure 36. 
Figure 37. 
Figure 38. 
Figure 39. 
Figure 40. 
Figure 41-
Figure 42. 
Figure 43. 
Figure 44. 
Figure 45. 
Figure 46. 
Figure 47. 
Figure 48. 
Figure 49. 
Figure 50. 
Figure 51-
Figure 52. 
Figure 53. 
Figure 54. 
Figure 55. 
Figure 56. 
Figure 57. 
Figure 58. 
Figure 59. 
Figure 60. 
Figure 61-

viii 

Relationship of TSS/360 assembler with outside world 
TSS/360 assembler interface with LPC (to phase level 

1 

• • • • • • • • • • • • • • • • • • • • • • • • •• 2 
Overview of entire assembler function • • • • • • •• 6 
LPC and assembler interface control flow • • • • • • 7 
Main work areas • • • . • • • • • • • • • 8 
Overview of Phase I function • • • • • 10 
Overview of Phase IIA function 15 
Overview of Phase lIB function •• 17 
Overview of Phase IIC fUnction • • • • • 21 
Overview of Phase III function • • • • • • 22 
Overview of Phase IV function • • • • • • 26 
Assembler function for machine instructions • • • • • • • 29 
Assembler function for macro instructions • • • 30 
Assembler function for assembler instructions • 31 
LPC calls and assembler phase control flow • • • • • 32 
Phase I routine relationships • • • • • • • • • 37 
Waiting stack format • • • • • • • • • • • • • • • 75 
Diagnostic text locator entry format • • 80 
Phase IIA routine relationships • • 84 
Phase lIB routine relationships •••••••• • • 88 
Phase IIC routine relationships • • • • • 95 
Phase III routine relationships •••••••••••• 100 
Phase IIV routine relationships •••••••• 112 
Cross-reference definition format ••••••••••• 113 
Reference item format. . • • .114 
Absolute value item (EQU) • • • • ••••••• 261 
Relocatable value item (DC, DS, CXD) ••••• • .261 
Relocatable value item (machine instructions, CCW, 
• • • • • • • • •• ••• • • • • • • • .262 
DXD item • • • . • . • • • • •••• 263 
Complex value item (EQU) • • • • • • .263 
External name item (EXTRN) .264 
External name item (V-type address constant) ••• 265 
Control section item <CSECT, DSECT, COM, START, PSECT) .265 
Entry trailer item ••• 266 
Literal item • • • . • • •••• 267 
Literal trailer item • • • • • • • • • • ••••• 267 
Transitive item. • • • ••• 
Subscripted global arithmetic item • • • • 
subscript trailer for subscripted global arithmetic 
Unsubscripted global arithmetic item 

.268 
•• 269 

item. 269 
.270 

Subscripted global boolean item. • .270 
Unsubscripted global boolean item .270 
Subscripted global character item •••••• 271 
Trailer item for subscripted global trailer item .271 
Unsubscripted global character item •••• • .271 
Machine operation entry •••••• 272 
Macro instruction entry .273 
Literal origin entry • • • • .273 
Constant-definition entry •••••••••••••••• 274 
Origin entry • • • • • • • •••• 275 
USING entry • • • • .275 
PRINT entry. • • • • • • • • • .276 
SET entry. • • • • • • • .276 
Alignment specification entry. • ••••• 277 
Diagnostic message entry • • • • • ••••. 278 
MNOTE* entry •••••••••••••• 278 
TITLE entry. • • • • • • • •••• 279 
END entry • • • • • • • • • • • • • • • • • • • • .279 
General format for LOF entry • • • • • •••• 280 
GSM entry format • • • • • • • • • .281 
Macro name dictionary item .281 



Figure 62. Item format for operation code table entry .282 
Figure 63. Entry byte format · · · · · .283 
Figure 64. USing-register table format .283 
Figure 65. Layout of macro level dictionary · · · .285 
Figure 66. &SYSLIST item .286 
Figure 67. &SYSNDX item .286 
Figure 68. &SYSECT item · · · · · · · .287 
Figure 69. &SYSPSCT item . · · · · .287 
Figure 70. &SYSSTYP item · .287 
Figure 71- Parameter item (temporary dictionary) · .288 
Figure 72. Sequence symbol item · · · · · .289 
Figure 73. Subscripted LeLA item · .289 
Figure 74. Unscripted LCLA item · · · · · · · · .289 
Figure 75. Subscripted LeLB item · · · · · .290 
Figure 76. Unsubscripted LCLB item · · · · .290 
Figure 77 • Subscripted LCLC item · · · · .290 
Figure 78. Unsubscripted LCLC item .291 
Figure 79. GBLA, GBLB or GBLC item in macro level dictionary .291 
Figure 80. Source statement control information format .292 
Figure 81- Simulated item for location counter references .292 
Figure 82. constant item (address constant) · · · · · · .293 
Figure 83. constant item (other than address constants) .293 
Figure 84. Contents of VMGOTTEN block · · · · · · .294 
Figure 85. Contents of VMASSIGN and VMFREED blocks · · · · .294 
Figure 86. Cont.ents of VMENTRYS block · · · · · · · · · .294 
Figure 87. Source program listing format · · · · .294 
Figure 88. Symbol table listing format · · · · · · · .295 
Figure 89. Cross-reference listing format · · · · · .296 
Figure 90. ISD Listing Format . · · · · · · · · · · .297 
Figure 91- Program module dictionary listing format · · · · · .299 
Figure 92. Listing format for constants · · · · · · · · .301 
Figure 93. Listing format for machine and assembler instructions · .302 
Figure 94. Assembler internal symbol dictionary · · · · · .303 
Figure 95. Program module dictionary entry format · · · · · · · · .305 

Table 1- LPC call to AC . . . · · · · · · · 32 
Table 2. Assembler control decision table · · 32 
Table 3. Phase I decision table (part · · · · 39 
Table 4. Standard variable information table · · · · 81 
Table 5. Phase IIA decision table · · · · · · · · · · · · · · · 84 
Table 6. Phase lIB decision table · · · · · 89 
Table 7. Phase IIC decision table · · · · · 95 
Table 8. Phase III decision table · · · · · · .100 
Table 9. Phase IV decision table · · · · · .113 
Table 10. Directive code aSSignments .282 
Table 11- Machine instruction directive codes .282 
Table 12. Virtual storage request constants · · · · .315 

ix 



CHARTS 

Chart AA. 
Chart AB. 
Chart AC. 
Chart AD. 
Chart AE. 
Chart AF. 
Chart AG. 
Chart AH. 
Chart AI. 
Chart AJ • 
Chart AK. 
CEVCW 

AC (assembler control) - CEVAC • • • •• 117 
PHASE I (Phase I master control) - CEVPA • .118 
STAN (statement analyzer) - CEVST • • • • • • • • .119 
REED (obtain next source statement) - CEVRD ••••••• 123 
GETOP (collect and identify operation code) - CEVGP .125 
SUBOP (substitute into operation field) - CEVSP ••••• 126 
CATOP (string SUbstitution control) - CEVCP .127 
MIP (machine instruction operand scan) - CEVMP. • ••• 128 
BASCAN (basic source language scan) - CEVBS •• 131 
AGO/AlF (AGO/AIF instruction scan) - CEVGO • • • .134 
ANOP and CCW (ANOP and CCW instruction scan) - CEVAN and 

.135 
Chart AL. CNOP and CXD (CNOP and CXD instruction scan) - CEVCN and 
CEVCX • • • • . • . . • • • • • • • • • .136 
Chart AM. SECT (control section instruction scan) - CEVCT •• 137 
Chart AN. COPY (COpy instruction processor) - CEVCY .138 
Chart AO. DC/DS (DC/DS instruction scan) - CEVDC • .139 
Chart AP. EJECT and END (EJECT and END instruction scan) - CEVEJ 
and CEVND • • • • • • • • • • • • • • • . • • • • • • .140 
Chart AQ. ENTRY and EQU (ENTRY and EQU instruction scan) - CEVEY 
and CEVQU • • . . • • • • • • • • • • • • • • .141 
Chart AR. EXTRN (EXTRN instruction operand scan) - CEVXN •• 143 
Chart AS. GBLx/LCLx (global/local symbol instruction scan) - CEVGL .144 
Chart AT. ICTL (ICTL instruction scan) - CEVIC • • • .145 
Chart AU. ISEQ and LTORG (ISEQ and LTORG instruction scan) - CEVIQ 
and CEVLG • • . • • • • • • • • • • • • . • • • • • • • • • • .146 
Chart AV. MACRO and MEND/MEXIT (MACRO and MEND/MEXIT instruction 
scan) - CEVMC and CEVMX • • • • • . • • • • • • • • • ••••• 147 
Chart AW. MNOTE (MNOTE instruction scan) - CEVMN • • ••• _ .148 
Chart BA. ORG and PRINT (ORG and PRINT instruction scan) - CEVRG 
and CEVPR • • • • • • • • • • • • • • • • • • • • • 
Chart BB. SETX (SET instruction scan) - CEVSE 
Chart BC. SPACE and TITLE (SPACE and TITLE instruction scan) -
CEVCE and CEVT I • • • • • • • • . • • • • • • • • • • . 
Chart BD. USE/DROP (USING and DROP instruction scan) - CEVUD • • 
Chart BE. MACREF (macro reference processor) - CEVRF • • 
Chart BF. MACDEF (macro definition processor) - CEVDF 
Chart BG. CSCAN (constant scan) - CEVCS •• • • • • 

.149 
• .150 

.151 
• .152 

.153 

.155 

.156 
Chart BH. SSCAN (string substitution scan) - CEVSS • 
Chart BI. EVAL (expression evaluator) - CEVEV 
Chart BJ. PSCAN (parameter item analyzer) - CEVPS 

• •• 160 
.164 
.172 

Chart BK. EBIN and EDEC (binary and decimal self-defining term 
generator) - CEVGB and CEVGD • • • • • • • • • • • • • • • • • 
Chart BL. EHEX and ECHAR (hexadecimal and character self-defining 
term generator) - CEVGH and CEVGC • • • • • • • . • • 
Chart BM. SLIT (scan for literal operand) - CEVSL 
Chart BN. DLPM (dictionary lookup and put) - CEVLP • 
Chart BO. DEFSYM (define location symbol) - CEVSY • • • • 
Chart BP. DIAG (diagnostic message processor) - CEVDX • • •• 
Chart BQ. DLKT and DPUT (lookup and put in temporary dictionary 

.173 

.174 
• .175 
• .176 
• .177 

.178 

item) - CEVTK and CEVTP • • • • • • • • • • • • • • ••••• 180 
Chart BR. MACLKT and MACPUT (macro dictionary lookup and put) -
CEVLM and CEVTM . • • • • • • • . • • • • • • • • • 
Chart BS. DLKM (main dictionary lookup) - CEVKM 
Chart BT. PHASE IIA (Phase IIA control) - CEVPB 
Chart BU. PARAMAC (macro parameter processor) - CEVPM 
Chart BV. PHASE lIB (Phase lIB control) - CEVPC 
Chart BW. ORIGIN (location counter reset) - CEVGN 

.181 

.182 
•• _ .183 

• .184 
• .187 
• .192 

Chart CA. POOLIT (literal pooling processor) - CEVPL 
Chart CB. EQUATE (assign value to name) - CEVEQ 

• • • • • .193 

Chart CC. RESCON (resolve conditional alignment) - CEVRS • 
Chart CD. RESLIT (literal resolution processor) - CEVRL 

x 

.194 

.196 
• .198 



Chart CEo 
Chart CF. 
Chart CG. 
Chart CH. 
Chart Cl. 
Chart CJ. 
Chart CK. 
Chart CL. 
Chart CM. 
Chart CN. 
Chart CO. 
Chart CPo 
Chart CQ. 
Chart CR. 
Chart CS. 
Chart CT. 
Chart CU. 
Chart CV. 
Chart CWo 
Chart DA. 
Chart DB. 
Chart DC. 
CEVMD 
Chart DD. 
Chart EA. 
Chart EB. 
Chart EC. 

PHASE IIC (Phase IIC control) - CEVPD •• 199 
USET (USING table processor) - CEVUP • .200 
DRSET (DROP table processor) -. CEVDR • .201 
PHASE III (phase III control) - CEVPE .202 
SLLS (source listing processor) - CEVSX ••••••• 208 
GATEW (interface with VISAM PUT macro) - CEVGW • .210 
ENDPR (module entry point processor) - CEVEP • .211 
MOPR (Phase III machine operation processor) - CEVMO .212 
GETVAL (obtain relocatable value) - CEVGV •••• 223 
USEVAL (compute using register) - CEVUV ••• 224 
LIST (object program listing) - CEVLS .••••• 225 
CCWTXT (Phase III CCW instruction processor) - CEVCC .231 
PUTVAL (relocatable output value processor) - C.EVPV ••• 233 
DCTXT (Phase III constant processor) - CEVDP • • • • .235 
ADCON (address constant processor) - CEVAD • • • • • .238 
LITXT (Phase III literal pooling processor) - C.EVLT ••• 242 
CSDPR (CSD processor) - CEVCD •• • • • • • • • • • .243 
PHASE IV (Phase IV control) - CEVPF • • • • • • • • .246 
XREF (cross-reference listing processor) - CEVXF .247 
STED (symbol table editor> - CEVSR • • • • • • • • .248 
ISDPR (ISD processor) - CEVSD •••••••••••••• 249 
PMDLS (program module dictionary listing processor) -

ISDSA (ISD list processor) - CEVSA • • • 
VMGET (get VM working storage) - CEVGM • 
VMFREE (free VM working storage) - CEVFM • 
VMCLE~N (assembler cleanup) - CEVCU 

• .250 
• •• 255 

• .256 
• •• 257 

• .259 

xi 





P~~OSE OF THE TSS/360 ASSEMBLER PROGRAM 

The purpose of the TSS/360 assembler 
program is to produce, from source programs 
written in the assembler language, machine 
language programs in a format suitable for 
operation under the time sharing system. 
Outputs from the assembler program are: 

• Source program listing 

• Program Module Dictionary 

• Program Module Dictionary listing 

• Cross-reference listing 

• Symbol Table listing 

• Internal Symbol Dictionary 

• Internal Symbol Dictionary listing 

• Object program listing 

• Binary Text 

• External Name List 

SYSTEM ENVIRONMENT 

The initial request by the user to 
secure the assembler is processed by the 
command analyzer and executor (CAbE), which 
calls the language processor control (LPC). 
The language processor control calls the 
assembler, whose modules, resident in Ini­
tial Virtual Memory, are linked during 
startup. 

As shown in Figure 1, the assembler 
makes use of: 

• Language processor control to supply 
user program source statements. 

• Symbolic library service routines to 
secure library definitions. 

• Data management services to process 
output list data sets. 

The assembler is called by and exits to 
the language processor control (LPC). The 
GETLINE function of LPC receives source­
language statements from a system input 
device and directs them to the assembler 
for processing. Conversely. the assembled 
program and diagnostic messages are routed 
from the assembler to the same system out­
put device via the PUTDIAG function of LPC. 

[
I "put/Output 
Device 

----

Library 
Retrieval 
Routines 

SECTION 1: INTRODUCTION 

r--------l ! ---
I Command Part of I 

Analyzer Command 

'-----r---..---' 5 ys tem I 

I "'-, 
I 

Processor 
Control 

I 
I 
I 

L_--t­
t 

___ J 

TSS/360 Assembler 

GETMAIN and 
FREEMAI N 
Service 
Routines 

VISAM Doto 
Management 
Service 
Routines 

Figure 1. Relationship of TSS/360 
assembler with outside world 

In order to process COPY statements and 
macro instructions not defined by the user, 
the assembler searches user and system 
macro libraries. The library retrieval 
routines are used to accomplish this 
function. 

An object program listing is automatic­
ally created for the user unless he stipu­
lates otherwise. The source program list­
ing, program module dictionary listing, 
cross-reference listing, symbol table list­
ing, and the internal symbol dictionary 
listing must be requested by the user in 
his ASM command. Both the conversational 
and nonconversational user can choose 
between having the selected listings 
printed immediately on SYSOUT, or having 
them stored in a VISAM list data set. The 
default for conversational is a listing 
data set; for nonconversational the default 
is SYSOUT. If entered in a VISAM data set, 
the user's requested listings become mem­
bers of a generation data group containing 
two generations. The generation data group 
is established the first time the module 
name is encountered. The most current 
listing data set (relative 0) and the last 
previous listing data set (relative -1) are 
always maintained. PRINT LIST.module-name. 
generation-number must be issued by the 
user when he desires the data sets to be 
printed. 

Section 1: Introduction 1 



Input/ 
Output 

Dlognostics 
and Assembled 

1------­ - ------------ ---- --- --- -------, 

I 

I 

I 

I 

I 

I 
I 
I 

I 

I 

Source Statements 

Request for additional 
Source Statements; Di agnosti cs 

END 

r-1~::~--~St;a;re;m;e~n~t~--------~ Phase I Phase II A 

Syntax 
Ana lysis 

Macro 

instroc ti on 
Processing 

Re turn to LP C 

Phase II B 

Location 
Counter 
Assignment 

Interface 

Continue 
Assembly 

Phase II C 

Program 

Reordering 

T55/360 Assemb ler 

Assembled Program Listings 

Machine 
Language 

.--________ -, Text 

Phase III 

Machine 
'ns true ti on 
Synthesis 

Phase ff 

Post-
Processing 

I 
I 
I 

!-,---------------------~ 
Figure 2. TSS/360 assembler interface with LPC (to phase level only) 

Virtual storage dynamically acquired by 
the assembler is secured by the GETMAIN 
macro and released by the FREEMAIN macro. 
These macros are issued by special virtual 
memory management routines. 

ORGANIZATION AND OVERALL FUNCTION OF THE 
ASSEMBLER 

As shown in Figure 2, the assembler is 
divided into four major components or 
phases, plus an assembler control module 
which interfaces with LPC. 

The principal function of any assembler 
is to translate computer instructions writ­
ten in a s~nbolic language into the more 

2 

abstract, numeric language of the computer 
itself. This is accomplished principally 
by allowing alphameric symbols of the pro­
grammer's choice to represent the numeric­
ally addressed storage locations in the 
computer. The assembler's primary task is 
to determine which symbols have been 
defined, according to the rules of the 
assembler language, assign a corresponding 
machine-language value to the symbol, and 
to substitute the machine-language value 
whenever the symbol is used in the con­
struction of a machine-language 
instruction. 

In addition to this principal function. 
most assemblers also: 



• Provide for the specification of numer­
ic and alphameric data constants. 

• Permit one symbol to be defined in 
terms of others. 

• Recognize a vocabulary of control 
statements that apply to the assembly 
process itself <rather than the machine 
program under construction). 

• Allow predefined sequences of source 
language statements to be generated and 
modified through use of a higher-level, 
machine-independent language (a "macro 
instruction" language). 

The System/360 Assembler language con­
tains all the above features; the method 
and order of their processing by the TSS/ 
360 assembler is described in general terms 
below. 

Syntax Analysis 

In order for the assembler to interpret 
a statement without ambiguity, the pro­
grammer must follow certain rules in writ­
ing the source statement with regard to 
separation of fields, placement of symbols 
and delimiters, proper choice of mnemonic 
operation codes, and the like. The some­
what mechanical inspection of the source 
statement to determine whether the rules 
have been observed is generally called 
"syntax analysis,· and is the first opera­
tion performed by the assembler on each 
statement. The analysiS is achieved by a 
character-by-character scanning of the 
incoming statement; since this method of 
analysis is time consuming, the assembler 
usually converts the information that has 
been extracted from the statement into a 
more convenient internal form and places it 
in one of the various tables that are kept 
for this purpose. The principal tables are 
one that contains a condensed summary of 
each statement (the Logical Order File or 
LOF), and one that contains the name and 
characteristics of each programmer-defined 
symbol (the symbol table or -dictionary-). 

The definition of a symbol must be known 
to the assembler before it can construct a 
machine instruction that reqUires the value 
of the symbol. However, the rules of the 
language permit a symbol to be referred to 
before it is defined. If the assembler 
attempted to construct the machine-language 
program concurrently with syntax analysis, 
it would find itself frequently unable to 
do so for lack of information about symbols 
that had not yet been encountered. For 
this reason, construction of machine 
instructions is postponed until the entire 
source program has been syntactically ana­
lyzed and all symbols have been entered 
into the dictionary. 

Macro Instruction Processing 

A macro instruction is the invocation of 
a predefined sequence of source statements 
through use of a mnemonic operation code 
that has been declared for that purpose. 
The mnemonics of macro operations may be 
specified by the programmer himself, along 
with the sequence of statements that the 
operation represents, or, failing that, by 
the table of contents of a library of pre­
defined macro operations that is present as 
part of the operating system. In either 
case, the assembler's dictionary of symbols 
cannot be considered complete until the 
sequences of statements represented by 
macro instructions have been syntactically 
analyzed. 

In theory, macro instruction sequences 
may be processed either: 

• Before the user's statements (by 
searching the source program only for 
macro instructions and by merging their 
expansion into the user's statements). 

• Concurrently with the user"s statements 
(by incorporating the expansion into 
the program as encountered). 

• After the user's statements. The first 
method is used by other System/360 
assemblers. The TSS/360 assembler, 
however, is committed to producing dia­
gnostic messages for syntax errors for 
the benefit of a terminal user, and 
this requirement forces the assembler 
to process the user's statements first, 
as received. 

Because system macros require the attri­
butes of the user's symbols, and because 
there is no ordering rule (requiring the 
user's symbols to precede system macro 
calls), expansion of macros concurrently 
with the user's statements is also ruled 
out. Macros must be expanded by a second 
phase (Phase IIA) of the assembler after 
the user's statements have been syntactic­
ally analyzed. 

Expansion of source statements from the 
predefined sequence in the macro definition 
involves the recognition of a class of sym­
bols (variable symbols and parameters) 
which are independent of the symbols used 
in machine language statements. Since 
these symbols are used only temporarily 
(and may be used repetitively with dif­
ferent meanings), it is to the assembler's 
advantage to maintain them in a dictionary 
which is separate from the one used for 
machine-language symbols. 

In addition, the expansion of one macro 
instruction frequently results in the invo­
cation of some Winner" or -nested" macro 

Section 1: Introduction 3 



instruction. The rules of the macro lan­
guage are such that it is desirable for the 
assembler to maintain a separate dictionary 
for each nested macro level. The rules of 
the macro language are also such that once 
the instructions have been generated for a 
given macro level, the dictionary for that 
level is no longer required and can be dis­
carded, since symbols at each level are 
independent. For this reason, macro level 
dictionaries are constructed linearly in 
working storage, and maintained by push­
down-stack logic. 

Since the definitions of system macros 
are not part of the original user's source 
language input, they must be retrieved from 
a library and added to the source program 
at the appropriate time. Since library 
retrieval is time consuming, it is desir­
able to avoid retrieving a macro unneces­
sarily, and to retrieve each definition 
only once. This is achieved by performing 
library retrieval during the Phase IIA of 
the assembler; at this time those "nested" 
macro calls that are to be bypassed because 
of conditional assembly techniques are dis­
carded, thus preventing their definitions 
from being unnecessarily retrieved. 
Moreover, a record is kept {in a special 
dictionary of macro names} whenever a 
definition is brought in; the definition is 
condensed into the internal form common to 
all statements, and need not be retrieved 
again should the macro instruction be rein­
voked. This technique prevents multiple 
retrievals of the same definition. 

Assignment of Location counter Values 

Once the additional statements generated 
by macro instructions have been inco­
rporated into the source program, all poss­
ible and potential definitions of symbolS 
are present in the dictionary. Before 
machine-instruction synthesis can begin, 
however, the (relative> machine address 
which each symbol represents must be deter­
mined. The value of the machine-address is 
arrived at by maintaining a location count­
er for each control section in the assemb­
ly. The counter is set to zero initially 
and is increased at each statement by the 
number of bytes of machine storage repre­
sented by the preceding instruction, con­
stant, or storage reservation. Since macro 
instructions may generate instructions, 
constants, and storage reservations, the 
location counter cannot be assigned until 
macros have been expanded. 

In those assemblers which expand macros 
first, the location counter can be assigned 

4 

during syntax analysis; since the TSS/360 
assembler defers macro expansion until 
Phase IIA (for the reasons noted above>, 
location counter assignment is also 
deferred. For a better paging profile and 
ease of maintenance, Phase IIA is limited 
solely to macro expansion activity, and a 
separate phase, lIB, is used to perform the 
location counter assignment. As a bypro­
duct of its prinCipal activity, Phase lIB 
also resolves expressions that are depen­
dent upon location counter values, and 
collects literal constants into literal 
pools and assigns location counter values 
to them. 

Program Reordering 

It is a requirement of TSS/360 object 
program modules that, to facilitate load­
ing, all text and relocation information 
pertaining to a given control section be 
present contiguously in the object module. 
It is also a language rule that control 
sections may be written discontinuously in 
the source program, and that certain state­
ments in the language (USING, DROP, LTORG, 
PRINT, etc.) have effect over a range of 
statements in the original source order, 
irrespective of the number of different 
control sections represented by that range 
of statements. 

The TSS/360 assembler is therefore faced 
with a reordering requirement. It must 
collect the scattered portions of a given 
control section, without losing the effect 
of certain statements that are control sec­
tion independent. It is the function of 
Phase IIC to determine where each control 
section has been broken into discontinui­
ties, and to prepare for each such break a 
table summarizing the effects of those 
statements that are independent of control 
section order. This analysis enables the 
machine instruction synthesis phase (Phase 
III) to collect the portions of a given 
control section and produce contiguous out­
put text in the program module. 

Graphically, Phase IIC transforms a pro­
gram from: 

r-------------------------------, 
I Section 1 I USING-l 
t-------------------------------~ 
I section 2 I 
~-------------------------------~ USING-2 
I Section 1 I 
t-------------------------------~ 
I Section 3 I 
t-------------------------------~ USING-3 
I Section 2 I l _______________________________ J 



to: 
r-------------------------------l 
I Section I} 
1- -I 
I 1 I} 
~-------------------------------~ 
I Section I} 
1- -I} 
1 2 I} 
~-------------------------------~ 
I P 
I Section 3 I} L _______________________________ J 

Machine Instruction Synthesis 

USING-l 

USING-2 

USING-l 
USING-2 
USING-3 

USING-2 
USING-3 

When the reordering requirements have 
been resolved, the assembler is ready to 
begin the construction of machine-language 
instructions from their source language 
equivalents. Phase III performs this syn­
thesis, working from a list of control sec­
tions in such a way that each control sec­
tion, however discontinuously written, pro­
duces contiguous output text and relocation 
information for the loader. An expression 
evaluation routine, using information 
stored in the dictionary, resolves each 
machine-instruction operand to either a 
relocatable or absolute value. Appropriate 
text and relocation information is entered 
into the object module. Source and object 
program listings are a byproduct of this 
phase. 

Post-Processing 

When the assembly is complete and the 
object module has been produced, a series 
of post-processing routines may be called 
to operate upon the dictionary and other 
information left by preceding phases to 
produce sorted listings of the dictionary, 
cross-references to symbols, and analytical 
printouts of the various output modules. 
For convenience these routines are 
collected into Phase IV of the assembler. 

ASSEMBLER FUNCTIONS 

Figure 3 is an overview which depicts 
the function and output of each of the four 
major assembler components. Note that 
Phase II is divided into three discrete 
parts, Phases IIA, lIB, and IIC. 

A brief description of each phase func­
tion is given below and a more detailed 
description is given in succeeding chap­
ters. For ease of understanding, the 
assembler control module is described last 
in this section. 

Assembler Control Routine (Interface with 
LPC) 

The assembler has three entry points 
from the language processor control (LPC). 

Each entry point is to a location in the 
assembler control routine (CEVAC), from 
which control is transferred to the 
assembler location where the function is 
accomplished. Similarly, the two exits 
from the assembler to the LPC are also via 
the assembler control module. 

The three entry points to the assembler 
control module are: to Phase I control 
(CEVPAA, Initiation), to Phase lIB control 
(CEVPAB, continuation), and when abnormal 
termination is indicated (CEVPAZ, 
Early-end). 

The two entry points of the LPC are: 
when the next line is desired, and when a 
diagnostiC message is to be printed. 

Figure 4 shows the flow of control 
between the LPC and the assembler. 

The user informs the LPC an assembly is 
requested, through the command language. 
The LPC then solicits the necessary operat­
ing parameters and enters the assembler at 
Phase I control for initialization. Com­
mand System PLM, GY28-2013, contains---­
details of this operation.) Then the 
assembler enters the LPC to obtain the 
first source statement, and the LPC returns 
the call with the statement. The assembler 
processes the source statement and enters 
the LPC for the next statement. In an 
error-free assembly, this process is con­
tinued until an END statement is read, at 
which time entry is made from Phase I con­
trol directly to Phase IIA control. 

Upon completion of Phase IIA, control is 
transferred to the LPC. If the assembly is 
in conversational mode, the LPC queries the 
terminal user whether to continue with the 
assembly, or correct the source program and 
restart. 

• If the user wishes to continue, Phase 
lIB control is entered and the assembl­
er proceeds to completion without 
further conversational interaction. 

• If the user makes corrections and 
wishes to restart, the LPC reenters 
Phase I control to restart the 
assembly. 

The flow described above is altered au­
tomatically when the LPC determines a 
source line has been corrected, or the 
assembler discovers a source statement 
error. 

When the assembler discovers an error in 
conversational mode, it calls the LPC with 
a diagnostic message, and LPC transmits the 
message to the system device (SYSOUT). LPC 
returns the call, and the assembler again 
calls the LPC for the next source 
statement. 

Section 1: Introduction 5 



0'\ "J 
1-" 

'g 
I-l 
(!) 

w 

o 
~ 
I-l 
<: 
1-" 
(!) 
( 

o 
Hl 

(!) 
l:1 
rt 
1-" 
11 
(!) 

\II 
Ul 
en 
(!) 

g. 
.... 
(!) 
I-l 

Hl 

§ 
(") 
rt 
1-" 
o 
l:1 

• Copies source 
language I:ne into 
storage - maintains 
~equence 

• Establishes 
encoded version 
source statements 

syntax; 

• SeelnS statement 
operands; 
di(lgnostics 
mode} 

• Enters skeletal 
definitions of 

;0 

• Procosses UIHf macro 
definitions 

• Retains stQtemenrs 

stotements 

br(tnch 
<,totemenj-~ to I()gir;al 

order 

• Keeps a record of 

Originals()IIrce 
statemertt, ". sta<::ked 
Main Oict:onorJ' 

• Glohal 
Macro 
Oloin 

Order 
(LOF\ 

f'h",8 II A 

Expands all macro 

• Mnirt r)7cli"wlry -

qJdition~ and 
rl~l",tion, 

• Macro Definition 
Stqtcl!1ent~ for library 

11l(1(f':'$-~tl1c,kt'd 

• Mou() I.evel 
Dicrionarie; 

Interaction, or 
• User 

and re5tcrr~ 

Pha;e n I) 

• Processes I: lero Is and 
I enters them in sy~hQI 
I toble 
I_ Processes a II EQl! and 

I· co,,,,tee val", fcc ,II I 
symbols 

L ._~ 

~. 
I • LOF - additions 

• Page Usage Tobie 

Phose II C 

• Tabvlate~ status of 
PRINT Control, 
LTORG numbers, and 
USING registers upon 
occurrence of cC'mtrol 

• ~:::~eos~es EN:JRY 
statements 

~- . 

• Using Register Tobles 
• GSM Chain -

odditions and 
deletions 

Phose ill 

• Conttol~ final 

• Text 
• External ~~arne Li~t 

• GSM Chorn -
deletions 

Ph('j~~ ill 

• Calls post processors 

to produce selected 
output options 

L...............-.-__ -' 



LOr'lgurJge I 
P; OC85S01 

! 
(lPC l-i 

I ro- -
! 

---~ 
• Abn:)(mo i -:-/?ITr,'''.at:on (Eady End) not Sh0wn 

Figure 4. LPC and assembler interface 
control flow 

If the LPC determines a source line has 
been corrected, it enters Phase I control 
with a special return code and the lowest 
line number to which corrections have been 
made. If the line number that LPC returns 
is greater than that of the next to last 
statement processed, the assembler pro­
cesses the corrected statement and requests 
the next source statement from the LPC. If 
the line number is not greater than that of 
the next to last statement processed, the 
assembler reinitializes itself and starts 
over again by requesting the first source 
statement from the LPC. 

If the assembly is interrupted by an 
Attention interruption, and a call is made 
to the LPC, the early-end entry of the 
assembler cleanup routine is called to 
release working space in virtual storage. 
Return is then made to the LPC. 

USER VIRTUAL STORAGE REQUIRED BY ASSEMBLER 

WORKING STORAGE AREAS 

The TSS/360 assembler operates in and 
uses virtual storage as the communication 
medium for most of its input and output 
data. When the ASM command is given, LPC, 
the assembler, and all subprograms required 
by them are loaded into the user's virtual 
storage. In addition, the assembler 

requests virtual storage dynamically for 
temporary and working storage. 

Virtual storage is requested with the 
GETMAIN macro instruction. Assembler rou­
tines requiring working storage do not 
request it from the system directly; they 
go through the assembler's own management 
routines, which minimize the number of GET­
MAIN and FREEMAIN instructions issued. 
(This is discussed in detail in Section 
13. ) 

The amount of virtual storage area 
requested by various assembler routines is 
controlled by constants in CSECT CEVPAS. 
Privileged system programmers (authority 
code 0> may change these constants to 
accommodate an exceptionally large assemb­
ly, such as assembling another language 
processor. (Refer to ·Changing Storage 
Request Constants· in Section 13.) 

If the assembler overflows its work 
areas, it will dynamically request addi­
tional virtual storage and continue proces­
Sing if the storage is both available and 
addressable • 

The three main work areas obtained 
dynamically by the assembler are outlined 
in Figure 5. 

Work Area 1 

The first page of Work Area 1 is 
reserved for pointers, work areas, and com­
munication cells used between modules. 
During Phase IIA a part of Work Area 1 is 
used to store the macro level dictionaries 
needed for macro expansion. During Phase 
lIB the macro level dictionaries are over­
laid with page usage tables. During Phase 
IIC using-register information overlays the 
page usage tables developed in Phase lIB. 
During Phase III the unused portion of Work 
Area 1 is used to hold sort keys for the 
cross-reference listing. The Phase III 
LIST routine uses the Operation Code Table 
as a work area for editing generated state­
ments for the object listing. 

Work Area 2 

The first page of Work Area 2 also con­
tains module cells, pointers, and communi­
cation cells used between modules. The 
second section is used for the main dic­
tionary, the logical order file, and a 
secondary information list required for 
macro expansion {global-section-macro 
chain}. Each type of information is struc­
tured as a list and is used as an open­
ended working storage. During Phases I and 
IIA continued lines are carried in this 
area. During Phase III the previously 
unused portion of Work Area 2 is used as 
working storage for the construction of 

Section 1: Introduction 7 



various elements of the control section 
dictionaries. 

Work Area 3 

During Phase I Work Area 3 is used to 
hold incoming source statements for 
reference in later phases. During Phase 
IIA this area is used to hold statements 
generated by macro expansion. 

PMD Text, ISD and External Names List 
storage Areas 

In addition to the three work areas 
described above, the assembler secures four 
additional virtual storage areas. The 
first area is for the PMD minus its asso­
ciated text. Its size is equal to the 
number of binary text pages divided by 

WORK AREA 1 WORK AREA 2 

eight, plus two pages. The second area is 
equal to the number of pages required to 
contain the output binary text. The third 
area is for the ISD (if requested): it 
equals the number of pages in Work 2. The 
fourth area secured is for the external 
name list associated with the PMD. The 
locations of all four areas are passed to 
the LPC upon assembler completion. 

CHARACTERISTICS OF ASSEMBLER ROUTINES 

There are no hardware configuration 
requirements for any of the assembler rou­
tines. Most of the routines are reenter­
able, nonresident with respect to the sys­
tem, nonprivileged, and closed: those that 
are not are specified as being so in the 
individual routine descriptions. 

WORK AREA 3 

Static Working Storage Static 'Working Storage 

Hash Table for Symbol Table 
Original Source Statements 

Macro Generated Statements 

Hash Table for Macro Names 

I,ll: .III: 

Operation Line 

Code Table Edit 1,11: 
Symbol Table (I neluding --

I: Macro Names) 
Logical Order File 

Conti nued Lines 
GSM Chain 

II-A: II- B: II-C: ,'v\ocro Generated 5 tatements 
Macro Page Using -
(Local) Usage Register Continued lines 
Level Tables Tables 
Diction 
aries 

ill: ill: 
Cros~ -Reference Items C S D Working Storage 

Figure 5. Main work areas 

8 



PHASE I FUNCTIONAL DESCRIPTION 

Phase I is called by the language pro­
cessor control program (LPC). It is the 
function of LPC to supply line-image items 
to the assembler, one at a time, upon re­
quest. The source language line is then 
copied by the assembler into its own work­
ing storage to facilitate references in 
subsequent phases and to serve as the input 
data for a source-language listing, when 
such is requested. 

Since the assembly language permits 
transfers of assembler control and itera­
tion over a set of source statements. the 
logical order of the assembly may be dif­
ferent from the sequential order. A prin­
cipal function of Phase I is to establish a 
partially encoded version of the source 
statements (the logical order file) to 
establish the logical order of the 
assembly. 

An overview of Phase I function is shown 
in Figure 6. The numbered paragraphs in 
the following description correspond to the 
numbered boxes in Figure 6. 

1. Upon receiving control, Phase I calls 
VMGET to acquire two areas of virtual 
storage for its own working storage 
requirements. Initial and default 
values and beginning addresses for 
variable storage are inserted into the 
static portion of working storage. 
Static working storage is also modi­
fied as a result of the operating 
parameters transmitted by the LPC. 
Having established the source program 
data set as the current input source. 
control is transferred to the state­
ment analyzer for the program to be 
processed. 

2. The statement analyzer controls the 
processing of each source language 
statement in order by using a collec­
tion of specialized subroutines. It 
produces the symbol dictionary. the 
global-section-macro (GSM) chain. and 
the logical order file (LOF) from 
which Phase III produces the output 
program module. It has two modes of 
operation: normal and bypass. In the 
normal mode. source lines are obtained 
and processed to produce some change 
in the information compiled by the 
assembler to further the production of 
an object program. The bypass mode is 
initiated by the processing of an AGO 

SECTION 2: ASSEMBLER FUNCTIONAL DESCRIPTION 

or true AIF command whose transfer 
point is a sequence symbol that is as 
yet undefined. In this mode. source 
lines are merely bypassed until a line 
containing the desired sequence symbol 
is encountered, at which point normal 
processing is resumed. 

3. REED is called k¥ the statement ana­
lyzer to obtain the next source state­
ment. REED provides the interface 
with LPC to obtain source lines. It 
concatenates continuation lines to 
provide the statement analyzer with a 
continuous statement, performs 
sequence checking, and switches the 
source of input statements between 
LPC. macro definitions, and COpy­
library statements, as required. REED 
obtains source lines directly from the 
language processor control (LPC) or 
from a library when obtaining a macro 
definition to satisfy a macro instruc­
tion. During Phase IIA the principal 
source of input is the macro expansion 
mechanism rather than the LPC. 

Regardless of its origin. a source 
line may be in either keyboard or card 
image format and a source statement 
may comprise multiple source lines, 
through the statement continuation 
capabilities. In obtaining the next 
source statement, if REED encounters a 
source line that is continued. all the 
portions of the statement are combined 
into a single continuous line that is 
constructed in assembler working 
storage. REED is also responsible for 
performing and commenting diagnostic­
ally upon failures in the sequence 
check demanded by the prevailing ISEQ 
requirements. 

REED provides the capability to 
furnish the conversational user with 
the ability to correct or delete the 
last source statement presented to the 
processor without incurring restart of 
the entire assembly. It records the 
internal status of the assembler as 
each source statement is completed. 
Thus, at any time prior to commencing 
the processing of the next statement, 
the effect of the current statement 
can be erased by replacing the current 
status information with the previous 
status, and by detaching from linkage 
chains any dictionary items con­
structed since the previous status was 
recorded. 

Section 2: Assembler Functional Description 9 



Definition 

? 

CD r-__ ~~Y~e~s __ -. 
MACDEF 

Process Prototype 
or Model Stmt 

No 

, 
14--~~~-o ,----'-----, 

CATOP 

Perform Stri ng 
Substitution 

Machine 
Instruction 

? 

? 

,~ Ye5 o ,--_...L-_--, 
MACREF 

Indicate Presence 
of Macro Ref 

Figure 6. Overview of Phase I function 

1.0 

REED initializes the construction 
of a logical order file (LOF) entry, 
by setting the entry to zero. The LOF 
entry, which represents the encoded 
form of the statement, is built at a 
temporary location. REED calls GETOP, 
which determines the required length 
of the LOF entry, based upon the type 
of statement being processed. GETOP 
isolates the operation mnemonic (via 
SUBOP) and identifies it (by doing a 
binary search on the operation code 
table) as a machine operation code, 

4. 

No 

A 

DEFSYM 

Create Die 
Item if Symbol 
in Name Field 

Individual 
Rout; nes for 
Assembler or 
Machine Jnst 

CD ,----::---, 
SLIT 

Scan Operand 
for Literals 

I 
---.if4----~--~--------.J 

@r----'-----. 

@ 

( 

Set Up Encoded 
Form of Statement 

Was 

This on 

Ecd Stmt 
? 

Yes 

CEVPA 

Phase I Control 

t 
Exit 

To Phase J] A 

) 

assembler instruction, user macro, or 
library macro. The directive code, 
which classifies the statement as to 
type of machine instruction or 
assembler mnemonic, and the operation 
code are placed in the LOF entry by 
GETOP. 

If the end of source input in a pre­
stored data set has been encountered, 
and no END statement was provided. the 
LPC will supply an END statement. A 
diagnostic is issued stating that the 



END card is missing. The LPC will 
return to the assembler, which will 
process the END statement. Because 
the END statement signals the end of 
the phase, control is then passed to 
Phase IIA. 

5. If the current statement is either a 
macro prototype statement or a model 
statement, the macro definition pro­
cessor (MACDEF) is called. If the 
statement is a prototype, a macro name 
item is constructed in the main dic­
tionary. The operation code is looked 
up in the operation code table and, if 
a match is found, a diagnostic is 
issued warning that an operation mne­
monic has been redefined by a macro 
definition. 

The redefinition indicator is 
turned on in the matching operation 
code table entry. The dictionary item 
for the macro name is completed by 
MACDEF by inserting the location of 
the LOF entry for the prototype line 
and the location of the prototype line 
itself. The former is used by the 
macro reference processor (MACREF) in 
initializing the REED soubroutine to 
read the definition when the macro is 
expanded. The latter is used by the 
PARAMAC routine in Phase IIA to estab­
lish a temporary macro-level dic­
tionary when the macro is expanded. 

If the current statement is a model 
statement, a diagnostic wil.l be issued 
if the operation code is ISEQ, ICTL, 
or END. COPY statements cause MACDEF 
to call the COpy subroutine, which 
reads in the library element and 
pushes down the input-source switch in 
REED so the subsequent statements ori­
ginate from the library. Thus, copied 
statements become part of the macro 
definition and not part of the 
expansion. 

6. All statements pass through the string 
SUbstitution control routine (CATOP). 
This routine controls the type and 
amount of parameter and variable sym­
bol substitution that is applied to 
the current source statement. It is 
called before the statement is deli­
vered to the components of the state­
ment analyzer for processing. Substi­
tution will have been performed arbi­
trarily on the operation code field by 
SUBOP (via GETOP) prior to identifica­
tion of the operation mnemonic. CATOP 
calls the string substitution scan 
routine (SSCAN) to perform string sub­
stitution on the name and operand 
fields. Whenever substitution actual­
ly results in character string repla­
cement on a statement, a new version 

of the statement reflecting the sub­
stitution is produced to replace the 
original line for all subsequent pro­
cessing. After substitution, CATOP 
calls the basic scan routine (BASCAN) 
to analyze the contents of the name 
field. CATOP then determines the 
start of the operand field and posts 
the increment from the beginning of 
the statement in the current LOF 
entry. 

7. All machine instructions pass through 
the define location symbol routine 
(DEFSYM). Its purpose is to construct 
and enter into the main dictionary a 
relocatable value item that represents 
the name field symbol (if present) of 
the current source statement. DEFSYM 
calls the main dictionary lookup and 
put routine (DLPM) to look up the sym­
bol in the dictionary and construct a 
skeletal item. DEFSYM completes the 
skeletal dictionary item according to 
the type of the current operation code 
and reserves the space for the item. 
The location of the item is then 
entered into the current LOF entry. 

8. If the current statement is a machine 
instruction, and the assembler is in 
nonconversational mode, the scan for 
literal operand routine (SLIT) is 
called in lieu of the complete operand 
field analYSis routine. Its function 
is to scan the operand field to deter­
mine whether a literal operand 
(denoted by the character =) is pre­
sent. If a literal is found. the 
location of the = in the source state­
ment is added to the current logical 
order file entry. 

9. If the current statement is a macro 
instruction, the macro reference pro­
cessor (MACREF) is called. MACREF is 
responsible for indicating the pre­
sence of the macro instruction. An 
entry for the GSM chain is constructed 
to cause the expansion of the macro 
instruction in Phase IIA. 

10. If the assembly is conversational, and 
the current statement is a machine 
instruction, the machine instruction 
operand scan (MIP) is called to scan 
the operand and check for valid 
operand fields and correct formatting. 

If the assembly is in either batch 
or conversational mode. and the cur­
rent statement is an assembler mnemon­
ic, individual routines will be called 
for each mnemonic. These routines are 
described below. 

Section 2: Assembler Functional Description 11 



12 

AG0/AIF: The sequence symbol appear­
ing in the statement is processed and 
the input source is reset to an earli­
er symbolic statement, if backward; 
or, if forward, a bypass mode is 
instituted. 

ANOP: The name field is checked for 
the presence of a sequence symbol. 

CCW: DEFSYM is first called to create 
a dictionary item if there is a symbol 
in the name field. The operand is 
examined for valid operand fields and 
correct format if the assembly is in 
conversational mode. Otherwise, SLIT 
is called to scan the operand for the 
presence of literals. 

CNOP: If the assembly is in conversa­
tional mode, the operand fields are 
examined and checked for validity. 

COM: Described under SECT. 

COPY: The desired element is retri­
eved from the library and copied into 
working storage in the form of chained 
source lines. The input-source switch 
of REED is set to retrieve forthcoming 
statements from the copied stack. 

CSECT: Described under SECT. 

CXO: DEFSYM is first called to create 
a dictionary item if there is a valid 
symbol in the name field. Upon return 
from DEFSYM, the current logical order 
file is completed, and a constant item 
is constructed. 

DC/DS: DEFSYM is first called to cre­
ate a dictionary item if there is a 
symbol in the name field. The con­
stant scan routine, CSCAN, is called 
to process the operand field and con­
struct a constant item. Attributes 
are obtained from the constant item 
and posted in the current location 
symbol item, if there is one. If the 
end of the operand field was not 
reached by CSCAN, an additional logic­
al order file entry is created and 
CSCAN called again. Thus, individual 
logical order file entries are con­
structed for each operand of a mul­
tiple operand statement. 

DROP: Described under USE/DROP. 

DSECT: Described under SECT. 

EJECT: The only processing required 
at this time is a check to determine 
if the name field is blank. 

END: An indicator is set to the 
effect that the END statement has been 

encountered. If the assembly is in 
conversational mode, the operand field 
is examined and Checked for validity. 

ENTRY: The name field is checked for 
blanks or a sequence symbol, and a GSM 
entry is constructed. If the assembly 
is in conversational mode, the basic 
scan routine (BAS CAN) is called to 
collect and examine each operand 
field. 

EQU: At this time only an EQU in 
which the first operand expression 
yields an absolute or complex value 
can be fully processed. An absolute 
or complex value item is created in 
the dictionary, and the length and 
type attribute fields are evaluated 
and processed. Other operand types 
cause a transitive item to be created 
and an indicator to be set in the log­
ical order file entry to demand atten­
tion in Phase lIB. 

EXTRN: Each symbol in the operand is 
collected and an external name item 
constructed for each. 

GBLYLCLX: If the statement occurs 
within a macro, an item is constructed 
in the temporary dictionary; if the 
operation is global, an item is also 
constructed in the main dictionary. 

If the statement occurs outside a 
macro, an item is constructed in the 
main dictionary. If a subscript is 
present, it is checked for validity 
and its value inserted into the dic­
tionary item. If the operation is 
global and is not Phase IIA, a GSM 
entry is constructed. 

ICTL: Checks are made to determine if 
the statement is the first source pro­
gram statement, and if there i3 only 
one ICTL in the assembly. The routine 
checks if each operand field is valid. 

ISEQ: The operand fields are examined 
for validity and indicators set with 
the new values. 

LCLX: Described under GBLX/LCLX. 

LTORG: DEFSYM is called to create a 
dictionary item if a symbol is in the 
name field. A GSM entry is created 
and the logical order file entry is 
flagged for special attention in Phase 
lIB. 

MACRO: After the statement is checked 
for syntax, the macro definition 
switch is set to 1 and control is 
returned to the statement analyzer. 



MEND: Processed by MEND/MEXIT rou­
tine. If the macro definition mode is 
set, it is canceled and an immediate 
return is made. This condition pre­
vails during the processing of macro 
definitions. If the macro definition 
mode is not set, MEND executes ident­
ically with MEXIT. 

MEXIT: Processed by MEND/MEXIT rou­
tine. The space occupied by the cur­
rent macro level dictionary is 
reclaimed. The macro level is reduced 
by one, and the location of the logic­
al order file entry for the statement 
at which processing stopped on the 
preceding macro level is reinstated in 
the REED input switch. If the macro 
level has been reduced to zero, the 
REED input switch is popped up to its 
previous mode. 

MNOTE: The first operand is examined 
and, if it is an asterisk, the 
character string that follows is 
treated as a comment. Otherwise, the 
character string is considered a diag­
nostic message and causes a special 
call to the diagnostic processor. 

ORG: The logical order file entry is 
flagged for the attention of Phase 
lIB. If the assembly is conversation­
al, the operand field is examined for 
validity. 

PRINT: An entry is made in the GSM 
chain so that the effect desired by 
the source programmer can be produced 
by subsequent processing by control 
section. The operand field is tested 
for the legitimacy of its contents. 

PSECT: Described under SECT. 

PUNCH: The statement is allowed only 
to maintain compatibility with OS/360 
and is made commentary. 

REPRO: The instruction produces list­
ing only; the following statement will 
also be treated as commentary. 

SECT: The symbol in the name field or 
blank denoting blank COMMON (and 
binary zero denoting a blank CSECT) is 
used as the basis for a main dic­
tionary lookup and, if the symbol is 
not in the dictionary, a section-name 
item will be created for it. An entry 
is inserted into the GSM chain and, 
for control sections other than DSECT 
or START, the operand field is 
examined for attribute declarations. 
The operand of a START is processed 
like that of an ORG statement, and an 

ORG logical order file entry is 
generated following the START entry. 
The operand of a DSECT is not 
examined. 

SETX: The symbol in the name field is 
looked up in the main or current macro 
level dictionary to verify if an item 
exists for it. The operand expression 
is now evaluated, and the value is 
posted in the item. If a global sym­
bol is being set, and if in Phase I, a 
GSM entry is made for the statement. 

SPACE: If the assembly is conversa­
tional, the operand field is examined 
for validity. 

START: Described under SECT. 

TITLE: The name field is saved for 
later use in card identification. The 
character string in the operand is 
saved for later use in printing the 
assembly listing. 

USE/DROP: For USING instructions, the 
first operand field is evaluated to 
see that it is valid. For either 
USING or DROP, the register designa­
tions are examined for validity. A 
GSM entry is created for either 
instruction. No operand examination 
is completed if the assembly is in 
batch mode. 

11. If the current statement implies 
source code, and a control section has 
not been declared, a logical order 
file entry will be set up for an 
impli ed CSECT. A GSM chain entry will 
also be constructed for the implied 
CSECT. After all generated entries 
have been constructed in working 
storage, the logical order file entry 
for the current statement is moved 
from its temporary location into work­
ing storage and the previous entry 
linked to the current one. 

12. If the current statement is an END, 
exit is made from the statement ana­
lyzer to the Phase I control, which 
then passes control to Phase IIA. 

PHASE IIA FUNCTIONAL DESCRIPTION 

Phase IIA is responsible for the expan­
sion of macro instructions and, when 
required, the retrieval of system macro 
definitions from the library. During Phase 
I a record is maintained for all macro 
instruction source statements; Phase IIA 
completes the processing of those 
statements. 

Section 2: Assembler Functional Description 13 



Macro statement generation is accomp­
lished by substituting the character-string 
values of the current arguments for the 
corresponding parameters in the definition. 
The macro definition statements remain in 
the sequenced source statement area in the 
virtual storage of the assembler. The 
source statements generated by macro 
instructions are also retained in the vir­
tual storage of the assembler; they do not 
become part of the set of sequenced state­
ments. When the generation of each new 
symbolic statement is complete, the state­
ment is subjected to standard Phase I pro­
cessing and is assembled as if it had been 
part of the user's original source program. 
Most of the processing routines which were 
present in Phase I are present in Phase IIA 
also; however, Phase IIA acts as an intern­
al replacement for LPC in determining the 
order and origin of the source statements. 

As a corollary to the processing of 
macros, Phase IIA must reevaluate state­
ments that affect global variable symbols 
and must maintain a record of control sec­
tion and print status changes. Before con­
cluding, Phase IIA also presents global 
diagnostic messages to the conversational 
user and calls LPC to determine whether to 
continue the assembly. 

An overview of Phase IIA function is 
shown in Figure 7. The numbered paragraphs 
in the following description correspond to 
the numbered boxes in the figure. 

1. Activity in Phase IIA is controlled by 
the entries in the GSM chain. This 
chain is prepared during Phase I and 
contains entries for each macro 
instruction, GBLx instruction, SET 
statement involving a global symbol, 
PRINT, and change of control section. 
Other entries in the GSM chain are not 
pertinent to Phase IIA. 

2. If a control section GSM is encoun­
tered, it is necessary to retrieve the 
location of the section name item in 
the main dictionary and point the cur­
rent control section indicator to this 
item. This pointer may also be 
updated by the control section proces­
sor (SECT) if a control section state­
ment occurs during a macro expansion. 
The section name item is used to esta­
blish the various values for 6SYSECT 
as macro expansion proceeds. 

3. If a GSM entry representing a GBL sta­
tement at the user level is encoun­
tered, it is necessary to reprocess 
the statement to ensure synchroniza­
tion of user-defined global variable 
symbolS with the macros expanded dur­
ing this phase. At the first rede-

14 

claration of each symbol the initial 
value of the item is reset to the null 
state. 

If a GSM entry representing a SET 
statement at the user level is encoun­
tered, it is also necessary to repro­
cess the statement to maintain the 
synchronization of global variable 
symbols established above. The value 
of the global symbol originally 
obtained in Phase I is retained in the 
logical order file and is reinstated 
by Phas e IIA. 

The basic scan routine (BASCAN) is 
called for either a GBL or SET state­
ment to preset pointers for the Phase 
I routine for the instruction. The 
appropriate GBL or SET routine in 
Phase I is then called. The GSM entry 
is removed from the chain, and proces­
Sing continues with the next GSM 
entry. 

4. Encountering a GSM entry for a PRINT 
instruction causes the print status to 
be replaced with that carried in the 
LOF entry pointed to by the PRINT GSM. 

5. When a GSM entry representing a macro 
instruction is encountered, Phase IIA 
control calls upon the statement ana­
lyzer to process the macro instruc­
tion. The statement analyzer, being 
phase-conscious, calls the macro 
reference processor, MACREF, which 
determines if the macro is at the user 
level (macro definition exists in 
storage). 

6. If the macro definition is not in 
storage, the macro is a library macro. 
The library service routines, CEVMLA 
and CEVMLB, are employed by MACREF to 
search the library for the desired 
macro and to retrieve the lines of the 
macro definition. Lines are retrieved 
and are linked together in working 
storage. A mode switch is set so that 
the REED routine can process the 
statements from the library instead of 
in normal mode. 

7. The statement analyzer is entered at a 
special entry point (CEVST1) from 
MACREF to call the REED routine to 
initiate construction of logical order 
file entries for the definition state­
ments. After the statement analyzer 
processes the statements, the logical 
order file entries for them will be 
del inked from the main chain, but 
maintained for subsequent reference. 
The statement analyzer returns control 
to MACREF after processing the MEND 
statement of the library macro. 



No Conversationo 1 
Mode 

® Yes 

EXIT 

! Yes 

Reset Print 
Status 

Figure 7. 

( 

8 
CD 

Yes 

CD 

No 

CD 

8 

Phase llA 

ENTER 

I 
.. ! 

Get Location 
of Next 
GSM Entry 

End of 
Chain? 

Yes 

Save Location 
of Dictionary 
Item 

GBlX 
or SETX 

BASCAN 

Scan 
Statement 

Appmpriate 
GBL or SET 
Routine in 
Phase I 

~l 
DELINK 
Entry From 
GSM Chain 

) 

0) 

(0 
STAN 

Statement 
Ana Iyzer 

M.ACREF 

Process 
Macro 
Reference 

Machine Yes 
Instruction 

~-----f 
r-----~-----, I 

Irldividual I' 

No 

0 + 
CEVMLA 

~ Fi nd Symbo I; c 
Component Parcel 

~ 
CEVMLB 

I 
Retrieve Successive 
Parcel Lines Y~ ® 

o STAN 
I--S-et-up-'-'-E-'nc'-o-d-ed---i I 

Form of Macro I 
Def. Stat~__ ___ J 

CD PARAMAC 

Construct 
Macro Level 
Dict;onary 

r--(V 
CD REED 

Get Next 
Statement 

I , 
CATOP 

~--0 Perform String 
Substitution 

r-G) 

Rout; nes for 
Assembler or 

Mach i ne I nst. 

Set up 
En=aded 
Form of 

Statement 

I/,/OS This 
an Outer Level 

L_ 

DEFSYM 

Create Diet 
Item if Symbol 
in NAME Field 

Yes 

SLIT 

Scan Operand 
for Literals 

Overview of Phase IIA function 

Section 2: Assembler Functional Description 15 



B. After it is ensured that the macro 
definition exists in storage, the 
macro parameter processor, PARAMAC, is 
called by MACREF to expand the macro. 
Temporary dictionaries are created by 
PARAMAC for each outer and inner macro 
instruction level. The symbolic para­
meters in the macro prototype state­
ment and the corresponding positional 
operands or name field in the macro 
instruction are combined to form para­
meter items in the temporary dic­
tionary. Each item is identified by 
the symbolic parameter, which is 
hashed and linked to an entry in the 
macro hash table for the current 
level. Each temporary dictionary con­
tains the linkage and status informa­
tion necessary to initiate an inner­
macro expansion, to purge the tem­
porary dictionary of an inner macro 
after expansion is complete, and to 
resume processing of the macro at the 
next higher level. The remainder of 
the dictionary at each level contains 
a reduced hash table followed by para­
meter items representing the system 
variables and symbolic parameters spe­
cified in the macro definition. PARA­
MAC returns control to MACREF which, 
in turn, returns control to the state­
ment analyzer. 

9. The statement analyzer calls REED to 
initialize processing for the next 
statement. The model statements are 
fed through the main routines of Phase 
I (that is, CATOP, DEFSYM, SLIT, and 
the appropriate individual routine> in 
the same way as user statements were 
fed through in Phase I. The logical 
order file entry for the generated 
statement is constructed in working 
storage and is flagged as representing 
a generated statement. 

10. If the MEND for the outer level macro 
has not been encountered, processing 
continues as in B. 

11. When a MEND is encountered for the 
outer level macro, processing of the 
macro instruction is complete. The 
GSM entry for the macro instruction is 
removed from the chain and processing 
continues with the next GSM entry. If 
the macro with which the MEND is asso­
ciated is not an outer level macro, 
processing continues as in 8. 

12. When all GBL, SET, PRINT, control sec­
tion, and macro instruction entries in 
the GSM chain have been processed, 
Phase IIA passes over the transitive 
items in the main dictionary and 
extracts all symbols that remain unde­
fined if the assembly is in conversa­
tional mode. These symbols are repre­
sented in the dictionary by transitive 

16 

items that have not been completed by 
the insertion of the location of the 
matching definition. Diagnostic mes­
sages are produced for each symbol. 

13. Control is given to the entry of LPC 
which solicits oontinuation informa­
tion from the conversational user. If 
the user elects to oontinue, control 
returns to the assembler at ·continua­
tionW entry point, and assembly 
resumes with Phase lIB. 

PHASE lIB FUNCTIONAL DESCRIPTION 

At the conclusion of Phase IIA, the 
entire source program has been fully 
scanned once. It is the task of Phase lIB 
to organize the results of this initial 
scan so that the object text can be 
generated in a single pass over the intern­
al representation of the program. The 
principal function of Phase lIB is to 
assign location counter values to symbols 
and literal constants. 

The areas requiring resolution are: 

Boundary Alignment: The generation phase 
requires space unused because of boundary 
adjustment to be claimed explicitly. 

Literal ASSignment: For each literal 
reference, the value and length of the con­
stant is to be computed and duplicates are 
suppressed. 

Literal Pooling: As dictated explicitly by 
LTORG statements or implicitly by the pro­
gram end, literals are to be arranged by 
their length modulo 8 and assigned location 
counter values. 

Symbol Definition: All definitions, unless 
erroneous, must now be capable of resolu­
tion by the assignment of a location count­
er or absolute value, as appropriate. 

An overview of Phase lIB function is 
shown in Figure B. The numbered paragraphs 
in the following description correspond to 
the numbered boxes in the figure. 

1. Phase lIB makes a single pass over the 
logical order file; the processing 
that is performed depends upon the 
characteristics of the entry in the 
logical order file. The entries may 
be grouped into three categories: 
location counter adjustments, literal 
operands, and normal statements. 
Location counter adjustments may be 
further subdivided into changes of 
control section, literal origin state­
ments, ORG statements, and conditional 
storage reservation statements (such 
as CNOP or OS statements). 



Phase liB 

ENTER 

Get Location 
of Next 
LOF Entry 

EXIT 

To Phase Il C 

Figure 8. 

Cont Sect CD 
,----------+ 

LTORG 

I 
I 0 l 

ORG --=-. 

I 
I 
I 

b~~XD0 
I 
I 
! 

EQU CD 

Retri eve Loc 

Counter and 
Reserve Page 
Table 

ORIGIN 

Position of 
Current 

Loc Counter 

EQUATE 

Evaluate Exp 
Assign Value 
to NAME 

C~N~O~P ___ ()~7~_~~ r -V 

I 
! 

~1achin_e_l_ns_t __ ®_8 ____ -8 

i 

--- ----------8 

--

1-----0 

.--0 _____ -

--0 

A 

LOCATE 

Assign Current 
Loc Counter 
Value to NAME 

POOUT 

Generate 
Literal 
Pool 

CSCAN 

Prepare 
Constant 
Item 

RESCON 

Compute 
Alignment 

Assign Current 
LOF Counter 
Value to NAME 

~ RESCON 
CC't~ ____ 0-"=-=-lt---------l 

Compute I Alignment 

I 

Step to 
Mend LOF 
Entry 

I Other @ --f:\ 
'--------------~ 

overview of Phase lIB function 

Section 2: 

Yes 

RES LI T 

Add Litera I 
to Current 
Pool 

Assembler Functional Description 17 



2. If the logical order file entry repre­
sents a control section entry, the 
following processing is performed. 

Each control section within the 
assembly has its own individual loca­
tion counter, for which two values are 
maintained: the current value as it 
exists for any given statement, and 
the highest value the counter has 
reached during the course of proces­
Sing the control section. At any 
change of control section the current 
value of the location counter is saved 
(in the section name item in the dic­
tionary). If this value exceeds the 
highest value previously saved, the 
highest value is also updated and 
saved. The current value of the loca­
tion counter for the new section is 
retrieved and installed as the working 
counter for subsequent statements. 
The location of the section name item 
for the new section is also inserted 
in the current control section 
indicator. 

For each occurrence of a new con­
trol section other than a blank COM or 
DSECT, a 512-byte ·page usage" table 
is reserved in working storage. The 
table length provides one bit for each 
of 4096 pages allowed for a control 
section. Each time the location coun­
ter is incremented, and the increment­
ing instruction is other than a DS or 
ORG, a bit is set in the corresponding 
page usage table, indicating that the 
page represented by bits 8-19 of the 
current location counter contains 
text. If a statement will cause the 
location counter to exceed the limit 
of 4096 pages, that statement is made 
commentary, and the remaining state­
ments (except the END statement) are 
also made commentary. The page table 
is initiated to zero at the time it is 
reserved, and its location is inserted 
in the section name item. 

3. If the current logical order file 
entry represents a LTORG statement, 
the location counter is first aligned 
to a doubleword boundary. If the sta­
tement has a symbol in the name field, 
LOCATE will be called to assign the 
current location counter to the sym­
bol. Next, POOL IT is called to gener­
ate the literal pool. The literals 
are chained in order of occurrence to 
a "first link" which is independent of 
the dictionary. POOLIT's function is 
to order the literals by length, 
assign location counter values to each 
literal, and to transfer the chain 
(reordered by ascending location) to 
the LTORG entry in the logical order 
file. If a PSECT is present in the 

18 

assembly, POOLIT excludes address con­
stants from the pool, unless an over­
ride switch is set (indicating the 
absence of a PSECT) during Phase lIB 
initialization to force their 
inclusion. 

The LTORG statements in a program 
are numbered in order of occurrence. 
Literals occurring between (or prior 
to the first) LTORG statements are 
identified as belonging to the LTORG 
number which is forthcoming. 

4. If the current logical order file 
entry represents an ORG statement, 
ORIGIN is called to evaluate the 
operand of the ORG statement. Abso­
lute values receive a diagnostic mes­
sage but are then accepted as indicat­
ing a location counter setting rela­
tive to the current control section. 
Relocatable values must be simply 
relocatable and relative to the cur­
rent control section. A null operand 
indicates that the location counter is 
to be set to the highest previously 
attained location counter value for 
the current control section. 

If the value of the new origin is 
less than the current reading of the 
location counter, the current value is 
compared against the highest previous­
ly attained value (preserved in the 
section name item). If the current 
value is higher, it replaces the pre­
vious high value. If the current 
value is not higher, it is discarded. 
In either case, the new origin is 
instated as the current value of the 
location counter and placed in the 
logical order file entry for ease in 
listing in Phase III. 

5. If the current logical order file 
entry represents a DC or DS instruc­
tion, a test must first be made to 
determine if a constant item was con­
structed for the statement in Phase I. 

If the statement was incapable of 
resolution in Phase I because of lack 
of definitions for terms in the expre­
ssions for length, duplication. scale 
or exponent, the constant scan routine 
(CSCAN) is called to construct a con­
stant item. If an item cannot be con­
structed, the statement is considered 
invalid and is treated as commentary. 
If a constant item was constructed in 
Phase I, Phase IIA, or Phase lIB, 
RES CON is called to resolve any condi­
tional alignment. The type of align­
ment required is indicated in the con­
stant item. RESCON aligns the working 
bit location counter to the proper 
boundary and, if the alignment amount 



is nonzero, constructs an alignment 
LOF entry. This entry indicates the 
number of bits to skip. RESCON also 
inserts the alignment entry in the 
logical order file preceding the entry 
for the current DC or DS statement. 
This ensures that Phase III will make 
an identical adjustment to the loca­
tion counter. The working byte loca­
tion counter will be set to the trun­
cated value of the bit counter. 

If there is a symbol in the name 
field, LOCATE is called to assign the 
current location counter value to the 
name. 

A DXD instruction is treated as a 
DS instruction with the following 
exceptions: an entry is made for the 
DXD on the Q REF chain, and -the loca­
tion counter is unchanged. 

6. If the current logical order file 
entry represents an EQU statement, the 
EQUATE SUbroutine is used to determine 
the legitimacy and the value of the 
operands of the statement. EQUATE 
will be entered only if the value of 
an EQU statement was unobtainable dur­
ing Phases I or IIA. The applicable 
type and length attributes of the 
value item are entered into the dic­
tionary for absolute, relocatable, and 
complex expressions. A diagnostic 
will be issued if the name has been 
previously defined (duplicate symbol), 
if the expression type or length is 
invalid, or if the symbol in the 
operand has not been previously 
defined. 

7. If the current logical order file 
entry represents a CNOP statement, 
RES CON is called to resolve any condi­
tional alignment. The operand is eva­
luated and, if valid, the location 
counter will be aligned to a halfword 
boundary. If the alignment amount is 
nonzero, an alignment LOF entry is 
constructed indicating the number of 
bits to skip. The alignment entry is 
inserted in the logical order file 
preceding the entry for the CNOP sta­
tement. The number of generated NOPRs 
required to satisfy the CNOP is then 
determined, and the total instruction 
length (in bits) of the NOPRs is 
inserted in the LOF entry for the 
CNOP. 

8. If the current logical order file 
entry represents a machine instruc­
tion, a test is made to determine if 
the location counter is positioned at 
a halfword boundary. If not, a spe­
cial entry is made to RESCON to com­
pute the amount of alignment required 

and to generate an alignment LOF 
entry. The alignment entry is 
inserted in the logical order file 
preceding the entry for the current 
machine instruction. 

A flag is set in the LOF entry dur­
ing Phase I if there is a literal in 
the operand of a statement. If this 
flag is on, RESLIT is called to scan 
the literal as if it were a normal 
DC-statement operand, to prepare a 
constant item for it, and to enter the 
literal as an item in the main 
dictionary. 

A test is made to determine if 
there is a symbol in the name field. 
If there is, LOCATE is called to 
assign the current location counter 
value to the name. 

9. If the current logical order file 
entry represents a CCW statement, 
RESCON is called to align the current 
location counter to a doubleword bOUn­
dary. If the alignment amount is non­
zero, an alignment LOF entry is con­
structed indicating the number of bits 
to skip. The alignment entry is 
inserted in the logical order file 
preceding the entry for the CCW 
statement. 

If the flag bit in the LOF entry is 
on, indicating a literal in the 
operand, RESLIT is called. The liter­
al will be scanned (by CSCAN) as if it 
were a DC-statement operand, a con­
stant item will be prepared for it, 
and an item for the literal will be 
entered in the main dictionary. 

If there is a symbol in the name 
field, LOCATE is called to assign the 
current location counter value to the 
name. 

10. When a logical order file entry repre­
senting a MACRO statement is encoun­
tered, Phase lIB will step through the 
LOF entries representing the macro 
definition until the MEND LOF entry is 
encountered. Since no processing is 
required in Phase lIB for a macro 
definition, the statements are simply 
bypassed. 

11. Other assembly instructions require no 
special processing and are therefore 
bypassed. 

12. At the end of Phase lIB, the control 
routine causes the construction of 
logical order file entries which 
simulate a CSECT statement (a con­
tinuation of the first CSECT) and a 
LTORG statement. GSM entries are also 

Section 2: Assembler Functional Description 19 



constructed to indicate the change of 
section. The highest value of the 
location counter for the CSECT is 
reinstated and the literal pooling 
routine (POOLIT) is called. All 
remaining literals that are not 
address constants are pooled at the 
end of the first CSECT. 

13. Phase lIB now determines whether a 
designated PSECT exists. If it does, 
logical order file entries are con­
structed to simulate a PSECT and a 
LTORG; GSM entries are constructed to 
indicate the change of section; the 
location counter value is set to its 
highest for the PSECT; and POOLIT is 
called again, this time with an over­
ride switch set that causes the rou­
tine to accept address constants when 
they are encountered in the list of 
unpooled literals. If no PSECT 
exists, the override switch is set at 
the beginning of the phase. This 
action causes address constants to be 
pooled with other literals at each 
LTORG statement. 

14. At the end of the phase, the chain of 
section name items is processed to 
compute the page usage for the pro­
gram. Each control section that con­
tains text will have, in the dic­
tionary item, a pOinter to its page 
usage table. To determine the number 
of pages used by each section, it is 
necessary to count the bits that have 
been turned on in the table. The 
total bit count (total pages) is post­
ed in the section name item for use by 
Phase III in generating text. A cumu­
lative total of pages for all control 
sections is computed so Phase III can 
call VMGET for the required number of 
pages for the binary text module. 

PHASE IIC FUNCTIONAL DESCRIPTION 

Phase IIC tabulates the status of PRINT 
control, LTORG numbers, and USING registers 
in relation to each control. section when a 
section has been written discontinuously. 
It also associates the operands of ENTRY 
statements with the names of control sec­
tions in such a way that R-type addressabi­
lity is established. 

An overview of Phase IIC function is 
shown in Figure 9. The numbered paragraphs 
in the following description correspond to 
the numbered boxes in the figure. 

Construction of the output module 
reqUires Phase III to process each control 
section contiguously. Phase IIC is 
required to maintain compatibility with 
OS/360 definition of PRINT, LTORG, USING, 
and DROP statements while processing in 
control section order. 

20 

1. By Phase IIC only section names, 
PRINT, LTORG, USING, DROP, and ENTRY 
statements remain in the GSM chain. 
Phase IIC searches the GSM chain and 
constructs and maintains a working 
using table. If an ISD is to be pro­
duced in Phase IV, an ISD list of 
using table locations is established. 
The PRINT, LTORG, USING, DROP, and 
ENTRY links are removed from the GSM 
chain as processed. 

2. At each section change, the working 
version of the using table is copied 
into a permanent location as the cur­
rent table. Current pointers are 
updated to address the current control 
section. The GSM entry for the sec­
tion name will be followed immediately 
by an entry pointing to the current 
using table, which will. refl.ect the 
status of using registers, PRINT con­
trol, and the current LTORG number at 
the point of continuation. 

3. When a LTORG entry is encountered in 
the GSM chain, the LTORG number in the 
working using tabl.e is updated to the 
next higher number. The GSM entry for 
the LTORG is then removed from the GSM 
chain. 

4. If a GSM entry for a PRINT statement 
is encountered, the new PRINT status 
is recorded in the working version of 
the using table. The GSM entry for 
the PRINT is then removed from the GSM 
chain. 

5. If a GSM entry for an ENTRY statement 
is encountered, an entry trail.er is 
constructed and linked to the previous 
entry trailer for the control section. 
If a trailer has not been previously 
constructed, the current trailer is 
linked to the appropriate control sec­
tion dictionary item. The GSM entry 
for the ENTRY is then removed from the 
GSM chain. 

After Phase lIB, definitions are 
available for any symbol that may 
legitimately appear as an ENTRY 
operand. The section name within 
which the ENTRY occurs is also known, 
since the GSM chain includes section 
names that Phase IIC records in the 
current control section address. 

If the ENTRY occurs within a named 
section that is not a DSECT, entry­
operand items are constructed in the 
main dictionary and chained to the 
item for the named section that is 
currently in control. This produces 
definitions that are capable of R-type 
references. The ENTRY statement may 
not appear in a DSECT or an unnamed 
CSECT. ENTRY statements may appear in 
named common control sections. 



Phose II C 

( Enter ) 

CD ~---8 
Ger Next 
Unk of 
GSM Chain 

End 
No 

of GSM 

t Ye, 

( Exi r ) 
To Phase ill 

Section Name 

Make Cop,' of 
Working Us.ing 
Tab!e in Perrranenr 
Location 

LTORG to) 
I )'RINT 
I (4) 

-~--. 

