
IBM System/SSO Tim@ Ikarjng System

FORTRAN IV Compiler

This publication describes tha !nternal
1.0EJ:j.c of the IBM 8ystenV360 Time Sharing
Syst.em ('rS8/3~O) FORTRAN IV cOlllPiler.

This !?rogralJl logic manua~ is directed to
the IBM c~stome~ engineer ~~o is respons­
ible for pr()g!,~H'" 1II!linteni'ln~e~ It can be
~E:!~d to locate spes;j.fic a~ea1i of the prq­
gr.aJl, ang. it eni'l~.}..es tlle !"e~~~~ to relate
t.BElSe are~s to ~e cor.:r~!~ program
l.i!3 t ings. rr.oqr.~JI,l 1,..~:ic !-~f.9~~.~on is not
nf?C.~ssary fQr. pp?gr~~ OPc:l!"il~j..~ .~J¥i use.

File No. 8360-25
Form Y28-2019-1

Program Logic

Thi-~- is '~·-!~a -'lor reVlSJ:.Orl of, and make£ obsQl-ete, Form Y'~.8;'
2019~O and Teclm.i.cal Ne",slette~s YL8-3057, Y28,-3068, Y28-
3082, Yn-3087, Y28-3091. and' Y2B-JO·'rt. . ,

Ch2-!lgoS!S on t_ft..; aC:i;:ual Bag.eq are ind'i-cated_ 'a<s follow::;: A.
bullet (0) next to a page'nu;"'ber indicat<2Sthat the page has
been substant ially revised and should: be reviewed in its
entirety. A bullet next to the caption of an illustration
indicat.es substantial revision of th-e illustration. A vert­
ical bar in the left margin shows the location of a specific
change; such revision bars are usually not shown on a page
having a bullet next to the page number.

This edition is current with Version 6, Modification O. of
IBM Systern/360 Time Sharing System (TSS/360) and will remain
i!.t effect for all sUbsequent versions or modifications of
TSS/360. Signific'!nt changes or addi t.ions to this publica­
tion will be provided in new e rlitions or 'l'echnical NeW'slet­
t_~rs.. Before using t.his publication in connection with the
operation of IBM systems, refer to the latest editior, of IBM
~stem/360 Time Sharing system! Addendllll!. Form C28-2043, for
the editions of publications that are applicable and current.

specifications contained herein ar-e subject to change from
time to time. Any such change \o1ill be reported in subsequent
revisions or Technical Newsletters.

This publication was prepared for production using an IBM
comput er to updat'" th", text and to control the page ani line
format. Page impressions for photo-offset printing were
obtained fro:n. an IBM 1403 Printer using a special print
chain ..

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your 1ocality ..

A form for reader f S CO[iliRents appears at the back. of this
publication. Address any additional comments concerning the
contents of this publication to IBM corporation. Time Sh"ring
Systeml360 Programming Publications. Department 6113, Neigh­
borhood Road, Kingston, N. Y. 12401

<0 Copyright International Business Machines corporation 1967,
1970

This publication describes the internal
logic of the FORTRAN IV compiler.

section 1 introduces the compiler's
structure, briefly explaining the primary
functions of each major division and
describing the interrelationships of these
divisions •

Sections 2 through 7 describe the six
major divisions; they explain the logic
required to implement the basic functions
and objectives and provide a frame of
reference for the program listings. Common
data, such as tables and work areas, are
discussed only to the extent required to
understand the logic of the major divi­
sions. Flowcharts compatible with the
level of coverage are also provided, as are
nesting charts which show the linkages
among the subroutines that compose a major
division; they show the called and calling
relationship among the subroutines. In
support of the nesting charts are decision
tables that show the calling relationship
among the subroutines and indicate the con­
ditions under which subordinate subroutines
are called.

All flowcharts for the routines are in
Section 8, grouped in the same order as the
routines are presented in the text.

The appendixes contain additional
reference material.

PREFACE

PREREQUISITE READING

Understanding the material contained in
this manual requires knowledge of the
information contained in the following
manuals:

IBM System/360 Time Sharing System: IBM
FORTRAN IV, Form C28-2007

IBM System/360 Time Sharing System:
Concepts and Facilities, Form
C28-2003

IBM System/360 Time Sharing System:
System Logic Summary, Form Y28-2009

Manuals recommended for a fuller unde­
rstanding of this manual are:

IBM System/360 Time Sharing System:
Command System User's Guide, Form
C28-2001

IBM System/360 Time Sharing System:
Linkage Editor, Form C28-200S

IBM System/360 Time Sharing System:
Assembler Language, Form C28-2000

IBM System/360 Time Sharing System:
ASsembler User Macro Instructions,
Form C28-2004 .

IBM System/360 Time Sharing System:
FORTRAN Programmer's Guide, FOrm
C28-202S·

SECTION 1: INTRODUCTION
Object Program Modules .
subprogram Calls in OPl1 Text
Object Program Documentation •
compiler Interfaces

Interface With LPC • •
Interface With Virtual Storage
Allocation • . • • • . • • • •
Interface With Data Management •
compiler/Service Routines Interface

organization of the Compiler •
Compiler Executive Routine •
Phase 1
Phase 2 • • • •
Phase 3 • • • •
Phase 4
Phase 5 •••••••••••••

SECTION 2: EXECUTIVE.
Introduction . . • •
General Information

Macro Instruction Usage
Linkage Conventions
Register Notation and Conventions
Storage Map • • • • • • • • • • .
Brief Routine Description . • • •
Use of the Phase Controller PSECT
(EXCOM) by other Exec Routines ••

Service External Interface • • • • •
Source Statement Preparation • • • •
Phase and Interphase File Controller:

1
1
1
2
2
2

2
2
2
3
3
3
4
6
7
7

8
8
8
8
8
9
9
9

11
• • 11
• • 12

The Compiler Work Areas and Intercom • • 12
Compil er Edit Lines •••.••• 17
compiler Diagnostic Information •••. 17
Miscellaneous ••••• • • • • • 19
Routine Descriptions • • • • • • • • 20

CEKTA -- Phase Controller (PHC) •• 20
CEKTC -- Get Next Source Statement
(GNSS) • • • • • • • • • • • • 24
CEKTD -- Process Terminal
Modifications (MOD) • • • 26
CEKTE -- Receive Diagnostic
Message (ROM) ••••••••
CEKTF -- Constant Filers (CONFIL)
CEKTH -- Master Input/Output (MIO)
FORTRAN to GETLINE Call
GETLI NE Entry • • . • •
Line Number to GETLINE • •

• 28
• 28
• 32

32
32
32

Line Number From GETLINE • • 32
Length of Line • • • • 33
Source Line • • • . • • 33
Altered Line Table ••••
GETLINE to FORTRAN Return
FORTRAN to PUTDIAG Call
PUTDIAG Entry • • • •
PUTDIAG to FORTRAN Return

Operation • • • • • • • • •

• 33
• 33

33
• • • • • 33

• • • 33
• • 33

CEKTI Analyze Console Source Line
(ANALYZ) • . • • • . . • • • 35
CEKTJ -- Inspect a Console
Character (INSCON) . . • . · . . 35

CONTENTS

CEKTK -- Move a Line to the List
Data Set (LDMOVE) •••• • •• 35
CEKTL -- Build a List Data Set
Buffer (BUILD) • • • • • • • • • 36
CEKTM -- Flush a List Data Set
Buffer (FLUSH) • • • 36
CEKTQ -- Compiler File Dump
(COMDUMP) •••••• . 36
CEKTS -- compiler Line Dump
(LINDUMP) . • 36

SECTION 3: PHASE 1 • 39
Introduction • • . 39

Program Representation File (PRF) 40
Begin Program Entry • • • • 41
Subprogram Entry •••• • • 41
Alternate Entry 41
Label Definition Entry • . 41
Equation Entry • • • 41
GO TO Entry • • 41
Assigned GO TO Entry • • • 41
Computed GO TO Entry • • • 41
ASSIGN Entry • . • • • . • • • 41
Arithmetic IF Entry 42
Logical IF Entry • . • 42
CALL Entry • • • • • 42
Argument Definition Entry 42
RETURN Entry . • • • • • • 42
Begin Loop Entry _, • . 42
End Loop Entry • • 42
CONTINUE Entry • • 42
READ, READ Without Unit, and READ
With NAMELIST Entries • • 42
WRITE and WRITE With NAMELIST
Entries • • • • • • • • • • •
PRINT and PUNCH Entries . • • •
Input/Output List Representation

42
43

in the PRF Entry • • • • • • • • • • 43
End List Entry. • • • • • • • • • • 43
END FILE, REWIND, and BACKSPACE
Entries • • • • • • • 43
STOP Entry • • • • . • 43
PAUSE Entry • • •. 43
End Program Entry 43

Expression File • • • • 43
subscript Expressions 43

Storage Specification Tables • • 43
Dimension Table • • • • • • 44
Namelist Table • . • 44
Storage Class Table • • • • • . 44
Format Processing 44
Alphameric Constants • • • 44
Data processing • • • • . 44
Cross Reference Index List • • • • 45

Phase 1 Routines, Functional
Description . • • • • • • • • •

Pass 1 Statement Processors
Pass 2 Statement Processors
Expression Processing and

45
45

• • 45

Translation • • • • • • • • • • 45
Source Extraction and Conversion • • 45
Loop Processing Service Routines . . 45

I/O Statement Processor service
Routines . . • • 0 • • • • 0 • •

Initial Value Processing Service
Routines • • • 0 0 0" 0 • 0 ••

Miscellaneous Service Routines •
Routine Descriptions . • • 0 • 0 0 0

CEKAD -- Phase 1 Main Loop (PH1M)
CEKAK -- Assignment Statement
Processor (EQUA) • 0 0 • • • 0 0

CEKAM -- EXTERNAL Statement

45

45
45

• 46
55

55

Processor (EXTE) • 0 • 0 • 0 0 • 56
CEKAQ -- GO TO- Statement Processor
(GOTO) • 0 • • • • • 0 .•••• 0 •• 56
CEKAR -- IF Statement Processor
(IF) • • • • • 0 • 0 0 0 •• 0 • 0 • 56
CEKAS -- Type Statements Processor
(TYPE) 0 • 0 • • • • 0 • • • 0 • • • 56
CEKAT -- CONTINUE sta.tement
Processor (CONT) • • • • • • o. 56
CEKAU -- DIMENSION statement
Processor (DIMN) • 0 • • • • 0 • • • 57
CEKAV -- COMMON Statement
Processor (COMM) • 0 57
CEKAY -- EQUIVALENCE Statement
Processor (EQUr> 0 • • • • • • 57
CEKAZ -- DO Statement Processor
(00) • • • • • • • 0 • • • 57
CEKBC -- ASSIGN Statement
Processor (ASSn • • • • • 57
CERBD -- File Control Statement
Processor (FCON) • 0 • • • 0 0 • 0 58
CEKBE -- Input/Output Statement
Processor (RWIO) ••• 0 • • 0 58
CEKBF -- FORMAT Statement
Processor (FORM) • 0 0 0 • • 58
CEKBG -- PAUSE, STOP. RETURN
Statement Processor (PSR} 59
CEKBH -:-- NAMELIST statement
Processor (NAML) • 0 0 ., • 60
CEKBI -- BLOCK DATA Stat:ement
Processor (BLDA) • 0 •••• 0 60
CEKBM -- DATA Statement Processor
(DATA) • • • • • 0 0 • • • • 0 • 0 60
CEKBN -- ,IMPLICIT statement
Processor (IMPL) 0 00 • • 0 60
CEKBR -- Blank Stat.ement Processor
(BLNK) • 0 0 • • 0 0 0' ••••••• 60
CEKES -- Subprogram Entry
Statements Processor (SUBE) • 61
CEKBlJ -- CALL StatementP;:ocessor
(CALL). o. • • '. •. .. • • • 0 0 61
CEKJlL END Statement Processor
(END) •••• 0 • 0 ~. 0 • • • • • 61
CEKM Declaration Statements,
Pass 2 (DCL2) •.•••• 0 • • • • 61
CEKAX -- Executable Statements,
Pass 2 (EXEC2) • 0 • • • • • o. 61
CEKBJ -- BLOCK DATA Statement,
Pass 2 (BLDA2) 0 0 • • • .. • 0 • 62
CEKBP -- IMPLICIT Statements, Pass
2 (IMPL2) 0 • 62
CEKBT -- Subprogram Entry
Statement!:', Pass 2 (SUBEZ) 62
CEKBV -- CALL Stat.ement. Pass 2
(CALL2) ...,... 0 0 • 0 0 • • 62
CEKBZ -- Statem~nt Function
Definition, PaSf; 2 (STFNiH .. • 63
CEKAG -- Subscript PrOC€3S0r (SUBS) 63

CEKAI -- Expression Processor
(EXP~) 0 • • •

J:I t:o S Class
S to H Class 0 •

S to S Class • • • • 0

H t.O H Class
Funct.ion/Subroutine call ••
CEKAN -- Conversion Subroutine
(CNVRT) 0... 0
CEKBK ~- Statement Function
Definition (SFDEF) • • . • . 0

CEKBL-- Statement Function
Expansion (SFEXP) •• 0 • • 0

CEKBX -~ Function Classifier
(FNCLS) • 0 0 • 0 • • • • 0

CEKBY --. Library Function Selector

61
65
65
6S
6 ::.
67

68

69

70

70

(LIBN) • • . . • • • 0 0 • • 70
CEKCB -- Constant Arithmetic
Subroutine CARITH) • • 0 • 0 • 71
CEKCG -- Term Processor (TRMPRO) 71
CEKCR -.- Actual Argument Service
Routine (AARG) . • . . 0 • • 0 71
CEKCS -- Constant Arithmetic
Interrupt (CHKINT) • • . 0 0 • 7 '2
CEKAB Extract Source Character
(ESC) 0..... 0 . . . 72
CEKAE Assemble Components
(ACOMP) 0... 0 0 • • 0 • 73
CEKCH File Real Constant (FLRC) 74
CEKCI Insert Variable in Symbol
Table (IVSTj • • 0 • • • • • • • • • 74
CEKCN -- Decimal to Binary Integer
Conversion (ICNV) • 0 0 • • 70
CEKCP -- Decimal to Floating Binary
Conversion (FCNV) •• 0 • 0 • 71~
CEKCQ -- ~'ile Integer Constant
(FLIC) • • 0 0 • 0 0 0 • 74
CEKBA -- Begin Loop Processor
(BGNLP) . 0 • • 0 • • 0 • 0 o. 75
CEKBB End Loop Processor (ENDLP) 75
CEKCJ Check Limits (CKLIM) 76
CEKCK Clear Limits (CLLIM) 76
CEKBW I/O List Processor (IOLST) 76
CEReD Format Label Processor
for I/O Statements (FLABL) • • . 0 76
CEKCE -- Read Transfer Processor
for I/O Statements (RTRAN) • 0 • 0 • 76
CEKCF -- FORMAT or NAMELIST Name
Processor (FNAME) 0 0 • 0 0 0 o. 76
CEKAH -- Initial Value Data
Specification Processor (IDATA) o. 77
CEKCL -- Initial Value Processor
(IVAL) • • • 0 0 0 0 0 0 • 0 • 77
CEKAF -- Array Dimension
Specification Processor (ARDIM) 77
CEKCC -- Label String Processor
(LBSTR) •••••• 0 77
CEKAC -- Statement of
Identification (SID) 0 0 78
CEKAJ -- Statement Label Processor
(LABL} • • • • • 0 0 • 0 0 • 0 78
CEKBQ -- Fallthrough Determination
(FALTH) •• 0 • • 0 • 0 0 0 • 79
CEKCA -- Diagnostic Message
Generator (ERR) 80

SECTION 4: PHASE 2 • 81
Introduction • • 81

Routine Descriptions • . . •.•
CEKJA. -- (PHASE2) •.•.
CEKJC -- Storage Assignments for
Variables (VSCAN) •..•
CEKJB -- Process Label References

81
81

B1

and Definitions (FSCAN) •..... 88
Label Processing . • .; • • . • . . 89
Flow Processing 89
DO Loop Processing . . • • . 89
CEKJD -- Label Reference Processor
(RTN1) . • . . • • ... • • • • 90
CEKJE Label Reference Processor
(LAB) •.•• • • . • .
CEKJF Statement Label Reference
Inspection (ISP) . • . •
CEKJG -- Format Reference

90

91

Inspection (FORMAT) •••••••. 91
CEKJH -- Diagnostic Message
Generator <OX) • •.• 91

SECTION 5: PffASE 3 ••. 92
Introduction • . . . • • . • . • . 92

Memory Reference Processing • 96
Common Expressions • • 96
Removing Expressions From LOOps • • • 98
Optimizing subscript Computation •. 98
Loop Variable Expressions .100
Global Register Assignment .•..•. 101

Routine Descriptions • . .101
CEKKS -- Phase 3 Storage. (PSECT) • .106
Phase 3 Loop Tables •• 106
Global Register List (GIRL)
(Linked, Permanent) .106
Link Pointers . • .106
Operand Pushdow:n ..•. • • .107
Triad Table Entry 107
Polish Insertion .Entries • • .108
Compute and Removal Item Table •.• 108
Hash Table for C{)1Ilpute and Removal
Table (CRT) and Triad Entries
(HCR'r) . • •.• ,... . •.••••. 109
Formal Argument.~dcon Table •. 109
CEKKR -- Phase) ,!w1aster Control
Routine . . • . • • . . • • • . . .109
CEKKU PRF Processing Routine .. 110
CEKKC End .4oqp PRFEntry Routine 113
CEKKV Begin,·Lo.QP 1 PRE' Processor 113
CEKKw Begin .~oop 2 PRF Processor 114
File EF and Point (FEFP) Subroutine 115
Delete the Undefined Level CDUNL)
Subroutine .' • -. •.• • • • ~ • • • .115
CEKKE -- Expression Scan Routine .. 115
CEKLF -- Copy and Edit an
Expression • • • • . • • • • .116

• • • .118
CEKKF -- Pushdown Primitive
Operand Routine • • • • • •
"AT" Operator Insertion
Subscripted Variable Processing
Loop Parameter Processing
CEKKG -- Variable Compute Point
and Removal Level Roui:ine·

••• 118
.118
.119

•• 119
CEKKL -- operand List EltPression
Formation Routine .•....•.•• 119
CEKKH -- Triad File Manipulation
Routine •••••.•••...•. 120
CEKKP Search and I.nsert Triads .120
CEKKN -- Canonical Form Routine • .121
CEKKI -- Expression Removal and
Commonality Determination Routine .121

CEKKJ -- Check Commonality .122
CEKKK -- Establish Common
Expression Routine. •. 123
CEKLA Label Common Expressions .123
CEKLE -- File CRT Entries ••• 123
CEKLD ._- Expunge a Removable
Subexpression • . •124
CEKKM -- subscript Expression
Revision Routine •124
CEKKI'\ -- Acquire Entry from
Compute and Removal 'rable .125
CEKKB -- Polish Expression
Generation Routine . . • •. . .125
CEKKO -- Save Popularity Counts for
Register Assignment .126
CEKL3 -- File Constant and
Covering A.dcon . • • • . . .126
CEKLI -- 'Loop Test-Expression
Generator • .127

SECTIOt:'l6: PHASE 4 . • . • • • .129
Introduction. • . . • . • • • .129
Phase 4 Processing. . •. 129

Expression Generation .130
Expression Storage • . . .132
Common-Expression Storage •. 132
Register Storage ••••.••... 133
General Register Selection • • .134
Storage Reference Processing. .135
ooL06p Processing. • . .• . .136

Routine Descriptions • . • • • . .139
CEKNX-- Phase 4'Master Control
(PHAS4) . • . .• • .153
CEKOD Entry Point Processor
(ENT) • • • • • . . •••• 153
CEKNU Referenced Label PF Entry
Processor (LABEL) •••. • . 153
CEKMJ-- Equation PF Entry
?rocessor (EQUA.T) •. 155
CEKNK-- Arithmetic IF PF Entry
Processor (AIF) .. 155
CEKNL--Logical IF PF Entry
Processor (LIF) .. 155
CEKNT' -- GO TO PF Entry Processor
(GOTO) • • • • • • • • • • • .155
CEKNS·..;.- Assign PF Entry Processor
(ASSGN) .••••• . •••. 155
CEKNQ -- AssignediGO TO PF Entry
Process'or (AGO) .156
CEKNR -- computed GO TO PF Entry
Processor (CGO) •. 156
CEKOL-- CALL Statement Processor
(CA.I..L.) •••••••• • :.. • •• .156
CEKOE ~- RETURN Processor (RTRN) •• 156
CEKNM -- Begin Loop 1 PF Entry
proCeSsor (BLl) . . . • . . • .. . 156
CEKNN -- Begin LOop 2 PF Entry
Proce~sor (BL2)157
CEKNO,-- Begin Loop 3 PF Entry
processor (BL3)' ••. 157
CEKNP-- End Loop PF Entry
Processor (ENDLP) .•.. . .157
CEKOH ~- 1/0 Statement'PF Entry
pr.ot:eSSor (RD) . .'.158
CEKOI -- 1/0 List Elemen~ PF Entry
PrO'cessor (OLIST) .••. .158
CEK6J-+- End List PF Entry
ProCeSsor (NDLST) ...• .158

CEKOK -- STOP and PAUSE Statement
PF Entry Processor (STOP) .. 159
CEKNW -- Arithmetic Expression
Generator (AGEN) • . • • . • . • • .159
CEKML -- Expression Tree Builder
(TRBLD) •.•.•••••••.• .159
CEKNE Weight Subroutine (WGHT} .161
CEKOB Cornmon Expression Usage
Count (CSX) • • . . • .162
CEKM:: Real Plus Generat:or
(RPLUS) ••.••.. . .162
CEKMB -- Real Multiply Generator
(RMUL) • . • . . • • • • • . • . • .162
CEKMA -- Real Divide GeneratcJr
(RDIV) •.•••.•••.••••. 163
CEKMF -- Integer Plus Generator
(IPLUS) ••••.••••• .163
CEKME -- Integer Multiply
Generator (IMPLY) ...• ,1.64
CEKMD -- Integer Divide 3enerator
(IDVDE) • • . • • • . • .164
CEKOV -- Add by Load Address
(LADDR) ••••.••••• .164
CEKMG -- Complex Plus GeneratJr
(CPWS) ••.••••••• .165
CEKOF -- Complex Multiply
Generator (CMUl.} • • • • . .165
CEKOG -- Complex Divide Generator
(CDIV) . • • • • . • • • •. • • • .166
CEKMH -- Relational £xpression
Generator (RJ.TNL) ••••• . .166
CEKMI -- Logical Expression
Generator (ANDOR) •••. . .167
CERMO -- Maximum Operator
Generator (MAX) .•.•• • • .167
CEKMK -- External Function
Generator (FUNC) • . • • • • .168
CEKNJ -- Comma Operator Processing
Subroutine (COMMA) •••••••.• 169
CEKOM -- Open FUnction Control
Routine (DeOM) .•••••••••. 170
CEKOT -- Open Function Processing
Routine (OPEN1) ••••••. 170
CEROU -- Open fUnction Processing
Routine (OPEN2) ••••••• 171
CEKOX -- Open Function Processing
Routine (OPEN3) ••••••• 171
CEKOY -- Open Function Processing
Routine (OPEN4) • • • • • • .171
CEROZ -- Open Function Processing
Routine (OPENS) ••••••• 171
CEKOM2 -- Open Function processing
Routine (OPEN6) * 171
CEKMV -- Memory Access Routine
(MEMAC) · · · · · · · .172
CEKOP -- Load covering Adcon
Routine (COVER) · · · · .172
CEKMZ -- Local Branch Generator
(SADDR) · · · · · · · · · · · · · .172
CERNV Labeled Branch Generator
(LBL) . · · · · · · · · · · · · · .173
CEKOS Operand Fetch
complement/store Routine (FETCH) · .173
CEKND -- Select Operand Routine
(SELOP) · · · · · · · · · · · · .173
CERNF -- Select Position for
Operation (SLPOS) .175

CEKOW -- Select One Operand in a
Register (SLONE) ••..•..•.. 175
CEKNB -.- Determine Availability of
Register for Multiplication (SELGM) 176
CEKNA -- General Register
Availability for Integer Divide
(SELGD)177
CEKOC -- Operand Status Routine
(KEY) •.•..••.. _ . • . • .177
CEKOR -- Single Operand Locdting
Routine (KEY1)177
CEKMR -.- Search General Registers
(FNDAR) _ ..•...... 178
CEKMS -- Search Floating Registers
(FNDFR) ••..•••... • .178
CEK~w -- operand Processing
Routine (OPND) . • . • • . •. . .178
CEKMY -- Result-Register Operand
Processing Subroutine (RSLT) ..•. 179
CEKNG -- Select Single General
Register (SELSR) •.•.••..•. 180
CEKNH -- Select Even/Odd General
Register Pair (SELDR) •••.•. .181
CEKMQ -- Select Floating Register
(SELFR) •••••.••.•..•• 181
CEKMM -- Make Initial Assignment
to General Register (ASAR) ••... 181
CEKMN -- Make Synonym Assignment
to General Register (ASARS) .182
CEKMO -- Make Initial Assignment to
Floating-Point Register (ASFR) .•. 182
CEKMP -- Make Synonym Assignment to
Floating Register (ASFRS) •.... 182
CEKMT -- Find Temporary Storage
(FNDWS) •••.••••...... 18 3

CEKMX -- Release Temporary Storage
(RLSWS)183

CEKON -- Register Storage Clear
Routine (FLUSH) ••.•.• • .183
CEKNI -- Code File Output
Subroutine (INSOT) • • • .184
CEKOQ -- Edit for Code File (EDIT) .184

SECTION 7: PHASE 5 • • • . . .186
Introduction. • • • • • • • • .186
Object Program Module (OPM) ••••.• 187

Program Module Dictionary (PMD) .187
PMD Heading . . • • • • • • . .187
Control Section Dictionary (CSD) •• 189

Internal Symbol Dictionary (ISD) .194
Heading ••• • • . • .194
Section Name Table. • • .194
Statement Number Table. .194
Symbol Table • • • • • • .194

Routine Descriptions. • • .195
CEKSA -- FORTRAN Compiler Output
Generator (PHASES) .•••••... 195
CEKSB -- Object Program Module
Builder (BUILD) •••••••••. 198
CEKSC -- Common Control Section
Generator (CMS EC) •..•.• ..199
CEKSF -- Code Control Section
Generator (COSEC) •••••• .200
CEKSG -- PSECT Builder (PRSEC). .203
CEKSD -- Preset Data Processor
(SPECS) •••••••..••• .206
CEKSH -- Internal Symbol Dictionary
Generator (ASSIST) ••••••••. 206

CEKSI -- Object Program
Documentation (EDIT) 207
CEKSJ -- Symbol Table Sort (SYt-'SR'r) 211
CEKSE -- Output Page Heading
(PHEAD) ••••••• .212
CEKSL -- Constant Conversion
(CONCV) .•....•. . .212
CEKSK -- Cross Referpnce Li'3t
Routine (CRFSRT) . . .212

SECTION 8: FLOwCHARTS .214

APPENDIX A: INTERPHASE TABLE AND FILE
FORMATS • • • • • . • • • • •
Program Representation File (PRF)
Storage Specification Tables •
Preset Data Tables • . • • • •

Entry Formats • • • • •
storage Class Table (STCLTB) •
Program File (PF) Formats output by

.631
• • .631

.636
· •• 639

•• 639
• •• 641

Phase 3 • • • • • • • • • ••••• 641
Field Identifiers ••• 642
Entry Formats •• 642

Code File Format. . ••• 645
Symbol Table . • • • .645

General Format. • ••• 645
specific Descriptive Pa!.-t Formats
of Intrinsic and Library FUIlctions .646
Constant Format •• • • • .648
Label Format • • • • . • • .649
Address Constant Format .• 649

Intercom Table • • • • • • . . • .650

APPENDIX B: TSS/360 LINKAGE CONVENTIONS 657
Introduction • • • • • • • • . • • .657
Conventions For Type I Linkages
(Standard) • • • • • • .

Register Conventions •
Save Area •• . • . •
Parameter List, Type I Linkage
Type I Linkage, Return and Entry

· .657
• .651
• .651

.658

Linkage and Return Code .•• 658
Restricted Linkage Conventions. • .658

Scope and Applicability of
Restricted Linkage • • • • •
Register Usage and Assignment in

• .658

Restricted Linkage. . • • • .658
Macro Instruction Support •••••• 659

INVOKE Macro. • • • • .659
STORt: Macro • • . 660
RESUME Macro. • • • • • .660

APPENDIX C: FORTRAN INTERNAL MP.CRO
INSTRUCTION USAGE • • • • • • •. 662

APPENDIX D: LIST OF MA.JOR TABLES
REFERENCED BY FORTRAN ROUTINES .664

APPENDIX E: MODULE DICTIONARY

APPENDIX F: LINKAGE EDITED COMPILER
ROUTINES LISTED BY CODED LABELS
(MODULE NAMES)

INDEX

.667

.679

.684

ILLUSTRATIONS

FIGURES

Figure 1. FORTRAN IV Compiler
External References ..••.
Figure 2. compiler Component
Organization • • • • . • .•••
Figure 3. compiler Information Flow
Figure 4. Compiler Interfaces
Figure 5. Source-Statement­
Preparation Modules
Figure 6. Summary of Phase and
Interphase File Control Activities
Figure 1. Symbol Table Storage Layout
Figure 8. Process Compiler Edit Line
Function • • • • • • • • . . • • .
Figure 9. Compiler Diagnostic
Features •••••••••••••.
Figure 10. Testing for Diagnostic
Input and processing Diagnostic
Information Lines • • . • • • . .
Figure 11. Processing Diagnostic
Information Following Return From Each
Phase •• • . • . • • . . . • . • • •

3

4
5

12

13

14
15

16

19

. 20

21
Figure 12. Processing of Unexpected
Interruptions During Compilation ~
Figure 13. Phase 1 Interface
Figure 14. Phase 1 Storage ••••
Figure 15. Phase 1 Nesting Chart
Figure 16. Symbol Table Save Area •
Figure 17. Component Storage Area
Figure 18. Phase 2 Nesting Chart
Figure 19. Phase 2 General Flow
Figure 20. Sort Table Entry • • .

22
39

• • 40
47

• • 55
· . 73

• • • 82
• • • 84

84

Figure 21. Variable List, Group
Connection List, and Group Table
Entries • • • . .
Figure 22. Phase 3 Nesting Ch~rt
Figure 23. Phase 3 Storage Map
Figure 24. ExpreSSion Tree
Figure 25. Name Table.
Figure 26. MRM Table
Figure 27. MRMFR Table
Figure 28. Loop Table
Figure 29. Phase 4 Nesting chart
Figure 30. Phase 4 Master Control
Figure 31. I/O Initialization
Parameter List .•..•..

. 85
•• 102

.106

.131
.133
.133
.134
.137
.140
.154

.158
Figure 32. I/O Initialization Control
Bytes • • • . • • . .. 158
Figure 33. Stack Table Entry .••. 160
Figure 34. INSOT Input Parameters .•. 184
Figure 35. Format of PMD Entry .188
Figure 36. FORTRAN Internal Symbol
Dictionary .•.•.••.......• 194
Figure 37. Phase 5 Nesting Chart •.. 196
Figure 38. Phase 5 General Flow .•.. 199
Figure 39. Output Listing Forn~t
(Part 1 of 2) ••••..••.•••• 209
Figure 40. CEKTD, Compiler Exec
Process Terminal Modifications (Part 1
of 4) •••••••••••..•.• 651
Figure 41. Alphabetically Sorted
Listing of Intercom Items, With
Displacements (Part 1 of 2) •.. 655

Table 1. Executive Storage Map • • •
Table 2. Work Area A Storage Layout
Table 3. Work Area B Storage Layout
Table 4. Work Area C SLorage Layout
Table 5. Preparation of constant
Receiving Area by CONFIL • • • • . • •
Table 6. Constant chain Anchors and
Table Bases •••••• • • • . . •
Table 7. CONFIL Storage Assignment
No-HoI e Branch Tab'l~ TFNOHO • • . •
Table 8. CONFIL Storage Assignment
Hole Availability Table ••• • • •
Table 9. CONFIL Storage Assigrunent

10
15

• 15
15

29

• 30

30

31

Byte Alignment Branch Table 'fFBAL • • • 32
Table 10. Phase 1 Decision Table
(Part 1 of 8) ••••••••.• .• 48
Table 11. Encoding of FORMAT Symbols • 58
Table 12. Translation of Format Codes • 59
Table 13. Operator Precedence • •• 66
Table 14. EXPF Entries (Real Base) •• 69
Table 15. Library FUnction Names • • • 71
Table 16. Assemble Components
Character Table • • • • • • • •
Table 17. Assemble Components
Decision Table • • • • • • • •

74

• • 75

TABLES

Table 18. Assignment/Nonassignment-
Character Table . • • • • • • • •• 78
Table 19. Assignment/Nonassignment
Precedence Table • • • • • • • • • • • • 78
Table 20. Nonassignment Type Statement
Identification • • • • • • • • • • • • • 79
Table 21. Statement 1D Numbers • 79
Table 22. Phase 2 Decision Table • 83
Table 23. Phase 3 Decision Table
(Part 1 of 4) •••••••••••• 102
Table 24. Phase 4 Decision fable
(Part 1 of 12) ••••••••••••• 141
Table 25. Operand Conversion Function
Decision Table. • . • • • • • • •• .160
Table 26. Complex Division Left
Operand Conversion Function Decision
Table • . • • . . • • • . • .161
Table 27. Operand Types Processed by
CMUL • • • • • • • • • • • • .165
Table 28. Operand Types Processed by
CDIV • • • • • • • • • • •• • .166
Table 29. Phase 5 Decision Table
(Part 1 of 3) •••••••••••• 196

CHARTS

Chart M. Executive Overall .Flow --
CEKDA (Page 1 of 2) •.••..•••• 216
Chart AB. Phase Controller (PHC) --
CEKTA (Page 1 of 5) . . • • . • .218
Chart AC. Get Next Source Statement
(GNSS) -- CEKTC (Page 1 of ~) .223
Chart AD. Process Terminal
Modifications (MOD) -- CEKTD (Page 1
of 2) •••••••••••• ••••• 227
Chart AE. Receive Diagnostic Message
(ROM) -- CEKTE .••.•.•••.•.. 229
Chart AF. Constant Filers (CONFIL) -­
CEKTF (Page 1 of 8) .••.••.••• 230
Chart AG. Master Input/Output Routine
(MIO) -- CEKTH (Page 1 of 2) • • • • • .238
Chart AB. Analyze Console Source Line
(ANALY"Z) -- CEKTI (Page 1 of 2) .240
Chart AI. Inspect a Console Character
(INSCON) -- CEKTJ • . . • • . 2~2
Chart AJ. Move a Line to a List Data
Set (LDMOVE) -- CEKTK •••• 243
Chart AR. Build a List Data Set
Buffer (BUILD) -- CEKTL .. 2~4
Chart AL. Flush a List Data Set
Buffer (FLUSH) -- CEKTM .. 245
Chart AM. Phase 1 Main Loop (PH1M) --
CEKAD (Page 1 of 4) .••• . .2~6
Chart AN. ASSignment Statement
Processor (EQUA) -- CEKAK •. 250
Chart AO. EXTERNAL Statement
Processor (EXTE) -- CEKAM .251
Chart AP. GO TO Statement Processor
(GOTO) -- CEKAQ (Page 1 of 4) .• 252
Chart AQ. IF Statement Processor (IF)
-- CEKAR (Page 1 of 2) •...••••. 256
Chart AR. Type Statements Processor
(TYPE) -- CEKAS (Page 1 of ~) .258
Chart AS. DIMENSION Statement
Processor (DIMN) -- CEKAD •• 262
Chart AT. COMMON Statement Processor
(COMM) -- CEKAII (Page 1 of 3) •.••. 263
Chart AU. EQUIVALENCE Statement
Processor (EQUI) -- CEKAY (Page 1 of 2) 266
Chart AV. DO Statement Processor (DO)
-- CEKAZ •• < ••••••••••••• 268
Chart AW. ASSIGN Statement Processor
(ASSn -- CEKBC (page 1 of 2) •• 269
Chart AX. File Control Statement
Processor (FCON) -- CEKBD (Page 1 of 2) 271
Chart AY. Input/Output statement
Processor (RNIO> -- CEKBE (Page 1 of 6) 273
Chart AZ. FORMAT Statement Processor
(FORM) -- CEKBF (Page 1 of 6) ••. 279
Chart BA. PAUSE, STOP, RETURN
Statement Processor (PSR) -- CEKBG
(Page 1 of 4) ••••••••.• • .285
Chart BB. NAMELIST Statement
Processor (NAML) -- CEKBH (Page 1 of 2) 289
Chart BC. BLOCK DATA Statement
Processor (BLDA) -- CEKBI ••.••.. 291
Chart BD. DATA Statement Processor
(DATA) -- CEKBM •.•...•..•.. 292

Chart BE. IMPLICIT Statement
Processor (IMPL) -- CEKBN (Page 1 of 3) 293
Chart BF. subprogram Entry Statement
Processor (SUBE) -- CEKBS (Page 1 of 5) 296
Chart BG. END Statement Processor
(END) -- CEKAL ••••••••••••. 301
Chart BH. Executable Statements, Pass
2 (EXEC2) -- CEKAX ••••••..••. 302
Chart BI. Subprogram Entry
Statements, Pass 2 (SUBE2) -- CEKBT •. 303
Chart BJ. CALL Statement, Pass 2
(CALL2) -- CEKBV • • • • • • • • .304
Chart BK. Subscript Processor (SUBS)
-- CEKAG (Page 1 of 6) ••••••••. 305
Chart BL. Expression Processor (EXPR)
-- CEKAI (Page 1 of 13) •••• • .311
Chart BM. Conversion Subroutine
(CNVRT) -- CEKAN (Page 1 of 3) •. 32~
Chart BN. Statement Function
Definition (SFDEF) -- CEKBK •..••. 327
Chart BO. Statement Function
Expansion (SFEXP) -- CEKBL (Page 1 of
2) • • • • • • • • • • . • • . • .328
Chart BP. Function Classifier (FNCLS)
-- CEKBX ••••.••••..•••.. 330
Chart BQ. Library Function Selector
(LIBN) -- CEKBY • • • . • • • • .331
Chart BR. Constant Arithmetic
Subroutine CARITH) -- CEKCB •. 332
Chart BS. Term Processor (TEMPRO)
CEKCG • • • • • • • • • • . . • • • 333
Chart BT. Actual Argument Service
Routine (AAR3) -- CEKCR .334
Chart BU. Constant Arithmetic
Interrupt (CHKINT) -- CEKCS .335
Chart BV. Extract Source Character
(ESC) -- CEKAB • • • • . • . . • .336
Chart BW. Assemble Components (ACOMP)
-- CEKAE (Page 1 of 8) •....•.•. 337
Chart BX. File Real Constant (FLRC)
-- CEKCH •••••••..••.•••. 345
Chart BY. Insert Variable in Symbol
Table (IVST) -- CEKCI .•.... 3~6
Chart BZ. Decimal to Binary Integer
Conversion (ICNV> -- CEKCN • . • .347
Chart CA. Decimal to Floating Binary
Conversion (FCNV) -- CEKCP ••.•..• 348
Chart CB. Begin Loop Processor
(BGNLP) -- CEKBA (Page 1 of 2). . .349
Chart CC. End Loop Processor (ENDLP)
-- CEKBB • • • • . • •351
Chart CD. Check Limits (CKLIM) --
CEKCJ .•••••.•...•. 352
Chart CEo I/O List Processor (IOLST)
-- CEKBW (Page 1 of ~) ..••.••.. 353
Chart CF. Format Label Processor for
I/O statements (FLABL) -- CEKCD .357
Chart CG. Read Transfer Processor for
I/O Statements (RTRAN) -- CEKCE .358
Chart CH. FORMAT or NAMELIST
Processor (FNAME) -- CEKCF . • • • . • .359

Chart CIa Initial Value Data
Specification Processor (IDArA)
CEKAH (Page 1 of 2) ••••••• .360
Chart CJ. Initial- Value Processor
(IVAL) -- CEKCL (Page 1 of 6) • .362
Chart CK. Array Dimension
Specification Processor (ARDIM) --
CEKAF (Page 1 of 2) •.•.•... .368
Chart CL. Label String Processor
(LBSTR) -- CEKCC . • . . . • • •• .370
Chart CM. Statement of Identification
(SID) -- CEKAC • . • . .•.... 371
Chart CN. Statement Label Processor
(LABL) -- CEKA] (Page 1 of 2) • .372
Chart CO. Fallthrough Determination
(FALrS) -- CEKBQ • • • • • • • • .374
Chart CPo Diagnostic Message
Generator (ERR) -- CEKCA (Page 1 of 4) .375
Chart CQ. Memory Assignments for
Variables (VSCAN) -- CEK,JC (Page 1 of
11)379
Chart CR. Process Label References
and Definitions (FSCAN) -- CEKJB (Page
1 of 8) •••••••••••••••• 390
Chart CS. Label Reference Processor
(RrNl) -- CEKJD • • • • . • • • • • • • 398
Chart CT. Label Reference Processor
(LAB) -- CEKJE (Page 1 of 2) •••••• 399
Chart CU. Diagnostic Message
Generator (OX) -- CEKJH (Page 1 of 2) .401
Chart CV. Phase 3 Master Control
Routine -- CEKKR (Page 1 of 4) ••••• 403
Chart CWo PRF Processing Routine --
CEKKU (Page 1 of 12) ••.•..•••. 407
Chart CX. End Loop PRF Entry Routine
-- CEKKC (Page 1 of 2) •••..•••• 419
Chart CY. Begin Loop 1 PRF Processor
-- CEKKV (Page 1 of 3) ••••••••• 421
Chart CZ. Begin Loop 2 PRF Processor
-- CEKKw (Page 1 of 3) • • • • • • .424
Chart DA. Expression Scan Routine --
CEKKE (Page 1 of 3) •••••••• 427
Chart DB. Copy and Edit an Expression
-- CEKLF (Page 1 of 5) .•.•.•.•• 430
Chart DC. Push Primitive Operand
Routine -- CEKKF (Page 1 of 2) .•••• 435
Chart DD. Variable Compute Point and
Remove Level Routine -- CEKKG (Page 1
of 2) •••••••••• ••••••• 437
Chart DE. Operand List Expression
Formation Routine -- CEKKL •.••••• 439
Chart DF. Triad File Manipulation
Routine -- CEKKH (Page 1 of 2) ••••• 440
Chart DG. Search and Insert Triads --
CEKKP ••••.•••.•••.•• 442
Chart DH. Canonical Form Routine ~-
CEKKN (Page 1 of 2) ••••.••••• 443
Chart 01. Expression Removal and
commonality Determination Routine --
CEKKI (Page 1 of 5) •...•.••.• 445
Chart OJ. Establish Common Expression
-- CEKKK •
Chart DK.
Chart DL.
CEKLA
Chart DM.
Chart ON.
Expression

Check Commonality -- CEKKJ
Label Common Expressions --

.450

.451

• . • • • • • • 452
File CRT Entries -- CEKLE •. 453
Expunge a Removab~e
-- CEKLD •• . . . • .454

Chart DO. Subscript Expression
Revision Routine -- CEKKM (Page 1 of 3) 455
Chart DP. Acquire Entry From Compute
and Removal rable -- CEKRA ••••••. 458
Chart DQ. Polish Expression
Generation Routine -- CEKKB (Page 1 of
5) •••••••••••.••••••• 459
Chart DR. Save Popularity Counts for
Register Assignment -- CEKKO •••••. 464
Chart OS. File Constant and Covering
Adcon -- CEKLB . • • • • • • •• • .465
Chart DT. Loop Test-Expression
Generator -- CEKLI (Page 1 of 6) •• 466
Chart OU. Entry Point Processor (ENT)
-- CEKOD (Page 1 of 2) • • • • • • .472
Chart DV. Referenced Label PF Entry
Processor (LABEL) -- CEKNU •••.••• 474
Chart DW. Equation PF Entry Processor
(EQUAT) -- CEKMJ •••••••••••• 475
Chart DX. Arithmetic IF PF Entry
Processor (AIF) -- CEKNK (Page 1 of 5) .476
Chart DY. Logical IF PF Entry
Processor (LIF) -- CEKNL •••••••• 481
Chart OZ. ASSIGN PF Entry Processor
(ASSGN) -- CEKNS •••••••.•••• 482
Chart EA. Assigned GO TO PF Entry
Processor (AGO) -- CEKNQ •••••••• 483
Chart EB. Computed GO TO PF Entry
Processor (CGO) -- CEKNR • • .484
Chart EC. CALL Statement Processor
(CALL) -- CEKOL •••••••••••• 485
Chart ED. RETURN Processor (RTRN)
CEKOE (Page 1 of 3) • • • • .486
Chart EE. Begin Loop 1 PF Entry
Processor (BLl) -- CEKNM • • • • .489
Chart EF. Begin Loop 2 PF Entry
Processor (BL2) -- CEKNN (Page 1 of 9) .490
Chart EG. Begin Loop 3 PF Entry
Processor (BL3) -- CEKNO (Page 1 of 3) .499
Chart EH. End Loop PF Entry Processor
(ENDLP) -- CEK~P (Page 1 of 6) •• .502
Chart EI. I/O Statement PF Entry
Processor (RD) -- CEKOH •••••••• 508
Chart EJ. I/O List Element PF Entry
Processor (ILIST) -- CEKOI (Page 1 of
2) • • • • • • • • • • • ••••• 509
Chart EK. End List PF Entry Processor
(NDLST) -- CEKOJ •••.•••••••• 511
Chart EL. STOP and PAUSE Statement PF
Entry Processor (STOP) -- CEKOK .512
Chart EM. Arithmetic Expression
Generator (AGEN) -- CEKNW (Page 1 of 2) 513
Chart EN. Expression Tree Builder
(TRBLD) -- CEKML (Page 1 of 2) ••••• 515
Chart EO. Weight Subroutine (WGHT) --
CEKNE ••••••••••••••• 517
Chart EP. Common Expression Usage
Count (CSX) -- CEKOB (Page 1 of 3) .518
Chart EQ. Real Plus Generator (RPLUS)
-- CEKMC (Page 1 of 3) • • • • • • • • .521
Chart ER. Real Multiply Generator
(RMUL) -- CEKMB (Page 1 of 2) ••••• 524
Chart ES. Real Divide Generator
(RDIV) -- CEKMA (Page 1 of 2) ... 526
Chart ET. Integer Plus Generator
(IPLUS) -- CEKMF . • • • • • • •• .528
Chart EU. Integer Multiply Generator
(IMPLY) -- CEKME (Page 1 of 3) •.••. 529

Chart EV. Integer Divide Generator
CIDVDE} -- CEKMD • • • • . • • . .532
Chart EW. Add by Load Address (LADDR)
-- CEKOV (Page 1 of 2) ..•••.••. 533
Chart EX. Complex Plus Generator
(CPLOS) -- CEKMG (Page 1 of 3) •..•. 535
Chart EY. Complex Multiply Generator
(CMOL) -- CEKOF (Page 1 of 2) •. 538
Chart EZ. Complex Divide Generator
(CDIV) -- CEKOG (Page 1 of 2) •. 540
Chart FA. Relational Expression
Chart FB. Logical Expression Generator
(ANDOR}-CEKMI 542A
Generator (RI,TNL) -- CEKMH • • • . ••. 542
Chart FC. Maximum Operator Generator
(MAX) -- CEKMO ••••.•....••. 543
Chart FD. External Function Generator
(FUNC) -- CEKMK (Page 1 of 3)544
Chart FE. Comma Operator Processing
Subroutine (COMMA) -- CEKNJ (Page 1 of
3) ••••••••••••••••••• 547
Chart FF. Open Function Control
Routine (DCOM) -- CEKOM ••••.••. 550
Chart FG. Open Function Processing
Routine (OPEN1) -- CEKOT (Page 1 of 6) .551
Chart FH. Open Function Processing
Routine (OPEN2) -- CEKOO (Page 1 of 3) .557
Chart Fl. Open Function Processing
Routine (OPEN3) -- CEKOX (Page 1 of 3) .560
Chart FJ. Open Function Processing
Routine (OPEN4) -- CEKOY (Page 1 of 4) .563
Chart FK. Open Function Processing
Routine (OPENS) -- CEKOZ (Page 1 of 6) .567
Chart FL. Open Function Processing
Routine (OPEN6) -- CEKOM2 (Page 1 of 2) 573
Chart FM. Memory Access Routine
(MEMAC) -- CEKMV (Page 1 of 2) ••••• 575
Chart FN. Local Branch Generator
(SADDR) -- CEKMZ ••••••••.••• 571
Chart FO. Labeled Branch Generator
(LBL) -- CEKNV. . • • • • .578
Chart FP. Operand Fetch
Complement/store Routine (FErCH)
CEKOS . • • • • • • • • • • .579
Chart FQ. Select Operand Routine
(SELOP) -- CEKND (Page 1 of 2) •• .580
Chart FR. Select Position for Operand
(SLPOS) -- CEKNF (Page 1 of 2) ••••• 582
Chart FS. Select One Operand in a
Register (SLONE) -- CEKOW (Page 1 of 4) 584
Chart FT. Determine Availability of
Register for Multiplication (SELGM) --
CEKNB (Page 1 of 2) •••••• .588
Chart PU. General Register
Availability for Integer Divide
(SELGD) -- CEKNA ••.••••••... 590

Chart FV. Operand Status Routine
(KEY) -- CEKOC • . • • • . . • • • .591
Chart FW. Single Operand Locating
Routine (KEY1) -- CEKOR ..•••••. 592
Chart FX. Search General Registers
(FNDAR) -- CEKMR •••.•••..•.. 593
Chart FY. Search Floating Registers
(FINDFR) -- CEKMS ••.•••.••.. 594
Chart FZ. Operand Processing Routine
(OPND) -- CEKNW (Page 1 of 2) •...• 595
Chart GA. Result-Register Operand
Processing Subroutine (RSLT) -- CEKMY .597
Chart GB. Select Single General
Register (SELSR) -- CEKNG (Page 1 of 2) 598
Chart GC. Select Even/Odd General
Register Pair (SELDR) -- CEKNH (Page 1
of 2) . • • • • • • . • . . . • • . 600
Chart GD. Select Floating Register
(SELFR) -- CEKMQ (Page 1 of 3) ••••• 602
Chart GE. Make Initial Assignment to
General Register CASAR) -- CEKMM • .605
Chart GF. Make Synonym AsSignment to
General Register (ASARS) -- CEKMN .606
Chart GG. Make Synonym Assignment to
Floating Register (ASFRS) -- CEKMP .607
Chart GH. Find Temporary Storage
(FNDWS) -- CEKMT • . • • • • . •• 608
Chart GI. Release Temporary Storage
(RLSWS) -- CEKMX . • • • • • .609
Chart GJ. Register Memory Clear
Routine (FLUSH) -- CEKON • • • • • .610
Chart GK. code File Output Subroutine
(INSOT) -- CEKNI • • • • • . • • .611
Chart GL. Object Program Module
Builder (BOILD) -- CEKSB • • • • ..612
Chart GM. Common Control Section
Generator (CMSEC) -- CEKSC • • • ..613
Chart GN. Code control Section
Generator (COSEC> -- CEKSF (Page 1 of
3) • • • • • ••••••••••• 614
Chart GO. PSECT Builder (PRSEC)
CEKSG • • • • • • . • •617
Chart GP. Present Data Processor
(SPECS) -- CEKSD ••••••••••.. 618
Chart GQ. Internal Symbol Dictionary
Generator (ASSIST) -- CEKSH .••••• 619
Chart GR. Object Program
Documentation (EDIT) -- CEKSI (Page 1
of 3) ••••••••••.•.•. 620
Chart GS. Symbol Table Sort (SYMSRT)
-- CEKSJ •••••.••••••••.• 623
Chart GT. Constant Conversion (CONCV)
-- CEKSL • .• 624
Chart GU. Cross Reference List
Routine (CRFSRT) -- CEKSK (Page 1 of 5) 625

The TSS/360 FORTRAN IV compiler i";
implement ed in accordance with the conven­
tions and requirements for systems programs
in the TSS/360 environment. It is relocat­
able, reenterable, closed, nonprivileged,
and nonresident.

The compiler organization and informa­
tion f low are designed particular"ly for
processing in the time-sharing environment.
Wherever poSSible, to reduce the "page­
turning" load on TSS/360, the intermediate
data is organized and processed serially,
in file form, rather than in a form requir­
ing random access. The presence of the
entire file in virtual storage ensures fast
access to its contents; repeated references
to the same virtual storage rage, inherent
in serial processing, reduces the number of
pages needed in rapid succession.

While primarily a conventional batch­
processor, the compiler contains s~ecial
features making it especially suitable for
conversational, terminal-orientej opera­
tion. The compiler syntax analy"sis per­
forms statement-by-statement error checking
of the source program as it is input
through the Language Processor Control pro­
gram (LPC). Diagnostic messages are
returned to the user's terminal via LPC,
and each appears at the terminal following
the listing of the statement in which the
error was detected. LPC gives the user the
opportunity to correct the error, whether
it be in the last statement processed, or
in some earlier statement. Then LPC in­
forms the compiler of whether a change was
made and if so, which lines are affected.
If only the last statement was changed, the
compiler -forgets· the effect of the last
statement and begins compilation with the
statement replaCing it. Otherwise, the
compiler, under direction of LPC, restarts
compilation from the beginning of the
source program module. In this manner the
most common errors, those local to the last
statement processed, may be corrected with
minimum loss of time.

After the END statement has been pro­
cessed by the first phase, the compiler's
second pnase may detect errors of a more
global nature (undefined statement labels,
illegal DO-loop flow, etc.). The resulting
error messages are passed to LPC, but now
LPC does not allow the user to supply
correction lines. When the compiler's
second phase is complete, LPC gives the
user the opportunity to correct errors or
to go on. If errors are corrected, the
compiler will recompile from the beginning

SECTION 1: INTRODUCTION

of the stored source data set, and another
conversation is possible. otherwise, com­
pilation proceeds to termination through
the renaining compiler phases.

Detailed information concerning the con­
versation between terminal user and compil­
er is included in the description of the
Compiler Executive routine (Exec), which
interfaces with LPC.

OBJECT PROGRAM MODULES

The compiler produces an object program
module (OPM) consisting of a program module
dictionary (PMD), an optional internal sym­
bol dictionary (ISO), text (the binary
instructions and constants), and a list of
externa 1 names.

The PMD contains heading information,
used to identify the module, and a control
section dictionary (CSD) for each control
section occurring in the module. The eSD
specifies which text entries require loader
address computations or satisfaction of ex­
ternal references or references to other
control sections. A complete specification
of the PMD format is given in Section 7.

The ISD is a table of source language
symbolS (not subprogram references), the
attributes associated with those symbols,
and the control section and relative loca­
tion within control section assigned to
each. The ISD information is used by the
Program Control System (PCS) to relate the
user symbols with the definitions in the
OPM. A complete specification of the ISO
format is given in Section 7.

SUBPROGRAM CALLS IN OPM TEXT

The text does not contain the machine
instructions that actually perform the
input/output of data: nor does it contain
the machine instructions to perform the
more involved mathematical calculations
such as those for finding the square root
or the logarithm. The text also does not
contain the machine instructions that actu­
ally perform such services as handling
sense lights, overflows, underflows, excep­
tions, dumps, and the STOP, PAUSE, and CALL
EXIT statements. The set of binary
instructions produced by a compilation con­
tains code for calls to library subprograms
to perform these functions.

Section 1: Introduction 1

These subprograms are all permanently
stored in SYSLIB, and consist of:

• FORTRAN I/O library subprograms. FOR­
TRAN I/O source statements (READ,
WRITE, BACKSPACE, ENDFILE, REWIND,
PRINT or PUNCH) cause the compiler to
insert, in the object code, calls to
the appropriate FORTRAN I/O Library
subprograms. Other FORTRAN I/O subpro­
grams are used to execute the CALL
DUMP, CALL PDUMP,. "(;ALL EXIT, STOP and
PAUSE statements. Note: There are
several service subprograms (STOP,
PA.USE, CALL DUMP, CALL PDUMP, CALL
EXIT) in the FORTRAN I/O group which do
not, strictly speaking, perform I/O.
These subprograms, however, were
included in the FORTRAN I/O group
because they use the FORTRAN data con­
version routines. These subprograms are
described under "Service Subprograms"
in FORTRAN IV Library Subprograms.

• Mathematical Subprograms. These sub­
programs are used for the more compli­
cated mathematical procedures. They
are used to perform the explicitly
referenced functions (for example, the
sine fUnction in X=SIN(Y) as well as to
do the more involved computations for
mathematical statements which do not
explicitly reference a function (for
example, the exponentiation in the
statement X=Y**I). See FORTRAN IV
Library Subprograms for information on
these subprograms.

• The Service Subprograms that handle
exceptions, pseudo-sense lights, over­
flows, underflOWS, and divide checks.
For information on these, see FORTRAN
IV Library Subprograms.

OBJECT PROGRAM DOCUMENTATION

In accordance with user-specified or
defaulted options, the compiler produces
the following documentation:

2

• A listing of the source program.

• An object program storage map giving
the storage layout of the object
program.

• A list of source program symbols and
their storage equipments.

• A cross-reference listing relating sym­
bols and statement numbers to the
source line numbers of the statements
in which they were referenced or
defined.

• A listing of the object module in a
representation very nearly in a form

that might have been produced by the
assembler.

I Phase 5 of the compiler either places this
information in the list data set, which is
stowed by LPC, or writes it on SYSOUT.

COMPILER INTERFACES

All interface with LPC and other exter­
nal routines is in the compiler Executive
routine (Exec).

INTERFACE WITH LPC

The Compiler Executive routine may be
called by LPC at either of two points and
may itself call LPC at either of two points
(see Figure 1).

The two compiler entries are called INI­
TIAL and CONTINUE. LPC calls the INITIAL
entry to pass the user options to the com­
piler and to initiate the first stage of
the compilation (Phases 1 and 2). LPC
calls CONTINUE to complete the compilation
after the first stage is finiShed. The
compiler return from CONTINUE informs LPC
of the size of the OPM's elements, so that
LPC can dispose of them.

The compiler calls LPC at either of two
places during the first stage (before the
compiler returns to LPC from the INITIAL
call). The first, GETLINE, is used to
obtain a source line. The second, PUTDIAG,
is used to pass a source error diagnostic
message to LPC. PUTDIAG may also be used
after the first stage.

INTERFACE WITH VIRTUAL STORAGE ALLOCATION

The compiler obtains virtual storage for
the symbol table and other interphase files
via GETMAINi to release the storage, it
uses FREEMAIN. (See Appendix A for a
description of the interphase files,
including the symbol table.)

INTERFACE WITH DATA MANAGEMENT

The compiler maintains the list data set
by means of the virtual access method
(VAMO. The compiler issues OPEN, SETL,
PUT, and CLOSE macro instructions to pro­
duce this data set.

COMPILER/SERVICE ROUTINES INTERFACE

The compiler "time-stamps" (includes the
relative calendar time in) each object pro­
gram module (OPM) control section that it
produces. It also includes the date and

~nl"ia!

Entry

PUTDIAG LPC

FORTRAN
Compiler

Other Routines
External to
the Compi ler

Virtual Memory Allocation Data i\"'.anogernenr (VA.M) Service Routines

(Direcrion of arrow indicates seme- of sucroutir"e coil.)

Figure 1. FORTRAN IV compiler External References

time as identification on each sheet of
listing that it produces. To do this, the
compiler calls two service routines:
REDTIM and EBCDTIME. REDTIM returns the
time (in milliseconds elapsed since March
1, 1900), which is used to time-stamp the
control sections and as input to EBCDTIME,
which edits it into the EBCDIC representa­
tion of time of day for inclusion in the
listing.

ORGANIZATION OF THE COMPILER

The compiler has six major components:
a multifunction compiler executive and five
compiler phases. The major fUnctions of
each component are summarized here; later
sections describe each component in detail.

COMPILER EXECUTIVE ROUTINE

Compiler Executive (Exec) has six
functions:

1. Interface with the compiler's
environment.

2. Prepare the source statements for pro­
cessing by Phase 1.

3. Control and order the operation of the
phases (see Figure 2).

4. Prepare edited lines for output.

5. Provide compiler diagnostic
information.

6. Provide miscellaneous services.

During a compilation, various tables and
lists are constructed to contain the
results of the operation of each phase and
to serve as input to the next phase (see
Figure 3).

PHASE 1

Phase 1 performs the source program syn­
tactic analysis, detection and diagnosis of
errors, and translation of the source pro­
gram into a multi tabular representation.
Each identifier or constant is given an
entry in the symbol table (format is shown
in Appendix A). Initial values from DATA
and type statements, dimension information
for arrays, NAMELIST information, and
alphameric constants are stored in the pre­
set data table (Appendix A). Information
concerning references to, and definitions
of, symbols and statement numbers is stored
in the cross reference table. Information
collecte~ from COMMON and EQUIVALENCE
statements is stored in the storage speci­
fication list.

The most Significant processing, from
the point of view of later optimization and
code generation, concerns the treatment of
executable statements, statement numbers,
and arithmetic expressions.

Section 1: Introduct ion 3

EXt'Cdr-iv0 Pncse

Conr-roHer -
In;,;d htr'!

Enter

1111 '0:

CompileI'.
Ci;.Jen t..ist
DuT.:] :~et.

PH.6.SE 1

j~Gnsiote Sc-urce

Fine Errors.

'----r ---
-----_.". -.--.~-,.--

PHASE 2

"'/ake S'-ora(~e
f\.~'S;9rr,er.t .

Gloc'cI

to LPC

Figure 2.

Executive Phase

Control !er -

Continue Entry

Enter

~, ,

.,,-~~-.--~~

"/---''--"

/
/ BLOCK "'_

DATA Sub-
". Program?

___ J~~_
i PHASE 3 I r--- ~--,

Perform Global .
Optimi zation-s: ' ------r----J

r---PHASE4 ----1

Prepare Ob:ecr
Prc-grom Listing. i

'--~-T-----'~~
i-----~----·---"~i

Wrap-up
Compiler.
Close List
Data Set.

(Exit)
---~---

to LPC

Yes

Compiler Component organization

Each executable statement and statement
number is placed in the program representa­
tion file (PRF) which, when scanned in the
order it was formed, is a skeletal outline­
representation of the source program. In
addition to the fields that distinguish the
items from each other, the PRF entries con­
tain pointers to the appropriate expression
representation file (ERF) entries (see
below), to symbol table entries for
variables, constants, and statement num­
bers, and to other PRF entries as appropri­
ate to the individual type of entry.
Detailed formats of the PRF and ERF are in
Appendix A.

Each expression is placed in the expres­
sion representation file (ERF) in tabular
form. The ERF form of the expression is a
parenthesis-free notation in which, reading
from left to right, each operand occurs in
the order in which it occurred in the orig­
inal expression; each operation follows its
associated operand pair. The form is

4

referred to as "right-hand Polish," or
simply "Polish." See "CEKAI -- Expression
Processor (EXPR)," in Section 3.

Each of the operator items includes
information about its type and a code to
indicate which operation is represented.
Each variable or constant item includes
information about its type and a symbol
table pointer. This pointer is the means
of reaching the associated symbol table
entry and serves to associate the item with
other items representing the same variable
or constant while distinguishing it from
other items.

The detailed description of Phase 1 is
in Section 3.

PHASE 2

Phase 2 has five functions:

Make storage assignments in the OPM to
all variables that are not formal
arguments of a subprogram.

2. Detect and diagnose illegal flow in DO
nests.

3. Indicate that the DO-loop index vari­
able requires materialization (must be
maintained in its storage cell) in a
loop that contains an exit.

4. Detect and diagnose references to
undefined statement numbers (labels).

5. Determine definition points {pOints at
which a value may be changed} of COM­
MON variables and subprogram
arguments.

COMMON variables are assigned storage in
the order dictated by their appearance in
the source program, in their appropriate
COMMON blocks, and are given as much space
as indicated by their individual DIMENSION/
type combinations.

Non-COMMON variables that do not appear
in EQUIVALENCE statements arelssigned
storage such that all scalars appear first,
followed by all one- then two-dimensional
arrays, etc. For any given dimensionality,
variables of the same type appear together;
those requiring less storage precede those
requiring more. In this way, a maximum of
address-constant sharing is obtained in the
object program.

The relative relationships of storage
assignments of variables appearing in EQUI­
VALENCE statements is determined, and these
variables are assigned storage within the
appropriate COMMON block, or at the end of
the non-COMMON group, as required.

Symbol
Table

T
Symbol
Table

1

Symbol

i Table

L

I

Figure 3.

Storage t
Specifica- I
tion List

1~

ERF l-r
~;---~

PF

I
Symbol
Table

Code
File

i

I
I
!

