File No. S360-21
GY28-2021-2

Program Logic

Version 8.1

IBM System/360 Time Sharing System

Assembler

This publication describes the internal logic of the
1BM System/360 Time Sharing System (TSS/360) Assembler
Program (also referred to as "the assembler"). The
assembler processes a group of statements written
according to the rules of the TSS/360 Assembler Lan-
guage into a TSS/360 program module. A general
explanation of the four phases of language processing
in the assembler is provided, followed by individual
routine descriptions and flowcharts.

A general understanding of TSS/360 and the rules of
the TSS/360 Assembler Language is assumed. Prerequi-
site to and co-references with this publication are:
IBM Systemr/360 Time Sharing System: Concepts and Faci-
lities, and IBM System/360 Time Sharing System:
Assembler Language.

This publication is intended for use by system pro-
grammers involved in changing system code and in alter-
ing the assembler design.

Third Edition (September 1971)

This is a major revision of, and makes obsolete, GY28-
2021-1 and Technical Newsletters ¥28-3100, GN28-3129, and
GN28-3138. There are numerous technical changes to this pub-
lication, both in the flowcharts and routine descriptions.
The major changes are summarized below:

¢ The CXD (CEVCX) routine has been added to Phase I to scan
for the presence of CXD instructions. A new address con-
stant, Q, has been introduced, and a DXD item has been
added to the main dictionary. Several routines have been
altered to process the new CXD and DXD instructions.

¢ The EQU instruction now permits length and type attribute
operands. The EQU (CEVQU} and EQUATE (CEVEQ) routines
have been altered to process the new operands.

e The USE/DROP (CEVUD) routine has been changed to process
a null operand on a DROP instruction. If this situation
occurs, all previously designated base registers are
dropped.

e The EBCDTIME (CEVET) routine is obsolete and has been
deleted.

This edition is current with Version 8 Modification 1 of
the IBM System/360 Time Sharing System (TSS/360), and remains
in effect for all subsequent versions or modifications of
TSS/360 unless otherwise noted. Significant changes or addi-
tions to this publication will be provided in new editions or
Technical Newsletters. Before using this publication, refer
to the latest edition of IBM System/360 Time Sharing System:
Addendum, GC28-2043, which may contain information pertinent
to the topics covered in this edition. The Addendum also
lists the editions of all TSS/360 publications that are appl-
icable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre-
ssions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments appears at the back of this publication.
it may be mailed directly to IBM. Address any additional comments con-
cerning this publication to the IBM Corporation, Time Sharing System/360
Programming Publications, Department 643, Neighborhood Rd., Kingston,
N.Y. 12401

©® Copyright International Business Machines Corporation 1967, 1969, 1971

The first section of this program logic
manual is an introductory discussion of the
overall concepts of the Time Sharing
System/360 (TSS/360) assembler program. A
number of sections, each associated with a
major component of the program, follows the
introduction.

In addition to a general summary of the
assembler's functions, the introduction
describes the external interfaces between
the assembler and

* Language Processor Control (LPC)
® Symbolic library service routines
e VISAM management service routines

Through its virtual memory management rou-
tines, which issue GETMAIN and FREEMAIN
macro instructions, the assembler also
interfaces with the Virtual Storage Alloca-
tion service routine (CZCGA).

Section 1 describes the overall flow of
control only from the language processor
control (LPC) to the phase contrcl level.

Sections 2 and 3 contain summary level
material; Section 2 contains summary by
phases, and Section 3 by instruction type.

Sections 4 through 10 describe the rela-
tionships between phases and routines. The
routine relationships of each major com-
ponent {(phase) are shown in an illustration
following the introduction to that phase.
All routines are represented by a box and
an entry in the decision table supporting
the illustration. All relationships
between routines are shown with arrows.
Except in the introduction and in Section
1, the arrow represents a call and a return
to the routine from which the arrow points.
In the introduction and in Section 1, the
arrow represents the flow of control. 1In
Section 5, the arrow may represent the
recursive entry of one routine into anoth-
er. This exception is noted in the intro-
duction to Section 5.

The detailed flowcharts for the routines
are presented in Section 11, arranged in
the same order as the routine descriptions.

Section 12 describes all the tables,
table entries, and listing formats referred
to in this manual.

PREFACE

Section 13 describes the assembler's
virtual memory management routines. These
routines manage virtual storage requisition
and return, issuing GETMAIN and FREEMAIN
macro instructions when necessary.

The routine relationships are shown in
terms of levels. A called routine is con-
sidered to be one level lower than the cal-
ling routine. Every box in each routine
relationship®'s illustration has an Arabic
numeral in the right-hand corner, indicat-
ing the lowest level at which the module
may be called. Phase control routines are
considered to be level 1.

The illustrations showing the routine
relationships are supported by decision
tables. Each routine in an illustration is
supported by an entry in the corresponding
decision table, which lists the conditions
under which that routine calls other rou-
tines. The decision table entries are
placed in their level order; within each
level, the entries are arranged alphabetic-
ally by mnemonic name.

Upon completion of this manual, the
reader will have a comprehensive knowledge
of the internal functions of the TSS/360
assembler program. If more detailed know-
ledge is required, the program listings
should be consulted.

PREREQUISITE PUBLICATIONS

Effective use of this manual requires
knowledge of the information contained in
the following manuals:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
Assembler Langquage, GC28-2000

In addition, the following publications
may be consulted:

IBM System/360 Time Sharing System:
Dynamic Loader PLM, GY28-2031

IBM System/360 Time Sharing System:
Program Control System PLM, GY28-2014

iii

CONTENTS

SECTION 1: INTRODUCTION e & e s o o e e
Purpose of the TSS/360 Assembler Program c e e+ e s e u
System Environment « e e e e s e o =
Organization and Overall Function of the Assembler . . .
Syntax Analysis . < ¢« + o 4 ¢ 4 i 4 e e e e 2 e e a0
Macro Instruction Processing . « « « « o « « o « o @
Assignment of Location Counter Values . . . « ¢« « « .
Program ReOXrdering . « « « o o o o s « s s o o« « = «
Machine Instruction Synthesis
POSt-Processing « « « o « ¢ o o o « o o o« o s o o «
Assembler Functions « e e o s e
Assembler Control Routine (Interface w1th LPC) . . .
User Virtual Storage Required by Assembler
WOrking Storage AX€as . « « o« o o « o o o = o o« s o o =
WOrKk Area 1 . v o v v o« o 4 « o o o o o o o « o o o =«
WOXK ATYEa 2 +. o v o o o ¢ o o o o s s o o a =« o o o« =
WOTK ATEa 3 v v v ¢ 4 4 o o o o o o o o s o « o « o =
PMD Text, ISD and External Names List Storage Areas .
Characteristics of Assembler Routines

SECTION 2: ASSEMBLER FUNCTIONAL DESCRIPTION
Phase I Functional Description . . . « ¢ ¢ « o « « « o
Phase IIA Functional Description <« . +« . . .
Phase IIB Functional Description . .« « « ¢ « ¢ o « « o« &
Phase IIC Functional Description . . « . ¢ ¢ « o o« ¢ o« =«
Phase III Functional Description . . . « ¢« « ¢« « ¢ o« . .
Phase IV Functional Description « ¢ « + o« « o« =

SECTION 3: ASSEMBLER FUNCTION BY INSTRUCTION TYPE . . .
IntrodUCtion .« ¢ o « o o« o« « o o 2 o o o o 2 o « a = =
Machine InstructioOns . . & « ¢ 2 o « « o« o o o o « = o«
Macro InNsStructionsS . ¢« « o « o« o o o o o a« o a o a s s
Assembler Instructions . .« . ¢ ¢ 4 ¢ « ¢ 4 e 4 o o * o

SECTION 4: ASSEMBLER MASTER CONTROL .« ¢ 4 o « o « o o =
Introduction . . . <« +« . . . e 4 e s s e s e = e =
AC -- Assembler Control (CEVAC) e s e e o = s e = s =

SECTION 5: PHASE I « v o ¢ o o o o a a o o « « « s o « =
INtroducCtion .« . o o & o o ¢ o « o & 2 e o 2 2 o =2 a o

Routines . . . - . - . = e + e+ e = = = e @
PHASE I -- Phase I Control (CEVPA) e e e e 4 e e e
STAN -- Statement Analyzer (CEVST) . « o e e o
REED -- Obtain Next Source Statement (CEVRD) e o o o
GETOP -- Collect and Identify Operation Code (CEVGP)
SUBOP -- Substitute into Operation Code Field (CEVSP)
CATOP -- String Substitution Control (CEVCP)
MIP -- Machine Instruction Operand Scan (CEVMP) . . .
BASCAY ~-- Basic Source Language Scan (CEVBS)
AGO/AIF -- AGO/AIF Instruction Scan (CEVGO)
ANOP ~- ANOP Instruction Scan (CEVAN) . . « ¢« « o« o«
CCW -- CCW Instruction Scan (CEVCW)
CNOP -- CNOP Instruction Scan (CEVCN)
CXD -- CXD Instruction Scan (CEVCX) « .
SECT -- Control Section Instruction Scan (CEVCT) .
COPY -- COPY Instruction Processor (CEVCY) « e e e
DC/DS -- DC/DS Instruction Scan (CEVDC)
EJECT ~-- EJECT Instruction Scan {(CEVEJ) . .« « « «
END -~ END Instruction Scan {(CEVND)« . . .
ENTRY -- ENTRY Instruction Scan (CEVEY)
EQU -- EQU Instruction Scan (CEVQU)
EXTRN -- EXTRN Instruction Operand Scan (CEVXN) o

iv

O ONNNNVMONOOESWWN R

GBLx/LCLx -- Global/Local Symbol Instruction Scan (CEVGL)

ICTL -- ICTL Instruction Scan (CEVIC) . ¢ . ¢« « « o o« o
ISEQ -- ISEQ Instruction Scan (CEVIQ) & « + « &
LTORG -- LTORG Instruction Scan (CEVLG) . « & 4 2 « « o« «
MACRO -- MACRO Instruction Scan (CEVMC) e e e e
MEND/MEXIT -- MEND/MEXIT Instruction Scan (CEVMX) « e e =
MNOTE -- MNOTE Instruction Scan (CEVMN)
ORG -- ORG Instruction Scan (CEVRG) e e e e e
PRINT -- PRINT Instruction Operand Scan (CEVPR) « e e e e
PUNCH -- PUNCH Instruction Scan (CEVPH)« « .
REPRO -- REPRO Instruction Scan (CEVRE) . .« ¢« « « &« &« + =
SETX -- SET Instruction Scan (CEVSE) « &« « « .
SPACE -- SPACE Instruction Scan (CEVCE) . . . « & & « « &
TITLE -- TITLE Instruction Scan (CEVTI) . . « . .
USE/DROP -~ USING and DROP Instructions Scan (CEVUD) « .
MACREF -- Macro Reference Processor (CEVRF)
MACDEF -- Macro Definition Processor {(CEVDF)
CSCAN -- Constant Scan (CEVCS) e e e e e e s
SSCAN -- String Substitution Scan (CEVSS) e« o & 2 o e o =
EVAL —-- Expression Evaluator (CEVEV)« . .
PSCAN -- Parameter Item Analyzer {CEVPS) <« . « .
EBIN -- Binary Self-Defining Term Generator (CEVGB) . . .
EDEC -- Decimal Self-Defining Term Generator (CEVGD) . .
EHEX -- Hexadecimal Self-Defining Term Generator (CEVGH)
ECHAR -- Character Self-Defining Term Generator (CEVGC) .
SLIT -- Scan for Literal Operand (CEVSL)
DLPM -- Dictionary Lookup and Put {CEVLP)
DEFSYM -- Define Location Symbol (CEVSY)
DIAG -- Diagnostic Message Processor (CEVDX)
DLKT -- Lookup Temporary Dictionary Item (CEVTK)
DPUT -- Put Item in Temporary Dictionary (CEVTP)
MACLKT -- Macro Name Dictionary Lookup (CEVLM}
MACPUT -- Macro Name Dictionary Put (CEVTM)
DLKM -- Main Dictionary Lookup (CEVKM) « . .
SECTION 6: PHASE ITA . . ¢ ¢ o o a o o« a o o = o o « « o o =
IntrodUction ¢ ¢ ¢ v @ 4« & o 4 4 4 4 e 4 o 4 s e s e = o o o
Conversational Control . . . ¢ & & ¢ o o o ¢ o « o « o o o o
Routines - « e s e s e e o e o
PHASEITA —-- Phase IIA Control (CEVPB) e o e o s e & = =

PARAMAC -- Macro Parameter Processor (CEVPM)

SECTION 7: PHASE TIIB v « « o o o o s o o s s o a s a o s a =
IntrodUction . ¢ ¢ ¢ o o « o o o « o = s« o a s« « © o s o o o
ROULINES & ¢ & & 4 4 o 4 o 2 « o a o s o o a s « 2 s o« =« o =

PHASE IIB -- Phase IIB Control (CEVPC) e e e s e e o s o
LOCATE -- Location Counter Assignment (CEVLC)
ORIGIN -- Location Counter Reset (CEVGN)
POOLIT -- Literal Pooling Processor (CEVPL)
EQUATE -- Assign Value to Name (CEVEQ) e e e e e e e e s
RESCON -- Resolve Conditional Alignment (CEVRS)

RESLIT -- Literal Resolution Processor (CEVRL})

SECTION 8: PHASE IIC v« o «o o o« « o o o« s o o o o« s o o o o «
INntroduction . & ¢ ¢ ¢ ¢ 4 4 + e o = o + % o e o o o o 2 e a
ROULINES & +& ¢ & o o o o« = w = o o o o w« o =« s o o a2 « « o =
PHASE IIC -- Phase IIC Control (CEVPD) s e e s e e e s
USET -- USING Table Processor (CEVUP) . . ¢ « o « « o o «
DRSET -~ DROP Table Processor (CEVDR) ¢ ¢ & o « =«

SECTION 9: PHASE III ¢ v ¢ ¢ o o o « o a o o o « s s o « s =

INtrodUCtion .« + 4 4 o 4 @ ¢ 4 e 4 4 e e o o o e e @ 2 o o

ROULINES ¢ & ¢ 4 ¢ o o o o o o o o = o o o o o s o o o« « o =
PHASE III -- Phase III Control (CEVPE) « « . .« .
SLLS -- Source Listing Processor (CEVSX) . N .« .
GATEW -- Interface with VISAM PUT or GTWRC Macro (CEVGW)
ENDPR -- Module Entry Point Processor (CEVEPY- .
MOPR -- Phase III Machine Operation Processor (CEVMO) o .