ENTRY 
(5) 

USING 

(0 

Update 
l.TORG 
I~umber 

Update 
Pr;nt 
Stoh)~ 

Chain Entry 
to Appropriate 

Control Section 

uSET 

-------------iO' 

Add E ntr i f'S to ------- -

DRO~urrenl Using Tab!" I 
G I 

__ __+ R D:SE~ _ !--__ L __ 
emove nine::> tram 

Current U)i ng T ob 1(; 

Construct GSM 
Entry Pointing 
to Copied 
Using Table 

Remove 

Link from 
GSM Chain 

Copy Table to 
New Area. 
Record L TORG 
and Print Statu!: 

Replace GSM 
with Pointer 
to Copied Table 

Figure 9. Overview of Phase IIC function 

6. The USING table processor, USET, is 
called by Phase IIC control when the 
current GSM entry indicates the pre­
sence of a USING statement. USET 
updates the status of the working ver­
sion of the using table. 

USET first resets a series of indi­
cators which it uses to check for 
duplicate register specifications. It 
then calls EVAL to evaluate the first 
operand, which is the base value for 
the using registers. Absolute and 
relocatable expressions are accept­
able. The relocatable expression may 
consist of a single external or 
internal symbol plus or minus any 
absolute value. Indicators are set to 
denote whether the table entry is to 
be in absolute, relocatable, or 
external format. The base value is 
set accordingly. Each of the remain­
ing operands is submitted in turn to 
EVAL. The expression must be abso­
lute, less than 16, and must not dupl­
icate another operand. If legal, the 
using table entry for the specified 
register is constructed. USET adds 

4096 to the base value for each legal 
operand after the first until the list 
of operands is completed. The logical 
order file entry for the USING state­
ment is completel. Indicators are 
inserted showing the type of base 
expression and its value. 

The working version of the using 
table is copied into a permanent loca­
tion. The GSM entry for the USING is 
replaced with a base register table 
locator entry which points to the 
copied table. 

7. The DROP table processor. DRSET, is 
called by Phase IIC control when the 
current GSM entry indicates the pre­
sence of a DROP statement. DRSET 
updates the working version of the 
using table. 

DRSET first resets a series of 
indicators which it uses to check for 
duplicate register specifications. It 
then calls EVAL to evaluate the expre­
ssion for each of the operands. Each 
expression must be absolute, less than 

section 2: Assembler Functional Description 21 



® 

@ 

16. and must not duplicate another 
operand. If legal, the table entry 
for the specified register is marked 
as no longer available as a cover 
register. 

PHASE III FUNCTIONAL DESCRIPTION 

Phase III controls final processing of 
all instructions. It organizes the program 
by control section, produces the necessary 
binary text and relocation information for 
the object program, and provides listings 
of the source and object programs. The working version of the using 

table is copied into a permanent loca­
tion. The GSM entry for the DROP is 
replaced with a base register table 
locator entry which points to the 
copied table. 

An overview of Phase III function is 
shown in Figure 10. The numbered para­
graphs in the following description corres­
pond to the numbered boxes in the figure. 

CSDPR 

Prepare Control 
Section Dictionary 

initialize for 
Next Pass Over 
GSM Chain 

Phose ill 

Prepare Source 
i Language listing 

L ___ _ 
CD 

Yes 

Process Module 
Entry Point 

End 
of LOF 

? 

G)--

Diagnostic 

@ 
Remove Link 
from LOF Entry 
and Add to 
Diagnostic Chain 

---0 
Machine Inst. 

CD 
MOPR 

Process Machine 
l Instruction 

I CCW 

~ COVTXT 

I Process CCW 

I 
DC 

G) 
I DCTXT 
I r-T Process Constant 
I 
I 
I 
I 
l 

i 
l 

I 
LTORG I 
@ LlTXT 

----. Process Utera! 
Pool 

Other 

@r-----------, 
Perform 

Required 
Processing 
for Statement 

Control Secti on 

New 
Section 

? 

Yes 

Step to Next 
GSM Entry 

C 

--- -------

No 

LIST 

Format Output 

Line 

Locate 
Corresponding 
GSM Entry 

I 
+ 

Remove Link 
from GSM Chain 

Update Location 
Counter by 
Generated Length 

List Diagnostic 
Messages 

@.----'---------, 
Prepare External 
Name List 

Figure 10. Overview of Phase III function 

22 



1. Phase III begins by preparing a source 
program listing, if one is desired. 
The source listing processor (SLLS) 
prepares a listing of the input source 
lines in their original order and for­
mat, with the sequence number assigned 
to the statement by the line data set 
facilities. Either the VISAM PUT 
macro is used to place the edited 
lines in the list data set, or the 
GTWRC macro is used to put the listing 
on SYSOUT, depending on user request 
and mode. Using the LISTDS operand, 
the user, in either conversational or 
nonconversational mode, may direct 
requested listings to SYSOUT or have 
them entered in a list data set. 

2. The page usage estimated for the out­
put text is calculated, and VMGET is 
called to procure output working 
storage. VMGET is called again to 
procure working storage for the pro­
gram module dictionary and the extern­
al name list. 

3. The module entry point processor 
(ENDPR) is called to construct the 
module heading and to complete the 
heading, as far as possible, at this 
time. ENDPR calls the expression eva­
luator to evaluate the operand of the 
END statement and completes the head­
ing according to the type of operand. 
The length of the module heading is 
computed, and the location of the 
first control section dictionary is 
established. 

4. Phase III uses the GSM chain to put 
the program into order by control sec­
tion. Within each section, the logic­
al order file controls the order of 
processing. Each statement repre­
sented in the logical order file is 
processed by an appropriate open or 
closed subroutine. 

5. If a logical order file entry repre­
senting a diagnostic is encountered, 
the entry is delinked from the LOF and 
added to the diagnostic chain for ease 
of listing at the end of the phase. 
The error flag is set with the appro­
priate code so that the listing rou­
tine (LIST) can output the code with 
the statement to which the diagnostic 
refers. 

6. If a logical order file entry repre­
senting a machine instruction state­
ment is encountered, the machine­
operation processor (MOPR) is called 
to evaluate the operand field of the 
statement and to create corresponding 
binary output in the text portion of 
the output program module. The 
address in the output text which the 

instruction is to occupy is calculated 
prior to entry. The instruction 
length is determined from the LOF, and 
the bytes to be occupied by the 
assembled text are set to zero. The 
operation code is transferred from the 
LOF entry to the text. Processing 
proceeds according to the instruction 
type: RR, RR with extended M1 field, 
RR with only one register, RR with 
immediate value, RX, RX with extended 
value, RS with explicit R3 field, RS 
without R3 field, SI with immediate 
value, 8I without immediate value, SS 
with two length fields, and SS with 
one length field. The syntax of the 
operand field for the instruction type 
is evaluated and checked for validity. 
As each component field of the 
instruction is evaluated, the corres­
ponding binary output is placed in the 
text. When the text has been com­
pleted the instruction is checked 
against the machine operations 
requirement table to diagnose align­
ment er:rors and improper register 
usage. 

Relocatable operands are submitted 
to t:he U8EVAL subroutine, which 
reduces the relocatable symbol to a 
base register and displacement value. 
The location counter value of relocat­
able operands, including literals, is 
obtained by the GETVAL subroutine. 
Exit is made to Phase III control. 

7. The object program listing routine 
(LIST) is called to format the output 
line. LIST uses the current logical 
order file entry and is supplied the 
location and length of any binary text 
generated for the statement repre­
sented by the LOF entry. With these 
sources of information LIST can pre­
pare a suitably formatted line for the 
object program listing. If PRINT con­
trol is set to OFF, LIST performs no 
processing. If ON, LIST prints infor­
mation relative to the binary text on 
the left. side of the listing and 
information relative to the source 
statement on the right. LIST uses the 
PUT macro in VISAM to place each line 
in a list data set, or the GTWRC macro 
if the listing goes immediately to 
SYSOUT. The line is 132 characters 
and is preceded by an ASA FORTRAN 
standard print control character: 
blank for single space, 0 for double 
space, and 1 for page eject. 

The location counter for the cur­
rent control section is incremented by 
the generated length, if any, of the 
current statement. The address in the 
output text that the next instruction 
is to occupy is computed accordingly. 

section 2: Assembler Functional Description 23 



8. If a logical order file entry repre­
senting a CCW instruction is encoun­
tered, the CCW instruction processor 
(CCWTXT) is called to evaluate the 
operand field of the statement and to 
create corresponding binary output in 
the text portion of the output program 
module. The address in the output 
text that the CCW is to occupy is cal­
culated prior to entry. Adjustment 
will have been made to a doubleword 
boundary. The eight bytes of text are 
set to zero. The syntax of the four 
operands is evaluated and checked for 
validity. As each component field of 
the instruction is evaluated, the 
corresponding binary output is placed 
in the text. The PUTVAL subroutine is 
called for relocatable data address 
operands, including literals, to cre­
ate the necessary relocation dic­
tionary information required to modify 
the text of a relocatable field. Exit 
is made to Phase III control. 

The LIST routine is next called to 
format the output line. For a 
description of its function, refer to 
item 7. 

9. If a logical order file entry repre­
senting a DC statement is encountered, 
the Phase III constant processor 
(DCTXT) is called to place the binary 
text for the constant into the output 
module. The text and relocation 
values for address constants not pre­
viously obtained are resolved during 
this processing. DCTAT examines the 
constant item associated with the LOF 
entry for the DC and establishes a 
duplication factor for the text. If 
the constant is an address constant, 
the ADCON subroutine is called to pro­
duce text and relocation information 
for the constant. If the constant is 
not an address constant, its value is 
retrieved from the constant item and 
moved to the text location. For bit­
length constants the text location is 
bit-oriented. 

24 

Movement of data into the text is 
repeated until the duplication factor 
is reduced to zero. The LIST routine 
is called to generate printed output 
on each duplication when the DATA 
print option is specified, except for 
bit-length fields. For bit-length 
fields, the next LOF entry is tested 
when all duplications of the current 
constant are complete. If the next 
LOF entry indicates a multiple-operand 
bit-length constant, the bit-oriented 
text location is maintained at its 
current updated value so that the next 
constant: may be packed at the next 
adjacent bit. The entire bit-length 

constant is then printed. Multiple 
operands for non-bit-Iength constants 
are processed by successive entries to 
DCTXT. 

After return is made to Phase III 
control, the location counter for the 
current control section in incremented 
by the generated length of the con­
stant. The address in the output text 
that the next instruction is to occupy 
is computed accordingly. 

~O. If a logical order file entry repre­
senting a LTORG statement is encoun­
tered, the literal pooling processor 
(LITXT) is called to place the binary 
text for the literals in the given 
pool into the output module. The 
values of address constants not pre­
viously obtained are resolved during 
this processing. The logical order 
file entry points to the head of a 
chain connecting all literals pooled 
under the given LTORG. For each lit­
eral in the pool, LITXT creates an 
artificial source line for the benefit 
of the listing. LITXT also constructs 
an artificial LOF entry for the liter­
al, simulating an entry for a normal 
DC statement. Having made the literal 
appear as if it were a normal con­
stant, LITXT calls the DCTXT routine 
to process the constant. DCTXT will, 
in turn, call LIST to format the out­
put line. Exit is made to Phase III 
control where the page usage for the 
pool is determined and, if necessary, 
entries are made in the virtual 
storage page table. The address in 
the output text that the next instruc­
tion is to occupy is computed. 

~~. Various assembler instructions require 
little processing in Phase III. The 
processing required for these instruc­
tions is described below. 

MACRO/MEND: A flag is set when a log­
ical order file entry representing a 
MACRO instruction is encountered. 
This flag causes all statements 
(except diagnostics) that occur until 
the MEND LOF is encountered to be 
recognized as model statements in a 
macro definition and, as such, to 
require listing only. The LIST rou­
tine is called to list each statement. 

USING/DROP: The occurrence of a log­
ical order file entry representing a 
USING or DROP statement indicates that 
a new using table is required for 
references by USEVAL. The address of 
this t.able is retrieved, the GSM entry 
for the USING or DROP is delinked, and 
t.he LIST routine is called to list the 
statement. 



Alignment: If an alignment LOF entry 
is encountered, a test is made to 
determine if text is required. If so, 
the text is set to zero, page usage is 
determined, and the LIST routine is 
called to format the line. In either 
case. the location counter will be 
incremented by the generated length. 

ORG: If a LOF entry representing an 
ORG is encountered, the object program 
location counter is set to the value 
of the ORG, and the LIST routine is 
called to format the line. 

DS: If a LOF entry representing a DS 
is encountered, the increment to the 
location counter is retrieved from the 
constant item, and the LIST routine 
called to format the line. The loca­
tion counter will be incremented by 
the length of the instruction. 

CXD: If a LOF entry representing a 
CXD is encountered, a CXD reference 
item and temporary RLD item are built. 
The CXD is chained onto the external 
reference chain, and the CXD-REF flag 
is set on. A call is then made to the 
L~ST routine to format the line. 

DXD: The occurence of a logical order 
file representing a DXD instruction 
requires that a Q reference item be 
built. The DXD instruction is then 
treated as a DC statement. 

CNOP: If a LOF entry representing a 
CNOP is encountered, and text is 
required for the CNOP. page usage will 
be determined, and the text location 
updated. The number of NOPR instruc­
tions required are generated and 
placed in the output text. The LIST 
routine is called to format the line; 
the location counter is incremented by 
the generated length, and page usage 
is determined. If text is not 
required for the CNOP, the LIST rou­
tine is called to format the line. 

PRINT: The occurrence of a PRINT LOP 
entry requires only t:hat the indicator 
for print status be updated. 

SPACE: The occurrence of a SPACE LOF 
entry requires that the operand of the 
statement be evaluated, and the value 
plus one set as a parameter for the 
LIST routine. If the operand is null, 
the value is set to 2. 

TITLE: The occurrence of a '.fITLE LOF 
entry requires that a parameter be set 
to cause a page to be ejected, and thE; 
length and location of the tit.Ie set 
for the LIST routine. 

EJECT: The occurrence of an EJECT LOF 
entry requires only that a parameter 
be set to cause a page to be ejected. 

Other: Other assembler instructions 
require listing only. 

12. When a logical order file entry repre­
senting a control section is encoun­
tered. a test is made to determine if 
the section is new or is a continua­
tion of the section being processed. 
If it is a new section, the GSM chain 
will be stepped through to attempt to 
locate a GSM entry for the current 
control section. If an entry is not 
found, all the processing has been 
performed for the section, and it is 
time to build the control section dic­
tionary. If an entry is found, the 
link is removed from the GSM chain, 
the logical order file entry pointer 
is positioned to the corresponding LOF 
entry. the statement is listed, and 
processing of the LOF will resume at 
the entry following the entry for the 
continuation of the current control 
section. 

13. When the end of the logical order file 
is reached, or the end of the GSM 
chain when not at the end of the LOF, 
the control section dictionary proces­
sor (CSDPR) is called to complete the 
processing of a control section dic­
tionary before Phase III control 
begins processing a new section. 
CSDPR is responsible for retrieving 
all relocation modifiers and reference 
items in temporary storage and for 
producing a final output CSD from 
them. CSDPR initially constructs a 
section heading in the PMD. The total 
number of bytes in the text and the 
relative page number where the text 
begins are placed in the section head­
ing, the section name is located in 
the dictionary, and CSDPR begins fol­
lowing the chain of ENTRY names that 
is attached to the section-name item. 
Three passes are made over the ENTRY 
chain: (1) the simply relocatable 
definitions receive definition items 
constructed in the control module; (2) 
absolute definitions receive defini­
tion items; and (3) complex defini­
tions receive definition items. Simi­
lar processing is performed for the 
RLD modifiers for the text. Finally, 
a t.able is constructed in the module 
with one entry for each page of virtu­
al memory represented by the text. 

14. If any links remain in the GSM chain, 
the first control section entry that 
remains in the chain is located, the 
logical order file pointer is posi­
tioned to the corresponding LOF entry, 

,t ion 2: Assembler Functional Description 25 



and processing of the logical order 
file is resumed. If the GSM chain is 
exhausted, all processing for control 
sections has been completed. 

15. A diagnostic chain has been con­
structed by transferring diagnostic 
logical order file entries from the 
LOF to the diagnostic chain. The LIST 
routine is now called to list a mes­
sage for each entry in the diagnostic 
chain. Summary messages indicating 
the number of messages and the highest 
severity code are then produced. 

16. A list of external names is prepared 
by following the chain of section-name 
items. This list of names is prepared 
so that LPC can ·STOW" them when dis­
posing of the unit. 

PHASE IV FUNCTIONAL DESCRIPTION 

Phase IV calls the post processors 
required to produce the output options 
selected by the programmer. The post pro­
cessors produce the symbol table listing, 
cross-reference listing, PMD listing, lSD, 
and ISD listing. Certain combinations of 
these services are available to the pro­
grammer. In Phase IV, the option flag for 
each processor is checked, and the post 
processor is called if its output is 
desired. 

An overview of Phase IV function is 
shown in Figure 11. The numbered para­
graphs in the following description corres­
pond to the numbered boxes in the figure. 

1. If the programmer has selected the 
option for a cross-reference listing, 
the cross-reference listing processor 
(XREF) is called to sort the cross­
reference items produced during Phase 
III and to produce an orderly listing 
of them. In Phase III, cross-reference 
items were stacked contiguously in 
working segment 1. A pass is made 
over the items to produce the listing. 
The items are sorted alphabetically by 
key of dictionary item, with defini­
tions preceding references, and 
references sorted by ascending value 
of location counter. The address list 
produced by the sort controls the 
order of the printed items. The for­
matted lines are stacked behind the 
listing in the listing module. 

2. If the programmer has selected the 
option for a symbol table listing, the 
symbol table editor (STED) is called 
by Phase IV control. STED prepares a 
sorted listing of all symbols con­
tained in the main dictionary, togeth­
er with their type, length. and value 

26 

Is 
Cross -

XREF 

Reference Listing 
Yes 

Prepare Cross -
Reference Listing Wanted 

? 

No 

Is 
Symbol 

No 
Tobie Edit 

'Wanted 
? 

CD Yes 

STm 

Prepare Symbol 
Table Listing 

ISD Wanted 
? 

ISD Listing 
Wanted 

? 

To Assembler 
Master Control 

Figure 11. 

Yes 
Has 

ISD Been 
Prepared 

? 

No 

Yes 

Overview of Phase IV function 

attributes. STED follows each link 
indicated by the main hashing table 
and stores a sorting key which con­
sists of the address of each item in 
the main dictionary, except transitive 
items. STED then sorts the keys into 
ascending alphameric sequence based on 
the character value of the symbols in 
the dictionary. The resulting list is 
edited for printing, with two columns 
of symbols appearing on each page. 

3. If the programmer has selected the 
option for an lSD, the ISD processor 
(ISDPR) is called by Phase IV control 
to reduce the contents of the per­
manent dictionary to those items 



required by the program control system 
(PCS), and to format those items con­
veniently for PCS in a special intern­
al symbol dictionary (ISD). 

4. If the programmer has selected the 
option for a PMD listing, the program 
module dictionary listing processor 
(PMDLS) is called by Phase IV control. 
Information for the listing header 
lines is secured from the PMD header. 
The following details, when present, 
are listed for each control section 
within the module: 

• Section name 

• Type of section 

• Version identification 

• Attributes 

• Length of the control section 

• Text length 

• Relocatable, absolute, and complex 
definitions for the section 

• References 

• DXD and CXD references 

• Modifiers for complex definitions 

• Modifiers for text (internal and 
external references, Q-CONs, and 
CXDs) 

5. If the programmer has selected the 
option for an ISD listing, and has 
also requested an lSD, the ISD list 
processor (ISDSA) is called by Phase 
IV control to display the contents of 
the internal symbol dictionary. 

section 2: Assembler Functional Description 27 



SECTION 3: ASSEMBLER FUNCTION BY INSTRUCTION TYPE 

INTRODUCTION 

The next three figures show the function 
of the assembler by type of instruction. 
The level of nesting is in order from top 
to bottom and, in general, the sequence of 
processing is f~om left to right. 

MACHINE INSTRUCTIONS 

Figure 12 shows the assembler function 
for machine instructions. 

During Phase I, the REED routine obtains 
the source statement and a logical order 
file entry is constructed. If the name 
field contains a valid symbol, an entry is 
made in the main dictionary. If the 
assembly is in conversational mode, the 
operand field is checked for validity. 

Machine instructions generated by macros 
are processed during Phase IIA, as 
described below. 

During Phase lIB, machine instructions 
are recognized and the location counter is 
stepped. If necessary, the location count­
er value is adjusted to a halfword boun­
dary. If a symbol is present in the name 
field, it is assigned the value of the cur­
rent location counter. 

Machine instructions are not processed 
during Phase IIC. 

During Phase III, each operand is ana­
lyzed for syntactical correctness and 
checked for validity. The appropriate 
number of bytes of binary text is generated 
(by MOPR) and placed in the output text 
module. The statement is listed on the 
object program listing. 

Machine instructions require no further 
processing in Phase IV. 

MACRO INSTRUCTIONS 

The assembler function for macro 
instructions is shown in Figure 13. 

During Phase I, the REED routine obtains 
the macro reference statement. A logical 
order file entry and a global-section-macro 
(GSM) entry are constructed for the 
statement. 

Phase IIA processes the GSM chain and 
calls the statement analyzer to expand the 
macro. The routines enclosed by dotted 

28 

lines in Figures 12 and 14 are executed for 
each generated statement. Macro statement 
generation is accomplished by substituting 
the character-string values of the current 
arguments for the corresponding parameters 
in the definition. The statements 
generated by macro instructions are created 
and placed in the assembler virtual 
storage. If the macro reference is to a 
library macro, the macro definition must be 
retrieved from the library, and lines 
linked together in storage before macro 
expansion can begin. In Phase IIA. the 
Phase IIA control module replaces the LPC 
in determining the order and origin of the 
s~.atements. 

In Phase lIB, the only processing 
required for a macro reference is to assign 
the current location counter value to the 
symbol in the name field (if one exists). 
Generated statements are processed as 
machine or assembler source statements dur­
ing the remainder of the assembler. 

In Phase III, the only processing 
required is to list the statement on the 
object program listing. 

Macro instructions require no further 
processing in Phase IV. 

ASSEMBLER INSTRUCTIONS 

The assembler function for assembler 
instructions is shown in Figure 14. 

During Phase I, the REED routine obtains 
the source statement, and a logical order 
file entry is constructed. The entire sta­
tement is checked for syntactical correct­
ness. If the instruction is one of the 
following. a global-section-macro (GSM) 
entry is made: control section statement 
(CSECT. PSECT, DSECT. COM, START), GBLx. 
SETx, USING, DROP, ENTRY, PRINT, or LTORG. 

During .Phase IIA, all GEL declarations, 
global SET instructions, and section name 
changes are reprocessed in order that 
macro-generated statements have proper 
values for global variables and the 
assembler variable symbol &SYSECT. 

During Phase lIB. only certain types of 
assembler instructio~~ are processed. 
EQUATE is called for an EQUi ORIGIN is 
called for an ORG; POOLIT is called for a 
LTORG (after first assigning the current 
location counter value to the name if the 
line is named); RESCON is called for a CCW 
followed by RES LIT , if the data addl.-ess 



Figure 12. 

'gs 

.-* u ;;; 
u 

~- 2 
Q) e 0-

j C 0 
0 
~ a.. U 

I-

I 

f-----

L~ 
I 

.: 

" 
CL.. ::1_ 

o (J)';' e 
~'E-§g 
u LI) U~ U 

G 
I-- E w 
:c: 0 .~ 
-' u.. -' 

-" 

'" -D 
-' 0 

L~~~ 
Q ° ,-:r: > 

i 
:~ 
I Q) 

t g 
(0:: 

c 
~ '~ 

o 
I';;; . (; 

Q. 
X 

" o 
U 
g 
m 
c 

i ~ 
-u 

:~ 

:;; 
u 
o 

Q: 

Assembler function for machine instructions 

Section 3: Assembler Function by Instruction Type 29 



r 
1 

REED 
Get Next 
Source 
Statement 

GETOP 
Collect and 
Identify Name 
of Macro 

SUBOP 
Substitute 
I nto Operation 
Field 

CATOP 
String 
Substitution 
Control 

SSCAN 
String 

Substitution 
Scan 

oJ- See Figures 12 and 14 for detaH 
of mecro expansion for machine 
and assembler instruction. 

STAN 
Statement 

Analyzer 

MACRcF 
Macro 
Reference 

Processor 

CEVMLA 
Find Symbolic 
Comporent 

Parcel 

Phase llA 
Control 

STAN 
Statement 

Analyzel 

MACREF 
Process Mac l"O 

Reference 

No 

CEVMLB 
Retrieve 
Successive 
Parcel Lines 

Assembler 
Moster 

Assign Location 
Counter to 
Ncme 

Expand 
Macro 

PARAMAC 
Construct 
iv\acro Le VE! 

Dictionary 

STAN 
Set Up Encoded 
Form of Macro 
Oefinition 
Statements 

LIST 
Format Our-put 

Line 

I 
• 

GATEW 
Write Output 
Line 

Figure 13. Assembler function for macro instructions 

contains a literal, and LOCATE if a symbol 
exists in the name field. If a constant is 
being processed (DC or DS), CSCAN will be 
called to build a constant item if an item 
was not made in Phase Ii RESCON will be 
called to align the constant and LOCATE 
will be called to assign the current loca­
tion counter value to a symbol in the name 
field. Other assembler instructions are 
bypassed in Phase lIB. 

Only the following assembler instruc­
tions are processed in Phase IIC: section 
name (CSECT, DSECT, PSECT, COM, START), 
LTORG, PRINT, ENTRY, USING, or DROP. USET 
will be called for a USING statement and 
DRSET for a DROP statement; each of these 
statements, as well as a section name sta­
tement, result in a new using table being 
constructed. 

The module entry pOint processor is 
called first in Phase III to process the 
END statement. The GSM chain controls the 
order of processing in Phase III. Because 

30 

the output binary text and object listing> 
must be in order by control section, a sec­
tion name GSM entry will be either accepted 
as a continuation of the current control 
section and the processing of the logical 
order file resumed at the section continua­
tion, or it will be bypassed if it is not 
the current section and will be processed 
in a subsequent pass over the GSM chain. 

Other types of LOF entries that receive 
speCial processing in Phase III Control are 
MACRO, MEND, EQU, USING, DROP, ORG, DS, 
CXD, DXD, CNOP, PRINT, SPACE, TITLE, and 
EJECT. LOF entries that result in special 
routines being called are: CCW, for which 
CCWTXT is is called to generate a line for 
each literal in the pool and which, in 
turn, calls DCTXT to construct the binary 
text for each literal. LOF entries for all 
statements are processed by the LIST rou­
tine that will output the object listing. 

Assembler instructions require no furth­
er processing in Phase IV. 



Figure 14. 

<n 

1=1-o 
3? l: 
o c 

-"" 0 
CLU 

3: " ~ 
U 

I-U 
X ~ 
I- ~ 

<: <l! 

<;; c 
::0> 

-, -~-~ :( ~ ~ § 

--l 
i 

_ U 

U " Uci: 

o 
o 

0.. 

'---- ----------------' 

----~ -5 ,,8 
~ w 

G g->o~ 
~""V; E 

lU. §i ~.~z ! UJ Ll.J u..J <t: £ 
L-____ _ 

- ---

e---

i 
----10 I----~--Io 

I 

_ L ... 

~~ 8 g ~ 
E2~~0 

---. 

----+ 

-I 

--
c 
o 

2 ~ 
a... -;J D-

0·:;:: 0u 
3-g~~ 
(/) Vl _ u.... ___ J 

ill 
C 

Assembler function for assembler instructions 

Section 3: Assembler Function by Instruction Type 31 



SECTION 4: ASSEMBLER MASTER CONTROL 

INTRODUCTION 

For purposes of program maintenance. the 
assembler master control provides a centr­
ally located point of interface between the 
language processor control (LPC) and the 
assembler. There are three entry points to 
the assembler from the LPC: initiation, 
continuation, early-end. 

Figure 15 shows the control flow from 
phase to phase. The arrows of Figure 15 
are one-directional and show the true flow 
of control in the assembler. As illus­
trated, the assembler may be considered 
three subroutines: 

• Phases I and IIA, executed upon 
assembler initiation entry. 

• Phases lIB, IIC, III, and IV, executed 
upon assembler continuation entry. 

• Early-end processing performed entirely 
in the assembler control module. 

Phase calling conditions are specified in 
Tables 1 and 2 followed by the detailed 
description of the assembler control. 

Table 1. LPC call to AC 

r-. Phase I 
Control 

, , 
A,ssembler Control Module 

I 

Initiation 
(CEVPAA) 
I , 
, I 

L __ J 

Early End 
ICEVPAZ) 

Continuation 
(CEVP,I\B) 

Figure 15. LPC calls and assembler phase 
control flow 

r---------------------------------------------------------------------------------------, 
IRoutine: Language Processor Control I 
t----------T---------------------------T-----------------T---------------------------~ I Routine I Purpose 1 Called Routines I calling Conditions I 
r----------f----------------------------+-----------------+-----------------------------~ 
I Language IProvides communication be- lAC -- CEVAC IAlways called for: I 
I Processor I tween terminal and I I Phase I initialization I 
I Control IAssembler. I I Phase lIB continuation I 
I (LPC> I I I Abnormal assembler I 
I I I I termination I l __________ ~ ____________________________ ~ _________________ ~ _____________________________ J 

Table 2. Assembler control decision table (part 1 of 2) 
r---------------------------------------------------------------------------------------, 
I Routine: Assembler Control Level: 0 , 
r----------T----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
r----------+----------------------------+-----------------+-----------------------------~ 
lAC (CEVAC> I Provides a centrally located I PHASE I -- CEVPA IAssembler initialization. I 
I linterface with the language t-----------------+-----------------------------~ 
I I processor control. I PHASE lIB -- I Assembler continuation. I 
I I I CEVPC I I 
I I ~-----------------+-----------------------------~ 
I J IVMFREE -- CEVFM IAt normal end, to free unusedl 
I I I I virtual storage. I 
I I r-----------------+-----------------------------~ 
I I IVMCLEAN -- CEVCU IEarly end: to clear up stor- I 
I I I lage obtained from GETMAIN. I 
I I I INormal end: to reset VMTABLE.! l _________ -L ____________________________ ~ _________________ ~ ____________________________ _J 

32 



Table 2. Assembler control decision table (part 2 of 2) 
r---------------------------------------------------------------------------------------1 
!Routine: Level: 1 I 
~----------T----------------------------T-----------------T-----------------------------~ 
IPHASE I tReads and performs initial IPHASE IIA -- ICompletion of Phase I I 
I I processing of source program.1 CEVPB (transfer I processing. I 
I I I of control) I I 
~---------_t----------------------------+-----------------+-----------------------------1 
IPHASE IIA IExpands macro instructions lAC -- CEVAC ICompletion of macro I 
I (CEVPB) land obtains library macro I (transfer of I expansions. I 
I I definitions. I control) I I 
~--------_t----------------------------+------------------+-----------------------------1 
IPHASE lIB IAligns all statements to thelPHASE IIC -- IPhase lIB completion. I 
I (CEVPC) Irequired boundary. computes I CEVPD (transfer I I 
I Ipage usage for each control I of control) i I 
I I section. resolves literal I I I 
I I references, pools and I I I 
I lassigns location counter I I I 
I I values to literals and I I I 
I Iresolves symbol definitions. I I I 
~---------+----------------------------+-----------------+-----------------------------~ 
IPHASE IIC ITabulates the status of IPHASE III -- IPhase IIC completion. I 
I (CEVPD) IPRINT control, LTORG I CEVPE (transfer I I 
I I numbers. and USING registers I of control) I I 
I I in relation to each control I I I 
I I section. I I I 
~----------+----------------------------+-----------------+-----------------------------~ 
IPHASE III IControls the final pro- IPHASE IV -- IPhase III completion. I 
I (CEVPE) Icessing of all instructions; I CEVPF (transfer I I 
I lorganizes the program by I of control) I I 
I I control section, produces I I I 
I I text and relocatable infor- I I i 
I I mation. and provides I I I 
I I listings. I I I 
~---------+----------------------------+-----------------+------------------------------~ 
tPHASE IV ICaiis the post processor lAC -- CEVAC ICompletion of an assembly. I 
I (CEVPF) Imodules to produce the I (transfer of I I 
I loutput options selected by I control) I I 
I I the user. I I I l __________ ~ ____________________________ ~ _________________ ~ ______________________________ J 

AC -- Assembler Control (CEVAC> 

This routine provides the interfaces 
necessary to implement the initiation. con­
tinuation, and early-end entries to the 
assembler. (See Chart AA.) 

Entry Points: CEVPAA, CEVPAB, CEVPAZ 

Calling Sequence: A description of the 
calling sequence for each entry point 
follows. 

Initiation: The initial entry is a CALL 
from LPC with register 1 poin-ting to a 
parameter list of the following format: 

Word 
-1-

content 
Address of a character string 
containing the module name; the 
assembler uses only those chara­
cters preceding the first period 
in the string, or the first 
eight characters, whichever is 
shorter. 

2 

3 

Address of a one-byte indicator, 
which is zero for batch mode. 
nonzero for conversational mode. 

Address of an eight-byte table 
of options; each byte contains 
values of 'Y' if the option is 
to be selected, or 'N' if it is 
not. The options represented by 
i~he table are as follows: 

Byte Content 
1 Produce ISD 

2 Produce source listing 

3 Produce object listing 

4 Produce cross- ref er ence 
listing 

5 Produce edit symbol 
table listing 

6 Produce PMD listing 

Section 4: Assembler Master Control 33 



34 

4 

5 

6 

7 

8 

9 

10 

11 

7 Produce ISO listing 

8 Listings to a list 
data set 
(rather than SYSOUT) 

Address of the DCB for the list 
data set, if specified. 

Address of the number of user 
macro libraries. The number 
should be six or less; if great­
er than six, only the first six 
will be used by the macro ser­
vice routines. 

Not used. 

Address of the DeB for the 
source component of the system 
macro library. 

Address of the DeB for the index 
component of the system macro 
library. 

Address of one-byte indicator. 
If zero, word 10 represents a 
reading from the system time 
facility, which is to be used as 
a version identification for the 
module; if nonzero, word 10 is a 
user-supplied character string. 

Address of an eight-byte version 
identification string containing 
a system time reading or a user­
supplied character string, as 
indicated by word 9. 

Address of the DCB for the 
source component of the first 
user macro library. 

12 Address of the DCB for the index 
component of the first user 
macro library. 

13-22 Addresses of the DCBs for the 
source and index components of 
the second and following user 
macro libraries. The number of 
address constant pairs in words 
11-22 must equal the count to 
which word 5 points. If there 
are no user libraries, words 
11-22 will not be used. 

Note: The user libraries are 
searched prior to the system 
library with the heirarchy of 
search proceeding backward 
through the list from the nth to 
the first library. 

continuation: The continuation entry is 
a CALL from LPC with register 1 pointing 

to a parameter list of the following 
format: 

Word 
1 

2 

3 

4 

5 

6 

7 

content 
Address of a one-byte indicator, 
set by the assembler to nonzero 
if records have been PUT into 
the listing data set and zero if 
no records have been PUT into 
the listing data set. 

Address of a one-word field set 
by the assembler at exit to the 
length of the PMD in bytes, 
expressed as a binary integer. 

Address of a one-word field set 
by the assembler at exit to the 
starting virtual storage address 
of the PMD. 

Address of a one-word field set 
by the assembler at exit to the 
length of the assembled program 
text, in bytes (to the nearest 
page multiple), expressed as a 
binary integer. 

Address of a one-word field set 
by the assembler at exit to the 
starting virtual storage address 
of the assembled program text. 

Address of a one-word field set 
by the assembler at exit to the 
length of the ISD in bytes, 
expressed as a binary integer. 

Address of a one-word field set 
by the assembler at exit to the 
starting virtual storage address 
of the ISD. 

8 Address of a one-word field set 
by the assembler at exit to the 
starting virtual storage address 
of a list of external names 
(entry points) defined by the 
assembled module. The list has 
the following format: 

8 bytes 4 bytes 8 bytes 8 bytes 

~ 

module 
n 

I 
entry 

name name 1 
entry name n 

n - The number of entry names (excluding module name) 

Early-end: The early-end entry is a 
CALL from LPC with register 1 pointing 
to the address of a one-byte indicator, 
as described under "Continuation,· word 
L 



Routines Called: None. 

• Macro Instructions Issued 

OPEN (VISAM) 
CLOSE (VISAM) 
SAVE 
RETURN 

• PHASE I (CEVPA) - Initiation 

• PHASE IIB (CEVPC) - Continuation 

• Return to LPC - Early-end or completion 
of assembly. 

OPERATION: The operations performed vary 
for each entry point. 

Initiation: calling registers are saved, 
and the assembler's permanent registers are 
loaded. A test is made whether requested 
listings go back to the user on SYSOUT or 
into a list data set. If a listing data 
set is to be created, a VISAM index key is 
initialized and the data set is opened. 
otherwise, a SYSOUT switch is set and the 
VISAM data set initiation is bypassed. 
Control is then transferred to Phase I. 
Control returns at the end of Phase IIA, 

calling registers are restored, and an exit 
is made. 

Continuation: Calling registers are saved, 
and the assembler's permanent registers are 
restored. Control transfers to Phase IIB 
control, and the remaining phases of the 
assembler are executed. Control returns at 
the end of Phase IV. All output parameters 
required by LPC are filled in, and a return 
code is calculated based on the diagnostic 
severity code. Unused pages acquired for 
the ISD and PMD are released with FREEMAIN. 
all working storage is freed; and the list­
ing and macro library data sets, if any 
exist, are closed. Unless restart proce­
dures are in effect, calling registers are 
restored and control returns to LPC. The 
early-end entry is made and portions of the 
continuation routine are used for restart 
in response to an altered line. When this 
is the case, control returns once again to 
Phase I, as if initiation had been invoked. 

Early-end: Calling registers are saved 
and the assembler's permanent registers 
are restored. All storage acquired for 
the ISD and PMD is freed. A return code 
for early-end is set, and control passes 
to that portion of the continuation rou­
tine where the remainder of working 
storage is freed. Control returns to 
LPC with the early-end code. 

Section 4: Assembler Master Control 35 



SECTION 5: PHASE I 

INTRODUCTION ROUTINES 

Phase I functions are performed by a 
collection of specialized routines to pro­
cess each source language statement in 
order, and to produce the main dictionary, 
the macro-name dictionary, the global­
section-macro chain, and a partially 
encoded version of the program (logical 
order file), from which Phase III produces 
the output program module. 

As shown in Figure 16, the statement 
analyzer governs the main flow of control. 
It is employed in Phase I to process the 
original source statements and again in 
Phase IIA to process the source statements 
generated by the expansioa of macro 
instructions. Thus, the main body of Phase 
I code may be reexecuted during Phase IIA. 

Phase I communicates with external rou­
tines in four instances: 

• When REED (obtain next source state­
ment) requests the next line from the 
language processor control GETLINE 
SUbroutine. 

• When a macro instruction for which 
there is no user macro definition is 
encountered in source statements (see 
GETOP) • 

• When COpy statements are encountered. 

• When conversational diagnostic messages 
are produced. 

The recursive call made by CSCAN upon 
EVAL to process DC and DS statements should 
be noted. Initially, DC/DS calls CSCAN, 
which calls EVAL, which calls CSCAN, etc. 
In Figure 16, the arrow from EVAL to CSCAN 
serves a double function: 

1. It shows the recursive calls to and 
from CSCAN and EVAL in processing DC 
and DS statements. 

2. It shows the nonrecursive call by EVAL 
on CSCAN when processing machine 
instruct.ions or an assembler instruc­
tion other than DC or DS. 

Although not shown in Figure 16, all· 
processors marked with an asterisk (*> 
should show arrow communication with the 
diagnostic message processor (DIAG). 

Table 3 specifies the conditions under 
which the Phase I routines are called. 

36 

PHASE I Phase I Control (CEVPA) 

This routine accepts the operating para­
meters from the language processor control 
(LPC), reads and performs the initial pro­
cessing of the source program, and trans­
fers control to PHASE IIA. (See Chart AB.) 

Entry Point: CEVPAX 

Calling Sequence: L R15,ACEVPA 
BR R15 

Input Parameters: Rl - location of input 
parameter pointer list 

Routines Called: DLPM, STAN, VMGET, VMFREE 

Exit: To PHASE IIA (CEVPB) 

OPERATION: The pointer to the list of 
pointers to the input parameters is con­
tained in register Rl. The input parame­
ters are listed in the description of the 
assembler control module (AC). 

Upon receiving control, VMGET is called 
to acquire two areas of virtual storage for 
Phase I's own working storage requirements 
and one area for the source statements. 
These areas are assigned to each user's 
virtual storage. Initial and default 
values and beginning addresses for variable 
storage are inserted into the static por­
tion of working storage. Static working 
storage is also modified as a result of the 
operating parameters transmitted by the 
language processor control. The date and 
time are obtained from the REDTIM macro, 
and DLPM is called to build dictionary 
items for tSYSDATE and tSYSTlME. 

Having established the source program 
data set as the current input source, con­
trol is transferred to STAN for the program 
to be processed. When the end of the pro­
gram has been reached, control is returned 
to Phase I, which, in turn, transfers con­
trol to Phase IIA. 

STAN Statement Analyzer (CEVST) 

This routine is a control program, which 
uses a collection of other routines to pro­
cess each source language statement in 
order, and to produce the main dictionary 
and a partially encoded version of the pro­
gram, logical order file. from which the 
output program module is produced during 
Phase III. (See Chart AC.) 



u 

i 1 x -~ 0 
> -- <i: t-- '" 1 0 « ~-! 

~ 
Q 0 ,-' 0 ~~ « 
~ ?2 is 0 "- ~_o 

Figure 16. 

2} 
jj ::; 

j ---, 
Q 0 

~ 6 

J . 
~' ~ c 

0 

0 
c 

-~ ~ ------

] 
0 

" " z ? 0 

~ " ~ <{ z 

Phase I routine relationships (part 1 of 2) 

I 
L 

r-:-, I-
Ii , 
I 

i I 
I I ' 
i , f ,Lt-t , I I I 

I ! I ! 

~l 

I 

Section 5: Phase I 37 



D 

i I i 
; ; 

Figure 16. Phase I routine relationships (part 2 of 2) 

38 



Table 3. Phase I decision table (part 1 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Phase I Control Level: 1 I 
~----------T----------------------------T----------------·-T-----------------------------~ 
I Routine I Purpose I called Routines I Calling Conditions I 
j-----------+----------------------------+-----------------+-----------------------------~ 
IPHASE I IAccepts parameters from LPC;I DLPM -- CEVLP (Always called. I 
I (CEVPA) I reads and performs initial I·-----------------+-----------------------------~ 
I Iprocessing of source I STAN -- CEVST IAlways called. I 
I I program; and transfers t-----------------+-----------------------------~ 
I Icontrol to Phase lIA. I VMGET -- CEVGM IWhen necessary to acquire I 
I I I Iworking storage. I 
I I t-----------------+-----------------------------~ 
I I I VMFREE -- CEVFMITo release storage. I 
~---------~----------------------------~-----------------~-----------------------------~ 
I Routine: Level: 2 I 
t----------T----------------------------T-----------------T-----------------------------~ 
I STAN IProcesses original sourCeIAGO/AIF -- CEVGO IAGO or AIF instruction I 
1 (CEVST) I statements during Phase I, I I encountered. I 
1 land macro-generated t-----------------+----------------------------~ 
I linstructions during Phase IANOP -- CEVAN IANOP instruction encountered. I 
I IlIA. t-----------------+-----------------------------~ 
1 I IBASCAN -- CEVBS Isequence symbol encountered I 
I I I in name field. I 
I t-----------------+-----------------------------~ 
I ICATOP -- CEVCP IAlways called. I 
I t-----------------+-----------------------------~ 
I !CCW -- CEVCW ICCW instruction encountered. I 
I t-----------------+-----------------------------4 
I ICOPY -- CEVCY ICOPY instruction encountered. I 
I t-----------------+-----------------------------~ 
I IMIP -- CEVMP IMachine instruction encoun- I 
I I Itered while in conversational I 
I I I mode. I 
I t-----------------+-----------------------------~ 
I I CNOP -- CEVCN I CNOP instruction encountered. I 
I t-----------------+--------------------------~ 
I ICXD -- CEVCX ICXD instruction encountered. I 
I t-----------------+-----------------------------~ 
I ISECT -- CEVCT Icontrol section statement I 
I I I encoun1:ered. I 
I I-----------------,-+----------------------------~ 
I \DC/DS -- CEVDC IDC or DS statement I 
I I I encountered. I 
I ~-----------------+-----------------------------~ 
I IDEFSYM -- CEVSY IMachine instruction I 
I I I encountered. I 
I ~-----------------+-----------------------------~ 
I I DIAG -- CEVDX I D102 Undefined sequence I 
I I I symbol I 
I I ID106 Missing MEND statement I 
I I IDll0 Missing END statement I 
I ~-----------------+-----------------------------~ 
I I DLPM -- CEVLP I Sequence symbol encountered I 
I I lin name field, or CSECT I 
I I I implied. I 
I I------------------+-----------------------------~ 
I IUSE/DROP -- CEVUDIUSING or DROP statement I 
I I I encountered. I 
I t-----------------+----------------------------~ 
I IEJECT -- CEVEJ IEJECT statement encountered. I 
I ~-----------------+-----------------------------~ 
I I END -- CEVND I END statement encountered. I 
I t-----------------+-----------------~-----------~ 
I I I ENTRY -- CEVEY I ENTRY statement encountered. I l __________ ~ ____________________________ ~ _________________ ~ _____________________________ J 

Section 5: Phase I 39 



Table 3. Phase I decision table (part 2 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 2 (cont' d) I 
r----------T----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I called Routines I Calling Conditions I 
t----------+----------------------------+-----------------+-----------------------------~ 
I I JEQU -- CEVQU IEQU statement encountered. I 
I I t-----------------+-----------------------------~ 
I I I EXTRN -- CEVXN I EXTRN statement encountered. I 
I I ~-----------------+---------------------------~ 
I i IGBLx/LCLX -- IGBLA. GBLB. GBLC,LCLA,LCLB. I 
I I I CEVGL I or LCLC statement I 
I I I I encountered. I 
I I t-----------------+-----------------------------~ 
I I I ICTL -- CEVIC I ICTL statement encountered. I 
I I ~-----------------+-----------------------------~ 
I I IISEQ -- CEVIQ IISEQ statement encountered. I 
I I t-----------------+-----------------------------~ 
I I I LTORG -- CEVLG I LTORG statement encountered. , 
I I ~-----------------+----------------------------~ 
I I IMACDEF -- CEVDF IMacro prototype of model I 
I I I I statement encountered. I 
I I t-----------------+---------------------------~ 
I I IMACREF -- CEVRF IMacro reference statement I 
I I I I encountered. I 
I I t-----------------+----------------------------~ 
I I IMACRO -- CEVMC IMACRO statement encountered. I 
I I t-----------------+-----------------------------~ 
I I IMEND/MEXIT -- IMEND or MEXIT statement I 
I I ICEVMX I encountered. , 
I I t-----------------+-----------------------------~ 
I I I MNOTE -- CEVMN I MNOTE statement encountered. , 
'I ~-----------------+-----------------------------~ 
I IORG -- CEVRG IORG statement encountered. I 
I t-----------------+-----------------------------~ 
I IPRINT -- CEVPR IPRINT statement encountered. I 
I ~-----------------+-----------------------------~ 
I IPUNCH -- CEVPH IPUNCH statement encountered. I 
I t-----------------+-----------------------------~ 
I I REED -- CEVRD I Processing of current I 
I I I statement completed. I 
I t-----------------+-----------------------------~ 
I I REPRO -- CEVRE I REPRO statement encountered. I 
I t-----------------+-----------------------------~ 
, ISETX -- CEVSE I SETA, SETB, or SETC statement, 
I I I encountered. I 
I t-----------------t-----------------------------~ 
I I SLIT -- CEVSL I Machine instruction I 
J I I encountered while in batch I 
I I I mode. I 
I t-----------------t-----------------------------~ 
I ISPACE -- CEVCE 'SPACE statement encountered. I 
I t-----------------t-----------------------------~ 
I I TITLE -- CEVTI I TITLE statement encountered. I 
I t-----------------t-----------------------------~ 
! I DLKT -- CEVTK I Sequence symbol in name fieldl 
I I lof an instruction within a I 
I I Jmacro. I 
, t-----------------+-----·--------------------~ 
I IDPUT -- CEVTP ISequence symbol in name fieldl 
I I lof an instruction within a I 
, I lmacro which has not been I 
I I Ipreviously included in I 
I I I I temporary dictionary. I L-_________ ~ ____________________________ ~ _________________ ~ ____________________________ _l 

40 



Table 3. Phase I decision table (part 3 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 3 I 
r----------T----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
t----------t----------------------------t-----------------t---------------------------~ 
IAGO/AIF IProcesses AGO and AIF IEVAL -- CEVEV IFirst character of an AIF I 
I (CEVGO) I instructions. I loperand is a left parenthesis I 
I I r-----------------t-----------------------------1 
I I IBASCAN -- CEVBS IFirst character of an AGO I 
I I I loperand is a period, I 
I I I lor character following right I 
I I I Iparenthesis in an AIF operandi 
I I I lis a period. I 
I I t-----------------t-----------------------------~ 
I I 10LKM -- CEVKM I Sequence symbol encountered I 
I I I I in operand field of AGO or I 
I I I IAIF instruction, which occurs\ 
I I I I in user-level code. I 
I I t-----------------+-----------------------------~ 
I I 10LKT -- CEVTK I Sequence symbol encountered I 
I I I I in operand field of AGO or I 
I I I IAIF instruction, which occurs I 
I I I I in a macro. I 
I I t-----------------t-----------------------------i 
I I 10IAG -- CEVOX 101 Improperly delimited I 
I I I I field I 
I I I 102 Inval.id symbol in field I 
I I I 1095 Sequence symbol missing I 
I I I I in operand field I 
I I I 10115 Invalid operand field I 
t----------f----------------------------+-----------------t-----------------------------i 
IA~OP Iscans the name field of ANOPIOIAG -- CEVOX 1096 No sequence symbol in I 
I (CEVAN) I instructions for a sequence I I name field I 
I I symbol. \ I \ 
r----------+----------------------------+-----------------+-----------------------------1 
ICATOP IControls the type and amountlBASCAN -- CEVBS IAlways called unless an error I 
I (CEVCP) lof parameter variable \ Ireturn is made from CEVSS. \ 
I Isymbol substitution applied r-----------------+-----------------------------i 
I Ito the current source ISSCAN -- CEVSS IAlways called unless the I 
I I statement. I I statement is GBL- or LCL-. I 
t----------t----------------------------t-----------------t-----------------------------~ 
ICCW IExamines the CCW instructionlOEFSYM -- CEVSY IAlways called. I 
I (CEVCW) Ifor valid operand fields andt-----------------t-----------------------------i 
I Icorrect format. ISLIT -- CEVSL IAlways called in batch mode. I 
I I r-----------------t-----------------------------1 
I I I EVAL -- CEVEV (Always called in convers- I 
I I I I ational mode. I 
I I t-----------------t-----------------------------~ 
I I 10IAG -- CEVOX 101 Improperly delimited I 
I I I I field I 
I I I 106 Invalid expression typel 
I I I I for field I 
I I \ 1014 Required operand I 
I I I I missing I 
r----------t----------------------------t-----------------+-----------------------------1 
ICNOP IScans CNOP instructions for IEVAL -- CEVEV IAlways called to examine I 
I (CEVCN) Ivalid expressions and I loperand in conversational I 
I Icorrect format. I ,mode. I 
I' t-----------------+-----------------------------i 'I 10IAG -- CEVOX 101 Improperly delimited , 
I I I I field I 
I I I' 02 Invalid symbol in name I 
I' I' field I 
I I I 106 Invalid expression type I 
I I I I for field I 
I I I 107 Invalid expression I 
I I I' value for field I 
I I I 1014 Required operand I 
I I I I nu.ssing I L-_________ i ____________________________ ~ _________________ ~ ____________________________ _J 

Section 5: Phase I 41 



Table 3. Phase I decision table (part 4 of 14) 
r---------------------------------------------------------------------------------------1 
1 Routine: Level: 3 (cont'd) I 
~----------T----------------------------T-----------------T-----------------------------1 
1 Routine 1 Purpose I Called Routines I Calling Conditions 1 
~----------+----------------------------+-----------------+-----------------------------~ 
ICXD ISCANS CXD instruction and IDEFSYM -- CEVSY IAlways called. I 
I (CEVCX) lvalidates name field. I I I 
~---------_t----------------------------+-----------------t-----------------------------~ 
IDC/DS Iscans DC and DS IDEFSYM -- CEVSY IAlways called. I 
I (CEVDC) linstructions. ~-----------------t-----------------------------~ 
I I ICSCAN -- CEVCS IAlways called to examine I 
I I I I operand. I 
I I ~-----------------+_----------------------------~ 
I I IDIAG -- CEVDX ID131 Invalid or missing namel 
I I I I field in DXD statement I 
~----------+----------------------------+-----------------t-----------------------------~ 
IDEFSYM Iconstructs a main dictionarylDLPM -- CEVLP ISymbol in name field. I 
ICCEVSY) litem for all statements witht-----------------t-----------------------------~ 
I la symbol in the name field, IDIAG -- CEVDX IDl Improperly delimited I 
I I except when the symbol is I I field I 
1 lencountered a second time. 1 ID2 Invalid symbol in fieldl 
I 1 I ID4 Symbol in name field 1 
I I I I previously defined , 
r----------+----------------------------t-----------------t-----------------------------~ 
'EJECT ,scans the EJECT instruction IDIAG -- CEVDX ID2 Invalid symbol in name I 
1 (CEVEJ) Ifor correct format. I I field. I 
t----------t----------------------------+-----------------t-----------------------------1 
lEND IScans the END instruction IEVAL -- CEVEV IAlways called to examine I 
I (CEVND) Ifor correct format and I loperand in conversational I 
I I validity. I Imode. I 
I I t-----------------+_----------------------------~ 
I I IDIAG -- CEVDX IDl Improperly delimited I 
'I I I field , 
I I 'ID2 Invalid symbol in field, 
I I I IDll Invalid operand on , 
I I 'I END statement. , 
I I I ID113 END statement I 
I I " encountered within a I 
" I I macro I 
r----------t----------------------------t-----------------t-----------------------------~ 
1 ENTRY IScans the ENTRY instruction IDIAG -- CEVDX IDl Improperly delimited I 
I (CEVEY) I for correct format and I I field I 
I 'validi ty. I I D2 Invalid symbol in name I 
I I I' field I 
I' I ID89 Entry point declared inl 
I I I I control section without I 
I' I I SYSTEM attribute 1 
I I I ID91 Entry point not CZ- or I 
I I I I CHB- in privileged I 
I I I I CSECT I 
I 1 I ID115 Invalid operand field I 
I I r-----------------t-----------------------------~ 
I I IBASCAN -- CEVBS IAlways called to examine I 
I I I 1 operand. I 
~----------+----------------------------+-----------------t-----------------------------~ 
IEQU IScans EQU instructions and IDLKM -- CEVKM ISymbol encountered in name I 
1 (CEVQU) I evaulates and completes the I I field I 
I Idefinition of those express-r-----------------t-----------------------------~ 
I lions which can be resolved. IEVAL -- CEVEV IAlways called to examine I 
1 I I I operand. I 
I I r-----------------t-----------------------------~ 
I I IDLPM -- CEVLP ISymbol encountered in name I 
I I I I field which has not been I 
I I I Ipreviously defined in main I 
I I I I dictionary. I L __________ L ____________________________ L _________________ L-____________________________ J 

42 



Table 3. Phase I decision table (part 5 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 3 (cont'd) I 
r----------T----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
~----------+----------------------------+-----------------+-----------------------------~ 
I I IDIAG -- CEVDX ID1 Improperly delimited I 
I I I I field I 
I I ID2 Invalid symbol in name 1 
I I I field I 
I I ID4 Duplicate symbol I 
I I ID6 Invalid expression type I 
I I I f or field I 
I I ID7 Invalid expression I 
I I I value for field I 
I I ID14 Required operand I 
I I I missing I 
I I ID17 Required name field 1 
I I 1 invalid or missing I 
I I IDl15 Invalid operand field I 
~----------+----------------------------+-----------------+-----------------------------~ 
IEXTRN IScans EXTRN instructions forlBASCAN -- CEVBS IAlways called to examine I 
I (CEVXN) I correct format and validity. I I operand. I 
I I t-----------------+-----------------------------~ 
I I IDLPM -- CEVLP ISymbol encountered in operandi 
I I I I field. I 
I I t-----------------+-----------------------------~ 
I I IDIAG -- CEVDX ID1 Improperly delimited I 
I I I I field I 
I I I ID2 Invalid symbol in name I 
I I I I field. I 
I I I ID19 Symbol in operand fieldl 
I I I I previously defined. I 
I I I ID115 Invalid operand field I 
t----------+----------------------------+-----------------t-----------------------------~ 
IGBLX/LCLX \Scans global and local IBASCAN -- C~VBS IAlways called to examine I 
I (CEVGL) I instructions for correct I I operand. I 
I Iformat and validity. ~-----------------+-----------------------------~ 
I I IDLPM -- CEVLP IVariable symbol encountered I 
I 1 I lin operand field, when I 
I I I linstruction occurs in user- I 
I I I Ilevel code. I 
I I ~-----------------+-----------------------------~ 
I I IDLKT -- CEVTK \Variable symbol encountered I 
\ I I lin operand field, instruction I 
I I I loccurs in a macro. I 
I I r-----------------+---------------------------~ 
I I IDPUT -- CEVTP IVariable symbol encountered I 
I I I lin operand field which has I 
I I I Inot been defined in temporaryl 
I I I I dictionary. 1 
I I t-----------------+----------------------------~ 
I I IEVAL -- CEVEV ISubscripted variable symbol 1 
I I I 1 encountered in operand field. 1 
I I t-----------------+-----------------------------~ 
1 I IDIAG -- CEVDX ID1 Improperly delimited 1 
I I I I field I 
I I I ID4 Duplicate symbol I 
I I I ID6 Invalid expression type I 
I I I I for field I 
I I I ID27 Nonblank name field I 
I I I I D97 Missing subscript I 
I I I I D98 Dimension exceeds 255 I 
I I I ID115 Invalid operand field I l _________ -i ____________________________ ~ _________________ ~ ____________________________ _J 

Section 5: Phase I 43 



Table 3. Phase I decision table (part 6 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 3 (cont'd) I 
r----------T----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
r----------t----------------------------t-----------------t-----------------------------~ 
I ICTL IScans ICTL instructions for IEVAL -- CEVEV IAlways called to examine I 
j (CEVIC) correct format and validity.j I operand I 
I t-----------------t-----------------------------~ 
I IDIAG -- CEVDX IDl Improperly delimited I 
I I I field I 
I I I D2 Invalid symbol in name I 
I I I field I 
I I I D6 Invalid expression type I 
I I I for field I 
I I I D7 Invalid expression I 
I I I value for field I 
I I ID14 Required operand miss- I 
I I I ing I 
I I ID51 Statement occurred I 
I I I il1egally I 
r----------t----------------------------t-----------------t-----------------------------~ 
I ISEQ IScans ISEQ instructions for IEVAL -- CEVEV IAlways called to examine I 
I (CEVIQ> I correct format and validity. I I operand. I 
I I t-----------------+-----------------------------~ 
I I IDIAG -- CEVDX IDl Improperly delimited I 
I I I I field I 
I I I I D2 Invalid symbol in name I 
I I I I field I 
I I I ID6 Invalid expression type I 
I I I I for field I 
I I I I D7 Invalid expression I 
I I I I value for field I 
r----------t----------------------------+-----------------t-----------------------------~ 
ILTORG Iscans LTORG instructions forlDEFSYM -- CEVSY IAlways called. I 
I (CEVLG) I correct format I I I 
r----------t----------------------------t-----------------+-----------------------------~ 
IMACDEF IEnters the name of macros inlCOPY -- CEVCY ICOPY statement encountered. I 
I (CEVDF) Ithe macro name dictionary t-----------------t-----------------------------1 
I land controls the proceSSing jCATOP -- CEVCP ICOPY statement encountered. I 
I lof macro definitions. t-----------------t-----------------------------~ 
I I IDIAG -- CEVDX ID86 Macro name redefines I 
I I I I machine operation I 
I I I ID87 Invalid operation in I 
I I I I macro definition I 
I I t-----------------t-----------------------------~ 
I I IMACLKT -- CEVLM IMacro prototype encountered. I 
I I r-----------------+-----------------------------~ 
I I IMACPUT -- CEVTM IMacro name not in macro I 
I J I I dictionary. I 
I I r-----------------t-----------------------------1 
J J ISUBOP -- CEVSP IMacro prototype encountered. I 
I J t-----------------t-----------------------------~ 
I I IGETOP -- CEVGP lEND used as macro name. I 
t----------+----------------------------+-----------------+-----------------------------1 
I MACREF I controls processing of macro I DLKM -- CEVKM I Symbol in name field of macro I 
J (CEVRF) I references. I I instruction. I 
I I r-----------------t-----------------------------1 
I I IDLPM -- CEVLP ISymbol in name field of macro I 
I I I linstruction not previously I 
I I 1 I def ined . I 
I 1 t-----------------t-----------------------------~ 
I I lMACLKT -- CEVLM IAlways called during I 
1 I I IPhase IIA. I 
I 1 t---·--------------+-----------------------------~ 
I I IVMGET -- CEVGM ITo acquire working storage. I l __________ L ____________________________ L _________________ L _____________________________ J 

44 



Table 3. Phase I decision table (part 7 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 3 (cont'd) I 
r---------~----------------------------T-----------------T-----------------------------1 
'Routine , Purpose I called Routines I Calling Conditions I 
~---------t----------------------------t-----------------t-----------------------------~ 
I I ICEVMLA (external) I Macro definition not in I 
I I I I storage. I 
I I ~-----------------t-----------------------------~ 
I I ICEVMLB (external)JMacro found in library index I 
I I I I by CEVMLA. I 
I I r-----------------t-----------------------------~ 
'I IPARAMAC--CEVPM IAlways called during 1 
'I 'IPhase IIA. I 
I I ~---------------·--t-----------------------------~ 
I I IDIAG -- CEVDX ID22 Error in macro library I 
I I "retrieval, 
I I 1 I D59 Error in macro I 
'I I I definition I 
t----------+----------------------------t-----------------t-----------------------------~ 
JMACRO IScans MACRO instructions forlDIAG -- CEVDX ID27 Nonblank name field I 
I (CEVMC) I correct format " , 
~---------t----------------------------t-----------------t-----------------------------~ 
lMEND/MEXITIProcesses MEND and MEXIT IBASCAN -- CEVBS ,called to examine MEND name , 
I (CEVMX) I instructions. , I field when in Phase I and I 
I I "the MEND is not a generated I 
I I " statement - I 
I I ~---------------·--t-----------------------------~ 
'I I DIAG -- CEVDX I D2 Invalid symbol in name I 
I I 'I field I 
I I I I D114 Instruction invalid I 
I 1 1 1 outside macro I 
t----------+----------------------------t-----------------t-----------------------------~ 
IMIP (Scans machine instruction IEVAL -- CEVEV IAlways called to examine I 
I (CEVMP) loperands for valid operand I I operand. I 
I Ifields and correct format. t-----------------t-----------------------------~ 
I I I DIAG -- CEVDX ID1 Improperly delimited I 
I I I I field I 
I I I ID6 Invalid expression typel 
I I " for field I 
I I I I D7 Invalid expression I 
I' " value for field , 
I' I' D10 Attempted store into I 
I I I I literal. \ 
I I I I D14 Required operand I 
I I I I m~ss~ng I 
~----------t----------------------------t-----------------t-----------------------------~ 
IMNOTE IScans the operand of MNOTE IBASCAN -- CEVBS ,Statement not previously I 
I (CEVMN) (instructions for correct I Idetermined to be invalid. , 
I Iformat and validity. t-----------------t-----------------------------~ 
I I IEVAL -- CEVEV IOperand does not begin with I 
I I I I a quote. , 
I I t---------------·--+------------------------------I 
'I I DIAG -- CEVDX I D1 Improperly delimited I 
I I I' field I 
I I I 'D2 Invalid symbol in fieldl 
I I 'I D6 Invalid expreSSion type I 
'I I I f or field , 
'I I I D115 Invalid operand field , 
~----------t----------------------------t-----------------t-----------------------------~ 
IORG Iscans ORG instructions for IEVAL -- CEVEV IAlways called in conver- , 
I (CEVRG) Icorrect format and validity_ I Isational mode. , 
I I ~---------------t----------------------------~ 
I I IDIAG -- CEVDX IDl Improperly delimited , 
I I I I field , 
I I I I D2 Invalid symbol in name , 
I I I I field I 
I I I ID6 Invalid expression typel 
I I 'I for field I L __________ ~ ____________________________ ~ _________________ ~ _____________________________ J 

Section 5: Phase I 45 



Table 3. Phase I decision table (part 8 of 14) 

r---------------------------------------------------------------------------------------, 
I Routine: Level: 3 (cont'd) I 
~---------~----------------------------T-----------------T-----------------------------1 I Routine I Purpose I Called Routines I calling Conditions , 
~----------+----------------------------t-----------------t-----------------------------~ 
I PRINT IScans the PRINT instruction IBASCAN -- CEVBS IAlways called. 1 
I (CEVPR) Ifor correct format and t-----------------t-----------------------------1 
1 I validity. 'DIAG -- CEVDX 'D1 Improperly delimited , 
I I I I field , 
I I I' D2 Invalid symbol in name I 
I I I' field , 
I I I ID21 Invalid operand for I 
I I I I PRINT statement I 
I I 1 I Dll8 Inconsistent operand 1 
t----------t----------------------------t-----------------+-----------------------------~ 
1 PUNCH IAnalyzes the PUNCH IDIAG -- CEVDX IAlways called. 1 
1 (CEVPH) I instruction. , I D23 PUNCH statement 1 
I 1 I' produces listing only. 1 
~---------t----------------------------t-----------------t-----------------------------1 
I REED IRead source input. ILPC Get Line -- IPhase I processing of current I 
I (CEVRD) I I CFADB1 1 source line completed. I 
I I ~-----------------t-----------------------------1 
I 1 IGETOP -- CEVGP ICurrent statement other than I 
1 1 I la macro prototype or macro I 
I I I' call. , 
I I ~-----------------t-----------------------------~ 
I I I DIAG -- CEVDX I D3 Card out of sequence , 
I I I ID12l Too many continuation , 
I I I' lines I 
I I I 10135 Continuation cards have' 
I I I I non-blank characters I 
I I I I before continue column, I 
I I I I characters ignored I 
I I t-----------------t-----------------------------1 
I I IVMGET -- CEVGM IGet storage for source lines., 
t----------+----------------------------t-----------------t-----------------------------~ 
I REPRO IAnalyzes the REPRO 10IAG -- CEVDX IAlways called. I 
I (CEVRE) ,instruction. , 1024 REPRO statement , 
1 I 1 1 produces listing only. I 
r----------+----------------------------+-----------------+-----------------------------1 
'SECT IChecks the validity of the 'DLPM -- CEVLP ,Symbol or blanks encountered 1 
I (CEVCT) 1 control section instructions 1 lin name field. I 
1 1 (COM, START, CSECT, DSECT, .-----------------+-----------------------------1 
1 1 PSECT) • I EVAL -- CEVEV 1 START instruction 1 
1 I 1 1 encountered. , 
I I t-----------------+-----------------------------~ 
1 I 10IAG -- CEVDX 101 Improperly delimited I 
J 1 I 1 field 1 
1 I '102 Invalid symbol in name , 
1 I I I field I 
I 1 '104 Duplicate symbol 1 
I I 1 ID6 Invalid expression typel 
1 1 I 1 for field 1 
I I 1 107 Invalid expression I 
I' " value for field I 
I' I 1015 Incompatible control , 
I I 'I section statements I 
'I I 1016 Invalid control section I 
I I I I attribute name I 
I I '1017 Required name field I 
I I I I invalid or missing I 
I 1 I 1056 Entry point name same I 
I I I I as module name I 
I I I I D8 9 Entry point declared in I 
'I " control section without I 
'I I I system attribute I L-_________ ~ ____________________________ ~ _________________ ~ _____________________________ J 

46 



Table 3. Phase I decision table (part 9 of 14) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 3 (cont'd) I 
r----------T----------------------------T-----------------T----------------------------~ 
I Routine I Purpose I called Routines I Calling Conditions t 
r----------+----------------------------+-----------------+-----------------------------~ 
I I I 1091 Entry point not cz- or I 
I I I I CHB- in pri vil.eged I 
I I I I system CSECT I 
I I I 10112 START not first control I 
I I ! I section statement I 
I I ! 10118 Inconsistent operand. I 
I I t-----------------+-----------------------------~ 
I I IBASCAN -- CEVBS IA COM, PSECT. or CSECT I 
I I I linstruction encountered. I 
r----------+----------------------------+-----------------+-----------------------------~ 
!SETX Iscans SETA. SETB. and SETC 10LKT -- CEVTK IMacro level greater than I 
I (CEVSE) I instructions for correct I 1 zero. t 
I Iformat and validity. .-----------------+-----------------------------~ 
I I IEVAL -- CEV~V la} Symbol. in name field is I 
I I I 1 subscripted. I 
I I I Ib} Instruction is a SETB or I 
I I I I SETA. I 
I I .-----------------+-----------------------------~ 
I I 10LKM -- CEVKM la) Macro level is zero. t 
I I I Ib) A type attribute occurs inl 
I I I I the operand of a SETC in- 1 
I I I 1 struction. I 
t I .-----------------+-----------------------------~ 
I I IBASCAN -- CEVBS ISETC instruction being I 
I I 1 I processed. I 
I I .-----------------+-----------------------------~ 
I I 10IAG -- CEVOX 101 Improperly delimited I 
I I I 1 field I 
I I I 102 Invalid symbol in name I 
I I I field I 
I I 106 Invalid expression type I 
I I I for field I 
I I 107 Invalid expression I 
I I I value for field I 
I I 1084 Invalid subscript value I 
I I 1085 SET statement incom- I 
I I I patible with definition I 
I I 1093 More than 8 characters I 
I I I in string I 
I I 1097 MiSSing subscript I 
I I ID115 Invalid operand field I 
t----------+----------------------------+-----------------+----------------------------~ 
ISLIT IScan for literals. I None I I 
I (CEVSL) I I I I 
r----------+----------------------------+-----------------+-----------------------------~ 
I SPACE IScans the SPACE instruction IEVAL -- CEVEV IAlways called in conver- I 
I (CEVCE) Ifor correct format and I Isational mode. I 
I tvalidity. r-----------------+---------------------------~ 
I I IDIAG -- CEVOX IDl Improperly delimited I 
1 I I I field I 
I I I 102 Invalid symbol in name 1 
I I I I field I 
I I I 106 Invalid expression type I 
I I I I for field I 
t----------t----------------------------+-----------------+-----------------------------~ 
ITITLE IScans the TITLE instruction IBASCAN -- CEVBS IAlways called to examine I 
I (CEVTI) I for correct format and I 1 operand. 1 
I I validity. t-----------------+-----------------------------~ 
I I 10IAG -- CEVDX ID2 Invalid symbol in name 1 
I I I 1 field. I 
I I I 1027 Nonblank TITLE name I 
1 I I 1 field. and not the . I 
I I I 1 first TITLE statement 1 L-________ ~ ____________________________ L _________________ L ____________________________ -J 

Section 5: Phase I 47 



Table 3. Phase I decision table (part 10 of 14) 
r-------------------------------------------------------------------------------------, 
I Routine: Level: 3 (cont'd) I 
t----------T----------------------------T-----------------T---------------------------~ 
,Routine , Purpose , called Routines I calling Conditions I 
~----------+----------------------------+-----------------+-----------------------------~ 
I' 'I D48 Truncated value , 
I I 'I Dl09 TITLE name field ex- I 
I I I I ceeds 4 characters I 
'I I ID115 Invalid operand I 
~----------+----------------------------+-----------------t----------------------------1 
IUSE/DROP IScans USING and DROP IEVAL -- CEVEV IAlways called in conver- I 
I (CEVUD) I instructions for correct , I sational mode. I 
, ,format and validity. t-----------------+-----------------------------1 
" 'DIAG -- CEVDX Dl Improperly delimited I 
I I I field , 
I I I D2 Inva1id symbol in field I 
'I I D6 Invalid expression type I 
" , for field I 
I I 'D7 Invalid expression I 
'I , value for field I 
I I 'D12 Duplicate use of regis-I 
'I I ter , 
'I I D14 Required operand miss- , 
I I , ing , 
I I 'D120 Attempted explicit , 
I' I register specification I 
t----------~---------------------------~-----------------~---------------------------1 
I Routine: Level: 4 , 
~----------T----------------------------T-----------------T----------------------------~ 
I COpy ICopy lines from library. ICEVMLA ,Library is available and I 
I (CEVCY) I I loperand is a valid symbol. , 
I I t-----------------+-----------------------------~ 
I I ,CEVMLB ICode to be copied is found inl 
I I I I library. I 
I I t----------------+-----------------------------1 
I I IDIAG -- CEVDX ID14 Required operand miss- I 
I I 'I ing I 
I I 'ID26 cannot be found on copy I 
I I I I library I 
" I ID28 copied statements con- , 
I I I I tained COPY statement , 
i I I IDl15 Invalid operand field , 
I' ~-----------------t----------------------------1 
I' IVMGET -- CEVGM ITo get working storage. I 
~----------+----------------------------+-----------------t-----------------------------1 
I EVAL IEvaluates an arithmetic or 'BASCAN -- CEVBS IAlways called. I 
,(CEVEV) ,logical expression designat-r-----------------t-----------------------------1 
, led by the calling module IDIAG -- CEVDX D5 Undefined symbol I 
I land returns with the value I D6 Invalid expression type I 
I I and type of expression. I for field I 
I I I D8 Invalid attribute I 
'I I D9 Mul ti pIe Ii terals in I 
" I statement I 
I I I D68 Improperly formed I 
I I , logical expression I 
I I ! D69 Symbol not previously I 
I! , defined I 
I I 'D74 Unbalanced parentheses , 
" , in expression , 
I I I I D75 Consecuti ve operators I 
I I I I in expression I 
I I I I D7 6 Consecuti ve I 
I I I I terms in expression I 
I I I I D78 Excessi ve parentheses I 
I I I I in expression I 
I I I i D79 Excessi ve terms in ex- I 
I I I i pression I L __________ ~ ____________________________ .1. __________________ .1. ..•• _________________ > ___________ J 

48 



Table 3. Phase I decision table (part 11 of 14) 
r----------------------------------------------------------------.-----------------------, 
\ Routine: Level: 4 (cont'd) I 
~----------T----------------------------T-----------------~----------------------------~ 
I Routine I Purpose I Called Routines I calling Conditions I 
~---------t----------------------------t-----------------+-----------------------------~ 
I I I 1081 Multiplication or divi-I 
, I I sion of rel.ocatable I \ I' ~~ , 
I I 1082 Attribute unavailable I 
I I \ outside macros I 
I I 1084 Invalid subscript value I 
I I 1088 Invalid symbol.ic param-I 
I I I eter I 
I I 1090 Undefined variabl.e I 
I I I symbol I 
I I 1097 Missing subscript I 
I I 10105 Value of expression I 
I I I causes overflow I 
I I 10115 Invalid operand field I 
I t-----------------t-----------------------------~ 
I IDLKM -- CEVKM ISymbol is encountered. I 
, t-----------------t-----------------------------~ 
I IDLPM -- CEVLP I symbol. is encountered. I 
I t-----------------t-----------------------------~ 
I lCSCAN -- CEVCS ILiteral. is encountered. I 
I t-----------------+-----------------------------~ 
I IDLKT -- CEVTK I Variabl.e symbol encountered I 
I I linside a macro. I 
I t-----------------t-----------------------------~ 
I IEDEC -- CEVGD IDecimal. sel.f-defining term I 
I I I encountered. I 
I t-----------------t-----------------------------i 
I IEHEX -- CEVGH IHexadecimal sel.f-defining I 
I I I term encountered. I 
I r-----------------t-----------------------------~ 
I IEBIN -- CEVGB IBinary self-defining term I 
I I I encountered. I 
I r-----------------t-----------------------------i 
I IECHAR -- CEVGC ,Character self-defining term I 
I I I encountered. I 
I t----------------+----------------------------i 
I I IPSCAN -- CEVPS 'Parameter symbol encountered I 
'I I I inside a subscript. I 
t----------+----------------------------t-----------------+-----------------------------i 
IGETOP IIsol.ates and identifies the ISUBOP -- CEVSP I Always called if current I 
I (CEVGP) loperation code mnemonic of I Istatement is not commentary. I 
I Icurrent source statement. t-----------------t-----------------------------i 
I I IMACLKT -- CEVLM IOperation code not found in I 
I I I loperation code table, or if I 
I I I lin tabl.e, the operation code I 
I I 'I has been redefined as a I 
I I I I macro. I 
I I t-----------------+-----------------------------i 
I I IMACPUT -- CEVTM IOperation code found in the I 
I I 'Imacro name library index. I 
I I t-----------------t-----------------------------~ 
I I IDIAG -- CEVDX 1043 Undefined mnemonic I 
I I ,'operation I 
I I ~-----------------t-----------------------------i 
I I ICEVMLA IDefinition for user-level I 
I I I Imacro instruction not pro- I 
I I I I vided by user, a l.ibrary is I 
I I I I available, and library not I 
I I I I previously searched for the I 
i I I Imacro name. I l __________ ~ ____________________________ i _________________ i _____________________________ J 

Section 5: Phase I 49 



Table 3. Phase I decision table <part 12 of 14) 
r---------------------------------------------------------------------------------------, 
'Routine: Level: 5 I 
r---------~----------------------------T-----------------T----------------------------~ 
I Routine , Purpose I Called Routines I Calling Conditions I 
r----------t----------------------------t-----------------t-----------------------------~ 
ICSCAN ,Collects and analyzes each 'EVAL -- CEVEV INonnumeric duplication fac- I 
I (CEVCS) Isubfield of the data I Itor, length modifier, scale I 
I Idefinition and produces a , I modifier, and/or exponent I 
I Iconstant item for each, Imodifier encountered. I 
I loperand examined. t-----------------t-----------------------------~ 
I I I EDEC -- CEVGD INumeric encountered in a sub-I 
'I I ,field. I 
I' r-----------------t-----------------------------~ 
I I , BASCAN -- CEVBS I Always called. I 
'I r-----------------t----------------------------~ 
" I DIAG -- CEVDX ID45 Multiple operands in I 
I I I I literal I 
I I I ID46 Zero duplication factor I 
I' I I in literal I 
'I I ID48 Truncated value I 
I I 'I D49 Invalid hexadecimal I 
I I I I constant I 
I I I ID50 Invalid binary constant I 
I I I I D53 FP characteristic out I 
I I I I of bounds I 
I I I I D54 All precision lost I 
I I I I during scaling I 
'I I' D57 Improper operand for V-I 
I I I' type adcon I 
I I I I D58 Improper operand for R-I 
I I I I type adcon. I 
I I I I D60 Invalid type subfield I 
I I I ID61 Invalid length modifier I 
I I I I D62 Scale modifier not I 
I I I I permitted I 
I I I ID63 Exponent modifier not I 
I I I I permitted I 
I t I \064 Exponent modifier out I 
I I I I of range I 
I I I 1065 Scale modifier out of I 
I I I I range I 
I I I 1066 Multiple constants I 
I I I I not permitted I 
I I I 1067 Data omitted from OC I 
I I I I operand I 
I I I \ 0115 Invalid operand field I 
I I I 10116 Invalid decimal I 
I I I I constant I 
I I I 10132 Improper operand for I 
I I I I Q-type adcon I 
r----------t----------------------------t-----------------t-----------------------------~ 
IDLKT ILocates a specified symbol J None I I 
I (CEVTK) I in the temporary dictionary I I I 
I I for the current macro level. I I I 
r----------t----------------------------t-----------------t---------------------------~ 
'DLPM Isearches for a given symbol I None I , 
, (CEVLP) 'in the main dictionary, and I I I 
I I creates a skeletal entry for I' I 
I I the main dictionary if the I I , 
, Isymbol is not found. I I , 
r----------t----------------------------t-----------------t-----------------------------~ 
I DPUT ICreates a skeletal item for , None I I 
I (CEVTP) Ithe specified symbol in the I' I 
I I temporary dictionary. for 'I I 
, ,the current macro level. I I I 
r----------t----------------------------t-----------------+-----------------------------~ 
I MACLKT I Searches the macro name , None I I 
I (CEVLM) ,dictionary for a given name. I I , L __________ i ____________________________ i _________________ i ____________________________ -J 

50 



Table 3. Phase I decision table (part 13 of 14) 
r---------------------------------------------------------------------------------------~ 
I Routine: Level: 5 (cont'd) I 
r----------T----------------------------T-----------------T----------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
t----------+----------------------------+-----------------+-----------------------------~ 
!MACPUT IInserts a skeletal macro I None I , 
I (CEVTM) Iname dictionary item in the I I , 
I Imain dictionary, and the I I I 
I I macro's hash number in the I I I 
, Imacro name hash table. I' I 
~----------+----------------------------+-----------------+----------------------------~ 
I PSCAN I Analyzes parameter I EBIN -- CEVGB I Binary self-defining term I 
I (CEVPS) I arguments. I ,encountered. I 
I' t-----------------+--------------------------~ 
I I I ECHAR -- CEVGC ICharacter self-defining term I 
I I I' encountered. I 
I I r-----------------t----------------------------~ 
I I I EDEC -- CEVGD IDecimal self-defining term , 
I I I I encountered. , 
I I t-----------------t-----------------------------~ 
I I , EHEX -- CEVGH IHexadecimal self-defining I 
I I 'I term encountered. I 
~----------t----------------------------+-----------------+-----------------------------1 
I SUBOP I Extract operation code from , SSCAN -- CEVSS I & found in op code. , 
, (CEVSP) 'source line. " I 
~----------~----------------------------~-----------------~-------.---------------------~ 
I Routine: Level: 6 I 
r----------T----------------------------T-----------------T-----------------------------~ 
IBASCAN Scans the portion of the I DIAG -- CEVDX 'Dl Improperly delimited I 
I (CEVBS> source language statement I I field , 
I specified by the callers andl ID2 Invalid symbol in fieldl 
I identifies the syntactic I ID31 Symbol exceeds 8 char- I 
I components of that field. I I acters in length I 
I I I D55 End of statement , 
I I I occurred before , 
I 'I processing was , 
I I I completed , 
, I' D71 Invalid binary self- I 
I I' defining term I 
I I I D1D3 Invalid character in I 
I I' statement I 
~----------+----------------------------+-----------------+-----------------------------~ 
'EBIN 'Converts a binary self- , DIAG -- CEVDX ID71 Invalid binary self- I 
I (CEVGB) Idefining term into its I I defining term I 
I I binary equivalent. I I I 
t----------+--------~-------------------+-----------------+-----------------------------~ 
I ECHAR IConverts a character self- I DIAG -- CEVDX IDS3 Invalid character self-I 
I (CEVGC) Idefining term into its I I defining term I 
I I binary equi va lent. I I I 
t----------+-----------------------------+-----------------+-----------------------------~ 
IEDEC IConverts a decimal self- I DIAG -- CEVDX ID72 Invalid decimal self- I 
I (CEVGD) Idefining term into its I 'defining term I 
I I binary equivalent. I I I 
r----------+----------------------------+-----------------+-----------------------------~ 
'EHEX Iconverts a hexadecimal self-I DIAG -- CEVDX ID7D Invalid hexadecimal , 
I <CEVGH) Idefining term into its I 'self-defining term. I 
I Ibinary equivalent. I I I 
r----------t----------------------------+----------------·-t-----------------------------~ 
ISSCAN IPerform string substitution. I EVAL -- CEVEV ISubscript encountered. I 
I (CEVSS) I t-----------------t-----------------------------~ 
I I I DLKT -- CEVTK IParameter of local variable I 
I I I' symbol encountered. , 
I I r-----------------t-----------------------------~ 
I I I DLKM -- CEVKM I Global variable symbol I 
I I 'I encountered. I 
L __________ ~ ____________________________ ~ ______________ ---~----------------------------~ 

Section 5: Phase I 51 



Table 3. Phase I decision table (part 14 of 14) 
r---------------------------------------------------------------------------------------, 
,Routine: Level: 6 (cont'd) I 
~----------T----------------------------T-----------------T-----------------------------~ I Routine , Purpose , Called Routines I calling Conditions , 
~---------+----------------------------+-----------------+-----------------------------~ 
I' , DIAG -- CEVDX ID7 Invalid expression val-, 
I I I I ue for field , 
I I '108 Invalid attribute I 
I I I ID84 Invalid subscript value, 
'I I 1088 Invalid symbolic param-I 
I I 'I eter I 
I I '1094 Invalid substring I 
I I I I notation I 
I I I 1097 Missing subscript I 
'I I 10107 More than 255 char- I 
I I I I acters in string I 
I I I 10108 Substring notation , 
'I I I inconsistent with , 
I' 'I substring length I 
" ~-----------------+-----------------------------~ 
'I I VMGET -- CEVGM ITo get working storage. I 
~---_-----i----------------------------L--------------___ i _____________________________ ~ 
I Routine: Level: 7 I 
t---------~----------------------------T-----------------T-----------------------------~ 
IDLKM ILocates a specified symbol I None , I 
I (CEVKM) 1 in the main dictionary. I' I 
~----------+----------------------------+-----------------+-----------------------------~ 
IDIAG IProcess diagnostic ILPC Get Line -- IAlways called in conversa- I 
I (CEVDX) I messages. ICFADCl Itional mode. I l __________ i ____________________________ i _________________ i _____________________________ J 

The statement analyzer is employed in 
Phase I to process the original source 
statements and again in Phase IIA to pro­
cess the source statements generated by the 
expansion of macro instructions. 