S0UrCe

Progr'::Jm

L....-. ____ ~_ ._---

~~~----- ."-~ 

PRF 

, I 

L j _' 

I---~---; 

I 
I PRF 

LTJ 

I Form:;r~l 
; Argument i 
i Adcon 
I 

! List 

]-' 

Compiler Information Flow 

~ ""-,---- -~~-------, 

.- PHASE 

, 

..-! PHASE 

... 1 PHASE , 
I l _--.l 

.... 1 PHASE 4 

?HASE 5 

fRF PRF 

,~-~~~~~ 

Preset 
Da~a 

~-~-~ 

1 1 
i 

, 

l Symbol 
PRF 

I Table 

1 L_~ L-

~J I I 
I I Formal 

Symbol 
PF I Argument 

I Table Adeon ! i 
I I I List 

I l ___ ~J L-__ ---.-I 

r[ 1 1 
I I I Symbol I Code I Table i File 
I J L~~ ! 

I 

Obiect 

I OPM 
Program 
Docu-
mentation i 

Section 1: Introduction 5 



Variables that do not appear in CO~ON 
statements but appear in EQUIVALENCE state­
ments in conjunction with COMMON variables 
are flagged as appearing in COMMON. 

After a storage assignment is made, its 
assignment (SLOC> within storage class 
(STCL) is recorded in the symbol table. 
Non-COMMON variables are assigned storage 
class 6, blank COMMON storage class 9, and 
labeled COMMON storage class 10 to as high 
as 127 in the order of first appearance of 
the corresponding labeled blOCKS in the 
source program. 

In the OPM storage, classes 3 through B 
will be accumulated by Phase 5 and become 
the module's PSECT in the object program. 
These classes include alphameric constants, 
address constants, NAMELISTs and parameter 
lists, non-COMMON variables, global (unre­
leasable> temporary storage, and local tem­
porary storage, in that order. The COMMON 
blocks (storage classes greater than 8) 
become individual control sections in the 
OPM where the block name becomes the con­
trol section name. Such control sections 
are combined with control sections of like 
name from other modules, before execution 
(during linkage editing or loading). 

Information concerning the remaining 
functions of Phase 2 is in Section 4. 

PHASE 3 

Phase 3 performs the global optimiza­
tions to be done in the code generated by 
Phase 4 and establishes address coverage 
for all quantities referred to from 
storage. 

Phase 3 determines which arithmetic 
expressions can be computed only once and 
then saved for later uses. It also deter­
mines the range of statements over which 
expressions are not redefined by the 
definition of one or more of their com­
ponents. If the occurrence of an expres­
sion in that range is contained in one or 
more DO loops which are also entirely con­
tained in that range, Phase 3 determines 
the outermost such loop outside which such 
an expression may be computed, and moves 
the expression to the front of that DO 
loop. Only the evaluation process is 
removed from the loop; any statement number 
and/or store process is retained in its 
original position. The moved expression is 
linked to a place reserved for that purpose 
in the program-representation-file entries 
corresponding to the beginnings of DO 
loops. 

6 

In the statements 

1 A B+C 
2 y = A+B 
3 A A*2 
4 Z = A+B 
5 X B+C 

the occurrences of expression B+C in state­
ments 1 and 5 are determined to be common 
because neither B nor C has an intervening 
definition. The expression identification 
corresponding to the plus operator will be 
changed from ·operator" to "common expres­
sion" (CSX). A CSX has the properties of 
the original operator (e.g., here the plus 
operator code is retained), with the addi­
tional property that it represents a 
"named" expression. The CSX item contains 
a field reserved for the expreSSion name 
(this name is actually a monotonically 
increased number), that is identical only 
for identical expressions. In statements 2 
and 4 above, the expression A+B is not a 
CSX because of the intervening definition 
of A in statement number 3. Both plus 
operators retain their ·operator" identity; 
neither becomes a "named" expression. 

Consider the statements 

DO 1 I 1, 10 
A B+C 
Y E+F 

1 F A 

Because there are definitions of neither 
B nor C within the DO loop, the expression 
B+C is given a "name", and the named ex­
preSSion is linked to the beginning of the 
DO statement, so that Phase 4 generates the 
expression once, outside the loop. The 
occurrence of the expression inside the 
loop is replaced by a "residue item" (see 
ERF description in Appendix A) that has the 
same "name" as the removed expression. 
Note that expression E+F is neither named 
nor removed because of the definition of F 
in statement 1. 

Phase 3 creates two new operators, both 
arising only from subscripts. The first is 
called a base/index split operator or "? 
operator"; its right operand is a residue 
(computed outside a DO loop), and its left 
operand is an expression that is local to 
the DO loop. Phase 4 places one quantity 
in a base register and the other in an 
index register when generating a storage 
reference to the subscripted quantity. 

The second operator is called the recur­
sive operator or"! operator"; its right 
operand is the initial value of a subscript 
(induction variable dependent) constituent 
that is to be computed recursively over a 
DO loop, and its left operand is the "step 



expression-, a quantity to be added to the 
recursive expression after each pass 
through the loop. - (The induction variable 
is the variable referenced in the DO state­
ment of the loop. In the DO statement 
shown above, I is the induction variable.) 

Phase 3 merges the ERF and PRF with some 
modification to form the PF (see Appendix 
A). This file is the primary output of 
Phase 3. 

Detailed informa~ion about the functions 
of Phase 3 is in section 5. 

PHASE 4 

Phase 4 performs the code generation 
function. Its input consists primarily of 
the PF and symbol table, and its output is 
the code file which represents, completed 
machine instructions and additional editing 
information. 

Phase 4 performs a scan of the PF. Pro­
cessing is triggered by the various PF 
items and by the expressions they may 
reference. A set of tables is maintained 
that reflects the contents of the various 
general and floating registers at any time. 
When the generation of an expression is 
required, the register tables are searched, 
and if any constituent operand of the ex­
pression is in a register, it is generally 
used from that register, rather than from 
storage. Partial results are stored in 
temporary storage only when a register is 
needed for some other purpose and there is 
no better choice of register than the one 
containing the partial result. or when the 
partial result is a csx that has later uses 
and the operation about to be performed 
will change the value of the register con­
taining the common expression. 

Phase 4 is a collection of PF entry pro­
cessing routines, arithmetic generators 

tailored to the various operators and ex­
pression types; and service routines to 
maintain register storage, partial result 
storage, and CSX storage, to select and 
assign registers, to determine when 
operands are no longer needed, to assign 
and release temporary storage, etc. The 
detailed description of Phase 4 (in Section 
6) indicates the relationships among these 
routines and provides a much more compre­
hensive description of the operation of 
this phase. 

PHASE 5 

Phase 5 collects the information from 
the various compiler-generated storage 
classes and forms a code/numeric-constant­
sharable CSECT, a PSECT, and as many COMMON 
CSECTs as there are declared COMMON blocks. 
This information. and information (obtained 
from the Symbol Table) making up the 
optional ISO, constitutes the object pro­
gram module. 

Optionally, Phase 5 also produces an 
assembler-like listing of the object pro­
gram code obtained from the Code File, a 
storage map, and a cross reference listing 
indicating the various source-program iden­
tifiers and the lines in which they were 
referenced or defined. The user's selec­
tion of these optiOns is passed from LPC to 
the compiler Executive and thence through 
the INTERCOM table to Phase 5. 

Section 7 contains the detailed descrip­
tion of Phase 5. 

Note: Routine descriptions in Sections 2 
through 7 occasionally refer to registers 
as ·Pl", ·P2-, "P3·, etc. Such register 
notations are taken directly from the list­
ing, where they appear in EQU instructions 
and other instructions. 

Section 1: Introduction 7 



SECTION 2: EXECUTIVE 

INTRODUCTION 

The compiler executive (Exec) contains 
all routines in the compiler that either 
provide an interface between the compiler 
and the environment in which it resides or 
provide a service needed by more than one 
compiler phase (Chart AA). Functions per­
formed by the Exec routines fall logically 
int.o the following categories: 

1. Service external interfaces. 

2. Prepare source statements. 

3. Control the compiler phases and inter­
phase files. 

4. Process compiler edit lines. 

5. Provide compiler diagnostic informa­
tion. 

6. Provide miscellaneous services. 

This discussion of the Exec is divided 
into seven sections: an initial section 
entitled -General Information,· followed by 
sections dealing individually with the 
above six categories. 

GENERAL INFORMATION 

This section contains general informa­
tion of value to understanding the computer 
executive. Topics discussed are: 

1. Macro instruction usage. 

2. Linkage conventions. 

3. Register notation and conventions. 

~. Storage map. 

5. Brief routine description. 

6. Use of the phase controller PSECT by 
other Exec routines. 

MACRO INSTRUCTION USAGE 

The Exec routines, like all compiler 
routines, make heavy use of macro instruc­
tions: both "user" macro instructions 
(such as CALL, SAVE, RETURN -- those 
described in Assembler User Macro Instruc­
tions) and "system" macro instructions 
(those used only by the exec). User macro 
instructions are not discussed here. The 

8 

term macro instructions as used in this 
discussion means ·system macro 
instruction ... 

Appendix C lists a brief summary of all 
exec macro instructions; the following 
paragraphs group them by function. 

1. Macro instructions concerned with the 
compiler diagnostics features: CEKTO, 
CEKTG, CEKV3 and CEKV5. 

2. Macro instructions written to provide 
module PSECTs and DSECTs: CERU7, 
CEKT8, and CEKT9. 

3. The CEKVU macro instruction contains 
all VAM macros. 

4. All uses of the GETMAIN and FREEMAIN 
macro instructions are contained in 
the macro instructions CEKVC and 
CEKV9, respectively. 

5. The macro instruction CEKVA issues the 
system macro instv~ctions EBCDTlME and 
REDTIM. 

6. The CEKU9 macro instruction simplifies 
the processing associated with output 
of a message describing a source 
statement error detected by any Exec 
modules. 

7. The macro instructions CEKTX, CEKV7, 
and CEKV8 define all V-R con pairs and 
issue the CSECT and PSECT lines, for 
all Exec modules. 

Use of all other Exec macro instructions 
is obvious upon inspection of Appendix C 
and the assembly listings. 

LINKAGE CONVENTIONS 

All linkages by the compiler are Type I. 
(See Appendix B. wTSS/360 Linkage Conven­
tions·). The linking mechanism is either 
by means of the CALL, SAVE, and RETURN 
macro instructions or by the INVOKE, STORE, 
and RESUME macro instructions; there are no 
hand-coded linkages. All exec routines, 
linked to by other exec or compiler rou­
tines through a CALL macro instruction, set 
return codes in general register 15 before 
returning. These codes are: 



code 
-0-

4 

8 

Description 
Normal return. 

If a phase suspects a system error, 
it returns to the phase controller 
with a code of 4. No phase current­
ly issues this return code. 

The ·compiler cannot continue 
Abort" code. Table overflow is the 
usual cause. The phase will return 
to the phase controller with a 
return code of 8, causing the phase 
controller to make a -FORTRAN cannot 
continue" return to LPC. 

16 A compiler restart is to be executed 
(see comment below). Programs 
called by the phase controller are 
to return with this code if, upon 
calling an exec subroutine, a code 
of 16 was returned by the 
subroutine. 

A return code of 12 is treated identi­
cally to a code of B. Return code of 16 is 
expected only during Phase 1 processing; in 
all other places it is treated as a code of 
8. A return code from a compiler module 
greater than 16 is never expected, is not 
tested for, and will produce unpredictable 
results. 

REGISTER NOTATION AND CONVENTIONS 

The TSS/360 register notation standards 
(see also Appendix B) describe a division 
of registers into parameter registers (P1 
through P6>, volatile registers (V1 and 
V2), nonvolatile registers (Nl through NS), 
and linkage registers (L1 through L3). 
This standard is followed in all Exec 
modules, with the minor exception that 
absolute register notation is used where it 
should be made clear that other registers 
may not be used. Examples are registers 0 
and 1 in the ED instruction and registers 
loaded by the system macro instructions and 
macro processors. 

Use of all registers is summarized in 
the prologue contained at the beginning of 
each assembly listing. 

The CEKSZ macro instruction issues all 
EQUs for general and floating registers. 

STORAGE MAP 

Table 1 shows the approximate size of 
each control section in the Exec and the 
GETMAIN areas used for interphase files. 
The manner in which the compiler modules 
are link-edited will, of course, dictate 
the order in which modules are loaded and 
the storage required. 

BRIEF ROUTINE DESCRIPTION 

The routines in the Executive are 
described briefly below. The description 
includes the documentation module name 
(five characters, in parentheses, with the 
letters CEKT as the first four characters), 
preceded by the name generally used 
throughout the Executive documentation. 
The type of linkage to the routine is 
described, and a note is given describing 
conditions if the routine is an assembly 
module (is assembled separately from all 
other modules), as well as a documentation 
module. (A documentation module mayor may 
not represent a separate assembly.) 

1. Phase Controller -- PHC (CEKTA, docu­
mentation and assembly module). 

The Phase Controller is a Type I link­
age subroutine and is the interface 
between the (LPC) and the five compil­
er phases. All LPC calls enter PHC, 
and the phases may be called only by 
PHC. PHC initializes the work area 
and communication module as required 
for each phase, furnishing addresses 
of tables. pointers in these tables, 
etc. PHC prepares all parameters for 
return from the LPC to FORTRAN calls. 

PHC does not call the LPC entries GET­
LINE or PUTDIAG, nor does it operate 
on the list data set in any way. 
These operations are all performed by 
the master input/output module (see 
below) • 

2. Get Next Source Statement -- GNSS 
(CEKTC, documentation and assembly 
module) • 

This Type I linkage subroutine obtains 
complete source statements for Phase 1 
of the compiler. The source state­
ments are composed of lines furnished 
GNSS by the LPC GETLINE entry. Facil­
ity is included for conversational 
modification of statements already 
received. GNSS uses restricted link­
ages internally. 

3. Process Terminal Modification -- MOD 
(CEKTD, documentation and assembly 
module) • 

MOD is a Type I linkage subroutine 
whose purpose is to assist GNSS in the 
formation of source statements when 
conversational corrections have been 
made to the source statement. It 
accomplishes this by analyzing the 
relation between the line number of a 
line to be corrected (or inserted) and 
the line numbers of statements already 
received by the compiler. 

section 2: Executive 9 



Table 1. Executive Storage Map 
r-------------------~---------------T--------------------T------------------------------l 
I Module I Code I PSECT I 
t-----------------------------+------------_f-------------------------~ 
I Phase Controller (CEKTA>. I (16,000 bytes) I Save Area I 
I (PSECT for CEKTA is the I I <76 bytes) I 
I Work Area and Communica- I I I 
I tion Module, CEKTB) I I I 
1------------------------+-------------+------------------------~ 
I I I I 
I I I Inter-Exec I 
~----------------------------------+------------------~ Communication I 
I I I and work area and I 
I I I Intercom <13,000 bytes) I 
~-----------------------------------+-----------------+----------------------------~ 
I I I Symbol Table* I 
I I I (20 pages -- 81,920 bytes) I 
~----------------------------+--------------_f-------------------------~ 
I I I Work Area A* I 
I I I (60 pages) I 
t-----------------------------------+--------------------+---------------------------~ 
I I I Work Area B* I 
I I I (60 pages) I 
t--------------------------------+------------------f-----------------------------~ 
I I I Work Area C*,** I 
I I I (32 pages) I 
t-------------------------------+---------------f--------------------~ 
I Get-Next-Source Statement I (1600 bytes) I Save Area, misc. I 
I (C~TC) I I (128 bytes) I 
~--------------------------+-------------+---- --------------~ I Process Terminal Modifica- I (2048 bytes) I Save Area, misc. I 
I tions (CEKTD) I I (128 bytes) I 
~----------------------------+--------------+------------------~ 
i Receive Diagnostic Message I (300 bytes) I Save Area, misc. I 
I (CEKTE) I I (128 bytes) I 
t----------------------------+---------------+--------------------------~ 
I Constant Filers (CEKTF) I (4096 bytes) I Save Area, misc. I 
I I I (128 bytes) I 
~---------------------------------+------------------+---------------------------~ 
I Master Input/Output (CEKTH> I (4096 bytes) I (600 bytes) I 
~-----------------------------------~--------------------~------------------------------1 
I * These areas are obtained using GETMAIN. I 
I ** See Table 4 for the allocation of Work Area C for the output Module. I L _____________________________________________________________________________________ -1 

4. Receive Diagnostic Message -- RDM 
(CEKTE, documentation and assembly 
module) • 

Any module in the compiler (including 
Exec modules) that adds a diagnostic 
message to the user's output does so 
through RDM. The message may go to 
the list data set, the conversational 
console. or both. The LPC entry PUT­
DIAG is used for console messages. 

5. Constant Filers -- CONFIL (CEKTF, 
documentation and assembly module). 

10 

Several of the compiler phases must 
add information concerning numeric, 
address, and label constants to the 
symbol table. The filing of these 
constants is performed for the phases 
by CONFIL, through a Type I linkage. 
CONFIL also includes an entry which 

creates numbers used to mark points in 
the code for the phases and then files 
these numbers as label constants. 

6. Master Input/Output -- MIO (CEKTH, 
documentation and assembly module). 

All input/output operations are con­
trolled by MIO. These operations 
include: 

a. calling GETLINE for source lines 

b. calling PUTDIAG for diagnostic 
message output to the conversa­
tional console 

c. Opening, closing, and adding 
source and diagnostic messages to 
the list data set 



7. 

8. 

9. 

MIO contains six Type I linkage 
entries and uses restricted linkages 
internally. 

Analyze Console Source Line -- ANALYZ 
(CEKTI, documentation module). 

This restricted linkage subroutine is 
invoked by GNSS to determine where the 
statement number and first text 
char acter are 
how many text 
in the line. 
GNSS. 

in a console line, and 
characters are included 
ANALYZ is assembled into 

Inspect a Console Character -- INSCON 
(CEKTJ, documentation module). 

This restricted linkage subroutine is 
invoked by ANALYZ to determine if a 
console character is a tab, numeric, 
blank, or other character. INSCON is 
assembled into GNSS. 

Move a Line to the List Data Set -­
LDMOVE (CEKTK, documentation module). 

LDMDVE is a restricted linkage subrou­
tine, invoked by MIO to move a line 
from a buffer to the list data set. 
LDMOVE counts lines in the current 
page and, when required, restores the 
page and adds a page heading. LDMOVE 
is assembled into MIO. 

10. Build the List Data Set Buffer -­
BUILD (CEKTL, documentation module). 

BUILD is a restricted linkage subrou­
tine, invoked by MIO to move a line to 
either a list data set buffer or the 
list data set. The buffer will be 
emptied when its capacity is exceeded, 
or when information contained will not 
be replaced due to conversational 
corrections. BUILD is assembled into 
MIO. 

11. Flusb the List Data set Buffer -­
FLUSH (CEKTM, documentation module). 

This restricted linkage subroutine is 
invoked by MIO, to move all lines in a 
list data set buffer to the list data 
set. FLUSH is also invoked by GNSS, 
through the BFLUSrl entry to MIO. 
FLUSH is assembled into MIO. 

12. Compiler Dump -- COMDUMP (CEKTQ, docu­
mentation and assembly module). 

This Type I linkage module is called 
by the Phase controller when a file is 
to be dumped in hexadecimal. Such 
dumps are produced only when the com­
piler is in the diagnostic mode. 

13. Dump Line Preparation and Output -­
LINDUMP <CEKTS, documentation and 
assembly module). 

LINDUMP is called in diagnostic-mode 
processing only, using a Type I link­
age. LINDUMP prepares one line of 
information and adds it to the list 
data set. 

USE OF THE PHASE CONTROLLER PSECT (EXCOM) 
BY OTHER EXEC ROUTINES 

The first two pages of the Phase Con­
troller PSECT contain information required 
by other routines in the Exec. A defini­
tion of this PSECT is supplied to all Exec 
routines by including a DSECT for the Phase 
Controller PSECT. Cover for this DSECT is 
obtained by loading the address of the 
Phase Controller PSECT from a word in 
intercom (Exec modules are always passed 
the location of intercom when called). The 
term 'excom' (Exec communication region) is 
used by Exec routines to refer to the Phase 
controller's PSECT. 

SERVICE EXTERN~L INTERF~CE 

The compiler's external interfaces are: 

1. Entrances from Language Processor Con­
trol (LPC) 

2. Calls on LPC to get a source line or 
produce a diagnostic line 

3. Macro instructions to get and free 
main storage 

4. Macro instructions to operate on a VAM 
data set 

5. Macro instructions to obtain the time 
at which the compilation is beginning 

Figure 4 shows the above interfaces. 
For each interface, the Exec routine 
involved is identified. Note that all 
calls on LPC are centralized in the Master 
Input/Output (MIO) routine as are all calls 
on VAM (except one, the call by LINDUMP, 
which is issued only if the compiler is in 
the diagnostic mode, as discussed in the 
section ·compiler Diagnostic InformationW ). 

Routines concerned with external inter­
faces are: 

1. Phase Controller (PHC,CEKTA). 

2. Master Input/Output (MIO,CEKTH). 

3. Dump Line Preparation and Output 
( LI NDUMP , CEKTS) • 

Section 2: Executive 11 



I 

r~ai:,ila~ ____ rContinuel_ rEarly- J-
I\.. J LCel1 J LEnd Cail 

LPC 

I GETLINE 

[
I (Entry Point 

in CFADS1) 

I 
PUTDIAG 

I, (Entry Point is 
CFADCl) 

The Th. The 

r------------------------------~ 
VAM PROCESSING PROGRAMS 

OPEN and 
SETl Macros 

CLOSE 
Macro 

I 
I 

.-----It f 
I I 

PUT 
Macro 

l Dump Li ne I The The (Restricted 
LlNEIN DI.-'lGOUT LDOPEN LDCLOSE linkage) 

I Preparation 
and Output 

I PHCINIT PHCCONT I 
I (btry (Entry 

PHCEE I 
(Entry 

Point is Point is I Point is 1 (CEKTHC) (CEKTHD) (CEKTHA) (CEKTHB) I LDMOVE Modu:. 
Entry to Entry to Entry to En try to En try to 
"1.10 "1.10 MIO ' i lINDUMP, i 

MIO i "1.10 ! CE<TS> 
, 
I 

I CEKTAA) CEKTAB) I 
! I 

CEKTAC) 

Master Input/Output Module ("1.10 CEKTH) 

REDTIM 

Macro Macro 

t I 

Macro Processing Programs, Excluding VAlIA Macros 

Figure 4. Compiler Interfaces 

Details concerning activities of the 
Executive routines that use and prepare 
information passed across the interfaces 
are given under "Routine Descriptions,· in 
this section. 

SOURCE STATEMENT PREPARATION 

The purpose of the routines described in 
this section is to prepare complete FORTRAN 
source statements for processing by Phase 1 
of the compiler. This preparation is 
accomplished by obtaining lines through the 
services of the LPC entry GETLINE, combin­
ing these lines as appropriate (continua­
tion lines may exist), and informing Phase 
1 of the location of a complete source 
statement, and the statement label (if 
any). If the compiler is in conversational 
mode, the terminal user may request that 
changes be made to a line (or lines) pre­
viously sent to the compiler. In such an 
event, the Process Terminal Modifications 
routine (MOD) determines if the correction 
was such that the entire program must be 
recompiled, or if the preceding or current 
statement is to be ignored or modified and 

12 

compilation continued. Two routines par­
ticipate in the preparation of source state 
ments; Get Next Source Statement (GNSS, 
CEKTC) and Process Terminal Modification 
Lines (MOD,CEKTD). These routines have no 
other functions. 

Figure 5 illustrates the general rela­
tionship between the source-statement­
preparation routines and other routines in 
the compiler. 

PHASE AND INTERPHASE FILE CONTROLLER: THE 
COMPILER WORK AREAS AND INTERCOM 

The Phase Controller (PHC,CEKTA) per­
forms the functions of calling the five 
compiler phases. Associated with each call 
on a phase are a number of miscellaneous 
operations concerning the files used by the 
phases as their medium of information 
exchange; these operations are also per­
formed by PHC. The phase control operation 
is a simple one and consists principally of 
calling each phase in its turn, checking 
the return code to see if the following 



! Recl;es~ for a 

: Singie Line 

:- ! 
i Request for a 

~ngle Line 

Figure 5. 

(~--~' 

, En'e,' , 

~c"1 ' 
OrlPI er I 

Phose 1_---.J 

, GNSS 

__ L-==-J--.l 
I LlNEIN ! 
I: CEKTHC' i 

~ l::~ i 

i I 
: GETLI NE i 

!iCFADBI) I 

~ 
Control I 

Source-statement-Preparation 
Modules 

phase should be called, and returning pa­
rameters to LPC following the calls on 
Phases 2 and 5. 

Figure 6 summarizes the order and condi­
tions of calls on the phases and shows the 
GETMAIN and FREEMAIN activities. In Figure 
6 and in other figures below the abbrevia­
tions for interphase files are used. These 
abbreviations are: 

CF 
CRL 
EF(or ERF) 

ENL 

Code file 
Cross reference list 
Expression (representation) 

file 
External name list 

ISD 
OPM 
PF 
PMD 
PRF 
SPL 

Internal symbol dictionary 
Output module (text) 
Program file 
Program module dictionary 
Program representation file 
Storage specification list 

~ork areas See below 

Note that all file descriptions given 
below are for the purpose of summarizing 
the obtaining, use, and freeing of storage. 
For detaile':' descriptions of the contents 
of all filc;";, see Appendix A. 

The term ·work area" is used to refer to 
an area in virtual storage that is logical­
ly reused; that is, one phase uses the 
area, and PHC then makes an area of the 
same size available to the next phase, etc. 
Tables in this work area are cleared out 
when they are no longer needed. The number 
of pages obtained for each work area is 
determined by a constant assembled into the 
PHC PSECT; this number was also given in 
the storage map description. 

Tables 2, 3, and 4 give miscellaneous 
information concerning the three work 
areas. Figure 7 shows the symbol table 
storage layout. 

Probably the most important interphase 
file in the compiler is the file referred 
to as intercom. A detailed description of 
the contents of intercom is given in Appen­
dix Ai general information on use of this 
area follows. The intercom area contains 
512 bytes. All information required by the 
Executive and any phase, or to be passed 
between phases (excluding large lists, 
files, etc.), is passed by means of the 
intercom area. Intercom is not obtained by 
a GETMAIN, but is assembled into the phase 
controller PSECT. The sequence of intercom 
use is as follows: 

1. The phase controller initializes 
intercom as required before each call 
on a phase and makes the location of 
intercom known to the phase via the 
calling sequence. 

2. The phases move the 512 bytes to 
intercom from the phase controller to 
an area within the phase. The phases 
modify this area during their opera­
tion. If a phase calls an executive 
routine, it furnishes the executive 
routine with the location (in the 
phase) of intercom, so that intercom 
may be updated by the executive rou­
tine called. 

3. Before returning to the phase con­
troller, the phase moves the up-to­
date intercom from the area within the 
phase back to its original area in the 
phase controller. 

Section 2: Executive 13 



Mode? 

....... t 
Get Main for 
Nork Area B 

r 
Get M,ain for 
I/.jork Area A 

I 
Get Main for 
Symbol Tob!e 

Get Main for 
Work Area C 

Call Phose 2 

Figure 6. 

14 

=LPC Initioi call] 

'{ es. ! Get Main 
~ forMIO 

/ I Buffers 

L -r -' 

Summary of Phase and Interphase File Control Activities 

Cleor PF 
(Work Area B) 

! Free AI i Main Except 

Object Macule A~eo 
Used oy Phase 5 



Page of GY28-20l9-l, Issued September 30, 1971 by TNL GN28-3l90 

Table 2. Work Area A Storage Layout 

Name ! Phase 1 i Phase 2 I Phase 3 Phase 4 ! Phase 5 
1,3 

EF6 
• 

TABlO EF EF CF CF 
(Base and I 

i 
! 

2-byte top in i ( Base, Top 
Intercom )4 t and Upper 

t limit in f---

8 t . t 
1 

intercom) 
me and 

j 2-byte top in (Not used 

Intercom )4, 5 by Phase 2): 

TBAHI2 PRF PRF i PRF ~ 
NOTES: 

1. TBAlO is the CF Sase and the initial CF Top. See Intercom HCFB, TECFT. 

2. TBAHI is the CF Upper limit. See Intercom TECFU. 

3. Direction of increasing addresses is. from the top to the bottom of the toble. 

4. The EF and PRF bases are identical, and ore located approximately midway 
between TBAlO and TBAHI. See Intercom rEEFB, TEPRFT, TEEFT, TEPRFT. 

5. The address of the first word filed in the PRF is in TEWAAH in Intercom. 

6. The EF is also referred to as the ERF. 

Table 3. Work Area B Stcrage Layout 

Name Phase 1 Phose 2 Phose 3 Phose 4 Phose 5 

TBBlO Storage Storage t PF I External 
Specification Specification I 

f 
I Name List 

List (Base, list 

~L 
(Base and Top 

Top and in Intercom) 
Limit in 

TBBMl Intercom) 

I 
- t-- - - r-

TBBM2 PI' PMD 
(Base and (Bose and 
2-byte Top Top in 
and Upper Intercom) 

TBBM3 Limit 3,9 

-- - ~Intercom) - r-I- i-TBBM4 OPM 

I 
(Bose and 
Top in 

! Intercom) 
TBBM5 i 

- - -- - ---- - -
TBBM6 

! 
ISD 

! 

I 
(Bose and I 

TBSHl I 

1 
Top in 

I 

~ ~ 
Intercom) , 

NOTES: 
1. TBBlO is the SPl and PMD Bose. It is also the initiol SPL and PMD Top. 

See Intercom TESPlB, TEPMDB, TESPLT. 
2. TSSHI is the SPl and ISO Upper Limit. See Intercom TESPlU. 
3. Computed by PHC. 
4. If required, PHC will GETMAIN rather than use Work Area S. 
5. Must Start on a Page Boundary. 
6. Not needed if no ISD is requested by the problem programmer. 
7. Direction of increasing addresses is from the top to the bottom of the toble. 
8. The allocation of 'Nark Area B to the four Phose 5 Areas is: 

PMD -- 12 pages ENl -- 2 pages 
OP M -- 80 pages IS D -- 20 pages 

9. The PF top is initially set to TBBlO. The PF upper limit is TBSHI. 

Table 4. Work Area C Storage Layout 

Nome Phose 1 Phose 2 Phase 3 Phase 4 Phose 5 
--
TeClO 1,5 

Preset Data Preset Doto Preset Dato Preset Data Preset Data 
(Bose and (Not Used) (Not Used) (Not Used) I Top in I I I Interrorn ) I 

~.CM --t--L- t 
2 I I Formal 

TSCM I i ! Argument 
I Adcons 

i (Base ond 
i 

Top in 31 I 
TBCM 3 

i 
Inte,rcom) 

I 
?' I 1---. ; .. I ~ TBCM4 I(BaSeOnd ! I Top In I 

I I 
I I Intercom) 

I Cross-
(Not Used) (Not Used) (Not Used) 

Reference 

I List4 ,6 I CRl CRL CRl 

TBCHI 
! 

i i 
NOTES, 

1. TBClO:, the Preset Data Base and (initially) Top. See Intercom 
TEPSDB, TEPSDT. 

~ 

CRL 

2. TBCHI is the CRL Base and (initially) Top. See Intercom TECRlB, TECRlT. 

3. The Formal Argument Adcon Base and Top are set by PHC prior to entering 
Phose 3 See Intercom TEFAAB, TEFAAT. 

4-, Th;~ ore.:! is not required if the cros.s-reference-iis.t option is not chosen 
by 'he problem programmer. 

5. Direction of increasing addresses is from the top to the bottom of the table. 

6. Must start on a double-word boundary. 

Symbolic Name Description 

Symbol Tobles entries for the 49 
TBSIF Intrinsic Functions (assembled in) 

TBSlO 
Symbol Table low -- first item 
filled will have the first word of 
its descriptive port put here 

Descriptive Port entries, next avail-
able word referenced with TEDES T1 

~ liD, FLAGS, ETC r Direction of : 

! Increas- Descriptive Nome i SlOe, STCl : ing Part Part 
I Addresses Filing Filing 

I I 

t i VALUE 

~ ~ Iw~ t t 

I 

Name Port entries{ last used word 
referenced with TENAMT2 

Symbol Tobie High -- first item 
TBSHI filed will have the first word of its 

name port put here 

1 The oddre>s of the fi~t "10, FLAGS, ETC" word filed is in TEDESB in Intercom. 
2 The oddren of the first "L1NK/DPP" word filed is in TENAMB in Intercom. 

Figure 7. Symbol Table Storage Layout 

Section 2: Executive 15 



Page of GY28-2019-l, Issued September 30, 1971 by TNL GN28-3190 

Figure 8. 

16 

; Ali S;c9"C';,t:C 
-- -j .... \ess.oge~ P::;ce~~ed 

I " Po," 

Lnkage entry to 
;'1'110, Output the 

line using the 
::i": r Macro 

( "'vm ) 
'----_/ 

r--\ 
( c_"" ) 
~r/ 

~et - Nex-
r 'OO<Jrce )'::Itef'1E'rt 

~c;.vl;r'-e 

Add line to a 
MIO Buffer, for 

Outputting: VVhen 
Line is CQmmi~led 

I to Compilatior;. 

Process Compiler Edit Line Function 

Yes 

line J'Jst (D!'lrritr.ed 
W; il Be the- New 
:en!at:ve t;,,(!. COf"'­

versotioncl Corree"ions 
Mo,! 'lO'';'" Cov~ed the 

Pre"'i0115 Line P.:n~ed to 

P"ose 1 to Be Ei'~'er I 
T eSf 

See Wh;n. 

L~~C~. 
~ Ferger ,x ~ 
~crr~jl ro Compilation .>-_-'-___ ", ____ . 
~. 

ComfYl;t 

,..----'----, 

I 

line ~ntry 70 I 
.'1,'\10 (BFltJSH,', 
(~l(_THF\ ~ 

I I :r 
; Wi!1 'r)·.;cke ! 
I LDMOVf '0 'vIo," I 

Lines in Previcvs 
Source Srcterr:ent 

2'~~~'!";:~~ 



Page of GY28-2019-1, Issued September 30/ 1971 by TNL GN28-3190 

COMPILER EDIT LINES 

The compiler produces two types of out­
put: edited lines, to be transmitted to 
the terminal, list data set, or both; and 
the object module, constituting the com­
piled program ready for loading and execu­
tion. output of the first type is prepared 
in the following places in the compiler: 
RDM (diagnostic messages from phases), PHC 
(heading lines and warning diagnostics 
associated with diagnostic mode process­
ing), GNSS (SOURCE"- rines and associated 
diagnostic messages), CONFIL (file overflow 
diagnostics), and OLR (Phase 5 edit lines). 
Figure 8, ·Process Compiler Edit Line Func­
tionW describes the path of compiler edit 
lines in more detail. Output of the second 
type is prepared completely by the compiler 
Phase 5 and is passed to LPC at the phase 
controller's return to the LPC continue 
call. Preparation of this output is 
described in Section 7 wPhase 5-; the man­
ner of returning the information to LPC was 
described earlier in ·Phase and Interphase 
File Controller.-

The use of the MIO buffers deserves spe­
cial mention. If the compilation is con­
versational, the phase controller (using 
GETMAIN) obtains two pages for the MIO 
buffers. These buffers will contain the 
source lines in the source statement cur­
rently being formed by GNSS and in the 
statement previously passed to Phase 1, but 
not yet committed to compilation. When a 
statement is committed to compilation, the 
associated source lines are added to the 
user's listing (if any). Following return 
from Phase 1 to the phase controller, these 
two pages are released. 

COMPILER DIAGNOSTIC INFORMATION 

The compiler contains built-in facili­
ties for diagnosing compilation problems. 
These facilities consist principally of the 
ability to request hexadecimal dumps of 
interphase files and phase PSECTs follOwing 
return from each phase. These dumps may 
not be directed to the terminal; they are 
issued to the list data set by use of a PUT 
macro. If the user has requested no edit 
options, there will be no list data set. 
In this case the diagnostic mode may not be 

entered. If the user attempts to do so the 
message "DIAGNOSTIC MODE NOT ALLOWED AS NO 
EDIT OPTIONS SELECTED" will be printed at 
the terminal. 

It is also possible to alter the size of 
the main storage obtained prior to compila­
tion, in order to measure the effect of 
large, unused pages of virtual storage, and 
to exercise the file-overflow tests of the 
compiler. These features are all contained 
within macros in the Exec routines and, 
thus, may be removed from the compiler by 
modification of these macro instructions. 
(See the General Information section for a 
description of all macros.) The diagnostic 
features do not affect the reenterable 
characteristic of the compiler. It is 
nearly impossible for a user to inadver­
tently request diagnostic output from the 
compiler, as information not normally 
available to the user must be known to pro­
duce such output. If the diagnostic mode 
is entered, the warning message ·COMPILER 
IS IN THE DIAGNOSTIC MODEw will be produced 
at the terminal (if in conversation) and on 
the list data set. Figure 9 describes the 
diagnostic features. 

The procedure for requesting diagnostic 
information is: 

1. Load the Phase Controller (PHC). and a 
new PSECT for PRC, with the PCS 
statement: 

LOAD CEKTAR 

2. Set the PHC PSECT byte TEDIAG to 'Y' 
(diagnostic mode allowed) with the PCS 
statement: 

3. 

4. 

SET CEKTAR.(X'llCS') = 'Y' 

The first source line supplied to the 
compiler must be: 

Col. 
1 - 6 
(blank) 

Col. 
7 
DIAGNOSTIC 

Col. 
11 - end 
Anything 

The two lines following the DIAGNOSTIC 
line contain dump and other request 
information. The content of the second 
and third lines is described below. 

Section 2: Executive 17 



Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190 

Diagnostic Line 2: 
r------~---------T~---------------------------------------------------------------_____ , 
IColumnl Name 1. I Description I 
r------+----------+---------------------------------------------------------------------1 
11 ITDPHAZ (l)IIf 0, compilation will terminate prior to calling Phase 1.2 I 
I I I I 
12 11'DPHAZ (2) I If 0, compilation will. tex-minate prior to calling Phase 2.2 I 
I I I I 
13 ITDPHAZ (3) IIf 0, compilation will terminate prior to calling Phase 3. 2 I 
I I I I 
14 ITDPHA~ (4) IIf 0, compilation will. terminate prior to calling Phase 4.2 I 
I I I I 
15 !TDPHAZ (5) fIf 0, compilation will terminate prior to calling Phase 5. 2 I 
I I I I 
110 ITDLOG IIf Y, a message will be written when each phase is called, and when I 
I I I return is made from each phase. I 
I I I I 
131-40 ITDBUGI IRequests file edits upon return from a Phase, as follows (the numbers I 
I I 11 through 10 correspond to columns 31-40 for Phase 1, 41-50 for Phasel 
I I 12, etc>' I 
I I I I 
I I I No. Description I 
I I 11 If Y, edit Intercom; edit the EF and PRF, after Phases 1 I 
I' I through 3; the CF after Phase 4 and 5. I 
I I I I 
I i 12 If Y. edit the Symbol Table. I 
I I I I 
I I 13 If Y. edit Storage Class Table. I 
I I I I 
I I 14 If Y. edit the phase's PSECT and the contents of the internal I 
I I I file used by the phase (Phase 5 does not use this file). I 
I I I If blank or 0 produce no PSECT edit. If X, edit the I 
I I I C3 pages) PHC PSECT. I 
I I I I 
I I 15 Edit the SPL and PF in Phases 1 through 4, the PMD, OPM. ENL I 
I I I and ISD if in Phase 5. I 
I I I I 
I I 16 Edit the Preset Data, Formal ~rgument Adcons, and the Cross I 
I I I Reference List. I 
I I I I 
I I 17 If Y, do not give file edits for RC = 0 return from each phase I 
I I I (will only give edits if RC*O or an unexpected interruption I 
I I I occurs) • I 
I I I I II I 18-10 Not used. I 
I I I I 
I I I I 
I I I I 
141-50 I ISame as 31-40, but inspected after return from Phase 2. 1 
I I I I 
151-60 I ISame as 31-40, but inspected after return from Phase 3. I 
I I I I 
161-70 I JSame as 31-40, but inspected after return from Phase 4. I 
I I I I 
171-80 I ISame as 31-40, but inspected after return from Phase 5. I 
~-----_i--____ ----~---------------------------------------------------------------------1 
11. Label of field in PHC PSECT in which the value punch in the corresponding columns I 
I is stored. I 
12. If the column is blank or any character other than 0 (zero), compilation will not I 
I be terminated. I l _______________________________________________________________________________________ J 

18 



Diagnostic Line 3: Allows the user to al­
ter the number of lines to De obtained by 
PHC in its GETMAINs. The relation between 
columns in line 3 an1 the files for which 
main storage is obtained is 1iven Delow. 
If the four columns associated with a file 
are blank, the number of pages obtained 
will be the number assembled into the PHC 
PSECT. 

r-------T----------T----------------------, 
I I PHC PSE{:'l:4 I 
I columnl Name I File I 
t-------f----------+----------------------1 
I 15-18 I TDAPAG I Pages in Work Area A I 
I I \ I 
I 19-22 I TDBPAG I Pages in ~ork Area B I 
I I I I 
I 23-26 I TDCPAG I Pages in work Area C I 
I I I I 
I 27-30 I TDPPAG I Pages in PMD I 
I I I I 
I 31-34 I TDOPAG I Pages in OPM I 
! I I I 
I 35-38 I TDEPAG I Pages in ENL I 
I I I I 
I 39-42 I TDIPAG I Pages in ISO I 
I I I I 
I 43-46 I TDMIOP I Pages in MiO Buffers I 
I I I I 
I 47-50 I TDSYMP I Pages in Symbol Tablel l _______ ~ __________ ~ ______________________ J 

Note that, following the processing of 
the three diagnostic information lines, the 
source lines are read as in a normal 
compilation. 

Figure 10 summarizes the determination 
of diagnostic mode and the initialization 
performed if in this mode. Figure 11 sum­
marizes the processing performed at each 
phase call. Figure 12 shows compiler 
action if in the diagnostic mode and an 
unexpected interruption occurs. 

MISCELLANEOUS 

The miscellaneous modules are those used 
by any routine in the compiler that causes 
a diagnostic message to be added to the 
user's terminal and/or listing output, and 
files information concerning a numeric, 
label, or address constant in the symbol 
table. 

The Receive Diagnostic Message (ROM, 
CEKTE) routine is passed information 
describing a diagnostic message to be pro­
duced. ROM will send this message to the 
terminal if the user is in conversational 
mode and will add the message to the user's 
listing if he has requested any list out­
put. Figure 8 shows the general relation­
ship between ROM and other modules in the 
compiler. 

<- ~;"9ging the 
~hase Off? 

~ 1-- ~ 

i Output a Messoge Saying I 
I the Phase Rerurr.ed, and 

Giving the Return Code 
!--- ; 

Any 
Fi Ie Edits 
Reqve$ted 

? 

No 

Icontinve w thli _00+ ..... ____ --' 
I ----
! Process.ing 
L _.J r---''------'\ 

\" Exit ) 

Figure 9. Compiler Diagnostic Features 

Section 2: Executive 19 



/~~- ----.--~--~. 

i Enter 

'~--r--/ 

Issue iv\acros Such 
t"',ct I nterr up ts 

,..-------+' will Send Control 

"~--~-----~I 

OQ+ain and Edit 
1 r'le- First 

L ~;oo" "l'""'-- i 

'-~-l 

Set TDBUGA to I 
0 .. ~.;) Note Not f 

Iii Diagnostic 
Mode 

I 

~~----~------~No 

IlINEIN I Reod the First 
i Source line to 

Be Compiled. 

l' I End of Diagnostic L _____ _ 
J Mode Init;arion I 
, ,.J _-'--_ 

(EXit ) 

i '" IA800 
L_~ __ 

r---]---, 
i Set TDBUGA to 

I. Note Now 
'0 Dil1gnostic 

, Mode, Ll ~~ ~~~: 

1--RDM~----1 
r-'~-----'---' 

I Output "In 

Oia~n,ostic Mode" " 
Message l L-. ___ .-J 
I~ead-:~~~~~I 
II D,agnostlc ! 

Line 1 J 
L--1----
r:ove COlum~~-l I from This line to 

~~T'~ 
1----------, 
! Read and Edi t I' 

! Diagnostic i 

I line 2 ' 

__ I 
meek F,elds~ 
I :~Iumns Each Be- I 
I ginning In Col. i5'I' 

If the Fields Ar. 
Non-Blank, Con­
vert Them to Binary 
and Move to the 
PHC PSECT. 

Figure 10. Testing for Diagnostic Input 
and Processing Diagnostic 
Information Lines 

The Constant Filers (CONFIL, CEKTF) rou­
tine is called when information concerning 
a constant is to be filed in the symbol 
table for use by a later compiler phase. 

20 

ROUTINE DESCRIPTIONS 

Exec routines bear mnemonic titles as 
well as coded labels. The 5-character 
coded labels begin with the letters CEKT; 
the fifth letter identifies a specific 
module. Various entry points to a routine 
are identified by a sixth letter added to 
the coded label; for example, the coded 
label for the Master Input/Output routine 
is CEKTH, and there are entry points CEK­
THA, CEKTHB, etc. 

There are no hardware configuration 
requirements for any of the Exec routines. 
All these routines are reenterable, nonres­
ident, nonprivileged, and closed. 

CEKTA -- Phase controller (PHC) 

The Phase Controller is the interface 
between the outside world and the compiler 
phases. It receives the LPC to FORTRAN 
initial, continue, and early-end calls, 
prepares for the compiling run, calls the 
phases as subroutines, and returns to LPC 
when compilation is terminated (successful­
ly or unsuccessfully). See Chart AB. 

ENTRIES: The Phase Controller has three 
external entry points: 

LPC to FORTRAN Initial 
(ENTRY name is CEKTAA) 

Register 1 contains the address of the 
parameter list. 

Register 13 contains the address of 
the LPC save area to be used by 
FORTRAN. 

Register 14 contains the return 
address. 

Register 15 contains the V-type Adcon 
for the FORTRAN initial entry initial­
ization routine (i.e., the entry pOint 
address) • 

(Symbol) CALL FORTRAN initial entry-symbol 
(15) 

[,(module name - addr, 
batch/conversational 
indicator - addr, F option 
table - addr, 
list dataset 
DCB - addr)] 



Phose I 

TDPHA2(1) 
~O ? 

Skip the 
Call of 
This Phose 

No to I to /V\ark 
Set TOCA(~J'T 

:;:-..;.;;.:;..-----....... the Phose :0 

No 

I ge Called 

Invoke to 
Log the 
Phose On 

Call Phose I 
Save Return 
Code in 
TORC 
'----r-.-l 

TOLOG~Y 

? / 

Invoke to 
Log the 
P~ase Off 

Restore 

Return 

Code (RC) 

B3 ) 
~ 

Yes 

r 
. ../ ~. 
RC o. 0 ? ,> 

"J' ,~ 
TOSTOP 

/
/ ~,~" ~ Invoke to Give 

RC c 16 , No < Yes Ed' d { ;,.;..;.;;.._.... D;agn.ostic;......;.;... ... ~! Its on 
,,,JRestart) /' Maae ? T errrinote 

",? ../ 

Yes N~ 

! Exit 

"'-----~ 
<:Diagnostic ,,;-..;.;N;;:o ____ of 

• Mode? 

Column 7 of _ ,_ 
Inspect } 

Yes 
Phase 10 
Columns 

<co!un~' Yes 
7 = Y? ;-..;.;;,;;...---~ 

CTDD~ 
I Give Any i-----_.f 
I F'I E" 1 ! e dlfs. j 
I Reguested .J 

Continue 
With 
Processing 

Figure 11. Processing Diagnostic Information Following Return From Each Phase 

section 2: Executive 21 



TABOO 

CT~ 
i Odpct 0 Messoge i 
1 Gi'.Iing T~e Type ; 
! of Interrupt I 

; Tnot Occurred, 
1 Vfhere, and Other 
1 Mise Information i '------1----.1 

'I For Tt,e Last 
Phase Called L __ --. __ -' 

J 
: Terminate 

) Compilation! 

~J ~ 
Figure 12. Processing of Unexpected Inter­

ruptions During Compilation 

FORTRAN Initial Entry 
Entry point name for FORTRAN initial 
entry. 

List Data set Name 
Specifies the address of the module 
name. 

Batch/Conversational Indicator 
Specifies the address of a 1-byte 
field which contains 00000000 (for 
batch) or 00000001 (for conversa­
tional) • 

F Option Table 
Specifies the address of an B-byte 
option table, where each byte may be 
Y, N, or other. The default chosen by 
FORTRAN is shown in parentheses: 

byte 1 ISD option (produce) eN} 
byte 2 source listing option (y) 

byte 3 object listing option (N) 
byte 4 cross reference listing 

option (N) 
byte 5 symbol table edit option (N) 
byte 6 storage map option (N) 
byte 7 BCD option ( N) 
byte 8 public CSECT attribute (N) 
byte 9 List Data set option eN) 

List Data Set DCB 

22 

Specifies the address of the data con­
trol block for the list data set. 

LPC to FORTRAN Continue 
(ENTRY name is CEKTAB) 

[Symbol] CALL FORTRAN continue entry -
symbol 

(15 ) 

[, (list data set exists 
indicator - addr, 
length of PMD - addr, PMD -
addr, length of TXT - addr, 
TXT - addr, length of ISD -
addr, ISD - addr, external 
name list - addr)] 

FORTRAN Continue Entry 
Entry point name for FORTRAN continue 
entry. 

List Data Set Exists Indicator 
Specifies the address of a 1-byte 
field which will contain 00000000 (for 
no list exists) or 00000001 (for list 
exists) when FORTRAN returns to LPC 
normally. 

Length of PMD 

PMD 

Specifies the address of a pointer to 
a 1-word field that contains a binary 
number when FORTRAN returns to LPC 
normally. This will be a count of the 
number of bytes in the PMD which FOR­
TRAN is giving to LPC. 

Specifies the address of a pointer to 
the area which will contain the PMD 
when FORTRAN returns to LPC normally. 

Length of TXT 

TXT 

Specifies the address of a pOinter to 
a i-word field that will contain a 
binary number when FORTRAN returns to 
LPC normally. This will be a count of 
the number of bytes in the TXT which 
FORTRAN is passing to LPC. 

Specifies the address of a pointer to 
the area whiCh will contain the TXT 
when FORTRAN returns to LPC normally. 

Length of ISO 

ISO 

Specifies the address of a pointer to 
a i-word field that will contain a 
binary number when FORTRAN returns to 
LPC normally. This will be a count of 
the number of bytes in the TXT which 
FORTRAN is passing to LPC. 

Specifies the address of a pointer to 
the area which will contain the ISD 
when FORTRAN returns to LPC normally. 



External Name List 
Specifies the address of a pointer to 
the area which contains t.he external 
name list when FORTRAN returns to LPC 
normally. (Each external name in the 
list is an 8-byte field.) 

LPC to FORTRAN Early End Call 
(ENTRY name is CEKTAC) 

Register 1 contains the address of the 
parameter list, if any. 

Register 13 contains the address of the LPC 
save area to be used by FORTRAN. 

Register 14 contains the return address. 

Register 15 contains the V-type ~dcon for 
FORTRAN early end (i.e., the entry point 
address) • 

[Symbol) CALL FORTRAN early-end 
entry-symbol 

(15 ) 

[,(list exists indicator­
addr) ] 

FORTRAN Early-End Entry 
Entry point name for FORTRAN early-end 
entry. 

List Exists Indicator 
Specifies the address of a 1-byte 
field which will contain 00000000 (for 
no list exists) or 00000001 (for list 
exists) when FORTRAN returns to LPC 
normally. 

ROUTINES CALLED: The phase controller 
calls the five compiler phases, MIO, and 
CONFIL. 

The calling sequence from the phase con­
troller to these programs is a standard 
call with the address within PHC of the 
intercom area in the parameter list. 

EXITS:rhe phase controller has three 
exits which correspond to the three 
entries. 

Return Linkage to LPC from FORTRAN Initial 

[Symbol] RETURN 

Upon return from FORTRAN initial, 
register 15 contains a code ~hich LPC 
interprets as follows: 

Code 
-0-

Type of Return 
Normal. LPC will query user 
before continuing if in conver­
sational mode. LPC will call 
FORTRAN continue if in noncon­
versational mode. 

4 

8 

FORTRAN cannot continue. LPC 
will query user, if in conver­
sational mode, but will not 
allow him to continue unless he 
first modifies the source data 
set. LPC will call FORTRAN's 
early-end routine in both con­
versational and nonconversa­
tional modes. 
Abnormal end LPC will not query 
user and will not call FORTRAN 
again. FORTRAN never issues 
this return. 

Return Linkage to LPC from FORTRAN Continue 

[Symbol] RETURN 

Upon this return, register 15 contains a 
code which LPC interprets as follows: 

Code 
o 

8 

12 

16 

Type of Return 
No errors 

Minor errors (chance 
of a correct source 
program still quite 
high) 
Major errors (all or 
parts of source state­
ments were omitted) 
No object module (prob­
ably table overflow 
within the compiler) 
Any highly abnormal 
condition -- partial 
object module may have 
been produced. FORTRAN 
never issues this 
return. 

Parameter 
Information 
Filled In 
List exists 
indicator 

Length of 
PMD 

PMD-length 
of TXT 

TXT-length 
of ISO 

ISO-exter­
nal name 
list 

Same as for 
code = 0 

Same as for 
code = 0 

List exists 
indicator 

Indetermi­
nate 

Return Linkage to LPC from FORTRAN 
Early-End 

[Symbol] RETURN 

Upon return from FORTRAN's early-end 
routine, register 15 contains a code which 
is interpreted by LPC as follows: 

Code 
-0-

4 

Type of Return 
Normal 

"A normal condition 

Parameter 
Information 
Filled In 
List exists 
indicator 

Indetermi­
nate 

Section 2: Executive 23 



OPERATION: At the initial call, the Phase 
Controller fetches the compiler parameters 
from the LPC parameter list, obtains 
storage for the work areas using GETMAIN, 
and initializes the excom and intercom 
regions of the Phase Controller's PSECT. 
(The information furnished by LPC is 
described atove under "entries." Items 
initialized in excom and intercom are 
described in the description of these 
regions.) The items initialized include 
compiler options; module, main entry point, 
and deck identification names; list data 
set items (this and all interfacing between 
Exec and Data Management is performed by 
the Master Input/Output module MIO); and 
various flags, switches, and pointers. 

Next, initialization for other executive 
modules and Phase 1 is done. This is also 
the point at which control may be returned 
by Exec if conversational corrections to 
the source program were extensive enough to 
require a restart of compilation. After 
initialization, Phase 1 is called. 

Following appropriate initialization, 
Phase 2 is called, followed by the return 
to LPC from FORTRAN Initial. LPC now 
enters the Phase Controller at the FORTRAN­
continue entry if the user continues. If 
the program is a BLOCK DATA program, Phase 
5 is entered. Otherwise, Phases 3 and 4 
are successively initialized and entered. 

Phase 5 is then called, produces its 
output (using .MIO's OLB. subroutine for list 
data set lines). and returns to the Phase 
Controller. 

Following terminal processing, such as 
data set closing, preparing return parame­
ters for LPC, and freeing main storage, the 
compilation is ended by a return to LPC. 

Return parameters to LPC were described 
under "Exits." These parameters are pre­
pared prior to returning to the initial 
call and the continue call. At return to 
the initial call, the parameter may 
specify: 

1. Normal return. This return will be 
made even if serious program errors 
occurred; terminal users will, of 
course, have been advised of any such 
errors. 

2. FORTRAN wants to abort the compilation 
due to table overflow or some other 
condition that makes continuing the 
compilation inadvisable without modi­
fying the source program. 

3. An abnormal condition -- FORTRAN may 
not be called again. 

24 

At return to the continue call, the return 
parameter may specify: 

1. No errors in the source program. 

2. Minor errors. 

3. Major errors (source lines probably 
truncated or omitted). 

4. Table overflow. 

5. An abnormal condition. 

The early-end entry to the Phase Con­
troller may be reached from LPC if the com­
pilation cannot continue or if the user 
does not want to continue. Reasons for 
inability of the compiler to continue 
include: 

1. Source errors so serious that follow­
ing phases cannot reasonably operate. 

2. Storage overflow in a compiler table. 

3. An abnormal condition. 

In all these cases, appropriate error mes­
sages are given. Terminal processing, such 
as closing data sets and freeing main 
storage, is then performed and return is 
made to LPC. 

CEKTC -- Get Next Source Statement (GNSS) 

GNSS obtains a source statement from the 
input data set, using the services of LPC, 
and presents it to Phase 1 for processing. 
Modifications to lines already received are 
taken into account in determining what 
source statement is fetched. See Chart AC. 

RESTRICTIONS: Several assumptions underlie 
the processing done by GNSS: A line in 
card form is assumed to be in the tradi­
tional FORTRAN format; a C in column 1 
means a comment; a nonblank or nonzero 
character in column 6 means a continuation; 
the statement number is in columns 1-5; and 
the body of the line is in columns 7-72. 
Columns 13-80 may contain card identifica­
tion, etc., and will be contained in the 
source deck edit on the list data set. 

The required format for keyboard input 
is described in the documentation of the 
ANALYZ subroutine (module CEKTI), given 
later in this chapter. 

An END statement is a line whose body 
consists only of the letters E, N, and D. 
Embedded blanks are allowed. A line meet­
ing this description that is in fact con­
tinued (END FILE, for example, ~th FILE in 
a second line) will be treated as an END 
statement, and further FORTRAN statements 
will be ignored. 



ENTRIES: The only entry point (CEKTCA) to 
GNSS is standard subroutine call fronl Phase 
1. Phase 1 obtains the required V-con/R­
con pair from intercom. The parameter list 
furnished GNSS by Phase 1 contains one 
address -- the location within Phase 1 
where the phase moved intercom when called 
by Phase Controller. This address is 
required by GNSS, as GNSS ~ill change items 
in int ercom. 

ROUTINES CALLED: GNSS calls the MIO sub­
routine LINEIN for source lines. LINEIN 
places all information required by GNSS in 
excom.rhe GETLINE, CALL, and RETURN 
statements are described in the MIO 
documentation. 

GNSS calls the executive subroutine MOD 
when GETLINE specifies the terminal user 
has requested that lines be altered. The 
MOD R-con and V-con are in excom. The 
linkage to MOD is standard; the parameter 
list is as follows: 

LIST DC A(PINCOM) Location of intercom 
in Phase 1. 

MOD places a number in register 15 des­
ignating the action to be taken by GNSS: 

Code 
-0-

4, 8, 12 

16 

20 

24 

28 

Action 
Obtain a new statement. 
Not expected -- GNSS will 
return to caller if these codes 
a re present. 
Restart required. Return to 
caller with a return code of 
16. 
The current statement must be 
reformed completely. 
MOD got the first line of the 
new statement and left informa­
tion concerning this line in 
excom. 
1400 met end-of-data-set in 
reading a line. 

Using a standard call, GNSS calls the 
executive subroutine ROM when an error mes­
sage is to be issued. The RDM V-con/R-con 
pair is in intercom. The linkage is stan­
dard with the following parameter list: 

LIST DC A{PINCOM) Location of intercom 
in Phase 1-

Specify the message 
(see the RDM docu­
mentaL ion) • 

GNSS calls the OLR entry to subroutine 
MIO when a line is to be added to the 
source listing. The MIO V-con/R-con pair 
is in excom. The linkage to MIO is stan­
dard. The parameter list is as follows: 

LIST DC A(PINCOM.) Location of intercom 
in Phase 1 

:)C A(TEXT) Location of output 
line 

DC A (LENGTH) Line length 
DC A(LINENO) Line number, PL4 

format 

GNSS calls the MIO subroutine BFLUSH, to 
flush a buffer by adding its contents to 
the list data set. The linkage is stan­
dard. The parameter list contains the 
address of intercom in Phase 1 and the 
flushing parameter. 

EXITS: The only exit from GNSS is a stan­
dard return to Phase 1, with the return 
code in register 15 set as described in the 
executive module. 

OPERATION: The primary responsibility of 
GNSS is to set the necessary information 
for Phase 1 to process a statement. This 
information consists of the line number and 
statement number fields in the intercom 
area and the text character string in the 
area indicated by the intercom text 
pointer. 

Certain internal flags and switches con­
trol the flow of GNSS: 

TDTERM - This excom flag is raised (set to 
1) before the first line of a 
statement is obtained and lowered 
(set to O) until the terminal line 
of a statement is detected. 

TDFORM - This excom switch indicates the 
form (C for card, K for keyboard) 
of the preceding line of a state­
ment. It is set by the first line 
of a statement and reset when a 
statement started in keyboard form 
switches to card form. 

TDOVER - This excom flag is raised when a 
single statement runs over 1320 
characters. Subsequent lines of 
such a statement are not passed to 
Phase 1. 

TEMEC This intercom item, maximum error 
code, will be set to 8 if input 
lines are ignored due to an error 
detected by GNSS. 

Using the LINEIN entry of MIO, GNSS 
calls the LPC subroutine GETLINE repeatedly 
for source lines until a complete statement 
has been assembled. In addition to 
assembling a source statement, GNSS sets 
the intercom items: the line number of the 
first line (TESLNO) and the statement num­
ber (TESTNO). GNSS also detects END state­
ments (and sets the intercom item TEEND to 
mark this) and sets the excom indicators 

section 2: Executive 25 



TDU, TDPU, TDAPU, TDPUF, and TDAPUF for use 
by the process terminal modifications sub­
routine (MOD). 

Card and keyboard lines are processed 
differently, due to their different con­
tinuation conventions and formats. The 
processing of the first line of a statement 
is also different from the processing of a 
continuation line. For the latter, the 
initial character (TDLE) and the length 
(TDNUMC) of the body of the line text must 
be found. For an initial line, this is 
done only after the line number and state­
ment number have been placed in intercom. 
As the input lines are received from GET­
LINE, they are added to the internal files 
area TCTEX1. When a complete source state­
ment has been formed in this area, the end­
of-statement character X'FP' is added to 
the statement in this area, and the inter­
com item TEVSTB is set to the address of 
TCTEXl for the use of Phase 1. 

Calls on GETLINE in conversational mode 
may result in the terminal user's request­
ing that one or more lines be altered. If 
so, subroutine MOD is called to determine 
appropriate action. MOD may raise the paR­
GET flag to inform Phase 1 that the state­
ment currently held in a tentative status 
by Phase 1 should be removed from all 
tables, as it will be replaced. In this 
case, GNSS will call GETLINE again to 
obtain a source statement for Phase 1, etc. 
If the tentative statement is to be 
accepted, MOD will direct GNSS to ask for 
new lines without having raised the paRGET 
flag. MOD may also direct GNSS to return 
to the Phase Controller requesting a 
restart. This occurs when the terminal 
user wants to alter a line that'Phase 1 
cannot -forget- -- a line permanently added 
to the Phase 1 tables. In such a case, the 
next calIon GETLINE will again request the 
first source statement of the program. 

When GNSS is initially entered in con­
versational compilation. the current values 
of TDBOLD and TDBNEW are interchanged. 
After the exchange, TDBOLD contains the 
address of the buffer filled with source 
lines, and corresponding diagnostic mes­
sages, for the statement obtained on the 
previous GNSS call. TDBNEW is the buffer 
address for the buffer to be filled on the 
current call. 

At exit from GNSS in conversational 
operation, the PORGET flag is checked. If 
its value is zero, the statement is not to 
be -forgotten" so the statement in the 
buffer whose index is TDBOLD is to be added 
to the list data set. If the FORGET flag 
is 1, the line is to be forgotten and is 
not added to the list data set. 

26 

If GNSS encounters an end-of-data-set 
return code from GETLINE, the user omitted 
the END card from his source code. GNSS 
creates an END statement and returns to 
Phase 1 normally. 

As an example of GNSS operation, consid­
er the case where input is card only. A 
card is obtained, via LINEIN. If the line 
is a comment line, it is added to a list 
data set buffer via OLR; LINEIN is then 
called for another line. If the card is 
not a comment line, the status of the 
TDTERM flag is inspected. This flag is set 
to one upon entry to GNSS so that the line 
is written via OLR. Inspection for a con­
tinuation line is made. If the card is not 
a continuation card, several operations are 
performed, then inspection for an END card 
is made. If the card is an END card, two 
flags are raised. The text is then moved 
to the Phase 1 buffer. The TDTERM flag is 
then tested again. If down, LINEIN is 
called for a new line, and the chart is 
reentered. If TDTERM is up, the EOS (end­
of-source-statement) sequence is entered, 
at which point the end-of-statement 
character is added and return made to 
Phase 1. 

Certain tests made by the code are not 
shown in the flowchart, due to their repet­
itive nature: 

1. Before OLR is called to add a line to 
a list data set buffer, the TESLO flag 
is checked. If TESLO is not equal to 
Y, no source listing was requested and 
the call is not made. 

2. All executive subroutines called by 
GNSS return with a return code of 0, 
4, 8, or 16, as described earlier in 
the General Information section. GNSS 
tests this code, and if it is nonzero, 
return is made to Phase 1 at once, 
with the return code unchanged. 

continuation inconsistencies (a con­
tinuation card line received as the initial 
line of a statement, or a noncontinuation 
card line received after a keyboard line 
indicating continuation) produce diagnostic 
messages and cause the line in question to 
be ignored. If a statement contains too 
many characters, a diagnostic message is 
produced and trailing lines of the state­
ment are ignored. 

CEKTD -- Process Terminal Modifications 
(MOD) 

MOD is called by GNSS when GNSS is 
informed by LPC that a modified line has 
been entered from the terminal. 



MOD will determine the effect of this 
request upon the obtaining of a source 
statement by GNSS. MOD n,ay: 

1. Direct GNSS to replace part or all of 
the statement currently being formed 
for Phase 1. 

2. Raise the FORGET flag to inform Phase 
1 that the statement currently held by 
it in tentative status should be 
removed from the Phase 1 tables (in 
this case, GNSS will obt.ain a 
replacement) . 

3. Direct Phase 1 to return to the Phase 
Controller requesting a restart of the 
entire compilation. 

See Chart AD. 

ENTRIES: MOD has a single entry point 
(CEKTDA) and is currently reached only by 
GNSS, via a standard call. The parameter 
list contains only the address of intercom 
within the phase calling GNSS. 

ROUTINES CALLED: MOD calls the LINEIN 
entry of MIO when an altered line Inust be 
inspected to see if it is a continuation 
line. 

EX~TS: MOD returns to the calling program 
us~ng a standard RETURN. A r-eturn code is 
set in register 15 by t-10D, as follows: 

code 
-0 

4 
8 

12 
16 
20 

24 

28 

Description 
A new statement is to be 
obtained from LINEIN using the 
current value at TDU (see 
·operation", below) as the line 
number following which a line is 
desired. 
Suspected system error. 
Compiler error. 
Suspected system error. 
The compiler must restart. 
The current statement will be 
reobtained. 
A line obtained by MOD is to be 
used by GNSS. 
MOD met the end-of-data-set 
(also referred to as "EOS· and 
"EOOS·) in obtaining a line. 

OPERATION: MOD uses the following excom 
items to determine its response: 

1. TDU. When GNSS is called, TDU equals 
TDPU and also equals the line number 
of the last line of the statement 
passed to Phase 1 on the previous GNSS 
call. During GNSS operations, TDU is 
the line number of the last line 
received from GETLINE (the excom item 
TDLINF, referred to in the flowchart 
as "line number"). 

When returning to Phase 1, TDU will 
equal the line number of the last line 
of the statement passed to Phase 1. 

2. TDPU. When GNSS is called, TOPU 
equals the line number of the last 
line of the statement passed to Phase 
1 on the previous call. When GNSS is 
finished, TOPU is changed to the line 
number of the last line now being 
passed to Phase 1. 

3. TDAPU. When GNSS is called, TDAPU 
equals the line number of the last 
line of the statement prior to that 
last passed to Phase 1. As only the 
last passed statement can be forgot­
ten, the statement containing TDAPU is 
committed for processing. 

When GNSS returns to Phase 1, a new 
statement is being furnished. Both 
TOU and TOPU contain the line number 
of the last line of the statement now 
being passed. TOAPU is set to the 
line number of the last line of the 
statement previously passed. The FOR­
GET flag directs Phase 1 to keep or 
discard this previously passed 
statement. 

Note: TDPU is never less than TOU; 
TDAPU is never less than TOPU. 

4. T!)PUF, the format of line TOPU. 

5. TADPUF, the format of line TOAPU. 

6. TDLINO, the line number of the altered 
line -- the line to replace a line in 
or be inserted into the source 
program. 

As an example of MOD operation, consider 
the case where the line number altered is 
less than or equal to a line number already 
committed by Phase 1 (TOLINO ::; TOAPU). A 
restart must occur, and MOD sets a return 
code accordingly for GNSS. 

For a second example, assume the order 
is (in sequence of increasing line 
numbers); 

TOAPU 
TDU 

:: TDLINO 
TDPU 

Another possibility is one in which the 
order of increaSing statement numbers is: 

TDAPU 
TDLINO 
TDPU 
TDU 

If line TOAPU was in card form (TDAPUF :: 
C) the new line could extend TDPU. The new 
line is inspected. If it is in card format 

Section 2: Executive 27 



and a continue line, a restart is required, 
as TOAPU is committed. If TOAPU was in 
keyboard form, or if the new line is not in 
card format and a continue line, TDLINO 
cannot modify TOAPU, so no restart is 
required. The next line to be requested by 
GNSS will be the line following TO~PU. MOD 
thus sets TOU to TOAPU and directs GNSS to 
obtain a new line. The insertion of a line 
preceding TOPU means that TOPU -- currently 
held in a tentative status by Phase 1 -­
must be -forgotten;- therefore, MOD raises 
the FORGET flag. 

CEKTE -- Receive Diagnostic Message (ROM) 

ROM accepts a diagnostic message in the 
form of a list of pointers to pieces of 
text, assembles the pieces into a line 
image, adds the message to the source list-
ing, and in conversational operation --
sends it to the terminal. See Chart AE. 

ENTRIES: RDM has one entry point (CEKTEA), 
the V-con and R-con for which are found in 
intercom. ROM is reached only via a stan­
dard call. The parameter list is described 
below with an examp.le containing strings of 
length 12 and 37 characters to be combined 
into a message by ROM: 

LIST DC A{PINCOM) The loca tion wi thin 
the current active 
phase of intercom 

DC A(L1) Stri 119 1 length 
DC A(Tl> String 1 text 
DC A(L2) String 2 length 
DC A(T2) String 2 text 
DC A(ZERO) End-of-string 

L1 DC FU'12' 

T1 DC CL12· ••• • 

L2 DC FLl'37' 

T2 DC CL37' •.• • 

ZERO DC FL1'O' 

ROUTINES CALLED: ROM calls only the master 
input/output module (MIO>, at its DIAGOUT 
entry. The DIAGOUT V-con and R-con are in 
excom. Standard linkage is used. The 
parameter list contains: 

LIST DC A(Intercom)Same as in ROM calls 
DC A(Text) Message text 
DC A (Length) Message length, bytes 

EXITS: Standard return linkage is executed 
to the calling program. The return code 
set is whatever code was returned by MIO. 

28 

OPERATION: ROM first assembles the diag­
nostic message as a line image from the 
indicated pieces of text. The DIAGOUT 
entry to MIO is then called to add the mes­
sage to the source listing, and, if the 
compiler is running in conversational 
operation, to transmit the message to the 
terminal via PUTOIAG. 

If a diagnostic message is greater than 
80 characters, a diagnostic message is 
added to the source listing and only the 
first 80 characters of the message are sent 
to MIO. 

CEKTF -- Constant Filers (CONFIL) 

CONFIL receives numeric address and 
statement label constants, ensures that 
they have a symbol table entries, and pro­
vides symbol table pointers to the con­
stants. See Chart AF. 

CONFIL's CRL subroutine creates an 
internal statement number and files this 
number as a label. These labels may be 
used by compiler phases to mark pOints in 
the code. 

RESTRICTIONS: Several references are made 
in text and tables to the filing of con­
stants of one-byte length (referred to as 
*1 constants) and of length 16 (*16 con­
stants). Currently, no compiler phases 
require that the Constant Files be able to 
file *1 constants, and no code is included 
for such filings, although space is left in 
various tables. For *16 constants, the 
only constant of such length currently is a 
C*16 constant. For such constants, only *8 
alignment is required. In this case, the 
*16 alignment (not space creation) code 
exists, but is not entered. Similarly, C*8 
constant filing uses *4 alignment code. 
The planning for these constants is based 
on the possibility that future modifica­
tions to the compiler would require the 
ability to file them. 

ENTRIES: The CONFIL Subroutines are 
reached via a standard call. The V-con and 
R-con values are available to the calling 
programs in intercom. Prior to calling a 
CONFIL routine (CRL excluded), the calling 
program places the constant to be filed in 
the intercom area TECONS. Upon return, 
CONFIL will have filled in the intercom 
item TEPNTR and will have set TEGNU (and, 
for CRL, TELINO). 

The CONFIL entry pOints, entry symbol, 
and corresponding TECONS initialization are 
given in Table 5. 



Table 5. Preparation of constant Receiving Area by CONFIL 
r--------T--------T--------------T------------------------T-----------------------------, 
'Entry ,CONFIL I CONFIL V-Con I , I 
I Symbol 'Name I (Intercom) I Description I TECONS contents I 
r--------t--------t--------------t------------------------+-----------------------------1 
I CEKTFB I CONI2 I TE.VI2 I Files 1*2 constants I Constant to TECNS1 , 
I CEKTFC I CONI4 I TEVI4 'Files 1*4 constants I Constant to TECNS1 , 
, CEKTFD I CONR4 I TEVR4 'Files R*4 constants , Constant to TECNS1 , 
I CEKTFE I CONR8, TEVR8 ,Files R*a constants I High Order 4 to TECNS1 , 
I I l' I Low Order 4 to TECNS2 , 
I CEKTFF I CONC8 I TEVC8 lFiles c*a constants I Real 4 to TECNS1 I 
I I l --, , Imag. 4 to TENCNS2 I 
I CEKTFG , CONC16 I TEVC16 IFiles C*16 constants I High Order real 4 to TECNS1 I 
I I I I I Low Order real 4 to TECNS2 I 
I I I I , High Order imago 4 to TECNS31 
I I I I , Low Order imag. 4 to TECNS4 I 
I CEKTFI I FLAD4 I TEVFL4 IFiles storage class 4 I Constant to TECNS1 , 
I 'I I constants other than , I 
l I' 'R-cons I , 
I CEKTFJ I FLAD5, TEVFI.5 'Files storage class 5 I Constant to TECNS1 I 
I I' , constants I , 
I CEKTFK I FLADVR I TEVVR 'Files V-con, R-con pairs I Constant to TECNS1 , 
I CEKTFL I FLL I TEVFLL IFiles labels I Label to TECNS1 I 
I CEKTFM I CRL I TEVCRL Icreates , files labels I I L ________ L ________ L ______________ L ________________________ ~ _____________________________ J 

ROUTINES CALLED: CONFIL calls RDM if over­
flow occurred in the symbol table storage 
class table. 

EXITS: CONFIL executes a standard return 
linkage to the calling program. A return 
code is set in register 15 as follows: 

Code 
-0-

a 

Meaning 
Normal 
Symbol table or storage class 4 
(the adcon page) overflow 

CONFIL returns with register 15 contain­
ing zero or, if RDM was called, containing 
whatever code was returned by RDM. 

OPERATION: CONFIL initially determines if 
a constant of the type being filed has pre­
viously been filed. This determination is 
made by inspecting the appropriate anchor 
for the chain in which the constant would 
be included. The constant types, their 
anchors, and the base of the tables con­
taining the anchors are shown in Table 6. 

If the appropriate anchor is empty (con­
tains X'80--' meaning End-of-Chain), the 
constant is added to the symbol table, the 
storage class table is updated, and the 
anchor is made to point to the new entry. 
(This pointer, like all pointers in the 
symbol table, is a 2-byte offset from the 
symbol table base). 

If the anchor is not empty, the chain to 
which it points is searched until either an 
identical constant is found or an end-of­
chain indicator is found. If the constant 
has previously been filed, return is made 
with a pointer to the descriptive part of 

the previously filed constant. If the con­
stant is not already in the chain, it is 
added, the storage class table is updated, 
and the previous end-of-chain entry is 
altered to point to the new entry. 

Much of the code in CONFIL 
all constant filers. Not all 
created identically, however. 
differences are: 

is shared by 
constants are 

The major 

1. The value part of the name part 
entries for 8- and 16-byte constants 
are longer (by 4 and 12 bytes, respec­
tively) than for 2- and 4-byte 
constants. 

2. The descriptive part for label con­
stants is 12 bytes, rather than 8 
bytes. 

3. Adcons in storage class 5 \(list-entry 
adcons> are added to the end of the 
chain, without searching for an iden­
tical previous occurrence. 

4. The code that searches the chains is 
divided into three sections for great­
er speed. The sections search chains 
for constants of length 2 and 4, a, 
and 16 bytes, respectively. 

5. One constant filer (FLADVR) files two 
identical constants -- a V-con and an 
R-con. The V-con is filed in the 
adcon storage class 4 chain; the R-con 
is filed in the R-con chain. The V­
and R-cons will occupy adjacent loca­
tions in storage class 4, in the order 
V-con, R-con. 

Section 2: Executive 29 



6. Create Label (CRL) creates a label, 
stores it in TECNS1, then files this 
label. 

The possibility exists that constants in 
storage class 4 could be given locations in 
the storage class such that "holes" would 
exist. ~or example, addition to the 
storage class of three constants of 16 
bytes, 4 bytes, and 16 bytes, respectively, 
in that order and with byte alignment, 

'Nould create a 12-byte "hole". CONFI:;:' 
fills such holes with items filed later, as 
described in Tables 7, 8, and 9. 

CONFIL checks for symbol table overflow 
and storage class overflow, which can occur 
only in storage class 4. If either occurs, 
the TEOFLO item is set in intercom and 
return is made to the calling program with 
a return code of 8. A message is given by 
CONFIL in such an event. 

Table 6. constant Chain Anchors and Table Bases 
r-------------r---------------------------r-------------------------T-------------------, 
I CONFIL I I I Table Base I 
I Name I Constant Type Filed I Anchors (in Excom) , (in Intercom) I 
~-------------+---------------------------+-------------------------+-------------------~ 
I CONI2 I 1*2 I TCCHT (1) 'TECHTB I 
I CONI4 i 1*4 I TCCHT (2) I I 
I CONRI.i I R*4 I TCCHT (3) I I 
I CONRa I R*8 I TCCHT (4) I I 
I CONCa I C*8 I TCCHT (5) I I 
I CONC16 I C*16 I TCCHT (6) I I 
I FLADilR I R-Cons (STCL = 4) * I TCCHT (7) I I 
I FLAD4 I Adcons (STCL = 4) I TCCHT (8) I I 
I FLAn5 I Adcons (STCL =: S) I TCCHT (9) I I 
I FLL,CRL I Labels I TCLHT (l-16) I TELHTB I 
~-------------~---------------------------~-------------------------~-------------------~ 
I *STCL means Storage class I l _______________________________________________________________________________________ J 

Table 7. CONFIL Storage Assignment No-Hole Branch Table TFNOHO 
r-------------------------------------T---------T---------T---------T---------T---------, 
I Length Constant Being Filed I *1 I *2 I *4 I *a I *16 I 
t-------------------------------------+---------t---------+---------+---------+---------~ 
I corresponding Register P-3 Value I 0 I 4 I 8 I 12 I 16 I 
t---------------------------T---------t---------t---------+---------+---------+---------1 
I Current Alignment of I I I I I I I 
I Next Space in Storage I I I I I I I 
I Class 2 I *1 I TF610 I TF620 I TF630 I TF640 I TF650 I 
I r---------+---------+---------+---------+---------+---------~ 
I I *2 I TF610 I TF610 I TF660 I TF665 I TF670 I 
I ~---------+---------+---------+---------+---------+---------~ 
I I *4 I TF610 I TF610 I TF610 I TF675 I TF680 I 
I ~---------+---------t---------+---------+---------+---------~ 
I I *8 I TF610 I TF610 I TF610 I TF610 I TF685 I 
I ~---------+---------+---------+---------+---------t---------1 
I I *16 I TF610 I TF610 I TF610 I TF610 I TF610 I 
t---------------------------~--------~---------~---------~---------~--------~---------~ 
I I 
I Examples of Table Use: I 
I I 
I 1. An *4 constant is being filed and the alignment in Storage Class 2 is also *4. I 
I Branch to TF610. (No holes produced in Storage Class.) I 
I I 
I 2. An *4 is being filed, and the alignment is *8. Branch to TF610. (No holes I 
! produced) • I 
I I 
I 3. An *8 is being filed and alignment is *2. Branch to TF665, at which point an *2 I 
i (and *4 if six bytes are required to create *8 alignment) hole will be made I 
I available as a result of *8 alignment being produced for the constant. I L _______________________________________________________________________________________ J 

30 



Table 8. CONFIL Storage Assignment Hole Availability Table 
r---------------------------------------------------T--------T--------T--------T--------, 
I Length Constant Being Filed I *1 3 I *2 3 I *4 I *8 I 
~---------------------------------------------------+--------+--------+--------+--------~ 
I corresponding Register P-1 Value I 0 I 4 I 8 I 12 I 
~---------------------T----.-T--------T-----T--------L ________ L ________ L ________ L ________ ~ 

I Available Hole ,*8 I *4 I *2 I *1 I 
r---------------------+-----+--------+-----+--------------------------------------------~ 
I TDHOLE = 0 I I I I TF590 TF590 TF590 TF590 I 
! r-----+--------+-----+--------------------------------------------~ 
I 1 I I I I X TF511 TF590 TF590 TF590 I 
I t-----t--------+-----+--------------------------------------------~ 
I 2 I! I X I TF521 TF522 TF590 TF590 i 
I r-----t--------+-----+--------------------------------------------~ 
I 3 I I I *x t *x TF511 TF522 TF590 TF590 I 
I r-----+--------+-----+---------------------------------------------~ 
I 4 I! X I I TF541 TF542 TF544 TF590 I 
I r-----+--------+-----+--------------------------------------------~ 
I 5 I I X I I X TF511 TF542 TF544 TF590 I 
I r-----+--------+-----+--------------------------------------------~ 
I 6 I I X I X I TF521 TF522 TF544 TF590 I 
I r-----+--------+-----+--------------------------------------------i 
I 7 I I X I X I X TF511 TF522 TF544 TF590 I 
I r-----+--------+-----+--------------------------------------------~ 
I 8 I X i I I TF581 TF582 TF584 TF588 I 
I r-----+--------+-----+---------------------------------------------1 
t 9 I X I I I X TF511 TF582 TF584 TF588 I 
I r-----+--------+-----+-------------------------------------------~ 
I 10 I X I I X I TF521 TF522 TF584 TF588 I 
I r-----+--------+-----+--------------------------------------------1 
I 11 I X I I X I X TF511 TF522 TF584 TF588 I 
I t-----+--------+-----+--------------------------------------------1 
I 12 I X I X I I TF581 TF542 TF544 TF588 I 
I t---·--+--------+-----+---------------------------------------------1 
I 13 I X I X I I X TF511 TF542 TF544 TF588 I 
I r-----+--------+-----+--------------------------------------------1 
I 14 I X I X I X I TF521 TF522 TF544 TF588 I 
I r-----+--------t-----+--------------------------------------------1 
I 15 I X I X I X I X TF511 TF522 TF544 TF588 I r _____________________ L _____ L ________ L _____ L _____________ -------------------------------1 
I I 
I Examples of Table Use: I 
I I 
I 1. An *4 constant is being filed, no *4 constant hole is available (no X under *4 in I 
I the Available Hole columns), and no *8 hole is available. Branch to TF590, where I 
I space will be taken by increasing the size of the Storage class. I 
I I 
I 2. An *2 constant is being filed, no *2 hole is available, but an *4 hole is avail- I 
I able. Branch to TF542, at which point part of the *4 hole will be used, with the I 
I unused part of the hole assigned to the *2 hole. I 
I I 
I 3. Not implemented. I L _______________________________________________________________________________________ J 

Section 2: Executive 31 



Table 9. CONFIL Storage ~ssignment Byte 
Alignment Branch Table TFBAL 

r----------------------------T------------, 
I Alignment of Next I I 
I Available Byte I ! 
r---------------T------------1 I 
I Address Bits ! I Number I 
r---T---T---T---1 Constant I Loaded I 
I 8 I 4 I 2 I 1 I Length I Into N4 I 
t---+---+---t---+------------+------------~ 
I I I I I *16 I 80 I 
! I I I X I *1 I 0 I 
I I I X I I *2 I 20 I 
I I I X I X I *1 I 0 I 
I I X I I I *4 I 40 I 
I I X I I X I *1 I 0 I 
I I X I X I I *2 I 20 I 
I I X I X I X I *1 I 0 I 
I X I I I I *8 I 60 , 
I X I I I X ! *1 I 0 I 
I X I I X I I *2 I 20 I 
I X I I X I X I *1 I 0 I 
I X I X I I I *4 I 40 I 
I X I X I I X I *1 I 0 I 
I X I X I X I I *2 I 20 I 
I X I X I X I X I *1 I 0 I l ___ ~ __ _L ___ L ___ L ____________ L ____________ J 

CEKTH -- Master Input/Output (MIO) 

All communication between interface pro­
grams supplying source line input to and 
producing edited line output for the com-­
piler is accomplished my MIO. The compiler 
I/O operations are: 

1. Calls on LPC GETLINE 

2. Calls on LPC PUTDIAG 

3. Opening of. additions to, and closLlg 
of the list data set 

See Chart AG. 

ENTRIES: The entry points to MIO are 
listed below. All are reached by standard 
calls. 

Entry Name 
LDOPEN CEKTHA 
LDCLOSE CEKTHB 
LINEIN CEKTHC 
DIAGOUT CKTHD 

OLR CEKTHE 

32 

List in Parameter List 
(Address) 
Intercom 
Intercom 
Intercom 
Intercom, line address, 
4-byte character count. 
Intercom, line address, 
4-byte character count, 
and flag. 

The flag item will be zero 
or a PL4 format line num­
ber, with the following 
results. 

Zero. The output line 
will begin in column ~ of 
the list data set line. 

BFLUSH 

Lines ?resented are 
expected to be preceded by 
a carriage control 
character. 

PL4. The output line will 
begin in column 10 of a 
list data set line. The 
first nine characters will 
be XXXXXXXBB, where X = a 
numeric digit, and B = 
blank. A carriage control 
character of a blanks is 
associated with this line. 

CEKTHF Intercom, Flag. Flag is 
4, 8, or 12 for flushing 
old, new, or both buffers, 
respectively. 

ROUTINES CALLED: MIO calls the LPC entries 
GETLINE and PUTDIAG and uses data manage­
ment through VISAM I/O macro instructions. 

The C~LL and RETURN statements for MIO 
calling GETLINE and PUTDIAG are given 
below. 

FORTRAN to GETLINE Call 

Register 1 contains the address of the 
parameter list. 

Register 13 contains the address of the 
FORTRAN save area to be used by GETLINE. 

Register 14 contains the return address. 

Register 15 contains the V-type Adcon 
for GETLINE (i.e., the entry point 
address) . 

(symbol] CALL GETLINE entry-symbol, (line 
number 

GETLINE Entry 

(15) 
to GETLINE-addr, line number 
from GETLlNE-addr, length of 
line-addr, source-addr, 
altered line number-addr) 

Entry point name for GETLINE. 

Line Number to GETLINE 

Specifies the address of a 1-word field 
containing a packed decimal number. (FORTRAN 
is requesting a source line which follows 
the line with this number.) 

Line Number From GETLINE 

Specifies the address of a i-word field 
which will contain a packed decimal number 
when GETLINE returns to FORTRAN normally 
(i.e., return code = 0). This will be the 



line number of the source line which GET­
LINE is giving to FORTRAN. 

Length of Line 

Specifies the address of a i-word field 
which will contain a binary number when 
GETLINE returns to FORTRAN normally. This 
will be a count of the number of characters 
in the source line which GETLINE is giving 
to FORTRAN. This count will include the 
format character (see source line below). 

Source Line 

Specifies the address of a field which 
will contain the address of the source line 
when GETLINE returns to FORTRAN normally. 
This line will contain a maximum of 150 
characters. The first character will be 0 
or 1 (hexadecimal), depending upon whether 
the line is card or keyboard, respectively. 

Altered Line Table 

Specifies the address of a 1-word field 
whiCh will contain (in packed decimal for­
mat) the line number of the lowest line 
modified when GETLINE returns to FORTRAN 
wi th a return code of 4. 

GET LINE to FORTRAN Return 

[Symbol] RETURN 

Upon return from GETLINE, register 15 
contains a code which may be interpreted as 
follows: 

Code 
-0-

4 

8 

12 

Type of Return 
Normal (source line 
has been obtained). 

Lines have been 
altered. 
Batch -- EOOS (End-of­
Data-Set. GETLINE was 
asked for a line after 
the last line in the 
data set). 
"abend-type" 

FORTRAN to PUTDIAG Call 

Parameter 
Information 
Filled In 
Line number 
from 
GETLINE. 
Length of 
line. 
Source line 
Altered 
Line number 
None. 

Indetermi­
nate. 

Register 1 contains the address of the 
parameter list. 

Register 13 contains the address of the 
LP save area to be used by PUTDIAG. 

Register 14 contains the return address. 

Register 15 contains the V-type adcon 
for PUTDIAG (i.e., entry point address). 

[symbol1 CALL PUTDIAG, entry - symbol 
(1s) 

[,(message-addr, length of 
message-addr, correction 
request indicator-addr») 

PUTDIAG Entry 

Entry point for PUTDIAG. 

Message 

Specifies the address of an area which 
contains the message. 

Length of Message 

Specifies the address of a 1-word field 
which contains, in binary, the number of 
bytes in the message. 

Correction Request Indicator 

Specifies the address of a 1-byte field 
which indicates whether the message is to 
go to SYSOUT immediately {OOOOOOOO} or is 
to be stacked by LPC and output as a 
correction request at the next entry to 
GETLINE (00000001). 

PUTDIAG to FORTRAN Return 

[Symbol] RETURN 

Upon return from PUTDIAG, register 15 
contains a code which may be interpreted as 
follows: 

code 
-0-

12 

Type of Return 
normal 
-abend-type-

EX~TS: MIO exits to the calling program 
uS1ng a standard linkage. A return code is 
set in register 15 as follows: 

Code 
·-0-

4 

OPERATION 

Description 
Normal return. 
GETLlNE or PUTDIAG returned with 
an "abend-type- value in regis­
ter 15. The program calling MIO 
will return to its caller with a 
return code of 4, until the 
phase controller is reached. 
The phase controller will then 
return to LPC with a return code 
of 4. 

MIO has six entry points. These are 
described below. 

Section 2: Executive 33 



1. List Data Set Open Entry -- LDOPEL\I 

The phase control-ler enters at LOOPEN 
to open the list data set. opening 
will not occur again, unless FORTRAN 
is reached at its initial entry or a 
restart occurs. Restart will cause 
the list data set to be closed, and 
then reopened, thus discarding lhe 
contents of the previous list data 
set. 

2. List Data Set Close Entry -- LDCLOSE 

3. 

The phase controller enters at LDCLOSE 
to close the list datrt set. Lines 
held in the list data set buffer (see 
ORL below> are output_ before closing. 

Get a Line From LPC Entry LINEIN 

This entry is used by the exec subrou­
tine CEKTC (GNSS) when a source state­
ment is being formed for Phase 1 of 
the compiler. LINEIN will call the 
LPC subroutine GETLINE and pass the 
results to GNSS via excom. 

When processing card lines, GNSS 
requests the first line of each state­
ment twice, once to determine that the 
previous statement is not to be' con­
tinued, and once to obtain the first 
line of the new statement. LINEIN 
does not issue two calls on GETLINE 
under such circumstances. Rather, 
LINE IN saves the line after the first 
request, in anticipation of the second 
request. 

If GETLINE sets register 14 to note an 
abnormal end condition, LINEIN returns 
to GNSS with a return code that will 
force an abnormal end return by Phase 
1 to the phase controller, followed by 
an abnormal end return by the phase 
controller to LPC. 

4. output a Diagnostic Message Entry -­
DIAGOUT 

34 

Any executive subroutine or any phase 
wishing to output a diagnostic message 
may do so by calling the receive diag­
nostic message subroutine, RDM. RDM 
forms the message and adds it to the 
terminal (unless in batch operation) 
and 1ist data set (if any), using the 
DIAGOUT entry to MIO. In cases where 
executive modules have access to a 
comp1ete line, they call DIAGOUT 
directly, for increased efficiency. 

During Phase 1 operation, diagnostic 
messages will frequently be output 
concurrently with addition of source 
lines to the list data set by the MIO 
entry OLR (see below). 

If the computer is running in conver­
sational mode, OLR does not output 
source lines as soon as they are 
received, as a terminal correction HlrJ.Y 

require deletion of lines. Instead, 
lines are stacked in one of the two 
MIO buffers (obtained by a PHC GET­
MAIN). Diagnostic messages concerning 
these lines are also stacked, in the 
same buffers, and added to the list 
data set only when the source line 
causing the diagnostic is added to the 
list data set. 

5. Output Line Receiver -- OLR 

This entry is used by PHC (Phase Con­
troller>. GNSS, and Phase 5 of the 
compiler to add source lines to the 
list data set. 

OLR operation when called from any­
where except GNSS is quite Simple, uS 
lines to be added to the list data set 
will never be replaced. GNSS use, on 
the other hand, is more complex, since 
both the previous statement processed 
by Phase 1 and the current statement 
being prepared for Phase 1 may be 
deleted, due to conversational correc­
tions. In such a case, the source 
lines for these statements must not be 
added to the list data set. This pur­
pose could be accomplished by retain­
ing the entire source program in vir­
tual storage. The procedure adopted 
by OLR is to stack source lines (with 
diagnostic messages and comment lines 
received concurrently) in buffers 
until the source statement is irrevo­
cably committed to inclusion in the 
Phase 1 tables and, thus, to further 
processing by following phases. 

The possibility exists that the capac­
ity of any reasonably-sized buffer 
will be exceeded, due to an abnormally 
large number of comment lines con­
tained within a source statement. In 
such a case, a message will be added 
to the list data set, to the effect 
that the statement will be repeated if 
corrected at the terminal. 

6. Flush the Buffer -- BFLUSH 

This entry is used by GNSS to move a 
source statement and associated diag­
nostic messages from an output buffer 
to the list data set. This operation 
is performed only when it is deter­
mined that the statement cannot be 
replaced through conversational 
corrections. 



CEKTI Analyze Console .source Line (ANALYZ) 

ANALYZ, which is -assembled into GNSS 
(CEKTC>, analyzes a console-furnished 
source line to determine the location in 
the string of the statement number (if any) 
and the text. The statement number is 
moved to intercom; the location of the 
first text character and the nJmber of text 
characters are returned to the calling pro­
gram GNSS. See Chart AH. 

ENTRIES: ANALYZ is reached only from GNSS, 
via a restricted linkage INVOKE. All 
information required by ANALYZ is in inter­
com. ANALYZ returns with TDLE in N3, and 
TDNUMC in V2. 

ROUTINES CALLED: ANALYZ invokes subroutine 
INSCON (CEKTJ) for inspection of individual 
characters. 

Information placed in registers for 
INS CON is: 

Register 
P2 

V2 

contents 
LASTC, the address of the first 
character beyond t.he last text 
character. 
I, the address of the last 
character inspected by INSCON. 

ANALYZ initializes V2, which is updated 
by INSCON. P2 is used, but not changed by 
INSCON. 

~XITS: ANALYZ returns to GNSS via a 
RESUME, with no registers set:. All infor­
mation required by GNSS is in excom. 

OPERATION: ANALYZ is invoked by GNSS with 
information in excom giving the line length 
(TDLONG) and the address of the area con­
taining the line (TDLADD). There are too 
many possible legitimate combinations of 
text characters to describe all ANALYZ 
operations in writing, but the ANALYZ flow­
chart (Chart AY) gives all logic paths. 

Refer to FORTRAN programmer's Guide, 
"Appendix A: Entry and Correction of FOR­
TRAN Source Statements," for information 
concerning the format of source statements. 

CEKTJ -- Inspect a Console Character 
UNSCON) 

INSCON is assembled into GNSS; its func­
tion is to inspect a character in a console 
source line to determine if it is tab, nu­
meric, blank, or other. See Chart AI. 

ENTRIES: INSCON is invoked by subroutine 
ANALYZ via restricted linkage. Information 
required by INSCON is all in registers pre­
pared by ANALYZ, as follows: 

.Register 
P2 

V2 

Contents 
LASTC,the address of the first 
character beyond the last text 
character. 
I, the address of the last 
character inspected prior to 
INSCON entry. 

INSCON alters Pi and P3 for use by the 
calling program. 

ROUTINES CALLED: None 

EXITS: INSCON returns to the calling pro­
gram with a RESUME, with a code in RC as 
follows: 

Code 
o 
I.j 

8 
12 
11 
20 

Descript ion 
Not used. 
INSCON could not inspect a 
character, as the end of line 
was exceeded. 
The next 
The next 
The next 
The next 
numeric, 

character 
character 
character 
character 
or blank. 

was 
was 
was 
was 

a tab. 
numeric. 
blank. 
not tab, 

OPERATION: INSCON tests the address next 
character in the console line to see if the 
line end has been reached. If so, the RC = 
4 return is taken; if not, the character is 
converted, inspected, and return made with 
the RC code set appropriately. 

CEKTK -- Move a Line to the List Data set 
(LDMOVE) 

LDMOVE is assembled as part of the mas­
ter input/output module and is invoked by 
MIO via restricted linkage to move a line 
from a buffer to the list data set. LDMOVE 
counts lines moved, restores the page, and 
adds a page heading when required. See 
Chart AJ. 

ENTRIES: LDMOVE is reached from the MIO 
subroutines FLUSH and BUILD, via an INVOKE. 
All information required by LDMOVE is in 
excom, intercom, the MIO PSECT, or regis­
ters Nl and N2: 

N1 text address 
N2 character count 

ROUTINES CALLED: LDMOVE uses the VISAM PUT 
macro instruction to add lines to the list 
data set. 

3XITS: LDMOVE sets no registers for invok­
ing programs. Return is via a RESUME. 

OPERATION: LDMOVE determines whether a new 
page is to be started, and, if so, moves 
the page heading from the internal files 
area to the list data set. The new page 
number is included in this heading. 

Section 2: Executive 35 



LDMOVE adds the line to the list data 
set, updates line counters, and returns. 

CEKTL -- Build a List Data Set Buffer 
(BUILD) 

BUILD is assembled as part of the master 
input/output module and is invoked bI MIO 
via restricted linkage to move a line to a 
list data set buffer or the list data set. 
This buffer is emptied using FLUSH (see 
CEKTM) when full, when the list data set is 
to be closed, or when a source statement is 
committed to further compilat.ion. (See 
Chart AK.) 

ENTRIES: BUILD is reached from the DIAGOUT 
and OLR entries to MIO, via an INVOKE. 
Programs, invoking BUILD, set registers as 
follows: 

Nl the address of the line to be 
processed 

N2 = the number of characters in this 
line 

ROUTINES CALLED: BUILD may enter LDMOVE or 
FLUSH via an INVOKE. No registers are set 
for, or expected to be set by, these 
subroutines. 

EXITS: BUILD returns to its caller via a 
RESUME, with no registers set. 

OPERATION: When BUILD is called in batch 
mode, it inVOkes LDMOVE at once, to move 
the line directly to the list data set. 

In conversation, BUILD checks first to 
see if the list data set buffer currently 
being built is full; if it is, FLUSH is 
called. The line is then added to one of 
the MIO buffers. 

CEKTM -- Flush a List Data Set Buffer 
( FLUSH) 

FLUSH is assembled as part of the Master 
Input/Output module and is invoked to flush 
one or both of the list data set buffers by 
moving all lines resident in the buffers to 
the list data set. See Chart AL. 

RESTRICTIONS: Register P6 must be set for 
FLUSH, as follows: 

P6 
4 
B 

12 

Description 
Flush the old buffer 
Flush the new buffer 
Flush both buffers 

ENTRIES: FLUSH is reached from the MIO 
entry BFLUSH, LDCLOSE, and BUILD via an 
.INVOKE. All items required by FLUSH are in 
excom, intercom, or the MIO PSECT. 

36 

ROUTINE3 CALLED: FLUSH invokes LDMOVE. No 
registers are set for, or expected from, 
this invocation. 

EXITS: FLUSri returns via a RESUME, with no 
registers set for the calling program. 

OPERATION: FLUSH determines if the buffer 
contains any lines to be removed; if it 
does, FLUSH repeatedly invokes LDMOVE until 
the buffer is empty. Otherwise, FLUSH 
returns at once. 

CEKTQ -- Compiler File Dump (COMDUMP) 

COMDUMP prepares hexadecimal dumps of 
compiler internal files, as part of the 
compiler diagnostic feature processing. 

ENTRIES: COMDUMP contains one entry point, 
CEKTQA. 

ROUTINES CALLED: COMDUMP calls LINDUMP at 
its CEKTSA entry, by means of the CEKTG 
macro. 

EXITS: COMDUMP always makes a RETURN to 
the calling program, with no return code 
set. 

OPERATION: COMDUMP is called with three 
parameters: the address of intercom and 
the low and high addresses of the area for 
which a hexadecimal dump is to be prepared. 
The COMDUMP output lines are issued via the 
CEKTG macro instruction. This macro 
instruction issues a calIon the LINDUMP 
module, which in turn issues a VISAM PUT to 
pass the line to the compiler user. 

An error message is given and no dump is 
produced if the parameters have the second 
address greater than the third. 

CEKTS -- Compiler Line Dump (LINDUMP) 

LINDUMP is called by the macro CEKTG, 
after CEKTG sets up parameters for the 
call. LINDUMP then forms one or more lines 
in accordance with parameters passed, and 
issues these via the VISAM PUT macro 
instruction. 

ENTRIES: LINDUMP contains one entry point, 
CEKTSA. 

ROUTINES CALLED: The PUT macro instruc­
tion, issued by LINDUMP, leads to an 
external call. 

EXITS: COMDUMP always makes a RETURN, with 
no return code set. 

OPERATION: Before describing LINDUMP, a 
description of the CEKTG macro instruction 
will be given. 



Use of CEKTG 

CEKTG can be used by macro instruction, 
in the forms: 

1. CEKrG AREA, FORMAT, SIZE 
(one area, one format) 

where: 

A.REA - may be any,; ymbol def ined 
in the program or a tenn 
such as O(RN), where 0 is 
any displacement and RN 
any register. 

FORMAT - may be: 

0 or X 
1 or F 
2 or H 
3 or C 
4 or Q 
5 or B 

SIZE 

for hexadecimal 
for fullword integer 
for halfwor1 integer 
for characte:r-
for quarter-word integer 
for binary 

- may be any absolute or 
relocatable expression of 
up to eight characters. 
It is the byte size of 
AREA. 

If FORMAT is C and SIZE is 133, only 
132 characters are printed, and the 
first character is used to control 
printer skipping and spaCing as 
follows: 

1 = Skip to new page before print­
ing the line 

o Space one line before printing 
the line 

+ Space two lines before printing 
the line 

••• and any other character is ignored. 

If A.REA falls in the range 0 to 15, it 
is assumed to relate to an index reg­
ister (general-purpose). SIZE then 
means the number of bytes, starting at 
the left-most (high-order) byte of 
that register. Wrap-around takes 
place, and the registers are printed 
as they were before the macro instruc­
tion was executed. 

2. CEKTG A1,Fl,A2,F2, .••. A.6,F6 
(up to six areas and formats) 

where: 

A1,A2, ••. A6 -- may be as specified 
for /\REA above. 

Fl,F2, ••• F6 -- consi:3t of a single 
letter, followed by an integer 
number in the range 1 to 999. The 
letter may be: 

X for hexadecimal 
F for full word integer 
H for halfword integer 
Q for quarter-word integer 
C for character 
3 for binary 
N for name-indicator (see comment 

below) 

Unless, and until, an N-type format is 
encountered, each area is printed 
separately on one or more lines, with 
the address of the area indicated, and 
the format letter shown. The area 
associated with the N-type format is 
printed in characters, starting at 
print position number 1. Other areas 
following the N-type format are 
printed alongside, up to a print line 
limit of 120 characters; additional 
lines are used if required. rhere 
will be spaces between individual 
items (bytes, halfwords, or full­
words) of multiple areas. 

A1,A2, ••• A6 may refer to general­
purpose registers, if they fall in the 
range 0-15. (See discussion on using 
the single-area CEKTG, above.) 

There is no print control option with 
multiple areas. 

The format parameters always specify 
length in bytes. 

The standard CEKTG output line starts 
with REF, followed by the hexadecimal 
return address in the calling program, fol­
lowed by ADR, followed by the decimal 
address of the area being printed, followed 
by the hexadecimal address of the area 
being printed, followed by a format letter 
(X, F, H, Q, or B), followed by data items. 
The data items are separated by spaces, 
except in the case of the Q format. 

When a single area is printed in 
character format, or when multiple areas 
follow a name area (see above), the stan­
dard indication is dropped, and data starts 
at print position 1. 

Except when using character format, 
there is always one space between the out­
put of successive entries to CEKTG. 

The CEKTG macro instruction saves and 
restores all registers around the call. 

This is the initial PRF entry generated 
at the initialization of Phase 1 

CEKTG -- Calling Sequence 

1. The calling sequence for the single­
area CEKTG is as follows: 

Section 2: Executive 37 



LA 
LA 
L 
CALL 

PARAM DC 
DC 

o f N SET FOHMAT CONTROL 
1,PARAM POINT TO LIST 
15,ADCEKT 
(is) , MF= (E, (1)) 

A{AREA) 
ACSIZE)SIZE IS IMMEDIATE 

VALUE 
ADCEKT ADCON IMPLICIT,EP=CEKTSA 

••• where the parameter N is a number 
in the range 0-5 (see notes on single­
area CEKTG macro instruction above). 

2. The calling sequence for the multiple­
area CEKTG is as follows: 

LA 
LA 
L 
CALL 

PARAM DC 
DC 
DC 
DC 

0,6 SET MULTIPLE AREA 
1,PARAM POINT TO LIST 
15,ADCEKT 
(15) ,MF= (E, (1» 
A(Al) FIRST AREA 
CL4 • Fl' FIRST FORMAT 
A(A2) SECOND AREA 
CL4' F2' SECOND FORMAT 

NOPR 0 END OF LIST 
ADCEKT ADCON IMPLICIr,EP=CEKTSA 

The parameters required for LINDUMP to 
prepare line{s) as described above are 
stored by CEKTG in intercom. CEKTG then 
calls LINDUMP. LINDUMP inspects these 
parameters, and builds one line of output. 
This output is issued via a VISAM PUT, a 
second line is prepared if requested, and 
so on. 

38 



INTRODUCTION 

Phase 1 performs the initial scan of the 
source program, analyzes it for syntactical 
correctness, and encodes the information 
for subsequent p~ocessing. Figure 13 il­
lustrates the operation of Phase 1. 

On entrance from the compiler executive, 
Phase 1 initializes itself, calls GNSS to 
get the first source statement, and enters 
its main loop. 

The main loop is traversed once for each 
source statement. It classifies the state­
ment and calls an appropriate subroutine to 
process the statement. On return from an 
individual statement processor, GNSS is 
called for the next source statement. GNSS 
indicates, by the forget flag, whether the 
statement just processed shaJld be compiled 

t t t t 
I End Statement 

'\/---~ 
_ Return /) 

(--~ 

, Enter 

i~l_~ 
I initiolize j 

; i 

/G., L\ 
(Source ) 
\\ 5 totement /1 

Statement Processor"!-o 

--i 
/ \ ! Get Next \ 

\ Source \ 
\. Statement 

SECTION 3: PHASE 1 

or ignored due to action by a conversation­
al user. In the latter case or if the 
statement just processed contained serious 
errors, the results of proceSSing that 
statement are expunged from all tables and 
output files, and the loop is reentered at 
the top to process the new statement just 
obtained. Otherwise, final housekeeping 
appropriate to the old statement is per­
formed, and the loop is reentered at the 
top. 

The processing for a statement includes 
producing appropriate output. Executable 
statements cause entries in the program 
representation file (PRF). Declarations 
may set fields in symbol table entries or 
produce output in the stoage specification 
list or preset data file. In addition, 
certain statements may affect Phase 1 
internal tables and flags. 

t t t t 

FORGET No 

Figure 13. Phase 1 Interface 

Flag Or Serious>-----------------------....t 
Error ? 

Yes 

Delete 
Statement 

Section 3: Phase 1 39 



Access to the source text is through two 
subroutines: ESC and -ACOMP. ESC supplies 
the next character on request. ACOMP sup­
plies a pair of consecutive items: the 
first is a variable name, function name, 
constant, or statement number (label); the 
second is a delimiter. ACOMP calls subrou­
tines to make symbol table entries, convert 
constants to binary, etc. 

Statements containing arithmetic or log­
ical expressions call' £he subroutine EXPR 
to process these expressions into Polish 
notation, which is output in the expression 
representation file (ERF). The subroutine 
SUBS processes subscripts, as a special 
category of expressions for EXPR and the 
statement processors. 

When source program errors are detected 
by Phase 1, the subroutine ERR is called to 
prepare a diagnostic message and transmit 
it to the executive subroutines RDM. The 
message is determined by the parameters 
presented to ERR. A parameter may indicate 
a piece of prestored text to be included in 
the message or may direct the subroutine to 
obtain information from the compiler's 
tables (e.g., a name from a symbol table 
entry) and insert it in the message. 
Depending on the entrance used, ERR will 
also set the local maximum error code and 
may raise the delete flag. 

After recognizing and proceSSing the 
source program END statement, Phase 1 
returns control to the executive. 

Phase 1 has one PSECT that provides 
working atorage for all Phase 1 modules. 
This PSECT is contained in module PHIM 
(CEKAI) and is organized as shown in 
Figure 14. 

Phase 1 creates entries in the inter­
phase files and tables listed below. 

PROGRAM REPRESENTATION FILE (PRF) 

The PRF consists of the executable ele­
ments of a source program. PRF entries are 
linked (chained) together in the sequence 
of their generation. Additional linking 
connects PRF entries by types. 

Definition point analysis connects each 
definition point of each variable, connects 
the definition points of any formal argu­
ments, and connects the definition points 
of all COMMON variables. Variables are 
defined when used as: 

1. The expression to the left of an equal 
sign in an arithmetic or logical 
statement. 

40 

1 Page 

Poge 1 

Pege 2 { 

Page 3 

PSECT 

SAVE AREA (19 Words) 

Phase 1 Working Storage 
( 3508 Bytes) 

Exec intercom 
(512 Bytes) 

Phose I Internal Working Storage 

HSTCK ( Operotor Steck for EX?R) 
LEVTAB (level Table for lac· r 

( 3328 Bytes) 