GETVAL --
USEVAL --
LIST -- O
CCWTXT --
PUTVAL --
DCTXT --
ADCON --
LITXT -~
CSDPR --

SECTION 10:

Introduction

Routines SR
PHASE IV
XREF -- C
STED -- S
ISDPR --
PMDLS --
ISpDsSA --

SECTION 11: F

SECTION 12:
Main Dicticna
Basic For
Absolute
Relocatab
DXD Item
Complex V
External
Control S
Entry Tra
Literal I
Transitiv
Local Var
Global Va
Sequence
Logical Order
Machine O
Macro Ins
Literal O
Constant-
Origin En
USING Ent
PRINT Ent
SET Entry
Alignment
Diagnosti
MNOTE* En
TITLE Ent
END Entry
General F
Global Sectio
Macro Name Di
Operation Cod
Machine Opera
Using-Registe
Macro Level D
Item Type
Comments
Source Line S
Pseudo-Dictio
Constant Item

Obtain Relocatable Value (CEVGV)
Compute Using Register (CEVUV)
bject Program Listing (CEVLS)
Phase III CCW Instruction Processor (CEVCC)
Relocatable Output Value Processor (CEVPV)
Phase II1I Constant Processor (CEVDP)
Address Constant Processor (CEVAD)
Phase III Literal Pooling Processor (CEVLT)
CSD Processor (CEVCD) « « o s o s a o e o =

PHASE IV o & o ¢ o 4 4 ¢ « 2 o o o« o« o o o =

s e e e & = & » e . . - 4 © @ o e &« & s e o

e s e = - - - .« e e s e e

-- Phase IV Control (CEVPF) e e e e e e e
ross-Reference Listing Processor (CEVXF) . .
ymbol Table Editor (CEVSR) « . .
ISD Processor (CEVSD) .« ¢ ¢ « o o o o o »
Program Module Dictionary Listing Processor
ISD List Processor (CEVSA) . « « « « o « o «

LOWCHARTS + o « o o« o o 2 o « s o o o o o &

TABLES, TABLE ENTRIES, LISTING FORMATS . . .

TY o o o o o o o o o o o o o o o o o« o o o &

MAL ¢ ¢ ¢ o o o o o ¢ &« o« o « » a o o o o =

Value Itel « « « o o o o« o o o« =« 2 o o o o =
le Value It€Mm .« o« + « o« o + o o o o s o o =
alue Item .« o « o o o o o o o » « s o o« o @
Name Item .« « « ¢ « o ¢ o o o a = « o o o
ection Item . ¢ ¢ &« ¢ 4 4 ¢ @ . e e e e e
iler Ttem .« & o o o o o o o o o o o o o o
==
e ITtem . . e o s 2 » e & e o = e« o s e « =
iable Symbol ILEOMS = v ¢« 4 o o o o« o « o o o
riable Symbol Items < . .
Symbol Ite€m .« ¢ ¢ ¢ 4 o 4 ¢ o o o o « o »

File (LOF) « e & o & @ s e ® s e o e o o =
peration ENtry « « « « o « o o o o o o o o o
truction ENtTy . « « « « o ¢« o o o o o o« +
Yigin ENtIY « ¢ ¢« o o ¢ o o o o o o o o o =
Definition Entry . . . « o ¢ o o ¢ v o o o« .
Lo o
TY o o o 2 o o o o o s « o o o o o o o « o o
LY o o o o = o o o o o s o o o o o o o o« o o

e ¢ ® e e & e e = e s« & s e 8 @« e ®» @« o s =

Specification Entry . . « « .« < ¢« . <« o . .
C Message Entry . . « ¢ ¢ o o o o 4 o o o
LEY & o a o 2« @ o 2 a s s o s o o o a o o o
TY o o o o o o o o o o « s o o o o s o o o a
ormat for LOF ENEYY o« o o « o o o o o o o «
n Macro Chain (GSM) <« « « o o« « « &
CLtiONAYY « « « o o o o e s o o o o o o o o o
e Table e e e s e s o a e e
tions Requirements Table « e e e e e e e .
r Tables « .+ « « o« 4 4 ¢« o o o o o o & o « =
ictionary (Temporary Dictionary)
S 4 e e e e e e e e e e e e e e e e s e e

e e ® e & e e e e =2 @ s & e e e e e e e e s

torage Control .« . . ¢ 4 ¢ ¢ 4 4 e e e e . .
nary Item for Current Location Counter . . .
Format e e e e e e e e

Virtual Memory Management Tahle (VMTABLE) e e e e s e e e
Source Program Listing .« .+ « « « o « & o o o o o o o o

Symbol Table
Cross-Referen
Internal Symb

Listing . .« ¢ v 4 v i e a4 e e e e e e e e
ce Listing . . . « o e o o e o e & o
ol Dictionary (ISD) Llstlng e e e e e e e a

(CEVMD)

.105
.106
.106
.107
107
.108
.109
.109
.110

<112
112
.112
112
112
-114
114
.115
.115

116

. 260
. 260
.260
.261
.261
. 262
. 263
. 264
.265
.266
. 266
. 268
.268
- 269
.272
.272
272
.273
. 273
. 274
.275
.275
.276
.276
. 277
277
.278
.278
.279
279
.280
.281
.281
.282
.283
.284
.285
.291
.292
.292
.293
. 293
.294
. 295
.296
. 297

Program Module Dictionary (PMD) Listing . . .

Object Program Listing . . e e e e e e e
Internal Symbol Dictionary (ISD) « e e e e
Heading e e e s e s e & s e+ e

Section Name Table e o & e o e s a o o @
Using Tables « « ¢ ¢ ¢« & « « .
Symbol Table e e e e e e s
Program Module Dictionary (PMD) « e e e e = .
PMD Heading . « « « « . e e« o e o 2 o
Control Section Dictionary (CSD) e e e« o
CSD Heading « ¢ ¢ o o « o o o o o s« o o o =
Definition Table ¢« « & . o« .
Reference Table « o o e o e o
Relocation Dictiocnary (RLD) e e e e e e e e
Modifier Pointer . . . « ¢« ¢ ¢ « o « o
Modifier . . < ¢ ¢ ¢« ¢ & ¢ 4 ¢ 4 e 4 .

RLD for Complex Definitions
RLD for Text External Reference
RLD for Text Internal Reference
Virtual Memory Page Table (VMPT)

SECTION 13: VIRTUAL MEMORY MANAGEMENT
Purpose of Virtual Memory Management Routines
How Virtual Memory Management Works

Routines . . s e e e e e e o s e « e @ -
VMGET -- Get VM Working Storage (CEVGM) .
VMFREE -- Free VM Working Storage (CEVFM)

VMCLEAN -- Assembler Cleanup (CEVCU) . .
Changing Storage Request Constants
Caution « ¢ ¢ o o o« o o o o « o o o o =« o
Overflow Diagnosis . . o « o o o « « « «

APPENDIX A: ASSEMBLER REGISTER USAGE

-

. .

APPENDIX B: RELATIONSHIP OF DOCUMENTATION MODULES TO

MODULES +« « ¢ ¢ ¢« o a o o o o o o o« a s o« o =

APPENDIX C: ASSEMBLER LIMITATIONS
Object Program . « « o o o o s o « = o o« «
PMD . . ¢ ¢ o v o o o o o« o o o « o o o o =
TeXt o o o ¢ o o« & o « o o o o s a o o = =
ISD ¢ o ¢ o @ 4 4 s 4 o a s & a 2 & o o o =
Source Statements . . ¢ ¢ ¢ 4 e e 4 4 e 4 e .
MACIOS o« o o o o o o « a s o o « a8 o o o =
Maximum Statement Length

APPENDIX D: ACRONYMS . . 4 & o o o « o « o+

APPENDIX E: LiST OF MAJOR TABLES AND WORK AREAS

ASSEMBLER ROUTINES . « o & ¢ « o « « o « o =«

INDEX o & @ ¢ ¢ 4 o o o o o o o o o & o o o =

. e

-

-

-

.

-

-

REFERENCED BY

. 297
.298
.300
.300
.300
. 300
.300
.304
.304
.307
.307
.309
.309
.310
.310
.310
.311
. 311
.311
. 311

.312
<312
.312
.312
.312
.313
-313
. 314
. 314
. 314

. 316

. 317

. 319
-319
. 319
. 319
.319
.319
.319
.319

.320

.335

.338

vili

ILLUSTRATIONS

Figure
Figure
only)

Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
LTORG,
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

viii

Relationship of TSS/360 assembler with outside world . .

TSS/360 assembler interface with LPC (to phase level
Overview of entire assembler function
LPC and assembler interface control flow
Main WOXK @reas . o« .+ 4 « o o o = o o o s s o o « «
Overview of Phase I function « ¢ o « « « «

Overview of Phase IIA function . .« ¢« ¢ o« « « « o« «
Overview of Phase IIB function . . .+ ¢« ¢« ¢« « « « «
Overview of Phase IIC function . « « « o« ¢ ¢ « « «
Overview of Phase III function . . . ¢ « « & « «
Overview of Phase IV function . . . s+ o+ « o o

Assembler function for machine 1nstruct10ns « o e e
Assembler function for macro instructions . . . < .

Assembler function for assembler instructions . . .
LPC calls and assembler phase control flow
Phase I routine relationships
Waiting stack format < < ¢ . . ¢

Diagnostic text locator entry format
Phase IIA routine relationships « .« . .« .

Phase IIB routine relationships
Phase IIC routine relationships
Phase III routine relationships « . . .
Phase IIV routine relationships
Cross-reference definition format © e o = % o o« «
Reference item format . . .« .« < ¢ ¢ 4+ 4 ¢ 4 o e o
Absolute value item (EQU) e o v e e s e .

Relocatable value item (DC, DS, CXD) e e e e e a a
Relocatable value item (machlne instructions, CCW,
DXD item e e o s e ® = ® s & e = o »
Complex value 1tem (EQU) e« s e e 4 o o o s e e o @
External name item (EXTRN) . ¢ ¢ ¢ ¢ o« o o o 2 o
External name item (V-type address constant) . . .

.« . .261
« o 261

- . 262
.« « <263
« « 263
- .« 264

. +265

Ccontrol section item {(CSECT, DSECT, COM, START, PSECT) .265

Entry trailer item . . - . . ¢ ¢ ¢ ¢ 4 ¢ 4+ e 4 4 .
Literal item .« . o o ¢ o v o o o o« o « o o o « o «
Literal trailer item . . ¢ ¢ ¢ o ¢ @ o« ¢ o o o « =
Transitive item e« & e e e & o
Subscripted global arlthmetlc 1tem o o o « o =

Subscript trailer for subscripted global arlthmetlc
Unsubscripted global arithmetic item
Subscripted global boolean item
Unsubscripted global boolean item « e s & o e o @
Subscripted global character item e e e e e e e e
Trailer item for subscripted global trailer item .

Unsubscripted global character item « e o s e s e
Machine operation entry e e e e e e e e e e e s
Macro instruction entry « ¢ e e e e 4 e 4 + e o =
Literal origin entry .« . « < ¢ ¢ ¢ ¢ o o « o o o
Constant-definition entry « « « « « « ¢ &« &« « o .« .
Origin entIY .« o o o o o = « o o a o = o« o o o o o

USING entry e e e e e & s s e e e 4 2 e o o e o e
PRINT entry « « o o « o« o o o o o o « a a o o = o =
SET entry « <« ¢« ¢ ¢ ¢ o o e o o o o a o« a o o o o o
Alignment specification entry
Diagnostic message entry <« ¢ « .+ o . .
MNOTE* entry .« « ¢ « o o s « o o o a o« o o s o« «

TITLE entXy . « + « o o o o « o o o o s o« o s & = =
END entry . . . B « o e 4 s e 2 & e a o o = s+ o
General format for LOF entrYy .+ .« « ¢ 4 e e 4 e o =
GSM entry format ¢« ¢ ¢ ¢ e 4 4 4 e« o o .
Macro name dictionary item . . . ¢ . .« ¢ ¢ + 4 . .

. . 2266
.« -« o267
. . 267
. « .268
e « <269
item. 269
e« « 270
« o 2270
e o« 270
. o 271
« o o271
.« <271
e . <272
e o« 2273
« « 2273
. . 278
« o <275
. o 275
« o« <276
e o 276
e o 277
« « 278
.« -« 278
. o «279
e o 279
« « 280
. « <281
. .« 281

Figure 62. Item format for operation code table entry282
Figure 63. Entry byte format e e e o e+ e e e e o = s e o o o o = 283
Figure 64. Using-register table format e e e e e s+ s e e e a « « 283
Figure 65. Layout of macro level dictionary . « « « « « &« « « « - .285
Figure 66. §&SYSLIST item e e e & % e e 4 e+ e e e s e e e o « « o 286
Figure 67. &SYSNDX item . . ¢ ¢ 4 ¢ o o o o« o o« = « <« .286
Figure 68. &SYSECT item . . ¢ o 4 ¢ o o o o o o = « o <287
Figure 69. ESYSPSCT iteM v o ¢ ¢ & o o o« 2 o o o o « o« « o« o o« o o 2287
Figure 70. §&SYSSTYP item e ¢ o o o o s e o o o o . . « 287
Figure 71. Parameter item (temporary dictionary)288
Figure 72. Sequence symbol item . . . ¢ + ¢ ¢ ¢ ¢« v ¢« ¢ &+ o o « . .289
Figure 73. Subscripted LCLA item . . « ¢« ¢ ¢ ¢ ¢ &« o o o« s = « o« « 2289
Figure 74. Unscripted LCLA item . « o« v 2 « o o =« o s o o » « « « 289
Figure 75. Subscripted LCLB item . . . <« &« o ¢ o 4 & 2 o« o o « + « 2290
Figure 76. Unsubscripted LCLB ite€m . . « ¢ « & o ¢« o o« « s « « « « 290
Figure 77. Subscripted LCLC item © e e e e e e e e e w e e & = « 2290
Figure 78. Unsubscripted LCLC item e e e 4 e e e o = s e s s e« « 2291
Figure 79. GBLA, GBLB or GBLC item in macro level dictionary - . <291
Figure 80. Source statement control information format e e e e e 2292
Figure 81. Simulated item for location counter references292
Figure 82. Constant item (address comstant)293
Figure 83. Constant item (other than address constants)293
Figure 84. Contents of VMGOTTEN block c e e e e e e . 2294
Figure 85. Contents of VMASSIGN and VMFREED blocks e e e e o = . 294
Figure 86. Contents of VMENTRYS DlOCK . « o & o o o « o o« « o« =« « 2294
Figure 87. Source program listing format e e e e e e e a4 = . s 2294
Figure 88. Symbol table listing format « ¢ « « . ¢« & . < . .295
Figure 89. Cross-reference listing format« « . .296
Figure 90. ISD Listing Format c e 4 e e e e o « o 2297
Figure 91. Program module dictionary listing format e s e e e = . 2299
Figure 92. Listing format for constants « .301
Figure 93. Listing format for machine and assembler instructions . .302
Figure 94. Assembler internal symbol dictionmary303
Figure 95. Program module dictionary entry format305