Entry Points: CEVST, CEVST1 

Calling Sequences: INVOKE 
INVOKE 

Routines Called: 
AGO/AIF EJECT 
ANOP END 
BASCAN ENTRY 
CATOP EQU 
CCW EXTRN 
CNOP GBLX/LCLX 
COpy ICTL 
CXD ISEQ 
DC/OS LTORG 
DEFSYM MACDEF 
DIAG MAC REF 
DLKT MACRO 
DLPM MEND/MEXIT 
DPUT MIP 

ASTAN 
AST090 

MNOTE 
ORG 
PRINT 
PUNCH 
REED 
REPRO 
SECT 
SETX 
SLIT 
SPACE 
TITLE 
USE/DROP 

Exits: Phase 1. Same exit made for normal 
completion and error 
condition. 

Phase 2. Return to MACREF. 

OPERATION: This routine has two modes of 
operation; normal and bypass. 

52 

Normal Mode: In the normal mode, source 
lines are obtained and processed to produce 
some change in the information compiled by 
the assembler to further the production of 
an object program. Depending upon the type 
of source line, the processing may result 
in the growth of the logical order file of 
the program, additional definition entries 
in the dictionaries, changes in status, the 
production of diagnostic messages or some 
combination of these effects. 

A skeletal logical order file entry is 
made for each new statement encountered. 
Subsequently, each routine that acquires 
relevant knowledge appropriately updates 
the entry. 

All statements pass through a subrou­
tine, GETOP, whose purpose is to obtain and 
classify the operation code. 

Statements within macro definitions are 
selected for separate handling, which 
results in making the macro conveniently 
available for later reference. All other 
statements are directed to the CATOP rou­
tine. It has the responsibility to perform 
all required variable symbol and parameter 
substitution in the name and operand 
fields. Upon exiting from CATOP. macro 
instructions and the assembler instructions 
are split off for individual handling while 
machine instructions are grouped by type. 



Bypass Mode: The bypass mode is initiated 
by the processing of an AGO or true AIF 
command whose transfer pOint is a sequence 
symbol which is as yet undefined. In this 
mode, source lines are merely bypassed 
until a line containing the desired 
sequence symbol is encountered, at which 
time normal processing is resumed. 

While processing in bypass mode. 
sequence symbols occurring in the name 
field are always defined by the construc­
tion of a local dictionary item, unless the 
line is within a macro definition. Other­
wise, bypassed statements are not processed 
in any way except that END statements and, 
during macro expansion, MEND statements are 
recognized to prevent an incorrect branch 
statement from overrunning the source 
program. 

Error Checks: 

• Missing MEND statement. 

• Undefined sequence symbol. 

• Missing END statement. 

REED -- Obtain Next Source Statement 
(CEVRD) 

This routine provides the interface with 
the language processor control (LPC), to 
obtain source lines. It concatenates con­
tinuation lines to provide STAN with a con­
tinuous statement, performs sequence check­
ing. and switches the source of input 
statements between LPC, macro definitions, 
and COpy library statements. The altered 
line processing of corrections to the 
source program is also performed by this 
module. (See Chart AD.) 

Entry Point: CEVRD 

Calling Sequence: 
INVOKE AREED 

end-of-file return 
normal return 4(R14) 

Routines Called: 

• Internal - DIAG, GETOP, VMGET 

• External - CFADCl (Get next line entry 
point of LPC) 

• Macro Instructions - CALL 

Exit: Normal 
End-of-file 

OPERATION: During Phase I this routine 
obtains source lines directly from LPC. 
During Phase IIA the principal source of 

input is previously processed macro 
definitions. 

Regardless of its origin, a source line 
may be in either keyboard or card image 
format and a source statement may comprise 
multiple source lines, through the state­
ment continuation capabilities. 

When satisfying a COPY statement or 
macro definition request, the entire 
library element is copied line by line into 
the assembler's working storage by the 
appropriate subroutine. Then, requests for 
source lines are processed from the stack 
of saved lines until the stack is 
exhausted, whereupon the input source sta­
tus reverts to that in which the COPY sta­
tement or macro instruction was encoun­
tered. A macro definition may contain a 
COpy statement, thus requiring a push down 
stack. 

In servicing a demand for the next 
source statement, if a continued source 
line is encountered, all portions of the 
statement are combined into a single con­
tinuous line which is constructed in 
assembler working storage. Normally, this 
reconstruction is a blind process, since 
the begin, end, and continue columns are 
clearly defined for both card and keyboard 
formats. However, when the macro defini­
tion switch (MDS) is set to 1, declaring 
that the current statement is a macro pro­
totype, or when analYSis of the operation 
code indicates a macro instruction state­
ment, logic is applied to determine whether 
the source lines are in the alternate card 
or keyboard statement format. Thus, line 
continuations are handled solely in the raw 
input routine, and the remainder of the 
processor sees only continuous, simply 
scannable statements. 

This module is also responsible for per­
forming and commenting diagnostically upon 
failures in the sequence check demanded by 
,the prevailing ISEQ requirements. 

Language Processor Control Input: The LPC 
contains an entry point for the assembler'S 
use when the next source line is required. 
The assembler calls the LPC with a line 
number (initially zero) and LPC responds by 
returning the source message corresponding 
to the next line number in sequence. The 
line number is expected to occupy one word 
and be in packed decimal format with seven 
integer places and a sign digit that is 
positive at all times. The information 
supplied to the assembler: 

• The location of the first byte of the 
source message. 

• The length of the message in bytes. 

Section 5: Phase I 53 



• A format indicator (keyboard or card 
image) • 

• The line number of the message. 

Alternate Modes of Input: Input is 
obtained from three sources other than its 
LPC interface: COpy (and MACRO) library 
lines, macro definition statements, and 
previously processed source statements at 
the user level {in response to a backward 
AGO statement}. 

Library lines are the unedited source 
lines of macro definitions or COpy ele­
ments. When such lines are required by the 
assembler (in response to a COpy instruc­
tion or a reference to a library macro 
definition). COpy or MACREF initiates 
appropriate input/output activity and 
copies all the lines of the library element 
into working storage. The lines are 
sequentially chained by a control word pre­
ceding the line. In COPY mode, the chain 
is followed and source lines are procured 
from working storage until the end of the 
chain is reached. The previous input 
source mode is then reinstated from a push­
down list. 

Macro definition statements are state­
ments which have previously passed through 
STAN, which have logical-order-file 
entries, and which have had continuation 
lines removed. In macro definition mode 
the logical-order-file is followed to pro­
cure each statement, until it reaches a 
MEND statement, whereupon it reinstates the 
previous input mode and exits with an end­
of-input indication. 

For a backward AGO statement at the user 
level, outside of macro definitions, the 
source statement control chain is followed 
as for COpy mode, except that the state­
ments have had continuation lines removed, 
as in macro definition mode; hence, con­
tinuation line processing is bypassed. 

Source Program Correction Facility: The 
assembler provides the conversational user 
with the ability to correct or delete the 
last source statement presented to the pro­
cessor without incurring restart of the 
entire assembly. 

This capability is provided by this 
module by recording the internal status of 
the assembler as each source statement is 
completed. Thus, at any time prior to com­
mencing the processing of the next state­
ment, the effect of the current statement 
can be erased by replacing the current sta­
tus information with the previous status, 
and by detaching from linkage chains any 
dictionary items constructed since the pre­
vious status was recorded. 

54 

Determination of Changes: Three line num­
bers are maintained to assist in determin­
ing the effect of a source program change 
upon the assembly. SLINE is the number of 
the last line received from LPC. PLINE is 
the number of the last line of the last 
statement assembled. This statement is 
represented by the ·current status· and is 
not final. ALINE is the number of the last 
line of the next-to-last statement 
assembled. This statement is represented 
by the ·previous status" and is final. 

If LPC returns the assembler's call for 
the next line with an "altered line" code, 
the changed line having the lowest number 
is examined. If its line number is greater 
than SLINE, a condition which can occur on 
restarts. the change has no effect on the 
assembly, and the line following SLINE is 
again requested. 

If the changed line is not greater than 
SLINE but is greater than PLINE, the change 
has occurred during the accumulation of 
continuation lines for a statement which 
has not yet been seen by STAN. The lines 
presently accumulated are erased, SLINE is 
set to the value of PLINE, and the assembly 
continues by requesting the line following 
PLINE. 

If the changed line is not greater than 
PLINE but is greater than ALINE, the pre­
viously assembled statement is invalid. 
The current status indicators are replaced 
by the previous ones, hash linkages in the 
main hash table which point to storage used 
since the previous status was recorded are 
restored, and the previously assembled sta­
tement is effectively erased. SLINE and 
PLINE are set to the value of ALINE in 
order to prevent a second attempt to erase 
before a new statement has been received. 
The assembly continues by requesting the 
line following ALINE. 

GETOP -- Collect and Identify Operation 
Code (CEVGP) 

This routine isolates and identifies the 
operation code mnemonic of the current 
source statement. (See Chart AE.) 

Entry Point: CEVGP 

Calling Sequence: INVOKE AGETOP 

Routines Called: 

• Internal - DIAG MACPUT 
MACLKT SUBOP 

• External - CEVMLA 

Exi t : Normal 



OPERATION: Lines that start with * or .* 
and contain only a name, or are entirely 
blank in the statement area, are recognized 
as commentary. 

Any parameter or variable symbol substi­
tution indicated in the operation code is 
satisfied immediately. The resultant 
character string is subjected to look-up in 
the following order: 

• Operation code table. 

• Macro name dictionary for a match to a 
macro definition item. 

• Macro-library search (via CEVMLA). 

The failure of the preceding steps 
results in diagnosing the mnemonic code as 
undefined and treating the statement as 
commentary, unless the statement is a macro 
model statement or the assembler is in 
bypass mode. In these cases the mnemonic 
is ignored. 

If a macro name is found in the macro 
name dictionary, the location of the item 
is placed in the logical order file entry. 
If the item is found after searching the 
macro library, the library position infor­
mation is saved for the macro reference 
processor routine (MACREF) for later pro­
curement of the macro definition. 
Thereafter, this case is processed as if 
the macro name had been found in the macro 
name dictionary. In each case, the current 
LOF entry is supplemented with the appro­
priate directive code and machine instruc­
tion code information. 

Macro name dictionary items are kept in 
working segment 2, but are located through 
a different hash table from the one used 
for ordinary symbols. This permits macro 
names to duplicate location symbols without 
confusion and with a minimum of inter­
ference for the user of the main dictionary 

Error Check: Undefined nmemonic code. 

SUBOP -- substitute into Operation Code 
Field (CEVSP) 

This routine isolates the operation 
field of a source statement and performs 
the sUbstitution of any variable symbols 
that may occur within the field. The 
operation code resulting from the substitu­
tion determines the further processing of 
the source statement. (See Chart AF.) 

Entry Point: CEVSP 

Calling Sequence: INVOKE ASUBOP 
error return 
normal return 

Routines called: SSCAN2 

Exit: Normal 

OPERATION: The current statement is 
scanned for the first blank. The first 
nonblank following the first blank 'is taken 
as the start of the operation field. The 
field is scanned for ampersands or blanks. 
If an ampersand is found, the SSCAN2 entry 
to SSCAN is initialized and called to per­
form the character substitution. The sub­
stituted operation mnemonic is built up in 
working storage. Upon return from SSCAN2 
the scan for ampersands or blanks is 
resumed since variable symbols may be con­
catenated to form a single mnemonic. The 
occurrence of a blank terminates the scan. 
Any characters from the original field not 
moved during the variable symbol substitu­
tion are concatenated with the contents of 
the work area, and the length of the result 
is checked for validity. Valid results are 
left-justified on a field of blanks at 
location OP, where the resultant mnemonic 
is available for later use. 

CATOP -- String Substitution Control 
(CEVCP)' 

This routine controls the type and 
amount of parameter and variable symbol 
substitution applied to the current source 
statement. It is called before the state­
ment is delivered to the components of STAN 
for processing. (See Chart AG.) 

Entry Point: CEVCP 

Routines Called: BASCAN, SSCAN 

Exits: Normal 
Error detected in SSCAN 

OPERATION: Substitution is performed arbi­
trarily on the operation code field by 
GETOP. This routine examines the operation 
as determined by GETOP, applying the fol­
lowing rules: 

• If GBLx or LCLx, no further substitu­
tion is attempted. 

• If AIF or SETB: 

String substitution of parameters and 
SETA and SETC symbols is performed 
unconditionally in the operand field. 

SETB symbols are substituted in the 
operand if the variable symbol is 
encountered within apostrophes. 

When not within apostrophes, SETB sym­
bols are substituted in the operand 
when the adjacent characters indicate 
concatenation. 

Section 5: Phase I 55 



• If SETx, sUbstitution is not performed 
in the name field. 

In all other cases, substitution is per­
formed in both name and operand fields 
unconditionally. Whenever substitution 
actually results in character string repla­
cement on a statement, a new version of the 
statement reflecting the substitution is 
produced to replace the original line for 
all subsequent processing. 

After substitution, this routine calls 
BASCAN to analyze the contents of the name 
field and leaves the results for later ana­
lysis by components of STAN. This routine 
also determines the start of the operand 
field, posts the increment in the current 
LOF entry, and sets BSSCAN to the location 
of the start of the operand field. 

MIP -- Machine Instruction Operand Scan 
(CEVMP) 

This routine scans the operands of 
machine instructions and checks for valid 
operand fields and correct formatting. It 
assumes that BSSCAN is set by the caller to 
the address of the first character of the 
operand. (See Chart AH.) 

Entry Points: CEVMPl 
CEVMP2 
CEVMP3 
CEVMP4 
CEVMP5 
CEVMP6 

CEVMP7 
CEVMP8 
CEVMP9 
CEVMPA 
CEVMPB 

calling Seguences: INVOKE AOPxxx 
xxx may have the following values: 

RR1 RXl RS2 SS1 
RR2 RX2 SI1 SS2 
RR3 RS1 SI2 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: For each type of instruction 
there is a main stem of the subroutine 
which checks to see that the required 
operand fields are present and that these 
are properly delimited. These main stems 
then call subroutines internal to this pro­
cessor to examine the components of the 
operand field; these, too, are checked to 
see that required parts are present and 
that they are correctly delimited. 

Error Checks: 

56 

• Major operand fields must be separated 
by a comma. 

• All major operand fields must be 
present. 

• The end of an instruction operand must 
be delimited by a blank. 

• Expressions with a left parenthesis 
must be delimited on the right by a 
right parenthesis. 

• Expressions within parenthesis not 
separated by operators must be 
separated by a comma. 

• Expressions representing registers must 
not exceed an absolute value of 15. 

• Expressions representing lengths must 
not exceed absolute values of 16 or 
256, depending upon whether they are 
represented by four or eight bits, 
respectively, in the individual 
instruction. 

• To be valid an expression representing 
a base register must be absolute, null, 
or indeterminant. 

• To be valid an expression representing 
a length must be absolute. null, or 
indeterminate. 

• Nothing can be stored into a literal. 

• An expression representing a shift 
value must be absolute or 
indeterminate. 

BASCAN -- Basic Source Language Scan 
(CEVBS> 

This routine scans part of a source lan­
guage statement in order to identify the 
syntactic components of the language that 
appear within that part of the statement. 
It assumes that certain storage areas have 
been set by the caller. These storage 
areas are: 

BSSCAN Address where scanning is to begin. 

BSMAX Address of last byte in source 
statement. 

BSMI Indicates scan mode. 

Hex Value 
00 

12 

Mode 
Blank 

Period 

Action 
Resume scan at next 
nonblank character. 

Previous delimiter 
was a period; in­
terpret the new 
term as a fraction 
if it is numeric or 
as a sequence sym­
bol if it is non­
numeric. 



14 

40 

80 

Character­
string 

Name 
field 

Continu­
ation 

Any other Term 
delimiter 
value 
(see BSM! 
output 
values 
below) 

Previous delimiter 
was a single quote; 
resume scan at cur­
rent character, in 
character - string 
mode. 

Causes scan to rec­
ognize commentary 
and/or blanks in 
the first scanned 
column(s). 

Previous delimiter 
was a nonnumeric 
character after a 
decimal integer 
string; use prev­
ious delimiter as 
the first character 
of the new term. 

Previous delimiter 
was a comma, paren­
thesis, equal sign 
or arithmetic oper­
ator; resume scan 
at current charac­
ter, initialized 
for a new t:erm. 

FAL Indicates whether expression is arith-­
metic (0) or logical (1). 

(See Chart AI.) 

Entry Point: CEVBS 

Calling Sequence: INVOKE ABSCAN 

Routines Called: DIAG 

Exit: Normal 

OPERATION: This routine uses and updates a 
pointer and a mode flag as it operates. 
The pointer is the basic scan index 
(BSSCAN) and is the virtual address of the 
byte in the source statement at which scan­
ning is to start or resume. The mode flag 
is the basic scan mode indicator (BSMI) and 
is generally the right delimiter of the 
previously scanned field. Routines that 
call this routine may set both BSSCAN and 
BSMI to achieve specially desired results 
from the scanning process. Otherwise, this 
routine uses the values that it placed in 
BSSCAN and BSMI to continue scanning in an 
orderly fashion. 

Return is made to the caller with the 
following fields set: 

BSBEG Location of scanned field 

BSLNTH Length of scanned field 

BSTYPE Type of scanned field 

~ 
Blank 

Hex value 
00 

Term 
Delimiter only 
Character-string 
Attribute I 
Attribute S 
Attribute T 
Attribute L 
~~"I" 
Sequence symbol 
Variable symbol 
Location counter 
Self-defining term 

Decimal 
Hexadecimal 
Binary 
Character 

Attribute K 
Attribute N 

01 
02 
04 
OC 
00 
OE 
OF 
~-i~ 
11 
12 
13 

28 
29 
2A 
2B 
4C 
40 

BSMI Delimiter of scanned field 

Delimiter 
Blank 

) 

( 

, 
& 
End of statement 
Name field 
Nonnumeric character 
+ 

* 
/ 

Hex Value 
00 
02 
04 
06 
10 
12 
14 
18 
20 
40 
80 
F4 
F6 
F8 
FA 

BSERR Error encountered by BAS CAN 

Error 
No errors 
Invalid character in statement 
Name or operand field contains 
invalid character 

Field improperly delimited 
Invalid binary self-defining 
term 

End of statement encountered 
before processing completed 

Invalid use of asterisk (*) 

Hex Value 
00 
01 

02 
04 

08 

10 
20 

AGO/AIF -- AGO/AIF Instruction Scan (CEVGO) 

This routine examines the name and 
operand fields of AGO and AIF instructions 
for syntactical correctness. It assumes 
the caller has previously called BASCAN to 
examine the name field of the instruction 
being processed and that all storage areas 
affected by this call are unchanged except 
for BASCAN which the caller has set to the 
address of the first character in the 
operand field. (See chart AJ.) 

Section 5: Phase I 57 



Entry Points: CEVG01, CEVG02 

Calling Sequence: 

Routines called: 

Exit: Normal 

INVOKE 
INVOKE 

BAS CAN 
DIAG 
DLKM 

AAGO 
AAIF 

DLKT 
EVAL 

OPERATION: The AGO entry to this routine 
corresponds to a true condition in the AIF 
processing. 

If the name field of either instruction 
contains neither blanks nor a sequence sym­
bol, a warning is given, and the name field 
is ignored. The AIF processing begins by 
calling EVAL in the logical mode, to deter­
mine whether the operand represents a true 
or false value. If false, the remainder of 
the statement is checked for syntactical 
correctness, and control returns to STAN. 

If.a true value, the sequence symbol is 
examined. Depending upon the macro level, 
the symbol is looked up in either the main 
dictionary or the temporary dictionary. If 
it is found in a dictionary, the obtain 
next source statement routine (REED) input 
source switch is pushed down, and a copy 
mode is established for the source state­
ment defined by the sequence symbol. 

If the symbol has not yet been defined, 
a bypass mode is established for STAN. 
This mode causes all processing to be sup­
pressed until a statement bearing the 
desired sequence symbol appears or until an 
END statement or end of file occurs. MEND 
will also terminate this processing if a 
macro is currently being expanded. 

Error Checks: 

• Invalid symbol in name field. 

• Sequence symbol missing in operand. 

• Invalid statement format. 

• Improper delimiter. 

ANOP -- ANOP Instruction Scan {CEVAN} 

This routine scans the ANOP instruction 
for a valid name field. It assumes the 
caller has previously called BASCAN to 
examine the name field of the instruction 
being processed and that storage areas 
affected by that call are unchanged. (See 
Chart AK.) 

58 

Entry Point: CEVAN 

Calling Seguence: INVOKE AANOP 

Routines Called: DIAG 

Exit: Normal 

OPERATION: The name field is checked for 
the presence of a sequence symbol; a diag­
nostic is generated if one is not present. 
Control is then returned to the caller. 

CCW -- CCW Instruction Scan (CEVCW) 

This routine examines CCW instructions 
for valid operand fields and correct for­
mat. It assumes that the caller has called 
BASCAN to examine the name field of the 
instruction being processed, and that all 
storage areas affected by the call are 
unchanged except BSSCAN, which the caller 
has set to the first character in the 
operand. (See Chart AK.> 

Entry Point: CEVCW 

Calling Sequence: 

Routines called: 

Exit: Normal 

INVOKE 

DEFSYM 
DIAG 

ACCW 

EVAL 
SLIT 

OPERATION: Upon entry, DEFSYM is called. 
A test is then made to determine the mode 
in which the assembly is being processed. 
Batch mode causes the operand to be scanned 
for the presence of literals and an exit to 
the caller. If in conversational mode, 
each operand field is then examined; all 
must be present. 

The first operand must be absolute, 
null, or indeterminate, and must be deli­
mited by a comma. If the latter case is 
not true, it is assumed that the remainder 
of the operands are missing. 

The second operand may be any type of 
expression and must be delimited by a 
comma. If the latter case is not true. it 
is assumed that the remainder of the 
operand fields are missing. 

The third operand field is treated 
exactly the same as the first operand. 

The fourth operand field is treated like 
the first, except that the delimiter must 
be a blank. 

Error Checks: 

• All operands must be present. 



• All operands except the last must be 
delimited by a comma. 

• The last operand must be delimited by a 
blank. 

• The first, third, and fourth operands 
must be absolute, null, or 
indeterminate. 

CNOP -- CNOP Instruction Scan (CEVCN) 

This routine examines the CNOP instruc­
tion operand field for valid expressions 
and correct format. It assumes that the 
caller has previously called BASCAN to 
examine the name field of the instruction 
being processed and that all storage areas 
affected by this call are unchanged except 
for BSSCAN, which the caller has set to the 
address of the first character in the 
operand field. (See Chart AL.) 

Entry Point: CEVCN 

Calling Sequence: INVOKE, ACNOP 

Routines Called: DIAG, EVAL 

Exi t : Normal 

OPERATION: Operation is different for con­
versational and batch mode. 

Conversational Mode: The name field is 
checked to make sure it is blank or con­
tains a sequence symbol. If the name is 
invalid, it will be ignored. The first 
operand field is than examined by the 
expression evaluator. only absolute, null, 
or indeterminate expressions are valid, and 
the absolute value must be 0, 2, 4, or 6. 
This operand field must be delimited by a 
comma, which is followed by the second 
operand field. 

The second operand field must also be an 
absolute or indeterminate value to be 
valid. Allowable values for an absolute 
expression are 4 or 8. This second expres­
sion must be delimited by a blank. 

Allowable combinations of these absolute 
values are: 

0,4 2,8 
2,4 4,8 
0,8 6,8 

Batch Mode: The name field is examined, 
SLIT is called, and control is returned to 
the caller. 

Error Checks: 

• Two operand fields must be separated by 
a comma. 

• The second operand must be delimited by 
a blank. 

• The first operand field must be abso­
lute, null. or an indeterminate expres­
sion; if absolute it must have a value 
of 0, 2, 4, or 6. 

• The second operand field must be inde­
terminate or absolute; if absolute, it 
must have a value of 4 or 8. 

• Valid combinations of absolute first 
and second operand fields are: 

0,4 2,8 
2,4 4,8 
0,8 6,8 

• The name field must be blank or contain 
a sequence symbol. 

CXD -- CXD Instruction Scan (CEVCX) 

This routine examines the CXD instruc­
tion and validates the name field, if any 
is specified. It assumes that the caller 
has previously called BAS CAN to examine the 
name field of the instruction being pro­
cessed, and that storage areas used by BAS­
CAN are unchanged. (See Chart AL.) 

Entry Point: CEVCX 

Calling Seguence: INVOKE ACEVCX 

Routines Called: DEFSYM 

Exit: Normal 

OPERATION: This routine is entered from 
STAN after calling BASCAN. DEFSYM is 
called to build a dictionary item if neces­
sary. Upon return from DEFSYM, the current 
LOF entry is completed, and a constant item 
is built. Return is then made to the 
caller. 

SECT -- Control Section Instruction Scan 
(CEVCT) 

This routine checks the control section 
instructions for validity. It assumes that 
the caller has previously called BASCAN to 
examine the name field of the instruction 
being processed and that all storage areas 
affected by this call are unchanged except 
for BSSCAN, which the caller has set to the 
address of the first character in the 
operand field. (See Chart AM.) 

Entry Points: CEVCT1 
CEVCT2 
CEVCT3 

CEVCT4 
CEVCT5 

Section 5: Phase I 59 



calling Sequences: 
xxxxx may be: 

Routines Called: 

Exit: Normal 

INVOKE 
CSCOM 
CSECT 
CSTRT 

BASCAN 
DIAG 

Axxxxx 
CSDCT 
CSPCT 

DLPM 
EVAL 

OPERATION: There is a separate entry point 
for each type of control section instruc­
tion. At this point the code representing 
the specific type of instruction is set, 
and pointers to the first control section 
dictionary item and first PSECT dictionary 
item are set, when appropriate. The name 
field has been collected by BASCAN. 
Unnamed PSECTs and DSECTs are considered 
errors; unnamed CSECTs and COMs are valid. 
The name field symbol is looked up in the 
main dictionary. a look-up for a name of 
blanks or binary zeros will occur for 
unnamed COMs and CSECTs, respectively. If 
the symbol has not been previously defined, 
dictionary and GSM entries are created, and 
the second part of the routine begins. If 
an entry for the symbol was found. the type 
of dictionary item and the type of current 
statement are compared. If the two are 
equivalent. a GSM entry is created, and the 
routine continues. 

If the current instruction is macro 
generated, the control sections are reor­
dered, if necessary. If the symbols do not 
designate the same control section, there 
is either a duplicate symbol or incompat­
ible definition of control sections. In 
the first case, the routine is merely 
halted and control returned to the caller. 
In the latter case, an "incompatible con­
trol sections w diagnostic is issued at this 
point. The label is set to blanks, and. if 
the instruction is not a PSECT or DSECT 
(unnamed PSECTs or DSECTs are errors), the 
dictionary will be searched again. Normal 
processing follows. If this label is 
determined to be conflicting, an exit from 
the routine is made. Each valid control 
section name is compared with the program 
module name. Duplication results in a 
warning message to the programmer. Also, 
each control section name is checked to 
make sure certain symbol conventions are 
not violated. 

If the instruction is a START, an ORG 
statement is generated. The START operand 
is evaluated as if it were that of an ORG 
instruction, after which control is 
returned to the caller. For other instruc­
tions, BASCAN is called to inspect the 
operand for valid fields. The operand 
fields, if specified, are attributes which 
are PUBLIC. READONLY, VARIABLE, PRVLGD, or 
SYSTEM. The dictionary item is updated 
with the control section type and any valid 

60 

attributes. The operand fields are to be 
delimited by a comma or blank. 

The label for a blank, unnamed CSECT is 
carried as two full words of binary zero -­
X'OOOOOOOOOOOOOOOO'. The label for a 
blank, unnamed COM is carried as two full 
words of blanks -- X'4040404040404040'. 

Error Checks: 

• The operand field is not delimited by 
comma or blank. 

• Unnamed DSECT. 

• Unnamed PSECT. 

• Duplicate symbols. 

• Incompatible control section 
statements. 

• Attribute other than PUBLIC. READONLY, 
VARIABLE, PRVLGD, or SYSTEM. 

• START not the first control section 
statement. 

• More than five attributes. 

• The name field must contain blanks or a 
valid symbol. 

• Control section name may not duplicate 
module name. 

• Control section name must not violate 
symbol conventions. 

COpy -- COpy Instruction Processor (CEVCY) 

This routine checks the validity of the 
COpy operand, and if required, insures the 
element is retrieved from the COpy library. 
(See Chart AN.) 

Entry Point: CEVCY 

Calling Sequence: INVOKE 

Routines Called: 

• Internal - DIAG 

• External -

ACOPY 

CEVMLA 
CEVMLB 

Find element in library 
Retrieve lines from library 

Exit: Normal 

OPERATION: This module is called by the 
statement analyzer or macro reference pro­
cessor when the statement to be processed 
is a COpy instruction. The contents of the 
operand field are collected; the desired 



element is then retrieved from the library 
and copied into working storage. A diag­
nostic is given if the element is absent 
from the library. The source statements 
are chained together with the standard 
source statement control bytes. The input 
switch of the REED routine is then pushed 
down and set to retrieve forthcoming state­
ments from the copied stack. 

Error Checks: 

• Invalid or missing operand. 

• Missing library element. 

• Nested COpy statements. 

DC/DS -- DC/DS Instruction Scan (CEVDC) 

This routine is called by the statement 
analyzer (STAN) when the statement to be 
processed is a DC, DS, or DXD instruction. 
The routine calls upon the constant scan 
(CSCAN) to analyze the constant and to pre­
pare a value for it. The resulting con­
stant item is then associated with the LOF 
entry for the statement, and the definition 
of any name defined by the constant is com­
pleted. (See Chart AO.) 

This routine assumes that the caller has 
previously called BASCAN to examine the 
name field of the instruction and that all 
storage areas affected by that call are 
unchanged except BSSCAN, which the caller 
has set to the address of the first 
character in the operand field. 

Entry Points: CEVDC1, CEVDC2, ChVXD 

Calling Sequence: INVOKE 
INVOKE 

ADC 
ADS 

Routines Called: CSCAN, DEFSYM, DIAG 

Exit: Normal 

OPERATION: This routine calls DEFSYM to 
define any symbol that may appear in the 
name field of the statement. If the 
instruction is a DXD, it is marked as such 
before calling DEFSYM. A diagnostic is 
issued if the DXD instruction being pro­
cessed is missing a name. CSCAN is called 
to analyze the operand and to prepare a 
constant value item. The routine asso­
ciates the constant item with the current 
LOF entry and completes the dictionary 
entry for the name defined by the constant, 
if any. A DXD instruction will cause an 
entry to be made on the external dictionary 
chain. If the constant contains multiple 
operands, a series of calls is made to 
CSCAN, and a specially flagged LOF entry is 
constructed for each of the multiple 
operands. 

EJECT -- EJECT Instruction Scan (CEVEJ) 

This routine checks the EJECT instruc­
tion for correct format. It assumes that 
the caller has previously called BASCAN to 
examine the name field of the instruction 
and that the storage areas associated with 
that call are unchanged. (See Chart AP.) 

Entry Point: CEVEJ 

Calling Sequence: INVOKE ABJECT 

Routines Called: DIAG 

Exi t: Norma I 

OPERATION: The name field is checked to 
see that it contains either blanks or a 
sequence syml~l. If so, control is 
returned to the caller. If not, a diag­
nostic is given and control is returned to 
the caller. 

END -- END Instruction Scan (CEVND) 

This routine checks the END instruction 
for correct formatting and valid operation 
fields. (See Chart AP.) 

Entry Point: CEVND 

Calling Sequence: INVOKE AEND 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: If the assembly is in batch 
mode, the name field is checked, the END 
indicator set, and control returned to the 
caller. In conversational mode, the name 
field is checked for blanks or a sequence 
sym~l, and, if in error, is ignored. The 
operand field is then examined by EVAL to 
make sure the value of the expression is 
other than absolute, literal, or error. 
The macro level indicator is checked to 
make sure the statement did not occur 
within a macro. After the end indicator is 
set, control is returned to the caller. 

Error Checks: 

• An error occurs if the operand field 
has an absolute or error value, or is a 
literal. 

• If the macro level indicator is greater 
than zero, the statement has occurred 
within a macro which is an error. 

• The name field should be blank, or con­
tain a sequence symbol. 

• The single operand should be delimited 
by a blank. 

Section 5: Phase I 61 



ENTRY -- ENTRY Instruction Scan (CEVEY) 

This routine scans the ENTRY instruction 
for correct format and valid operation 
fields. It assumes that the caller has 
called BASCAN to examine the name field of 
the instruction, and that all storage areas 
affected by that call are unchanged except 
BSSCAN, which the caller has set to the 
address of the first character in the 
operand field. (See Chart AQ.) 

Entry Point: CEVEY 

Calling Seguence: INVOKE AENTRY 

Routines Called: BASCAN, DIAG 

Exit: Normal 

OPERATION: A GSM entry is constructed for 
the statement, and the name field is 
checked for blanks or a sequence symbol. 
If the name field is found to be invalid, 
it is ignored. BASCAN is called to collect 
and examine each operand field. It is 
expected that there is at least one operand 
field, and each field is delimited by eith­
er a comma or a blank. Each entry is then 
checked to determine whether or not it vio­
lates any symbol conventions. These con­
ventions are a function of the attributes 
of the control section in which the entry 
occurs. 

Error Checks: 

• At least one operand is expected to be 
present. 

• Entry point must conform to certain 
symbol conventions. 

• Fields must be delimited by either a 
comma or blank. 

• Name field should be blank or contain a 
sequence symbol. 

EQU -- EQU Instruction Scan (CEVQU) 

This routine examines the EQU instruc­
tion for syntactical correctness. It 
assumes that the caller has previously 
called BASCAN to examine the name field of 
the instruction and that all storage areas 
affected by that call are unchanged except 
BSSCAN, which the caller has set to the 
address of the first character in the 
operand field. (See Chart AQ.) 

Entry Point: CEVQU 

Calling Sequence: INVOKE AEQU 

Routines Called: 

62 

DIAG 
DLKM 

DLPM 
EVAL 

Exit: Normal 

OPERATION: If the name field is missing, 
the LOF entry is made commentary and exit 
is made to the caller. Otherwise, EVAL is 
called to process the three possible 
operand fields for validity. Absolute or 
complex dictionary items are made for the 
name field symbol when the operand is 
represented by an absolute or complex 
expression. The length and type operands 
are checked for validity. If an error is 
detected. a diagnostic is issued and the 
length and type values are determined as if 
they were defaulted. If the expression in 
the operand is simply relocatable or inde­
terminate, a transitive item is constructed 
for the symbol in the name field, and the 
LOF entry is flagged for attention during 
Phase lIB. 

Error Checks: 

• Expression value invalid for field. 

• Missing operand field. 

• Missing name field. 

• Invalid expression type. 

• Duplicate symbol in name field. 

• Invalid name field. 

• Field improperly delimited. 

• Invalid operand field. 

EXTRN -- EXTRN Instruction Operand Scan 
(CEVXN) 

This routine examines the EXTRN instruc­
tion operand for valid operand fields and 
correct formatting. It assumes that the 
caller has previously called BASCAN to 
examine the name field of the instruction 
and that al.l storage areas affected by that 
call are unchanged except BSSCAN, which the 
caller has set to the address of the first 
character in the operand field. (See Chart 
AR. ) 

Entry Point: CEVXN 

Calling Seguence: INVOKE AEXTRN 

Routines Called: BASCAN, DIAG, DLPM 

Exit: Normal 

OPERATION: The name field is examined for 
blanks or a sequence symbol. If the name 
field is invalid. a diagnostic is issued. 
the name is ignored, and processing con­
tinues. BASCAN is called to examine the 
operand. If there is no operand, a warning 



diagnostic is generated. Finding a symbol 
results in calling DLPM. If the symbol has 
been previously defined, an error has 
occurred; the programmer is warned that the 
symbol will not be treated as external. 
Otherwise. a dictionary item is created. 
In either event, control is tnen returned 
to the caller. 

Error Checks: 

• The operand is blank. 

• There is no symbol following a comma. 

• The symbol has been previously defined. 

• A symbol is delimited by something 
other than a comma or blank. 

• The name field should be blank or con­
tain a sequence symbol. 

GBLxfLCLx -- Global/Local Symbol 
Instruction Scan (CEVGL) 

This routine scans Global and Local 
instruction operands and checks the operand 
fields for valid expressions and correct 
format. It assumes that the caller has 
previously called BASCAN to examine the 
name field of the instruction and that all 
storage areas affected by that call are 
unchanged except BSSCAN, which the caller 
has set to the address of the first 
character in the operand field. (See Chart 
AS. ) 

Entry Points: CEVGLl 
CEVGL2 
CEVGL3 
CEIlGL4 

CEVGL5 
CEVGL6 
CEVGL7 

calling Sequences: INVOKE Axxxx 

xxxx may have the following values: 

GBLA 
GBLB 
GBLC 

LCLA 
LCLB 
LCLC 

Routines Called: 

Exit: Normal 

BAS CAN 
DIAG 
DLKT 

DLPM 
DPUT 
EVAL 

OPERATION: This will vary depending on 
which phase is calling the routine. 

Phase I: 
has its 
tionary 
stored. 

Each type of symbol instruction 
own entry point. Here the die­
item type, code, and length are 

BASCAN is called to collect the first 
operand field; only variable synmols are 

allowed as operand fields. If the macro 
level indicator is greater than zero, the 
temporary dictionary is searched for the 
variable symbol. A find is considered an 
error because a symbol can be defined only 
once. If the symbol is not found, and it 
is a local symbol, it is inserted into the 
temporary dictionary. If the symbol was 
not found in the temporary dictionary, and 
it is a global symbol, a search of the main 
dictionary is initiated. No find causes an 
item to be inserted in both the main and 
temporary dictionaries; a valid find 
results in an insertion in the temporary 
dictionary. The proceSSing advances to the 
point where the delimiter is checked. 

If the macro level was zero, the main 
dictionary is searched for the symbol. A 
find indicates an error; no find results in 
an item being inserted in the main dic­
tionary. The delimiter of the operand 
field is checked. 

If the delimiter of the variable symbol 
is a left parenthesis, there is a subscript 
to be evaluated. The subscript must be an 
absolute value less than or equal to 255. 
the valid value is inserted into the dic­
tionary item. Anything greater than 255 is 
set to 255, and a diagnostic is generated. 
The delimiter of the subscript is checked 
to be a right parenthesis. The next 
character must be a comma or a blank. A 
comma causes the processing to return to 
the point where basic scan is called. A 
blank causes exit to the caller. This 
cycle is continued until a blank delimiter 
is encountered or error condition prevents 
further processing. 

If the operation is global, and it is 
not Phase IIA, a GSM entry is created. 

Phase IIA: During Phase IIA, this module 
performs two functions. The first is to 
process those global and local symbols 
occurring 1n macro expansions. These are 
processed as in Phase I, except no GSM 
entry is made for global symbols. The 
second Phase IIA function this module per­
forms is to reprocess those global instruc­
tions seen in Phase I. The result of this 
reprocessing is to reset the symbOls to 
their initial values so the correct values 
will be associated with the symbols during 
macro expansions. 

Error Checks: 

• Operand field must contain variable 
symbol. 

• Only one definition per symbol allowed 
in one dictionary. 

• Delimiter of variable symbol must be 
left parenthesis, comma, or blank. 

Section 5: Phase I 63 



• Subscript expression must be absolute. 

• Absolute value of subscript must be 
less than or equal to 255. 

• Subscript must be delimited by right 
parenthesis. 

• Name field should be blank. 

ICTL -- ICTL Instruction Scan (CEVIC) 

This routine scans ICTL instruction 
operand for valid operand fields with 
correct formatting. It assumes that the 
caller has previously called BAS CAN to scan 
the name field of this instruction and that 
all storage areas affected by that call are 
unchanged except for BSSCAN, which the 
caller has set to the address of the first 
character in the operand. (See Chart AT.> 

Entry Point: CEVIC 

Calling Sequence: INVOKE AICTL 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: To be valid, an ICTL must be 
the first source program statement. An 
invalid occurrence of an ICTL causes the 
statement to be made commentary. 

To be valid, the name field should be 
blank or contain a sequence symbol. If 
this is not the case, the name is ignored. 

The first operand field, indicating the 
begin column. must be present. It is 
checked to see that it is greater than zero 
and less than or equal to 40. If the abso­
lute value is valid, it is stored in BCOL. 
An error in the begin column causes the 
statement to be ignored. 

The second operand field is evaluated to 
determine whether it is present. Its 
absence causes the end column to be set to 
its assumed value of 71. If the operand is 
present, it must represent an absolute 
value greater than 40 and less than or 
equal to 80; otherwise, it is considered an 
error, and the end column is assumed to be 
71. If the value is 80, it is assumed that 
there will be no continuation cards. 

The third operand field is examined. If 
the field contains an operand, and the end 
column is 80, an error occurs and continua­
tion cards are not allowed. In event of 
any other type of error in the field, the 
continue column is assumed to be 16. 
Should this conflict with the begin column, 
continuation cards will be ignored. A 
blank field or a value of 80 for the end 

64 

column indicates that continuation cards 
are not allowed. 

If the field contains an absolute expre­
ssion, the value must be greater than that 
designated as the begin column, and must be 
greater than 1 and less than or equal to 
40. 

Each operand field is checked to be 
delimited by either a comma or blank. Only 
one ICTL statement is honored during one 
assembly. and it must precede all other 
source statements. 

Error Checks: 

• There can be only one ICTL statement 
per assembly. 

• The first operand, which designates 
begin column, must be present. 

• All operands, if present, must be in 
form of absolute values. 

• The begin column must be greater than 0 
and less than or equal to 40. 

• The end column must be greater than 40 
and less than or equal to 80. 

• If the end column is 80, there can be 
no continue column deSignation. 

• The continue column must be greater 
than 1, greater than the begin column, 
and less than or equal to 40. 

• Each field must be delimited by a comma 
or blank. 

• The name field should be blank or con­
tain a sequence symbol. 

ISEQ -- ISEQ Instruction Scan (CEVIQ) 

This routine examines the ISEQ instruc­
tion operand fields for valid expressions 
and correct format. It assumes that the 
caller has previously called BASCAN to scan 
the name field of this instruction and that 
all storage areas affected by that call are 
unchanged except for BSSCAN, which the 
caller has set to the address of the first 
character in the operand. (See Chart AU.) 

Entry Point: CEVIQ 

Calling Seguence: INVOKE AISEQ 

Routines Called: DIAG, EVAL 

Exi t: Norma I 
Error - Model statement is ISEQ or 

ICTL, or assembler instruc-



tion other than END used as 
macro. 

OPERATION: If BAS CAN found an error in the 
ISEQ name field, the name field is ignored. 
If BASCAN did not find an error, the name 
field is checked for a blank or a sequence 
symbol; anything else results in a diag­
nostic message, and processing continues. 

The first operand field is examined by 
EVAL. A blank operand indicates that 
sequence checking is to terminate; to ind­
icate this, the areas indicating the left 
and right column boundaries for the 
sequence check are set to zero. An abso­
lute expression designates the left column 
(or begin column) of sequencing. This 
value is compared with the end column. To 
be valid, the value must be greater than 
the end column value +1, or less than the 
begin column and greater than zero. The 
delimiter is checked to make sure it is a 
comma. 

The second operand representing the 
right boundary of the columns to be 
sequence checked is evaluated. It must be 
an absolute value equal to or greater than 
the left column. If the left column of the 
sequence area is less than the begin column 
value, the right column of the sequence 
area must also be less than the begin 
column value. If the left column of the 
sequence area is greater than the end 
column, the right column value may not 
exceed 80. Its delimiter is checked to 
make sure it is a blank. 

Any error in the statement results in a 
cancellation of the sequence check; LCOL 
and RCOL are set to zero, and control 
returned to the caller. 

Error Checks: 

• Operand fields should be blank or 
absolute. 

• Operand fields should be separated by a 
comma. 

• The value of the left column should be 
at least 2 greater than ECOL, or less 
than BCOL and greater than zero. 

• The second operand is delimited by a 
blank. 

• The .right column should be equal to or 
greater than the left column and less 
than or equal to 80, or 1 or greater 
and less than BCOL. 

• The name field should be blank or con­
tain a sequence symbol. 

LTORG -- LTORG Instruction Scan (CEVLG) 

This routine checks the LTORG instruc­
tion for correct format. It assumes that 
the caller has previously called BASCAN to 
scan the name field of this instruction and 
that the storage areas affected by that 
call except BSSCAN are unchanged. (See 
Chart AU.) 

Entry Point: CEVLG 

Calling Seguence: INVOKE ALTORG 

Routines Called: DEFSYM 

Exi t: Normal 

OPERATION: DEFSYM is called to construct a 
relocatable value item from the symbol, if 
one is deSignated in the name field. A GSM 
entry is created, and control is returned 
to the caller. 

MACRO -- MACRO Instruction Scan (CEVMC) 

This routine checks the MACRO instruc­
tion for correct format. It assumes that 
the caller has previously called BASCAN to 
scan the name field, and that all storage 
areas affected by that call except BSSCAN 
are unchanged. (See Chart AV.> 

Entry Point: CEVMC 

Calling Sequence: INVOKE AMACRO 

Routines Called: DI.AG 

Exit: Normal 

OPERATION: The name field is checked to 
make sure it. is blank; if it is not, a dia­
gnostic is printed. The macro definition 
switch is then set to 1, and control is 
returned to the caller. 

MEND/MEXIT -- MEND/MEXIT Instruction Scan 
(CEVMX> 

This routine examines MEND and MEXIT 
instructions for correct format. It is 
phase oriented, in that the MEXIT entry can 
only occur during Phase IIA. The routine 
either cancels macro definition mode or 
causes the macro expansion mechanism to 
return to the previous macro level. (See 
Chart AV.) 

This module assumes that for a MEXIT 
instruction the caller has previously 
called BASCAN to examine the name field, 
and that all storage parameters affected by 
that call except BSSCAN are unchanged. 

Section 5: Phase I 65 



Entry Points; CEVMX1, CEVMX2 

Calling Sequence: INVOKE 
INVOKE 

AMEND 
AMEXIT 

Routines Called: BASCAN, DIAG 

Exits: Normal - CEVSTl 
Error - Original exit 

OPERATION: Each instruction scan has a 
separate operation. 

MEND: In Phase I the name field is ana­
lyzed. invalid entries are diagnosed and 
ignored. This check is not made during 
Phase lIA. If the macro definition mode is 
set (MDS switch = 2), it is canceled (MDS 
switch is set to zero), and an immediate 
return is made. This condition prevails 
during the processing of macro definitions 
in either Phase I or IIA. If the macro 
definition mode is not set, MEND executes 
identically with MEXIT. 

MEXIT: The name field of the instruction 
is examined; invalid entries are diagnosed 
and ignored. If the macro level is zero, 
MEXIT has occurred out of context in the 
source program. A diagnostic is given, and 
the statement is ignored. If the macro 
level is greater than zero, the space occu­
pied by the current macro level dictionary 
is reclaimed (by resetting AWORKl address 
pointer). The macro level (MLVL) is 
reduced by one, and the location of the LOF 
entry for the statement at which processing 
stopped on the preceding macro level is 
reinstated in the REED input switch. If 
the macro level has been reduced to zero, 
the REED input switch is popped up to its 
previous mode. 

Error Checks: 

• Name fiel.d improperly delimited. 

• Name field contains invalid symbol. 

• MEXIT instruction invalid outside 
macro. 

MNOTE -- MNOTE Instruction Scan (CEVMN) 

This routine scans the operand of MNOTE 
instructions, checking for valid operands 
and correct format. It assumes that the 
caller has previously called BAS CAN to 
examine the name field of this instruction, 
and that all storage areas affected by that 
call are unchanged except BSSCAN, which has 
been set to the address of the first 
character in the operand. (See Chart AW.) 

66 

Entry Point: CEVMN 

Callinq Sequence: INVOKE AMNOTE 

Routines Called: BASCAN, DIAG, EVAL 

Exi t : Norma 1 

OPERATION: The first operand is examined 
by EVAL. Null. absolute, or indeterminate 
expressions, as well as an *, are consi­
dered valid. The delimiter is checked to 
make sure that it is a comma, and that it 
is followed by a character string. (If the 
operand contains only a character string, 
the MNOTE is treated as diagnostic with 
severity code of zero.) If the first 
operand was an *. the character string is 
treated as a comment and is limited to a 
length of 226 characters. otherwise, the 
character string is considered a diagnostic 
message and causes a special call to the 
diagnostic processor. In this case, a 
maximum of 100 characters is allowed. Con­
trol is returned to the caller. 

Error Checks: 

• First operand, if present, other than 
absolute, null, or asterisk. 

• First operand, if present, not deli­
mited by a comma. 

• Something other than a blank or 
sequence symbol in name field. 

• Diagnostic character string greater 
than 100. 

• Co~nent character string greater than 
226. 

• If only one operand is present, it 
represents something other than a 
character string. 

• If the first operand is present, the 
second operand represents something 
other than a character string. 

ORG -- ORG Instruction Scan (CEVRG) 

This module evaluates the operand of ORG 
instructions and determines whether it is 
valid and the format correct. It assumes 
that the caller has previously called BAS­
CAN to scan the name field of this instruc­
tion, and that all sto~age areas affected 
by that call are unchanged except BSSCAN, 
which has been set to the address of the 
first character in the operand. (See Chart 
BA. ) 

Entry Point: CEVRG 



Calling Seguence: INVOKE AORG 

Routines Called: DIAG, EVAL 

Exi t: Normal 

OPERATION: The name field is checked for a 
blank or a sequence symbol. If the name 
field is not valid, a diagnostic message is 
issued, the name is ignored, and processing 
continues. A test is then made to deter­
mine the mode in which the assembly is 
being processed; batch mode results in 
immediate exit to the caller. 

In conversational mode, EVAL is called 
to examine the operand. Absolute, null, or 
relocatable values are valid. Tbe delimit­
er is checked to verify that it is a blank, 
and control is returned to the caller. 

Error Checks: 

• Expression must be absolute and nonne­
gative, null, or indeterminate. 

• The field must be delimited by a blank. 

• The name field should be blank or con­
tain a sequence symbol. 

PRINT -- PRINT Instruction Operand Scan 
(CEVPR) 

This module examines the operand of 
PRINT instructions for correct formatting 
and valid contents. It assumes that the 
caller has previously called BASCAN to 
scanthe name fi8ld of this instruction and 
that all storage areas affected by that 
call are unchanged except BSSCAN, which has 
been set to the address of the first 
character in the operand. (See Chart BA.) 

Entry Point: CEVPR 

calling Seguence: INVOKE APRINT 

Routines Called: BASCAN, DIAG 

Exit: Normal 

OPERATION: If BAS CAN found an error in the 
PRINT name field, the name field is 
ignored. If BASCAN did not find an error, 
the name field is checked for a blank or a 
sequence symbol; anything else results in a 
diagnostic message, and processing 
continues. 

A GSM entry is created for the PRINT 
statement. The operand field is examined 
to see that no more than three of the fol­
lowing options appear, and that none are 
contradictory or repetitive: ON, OFF, GEN, 
NOGEN, FULLGEN, DATA, NODATA. An option 
must be delimited by a blank or comma. 

Codes for valid options are entered in the 
current logical order file entry. 

Error Checks: 

• A blank operand. 

• A comma followed by a blank. 

• An option not delimited by a comma or 
blank. 

• Something other than ON, OFF, GEN, 
NOGEN, FULLGEN, DATA, or NODATA speci­
fied as an operand field. 

• More than three options. 

• Options which contradict or repeat one 
another. 

• The name field should be blank or con­
tain a sequence symbol. 

PUNCH -- PUNCH Instruction Scan (CEVPH) 

This routine issues a warning when a 
PUNCH instruction is encountered. 

Entry Point: CEVPH 

Calling Sequence: INVOKE APUNCH 

Routines Called: DIAG 

Exi t: Norma 1 

OPERATION: The PUNCH instruction is 
allowed to maintain compatibility with OS/ 
360. The LOF entry for the PUNCH instruc­
tion is changed so it will result only in a 
printed line in the listing. A diagnostic 
is printed to warn the user: 

WARNING: INSTRUCTION PRODUCES LISTING 
ONLY. 

REPRO -- REPRO Instruction Scan (CEVRE) 

This routine issues a warning when a 
REPRO instruction is encountered. 

Ent ry point: CEVRE 

Calling Sequence: INVOKE AREPRO 

Routines Called: DIAG 

Exit: Normal 

OPERATION: The REPRO instruction is 
allowed to maintain compatibility with OS/ 
360. The LOF entry for the REPRO instruc­
tion is changed by another module so it 
will result only in a printed line in the 

Section 5: Phase I 67 



listing. A diagnostic is printed to warn 
the user: 

WARNING: INSTRUCTION PRODUCES LISTING 
ONLY. 

SETX -- SET Instruction Scan (CEVSE) 

This routine processes SETA, SETB, and 
SETC instructions. It assumes that the 
caller has previously called BASCAN to scan 
the name field of this instruction and that 
all storage areas affected by that call are 
unchanged except BSSCAN, which has been set 
to the address of the first character in 
the operand. (See Chart BB.) 

Entry Points: CEVSE1, CEVSE2, CEVSE3 

calling Sequence: INVOKE SETx 
x may be: A, B, C 

Routines Called: BASCAN, DIAG, EVAL 

Exit: Normal 

OPERATION: This routine is called when the 
statement to be processed is a SETA, SETB, 
or SETC instruction. The symbol in the 
name field is checked for validity, and set 
to the value of the expression which 
appears in the operand. Repetitive defini­
tion of the same symbol is permitted. The 
permanent dictionary is used when the macro 
level is zero; the current macro level dic­
tionary is used when the macro level 
exceeds zero. 

SETA Instruction: If the name field is 
unsubscripted, EVAL is called to process 
the operand. Only absolute arithmetic 
values are acceptable. The value is placed 
in the appropriate dictionary item. If the 
name field is subscripted, the subscript is 
checked for validity, and a subscript 
trailer is added to the dictionary item, if 
required. The operand is then evaluated, 
checked for validity, and inserted into the 
subscript trailer. The value is also 
inserted in the logical order file entry. 

SETB Instruction: If the name field is 
unsubscripted, EVAL is called in the logiC­
al expression mode to process the operand. 
The results must be logically true or false 
to be valid. The value bit in the dic­
tionary item is set or reset as required. 
If the name field is subscripted, the sub­
script is checked for validity. hVAL is 
called to evaluate the logical expression, 
and the bit in the dictionary item which 
represents the subscripted value is set or 
reset, 

SETC Instruction: If the name field is 
unsubscripted, BASCAN is called to process 
the operand. Only character strings or the 

68 

type attributes are acceptable. The 
character string must be eight characters 
or fewer. If valid, the value is placed in 
the dictionary item. When the name field 
is subscripted, the value is checked for 
validity, and a subscript trailer is added 
to the dictionary item, if required. The 
operand is then scanned, checked for vali­
dity, and inserted into the subscript 
trailer. The value and length of the sym­
bol are also inserted in the logical order 
file entry. 

Error Checks: 

• An invalid name field. 

• A miSSing subscript. 

• An invalid subscript. 

• A character string too long. 

• An invalid expression type. 

• An invalid value for the field. 

• An invalid operand. 

• Field improperly delimited. 

• Statement incompatible with previous 
definition. 

SPACE -- SPACE Instruction Scan (CEVCE) 

This routine examines SPACE instructions 
for syntactical correctioness. It assumes 
that the caller has previously called BAS­
CAN to scan the name field of this instruc­
tion and that all storage areas affected by 
that call are unchanged except BSSCAN, 
which has been set to the address of the 
first character in the operand field. (See 
Chart BC.) 

Entry Point: CEVCE 

Calling Sequence: INVOKE AS PACE 

Routine Called: DrAG, EVAL 

Exit: Normal 

OPERATION: The name field is checked for 
the presence of blanks or a sequence sym­
bol. If the name is determined to be inva­
lid, it is ignored, and normal processing 
continues. In conversational mode, EVAL is 
then called to examine the operand. Only 
absolute, null, and indeterminate expre­
ssions are considered valid; absolute and 
indeterminate expressions must be delimited 
by a blank. A null expression may consist 
of either a comma or blank. In batch mode, 
control is returned to the caller after the 
name field check. 



Error Checks: 

• The value of the single field must be 
null, absolute, or indeterminate. 

• The single operand field is delimited 
by a blank. 

• The name field is blank or contains a 
sequence symbol. 

TITLE -- TITLE Instruction Scan (CEVTI) 

This routine checks the TITLE instruc­
tion for correct format. It assumes that 
the caller has previously called BASCAN to 
examine the name field of this instruction 
and that all storage areas affected by that 
call are unchanged except BSSCAN, which has 
been set to the address of t.he first 
character in the operand. (See Chart BC.) 

Entry Point: CEVTI 

calling Sequence: INVOKE ATITLE 

Routines Called: BASCAN, DIAG 

EXit: Normal 

OPERATION: The name field is checked for 
up to four alphabetic or numeric charac­
ters. If found, and this is the first 
TITLE instruction, the field is saved for 
later use in card identification. The 
operand field is checked for a character 
string with a maximum length of 100 charac­
ters. If a character string is found, it 
is saved for later use in printout of 
assembly listing. If the character string 
length exceeds 100 characters, only the 
first 100 characters are retained for later 
use. Control is then returned to the 
caller. 

Error Checks: 

• The name field contains an invalid 
symbol. 

• The name field of the second and fol­
lowing TITLE instructions is not blank. 

• The name field of TITLE exceeds four 
characters. 

• An invalid operand field. 

• A truncated value (when operand exceeds 
100 characters in length). 

USE/DROP -- USING and DROP Instructions 
Scan (CEVUD) 

This routine examines DROP and USING 
instructions for valid operand fields and 

correct formatting. It assumes that the 
caller has previously called BASCAN to scan 
the name field of this instruction and that 
all storage areas affected by that call are 
unchanged except BSSCAN, which has been set 
to the address of the first character in 
the operand field. (See Chart BO.) 

Entry Points: CEVU01, CEVUD2 

Calling Sequence: INVOKE AUSING or ADROP 

Routines Called: DIAG, ~VAL 

Exit: Normal 

OPERATION: The name field of the statement 
must be blank or must contain a sequence 
symbol. In the event of an invalid name 
field, a warning is issued and the name is 
ignored. In batch mode a GSM entry is made 
and control is returned to the caller. 
Otherwise, the instruction operand is 
examined. For USING instructions the first 
operand field is evaluated to see that it 
is valid; it must be relocatable. absolute, 
complex, or indeterminate. 

The register designations are examined 
to see that they are absolute or indeter­
minate expressions. If general register 0 
is specified in a USING statement, its 
treatment will be the same as for any other 
general register. The user can thus con­
veniently address page 0 of virtual storage 
by specifying general register 0 as a base 
register. However, an element of relocata­
bility is lost. Any area covered by GR 0 
is effectively the same as specifying no 
base register at all, and hence cannot be 
relocated at execution time. For DROP 
statements the validity of the register 
designations is checked. If no operands 
are present, all registers which have been 
designated as base registers will be 
dropped. Registers which are specified 
must be specified by absolute or indeter­
minate expressions. The delimiters are 
checked and must be a comma or blank. A 
count is kept to make sure that only 16 
registers a.re listed. GSM entries are 
created for either instruction, and control 
is returned to the caller. 

Error Checks: 

• At least one base register designated. 

• The number of register designations 
less than or equal to 16. 

• The expression representing the first 
operand of USING statement absolute, 
indeterminate, complex, or relocatable. 

• The expression deSignating the register 
absolute or indeterminate. 

Section 5: Phase I 69 



• The operand fields delimited by a comma 
or blank. 

• The name field blank or contains a 
sequence symbol. 

• A given register not designated more 
than once in any Single instruction. 

• The absolute value designating a 
register less than or equal to 15. 

MACREF -- Macro Reference Processor (CEVRF) 

This routine is called when analysis of 
the current operation mnemonic indicates a 
macro instruction statement. It is 
responsible for indicating the presence of 
the macro instruction in Phase I and for 
ensuring the presence of the macro defini­
tion in Phase IIA. (See Chart BE.) 

Entry Points: CEVRF, CEVRFl 

Calling Seguence: INVOKE AMCREF 

Routines Called: 

• Internal - DIAG 
DLKM 

or 
L 
BR 

R2,RFOll 
R2 

MACLKT 
PARAMAC 

VMGET 

• External - CEVMLA, CEVMLB 

Exit: Normal 

OPERATION: Macro instructions are directed 
to this routine. To provide the type 
attribute M, this routine first determines 
whether there was a symbol in the name 
field of the source line. If so, a transi­
tive item is constructed, if one does not 
already exist, and this item is flagged. 
In Phase I, an entry for the GSM chain is 
constructed to cause the expansion of the 
macro instruction during Phase IIA. In 
Phase IIA, the current statement is a 
nested macro instruction and is to be 
expanded on the spot. 

If the macro definition does not cur­
rently exist in assembler working storage, 
I/O activity is initiated to read the 
source lines into working storage and chain 
the lines together. The input source mode 
of REED is then set to the macro library 
mode, and REED is directed to the prototype 
line of the definition. The macro defini­
tion switch is set to 1, indicating a 
definition: control is transferred to the 
input branch of STAN with an open transfer 
(not a subroutine linkage); and an indica­
tor is set to denote MACREF mode. 

70 

Subsequent statements are procured from 
library lines previously stored and are 
interpreted as a macro definition. The 
occurrence of the MEND statement when 
MACREF mode is set re-directs control to 
this module at the point of departure. 

PARAMAC is called to perform initializa­
tion of the macro level dictionary and set 
the input source mode of REED to macro 
definition mode so that, upon return to 
STAN, subsequent statements will be pro­
cured from the macro definition currently 
referenced. 

If the macro definition exists in 
storage, the process of obtaining the 
definition from the library is bypassed, 
and PARAMAC is called directly. 

Error Checks: 

• Duplicate symbOl. 

• Error in macro library retrieval. 

• Error in library macro definition. 

MACDEF -- Macro Definition Processor 
(CEVDF) 

This routine controls the processing of 
macro definitions. It monitors statements 
appearing between MACRO and MEND state­
ments, and is responsible for entering the 
name of the macro in the macro name dic­
tionary. (See Chart BF.) 

Entry Point: CEVDF 

Calling Sequence: INVOKE AMCDEF 

Routines Called: 

Exi t : Normal 

CATOP 
COPY 
DIAG 
GETOP 

(error return) 
(normal return) 

MACLKT 
MACPUT 
SUBOP 

Error - ISEQ or ICTL within a macro 
definition or macro rede­
fines an assembler 
mnemonic. 

OPERATION: This routine is called by STAN 
when it is known that a macro definition is 
being input (MDS is not zero). At this 
pOint it is known also that the operation 
code of the current line is neither MEND 
nor MACRO. 

If MDS equals 1, this indicates the pre­
vious source line was a MACRO statement and 
therefore the current line is the prototype 
statement. A macro name item is con­
structed in the main dictionary using the 



contents of the operation code field (maxi­
mum eight characters) as the key. In addi­
tion, the operation code is looked up in 
the operation code table and, if a match is 
found, and the code is a machine operation, 
a diagnostic is issued warning that a 
machine mnemonic code has been redefined by 
a macro definition. The redefinition indi­
cator is turned on in the matching opera­
tion code table entry. If the redefined 
operation is an assembler instruction, the 
statement is diagnosed as illegal. and all 
statements except END are treated as com­
mentary. The dictionary item for the macro 
name is completed by inserting t.he location 
of the LOF entry for the prototype line and 
the location of the prototype line itself. 
The former is used by MACREF in initializ­
ing REED to read the definition when the 
macro is expanded. The latter is used by 
PARAMAC to establish a temporar~' macro 
level dictionary when the macro is 
expanded. 

After establishing the macro name item, 
return is made to STAN. Thereafter, incom­
ing statements from STAN pass through this 
module: the operation codes ISEQ, ICTL, and 
END are diagnosed as illegal within a macro 
definition. The LOF entry for an ISEQ or 
ICTL is deleted, and an error return is 
made. If the statement is END, the end 
indicator (ENDIND) is set, and a normal 
return is made. COpy statements cause the 
COpy module to be called, which reads in 
the library element and pushes down the 
input source switch in REED so subsequent 
statements originate from the library. 
copied statements thus become part of the 
macro definition and not part of the expan­
sion. COPY statements during expansion are 
suppressed by REED in the macro definition 
mode. 

Error Checks: 

• ISEQ, ICTL or END within macro 
definition. 

• Macro redefines an assembler 
instruction. 

CSCAN -- Constant Scan (CEVCS) 

This routine collects and analyzes each 
subfield of a data definition. It obtains 
and, when necessary, converts the constant 
to produce constant items for each operand 
examined. The attributes of the constant 
are also evaluated. (See Chart BG.) 

Entry Point: CEVCS 

Calling Seguence: INVOKE 

Routines Called:BASCAN 
DIAG 

ACSCAN 

EDEC 
EVAL 

Exit: Normal 

Input Parameters: 

BSSCAN Word pointer to location of 
first character of expression 

Output Parameters: 

RO Beginning address of constant item; 
zero if scan mode or unable to 
process. 

R1 Set to 1 if multiple operands; 
otherwise, it is zero. 

R2 Set to 1 if a location counter 
reference is encountered in A, S, Y 
types; otherwise, it is zero. 

OPERATION: This routine is called to pro­
cess the operands of DC, OS, and DXD state­
ments, by Phase lIB to process literals, 
and by the literal scan routine in EVAL to 
obtain the character len'1th ot t:rie source 
text that represents the entire literal. 