~~~~-.--------~-- --~------~--~--

SXS (Subexpressian Stack for EXPR)
lPTAB (Left Parenthesis Table 'or IOLST)
(768 Bytes)

~~~~~~--~--~--~~----------~---

Symbol Table Save Area 

f------~.-~~--~~--~~~~~~-~~-.- -

CSTK ( Constont Stock for EXPR) 
(256 Bytes) 

r--~-~~- -.---~-~~~~--~--~ .. ---- -.- -~---

TTRM (Tentative Term Tobie for SUBS) 
( 768 Bytes \ 

DOSTCK (Do Loop Steck for BGNLP) 
( 1024 Bytes) 

1--- ----~~----.--~---~~- -~--~---.------

LBlTBl (Alternate Return la~els for CAll) 
( 2048 Bytes) 

Page 4-8 SFEF (Statement Function Expansion Area) { 
r-------~----~~---~- --~--- ---------- ---

(110,480 Bytes) 

Figure 14. Phase 1 Storage 

2. An induction variable of a DO 
statement. 

3. A variable in an input list. 

4. An argument of an external subprogram. 

(All COMMON variables are defined when an 
external subprogram reference occurs in the 
source prog ram. ) 

Statement number proceSSing establishes 
the branching structure of the source pro­
gram. Statement number definitions are 
entered in the PRF and are linked. All 
statement numbers referenced as branch 
points are linked. 

DO statement proceSSing establishes the 
looping structure of the source program. 
The beginning and terminating points of 
each loop are connected to each other and 
to other loop delimiting points. In addi­
tion to the loops specified by the source 



program, a false loop is indicated before 
the first executable statement of the 
source program. This provides a position 
in the PRF for computation of expressions 
that are effectively constants in the 
program. 

The program representation file, as 
generated by Phase 1, consists of the fol­
lowing types of entries. Additional 
entries are added by succeeding ph~ses. 

Begin Program Entry 

This is the initial PRF entry generated 
at the initialization of Phase 1. Program 
type is set to indicate a main program. 
This setting is changed by the occurrence 
of a sUbprogram (SUBROUTINE or FUNCTION) 
statement. This entry is the terminal 
entry of the LINK chain. 

SUbprogram Entry 

This multiple-purpose entry is a global 
(external) entry point. As such, it is 
linked into the label definition chain 
within the PRF. It has a pointer to the 
symbol table entry of a subroutine or func­
tion name and a pointer to a list of symbol 
table entries of the formal parameters of 
the subprogram. This list specifies the 
order of occurrence of the formal parame­
ters. This is a false loop level entry. 
It is the primary entry pOint of a program. 

AI ternate Entry 

This entry is generated for each occur­
rence of an ENTRY source statement and 
identifies a secondary entry point for a 
program. It is a global (external) entry 
point. As such, it is linked into the 
label definition chain within the PRF. It 
is a false loop level entry. It has point­
ers to the symbol table for the entry name 
and for entries of the formal parameters. 

Label Definition Entry 

The label definition entry is generated 
for each occurrence of a statement number 
in the source language and for each 
compiler-generated statement number. Label 
definition PRF entries mark possible entry 
points for local (internal) flow control. 
To facilitate the flow analysis by Phase 2, 
they are linked to the preceding entry 
point. 

Eguation Entry 

This entry is generated from a FORTRAN 
assignment statement (arithmetic or logi-

cal). It contains a pointer to the expres­
sion representation file (ERF) entry repre­
senting the expression to the left, and 
another for the expression to the right, of 
the equal sign. An assignment statement is 
a variable definition point for the 
assigned-to identifier; it may be a common 
definition point if the defining expression 
contains a reference to an abnormal func­
tion. An II abnormal II fW'lction subprogram is 
one which does any of the following: 

1. Refers to or changes the value of any 
COMMON variable. 

2. Changes the value of any of its 
arguments. 

3. Causes input or output. 

4. Does not always return the same value 
when called with the same arguments. 

All external functions are treated as 
abnormal by the compiler. 

GO TO Entry 

A GO TO entry is generated for each 
occurrence of a GO TO source statement. 
Each is linked to the preceding label 
referencing PRF item, forming the 
referenced label chain used by Phase 2. 

Assigned GO TO Entry 

This entry is generated for each occur­
rence of an assigned GO TO source statement 
and contains a list of the statement num­
bers which may be aSSigned to the variable. 
Each statement number in the list is pre­
sumed to be referenced at this entry and, 
therefore, is linked to the preceding label 
referencing PRF item for analysis by Phase 
2. 

computed GO TO Entry 

Each occurrence of a computed GO TO 
source statement causes an entry that con­
tains a list of the statement numbers to 
which control can be transferred. Each 
label in this list is assumed to be 
referenced at this entry and therefore, is 
linked to the preceding label referencing 
PRF item for analysis by Phase 2. 

ASSIGN Entry 

This entry is generated for each occur­
rence of an ASSIGN source statement. It is 
considered neither a reference to the label 
specified nor a redefinition of the 
assigned variable. Hence, the PRF entry is 

Section 3: Phase 1 41 



not linked into the label reference chain 
or into the definition point chain. This 
entry is applicable to code generation 
only. 

~rithmetic IF Entry 

This entry is generated for each occur­
rence of an arithmetic IF source statement. 
Each label specified is assumed to be 
referenced at this entry. This item is 
linked to the preceding label-referencing 
PRF item. ~ label value of zero indicates 
fall-through to the next executable state­
ment. If the expression contains a 
reference to an abnormal function, this 
item serves as a redefinition point for all 
COMMON variables and is linked into the 
common definition chain within the PRF. 
The test expression is in the ERF. 

.Loqica I IF Entry 

This entry, generated for each occur­
rence of a logical IF source statement, 
combines the logical expression part with a 
conditional branch part to make the PRF 
entry very similar to the arithmetic IF. 
If the conditional statement is not a 
simple GO TO source statement, the expres­
sion is negated, a label is generated, and 
a transfer true to the generated label is 
indicated. This item is linked to the pre­
ceding label referencing PRF item. If the 
expression contains a reference to an 
abnormal function, this item serves as a 
redefinition point for all COMMON variables 
and is linked into the COMMON definition 
chain within the PRF. 

C~LL Entry 

Statement numbers specified as actual 
arguments of a CALL source statement are 
entered into a list in a PRF entry. Each 
label in the list is assumed to be 
referenced at this PRF entry. Hence, CALL 
PRF entries are linked to the preceding 
label referencing PRF entry. The occur­
rence of a C~LL source statement, which is 
a reference to an abnormal function, is a 
redefinition point for all COMMON variables 
and is linked into the COMMON definition 
chain within the PRF. 

The occurrence of a C~ source state­
ment also effects the generation of an 
argument definition point PRF entry for 
each actual argument of the call that is a 
simple or subscripted variable. Each of 
these PRF entries is linked to the previous 
definition point of the argument. 

42 

~gument Definition Entry 

This entry is generated for each actual 
argument of an external reference (a call) 
that is a simple or subscripted variable. 
Each entry is linked into the definition 
chain of the particular variable. 

RETURN Entry 

This entry is generated for each occur­
rence of a RETURN source statement within a 
subprogram. STOP PRF entries are generated 
for RETURN statements occurring within a 
main program. These entries are either 
explicit or implicit references to global 
(external) labels. As such, they are 
linked to the preceding label referencing 
PRF entry. 

Begin Loop Entry 

For each DO statement, each implied DO 
statement, and around the total PRF exclud­
ing global (external) entry points, there 
are begin and end loop PRF entries. For 
each begin loop three successive PRF 
entries are made. Having three entries 
facilitates the optimization processing of 
Phase 3. Loop PRF entries are interlinked. 
Each begin loop links to the previous begin 
loop and end loop PRF entries. The begin 
loop entry is also linked to its own end 
loop PRF entry. 

End Loop Entry 

This entry is generated upon completion 
of the processing of a statement with a 
label that matches the last label in the DO 
pushdown list. An end loop entry is linked 
to the corresponding begin loop and to the 
previous loop PRF entry, begin or end. 

CONTINUE Entry 

An entry is included only to show pres­
ence of CONTINUE statements in the source 
program. 

READ, READ Without Unit, and READ with 
NAMELIST Entries 

An entry is generated for these source 
input statements. READ statements having 
either an EOF label or an ERR label speci­
fied are linked into the label reference 
chain of the PRF. 

WRITE and WRITE with NAMELIST Entries 

These are generated by WRITE source 
statements. 



PRINT and PUNCH En::ries 

These are degenerate {particular} cases 
of WRITE source statements. 

Input/Output List Representation in the PRF 
Entry 

Each entry is a redefinition point when 
the list is associated with a READ state­
ment. Begin and End Loop PRF entries from 
implied DOs are appropriately interspersed. 
A list sequence of PRF entries follows the 
I/O PRF entry with which they are to be 
associated. 

End List Entry 

This is a control entry in the PRF 
sequence to indicate the termination of an 
I/O list sequence to the code generation 
phase. 

END FILE, REWIND, and BACKSPACE Entries 

An entry is generated upon occurrence of 
each of these statements in the source 
program. 

STOP Entry 

This entry is generated upon occurrence 
of a STOP statement in the source program 
or for a RETURN statement appearing in a 
main program. 

PAUSE Entry 

This entry is generated upon occurrence 
of a PAUSE in the source program. 

End Program Entry 

PRF control entry to indicate the end of 
the PRF. 

EXPRESSION FILE 

The expression file consists of individ­
ual strings of entries which are operands 
and operators in the usual right-hand 
Polish notation. These strings represent 
all arithmetic and logical expressions 
occurring in the source program and any 
subscripts that are not constants. Expres­
sion file entries are generated by the fol­
lowing statements: equation, arithmetic 
and logical IF, READ, WRITE, PRINT, PUNCH, 
RETURN with variable index, ASSIGN, 
assigned and computed GO TO, and CALL. An 

entry may consist only of an operand, as is 
the case with the entries for ASSIGN, GO 
TO, RETURN, etc., statements. 

Subscript Expressions 

For subscript expressions, especially 
those containing loop variables, the occur­
rence of a loop variable causes its initial 
value to be incorporated into the expres­
sion. Also, the array item length is in­
corporated into the expression, so that the 
expression can be used directly in address 
computation. Wherever possible, terms are 
combined in order to increase efficiency. 
Finally, two additional plus operators are 
included before the special subscript 
operator to facilitate processing by Phase 
3. 

Special representations in the ERF are 
shown below. 

Function and subroutine references: 

F (x) 

F(x,y) 
F(x,y,z) 

x F 
x Y 
x y 

F 
z F 

Max and Min function references: 

AMAXl <X, Y, Z) 
AMAXO (I, J. K) 

Subscripts: 

XYMAXZMAX 
I J MAX K MAX FLOAT 

array variable item with offset 
and flag 

subscript - sum of products 
expression 

subscript -
operator 

STORAGE SPECIFICATION TABLES 

The storage specification tables consist 
of two types of entries: a common entry 
and an equivalence entry. A common entry 
is made for each occurrence of a COMMON 
statement in the source program and repre­
sents each variable and its particular 
storage class (blank or named COMMON) in 
the statement. An equivalence entry is 
made for each occurrence of an EQUIVALENCE 
statement in the source program and repre­
sents the variables in each EQUIVALENCE 
group and their offsets, if any. 

Section 3: Phase 1 43 



The wayan equivalence entry is made 
depends on the dimension information pre­
ceding or following the equivalence 
statement. 

In the event that dimension information 
for a particular variable (DIMENSION. COM­
MON or TYPE statement) or that a sub­
scripted variable in the EQUIV~LENCE state­
ment contains only a single subscript, the 
offset in EEl or EE6 is computed. 

EE2-S or EE7-l0 are not used. 

The type field in EEl or EE6 indicates 
the type of variable. 

When dimension information does not pre­
cede the EQUIVALENCE statement and a sub­
scripted variable in the EQUIVALENCE state­
ment contains more than one subscript, EEl 
or EE6 contains the number of subscripts. 
In this case EE2 or EE7 are required, and 
EE3-5 or EE8-l0 may be required. 

The type field in EEl or EE6 is set to 
'FF'. indicating that this variable con­
tains the number of subscripts in EEl or 
EE6 followed by EE2 or EE7 and possibly 
EE3-S or EE8-l0. 

DIMENSION TABLE 

The dimension table consists of entries 
in the preset data reference set. An entry 
is made for each array dimension specifica­
tion occurring in the source program. 
These specifications may occur in DIMEN­
SION, COMMON, or explicit type statements. 
If the array is not a formal argument, the 
entry represents the number of dimensions, 
total size, and the dimension products of 
the array. If the array is a formal argu­
ment, t.he entry represents the number of 
dimensions and the individual size specifi­
cations (value for a constant or symbol 
table pointer for a variable>. 

NAMELIST TABLE 

The namelist table consists of entries 
in the preset data reference set. Each 
entry consists of a set of symbol table 
pointers to the variables in a given NAME­
LIST. An entry is made for each occurrence 
of a namelist name in a NAMELIST statement. 

STORAGE CI.ASS TABLE 

Phase 1 also adds certain information to 
the storage class table. Each COMMON block 
name occurring in a COMMON statement is 
entered into the storage class table and 
causes the count containing the number of 
COMMON block names to be updated. Also, 

44 

for each occurrence of a FO~AT statement 
or a literal constant (except as initial 
values in a DATA or Type statement), the 
alphameric storage class counter is incre­
mented by the number of bytes in the format 
or literal constant. 

FOR~AT PROCESSING 

Format labels are entered into the sym­
bol table and marked as defined. The cur 
rent value of the alphameric storage class 
counter is entered as the storage location 
in the descriptive part of the symbol table 
entry. 

The alphameric format information, 
including the initial open parenthesis and 
the terminal clOSing parenthesis, is output 
as an alphameric table entry in the preset­
data-reference set. The location of this 
entry is entered into the descriptive part 
of the label symbol table entry. The 
alphameric storage class counter is incre­
mented by the number of bytes of alphameric 
information. 

The alphameric table entry consists of 
an identification element, an alphameric 
element, and either a termination element 
or a continuation element. All alphameric 
table entries are linked together. As each 
new entry is made after the initial entry, 
the terminal ID is changed to continuation, 
and the new entry location is entered as 
the continuation link. 

ALPHAMERIC CONSTANTS 

A label is generated for each occurrence 
of an alphameric constant as an actual 
argument of a subroutine call. This label 
is entered into the symbol table, in a 
manner analogous to a format label. The 
entrance constitutes both the definition 
and the reference of this label. The 
storage class is set to 3, and the current 
value of the class-3 location counter is 
entered into the label symbol table entry. 
The location counter is incremented by the 
size of the literal constant. An alphamer­
ic entry is made in the alphameric table 
(see "Format proceSSing"). 

Literal constants occurring as preset 
data are processed in the same manner as 
numeric constants occurring as preset data. 

DATA PROCESSING 

Each DATA statement and each data speci­
fication within a type statement produces a 
data entry in the preset data reference set 
transmitted to Phase S. Each data entry 
consists of a variable element, one or more 



value elements, and a continuation or ter­
minal element. The variable elements have 
a pointer to the variable sYr'1bol t,)~ble 
entry. The variable elements within a data 
entry are linked together. The continua­
tion element links the data entries togeth­
er. The address of the first data entry is 
in the intercom region. 

CROSS REFERENCE INDEX LIST 

If the user has selected the cross 
reference option, each occurrence of a 
statement number or variable identifier in 
a program causes an entry to be made in the 
cross reference index list. Each entry in 
this list consists of a symbol table point­
er to the element name or label value, the 
line number of the occurrence, and an indi­
cator. The indicator speci.fies that the 
occurrence is an assignment or a defini­
tion, rather than the usage of or reference 
to the el ement. 

A variable identifier entry is marked as 
3.ssigned when it occurs, as follows: 

1. To the left of the equal sign in an 
assignment statement. 

2. To the left of the equal sign in a DO 
statement. 

3. In an ASSIGN statement:. 

4. As an element of an input list. 

5. As an element of a NAMELIST referenced 
by a READ statement. 

Statement number entries are marked as 
defined when the label PRF entry is made. 
All other occurrences of elements are usage 
or reference entries. 

PHASE 1 ROUTINES, FUNCTIONAL DESCRIPTION 

Phase 1 routines can be grouped accord­
ing to tne function they perform. A brief 
description of the function of each group 
and the routines belonging in each group 
follow. 

Pass 1 Statement Processors 

These modules control the analysis and 
encoding of each of the various FORTRAN 
source statements. The modules are EQUA, 
EXTE, GOTO, IF, TYPE, CONTI DIMN, COMM, 
EQUI, DO, ASSI, FCON, RWIO, FORM, PSR, 
NAML, BLDA, DATA, IMPL, BU~K, SUBE, CALL, 
and END. 

Pass 2 Statement Processors 

Due to the conversational nature of the 
compiler, certain operations pertaining to 
the processing of a statement are best 
,lelayed until it is sure the statement will 
not be deleted. These modules perform the 
final encoding and housekeeping operations 
for each of the various FORTRAN source 
statements. The modules are DCL2, EXEC2, 
BLDA2, IMPL2, SUBE2, CALL2, and STFN2. 

Expression Processing and Translation 

These routines perform the analysis and 
encoding of arithmetic and logical expres­
sions wherever they may occur. Two of 
these routines are devoted exclusively to 
subscript processing. They are SUBS and 
TR~~RO. The other routines are EXPR, 
CNVRT, SFDEF, SFEXP, FNCLS, LIBN, ARITH, 
AARG, and CHKINT. 

Source Extraction and Conversion 

These routines perform the character-by­
character source analysis of the basic lan­
guage elements (variables, constants, and 
labels) and any conversions required. They 
also file these elements in the symbol 
table as required. The routines are ESC, 
ACOMP, FLRC, IVST, ICNV, FCNV, and FLIC. 

Loop Processing Service Routines 

The routines that perform the analysis 
and encoding of loops whenever they occur 
are BGNLP, ENDLP, CKLIM, and CLLIM. 

I/O Statement Processor Service Routines 

These routines perform analySiS and 
encoding of parts of I/O statements for 
RWIO. The routines are IOLST, FLABL, 
RTRAN, and FNAME. 

Initial Value Processing Service Routines 

These routines analyze and encode the 
initial values occurring in the explicit 
type and DATA statements; they are IDATA 
and IVAL. 

Miscellaneous Service Routines 

There are a number of routines that per­
form specific functions as required by 
various statement processors and other rou­
tines. These routines and their functions 
are as follows: 

Section 3: Phase 1 45 



ARDIM - analyze and encode the dimension 
specifications for an array when 
encountered in a dimension, common 
or type statement. 

LBSTR - process the label string as encoun­
tered in the assigned and computed 
GO TO statement. 

SID - classify each source statement and 
assign its ID number. 

IABL - encode statement labels and deter­
mine if any loops are ended. 

FALTH - determine if a statement number 
reference was to the next sequen­
tial statement and mark the 
reference for possible later 
opt imization. 

ERR - generate a diagnostic message and 
add it to the output data set. 

ROUTINE DESCRIPTIONS 

Phase 1 routines bear mnemonic titles as 
well as coded labels. The five-character 
coded labels begin with the letters CEK; 
the fourth and fifth letters identify a 

46 

specific routine. Various entry points to 
a routine are identified by a sixth 
character appended to the coded label. Any 
mnemonic name beginning with the letters 
TEV refers to an Executive routine or entry 
point, rather than to a Phase 1 routine. 
The corresponding coded label is given in 
parentheses immediately following the 
mnemonic. 

There are no hardware configuration 
requirements for any of the Phase 1 rou­
tines. All these routines are reentrant, 
nonresident, nonprivileged, and closed. 
~xcept for entry to the Constant Arithmetic 
Interrupt routine (CEKCS>, which uses stan­
dard linkage, all entries must be by 
restricted linkage conventions. Each Phase 
1 routine has only one exit; there are no 
special exits for error conditions. 

Phase 1 is composed of 65 routines. The 
relationships of these routines are shown 
in the following nesting chart (Figure 15) 
and decision table (Table 10). The rela­
tionships are shown in terms of levels; a 
called routine is considered to be one 
level lower than the calling routine. The 
nesting chart is drawn to show only link­
ages to the fourth level. Phase 1 main 
loop is considered to be level 1. 



":l Lev .. 1 
fo'. 

I[ <Q 

[Pf~-Ml c:: 
Ii 
ro 
..... 
U1 

'0 

I 
::r 
III 
Ul 
ro 
..... 
z 
ro 
Ul 
rt fo'. 
::l 

<Q 

() 
::r 
Pi 
Ii 
rt 

[ l~~~~R] r:~I:;l [I~~~ rFNAM~l EXPR [;~~~~ 

[~~:L--I CI1 l~Al;] ([) 
(J 
rt 

lB~G~NLPI GFDt~_ )FfX_~ ~~J 
fo" 
0 
::; 
(.oJ 

'0 
[~r~~I~ lAARG [~HKIN~ 

::r 
Pi 
Ul 
ro 
..... 

"'" ..,J 



Table 10. Phase 1 Decision Table (Part 1 of 8) 

Routine:-----------~Phase l------------------------------------------Level: 1------------
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
IRoutine I Usage IRoutines I calling conditions I 
t--------t-------------------------t---------t------------------------------------------, 
I PH1M I Phase 1 Main Loop I SID ! To identify the type of source statement. I 
I I IEQUA ITO process logical and arithmetic assign- I 
I I I I ment statements. I 
I I I EXTE ITO process EXTERNAL statements. I 
I I I GOTO ITO process GO TO statements. I 
I I (IF ITO process Arithmetic and Logical IF I 
I I I I statements. I 
I I I TYPE ITO process type declaration statements. I 
I I ICONT ITO process CONTINUE statements. I 
I I IDIMN ITO process DIMENSION statements. I 
I I ICOMM ITO process COMMON statements. I 
I! IEQUI ITo process EQUIVALENCE statements. I 
I I I DO I To process DO statements. I 
I I I ASSI ITo process ASSIGN statements. I 
I I I FCON I To process BACKSPACE, END FILE, and REWIND I 
I i I I statements. I 
I I I RWIO ITO process READ, WRITE, PRINT, and PUNCH I 
I I I I statements. I 
I I I FORM I To process FORMAT statements. I 
I I I PSR I To process PAUSE, STOP, and RETURN I 
I I I I statements. I 
I I INAML ITO process NAMELIST statements. I 
I I IBLDA ITO process BLOCK DATA statements. I 
I I I DATA I To process DATA statements. I 
I I IIMPL ITO process IMPLICIT statements. I 
I I IBLNK ITO process blank source statements. ! 
I I !SUBE ITO process ENTRY, FUNCTION, and SUBROUTINE I 
I I I I statements. I 
I I I CALL I To process CALL statements. I 
I I I END I To process END statements. I 
I I IDCL2 ITo terminate processing of various I 
I I I I declaration statements. I 
I! IEXEC2 ITo terminate processing of executable I 
I I I I statements. I 
I I I BLDA2 I To set prog ram type f or BLOCK DATA I 
I I I I statements. I 
I I IIMPL2 ITO perform final housekeeping for IMPLICIT I 
I I I I statements. I 
! I ISUBE2 ITO make PRF entries for ENTRY, FUNCTION, I 
I I I I and SUBROUTINE statements. I 
I I I CALL2 I To ad just the CALL PRF entry. ! 
I I ISTFN2 ITo terminate processing of Statement I 
I I I I Functions. I 
I I IESC ITo obtain next source character. I 
I I !IVST ITO make Symbol Table entry for alphameric I 
I I I I names. I 
I I IERR ITo generate diagnostic messages. I 
I I I TEVGNS I To get next source statement. I 
I I I (CEKTC> I I l __ . ______ ~ _________________________ ~ _________ i __________________________________________ J 

48 



Table 10. Phase 1 Decision Table (Part 2 of 8) 

Routine:------------Phase 1------------------------------------------Level: 2------------
r--------T-------------------------T---------T------------------------------------------, 
I I I Called 1 I 
I Routine I Usage (Routines I Calling Conditions I 
~--------+-------------------------+---------+------------------------------------------1 
ISID Isource statement IESC ITo obtain next source character. I 
I I identification I ERR (To generate diagnostic messages. I 
~--------+-------------------------+---------+------------------------------------------1 
IEQUA IEquation statement ILABL ITo process statement label. I 
I I processor -- ! EXPR I To translate source language expressions I 
I I I I into Polish Notation. I 
I I I ERR ITo generate diagnostic messages. I 
r--------+-------------------------+---------+------------------------------------------~ 
IEXTE IEXTERNAL statement I ACOMP ITo assemble source characters into basic I 
I I processor I I components. I 
I I I ERR ITo generate diagnostic messages. I 
~-------+-------------------------f---------t------------------------------------------~ 
I GOTO I GO TO statement I ESC 1 To obtain next source character. I 
I I processor I ACOMP ITo assemble source characters into basic I 
I' I' components. I 
I I ILABL 11'0 process statement labels. ! 
I I ILBSTR ITo process a string of labels. I 
I I 'ERR ITo generate diagnostic messages. I 
t--------t--------------------------t---------t------------------------------------------~ 
I IF I IF statement processor I ESC 'To obtain next source character. I 

I l' I ACOMP ITo assemble source characters into basic I 
I I I I components. I 
I I I EXPR ITo translate source language expressions I 
I I I' into Polish Notation. I 
I I ILABL ITo process statement labels. I 
I' I ERR ITo generate diagnostic messages. I 
I I ITEVCRL IExec routine that creates a label for a I 
I I I (CEKTFM) I code file. I 
r--------t-------------------------+---------t------------------------------------------1 
iTYPE IExplicit type statement I ESC ITo obtain next source character. I 
I I processor I ACOMP ITo assemble source characters into basic I 
I I I I components. I 
I I IARDIM ITo process dimension specifications for ani 
I I I I array. I 
I I I I DATA ITo process initial value data for type and I 
I I I I DATA statements. I 
I I I ERR ITo generate diagnostic messages. I 
r--------t-------------------------t---------t------------------------------------------~ 
I CONT I CONTINUE statement I ESC I To obtain next source character. I 
I I processor I LABL I To process statement labels. I 
I I I ERR ITO generate diagnostic messages. I 
r--------t-------------------------t---------t------------------------------------------1 
I DIMM I DIMENSION statement I ACOMP I To ass emble source characters into basic I 
I I processor I I components. I 
I I IARDIM ITo process dimension specifications for ani 
I I I I array. I 
I I I ERR I To generate diagnostic messages. I 
r--------f-------------------------t---------t------------------------------------------1 
ICOMM ICOMMON statement I ACOMP ITo assemble source characters into basic I 
I I processor I I components. I 
I I IARDIM ITo process dimension specifications for ani 
I I I I array. I 
I I 'ERR ITo generate diagnostic messages. I 
r--------+-------------------------f---------f------------------------------------------~ 
I EQUI I EQUIVALENCE I ESC I To obtain next source character. I 
I , statement processor I ACOMP ITO assemble source characters into basic I 
'I I I components. , 
I I I SUBS ITO translate subscript expressions into I 
I I ! I Polish Notation. I 
I I I ERR ITo generate diagnostic messages. , l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

section 3: Phase 1 49 



T~ble 10. Phase 1 Decision Table (Part 3 of 8) 

Routine:------------Phase l------------------------------------------Level: 2--(Cont'd)--
r--------T-------------------------T---------T------------------------------------------1 
I I !Called I I 
IRoutine I Usage IRoutines I Calling Conditions I 
~--------t-------------------------t---------t------------------------------------------~ 
IDO 100 statement I~CO~P ITO assemble source characters into basic I 
I I processor I I components. I 
I I ILABL ITO process statement labels. I 
I I IBGNLP ITO process Begin Loop information. I 
I I I ERR ITo generate diagnostic messages. I 
t--------t-------------------------t---------t------------------------------------------1 
JASSI IASSIGN statement I ESC ITO obtain next source character. I 
I I processor I ACOMP ITO assemble source characters into basic I 
I I I I components. I 
I I I LABL I To process statement labels. I 
I I I ERR ITO generate diagnostic messages. I 
I I ITEVFLL IExec routine that makes Symbol Table entry I 
I I I (CEKTFL) I for created label. I 
r--------t-------------------------t---------t------------------------------------------1 
I FCON IFile control statements IACOMP ITo assemble source characters into basic I 
I I processor (BACKSPACE, I I components. I 
I I END, FILE, REWIND) ILABL ITo process statement labels. I 
I I I ERR ITO generate diagnostic messages. I 
I I I IVST ITo make Symbol Table entries for alphamer-I 
I I I I ic names. I 
r--------f-------------------------t---------t------------------------------------------~ 
IRWIO 11/0 statements I ACOMP ITO assemble source characters into basic I 
I I processor (READ, WRITE, I I components. I 
I I PRINT, PUNCH) !LABL ITo process statement labels. ! 
I I I IOLST ITo process list elements for READ, WRITE, I 
I I I I PRINT, and PUNCH statements. I 
I I I ERR ITO generate diagnostic statements. I 
I I IFLABL ITO process FORMAT statements. I 
I I IRTRAN ITO process ERR and END labels. I 
I I IFNAME ITO process variable FORMAT designators or I 
I I I I NAMELIST names. I 
I I I IVST ITO make Symbol Table entries for alphamer-I 
I I I I ic names. I 
I I ITEVI4 IExec routine that files an Integer *4 I 
i I I (CEKTFC> I constant. I 
~--------t-------------------------t---------t------------------------------------------~ 
IFORM IFORMAT statement I ESC ITO obtain next source character. I 
I I processor I ERR I To generate diagnostic messages. I 
I I ITEVFLL IExec routine that makes Symbol Table I 
I I I (CEKTFL) I entries for created labels. I 
t--------t-------------------------t---------t------------------------------------------~ 
INAML INAMELIST statement I ACOMP ITo assemble source characters into basic I 
I I I I components. I 
I I I ERR I To generate diagnostic messages. I 
r--------f-------------------------+---------t------------------------------------------~ 
I BLDA I BLOCK DATA I ESC I To obtain next source character. I 
I I statement processor I ERR ITO generate diagnostic messages. I 
~--------t-------------------------+---------t------------------------------------------~ 
I DATA IDATA statement I ACOMP ITo assemble source characters into basic I 
I I processor I I components. I 
I I lSUBS ITO translate subscript expressions into I 
I I I I Polish Notation. I 
I I IIDATA ITO process initial value data for type andl 
I I I I DATA statements. I 
I I I ERR ITO generate diagnostic messages. I 
~--------+-------------------------+---------t------------------------------------------~ 
IIMPL IIMPLICIT statement I ESC ITO obtain next source character. I 
I I processor I ACOMP ITo assemble source characters into basic I 
I I I I components. I 
I I I ERR ITo generate diagnostic messages. I t ________ L _________________________ L _________ L __________________________________________ J 

50 



Table 10. Phase 1 Decision T~ble (Part 4 of 8) 

Routine:------------Phase 1------------------------------------------Level: 2--CCont'd)--
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
IRoutine I Usage lR.outines I Calling Conditions I 
r--------+-------------------------t---------+------------------------------------------~ 
IBLNK IBlank statement I ERR ITO generate diagnostic messages. I 
I I processor I I I 
r--------t-------------------------t---------t------------------------------------------~ 
ISUBE ISubprogram entry I ACOMP ITO assemble source characters into basic I 
I I statements processor I I components. I 
I I (ENTRY, FUNcrroN, I ERR ITo generate diagnostic messages. I 
I I SUBROUTINE) ITEVCRL IExecute routine that creates a label for I 
I I I (CEKTFM) I the code file. I 
r--------t-------------------------t---------t------------------------------------------1 
!CALL ICALL statement ILABL ITO process statement labels. I 
I I processor IEXPR ITO translate source language expressions I 
! I I I into polish Notation. I 
r--------t-------------------------t---------t------------------------------------------1 
lEND lEND statement IENDLP ITo encode the End Loop entries. I 
I I processor IPSR ITO process PAUSE, STOP, and RETURN I 
I I I I statements. I 
I I IERR ITo generate diagnostic messages. I 
r--------t-------------------------t---------t------------------------------------------~ 
I DeL2 I Declaration statements I none I I 
I I final processing I I I 
r--------t-------------------------t---------t------------------------------------------~ 
I BLDA2 I BLOCK DATA statement I none I ! 
I I final processing I I I 
r--------t-------------------------t---------t------------------------------------------1 
I IMPL2 I IMPLICIT statement I none I I 
I I final processing I I I 
r--------t-------------------------t---------t------------------------------------------~ 
I SUBE2 I Subprogram entry I none I I 
I I statements final I I I 
I I processing I I I 
r--------t-------------------------t---------t------------------------------------------1 
ICALL2 ICALL statement final I EXEC2 ITO terminate processing of executable I 
I I processing I I statements. I 
r--------t------------------·-------t---------+------------------------------------------1 
I STFN2 I Statement function I none I I 
I I statement final I I I 
I I processing I I I L ________ ~ _________________________ ~ _________ L __________________________________________ J 

Section 3: Phase 1 51 



Table 10. Phase 1 Decision Table (Part 5 of 8) 

Routine:------------Phdse l------------------------------------------Level: 3------------
r--------T-------------------------T---------T------------------------------------------1 
I I I Called I I 
I Routine I Usage I Routines I Calling Conditions I 
~--------t-------------------------t---------+------------------------------------------~ 
I PSR I PAUSE, STOP, RETUR'-l I ACOMP I To assemble source characters into bas ic I 
I I statement processor I I components. 1 
I I ILABL ITO process statement labels. I 
I I I ERR I To generate diagnostic messages. I 
I I 11'EVCRL I Exec routi ne that creates a label for t he I 
I I I (CEKTFM) I code file. I 
t--------+-------------------------+---------+------------------------------------------~ 
I EXEC2 IExecutable statements IENDLP ITO encode the End Loop entries. I 
I I final processing IFALTH ITO check for references to current lab21. I 
~--------t-------------------------+---------+------------------------------------------1 
IEXPR IProcess expression I ACOMP ITO assemble source character into basic I 
I I I I components. I 
I I ISUBS ITo translate subscript expressions into I 
I I I I Polish Notation. I 
I I ICNVRT ITO convert constants to new type. I 
I I IFNCLS ITO determine proper class of a fUnction. I 
I I ILIBN ITO select appropriate Library Function ! 
I I I I name. I 
I I ISFDEF ITo make entries in the Statement Function I 
I I I I Expression File. I 
I I 18FEXP ITo make entries in the Expression File. I 
I I I AARG I To make Argument Definition entries in the I 
I I I I PRF. I 
I I I ERR ITo generate diagnostic messages. I 
I I ICHKINT ITO treat floating point overflow and I 
I I I I divide checks. I 
r--------f-------------------------+---------t------------------------------------------~ 
IARDIM (Process array dimension IESC ITo obtain next source character. I 
I I specification I ACOMP ITo assemble source character into basic I 
I I I I components. I 
I I I ERR ITO generate diagnostic message. I 
r--------t-------------------------+---------+------------------------------------------1 
IIDATA IProcess initial data IERR ITO generate diagnostic message. I 
I I specifications I IVAL ITO process constants as initial values in I 
I I I I type or DATA statements. I 
t--------+-------------------------+---------+------------------------------------------~ 
I IOLST IProcess I/O statement I ESC ITO obtain next source character. I 
I I list I ACOMP ITo assemble source character into basic I 
I I I I components. I 
I! ISUBS ITo translate subscript expressions into I 
I I I I Polish Notation. I 
I I I BGNLP ITO process Begin Loop information. I 
I I I ENDLP I To encode End Loop entries. I 
I I I ERR ITO generate diagnostic messages. I 
I I I IVST ITo make Symbol Table entries for alphamer-I 
I I I I ic names. I 
t--------t-------------------------+---------+------------------------------------------~ 
IFLABL IProcess FORMAT state- I ERR ITo generate diagnostic message. I 
! I ment number in I/O ITEVFLL IExec routine that makes Symbol Table I 
I I statement I (CEKTFL) I entry for created label. I 
t--------f-------------------------f---------t------------------------------------------1 
IRTRAN IProcess END and ERR I ACOMP ITO assemble source characters into basic I 
I I statement numbers I I components. I 
i I in READ statements IERR ITO generate diagnostic message. I 
t--------+-------------------------+---------t------------------------------------------~ 
IFNAME IProcess FORMAT and I ERR ITO generate diagnostic message. I 
I I NAMELIST name in I I I 
I I I/O statements I I I 
t--------t-------------------------t---------t------------------------------------------1 
ILBSTR Iprocess label string in IESC ITO obtain next source character. I 
I I Assigned and computed IACOMP ITo assemble source characters into basic I 
I I GO TO statements I I components. I 
I I I ERR ITO generate diagnostic message. I L ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

52 



Table 10. Phase 1 Decision Tdble (Part 6 of 8) 

Routine:------------Phase l------------------------------------------Level: 4------------
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
!Routine I Usage IRoutines I Calling Conditions I 
r--------f-------------------------f---------t------------------------------------------1 
lSUBS IProcess subscripts IACO~2 ITo assemble source characters into basic I 
I I I I components. I 
I I I ERR ITo generate dia9nostic message. I 
I I ITEMPRO ITo process a tentative subscript term pre-I 
I I I; pared by SUBS. I 
I I I TEVI4 I Exec routine that files an Integer*4 I 
I I I (CEKTFC) I constant. I 
r--------f--------------------------f---------+------------------------------------------1 
IIABL I Process statement !1un,ber I ERR ! To generate diagnostic message. I 
I I !TEVCRL !Exec routine that creates a label for the I 
I I I (CEKTFM) I code file. I 
r--------f-------------------------+---------t------------------------------------------1 
I BGNLP I Process and genera~e I ACOMP I To assemble source characters into basic I 
I I Begin Loop elements! I components. I 
I I ICKLIM ITo check loop parameters for validity. I 
I I I ERR ITo generate diagnostic message. I 
I I !TEVCRL !Exec routine that creates a label for the! 
I I I (CEKTFM) I code file. I 
r--------+-------------------------t---------+------------------------------------------1 
IENDLP IGenerate End Loop ICLLIM ITo remove loop parameter information from! 
I I I I Symbol Table. I 
r--------t-------------------------f---------t------------------------------------------~ 
IFALTH IDetermine fall-through IERR ITo generate diagnostic message. I 
I I on GO TO a nd I F I I I 
I I statements. I I 
t--------f-------------------------+---------f------------------------------------------~ 
ISFDEF IInitialize for statement lESe ITo obtain next source character. ! 
I I function definition I ACOMP ITo assemble source characters into basic I 
I I I I components. I 
I I I ERR !To generate diagnostic message. I 
r--------+-------------------------f---------f------------------------------------------1 
ISFEXP IExpand Statement I ACOMP ITo assemble source characters into basic I 
I I Function reference I ! components. I 
I I I ERR ITO generate diagnostic messages. I 
t--------f-------------------------t---------+--------------------------~---------------1 
IFNCLS IClassify function name I none I I 
t--------f-------------------------t---------t------------------------------------------~ 
\ IVAL Iprocess initial values inlESC ITo obtain next source characters. I 
I I DATA or type I ACOMP ITo assemble source characters into basic I 
I I statements I I components I 
I I ICNVRT ITo convert constants to new type. I 
I I I ERR iTo generate diagnostic message. I 
r--------t------------------·-------+---------+------------------------------------------1 
I AARG I Process function I none I I 
I I argument I I I 
r--------f--------------------------f---------+------------------------------------------~ 
I CHKINT I Check for arithmetic I none ! I 
I I interrupt during I I I 
I I expression processing! ! I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Section 3: Phase 1 53 



Table 10. Phase 1 Decision Table (Part 7 of 8) 

Routine:------------Phase l------------------------------------------Level: 5------------
r--------T-------------------------T---------T------------------------------------------, 
I I I called I I 
I Routine I Usage ! Routines I calling conditions I 
t--------t-------------------------t---------t------------------------------------------~ 
IACOMP IAssemble component I ESC ITO obtain next source character. I 
I I (operand-operator pair) IFLRC ITo file real and complex constants in Sym-I 
I I I I bol Table. I 
I I IIVST ITo make Symbol Table entries for alphamer-I 
I I I i ic names. I 
I I IICNV ITO convert a decimal integer to a binary I 
I I I I integer. ! 
I I I FLIC Iro file integer constants in the Symbol I 
I I I I Table. I 
! I I ERR iTO generate diagnostic message. I 
I I \TEVCRL IExec routine that creates a label for the I 
I I I (CEKTFM) I code f He. I 
t--------t-------------------------t---------+------------------------------------------~ 
ICNVRT IChecks types and convertslLIBN ITO select appropriate Library Function I 
I I constants I I name. I 
I I IARITH ITO perform all constant arithmetic. I 
I I I ERR ITo generate diagnostic message. I 
t--------+-------------------------+---------t------------------------------------------~ 
ITEMPRO IProcess subscript term IERR ITo generate diagnostic message. I 
t--------t-------------------------t---------+------------------------------------------~ 
ICKLIM ICheck loop parameters I ACOMP ITO assemble source characters into basic I 
I I for correctness and I I components. I 
I I validity I ERR I To generate diagnostic message. I 
t--------t-------------------------t---------+------------------------------------------~ 
I CLLIM I Clear f lags on loop I none I I 
I t parameters at End Loop I I I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase l------------------------------------------Level: 6-----------­
r--------T-------------------------T---------T------------------------------------------, 
I ESC IExtract source character Inane I I 
t--------t-------------------------+---------+------------------------------------------~ 
ILIBN ISelect Library FUnction IIVST ITo make Symbol Table entries for I 
I I name I I alphameric names. I 
I I I ERR ITo generate diagnostic message. I 
~--------t-------------------------t---------t------------------------------------------~ 
IFLRC IFile real constant in IFCNV ITO convert a decimal constant to floating I 
I I Symbol Table I I binary. I 
I I I ERR ITO generate diagnostic message. I 
I I ITEVR4 iExec routine to file a Real*4 constant. I 
I I I (CEKTFD) I I 
I' ITEVR8 IExec routine to file a Real*8 constant. I 
I I I <CEKTFE) I I 
I I ITEVC8 IExec routine to file a Complex*8 constant. I 
I I I (CEKTFF) I I 
I I ITEVC16 IExec routine to file a Complex*16 I 
I I I I constant. I 
I I I (CEKTFG) I I 
r--------+-------------------------t---------t------------------------------------------~ 
IFLIC IFile integer constant in IICNV ITo convert a decimal integer to a binary I 
I i Symbol Table. I I integer. I 
i I IERR ITo generate diagnostic message. I 
I I ITEVI4 I Exec routine to file an Integer*q I 
I I I (CEKTFC) I constant. I 
~--------t-------------------------t---------t------------------------------------------~ 
IARITH IPerform constant I ERR ITo generate diagnostic message. I 
I I arithmetic during I CHCBGA I I 
I I expression scan I CHCBKC I I 
I I ICHCBIA IFORTRAN Math Library exponentiation I 
I I I CHCBKA I routines. I 
I! ICHCBMC I I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

54 



Table 10. Phase 1 Decision rable (Part 8 of 8) 

Routine:------------Phase l------------------------------------------Level: 7-----------­
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
IRoutine I Usage IRoutines I calling Conditions I 
t--------+-------------------------+---------+------------------------------------------~ 
I IVST IFile variable name in I ERR ITO generate diagnostic message. I 
I I Symbol Table I I I 
t--------+-------------------------+---------+------------------------------------------~ 
IFCNV IConvert floating-point I ICNV ITO convert a decimal integer to a binary I 
I I number from decimal I I integer. I 
I I to binary. I ERR ITO generate diagnostic message. I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase l------------------------------------------Level: 8-----------­
r--------T-------------------------T---------T------------------------------------------, 
IICNV IConvert integer from I none I I 
I I decimal to binary. I I I 
t--------+-------------------------+---------+------------------------------------------~ 
I ERR iGenerate diagnostic ITEVRDM IExec routine that issues a diagnostic I 
I I message I (CEKTE) I message. I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

CEK~D -- Phase 1 Main Loop (PH1M) 

PH1M controls the identification, analy­
sis, and encoding of source data in Phase 
1. See Chart ~. 

ENTRIES: PH1M has one entry point CEKAD1. 
Exec intercom base is expected in parameter 
regist er P2. 

EXIT: No output parameters. 

OPERATION: PH1M performs all initializa­
tion for Phase 1. This includes generation 
of a begin program PRF item, followed by 
the begin loop PRF items for the false 
loop. Following initialization, a source 
statement is read, identified, analyzed, 
and encoded by calling appropriate subrou­
tines. At this point, the next source 
statement is read, and the forget and 
delete flags are tested. If either the 
forget flag (set by GNSS) or the delete 
flag (set by any of the statement process­
ing subroutines> is raised, the previously 
encoded statement is deleted. The state­
ment deletion is accomplished by resetting 
appropriate items in intercom from their 
respective backup values. These backups 
are set for each statement prior to state­
ment processing. The symbol table is 
restored for variable items. through use of 
a symbol table save area (Figure 16). 
Backups for all variable symbol table 
entries except the N~E. DPP, LINK, TYPE. 
and LINKF items are entered into the save 
area, and if deletion is required, these 
backups are used to restore the symbol 
table entries. After deletion, the next 
statement is processed. 

BKPB 1 

I 

BPNTR 1 

BKPB2 I BPNTR2 

I 

/;\ 
'\5 

aKPB~'J BPNTR N 

BKPB - Ilackup Byte for Symbol Table change 
BPNTR - Byte Pointer into Symbol Table for BKPB 

A 

Figure 16. Symbol Table Save Area 

If the statement is not deleted, the 
appropriate subroutine is called to com­
plete the processing for that statement. 
All tables which may have been updated are 
then checked for overflow. If no overflow 
occurred and the statement just processed 
was not an END statement, control is trans­
ferred to the beginning of the loop, to 
process the next statement. 

CEKAK -- Assignment Statement Processor 
]EQiJA) 

EQUA analyzes and encodes logical and 
arithmetic assignment statements. See 
Chart AN. 

ENTRIES: EQU~ has one entry point (CEKAK1) 
and no input parameters. 

Section 3: Phase 1 55 



EXIT: No output parameters. 

OPERATION: EQUA generates an equation PRF 
entry and than calls the Expression Scan 
subroutine. If the expression is a state­
ment fUnction definition, the PRF entry is 
deleted, and the statement 10 number is 
changed from assignment to statement 
fUnction. 

CEKAM -- EXTERNAL sta'tement Processor 
(EXTE) 

EXTE analyzes and encodes the EXTERNAL 
statement. See chart AO. 

ENTRIES: EXTE has one entry point (CEKAMA) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: EXTE checks to see that the 
statement is not in a BLOCK DATA program 
and is not the conditional statement of a 
logical IF. If not, the statement is 
scanned, and the variables listed are 
marked as "external function" in the symbol 
table. If the statement is in a BLOCK DATA 
program or is the conditional statement of 
a logical IF, an error message is produced 
and the scan is terminated. 

CEKAQ -- GO TO statement Processor (GOTO) 

GOTO analyzes and encodes all forms of 
the GO TO statement. See Chart AP. 

ENTRIES: GOTO has one entry pOint (CEKA­
QA), with no input parameters 

EXIT: No output parameters. 

OPERATION: After calling the Label Pro­
cessing routine, GOTO determines whether 
the statement is an unconditional GO TO, 
assigned GO TO, or computed GO TO. In each 
case, the appropriate PRF entry is made. 
If an unconditional GO TO is the condition­
al statement of a logical IF, the sign of 
the ERF entry for the logical IF is 
changed, and the Goro label value is 
inserted as the true transfer label in the 
logical IF PRF entry. For the assigned and 
computed GO TO, internal subroutine LBSTR 
is called to process the label list into 
the PRF entry. 

CEKAR -- IF Statement Processor (IF) 

IF analyzes and encodes the arithmetic 
and logical IF statements. See Chart AQ. 

ENTRIES: IF has one entry point (CEKARA), 
with no input parameters. 

EXIT: No output parameters. 

56 

OPERATION: After calling the label pro­
cessing routine, IF generates an arithmetic 
IF PRF entry. It then calls upon the 
Expression Processing routine to analyze 
and encode the conditional expression. If 
the expression type is logical, the 
logical-IF indicator is set and the PRF 
entry ID is changed to logical IF. A non­
source label is created and entered as the 
"true" transfer label in the PRF entry. If 
the expression type is arithmetic, the 
three transfer labels are entered in the 
PRF entry. 

CEKAS -- Type Statements Processor (TYPE) 

TYPE analyzes and encodes the type 
statements, including INTEGER, REAL, COM­
PLEX, LOGICAL, and DOUBLE PRECISION. See 
Chart AR. 

ENTRIES: TYPE has five entry points, each 
of which requires no input parameters. The 
five entry points are INTE (CEKASI) for the 
INTEGER statement, REAL (CEKASR) for the 
REAL statement, COMP (CEKASC) for the COM­
PLEX statement, LOGL (CEKASL) for the LOGI­
CAL statement, and DOBP (CEKASD) for the 
DOUBLE PRECISION statement. 

EXIT: No output parameters. 

OPERATION: A type switch is set to show 
which type statement is used. Where the 
statement is not DOUBLE PRECISION, TYPE 
scans it for a length indication; if there 
is a length indication, the type switch is 
adjusted to show the length. TYPE then 
continues the scan, picking up variables 
and making entries in the symbol table to 
specify the variable type. If the variable 
is dimensioned, TYPE also makes entries in 
the dimension table to specify array 
length. If a dimension specification is 
encountered (indicated by a variable fol­
lowed by a left parenthesis), the Dimension 
Scan routine is called to process the 
dimension. If an initial value specifica­
tion is encountered <indicated by a slash), 
the Data Scan routine is called to process 
the initial values. 

CEKAT -- CONTINUE Statement Processor 
(CONT) 

CONT analyzes and encodes the CONTINUE 
statement. 

ENTRIES: CONT has one entry point (CEKAT1) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: CONT calls the label processing 
subroutine to convert the label, if any, 
and to see if any loops are ended. The 
logical I.F indicator is tested to see if 
this is the conditional statement of a 10g-



ical IF statement, and a warning message is 
issued if it is. ~ CONTINUE PRF entry is 
made, and the statement scanned to see that 
the remainder of the statement is blank. 

CEKAU -- DIMENSION Statement Processor 
(DIMN) 

DIMN analyzes and encodes the DIMENSION 
statement. See Chart AS. 

ENTRIES: DIMN has one entry (CEKAUA), with 
no input parameters. 

EXIT: No output parameters. 

OPERATION: DIMN first checks to see that 
the DIMENSION statement is not a condition­
al statement of a Logical IF. It then pro­
ceeds to scan the statement calling the 
dimension specification processing routine, 
to process the dimension values as they are 
encountered for each variable. Appropriate 
diagnostics are generated if any source 
errors or incongruities are encountered. 

CEKAV -- COMMON Statement Processor <COMM) 

COMM analyzes and encodes the COMMON 
statement. See Chart AT 

ENTRIES: COMM has one entry point (CEKAV1) 
with no input parameters. 

EXIT: No output parameters. 

OPERATION: COMM first checks to see that 
the COMMON statement is not a conditional 
statement of a logical IF. If this is the 
case, it then opens the common list entry 
and begins the scan of the statement. Com­
ponents are acquired with the assemble c0m­
ponents routine, and variables are entered 
into the common list. The symbol table 
entry common flag is raised, and, if the 
variable is followed by a left parenthesiS, 
the array dimension specification processor 
routine is called to process the dimension 
values. 

Variables enclosed in slashes initiate a 
search of the storage class table for named 
COMMON blocks, and if any are found, the 
storage class is appropriately set. Other­
wise, the name is entered as a named COMMON 
block, and a new storage class is estab­
lished. If there are two slashes without 
an intervening variable, the storage class 
will be set to 9 for blank COMMON. 

Appropriate diagnostics are generated if 
any source errors or incongruities are 
encountered. 

CEKAY -- EQUIVALENCE Statement Processor 
(EQUI) 

EQUI performs the analysis and encoding 
for the EQUIVALENCE statement. See Chart 
AU. 

ENTRIES: EQUI has one entry point (CEKAYA) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: EQUI determines that the state­
ment is not the conditional statement of a 
logical IF. If this is the case, the head­
ing information for the equivalence table 
is entered into the storage specification 
table. Source elements are acquired with 
ACOMP and analyzed for syntactical correct­
ness. Variables are entered into the 
equivalence table as they are encountered, 
and subroutine SUBS is called to determined 
any offsets indicated by a left parenthesis 
following a variable. If an offset cannot 
be completed because the dimension informa­
tion (TYPE, COMMON, or DIMENSION statement) 
has not yet been specified for an equiva­
lence variable, the actual subscripts are 
stored in the Storage Specification List. 

Appropriate diagnostics are generated if 
any source errors or incongruities are 
encountered. 

CEKAZ -- DO Statement Processor (DO) 

DO analyzes and encodes the DO state­
ment. See Chart AV. 

ENTRIES: DO has one entry point (CEKAZ1) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: DO determines that the state­
ment is not the conditional statement of a 
logical IF. If it is not, A COMP is called 
to acquire the label for the end loop. If 
the label value is satisfactory, BGNLP is 
called to process the loop variable, range, 
and increment. Appropriate diagnostics are 
generated if any source errors or incon­
gruities are encountered. 

CEKBC -- ASSIGN Statement Processor (ASSI) 

ASSI analyzes and encodes the ASSIGN 
statement. See Chart AW. 

ENTRIES: ASSI has one entry point (CEKBCA) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: ASS! generates a PRF entry for 
the ASSIGN statement and then scans the 
source characters. ACOMP is called to 
acquire the aSSigned label and the vari-

Section 3: Phase 1 57 



able. The intervening characters "TO· are 
checked individually after c~lls on ESC. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKBD -- File Control Statement Processor 
(FCON) 

FCON analyzes and encodes the BACKSPACE, 
END FILE, and REWIND statements. See Chart 
AX. 

ENTRIES: FCON has three entry pOints: 
BKSP (CEKBD1), ENDF (CEKBD2), and PEWI 
<CEKBD3) for the BACKSPACE, END FILE, and 
REWIND statements, respectively. FCON has 
no input parameters. 

EXIT: No output parameters. 

OPERATION: FCON has three entry points i' 

sets a switch to one of three values, 
depending upon which entry was taken. A 
PRF entry is generated and the switch set­
ting entered in that entry, to indicate 
whether the source statement was BACKSPACE, 
END FILE, or REWIND. ACOMP is called to 
acquire the unit number, which is entered 
into the PRF entry. The I/O initialization 
library routine entry name (CHCIA1) is 
filed in the symbol table and marked as 
class external. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKBE -- Input/Output Statement Processor 
(RWIO) 

RWIO analyzes and encodes the READ, 
WRITE, PRINT, and PUNCH statements. See 
Chart AY. 

ENTRIES: RWIO has four entry points: READ 
(CEKBE1), WRIT (CEKBE2), PRNT (CEKBE3), and 
PUNC (CEKBE4), for the READ, WRITE, PRINT, 
and PUNCH statements, respectively. RWIO 
has no input parameters. 

EXIT: No output parameters. 

OPERATION: RWIO has four entry points. 
Each entry point generates a PRF entry 
corresponding to the type of source state­
ment. For the READ statement, RWIO first 
determines whether or not it is a READ 
without unit statement. For all state­
ments, the Assemble Components routine is 
called to acquire statement components as 
required. If no FORMAT reference is given. 
the FORMAT pointer in the PRF entry is set 
to X·SOOO·. 

If a N&~ELIST reference is given in 
place of a FORMAT reference, the PRF ENTRY 

58 

ID is changed accordingly. For the READ 
statement, END and ERR condition transfer 
options are checked and entered into the 
PRF if present. If they are not given, the 
statement number items in the PRF are set 
to zero. Suoroutine IOLST is called to 
process the list elements if required. The 
I/O Initializati0D Library routine's entry 
name (CHCIAl) is oiled in the symbol table 
and marked as class external. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKBF -- FORMAT Statement Processor (FORM) 

FORM analyzes and encodes the FORMAT 
statement. See Chart AZ. 

ENTRIES: FORM has two entry points: 
CEKBF1, for Phase 1 FORMAT statement pro­
cessing, and SYSPFMT, for FORTRAN I/O-time 
FORMAT statement processing. CEKBF1 has no 
input parameters; SYSPFMT has the following 
input parameters: 

P2 FlO Translate Table 
P3 Address of FORMAT statement 
P4 FORMAT table output area 

EXITS: Only the normal exit is made, with 
no output parameters. 

OPERATION: FORM begins by determining that 
the statement is not the conditional state­
ment of a logical IF statement and not 
inside a BLOCK DATA program. If this is 
the case, the statement label is then con­
verted to its binary value and filed in the 
symbol table (see Table 11). 

The FORMAT table is initialized in the 
Preset Data area, and encoding of the FOR­
MAT statement begins. 

Table 11. Encoding of FORMAT Symbols 
r--------------------T--------------------, 
I Character I ID Code I 
~--------------------+--------------------~ 
I 0-9 I 1 
I A,I,L,Z I 2 
I D,E,F I 3 
I G I 4 
I II I 5 
I P I 6 
I T I 7 
I X I 8 
I +,- I 9 
I / I 10 
I ( I 11 
I) I 12 
I I 13 
I I 14 
I I 15 
I IDS I 16 
I Other I 17 L ____________________ ~ ____________________ j 



The encoding consists of filling out a 
FORMAT table (see Table 12), throu~h which 
the compiler communicar:.e,; ior;aat informa­
tion to r-ORTRAN I/O rOlltines. An entry is 
placed in the table whenever a vdlid FOR¥~T 
statement code is found. In addition, syn­
tax is checked, and diagnostics are issued 
for errors. FORMAT statement processing 
continues after diagnostics. 

CEKBG -- PAUSE, STOP, RETURN Statement 
Proces:30r (PSR) 

PSR analyzes and encodes the PAUSE, 
STOP, a.nd RETURN statements. See Chart BA. 

FORM terminates.t.Q.e scan wiYcn it finds a 
level-zero right parenthesis. 

ENTRIES: PSR has four entry points: PAUS 
(CEKBG1), STOP (CEKBG2), and RETU (CEKBG3) 
for the PAUSE, STOP, and RETURN statements, 
respectively, and ESTOP (CEKBG4) for the 
call by the END statement processor (END). 
None of the ent.ry points has input 
parameters. 

Table 12. Translation of Format Codes 

FORfI.'lAT 
CODE FORMAT TABLE ENTRY 

i---- ~--~t~-~, ~;--;-, -'--fi -~·;~;----r~ B~~-TI 3~V~, T~E-Lrl -~3~Y~T~E-i-BYTE 
i (BYTES\ i _~O_~ __ L_~l __ ' ~_ ~~._4_ 
I STRING: : t- CHARACTER STRING' 

I--__ H_ ~+-=~~~~T~~~~~n~ i LeNGTH ~ MANY BYTES AS NEEDED (MAX 255) II 

I " ' 
f-- I 11""'''''-- i I ; I X '2' I COUNT l ~ I I -1--_ ' 

'T 2 I' X'"' v I 
i ! 1'1 - " " I r--------+--------·H,,----~--~----
, ' I i SCALE I 

2 II X '4' FACTOR 
:l 

~r 
2 

I 

I, 

I X'5' 
it 
J; 
I' 
i' 

NEST 
LEVEL 

NEST REPEA T 
3 I, X'6' LEVEL COUNT 

I' 

A 3 
REPEAT 
COUNT W-l 

!i 
H X '7' 

~--------~------------rr------~--+--------4------~ 
REPEAT 

Z 3 

3 

3 

II 
:1 x 18' 

il 
II X '9' 
!, 
Ii 
II X'A' 
'I 
~ i 
" 

G 4. 1, X 1 6' 
,...---~~--+_-~.-----~_11+' -----

" 

COUNT 'N-l 

REPEAT 

I I COUNT \'1-1 
i 

REPEAT I 
cou~r W-l 

REPEA -
COUNT i W-l 

iI REPEAT 
IF: 4 II X'e' I COUNT W-I D, 
~i --~·--~~-t---~---·~-1-, ----~_r__ ---1 
, ! I i I REPEAT I 

') i 4 I: X'D' 'COUNT W-I I I I I ,~---+--~-~ 

, REPEAT 

I 4 II X'E' COUNT '/1-1 0 ~ I 
SPECIAL T~-~~·--t----:- ADDRESS O~~ARAC.~ TER I~ 

H I 6 I' X'F' 'LENGTH .S"RING I 
~ _____ L I: ~. __ ---'____ , 

Section 3: Phase 1 59 



EXIT: No output parameters. 

OPERATIO~: PSR has f OC1r entry point~; ,one 
each for the PAUSE, STOP, and RETURN state­
ments, and one for a call from the END 
statement. processor (to generate a stop 
when there is flow into an Ec;D statement). 
A PRF entry is generated for the PAUSE, 
STOP, and RETURN statements, respectively. 
An appropriate literal constant is filed 
for the pause and stop entries and for a 
return entry in a main program. A call 
from the END statement processor causes a 
stop PRF entry to be generated. The pause 
and stop library routine entry names are 
filed in the symbol table and marked as 
class ext ernal. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKBH -- NAMELIST Statement Processor 
(NAML) 

NAML analyzes and encodes the NAMELIST 
statement. See Chart BB. 

ENTRIES: NAML has one entry point (CEKBH1) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: NAML first checks to see that 
the statement is not the conditional state­
ment of a logical IF or in a BLOCK DATA 
program. NAML then gets the Namelist name, 
which must be enclosed in slashes. After 
the Namelist name .; checked for correct 
class; a Namelist table entry is made and 
the symbol table pointer for each variable 
in the list is entered into the table. 
Appropriate diagnostics are printed for any 
source errors or incongruities encountered. 

CEKBI -- BLOCK DATA Statement Processor 
(BLDA) 

BLDA analyzes and encodes the BLOCK DATA 
statement. See Chart ce. 

ENTRIES: BLDA has one entry point (CEKBI1) 
and no input parameters. 

No output parameters. 

OPERATION: BLDA first determines that the 
statement is not the conditional statement 
of a logical IF. If this is the case, BLDA 
checks the program type code to determine 
whether it is unknown. If it is, a normal 
exit is taken; otherwise, BLDA prints a 
diagnostic and exits. 

If the statement is the conditional 
statement of a logical IF, BLDA prints a 
diagnostic and exits. 

60 

CEKBM -- DATA statement ~rocessor (DATA) 

DATA analyzes and encodes the DATA 
statement. See Chart BD. 

ENTRIES: DATA has one entry point (CEKBMl) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: DArA first checks to see that 
the statement is not the conditional state­
ment of a logical IF statement. rhe 
variables in the statement are then 
extracted and entered into a parameter 
list, until a slash is encountered. Sub­
routine IDATA is called at entry DDAI'A to 
process the initial value sDecifications 
for the list of variables. ~The process is 
repeated until an end of statement or a 
source error is encountered. Appropriate 
diagnostics are printed if any source 
errors or incongruities are encountered. 

CEKBN -- IMPLICIT Statement Processor 
(IMPL) 

IMPL analyzes and encodes the IMPLICIT 
statement. See Chart BE. 

ENTRIES: IMPL has one entry point (CEKBN1) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: IMPL first determines that the 
statement is not the conditional statement 
of a logical IF statement. The implicit 
type table is then copied into a temporary 
hold area, where it can be modified without 
destroying the current status of the table. 
The type specification is extracted from 
the source statement and identified, and 
the corresponding type code is established. 
The letters being typed are then extracted 
and used as a index to modify the implicit 
type table in the temporary hold area. 

CEKBR -- Blank Statement Processor CBLNK) 

BLNK processes a blank source statement. 

ENTRIES: BLNK has one entry point (CEKBR1) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: BLNK first checks the logical 
IF indicator. If it is nonzero, a diag­
nostic is printed to the effect that no 
conditional statement is given for a logi­
cal IF statement. If the logical IF indi­
cator is zero, the label field is checked 
to see if it was blank. If so, a normal 
exit is taken; otherwise, a diagnostic mes­
sage is printed. 



CEKB3 -- suboroqram Entry Statements 
Processor (SUBE) 

SUBE analyzes and encodes the ENTRY, 
FUNCTION, and SUBROUTI~E statementJ. See 
Chart BF. 

ENT'l.IES: SUBE has two entry points: i:.NTR 
(CEKBS1) and FUNC and SUaR (CEKBS2) for the 
ENTRY FUNCTION, and SUBROCJTvm statements, 
cespectively. None of the entry points has 
input parameters. 

EXIT: No output parameters. 

OPERATION: SUBE has an entry point for 
each of the three statements it processes. 
For the ENTRY statement, the program type 
is checked to ensure that it is a sUbpro­
gram. If the no flow flag is down (indi­
cating that the previous executable state­
ment transfers control only to the current 
statement), a label is created and filed, 
and the symbol table pointer is entered 
into the PRF. This is done so that a 
branch around the ENTRY statement can be 
generated. The 00 level is 2.1::;0 checked 
for zero, to ensure that the ENTRi state­
ment does not occur wi thin a 00 loop. 

For FUNCTION and SU3ROUTINE statements 
the program type is checked to ensure that 
it is unknown, thus indicating that no 
statement except an IMPLICIT statement has 
preceded it. 

The PRF entries for these statements are 
built in a temporary area, due to their 
variable length. The entries assembled by 
this routine are tilen copied into the PRF 
as perrranent entries during Pass 2, in sub­
routine SUBE2. 

The entry name is aC~lired and classi­
fied. For the FUNCTION statement the type 
option is processed and coded if given. 
The dummy arguments are then scanned and 
entered into the PRF. The symbol table 
entries for each argument are flagged, and 
the symbol table pointers arp entered into 
the storage class table. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKBU -- CALL Statement Processor (CALL) 

CALL analyzes and encodes the CALL 
statement. 

ENTRIES: CALL has one entry point (CEKBU1) 
and no output parameters. 

EXIT: No output parameters. 

OPERATION: CALL first calls LABL to pro­
cess the statement label, ifone is pre-

sent. C~LL then generates a PRF entry for 
t_he CALL statement. Finally, the expres­
sion scan routine (EXPR) is called to ana­
lyze and encode the subroutine name and the 
arguments. 

CEKAL -- END Statement Processor (END) 

END performs the required processing for 
an END statement. See Chart BG. 

~';NTRI.c;:J: END has one entry point (CEKALl) 
and no input parameters. 

p:XIT: No output parameters. 

OPERATION: If the statement is the condi­
tional statement of a logical IF statement, 
a diagnostic is produced and control is 
returned to the caller. If the program 
type is BLOCK DATA, the data flag is 
checked and control is returned to the 
caller. For all other conditions the 
executable flag and the DO loop level are 
checKed. If the DO loop level is nonzero, 
enough end loop PRF entries are generated 
to reduce it to zero. Then the end loop 
for the false loop is generated. If the 
ISD option is on, the false loop is set to 
"unsafe." The no flow flag is checked to 
see if execution flow has been terminated. 
If it has not, a stop PRF item is 
generated. Finally, an end program PRF 
item is generated and control is returned 
to the caller. 

CEKA~ -- Declaration Statements, Pass 2 
<OCL2) 

DCL2 performs the housekeeping opera­
tions and terminates the processing for the 
following declaration statements: COMMON, 
DIMENSION, EQUIVALENCE, EXTERNAL, NAMELIST, 
COMPLEX, DOUBLE PRECISION, INTEGER, LOGI­
CAL, REAL, FORMAT, and DATA. 

ENTRIES: DCL2 has two entry points, COMM2 
(CEKAW1) and DCL2 (CEKAW2), neither of 
which has an input parameter. 

EXIT: No output parameters. 

OPERATION: DCL2 sets the program type to 
"main" if it was unknown. In any case, the 
implicit flag is set to 1 before returning 
to the caller. A special entry for the 
COMMON statement also updates the total 
number of named COMMON blocks in the 
storage class table before joining the path 
for other declaration statements. 

CEKAX -- Executable Statements, Pass 2 
(EXEC2) 

EXEC2 performs the housekeeping opera­
tions and terminates the processing for the 
executable statements. See Chart BH. 

Section 3: Phase 1 61 



ENTRIES: EXEC2 has two entrj points, FL2 
(CEKAX2) and NF2 <CEKAX1), neither of which 
requir es any input parameter,;. FL2 is the 
entry point for the following statements: 
assignment, ASSIGN, BACKSPACE, CONTINUE, 
END FILE, PAUSE, PRINT, PUNCH, REwIND, 
WRITE, DO, READ, and CALL. NF2 is the 
entry point for the following statements: 
STOP, RETURN, GO TO, and arithmetic IF. 

EXIT: No output parameters. 

OPERATION: EXEC2 has two entry points: 

1. For statements that do not transfer 
control to statements other than the 
ones immediately following them. 

2. For statements that do transfer con­
trol to statements other than the ones 
immediately following. 

If the logical IF indicator is not on, 
the entry for the second class (above) 
raises the no-flow flag, indicating that 
the next executable statement must have a 
label or there is a logical flaw in the 
source program. The remaining operations 
are common to both entries. 

If the executable statement flag is 
down, it is raised and the program type is 
checked. If the program type is unknown, 
it is set to "main" before EXEC2 returns to 
the caller. If the executable statement 
flag was up, the fall-through processing 
routine is called to optimize the code in 
case fall-through occurs from any statement 
which causes branching. The logical IF 
indicator is then tested. If it is on, the 
created label for the conditional GO TO 
statement is entered into the PRF. The end 
loop proceSSing routine is called to test 
for and process any end loops. 

CEKBJ -- BLOCK DATA Statement, Pass 2 
(BLDA2) 

BLDA2 sets the program type for the 
BLOCK DATA statement. 

ENTRIES: BLDA2 has one entry (CEKBJ1) and 
no input parameters. 

EXIT: No output parameters. 

OPERATION: BLDA2 sets the program type 
code to BLOCK DATA and exits. 

CEKBP -- IMPLICIT Statements, Pass 2 
(IMPL2) 

IMPL2 performs the final housekeeping 
for the IMPLICIT statement after it is 
accepted. 

ENTRIES: IMPL2 has one entry point 
(CEKBP1) and no input parameters. 

62 

EXIT: No output parameters. 

OPERATION: IMPL2 copies the implicit type 
table back from a temporary hold area where 
it was updated by IMPL and sets the implic­
it flag to 2. 

CEKBT -- Subprogram Entry Statements, Pass 
2 (SUBE2) 

SUBE2 sets the program type code and 
makes the permanent PRF entries for the 
ENTRY, FUNCTION, and SUBROUTINE statements. 
See Chart 81. 

ENTRIES: SUBE2 has three entry points: 
ENTR2 (CEKBT1), FUNC2 (CEKBT2), and SUBR2 
(CEKBT3); none of which has input 
parameters. 

EXIT: No output parameters. 

OPERATION: SOBE2 has a unique entry point 
for ENTRY, FUNCTION, and SUBROUTINE state­
ments. For the ENTRY statement the number 
of entry points total is incremented. The 
FUNCTION and SUBROUTINE statements set the 
program type code to the appropriate value. 
The remaining operations are performed for 
all three of the possible statement 
entries. 

An end loop for the false loop is 
generated, after which the PRF entry is 
copied from its temporary area into the 
PRF. A new begin loop for a false loop is 
then generated, and the number of alternate 
returns total is updated. 

CEKBV -- CALL Statement, Pass 2 (CALL2) 

CALL2 adjusts the CALL PRF entry to 
insert the statement numbers for the 
alternate returns. See Chart BJ. 

ENTRIES: CALL2 has one entry point 
(CEKBV1) and no input parameters. 

EXIT: No output parameters. 

OPERATION: If the count of alternate 
returns in intercom (TENAR) is zero, a 
normal return is taken. If the count is 
nonzero, the PRF entries for the argument 
definition points and the CALL are moved up 
by the appropriate number of words. The 
statement numbers are then inserted in the 
CALL PRF entry. During the pass through 
the argument definition point PRF entries, 
the FDP fields in the symbol table are 
updated if required. The statement numbers 
are also entered into the cross reference 
list. 



CEKBZ -- Statement Function· eiinition, 
Pass 2 (STFN2) 

STFN2 performs the housekeeping opera­
tions and terminates t~e processing for the 
Statement Function. 

ENTRIES: STFN2 has one entry point 
(CEKBZ1) with no input parameters. 

EXIT: No output parameters. 

OPERATION: STFN2 restores symbol table 
class and flag fields of variables which 
were used as statement function arguments. 
It then checks the program type and, if it 
is unknown, sets it to "main. w Then STFN2 
returns to the caller. 

CEKAG -- Subscript Processor <SUBS) 

SUBS scans subscripted variables and 
translates the subscript expressions into 
the internal language (Polish notation) 
form. See Chart BK. 

ENTRIES: SUBS has one entry point (CEKAG1) 
with no input parameters. 

EXIT: No output parameters. 

OPERATION: A subscripted variable has the 
form: 

A (S:L,S2"" ,Sn> 

where: 

SUBS expands the subscripts into a single 
expression of the form: 

S*L-L+S2 *L*d:L-L*d:L + ••• +Sn*L.d:L •••• *dn_:L 
- L*d:L * •.•• dn_:L 

where: 

L = length in bytes of an array element 
d = ith dimension of N-dimensional array 

constant terms and like variable terms 
are combined, and the reSUltant expression 
is translated into Polish notation for out­
put to the expression representation file 
(ERF). 

SUBS operates in two stages. The first 
stage scans the source, term by term, and 
makes up tentative output terms which are 
stored in an area called TTR~. A subrou­
tine called TRMPRO checks TTRM and adds the 
contents to a list (TERMS) if it cannot 
combine the new term with one already in 
TERMS. 

The second stage (PUTOUT) translates the 
terms of TERMS into Polish notation and 
puts them in ERF. 

Each tentative output term of TTRM has 
the following format: 

o 8 16 31 

Constant 

~--~~bl~--l---.--T 
---

Symbol Table Painter to 
Type Code i I Variable or 0 

I I 

---- ' i , , 
4-bit i 

Variable Dimension or 0 
Type Code 

I ~-

.6- A 
\I V 

--

4-bit 
Variable Dimension or 0 

Type Code 

I 
• If Induction Variable = ULEV; otherwise = 0 

Each entry of a term is one word. The 
number of entries per term is 

NUMDM+l 

where: 

NUMDM = number of dimensions. 

A typical term of subscript S is 

The "constant" entry is the product of all 
the constant factors of the term. The 
variable entry is the symbol table pointer 
to V , or to zero if V is missing from 
term. The variable dimension entries are 
symbol table pointers to any of the d (i = 
1, ---, K-l) that are variable. 

Terms ofrERMS have the same format as 
TTRM, except that all nonzero entries are 
moved to the top of a term. 

During the course of processing a sub­
script, branches are made to NEWTRM, SCAN, 
and LOOP within the main loop of SUBS. 

NEWTRM updates the dimension product 
(DMPR) with an entry from dimension table, 
if the entry is a constant: otherwise; 
NEWTRM enters the symbol table pointer of 
the variable dimension in TTRM. NEWTRM 
then branches to SC&~. 

Section 3: Phase 1 63 



SCAN puts D[4PR in TTRl" and calls subrou­
tine TRMPRO, which adds constant terms to 
offset of array name entry in ERF or pro­
cesses variable terms as explained earlier. 
SCAN then calls ACOMP (assemble component 
routine) for the next operanu-operator 
pair. 

LOOP tests all operators that seperate 
terms in a subscript expression. If a 
right parenthesis is found, LOOP branches 
to PUTOUT. If a comma is found, LOOP 
branches to NEWTRM. If a plus or minus 
sign is found, TNEG is set accordingly. 
LOOP then calls ACOMP. 

SUBS begins processing by entering the 
array name in ERF. Various flags and coun­
ters are initialized, and a branch is made 
to SCAN. ACOMP is called, and a subscript 
term put in TERMS. If the tenn contains a 
loop variable, a new term is generated, 
containing the lower limit of the loop 
variable in place of the loop variable. A 
branch is made to LOOP to check the opera­
tor. This process is repeated until the 
loop finds a right parenthesis which sig­
nals end of subscript, and a branch is made 
to PUTOUT. 

If the statement ID is DATA or EQUIVA­
LENCE, PUTOUT determines that there are no 
entries in TERMS. Otherwise, PUTOUT puts 
the entries from TERMS into the ERF'. If a 
term contains a loop variable, the variable 
is entered into ERF ahead of the constant. 
If the statement ID is EQUIV~Lh~CE and 
dimension information from a TYPE, COMMON 
or DIMENSION statement had not yet been 
specified for an equivalence variable, SUBS 
processes each subscript on an equivalence 
variable, and saves the subscript and sign, 
if any, for subsequent processing oy EQUI. 

9EKAI -- Expression Processor (EXPR) 

EXPR translates the source language 
expression into the ~nternal language 
(Polish notation) expression. See Chart 
BL. 

ENTRIES: EXPR has one entry point (CEKAIl) 
with no input parameters. 

EXIT: No output parameters. 

OPERATION: Subroutine EXPR is the arith­
metic and logical expression scanner, and 
produces in the Expression File (EF) the 
internal-language equivalent of a FORTRAN 
IV expression in the source program. EXPR 
scans expressions on the left and right 
side of equation statements, the condition­
al expression in IF statements, and the 
subroutine name and argument list in CALL 
statements. 

64 

EXPR sees the source language through 
ACOMP (assemble components) which provides 
EXPR with an operand-operator pair (com­
ponent) each time it is called. 

Tne internal-language expression is con­
tained in EF as a string of operators 
(delimiters) and operands in right-hand 
Polish notation. An oversimplified state­
ment, then, of RXPR's task is "to transfer 
operators from their position between their 
operands to a position following their 
operands." This implies that, in scanning 
over the source expression and putting the 
internal form in EF, an operator must be 
held back during the scanning and putting 
out of its second operand (which may be a 
large expression itself). Two main tables, 
tiSTCK and sxs, are used by the subroutine 
largely for just this purpose. Each incom­
ing operator is placed in the dSTCK until 
required for output. SXS contains informa­
tion about the operands that have been put 
out. 

To oversimplify again, the syntax of 
algebraic expression requires that opera­
tors and operands should alternate, as in 
"X*Y+Z". This is reflected in EXPR in that 
the subroutine is always in one of two 
states, controlled by the condition of a 
cell HS. The H state means, roughly, that 
the last item scanned went into the HSTCK 
(i.e., was an operator) so an operand can 
be expected next. The S state means that 
the last item scanned caused an entry in 
SXS (i.e., was an operand) so an operator 
can be expected next. Clearly, the scan 
should begin in the H state and end in the 
S state. 

The situation is, in reality, much com­
plicated by the presence in expressions of 
unary operators (such as the logical nega­
tive .NOT.), function calls, subscripted 
variables, and parentheses. These compli­
cations are best described by examining 
EXPR's methods for handling them. These 
methods are variations on, or elaborations 
of, the basic idea. 

The main loop of EXPR begins with a call 
on ACO~W for the next component of the 
source-language expression. The charac­
teristics of the next component determine 
the processing it receives, after which the 
subroutine returns to the top of the main 
loop to obtain the next component. Some 
Objects are illegal if received when the 
subroutine is in the H state; some are 
illegal in the S state; and, a few are le­
gal in either state, but have their meaning 
determined by the state during which they 
arrive. Each object processed sets the 
state for the next. From this viewpoint, 
there are four classes of objects: H to S, 
those that are legal in the H state ane 
leave the subroutine in the S state; H to 



H, those tna~ are legal in tne rl state and 
leave tne subroutine in tne '1 state; S to 
S, those that are legal in tne S state and 
leave the sUbroutine in t-.he :, ~3ta te i and S 
to rt, those that are legal in the S state 
and leave the subroutine in the H state. 

The t~o basic classes most easily 
handled by EXPR are H to Sand S to ti. The 
other two classes handle the more compli­
cated situations involving function::.> 
(except functions as arguments), and spe­
cial operators (i.e., parenttleses, unary 
operators, equal sign, and end of 
statement) . 

if to S Class 

Constant: When a constant item is 
recei ved from ~COMP, a constant entry is 
made in EF and SXS with the appropriate 
type. 

§imple Variable: A simple variable is 
processed like a constant. 

Array Variable: When an array item is 
received, the next operator is checked for 
a left parenthesis. If one is not found, 
the array is treated like a simple vari­
able. If the parenthesi3 is found, ~XPR 

calls the subroutine SUBS, which processes 
the subscript and enters the array variable 
into EF. 

Function as ~rqument: ~hen a fUnction 
item is received and is not the first item 
of a CALL statement, it may be a function 
used as an argument to another subprogram. 
The item is accepted as such if the next 
operator is either a comma or a right 
parenthesis, and the top item in dSTCK is a 
comma or semicolon (see function call in WH 
to H Class" below). If the function is 
subject to automatic typing, it is checked, 
and the function name changed, if neces­
sary, before outputting to EF and 3XS. 

S to H Class 

This class contains the comma and all 
the binary operators: arithmetic, rela­
tional, and logical. When an item for one 
of these operators is received by EXPR, it 
is compared with the top item of HSTCK. If 
this new item represents an operator of 
lesser precedence than the top item, the 
HSTCK operator is output to =F and is 
appropriately processed. It is then 
removed from the HSTCK, and the new item is 
compared with the new HSTCK top item. This 
process continues until an item of less 
precedence is brought to the top of the 
HSTCK (the bottom of the HSTCK will always 
look like such an item>, at which point the 
new item is added to become the top item of 
the HSTCK, unless it is a comma or equal 
sign, in which case it receives special 

treatment. Comparisons include a check for 
illegal pairs. 

rable 13 explains operator precedence 
table, called PRECT~. I'he operators that 
appear at the top of each column are the 
new iterrs that can legally come from ACO~. 
The operators that appear at the beginning 
of each row are the items that can appear 
at the top of HSTCK. Indexes to the action 
taken when a new item is compared with a 
dSTCK item are given as elements of the 
table. The various actions taken are dis­
cussed after the table. 

S to S Class 

Right parenthesis and end of statement 
(EOS) are the only items which are received 
from ACOi'1P is the S state and leave EXPR in 
the same state. See Table 13 for further 
discussion. 

H to H Class 

Left parenthesis, .NOT., and unary + or 
- are the only legal operators that can be 
received from ACOMP in the H state. See 
Table 13 for further discussion. 

Explanation of PRECT~B 

DD1: 

002: 

003: 

DD4: 

005: 

DD6: 

Illegal operator pair. 

New operator has greater precedence 
than HSTCK item. New operator is put 
in HSTCK. 

New) meets (. Left parenthesis is 
deleted from HSTCK. 

New EOS meets =. This indicates that 
the right side of the equation state­
ment has been processed. EXPR calls 
subroutine CNVRT, which uses the last 
two entries in SXS and EF to check for 
legal type mix and enters a conversion 
function in EF so that the expression 
type on the right side will conform to 
the variable type on the left side. 
If expression is a constant, it is 
converted to variable type. 

New = meets BOT. This indicates that 
the variable on the left side of the 
equation statement has been processed. 
The equation PRF entry is updated and 
the variable is linked into VDP chain. 
The = operator is put in HSTCK. 

New) meets BOT. This indicates that 
an IF statement has been processed. 

Section 3: Phase 1 65 



ilJ 
U 
c:: 
<J) 

'0 
Q) 
t) 
<l) 
l..f 
Po 

!o-o 
o 
.j.! 
r(j 
!o-o 
ilJ 
OJ 
o 

. 
M 
.-l 

Q) 

"'" ..0 
r(j 
H 

::E 
'" !:: 
:.: 
u 

"" VJ 

:r: 

/ 

* 
* * 

BOT 

,LT 

. LE 

, EO. 

,NE 

,GE, 

.GT, 

,NOT, 

,AND, 

,OR, 

UN + 

UN· 

SF 

/ 

DD13 I DD13 1 DD2 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

22 

23 

2 

2 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 
:i 

2 

2 

22 

2-1 

2 

2 

2 

2 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

22 

23 

2 

., 
L 

2 

DD2 

2 

13 

13 

!.1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

22 

23 

2 

2 

n 

ClEW OPERATOR 

** 1 ) 1 ,I ( I £OS I ' LT-j- LE. I' EO'_I' NE. 1 . GE. 1 ,GT, I, NOT, , ,AND" ,OR , UN • 'UN' I 
DD2 1 DDI3 I DD13 

2 

2 

2 

2 

n <, 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

14 

13 

13 

13 

11 

1I 

3 

6 

16 

18 

16 

17 

19 

16 

21 

20 

20 

22 

23 

12 

J2 

24 

14 

13 

13 

13 

10 

]0 

16 

18 

16 

17 

19 

16 

21 

20 

20 

22 

23 

8 

DDI 

~ 

DD2 I DDl3 

2 

2 

2 

2 

2 

2 

Z 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

14 

13 

13 

13 

4 

16 

18 

16 

17 

19 

16 

21 

20 

20 

22 

2:J 

DD13 I DD13 1 DDI:J 1 DD13 I DD13 I DDI3 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

22 

23 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

n 
k 

2 

22 

23 

2 

2 

~) 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

2 

22 

2:1 

2 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

22 

23 

2 

2 

2 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

2 

22 

23 

'2 

14 

13 

13 

13 

2 

2 

2 

2 

2 

2 

2 

2 

22 

23 

2 

~ 

DDI 

2 

2 

2 

2 

2 

2 

2 

2 

DD13 

14 

13 

13 

18 

2 

Z 

2 

2 

2 

16 

18 

18 

17 

19 

16 

21 

20 

2 

22 

23 

2 

2 

2 

OD131 DDI 

14 

13 

13 

:3 

2 

2 

2 

2 

2 

16 

18 

16 

17 

19 

16 

21 

20 

20 

22 

23 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

DOl 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 2 
L) lll]2 

24 1 1~ 1 .2 

'--____ '--__ "'--___ .-L. __ . ...L ........L...~I; 1 2 1 __ ~.L MAX 2 ., 
L 2 25 2 2 2 '-CJ 

.t:J 



001: 
New EOS meets BOT. Thi,; indicates 
that a CALL statement has been 
processed. 

DOS AND 009: 

0010: 

New, meets; or ;;. This indicates 
that the first of several arguments 
has been processed. The. is put in 
HSTCK (" for intrinsic functions). 
Subroutine AARG is called to determine 
if argument should De linked into VDP 
chain. ARG type is put in SXS. 

New, meets, or f" This indicates 
that the N'th argument of a function 
call has been processed. Subroutine 
AARG is called (see 008) to check 
argument type, increment the argument 
count, and output, or " to EF. 

0011 and 0012: 
New ) meets. or;. This indicates 
that the last argument has been pro­
cessed (only one argument in function­
call if HSTCK item is;. Subroutine 
AARG is called (see 008 and 0010). 
The correct number and type of argu­
ments are checked. Functions with 
class LIBA call subroutine LIBN, "hich 
selects a function name based on the 
argument type. Functions with class 
OPEN A use table FNUM to select a 
function number. The function is out­
put to the EF followed by a ; or ;; EF 
entry. 

0013 through 0023: 
New operator has less or equal prece­
dence. This means that the HSTCK item 
is to be output to EF. The HSTCK item 
may be one of the following: 

Unary + or - or .NOT. operator. 
Binary arithmetic, relational, or 

logical operator. 

The unary +, -, and .NOT. are the 
simplest to output. The top item in 
SXS is their operand and is checked 
for legal type; then, the last EF 
entry has its sign changed fo.r unary -
and. NOT. 

For a binary arithmetic, relational, 
or a logical operator, the top two 
entries in SXS represent its operands. 
In addition to putting an operator 
item in EF, the processing requires 
replacing the two operands in SXS with 
a single entry for the result of the 
operations. 

The types of the operands are checked 
for legal combinations. The top SXS 
item is deleted, and the next SXS item 
is qiven a subexpression class with 

0024: 

0025: 

0026: 

the maximum type of the two operands. 
A relational operator is assigned 
Logical*4 type. 

A binary arithmetic operator is also 
checked for constant operands. If 
both SXS operand entries are class 
constant, the arithmetic called for by 
this operator will be done on the last 
two EF entries. The subroutine CNVRT 
does constant arithmetic and type 
checking for binary-arithmetic 
operators. 

If the HSTCK item is a -, .NE.,.LE. 
or .GE., it is changed to a +,.EQ.,. 
GT. or .LT., respectively, and the 
sign of the last EF entry is changed. 
Then the above processing is done. 

New , or ) meets SF. This indicates 
that an argument of a statement fUnc­
tion has been processed. EXPR calls 
subroutine SFEXP (at entry point 
SFEXPC) which continues processing the 
statement function expression. 

New ) meets MAX. This indicates that 
all arguments have been processed in a 
MAX/MIN function. The argument type 
is checked and the last MAX operator 
is put in EF. The top three bytes of 
the multiple byte entry for MAX/MIN 
function are deleted from HSTCK. The 
top item of HSTCK is now (, unary -, 
or a conversion function wbich was 
entered in HSTCK by the function-call 
processing. 

New • meets MAX. This indicates that 
an argument of MAX/MIN function has 
been processed. The argument type is 
compared with the type in HSTCK. If 
this is first argument processed, and 
automatic typing is called for, the 
argument type is put in HSTCK. The 
comma flag is set, and the sign of 
last EF entry is changed if the MIN 
flag is set. The MAX operator is put 
in EF, except after the first 
argument. 

FUnction/Subroutine Call 

A function call is recognized if one of 
the following conditions exists: 

1. The item is an external, intrinsic, or 
library fUnction with the next item a 
left parenthesis. Six bytes are added 
to HSTCK. Bytes 1 and 2 contain Sym­
bol Table pointer to function entry. 
Byte 3 contains type of arguments 
observed. Byte 4 contains number of 
arguments observed. Byte 5 contains 

Section 3: Phase 1 61 



flag for argument definition PRFs (set 
to 1 if abnormal fUnction). Byte 6 
contains semicolon operator. 

For external functions, the ABN flag 
is set in the PRF entries for IF and 
equation statements. This flag is 
used by Phase 2 to find cornmon defini­
tion points. EXPR then calls ACOMP 
for the next component. 

2. The item is the first item of a CALL 
statement. The subroutine flag is 
raised in the symbol table, and the 
function is handled the same as case 1 
if the next item is a left parenthe­
sis. If the next item is EOS, the 
function is entered in EF as a no­
parameter fUnction. 

3. The item's class is -unknown" or 
"unknown function" and the next item 
is a left parenthesis. EXPR calls the 
subroutine FNCLS, which determines the 
class of the function (OPEN, OPENA, 
external, LIB, LIBA, or MAX). FNCLS 
sets the function flag and appropriate 
class in the symbol table and returns 
to EXPR. If the function class is 
external, library or intrinsic the 
function is processed like case 1. If 
the function is a member of the MAX­
MIN family, it is processed as 
described in case 4. 

4. The item is a member of the MAX-MIN 
family. Members of the MAX-MIN family 
require special treatment. They are 
interpreted not as functions, but in 
terms of a new operator, MAX, which is 
like + in that it takes two operands 
and has its type determined by the 
type of its operands. MIN is ex­
pressed by changing the signs of MAX 
and its operands. A conversion func­
tion is entered in HSTCK per case 1, 
if needed; otherwise, a left parenthe­
sis is put in HSTCK. Either of these 
HSTCK items will correctly terminate 
the MAX function processing after the 
last argument has been processed. A 
unary - is then put in HSTCK if func­
tion is MIN. This will negate the 
last ~~ operator in EF. The next 
HSTCR byte contains two flags: a MIN 
flag (set if MIN function), and a 
comma flag (set after first argument 
processed). The next byte contains 
argument type required by function (FS 
if automatic typing). The top byte 
contains the operator MAX. EXPR then 
calls ACOMP for the next component. 

5. The item is a statement function. 

68 

EXPR calls the subroutine SFEXP (at 
entry point SFEXPI>, which initializes 
and controls the statement function 
processing. EXPR's machinery is used 

to process the statement function 
arguments. 

CEKAN -- Conversion subroutine (CNVRT) 

CNVRT converts constants to new type, if 
specified, and checks legal type mixes for 
arithmetic and logical expressions, and 
across the equal sign in assignment state­
ments. See Chart BM. 

ENTRIES: CNVRr has two entry points: 
CNVRT (CEKAN1), which is called by EXPR to 
perform all functions mentioned above, and 
CNVRTD (CEKAN2) which is called by IVAL and 
is concerned only with converting constants 
to the type of the variables into which 
they will be stored. 

Input Parameters: 

P2 Variable Symbol Table Pointer 
(CNVRTD entry only) 

PS HSTCK address (CNVRT entry only) 
P6 SXS address (CNVRT entry only) 

EXIT: PS contains the HSTCK address, and 
P6 contains the SXS address. 

OPERATION: The types of the top two 
operands in SXS, SXS(J) and SXS(J+l), are 
compared by using the table CNVTAB, and 
appropriate action is taken. The action 
taken depends on whether the top HSTCK item 
is = or +, /, * or **. 

If the HSTCK item is =, then SXSCJ) is 
the operand on the left side in an assign­
ment statement or a variable of a DATA 
statement, and SXS(J+l} is converted to the 
type of SXS(J), if they are different. If 
SXS(J+l) is a constant, CNVRT converts the 
constant, and files the new constant in the 
symbol table and EF. If SXS 0+1> is not a 
constant, the appropriate conversion func­
tion is entered in EF. symbol table and EF 
entries are not made for DATA statement. 

If the top HSTCK item is an arithmetic 
operator (except**), the two operands are 
checked to see if they are constant. If 
just one operand is constant, it is con­
verted to the maximum type of the two, if 
different. If both operands are constant, 
one is converted to the maximum type, if 
different, and subroutine ARITH is called. 
It combines the constants according to the 
HSTCK operator. The new constant is filed 
in the symbol table and EF. A special case 
occurs if the operand types are R*8 and 
C*8. The maximum type in this case is 
C*16, and all constants are converted to 
this type. 

There are three cases to consider if the 
HSTCK item is: 



1. Both exponent and base are constant. 

2. The base is a real or integer variable 
and the exponent is an integer con­
stant in the range 0 thJ:ough 16 for 
integer base, or -16 through +16 for 
real base. 

3. Neither of the above case~>. 

For case 1, the subroutine ARITH is 
called and constant arithmetic is 
performed. 

For case 2, a series of one or more spe­
cial open functions are entered in the EF 
from a table called EXPF (Table 14). This, 
in effect, causes the power to be expanded 
as a series of products of the base multi­
plied by itself. Another special open 
function (RECIP) is also entered in EF, to 
take the reciprocal of the power if the 
exponent is negative and the base is real. 

For case 3, the subroutine LIBN is 
called (at entry point LIBNX) Nhich selects 
the appropriate exponential library func­
tion. Upon return from LIBN, the fUnction 
is entered in the EF. 

Table 14. EXPF Entries (Real Base) 

CEKBK -- Statement Function Definition 
(SFDEF) 

SFDEF enables EXPR to translate a state­
ment function expression into Polish nota­
tion and to store the translated expression 
in the statement function expression file 
(SFEF). See Chart BN. 

ENTRIES: SFDEF has one entry point 
-(CEKBKl> with P5 = HSTCK (1) address and P6 
~ SXS(J) address as input parameters. 

EXIT: P5 contains the HSTCK address, and 
D6 contains the SXS address. 

OPERATION: SFDEF scans the argument list 
and temporarily changes the class and flag 
fields of all synmol table entries whose 
names are the same as the dummy arguments. 
The class is changed to "statement function 
argument- and the flag field to contain an 
offset to be used in locating the argument 
in ARGSTCK (see SFEXP routine). These 
fields are restored after EXPR finishes 
scanning the expression. In scanning the 
argument list, SFDEF checks for legal argu­
ments and maximum number of arguments. 

r--------------T------------------------------------------------------------------------, 
I Exponent I Entries I 
r--------------t-------T-------T-------T-------T-------T-------T-------T-------T--------~ 
i 2 I SQ I ;; I Term. I I I I I I I 
r--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~ 
I 3 I Cube I ;; I Term. I I I I I I I 
r--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~ 
I 4 I SQ Ii; I SQ I ;; I Term. I I I I I 
r--------------t-------+-------+-------+-------+-------t-------+-------+-------+--------~ 
I 5 I FIFTH I ;; I Term. I I I I I I I 
r--------------+-------+-------t-------+-------+-------+-------+-------+-------+--------~ 
I 6 I SQ I ;; I cube I ;; I Term. I I I I I 
r--------------+-------+----·---+-------+-------+-------+-------+-------+-------+--------~ 
I 7 I SEVEN I ;; I Term. I I I I I I I 
t--------------+-------t-------+-------+-------+-------+-------+-------+-------+--------~ 
I 8 I SQ I ;; I SQ I ;; f SQ I ;; I Term. I I I 
t--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~ 
I 9 I Cube Ii; I Cube I ;; I Term. I I ! I I 
t--------------+-------+--------t-------+-------+-------+-------+-------+-------+--------~ 
I 10 I SQ I ; i I FIFTH I ;; I Term. I I I I I 
t--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~ 
I 11 I 11 I * * I Term. I I I I I I I 
r--------------t-------+-------+-------+-------+-------+-------+-------+-------+--------1 
I 12 t SQ I ;; I SQ I ;; I Cube I ;: I Term. I I I 
r--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------1 
I 13 I 13 I * * I Term. I I I I I I I 
r--------------f-------+-------+-------+-------+-------+-------f-------+-------+--------~ 
I 14 I SQ I ;; I SEVEN I ;; I Term. I I I I I 
r--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------~ 
I 15 I Cube I ;; I FIFTH I ;: I Term. I I I I I 
t--------------+-------+-------+-------+-------+-------+-------+-------+-------+--------1 
I 16 I SQ I ;; I S<.,: I ;; I SQ I ;; I SQ I ;; I Term. I 
t--------------~-------~-------~-------~-------~-------~-------~-------~-------~--------~ 
IThe base type is attached to=;emicolon entries. I L _______________________________________________________________________________________ J 

Section 3: Phase 1 69 



After completion of argument scanning, 
SFDEF alters the EF pointer and ba~e, so 
that EXPR will enter the expression into 
SFEF. SFDEF then returns to EXPR, which 
processes the statement function expres­
sion. Upon completion of expression pro­
cessing, the EF pointer and base are 
restored. 

CEKBL -- Statement Function Expansion 
(SFEXP) 

SFEXP inserts a statement function 
expression into EF when the fUnction is 
referenced in arithmetic or logical expres­
sion, and uses EXPR to process the actual 
arguments. See Chart 30. 

ENTRIES: SFEXP has two entry points: SFE­
XPI (CEKBL1) and SFEXPC (CEKBL2). The 
input parameters are P5 HSTCK(I) address 
and P6 = SXSeJ) address. 

EXIT: P5 contains the HSTCK address, and 
P6 contains the SXS address. 

OPERATION: There are two ent~J points to 
SPEXP: SFEXPI, which is the entry to the 
initializing portion, and SFEXPC, which is 
the entry to the expansion portion. 

The initializing part scans the argu­
ments and stores a pointer to the first 
character of each argument in the source 
statement. It also stores a pointer (SFEP) 
to the function expression in SFEF, and a 
pointer to show EXPR where to resume scan­
ning the source after the statement func­
tion has been expanded. These pointers are 
stored in a portion of the SFEF called 
ARGSTCK. An "SF- item is entered in HSTCK, 
which enables EXPR to process the function 
arguments one at a time. After the ini­
tializing is complete, SFEXP begins expand­
ing the function by entering SFEF entries 
into EF, using SFEP as a pointer. When a 
statement function argument entry is found, 
the offset of this of this entry is used to 
obtain the correct argument pointer from 
ARGSTCK. This pointer is stored in SOURCE, 
and SFEXP returns to EXPR, which processes 
the argument. When a ft, " or "). meets the 
"SF" item in HSTCK, the argument has been 
processed and EXPR calls SFEXP (via SFEXPC 
entry). SFEXP checks the actual argument 
type with the dummy argument type. If the 
type is correct, SFEXP resumes transferring 
SFEF entries to EF until another argument 
entry is found. This cycle is repeated 
until an end of expression entry is found 
in SFEF. This terminates expansion, and 
SFEXP returns to EXPR with the SOURCE 
pointer set to scan the remainder of the 
statement following the statement function 
reference. 

70 

CEKBX -- Function Classifier (FNCLS) 

FNCLS determines the proper class of a 
function whose class was originally 
"unknown" or "unknown function." See Chart 
BP. 

ENTRIES: FNCLS has one entry point 
(CEKBX1) and no input parameters. 

EXIT: No output parameters. 

OPERATION: A function with "unknown" or 
"unknown function" class is assigned one of 
the following classes: LIBA, LIB, OPEN, 
OPENA, ~~, or external. 

If the function name is found in the 
LIBA name list (library function with auto­
matic typing> and its type is not frozen, 
it is given LIBA class. If its type is 
frozen, then it is classed external. 

If the fUnction name is found in the LIB 
name list, and its type is not frozen or 
its type is the same as the library func­
tion, then it is classed LIB. If the type 
is different, it is classed external. 

If the function name is not in the LIBA 
or LIB name lists and its class is unknown 
function (i.e., delcared in an EXTERNAL 
statement), it is classed external. 

If the function is in the intrinsic 
function name list (includes OPEN, OPENA, 
and MAX class functions), and its type is 
not frozen or its type is the same as the 
intrinsic function, then the symbol table 
name part of the function is linked to the 
intrinsic function descriptive part. If 
the function type is different, it is 
classed external. 

If the function name is not found in any 
of the three lists, LIBA, LIB, or intrin­
sic, it is classed external. 

CEKBY -- Library Function Selector (LIBN) 

LIBN selects the appropriate library 
function name, based on the argument type. 
See Chart BQ. 

ENTRIES: There are three entry points: 
LIBN (CEKBY1), LIBNA (CEKBY2), and LIBNX 
(CEKBY3). P = SXS(J) address is the input 
parameter. 

EXIT: P6 contains the SXS address. 



OPERATION: LIBN has tnree entry poinL" 
LIBN, LlBNA, and LIBNX. LIEN dnd LIDNh are 
the entry points for functions with auto­
matic typing. LIBNA it> tne E:'ntry for auto­
matic functions beinglsed a:o drguments. 
LIBNX is the entry point for exponRntial 
library function selection. 

Using the argument type and the function 
index, the proper function name is selected 
(see Table 15). The fUnctio'1 name i:c; 
inserted in the symbol table, and the 
descriptive part entries filled if class is 
unknown. 

Table 15. Library Function NaIT.es 
r---------T-------------------------------l 
I Automaticl Argument Type I 
IFunction ~-------T-------T-------T------_1 
I Name I R*4 I R*8 I c*a I C*16 I 
t---------+-------+-------+-------+-------~ 
I EXP I EXP 'DEXP I CEXP ICDEXP I 
r---------+-------+-------+-------f------_1 
I LOG I ALOG 'DLOG I CLOG ICDLOG , 
t---------t-------+-------+-------+-------~ 
I LOGIO I ALOGIOI DLOGIOI CLOGIOICDLOGIOI 
r--------+-------+-------+·-------+------_1 
I ATAN I ATAN I DATAN I 0 I 0 I 
r--------f-------+-------+-------+-------~ 
I SIN I SIN I DSIN I CSIN ICDSIN I 
r---------+-------+-------+-------+-------~ 
I cos I COS I DCOS I ccos 'COCOS I 
r---------+-------+-------+-------+------1 
I SQRT I SQRT I DSQRT I CSQRT ICOSQRT I 
r---------+-------+-------+-------+-------~ 
I TANH I TANH I DT&~il I 0 I 0 , 
r---------~-------~-------~-------~------_1 
I Implicit Exponential Functions I 
r---------T-------------------------------~ 
I Base I Exponent Type I 
I Type t-------T-------T-------T-------~ 
I I 1*2 I 1*4 I R*4 I R*8 I 
r---------+-------+-------+-------+-------~ 
! 1*2 'FJXPJ I FJXPI i F'JAPR IFJXPD I 
r---------+-------+-------+-------+-------~ 
I 1*4 I FIXPJ I FIXPI I FIXPR IFIXPD I 
t---------+-------+-------t-------+-------~ 
I R*4 I FRXPJ I FRXPI I FRXPR IFRXPD I 
r---------+-------+-------+-------+------_1 
I R*8 I FDXPJ I FDXPI I FDXPR IFDXPD I 
r---------t-------t-------+-------+-------~ 
I C*8 I FCXPJ I FCXPI I 0 I 0 I 
r---------+-------+-------+-------+-------1 
, C*16 I FCDXJ I FCDXI I 0 I 0 I l _________ ~ _______ ~ _______ ~ _______ ~ _______ J 

CEKCB -- Constant Arithmetic Subroutine 
(ARITH) 

ARITH performs all constant arithmetic. 
See Chart BR. 

ENTRIES: ARITH has one entry point 
(CEKCB1) with input parameters as follows: 

P 2, P3 
FO, F2 
FO, F2 

FO thru F6 

Integer Constants 
Real Constants 
Complex Constants of 
type C*8 
Complex Constants of 
type C*16 

EXIT: No output parameters. 

OPERATION: If the operator is **, the 
dppropridte FORTRAN library function is 
called, based on the type of the base and 
exponent. If the operator is +, *, or /, 
ARITH does the arithmetic necessary based 
on operator and operand type. 

ARITH may be called upon to perform 
arithmetic which will cause overflow or 
divide check exceptions to occur. In order 
to diagnose these situations properly, sys­
tem macro SIR is called to enable module 
CEKCS to trap these interruptions and set 
appropriate flags. Prior to exit, system 
macro instruction DIR is called to disable 
these interruptions. 

CEKCG -- Term Processor (TRMPRO) 

TRMPRO processes a tenative subscript 
term prepared by SUBS and either combines 
it with a previous term or adds it to the 
TERMS list. See Chart BS. 

ENTRIES: TRMPRO has one entry point 
(CEKCG1), with the address of TTRM and 
TERMS in PS as input parameter. 

EXIT: There is a single output parameter: 
the address of TERMS in PS. 

OPERATION: If the tentative term has no 
variable factors, its constant factor is 
combined with OFFSET. If the tentative 
term has the same variable factors as a 
previous term already in TERMS, the terms 
are combined by adding their constant fac­
tors. Otherwise, the tentative term is 
added to TERMS as a new term. 

TRMPRO checks for too large a subscript 
expression. 

CEKCR -- Actual Argument Service Routine 
(AARG) 

AARG performs certain functions in con­
nection with actual arguments of function 
and subroutine calls. See Chart BT. 

ENTRIES: AARG has one entry point (CEKCR1) 
and two input parameters: the address of 
last HSTCK entry in PS, and the last SXS 
entry in P6. 

EXIT: P5 contains the address of HSTCK, 
and P6 contains the address of SXS. 

Section 3: Phase 1 71 



OPERATION: AAHG puts an arg'Jmentjefini­
tion entry in the PRF for a variable as 
argument of an abnormal :,unprogram. If 
this is not I:.he first argument (comma flag 
up), the type is checked dnd a corruna (,) or 
double comma (,,) operator is put. out 1:.0 
the EF. 

CERes -- Constant Arithmetic InterruLt 
(CHKINT) ._-----

CHKINr provides for treatment of inter­
ruptions from ~RITH and sets flags for 
issuance of a proper diagnostics. See 
Chart BU. 

ENTRIES: This routine is called by the 
standard linkage convention. There are 
three entry points: 

CEKCSl 

CEKCS2 

CEKCS3 
(CHKINT) 

Set flag for divide 
check int.erruptions 
Set flag for exponent 
overflow interruptions 
Return flags 
to caller 

Entry CERCS3 returns the interruption 
flags to the fields specified in the param­
eter list, which is one word long and con­
tains the address at which to store the two 
flag words. No other input or output pa­
rameters are used. 

EXIT: No output parameters. 

OPERATION: The CHXINT routine is called by 
ARITH to enable and disable CEKS, for 
fielding of exponent overfloA and divide 
check interruptions during constant arith­
metic. Any interruptions due to divide 
checks or exponent overflow cause the sys­
tem interruption processor to enter CHKINT 
at entries CEKCSl or CEKCS2, where a flag 
will be set, indicating that an interrup­
tion has occurred. On an exponent over­
flow, the contents of the Rl register in 
the ISA save area is set to infinity before 
exiting. 

This routine is called at entry CEKCS3 
by EXPR after a complete expression bas 
been processed, to see if any of the above 
interruptions occurred. 

CEKAB -- Extract Source character (ESC) 

ESC is used to obtain the next source 
character. See Chart BV. 

ENTRIES: There are two entry points: ESC 
(CEKAB1) returns the next nonblank source 
character; ESCB (CEKAB2) returns the next 
source character, including blanks. One 
input parameter, the address of the next 
available character in the source string, 
is passed by value in parameter register 
P3. The high-order 24 bits of parameter 

72 

register Pl are expected to be zeros. This 
routine uses only registers Pl, P2, and P3. 
The contents of any other registers except 
the linkage registers are not destroyed. 

~XIT: Olltput parameters are: 

l. Original source character, in register 
Pl. 

2. Internal code source character, in 
register P2. 

3. Updated source pointer, in register 
P3. 

OPERATION: Input :Jource data stored in the 
compiler intercom region is transmitted to 
the requesting routine, one character at a 
time. As each source character is 
extracted from the source input data, a 
translation is made from either EBCDIC or 
BCD character codes. This translated 
character set is a dense set value and is 
used for identification purposes only. The 
original character set is used for variable 
names in the symbol table and preset data 
in the object program. Values of the dense 
set are as follows: 

Character Dense Code 
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
1 7 
8 8 
9 9 
A 10 
B 11 
C 12 
D 13 
E 14 
F 15 
G 16 
H 17 
I 18 
,J 19 
K 20 
L 21 
M 22 
N 23 
a 24 
P 25 
Q 26 
R 21 
S 28 
T 29 
U 30 
V 31 
if 32 
X 33 
y 34 



z 35 
$ 36 

Blank 37 
... 38 

39 
/ 40 
* 41 

(Not Used) 42 
) 43 

44 
45 
46 

EOS 47 
48 

, 49 
(Not Used) 50 

& 51 
Others 52 

CEKAE -- Assemble Components (ACOMP) 

ACOMP assembles source characters into 
basic components for syntactical analysis. 
See Chart EW. 

ENTRIES: ACOMP has one entry pOint 
(CEKAE1) with no input parameter. 

EXIT: No output parameters. 

OPERATION: Each request for next com­
ponents returns an operand and the operand 
delimiter. The possible operand types are 
variable, constant, label, and nUll. The 
delimiter may be any of the ~rithmetic, 
logical, or relational operators, the right 
or left parenthesis, the comma, the end-of­
statement, or the label terminator 
delimiter. 

The assembled elements are placed in the 
component storage area of intercom (see 
Figure 17). Source characters, both origi­
nal and converted forms, are acquired by 
request to the extract source routine. The 
converted internal code is used as an index 
into the assemble components character 
table (see Table 16). By branching upon 
the value derived from the components 
character table, using the decision table 
status as the base, the appropriate action 
may be effected (see Table 17). 

As variables are assembled, a symbol 
table hash index from the variable hash 
table is derived for use by INVST in filing 
the nawe in the symbol table. 

As constants are assembled, their type 
is determined and appropriate filing rou­
tines invoked. 

! 
I 

CD cryp CFLG CLNG 

CSTP CHSH CDLM 

----. 

CV.Al 

[_.- /'" 
---------_._---

-=~,//'\; 

f~ 
Vi 

-------~------

CVAL (Cont.) 

Figure 17. Component Storage Area 

Legend for Figure 17 

Field Description 
CID 

CTYP 

CFLG 

CLNG 

CSTP 

CHSH 

CDLM 

Component ID: 
Null 
Variable 
Constant 
Label 

Operand Type 
Unknown 
Integer 
Integer 
Real *4 
Real *8 
Complex 
Complex 
Logical 
Logical 
Literal 

Flags 

o 
1 
2 
3 

Code 

*2 
*4 = 

*8 
*16 
*1 
*4 

in Hexadecimal 
00 
12 
32 
33 
73 
74 
F4 
01 
31 
02 

Length of CVAL in bytes 
(maximum = 256) 

Symbol Table Pointer for Jperand 

Variable Hash Total 

Component Delimiter Code 
... 0 

1 
/ 2 
* 3 
** 
) 

( 

EOS 
• LT. 
.LE. 
.EQ. 
.NE. 
• GE. 

4 
= 5 

6 
7 
8 
9 

10 
11 
12 
13 
14 

j 

Section 3: Phase 1 73 



CVAL 

·GT. 
.NOT. 
.AND. 
. OR. 
a 

15 
16 
17 
18 
19 (Label Delimiter) 

component Operand -- Value or 
Name 

Table 16. Assemble Components Character 
Table 

r--------------------T--------------------, 
I Internal Code I Component Code I 
~--------------------+--------------------1 
I 0 ! 1 I 
I 1-9 I 2 I 
I A-$ I 0 ! 
I + I 4 I 
I I 5 I 
I *' I 6 I 
I I 3 I 
I I 7 I 
I & I 8 I 
I / = ( ) , EOS I 9 ! 
I Others I 10 I l ____________________ ~ ____________________ J 

CEKCH -- File Real constant (FT1RC) 

FLRC files real and complex constants in 
the symbol table. See Chart BX. 

ENTRIES: FLRC has one entry point (CEKCHl) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: FLRC calls FCNV to convert the 
constant to floating binary. If the con­
stant is not part of a complex constant and 
the "don't file" flag is down, the constant 
is filed in the symbol table. 

If the constant is the real part of a 
complex constant, the value is saved and 
the routine returns to the caller. If the 
constant is the imaginary part of a complex 
constant, the real and imaginary parts are 
combined as a single constant. If the 
"don't file" flag is down, the real and 
imaginary parts are also filed in the sym­
bol table. 

Appropriate diagnostics are generated if 
the types of the two parts of a complex 
constant do not agree. The parts are made 
to agree with the larger type. 

CEKCI -- Insert Variable in Symbol Table 
(IVST) ---

IVST finds or makes a symnol table entry 
for an alphameric name. See Chart BY. 

ENTRIES: lVST has one entry point (CEK­
ell) ,with no input parameters. 

74 

EXIT: No output parameters. 

OPERATION: IVST uses the name hash valup 
to select a chain anchor in the variable 
hash table. If the chain is not empty, the 
chain entries are searched for one with the 
present name. If the chain is empty or an 
entry is not found, a new entry is made for 
this name and added to the chain. The sym­
bol table descriptive part pointer for tne 
found or made entry is set in CSTP. 

CEKCN -- Decimal to Binary Integer 
Conversion (ICNV) 

ICNV converts a decimal integer to a 
binary integer. See Chart BZ. 

ENTRIES: ICNV has one entry point (CEKCN1) 
and no input parameters. 

EXIT: No output parameters. 

OPERATION: ICNV performs the conversion by 
extracting the digits from left to right, 
multiplying the intermediate value by 10 
for each digit, and adding that digit to 
the intermediate value. A maximum of 16 
digits is allowed, and the result is a dou­
bleword binary integer. The first word of 
the result is placed in the second word of 
CVA.L, and the second word of t;1e result is 
placed in the first word of CVAL. 

CEKCP -- Decimal to Floating Binary 
Conversion (FCNV) 

FCNV converts a decimal constant to 
floating binary. See Chart CA. 

ENTRIES: FCNV has one entry point (CEKCP1) 
and no input parameters. 

I EXIT: No output parameters. 

OPERATION: FCNV calls ICNV to convert the 
decimal digits to a binary integer. This 
integer is then converted to floating point 
and normalized.rhe number is then scaled, 
to account for the exponential and frac­
tional portions. Appropriate diagnostics 
are generated if the exponent and magnitUde 
ranges are exceeded. 

CEKCQ -- File Integer Constant (FLIC) 

FLIC files integer constants in the sym­
bol table. 

ENTRIES: FLIC has one entry point 
(CEKCQ1). 

EXIT: No output parameters. 

OPERATION: FLIC calls ICNV to convert the 
constant to integer binary. If the "don't 
file" flag is down, the integer is then 



Table 17. Assemble Components Decision Table 
r------T-----~------T------T------T------T------T------T------T------T------T-------, \ \ r ! I \ I \ I \ \ EOS \ Non \ 
I Code I A-$ I 0 I 1-9 I I + I I * I I 6 1/= (.) I FORTRAN \ 

S ~--~t---o--t---l--t---2--t---3--t---~--t---5--t---~--t---;--t---;--t---;--t--l;---1 
~~--~------+------+------+------+------+------+------+------+------+------+-------; 

T I 0 I A I D I F I I I Z 1 Z I ZZ I AZ I AC \ Z 1 E \ 
~------+------+------+------+------+------+------+------+------+------+------+-------; 

A \ 1 I BIB I B I U I C I C \ cc I E I E \ C \ E \ 
~------+------+------+------+------+------+------+------+------+------+------+-------; 

T I 2 \ G I D I F I V I H I H \ cc I E I E \ H \ E \ 
~------+------t------+------+------+------+------+------+------+------+------+-------; 

u I 3 I G 1 FF \ FF I V \ H I H I cc I E I E I H \ E I 
~------+------+------+------t-----_+------t------t------+_----_+------+------+-------; 

SI 41 JI MI MI EI EI E\ E! E\ E\ EI E \ 
~------t------t------+------t------+------+------+__----+------t------+------+-------; 
! 5 \ K I E I ElL I E I E I E I E I E I E \ E I 
~------+------+------+------t------t------t------t------+------t------t------+__-----; 
I 6 I N I MM I MM I SIT I T I cc \ E I E I TIE I 
r------t------+------+------+_-----+------+------t------+------+------+------+-------; 
171 E I 0 I 0 I E I P I Q 1 E I E I E I E \ E I 
r-----_+------t------t------t------+------+------+------+------+------+------+-------; 
181 EI 01 01 EI EJ EI EI EI E\ EI E \ 
r------+------+------+------+------+------t------t------t------+------+------+-------; 
! 9 I E I R \ R 1 SIT I T I cc 1 E I E I TIE I 
~-----_+-----_+------+------t------t------t------t------t------+------+------+-------; 
I 10 I E I E I E I SIT I T I cc I E lEI TIE I 
r------+-----_+------+------+------+------t------+------+------+------+------+-------; 
\ 11 \ X I E I E I E I E I E I E I E I E I E I E I 
r------f------+------+------+------f------t------+------t------t------f------+---~---; 
I 12 1 W 1 M I MIS I TIT 1 CC I E \ E I TIE I 
r------+------t------+------+------t------+------+------f------t------+------+-------~ 
I 13 I E I E I E I AB I z I Z I ZZ I E I E I Z I E I 

r------t------+------+------+------+------+------+------+------+------+------+-------; 
I 14 I Y I 0 I 0 I E I P I Q I E I E \ E I E I E I 
r-----_+------t-----_+------+------+------+------t------+------+------+------+-------; 
\ 15 \ AY I AY I AY I AY I AY I AY I AY \ AX I AY \ AY I AY I 
r------+------+------+------+------+------t------+------+------+------+------+-------; 
I 16 1 AT I AT I AT 1 AT I AT I AT 1 AU I AT I AT I AT \ E I 
r-----_+------+------+------+------+------+------t------+------+------+------f-------; 
I 17 I E I E \ E IE! AV I AV I AV I E \ E I AV I E \ 
~------+------t------+------t------f------+_-----t------+------+------f------+-------; 
I 18 I E I E I E I AS I Z I Z I ZZ I E I E I Z I E I L ______ ~ ______ ~ ______ ~ _____ ~ ______ ~ ______ ~ ______ ~ ____ ~ ______ L ______ ~ ______ L _______ J 

filed in the symbol table. A diagnostic is 
generated if the constant exceeds 2 31-1. 

CERBA -- Begin Loop Processor (BGNLP) 

BGNLP analyzes and encodes the begin 
loop information for the DO statement and 
for implied loops within an I/O list. See 
Chart CB. 

ENTRIES: BGNLP has one entry point (CEK­
BAt) and no input parameters. 

EXIT: No output parameters. 

OPERATION: BGNLP begins by making a call 
on ACOMP to acquire the induction variable 
for the loop. If the characteristics of 
the induction variable are satisfactory. 
flags are set to indicate the special use 
of this variable for the duration of the 

loop. Calls are then made on subroutine 
CKLIM to acquire, analyze, and appropriate­
ly code the lower loop limit, upper loop 
limit, and the loop increment, if present. 
If the loop increment is not given. the 
pointer for integer 1 is supplied. A non­
source label is created and filed in the 
Symbol Table for the loop top, and the 
begin loop PRF entries are generated. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CERBB -- End Loop Processor (ENDLP) 

ENDLP encodes the end loop entries for 
explicit loops specified by a DO statement 
and for implied loops within an I/O list. 
See Chart CC. 

Section 3: Phase 1 75 



ENTRIES: ENDLP has one entry point 
(CEKBB1) and no input paramecers. 

EXIT: No output parameters. 

OPERATION: The end loop PRF entry is 
generated, and successive calls for the 
four loop parameters are made on subroutine 
CLLIM. I f the loop parameter is a vari­
able, CLLIM determines whether this is the 
lowest loop in which.it.- is active. If it 
is, CLLIM clears the symool table flags and 
indicators which distinguish the variable 
for the duration of a loop. 

CEKCJ -- Check Limits (CKLUn 

CKLIM checks 00 loop parameters for 
validity. See Chart CD. 

:E.'NTRIES: CKLIM has one entry point 
-(CEKCJl> and one input parameter: symbol 
table pointer to loop induction variable in 
Pl. 

EXIT: No output parameters. 

OPERATION: For each lower limit, upper 
limit, and increment of a DO statement or 
I/O loop, CKLIM verifies that the limit is 
either a variable or constant integer. For 
a variable the symbol table entry is marked 
to indicate the level of end loop at which 
the unredefinable property of a loop limit 
should be terminated. 

CEKCK -- Clear Limits (CLLIM) 

CLLIM removes information from the sym­
bol table entries for loop parameters at 
the loop end. 

ENTRIES: CLLIM has one entry point 
(CEKCK1) and one input parameter: symbol 
table pointer to loop parameter in P2. 

EXIT: No output parameters. 

OPERATION: For a variable loop parameter, 
if the loop being ended is the outermost 
loop in which this variable is a parameter, 
CLLIM clears the ULEV field and lowers the 
"must not be defined- flag in the variable 
symbol table entry. 

CEKBW -- I/O List Processor (IOLST) 

IOLST analyzes and encodes the list ele­
ments for READ, WRITE, PRINT, and PUNCH 
statements. See Chart CEo 

ENTRIES: IOLST has one entry (CEKBWl) and 
no input parameters. 

EXIT: No output parameters. 

76 

OPERATION: IOLST makes two scans over the 
list elements. The first scan detects and 
codes the presence of any implied loops. 
The second pass classifies the variables 
(if required), generates the EF and PRF 
entries, and generates the begin and end 
loop entries, as required. The I/O trans­
mission and end transmission library rou­
tine entry names are filed in the symbol 
table and marked as class external. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKCD -- Format Label Processor for I/O 
Statements (FLABL) 

FLABL processes a FORMAT statement num­
ber, as used in an I/O statement. See 
Chart CF. 

ENTRIES: FLABL has one entry point 
(CEKCD1) and no input parameters. 

EXIT: No output parameters. 

OPERATION: FLABL checks the label, files 
it in the symbol table, and fills in the 
LABF field in the PRF entry being built. 

CEKCE -- Read Transfer Processor for I/O 
Statements (RTRAN) 

RTRAN processes ERR and END labels, as 
used in I/O statements. See Chart CG. 

ENTRIES: RTRAN has one entry point (CEK­
CEll, with no input parameters. 

EXIT: No output parameters. 

OPERATION: RTRAN performs the necessary 
checking and sets the PRF entry fields for 
the error (ERR) and end of file (END) con­
dition transfer labels. 

CEKCF -- FORMAT or NAMELIST Name Processor 
(FNAME) 

FNAME processes variable FORMAT designa­
tors or NAMELIST names, as used in I/O 
statements. See Chart CH. 

ENTRIES: FNAME has one entry point 
(CEKCF1), with no input parameters. 

EXIT: No output parameters. 

OPERATION: For a namelist name FNAME sets 
the ID and LABN fields in the PRF entry 
being built. For a variable FORMAT, FNAME 
sets the LABF field. 



CEKAH -- Initial Value Data Specification 
Processor (IDATA) 

IDATA analyzes and encodes initial value 
data for the type (integer, real, complex, 
and logical) and DATA statement processors. 
See Chart CI. 

E~TRIES: IDATA has two entry points, TDATA 
(CEKAH1) and DDATA (CEKAH2), for calls by 
the type and DATA statements processors, 
respectively. The input parameter for 
TDATA is a symbol table ?ointer for the 
variable in parameter regist.er P2. The 
input parameters for DDATA are a parameter 
list address in parameter register P2 and 
the number of items in t~e pArameter list 
as fullword, right-justified binar? value 
in parameter register Pl. The parameter 
list is made up of 2-word ite~s. The first 
word is a symbol table pointer, and the 
second word is a fullword offset value. 

EXIT: No output paramet'=!rs. 

OPERATION: IDATA has two entry pOints, one 
for calls by the type statements and one 
for calls by the DATA statement. After 
initialization, each entry point calls on 
internal subroutine IVAL. which processes 
the actual value specifications. 

Appropriate diagnostics are printed if 
any source errors or incongruities are 
encountered. 

CEKCL -- Initial Value Processor (IVAL) 

IVAL processes constants used as initial 
values in Type or DATA statements. See 
Chart CJ. 

ENTRIES: IVAL has two entry points, IVAL 
(CEKCLl) and IVALl (CEKCL2). Input parame­
ters are the symbol table pointer of vari­
able in P2 and the current preset data top 
in P6. 

EXIT: Output parameters are 

P5 0 if constant not entered into data 
table 
1 if constant ~uccessfully entered 
into data table 

P6 Updated Preset Data Top 

OPERATION: IVAL first checks the variable 
to which the initial value is being 
assigned and opens the preset data entry. 
It then joins with entry point IVALl to 
process the initial data. If a repetition 
factor is present, it is converted and 
placed in the preset data entry. The ini­
tial value constant is then processed, con­
verted, and added to the preset data entry. 

CEKAF -- Array Dimension Specification 
Processor (ARDIM) 

ARDIlv! analyzes and encodes the dimension 
specifications for an array, when encoun­
tered with a DIMENSION, COMMON, or type 
statement. See Chart CK. 

ENTRIES: ARDIM has one entry point (CEKA­
FA) and one input parameter. The symbol 
table pointer of the array name is required 
in parameter register P2. 

EXIT: ARDIM returns with parameter regis­
ter P2 unchanged. No other parameters are 
returned. 

OPERATION: If the array name class is 
"unknown" or "Simple variable," it is 
changed to "array variable," and the dimen­
sion values are scanned. If the class is 
already array variable, the source charac­
ters, through the next right parenthesis, 
are spaced over before returning to the 
caller. 

The dimension values may be either 
integer constants or integer variables. If 
they are constants, the appropriate dimen­
sion table entry is made, depending upon 
whether the array name is a subprogram 
argument. If they are variables, the 
dimension values and the array name must 
both be subprogram arguments. If so, the 
symbol table flags are appropriately set to 
reflect the use of this variable as a vari­
able dimension, and a dimension table entry 
for a variable dimension is made. 

CEKCC -- Label String Processor (LBSTR) 

LBSTR processes a string of labels, as 
encountered in assigned and computed GO TO 
instructions. See Chart CL. 

ENTRIES: LBSTR has one entry point (CEKC­
CA) and one input parameter: P2 contains 
the PRF address of the line number field of 
the PRF entry being formed. 

EXIT: Output parameters are 

P2 contains the source character fol­
lowing the right parenthesis of 
label string. 

P3 = contains the PRF address of the 
last label added. 

P4 contains the count of the number of 
labels in the string. 

OPERATION: For each label ACOMP is called 
for the label value. The value is checked 
and added to the PRF entry being built. 
When a right parenthesis is found, LBSTR 
returns. 

Section 3: Phase 1 77 



CEKAC -- Statement of Identification (SID) 

SID is used to identify the type of 
source statement. See Chart eM. 

ENTRIES: SID has one entry point (CEKAC1), 
and no input parameters are required. 

EXIT: One output parameter, the statement 
ID number, is returned in parameter regis­
ter P2. 

OPERATION: An initial recognition is made 
to identify the statement as either an 
assignment or a nonassignrnent statement 
(see Table 18). A precedence table (Table 
19) is used, from which new status values 
are extracted and used for branching. Non­
assignment statements are analyzed further, 
until a unique identification is made. 
This is done in two steps. First, the 
first two characters of the name are 
matched against List 1 (see rable 20). If 
this does not yield a unique identifica­
tion, the first four characters of the name 
are matched against List 2 (see Table 20). 
The resulting ID numbers are shown in 
Table 21. 

CEKAJ -- Statement Label Processor (LABL) 

LABL processes the statement label and 
determines if any loops are ended. See 
Chart CN. 

ENTRIES: LABL has one entry point (CEKA­
JA), with no input parameters required. 

EXIT: No output parameters. 

Table 18. Assignment/Nonassignment 
Character Table 

r-----------------T-----------------------l 
I Internal Code I Identification Code ! 
t-----------------+-----------------------~ 
I A-G I 2 ! 
! H I 1 f 
I I I 2 ! 
I J-K I 1 I 
I L I 2 I 
! M I 1 I 
I N I 2 I 
I 0 I 1 I 
I P I 2 I 
! Q I 1 I 
I R-S I 2 ! 
I T-V I 1 I 
I rI I 2 I 
I X- Z, $ I 1 I 
I 0-9 I 3 I 
I ( I 4 I 
I ) I 5 I 
I I 6 I 
I I 7 I 
I EOS* I 8 I 
I I 10 I 
I All Others I 9 I 
t-----------------~-----------------------~ 
I *EOS ~ End of Statement I l _________________________________________ J 

OPERATION: LABL checks to ensure that the 
statement to be processed is not a condi­
tional statement of a Logical IF and is not 
inside a BLOCK DATA program. If this is 
the case, the label is converted to its 
binary value. If the statement is in a 
BLOCK DATA program or is a conditional 
statement of a Logical IF, an error message 
is produced, and the scan is terminated. 

Table 19. Assignment/Nonassignment Precedence Table 
r------T------T------T------T------T------T------T------T------T------T------, 
I ID I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 1 9 I 10 I 
I Code I I I 1 I I I I I I I 
~------+------+------+------+------+------+------+------+------+------+------~ 

S I I I I I I I I I I I I 
T 11 I 9 I 2 I 10 I 10 I 10 I 10 I 10 I 11 I 10 I 10 I 
A t------+------+------+------+------+------+------+------+------+------+------~ 
TI 2 12 12 12 I 3 18 I 81 7 I 8 18 18! 
u t------+------f------+------+------+------+------t------+------+------+------~ 
SI 3 I 41 4 1 5 1 8 16 13 18 18 I 3181 

78 

t------t------+------+------+------+------+------+------f------+------+------~ 
14141414181613181813181 
t------t------f------+------t------+------+------+------+------+------+------~ 
I 5! 81 81 51 816131 8 18131 8 1 
r------+------+------+------+------+------+------+------+------+------+------~ 
16181818181818191818181 
r------f------+------+------t------+------+------f------+------+------+------~ 
171717171919! 81 91 919191 L ______ L ______ ~ ______ L ______ L ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ L ______ J 

8 - Nonassignment Exit 
9 - ASSignment Exit 

10 - Error Exit 
11 - Blank Statement 



Table 20. Nonassignment Type statement 
IdentifiGation 

r--------T-----------------T--------------, 
I I I # Characters I 
I List 1 I Statement Name I in Name I 
t------+-----------------+--------------~ 
I IF I IF I 2 I 
I GO I GO TO I 4 I 
I DO I * I I 
I CO I * I I 
I WR I WRITE I 5 I 
I RE I * '. -- I I 
I FO I FORMAT I 6 I 
I CA ICALL I 4 I 
I D1 I DIMENSION I 9 I 
I AS I ASSIGN I 6 I 
I NA I NAMELIST I 8 I 
I EQ I EQUIVALENCE I 11 I 
I LO I LOGICAL I 7 I 
I IN I INTEGER I 7 I 
I 1M I IMPLICIT I 8 I 
I EX I EXTERNAL I 8 I 
I EN I * I I 
I BA I BACKSPACE I 9 I 
I SU I SUBROUTINE I 10 I 
I FU I FUNCTION I 8 I 
I PR I PRINT I 5 I 
I PU I PUNCH I 5 I 
I BL I BLOCK DATA I 9 I 
I OA I DATA I 4 I 
I ST I STOP I 4 I 
I PA I PAUSE I 5 I 
t--------+-----------------+--------------~ 
I I I # Characters I 
I List 2 I Statement Name I in Name I 
t------+-----------------+--------------~ 
I READ I READ I 4 I 
I END Eos I END I 3 I 
I COMM I COMMON I 6 I 
I RETU I RETURN I 6 I 
I REWI I REWIND I 6 I 
I CONT I CONTINUE I 8 I 
I ENDF I END FILE I 7 I 
I REAL I REAL I 4 I 
I COMP I COMPLEX I 7 I 
I ENTR I ENTRY I 5 I 
! DOUB I DOUBLE PRECISION I 15 I 
t--------L--------------l.---------------t 
1 * Not unique. I l _________________________________________ J 

If the label field is nonzero, a label 
definition PRF entry is generated, and the 
DO loop pushdown list is scanned to see if 
any loops are terminated. If the no-flow 
flag is up, the no-flow indicator in the 
PRF entry is set. 

If the label field is blank and if the 
no-flow flag is up, a diagnostic is 
printed, indicating that the statement is 
not accessible. If the ISP option is on, 
TEVCRL is called to create a label, and 
processing continues with forming the PRF 
entry. 

CEKBQ -- Fallthrough Determination (FALTH) 

FALTH is called by EXEC2 to determine if 
a label reference in the statement preced­
ing the current one refers to the current 
statement. See Chart CO. 

ENTRIES: FALTH has One entry point (CEKB­
QA) and no input parameters. 

EXIT: No output parameters. 

OPERATION: FALTH checks to see if the cur­
rent statement was labeled. If it was not, 
a normal exit is taken. If it was labeled, 
the PRF linkS are followed until the label 
definition entry is reached. The statement 
number in the label definition PRF entry is 
saved, and the link followed to the pre­
vious PRF entry. If that PRF entry is a 
label definition or an argument definition 
entry, the link is followed to the next 
entry, and so on. If the PRF entry is any 
of the GO TO entries, or a CALL, arithmetic 
IF, READ, or READ with namelist entry, the 
label references in the statement are 
matched with the statement number saved 
from the label definition. If a match is 
found, the label reference number is set to 
negative. 

The occurrence of a negative statement 
number in succeeding phases results in 
object code optimization. If the PRF entry 
is other than those mentioned above, a 
normal exit is taken. 

Table 21. Statement 10 Numbers 
r----------~---~-------------------T----' 
I I ID I 1 ID I 
I Executable I No.1 Nonexecutable 1 No.1 
t-----------+----+-------------------+----~ 
I BLANK I 0 I BLOCK DATA 18 I 
I ASSIGNMENT I 1 I COMMON 19 I 
I ASSIGN I 2 I DATA 20 I 
I BACKSPACE I 3 I DIMENSION 21 I 
I CONTINUE I 4 I END 22 1 
I END FILE I 5 I ENTRY 23 I 
I PAUSE I 6 I EQUIVALENCE 24 I 
I PRINT I 7 I EXTERNAL 25 I 
I PUNCH I 8 I FORMAT 26 I 
! REWIND I 9 I FUNCTION 27 1 
I WRITE I 10 I IMPLICIT 28 I 
I READ I 11 I NAMELIST 29 I 
I CALL I 12 I SUBROUTINE 30 I 
I STOP I 13 I COMPLEX 31 I 
I RETURN I 14 I DOUBLE PRECISION 32 I 
I GO TO I 15 I INTEGER 33 I 
I IF I 1.6 I LOGICAL 34 I 
I DO I 17 I REAL 35 I 
I I I STATEMENT FUNCTION 36*1 
t-----------l.---~------------------L----~ 
,*This ID is never set by SID, but is set 1 
I by FYPR. I l _________________________________________ J 

Section 3: Phase 1 79 



CEKCA -- Diagnostic Mesc;age Cenerator (ERR) 

ERR generates diagnostic messages tor 
the :::;tatement processors wrle:lcver any 
source errors are encountereel. See Chart 
CPo 

ENTRIES: P,RR has four entry points. ERRl 
(CEKCAA} is used for warning messages, ERR2 
(CEKCAB) is used for serious error mes­
sages. ERRD (CEKCAC) is used for serious 
error messages associated with statement 
deletion, and ERR3 (CEKCAD) is used for 
fatal error messages associated with abor­
tive end of compilation. The input parame­
ter for 311 entry points is the message 
number in register P2. 

EXIT: No output parameters. 

OPERATION: This routine prepares a parame­
ter list for the compiler executive subrou­
tine RDM (CEKTE). and calls ,WM to put out 
a diagnostic message. The parameters for 
RDM are determined by the message number 
presented to this routine. Each message 
number indicates a list of four halfword 
indicators. Each nonzero indicator either 
specifies a piece of prepared text, whose 
length and location are to be added to the 
RDM parameter list, or specifies a' code 
branch to perform a special operation to 
obtain material for the RDM parameter list. 
A message number for which indicators have 
not been provided causes a special RDM pa­
rameter list to be prepared, giving the 
message number. 

The local maximum error code is updated by 
this routine, according to the entry used. 
The delete flag is raised when the ERRD 
entry is used. 

80 



INTRODUCTION 

Phase 2 performs several major func­
tions. Stor~ge assig~fllents dre made for 
all source program variables, taking into 
account the effects of COMMON, EQUIVALENCE, 
and DIMENSION statements. The source pro­
gram flow and DO loop structure are ana­
lyzed to verify that all referenced labels 
are defined, to determine that all flow 
across loop boundaries is legal and to mark 
loops for materialization of the loop vari­
able (keeping it in its memory cell), or 
for marking the loop unsafe (minimum opti­
mization) when flow conditions demand it. 

ROUTINE DESCRIPTIONS 

Phase 2 routines bear rnn~nonic titles as 
well as coded labels. The 5-character 
coded labels begin with the letters CEKJ; 
the fifth letter identifies d specific rou­
tine. Various entry points to a routine 
are identified by a sixth character, a 
digit, added to the coded label; for 
example, the coded label for the diagnostic 
message generator variable routine is 
CEKJH, and there are entry points CEKJH1, 
CEKJH2, and CEKJH3. When reference is made 
to a compiler executive routine or entry 
point, the mnemonic title is used, followed 
immediately by the corresponding coded 
label enclosed with parentheses. 

There are no hardware configuration 
requirements for any of the Phase 2 rou­
tines. All these routines are reenterable, 
nonresident, nonprivileged, and closed. 
Except for PHASE2 (CEKJA), Which uses stan­
dard, type I linkage, all Phase 2 routines 
use restricted linkage. 

The relationships of routines in this 
phase are shown in the following nesting 
chart (Figure 18) and decision table (Table 
22). The relationships are shown in terms 
of levels; a called routine is considered 
to be one level lower than the calling rou­
tine. Phase 2 controller PHASE2 is consid­
ered to be level 1. 

CEKJA -- (PHASE2) 

PHASE2 controls the overall proceSSing 
of Phase 2. See Figure 19. 

ENTRIES: This routine is entered using 
standard, type I linkage. It calls the 
other routines used in Phase 2 by 

SECTION 4: PHASE 2 

restricted linkages. It has one entry 
point, CEKJAl, and one parameter, the 
executive intercom region. 

EXITS: PHASE2 has one normal exit to Exec. 

Abnormal exits are converged to the Exec 
with return codes (RC) 8 and 4. Return 
code 8 specifies an irrecoverable condition 
and is referred to mnemonically as the 
ABORT return code. Machine or compiler 
errors (MCERR) are indicated by return code 
4. 

OPERATION: On entrance from Exec, PHASE2 
initializes itself and invokes the two main 
routines: VSCAN and FSCAN. (See Figure 
19). VSCAN makes storage aSSignments using 
the storage specification list for informa­
tion about COMMON and EQUIVALENCE state­
ments. FSCAN scans the PRF to perform the 
flow and loop analysis. 

CEKJC -- Storage Assignments for Variables 
(VSCAN) 

VSCAN makes storage aSSignments for all 
variables in a source program, and consists 
of three parts: VSCAN1, VSCAN2, and 
VSCAN3. See Chart CQ. 

ENTRIES: VSCAN has one entry pOint 
(CEKJC1) and is invoked by PHASE2. There 
are no input parameters. 

EXITS: VSCAN returns to the Phase 2 execu­
tive with the normal, ABORT, or MCERR 
return codes. 

OPERATION: VSCAN assigns storage space for 
all variables. Assignments are made in 
certain storage classes. The status of 
each storage class is kept up to date in 
its storage class table entry (see Appendix 
A). Non-COMMON variables are assigned in 
storage class 6, blank COMMON in storage 
class 9, and named COMMON in as many of 
classes 10-127 as are needed. Each symbol 
table variable entry has its STCL field 
filled with the appropriate storage class 
and its SLOC field filled with an aSSign­
ment relative to the base of that storage 
class. The storage class table entry for 
each class includes the number of bytes 
already assigned in that class; the entry 
also indicates the next available space. 

Section 4: Phase 2 81 



Level 

PHASE 2 

I 
r---i- ! 

'iSCA"I l=SCAN 

I 

* 

4 

l l l 
I FORMAT I ~..AE [ e;N' I 

i 1 

! (~ ~-'----

ISP ( fLL 
\.. ) 

r-
I ox I 

Figure 18. Phase 2 Nesting Chart 

82 



Table 22. Phase 2 Decision Table 

Routine:------------Phase 2-----------------------------------------Level: 1 ------------
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
IRoutine I Usage IRoutines I Calling Conditions I 
r--------+--------------------------+---------+------------------------------------------1 
IPHASE2 Icontrols the operat~ion of IV SCAN IEntereci unconditionally to make the memory I 
I I Phas e 2. I I assignments. I 
! I I FSCAN IEntered unconditionally to scan the PRF tol 
I I I I perform the flow and loop analysis. I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase 2-----------------------------------------Level: 2 ------------
r--------T-------------------------T---------T------------------------------------------, 
!VSCAN IMakes the memory assign- IDX IIf an error condition is found, entered I 
I I ments for all variables. I I to print the error message. I 
1---------+--------------------------+---------+------------------------------------------1 
I FSCAN I Does the flow and loop IRTNl IEntered for each label reference to place I 
I I analysis including label I I an entry in the Symbol Table. I 
I I processing, illegal I LAB IEntered for each label reference to check I 
I I transfers, unsafe loops, I I the legality of transfers into and out I 
I I and COMMON and formal I I of loops. I 
I I argument definition IISP IEntered for each label reference to check I 
I I points. I I for a proper Symbol Table entry. I 
I I I FORMAT !Entered for each I/O statement reference I 
I I ! Ito a FORMAT number to check for a proper I 
I I ! I Symbol Table entry. I 
I I ITEVFLL IAn Exec routine entered for each label I 
I I I (CEKTFG) I definition to file an entry in the I 
I I I I symbol table. I 
I I IDX IEntered when an error condition is found I 
I I I I to print the error message. I l ________ ~ ________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase 2-----------------------------------------Level: 3 ------------
r--------T-------------------------T---------T------------------------------------------, 
IRTNl IPlaces label references ITEVFLL IAn Exec routine entered to make the label I 
I ! in the Symbol Table. I (CEKTFL) I entry in the Symbol Table. I 
t--------+-------------------------+---------+------------------------------------------1 
I LAB IChecks the flow as IISP I Entered for each label reference to de- I 
I I related to DO loops. I I termine if a legitimate Symbol Table I 
I I I I entry exits. I 
I I IDX IEntered if an error condition is found to I 
I I I I print out the error message. I 
r--------+-------------------------t---------+------------------------------------------~ 
IFORMAT iChecks to see that refer-IDX IEntered if an error condition is found to I 
, I enced FORMAT statements I I print out the error message. I 
I I are properly defined I I I 
I I in the Symbol Table. I I I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase 2-----------------------------------------Level: 4 -----------­
r--------T-------------------------T---------T------------------------------------------, 
IISP IChecks to see that refer-IDX IEntered if an error condition is found to I 
I I enced statement labels I I print out the error message. I 
! I are properly defined in I I I 
I I the symbol table. I I I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Routine ------------Phase 2-----------------------------------------Level: 5 ------------
r--------T-------------------'------T---------T------------------------------------------, 
IDX ITo generate the error IRDM IAn Exec routine entered for each error I 
I I message I (CEKTE) I to print the line. I 
I I I I I l ________ L _________________________ ~ _________ ~ __________________________________________ J 

Section 4: Phase 2 83 



?hase 2 

Enter 

It I 
i Phose2 . I 
! Initial; ,-::'":If: on I 

L__J 

f--.-.--. J __ . -'. 
~..':-'.S_Qli'.L--j 

A5:.SI'0'1 i 

! .S,tOl".O~~ to ! 

u'''r'--' 
/" '. 

RC 0 ~ ',>_N_O_ ....... ( Exit 

"- .. ----~-----

hit 

Figure 19. Phase 2 General "'low 

All symbol table entries except con­
stants and labels are reI inked from the 
hash-table-based chains used in Phase 1. 
The variables of each storage class now 
form a chain, linked in order of assign­
ment. External reference, namelist, and 
entry entries form three additional chains. 

Description (VSCAN1): All chains based on 
the variable hash table are scanned, and 
each entry is examined. Those marked as 
external reference, namelist, or entry are 
linked into their appropriate chains. 
Those marked variable but flagged as COMMON 
or EQUIVALENCE are ignored, since they will 
be processed later. Those marked variable 
but flagged as formal argument are also 
ignored. All other non variable entries are 
ignored. 

For each non-COMMON, non-EQUIVALENCE, 
non-formal-argument variable encountered, 
an entry in a sort table is made (see 
Figure 20) containing the number of dimen­
sions, the type 3ize mask, the amount of 
storage required, the type indicator, and 
the symbol table pointer. When all symbol 
table entries have been scanned, the sort 
table is sorted to increasing value of 
these fields. The result is that all 

84 

o 4 8 16 31 
r----T----T-------------------------------, 
I ND I TM t sz I 
t----~----+------------T------------------1 
I TY I Unused I VAR I l _________ ~ ____________ ~ __________________ J 

ND Number of dimensions (0-7) 
TM Type/size mask: 

o Logical*i 3 Real*4 
1 Integer*2 7 Real*8 
3 Logical*4 7 Complex*8 
3 Integer*4 F Complex*16 

SZ Total storage requirement 
TY Type: 1 Logical 

2 Integer 
3 Real 
4 Complex 

VAR Symbol Table name part pointer 

Figure 20. Sort Table Entry 

simple (undimensioned) variables come 
first, then all i-dimensional arrays, etc. 
Within a dimenSionality, variables of the 
same type fall together, those requiring 
less storage preceding those needing more. 

The variables are then assigned in the 
sorted order, to maximize the possibility 
for sharing address constant cover and sub­
scripts between variables. The assignments 
are made in storage class 6, with each 
variable being assigned to the next avail­
able byte on a boundary suitable for the 
type. At the same time, the variable sym­
bol table entries are linked into the vari­
able chain. 

Description (VSCAN2): VSCAN2 scans the 
storage specification list, proceSSing the 
COMMON variables and providing preliminary 
proceSSing for variables appearing in EQUI­
VALENCE statements. The information from 
COMMON statements filed in the storage 
specification list is scanned. Each vari­
able is given an aSSignment (STCL and SLOC) 
in the storage class for its CO~~ON block 
and linked into the symbol table chain for 
that block. The size of the block is 
increased for each variable by the space 
required for the variable. 

If the available assignment for a COMMON 
variable is not at the proper boundary 
(halfword. fullword, doubleword) for the 
type, a warning message is produced. (In 
the object program storage layout all 
storage classes will start on a doubleword 
boundary. ) 

As the storage specification list is 
being scanned and COMMON variables ar2 pro­
cessed, the information from EQUIVALENCE 
statements also receives preliminary pro­
cessing. The material appearing in a set 
of parentheses in an EQUIVALENCE statement 
is called a group; group numbers are 



assigned to groups sequentially, in order 
of occurrence. As a.n 2:QUIVALENCE entry is 
encountered, VSCAN2 must detErmine whether 
a variable is of tne tYPE:' 'FF". If. so, 
VSCAN2 computes the offset by ~,earching for 
dimension information in the Dimension 
Table (whose specifications may occur in 
DIMENSION, COMMON or ex~licit TYPE state­
ments). If insufficient or no dimension 
information is found, an E level diagnostic 
is issued and an offset is computed by 
defaulting to the first subscript. ~ro­
cessing continues to the next; variable or 
group, if any, until. all groups in the 
EQUIVALENCE statement are erllausted. 

If a variable is of the type 'FF' and 
dimension information permits an offset to 
be computed, VSCAN2 overlays the last sub­
script entry (EE2, EE3, EE4 or EE5) with 
the newly formed EEl. With this technique 
VSCAN2 can consistently step through t.1e 
EQUIVALENCE entries by an increment of one 
(1). For each occurrence of a variable in 
an EQUIVALENCE statement, an entry is made 
in the variable list (see Appendix A for 
variable list format). The entry consists 
of the symbol table pointer, the group 
number, and the offset in bytes, and repre­
sents the equation 

(base of group) = (base of variable) + 
offset 

Base-of-group and base-of--variable are 
unknowns. Base-of-variable represents the 
eventual storage assignment to be ~ade for 
the variable. Base-ot-group represents the 
assignment '..mich would be made to a vari­
able appearing in the group with no 
subscript. 

Description (VSCAN3): After the storage 
specification list scan is completed, the 
variable list is sorted by increasing or­
der, with the symbol table pointer as the 
major key and the group, there will be con­
secutive entries for that variable in the 
sorted list. These consecutive entries in­
dicate connections between different 
groups. See Figure 21. 

The sorted list of variables is scanned. 
In the case of consecutive pairs involving 
the same variable, each such pair repre­
sents a pair of equations: 

(base of group~) = (base of 
variable) + offset1 , 

(base of group2) = (base of 
variable) + offset 2 • 

where the number of group2 :2: number of 
group1' 

Variable List Entry 

o 16 31 
r--------------------T--------------------, 
I VAR ! GPV i 
t--------------------~--------------------~ 
I OFS i l _________________________________________ J 

VAR :Jymbol rable name part pointer 
GPV EQUIVALENCE group number 
OFS Otfset in bytes 

Group connection List Entry 

o 16 31 
r--------------------T--------------------, 
I GPl I GP2 I 
t--------------------~--------------------~ 
I DSPL I L _________________________________________ J 

GP1, GP2 
DSPL 

Group numbers 
Displacement 

Group Table Entry 

o 16 24 31 
r--------------------T---------T----------, 
1 GP1 I STCL I MAXS I 
~--------------------~---------~----------~ 

DSPL I l _________________________________________ J 

GP1 Group number 
STCL storage class 
MAXS Maximum byte boundary over group 
DSPL Displacement 

Figure 21. Variable List, Group Connection 
List, and Group Table Entries 

Eliminating the base-of-variable gives 
the equation 

(base of group2) = (base of group1) + 
(offset2-offset~) r 

which is represented by an entry in a new 
list, the group connection list, conSisting 
of group number~, group number2, and a dis­
placement computed as offset2 minus 
offset~. 

After completion of this scan, the group 
table is initialized. It contains one 
entry per group, and will eventually indi­
cate, for each group, the lowest numbered 
group with which it is connected and its 
displacement from the base of tht group. 
Each entry consists of a group number and 
displacement, representing the equation 

(base of group,) = (base of group) + 
displacement r' 

Section 4: Phase 2 85 



and is initialized to 

(base of grouPj) 
o . 

Each group connection entry is processed 
against the group table. The group 
connection entry gives the eyuation 

(base of group,,)_= (baS(~ of group,> + 
displacement:!. 

and the group table entry for group gives 
the equation 

(base of group,) 
displacement 2 • 

comparing the numbers of grouPi and 
group), there are three possible cases. 

Case 1. i<j The group connection entry 
relates grouPk to a lower-numbered group 
than that with which it is already con­
nectej. Group) and displacement2 are 
c:aved, and the group table entry for 
group.is changed to indicate 

(base of group.) = (base of grouPi) + 
displacement:!. • 

If k = j (as initially), no further pro­
cessing is needed. However, if k > j, 
eliminating base-of-groupJ' from our two 
equations gives a new group connection 
entry representing 

(base of group]) = (base of group,) + 
(displacement:!. - displacement 2 > . 

This entry is formed and processed against 
the group table entry for grouPj. 

Case 2. i = j. If displacement:!. = displa­
cement 2 • this entry is consistent but 
redundant, and needs no processing. 

Case 3. i > j. The group table entry 
relates group, to a lower-numbered group 
than the group connection entry. Elimina­
ting base-of-grouPk from the two equations 
gives a new group connection entry 
representing 

(base of group,) = (base of groupj) + 
Cdisplacement 2 - displacement:!.) • 

This entry is formed and processed against 
the group table entry for grouPi' 

After the group connection list has been 
processed, a final pass is made over the 
group table. Each entry represents an 
equation 

86 

(base of grouPr) = (base of groups) + 
displacement:!. 

If the earlier entry for 
groups indicates 

(base of groups) 
displacement 2 , 

then substitution yields 

(base of groupt) + 

(base of grouPr) = (base of groupt) + 
(displacement1 + displacement 2 > 

This substitution is carried out for each 
entry to which it applies. 

The group table is now in final form and 
ready for use. The variable list is 
scanned again. Each entry represents 

(base of variable) = (base of groupm) 
- offset 

The group table entry for 
grouPm represents 

(base of grouPm) 
displacement . 

substitution yields 

(base of group,,) + 

(base of variable) = (base of group~) 
- (offset - displacement) 

and the variable entry is changed to repre­
sent this equation. (If two consecutive 
entries for the same variable occur, both 
must transform to the same new entry.) 
This entry now relates the variable to the 
base of the lowest-numbered group in the 
connected set of groups in which the vari­
able occurs. 

During this scan the STCL field in the 
symbol table entry for each variable is 
checked. This field is zero for a non­
COMMON variable, but indicates the COMMON 
block for a variable which has already been 
assigned in the COMMON processing. If any 
variable in a group is in a COMMON block, 
the group table entry receives the appro­
priate storage class; otherwise, this entry 
is set to storage class 6. Also during 
this scan, the size of the largest variable 
in a group <1, 2, 4, 8, or 16 bytes) is 
associated with the group. 

The variable list is sorted by decreas­
ing order, with the group number as the 
major key and the offset as the minor key. 
(The offset may be negative, so the sort 
must use algebraic comparisons.) This sort 
brings together the variables within the 
same group and arranges them in order of 
storage assignment. 

Now the list is scanned, and assignments 
are made for each variable. For each non­
COMMON group the current size of storage 
class 6 is adjusted to the proper byte 



boundary for the largest variable in the 
group. The first v~riabl~ in the group 
(the one with the largest offset) 1S given 
this assignment, and each successive vari­
able is assigned to this location plus the 
difference of maximuTT]-offset minus the 
-variable's-offset. Also for eacn vari­
able, its size (total size if an 2rray) is 
added to its assignment, and j~r,e maximum of 
these over each group is use:'! to ut1date the 
size of storage class 6 when all the group 
variables have been processed. hach vari­
able is linked to the end of the non-COMMON 
variable chain. 

For a group inclu:ling a COMMON variable, 
that variable is located and its existing 
aSsignment is taken as a group base. 

Each variable is given, as an assign­
ment, the assignment of the base COMMON 
variable plus the difference of COMMON­
variable-offset minus variable-offset. A 
check is nade for negative assignments and 
assignments to improper byte boundaries. 
Each variable aSSigned is linked into the 
chain for the COMMON block, in order of 
increasing aSSignment. If the size of the 
COMMON block is increased by these assign­
ments, the storage class table entry is 
updated. 

In addition, as the assignments are made 
for common variables, checks are made to 
ensure that those appearing in DATA state­
ments are permissible. 

o 16 

VSCAN detects and issues diagnostic mes­
sages for source program errors related to 
storage assignments for variables. These 
include inconsistencies in EQUIVALENCE 
relations and assignments forced by COMMON 
or EQUIVALENCE statements that place 
vari~bles on byte boundaries which are not 
proper for the variable type. 

V3Cfu~ may issue a diagnostic message and 
branch to PHASE2 with the ABORT code if the 
internal tables used for sorting exceed the 
maximum available space. VSCAN may branch 
t.o the Phase 2 executive with the MCERR 
code if certain conditions are detected 
which must be due to machine or compiler 
error. 

If the ISD option is OFF, another symbol 
table scan is made to fin1 interfering 
variables. In each storage class, the 
variables are scanned in order of storage 
assignment by following the existing chains 
built by VSCAN. For each variable, the 
storage assignment plus the size is com­
~)ared with the storage assignments of suc­
ceeding variables. When overlap is 
detected, the "Equivalence Flag" in the 
symbol table description part is raised and 
the variables are linked, using the FDP 
anchor field in the symbol table entries, 
in a chain of interfering variables for 
that storage class. At the end of VSCAN, 
these chains are anchored in a new table, 
Wlntble-, which has the format below. 

31 
INTBLE FORMAT r--------------------T------------------------, 

I ~o. of named I Not used I 
I commons I here I 
t--------------------+------------------------~ 
I SYHTAB Anchor I 8000 I 
I Storage Class 6 I (flag for later use) I NON-COMMON VARIABLES 
~--------------------+------------------------~ 
I SYMTAB Anchor I 8000 ! 
! Storage Class 9 I I BIANK COMMON VARIABLES 
t--------------------+------------------------~ 
I SYMTAB Anchor I 8000 I 
I Storage Class 10 I I FIRST N~£D COMMON 
~--------------------+------------------------~ 
I ! I 
I I I 
~--------------------+------------------------~ 
I SYMTAB Anchor I 8000 I 
I Storage Class N I I IAST N~£D COMMON 
t--------------------+------------------------~ 
I SYMTAB I PRF I 
1<------ ------> 1<---------- --------->1 
I PART I PART I 
I I I 
I I I 
I I I 
! I I 

Section 4: Phase 2 87 



CEKJB -- Process Label Ref~rences and 
Definitions (FSCAN) 

FSCAN is in two parts: 

FSCAN1 - is concerned with labels which 
must be entered into the symbol 
table and marked if referenced in 
the source program. 

FSCAN2 - is concerned t.<lith the follo;ling: 
undefined label reference3 and 
illegal flow conditions across DO 
loop boundaries, unsafe loops and 
the need for materialization, and 
definition points for COMr'10N and 
formal argument,;. 

See Chart CR. 

ENTRIES: FSCAN has one entry point 
(CEKJB1) and is invoked by the PhaJe 2 
executive. 

EXITS: FSCAN returns to the Phase 2 execu­
tive-with the normal, ABORT, or !1CERR 
return codes. There are no parameters. 

OPERATION: FSCAN1 constructs symbol table 
entries from label references and label 
definitions, together with information per­
taining to each label. One scan is made 
over the PRF, by simultaneously progressing 
along three separate chains. These chains 
are as follows: 

1. CLNK chain -- Links all transfer of 
control statements in the PRF. For 
each different place to which control 
can be transferred, there is a label 
reference. 

2. LLNK chain -- Link label definition 
entries in the PRF. 

3. PDLNK chain -- All DO statements have 
a begin loop (BL3) and a special entry 
end loop (ENDL) in the PRF, just prior 
to the next executa ole statement out­
side the loop. These are the loop 
boundary items, and all such items in 
the PRF are linked into a loop bounda­
ry chain called the PDLNK chain. 

After any chain entry has been pro­
cessed, the three links one for each 
chain) are compared. T., chain having its 
next entry closest to the present scan 
pOSition in the PRF is selecteG for pro­
cessing next. 

When a GLNK chain entry is selected, 
each label reference (there 2re NOEL of 
them) is placed in the symbol table and 
denoted as a reference:.l label. The number 
of references is given b'r the ::JOEL field. 
The LLNO field in the PRF is changed to 
contain the pointer to the label entry in 

88 

the symbol table. A negative label value 
indicates a reference to the next statement 
and is not marked "referenced." 

"hen an LLNK chain entry is selected, 
the label is placed in the symbol table, 
together with corresponding level and pla­
teau values, and the LLNO field in the PRF 
is changed to contain the label address in 
the symbol table. Multiply defined labels 
are detected in this scan. 

when a PDLNK chain is selected, the 
level and plateau values are incremented 
and saved, and the level value is placed 
into the LEV field of the PRF. 

Two tables, formed during FSCAN1, are 
used during FSCfu~2 for detection of illegal 
flow conditions: 

The Barrier Table 

o 15 16 31 
r--------------------T--------------------, 
I PLAT I LE'.r I l ____________________ ~ ____________________ J 

The Innermost Loop Table 

o 15 16 31 
r--------------------T--------------------, 
I I Symbol Table Pointer I 
I PLAT I (May be 0; entered I 
I I during s can number I 
I 12) I l ____________________ ~ ____________________ j 

The plateau value is entered into the 
innermost loop table whenever a BL3 entry 
is preceded by an ENDL entry. The .level 
and plateau values are entered into the 
barrier table whenever a BL3 entry is fol­
lowed by an ENDL entry. 

A plateau is any area between loop 
boundary entries. The PRF link to a loop 
boundary entry (End Loop or BL3) is used as 
a name for the plateau which starts with 
that entry. 

FSCAN2 is concerned primarily with three 
things: 

1. Discovering any label references which 
are not defined. 

2. Processing DO loop items for flow 
conditions. 

3. Forming the CDP and ADP chains. 

These three processes are carried out si­
multaneously whi.le FSCAN2 is scanning the 
PRF along the ILNK chain (which links 
together successive PRF items). 



Label Processing 

If the current item in the PRF scan is a 
label reference item, each symbol table 
pointer associated with the label reference 
is used to locate the define bit in the 
symbol table for that particular label 
reference. If the define bit. is not on, 
this particular label is not defined, and 
an appropriate error diagnostic is given. 
This particular PRF item is t~hen deleted 
from the ILNK chai~.-

Label definition items are similarly 
checked, to see if they have been 
referenced (i.e., the reference bit is set 
in the symbol table). If not, this item is 
deleted from the LLNK chain. After this 
scan the LLNK chain will link together suc­
cessive label definitions for referenced 
labels only. Label definition items which 
have been referenced are checked for the 
no-flow condition. If the no-flow bit is 
set in the symbol table, a diagnostic is 
issued indicating that the statement cannot 
be reached. 

Flow Processing 

If the current item in the PRF scan may 
cause an illegal flow condition to occur, 
the item will be investigated for all such 
conditions, and a diagnostic given if any 
is found. 

The flow processing is broken into two 
areas for investigation. These conditions 
are described below. -Level zero· denotes 
a plateau not inside any DO loop. 

1. Jumps from or to Level Zero 

Jumps from Level Zero. If the jump is 
not to an innermost loop or to level 
zero, a diagnostic is given. If the 
jump is to an innermost loop, the pla­
teau and symbol table pointer of the 
definition are entered into the E loop 
list. 

Jumps to Level Zero. If a jump is 
made to level zero from an innermost 
loop, the plateau value of the label 
reference is entered into the X Loop 
List. In this case, all intervening 
levels from the label reference to the 
level preceding the label definition 
are marked as materialized in the 
-Materialization List." 

2. Jumps Other than those from or to 
Level Zero 

Jumps into Loops (Jumps to Higher 
Levels). A jump from a level other 
than level zero to a label definition 
whose level is greater than that of 
the label reference is an illegal jump 

into a loop, and an appropriate diag­
nostic message is given. 

Jumps Out of Loops (Jumps to the Same 
or Lower Levels). If a jump is made 
(from a reference level other than 
level zero) to a label definition 
whose level is less than or equal to 
that of the label reference, the bar­
rier table must be inspected for any 
plateau values with level lower than 
that of the definition intervening 
between the plateau value of the label 
reference and that of the label 
definition. If there are no such pla­
teau values between these limits, the 
jump is legal. If there is such an 
intervening plateau value between 
these limits, a diagnostic message is 
given, indicating an illegal jump into 
a loop. All loops from the reference 
level to the definition level are 
marked "materialize." 

DO Loop processing 

1. Unsafe Loops 

Two lists are formed during FSCAN2: 

E Loop List -- consists of plateau 
values of label definitions which 
occur at an innermost loop, and 
are referenced from level zero. 

X Loop List -- consists of plateau 
values of label references which 
occur at an innermost loop. 

Every entry in the E loop list should 
also be in the X loop list; therefore, 
each innermost loop entered from level 
zero also has a jump out of this 
innermost loop to level zero. If this 
condition is not met, an appropriate 
diagnostic is given. A third scan is 
made over the PDLNK chain. If any 
entries exist in the E loop list, 
those end loop entries which lie 
between the plateau values of the 
label reference and the label defini­
tion are marked as unsafe. 

2. RETURN Loops 

Loops containing RETURN statements are 
marked "materialize- if the loop vari­
able is in COMMON or is a formal argu­
ment called by name. 

3. Definition Point Chains 

The CDP chain connects PRF entries 
which must be considered as definition 
points for all COMMON variables or 
formal arguments. An entry is linked 
in this chain if the statement 
involves a calIon an abnormal func-

Section 4: Phase 2 89 



tion or subroutine (one which may 
redefine CO~~10N), or if a formal argu­
ment is explicitly assigned a new 
value. 

The ADF chain connects PRF entries 
which must be considered as definition 
points for all formal arguments. An 
entry is linked in this chain if a 
COMMON variable is explicitly assigned 
a new value (and the entry is not 
already in the CD? chain). 

The processing of interfering variables 
takes place during the second PRF scan. 
Chains of the interfering variables within 
each storage class are formed within the 
PRF and anchored in the second halfword 
(the PRF part) of the correslJonding 1ntble 
entries. When a variable is being defined, 
that is, wherever 1D = 5 (equation), 10 = D 
(argument definition point), ID = 10 (Begin 
Loop 2), or ID = 21 (Input list Element), 
the equivalence flag in the sY[llbol table 
descriptive part for the variable is 
checked. If the flag is raised, the 
storage class of the variable is used to 
locate the correct Intble entry. The vari­
able is added to its chain by setting the 
VOP field to the PRF part of the Intble 
entry, and the chain's anchor is updated by 
setting the PRF part of the lntble entry to 
the ILNK field. 

The interfering variable chains are 
reversed during the reversing of the COP 
and POLNK chains. Another table of the 
same size as Intble, LNKSAVE, is used to 
hold the saved links. During the chain 
reversal, the chain whose current link is 
in the highest location is chosen for 
reversal at each step. The set of inter­
fering variable chains is searched to find 
the highest link, and the result is com­
pared with the current COP and POLNK links 
to find the highest current chain link. 

After the chain reversals, Intble is 
scanned for storage classes containing in­
terfering variables. These syn'bol table 
chains of variables are followed and FDP 
anchor fields are set to the beginning of 
the PRF VOP chain for that storage class. 

A half word cell WLXT" is used to hold a 
symbol table pointer and a f.Lag .. ACGTFL" is 
used to indicate that the current PRF item 
is either an assigned or a computed GO TO 
statement. 

ACGTFL is lowered before starting FSCAN2 
and raised at each computed (ID 8) or 
assigned (IO 7) GO TO item before calling 
LAB (CEKJE) and lowered when returning from 
LAB. 

LXT is set to SOOl at each end-loop item 
(1D12) unless t.he global flay- is raised 

90 

(i.e., loop is flagged "Innermost no 
calls"). In this case, LXT equals 8000. 
At each begin-Ioop-2 item (ID 10), the cur­
rent value of LXT is put into the EXITLE: 
field and the LXT is set to 8001. 

CEKJD -- Label Reference Processor (RTNl) 

RTNl places label references in the sym­
bol table. See Chart cs. 

ENTRIES: RTNl has one entry point, CEKJD1. 
Input parameters are 

Pl Number of label references in 
PRF item 

P2 Index to first label number in 
PRF item 

EXITS: RTNl returns to the invoking rou­
tine with the normal or ABORT return code. 

OPERATION: RTNl checks the sign of the 
label number. If the sign is positive, it 
is replaced by the pointer to ~he cor­
responding symbol table entry, and the sym­
bol table entry is marked as "referenced." 
If the sign is negative, indicating a 
reference to the next statement, it is 
replaced by the symbol table pointer, but 
is not marked as "referenced." 

Negative values appearing in arithmetic 
IF statements are simply replaced with 
X'SOOO' to indicate fall-through. 

CEKJE -- Label Reference Processor (LAB) 

LAB checks flow as related to DO loops. 
See Cha rt CT. 

ENTRIES: LAB has one entry point, CEKJE1. 
Input parameters are 

PI Number of label references in 
PRF item 

P2 PRF index to first symbol table 
pointer 

P5 Pointer to PRF item 

EXITS: Only the normal exit is made, with 
no output parameters. 

OPERATION: LAB checks the legality of 
jumps from and into DO loops, as described 
under "Flow Processing" in FSCAN. 

The materialization list is marked as 
required, the necessary X loop and E loop 
list additions are made, and appropriate 
diagnostics are given when illegal flow 
conditions are detected. 

LXT an"! ACGTFL are processed at the two 
points where a branch out of a loop is 
detected to a level of zero or greater than 
zero. If LXr equals 8000 or if LXT equals 



the 3Yilll:ol Table lJOint,or ::or tne curre'1t_ 
lanel, and if .\CGTFL i::> ;}o..,n, then set LXT 
to equal the Syml:ol Table pointer for the 
current label, and omit [J'arking thp i'AT 
stack for the currently innermost level. 
Other..,ise set LXT to 8001. 

CEKJF -- Statement Lab!::'l .?efE:~rence ----
Inspection (ISP) 

ISP determines whetuer referenced ~3tate­
ment labels are properly defined. 

ENTRIES: ISP has one ent ry ,Joint, CEKJFl. 
Input Farameter is 

P2 -- PRF index to symbol table 
pointer 

OPERATION: The symbol table item of the 
referenced label is checked to see if it is 
marked "defined." If it is not, a diag­
nostic is issued and the undefined flag is 
raised. IS P is not entered t:o check the 
validi ty of FOR~IAT label references. :'\ 
diagnostic is issued and the undefined flag 
is raised when erroneous references to FOR­
MAT lables are encountered. 

CEKJG -- Format Reference Inspection 
(FORMAT) 

FORf<lAT determines whether referenced 
FORMAT statements are properly defined. 

ENTRIES: 
CEKJG1. 

P2 

P5 

FORMAT has one entry point, 
Input parameters are 

PRF index to symbol table 
pointer 
Pointer to PRF i tun 

OPERATION: The associated symbol table 
entry of the referenced label is checked to 
see if it is marked "defined." If it is 
not, a diagnostic is issued and the unde­
fined flag is raised. A diagnostic is also 
issued and the undefined flag is raised if 
the class of the label item is not FORMAT. 

CEKJH -- Di~gnostic Message Generator (OAl 

OX generates diagnostic m~ssages wh~lev­
er error con~itions are encountered. See 
Chart CU. 

ENTRIES: DX has three entry points: 
CEKJH1, CEKJH2, CEKJH3. The input parame­
ters, for all three entry points, are 

Pi 
P 2,1.'3 

rhe Phase 2 diagnostic code 
Pointers to the symbol table 
or PRF item from which infor­
mation is to be extracted. 

EXITS: Only the normal exit is made, with 
no output parameters. 

OPERATION: DX generates a diagnostic mes­
sage by operating on a parameter list, from 
which another parameter list is generated 
for Rm,l. An input parameter may be one of 
two types. The first type is a para~eter 
which merely points to a piece of prepared 
text. In this case, the address of a word 
containing the text length in characters 
and the address of the text are entered 
into a parameter list for RDM. 

The second type is a parameter which 
specifies that a certain predefined opera­
tion is to be performed. In this case, an 