Table 1. LPC €aAll tO AC «v - v « 4 & a o o o o o o« s « o« o o« « o« « « 32
Table 2. Assembler control decision table . . . « . « . « ¢ ¢« « « « 32
Table 3. Phase I decision table (part . . « . « &« ¢« & o « « « « « = 39
Table 4. Standard variable information table . . « « . « . « « . . 81
Taple 5. Phase IIA decision table . . . ¢ ¢ ¢« 4 « 4« « + « « « « «» « 84
Table 6. Phase IIB decision table . . « ¢ ¢ ¢ ¢ o« o« ¢ ¢« « « « « « « 89
Table 7. Phase IIC decision table . .« ¢« « ¢« ¢ o« o « o =« o s o« « o« « 95
Table 8. Phase III decision table . . .« + ¢ ¢ ¢« « ¢ o « o« o« « =« « +100
Table 9. Phase IV decision table . . + .« ¢ ¢ ¢ ¢ ¢« o « o « « » « 113
Table 10. Directive code assignments . . « « o« « o « o o o o o « « 2282
Table 11. Machine instruction directive codes . . + « « o o« o « « 2282
Table 12. Virtual storage request constants +. . .315

ix

CHARTS

Chart AA. AC (assembler control) = CEVAC . . < + 2 @« o « o = « o =
Chart AB. PHASE I (Phase I master control) - CEVPA +. « «
Chart AC. STAN (statement analyzer) — CEVST . . ¢ ¢« o o« « & « o =
Chart AD. REED (obtain next source statement) - CEVRD . « o .
Chart AE. GETOP (collect and identify operation code) - CEVGP . .
Chart AF. SUBOP (substitute into operation field) - CEVSP
Chart AG. CATOP (string substitution control) - CEVCP
Chart AH. MIP (machine instruction operand scan)} - CEVMP
Chart AI. BASCAN (basic source language scan} - CEVBS
Chart AJ. AGO/AIF (AGO/AIF instruction scan) - CEVGO « «
Chart AK. ANOP and CCW (ANOP and CCW instruction scan) - CEVAN and
CEVCW . . ¢ ¢ ¢ ¢ o 4 « o o o o o o s s s o s «a s s« « o« = s = o « =
Chart AL. CNOP and CXD (CNOP and CXD instruction scan) - CEVCN and
CEVCX . . e o o e e s = o e s e s % e = e e ® a4 s e e w e e w e e
Chart AM. SECT (control section instruction scan) - CEVCT
Chart AN. COPY (COPY instruction processor) - CEVCY . . . « + «
Chart AO. DC/DS (DC/DS instruction scan) - CEVDC . . . « « « « « &
Chart AP. EJECT and END (EJECT and END instruction scan) - CEVEJ
and CEVND « & ¢ ¢« 4 v 4 2 e « o« 4 s o o s o o o a s o « « « « o « =
Chart AQ. ENTRY and EQU (ENTRY and EQU instruction scan) - CEVEY
and CEVQU . . ¢ ¢ 4 ¢ 4 4 o o 4 o s o o« a o « 2 « s s a s « « o« o« =
Chart AR. EXTRN (EXTRN instruction operand scan) - CEVXN
Chart AS. GBLx/LCLx (global/local symbol instruction scan) - CEVGL
Chart AT. ICTL (ICTL instruction scan) — CEVIC . « . < « & « & « «
Chart AU. ISEQ and LTORG (ISEQ and LTORG instruction scan) - CEVIQ
And CEVLG <« & « ¢ @ « 2 « = 2 o s s o o a a « o a o o o s s a o o =
Chart AV. MACRO and MEND/MEXIT (MACRO and MEND/MEXIT instruction
scan) — CEVMC and CEVMX 4 v o « o o o o o o o o« o o o o« » 4«
Chart AW. MNOTE (MNOTE instruction scan) - CEVMN
Chart BA. ORG and PRINT (ORG and PRINT instruction scan) - CEVRG
And CEVPR &« &+ « ¢ + o o = « 2 a 2 s s s o s 2 o s a s s s o o o« o o
Chart BB. SETX (SET instruction scan) - CEVSE « . .
Chart BC. SPACE and TITLE (SPACE and TITLE instruction scan) -
CEVCE and CEVTI - - e e e e o e o s+ 4 a e e 3 + e = o
Chart BD. USE/DROP (USING and DROP instruction scan) - CEVUD . . .
Chart BE. MACREF (macro reference processor) — CEVRF . . « . « . «
Chart BF. MACDEF (macro definition processor) - CEVDF . .,
Chart BG. CSCAN (constant scan) - CEVCS . . + + ¢ « ¢ o o o« <« =+ =
Chart BH. SSCAN (string substitution scan) - CEVSS
Chart BI. EVAL (expression evaluator) — CEVEV . . . ¢ & & o o o «
Chart BJ. PSCAN (parameter item analyzer) - CEVPS - . .
Chart BK. EBIN and EDEC (binary and decimal self-defining term
generator) - CEVGB and CEVGD« . . e e e e s
Chart BL. EHEX and ECHAR (hexadec1ma1 and character self—deflnlng
term generator) - CEVGH and CEVGC- . e e e e e e e e .
Chart BM. SLIT (scan for literal operand) - CEVSL e e e e s e e .
Chart BN. DLPM (dictionary lookup and put) - CEVLP
Chart BO. DEFSYM (define location symbol) - CEVSY
Chart BP. DIAG (diagnostic message processor) - CEVDX . . . <« . .
Chart BQ. DLKT and DPUT (lookup and put in temporary dictionary
item) - CEVTK and CEVTP- . . « e e e s .
Chart BR. MACLKT and MACPUT (macro dlctlonary lookup and put) -
CEVLM and CEVTM <« ¢ & ¢« &« &+ o o o o = o o = c e 4 e e o 4 e o o
Chart BS. DLKM (main dictionary lookup) - CEVKM © o o %« o e o o @
Chart BT. PHASE IIA (Phase IIA control) = CEVPB . ¢ 4 ¢ o« « « « =
Chart BU. PARAMAC (macro parameter processor) - CEVPM
Chart BV. PHASE IIB (Phase IIB control) - CEVPC« « « « o« =«
Chart BW. ORIGIN (location counter reset) - CEVGN
Chart CA. POOLIT (literal pooling processor) - CEVPL . . « « . . .
Chart CB. EQUATE (assign value to name) - CEVEQ . « +« ¢ « « o« « =
Chart CC. RESCON (resolve conditional alignment) - CEVRS
Chart CD. RESLIT (literal resolution processor) - CEVRL

<117
.118
.119
.123
-125
<126
-127
-128
.131
.134

.135

-136
.137
.138
-139

-140

<141
.143
.144
.145

.146

. 147
.148

.149
-150

.151
.152
.153
.155
.156
.160
.164
.172

.173

174
.175
.176
177
.178

.180

.181
.182
.183
-184
.187
.192
.193
.194
-196
.198

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
CEVMD
Chart
Chart
Chart
Chart

CE.
CF.
CG.
CH.
CI.
CJ.
CK.
CL.
CM.
CN.
CO.
CP.
CO.
CR.
Cs.
CT.
CuU.
Ccv.
CW.
DA.
DB.
DC.
DD.
EA.
EB.
EC.

PHASE IIC (Phase IIC control) - CEVPD .
USET (USING table processor) - CEVUP . .
DRSET (DROP table processor) - CEVDR . .
PHASE III (phase III control) - CEVPE .
SLLS (source listing processor) - CEVSX

o

GATEW (interface with VISAM PUT macro) - CEVGW

ENDPR (module entry point processor) - CEVEP

MOPR (Phase III machine operation process
GETVAL (obtain relocatable value) - CEVGV
USEVAL (compute using register) - CEVUV
LIST (object program listing) - CEVLS .
CCWTXT (Phase III CCW instruction process
PUTVAL (relocatable output value processo

DCTXT (Phase III constant processor) - CEVDP .

ADCON (address constant processor) - CEVA
LITXT (Phase III literal pooling processo
CSDPR (CSD processor) - CEVCD
PHASE IV (Phase IV control) - CEVPF . .
XREF (cross-reference listing processor)
STED (symbol table editor) - CEVSR . . .
ISDPR (ISD processor) — CEVSD
PMDLS ({(program module dictionary listing
ISDSA (ISD list processor) - CEVSA . . .
VMGET (get VM working storage) - CEVGM .
VMFREE (free VM working storage) - CEVFM
VMCLEAN (assembler cleanup) - CEVCU . .

or) - CEVMO
or) - CEVCC
r) - CEVPV
D. <« .« . .
r) - CEVLT
- CEVXF . .
processor)

-.199
.200
.201
.202
.208
.210
.211
.212
.223
. 224
225
.231
.233
.235
.238
. 242
. 243
.246
. 247
.2u48
. 249

.250
. 255
. 256
. 257
. 259

PURPOSE OF THE TSS/360 ASSEMBLER PROGRAM

The purpose of the TSS/360 assembler
program is to produce, from source programs
written in the assembler language, machine
language programs in a format suitable for
operation under the time sharing system.
Outputs from the assembler program are:

e Source program listing

e Program Module Dictionary

e Program Module Dictionary listing
e Cross~-reference listing

e Symbol Table listing

e Internal Symbol Dictionary

e Internal Symbol Dictionary listing
e Object program listing

e Binary Text

e External Name List

SYSTEM ENVIRONMENT

The initial request by the user to
secure the assembler is processed by the
command analyzer and executor (CA&E), which
calls the language processor control (LPC).
The language processor control calls the
assembler, whose modules, resident in Ini-
tial Virtual Memory, are linked during
startup.

As shown in Figure 1, the assembler
makes use of:

¢ Language processor control to supply
user program source statements.

e Symbolic library service routines to
secure library definitions.

e Data management services to process
output list data sets.

The assembler is called by and exits to
the language processor control {(LPC). The
GETLINE function of LPC receives source-
language statements from a system input
device and directs them to the assembler
for processing. Conversely, the assembled
program and diagnostic messages are routed
from the assembler to the same system out-
put device via the PUTDIAG function of LPC.

SECTION 1: INTRODUCTION
gr_._._ S
Commanr Part of
———— I // Analyzer Command |
o ‘,K”/ & Executor | System !
Input,/Output
Device q—ki l ? i
| . Language |
— Processor
' Control |
I I
’ VISAM Data

Library
Retrieval
Routines

Management
Service
Routines

1 TSS/360 Assembler
>

v 1

GETMAIN and
FREEMAIN
Service
Routines

Figure 1. Relationship of TSS/360

assembler with outside world

In order to process COPY statements and
macro instructions not defined by the user,
the assembler searches user and system
macro libraries. The library retrieval
routines are used to accomplish this
function.

An object program listing is automatic-
ally created for the user unless he stipu-
lates otherwise. The source program list-
ing, program module dictionary listing,
cross-reference listing, symbol table list-
ing, and the internal symbol dictionary
listing must be requested by the user in
his ASM command. Both the conversational
and nonconversational user can choose
between having the selected listings
printed immediately on SYSOUT, or having
them stored in a VISAM list data set. The
default for conversational is a listing
data set; for nonconversational the default
is SYSOUT. 1If entered in a VISAM data set,
the user's requested listings become mem-
bers of a generation data group containing
two generations. The generation data group
is established the first time the module
name is encountered. The most current
listing data set (relative 0) and the last
previous listing data set (relative -1) are
always maintained. PRINT LIST.module-name.
generation-number must be issued by the
user when he desires the data sets to be
printed.

Section 1: Introduction 1

Input/
Output

Device Diagnostics
and Assembled
Program
Source
Statements
Language
Processor
Control
. "
TSS/360 Assembler
Source Statements Assembler Assembled Program Listings
Master
. Control
i Request for additional
i Source Statements; Diagnostics
" Interface
Continve
Return to LPC Assembly
Machine
END Language
Statement Text
Phase T Phase T A Phase IL B Phase II C Phase I Phase IV
Macro Location o Machine Postn
Synh}x' Instruction Counter 'RTCQ';Gm. Instruction Processin
Analysis Processing Assignment sordering Synthesis 9

Figure 2.

Virtual storage dynamically acquired by
the assembler is secured by the GETMAIN
macro and released by the FREEMAIN macro.
These macros are issued by special virtual
memory management routines.

ORGANIZATION AND OVERALIL FUNCTION OF THE
ASSEMBLER

As shown in Figure 2, the assembler is
divided into four major components or
phases, plus an assembler control module
which interfaces with LPC.

The principal function of any assembler
is to translate computer instructions writ-
ten in a symbolic language into the more

TSS/360 assembler interface with LPC (to phase level only)

abstract, numeric language of the computer
itself. This is accomplished principally
by allowing alphameric symbols of the pro-
grammer's choice to represent the numeric-
ally addressed storage locations in the
computer. The assembler's primary task is
to determine which symbols have been
defined, according to the rules of the
assembler language, assign a corresponding
machine-language value to the symbol, and
to substitute the machine-language value
whenever the symbol is used in the con-
struction of a machine-language
instruction.

In addition to this principal function,
most assemblers also:

e Provide for the specification of numer-
ic and alphameric data constants.

e Permit one symbol to be defined in
terms of others.

¢ Recognize a vocabulary of control
statements that apply to the assembly
process itself (rather than the machine
program under construction).

» Allow predefined sequences of source
language statements to be generated and
modified through use of a higher-level,
machine-independent language (a "macro
instruction®™ language).

The System/360 Assembler language con-
tains all the above features; the method
and order of their processing by the TSS/
360 assembler is described in general terms
below.

Syntax Analysis

In order for the assembler to interpret
a statement without ambiguity, the pro-
grammer must follow certain rules in writ-
ing the source statement with regard to
separation of fields, placement of symbols
and delimiters, proper choice of mnemonic
operation codes, and the like. The some-
what mechanical inspection of the source
statement to determine whether the rules
have been observed is generally called
"syntax analysis,"” and is the first opera-
tion performed by the assembler on each
statement. The analysis is achieved by a
character—-by-character scanning of the
incoming statement; since this method of
analysis is time consuming, the assembler
usually converts the information that has
been extracted from the statement into a
more convenient internal form and places it
in one of the various tables that are kept
for this purpose. The principal tables are
one that contains a condensed summary of
each statement (the Logical Order File or
LOF), and one that contains the name and
characteristics of each programmer-defined
symbol (the symbol table or “"dictionary").

The definition of a symbol must be known
to the assembler before it can construct a
machine instruction that requires the value
of the symbol. However, the rules of the
language permit a symbol to be referred to
before it is defined. 1If the assembler
attempted to construct the machine-language
program concurrently with syntax analysis,
it would find itself frequently unable to
do so for lack of information about symbols
that had not yet been encountered. For
this reason, construction of machine
instructions is postponed until the entire
source program has been syntactically ana-
lyzed and all symbols have been entered
into the dictionary.

Macro Instruction Processing

A macro instruction is the invocation of
a predefined sequence of source statements
through use of a mnemonic coperation code
that has been declared for that purpose.
The mnemonics of macro operations may be
specified by the programmer himself, along
with the sequence of statements that the
operation represents, or, failing that, by
the table of contents of a library of pre-
defined macro operations that is present as
part of the operating system. In either
case, the assembler's dictionary of symbols
cannot be considered complete until the
sequences of statements represented by
macro instructions have been syntactically
analyzed.

In theory, macro instruction sequences
may be processed either:

s Before the user's statements (by
searching the source program only for
macro instructions and by merging their
expansion into the user's statements).

e Concurrently with the user's statements
(by incorporating the expansion into
the program as encountered).

s After the user's statements. The first
method is used by other System/360
assemblers. The TSS/360 assembler,
however, is committed to producing dia-
gnostic messages for syntax errors for
the benefit of a terminal user, and
this requirement forces the assembler
to process the user's statements first,
as received.