If the literal scan mode switch is on, a 
constant item is not generated, and all 
diagnostics are suppressed except those 
pertaining to literals. 

If the l.iteral scan mode switch is not 
on, a constant item is formed for the 
operand, and, when necessary, the constant 
is generated. and its value appended to the 
constant item. The length attribute is 
computed for all data types. When appro­
priate, the integer and scale attributes 
are also computed. In the case of multiple 
constants, these attributes are those of 
the first constant in the set. A DC state­
ment with a zero duplication factor is 
treated as if it were a DS statement. No 
values are attached for OS statements and 
for address constants. 

A call to this routine causes a single 
operand to be processed; however, the 
operand fiE~ld may contain multiple 
operands. If the delimiter that terminated 
the operand field was a comma, the caller 
is notified so that this module may be 
reentered to process the remaining 
operands. 

Error Checks: 

• Zero duplication factor in literal. 

• Truncated value. 

• Invalid hexadecimal constant. 

• Invalid binary constant. 

• Floating point characteristic out of 
boundS. 

Section 5: Phase I 71 



• All precision lost during scaling. 

• Invalid decimal constant. 

• Improper operand for V-type address 
constant. 

• Improper operand for R-type address 
constant. 

• Invalid delimiter. 

• Invalid type subfield. 

• Value of length modifier invalid for 
type of constant. 

• Scale modifier not permitted for type 
of constant. 

• Exponent modifier not permitted for 
type of constant. 

• Exponent modifier out of range. 

• Scale mOdifier out of range. 

• Multiple constants not permitted for 
type of constant. 

• Data omitted from DC operand. 

• Invalid operand field. 

• Improper operand for Q-type address 
constant. 

SSCAN -- String Substitution Scan (CEVSS> 

This routine performs string substitu­
tion of variable symbols and symbolic para­
meters appearing in a source statement. 
(See Chart BH.) 

Entry Points: CEVSS, SSCAN2 

Calling Sequence: INVOKE ADSCAN 

Routines Called: 

Exit: Normal 

DIAG 
DLKM 

(error return> 
(normal return) 

DLKT VMGET 
EVAL 

Error - Invalid parameter or sub­
string notation 

OPERATION: Translate and test instructions 
are used to isolate variable symbols in the 
statement to be scanned. The variable sym­
bol isolated by this method is then looked 
up in either the macro level dictionary or 
main dictionary, whichever is pertinent. 
The dictionary item for the symbol yields 
either a character string or other value, 
which is then substituted for the symbol in 
a reconstructed version of the statement. 

72 

Special rules govern substitution in the 
operand field of SETB and AIF instructions. 
SETB symbols represent Boolean values which 
will not be apparent to EVAL if replaced by 
the corresponding character string value. 
Accordingly, SETB symbols appearing within 
quotation marks are always replaced. Out­
side quotes, the character string is sub­
stituted only when concatenation to the 
surrounding character string is indicated. 
Substitution is not performed if the SETB 
symbol, including subscripts, is delimited 
on both the left and the right by an arith­
metic operator (+, -. /. or *>. a parenthe­
sis. or a blank. The character string 
value is concatenated if the SETB symbol is 
delimited on either side by a character 
other than those mentioned above. 

In the operand field of SETC instruc­
tions, and for character values found in 
logical expressions, two or more character 
expressions are concatenated into a single 
string when required. Substring notation 
is interpreted and the selected substring 
is substituted when such notation is 
present. 

Special processing is performed when 
attribute notation is encountered. If the 
count or number attributes of a symbolic 
parameter or the type attribute of a sym­
bolic parameter whose argument is not a 
symbol are requested, the respective 
integral or character string value of the 
attribute is substituted for the attribute 
notation. If the argument is a symbol, the 
parameter is replaced by the argument, and 
the attribute notation is left intact; its 
value is obtained subsequently. This dif­
ference in processing arises because N' and 
K' are attributes of the symbolic parameter 
itself, whereas T is an attribute of the 
argument if the argument is a symbol, but 
is otherwise an attribute of the parameter. 

Similar treatment is also performed for 
the substitution of system variable symbols 
and their attributes. 

EVAL -- Expression Evaluator (CEVEV) 

This routine evaluates an arithmetic or 
logical expression designated by the cal­
ling module, and returns with the value and 
type of the expression. (See Chart BI.) 

Entry Point: CEVEV 

Calling Sequence: INVOKE 

Routines Called: BASCAN 
CSCAN 
DIAG 
DLKM 

AEVAL 

DLKT 
DLPM 
EBIN 
ECHAR 

EDEC 
EHEX 
PSCAN 



Exit: Normal 
Error - Unbalanced parentheses or 

invalid parameters 

Input Parameters: 

BSSCAN Word pointer to location of 
first character of expression 

FAL i-byte flag with value of 0 
(arithmetical expression) or 1 
(logical expression) 

output Parameters: 

RO Value of the expression, if abso­
lute value; absolute part if 
relocatable. 

Rl Location of RLD string, if relocat­
able: otherwise, no information. 
For a description of the RLD str­
ing, see "Comments,· below. 

R2 Length of RLD string (in bytes) if 
relocatable; otherwise, no 
information. 

FEX l-byte exit flag; indicates type of 
expression evaluated and set as 
follows: 

Expression Type 
Absolute Arithmetic 
Absolute Boolean 
Relocatable 
Literal 
Indeterminate 
Error in Syntax 
Null; first character 

was end-of-expression 
delimiter 

Complex 

Hex Bit 
Value Set 

00 
01 
02 
04 
08 
10 

20 
40 

OPERATION: Following is a description of 
the operation performed for each function 
of the routine. 

Scanning Techniques: BASCAN is employed to 
scan the expression. The normal output of 
this routine is either a term followed by 
an operator (delimiter)or an operator alone 
(null term). 

The right delimiter serves as an inter­
pretive key to the expression. In an ari­
thmetic expression, a comma or space indi­
cates the end of the expression. A left or 
right parenthesis may also indicate the end 
of the expression, subject to the following 
conditions: 

• A left parenthesis following a preced­
ing left parenthesis or operator is 
considered to be algebraic. A left 
parenthesis following a term is consi­
dered the end of the expression, unless 

the term itself requires subscript 
notation. In the latter case, appro­
priate indicators are placed in tables 
internal to this routine and a recur­
sive evaluation of the expression for 
the subscript is started. 

• For a logical expression, an unbalanced 
right parenthesis indicates the end of 
the expression. Spaces serve to separ­
ate the logical and relational opera­
tors but do not delimit the expression 
as a whole. The calling routine indi­
cates by setting a switch whether this 
routine is to operate in the arithmetic 
or logical mode. 

• In the logical mode, a symbol occurring 
where an operator is expected causes 
this routine to test the spelling of 
the symbol against that of the logical 
and relational operators. If a match 
is found, the symbol is treated as an 
operator. 

Interpretation of Terms: BASCAN returns to 
this routine with a character substring 
consisting of a term followed by its right 
delimiter, or with a right delimiter only 
(a null term). It also provides an indica­
tor to tell whether a term is present, and 
if so, the type of term. This indicator is 
tested for one of the following seven poss­
ible outcomes: 

• There is no term (a null, or operator, 
or righi: delimiter only): control is 
transferred to the lone operator rou­
tine, which is described in a later 
section. 

• The term is a literal: in Phase III of 
the assembler, the normal procedure is 
to (1) create a hash uumber from the 
first eight characters of text (exclud­
ing =) and inserting blanks in the 
lower order bytes, if necessary, (2) 
locate the literal in the dictionary, 
and (3) create an RLD output list and 
classify the expression as relocatable. 
In earlier phases, the literal is mere­
ly scanned over, and the expression is 
classified as indeterminate. 

• The term is the location counter *: 
the location counter is relocatable, so 
unless the expression contains a term 
that can be paired with it, the result­
ing expression is relocatable also. 
The location counter indication is 
placed in an RLD string; its format is 
the same as a dictionary item. 

• The term is a symbol name: it may be 
absolute, relocatable, undefined, or 
complex. The normal procedure is to 
create a hash number from the symbol 
name, look it up in the dictionary, and 

Section 5: Phase I 73 



get the value from the value field in 
the dictionary. The exceptions to this 
procedure are: (1) The symbol name is 
not in the dictionary -- the term is 
indeterminate. A code will be set and 
an exit to the calling routine will be 
made. (2) The symbol was found, but 
the value was not there, meaning that 
the term is relocatable. The term will 
be put into the RLD string. If the 
associated operator is not ADD or SUB­
TRACT, there is an error, and an error 
code will be set and control will be 
returned to the calling routine. (3) 
The term is an external reference; an 
indicator code will be set and an exit 
will be made. 

Cross-reference items are prepared by a 
subordinate routine for each symbol 
encountered when the cross-reference 
mode indicator is set. 

• The term is an attribute of a symbol: 
the normal procedure is to create a 
hash number from the symbol name, find 
the symbol name in the dictionary, get 
the specified attribute from the attri­
bute field in the dictionary, and use 
this as the value of the term. The 
exceptional procedure occurs when the 
symbol name is not in the dictionary; 
an error code will be set, and an exit 
will be made. 

• The term is self-defining: an indica­
tor from BASCAN indicates the type of 
self-defining term. The term will be 
evaluated. 

• The term is absolute Boolean; a diag­
nostic will be issued and an exit will 
be made. 

Interpretation of Parentheses: A left 
parenthesis as a right delimiter has two 
interpretations: 

74 

• It is the end of the expression and 
introduces a subfield. 

• The term is a subscripted variable sym­
bol, and the item being introduced by 
the parenthesis is an expression that 
will identify the correct value from 
the group of values associated with 
this term. 

When the term is found in the dic­
tionary, the maximum subscript value 
field can be tested to determine which 
interpretation is correct. If the 
field is zero, there is no subscript; 
if it is not zero, a subscript must be 
present. If the term is nonsub­
scripted, the left parenthesis ter­
minates the current expression. Eva­
luation of the expression is completed 

and control is returned to the calling 
routine. If the parenthesis level 
counter indicates that the expression 
is not finished, an error message is 
given. 

If the term is subscripted, a flag is 
placed in the waiting stack (see DOrder 
of Scan"), while the expression inside 
the parenthesis is evaluated. If one 
of the terms inside the parentheses 
also has a subscript, another flag is 
placed in the waiting stack and that 
expression is evaluated. Flagging and 
stacking of subscript expressions in 
the stack can be carried on indefinite­
ly. When a subscript expression is 
finally evaluated, the proper value for 
the term can be found from the dic­
tionary. At this point the flag is 
removed from the waiting stack, and 
evaluation of the previous expression 
can be resumed. A left parenthesis 
that follows a right parenthesis,) (, 
indicates an end of the expression. 
The left parenthesis is presumed to 
introduce a subfield that has followed 
a subscripted set symbol. 

Determination of Order: The order in which 
the operations in an expression are per­
formed is controlled by the level of paren­
theses and by the hierarchy of the opera­
tors. Operators of the same hierarchical 
and parenthetical level are performed from 
left to right, as they are encountered by 
the scanner. 

Since the parenthetical and hierarchical 
levels of the operators may dictate a 
sequence of operations that is different 
from the order in which they are encoun­
tered by the scanner, a pushdown (last in, 
first out) table is created for holding 
those operations that have been scanned, 
but whose execution must be delayed. 
Entries in this table consist of a term, an 
operator, and a parenthesis-level indica­
tor. There is also an index associated 
with the table that identifies the most 
recent entry in the table. 

In performing required operations, the 
hierarchical level of the current operator 
is compared with that of the next operator; 
if the level of the next operator is high­
er, the current operator, and its terms, 
are placed in the waiting stack. Then the 
next term and operator become the current 
term and operator, and a new next term and 
operator are obtained from the scanner. 

Whenever the new operator has a lower 
hierarchy than the current one, the current 
operation is performed. The next term and 
operator are then retrieved from the wait­
ing stack, whose index is then reduced. 
Parentheses override the hierarchy of 



operators. When a left parenthesis is 
encountered in the position of an operator, 
the current operator and term are placed in 
the waiting stack. The parenthesis level 
counter is increased by 1 and placed in the 
stack also. The evaluation is continued as 
above until a right parenthesis is encoun­
tered. At this time the operation for the 
current level of parenthesis in the waiting 
stack is performed. When these are com­
pleted, the parenthesis level counter is 
reduced by 1. 

Logical Expressions: The calling routine 
will set a flag when the expression that is 
presented to this module is expected to 
contain logical or relational operators. 
This will occur when the statement is a 
SETB or AIF assembler instruction. This 
flag signals the coding that is normally 
bypassed to be executed, and changes the 
way in which certain delimiters are inter­
preted. An unbalanced right parenthesis or 
end-of-statement control will now indicate 
end of expression, and these methods are 
the oniy legal ways to end the expression. 
When a symbol occurs in a position within 
the expression normally occupied by an 
operator, the symbol is compared with a 
table of logical and relational operators. 
If it matches one of them, a one-byte code 
is used to represent the operator. If no 
match occurs, the symbol is assumed to be a 
term, and the previous item is compared 
with the unary operator NOT. If this is a 
match, the unary NOT flag is set; if not, 
DIAG is called to indicat.e that t~wo terms 
have been written without an operator, and 
an exit is made. The hierarchy of the log­
ical and relational operators is meshed 
with the arithmetic operators and evalua­
tion of the expression proceeds exactly as 
it does for an all-arithmetic expression, 
except that an expanded list of operators 
is accepted, and logical terms can only be 
combined with other logical terms. The 
value of an expression containing a logical 
or relational operator is a logical 1 or 0, 
depending on whether the expression is TRUE 
or FALSE, respectively. 

Reduction of Relocatable Expressions: If 
there is more than one relocatable term in 
an expression, it is possible that they may 
be paired off in a way that cancels the 
relocatable aspect of the terms and pro­
duces an absolute expression. Every effort 
is made to do this. For instance, if terms 
A and Bare relocatable, and if they occur 
in the same control section, the expression 
(A+5-B)*2 is absolute. (A+B)*2 is not, 
because the sum of A and B is not fixed, 
and the relocatable aspect will not cancel. 
When relocatable terms are encountered in 
the expression, the location in the dic­
tionary of the term, the operator, and the 
parenthesis level are placed in an RLD str­
ing. (If the operator is not ADD or SUB­
TRACT, DIAG is called and an exit is made.) 

o 2 3 4 5 6 7 

o I 
8 

~6 

24 
0 15 16 23 24 31 

Figure 17. waiting stack format. 

At each parenthesis level an attempt is 
made to pair off all relocatable terms in 
the RLD string. If terms are in the same 
control section and have opposite signs, 
they may be paired. If the resulting value 
of a given parenthesis level is absolute, 
an add, subtract, multiply, or divide 
operation may be performed on it. If it is 
relocatable, only an add or subtract opera­
tion may be performed, and any other opera­
tion will cause an error message and an 
exit. The final value of an expression 
that contains relocatable terms may be 
relocatable or absolute, depending on 
whether all the relocatable terms can be 
paired off. If the final value is relocat­
able, the output will consist of an abso­
lute part plus an RLD string containing the 
unpaired relocatable terms and their opera­
tors and the location and number of entries 
in the RLD string. 

Order of Scan: The sequence in which the 
operations in an expressl0n are performed 
is determined by parentheses and by the 
hierarchy of the operator. A table called 
the waiting stack (Figure 17) is created to 
hold operations that cannot be performed at 
the time they are scanned. Scanning the 
expression is done from left to right, and 
is performed by BASCAN. On each calling of 
this module, it gets the next string, which 
usually consists of a term followed by a 
delimiter (or operator). 

The format of the waiting stack is shown 
in Figure 17. Each entry is 8 bytes long 
as follows: 

Byte 
0-1 

Content 
Parenthesis level (number of left 
parentheses encountered minus 
number of right parentheses 
encountered> 

2 Operator 

Arithmetic 
Addition (+) 
Subtraction (-) 

Hex value 
F4 
F6 

Section 5: Phase I 75 



4-7 

Multiplication (*> 
Di vision (/) 

F8 
FA 

Logical 
OR 08 

OA 
oc 
CO 
AO 
80 
70 
40 
20 

AND 
NOT 
LE 
GE 
EQ 
NE 
LT 
GT 

Content 
Flags 
Bit 
-0-- K attribute expression 
1 SETB statement 
2 Relocatable expression 
3 Subscripted expression 
4 N attribute expression 
5 New parenthesis level 
6 Logical operator 
7 Arithmetic operator 
Value of the expression following 
the operator. 

Hierarchy of Operators: The hierarchy of 
the next operator is compared with that of 
the current operator (which is initialized 
to +). If the next operator is equal or 
lower than the current operator in hierar­
chy, the operation between the current 
value (current term), current operator, and 
next term is performed. This result be­
comes the current value, the next operator 
becomes the current operator, and a new 
string is obtained. 

If the next operator is higher than the 
current operator in hierarchy, the waiting 
stack pointer is stepped by 1 entry (8 
bytes); and the current value, current 
operator, and current parenthesis level 
counter (CPLC) are placed in the stack. 
The next operator and next term become the 
current value (term) and current operator 
and the next string is obtained. 

When the delimiter is an end of expres­
sion indicator -- blank or comma, for 
instance -- it is treated as an operator of 
lowest hierarchy. The operation involving 
the current value, current operator, and 
next term is performed. The parenthesis 
level of the entry in the stack designated 
by the waiting stack pOinter is compared 
with the CPLC. If equal, the operation 
between the waiting term, waiting operator, 
and current value is performed. The stack 
pointer is stepped back by one entry, and 
another parenthesis level test is made. 
When the parenthesis level in the stack is 
not equal to the CPLC. there are no more 
items in the stack at this parenthesis 
level, and the current value is the final 
value for that parenthesis level. 

76 

Hierarchy of Parentheses: Upon calling 
the scan. a null string, consisting of a 
delimiter only, with no term. may be 
returned. When this delimiter is a left 
parenthesis. the CPLC is stepped by +1; the 
stack pointer is stepped to the next entry; 
the current value, current operator, and 
CPLC are put in the stack; zero replaces 
the current value; and ADD replaces the 
current operator. Then BASCAN is summoned 
to fetch the next string. 

When the delimiter of a term is a right 
parenthesis, this is treated as an operator 
of low hierarchy, and the current operation 
is performed, and all the operations in the 
stack at the current parenthesis level are 
performed. Then the CPLC is stepped back 
by 1 and scanning continues. 

If the next string is a lone right 
parenthesis (without a term), all the 
operations in the stack at the current 
parenthesis level are performed, the CPLC 
is stepped back by 1, and scanning is 
resumed. 

If, following a right parenthesis, the 
next string is a null string consisting of 
an arithmetic operator, this becomes the 
current operator and the next string is 
obtained. 

Retrieval of Subscripted Values: Two con­
ditions must be satisfied for a term to 
have a subscript: 

• The right delimiter of the term must be 
a left parenthesis. 

• The term must be a variable symbol 
defined in the dictionary as a sub­
scripted set symbol parameter, or the 
system symbol SYSLIST. 

If the first condition is met and the 
second is not, the left parenthesis is an 
expression delimiter (which is also intro­
ducing a subfield expression). If only the 
second condition is met, a diagnostic is 
issued, and a subscript value of 1 is 
assumed. These tests are made while the 
item is still in the position of being the 
next string. If both conditions for a sub­
scripted term are met, the stack pointer is 
stepped by one entry and the current value 
and current operator are put in the stack; 
then the current value is set to zero and 
the current operator is set to +. The CPLC 
is stepped by +1, the stack pointer is 
stepped by one entry, and the dictionary 
location of the term is placed in the 
stack. A subscript flag is also put in the 
stack. The operator of this term has not 
been scanned yet and will be placed in the 
stack later. A flag is set which will ind­
icate that any relocatable term that is now 
encountered is an error. This expression 



is now evaluated in the usual way by cal­
ling BASCAN to get another next string. 
Another subscripted term may occur within 
this expression. It will be handled as 
described above. 

When the delimiter of the subscript 
expression is encountered, the items wait­
ing in the stack are pulled out and pro­
cessed as usual, until the last one in the 
stack is encountered. This last item is 
identifiable in two ways: (1) it is the 
last item of the current parenthesis level 
(indicated by CPLC), and (2) the dictionary 
location of the term will be present in the 
stack (i.e., this field is nonzero). The 
type field in the dictionary is tested, and 
the proper value for the nth subscript is 
taken from the dictionary. 

For SET symbols and &SYSLIST, the sub­
scripted value is retrieved directly. For 
parameters, a subordinate module PSCAN is 
called. PSCAN examines the argument string 
of the nth sublist operand for validity. 
The argument string must be interpretable 
as a self-defining term for the subscript 
expression to be valid. If the argument is 
a self-defining term, its binary value is 
obtained by PSCAN and given to this module 
upon return. The accumulated value of the 
previous expression is in the stack and can 
be reached by stepping the stack pointer 
back by one entry and reducing the CPLC by 
1. The value of the current term comes 
from the dictionary (via the subscript) and 
the operator for it comes from BASCAN. 

Comments: The RLD string consists of 
entries of the following format: 

o 7 8 31 
r----------T------------------------------, 
I I I 
I OP I LOCATION I L-_________ ~ ______________________________ J 

An entry of this type is completed for each 
relocatable symbol in an expression. All 
entries for symbols in a given expression 
are combined to form the RLD string. 

OP represents the operation associated 
with a relocatable symbol; this is, by 
definition, limited to either subtraction 
or addition. LOCATION is a pointer to the 
relocatable v.alue item for the symbol and 
is the means by which the section number 
and displacement of a relocatable symbol 
can be procured. There is no limit placed 
upon the number of terms that may be con­
tained in an expression. 

Error Checks: 

• Undefined symbols 

• Invalid expression type for field 

• Invalid attributes 

• Multiple literals 

• Improper formation of logical 
expressions 

• Invalid self-defining terms 

• Unbalanced parentheses 

• Consecutive terms and operators 

• Number of terms exceeding OS compatibi­
lity limits 

• Multiplication or division of relocat­
able terms 

• Invalid subscript values 

• Invalid variable symbols and parameters 

• Missing subscripts 

• Arithmetic overflow during evaluation 

PSCAN -- Parameter Item Analyzer (CEVPS) 

This routine determines whether the 
argument string for a parameter consists of 
a self-defining term. (See Chart BJ.) 

Entry Point: CEVPS 

Calling Sequence: 

INVOKE APSCAN 
Other return (4 bytes) 
Self-defining term return 

Input Parameters: 

Rl Location of parameter item 
R2 Value of subscript to apply, if any 

Routines Called: 

Exi t : Normal 

Output Parameters: 

EBIN 
ECHAR 

EDEC 
EHEX 

Rl Value of self-defining term (32 
bits) 

OPERATION: This routine examines the argu­
ment character string contained in a para­
meter dictionary item. If the character 
string exhibits the characteristics of a 
self-defining term, the appropriate conver­
sion subroutine (subordinate to EVAL) is 
called to convert the term to its proper 
value. which is then returned to EVAL as 
the value of the parameter symbol. If the 
argument string does not appear to be a 
self-defining term, an alternate exit is 

Section 5: Phase I 77 



taken; EVAL then considers the expression 
containing the parameter to be unevaluable. 

comment: The argument strings for the 
majority of parameter symbols are substi­
tuted into the source statement by SSCAN, 
prior to assembly of the statement. Howev­
er, when the parameter which SSCAN is sub­
stituting is subscripted, EVAL is called to 
provide the value of the subscript. The 
assembler language permits parameters to 
appear within the subscript; thus EVAL may 
encounter a parameter symbol which has not 
yet been substituted by SSCAN. In this 
case, the parameter is legitimate if its 
argument string can be interpreted as a 
self-defining term. This routine makes 
this determination and provides the value 
of the term for EVAL. EVAL allows for 
nested subscripts. 

EBIN -- Binary self-Defining Term Generator 
(CEVGB) 

This routine converts a character string 
of zeros and ones into a binary integer. 
(See Chart BK.) 

Entry Point: CEVGB 

calling Sequence: INVOKE AEBIN 
Return 

Input Parameters: 

Rl Length of character string to be 
converted, in bytes. 

R3 Virtual storage address of first 
character of string. 

Routines Called: DIAG 

Exit: Normal 

output Parameter: R6 Result 

OPERATION: The length of the character 
string is tested against 32. If it exceeds 
32, a warning message is printed. Then the 
bit string is truncated on the left, and 
the righ~~ost 32 bits are accepted into the 
character string. BASCAN has already 
checked for any character in the string 
which is not zero or not one, and a warning 
message was printed. These characters are 
transmitted to this module unaltered, and 
this module interprets characters with odd 
codes as 1 and even codes as O. Thus, the 
letter I is interpreted as 1 and letter 0 
as O. 

78 

EDEC -- Decimal Self-Defining Term 
Generator (CEVGD) 

This routine takes a character string of 
numeric digits and converts it into a 
binary integer. (See Chart BK.) 

Entry Point: CEVGD 

Calling Sequence: INVOKE AEDEC 
Return 

Input Parameters: 

Rl Length of character string to be 
converted, in bytes. 

R3 Virtual storage address of first 
character of string. 

Routines Called: DIAG 

Exit: Normal 

Output Parameters: R6 Result 

OPERATION: If the character string exceeds 
10 digits, if a character which is not of 
the decimal set is encountered, or if the 
value of the number exceeds 231_1, a warn­
ing message is printed. Then the routine 
exits with 2 31-1 as the result. otherwise, 
the decimal value is converted to its 
binary equivalent, and exit is made. 

EHEX -- Hexadecimal Self-Defining Term 
Generator (CEVGH) 

This routine converts a string of hexa­
decimal characters into its binary equiva­
lent. (See Chart BL.) 

Entry Point: CEVGH 

Calling Sequence: INVOKE AEHEX 
Return 

Input Parameters: 

Rl Length of character string to be 
converted, in bytes. 

R3 Virtual storage address of first 
character of string. 

Routines Called: DIAG 

Exit: Normal 

Output Parameter: R6 Result 

OPERATION: The length of the character set 
is tested against 8. If it exceeds 8, a 
diagnostic message is printed. If it con­
tains fewer than 8 characters, the resul­
tant word is zero filled on the left to 
make up the difference. Then the bit 



string is truncated on the left, and the 
rightmost 32 bits are accepted into the bit 
string and placed in the output word. If a 
character that is not of the hexadecimal 
set is encountered, a warning diagnostic 
message is printed. The lower four bits of 
the 8-bit character (i.e., the numeric por­
tion) are taken to form the hexadecimal 
digit. 

ECHAR -- Character Self-Defining Term 
Generator (CEVGC) 

This routine takes a character string 
and puts it in the format of a character 
self-defining term. <See Chart BL.) 

Entry Point: CEVGC 

Calling Sequence: INVOKE AECHAR 
Return 

Input Parameters: 

Rl 

R3 

Length of character string to be 
converted, in bytes. 

Virtual storage address of first 
character of string. 

Routines called: DIAG 

Exit: Normal 

output Parameter: R6 Result 

OPERATION: This routine takes a string of 
characters and formats them into one full 
word. If the input character string con­
tains fewer than four characters, the word 
is zero filled on the left, and the charac­
ters are right aligned in the word. If the 
input character string exceeds four charac­
ters, a diagnostic message is printed. 
Then the character string is truncated on 
the left, and the rightmost four characters 
in the string are assembled in the output. 

SLIT -- Scan for Literal Operand (CEVSL) 

This routine scans the operand of a 
machine instruction to determine if a lit­
eral operand is present. If a literal is 
found, its location is added to the current 
logical order file entry. (See Chart BM.) 

Entry Point: CEVSL 

Calling Sequence: INVOKE ASLIT 

Routines Called: None 

Exit: Normal 

OPERATION: This routine is called in batch 
assemblies. It uses the logical order file 
entry to locate the operand field of the 
current statement, then performs a trans­
late and test instruction to locate a lit­
eraloperand (denoted by the character =). 
If a literal is found, the location of the 
= in the source statement is added to the 
current logical order file entry. 

DLPM -- Dictionary Lookup and Put (CEVLP) 

This routine finds the location of a 
given symbol in the main dictionary, and 
creates a skeletal dictionary item for the 
symbol if it has not been entered previous­
ly. (See Chart BN.) 

Entry Point: CEVLP 

Calling Seguence: INVOKE ADLPM 

Input Parameters: 

RO 

Rl 

Location of the first byte of the 
name to be found or put in the main 
dictionary. 

Length of the name (in bytes) spe­
cified in RO. 

Routines called: None 

Exit: Normal 

output Parameters: 

R2 

R3 

Location in the main dictionary 
where the given name was found or 
placed. 

Zero = name was placed in 
dictionary. 

Nonzero = name was already in 
dictionary. 

The condition code also reflects 
this outcome: 

o 

1 or 2 

name was placed in 
dictionary. 
name was already in 
dictionary. 

R6 Address of hash table value for the 
symbol in question. 

OPERATION: The main dictionary is searched 
for the given name. V-type external 
definition items are invisible to this 
search. If the name is found and is not in 
a transitive item, this module returns to 
the calling routine with the location of 
the name in the main dictionary in R2. R3 
will be nonzero, and the condition code 
will be 1 or 2. 

Section 5: Phase I 79 



If the name is not found or is found in 
a transitive item, a skeletal dictionary 
entry is created in the next available 
location in working segment 2 (via AWORK2). 
Specifically, the name is placed in WORK2 
through WORK2+7, the location of the next 
hash synonym (relative to the base of work­
ing segment 2) is placed in WORK2+9 through 
WORK2+11. and WORK2+8 is cleared. AWORK2 
is not updated; the caller must update this 
value when he completes the entry. The 
location of the dictionary item is passed 
back to the caller, with an indication as 
to whether the symbol previously occurred 
in the name field of a macro reference. 

DEFSYM -- Define Location Symbol (CEVSY) 

This routine constructs and enters into 
the main dictionary a relocatable value 
item representing the name field symbol (if 
present) of the current source statement. 
(See Chart BO.) 

Entry Point: CEVSY 

calling Sequence: INVOKE ADFSYM 

Routines Called: DIAG, DLPM 

Exi t : Normal 

OPERATION: If the name field is blank or 
contains a sequence symbol or BASCAN indi­
cated an error, control is immediately 
returned to the caller. Any other type of 
entry in the name field is diagnosed as an 
error and ignored; an exit to the caller 
occurs. 

A valid symbol in the name field causes 
the main dictionary to be searched for that 
symbol. If the same symbol was defined 
previously, an error has occurred. A diag­
nostic is issued, the first definition is 
honored, and control is returned to the 
caller. If the symbol had not been 
defined, a dictionary item is created for 
that symbol. The type of dictionary item 
made and the amount of information included 
in the item are a function of the instruc­
tion type being processed. At this point 
control is returned to the caller. 

DIAG -- Diagnostic Message Processor 
(CEVDX) 

This routine inserts specified variable 
information into a specified diagnostic 
message and disposes of the message. (See 
Chart BP.) 

Entry Point: CEVDX 

Calling Sequence: INVOKE ADIAG 
Return 

80 

Input Parameters: 

RO Location of source (nonstandard> 
variable information, if any; or 
location of operand text of MNOTE 
instruction (character following 
the opening quote): if standard 
variable information is used. 

Rl Lengths in bytes of source variable 
information. If required by the 
message, Rl contains an index into 
the standard variable table. If 
MNOTE, Rl contains the length of 
the operand. 

R2 Location of diagnostic entry rela­
tive to base of text locator table. 
If sign bit is on, indicates MNOTE 
parameters; for MNOTE, bits 24-31 
contain the severity code of the 
MNOTE instruction. 

Routines Called: 

• Internal - None 

• External -

CFADCl Accept diagnostic entry of 
language processor control 

Exit: Normal 

OPERATION: This routine is supplied a mes­
sage number which it uses as an index into 
a text locator table starting from location 
CEVDX3. Entries in this table are one word 
each with the format shown in Figure 18. A 
record is kept in SEVCO of the highest 
severity code encountered. 

variable information for messages is 
limited to eight bytes at the beginning of 
the message. The text of the standard 
variable information is kept in a table of 
doubleword entries (Table 4>. An index 
into this table is supplied with the mes­
sage number whenever standard variable 
information is to be contributed to the 
message. 

If the variable information is to come 
from the source statement, the length and 
location of the source characters are 
supplied. 

o IS 16 l7 
ocottoO R I e af;ve 

to Base of 
/ Diagnostic Table , Severity 

Relative Location of Text ; Code 

Bit Set if Variable 
Info Reg 

23 24 

Length of 
Text 

FigUre 18. Diagnostic text locator entry 
format 

31 

I 



Table 4. Standard variable information 
table 

r---------------------T-------------------, 
I 1 Rl I 17 - OPERAND I 
I 2 R2 I 18 - L I 
I 3 R3 I 19 - M1 I 
I 4 Sl I 20 - COMMAND I 
I 5 S2 I 21 - DATA ADR I 
I 6 D1 I 22 - FLAG FLD I 
I 7 D2 I 23 - COUNT I 
I 8 L1 I 24 - EXPONENT I 
I 9 L2 I 25 - SCALE I 
I 10 I I 26 - BINARY I 
I 11 12 I 27 - DECIMAL I 
I 12 B1 I 28 - FIX-PT I 
I 13 B2 I 29 - FLOAT-PT I 
I 14 X2 I 30 - HEX I 
I 15 NAME I 31 - TYPE I 
I 16 OPERAT"N I 32 - SUBSTRNG I L _____________________ L ___________________ ~ 

When the assembly is in conversational 
mode, the text of the message desired is 
constructed, and the entry in LPC which 
accepts diagnostic messages is entered 
(CFADC1). Messages are classified as glob­
al and local. After typing a local message 
LPC unlocks the terminal keyboard for user 
reaction. If the message is global, LPC 
does not unlock the keyboard. In the 
assembler the global mode is not a function 
of the content of a message but of the time 
when the message is produced. That is, all 
messages generated by Phase IIA are effec­
tively global. This condition is indicated 
by a mode indicator which is interrogated 
before calling LPC. 

If the assembly is in batch mode, the 
information supplied in its calling 
sequence is transcribed to a logical order 
file entry. The listing routine in Phase 
III will then construct and format the mes­
sage during preparation of the machine lan­
guage listing. 

OUT -- Lookup Temporary Dictionary Item 
(CEVTK) 

This routine finds the location of a 
given symbol in the temporary dictionary 
for the current macro level. (See Chart 
BQ. ) 

Entry Point: CEVTK 

Calling Sequence: INVOKE ADLKT 

Input Parameters: 

RO Location of the first byte of the 
name for which this module is to 
look. 

Rl Length of the name (in bytes) being 
sought. 

Routines Called: None 

Exi t: Norma 1 

output Parameters: 

R2 Location of name, if found. If not 
found, R2 contains O. 

The condition code also reflects 
this outcome: 

o 
1 or 2 

not found 
found 

OPERATION: The temporary dictionary desig­
nated by ATHSH is searched for the given 
name. If the name is found, return is made 
to the calling module with the location of 
the name in R2. If the name is not found, 
return is made with zero in R2. 

DPUT -- Put Item in Temporary Dictionary 
(CEVTP) 

This routine creates a skeletal item for 
a given symbol in the temporary dictionary 
for the current macro level. It assumes 
the symbol being put into the dictionary 
has been put in storage area W, left­
justified and blank filled on the right. 
(See Chart BQ.) 

Entry Point: CEVTP 

Calling Sequence: INVOKE ADPUT 

Routines Called: None 

Exit: Normal 

output Parameter: 

R2 Location where the new temporary 
dictionary item was placed. This 
is the same as AWORK1. 

OPERATION: The dictionary is not checked 
to see if the name has already been placed 
there. It is assumed that the caller has 
done this, and this routine is called by 
the not found path resulting from testing 
the output from DLKT. It is assumed that 
DLKT (or some other routine> has set the 
12-byte work area W. A skeleton dictionary 
item is created and placed in the next 
available location in working segment 1 via 
AWORK1. Specifically, the name is placed 
in WORKl through W0RK1+7, the location of 
the next hash synonym (relative to the base 
of working segment 1) is placed in WORK1+9 
through WORK1+11, and WORK1+8 is cleared. 
AWORK1 is not updated; the caller must upd­
ate this value when he fills in the skele­
ton of the entry. 

Section 5: Phase I 81 



MACLKT -- Macro Name Dictionary Lookup 
(CEVLM) 

This routine searches the macro name 
dictionary for a given name. (See Chart 
BR. ) 

Entry Point: CEVLM 

calling Sequence: INVOKE ACEVLM 

Routines Called: None 

Exit: Normal 

output Parameter: 

R2 Location of macro name item if the 
name was found, otherwise zero. 

Condition code also reflects these 
conditions: 

o = not found 
2 found 

OPERATION: The macro name dictionary is 
searched for a name given in location OP. 
If the name is found, the location of the 
dictionary item is placed in R2, and the 
condition code is set to 2. If the name 
cannot be found, both R2 and the condition 
code are set to O. control is returned to 
the caller. 

~~CPUT -- Macro Name Dictionary Put (CEVTM) 

This routine inserts an item in the 
macro name dictionary and the macro name's 
hash number in the macro name hash table. 
(see chart BR.) 

Entry Point: CEVTM 

Calling Sequence: INVOKE ACEVTM 

Routines Called: None 

Exit: Normal 

output Parameter: 

82 

R2 Location of macro name dictionary 
item. 

OPERATION: This routine assumes MACLKT has 
been called and: 

• The hash table entry has been placed in 
the work area (W+8). 

• OP contains the macro name. 

A skeletal item is created in working seg­
ment 2, the available core address is 
updated, and control is returned to the 
caller. 

DLKM -- Main Dictionary Lookup (CEVKM) 

This routine searches for a given symbol 
in the main dictionary and creates a ske­
letal dictionary item for the symbol if it 
has not been previously entered. (See 
Chart BS.) 

Entry Point: CEVKM 

calling Sequence: INVOKE ADLKM 

Input Parameters: 

RO Location of the first byte of the 
name for which this processor is to 
look. 

Rl Length of the name (in bytes) being 
sought. 

Routines Called: None 

Exit: Normal 

Exit Parameters: 

R2 Location of name if found. 
found, R2 contains O. 

If not 

The condition code also reflects 
this outcome: 

o 
1 or 2 

not found 
found 

OPERATION: The main dictionary is searched 
for the given name. If the name is found, 
return is made to the calling module with 
the location of the name in R2. If the 
name is not found, return is made with zero 
in R2. 



INTRODUCTION 

During Phase IIA, the processing of 
macro instruction statements begun in Phase 
I is completed, and system macro defini­
tions are retrieved from the library. 

Macro instructions are processed during 
Phase IIA without reference to other state­
ments in the assembly; therefore, certain 
supplementary information must be main­
tained. This supplementary information is 
obtained from reprocessing all GBL declara­
tions, global SET instructions, section 
name changes, and PRINT instructions and 
combining them with macro instructions in 
the proper order. 

Macro statement generation is accomp­
lished by substituting the character string 
values of the current arguments for the 
corresponding parameters in the definition. 
The macro definition statements remain in 
the sequenced source statement area of 
assembler virtual storage. Source state­
ments generated by macro instructions are 
also retained in assembler virtual storage; 
they do not become part of the set of 
sequenced statements. 

Each new symbolic statement is processed 
and assembled as if it had been part of the 
user's original source program. Most of 
the processing modules used during Phase 
IIA are the same as those used during Phase 
I. The Phase IIA control module determines 
the order and origin of source statements. 

All macro instructions have been 
expanded before exiting from Phase IIA; the 
logical order of the assembly includes 
source statements for all generated lines. 

Figure 19 illustrates the module rela­
tionships in Phase IIA. All the relation­
ships between STAN and the downward asso­
ciated modules are as shown in Figure 16, 
except for MACREF. Routine relationships 
for MACREF that are unique to Phase IIA 
processing are as shown in Figure 19. For 
a detailed account of the interaction 
between STAN and MACREF, see MACREF module 
description. 

PARAMAC constructs a temporary (or macro 
level) dictionary for each user level and 
each inner macro instruction. 

MACREF', under the control of Phase IIA, 
searches a macro library index and retri­
eves model statements from the associated 

SECTION 6: PHASE IIA 

library. Control is then returned to STAN 
to process the model statements. 

Table 5 is a decision table listing the 
criteria for entering those routines unique 
to Phase IIA. 

CONVERSATIONAL CONTROL 

If the assembly mode is conversational, 
the transitive item chain in the main dic­
tionary is examined at the end of Phase IIA 
for undefined symbols, appropriate diag­
nostic messages are passed to the LPC, and 
return is made to the initial LPC call. 
The conversational user may employ other 
facilities of the system to stop, correct, 
or continue the assembly. 

ROUTINES 

PHASE IIA -- Phase IIA Control (CEVPB) 

This routine controls the expansion of 
macro instructions. As a corollary to this 
processing, it reevaluates statements that 
affect global variable symbols and main­
tains a history of control section changes. 
Before concluding, global diagnostic mes­
sages are presented to the conversational 
user, and the language processor control is 
called to determine whether to continue the 
assembly. (See Chart BT.) 

Entry Point: CEVPBX 

Calling Sequence: L 
BR 

R15,ACEVPB 
R15 

Routines called: 

• Unique to Phase II -- PARAMAC (via STAN 
and MACREF) 

• Common with Phase I --

STAN (plus nested modules called) 
BASCAN 
SETX 
GBLx/LCLx 
DIAG 

Exit: Normal - To AC(CEVAC} 
To External Routines - LPC reentry 
to solicit continuation information 
(QUERY) via assembler control module 
(AC). 

R14 Return point in LPC. 
R15 0 = normal return code. 

Section 6: Phase IIA 83 



+ 
2 

BASCAN (CEVBSl 
Bask Source 1- ...... 
language Sea" I 

I 
(Phase Il I 

_J I 
I 
I 
L_ 

~ 
CEVMLA 
Find Symbolic 
Component Parcel 

I (Phase 1) 

+ 
DIAG (CEVDX) 

5 

Diagnostic 
Message 
Processor 

(Phase 1) 

PH.~SE IT A (CEVPB) 
P hose IT A Contro I 

L-_. __________ ~ 

~ 
2 

STAN rCEVST) 
Statement f-i Analyzer 

I 1 (Phose 1) I 
I 

3 I 
MACREF (CEVRF) I 
Macro Reference ..,........J 

P recessor 

I 
1 

I (Phase I) 

4 
PARAMAC (CEVPM) 
Macro Parameter 

Library 

I 
1 

I 
5 

DLKT (CEVTK) 
Lookup Temporary 
DTcHonary Item 

(Phase ]) 

• 
GBLX/LCLX (C 
G loba I/Local 5 

EVGU 
ymbol 

Instructior. Scan 

(Phase I) 

~ 
CEVMLB 
Retri eve Successive 
Parcel lines 

(Phase ]) 

~ 
DPUT (CEVTP) 

5 

Put Item in 
Temporary 
Dictionary 

(Phase I) 

Figure 19. Phase IIA routine relationships 

Table 5. Phase IIA decision table (part 1 of 2) 

2 
1 

SETX (CEVSE\ 
SET Instruction 
Scan 

(Phose 1) 

Legend: 

Element externa I 
to the ossemb ler 

2 

r---------------------------------------------------------------------------------------, 
,Routine: Phase IIA Control Level: 1 I 
~----------T----------------------------T-----------------r-----------------------------1 
'Routine I Purpose , Called Routines , calling Conditions I 
t----------+----------------------------+-----------------+----------------------------~ 
IPHASE IIAIExpands macro instructions. I STAN -- CEVST IMacro instruction encounter- I 
I (CEVPB) I I (Phase 1) I ed in GSM chain. I 
" r-----------------t---------------------------4 
I' , DIAG -- CEVDX 105 Undefined symbol I 
I I I (Phase 1) I , 
I I t-----------------t----------------------------~ 
I I I BASCAN CEVBS IGBLA, GBLB, GBLC, or global I 
I I I (Phase 1) I SETA, SETB, or SETC state- I 
I I I Imentencountered. I 
I I ~-----------------+-----------------------------1 
I I I GBLX/LCLX -- IGBLA. GBLB, or GBLC state- , 
'I , CEVGL (Phase n Iment encountered. I 
I I ~-----------------t-----------------------------1 
I I I SETX -- CEVSE I Global SETA, SETB, or SETC I 
I I I (Phase I) Istatement encountered. I l __________ L ____________________________ L _________________ L _____________________________ J 

84 



Table 5. Phase IIA decision table (part 2 of 2) 
r---------------------------------------------------------------------------------------, I Routine: Macro Parameter Processor Level: 4 I 
~---------T----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
~----------t----------------------------t-----------------t-----------------------------~ 
I PARAMAC I Creates temporary symbol I DLKT -- CEVTK 11.. One of the following I 
I (CEVPMl dictionary items for each I (Phase 1> I encountered: symbolic I 
I outer and inner macro I I prototype label, macro I 
I instruction level. I I instruction keyword, I 
I I I prototype positional oper-I 
I I I and, prototype keyword I 
I I I operand. I 
I I 12. Always called to create I 
I I I the hash table entry for I 
I I I &SYSNDX, &SYSECT , &SYSPSCT, I 
I I I &SYSSTYP, &SYSLIST • I 
I t-----------------t---------------------------~ 
I IDPUT -- CEVTP 11. One of the following en- I 
I I (Phase 1) I countered: symbolic pro- , 
I 'I totype label, macro in- , 
I I I struction keyword, proto- , 
I I I type positional operand, , 
1 I I prototype keyword operand., 
I I 12. Always called to put the , 
I I I following in the TSD: I 
I I I &SYSNDX, &SYSECT, &SYSPSCT, I 
, I I &SYSSTYP, &SYSLIST • I 
, ~-----------------t----------------------------~ 
I IDIAG -- CEVDX ID88 Invalid symbolic param-I 
I I (Phase 1) I eter , 
I I ID100 Invalid keyword , 
I 'ID10l Positional operand I 
I I I follows keyword , 
I I I operands , 
I 'ID107 Character string I 
I I I accumulation exceeds I , 'I 255 , 
I I IDl15 Invalid operand I 
I I IDl17 Nested keyword notation I 
I I ID122 Multiple keyword I 
I I I operand I 
I I ID125 Multiple prototype I 
I I I positional operand with I 
I I I same name I 
I 'ID126 Undeclared keyword , 
I I I operand , 
I I ID127 Illegal use -- reserved, 
I' I I word , L _________ -L ____________________________ ~ _________________ ~ _____________________________ J 

OPERATION: Activity during Phase IIA is 
controlled by the GSM chain entries. This 
list is prepared during Phase I and con­
tains entries for each macro instruction, 
SET statement involving a global symbol, 
PRINT, and change of control section. (The 
GSM chain also contains other entries that 
are not pertinent to Phase IIA.) 

This routine maintains an address point­
er for the current control section (CCS> 
that indicates the dictionary item for the 
control section currently effective. CCS 
is used to establish the various values for 
&SYSECT as macro expansion proceeds. It is 
updated by this routine upon encountering a 

section change entry in the GSM chain and 
by the control section processor (SECT) 
when proceSSing a control section direc­
tive. To ensure synchronization of user­
defined global variable symbols with the 
macros expanded during this phase, all GBL 
statements occurring at the user level are 
reprocessed. At the first redeclaration of 
each symbol the initial value of the item 
is reset to the null state. 

To maintain the synchronization of glob­
al variable symbols established above, SET 
statements at the user level which affect 
global variables are also reprocessed. The 
value of the global symbol originally 

Section 6: Phase IIA 85 



obtained in Phase I is retained in the log­
ical order file and is reinstated by Phase 
IIA. 

If the assembly is in conversational 
mode, when all GBL, SET, and macro instruc­
tion entries in the GSM chain have been 
processed, Phase IIA passes over the tran­
sitive item chain in the main dictionary 
and extracts all symbols that remain unde­
fined. These symbols are represented in 
the dictionary by transitive items that 
have not been completed by the insertion of 
the location of the matching definition. 
Diagnostic messages are produced for each 
symbol. Control then is given to the entry 
of LPC, which solicits continuation infor­
mation from the conversational user. If 
the user elects to continue, control 
returns to the assembler at the continua­
tion entry point, and assembly resumes with 
Phase lIB. 

It should be noted that although only 
one principal subroutine apparently is 
called, that one -- STAN -- calls upon 
almost all of the routines and components 
described in this document for Phase I. 

PARAMAC -- Macro Parameter Processor 
(CEVPM) 

This routine creates temporary dic­
tionaries for each outer and inner macro 
instruction level. (See Chart BU.) 

Entry Point: CEVPM 

callinq Sequence: INVOKE APARAM 

Routines Called: DIAG, DLKT, DPUT 

Exit: Return to STAN (via MACREF) 

OPERATION: This routine is entered by STAN 
(via MACREF) when macro instruction state­
ments are encountered in the GSM chain dur­
ing Phase IIA. 

A parameter item is created for the sys­
tem variable &SYSLIST. This item contains 
the number of operands specified in the 
macro instruction (number attribute, N' ) 
and a pointer to the first of a series of 
trailer entries which associate each argu­
ment as a function of &SYSLIST. The &SYS­
LIST item is entered in the temporary dic­
tionary before parameter items are con­
structed for corresponding positional macro 
instruction operands and the positional 
operands of mixed mode macro instruction. 
The current value of &SYSNDX is computed 
from a counter, and an &SYSNDX item con­
taining the current value is placed in the 
temporary dictionary. An &SYSPSCT item, an 
&SYSSTYP item, and an &SYSECT item are 
entered in the temporary dictionary, and 

86 

contain respective pointers to the first 
PSECT item and the controlling control sec­
tion item. Global pointer items are made 
for &SYSDATE and &SYSTIME in the temporary 
dictionary. The PSECT and CSECT items are 
located in the main dictionary. Thus, the 
correct unique value of system variables 
are maintained for varying levels of inner 
and outer macros. 

The symbolic parameters in the macro 
prototype statement and the corresponding 
positional operands in the macro instruc­
tion are combined to form parameter items 
in the temporary dictionary. Each item is 
identified by the symbolic parameter, which 
is hashed and linked to an entry in the 
rracro hash table for the current level. 
The type, count, and number attributes for 
each item are assigned as a function of the 
scan of the macro instruction argument. 
The length, type, beginning character posi­
tion, and the argument character string 
itself are attached to the item if a corre­
sponding entry is found in the macro 
instruction line. Parameter items are con­
structed for symbolic parameters appearing 
in the name field of prototype statements 
also. The corresponding arguments are 
found in the name field of the macro 
instructions. Sequence symbols are not 
considered valid arguments for this pur­
pose, however. A null type attribute is 
assigned to the parameter whenever the 
argument is not present in the macro 
instruction. 

For sublist operands, individual entries 
containing length, type, and position 
information are created for each operand in 
the sUblist. The entire operand, including 
parentheses and separating commas, make up 
the argument string. Missing operands are 
indicated by null entries. 

Parameter items with blank hash keys are 
created for positional operands appearing 
in the macro instruction for which a 
related prototype entry is not specified. 
This permits such operands to be referenced 
as subscripts to &SYSLIST. 

Parameter items are also produced for 
key word operands encountered on the macro 
instruction line. These items are marked 
as "undefined". Each item is placed in 
"defined" status when the presence of a 
matching key word in the prototype state­
lTent has been verified or if a default 
value is specified in the prototype state­
Irent. Items are also generated for key 
word parameters appearing in the prototype 
statement for which the corresponding macro 
instruction operand is not present. 



Error Checks: 

• Invalid symbolic parameter. 

• Multiple keyword operands, first one 
accepted. 

• Positional operand follows keyword 
operand. 

• Undefined positional prototype operand. 

• Positional operand omitted. 

• Multiple prototype positional operands 
with same name, first accepted. 

• Undeclared keyword operand. 

• Illegal usage reserved word. 

Section 6: Phase IIA 87 



SECTION 7: PHASE lIB 

INTRODUCTION 

During Phase lIB a location counter 
value is assigned to each symbol in the 
program. To arrive at a proper resolution 
of the location counter, the literals must 
also be processed and collected. 

During Phases I and IIA the logical 
order file was flagged to indicate which 
source statements contain literals and 
which source statements defined a symbol. 
Associated with each statement is the 
length in bits of the machine-language cod­
ing that the statement represents. The 
lengths for each control section are accu­
mulated and, after considering discontinui­
ties and irregularities introduced by alig­
nments and origins, a location counter 
value is assigned to each symbol as it is 
encountered in the logical order file. 

In scanning the logical order file, 
literals are processed and entered into the 
symbol table as they occur. At LTORG 
statements, the literals accumulated to 
that point are ordered by length and are 
aSSigned location counter values. Literals 
not collected at the conclusion of the log­
ical order file are collected under a LTORG 
generated at the end of the first control 
section. 

Figure 20 illustrates the routine rela­
tionships to accomplish the Phase lIB 
functions. 

Table 6 is a decision table listing the 
criteria for entering each Phase lIB 
routine. 

ROUTINES 

PHASE lIB -- Phase lIB Control (CEVPC) 

This routine organizes the results of 
the initial scan over the source program so 
the object text can be generated in a 
single pass over the internal representa­
tion of the program. (See Chart BV.) 

Entry Point: CEVPCX 

Calling Sequence: L 
BR 

R15, ACEVPC 
Rl5 

Routines Called: CSCAN 
DIAG 
EQUATE 
LOCATE 

ORIGIN 
POOLIT 
RESCON 
RESLIT 

Exit: To PHASE IIC (CEVPD) 

-
PHASE II B 

POOLIT (CEVPL) 2 
Litera I 
Pooling 
Processor 

Figure 20. 

88 

LOCATE (CEVLC) 2 
Location 
Counter 

Assignment 

(CEVCP) 
Phase II B 
Control 

-~ I i I 
I 

• .. 
2 RESCON (CEVRS)2 

ORIGIN (CEVGN) 
location 

Resolve 
Conditiona I 

Counter Res.et 
Alignment 

I ---+ J I l_-, 1 1 oj. 

DIAG (CEVDX) 3 3 
EVAl (CEVEV) 

Diagnostic Expression 
Message Evaluator 
Processor 

(Phase I) (Phase I) 

Phase lIB routine relationships 

t 
[ 

2 2 
EQUATE (CEVEQ) RESLIT (CEVRl) 

Assign Value Literal 
Resolution to Name 
Processor 

I 1 .. 
3 3 

DlPM (CEVlP) CSCAN (CEVCS) 
Dictionary Constant 
Lookup and PUT Scan 

(Phase I) (Phase 1) 



Table 6. Phase lIB decision table (part 1 of 2) 
r---------------------------------------------------------------------------------------, 
I Routine: Phase lIB Control Level: 1 I 
~----------T----------------------------T-----------------~---------------------------~ 
I Routine I Purpose I Called Routines I Calling Conditions I 
~---------_+----------------------------t-----------------t-----------------------------i 
IPHASE IIBIAligns all statements to thelPOOLIT -- CEVPL ILTORG statement encountered. I 
I (CEVPC> Irequired boundary, computes I IA CSECT or a PSECT has been I 
I I page usage for each control I I deClared. I 
I I section, resolves literal ~-----------------t----------------------------~ 
I Ireferences, pools and I LOCATE -- CEVLC IStatement is a named line I 
I lassigns location counter I lother than an EQU. I 
I Ivalues to literals, and ~-----------------t-----------------------------~ 
I Iresolves symbol definitions. I ORIGIN -- CEVGN IORG statement encountered. I 
I I ~-----------------t-----------------------------i 
I I ICSCAN -- CEVCS IDC or DS statement not pro- I 
I I I I cessed in Phase I. I 
I I ~-----------------t-----------------------------i 
I I IDIAG -- CEVDX ID115 Invalid operand field I 
I I ~-----------------t-----------------------------i 
I I IRESCON -- CEVRS la. DC, DS, CNOP, or CCW I 
I I I I statement encountered. I 
I I I lb. Statements requiring I 
I I I I alignment encountered. I 
I I ~-----------------+_---------------------------~ 
I I IRESLIT -- CEVRL IStatement contains a literal I 
I I I I reference. I 
I I ~-----------------t----------------------------~ 
I I IEQUATE -- CEVEQ IEQU statement which could not I 
I I I Ibe evaluated in Phase I I 
I I I I encountered. I 
t----------~----------------------------~-----------------~-----------------------------i 
I Routine: Level: 2 I 
t----------T----------------------------T-----------------T----------------------------~ 
I EQUATE I Constructs dictionary items I EVAL -- CEVEV I Always called. I 
I (CEVEQ) Ifor EQU statements Which t-----------------t-----------------------------i 
I Icould not be evaluated in IEATT -- CEVEV2 INO location counter I 
I Phase I. I I reference I 
I t-----------------t-----------------------------i 
I IDLPM -- CEVLP IOperand is valid type. I 
I ~-----------------t----------------------------~ 
I IDrAG -- CEVDX IDl Field improperly I 
I I I delimited I 
I I ID4 Duplicate symbol I 
I I ID6 Operand expression type I 
I I I invalid I 
I I ID48 Truncated value I 
I I ID69 Symbol not previously I 
I I I defined I 
I I IDl15 Invalid operand field I 
t----------t----------------------------t-----------------t-----------------------------i 
I LOCATE IAssigns a location counter I None I I 
I (CEVLC) I value to a symbol in the I I I 
I Iname field. I I I 
~----------t----------------------------t-----------------+_----------------------------~ 
I ORIGIN Iprocesses all ORG IEVAL -- CEVEV IAlways called unless ORG has I 
I (CEVGN) I statements. I I been generated by a null I 
I I I ISTART instruction. I 
I I ~-----------------t-----------------------------i 
I I IDIAG -- CEVDX IDl Improperly delimited I 
I I I I field I 
I I I ID6 Invalid expression type I 
I I I I for field I 
I I I ID25 Attempted ORIGIN out- I 
I I I I side of control section I 
I I I ID52 Absolute ORIGIN I l __________ ~ ____________________________ ~ _________________ ~ ____________________________ J 

Section 7: Phase lIB 89 



Table 6. Phase lIB decision table (part 2 of 2) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 2 (Contrd) I 
~----------T----------------------------T-----------------T---------------------------~ 
I Routine I Purpose I Called Routines I calling conditions I 
t----------t----------------------------t-----------------t-----------------------------~ 
IPOOLIT IPools all literals in curr- INone I I 
I (CEVPL) lent literal chain. Address I I I 
I I constants are excluded if a I I I 
I I PSECT has been declared. I I I 
t----------t----------------------------t-----------------t-----------------------------~ 
IRESCON IAligns DC, DS, CNOP and CCW IEVAL -- CEVEV ICalled for each term of a I 
I (CEVRS> Istatements and, if neces- I ICNOP instruction. I 
I Isary, all other statements ~-----------------t-----------------------------i 
I Irequiring alignment. IDIAG -- CEVDX ID1 Improperly delimited I 
I I I I field I 
I I I ID6 Invalid expreSSion type I 
I I I I for field I 
I I I I D7 Invalid expression I 
I I I I value for field I 
t----------t----------------------------t-----------------t-----------------------------~ 
IRESLIT Iscans a literal, prepares alCSCAN -- CEVCS IAlways called to scan I 
I (CEVRL) Iconstant item for it, and I I literal. Called again if I 
I lenters the literal as an I Iliteral was not found in the I 
I litem in the main dictionary. I I dictionary. I l __________ ~ ____________________________ ~ _________________ ~ ____________________________ _J 

OPERATION: PHASE lIB makes a single pass 
over the logical order file; the processing 
that is performed depends upon the charac­
teristics of the entry in the logical order 
file. The entries may be grouped into 
three categories: location counter adjust­
ments, literal operands, and normal state­
ments. Location counter adjustments may be 
further subdivided into changes of control 
section, literal origin statements, ORG 
statements, and conditional storage reser­
vation statements (such as CNOP, or DS 
statements with a duplication factor of 
zero). The processing for each of these 
conditions is summarized below. 

Control Section Changes: The principal 
function of Phase lIB is to assign location 
counter values to symbols and literal con­
stants. Each control section within the 
assembly has its own individual location 
counter, for which two values are main­
tained: the current value as it exists for 
any given statement, and the highest value 
the counter has reached during the course 
of processing the control section. Accor­
dingly, at any change of control section, 
the current value of the location counter 
is saved (in the section name item in the 
dictionary). If this value exceeds the 
highest value previously saved, the highest 
value is also updated and saved. The cur­
rent value of the location counter for the 
new section is retrieved and installed as 
the working counter for subsequent state­
ments. The location of the section name 
item for the new section is also inserted 
in the current control section indicator. 

90 

Literal origin Statements: If the name 
field of the LTORG statement contains a 
symbol, the current location counter value 
is assigned to the symbol through the LOC­
ATE routine. Then any outstanding, 
unpooled literals are assigned location 
counter values through the POOLIT routine. 

ORG Statements: The ORIGIN routine is 
called to evaluate the operand of the ORG 
statement. If the expression is valid, the 
current location counter is set to the new 
value. Checks are made to preserve the 
highest value previously assigned if the 
new origin reduces the value of the count­
er. Conversely, a blank operand field 
causes the highest value to be retrieved 
and installed as the current location coun­
ter value. 

Conditional Storage Reservations: The 
operation is examined to distinguish CNOP 
statements from DC and DS statements. The 
operand field of a CNOP is scanned and eva­
luated, and a code is set to indicate the 
amount of alignment required. A similar 
code is set upon examination of the DC or 
DS constant item. If necessary, an align­
ment entry is constructed and inserted into 
the logical order file to ensure that dur­
ing Phase III an identical adjustment is 
made to the location counter. The current 
location counter is then adjusted to the 
indicated value. 

Delayed Resolution of DC/DS Statements: A 
DC or DS entry in the LOF that does not 
indicate the address of a constant item 
represents a statement that could not be 



resolved during Phases I or IIA because of 
lack of definitions for terms in the expre­
ssions for length, duplication, scale, or 
exponent. Such a statement is now pro­
cessed by Phase lIB. using the constant 
scan routine to prepare the value item. 
The result is examined to see if it 
requires a conditional storage reservation. 

Literal Operands: The presence of a liter­
al operand in a statement causes this 
module to call upon RESLIT, which causes 
the literal to be scanned, its value deter­
mined, and an item for it to be entered in 
the permanent dictionary. Literals with 
matching texts share a basic dictionary 
item, but generate trailers to it if the 
literals are referred to from different 
literal origins. 

Normal Statements: Normal statements are 
tested for the presence of a symbol in the 
name field, as indicated by the logical 
order file entry. If a symbol is present 
and the statement is an EQU, EQUATE is used 
to determine the legitimacy and the value 
of the operand of the EQU statement. If 
the statement is not an EQU, LOCATE is used 
to assign the current value of the location 
counter to the symbol. Before such assign­
ment is made, the location counter is 
adjusted to a location appropriate for the 
alignment implied by the type of statement. 

For statements that are not EQUs, the 
logical order file entry indicates the 
amount of storage required by the state­
ment; the current value of the location 
counter is increased by the increment, and 
the next statement is obtained from the 
logical order file. 

page Usage Recording: A 512-byte page 
usage table is created for each control 
section other than a DSECT (or blank com­
mon), and its address carried in the con­
trol section name item. Each time the 
location counter for any of these sections 
is incremented, and the incrementing 
instruction is other than a DS or ORG, a 
bit is set in the corresponsing page usage 
table, indicating that the page represented 
by bits 8-19 of the current location count­
er contain text. If an instruction will 
cause the location counter to exceed the 
limit of 4096 pages, that statement, plus 
the remaining statements (except the END 
statement), are made commentary. At the 
end of the phase, the number of bits set in 
each table is computed, and the total is 
posted in the section name item. Each sec­
tion name item thus contains a total page 
usage count. This count is used during 
Phase III to compute the number of pages 
required to hold the output module. It is 
also used to compute the relative page 
within the text area at which the first 
page for the section begins. 

Termination of Processing: At the end of 
the logical order file, the current loca­
tion counter reading is preserved for 
whichever control section is in effect. By 
convention, the assembler retains the names 
of the first CSECT and the first PSECT 
statements in the program. All address 
constants that are literals are pooled in 
the PSECT. All other literals that have 
not otherwise been assigned are pooled in 
the CSECT. If no PSECT has been defined, 
literal address constants are also pooled 
in the CSECT. It is the function of the 
terminal processing during Phase lIB to 
accomplish this pooling. 

A list of unpooled literals is main­
tained at all times. Each LTORG statement 
reduces the list. However, if a PSECT is 
present, address constants are not pooled 
by the LTORG routine. but are left on the 
list of unpooled literals. Accordingly, at 
the end of Phase lIB, the control routine 
causes the construction of logical order 
file entries that simUlate a CSECT state­
ment for the section which by convention is 
designated for this purpose (it is the 
first CSECT encountered). This logical 
order file entry is followed by another 
that simUlates a LTORG statement. The 
highest value of the location counter for 
the designated section is reinstated, and 
POOLIT is called. All remaining literals 
that are not address constants are accor­
dingly pooled at the end of the first 
CSECT. A GSM chain entry is constructed to 
indicate this change of section. 

Phase lIB determines whether a desig­
nated PSECT exists. If it does, logical 
order file entries are created to simulate 
a PSECT and a LTORG, the location counter 
value is set, and POOLIT is called again, 
this time with an override switch set that 
causes the routine to accept address con­
stants when they are encountered in the 
list of unpooled literals. A GSM entry is 
constructed to indicate this change of sec­
tion also. If no PSECT exists, the over­
ride switch is set at the beginning of the 
phase as part of initialization. This 
action causes address constants to be 
pooled with other literals at each LTORG 
statement. 

Page usage is recorded as described 
under "Page Usage Recording." Accordingly. 
no further processing is required at the 
end of the phase. 

Error Checks: Invalid operand of DC or OS 
statement. 

LOCATE -- Location Counter Assignment 
(CEVLC> 

This routine completes the definition of 
relocatable value dictionary items. 

Section 7: Phase lIB 91 



Entry Point: CEVLC 

Calling Sequence: INVOKE ALCATE 

Routines Called: None 

Exit: Normal 

OPERATION: This routine is entered when a 
logical order file entry is encountered 
during Phase lIB in which bit 0 of field A 
is set, and the directive code does not 
specify an EQU statement. This indicates 
that a symbol exists in the name field of 
the source line. The logical order file 
entry points to the value item, and this 
routine inserts the current location count­
er value and control section identification 
into the item. 

ORIGIN -- Location Counter Reset (CEVGN) 

This routine preserves the highest value 
of the location counter and resets the 
counter to the value specified in an ORG 
operand. It also tests the operand for 
validity. (See Chart BW.) 

Entry Point: CEVGN 

Calling Sequence: INVOKE AORGIN 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: This routine is called by Phase 
lIB control when the current logical order 
file entry indicates the presence of an ORG 
statement. The logical order file entry is 
used to locate the operand field of the 
statement. EVAL is called to resolve the 
value of the operand. Relocatable, abso­
lute, and null results receive further pro­
cessing. Any other type of expression is 
rejected with a diagnostic message. Abso­
lute values receive a diagnostic message 
also, but are then accepted as indicating a 
location counter setting relative to the 
current control section. Relocatable 
values must be simply relocatable and rela­
tive to the current control section; other­
wise, they are rejected with a diagnostic 
message. If the absolute part of the relo­
catable expression is negative, its magni­
tude must not exceed the displacement value 
of the relocatable part (attempted origin 
below the base of the section). Null 
operand indicates that the origin is to be 
set to the highest previously attained 
location counter value for the current con­
trol section. 

If the new origin is legitimate. and its 
value is less than the current reading of 
the location counter, the current value is 
compared against the highest previously 

92 

attained value. If the current value is 
higher, it replaces the previous high 
value. If the current value is not higher, 
it is discarded. In either case, the new 
origin is instated as the current value of 
the location counter and placed in the log­
ical order file entry for ease of listing 
during Phase III. 

Error Checks: 

• Invalid expression type. 

• Attempted origin outside of control 
section. 

• Operand field improperly delimited. 

POOLIT -- Literal pooling Processor (CEVPL) 

This routine pools all the literals 
accumulated by the time it is called. (See 
Chart CA.) 

Entry Point: CEVPL 

Calling Sequence: INVOKE APOLIT 

Routines Called: None 

Exit: Normal 

OPERATION: Literal operands occurring in 
the source program are processed during 
Phase lIB by RESLIT. The literals are 
chained in order of occurrence to a first 
link that is independent of the dictionary. 
This routine's function is to order the 
literals by length, assign location counter 
values to each literal, and to transfer the 
chain, reordered by ascending location to 
the LTORG entry in the logical order file. 
If a PSECT is present in the assembly, 
address constants are excluded from the 
pool, unless an override switch is set to 
force their inclusion. 

LTORG statements in a program are num­
bered in order of occurrence. Literals 
occurring between (or prior to the first) 
LTORG statements are identified as belong­
ing to the LTORG number that is forthcom­
ing. Accordingly, a LTORG number is main­
tained at all times by Phase lIB control. 
It is used by RESLIT to assign LTORG num­
bers to the individual literals, and is 
increased by one by this module at the ter­
mination of its processing. The reader is 
referred to the description of RESLIT for a 
further discussion of the LTORG number. 

The accumulated literal chain is tra­
versed four times, inspecting the literals 
on the basis of their binary text length, 
modulo 8, to achieve the following corres­
pondence between length and alignment: 



1st pass 
2nd pass 
3rd pass 
4th pass 

o 
4 
2, or 6 
1, 3, 5, or 7 

Doubleword 
Fullword 
Halfword 
Byte aligned 

On each pass POOL IT checks the length of 
the literal. If the length is appropriate 
for the pass, the trailer chain is traced 
to find a LTORG number that matches the 
current one. The current location counter 
value is entered into the trailer and 
incremented by the length of the literal. 
The literal is removed from the independent 
chain and attached to the chain originated 
in the LTORG item. Address constants 
remain on the independent chain and are not 
processed, unless the override switch is 
set. Processing continues until the inde­
pendent chain is exhausted. The current 
location counter is adjusted to a double­
word boundary before the first pass, to 
ensure proper alignment. 

EQUATE -- Assign Value to Name (CEVEQ) 

This routine assigns a value to an EQU 
statement that was unobtainable during 
Phases I or IIA. (See chart CB.> 

Entry Point: CEVEQ 

Calling Sequence: INVOKE AEQATE 

Routines Called: DIAG, DLPM, EVAL, EATT 

Exit: Normal 

OPERATION: EVAL is called three times to 
process the three possible operand fields. 
Appropriate diagnostics are issued for 
null, indeterminate, literal, and error 
responses. The relocatable dictionary item 
is checked for a location counter 
reference; if one is present, the current 
LOF entry is marked for Phase III proces­
sing. Otherwise, the type attribute is 
placed in the dictionary. The applicable 
type of value item is entered into the dic­
tionary for absolute, relocatable, and com­
plex results. The type attribute (T') of 
these items is set to U, unless the symbol 
previously occurred on a macro reference, 
or the type attribute is specified in the 
third operand field. In the case of a 
macro reference, the type attribute is set 
to M. For absolute and complex values, the 
length attribute (L') is 1, unless it is 
specified in the second operand. 

For simply relocatable values, L" is that 
of the equated symbol, unless the second 
operand is specified. 

If the operand is indeterminate, the 
operand value is defaulted in the dic­
tionary and a diagnostic is issued. 

Error Checks: 

• Field improperly delimited. 

• Duplicate symbol. 

• Invalid expresSion type. 

• Truncated value. 

• Symbol not previously defined. 

• Invalid operand field. 

RESCON -- Resolve Conditional Alignment 
(CEVRS) 

This routine computes the amount of 
storage required by a statement and/or 
generates and inserts the appropriate alig­
nment item i.n the logical order file. (See 
Chart CC.) 

Entry Points: CEVRS, CEVRS1, CEVRS2 

Callinq Sequence: INVOKE ARSxxx 
xxx may be: 

CON 
100 
810 

error return 
normal return 

Routines called: DIAG, EVAL 

Exi t: Norma 1 
Error - Invalid operand of a CNOP, 

or location counter 
overflow. 

OPERATION: This routine is called by Phase 
lIB when it has encountered a data reserva­
tion or constant statement whose precise 
effect upon the location counter could not 
be determined by STAN. This case is sig­
naled by bit 2 of field A of the standard 
logical order file entry and results from a 
CNOP or CCW command or a DC or DS state­
ment. An entry is also made when the loca­
tion counter is not aligned for any 
instruction requiring byte or halfword 
alignment. 

For CNOP commands, the location counter 
is aligned to a half word. Then the operand 
of the CNOP is evaluated, and the amount of 
additional alignment is placed in the 
length field of the LOF entry. 

For CCW commands, the location counter 
is aligned to a double word. An alignment 
entry is constructed for the difference, if 
any. 

For DC/DS statements, the constant type 
is analyzed. Type H, S, and Y cause align­
ment to a halfword. types F, E, A, V, and Q 

Section 1: Phase lIB 93 



cause alignment to a fullword; and type D 
causes alignment to a doubleword. Other 
types cause alignment to a byte. If no 
alignment is required (multiple operands 
for a bit-length specification), a return 
is made to Phase lIB control. 

Error Checks: Invalid CNOP operands. 

RESLIT -- Literal Resolution Processor 
(CEVRL) 

This routine scans a literal as if it 
were a normal DC statement operand, pre­
pares a constant value item for it, and 
enters the literal as an item in the main 
dictionary. (See Chart CD.) 

Entry Point: CEVRL 

calling Seguence: INVOKE ARSLIT 

Routines Called: CSCAN 

Exit: Normal 

OPERATION: This routine obtains the pre­
cise location of the literal operand from 
the logical order file entry. It then 
calls upon CSCAN to scan the operand to 
prepare a constant value item for it. 
CSCAN is cognizant of a literal operand 
mode and ensures that restrictions applic­
able to literals are observed; these 
include prohibition of multiple operands, 
and zero duplication factors. 

This routine then extracts those charac­
ters of the text to which the hashing 
algorithm is to be applied. The first 
eight characters (excluding the =) are used 
if the literal is that long. If it is 
shorter, the entire text {excluding the 
right delimiter> is used. 

If the hashed key fails to match a lit­
eral item already in the dictionary, a new 
item is constructed and entered. A trailer 
for this item is added which identifies the 
LTORG number under which the literal was 
referenced, and the literal is added to the 
list of unpooled literals. 

If the hashed key matches the key of a 
literal item already in the dictionary, the 

94 

entire text is compared. Literals are 
pooled on the basis of matching text. If 
the text is not identical, processing pro­
ceeds as described in the preceding para­
graph. If the text matches, the literal 
itself is tested to see whether it is an 
address constant containing a reference to 
the location counter (notation of 
asterisk). If so, a trailer item is added 
that contains the current value of the 
location counter and the current LTORG 
number. If the literal is not such an 
address constant, the trailer chain is 
checked to see whether a trailer is present 
for the current LTORG number. If not, 
such a trailer is constructed and added to 
the literal item. 

Comments: Literals are pooled on the basis 
of identical source text, but are also 
collected at each LTORG statement. ThUS, 
the same literal may appear in multiple 
literal pools, depending upon its occur­
rence in relation to multiple LTORG state­
ments. To control this duplication, Phase 
lIB maintains a LTORG number, which is the 
number of the next anticipated LTORG state­
ment. The LTORG number is set to one by 
Phase lIB initialization and is increased 
by one each time the LTORG processor is 
called. Literals processed by RESLIT are 
assigned the current LTORG number. Thus, 
if a program contains no LTORG statement, 
all literals are assigned LTORG number one; 
Phase lIB control always generates a LTORG 
at the termination of processing to collect 
all unpooled literals, and this pool will 
receive all literals by default. 

When LTORG statements are present, 
however, the value of the LTORG number 
changes during the course of Phase lIB. 