indexed branch on the parameter is made to 
the operation to be performed. Each of the 
operations extracts specified information 
from some table or file, such as the symbol 
table, performs any conversions required, 
and makes appropriate entries in the param­
eter list for RDI1. 

A parameter word containing zeros indi­
cates the end of the input parameter list, 
and RDM is called to output the diagnostic 
message. 

Section 4: Phase 2 91 



SECTION 5: PHASE 3 

INTRODUCTION 

The major function of Phase 3 is global 
optimization, which is the process of mini­
mizing t~e number of object code instruc­
tions to be generated by Phase 4. There 
are four categories of global optimization. 

1. 

2. 

92 

Removable Expressions. A "removable 
expression" is one whose individual 
operands do not have "definition 
points· inside the loop. A definition 
point is a statement in which the 
variable has, or may have, a new value 
stored in it (e.g., appears on the 
left-hand side of an equal sign). In 
removing an expression, Phase 3 does 
not remove the left-hand side of an 
assignment statement nor a label. The 
·store" operation remains inside the 
loop. 

In the following example the expres­
sion (B+C) is removable from the indi­
cated loops, but the expression (A+D) 
is not, since the variable A has a 
definition point inside the loop 
(statement 10). 

10 
20 
30 

DO 30 I=l,N 
A=B+C 
E=I\+D 
CONTINUE 

Common Expressions. Two occurrences 
of an expression are considered to be 
common if the value of the expression 
cannot change between the occurrences, 
i.e., there are no definition points 
for any of the variables involved and 
there is no intervening referenced 
label. 

In the following example, the occur­
rences of A+B in statements 10 and 30 
are considered common with each other, 
but not with the occurrence in state­
ment 40 because there is an interven­
ing referenced label. That is, state­
ment label 40 (whic;', is referenced 
from statement 60) Lntervenes between 
the oc~~rrence of A+B in statement 30 
and its occurrence in statement 40. 
Labels 20 and 30 intervene between the 
occurrence of A+B in statement 10 and 
its next occurrence; however, since 
neither label 20 or 30 is referenced, 
the occurrences are considered to be 

3. 

common. The expression (C+(A+B» can­
not be marked common in statements 10 
and 30 because the value of C changes 
(i.e., has a definition joint) in 
between, at statement 20. 

10 D=C+(A+B) 
20 C=D+F 
30 E=C+(A+B) 
40 IF(A+B)50,10,70 
50 A=F+E 
60 GO TO 40 

subscript Expressions. Subscript ex­
preSSions determine which individual 
element of a dimensioned array is 
referenced. The expression may con­
tain four types of constituents: 

a. An address constant (adcon> 

b. Induction variable parts 

c. Removable parts 

d. Nonremovable parts 

Each subscript has exactly one asso­
ciated adcon. It is determined from 
the base address of the array variable 
itself and the collection of constant 
terms (done by Phase 1). 

The induction variable is the variable 
referenced in the DO statement of the 
loop. In the statement 

DO 10 I=l,N 

I is the induction variable (also 
referred to as the loop variable). 

For the removable and nonremovable 
parts the same criteria are applied, 
as described in "Removable Expres­
sions" above. 

In the following example, the terms of 
the subscripts involving I and J are 
induction variable parts (statements 
30 and 40). Removable terms are found 
in statement 30. The terms involving 
N are removable from both loops, and 
the terms involving I are removable 
from the inner loop (statement 2 
loop). 



rhe subscript terrI,S invclvin'J ?'l in 
statement 20 are: nonremovabl€, because 
of the ~ definition point in statement 
10. 

1 
2 

10 
20 
30 
40 
50 

DO 50 I=l,K 
DO 40 J=l.,~ 
'1=J+3 
Z(M)=A+M 
X(I}=Z(N)+Y(N) 
Y(J)=Y(J)+M 
::ONTINUE 

~. DO loop control. It is a Phase 3 
responsibility to determine the method 
that is going to be used by PhaSE 4 to 
generate the loop control instruc­
tions. The follo,*ing are the types of 
loop control and the criteria for 
each. 

a. BXLE on recursive. 

This loop is controlled by a BXLE 
instruction of the form: 

BXLE Rl,14,LOOPTOP 

where Rl contains tne recursive 
expression that has been initial­
ized to zero at the loop top, 
register 14 contains the increment 
to be added to the recursive, and 
register 15 contains the test 
value. 

The requirements for this type of 
loop are: 

• There must be no reason to 
materialize the induction vari­
able; e.g., the ISO option must 
be off, and the induction vari­
able must not appear in the loop 
outside of a subscript. 

• Loop must be save, innermost, 
with no external calls. This is 
necessary since Phase 4 is going 
to globally assign registers 14 
and 15. 

• There must not be branches out 
of the loop to more than one 
label. If there is a branch to 
only one label, the induction 
variable is materialized on the 
exit path. 

• There must dppear in the loop at 
least one subscript expression 
containing the induction vari­
able as the l~ast-removable 
term. The coefficient of the 

recursive must be a positive 
constant. 

The following is an example of a 
BXLE on recursive loop: 

REAL*4 A (10) 
REAL*8 B (10) 

DO 10 I = 1,10 
10 B(I) = B(I)+A(I) 

In the example, both recursives 
are candidates for the BXLE, but 
the recursive on B, having more 
uses in the loop is selected. 

b. BCTR loop. 

This loop is controlled by a BCTR 
instruction of the form: 

BcrR 15,14 

where register 15 has been ini­
tialized at the loop top with the 
count of times through the loop, 
and register 14 contains the 
address of the loop top. 

The BCTR loop requirements are: 

• Induction variable does not need 
materialization. 

• Loop must be save, innermost, 
with no external calls. 

The BCTR instruction is never 
selected if the loop also contains 
the recursive requirements to 
qualify for a BXLE on recursive 
loop_ 

An example of a BCTR loop is: 

DO 10 I=J,K,L 
10 B(I) = B(I)+A(I) 

Since the loop step (and hence the 
recursive increment) is not a con­
stant, the loop does not qualify 
for BXLE on recursive. 

c. Materialize and BXLE on induction 
variable. 

This loop is controlled by a BXLE 
instruction of the form: 

BXLE 1,14,looptop 

where register 1 contains the 
induction variable, register 14 
contains the loop step, and 
register 15 contains the test 
value that has been created by 
Phase 4. The instruction at LOOP­
TOP is always a store out of 

section 5: Phase 3 93 



94 

register 1 into the induction 
variable. The prime requirement 
of this loop is that the induction 
variable must be materialized; 
~hen a loop fails the requirements 
for the other loop control 
methods, it i:; always material­
ized, since there is no other way 
to count the loop. 

Phase 4 recognizes two versions of 
this loop. One, when the loop is 
innermost, safe, and has no 
external calls. In this case reg­
isters 14 and 15 can be globally 
assigned in the loop. Otherwise 
temporary storage must be used to 
save and restore the registers. 
Two examples of the BXLE-on­
induction-variable loop are: 

00 10 I = 1,10 
IF (I .EQ. 1) GO TO 10 
AU) = O. 

10 CONTINUE 
DO 20 I =: 1,10 
IF (I .EQ. 1) GO TO 20 
A(I) = SQRT (AeI» 
20 CONTINUE 

In both cases, I must be material­
ized since it is referenced out­
side of a subscript. In the first 
example, registers 14 and 15 can 
be globally assigned. In the 
second, they cannot be because of 
the call to the SQRT function. 

d. Compare and Test Recursive. 

This loop is controlled b} a com­
pare and branch-not-equal (RNE) of 
the form: 

CLR Rl,R2 
BNE LOOPTOP 

where Rl contains a recursive 
value; R2 contains the test value 
initialized outside the loop and 
(in this example) is globally 
assigned. If R2 did not have 
enough weight to be globally 
assigned, then the compare would 
be to temporary storage. 

The only requirements for this 
loop is that there must be no need 
for materialization, and there 
must be at least one recursive ex­
pression (a subscript term con­
taining the induction variable). 
An example is: 

DO 10 J = 1,10 
DO 10 I = 1,10 

10 ACI,J) =: 0.0 

The outer loop, where j is the 
induction variable, will be con­
trolled by a compare and branch. 

5. Global Register Assignment. In order 
to facilitate minimizing generated 
instructions, Phase 3 considers cer­
tai n i terns f or permanent ass ignment t.o 
registers across a loop. The selec­
tions are made by maintaining a popu­
larity count for each item. The count 
is Neighted for each type of candi­
date, considering the value of having 
it ]lobally aSSigned versus the value 
of not having it globally assigned. 

a. Adcons. Neight = 5. 

b. Removable integer expressions. 
Weight = 5. 

c. Recursive expressions. Weight 
10. 

d. constant steps on recursive ex­
pressions. Weight = 3. 

e. Expressions for testing the end of 
a compare-and-branch loop. Weight 
= 5. 

Some items that are used for generat­
ing loop control instructions do not 
follow the normal selection methods. 
For example, in a loop where registers 
14 and 15 will be globally assigned by 
Phase 4, the items in those registers 
will mot be considered for assignment 
by Phase 3. In a BXLE on-recursive 
loop, Phase 3 always gives global 
assignment to the recursive expres­
sion, but never to the constant step 
on the recursive or to the test value. 

Phase 3 also considers one floating 
point quantity to be pseudo-globally 
assigned into FP register 6. 

This assignment can take two forms. 

a. Where the variable or subscripted 
variable on the left of the equal 
sign can be kept in FP register 6 
through the loop, and stored when 
the loop is completed. 

The requirements for this assign­
ment are: 

• Loop must be innermost, with no 
external calls. 

• ISD option must be off. 

• Loop must contain only one assi­
gnment statement, plus any num­
ber of blank or CONTINUE 
statements. 



• Loop must contain no complex 
nonremovable operation or 2-
argument intrinsic function. 

• Assignment variable must be real 
and must not te flagged "inter­
fering" in the symbol table. 

• If the assignment variable is 
subscripted, the subscript must 
be removable to at least BLl of 
the inner loop. 

• If the assignment variable is an 
array element, references on the 
right side of the equal sign 
must be to the same element, or 
to an element which is known to 
never be the same. The loop is 
flagged only if all references 
are to elements known to De 
either the same element or never 
the same element. For example: 

A(1) = A(I) + A(I+1) 

On the right of the equal sign 
A{I) is flagged as being in FP 
register 6, but A(1+1) is not 
flagged. The loop is flagged 
for global assignment, since A 
(I+1) can never reference the 
same element as A(I). 

In the following examples, the 
loop is not flagged: 

AD) 
A(I) 

= AU) 
A(J) 

In this case, since it is not 
known whether I can equal 3 or 
whether I can equal J, the loop 
is disqualified. 

The reason for this restriction 
is that the array element on the 
left will not be updated in 
storage if it is globally 
assigned. Therefore, it is 
necessary to know at compile 
time which references to array 
elements on the right should 
obtain values from storage and 
which should obtain values from 
the globally aSSigned registers. 
If this determination cannot be 
made, a global aSsignment is not 
made. 

The first 3 requirements are 
determined by Phase 1, the last 
4 by Phase 3. If all require­
ments are met, the begin-loop 
entries are flagged for Phase 4, 
along with each EF item on the 
right-hand side that matches the 
aSSignment variable. 

b. When a loop does not meet the 
requirements of (a), one optimiza­
tion which might still be per­
formed is to select a floating 
point quantity that can be loaded 
into FP register 6 outside the 
loop. 

The requirements for this optimi­
zation are that the loop must be 
innermost, safe, with no external 
calls. 

In its backward scan over the 
loop, Phase 3 selects the candi­
date that is last processed. This 
candidate is deleted if a 
referenced label is reached, or if 
tne current candidate appears as 
an assignment variable. In all 
cases, the candidate must be a 
Simple, real variable or a simple, 
real constant. 

In addition to the major function of 
Phase 3, many other functions are per­
formed. A more complete description of 
Phase 3 is listed below. 

1. The program file (PRF) is scanned 
backwards. The expression file (ERF) 
is scanned, when required, for the PRF 
item: and, a triad table is created 
for internal use with one entry for 
each unique expression. An operand 
pushdown table (OPT1) is created to 
assist in scanning the ERF. The PRF 
and ERF are modified to form the PF 
and EF, which are treated separately 
by Phase 3. These files are relinked 
in the forward direction and inter­
leaved into a new program file (PF) 
that is the input for Phase 4. 

2. All variable and constant entries in 
the ERF are changed, with the OFFSET 
field replaced by a reference to an 
address constant and an immediate 
value of the displacement. The adcon 
is represented by a new type of entry 
introduced into the symbol table. 

3. All subscripts are rearranged. The 
adcon for the variable is placed in 
the expression, which is rearranged to 
remove the largest subexpression from 
loops, to handle loop variables by 
recursion, and to make use of double 
indexing. 

4. Common expressions are recognized and 
named. The point at which they are 
last used is marked. 

section 5: Phase 3 95 



5. Expressions that can be computed out­
side of loops for use inside 
(-removedW ) are recognized and named. 
They are inserted in toe EF at the 
loop top and removed from the EF 
inside, leaving a short -residue" 
entry there. 

6. Expressions that can be computed by 
recursive additions arollnd a .Loop are 
identified, and one (for each loop) 
for use as a test of the loop is 
determined. TOhe initial value I step 
values, and test value expressions are 
formed and treated as other expres­
sions (see items 4 and 5 above). 

7. Quantities that are to be placed in 
registers and kept there over loops 
are determined and specified. These 
may be integer arithmetic operations, 
subscript expressions, or address con­
stants. They are determined on the 
basis of total time saved and number 
of registers that can be used for such 
purposes. 

8. Each statement label entry in the sym­
bol table is changed to contain a 
reference to an address constant (see 
item 2 above). The adcon entry is 
given an estimated value based on the 
estimated location, which is then 
cleared. 

9. The formal arguments have variable 
adcons that must be computed at the 
preamble of a subprogram. These are 
listed in the formal argument adcon 
table (FAAT) for Phase 4. (The format 
of FAAT is explained in the module 
description ·CEKKS Phase 3 storage 
(PSECT) ... ) 

A general description of the procedures 
used by Phase 3 to carry out its functions 
is given in the following paragraphs. 

Phase 3 makes a backwards scan over the 
PRF, rewriting it. By means of the links 
in the PRF, each value a variable assumes 
can be analyzed to determine the loops from 
which that variable can be removed and a 
point at which it can be first used in com­
putation. This point is preliminary and 
can be moved if the PRF scan reaches a 
point where the value may change. Each 
reference to the ERF string from PRF 
entries causes a local forward scan over 
the ERF. An operand pushdown table is 
built and used during this scan. All 
operators are entered into the triad table 
for commonality determinations. Certain 
operators are put in a compute and removal 
item table <CRT). Subscript expressions in 
the ERF are scanned twice. First, deter­
minations of computation points, removal 
levelS, and use of loop variables are made. 

96 

Then the ERF is sorted into a new order, 
new operators are introduced, and the 
address constant is introduced into the 
expression. Finally, this new ERF is 
scanned again, and entries are made in the 
triad table and the compute and removal 
item table, as for other expressions. 

For DO loop processing, Phase 3 main­
tains a set of loop tab es for use in 
determining global register assignments, 
identifying loop variables, and determining 
removal levels. 

~iliMORY REFERENCE PROCESSING 

During the processing of Phase 3, all 
references to variables and constants 
(including address constants) are replaced 
by references to an address constant and a 
displacement. Adcons are supplied for each 
storage class, with one separate adcon for 
each 4080 bytes. Adcons are supplied only 
when needed and are entered into the symbol 
t.able to be shared with all other parts of 
the program. Negative adcons (e.g., 
storage class base -4080) are allowed. 

In computing the values for adcon and 
displacement, Phase 3 uses the storage 
class, the assigned location within that 
class, and, in some cases, the offset from 
that location supplied by Phase 1. At all 
times the FORTRAN object program makes use 
of one register that can cover the special 
page, part of which is assigned to adcons. 

The adcon reference and dis~lacement are 
placed in the Polish string for the vari­
able. In addition, the reference to the 
original variable entry in the symbol table 
is kept for purposes of editing in Phase 5. 
Hhen a subscript expression modifies a 
variable and the adcon is referenced in 
that expreSSion, the adcon reference from 
the variable in the Polish string remains 
zero. 

Whenever constant subscripts result in a 
reference to other than the first byte of 
an array but no subscript expression 
occurs, a special subscripting operator is 
entered in the triad table. This operator 
is called the "@" or "Addressing" operator. 
This operator is strictly internal to Phase 
3; it is used only in the triad, not in the 
EF, to distinguish between references to 
other than the first byte of an array. 

COMMON EXPRESSIONS 

A common expression is one that is used 
more than once, but needs to be computed 
only once. Phase 3 determines the exis­
tence of these in most cases; it gives each 
a distinct identifying number (name) and 



marks one occurrence of this expression in 
the last Polish string in wnich it occurs 
as "last use." Three Sel)arate determina­
tions must be made: 

1. It must be determined which expres­
sions are identical in form. 

2. It must be determined that occurrences 
are necessary or "valid" (i.e., two 
occurrences as part of the same larger 
common expression require only one use 
of the smaller expression). 

3. It must be determined that the eXtJres­
sion cannot change in value between 
occurrences. 

Identity is determi~ed by the triad 
table. Every expression is changed to a 
triad (operator plus references to its two 
operands) that is identical for identical 
expressions. For each expression the triad 
table is searched to determine whether the 
expression is already there; if it is not, 
it is inserted. If the expression is 
already in the table, it may be a common 
expression, depending upon the results of 
the other two determinations. 

The determination of the occurrence of 
two valid uses is made by another 
algorithm: whenever an expression occurs 
after the first time and either is part of 
a larger expression that is occurring for 
the first time or stands alone in a state­
ment, this is the second valid occurrence. 
when this situation exists, it becomes 
necessary to mark previous occurrences 
(sometimes, in a previous larger expres­
sion, there may be more than one that were 
not all valid). This is done by keeping a 
pointer in the Triad Table entry to the 
"last occurrence." Whenever an unnamed 
expreSSion is entered or located in the 
triad table, a reference to the triad is 
made in the ERF string entry. Then, when 
an ERF string entry is copied into the EF 
without receiving a name, the pointer in 
the triad table is set to point to this EF 
string. ~t the time an expression is 
named, the EF string pointed to by the 
triad table entry is scanned, and the 
occurrences of this expression in that str­
ing are recognized by the reference to the 
triad. The field used for that triad 
reference is now used for the name. 
Whenever a name is entered in an EF entry, 
the expression is changed to indicate a 
named expression; and, if this is "last 
occurrence,· the "last use· flag is turned 
on. If a second valid occurrence occurred 
in the same string as the first, tne "last 
occurrence" field is X'8000'. In this 
case, the "last use· bit is turned on in 
the current EF, and other occurrences are 
named later when the ERF string is copied 
into the EF. 

In order to determine that the value of 
an expression does not change, Phase 3 must 
consider the component of each expression. 
Every variable entry in the symbol table 
has pointers (FDP and BDP) to forward-and 
backward-linked chains in the PRF of its 
definition points. There are also linked 
chains for definitions of COMMON variables 
and definitions of arguments. COMMON 
variables are defined at their own defini­
tion points. Arguments are defined at 
every definition point for any argument and 
for COMMON definition points. Every vari­
able is also marked when it is a loop para­
meter over any loop in the current nest, 
and it is, therefore, of fixed value over 
that loop. The loop tables indicate the 
range of every loop in the current nest (in 
terms of PRF entries> and indicate which 
loops are ·unsafe" (have entry points from 
an outer loop). By scanning this informa­
tion, Phase 3 can determine which loop, if 
any, is the outermost loop from which ex­
pressions containing only this variable can 
be removed. This level is entered in the 
symbol table entry for the variable as the 
RLEV field (removal level). If the nearest 
definition point (forward) lies outside a 
loop from which the variable cannot be 
removed, the forward compute point (FCP) is 
set just inside that loop; otherwise, it is 
set at the nearest definition point 
forward. 

This determination does not take into 
account all possibilities that may limit 
the range of commonality. The other limi­
tations are the occurrence of referenced 
labels, the occurrence of loop endings of 
unsafe loops, and the occurrence of the FCP 
(determined above) inside a new loop. 
These are determined as the PRF is scanned 
further and are used to terminate the range 
of the commonality if it has been set up or 
to prevent its being set up. 

The mechanism for keeping track of the 
range and terminating commonality is the 
compute and remove item table. Here every 
named expression has an entry that is keyed 
to the FCP (or the removal point) in the 
PRF. These are scanned in parallel with 
the PRF. For compute point entries the 
range of commonality is terminated when the 
point is reached. Whenever a loop end or a 
referenced label is reached that might 
limit the range of commonality of some 
entries, this table is consulted and the 
commonality terminated. Commonality is 
terminated by removing the name from the 
triad table entry and appropriately marking 
that entry. 

When a common expression is named, it 
must be determined that referenced labels 

Section 5: Phase 3 97 



or terminating loop ends have not inter­
vened between the "last occurrence" and 
this one. This can be checked by the loop 
tables and the backward chain of referenced 
labels. If such intervention has occurred, 
the expression is not nanoed, and the cur­
rent EF string becomes the last occurrence. 

REMOVING EXPRESSIONS FROM LOOPS 

Computing time can be saved when an 
expression that occurs within a loop can be 
computed outside that loop for use inside. 
Expressions that contain the loop variable 
and are common over the loop comprise a 
special case. Since a new occurrence is 
introduced at the point of removal, expres­
sions that are removed are always treated 
as common, even if they occur only once 
within the loop. However, for purposes of 
producing better object code, it is not 
always desirable to remove an expression 
from Level 0 (the false loop) if its only 
occurrence is at Level O. Therefore, such 
an expression is treated as not removable 
at its first occurrence. If there are 
other occurrences, the first is marked com­
mon with them and the expression is treated 
as a normal removable expression. 

Some of the mechanism for handling 
removal is discussed above in the explana­
tion of the determination of the removal 
level (RLEV) of expressions. If an expres­
sion is part of a larger expression that 
can be removed, it is ignored within the 
loop and treated at the loop top when the 
larger expression is inserted there for 
computation outside the loop. If an expres­
sion can be removed but the expression 
that contains it cannot, or of' it stands 
alone, it is removed. At the first occur­
rence of the expression within the loop, it 
is removed after it is given a name, after 
commonality with any previous occurrence 
(outside the loop) is established, and af­
ter last usage is marked. Removal consists 
of placing a pointer in the compute and 
removal table at BL1, marking the triad 
entry properly, and replacing the Polish 
Expression in the EF by a residue entry 
with the expression name. 

A special type of removal expression 
occurs when an induction variable is 
involved in an expression that is not in a 
subscript. Here tne variable has a compute 
pOint inside the loop {BL3} and is remov­
able from the inner level. When such an 
expression is encountered, either as a com­
mon expression or a removal item from an 
inner loop, a special test inside the com­
monality routine allows the expression to 
be common, despite the possible interven­
tion of labels. These items are removed to 
BL2, after their commonality is established 
and their last use marked. It is possible 

for such an expression to occur only as a 
residue and to occur elsewhere as a named 
expression that is still present. 

When the removal pOint is reached at 
BL1, BL2, or BL3, the Polish expression is 
reconstructed from the triad table and 
inserted in the EF, except for subexpres­
sions that may be further removed. At this 
time, the commonality of all expressions 
and the removability of all subexpressions 
is treated in the same manner as expres­
sions that occur elsewhere in the c~de. 

oprI~~ZING SUBSCRIPT COMPUTATION 

Terms involved in the subscript expres­
sions are divided into four categories: 

1. An adcon 

2. Induction variable (or recursive) 
terms 

3. Removable terms 

4. Nonremovable terms 

The adcon for the subscript expression 
is always determined by Phase 3 from the 
SLOC field of the array variable and the 
offset that computed Phase 1. 

The terms of the expression are grouped 
according to the four types and then sorted 
by removal level. The adcon is always the 
most removable entry. The induction vari­
able or recursive terms are considered spe­
cial within a removal level group. A 
recursive expression is one that increases 
by a fixed amount each time through a loop. 
These expressions are treated specially, in 
that they are considered removable only to 
begin loop-2 of a level rather than to 
begin 100p-1 as for a normal removable 
expression. Therefore, if two ter~s of a 
subscript expression have the same removal 
level but one is a recursive term and the 
other is not, the recursive term is consid­
ered less removable for the purposes of 
sorting the terms. 

Special operators are introduced into 
the expression to separate the groups of 
sorted terms. A recursive operator (!) is 
used to mark the induction variable terms 
internally for Phase 3. Another special 
operator, the base/index split operator 
(7), is used to separate the nonremovable 
terms from all the removable terms. If 
there are no nonremovable terms, but there 
is a term of the form 'I a *' where I is 
the induction variable of an innermost loop 
with no external calls, and 'a' is a con-



stant or a multiply expression (only possi­
ble if the array-has adju~table dimen­
sions), then 'I a .' is converted to 'a o!' 
and the major operator is converted to a 
'?'. The? operator can appear only once 
in any subscript expression, and it is 
passed on to Phase 4 to indicate that a 
base-index method can be used to reference 
this array. All other terms are connected 
by plus signs. 

The best method for explaining this 
function of Phase 3 is by the use of expres­
sion diagrams. The diagram, called a 
"tree,· can show the exact relationship of 
all terms of an expression. By convention, 
the left-hand operand of an operator repre­
sents the left-most term of the original 
FORTRAN expression. Therefore, the expres­
sion (A+B) is written. 

+ 

/ \ 
A B 

and the expression (B*A)+C is written 

+ 
/ \ 

* 
/ \ 

c 

B A 

With this basis, the subscript expression 
processing can be examined further. In the 
following discussion, all constants are 
referred to as CONST and all address con­
stants as ADCON, since their actual values 
are not relevant. The operator that links 
the subscript expression to the array vari­
able is the colon (:). A reference to the 
variable A(I) that comes into phase 3 is 
essentially the same under any conditions. 
However, the Phase 3 output to Phase 4 
depends on the conditions of the variable 
I. The four possible output expressions 
are: 

/! "" 
A + 

./ "ADCON 

/"'-
CONST I 

In bhis case, I is removable but is not an 
induction variable. 

.. 
/"\.. ADCON 

CONST 

In this case, I is nonremovable. 

In this case, I is the induction variable 
of an inner loop with no calls. 

In this case, I is the induction variable, 
but the loop does not qualify to have a 
split subscript as in (c). 

To show the gathering of terms according 
to removal level, the tree for the variable , 
B(11,J2,I3,Jl,12,J3) is shown: 

/'~ 
B /? _____ 

~ --+ /~ /~ 
/\ /'\ +/.~+ ~ 

CONST 13 CONST J3 / \ / '" / '~ 
CONST 12 CONST J2 /+~DCON 

/\ 1\ 
CONST i1 CONST J1 

Ii and Jl -- removable furthest to level 
1; i.e., they are the most removable 
(the lower the removal level, the 
more removable the item is), 

12 and J2 -- removable to level 2, 
13 and J3 -- not removable. 

None are induction variables. 

Section 5: Phase 3 99 



Therefore, the completely general sub­
script expression for an array variable 
appearing at level n can be de5criDed as 
follows: 

/'" 
Arrav Varioble '" 

, ' , "" 
(

I A Collection of .All \ " 
Terms Not Removob~e ) "" 
:rcm le'l'el (,,\, :-------- ?, 

0R ~ 

(
A 'pli' SUOsnip' if ) "" 
~he IndLictior; Vori:::ble I 

fo, level 'I, is '\;e ) ~ ~ 
Leo" Removable lec~,~ ~ 

Collect;~n of AI! Terms.,) ~ 

le\'e! n. '" 
I 

"e Indudion ~ "-

( A C,ollection of Arl T~rms Removable to) ~'\ 
Begin Loop-l of level n. \ 

\ 
Co!iec!i:;n af A;; Term, ., Involving +e Induction)) ~ ! 

fo,levelln-l! ~'\ 
(A C.oliect:cn of An Terms Involving the Induction ,) ~ 

\Va"oble of Levell ___ ----------- \ 

Collection cf All Terms Removable to Begin loop-l of) . 
I, _____ \ 

~ 
(A Col!ection of An Terms R.err".ovab~e to Begin Loop-l of level 0). 

ADCON 

If there are no terms of the type indi­
cated, the associated operator does not 
appear and, all terms below it are moved 
up. The only possible occurrence of the ? 
operator is immediately below the colon. 
Therefore, if there are any nonremovable 
terms, the right-hand operand of the colon 
is a question mark, since the adcon is 
always considered removable. Therefore, 
the operands of a question mark are always 
cat~gorized in the same manner: the left­
hand operand is the index expression and 
the right-hand operand is the base expres­
sion (always removable), thus setting up 
the base/index method of addressing for 
Phase 4. 

The form shown above for the generalized 
subscript expression is used only internal­
ly to Phase 3. In the final form all 
removable and recursive expressions are 
replaced in the EF by a residue entry that 
indicates to Phase 4 the name of the 
removed expression. The removed expres­
sions are then attached LO the appropriate 
aLl or BL2. 

TwO passes are made across each sub­
script expression in order to accomplish 
the optimization. 

During the ERF scan the occurrence of a 
subscripted variable is indicated by a flag 
for that variable set by Phase 1. This 
flag is checked immediately after the adcon 

10'0 

has been formed, and at that time the adcon 
is saved for later use. Durinq the first 
scan, triads in the triad table are left 
unchanged with regard to occurrence flags, 
and new entries are marked as having no 
occurrences since the last compute point. 
During this pass no changes are made in the 
compute and remove item table. When a + is 
reached, the operand pushdown table con­
tains entries representing a string of 
operands to be added to form the subscript 
expression (in addition to any earlier 
entries). The remaining + and: operators 
are ignored on this first scan, which is 
terminated at this time. 

The rearrangement subroutine (CEKKM) 
determines the number of operands (includ­
ing the one it inserts; i.e., the adcon> 
and sorts entries in the operand list. It 
then moves the ERF strings representing 
these operands to a temporary area. The 
program t-.hat moves them back in resorted 
order of.<c'rates at two levels: one for the 
individual operand expression and another 
for each block of expressions that have the 
same sort key. At the end of each such 
block, an operator (+, !, or?) is placed 
in a pushdown list and later used to con­
nect this block to the others. Sufficient 
+ operators are inserted in the string at 
the end of each block to connect the 
operands in the block. Tests are made to 
determine the location of the adcon. The 
main ERF scan is reset to start again at 
the beginning of the subscript expression. 
Phase 1 has inserted two extra + operators 
following the: to allow for the insertion 
of the adcon and the proper operator (+, ! 
or ?). 

LOOP VARIABLE EXPRESS IONS 

The induction variable is always given a 
forward compute point at begin loop-2 of 
its respective loop~ When an induction 
variable is recognized inside a subscript, 
it causes the recursive operator as 
explained above. When an induction vari­
able is recognized outside of a subscript, 
the materialize flag is set for the loop 
and special processing is applied to common 
expressions involving the induction vari­
able. The special a operator is also used 
whenever an induction variable occurs out­
side a subscript. This is necessary to 
distinguish references inside and outside 
its loop and to prevent erroneous marking 
of common expressions. 

When the begin loop-3 entry is reached 
at the loop top, all expressions removed to 
begin loop-2 are examined. All those that 
do not have an exclamation point as the 
major operator are really BL3 items. A 
flag indicates whether any labels have 
occurred in the loop. If none have 



occurred, the nonsubscript loop variable 
expressions are common within 'he loop and 
require no special-treat~ent at the loop 
top, except to terminate the range of their 
commonality. If a label has occurred, 
these expressions ~ust be cO[11puted at the 
loop top just inside the loop. They are 
reconstructed in the EF and attached to BL3 
for this purpose. 

The recursive expressions are attached 
to BL2. '",ith modification to perform the 
recursion optimally. Each recursive ex­
pression is considered in two parts. The 
right-hand operand of the exclamation point 
can be an expression or an adconi it repre­
sents the initial value of the expression. 
The left-hand operand represents the amount 
by which the recursive expression is 
stepped at the bottom of the loop. Phase 3 
locates the induction variable in the step 
expression and replaces it with the step 
parameter of the loop. 

When the materialize flag is on for a 
loop, Phase ~ tests for the end of the loop 
with the loop parameters. When the 
materialize flag is not on for a loop, 
Phase 3 creates a test expression from one 
of the recursive expressions for use in 
testing the end of the loop. 

GLOBAL REGISTER ASSIGNMENT 

The general registers are used for 
integer arithmetic expressions, subscript 
expressions, adcons for variables and con­
stants, address constants for control 
transfers, and other purposes. Phase 3 
considers certain uses of them for per­
manent assignment over one or more loops 
and if the most time can be saved this way, 
makes such permanent assignment. (The 
actual register to be used is determined by 
Phase 4.) A limit (currently 8) exists for 
the number that can be assigned to ensure 
that sufficient registers remain to allow 
Phase 4 to generate efficient code. 

When the loop lists are initialized at 
any end loop PRF entry, a null chain is set 
up of candidates for global assignment over 
that loop. Whenever any expression occurs 
as a candidate, the chain is searched and 
that expression is found or inserted. A 
popularity count associated with this usage 
is added to the cumulative popularity count 
for that expression over the current loop. 
At the loop top (BL1) these entries are 
sorted by popularity, and the process of 
determining successful candidates is 
started. 

The loop lists have a linxed chain con­
necting all the loops one level higher 
tinner) and parallel to each other. The 
?rocess of determining successful candi-

dates at this level, readjusting the lists 
for these internal loops, and placing the 
results for Phase ~ requires that there be 
three passes over the chain of internal 
loops. 

A first pass over the chain of parallel 
inner loops actually determines a success­
ful candidate. For each inner loop, a test 
is made to determine whether the expression 
has already been assigned globally or if 
the total count of global registers is less 
than maximum. If neither condition pre­
vails, the candidate cannot be assigned 
globally, and it is removed from the outer 
loop list. A count is kept for the outer 
loop (there may be no inner loops); and, if 
that count reaches the maximum, the 
remainder of the list is removed. 

Immediately after the first pass, a 
second pass over the chain of inner loops 
is made for each successful candidate at an 
outer loop. This pass updates each intern­
al list by increasing the count for that 
inner loop, if the candidate was not pre­
sent in the inner loop. 

The final pass over the chain of inner 
loops is made after the outer loop candi­
date list has been exhausted. This pass 
takes the assigned global expressions 
remaining for each inner loop (those that 
are not global in the outer loop) and links 
them into the chain of the outer loop. 
This makes a candidate available through an 
unsafe loop to level O. 

Phase 3 also selects, for Phase 4, one 
floating point constant or (in its backward 
scan) one floating point variable which is 
referenced in an inner, safe loop with no 
external calls. Phase ~ will load this 
quantity into a register outside the loop. 

ROUTINE DESCRIPTIONS 

Phase 3 routines bear only coded labelS. 
These 5-character labels begin with the 
letters CEKi the fourth and fifth letters 
identify a specific module. Various entry 
points to a module are identified by a 
sixth character added to the coded label; 
for example, the coded label for the Phase 
3 master control routine is CEKKR, and 
there are entry paints CEKKRA and CEKKRE. 
Any mnemonic name beginning with the let­
ters TEV refers to a compiler executive 
routine or entry name, rather than to a 
Phase 3 routine. The corresponding coded 
label is given in parentheses immediately 
followin~ the mnemonic. 

There are no hardware configuration 
requirements for any of the Phase 3 rou-

Section 5: Phase 3 101 



tines. ~ll these routines are reentrant, 
nonresident, nonprivileged, and closed. 
~ll except the Phase 3 PSECT (CEKKS) and 
the Phase 3 Master Control Routine (CEKKR) 
use restricted linkage, are entered by the 
INVOKE ma,:ro instruction, and return to the 
calling routine by the RESUME macro 
instruction. 

CEKKC -1 

The relationships of routines constitut­
ing this phase are shown in the following 
nesting chart {Figure 22) and decision 
table (Table 23). The relationships are 
shown in terms of levels; a called routine 
is considered to be one level lower than 
the calling routine. Phase 3 Master Con­
trol routine is considered to be level 1. 

4 

I[i 
, CEKKA ; 
: i 

___ .J 

r---t--, 
; CEKKH i 
1___ __ J 

r-----l---~ 
CEKLF 

r-L--l 
I CEKKI [ 
, I 
~ __ --1 

CEKKO 

6 

CEKLB 

=[=: 
\ 

TE'lFL4 ! 

Figure 22. Phase 3 Nesting Chart 

,--'----L_, 

L~K~~J 
'--, 

I CEKKN I 

L_, __ J 

Table 23. Pbase 3 Decision Table (Part 1 of 4) 

Routine:------------Phase 3-----------------------------------------Level: 1 ------------
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
I Routine I Usage I Routines I calling Conditions I 
~--------+-------------------------+---------+------------------------------------------~ 
ICEKKR IDirects the sequence of ICEKKU ITO edit each PRF entry. I 
I I processing prior to ICEKKB ITo oenerate removed, recursive, and induc-I 
! I editing of each of the I I t10n variable expression at loop tops. I 
I I PRF/ERF entries into ICEKKA ITo search the Compute and Remove Table fori 
I I PF/EF Output. I I Triad entries pointing to the current I 
I I I t PRF entry. ! 
I I ITEVRDM ITO print a diagnostic message when an I 
I I I! error condition is encountered in any I 
I I I I part of Phase 3. I 
I I ICEKKO ITO tally popularity for global register I 
I I I I assignment of recursive expressions. I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

102 



Table 23. Phase 3 Decision ~able (Part 2 of 4) 

Routin e: ------------Phase 3-------------------·-----------------------Level: 2 ------------
r--------T-------------------------T---------T------------------------------------------, 
I I j called I I 
I Routine I Usage I Routines I Calling Conditions I 
r--------+--------------------------+---------t------------------------------------------1 
ICERRU !To edit each PRF er>try jCERKE IWhen an ERF expression is to be processed. I 
I I into an equivalent PF ICERRV ITo process the Begin Loop-l PRF entries. I 
I I entry performing the ICERRW ITO process the Begin Loop-2 PRF entries. I 
I I necessary f'.lnctions to I CERKC I To process the End Loop PRF entries. I 
I I accomplish thi:.; .. Ln ICERRO ITo tally global register popularity for I 
I I addition uses subrol!- I I the code covering Adcon. I 
I I tines to edit the asso- !TEVFL4 ITo file a Symbol Table entry for an Adcon I 
I ! ciated R~F entries intol (CEKTPI)I to cover branches in the object code. I 
I I the EF format I ! I 
r--------+--------------------------+---------+------------------------------------------1 
I CEKRB I To generate re'· oved I CERLB I To file an Adcon entry in the Symbol Table I 
I I expressions at Begin I I covering a variable and compute the I 
I I Loop-1; recursive I I displacement. I 
I I expression at Begin ICEKKO ITo tally the popularity for global I 
I I Loop-2; and induc~ion I I register assignment for Adcons and I 
! I variable expression at I I integer expressions. I 
I I Begin ITINI4 ITo file a Symbol Table entry for a new I 
I I I (CEKTFC> I generated constant for recursive I 
I I I I expressions. I l ________ i-________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase 3-----------------------------------------Level: 3 ------------
r--------T--------------------------T---------T------------------------------------------, 
ICEKKE IControls the processing ICEKKF IEntered when a primitive is encountered inl 
I I of an expression in the I I the ERF to generate the OPT1 entry and I 
I I by the use of subrou- I I modify the ERF entry. I 
I I tines, and the editing ICEKKH iTo create a Triad entry when an operator I 
I I into the EF. I I ERF entry is encountered. I 
I I ICEKKI IEntered for each operand of an expression. I 
I I ICEKKM !Entered to process a subscript expression I 
I I I I when the first plus is encountered. I 
I I I CEKKL ! Entered when an expression' s operands have I 
I I I I been processed to generate an OPT1 entry! 
I I I I for the expression. I 
I I ICEKLF iEntered when the complete expression has I 
I I I I been processed to move it from the ERF I 
I I I! to the EF. I 
r--------+-------------------------+---------+------------------------------------------1 
ICEKKW ITo process the Begin ICEKLI iEntered when a test expression is to be I 
I I Loop-2 PRF entry. If thel I generated for the loop. I 
I I loop is to De material- ICEKLB IEntered to file a covering Adcon and I 
I I ized, loop parameters I I determine the displacement for each loopi 
I I are put into the EF; I I parameter when the loop is materialized. I 
! I otherwise, a test ex- ICERKO ITo tally popularity for global reg- I 
I I preSSion is generated byl I ister assignment for the induction vari-I 
I I subroutine. I I able if the loop is materialized. I 
~--------+-------------------------+---------+------------------------------------------1 
ICEKKV ITO process the Begin I None. I I 
I I LoOp-l PRF entries. I ! I 
I I Determines which candi- I I I 
I I dates are to be globally I I I 
I I assigned. I I I 
~--------+-------------------------+---------+------------------------------------------~ 
ICEKKC ITo process the End Loop ICERRA ITo find those rriad5 whose Forward I 
I I PRF entries I I Compute Point falls within the loop 50 I 
I I I I they can be deleted. I 
I I ICEKKG IEntered for each loop parameter to deter- I 
I I I I mine the removal level and the forward I 
I I I I compute point. I L ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

section 5: Phase 3 103 



Table 23. Phase 3 Decision Tdble (Part 3 of 4) 

Routine:------------Phase 3-----------------------------------------Level: 4 ------------
r--------T-------------------------T---------T------------------------------------------1 
I I I Called I I 
IRoutine I Usage IRoutines I Calling Conditions ! 
t--------+----------~--------------+---------+------------------------------------------~ 
ICEKKI ITO process each operand rCEKKJ !TO determine if two expressions can be ! 
I I of an expression. If it I I considered as cornman. I 
I I is primitive, the Adcon \CEKKK IEntered to name each common and removed I 
! I is considered for global I I expression. I 
I I assignment. If it h; em ICEKLE IEntered for removable expressions to file I 
I ! expression. it is con- I I as entry in compute and Remove Table. ! 
I I sidered for removabilitylCEKLD IEntered for removable expressions to I 
I I or commonality. ! I replace the expression with a residue ! 
I I I I entry in the ERF. I 
!! ICEKKO ITo tally popularity for global register I 
I I I I assignment for Adcons and removable I 
! I I I integer expressions. i 
r--------+-------------------------+---------+------------------------------------------1 
ICEKKA ITO search the Compute andlNone. I I 
I I Remove Table for.L'riads I I I 
I I which fall within the I I I 
! ! requested PRF limits. I I I 
t--------+-------------------------f---------+------------------------------------------1 
ICEKKL ITO form an entry in the I None. I I 
I ! OPTl representing an ex- I I I 
I I pression as an operand. I I I 
~--------+-------------------------+---------+------------------------------------------1 
!CEKLF ITo copy the edited ERF I None. I I 
I i entries for an expres- I I I 
I I sion from the ERF to thel I I 
I I EF, inserting the newly I I I 
I I created entries where I I I 
I I indicated. I I I 
t--------+-------------------------+---------+------------------------------------------1 
ICEKKF ITO update the Symbol ICEKKG IEntered for each variable ERF item to find! 
I I Table entry of a vari- I I its removal level and forward compute I 
I I able (by subroutine), tol I pOint. I 
I I change the ERF entry to ICEKLB IEntered for each variable ERF item to filel 
I I reference an ~dcon and I I a covering Adcon in the Symbol Table I 
I I displacement, and to I I and compute the displacement. I 
I I form an entry in the I IEntered when a dummy ("at") Triad is I 
I I OPTl for the operand. I I generated for an induction variable or I 
I I Also, a dummy expression I I a variable with an associated offset, I 
I I is generated for special I I to file the entry in the Triad Table. I 
I I conditions. I I I 
t--------+-------------------------+---------+------------------------------------------1 
ICEKKH ITO generate a Triad from ICEKKN IEntered for all expressions except those I 
I I an ERF operator and two I I inside subscripts to put the operands I 
I ! operands in the OPT!. I I into canonical form. I 
I I ICEKKP IEntered for all expressions to file the I 
I I I I Triad entry or locate its previous I 
I I I! existence. I 
~--------+-------------------------+---------+------------------------------------------1 
ICEKKM ITO revise a subscript INane. I I 
I I expression to include I I I 
I I the Adcon and optimize I I I 
I I t.he loop variable and I I I 
I I removed expressions. I I I 
r--------+-------------------------+---------+------------------------------------------1 
!CEKLI ITo generate and insert ICEKLB IEntered for each loop parameter which not I 
I I into the EF a test ex- I 1 a constant to file a covering adcon in I 
I I pression to be used at I I Symbol Table and compute displacement. I 
I I bottom of a loop to testlCEKKO ITO tally popularity for global register I 
! ! for the end conditions I I assignment for covering adcons and inte-I 
I I of the loop. I I ger expressions. I 
I I !TEVI4 ITo file a Symbol Table entry for a con- I 
I I I (CEKTFC>I stant generated from the combination of I 
I I I I other constant forms in the test I 
I I I' expression. I l ________ i-________________________ ~ _________ L __________________________________________ J 

104 



Table 23. Phase 3 Decision Table (Part 4 of 4) 

Routine:------------Phase 3-----------------------------------------Level: 5 ------------
r--------T-------------------------T---------T------------------------------------------, 
I I I Called I I 
I Routine I Usuge I koutines I calling Conditions I 
~--------+-------------------------+---------+------------------------------------------1 
I CEKKJ I To determine if two oc- I None. I ! 
I I curences of an eXeJres- I I I 
I I sion are corrunon. I I I 
~--------+-------------------------+---------+------------------------------------------1 
ICEKLD ITo replace a removed p'one. I I 
I I expression in the ERF I I I 
I I with a residue entry. I I I 
~--------+-------------------------+---------+------------------------------------------1 
I CEKKO I To find a GIRL entry and I None. I I 
I I add in the new popular- I I I 
I I ity count or, if none I I I 
I I already exist, to createl I I 
I I a new GIRL entry. I I I 
r--------+-------------------------+---------+------------------------------------------1 
ICEKKN ITo put the operands of ani None. I I 
I I expression into canoni- I I I 
I I cal. form to facilitate I I I 
I I finding cornmon expres- I I I 
I I si ons • I I I 
r--------+-------------------------+---------+------------------------------------------1 
ICEKKK ITo assign a name to a ICEKLA IEntered when a previous occurrence of the I 
I I cornmon or removed I I expression is to be marked cornmon in EF. I 
I I expression, and by sub- ICEKLE IEntered for every named expression to filet 
I I routine 1) put the name I I an entry in the Compute and Removal I 
I I into the previous occur-I I Table at the forward compute point of I 
I I rence of a common ex- I I the expression. I 
I I pression, and 2} file I I I 
I I a CRT entry for the I I I 
I I expression. I I I 
r--------+-------------------------+---------+------------------------------------------1 
ICEKKP ITo enter new expressions INone. I I 
I I into the Triad Table, I I I 
I I locate cornmon Triads, I I I 
I I and delete obsolete I I I 
I I Triads. I I I 
r--------+-------------------------+---------+------------------------------------------1 
ICEKKG ITO determine the removal INone. I I 
I I level and forward com- I I I 
I I pute pOint for a vari- I I I 
I I able and store the I I I 
I I information in its I I I 
I I Symbol Table entry. I I I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Routine:------------Phase 3-----------------------------------------Level: 6 -----------­
r--------,-------------------------,---------T------------------------------------------, 
ICEKLB ITo file a covering Adcon ITEVFL4 IEntered for each variable to file cover- I 
1 I entry in the Symbol I (CEKTFI) ling Adcon in the Symbol Table. I 
I t Table, compute a vari - I I I 
I I ables's displacement, I I I 
I I and file entries in tne I t I 
I I Formal Argument Adcon I I I 
I I Table I I I 
r--------+-------------------------+---------+------------------------------------------~ 
I CEKLA I To replace a removed I None. I I 
I I expression's ERF repre- I I I 
I I sentation with a residue I I I 
I I entry. I I I 
r--------+-------------------------+---------+------------------------------------------1 
ICEKLE ITO file an entry in the I None. I I 
I I Compute and Removal I I I 
I I Table at the indicated I I I 
I , PRF location. I I I l ________ ~ _________________________ ~ _________ ~ __________________________________________ J 

Section 5: Phase 3 105 



CEKKS -- Phase 3 Storage (PSECT) 

This routine supplies storage for Phase 
3. 

A brief description 
item formats follows. 
will occupy one word. 
map is shown in Figure 

of most table and 
Most other variables 
The Phase 3 Storage 
23. 

Phase 3 LOOp Tables 

1. 

2. 

LEV - 1 full word, contains the level 
of the current loop. 

Current Nest Table CCNT) (Fixed, 55 
entries long): 

o 15 16 31 
r----------------~------------------l 
I TLINK I PLINK I l _________________ i-_________________ J 

TLINK 

PLINK 

Loop in current nest, this 
level (PLP) 
Chain of parallel loops, next 
level (PLP) 

CNT is 224 bytes; the 55 allowable 
entries require 220 bytes, and the 
false loop over the whole program 
accounts for the remaining four bytes. 

F Save Area - 76 by~e'S 

Address Constan~s - 200 b'{te-S 

Linked Chains -, 36 bytes 
-._----_._.-

Tf-'rnp Storage - 240 bytes. 

[):-''''''''Y hbte Entries - 64 bytes 
f-- .- .----.-... ----------~-- ---------~-

Flags - 17 Syres 

Cvrrent f.,lest Tooie - 224 byte~ 

CPTl Tobie 1024 bytes 

'-IASH T.::IbJe - 1024 bytes 
!--- -- ---_._-- --- -- ---_._----- _.- ------- ._-----------

tr>tercOfl'l - 512 bytes 
-- ----------_. __ ._---------- --------------

Error Message'S - 378 by~e$. 

SpeciQ~ Tipe Table - 18 bytes 

JUrT'my Paralle I L·,)op Table entry for '-1' level -12 bytes 
--------_._----_._--------------------

'No.rk Area Used tor Tempora!), Storage, Triad Table, 
Psfo!!e! Leop Tab!e, Global Register list Table, 

S :::Rf TCDie J ond Compute and Removal Table-56,84A 
bytes 

Executable Code Ptu:~ Constant'S - 10,080 bytes 

Figure 23. Phase 3 Storage Map 

106 

3. Parallel Loop Table (PLP) 

o 15 16 23 24 31 
r-----------------T------------------, 
I BL3PT I BLIPT I 
t-----------------t------------------i 
I ENDLPT I GPLNK I 
r-----------------t---------T--------1 
I PLINK I GPN IPLPFLGS I 
~-----------------t---------~--------1 
I BL2PT I IVAR I l _________________ ~ __________________ J 

BLIPT, BL2PI' , 
BL3PT 
ENDLPT 
GPLNK 

PLINK 

GPN 

PLPFLGS 

IVAR 

Begin-loop entries (PRF) 

End-loop entry (PRF) 
Chain of global register 
expressions 
Link in parallel loop 
chain 
Number of global register 
expressions 
80 Labels occurred in 

the loop 
40 Unsafe loop 
20 Materialize loop 

variable flag 
10 = Parameter 
08 = Global flag 
04 BXLEREC flag 
02 ONEASN flag 
Symbol Table entry of the 
induction variable 

Global Register List (GIRL) (Linked, 
Permanent) 

o 15 16 31 
r--------------------T--------------------, 
I GLBL I GPLNK f 
t--------------------t--------------------1 
I POP I Not Used I l ____________________ ~ ____________________ J 

GLBL The name of a global expression for 
this loop, or a Symbol Table pointer 
for an Adcon. The name will have 
7000 1 added to it to distinguish it 
from a painter 

GPLNK Link in global register chain 

POP popularity count for candidates 

Link Pointers 

During the PRF scan in Phase 3, chains 
of PRF items occur in pairs, one going for­
ward (unprocessed) and one going backwards 
(has been relinked by Phase 3 in opposite 
direction). Phase 3 keeps a pair of point­
ers to head each chain. Compute point 
entries are processed before the PRF entry 
to which they are attached. 



r-------- ----------T-----T--------T--------, 
t I PRF I Forward 1 Backward 1 
1 Chain I Field 1 Head 1 tiead 1 
f------------------+-----+-·------+--------i 
IVariable Defini- IVDP IFDP IBDP I 
I tion I I C3YI") 11 (SYM) 1 1 
ICommon Definition ICDP ICFDP \CBDP I 
1 PRF Entr ies 1 ILNK 1 FLINK I BLINK I 
I Label Definitions 1 LLNK 1 LFDP 1 L.BDP 1 
f-------------------i-----i-------i--------1 
11 These fields exist for each variable andl 
lare in the symbol table entry for that I 
1 variable.- -- 1 L _________________________________________ J 

operand Pushdown 

Type 1 Entry - For Generating Triad Table 

o 78 15 16 31 
r--------------------T--------------------, 
! OPTRD1 1 OPTFCP 1 
t--------------------+--------------------~ 
1 OPCNT 1 OPOLSH I 
r---------T----------t--------------------1 
I OPRLEV I OPFLGS I Not Used 1 L ________ i __________ i ____________________ J 

OPTRD1 Reference to Triad Table or Symbol 
Table 

OPTFCP Forward Compute Point 
OPTCNT Length of expression in Polish 
OPOLSH ERF pointer to Polish expression 

(right end) 
OPRLEV Removal Level 
OPFLGS There are seven flags: 

Setting Meaning Name 
OPFI 

Bit 
-8- o OPTRD1 is a Symbol 

Table Pointer = 
Primitive 

OPSIGN 9 
OPLVF 10 

OPPLF 11 
ATF 13 
RSEF 14 

IVARF 15 

1 

1 
1 

1 
1 
1 

1 

OPTRD1 is a Triad 
Table Pointer 
Sign Flag 
Loop Variable 
Flag 
ERF Insert Flag 
At Operator Flag 
Removable Subexpres­
sion Flag 
Induction Variable 
Flag 

Type 2 Entry - For Generating Expression 
File Entries for Removed 
Expressions 

o 7 8 OPTSN 15 16 31 
r------------T------------~-------------, 
I OPTSW 1 OPTSN ! OPTTRD I l _____________ i _____________ L _____________ J 

OPTSW S~itch, used to determine the 
stage of processing an item 

OPTSN 

OPTTRD 

u1gn, used to store sign of the 
operand 
~ Triad or Symbol Table painter 
(determined by OPTSW setting) 

Triad Table Entry 

3 16 18 24 26 31 
r-------------------T--T--T----T--T--T----' 
1 I I I 1 I I 1 
1 1 <4 I ....., liN 1 Nil 
I 1 ......... 1 c: 1 I :---- 1 c: 1 1 
1 TRLNK 1 ~ lS'I OP 1 ~ 1 3'1 OP 1 
1 1E-<IVlI IE-<Ivl\ 1 
I 1 I I I I I I 
~-------------------t--i--i----i--~-~---~ 
I TROP1 I TROP2 I 
.-------------------t---------------------1 
1 TRNAME I TRFCP 1 
t---------,---------t----------~----------1 
I TRFLAG: TRRLEV 1 TRTYPE : TR2NDF I L _________ ~ _________ i __________ L __________ J 

TRLNK 

TRFI1, TRFI2 

SIGNl, 
SIGN2 
OP 

TROP1 

TROP2 
TRNAME 

TRFCP 
TRFLAG 
TRRLEV 
TRTYPE 

Links to next entry in a chain 
from a hash table. 
File Indicator 1, File Indica­
tor 2 
Sign for OP1 and OP2, 
respectively 
Operator--Same as code in EF 
Form 2 format 
First operand (Triad or Sym­
bol) [for: and Cil, 
di splacementJ 
Second operand (Triad or 
Symbol) For: and Cil, variable 
(symbol). Also see TRTYPE, 
below. 

NAMEF 
OF LAG = 

NAMEF 
QFLAG = 

NAMEF 

0, link in chain of 
1 Triads for last 
occurrence here. 
0, link to new Polish 
o expression for 
last occurrence. 
1 name of this 
expression. 

Forward compute point (PRF) 
See TRTYPE, below. 
Removal level 
The ID field from the ERF 
entry of the operator is saved 
to determine the type of 
expression. 

(See Code and Type fields in 
the EFID in EF form 1 format) 

The search key for entering the triad 
table consists of the seven fields: OP, 
OP1, OP2, FIl, FI2, SIGN1, and SIGN2. 

Section 5: Phase 3 107 



r--------------T----------------~------------------T----------------------------, 
TRFLAG I Flag Name I Bit Position I 0 Meaning I 1 Meaning I 

~-------------+_---------------_f------------------+----------------------------~ 
I ZEROF I X' 80' I No Reference I other I 
I I I since Compute I I 
I I I point I I 
t--------------+_---------------_f------------------+----------------------------1 
I FIRSTF I X'qo' I Other I First reference I 
I I I I since compute I 
I I ! I pOint ! 
t--------------+-----------------+------------------+----------------------------~ 
I NAMEF I X· 20' I (See NAME I I 
I I I above) I I 
t--------------+----------------_f------------------+----------------------------~ 
I QFLAG I X'lO' I Other I This EF location to I 
I I I I be saved in I 
I I I I Triad I 
~-------------+-----------------+------------------+----------------------------~ 
I REMOVF I X' 08' I Other I Has been removed I 
I I I I f 
I LOF I X· 04' I other I EF' Last-use' bit I 
I I I I has been set I 
I NCOMPF I X'02' I Other I Expression not removable I 
I I I I on its own I 
I I I I I 
I COMAF I X'Ol' I Other I Operator is a I 
I I I ! comma, double comma, I 
I I I I or question mark I 
~-------------+-----------------+------------------+----------------------------~ 

TR2NDF I FRCFLG I X'SO' ! Other I Exp. must be I 
I I I I generated at BL3. I 
t--------------+----------------_+------------------+----------------------------~ 
I CPFLAG I X'40' I Other I Level Zero I 
I I I I removable expression. I 
t--------------+_----------------f------------------+----------------------------~ 
I CRTF I X'20' I Other I I 
r--------------+----------------_f------------------+----------------------------~ 
I TRLVF I X"10' I Other I I 
r--------------+_----------------+------------------+----------------------------, 
i SPLTTRD I X'OS' I Other I Special BXLE c~ I 
I I I I Recursi ve Triac, I 
t--------------+-----------------+------------------+----------------------------~ 
I COMAF I X • 01 • I Other I I l ______________ L-_______________ ~ __________________ ~ ____________________________ J 

Polish Insertion Entries 

When an integer is an operand of a non­
integer expression. Phase 3 inserts a float 
operator by means of two entries in the ex­
pression file, a primitive wFLOAT- con­
ner.ted by the operator -FUNCTION.- Prior 
to the time that the ERF is copied to the 
PF, insertions are indicated by entries in 
a linked file SERF. An entry to this file 
is as follows: 

o 15 16 31 
r--------------------T--------------------, 
I S LNlIT I ILNKT I 
~-_--------------..L--------------------~ 
I Word 1 I 
t-----------------------------------------~ 
I Word 2 I l _________________________________________ J 

108 

SLINKT 
ILNKT 

Word 1 
and 

WORD 2 

Link to next entry in this chain 
Link to ERF entry this insert 
precedes 

A normal ERF entry 

Compute and Removal Item Table 

o 15 16 31 
r--------------------T--------------------, 
I FCP I CPLNK I 
~--------------------+--------------------~ 
I not used I TRIAD I l ____________________ ..L ____________________ J 

FCP 

CPLINK 
TRIAD 

Forward compute point 
(or removal point) 

Link to other entries 
Expression in Triad Table 



For insertions a hash table is entered, 
using the low order n-bits of FCP and link­
ing to a chain. Entries in Lhe chain are 
sorted on FCP (highest first). Later in­
sertions precede earlier insertions. The 
table is scanned by a pointer which is syn­
chronized with the PRF scan for removal of 
entries at the proper tiwe. Removal 
entries are distinguished by having FCP at 
Begin Loop-1 PRF entries. 

Hash Table for Compute and Removal Table 
<CRT) and Triad Entries (HCRT) 

Those entries serve as dummy first 
entries for the linked chains of CRT 
entries and for the linked chains of triad 
entries. This table has 256 entries. 

3 15 16 31 
r--------------------r--------------------, 
I LINK I CPLNK I l ____________________ ~ ____________________ J 

LINK For Triad items the fields OP1 and 
OP2 are added together, multiplied 
by 4, and the low-order 12 bits of 
that result are used as the index 
into this table. 

CPLINK For CRT items the low-order 12 bits 
in a PRF address form the index 
into this table. 

Formal Argument Adcon Table 

Some adcons assigned to storage class 4 
are actually not constants but are 
variables which must be computed by the 
preamble at any entrance of the subroutine. 
These are the adcons referring to storage 
classes 128 through 253 reserved for the 
parameters (dummy arguments), one per argu­
ment. In order to specify these adcons to 
Phase 4 for preamble generations, a list is 
prepared by Phase 3. The entries to this 
list are 

o 7 8 15 16 31 
r----------T---------T--------------------, 
I Not Used I STCL I Sym. I l __________ ~ _________ ~ ____________________ J 

STCL 

Sym 

Storage Class 

Symbol Table pointer 
for the Adcon 

CEKKR -- Phase 3 Master Control Routine 

This is the entry point from the Exec. 
The intercom area is initialized. The 
PSECT is moved into the GETM~IN area, and 
the adcons that point to areas within the 
PSECT are relocated. The work area is 
initialized, necessary parameters stored, 
and proper registers filled. The proper 
subroutines are entered for processing each 

PRF item. These items are scanned in 
reverse order. When the end of the PRF is 
reached, CEKRU sets a flag, and CEKKR 
returns to the Exec. All errors found by 
other routines of Phase 3 are handled by a 
special entry in CERRR. See Chart cv. 

ENTRIES: 

CEKKRA This is the point where the Exec 
enters Phase 3 by a standard link­
age (CALL macro instruction). 

CEKRRE rhis is the error exit for all rou­
tines within Phase 3. The entry is 
made by restricted linkage (INVOKE 
macro instruction). The only pa­
rameter is in register P2. This is 
a pointer to the error message pa­
rameter list. 

EXITS: The routine exits to the Exec by a 
standard linkage (RETURN macro instruc­
tion). The value in register L3 indicates 
whether it is a normal return (value = 3) 
or an abort return (value = 8). 

The routine detects no error conditions 
of its own, but does handle the errors of 
all the other routines of Phase 3. 

OPERATION: Upon entry, the standard proce­
dure is used to save the registers and lo­
cate the PSECT belonging to Phase 3. The 
intercom area is moved from the exec's 
PSECT to Phase 3's PSECT. Register N1 is 
loaded with the intercom location. hfter 
the PSECT has been moved into the GErMAIN 
area, the location of the first page of the 
GETMAIN area is loaded into register L1. 
The location of the second page of the GET­
MAIN area, which is the new intercom loca­
tion, is loaded into register N1. Register 
N2 is loaded with the first available loca­
tion in the working storage area. The 
location of the first entry in the PRF is 
calculated and put into register P5. The 
location of the first available word in the 
PF is calculated and put into P6. The 
IL~it of the PF is calculated and saved in 
PFLIM. 

The CEKRA subroutine is invoked, for 
each PRF item, until no qualifying entry in 
the compute and removal table is found. 
For each CRT entry returned by CEKRA, CEKKB 
is entered if the current PRF entry is a 
Begin Loop 1, 2, or 3 item. If it is not, 
the CRT entry is deleted from the table. 

Each begin loop 3 item goes through the 
CERRA circuit twice, first pointing to 
itself then pointing to the begin loop 2 
PRF entry. On the first pass, a qualifying 
CRT entry returned from CERRA is deleted if I 

the forward compute point is less than the 
current PRF location, or if the FRCFLG is 
not on in the triad entry and the Wlabel" 

Section 5: Phase 3 109 



flag is zero in the PLP entry. otherwise, 
CEKKB is entered to generate the expres­
sion. On the second pass, the CRT entry is 
deleted if the operator of the traid is not 
an! (indicating a recursive expression). 
For the recursive expression triads, a flag 
is set indicating that this loop need not 
be materialized. Then, the popularity of 
the expression is increased by CEKKO. When 
CEKKA returns a zero in register P2, the 
flag for the first begin loop 3 pass 
(HOLDB3) is checked. If it is on, the 
second pass is set up and the flag turned 
off. During the second B13 pass, all 
recursives are examined to determine if 
there is a 'BXLE on recursive' candidate. 
The following checks are made: 

1. The recursive must be a special split 
subscript. That is, the least remov­
able part of the subscript must be the 
induction variable. 

2. The step on the recursive must be a 
positive constant. Note that the loop 
step is not included in the subscript 
expression at this time. CEKKB 
inserts it at BL2 processing. 

3. The loop step must be a constant. 

4. The loop must not be marked for 
materialization. 

Of all tbe candidates passing the require­
ments, the one with the highest popularity 
count is retained. 

At the end of the second pass, if a BXLE 
recursive was selected, the CRT entries are 
relinked so that the selected recursive is 
the one last seen by Phase 4, and the one 
for which the test expression will be 
created by CEKLI. 

CEKKO is then called to increase the 
popularity of the recursive to the maximum, 
to ensure its global assignment by CEKKV. 
When both passes at begin loop 3 have been 
completed, the materialized byte is checked 
to see if a recursive expression was found. 
If none .as found and the global flag is 
off, or if the ISO option is on in inter­
com, the materialize flag is set in the PLP 
item. 

For each completion of the CEKKA cir­
cuit, the 10 of the PRF entry is checked 
for a -label w or an "alternate entry" item. 
For labels, the -referencedw flag in the 
symbol table is tested. If it is on, CEKKA 
is entered and all the CRT entries deleted. 
For alternate entries, all CRT entries are 
deleted by using CEKKA and pointing to 
X'7FFF' or to the absolute beginning of the 
PRF. No triads can be carried past an 
alternate entry. Upon completion, or if 
the PRP entry was not one of those two, the 

110 

CEKKU routine is invoked. Upon return from 
CEKKU, the end flag (ENOIT) is checked. If 
it is off, the routine returns to enter 
CEKKA again for the next PRF item. If the 
end flag is on, Phase 3 ends. The regis­
ters are restored, and return is made to 
the executive by standard linkage (RETURN 
macro instruction). 

At the entry point for errors (CEKKRE), 
the executive subroutine CEKTE is called to 
output the error message. Upon return, 
register L3 is set to 8, to indicate an 
abort condition. The routine exits through 
the same procedure as for a normal exit. 

CEKKU -- PRF Processing Routine 

This routine manipulates the PRF entry 
into its proper PF format, performs any 
necessary linking, and writes the entry 
into the PF. See Chart cwo 

ENTRIES: The entry point is CEKKUA. 
Register P5 contains the location of the 
current PRF entry, register P6 contains the 
location of the next available word in the 
PF, register N1 covers the Intercom area, 
and register Ll covers the work area. 

EXITS: Register PS contains the location 
of the next PRF entry, register P6 contains 
the location of the next PF word. register 
Nl covers the intercom area, register N2 
covers the unused working storage, and 
register L1 covers the work area. 

TwO error conditions are detected: 

1. An illegal ID in the PRF. 

2. The PF table overflowed. 

For all cases register P2 is set with 
the location of an error message parameter 
list in the PSECT, and the standard phase 
error processor (CEKKRE) is invoked. 

OPERATION: The registers are saved by the 
STORE macro. The ID code of the PRF is 
converted to an index by multiplying it by 
four. An internal branch table is used to 
direct the routine to the proper proceSSing 
section. If the 10 is zero, or greater 
than the maximum, the error exit is taken. 

Each item is processed by rearranging 
(if necessary) the fields of the PRF to 
conform to the PF format. In many cases 
entire fields are deleted; in other cases 
fields are modified (refer to the format 
diagrams of the PF items in Appendix A). 

1. Begin Program (10 = X'l'). The end 
flag (ENDIT) is set. If the program 
being compiled is a main program, a 
dummy ENTRY statement is inserted into 
the PF. Return is to CEKKR. 



2. Enter (ID = X'2') and Alternate Entry 
(ID - X' 3' ). . For a sUbprogram entry 
(ID - 2) the end flag (ZNDIT) is set 
to mark the end of the DRF. Each 
argument symbol table index (ASTX) is 
used to obtain the corresponding 
storage class (STCL> from the symbol 
table. These are stored in the PRF. 
The label relink (a Phase 3 internal 
subroutine described below) subroutine 
is entered. Upon return, the length 
of the PF entry is computed and the 
Variable Move routine (a Phase 3 in­
ternal subroutine, described below) is 
entered. 

3. Label Definition (ID = X'q'). The 
label relink subroutine is entered. 
Upon return, the label flag bit in the 
PLP entry of the current loop level is 
turned on if the wReference- flag is 
on in the symbol table. The fields 
are packed and the Two-Word Move rou­
tine (a Phase 3 internal subroutine, 
described below) is entered. 

4. Equation (ID = X'S'). EXSN (expres­
sion scan subroutine, a Phase 3 inter­
nal subroutine, described below) is 
entered for OPD1. Upon return, the 
symbol table location stored by CEKKE 
is used to enter the Variable Relink 
subroutine. EXSN is then entered for 
OPD2. Upon return, the Common Relink 
subroutine is entered. Upon return, 
the fields are rearranged and the 
Four-Word Move routine entered. 
(Variable Relink, Common Relink, and 
Four-Word Move are all Phase 3 inter­
nal subroutines, described below.> 

5. GO TO (ID = X'6'). The symbol table 
index of the label (LLNO> is used to 
enter the Adcon Assignment subroutine. 
Upon return, the fields are rearranged 
and the Three-Word Move routine is 
entered. (Adcon Assignment and Three­
Word Move are both Phase 3 internal 
subroutines and are described below.> 

6. ASSigned GO TO (ID = X'7'). The num­
ber of label elements (NOEL) is used 
to find the line-number word (LINO), 
which is moved to the third word of 
the entry. The OPD field is used to 
enter EXSN. The AVAI{ field is moved 
up two bytes, and the Three-Word Move 
routine is entered. 

7. Computed GO TO (10 = X'g'). The OPD 
field is used to enter EXSN. The 
fields are rearranged, with the LLNOs 
being packed into two bytes. The new 
length is computed, and the Variable 
Move routine entered. 

8. ASSIGN (ID = X'9'). The OPO is used 
as a parameter for entry to tne EXSN 

routine. On return, the Three-~ord 
Move routine is entered. 

9. Arithmetic IF (ID = X'A'). EXSN is 
entered with the test value (TVAL). 
Upon return the Common Relink subrou­
tine is entered. Upon return, the 
Adcon Assignment subroutine is entered 
for the three branch points. The 
fields are then rearranged and the 
length set at 20 bytes. The variable 
move is then entered. 

10. ~ical IF (10 = X'B'). EXSN is 
entered with the test value. Upon 
return, the Common Relink subroutine 
is entered. The last two words are 
moved up one word. The Adcon AsSign­
ment subroutine is entered. Then the 
Four-Word Move routine is entered. 

11. CALL (ID = X'C'). The fields are 
rearranged, with the LLNOs being 
packed into two bytes. The new length 
is computed, and the Variable Move 
routine entered. 

12. Argument Definition Point tID = X'D'). 
The VAR field is converted to a symbol 
table location, and the Variable 
Relink subroutine is entered. Upon 
return, the Two-Word Move routine is 
entered. 

13. RETURN (10 = X'E'). The RIND field is 
checked. If it is nonzero, the RVAR 
field is used as a parameter to enter 
the CEKKE routine. Upon return, or if 
RIN~ was zero, the RVAR field is moved 
forward two bytes, and the Three-Word 
Move routine entered. 

14. Begin Loop 1 (ID = X'F'). CEKKV is 
entered. Upon return, the length is 
set at 28 bytes and the Variable Move 
routine entered. 

15. Begin Loop 2 (10 = X'10'). CEKKW is 
entered. Upon return, the Four-Word 
Move routine is entered. The Four­
Word Move routine adds the IVAR and 
EXITLB pointers to make the BL2 a 
five-word entry. 

16. Begin Loop 3 (ID = X'11'). The RMVAL 
word is obtained from the PSECT and 
put into the PRF entry. A hexadecimal 
8000 is put into RMVAL. The subrou­
tine to relink common is then entered. 
On return, the CDP and GLAB fields are 
rearranged to the PF format. If the 
level is not zero, the Adcon Assign­
ment subroutine is entered. The flags 
are then checked. If the 'global' 
flag is on, indicating an inner loop 
with no external calls, and the loop 
is safe, the symbol table pointer for 
the current floating point candidate 

Section 5: Phase 3 111 



is put in the Pb'. rhe candidate 
pointer is then replaced with X'8000'. 
The Three-word Move routine is 
entered. 

17. End LOaF no x '12'). CEKKC h~ 
entered. The symbol table pointer for 
t.he current floating point candidate 
is replaced with X'8000'. Upon 
return, the One-Word Move routine is 
entered. (One-~~rd Move is a Phase 3 
internal subroutine and is described 
below. ) 

18. CONTINUE (ID = X' 13'). No processing 
is necessary, so the Two-Word Move 
routine is entered directly. 

19. READ (IO = X'14') and W,ITE (IO 
X'l7'). The flag field is checked to 
see if the LABF field is an EF point­
er. If it is, the EXSN routine is 
entered. Upon return or. if it was not 
an EF pointer, the UNIT field is used 
to enter EXSN. Upon return, the 10 is 
checked. If it is a WRITE entry, the 
Three-Word Move routine is entered. 
For a READ, the ERR and EOF fields are 
packed into one word and the Four-Word 
Move routine entered. 

20. READ (10 = X'16'), PRINT (ID = X'19'), 
and PUNCH (10 - X'lA'). The flag 
field is checked. If it indicates 
that the LABF is an EF pointer, the 
EXSN routine is entered. Upon return 
or if LABF is a symbol table pointer, 
the Three-Word Move routine is 
entered. 

21. READ with NAMELIST (10 = X'15') and 
WRITE with NAMELIST (10 = X'lS'). The 
UNIT field is used as a parameter to 
enter the EXSN routi~e. If the entry 
is a WRITE with NAMELIST, the Three­
Word Move routine is entered. For the 
READ with NAMELIST entry the fields 
are rearranged, with ERR and EOF being 
packed into two bytes. Then the Four­
Word Move routine is entered. 

22. Output List Element (10 = X'lB'). 
EXSN is entered with OPD. Upon 
return, the Two-Word Move routine is 
entered. 

23. End List tID = X'lC'). The One-Word 
Move routine is entered directly. 

24. File Control (lD = X'lD'). The UNIT 
field is used as the paramet.er on an 
entry to EXSN. 

25. STOP (ID = X'lE') and PAUSE '10 = 
X'lF'). The Three-Word Move routine 
is entered directly. 

112 

26. End Program (ID = X'20'). The One­
Wor) Move routine is enter""d directly. 

27. Input List Element (10 = X'21'). EXSN 
is entered. Upon return, the symbol 
table location generated by CEKKE is 
used to enter the Variable Relink sub­
routine. Opon return, the Common 
Relink subroutine is entered. ~hen 
finiShed, tne Three-Word Move routine 
is entered. 

28. Adcon Assignment Subroutine. Ttle sym­
bol table pointer, assumed to be in 
register P2, is converted to an 
address. The storage class of the 
entry is checked. If it is equal to 
255, the routine returns to the call­
er. If not equal to 255, it is set to 
255. Register P2 is set to zero, and 
CEKLB is entered to file the constant. 
The pointer to the symbol table entry 
for the adcon is moved from the PSECT 
(TEPNTR) to the symbol table entry 
being processed. The parameters are 
set, and CERRO is entered to tally the 
popularity of the adcon for global 
register assignment. Return is to the 
calling routine. 

29. Label Relink Subroutine. The pointer 
of the current PRF entry (FPT) is com­
pared to the forward label link 
(LFOP). If they are not equal, the 
routine returns. If they are equal, 
the label field of the PRF (LINK) is 
converted to the PF chain, and the 
current LLNK saved as LFOP. 

30. Common Relink Subroutine. The pointer 
of the PRF entry is compared to the 
forward common link (CFDP). If they 
are equal, the PRF field is chained 
and the PRF pointer is saved. The 
routine then returns to the caller. 
If they are not equal, the PRF painter 
is compared to the forward formal 
argument link (AFOP). If these are 
not equal, the routine returns. If 
these are equal, the PRF field is 
linked, and the PRF link is saved. 

31. Variable Relink Subroutine. The PRF 
pointer is compared to the forward 
definition field in the indicated sym­
bol table entry. If they are not 
equal, the routine exits. If they are 
equal, the forward and backward 
definition fields of the symbol table 
are relinked, and the forward link 
saved. 

32. One-Word, Two-Worj, Three-Word, and 
Four-Word Move Routines. The PF loca­
tion is moved to register P3 and 
increased by the indicated number of 
bytes (4, 8, 12, or 16). Then the 
Special Move subroutine is entered. 



Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190 

Upon return, the proper number of 
words is transferred from the PRF 
table to the PF table. The PF loca­
tion is then updated by the proper 
number of bytes. The Exit Routine is 
then entered. 

33. Variable Move Routine. The indicated 
length (i.e., number of bytes to be 
moved) is put on the next full-word 
boundary. The PF location is put into 
register P3 and the length added to 
it. The Special Move subroutine is 
then entered. Upon return PRF entry 
is moved in blocks of 256 bytes or 
fewer. The PF location is then 
increased by the length, and the Exit 
Routine entered. 

34. Special Move Subroutine. The extent 
of the new PF entry (register P3) is 
compared to the PL limit (LIMSAV) for 
PF table overflow. If the table limit 
is exceeded, the error exit is taken. 
If not, the PF link field (ILINK) is 
updated, and return is made to the 
calling routine. 

35. EXSN - Expression Scan Subroutine. 
The ERF location is obtained from the 
indicated location, and CEKKE is 
entered. Upon return, the EF location 
is stored in the indicated field. The 
PRF location is restored, and return 
is to the entering routine. 

36. Exit Routine. The forward and back­
ward links for the PRF and PF are 
updated. The current PRF location is 
calculated. The routine then exits to 
CEKKR by a restricted linkage (RESUME 
macro instruction). 

CEKKC -- End Loop PRF Entry Routine 

This routine processes the end loop 
entries in the PRF table. It sets up the 
loop tables for the loop, terminates com­
monality of expressions as required, marks 
loop variables appropriately, and deter­
mines their compute points if necessary. 
See Chart CX. 

ENTRIES: The entry point is CEKKCA. 
Register PS contains the location of the 
current PRF entry, register Nl covers the 
intercom area, register N2 contains the 
location of the first available word in the 
working storage area, and register L1 
covers the work area. 

EXITS: Registers N3 through L2 are 
restored. Registers P5, P6, and N1 return 
unchanged. Register N2 reflects any use of 
working storage by pOinting to the new 
first-available word. 

This routine uses the working storage 
area of the PSECT. An error condition 
exists if this area is overflowed. The 
Phase 3 error exit (CEKKRE) is taken. 

OPERATION: The level (LEV - see "Phase 3 
Loop TablesW ) is increased by 1, and a new 
PLP entry is generated and linked into the 
CNT Table. If the current loop is safe, 
all entries in the CRT (found by CEKKA) 
below the BL3 of the loop are deleted. If 
the loop is unsafe, level zero is checked. 
If level zero is safe, all CRT entries to 
BL3 of level zero are deleted. 

The -active induction variable" flag is 
turned on in the symbol table entry of the 
loop induction variable. The current level 
is stored as ULEV, and the forward compute 
point is set at BL2 of the loop. For the 
three loop parameters, CEKKG is entered to 
set the ULEV and FCP. Upon return, these 
entries are checked to ensure that the ULEV 
is at least the current loop and FCP is at 
BLl of the loop. Also, if any of the loop 
parameters is an induction variable for a 
previous loop, that loop is set for 
materialization. 

CEKKV -- Begin Loop 1 PRF Processor 

This routine processes the begin loop 1 
entries in the PRF. The global register 
candidates are computed and moved into the 
PRF. Since this is the end of the process­
ing for a loop, the level (LEV - see "Phase 
3 Loop Tables·) is reduced by 1. See Chart 
CY. 

ENTRIES: The entry point is CEKKVA. 
Register PS contains the location of the 
current PRF entry, register Nl covers the 
intercom area, and register L1 covers the 
work area. 

EXITS: Registers P6, N1, N2, and L1 are 
the same as when entered. Register PS 
points to the BL1 work area in the PSECT 
(BL1WORK) • 

This routine uses the working storage 
area of the PSECT. If this area is oVer­
flowed, an error condition exists. The 
Phase 3 error exit (CEKKRE) is taken. 

OPERATION: Upon entry, the 2-word PRF BL1 
item is moved from the PRF to the BL1 work 
area in the PSECT, and register PS is 
loaded with that location. (This is done 
because the BL1 entry to be created for the 
PF will be 28 bytes long. If the PRF is 
near the end of the allotted area, working 
in the PRF could cause errors by accessing 
past the end on the legitimate PRF area.) 
The line number is moved from the second 
word to the seventh. The loop level (LEV) 
is used to find the PLP location through 
the CNT table. The PLP flags are moved to 

Section 5: Phase 3 113 



Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190 

the PRF entry. The global register candi­
date counter (GPN) is saved and the field 
cleared in the PLP. If the original GPN is 
zero, there are no global register assign­
ments, and the routine skips to the end. 

For the sort, a temporary table (the 
first entry of which is set to zero) is set 
up in working storage with the following 
format for each entry: 

o 15 16 31 
r--------------------T--------------------, 
I GIRL Pointer I Popularity count I l ____________________ 4 ____________________ J 

THE GPLINK chain is followed from the PLP. 
The GIRL entries are then picked up one at 
a time to be stored in the table at the 
point where the popularity count of the 
next item in the table is less than the 
popularity count of the current GIRL entry. 
The table is pushed down at that point, and 
the new entry is inserted. The entry for 
the first or lowest negative popularity is 
stored immediately preceding the end of the 
table. When the end-of-chain is encoun­
tered, the sort is completed. The GPLINK 
chain is now relinked so that the entries 
are encountered in order of decreasing 
popularity. 

Now each candidate is checked to see if 
global assignment can be accomplished. In 
order to be globally assigned, each inner 
loop must have the same candidate already 
globally assigned, or have fewer than the 
maximum number of registers assigned (8). 
Starting with the most popular candidate, 
each inner loop is checked to see if there 
can be global assignment. If there cannot 
be, the candidate is deleted from the 
GPLINK chain. If there can, the GPN of the 
current loop is increased by 1. Also, each 
loop in which it is not already globally 
assigned has its GPN increased by 1. 

When either the candidate list is 
exhausted or the GPN of the current loop 
reaches the maximum, the search is com­
pleted. An X'8000' is stored in the GPLINK 
of the last entry as the end-of-chain. The 
GLBL fields in the BLl entry are preset to 
X'SOOO', Then the GPLINK chain is followed 
to the end storing the GLBL field into the 
BLl entry. 

For each of the parallel inner loops, 
the GPLINK chain is followed. Each entry 
is compared to each GPLINK entry in the 
current loop. If an entry is found in an 
inner loop which is not in the current 
chain, it is linked into the current chain, 
and the GPN is increased by 1. This allows 
a GLBL to go from level "n" to level "n-2" 
with no occurrences in level wn-l-. 

Since this is the end of the loop pro­
cessing, the CNT table entry is set to 
X'8000' for both the TLINK and PLINK 
fields. The pointer to the removed expres­
sion generated by CEKKB is moved from RMVAL 

114 

in the PSECT to the BL1 entry and X'8000' 
is stored in RMVAL. The loop level (LEV) 
is reduced by 1. The exit is then taken. 

CEKKW -- Begin Loop 2 PRF Processor 

This routine processes the begin loop 2 
entries in the PRF. The EF entries for the 
loop parameters generated for mat~rialized 
loops. If a test value exists, the test 
expression is generated by entering CEKLI. 
See Chart cz. 

ENTRIES: The entry point is CEKKWA. 
Register P5 contains the location of the 
current PRF entry, register N1 covers the 
intercom area, and register Ll covers the 
work area. 

EXITS: Register P5, P6, N1, and N2 are the 
same as when entered. Registers N3 through 
L2 are saved and restored. 

Two errors are detected: 

1. The PF table overflowed. 

2. An illegal type code found in the sym­
bol table. 

For all cases the Phase 3 error exit 
(CEKKRE) is taken. 

OPERATION: The registers are saved by the 
STORE macro instruction. The link to the 
Polish chain (RMVAL) is moved from the 
PSECT to the PRF, and the value X'SOOO' is 
stored in RMVAL. The symbol table pointer 
of the induction variable CIVAR) is con­
verted to a symbol table location. The 
pointer to the current PRF entry is com­
pared to the forward definition point (FDP) 
of the symbol table. If they are equal, 
the FDP and BDP fields are relinked. 

The PLP flags are checked to determine 
which path the processinq then follows: 

1. If the materialize flag is on, the 
symbol table pointer for IVAR is con­
verted to a location. The PRF painter 
is stored in the symbol table entry as 
the forward compute point. The unde­
fined level (UNLEV) field is set to 
55, and DUNL (a Phase 3 internal sub­
routine) is entered. 

The expression file and DUNL subrou­
tines are entered for the initial 
value (BEG), the final value (END), 
and the increment value (INC). The 
link to each expression is stored in 
the proper place in the PRF. 

2. If the GLOBAL flag is on, but the BXLE 
on recursive flag is off, the EXITLB 
field is checked. If EXITLB is not 
equal to X'SOOO', the materialize flag 



is set; in either case, proc~3sing 

continues as in 1. 

3. If th~ BXLE on recur~ive flag is on, 
the constant step on the recursive is 
deleted as a global assignment candi­
date. This is accomplished by calling 
CEKKO with a zero weight, then return­
ing to CERRO with a weight equal to 
(-TOTPOP). If EXITLB is not X'8000', 
a PF entry is generated for the induc­
tion variable and the initial value 
via FEFP. The adcon for the exit 
label then has its popularity reduced 
by 5. 

CEKLI is then called to generate the 
test expression for the recursive. 

4. If none of the above conditions pre­
vail, CEKLI is called to generate a 
test expression. 

The routine then exits. 

File EF and Point (FEFP) Subroutine 

This subroutine (internal to CEKKW) is 
used to file an adcon in the symbol table 
for the loop variables. The routine is 
entered ~ith a symbol table pointer in 
register PI, which is converted to a loca­
tion in register P4. The location (SLOC) 
is divided by 4096 (to put it on a page 
boundary). The remainder is stored as the 
displacement of the EF entry. The result 
plus the storage class eSTCL) are c;tored 
for the executive subroutine. 

Then the subroutine CEKTFI is entered to 
file the adcon. The cell TEPNTR contains 
the pointer to the symbol table. rhis is 
stored in the EF entry. The type and ID 
are also stored in the EF entry. The 
painter to the EF is put into register P2. 
Register P6 (the PF location) is updated by 
two words .~eturn is then made to the 
calling routine. 

Delete the Undefined Level (DUNL) 
Subroutine 

This internal subroutine resets the 
undefined level (ULEV). It is entered with 
the symbol table location in register P4. 
The variable class is found, and its ULEV 
checked against the loop level. If ULEV is 
equal to or greater than the loop level, 
ULEV, is set to 55. If UL~V is smaller, 
the forward compute point is cilecked 
against FLINK. If FCP is less than or 
equal to FLINK, the ULEV is set to 55, and 
the routine exits. If FCP is greater than 
FLINK, the routine exits. 

CEKKE -- Expression Scan Routine 

This is the main control routine for a 
series of subroutines which scan an entry 
in the expression file (ERF), put it into 
canonical form, generate or locate triad 
table entries for all expressions and sub­
"xpressions, update symbol table entries as 
necessary, determine commonality and remov­
ability, rearrange and expand subscript 
expressions, generate adcon entries as 
needed, and rewrite the ERF as part of the 
program file (PF). See Chart DA. 

ENTRIES: The entry point is CEKREA. 
Register P2 points to the last ERF entry of 
the expression to be processed. Register 
P5 contains the location of the current PRF 
entry. Register P6 contains the location 
in the Pl". 

EXITS: Register P2 points to the last ERF 
entry made in the PF. Register Nl is 
returned unchanged. Register P6 points to 
the new location in the PF. Register N2 
points to the new first available word of 
working storage. 

OPERATION: Upon entry the ERF pointer, 
passed in Register P2, is converted into an 
ERF location. If the pointer is an 
X'SOOO', the exit is taken. It is assumed 
that the location is the "right-end" or 
major operator of an expreSSion, or a prim­
itive (a constant or variable). A counter 
is set to 1, and the expression is scanned 
backward (from high core to low) to find 
the "left-end" (or beginning). The ID of 
each entry in the ERF is examined. If it 
is an operator, the counter is increased by 
1. If it is a primitive (anything other 
than an operator), the counter is reduced 
by 1, the ERF location is reduced by eight 
bytes, and the next entry is checked. When 
the counter reaches zero, the beginning of 
the expression has been found, and the ERF 
location is saved in LO~ERF. When a sub­
script expression is being scanned, special 
conditions exist. Since CEKKM must insert 
two entries into the ERF, two extra plus 
operators have been inserted by Phase 1 
immediately preceding the colon operator. 
Therefore, when a colon is encountered dur­
ing a scan, the ERF location is reduced by 
16 bytes in order to skip the pluses, which 
are not part of the expression. 

Once the left-end has been determined, 
the control ~ords and flags are set to ini­
tial conditions. Register P5 is loaded 
with the -1 entry of the OPT1, so that 
CEKKF will start at the first entry point. 
Register P2 contains the ERF location of 
the left-most or first entry of the 
expression. 

The general processing scheme is to 
check the ID of the ERF item pointed to by 

Section 5: Phase 3 115 



register P2. If the E~'<F ID indicates a 
primitive, CEKKF is invoked. CEKKF forms 
an entry in the OPT1 Table for the primi­
tive. Upon return the current ERF location 
is compared to the end or riqht-end loca­
tion. If they are not the same, the ERE' 
location (P2) is increased by eight bytes 
to point to the next item of the expres­
sion, and its ID is checked. 

If the ERF ID indicates an operator 
entry, the subscript switch (SWCHSB) is 
checked. If it is set to 1, the subscript 
expression is on the first pass. The 
operator is checked for a plus. If it is a 
plus, the first pass is completed and CEKKM 
is invoked. Upon return from CEKKM, the 
conditions have been reset for another com­
plete pass over the subscript expression, 
so the process of checking each ERF ID is 
restarted. The switch SWCHSB is set to 
zero, so that the second pass appears as 
normal processing. 

If SWCHSB is zero or, if the operator is 
not a plus, CEKKH is entered to form and 
file a triad generated from the operator 
and the last two OPTl entries. Upon return 
from CEKKH, CEKKL is entered under one of 
two conditions: 

1. The triad is removable from the cur­
rent loop, and the triad flag indi­
cates that it has already been 
removed, except for expressions 
removed to BL3 (i.e., FRCFLAG is on). 

2. SWCHSB is set to 1, indicating the 
first pass over the subscript 
expression. 

CEKKL forms a new OPTl entry for the 
previously created triad, so that it will 
be an operand of the next operotor. Upon 
return from CEKKL, the insert flag (INSW) 
is checked. If this flag is nonzero, there 
was a "Float- function inserted by CEKKN. 
In this case, CEKKL has restored condi­
tions, so CEKKH is now entered to form 
another triad, and processing is continued 
from there. If INSW is zero, the routine 
loops back to check for the end of the 
expression. 

After the return from CEKKH, if neither 
of the two above conditions exists, CEKKI, 
is entered, with register P4 pointing to 
the first (or lower) of the last two OPTl 
entries. CEKKI operates on the operands of 
each triad. For primitive operands adcons 
are counted for global register assignment 
where appropriate. For triad operands the 
removability and commonality are determined 
and the necessary action taken (naming, 
creating residues, etc.). Upon return from 
CEKKI, the flag SWCHFL is checked. If it 
is nonzero, a "Float" insert was made by 
CEKKN, in ~hich case CEKYL is entered. 

116 

Upon return from CEKKL, :::EKKH is reentered 
for a new triad as before. 

If SWCHFL is zero, register ~4 is set to 
point to the last OPTl entry (the second of 
the two operands), and CEKKI, is reentered. 
Upon return from CEKKI, CEKKL is entered. 
Upon return from CEKKL, the INSW is tested 
with the same branches as described 
previously. 

When the right-end of the expression is 
reached, register P3 is set to point to a 
dummy triad entry (which represents the 
"equals" operator). CEKKI is then entered 
to process the last entry in the OPTl 
table. Upon return from CEKKI, CEKLF is 
entered to copy the ERF string into the PF, 
inserting any float functions as necessary. 
Upon return from CEKLF, the JOINTE chain is 
followed. This chain points to triad 
entries which need the location in the PF 
to be saved in the name field of the triad. 
The chain starts with JOINTE and is con­
tinued in the name field of each triad in 
the chain. When an end-of-chain (X'8000') 
is found. the exit is taken. 

CEKLF -- Copy and Edit an Expression 

The function of CEKLF is to copy an ex­
pression from ERF into the PP. During this 
process null entries will be deleted, spe­
cial expression file entries will be 
inserted, and any expressions which have 
been named as common will be changed to so 
indicate, if necessary. See Chart DB. 

ENTRIES: This routine is entered at CEKLFA 
with the following input parameters: 

P2 Location of the right-end of the 
expression in the ERF 

P3 Location of the left-end of the 
expression in the ERF 

P6 = Location of next available entry 
in the PF 

EXITS: Register P4 contains the location 
of the last entry made in rhe EF portion of 
the PP. Register P6 contains the updated 
next available work in the PF. If the PF 
is filled during the copying, the Phase 3 
error exit is taken. 

OPERATION: Initially, the SETFLAG is 
checked. If it is turned on, indicating 
that the left end of an assignment state­
ment is being copied, the 'global load' 
flag is checked in the PLP. If it is on, 
the GFLSN is set to 3, indicating that this 
loop may have a removed floating-point can­
didate. The SERF cell contains the loca­
tion of the first insert entry. If SERF is 
zero, there are no insert entries. In this 
case, the insert location is set to 
X'PFPFFFFF' to prevent any insertions. If 
there are insert entries, the location of 



the first entry is loaLiell from SEN'. The 
insert location i~ loaded for comparison 
, ... ith the ERF location. 1f t'le EKF 10cCltion 
is equal to the insert location, the SERF 
entry is moved into the c' F. The ID field 
is then checked for "in "operator." If it 
is an operator, toe triad location is 
loaded and the name fldg checked. If it is 
on, the name is moved from the triad to the 
ZF entry and the ID is ctJangpd to "CSX." 
In any case, the P!" locat,ion is updated to 
the next loc:ltion .. _The locat,ion of the 
next SERF entry is loaded, and the routine 
returns to load and check its insert 
locations. 

When the insert location is not equal to 
the ERF location, the ID of the ERF entry 
is checked for a null ID. If it is null, 
the entry is not put into the l'F, !::Jut the 
routine skips to update the ERF location. 

If the ID is not null, it is checked for 
an operator. If it is an operator, the 
follo~ing checks are made. 

1. If it is either a complex operator or 
an intrinsic-function-argument opera­
tor, the GFLSW is turned off. 

2. If it is a colon operator, and the 
COLONF flag is on, it is checked to 
see if this is a removed floating load 
candidate. The COLONF flag is set 
when an array operand is processed and 
meets the 'removed floating point 
quantity' requirements. The SETFLAG 
is checked to determine whether the 
expression is the left or right end of 
the assignment statement. 

If this is the left end of the assign­
ment statement, tne removal level of 
the subscript operand is cheCKed. If 
it is removable from the current loop, 
the GFLSW is set to 2, indicating that 
a subscripted variable appeared to the 
left of the equal sign. The 
subscript-triad pointer is saved for 
comparison ~hen the right end of the 
equal sign is processed. 

If the SETFLAG is off, then the right 
end of the equal sisn is being pro­
cessed. The GFLSW is checked. If it 
equals 1, it is set to zero. This 
means the statemnet A(3) = A{I) will 
not be considered for global assign­
ment in floating-point register 6. 

The sutscript triad is then compared 
to the one saved from the left end. 
If they are not:. equal, the GFLSW is 
set to zero. This protects the state­
ment A{J) = A(I) from being consi­
dered. The adcon-displacements of the 
two array items are then checked. If 
they are equal, the colon operator is 

flagged for Phase 4. If they are not 
equal, the colon operator is not 
flagged and the GFLSW is left 
unchanged. This allows the statement 
A(I) = A(I+3) to be recognized as an 
allo~ed condition in that the elements 
being referenced ~ill never be the 
same. 

In any case, the triad name is moved 
to the ERF entry, and the ERF is 
copied to the PF. 

If the ERF entry is an operand, it is 
checked for a variable. If it is a vari­
able and the SETFLAG is on, it is examined 
for being a removed floating-point-quantity 
candidate. The requirements are that it 
must be REAL*4 or REAL*8, and must not have 
the INTERFERING flag set in its symbol 
table entry. 

The ERF flags are then checked to see if 
the quantity is a subscripted variable. If 
not, GF~~W is set to 1, indicating a simple 
variable to the left of the equal sign. If 
it is a subscripted varialbe, COLONF is set 
to one, indicating that the next colon 
operator processed corresponds to this 
array operand. 

If the SETFLAG is off, GFLSW is checked. 
If it is set to 2, and the symbol table 
pointer matches the saved one, the ERF flag 
is checked to see if it is a subscripted 
variable. If not, GFLSW is set to zero. 
This disallows A(I) = A(3). 

If GFLSW is set to 1, the symbol table 
pointer matches the saved one, and the ERF 
flag indicates a subscripted variable, 
GFLS'~ is set to zero. If it is not sub­
scripted, and the adcon displacement equals 
the saved one, the ERF operand item is 
flagged for Phase 4. 

In all cases, the ERF is copied to the 
PF. The next available ~ord in the PF 
(register P6) is updated. The ERF location 
is increased by eight bytes and compared to 
the right-end location. If they are not 
equal, the routine loops back to check for 
an insertion. If they are equal, the ex­
pression has been copied. The new PF loca­
tion is converted to a pointer and stored 
in TEPFT. If the SETFLAG is off and GFLSW 
is set to 1 or 2, CERRO is called to reduce 
the popularity of the subscript or adcon by 
the number of times the item was flagged. 
CEKRO is called a second time to increase 
the popularity of the item on the next 
outer loop by a weight of 10. The pointer 
to the EF for the left end of the expres­
sion is then stored in GBLREAL for CERRU. 

If the SETFLAG is on, the pointer to the 
expression in the PF is saved, and exit is 
taken. 

Section 5: Phase 3 117 



CEKKF -- Pushdown Primitive Operand Routine 

The functions of the CEKKF are to update 
the symbol table entry of an operand (if a 
variable), to change the ERF entry to 
reference an address constant and displace­
ment, to create a dummy expression (@ 
operator) if required, and to form an entry 
in the operand push-down list (OPT) from 
the information created in these processes. 
See Chart DC. 

ENTRIES: This routine is entered at CEKKFA 
by restricted linkage (INVOKE macro 
instruction>. Register P2 contains the 
location of the current entry in the ERF. 
Register P5 contains the location of the 
current OPTl entry. 

EXITS: This routine returns to CEKKE by 
the restricted linkage (RESUME macro 
instruction). Registers P2, P5 , and P6 are 
returned unchanged. 

OPERATION: The OPTl location is stepped to 
the next entry and the area is cleared. 
The current ERF pointer (register P2) is 
stored in the Polish (OPOLSH) field. The 
forward compute point (OPTFCP) is set to 
X'7FFF', which forces it to the beginning 
of the object program. If the ID of the 
ERF item indicates a loop variable, the 
loop variable flag (OPLVF) is turned on. 
The count field (OPCNT) is set to 1 (since 
this routine is only entered for primi­
tives). The symbol table pointer for the 
primi ti ve is moved from the ERF to the OPT! 
(OPTRDl). The left-end switch (DSWT) is 
tested. If it is zero, the symbol table 
location is stored in DEFSYM for CERKU and 
the switch set to nonzero. If the flag 
(SET FLAG) is nonzero, the operand being 
processed is an assignment value. If its 
symbol table pointer is equal to the cur­
rent floating point candidate for Phase 4, 
the candidate is deleted. The sign flag 
(OPSIGN) in the OPT! entry is set to agree 
with the sign in the ERF. 

Next, CEKKG is entered to determine the 
forward compute pOint (FCP) and undefined 
level (ULEV) of the primitive. However, 
CEKKG is not entered for loop parameters, 
functions, and constants. Loop parameters 
receive special processing (see below). 
Functions go directly to the exit, leaving 
the OPRLEV set to zero, and the o~rFCP set 
to X'7FFF'. The fields are the same for 
constants, but they do get the remainder of 
the processing in order that an adcon may 
be filed for them. 

For ERF entries that are flagged 'split 
subscript', the FCP and ULEV are trans­
ferred from the symbol table entry for the 
induction variable. The symbol table 

118 

pointer was temporarily put in tne EF adcon 
halfword by CEKKM for this purpose. 

Upon return from CEKKG (or the loop pa­
rameter processing), the FCP and ULEV are 
moved from the symbol table to OPTFCP and 
OPRLEV, respectively, in the OPTl entry. A 
"storage location" is formed by adding the 
SLOe field from the symbol table to the 
offset word in the ERF. This, along with 
the storage class (STCL) from the symbol 
table, is used as a parameter to enter 
CEKLB, which files a covering adcon in the 
"ymbol table. 

.. hen control is returned from CEKLB, the 
subscripted variable flag is checked in the 
ERF. If it is on, a special proceSSing 
section is entered (see below). If the 
flag is not on, the pOinter to the adcon 
entry in ~he symbol table is stored in the 
ERF (in EFADCON). Special processing is 
then given to variables with an offset of 
nonzero and to loop variables, to insert an 
@ operator (see below). For all others, 
the type is checked. If it is real, and 
neither a subscripted nor a class array 
item, its symbol table pOinter is saved as 
the current floating point candidate in 
GBLREAL. The exit is then taken. 

"AT" Operator Insertion 

The ~ operator is used to distinguish 
between different bytes of an array for 
constant-subscript items. (In other words, 
it is to distinguish between A (3) and 
A(S).) It also makes occurrences of the 
loop variable inside the loop different 
from references outside the loop. This is 
accomplished by forming a dummy triad, with 
the operator an~. The displacement is 
stored as the first operand (TROPl), so 
that only references to the same byte of an 
array will be common. The prototype triad 
is formed, and CEKKP is entered to file it 
in the TRIAD Table. Upon return, the triad 
pointer is stored in the OPTl table and the 
indicator (FI) set for a triad. The @ flag 
(ATF) is set in the OPTl to mark this as a 
dummy triad. The exit is then taken. 

Subscripted Variable Processing 

The remaining entries in the ERF, up to 
the first + preceding the :, are inside the 
subscript. These entries require two 
passes for complete processing. For the 
first pass special paths are taken in 
CEKKE, CEKKH, CEKKF, CEKKI, and CEKKL. The 
switch (SWCHSB) is set to 1, to mark the 
first path. In addition, the symbol table 
pointer to the adcon covering the array, 
the SLOC of the adcon, and the symbol table 
pointer of the array variable are saved for 
CEKKM. A branch back to check for @ opera­
tor is made. 



Loop Parameter processing 

If S~2HSB is set to 1 the ?rocessing is 
inside a subscript. The loop variable flag 
in the ERF ID is cleared. Tnis make0 a 
loop variable look like a loop parameter. 
On the second pass the loop variable will 
get the special loop parameter processing, 
but not the 3pecial @ processing, and the 
loop will not be materialized (see below). 
The main section is entered jUGt after the 
return from CEKKG. 

If SWCHSB is set to zero, processing is 
outside a subscript. If the loop variable 
flag is on in the £RF, the loop level is 
extracted from the ERF I0 fiel~, and used 
to set materialize flag in the PLP table of 
the proper loop 

For all loop parameters the ERF ID is 
changed to variable or constant, with the 
proper type code from the syu'bol table. 
The main section is reentereJ just after 
the return from CEKKG. (CEKKG shoulu not 
be entered for loop parabeters, since the 
end-loop routine, CEKKC, has put in the 
proper FCP and ULEV, and CEK1:G is not set 
to recognize the special case.) 

CEKKG -- Variable Compute Point and ~emoval 
Level Routine 

The purpose of this routine is to deter­
rr~ne the forward compute point and removal 
level for a variable. See Chart DO. 

ENTRIES: The entry point is CEKKGA. 
Register Pl contains the synIDol table 
pointer for the variable to be processed. 

EXITS: Register P4 contains the symbol 
table location of the variable processed. 
Registers Pl, P2, P4, and P5 are returned 
unchanged. 

OPERATION: If the symbol table entry for 
the variable has the -not computable" flag 
on, the variable is an adjustable dimen­
sion; therefore, the varible cannot be 
redefined across level zero. If level zero 
is safe, the undefined level flag (UL£V) is 
set to zero; otherwise, ULEV is set to 1. 

If the "not computed flag W is not on, 
the FCP in the symbol table entry of the 
variable is compared with the current PRF 
pOinter (FPT). If the FCP is smaller than 
the FPT, the FCP is still valid. The UL.r..-V 
field is obtained from the symbol table 
entry and compared with the current loop 
level (LEV). If ULEV is larger than the 
current level, it is still valid and the 
routine returns to the invoking routine. 
If ULEV is not larger than the current 
looplevel, the new undefined level is 
determined by checking the FCP against the 
PRF pointer of the BL3 entry of each loop 

from the current ULEV to the current loop 
level. If the FCP is greater (above in the 
PRF) than the BL3 entry of a loop, that 
level is made the undefined level. If no 
level is found for which the FCP is out­
side, the current level plus 1 is made the 
undefined level. This means that any 
expression involving this variable cannot 
be removed from the current loop. 

In the case where the FCP is not smaller 
than the FPT, a new FCP and ULEV must be 
determined. First, a tentative forward 
compute point, TFCP (in the PRF), and a 
tentative backward compute point, TBCP (in 
the PF), are determined. Two types of 
variables are present: 

1. Normal Variables. The forward defini­
tion point (FOP) and backward defini­
tion point (BOP) from the symbol table 
entry are set as the tentative compute 
points. 

2. Variables in Common. For the TFCP, 
the lower of the PDP and the forward 
definition point of the common chain 
(TECPAN) is used. For the TBCP, the 
higher of the BOP and the backward 
definition point of the common chain 
<CBDP) is used. 

Once the TFCP and TBCP are fixed, the 
removal level is determined. This is the 
first safe loop between ULEV and the cur­
rent loop for which TFCP is higher than the 
BL3 PRF entry for the loop, and for which 
TBCP is lower than the end loop PF entry. 
In other words, there is no definition 
point inside the loop. If the TBCP is 
inside the loop but TFCP is outside, the 
TFCP is reset to the BL3 point before the 
next higher loop is tested. 

When the removal level is determined, it 
is stored as ULEV in the symbol table, and 
TFCP is stored as the FCP. 

CEKKL -- Operand List Expression Formation 
Routine 

CEKKL produces an entry in the OPTl table, 
representing an expression, formed from an 
operator and the last two operands in the 
operand list (which are thereby deleted). 
See Chart DE. 

ENTRIES: This routine is entered at CEKKLA 
with the following input parameters: 

P3 Address of expression in triad 
table 

P5 Index into OPT table 
P2 Current ERF pointer 

Section 5: Phase 3 119 



EXITS: Register P2 points to the updated 
current ERF entry. Regi.~ter Pi) contains 
the updated OPTl entry location. Registers 
P3 and P6 are unchanged. 

OPERATION: A new OPT1, created t_o repre­
sent the previous triad, is formed from 
information in the triad entry and the last 
two OPTl entries. I replaces t.he lo ... er of 
these two entries. 

The location of the tr:iad is converted 
to a pointer and stored in the nel" OPT1 
entry. The FCP and RL2~V are moved from the 
triad to the OPT1. 

The OPFI is set for a triad entry. 
(OPFI refers to the triad table entry F1 or 
F2 with which the phase is currently con­
cerned.) The sign flag is moved from the 
SIGNOP cell in the PSECT (stored by CEKKH). 
If the loop variable flag (OPLVF) is on for 
either of the two OPT1 entries, it is set 
for the new OPTl entry. 

The cell SWCHFL indicates whether CEKKN 
made an insert of a float function during 
the processing of the previous expression. 
If SWCHFL is zero, no insertion was made. 
If SWCHFL is nonzero, it contains the ERE' 
location of the entry to which the float is 
to be applied. 

CEKKL tests SWCHFL. If it is zero, the 
ERF location in register P2 is converted to 
a pointer and stored in the OPT1 entry 
OPOLSH. The count fields (OPCNT) from the 
two OPT1 entries are added together, the 
total increased by 1, and the result stored 
in the new count field. This gives the 
number of EF entries in the expression to 
this point (used by CECKM and CEKLD). The 
exit is then taken. 

If SWCHFL is nonzero, the contents are 
put into register P2 as the ERF location, 
and SWCHFL is cleared to zero. The byte 
INSW is set to nonzero, to indicate to 
CEKKN that a float function was inserted on 
the previous entry. The two OPCNT fields 
are added together, but not increased by 1 
before being stored in the new OPCNT. This 
is because the float operator is not in the 
ERF, but in the SERF. 

CEKKH -- Triad File Manipulation Routine 

The purpose of CEKKH is to locate or 
insert in the triad table an entry formed 
from an operator entry in the expression 
file and two operands in the operand push­
down table. See Chart DF. 

ENTRIES: The entry point is CEKKHA. 
Register P2 contains the location of the 
ERF entry of the operator of the expres­
sion. Register P5 contains locations of 
the current OPTl entry. 

120 

EXITS: Register P3 contains the triad 
location. Registers P2, PS, and P6 are 
unchanged. 

OPERATION: Immediately upon entry, CEKKH 
calls CEKKN to put the operands into canon­
ical form. Upon return from CEKKN, a pro­
totype triad entry is generated in working 
storage from the last two entries in the 
OPT1 table and the operator in the ERF. If 
the operator is a semicolon, a function is 
involved. The lower address entry in the 
OPT1 is assumed to be the function. The 
symbol table entry for this item is checked 
for a library function. If it is not a 
library function, the expression is not 
removable. This nonremovability is forced 
by setting the RLEV in the Triad to 55. 
Also, the expression can be common only 
with a similar expression in the same 
statement. This commonality is forced by 
setting the forward compute point (FCP) to 
the current PRF location plus 1. Before 
the next PRF item is processed, the triad 
entry will be deleted by CEKKR. 

For all operators other than semicolons, 
'?', and for library functions, the removal 
level (RLEV) in the triad is set as the 
higher of the two OPTl entries of the 
operands. The triad prototype is now com­
pleted, so CEKKP is entered to find a com­
mon triad or to file the prototype as a new 
entry. 

If the operator is '?', and both of its 
operands are removable , the RLEV in the 
triad is set to LEV+1 so that the triad 
appears nonremovable. This is necessary 
since both operands of the '?' are con­
stants for the split-subscript expression, 
yet the expression for the base/index split 
is by nature nonremovable. 

After control is returned from CEKKP, 
the name flag of the triad indicated by 
CEKKP is checked. If the flag is on, the 
triad is already correct. If SWCHSB is off 
(set to 1), the expression is being pro­
cessed for subscripts for the first pass; 
therefore, the exit is taken. If SWCHSB is 
not 1, the name in the triad and the triad 
pointer are put into the EF entry. 

CEKKP -- Search and Insert Triads 

CEKKP enters new expressions in triad 
table, locates old ones, and removes obso­
lete ones. See Chart DG. 

ENTRIES: The entry point is CEKKPA. 
Register P2 contains the ERF location of 
the operator of the expression. Since a 
prototype triad has been built in the work­
ing storage area, register N2 will contain 
its location. 



EXITS: Register P3contains the location 
of the triad. Register r2 is unchanged. 
Register N2 is the same or is updated to 
point to available working storage. 

OPERATION: Upon entry CEKKP locates at the 
point indicated by register (,12 the proto­
type triad, which was ?ut together by 
CEKKH. 

The triad entries are linked togeLher 
through a hash table (TRIH). The ilash 
table index is formed by adding together 
the OP! and OP2 fields of the triad (these 
are either symbol table pointers or other 
triad pointers) and reducing the sum to 
modulo 1020 (X'3FC'). The resulting hash 
table entry is the anchor for a chain of 
triad entries. This cllain is followed 
until an end-of-chain or a matching triad 
entry is found. 

As the chain is follo~ed, the forward 
compute point (FCP) of each triad is first 
compared with the current PRF location 
(FPT). If the FPT is higher than the FCP, 
the compute point has been ~tssed in the 
PRF and the triad is now obsolete. Thus, 
this triad should not De considered as a 
candidate for commonality with the proto­
type. The triad is relinked out of the 
chain, so it is permanently unavailable as 
a cornmon expression. 

If the triad is still active (FPT not 
greater than FCP), the key fields are corn­
pared to the prototype's fields for common 
expressions. For two triads to be cornman, 
the following fields must match exactly: 
OPDl, OPD2, FIl, FI2, SIGNl, SIGN2, OP, and 
RLEV. If a match is found, the location is 
put into register P3 and the exit taken. 

CEKKN -- canonical Form Routine 

CEKKN puts an expression into a canonic­
al form so that expressions differing only 
in nonessential variations will be reco­
gnized as common. See Chart DH. 

ENTRIES:rhe entry pOint is CEKKNA. 
Register P2 contains the location of the 
ERF entry for the operator of the expres­
sion. Register P5 contains the location 
of the OPTI entry for the second (or right) 
operand of the expression. 

EXITS: Registers P2, P5, and P6 are 
returned unchanged unless there was a float 
fUnction inserted, in which case P2 points 
to the EF insert in the work area and P5 
points to the generated OPTI entry for the 
insert. 

OPERATION: If the operator is not plus, 
multiply, divide, greater than, less than, 
AND, OR, or equal, the routine exits. For 
plus, multiply, and divide, the type is 

checked. If the operator is a Real*4 or 
Real*8, the types of each operand are 
checked. If one type is Integer*2 or 
Integer*4, a Float function is to be 
inserted in the EF at that point. The cur­
rent EkF location is stored in SWCHFL, and 
P2 set to point at the preset EF entry for 
the function in working storage. The 
necessary OPTl entries are inserted and the 
routine exits. On the next entry INSW 
indicates that the last entry had a float 
insert, thus preventing another from being 
inserted, and normal processing continues. 

The processing is an attempt to make as 
many triads common as possible. rhis is 
done by always putting the smaller OPD 
field as OPD1 and by moving any minus signs 
up to the operators (since the operator 
Sign does not affect commonality, but the 
operand sign does). 

CEKKI -- Expression Removal and Commonality 
Determination Routine 

The function of CEKKI is to determine 
commonality or removability of an expres­
sion, to make entries in the compute and 
remove table (CRT), to mark last occur­
rences, and to tally popularity counts. 
See Chart DI. 

ENTRIES: The entry point is CEKKIA. This 
routine uses the two common registers of 
Phase 3: N1, covering intercom and the 
rest of the second page of the phase PSECT; 
and N2, covering the unused area start 
point of the phase PSECT. Input parameters 
are 

P2 ERF location 
P3 = Address of triad entry is 

dominant operator 
P4 = OPT entry address this operand 

EXITS: This routine has one normal exit. 
Except for catastrophic returns to the 
Phase 3 abort point, there are no other 
<~xits and no output parameters. 

OPERATION: This routine processes one 
operand of a triad on each entry. Upon 
entry, CEKKI loads the ERF location from 
the OPT entry. If the operand is a primi­
tive or an ~ operator, the conditions are 
tested for counting the popularity of the 
covering adcon for glObal register 
assignment. 

The adcon is not counted for anyone of 
the following conditions: 

1. The Wadcon" field of the EF is 
X'SOOO'. 

2. The I/O flag, set by CERKU, is on. 

Section 5: Phase 3 121 



3. The variable is an array variable. 

4. The processing is in the first pass of 
a subscript. 

S. The operand is part of a normal 
expression. 

6. The EF entry is a function. 

7. The triad entry is a removed 
expression. 

8. The triad entry is a common 
expression. 

If the triad is .removable to level zero 
and is occurring at level zero, the adcon 
is counted when the expression occurs for 
the first time. If it is not occurring for 
the first time, the count is set to -S to 
reduce the previous count, since the expre­
ssion will now be removed. CEKKO is used 
to tally the popularity. 

If the indicated operand is an operator 
(other than ~ or I)' it is checked for com­
monality or removability. An expression is 
considered removable if its removal level 
is not greater than the current loop level. 
If the removable expression has not expres­
sion has not been named, CEKKK is entered 
to give ita name. If the last-use flag 
has not been set, it is now set. If the 
forward compute point for the expression is 
above the begin-loop-l entry of the current 
loop, CEKLE is entered to file a compute­
and-remove table entry at begin loop 1 to 
insure expression generation at the loop 
top. The expression is replaced in the EF 
by a residue in CEKLD. Finally, if t.he 
expression is integer and not part of a 
larger removable expression, it is tallied 
by CEKKO as a candidate for global register 
assignment. 

If the expression is not removable, it 
undergoes the following processing. If it 
is named, no further processing occurs. If 
this is the first occurrence, it is linked 
into the JOINTE chain. This chain causes 
the PF location to be 3tored in the last 
occurrence field of the triad entry by 
CEKKE. If this is not the first occur­
rence, the next larger expression is 
checked for commonality. If the larger 
expression is common, the current expres­
sion is not processed further except to 
insure that it is in the JOINTE chain. If 
the next larger expression is not common or 
if this is its first occurrence, the cur­
rent expression is checked by CEKKJ for 
commonality. If the current expression is 
common, it-iS named by CEKKK and the last 
use bits are set. 

Expressions involving the induction 
variable are processed for removability in 

122 

a special manner. If the removal level is 
higher than the current level, the expres­
sion is not removable. If the removal 
level is lower than the current level, the 
expression is removable. If the removal 
level is equal to the current level, anoth­
er test is used to determine removability. 
The forward compute point for the expres­
sion is compared to the begin loop 1 PRF 
location of the current level. If the FCP 
is higher than or equa~ to BLl, the expres­
sion is treated as removable. If it is 
less than BLl, it is treated as a special 
nonremovable. 

CEKKJ -- Check Commonality 

CEKKJ determines whether any entries in 
the PRF between first and second occur­
rences of an expression rule out their 
being common. See Chart OJ. 

ENTRIES: The entry point is CEKKJA. 
Register P2 contains the ERF location of 
the operator of the expression. Register 
P3 contains the location of the triad entry 
for this expression. 

EXITS: 
CEKKJ. 

There are two exit points from 
The ·common· exit (KJ900) returns 

with a return code of nonzero. The "not 
common" exit (KJ9S0) returns with a return 
code of zero. Registers P2, P3, P4, PS, 
and P6 are returned unchanged. 

OPERATION: rhis routine is entered if 
there have been two occurrences of the same 
expression, the current one is not remov­
able, and the expression is unnamed. The 
name field of the triad entry contains the 
PF pointer to the previous occurrence 
(which was inserted by the JOINTS chain at 
the end of the processing by CEKKE). If 
the name field contains an X'SOOO', the 
previous OCC'lrrence is in the statement 
currently being processed. In this case 
the expressions must be common, so the 
·common· exit is taken. 

If the name field is not X'SOOO', the 
pointer to the last label definition point 
in the PF (LBDP) is compared with the PF 
pointer to the last expression. If the 
label painter is higher, then a label has 
intervened and the expressions cannot be 
common. The "not common" exit is taken. 

If the label pointer was not higher than 
the PF pointer, the expressions still may 
not be common if the end loop of an unsafe 
loop intervenes between the two occur­
rences. The end loop location (found in 
the PLP Tables) of each loop in the current 
nest is checked down to level zero. If the 
end loop is between the two occurrences, 
the ·unsafe" flag of the PLP is checked. 
If it is on, the "not common- exit is then 
taken. If the flag is not on, the next 



lower level is checked until an end loop 
entry is found which is lower than the pre­
vious occurrence (the level zero end loop 
location will always be lOwer). Then the 
"common" exit is taken. 

CEKKK -- Establish Common Expression 
Routine 

This routine's purpose is to assign a 
name to an expression, to put that name in 
the previous occurrence that is conUDon, and 
to enter the name in the CRT at the forward 
compute [Joint. See Char:_ DK. 

ENTRIES: The entry pOint is CERRKt'.. 
Register P2 contains the ERF location of 
the operator of the expression. Register 
P3 contains the triad entry location. 

EXITS: Registers P2, P3, P4, PS, and P6 
are unchanged. 

OPERATION: Upon entry, CEKKK loads the 
last assigned name from TENCSX and adds 1 
to it to create a new name. The new name 
is checked for a value greater than 4095. 
If it is greater, the error exit is taken. 
If the name has a value of 4095 or less, it 
is stored in TENCSX as the new last-used 
name. 

If the QFLAG of the triad is zero or if 
the name field of the triad is not X'SOOO', 
the name contains a PF pointer to the pre­
vious use of the expression. The pointer 
is loaded in a register, and the expression 
name is stored in the name field. Then 
CEKLA is entered to mark the previous 
occurrence as 'CSX' and "last-use." If the 
QFLAG is on or if the name field is 
X'SOOO', CEKLA is not entered, because the 
last occurrence is in the current 
statement. 

Upon return from CEKLA or if it was 
skipped, the name flag is turned on in the 
triad. 

The forward compute point is loaded into 
a register from the triad to file a compute 
and removal table (CRT) entry at that 
point. CEKLE is entered to file the CRT 
entry. Upon return from CEKLE, the exit is 
taken. 

CEKLA -- Label Common Expressions 

When it is dete rmi ned that an expression 
is a common expression, this routine 
locates in the PF the previous occurrence, 
labels it "CSx,· and marks it as last 
usage. See Chart DL. 

ENTRIES: The entry point is CEKLAA. 
Register Pl contains a PF pointer for the 
major operator of an expression containing 
a common 3ubexpression. Register P3 con-

tains the location of the subexpressions 
TRIAD ent.ry. 

EXITS: Register P1, P2, P3, P4, PS, and P6 
are returned unchanged. There are no out­
put parameters. 

OPERATION: The location of the expression 
in the EE' containing the previous occur­
rence is computed. A counter is started 
with a value of 1. The ID of each EF entry 
in the expression is checked, starting from 
the right end (major operator) and going to 
the left end. If the entry is a primitive, 
the counter is reduced by 1, the EF loca­
tion is reduced by 8, and the next entry is 
checked. If the entry is a 'CSX' (common 
expression), the count is increased by 1, 
and the next EF entry checked. 

When an operator is encountered in the 
EF, the triad pointer saved in the EF 
(EFTRD) is compared with the pointer to the 
current triad. If they do not match, the 
count is increased by 1 and the next EF 
entry checked. 

If the triad pointers match, the name is 
moved from the triad to the EF. The opera­
tion code in the ID field of the EF entry 
is changed to a CSX (the type is retained). 
The last use flag is set in the triad and 
in the EF. 

There can be more than one occurrence of 
the triad within an expression, if it is a 
subexpression of two larger expressions 
which are also common. Therefore, each 
expression must be scanned to the end. The 
end is reached when the counter is reduced 
to zero. Then the exit is taken. 

CEKLE -- File CRT Entries 

CEKLE locates a previously filed entry, 
if present, or files a new entry in the 
compute and remove table. See Chart DM. 

ENTRIES: The entry point is CEKLEA. 
Register P1 contains a PRF pointer, indi­
cating where the compute and remove point 
is. Register P3 contains the location of 
the triad entry. 

EXITS: Registers Pl, P2, P3, P4, PS, and 
P6 are returned unchanged. 

OPERATION: rhe PRF pointer to the filing 
location is converted to a hash table 
index, by taking the PRF location module 
1020. The chain from that hash entry is 
followed until one of the following condi­
tions exists: 

1. An end-of-chain is encountered, which 
causes the entry to be inserted as the 
last entry in the chain. 

Section 5: Phase 3 123 



2. The same triad entry is fOW1d, which 
causes an exit. 

3. A PRF pointer is found that is less 
than or e~ual to the indicated point­
er. This causes the entry to be 
inserted into the chain at this point. 
The PRF pointers should be in descend­
ing order as the chain is followed out 
from the hash table. 

CEKLD -- Expunge a Removable Subexpression 

This routine replaces a subexpression 
with a series of null entries and one resi­
due entry, indicating the expression by 
name. See Chart DN. 

ENTRIES: The entry point is CEKLDA. 
Register P2 contains the ERF location of 
the operator of the expression. Register 
P3 contains the triad location. Register 
P4 contains the OPTl entry location for the 
expression. 

EXITS: Registers P2, P3, P4, PS, and P6 
are returned unchanged. 

OPERATION: The count field from the OPTl 
entry indicates the number of EF entries in 
the expression. This number is reduced by 
1, multiplied by 8 (for eight bytes per EF 
entry>, and subtracted from the "right-end" 
location to give the -left-end" location. 
These two locations are used as limits to 
check the SERF chain for inserts. When the 
insertion point into the ERF falls between 
the two limits, that SERF entry is deleted 
by relinking the SERF chain. When the end­
of-chain is encountered, the ends of the 
SERF chain are restored. 

Each ERF entry in the expreSSion is then 
checked. If the ID indicates a residue, 
the last use flag on the ERF entry is 
checked. If it is on, the triad location 
is loaded and the last use flag in the 
triad is cleared. 

The ID is then set to null (zero), which 
causes CEKLF to skip the entry when copying 
the ERF into the PF. 

When the right end is reached, the ID is 
set to a residue and the exit taken. 

CEKKM -- Subscript Expression Revision 
Routine 

This routine's purpose is to revise a 
subscript expression to include the address 
constant as a term and to be optimal as 
regards computation with loop variables and 
removable expressions. See Chart DO. 

ENTRIES: The entry pOint is CEKKMA. 
Register P2 contains the ERF locations of 
the first + operator encountered in the 

124 

subscript expression. Register P5 contains 
the current OPT1 entry location. 

EXITS: Register P2 contains the ERF' loca­
tion of the first operand of the sorted 
subscript expression. Register PS contains 
the OPTl location for the first entry of 
the sorted subscript expression. 

OPERATION: This routine is entered ',yhen 
the preliminary scan has reached the first 
of a string of + signs prior to the :. It 
counts these to determine the range of the 
expression to be revised, and the number of 
operand entries in the OPT Table which are 
involved. Then it sorts these entries in 
OPT on removal level, loop variable indica­
tor, and forward compute point. A new OPT 
entry is preset for the new operand 
(address constant). The entire polish str­
ing, including the preformatted address 
constant entry, is copied into working 
storage. From there it is copied back in 
the new order, in blocks of operands. 

Each block consists of all operands with 
the same removal level and loop variable 
indicator. For each block a string of + 
signs with the maximum type code, is placed 
in a pushdown list and copied into the 
revised string to connect the operands 
within that block. For each block, an 
operator is set aside in a pushdown list: 
the operator being! if the loop variable 
flag is raised, or + otherwise. The push­
down list of block operators is moved into 
the revised string when the removal level 
drops below the current level, and the 
pushdown list is reinitialized with the ? 
operator. When a '!' operator is 
selected, if a I?' has not been put on the 
block operator list, then the induction 
variable is the least removable term. If 
the loop is innermost with no external 
calls <i. e., the GLOBAL flag is on) a split 
subscript is created. This is done by tak­
ing the expression in the ERF which has the 
form: 

IVAR OPND2 * 
where OPND2 can be a constant or an expres­
sion, and changing it to the form 

OPND2 ZERO 

where ZERO is an ERF operand for the con­
stant O. A '?' operator is then added to 
the block operator list so that it will 
split the removable parts of the expression 
(e.g., the adcon) from the recursive. When 
all blocks have been moved, the pushdown 
list of block operators is moved into the 
revised string. 



CEKKA -- Acquire Entry from C:ompllte and 
Removal Table 

This routine locates one entry in the 
compute and removal table which falls 
within a given range of PRF ~ocatio~" if 
at least one such entry exists. See Chart 
DP. 

ENTRIES: The entry point is CEKKAJI.. Reg­
ister P2 contains the location of a byte, 
four bytes in front of a CRT pointer. Reg­
ister P3 contains the hash table index of 
the original entry point (al.io in LOCHCR). 
Register P4 contains tne limiting L'RF loca­
tion. Register N1 convers tne intercom 
area, and register Ll covers t:le work area. 

EXITS: If register P2 is zero, no valid 
entry was found. Otherwise, register P2 
contains a pointer to the CKL' '~able. 
LOCCRT contains the previously foand CRT 
entry (used for deleting). i'zegisters P5 
and P6 are returned unchange-l. 

OPE RAT ION: Upon entry, CEKK:\ saves the 
register P2 in the cell LOCCRT (the proce­
dure is also done when the routine loops 
around). This is tne location of either an 
HCRT entry or a CRT entry. (See "Hash 
Table for Compute and ({emoval Table and 
Triad Entries-.) The location is used to 
relink the chain and to ~elete an entry 
from the CRT. 

The pointer to the next CqT entry is 
checked for an end-of-chain. If it is not 
an end-of-chain, the location of the indi­
cated entry is loaded into register P2. 
The forward compute point in the CRT entry 
is compared to the limiting PRt-' location 
(register P4). If the FCP is not higher 
than the limiting PRF location, a legiti­
mate CRT entry exists, and the exit is 
taken. 

If the FCP is higher than the limiting 
PRF location or if the CRT pointer was an 
end-of-chain, register P2 is set to zero, 
so that any exits will indicate "no valid 
entry found. w The limiting PRF location is 
converted to a hash index and compared to 
register P3 in order to determine if the 
search should be continued. If they are 
equal, the limiting PRF location is checked 
against the current PRF location, to deter­
mine if the entire table should be checked. 

If the limiting PRF location is within 
1024 bytes of the current PRF location, the 
search is completed and the exit is taken. 
If not, the entire table must be searched. 
In this case, or if the limiting hash index 
does not equal register P3, register P3 is 
checked to see if the top of the aCRT has 
been reached (255). If it has, register P3 
is set to zero, the bottom of the HCRT. If 
not, 1 is adued to the index to examine the 

next hash entry. The index is then com­
pared to the cell LOCHCR, which contains 
the original index. If they are equal, the 
entire table has been searched and the exit 
lS taken. If they are not equal, the new 
BCRT location is loaded into register P2, 
and the routine returns to the top to save 
this value in LOCCRT. 

CEKKG -- Polish Expression Generation 
Routine 

The function of CEKKB is to convert an 
expression from triad table format to 
ex?ression file (ERF) format to be placed 
in the program file. It is used to reform 
removed and loop control expressions. See 
Chart DQ. 

ENTRIES: The entry point is CEKKBA. Reg­
ister P2 contains the location of the triad 
pointer for the start of the expression. 
Register P7 contains the location of the 
current PRF entry. Register P6 contains 
the location of the next available word in 
the PF (used to store the EF entries). 
Register Nl covers the intercom area, reg­
ister N2 points to the first available word 
in working storage, and L1 covers the work 
area. 

EXITS: ~egister P6 pOints to the new first 
work in the PF. Register N2 points to the 
new first word in working storage. Regis­
ters P5 and Nt are the same as when 
entered. Registers N3, L2, and P2 through 
P4 are saved and restored. A pointer to 
the last EF entry filed is in RMVAL. 

Three error conditions are detected in 
this routine: 

1. Overflow of the program file. 

2. Overflow of the working storage area. 

3. An illegal type code in the symbol 
table. 

For all conditions, the standard Phase 3 
error exit (CEKKRE) is taken. 

OPERATION: This routine uses an operator 
pushdown list (Type 2) of its own to build 
a left-hand Polish string from the triad 
table entries. It follows the left (OP1) 
branch of each expression until a primitive 
is reached, then it takes the first right 
branch (OP2) above the primitive and 
repeats. The output expression is formed 
in the program file and is followed by a 
field (RMVAL) which links it in a chain of 
expressions connected to a BL1, BL2, or BL3 
entry. 

The dummy operator @, which is intro­
duced for a constant subscript or an induc­
tion variable outside a subscript, is 

Section 5: Phase 3 125 



deleted in this routine, and the two 
operands (variable and adcon) are combined 
to produce one varia-ble entry in the 
Polish. If the induction variable is rec­
ognized (in d subscript, not under the @), 
it is replaced with the increment expres­
sion, and, if that is a constant, the pro­
duct of two constants is replaced with a 
new constant: .• 

When the right operand of a triad 
flagged as 'split subscript' is recognized, 
special processing takes place. As in 
normal subscript expressions, the loop step 
is introduced into the expression; constant 
arithmetic being done where required. If 
the split subscript is also the 'BXLE on 
recursive' candidate, the symbol table 
pOinter to the constant recursive step is 
saved so that its GIRL entry can be deleted 
by CEKKW. 

For a special begin loop 2 entry (BL2GT 
is on), a dummy triad entry is built in 
working storage and pointed to by a new 
OPT2 entry. The program is repeated to 
file a test expression in the EF. 

CEKKO -- Save popularity counts for 
Register Assignment 

The function of this routine is to cre­
ate new entries as needed in the list of 
expressions to be considered for global 
register assignments and to keep a popu­
larity of usage count. See Chart DR. 

ENTRIES: This routine is entered at CEKKOA 
with the following register assignments: 

PI Weight 
P2 Address of Triad entry, symbol 

Table entry of Adcon, or expres­
sion name 

P3 = Indicator (0 = Symbol entry, I = 
Triad entry, 2 = expression name) 

P4 Level in which the popularity is 
to be counted. 

EXITS: Registers P5 and P6 are returned 
unchanged. 

The new GIRL entries are stored in work­
ing storage. If working storage is over­
flowed, the Phase 3 error exit is taken. 

OPERATION: Opon entry CEKKO checks the 
indicator in P3. If it is set to zero, 
register P2 contains a symbol table pointer 
which is to be saved. If the indicator is 
set to 1, P2 contains a triad pointer. In 
this case the triad location is computed, 
and the name field is loaded into P2. If 
the indicator is set to 2, the name is 
already in P2. In both cases, a X'7000' is 
added to the name, so that Phase 4 can dis­
tinguish names from symbol table pointers. 

126 

The location of the PLPtaole entry for 
the level given in register P4 is deter­
mined. rhe GPLINK chain points to GIRL 
table entries for the loop; this chain i3 
followed until an end-of-chain or until the 
GLBL of a GIRL entry matches register P2. 

If a match is found, the weight (regis­
ter P1) is added to the popularity count in 
the GIRL entry, and the exit is taken. 

If the end-of-chain is found, a new GIRL 
entry is linked into the GPLINK (it will be 
the new end-of-chain). Register P2 is 
stored as the GLBL, and the weight is 
stored as the popularity count. The exit 
is then taken. 

CEKLB -- File Constant and Covering Adcon 

The function of this routine is to file 
a constant, compute and file its covering 
adcon, and compute the displacement. See 
Chart DS. 

ENTRIES: The entry point is CEKLBA. Reg­
ister P1 contains the 4-byte address con­
stant (adcon) to be filed in the symbol 
table format of SLOC and storage class 
(STeL). Register P2 contains either the 
ERF location of where the adcon pointer is 
to be stored or zero if the adcon pointer 
should not be stored. Register P4 contains 
the symbol table location of the original 
entry for which the adcon is being filed. 

EXITS: Registers P2, P4, P5, and P6 are 
returned unchanged. 

When the return code found in register 
L3 in nonzero, and error occurred in the 
executive subroutine. The Phase 3 error 
exit is taken. 

OPERATION: Upon entry CEKLB saves the 
storage class byte (STCL), which is assumed 
to be the right-most byte of register Pl. 
The parameter is put into an even-numbered 
working register and shifted into the fol­
lowing odd-numbered register, with the sign 
being extended so that the SLOC value is 
right-justified in the odd-numbered regis­
ter. This value is now divided by the 
value 4080, which represents the number of 
bytes covere1 by an adcon. The result is a 
page number in the even-numbered register 
and a displacement in the odd-numbered reg­
ister. If the sign of the resulting dis­
placement is negative, the page number is 
reduced by 1 and the displacement is 
increased by 4080. If subscripts are being 
processed (SWCHSB*O) or if the EF location 
(register P2) is zero, the displacement is 
not saved; otherwise, it is stored in the 
indicated EF entry. 

In either case, the page number is mul­
tiplied by 4080, to compute the page bound-



ary location. The result is the new SLOe, 
which is shifted, and the saved STCr. is 
inserted in the riiht-cDst byte. lne 
resulting word is 3tored in TEeNSl for the 
executive subroutine which i,~ now entered. 
The executive subroutine checks th,,' ~;yrnbol 

table, to see if an entry has alread}' been 
filed for the parameter. If one has not, a 
new entry is created in the symbol table. 

Upon return from the executive subrou­
tine, the return ~oae (register L3) is 
tested. If it is nonzero, an error 
occurred in the executive subroutine and 
the error exit is taken. If the return 
code is zero, the symbol table entry tor 
the parameter (input in register P4) is 
checked to see if the item is a formal 
argument. If it is not, the exit is taken. 
If it is a formal argument, t:he cell TEGNU 
in Intercom is checked. If TEGNU is non­
zero, a new adcon was filed for the last 
parameter. In this case, an entry is made 
into the formal argument adcon table 
(FAAT). The location of the next available 
entry in FAAT is found in TEFAAT in inter­
com. The adcon's symbol table pointer in 
TEPNTR in intercom is moved to FAAT. The 
STCL is moved from the argument's symbol 
table entry to the FAAT entry. The FAAT 
location is increased by four bytes, to 
point to the next entry, and restored in 
TEFAAT. The exit is then ta",en. 

CEKLI -- Loop Test-Expression Generator 

This routine generates the test expres­
sion, used for determining the end of a DO 
loop, by modifying the last recursive 
expression. See Chart DT. 

ENTRIES: The entry point is CEKLIA. Reg­
ister P6 contains the EF point for the next 
entry, register Nl covers the intercom 
area, register N2 contains the next avail­
able word in the work area, and register Ll 
covers the PSECT • 

EXITS: Register P6 points to the new next 
entry in the EFi registers Nl, N2, and L1 
are unchanged. 

OPERATION: The location of the recursive 
expression to be used for generat,ing the 
test expression is found in the word EFSAV. 
It was saved as CEKKB regenerated the 
recursive expression at the ~L2 entry. The 
form of the recursive expression is assumed 
to be: 

where 

(OPU (OP2) 

OP1 can be a constant or an expression 
OP2 can be an adcon, residue, expres­

sion, or constant 

The location given in EFSAV points to 
the! operator. By using a backward scan, 
the start and end of OP2 are found and 
saved. OPl is then copied into the EF, and 
its last use flag is cleared in the origi­
nal expression. 

If the loop is not marked as BXLE on 
recursive, a new term is inserted into the 
expression to generate an expression of the 
following form: 

where 

(Opl) (n * (OP2) + 
the !] 

[the + replaces 

T is an expression of the form 

!L::.-L~ 
s 

U Upper limit 
L Lower limit 
S == Step size 

This routine will perform constant 
arithmetic wherever possible to reduce the 
T expression. The following cases are 
considered. 

1. L = Constant, U 
Constant 

Constant, S 

2. 

A new constant, 

t = U-L+S, 
S 

is calculated. Two subcases then 
exist: 

a. If OPl is a constant, a new con­
stant t2 = t * OP 1 is formed, 
filed in the symbol table, and 
entered in the EF to replace OPl 
forming 

b. If OPl is not a constant, t is 
filed in the symbol table and 
inserted to form the expression 

(OP1) (t) * (OP2) + 

L = Constant, U = Constant, S 
Variable 

A constant, t == U - L, is calculated, 
filed in the symbol table, and 
inserted to form 

(OP!) (tS + S /) * (OP2) + 

3. L = Variable, U = Constant, S 
Constant 

Section 5: Phase 3 127 



4. 

A constant, t == U + S, is calculated 
and filed in the_ symbol table. Two 
subcases are considered: 

a. If the step size is 1, the divide 
is omitted to form the e:Kpresc,ion 

h. 

(Op1) (t L +) * (OP2) .. 

If the step size is not 1, the 
expression is 

(OP1) (t L + s /) * (OP2) + 

L == Constant, U == Variable, S == 
Constant 

A constant. t = S - L, is calculated 
and filed in the symbol table. 

a. If step is equal to 1, the expres­
sion formed is 

b. 

(OP!) (U t .. 1 MAX) * (OP2) + 

If step is not equal to 1, the 
expression is 

(OP!) (U t + S / lMAX) .. (OP2) .. 

5. L == Variable, U = Variable, S = 
Constant 

a. If step is equal to 1, the expres-
sion formed is 

(Opl) CO E s ++ 1MAX) * (OP2) .. 
b. If step is not equal to 1, the 

expression generated is the same 
as given in 6 (belo",.) • 

6. L == Variable, U Constant, 
S == Variable 

L Constant, U == Variable, 
S == Variable 

128 

L Variable, U = Variable, 
S == Variable 

The full expression is inserted to 
form the expression 

<OP1} (U L s ++ S / lMAX) * (OP2) + 

If the loop is marked as a BXLE on 
recursive, the recursive expression has the 
form: 

constant1 constant2 

where constant1 is the value that is put 
into register 14 by Phase 4, and constant2 
is zero, the initial value of the 
recursive. 

The test expression generated has the 
form: 

constant3 U L + * 
where constant3 represents a new constant 
generated by dividing constantl from above 
by the loop step. 

When both the upper and lower values are 
constants, the test expression is merely 
one constant EF item. 

In either case, an EF item for constant3 
is created, and its pointer is set in the 
INC field of the EL2. This is used by 
Phase 4 when the loop is "materialized on 
exit ... 

An internal subroutine, SETUP, is 
entered to generate an EF entry for each of 
the three loop parameters. A flag is set 
for each parameter, to indicate whether it 
is a constant or a variable. These flags 
are then tested to determine which case 
exists, and the proper subsection is 
entered to generate the test expression. 



INTRODUCTION 

The objective of Phase 4 is to produce 
from the program file (PF), which is its 
primary input, a representation of the 
object program in a form very close to 
machine code, the code file, which is its 
primary output. Other output consists of 
entries made in the symbol table; parameter 
list entries and V/R adcon-pair entries 
arising from external references; location 
counter values associated with statement 
labels; numeric constants filed as comple­
ments of constants filed as complements of 
constants referenced in the PF. 

The major fUIlctions of Phase 4 are pri­
marily oriented about source program state­
ments and expressions as they are repre­
sented in the PF. A documentation module, 
or component, is associated with each of 
these major functions. 

PHASE 4 PROCESSING 

Processing is directed by the phase con­
troller (PHAS4), which simply performs a 
Single scan of the PF. During this scan 
PHAS4 passes control to the particular PF 
entry processor appropriate to the identi­
fication of each PF entry encountered. Its 
sole functions are to perform this scan, to 
select the processors, and to terminate 
Phase 4 processing when the end program 
item is encountered in the PF. The follow­
ing list indicates the relationship between 
the source language statements and the PF 
entry processing routines: 

Routine 
Name 

ENT 

LABEL 

EQUAT 

AIF 

LIF 

GOTO 

ASSIGN 

AGO 

Source Language Features 
Processed 

Main program or subprogram main 
or alternate entry -- entry pro­
logue generation. 

Source- or compiler-created 
statement label. 

Arithmetic statement. 

Arithmetic IF statement. 

Logical IF statement. 

Unconditional GO TO statement. 

ASSIGN statement. 

Assigned GO TO statement. 

CGO 

CALL 

RTRN 

BLl 

BL2 

BL3 

ENDLP 

RD 

OLIST 

NDLST 

STOP 

SECTION 6: PHASE 4 

Computed GO TO statement. 

CALL statement. 

RETURN statement. 

DO statement 

All I/O statements. Generate 
transmission initialization call. 

Any I/O statement that includes a 
list. Generates list element 
transmission calles). 

Any I/O statement that includes a 
list. Generates termination 
call. 

STOP and PAUSE statements. 

A major component of Phase 4 is the 
arithmetic generator, AGEN. Its function 
is to generate code to evaluate the expres­
sions that are represented in the PF. AGEN 
is called to process the operands of any PF 
statements which may reference either gen­
eral arithmetic expressions or subscript 
expressions. 

AGEN is primarily a control routine 
which directs the activities of expression­
operator generating routines. These lower 
level routines are tailored to process 
specific arithmetic operators, or even 
specific operator/type combinations. These 
routines, as well as the higher level PF­
entry processing routines, make use of a 
collection of service routines, which are 
categorized and whose functions along with 
those of the higher level routines are sum­
marized below. 

Expression Generator Control Routines 
AGEN Expression generator control. 
TRBLD Expression tree formation. 
WGHT Order of evaluation determination. 
CSX Common expression usage count 

determination. 

Expression operator Generating Routines 
RPLUS Real addition and subtraction. 
RMUL Real multiplication. 
RDIV Real division. 
IPLOS Integer addition and subtraction. 
IMPLY Integer multiplication. 

Section 6: Phase 4 129 



IDVDE 
LADDR 

CPLUS 
CMUL 
CDIV 
RLTNL 
ANDOR 
MAX 
FUNC 

COMMA 

DC OM 

OPEN1) OPEN2 
OPEN3 
OPEN4 
OPENS 
OPEN6 

Memory 
MEMAC 
COVER 
SADDR 
LBL 
FETCH 

Integer division. 
Special addition by means of LA 
instruction •. 
complex addition or subtraction. 
Complex multiplication. 
Complex division. 
Relational operations. 
Logical operations. 
Maximum and minimum operations. 
External function reference 
operations. 
External function argument 
process ing. 
Open function processor selector. 

Inline (open) function 
processors. 

Reference Coverinq Routines 

Operand-Reference Optimizing Routines 
SELOP 
SLPOS 
SLONE 
SELGM 
SELGD 

Operand Locating Routines 
KEY 
KEY1 
FNDAR 
FNDFR 

Operand-Usage Processing Routines 
OPND 
RSLT 

Register Selection Routines 
SELSR 
SELDR 
SELFR 

Register Assignment Routines 
ASAR 
ASARS 
ASFR 
AS FRS 

Temporary storage Allocating Routines 
FNDWS 
RLSWS 

Miscellaneous Routines 
INSOT 
FLUSH 
EDIT 

130 

Expression Generation 

The first stage of expression generation 
converts the expression form, in which each 
binary operator is preceded by first its 
left and then its right operand, to a tree 
form (see Figure 24). In expression form 
the relationship between operator and 
operand is implicit in the ordering of the 
expression. In tree form the relationship 
is made explicit by linking each operator 
to its operands with explicit address 
pointers. The tree is also backlinked so 
that each nonprimitive operand (operator) 
is linked to the operator upon which it 
depends. The tree is now equivalent to a 
push-down table with space at each level 
(tree node) to record information about the 
generation status at that node. 

During the process of conversion to tree 
form, conversion function operations are 
introduced, where necessary, to obtain type 
compatibility between the operands of cer­
tain of the operators. This is done to 
reduce the number of individual cases pre­
sented to the expression-operator 
generators. 

When the expression tree has been 
created, the order in which the component 
operations of the expression are to be 
generated is determined. The language 
rules require that expressions be asso­
ciated from left to right. This associa­
tion is explicit in the expression form 
input to Phase 4, and converting to tree 
form does not change this association. 
However, it does allow easy change in order 
of computation at any level in the tree. 
For example, consider the expression 

(A*B) + (C+D) 

which is represented by Phase 1 as 

AB*CD++ 

If generation is to proceed directly 
from the latter, the easiest and most 
natural way to proceed would be first to 
compute A*B, then C+D, and then to add the 
two partial results. However, the language 
does not require this ordering. 

The expression in tree form is written 

+ 

A B c D 



c 

\\lord 1 ID TYPE 

o 

c 

o L 

I.Nord 3 

o 

o 

OP 

o 

o 

ID 

TYPE 

Figure 24. 

16 

F' 
J 

,6 5 4 : 2 

ADCON o 

CP~R ATOR 

6 12 14 16 

F F 

16 

LOP 

16 

ADCON o 

20 

Di5placement-

BLINK 

ROP 

Priority Number or 
\N eight 

20 

Displacement 

identifes rhe Tree Table entry: 

1 "'- Operator 
~ (·:)rrtmon Expression 

3 ~ A::kon 
5 ~ Variable 
6 = Constant 
7 :::c Function 

8 = Residue 

identifies the entry 

Logical '1 
2 Logical '4 
3 Integer *2 
4 Integer '4 

5 = Real '4 

6 = Real '8 
7 Complex *8 
8 = Complex '16 

type: 

Expression Tree 

31 

31 

31 

31 

'vVcrd 3 

f:;i~CT10N 

4 1 C 12 14 16 

ID TYPE U, " I' I : IFF F:liF.F!ei 
, 5 4 3 1

1
2 i I' !O; . 

Fvnc t;on "'lumber of 

Symbol Table Po;nfer 

COMMON EXPRESSION 

o 4 10 12 

1D 
. 

LOP 

c 

14 16 

F F I 
2i 1 

I ! 

16 

16 

G 16 

BLINK 

ROP 

Weight 

o i'-.,jAME Table Pointer Unassigned 

c· 4 8 
. 

!O I TYPE 

i 

U 

F6 

F5 

FJ 

F2 

FI 

BUNK 

ROP 

OP 

RS 

RESIDUE 

10 12 14 16 

U ! F I F I ~l F i Fl F ! 

16!5 14312111 
NAME Table Pointer 

! i! I 
! 'i ' 

U~Qssigned 

'I/O flag 

use secondary temp. 

ex.amined 

v/ei.ghted 

comp\)~ed 

link to first byte of operator of next 
node vp \ back-link) 

link to first byte of left ;::-perona 

link to first byte of right operand 

operator code 

register r' if R ~ i 

in memory 

memory sign 

in- register 

register sign 

Section 6: Phase 4 

31 

31 

31 

31 

31 

31 

131 



Given this form, with direct address 
links as indicated, it is no easier to com­
pute first along one branch '·f the highest 
level operator than it ie; along the other. 
Thus, this representation allows a choice 
of order of computation based upon criteria 
which are designed: 

1. 

2. 

To minimize the numbers of active par­
tial results and thereby to use fewer 
registers. 

To favor computatlon of denominators 
bEfore numerators in order to avoid 
unnecessary loads and stores. 

3. To compute first along paths contain­
ing function references so as to mini­
mize the possibility of having to 
store partial results which are in 
registers volatile with respect to the 
function calls. 

The order of computation is determined by 
the routine ~GHT which assigns at each tree 
node a priority number (or weight) and 
records it in the tree. 

starting with the major operator of the 
tree. AGEN examines the left and right 
operands. If neither is primitive (a vari­
able, a constant, or an already computed 
operator), the link is followed from the 
operator to its higher weighted operand. 
If the weights are equal, t.hen arbitrarily 
the left link is followed. This new, lower 
level, operator is then examined in the 
same manner. If at any time only one 
operand is primitive, the other link is 
followed. The search is concluded when an 
operator with two primitive operands is 
found. At this point generation for the 
operator proceeds. 

The operator code and expression type 
are used to select an expression-operator 
generator, and the appropriate module is 
invoked. 

The expression-operator generator is 
tailored to the operation to be performed 
and to the types of its operands, with con­
sideration given to the location of 
operands (in registers or storage); the 
requirement for even/odd register pairs; 
the availability of the register containing 
an operand; the selection of which operand 
register is to contain the result; etc. 
Lower level routines are invoked for 
various functions: to select registers; to 
determine when operands are no longer 
needed and to free the registers in which 
they reside; to protect an operand by mov­
ing it to another register before the con-

132 

tents of the former register are altered; 
to assign temporary storage and store 
operands in temporary storage for later 
use; to obtain cover for and assign B2, X2, 
and 02 instruction fields for storage 
references to operands; to record the loca­
tion of the operation result for later 
reference in generation; etc. 

When the expression-operator generator 
has completed its task, it returns control 
to the arithmetic expression generator, 
which marks the tree node "computed" 
(primitive). 

The subscript connector (:), open func­
tion argument connector C,,>, recursive 
operator(!), and base/index connector(?) 
require no generation, and the tree node at 
which one of these occurs in simply marked 
"computed". The back-link is inspected 
next. If it is null (zero), generation is 
complete and return is made to the module 
that called the arithmetic expression 
generator. If the back-link is not null, 
it is followed to the next higher level 
operator, from which point generation pro­
ceeds as above. 

Expression Storage 

Whenever a noncommon operation is com­
plete, whenever a noncommon operand is 
loaded into a register without the inten­
tion of immediately operating upon it, or 
whenever a quantity is stored in temporary 
storage, a record of the transaction is 
made. If the operand is being loaded into 
a register. the corresponding register 
number is recorded at the appropriate node 
of the expression tree. If the operand is 
being stored, the temporary storage assign­
ment is recorded in the tree. Note, howev­
er, that such information concerning 
variables and constants is not recorded in 
the tree. Thus. the expression tree con­
tains the current location of any computed 
non common partial result. 

Common-Expression Storage 

Whenever a transaction such as the above 
involves a common expression, the transac­
tion record is made in the Name Table 
(Figure 25). Each common expression has a 
name (number) which is its identification. 
Associated with each distinct common ex­
pression is a Name Table entry which is 
used to record the location of the common 
expression in the same way that the expres­
sion tree is used to record the location of 
noncommon expressions. 



o 2 4 6 3 12 14 16 31 

CSX !";SAGE COt;NT 

16 20 31 

! 
ADCOI'J o Displacement 

0 16 <-a 31 

Secondary temp ADCON 0 

1 

Displacement 

I 
i 

0 16 28 31 

,I I 11 NlNK ! U 

Legend 

U cJnassigned lU last use 
CO Operator is a colon REG register I if R 1 ) 
STEP loop increment M in memory 
G giobany ossfgned MS memory sign 
C c:Jmpvtec R in a register 

s.ec:3ndary temp assi gned RS register sign 

NLNK link to loop Table entry of la,t use of recursive increment, if 
-:1pplicoble; othef"Vllise, zero. 

TYPE EF Type Code 

Figure 25. Name Table 

Register Storage 

Two tables are used to keep a running 
record of the contents of the arithmetic 
registers. The MRM table (Figure 26) con­
tains one entry for each of general regis­
ters 1 through 15 (since general register 0 
is used simply as a transient register and 
its contents are never retained, this reg­
ister is not represented in the MID~ table>. 
The MRMFR table (Figure 27) contains one 
entry for each of the four floating-point 
registers. MRM is the symbol applied gen­
erically to the register tables, and often, 
when no confusion can result, MRM is used 
interchangeably for MRi<1 and MRMFR. 

The two tables have generally similar 
structures. The first word of each entry 
contains two status indicators, the first 
of which indicates whether the register is 
available for selection. The second indi­
cator records whether or not the general 

register is globally assigned over the 
scope of a DO loop, or whether or not a 
floating-point register (0 or 4) is linked 
as a com~lex quantity pair to the next 
higher register. This first wor~ applies 
to the register as a whole. 

C-

',~,'ord 2 

\Vord 

\/'lord a 

78 15 16 

1M 
,S 

t/\R,":\DIS 
Disp[acemen+ 

31 

i 

lr i rio! 
Er1try 

First 

S~nonym 

rntr( 

--- -------~ --- - -"r 

.-----. ----------- --"I 
, 

I 

Second 
;,. Syno""YIT' 

Er"lt:y 

Thi.d 
Synonym 
Entry 

-_________________ .J ~ 

Legend 

MSL 0 Selectable 
1 Nonselectable 

MGBL 0 Nonglonal 
1 Global 

ID 

MRMl'YP EF Type Code 

DUSY 0 Inactive 
1 Active 

1-1RM6 0 True Sign 
1 == Negated 

Word 2 occurs once for each general regiS­
ter. Words 0 and 1 occur four times for 
each general register. 

Figure 26. MRM Table 

Section 6: Phase 4 133 



7 8 13 16 

Legend 

MSLF 0 
1 

MRMFL 0 
1 

MRMF2 10 

MRMTYP .EF 

BUSYF 0 
1 ::: 

MRMF6 0 = 
1 

i'\i'.RrY~DIS 

Di::plcc(lf"'2'lf 

31 

11 
I 
I 
I 

-1 

, 
- I -< 

Selectable 

Firs.t 

Synonym 
Entry 

Second 
Sy nonyrn 
E'ltry 

TI,ird 

5yno:rym 
Entry 

Nonselectable 

Not .Linked 
Linked 

Type Code 

Inactive 
Active 

True Sign 
Negated 

Word 2 occurs once for each floating regis­
ter. Words 0 and 1 occur four times for 
each floating register. 

Figure 27. MRMFR Table 

Next, for each entry, is a set of four 
pairs of words; the first pair is called 
the initial entry and the rest, synonym 
entries. The initial entry mayor may not 
be active; but, whenever there is at least 
one active synonym, the initial entry is 
active. Whenever a quantity is loaded into 
and assigned to a register, or computed in 
and assigned to a register, a record is 

134 

made in the initial entry of the appropri­
ate MRM table entry to indicate the pres­
ence of the assigned quantity in the corre­
sponding register. Synonym entries are 
sometimes made for quantities which appear 
on the left-hand side of arithmetic state­
ments. Consider, for example, the sequence 
of statement: 

1 A 
2 C 
3 0 

B 
A 
B 

The quantity B is loaded into some reg­
ister, and an assignment for B is recorded 
in the initial entry of the corresponding 
MRM table entry. The store into A causes 
the insertion of A into the first synonym 
entry. In statement 2, A is found to be in 
a register, so no load is generated, simply 
a store into C which is then recorded in 
the second synonym entry. In statement 3, 
B is found to be in a register so a store 
into 0 is generated, and 0 is recorded in 
the third synonym entry. 

When an attempt is made to record a 
fourth synonym, the first (oldest) synonym 
entry is erased, the remaining two are 
moved up one slot, and the new synonym is 
recorded in the third synonym position. 
The initial entry is never changed by this 
procedure. 

Whenever a quantity which has a alrrent 
MRM table entry changes value, the corre­
sponding position of the appropriate entry 
is vacated. If an initial entry thus 
becomes empty, the first active synonym is 
installed as the initial entry; or if there 
are no active synonyms, the MRM entry 
becomes empty. 

General Register Selection 

The general registers are used to con­
tain virtual storage addresses and to per­
form address arithmetic and integer, logi­
cal, and relational computations. General 
registers 1 through 11 and 14 and 15 are 
treated as equivalent for purposes of reg­
ister selection, with the single exception 
that if there is no other basis upon which 
to make a selection, the lowest numbered 
available register is selected arbitrarily. 
General register 13 is used to cover the 
first page of the object program PSECT 
(sometimes called the adcon page), and gen­
eral register 12 is used to cover local 
temporary storage. Both of these registers 
are made unavailable for any other use 
simply by raising their MSL and MGBL flags 
in the corresponding MRM Table entries. 
General register 0 may be used in the nor­
mal way as a member of the 0/1 register 
pair, but register 0 itself may never be 
selected or assigned. It is used only in 
extremely local context. 



In certain situations use of registers 
1, 14, and 15 is restricted. For example, 
when at the top of a DO loop an address 
constant must be loaded into a register and 
assigned globally to that register over the 
scope of the loop, none of tnese three 
registers is selected because of its spe­
cially required use in the subroutine link­
ages. Otherwise, the register selection 
routines make their selection on the basis 
of the register contents. 

The general criteria for selection of 
registers involve the relative cost of hav­
ing to reload the quantity which is in the 
registers at the time of selection. Clear­
ly, if a register is empty, it is a prime 
choice for selection. In turn a register 
which contains a constant whose absolute 
value is less than 4096 and which therefore 
may be reconstructed with a relatively fast 
LA (load address) or SR (subtract register) 
instruction is likewise a good selection. 
On the other hand, registers which contain 
partial expression results (optrators) are 
the poorest choices since they must be 
stored in temporary storage and later 
fetched from there. A register which con­
tains an unstored common expression is a 
somewhat better choice, since while the 
partial result is known to be last used in 
the current expression, the common expres­
sion has more than one use and may there­
fore have to be stored eventually, so that 
not storing it now may only be postponing 
the inevi table. 

The general register selection routines 
apply these criteria by determining the 
contents of each register by an examination 
of its corresponding MRM table entry. A 
weight is assigned to each register accord­
ing to those criteria, and the register 
with the highest weight is selected. 

Storage Reference processing 

Cover is obtained for storage references 
(simple and subscripted variables, con­
stants, and temporaries) and most branches 
by one of two subroutines: ME~AC and 
COVER. MEMAC is a more general routine 
which is used to obtain cover for a 
reference to any given expression tree 
quantity. COVER is used in situations 
where it is known that all that is needed 
for cover is an adcon, and the symbol table 
pointer for the adcon is at hand. 

Consider first the expression A+B in 
which neither A nor B is in a register and 
which is represented in expression tree 
form as: 

/~ 
/ '" A 8 

The plus generator first selects a 
floating-point register, say 4, in which to 
perform the addition. It then requests 
from ME~iliC cover for A. The latter routine 
recognizes that the operand is a variable. 
It obtains the adcon pointer from the vari­
able item and searches the MRM table for a 
register containing that adcon. If one is 
found, t.he values X2 = 0, 82, and 02 are 
returned, where B2 is the register and 02 
is the displacement indicated in the vari­
able item. If the adcon is not in a regis­
ter, MEMAC selects one and loads the adcon 
into it. It then returns X2, B2, and D2 as 
above. 

The plus generator will now generate the 
instruction 

LE 4, D2 (0, B2) 

MEMAC is then entered to obtain cover for 
B. In similar fashion it returns new 
(although possibly the same) values of B2 
and 02, and the plus generator produces 

AE 4,02(0,B2) 

consider next the expression X + YCI) 
where X and Yare of type REAL*4, Y is an 
array, and I is neither a loop index vari­
able nor removable from a DO loop. The ex­
pression is represented in the expression 
tree as: 

/ , 
/ 
~ / 

x / .~ 
/ ? 

Y / '" '\ 
/~ 

A:jcon 

4 

where the effective displacement, 02, is 
given in the variable item Y, and the rest 
of the storage assignment and subscript 
offset has been subsumed in the item indi­
cated by wadconw. It should also be 
pointed out that if generation is now tak­
ing place for the plus operator, generation 
of all lower level operations has taken 

Section 6: Phase 4 135 



place -- in particular, the formation of 
the product 4*1. 

MEMAC is first asked for cover for X 
which -- as before -- results in generation 
of, perhaps, 

LE 2,D2(0,B2) 

where D2 plus the contents of B2 is the 
address of X. 

Then MEMAC is asked for cover for the 
right operand of the plus, the subscript 
connector (: operator). MEMAC looks 
beneath the colon and finds a base/index 
connector (? operator). Each of the 
operands of the? operator is now indivi­
dually obtained in general r2gisters, eith­
er by locating the quantity in a register, 
or by selecting a register and loading the 
quantity as above. D2 is obtained from the 
variable item Y, and the registers contain­
ing the left and right operands of the ? 
operator are returned as X2 and B2, respec­
tively_ The plus generator now completes 
the addition by generating 

A.E 2, D2(X2.B2) 

Subscripted variables containing only 
expressions that are removed from and com­
puted outside a DO loop have the form 

Varinb!e Expression 

where the right-hand operand of the colon 
operator is the removed expression. In 
this case, the expression is not introduced 
by a? operator, and ME~~C simply ensures 
that the expression is in a register, as 
above, and returns D2 from the variable 
item, X2 = 0, and B2 as the register con­
taining the removed expression. 

DO Loop Processing 

The generation associated with DO loop 
control, removed expressions, and recursive 
expressions is governed by the begin loop 
1(BL1), begin loop 2 (BL2), begin loop 3 
eBL3}, and end loop PF items. The pro­
cesses performed and the code generated at 
BLl and BL2 are "out of the loop"; that is, 
they are considered as loop initialization 
and are performed only once prior to entry 
to a loop, not each time through the loop. 
BL3 and end loop mark the scope of the 
loop, and any code generated or processing 
done therein is considered to be within the 
loop. 

136 

The BLl entry contains a list of as many 
as eight quantities (adcons or common ex­
pressions) that are to be globally assigned 
to general registers across the upcoming 
loop. This list is scanned and transcribed 
to the current level of the loop push-down 
table, or loop table (see Figure 28). Dur­
ing this process, for each entry which is a 
common expression, the G (globally 
assigned) flag of the corresponding name 
table entry is set. 

A.fter the global assignment list has 
been transcribed to the loop table, a 
second list is scanned. This is a linked 
list of removed, nonrecursive common ex­
pressions in the PF. Each of these expres­
sions is presented to the arithmetic ex­
pression generator for processing. This 
generation completes the processing at BLI. 

The processing at BL2 generates the com­
putations associated with recursive expres­
sions, assures that all quantities which 
are to be globally assigned in the loop are 
now in registers and globally assigned, and 
clears register storage in all registers 
which contain quantities not to be globally 
assigned. If any such quantity is not also 
in storage (not a variable, constant, sub­
scripted variable, or a previously stored 
common expression), temporary storage is 
obtained, and the quantity is stored. 

Recursive expressions are those whose 
highest level operator is the recursive 
operator (!). A recursive expression is a 
constituent of, or perhaps all of, an 
effective relative address. The recursive 
operator has been introduced in a subscript 
expression in place of any + operator whose 
left-hand operand is a function of a loop 
induction variable. A.t the same time, the 
occurrence of the induction variable has 
been replaced by the induction variable 
increment size specified in the correspond­
ing DO statement. The recursive expression 
is to be initialized outside the loop and 
incremented after each pass through the 
loop. The recursive operator has the pro­
perty that its right-hand operand is the 
initial value of the corresponding recur­
sive expression, and its left-hand operand 
is the increment to be applied to the ex­
preSSion at the end of the loop. 

A. loop table entry is made for each 
recursive processed at BL2. The entry con­
tains the name of the recursive (the recur­
sive is always a common expression) and an 
expression-tree-like item representing the 
increment to the recursive entry. This 
information is retrieved from the loop 
table at the loop end in order to increment 
the appropriate recursive expression. 



( 
i 

I---~~! 

~-... -." --+---------1 
~~~,~i~~~!~i§ijg 