Because system macros require the attri-
butes of the user's symbols, and because
there is no ordering rule (requiring the
user's symbols to precede system macro
calls), expansion of macros concurrently
with the user's statements is also ruled
out. Macros must be expanded by a second
phase (Phase IIA) of the assembler after
the user's statements have been syntactic-
ally analyzed.

Expansion of source statements from the
predefined sequence in the macro definition
involves the recognition of a class of sym-
bols (variable symbols and parameters)
which are independent of the symbols used
in machine language statements. Since
these symbols are used only temporarily
(and may be used repetitively with dif-
ferent meanings), it is to the assembler's
advantage to maintain them in a dictionary
which is separate from the one used for
machine-language symbols.

In addition, the expansion of one macro
instruction frequently results in the invo-
cation of some "inner"™ or "nested"™ macro

Section 1: Introduction 3

instruction. The rules of the macro lan-
guage are such that it is desirable for the
assembler to maintain a separate dictionary
for each nested macro level. The rules of
the macro language are also such that once
the instructions have been generated for a
given macro level, the dictionary for that
level is no longer required and can be dis-
carded, since symbols at each level are
independent. For this reason, macro level
dictionaries are constructed linearly in
working storage, and maintained by push-
down-stack logic.

Since the definitions of system macros
are not part of the original user's source
language input, they must be retrieved from
a library and added to the source program
at the appropriate time. Since library
retrieval is time consuming, it is desir-
able to avoid retrieving a macro unneces-
sarily, and to retrieve each definition
only once. This is achieved by performing
library retrieval during the Phase IIA of
the assembler; at this time those "nested”
macro calls that are to be bypassed because
of conditional assembly techniques are dis-
carded, thus preventing their definitions
from being unnecessarily retrieved.
Moreover, a record is kept (in a special
dictionary of macro names) whenever a
definition is brought in; the definition is
condensed into the internal form common to
all statements, and need not be retrieved
again should the macro instruction be rein-
voked. This technique prevents multiple
retrievals of the same definition.

Assignment of Location Counter Values

Once the additional statements generated
by macro instructions have been inco-
rporated into the source program, all poss-
ible and potential definitions of symbols
are present in the dictionary. Before
machine-instruction synthesis can begin,
however, the (relative) machine address
which each symbol represents must be deter-
mined. The value of the machine-address is
arrived at by maintaining a location count-
er for each control section in the assemb-
ly. The counter is set to zero initially
and is increased at each statement by the
number of bytes of machine storage repre-
sented by the preceding instruction, con-
stant, or storage reservation. Since macro
instructions may generate instructions,
constants, and storage reservations, the
location counter cannot be assigned until
macros have been expanded.

In those assemblers which expand macros
first, the location counter can be assigned

during syntax analysis; since the TSS/360
assembler defers macro expansion until
Phase IIA (for the reasons noted above),
location counter assignment is also
deferred. For a better paging profile and
ease of maintenance, Phase IIA is limited
solely to macro expansion activity, and a
separate phase, IIB, is used to perform the
location counter assignment. As a bypro-
duct of its principal activity, Phase IIB
also resolves expressions that are depen-
dent upon location counter values, and
collects literal constants into literal
pools and assigns location counter values
to them.

Program Reordering

It is a requirement of TSS/360 object
program modules that, to facilitate load-
ing, all text and relocation information
pertaining to a given control section be
present contiguously in the object module.
It is also a language rule that control
sections may be written discontinuously in
the source program, and that certain state-
ments in the language (USING, DROP, LTORG,
PRINT, etc.) have effect over a range of
statements in the original source order,
irrespective of the number of different
control sections represented by that range
of statements.

The TSS/360 assembler is therefore faced
with a reordering requirement. It must
collect the scattered portions of a given
control section, without losing the effect
of certain statements that are control sec-
tion independent. It is the function of
Phase IIC to determine where each control
section has been broken into discontinui-
ties, and to prepare for each such break a
table summarizing the effects of those
statements that are independent of control
section order. This analysis enables the
machine instruction synthesis phase (Phase
III) to collect the portions of a given
control section and produce contiguous out-
put text in the program module.

Graphically, Phase IIC transforms a pro-
gram from:

f R

{ Section 1 | USING-1
F . 1

i Section 2 |

b { USING-2
| Section 1 |

I -1

r =

i Section 3 |

! 1 USING-3
i Section 2 |

L 4

ﬁ
2

T 1

| Section |} USING-1
e

| 1 [} USING-2
i

t i

| Section | UsING-1
\I- - - - - - - - - - -|} USING-2
| 2 |} USING-3
! 1

| {} USING-2
| Section 3 |} USING-3
L 3

Machine Instruction Synthesis

When the reordering requirements have
been resolved, the assembler is ready to
begin the construction of machine-language
instructions from their source language
equivalents. Phase III performs this syn-
thesis, working from a list of control sec-
tions in such a way that each control sec-
tion, however discontinuously written, pro-
duces contiguous output text and relocation
information for the loader. An expression
evaluation routine, using information
stored in the dictionary, resolves each
machine-instruction operand to either a
relocatable or absolute value. Appropriate
text and relocation information is entered
into the object module. Source and object
program listings are a byproduct of this

phase.

Post—-Processing

When the assembly is complete and the
object module has been produced, a series
of post-processing routines may be called
to operate upon the dictionary and other
information left by preceding phases to
produce sorted listings of the dictionary,
cross-references to symbols, and analytical
printouts of the various output modules.
For convenience these routines are
collected into Phase IV of the assembler.

ASSEMBLER FUNCTIONS

Figure 3 is an overview which depicts
the function and output of each of the four
major assembler components. Note that
Phase II is divided into three discrete
parts, Phases IIA, IIB, and IIC.

A brief description of each phase func-
tion is given below and a more detailed
description is given in succeeding chap-
ters. For ease of understanding, the
assembler control module is described last
in this section.

Assembler Control Routine (Interface with
LPC)

The assembler has three entry points
from the language processor control (LPC).

Each entry point is to a location in the
assembler control routine (CEVAC), from
which control is transferred to the
assembler location where the function is
accomplished. Similarly, the two exits
from the assembler to the LPC are also via
the assembler control module.

The three entry points to the assembler
control module are: +to Phase I control
(CEVPAA, Initiation), to Phase IIB control
(CEVPABR, Continuation), and when abnormal
termination is indicated (CEVPAZ,
Early-end).

The two entry points of the LPC are:
when the next line is desired, and when a

diagnostic message is to be printed.

Figure 4 shows the flow of control
between the LPC and the assembler.

The user informs the LPC an assembly is
requested, through the command language.
The LPC then solicits the necessary operat-
ing parameters and enters the assembler at
Phase I control for initialization. Com-
mand System PLM, GY28-2013, contains
details of this operation.) Then the
assembler enters the LPC to obtain the
first source statement, and the LPC returns
the call with the statement. The assembler
processes the source statement and enters
the LPC for the next statement. In an
error-free assembly, this process is con-
tinued until an END statement is read, at
which time entry is made from Phase I con-
trol directly to Phase IIA control.

Upon completion of Phase IIA, control is
transferred to the LPC. If the assembly is
in conversational mode, the LPC gueries the
terminal user whether to continue with the
assembly, or correct the source program and
restart.

e If the user wishes to continue, Phase
IIB control is entered and the assembl-
er proceeds to completion without
further conversational interaction.

e If the user makes corrections and
wishes to restart, the LPC reenters
Phase I control to restart the
assembly.

The flow described above is altered au-
tomatically when the LPC determines a
source line has been corrected, or the
assembler discovers a source statement
error.

When the assembler discovers an error in
conversational mode, it calls the LPC with
a diagnostic message, and LPC transmits the
message to the system device (SYSOUT). LPC
returns the call, and the assembler again
calls the LPC for the next source
statement.

Section 1: Introduction 5

aanbtyg

"€

UOTIDOUNT I9TqUWISSE DITIUS JO MITAISAQD

Input/Output
Device

Language Processor
Control (LPC)

.

Transmits source
statements to ossembler
Trangmits diagnostics
Stows object module

Asyambler Master
Control (AC)

s Provides an interface
between LPC and
assembler

Phase T

Phase T A

AC 1 LPC] AC !

.

Obtains needed
working storage
Copies source
language line into
storage - maintains
sequence

Establishes partially
encoded version of
source statemants
Analyzes syntax;
produces error
diagrostics

Scans shatement
operands; praduces
diagnestics (conv'!
mode}

Enters skeletal
definitions of
symbols in
dictionary

Processes user macro
definitions

Retains statements
skipped

Adds statements
generated by
unconditional branch
statements fo logical
order

Keeps a record of
macro instructions,
global section name
charges, PRINT,
USING, DROP,
LTORG, ond ENTRY

instructions

———

|
|
{
|
|

Original source
statements - stacked
Main Dictionary
Glohal Section
Macro (GSM)
Chain

Logical Order

File [LOF)

—

« Exoands all macro
instructions

Searches for undefined
symbols; indicates
errors (conv'l made)

User may continue assembly with
no further conversational
interaction, or

» User may correct source program
and restart assembly at Phase 1

|

LOF - additions
Main Dictionary ~
additions

o GSM Chain -
additions and
deletions

Macro Definition
Statements for library
macros=stacked

. M

Phose TL B

» Processes literals and

enters them n symbol
table

Processes all EQU and
DC statements not
praviously resolvable
Computes location
counter value for all
symbols

« Page Usage Table

Phase 1T C l

Phose TII |

Phase IV

Tabulates status of
PRINT Control,
LTORG numbers, and
USING registers upon
oceurrence of control
section

Processes ENTRY
statements

1

o Using Register Tables

» GSM Chain -
additions and
deletions

T —

.

Controls final
processing of
instructions
Organizes program
by control sections
Produces binary text
and relocation
information

A

Source Language
Listing

Object Program
Listing

Program Module
Dictonary (PMD)
Text

External Nome List
G SM Chain -
deletions

« Calls post processors
to produce selected
output options

 Cross Reference Listing

o Symbol Table Listing

o lnternal Symbol
Dictionary (1SD)

o PMD Listing

o ISD

Call {“

Assembler

Request
Next Line

e

Get
Line (LPC)

%
Return with 1 e o
Next Line - Phasel
: and A
i

o

Put
Diagnostic

{LPC)

— Tr.onsm\#. -
Diagnostic -

Assembler
Return| Control - :
to LPC| {initiation
Return) = =

Return to
Assembler

Language
Processor
Conirol
{LPC}

kﬁémb!er i
Control
{Continuation

Entry/Return}

Enter
Phase 16

and Continue

Phases 11 B,
IC, Il and [V

Return

to LPC

|

o Abnormal Termination {Early End) not Shown

® Shaded Areos: Assembler

LPC and assembler interface
control flow

Figure 4.

If the LPC determines a source line has
been corrected, it enters Phase I control
with a special return code and the lowest
line number to which corrections have been
made. If the line number that LPC returns
is greater than that of the next to last
statement processed, the assembler pro-
cesses the corrected statement and requests
the next source statement from the LPC. If
the line number is not greater than that of
the next to last statement processed, the
assembler reinitializes itself and starts
over again by requesting the first source
statement from the LPC.

If the assembly is interrupted by an
Attention interruption, and a call is made
to the LPC, the early-end entry of the
assembler cleanup routine is called to
release working space in virtual storage.
Return is then made to the LPC.

USER VIRTUAL STORAGE REQUIRED BY ASSEMBLER

WORKING STORAGE AREAS

The TSS/360 assembler operates in and
uses virtual storage as the communication
medium for most of its input and ocutput
data. When the ASM command is given, LPC,
the assembler, and all subprograms required
by them are loaded into the user’s virtual
storage. In addition, the assembler

requests virtual storage dynamically for
temporary and working storage.

Virtual storage is requested with the
GETMAIN macro instruction. Assembler rou-
tines requiring working storage do not
request it from the system directly; they
go through the assembler's own management
routines, which minimize the number of GET-
MAIN and FREEMAIN instructions issued.
(This is discussed in detail in Section
13.)

The amount of wirtual storage area
requested by various assembler routines is
controlled by constants in CSECT CEVPAS.
Privileged system programmers (authority
code 0) may change these constants to
accommodate an exceptionally large assemb-
ly, such as assembling another language
processor. (Refer to "Changing Storage
Request Constants®™ in Section 13.)

If the assembler overflows its work
areas, it will dynamically request addi-
tional virtual storage and continue proces-
sing if the storage is both available and
addressable,

The three main work areas obtained
dynamically by the assembler are outlined
in Figure 5.

Work Area 1

The first page of Work Area 1 is
reserved for pointers, work areas, and com-
munication cells used between modules.
During Phase IIA a part of Work Area 1 is
used to store the macro level dictionaries
needed for macro expansion. During Phase
IIB the macro level dictionaries are over-
laid with page usage tables. During Phase
IIC using-register information overlays the
page usage tables developed in Phase IIB.
During Phase III the unused portion of Work
Area 1 is used to hold sort keys for the
cross-reference listing. The Phase III
LIST routine uses the Operation Code Table
as a work area for editing generated state-
ments for the object listing.

Work Area 2

The first page of Work Area 2 also con-
tains module cells, pointers, and communi-
cation cells used between modules. The
second section is used for the main dic-
tionary, the logical order file, and a
secondary information list required for
macro expansion (global-section-macro
chain). Each type of information is struc-
tured as a list and is used as an open-
ended working storage. During Phases I and
ITIA continued lines are carried in this
area. During Phase III the previously
unused portion of Work Area 2 is used as
working storage for the construction of

Section 1: Introduction 7

various elements of the control section
dictionaries.

Work Area 3

During Phase I Work Area 3 is used to
hold incoming source statements for
reference in later phases. During Phase
IIA this area is used to hold statements
generated by macro expansion.

PMD Text, ISD and External Names List
Storage Areas

In addition to the three work areas

described above, the assembler secures four

additional virtual storage areas. The
first area is for the PMD minus its asso-
ciated text. Its size is equal to the
number of binary text pages divided by

WORK AREA 1 WORK AREA 2

eight, plus two pages. The second area is
equal to the number of pages required to
contain the output binary text. The third
area is for the ISD (if requested); it
equals the number of pages in Work 2. The
fourth area secured is for the external
name list associated with the PMD. The
locations of all four areas are passed to
the LPC upon assembler completion.

CHARACTERISTICS OF ASSEMBLER ROUTINES

There are no hardware configuration
requirements for any of the assembler rou-
tines. Most of the routines are reenter-
able, nonresident with respect to the sys-
tem, nonprivileged, and closed; those that
are not are specified as being so in the
individual routine descriptions.

WORK AREA 3

Static Working Storage

Static Working Storage

Hash Table for Symbol Table

Hash Table for Macro Names

Macro Names)

Macro Generated Statements

Original Source Statements

Macro Generated Statements

Cross - Reference ltems

LIL: IT:
Operation Line i1
Code Table Edit Symbol Table (Including
L Logical Order File
Continuved Lines
GSM Chain
o-A: -8 I-c:
Macro Page Using -
(Local) Usage Register Continued Lines
Level Tables Tables
Diction 4
aries
Im: m

C S D Working Storage

Figure 5. Main work areas

PHASE I FUNCTIONAL DESCRIPTION

Phase I is called by the language pro-
cessor control program (LPC). It is the
function of LPC to supply line-image items
to the assembler, cone at a time, upon re-
quest. The source language line is then
copied by the assembler into its own work-
ing storage to facilitate references in
subsequent phases and to serve as the input
data for a source-language listing, when
such is requested.