If this routine findS a literal that 
matches one previously encountered, it 
checks further to see if the dictionary 
item contains a trailer item with the cur­
rent LTORG number. If not, the literal was 
previously pooled under another LTORG and 
must be duplicated. The trailers to the 
literal item in the dictionary represent 
the number of duplications required to 
place the literal in multiple pools. 



INTRODUCTION 

The requirements of TSS/360 are such 
that the machine-language output of the 
assembler must be generated in order by 
control section during Phase III. However, 
for the convenience of the assembler lan­
guage programmer, control sections may be 
written discontinuously. In particular, 
USING and DROP statements have an effective 
range which is not related to the range of 
a control section. Phase IIC is respons­
ible for preparing tables that summarize 
the USING status of all registers at each 
discontinuity in a control section, so that 

SECTION 8: PHASE IIC 

proper values will be available when the 
control section is processed in continuous 
order in Phase III. 

In addition, ENTRY statements are pro­
cessed by associating the name of each 
entry pOint with the proper control section 
for its definition and R-type 
addressability. 

Figure 21 illustrates the routine rela­
tionship to accomplish the Phase IIC func­
tions. Table 7 is a decision table listing 
the criteria for entering each Phase IIC 
routine. 

1 
PHASE IIC(CEVPD) 

Phose n C Control 

I I I [ 

+ 
2 2 2 2 BASCAN(CEVBS) 

DRSET(CEVDR) DlKM{CEVKM) USET(CEVUP) 
Basic Source 

Main Dictionary 
Language Scan DROP Table Processor USING Tobie Proce .. or 

Look-Up 
(Phase 1) 

l J (Phase I) 

1 + J 
OIAG{CEVDX) 

3 3 
EVAL(CEVEV) 

Diagnostic 
Expression Eval uator Message Processor 

(Phase I) (Phase I) 

Figure 21. Phase IIC routine relationships 

Table 7. Phase IIC decision table (part 1 of 2) 
r---------------------------------------------------------------------------------------, 
I Routine: Phase IIC Control Level: 1 I 
t---------~----------------------------T-----------------T-----------------------------~ 
I Routine I Purpose I called Routines I Calling Conditions I 
t----------t----------------------------t-----------------t----------------------------~ 
IPHASE IIC/Tabulates the status of IUSET -- CEVUP IUSING GSM entry encountered I 
I (CEVPD) I PRINT control, LTORG I I in GSM chain. I 
I I numbers. and USING registerst-----------------t-----------------------------~ 
I lin relation to each control IDRSET -- CEVDR IDROP GSM entry encountered inl 
I I section when a section was I I GSM chain. I 
I loriginally written discon- t-----------------t----------------------------~ 
I Itinuously. IBASCAN -- CEVBS IENTRY GSM entry encountered I 
I I I I in GSM chain. I 
I I t-----------------+-----------------------------~ 
I I IDLKM -- CEVKM IENTRY GSM entry encountered I 
I I I I in GSM chain. I l __________ i ____________________________ i _________________ i _____________________________ J 

Section 8: Phase IIC 95 



Table 7. Phase IIC decision table (part 2 of 2) 
r---------------------------------------------------------------------------------------, 
,Routine: Level: 1 (cont'd) I 
r----------T----------------------------T----------------~-----------------------------i 
'Routine I Purpose , called Routines I calling Conditions I 
r----------+----------------------------+-----------------+---------------------------~ 
I I IDIAG -- CEVDX ID1 Improperly delimited I 
I I 1 I field I 
" I ID18 Entry operand defined I 
I I I I in invalid section I 
I I I I type. Considered not I 
I I I I an entry. I 
I I I 1 D56 Entry point name I 
" I I duplicates module name I 
I I I I D115 Invalid operand field I 
r---------~----------------------------~-----------------~-----------------------------i 
'Routine: USING Table Processor Level: 2 , 

r----------T----------------------------T-----------------r---------------------------~ 
IUSET 'Updates the status of the IEVAL -- CEVEV IAlways called. I 
I (CEVUP) lusing-register table based t-----------------+-----------------------------i 
1 Ion information from a USING IDIAG -- CEVDX ID1 Improperly delimited 1 
I I statement. To accommodate I I field I 
I IGRO being used as a base I ID6 Invalid expression type I 
I Iregister, the Using-Register I I for field I 
I I Tables were lengthened by , I D7 Invalid expression , 
, I two words (same format as I I value for field I 
I I the two-word entries for I I D12 Duplicate use of I 
I lother registers). The first I I register I 
I Ibit of word 1 in the U-R I ID13 Invalid expression for I 
I I table is no longer used to , I base register usage I 
I lindicate GRO availability asl ID14 Required operand I 
I I a base register. 1 I missing 1 
I 1 1 I D115 Invalid operand field I 
r----------+----------------------------+-----------------+-----------------------------~ 
IDRSET IUpdates the status of the IEVAL -- CEVEV IAlways called. I 
I (CEVDR) lusing-register table based r-----------------t-----------------------------i 
I Ion information from a DROP IDIAG -- CEVDX ID1 Improperly delimited I 
I I statement. I I field I 
I I 'ID6 Invalid expression type I 
1 I I I for field I 
I I 'ID7 Invalid expression I 
I I I 1 value for field I 
I I I ID12 Duplicate use of I 
I I I I register I L __________ ~ ____________________________ ~ _________________ ~ ____________________________ _J 

ROUTINES 

PHASE IIC -- Phase IIC Control (CEVPD) 

This routine tabulates the status of 
PRINT control, LTORG numbers, and using­
registers in relation to each control sec­
tion. It also associates the operands of 
ENTRY statements with the names of control 
sections so R-type addressability is estab­
lished. (see Chart CE.) 

Entry Point: CEVPDX 

Callinq Sequence: L 
BR 

R15, ACEVPD 
R15 

Routines Called: BASCAN DLKM EVAL 
DIAG DRSET USET 

Exit: To PHASE III (CEVPE) 

96 

OPERATION: Construction of the output 
module requires Phase III to process each 
control section contiguously. This routine 
is required to maintain compatibility with 
OS/360 definitions of PRINT, LTORG, USING, 
and DROP statements, While processing in 
control section order. 

PRINT, USING, and DROP statements are 
entered into the GSM chain during Phases I 
and IIA. GSM entries for LTORGs are added 
to the chain in Phases If IIA, and lIB. By 
Phase IIC, only section headings, PRINT, 
USING, LTORG. ENTRY, and DROP statements 
remain in the GSM chain. This routine con­
structs and maintains a full-fledged using 
table as it searches the GSM chain. 

If an internal symbol dictionary (ISD) 
is to be produced follOwing Phase III, an 
ISD list of using table locations is 
established. 



Listing specifications and the current 
LTORG number are maintained in the first 
word of the table and are updated by each 
PRINT or LTORG statement. When a GSM link 
fora section heading is encountered, a 
using table item is inserted in the GSM 
chain to point to the table as it now 
stands. This table reflects the current 
status of all using registers at the time 
of a section break. 

After each USING, DROP, or section 
change, the table is copied into a new 
area, and control pointers are updated to 
address the new table. Processing con­
tinues as before until the end of the GSM 
chain. The PRINT, LTORG, and ENTRY links 
are removed from the GSM chain as pro­
cessed. The entries for USINGs and DROPs 
are replaced by pOinters to the copied 
using table. 

Phase III uses the GSM chain as a guide 
to processing order. In following the con­
tinuations of a control section, the GSM 
link for the section heading is immediately 
followed by a link pointing to the current 
using table, which reflects the status of 
using registers, PRINT control, and the 
current LTORG number at the point of con­
tinuation. The using tables are con­
structed in working segment 1. 

During Phases I and IIA the presence of 
ENTRY statements is also marked on the GSM 
chain. This module processes this chain 
concurrently for both ENTRY and USING/DROP 
statements. At this time definitions are 
available for any symbol which may legiti­
mately appear as an ENTRY operand. 

This section name within which the ENTRY 
occurs is also known, since the GSM chain 
includes section names which this module 
records in the current control section 
address (CCS). 

If the ENTRY occurs within a named sec­
tion which is not a DSECT or unnamed CSECT, 
entry-operand items are constructed in the 
main dictionary and chained to the item for 
the named section currently in control. 

This produces a definition which is cap­
able of R-type references. ENTRY state­
ments may not appear in DSECTs or unnamed 
CSECTs. 

Error Checks: 
• Improperly delimited field. 

• Entry operand defined in invalid sec­
tion type. Considered not an entry. 

• Entry point name duplicates module 
name. 

• Invalid operand field. 

USET -- USING Table Processor (CEVUP) 

This routine updates the status of the 
using-register table currently in effect. 
(See Chart CF.) 

Entry Point: CEVUP 

Calling sequence: INVOKE AUSET 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: This routine is called during 
Phase IIC when the current GSM entry indi­
cates the presence of a USING statement. 
It first resets a series of indicators used 
to check for duplicate register specifica­
tions. EVAL is called to evaluate the 
first operand, which is the base value for 
the USing-registers. Absolute and relocat­
able expressions are acceptable. The relo­
catable expression may consist of a single 
external or internal symbol, plus or minus 
any absolute value. Indicators are set to 
indicate whether the table entry is to be 
in absolute, relocatable, or external for­
mat. The base value is set accordingly. 

Each of the remaining operands is sub­
mitted in turn to EVAL. The expression 
must be absolute, less than 16, and must 
not duplicate another operand. If legal, 
the table entry for the specified register 
is constructed. The value 4096 is then 
added to the base value for each legal 
operand after the first until the list of 
operands is completed. 

The logical order file entry for the 
USING statement is completed. Indicators 
are inserted showing the type of base 
expression and its value. 

Error Checks: 
• Duplicate register usage. 

• Invalid expression for base register 
value. 

• Invalid expression for register 
specification. 

• Improperly delimited operands. 

• Invalid expression value for register 
specif ica tion. 

• Required operand missing. 

• Invalid operand. 

DRSET -- DROP Table Processor (CEVDR) 

This routine updates the status of the 
using-register table currently in effect. 
(See chart CG.) 

Section 8: Phase IIC 97 



Entry Point: CEVDR 

Calling Sequence: INVOKE ADRSET 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: This routine is called during 
Phase IIC when the current GSM entry indi­
cates the presence of a DROP statement. A 
check is made to see if the increment to 
the operand field is zero. if so, all regi­
sters are set to be dropped. A series of 
indicators used to check for duplicate 
register specifications is first reset. 

98 

EVAL is called to evaluate the expression 
for each of the operands. Each expression 
must be absolute, less than 16, and must 
not duplicate another operand. If legal, 
the table entry for the specified register 
is marked as not used. 

Error Checks: 

• Duplicate register usage. 

• Invalid register expression. 

• Improperly delimited operands. 

• Invalid register value. 



INTRODUCTION 

During Phase III, the following is 
produced: 

• Machine-language text. 

• Control section dictionaries and list 
of external symbols (used by LPC to 
establish alias names when the program 
module is stowed). 

• Optionally a list data set, containing 
listings of: 

Source statements 
Object program 

The machine-language text, control sec­
tion dictionaries, and list of external 
symbols are left in virtual storage at the 
conclusion of the assembly. The language 
processor control (LPC), using the list of 
external symbols prepared by the assembler, 
performs the input/output functions neces­
sary to incorporate the text and dic­
tionaries into a partitioned data set. 

Source statements and object program 
listings are optional items; the user may 
request either one listing or both. List­
ings requested by a conversational user 
will be filed automatically in a VISAM list 
data set unless the user requests a prin­
tout at his terminal. Listings requested 
by a nonconversational user will be printed 
on SYSOUl' through a GTWRC macro unless the 
user requests a list data set instead. 

The encoded information in the logical 
order file, and the operands of the origin­
al and generated source language statements 
are used to construct machine-language text 
and control section dictionaries. The 
object listing is produced as a by-product 
of this activity. The listing also con­
tains diagnostic messages for uncorrected 
errors. 

The maChine-language output is distri­
buted between text and control section dic­
tionaries. The text contains machine­
language instructions; the virtual storage 
pages containing the text ultimately maps 
onto pages in the target virtual storage of 
the assembled program. 

The control section dictionaries contain 
information about external symbol defini­
tions, external symbol references, and the 
relocation properties of the text, all 
organized by control section. 

SECTION 9: PHASE III 

The listing data set contains a line 
image listing suitable for printing on an 
external device by the BULKIO facilities of 
the command language. 

Figure 22 illustrates the routine rela­
tionships to accomplish the Phase III func­
tions. Table 8 is a decision table listing 
the criteria for entering each Phase III 
routine. -

ROUTINES 

PHASE III -- Phase III Control (CEVPE) 

This routine controls the final proces­
sing of all instructions. It organizes the 
program by control section, produces the 
necessary binary output text and relocation 
information for the object program, and 
provides listings of the source and object 
programs. (See Chart CH.) 

Entry Point: CEVPEX 

Calling Sequence: L 
BR 

R15,ACEVPE 
R15 

Routines Called: CCWTXT 
CSDPR 
DCTXT 
DIAG 
ENDPR 

Exit: To PHASE IV (CEVPF) 

EVAL 
LIST 
LITXT 
MOPR 
SLLS 

OPERATION: Upon entry, a source program 
listing is prepared if one has been 
specified. 

The page usage estimated for the output 
is then calculated, and VMGET is called to 
procure output working storage and storage 
needed for the program module dictionary 
and external name list. The module heading 
is constructed and completed as far as 
possible. 

The GSM chain is used to put the program 
into order by control section. Within each 
section, the logical order file controls 
the order of processing. Each statement 
represented in the logical order file is 
processed by an appropriate open or closed 
subroutine. As each control section is 
completed, the control section dictionary 
for that section is added to the PMD. At 
the end of the last control section, diag­
nostic messages for the entire assembly are 
printed. 

Section 9: Phase III 99 



I 
I l 

SLLS (CEVSX) 2 

Source listing 
Processor 

I I 

I 
I 

I 

i 

1 r + 

VMGET (CEVGM) 
VMFREE (CEVFM) PHASE III 

(CEVPE) 
Get or Free Phase III Control 
V/orking Storage 

II 
I 

i r I 

t ~ 
lITXT (CEVLT) 2 ENDPR (CEVEP) 

2 
CCWTXT (CEVCC)2 

Phose III Li tero I Module Entry Phose III CCW 
Pooling Processing Point Processor* Instruc Processor* 

~ I DCTXT (CEVDP) 
3 

Phase ill 
Constant 
Processor 

I 
I 

I 

J 
CSDPR (CEVCD) 2 
CSD 
Processor t 

I 

I 
4 ADCON (CEVAD) 4 L LIST (CEVLS) 

Address 
Obiect Program Constant 

I 
I listing 

Processor* I 

1 I I 
I ! 

1 ~ ~ , • 
GATEW (CEVGW)~ 5 PUTVAl (CEVPV) 5 EVAL (CEVEV) 
Interface with Expression Relocatoble 
VJSAM PUT Mocro Evaluotor Output Value 
or GTWRC Macro Processor* 

j (phose 1) ----. , 
GETVAL (CEVGV) t 

* These modules call DIAG (Phase I) Obtain 

t Also call, VMFREE Relocatable 
Value 

Figure 22. Phase III routine relationships 

Table 8. Phase III decision table (part 1 of 4) 

I 
1 

MOPR (CEVMD) 
2 

Phase ill Machine 
Operation Processor 

I 

I 
I 

USEVAL (CEVUV) 5 
Compute 
Using 
Register 

r---------------------------------------------------------------------------------------, 
I Routine: Phase III control Level: 1 I 
t---------~----------------------------T----------------~-----------------------------~ 
I Routine I Purpose I Called Routines I Callin~ Conditions I 
t----------+----------------------------+-----------------f-----------------------------~ 
IPHASE IIIITo control the final pro- ILIST -- CEVLS IAlways called to output a I 
I (CEVPE) Icessing of all instructions. I tline. Not called for a DC, I 
I lIt organizes the program by I ILTORG, or alignment entry I 
I Icontrol section, produces I Iwith no text required. I 
I Itext and relocatable infor- t-----------------+----------------------------~ 
I Imation and provides ISLLS -- CEVSX ISource language listing I 
I I listing • I loption is on. I 
I I r-----------------+-----------------------------i 
I I IENDPR -- CEVEP IAlways called. I 
I I t-----------------+-----------------------------~ 
I I ICCWTXT -- CEVCC ICCW instruction encountered. I 
I I t-----------------+---------------------------~ 
I I I MOPR -- CEVMO I Machine instruction I 
I I I I encountered. I 
I I t-----------------+---------------------------~ 
I I I LITXT -- CEVLT I LTORG instruction I 
I I I I encountered. I 
I I t-----------------+-------------=------------~ 
I I I DCTXT -- CEVDP I DC or OS instruction I 
I I I I encountered. I L _________ ~ ____________________________ ~ _________________ ~ _____________________________ ~ 

J.OO 



Table 8. Phase III decision table (part 2 of 4) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 1 (cont'd) I 
~---------~----------------------------T----------------~---------------------------~~ 
I Routine I Purpose I called Routines I calling Conditions I 
~----------+----------------------------t-----------------t---------------------------~ 
I I I CSDPR -- CEVCD I Called if program contains I 
I I I I control sections other than I 
I I I I DSECT. I 
I I ~-----------------t-----------------------------~ 
I I I EVAL -- CEVEV I SPACE, ]!QU, ORG or USING I 
I I I (Phase n linstruction encountered. I 
I I ~-----------------t-----------------------------~ 
I I IDIAG -- CEVDX IDl15 Invalid operand of I 
I I I (Phase n I SPACE instruction. I 
I I ~-----------------t-----------------------------~ 
I I I VMGET I Gets pages for text, PMD, and I 
1 1 I I external names list. I 
1 I ~-----------------t-----------------------------~ 
I I IVMFREE IFree storage obtained in I 
I I I I Phase III control if insuffi-I 
I I I I cient storage available for I 
I I I IPMD and external names list. 1 
t----------~----------------------------~-----------------~-----------------------------i 
jRoutine: Level: 2 1 
t---------~----------------------------T-----------------T--------------------------~ 
I CCWTXT I To evaluate the operand I EVAL -- CEVEV I Always called. I 
I (CEVCC> Ifield of a CCW instruction I (Phase I) I I 
I land to create binary output ~-----------------t-----------------------------~ 
I I in the text module. I DIAG -- CEVDX I D6, D7 Invalid expression I 
I I I (Phase I) IDl Invalid delimiter I 
I I I ID10 Attempted read into I 
I I I I literal I 
I I I I D20 Invalid flag field I 
I I ~-----------------t----------------------------~ 
I I IPUTVAL -- CEVPV IData address is complex or I 
I I I Irelocatable. I 
~----------t----------------------------t-----------------t-----------------------------~ 
ICSDPR IRetrieves relocation modi- IPUTVAL -- CEVPV Icomplex relocatable item I 
I (CEVCD) tfiers and reference items inl I encountered. I 
I Itemporary storage and pro- ~-----------------t-----------------------------~ 
I Iduces a final output CSD. IVMFREE -- CEVFM IFree unused external names I 
I I I llist pages. I 
~----------t----------------------------t-----------------t-----------------------------i 
IENDPR ITO analyze the operand of IEVAL -- CEVEV IAlways called. 1 
I (CEVEP) I the END statement and to 1 (Phase nil 
I Icomplete the output PMD ~-----------------t-----------------------------i 
I Iheading relative to the IDIAG -- CEVDX IDll Invalid operand on END I 
I I module entry point. I (Phase I) I sta tement I 
I I I I D6 Invalid expression type I 
~----------t----------------------------t-----------------t----------------------------~ 
ILITXT ITo place the binary text forlDCTXT -- CEVDP ILiterals found in a given I 
1 (CEVLT) I the Ii terals in the given I I pool. I 
I Ipool into the output module.~----------------_+_---------------------------~ 
I I I LIST -- CEVLS IAlways called. I 
~----------t----------------------------t-----------------t-----------------------------i 
I MOPR 1 To evaluate the operand I EVAL -- CEVEV I Always called. I 
I (CEVMO) Ifield of a machine instruc- I (Phase I) I 1 
I Ition and to create binary ~----------------~+-----------------------------i 
I loutput in the text module. I USEVAL -- CEVUV I Always called unless RR-type I 
I I I I instruction. I 
I I t-----------------+-----------------------------~ 
I I IGETVAL -- CEVGV IOperand is relocatable or I 
I I I 1 literal. I L-_________ ~ ____________________________ ~ _________________ ~ ___________________________ _J 

Section 9: Phase III 101 



Table 8. Phase III decision table (part 3 of 4) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 2 (cont'd) I 
~---------~----------------------------T-----------------T----------------------------~ 
I Routine I Purpose I called Routines I calling Conditions I 
r----------f----------------------------+-----------------+-----------------------------~ 
I I IDIAG -- CEVDX Dl Invalid delimiter I 
I I I (Phase n D1.4 Required operand I 
I I I missing I 
I I I D39. Length of multiplier/ I 
I I I D41 divisor too large I 
I I I D40 Length field exceeds 3 I 
I I I (SLT instruction) I 
I I I D42 Specified register dup-I 
I I I licates implicit I 
I I I register I 
I I I D33. Floating point register I 
I I I D34 required I 
" I D35 Even numbered register I 
I I I required I 
'I I D36, Operands not on proper I 
I I I I D31 • boundary I 
I' I ID38 I 
I I I ID6, Invalid expression I 
I' 'ID7 , I' 'I Dl0 Attempted store into , 
'I I I literal I 
I' I' D30 Implied length too I 
1 I I' large I 
" I ID120 Attempted explicit I 
I' I' register specification I 
~----------+----------------------------+-----------------+----------------------------~ 
I SLLS I Prepare source listing. I GATEW -- CEVGW I Always called. I 
I (CEVSX) I I I , .-________ _i ____________________________ ~ _______________ __L_ ___________________________ ~ 

,Routine: Level: 3 I 
r---------~----------------------------T----------------_r_----------------------------~ 
IDCTXT IPlaces the binary text for IADCON -- CEVAD IAddress constant encountered I 
I (CEVDP) Ithe constant into the output I lin LOF chain. I 
, I module. ~---------------+_--------------------------~ 
I I I EVAL -- CEVEV I A DS statement containing an I 
I I I lexpression and a cross-refer-I 
I I I I ence listing is desired. I 
I I t-----------------+-----------------------------~ 
I I I LIST -- CEVLS 11. First duplication of a DC , 
I I " or DS. , 
I I I 12. nth duplication of a DC orl 
I 1 I I OS (n>l>, and DATA option , 
I I 'I previously specified on a 1 
I I I' PRINT statement. I 
I I I 13 • Bit length constants. I 
~---------i----------------------------~-----------------~-____________________________ ~ 
I Routine: Level: 4 , 
~----------T----------------------------T-----------------T-----------------------------~ 
IADCON 'Process address constants. IDIAG -- CEVDX 'Dl Improperly delimited I 
, (CEVAD) I I (Phase I) I field I 
I' I I D6 Invalid expression type I 
1 I I I for field I 
I I I I D7 Invalid expression I 
I I I I value for field , 
I I I I D32 Absolute value of dis- I 
I I I I placement too large I 
I I I I D44 Address constant I 
I I I I contains literal I 
I I I ID48 Truncated value I 
I I I I D61 Value of length I 
I I I I modifier invalid for I 
I I I I type of constant I 
I I I ID132 Improper operand for I 
I I I I Q-type adcon I l _________ _i ____________________________ ~ _________________ ~ _____________________________ J 

102 



Table 8. Phase III decision table (part 4 of 4) 
r---------------------------------------------------------------------------------------, 
I Routine: Level: 4 (cont"d) I 
r----------y----------------------------T-----------------y-----------------------------~ 
I Routine I Purpose I Called Routines I calling Conditions I 
r---------_+----------------------------t-----------------+-----------------------------~ 
I I IPUTVAL -- CEVPV IRelocatable A-type adcon I 
I I I I encountered. I 
I I r---------------t----------------------------~ 
I I IUSEVAL -- CEVUV IS-type adcon encountered. I 
I I r-----------------t-----------------------------~ 
I I I EVAL -- CEVEV IAlways called. I 
I 1 I (Phase I) I I 
I I ~-----------------t-----------------------------~ 
I I IGETVAL -- CEVGV IRelocatable A-type adcon I 
I I I I encountered. I 
r---------_+----------------------------t-----------------t-----------------------------~ 
I LIST lPrepare print lines for IGATEW -- CEVGW ICalled if object listing has I 
I (CEVLS) lobject program listing. 1 Ibeen requested. I r----------i----------------------------i--------------_i _____________________________ ~ 
I Routine: Level: 5 I 
r----------T----------------------------T-----------------T----------------------------~ 
IGATEW IInterfaces the assembler IVISAM PUT IAlways called. I 
I (CEVGW) Iwith listing output macros. lor GTWRC macro I I 
I I I instructions. 1 I 
r-~-------_+----------------------------t----------------_+-----------------------------~ 
!USEVAL IReduces a relocatable loca- 10IAG -- CEVDX ID29 No base register avail-I 
I (CEVUV) I tion or absolute value to a I (Phase I) I able for implicit I 
I I base register and displace- I I addressing I 
I I ment value. I 1032 Absolute value of I 
I I I I displacement too large I 
r----------t----------------------------t-----------------t----------------------------~ 
IPUTVAL IPrepare relocation infor- 10IAG --CEVOX 1048 Truncated value I 
I (CEVPV) lmation and binary text for I (Phase I) IDlll Address constant refers I 
I I address constants and the I I to OSECT I 
I \data field of CCW instruc- ~-----------------t-----------------------------~ 
I Itions~ this information IGETVAL -- CEVGV IAlways called. I 
I lultimately inserted in a CSOI I I 
I I in the PMD. I I I r----------i----------------------------i-----------------i-____________________________ ~ 
I Routine: Level: 6 I 
r----------T----------------------------T-----------------T-----------------------------~ 
IGETVAL IGet value from dictionary. I None I I 
I (CEVGV) I I I I L __________ i ____________________________ i ______ ...: __________ i ____________________________ -.J 

The module heading is completed, and the 
control section dictionaries for each sec­
tion are scanned to prepare a list of 
external names so that LPC can stow them 
when disposing of the output. 

Error Checks: 

• Invalid operand of a SPACE instruction. 

• Other error checks performed by the 
component subroutines. 

Comments: The language permits the genera­
tion of empty pages of virtual storage. 
Empty pages are not represented in the 
text. Accordingly, when not in the list 
only mode (used for macro definitions and 
DSECTS) , prior to the processing of any 
statement that may generate text, the vir­
tual location counter for the object pro-

gram is correlated to the position in the 
text storage area that the generated text 
will occupy. A table, representing the 
virtual storage of the object program con­
trol section, is maintained for this pur­
pose. It is initially set to unused (all 
bits on in all words). The first time a 
generative instruction refers to a page of 
virtual storage, a corresponding page of 
text is allocated for it. The relative 
page number of the text is inserted in the 
virtual storage map. Subsequent location 
counter references to the same page of vir­
tual storage cause the binary output to be 
placed on the same page of text. At the 
end of the control section, the virtual 
storage table indicates how many pages of 
text have been generated and which virtual 
storage pages they represent. That portion 
of the table containing entries is then 
placed in the PMO as a guide for the loader. 

Section 9: Phase III 103 



SLLS Source Listing Processor (CEVSX) 

This routine prepares a listing of the 
input source lines in their original order 
and format, together with the sequence 
number assigned to the statement by the 
line data set facilities. (See Chart CI.) 

Entry Point: CEVSX 

Calling Seguence: INVOKE ASLLS 

Routines Called: GATEW 

Exit: Normal 

OPERATION: This routine is called during 
Phase III if the source listing option has 
been taken. Input source lines and their 
associated sequence numbers are linked 
together in virtual storage during Phase I 
of the assembler. The chain of lines are 
followed, the sequence number is edited for 
printing, and the original source line is 
printed without further editing. Proces­
sing is terminated by the occurrence of the 
last link in the source line chain. The 
VISAM PUT macro is used to place the edited 
line in the listing data set or the GTWRC 
macro is used to place it on SYSOUT. 

GATEW -- Interface with VISAM PUT or GTWRC 
Macro (CEVGW) 

This routine provides the interface to 
store list lines in a listing data set with 
the VISAM PUT macro, or put them immediate­
lyon SYSOUT with the GTWRC macro. (See 
Chart CJ.) 

Entry Point: CEVGW 

calling Sequence: INVOKE AGATEW 

Input Parameters: 

R1 Location of line to be placed in 
the listing data set. A length of 
133 characters is assumed. 

Routines Called: 

• Internal - None 

• External - PUT macro (VISAM) or GTWRC 
macro 

Exi t: Normal 

OPERATION: This routine is supplied the 
location of the line to be placed in the 
listing data set. It constructs a sequen­
tial key to satisfy VISAM requirements, 
appends the key to the item, and then tests 
to determine whether the line is going to a 
VISAM list data set. If so, a PUT macro 
places the logical record into the data 

104 

set. If the user requests listings on SYS­
OUT, a GTWRC macro generates code to place 
his line on SYSOUT. A return is then made 
to the caller. 

ENDPR -- Module Entry Point Processor 
(CEVEP) 

This routine analyzes the operand of the 
END statement and completes the output PMD 
heading relative to the module entry point. 
(See Chart CK.) 

Entry Point: CEVEP 

Calling Sequence: INVOKE AENDPR 

Routines Called: DIAG, EVAL 

Exit: Normal 

OPERATION: This routine calls EVAL to eva­
luate the operand of the END statement. If 
the expression is null, the module entry 
point is set to zeros. If the expression 
is relocatable, a reference entry and a 
modifier are added to the module heading. 
The length of the module heading is com­
pleted, and the location of the first con­
trol section dictionary is established. 

Error Check: Invalid expression type. 

MOPR -- Phase III Machine Operation 
Processor (CEVMO) 

This routine causes the operand field of 
the statement to be evaluated and creates 
corresponding binary output in the text 
portion of the output program module. (See 
Chart CL.) 

Entry Point: CEVMO 

Calling Sequence: INVOKE AMOPR 

Routines Called: 

Exit: Normal 

DIAG 
EVAL 

GETVAL 
USEVAL 

Error - Same exit as normal; corres­
ponding text for unprocessed 
fields set to O. 

OPERATION: This routine is called during 
Phase III when the current logical order 
file entry indicates that a machine 
instruction statement is to be assembled. 
The address in the output text that the 
instruction is to occupy is calculated 
prior to entry. The instruction length is 
determined from the logical order file, and 
the bytes to be occupied by the assembled 
text are set to zero. The operation code 
is transferred from the logical order file 
entry to the text. 



processing proceeds according to the 
instruction type: RR, RR with extended M1 
field, RR with only one register, RR with 
immediate value, RX, RX with extended 
value, RS with explicit R3 field, RS 
without R3 field, SI with immediate value, 
SI without immediate value, SS with two 
length fields, and SS with one length 
field. 

The syntax of the operand field for each 
instruction type is evaluated and checked 
for validity. As each component field of 
the instruction is evaluated, the corres­
ponding binary output is placed in the 
text. When the text has been completed all 
instructions are checked against the 
machine operations requirement table to 
diagnose alignment errors and improper 
register usage. 

Relocatable operands are submitted to 
USEVAL, which attempts to reduce the relc­
catable symbol to a base register displace­
ment value. Successful reduction causes 
the resulting values to be placed in the 
specified Band D fields of the instruction 
text. Unsuccessful reduction leaves the B 
and D fields of the text zero and produces 
a diagnostic message. 

The location counter value of relocat­
able operands, including literals, is 
obtained by GETVAL. GETVAL retrieves the 
section number and displacement for 
ordinary symbols; it also searches a liter­
al item for the proper trailer in order to 
retrieve a location counter value appropri­
ate for the current reference. 

Error Checks: 

• Improperly delimited field. 

• Improper type of expression for field. 

• Value too large for field. 

• Attempted store into literal. 

• Length field exceeds 3 (SLT 
instruction) • 

• Improper register specification. 

• Improper storage alignment for 
instruction. 

• Required operand missing. 

GETVAL -- Obtain Relocatable Value (CEVGV) 

This routine helps in the preparation of 
relocation information to obtain the sec­
tion number and location counter displace­
ment of a relocatable symbol. It also 
indicates whether the symbol was external, 

complex, or simply relocatable. (See Chart 
CM.) 

Entry Point: CEVGV 

Calling Sequence: INVOKE AGTVAL 

Input Parameters: 

R1 Location of dictionary item, expre­
ssed as a 24-bit increment to the 
base of working segment 2. 

R5 Pointer to a one byte field con­
taining a "Q" if a Q-con is being 
processed, or non-"Q" if any other 
type of constant. 

Routines Called: None 

Exit: Normal 

output Parameters: 

RO Mode indicator: 

Rl 

R2 

R3 

o = Relocatable 
1 = Complex 
2 = External 

If relocatable, 8-bit section numb­
er and 24-bit displacement. if 
external, reference number in bits 
0-15 and using table number in bits 
16-31: if complex, the absolute 
portion of the complex value, 
expressed as a 32-bit signed 
number. 

If complex, the length in words of 
the list of relocation words in the 
complex definition. 

If complex, the location (32 bits) 
of the first word in the relocation 
list. 

OPERATION: This routine is called during 
the processing of machine instructions. It 
is supplied the location of a dictionary 
item as an input parameter. Normally, the 
location of this item is obtained from the 
RLD list produced by EVAL in response to a 
relocatable expression. 

If, upon examining the dictionary item, 
the symbol is external, the external exit 
is taken. 

If the item is relocatable, the section 
number and displacement of the symbol is 
supplied and the relocatable exit is taken. 

If the item is a literal, the literal 
trailer chain is searched until a trailer 
is found that matches the LTORG number cur­
rently in effect. When a matching trailer 
is found, the trailer is tested to see if 

Section 9: Phase III 105 



the literal is an address constant refer­
ring to the location counter. If so, the 
location counter in the trailer is tested 
to see if it matches the current value of 
the object program location counter. If 
not, the search continues until the match­
ing trailer is found. If the literal is 
not this special kind of address constant, 
the first matching trailer found is the 
correct one. In either case, the section 
number and displacement contained in the 
correct trailer represent the appropriate 
relocatable value for the definition of the 
literal. This information is supplied, and 
the relocatable exit is taken. 

If the item is a complex definition, the 
length and location of the RLD modifiers in 
the complex definition and the absolute 
value portion of the definition are supp­
lied, and the complex exit is taken. If 
the item is a section name and a Q-con is 
being processed, the external mode and exit 
are taken. 

USEVAL -- Compute Using Register (CEVUV) 

This routine reduces a relocatable loca­
tion or absolute value to a base register 
and a displacement value. <see Chart CN.) 

Entry Point: CEVUV 

calling Seguence: 
INVOKE AUSVAL 

error return (four bytes) 
normal return 

Input Parameters: 

RO 

R1 

R2 

Type code: 0 for relocatable; 1 
for absolute; 2 for external. 

32-bit value if absolute; a-bit 
section number and 24-bit displace­
ment if relocatable; reference 
number in bits 0-15 and using table 
number in bits 16-31, if external. 

32-bit signed absolute portion of 
relocatable or external expression. 

Routines called: DIAG 

Exits: Normal 

RO Bits 0-15, 
Bits 16-19, 

Bits 20-31, 

Error 
RO All zero 

zero 
register number 
for B field 
displacement 

OPERATION: This routine is called by MOPR 
during Phase III. It accepts a value and a 
type indicator as input. The type indica-

106 

tor specifies absolute, external, or relo­
catable base type; the value is the abso­
lute value: zero, if external; or a sec­
tion number and displacement, if 
relocatable. 

Depending upon the type, a suitable 
search key is constructed. The current 
using register table is searched, linearly, 
for an entry of the correct type which will 
yield a displacement of 4095 or less. If 
such an entry is found, a record of it is 
made. The expanded size of the Using­
Register Table (normal treatment of general 
register 0) is taken into consideration. 
Bit 1 of word 1 of the U-R Table is no 
longer examined. The search continues, 
however, since the established algorithm is 
to use the base register that produces the 
lowest displacement and, in the case of two 
or more registers that produce identical 
displacements, to use the highest numbered 
register. 

At the completion of the search, diag­
nostic messages are produced if required; 
or, if the search was successful, the 
appropriate register number and displace­
ment value are presented as output. 

Error Checks: 

• Absolute value of displacement within 
range. 

• Base register available for implicit 
addressing. 

LIST -- Object Program Listing (CEVLS) 

This routine provides a line on the 
object program listing appropriate to the 
statement type represented by the current 
logical order file entry. (See Chart CO.) 

Entry Point: CEVLS 

Calling Seguence: INVOKE ALIST 

Routines Called: GATEW 

Exit: Normal 

OPERATION: The current logical order file 
entry and the location of any binary text 
generated for the statement represented by 
the logical order file entry are used to 
prepare a suitably formatted line for the 
object program listing. 

If PRINT control is set to OFF, no pro­
cessing is performed. If it is set to ON, 
information relative to the binary text on 
the left side of the listing and informa­
tion relative to the source statement on 
the right side is printed. Each half of 
the line is prepared independently in order 



to accomodate continued source lines, 
extended binary constants, and the like. 

A separate processing path is used for 
each of the principal assembler operations 
to insure appropriateness of format. 

The PUT macro in VISAM is used to dis­
pose of each line if it is going to a list 
data set. The GTWRC macro is used if it is 
going to SYSOOT. The line is 132 charac­
ters and is preceded by an ASA FORTRAN 
standard print control character: blank 
for single space, 0 for double space, and 1 
for page eject. 

CCWTXT -- Phase III CCW Instruction 
Processor (CEVCC) 

This routine evaluates the operand field 
of the CCW statement and creates corres­
ponding binary output in the text portion 
of the output program module. (See Chart 
CPo ) 

Entry Point: CEVCC 

Callinq Sequence: INVOKE ACCWTX 

Routines Called: EVAL, POTVAL, DIAG 

OPERATION: This routine is called during 
Phase III when the current logical order 
file entry indicates that a CCW assembler 
instruction statement is to be assembled. 
The address in the output text which the 
CCW is to occupy is calculated prior to 
entry. Adjustment will have been made to a 
doubleword boundary. The eight bytes of 
text are then set to zero. 

The syntax of the four operands is eva­
luated and checked for validity. As each 
component field of the instruction is eva­
luated, the corresponding binary output is 
placed in the text. 

PUTVAL is called for relocatable data 
address operands, including literals where 
valid, to create the necessary relocation 
dictionary information required to modify 
the text of a relocatable field. 

Error Checks: 

• Illegal command code. 

• Improperly delimited operands. 

• Improper values for data address, flag, 
and count fields. 

• Attempted read or read backward into 
literal. 

PUTVAL -- Relocatable output Value 
Processor (CEVPV) 

This routine prepares the relocation 
information that will ultimately be placed 
in the control section dictionary of the 
program module dictionary and the text to 
which the relocation applies. (See chart 
CQ. ) 

Entry Point: CEVPV 

callinq Sequence: INVOKE APTVAL 

Input Parameters: 

Rl 

R2 

R3 

Absolute value portion of expres­
sion (32-bits signed). 

Length of relocation input list in 
bytes. 

Location (32 bits) of relocation 
input list. 

Routines Called: DIAG, GETVAL 

Exit: Normal 

OPERATION: This routine is called during 
the processing of address constants and the 
data address field of CCW instructions. It 
is supplied with the length and location of 
the desired text, the address and length of 
an RLD list (normally produced by EVAL) and 
the absolute value portion of the expres­
sion. The format of RLD items is shown in 
Appendix B of Dynamic Loader PLM. 

The RLD list produced by EVAL is the 
same as that contained in a complex value 
dictionary item. 

This routine transforms each entry in 
the RLD into a temporary relocation item. 
The tempora.ry relocation items are con­
verted into true relocation modifiers by 
CSDPR at each section change encountered by 
Phase III control. 

A working value for the text is first 
established. This value is initialized 
with the absolute value portion of the 
relocatable expression. It is modified by 
the displacements of subsequent relocatable 
symbols and ultimately is moved (and trun­
cated if necessary) to fit into the text 
output. 

The items in the RLD list that was supp­
lied as input are processed one by one. 
GETVAL is called to provide section numbers 
and displacements for relocatable symbols. 
The displacement is added to or subtracted 
from the text value according to the opera­
tor code. The section number is used to 
find the reference number of the section 

Section 9: Phase III 107 



name. If a reference number has not been 
assigned to the section name during the 
processing of the current control section, 
one is assigned, and a temporary reference 
item is constructed in working storage. 
The reference items are also processed by 
CSDPR when the section is complete. 

The temporary relocation item is con­
structed, using the length and location of 
the text, the operator code, and the 
reference number of the relocatable value. 
For a complex definition, one temporary 
relocation item is prepared for each relo­
catable quantity which is required to 
express the definition. 

GETVAL may indicate that a given symbol 
is external. In that case, the external 
name item is located in the dictionary (its 
location is given in the input relocation 
list) and the reference number of the 
external symbol is obtained. If no number 
has been assigned, one is assigned, and a 
temporary reference item is created. Pro­
cessing proceeds as for a relocatable item. 

GETVAL may also indicate that a given 
symbol has a complex definition. If so, an 
entry for a pushdown list that indicates 
the length and position of the current 
relocation input is constructed. The abso­
lute value supplied by GETVAL is combined 
with the working text value. The length 
and location of the relocation list supp­
lied by GETVAL is instated as the current 
list, and processing continues. Complex 
definitions may contain complex defini­
tions. At the end of a relocation list, 
this module pops up its pushdown list and 
resumes processing the outer definition. 
If the pushdown list is empty, all terms of 
the relocatable expression have been 
processed. 

The working value of the text is moved 
to the location desired, truncating it, if 
necessary, to fit the field length. If 
Significant bits are lost by this trunca­
tion, a diagnostic message is produced. 

Error Checks: 

• Truncated value. 

• Address constant refers to DSECT. 

• Illegal use of DXD symbol. 

DCTXT -- Phase III Constant Processor 
(CEVDP) 

This routine places the binary text for 
the constant of a DC statement into the 
output module and calls LIST to output an 
object program listing line for both DC and 
OS statements. The text and relocation 

108 

values for address constants not previously 
obtained are resolved during this proces­
sing. Cross-references are processed for 
DC statements, and for DS statements if a 
cross-reference listing has been requested. 
(See Chart CR.) 

Entry Point: CEVDP 

Callinq Sequence: INVOKE ADCTXT 

Routines called: ADCON, LIST, £VAL 

Exit: Normal 

OPERATION: This routine is called by the 
Phase III control module (CEVPE) when the 
current LOF entry indicates that a DC or DS 
statement is to be processed. If expre­
ssions have been found in the modifiers of 
a DS statement and a cross-reference list­
ing has been requested, EVAL will be called 
to evaluate the expressions. LIST will 
then be called to output an object program 
listing line for the OS statement before 
DCTXT returns to the caller. 

For a DC statement, the constant item 
associated with the current LOF entry is 
examined, and a duplication count for the 
text is established. If the constant is an 
addrress constant, ADCON is called to pro­
duce text and relocation information for 
the constant. If the constant is not an 
address constant. its value is retrieved 
from the constant item and moved to the 
text location. For bit-length constants 
the text location is bit oriented, special 
shift and move techniques are used to pack 
the data into the bit-aligned field. Move­
ment of data into the text is repeated 
until the duplication factor is reduced to 
zero. Printed output is generated on each 
duplication when the DATA print option is 
specified, except for bit-length fields. 

For bit-length fields, the next LOF 
entry is tested when all duplications of 
the current constant are complete. If the 
next LOF entry indicates a multiple-operand 
bit-length constant, the bit-oriented text 
location is maintained at its current 
updated value so that the next constant may 
be packed at the next adjacent bit. If the 
next LOF entry does not indicate a 
multiple-operand bit-length constant, any 
alignment entry that may be present in the 
LOF is used to fill out the current field 
of the next byte boundary with zero bits. 
The entire bit-length constant is then 
printed. 

The multiple operands for non-bit-Iength 
constants are processed by successive 
entries to this module. The LIST module 
suppresses the source line on all 
continuations. 



ADCON -- Address Constant Processor (CEVAD) 

This 
text of 
taining 
value. 

routine prepares the binary output 
a constant and any information per­
to the relocation properties of the 
(See Chart CS.) 

Entry Point: CEVAD 

Callinq Sequences: 
INVOKE AADCON 

error return (4 bytes) 
normal return 

Routines Called: 

Exi t: Normal 

DIAG 
EVAL 
GETVAL 

PUTVAL 
USEVAL 

Error - various errors occurring in 
operand of address 
constant. 

OPERATION: This routine is called during 
the processing of literals and constants in 
Phase III. The initial location of the 
output text is established, and the source 
text for the operand is located. Scan 
pointers are positioned inside the first 
encountered left parenthesis. At this 
point processing varies according to the 
type of address constant: A and Y, Q, V 
and R, or S. 

For A and Y types, EVAL is called and 
the results of the evaluation are analyzed. 
Absolute values are placed directly in the 
text. These may be bit-oriented fields. 
Literals and erroneous expressions are di­
agnosed and rejected. Relocatable and com­
plex expressions are presented to PUTVAL 
for construction of the text and relocation 
information, unless the field is a bit­
oriented one. Bit-oriented fields are 
rejected for relocatable values, diagnosed, 
and set to zero. 

For Q, V and R types, the characters of 
the symbol are collected, and, for V and R 
types, the matching V-type entry in the 
permanent dictionary is located. For V and 
R types, values are extracted from the 
item, and PUTVAL is called to construct the 
text and relocation information. For Q 
types, the operand is tested for validity 
and a cross reference item is built if 
requested. A call is then made to PUTVAL. 

For S types, EVAL is called and the 
results of the evaluation are separated 
into absolute and relocatable. Other 
results are diagnosed and rejected. USEVAL 
is then called to provide a base register 
and displacement that are equivalent to the 
original expression. 

For all types, delimiters are checked 
and multiple constants are processed until 

the terminating right parenthesis is 
reached. 

Error Checks: 

• Invalid expression type. 

• Bit-length field for relocatable value. 

• Literal appears in address constants. 

• Field improperly delimited. 

• Register value too large. 

• Displacement value too large. 

• Truncated value. 

• Relocatable adcon occurs in a PUBLIC 
control section. 

• Improper operand for Q-type adcon. 

LITXT -- Phase III Literal poolinq 
Processor (CEVLT) 

This routine places the binary text of 
the literals in the specified pool into the 
output module. The values of address con­
stants not previously obtained are resolved 
during this processing. (See Chart CT.) 

Entry Point: CEVLT 

Callinq Sequence: INVOKE ALITXT 

Routines Called: DCTXT, LIST 

Exit: Normal 

OPERATION: This routine is called during 
Phase III when the current logical order 
file entry indicates that a LTORG statement 
is to be processed. A dummy LTORG is 
inserted at the end of the first control 
section for all literals not otherwise 
pooled. 

The logical order file points to the 
head of a chain connecting all literals 
pooled under the given LTORG. POOL IT has 
assigned location counter values to the 
literals on the basis of their length, and 
has reordered the pool chain so that all 
literals in the pool occur on the chain in 
ascending location counter order. The 
reordering is for the benefit of an orderly 
listing during Phase III. 

LTORG processing during Phase III pro­
ceeds through the pool chain. For each 
literal in the pool, an artificial source 
line is created for the benefit of the 
listing. This line is prefixed by the 
standard control bytes, and contains blanks 

Section 9: Phase III 109 



in the first 15 columns; the = is placed in 
column 16, followed by the source text. 

An artificial logical order file entry 
is created for the literal. The logical 
order file entry simulates that of a normal 
DC statement, except that the multiple 
operand flag bit is always off, since mul­
tiple operands are prohibited on literals. 
The simulated logical order file entry is 
chained to itself. Having made the literal 
appear as if it were a normal constant, 
DCTXT is called to process the constant. 

If the literal is an address constant 
referring to the location counter, the 
first trailer that is not flagged as 
generated is found, the pseudo dictionary 
item for the location counter is set to the 
value contained in the trailer, and the 
trailer is flagged as processed. Any 
address constant produced by DCTXT will 
contain the location counter value of the 
literal reference statement when asterisk 
notation is used in the expression. 

CSDPR -- CSD Processor <CEVCD> 

This routine completes the processing of 
a control section dictionary before the 
Phase III control module (CEVPE) begins 
processing a new control section. It is 
responsible for retrieving all relocation 
modifiers and reference items in temporary 
storage and for producing a final output 
control section dictionary from them. (See 
Chart CU.) 

Entry Point: CEVCD 

Calling Sequence: INVOKE ACSDPR 

Routines Called: PUTVAL, VMFREE 

Exit: Normal. 

OPERATION: This routine initially con­
structs a section heading in the output 
PMD. The total number of bytes in the text 
and the relative page number where the text 
begins are placed in the section heading. 

The section name is located in the dic­
tionary; entry names have been attached to 
section names so the associations necessary 
for R-type references are always properly 
defined. This routine follows the chain of 
ENTRY names attached to the section name 
item. The first pass over the ENTRY chain 
pulls off all entry names with simply relo­
catable definitions. A definition is simp­
ly relocatable if the value of the defini­
tion (shown in the value item) is simply 
relocatable, and the section number in the 
value item is the same as the current sec­
tion. If these conditions are met, a 
definition item is constructed in the con-

110 

trol module, the displacement portion of 
the relocatable value is entered as the 
value of the definition, and the alphameric 
name of the entry is copied into the 
definition term. The entry is removed from 
the chain. 

When the end of the ENTRY chain is 
reached, the remaining links are rescanned 
for definitions with absolute values. A 
definition is absolute if the value of the 
definition as shown in the value item is 
absolute. Each absolute definition is 
entered into the output module and removed 
from the chain. 

The remaining links of the ENTRY chain 
now represent complex definitions. A 
definition with R-type referenceability is 
complex because the section number in the 
value item is not the same as the current 
section. The value of such a definition 
can be either simply or complexly relocat­
able, regardless of its R-type 
referenceability. 

Thus complex definitions may be divided 
into two types: simply relocatable defini­
tions which have become complex by virtue 
of their R-type reference attribute; and 
definitions that were complexly relocatable 
to begin with, and that mayor may not have 
an R-type attribute. 

For the first type, the displacement 
portion of the relocatable value becomes 
the value of the definition item. The con­
trol section in which the symbol is defined 
is indicated by constructing an RLD modifi­
er for the definition. The byte address of 
the modifier points to the value part of 
the definition; the type field (T) indi­
cates addition; and the reference number 
points to a reference item for the name of 
the remote section in which the entry point 
is defined. 

For the second type, the value item con­
tains a quasi RLD string (originating from 
EVAL which indicates the names of the relo­
catable symbols and the operations (addi­
tion or subtraction) to be performed on 
them. This string is transformed into a 
series of RLD modifiers for the complex 
definition; this is the same transformation 
that produced the RLD modifiers for the 
text. 

RLD modifiers for complex definitions 
are stacked in temporary storage in the 
same way the RLD modifiers for the text 
were. When all complex definition items 
have been constructed, the reference items 
are retrieved from temporary storage and 
copied into the output module in order of 
occurrence. Total counts of each type of 
definition and for all the references are 



posted in the section heading as they 
become known. 

If DXD statements are being processed, 
Q-REF entries will be made and a count 
maintained. A CXD-REF modifier will also 
be built for each CXD present. 

The chain of RLD modifiers for complex 
definitions is now repeatedly scanned to 
accumulate the total number of definition 
modifiers on each page of the module. 
Normally the module contains only one page 
of definitions. As each count is deter­
mined it is posted in the appropriate word 
of the RLD. When counts have been deter­
mined for all pages, the RLD modifiers for 
complex definitions are retrieved in page 
order and copied into the module. The 
location of the first modifier for each 
page is posted with the count for that 
page. 

When the RLD for complex definitions is 
complete, similar processing is performed 
for the RLD modifiers for the text. These 
modifiers are chained in working storage 
according to whether the reference is 
external or internal. The external modi­
fiers are grouped by page, counted, and 
copied into the module first. Then the 
internal modifiers are processed. 

Finally, a table is constructed in the 
module with one entry for each page of vir­
tual storage represented by the text. The 
entry contains a pointer to the page of 
text. An empty page of virtual storage is 
indicated by a word of all 1 bits. 

At this point the number of bytes in the 
control section dictionary is known and 
posted in the heading_ The output module 
for the section is then complete. 

Section 9: Phase III 111 



SECTION 10: PHASE IV 

INTRODUCTION 

Phase IV produces the output selected by 
the user. Any of the following may be pro­
duced during this phase: 

• Symbol table listing or cross-reference 
listing (both cannot be selected). 

• Program module dictionary listing. 

• Internal symbol dictionary. 

• Internal symbol dictionary listing. 

The request for an internal symbol dic­
tionary listing is honored only if the 
internal symbol dictionary has also been 
requested. 

Figure 23 illustrates the routine rela­
tionships for this phase. 

Table 9 is a decision table listing the 
criteria for entering each Phase IV 
routine. 

ROUTINES 

PHASE IV -- Phase IV Control (CEVPF) 

This routine calls the postprocessors 
required to produce the output options 
selected by the user. (See Chart CV.) 

Entry Point: CEVPFX 

Calling Seguence: L R15,ACEVPF 
BR R15 

Routines Called: ISDPR STED 
ISDSA XREF 
PMDLS 

Exit: To AC (CEVAC) 

OPERATION: The postprocessors produce the 
symbol-table listing, cross-reference list­
ing, program module dictionary (PMD) list­
ing, internal symbol dictionary (ISD), and 
ISD listing. Any combination of these ser­
vices is available to the programmer. In 
Phase IV the option flag for each processor 
is checked. and the postprocessor is called 
if its output is desired. After the 
options are checked, an exit is made to the 
assembler main control. 

If an ISD has not been requested and an 
ISD listing has been requested, a request 
for the latter is ignored. 

XREF -- Cross-Reference Listing Processor 
(CEVXF) 

This routine sorts the cross-reference 
items produced during Phase III and pro­
duces an orderly listing of them. (See 
Chart CW.) 

Entry Point: CEVXF 

Calling Seguence: INVOKE 

1 

AXREF 

PHASE IV(CEVPF) 

Phase I'il Control 

I I II 
1 1 ~ ~ 

XREF(CEVXF) 
2 2 2 2 2 

STED(CEVSR) ISDPR(CEVSD) PMDLS(CEVMD) ISDSA(CEVSA) 
Cross - Reference 

Symbol Table Editor 
Listing Processor 

I SD Processor PMD Listing Processor ISD list Processor 

I 
I I 

I ~ 11 ~ 
3 

GATEW(CEVGW) 

Interface with VISAM PUT 
fl.\acro or GrWRC fl.\acro 

(Phose ill) 

Figure 23. Phase II~ routine relationships 

112 



Table 9. Phase IV decision table 
r---------------------------------------------------------------------------------------~ 
I Routine: Phase IV Control Level: 1 I 
~---------_y----------------------------T-----------------y-----------------------------~ 
I Routine I Purpose I called Routines I calling Conditions I 
r----------+----------------------------+-----------------+----------------------------~ 
IPHASE IV ICaiis the post processor IXREF -- CEVXF Icross-reference listing I 
I (CEVPF) Imodules to produce the out- I I requested. I 
I Iput options selected by the ~-----------------+-----------------------------~ 
I I user. I STED -- CEVSR I Symbol table listing request-I 
I I I led but not cross-reference I 
I I I I listing. - I 
I I t-----------------t-----------------------------i 
I I IISDPR -- CEVSD IInternal symbol dictionary I 
I I I I requested. I 
I I t-----------------+-----------------------------~ 
I I IPMDLS -- CEVMD IA program module dictionary I 
I I I llisting requested. I 
I I t-----------------+-----------------------------~ 
I I IISDSA -- CEVSA IBoth internal symbol diction-I 
I I I lary and internal symbol I 
I I I I dictionary listing requested. I 
t----------~----------------------------~-----------------~----------------------------~ 
I Routine: Level: 2 I 
~-------T---------------------------------T---------------y-----------------------------~ 
IISDPR IReduces the content of the main IVMGET IGet virtual storage pages fori 
I (CEVSO> I dictionary to a special internal I IISD. I 
I Isymbol dictionary used by programt---------------t-----------------------------~ 
I I checkout subsystem. IVMFREE I Free excess storage obtained. I 
r-------+---------------------------------t---------------+-----------------------------~ 
IISDSA IDisplays the contents of the IGATEW -- CEVGW IThe following are present: I 
I (CEVSA) I internal symbol dictionary. I (Phase III) I- carriage control character I 
I I I I- location print line image I 
I I I I· VISAM index I 
I I I I- location data control I 
I I I I block I 
t-------+---------------------------------+---------------+-----------------------------i 
IPMDLS IPrepares a listing of the IGATEW -- CEVGW IAlways called. I 
I (CEVMD) I program module dictionary. I (Phase III) I I 
r-------+---------------------------------+---------------+----------------------------~ 
ISTED IPrepare edited symbol IGATEW -- CEVGW IAlways called. I 
I (CEVSR) I table listing. I (Phase III) I I 
r-------+---------------------------------+---------------+-----------------------------~ 
IXREF IPrepare cross-reference IGATEW -- CEVGW IAlways called. I 
I (CEVXF) I listing • I (Phase III) I I L-______ ~ _________________________________ ~ _______________ ~ _____________________________ J 

Routines Called: GATEW 

Exit: Normal 

OPERATION: Production of the cross­
reference listing is indicated by a para­
meter to the assembly which is passed for 
the user through the calling sequence. 

The logical order file is scanned during 
Phase III. The logical order file indi­
cates when a symbol appears in the name 
field of a statement. If the cross­
reference option is elected when a symbol 
is found, a cross-reference definition item 
is constructed and placed in temporary 
storage. In addition, a definition item is 
created for each external name. Cross­
reference items are stacked contiguously in 

the area formerly used by the macro dic­
tionaries and do not require linkage. A 
cross-reference definition item has the 
format shown in Figure 2~. 

jhom LOF 

I Dictionary Location 

Zero 

Figure 24. Cross-reference definition 
format 

Section 10: Phase IV 113 



In Phase III, during operand field scan­
ning of appropriate statements (those that 
produce pertinent cross-references>, the 
cross-reference list option is tested by 
£VAL. In this mode, for every symbol whose 
lookup produces a satisfactory result, a 
cross-reference reference item is con­
structed and placed in temporary storage. 
This technique insures that symbols 
referenced within expressions appear on the 
listing, regardless of the ultimate reloca­
tion properties of the expression. A 
reference item has the format shown in 
Figure 25. 

A separate pass is taken to produce the 
listing. The items are sorted alphabetic­
ally by key of dictionary item, with 
definitions preceding references, and 
references sorted by ascending value of 
location counter. A simple internal merge 
sort is used to order the items. The 
address list produced by the sort controls 
the order of the printed items. The for­
matted lines are stacked behind the listing 
in the listing area. 

STED -- Symbol Table Editor (CEVSR) 

This routine prepares a sorted listing 
of all ordinary symbols contained in the 
main dictionary, together with their type, 
length, and value attributes. (See Chart 
DA. ) 

Entry Point: CEVSR 

Calling Sequence: INVOKE ACEVSR 

Routines Called: GATEW 

Exi t: Normal 

OPERATION: This routine is called during 
Phase IV if the symbol table listing option 
has been taken, and the cross-reference 
listing option has not also been specified. 
Each link indicated by the main hashing 
table is followed, and a sorting key con­
sisting of the address of each item in the 
main dictionary, except transitive items, 
blank names, and variable symbols, is 
stored in working storage 1. The keys are 
then sorted into ascending alphameric 
sequence based on the character value of 
the symbols in the dictionary. 

Referenced Symbo I 

Section 
Number 

Figure 25. 

114 

" ~ Dictionary Location 

I Location Counter 
/ 

/. 
Value of Location Counter ot 

Time of Reference 

Reference item format 

The resulting list is then edited for 
printing. with two columns of symbols 
appearing on each page. Either the VISAM 
PUT macro is used to place the edited lines 
into the list data set, or the GTWRC macro 
is used to place the line immediately on 
SYSOUT, depending on user request. 

ISDPR -- ISD Processor (CEVSD) 

This routine creates the internal symbol 
dictionary (ISD), used by the program con­
trol system. (See Chart DB.) 

Entry Point: CEVSD 

Calling Seguence: INVOKE AISDPR 

Routines Called: VMGET, VMFREE 

Exit: Normal 

OPERATION: This routine is called by the 
Phase IV control module (CEVPF) to reduce 
the contents of the main dictionary to 
those items required by the program control 
system, and to format those items to create 
the internal symbol dictionary USD). 

The ISD consists of three parts: a sec­
tion name table; a collection of using 
register tables; and a collection of symbol 
entries. 

Section Name Table: The section name table 
is placed in the ISD by following the chain 
of section names through the dictionary. 
The name of blank common is transferred as 
binary zeros. The order corresponds to the 
numbering order previously established for 
section numbers so that location counter 
references in the dictionary do not have to 
be adjusted for debugging output. 

Using-Register Tables: If, during Phase 
IIC, the ISD output is on, an independent 
chain of pointers to the using-register 
tables was constructed for the ISD proces­
sor. ISDPR follows this list and moves 
each using table from its original location 
into the ISD. Phase III inserts the loca­
tion counter value into the first word of 
the predefined table at the time it starts 
to use each such table. 

When the tables are transferred to the 
debugging output, those entries containing 
external base values are marked as unused; 
also, the position of the section number is 
moved to a more convenient poSition within 
each entry. 

Note that since Phase III operates in 
ascending location order within ascending 
section numbers, the list of using tables 
will be in ascending location order, as 
required by PCS. 



Symbol Entries: Each link of the hash 
table is followed in order to inspect all 
the symbols in the dictionary. For each 
absolute or simply relocatable value item, 
and for each section name, an appropriate 
address pOinter is constructed in the work­
ing storage area previously used by the 
cross-reference items. Symbols appearing 
in DSECTs are included and designated as 
such. 

When all symbols have been extracted, 
the address list is sorted in such a way 
that the symbols are ordered by ascending 
location counter value, with all absolute 
EQUS appearing at the end, arbitrarily 
sorted by value. 

The symbols are transferred to the 
debugging output. For assembler symbols, 
the number of replication factors is never 
more than 1. The replication factor has a 
value of 1 for everything except EQUS and 
DC or DS statements. For EQUs it is zero, 
and for DC or DS, whatever the duplication 
modifier was. 

Type of field is determined as follows: 
instructions, section names and absolute 
(immediate) values are identified as such. 
Constatnt types F and H are integer; E and 
D are real; A. V, R, and Yare address; S 
and X are logical; and C is character 
string. The assembler has nothing equiva­
lent to complex. (This is type of number, 
not relocation property.) Constant type B 
is logical, P is logical, and Z is charact­
er string. 

Counts of the number of section names, 
using tables. and symbol entries are main­
tained and posted at the head of the debug­
ging output. 

PMDLS -- Program Module Dictionary Listing 
Processor (CEVMD) 

This routine prepares a listing of the 
program module dictionary. (See Chart DC.) 

Entry Point: CEVMD 

Calling Sequences: 

L 
CALL 

R15,APMDLS 
(15),MF,E,xxxx 

xxxx address of a four­
word parameter list. 

Input Parameters: 

Rl Address of a four~word list con­
taining the following information: 

Word 1 - Location of program module 
dictionary 

Word 2 - Length of program module 
dictionary 

Word 3 - Last page number assigned 
in assembler output 

Word 4 - Address of 550-byte word 
area (must be on double­
word boundary) 

Routines called: GATEW 

Exit: Normal 

OPERATION: Information for the listing 
header lines is secured from the program 
module dictionary header. The following 
details, when present, are listed for each 
control section within the module: 

• Section name. 

• Type of section. 

• Time stamp. 

• Attributes. 

• Length of the control section. 

• Text length. 

• Relocatable, absolute, and complex 
definitions for the section. 

• References. 

• DXD and CXD references. 

• Modifiers for complex definitions. 

• Modifiers for text (internal and 
external references, Q-CONs. and CXDs). 

ISDSA -- ISD List Processor (CEVSA) 

This module displays the contents of the 
internal symbol dictionary (ISD). (See 
Chart DD.) 

Entry point: CEVSA 

Calling Sequence: INVOKE AISDLS 

Routines Called: GATEW 

Exi t : Norma 1 

OPERATION: The ISD list consists of five 
line groupings. Each line may contain up 
to twelve symbol names, types, duplication 
factors, symbol lengths, or locations, and/ 
or values for all symbol entries in the 
ISD. 

Section 10: Phase IV 115 



SECTION 11: fLOWCHARTS 

The flowcharts in this manual have been produced by an IBM program, using ANSI sym­
bols. The symbols are defined in the left column below, and examples of their use are 
shown at the right. 

... 

116 

SYMBOL 

rmfAGE 
COt;~')ECTOP 

OFFPAGE 
C(lNXEC'TOR 

•• *. * . . . 

DEFIKITION 

INDICATES AN ENTRY OR 
TERMINAL ?OINT IN A fLOw­
CHART; SHOWS START t STOP f 

~t5~: D~¢Y AL~~ fNDf~~¥~-
RETURN TO THE CALLING 
PROGRAM_ 

INDICATES A PROCESSING 
FUNCTION OF. A DEFINED op­
ERATION CAUSlNG CHANGE IN 
X~L~~FOf~~~Ig~. LOCATION 

INDICATES A DECISION OR 
SWITCHING-TYPE OPERATION 
THAT DETERMINES WHICH OF 
A :JUMBER OF Ai..TERNAT~ 
PATHS SHOULD BE FOLLOWED. 

INDICATES A. SUBROUTINE OR 
MODULE THAT IS DESCRIBED 
IN 1'tUS MAMJAL 

7 ND1cATES .tJ" SUBROUTI'SE OR 
MODULE THAT IS INCLUDED 
IN THE fLOWCHARTS OF AN­
(ITHER MANUAL. 

lNDICATES A. PROCESS THAT 

~~~N~~~~r~~E~E~~E~AX~i¥+~H , 
MODIFIES AN INDEX REGISTER,
OR INITIALIZ~S A ROUTINE.

INDICATES ENTRY TO OR EXIT
FROM ANOTHER BLOCK ON THE
SA.'4E F'LGWCHAR':' PAGE.

INDICATES ENTRY TO OR EXIT
FROM A BWCK ON ANOTHER
PAGE OF THE SAME SE':' Of
FLOWCHARTS.

EXAMPLE

MODNAME

C~~~

':SECT "'t,
j FROM: C'THERvnD

(HART AZ

PASSMEC"H

1\

[H3 7

ob
EP-ENTR'tPT
,--:HART AC
VIA: PASS1-1ECH

COMMENTS

B3: MGD~AME IS THE LOAD MODULE OR LIBRARY
NAME OF THE ROUTINE DESCRIBED BY THIS
FLOWCHART.

'·~O!V!NA.ME r S THE C\)~J!.MON N~E OF THE
ROUTINE.

GTHERM~)D INDICATES THE MODULES PASSlNG
CONTROL TO THIS MeDDLE AND TH£IR FLOW­
CHARTS.

c3: l'SE('T IS THE eSEeT NAME OR OTHEF ENTHY
POINT AT WHlCH PROCESSING BEGINS.

LABEL 1 IS THE LABEL OF THE FIRST
INSTRUCTION.

03: P;UJGkAM EXECUTION CONTINUES WITH BLOCK

~fO~~E~) T~~E£Ef~iIg~ci~o~o is O~ES.

£3: LABEL2 IS THE LABEL OF THE SE(~TION OF
CODE IN THIS POU'TINE FROM WHICH CONTROL

G3:

HJ:

J3 :

IS PASSED TO THE SUBROUTINE. CO:-.JTRGL
RETURl\S TU THE NfXT r ~STRUCTION FOLLOW~
I!';C THE StJBRr:)uTINE CALL.

ENTRYPT IS THE ENTRY PUI!'JT.

SUERTN IS THE COt-".MON NAME OF' THE SUB­
ROUTINE IN FLOWCHART AG.

V lA: PASSM£CH INDICATES HOW CONTROL
PASSES fRe-1-! CO:.!NAME T() SUBRTr\.

LABEL) I S THE LABEL OF THE SECTION OF
CODE F-ROM WHICH CONTROL IS PASSED TO THE

~~Bfi~;~~~g i~0~~6¥H~~P~t1BLI~~}i~NIS
(-PDPNM~ MAY ALSO BE LISED IN A PROCESS­
lNG BLOCK \ .

EXECUTION CONTINUES WITH BLOCK H3 WHEN

~~~ED~C5~ I~~I~S S~¥S6FO~L~~l:~A~~~C~H~t~ ON 
i'HE DECISION IS NO. 

T'HE OFFPAGE CQNNECTCIR MARKED 01H3 INDl~ 
CATES THAT EXECUTION CONTINUES W!TH BLOCK 
H3 FRO~ ANOTHER PAGE OF' THIS SET OF FLOW-
CHARTS _ TH I 5 CONNECTOR I S ALSO PAIRED 
WITH THE ONPAGE CONNECTOR FROM B.:.DCK D3. 

LAB£LiJ. IS THE LABEL OF A SECTION Of CODE 
OF THIS ROUTINE THAT INITIATES I/O. 

NEXTRTN IS THE COMMON NAME OF THE R:OllT~ 
INE THAT EXECUTES AFTER THIS ROUTINE. 

ENTRYPT IS THE ENTRY POINT OF NEXTRT:-.i, 
WHICH IS DESCRIBED IN CHART AC. 

VIA: PASSMECH INDIC.ll,'TES HOW CONTROL 
PASSES FROM COMNAME TO NEXTRTN. 



Program Logic Manual 

GY28-2021-2 

Assembler 

Flowcharts on pages 117-258 were not scanned. 



Chart BC. VMCLEAN (assembler cleanup) - CEVCU 

section 11: Flowcharts 259 



SECTION 12: TABLES, TABLE ENTRIES, LISTING FORMATS 

This section discusses the following: 

• Main Dictionary. 

• Logical Order File (LOF). 

• Global Section Macro Chain (GSM). 

• Macro Name Dictionary. 

• Operation Code Table. 

• Machine Operations Requirements Table. 

• Using Register Tables. 

• Macro Level Dictionary (Temporary 
Dictionary). 

• Source Line Storage Control. 

• Pseudo Dictionary Item for Current 
Location Counter. 

• Constant Item Format. 

• Source Program Listing. 

• Symbol Table Listing. 

• Cross-Reference Listing. 

• Internal Symbol Dictionary (ISD) 
Listing. 

• Program Module Dictionary Listing. 

• Object Program Listing. 

• Internal Symbol Dictionary (ISD). 

• Program Module Dictionary (PMD). 

MAIN DICTIONARY 

The main dictionary is used to establish 
and develop the definitions for symbols in 
the source program. It is used by all 
modules that contribute to, or require 
information about, symbol definition. 

In addition to the main dictionary, a 
temporary dictionary is maintained for each 
macro level. The temporary dictionary con­
tains the system variable symbols, macro 
parameters, and sequence symbols defined at 
the current macro level. The main dic­
tionary contains all names representing 
location counter values, absolute values, 
and global variable symbols; i.e., all sym-

260 

boIs whose influence is not confined to a 
particular macrO level. 

The main dictionary is a disjointed 
collection of variable-length entries 
dynamically constructed by the assembler in 
segment 2. The dictionary items are made 
accessible for reference through a hashing 
algorithm applied to the alphameric value 
of the name. Hashing produces an index 
value to a table. Each item in the table 
is the address of the most recently con­
structed dictionary item related to an 
alphameric name value. 

Basic Format 

The first two words of all dictionary 
items specify the symbol name. The third 
word is an identifying type and the loca­
tion of the previous item that hashed to 
the same value. Succeeding words vary with 
the kind and amount of information that 
must be related to the symbol being 
defined. All dictionary items occupy an 
integral number of full words. 

The main dictionary contains the fOllow­
ing types of items. The entry under the 
type code column is the code found in the 
first byte of word three for each item. 
These items are described separately fol­
lowing this list. 

Item 
Absolute value 
Relocatable value (prepared 

for DS, DC, or CXD) 
Relocatable value (prepared 

for a machine instruction, or 
CCW, LTORG, or EQU statement) 

DXD value 
Complex value 
External name (explicit) 
External name (implicit) 
Control section 
Literal 
Transitive 

*Local variable symbol (LCLA) 
*Local variable symbol (LCLB) 
*Local variable symbol (LCLC) 
Global variable symbol (GBLA) 
Global variable symbol (GBLB) 
Global variable symbol (GBLC) 

*Sequence Symbol 

Type Code 
00000001 
11000110 

11000010 

00110001 
11000011 
11000100 
00000000 
11001000 
11110000 
01000001 
00010001 
00010011 
00010101 
00010000 
00010010 
00010100 
10010000 

*The formats for these items are described 
in the macro level dictionary. 



Absolute Value Item 

This item results from processing an EQU 
statement whose operand expression yielded 
an absolute result. It is constructed dur­
ing Phases I or IIA by the EQU instruction 
scan module (CEVQU) when the expression is 
evaluatable. It is constructed during 
Phase lIB by the assign value to name 
module (CEVEQ) when the expression is relo­
eatable or indeterminate. 

The format of an absolute value item is 
shown in Figure 26. 
o 31 

Key (1) 

KeY(2) 

Type Location of N ext Hash Synonym 
(01) 

8 16 24 

L' l' ISD 
Type 

Value 

--
Figure 26. Absolute value item (EQU) 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 01. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value (carried as 24-bit 
increment to the base of working seg­
ment 2). 

Word 4, bytes 1 and 2 
length attribute - an absolute integer 
expression with a value from 1 to 
65535 (hex FFFF), or a 1-2 byte self­
defining term (hex, character, or 
binary). If the length operand is 
omitted, a value of 1 is entered. 

Word 4, byte 3 
type attribute - an absolute integer 
expression with a value from 0 to 255 
(hex FF), or a 1 byte self-defining 
term (hex, character, or binary). The 
reader is referred to the description 
of the constant item format for the 
meaning of the character attribute 
codes. If the type operand is 
omitted, and the symbol previously 
occurred in the name field of a macro 
reference, the type attribute is COM' 

(hex D4). The type attribute for an 
omitted type operand is C"U" (hex E4). 

Word 4, byte 4 
ISD type - type attribute to be used 
in Phase IV to set ISD type. This 
byte is filled in, but is actually not 
used by Phase IV. The field is intro­
duced to be compatible with the same 
field in the relocatable value item 
entry (type X'C2'). 

Word 5 
absolute value of symbol, carried as 
32-bit integer. 

Relocatable Value Item 

This item is constructed by either of 
the following: 

• The define symbol module (CEVSY), which 
is called when a location symbol is 
encountered in the name field of a 
machine instruction, or a DS, DC, CCW, 
CXD, or LTORG statement. 

• The assign value to name module (CEVEQ) 
in response to an EQU statement con­
taining a simple relocatable expression. 

A relocatable value item may be in one 
of two types of formats. 

A relocatable value item prepared for a 
OS or DC statement has the format shown in 
Figure 27. 

Key(]) 

Ke Y(2) 

Type 
Location of Next Hash Synonym iC6) 

S' L' 

Control 
Location Counter Value 

Section No. 

T' Location of Re lated Constant I tern 

I' 

Figure 27. Relocatable value item (DC, DS, 
CXD> 

Section 12: Tables, Table Entries, Listing Formats 261 



Words 1 and 2 
B-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal C6. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value (carried as 24-bit 
increment to the base of working seg­
ment 2). 

Word 4, bytes 1 and 2 
scaling attribute - applicable to F, 
E, H, and D constants. 

Word 4, bytes 3 and 4 
length attribute. 

Word 5, byte 1 
number of control section in which 
symbol is defined. 

Word 5, bytes 2-4 
displacement of symbol from base of 
control section. 