L?GP';

16

','hd?

c ~ ~
,

~(~'-.j

L.-
'2

i:C

U'';;''Iv'_~

Figure 28. Loop Table

Legend for Figure 28

TEMPi

LLINK

LRCSV

LLABL

Byte number of lowest temporary
assigned at next outer DO Loop.

Link to Loop Table entry for next
outer DO Loop.

Number of recursive expression to
be incremented at this end DO.

Symbol Table pointer to compiler­
created label marking beginning of
DO scope. Not applicable to level
zero loop.

FLAGS

Mne­
monic

LMTRZ

MTZEX

RCSV

BTR

GBL

TEMP

Mask
value

X'Ol'

X'02'

X'04'

X'08'
X'10'

X'20

X'40'

X'SO'

Meaning

Loop variable material­
ized; there is no test
expression. Otherwise,
loop variable not materi­
alized; last recursive
expression is followed by
a test expression.
Loop variable is to be
materialized (calculated)
on exit from loop.
BXLE on recursive. LOOp
controlled at loop bottom
by BXLE instruction.
Not used.
Loop controlled at loop
bottom by BCTR
instruction.
Registers 14 and 15 may
be globally assigned over
loop. Loop bottom
instruction will be BXLE
1.14,d (E1).
Registers 14 and 15 must
be put in temporary
storage before loop is
entered, and must be
restored at loop bottom
before the BXLE 1.14,d
(Bl) is generated.
Not used.

LlVA Loop variable covering-Adcon
pointer.

LIVD Loop variable 02 field.

LIVS Loop variable Symbol Table pointer.

LINCA Variable or constant increment
covering-Adcon pointer.

LINCD Variable or constant increment 02
field.

LINCS Variable or constant increment Sym­
bol Table pointer.

LTESTA Variable or constant upper limit
covering-Adcon pOinter.

LTESTD Variable or constant upper limit D2
field.

LTESTS Variable or constant upper limit
Symbol Table pointer.

LPGRl Up to 8 globally assigned
quantities.

Section 6: Phase 4 137

LPGR8
LPGRi = 8000 marks end of list.

LPGRi<7000 indicates Adcon Symbol
Table pointer.

7000<LPGRi<8000 indicates common
expression whose name is
LPGRi-7000.

LRNAME Common expression narr;e of recursive
expression.

LID 10 of increment or t9St expression:

1 Operator
2 Common Expression
5 Variable
6 Constant

LTYPE Type of increment or test
expression:

3 Integer*2
4 Integer*4

LSYM Symbol Table pointer of variable or
constant increment.

LeON Symbol Table pointer of Adcon cov­
ering constant or variable incre­
ment or temporary assigned to
increment or test expression.

LOIS D2 field for variable, constant, or
temporary reference.

S Tree sign of increment or test ex­
pression operator at creation of
expression.

LNAME Name of increment or test expres­
sion if a common expression.

L L = 1 if last use of increment or
test eXpression was encountered
prior to Loop end; otherwise, L
=: O.

When the recursive proceSSing is com­
plete, the BL2 PF entry is examined to
determine whether materialization of the
loop induction variable is required. Such
materialization implies that the value of
the induction variable will be maintained
in the storage location assigned to it. It
materialization is indicated, instructions
are generated to load the initial value of
the induction variable into a general reg­
ister and store it into its assigned loca­
tion. Symbol Table pointers to the induc­
tion variable, increment quality, and upper
limit quantity are now recorded in the
appropriate loop table fields.

If materialization is not indicated, the
arithmetic expression generator is called
to generate the "test Expression."

138

It is assumed that ".vhichever recur3ive
expression has been processed last will
also be processed last at the end of the
loop (incremented there), and that this
recursive will be tested against the test
expression to determine whether the loop
has been traversed the requisite number of
times. The information identifying the
test expression is added to the loop table
following the entry for the last recursive
expression, in just the same manner.

Next, any quantity to be globally
assigned over this loop and not already so
assigned is processed. If it is already in
one of general registers 2 through 12, the
corresponding MRM table entry is marked
"globally assigned w • If it is in some
other general register, or not in a regis­
ter at all, then one of the registers 2
through 12 is selected and made available,
and the quantity is loaded into the
selected register. Finally, all the
floating-point registers and any general
registers that are not now globally
assigned are stored and cleared if their
contents are not already in storage, or are
cleared, otherwise. This completes the
processing at BL2.

At BL3, four tasks are performed.
First, the compiler-created statement
label, marking the first instruction inside
the loop, is placed in the code file and is
identified by an entry in the loop table.
Second, the arithmetic expression generator
processes any expressions (dependent upon
the induction variable) which may have been
removed to BL3. Third, any temporary
storage locations assigned at this loop top
or at the next higher level are protected
from reuse within the loop. Finally, the
loop table is ftpushed down" one level,
ready to record information about any inner
loop that may be encountered.

When an end-loop item is encountered in
the PF, t.he loop table is "popped up" one
level so that the information regarding the
loop now ending is once again in evidence.
Instructions are generated to increment
each recursive expression listed in the
loop table entry by the amount specified
therin. Next, the end-at-loop test is
generated. If materialization was required
for this loop, instructions are generated
to increment and test the induction vari­
able and to branch conditionally (BNL) to
the loop top. If materialization was not
required, the last recursive incremented is
now tested against the test expression, and
a conditional branch (BNE) to the loop top
is generated.

Next, the global assignment list is
scanned, and for each entry the global
assignment flag of its corresponding MRM
table entry is cleared. Finally, all tem-

poraries assigned to tae next outer DO
level and released -within the loop nm" end­
ing are made available for reassignment.

ROUTINE DESCRIPTIONS

Phase t+ routines bear mnemonic titles as
well as coded labels. The 5-character
coded labels begin with tne letters CEK;
the fourth and fifth letters identify a
specific routine. Most routines have onl~
one entry point; for those tnat have mul­
tiple entries, both the code,j labels and
the mnemonics are given for the alternate
entries. ~ny mnemonic name oeginning with
the letters TEV refers to an Exec routine
or entry point, rather than to a Phase 4
routine. The corresponding coded label is
given in parentheses immediately following
the mnemonic.

There are no hardware configuration
requirements for any Phase 4 routines. All
these routines are reentrant, nonresident,
nonprivileged, and closed. All except
Phase 4 Master Control (CEKNX) use the
restricted linkage conventions. Return
codes and output parameters, if any, are
noted in the routine descriptions that fol­
low Table 24.

The relationships of routines constitut­
ing this poase are shown in the following
nesting chart (Figure 29) and decision
table (Table 24). The relationships are
shown in terms of levels; a called routine
is considered to be one level lower than
the ca 11ing routine. Phase 4 Master Con­
trol is considered to be level 1.

Section 6: Phase 4 139

f-' 'TJ
+=
0 <.Q

C
Ii
rv
N

'"
"0
::r
~
(Jl

rv
J::

Z
(I)
(Jl.

rt
t-'.
::1

cO

()
::r
III
11
rt

LEVEl

4

)

6

8

9

I'NT

,. IPLUS
! i
,

1----1

l_S~~G_MJ

: t-JDLST
L

CPlUS

SHGD

SELDR

'1

ANDORi
I

'---'

SLONE I
I

" J

SELFR

LlF

I
i EDIT
L

oP~~j

FND~$j

CGO

tOUAT:

!~-TL
I , ,

i ASARS ! i AS FRS 'I
I i I
L._._~_._" ___ J L _____ ._._ .. .J.