Since the assembly language permits
transfers of assembler controcl and itera-
tion over a set of source statements, the
logical order of the assembly may be dif-
ferent from the sequential order. A prin-
cipal function of Phase I is to establish a
partially encoded version of the source
statements (the logical order file) to
establish the logical order of the
assembly.

An overview of Phase I function is shown
in Figure 6. The numbered paragraphs in
the following description correspond to the
numbered boxes in Figure 6.

1. Upon receiving control, Phase I calls
VMGET to acquire two areas of virtual
storage for its own working storage
requirements. Initial and default
values and beginning addresses for
variable storage are inserted into the
static portion of working storage.
Static working storage is also modi-
fied as a result of the operating
parameters transmitted by the LPC.
Having established the source program
data set as the current input source,
control is transferred to the state-
ment analyzer for the program to be
processed.

2. The statement analyzer controls the
processing of each source language
statement in order by using a collec-
tion of specialized subroutines. It
produces the symbol dictionary, the
global-section-macro (GSM) chain, and
the logical order file (LOF) from
which Phase III produces the output
program module. It has two modes of
operation: normal and bypass. In the
normal mode, source lines are obtained
and processed to produce some change
in the information compiled by the
assembler to further the production of
an object program. The bypass mode is
initiated by the processing of an AGO

Section 2:

SECTION 2:

ASSEMBLER FUNCTIONAL DESCRIPTION

or true AIF command whose transfer
point is a sequence symbol that is as
yet undefined. 1In this mode, source
lines are merely bypassed until a line
containing the desired sequence symbol
is encountered, at which point normal
processing is resumed.

REED is called by the statement ana-
lyzer to obtain the next source state-
ment. REED provides the interface
with LPC to obtain source lines. It
concatenates continuation lines to
provide the statement analyzer with a
continuous statement, performs
sequence checking, and switches the
source of input statements between
LPC, macro definitions, and COPY-
library statements, as required. REED
obtains source lines directly from the
language processor control (LPC) or
from a library when obtaining a macro
definition to satisfy a macro instruc-
tion. During Phase IIA the principal
source of input is the macro expansion
mechanism rather than the LPC.

Regardless of its origin, a source
line may be in either keyboard or card
image format and a source statement
may comprise multiple source lines,
through the statement continuation
capabilities. In obtaining the next
source statement, if REED encounters a
source line that is continued, all the
portions of the statement are combined
into a single continuous line that is
constructed in assembler working
storage. REED is also responsible for
performing and commenting diagnostic-
ally upon failures in the sequence
check demanded by the prevailing ISEQ
requirements.

REED provides the capability to
furnish the conversational user with
the ability to correct or delete the
last source statement presented to the
processor without incurring restart of
the entire assembly. It records the
internal status of the assembler as
each source statement is completed.
Thus, at any time prior to commencing
the processing of the next statement,
the effect of the current statement
can be erased by replacing the current
status information with the previous
status, and by detaching from 1inkage
chains any dictionary items con-
structed since the previous status was
recorded.

Assembler Functional Description 9

o —F—

CEVPA

Macro

Phase I Control Reference

@ !
STAN ®

MACREF

Statement
Analyzer Indicate Presence

of Macro Ref

(:) REED

Get Next

Source Line

CEVPA @

End

DEFSYM

Create Dict
Item if Symbol
in Name Field

SUT

Batch Yes

Mode Scan Operand

for Literals

No

®
Individual

Routines for
Assembler or
Machine Inst

Phase 1 Control

of Source
fnput
?

To Phase TA

Figure 6.

10

Macro
Definition

MACDEF

Process Prototype
or Model Stmt

CATOP

Perform String
Substitution

Machine

Instruction

Overview of Phase I function

REED initializes the construction
of a logical order file (LOF) entry,
by setting the entry to zero. The LOF
entry, which represents the encoded
form of the statement, is built at a
temporary location. REED calls GETOP,
which determines the required length
of the LOF entry, based upon the type
of statement being processed. GETOP 4.
isolates the operation mnemconic (via
SUBOP) and identifies it (by doing a
binary search on the operation code
table) as a machine operation code,

Set Up Encoded
Form of Statement

Was

This an

End Stmt
?

CEVPA

Phase T Control

To Phase 1A

assembler instruction, user macro, or
library macro. The directive code,
which classifies the statement as to
type of machine instruction or
assembler mnemonic, and the operation
code are placed in the LOF entry by
GETOP.

If the end of source input in a pre-
stored data set has been encountered,
and no END statement was provided, the
LPC will supply an END statement. A
diagnostic is issued stating that the

END card is missing. The LPC will
return to the assembler, which will
process the END statement. Because
the END statement signals the end of
the phase, control is then passed to
Phase IIA.

If the current statement is either a
macro prototype statement or a model
statement, the macro definition pro-
cessor (MACDEF) is called. If the
statement is a prototype, a macro name
item is constructed in the main dic-
tionary. The operation code is looked
up in the operation code table and, if
a match is found, a diagnostic is
issued warning that an operation mne-
monic has been redefined by a macro
definition.

The redefinition indicator is
turned on in the matching operation
code table entry. The dictionary item
for the macro name is completed by
MACDEF by inserting the location of
the LOF entry for the prototype line
and the location of the prototype line
itself. The former is used by the
macro reference processor (MACREF) in
initializing the REED soubroutine to
read the definition when the macro is
expanded. The latter is used by the
PARAMAC routine in Phase IIA to estab-
lish a temporary macro-level dic-
tionary when the macro is expanded.

If the current statement is a model
statement, a diagnostic will be issued
if the operation code is ISEQ, ICTL,
or END. COPY statements cause MACDEF
to call the COPY subroutine, which
reads in the library element and
pushes down the input-source switch in
REED so the subsequent statements ori-
ginate from the library. Thus, copied
statements become part of the macro
definition and not part of the
expansion.

All statements pass through the string
substitution control routine (CATOP).
This routine controls the type and
amount of parameter and variable sym-
bol substitution that is applied to
the current source statement. It is
called before the statement is deli-
vered to the components of the state-
ment analyzer for processing. Substi-
tution will have been performed arbi-
trarily on the operation code field by
SUBOP (via GETOP) prior to identifica-
tion of the operation mnemonic. CATOP
calls the string substitution scan
routine (SSCAN) to perform string sub-
stitution on the name and operand
fields. Whenever substitution actual-
ly results in character string repla-
cement on a statement, a new version

Section 2:

10.

of the statement reflecting the sub-
stitution is produced to replace the
original line for all subsequent pro-
cessing. After substitution, CATOP
calls the basic scan routine (BASCAN)
to analyze the contents of the name
field. CATOP then determines the
start of the operand field and posts
the increment from the beginning of
the statement in the current LOF
entry.

All machine instructions pass through
the define location symbol routine
(DEFSYM). Its purpose is to construct
and enter into the main dictionary a
relocatable value item that represents
the name field symbol (if present) of
the current source statement. DEFSYM
calls the main dictionary lookup and
put routine (DLPM)} to look up the sym-
bol in the dictionary and construct a
skeletal item. DEFSYM completes the
skeletal dictionary item according to
the type of the current operation code
and reserves the space for the item.
The location of the item is then
entered into the current LOF entry.

If the current statement is a machine
instruction, and the assembler is in
nonconversational mode, the scan for
literal operand routine (SLIT) is
called in lieu of the complete operand
field analysis routine. Its function
is to scan the operand field to deter-
mine whether a literal operand
(denoted by the character =) is pre-
sent. If a literal is found, the
location of the = in the source state-
ment is added to the current logical
order file entry.

If the current statement is a macro
instruction, the macro reference pro-
cessor (MACREF) is called. MACREF is
responsible for indicating the pre-
sence of the macro instruction. An
entry for the GSM chain is constructed
to cause the expansion of the macro
instruction in Phase IIA.

If the assembly is conversational, and
the current statement is a machine
instruction, the machine instruction
operand scan (MIP) is called to scan
the operand and check for valid
operand fields and correct formatting.

If the assembly is in either batch
or conversational mode, and the cur-
rent statement is an assembler mnemon-
ic, individual routines will be called
for each mnemonic. These routines are
described below.

Assembler Functional Description 11

12

AGO/AIF: The sequence symbol appear-
ing in the statement is processed and
the input source is reset to an earli-
er symbolic statement, if backward;
or, if forward, a bypass mode is
instituted.

ANOP: The name field is checked for
the presence of a sequence symbol.

CCW: DEFSYM is first called to create
a dictionary item if there is a symbol
in the name field. The operand is
examined for valid operand fields and
correct format if the assembly is in
conversational mode. Otherwise, SLIT
is called to scan the operand for the

presence of literals.

CNOP: If the assembly is in conversa-
tional mode, the operand fields are
examined and checked for validity.

COM: Described under SECT.

COPY: The desired element is retri-
eved from the library and copied into
working storage in the form of chained
source lines. The input-source switch
of REED is set to retrieve forthcoming
statements from the copied stack.

CSECT: Described under SECT.

CXD: DEFSYM is first called to create
a dictionary item if there is a valid
symbol in the name field. Upon return
from DEFSYM, the current logical order
file is completed, and a constant item
is constructed.

DC/DS: DEFSYM is first called to cre-
ate a dictionary item if there is a
symbol in the name field. The con-
stant scan routine, CSCAN, is called
to process the operand field and con-
struct a constant item. Attributes
are obtained from the constant item
and posted in the current location
symbol item, if there is one. If the
end of the operand field was not
reached by CSCAN, an additional logic-
al order file entry is created and
CSCAN called again. Thus, individual
logical order file entries are con-
structed for each operand of a mul-
tiple operand statement.

DROP: Described under USE/DROP.
DSECT: Described under SECT.

EJECT: The only processing required
at this time is a check to determine

if the name field is blank.

END: An indicator is set to the
effect that the END statement has been

encountered. If the assembly is in
conversational mode, the operand field
is examined and checked for wvalidity.

ENTRY: The name field is checked for
blanks or a sequence symbol, and a GSM
entry is constructed. If the assembly
is in conversational mode, the basic
scan routine (BASCAN) is called to
collect and examine each operand
field.

EQU: At this time only an EQU in
which the first operand expression
yields an absolute or complex value
can be fully processed. An absolute
or complex value item is created in
the dictionary, and the length and
type attribute fields are evaluated
and processed. Other operand types
cause a transitive item to be created
and an indicator to be set in the log-
ical order file entry to demand atten-
tion in Phase IIB.

EXTRN: Each symbol in the operand is
collected and an external name item
constructed for each.

GBLX/ILCLX: If the statement occurs
within a macro, an item is constructed
in the temporary dictionary; if the
operation is global, an item is also
constructed in the main dictionary.

If the statement occurs outside a
macro, an item is constructed in the
main dictionary. If a subscript is
present, it is checked for validity
and its value inserted into the dic-
tionary item. If the operation is
global and is not Phase IIA, a GSM
entry is constructed.

ICTL: Checks are made to determine if
the statement is the first source pro-
gram statement, and if there is only

one ICTL in the assembly. The routine
checks if each operand field is wvalid.

ISEQ: The operand fields are examined
for validity and indicators set with
the new values.

LCLX: Described under GBLX/ICLX.

LTORG: DEFSYM is called to create a
dictionary item if a symbol is in the
name field. A GSM entry is created
and the logical order file entry is
flagged for special attention in Phase
IIB.

MACRO: After the statement is checked
for syntax, the macro definition
switch is set to 1 and control is
returned to the statement analyzer.

MEND: Processed by MEND/MEXIT rou-
tine. If the macro definition mode is
set, it is canceled and an immediate
return is made. This condition pre-
vails during the processing of macro
definitions. If the macro definition
mode is not set, MEND executes ident-
jcally with MEXIT.

MEXIT: Processed by MEND/MEXIT rou-
tine. The space occupied by the cur-
rent macro level dictionary is
reclaimed. The macro level is reduced
by one, and the location of the logic-
al order file entry for the statement
at which processing stopped on the
preceding macro level is reinstated in
the REED input switch. If the macro
level has been reduced to zero, the
REED input switch is popped up to its
previous mode.

MNOTE: The first operand is examined
and, if it is an asterisk, the
character string that follows is
treated as a comment. Otherwise, the
character string is considered a diag-
nostic message and causes a special
call to the diagnostic processor.

ORG: The logical order file entry is
flagged for the attention of Phase
IIB. If the assembly is conversation-
al, the operand field is examined for
validity.

PRINT: An entry is made in the GSM
chain so that the effect desired by
the source programmer can be produced
by subsequent processing by control
section. The operand field is tested
for the legitimacy of its contents.

PSECT: Described under SECT.

PUNCH: The statement is allowed only
to maintain compatibility with 0S/360
and is made commentary.

REPRO: The instruction produces list-
ing only; the following statement will
also be treated as commentary.

SECT: The symbol in the name field or
blank denoting blank COMMON {(and
binary zero denoting a blank CSECT) is
used as the basis for a main dic-
tionary lookup and, if the symbol is
not in the dictionary, a section-name
item will be created for it. An entry
is inserted into the GSM chain and,
for control sections other than DSECT
or START, the operand field is
examined for attribute declarations.
The operand of a START is processed
like that of an ORG statement, and an

ORG logical order file entry is
generated following the START entry.
The operand of a DSECT is not
examined.

SETX: The symbol in the name field is
looked up in the main or current macro
level dictionary to verify if an item
exists for it. The operand expression
is now evaluated, and the value is
posted in the item. If a global sym—
bol is being set, and if in Phase I, a
GSM entry is made for the statement.

SPACE: If the assembly is conversa-
tional, the operand field is examined
for validity.

START: Described under SECT.

TITLE: The name field is saved for
later use in card identification. The
character string in the operand is
saved for later use in printing the
assembly listing.

USE/DROP: For USING instructions, the
first operand field is evaluated to
see that it is valid. For either
USING or DROP, the register designa-
tions are examined for validity. A
GSM entry is created for either
instruction. No operand examination
is completed if the assembly is in
batch mode.

11. If the current statement implies
source code, and a control section has
not been declared, a logical order
file entry will be set up for an
implied CSECT. A GSM chain entry will
also be constructed for the implied
CSECT. After all generated entries
have been constructed in working
storage, the logical order file entry
for the current statement is moved
from its temporary location into work-
ing storage and the previous entry
linked to the current one.

12. If the current statement is an END,
exit is made from the statement ana-
lyzexr to the Phase I control, which
then passes control to Phase IIA.

PHASE IIA FUNCTIONAL DESCRIPTION

Phase IIA is responsible for the expan-
sion of macro instructions and, when
required, the retrieval of system macro
definitions from the library. During Phase
I a record is maintained for all macro
instruction source statements; Phase IIA
completes the processing of those
statements.