Word 6, byte 1 
type attribute - one of the alphameric 
characters A,B,C,D,E,F,G,H,K,P,O,Q,R, 
S,V,X,Y, or Z. The reader is referred 
to the description of the constant 
item format for the meaning of the 
attribute codes. If the symbol pre­
viously occurred on a macro reference, 
the normal type attribute for the type 
constant will be overridden and set to 
the character M. 

Word 6, bytes 2-4 
location of constant item containing 
value of constant, expressed as 24-bit 
increment to the base of working seg­
ment 2. 

Word 7, bytes 1 and 2 
not used. 

Word 7, bytes 3 and 4 
integer attribute - applicable to 
F,E,H, and D constants. 

A relocatable value item prepared for a 
machine instruction, or a CCW, LTORG, or 
EQU statement has the format shown in 
Figure 2B. 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal C2. 

Word 3, bytes 2-4 

262 

location of next item whose key hashes 
to the same value, expressed as 24-bit 
increment to the base of working seg­
ment 2. 

Word 4, bytes 1 and 2 
length attribute - an absolute integer 
expression with a value from 1 to 
65535 (hex FFFF), or a 1-2 byte self­
defining term (hex, character, or 
binary). If the length operand is 
omitted, the following values will be 
entered: 8(CCW), 6,2, or 4 (machine 
instruction), 1 (LTORG), or variable 
(EQU) . 

Word 4, byte 3 
type attribute - an absolute integer 
expression with a value from 0 to 255 
(hex FF), or a 1 byte self-defining 
term (hex, character, or binary). If 
the type operand is omitted, and the 
symbol previously occurred in the name 
field of a macro reference, the type 
attribute is C'M' (hex D4). The type 
attribute for an omitted type operand 
is C"U' (hex E4). 

Word 4, byte 4 
ISD type - type attribute used by 
Phase IV to set ISD code for the sym­
bol. This field has an ISD type 
attribute identical to byte 3 when an 
EQU type operand is specified. This 
byte will differ from byte 3 when it 
is preferable to have an ISD code 
assigned which is different from that 
which the type attribute implies. 

Word 5, byte 1 
number of control section in which 
symbol is defined. 

Word 5, bytes 2-4 
displacement of symbol from base of 
control section. 

KeY(l) 

KeY(2) 

Type location of Next Hash Synonym 
(C2) 

L' T' 
ISD 
Type 

Control 
Section No. Location Counter Value 

Figure 28. Relocatable value item (machine 
instructions, CCW, LTORG, EQU) 

DXD Item 

This item is constructed by the define 
symbol routine (CEVSY) which is always 
called by the CXD Phase I Processor (CEVCX). 



The dictionary item prepared for a DXD 
statement has the format shown in Figure 
29. 

Key (1) 

Key (2) 

Type (31) I Location of Next Hash Synonym 

External Reference No. I L' 

Location of Next External Name 

T' I Location of Related Constant Item 

Not Used I I' 

Figure 29. DXD item 

Words 1 and 2 
a-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 31. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value (carried as 24-bit 
increment to the base of working seg­
ment 2). 

Word 4, bytes 1 and 2 
number of this symbol in the external 
reference table produced for the con­
trol section dictionary for the cur­
rent control section during Phase III. 
This number is cleared to all bits 
X'FFFF' between control sections and 
reassigned the first time the symbol 
is referenced within a given section. 

Word 4, bytes 3 and 4 
length attribute. 

Word 5 
location (32-bit) of next external 
name item (either explicit or impli­
cit) defined within the assembly. 

Word 6, byte 1 
type attribute - one of the alphameric 
characters. 

Word 6, bytes 2-4 
location of constant item containing 
value of constant, expressed as 24-bit 
increment to the base of working seg­
ment 2. 

Word 7, bytes 1 and 2 
not used. 

Word 7, bytes 3 and 4 
integer attribute - applicable to 
F,E,H, and D constants. 

Complex Value Item 

This item is constructed by the EQU 
instruction scan during Phases I and IIA 
and the assign value to name routine 
(CEVEQ> during Phase lIB, when an EQU sta­
tement with an expression referencing mul­
tiple relocatable symbols or a single 
external symbol is processed. The complex 
value is represented by the string of terms 
output by the expression evaluator routine 
(CEVEV) to describe the simplified 
expression. 

The format of a complex value item is 
shown in Figure 30. 

KeY(l) 

KeY(2) 

Type location of Next Hash Synonym 
(C3) 

l.' T' 
Not 
Used 

No. of Bytes . Not Used in Relocatable 
Value String 

+ Absolute Value -

~ Operator Location of Dictionary Item for Relocatable, 
- Code or External Term n 

- -
~ ~ ~ 

Operator location of Di ctionary I tem for Re locotob Ie, 
Code or Externo I Term n 

Figure 30. Complex value item (EQU) 

Words 1 and 2 
a-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal C3. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to same value, expressed as 24-bit 
increment to the base of working seg­
ment 2. 

Word 4, bytes 1 and 2 
length attribute - an absolute integer 
expression with a value from 1 to 
65535 (hex FFFF), or a 1-2 byte self­
defining term (hex, character, or 
binary) • 

Section 12: Tables, Table Entries, Listing Formats 263 



Word 4, byte 3 
type attribute - an absolute integer 
expression with a value from 0 to 255 
(hex FF), or a 1 byte self-defining 
term (hex, character, or binary). 

Word 4, byte 4 
not used. 

Word 5, byte 1 
first bit on indicates symbol was 
equated to an external symbol and that 
the symbol is really not complex. 

Word 5, bytes 2 and 3 
not used. 

Word 5. byte 4 
number of bytes in the list of relo­
eatable values (words 6 - n). 

Word 6 
absolute value portion of complex 
expression, carried as 32-bit signed 
integer. 

Words 7 through n: 

byte 1 
operator code to be applied to the 
relocatable term. The only allowable 
operators are addition and subtrac­
tion. The hexadecimal codes are F6 
and F4 respectively. 

bytes 2-4 
location of dictionary item for relo­
eatable symbol, expressed as 24-bit 
increment to the base of working seg­
ment 2. 

Note: The expression evaluator module 
(CEVEV) determines the operator codes and 
dictionary locations. 

External Name Item 

This item may be created in one of two 
ways: 

• By EXTRN for each operand of an EXTRN 
statement (explicit item). 

• By CSCAN for each operand of a V-type 
address constant (implicit item). 

Both explicit and implicit items perform 
the same function: providing a definition 
point for an external reference. However, 
implicit items are transparent to all norm­
al references; they are visible only when 
V-type constants are processed. 

The format of an explicit external name 
item is shown in Figure 31. 

264 

KeY(l) 

KeY(2) 

Type 

I location of Next Hash Synonym 
(C4) 

Externa I Reference No. I Reference No. for Usi ng 
Tables 

Location of Next External Nome Item 

Figure 31. External name item (EXTRN) 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal C4. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4, bytes 1 and 2 
number of this symbol in the external 
reference table produced for the con­
trol section dictionary for the cur­
rent control section during Phase III. 
This number is cleared between control 
sections and reassigned the first time 
the symbol is referenced within a 
given section. 

Word 4, bytes 3 and 4 
sequentially assigned number for iden­
tifying external symbols which appear 
in using register tables. External 
symbols which are so used are assigned 
sequentially ascending reference num­
bers by Phase IIC. 

Word 5 
location e32-bit) of next external 
name item (either explicit or impli­
cit) defined within the assembly. 

The format of an implicit external name 
item is shown in Figure 32. 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code, hexadecimal 00. 

Word 3, bytes 2-4 
location of next item whose symbol 
hashes to the same value, expressed as 
a 24-bit increment to the base of 
working segment 2. 



Word 4, bytes 1 and 2 
number of this symbol in the external 
reference table produced for the con­
trol section dictionary for the cur­
rent control section during Phase III. 
This number is cleared between control 
sections and reassigned the first time 
the symbol appears in a V-type address 
constant within a given section. 

Note: V-type external name items are 
not visible to users of the normal 
dictionary lookup routines; they are, 
in effect, undefined symbols with 
respect to the rest of the assembly. 
The lookup used to process V-type 
address constants is the only one 
cognizant of this item type. 

Word 4, bytes 3 and 4 
not used. 

Word 5 
location (32 bits) of next external 
name item, either implicit or expli­
cit, defined within the assembly. 

KeY(l) 

Ke Y(2) 

Type I location of Next Hash Synonym 
(00) 

Externa! Reference No~ I 
Location of Next Externa I Name I tern 

Figure 32. External name item (v-type 
address constant) 

Control Section Item 

This item is constructed by the state­
ment analyzer module (CEVST) upon the first 
occurrence of a symbol (or blanks) in the 
name field of a CSECT, DSECT, COM, START, 
or PSECT statement. 

This item contains two value fields: 

• The current value - a running counter 
maintained during Phases lIB and III. 

• The maximum attained value: 

1. Provides the resumption location 
for an ORG statement with a blank 
operand field during Phase lIB. 

2. contains the object size of the 
control section during Phase III. 

The format of a control section item is 
shown in Figure 33. 

KeY(l) "-
Ke Y(2) / 

Type 
location of Next Hash Synonym (Ca) 

Number of Highest Location Counter 
This Section Value for Section 

Number of Working Value of location Counter 
This Section 

Location of First Entry Point Trai ler 

Location of Next Section Name 

Reference Number Attributes Section Type 

Page Usage 

8 - Character Version I D 

I • 

t> May be 
Blank 

Figure 33. Control section item (CSECT, 
DSECT, COM, START, PSECT) 

Words 1 and 2 
a-character alphameric key. 

Word 3. byte 1 
type code - hexadecimal C8. 

Word 3. bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4, byte 1 
number of this control section. Sec­
tions are numbered sequentially from 
one in order of their occurrence. 

Word 4, bytes 2-4 
highest attained displacement reached 
by the location counter for this sec­
tion. This value is maintained and 
updated by the ORG and section name 
routines in Phase lIB. 

Word 5, byte 1 
number of this control section. Dup­
licated for convenience of processing 
this word. 

Section 12: Tables, Table Entries, Listing Formats 265 



Word 5, bytes 2-4 
current displacement of the location 
counter for this section. Used by the 
ORG and section name routines of Phase 
lIB. 

Word 6 
location of the first entry point 
trailer for this control section. 
This. is the head of a list of entry 
points for the section. 

Word 7 
location of next section name item. 
This is one of the entries in a list 
of section names maintained for the 
assembly as a whole. 

Word 8, bytes 1 and 2 
number of this symbol in the external 
reference table produced for the con­
trol section dictionary for the cur­
rent control section during Phase III. 
This number is cleared to all bits 
between control sections and is reas­
signed the first time a relocation 
modifier for the text is required that 
refers to a symbol defined within this 
section. 

Word 8, byte 3 
definition of the attributes of this 
section. The codes are: 

PUBLIC 
READONLY 
VARIABLE 
SYSTEM 
PRVLGD 

00001000 
00010000 
00100000 
01000000 
10000000 

The bit configuration 00000001 indi­
cates the control section has been 
processed by Phase IIA. 

Word 8, byte 4 
definition of the type of control sec­
tion. The codes are: 

COM 
Blank COM 
CSECT 
DSECT 
PSECT 
Blank CSECT 

00000001 
00000010 
00000011. 
00000100 
00000101 
0000011.0 

Word 9 

266 

during Phase lIB this field is used to 
hold a cumulative count of the number 
of different virtual storage pages 
used within the assembled control sec­
tion. This statistic is required in 
order to request sufficient working 
storage to produce the binary text in 
Phase III. The page usage for all 
control sections is added together 
during Phase lIB processing, and an 
appropriate GETMAIN macro is issued in 
Phase III. 

Words 10 and 11 
8-character information indicating 
version identification for the control 
section. All control section items 
are members of a chain. The entry 
trailer format is shown in Figure 34. 

Entry Trailer Item 

The format of an entry trailer item is 
shown in Figure 34. 

Location of Next Entry 
Point Trailer 

location of Value Item 
for Entry Point 

Location of Contro I 

Section Item 

Figure 34. Entry trailer item 

Word 1 
location of next entry point trailer 
for this section (32 bits). 

Word 2 
location of the relocatable value item 
or absolute value item corresponding 
to the definition of the entry point 
(32 bits). 

Word 3 
location of the section name item for 
the section in which the symbol is 
defined. (This is not necessarily the 
item to which the trailer is 
attached. ) 

Note: An entry point trailer is attached 
to the section name item for each ENTRY 
operand declared within the section. 
Because of R-type constants, the section 
with which an ENTRY operand is associated 
is not always the section within which the 
entry symbol is defined. 

Literal Item 

This item is constructed during Phase 
lIB for each literal operand encountered. 
It contains the entire source text for the 
literal, permitting positive identification 
in dictionary lookup when the literal text 
is expressed in more than eight characters. 

A literal item contains two pointers: 

• A pOinter to the constant item produced 
by the constant scan module (CEVCS). 

• A pointer to the beginning of the chain 
of trailer items. 



Trailer items ensure proper duplication 
when the same literal is used under dif­
ferent literal pool origins, and when the 
literal contains an address constant which 
refers to the value of the location 
counter. 

The format of a literal item is shown in 
Figure 35. 

KeY(l) 

KeY(2) 

Type I Location of Next Hash Synonym (FO) 

L' I Length of Source 

Location of Constant Item 

Location of Fir5t Trailer 

Location of Source Text 

l' 1 5 ' 

Figure 35. Literal item 

Words 1 and 2 
8-character alphameric key derived 
from the text of the literal. 

Word 3, byte 1 
type code - hexadecimal FO. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4, bytes 1 and 2 
length attribute. 

Word 4, bytes 3 and 4 
length of source text of literal, 
(excluding the =) in bytes. 

Word 5 
location of the constant item which 
contains the value of the literal (32 
bits); the constant item is produced 
during Phase lIB by the constant scan 
module (CEVCS). 

Word 6 
location of the first trailer for this 
item (32 bits); trailers are discussed 
below. 

Word 7 
location of source text, exclusive =; 
32 bits. 

Word 8, bytes 1 and 2 
integer attribute - for F, E, D, and H 
constants. 

Word 8, bytes 3 and 4 
scaling attribute - for F, E, D, and H 
constants. 

The format of the trailer for a literal 
item is shown in Figure 36. 

Location of Literal Item 

Flogs Next Trailer location 

LTORG No. Next Literal in Pool 

Section No. 
Location Counter Value of Literal 

Definition 

Section No. location Counter Value of Reference 
[=A(*)j 

-

Figure 36. Literal trailer item 

Word 1 
location of literal item in main dic­
tionary (32-bits). 

Word 2, byte 1 
flag bits indicating the status of 
literal processing: 

bits 0-5 
not used. 

bit 6 
if 1, indicates that a fifth word is 
present in the trailer, and that this 
literal contains a reference to the 
current location counter. If 0, indi­
cates that the trailer contains only 
four words and does not contain a 
reference to the current location 
counter. 

bit 7 
this bit is used by the lookup routine 
in Phase III to ensure unique results 
for literals that reference the loca­
tion counter. as indicated by bit 6 
on. When the value of such a literal 
is retrieved from the trailer. bit 7 
is set on to prevent this value from 
being retrieved again on any subse­
quent lookup. This forces a unique 

Section 12: Tables, Table Entries. Listing Formats 267 



value for each reference to the loca­
tion counter. 

Word 2, bytes 2-4 
location of next trailer item for this 
literal, expressed as a 24-bit incre­
ment to the base of working segment 2. 

Word 3, byte 1. 
LTORG number controlling the reference 
represented by this trailer. See the 
decription of the RESLIT subroutine in 
Phase lIB for a description of the 
LTORG number. 

Word 3, bytes 2-4 
location of the next literal in the 
pool for this LTORG number. This is a 
24-bit increment to the base of work­
ing segment 2 and is the location of 
the first byte of the trailer item for 
this LTORG number. 

Word 4, byte 1. 
number of the section in which the 
binary text of the literal is placed. 

Word 4, bytes 2-4 
displacement from the base of the sec­
tion at which the binary text of the 
literal begins. 

Word 5, byte 1. 
number of the section represented by 
the asterisk notation in a reference 
to the current location counter. 

Word 5, bytes 2-4 
displacement from the base of the sec­
tion represented by the asterisk nota­
tion reference to the current location 
counter. 

Transitive Item 

This item is constructed by EVAL whenev­
er a reference is encountered to a symbol 
for which a definition item does not exist 
in the dictionary. 

Whenever an EQU statement name which EQU 
cannot evaluate is encountered in Phases I 
or IIA, a transitive item is also made. 

Transitive items created under the first 
condition are dynamically constructed in 
working segment 2 during Phases I and IIA 
and entered into an open-ended chain such 
that the last transitive item points to the 
previous item. At the end of Phase IIA, if 
in conversational mode, a pass is made over 
the transitive items to produce a diagnost­
ic message for each undefined reference. 

Transitive items created under the 
second condition are not entered into the 
transitive chain since they are incomplete 
definitions rather than a reference. The 
format of a transitive item is shown in 
Figure 37. 

268 

KeY(l) 

KeY(2) 

Type Location of Next 
Code (41) Hash Synonym 

Def Location of Previous 
Flags T ransiti ve Item 

Statement Number 

Figure 37. Transitive item 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1. 
type code - hexadecimal 41. 

Word 3, bytes 2-4 
location of next item whose symbol 
hashes to the same value, expressed as 
a 24-bit increment to the base of 
working segment 2. 

Word 4, byte 1 
definition status flag. Hex values: 

00 - definition not yet received. 

01 definition received. 

02 - symbol appears on a machine 
operation instruction operand in 
a DSECT. 

20 - symbol appears on a macro 
instruction. 

Transitive items whose status flag is 
still zero at the end of Phase IIA 
represent undefined symbols. If the 
symbol is defined, it can be found by 
following the hash synonym chain. If 
the symbol appears on a macro instruc­
tion, its type attribute is set to M 
at such time as the final definition 
is made. 

Word 4, bytes 2-4 
location of previous transitive item, 
carried as a 24-bit increment to the 
base of working segment 2. 

Word 5 
number of source statement on which 
symbol appeared. Statement number is 
carried as a 7-digit signed, packed 
decimal number. 

Local Variable Symbol Items 

Local variable symbols are those defined 
by the LCLA, LCLB, and LCLC statements. 



These symbols are used primarily within 
macro definitions and are therefore 
described in the macro level dictionary. 
However, local symbols may be used outside 
of macros, in which case the item for them 
are placed in the main dictionary in the 
same format as used in the macro level 
dictionary. 

Global Variable Symbol Itens 

Global variable symbols are defined by 
the GBLA, GBLB, and GBLC statements. The 
values of these symbols are independent of 
macro level; therefore, their dictionary 
items are maintained in the main 
dictionary. 

Each subscripted global variable symbol 
item contains the maximum permissible sub­
script, and trailers for each non-null 
value, together with an indication of their 
respective subscripts. 

Each unsubscripted global variable sym­
bol item provides space for the setting of 
a non-null value. 

Global items are reset to null values 
the first time they are reprocessed during 
Phase IIA so the sequence of value changes 
can be synchronized with the macro expan­
sion process. The status of this resetting 
is carried in a flag bit in each global 
item. The flag bit is interrogated and 
reset during Phase IIA by the global/local 
instruction scan module (GBLX/LCLX). 

There are three different formats for 
the global variable symbol items: global 
arithmetic item, global Boolean item, glob­
al character item. The format of each is 
described below. 

The format of a subscripted global ari­
thmetic item is shown in Figure 38. 

KeY(l) 

Key (2) 

Type location of Next 

Code (10) Hash Synonym 

Max SS Status 
Value Flog 

f 

I Location of First 

I Subscript 

I 

Figure 38. subscripted global arithmetic 
item 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 10. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4, byte 1 
maximum allowable subscript value 
defined for this item (1-255). 

Word 4, byte 2 

bit 0 
redefinition flag. If 0, the symbol 
has not been reprocessed by Phase IIA. 
In phase IIA a zero in this bit causes 
the value of the item to be reset to 
null (zero) and the bit to be set on. 
The item is set to null by zeroing the 
subscript link or the value. as the 
case may be. 

bits 1-7 
not used. 

Word 4, bytes 3 and 4 
not used, for ease of processing GBL 
and LCL symbols together. 

Word 5 
location of the first subscript trail­
er, expressed as a 24-bit increment to 
the base of working segment 2. 

The format of the subscript trailer is 
shown in Figure 39. 

This 5S location of Next 

Value Subscript 

Value 

Figure 39. Subscript trailer for sub­
scripted global arithmetic item 

subscript trailers: 

Word 1, byte 1 
value of the subscript represented by 
the trailer. Trailers are present 
only for those subscripts which are 
not null. 

Word 1, bytes 2-4 
location of next subscript trailer, 
expressed as a 24-bit increment to the 
base of working segment 2. 

Section 12: Tables, Table Entries, Listing Formats 269 



Word 2 
32-bit signed value of the arithmetic 
symbol. 

The format of an unsubscripted global 
arithmetic item is shown in Figure 40. 

Key (1) 

Key (2) 

Type location of Next 
Code (10) Ha.h Synonym 

a Statu. Flag 

Value 

Figure 40. Unsubscripted global arithmetic 
item 

The words have the same meaning as when the 
item is subscripted. except: 

Word 4. byte 1 
zero. 

Word 5 
32-bit signed value of the arithmetic 
symbol. 

The format of a subscripted global Boo­
lean item is shown in Figure 41. 

KeY(J) 

KeY(2) 

Type 
Location of Next 

Code 
Ha.h Synonym (12) 

Max 
Statu. S5 

Value Flag 

256 Single - bit Value. 

~~ ~ ~ t- ~ -" ------------
Figure 41. Subscripted global boolean item 

270 

Words 1 and 2 
a-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 12. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4, byte 1 
maximum allowable subscript value 
defined for this item (1-255). 

Word 4, byte 2 

bit 0 
redefinition flag. If 0, the symbol 
has not been reprocessed by Phase IIA. 
In Phase IIA a zero in this bit causes 
the value of the item to be reset to 
null (false) and the bit to be set on. 
The item is set to null by clearing 
the eight subscript words, or the 
value bit, as the case may be. 

bits 1-7 
not used. 

Word 4, bytes 3 and 4 
not used, for ease of processing GBL 
and LCL symbols together. 

Words 5-12 
256 single-bit values. The first bit 
represents subscript 0 and is not 
used. The remainder represent sub­
scripts 1-255 and represent true when 
1 and false when o. 

The format of an unsubscripted global 
Boolean item is shown in Figure 42. 

Key (1) 

Key (2) 

Type 
Location of Next Code 

(12) Hash 5 ynonym 

a Status 
Flag 

Value bit 

Figure 42. Unsubscripted global boolean 
item 



The words have the same meaning as when the 
item is subscripted, except: 

Word 4, byte 1 
zero. 

Word 5 
the first bit represents the value 
true when 1, and false when O. The 
remaining bits of the word are not 
used. 

The format of a subscripted global 
character item is shown in Figure 43. 

KeY(1) 

KeY(2) 

Type Code (14) Location of Next Hash Synonym 

Max SS Value Status Flog I , 
I Location of First 5S Trai ler 

Figure 43. Subscripted global character 
item 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 14. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4, byte 1 
maximum allowable subscript value 
defined for this item (1-255). 

Word 4, byte 2 

bit 0 
redefinition flag. If 0, the symbol 
has not been reprocessed by Phase IIA. 
In Phase IIA a zero in this bit causes 
the value of the item to be reset to 
null (null character string) and the 
bit to be set on. The item is set to 
null by zeroing the link to the first 
subscript trailer or the length field, 
as the case may be. 

bits 1-7 
not used. 

Word 4, bytes 3 and 4 
not used, for ease of processing GBL 
and LCL symbols together. 

Word 5 
location of the first subscript trail­
er, expressed as a 24-bit increment to 
the base of working segment 2. 

The format of the subscript trailer is 
shown in Figure 44. 

I 

This S5 Value 
I 

Location of Next 5S T roi ler I 

I 

Length of Character Value 

Value (1) 

Value (2) 

Figure 44. Trailer item for subscripted 
global trailer item 

word 1, byte 1 
value of the subscript represented by 
this trailer. Trailers are present 
only for those subscripts which are 
not null. 

Word 1, bytes 2-4 
location of the next subscript trail­
er, expressed as a 24-bit increment to 
the base of working segment 2. 

Word 2 
length of the character string value, 
o to 8. 

Words 3 and 4 
character string value (up to 8 
bytes) • 

The format of an unsubscripted global 
character item is shown in Figure 45. 

Key (!) 

KeY(2) 

Type Location of Next 
Code (14) Hash Synonym 

0 Status Flog I 
Length of Character 

Value 

Value (1) 

Value (2) 

Figure 45. Unsubscripted global character 
item 

Section 12: Tables, Table Entries, Listing Formats 271 



The words have the same meaning as when the 
item is subscripted, except: 

Word 4, byte 1 
zero. 

Word 5 
length of the character string value, 
o to 8. 

Words 6 and 7 
character string value (up to 8 
bytes) • 

Sequence Symbol Item 

Sequence symbols are used primarily 
within macro definitions and are therefore 
described in the macro level dictionary. 
However, they may be used outside of 
macros, in which case the item for them are 
placed in the main dictionary in the same 
format as used in the macro level 
dictionary. 

LOGICAL ORDER FILE (LOF) 

The LOF is a series of variable length 
entries linked to represent the true 
generation path of the assembly with all 
conditionalities evaluated and expanded; 
i.e., it represents the logical order of 
the assembly. In addition, it contains 
entries which represent diagnostic error 
messages. Each entry contains an identify­
ing directive code. The description of the 
operation code table contains a list of 
these codes. 

The LOF is dynamically constructed in 
segment 2 during Phase I by the statement 
analyzer module (CEVST). During Phase IIA, 
the statement analyzer module supplements 
the file with insertions generated by macro 
expansions. During Phase lIB, the LOF 
chain is further supplemented by alignment 
entries to account for object program space 
unused because of the boundary alignment 
demanded by machine instructions and 
constants. 

The LOF contains an entry for the fol­
lowing types of items. The format of each 
entry is shown separately following this 
list. 

272 

Machine Operations 
Macro Instructions 
Literal. Origins 
DC/DS/CXD/DXD Definitions 
ORG Statements 
USING Statements 
SET Statements 
PRINT Statements 
Alignment Specifications 
Diagnostic Messages 
MNOTE* Statements 

TITLE Statement 
END Statement 
General format 

Machine Operation Entry 

The format of a machine operation entry 
is shown in Figure 46. 

Directive Machine Op I ncremen t to Location 

Code Code Counter 

A B 
Location of Next 

LOF Entry 

Increment to location of Value 
Operand Field I tern (i f Name Present) 

Location of Source 
Statement 

Location of Literal 
Operand 

Figure 46. Machine operation entry 

Word 1, byte 1 
directive code - hexadecimal. 00 
through OBi indicates format of 
machine instruction. The machine 
instruction directive codes are l.isted 
in the description of the operation 
code table. 

Word 1, byte 2 
hexadecimal machine operation code 

Word 1, bytes 3 and 4 
increment to the location counter. 
This is the amount of storage required 
by this machine instruction, expressed 
in bits. 

Word 2, byte 1 
status indicator fields: 

bit 0 
if on, indicates that the source sta­
tement contained a symbol in the name 
field. 

bit 1 
if on, indicates that the operand 
field contains a literal. The loca­
tion of the first character of the 
literal is attached to the entry in 
word 5. 

bit 2 
not used for machine instructions. 

bit 3 
indicates that the statement was 
generated by a macro instruction. 



bits 4-7 
if the source statement operation 
field contained an extended mnemonic, 
the Ml field of the machine instruc­
tion corresponding to the extended 
mnemonic is carried here. 

Word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. If the statement has 
no operand, this field will be zero. 

Word 3, bytes 2-4 
location of the relocatable value item 
in the main dictionary corresponding 
to the symbol in the name field, when 
such a symbol is present (see word 2, 
byte 1, bit 0). 

Word 4 
location of the first byte of the sym­
bolic source statement, exclusive of 
control bytes. 

Word 5 
location of the first byte of the lit­
eral operand (excluding the =). This 
word is present only when bit 1 of 
word 2, byte 1 is on. 

Macro Instruction Entry 

The format for macro instruction entry 
is shown in Figure 47. 

Directive 
Code (OC) 

A B 
Location of Next 

LOF Entry 

lncrement to 
Operand Fi e Id 

Location of Source 
Statement 

location of Macro - Nome 
Item in Dictionary 

Figure 47. Macro instruction entry 

Word 1, byte 1 
directive code - hexadecimal OC. 

Word 1, bytes 2-4 
not used for macro instructions. 

Word 2, byte 1 

bits 0-2 and 4-7 
not used. 

bit 3 
indicates that the statement was 
generated by a macro instruction. 

Word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of the working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
not used for macro instructions. 

Word 4 
location of the first byte of the sym­
bolic source statement, exclusive of 
control bytes. 

Word 5 
location of the macro name item in the 
macro name dictionary. 

Literal Origin Entry 

The format for a literal origin entry is 
shown in Figure 48. 

Directive Location of First 
Code (26) literal in Pool 

A B 
Location of Next 

LOF Entry 

location of Value 
Item (if Name Present) 

location of Source 
Statement 

Figure 48. Literal origin entry 

Word 1, byte 1 
directive code - hexadecimal 26. 

Word 1, bytes 2-4 
location of literal trailer item in 
the permanent dictionary, expressed as 
a 24-bit increment to the base of 
working segment 2. The location is 
that of the first trailer item for 
this LTORG number, and represents the 
first literal in the pool for this 
LTORG. 

Section 12: Tables, Table Entries, Listing Formats 273 



Word 2, byte 1 
status indicator fields: 

bit 0 
if on, indicates that the LTORG state­
ment contained a symbol in the name 
field. 

bit 1 
not used for LTORG. 

bit 2 
always on for LTORG. 

bit 3 
indicates that the statement was 
generated by a macro instruction or by 
the assembler for control purposes. 

bits 4-7 
not used for LTORG. 

Word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of working segment 2. 

Word 3, byte 1 
not used for LTORG. 

Word 3, bytes 2-4 
location of the relocatable value item 
in the main dictionary corresponding 
to the symbol in the name field. when 
such a symbol is present. 

Word 4 
location of the first byte of the sym­
bolic source statement, excluding con­
trol bytes. 

constant-Definition Entry 

The format for a constant-definition 
entry is shown in Figure 49. 

Directive location of Constant 
Code Item 

A B 
Location of Next 

LOF Entry 

I ncrement to Location of Value 
Operand Field Item (if Name Present) 

Location of Source 
Statement 

Figure 49. Constant-definition entry 

Word 1, byte 1 

274 

directive code - hexadecimal 15 (DC), 
17 (DS), 3B (CXD), or 3C (DXD). 

Word 1, bytes 2-4 
location of the constant item prepared 
by CSCAN, expressed as a 24-bit incre­
ment to the base of working segment 2. 
If the modifiers of the constant 
operand were unevaluable in Phases I 
or IIA, evaluation and preparation of 
the constant item are deferred until 
Phase lIB. In such a case, this field 
is zero until Phase lIB, and bit 2 of 
word 2, byte 1 is set. 

Word 2, byte 1 
status indicator fields: 

bit 0 
if on, indicates that the source sta­
tement contained a symbol in the name 
field. 

bit 1 
not used for DC/DS/CXD/DXD. 

bit 2 
if on, indicates evaluation of the 
constant is required. If word 1, 
bytes 2-4 is zero, the constant must 
be evaluated in its entirety. If a 
constant item is present, however, 
this bit indicates that the duplica­
tion factor was zero and that location 
counter alignment must be performed. 

bit 3 
indicates that the statement was 
generated by a macro instruction. 

bits 4-7 
not used by DC/DS/CXD/DXD. 

Word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
location of the relocatable value item 
in the dictionary corresponding to the 
symbol in the name field, when such a 
symbol is present, expressed as a 24-
bit increment to the base of working 
segment 2. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. Zero for second and successive 
operands of a multiple operand 
constant. 



Origin Entry 

The format for origin entry is shown in 
Figure 50. 

Directive 
Code (27) 

A B Location of Next LOF Entry 

I ncrement to 

Operand Field 

location of Source Statement 

Control Location Counter Value 
Sect No. 

Figure 50. Origin entry 

Word 1, byte 1 
directive code - hexadecimal 27. 

Word 1, bytes 2-4 
not used for ORG statements. 

Word 2 I byte 1 
status indicator fields. 

bits 0-1 and 4-7 
not used. 

bit 2 
always on for ORG statements, indicat­
ing a discontinuity in the assignment 
of location counter values. 

bit 3 
indicates that the source statement 
was generated by a macro instruction, 
if on. 

Word 2, bytes 2-4 
location of next LOF entry, expressed 
as a 24-bit increment to the base of 
working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
not used for ORG statements. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

Word 5 
control section number and location 
counter displacement representing the 
new origin specified by the ORG 
statement. 

USING Entry 

The format for USING entry is shown in 
Figure 51. 

Directive 
Code (36) 

A B Location of Next LOF Entry 

I ncrement to 

Operand Field 

location of Source Statement 

Location Counter Value; Register Base Value 

Figure 51. USING entry 

Word 1. byte 1 
directive code - hexadecimal 36. 

Word 1, bytes 2-4 
not used for USING statements. 

Word 2, byte 1 
status indicator fields: 

bits 0-2 
not used. 

bit 3 
if on, indicates that the statement 
was generated by a macro instruction. 

bits 4-7 
type code for base value. Controls 
contents of word 5: 

o - absolute value 
1 - relocatable value 
3 - external value 

word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Section 12: Tables, Table Entries, Listing Formats 275 



Word 3, bytes 2-4 
not used for USING statements. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

Word 5 
set to location counter value in 
effect when USING statement is encoun­
tered by Phase lIB. Later, set to 
value of register base specified in 
the USING statement by Phase IIC. If 
absolute, it is carried as a 32-bit 
signed integer. If relocatable, it is 
carried as an 8-bit section number and 
a 24-bit displacement. If external, 
it is zero. This word is used to 
assist in the formatting of the listed 
USING statement only. 

PRINT Entry 

The format for PRINT entry is shown in 
Figure 52. 

Directive Status 
Code (2C) Indicators 

Location of Next LOF Entry 

I ncrement to 

Operand Field 

Location of Source Statement 

Figure 52. PRINT entry 

Word 1, byte 1 
directive code - hexadecimal 2C. 

Word 1, byte 2 
print status indicators. Bit is set 
if operand is specified. Status of 
operands not specified is carried from 
the previous PRINT statement. 

bit 0 - not used 
bit 1 - FULLGEN 
bit 2 - ON 
bit 3 - OFF 
bit 4 - GEN 
bit 5 - NOGEN 
bit 6 - DATA 
bit 7 - NODATA 

Word 1, bytes 3-4 
not used. 

Word 2, byte 1 
status indicator fields: 

276 

bits 0-2 and 4-7 
not used. 

bit 3 
if on, indicates statement generated 
by a macro. 

Word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
not used by PRINT. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

SET Entry 

The format for SET entry is shown in 
Figure 53. 

Word 1, byte 1 
directive code - hexadecimal 30, 31, 
or 32 for SETA, SETB, or SETC 
respectively. 

Word 1, byte 2 
subscript value, if any, of global 
variable. 

Word 1, bytes 3-4 
not used, zero. 

Directive SS Value 
Code 

A B 
Location of Next 

LOF Entry 

I ncrement to Location 0 f G lobo I 
Operand Field Item in Dictionary 

Location of Source 
Statement 

Value (1) 

Value (2) 

Figure 53. SET entry 



Word 2, byte 1 
half-byte A - status indicator fields: 

bit 0 
always off; even though symbols appear 
in the name field of SET statements, 
the symbols are not subject to the 
assignment of location counter values. 

bit 1-2 
not used. 

bit 3 
if on, indicates that the statement 
was generated by a macro instruction. 

half-byte B 

bits 4-1 
for GBLC symbols only, the length of 
the character string value (0 to 8 
bytes). 

Word 2, bytes 2-4 
location of the next LOF entry, expre­
ssed as a 24-bit increment to the base 
of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
if the SET involves a global symbol, 
this field contains the location of 
the global variable item in the per­
manent dictionary, expressed as a 24-
bit increment to the base of working 
segment 2. Phase IIA reinstates the 
values of global symbols in response 
to entries in the GSM chain. This 
field, the subscript, and the value 
are used to accomplish the processing. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

Word 5 
for SETA, a 32-bit signed value. For 
SETB, a one-bit value in bit O. For 
SETC, the first four bytes of the 
character string. 

Word 6 
for SETC only, the last four bytes of 
the character string. The value words 
are also used to assist in formatting 
SET lines on the printed listing. 

Alignment Specification Entry 

The format of an alignment specification 
entry is shown in Figure 54. 

In order to keep the location counter 
computations exactly in step during Phase 
III with the values previously computed in 
Phase lIB, this item is inserted in the 
logical order file durinq Phase lIB. Phase 
III will advance the location counter by 
the amount specified, and, if directed, 
will produce generated zero-fill for the 
skipped bits. Phase lIB inserts this item 
whenever an instruction, DC, DS, CNOP, or 
CCW, requires adjustment of the location 
counter to a given boundary. 

Directive Zero 
Number of Bi ts 

Code (37) Fill Flag 

A B Location of Next 
LOF Entry 

Figure 54. Alignment specification entry 

Word 1, byte 1 
directive code - hexadecimal 31. 

Word 1, byte 2 
if nonzero, indicates to Phase III 
that the bits skipped over during ali­
gnment are to be set to zero. This is 
the case when the statement following 
alignment is one that generates bits. 
If zero, the bits skipped over are not 
processed. 

Word 1, byte 3-4 
number of bits to be added to the 
location counter to accomplish the 
desired alignment. 

Word 2, byte 1 
half-byte A - status indicator fields: 

bit 0-2 
not used. 

bit 3 
always on; indicates the statement was 
generated by a macro instruction. 

half-byte B 
not used. 

Word 2, byte 2-4 
location of the next LOF entry, ex­
pressed as a 24-bit increment to the 
base of working segment 2. 

Diagnostic Message Entry 

The format of a diagnostic message entry 
is shown in Figure 55. 

The listing routine in Phase III can 
format a print line for a diagnostic meS­
sage directly from the logical order file 
item, using the text location table to get 
the length and severity of the message. 

Section 12: Tables, Table Entries, Listing Formats 277 



When in nonconversational mode, the dia­
gnostic message processor module (CEVDX) 
merely records the diagnostic for later 
inclusion in the assembly listing, as 
opposed to issuing the message immediately 
through the command language interpreter 
facilities. This is facilitated by the 
insertion of a diagnostic message entry 
into the logical order file preceding the 
entry for the source line to which the com­
ment applies during Phases I and IIA. 

If Req 'I' d UI e 
'\ r If Requil'ed 

Directive Leng~h of Var;";,ble Message 
No. 

Code ~38 Source Var or Info No. or 
(0 if MNOTE) MNOTE Msg Severity Code 

Location of Next LOF Entry 

Statement Number 

Location of Source Text for Variable fnformation 
or MNOTE Operand * 

* Present When Variable Sources Text is Required for 
Message (Variable Information No. ~O) 

Figure 55. Diagnostic message entry 

Word 1, byte 1 
directive code - hexadecimal 38. 

Word 1, byte 2 
when required, length of source text 
to be inserted in the message (0-8 
bytes), or length of an MNOTE operand. 

Word 1, byte 3 
when required, index number of the 
standard item of variable information 
to be inserted into the message; 
severity code, when MNOTE. 

Word 1, byte 4 
diagnostic message number. 
MNOTE. 

Zero if 

Word 2 
location of next LOF entry, expressed 
as a 24-bit increment to the base of 
working segment 2. 

Word 3 
number of statement in error. carried 
as a 7-digit signed packed decimal 
integer. This field is used for mes­
sages which are printed at the end of 
the listing. 

Word 4 

278 

location of variable source text or 
MNOTE operand (32 bits). 

MNOTE* Ent ry 

The format for MNOTE* entry is shown in 
Figure 56. 

Directive Length of 
Code (3A) MNOTE Text 

location of Next LOF Entry 

I ncrement to 

Operand Field 

Location of Source Statement 

Figure 56. MNOTE* entry 

Word 1, byte 1 
directive code - hexadecimal 3A. 

Word 1, bytes 2-3 
not used. 

Word 1, byte 4 
length of text in MNOTE* instructions 
operand. 

Word 2, byte 1 
not used. 

Word 2, bytes 2-4 
location of the next LOF entry, ex­
pressed as a 24-bit increment to the 
base of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
not used. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

TITLE Entry 

The format for a TITLE entry is shown in 
Figure 57. 

Word 1, byte 1 
directive code - hexadecimal 35. 

Word 1, bytes 2-3 
not used. 



Word 1, byte 4 
length of text which makes up title. 

Word 2, byte 1 
status indicator field: 

bits 0-2 and 4-7 
not used. 

bit 3 
if on, indicates statement was 
generated. 

Word 2, bytes 2-4 
location of the next LOF entry, ex­
pressed as a 24-bit increment to the 
base of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
not used. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

Word 5 
location of text specified by charact­
er string in TITLE (32 bits). 

Direct~ve length of 

Code (35) Title Text 

location of Next lOF Entry 

I ncrement to 

Operand Field 

location of Source Statement 

Location of Text for Title 

Figure 57. TITLE entry 

END Entry 

The format for an END entry is shown in 
Figure 58. 

Word 1, byte 1 
Directive code - hexadecimal 1A. 

Word 1, bytes 2-4 
not used for END statements. 

Word 2, byte 1 
status indicator fields: 

bits 0-2 and 4-7 
not used. 

bit 3 
if on, indicates statement was 
generated. 

Word 2, bytes 2-4 
location of the next LOF entry, ex­
pressed as a 24-bit increment to the 
base of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
not used for END statements. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

Word 5 
location counter value associated with 
the module entry point. 

Directive 
Code (lA) 

Location of Next LOF Entry 

Increment to 

Operand Field 

Location of Source Statement 

Control 
Location Counter Value 

Section No~ 

Figure 58. END entry 

General Format for LOF Entry 

The format for the LOF entry is shown in 
Figure 59. 

Note: This LOF entry format is used by all 
instructions not previously described. 

Word 1, byte 1 
directive code. 

Word 1, bytes 2-4 
not used. 

Word 2 r byte 1 
status indicators: 

bit 0 
if on, indicates the source statement 
contained a symbol in the name field. 

Section 12: Tables, Table Entries, Listing Formats 279 



bit 1 
if on, indicates operand field con­
tained a literal whose address is in 
word 5. 

bit 2 
if on, indicates further processing in 
Phase lIB is required. 

bit 3 
if on, indicates statement was 
generated either by a macro or the 
assembler. 

bits 4-7 
not used. 

Word 2. bytes 2-4 
location of the next LOF entry. ex­
pressed as a 24-bit increment to the 
base of working segment 2. 

Word 3, byte 1 
increment to be added to the location 
of the source statement to produce the 
address of the first character of the 
operand field. 

Word 3, bytes 2-4 
location of the dictionary item corre­
sponding to the symbol in the name 
field, when such a symbol is present, 
expressed as a 24-bit increment to the 
base of working segment 2. 

Word 4 
location of the first byte of the 
source statement, excluding control 
bytes. 

Word 5 
location of literal if one is present 
in operand of the source statement; 
this word not present if no literal in 
the statement. 

Directive 
Code 

A B Location of Next LOF Entry 

I ncrement to 

Operand Location of Dictionary Item 

Field (If Name Present) 

Location of Source Statement 

Location of Litera! When One is Present 

Figure 59. General format for LOF entry 

280 

GLOBAL SECTION MACRO CHAIN (GSM) 

The GSM chain is created during Phase I. 
The chain points to control section state­
ments (START, CSECT, DSECT, PSECT, COM) and 
the following, in order of occurrence: 

• Macro instructions. 

• Global SET statements. 

• ENTRY, PRINT, LTORG, USING, DROP 
statements. 

During Phase IIA, the GSM chain is fol­
lowed, ignoring LTORG, USING, and DROP 
statements, to perform one of the following 
types of processing: 

• Posting a new current control section. 

• Updating a global SET symbol dictionary 
definition. 

• Expanding a macro instruction. 

• Resetting the PRINT status. 

During this processing, macro instructions 
and GBL and SET entries are removed from 
the GSM chain; control section declaratives 
and ENTRY, PRINT, LTORG, USING, and DROP 
statements generated by macro expansions 
are inserted into the chain. 

During Phase lIB, entries are added to 
the GSM chain for generated control section 
statements and LTORGs. 

During Phase IIC, the GSM chain is 
passed over in order. ENTRY trailer items 
are formed from ENTRY statements; USING and 
DROP statements are used to adjust the base 
register table. PRINT statements are used 
to amend the listing control specifica­
tions. LTORG statements are used to update 
the LTORG number. The entries for all of 
these except USING and DROP statements are 
then removed from the GSM chain. USING and 
DROP GSMs are replaced with base register 
locator items. Wherever a control section 
statement is encountered, the base register 
table is put out to provide initial condi­
tions for the control section. 

During Phase III, the GSM chain is used 
as a guide to permit processing in control 
section order. 

The format of a GSM entry is shown in 
Figure 60. 



link to Next GSM Entry 

Type Code location of LOF Entry 
(or USING Table) 

Location of Previous LOF Entry 

Figure 60. GSM entry format 

Word 1 
location of next GSM entry (32 bits). 

Word 2, byte 1 
type code, assigned as follows: 

o - Section statement 
1 - Macro instruction 
2 - GBLx statement 
3 - SETx statement (global symbol) 
4 - USING 
5 - DROP 
6 - Base register table locator 
7 ENTRY 
8 - PRINT 
9 - LTORG 
A - Generated statement 

Word 2, bytes 2-4 
pointer. For all types except 6, this 
is the address of the logical order 
file entry for the statement to be 
processed, expressed as a 24-bit 
increment to the base of working seg­
ment 2. For type 6, it is the address 
of the base register table in effect 
at the section break. The address is 
expressed as a 24-bit increment to the 
base of working segment 1. 

Word 3 
for all types except 6, this is the 
32-bit address of the logical order 
file entry for the statement preceding 
that to be processed. This address is 
required for the insertion of diag­
nostic message entries into the LOF 
for the statement being processed. 

MACRO NAME DICTIONARY 

The macro name dictionary is used to 
establish and develop symbol definitions 
used as macro names. It is a variable 
length array of linked items dynamically 
constructed in Segment 2 by the macro 
definition processor module (MACDEF) during 
Phase I. It is used by the collect and 
identify operation code module (GETOP) and 
the macro reference processor module 
(MACREF) • 

Symbols in the macro name dictionary are 
located by applying a hashing algorithm to 
the alphameric value of the symbol. The 
result is an index value to a table of 
addresses, of which each address space con­
tains the address of the most recently con­
structed dictionary item whose key hashes 
to this value. 

The format of a macro name dictionary 
entry is shown in Figure 61. 

Key (1) 

KeY(2) 

Type Location of Next Hash Synonym 
(AO) 

Location of LOF Entry for Prototype Line 

location of Prototype Line 

Figure 61. Macro name dictionary item 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal AO. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, carried as a 24-bit 
increment to the base of working seg­
ment 2. 

Word 4 
location of LOF entry for the macro 
prototype statement. If zero, the 
macro definition is not yet in 
storage. 

Word 5 
location of the first byte of the 
macro prototype statement. 

OPERATION CODE TABLE 

The operation code table is an ordered 
list of the mnemonic codes used for machine 
operations and assembler instructions. It 
is maintained in the common constant area 
of assembler storage. 

Section 12: Tables, Table Entries, Listing Formats 281 



Each machine and assembler instruction 
is represented by an entry in the operation 
code table. Entries are packed densely and 
are in alphabetical order. 

The format of each entry is shown in 
Figure 62. 

Mnemonic Operation Code(l) 
Contents of Rl Field 
of an Extended 
Mnemonic Code 

Mr:emonic Machine Ext JI V 
Directive 

Operation 
Code 

I nstruc t i on Reg 

Cade(2) Code Code 
/'" 

-Single - Bit Flag - Non Zero 
if Thi s Operation Code has 
Been Redefi ned by 0 Macro 
Instruction 

Figure 62. Item format for operation code 
table entry 

Word 1 
first four characters of mnemonic 
operation code. 

Word 2, byte 1 
fifth character (if any) of mnemonic 
operation code. The operation code is 
left justified in a blank field. 

Word 2, byte 2 
directive code (see Table 10). 

Word 2, byte 3 
hexadecimal machine instruction code, 
where applicable. Otherwise, zero. 
(See Table 11.) 

Word 2, byte 4 

bits 0-2 
not used. 

bit 3 
if 1, machine instruction code has 
been superseded by a macro definition. 
Mnemonic must then be located in the 
macro name dictionary. Otherwise, 
zero. 

bits 4-7 
Ml field value for extended mnemonic 
operation codes. Zero, if not 
applicable. 

MACHINE OPERATIONS REQUIREMENTS TABLE 

The machine operations requirements 
table is used to check the register and 
address specifications of certain machine 
operations for validity. 

282 

Table 10. Directive code assignments 

Directive 

Code 
Instrucflon 

Directive ! 
Code . 

Instruction 

00- OB Machine lt1structions. 25 lClC 
(See Table 11 ) 

26 lTORG 
OC Macro Instruction 

27 ORG 
OD AGO 

28 MACRO 
OE AIF 

29 ME~lD 

OF ANOP 
2A MEXIT 

10 CON 
28 MNOTE 

11 CNOP 
2C PRINT 

12 COM 
2D PSECT 

13 COPY 
2E PUNCH 

14 CSECT 
2F REPRO 

15 DC 
30 SETA 

16 DROP 
31 SETB 

17 DS 
32 SETC 

18 DSECT 
33 SPACE 

19 EJECT 
34 START 

lA END 
35 TITLE 

18 ENTRY 
36 USING 

1C EQU 
37 Alignment Entry 

lD EXTRN 
38 Diagnostic Message Entry 

IE GBlA 
39 Macro Prototype line 

1 F GBlS 
3A MNOTE' 

20 GBlC 
38 CXD 

21 ICTL 
3C DXD 

22 ISEQ 
Unassigned 3D-3E 

23 lClA 
3F Commentary 

24 lClB 

Table 11. Machine instruction directive 
codes 

Code 
Instruction Assembler Operand Field Format 

Type 

a RR R1, R2 

1 RR Extended R2 

2 RR ! 
Rl 

3 RR 1 

4 RX R1, 02 (X2, B2) 
R1, 52 (X2) 

5 RX Extended 02 (X2, B2) 

I 

52(X2) 

6 RS R1, R3, 02 (82) 

I 
R1, R3, 52 , 

7 R5 R1, 02 (82) 
Rl, 52 

8 51 01 (B1), 12 
51, 12 

9 51 01 (81) 
51 

A 55 01 (ll, 81), 02 (l2, 82) 
51 (Ll), 52(l2) 

8 55 01 (l, 81), 02 (82) 
51 (L), 52 



Certain instructions require specifica­
tion of an even register number, or a 
floating point register; others require the 
operand address to be aligned on a word, 
halfword, or doubleword boundary. Store 
type operations must be checked for illegal 
literal operands. The machine operations 
requirements table summarizes these speci­
fications for each machine operation code. 

The machine operations requirements 
table is 256 bytes long. An entry is found 
by indexing into the table with the hexade­
cimal machine instruction code. 

The format of each entry byte in the 
table is shown in Figure 63. 

0 1 3 4 5 7 

I I 

! I 
P I T I s 

: I 
! 

Figure 63. Entry byte format 

Bit P (bit O) 
if on, indicates that the address por­
tion of a 4-byte instruction is to be 
printed in the ADDR 2 field of the 
listing; if off, in the ADDR 1 field. 

field R (bits 1-3) 
is the register requirement: 

o No special requirement 
1 - EVen numbered register 
2 - Floating point register 
3 - Floating point register 0 or 4 
4 - Exceptional requirements: 

MP - L2 must be less than L1 and 
not larger than 7. 

DP - L2 must be less than Ll and 
not larger than 7. 

SLT - L2 must be 0, 1, 2, 3 or 4; 
B2 should not be 0, 
or 4. 

bit T (bit 4) 
if on, indicates a store type 
operation. 

field S (bits 5-7) 

1, 2, 

is the storage address requirement: 

o - No special requirement 
1 - Halfword alignment 
2 - Fullword alignment 
3 - Doubleword alignment 

USING-REGISTER TABLES 

Using-register tables are dynamically 
constructed during Phase IIC in working 
segment 1 for each section break, USING, 
and DROP statement. They are used during 

3 

Phase III to assign base register and dis­
placement values to machine instructions 
and S-type address constants. 

Each table contains 31 words, an initial 
word and 15 two-word entries (one entry for 
each potential base register). 

The first word of each table is used 
initially to communicate the current list­
ing options, the ocrrect LTORG number. 
When applicable, this word is reused during 
Phase III to transmit information to the 
program checkout system (PCS). The loca­
tion counter value in effect when the table 
is first used is inserted to inform the PCS 
of the start of a range of locations over 
which the listed base registers are 
effective. 

A description of how the table is 
searched is included under the routine 
description of USEVAL. 

The format of a USing-register table is 
shown in Figure 64. 

IUORG No. I Print Control 

-----------------------------~----------- } Used by Debuggi ng 

t ni tiol Location - Control Section Number, Di sp lacement 

* Section Externa I 

} * 
* Number Reference Number 

+ Displacement -

Register 0 

-------.. - --,.......-....--
_. 

-----------
Registers 1- 15 

* * 
Section External 

* Number Reference Number 

Displacement 

* Bit On If Unused 

: Bit On if Absclute 

Figure 64. USing-register table format 

Word 1 
between Phases II and III this word 
carries a PRINT status indicator, for 
control of the printed listing in 
Phase III and a LTORG number. The 
status indicator defines the print 
options in effect at the control sec­
tion break at which the using table 
becomes effective (ON/OFF, FULLGEN/ 
GEN/NOGEN, DATA/NODATA). The status 
is carried in byte 4, in the low-order 
seven bits as follows: 

bit 1 - FULLGEN 
bit 2 ON 
bit 3 - OFF 
bit 4 - GEN 

Section 12: Tables, Table Entries, Listing Formats 283 



bit 5 - NOGEN 
bit 6 - DATA 
bit 7 NODATA 

Each bit is set if the corresponding 
operand was specified. Options not 
specified (zero bits) are retained 
from the previous PRINT status. Byte 
3 contains the current LTORG number. 
If production of an internal symbol 
dictionary (ISO) is specified as an 
assembly option, Phase III replaces 
the contents of this word with the 
value of the location counter for the 
first address at which the using 
register table becomes effective. 
This location is expressed as an a-bit 
section number and a 24-bit 
displacement. 

Word 1, bytes 1-2 
not used. 

Word 1, byte 3 
LTORG number in effect at the time of 
construction of the table. 

Word 1, byte 4 
PRINT status indicator, for control of 
the printed listing in Phase III. 

Word 2, byte 1 
status indicators for register 1: 

bit 0 
if on, indicates the register is not 
used as a base register. 

bit 7 
if on, indicates that the register 
contains an absolute value as a base, 
and that the rest of the word is zero. 

Word 2, byte 2 
if the register contains a simply 
relocatable base value, the number of 
the section governing the relocation 
is entered here. If this is the case, 
the other fields of this word are 
zero. 

Word 2, bytes 3-4 
if the register contains an external 
value as a base, the external 
reference number of the pertinent sym­
bol is entered here, and the other 
fields of the word are zero. 

Word 3 

284 

if the base value is absolute, the 
32-bit signed value is carried here. 
If the base is simply relocatable, the 
displacement of the location counter 
relative to the base of the control 
section (see word 2, byte 2) is car­
ried here. If the base is external, 
any absolute portion of the USING 
expression is carried here (e.g., 

ALPHA+5, where ALPHA is external and 
+5 is the absolute portion). 

Words 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 
24, 26, 28, 30, and 32 

these words duplicate the contents of 
word 2 for base registers 2 through 
15, respectively. 

Words 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 
25, 27, 29, 31, and 33 

these words duplicate the content of 
word 3 for base registers 2 through 
15, respectively. 

MACRO LEVEL DICTIONARY (TEMPORARY 
DICTIONARY) 

Temporary macro level dictionaries are 
used to establish and develop the defini­
tions for variable symbols which occur at a 
given level of macro expansion. The dic­
tionary for a given macro level is con­
structed by PARAMAC during Phase IIA when 
STAN encounters a macro instruction 
reference. 

A temporary macro level dictionary is a 
variable length array of items dynamically 
constructed by the assembler in working 
storage segment 1 during Phase IIA. Its 
general layout is shown in Figure 65. 

The main dictionary contains descrip­
tions of the general characteristics of 
dictionary items. During Phase IIA the 
macro level dictionaries occupy contiguous 
storage in working segment 1. A dictionary 
is constructed by acquiring the next open 
locations in this area. Control of avail­
able space is maintained by the address 
pointer AWORK1, which is updated by each 
routine which requires working storage dur­
ing macro expansion. At the conclusion of 
the expansion of a given macro, the space 
occupied by its dictionary is reclaimed by 
resetting the value of AWORK1. 

Thus, the total amount of storage 
required for macro dictionaries expands and 
contracts to the degree that macro instruc­
tions are nested. A level counter MLVL 
indicates the current depth of nesting at 
all times during Phases I and IIA. If the 
value of MLVL is zero, the current state­
ment is outside of macro expansions (user 
code), and no macro dictionary exists. 

At each level the dictionary exhibits 
the same general organization. The first 
word is reserved for an address pointer to 
the first word of the dictionary for the 
preceding (lower) macro level. These poin­
ters are used when the space for a dic­
tionary is recovered at the end of an 
expansion. A constant pointer, ACTSD, 
indicates the location of the dictionary 
currently in use. 



Complete 
Local 
Dictionary 
for one 

Macro Level 

Location of Next Lower Macro Leve! 

Location of LOF Entry for Statement at 
Next Lower Leve I 

Local Hash Table 

131 words) 

link Next (2nd) 
&SYS LIST Entry 

1st Parameter Item 

Link to Next &SYSUST Entry 
(Zero if End) 

nth Parameter Item 

nth Parameter em 

Additional Dictionary Items 
&SYSECT, &SYSNDX, &SYSLIST 

and Local and Temporary SET Symbols 

Location of Next Lower Macro Level 

Location of LOF Entry for Statement at 
Next Lower Leve I 

local Hash Tobie 

etc 

Figure 65. Layout of macro level 
dictionary 

(Zero Indicate 
User level) 

The second word of a macro level dic­
tionary contains a 32-bit address pointer 
to the LOF entry for the statement at which 
processing was suspended at the next lower 
level. This address is used to resume pro­
cessing at the next lower level when a 
macro level dictionary is erased. 

The next 31 words of a macro level dic­
tionary are reserved for a small hash 
table. This table functions in the same 
way as the hash table for the permanent 
dictionary. It permits the conversion of 
an 8-character alphameric symbol (key> into 
the address of an item in the dictionary. 
Since the incidence of variable symbols is 
generally low, a smaller table can function 
effectively for the macro level 
dictionaries. 

Following the hash table, the remainder 
of a macro level dict.ionary is filled with 
items for the variable symbols pertaining 
to that level. Certain symbols are always 
present. These are the system variables 
&SYSLIST. &SYSNDX, &SYSECT, &SYSPSCT, and 
&SYSSTYP. 

&SYSLIST represents an alternate method 
of specifying the positional parameters of 
a macro. The &SYSLIST item consists of a 
basic entry and one trailer for each posi­
tional parameter. The storage assignments 
are such that each &SYSLIST trailer immedi­
ately precedes the positional parameter 
item associated with it. Except for this 
case, the storage assignment for a given 
item is a function of the occurrence of the 
symbol in the macro prototype or model 
statements and has no special significance. 

Item Types 

For convenience, descriptive summaries 
of the items which may appear in a macro 
level dictionary are given below. More 
detailed information for each item follows 
these summaries. 

&SYSLIST Item: The purpose of this item is 
to point to the beginning of the current 
&SYSLIST chain. The first byte of the 
fourth word contains the number of &SYSLIST 
entries (i. e., N' &SYSLIST) and the remaind­
er of the word is the pointer. 

&SYSNDX Item: This is a 4-word item, the 
last word of which contains the macro index 
value for the current macro level. The 
value is contained in the item in binary 
and is derived simply by incrementing a 
counter by one whenever a macro instruction 
is encountered. 

&SYSECT Item: This also is a 4-word item 
with the fourth word pointing to the con­
trol section item that is the current con­
trol section (CCS) when the macro instruc­
tion occurs. 

&SYSPSCT Item: This item is identical to 
the &SYSECT item in format; it even uses 
the same type code. However, the alphamer­
ic key is different (&SYSPSCT) and the 
pointer in the fourth word indicates the 
control section item in the permanent dic-

Section 12: Tables, Table Entries, Listing Formats 285 



tionary which defines the first prototype 
section in the program. If no prototype 
section exists, the pOinter is zero. 

&SYSSTYP Item: This item is a 4-word item 
with the fourth word pOinting to the same 
control section item as the &SYSECT item. 
It is used by the string substitution rou­
tine (SSCAN) to derive a character string 
which is a mnemonic for the control section 
type. 

Parameter Item: A parameter item is con­
structed in the current macro level dic­
tionary by the PARAMAC routine of Phase 
IIA. A parameter item is made for each 
symbolic parameter given on the prototype 
line. The argument string field of the 
item consists of the character string supp­
lied on the macro instruction line (or by 
default) in fulfillment of the parameter. 

The item contains a i-word descriptor for 
each subargument, if any. The descriptor 
indicates the length in bytes of the subar­
gument, its location from the beginning of 
the argument character string, and whether 
the subargument is a selfdefining term. 

Seguence Symbol Item: Sequence symbol 
items are constructed by the statement ana­
lyzer in the current local dictionary when 
the macro level is greater than zero. The 
item points to the source line on which the 
sequence symbol appears. Sequence symbol 
items are constructed in the permanent dic­
tionary when the macro level is zero. 

Local Variable Symbol Items: Local vari­
able symbols are those defined by the 
instructions LCLA, LCLB, and LCLC. The 
values of such symbols are dependent upon 
macro level; their dictionary items are 
accordingly maintained in the current macro 
level dictionary whenever the macro level 
is greater than zero, or in the permanent 
dictionary if they are defined when the 
macro level is zero. Local variable sym­
bols may be subscripted or unsubscripted. 
If subscripted. each item contains the 
maximum permissible subscript and trailers 
for each non-null value, together with an 
indication of their respective subscripts. 
If unsubscripted, each item provides space 
for the setting of a non-null value. The 
initial definition of a local symbol 
creates "null" values. Other values are 
set by the instructions SETA, SETB, or SETC 
once the symbol has been defined. At the 
conclusion of a macro expansion, the values 
of any local variable symbols in the dic­
tionary for that macro level are lost. 

Global Variable Symbol Pointer Items: 
Global variable symbols are those defined 
by the instructions GBLA, GBLB, and GBLC. 
The values of such symbols are independent 
of macro level; their dictionary items are 
accordingly maintained in the permanent 

286 

dictionary. If a global symbol is defined 
when the macro level is greater than zero, 
a special item is entered in the macro 
level dictionary which points to the corre­
sponding definition of the global symbol in 
the permanent dictionary. 

&SYSLIST Item: (Figure 66) 

KeY(1 ) 

& S Y S 

KeY(2) 

L I 5 T 

Type 
Location of Next Hash Synonym (SA) 

N' Location of First &SYSLIST Entry 

Figure 66. &SYSLIST item 

Words 1 and 2 
the alphameric characters &SYSLIST. 

Word 3, byte 1 
type code - hexadecimal SA. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1. 

Word 4, byte 1 
total number of positional parameter 
items for this macro level. This is 
the number attribute (N I ) of &SYSLIST. 

Word 4, bytes 2-4 
location of the first trailer item 
[&SYSLIST (1)], expressed as a 24-bit 
increment to the base of working seg­
ment 1. 

&SYSNDX Item: (Figure 67) 

KeY(l) 

& S Y S 

Key (2) 

N D X 

Type Location of Next Hash Synonym 
(88) 

Macro-Index No. 

Figu~e 67. &SYSNDX item 



Words 1 and 2 
the alphameric characters ~SYSNDX. 

Word 3, byte 1 
type code - hexadecimal 88. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1. 

Word 4 
number of this macro instruction 
expansion. This number is set to 1 by 
Phase IIA initialization, and is 
incremented by one each time PARAMAC 
establishes a new macro level 
dictionary. 

~SYSECT Item: (Figure 68) 

KeY(I) 

& 5 Y 5 

KeY(2) 

E C T 

Type 
Location of Next Hash Synonym 

(89) 

location of Control Section Item 

Figure 68. ~SYSECT item 

Words 1 and 2 
the alphameric characters ~SYSECT. 

Word 3, byte 1 
type code - hexadecimal 89. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1. 

Word 4 
location of the section name item in 
the permanent dictionary which defines 
the control section which was current 
at the time this macro level dic­
tionary was prepared. 

&SYSPSCT Item: (Figure 69) 

Words 1 and 2 
the alphameriC characters &SYSPSCT. 

Word 3, byte 1 
type code - hexadecimal 89 (same as 
&SYSECT item). 

Word 3, bytes 2-4 
location of next item whose symbol 
hashe~ to the same value, expressed as 
a 24-bit increment to the base of 
working segment 1. 

Word 4 

& 

p 

Type 

location of the section name item in 
the permanent dictionary which defines 
the first PSECT encountered in the 
source program. Word 4 is zero if no 
PSECT has been defined. 

S y S 

S C T 

Location of Next 

Code (89) Hash Synonym 

Location of Prototype 
Section Item (or Zero) 

Figure 69. ~SYSPSCT item 

&SYSSTYP Item: (Figure 70) 

& S Y S 

S T y P 

Type Locotj on of Next 

Code (8S) Hash Synonym 

Locat ion of Contro! 
Section Item 

Figure 70. &SYSSTYP item 

Word 1 and 2 
the alphameric characters ~SYSSTYP. 

Word 3 byte 1 
type code - hexadecimal SB. 

Word 3, byte 2-4 
location of next item whose symbol 
hashes to the same value, expressed as 
a 24-bit increment to the base of 
working segment 1. 

Word 4 
location of the section name item in 
the permanent dictionary which defines 
the control section which was current 
at the time this macro level dic­
tionary was prepared. 

section 12: Tables, Table Entries, Listing Formats 287 



Type 
(87) 

K' 

Length of 
Subarg ] 

Length of 
Suborg N 

KeY(2) 

Location of Next Hash Synonym 

T'=N 

arg = symbo I 

T'=N 
L'=O 

erg =symbol 

T'=N 
L'=O 

org=symbol 

Argument String 

I ncrement to Stri ng for 
Suborg 1 

Increment to String for 
Subarg N 

Figure 71. Parameter item (temporary 
dictionary ) 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 87. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1. 

Word 4 

288 

argument control word for the entire 
parameter. 

byte 1 
number of characters in the argument 
string. This is the count attribute 
(K') of the parameter as a whole. 

byte 2 
characteristic flags: 

bit 0 
if 1, this bit indicates that the 
argument string for the parameter 
consists entirely of a single self­
defining term. This sets the type 
attribute (T') to the value "Nw. If 
0, the argument is not a self­
defining term. 

bit 1 
if 1, indicates that the length of 
the argument string is zero, and 
that the length attribute (L') 
should be zero. If 0, indicates 
that the argument string is not 
null. 

bit 2 
if 1, indicates that the argument 
string consists of a single symbol; 
if 0, indicates that the argument 
does not meet the syntactic scan 
requirements for a symbol. 

bits 3-7 
not used. 

byte 3 
not used; zero, to permit use of half­
word arithmetic on byte 4. 

byte 4 
number of subarguments (sublists), if 
any. This count also indicates the 
number of subargument control words 
which follow and is the number attri­
bute (N') of the parameter. 

Words 5 through 5+N'-1 
subargument control words. If any are 
present, each has the following 
format: 

byte 1 
number of characters in the subargu­
ment string. This count excludes the 
terminating comma or parenthesis and 
is the count attribute (K') of the 
subargument. 

byte 2 
characteristic flags. See Word 4, 
Byte 2. 

bytes 3 and 4 
increment to be added to the location 
of the argument string as a whole in 
order to compute the address of the 
first character of the subargument 
string. The argument string address 
can be computed as A+16+(4*N'), where 
A is the location of the parameter 
item, and N' is as described in Word 
4, Byte 4. Thus, if the argument 
string were: 

(ALPHA,BETA,27+B,=F'4') 

the increment to the third subargument 
would be 12. 

Words 5+N' through 5+N'+(K'+3)/4 
characters of the argument string. 
Storage is reserved to the next full 
word when the character string is not 
a multiple of four bytes in length. 

Sequence Symbol Item: (Figure 72) 



KeY(l) 

KeY(2) 

Type 
Location of Next Hash Synonym 

(90) 

Location of Source Statement 

Figure 72. Sequence symbol item 

Word 1 and 2 
a-character alphameric sequence symbol 

Word 3, byte 1 
type code - hexadecimal 90 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1 if in a macro level dic­
tionary, or working segment 2, if in 
the permanent dictionary. The dis­
tinction is made on the basis of macro 
level, prior to lookup. 

Word 4 
location of first byte of the source 
statement on which the sequence symbol 
appeared. (This location excludes the 
control bytes which precede each 
source statement.) 

Arithmetic Item: (Figures 73 and 74) 

KeY(l ) 

KeY(2) 

Type Location of Next 
(1 J) Hash Synonym 

Max 
SS Not Used 

Value 

I 
I 
I 

location of Next Subscript I 
I 

1 
J Co. '00" 'ob,,,;,, 

This 
S5 Location of Next Subscript 

Value 

Value 

F'~gure 73. Subscripted LCLA item 

KeY(l) 

KeY(2) 

Type Location of Next 
(11 ) Hash Synonym 

0 Not Used 

Value 

Figure 74. Unscripted LCLA item 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 11. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1, if in a macro level dic­
tionary, or working segment 2, if in 
the permanent dictionary. The dis­
tinction is made on the basis of macro 
level prior to lookup. 

Word 4, byte 1 
maximum allowable subscript value 
defined for this item (1-255). Zero 
if item is unsubscripted. 

Word 4, bytes 2-4 
not used, for ease of processing GBL 
and LCL symbols together. 

Subscripted Item 

Word 5 
location of the first subscript trail­
er, expressed as a 24-bit increment to 
the base of the applicable working 
segment. 

Unsubscripted item 

Word 5 
32-bit signed value of the arithmetic 
symbol. 

Subscript trailers 

Word 1, byte 1 
values of the subscript represented by 
this trailer. Trailers are present 
only for those subscripts which are 
not null. 

Section 12: Tables, Table Entries, Listing Formats 289 



Word 1, bytes 2-4 
location of next subscript trailer, 
expressed as a 24-bit increment to the 
base of the applicable working segment. 

Word 2 
32-bit signed value of the arithmetic 
symbol. 

Local Boolean Item: (Figures 75 and 76) 

Type 
(13) 

Max 
SS 

Value 

Location of Next 
Hash Synonym 

Not Used 

256 Single - bit Values 1 
[

Trailer: 8 Words 
Bits are 0- 225 
Bit 0 Not Used as 

r""';" 
Figure 75. Subscripted LCLB item 

Key il) 

KeY(2) 

Type Location of Next 
(13) Hash Synonym 

0 Not Used 

Value (one bit) 

Figure 76. unsubscripted LCLB item 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 13. 

Word 3, bytes 2-4 

290 

location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 

segment 1, if in a macro level dic­
tionary, or working segment 2, if in 
the permanent dictionary. The dis­
tinction is made on the basis of macro 
level, prior to lookup. 

Word 4, byte 1 
maximum allowable subscript value 
defined for this item (1-255). Zero 
if item is unsubscripted. 

Word 4, bytes 2-4 
unused, for ease of processing GBL and 
LCL symbols together. 

Subscripted item 

Words 5-12 
256 single-bit values. The first bit 
represents subscript 0 and is not 
used. The remainder represent sub­
scripts 1 - 255 and represent ~ 
when 1 and false when O. 

Unsubscripted item 

Word 5 
the first bit represents the value 
true when 1 and false when O. The 
remaining bits of the word are not 
used. 

Local Character Item: (Figures 77 and 78) 

KeY(1) 

KeY(2) 

Type Location of Next 
(15) Hash Synonym 

Max 
SS Not Used 

Value 

I , 
Location of First S5 Trai ler , 

This 
SS Location of Next 5S Troi ler 

Value 

length 

Value(l) 

Value(2) 

Figure 77. Subscripted LeLe item 

I Value of 
o to 8 
Characters 



KeY(l) 

KeY(2) 

Type Location of Next 
(15 ) Hash Synonym 

0 Not Used 

Length 

Value (1) 

Volue (2) 

Figure 78. Unsubscripted LCLC item 

Words 1. and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 15. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1, if in a macro level dic­
tionary, or working segment 2, if in 
the permanent dictionary. The dis­
tinction is made on the basis of macro 
level, prior to lookup. 

Word 4, byte 1 
maximum allowable subscript value 
defined for this item (1-255). Zero, 
if item is unsubscripted. 

Word 4, bytes 2-4 
unused, for ease of processing GBL and 
LCL symbols together. 

Subscripted item 

Word 5 
location of the first subscript trail­
er, expressed as a 24-bit increment to 
the base of the applicable working 
segment. 

Unsubscripted item 

Word 5 
length of the character string value, 
o to 8 bytes. 

Words 6 and 7 
character string value (up to 8 
bytes) • 

Subscript trailers 

Word 1, byte 1 
value of the subscript represented by 
this trailer. Trailers are present 
only for those subscripts which are 
not null. 

Word 1, bytes 2-4 
location of the next subscript trail­
er, expressed as a 24-bit increment to 
the base of the applicable working 
segment. 

Word 2 
length of the character string value, 
o to 8 bytes. 

Words 3 and 4 
character string value (up to 8 
bytes) • 

Global Variable Symbol Pointer Item: 
(Figure 79) 

Key (1) 

& 

Ke Y(2) 

Type Location of Next Hash Synonym 
(40) 

Location of GBL Item in 
Main Dictionary 

Figure 79. GBLA, GBLB or GBLC item in 
macro level dictionary 

Words 1 and 2 
8-character alphameric key. 

Word 3, byte 1 
type code - hexadecimal 40. 

Word 3, bytes 2-4 
location of next item whose key hashes 
to the same value, expressed as a 24-
bit increment to the base of working 
segment 1. 

Word 4 
location of corresponding global item 
in permanent dictionary (32 bits). 

Comments 

Summary of item type codes in macro 
level dictionaries: 

Section 12: Tables, Table Entries, Listing Formats 291 



00010001 
00010011 
00010101 
01000000 
10000111 
10001000 
10001001 
10001010 
10001011 
10010000 

LCLA 
LCLB 
LCLC 
GBL pointer item 
Parameter 
tSYSNDX 
tSYSECT and &SYSPSCT 
tSYSLIST 
tSYSSTYP 
Sequence symbol 

SOURCE LINE STORAGE CONTROL 

Source lines received from external 
sources are copied into the assembler's own 
working storage in working segment 3. The 
lines are of variable length and are pre­
ceded by control information relating to 
the length, sequence number, and sequential 
order of the line. This control informa­
tion is used by REED in resolving continua­
tion lines, and in processing library 
statements. 

Continuation lines are appended to a 
copy of the basic line by REED. The 
resulting statement is prefixed with the 
same line number and (concatenated) length 
information described above. However, the 
statement is not linked to any others. 
Access to it is through the logical order 
file only. 

The format of source statement control 
information is shown in Figure 80. 

Location of < 
Line Number Length Source line 

Next Line ( 

I I I I I J I 
Figure 80. Source statement control infor­

mation format 

Bytes 1-4 
location of the next sequential source 
line. These are the unprocessed lines 
before continuation lines have been 
appended. The next sequential line is 
used in writing the source listing. 
The address is carried as 32-bits. 
None of these fields are word-oriented. 