__ i

I MEMAC

COVER

f~,DAR

RS L T -1
,J

Ef'JDLP

I RDIV

A.GO

CD IV

IAE[L

STOP

!COMMA

FU~K

FETCH

Table 24. Phase 4 Decision fable (Part 1 of 12)

Routine:------------Phdse 4--Level: 1------------
r-------T--------------------------T--------T--,
I! I "ouUnes I I
I Routinel Usage ! called I Calling Conditions I
~------~--------------------------+--------+---~
IPHAS4 IPhase 4 master controller I"NT 11'0 generate main program, subprogram, or I
I I I I entry prologue. I
I I I LABEL I To process Statement Label definition. I
I I I EQUAT I To generate for arithmetic statement. I
I I I GOTO 11'0 generate unconditional GO TO. I
I I IAGO 11'0 generate assigned GO TO. I
I I I CALL I To generate CALL. I
I I I RTRN I To generate epilogue. I
I I I bLl I To generate removed expressions. I
I I I BL2 I To generate recursives and make global I
I I I 1 assignments. I
i I IRL3 11'0 generate 00 loop top. i
I I I~NDLP 11'0 generate for end of DO loop. I
I I 10LIST 11'0 generate for I/O list. I
I I 1 NDLIST 1 To generate for end of I/O list. I
I I 1£-.:0 11'0 generate for I/O initialization. I
I I IINSOT ITo make code file entry. I
I I I CGO I To generate computed GO TO. I
I I I ASSGN I To generate ASSIGN. I

i IAIF ITo generate arithmetic IF. i
I I LIF I To generate logical IF. I
I I c~TOP I To generate STOP and PAUSE statements. I
I I TEVRDM I To issue diagnostic message. I l _______ ~ __________________________ ~ ________ ~ ___ J

Routine:------------Phase 4--Level: 2------------
r-------T--------------------------T--------T---,
lENT IGenerate main program, IINSOT ITO make code file entry. I
I I subprogram, or entry I LBL I To generate for branch to label. I
I I prologue. ILINK ITo generate load of V/R Adcon pair. I
I I I SELSR I To select single general register. I
I I I ASAR I To ass ign a general register. I
! I I FNDAR ITo search general register table. I
I I I TEVII+ I To f il e an INTEGER* 4 constant. I
I I I TEVFL4 I To file an address constant. I
r-------+--------------------------+--------+---i
ILABEL !Process statement Label IINSOT 1'1'0 make code file entry. I
I I definition. I FLUSH ITo reset and/or transfer register table I
I \ I I entry. I
r-------+--------------------------+--------+---~
\EQUAT IGenerate for arithmetic IAGEN ITo generate expression. I
I I statement. ISELSR ITo select single general register. I
I I I SELFR I To select single floating register. I
I I I~£MAC ITo get cover for storage reference. I
I I I EDIT ITo set comment item for code file. I
I I IASAR ITo assign a general register. I
I I I ASFR ITo assign a floating register. I
I I I ASARS ITo assign a general register synonym. I
I I I ASFRS ITo assign a floating register synonym. I
I I lOPND ITo process operand. I
I I IINSOT ! To make code file entry. I
I I IKEYl ITo determine status of single operand. I
I J J'IEVI2 ITo file an INTEGER*2 constant. I
I I I TEVII+ I To file an INTEGER*I+ constant. I
I I ITEVR4 ITo file a REAL*4 constant. I
I I ITEVR8 ITo file a REAL*8 constant. !
I I ITEVC8 ITo file a COMPLEX*8 constant. I
I I I TEVC16 I To file a COMPLEX*16 constant. I l _______ ~ __________________________ ~ ________ ~ ___ J

Section 6: Phase 4 11+1

Table 24. Phase 4 Decision Table (Part 2 of 12)

Routine:------------Phase 4---Level: 2-CCont'j)---
r-------r--------------------------T--------T---,
I I I Routines I I
I Routi ne I Usage I:::: aIled I Ca lling Conditions I
t-------~--------------------------+--------+---~
I GOTO I Generate unconditional IINSOT I To make code file entry. I
I I GO TO. ILf3L ITO generate for branch to label. !
~-------~--------------------------+--------+---~
IAGO IGenerate assigned GO TO. ISELSR ITO select single general register. I
i I "'~-- I COVER ITo load specified Adcon into any general 1
I I I I register. I
I I I INsar !To make code file entry. I
~-------~--------------------------+--------+---~
ICGO IGenerate computed GO TO. IINSOT ITo make code file entry. I
I I I FNDAR I To search general register table. I
I I ISELSR ITo select single general register. I
I I IMEMAC ITo get cover for storage reference. I
I I I AGEN I To generate expression. I
I I I S~.DDR I To get local branch cover. I
I I 1;:VFL4 I To file an address constant. I
I I ITEVFL5 ITo file a parameter list entry. I
I I ITEVCRL ITo create a label for the code file. I
I I ITEVFLL ITO make Symbol Table entry for created !
I I I I label. I
r-------f--------------------------+--------+---~
lASSIGN I Generate ASSIGN. IINSOT ITO make code file entry. I
I i IMEMAC ITO get cover of storage reference. I
I I ITEVFL4 ITO file an address constant. I
~-------+--------------------------+--------+---~
IAIF IGenerate arithmetic IF. IAGEN ITO generate expression. I
! I IFNDAR ITo search general register table. I
I I IFNDFR ITO search floating register table. I
I I I ME MAC ITo get cover for storage reference. I
I I ISELSR ITO select single general register. I
I I ISELFR ITo select single floating register. I
I I I ASFR ITO assign a floating register. I
I I I ASA.R I To assign a general register. I
! I IINSOT ITo make code file entry. I
I I IOPND I To process operand. I
I I ILBL ITO generate for branch to label. I
r-------f--------------------------+--------+---1
ILIF IGenerate for logical IF. IAGEN ITo generate expression. I
I I IOPND ITo process operand. I
I I IFNDAR ITo search general register table. I
I I IFNDFR ITo search floating register table. I
, I IME~AC ITO get cover for storage reference. I
I I IINSOT ITo make code file entry. I
I I IASAR ITO assign a general register. I
I I ILBL ITo generate for branch to label. I
~-------+--------------------------+--------+---~
I CALL ! Generate CALL. I AGEN I To generate expression. I
I I IINSOT ITO make code file entry. I
I I I SADDR I To get loca I branch cover. I
I I I LINK ITO generate load of V/R Adcon pair. I
I I ITEVFL4 ITo file an address constant. I
I I ITEVFL5 ITO file a parameter list entry. I
I I ITEVCRL ITO create a label for the code file. I
I I ITEVFLL ITo make Symbol Table entry for created I
I I I I label. I
~-------+--------------------------+--------+---~
IRTRN IGenerate epilogue. IINSOT ITO make code file entry. I
I I I FNDAR I To search general register table. I
I I IFNDFR ITO search floating register tabLe. I
I I ITEVFL4 ITO file an address constant. I l _______ L __________________________ ~ ________ ~ ___ J

142

Table 24. Phase 4 Decision Table (Part 3 of 12)

Routine:------------Phase 4---Level: 2-(Cont'd)---
r-------T-------------------·-------T--------T---,
I I I Rout.ines I I
IRoutinel Usage I:::alled I Calling Conditions I
~-------+--------------------------+--------+---~
I BLl ! Generate remoV"ed I AGEN I To generate expression. I
I I expressions. !iNSOT ITo make code file entry. I
I I IOPND 170 process operand. I
~-------+-------------------.-------+--------+-.--~
I BL2 I Generate recursi ves and I KEYl I To determine status of single operand. I
! I make global 10PND I To process operand. I
I I assignments. IFSLT ITo protect operand. I
I I ICOVER ITO load specified Adcon into any general I
I I I I register. I
I I IFNDAR ITo search general register table. I
I I I F'LUSH ITo reset and/or transfer register table I
I I I I en try. I
I I IAGEN ITO generate expression. I
I I I !,:EMAC I To get cover for storage reference. I
I I IINSOT ITo make code file entry. I
I I ISELSR ITo select single general register. I
I I IASAR ITo assign a general register. I
I I IFNDWS ITo get next available temporary storage. I
I i IPH4~S ITO make table overflow error exit. I
~-------+--------------------------+--------+---~
IB1.3 IGenerate 00 loop top. IAGEN ITo generate expression. I
I I IINSOT I To make code file entry. I
I I 10PND I To process operand. I
I I IFNDWS ITo get next available temporary storage. I
I! ICOVER ITo load specified Adcon into any general I
I I I I register. I
I I IPH4MES ITO make table overflow error exit. I
~-------t--------------------------+--------+---~
IENDLP IGenerate for end of DO ISELSR ITo select single general register. I
I I loop. I HEMAC I To get cover for storage reference. I
I I IINSOT ITo make code file entry. I
I I IFNDAR ITO search general register table. I
I I 10PND I To process operand. I
I I ICOVER ITo load specified Adcon into any general I
I ! I I register. I
I I IASAR ITo assign a general register. I
I I IKEYl ITo determine status of single operand. I
I I I EDIT ITo set comment item for code file. I
I I ILBL ITo generate for branch to label. I
I I IRLSWS ITo release temporary storage. I
I I IPH4MER ITO make machine/compiler error exit. I
~-------+--------------------------+--------+---~
I RD I Genera te for I/C I INSOT I To make code file entry. I
I I initialization. ISELSR ITo select single general register. I
I I ISELFR ITo select single floating register. I
I I ILINK ITo generate load of V/R Adcon pair. I
I I ITEVFL4 ITo file an address constant. I
I I ITEVFL5 ITo file a parameter list entry. I
I I ITEVVR ITO file a V/R address constant pair. I
~-------t--------------------------+--------+---~
10LIST IGenerate for I/O list. I LINK ITo generate load of V/R Adcon pair. I
I I I SELSR I To s ,::;lect single general register. I
I I lINSOT ITo make code file entry. I
I I I AGEN I To generat.e expression. I
I I Il'1EMAC ITo get cover for storage reference. I
I I 10PND I To process operand. I
I I ISELFR ITo select single floating register. I
I I I TEVFL4 I To file an address constant. I
I I ITEVFLS ITo file a parameter list entry. I
I I ITEVVR ITo file a V/R address constant pair. I l _______ i __________________________ i ________ i __________ . _________________________________ J

Section 6: Phase 4 143

Table 24. Phase 4 Decision Table (Part 4 of 12)

Routine:------------Phase 4---Level: 2-(Cont'd)---
r-------T--------------------------T--------T---1
I I liwutines! I
I Routinel Usage I Called I Calling Conditions I
t-------t--------------------------t--------t---1
INDLST I Generate for end of I/O I LINK ITo generate load of V/R Adcon pair. I
I I list. I I I
r-------+--------------------------+--------+---1
I STOP IGenerate for STOP and IINSOT ITo make code file entry. I
I ! PAUSE statements. ISELSR ITo select single general register. !
! I I SELFR I To select single floating register. I
I I I TEVFL4 I To file an address constant. I
I I ITEVFLS ITO file a parameter list entry. I
I I ITEVVR ITo file a V/R address constant pair. I l ______ -i __________________________ ~ ________ ~ ___ J

Routine:------------Phase 4---Level: 3------------
r-------r--------------------------T--------T---,
I LINK (Generate load of V/R ISELFR ITO select single floating register. I
I I Adcon pair. ISELSR ITo select single general register. I
I I IINSOT ITo make code file entry. I
I I ITEVFL4 ITo file an address constant. I
I I ITEVVR ITo file a V/R address constant pair. I
r-------f--------------------------t--------t---1
IAGEN IGenerate expression. ITRBLD ITo convert polish expression to tree form. I
I I IWGHT ITo determine order of computation. I
I I !CSX ITO count common expression uses. I
I I !IPLUS ITo generate integer addition. I
I I ILADDR ITo generate addition with LOAD ADDRESS. I
I I I RPLUS iTO generate real addition. I
I I ICPLUS ITo generate complex addition or I
I I I I subtraction. I
I I lIMPLY ITo generate integer multiplication. I
I I IRMUL ITo generate real multiplication. I
I I !CMUL ITo generate complex multiplication. I
I I IIDVDE ITo generate integer division. I
I I IRDIV ITo generate real division. I
I I ICDIV ITo generate complex division. I
I I IRLTNL ITo generate relational operations. I
I I IANDOR ITo generate logical AND or OR. I
I I I~~ ITO generate for MAX operator. I
I I ICO~~ ITo get function argument in storage with I
I I I I correct sign. I
I I I FUNC ITo generate function call. I
I I I DCOM ITo select open function module. I
r-------t--------------------------t--------+---1
I ASARS IAssign a general register INone I I
I I Synonym. I I I
r-------t--------------------------t--------t---1
IASFRS IAssign a floating registerlNone I I
I I synonym. I I I l _______ ~ __________________________ ~ ________ ~ ___ J

Routine:------------Phase 4---Level: 4------------
r-------y--------------------------T--------T---,
ITRBLD IConvert PoliSh expression INone I I
! I to tree form. I I I
r-------t--------------------------+--------+---~
I WGHT I Determine order of I None I I
I I computation. I I
~-------t--------------------------+--------+---~
!CSX ICount common expression INane I I
I I uses. I I I l _______ ~ __________________________ ~ ________ ~ ___ J

144

Table 24. Phase 4 Decision Table (Part S of 12)

Routine:------------Phdse 4---Level: 4-CCont'd)---
r------~--------------------------T--------T---,

I I I ',outines I I
I Routine! usaqe I Called I Calling Conditions I
r-------t--------------------------+--------+---~
I IPLUS I Generate integer adcit.ion. I KEY I To determine status of two operands. I
I I ISLONE ITo optiIT~ze storage-register I
I I I I operand-situation. I
I I I :;ELOP I To optimize storage-storage I
I I I I operand-situation. I

I ISLPOS ITo optimize storage-register I
I I I operand-situation. I
I I SELSR I To select sing Ie general register. I
I I iI.SAR I To assign a general register. 1
I I£oiEr-lAC ITO get cover for storage reference. I
I I EDIT I To set comment item for code file. I
I IOPND I To process operand. I
I I RSLT I To protect operand. I

! I I INSOT I To make code file entry. I
t-------t--------------------------t--------t---~
I LADDR I Genera te addition wi tn I KEYl I To determine status of single operand. I
I I LOAD ADDRESS. I RSLT I To protect operand. I
I I IOPND I To process operand. I
I I 11I·SAR I To assign a general register. I
I I IINSOT I To make code file entry. I
I I ISELSR ITo select single general register. I
I I IMEMAC ITo get cover for storage reference. I
I I I EDIT I To set comment item for code file. I
r-------+---------------------------+--------t---~
I RPLUS I Generate real addition. I KEY I To determine status of two operands. I
I I ISELOP ITo optimize storage-storage I
I I I I operand-situation. I
I I IOPND ITO process operand. I
I I IINSOT ITo make code file entry. I
I ! ISLPOS ITo optimize register-register I
I' I' operand-situation. I
I I ISELFR ITo select single floating register. I
I I IMEMAC ITo get cover for storage reference. I
I I ! RSLT I To protect operand. I
I I I ASFR I To assign a floating register. I
I I I EDIT ITO set comment item for code file. I
r-------+--------------------------t--------t---~
ICPLUS IGenerate complex IKEY ITO determine status of two operands. I
I I addition or subtraction. IASFR ITo assign a floating register. I
I I IOPND I To process operand. I
I I I I NSOT ITo make code file entry. I
I I ISELFR ITO select single floating register. I
I I I ME MAC ITo get cover for storage reference. I
I I I RSLT I To protect operand. I
I I ISELOP ITo optimize storage-storage I
I I I I operand-situation. I
I I IEDIT ITo set comment item for code file. I
" ISLPOS ITo optimize register-register I
I I I I operand-situation. I
I I ITEVR4 ITo file a REAL*4 constant. I
I I ITEVR8 ITO file a REAL*8 constant. I
I I 'TEVC8 ITo file a COMPLEX*8 constant. I
I I ITEVC16 ITO file a COMPLEX*16 constant. I l _______ ~ __________________________ ~ ________ i ___ J

Section 6: Phase 4 145

Table 24. Phase 4 decision Table (Part 6 of 12)

Routine:------------Phase 4---Level: 4-(Cont'd)---
r-------T--------------------------T--------T---1
I I I I<.outines I I
! Routinel Usage I Called I Calling Conditions I
t-------f--------------------------+--------+---i
lIMPLY I Generate integer I KEY ITo determine status of two operands. I
I I multiplication. I SLONE ITO optimize storage-register !
I I I I operand-situation. I
I I I SLPOS I To optimize register-register I
I! I I operand-situation. I
I I ISELOP ITO optimize storage-storage I
I I I I operand-situation. I
I I I SELSR t To select single general register. I
I I I EDIT I To set comment item f or code file. I
I 1 IINSOT I To make code file entry. I
I I IOPND ITo process operand. I
I I I RSLT I To protect operand. I
I I I~£MAC ITO get cover for storage reference. I
I I IASAR ITo assign a general register. I
I I I FLUSH ITO reset and/or transfer register table I
I I 1 I entry. I
I I ISELDR ITo select even/odd register pair. I
t-------f--------------------------+--------+---~
IRMUL IGenerate real IKEY ITo determine status of two operands. I
! I multiplication. 1 ME MAC ITo get cover for storage reference. I
I I IOPND I To process operand. I
! I I RSLT I To protect operand. I
I I (:eDIT ITo set comment item for code file. I
I I ISLPOS ITo optimize register-register I
I I I I operand-situation. I
I i ISELOP ITO optimize storage-storage I
I I I I operand-situation. I
I I ISLONE ITO optimize storage-register i
I I I I operand-situation. I
I I IINSOT ITO make code file entry. I
I I I SELFR I To select single floating register. I
I I I ASFR I To assign a floating register. !
t-------f--------------------------+--------+---~
ICMUL IGenerate complex IKEY iTO determine status of two operands. I
I I multiplication. ISELFR ITo select a floating register. I
I I IASFR ITO aSSign a floating register. I
! I I~~MAC ITO get cover for storage reference. I
I I I EDIT iTO set comment item for code file. I
! I I I NSOT ITO make code file entry. I
1 I IOPND I To process operand. I
I I I RSLT I To protect operand. I
I I ISELOP ITo optimize storage-storage I
I I I I operand-situation. I
I I ISLPOS ITo optimize register-register I
I I 1 I operand-situation. I
I I I SLONE ITo optimize storage-register I
I I I I operand-situation. I
t-------f--------------------------+--------+---~
IIDVDE IGenerate integer division. I KEY ITO determine status of two operands. I
I I ISELOP ITo optimize storage-storage I
I I I I operand-situation. I
I! l~lliMAC ITo get cover for storage reference. I
I I I EDIT ITo set comment item for code file. I
I I ISLONE ITO optimize storage-register I
I! I I operand-si tuation. I
I I ISELGD ITo determine whether to divide in place. I
I I ISELDR ITo select even/odd register pair. I
I I IINSOT ITo make code file entry. !
! I IOPND I To process operand. I
I! I RSLT ITo protect operand. I l ______ -4 __________________________ ~ ________ ~ ___ J

146

Table 24. Phase 4 Decision fable (Part 7 of III

Routine:------------Ph3se 4---Level: 4-(Cont'd)---
r-------T--------------------------T--------T---,
I I (... ontines I I
IRoutinel Usage I Called I Calling Conditions I
r-------f--------------------------+--------+---1
IIDVDE IGenerate integer divi~cion.IASllli ITo assign a general register. I
I (Cant' d) I FLUSH ! To reset. and/or transfer register table I
i I I I entry. I
I I ISELSR ITo select single general register. I
t-------t--------------------------+--------+---~
IRDIV IGenerate real division. IK~Y ITo determine status of two operands. I
I I I SELFR I To select sing Ie floating register. I
I I I ASFR I To assign a floating register. I
I I I HEMAC I To get cover f or storage reference. I
I I I EDIT ITo set comment item for code file. I
I I IOPND I To process operand. !
I I I RSLT I To protect operand. I
I I IINSOT ITo make code file entry. I
I I 15 ELOP ITo optimize storage-storage I
I I I I . Derand-situation. I
I I I SLONE I T~)ptimize storage-register I
I I I I operand-situation. I
r-------f--------------------------+--------+---~
ICDIV (Generate compleA IKEY ITo determine status of two operands. I
! ! division. IlYJEMAC ITo get cover for storage reference. I
I I I EDIT ITo set comment item for code file. I
I I IOPND I To process operand. !
I I I RSLT I To protect operand. I
I I I SELOP I To optimize storage-storage I
I I I I operand-situation. I
I I ISLONE ITO optimize storage-register I
I I I I operand-situation. I
I I I ASFR i To assign a floating register. I
I I I SELFR I To select single floating register. I
I I I INSOT ITO make code file entry. I
r-------f--------------------------+--------+---1
ICOMMA IGet function argument in IFETCH ITo fetch complement and/or store operand. I
I I memory with correct I!V£MAC ITo get cover for storage reference. I
I I sign. ! SELSR I To select single general register. I
I I I I NSOT ITO make code file entry. I
I I I ASAR I To assign a general register. I
I I ! OPND I To process operand. I
I I ISELFR ITo select single floating register. I
I I IFNDWS ITo get next available temporary storage. I
I I I ASFR ITo assign a floating register. I
I I l'I'EVI4 I To file an INTEGER*4 constant. I
I I I TEVR4 I To file a REAL*4 constant. I
I I l'I'EVR8 ITo file a REAL*8 constant. I
I I ITEVC8 ITo file a COMPLEX*a constant. I
!! ITEVC16 ITo file a COMPLEX*16 constant. I
t-------+--------------------------+--------+---~
I FUNC IGenerate function call. ISELSR ITo select single general register. I
I I ISELFR ITo select single floating register. I
I I I ASAR I To assign a general register. I
I I I I NSOT ITo make code file entry. I
I I I MEMAC I To get cover for storage reference. I
I I IOPND I To process operand. I
I I I EDIT I To set comment item for code file. I
I I I COVER ITo load specified Adcon into any general I
I I I I register. I
I I ICO~~ ITo get function argument in storage with I
I I I I correct sign. I
I I I RLSWS I To release temporary storage. I
I I \l\SFR I To assign a floating register. I
I I I TEVFL4 I To file an address constant. I
I I I TEVFL5 I To file a parameter list entry. I
I I ITEVVR 1'1'0 file a V/R address constant pair. I L ______ -L __________________________ ~ ________ ~ ___ J

Section 6: Phase 4 147

Table 24. Phase 4 Decision ~able (Part 8 of 12)

Routine:------------Phase 4---Level: 4-(Cont'd)---
r-------,--------------------------T--------,---,
I I (Routinesl I
I Routinel Usage I called I Calling Conditions !
~-------f--------------------------f--------f---~
IRLTNL IGenerate relational IKEY ITO determine status of two operands. I
I I operations. ISLONE ITo optimize storage-register I
I I I I operand-situation. I
I I ISLPOS ITO optimize register-register I
I I I I operand-situation. I
I I ISELOP ITO optimize storage-storage I
I I I I operand-situation. I
I I ISELSR ITo select single general register. I
I I IMEMAC ITo get cover for ~torage reference. I
I I IEDIT ITO set comment item for code file. I
I I IINSOT ITo make code file entry. I
I I IOPND I To process operand. I
I I I RSLT I To protect operand. I
I I I SADDR I To get local branch cover. I
I I ILBL ITo generate for branch to label. I
I i I ASAR ITo assign a general register. I
I I I ASFR ITo assign a floating register. I
I I ISELFR ITO select single floating register. I
r-------f--------------------------f--------+---~
IANDOR IGenerate logical AND or IKEY ITo determine status of two operands.
, lOR. ISELOP ITo optimize storage-storage
I I I I operand-situation.
I I ISLONE ITo optimize storage-register
I I I I operand-situation.
I I I SLPOS ITO optimize register-register
I I I I operand-situation.
i! ISELSR ITo select single general register.
i I IMEMAC ITo get cover for storage reference.
I I IINSOT ITo make code file entry.
I I I EDIT ITo set comment item for code file.
t I I ASAR I To assign a general register.
I I IOPND ITo process operand.
I! I RSLT I To protect operand. I
I I ILBL ITo generate for branch to label. I
r-------t--------------------------+--------+---1
IDCOM I Select open function IOPENl ITo generate selected open functions. I
I I module. IOPEN2 ITo generate selected open functions. I
I I IOPEN3 ITo generate selected open functions. I
I I IOPEN4 ITo generate selected open functions. I
I I I OPENS ITo generate selected open functions. I
I I IOPEN6 ITo generate selected open functions. I
t-------+--------------------------+--------+---1
IMAX iGenerate for MAX I KEY ITo determine status of two operands. I
I I operator. I SELOP I To optimize storage-storage I
! I I I operand-situation. I
I I ISLPOS ITo optimize register-register !
I I I I operand-situation. I
i I I SLONE ITO optimize storage-register I
I I I I operand-situation. I
I I IMEMAC ITo get cover for storage reference. I
I I IEDIT ITo set comment item for code file. I
I I IOPND I To process operand. I
I I I RSLT I To protect operand. I
I I IINSOT ITO make code file entry. I
I I ISELSR ITo select single general register. I
I I IASAR ITo assign a general register. I
I I IASFR ITo assign a floating register. I
I I ISELFR ITo select single floating register. I
I I ISADDR ITO get local branch cover. I L ______ -L __________________________ ~ ________ ~ ___ J

148

Table 24. Phase 4 Decision Table (Part 9 of 12)

Routin e: ------------Pha se 4-- --------------------------.------------- Level: 5------------
r-------T--------------------------T--------T---1
I I I rwutines I I
!Routine! Usage I C~lled I calling Conditions !
r-------+--------------------------+--------+---~
IOPENl IGenerate selected open IINSOT ITo make code file entry. !
I I functions. I ASAR ! To ~s~c;ign a general register. I
I I IKEY 1'1'0 determine status of two operands. I
I j IOPND I To process operand. I
I I I SELSR I To s elect single general register. I
I I ISELFR 1'1'0 select single floating register. I
I I IASFR ITo assign a floating register. I
I I IMEMAC ITo get cover for storage reference. I
I I I RSLT I To protect operand. I
! I I EDIT 1'1'0 set comment for code file. I
I I I SADDR I To get local branch cover. I
I I IPH4MER ITo make machine/compiler error exit. !
IOPEN2 I Generate selected open IOPND ITo process operand. I
I I functions. I FLUSH ITo reset and/or transfer register table I
I I I I entry. I
I I IKEY ITo determine status of two operands. I
I I IEDIT ITo set comment item for code file. I
I I ISELFR ITo select single floating register. I
I I ISELDR \'1'0 select even/odd register pair. I
I I I INSOT I To make code file entry. I
I I I ASFR 1'1'0 assign a floating register. I
I I ISELSR 1'1'0 select single general register. I
I I I ASAR I To assign a general register. I
I I IMEMAC 1'1'0 get cover for storage reference. I
I I I RSLT 1'1'0 protect operand. I
I I IPH4MER ITo make machine/compiler error exit. I
r-------+--------------------------+--------+---~
IOPEN3 IGenerate selected open IEDIT 1'1'0 set comment item for code file. I
I I functions. ISELSR 1'1'0 select single general register. I
I I I KEY1 I To determine status of single operand. I
I I I INSOT I To make code f il e entry. I
I I I ASAR I To assign a general register. I
1 I ISELDR ITo select even/odd register pair. 1
I I lSELFR ITo select single floating register. I
I I IMEMAC ITo get cover for storage reference. I
! I IASFR ITo assign a floating register. I
I I IOPND I To process operand. 1
I I I RSLT I To protect operand. I
I I \PH4MER 1'1'0 make machine compiler error exit. !
r-------f------------------·--------+--------+---~
IOPEN4 IGenerate selected open IINSOT 1'1'0 make code file entry. I
\ I functions. IASAR ITo assign a general register. I
I 1 lKEY1 1'1'0 determine status of single operand. I
I I IFNDFR ITo search floating register table. I
I I I SADDR I To get local branch cover. I
I I ISELFR ITo select single floating register. I
I I I ASFR I To assign a floating register. I
I I IMEMAC 1'1'0 get cover for storage reference. 1
! I 1 RSLT I To protect operand. 1
1 I IOPND I To process operand. I
I I (KEY ITo determine status of two operands. I
I I I EDIT 1'1'0 set comment item for code file. I
I I ISELSR 1'1'0 select single general register. I
I I IPH4MER 1'1'0 make machine/compiler error exit. I L ______ -L __________________________ ~ ________ ~ ___ J

Section 6: Phase ~ 149

Table 24. Phase 4 Decision Table (Part 10 of 12)

Routine:------------Phase 4---Level: 5-(Cont'd)---
r-------r--------------------------T--------T---,
I I I Routines I I
IRoutinel Usacfe I Called I Calling Conditions !
~-------t--------------------------+--------+---1
IOPENS IGenerate selected open I1\SFR ITo assign a floating register. I
I I functions. IKEY1 ITo determine status of single operand. I
I I IOPND ITo process operand. I
I I ISELFR ITo select single floating register. I
! I IEDIT ITo set comment item for code file. I
I I I COVER ITo load specified Adcon into any general !
I! I I register. i
I I ISELSR ITo select single general register. I
! I I~EMAC IGet cover for storage reference. I
I I ISELDR ITO select even/odd register pair. I
I I IINSOT I To make code file entry. I
I I I ASAR I To assign a general register. I
I I I RSLT I To protect operand. I
I I IPH4MER ITo make machine/compiler error exit. I
i I ITEVR4 ITo file a REAL*4 constant. I
I I ITEVR8 ITo file a REAL*8 constant. I
r-------+--------------------------+--------f---1
IOPEN6 IGenerate selected open IOPND ITO process operand. I
i I functions. I RSLT I To protect operand. I
I! IKEYl ITo determine status of single operand. I
I I IEDIT ITo set comment item for code file. I
I I I SELSR I To select single general regi. ster. I
I I I ASAR I To assign a general register. I
I I IINSOT ITo make code file entry. I
I I ISELFR I To select single floating register. !
I I IMEMAC ITO get cover for storage reference. I
I I ISELDR ITO select even/odd register pair. I
I I I ASFR ITO assign a floating register. I
I I IPH4MER iTo make machine/compiler error exit. I
~-------+--------------------------+--------f---1
iLBL IGenerate for branch to IFNDAR ITo search general register table. I
I I label. ISELSR ITo select single general register. I
I I IINSOT ITo make code file entry. I
I I I ASAR ITo assign a general register. I
~-------+--------------------------t--------f---~
I SELGD I Determine whether to I None I I
I I divide in place. I I I
t-------f--------------------------t--------+---1
ISLPOS IOptimize register-registerlSELGM ITo get multiplicand in proper register. I
I I operand-situation. I I I
r-------+--------------------------f--------+---1
I SLONE IOptimize storage-register ISELGM ITo get multiplicand in proper register. I
I I operand-situation. I I I
r-------f--------------------------f--------t---1
! SELOP IOpt.imize storage- I None I I
I I storage operand- I I I
I I situation. I I I
r-------+--------------------------t--------t---1
I FETCH IFetch/complement and/or ISELSR ITo select single general register. I
I I st:ore operand. I I !
I I I SELFR I To select single floating register. I
I I I ASAR I To assign a general register. I
I I IASFR ITo assign a floating register. I
I I I EDIT ITo set comment item for code file. I
I I I COVER ITo load specified Adcon into any general I
I I I I register. I
I I IINSOT ITo make code file entry. I
I I IMEMAC ITo get cover for storage reference. I l ______ --'- __________________________ .l. ________ .l. ___ J

150

Table 24. Phase 4 Decision Table (Part 11 of 12)

Routine:------------Ph~se 4---Level: 6------------
r-------r--------------------------T--------T---,
I! I Routines I I
! Routinel Usage I Called I calling Conditions I
r-------t--------------------------t--------+---1
ISELGM IGet multiplicand in iSELSR 1'1'0 select single general register. I
I I proper register. IINSOT ITo make code file entry. I
t-------+--------------------------+--------+--~
ISELDR I Select even/odd register ISELSR ITO select single general register. I
I I pair. I I I
~-------+--------------------------t--------+---1
I SELFR I Select single floating I Ft-i'DWS I To get next available temporary storage. I
I I register. ICOVER ITo load specified Adcon into any general I
I I I I register. I
I I IINSOT ITo make code file entry. I
I I ITEVFL4 ITo file an address constant. I
r-------t--------------------------+--------+---1
I ASFR I Assign a floating register. None I I
r-------+--------------------------t--------t---1
I EDIT ISet comment item for I None i I
I I Code file. I I I
r-------+--------------------------t--------t---1
IKEY I Determine status of two IFNDAR ITwo search general register table. I
I I opera nds. I FNDFR I To search floating register table. I
t-------+--------------------------+--------+---1
IKEYl IDetermine status of IFNDAR ITo search general register table. I
I I single operand. IFNDFR ITo search floating register table. I
r-------+--------------------------+--------+---1
(MEMAC IGet cover for memory ISELSR ITo select single general register. I
I I references. IINSOT I To make code file entry. I
I I I COVER ITo load specified Adcon into any general I
I I I I register. I
! ! IFNDAR ITO search general register table. I
I I I ASAR ITo assign a general register. I
r-------f--------------------------+--------f---1
IRSLT I Protect operand. (COVER ITo load specified Adcon into any general I
I I I I register. I
I I IOPND ITo process operand. I
((IFNDAR ITo search general register table. I
I I I ASAR I To assign a general register. I
I I IINSOT I To make code file entry. I
I I I FLUSH ITo reset and/or transfer register table I
I I I I entry. I
I I IFNDWS ITo get next available temporary storage. I
r-------+--------------------------f--------f---1
ISADDR IGet local branch cover. IINSOT ITo make code file entry. I
I I ISELSR ITo select single general register. I
I I IASAR ITo assign a general register. I L _______ ~ __________________________ ~ ________ ~ ___ J

Routine:------------Phase 4---Level: 7------------
r-------r---------------------------T--------T---,
IOPND (Process operand. IRLSWS ITo release temporary storage. I
~-------+--------------------------f--------f---~
I FNDFR I Search floating register I None I I
I I table. I I I
~-------t--------------------------+--------f---1
I COVER I Load specified Adcem into I SELSR 1'1'0 select single general register. I
I I any general register. IFNDAR ITo search general register table. I
I I IINSOT I To make code file entry. I
I I I ASAR ITo assign a general register. I l _______ ~ __________________________ ~ ________ ~ ___ J

Section 6: Phase 4 151

Table 24. Phase 4 Decision Table (Part 12 of 12)

Routine:------------Phase 4---Level: 8------------
r-------T--------------------------T--------T---,
I I I Routines I I
I Routinel Usage I Called I Calling Conditions I
t-------+--------------------------+--------+---1
I ASAR I Assign a general I t\one I I
I I register. I I I
t-------f--------------------------+--------+---1
I SELSR I Select single general I FLUSH ITo reset and/or transfer register table I
I I register. I I entry. I
I I I FNDWS I To get next avai lable temporary storage. I
I I IINSOT ITo make code file entry. I
I I I TEVFL4 I To file an address constant. I
r-------+--------------------------+--------+---1
I RLSWS I Release temporary I None I I
I I storage. I I I
t-------+--------------------------+--------+---1
IFNDAR ISearch general register INone I I
I I table. I I I L _______ ~ __________________________ i ________ i ___ J

Routine:------------Phase 4---Level: 9------------
r-------r--------------------------T--------T---1
IFNDWS IGet next available ITEVFL4 ITO file an address constant. I
I I temporary storage. I I I
r-------f--------------------------+--------+---1
I FLUSH IReset and/or transfer I None I I
I I register table entry. I I I
r-------+--------------------------+--------+---~
IINSOT IMake code file entry. INane I I l ______ -i __________________________ i ________ i ___ J

Routine:------------Phase 4------------------------------------Level: Executive Routines
r-------r--------------------------T--------T---,
I TEVFL4 I File an address constant. I I I
r-------+--------------------------t--------+---1
! TEVFL5 I Fi Ie a parameter list I I I
I I entry. I I I
~-------+--------------------------+--------+---1
I TEVVR I File a V/R address I I I
I I constant pair. I I I
t-------+--------------------------f--------+---1
ITEVI2 I File an INTEGER*2 I I I
I I constant. I I I
r-------+--------------------------+--------+---1
ITEVI4 IFile an INTEGER*4 I I I
I I constant. I I I
~-------+--------------------------+--------+---1
!TEVR4 IFile a REAL*4 constant. I I !
r-------f--------------------------+--------+---1
I TEVR8 I File a REAL*8 constant. I I I
r-------+--------------------------+--------+---1
I TEve8 I File a eOMPLEX*8 I I I
I I constant. I' I
r-------+--------------------------+--------+---1
I TEve16 I File a COMPLEX*16 I I I
I I constant. I I I
~-------+--------------------------+--------+---1
I TEVRDM I Issue a diagnostic I I I
I I message. I I I
r-------+--------------------------+--------+---1
I TEVFLL IMake symbol table entry I I I
i I for created label. I I I
t-------f--------------------------+--------+---1
I TEveRL I Crea te a label f or the I I I
I I code file. I I I l _______ ~ __________________________ ~ ________ i ___ J

152

CEKNX -- Phase 4 Master Control (PdAS4)

The main object of PHA.34 is to perform a
serial scan of pro']ram file entries and to
select the appropriate statement processor
for each PF entry. See Figu~e 30.

ENTRIES: PHAS4 is entered at its external
entry point, CEKN';Cl, from the pha~>e con­
troller via standard linkage. It ex~'ects
to receive the base of the compiler's
intercom as a parameter. There are three
additional entry points, PH4~~;, PH4MER,
and PH4XER, which are used only by Phase 4
subroutines upon a detected compiler error
or suspected machine error.

EXITS: PHAS4 has four exits to the phase
controller.

OPERArION: Upon entry from the phase con­
troller, PHAS4 copies the compiler's inter­
com into the phase's PSECT. Three nonvola­
tile registers are established as phase­
wide com~on registers and initialized to:

1. Symbol Table Base (N1)

2. Expression Tree Base (N2)

3. Name Table Base (N3)

The following areas are cleared:

1. Name Table

2. Temporary Storage Utilization Matrix

Program file entries are processed
sequentially. The ID of each PF entry is
used to select the statement processor.
After proceSSing the last PF entry, PHAS4
restores the compiler's intercom and
returns to the phase controller.

CEKOD -- Entry Point Processor CENT)

Subroutine ENT is used to generate the
preamble at an entry point. See Chart DU.

ENTRIES: The entry pOint is CEKOD1. ENT
expects a pointer to the PF item (describ­
ing the entry) in register P2.

EXITS: Normal exit only.

OPERATION: For all three types of entries
-- entry at the beginning of a main pro­
gram, main entry of a subprogram, and
alternate entry of a subprog.ram -- ENT
generates code necessary to save registers
and establish PSECT cover as follows:

STM
L
ST
ST
LR

14,12,12 <13}
14,72(0,13)
14,8(0,13)
13,4(0,14)
13,14

An aJdress constant which covers local
temporary storage is then filed in the sym-
001 table, and the instruction

L 12, n (0 , 13)

is generated (n is the storage class 4
aSSignment of the Adcon just filed).

In addition to this ·canned· code, which
is common to all entries, ENT generates
additional instructions depending upon the
type of the ent ry.

In a main program the ·canned" code is
appended by a call to the Task Initializa­
tion Subroutine CHCDB1.

Presence of a parameter list upon an
entry into a subprogram requires ENT to
generate the necessary code for object time
parameter processing. A program file (PF)
item describing a subprogram main entry
triggers sorting of the Adcon list in the
formal argument adcon table (referred to by
Phase 4 as FAAL and by Phase 3 as FAAT).
The sort arranges the entries in the FAAL
in the order of argument numbers (ANO).
(Note: ANO is a local abbreviation only,
used to define the uses of ANO in asso­
ciated flowcharts.) Several entries with
the same ANO are sorted according to the
values of the adcons (A), as given in their
corresponding symbol table entries.

Each parameter, as indicated by its
argument number (the argument number equals
STCL minus 128) in the PF item, is matched
against the ANOs in the FAAL, and ENT
generates code to combine adcon values with
the value of the matching parameter and to
store the completed parameter address into
the appropriate location (SLOe), as given
by the adcon symbol table entry.

A branch around the preamble is
qenerated by ENT for alternate entries not
preceded by STOP, RETURN, or branches (GO
TO, IF, etc.).

CEKNU -- Referenced Label PF Entry
Processor (LABEL)

LABEL is called by the PF scanner to
process a referenced label program file
entry. See Chart DV.

ENTRIES: Entry is to CEKNU1, with a point­
er to a referenced label PF entry in regis­
ter P2.

EXITS: Normal exit only. The output of
LABEL is an updated symbol table entry for
the label.

Section 6: Phase 4 153

Cj; D.t;.:,:"] { ~ .,
<~:rO" .. >~ Pc '~I

~./ ' _ ______ OJ

r--,',

cF

1

l~_[_

(~\)

'---

Figure 30. Phase 4 Master Control

154

OPERATION: LABEL stores the current con­
tents of the locat~on counter in the
storage location field of th~ label's sym­
bol ta!Jle entry. The ~;ymbol table entry's
storage class field is set to 1 (code
file). Next, the symbol table pointer to
the adcon entry is followed, and the
storage class field of trle name part of the
adcon is examined. If it is equal to 1,
exit is made; otherwise, the storage class
field is set to 1, and the current contents
of the location counter lS stored in the
value 1 field. All entries in the
floating-point MRM table are cleared. All
nonglobally assigned general .cegister
entries are cleared. control then returns
to the PF scanner.

CEKMJ -- Eguation PF Entry Processor
(EQUAT)

EQUAT is called by the PF scanner to
process an equation program file entry.
See Chart ow.

ENTRIES: Entry is to CEKMJ1, with a point­
er to an equation PF entry in register P2.

EXITS: Normal exit only.

OPERATION: EQUAT first processes the right
side~the equation by calling on AGEN and
the appropriate lower level subroutines.
Code is generated to produce the result,
and to load it in a general or floating
register. At this point all register table
entries for variables and/or subscripted
variables, except the right side entry for
the current equation, are cleared to pre­
vent potentially conflicting register usage
arising through the use of EQUIVALENCE
statements or other possible indirect vari­
able definitions. AGEN is then called
again to produce code, if necessary, for
the left side of the equation. Next, the
appropriate store instruction is generated
to store the right side into the resultant
address specified. OPND is called once for
each side, to check for any final usages of
common expressions. If the right side is a
final usage of a CSx or a noncommon expres­
sion, the register containing it is
assigned to the left side result. Ot.her­
wise, a synonym entry is made for the left
side appropriate to its type. Control is
then returned to the PF scanner.

CEKNK -- Arithmetic IF PF Entry Processor
CAlF)

AIF is called by the PF scanner to pro­
cess an arithmetic IF prograrf' file entry.
See Chart ox.

ENTRIES: Entry is to CEKNK1, , .. ith a pOint­
er to an arithmetic IF PF entry in register
P2.

EXITS: Normal exit only.

OPERATION: AIF first processes the arith­
metic expression by invoking AGEN which
senerates any code necessary to form the
expression in an appropriate general or
floating register. Next, the three trans­
fer points are checked for fall-through
condi tion (i. e., the label on the follmling
statement matching one or more of the
transfer points). No conditional branching
code is generated for a transfer point
where fall-through exists. Finally, the
required conditional branch instructions
are generated. Whenever possible, the con­
ditional branch instructions are ordered
such that transfer to points which are cur­
rently covered are executed first.

CEKNL Logical IF PF Entry Processor
(LIF)

LIF is called by the PF scanner to pro­
cess a logical IF program file entry. See
Chart OY.

ENTRIES: Entry is to CEKNL1, with a point­
er to a logical IF PF entry in register P2.

EXITS: Normal exit only.

OPERATION: LIF first determines the nature
of the logical operand by means of a call
on AGEN, witn the logical IF flag set. If
the logical operand is a noncornrnon or com­
mon subexpression just computed, AGEN
generates the appropriate code for loading
and testing the logical operand and for
branching around the logical IF object
statement, if necessary. If, nowever, the
logical operand is a variable, constant,
residue, or common expression computed pre­
viously, LIF generates the required code.

CEKNT --- GO ro PF Entry Processor (GOTO)

GOTO is called by the PF scanner to pro­
cess to GO TO program file entry.

ENTRIES: Entry is to CEKNT1, with a point­
er to a GO TO PF entry in register P2.

EXITS: Normal exit only.

OPERATION: Goro supplies the required
operation code and label symbol table
pointer for LBL, which then generates the
loading of any necessary adcons and the
branching code.

CEKNS -- Assign PF Entry Processor (ASSGN)

ASSGN is called by the PF scanner to
process an ASSIGN statement program file
entry. See Chart DZ.

Section 6: Phase 4 155

ENTRIES: Entry is to ,~EKNS1, with a point­
er to an ASSIGN PF entry in para'Ileter
register P2.

EXITS: Normal exit only.

OPERATION: ASSGN first creates an adcon to
cover the label being referenced. Next, a
load of the adcon is generated. Cover is
obtained for the assigned variable, and a
store instruction is generated to place the
adcon in the assigned variable's location.

CEKNQ Assigned GO TO PF Entry Processor
(AGO)

AGO is called by the PF scanner to pro­
cess an assigned GO TO program file entry.
See Chart EA.

ENTRIES: Entry is to CEKNQl, with a point­
er to an assigned GO TO PF entry in parame­
ter register P2.

EXITS: Normal exit only.

OPERATION: AGO selects a register for
loading of the assigned variable. Cover is
obtained for the assigned variable. Code
is generated to load the assigned variable
into the selected register and to branch
unconditionally on the address contained
therein. The register table entry for the
assigned variable is cleared, and control
is returned to the PF scanner.

CEKNR ___ c=-o=m:<:p,-,u::ct;:ce=d~G'-.:O,,--T=-O-=--=P-=F,--,En='=t:.::ry,-,--,P-=r-=o,-,c:::.;e:::;s=-s=o=r
(CGO)

CGO is called by the PF scanner to pro­
cess a computed GO TO program file entry.
See Chart EB.

ENTRIES: Entry is to CEKNRl, with a point­
er to a computed GO TO PF entry in parame­
ter register P2.

EXITS: Normal exit only.

OPERATION: CGO first generates an adcon to
cover the transfer list. The adcon's posi­
tion in the adcon page is saved for future
use in CGO. A label, which will be placed
as the first element in the transfer list,
is generated. The transfer produced is to
the next statement following the computed
GO TO. The label is accessed at object
time when the computed GO TO index is found
to be out of range. After the label has
been generated, an adcon is filed to cover
each element in the transfer list, includ­
ing the generated label element. Next,
code is generated to load the computed GO
TO index variable in a register, if neces­
sary, and test for the out-of-range condi­
tion. A register is then selected for the
transfer list pointer, and code is
generated to accomplish the appropriate

156

transfer. Prior to exit, the register
table entries made in CGO are cleared, and
the current contents of the location count­
er and a storage class of 1 (code) are set
in the generated label symbol table entry.

eEKOL -- CALL Statement Processor (CALL)

The objective of subroutine CALL is to
generate object code for a CALL statement.
See Chart EC.

ENTRIES: The entry point is CEKOL1. CALL
expects a pointer to the prO'?larn file entry
in parameter register P2.

EXITS: Normal exit only.

OPERATION: For a CALL statement with a pa­
rameter list, the object code is generated
in subroutine FUNC (via AGEN). Calls to
subroutines without parameters are pro­
cessed by subroutine CALL.

In any case, subroutine CALL generates
the code to process optional returns
(RETURN i), if applicable.

CEKOE -- RETURN Processor (RTRN)

The objective of subroutine RrRN is to
generate the code for a RETURN statement.
See Chart ED.

ENTRIES: The entry pOint is DEKOEI. RTRN
expects a pointer to the appropriate pro­
gram file entry in parameter register P2.

EXITS: Normal exit only.

OPERATION: Subroutine RTRN generates code
to reestablish the caller's PSECT cover,
reload general registers, set the low-order
bit in the caller'S forward link to 1, and
set general register 15 with a return code.
Either of two different instruction
sequences is constructed, depending upon
the return code being a constant (including
no return code) or a variable.

CEKNM Begin Loop 1 PF Entry Processor

BLI is called by the PF scanner to pro­
cess a begin loop 1 program file entry.
See Chart EE.

ENTRIES: Entry is to CEKNMl.,with a t)ointer
to a begin loop 1 PF entry in parameter
register P2.

EXITS: Normal exit only.

OPERATION: BLl scans the global reserva­
tion list, which is part of the BLl PF
entry, looking for CSX entries. For each
CSX entry found, the global assignment bit
in the CSX's corresponding name table entry

is set. If the loop is unsafe, the global
temporary flag is set. ihe list of removed
expressions is then procE'sseJ., by calling
AGEN to generate code for each removed
expression in the list. When all list
entries have been so processed, control is
returned to the PF scanner.

CEK N.7N'--_-...::;B;....e'-g-<=i"'n'-'Lo=-o...;co p_;'-' -"P...;;F_",En""lc_t-e· r'-y"--""P...;;r;....o'-c-'-'...;;e_s_s'-o~r
(BL2)

BL2 is called bY-the PF ~>canner to pro­
cess a begin loop 2 program file entry.
See Chart EF.

ENTRIES: Entry is to CEKNN1, with a point­
er to a begin loop 2 PF entry in parameter
register P2.

EXITS! Normal exit is at the termination
of begin loop 2 PF entry processing. Exit
is via PH4I"1ES in case of loop t.able
overflow.

OPERATION: The BL2 processor generates
code for computing all recursive subscript
expressions. Processing is divide,:! into
two main sections. The first involves the
generation of code to produce the initial
value and increment expressions for each
recursive expression. The second section
produces the test value code.

Initial value processing is performed to
ensure that code is generated to produce
the initial value and load it either into a
global register, if required, or into tem­
porary storage. Increment processing per­
forms the same functions for the increment,
and, in addition, makes the appropriate
entry in the loop table.

After the initial value and increment
are processed for each recursive expres­
sion, the materialization flag is tested.
If materialization is required, code is
generated to load the beginning value of
the induction variable in storage. The
induction variable, increment, and end
values are stored in the loop table. If
materialization is not required, code is
generated to produce the test value and
store it or globally assign it, as
required.

The final proceSSing in BL2 rescans the
global reservation list. All adcons and
CSX's listed are globally assigned and
loaded into registers, and all remaining
active expressions in the general and
floating registers are assigned temporary
storage. Control then returns to the PF
~3canner .

CEKNO Begin Loop :3 PF Entry Processor
(EL})

BL3 is called by the PF scanner to pro­
cess a begin loop 3 program file entry.
:3ee Chart EG.

~NTRIES: Entry is to CEKNOl, with a point­
er to a begin loop 3 PF entry in parameter
register P 2.

EXITS: Normal exit is at the termination
of begin loop 3 PF entry processing. Exit
is via PH4MES in case of loop table
overflow.

OPERATION: BL3 is responsible for process­
ing all induction-variable-dependent common
expressions which can be removed to just
inside the loop top. Initially the temp
bit matrix is searched locating the lowest
available temp byte. BL3 then enters the
loop top label's symbol table pointer in
the loop table, then updates relevant
fields within the symbol table entry for
the loop top label. Next, the chain of
induction-variable-dependent expressions is
processed. Code is generated to produce
each expression in the chain. After all
expressions in the chain have been pro­
cessed, control returns to the PF scanner.

CEKNP -- End Loop PF Entry Processor
(ENDLP)

ENDLP is called by the PF scanner to
process an end loop program file entry.
See Chart EH.

ENTRIES: Entry is to CEKNPl, with a point­
er to an end loop PF entry in parameter
register P2.

EXITS: Normal exit is at the termination
of end loop PF entry processing. Error
exit is via PH4MER in the event that a
globally assigned quantity is found not to
be in a register.

OPERATION: The end loop PF entry processor
commences by scanning the recursive entries
in the loop table. For each entry code is
generated to load the recursive expression
in a register, if necessary, and increment
it. After all recursive entries have been
processed, the materialization flag in the
loop table is tested. If materialization
is not required, code is generated to com­
pare the last recursive expression pro­
cessed against the test value and to trans­
fer control appropriately. If materializa­
tion is required, code is generated to load
the induction variable (if necessary>,
increment it, store the new value back in
the induction variable's storage cell, com­
pare the new value of the induction vari­
able against the test value, and transfer
control appropriately.

Section 6: Phase 4 157

Next, the global assignment list in the
loop table for this level is examined. For
each CSX entry the global assignment bit in
the CSX's name table entry is cleared. The
global assignment bit in the register table
entry for the CSX is cleared. For each
adcon entry, the global assignment bit in
the register table entry for the adcon is
cleared. Upon completion of this task, the
location of the highest assigned temp,
saved at exit from BL2, is restored; and,
control is returned to the PF scanner.

CEKOH -- I/O Statement PF Entry Processor
(RD)

The I/O statement PF entry processor is
called by the PF scanner whenever READ,
WRITE, PRINT, PUNCH, or file control PF
entries are encountered. See Chart EI.

ENTRIES: Entry is to CEKOH1, with a pointer
to the pf entry in parameter register P2.

EXITS: Normal exit only.

OPERATION: The I/O statement PF entry pro­
cessor is responsible for the generation of
a standard linkage to the I/O initializa­
tion routine. Prior to generation, a pa­
rameter list (see Figure 31) is constructed
to provide the information required by the
initialization routine at object time.
After the standard linkage code is gener­
ated, all floating register table entries
for registers 1, 14, and 15 are cleared.
Control then returns to the PF scanner.

CEKOI -- I/O List Element PF Entry
Processor (OLIST)

OLIST is called by the PF scanner to
process an I/O list program file entry.
See Chart EJ.

ENTRIES: Entry is to CEKOI1, with a point­
er to an I/O list element PF entry in pa­
rameter register P2.

EXITS: Normal exit only.

OPERATION: OLIST is responsible for the
generation of a standard linkage to the
list item processor. Prior to generation,
a parameter list is constructed to provide
the information required by the list item
processor at object time. In addition. if
required, code is generated to compute the
effective address of the list item at
object time. Upon completion of all
required generation, all floating register
table entries and general register table
entries for registers 1, 14, and 15 are
cleared. Control then returns to the PF
scanner.

158

r---l
I Word I
I r-------------------------------------l 1
11 IAddress of Data Set Reference Number I I
I lor 0 I 1
I t-------------------------------------~ 1
12 IAddress of First Control Byte* II
I ~-------------------------------------~ 1
13 IAddress of Second Control Byte* II
I r-------------------------------------1 !
14 I Address of FORMAT or NAMELIST I 1
I I statement I !
1 t-------------------------------------~ I
15 IAddress of Error Exit 1 I
I r-------------------------------------1 I
16 IAddress of End-of-File Exit I I I l _____________________________________ J I

I *See Figure 32 for format of control I
I bytes. 1
I I
I Parameter 1 is zero for PRINT and I
I PUNCH. 1
I I
I Parameters 3, 4, 5, and 6 are not I
I supplied for REWIND, BACKSPACE, and I
I END FILE. I
I !
I Any or all of parameters 4, 5, and 6 I
I may be missing for a given I/O !
I statement. I L-__ J

Figure 31. I/O Initialization Parameter
List

r---,
\First Control Byte 23 25 27 28 31 1
I ,----------------------T-T"-T-T-T-T-T-ri 1
II 0 IRIWIPIPIR!BIEIOII
II I I ! jUIWI I I II IL _______________________ ~_~_~_~_~_~_~_~_J I

ISecond Control Byte 23 25 27 29 31 I
I r-----------------------T-T-T-T-T-T-----l I
I I 0 IFILINIEIEI 0 I I
II I I I IRIFI II I l _______________________ ~_~_~_~_~_~ _____ J I

I R READ E END FILE I
jW WRITE F FORMAT I
IP PRINT L List I
IPU PUNCH N NAMELIST I
IRW REWIND ER Error Exit I
IB BACKSPACE EF End-of-File Exit I
IE END FILE I
IControl bytes are filed as 1*4 constants. I L-__ J

Figure 32. I/O Initialization Control
Bytes

c~EKOJ -- End List PF Entry Processor
(NDLST)

NDLST is called by the PF scanner to
process an end list program file entry.
NDLST also may be invoked at a second entry
point -- LINK -- to generate a standard
CALL linkage. See Chart EK.

ENTRIES: This routine has two entry
points: NDLIST (CEKOJ1) and LINK (CEKOJ2).
Entry to NDLST (CEK0Jl) is made Wl th a
pointer to an end list PF entry in parame­
ter register P2. NDLST calls LINK.

Alternate entry, LINK (CEKOJ2), is
entered ~ith a symbol table pointer to the
subprogram name in register 21.

EXITS: Normal exit only.

OPERATION: NDLST generates a standard
linkage to the I/O library List Termination
routine (CHCIU).

LINK resets the register tables for all
floating-point registers and general regis­
ters 1, 14, and 15 and then proceeds to
generate the code for a standard linkage.

CEKOK -- STOP and PAUSE Statement PF Entry
Processor (STOP)

STOP is called by the PF scanner to pro­
ceSs either a STOP or PAUSE program file
entry. See Chart EL.

ENTRIES: Entry is to CEKOK1 f with a point­
er to either a STOP or PAUSE PF entry in
parameter register P2.

EXITS: Normal exit only.

OPERATION: STOP is responsible for the
generation of a standard linkage to either
the STOP or PAUSE library subroutines. No
distinction is made between the two cases
within STOP, since the necessary distin­
guishing information is obtained from the
same relative PF entry location in either
case. Prior to code generation, STOP con­
structs a 1-entry parameter list with a
pointer to the STOP or PAOSE message. Upon
completion of code generation, all floating
register table entries and general register
table entries for registers 1, 14, and 15
are cleared. Control then returns to the
PF scanner.

CEKNW -- Arithmetic Expression Generator
(AGEN)

AGEN is used to construct expression
trees and to resolve the trees by selecting
the appropriate generators. See Chart EM.

ENTRIES: The entry paint is CEKNW1. The
input parameter, in register P2, is a
pointer to the major operator of the Polish
String in the program file.

EXITS: Normal exit only. The out parame­
ter, in register P2, is a pOinter to the
major operator of the expression tree.

OPERATION: AGEN is invoked to generate
drithmetic expressions. AGEN uses subrou­
tine TRBLD to build the expression tree
from program file entries. No more pro­
ceSSing is required for a trivial tree
N"here the major operator is either primi­
tive or an already computed common expres­
sion. If the tree is more complex, AGEN
invokes subroutine WGHT to assign relative
weights to the nodes of the tree. These
'A/eights determine the sequence in which the
tree is resolved by AGEN. Before resolving
the tree, AGEN uses subroutine CSX to count
the number of occurrences of common expres­
sions in the expression and to record these
counts in corresponding name table entries.

To resolve the tree, AGEN inspects the
operands at each node, starting with the
major operator. If one of the operands is
not resolved, the pointer to it is
installed as the current node pointer.
Then its operands are examined. If both
operands at a node are unresolved, the
operand with the larger weight is inspected
next. Generation occurs when a node is
reached where both operands are resolved
(primitive or already computed). AGEN
selects and invokes the appropriate genera­
tor subroutine, based upon the operator in
the tree entry. The generator used for
plus, multiply, and divide operators
depends on the type (integer, real, com­
plex) of operands. After generation, AGEN
marks the node and, in the case of a common
expression, the corresponding name table
entry ·computed."

If the result represents a globally
assigned common expression of integer type
and if it is left in a general register
other than 1, 14, or 15, AGEN sets the
global aSSignment flag of the corresponding
register entry in the register table.

If the backlink is present, it is
installed as the current node pointer and
the procedure is repeated by inspecting the
operands of the node.

AGEN exits after the major operator has
been processed and marked ·computed."

CEKML -- Expression Tree Builder (TRBLD)

TRBLD is entered by the arithmetic
expreSSion generator to convert an expres­
sion in the PF into tree-form representa­
tion in the expression tree. The occur­
rence of a common expression entry whose
last use indicator is set will cause set­
ting of the corresponding bit in the corre­
sponding name table entry_ (See Chart EN.)

In addition, when the operators +, * and
/ combine operands of certain mixed types,

Section 6: Phase 4 159

open conversion functions are introduced to
eliminate operand type-discrepancy.

For exampl e:

A DBLE

where A is REAL*4 and B is REAL*8.

ENTRIES: The entry point is CELMLl. TRBLD
expects a pointer to the major operator of
the expression in the PF in parameter
register P2.

EXITS: Normal exit only. Output consists
of the expression tree, the accompanying
name table entries, and a pOinter to the
major operator of the expression in parame­
ter register P2.

OPERATION: The PF is scanned from the
major operator until the left-most element
of the expression has been located. This
is accomplished by initializing a counter
to zero, and by adding 1 for each operator
encountered and subtracting 1 for each pri­
mitive encountered until the count becomes
negative. The primitive last encountered,
then, is the left-most element of the
expression.

Once the left-most element has been
found, the tree is built during a left-to­
right scan of the PF. The push-down table
STACK is used during this process. Whenev­
er a constant or variable is encountered,
the PF entry is converted to expression
tree form and placed in the next available
location in the tree. In addition, a
pointer to the tree entry position is made
at the top of the stack (see Figure 33).

o 16 31
r-------------------T-T-------------------,
I IPI I
I Unassigned I I Tree Pointer I
I IFI I l ___________________ ~_~ ___________________ J

PF -- Primi ti ve

Figure 33. stack Table Entry

160

When an operator or common expression
entry is encountered, an entry is made in
the next available tree location. At this
point, the top two entries in the STACK
point to the tree entries for the left and
right operands of the operator just
entered. (See Tables 25 and 26). The two
pointers are inserted into the LOP and ROP
fields of the operator entry. In addition,
a backlink to the operator is placed in the
BLINK field{s) of whichever of the operands
is non-primitive. Now the STACK is "popped
up" two levels, and the pointer to the cur­
rent tree entry is ·pushed down.ft

Table 25. Operand Conversion Function
Decision Table

Right Operand Types

\ROP I I II!'
:~i L*I I L'4 1'2 I 1*4 R*4 R*8 C'8 C*16

I--Lo,-p--'l\f.-
1i _-L : ----+--1+-' -+----I---i

• L'4 I I I
L*1 I 0 l' ~ 1 ; 1 I Ijl I I 1

f--i------- ------+----;- --;---

L*4 I ~~ I 0 ill I 1 [I ill "-rr- u_~,_,_ ,_, i ,_, ~ ni -
1*2 I 1 1 0 I - -1-1 - '-,-

I ! ; ,1*4 R*4 R*8fR*4 R*8

r--1--~- -----t--I- - -- 1----

I 1*2 I I 1'4 1*4 1*4 1*4

1*4 II 1 1 -I" a I --, -- I - --

1*4 I, ~f'4 I R*8 I R*4 R*B I I
1----+--+----4--~- I

R*4 I I 1 ~ Ii ~ 0 ~ 0 R~
R*4 . R*4 I R*8 R*8

! I t---+------i
1*2 ! 1*4 R*4 ,C*B I

I---
R
_'_B-+_l_--t! __ l, -1---'-; 1-;:; ;; , I c~ ,

C*8 1 1*2 I 1'4 1 _____

R*4 ! R*4

i
C8

0 -I 0 ----: C16i C'I6
i

C*8

R'8

I 1'2 I 1'4

1-1 -1 I R*8 1 R*8

R*4 C*8
o C* 16 o --C*16

The decision table contains 64 two-byte
entries.

o - No conversion necessary (98)
1 - Illegal combination of operands (99)
All Others - Function number of the corres-

ponding conversion function

Table 26. complex Divi~ion Left Operalld
Conversion Function Decision
Table

Ri ght Operand Types

.~ cOP J C*8 (*!6

I
1*2 1 *2 - -1*2
C*8 C*16

i
I !*4 1*4

1*4

I - -C*8 C*16

I

I

I
R*4 R *4

R*4 - -C*8 C*16

I C"8 R*8 i
q*8 I - -I C*16 C*16

This decision table contains 8 two-digit
function numbers.

The tree building is terndnated after
the major operator of the expression has
been processed.

CEKNE -- Weight Subroutine (WGHT)

WGHT is used by the arithmetic expres­
sion generator to assign to each nonprimi­
tive node of the expression tree a weight
(or priority) which will determine order of
generation. The weight is such that, in
deciding at a given node which branch to
generate first (if neither branch has been
generated), the branch which has tne larger
weight will be chosen. See Chart EO.

ENTRIES: The entry point is CEKNE1. WGHT
is invoked by AGEN and expects to receive,
in parameter register P2, the expression
tree pointer to tht major operator.

EXITS: Normal exit only.

OPERATION: The following considerations
enter into the assignment of weights:

1. In order to minimize the number of
active partial results, branches are
given weights according to their
complexity.

2. In order to minimize register storing
necessitated by function calls,
branches containing such calls are
given maximum weight.

3. In order to attempt to prevent the
storage of a numerator owing to the
complexity of the denominator, since
the numerator must always exist in a
register, the denominator, or right
operand, of a division operator is
given an arbitrary boost in priority.

When WGHT is entered, the tree pointer
is set at the major operator of the expres­
sion. First, the left operand is
inspected. If it is primitive, a computed
cornmon expression, or already weighted, the
right operand is inspected. If it, too, is
one of the above, the operator at the cur­
rent node is weighted, as described below.
If the left operand is none of the above,
the tree pointer is set at the left operand
entry, and the above process is repeated.
If the left operand is one of the above,
but the right operand is not, the tree
painter is set at the right operand, and
the above process is repeated.

When, finally, both operands are com­
puted, weighted, or primitive, a weight is
assigned to the current node of the tree as
follow:

1. If both operands are primitive or com­
puted common expressions, the weight
is set to zero.

2. If neither operand is a primitive or a
computed common expression, then eith­
er wMAX or 1 plus the maximum of the
operand weights is chosen, whichever
is less. (Note: In the des cription
of the Expression Tree (Appendix A)
the WMAX field is identified as
WEIGHT.)

3. If only one operand is neither a pri­
mitive nor a computed common expres­
sion, the weight of that operand is
chosen.

When this tentative weight has been
established, the type of operator at the
current node is determined. If it is a
function, the weight is set to WMAX. If
not, the backlink (BLINK) is followed, to
determine whether the current node is the
right operand of a division. If it is, the
weight is increased by 5 to a maximum of
WMAX. If not and if it is the right
operand of a colon, the weight is set to
zero.

When the weight computation is complete,
the current node is marked "weighted" and
the weight is stored in the tree field
reserved for this purpose. Then the back­
link is tested. If it is empty, the major
operator has been weighted, and the genera­
tion may proceed. If not, the backlink is
installed as the tree pointer, and the
entire process is repeated.

Section 6: Phase 4 161

CEKOB -- Corrunon Expression Usage Count
(CSX)

CSX is used by the arithmptic expression
generator (AGEN) to count the number of
times each corrunon expression occurs as an
operand in a given expression t.ree. In
addition subroutine CSX pushes down signs
in the expression tree to the lowest prac­
tical level. See Chart EP.

ENTRIES: The entry -pQint is CEKOB1. CSX
is invoked by AGEN and expects to receive,
in parameter register P2, the expression
tree pointer to the major o~'rator.

EXITS: Normal exit only.

OPERATION: CSX starts at the tree base and
examines the operands at each node. The
left operand is always inspected first. A
node is marked "examined," if both operands
are either primitive (variables, constants)
or "examined" nodes. In addition, if the
node represents a CSX t the usage count
field in the appropriate name table entry
is increased by 1. In all other condi­
tions, the link to the current operand is
installed as the node pointer, and the pro­
cess just described is repeated. If a node
represents a computed CSX, or residue, or
if the name table entry of an uncomputed
CSX shows a nonzero usage count, no further
inspection of the operands of such node is
performed, but the node is immediately
marked "examined" and the usage count is
updated. After a node has been examined
and so marked, the backlink, if present,
replaced the current node pointer. The
whole process is terminated when the major
operator of the tree has been examined.

CEKMC -- Real Plus Generator (RPLUS)

RPLUS is entered by the expression
generator to generate the addition or sub­
traction of two operands of type REAL*4 or
REAL+8. See Chart EQ.

ENTRIES: The entry point is CEKMC1. The
input, in parameter register P2, is a
pointer to the current node of the expres­
sion tree.

EXITS: Normal exit only.

OPERATION: The subroutine KEY is entered
to determine the location of both operands
(in storage or registers). If both
operands are in storage, SELOP is entered
to select the better operand to load.
SELFR is entered to select a floating-point
register. MEMAC is entered to assign B, x,
and D fields and to load cover and/or index
quantities as necessary. OPND is entered
to release temporary storage for the
operands when appropriate. An instruction
is generated to load the selected operand

162

into the s elected register. MEt-tr,_c lS

entered to obtain cover for the nonselect.ed
operand. If tne operands agree or disagree
in sign, an add or subtract instruction,
respectively, is generated. Finally a reg­
ister memory entry is made for the current
node of the expr~ssion tree.

If only one operand is in a register,
that operand is designated as the selected
operand. RSLT is entered to store that
operand if necessary, and processing con­
tinues as above from the point at which
MEMAC is entered for the nons elected
operand.

If both operands are in registers, SLPO;;
is entered to select an operand register
not requiring storage if altered. After
the selection has been made, OPND is
entered, and RSLT is entered to store the
selected register if required. An RR add
or subtract instruction is nOw generated,
and ASFR is entered to make a register
memory entry for the current node of the
expression tree.

CEKMB -- Real Multiply Generator (RMUL)

RMUL is entered by the expression
generator to generate the product of two
operands of type REAL*4 or REAL*8. See
Chart ER.

ENTRIES: The entry point is CEKMB1. The
input is a pointer to the current node of
the expression tree, passed in parameter
regsiter P2.

EXITS: Normal exit only.

OPERATION: The subroutine KEY is entered
to determine the location of both operands
(in storage or registers). If both
operands are in memory, SELFR is entered to
select a floating-point register. MEMAC is
entered to assign B, X, and D fields and to
load cover and/or index quantities as
necessary. OPND is entered to release tem­
porary storage when appropriate. An
instruction is generated to load the
selected operand into the selected regis­
t.er. MEl-lAC is entered again to obtain
cover for the nons elected operand. A mul­
tiply instruction is generated, and final­
ly, ASFR is entered to make a register
storage entry for the current node of the
tree.

If only one operand is in a register,
that operand is designated the selected
operand. RSLT is entered to ensure storage
of the operand if necessary, and processing
continues as above from the point at which
MEMAC is entered for the nons elected
operand.

If both operands are in rpgisters, SLPOS
is entered to select a register not requir­
ing storage if altered. OPND is entered to
release storage and register memory for the
nonselected operand, and RSLT is entered to
ensure preservation of tne selected
operand. An RR multiply instruction is
generated, and finally N"FR is entered to
make a register storage entry for the cur­
rent node of the tree.

CEKMA -- Real Divide Generator (RDIV)

RDIV is entered by the expression
generator to generate the quotient of two
operands of type REAL*4 or REAL*8. See
Chart ES.

ENTRIES: The entry point is CEKMAl. The
input is a pointer to the current node of
the expression tree, passed in parameter
register P2.

EXITS: Normal exit only.

OPERATION: The subroutine KEY is entered
to determine the location of both operands
(in storage or registers). If botn
operands are in storage, SELFR is entered
to select a floating-point register. MEMAC
is entered to assign B, x, and D fields,
and to load cover and/or index quantities
as necessary. OPND is entered to release
temporary storage when appropriate. An
instruction is generated to load the divi­
dend into the selected register. MEMAC is
entered again to obtain cover for the divi­
sor. A divide instruction is generated,
and finally ASFR is entered to make a reg­
ister storage entry for the current node of
the tree.

If the dividend is in a register and the
divisor is in storage, RSLT is entered to
ensure storage of the dividend if neces­
sary, and processing continues as above
from the point at which ~£MAC is entered to
obtain cover for the divisor.

If the divisor is in a register and the
dividend is in storage, SELSR is entered to
select a register other than tile one con­
taining the divisor. ME~~C is entered to
assign B, x, and D fields and to load cover
and/or index quantities as necessary. A
load is generated to place the dividend
into the selected register. OPND is
entered to release temporary storage and
register aSSigned to the divisor as appro­
priate. An RR divide instruction is
generated, and ASFR is entered to assign
the selected register to the current node
of the expression tree.

If both operands are in registers, the
register containing the dividend is desig­
nated as the selected register. OPND is
entered to release the temporary storage

and register assigned to the divisor when
appropriate. RSLT is entered to store the
dividend if necessary. Processing con­
tinues as above from the point at which the
RR divide instruction is generated.

CEKMF -- Integer Plus Generator (IPLUS)

IPLUS generates the sum of two integer
quantities of length two or four. See
Chart ET.

ENTRIES: The entry point is CEKMF1. The
expression tree address of the plus opera­
tor is expected in parameter register P2.

EXITS: Normal exit only.

OPERATION: The code generated depends upon
whether the operands are in registers or in
storage. Three cases are treated:

1. If neither operand is in a register, a
register is selected and SELOP is
entered. SELOP determines which
operand should be loaded (become the
augend or minuend); whether the load
should be performed with an L (load)
or LA or (load address) command;
whether an addition or a SUbtraction
is required; and what sign should be
associated with the result.

2. If only one operand is in a register,
SLONE is entered. SLONE determines
whether an addition or SUbtraction is
required; whether the operation may be
performed in the register containing
the operand; and what sign should be
associated with the result. If the
operation may not be performed in the
register containing the operand, SLONE
indicates whether that operand should
be moved to another register before
generation of an R-X addition or sub­
traction, or whether the operand in
memory should be loaded into a regis­
ter before generation of an R-R addi­
tion or subtraction. If loading of
the operand from storage is indicated,
SLONE specifies whether the load
should be performed with a load or a
load address instruction.

3. If both operands are in registers,
SLPOS is entered. SLPOS determines
whether an addition or subtraction
must be performed; in which, if eith­
er, of the operand registers the
operation is to be performed; and what
Sign should be associated with the
result. If the operations may be per­
formed in neither of the operand reg­
isters, SLPOS indicates which operand
should be ffioved, and whether the move
should be performed with a load regis­
ter or a LCR (load complement)
instruction.

Section 6: Phase 4 163

IPLUS simply performs the generation
indicated by the output from SELOP, SLONE,
or SLPOS and assigns the operation result
to the selected register.

CEKME -- Integer Multiply Generator (IMPLY)

IMPLY generates the product of two
integer quantities of length two or four.
See Chart EU.

ENTRIES: The entry point is CEKME1. The
expression tree address of the multiplica­
tion operator is expected in parameter reg­
ister P2.

EXITS: Normal exit only.

OPERATION: The code generated depends upon
whether the operands are in registers or in
storage. Three cases are treated:

1. If neither operand is in a register,
SELOP is entered. SLOP determines
which operand should be loaded; com­
plements a constant operand and files
the new value in the symbol table if
such a procedure will result in a pro­
duct with the desired sign; indicates
whether the operand may be loaded by
means of a load address instruction;
and, indicates whether an operand is a
constant power of 2 so that the other
operand may be loaded and shifted
appropriately.

2. If one operand is in a register, SLONE
is entered. SLONE complements the
storage operand and files the new
value in the symbol table if the
operand is a constant and if such a
procedure will result in a product
with the desired sign; specifies the
result sign; indicates whether the
storage operand is a constant power of
2 so that the register operand may
simply be shifted by an appropriate
amount; and, specifies whether the
operation may take place in the regis­
ter or register pair containing the
multiplicand or whether that operand
must be moved to another register or
register pair before the multiplica­
tion, and whether the move must be
done with a load register or a load
complement instruction.

3. If both operands are in registers,
SLPOS is entered. SLPOS selects the
operand to be used as the multiplicand
("to· register): specifies the result
sign; indicates that one operand is a
constant power of 2 so that the pro­
duct may be computed by shifting the
other operand: and indicates that the
multiplicand must be moved to another
register before the multiplication is
generated, specifyi"ng whether the move

164

should be done with a load register or
a load complement instruction.

IMPLY simply generates the multiplica­
tion as specified by SELOP, SLONE, or SLPOS
and assigns the result to the selected
register.

CEKMD -- Integer Divide Generator (IDVDE)

IDVDE is used to generate integer divi­
sions of 2- and 4-byte quantities. See
Chart EV.

ENTRIES: The entry point is CEKMD1. IDVDE
expects the expression tree address of the
division operator in parameter register P2.

EXITS: Normal exit only.

OPERATION: The instructions generated
depend upon whether neither, one, or both
operands are in registers:

1. If neither operand is in a register,
SELOP is entered. SELOP files the
complement of a constant operand in
the symbol table if this procedure
will produce the desired result sign;
returns the result sign: and, deter­
mines whether the dividend may be
loaded by means of a load address
instruction.

2. If one operand is in a register, SLONE
is entered. SLONE determines the
result sign: files the complement of
an operand in the symbol table if the
operand is a constant and if such a
procedure produces the desired result
sign: determines whether the operand
should be loaded with a load address
command; and, determines whether the
division may proceed in the register
pair containing the numerator or it
must be moved to another register
pair.

3. If both operands are in registers,
SELGD is entered to determine whether
the division may proceed in the regis­
ter pair containing the numerator or
the numerator must first be moved to
another register pair.

Depending upon the output of SELOP,
SLONE, or SELGD, instructions are generated
to perform the division, and the result is
assigned to the selected register.

CEKOV -- Add by Load Address (LADDR)

LADDR is entered by the AGEN to generate
the addition of two quantities (represent­
ing a recursive test expression) by means
of a load address instruction. See Chart
EW.

ENTRIES: The entry point is CEKOV1. LADDR
expects restricted linkage convention.
LADDR is parameter "register P2 to contain
the tree address of the major operator.

EXITS: ~ormal exit only.

OPERATION: LADDR is given the expression
tree address of an operator whose two
operands are to be added by means of a load
address instruction. The operands are
loaded into general registers (if not there
already) and made to have the correct signs
by means of LCR instructions when neces­
sary. The two register numbers are made
the X2 and B2 fields of a load address
instruction. A third regist:er is selected
to contain the sum. This register becomes
the Rl field of the LA instruction and may
be the same as either B2 or X2, or may
differ from both. If one of tne operands
is a positive constant less than 4096, the
constant value will be used as the D2
field, in which case X2 will be zero.
Otherwise, when both X2 and B2 differ from
zero, D2 will be zero. when all fields
have been set, the instruction LA Rl,D2(X2,
B2) is generated.

CEKMG -- complex Plus Generator (CPLUS)

CPLUS is entered by the expression
generator to generate the complex addition
of two operands. See Chart EX.

ENTRIES: The entry point is CEKMG1. CPLUS
expects, in parameter register P2, a point­
er to the tree node containing the plus
operator.

EXITS: Normal exit only.

OPERATION: CPLUS generates code to perform
the addition in a manner appropriate to the
types of the two operands. Possible
operand type combinations are given in
Table 27 (CMUL). If both operands, (a+bi)
and (c+di), are complex, the following cal­
culation is performed:

(a+bi) + (c+di) = (a+c) + (b+d)i

If one operand ~ is real, the addition is
performed as follows:

r + (a + b i) = [(r + a) + bi] •

The code generated depends upon the
operand types, signs, and locations
(storage or registers).

CEKOF -- Complex Multiply Generator (CMUL)

CMUL is called by the expression genera­
tor to generate a complex multiplication.
The combination of operand types processed
is given in Table 27. See Chart EY.

Table 27. Operand Types Processed by CMUL

L * 1

L*4 N N N N N

I
N N I N

1*2 1*2
I R*4 R*8

1*2

N
1*4 1*4
R'8 R*8

1 * 4

Y
R*4
R*8

R*4

R08 N N Y

C*8 (*4

R*4 Y

1"'4 R*4
Y

C8
R*8 R*8 CJ6

C'16

N - Not processed
Y - Process as given
Other - Indicated conversion function has

been supplied by the tree builder
(TRBLD)

ENTRIES: The entry point is CEKOF1. CMUL
expects, in parameter register P2, a point­
er to the tree node which contains the
operation to be processed.

EXITS: Normal exit only.

OPERATION: Given complex operands, (a+bi)
and (c+di), CMUL performs the computation:

(a+bi) * (c+di) = (ac-bd) and
(bc+ad)i.

Given real operand ~ and complex operand
(a+bi), CMUL performs the computation:

r * (a+bi) = (ra+rbi) •

Processing differs according to whether
neither, one, or both operands are in
floating-point registers, and according to
whether or not both operands are complex.

Section 6: Phase 4 165

If both operands are in storage and are
complex, all four floating-point registers
are used in the computati on of th"" product.
The product's real and iwaginary flart.s will
reside in, and be assigned to, registers 0
and 2, respectively.

If one operand is in a register pair,
all four registers will be used, and the
result will be dssi9ned to and left. in the
same register pair.

If each operand is in a register ~air,
all four registers will be used, and the
result, if possible will be left in, and
assigned to, the register pair which origi­
nally contained an operand already in
storage.

CEKOG -- Complex Divide Generator (CDIV)

CDIV is entered by the expression
generator to generate code to evaluate a
complex quotient. The combination of
operand types processed by CDIV is given in
Table 28. See Chart EZ.

Table 28. Operand Types Processed by CDIV

I'i~ : !

! i
!

R*8 I C*B ~~~::\l VI , l 4 1'2 1*4 R'4 C'16

i
1

: i

L:~ 1 N N i'l t'l N N N N
i

i I
,

i i

L~4 N N N N N N N N

I i :

i 1'2
i "2 ".; ~>l N

I
N N N R'8

i

i I
I

1;'"4 N r-.; N N N i ~.*~
i ... I

!
R'4 r, ~j N N

R*4
N N Y

R*3

: ._ --.. .. _--

i

R'B ~ f'~ N N N
C8 Y
C* 16

•

i : ,
i I R*

I" \''4 R'4 C*16 C'8
C*8 N ,,' ~

C*3 C'8 Cia

'C'16

C* 16 N N
! 1'2 1*4 R'4 R*8 C*3 y
I C* 16 C'16 C*16 C'16 C'16

i i 1 j

166

ENTRIES: The entry point is CEYOG1. CDIV
lc'xpects input_ in parameter register P2,
consisting of a pointer to the tree node
containing the divide operator.

EXITS: Normal exit only.

OPERATION: Given complex operan:is, (a+bi)
dnd (c+di), CDIV generates code to perform
the following computation:

a+bi
c+di

(ac+bd) + (be-ad) i
c 2 +d 2 c 2 +d 2

Given real divisor E and complex numera­
tor (a+oi), CDIV generates code to perform
the evaluation:

a+bi
r

a + b i
r r

Processing depends upon whether neither,
both, or one operand is in floating-point
registers. In all but the complex/real
case, all four floating registers are used.

CEKMH -- Relational Expression Generator
(RLTNL)

RLTNL generates code to evaluate the
logical result of the relational operators
.GT., .LT., and .EQ., or to generate the
conditional branch associated with a l09i­
cal IF statement. The types of the two
operands of any given relational expression
must be identical and may be Integer* 2,
Integer*4, Real*4 or Real*8. The type of
the result (when the result is a logical
value) is always Logical*4. See Chart FA.

ENTRIES: The entry paint is CEKMHl. RLTNL
expects the expression tree address of the
relational operator in parameter register
P2.

EXITS: Normal exit only.

OPERATION: Instructions are generated to
compare the left and right operands. As a
result of this comparsion a logical value
(true or false) is generated in all but one
situation: the expression is being used to
determine the branch condition of a logical
IF statement and the expression is not a
common expression. In this case a condi­
tional branch is generated to the label
specified in the logical IF PF entry.
Otherwise, the same branch type is
generated, but in this case a local branch
(e.g., BNE*+6) which completes the con­
struction of a logical value by generation
of the "false- condition. For example,
consider the generation which rrQght result
from the following cases:

(U
L=B.GT.C

LA 3,1
LE 0,8
CE O,C
BH *+6
SR 3,3
ST 3,L

'.:)
IF (Y. GT. U GO TO 20

LE D,Y
CE O,X
BH 20

In case 1 the compari~on results in set­
ting general register to true or false.
In case 2 the comparison results in condi­
tionally branching- -eo statement nur.lbt::r 20.

The code generated further depend3 upon
the types of the operands, the signs of the
operands, and whether or not the operands
are in registers. SELOP,SLONE, and SLPOS
are used to complement constant operands,
may be loaded with the load address
instruction; determine which, if either,
operand must be complemented with a load
complement instruction; and, if the operand
to be complemented is in a rt::gister, wheth­
er the operand may be complemented in that
register or must be moved to another regis­
ter (register 0 is always used for this
purpose) before the comparison may take
place. If the generation results in the
computation of a logical result, the result
is assigned to the selected register.

CEKMI -- Logical Expression Cenerator
(ANDOR)

ANDOR generates code to evaluate the
logical .&~D. and .OR. operators or to
generate the conditional branch associated
with a logical IF statement. The logical
operands must have the same type but may be
either of type Logical*1 or Logical*4. See
chart FB.

ENTRIES: The entry point is CEKMI1. ANDOR
expects the expression tree address of the
logical operator in parameter register P2.

EXITS: Normal exit only.

OPERATION: ANDOR generates the logical
.AND. or .OR. of two logical operands.
Logical*4, and Logical*1 operations are
somewhat different. If the operation type
is Logical*4, at least one operand is
forced to be in a general register by means
of a load instruction, and (if necessary)
the operand signs are made 1:0 match by com­
plementing one of the operands. If the
operation type is Logical*l, both operands
are forced to be in general registers with
the same Signs, the loads in this case
being performed with the combination sub­
tract register-insert character. The logi­
cal operation generated and t.he result sign
depend upon the expression tree operation
code and the operand signs (after any com­
plementation required to force operand sign

agreement) as s ummari zed in the follOwing
t.able:

Expression Tree Operand Operation Result
Operation Code Signs Generated Sign

AdD + AND +
AND OR

OR + OR +
OR AND

After the logical operation has been
generated, the result is assigned to the
selected register, and if either the back­
link to the next higher expression in the
expression tree is not zero <indicating
that the operation generated is part of a
larger expression) or the logical IF flag
is not raised (indicating that the expres­
sion is not ~art of a logical IF state­
ment) , generation is complete. otherwise,
a conditional branch to the label specified
in the IF statement is generated. The con­
dition code has been established by the AND
or OR operation generated, and the branch
instruction generated depends upon the sign
of the result and the sign of the expres­
sion tree operator, as follows:

Expression Result Branch
Tree Sign Sign Operation

+ + BZ
+ BNZ

+ BNZ
BZ

CEKMU -- Maximum Operator Generator (MAX)

MAX generates code to evaluate the maxi­
mum of two quantities. The types of the
two operands must agree, but may be
Integer*2, Integer*4, Real*4, or Real*8.
Note: Phase 1 has reduced maximum and
minimum operations to maximum according to
the transformation

MIN (A,B) = -MAX(-A,-B)
or

MIN (A,B,C) =-MAX(MAX(-A,-B),-C)

and has accounted for differences in the
types of operands and results by introduc­
tion of conversion functions such as

AMAXO(I,J}=FLOATCMAXCI,J})
or

~AXl (A,B)=INT{MAX(A,B»

See Cha rt FC.

ENTRIES: The entry point is CEKMU1. MAX
expects the expression tree address of the
MAX operator in parameter register P2.

EXITS: Normal exit only.

OPERATION: In general the generation of
the maximum operations consists of selec­
tion of a register to contain the result,

Section 6: Phase 4 167

generation of an instruction to obtain one
operand in the selected register, genera­
tion of a compare instruction to compare
the two operands, generat.ion of a condi­
tional local branch (e.g" BE *+8) I and
generation of a conditionally executed load
or load register instruction to obtain the
other operand in the same selected
register.

Generation varies in the obvious ways
according to operand type (integer or real)
and in addition depends upon the location
and signs of the operand3:

1. If neither operand is in a register,
SELOP is entered. SELOP determines
the result sign; which operand to load
first; whether the load may be accomp­
lished with the load address instruc­
tion; and, whether the operand to be
loaded must be complemented before the
comparison is generated.

2. If one operand is in a register, SLONE
is entered. SLONE determines the
result sign; whether the operation may
take place in the register containing
the operand; and, whether the operand
must be complemented. either in place
or while being moved to another
register.

3. If both operands are in registers,
SLPOS is entered. SLPOS determines
the result sign; which operand regis­
t.er is to contain the result or that
one of the operands must first be
moved to still another register; and,
whether the selected operand must be
complemented, either in place or while
being moved.

Generation of instructions required to
position the operands for comparison is
performed as indicated by SELOP, SLONE, or
SLPOS. The conditional branch instruction
generated depends upon the adjusted signs
of the operands. If the signs are correct,
BNL is generated; otherwise, BNH is.

CEKMR -- External Function Generator (FUNC)

FUNC is entered by the expression
generator and by the CALL statement proces­
sor to generate a function or subroutine
call. Calls upon subroutines with no argu­
ments are not processed by the expression
generator and are not treated by this rou­
tine. See Chart FD.

ENR

ENTRIES: The entry pOint is CEKMKl. FUNC
expects a pOinter to the tree node contain­
ing the ; operator to be passed in parame­
ter register P2.

168

EXITS: Normal exit only.

OPERATION: The tree ~-ltry to be processed
is a ; operator, whose right operand is the
function name and whose left operand is
either an expression entry (representing
the one argument) or a , operator if there
is more than one operand. Upon entry, all
arguments are in storage with t.he desirej
sign.

The current length of storage class 5 is
obtained from the Storage Class Table. The
length indicates the next available byte in
the parameter list area. A parameter list
covering adcon is formed and is entered in
the symbol table by TEVFL4. An instruction
is generated to load the adcon into general
register 1.

The leftmost (first) argument of the
function operator is located by following
left branches in the tree, until one such
branch is not an argument separator opera­
tor (comma). Then, starting with the left­
most operand, and following backlinks until
the function operator is encountered, each
argument is given the following processing,
according to its class code.

1. constant operand

The SLOC of the covering adcon and the
displacement given in the operand item
are summed, to form a new adcon cover­
ing the same storage class. The new
adcon is entered in the parameter list
via TEVFL5.

2. Variable operand

3.

If the variable is not a formal sub­
program argument, it is processed in
the same manner as a constant. Other­
wise, instructions are generated to
compute the effective address of argu­
ment and to store that address in the
next available cell in the parameter
list.

Operator item

a. Subscripted variable

If the operand sign flag is set,
the comma processor has previously
negated the variable and put it in
temporary storage, recording the
temporary assignment in the tree.
In this case the operand process­
ing is similar to that given a
constant. If the flag is not set,
instructions are generated to com­
pute the effective address of the
variable and to store that address
into the next available cell in
the parameter list.

h. Other expression

The temporary covering adcon value
is added to the displacement given
in the tree, and a new adcon is
formed and ad'led to tne parameter
list by TEVFL5.

4. Common expression i tern

Processing is simiL r to that gJ ven an
operator, except that the information
concerning temporary assignment is
obtained from the name table, rather
than from the tree.

5. Function item

a. Function name is a formal subpro­
gram argument.

code is gen~rated to fetch the pa­
rameter location from the adcon
page, where it was stored in a
subprogram entry preamble, and to
store it in the next available pa­
rameter list cell.

b. Function name is not a suoprogram
argument.

A V/R adcon pair is formed and
entered in the symbol table by
TEVVR. The storage assignment of
the V-type adcon is combined with
storage class 4, to form a new
adcon whiCh points to the V/R
pair. The ne.", adcon is entered in
the next available cell in the pa­
rameter list.

6. Residue

Processing is the same as that given a
common expression item.

After all the arguments have been pro­
cessed, the remainder of the linkage
is generated. This consists of the
following code:

• Function being called is not a form­
al argument of the calling routine.

L 14, D+4 (13)

ST 14 , 72 <13)

L 15,D(13)
BASR 14,15

Load R-adcon
Store in caller's
PSECT
Load V-adcon
Branch

where D is the displacement with
respect to the orgin of the caller's
ad con page necessary to cover the
first byte of the 8-byte adcon pair.

• Function being called is a formal
argument.

L 15,C(13) Load pointer to
adcon pair

L 14,4(15) Load R-adcon
ST 14,72(13) store in caller' s

PSECT
L 15,0(15) Load V-adcon
DASR 14,15 Branch

...here C is the displacement from the
adcon page origin of the cell into
which a pointer to the adcon pair is
placed in the subprogram preamble.

CEKNJ -- Comma Operator Processing
Subroutine (CO~~)

CO~. is called by the arithmetic ex­
pression generator to process the arguments
of a co~~a (argument separator) operator or
by the function operator processing subrou­
tine to process the argument of a 1-
argument function. Its purpose is to
ensure that the operands of the corrma
operator or the operand of the function
operator are in memory with the correct
sign. See Chart FE.

ENTRIES: COMMA has two entry points:
COMMA (CEKNJ1), entered by the Arithmetic
Expression Generator, and COMA2 (CEKNJ2),
entered by the Function Operator Processing
subroutine. COMMA and COMA2 expect in pa­
rameter register P2 the expression tree
address of the comma operator and the func­
tion operator, respectively.

EXITS: Normal exit only.

OPERATION: The left operand of a function
operator and the right operand of a comma
operator are always ~rocessed. The left
operand of a comma operator is processed
only if it is not itself a comma operator.
The operands processed are treated accord­
ing to their class:

1. A constant requires no processing if
its tree sign is plus. Otherwise, the
constant is complemented, the result­
ing constant is filed in the symbol
table, and the constant item in the
tree is changed to reflect the new
associated symbol table entry.

2. A variable requires no processing if
its tree sign flag is plus. Other­
wise, a temporary storage location is
assigned; and, FETCH is entered

a. to load, complement, and store the
variable in temporary if the vari­
able was not in a register;

b. to complement and store the vari­
able in temporary if it was in a
register with the wrong sign; or,

c. simply to store the variable in
temporary if it was in a register
with the desired sign.

Section 6: Phase 4 169

The identity of the terr~orary-covering
adcon and displacement. ore stored in
the associated fields in the variable
item.

3. A colon operator or colon common ex­
pression requires processing if it~
tree sign flag is not plus. It is
treated in the same fashion a; a vari­
able. However, the identity of the
temporary-covering adcon and di' place­
ment. are recorded in the name table if
the operand is a common expression.

4. Processing of a noncolon operat<'r
depends upon whether or not the
operand is in storage. If it is in
storage and the storage and tree signs
agree, no action is taken. If it is
in storage and the storage and. tree
signs differ, FETCH is entere<l to load
the operand from its temporary, to
complement it, and to store the com­
plemented value in the same temporary
location. If the operand is in a reg­
ister, a temporary is assigned, and
FETCH is entered to complement and
store the operand in the tertlporary if
the register and tree signs disagree,
or simply to store it in temporary if
they agree.

5. If a noncolon common expression is in
storage and its storage sign agrees
with the tree sign, no furt.her pro­
cessing is required. If it is in
storage and the signs disagree but the
Name Table entry indicates that a
secondary temporary has been assigned,
the tree entry's "use secondary tem­
porary" flag is set.

170

If the common expression is in
storage, its Name Table storage sign
disagrees with its tree sign, and a
secondary temporary has not been
assigned, then a new temporary is
assigned, its assignment is recorded
in the secondary temporary assignment
field of the name table entry, the
name table "secondary temporary
assigned" flag is set, and the tree
entry's "use secondary ten1porary" flag
is set. FETCH is entered to load,
complement, and store the operand if
it is not also in a register or to
complement and store if it is already
in a register with the wrong sign.

If the common expression is not in
storage, a temporary is assigned and
the assignment is recorded in the name
table. FETCH is entered to complement
and store the expression in temporary
if its register sign disagrees with
its tree sign or si~ply to store it if
the signs agree.

6. A function item requires no
processing.

CEKOM -- Open Function Control Routine
(DCOM)

Tnis program is called by the arithmetic
expression generator (AGEN) when a ;;
operator (open function connector) is
encountered. The purpose of ttlis routine
is to invoke the open function processing
module appropriate to the function number
which is given in the right-operand of the
;; operator. See Chart FF.

ENTRIES: DCOM has two entry points. Ttle
main entry (CEKO~d) is made with the major
operator address in parameter register P2.
The alternate entry in DCOM (CEKOM2) is
physically packaged with CEKOM; but is
actually one of the six open function
modules called by DC01vl, and its description
is to be found under "CEKOt-12 -- Open Func­
tion ProceSSing Routine (OPEN6)."

EXITS: rhis .routine produces no output.
If the function number given as input is
not among those expected, DCOM makes a
machine/compiler error exit via PH4MER.

OPERATION: rhe function number is obtained
from the r,ight-operand of the ;; operator
in the expression tree. The appropriate
open function module processing routine
entry address is obtained by a table look­
up operation, indexed by function number.
The routine is then invoked. When return
is made to DCOM, DCOM immediately returns
t.o AGEN.

CEKOT -- Open Function Processing Routine
(OPENl)

OPENl is invoked by DCOM to process any
of the open functions, DSIGN, HDIM, IDIM,
DIM, SIGN, or DDIM. See Chart FG.

ENTRIES: Entry is to CEKOT1, with the
major operator tree address in parameter
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPENl
makes a machine/compiler error return via
PH4MER.

OPERATION: rhis routine Derforms the code
generation to effect the following
functions:

SIGN(A,B)=(sign of B) *IAI
D HH A, l3) = Ma x (A - B , 0)

CEKOU -- Open function Proce:;sinq' 2out:ine
(OPEN2) ----

OPEN2 is invoked by DeOM i~O process any
of the following open fUnctions:

CMPLX MOD
DCMPLX HMOD

See Chart FH.

ENTRIES: Entry it to CEhOU1, ;<lith the
major operator tree address Ln paL'ameter
register P2 and the open fun:::tion number in
parameter register P3.

EXITS: If the fUnction numb?r given as
input is not among those exp2cted, OPE~2
makes a machine/compiler err-'r exit via
PH4MER.

OPERATION: This routine perEorms the code
generation to effect the following
functions:

CMPLX CA, B) is the complex quant.i ty
whose rea I and imaginary parts are A and B,
respectively.

MOD (I,J) = I - I * J
j

where [] denotes the integral part.

CEKOX -- Open F'unct ion Processing ;:outine
(OPEN3) -----

OPEN3 is invoked by DCOt<l to procesf; any
of the follo~ing open fUnctions:

lABS. DABS, ABS
and the following type-convErsion
functions:

Operand TYEe Result TY.l2§
1*2 R*4
1* 2 R*8
I*2 C*8
1*2 C*16
1*4 C*16
R*4 R*8
R*4 C*8
R*8 C*8
R*4 C*16
C*8 C*16

See Chart PI.

ENTRIES: Entry is to CEKOX1, with the
majerroperator tree address in paramet.er
register P2 and the open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPEN3
makes a machine/compiler error exit via
PH4MER.

OPERA'rrON: This rout.ine performs the code
generation required to effect the above
functiuns.

CEKOY. -- 0Een Funct:ion Processing Routine
(OPEN£!) -----.

OPBN4 is invoked by DCOM to process any
of the following open fUnctions:

AMOD HSIGN ISIGN
DCONJ AINT CONJ
DlVlOD

See Chart FJ.

~NTRIES: Entry is to CEKOY1, with the
rna jor operator t.ree address in parameter
register 1'2 and t~he open function number in
parameter register P3.

EXITS: If the function number given as
input is not among those expected, OPEN4
makes a machine/compiler error exit via
PH4ME:R.

OPERAT ION: OPEN4 perf orms the code genera­
tion to effect the following fUnctions:

MOD (A,B) = A - [~l *8
.BJ

AIN'f (A) =0 int:eger part of A
CO,-lJ (A+Bi) == (A-ED
SIGN (A,B) = sign of B *IAI

CEKOZ --.Qpen Function _ Processinq Routine
(OPENS) -------

OPENS is invoked by DCOM to process any
of the following functions: Integer and
real square, cube, fifth, and seventh
powers; and, real reciprocal. See Chart
FK.

ENTRIES: Entry is to CEKOZ1, with the tree
address of the major operator in parameter
register P2 and the open functions number
in parameter register 1'3.

EXITS: If the open function number given
as input is not among those expected, OPENS
makes a machine/compiler error exit via
PH4MF,R.

OPERATION: OPENS performs the code genera­
tion to effect the above functions.

CEKOM2 -- Open Function Processing Routine
(OPEN 6) *

OPEN6 is invoked by DCOM 1-.0 process any
of the following open conversion functions:

Operand Type
R*4
R*4
R*8

Result Type
1*2
1*4
R*4

Section 6: Phase 4 171

R*8 1*4
C*8 R*q
L*l L*4
L*4 1,*1
I*2 I*4
1*4 1*2
R*8 1*2
C*g 1*2
C*8 1*4
C*16 1*2
C*16 1*1~

C*16 R*4
C*16 R*G
C*16 e*g

See Chart FL.

ENTRIES: Entry is to CEKOM2, with the
major operator tree address in parameter
register P2 and t.he open function number in
parameter register P3.

EXITS: If the fUnction number given as
input is not among those expected, OPEN6
makes a machine/compiler error exit via
PH4MER.

OPERATION: OPEN6 performs tne code genera­
tion necessary to effect the above conver­
sion fUnctions.

CEKMV -- Memory Access Routine (MEMAC)

MEMAC is entered to obtain cover for a
generated storage reference to an arbitrary
expression tree operand and to provide X2,
B2, and 02 instruction fields for the
reference. See Chart FM.

ENTRIES: The entry point is CEKMVI. MEMAC
expects the expression tree address of the
operand to be covered to be in parameter
register P2. If parameter register- 1'1 is
nonzero, it is assumed to contain the nurn­
ber of a general register that must remain
undisturbed by MEMAC. If no such protec­
tion is desired, the contents of register
PI must be O.

EXITS: Normal exit only. Parameter regis­
ters PI, P2, and P3 contain X2, B2, and D2,
respectively.

OPERATION: ME MAC treats two distinct
cases: the operand requiring cover either
is or is not a subscript connector. If the
operand is not a subscript connector, X2 is
set to 0, and D2 is obtained directly from
the displacement field of tree entry or the
name table entry appropriate to the class
of the operand. Likewise, the symbol table
pointer to the covering adcon is obtained;
and, if that adcon is in a general regis­
ter, B2 is set equal to the register nurn-

*CEKOM2 is physically an alternate in mode
CEKOM.

172

ber. However, if the adcon is not in a
register, a register is selected, an
instruction is generated to load the adcon
into the selected register, and B2 is set
equal to the number of the selected
register.

If the operand is a subscript connector,
02 is set directly to the value given in
the displacement field of the left operand
of the subscript connector, and one of two
cases exists: the right operand of the
subscript connector either is or is not a ?
operator. If it is not, X2 is set to 0,
the right operand of the subscript connec­
tor is obtained in a general register (by
loading it if necessary), and B2 is set
equal to the corresponding register number.

If the right operand of the subscript
connector is a? operator, each of the two
operands of the? operator is treated
(first right and then left) as if it were
the single non-? operator operand of the
subscript connector. The right operand
determines B2, and the left operand (taking
care that loading of the left operand does
not disturb register B2) determines X2.

CEKOP -- Load Covering Adcon Routine
(COVER)

COVER is called to obtain adcon cover
for generation of storage reference that
does not require an index field.

ENTRIES: Entry is to CEKOPl, with the sym­
bol table pointer to the desired adcon in
parameter register P2. Parameter register
number PI must have either the number of a
general register whose contents must be
left undisturbed by the potential adcon
load or zero.

EXITS: Normal exit only. The number of
the register which contains the adcon is
returned in parameter register P2.

OPERATION: COVER is given the symbol table
pointer to an adcon. It determines whether
the adcon is in a general register. If so,
the register number is returned. If not, a
register is selected, the adcon is loded
into that register, and the selected regis­
ter number is returned.

CEKMZ -- Local Branch Generator (SADOR)

SADDR is called by the relational ex­
pression generator and by other routines
requiring generation of a forward branch
relative to the current value of the loca­
tion counter. See Chart FN.

ENTRIES: Entry is to CEKMZi, , . .;i til the
desired displacement in pararr,eter register
P3. Up to two registers may be specified
as unavailable for use as branch cover.
These are input in parameter registers Pi
or Pi and P2.

EXITS: Normal exit only. SADDR returns
the effective displacement ar:d a register
number in parameter register::' Pi and P2
respectively.

OPERATION: SADDR expects as input a param­
eter whos e value is between C, and 4095,
inclusive. The value represE:nt.s the
desired destination in bytes, relative to
the location counter. It is assumed that
if SADDR must generate a load to cover the
destination address, the parameter value
will apply to the location counter setting
in effect after that load ha. been
generated.

The sum (S) of the curreni; location
counter value and the paramei:er value is
computed. The register table is searched
to find a register containinq an adcon or a
code cover quantity whose value (V) is such
that:

v ~ S < V+4096.

If such a register is found, the register
number and displacement are :ceturned to the
caller. The displacement, i:1 this case, is
equal to S- V. If no such re,} ister exists,
SELSR is called to select a register (R)
into which cover may be loaded. INSOT is
called to generate the instruction BASR
R,O. ASAR is entered to make a register
table entry for the code cover quantity now
in R. R, together with the same displace­
ment given as input, is output to the call­
er, and exi t is made.

CEKNV -- Labeled Branch Generator (LBL)

LBL is called to output code to branch
to a statement label and provide any neces­
sary cover prior to branching. See Chart
FO.

ENTRIES: Entry is made to CEK~l, with one
of the types of branch operation codes in
parameter register P1 and a symbol table
label entry pointer in parameter register
P2.

EXITS: Normal exit only. 'I'he output of
LBL is via IN SOT , a generatE'd branch
instruction in the code filE,.

OPERATION: LBL is provided with two input
parameters: the type of brclnch required to
be generated, and a pointer to the symbol

table entry for the label to which the
branch is to be made. LBL then searches
the registers t.O determine if an appropri­
ate adcon is present to cover the branch
about to be generated. If not, a register
is selected and assigned, and a load of the
adcon generated. Next, a special ID item
is created for Phase 5, to flag this as a
branch reference whose address is to be
filled in. Finally, the incomplete branch
instruction is generated.

CEKOS -- Operand Fetch Complement/store
Routine (FETCH)

FETCH is called by the comma operator
processor to ensure that each argument of a
function or subroutine is in storage with
the desired sign. See Chart FP.

ENTRIEE3: The entry point is CEKOSi.
parameters are as follows:

Parameter
RegISter

P1 Request Key
2 0 := Fetch

Contents

21. := Complement
22 := Store

Input

P2 Temp-covering adcon pointer if
store requested

P3 Displclcement relative to ternp­
cover if store requested.

P4 Register number if operand is
in a register

P5 operand tree address

EXITS: Normal exit only.

OPERATION: FETCH generates instructions as
indicated by input options to load an
operand into a general or floating regis­
ter, to complement it in that register, and
to store it in a specified temporary cell.
The usage of floating versus general regis­
ters and related instructions is dictated
by the operand type given in the expression
tree.

CEKND -- Select Operand Routine <SELOP)

SELOP is a general purpose operand opti­
mizing routine which is used by all the
routines RPLUS, CPLUS, IPLUS, RMUL, CMUL,
IMPLY, RDIV, CDIV, IDVDE, RLTNL, ANDOR, and
MAX when both operands are in storage. See
Chart FQ.

ENTRIES: The entry point is CEKND1. Reg­
isters P1 and P2 contain the output parame­
ters from subroutine KEY {i.e., the signs
of both operands}, and parameter register
P3 contains the expression tree address of
the operator whose operands are being
considered.