Section 2: Assembler Functional Description 13

Macro statement generation is accomp-
lished by substituting the character-string
values of the current arguments for the
corresponding parameters in the definition.
The macro definition statements remain in
the sequenced source statement area in the
virtual storage of the assembler. The
source statements generated by macro
instructions are also retained in the vir-
tual storage of the assembler; they do not
become part of the set of sequenced state-
ments. When the generation of each new
symbolic statement is complete, the state-
ment is subjected to standard Phase I pro-
cessing and is assembled as if it had been
part of the user's original source program.
Most of the processing routines which were
present in Phase I are present in Phase IIA
also; however, Phase IIA acts as an intern-
al replacement for LPC in determining the
order and origin of the source statements.

As a corollary to the processing of
macros, Phase IIA must reevaluate state-
ments that affect global variable symbols
and must maintain a record of control sec-
tion and print status changes. Before con-
cluding, Phase IIA also presents global
diagnostic messages to the conversational
user and calls LPC to determine whether to
continue the assembly.

An overview of Phase IIA function is
shown in Figure 7. The numbered paragraphs
in the following description correspond to
the numbered boxes in the figure.

1. Activity in Phase IIA is controlled by
the entries in the GSM chain. This
chain is prepared during Phase I and
contains entries for each macro
instruction, GBLx instruction, SET
statement involving a global symbol,
PRINT, and change of control section.
Other entries in the GSM chain are not
pertinent to Phase IIA.

2. If a control section GSM is encoun-
tered, it is necessary to retrieve the
location of the section name item in
the main dictionary and point the cur-
rent control section indicator to this
item. This pointer may also be
updated by the control section proces-
sor (SECT) if a control section state-
ment occurs during a macro expansion.
The section name item is used to esta-
blish the various values for &SYSECT
as macro expansion proceeds.

3. If a GSM entry representing a GBL sta-
tement at the user level is encoun-
tered, it is necessary to reprocess
the statement to ensure synchroniza-
tion of user-defined global variable
symbols with the macros expanded dur-
ing this phase. At the first rede-

14

claration of each symbol the initial
value of the item is reset to the null
state.

If a GSM entry representing a SET
statement at the user level is encoun-
tered, it is also necessary to repro-
cess the statement to maintain the
synchronization of glcobal variable
symbols established above. The value
of the global symbol originally
obtained in Phase I is retained in the
logical order file and is reinstated
by Phase IIA.

The basic scan routine (BASCAN) is
called for either a GBL or SET state-
ment to preset pointers for the Phase
I routine for the instruction. The
appropriate GBL or SET routine in
Phase I is then called. The GSM entry
is removed from the chain, and proces-
sing continues with the next GSM
entry.

Encountering a GSM entry for a PRINT
instruction causes the print status to
be replaced with that carried in the
LOF entry pointed to by the PRINT GSM.

When a GSM entry representing a macro
instruction is encountered, Phase IIA
control calls upon the statement ana-
lyzer to process the macro instruc-
tion. The statement analyzer, being
phase-conscious, calls the macro
reference processor, MACREF, which
determines if the macro is at the user
level (macro definition exists in
storage).

If the macro definition is not in
storage, the macro is a library macro.
The library service routines, CEVMLA
and CEVMLB, are employed by MACREF to
search the library for the desired
macro and to retrieve the lines of the
macro definition. Lines are retrieved
and are linked together in working
storage. A mode switch is set so that
the REED routine can process the
statements from the library instead of
in normal mode.

The statement analyzer is entered at a
special entry point (CEVST1) from
MACREF to call the REED routine to
initiate construction of logical order
file entries for the definition state-
ments. After the statement analyzer
processes the statements, the logical
order file entries for them will be
delinked from the main chain, but
maintained for subsequent reference.
The statement analyzer returns control
to MACREF after processing the MEND
statement of the library macro.

Phase T A

N

© G STAN DEFSYM
Get Location
. Create Dict
of Next Statement Machine Yes It:;: ii S l;bol
GSM Entry Analyzer Instruction in NAME' Field
e — :
k 4
MACREF
i/:ocess Ves Macro
acro — Reference Batch Mode ?
Reference s
: ?
N
Check Trans. °
ttem Chain and C | Yes
Diagnose Undefined Sonrt‘ro
- ection
Symbols 5 Individual | SLIT
y Routines for |
@ ‘ | No Assembler or - ?cczOpe{rond
’ Machine Inst. or Literals
QUERY @ @ L
Call LPC to S L H CEVMEA l
licit Cont ave Location
Soflmf _ont. of Dictionary _@ Find Symbolic Set up
Information Item Component Parcel Eacoded
Form of
l Statement
CEVMLB
Macro

instruction

Is
Statement

MEND 7

Yes Retrieve Successive
Parcel Lines

T

1

@ STAN

Set up Encoded

Form of Macra @
GBLX
N
o or SETX Def.State.
?

Was This
an Cuter Level

|
®

e Macro ?
I Yes PARAMAC
No Construct
BASCAN
@ Macro Level
Scan Dictionary

Statement !
[Yes atemen L——w»**®
' 1
Reset Print
Status A Get Next

Statement
Appropriate
GBL or SET
Routine in
CATOP
Phase T
Perform String "’@
@__&. Substitution
DELINK
Entry From ——@
GSM Chain

Figure 7. Overview of Phase IIA function

Section 2: Assembler Functional Description 15

10.

11.

12.

16

After it is ensured that the macro
definition exists in storage, the
macro parameter processor, PARAMAC, is
called by MACREF to expand the macro.
Temporary dictionaries are created by
PARAMAC for each outer and inner macro
instruction level. The symbolic para-
meters in the macro prototype state-
ment and the corresponding positional
operands or name field in the macro
instruction are combined to form para-
meter items in the temporary dic-
tionary. Each item is identified by
the symbolic parameter, which is
hashed and linked to an entry in the
macro hash table for the current
level. Each temporary dictionary con-
tains the linkage and status informa-
tion necessary to initiate an inner-
macro expansion, to purge the tem-
porary dictionary of an inner macro
after expansion is complete, and to
resume processing of the macro at the
next higher level. The remainder of
the dictionary at each level contains
a reduced hash table followed by para-
meter items representing the system
variables and symbolic parameters spe-
cified in the macro definition. PARA-
MAC returns control to MACREF which,
in turn, returns control to the state-
ment analyzer.

The statement analyzer calls REED to
initialize processing for the next
statement. The model statements are
fed through the main routines of Phase
I (that is, CATOP, DEFSYM, SLIT, and
the appropriate individual routine) in
the same way as user statements were
fed through in Phase I. The logical
order file entry for the generated
statement is constructed in working
storage and is flagged as representing
a generated statement.

If the MEND for the outer level macro
has not been encountered, processing
continues as in 8.

When a MEND is encountered for the
outer level macro, processing of the
macro instruction is complete. The
GSM entry for the macro instruction is
removed from the chain and processing
continues with the next GSM entry. If
the macro with which the MEND is asso-
ciated is not an outer level macro,
processing continues as in 8.

When all GBL, SET, PRINT, control sec-
tion, and macro instruction entries in
the GSM chain have been processed,
Phase IIA passes over the transitive
items in the main dictionary and
extracts all symbols that remain unde-
fined if the assembly is in conversa-
tional mode. These symbols are repre-
sented in the dictionary by transitive

items that have not been completed by
the insertion of the location of the
matching definition. Diagnostic mes-
sages are produced for each symbol.

13. Control is given to the entry of LPC
which solicits continuation informa-
tion from the conversational user. If
the user elects to continue, control
returns to the assembler at "continua-
tion"™ entry point, and assembly
resumes with Phase IIB.

PHASE IIB FUNCTIONAL DESCRIPTION

At the conclusion of Phase IIA, the
entire source program has been fully
scanned once. It is the task of Phase IIB
to organize the results of this initial
scan so that the object text can be
generated in a single pass over the intern-
al representation of the program. The
principal function of Phase IIB is to
assign location counter values to symbols
and literal constants.

The areas requiring resolution are:
Boundary Alignment: The generation phase

requires space unused because of boundary
adjustment to be claimed explicitly.

Literal Assignment: For each literal
reference, the value and length of the con-
stant is to be computed and duplicates are
suppressed.

Literal Pooling: As dictated explicitly by
LTORG statements or implicitly by the pro-
gram end, literals are to be arranged by
their length modulo 8 and assigned location
counter values.

Symbol Definition: All definitions, unless
erroneous, must now be capable of resolu-
tion by the assignment of a location count-
er or absolute value, as appropriate.

An overview of Phase IIB function is
shown in Figure 8. The numbered paragraphs
in the following description correspond to
the numbered boxes in the figure.

1. Phase IIB makes a single pass over the
logical order file; the processing
that is performed depends upon the
characteristics of the entry in the
logical order file. The entries may
be grouped into three categories:
location counter adjustments, literal
operands, and normal statements.
Location counter adjustments may be
further subdivided into changes of
control section, literal origin state-
ments, ORG statements, and conditional
storage reservation statements (such
as CNOP or DS statements).

Phase 1B

(ENTER)

Get Location
of Next
LOF Entry

O)

Branch

®

Retrieve Loc

on Inst
Type

POOLIT

Pool Remaining
Literals in
First CSECT

PSECT
Available

POOLIT

Pool Remaining
Literal adcons
in first PSECT

Compute Page
Usage for
Each Control
Section

(EXIT)

To Phase IC

Figure 8.

Cont Sect Counter and A
Reserve Page
Table
C LOCATE
LTORG Named Line Assign Current
Loc Counter
Value to NAME
ORIGIN POOLIT
ORG @ Position of Generate
Current Literal
Loc Counter Pool
@ 4) CSCAN
. . rocesse
DC, DS, or DXD e No Prepare
? Constant
Item
Yes
®
@ EQUATE RESCON
EQU Evaluate Exp
. " Compute
Assign Value Al
to NAME tgnment
awor @

Machine Inst @

®

Cccw

Nomed Line ?

LOCATE

Assign Current
LOF Counter
Value to NAME

Macro Def @

@

Other

RESCON

Literal
Compute Reference
Alignment

RESUIT
Step to
Mend LOF ‘_‘q.@ Add Literal
Entry to Current

Pool

Overview of Phase IIB function

©

Section 2:

Assembler Functional Description

17

18

If the logical order file entry repre-
sents a control section entry, the
following processing is performed.

Each control section within the
assembly has its own individual loca-
tion counter, for which two values are
maintained: the current value as it
exists for any given statement, and
the highest value the counter has
reached during the course of proces-
sing the control section. At any
change of control section the current
value of the location counter is saved
(in the section name item in the dic-
tionary). If this value exceeds the
highest value previously saved, the
highest value is also updated and
saved. The current value of the loca-
tion counter for the new section is
retrieved and installed as the working
counter for subsequent statements.

The location of the section name item
for the new section is also inserted
in the current control section
indicator.

For each occurrence of a new con-
trol section other than a blank COM or
DSECT, a 512-byte "page usage" table
is reserved in working storage. The
table length provides one bit for each
of 4096 pages allowed for a control
section. Each time the location coun-
ter is incremented, and the increment-
ing instruction is other than a DS or
ORG, a bit is set in the corresponding
page usage table, indicating that the
page represented by bits 8-19 of the
current location counter contains
text. If a statement will cause the
location counter to exceed the limit
of 4096 pages, that statement is made
commentary, and the remaining state-
ments (except the END statement) are
also made commentary. The page table
is injitiated to zero at the time it is
reserved, and its location is inserted
in the section name item.

If the current logical order file
entry represents a LTORG statement,
the location counter is first aligned
to a doubleword boundary. If the sta-
tement has a symbol in the name field,
LOCATE will be called to assign the
current location counter to the sym-
bol. Next, POOLIT is called to gener-
ate the literal pool. The literals
are chained in order of occurrence to
a "first 1link" which is independent of
the dictionary. POOLIT's function is
to order the literals by length,
assign locaticon counter values to each
literal, and to transfer the chain
(reordered by ascending location) to
the LTORG entry in the logical order
file. If a PSECT is present in the

assembly, POOLIT excludes address con-
stants from the pool, unless an over-
ride switch is set (indicating the
absence of a PSECT) during Phase IIB
initialization to force their
inclusion.

The LTORG statements in a program
are numbered in order of occurrence.
Literals occurring between (or prior
to the first) LTORG statements are
identified as belonging to the LTORG
number which is forthcoming.

If the current logical order file
entry represents an ORG statement,
ORIGIN is called to evaluate the
operand of the ORG statement. Abso-
lute values receive a diagnostic mes-
sage but are then accepted as indicat-
ing a location counter setting rela-
tive to the current control section.
Relocatable values must be simply
relocatable and relative to the cur-
rent control section. A null operand
indicates that the location counter is
to be set to the highest previously
attained location counter value for
the current control section.

If the value of the new origin is
less than the current reading of the
location counter, the current value is
compared against the highest previous-
ly attained value (preserved in the
section name item). If the current
value is higher, it replaces the pre-
vious high value. If the current
value is not higher, it is discarded.
In either case, the new origin is
instated as the current value of the
location counter and placed in the
logical order file entry for ease in
listing in Phase III.

If the current logical order file
entry represents a DC or DS instruc-
tion, a test must first be made to
determine if a constant item was con-
structed for the statement in Phase I.

If the statement was incapable of
resolution in Phase I because of lack
of definitions for terms in the expre-
ssions for length, duplication, scale
or exponent, the constant scan routine
(CSCAN) is called to construct a con-
stant item. If an item cannot be con-
structed, the statement is considered
invalid and is treated as commentary.
If a constant item was constructed in
Phase I, Phase IIA, or Phase IIB,
RESCON is called to resolve any condi-
tional alignment. The type of align-
ment required is indicated in the con-
stant item. RESCON aligns the working
bit location counter to the proper
boundary and, if the alignment amount

is nonzero, constructs an alignment
LOF entry. This entry indicates the
number of bits to skip. RESCON also
inserts the alignment entry in the
logical order file preceding the entry
for the current DC or DS statement.
This ensures that Phase III will make
an identical adjustment to the loca-
tion counter. The working byte loca-
tion counter will be set to the trun-
cated value of the bit counter.

If there is a symbol in the name
fieild, LOCATE is called to assign the
current location counter value to the
name.

A DXD instruction is treated as a
DS instruction with the following
exceptions: an entry is made for the
DXD on the Q REF chain, and the loca-
tion counter is unchanged.

If the current logical order file
entry represents an EQU statement, the
EQUATE subroutine is used to determine
the legitimacy and the value of the
operands of the statement. EQUATE
will be entered only if the wvalue of
an EQU statement was unobtainable dur-
ing Phases I or IIA. The applicable
type and length attributes of the
value item are entered into the dic-
tionary for absolute, relocatable, and
complex expressions. A diagnostic
will be issued if the name has been
previously defined (duplicate symbol),
if the expression type or length is
invalid, or if the symbol in the
operand has not been previously
defined.

If the current logical order file
entry represents a CNOP statement,
RESCON is called to resolve any condi-
tional alignment. The operand is eva-
luated and, if wvalid, the location
counter will be aligned to a halfword
boundary. If the alignment amount is
nonzero, an alignment LOF entry is
constructed indicating the number of
bits to skip. The alignment entry is
inserted in the logical order file
preceding the entry for the CNOP sta-
tement. The number of generated NOPRs
required to satisfy the CNOP is then
determined, and the total instruction
length (in bits) of the NOPRs is
inserted in the LOF entry for the
CNOP.