Bytes 5-8 
line number. The line number is car­
ried as a 7-digit signed packed decim­
al number; thus: 

XXXXXXX+ 

Bytes 9 and 10 
length of the line in bytes. 

Bytes 11-n 
source line. 

292 

PSEUDO-DICTIONARY ITEM FOR CURRENT LOCATION 
COUNTER 

A simulated dictionary item is main­
tained to fulfill references to the loca­
tion counter (asterisk notation). This 
item is not part of the main dictionary 
since its location is always known and it 
is not looked up in the normal way (hashing 
the symbol). However, the existence of 
this item frequently permits the asterisk 
notation to be treated as a normal relocat­
able quantity. 

The format of a simulated item for loca­
tion counter references is shown in Figure 
81. 

KeY(l) 

Ke Y(2) 

Not Used Since 
Item is not 
Accessed by 
Norma I Look - up 

Type 
Location of Next Hash Synonym=O 

(C7) 

I' S' T' L' 

Control Location Counter Value 
Section No 

Location of Control Section Item 

Figure 81. Simulated item for location 
counter references 

Words 1 and 2 
not used, since item is not accessed 
by hash table lookup. 

Word 3, byte 1 
type code - hexadecimal C7. 

Word 3, bytes 2-4 
not used, zero; to maintain format of 
normal dictionary items. 

Word 4, bytes 1 and 2 
integer and scale attribute fields -
not used; zero. 

Word 4, byte 3 
type attribute - the alphameric 
character. Not yet determined. 

Word 4, byte 4 
length attribute. L' is that of the 
current machine instruction or con­
stant, except in the case of the sta­
tement A EQU *, where L' is 1. 



Word 5, byte 1 
number of the control section which 
the location counter currently 
represents. 

Word 5, bytes 2-4 
current displacement of the location 
counter within the control section. 

Word 6 
location of the section name item in 
the permanent dictionary for the cur­
rent control section. 

CONSTANT ITEM FORMAT 

(See Figures 82 and 83.) 

Constant Bi t Length 

Alignment Duplication Factor 
Code 

Type Bit Length (One Occurence) 
Attribute 

Location of Constant 

Length of One Constant 

o 8 31 

Figure 82. Constant item (address 
constant) 

o 

Alignment 
Code 

Type 
Attribute 

8 31 

Constant Bit Length 

Duplication Factor 

Bit Length (One Occurrence) 

Value 

I 

for DS 
} N., P,.,,",d 

Not Provided for 

~ 
DS,CXD,orDXD 
Statements 

~J 
Figure 83. Constant item (other than 

address constants) 

Alignment Code Field is filled as follows: 

Bit 0 
o = Alignment Required 
1 = No Alignment Required 

Bits 1-2 Specify Alignment: 
00 - By Byte 
01 - By Halfword 
10 - By Word 
11 - By Doubleword 

Type Attribute field contains one of the 
following EBCDIC characters: 

A 

B 
C 
D 

E 

F 

G 
H 

K 

P 
Q 

R 

S1 

V 

X 
Y 

Z 
# 

A-type address constant, implied 
length, aligned. 
Binary constant. 
Character constant. 
Long floating-point constant, implied 
length, aligned. 
Short floating-point constant, implied 
length, aligned. 
Fullword fixed-point constant, implied 
length, aligned. 
Fixed-point constant, explicit length. 
Halfword fixed-point constant, implied 
length, aligned. 
Floating-point constant, explicit 
length. 
Packed decimal constant. 
Q-type address constant, implied 
length, aligned. 
A-, Q-, R-, S-, v-, or y-type address 
constant, explicit length. 
S-type address constant, implied 
length, aligned. 
V-type address constant, implied 
length, aligned. 
Hexadecimal constant. 
Y-type address constant, implied 
length, aligned. 
Zoned decimal constant. 
R-type address constant, implied 
length, aligned. 

VIRTUAL MEMORY MANAGEMENT TABLE (VMTABLE) 

VMTABLE is used by the virtual memory 
management routines, VMGET, VMFREE, and 
VMCLEAN, in managing virtual storage for 
the assembler. By keeping a record of vir­
tual storage obtained as the result of GET­
MAIN macro instructions issued by VMGET, 
the number of GETMAINs and FREEMAINs issued 
and the amount of virtual storage obtained 
from the system is minimized. The virtual 
memory management routines keep this record 
in VMTABLE. 

VMTABLE is a contiguous area in PSECT 
CEVPAR consisting of 64 three-word blocks. 
Each block is a member of one of four 
chains within VMTABLE. The chain headers 
exist outside of VMTABLE in PSECT CEVPAR 
and point to the first block of their par-

Section 12: Tables, Table Entries, Listing Formats 293 



ticular chain within VMTABLE. The names of 
the chain headers and the corresponding 
chain functions are: 

VMGOTTEN -- Provides a record of areas 
obtained by the GETMAIN macro instruction 
and as yet unused by the assembler. 

VMASSIGN -- Provides a record of areas 
obtained by the GETMAIN macro instruction 
and in use by the assembler. 

VMFREED Provides a record of areas no 
longer in use by the assembler and avail­
able for return via FREEMAIN. 

VMENTRYS -- Provides a pointer to unused 
VMTABLE blocks. 

Formats of VMTABLE Entries 

The format and contents of blocks in the 
four chains in VMTABLE are illustrated in 
Figures 84, 85, and 86. 

\" 4 bytes "I 
Address of Next VMGOTTEN Entry 

Address of Unused Area 

Page Length of Unused Areo 

Figure 84. contents of VMGOTTEN block 

Address of Next {VMASSIGN} Entry 
VMFREED 

Address of First Byte of Area 

Address of Last Byte of Area + 1 

Figure 85. contents of VMASSIGN and 
VMFREED blocks 

Address of Next Empty Block in VMTABLE 

(Not Used) 

(Not Used) 

Figure 86. Contents of VMENTRYS block 

Both VMGOTTEN and VMASSIGN entries are 
built by VMGET. VMGET never issues a GET­
MAIN macro for less than one segment (256 
pages) of virtual storage. If invoked to 
supply less than that, VMGET acquires a 
complete segment. VMGET then places the 
address of the assigned pages in a VMASSIGN 

294 

entry and the address of the unused pages 
in a VMGOTTEN entry. If invoked to supply 
more than one segment, VMGET issues a GET­
MAIN for the desired amount, then adds a 
VMASSIGN entry for the storage obtained and 
assigned. If invoked to supply less than 
one segment and VMGOTTEN contains suffi­
cient storage to meet the request, a GET­
MAIN is not issued; the required pages are 
assigned and necessary changes are made in 
the VMASSIGN and VMGOTTEN chains. The 
total amount of storage represented by 
entries in the VMGOTTEN chain can never 
exceed 255 pages. 

Where it is determined that Virtual 
storage areas represented in different 
entries of the same chain are adjacent, the 
entries are consolidated into one and the 
remaining block(s) freed. 

SOURCE PROGRAM LISTING 

The source program listing data set is 
created by the source program listing rou­
tine (SLLS> during Phase III, if the source 
listing option has been taken. It is a 
listing, in order, of the original source 
language line images submitted for assembly 
by the user. Warning and error messages 
are collected and printed at the end of the 
listing. 

The source listing format is illustrated 
in Figure 87. The information contained in 
the listing is listed below: 

nnnnnnn 
statement number, in decimal. 

ssss-sss 
source text. Terminal input greater 
than 120 characters is continued from 
column 11 of next line. 

mmrnrn-mrnrnrn 
diagnostic message. 

LINE NO. SOURCE TEXT J 
nnnnnnnn ss.ss~------"S 

l ! ~ 
ssss-- sss 

mmc-----mmr 
mmmm-- mmmm ! 

nnnnnnn 

\'VARN!NG AND ERROR MESSAGES 

I 

L---_-----' (<-----
Figure 87. Source program listing format 



SYMBOL TYPE LENGTH VALUE 

ssssssss 11111 vv vvvvv 

ssssssss 11111 vv vvvvv 

ssssssss 11111 vv vvvvv 

Figure 88. Symbol table listing format 

SYMBOL TABLE LISTING 

The symbol table listing data set is 
created by the symbol table editor module 
(CEVSR) during Phase IV. It is a listing, 
in alphabetical order, of all the symbols 
defined within the assembly, together with 
their length, type, and value attributes. 

The symbol table listing format is illu­
strated in Figure 88. The information con­
tained in the listing is described below: 

ssssssss 
symbOl 

t 

A 

B 

C 

D 

E 

F 

G 

type code: 

A-type address constant, implied 
length, aligned. 

Binary constant. 

Character constant. 

long floating-point constant, implied 
length, aligned. 

Short floating-point constant, implied 
length, aligned. 

Fullword fixed-point constant, implied 
length, aligned. 

SYMBOL TYPE LENGTH VALUE 

ssssssss 11111 Vy vvvvv 

ssssssss. 11111 vv vvvvv 

ssssssss 11111 vv vvvvv 

P 

Q 

V 

x 

y 

Z 

R 

s 

I 

J 

M 

T 

Packed decimal constant. 

Q-type address constant, implied 
length, aligned. 

V-type address constant, implied 
length, aligned. 

Hexadecimal constant. 

Y-type address constant, implied 
length, aligned. 

Zoned decimal constant. 

A-, Q-, R-, S-, V-, or y-type address 
constant, explicit length. 

S-type address constant, implied 
length, aligned. 

Machine instruction. 

Control section name. 

Macro instruction. 

External symbol. 

Fixed-point constant, explicit length. W 

H 

K 

Halfword fixed-point constant, implied 
length, aligned. 

Floating-point constant, explicit 
length. 

U 

CCW assembler instruction. 

Undefined. 

R-type address constant, implied 
length, aligned. 

section 12: Tables, Table Entries, Listing Formats 295 



SYMBOL TYPE LNG LOCATION REFERENCES 

ssssssss lllll nn ddddd rr ccccc, 
rr CCGCC, 

ssssssss 11111 nn ddddd rr ccccc, 

Figure 89. Cross-reference listing format 

11111 
length of data defined by the symbol, 
in hexadecimal, zeros not suppressed. 

vv vvvvv 
value attribute, in hexadecimal 

if relocatable: section number and 
displacement 

if absolute: 8-digit number. 

CROSS-REFERENCE LISTING 

The cross-reference listing data set is 
created by the cross-reference listing pro­
cessor routine (XREF) during Phase IV. It 
is a listing, in alphabetical order, of all 
symbols properly defined within the assemb­
ly, together with a list of all program 
locations at which a reference to the sym­
bol is made in the source language. 

The cross-reference listing format is 
illustrated in Figure 89. Each line speci­
fying a symbol may have up to ten location 
references to the symbol. If fewer than 
this number of references is made to a sym­
bol, the rest of the line is blank. If 
more than ten references are made, the 
locations making the references are listed 
on the next line. 

The information contained in the listing 
is described below: 

ssssssss 

t 

A 

B 

C 

296 

alphameric symbol, left justified 

type code: 

A-type address constant, implied 
length, aligned. 

Binary constant. 

Character constant. 

rr ccccc, 
rr ccccc, 
rr ccccc, 

D 

E 

F 

G 

H 

K 

P 

Q 

V 

X 

Y 

Z 

R 

S 

rr ccccc, rr ccccc, rr ccccc, rr ccccc, 
rr ccccc 
rr ccccc, rr ccccc 

Long floating-point constant, implied 
length. aligned. 

Short floating-point constant, implied 
length. aligned. 

Fullword fixed-point constant, implied 
length, aligned. 

Fixed-point constant, explicit length. 

Halfword fixed point constant, implied 
length, aligned. 

Floating point constant, explicit 
length. 

Packed decimal constant. 

Q-type address constant, implied 
length, aligned. 

V-type address constant, implied 
length, aligned. 

Hexadecimal constant. 

y-type address constant, implied 
length, aligned. 

Zoned decimal constant. 

A-, Q-, R-, S-, V-, or Y-type address 
constant, explicit length. 

S-type address constant, implied 
length, aligned. 



I 

J 

M 

T 

w 

U 

# 

Machine instruction. 

control section name. 

Macro instruction. 

External symbol. 

ccw assembler instruction. 

Undefined. 

R-type address constant, implied 
length, aligned. 

11111 

nn 

length in hexadecimal, right justi­
fied, zeros not suppressed. 

section number location where symbol 
is defined, in hexadecimal. 

ddddd 

rr 

location counter displacement where 
symbol is defined, in hexadecimal, 
zeros not suppressed. 

section number location where symbol 
is referenced, in hexadecimal. Blank 
if the symbol is not referenced. 
Reference locations in ascending 
order. 

ccccc 
location counter displacement where 
symbol is referenced. Blank if the 
symbol is not referenced. 

INTERNAL SYMBOL DICTIONARY (ISO) LISTING 

The ISO listing data set is created by 
the ISD listing processor routine (ISDSA) 
during Phase IV. It is a listing of the 

INTERNAL SYMBOL DICTIONARY 
NAME nnnnnnnn nnnnnnnn nnnnnnnn 
TYPE tttH ttttt Ilttt 
DUPL ffffff ffffff ffffff 
LENGTH 11111111 11111111 11111111 
LOC;VAL dddddddd dddddddd dddddddd 

Figure 90. ISD Listing Format 

symbols and related information placed, on 
request, in the ISO portion of the program 
module to assist the program (PCS). 

The ISO listing format is illustrated in 
Figure 90. There are eleven columns of 
information. The information contained in 
the listing is described below. 

nnnnnnnn 
alphameric symbol, left justified. 

ttttt 
type: 

INSTR 
VALUE 
SECTION 
INTEGER 
REAL 
CHAR 
HEX 
BINARY 
PACKED 
ZONED 
S-CON 
ADCON 

ffffff 
duplication factor, in hexadecimal. 

11111111 
length, in hexadecimal. 

dddddddd 
immediate value or section member and 
location counter displacement, in 
hexadecimal. 

PROGRAM MODULE DICTIONARY (PMD) LISTING 

The program module dictionary listing 
data set is created by the program module 
dictionary listing processor routine 
(PMDLS) during Phase IV. It is a listing 
of the external symbol definitions, 
references, and relocation information con­
tained in the program module dictionary. 

nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 
ttltt tlttl ttttt tlttt 
ffffff ffffff ffffff ffffff 
11111111 11111111 11111111 11111111 
dddddddd dddddddd dddddddd dddddddd 

section 12: Tables, Table Entries, Listing Formats 297 



The program module dictionary listing 
format is illustrated in Figure 91. The 
information contained in the listing is 
described below: 

nnnnnnnn 
alphameric name of module, section, or 
symbol. 

xxxxxxxx 
module identification. 

11111111 

ccc 

ss 

length, in hexadecimal. 

severity code: 

000 
no warning or error messages. 

001 
warning message. 

002 
error message. 

section number, hexadecimal. 

ttttttttt 
type: 

CONTROL 
COMMON 
PROTOTYPE 

mm/dd/yy hh:mm:ss 
time stamp 

aaaaaaaa 
attribute, one or more of following: 

VARIABLE 
READONLY 
PUBLIC 
PRVLGD 

FIXED 
SYSTEM 

vvvvvvvv 

rrrr 

location counter displacement value, 
in hexadecima1. 

reference number,in hexadecimal. 

ssssssss 
DXD symbo1 name or (CXD) for a CXD. 

111111 
total length reserved for the symbol. 

bbbbbb 

pp 

rnmmm 

298 

boundary alignment as BYTE, HALF, 
FU LL, DOUBLE. 

page number, in hexadecimal. 

number of modifiers, in hexadecimal. 

h 
length, in hexadecimal. 

i 
type identifier: + - C Q R 

aaa 
address, in hexadecimal. 

OBJECT PROGRAM LISTING 

The object program listing is created as 
a VISAM data set or written on SYSOUT, 
depending on user request and mode. This 
data set also contains the source program 
1isting, cross-reference 1isting or symbol 
table 1isting, and PMD and ISD 1istings. 

The object program 1isting shows, in 
control section order, the binary text 
assembled for each source statement. Warn­
ing and error messages are collected and 
presented at the end of the listing. A 
count of the number of messages and an 
indication of the highest severity code 
encountered are a1so presented. 

The assemb1er edit feature directs a 
source statement to be edited in the f01-
10wing manner: Ca) the name fie1d wi11 
a1ways begin in c01umn 1; a sequence symbol 
in the name fie1d is suppressed; (b) the 
operation code is shifted to begin in the 
location corresponding to card column 10 or 
the next availab1e location thereafter; Cc) 
the operand is shifted to begin in the 
location corresponding to card colUmn 16 or 
the first available location thereafter; 
and Cd) the comment field will follow the 
operand fie1d by the number of blanks coded 
in the source statement. No editing is 
performed if the statement is in error. 

Each line of the object program listing 
is filed as a logical record with a PUT 
macro or a GTWRC macro. The 1ine image in 
memory is the same as it appears on the 
listing, except that it is preceded by one 
byte containing ASA FORTRAN print-spacing 
control information. 

The listing contains the following types 
of 1ines. 

• Column heading line. 

• Machine instructions. 

a. RR format 

b. RS, RX format 

c. 51 format 

d. 5S format 



i'lODULE 
NAHE nnnnnnnn 
MODULE 10 xxxxxxxx 
LENGTH 11111111 
DIAG SEVERITY eee 

SECTION 5S 

N&~ nnnnnnnn 
TYPE ttttttttt 
VERSION rlm/dd/y~.. hh:mm:ss 
ATTRIBUTES aaaaaaaa 
CSD LENGTH 11111111 
SECT LENGTH 11111111 
RELOCATABLB DEFINITIONS 

NAHE nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 
VALUB '!v'!vvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv 

NAME hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh 
VALUE vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv 

ABSOLUTE DEFINITIONS 
NAME nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 
VALUE vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv 

COMPLEX 0EFINITIONS 
NAME nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 
VALUE vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv 

REFERENCES 
REF # rrrr rrrr rrrr rrrr rrrr rrrr rrrr 
NAJ.1E llllnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn 

DXD ANI) CXD Rl:;FERC''lCES 

REF " r!:"rr rrrr ~ 

Nl'.r.1E ssssssss ssssssss 
LENGTH 111111 lUl11 
ALIGN bbbbbb bbbbbb 

HODIFIERS FOR COt1PLEX DEFS 
PAGE pp # HODIFIERS mmmm 

LENGTH h h 
REF # rrrr rrrr 
TYPE 
BYTE 

i 
aaa 

i 
aaa 

HODIFIERS FOR TEXT (EXTERNAL 

rrrr rrrr rrrr 
ssssssss ssssssss ssssssss 
111111 111111 lllill 
bbbbbb bbbbbb bbbbbb 

h h h 
rrrr rrrr rrrr 
i i i 
aaa aaa aaa 

REFS, Q-Cm!S, AND CXDS) 
TEXT PAGE pp VIRTUAL PAGE vv # MODIFIERS mmmm 

LENGTH h h 
REF # rrrr rrrr 
TYPE i i 
BYTE aaa aaa 

h 
rrrr 
i 
aaa 

MODIFIERS FOR TEXT (INTERNAL REFS) 

h 
rrrr 
i 
aaa 

TEXT PAGE pp VIRTUAL PAGE vv # HODIFIERS mmmm 
LENGTH h h h h 
REF # rrrr rrrr rrrr rrrr 
TYPE iii i 
BYTE 

SECTION ss 
NAIvtE 
TYPE 
VERSION 
ATTRIBUTES 
CSD LENGTH 
SECT LENGTH 

ete. 

aaa aaa aaa aaa 

h 
rrrr 
i 
aaa 

h 
rrrr 
i 
aaa 

Figure 91. program module dictionary listing format 

rrrt" rrrr 
ssssssss sssssss~ 

Hllll 111111 
bbbbbb bbbbbb 

h h 
rrrr rrrr 
i i 
aaa aaa 

h h 
rrrr rrrr 
i i 
aaa aaa 

h h 
rrrr rrrr 
i i 
aaa aaa 

nnnnnnnn 
vvvvvvvv 

hhhhhhhh 
vvvvvvvv 

nnnnnnnn 
vvvvvvvv 

nnnnnnnn 
vvvvvvvv 

rrrr 
nnnnnnnn 

rrrr 
ssssssss 
Ill] II 
bbbbi1b 

h 
rrrr 
i 
aaa 

h 
rrrr 
i 
aaa 

h 
rrrr 
i 
aaa 

Section 12: Tables, Table Entries, Listing Formats 299 



• Assembler instructions with related 
values. 

• Assembler instructions without values. 

• CCW Instructions. 

• CNOP Instructions. 

• constants. 

• Literal pools. 

• Diagnostic messages. 

• MNOTE Messages. 

• Commentary lines. 

Figures 92 and 93 illustrate the listing 
format. 

INTERNAL SYMBOL DICTIONARY (ISD) 

The assembler ISD is divided into four 
sections: a heading, section name table, 
using tables, and the symbol table. It is 
illustrated in Figure 94. 

Heading 

Word 1. 
bits 0-1.5 contain the indicator (4) 
identifying the ISD as assembler 
produced. 

Word 2 
the length of the ISD in bytes. 

Word 3 
contains a link to the start of the 
symbol table. 

Word 4 
the number of entries in the section 
name table. 

Word 5 
the number of using tables. 

Word 6 
the number of entries in the symbol 
table. 

Section Name Table 

The alphameric name and the version 
identification of each control section 
(including OSECTs) is entered here in 
sequence by the section number assigned. 
The name of blank cornmon is represented by 
eight blank characters; the unlabeled con­
trol section is represented by binary zero. 

300 

Using Tables 

The assembler places a using table in 
the ISD at every section break and for each 
USING and DROP statement. All 15 entries 
are included each time, plus the location 
at which the table became effective. Regi­
sters containing bases for DSECT references 
are included, but those registers contain­
ing other external bases are marked as 
unavailable for checkout purposes. 

Symbol Table 

The assembler inserts as symbol entries 
all absOlute or simple relocatable value 
items from its internal dictionary, in 
addition to entries for each section name. 
symbols are grouped according to control 
section and ordered within each group by 
ascending location counter value. Immedi­
ate value symbols follow those with loca­
tion counter values. 

Name 
two words containing the alphameric 
name of the symbol. 

OSECT FLAG 

TYPE 

ISD 
Code 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

contains a 1 bit if this symbol was 
defined in a DSECT, or if it names a 
DSECT. 

identifies the type of field as: 

ISO 
~* 
INSTR 
VALUE 
SECTION 
INTEGER 
REAL 
CHAR 
HEX 

BINARY 
PACKED 
ZONED 
S-CON 
ADCON 

Assembler Type 
Attributes 
Instruction ( I) 
Absolute EQUs 
Section name(J) 
Integer constantCF,H) 
Real numbereD,E) 
Character constant(C) 
Hexadecimal constant 
(G,K,R,X,M,W,U> 
Binary constant(B) 
Packed decimal constant(P) 
Zoned decimal constant(Z) 
S-type address constant(S) 
Other address constant 
(A,Q,V,Y) 

*The ISD Types show how each of the ISD 
codes will be displayed in the Internal 
Symbol Dictionary Listing. 

Relocatable EQU symbols and symbols on 
LTORG statements will be placed in the ISO 
in the following manner: 

1. If the statement is coded in the 
format 

symbol EQU expression 1 



r--------------------------------------------------------------------------------------~~~;~-----------l 

I I 
'LOCATION INSTRUCTION ADDR 1 ADD\{ 2 STATE:MN1' .:30UKCE \1\\ ilJIJ Iyy UI:.T.l:"S , 
, I 
, 01 02'110 100 ORG 10000 ,I 
I 01 02710 200 USING *,12 , 
101 02'110 Cl 300 DC C'A' , 
101 onoc C1C2 400 DC C'AR' , 
101 02"113 0123 500 ALPHA DC X'123' I 
101 02718 600 DS OD I 
101 02718 00000001 700 DC P'l' t 
101 0271C C1C2C3C4CSC6C7C8 800 GAl'MA DC C'ABCDE:FGHIJ' I 
I C9Dl I 
101 02726 C1C2C3C4CS 900 DC 3C'ABCDE' I 
101 0272B C1C2C3C4CS I 
101 02730 C1C2C3C4CS I 
10102BS 1000 DS 50CL10 I 
101 02929 OS5S 1100 DC B'10101010101' I 
101 0292B 00 + I 
101 0292C 002D 1200 DC H'4S' I 
101 0292E OA 1300 DC X'A' I 
101 0292F 00 + I 
101 02930 00002723 1400 DC A (ALPHA+ 16) I 
101 02934 00000000 lS00 DC V (RETA) I 
10102938 C003 0102713 1600 DC S(ALPHA) I 
101 0293A 0000 + I 
101 0293C 00000000 1700 DC R (BETA) I 
1'01 02940 271C 1800 DC Y (GAM!>1A) I 
101 02942 0000 + I 
101 02944 00004E34 1900 DC A (ALPHMGA1'1MA+5) I 
101 02948 0000000000000000 2000 DC V (DELTA,OMEGA,SIGMA) I 
I 00000000 I 
101 02954 01239C 2100 DC F'+1239' I 
101 029S7 F8F4F7F6D5 2200 DC Z'-8476S' I 
101 0295C 01234C6D789COS2C 2300 DC P'1234,-6,+789,+S2' I 
101 02964 01DOB38DFF9C 2400 DC H'46S,+lS245,-100' I 
101 0297A 13838188 2500 DC FL.7'9',CL.l0'AR',XL.14'C4' I 
101 0297E 3ACO 2600 DC BL.l0'l1101011' I 
101 02970 00000009 2700 DC F'9' ,C'AB' ,X'C4' ,H'-242' I 
101 02974 C1C2 I 
101 02976 C4 I 
101 02977 00 + 1 
101 02978 FFOE I 
101 0297A OAH1E 2800 DC 2HL1'10,20,30' I 
101 0297D OA141E I 
101 02988 OA84150ES030A80 2900 DC F'L.l0'673,21,S7,259,1I2' I 
101 02988 3000 DC OF I 
101 02988 3100 RDAREA DS OCL80 I 
101 02988 3200 DS CLII I 
101 0298A 3300 PAYNO DS CL6 I 
101 02990 3400 NAME OS CL20 I 
101 029AS 3S00 DATE OS OCL6 I 
101 029A5 3600 DAY DS CL2 I 
101 029A'1 3700 MONTH DS CL2 I 
101 029A9 3800 YEAR OS CL2 1 
101 029AB C9C2D440E261F3F6 3900 DC CL20'IBM S/360' I 
I F04040401l0401l040 I 
I ~0404040 I 
I 4000 END I 
I I 
I I l ______________________________________________________________________________________________________ J 

Figure 92. Listing format for constants 

and the first term in the operand 
expression 1 is not an asterisk, the 
ISO type of the symbol will be the 
type of the first term. If the first 
term is a self-defining term, the ISO 
type will be HEX. 

2. If the first term in the operand field 
is a reference to the location counter 
(*>, the ISO type will be determined 

by the next statement, within the same 
control section, to generate text or 
mOdify the location counter. 

The following cause the ISO type to be 
INSTR ISO code 1): 

a. a machine instruction 

b. CNOP 

Section 12: Tables, Table Entries, Listing Formats 301 



r-----------------------------------------------------------------------------------------------------, 
I I 
! I 
ILOCATION INSTRUCTICN ADDR 1 ADDR 2 STATEMNT SOURCE I 
I I 
I XX XXXXX XXXX XXXXXXX RR R 1, R2 I 
IXX xxxxx XXXX XXXX xx XXXXX XXXXXXX RX R1 ,D2 (X2,B2) I 
IXX xxxxx XXXX XXXX xx XXXXX XXXXXXX SI Dl (Xl,Bl) ,I I 
IXX XXXXX XXXX XXXX XXXX XX XXXXX XX XXXXX XXXXXXX SS Dl (L,B1) ,D2(B2) I 
I xx XXXXX XXXXXXXX XXXXXXXX XXXXXXX CO, I 
I XX XXXXX XXXXXXX CSECT (ALSO DSECT,PSECT, AND CO~) I 
I XX XXXXX XXXXXXX CNCP (NO ALIGNMENT NEEDED) I 
I XX XXXXX XXXX XXXXXXX CNOP (HALF-"WCRD ALIGNMENT NEEDED) I 
I XX XXXXX XXXX XXXX XXXXXXX CNOP (FULL-WCRD ALIGNMENT NEEDED) I 
IXX XXXXX XXXX XXXX XXXX XXXXXXX CNOP (THREE HALF-WORDS NEEDED) I 
I XX XXXXX XXXXXXX END (INTERNAL SYMBOL) I 
I XXXXXXXX XXXXXXX EQU (ABSOLUTE VALUE) I 
I XX XXXXX XXXXXXX EQU (SIHPLE RELOCATABLE VALUE) I 
I XX xxxxx XXXXXXX CRG (ALSO LTORG) I 
I XXXXXXXX XXXXXXX USING (ABSOLUTE VALUE) I 
I XX XXXXX XXXXXXX USING (RELOCATABLE VALUE) I 
I XXXXXXXX XXXXXXX SETA (ALSO SETB) I 
I AAAAAAAA XXXXXXX SETC I 
I + PLUS SIGN INDICATES GENERATED LINE I 
lEE INDICATES ERROR I 
I XXXXXXX THIS FORMAT IS USED FOR ALL OTHER I 
I ASSEMBLER INSTRUCTIONS I 
I I 
I I l _____________________________________________________________________________________________________ J 

Figure 93. Listing format for machine and assembler instructions 

302 

The following cause the ISD type to be 
determined as if it were a constant: 

a. DC 

b. DS 

c. CXD 

The following cause the ISD type to be 
HEX (ISD code 7): 

a. ORG 

b. END 

c. EQU 

d. CCW 

e. LTORG 

The following instructions will not 
affect the ISD type because they do 
not modify the location counter or 
generate text: 

a. PRINT 
b. SPACE 
c. EJECT 
e. USING 
f. DROP 
g. CSECT 
h. PSECT 
i. DSECT 
j. COM 
k. DXD 
1. a macro statement 
m. any statement in a macro defini­

tion (between MACRO and MEND) 

n. COpy 
o. SETA, SETB, SETC 
p. LCLA, LCLB, LCLC 
q. GBLA, GBLB, GBLC 
r. ANOP 
s. AGO 
t. AIF 
u. ENTRY 
v. EXTRN 
w. MNOTE 
x. comment(*> 

If the user has specified the type in the 
third operand field of the EQU statement, 
the ISD type will be assigned as follows: 

Hex TYl2e ISD TYl2e 
00-7A HEX 
7B ADCON 
7C-CO HEX 
Cl ADCON 
C2 BINARY 
C3 CHAR 
C4-CS REAL 
C6 INTEGER 
C7 HEX 
C8 INTEGER 
C9 INSTR 
CA-D6 HEX 
D7 PACKED 
D8 ADCON 
D9-El HEX 
E2 S-CON 
E3-E4 HEX 
ES ADCON 
E6-E7 HEX 
EB ADCON 
E9 ZONED 
EA-FF HEX 



Section Name 
Table 

Using Table 1 

"';0, 'ob.' ~ 
through n i 

Symbol Entry 1 

Symbols 2 
through N 

Figure 94. 

ISD Type (4) I Zero 

Length of ISD in Bytes 

6 to Symbol Tobie 

Number of Sec tion Names 

Number of Using Tables 

Number of Symbols 

Section Name 1 (A Iphomeric ) 