Section 6: Phase 4 173

r--------------T----------------------T----------------T--------------·------------------,
I Register I Operation I Value I Significance I
t--------------+----------------------t--------·--------t--------------------------------~
I P5 I maximum, ! 0 I Do not complement aft er I
I I relational, I I loading operand. !
I I or logical I i I
I I I I I
I P5 I maximum, I 1 I Complement after loading I
I I relational, I I operand. I
I I or log ical I I I
I I I I i
I P5 I multiplication I 0 I Standard multiplication. I
I I muUiplication I 1 I Multiply with shift. I
I I multiplication I -4095 I Multiplication by 1. I
I I I I I
I P6 f maximum, I irrelevant I I
I I relational, I I I
I I or logical I I I
I I I I I
I P6 I multiplicat_ion I I Amount of shift if shift is I
I I I I indicated. I l ______________ .J. ______________________ .l. ________________ l. ________________________________ J

EXITS: Normal exit only. Parameter regis­
ters PI and P2 contain the result sign (0
for plus and 1 for minus) and the expres­
sion tree address of the operand to be
loaded, respectively. If bit_ 0 of parame­
ter registe.r: P3 is 0, the operand is not to
be loaded with a load address instruction;
otherwise, bits 20 through 31 contain the
immediate value to be loaded by means of a
load address instruction. If the operation
is plus, the value in parameter register P4
(0 or 1> indicates that an addition or a
subtraction, respectively, is to be per­
formed; otherwise, the register contains
the expression tree address of the second
operand. Parameter registers P5 and P6
have meaning only for the maximum, rela­
tional, logical, and multiplication opera­
tors as summarized in the above table:

QPERATION: The output parameters from
SELOP specify a procedure for generating
code in an opt.irnal fashion for the given
operation and combination of operand signs.
In particular, SELOP attempts, in one of
two ways, to allow for generation of a
result whose sign matches that of the ex­
pression tree node being processed. The
first way takes similar forms for the plus
and logical operators dnd simply involves a
choice of which operand is to be loaded.
For trees

1. /\ 2.

-A -A

the right and left operands, respectively.
would be chosen to be loaded. Similarly,
for trees

174

. AND. .AND .

3. /\ 4. /\\ / \\
/ \

-c D -c D

the left and right operands, respectively,
would be chosen. The code generated for
the cases might be

1- LE O,B 2. LE o ,A
SE O,A SE 0, B

3. L 5,C 4. L 5, D
BcrR 5,0 BCTR 5,0
LCR 5,5 LCR 5,5
N 5, D 0 5 , C

For the multiply and divide operators,
the operand loaded is irrelevant in deter­
mining the result sign. For these opera­
tors, if a direct product would not produce
the desired sign, the operands are
examined. If one is a constant, the con­
stant is complemented and filed in the sym­
bol table, and the tree entry for the con­
stant item is modified to reflect the
change.

For any of the arithmetic operators if
the operand selected for loading is a posi­
tive integer constant less then 4096 (in­
deed, if there is no other basis for choos­
ing which operand to load, such a constant
operand is chosen), a parameter is returned
in the form of a flag to indicate that the
selected operand may be loaded with a load
address instruction.

In only one situation is the production
of the desired result sign ignored. If the

operation is an int.eger multi,:llication, and
one of the operands is an int'~ger power of
two, the other operand is selected for
loading and multiplication by shift.ing (or
by loading only, if t.he opera:1d is 1) is
indicated, regardless of the result. sign.

CEKNF -- Select Position for <2£eration
(SLPOS)

SLPOS is a general purpose operand opti­
mizing routine used by all the routines
RPLUS, CPLUS. IPLUS, RMUL. CMUL, IMPLY,
RLTNL, ANDOR, and trlAX when both operands
are in registers. See Chart FR.

ENTRIES: The entry point is CEKNF1. Pa­
rameter registers Pi and P2 contain the
output from the KEY subroutine (numbers of
registers containing the two operands and
the corresponding register Signs), and pa­
rameter register P3 contains the expreSSion
tree address of the operator whose operands
are being considered.

EXITS: Normal exit ionly. rarameter reg­
ister Pi contains the selectEd operand reg­
ister in the follOwing form:

0~Pl~15 Pi = selected register; use
as is.

-15g1~-1 I Pil selectec, register;
move operand before using.

i6~Pi~31 Pl-16 = selectE,d register;
complement register before
using.

4095 Floating-point register 0 is
selected; complement before
using.

-3i~Pi~-16 I Pl1-16 = selected register:
move and compl,~ment before
using.

Parameter register P2 contains the result
sign: 0 for plUS, 1 for minus. Parameter
register P3, applicable only for plus
operator, contains 0 to indicate addition
or 1 to indicate subtraction. For a multi­
plication operator, the content of P3 has
the following meaning:

o
1

-4095

perform standard :nultiplica·tion.
multiply by shifting.
mUltiply by 1
(no multiplication).

Parameter register P4 is of 3ignificance
only if P3 contains a 1, in which case the
contents of register P4 indicate the number
of places of shift to be generated.

OPERAT~ON: The two registers containing
the operands are given weights according to
their contents as determined from the ID
field (MRM2) of the initial entries of tne
corresponding MRM or MRMFR table entries.
Following is a tabulation of the weights
assigned:

Weiqh~
9
8
6
5
1+
3
2
I

Contents
Operator
Common Expression (last use)
Variable
Constant Less than 4096
Constant (Greater than 4095)
Address Constant
Stored Common Expression
Unstored Common Expression

If the operand signs are identical, or
if the two weights are not identical and
either operand is an unstored common ex­
pression which is not now being used for
the last time, no refinement of the prelim­
inary weights is made. Otherwise, an
increase of 2 is made to the weight of the
operand whose register sign matches the
tree sign of the operator being generated.
This tends t.o increase the probability that
the result sign will be the desired sign.

For all floating-point and logical
0I~ratorst the weights are compared, the
operand with the highest weight is chosen
as the "to" operand, and the corresponding
determination of result sign is made.
Additionally, if the floating-point opera­
tion is plus, the agreement or disagreement
of the operand signs determines the opera­
tion, add or subtract, respectively_

The integer opeI'ators require further
tests. If the register occupied by either
of the operands is globally assigned, the
corresponding weight is complemented. Then
if the maximum weight is negative, SLPOS
specifies that one of the operands must be
moved to another rE'gister which will become
the .. t.o" register. If moving one of the
operands with a load complement instruction
will produce the desired sign, SLPOS speci­
fies that this be aone.

CEKOW -- Select One Operand in a Register
(SLONE)

SLONE is a general purpose operand opti­
mizing routine used by RMUL, CMUL, IMPLY,
RDIV, CDIV, IDVDE, RLTNL, ANDOR, and MAX
when only one operand is in a register.
See Chart FS.

ENTRIES: The entry point is CEKOWI. Pa­
rameter registers PI and P2 contain the
output from the KEY subroutine (the regis­
ter number and register sign of the operand
that is in a register and the storage sign
of the other operand) and parameter regis-

Section 6: Phase 4 175

ter P4 contains the expression tree address
of the operator being processed.

EXITS: Normal exit only. Parameter regis­
ter PI contains the result sign; P2 con­
tains the expression tree address of the
operand in storage; and, P3 contains 0 if
the storage operand need not be loaded, 1
if it must be loaded from storage or
X'80000nnn', indicating that it should be
loaded with a load address instruction
whose D2 field has the value nnn. The con­
tents of parameter registers P4. PS, and P6
vary with the operator being processed:

r--------T-------------T------------------1
I Register I Operation I Value i
~--------+-------------+-----------------_1
I P4 I Maximum, I Expression Tree I
i I logical, I address of reg- !
I lor relational I ister operand I
I I I I
I P4 I Plus I 0 Add I
I I I I Subtract I
I I I I
I P4 I Multiply I 0 t'lUltiply I
I I I 1 Shift I
I I 1-1 Multiply I
I I I by 1 !
I I I I
I PS I Maximum, 1-1 ["love with I
I 1 logical I Load Comple-I
I lor relational I ment I
I I I I
I I I FFFFOOOO -- Move I
I I I with Load I
I I 1 Register I
I I I I
I P5 IAdd, I 0 Do not move I
I I multiply. I operand I

lor divide I 1 Move with I
I I Load I
I I Register I
I 1-1 Move with I
I I Load Comple-I
I I ment I
I I I

P6 I Maximum, I Desired result I
I logical, I sign i
lor relationall !
I I I

P6 I Plus I 0 -- Add or sub- I
I I tract in I
I I register I
I I 1 -- Load storage I
I I operand into I
I I a second I
I I register andl
I I add or sub- I
I I tract there I
I I I

P6 I Multiply I Length of shift I
I I if P4 = 1; other-I
I I wise, irrelevant I
I I if P4 = 1; other-!

I I I wise, irrelevant I l ________ ~ _____________ ~ __________________ J

176

OPERATION: For a multiplication operation
SLONE determines whether the operation may
be performed by a shift instruction. For
all operations SLONE determines whether the
operation may be performed in the register
(or register pair) containing one operand
or if the operand must be moved to another
register (or register pair). SLONE also
determines the result sign and attempts to
arrive at the desired sign either by filing
the complement of a constant storage
operand in the symbol table or by determin­
ing, when the register operand must be
moved to another register, whether it
should be moved with a load complement
instruction.

If the storage operand must be loaded
into a register, SLONE determines whether
the load may be performed with a load
address instruction.

CEKNB -- Determine Availability of Register
for Multiplication <SELGM}

SELGM is entered by SLONE to determine
if an integer multiplication may be per­
formed in a register pair which contains a
given register, and by SLPOS to determine
whether a multiplication may be performed
in either of two register pairs. See Chart
FT.

ENTRIES: The entry point is CEKNB1. Eith­
er parameter registers PI and P2 contain
the two given registers, or PI contains the
only given register and P2 contains -1.

EXITS: Normal exit only. For each of the
inputs in parameter registers P1 and P2,
t:he output contained in the same register
is either the input value if the corre­
sponding register member may be used as the
R1 field of an integer multiply instruc­
tion, or is negative if the corresponding
register number may not be so used.

OPERATION: If either register contains a
quantity of type Integer*2, the register is
disqualified only if it is globally
assigned. If two registers are specified,
neither is globally assigned, and they are
an even/odd pair (e.g., 2/3 but not 7/8),
neither is disqualified.

If the register number is even, it is
disqualified. If the register number is
odd. and the even numbered member of the
corresponding even/odd register pair neith­
er is globally assigned nor contains an
unstored common expression, the odd num­
bered register is qualified. In the
remaining case if the register number is
odd and the even numbered member of the
corresponding even/odd register pair is not
globally aSSigned, but is an unstored com­
mon expression, the qualification of the
odd numbered register is postponed.

After the registers presented as input
to SELGM have been processed as above, each
register will have been qualified or dis­
qualified or will have had its qualifica­
tion postponed.

If no postponement of the qualification
of a register has occurred, exit is made
from SELGM. If qualification of onl}' one
of the two registers has been postponed and
the other register has been qualified, the
former register is disqualifiEd and exit. is
made.

In the remaining case, qualification of
both registers has been postponed, or there
has been one postponement and one disquali­
fication. If there is at lea~,t one remain­
ing general register which is not globally
assigned and does not contain an unstored
common expression, both input registers are
disqualified, and exit is made from SELGM.
Otherwise, SELSR is entered to select one
of the regi sters which has not; been dis­
qualified (thereby storing its contents);
if the other register has had its qualifi­
cation postponed, it is now d:Lsqualified,
and exit is made from SELGM.

If only one register is to be considered
by SELGM, its treatment may be found from
the above discussion by assumLng that it is
one of two registers to be cO:'lsidered, the
other of which has already been
disqualified.

CERNA -- General Reqister Availability for
Inteqer Divide <SELGD)

SELGD is called by IDVDE when the
numerator of a quotient is in a general
register to determine whether the division
may take place in the register pair con­
taining the numerator. See Chart FU.

ENTRIES: The entry is CEKNA1. Parameter
register Pl contains the register number of
the numerator. P2 contains the register
number of the denominator if the denomina­
tor, too, is in a register; ctherwise, it
contains -1.

EXITS: Normal exit only. Parameter regiS­
ter Pl contains:

1. The register number of 1:he numerator
if division may take place in that.
register, or

2. The complement of that number if divi­
sion may not proceed there, or

3. Four times that number :cf the divisor
may proceed and numerator and
denominator are in the ~3ame register.

OPERAI'ION: If the numerator and denomina­
tor are in the same register, exit is made
from SELGD. If they are not in the same
register pair, the numerator is in an even
register that is not globally assigned, and
the next higher numbered register is not
globally assigned and does not contain an
unstored common expression, then SELGD
indicates that division may proceed in the
register pair containing the numerator.
Otherwise, SELGD indicates that the numera­
tor must be moved to another register pair
before the division may take place. See
Chart NF.

CEKOC -- Operand Status Routine (KEY)

KEY is called by the real and complex +,
*, and I generators to determine the loca­
tion (storage or register) of both operands
of the current operation. See Chart FV.

ENTRIES: The entry point is CEKOC1. Pa­
rameter register P2 contains a pointer to
the operator tree node whose operand loca­
tions are to be determined.

EXITS: Normal exit only. KEY returns in
parameter registers the indicated switching
code, the register number of each operand
in a register, and the associated register
sign indicator. The left operand register
number is right-justified in the left half
of parameter register Pl. The right
operand number is right-justified in the
left half of parameter register P2. The
register signs of the left and right
operands are right-justified in the right
halves of registers Pl and P2,
respectively.

OPERATION: KEY first processes the left
operand. If it is a variable or constant,
FNDAR or FNDFR is called to determine
whether the operand is in a register. If
the operand is a partial result, the deter­
mination is made by examining its tree
entry. If the operand is a common expres­
sion or residUe, the determination is made
by examining the name table. With this
information, KEY constructs a 2-bit switch­
ing code with the first bit indicating the
absence or presence of the left operand in
a register and the second indicating simi­
lar information for the right operand. For
each operand in a register, KEY determines
the register and sign from the correspond­
ing MRM table.

CEKOR -- Single Operand Locating Routine
(KEY1) ----

KEYl is entered to establish whether an
operand is in a register or in storage, and
to determine the operand's register/storage
sign. See Chart FW.

Section 6: Phase 4 177

r----------------r--------T--------------------------T------------------T---------------,
I Quant.it.y I PI I P2 I P3 I P4 I
r----------------+--------+-·---·----------------------+------------------+---------------~
I Operator I 1. I Expression Tree I N/A I N/A I
I i I Pointer I I !
I I I I I I
I Common I 2 I Name Table Pointer I N/A ! N/A I
I Expression I I I I I
I I I I I I
I Adcon I 3 I Symbol Table Pointer I N/A I N/A I
i ! I I ! I
! Variable I 5 I Symbol Table Pointer I Associated I Type code I
I I I to covering Adcon I Displacement I I
I Ii! ! I
I Constant I 6 I Symbol Table Pointer I N/A I N/A I
! I I I I I
i Residue I 8 I Namei.'able Pointer I N/A I N/A I L ________________ ~ ________ ~ __________________________ L __________________ ~ _______________ J

ENTRIES: Entry is to CEKOR1, with the
operand t.ree address in parameter register
P2.

EXITS: Upon exit pa.rameter registeJ:: P2
contains the operand's register number if
any; parameter register P3 contains the
register/memory sign; and parameter regis­
ter Pl contains a 1 if the operand is in a
register, a zero otherwise.

OPERATION: KEYl locates the operand by
mean~the FNDAR of FNDFR routines if the
operand is a constant, variable, or adcon.
If t:he operand is an operator. the informa­
tion is obtained from the expression tree.
If the operand is a common expression or
residue, the information is obtained from
the name table. If an operand is found to
be in a register, the register number and
register sign are returned, whether or not
the operand may also be in st.orage. If an
operand is not found to be in a register,
it is assumed to be in storage: and, the
storage sign is returned. A variable, con­
stant, or adcon in storage is assumed to
have storage sign plus.

CEKMR -- Search General Registers (FNDAR)

FNDAR is used either to determine wheth­
er a given quantity is in one of the gener­
al registers or to determine whether there
is at least one empty general register.
See Chart FX.

ENTRIES: The entry point is CEKMRl. If an
empty register is to be found, parameter
register Pi must contain 0; otherwise,
input is required in the parameter register
as above:

EXITS: Normal exit only. If parameter
regist.er Pi is positive, its content is the
register number containing the desired
quanti ty OJ::· the number of an en,pty regis­
ter. If P1 contains the value -40, the
desired quantity is not in a register or

178

there is no empty register. Otherwise, if
the content of PI is negative. the absolute
value of the content is the register con­
taining the desired quantity, and the ex­
pression sign of the quantity is negative.

.cEK.MS -- Search Floating Registers (FNDFR)

FNDFR is used either to determine wheth­
er a given quantity is in one of t.he float-­
ing registers or to determine whether there
is at least one empty floating register.
See Chart FY.

ENTRIES: The entry point is CEKMS1. If an
empty register is to be found, parameter
register PI must contain 0; otherwise,
input is required in the parameter regiS­
ters as shown in the diagram.

EXITS: Only normal exit is made. If the
content of PI is not negative and less than
8, it represents the register number con­
taining the desired quantity or the number
of an empty register. If P1 contains the
value -40, the desired quantity is not in a
register or there is no empty register.
Otherwise, if P1 contains a negative num­
ber, the absolute value of that number is
the number of the register containing the
desired quantity, and the expression sign
is negative. In the System/360 computers 0
has no distinct complement; therefore, if
the register containing the negative ex­
pression sign is register O. paramLker reg­
ister PI will contain plus 8.

CEKMW -- Operand Processing Routine <OPND)

OPND is called by the various arithmetic
generators, or by the subroutine RSLT, at
the statement processing level. It is
called immediately after each reference to
an expression tree entry, as the operand of
a larger expression or as an operand from
the st.atement level. Its purpose is to
clear register storage and to release tem-

porary storage assigned to a partial result
or to a common expression which will not
again be referenced. If the given operand
is a subscript connector (:), processing is
somewhat different. A reference to the
subscripted variable is treated as a
reference to the subscript. expression which
is said to be the operand. Further I for
this purpose there are actually two kinds
of subscript expressions -- depending upon
whether the major operator of the subscript
is a split (?) operator. The split opera­
tor represents an addition (rerformeu by
use of hardware base-index addition) of two
operands. In this case, OPN[must treat
both operands of the·? operator individu­
ally, rather than the operanc of the
operator by itself. See Chart FZ.

ENTRIES: The entry points are CEK!>1Wl,
CEKMW2, and CEKMW3. The input is a pointer
to the first byte of the operand represen­
tation in the expression tre ... , in pa rameter
register P2.

EXITS: Normal exit only.

OPERATION: Processing variec; with the
class of operand presented variable or
constant, operator, common expression, and
residue.

variable and constants require no pro­
cessing, and exit is made imaediately.

Operators (partials) which dre not sub­
script connectors are proces:; ed as follows.
If the tree "in storage" bit is set, the
subroutine RLSWS is entered to reassign the
associated temporary storage. If the "in
register" bit is set, the sp2cified regis­
ter table entry is cleared. After this has
been accomplished, exit is m~de.

If the operator is a subscript connec­
tor, its right operand is examined. If the
right operand of the: is not a ?, and if
it is an operator, it is processed as
above, and exit is made; if it is a common
expression, it is treated as described in
the following paragraph; then exit is made.
If the right operand of the: is a ?, each
of its operands is processed as described
immediately above before exit is made.

If the given operand is a common expres­
sion or residue, the "last use" bit of the
corresponding name table entry is tested.
If it is not set, no further action is
taken, since the last use of this expres­
sion does not occur in the f,resent state­
ment. If, however, the bit is set, the
count field of the name table entry is
reduced by 1. If it has not reached zero,
no further action is taken. Otherwise,
register storage and temporclry storage are
released by use of the name table "in
storage" and "in register" ldts, in the

~3ame manner as they were used in the opera­
tor processing. When this is complete, the
name table entry is cleared, and exit is
made.

CEKMY -- Result-Register Operand Processing
subroutine (RSLT)

RSI..or is entered by the various arithme­
t:ic generators as a substitute for entering
OPND. RSLT is called when the operand par­
ticipating in an operation is in the regis­
ter which is destined to contain the result
of the oper·ationi that is, the operand is
in the "to" register. The purpose of this
routine is to ensure that if the "toft reg­
ist.er contains an ac-tive common expression,
that expression will either be moved to
another register or stored, provided it is
not already in storage. Since RSLT calls
upon COVER, which may be required to load a
temporary-covering adcon, the status of the
noselectable bits of the result register
and any other register specified as input
parameters will be saved on entry to RSLT,
then set to nonselectable, and restored
immediately before exit. This is done to
ensure that the register selected for
temporary-cover, if any, will not be one
containing either of the operands of the
current operation. See Chart GA.

ENTRIES: The entry pOint is CEKMY1. RSLT
expects two parameters: The first is a
tree pointer to the operand to be protected
from the operation about to be performed,
in parameter register P2. The second is
the register number of another register to
be protected against loading with temp
cover, in parameter register Pl. If R is
the given register number, R is interpreted
as follows:

If 1~RS15, then R is the corresponding
':Jeneral register.

If R = 0 (applicable only to the
second parameter), then no protection
is required.

EXITS: Normal exit only.

OPERATION: On entry, the status of the
operand nonselectable indicator is manipu­
lated as described above. Now OPND is
called. Upon return, if the operand is not
a common expression, it is a nonactive com­
mon expression, or if it is an active com­
mon expression already in storage, the non­
selectable indicators are restored, and
exit is made. Otherwise, if the operand is
not of complex or real type, FNDAR is
entered to determine if there is an empty
general register. If there is, the common
expression is moved to that register by an
RR-Ioad instruction, and ASAR is entered to
assign the expression to the register. If,
however, the type is real or complex or

Section 6: Phase 4 179

there is no empty register, FNDWS is
entered to assign temporary storage; the
assignment is entered in the name table;
COVER is entered to cover the temp; and,
the operand is stored. NOw, in either
case, the status of the nonselectable bits
is restored, and exit is made.

CEKNG -- Select Single General Register
<SELSR)

SELSR is entered to select a specified
general register, to select any regi~ter in
an optimal manner, or to select in an
optimal manner any register from a sI>eci­
fied restricted set of registers. See
Chart GB.

ENTRIES: The entry pOint is CEKNG1. One
or two parameters may be entered in parame­
ter registers P1 and P2. However, if only
one parameter is entered, it must be in P1,
and P2 must contain o. Specification of
the register to be selected must be desig­
nated only in register Pl. If no specifi­
cation of or restriction on the register to
be selected is desired, register P1 must
contain 0, in which case the contents of
register P2 are irrelevant. Otherwise,
specifications and restrictions are made in
either of or both registers P1 and P2 as
follows:

r---------T-------------------------------,
(Value (V) I Meaning I
~---------+-------------------------------~
11~~15 IV = Reg. No. Do not select I
I Ithis register. I
I I I
I 16 I Do not select register 1 r 14, I
J lor 15, and in the course of I
I I selection, do not move any I
I lquantity into register 1, 14, I
I lor 15. I
I I I
1-15~V~-1 IV = -(Reg. No.) Select regis-l
I I ter number I V I. In the course I
I lof selection, do not move any I
I lquantity into register 1, 14, I
I lor 15. I
1-30~V~-16IV = -15- (Reg. No.) Select I
I Iregister number IVI-15. I l _________ .1. _______________________________ J

EXITS: Normal exit only. Parameter regis­
ter P1 contains the number of t.he register
selected.

OPERATION: SELSR associates with each reg­
ister a weight which is determined from the
corresponding MRM table entry as follows:

180

r--------T--------------------------------,
(Weight I Register Contents I
IAssignedl I
~--------+-.-------------------------------~
I 9 I Register empty I
I 8 IConstant smaller than 4096 I
I 7 IConstatn greater than 4095 I
I 6 I Variable I
I 5 IStored common expression I
I 4 IBASR-generated address I
I 3 I Adcon I
I 2 IUnstored common expression I
I 1 (Operator (partial result) I
I 0 IRegister not selectable (either I
I Ibecause the MSL or MGBL flag of I
I Ithe MRM Table entry is raised, I
I lor because an input parameter tol
I ISELSR had disqualified the I
I I register) . I l ________ ~ ________________________________ J

If there has been no request for selec­
tion of a specific register, the register
with the greatest weight is chosen. If two
or more registers have the same weight and
that weight is greater than 6, the register
with the smallest register number is chos­
en; however, if the smallest register num­
ber among the two or more equally weight
registers is 1, then the next higher num­
bered register with the same weight is
taken. If a request for a specific regis­
ter has been made, that register is chosen,
regardless of its relative weight.

If the chosen register has a weight
greater than 2, the routine FLUSH is called
to reset the register storage for all quan­
tities in the chosen register and to
initialize the corresponding MRM Table
entry.rhe initialization causes the
entire ~ffiM table entry to be cleared except
for the MSL and BUSY flags which are left
raised.

If the chosen register has a weight
equal to either 1 or 2, the entire set of
register weights is examined to determine
if there is an empty register (weight = 9).
If there is an empty register, FLUSH is
called to transfer the register contents to
storage. to transfer the corresponding MRM
table entry contents from the chosen regis­
ter to the empty register, and to initia­
lize the chosen register. An LR instruc­
tion is generated to move the contents of
the chosen register. If there is not an
empty register, FNDWS is called to assign a
temporary to the quantity in the chosen
register. The MRM Table is searched to
find an adcon which covers the temporary
assigned. If there is such an adcon, an
instruction is generated to store the chos­
en register. If there is no temporary­
covering adcon in a register, the register
weights are examined, the largest weight
which exceeds 2 is chosen, and the
temporary-covering adcon is loaded into

that register and assigned to the corre­
sponding MRM Table entry. The choo;en reg­
ister is then stored and its MRM Table
entry initialized. If, however, no regis­
ter contains such an aucon and no register
weight exceeds 2, an esca pe :l.echanisrr is
used.

A Load Register instructicn is generated
to move the contents of Lhe chosen register
to register O. The temporary-covering
adcon is loaded into the chos en reel ister
and used from there to cover the store of
register 0 into temporary. Finally, FLUSH
is called to initialize t~he chosen
register.

CEKNH -- Select EVen/Odd General Regist:er
Pair (SELDR)

SELDR is entered to selec1~ optimally an
even/odd pair of general reg:.sters. See
Chart GC.

ENTRIES: The entry pOint is CEKNHi. Pa­
rameter registers P1 and P2 may be used to
specify as many as two regis;:ers that must
be excluded from consideration in t_he
selection process. Each of -,:he parameter
registers must either contaicl 0, indicating
no exclusion, or a number gr'2ater t_han 0
and less than 16, indicating that the cor­
responding general register 3hould be
excluded.

EXITS: Nornal exit only. Parameter regis­
ter P1 contains the number of the even
member of the selected even/odd register
pair.

OPERATION: A weight is assigned to each
register in accordance with its contents.
The weights are then combined in pairs to
give a combined weight for each even/odd
register pair. If a member of any pair has
been excluded from consideration, the pair
is given weight O. The register pair with
the largest combined weight is selected.
SELSR is invoked to select specifically
each member of the pair, thereby making the
pair available for use.

CEKMQ -- Select Floating Reqister (SELFR)

SELFR is used to select cC floating-point
register or to select a pair of floating­
point registers (either regj_sters 0 and 2
or registers 4 and 6). See Chart GD.

ENTRIES: The entry point i~i CEKMQ1. Pa­
rameter register P1 contains a number which
indicates the kind of selec1:ion desired:

Value in
PI (V)

OsVs6
lOsVs14
V 1t
V == 18

t>1eaning
Select register number V.
Select register pair (V-i0)/(V-8).
Select either register pair.
select anyone register.

EXITS: Norrrsl exit only. Parameter regis­
ter P1 contains the number of the register
select~ed or the nurober of the lower­
numbered member of the register pair
select ed.

OPERATION: If a specific register is
requested, SELFR determines whether t_hat
register, or the register pair containing
that re,]ister, must be stored. If storing
is not necessary, the register storage is
cleared, and the MRMFR table entry is
initialized by raising its MSL and BUSY
flags and clearing the rest of the entry.
I f thE' registers must be stored, temporary
storage is assigned to the quantity in the
regist.er and instructions are generated to
perform the storage.

If no choice of registers has been spec­
ified. SELFR assigns weights to each reg­
ister according to its contents and either
chooses the single register having the
highest weight or the register pair having
the highest combined weight, as appropri­
ate. The selected registers are then
treated as if they were specifically
requested, as described above.

CEKMM -- Make Initial Assignment to General
Begister (ASAR)

ASAR is used to record in an MRM table
entry the assignment of a quantity to the
corresponding general register. See Chart
GE.

ENTRIES: The entrf point is CEKMMl. Pa­
rameter registers PI through P6 contain the
following:

Pi Register number to be assigned.

P2 Expression tree ID of quantity
being assigned (or 4 if the quan­
tity being assigned is an address
generated with a BASR
instruction).

P3

P4

Expression sign.

Pointer to name table, expression
tree, or symbol table, according
to ID.

P5 Displacement -- applicable only if
quantity is a variable.

P6 Type -- applicable only if quanti­
ty is a variable.

Section 6: Phase 4 181

EXITS: Normal exit only. Paramet:er regis­
ter P6 contains the address of the MRM
table entry that ASAR made.

OPERATION: ASAR sets the MRH table initial
entry fields to the 10 of the quantity to
be assigned and clears the MSL flag. In
addition, the register storage entry is
made in the name table or expression tree
if the quantity being assigned is either a
common expression or an operator,
respectively.

CEKMN -- Make Synonym Assignment to General
Register (ASARS)

ASARS is used to record the assignment
of a quantity as a synonym entry for a
given general register. See chart GF'.

ENTRIES: The entry point is CEKMN1. Pa­
rameter registers Pi through P6 contain the
following:

Pi

P2

Register member to be assigned.

Expression tree ID of quantity
being assigned (or 4 if the quan­
tity being assigned is an address
generated with a BASR
instruction).

P3 Pointer to name table, expression
tree, or symbol table, according
to ID.

P4

P5

P6

Expression sign.

Displacement -- applicable only if
quantity is a variable.

Type -- applicable only if quanti­
ty is a variable.

EXITS: Normal exit: only. Parameter regis­
ter P6 contains the address of the MRM
table entry that ASARS made.

OPERATION: ASARS sets the fields of an MRM
table synonym entry to the 10 of the quan­
tity to be assigned. If there is an inac­
tive synonym entry, the first synonym entry
is used. In the latter case, the register
storage is cleared for the quantity being
replaced.

CEKMO -- Make Initial Assignment to
Floating-Point Register (ASFR)

ASFR is used to record in an MRlvlFR table
entry the assignment of a quantity to the
corresponding floating-point register.

ENTRIES: The entry point is CEKM01. Pa­
rameter registers Pi through P6 contain the
following:

182

P1

P2

P3

Register number to be assigned.

Expression Tree ID of quantity
being assigned (or 4 if the quan­
tity being assigned is an address
generated with a BASR
instruction> •

Pointer to name table, expression
tree, or symbol table, according
to ID.

P4 Expression sign.

P5

P6

Displacement -- applicable only if
quantity is a variable.

Type -- applicable only if quanti­
ty is a variable.

EXITS: Normal exit only. Parameter regis­
ter P6 contains the address of the MRMFR
table entry that ASFR made.

OPERATION: ASFR sets the MRMFR table ini­
tial entry fields to the ID of the quantity
to be assigned and clears the MSL flag. In
addition, the register storage entry is
made in the name table or expression tree
if the quant,it.y being assigned is either a
common expression or an operation,
respectively.

CEKMP -- Make Synonym Assignment to
Floating Register (ASFRS)

ASFRS is used to record the assignment
of a quantity as a synonym entry for a
given floating-point register. See Chart
GG.

ENTRIES: The entry point is CEKMPi. Pa­
rameter registers Pl through P6 contain the
following:

Pi Register number to be assigned.

P2

P3

P4

P5

P6

Expression tree ID of quantity
being assigned (or 4 if the quan­
tity being assigned is an address
generated with a BASR
instruction).

Pointer to name table, expression
tree, or symbol table, according
to ID.

Expression sign.

Displacement -- applicable only if
quantity is a variable.

Type -- applicable only if quanti­
ty is a variable.

EXITS: Normal exit only. Parameter regis­
ter P6 contains the address of the ~1R~lFR

table entr·y tha t ASFRS made.

OPERAT ION: AS FRS sets the f1. eld~; of an
MRMFR table synonym entry to the 10 of the
quantity to be assigneJ. If there i:.~ an
inacti ve synonym entry, the first c;llcn
entry is used. If there is nc inactive
synonym entry, the first synonym entry is
used. In the latter case, tne register
storage is cleared for the quantity being
replaced.

CEKMT -- Find Temporary St_oraCie> (FNDH::';)

FNDWS is entered to locate and reserve a
given number of bytes of object progr-am
temporary storage. In!! byte~; are
requested, the first of the n contiguous
bytes assigned will be located at a t)yte
address which is an integral nult.iple of n.
See Chart GH.

ENTRIES: The entry point is CEKM'rl. Pa­
rameter register P2 must conta.in a 1, 2, 4,
8, or 16 to indicate the number of bytes of
temporary storage needed.

EXITS: Normal exit only. Parameter regis­
ter P2 contains a symbol tabl,:! pointer to
the adcon which must be usedt.o cover a
reference to the assigned tel1l:?orary
storage, c.nd parameter regist2r P3 contains
the displacement to be used in conjunction
with the adcon.

OPERATION: Available ten,porary storage is
found by searching the temporary storage
allocation matrix for an n-bit field of O's
which starts on a bit boundary location
which is the smallest integral multiple of
n. The field is filled with l's, and the
distance in bits from the origin of the
matrix is computed. This distance repre­
sents the relative byte address of the tem­
porary storage location assigned. The
relative address is converted to a page
address and a displacement within that
page. An address constant is filed to
cover the page. The symbol table pointer
for this adcon and the displacement are
returned to the caller.

The preceding discussion describes gen­
erally the process for assignment of tem­
porary storage. Actually onE: of two kinds
of temporary storage may be cssigned
depending upon the status of the flag
GLMODE. If the flag is raised, global tem­
porary storage is assi']ned; c,therewise,
local temporary storage is a~.signed.

The GLMODE flag is tested by FN0WS which
simply decides whether to search the local
or global half of the temporc:ry storage
allocation matrix and.,hether the address

constant created should cover the local or
global temporary storage class.

CEKMX -- Release Temporary Storage (RLSWS)

RLSW3 is entered to make a temporary
storage location available for reuse. See
Chart G1.

ENTRIES: The entry point is CEKMX1. Pa­
rameter register Pl contains a 0 if the
temporary location being released was occu­
pied by an operator, or a 1 if it was occu­
pied by a common expression. Accordingly,
parameter register P2 contains the asso­
ciated expression tree address or name
table address.

EXITS: Normal exit only.

OPERATION: rhe adcon pointer, its asso­
ciated displacement, and the operand type
are extracted from the name table or ex­
pression tree. The adcon pointer is fol­
lowed to the associated symbol table entry
from .. hieh the storage class covered by the
adcon and the locati.on within that storage
class are extracted.

If the storage class covered is global
temporary, no further action is taken, and
RLSWS exits. If the storage class is local
temporary, a group of bits in the temporary
storage allocation matrix is cleared. The
first of these bits is determined from the
sum of t.he displacement and address covered
by the adcon. The number of bits cleared
is determined from the operand type.

Two temporary locations are released in
the above manner if the operand is a common
expression and the name table flag "secon­
dary temp assigned" is raised: otherwise,
only one temporary location is released.

CEKON -- Register Storage Clear Routine
(FLUSH)

FLUSH is invoked to initialize a given
MRM table entry or to move it from one
entry to another before initializing it.
See Cha rt GJ.

ENTRIES: The entry point is CEKON1. The
contents of parameter register P3 are
treated as follows:

Contents
o
1

2

3

Action
Initialize a general register.
Move, then initialize general.

regist.er.
Initialize a floating-point

register.
Move, then initialize a

floating-point register.

Parameter register P2 may contain either
the number of the register whose MRM/MRMFR

Section 6: Phase 4 183

Table entry is to be initialized or the
address of the entry, as desired by the
caller. Parameter register P1 is irrele­
vant if P3 = 0 or 2; otherwise, it contains
the number of the register to which a move
is required, or the associated MRM/MRMFR
address. again at the option of the caller.

EXITS: Normal exit only. If only initia­
lization is required. parameter register P6
contains the MRWMRMFR address of the reg­
ister initialized. If a move and initia­
lize are required, P6 contains the MRMV
MRMFR address of the register to which the
movement will be made.

OPERATION: The distinction between regis­
ter number and MRM/MRMFR address for the
input quantities is made according to
whether their values are less than or
greater than 16, respectively. Each, which
is a register number, is converted to the
corresponding MRM/MRMFR address.

If a move is specified, the entire MRM/
MRMFR entry is moved as specified. If the
register from which the move is made con­
tains operators or common expressions, the
corresponding register number fields in the
name table or expression tree entries are
altered to reflect the new register
location.

If no move is specified and the register
which is to be initialized contains opera­
tors or common expressions, the correspond­
ing -in register" flags in the expression
tree or name table are lowered.

Processing is completed by initializing
the specified MRM/MRMFR entry.

CEKNI -- Code File Output Subroutine
(INSOT)

INSOT is called whenever an entry is
made in the code file. See Chart GK.

ENTRIES: The entry point is CERNI1. The
input parameters to INSOT are

1. ID in parameter register P2.

2. OP (Line Number or SYMT with IDs 7 or
8) in parameter register Pl.

3. All other parameters in a 6-word area
at INSOTP (in phase's PSECT) in the
order listed in Figure 34. Each
parameter occupies one word and is
right-justified.

184

10 Other Parameters Required Usage

~----------------------------------~-----------------
r
l

a OP, Rl, R2 RR Instruction

lOP, Rl, X2, B2, 02, SYMT i RX hstruction

i I

1---+------- ----------------+-----------

I 6 ! OP, Rl, R3, B2, 02 RS Instruction

~- ~-------------4
~If-Llne Number _______ --l __ St_a_te_m_en_t __ He_-a_~_=__

8 SYMT I Label Definition

71-~:~-------------~ ------1
End Program

SYMT - Symbol Tobie Painter for label or primitive

Ade-en - Symbol tob!e pointer for Adcon

Line Number - Source line number from PF entry

All other symbols have the accepted $ystem/360 meaning_

Figure 34. INSOT Input Parameters

If storage class is 7 or 8, the symbol
table pointer points to the adcon covering
the temp; otherwise, storage class field is
0, and Phase 5 obtains actual storage class
from the symbol table.

EXITS: INSOT has two exits: one normal
return and one error exit. The INSOTP area
is undisturbed except for INSOTP +17.

OPERATION: Based upon the contents of
input parameters, INSOT generates the
appropriate code file entry (given in
Appendix A). INSOT also maintains the size
of Storage class 1 in the storage class
table, and updates the code file top in
intercom. Label definitions are not
entered in tne code file if the lSD, memory
map, and object listing options are all
off.

CEKOQ -- Edit for Code File (EDIT)

EDIT may be used in preparation for
generation of an Rx-type instruction via
INSOT. Its purpose is to centralize the
preparation of some of the input parameters
required by INSOT.

ENTRIES: The entry point is CEKOQ1. Entry
is made with the tree address of the
operand in register P2.

EXITS: Exit is .made with the operation
type code in parameter register P2. Th(o>
ISYM entry of the INSOT parameter list lS

set according to the followin'J table:

OPERA:!:ION: EDIT sets input parameters to
INSOT according to the following table:

O}2erand ID O}2-Ty}2e ISYM Contents
Constant RX Symbol table

pointer
Variable RX Symbol table

pointer
Adcon RX Symbcl table

pOinter
Operator temp. ref. Temp- covering adcon

pOinter
CSX temp. ref. Temp-covering adcon

pointer
subscript RX Varic.ble symbol
Connector table pointer

Section 6: Phase 4 185

SECTION 7: PHASE 5

INTRODUCTION

Phase 5 generates the output of the FDR­
TRAN compiler. This output can broadly be
divided into two parts: the object program
module (OPM) and the external listings.
The object program module consists of:

1. Loading information (relocation fac­
tors, external names, etc.). This
information comprises the program
module dictionary (PMD) and is used at
load time by the dynamic loader.

2. Object text (code, constants, etc.).

3. An optional list, called the int.ernal
symbol dictionary (ISD), of the
internal symbols in the FORTRAN pro­
gram for use in checkout with PCS.

4. A list of external names (entry
points, subroutine calls, etc.).

The external listings are produced in
accordance with options selected by t.he
user. It should be noted that the first
option (of the five listed b2low) must be
requested in order to receive any of the
other four. The selections are:

1. A basic output listing 'tlhich consists
mainly of the names and sizes of con­
trol sections in the object program
module.

2. An expanded listing of the above to
include items such as the relative
locations of labels and variables.

3. A comprehensive output that, in addi­
tion to 1 and 2 (above), lists object
code and give an assembly-like listing
of the object code along with comments
identifying what type item is being
referenced. This selection also pro­
duces a listing of adcons, parameter
lists, and numeric and alphameric
constants.

4. A symbol table list which gives all
the variable names in alphabetical
order with important attributes.

5. A cross reference list which gives all
the variables listed in alphabetical
order, followed by the labels, in num­
eric order, showing the line numbers
where each is defined and referenced.

Thus, the function of Phase 5 can be
stated as: generating th'e OPM (i. e., con­
structing the Pl'1D, building the object pro­
gram, and producing the optionally selected

186

ISO> and producing various selections of
external listings. These functions are
itemized below, together with the routines
that contribute to their development.

1. Generating the object program module

a. The program module dictionary_
The program module dictionary con­
sists of heading information and
one control section dictionary
(CSD) for each control section in
the object program.

BUILD

COSEC

PRSEC

CM.SEC

SPECS

Processes the heading
information in the PMD.

constructs the control
section dictionary for the
code control section.

Builds the control section
dictionary for the proto­
type control section.

constructs one control
section dictionary for
each COMMON.

Makes entries in the con­
trol section dictionary of
the control section con­
taining any preset data
present.

b. The Object Program

BUILD

CMSEC

SPECS

COSEC

PRSEC

Determines the type of
program under construction
and initializes, communi­
cates with other needed
routines, and l~st­
processes the object
program.

Builds one control section
for each COMMON (named or
blank) present.

Inserts preset data (when
present) into the text of
the appropriate control
section.

Constructs the code con­
trol section which con­
sists of code and numeric
constants.

Constructs the prototype
control section. (The
module ~RSEC should be
consul t.ed if additional
information is desired.)

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

c. Internal Symbol Dictionary

COSEC Determines statement num­
ber entries and the number
of control ~,ections in the
object progx'am module and
enters them into the ISD.

ASSIST Responsible for all
entries in 1:he ISD except
for those made by COSEC.

2. Producing various select:ions of
external listings

EDIT

SYMSRT

CRFSRT

PREAD

Optionally produces up to
three levels of output
documentation. The rou­
tine itself and Figure 35
should be consulted if
more information is
desired.

Sorts and outputs an
alphabetical listing of
items in the symbol table
along with important
attributes relating to the
symbol.

Produces a listing of all
variables in alphabetical
order, followed by the
labels in numeric order,
indicating the statement
numbers where each is
defined and referenced.

Ejects to a new page and
outputs the, page heading,
which consists of module
name, data, and page num­
ber. PREAD is called by
the above t.hree routines.

OBJECT PROGRAM MODULE (OPM)

The output from the compiler is known as
an object program module. ~'his is composed
of a program module dictionary (PMD), text,
and internal symbol dictionary (ISD). and
external name list (ENL).

PROGRAM MODULE DICTIONARY C?MD)

Each PMD consists of one PMD heading
plus as many control sectio:'! dictionaries
(CSD) as there are control sections in the
modUle. Address pointers in the PMD are
initially relative to the beginning of the
PMD itself (not the PMD preface), except
where otherwise specified. Some fields in
the PMD are filled in by the loader. These
are not set by the compiler. The PMD for­
mat is shown in Figure 35.

PMD Heading

1. Length of PMD in bytes

This length does ~ include the PMD
preface.

2. Diagnostic Code (1 byte)

The Diagnostic code indicates the
highest level diagnostic encountered
during generation of the module by the
language processor that created it.

3. PCS Communication Indicator (1 byte)

This is a 1-byte field which is used
by the program checkout subsystem
(PCS). Currently defined settings are
as follows (bits are numbered from
left to right starting with 0):

7

Version ID Flog

L----------PCS Communication Flog
L-____________ Link Editor Flog

L------------lSD Flog

Bit 0 - Module has been altered by a
non-source modification. That
is, a language processor did
not make the change.

Bit 1 - Module has an ISD associated.
This bit is set by the proces­
sor creating the PMD.

Bit 2 - Module was produced by link
editing. This bit is set by
the l,ink Editor.

Bit 3 - PCS is to
module is
unlinked.
PCS.

be called before
dynamically
This bit is set by

Bit 5 - Module was produced by the
FORTRAN compiler.

Bit 6 - FORTRAN module is a main pro­
gram, not a SUBROUTINE, FUNC­
TION, or BLOCK DATA
subprogram.

Bit 7 - Version ID indicator. If this
bit is set, the module version
ID is to be interpreted as a
64-bit binary number which is
the creation date of the
module. If this bit is not
set, the version ID is eight
alphameric EBCDIC characters.

Section 7: Phase 5 187

f-' ""J
00 "",
00 \.Q

.:
Ii
<1l

(,lJ

V'I

"Zj
0
Ii
S
QJ
rt
0
Hl

"0 :s:
t::1

tr:I
:::s
rt
Ii
'<

rhe PMD
Preface is
Prefixed
here by
either
STARTUP
or the
Dynamic
Looder.

PMD
Heading

,]
length ,;:,f PMD in Bytes

Diog. I Flogs 1 Length of PMD
Code Heading in Bytes

4 - Chorocter I. D. Name } Foe D,ck
Punch out

Version lD

~---------------
of Module

No, REFs for Entry I NO. Mods. for
Point Entry Point

Alphameric Name

- -------------------
of Module

Volue af DfF

R-Valu~ Displacement
(Cre!.'lted b,· LINK EDITOR)

DEF fOI

Standard
(!Itry Point

10 [(SDLlNKj

(Re~erved for Future Use)

[Search link]

Alphomeric Nome

-- --- - ----------
of REF

[Value of REF]
REF for
Er'ltry

[R-Valo, of REF1

[eSD LINK]

(Reserved for future U~e)

l REF N,"b" T By'" E",y Poin' 11 I I ~ Modifi" (;) ro,

eSD
Heading

Definition
Table

Definitior. (5)
Reloti ye

Absolute
Complex

Referenc~'

Tobie

r N:Jrnb~I' 8yre, in CSD
I
I

Lengt~ of Control Sedion
in Byt~~

Poge Number in Text of Page 0

of CS Text

CSECT

Version 10

[RMD li,k 1

[No. REFs if'to
(Reserved) Control Section

count) I

No, Relocatoble No. Abscllute
DEFs DEFs

No. Complex No. of Edemol Qnd

DEFs internol REFs in
Reference Table

l Attributes ofC.S. No, Pages of Text

" I

I
l

Alphameric Name

--------------- ----
of DEF

Value of DEF
(Modified by loader)

R-Volve Dispiocement
(Modified by Loader)

[eSD li,k J

(Reser ed for Future Use)

[Search Link J

AI phameri c NQme

~-------------------
of REF

[Volue of REF J

[R-Volwe of R[F J

[(SD lick)]

(Resel we for Futvre U)e)

Modifier
Poillrer5 fo,
Complex DEF~

Modifiers for
Complex DEF~

Modifier Pointers
for External REFs

Modifiers for
External REFs

r ~MOd;f.i"; fo, _ Relative location of First
Modif;er for PMD Pace 0 ! t--~' OofPMD -----1

I'Jo. Modif;er~ for Relative Locotion of First
Page x of PMD Modifier for PMD Page x

l I REF Number
T I Byte ~

,

No. Modifiers for Relative Location of First
Page 0 of Text Modifier for Text Page 0

No. Modifiers for Relative loo;ation of First
Page y of Text Modifl..-:r for Text Page y

l I REF Number
T I Byte 1+

Modifi" Poi"." I
foc loI'mol REF, 1

No. Modifiers for
Page 0 of Text

1 R.lative loeatio, of FiC't

ModifiN foc Tex' Pag' 0 Il

Modifiers for
Internal REFs

Virtual Memory
Page Table

I
No. Modif;ers for Relative Lor::ation of First

Poge 2 "f Text Modifier for Text Poge z

L I REF Number
T I Byte

Page No. in Text Poge No. ill Text
of Virtual Memory Pcge 0 ·of Virtual Memory Page 1

Page No. in Text of Page No. in Text of
Virtual Memory Page 1 m-l' Virtual Memory Pagt; 'm'

Remaining CSD,

I"~ote: Bracketed [item, ore filled in by the Dynamic loader.

Complex DEF RLD
(Note: Poee if.. is the la~t
PMD page for which there
are any Complex
DEF modifiers)

External REF RlD
(Note: Page y is the last
text page for which there
afe ony External REF
mOdifiers)

Interned REF RlD
(Note; Page :l is the lost
text page for which there
ore any Internal REF
modifiers)

"0
PJ

\Q
(1)

o
Hl

G"l
><
tv
00
I

tv
o
f-'
\0
I

f-'

H
Ul
Ul
C
(1)
0,

{Il
(1)

'0
rt

~
(1)
Ii

(,lJ

o

f-'
\0
--.J
f-'

tr
"<

~
t"'

~
tv
00
I

(,lJ

f-'
\0
o

4. Length of PHD Headir:g

This is the length in by':es of t,he PMD
heading.

5. 4-Character ID Nali£

The 4-character ID narne is supplied by
the user to serve as deck identifica­
tion if the module is punched into
cards. This field is currently
unused.

6. Version ID

See item 3 (bit 7 description) for
interpretation of version ID.

7. Number of REFs for the ~;tandard Entry
Point

The DEF for the standar:l entry point
is always treated as a complex DEF.
This field contains the number of
REFs. It may be zero.

8. Number of Modifiers for the Standard
Entry Point

This field contains the number of
modifiers that are to be used to com­
pute the DEF for the standard entry
pOint.

9. DEF for Standard Entry Point

This 7-word entry describes the DEF
for the standard entry point of the
module. It has the same form as the
indi vidual DEF entries within the
CSDs. The standard enl:ry point DEF
for the module is cons:~dered t.O belong
to the first PSECT of ':he module and
is treated the same as a complex DEF
whose ENTRY statement appears within
that PSECT. If no PSECT is declared,
the standard entry poi'1t will be asso­
ciated with the first:SECT instead.
This DEF entry contains the following
subfields which are described under
"Control Section Dictionary."

a. Alphameric name of module

b. Value of DEF

c. R-Value displacem(nt

d. CSD link

e. Reserved for future use

f. Search link

The alphameric name i~; also the name
of the module.

10. REF(s) for Entry Point

These correspond to the REF(s) for
complex DEFs within a CSD.

11. Modifier(s) for Entry Point

These correspond to t,he modifier(s)
for complex DEFs within a CSD.

control Section Dictionary (CSD)

The control section dictionary (see
Figure 35 comprises the following
components:

1. CSD Heading

2. Definition Table

3. Reference Table

4. Relocation Dictionaries (RLDs)

5. Virtual Memory Page Table

CSD Heading

L Number Bytes in CSD

This field specifies the length of the
control sectiQn dictionary in bytes.

2. Length of Control Section in Bytes

This specifies the virtual storage
span of the control section. The
length of the virtual storage page
table is derived from this length.
For example, if the length of the con­
trol section is 8192, the virtual
storage page table will contain two
pages; but if the length is 8193
bytes, the virtual storage page table
will contain three pages. This value
will be equal to the highest location
counter value assigned by the language
processor, plus 1.

3. Page Number in Text of Page 0 of CS
Text

The text. for each control section in
the module occupies an integral number
of pages in its resident data set.
The text pages for all control sec­
tions in a module are contiguous.
This number is the page number, rela­
tive to the first page of text for
this module, of the first page of text
for this control section. (Numbering
begins with 0.)

4. Version ID

This is a 64-bit binary number which
is the creat:ion date of the control

section 7: Phase 5 189

section expressed as the number of
microseconds that have elapsed from
March 1, 1900, untiJ. the time of con­
trol section creation.

5. PMD Link

The PMD link is filled in by the load­
er. It points to the beginning of the
PMD preface.

6. Number of Implicit References to this
Control Section (User Count)

This is a count of the number of REF
entries which refer to this control
section and are linked to this CSD
through their CSD link. It is com­
puted by the loader. It includes both
external and internal references.

7. Number of Relocatable Definitions

This is the number of relocatable
definitions in the definition table.
It is always at least 1, namely, the
control section DEF.

8. Number of Absolute Definitions

This is the number of absolute defini­
tions in the definition table. It may
be zero.

9. Number of Complex Definitions

This is the number of complex defini­
tions in the definition table. It may
be zero.

10. Number of References from this CSD

This is the sum of external and
internal references in the reference
table. It may be zero.

11. Attributes

190

Tbis word
attribute
section.
are shown
from left
Bit 15 is

has one bit set for each
possessed by the control
currently defined attributes
below. Bits are numbered
to right starting with O.
not used:

a. Fixed-Length (Bit 14 off)

A fixed-length control section
will be allocated a fixed number
of pages at load time.

b. Variable-Length (Bit 14 on)

A variable-length control section
is a section of indeterminate
length and will be allocated pages
in excess of the length stated in
the CSD heading.

c. Read-on1y (Bit 13 on)

Read-on1y specifies that the con­
trol section may not be stored
into. It causes storage protec­
tion by means of a storage class B
assignment to all pages of the
control section. Non-read-only
and nonprivileged control sections
are assigned storage class A.

d. Public (Bit 12 on)

Control sections are not shared by
control section name alone. A
PUBLIC control section of a module
residing in a given data set
(library) is shared if another
user has access to the same data
set and module. Control sections
of a given module need not all be
PUBLIC or non-PUBLIC. Fixed­
length PUBLIC control sections
with the same attributes are
assigned storage in the same as­
signment. A PUBLIC control sec­
tion should never contain relocat­
able adcons CA, V, or R type).

e. PSECT (Bit lion)

If this bit is set, the dynamic
loader overrides the system pack­
ing indicator and inserts this
control section as packed.

f. COMMON (Bit 10)

A COMMON section is a control sec­
tion common to all modules in
which it is declared. COMMON sec­
tions are more fully discussed in
the linkage editor manual and the
assembler manual.

COMMON sections are of two types:

(1) Named COMMON sections (those
with a name not all blanks).
These are treated as fixed­
length sections.

(2) Blank COMMON sections, whose
name consists of eight blanks.

FORTRAN blank CO~10N is assigned
the VARIABLE and COMMON attributes
by the FORTRAN compiler.

The treatment of blank COMMON sec­
tions differs from that of blank
non-COMMON sections. Control sec­
tion rejection is instituted
between blank COMMON sections of
different modules whereas blank
non-COMMON sections of different
modules are treated as independent

control sections. The latter are
called unnamed control sections.

g. Privileged (Bit 9 on)

A control section with a frivi­
leged attribute is assigned
storage key c which provides fetch
as well as store prctect. 'fhis
attribute overrides read-only.

Anything in a privileged control
section may be referenced only
when the PSW key is zero.

h. SYSTEM (Bit 8 on)

~~y external symbol that appears
in a control section which has the
SYSTEM attribute cannot be
referenced by a use)~ program
unless the symbol ~~gins with
"SYS". Conversely, no reference
from a control section with a sys­
tem attribute may h? to a ·user"
symbol.

i • Public Name (Bit O;m)

This is used only by the dynamic
loader to specify nonblank control
sections whose names appear in the
SDST (shared data set table). The
first such control section !rlill
appear in the SDST under the
module name. A control section
may be indicated as both having a
public name and rejected.

12. Number of Pages of Text

This specifies the number of pages of
text for this control section in the
data set. It should bE' noted that
this generally does not. correspond to
the number of pages in the virtual
storage page table. It. cannot, of
course, be larger.

Definition Table

The definition table is nade up of 7-
word entries, one for each external defini­
tion in the current control section.
Definitions are grouped as }~elocatable,
absolute, and complex in that order. The
first definition in the table is the name
of the current control sect:Lon.

Relocatable definitions dre external
definitions whose values may be computed as
the sum of the origin of th,? control seo­
tion wherein they appear, a::1d a constant.

An absolute definition is an EQU i"Cem
with an absolute value whose name has been

declared an entry point in the control sec­
tion in which the name is defined.

A complex definition is either an EQU
it,em with a complex relocatable value;
i.e., containing external symbolCs), or a
simple relocatable definition whose ENTRY
st.atement appeared wi thin a named section
other than the section in which it is
defined. The definition entry appears
within the CSD of the control section which
contains the ENTRY statement. (Note that
the origin of t.he same control section is
t.he R-value for the DEF.) The complex DEF
is required in this case, with one REF
entry that names the control section in
which the DEF symbol is actually defined.

Each DEF in the definition table con­
tains the following entries:

1. Alphameric Name of DEF

This field contains the 8-character
alphameric name of the DEF.

2. Value of DEF

The value of t:he DEF is set by FORTRAN
and is modified by the loader in the
case of complex and relocatable
definitions. For relocatable DEFs the
value portion of the definition entry
contains the displacement value of the
symbol relative to the base of its
control section.

For absolute DEFs this entry contains
the absolute value: for complex DEFs
it contains the absolute portion of
the DEF value, which may be zero.

3. R-Value Displacement

The "displacement for R-value n word
contains the displacement of the orig­
inal defining control section origin
with respect to the head of the con­
trol section within the definition now
appears. This is required to compute
valid R-values for control sections
which have been COMBINED by Linkage
Edit.ing. In creating the PMD, ~)flly
the Link Editor will ever produce a
nonzero value in this word.

4. CSD Link

The CSD link is initially zero. It is
filled in by the loader when the con­
trol section is loaded as a pointer to
the beginning of the CSD in which this
DEF appears, providing neither the DEF
nor the control section has been
rejected.

5. For future use.

Section 7: Phase 5 191

6. Search Link

This field is filled by the hash
search routine of the loader. It con­
tains the address of the beginning of
the next DEF entry which hashes to the
same value. It contains zero if
thereare no more DEFs with the same
hash value in this chain.

Reference Table

The reference table is made up of 6-word
entries, one for each external symbol
referenced within the control section.
Each entry contains the following:

1. Alphameric Name of ~EF

This field contains the 8-character
alphameric name of the REF.

2. Value of REF

This is filled in by the loader. It
contains the value of the DEF to which
the REF refers. If the DEF is unde­
fined, it contains the address of a
portion of virtual storage wherein
reference is illegal.

3. R-Value REF

This is filled in by the loader. It
contains the virtual storage address
of the beginning of the control sec­
tion wherein the DEF appears. This
value is obtained from the -R-value
displacement" word of the satisfying
DEF entry.

If the DEF is undefined, this word
contains the address of a portion of
virtual storage wherein reference is
illegal.

4. eSD Link

This pointer, initially zero, is
filled by the dynamic loader. It
points to the beginning of the eSD
wherein the DEF which defines this REF'
appears. If a corresponding DEF could
not be found upon the appearance of a
REF, the eSD link is to the beginning
of the eSD wherein the REF itself
appears.

5. Reserved for future use.

Relocation Dictionary (RLD)

Three RLDs appear in each control sec­
tion dictionary:

192

1. RLD for complex definitions

2. RLD for internal references

3. RLD for external references

Each RLD has the same format consisting
of modifier pointers and modifiers. The
RLD for complex definitions differs in that
pages mentioned in this table are pages of
the PMD rather than the t.ext.

Modifier Pointer

Modifier pointers are used to designate
the application of modifiers to adcons on
appropriate pages of text (or of the PMD
for complex DEFs). The first modifier
pointer applies to t.he first page; the
second modifier painter, to the second
page; etc. For an RLD there always exists
at least one modifier pointer. However,
there need not necessarily be a modifier
pointer for each page of text; the modifier
pointers may be ended at the last text page
for which there exists any modifier.

The modifier pointers consists of two
fields, in the left and right halfwords.

I,eft-half - Number of modifiers for page

This field contains the number
of modifiers that apply in
this page.

Right-half - Location of first modifier for
this page

'This contains the location in
bytes relative to the right
half of the pointer itself for
the first modifier for this
page. If there are none, it
points to the location where
one would have appeared if
there were any.

A special note should be made
of the technique for determin­
ing the length of an RLD. In
the right half of the first
pointer for an RLD, is the
location of the first modifier
for this page. In the word
preceding the first modifier
word is the last modifier
£..ointer for the RLD. By
adding the location of the
right half (of the last point­
er) to the contents of the
right half (of the last point­
er), one gets the beginning of
the last set of modifiers.
Adding to this four times the
number of modifiers in the
last set, one gets the end of
the RLD.

Modifier

The modifiers are each a fullword and
are divided into four fields:

o 2 16 20 31
r---T----------------T-----,---------------,
I L I Ref. Number I T I Byte I L ___ i ________________ ~ _____ ~ ______________ J

2

L

14 4 12

L (2 bits) is the length in bytes of
the adcon to be modified. A value of
zero indicates a fullword (4 bytes).

Ref Number

T

Reference number (14 bits) is the
ordinal number in this CSD'S reference
table of the reference whose defini­
tion value is to be usee!. in modifying
the adcon. References C.re numbered
starting with zero.

T (4 bits) is the operai:ion to be per­
formed in modifying the adcon by the
reference value.

The values of T currently de::ined are as
follows:

Byte

a. Addition (T = 1)

The definition value of the
reference at '"Reference Number" is
added to the field ~f L bytes
starting at the indicated byte of
the page to which the modifier
applies.

b. Subtraction (T = 2)

Same as addition, except read
"subtracted from" for "added to."

c. R-value (T =3)

The value from the "R-value" word
of the REF is stored into the
field of length L clccording to the
"Byte" field.

Byte <12 bits) is the displacement in
bytes (from the origin of its original
containing page) of the adcon to be
modified. It should b,= noted that
since PMDs are packed ':'0 'Nord boun­
daries, this displacem.==nt will be
added to an address fo.(complex DEFs
which generally is not a page
boundary_

RLD for complex Definitions

The format of these modifiers is as
described above. These modifiers apply to

the values of complex definitions; that is,
the byte addresses in the modifier will be
to the value words of complex DEF entries
in the definition table, and the page num­
bers in the modifier pointers are for pages
of the program module dictionary itself.

RLD for Text External Reference

This relocation dictionary is in the
same form as described above. It has one
pointer for each page of program text up to
t.hat text page which is the last to contain
an adcon, and appropriate modifiers for
each adcon in the text which refers to a
symbol defined externally to this module.
The page numbers are based on the first
page for this control section, beginning
with O.

RLD for Text Internal Reference

This is identical to RLD for text
external reference above, except that the
modifiers are to adcons in the text which
reference symbols defined within this
module, such as control section names.
This permits communication between control
sections of the same module that may be
allocated noncontiguous virtual storage.

Virtual Memory Page Table (VMPT)

This table has a halfword for each page
of virtual storage beginning with page 0
and continuing upward in order.

The contents of each entrf will be
either:

1. All bits if the corresponding page is
empty as a result of a DS or ORG
statement.

2. 'The number of the page in the text
relative to the beginning of text for
this control section if the page con­
tains code or data. This value mUlti­
plied by 4 becomes an index into both
the external and internal RLDs and is
used to select the correct modifier
pointer word for adcon relocation.

This table is the means by which the
text of the control section is related to
the virtual storage assigned the control
section. This is necessitated by the fact
that language processors do not necessarily
output a byte of text for each byte of vir­
tual storage assigned; that is, large ORG
and DS statements may result in pages of
text being Skipped.

If, for example, a source program were
to begin with

ORG 10000

Section 7: Phase 5 193

there would be no text output for the first
two pages of virtual storage, and the first
page of text would correspond to the third
page of the user's virtual storage. The
first two VMPT entries would be all bits,
and the third would contain zero. Within a
page, however, the bytes of text. corr(',s?Qnd
directly to the bytes of virtual storage.
Thus, in the example above, the first page
of text would represenT_ virtual storage
locations 8192-12287, and the first 1808
bytes of the page of text would be vacant
(10000-8192 = 1808). The pages of text
will always begin on page boundaries wit~in
the text module.

INTERNAL SYMBOL DICTIONARY (ISD)

The ISD (see Figure 36) has four sec­
t.ions: a heading, section name table, st.a­
tement number table, and a symbol t:able.

Heading

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Bits 0-15 contain the indica­
tor (8) identifying the ISD as
FORTRAN produced.

The length of the ISO in
bytes.

contains a link to the start
of the symbol table.

The number of entries in the
section name table.

The number of entries in the
statement number table.

The number of entries in the
symbol table.

Section Name Table

All control section names and their ver­
sion identifications (cSECr, PSECT, labeled
and blank COMMONs) are listed here. The
last two entries are the CSECT and the
PSECT.

,-_._-----
t I Ze-'

1 _________________ J ___________ _

~ _____~~,,9 t i'-ct-"~~t _ B,~,,___

1----- -- ----~--~----­
I­
I
f'----------------- .. 'J.:V hloi',ei

t
---------1

--------- ------------------ -------~

-iDIl 10_, ---I

2 8 " {, 3i

r- ',,-ow =1

~

1~~iO:'~-_d'O~

,~
\ r--------------------====-:J

Figure 36. FORTRAN Internal Symbol
statement Number· Table Dictionary

For each executable statement in the
program, FORTRAN inserts an entry contain­
ing the statement number and the offset
from the CSECT base. .t;ntries for unnum­
bered statements contain a statement number
of zero. The entries are arranged in
source order.

Symbol Table

The FORTRAN compiler inserts into the
symbol table a defining item for all
variables, section names, and FORMAT state-

194

ment numbers. Entries are grouped accord­
ing to control section and are ordered
within each group by ascending location
counter value.

Name

Type

- Two words containing the
alphameric name of the
variable.

- Identifies the type of
variable as:

Type
Section Name
Integer
Real Nunber
Character CO'lstant.
(FORMAT)
Complex Numll.?r
Logical

Code
3
4
5
6

13
14

In addition the second hig~-order list
in the TYPE field indicates if t.he variable
is a formal argument. Thw> , a t.ype code
• 45' designates the appearance of i1 real
variable as a formal argument.

Number of
Dimensions

Length of
Entry

- The nlmher of dimensions
of a dimensioned variable
(0 for nondimensioned
variables).

- Length in bytes for this
symbol entry.

Section Number - A number corresponding to
the order of the names in
the section table of the
ISD.

Displacemernt

Length

Dimension
Type

Dimension

- The offset :.n bytes from
the cont.rol section base.

- Length a ttr:cbute of the
variable.

'00' for co,stant
dimension ')2' for adjust­
able dimension of type
Integer*2
'04' for adjustable dimen­
sion of type Integer*4

- For each dimension of an
array the dimension pro­
duct value is listed. 'rhe
value of the nth dimension
factor is the byte length
times the Froduct of the
sizes of dimensions 1
through n. For arrays
that ar·e fermal arguments
the dimension factor is:

1. The dimension itself,
if conf;tant.

2. Offset in bytes of the
appropriate arlcon from
the ba~;e of object
prograI1's PSECT, if
adjustable.

ROUTINE DESCRIPTIONS

Phase 5 routines bear mn,,"monic titles as
well as coded labels. The 5-character

coded labels begin with the lett.ers CEKS;
t.he fifth letter identifies a specific rou­
t.ine. l':ach of the routines in Phase 5 has
a ~oingle entry point. when reference is
ma:Je to a compi ler executive routine or
entry point f the mnemonic title is used,
followed immediat.ely by the corresponding
coded label enclosed with parentheses.

There are no hardware configuration
requirements for any of the Phase 5 rou­
t.ines. ThE'Y are all reenterable, nonresi­
dent, nonprivileged, and closed. PHASE5
(Output_ Generator CE.'KSA) is entered by
standard linkage; all other Phase 5 rou­
tines are entered by restricted linkage.

The relationships of routines in this
phase are shown in the following nesting
ehart (Figure 37) and decision table (Table
29). The relationships are shown in terms
of levels; a called routine is considered
to be one level lower than the calling rou­
tine. Output Generator is considered to be
level 1.

CEKSA -- FORTRAN Compiler Output Generator
(PHASES) --_._-

PHASE5 consists of terminal operations
of the FORTRAN compiler. Its purpose is to

1.

2.

Build the object program text and the
associated program module dictionary
(PMD) •

construct an internal symbol die­
t.ionary (ISD).

3. Procuce user- select.ed documentation.

4. Generate E~ntry point table.

ENTRIES: The only entry into PHASE5 is
f rom the COlT'pi ler Executive, via standard
linkage, at entry point CEKSA1. PHASE5
expects to receive the base of the Intercom
as a paramet.er.

EXITS: Before exiting back to the Exec,
PHASES checks the upper limit for the fol­
lowinc; items:

1. Object program text.

2. Program module dictionary.

3. Internal symbol dictionary.

4. External name table.

If the upper limit has been exceeded,
PHASES will set the error code (in the
intercom) to "Fatal" and output a diagnos­
t.ic message.

Section 7: Phase 5 195

Level

PHASE 5

+ L w'w ASSIST EDIT SYMSRT CRFSRT

MIO(O~~

..
~

{ I
CMSEC l PRSEC COSEC CO~JCV

~
t

4 SPECS

+ t~
CMIO(OLR) 1

[--L-..Lp H EAD--'-r

t

Figure 37. Phase 5 Nesting Chart

Table 29. Phase 5 Decision Table (Part 1 of 3)

Routine:------------Phase 5--Level: 1-----------
r--------T-------------------------T---------T--,
I I I Called I ,
I Routine I Usage I Routines I calling Conditions I
~--------+-------------------------+---------+--~
'PHASES ITo control the overall !BUILD (Entered for every compilation to produce ,
I I operations of Phase 5. I I text and the Program Module Dictionary I
I I \ I (PMD) • I
I I IASSIST IEntered when the option is requested by I
\ I I I user to generate the Internal Symbol I
I I 'I Dictionary (ISD). i
I I I EDIT I Entered when the option is requested by I
I \ \ I user to produce and output the object I
\ I I I program module information, the memory !
I I I I map, and the object code listing. \
I I ISYMSRT (Entered when the option is requested by \
I I 'I the user to produce and output the list-\
I I \ I ing of the sorted Symbol Table ,
\ I I infornation. I
I \CRFSRT IEntered when the option is requested by I
\ I I the user to produce and output the Cross\
I I I Reference Listing. I
I ! RDM \ Entered when an error condition is I
I I (CEKTE) I encountered. I
I IPHEAD ITO eject a page and print the heading for I
I I I the Table of Initialized Variables. \
I ICONCV IEntered to convert integer, real, or com- I
\ I I plex values for printing. I
I IOLR tAn Exec routine entered to print each linel
I I (CEKTHE)I of the Table of Initialized Variables. I l ________ i _________________________ i _________ i __ J

196

Table 29. Phase 5 Decision Table (Pcirt 2 of 3)

Routine :------------Phcse 5----------------------~----·----------------Level: 2-----------
r------~T-------------------------T---------~--,

I I Icalled I I
I Routine I U:~a'Je I {)outines I calling Conditions I
t--------+-------------------------t---------+---~
I BUILD I To produce the obje8t I CMSEC I Entered for each COMMON block to creat_e I
i I program module (Op~J) I I a Control :3ection in the OPM. t
I I and Program lvlodul cc 12RSEC I]':ntered for pach compilation to build a I
I I Dictionary (Pl"D) for! I prototype control section (PSECT) for I
I I each compilation. I I the OPl"l. i
I I JCOSEC I Ent.ered for each compilation to create a I
I I I I Cont.Lol Section for the object code. I
t--------+-------------------------+---------+--~
I ASSIST I To produce the Inte rnal I None I I
I ! Symbol Dictionary (ISD) ! I I
I I when the option i:c I I I
I I selected by the mer. I I I
~--------+-------------------------+---------+--~
(EDIT ITO produce and output ICONCV I Entered when a constant is encountered in I
I f several user-selected I f the object code listing t.O convert to I
I I listings concerning the I I EBCDIC. I
I I OPM. I PHEAD I Entered when a new page of the listing is I
I I I I needed, ejects the page and prints the !
I I ! I heading. I
I I IOLR IAn Exec routine entered to print each linel
I! I (CEKTHE) I of the output listing. I
t-------t------------------·-------+--·-------+--~
ISYMSRT ITO produce and output II'HEAD IEntered w-hen a new page of the listing is I
1 I an alphabetical listing I ! needed, ejects the page and prints the I
I I of a 11 the items in thE~ I I heading. I
I I Symbol Table. IOLR !An Exec routine entered to print each linej
I I I (CEKTHE) I of the output listing. I
t--------+--------------------------+---------+--~
I CRFSRT I To produce and output_ a I PHEAD I Entered w-hen a new page of the listing is I
I I Cross Reference List fori I required, ejects the page and prints the!
I I all symbols and Etate- I I heading. I
I I ment labels. IOLR I An Exec routine entered to print each line I
I I I (CEKTHE) t of t:he listing. I L ________ .l. ______________________ . __ .l. _________ .l. __ J

Rout in e: ------------Pha se 5---------------------------------------·-----Level: 3-----------
r--------~-------------------------T---------T--,
ICMSEC ITo create a Control Sec- ISPECS IEntered for BLOCK DATA subprograms to I
I I tion (CSECT) correspond-l ! store the pre-set data. t
I I ing to a COHMON Dlock I I I
I I definition. t I I
t--------+-------------------------+---------f--i
I COSEC ITo produce the Control INone I I
I I Section for the ~bject. I I I
I I code and the numeric I I I
I t constant.s and enter some I I I
I I information into the PMD I I I
I I and ISO. I I I
t--------+-------------------------+---------+--i
iPRSEC ITo produce the prototype \SPECS I Entered if any pre-set data is present to I
I I control section (PSECT) I I store it in the noncornrnon variables. I
I I for the OPM. I I I
~-------+--------------------------t---------+--~
ICONCV ITO convert constants to IPHEAD IEntered when a new page is needed to ejectl
I I EBCDIC for the output I I a page and print the heading. I
I I listing. IOLR IAn Exec routine entered to print each I
I I I (CEKTHE) I out.put_ line. I L ________ .l. _________________________ .l. _________ ~ __ J

Section 7: Phase 5 197

Table 29. Phase 5 Decision ~able (Part 3 of 3)

Routine:------------Pndse 5--Level: 4-----------
r--------T-------------------------T---------T--,
I I I Called ! I
I Routine I Usage I koutines I calling Conditions I
~--------+-------------------------+---------+--~
\ SPECS ITo place the values givenlRDM IEntered if an error condition I
I I in pre-set data state- I (CEKTE) I encountered. I
I I ments into the text of I I I
I I the appropriate control I I I
I I section. I! I
r--------+-------------------------+---------+--~
IPHEAD ITo eject a page, update IOLR IAn Exec routine entered to print the I
I I the page number, form I (CEKTHE) I heading. I
I i and print the page head-\ 1 I
I I ing, and initialize the I I I
I I line count. I I I L ________ ~ _________________________ ~ _________ i __ J

OPERATION: PHASES (Figure 38), activated
by a call from the exec, combines and edits
outputs from the earlier phases, to produce
the object program and the various optional
program documentation. The symbol table,
the code file from Phase 4, and several
special lists from Phase 1 are the main
sources of material.

PHASR5 initializes nonvolatile register
N1 with the symbol table base and thus
establishes a phase-wide common register.
It also copies the intercom into the Pha­
se's PSECT.

PHASES proceeds to construct the object
program t.ext and the program module dic­
tionary (PMD). If the ISO option has been
selected and the program is not a BLOCK
DATA subprogram, PHASE5 will build the
related internal symbol dictionary. After
successfully building the OPM and its
related ISD(if requested), PHASES edits any
user-selected documentation.

Finally, PHASES restores the compiler's
intercom and returns to the phase
controller.

CEKSB -- Object Program Module Builder
(BUILD) -----

The purpose of subroutine BUILD is to
construct the object program module and to
BUILD a part of the internal symbol dic­
tionary. See Chart GL.

ENTRIES: BUILD has only a single entry
(CEKSB1) from PHASES. BUILD expects no
input parameters other than those contained
in the phasewide register assignments.

EXITS: Normal exit only to PHASES. No
output parameters.

198

OPERATION: The object. program module is a
part of the edited end product of the TSS/
360 FORTRAN compiler. More specifically,
it is that part which ultimately partici­
pates in the routine execution of a task.

The object program module consists of
executable object code, and other control
and reference parameters necessary for the
relocation and execution of the control
sections contained within the OPM. From
the viewpoint of the compiler, the OPM is
the result of one complete pass through the
compiler, and thus represents a unit of
source code terminating with an END
statement.

The OPM is organized into several con­
trol sections (CS), each of which has a
dictionary part <CSD) and an optional text
part. This material of the OPM is divided
into two data sets, with one set containing
the module heading and CSDs (also called
PMC), and the other set containing the text
part. The text of each control section
starts on a page boundary. Named COMMON
control sections mayor may not contain
text. The OPM is designed to be compatible
with the assembler output and is suitable
for processing by the dynamic loader and
link editor.

Initialization of Module: Upon entry BUILD
initializes the object program module. The
initialization consists of:

1. Pre-processing of the PMD heading (see
Figure 3S) which includes the follow­
ing of:

a. OPM name (six characters) is
obtained from the intercom region
and inserted in the 8-byte name
field (left-justified) of the
standard entry point (SEP).

Pag= of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

~
rTni t Phase 5 l.
I Intercom, Set

I'. '-"i" N' I with SYMTBL

~~e

~_]lJI~~
'I construe. t 'i

aPM ~

"/ddc
/ DATA Sub-

~)2'
/ISD'

<:uppress:ed
Yes

No

Yes

iList~-l
1 Preset ;
: Data 1

SYMTBl No
Option On >-""""-"'1

. ,
! Sort end Ou tput j
i Cross Reference

""'"E
i[rGerterot€ E!1~·l

Point Table 1
i Restore Execs 1

:'"~!

< Fite Top " No

Exc:e~ ~P€~/

.cr~"
I Raise Error :

Code to I II
l RDM-

1::- --.

I Restore

Execs)

~Ei
~~)

Figure 38. Phase S General Flow

b. The length of the PMD heading, in
bytes is inserted in the PMD.

c. The diagnostic code field is set
to the contents of maximum error
code in the inter(~m region.

d. The deck 1D name :Ls obtained from
the intercom region and inserted
into the 4-charac1:er ID name
field.

e. The PCS communication indicator is
inserted, based upon the contents
of the ISD flag and whether the
module is a main program. The
FORTRAN module bit is set on.

f. The version ID is retrieved from
the intercom and inserted in the
a-byte field allocated. The PCS
communications indicator is set
when the version ID is a
time-stamp.

g. Number of references and number of
modifiers are both set to 1.

h. The name field in the reference
from the SEP is set to:

(1) Name of the CSECT, if other
than block data.

(2) CHC1W5, if block data.

i. The fields in the modifier are

(1) Reference number and T field
are set to 1.

(2) L and byte are set to O.

2. Establishment. of the number of COMMON
control sections.

3. Initializing two parameter registers,
one to the base of the first CSD in
the PMD and the other to the base of
the OPM.

Processing of COMMON Control Sections: The
CMSEC subroutine is called by BUILD
repeatedly. CMSEC generates a control sec­
tion corresponding to a CO~~ON block. In a
BLOCK DATA subprogram BUILD terminates the
module immediately after processing COMMON
control sections.

Code and PSECT Control Sections:
tines COSEC and PRSEC produce the
control section and PSECT control
respectively.

Subroll­
CSECT
section,

Termination of a Module: Before returning
to PHASES, BUILD inserts the length (in
bytes) of the PMD into the appropriate call
in the PMD heading.

CEKSC -- Common Control Section Generator
(CMSEC>

The purpose of CMSEC is to create a con­
trol section corresponding to a COMMON
definition. CMSEC is used by BUILD. See
Chart GM.

Section 7: Phase 5 199

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

ENTRIES: CMSEC has a single entry (CEKSC1)
from BUILD.

CMSEC expects the following input para­
meters, in addition to those specified in
the phase-wide register assignments:

1. A pointer to the current COMMON block
entry in the storage class table.

2. The location for building the CSD in
the PMD.

3. The base for making text entries into
the current COMMON control section.

EXITS: Before exiting, CMSEC

1. Sets the base for the next CSD entry
in the PMD. Specifically, this is the
first word boundary after the last
entry made (in the PMD) by the current
calIon CMSEC. This value will be
passed back to BUILD as a register
parameter and will also be stored in
Phase 5's intercom (as the current PMD
top).

2. If any text entries were made into the
current COMMON control section, CMSEC
sets the base for the next entries in
the OPM. The base will be the first
page boundary following the last page
of text of the current control sec­
tion. This parameter will be passed
back to BUILD in a register and will
also be stored in the intercom as the
(current) OPM top.

OPERATION: Upon entry, CMSEC clears the
CSD heading and definition. The number of
relocatable definitions is set to 1, and
the attributes are set to indicate the type
of COMMON control section (blank or named
COMMON). The name of the COMMON block,
found in the storage class table, is
inserted (left-justified) in the alphameric
name of definition field. The storage
class table entry also supplies the size of
the COMMON block. The number of pages of
virtual storage is now calculated

N Size + 4095
P 4096

and inserted in the CSD. The virtual
storage page table of the CSD is then con­
structed and consists of Nphalfwords, con­
taining only 1 bits.

In the case of a BLOCK DATA subprogram,
control sections corresponding to named
COMMON blocks undergo additional proces­
sing. CMSEC prepares to process preset
data and calls for the SPECS subroutine.
SPECS performs the following functions:

200

1. Does the actual scan of the preset
data file.

2. Selects the appropriate DATA items.

3. Generates the necessary text pages.

4. Moves the preset data items into the
text.

5. Indicates in the virtual storage page
table those pages that contain text.

SPECS returns to CMSEC, which terminates
the control section. Termination of CMSEC
includes entering the number of bytes in
the CSD into the first word of the CSD and
the number of bytes of control section into
the second word of the CSD.

CEKSF -- Code Control Section Generator
(COSEC)

COSEC produces one of the component con­
trol sections of the object program module
(OPM). In particular, it produces the con­
trol section that consists of the object
code, including numeric constants. In
addition, COSEC enters information into the
program module dictionary (PMD) and
generates part of the internal symbol dic­
tionary if the ISD flag is on. See Chart
GN.

ENTRIES: COSEC has a single entry (CEKSF1)
from BUILD.

Input Parameters:

1. Origin of CSECT's CSD.

2. Origin of CSECT's text.

EXITS: COSEC makes a single exit to BUILD.

Output Parameters:

1. Instructions that needed their displa­
cement fields filled in before being
stored into CSECT's text will be
returned to the code file in completed
form. (This is done to facilitate the
work done by EDIT, whose function is
to produce an output listing).

2. As an additional service to EDIT,
COSEC will store in Phase 5's PSECT
the number of bytes of text of the
code control section and the origin of
the OPM's PSECT.

3. The top of the code control section
will be stored in a specified location
in Phase 5's PSECT and will also be
passed as a parameter in a register.

4. The register that contains the ~ase of
the CSO for CSECT will De set to the
first word bOundary following the last
entry COSEC made. This value will
also be stored in a specifie~ location
in Phase 5's PSECT.

OPERATION:

Code Control Section: The code control
section (CSECT) consists of code and numer­
ic constants.

1. Object Code. The code entries into
the CSECT are determined by an inves­
tigation of the code file (generated
by Phase 4). The items of the code
file are sequentially scanned and may
be ignored or entered into the CSECT,
or they may give info:r:mation for
determining an entry in the CSECT.
Entries into the CSECT are placed
sequentially, as they are encoulltered
(or determined>. Three registers are
used during this operation; one
register marks the item to be investi­
gated in the code file, and two regis­
ters are used to indicate the avail­
able byte for storage iii the CSECT.
The first byte (operation field) of
each item in the code file determines
the action to be taken. Following are
the actions taken for the various
possible values.

Let X represent the value of the first
byte of the item being investigated.
Then:

a. For X less than or equal to 2:

No entry is made into the CSECT.

If X is equal to 1, the location
counter of the code file is incre­
mented by eight bytes; otherwise,
it is incremented by four bytes.

D. For X strictly less than 4016 and
strictly greater than 2~

The item being investigated is a
halfword instruction and is placed
into the CSECT. The index regist­
er for CSECT is incremented by two
bytes, and the address register of
the code file by four.

c. For X strictly less than D0 16 and
greater than or equal to 4016

The item being investigated is a
fullword instruction and is placed
in the CSECT. CSECT's index
register and the code file's
address register are both incre­
mented by four bytes.

d. For X greater than or equal to
00 1 and strictly less than FE16 :

The item being investigated is a
6-byte instruction and is placed
in the CSECT. CSECT's index
register is incremented by six
bytes, and the location counter
for the code FILE scan is incre­
mented by eight bytes.

e. For X exactly e~Jal to FE16 :

The word being investigated, plus
the following two words, contains
information for determining a ful­
lword entry into the CSECT.

The second word (investigated word
plus 1) is to be placed into the
CSECT after its displacement field
has been completed.

Both the first and third words
(second half) contain pointers to
the symbol table. The first-word
pointer is to an adcon entry, and
the third-word pointer is to a
statement label entry.

The displacement is calculated by
subtracting the offset (in the
value field of the adcon) from the
assignment of the label.

The address register of the code
file is updated by twelve bytes,
and the index counter of CSECT by
four.

f. For X exactly equal to FF16 :

This is the termination code to
inform COSEC that the scan of the
code file is completed.

2. Numeric Constants. Upon completion of
the code file scan, COSEC will check
storage Class 2 in the storage class
table for the presence of numeric con­
stants. In the event that storage
Class 2 is not empty, COSEC will
execute the following.

a. The first available byte for a
numeric entry into the CSEC will
be set on the first quadruple-word
boundary following the last code
entry (these zero to twelve bytes
will be filled with zero bits).

b. The numeric constants will be
retrieved and placed in CSECT's
text, by following pointers to the
symbol table from the constant
header table.

Section 7: Phase 5 201

control Section Dictionary Entries: (See
Figure 35) Each control section has a con­
trol section dictionary (CSD) associated
with it in the program module dictionary
(PMD). The origin of CSECT's CSD will be
passed as a parameter in a register for
COSEC to make the following entries:

1. Initialize the CSD heading to all zero
bits.

2. Retrieve from the intercom the time
stamped version ID of the module and
insert it into the CSD.

3. Set the appropriate word in the CSD to
indicate CSECT's attributes, which are
reentrant and read only, plus PUBLIC
if indicated by the user's options.

4. Retrieve from the intercom the module
name, add a suffix (#C) to this name,
and place it in the CSD.

5. Calculate and insert the length (in
pages) of CSECT into the CSD. This is
determined by subtracting CSECT's ori­
gin from its next available storage
byte, and dividing the result by 4096.
The integral portion (plus 1 if the
remainder is nonzero) is the nUmber of
pages.

6. Complete the virtual storage page
table for the CSD. A halfword page
number entry will be made for each
text page of CSECT. The page nunmer
entries will be ordinal numbers of the
form Ir where 1=0, •••• , n-1 (O~n-l)
and n equals the integer portion of

no. bytes of text + 4094
4096

7. The number of bytes in the CSD will be
placed in the first word of the CSD.

8. In the second word of the CSD, COSEC
will store the number of bytes of text
of the code control section.

ISD Entries: (See Figure 36) Concurrent
with the building of CSECT, certain entries
will be made in the lSD, if the ISD option
is not suppressed. Initially, the number
of control sections will be calculated and
stored (right-justified) in the fourth word
of the LSD. The number of control sections
is equal to the number of COMMON control
sections plus 2 (one for PSECT and one for
CSECT) •

The number of COMMON control sections is
directly obtainable from the storage class
table. The first two bytes of the storage
class table give the number of named COM­
MONs, and the tenth word (Storage Class 9)
indicates if there is a blank COMMON.

202

The number of control sections, multi­
plied by 16, plus 24, gives the offset (in
bytes) for the beginning of statement numb­
er storage in the ISD.

During the scan of the code file, while
CSECT is being built, if the first byte of
the item being investigated has a value of
1 or 2, it may cause a statement number
entry to be made into the ISD.

1. If the value of the item is 1, the
item is a statement header and is
eight bytes long. The last four bytes
of the item contain a line number.
This line number is checked against
the last line number encountered. If
it is the same, no entry is made into
the LSD. However, if it is different,
an entry will be made into the ISD.
The statement number field in the ISD
will be set to all zero bits, and the
following word (offset field) will
have the current value of CSECT's off­
set counter stored in it. In addi­
tion, the new line number will replace
the old line number (for testing), the
location counter for the ISD (marking
the next available word for a state­
ment number entry) is incremented by
eight bytes, and the code file's
address counter is incremented by
eight bytes.

Note: The next paragraph outlines an
additional condition on the handling
of statement headers.

2. If the value of the byte being inves­
tigated is 2, the item is four bytes
long, with the last two bytes of the
item containing a pointer to a state­
ment label entry in the symbol table.
A test is conducted (on the class
field of the label) to see if it is a
source label. If it is, the binary
value of the label is retrieved (from
the symbol table) and placed in the
statement number field of the ISD.
The word following the label entry
will have the contents of CSECT's off­
set counter stored in it. The lSD's
location counter is incremented by
eight bytes and code file's address
counter is incremented by four bytes.
Further, no entry into the ISD will be
made for the next statement header
encountered.

Note: Upon completion of statement
number entries into the ISO, COSEC
will place the number of statement
number entries made into the fifth
word of the ISD. Also, at this time
the lSD's location counter will con­
tain the beginning location for symbol
entries (in the ISD). The offset from
the base of the ISD to where the sym-

bol entries are to start will be cal­
culated and stored in the third word
of the ISD.

CEKSG -- PSECT Builder (PRSEC)

The purpose of subroutine PRSEC is to
build a prototype control section for the
object program module. See Chart GO.

ENTRIES: PRSEC has a single entry <CEKSG1)
from BUILD.

Parameters expected by PRSEC, in addi­
tion to phase wide register parameters, are
the base of its CSD and its text base.

EXITS: Parameters passed upon exit back to
BUILD are the PMD top and the OPM top.

OPERATION: The building of the PSECT may
be divided into the procedures discussed
below. Concepts and terminology with
respect to the program module dictionary
(PMD) are closely related to their usage in
TSS/360 Dynamic Loader, Internal Program­
ming Specifications.

1. Initialization of PSECT's control sec­
tion dictionary (See Figure 35)

The CSD heading is cleared. The ver­
sion ID time stamp is inserted in the
fourth and fifth words of the CSD.
The number of relocatable definitions
field is set equal to 1. The attri­
butes field is set to indicate a
fixed-length prototype control sec­
tion. The name of the module, with a
suffix ~p. is inserted in the name
field of the first definition.

2. Processing of Entry Points

A special entry in the intercom region
pOints to the beginning of a chain in
the symbol table containing (exclu­
sively> descriptions of entry pOints.
PRSEC follows this chain and processes
each entry as follows:

a. The name of the entry is inserted
in the definition table.

b. The offset (SLOC) is inserted as
the value of DEF.

c. The number of complex definition
is increased by 1.

d. The CSD index is incremented
appropriately.

e. Unusual fields are cleared to
bi na ry zeros.

3. Construction of Reference Table

The reference table of the PSECT's CSD
contains entries similar to the
entries in the definition table.
There are two types of entries:

a. Names of control sections of this
OPM.

b. Names of external references
(entry points defined in other
modules) •

Subroutine PREC first processes
references to control sections
within the module. The procedure
is similar to the processing of
entry points, except that the
number-of-references field is
incremented by 1 for each entry in
the reference table. Control sec­
tion names are entered in the
order in which the control sec­
tions appear in the OPM. External
references are obtained by follow­
ing a chain in the symbol table.
Reference numbers, which are the
ordinal numbers of the entries in
the reference table, are retained
for subsequent use in constructing
the relocation directories. Each
storage class is represented by
one word starting at WORK + 100 in
the phase's intercom, and each
word contains an LA reg, d
instruction, where d is preset
with the appropriate reference
number. The reference number of
an external reference is saved in
the DMLST field of the correspond­
ing symbol table entry.

4. Building of Relocation Directory (RLD)
for Entry Points

Each item in the definition table,
that describes an entry point, has a
i-word relocation item in the RLD for
complex definitions. The RLD itself
starts with a list of i-word modifier­
pointers. The following steps are
performed to establish the modifier­
pointer list.

For each PMD page, up to and including
complex definitions, a l-word
modifier-pointer is inserted into the
CSD. The value of each modifier­
pointer is

4 eN - n} + 2

where:

N is the number of pages in the
PMD.

Section 7: Phase 5 203

n is the page number t.O which tne
modifier-pointer refers.

Thus, initially, each pointer indi­
cates the first RLD ite'f'.

Each RLD item has zero in its L field
dnd 1 in its T field, indicating a
length of four bytes for the adcon to
be modified, and specifying addition
as the modification operation. The
reference number is the ordinal nuwber
of CSECT's reference in the reference
table. The byte address is set to the
displacement of the value field of the
complex definition ,o'ithin the appro­
priate PtrlD page.

At the completion of the RLD, or at
page boundaries within the complex
definition list, the number of Rill
i terns pertaining to that page is
inserted, in the left half of the
corresponding modifier-pointer. The
pOinter of the next modifier-pointer,
if there is one, is increased by the
current number of bytes in the Rill.

5. Initialization of PSECT Text

The first 84 bytes of L~e PSECT text
are cleared. Before offsets in PSECT
of the various storage classes can be
computed, the size of NAMELIST infor­
mation must be determined.

6. Calculation of NAMELIST Size

NAMELIST size is accumulated as
follows:

Symbol table entries in the non­
variable name chain are scanned and
searched for NAMELIST names. Each
NAMELIST name contributes 12 bytes.
Each variable in a NAMELIST increases
the size by 16 + aN bytes, where N is
the number of dimensions. The number
of variables is obtained from the
NAMELIST name entries, and dimension
information is obtained by following
symbol table pointers from the preset
data file NAMELIST entries.

The offsets from PSECT's text base are
computed and stored temporarily in the
PSECT's register save area.

7. processing of External References

204

Address constants for external
references nay be present in the adcon
page, as well as parameter lists. If
the combined size of register save
area, local working area, address con­
stants, and parameter lists does not
exceed one page of PSEC'J"s text, the
RLD modifier-pointer is set to 4 (4-

byte integer) and the adcons are imme­
diately processed. Otherwise, the
portion of parameter lists which is in
excess of one page is examined for the
presence of external references. If
none are encountered, processing takes
place as above. If, however, t~ere
are external references, the number of
additional text pages containing such
references is determined, and the
appropriate number of words in the RLD
modifier-pointer list is cleared.

Processing of external reference
adcons and the corresponding reloca­
tion items in the RLD is as described
in the following paragraphs:

Adcon entries in the Symbol Table are
scanned. The value of the adcon is
tested for storage class 254 and, if
the test is successful, the corres­
ponding non-variable name entry (in
symbol table} is inspected for its
class. If the class indicates extern­
al reference, the name is matched
against the list of reference names in
the CSD, to obtain the ordinal number
of such matching reference. The relo­
cation item is composed to contain 0
in the L field, and the ordinal number
of the reference in the external
reference number field. The T field
is set to 2, and the byte field is set
equal to the offset of the adcon + 84.
Four bytes in the PSECT, starting at
the location indicated by byte field
are cleared, the nuw~er of text modi­
fiers field in the appropriate
modifier-point is increased by 1, and
a pointer to the RLD is advanced by
four bytes so that the next relocation
item may be received.

External reference adcons in parameter
lists are processed in similar manner,
except that the byte field is
increased by the size of storage class
4 to give the proper offset within
PSECT.

If the external reference adcons are
distributed over several pages of
PSECT's text, a different procedure is
followed. After processing adcon
page, a counter is initialized to
determine page boundaries within para­
meter lists. At the start of each
page, the pointer in the modifier­
pointer for that page is set with the
location, relative to the modifier­
pointer, of the next relocation item.
The byte field in the relocation item
contains the displacement within the
corresponding text page.

8. Processing of Internal ",'eferences and
NAMELIST Items

The number of modifier-pointers for
the RLD for internal references is
determined by the nt.!mber of pages in
PSECT's text, frotl! base to Namelists
inclusive. Processing of the RLD
entries is very similar to the proce­
dure outlined under Processing of
External References. There are,
however, seve~l ~ifferences. In the
relocation item, the reference number
field is obtained as follows:

a. For adcons pert3ining to storage
classes 1 and 2, the references
number is

(Number of COi"tMOl, blocks) + 1

b. For adcons covering storage
classes 3, 4, 5, 6, 7, and 8, it
is

(Number of COMMON blocks) + 2

c. Adcons referring to storage
classes 9 through 127 have a
reference number = (storage class)
- 8, if blank COMMON is present,
or (storage class) - 9, if blank
COMMON is absent.

d. Adcons that belong to one of the
storage classes from 128 through
253 have no RLD entry made in the
CSDi they-Will, however, cause a
word to be set to zero-bits in
PSECT's text.

In general, the value of an ad can is

Storage Class + Offset

If for any adcon (both storage classes
4 and 5) the storage class of its
value is 254, the offset part of the
value field contains a symbol table
pointer, and PRSEC obtains the value
of the offset from the symbol table
entry. In any case, the content of
the 4-byte adcon is computed as
follows:

Offset in Storage Class + Offset
of Storage Class in CS

If an adcon that paints to a NAMELIST
name entry in the symbol table is
encountered, the contents of the adcon
are made equal to the SLOC of the
NAMELIST name, if assigned, or to the
next available NAl1ELIST entry. The
NAMELIST entries are processed to give
information in the format specified by
FORTRAN I/O. The location field in
each variable description of the NAME-

LI~;T entry is set with a symbol table
pointer to that variable for later
processing. The SLOC field of the
NAMELIST na~e entry is assigned as
offset in PSECT.

Adcons in parameter lists and name­
lists are processed as described
before. A page count and special
handling of RLD, similar to the proce­
dure mentioned in (7) above, may take
place. Adcons in NAME LIST (locations
of variables) are computed from the
appropriate symbol table entries.

9. ProceSSing of Alphameric Information

The alphameric information will be
retrieved from the preset data file
and stored in the PSECT, beginning at
the first doubleword boundary after
the last NAl1ELIST entry.

10. Insertion of Virtual Storage Page
Table

A virtual storage page table (VMPT) is
constructed and contains halfword
entries of ordinal numbers from 0 to
n-1, where ~ is the number of pages
that contain text (up to and including
NAMELIST). pages corresponding to
non common variables, global and local
temps are allocated by setting the
corresponding number of half words in
the VMPT with 1-bits.

11. Processing Preset Data Stems in non­
COMMON Variables

If preset data is present, subroutine
SPECS is called to select and insert
any preset data items of storage class
6 into the area of nonCOMMON
variables.

12. Termination of PSECT

Termination of PSECT consists of:

a. Storing the number of bytes in the
PSECT's text into the second word
of the CSD.

b. Setting the OPM top in Phase S's
intercom to the first page boun­
dary following the last text entry
in the PSECT (also passed in a
register).

c. storing the number of bytes in
PSECT's CSD into the first word of
the CSD.

d. Setting the PMD top in Phase 5's
intercom to the first doubleword
boundary following the last CSD

Section 7: Phase 5 205

entry made by PRSEC (also passed
in a register).

e. The last six ~ords of the first
100 bytes of the PSBCT ~ill be
used as masks and should contain
values (left-justified) as sho~

Bytes Value Usage
16-79 80.t. i-word sign mask
80-81 4Ej. 2-word float mask
88-95 00 2-word temporary
96-99 46 1 l-word float mask

CEKSD -- Preset Data Processor (SPECS)

For variables whose initial values are
given, subroutine SPECS places these values
into the t~xt of the appropriate control
section. See Chart GP.

ENTRIES: Sub~outine SPECS has a single
entry (CEKSD1) from either subroutine CMSEC
or subroutine PRSEC.

Input Parameters:

1. Location of virtual storage page table
in current Control Section Dictionary.

2. Base of storage class in current con­
trol section.

3. Storage class of items to be filed in
current control section.

EXITS: Normal exit only. SPECS returns
control to the calling program with input
parameters unchanged.

OPERATION: For the purpose of the follow­
ing discussion, the following conventions
are established:

Variable

Variable

- A variable is either a simple
variable or an array
variable.

- The value of a variable is
either the initial value of a
simple variable or the ini­
tial value of an element of
an array.

Preset Data - Preset data are those entries
in the preset data file (PDF)
that originated from a DATA
statement or from data speci­
fied in a type specification
statement.

The preset data file is a prime source
of information used by SPECS. The preset
data entries in the PDF contain, among
other information, a link to the next vari­
able in the preset data file, a pointer to
the symbol table for each variable, one or
more value entries for each variable (i.e.,

206

elements of an array), a replication factor
for each value, and an offset entry that
indicates where the values are to be placed
from the base of the variable's storage
class.

For descriptive purposes, SPECS is
characterized in terms of retrieval and
storage.

Retrieval:

1. Subroutine SPECS is called during the
generation of a PSECT if any preset
data is present in the PDF or during
the generation of a named COMMON con­
trol section of a BLOCK DATA
subprogram.

2. SPECS locates the first preset data
entry in the PDF by following a point­
er given in the intercom.

3. For each variable within each preset
data entry, SPECS follows the variab­
le's pointer to the symbol table and
tests its storage class.

Storage:

1. The values for variables of appropri­
ate storage class are stored into the
text of the current control section.

2. For each page that is to have informa­
tion placed on it, SPECS enters the
virtual storage page number in the
CSD.

CEKSH -- Internal Symbol Dictionary
Generator (ASSIST)

Phase 5 of the FORTRAN compiler will
test to see if the user has chosen to have
an internal symbol dictionary (ISD)
generated. In the event the user has indi­
cated his desire to do so, it will be the
function of ASSIST to generate the ISD (see
Figure 36).

It should be noted that no ISO will be
built for a BLOCK DATA subprogram and that
the ISD is a prerequisite for utilizing the
program control system (PCS). See Chart
GQ.

RESTRICTIONS: The first word at the begin­
ning of a FORTRAN-generated ISD must have a
1 in bit 20. The rest of the word will be
zeros.

ENTRIES: Subroutine ASSIST has a single
entry (CEKSHl) from PHASES.

ASSIST has the following input
parameters:

1. Offset (in bytes) in PSECT of nonCOM­
MON variables.-

2. The third word of the ISO contains the
offset from the base of the I0D for
symbol entries and is filled in by
COSEC.

EXITS: Normal exit only, to PHASE5.
Before exiting, ASSIST stores the ISO top
into the intercom.

OPERATION: The entries in the ISO primari­
ly are subdivided into control section name
entries, statement numoer entries, and sym­
bol entries. Statement number entries are
made (in the ISO) during the time that sub­
routine COSEC is operating and will not be
discussed here.

Control Section Names: All control section
Names (CSECT, PSECT, labeled and blank COM­
MON) are listed in the ISO. Immediately
following each control section name entry
in the ISO is the alphameric ver,ion ID of
the module.

Method: COMMON names (including blank COM­
MON) are among the items listed in the
storage class table. ASSIST will retrieve
these names from the storage class table
and insert them in the ISO. The name used
for the CSECT name will be the name of
module with a nc suffix, and the name used
for the PSECT name will be the module name
with a #P suffix. (If the module name is
seven or eight characters long, it will be
truncated to six characters before the suf­
fix -- #C for the CSECT name and #P for the
PSECT name -- is added.)

Symbols: Each symbol, either COMMON or
nonCOMMON (integer, real, complex, or log­
ical) will have information about it placed
in the ISO. Most of the information is
obtained from the symbol table.

The information in the ISO will consist
of

Alphameric Name

Type

Number of Dimen­
sions

Length of Entry

Length Attribute
of Symbol

Section Number

Obtained from the symbol
table

Obtained from the symbol
table

Obtained from the dimen­
sion table

Calculated

Obtained from the symbol
table

Refers to the order in
.,hich the symbol's con­
trol section name appears
in the ISO.

Offset

Dimension
Constants

For variables in COMMON
control sections, the
offset is equal to the
contents of the SLOC
field assigned to the
symbol in the syrr~l
table.

For symbols belonging to
the PSECT, the offset
will be the contents of
the SLOC (from the symbol
table plus the offset of
nonCOMMON variables in
the PSECT. (This addi­
tional offset is an input
to ASSIST.)

obtainable from the
dimension table, or none.

The symbol table has all symbols linked
according to their respective storage
classes. Initial entry to the first vari­
able in the chain is accomplished by fol­
lowing the pointers listed in the storage
class table.

CRRSI -- Object Program Documentation
(EDIT)

The purpose of EDIT is to edit the
object program module at a user-selected
documentation level. See Chart GR.

ENTRIES: EDIT has a single entry (CEKSI1),
from PHASES.

Upon entry, EDIT expects the following
information:

The number of bytes of the code control
section (first word of Phase 5's work
area) •

Origin of the OPM's PSECT (second word
of Phase s's work area).

Parameters passed in the phase-wide as­
signment of registers.

EXITS: EDIT exits to PHASES. No output
parameters.