If the current logical order file
entry represents a machine instruc-
tion, a test is made to determine if
the location counter is positioned at
a halfword boundary. If not, a spe-
cial entry is made to RESCON to com-
pute the amount of alignment required

Section 2:

10.

11.

iz2.

and to generate an alignment LOF
entry. The alignment entry is
inserted in the logical order file
preceding the entry for the current
machine instruction.

A flag is set in the LOF entry dur-
ing Phase I if there is a literal in
the operand of a statement. If this
flag is on, RESLIT is called to scan
the literal as if it were a normal
DC~statement operand, to prepare a
constant item for it, and to enter the
literal as an item in the main
dictionary.

A test is made to determine if
there is a symbol in the name field.
If there is, LOCATE is called to
assign the current location counter
value to the name.

If the current logical order file
entry represents a CCW statement,
RESCON is called to align the current
location counter to a doubleword boun-
dary. If the alignment amount is non-
zero, an alignment LOF entry is con-
structed indicating the number of bits
to skip. The alignment entry is
inserted in the logical order file
preceding the entry for the CCW
statement.

If the flag bit in the LOF entry is
on, indicating a literal in the
operand, RESLIT is called. The liter-
al will be scanned (by CSCAN) as if it
were a DC-statement operand, a con-
stant item will be prepared for it,
and an item for the literal will be
entered in the main dictionary.

If there is a symbol in the name
field, LOCATE is called to assign the
current location counter value to the
name.

When a logical order file entry repre-
senting a MACRO statement is encoun-
tered, Phase IIB will step through the
LOF entries representing the macro
definition until the MEND LOF entry is
encountered. Since no processing is
required in Phase IIB for a macro
definition, the statements are simply
bypassed.

Other assembly instructions require no
special processing and are therefore
bypassead.

At the end of Phase IIB, the control
routine causes the construction of
logical orxder file entries which
simulate a CSECT statement (a con-
tinuation of the first CSECT) and a
LTORG statement. GSM entries are also

Assembler Functional Description 19

constructed to indicate the change of 1.
section. The highest value of the
location counter for the CSECT is
reinstated and the literal pooling
routine (POOLIT) is called. All
remaining literals that are not
address constants are pooled at the
end of the first CSECT.
13. Phase IIB now determines whether a
designated PSECT exists. If it does,
logical order file entries are con-
structed to simulate a PSECT and a 2.
LTORG; GSM entries are constructed to
indicate the change of section; the
location counter value is set to its
highest for the PSECT; and POOLIT is
called again, this time with an over-
ride switch set that causes the rou-
tine to accept address constants when
they are encountered in the list of
unpooled literals. If no PSECT
exists, the override switch is set at
the beginning of the phase. This
action causes address constants to be
poocled with other literals at each 3.
LTORG statement.
14. At the end of the phase, the chain of
section name items is processed to
compute the page usage for the pro-
gram. Each control section that con-
tains text will have, in the dic- 4.
tionary item, a pointer to its page
usage table. To determine the number
of pages used by each section, it is
necessary to count the bits that have
been turned on in the table. The
total bit count (total pages) is post-
ed in the section name item for use by 5.
Phase III in generating text. A cumu-
lative total of pages for all control
sections is computed so Phase III can
call VMGET for the required number of
pages for the binary text module.

PHASE IIC FUNCTIONAL DESCRIPTION

Phase IIC tabulates the status of PRINT
control, LTORG numbers, and USING registers
in relation to each control section when a
section has been written discontinuously.
It also associates the operands of ENTRY
Statements with the names of control sec-
tions in such a way that R-type addressabi-
lity is established.

An overview of Phase IIC function is
shown in Figure 9. The numbered paragraphs
in the following description correspond to
the numbered boxes in the figure.

Construction of the output module
requires Phase III to process each control
section contiguously. Phase IIC is
required to maintain compatibility with
0S/360 definition of PRINT, LTORG, USING,
and DROP statements while processing in
control section order.

20

By Phase IIC only section names,
PRINT, LTORG, USING, DROP, and ENTRY
statements remain in the GSM chain.
Phase IIC searches the GSM chain and
constructs and maintains a working
using table. If an ISD is to be pro-
duced in Phase IV, an ISD list of
using table locations is established.
The PRINT, LTORG, USING, DROP, and
ENTRY links are removed from the GSM
chain as processed.

At each section change, the working
version of the using table is copied
into a permanent location as the cur-
rent table. Current pointers are
updated to address the current control
section. The GSM entry for the sec-
tion name will be followed immediately
by an entry pointing to the current
using table, which will reflect the
status of using registers, PRINT con-
trol, and the current LTORG number at
the point of continuation.

When a LTORG entry is encountered in
the GSM chain, the LTORG number in the
working using table is updated to the
next higher number. The GSM entry for
the LTORG is then removed from the GSM
chain.

If a GSM entry for a PRINT statement
is encountered, the new PRINT status
is recorded in the working version of
the using table. The GSM entry for
the PRINT is then removed from the GSM
chain.

If a GSM entry for an ENTRY statement
is encountered, an entry trailer is
constructed and linked to the previous
entry trailer for the control section.
If a trailer has not been previously
constructed, the current trailer is
linked to the appropriate control sec-
tion dictionary item. The GSM entry
for the ENTRY is then removed from the
GSM chain.

After Phase IIB, definitions are
available for any symbol that may
legitimately appear as an ENTRY
operand. The section name within
which the ENTRY occurs is also known,
since the GSM chain includes section
names that Phase IIC records in the
current control section address.

If the ENTRY occurs within a named
section that is not a DSECT, entry-
operand items are constructed in the
main dictionary and chained to the
item for the named section that is
currently in control. This produces
definitions that are capable of R-type
references. The ENTRY statement may
not appear in a DSECT or an unnamed
CSECT. ENTRY statements may appear in
named common control sections.

Phase I C

Section Name

6. The USING table processor, USET, is

called by Phase IIC control when the
current GSM entry indicates the pre-

sence of a USING statement. USET

updates the status of the working ver-

sion of the using table.

USET first resets a series of indi-

cators which it uses to check for
duplicate register specifications.

It

then calls EVAL to evaluate the first

operand, which is the base value for

the using registers. Absolute and
relocatable expressions are accept-
able.
consist of a single extermnal or

internal symbol plus or minus any
absolute value.

relocatable, or
The base value is

be in absolute,
external format.
set accordingly.

EVAL. The expression must be abso-
lute, less than 16,
icate another operand.
using table entry for the specified
register is constructed. USET adds

The relocatable expression may

Indicators are set to
denote whether the table entry is to

Each of the remain-
ing operands is submitted in turn to

and must not dupl-
If legal, the

Section 2:

© — () @
Ger Next Make- Copy of Construct GSM
Link of R '{Wzr}k”"g gSi”Q b » Entry Pointing L ,.,@
) able in Permanent to Copied
GSM Chain Location Using Table
LTORG
&
Branch Update
on LTORG ey
Type Number ‘
@ PRINT |
y) |
N l
Update i Remove
To Phase IIL Print — *’“‘"“" Link from Mﬁ“"@
Status GSM Chain
ENTRY §
(s) |
' Chain Entry ‘
% to Appropriate [—
Control Section
USING
G
JSET
"1 Add Entries to ey
| Current Using Table §
DROP 1
& |
DRSET Copy Table to
L New Areq. Replace GSM
Remove Entries from Record LTORG with Pointer
Current Using Table and Print Status to Copied Table
Figure 9. Overview of Phase IIC function

4096 to the base value for each legal
operand after the first until the 1list
of operands is completed. The logical
order file entry for the USING state-
ment is completed. Indicators are
inserted showing the type of base
expression and its wvalue.

The working version of the using
table is copied into a permanent loca-
tion. The GSM entry for the USING is
replaced with a base register table
locator entry which points to the
copied talkle.

The DROP table processor, DRSET, is
called by Phase IIC control when the
current GSM entry indicates the pre-
sence of a DROP statement. DRSET
updates the working version of the
using table.

DRSET first resets a series of
indicators which it uses to check for
duplicate register specifications. It
then cails EVAL to evaluate the expre-
ssion for each of the operands. Each
expression must be absolute, less than

Assembler Functional Description 21

16, and must not duplicate another
If legal, the table entry
for the specified register is marked
as no longer available as a cover

operand.

register.

The working version of the using

PHASE III FUNCTIONAL DESCRIPTION

all instructions.

Phase III controls final processing of
It organizes the program

by control section, produces the necessary
binary text and relocation information for
the object program, and provides listings

table is copied into a permanent loca-

tion.

copied table.

The GSM entry for the DROP is
replaced with a base register table
locator entry which points to the

Phase TIT

Source
Language
Listing
Wanted
?

|

Y
yres

SLLS

Prepare Source
Language Listing

VMGET

Get Working
Storage

ENDPR

Process Module
Entry Point

Get Next
LOF Entry

CSDPR

Prepare Control
Section Dictionary

Initialize for
Next Pass Over
GSM Chain

End
of GSM Chain
?

Figure 10.

22

Overview of Phase

shown in Figure 10.
graphs in the following description corres-

cf the source and object programs.

An overview of Phase III function is
The numbered para-

pond to the numbered boxes in the figure.

Diagnostic

Remove Link
from LOF Entry
and Add to
Diagnostic Chain

Machine Inst.
N

©

MOPR

Process Machine
Instruction

@

LIST

Cccw

CCWTXT

Process CCW

.
T

DCIXT

Process Constant

LTORG |

(19 0TXT

Process Literal

@.,__

IITI function

Pool
Other
@
Perform
Required
Processing

for Statement

RO

Control Section

New
— Section

No

tep to Next
GSM Entry

format Output
Line

Update Location

]

Locate
Corresponding
GSM Entry

Remove Link

from GSM Chain

®

Counter by
Generated Length

List Diagnostic
Messages

|

Prepare External
Name List

To Phase IV

Phase III begins by preparing a source
program listing, if one is desired.
The source listing processor (SLLS)
prepares a listing of the input source
lines in their original order and for-
mat, with the sequence number assigned
to the statement by the line data set
facilities. Either the VISAM PUT
macro is used to place the edited
lines in the 1list data set, or the
GTWRC macro is used to put the listing
on SYSOUT, depending on user request
and mode. Using the LISTDS operand,
the user, in either conversational or
nonconversational mode, may direct
requested listings to SYSOUT or have
them entered in a list data set.

The page usage estimated for the out-
put text is calculated, and VMGET is
called to procure cutput working
storage. VMGET is called again to
procure working storage for the pro-
gram module dictionary and the extern-
al name list.

The module entry point processor
(ENDPR) is called to construct the
module heading and to complete the
heading, as far as possible, at this
time. ENDPR calls the expression eva-
luator to evaluate the operand of the
END statement and completes the head-
ing according to the type of operand.
The length of the module heading is
computed, and the location of the
first control section dictionary is
established.

Phase III uses the GSM chain to put
the program into order by control sec-
tion. Within each section, the logic-
al order file controls the order of
processing. Each statement repre-
sented in the logical order file is
processed by an appropriate open or
closed subroutine.

If a logical order file entry repre-
senting a diagnostic is encountered,
the entry is delinked from the LOF and
added to the diagnostic chain for ease
of listing at the end of the phase.
The error flag is set with the appro-
priate code so that the listing rou-
tine (LIST) can output the code with
the statement to which the diagnostic
refers.

If a logical order file entry repre-
senting a machine instruction state-
ment is encountered, the machine-
operation processor (MOPR) is called
to evaluate the operand field of the
statement and to create corresponding
binary output in the text portion of
the output program module. The
address in the output text which the

Section 2:

instruction is to occupy is calculated
prior to entry. The instruction
length is determined from the LOF, and
the bytes to be occupied by the
assembled text are set to zero. The
operation code is transferred from the
LOF entry to the text. Processing
proceeds according to the instruction
type: RR, RR with extended M1 field,
RR with only one register, RR with
immediate value, RX, RX with extended
value, RS with explicit R3 field, RS
without R3 field, SI with immediate
value, SI without immediate value, SS
with two length fields, and SS with
one length field. The syntax of the
operand field for the instruction type
is evaluated and checked for wvalidity.
As each component field of the
instruction is evaluated, the corres-
ponding binary output is placed in the
text. When the text has been com-
pleted the instruction is checked
against the machine operations
requirement table to diagnose align-
ment errors and improper register
usage.

Relocatable operands are submitted
to the USEVAL subrcoutine, which
reduces the relocatable symbol to a
base register and displacement value.
The location counter value of relocat-
able operands, including literals, is
obtained by the GETVAL subroutine.
Exit is made to Phase III control.

The object program listing routine
(LIST) is called to format the output
line. LIST uses the current logical
order file entry and is supplied the
location and length of any binary text
generated for the statement repre-
sented by the LOF entry. With these
sources of information LIST can pre-
pare a suitably formatted line for the
object program listing. If PRINT con-
trol is set to OFF, LIST performs no
processing. If ON, LIST prints infor-
mation relative to the binary text on
the left side of the listing and
information relative to the source
statement on the right. LIST uses the
PUT macro in VISAM to place each line
in a list data set, or the GTWRC macro
if the 1listing goes immediately to
SYSOUT. The line is 132 characters
and is preceded by an ASA FORTRAN
standard print control character:
blank for single space, 0 for double
space, and 1 for page eject.

The location counter for the cur-
rent control section is incremented by
the generated length, if any, of the
current statement. The address in the
output text that the next instruction
is to occupy is computed accordingly.

Assembler Functional Description 23

24

If a logical order file entry repre-
senting a CCW instruction is encoun-
tered, the CCW instruction processor
(CCWTXT) is called to evaluate the
operand field of the statement and to
create corresponding binary output in
the text portion of the output program
module. The address in the output
text that the CCW is to occupy is cal-
culated prior to entry. Adjustment
will have been made to a doubleword
boundary. The eight bytes of text are
set to zero. The syntax of the four
operands is evaluated and checked for
validity. As each component field of
the instruction is evaluated, the
corresponding binary output is placed
in the text. The PUTVAL subroutine is
called for relocatable data address
operands, including literals, to cre-
ate the necessary relocation dic-
tionary information required to modify
the text of a relocatable field. Exit
is made to Phase III control.

The LIST routine is next called to
format the ocutput line. For a
description of its function, refer to
item 7.

If a logical order file entry repre-
senting a DC statement is encountered,
the Phase III constant processor
(DCTXT) is called to place the binary
text for the constant into the output
module. The text and relocation
values for address constants not pre-
viously obtained are resolved during
this processing. DCTXT examines the
constant item associated with the LOF
entry for the DC and establishes a
duplication factor for the text. If
the constant is an address constant,
the ADCON subroutine is called to pro-
duce text and relocation information
for the constant. If the constant is
not an address constant, its value is
retrieved from the constant item and
moved to the text location. For bit-
length constants the text location is
bit-oriented.