--

Version ID1 

- ~ 
~ 

.....: - - - --
Sec tion Nomen 

Version IDn 

--
Section 

Displacement 
Number 

*1 I: I I Section 
Number 

Bose Value Absolute or Displacement 

::--- ~~ -- ::-: ~ 

* I I: ] Section 
Number 

-~ 

Bose Value Absolute or Displacement 

--- ~ ~ :-- ~ - ~- '""'--~ -

Alphameric Name 

~I Type 
Number of I Length of th is En try 
Dimensions 

Section 
Relotive Location within Control Section Number 

--
Immediate Value 

Length Attribute of Symbol 
~~~ 

Dimension Foe tor

~;---=-- -
~

~-:--

Assembler internal symbol dictionary

Section Nome
Entry

Section Name2
Through
Section Nomen

Starting Location for
Using-Table Range

Register 1

} ,.,;, .. , "

}
Location or
Value (1 Word)

Section 12: Tables, Table Entries, Listing Formats 303

The ISO type will be HEX if there is any
conflict between the type and the alignment
of the symbol.

Symbols with type attributes T,N, and
o are not included in the ISO, nor do
undefined symbols appear.

Number of dimensions
has a value of 1 if a duplication fac­
tor (other than 1) or multiple con­
tents were used. Otherwise, it has a
value of O.

Length of entry
length in bytes for this symbol entry.

Section number
a number identifying the section the
symbol was defined in. This corres­
ponds to the ordering of the names in
the section name table.

Displacement
the location counter value.

Immediate value
if the type was indicated as an abso­
lute EQU, the fourth word of the sym­
bol entry will contain, instead of a
section number and displacement, the
immediate value of the symbol.

Length
length in bytes of the field defined
by this entry.

Dimension factor
this word is included in the symbol
entry only if the number of dimensions
is nonzero. It contains the byte
length of the entire field defined by
this entry (i.e., the length times the
duplication factor).

PROGRAM MODULE DICTIONARY (PMD)

Each PMD consists of one PMD heading
plus as many control section dictionaries
(CSD) as there are control sections in the
module (excluding DSECTS) Address pOinters
in the PMD are initially relative to the
beginning of the PMD itself (not the PMD
preface), except where otherwise specified.
Some fields in the PMD are filled in by the
loader. These are left zero by the lan­
guage processor. The PMD format is shown
in Figure 95.

PMD Heading

1. Length of PMD in bytes.
This length does not include the PMD
preface.

2. Diagnostic code (1 byte).
The diagnostic code indicates the

304

highest level diagnostic encountered
during generation of the module by the
language processor that created it.

3. Flags (1 byte).
The flag bits are numbered from left
to right starting with zero and are
defined as follows:

01234567

Bit 1

Version ID Flag

FORTRAN Main Program

FORTRAN Module

PCS Communication Flag

Linkage Editor Flag

ISD Flag

module has an ISD associated. This
bit is set by the processor creating
the PMD.

Bit 2
module was processed by link edit­
ing. This bit is set by the Linkage
Editor.

Bit 3
PCS is to be called before module is
dynamically unlinked. This bit is
set by PCS.

Bit 5
module was produced by the FORTRAN
compiler.

Bit 6
FORTRAN module is a main program,
not a SUBROUTINE, FUNCTION, or BLOCK
DATA subprogram.

Bit 7
version 10 indicator. If this bit
is set, the module version ID is to
be interpreted as a 64-bit binary
number which is the creation date of
the module. If this bit is not set,
the version 10 is eight alphameric
EBCDIC characters.

4. Length of PMD heading.

This is the length in bytes of the PMD
heading.

5. 4-character r.D. name.

The 4-character 1.0. name is supplied
by the user to serve as deck identifi­
cation if the module is punched into
cards. This field is currently
unused.

The PMD
Preface h,
Prefixed
here by
either
STARTUP
or the
Dynamic
Loader.

PMD
Headir,g

1

3

c

7

B

10

I

2

3

4

5

16

17

[
8

Length of PMD in Bytes

Diog.

I Flags I length of PMD
Code Heeding in Bytes

4 - Character I . D. Name

Version tD

of Module

No. REFs for Entry I No. Mods. for
Point Entry Point

Alphameric Name

of Module

Value of DEF

R-Volue Displacement
(Created by LINK EDITOR)

[CSD lINK1

{Reserved for Future Use)

[Search link]

Alphameric Nome

----- ----------
of REF

[Volue of REF)

[R -Volue of REF)

[CSD LINK)

(Reserved for Future Use]

1 For Deck J Punchout

J

DEF for
Standard
Entry Point

REF{,) for
Entry Point

PMD
Heading

CSD
Heading

Definition
Tobie

Definition{s)
Relative
Absolute
Complex

\1I-L-lIL-_R_Ef_N_u_m_be_, _J.! _.....lI ___ B_yte_, --1 :::;';'~:;:: '0.

Number Bytes in CSO

Length of Control Sect ion
in Bytes

Page Number in Text of Page 0
of CS Text

CSECT

'---- - ----------------
Version ID

[PMD Link]

CXD-REf and O-REF
(No. REFs into this

Control Section (user
Count count))

No. Relocat'ob!e No. Absolute
DEFs DEFs

No. Complex No. of External ond
Interno! REFs in

DEFs
Reference Table

Attdbutes of C. S. No. Pages of Text

Alphameric Nome

of DEF

-
Value of DEF

[ModHied by Looderl

I\-Value Displacement
[Modified by Loader1

[CSD link1

(Reserved for Future Use)

L
[Search linkl

Figure 95. Program module dictionary entry format (part 1 of 2)

Section 12: Tables, Table Entries, Listing Formats 305

Reference
Table

Alphameric Name

~-------------------

of REF

[Value of REF]

[R-Value of REF]

iCSD Link]

(Reserved for future Use)

Name of

DXD Instruction

(Q-Volue of REF)

Length

~link to Next DXD Name J

[Link to Same DXD Name 1

(Reserved for future Use)

(Reserved for Future Use)

(Value of CXD)

(Reserved for Future Use)

(Reserved for Future Use)

(CXD REF link)

'--

Modifier
Pointers for
Complex DEFs

Externa!
or Interna!
REF

Modifiers for
Complex DEFs

Modifier Pointers
for External REFs

Q-Type
REF

Modifiers for
External REFs

Modifier Pointers
for I ntemol REFs

Modifiers for
Internal REFs

Virtual Memory
Page Tobie

CXD-Type
REF

No. Modifiers for Relative Location of First
Page 0 of PMD Modifier for PMD Page 0

No. Modifiers for Relative Location of First
Page x of PMD Modi fj er for P MD P oge x

L I REF Number T I Byte

No. Modifiers for Relative Location of First
Page 0 of Text Modifier for Text Page 0

No. Modi fiers for Relative Location of First
Page y of Text ModiFier for Text Page y

L I REF Number T I Byte

No. Modifiers for Relative location of First
Page 0 of Text Modifier for Text Poge 0

No. Modifiers for Relative location of First
Page z of Text Modifier for Text Page z

L I REF Number T I Byte

Page No. in Text f Page No. in Text
of Virtual Memory Page 0 l of Virtual Memory Page 1

Page No. in Text of I Page No. in Text of
Virtual Memory Pogeim-l' Virtual Memory Page Im l

Remoining CSDs

c-

4-

j

~

-+

Complex DEF RLD
(Note: Page x is the fost
PMD page for which there
ore any Compl ex
DEF mod; fie",)

External REF RLD
(Note,

1. Modifiers for Q-REF and
CXD-REFs ore incll1ded in
th;s RLD.
2. Page y is the last text
page for whiCh there are
any External REF modifiers.

InternQI REF RLD
(Note: Page z is the lost
text page for which there
ore any Internol REF
modifiers.)

Figure 95. Program module dictionary entry format (part 2 of 2)

6.

7.

8.

306

Version I.D.

See item 3 above (Bit 7 discussion)
for interpretation of version I.D.

Number of REFs for the standard entry
point.

The DEF for the standard entry point
is always treated as a complex DEF.
This field contains the number of
REFs. It may be zero.

Number of modifiers for the standard
entry point.

9.

This field contains the number of
modifiers that are to be used to com­
pute the DEF for the standard entry
point.

DEF for standard entry point.

This 7-word entry describes the DEF
for the standard entry point of the
module. It has the same form as the
individual DEF entries within the
CSDs. The standard entry point DEF
for the module is considered to belong
to the first PSECT of the module and
is treated the same as a complex DEF

whose ENTRY statement appears within that
PSECT. If no PSECT is declared. the stan­
dard entry point will be associated with
the first CSECT instead. This DEF entry
contains the following subfields:

a. Alphameric name of module

b. Value of DEF

c. R-value displacement

d. CSD link

e. Reserved for future use

f. Search link

The alphameric name is also the name
of the module.

10. REF{s) for entry point - These have
the same form and function as the REFs
described in the CSD discussion below.

11. Modifier(s) for entry point - These
have the same form and function as the
modifiers for the RLD for complex
definitions described in the CSD dis­
cussion below. except that they apply
to the standard entry point DEF.

CONTROL SECTION DICTIONARY (CSD)

The control section dictionary has the
following components:

1. CSD Heading

2. Definition table

3. Reference table

4. Relocation dictionaries (RLDs)

5. Virtual memory page table (VMPT)

CSD HEADING

1. Number bytes in CSD - This field spe­
cifies the length of the control sec­
tion dictionary in bytes.

2. Length of control section in bytes -
This specifies the virtual memory span
of the control section. The length of
the virtual memory page table is
derived from this length. For
example, if the length of the control
section is 8192, the virtual memory
page table will contain two pages; but
if the length is 8193 bytes, the vir­
tual memory page table will contain
three pages. This value will be equal
to the highest location counter value
assigned by the language processor,
plus one.

3. Page number in text of page 0 of CSECT
text - The text for each control sec­
tion in the module occupies an integr­
al number of pages in its resident
data set. The text pages for all con­
trol sections in a module are conti­
guous. This number is the page numb­
er, relative to the first page of text
for this module, of the first page of
text for this CSECT. (Numbering
begins with 0.)

4. Version I.D. - This is a 64-bit
binary number which is the creation
date of the control section expressed
as the number of microseconds that
have elapsed from March 1, 1900, until
the time of CSECT creation. This
number is changed by the linkage edi­
tor when CSECT combining occurs.

5. PMD link - The PMD is filled in by
STARTUP or the dynamic loader. It
points to the beginning of the PMD
preface.

6. Whether CSD-type REF and number of
Q-type REFs.

Bits from left to right contain:

a. Bit 0 - set to o. if no CXD-type
REF exists; set to 1 if a CXD-type
REF exists. (Only one CXD-type
REF is possible.)

b. Bit 1 - not used.

c. Bits 2-14 - number of Q-type REFs.
(Contains all zeros if none.)

1. Number of implicit references to this
control section (user count) - This is
a count of the number of REF entries
that refer to this control section and
are linked to this CSD through their
CSD link. It is computed by the load­
er. It includes both external and
internal references. This number is
arbitrarily set by STARTUP for each
CSECT in initial virtual memory to
X'1FFF' to prevent unloading of IVM
modules.

8. Number of relocatable definitions -
This is the number of relocatable
definitions in the definition table.
It is always at least one, namely, the
control section name DEF.

9. Number of absolute definitions - This
is the number of absolute definitions
in the definition table. It may be
zero.

10. Number of complex definitions - This
is the number of complex definitions
in the definition table. It may be
zero.

Section 12: Tables, Table Entries, Listing Formats 307

11. Number of references from this CSD -
This is the sum of external and
internal references in the reference
table. It may be zero.

12. Attributes - This halfword has one bit
set for each attribute possessed by
the control section. currently
defined attributes are shown below.

308

Bits are numbered from left to right
starting with O.

a. Fixed-length (Bit 14 off) - A
fixed-length control section is a
section of fixed length. It will
be allocated a fixed number of
pages at load time.

b. Variable-length (Bit 14 on) - A
variable-length control section is
of indeterminate length. It will
be allocated pages in excess of
the length stated in the CSD
heading.

c. Read-only (Bit 13 on) - Read-only
specifies that no data can be
stored in the control section.
Causes memory protection by means
of a storage class-B assignment to
all pages of the control section.
Nonread-only and nonprivileged
CSECTs are assigned storage class
A.

d. Public (Bit 12 on) - Control sec­
tions are not shared by CSECT name
alone. A public control section
of a module residing in a given
data set (library) is shared if
another user has access to the
same data set and module. CSECTs
of a given module need not all be
public or non-public. Fixed­
length public CSECTs with the same
attributes are assigned storage in
the same assignment. A public
CSECT must never contain relocat­
able adcons (A, V, or R type).

e. PSECT (Bit 11 on) - If this bit is
set. it causes the dynamic loader
to override the system packing
indicator and insert this control
section as packed.

f. Common (Bit 10) - A common section
is a control section common to all
modules in which it is declared.
Common sections are more fully
discussed in the Linkage Editor
and Assembler Language SRLs.

Common sections are of two types:

el} Named common sections (those
with a name not all blanks).
These are treated as fixed­
length sections.

(2) Blank common sections, whose
name consists of eight blanks.
FORTRAN blank common is
assigned the variable and com­
mon attributes by the FORTRAN
compiler.

The treatment of blank common sec­
tions differs from that of blank
non common sections. Control sec­
tion rejection is instituted
between blank common sections of
different modules whereas blank
non-common sections of different
modules are treated as independent
control sections. The latter are
called unnamed control sections.

g. privileged (Bit 9 on) - A CSECT
with a privileged attribute is
assigned storage key C which pro­
vides fetch as well as store pro­
tect. This attribute overrides
R/O. Anything in a privileged
CSECT may be referenced only when
the PSW key is zero.

h. System (Bit 8 on) - Any external
symbol that appears in a CSECT
with the system attribute cannot
be referenced by a user program
unless the symbol begins with
·SYS·. Conversely, no reference
from a control section with a sys­
tem attribute may be to a ·user"
symbol.

i. TDYCQR validity (Bit 7 on) - The
language processor sets this flag
to indicate that the count of Q­
type REFs in TDYCQR is valid. If
bit 7 is off, the count of Q-type
REFs is not valid.

j. Common CSECT rejected (Bit 6 on) -
The dynamic loader sets this flag
to indicate to the Program Control
System that the CSECT was rejected
as a common CSECT that was already
loaded in another module.

k. Bits 4 and 5 are not used.

1. Public storage assigned by CONNECT
(CZCGA7) (Bit 3 on) - Set by the
dynamic loader if applies.

m. PCSA (CGCCT) called for this CSD
(Bit 2 on) - Set by the dynamic
loader if applies.

n. CSD has been allocated storage
(Bit 1 on) - Set by the dynamic
loader if applies.

o. Public name (Bit 0 on) - This is
used only by the dynamic loader to
specify nonblank control sections
whose names appear in the SDST
(Shared Data Set Table). The

first such control section will
appear in the SDST under the
module name. A section may be
indicated as both having a public
name and rejected.

13. Number of pages of Text - This speci­
fies the number of pages of text for
this control section in the data set.
It should be noted that this generally
does not correspond to the number of
pages in the virtual memory page
table. It cannot be larger.

DEFINITION TABLE

The definition table is made up of 7-
word entries, one for each external defini­
tion in the current control section.
Definitions are grouped as relocatable,
absolute, and complex in that order. The
first definition in the table is the name
of the current control section.

Relocatable definitions are external
definitions whose value may be computed as
the sum of the origin of the control sec­
tion wherein they appear, and a constant
that is the symbol"s displacement from the
section origin.

An absolute definition is an EQU item
with an absolute value whose name has been
declared an entry point in the CSECT in
which the name is defined.

A complex definition is either an EQU
item with a complex relocatable value (that
is, containing external symbols) or a
Simple relocatable definition whose ENTRY
statement appeared within a control section
other than the section in which it is
defined. The definition entry appears
within the CSD of the control section that
contains the ENTRY statement. (Note that
the origin of the same control section is
the R-value for the DEF.) The complex DEF
is required in this case, with one REF
entry that names the control section in
which the DEF symbol is actually defined.

Each DEF in the definition table con­
tains the following entries:

1. Alphameric name of DEF - This field
contains the 8-character alphameric
name of the DEF.

2. Value of DEF - The value of the DEF is
set by the language processor and is
modified by STARTUP or the loader in
the case of complex and relocatable
definitions. For relocatable DEFS,
the value portion of the definition
entry contains the displacement value
of the symbol relative to the base of
its control section. For absolute

DEFs, this entry contains the absolute
value; for complex DEFs it contains
the absolute portion of the DEF value,
which may be zero.

3. R-Value displacement - The "displace­
ment for R-value" word contains the
displacement of the original defining
control section origin with respect to
the head of the control section within
which the definition now appears.
This is required to compute valid R­
values for control sections which have
been combined by linkage editing. In
creating the PMD, only the linkage
editor will ever produce a nonzero
value in this word.

4. CSD link - The CSD link is initially
zero. It is filled in by STARTUP or
the dynamic loader when the control
section is loaded as a pointer to the
beginning of the CSD in which this DEF
appears, provided that neither the DEF
nor the control section has been
rejected.

5. Reserved for future use.

6. Search link - This field is filled by
the HASH SEARCH routine of either the
loader or STARTUP. It contains the
address of the beginning of the next
DEF entry, which hashes to the same
value. It contains zero if there are
no more DEFs with the same hash value
in this chain.

REFERENCE TABLE

The reference table is made up of 6-word
entries, one for each external symbOl
referenced within the control section.
Each entry for an external or internal REF
contains the following:

1. Alphameric name of REF - This field
contains the 8-character alphameric
name of the REF.

2. Value of REF - This is filled in by
STARTUP or the dynamic loader. It
contains the value of the DEF to which
the REF refers. If the DEF is unde­
fined, it contains the address of a
portion of virtual memory wherein
reference is illegal.

3. R-Value of REF - This is filled in by
STARTUP or the dynamic loader. It
contains the virtual memory address of
the beginning of the control section
wherein the DEF appears. This value
is obtained from the "R-value displa­
cement" word of the satisfying DEF
entry.

Section 12: Tables, Table Entries, Listing Formats 309

If the DEF is undefined, this word
contains the address of a portion of
virtual memory wherein reference is
illegal.

4. CSD link - This pointer, initially
zero, is filled by STARTUP or the
dynamic loader. It points to the
beginning of the CSD wherein the DEF
that defines this REF appears. If a
corresponding DEF could not be found
upon the appearance of a REF, the CSD
link is to the beginning of the CSD
wherein the REF itself appears.

5. Reserved for future use.

Each entry for a Q-type REF contains:

1. Name of DXD instruction - The eight­
character alphameric name of a DXD
instruction, or a DSECT name refer­
enced in a Q-type address constant.

2. Q-value of REF - This is filled in by
the RESOLVE QREF routine of the dynam­
ic loader. It contains the displace­
ment from the beginning of the combi­
ned dummy sections of the dummy sec­
tion defined by the DXD instruction.

3. Alignment, Length - The alignment and
length specified by the assembler lan­
guage processor.

4. Link to next DXD name - This is filled
in by the Q-CHAIN routine of the
dynamic loader when Q-CHAIN posts the
REF on one of the eleven hash chains
for Q-type REFs.

5. Link to same DXD name - This is filled
in by the Q-CHAIN routine of the
dynamic loader when Q-CHAIN posts the
REF on one of the secondary Q-type REF
chains for duplicate-name DXDs.

Each entry for a CXD-type REF contains:

1. For future use.

2. Value of CXD - This is filled in by
the EXPLICIT LINK routine of the
dynamic loader. It contains the
length of the combined dummy sections.

3. For futUre use.

4. CXD REF link - This is filled in by
the ALLOCATE MODULE routine of the
dynamic loader as CXD-type REFs are
chained together.

RELOCATION DICTIONARY (RLD)

Three RLDs appear in each control sec­
tion dictionary. The three RLDs are:

310

1- RLD for complex definitions

2. RLD for internal references

3. RLD for external references

Each RLD has the same format consisting
of modifier pointers and modifiers. The
RLD for complex definitions differs in that
pages mentioned in this table are pages of
the PMD rather than the text.

Modifier Pointer

Modifier pointers are used to designate
the application of modifiers to adcons on
appropriate pages of text (or of the PMD
for complex defs). The first modifier
pointer applies to the first page; the
second modifier pointer, the second page;
etc. For an RLD there always exists at
least one modifier pointer. However, there
need not necessarily be a modifier pointer
for each page of text; the modifier poin­
ters may be ended at the last text page for
which there exists any modifier.

The modifier pointers consist of two
fields, in the left and right halfwords.

Left half
Number of modifiers for page - This
field contains the number of modifiers
that apply in this page.

Right half
Location of first modifier for this
page - This contains the location in
bytes relative to the right half of
the pointer itself for the first modi­
fier for this page. If there are
none, it points to the location where
one would have appeared if there were
any.

A special note should be made of the
technique for determining the length
of the RLD. If one looks in the right
half of the first pointer for an RLD,
one finds the location of the first
modifier for this page. In the word
preceding the first modifier word is
the last modifier pointer for the RLD.
By adding the location of the right
half (of the last pointer) to the con­
tents of the right half (of the last
pointer), one gets the beginning of
the last set of modifiers. Adding to
this four times the number of modi­
fiers in the last set, one gets the
end of the RLD.

Modifier

1. L - L (2 bits) is the length
of the adcon to be modified.
of zero indicates a fullword
bytes) •

in bytes
A value

(4

2. Ref number - Reference number (14
bits) is the ordinal number in this
CSD'S reference table of the reference
whose definition value is to be used
in modifying the adcon. References
are numbered starting with zero.

3. T - T (4 bits) is the operation to be
performed in modifying the adcon by
the reference value. The values of T
currently defined are as follows:

a. Addition (T = 1) - The definition
value of the reference at
"Reference Number" is added to the
field of L bytes at the location
specified by "Byte".

b. Subtraction (T = 2) - Same as
addition, except read ·subtracted
from" for "added to."

c. R-value (T = 3) - The "R-value" of
the REF is stored into the field
of length L at the location speci­
fied by "Byte".

d. Q-value (T = 4) - The Q-value of
the REF is stored into the field
of length L at the location speci­
fied by "Byte".

e. Value of CXD (T == 5) - The value
of the CXD instruction is stored
into the field of length L at the
location specified by "Byte".

4. Byte - Byte (12 bits) is the displace­
ment in bytes (from the origin of its
original containing page) of the adcon
to be modified. It should be noted
that since PMDs are packed to word
boundaries, this displacement will be
added to an address for complex DEFs
which generally is not a page
boundary.

RLD for Complex Definitions

The format of these modifiers is as
described above. These modifiers apply to
the values of complex definitions; that is,
the byte addresses in the modifier will be
added to the value words of complex DEF
entries in the definition table, and the
page numbers in the modifier pointers are
for pages of the program module dictionary
itself.

RLD for Text External Reference

This relocation dictionary is in the
same form as described above. It has one
pointer for each page of program text up to
that text page, which is the last to con­
tain an adcon, and appropriate modifiers
for each adcon in the text, which refers to

a symbol defined externally to this module.
The page numbers are based on the first
page for this control section, beginning
with O.

RLD for Text Internal Reference

This is identical t.o RLD for text
external reference above, except that the
modifiers are to adcons in the text which
reference symbols defined within this
module, such as control section names.
This permits communication between control
sections of the same module that may be
allocated noncontiguous virtual memory.

VIRTUAL MEMORY PAGE TABLE (VMPT)

This table has a halfword for each page
of virtual memory that the CSECT occupies,
beginning with page 0 and continuing upward
in order.

The contents of each entry will be
either:

1. All one bits if the corresponding page
is empty as a result of a OS or ORG
statement.

2. The number of the page in the text
relative to the beginning of text for
this CS if the page contains code or
data.

This table is the means by which the
text of the control section is related to
the virtual memory assigned the control
section. This is because language proces­
sors do not necessarily output a byte of
text for each byte of virtual memory
assigned; that is, large ORG and DS state­
ments may result in pages of text being
skipped.

If, for example, a source program were
to begin with

ORG 10000

there would be no text output for the first
two pages of virtual memory, and the first
page of text would correspond to the third
page of the user's virtual memory. The
first two VMPT entries would be all bits,
and the third would contain zero. Within a
page, however, the bytes of text correspond
directly to the bytes of virtual memory.
Thus, in the example above, the first page
of text would represent virtual memory
locations 8192-12,287, and the first 1808
bytes of the page of text would be vacant
(10,000-8192 = 1808). The pages of text
will always begin on page boundaries within
the text module.

Section 12: Tables, Table Entries, Listing Formats 311

SECTION 13: VIRTUAL MEMORY MANAGEMENT

PURPOSE OF VIRTUAL MEMORY MANAGEMENT
ROUTINES

Virtual memory management is performed
by three routines: VMGET, VMFREE, and
VMCLEAN. These routines provide the
assembler with efficient virtual storage
allocation services. Whenever working
storage is required or no longer needed by
the assembler, these routines are called.
They keep track of virtual storage obtained
from the system and determine when to issue
GETMAIN and FREEMAIN macro instructions on
behalf of the assembler. The virtual
memory management routines are part of
assembler module CEVAl.

Assemblies of unusually large source
programs may require an increase in the
amount of storage requested with each GET­
MAIN; privileged system programmers
(authority code 0) may change the storage
requested by altering certain constants.
See "Changing Storage Request Constants" at
the end of this section.

HOW VIRTUAL MEMORY MANAGEMENT WORKS

The virtual memory management routines
maintain a common table (named VMTABLE)
containing blocks that describe virtual
storage extents obtained from the system
via the GETMAIN macro instruction. By con­
sulting and maintaining entries in VMTABLE
blocks, VMGET determines whether to alloc­
ate to a requesting phase of the assembler
storage already obtained or whether to re­
quest new storage by issuing a GETMAIN.
VMFREE maintains entries in VMTABLE of
storage no longer needed by the assembler.
VMCLEAN, at termination of the assembly.
consults entries made by VMGET and VMFREE
and issues required FREEMAIN macro instruc­
tions. (These routines are described indi­
vidually below.)

VMTABLE itself contains 64 three-word
blocks; each block is a member of one of
four chains within the table. The chain
headers, VMGOTTEN. VMASSIGN, VMFREED. and
VMENTRYS. are address constants outside
VMTABLE; each points to the first block of
its chain within VMTABLE. The chain headed
by VMGOTTEN records areas obtained via GET­
MAIN and not in present use by the assembl­
er. The chain headed by VMASSIGN records
areas obtained via GETMAIN and presently
assigned to some phase of the assembler.
The chain headed by VMFREED records areas
previously acquired via GETMAIN, relin­
quished by some phase of the assembler, and

312

now available for return to the system via
FREEMAIN. The chain headed by VMENTRYS
simply points to unused blocks within
VMTABLE.

The format and contents of VMTABLE
blocks are shown in Section 12 under "Vir­
tual Memory Management Table."

ROUTINES

VMGET -- Get VM Working Storage (CEVGM)

This routine issues GETMAIN macro
instructions for the assembler. GETMAIN
requests are made as seldom as possible;
they are not issued when previously secured
storage is still available. (See Chart
EA.)

Entry point: CEVGM

Calling Sequence: L RO.length
LA R1,option
INVOKE ACEVGM

(length = number of pages requested
option: 1 = 'EXIT=RETURN', 0 = 'NO
RETURN')

Routines Called: None
Macro instruction: GETMAIN

Routines That Call VMGET:
PHASE I (Phase I Master Control)
REED
COPY
MACREF
PHASE III (Control)
ISDPR
SSCAN

Exit:
Normal R1 contains address of first vir­

tual memory page.
R15 contains a return code:

o - normal
4 - insufficient virtual

storage and 'EXIT=RETURN'

Error - ABEND 1 - 'CEVGM-GETMAIN REQUEST
OF 0 PAGES'.
ABEND 2 - 'CEVGM-TOO MANY VM
REQUESTS FROM ASSEMBLER' (VMTABLE
overrun) .
ABEND 2 - 'CEVGM-VM EXHAUSTED'
(and no 'EXIT=RETURN').

OPERATION: VMGET either secures the
requested storage from pages represented by
VMGOTTEN entries or, if there are not

enough unassigned pages available to satis­
fy the request, issues a GETMAIN. At least
one segment (256 pages) is requested with
each GETMAIN; if less than a segment was
requested by the caller, VMGET requests a
segment. Amounts greater than 256 pages
are requested as specified to VMGET in
register O. (Ordinarily, however, calls to
VMGET will request fewer than 256 pages.)

If a request for zero pages is encoun­
tered, VMGET issues an ABEND (completion
code 1). Where insufficient virtual
storage is available, VMGET issues an ABEND
or returns to the caller, depending on the
EXIT setting in register 1.

After successful completion of GETMAIN
or when enough pages are available to sati­
sfy the request without a GETMAIN, VMTABLE
is altered to show the pages put in use,
and VMGET returns with a return code of O.

VMFREE -- Free VM Working storage (CEVFM)

This routine accepts FREEMAIN requests
from other assembler routines and records
in the VMFREED chain of VMTABLE the deli­
miting addresses for the pages to be freed.
VMFREE does not call FREEMAIN; rather,
VMCLEAN uses the entries in the VMFREED
chain to call FREEMAIN. VMFREE edits the
contents of the VMFREED chain so that as
few FREEMAINs as possible need to be issued
by VMCLEAN. (See Chart EB.)

Entry Points: CEVFM
FM450 (internal to CEVA1)

Calling Sequence: L
L

INVOKE

RO,length
R1,address

ACEVFM
(length
address

number of pages to be freed
location of first page to be
freed)

Routines Called: None

Routines That Call VMFREE:

AC (Assembler Control)
PHASE I (Phase I Master Control)
PHASE III (Control)
CSDPR
ISDPR
VMCLEAN (at FM450)

Exit:
Normal - BR 14

Error - ABEND 1 - 'CEVFM-ATTEMPT TO FREE­
MAIN ADDRESS 0'.
ABEND 1 - • CEVFM-ATTEMPT TO FREE­
MAIN LENGTH ZERO'.
ABEND 1 - fCEVFM-ATTEMPT TO FREE
UNASSIGNED VMf.
ABEND 1 - 'CEVFM-TOO MANY VM

REQUESTS FOR ASSEMBLER' (No more
blocks left in VMTABLE).

OPERATION: Upon entry, VMFREE determines
whether an attempt has been made to free
address 0, length 0, or unassigned virtual
storage. If any of these is detected,
VMFREE issues an ABEND with completion code
1 to end the assembly.

VMFREE next determines whether the FREE­
MAIN request is for the entire range given
in the appropriate VMASSIGN chain entry.
If this is the case, VMFREE removes that
block from the VMASSIGN chain and either
places the block on the VMFREED chain or,
if possible, makes the range of pages freed
part of an existing VMFREED entry. VMFREE
then places t:he old VMASSIGN b10ck on the
available block (VMENTRYS) chain. Note
that when several blocks of contiguous
pages are freed, VMFREE detects this and
produces only one VMFREED entry.

If the FRE.EMAIN request was for on1y
part of the pages represented in a VMASSIGN
entry, VMFREE changes the VMASSIGN chain to
reflect the deletion and changes the
VMFREED chain to show the newly freed
pages.

VMCLEAN -- Assembler Cleanup (CEVCU)

This routine frees working storage areas
obtained via GETMAIN. At termination of an
assemb1y, VMCLEAN operates in one of two
modes: normal end or early end. In early
end mode, all areas represented in the
VMGOTTEN, VMASSIGN, and VMFREED chains are
freed. In normal end mode, only areas
represented in the VMGOTTEN and VMFREED
chains are freed. Areas represented in the
VMASSIGN chain at this time represent the
output module's PMD, text, lSD, and extern­
al names list. All these items are
referenced by LPC (Language Processor Con­
trol), which must free the areas itself.
(See Chart EC.)

Entry Point: CEVCU

Calling Sequence: LA
INVOKE

R1,option
ACEVCU

(option: O=normal end, nonzero=early
end)

Routines Called:

VMFREE (at. FM450) - to put VMGOTTEN and
VMASSIGN entries on VMFREED chain (non­
standard linkage>

Macro instruction: FREEMAIN

Routines That Call VMCLEAN: AC (Master
Control)

Section 13: Virtual Memory Management 313

Exi t: Normal - BR R14

OPERATION: For both normal and early end
modes, VMCLEAN transfers blocks on the
VMGOTTEN chain to the VMFREED chain by con­
verting each entry from the VMGOTTEN format
to the VMFREED format and then calling
VMFREE (at FM450) to put the block on the
VMFREED chain.

In addition, in early end mode (which
means the assembly did not complete and no
program module will be produced>, VMCLEAN
calls VMFREE to put each VMASSIGN entry
onto the VMFREED chain. In normal mode,
the areas represented by VMASSIGN entries
will not be returned to the system immedi­
ately; they must be saved for reference by
Language Processor Control in producing a
program module.

In either mode, unless the VMFREED chain
is empty. VMCLEAN issues a FREEMAIN macro
instruction to free the pages represented
by each entry in the VMFREED chain.

Before returning to the caller, in eith­
er mode, VMCLEAN places all blocks (includ­
ing VMASSIGN blocks) onto the VMENTRYS
(available blocks) chain, so that VMTABLE
will be initialized for later assemblies
during the same task.

CHANGING STORAGE REQUEST CONSTANTS

Each routine that requests virtual
storage through a call to the virtual
memory management routines specifies its
own constant number of pages. For an
unusually large assembly, one or more of
these constants may be insufficient and a
work area may overflow. (Examples: the
assembly of a user's own language proces­
sor, or a SYSGEN assembly of the TSS/360
system.) Programmers with authority code 0

314

may "tune" these constants to meet their
needs.

The constants that may be altered, the
work areas for which they are used to
requisition storage, the normal value of
the constants (number of pages), and the
usual reasons for overflow are shown in
Table 12.

CAUTION

Since these constants reside in PUBLIC,
READONLY code. they must not be altered if
any other user is assembling.

The constants must be altered prior to
an assembly for which they will be used.
Altering constants during assembly (via the
attention key, then a GO or RUN command
after the alteration) will usually cause an
ABEND.

OVERFLOW DIAGNOSIS

The assembler will attempt to dynamical­
ly obtain additional virtual storage should
a work area overflow. However, if storage
is unavailable or unable to be addressed,
the assembly is terminated with a diagnost­
ic message naming the work area which over­
flowed. A knowledge of PMD or ISD control
block sizes may be helpful when analyzing
PMD or ISD work area overflows. The CHATDY
and CHAISD DSECTs, listed in System Control
Blocks, GY28-2011, describe components of
the PMD and lSD, respectively, and may aid
in determining proper altered values for
CEVPMD and CEVISD.

Additional information on resetting con­
stants is available in System Programmer's
Guide. GC2S-200S under -Tuning the TSS/360
Assembler."

Table 12. Virtual storage request constants
r--------T-----------T------------------T---"'
'Name of '" I
,constant, Work Area' Normal Value I Possible Reasons for Overflow and Comments I
~--------t-----------+------------------+---i
'CEVWl I Work 1 I 100 pages I Too many continued source lines. I
I I I I Too many USING or DROP statements. I
I I I I Insufficient room for 2-word cross-reference I
I I I lit ems. I
I I I I Nesting of macro calls causes generation 01 I
I I' I macro level dictionaries requiring too much I
, I I , space. ,
t--------t-----------+------------------+--~
I CEVW2 I Work 2 I 255 pages I Too many symbols in name fields. I
I I I I Too many source statements. I
i I I I Too many macro-generated statements. I
, I I I Too many continued lines. I
I I I I Insufficient work space for building control I
I I I I section dictionary. I
t--------+-----------+------------------+---i
I CEVW3 I Work 3 I 20 pages per I Seldom occurs. I
I I I increment (more I More than 50,000 lines of code (including I
I I I as needed to I source, library or assembly macro definition, I
I I I hold source I and generated statements may cause VMTABLE to I
I , , statements) I overflow. Increase the size of constant I
I " I CEVW3. I
t--------+-----------+------------------+---i
I CEVXL I External I 2 pages + size ofl Number of control sections and ENTRY operands I
I , Name List , the DEFs (number I exceed 1022. I
I I Area , of DEFs mUlti- I I
I I (EXT NAM) I plied by 28) I I
t--------+-----------+------------------+---i
I CEVPMD I PMD Work I 2 pages + (num- I Too many ENTRY or EXTRN operands with little I
I I Area I ber of text I or no text for module. (Text = executable I
I I I pages /8) + size I instructions + constants). I
I I I of the DEFs and I I
I I I REFs (the total I I
I I I number of DEFs I I
I I I and REFs mUlti- I I
I I I plied by 28) I I
r--------+-----------+------------------+---i
I CEVISD I ISD Work I 0 pages + number I The value of CEVW2 (size of Work 2) too small I
I I Area I of pages in I to contain ISD. Too much USING/DROP infor- I
I I I Work 2 I mation and symbolic name information for work I
I I I I area. I l ________ ~ ___________ ~ __________________ ~ ___ J

Section 13: Virtual Memory Management 315

APPENDIX A: ASSEMBLER REGISTER USAGE

The general purpose machine registers
are coded symbolically throughout the
assembler and are used as follows:

RO - Parameter register (effectively
volatile)

R1 - Parameter register (effectively
volatile)

R2 - Parameter register (effectively
volatile)

R3 - Parameter register (effectively
volatile)

R4 - Parameter register (effectively
nonvolatile)

R5 - Parameter register (effectively
nonvolatile)

316

R6 - Volatile
R7 - Volatile
R8 - Permanently addresses working area 1

(nonvolatile)
R9 - Permanently addresses read-only con­

stants (nonvolatile)
RiO - Permanently addresses working area 2

(nonvolatile)
Rll - Used for local addressability by

individual subroutines (nonvolatile)
R12 - Nonvolatile
R13 - Permanently addresses Assembler"s

PSECT
R14 - Linkage register
R15 - Linkage register

APPENDIX B: RELATIONSHIP OF DOCUMENTATION MODULES TO ASSEMBLY MODULES

For purposes of checkout, system integration, and maintenance, the modules documented
in the internal specifications have been collected into fifteen assembly modules. The
list below indicates the relationship between system integration assembly modules and the
corresponding documentation.

Assembly Module
CEVA1 (Phase I, Part I)

CEVA2 (Phase If Part II)

CEVA3 (Phase I, Part III)

CEVA4 (Phase I, Part IV)

CEVAS (Phase If Part V)

CEVA6 (Phase I, Part VI)

CEVA7 (Phase I, Part VII)

Documentation Modu~es
CEVMR (Machine Operations Requirements Table)
CEVDX (Diagnostic Message Processor)
CEVBS (Basic Scan Routine)
CEVKM (Lookup Dictionary Item)
CEVLP (Dictionary Lookup and Put)
CEVAC (Assembler Control)
CEVGW (Interface with VISAM PUT or GTWRC Macro)
CEVGM (Get VM Working Storage)
CEVFM (Free VM Working storage)
CEVCU (Assembler Cleanup)

CEVCS (Constant Scan Routine)

CEVEV (Expression EValuator)
CEVGB (Binary Self-defining Term Generator)
CEVGC (Character self-defining Term Generator)
CEVGD (Decimal Self-defining Term Generator)
CEVGH (Hexadecimal Self-defining Term Generator)
CEVPS (Parameter Item Analyzer)
CEVTM (Macro Name Item Insert)
CEVLM (Macro Name Item Lookup)
CEVTK (Macro Dictionary Lookup)
CEVTP (Macro Dictionary Insert)

CEVRD (Obtain Next Source Statement)
CEVSS (string Substitution Routine)
CEVSP (Substitute into Operation Code)

CEVOP (Operation Code table)
CEVGP (Identify Operation Code)
CEVCP (Substitution Control Routine)
CEVST (statement Analyzer)
CEVGO (AGO/AIF Instruction scan)
CEVAN (ANOP Instruction Scan)
CEVCW (CCW Instruction Scan)
CEVCT (Control Section Instruction Scan)

CEVCN (CNOP Instruction Scan)
CEVCY (COPY Instruction Scan)
CEVCX (CXD Instruction Scan)
CEVDC CDC/DS Instruction Scan)
CEVEJ (EJECT Instruction Scan)
CEVND (END Instruction Scan)
CEVEY (ENTRY Instruction Scan)
CEVXN (EXTRN Instruction Scan)
CEVQU (EQU Instruction Scan)
CEVGL (Global/Local Symbol Scan)
CEVIC (ICTL Instruction Scan)
CEVIQ (ISEQ Instruction Scan)
CEVLG (LTORG Instruction Scan)
CEVMX (MEND/MEXIT Instruction Scan)
CEVMN (MNOTE Instruction Scan)

CEVMP (Machine InstI'uction Scan)
CEVMC (MACRO Instruction Scan)
CEVRG (ORG Instruction Scan)

Appendix B: Relationship of Documentation Modules to Assembly Modules 317

CEVA8 (Phase I, Part VIII)

CEVA9 (Phase I, Part IX)

CEVBl (Phase IIA)

CEVCl (Phase lIB)

CEVDl (Phase IIC>

CEVEl (Phase III, Part I)

CEVE2 (Phase III, Part II)

CEVFl (Phase IV)

318

CEVPH (PUNCH Instruction Scan)
CEVPR (PRINT Instruction Scan)
CEVSE (SET Statement Scan)
CEVCE (SPACE Instruction Scan)
CEVTI (TITLE Instruction Scan)
CEVUD (USING/DROP Instruction Scan)
CEVRE (REPRO Instruction Scan)

CEVRF (Macro Reference Processor)
CEVDF (Macro Definition Processor)
CEVSL (Literal Operand Scan)
CEVSY (Define Location Symbol)

CEVPA (Phase I Control)

CEVPB (Phase IIA Control)
CEVPM (Macro Parameter Processor)

CEVPC (Phase lIB Control)
CEVEQ (Assign Value to Name Routine)
CEVRL (Literal Resolution Processor)
CEVGN (Location Counter Reset Routine)
CEVLC (Location Counter Assignment Routine)
CEVPL (Literal Pooling Processor)
CEVRS (Alignment Resolution Routine)

CEVPD (Phase IIC Control)
CEVUP (USING Table Processor)
CEVDR (DROP Statement Processor)

CEVPE (Phase III Control)
CEVMO (Machine Operations Processor)
CEVUV (Using-Register Routine)
CEVLT (Literal Text Processor)
CEVEP (Entry Point Processor)
CEVCC (CCW Text Processor)

CEVGV (Get Relocatable Value Routine)
CEVPV (Output Relocatable Value Routine)
CEVAD (Address Constant Processor)
CEVLS (Object Program Listing Routine)
CEVDP (DC Constant Processor)
CEVCD (CSD Processor)
CEVSX (Source Listing Processor)

CEVPF {Phase IV Control}
CEVXF (Cross-Reference Listing Routine)
CEVSR (Symbol Table Edit Routine)
CEVSD (ISD Processor)
CEVMD (PMD Listing Routine)
CEVSA (ISD Listing Routine)

OBJECT PROGRA..>.ti

PMD

The amount of virtual storage required
to hold the PMD is computed, then allocated
via a GETMAIN macro. A limitation on the
size of the PMD would occur only if the
system were unable to allocate sufficient
pages to hold the computed size of the PMD.

TEXT

Text is allocated in the same way as the
PMD. It is limited only by virtual storage
allocation constraints.

ISD

As many pages are procured for the ISD
as are allocated for the symbol table.
Since the ISD is a condensation of the sym­
bol table, it appears that any symbol table
which can be assembled can be placed in a
corresponding ISD.

SOURCE STATEMENTS

The pages allocated for the symbol table
and associated working space allow a total
program size of approximately 30,000 source
statements. Each statement uses a minimum
of four words in an encoded list: if the
statement defines a symbol, it will use a
minimum of about five words; if the state­
ment defines a constant, it will use a
minimum of another four words. The 30,000
figure is derived by assuming that 20 per-

APPENDIX C: ASSEMBLER LIMITATIONS

cent of the source statements of a program
are constants which define symbols, and
that 29 percent of the remaining statements
define symbols. Most classes of statements
are not numerically limited per se, if the
statement can be encoded within the allo­
cated working storage. There is. however,
a limit of 256 different control sections
(regardless of type), 256 LTORGs, and 216-1
external references.

MACROS

There is no restriction on the number of
different macros provided both the defini­
tion statements and the expansions can be
contained within the 30,000 statement
limit. (Each macro name counts as one sym­
bol in the table.) Nor is there a particu­
lar limit on the number of usages, so long
as all the expanded statements can be con­
tained within the previously mentioned
limit. However, &SYSNDX is only a four­
place counter and will become ambiguous
after 10,000 macro calls.

A single macro call operand is limited
to 255 characters. The total number of
positional operands is limited to 255.

Maximum Statement Length

By language definitions, card format is
limited on ordinary statements to one card
and two continuations: 240 characters.
Macro calls and macro prototypes are effec­
tively without limit, as are keyboard for­
mat statements, so long as the system can
allocate space to the assembler to hold the
images.

Appendix C: Assembler Limitations 319

APPENDIX D: ACRONYMS

320

AADCON
AAGO

AAIF

AANOP
ABSCAN
ACATOP
ACCW
ACCWTX
ACEVCS
ACEVKM
ACEVLM
ACEVOP

ACEVPA
ACEVPB
ACEVPC
ACEVPD
ACEVPE
ACEVPF
ACEVSR
ACEVTM
ACNOP
ACONST
ACOPY
ACSCAN
ACSCOM
ACSDCT

ACSDPR
ACSECT

ACSPCT

ACSTRT

ACTSD
ADB~

ADC
ADC~
ADCON

ADCSW

ADCTXT
ADD
ADFSYM
ADIAG
ADLKM
ADLKT
ADL
ADLNG

ADLPM
ADM
ADOOP

ADPUT
ADRLD

Fullword pointer to entry point for ADCON
Fullword pOinter to entry point in AGO/AlF for AGO

instructions
Fullword pointer to entry point in AGO/AlF for AlF

instructions
Fullword pointer to
Fullword pointer to
Fullword pOinter to
Fullword pointer to
Fullword pointer to
Fullword pOinter to
Equated to ADLKM

entry
entry
entry
entry
entry
entry

point
point
point
point
point
point

for
for
for
for
for
for

ANOP
BAS CAN
CATOP
CCW
CCWTXT
CXD

Fullword pointer to entry point for MACLKT
Fullword pointer to beginning of working copy of operation

code table
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to

instructions

entry pOint for CEVPA
entry point for CEVPB
entry pOint for CEVPC
entry point for CEVPD
entry point for CEVPE
entry point for CEVPF
entry point for STED
entry point for MACPUT
entry point for CNOP
beginning of constants
entry point for COpy
entry point for CSCAN
entry point in SECT for
entry point in SECT for

Fullword pointer to entry point for CSDPR

COM instructions
DSECT

Fullword pointer to entry point in SECT for CSECT
instructions

Fullword pointer to entry point in SECT for PSECT
instructions

Fullword pointer to entry point in SECT for START
instructions

Fullword pointer to current temporary dictionary
Address of address constants used in calling GETLINE
Fullword pointer to entry point in DC/DS for DC instructions
Address of address constants used in calling PUTDIAG
Equated to beginning of address constants for the individual

processors for machine and assembler instructions used dur­
ing Phases I and IIA

One byte used by Phase lIB to indicate where ADCON literals
are to be pooled

Fullword pointer to entry point for DCTXT
Constant of X"F4'
Fullword pOinter to entry point for DEFSYM
Fullword pointer to entry point for DIAG
Fullword pointer to entry point for DLKM
Fullword pointer to entry point for DLKT
Fullword pointer to beginning of diagnostic locator table
Fullword used to indicate length of dummy RLD created by

ADCON for V-type address constant
Fullword pointer to entry point for DLPM
Fullword pointer to beginning of table of diagnostic messages
Fullword pointer to entry point for subroutine internal to

EVAL
Fullword pointer to entry point for DPUT
Fullword pointer to dummy RLD created by ADCON for V-type

address constant

ADROP Fullword pointer to entry point in USE/DROP for DROP
instructions

ADRSET Fullword pointer to entry pOint for DRSET
ADS Fullword pointer to entry point in DC/DS for DS instructions
ADS CAN Fullword pOinter to entry point for SSCAN
ADTVF One byte used to indicate when the value of an address con-

stant has been truncated
AEATT Fullword pointer to entry point for subroutine internal to

EVAL
AEBIN Fullword pointer to entry point for EBIN
AECHAR Fullword pointer to entry point for ECHAR
AEDEC Fullword pointer to entry point for EDEC
AEFWD Fullword pointer to entry pOint for subroutine internal to

EVAL
AEHEX Fullword pointer to entry point for EHEX
AEJECT Fullword pointer to entry point for EJECT
AEND Fullword pointer to entry point for END
AENDPR Fullword pointer to entry pOint for ENDPR
AENTRY Fullword pointer to entry point for ENTRY
AEQATE Fullword pointer to entry pOint for EQUATE
AEQU Fullword pointer to entry point for EQU
AEVAL Fullword pointer to entry point for EVAL
AEVLG Fullword pointer to entry point for subroutine internal to

EVAL
AEXTRN Fullword pointer to entry point for EXTRN
AGATEW Fullword pointer to processor that interfaces with PUT VI SAM

macro
AGBLA Fullword pointer to entry point in GBLX/LCLX for GBLA

instructions
AGBLB Fullword pointer to entry point in GBLX/LCLX for GBLB

instructions
AGBLC Fullword pointer to entry pOint in GBLX/LCLX for GBLC

instructions
AGETOP Fullword pointer to entry point for GETOP
AGLOC Fullword pointer to entry point for GBLx/LeLX common to all

GBLX and LeLX instructions
AGTVAL Fullword pOinter to entry point for GETVAL
AICTL Fullword pointer to entry point for ICTL
AISDLS Fullword pointer to entry point for ISDSA
AISDPR Fullword pointer to entry point for ISDPR
AISEQ Fullword pointer to entry point for ISEQ
ALCATE Fullword pOinter to entry pOint for LOCATE
ALCLA Fullword pointer to entry point for GBLX/LCLX for LCLA

instructions
ALCLB Fullword pointer to entry point in GBLX/LCLX for LCLB

instructions
ALCLC Fullword pointer to entry point for GBLX/LCLX for LCLC

instructions
ALINE Fullword indicating antepenultimate source line number
ALIST Fullword pointer to entry pOint for LIST
ALIT Fullword pointer to entry pOint for subroutine internal to

EVAL
ALITXT Fullword pointer to entry point for LITXT
ALMHSH Equated to AMNHSH
ALOCTR Fullword pointer to second word preceding the location count-

er value
ALTLN Fullword used to indicate where page-usage table was

constructed
ALTORG Fullword pointer to entry point for LTORG
AMACRO Fullword pointer to entry point for MACRO
AMCDEF Fullword pointer to entry point for MACDEF
AMCREF Fullword pointer to normal entry point in MACREF
AMEND Fullword pointer to entry point in MEND/MEXIT for MEND

instruction
AM EX IT Fullword pointer to entry point in MEND/MEXIT for MEXIT

instruction
AMHSH Fullword pointer to main dictionary hash table
AMNHSH .Fullword pointer to macro name dictionary hash table

Appendix D: Acronyms 321

AMNOTE
AMOPR
AMOPRQ

AOPCDE

AOPCDl

AOPRRl

AOPRR2

AOPPR3

AOPRSl

AOPRS2

AOPRX1

AOPRX2

AOPSI1

AOPSI2

AOPSS1

AOPSS2

AOP999

AORG
AORGIN
APARAM
APMDLS
APOLIT
APRINT
APSCAN
APTVAL
APUNCH
APZOO2

APZOO3

APZOO8

ARDPL
AREED
ARE PRO
ARLD
ARSCON
ARSLIT
ARS100
ARS870

AS ETA
ASETB
ASETC
ASLIT
ASLLS
ASPACE
ASSPTR
AS TAN
ASTANV
AST090

ASUBOP

322

Fullword pointer
Fullword pointer
Fullword pointer

ments table

to entry point for MNOTE
to entry point for MOPR
to beginning of machine operation require-

Fullword pointer to beginning of permanent copy of operation
code table

Fullword pointer to end of permanent copy of operation code
table

Fullword pointer to entry point in MIP for RR1 machine
instructions

Fullword pointer to entry point in MIP for RR2 machine
instructions

Fullword pointer to entry point in MIP for RR3 machine
instructions

Fullword pointer to entry point in MIP for RS1 machine
instructions

FUllword pointer to entry point in MIP for RS2 machine
instructions

Fullword pointer to entry point in MIP for RX1 machine
instructions

Fullword pointer to entry point in MIP for RX2 machine
instructions

Fullword pointer to entry point in MIP for SI1 machine
instructions

Fullword pointer to entry point in MIP for SI2 machine
instructions

Fullword pointer to entry point in MIP for SS1 machine
instructions

Fullword pointer to entry point in MIP for SS2 machine
instructions

Fullword pointer to end of working copy of operation code
table

Fullword pointer to entry point for ORG
Fullword pointer to entry point for ORIGIN
Fullword pointer to entry point for PARAMAC
Fullword pointer to entry point for PMDLS
Fullword pointer to entry point for POOLIT
Fullword pointer to entry point for PRINT
FUllword pointer to entry point for PSCAN
Fullword pointer to entry point for PUTVAL
Fullword pointer to entry point for PUNCH
Fullword pointer to place where Phase IIA returns control

when Phase IIA processing is completed
Fullword pointer to place where DIAG and REED pass control

when PUTDIAG or GETLINE returns with an abnormal end code
Fullword pointer to place where Phase IV returns control once

Phase IV processing is completed
Fullword pointer to parameter list supplied to GETLINE
Fullword pointer to entry point for REED
Fullword pointer to entry point for REPRO
Fullword pointer to STAK2
Fullword pOinter to main entry point in RES CON
Fullword pointer to entry point for RES LIT
Fullword pointer to entry point in RESCON for byte alignment
Fullword pointer to entry point in RESCON for halfword

alignment
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to
Fullword pointer to

next line

entry point in SETX for
entry pOint in SETX for
entry point in SETX for
entry point for SLIT
entry point for SLLS
entry point for SPACE
beginning of STACK
entry pOint of STAN

SETA instructions
SETB instructions
SETC instructions

beginning of standard variable table
place where STAN calls REED to obtain the

Fullword pointer to entry point for SUBOP

ATDFLT
ATHSH
ATITLE
ATRANS
AUSET
AUSING

AUSVAL
AWORKi

AWORK2

AWORK3

AXREF

BASCCS

BCOL
BCOL2
BORC

BSBEG
BSCHAR

BSERR

BSLNTH
BSMAX
BSMI

BSMOVE

BSSCAN
BSTAT
BSTEMP

BSTYPE

CCOL
CCOL2
CCSPAG

CCS

CDWORK
CEVBLO
CEVBOO
CEVIBY

CEVLCI
CEVLIT
CEVLOB
CEVLOT
CEVOTL
CEVSW

CEVWA
CLC

CLI
CNVFLD

CSACC

Fullword pointer to default attributes
Fullword pointer to temporary dictionary hash table
Fullword pointer to entry point for TITLE
Fullword pointer to transitive item chain
Fullword pointer to entry point for USET
Fullword pointer to entry point in USE/DROP for USING

instructions
Fullword pointer to entry point for USEVAL
Fullword pointer to address of available core in working seg-

ment 1
Fullword pointer to address of available core in working seg-

ment 2
Fullword pointer to address of available core in working seg-

ment 3
Fullword pointer to entry point for XREF

Fullword pointer to base of text module for current control
section

Fullword used to indicate begin column (card format)
Fullword save area for begin column indicator
One byte used to indicate whether current assembly is being

completed in batch or conversational mode
Fullword pointer to field last scanned
One byte used by BASCAN as code to indicate type of character

found in one-byte scan
One byte set by BASCAN to indicate what type of error was

found
Full word which contains length of field last scanned
Fullword pointer to end of current statement
One byte set by BASCAN to indicate the type of delimiter

encountered
Fullword used to indicate in which storage area a character

string is to be constructed
Fullword pointer to where scanning is to begin
Equated to beginning of status area
One-byte of temporary storage for translated character used

by BASCAN
One byte set by BASCAN to indicate the contents of the

scanned field

Fullword used to indicate continue column (card format)
Fullword save area for continue column indicator
Fullword used to indicate the virtual memory page number

associated with the first page of text for the current con­
trol section

Fullword pointer to dictionary item associated with control
section currently in control

Two-word work area used by CSDPR
Fullword save area used by PARAMAC
Fullword save area used by PARAMAC
Fullword save area used by PARAMAC. Referenced indirectly

through STM instruction
FUllword pointer to constant item
Fullword save area used by PARAMAC
Fullword used to indicate binary text location in bits
Fullword used to indicate binary text location in bytes
Fullword used to indicate the length of binary text output
One byte used to indicate when first duplication has been

processed
Fullword save area used by PARAMAC
Fullword which contains the value of the current location

counter
Command language interpreter
SlO-byte area into which BASCAN puts a converted character

string
Three-word area used as an accumulator (CSCAN)

Appendix D: Acronyms 323

324

CSBIT
CSBTLN
CSCHAR

CSCLOF

CSDCHI
CSDUP
CSD
CSEND
CSERR
CSEXP
CSEXPB
CSEXPL

CSEXPS
CSFRB
CSFRBT

CSFRL

CSINTB
CSINTL
CSINTS
CSLMOD
CSLNG
CSLOC
CSLOCR

CSLOG2
CSLSP
CSMPCT

CSNPAG

CSOPN
CSSCAL
CSSF

CSSLDA
CSSLDL
CSSLL
CSSLMT

CSSRDL
CSSTAD

CSSW

CSTEMP
CSTRUC
CSTYPE

CSWA

CSWK2
CSWL

CSWORK
CTATTR

CTCNT

CTCODE

CTERSW

constant of X'1000000Q'
Fullword indicating bit length of constant (CSCAN)
One byte used by CSCAN as save area for a translated

character
One byte used by CSCAN to indicate the LOF directive code of

the instruction being processed
Character constant of 2147483647
Fullword used to indicate duplication factor (CSCAN)
Control section dictionary
Fullword pointer to end of current statement (CSLOC+CSEND)
One byte set by CSCAN to indicate if an error has occurred
Fullword used to indicate exponent modifier (CSCAN)
Fullword pointer to exponent digits (CSCAN)
Fullword used to indicate the number of exponent digits

(CSCAN)
Fullword used to indicate sign of exponent (CSCAN)
Fullword pointer to fractional part of value (CSCAN)
One word that contains the number of bits in excess of the

number of bytes specified in the length of the DC or DS
instruction

Fullword used to indicate the number of fractional digits
(CSCAN)

Fullword pointer to integer digits (CSCAN)
Fullword used to indicate number of digits (CSCAN)
Fullword used to indicate sign of value (CSCAN)
Fullword used to indicate length modifier (CSCAN)
Fullword that contains the length of the current statement
Fullword pointer to the location of the current statement
Fullword used to indicate if the location counter has been

referenced
Halfword constant of the log of 10 to base 2
Fullword constant of 524288
One byte used by CSCAN to indicate if multiple constants are

being specified
FUllword used to indicate the number of pages needed to hold

the text in the current control section
Fullword pointer to operand of current statement
Fullword used to indicate scale modifier (CSCAN)
One word that contains the floating-point working scale

factor
Shift instruction which is object of EXECUTE instruction
Shift instruction which is object of EXECUTE instruction
Shift instruction which is object of EXECUTE instruction
Two-word area in which upper- and lower-scale limits for F-,

H-, D-, or E-type constants are saved
Shift instruction which is object of EXECUTE instruction
One word that contains the displacement of constant value

from beginning of value field in constant item
One byte used by CSCAN to indicate whether F-, H-, E-, D-,

Z-, or P-type constant is being processed
Four-word temporary storage area used by CSCAN
One byte used to indicate when value must be truncated
One byte used by CSCAN to indicate the type of constant being

processed
48-byte area in which the values of fixed- and floatlng-point

constants are put into format
Equated to CSWA+44
One byte used to indicate if floating- or fixed-point numbers

must be truncated
Doubleword work area (CSCAN)
One-byte code set by SECT to indicate the attributes of the

control section being processed
One byte used to indicate the number of different control

sections
One-byte code set by SECT to indicate the type of control

section being processed
One-byte code used by SECT to indicate when error condition

exists

CURDGN

CURGSM
CURLOF

CURVMP

CXDREF

CYNAME

CYNUMB

COOUl
Cll
C12
C13
C14
C15
C16
C17
C20
C28
C31
C32
C40
C48
C64
C80
C100
C128
C255
C256
C400
C1021
C2048
C4096
C21474

DC800

DMCNT
DN
DPCTR

DPIC
DPLOF
DPTR
DROPSW

DUMMYLOF

DXOOl

DX002
DX003
DX004

DX009

ECOL
ECOL2
EIGHT

Fullword pointer to last diagnostic LOF processed during
Phase III

Fullword pointer to current GSM entry
Fullword pointer to LOF for statement currently being pro­

cessed (points to GP050 when LOF is being created)
Fullword that contains the number of the virtual memory pages

currently in use
One byte flag used to indicate the number of CXD instructions

present in the control section. Zero indicates none. non­
zero indicates one or more CXD instructions

Doubleword that contains the symbol indicating what is to be
copied from the library

Fullword save area for source statement number associated
with the COpy statement

Equated to TDFLT
Fullword constant of 11
FUllword constant of 12
Fullword constant of 13
Fullword constant of 14
Fullword constant of 15
Fullword constant of 16
Fullword constant of 17
Fullword constant of 20
Fullword constant of 28
Fullword constant of 31
Fullword constant of 32
Fullword constant of 40
Fullword constant of 48
FUllword constant of 64
Fullword constant of 80
Fullword constant of 100
Fullword constant of 128
Fullword constant of 255
Fullword constant of 256
Fullword constant of 400
Fullword constant of 1021
FUllword constant of 2048
Fullword constant of 4096
Constant of X'000002147483647F' maximum value of a decimal

self-defining term

One byte used by DC/DS processor to indicate whether a DC or
DS is being processed

Fullword which contains a count of the diagnostic messages
Equated to BSMI
Fullword used as save area for the amount specified as the

duplication factor less 1
Fullword used to indicate the bit length of a constant
Fullword pointer to current LOF entry as maintained by DCTXT
Fullword pointer to a dictionary item
One byte set by USE/DROP to indicate whether USING or DROP is

being processed
Four-word area in WORK2 set up as a comment LOF. Pointed to

by the GSM entry for the first LOF if the LOF requires a
corresponding GSM entry

132-character area in which diagnostic message is formatted
when in conversational assembly and phases

Fullword pOinter to DX003
Address of parameter list supplied to PUTDIAG
Fullword used to indicate the length of the diagnostic mes­

sage being issued
Constant of X'38000000'

Fullword used to indicate end column (card format)
Eullword save area for end column indicator
Fullword constant of 8

Appendix D: Acronyms 325

326

ENDCCS

ENDIND

ENDLOF
ENDWK3
ERRIND

EVTERMl
EVTERM1L

EXTNAM

FA

FAL

FAZ

FB

FCPL

FEX

FFT

FIVE
FN
FOUR
FPL

FRA

FSTCON
FSTDGN
FSTGSM
FSTLIT
FSTLOF
FSTPCT
FSTQREF
FSUBE

GLINC

GLLNTH

GLOCCD

GLOCSW

GMSG

GP050
GP051

GP070

Fullword pointer to end of text module for current control
section

One byte used to indicate whether or not an end statement or
end of file has been encountered

Fullword pointer to LOF entry for END statement
Fullword pointer to the end of working segment 3
Table of error and warning indicators associated with diag-

nostic messages
Four bytes indicating location of first term
One byte indicating length, in characters, of EVTERM1:
00 - not set
FF - first term is one of the following Call of which should

have length attribute of one): I',L',S',T', self­
defining term, location counter reference

other - the length in character
Fullword pointer to the beginning of the external name list

One byte used as a code to indicate the type of term encoun­
tered in left operand field

One byte used to indicate whether expression is a logical or
arithmetic expression

One byte used to indicate phase of assembler currently in
control

One byte used as a code to indicate the type of term encoun­
tered in right operand field

One byte used as a count of the parenthesis levels that have
occurred

One byte used to indicate the type of expression evaluated by
the expression evaluator

One byte used by EVAL to indicate when the first term of an
expression is being evaluated

Fullword constant of 5
One byte used as code to indicate the type of the next term
Fullword constant of 4
One byte used to prevent multiple diagnostic messages being

issued once the maximum number of parenthesis levels has
been exceeded

One byte used to indicate whether term is absolute or
relocatable

Fullword pointer to the first control section dictionary item
Fullword pointer to diagnostic LOF processed during Phase III
Fullword pointer to beginning of GSM chain
Fullword pointer to first unpooled literal
Fullword pointer to beginning of logical order file
Fullword pointer to the first PSECT dictionary item
Fullword pointer to the first Q-REF temporary RLD item
One byte used to indicate the type of expression encountered

at a given parenthesis level

Equated to ZGLOC+24 -- fullword used to indicate difference
between lengths of base dictionary items for subscripted
and unsubscripted symbol (GBLX/LCLX)

Equated to ZGLOC+20 -- fullword used as save area for length
of the base dictionary item for the instruction being pro­
cessed (GBLX/LCLX)

One byte set by GBLX/LCLX to indicate the type of instruction
being processed

One byte set by GLOC to indicate whether a global or local
instruction is being processed

One byte used to indicate to LPC whether a diagnostic is to
be typed out immediately or saved until the next GETLINE is
issued

Six-word area where LOF entry is created
One byte used to indicate the length of the LOF entry for the

current instruction
Fullword pointer to entry point in SYSINDEX

GP071
GP072
GP990

GSM

ICTLER

ICTLSW

IMD
INTATR

ISD

LCOL

LISTM

LITLN

LITLNF

LITSW
LOCTR

LOFLK

LOF

LPC
LSBUF

LSCDFLG

LSCTR

LSDX

LSHADR
LSIOB
LSPGN

LSSLNG

LSSLOC
LSSPC

LSTADR

LSTAT
LSTLNG

LSTQREF
LS'lTLL

LS'lTLN
LSTXTN

LSOOS
LS077
LTHATR

LTRGNO

Address of parameter list supplied to SYSINDEX
Address of T-type address constant used in call to SYSINDEX
19-word save area used when GETOP calls macro retrieval

processor
Global-section-macro chain -- three-word entries pointing to

statements that receive special processing in Phases IIA,
lIB, IIC, and III

One byte set by ICTL to indicate whether column 80 has been
specified as the end column

One byte used to indicate when an address constant that
references * is contained in a literal

Nine-word save area used by ISD listing processor
Halfword which indicates integer attribute of last constant

evaluated
Internal symbol dictionary

One byte used to indicate leftmost column of field to be
sequence checked

One byte used to indicate that a statement is in a blank COM,
DSECT, or MACRO definition, and that no text is associated
with the statement

An area of 41 halfwords in which the dummy source statement
for a literal is put into format

Two halfwords used to indicate the source line number asso­
ciated with a given literal

One byte used to indicate whether a literal is being scanned
Address of pseudo dictionary item for current location

counter
Fullword save area for 20-bit pointer to the macro instruc­

tion LOF
Logical order file -- encoded entries used to describe source

statements
Language processor control
136-byte area in which lines to be output by the object list­

ing processor are put into format
One byte flag indicating current listing line, (a) card for­

mat, (b) length of source=80, (c) ECOL=71
Fullword used by LIST to indicate the number of lines that

have been used on the current listing page
One byte used to indicate the diagnostic flag associated with

the current statement
Fullword pOinter to object listing sw)heading
Fullword pointer to next I/O buffer
Fullword used to indicate the number of pages that have been

listed
Fullword used to indicate the length of the current source

statement
Fullword pointer to current source statement
Fullword used to indicate the amount to be spaced as speci­

fied in a SPACE instruction
Five-word parameter list that is supplied to the macro re­

trieval processor
Equated to length of status area
Fullword used to indicate the number of bytes in the binary

text
Fullword pointer to the last Q REF temporary RLD item
Fullword used to indicate the length in bytes of title in a

TITLE instruction
Fullword pointer to title indicated by TITLE instruction
Fullword pointer to last item included in external dictionary

item chain
Two doublewords used as work area in conversions
Fullword used as save area by LIST
Halfword which indicates length attribute of last constant

evaluated
One byte used to indicate the number associated with an LTORG

Appendix D: Acronyms 327

MCLIB
MDLIST

MDS

MDSV
MLVL
MODBAS
MODNAM
MONE
MSCASL

MSCCSA
MSCE
MSCEOA

MSCERR

MSCFAS
MSCKB
MSCKLC
MSCKSW

MSCKWA
MSCKWD
MSCL
MSCLC
MSCLOF
MSCM
MSCME
MSCMG
MSCML
MSCMO
MSCMOD

MSCP
MSCPA
MSCPB
MSCPE
MSCPG
MSCPLC
MSCPLL

MSCPO
MSCPSW

MSCR6
MSCR14
MSCR66
MSCS

MSCSAS
MSCSBA
MSCSBW
MSCSDT
MSCSF

MSCWA
MSCWKl
MSCX
MSC14
MSC14A
MSC4
MOZ12
MOZ29
MOZ30
MOZ32
MIZ31

328

One byte used to indicate when a macro library is available
Four words in which parameter list is built for PMD listing

processor
Macro definition switch -- one byte used to indicate whether

a macro definition is being processed
19-word save area used by PMD listing processor
Fullword which indicates the current macro level
Fullword pointer to beginning of text module
Two-word save area for the module name
Equated to MOZ32
Fullword pointer to argument scan used by GET argument -- a

subroutine internal to PARAMAC
Fullword pointer to current sub-argument
One byte used to indicate error in label
One byte used to indicate when the last argument has been

encountered
One byte used to indicate when an invalid keyword has been

encountered
Fullword pointer to beginning of argument string
Fullword pointer to current keyword entry
Fullword pointer to first keyword entry
One byte used to indicate when the first macro or prototype

operand has been encountered
One byte used to indicate when a keyword has been encountered
Two-word save area for keyword symbol % prefixed by ~<
Fullword containing length of prototype label
Fullword used as &SYSLIST counter
Fullword pointer to LOF entry for macro instruction
One word used as parenthesis level counter
Fullword pointer to end of macro instruction line
Fullword which indicates length of macro instruction line
Fullword pointer to beginning of macro instruction line
Fullword pointer to beginning of macro instruction operand
One byte used to indicate whether macro instruction or proto-

type operand is being scanned
Fullword pointer to prototype line
Fullword pointer to &SYSLIST entry being constructed
Fullword pointer to current ~SYSLIST entry
Fullword pointer to end of prototype line
Fullword which indicates the length of prototype line
Fullword pointer to first ~SYSLIST entry
Fullword used to indicate the length of the symbol in the

name field of a prototype line
Fullword pointer to beginning of prototype operand 1
One byte used to indicate when first legal positional operand

has been encountered
Fullword register save area
Fullword register save area
Fullword register save area
Fullword pointer to parameter item skeleton for prototype

operand
Fullword pointer to current character position
One byte used to indicate presence of sub-argument
Fullword pointer to beginning of sub-argument
One byte used to indicate presence of self-defining term
One byte used to indicate presence of legal symbol or

nonsymbol
Fullword used as register save area
Fullword save area for value in AWORKI
Fullword used as &SYSNDX counter
Fullword register save area used by PARAMAC when calling DIAG
Fullword register save area
Fullword register save area used when calling DIAG
Constant of X'FFFOOOOO'
Constant of X'FFFFFFF8'
Constant of X'FFFFFFFC'
Constant of X'FFFFFFFF'
Constant of X'7FFFFFFF'

M12ZS
M12Z20
M16Z16
M20Z10
M20Z12
M24ZS
M25Z4
M27Z3
M2SZ4
M30Z2
MSF24
M8Z24
M9ZS

NINE
NXTPAG

OC

ON
ONE
OP

OPDABS

ow
OW2

PADCB
PADCP
PALIND

PAMACS

PAMLC

PAMLCT

PAPGMS

PAPLP
PASAVE

PCOOl

PDISD

PDISDL
POOL
PDPMDL
PDSL
PDSTL

PDXL

PDSOO
PD801
PD802

PD803
PD804
PEQU
PEOOl

constant of X'OOOFFOOO'
constant of X'OOOFFFFF'
Constant of X'OOOOFFFF'
Constant of X'OOOOOFFC'
Constant of X'OOOOOFFF'
Constant of X'OOOOOOFF'
Constant of X'OOOOOOlC'
Constant of X'OOOOOOlC'
Constant of X'OOOOOOOF'
Equated to THREE
Constant of X'FFOOOOOO'
Constant of X'OOFFFFFF'
Constant of X'007F8000'

Fullword constant of 9
Fullword used to indicate next page number available

One byte used by EVAL to indicate the operator for the cur-
rent value

Equated to DN
Fullword constant of 1
Two-word area which contains the op code of the current

statement, left-justified and blank-filled on the right
Equated to ZOPD+20. Used to indicate limit for register,

shift, length, or immediate data specifications
One-byte code which indicates the last operator encountered
One-byte code which indicates the last operator encountered

Equated to PADCP
Fullword pointer to DCB
One byte used to indicate when listing data set contains at

least one line
224-byte area in which index names for user and system

libraries and source names for user and system libraries
are retained

Address of address constants used to close macro library data
sets

Fullword that indicates the number of macro libraries avail­
able to the assembler

Fullword save area for value of program mask upon entry to
the assembler master control

Fullword pointer to parameter list supplied by LPC
19-word save area used when calling modules external to the

assembler
Fullword used to indicate the displacement of the location

counter value in bits
One byte used to indicate whether an internal symbol dic-

tionary has been requested
One byte used to indicate when ISD listing is required
One byte used to indicate when an object listing is required
One byte used to indicate when a PMD listing is required
One byte used to indicate when a source listing is required
One byte used to indicate when a symbol table listing is

required
One byte used to indicate when a cross-reference listing is

required
Fullword pointer to working version of USING-REGISTER table
Equated to PRGSM
Fullword pOinter to ISD chain of USING-REGISTER table

pointers
Fullword pOinter to ISD USING-REGISTER table pointer
Equated to ZUP+20. Fullword used as work area
Four bytes indicating last "EQU *" dictionary item address
Fullword pointer to beginning of output text

Appendix D: Acronyms 329

330

PE002

PE003

PE004
PEOOS
PE990
PFCALL

PGSIZE
PLINE
PL008
PLOl2
PMDLNG
PMDSLC

PMDWLC
PMD
PRCTL
PREVCD

PRGSM
PRVGSM
PRVLOF

PVOOl

PV002
PV003
PV006

PV009

PV013

PV90l
PV902
PV903
PV904
PZ007

RCOL

RDBUF
RDCNT
RDLOC
RDPL
RDSEQ
RDSSW
RD037
RD056
RD90l

RD902

RD903
RD904
RD90S

RD906
RD907
RD910

RD9ll
RD912
RD9l3

Fullword used to indicate the length of the current output
text

One byte used to indicate to PUTVAL that a complex definition
modifier is being processed

Fullword used as counter for reference numbers
Equated to BASCCS
Doubleword work area used for decimal conversion
Location of adcon list used by Phase IV control to call PMD

listing processor
Equated to absolute value of S8
Fullword indicating penultimate source line number
Fullword pointer to last item linked in literal chain
Fullword work area used by POOLIT
Fullword used to indicate the length of the PMD
Fullword pointer to beginning location of program module

dictionary
Fullword pointer to end of PMD
Program module dictionary
One byte used to indicate the print options in effect
Fullword used to indicate when a character string continues

onto another card
Fullword pointer to previous GSM entry
Equated to PRGSM
Fullword pOinter to LOF for last statement processed previous

to the current statement
Fullword which contains the absolute value associated with an

expression
Equated to PV003+4. Save area for address of RLD string
Fullword pointer to end of RLD string
Fullword pointer to entry in STACK for last complex term of a

complex expression in an address constant
Fullword used to indicate the operator of the last complex

term processed in a complex expression
Fullword used as save area for displacement from the begin-

ning of control section associated with a given symbol
Fullword pointer to beginning of reference item chain
Fullword pointer to beginning of complex DEF chain
Fullword pointer to beginning of external REF chain
Fullword pointer to beginning of internal REF chain
Two word save area for pointers to the beginnings of working

segments 1 and 2, respectively

One byte used to indicate rightmost column of field to be
sequence checked

lSO-byte area into which input lines are read
Fullword used to indicate the length of the line image
Fullword pointer to line image
Address of parameter list supplied to GETLINE
Fullword pointer to previous sequence field
Fullword pointer to source input mode switch
Equated to MOZ30
Equated to MOZ32
Equated to an address in working segment 1. The area begin­

ning at this address is a save area for the previous status
Equated to an address in working segment 1. The area begin-

ning at this address is a save area for the current status
Ten words used as the STACK area for REED input-mode switches
Fullword working storage area used by REED
One byte used to indicate whether current line is to be

continued
Fullword pointer to juncture of concatenated continued lines
One byte used by REED to indicate keyboard format
One byte used to indicate whether the current line is a con-

tinuation of the previous line
Fullword save area for limit address for MACRO format
One byte used by REED to indicate MACRO format
Fullword pointer to beginning of a continued line

RD914
RD915
RD916

RF010

RF011

RF070
RF071
RF072
RF990

RLOOl

RL003
RL004
RL005

RL008
RSTADR

SALCZ

SAPGWA

SAR58
SASC

SAVATT

SAWA
SCLATR

SDCTSW

SDLNG

SDLOC
SDSDL
SDSKL

SEQLOC
SEQSYM

SETCD

SETSS

SETSUP
SEVCO
SEVEN
SIX
SIZEl
SIZE2
SIZE3

SIZE4

SLINE
SPACES
SRBUF

SRCODE

SRLIM
SRLNCT

Fullword used to indicate length of a continued line
Fullword pOinter to end of continued line
Fullword pointer to control bytes for previous source

statement
One byte used to indicate whether statement analyzer was

called by the macro reference processor
Fullword pointer to special entry point in MACREF for the

statement analyzer
Fullword pointer to entry point in SYSXBLD
Address of parameter list supplied to SYSXBLD
Address of R-type address constant used in call to SYSXBLD
19-word save area used when MACREF calls macro retrieval

processor
Fullword used by RESLIT to indicate if expression contained a

location counter reference
Fullword pointer to beginning of literal
Fullword save area for hash table address
Two-word save area for key for literal that will be used in a

dictionary lookup for the literal
Fullword save area for length of literal text
Fullword pointer to line retrieved from macro library

Fullword used to indicate the number of lines used on the
page currently being listed

Doubleword work area used when converting characters from one
format to another

Four-word register save area used by ISD listing processor
Fullword used by CSCAN to indicate whether a constant was or

was notspecified in the current DS instruction
One byte set by DLPM to indicate when symbol being entered

has appeared previously on a macro instruction
Three-word work area used for hex-to-EBC conversion
Halfword which indicates scaling attribute of last constant

evaluated
One byte used to indicate when symbol is defined within a

DSECT
Fullword used to indicate length in bytes of ISD output

module
Fullword pointer to ISD output module
Fullword pointer to section number work table
Fullword pointer to first symbol sort key -- used by ISD

processor
Fullword pointer to current sequence number
Two-word save area that contains the sequence symbol being

sought (no blank fill on right>
Halfword used by SETX to indicate the dictionary item type

codes associated with the instruction being processed
One byte used by SETX to indicate the value of a symbol

subscript
One-byte code used to control string substitution
One byte used to indicate the highest severity code
Fullword constant of 7
Fullword constant of 6
Equated to the absolute value 50 -- size of WORKl GETMAIN
Equated to the absolute value 200 -- size of WORK2 GETMAIN
Equated to the absolute value 20 -- size of each WORK3

GETMAIN
Equated to the absolute value 1 -- size of external name list

GETMAIN
Fullword indicating current source line number
Eight characters of blanks
132-byte work area in which lines being output by the symbol

table listing processor are put into format
One byte used by MACREF to indicate the type of statement

retrieved from the macro library
Fullword pointer to last sort key -- used by CEVSR
Full word used to indicate the number of lines used on the

page currently being listed

Appendix D: Acronyms 331

332

SRLNG

SRLOC
SRWKl

SRWK2

SSCATR

SSCCUM

SSCFLD

SSCL
SSCM
SSCNLI
SSCNLL
SSCNQL
SSCPAK

SSCQMF

SSCSAV
SSCSSL
SSCSSP
SSCSSS
SSCSST
SSCSTL
SSCSYL

SSCT
SSCUPK
SSLNTH

SSM
STACK

STAK2
SXBUF

SXDXSW

SXHADR
SXLNCT

SXLNG
SXNXT

SXWK

TBLZB

TBLZE

TDFLT
TEN
THREE
TINAME

TITSW

TOS
TOTPAG

Fullword used to indicate absolute difference between SRLOC
and SRLIM

Fullword pointer to first sort key -- used by CEVSR
Doubleword work area used when converting characters from one

format to another
Three-word work area used when converting characters from one

format to another
One byte used by SSCAN to indicate the type of attribute

notation
Fullword used by SSCAN to indicate number of characters in a
substring
One byte used by SSCAN to indicate the type of field being

scanned -- name or operand
Fullword pointer to location of ampersand
Fullword used as count of parenthesis level
One byte used by SSCAN for a new line indicator
Fullword pointer to new line location
Fullword pointer to opening quote of string on new line
Eight-byte packed work area used by SSCAN to convert value to

decimal
One byte used by SSCAN to indicate when character being

scanned is within a quoted string
Fullword used as register save area by SSCAN
Fullword used by SSCAN to indicate substring length
Fullword pointer to closing quote of string
Fullword pointer to beginning of substring
Fullword pointer to quoted string (or portion thereof)
Fullword used by SSCAN to indicate length of quoted string
Fullword used to indicate length of symbol which begins with

an ampersand
Fullword used by EVAL as a subscript level counter
15-byte area used by SSCAN for EBCDIC conversion
Fullword used to indicate the length of the sequence symbol

being sought
One byte used to indicate whether assembler is in bypass mode
16 doublewords used to retain information derived at each

parenthesis level, upon the occurrence of a stronger opera­
tor, and/or upon the occurrence of a relocatable term

16-word area in which RLD string is saved
132-byte work area in which lines being output by the source

listing processor are put into format
One byte used to indicate whether a diagnostic is assciated

with the current statement
Fullword pointer to line that is to be output by CEVSX
Fullword used to indicate the number of lines used on the

page currently being listed
Fullword used to indicate length of the current source line
Fullword pointer to control bytes for a source statement

used by CEVSX
Two doublewords used as work area by CEVSX in converting

characters from one format to another

Equated to address in working segment 1 which is the begin­
ning of the storage areas used by PARAMAC

Equated to address in working segment 1 which is end of the
storage area used by PARAMAC

Four-word table of default attributes
Fullword constant of 10
Fullword constant of 3
Four bytes that contain the name field of the first TITLE

instruction
One byte used to indicate whether TITLE instruction has been

encountered
Equated to BSTYPE
Fullword used to indicate number of pages needed to hold text

generated

TRMCT

TRM1
TWO
TXTLNG

UDHOLD

UNCAD

UNIQUE
UP800

UP801

UP802

UP810

UP888

USETBL

VC

VMPAGE
VN

WCS

WDECS1

WORK 1
WORK 2
WORK 3
WSPCSl
WSP

XFBUF

XFLNCT

XFLNG

XFLOC
XFWKl
XFWK2
XLINE

ZANOP
ZBSCAN
ZCATOP
ZCCW
ZCCWTX
ZCEVAD
ZCEVADP
ZCEVCD
ZCEVCY
ZCEVDP

Fullword used by EVAL as a counter for the number of terms in
an expression

Character constant of 31
Fullword constant of 2
Fullword used to indicate the length of the text module

Equated to ZUSING+16. Used by USE/DROP as save area for
register specifications

Fullword save area for uncovered address associated with a
symbol

Equated to beginning of PSECT area
Fullword save area for the base register value specified by a

USING statement
Fullword save area for value that will be placed in first

word of a USING-REGISTER table entry
Fullword save area for value that will be placed in a USING

LOF entry
Fullword used as count for external references in USING

statements
One byte used as code to indicate the type of expression that

represents the base register value in a USING instruction
Fullword pointer to current USING-REGISTER table

Fullword used by EVAL to indicate the value of the current
term in an expression

Fullword pointer to virtual memory page table
Fullword used by EVAL to indicate the value of the next term

in an expression

Eight-doubleword work area used primarily by dictionary rou­
tines and expression evaluator

Fullword used by EVAL to indicate the location counter value
associated with the name of the current control section

Fullword used by CSCAN to indicate the number of leading
zeros encountered while scanning a decimal value

Equated to beginning of working segment 1
Equated to beginning of working segment 2
Fullword pointer to the beginning of working segment 3
Fullword pointer to STACK relocatable terms
Fullword pointer to an entry in STACK that represents the

first of two relocatable terms that might be paired

132-byte work area in which lines being output by the cross­
reference listing processor are put into format

Fullword used by XREF to indicate the number of lines it has
listed on a given page

Fullword used to indicate the number of bytes used in con-
structing the cross-reference items

Fullword pOinter to beginning of cross-reference items
Two-word work area used for binary-to-hex conversion
Three-word work area used for binary-to-hex conversion
Fullword save area for next line number

Five-word save area used by ANOP
Seven-word save area used by BASCAN
Five-word save area used by CATOP
Five-word save area used by CCW
Four-word save area used by CCWTXT
Seven-word save area used by ADCON
12-word save area used by ADCON
Five-word save area used by CSDPR
Four-word save area used by COPY
17-word save area used by DC TXT

Appendix D: Acronyms 333

334

ZCEVDX
ZCEVEP
ZCEVLS
ZCEVMO
ZCEVPC
ZCEVPF
ZCEVPL
ZCEVPV
ZCEVRD
ZCEVSA
ZCEVSD
ZCEVSR

ZCEVSX
ZCEVXF
ZCNOP
ZCSCAN
ZCT
ZDCDS
ZDFSYM
ZDOOP
ZDR
ZEATT
ZEBIN
ZECHAR
ZEDEC
ZEHEX
ZEJECT
ZEND
ZENTRY
ZEQATE
ZEQU
ZERO
ZER01.2
ZEVAL
ZEXTRN
ZGETOP
ZGLOC
ZGOIF
ZICTL
ZISEQ
ZLIT
ZLITXT
ZLTORG
ZMACRO
ZMCDEF
ZMCREF
ZMNMXT
ZMNOTE
ZMSCAN
ZOPD
ZORG
ZORGIN
ZPARAM
ZPRINT
ZPSCAN
ZPUNCH
ZRSCON
ZSET
ZSPACE
ZSSCAN
ZSTAN
ZTITLE
ZUP
ZUSING
ZUSVAL
ZVERSN

Two-word save area used by DIAG
Four-word save area used by ENDPR
Four-word save area used by LIST
Nine-word save area used by MOPR
Three-word save area used by Phase lIB control
1.9-word save area used by Phase IV control
Three-word save area used by POOLIT
Three-word save area used by PUTVAL
Twelve-word save area used by REED
Six-word register save area used by ISD listing processor SOR
1.4 words used as a register save area by ISD processor
Seven words used as save area by symbol table listing

processor
Six-word save area used by CEVSX
Seven-word save area used by XREF
Six-word save area used by CNOP
Eight-word save area used by constant scan
Six-word save area used by SECT
Five-word save area used by DC/DS
Two-word save area used by DEFSYM
Two-word save area used by subroutine internal to EVAL
Eight-word save area used by DRSET
Two-word save area used by subroutine internal to EVAL
Two-word save area used by EBIN
Two-word save area used by ECHAR
Five-word save area used by EDEC
Two-word save area used by EHEX
Two-word save area used by EJECT
Five-word save area used by END
Five-word save area used by ENTRY
Four-word save area used by EQUATE
Eight-word save area used by EQU
Fullword constant of 0
Constant of X~OOOOOOOO@
Five-word save area used by EVAL
Five-word save area used by EXTRN
Five-word save area used by GETOP
Seven-word save area used by GBLX/LCLX
Five-word save area used by AGO/AIF
Five-word save area used by ICTL
Five-word save area used by ISEQ
Two-word save area used by subroutine internal to EVAL
Five-word save area used by LITXT
Three-word save area used by LTORG
Five-word save area used by MACRO
Five-word save area used by MACDEF
Six-word save area used by MACREF
Five-word save area used by MEND/MEXIT
Five-word save area used by MNOTE
Six-word save area used by PARAMAC
Six-word save area used by MIP
Five-word save area used by ORG
Three-word save area used by ORIGIN
Four-word save area used by PARAMAC
Five-word save area used by PRINT
Two-word save area used by PSCAN
Four-word save area used by PUNCH
Three-word save area used by RESCON
Seven-word save area used by SETX
Five-word save area used by SPACE
Six-word save area used by SSCAN
Five-word save area used by STAN
Four-word save area used by TITLE
Eight-word save area used by USET
Eight-word save area used by USE/DROP
Five-word save area used by USEVAL
Five-word save area for version identification

APPENDIX E: LIST OF MAJOR TABLES AND WORK AREAS REI-'ERENCED BY ASSEMBLER ROUTINES

r---------T--,
I I Table or Work Area I
I Routine r---------T---------T---------T---------"T---------T----------~
I Name I I I I I I CEVPAS I
I ((I I I (includingl
I I WORK 1 I WORK2 I WORK3 I CEVOP I CEVMR I ERRIND) I
l----------+---------+---------+---------+--------.-+---------+----------~
I CEVAC I X I X I I I I I
r---------+---------+---------+---------t---------t---------+----------~
I CEVAD I X I X I X I I I X I
l----------t---------+---------+---------t---------+---------+----------~
I CEVAN I X I I I I I I
1----------+---------+---------+---------+---------+---------+----------~
I CEVBS I X I I X I I I X I
l----------t---------+---------+---------+---------+---------+----------i
I CEVCC I X I X I X I I I X I
r---------+---------+---------+---------+---------+---------+----------~
J CEVCD J X I X I I I I X I
t---------+---------t---------+---------+---------+---------+----------i
I CEVCE I X I I I I I I
t---------+---------+---------+---------+---------+---------+----------~
I CEVCN J X I I I I I X I
r---------+---------+---------+---------+---------+---------+----------i
I CEVCP I X I I X I I (X I
r---------+---------+---------+---------+----·-----+----~----+----------~
I CEVCS I X I X (I 1 I X I

r---------+---------+---------+---------+---------+---------+----------i
I CEVCT I X I X I I I I X (
r---------+---------+---------+---------+---------+---------+----------~
I CEVCW I X I I I I I X I
r---------+---------+---------+---------+---------+---------+----------i
I CEVCX I (X I I . I I X I
i----------+---------+---------+---------+---------+---------+----------~
I CEVCY I X I X I X I I I X I

l----------+---------t---------+---------+---------+---------+----------i
I CEVDC I X (X I I I I I
t---------+---------+---------+---------+---------+---------+----------1
I CEVDF I X I X I I X I I I
r---------+---------+---------+---------t---------+---------+----------i
I CEVDP I X I X I I I I X I
t---------+---------+---------+---------+---------+---------+----------~
I CEVDR I X I X I I I I X I
1----------+---------+---------+---------+---------+---------+----------i
I CEVDX I X I X I I I I X (
1----------+---------+---------+---------+----.-----+---------+----------1
I CEVEJ I X I I I I I I
l----------+---------+---------+---------+---------t---------+----------i
I CEVEP I X I X I X I I I X I
t---------+---------+---------+---------+---------+---------+----------1
I CEVEQ I X (X I I I I X I
1----------+---------+---------+---------+---------+---------+----------~
I CEVEV I X I X I X (I I X I
i----------+---------+---------+---------+---------+---------+----------~
I CEVEY I X I X I I I I I
r---------t---------+---------+---------+---------+---------+----------1
J CEVGB I X I I X (I I X I
1----------+---------+---------+---------+---------+---------+----------1
I CEVGC I X I I X I I IX I
r---------+---------+---------+---------+---------+---------+----------1
I CEVGD I X I I X (I I X (l _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ __________ J

(Part 1 of 3)

Appendix E: List of Major Tables and Work Areas Referenced by Assembler Routines 335

r---------T--,
I I fthle~W~k~~ I
I Routine r---------T---------T---------T---------T---------T----------~
I Name I I I I I I CEVPAS I
I I I I I I I (including I
I I WORKl I WORK2 I WORK3 I CEVOP I CEVMR I ERRIND) I
~---------+---------+---------+---------+---------+---------+----------~
I CEVGH I X I I X I I I X I
~---------t---------+---------+---------t---------t---------+----------~
I CEVGL I X I . X I I I I X I
t---------+---------+---------+---------+---------+---------+----------~
I CEVGN I X I X I I I I X I
~---------t---------+---------+---------t---------t---------+----------~
I CEVGO I X t ! X I I ! X I
~---------t---------+---------+---------+---------+---------+----------~
I CEVGP I X I I X I X I I I
r---------t---------+---------+---------+---------t---------t----------~
I CEVGV I X I X I I I I X I
r---------+---------f---------+---------+---------+---------+----------~
I CEVGW I X I I I I I I
r---------+---------t---------+---------+---------+---------+----------~
I CEVIC I X I I I I I X I
r---------+---------+---------t---------+---------+---------+----------~
I CEVIQ I X I I I I I X I
r---------+---------+---------+---------t---------+---------+----------~
I CEVKM I X I X I I I I X I
r---------+---------+---------+---------+---------+---------+----------~
I CEVLC I X I X I I I I I
~---------t---------+---------+---------t---------+---------+----------~
I CEVLG I X I X I I I I I
r---------+---------+---------+---------t---------+---------+----------~
I CEVLM I X I X I I I I X I
~---------+---------+---------t---------+---------+---------+----------~
I CEVLP I X I X I I I I X I
r---------+---------+---------+---------+---------+---------+----------~
I CEVLS I X I X I X I I I X I
~---------t---------t---------+---------+---------+---------+----------~
I CEVLT I X I X I I I I X I
~---------+---------+---------+---------+---------+---------+----------~
I CEVMC I X I I I I I I
~---------+---------+---------+---------+---------+---------+----------~
I CEVMD I X I I I I I I
~---------+---------t---------+---------+---------+---------t----------~
I CEVMN I X I X I I I I X I
~---------+---------+---------t---------+---------t---------+----------1
I CEVMO I X I X I X I I X I X I
r---------+---------+---------+---------+---------t---------+----------~
I CEVMP I X I I I I X I X I
t---------+---------t---------+---------t---------t---------+----------~
I CEVMX I X I I I I I X I
~---------+---------t---------+---------+---------t---------+----------~
I CEVND I X I I I I I I
t---------+---------t---------t---------t---------t---------+----------1
I CEVPA I X I X I I I I X I
r---------+---------t---------t---------+---------+---------t----------~
I CEVPB I X I X I I I I X I
~---------+---------+---------t---------+---------+---------+----------~
I CEVPC I X I X I I I I X I
r---------+---------+---------+---------+---------+---------+----------~
I CEVPD I X I X I I I I X I
t---------+---------t---------t---------+---------+---------+----------~
I CEVPE I X I X I I I I X I
t---------+---------t---------+---------+---------+---------t----------~
I CEVPF I X I X I I I I I
t---------+---------+---------t---------t---------+---------t----------~
I CEVPH I X I I I I I I
r---------+---------t---------t---------+---------+---------+----------~
I CEVPL I X I X I I I I X I l _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ __________ J

(Part 2 of 3)

336

r---------T--,
I I ~hle~W~k~~ !
! Routine ~---------T---------T---------T---------T---------T----------~
I Name I I I I I I CEVPAS I
I I I I I I I (including I
I I WORKl I WORK2 I WORK 3 I CEVOP I CEVMR I (ERRIND I
t---------t---------t---------t---------t---------t---------t----------~
I CEVPM I X I X I I I I X I
~---------t---------t----·-----t---------t---------t---------t----------1
I CEVPR I X I X I I I I X I
t---------t---------t---------t---------t---------t---------t----------~
I CEVPS I X I I X I I I X I
~---------t---------t---------t---------t---------t---------t----------~
I CEVPV I X I X I I I I X I
t---------t---------t---------t---------t---------t---------t----------~
I CEVQU I X I X I I I I I
r---------t---------t---------t---------t---------t---------t----------~
I CEVRD I X I X I X I I I X I
r---------t---------t---------+---------t---------t---------t----------~
I CEVRE I I I I I I I
r---------t---------t---------t---------t---------t---------+----------1
I CEVRF I X I X I X I I I X I
r---------t---------t---------+---------t---------+---------+----------~
I CEVRG I X I I I I I I
r---------t---------t---------t---------+---------+---------+----------~
I CEVRL I X I X I I I I X I
t---------t---------t---------+---------t---------t---------t----------i
I CEVRS I X I X I I I I X I
r---------t---------t---------t---------t---------t---------t----------~
I CEVSA I X I X I I I I X I
t---------t---------t---------t---------t---------t---------t----------i
I CEVSD I X I X I I I I X I
t---------t---------t---------t---------t---------t---------t----------~
I CEVSE I X I X I I I I X I
r---------t---------+---------t---------t---------t---------+----------~
I CEVSL I X I I X I I I X I
r---------t---------t---------t---------t---------t---------t----------~
I CEVSP I X I I X I I I X I
t---------t---------t---------+---------t---------t---------t----------~
I CEVSR I X I X I I I I X I
r---------t---------t---------t---------t---------t---------t----------~
I CEVSS I X I I X I I I X I
t---------t---------t---------t---------t---------t---------t----------~
I CEVST I X I X I X I I I X I
r---------t---------t---------t---------t---------t---------+----------~
I CEVSX I X I X I X I I I X I
r---------t---------t---------+---------t---------t---------t----------i
I CEVSY I X I X I I I I X I
r---------t---------t---------t---------t---------t---------t----------~
I CEVTI I X I X I I I I X I
t---------t---------t---------t---------t---------t---------t----------i
I CEVTK I X I I I I I X I
t---------t---------+---------+---------t---------t---------t----------i
I CEVTM I X I X I I I I I
t---------t---------t---------t---------t---------t---------t----------i
I CEVTP I X I I I I I I
t---------t---------t---------t---------t---------t---------t----------i
I CEVUD I X I X I I I I X I
I----------t---------+---------+---------+---------+---------+----------~
I CEVUP I X I X I I I I X I
j----------t---------t---------t---------t---------+---------+----------i
I CEVUV I X I X I I I I X I
r---------t---------t---------+---------+---------+---------t----------i
I CEVXF I X I X I I I I X I
j----------t---------t---------t---------+---------+---------t----------~
I CEVXN I X I X I I I I X I l _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ __________ J

(Part 3 of 3)

Appendix E: List of Major Tables and Work Areas Referenced by Assembler Routines 337

INDEX

When more than one page reference is
given, the major reference is first.

&SYSECT item 285,287
&SYSLIST item 285,286
&SYSNDX item 285,286-287
&SYSNDX limitation 319
&SYSPSCT item 285,287
&SYSSTYP item 286,287

abnormal termination 7,34-35
absolute value item 261
AC (see assembler control)
acronyms 320-334
ADCON (see address constant processor)
address constant format 293
address constant processor (CEVAD)

chart CS 238-241
decision table 102-103
routine description 109

AGO/AIF instruction scan (CEVGO)
chart AJ 134
decision table 41
routine description 57-58

ANOP instruction scan (CEVAN)
chart AI< 135
decision table 41
routine description 58

assembler cleanup (CEVCU)
chart EC 259
routine description 313-314

assembler control (CEVAC)
chart AA 117
decision table 32
routine description 33-35

assembler program
function by instruction type 28-31

assembler instruction 28-30
machine instruction 28,29
macro instruction 28,30

functional description 9-27
functions 1,5-7
instructions 28-31
interface with LPC 5,7
limitations 319
master control 32-35
organization 2-5
output 1
overview 6
phase control flow 32
purpose 1
system environment 1-2

assembler program components (see also
individual phases: phase I, phase IIA,
phase lIB, phase IIC, phase III, phase IV)

assembler register usage 316
assembler routines, characteristics 8
assembly modules 317-318
assign value to name (CEVEQ)

chart CB 194-195

338

decision table 89
routine description 93

BASCAN (see basic source language scan)
basic source language scan (CEVBS)

chart AI 131-133
decision table 51
routine description 56-57

batch mode (see nonconversational mode)
binary self-defining term generator

(CEVGB)
chart BK 173
decision table 51
routine description 78

binary text 1
boundary alignment 16
bypass mode 53

CATOP (see string substitution control)
CEVAC (see assembler control)
CEVAD (see address constant processor)
CEVAN (see ANOP instruction scan)
CEVBS (see basic source language scan)
CEVCC (see phase III CCW instruction
processor)

CEVCD (see CSD processor)
CEVCE (see SPACE instruction scan)
CEVCN (see CNOP instruction scan)
CEVCP (see string substitution control)
CEVCS (see constant scan)
CEVCT (see control section instruction
scan)

CEVCU (see assembler cleanup)
CEVCW (see CCW instruction scan)
CEVCX (see CXD instruction scan)
CEVCY (see COpy instruction processor)
CEVDC (see DC/DS instruction scan)
CEVDF (see macro definition processor)
CEVDP (see phase III constant processor)
CEVDR (see DROP table processor)
CEVDX (see diagnostic message processor)
CEVEJ (see EJECT instruction scan)
CEVEP (see module entry point processor)
CEVEQ (see assign value to name)
CEVEV (see expression evaluator)
CEVEY (see ENTRY instruction scan)
CEVFM (see free VM working storage)
CEVGB (see binary self-defining term
generator)

CEVGC (see character self-defining term
generator)

CEVGD (see decimal self-defining term
generator)

CEVGH (see hexadecimal self-defining term
generator)

CEVGL (see global/local symbol instruction
scan)

CEVGM (see get VM workinq storage)
CEVGN (see location counter reset)
CEVGO (see AGO/AIF instruction scan)

CEVGP (see collect and identify operation
code)

CEVGV (see obtain relocatable value)
CEVGW (see interface with VISAM PUT or

GTWRC macro)
CEVIC (see ICTL instruction) scan)
CEVIQ (see ISEQ instruction scan)
CEVKM (see main dictionary lookup)
CEVLG (see LTORG instruction scan)
CEVLM (see macro name dictionary lookup)
CEVLP (see dictionary lookup and put)
CEVLS (see object program listing)
CEVLT (see phase III literal pool
processor)

CEVMC (see MACRO instruction scan)
CEVMD (see program module dictionary
listing processor)

CEVMN (see MNOTE instruction scan)
CEVMO (see phase III machine operation
processor)

CEVMP (see machine instruction operand
scan)

CEVMX (see MEND/MEXIT instruction scan)
CEVND (see END instruction scan)
CEVPA (see phase I control)
CEVPB (see phase IIA control)
CEVPC (see phase lIB control)
CEVPD (see phase IIC control)
CEVPE (see phase III control)
CEVPF (see phase IV control)
CEVPL (see literal pooling processor)
CEVPM (see macro parameter processor)
CEVPR (see PRINT instruction scan)
CEVPS (see parameter item analyzer)
CEVPV (see relocatable output value
processor)

CEVQU (see EQU instruction scan)
CEVRO (see obtain next source statement)
CEVRF (see macro reference processor)
CEVRG (see ORG instruction scan)
CEVRL (see literal resolution processor)
CEVRS (see resolve conditional alignment)
CEVSA (see ISO list processor)
CEVSD (see ISD processor)
CEVSE (see SET instruction scan)
CEVSL (see scan for literal operand)
CEVSP (see substitute into operation field)
CEVSR (see symbol table editor)
CEVSS (see string substitution scan)
CEVST (see statement analyzer)
CEVSX (see source listing processor)
CEVSY (see define location symbol)
CEVTI (see TITLE instruction scan)
CEVTK (see lookup temporary dictionary

item)
CEVTM (see macro name dictionary put)
CEVTP (see put item in temporary
dictionary)

CEVUD (see USING and DROP instruction scan)
CEVUP (see USING table processor)
CEVUV (see compute using register)
CEVXF (see cross-reference listing

processor)
CEVXN (see EXTRN instruction operand scan)
CCW instruction scan (CEVCW)

chart AK 135
decision table 41
routine description 58-59

CCWTXT (see phase III CCW instruction
processor)

changing storage constants 314
character self-defining term generator

(CEVGC)
chart BL 174
decision table 51
routine description 79

CNOP instruction scan (CEVCN)
chart AL 136
decision table 41
routine description 59

collect and identify operation code
(CEVGP)

chart AE 125
decision table 49
routine description 54-55

complex value item 263-264
compute using register (CEVUV)

chart CN 224
decision table 103
routine description 106

conditional storage reservations 90
constant item format 293
constant scan (CEVCS)

chart BG 156-159
decision table 50
routine description 71-72

continuation entry 5,34
control section 4-5
control section changes 90
control section dictionary (CSD)

format 307-311
control section instruction scan (CEVCT)

chart AM 137
decision table 46-47
routine description 59-60

conversational mode
CNOP instruction scan 59
interface with LPC 5
macro instruction processing 83
Phase I functional description 11-12

COpy instruction processor (CEVCY)
chart AN 138
decision table 48
routine description 60-61

cross-reference definition format 113
cross-reference listing 1,27,296-297

format 296
cross-reference listing processor (CEVXF)

chart CW 247
decision table 112
routine description 112-114

CSCAN (see constant scan)
CSDPR (see CSD processor)
CSO processor (CEVCD)

chart CU 243-245
decision table 101
routine description 110-111

CXO instruction scan (CEVCX)
chart AL 136
decision table 42
routine description 59

data management service routines 1
DC/OS statements, delayed resolution 91
DC/OS instruction scan (CEVDC)

Index 339

chart AO 139
decision table 42
routine description 61

DCTXT (see phase III constant processor)
decimal self-defining term generator

(CEVGD)
chart BK 173
decision table 51
routine description 79

define location symbol (CEVSY)
chart BO 177
decision table 42
routine description 80

definition table
format 309

DEFSYM (see define location symbol)
DIAG (see diagnostic message processor)
diagnostic message processor (CEVDX)

chart BP 178-179
decision table 52
routine description 80-81

dictionary lookup and put (CEVLP)
chart BN 176
decision table 50
routine description 79-80

directive code assignments 282
DLKM (see main dictionary lookup)
DLKT (see lookup temporary dictionary item)
DLPM (see dictionary lookup and put)
documentation modules 317-318
DPUT (see put item in temporary dictionary)
DROP table processor (CEVDR)

chart CG 201
decision table 96
routine description 97-98

DRSET (see DROP table processor)
DXD item 262-263

early-end entry 7,34
EBIN (see binary self-defining term
generator)

ECHAR (see character self-defining term
generator)

EDEC (see decimal self-defining term
generator)

EHEX (see hexadecimal self-defining term
generator)

EJECT instruction scan (CEVEJ)
chart AP 140
decision table 42
routine description 61

END instruction scan (CEVND)
chart AP 140
decision table 42
routine description 61

ENDPR (see module entry point processor)
ENTRY instruction scan (CEVEY)

chart AQ 141-142
decision table 42
routine description 62

EQU instruction scan (CEVQU)
chart AQ 141-142
decision table 42-43
routine description 62

EQUATE (see assign value to name)
EVAL (see expression evaluator>
expansion of macro instructions 83-87

340

Phase IIA functional description 13-16
processing 3-4

expression evaluator (CEVEV)
chart BI 164-171
decision table 48-49
routine description 72-77

external name list 1
EXTRN instruction operand scan (CEVXN)

chart AR 143
decision table 43
routine description 62-63

free VM working storage (CEVFM)
chart EB 257-258
routine description 313

FREEMAIN macro 312-313

GATEW (see interface with VISAM PUT macro)
GBLx/LCLx (see global/local symbol
instruction scan)

generation data group 1
get VM working storage (CEVGM)

chart EA 256
routine description 312-313

GETMAIN macro 312-313
GETOP (see collect and identify operation

code)
GETVAL (see obtain relocatable value)
global/local symbol instruction scan

(CEVGL)
chart AS 144
decision table 43
routine description 63-64

global section macro chain (GSM) 280-281
Part I functional description 9
Work Area II 7-8

global section macro entry (GSM) 28,281
global variable symbol items 269-272

subscripted items
arithmetic item 269
Boolean item 270
character item 271
trailer for arithmetic item 269-270

trailer item 271
unsubscripted items

arithmetic item 270
Boolean item 270-271
character item 271-272

global variable symbol pointer items
269-270,286

hardware requirements 8
hexadecimal self-defining term generator

(CEVGH)
chart BL 174
decision table 51
routine description 78-79

ICTL instruction scan (CEVIC)
chart AT 145
decision table 44
routine description 64

initiation entry 5
(see also assembler control, CEVAC)

input, LPC and alternate modes 54
Interface with VIS&~ PUT or GTWRC macro

(CEVGW)
chart CJ 210
decision table 103
routine description 104

internal symbol dictionary (ISD) 1,300-304
(see also Figure 5)
format 303
limitations 319
listing 1,298
listing format 298

ISD list processor (CEVSA)
chart DD 255
decision table 113
routine description 115

ISD lis~ing (see internal symbol
dictionary)

ISD processor (CEVSD)
chart DB 249
decision table 113
routine description 114-115

ISDPR (see ISD processor)
ISDSA (see ISD list processor)
ISEQ instruction scan (CEVIQ)

chart AU 146
decision table 44
routine description 64-65

language processor control (LPC) 1,5-7
GETLINE function 1
input 53-54
interface control flow 7
PUTDIAG function 1

LIST (see object program listing)
literal

assignment 16
operands 91
origin entry 273-274
origin statements 90
pooling 16

literal pooling processor (CEVPL)
chart CA 193
decision table 90
routine description 92-93

literal resolution processor (CEVRL)
chart CD 198
decision table 90
routine description 94

LITXT (see phase III literal pooling
f-rocessor)

local variable symbol items 268,286
subscripted

arithmetic item 289
Boolean item 290
character item 290-291
trailer 289-290

uns l~bscr if-ted
arithmetic item 289
[oo01ean item 290
character item 290-291

L0CJ..TE (see location counter assignment)
Location counter 4,292
location counter assignment (CEVLC)

decision table 89
ro~tine description 91-92

l.0cation countl::r rl::set <CE.'VGN)
cnact i:;,W 192

decision table 89
routine description 92

logical expressions 75
logical order file (LOF) 3,272

(see also Figure 5, Work Area 2)
alignment specification entry 277
constant-definition entry 274
diagnostic: message entry 277-278
END entry 279
general format 279-280
literal origin entry 273-274
machine operation entry 272
l!laCrO inst.ruction entry 273
MNOTE* entry 278-279
origin entry 275
PRINT entry 276
SET entry 276-277
TITLE entry 278-279
USING entry 275-276

lookup temporary dictionary item (CEVTK)
chart BQ 180
decision table 50
routine description 81

LTORG instruction scan (CEVLG)
chart AU 146.
decision table 44
routine description 65

MACDEF (see macro definition processor)
machine instruction directive codes 282
machine instruction operand scan (CEVMP)

chart AH 128-130
decision table 45
routine description 56

machine instruction synthesis 5
machine instructions 29
machine operations requirements
table 282-283

MACLKT (see nacro name dictionary look-up)
MACPUT (see macro name dictionary put)
~ACREF (see nBcro reference processor)
MACRO (see MACRO instruction scan)
macro definition processor (CEVDF)

chart BF 155
decision table 44
routine description 70-71

MACRO instruction scan (CEVMC)
chart AV 147
decision table 45
routine description 65

macro instructions 28
entry 273
expansion 13-14,83-87
limitations 319
processing 3

macro level dictionary (temporary
dictionary) 284-292

general layout 284-285
item types

&SYSECT item 285,287
&SYSLIST item 285,286
&SYSNDX item 285,286-287
&SYSPSCT item 285,287
&SYSSTYP item 286,287
global variable symbol pOinter item

286,291
local variable symbol items 268,286

Index 341

arithmetic 289-290
Boolean 290
character 290-291

parameter item 286,288
sequence symbol item 286,289

macro libraries 1
macro name dictionary 281
macro name dictionary lookup (CEVLM)

chart BR 181
decision table 50
routine description 82

macro name dictionary put (CEVTM)
chart BR 181
decision table 51
routine description 82

macro parameter processor (CEVPM)
chart SU 184-186
decision table 85
routine description 86-87

macro reference processor (CEVRF)
chart BE 153-154
decision table 44-45
routine description 70

macro statement generation 14
main dictionary 260

absolute value term 261
basic format 260
complex value item 263-264
control section item 265-266
DXD item 262-263
entry trailer item 266
external name item 264-265
glonal variable symbol items 269
literal item 266-268
literal trailer item 267-268
local variable symbol items 268-269
relocatable value item 261-262
sequence symbol item 272
transitive item 268

main dictionary lookup (CEVKM)
chart BS 182
decision table 52
routine description 82

MEND/MEXIT instruction scan (CEVMX)
chart AV 147
decision table 45
routine description 65-66

I-lIP (see machine instruction operand scan)
MNOTE instruction scan (CEVMN)

chart AW 148
decision table 45
routine description 66

module entry point processor (CEVEP)
chart CK 211
decision table 101
routine description 104

MOPR (see phase III machine operation
processor)

nonconversational mode
CNOP instruction scan 59
Phase I fUnctional description 11

normal mode 52
normal statements 91

342

object program listing 1,298-300
format for constants 301
format for machine and assembler
instruction 302

object program listing (CEVLS)
chart CO 225-230
decision table 103
routine description 106-107

object text generation 16-20
obtain next source statement (CEVRD)

chart AD 123-124
decision table 46
routine description 53-54

obtain relocatable value (CEVGV)
chart CM 223
decision table 103
routine description 105-106

operation code table 11,281-282
operators, hierarchy of 76
ORG instruction scan (CEVRG)

chart BA 149
decision table 45
routine description 66-67

ORG statements 90
ORIGIN (see location counter reset)
output options 1,26,112-115
overflow diagnosis 314

page usage (see also Figure 5)
recording 91
tables 7,18

PARAMAC (see macro parameter processor)
parameter item 286,288

macro parameter processor (CEVPM) 86-87
parameter item analyzer (CEVPS)

chart BJ 172
decision table 51
routine description 77-78

parentheses
hierarchy 76
interpretation of 74
scanning for 73,75

phase I 36-82
(see also phase I control)
assembly modules 317-318
communication with external routines 36
documentation modules 317-318
functional description 9-13
overview 10
routine relationships 37-38

phase I control (CEVPA)
chart AB 118
decision table 39
routine description 36

phase IIA 83-87
(see also phase IIA control)
assembly modules 317-318
documentation modules 318
functional description 13-16
overview 15
routine relationships 84

phase IIA control (CEVPB)
chart BT 183
decision table 84
routine description 83-86

phase lIB 89-94
(see also phase lIB control)

assembly module 318
documentation modules 318
functional description 16-20
overview 17
routine relationships 88

phase lIB control (CEVPC)
chart BV 187-191
decision table 89
routine description 88-91

phase IIC 95-98
(see also phase IIC control)
assembly module 318
documentation modules 318
functional description 20-22
overview 21
routine relationships 95

phase IIC control (CEVPD)
chart CE 199
decision table 95-96
routine description 96-97

phase III 99-111
(see also phase III control)
assembly modules 318
documentation modules 318
functional description 22-26
overview 22
routine relationships 100

phase III CCW instruction processor
(CEVCC)

chart CP 231-232
decision table 101
routine description 107

phase III constant processor (CEVDP)
chart CR 235-237
decision table 102
routine description 108

phase III control (CEVPE)
chart CH 202-207
decision table 100-101
routine description 99

phase III literal pooling processor
(CEVLT)

chart CT 242
decision table 101
routine description 109-110

phase III machine operation processor
(CEVMO)

chart CL 212-222
decision table 101-102
routine description 104-105

phase IV 112-115
(see also phase IV control)
assembly module 318
documentation modules 318
functional description 26-27
overview 26
routine relationships 112

phase IV control (CEVPF)
chart CV 246
decision table 113
routine description 112

PMD listing (see program module dictionary)
PMDLS (see program module dictionary
listing processor)

POOLIT (see literal pooling processor)
post processing 5
PRINT (see PRINT instruction operand scan)
print control 23

PRINT instruction operand scan (CEVPR)
chart BA 149
decision table 46
routine description 67

program module dictionary (PMD) 1,304-307
format 305-306
limitations 319
listing 1,26,297-298
listing format 299
Work Area 3 8

program module dictionary listing processor
(CEVMD)

chart DC 250-254
decision table 113
routine description 115

program reordering 4
PSCAN (see parameter item analyzer)
pseudo-dictionary item for current location
counter 292-293

PUNCH instruction scan (CEVPH)
decision table 46
routine description 67-68

push-down-stack logic 4
put item in temporary dictionary (CEVTP)

chart BQ 180
decision table 50
routine description 81

PUTVAL (see relocatable output value
processor)

REED (see obtain next source statement)
reference item format 114
reference table format 309-310
register usage 313
relocatable expression reduction 75
relocatable output value processor (CEVPV)

chart CQ 233-234
decision table 103
routine description 107-108

relocation dictionary (RLD) format 310-311
REPRO instruction scan (CEVRE)

decision table 46
routine description 67-68

RESCON (see resolve conditional alignment)
RESLIT (see literal resolution)
resolve conditional alignment (CEVRS)

chart CC 196-197
decision table 90
routine description 93-94

scan for literal operand (CEVSL)
chart BM 175
decision table 47
routine description 79

scanning techniques 73
SECT (see control section instruction scan)
section name table 114,300
sequence symbol item 272,289
SET instruction scan (CEVSE)

chart BB 150
decision table 47
routine description 68

SETA (see SET instruction scan)
SETB (see SET instruction scan)
SETC (see SET instruction scan)
SETX (see SET instruction scan)

Index 343

SLIT (see scan for literal operand)
SLLS (see source listing processor)
source line storage control 292
source listing processor (CEVSX)

chart CI 208-209
decision table 102
routine description 104

source program
correction facility 54
listing ',99,294
listing format 295

source statement limitations 319
SPACE instruction scan (CEVCE)

chart BC 151
decision table 47
routine description 68-69

SSCAN (see string substitution scan)
STAN (see statement analyzer)
statement analyzer (CEVST)

chart AC 119-122
decision table 39-40
routine description 36,54

statement analyzer, modes of operation
bypass 54
normal 53

statement length, maximum 319
STED (see symbol table editor)
storage request constants

changing 314
table of 315

string sUbstitution control (CEVCP)
chart AG 127
decision table 41
routine description 55-56

string sUbstitution scan (CEVSS)
chart BH 160-163
decision table 51-52
routine description 72

SUBOP (see substitute into operation code
field)

subscripted items
LCLA 289
LCLB 290
LCLC 290-291

subscripted values, retrieval of 76
sUbstitute into operation code field

(CEVSP)
chart AF 126
decision table 51
routine description 55

symbol definition 16-20
symbol entries 115
symbol table 300

dictionary 9
listing 1,26,295-296
listing format 296

symbol table editor (CEVSR)
chart DA 248

344

decision table 113
routine description 114

syntax analysis 3
system device (SYSOUT) 5

tables and work areas 335-337
temporary dictionary (see macro level
dictionary)

termination of processing 91
abnormal 7,34-35

text locator table 80
TITLE instruction scan (CEVTI)

chart BC 151
decision table 47-48
routine description 69

unsubscripted items
LCLA 289
LCLB 290
LCLC 290-291

USE/DROP (see USING and DROP instruction
scan)

user virtual storage 7
USET (see USING table processor)
USEVAL (see compute using-register)
USING and DROP instruction scan (CEVUD)

chart BD 152
decision table 48
routine description 69-70

USING table processor (CEVUP)
chart CF 200
decision table 96
routine description 97

using-register tables 283-284

virtual memory management 312-315
virtual memory management table

(VMTABLE) 293-294
virtual memory page table (VMPT)

format 311
virtual storage requirements 7-8,312-315
VMCLEAN (see assembler cleanup)
VMFREE (see free VM working storage)
VMGET (see get VM working storage)
VMPT (see virtual memory page table)
VMTABLE (see virtual memory management

table)

working storage areas 7-8

XREF (see cross reference listing
processor)

GY28-2021-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[Internationalj

" ><
'" OJ
I

N
o
N

I
N