Movement of data into the text is
repeated until the duplication factor
is reduced to zero. The LIST routine
is called to generate printed output
on each duplication when the DATA
print option is specified, except for
bit-length fields. For bit~length
fields, the next LOF entry is tested
when all duplications of the current
constant are complete. If the next
LOF entry indicates a multiple-operand
bit-length constant, the bit-oriented
text location is maintained at its
current updated value so that the next
constant may be packed at the next
adijacent bit. The entire bit-length

10.

11.

constant is then printed. Multiple
operands for non-bit-length constants
are processed by successive entries to
DCTXT.

After return is made to Phase III
control, the location counter for the
current control section in incremented
by the generated length of the con-
stant. The address in the output text
that the next instruction is to occupy
is computed accordingly.

If a logical order file entry repre-
senting a LTORG statement is encoun-
tered, the literal pooling processor
(LITXT) is called to place the binary
text for the literals in the given
pool into the output module. The
values of address constants not pre-
vicusly obtained are resolved during
this processing. The logical order
file entry points to the head of a
chain connecting all literals pooled
under the given LTORG. For each 1lit-
eral in the pool, LITXT creates an
artificial source line for the benefit
of the listing. LITXT also constructs
an artificial LOF entry for the liter-
al, simulating an entry for a normal
DC statement. Having made the literal
appear as if it were a normal con-
stant, LITXT calls the DCTXT routine
to process the constant. DCTXT will,
in turn, call LIST to format the out-
put line. Exit is made to Phase III
controcl where the page usage for the
pool is determined and, if necessary,
entries are made in the virtual
storage page table. The address in
the output text that the next instruc-
tion is to occupy is computed.

Various assembler instructions require
little processing in Phase III. The
processing required for these instruc-
tions is described below.

MACRO/MEND: A flag is set when a log-
ical order file entry representing a
MACRO instruction is encountered.

This flag causes all statements
(except diagnostics) that occur until
the MEND LOF is encountered to be
recognized as model statements in a
macro definition and, as such, to
require listing only. The LIST rou-
tine is called to list each statement.

USING/DROP: The occurrence of a log-
ical order file entry representing a
USING or DROP statement indicates that
a new using table is required for
references by USEVAL. The address of
this table is retrieved, the GSM entry
for the USING or DROP is delinked, and
the LIST routine is called to list the
statement.

Alignment: If an alignment LOF entry
is encountered, a test is made to
determine if text is required. If so,
the text is set to zero, page usage is
determined, and the LIST routine is
called to format the line. 1In either
case, the location counter will be
incremented by the generated length.

ORG: If a LOF entry representing an
ORG is encountered, the object program
location counter is set to the value
of the ORG, and the LIST routine is
called to format the line.

DS: If a LOF entry representing a DS
is encountered, the increment to the
location counter is retrieved from the
constant item, and the LIST routine
called to format the line. The loca-
tion counter will be incremented by
the length of the instruction.

CXp: If a LOF entry representing a
CXD is encountered, a CXD reference
item and temporary RLD item are built.
The CXD is chained onto the external
reference chain, and the CXD-REF flag
is set on. A call is then made to the
LIST routine to format the line.

DXD: The occurence of a logical order
file representing a DXD instruction
requires that a Q reference item be
built. The DXD instruction is then
treated as a DC statement.

CNOP: If a LOF entry representing a
CNOP is encountered, and text is
required for the CNOP, page usage will
be determined, and the text location
updated. The number of NOPR instruc-
tions required are generated and
placed in the output text. The LIST
routine is called to format the line;
the location counter is incremented by
the generated length, and page usage
is determined. If text is not
required for the CNOP, the LIST rou-
tine is called to format the line.

PRINT: The occurrence of a PRINT LOF
entry requires only that the indicator
for print status be updated.

SPACE: The occurrence of a SPACE LOF
entry requires that the operand of the
statement be evaluated, and the value
plus one set as a parameter for the
LIST routine. If the operand is null,
the value is set to 2.

TITLE: The occurrence of a TITLE LOF
entry requires that a parameter be set
to cause a page to be ejected, and ths
length and location of the title set
for the LIST routine.

Sootion 2@

12.

13.

14,

EJECT: The occurrence of an EJECT LOF
entry requires only that a parameter
be set to cause a page to be ejected.

Other: Other assembler instructions
require listing only.

When a logical order file entry repre-
senting a control section is encoun-
tered, a test is made to determine if
the section is new or is a continua-
tion of the section being processed.
If it is a new section, the GSM chain
will be stepped through to attempt to
locate a GSM entry for the current
control section. If an entry is not
found, all the processing has been
performed for the section, and it is
time to build the control section dic-
tionary. If an entry is found, the
link is removed from the GSM chain,
the logical order file entry pointer
is positioned to the corresponding LOF
entry, the statement is listed, and
processing of the LOF will resume at
the entry following the entry for the
continuation of the current control
section.

When the end of the logical order file
is reached, or the end of the GSM
chain when not at the end of the LOF,
the control section dictionary proces-
sor {(CSDPR) is called to complete the
processing of a control section dic-
tionary before Phase III control
begins processing a new section.

CSDPR is responsible for retrieving
all relocation modifiers and reference
items in temporary storage and for
producing a final output CSD from
them. CSDPR initially constructs a
section heading in the PMD. The total
number of bytes in the text and the
relative page number where the text
begins are placed in the section head-
ing, the section name is located in
the dictionary, and CSDPR begins fol-
lowing the chain of ENTRY names that
is attached to the section-name item.
Three passes are made over the ENTRY
chain: (1) the simply relocatable
definitions receive definition items
constructed in the control module; (2)
absolute definitions receive defini-
tion items; and (3) complex defini-
tions receive definition items. Simi-
lar processing is performed for the
RLD modifiers for the text. Finally,
a table is constructed in the module
with one entry for each page of virtu-
al memory represented by the text.

If any links remain in the GSM chain,
the first control section entry that
remains in the chain is located, the
logical order file pointer is posi-
tioned to the corresponding LOF entry,

Assembler Functional Description 25

15.

16.

and processing of the logical order
file is resumed. If the GSM chain is
exhausted, all processing for control
sections has been completed.

A diagnostic chain has been con-
structed by transferring diagnostic
logical order file entries from the
LOF to the diagnostic chain. The LIST
routine is now called to list a mes-
sage for each entry in the diagnostic
chain. Summary messages indicating
the number of messages and the highest
severity code are then produced.

A list of external names is prepared
by following the chain of section-name
items. This list of names is prepared
so that LPC can "STOW" them when dis-
posing of the unit.

PHASE IV FUNCTIONAL DESCRIPTION

Phase IV calls the post processors

required to produce the output options

selected by the programmer.

The post pro-

cessors produce the symbol table listing,

cross-reference listing,
and ISD listing.

PMD listing, ISD,
Certain combinations of

these services are available to the pro-

grammer.

In Phase IV, the option flag for

each processor is checked, and the post
processor is called if its output is
desired.

An overview of Phase IV function is
shown in Figure 11.

The numbered para-

graphs in the following description corres-
pond to the numbered boxes in the figure.

1.

26

If the programmer has selected the
option for a cross-reference listing,
the cross-reference listing processor
(XREF) is called to sort the cross-
reference items produced during Phase
III and to produce an orderly listing
of them. In Phase III, cross-reference
items were stacked contiguously in
working segment 1. A pass is made
over the items to produce the listing.
The items are sorted alphabetically by
key of dictionary item, with defini-
tions preceding references, and
references sorted by ascending value
of location counter. The address list
produced by the sort controls the
order of the printed items. The for-
matted lines are stacked behind the
listing in the listing module.

If the programmer has selected the
option for a symbol table listing, the
symbol table editor (STED) is called
by Phase IV control. STED prepares a
sorted listing of all symbols con-
tained in the main dictionary, togeth-
er with their type, length, and value

Table Edit

©

XREF

Prepare Cross -
Reference Listing

Wanted
S5

+'Yes

STED

Prepare Symbol
Table Listing

ISD Wanted

©)

Is No

?

Yes

{SDPR

Prepare ISD

PMD Listing

1SD Listing

®

Is PMDLS

Wanted List PMD
?

©)

Is Has

ISDSA

1SD Been
Prepared
?

Yes

Wanted
?

List ISD

No No

Exit

To Assembler
Master Control
Figure 11. Overview of Phase IV function
attributes. STED follows each link

indicated by the main hashing table
and stores a sorting key which con-
sists of the address of each item in
the main dictionary, except transitive
items. STED then sorts the keys into
ascending alphameric sequence based on
the character value of the symbols in
the dictionary. The resulting list is
edited for printing, with two columns
of symbols appearing on each page.

If the programmer has selected the
option for an ISD, the ISD processor
(ISDPR) is called by Phase IV control
to reduce the contents of the per-
manent dictionary to those items

required by the program control system
(PCcS), and to format those items con-
veniently for PCS in a special intern-
al symbol dictionary (ISD).

If the programmer has selected the
option for a PMD listing, the program
module dictionary listing processor
(PMDLS) is called by Phase IV control.
Information for the listing header
lines is secured from the PMD header.
The following details, when present,
are listed for each control section
within the module:

e Section name
¢ Type of section
e Version identification

e Attributes

Section 2:

* Length of the control section
e Text length

* Relocatable, absolute, and complex
definitions for the section

e References
e DXD and CXD references
e Modifiers for complex definitions

s Modifiers for text (internal and
external references, Q-CONs, and
CXDs)

If the programmer has selected the
option for an ISD listing, and has
also requested an ISD, the ISD list
processor (ISDSA) is called by Phase
IV control to display the contents of
the internal symbol dictionary.

Assembler Functional Description 27

SECTION 3:

ASSEMBLER FUNCTION BY INSTRUCTION TYPE

INTRODUCTION

The next three figures show the function
of the assembler by type of instruction.
The level of nesting is in order from top
to bottom and, in general, the sequence of
processing is from left to right.

MACHINE INSTRUCTIONS

Figure 12 shows the assembler function
for machine instructions.

During Phase I, the REED routine obtains
the source statement and a logical order
file entry is constructed. If the name
field contains a valid symbol, an entry is
made in the main dictionary. If the
assembly is in conversational mode, the
operand field is checked for validity.

Machine instructions generated by macros
are processed during Phase IIA, as
described below.

During Phase IIB, machine instructions
are recognized and the location counter is
stepped. If necessary, the location count-
er value is adjusted to a halfword boun-
dary. If a symbol is present in the name
field, it is assigned the value of the cur-
rent location counter.

Machine instructions are not processed
during Phase IIC.

During Phase III, each operand is ana-
lyzed for syntactical correctness and
checked for validity. The appropriate
number of bytes of binary text is generated
(by MOPR) and placed in the output text
module. The statement is listed on the
object program listing.

Machine instructions require no further
processing in Phase IV.

MACRO INSTRUCTIONS

The assembler function for macro
instructions is shown in Figure 13.

During Phase I, the REED routine obtains
the macro reference statement. A logical
order file entry and a global-section-macro
(GSM) entry are constructed for the
statement.

Phase IIA processes the GSM chain and

calls the statement analyzer to expand the
macro. The routines enclosed by dotted

28

lines in Figures 12 and 14 are executed for
each generated statement. Macro statement
generation is accomplished by substituting
the character-string values of the current
arguments for the corresponding parameters
in the definition. The statements
generated by macro instructions are created
and placed in the assembler virtual
storage. If the macro reference is to a
library macro, the macro definition must be
retrieved from the library, and lines
linked together in storage before macro
expansion can begin. In Phase IIA, the
Phase IIA control module replaces the LPC
in determining the order and origin of the
statements.

In Phase IIB, the only processing
required for a macro reference is to assign
the current location counter value to the
symbol in the name field (if one exists).
Generated statements are processed as
machine or assembler source statements dur-
ing the remainder of the assembler.

In Phase I1I, the only processing
required is to list the statement on the
object program listing.

Macro instructions require no further
processing in Phase 1IV.

ASSEMBLER INSTRUCTIONS

The assembler function for assembler
instructions is shown in Figure 14.

During Phase I, the REED routine obtains
the source statement, and a logical order
file entry is constructed. The entire sta-
tement is checked for syntactical corrxect-
ness. If the instruction is one of the
following, a global-section-macro (GSM)
entry is made: control section statement
(CSECT, PSECT, DSECT, COM, START), GBLX,
SETx, USING, DROP, ENTRY, PRINT, or LTORG.

During Phase IIA, all GBL declarations,
global SET instructions, and section name
changes are reprocessed in order that
macro-generated statements have proper
values for global variables and the
assembler variable symbol &§SYSECT.

During Phase IIB, only certain types of
assembler instructions are processed.
EQUATE is called for an EQU; ORIGIN is
called for an ORG; POOLIT is called for a
LTORG (after first assigning the current
location counter value to the name if the
line is named); RESCON is called for a CCW
followed by RESLIT, if the data address

Jo4sibBoy ELITN « pubiad
Buisp) a|qpjpd0|ay m,.o::o»m
aindwory uoiqo TWAS
TvAISN IVALIO
sury indines auy ,hoﬁwomi
Sjipy ket jndinQ powioy uouriRdg
BUIYODY
M
WILVD 1sh YdOW
ml—
(1 #s044)
joyuony unog
IIT @styd JupjSUO™
NV2$D
In
(Buissanaug o) (Buissanouyg o) m_ch o JuswuByy Jossanctyd
josued jodque wo :M”*%%_n_u/w an|osay cc::_omm,.w
. ; 1Q1J000" | LI
A1 esoyg DI #soLg
I K 1Lv201 NOJ53Y sy
|
joluony
B 4 1II ospyq
!
I
jodiued
> JETHLIY
iB|quessy

VIT aspyg Ut uctsundxa o1oow Burinp sjuswsiogs payoiousb o) peyoedes Buissesolyg

Jo4pnjoag
uoyssaidxy

VA3

84njlsgng

408ns

upag pupsad(y sjoiaiy unsg 3po7y uonId()
UOISDNISY] 10§ uoHNisGNg Aytiuap)
ENIEIY pupiad(upog Buiyg pup 3031100
dIw 1S NVOSS dO139
' T
E—
“ praty jo4ueD) [UCINEIIIN
1 EIIIN) uouNilsgNg a3n0g
[oquiAg auliag Buyig XON 439
WAS43d dOLVD g33y
L) L [
e e e 4 —— e |w‘ e
E— | ! !
il i i {
|
(Buyssasoig oN) 19zhjouy E.xéxllL _
|odued JuBWAYDIG :
v I1 @s50yd NVLS e JE N ;)L
_, —
|
josuoD
meUr_L
ﬂ
I
— |
|
e I

tructions

ins

Assembler function for machine

Figure 12.

29

Assembler Function by Instruction Type

3

Section

Assembler

Master
Control
. l Phase T¥
Phase [Phaose IB Phase TIC Phase TIT e
Control Control |4 Control Control Control
ontro (No Processing) (No Processing)
= i i
LOCATE
STAN Phase T A Assign Locotion HIST
Statement Control Counter to Format Qutput
[—-——— Ano[yze; Name Line
|
i ¥ 3
éEE'DN ;A.TOP ':/,\ACR EF STAN Expand GATEW
ef Mext rmg- . hacre Statement > Macro Write Output
Source Substitution Reference Anal « Line
Statement Control Processor natyzer !
3 3
GETOP SSCAN MACREF
Collect and S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>