OPERATION:

General Discussion: There are three docu­
mentation levels at which an object program
module may be edited.

1. The basic level is always edited. The
user receives this documentation even
if he fails to specify one of the
higher documentation levels. The
basic level consists of:

Section 7: Phase 5 207

a. Program header, including the OPM
name and the combined size of the
CSECT and PSECT.

h. Names and offsets of entry points.

c. Names of external references.

d. Names and sizes of control
sections.

e. Names, offsets, and sizes of
storage classes, if other than
control sections.

The basic documentation level is
included in both of the higher levels.

2. The second level is generated if the
user has selected the MAP option. At
the ~AP level, the basic level is aug­
mented to include (in storage order):

a. Names and locations of labels.

b. Names, offsets and sizes of COMMON
and nonCOMMON variables.

3. The third level of OPM documentation
is obtained by exercising the LIST
option. The LIST documentation level
expands the MAP level to a full repre­
sentation of the object program
module. This level adds:

a. A listing of the CSECT text,
including object code and numeric
constants.

b. A listing of the PSECT text,
including tabulation of address
constants, available information
about parameter lists, and alpham­
eric constants.

Throughout the documentation, locations
and offsets are given as the number of
bytes from the corresponding control sec­
tion base, in hexadecimal. All sizes, in
decimal, indicate the number of bytes.

Method: (See Figure 39) After initializa­
tion, EDIT prepares the program header,
consisting of the OPM name and the size of
CSECT + PSECT, as follows:

NAME SIZE

All entry points are now listed, one
entry per line:

ENTRY NAME OFFSET IN CSECT

External references are represented by
name only:

208

EXTERNAL REFERENCES NAME1, NAME2, NAME3,
NAt1E4,

This completes the header information,
and EDIT now processes the CSECT, if it is
present. At the basic documentation level,
the CSECT is described as fOllows:

CSECT NAME
CODE
NU~~RIC CONSTANTS

SIZE
SIZE

OFFSET SIZE

The necessary information is obtained
from the storage class table.

If the MAP level is selected, EDIT
appends a list of labels to the CODE entry.

LINE NO.
XXXXX.XX
XXXXX.XX

LABEL
LABEL1
LABEL:z

LOC HEX
OFFSET
OFFSET

The labels are listed in the order of
their assignments and are obtained by scan­
ning the code file and utilizing the label
entries in the symbol table.

With the LIST documentation level, EDIT
generates a full expansion of the object
code, as well as constants. The general
format, appropriately arranged within an
assumed line of 132 print positions, is as
follows:

LINE NO. LABEL LOCATION INSTRUCTION
COMMENTS

The LINE NO, represented in statement
header entry of the code file as a packed
decimal, is edited as follows:

1. All leading zeros are suppressed.

2. In the case of integers, the decimal
point and fractional digits are
suppressed.

LABEL entries may consist of:

1. Source statement numbers.

2. Internally created labels (>99999).

3. Entry point names.

EDIT processes LABEL entries as they are
encountered in the code file.

LOCATION contains the location of the
instruction with respect to the base of the
CSECT. It is obtained from a register,
which keeps a cumulative total of bytes in
the object code.

Ul
(!)
()
rt'
f-'.
o
::;I

.....

~
Qi
(fI
ro
VI

t\)

o
-.D

"'l
f-' •

...0
~
11
ro
w
-.D

o
C
rt'
ttl

~
t-< "",
(fI
rt'
f-'.
;l

...0

6
11

~
rt'

'I:!
PJ
11
rt'

P

o
H1

t\)

NAMEXXXX,VVVVVVVV I

NAME xx

ENTRY NAME

ENTRY I
ENTRY2

ENTRYN

SIZE xxxxxxxx BYTES

lOC HEX

xxxxxx
XXXXXX

XXXXXX

EXTERNAL REFERENCES

EXlER 1 EXTER2 EXIEP.3

NAME Ie SIZE xxxxxxxx BYTES

CODE

EXTER4

EXTERN

"lINE NO.

US! Option \ xxxxx.xx

LABEL lOC HEX INST HEx

(
xxxxxx

~lINE NO. LABEL

"'POPriO"t XXXXX.xx xxx xxx

N~MERIC CONSTANTS

I TYPE
'*16

Un Oplion ~:!

XXXXl(XXX

LOC HEX

XXXXXXXX

LOC HEX
xxxxxnx
XXXXXXXX
xxxxxxxx

xxxxxxxx

NAMEfP SllE XXXXXXXX BYTES

REGISTER SAVE AREA

CONvERSION CONSTANTS

ADDRESS CONSTANTS

XX/XX/XX PAGE xxx

ExTER~ ExTER7 EXTER8

MM/DD/VY HH:MM/SS 2

lOC HEx 000000 SIZE XXXXXXXX bYTES

INS T ASSEMBLER COMMENTS

xxxx XX.XXXX(XX.XX) (~.XXXXXXXXXXXXXXXXE!XX.!.XXXXXXXXXXXXXXXXE±XX)

lOC HEX XXXXXXXX SIZE XXX XXX BYTES

VALUE
(±.XXXXXXXXXXXXXXXXE±xx.i.XXXXXXXXXXXXXXXXE!XX)
1162
±.981E+l

MM/

loe HEX 00000000

lOC HEx 0000004C

LOC HEx XXXXXXXX

SIZE

SIZE

76 BYTES

24 bYTES

SllE xxxxxxxx bYTES

1 LOC HEX
Lnt OPIl<.'1l

CONTENTS HEX CONTROL SECTION + OFFSET(HEX) STORAGt CLASS + OFFSET(HrX)

XXXXXXXX
XXXXXXXX

VERSIOti ID

xxxxxxxx
XXXX)(XXX

NAMEIC
NM1EfP

TIME STAMP (FOR CONTROL SECTIONS ONLY)

47
4E7

CODE 37
ALPIIA~j(fUC E87

- .C,4 UIll'S Pl'f PJl'l ___ . ___ _

N "'l ,...
0 \Q

" Ii
(1)

w
It)

0

" rt
'"0
~
rt

I:'
t-',
Ul
rt
t-',
:::;

\Q

Ql
Ii
S
III
rt

'0
III
Ii
rt

N

0
H\

IV

HAMEXXXX

PARAMElfR L IS15 lOC HEx XXXIXXXX SIZE xxxXXX BYTtS

jlOe HEX
lilt Option { ___ _

CONHNT5 HEX STORAGE CLASS. OfFSfT(HEX) COhTROL SECTION ~ OFfSET(HEX)

NAMElI S 1:' lOC HEx XXXJ(XXXX :,IIE XXX XXX BYTES

ALPHAMERICS toe HEx xxxxxxxx SIZE XXXXXX BYTES

AlPHA(HEX) ALPHA ,loe HEX

Ust Option (~X X XXXIXXXX A SINGLE ENTRy MAy HAvE sEvERAL CONTINUATION LINES

HON-COMMON VARIABLES (TOTAL)

~NON-COMMON VARIA8Lf5

Lut Oplion VAR I ABl f 1

I~~~~~
'lOCAL TEMPORARY STORAGE

GLOBAL TEMPORARY STORAGE

CO~MON NAMEl

1
" AR I ABL f

u.,", VARIABLEl
M,p Op'n)" VAR 1 .BL E 2

COMMON NAME2

UH '" ~ VAR ~~~L~
M,p 0,.""" r--.---

COMMON NAMEN

I VARIABLE

Lilt '" 'VARIAOLEl

M.p 0",' 10 (~~~~U~f~

NAMEXXXX,VVV

lOC HEX XXXXXXXX

laC HEX

xxxxxxxx

XXX},XXXX

laC HEx XXXXXXXX

LOC rlEx XXXXXXXX

lOC HEX XXXXXXXX

lOC HEx

XXXXXXXX
XXXXXXXX

LOC HEx XXXXXXXx

LOC HEx

lOC HEx XXXXXXXX

LOC HEX

XXXXXXXx

XXXXXXXX

SIZE XXXXXX BYTES

SIZE (BYTes)

XXXXXX

XXX XXX

SIZE xxX XXX BYTES

SIZE xxxxxx ~YTES

SI?(XXXXXX BYTES

SIZE (UYTES)

XXXXXX
XXXXXX

xxx xxx

SIZE (UYTES)

SIll XXXXXX BYTES

SIZE (tJY1fS)

xxxxxx

XXX XXX

1
SYMBOL TYPE CLASS 5IZE(tJYTlS) STORAGE C"ASS + OFFSET

S),llltJ0i

Tid-It:
Op(I('n

Cr;J<;~ Ref.
LU[Of.'llOIl

XXXXXX
XXXXXX

SYMBOL

VAR I ... BLU

xxxxxxxx

COMPLEX

DEfINED

STATEMENT NO.
VARlABLE

LINE NO •• LINE NO ••

16
CODE
NON-COMMON

REFERENCED

LINE NO .. LINE NO ••

3(6
280

~X/XX/XX PAGE XXX

An INSTRUCTION entry is edited in two
parts. The hexadecimal representation of
the instruction, as given in the code file,
is edited first. The second part contains
an assembly-like entry of the instruction.
The operation field is translated to the
corresponding mnemonic; the operand fields
are converted to decimal int.egers and are
rearranged with the appropriate
punctuation.

A COMMENTS entry consists of a descrip­
tion (if available> of the second operand.
It may contain one of the following:

1. Name of a variable, where all suO­
scripted variables are represented by
the array name only.

2. Label which appears as a statement
number.

3. Constant, shown as a literal.

4. Address constant, edited to give
results in the form

STORAGE CLASS NAME + OFFSET

EDIT uses a descriptor entry in the code
file to obtain information for the COMMENTS
field. The descriptor trails the respec­
tive instruction and points to the appro­
priate symbol table entry.

The representation of numeric constants
has entries similar to the object code,
with the following exceptions:

1. LINE NO. and LABEL entries do not
apply.

2. The COMMENTS entry is omitted.

The symbol table provides EDIT with the
necessary information to list numeric
constants.

After completing the editing of the
CSECT, EDIT processes the PSECT. At the
basic documentation level, PSECT is edited
as follo..,s:

PSECT NAME

REGISTER SAVE AREA
ADDRESS CONSTANTS OFFSET
PARAMETER LISTS OFFSET
NAME LISTS OFFSET
ALPHAMERIC CONSTANTS OFFSET
NONCOMMON VARIABLES OFFSET
LOCAL TEMPORARY STORAGE OFFSET
GLOBAL TEMPORARY STORAGE OFFSET

SIZE

SIZE
SIZE
SIZE
SIZE
SIZE
SIZE
SIZE
SIZE

At the MAP level, the NONCOMMON
VARIABLES entry is expanded to include
individual variable names.

NONCOMMOt. VARIABLES OFFSET SIZE

VARIABLE 1 OFFSET SIZE
VARIABLE 2 OFFSET SIZE

The LIST documentation level includes
description of alphameric constants,
address constants, and parameter lists.
For each address constant, EDIT supplies
the following information:

LOCATION/CONTENTS/CONTROLSECTION/STORAGE
CLASS

LOCATION gives the offset of the adcon
from the PSECT base. CO~TENTS is the value
of the adcon. CONTROL SECTION gives the
name of the referenced control section, and
STORAGE CLASS refers to the particular
class in that control section, such as
code, numeric, alphameric, etc.

For any COMMON control section, EDIT
produces, at the basic documentation level,
the name of the section and its size. The
MAP and LIST levels expand each COMMON
entry with a listing of variables. The
format. is similar to the representation of
NON COMMON VARIABLES in the PSECT.

The editing of COMMON cntrol sections
completes the work of EDIT on the OPM.
Symbol table and cross reference Index
option flags are examined, and, if
selected, the appropriate table is edited.

CEKSJ -- Symbol Table Sort (SYMSRT)

SYMSRT produces, upon request, an alpha­
betical listing of items in the symbol
table, as shown in Figure 39. See Chart
GS.

ENTRIES: SYMSRT has a single entry
(CEKSJ1) from PHASES. PHASES uses the
INVOKE macro to call SYMSRT.

EXITS: Normal exit only. No output
parameters.

OPERATION: PHASE5 inspects an entry in the
intercom to determine if the user desires
an output listing of items in the symbol
table. Should this option be selected,
PHASE5 invokes SYMSRT, Which provides an
alphabetical listing of the following
items:

1 • Entry names.

2. NonCOMMON variable names.

3. COMMON variable names.

Section 7: Phase 5 211

4. External names.

5. NAMELIST names.

In addition to writing the name of the
item, SYMSRT writes its type, class,
storage class, and offset from base of
storage class, where these items are
applicable.

Type

Class

- 1*2, 1*4, C*8, R*4, etc.

- Array variable, simple
variable, entry name,
external name, etc.

Storage Class - Code, nonCOMMON, named COM­
MON, etc.

Immediately follOWing the listing of the
items (explained in the preceding discus­
sion). a listing of labels, both source­
generated and compiler-generated, are out­
put in ascending order.

CEKSE -- Output Page Heading (PHEAD)

CEKSE produces the page heading for each
page of output listing generated by PHASES.

ENTRIES: PHEAD has asingle entry (CEKSE1)
and is invoked by:

EDIT
SYMSRT
CRFSRT
CONCV

CEKSE expects one input parameter in
register Pi for initializing the line-count
counter. The value must be 0, 1, or 2.
The value passed is subtracted from some­
constant, and the line count counter is
initialized to the result.

EXITS: Normal exit only. No output
parameters.

OPERATION: Upon entry, CEKSE does the
following:

1. Initializes a cell in the phase's work
area that is used as a line count
counter (i.e., the number of available
lines left on the current output
page).

2. S kips to a new page.

3. Forms and writes a page heading for
the new page. The heading consists of
the module name, the date, and the
page number. All three items may be
found in the phase's copy of the
intercom.

212

CEKSL -- constant Conversion (CONCV)

CONCV converts constants (integer, real,
or complex) to EBCDIC code for output in
documentation of a FORTRAN-compiled pro­
gram. See Chart GT.

ENTRIES: CONCV has a single entry (CEKSL1)
and is invoked by subroutine EDIT.

Input Parameters

A parameter register passed to subrou­
tine CONCV contains the address of a con­
stant's descriptive entry in the symbol
table.

EXITS: Normal exit only. No output
parameters.

OPERATION: While EDIT edits the code file
to generate the output listing, any comment
entries that refer to constants cause EDIT
to invoke subroutine CONCV. CONCV con­
verts, formats, and writes the constant and
its offset in the code control section.

A parameter register passed to subrou­
tine CONCV contains the address of the con­
stant's descriptive entry in the symbol
table. From the descriptive entry, CONCV
determines the following:

1. The constant type - integer, real or
complex.

2. The length of the constant - two,
four, eight, or sixteen bytes.

3. The address of the constant itself.

4. The constant's offset from the base of
the CSECT.

The first three items are used to con­
vert and write the constant in the correct
format, and the fourth item is written in
hexadecimal, as additional information for
the user.

CEKSK -- Cross Reference List Routine
(CRFSRT)

CEKSK prints a cross reference listing
for the variables (symbols) and labels,
from the list generated by Phase 1. See
Figure 39 and Chart GU.

ENTRIES: This routine has one entry point
(CEKSKl> •

EXITS: Only the normal exit is made, with
no output parameters.

OPERATION: Upon entry, CRFSi!.T makes a pass
across the cross reference list which was
generated by Phase 1. Each entry is
examined. If it is a ~ymbol reference, the
symbol table pointer is used to get the
symbol name. A table of symbol references
is built in the code file with the follow­
ing forIlHt:

o 8 16 24 31
r---------T----------T----------T---------l
I N I A I 1'1 I '-'~ I
I X I X I Flag INot Used I
~---------i----------L----------L---------~
I Line N'..unrer I l ___ J

where
"NAMEXX· is the symbol name in EBCDIC
(or BCD), lef-justified with trailing
blanks.

"Flag- indicators a reference (X'02')
or a definition (X t 01').

"Line Number" is the line number of
the reference or definition, in packed
decimal.

If the cross reference listing (CRL)
entry is a label reference, a table is
built in the CRL, with the format
unchanged.

After all the original entries in the
CRL have been sorted into symbols and
labels, the sorting of each list is begun.

First the symbol list is sorted in alpha­
betical order, with definitions first in
increasing line numbers, followed by the
references, also by increasing line number.
The logic involved in the sorting of the
list is best explained by the accompanying
flowchart (Chart ON). In this type of sort
scheme, a "delta" is calculated which is
one-half the list size. Each entry (i) is
compared with the corresponding "i+delta"
entry. If a switch is necessary, it is
made. If a switch of two entries is made
below a certain point in the list, more
comparisions are made before stepping to
the ni+l~ entry. When the bottom of the
list is reached, the delta is reduced to
half its size and the list scanned again.
When delta is zero, the sort is completed.

After the symbol list has been put into
proper order, the heading for the symbol
cross reference listing is printed. The
symbol "name" is printed on the first line
of its group only. If more than one line
of printing is necessary, the rest are
single-spaced. When a new name is found,
the first line is double-spaced to separate
the groups. The line numbers are printed
with two spaces between the last digit of
one and the first significant digit of the
next. Leading zeros of line numbers are
not printed.

After all the symbol list entries have
been printed, the label list is sorted and
printed in the same manner.

Section 7: Phase 5 213

FORTRAN IV PLM (TAPE 3) 970100-3

October 15, 1969

SECTION 8: FLOWCHARTS

Each chart in this section is referenced
from an associated routine described in an
earlier section of this manual. The charts
in this section are presented in the same
order as are the routine descriptions. Not
all routines are illustrated by charts.

The flowcharts in this manual have been
produced by the IBM Systern/360 Flowchart
Program (Flowchart/360), using OSASI sym­
bols. These descriptions of the OSASI
symbols and the Flowchart/360 conventions
will simplify interpretation of the flow­
charts in this manual:

SYMBOL

····*A1····**·**·
* •
* * * *
* * * * ********.****** ••

·*B1*******
CZOZZl 04SA3 .---------------*
* * * * * * *********.*******

-*Cl*******
* *
* * * -CHKSWT~H- *
* * * * *****************

*·**·D1**********
* • * * * * * * * • * *
~ * * *
* * * * ****** •••• ****.**

. * .*
*.

*.

. *.
E1 *

*.
* .*

*

.*.
J> 1 * .

*

•

. * *

* . * .*

.* BRUIC!! *.
• ON .*

.CONDITION.
. .

*. . '"
*

: .,. 0 .. QlQ~5

: ... 1..~~:1!1
: ••• 2 .. QlQ~2

: ••• 3 •• q~1~3

214

DEFINITION

The processing block indicates any processing function, or
a defined operation that causes change in value, form, or
location of information.

When this block is striped, it indicates the entry point of
a subroutine or module that is included in the flowcharts
in this manual. System/360 Flowchart automatically gene­
rates a page-and-block locator (04SA3 in this illustration)
that specifies the page with this entry point. See below
for an explanation of page-and-block locators.

When a call is made to a subroutine that is not in a flow­
chart, but is described in this manual, the call is shown
in a processing block without the stripe and the subroutine's
entry point is shown.

The library or predefined process block indicates a module
or subroutine that is in the flowcharts of another PLM.
Whenever possible the entry point of the module or subroutine
is listed. Refer to the Flowchart Directory in IBM s~stem/360
Time Sharing System: System Logic Summary, Form Y28- 009.

The decision block indicates a decision- or switching-type
operation that determines which of a number of alternate
paths should be followed.

When there are more than three alternatives, a branch table
is generated •

...
'11 ••

cznoo 017A1
· *-----------*. • • 4o.

* .

*
•

*
*

.* •
*

* •• ***4o******.* ••

K1*.***
* •

• *

*

• •
• * * * .**********

"2*****
CZOVER OOIlAl

* *
* *

* * ***********

,****~2*********

•

• *
• * * * ***** ••••• *.* ••

****:2*********
:2Z002 025B2 *---_._---------*
* * ****.**********

***. * •
: B4 :
** ••

".***
-aOh
• 82* • *

*

When the decision process is so involved that a detailed
flowchart is requtred, the decision block is striped, and
the page-and-block locator is generated as for the pro­
cessing block.

The I/O block indicates the general I/O functions, which
include (but are not limited to) the GET, PUT, READ, WRITE,
or device-control macro instructions, and the SIO instruc­
tion. Wherever possible, the entry point of a macro in­
struction processor is shown.

The modification block indicates an instruction or process
that changes program operation, e.g., sets a switch, modi­
fies an index register, or initializes a routine.

If the modification is performed by a subroutine that is
included in a flowchart in this PLM, the modification block
is striped and a page-and-block locator is generated.

The terminal or interrupt block indicates a terminal point
in a flowchart. It is used to show start, stop, halt, delay,
or interrupt. The terminal block is always used for either
entry to a routine or for exit when a routine has completed
its processing, and will not be reentered for the same ser­
vice request. This block is also used for macro instructions
such as ABEND, EXIT, and RETURN.

The terminal block will be striped if the exit is
tine that is included in a flowchart in this PLM.
and-block locator is automatically generated when
is striped.

to a rou­
A page­

this block

The on-page connector indicates exit to or entry from a block
on the same flowchart page.

The off-page connector indicates entry from or exit to a
block on another page of the same flowchart. Note: Exit
to another flowchart in this PLM is indicated by a striped
block.

Page-and-Block Locators

The page-and-block locator gene~a~ed for off-page CQnnectors
and striped flowchart blocks lLS- a five-character string! The
first three characters indicate the flowchart page on wh~ch
the transfer address is located. This page number is rela­
tive to the first flowchart page and appears in the upper
right corner of each flowchart. The last two characters
indicate the block at which the entry point is defined on
the referenced page.

Section 8: Flowcharts 215

Chart AA. Executive Overall Flow -- CEKOA (Page 1 of 2)

...... "' ...
"'0: 1. .. ~; ...

J

CEK'l'AA

·~2".*,"**·"" ..
: E:l"TEfi.

..................... -1'

: :.rc ~:G
I f(!P.I~AN
V IldTIAL

·**·*8":*"'****···'"
.. INI::'lALIZE ..
*GETriA:::N t'ROCESS.
LPC PAclAMETEiiS,
: ETC. :
.............. * ••••

I , l _____________ > I

EXi.C
i?liASES 1-',',

"' •••• Fl

• ENTER

\
I
I
1 , ·····G1··· .. ······ .. CEKTtI ,!(lDIJL2 ..

• us f:] fOB, 110ElII: •
,. ABo(;AS AHD ...
: Cv!1~1NIC.l..T rON:

••••• * •••••••••••
I

I
I

t hu" **"·*Hl **", ••••

:-~~~::~~-- -~~~:~:
.. RDM: IS (AL1ED ..
"'TO OUTPUT DIAG-·

:. ~~;;;~.~;~;.**!
I
I
I
I
1

t CONF'lL
"''''···Jl·····**·**
:::~!:--.. --~~~~~:
CALi..ED T,} FILE '
: C0N-~;IANT5 :

•••• * ••••••••• .., ••
I
I

I
I

t
". •• "'.,,('\-* ••••••• "'.-

2ZTUEU

216

~ LJ)Ci'!'::N ····"'C2***····4<·· :~~~ ~~~ ____ 9~~ ~~;
*" ,Jf'::N 'fHE: LlS:' ..
: DArA SET :

. ••• *." ... * ••• "'.
I

I
! !"' ••• no: .. ** "',)<>1< * ... :

., CALL PHASE 1
: CALL PHASE 1-

· ••••••••• * •••••••
I
I

fOilrflAN !
INITIAL ;
TO LPe t

.. •• "'.fZ"·.··"."' ...

.. 5:ET(JRN:

PHASe: 1

,. • .. ··P'2 ···**'*· ..
: E:OHER

I
!
~ GNSS

• "'* .-*~ 2**·"···- '" '"
:-~~~::~-- -~~ :~~:
.CAL ... GNS$ FOf,(A.
: 30uecE LINE '"

"'* ••••••• ***
I
I

l • •••• H2· * ...
: R2:7U':;'N "'

.-**"._11.-)-1<* ••• **"'
• i:NrE:~ ...

,. ... "' -1<

!
I
j *·,·CJ···· .. •··· Fr:.i:E ALi. ~A r~' *

.. E:X...:3PT OB,TECT ..

.. ."l:::IJ'Ji..~?A S5 *­
• ·)3JECT 1'IG;)ULe ..

:** ;2.~~~ :

I
I
~ L;)CLGS~'

........)j *.
:~ :~~ ~~--- - ~~: ~~:
*CLOSt: rHE LIST ..
: DATA SE':' "

*
i
1

l
...... ::;3 ••• • •• *
: IiE7!1fiN. •

** •• * ••• ., ***.

"·P3'*"'-·**"·* •
S tJTEZl ..

I
Lc,

··**·Gj*·**·**···
:~:~! ~~ ---- ~:: !~~:
'" Co\LlED TO AOD •
"'LINES TO OUTPUT.

: "'~~;!~~~ •• *.:

I
~

* **HJ****.* ••••
: RETURN •

• ••• ***** •• *.**

_h

.**.ht, *.*.,. ... · • j: fL'!"'"

I
!
I
I
I
I

~
....... 4t'"j."'* •• * · .

.
."' ,,.**

~, L!)CL(:S'F "'·4<··Cll····· ... ··· :~ ~~ ~ ~~ - - - -~ ~ ~ ~ ~:
·('lO:~2 TIE LIST •
: [lATA..:i F'T :

". ** '" * •• * .. **..- "'
I
I
I

!
."'."*[14 •• **.**** ..
: PF~"l:)i

.. ** **

CE!"TEA

• v!l.**.* ••• ,.* · -
FNl'EH

..,,*****
1
I
I

I
~ DU';OU'"

·····(:4.-**·······
!- ~:~: ~~ --- ~ ~ ~: ~.:
* ALJJ LINE'S :J
.. Llj'I :J,\'!A c~:;T i>

: ! ~ ~ .. ~~~ ~~; ~ u:
I

I
I
V

.** •• "4**."'
flET'J8N

** •• 1"'1**.* •• *-..*

!
!
I

i
I
,~

.*ott*.';>:, ... -.-."".,.. •••

.~;;> _"- LIST ..,_~ . .,...I\. •
*S~T. 1_,[: ::-7r~c: '"
: rr; L-~;! :CA'L'._ " .. ~ . '"
'II." •• "' •• "' ••• "."' ••

!
"

* ... *.<t", "''''.'''.- ... *' ••
'" IF' COl./VEHS/I- *'
: T~~;~hG c*~ L
-'OTJTP!!T CONSCLE ..
• _",":SSAGE5. * * ••••

I
!
I
~

'" "''''''''''J<:;.*.* •• *.'''
PE'l'URN

PAGE 0,; 1

Program Logic Manual

GY28-2019-1

FORTRAN IV Compiler

Flowcharts on pages 217-630 were not scanned.

PROGRAM REPRESENTATION FILE (PRF)

Program Representation File entry ijen­
tification values are as follows:

Entry Name
Begin Program
Subprogram Entry
Alternate Entry
Label Definition
Equation
Unconditional SO TO
Assigned GO TO
Computed GO TO
ASSIGN
Arithmetic IF
Logical IF
CALL
Argument Definition

Point
RETURN
Begin Loop 1
Begin Loop 2
Begin Loop 3
End Loop
CONTINUE
READ
READ with Namelist
READ without Namelist
wRITE
wRITE with Namelist
PRINT
PUNCH
Output List Element
End List
File Control
STOP
PAUSE
End Program
Input List Element

Field Identifiers

Identification
Code (16)

1
2
3
4
5
6
7
8
9
A
B
C
o

E
F

10
11
12
13
14
15
16
17
18
19
1A
IE
Ie
ID
IE
IF
20
21

All fields marked Wnot used" contain
zeros. ID appears in every item and iden­
tifies the kind of item. Other fields, the
IDs of the items in which they appear, and
explanations of the fields, are:

Field IDs
ABN 5,A,B

ALAB 9

ASTX 2,3

~~lanation
Abnormal Function flag.

Symbol Table pointer to
label descriptive part
entry.

Symbol Table ~ointer to for­
mal arg;Jlllent :lescripti ve
part.

APPENDIX A: INTERPHASE TABLE AND FILE FORMATS

BL3PT 12

BEG

BLIPr

BL2PT

CDP

CEX

CNT

LDLNK

END

EOF

ERR

10,12

12

12

5, A, B,
C.l1,
21

c

lE

11

10,12

14,15

14,15

ESLOC 4

PRF pointer to corresponding
Begin Loop 3.

Symbol table pointer to low­
er loop limit descriptive
part pointer.

PRF pointer to corresponding
Begin Loop 1.

PRF pointer to corresponding
Begin Loop 2.

In Phase 2, zerOi or a link
to the previous PRF entry
in which COMMON was rede­
fined. Redefinition is
either by a callan an
abnormal subprogram or by
definition of a formal argu­
ment called by name. Or, a
link to the previous PRF
entry in which a COMMON
variable was defined.

EF pOinter to subroutine
entry, in call <i) expres­
sion, or alone if no
par3meters.

No. of characters in
message.

PRF pOinter to corresponding
End Loop entry.

Symbol Table pOinter to up­
per loop limit descriptive
part entry.

In Phase 1, label value in
binary of End-of-file
return. Negative if
reference is to next
statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

In Phase 1, label value in
binary of Error return.
Negative if reference is to
next statement.

In Phase 2, Symbol rable
Pointer to label descriptive
part entry.

Estimated location in object
program.

Appendix A: Interphase Table and File Formats 631

ETRA A

EXITLB

FLAGS 4

FLAGS ~4,~6,

~7,19,

111..

FLAGS 11,~2

FNSW 1D

GLAB

GLNK

GTRA

ILNK

INC

IVAR

LABF

LABN

632

~~.12

6,7. S,
A,B,
C.~4.
15

A

all

10,1~

10,11

14,16
19,1A

15,18

Zero branch.

Symbol Table ?ointer to
label outside a loop
branched to from within a
loop -- Set by Phase 2 for
determining Materialize on
Exit optimization in Phase
3.

Bit 7-Statement is labeled,
but must be referenced.

Bit 1 - Non-zero indicates
no list with I/O statement
(X'SO').

Bit 2 - Non-zero indicates
LABF is an expression file
Pointer (X'40').

(Left to Right)

X'80'
X'QO'
X'20'
X'~O'
X'OS'

X'Oq'
X'02'

X'Ol'

Labels in Loop
Unsafe Loop

- Materialize
- Parameter
- Global Flag (inner,

no external calls)
- BXLE on Rec
- ONEASN (remove

floating load)
- IOFLAG (Phase 1)

o for END FILe
1 for REWIND
2 for BACKSPACE

Symbol Table pointer to
created loop top label
descriptive part entry.

Link to previous PRF entry
containing a label reference

Positive branch.

Link to previous PRF entry.

Symbol Table pointer to loop
increment descriptive part
entry.

Symbol Table pointer to loop
variable descriptive part
entry.

Symbol Table pointer to
FORMAT label descriptive
part entry or Expression
File pointer to Foni.at vari­
able name.

Symbol Table pointer to
Namelist descriptive part
entry.

LEV 11 Level of nesting ~f this
loop.

LINO all but Line number in packed
1,4,0, decimal.

LLNK

LLNO

LTRA

MSG

NARG

10,11,
12,18,
1C,20,
21

2,3,4

6,7,8
C

A

1E,1F

2,3

NOEL 6,7,8,
A,B,C

ODLNK 11

ODP 7,8,9,
lB,21

OPD1 5

OPD2 5

PDLNK 11,12

In Phase 1, link to previous
PRF Entry or Label Defini­
tion entry.

In Phase 2, link to previous
PRF Entry or referenced
Label Definition entry.

In Phase 3, link to previous
PF entry or referenced label
definition entry.

In Phase 1, label number is
binary. Negative if
reference is to next
statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

In Phase 1, label value in
binary for negative branch.
Negative if reference to
next statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

X'00008000' if reference to
next statement.

Symbol Table pOinter to
alphanumeric message des­
criptive part entry.

Number of ASTX fields.

Number of LLNO fields. Set
by phase 2 for IDs 10,11.

PRF pointer to Begin Loop 3
entry for next outer loop.

EF pointer to variable or
subscripted variable.

EF pointer to left side
variable or subscripted
variable expression.

EF pointer to right side
expression.

Link to previous PRF Begin
Loop 3 or End Loop entry.

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

PLAB

PLIB

PNAM

RIND

RVAR

SLIB

STNO

TTRA

TVAL

UNIT

VAR

VAR

VDP

3

1F

2,3

E

E

1E

4

B

A,B

14,15
17,18,
lD

5

D

5,D,

10,21

Entry Formats

Pointer to created Label
descritpive part entry if
flow into Entry statement.
Set to X'SOOO' if no flow.

Symbol Table pointer to
PAUSE subroutine descriptive
part entry.

Symbol Table pointer to
Entry Name descriptive part.

Return indicator.

If RIND = 0, 0 for unindexed
return, or constant index.

If RIND * 0, Expression File
pointer to variable.

Symbol Table pointer to STOP
subroutine descriptive part
entry.

In Phase 1, label value in
binary.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

In Phase 1, label value in
binary for true branch.
Negative if reference to
next statement.

In Phase 2, Symbol Table
pointer to label descriptive
part entry.

EF pointer to text
expression.

Expression File pointer to
unit designator descriptive
part entry.

Symbol Table pointer to
variable on left side.

Symbol Table pointer vari­
able descriptive part entry.

Link to previous PRF entry
in which variable was
defined.

Begin Program (4 bytes)

r---------~---------T--------------------, I ID = 1 INot Used I ILNK = X'SOOO' I L-________ ~ __________ ~ ____________________ J

Subprogram Entry (Variable Length)

r---------T-----·----~--------------------, I ID = 2 I NARG I ILNK I
~---------~----------+--------------------~
I PNAM I X'8000' I
~--------------------+--------------------~
I LLNK = X· aooo' I ASTX I
~-------------------~--------------------~

~--------------------T--------------------~ I ASTX I ASTX or Not Used I
~------------------~--------------------~
I LINO I L ___ J

Alternate Entry (Variable Length)

r---------T---------_r--------------------,
I ID = 3 I NARG I ILNK I
~--------~----------+--------------------~ I PNAM I PLAB I
t--------------------+--------------------~ I LLNK I ASTX I
~--------------------~--------------------~

t-------------------~--------------------~ I ASTX I ASTX or Not Used I
t--------------------~--------------------~ I LINO I L __ -J

I Label Definition (12 bytes)
r---------T---------_r--------------------, I ID = 4 I FLAGS I ILNK I
~--------~---------~--------------------~
I STNO I
~-------------------~--------------------~ I LLNK I ESLOC I L ____________________ ~ ____________________ J

Equation (10 bytes)

r--------~--------_r--------------------, I ID = 5 I ABN I ILNK I
t---------~----------+--------------------~
I OPD1 I VDP I
~--------------------+--------------------~ I OPD2 I CDP/VAR I
~-------------------~--------------------~ I LINO I L ___ J

Unconditional GO TO (16 bytes)
r---------~---------T-------------------_,
I ID = 6 I NOEL = 1 I ILNK I
t---------~--------_+--------------------~
I GLNK I Not Used I
~------------------~--------------------~ I LLNO I
~--~
I LINO I L __ -J

Appendix A: Interphase Table and File Formats 633

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

Assigned-GO-TO-(Variable Length) CALL (Variable Length)
r-------_r-------T------------------, r---------T----------T--------------------,
I 1D = 7 I NOEL I 1LNK I I 1D = C I NOEL I ILNK I
~---------~----------+-------------------_1 ~---------~---------+--------------------1
I GLNK I OPD I I GLNK I CDP I
~--------------------~------------------~ t--------------------t--------------------i
I LLNO I I CEX I Not Used I
~---------------------------------------_1 ~--------------------~--------------------~ I LLNO I
~---i t---1
I LLNO I
~--_1 r---~
I Lmo I I LLNO I L ___ ~

t---~
I LIND I

Computed GO TO (Variable Length)
L-__ J

r--------_r----------T--------------------,
I ID = 8 I NOEL I ILNK I
~---------~----------t-------------------_1 Argument Definition Point (8 bytes)
I GLNK I OPD I r---------T----------T--------------------,
~--------------------~------------------i I ID = D I Not Used I ILNK I
I ~O I t---------~----------+--------------------1
~---------------------------------------~ I VAR I VDP I l ____________________ ~ ___________________ J

r---------------------------------------i I ~O I
~---------------------------------------_1 RETURN (12 bytes)
I LINO I r---------T----------T--------------------, L __ J

I 1D = E I RIND I ILNK I
t---------~----------t--------------------~

ASSIGN (12 bytes) I Not Used I RVAR I
r--------~----------T-------------------_, ~--------------------~------------------i
I ID = 9 I Not Used I ILNK I I LINO I
~---------~----------+-------------------1

l ___ J

I OPD I AIAB I
~-------------------~-------------------~ i LINO I Begin Loop 1 (8 bytes) L ___ J

r---------T----------T--------------------,
I 1D = F I Not Used I ILNK I

Arithmetic IF (28 bytes) ~---------~----------~--------------------~ r--------_r----------T--------------------, I LINO I
I ID = A I ABN I ILNK I

L ___ J

~------~----------+------------------_1
I GLNK I CDP I
t--------------------t--------------------1 I TVAL I Not Used I Begin Loop 2 (16 bytes)

~-------------------~-------------------~ r---------T----------T--------------------,
I LTRA I I ID = 10 I Not Used I 1LNK I
t--1 ~-------~----------+--------------------~ I ETRA I I IVAR I VDP I
~---------------------------------------_1 ~--------------------+--------------------~ I GTRA I I BEG I INC I
t---------------------------------1 ~------------------+--------------------~
I LIND I I ~D I EXIT~ I L __ ~ L ____________________ ~ ____________________ J

Logica1 IF (20 bytes)
r--------~---------_r--------------------,
I ID = B I P&BN I ILNK I Begin Loop 3 (16 bytes)

t---------L----------+-------------------~ r---------T----------~------------------,
I GLNK I CDP I I ID = 11 I Not Used I ILNK I
r--------------------f--------------------1 t---------~----------+----------------~
I TVAL I Not Used I I EDLNK I PDLNK I
~--------------------~-------------------_i t--------------------t-------~---------~
I TTRA I I ODLNK I Flags I LEV I
~----------------------------------1 r--------------------t---------~----------~
I LINO I I CDP I GLAB I L ____________________________________ ~ L ____________________ ~ ___________________ J

634

End Loop (24 bytes) WRITE <12 bytes)
r---------T-------~--T--------------------, r---------T----------T--------------------,
I ID = 12 I Flags I ILNK I I 10 = 17 I FLAGS I LINK I
t---------~----------+--------------------~ t---------i----------+--------------------i
I BL3PT I PDLNK I I LABF I UNIT I
t--------------------+--------------------~ t--------------------~--------------------~
I IVAR I GLAB I I LINO I
t--------------------+--------------------~

l ___ J

I BEG I INC I
t--------------------+--------------------~ wRITE with Namelist (12 bytes)
I END I Not Used I r---------T----------T--------------------,
t--------------------+--------------------~ I 1D - 18 I Not Used I ILNK I
I BL1PT I BL2PT I t---------i----------+--------------------i l ____________________ ~ ____________________ J

I LABN I UNIl' I
t--------------------i--------------------i
I LINO I

CONTINUE (8 bytes)
l ___ J

r---------T----------T--------------------,
I ID = 13 I Not Used I ILNK I PRINT (12 bytes)
t---------i----------i--------------------~ r---------T----------T--------------------,
, LINO I I 1D = 19 I FLAGS I ILNK I l ___ J

t---------i----------+--------------------i
I LABF I Not Used I
t--------------------i--------------------~

READ (24 bytes) I LINO I
r---------T----------T--------------------,

l ___ J

I ID = 14 I Flags I ILNK I
t---------i----------+--------------------~ PUNCH (12 bytes)
I LABF I UNIT I r---------T----------T--------------------,
t--------------------~-------------------~ I ID = lA I FLAGS I ILNK I
I rnR I t---------i----------+--------------------~
t---~ I LABF I Not Used I
I EOF I t--------------------i--------------------~
r--------------------T-------------------~ I LINO I
I GLNK I Not Used I

l ___ J

t--------------------i--------------------~
i LINO I Output List Element (8 bytes) l ___ J

r---------T----------T--------------------,
I ID = 1B I Not Used I 1LNK I
r---------i----------+--------------------i
I Not Used I OPD I

READ with Namelist (24 bytes)
l ____________________ i ____________________ J

r---------T----------T--------------------,
I ID = 15 I Not Used I ILNK I End List (4 bytes)
t---------i----------+--------------------~ r---------T----------T--------------------,
I LABN I UNIT I I ID = 1C I Not Used I 1LNK I
t--------------------i--------------------~

l _________ i __________ i ____________________ J

I E6 I
t---; File control (12 bytes)
I WF I r---------T----------T--------------------,
t--------------------T------·-------------~ I 1D = 1D I FNSW I 1LNK I
I GLNK I Not Used I r---------i----------+--------------------i r--------------------i-------------------i I Not Used I UNIT I
I LINO I t--------------------~--------------------~ l __ -J

I LINO I l ___ J

STOP <12 bytes)
READ without Unit (12 bytes) r---------T----------T--------------------, r---------T----------T--------------------, I 1D = lE I CMT I ILNK I
I ID = 16 I FLAGS I ILNK I r---------i----------+----------------.----~
t---------~----------+--------------------i I SLIB I MS3 I
I LABF I Not Used I ~--------------------i--------------------~
t--------------------i--------------------~ I LINO I
I LINO I

l ___ J

l __ -J

Appendix A: Interphase Table and File Formats 635

PAUSE (12 bytes)
r---------T----------T--------------------,
I 10 = 1F I CNT I ILNK I
~---------i----------t--------------------1
I PLIB I MSG I
~--------------------i--------------------1
I LINO I l ___ J

End Program (4 bytes)
r--------~--------~-------------------,
I 10 = 20 I Not Used I ILNK I l ________ i _________ i ___________________ J

Input List Element (12 bytes)
r---------T----------T--------------------,
I 10 = 21 I Not usedl ILNK I
~---------i----------t--------------------1
I OPO I VOP I
t--------------------t--------------------1
I COP/VAR I Not Used I l ____________________ i ___________________ -J

636

STORAGE SPECIFICATION TABLES

Common Variable Table Format

One entry per COMMON statement starts on
a word boundary.

r---------T-------------------------------,
I 10 = 0 I Not Used I
~---------i-------------------------------1
I Line Number I
t---------T----------T--------------------1
I rERM· I storage I Symbol Table Index I
I I Class I I
t--------- i ---------- L --------------------1
~---------T----------T--------------------1
I TERM· I Storage I Symbol Table Index I
I I Class I I l _________ i __________ i ____________________ J

.Non-Zero denotes terminal entry.

EQUIVALENCE Entry

One entry per EQUIVALENCE statement. Entries start on a word boundary.

r-------~--------------T--------------------------,
EQUIVALENCE I ID=l I ENu=O I Number in Group (2 bytes) I

~ ________ .L ______________ .1. _________________________ ~ 4 bytes

IDENT I Line Number I
r-----.1.----------------T------T-----------------------___ .L _____ ,

EEl I Sywnol Table Pointer I Type I Offset or Number of Sybscripts I 6 bytes l ______________________ .1. ______ .L ________________________________ J

r-T---------------------------T-,------------------------------,
EE2-5 I SI Subscript IS I Subscript I L_.1. ___________________________ .L_.L ______________________________ J

r----------------------T------T--------------------------------,
EE6 I Symbol Table Pointer I Type I Offset or Number of Subscripts I l ______________________ .L ______ .L ________________________________ J

r-T---------------------------T-T------------------------------,
EE7-10 I SI Subscript IS I Subscript I

l-.1.--T----------T-------------f-.1.------------------------T-----J

I ID=l I END=O I Number in Groups I
r----.L----------.L------T------f------.. -------------------.1.-----,

EEl I Symbol Table Pointer I Type I Offset or Number of Subscripts I L ______________________ .L ______ .L ________________________________ J

r-T---------------------------,~------------------------------,
EE2-5 I S I Subscript I S I Subscript I L_.L ___________________________ .L_.L ______________________________ J

r---------------------T------T--------------------------------,
EE6 I Symbol Table Pointer I Type I Offset or Number of Subscripts I l ______________________ .L-_____ .L _______________________________ J

r-T---------------------------T~------------------------------,
EE7-10 I S I Subscript 181 Subscript I

L-.L--T----------T-------------t-.L------------------------T-----J

I ID=l I END=l I Number in Groups I
r----.1.----------.1.-----~------t--------------------------.L-----,

EEl I Symbol Table Pointer I Type I Offset or Number of Subscripts I L ______________________ .L ______ .L ________________________________ J

r-T---------------------------,-T------------------------------,
EE2-5 181 Subscript IS I Subscript I l_.L ___________________________ .L_.L ______________________________ J

r----------------------T-----~--------------------------------,
EE6 I Symbol Table Pointer I Type I Offset or Number of Subscripts I L ______________________ .L ______ .1. ________________________________ J

r-,---------------------------T-T------------------------------,
EE7-10 I SI subscript IS I Subscript I L_.L ___________________________ .L_.L ______________________________ J

Appendix A: Interphase Table and File Formats 637

EQUIVALENCE Entry

Field Identifiers
--- E!elQ --

ID

END

TYPE

Number in Group

Offset/Number of Subscripts

s

638

1
o

1
o

Explanation

EQUIVALENCE entry
COMMON entry

end of group
not end of group

Identifier type may be: 1, 2

Unknown (00)
Integer *2 (1,2)
Integer *4 (3,2)
Automatic (0,7)
Real *4 (3,3)
Real *8 (7,3)
Complex *8 (1,4)
Complex *16 (F,4)
Log i cal * 4 (3, 1>
Logical *1 (0,1)

Number of variables in a specified EQUIVALENCE entry

In the event that dimension information for a particular
variable (from a DIMENSION, COMMON or TYPE statement)
precedes the EQUIVALENCE statement, or that a subscripted
variable in the EQUIVALENCE statement contains only a
single subscript, the offset in EEl or EE6 is computed.

Hhen dimension information does not precede the EQUIVA­
LENCE statement and a subscripted variable in the EQUIVA­
LENCE statement contains more than one subscript, EEl or
EE6 contains the number of subscripts. In this case EE2
or EE1 are required, and EE3-5 or EE8-l0 may be required.

High-order bit:

1 negative subscript
o = positive subscript

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

PRESET DATA TABLES

Field Identifiers

NUMB

BPA

vc

DM

Explanation
Number of dimensions

Bytes per array

Variable/constant switch

Integer constant value if VC = 0
Variable, Symbol, Table pOinter if VC = 1

Flag (Cross Reference List) 1 - symbol table pointer definition
2 - symbol table pointer reference
3 - label value definition
4 - label value reference

Entry Formats

Dimension Table

Declared array not a formal argument

r-----~---,
I NUMD I BPA I
t------~-----------------------·---------------------__i
I Bytes Per Entry * First Dimension I
t--------------------------------~--------------------~

NUMD-l
t-------------------------------·----------------------~
I Bytes Per Entry * Product of First NUMD - 1 Dimension I L __ J

Declared array a formal argument

r-----~--, I NUMD I 0 I
t------+--~ I VC I OM I
.------~---~

NUMD

t-----~--~
I VC I OM I L _____ ~ __ J

Appendix A: Interphase Table and File Formats 639

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

Alphameric Table
r--------------------T--------------------,
I continuation Link I Not Used I
t--------------------~--------------------~
I Line Number I
~--------------------T--------------------~
IDescriptive Part Pointer Size (Bytes) I
t---------~---------+----------T---------~
I I I I I
t---------+----------+----------+---------~
I I I I I
~---------~----------~----------~---------~

~---------T---------~----------T---------~
I I I I I L-________ ~ _________ ~ __________ 4 _________ J

Namelist Table

r-------------------T---------------------, I Symbol Table I Symbol Table I
I Pointer of I Pointer of I
I Variable1 I Variable2 I
t-------------------~---------------------~

~--------------------T--------------------~ I Symbol Table I Symbol Table I
I Pointer of I Pointer of I
I Variablen-1 I Variablen I L ____________________ ~ ____________________ J

Data Table

r-------------------T---------------------, I Continuation Link ISymbol Table Pointer I
~-------------------~----------T----------~ I Offset I Number I
I (3 Bytes) lof Values I
~------------------------------+----------~ I Repetitions I I
I (3 Bytes) I Length I
~---------T--------------------~----------~ II constant I Number of Values I
I Type I I
~--_-----_k-------------------------------~
I Value I
~---~

~---------T-------------------------------~
I Constant I I
I Type I I
b---------~------------------------------~ I Value I l ___ J

Cross Reference List

r---, I Line Number I
~---------T-------------------------------~ I Flag I S.T.P. or L.V. I L _________ k-______________________________ J

EXPRESSION FILE (ERF OR EF)

The expression file is formed of indivi­
dual strings of entries, each with the fol­
lowing general format:

640

r---------T---------~--------------------, I EFID I EF Flags I Content I
~-_-------~----------4--------------------~
I content (Continued) I L ___ J

As described below, both the ID and the
content may take one of two forms. The
strings are the usual riqht-hand Polish
notation.

EFID - FF = Null entry

Form 1:
o 1 4 7

r-T---~----'
10IcodeiTypei
L_.L ___ -L ____ J

Code: 0 Variable Type: 1 Logical (1)

2 Logical (4)
1 Constant 3 Integer (2)

4 Integer (4)
2 Function 5 Real (4)

6 Real (8)
3 Residue of 7 Complex (8)

removed 8 Complex (16)

expression 9 Literal
4 Operator,

general
5 Operator,

common
or removed
expression

6 Adcon

Form 2 (loop variables or parameters only):

012 7
r .,..,.-----,
I I I Level I
111 I number I
l-~Ci;-;l;~

IV Flag = Induction variable
Level Number = Loop level

EF Flags -- Both forms use EF Flags as fol­
lows (left to right, beginning with high­
order bit):

X'80'
X'40'
X'20'
X'10'
X'SO'

X· 40'

content

Sign indicator (EFSIGNF)
Subscript indicator (EFSUBS)
Last use flag
Short form notation in I/O list
Split recursive constant 0
(Phase 3 only)
Global floating point register
quantity

Form 1 (variables, functions, and
constants) :

r---------------------,
I QUANT I

r-------------------+---------------------~
I ADCON I DISPL I l ___________________ .L _____________________ J

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

I QUANT

ADCON
DISPL

Symbol Table (Descriptive Part
Pointer) reference to variable or
constant

During Phases I and II this is the
offset; during Phase III ADCON is
made the Symbol Table reference to
Adcon and DISPL is the immediate
displacement

Note:

ADCON = 0 for subscripted variable
ADeON = FF for Adcon page

reference

Form 2 (operators):
r---------~----------,
I I NOT I
I OP I USED I

r-------------------+----------4 ----------i
I TRIAD I NAME I L ___________________ ~ ____________________ _J

OP Operator code:

Code

TRIAD

NAME

(l6) Operator
add (- by negation)
Multiply

00
01
02
04
05

06

01
08

09

OA

OB
10
19

1A

tB
11

12

13

+ ,.
/ ,.,.

, ,

.EQ.

.GT.

.AND.

; i

.LT.

.OR.

MAX

?

i

Divide
Exponentiate
Argument of closed
function
Argument of intrinsic
function
Closed function
Equivalence (.NE. by
negation)
Greater than (.LE. by
negation)
Logical AND (.NOT. by
negation)
Intrinsic function
Subscript
Less than (.~E. by
negation)
Logical OR (.NOT. by
negation)
Maximum
recursive add -- Phases
3 and 4
index add -- Phases 3
and 4
dummy (to distinguish
variables) -- Phase 3
only

Expression file reference (Phase 3)

For: operator, displacement
(Phase 3)

For common or removed expression,
identifying number (Phase 3 and 4)

Storage classes 128 to 253 correspond to
formal arguments called by name. Storage
class 254 is used for locations in the code

Entry for
Blank
Common

Entry for
First
Named
Common

STORAGE CLASS TABLE (STCLTB)

Number of Named Commons 1 Pointer to First
Non-common Variable

N umber of Bytes in Storage Class 1 (Code)

--,,-
2 (Numeric Canst.)

-,,- 3 (AI pha Canst.)

--,,- 4 (Adcons)

-,,- 5 (Name - & Par. Lists)

--,,- 6 (Non-common Var.)

--,,-- 7 (Global Temps.)

--,,-- 8 (Local Temps.)

--,,- 9 (Blank Common)

Name

----------- 1 Pointer to First Variable

Number of Bytes in Storage Closs 10 (1st Named Common)

Nome
------------- J Pointer to First Variable

Number of Bytes in Storage Class 11 (2nd Named Common)

Name
r--------

I Pointer to First Variable

V V

Number of Bytes in Storage Closs n (nth Named Common)

Name

--------------1 Pointer to First Variable

.
Pointers ore Off,ets from Symbol Table Base ond Indicate
Origins of Each Choin of Variable Entries. n ~ 127

covered by a special class of address con­
stants, whose values are filled in by Phase
5.

Storage class 255 is used for estimated
locations in the code and is converted to
storage class 1 when the correct location
is entered.

Appendix A: Interphase Table and File Formats 641

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

PROGRAM FILE (PF) FORMATS OUTPUT BY PHASE 1

All the program representation file
entries, except begin program (identifica­
tion code 1), are modified during Phase III
and put into the program file.

Field Identifiers

The fields have the same meaning as for
the program representation file entries,
with the addition of the following:

Field
BEG

END

EXITLB

FLAGS

GLBL 1
to GLBLS

GBLREAL

642

IDs Explanation
~ Link to Polish string,

INITIAL VALUE

10

10

Link to Polish string,
FINAL VALUE

Symbol Table pointer to
label outside the loop,
where the induction vari­
able must be material­
ized. If loop has no
exit, then EXITLB=
X'SOOO'.

F,10,CLeft to Right)

F

11

X'SO' Labels in loop
X'40' Unsafe loop
X'20' Materialize
X' 10' Parameter
X'OS' Global Flag (inner

loop, no external
calls)

X'04' BXLE on recursive
X'02' ONEASN (globally

assign FP register
6)

X'Ol' I/O implied loop

Names of global expres­
sions for this loop or
Symbol Table reference,
if Adcons. The names will
have 10001 added to them
to distinguish them from
Symbol Table references.

When the ONEASN flag is
set, this field contains
a PF pointer to the left
side of an assignment
statement which can be
globally assigned to
floating-point register 6
by Phase 4.
When ONEASN flag is off,
this field contains eith­
er a symbol table pointer
to a simple real variable
or constant which can be
loaded into floating­
point register 6 outside
of the loop, or it con­
tains X'SOOO'.

INC

IVAR

IVARSVE

LABL

LLNK

PNAM

RMVAL
(Begin
Loop 1)

RMVAL
(Begin
Loop 2)

RMVAL
(Begin
Loop 3)

STCL

Entry Formats

10

10

10

4

2

F

10

11

2

Link to Polish string,
increment value

Link to Polish string.
If materialize flag is 1,
this is the induction
variable; otherwise it is
a test expression for the
first variable in RMVAL
chain.

Contains the PF pointer
for IVAR saved for
materialization on exit
loop.

Symbol Table reference

Link to previous
referenced label defini­
tion entry.

Symbol Table entry of the
ENTRY name. This field
is 'SOOO' if this is a
main program.

Link to chain of
removed expression in
polish, with the format:

Insert R

Link to chain
recursive removed
expressions.

Link to chain of
common expressions which
would be removable but
for the loop variable.

Storage Class Number of
the respective argument.

Subprogram Entry (Variable Length)
r---------T---------~-------------------_,
I 10 = 2 I NARG I ILINK I
t---------~----------+--------------------~
I PNAM I PLAB I
~--------~---------+----------T---------~
I STCL1 I STCL2 I STCL3 I STCL I
~---------~---------~----------~---------~

~---------T-------------------------------~
ISTCL I Filler When Necessary I
I NARG I I
~---------~-------------------------------~
I LINO I L ___ J

Alternate Entry (Variable Ler.gth) ASSIGN (12 bytes)
r--------,---------~--T-------------------, r---------T----------T----------
I ID = 3 I NARG I ILINK I I 10 = 9 INot Used I II
~--------~----------t--------------------~ t---------~----------+----------
I PNAM I PIAB I I OPD I AI

t--------T----------+---------T--------~ ~--------------------~----------
I srCL1 I STCL~ I srcL 3 I STCL I I LINO
t--------~----------~---------~---------~

l ______________________________ _

t---------T-------------------------------~
ISTCL I Filler ~hen Necessary I Arithmetic IF (20 bytes)
I NAR::; I I
t---------~-------------------------------~ r---------T----------T----------
I LING I I ID = A I Not Used I II L __ -J

t---------~----------+----------
I rVAL I cr

Label (8 bytes) t--------------------t----------
r---------T----------T--------------------, I LTRA I E~
I 10 = q I Not Used I ILINK I t--------------------+----------
t--------~----------+--------------------1 I :;TRA I Nc
I LABL I LLNK I t--------------------~----------L ____________________ ~ ____________________ J

I LINO l _____________________________ _

Equation (16 bytes)
r--------T----------T--------------------, Logical IF (16 bytes)
I 10 = 5 I Not Used I ILINK I r---------T----------T----------
t---------~----------+-------------------~ I ID = B I Not Used I II
I OPD1 I OPD2 I t---------~----------+----------
t--------------------+--------------------~ I TVAL I Cl
I COP I VDP I t--------------------t----------
t--------------------~--------------------~ I Not Used I ~
I LINO I t--------------------~----------L __ -J

I LINO l _____________________________ _

Unconditional 80 TO (12 bytes)
r--------T----------T-------------------, CALL (Variable Length)
I 10 = 6 I Not Used I ILINI(I r---------T----------T----------
t--------~----------+--------------------~ I 10 = C I NOEL I II
1 LABL I (Not 1 t--------·-~----------t----------
I I Used) I I CEX I cr
t-------------------~-------------------1 t--------------------t----------
I LINO I I LLN01 I Ll l __ J

t--------·------------~----------

Assigned GO TO (12 bytes) t--------------------T------------
r-------,-----------T--------------------, I LLNO I Filler ~h
I ID = 7 I Not Used I ILINK I I NOEL I Necessary
r---------~----------+-------------------~ t--------------------~----------
I OPD I Not Used I I LINO
1-------------------~--------------------1

l ________________________________ _

I LINO I l ______________________________________ -J
Argument Definition Point (8 byt
r---------T----------T----------

Computed GO TO (Variable Length) I ID = D I Not Used I II
r---------T----------T--------------------, t---------~----------+----------
I ID = 8 I ~OEL I ILI NK I I \TAR I VI
t---------~----------+-------------------~

l ____________________ ~ _________ _

I OPD I LLN01 I
t--------------------~--------------------1 RETORN (12 bytes)

r---------T----------T----------
t--------------------T-------------------~ I 10 = E I RIND I II
I LLNO I Filler when I r---------~----------t----------
I NOEL I Nec2ssary I I RVAR I Nc
~-------------------~--------------------1 t--------------------~----------
I LINO I I LINO L ___ J L--___________________________ __

Appendix A: Interphase Table and File F

Begin Loop 1 (28 bytes) READ .ithout Unit (12 bytes)

r---------.----------~--------------------l r---------T----------T--------------------,
I ID = F I Flags I ILINK I I ID == 161 Flag I ILINK I
r---------i----------f--------------------i r---------~----------t--------------------i
I RMVAL I GL.3Ll I I LABF I X'SOOO' i
r--------------------i--------------------i t--------------------i--------------------~

I LINO 1
r--------------------T--------------------1

l ___ J

I ::;LBL8 I Filler I
r--------------------i--------------------i
I LINO I wRITE (12 bytes) l ___ J

r---------T----------T--------------------,
1 ID == 111 Flags I IUNK I

Begin Loop 2 (16 bytes) t---------i----------t--------------------~ r---------T----------T--------------------, I LABF I UNIr t
I ID = 10 I FLAGS I I LINK I t--------------------i--------------------~
~--------i----------+-------------------~ I LINO I
I RMVAL I NAA I

l ___ J

~-------------------+--------------------~
! BEG I £ND I
t-------------------+-------------------~ wRITE with Namelist (12 bytes)
I INC I VDP I r---------T----------T--------------------,
t--------------------t--------------------1 I ID == lSINot Used I ILINK I
I lVARSVE I EXITLB I t---------i----------t--------------------~ l ____________________ i ___________________ -l

I LABN I UNIT I
t--------------------i--------------------~

Begin Loop 3 (12 bytes) I LINO I
r---------T----------T--------------------l

L ___ J

I ID = 111 FLAGS I ILINK I
~---------~----------t--------------------~
I RMVAL I CDP I PRINT (12 bytes)

~--------------------+--------------------~ r---------T----------T--------------------,
I ;:; LAB I GLBR.l!.AL I I ID == 191 Flags I ILINK I l ____________________ i ____________________ J

t---------i----------t--------------------~
I LABF I X'8000' I

End Loop ~--------------------i--------------------i r---------.----------T--------------------, I LINO I
I ID = 121 LEV 1 ILlNK I

l ___ J
L _________ i __________ i ____________________ J

PUNCH (12 bytes)
CONTINUE (8 bytes) r---------T----------T--------------------, r---------T----------T--------------------, I ID = 1A I Flags I ILINK I
I ID = 131 Not Used I ILINK I r---------i----------+--------------------i
t---------i----------i--------------------~ I LABF I X'8000' I
I LINO I t--------------------i--------------------~ l __ -l

I LINO 1 L ___ J

RE:AD (16 bytes)

r-------T----------T--------------------, Output List Element (8 bytes)
I ID = 141 Flags I ILINK I r---------T----------T--------------------,
r---------i----------t--------------------i I ID = 1B I Not Used I ILINK I
I LABF I UNIT I t---------i----------+--------------------~
t--------------------+--------------------~ I ~PDl I Not Used I
I EOF I ERR I

l ____________________ i ____________________ J

t--------------------i--------------------~
I LINO I End List (4 bytes) l __ -J

r---------T----------T--------------------,
I ID == 1C I Not Used I ILINK I

READ with NaDelist (16 bytes)
l _________ i __________ i ____________________ J

r---------T----------T--------------------,
I ID == 151 Not Used 1 ILINK I File Control (12 bytes)
t---------i----------t--------------------~ r---------T----------T--------------------,
I LABN I UNIT I I ID = 1DI FNSW I ILINK I
t--------------------t--------------------i t---------i----------f--------------------~
I E.OF I ERR I I Not Used I UNIT I
t--------------------~--------------------~ t--------------------i--------------------~
I LINO I I LINO I L ___ J L ___ J

644

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

STOP (12 bytes)
r---------T----------T--------------------,
I 10 = lEI CNT I ILINK I
~---------~----------~--------------------i I SLIB I MSG I
~--------------------~--------------------~ I LINO , l ___ J

PAUSE (12 bytes)
r---------T-------.--T--------------------, I 10 = 1FI CNT I ILINK ,
~--------~----------+--------------------~ I PLIB I MSG ,
t--------------------~--------------------i
I LINO I l ___ J

End Program (4 bytes)
r---------T----------T--------------------, I ID = 20lNot Used I ILINK = SOOOI L _________ ~ _________ ~ ____________________ ~

Input List Element (12 bytes)
r---------T---------~--------------------, I ID = 211 Not Used I ILINK I
t---------~---------_+--------------------~
I OPD I VDP I
~--------------------+--------------------i
I CDP I Not Used I l ____________________ ~ ____________________ J

CODE FILE FORMAT

statement Header
r---------T-------------------------------,
I 01 I 0 I
~--------~------------------------------~
I Line Number I l ___ J

Label Definition
r---------T----------T--------------------, I 02 I 0 I Symbol T. Pointer I L _________ ~ _________ ~ ___________________ _J

RR Instruction

r--------~---T----~--------------------, I OP I R1 I R2 I 0 I L _________ ~ ___ ~ _____ ~ ____________________ J

RX Instruction
r---------T----T----~---~---------------, I OP 1 R1 I X2 I B2 I D2 I
~--------t_---L-----+----~---------------~
I 0 1ST. Class, Symbol T. Pointer I L _________ ~ _________ ~ ___________________ _J

RS Instruction
r---------T--~----~----~------------_,
I OP 'R1 I R3 I B2 I D2 I
~---------~----~-----t----~------------~ I 0 1ST. Class I Symbol T. Pointer,. L _________ ~ __________ L ___________________ J

*The second word - Descriptor - of an RS
instruction is optional.

Label Reference
(Displacement Supplied by Phase 5)
r---------T----------T------------------_,
I FE I 0 ,Symbol T. Pointerl 1

t---------+----T-----+----T-------------~
I OP IR1' X2 I B2 1 0 I
I , M11 R31 I ,
t---------~--~----_+----~-------------~
I 0 I Symbol T. Pointerl 2 L ___________________ ~ __________________ _J

1 (ADCON Entry)
a (LABEL Entry>

End of Code
r---------T----------,
I FF I 0 I L _________ ~ __________ J

SYMBOL TABLE

The Name Part and Descriptive Part of
Symbol Table entries are placed in the same
storage area but are separated from each
other; the two parts are therefore shown
indiVidually.

General Format

I Name Part (at higher address portion of
table)

r---, I N~ I
t-------------------~-------------------~ I Name (Cont' d.), DPP I
t-------------------t_--------------------i I LINK I DMLST I L ___________________ ~ _____________________ J

Field
NAME
LINK

DPP
DMLST

Description
Identifier name in EBCDIC
Link to next identifier
entry in chain, otherwise
X'SO--','END CHAIN'.
Descriptive part pointer.
Dimension list pointer.

Setting
Phase
--1-

1

1
1

Descriptive Part (at lower address portion
of table)

r-----T---~------~-------T------T-------' I 1D ,not I Class I Flags IType I ULEV I
I = 0 lused, I I I 1
I 0-2 12-3 1 4-7 I 8-15 116-23 1 24-31 1
t-----~--J.------~-------.&.------+-------~
1 SLOC 1 STCL 1
t--------------------,.--------~-------i I LINKF I NUMENT I
t----------------t------------------i I FDP I LSTBDP , L ____________________ ~ ____________________ J

Appendix A: Interphase Table and File Formats 645

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

Field
ID

Setting
Phase Description
Variable Name - a 1

CLASS Identifier class may be: 1
o
1 ==
2
3 =
4 =
5

Unknown
Simple variable
Array variable
Statement function
External subprogram
reference
Open (Inti"insic func­
tion reference)

6 = LIB (Library function
reference)

7
8

Namelist
Label - primary and
secondary subprogram
entry except primary
fUnction name

9 :::: Statement function
argument

10 = OPENA (Intrinsic Fn
with automatic typing)

11 = LIBA (Library Fn with
automatic typing)

12 :::: MAX (MAX MIN Function)
13 = Function Name of Func­

tion Subprogram
14 = Unknown Function

FLAGS One-bit indicators which
are: (Left to Right)

X'SO'
X'40'
X'20'
X'10'
X' 08'
X'04'
X' 02'
X'Ol'

TYPE

ULEV

646

Type Frozen
Formal argument name
Not Used
Defined
Active induction variable
Common
Equivalence or Interfering*
Nonredefinable

In Phase 1 X'02' indicates
equivalenced variable. In
Phase 2 X'02' indicates
variables which may inter­
fere with each other.

Identifier type may be:

Unknown (0,0)
Integer*2 (1,2)
Integer*4 (3, 2)
Automatic (0,7)
Real*4 (3,3)

Real * 8 (7,3)
Complex*8 (7,11)
Complex*16 (F,4)
Logical*4 0,1>
Logical*1 (0,1)

1,2

Level of the lowest loop in 1,3
which this is a loop
variable or parameter.

SLOC Storage location. Byte 1
used in Phase 1 for follow­
ing flags: (Left to Right)

Initial data
Must not be dimensioned
FUnction name
Cornmon block name
Induction Var. in Namelist

Byte 2 used in Phase 1 for:
Externa 1 Flag

STCL Storage Class 2

LINKF Link from descriptive part
to the name part. 1

2

NUMENT During Phase 1, is class if 1,2,3
NAMELIST, the number

FDP

of list elements. During
Phase 2, the number of
words of storage required
for the array. During
Phase 3. the forward com­
pute point.

Forward Definition Point.

During Phase 1, contains
the latest PRF entry in
which the variable was
defined. During Phase 3
contains the current for­
ward definition point.

1.3

LSTBDP If class is Namelist Label, 1,3
link to the chain of
elements of the Namelist.
During Phase 3, contains
the backward definition
point.

Specific Descriptive Part Formats of
Intrinsic and Library Functions

1. LIB (Class 5) and LIBA (Class 11)

r---~------T--------T------------T-------'
lID (Class I No. of (Function (Index I
I = a I I Args. 1 Type ((

I (0-1(2-7 I 8-15 116-23 (211-31 (

~---~-------+--------+------------~-------~
IArg. Type I Extern. I I
I I Flag I I
.-----------~-------+--------------------~ I LINKF I (
.------------------~--------------------~
I I l ___ J

Index - Used by LIBA for table lookup in
Phase 1.

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

2. OPEN (Class 5)
Assemble in

r---T-------T-------~----------T---------,
lID I Class I No. of IFunction I Function I
1= 01 I Args. I Type I Number I

110-11 2-7 I 8-15 116-23 1 24-31 I
t---~-------+--------L----------L---------~
IArg. Type I I L ___________ ~ _____________________________ J

Appendix A: Interphase Table and File Formats 646.1

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

The 'OPEN' class functions and their function numbers are listed in the following
table. If the function does not have a name, a description is provided.

r--------------T----------T---, I Function No. I Name I Description I
~--------------+----------+---~
I 1 I FLOAT I I
I 2 I DFLOAT I I
I 3 I HFIX I I
I 4 I IFIX,INT I I
I 5 I DBLE I !
I 6 I SNGL I I
I 7 I IDINT I I
I S I REAL I I
I 9 I i Convert L*l to L*4 I
I 10 I I Convert L*4 to L*1 I
I 11 I I Convert L*2 to r*4 I
I 12 I I Convert r*2 to R*4 I
I 13 I I Convert 1*2 to R*S I
I 1.4 I I Convert r*2 to C*S I
I 15 I I Convert 1*2 to C*1.6 I
I 16 I I Convert 1*4 to 1*2 I
I 1.7 I I Convert 1*4 to C*S I
I 1S I I Convert 1*4 to C*16 I
I 19 I I Convert R*4 to C*S I
I 20 I I Convert R*4 to C*16 I
I 21 I I Convert R*S to 1*2 I
I 22 I I Convert R*8 to C*S I
I 23 I I Convert R*S to C*1.6 I
I 24 I I convert C*S to 1*2 I
I 25 I I Convert C*S to 1*4 I
I 26 I I Convert e*s to R*S I
I 21 I I Convert C*S to C*16 I
I 28 I I Convert C*16 to 1*2 I
I 29 I I Convert C*16 to 1*4 I
I 30 I I Convert C*16 to R*4 I
I 31 I I Convert C*16 to R* 8 I
I 32 I I Convert C*16 to C*8 I
I 33 I AMOD I I
I 34 I DMOD I I
1 35 I lABS I I
I 36 I DABS I I
I 37 I A1NT I I
I 38 I ISIGN I I
I 39 I DSIGN I I
I 40 I 1DIM I I
I 41 I AIMAG I I
I 42 I CMPLX I I
I 43 I DCMPLX I I
I 44 I DCONJG I I
I 45 I HMOD I MOD Function with Arg Type 1*2, Fn. Type 1*2 I
I 46 I I MOD Function with Arg Type 1*4, Fn. Type 1*4 I
I 47 I I ABS Function with Arg Type 1*2, Fn. Type 1*2 I
I 48 I I ABS Function with Arg Type R*4, Fn. Type R*4 I
I 49 I BSIGN I SIGN Function with Arg Type 1*2, Fn. Type 1*2 I
I 50 I I SIGN Function with Arg Type R*4, Fn. Type R*4 I
I 51 I HDIM I DIM Function with Arg Type 1*2. Fn. Type 1*2 I
I 52 I I DIM Function with Arg Type R*4, Fn. Type R*4 I
I 53 I DD1M I DIM Function with Arg Type R*8, Fn. Type R*S I
I 54 I I CONJG Function with Arg Type C*8, Fn. Type C*8 I L-_____________ ~ __________ L _____________________________ - ______________________________ -J

Appendix A: Interphase Table and File Formats 647

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

A list of special • OPEN' class fUnctions
for exponentiation and their function num­
bers is given below:

r----------T----------,
I Function I Function I
I Number I Name I
t----------+----------~
I 72 I ISQ 1
I 73 I lCUBE I
I 74 I IFIFTH I
I 75 I ISEVEN I
I 76 I SQ I
I 77 i CUBE I
I 78 I FIFTH I
I 79 I SEVEN I
I 80 I RECIP i L __________ ~ __________ J

3. OPENA (Class 10).
Assemble in

r---T-------T-------~----------T---------,
110 I Class I No. of IFunction I Index I
1= 01 I Args. I Type I I
10-21 2-7 I 8-15 116-23 I 24-31 I
t---L-------+--------~----------~---------~
IArg. Type I I L ___________ L _____________________________ J

Index is used for table lookup in Phase 1.

A list of ·OPENA- class functions and
their function numbers is given below:

r----------T----------,
1 Function I Function I
I Number I Name I
t----------+----------~
I 55 I MOD I
I 56 I ABS I
I 57 I SIGN I
I 58 I DIM I
I 59 I CONJG I L __________ L __________ J

4. MAX (Class 12).
Assemble in

r---T-------T---------~---------T--------,
110 I Class I MIN Flag IFunction I Function I
1= 01 I I Type I Number I
10-21 2-7 I 8-15 116-23 124-31 I
t---~-------+----------L---------L--------~
IArg. Type I I l ___________ L _____________________________ J

MIN F1.ag
raised if function is from MIN family.

Function Number

648

is either zero or the number of con­
version function needed.

A list of "MAX" class functions and
their function numbers is given below:

r---------~----------,
I Function I Function I
I Number I Name I
t----------+----------~
I 60 I AMAXO I
I 61 I AMAXl I
I 62 I MAXO I
I 63 1 MAXi I
I 64 I DMAX1 I
I 65 I AMINO I
I 66 I AMIN1 I
I 67 I MINO I
I 68 I MINl I
I 69 I DMIN1 I L __________ L __________ J

Constant Format

Name Part (at higher-address portion of
table)

r-----------------------,
I Value I
t-----------------------~ I Va1ue I
t-----------------------~ I Value I
t-----------------------~
, Value I
t---------~------------~
I LINK I OFF I L __________ L ____________ J

Description

Variab1e Length
Maximum of 16
Bytes

Field
VALUE Binary value of the constant.

LINK

Value of logical constants

1 = true
o false

Link to next Constant entry in
chain, otherwise X'SO--',
'END CHAIN'

DPP Descriptive Part Pointer

Descriptive Part (at lower-address portion
of table)

r---~-----~---------T-------------------,
I I FLAGS I TYPE I I
110 I I LENGTH, I LINKF I
1= 11 0 I ATYPE I I
10-11 2-7 I 8-15 I 16-31 I
t---L-------~--------L--------T----------~
I SLOe I STCL I L ______________________________ L __________ J

Field
10

FLAGS

Description
Constant = 1

Available if needed

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

TYPE

LINKF

SLOC

STCL

Type of constant, which may be:
Null (0,0)
Logical*1 (0, U
Logical*4 (3,1>
Integer*2 n,2)
Integer*4 (3,2)
Real*4 (3,3)
Real*8 (7,3)
Complex*8 (7,4)
Complex*16 (F,4)

Link to name part

Storage Location (offset with
respect to Storage class base)

Storage Class

Label Format

Name Part (at higher-address portion of
table)

r------------------------------~----------,
I Label I
~--------------------T--------------------~ I UNK I ~P I l ____________________ ~ ____________________ J

Setting
Field

LABEL
Description Phase

Binary value of the label ----1-,2

LINK

DPP

Link to next Label table
entry in chain, otherwise
X '80--', 'END CHAIN'

Descriptive part pointer

1,2

1

Descriptive Part (at lower-address portion
of table)

r---T-------T---------T--------T----------, I I I I Level I Not Used I
I I I I 16-23 I 24-31 1
110 I Class I Flags ~--------L----------~
1= 21 I I ADCON I
10-11 2-7 I 8-15 1 1
r---~------~---------~-------~----------~
I SLOC I STCL I
r---------------------T--------~----------~ I LINKF I PLAT I l _____________________ ~ ___________________ J

Field Description
I-D---- Label = 2

CLASS Class of label, which may
be:

o = Unknown
1 = Source number
2 Format number
3 = Compiler generated

Setting
Phase

1,2

1,2

FLAGS

LEVEL

ADCON

SLOC

STCL

LINKF

PLAT

One-bit indicators which
are: (Left to Right)

Not Used
Referenced
Defined

Loop level at which the
label was defined

Reference to ADCON entry in
Symbol Table

Applicable to labels only

During Phase 1, the storage
location is assiqned for
Format Labels. During Phase
4, the storage location is
assigned for statement labels
when first referenced or
defined

Storage class, set during
Phase 1 for Format Labels or
during Phase 4 for Statement
Labels when first referenced
or defined

Link to name part

PRF entry of the Begin or
End Loop item preceding the
statement number

1,2

3

1,4

1,4

2

Address Constant Format

l Name Part (at higher-address portion of
table)

r-----------------------------T-----------, I Value 1 I Value 2 1

t-------------------~--------~-----------~ I LINK I DPF I l ___________________ ~ ____________________ J

Field
VALUE 1

Description
If value 2 = 254, pointer to
symbol table entry for entity to
be addressed.
If value 2 = 255, estimated
location addressed, ELSE location
addressed.

VALUE 2 Storage class of location or
entity addressed.

LINK

DPP

Link to next entry in chain, else
X'SO--', 'END CHAIN'.

Descriptive part pointer

Appendix A: Interphase Table and File Formats 649

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN3190

I Descriptive Part (at lower-address portion
of table) .
r---T-----T---------T---------------------,
lID I I FLAGS I LINKF I
1= 31 I I I
r---~-----~--------~---------_r----------~
I SLOC I STCL I l ______________________________ ~ __________ J

Field
1D

FLAGS

LINKF

SLOe

STCL

Description
Address Constant - 3

One bit indicators (as yet
unassigned)

Link to name part

Location (on ADCON page)

Storage class

4 shared address constants

5 = unshared address constants

INTERCOM TABLE

The area called -Intercom- (Interphase
Communication) is the most widely used
interphase file in the compiler. This area
is 512 storage locations in length and con­
tains information used by all modules in

650

the compiler. The structure and contents
of Intercom are shown in Figures 40 and 41.
Figure 40 is a DSECT listing for the area,
giving the Intercom items in increasing
storage location order. Figure 41 is a
listing of all items in Intercom in order
of increasing alphameric labels. In Figure
41 the relative displacement of each item
is given following the item description.

A 512-byte area for Intercom is reserved
in the Phase Controller's PSECT and in the
PSECT for each of the compiler phases.
Intercom is initialized by the Phase Con­
troller for each compilation. When the
Phase Controller calls a phase, the loca­
tion of Intercom in the Phase Controller's
PSECT is passed to the phase. Each phase
copies the 512 bytes into its own PSECT,
updates the area (in its own PSECT) as
required during proceSSing, and copies the
512-byte area back into the Phase Control­
ler's PSECT before returning to the Phase
Controller.

Many phase modules call Exec modules
during their processing. All such calls
provide the Exec module called with the
location of Intercom in the phase. The
Exec modules change the phase's copy of
Intercom as necessary, thus insuring that
changes make their way into the copy of
Intercom passed to later phases.

LOCATN OBJECT CODE

ceo

COO
OOA
C10
(II'

Ole

Oll
ClC
OlC
r2e

r;>4
OIA
07'"
02A

07('
00
02e
('3('1

C'\4
C;>II
034
03F

° 3C
C3(,
03C
C4(,

(44
C3P
('4£

CloP

C4r
c'<c
OLf
C5r

054
041'
C54
05P.

C~C

050
CSf
OtO

(lb4
C5A
ObI,
Ctll

ADDRl AUDR2 STMNT SCTURCE

(433.C E K TE x
('434 •• ••
043S*TE"(DN
043b·TF""fP
O .. 37.T~OK 1 rJ
043S*TEVI [l
0103'1····
C440·· ..

C441·TEGNS?
C442*TEVr;I\S
0443·
C444·TEVGNS
('445 *
044b-
C447*nVIIO'<
()44S_
(44Q"TEVRO",
04!>0·
C45l·
("'52"TE V 12
0453·
()4~4.Tf: II 12
0455-
0456·
C4 57-TF1I14
(458_
C45q·TP1l4
0 4 bO-
0461"
O~b2·TE\lR4
C~/)3 •
C4b4.T~IIR4

04bS·
046t>-
0467·HIIRB
046&-
C469*TEIIRB
,,470-
("471-
0472*TEVCa
0473·
0414n~VC8

0475-
04 7b.
0477*TEVC16
04711*
C47Q·ff1/C16
1'480·
0481·
0482·TI~IIFL4
0483·
0484·TEVFL4
0480;·
04-86-
C487·TEI/Flo;
G4qa·
048Q-TEIIFl"
0490·
0491·

STATEME~iT

os 00 tKEC I lilT E IICO'"
OBJECT PROGRA~ N401£<;

os 8C MODULE NA"E
os ee "AlN Ell/TRY POINT
DS 4(LtCK IDENTIFICATION
uS 8e VERSION IOE"ITITICATION

ENTRY POINTS
PHA Sf C 0"1 TlHJLL E R E.NTRV

cllU •
AceON I ",I'll CIT GNSS
OS OF
EQu ·-12
uS AWl
US AIOI
AceON 1"PlIC IT RDI'I
as OF
EQU ·-12
OS AWl
OS AIO I
AceON IMPLICIT CONI2
uS OF
EQU --12
OS A(O I
OS AID I
ADCON IMPLICIT CON l'
uS OF
EQU --1':
OS AWl
us AIO I
AOCiON IMPLlCn COHR4
os OF
EuU ·-1.2
OS A!OI
OS AWl
AOCON (MPllC IT CONR!'
as OF
EQU *-12
US A!O I
OS AiOI
AOOON I MPlI C IT CONOII
us OF
EUU ·-1.2
as AIOI
us A(O I
AOCON IMPLICIT CONe16
OS OF
EQU *-12
OS AID I
OS AIOI
AOtON (",PL (elf FtA04
OS OF
EQU --12
OS AIOI
OS AID I
AOCON l",PLlCIT flA05
as OF
EQU ·-12
os AIOI
os AID I

Figure 40. CEKTD, Com?iler Exec Process Terminal Modifications (Part 1 of 4)

A.ppendix A: Interphase Table and File Formats 651

f.

,nCATN flllJfcr CODE

r,tC
06C
06r
010

[74

c~"
G 74
l'1P

fAC'
OA'"
n~1-

tA"
OAC
ORe
(,Fit

OPt'
rP,(

GC C

DC?

rC4

nCB

ore

ceo
0f)4
006
Of:P

ADOHI ADDR2 STM~T SOURC EST ATE "ENT

04n*rEVI/R ADCUN l"PLlCIT FlAOl/R
0493· os OF
04<74·TEI/IIP EIJU *-12
C495· LIS .10(01
r4'U,· uS A(oI
"<Q7*TEvF-lL AoeeN '''PlIelT I'lL
f4'ibO liS QF
(l4~9·TEVFll E .. u *-12
J~OO· os AWl
CSOl· OS AWl
0502·TFVfRL AuCllN IMPLICIT CRL
C~03 .. uS OF
O~04H E vCRt Feu *-12
0"05· uS AWl
r 50" .. uS A (0 I
(,587*TrVCLP ADCllfli IMPLICIT r:lP
c~:."',q • uS OF
O~(1Q*rFvrLR I:UU ·-12
,)510· uS Alv)
Q'5U* US A(O I

0512···· SOURCE 1I NI' I NI'OWJoIAfI 0",
O''il 3 HE ,u,n OS PL4 !:>OtlPCE LlNf fIIO.
O'514·TESTNr: uS 6C SOllRCE ST HEMENT NO.
0515HEFrRr, os x FORGET Fl AG
'J516H~CXP uS x CCNIIFRS~TION!RATCH SWITC~
l517*TEVSTR GS F SOURCE ST ATFMENT TE~{ RASE
"51S*TEE"-D OS x ElII.l S T A TfM ENT FLAG
C51C;·TJ'P3r.R us C
0~20HEP4CH OS C
0';21 ·TEP~!}'1 us C
0522···· aSlE.S BASES.TOPS.A~CKORS
C523*TEIISYM uS V SYMBCL T~8LF BASE
o 524*TENA"T OS H SYM~Ol TaBLE N4ME PART TnP
O~25·TEOEST OS H SYMBOL TABlF DESC. TOP
C52t>*TEIIHTR os A I/ARlloBlE HASH T A8L E 84Sf
C521·Tf'lHT~ uS A LABEL H4SH TARL E SASE
1"528*TECHTfl OS Do CefltST ANT HEADER TASl E BASE
r529*TESCT8 DS A STORAGE Cl ASS r ABt E RASE
C530·TEITTR D~ A II"PLICIT TYPE T A III E SASf
C<;31 *TEPSEF1 OS A EXEC'S P<'ECT RASE (FOR
(,532·TESTE~ OS H AfltCHGR FOil SY"'ROt T4BlE

ENTRY CHAIN
05:n·n"X~AN us H ANCHOR FOR SYMROL lASl F

XREF CHAIN
C~14 •••• FILE A,~D L1 S T BASE.S. TOPS

AND ANCHORS
053S*TESPUI OS II STORAGE ~PECIFICATION l (, T

BASE
05}h·rESPLT DS " !)TCRAGE SPECIFICATION LI S T

TOP
0537 *TESPlU u~ F STCRAGE SPEC IFICATION LIS T

UPPfR LlMJ T
053S*TEPRFB us II PRF BASE
0539·TEPRFT uS H PRF TOP
C540*TEKEVT U:, h VISA" • PUT • j(EY FOR CEKI/U "'AeRO
0541-rEEFB os 'II EF SASf

Figure 40. CEKTD, Compiler Exec Process Terminal Modifications (Part 2 of 4)

652

&

f,

&

I nCATN Ot'JECT COOE

oDe
o~o

CF"
CFe>
Of"
Of(
CFO
OF4
CFR
OF(
lOC
lC~

IOd

10C
lie
11"
IH
HC
120
12"
lU
lZC
12E
13('
1,<,
1 ~"
nt
13fO
UA

l1r
un
13F
13F
13F
140
141
1"2

}43
1,,4
1<,5

14'"
147
14P

14A

14C
140
14C

ADORI AOD~2 ST~NT SOURCE :) TATE !tENT

OS4Z-TF.FFT
O~43-TEPFII

00;44. TE PF T
0!:>45*TEPFU
C 54b *Tf'CFR
0541·TECFT
05i.8HECFU
0549*TEPSf\
055C·TEPST
CS51·TECRLB
C55Z.TECRL T
O~S3·HFAAfl

C554·TEFAAT

05';5-T~P"'C8

05~6·TFP"'OT
0551*Tf C P"S
Ct;5e*TECP"'T
055C;·TERII4S
05bO*T~ I SOU
0561·TEISDB
O'i62*TE I SOT
O'S63*TEGlAN
0564·TElLAN
r565*T"POAN
C566·TECPAN
0567·TEAOAN
C56S·TEOAAN
0569*TEALFA
C570*TESTAN

C571····
C572·TEMEC
0573·TECPUT
0574. TESlC
0575·H~I'\C
0576*fEMNQ
0577*TECClO
C578-TESTEC
C'579·TECRLO

Ct;60·TEISOO
C581·TEPTYP
0582·lENEP
05H3*TENAR
Ot;84.TE RCO
OSdS·TENFA

0.586.· ..
o51n.TFIFlP

Q58A*TEfEU
05S9·
C590·TEFFU
0591·

0S
us
O!>
iJS
os
':;S

os
os
os
os
as
llS

as

as
os
OS
uS
LlS
us
as
os
os
os
as
os
DS
0:;
os
O!>

as
us
u~

US
EI.l.J
us
OS
uS

as
os
OS
OS
OS
os

os

AOCON
os
EQU
os

H t:F TOP
" PI' RASF
H PF TCI'
H ?F UI'I'FR LIMIT
" CCCf FILE ~4SE
F c.OOE FILE TOP
v CODE ~ILf UPPER LI~IT
" PReSET CAT A RASE
A p~ESET CATA TOP
" tReSS REFERENCE LIST BASE
F (ROSS REFERENCE LIST TOP
V FORMAL ARGUMENT AOCON lIST

t;AS E
F FCR~Al ARGUMENT AOCON LIST

rop
v 1'''0 IIASE
F P"C TOP
" (f'M BASE
f OPI' TOP
A eXTERNAL NAMFllST BASE
F ISO U.L. FeR PHASE 5
V lSI: IlASE
f ISO TOP·
H GlNK C~AJN ANC~OR

H LLNK C~AIN ANCHOR
H POLNK CrA[N ANCHOR
H LPG CHAIN ANCHO~
H AOP CHAIN ANCHOR
H CATA CHAIN ANCHOR
H ALPHANUMERIC CHAIN ANCHOR
H SYI'Brl TASLE NAMEllST

CHAIN ANCHOR

X MAX ERROR CODE
X lIST DATA SET EXISTS FLAG
K SOURCE LISTING OPTION
x !tE"ORY ~AP OPTION
lEI<!tG
X OSJECT crOE LISTING OPTION
X Sy~pnL TA~LE EDIT OPTI~N
X CROSS-REFERENCE LISTING

OPT ION
X ISO CPT rrN
)(?ROGRA" TYPE
X NO. OF ENTRY POINTS
X NO. OF ALTERNATE RETURNS
X EbCOIC/SCO INotCATOR
)(NEXT FCRMAl-4RG-BY-~A~E

NC.

H SYMBOL lISLE POINTER TO
INTRINSIC FUNCTION LIST

(MPlIC IT
OF
·-12
"10 I

f.

FLAGS AND QPTIONS

f.

r.

M I SCELLANfOUS

Figure 40. CEKTD, Compiler Exec Process Terminal Modifications (Part 3 of ~)

Appendix A: Interphase Table and File Formats 653

lOCArN OBJECT CODE

15C
154

l'iH

lAC
lAE
1M

ISO
lAO
IB4
lAP
IPC
ICC
1("
ICP
lC(
100
10"
lOR
10C
lEO
lE?
If"
H6

IEB
IOC
H8
HC
HO
IF4
1 F 5
lH;
IF?

SOURCE H AH/o\tNT

OS'12 "
C5"3·H'~UF

CS'J'd'TE Fill S

0596*TEP!GE
05'17*TEOATE
05'1R*TECFlC
05'19*T~I\CSX

o~')c·*

0601*TfFVAl
C602*TE P lOll
C'b03*TFP2Cfl
0604 ••• *
C605*TFCCI\S
(606*TE(I\SI
G6::J7*TECNS2
06LlS*TECNS3
0609*HC"'S4
oolo*rEPNTR
D6ll*rEGNU
'lbl2*rELlNO
Cb13*rEwAAH
(614·T~DESB

G615*Tf'NA"B
Obl"'*TEOCR
D617*TECXBA
C'b18*TEICIN
CblQHEICTR
06Z0*H: I (EN
()62l*TEINTR
06?2*TFVGAT
0623*
0624*TFVGAT
0625"
CIo2b"
0b27*TESCB
Ob211*TEIOS'"
(162 '1" TE PlJPR
C63a"TEOU"p
Oh31*TEPn"'p

OS
IlS

os

os

JS
JS
uS
05

us
0:'
uS

LlS
OS
US
05
uS
OS
05
OS
uS
OS
05
JS
OS
uS
OS
uS
OS
AoeON
ns
Hili
os
OS
DC
OS
US
uS
uS

AIO I
H SY~BCl TABlf POINTER TO

• T RU E •
H SY~ROl TARlf POINTER TO

.FAlSE.
lbf REGISTFPS SAVE AREA

WHEN SIJ5PfCTED SVSfRQ
F CURRENT rUTPur PAGt NO.
ClS UATE--/O\M/DO/VV
f O'FlOW FLAr,(E~EC ONLY'
F NO.CF CG"'MON SUB-fXP.~A~ES

H PCINTFR Tn FUNCTION VALUE
C
C

00
f LENGTH 4 CONSTANTS
f LENGTH P AND 16
F LENGTH if-
f tHIGft< Ib
f SYMBGL TASlE POINTER
X CCNSTANT ALREADY FILED ~lG
r biNARY LINE NO. FROM CRl
A AGGR OF PRF 1ST WORD
A AGeR OF DESC.P~RT 1ST wo~n
A ACOR GF NAME PART 1ST WOqO
F CATA SET OC1.\
f
H CHCIAl
H (HClFl
H CHUrn
H INTERRUPT ROUTINE PNTR
IMPLICIT
OF
·-l·~
ACO)
A(GI
A(TEGNC;Z-HVGNS)
(

C
H
H

cnN5Ta~T ~IL'NG A~EA

Figure 40. CEKTD, Compiler Exec Process Terminal Modifications (Part 4 of 4)

654

CEKTEX CS 00 fXEC INTERCOM BASE oon
TEAnAN OS I-l AOP CtlA I N ANCHOR 134
TEAlFA OS I-l AlPI-lANUMERIC CtlAIN ANCHOR 138
TE8CO OS X E8CUIC/BCD INDICATOR 147
TECFS OS V CODE FilE BASE OfFl
TECFT OS F CODE FILE TOP DEC
TECFU OS V coDe FILE UPPER LIMIT OFO
TeCHT8 os A CONSTANT tlE40ER TABLE BASf. ORO
TECNSI rJS F LENGTH 4 CO"STANTS IflC
fECNS2 OS F LENGTH 8 AND 16 1~4
TECNS) as F LENGTH 16 lElA
TECHS4 as F LENG TH 16 UK
TECONS CS CD IBO
TeCPAN os H CPO CHAIN AHCtlOR 13Z
TECRle os v CROSS REFERENCE LIST BASE OFC
TECRlO OS X CROSS-REFERENCE LISTING OPTION 142
TECRlT as F CRess REFERENCE LIST TOP lCO
TECXB OS x CONVERSATI0NfeATCH SWITCI-l 0°7
TECXBA OS F AuoR IN LPC Qf ~ATCHfCO~v.IND lDC
TE CAAN as H oA TA C HAl N ANCHOR 136
TEGATE os CL8 OATE--MM/Oo/YY 19C
TEOCS OS F DCB AOOR FilO,," LPC lOP
TECESB OS A AoOR OF OESC.PART 1ST WORD toc
TEOEST OS H SYMBOL TA8lE OESC.Tep DAb
TEolAG OS C IF 'I. ALLLW MA1NT CuTPUT 1(5
TECKIO OS 4C DECK IDENTIFICATION OIC
TECUMP OS XlZ iFf-
TEEFB OS V EF BASE 00~
THFT OS H EF TCP 0"(
TEENC OS X END STATEI'IENT FLAG o"r
TEFAAB OS V FOR~Al APGU"'ENT AoCO~ LIST ~ASE x IQ~
TEFAAT OS F FORI'IAL ARGU"'ENT AoCO~ liST TCP x 105
fEFAlS OS H SYMBCL TABLE POI NTER TO .FAlSE.)(15"
fEFEU OS ZA CEKTG "ACRC uSES 140
TEFORr. OS x FORGET FLAG C~q
TEFVAL OS H POINTER TO FUNCTION VALUE lAC
TEGLAN OS ... GlNK CHAIN ANCHOR lZC
TEGNS2 EQU • OIC
TEGNU OS X CONSTANT ALREAOY FILEO ~LG IC~
TEIFLP as I-l SYMBOL TABLE POINTER TO INTPINSIC rUNCT1G~ LIST x I£A
fElNTR OS ... INTERRUPT .. ROG PNT" 1E6
TEIOEN OS H CHC IHI if4
TEIOIN OS H CHCIAI lFa
TEIOSM OS C If£
TEIOTII OS H CHCIEl HZ
TEISoB OS V ISO BASE 124
TEISoo as x ISO (PHON 143
TEl SOT OS F ISO TOP 128
TEl SOU as F ISO U.L. FOR PHASE 5 120
TEIITB eQU TEITTS 0~8
TEITTB OS A I"'PLIC!T TVPE TABLE BASE
TEKEYT OS H VISA'" 'PUT' KEY ~Ok CEKVU MACRO OO~

TElHTB OS A LA8El HASH TA8LE BASE OAC
TEllNO OS F BINARY LINE NO. FRCM CRL 1C8
TELlAN OS H lLNK CHAIN ANCHOR 121'
TEMEC OS X ~AX ERRCR CODE 13C
TE/UP OS BC MAIN ENTRY POINT OO!!
TE~"O OS x ~EMORY "'AP OPTION 13F
TE~NO EQU TFM~O 13F
rEMDON OS 8C "'OoULE NA",e 00:

Figure 41. Alphabetically Sorted Listing of Intercom Items, With Displacements
(Part 1 of 2)

Appendix A: Interphase Table and File Formats 655

TEHAMII OS A
TEttAI! LIlS H
TENAR OS X
TENCS. OS F
rENEP OS lC
TENFA OS II:
TEOClO OS X
TfOflO OS F
TEOPM8 OS V
TEOPIH OS F
TEOPUT OS II:
TEPAGf OS F
TEPOAN OS ...
TEPOI1P OS
TEPF8 OS V
rEPFT OS H
TEPFU OS H
TEPMOR OS V
fEPMOT CS F
TEPNTR OS F
rEPAFB OS V
TEPAFT OS H
TEPSB OS V
TEPSFB OS A
TEPST OS A
TEPTYP OS X
TEPUPA OS
TEPlOB OS C
TEP20B OS C
TEP30~ CS C
TEP40S OS C
TEP50S liS C
TER8AS OS A
TEltSAV OS lbF
TEseTB OS A
TESlNO OS PL4
TESLO OS l(

TEsaB DC
TESPl6 OS V
TESPL T OS V
TESPlU OS F
TESTAN OS ...
TESTEA OS H
TESTEO OS X
TESTNCI OS 6C
TETRUE OS H
TEVCRL CEKTX
TEVC16 CEKTX
TEVCS CEI(TX
TEIIFll CEKTX
TEVFL4 CEXTX
TEVFL"i CEXT)(
TEVGAT CfKTX
reVGNS CEKTX
Tl:VHTB OS A
TEVIO OS SC
TEIIT2 CEKT)(
TEVl4 CEKTX
TEVOlA CEKTX
TE VR 01'4 CEKTX
TEVR4 CEKTJ(
TEVRB CEKT)(
TEVSTB OS F
TEVSY,,\ OS V
TEVVR CEKTX
TEWUH OS A
r EXRAN as H

AOOA OF NAME PART 1ST WORD
SYMBOL IAaLE NAME PART TOP

NO. OF ALTERNATE RETURN~
NO.OF CO~ON SU8-E~P.NAMES

NO. OF ENTRY POINTS
NExT FORMAL-ARG-BY-HA~E NO.

OBJECT CODE LISTING CPTION
O'FLCW FlAG(E~EC ONlvl
OPM BASE
OPM lOP
LIST DATA SET EXISTS FLAG
CURRENT OUTPUT PAGE NO.
POL~K CHAIN ANCHOR

nz
PF BASE
PF TOP
PF UPPER LIMIT

PIIIO BASE
PMO TOP
SYMBOL TABlE POINTER
PRF BASE
PRF TOP

PRESET DATA BAse
EXEC'S PSECT BASE

PRESET DATA TOP
PROGRA" TYPE

C
PHASE 1--5 OIAGNOSrlC BYTES

EXTERNAL "A"ELIST RASE
REGISTERS SAve AREA WHEN SUSPECTED SYSERR

STORAGE CLASS TABLE BASE
SCURCE UNE NO.

SOURCE LISTING OPTION
A ITEGNS2-TE VGNS)

STORAGE SPECIFICATI0~ LIST BASE
STORAGE SPECIFICATIO~ LIST TOP
STORAGE SPECIFICATIC~ LIST UPPER liMIT
SY"SCL TABLE NAMELIST CHAIN ANCHOR
ANCHeR FOR SYMBOL TABLE ENTRY CHAIN
SYMBOL TABLE EDIT OPTION

SOURCE STATEMENT NO.
SYMBOL TABLE POINTER TO .TRUE.

VARIABLE HASH TABLE BASE
VERSION IDENTITICATION

EXEC MCOUlES ACCON PAIRS

SOURCE STATfKENT TEXT 8ASe
SYMBOL TABLE BASE

AGOR OF PRF 1ST wORD
ANCHeR FOR SYM80l TA8LE XREF CHAIN

x

x

)(

x
l(

x
x

)(

x

104
DA4
146
lA8
145
1~8
140
lilt
lllt
1111
130
198
130
IFe
OEO
OE4
OEt.
tOC
110
lCO
000
004
OF4
08C
OFA
144
IF5
lAE
lAF
090
09E
09F
llC
158
OS4
090
13E
IFC
OC4
OCR
OCC
13A
DCa
141
09(1
154
010
048
040
ObR
050
OSA
IDC
OlC
OAA
alit
020
028
018
018
030
03B
098
OAO
060
lcr
oe2

Figure 41. Alphabetically Sorted Listing of Intercom Items, With Displacements
(Part 2 of 2)

656

INTRODucrION

Linkage conventions are those conven­
tions which govern communication among pro­
grams. Basically, there are two types of
communication: that defined as standard
linkage, and that defined as restricted
linkage.

Restricted linkage provides highly effi­
cient communication among programs which
satisfy a definitive set of requirements.
Such linkage is intended for use within a
wblack box· (precisely defined by the
requirements given below) which has little
or no interface with the rest of the system
(or user), while standard linkage is the
vehicle for all other communication.

In TSS/360 all interfaces among CSECTs
which reside in virtual memory (execute
with dynamic relocation turned on), whether
or not the CSECTs are in the same assembly,
conform to either standard or restricted
linkage. Furthermore, all linkage within a
CSECT conforms to one of these conventions.
No other mechanism for communication is
recognized. It is emphasized, however,
that the restricted linkage never has to be
used. A standard linkage is always accept­
able and it is expected that the majority
of program linkage will follow the
standards •

The following paragraphs describe the
linkage conventions to which all compiler
modules must (and do) adhere. Reference is
made in this description, and elsewhere in
this PLM, to "Type I linkages." Type I
linkage is one of several types defined for
use in compiler and other system modules.
For a complete description of all linkage
types see the Systems Progra~mer's Guide.

For a precise description of the macros
used for standard linkages (the CALL, SAVE,
and RETURN macros) see Assembler Users
Macro Instructions. Macro support for
restricted linkages (INVOKE, STORE, and
RESUME) is described later in this
appendix.

CONVENTIONS FOR TYPE I LINKAGES (STANDARD)

Register Conventions

General
Register

15,0
Usage

Supervisor Parameter
Register

Mnemonic
SP

APPENDIX B: TSS/360 LINKAGE CONVENTIONS

1

13
14
15

Parameter List Re­
gister, Supervisor
Parameter Register,
or Parameter List
Register

Save Area Register
Return Register
Entry Point Register,
Return Code Register

PL

SA
R
E

It is the responsibility of the called
program to maintain the integrity of gener­
al registers 2-12 so that their contents
are the same at exit as they were at entry
to the called program. It is the calling
program's responsibility to maintain the
floating-point registers around a call.
General registers 0, 1, and 13-15 must con­
form to the indicated conventions.

Save Area

Whenever one program calls another, the
calling program provides a save area for
use by the called program; the calling pro­
gram is known as the owner of the save
area. This save area is addressed by the
save area register (SA) on entry to a
called program and is described in detail
in Assembler Users Macro Instructions; in
general the format is:

Word 1

Word 2

Word 3

- Contains the length in bytes
of the save area and any
appendages to it. This field
is set by the calling program
in its own save area, and
always contains the integer 76
<in TSS/360).

- Contains a pointer to the save
area of the calling program.
This field is set by the
called program in its own save
area. This procedure allows
all save area of active pro­
grams to be linked in a
reverse chain.

- Contains a pointer to the save
area of a called program after
its invocation. This field is
set by the called program in
the calling program's save
area. This allows all save
areas of active programs to be
linked in a forward chain.
When the called program is
complete, if trace forward has
been specified, it sets the
low order bit of this field to
1 to stop the forward chain.

Appendix B: TSS/360 Linkage Conventions 657

,",ord 4

,",ord 5

- Contains the return linkage
for use by the called program
when it is complete. This
field is set by the called
program in the calling pro­
gram's save area.

- Contains the entry point
address to the called program.
This field is set by the
called program in the calling
program's save area.

words 6-18 - Register save area. These
fields are set by the called
program in the calling pro­
gram's save area as necessary
to preserve registers 0
through 12.

word 19 - Contains the address of the
PSECT belonging to the called
program. This field is set by
the calling program in its own
save area.

It is clear that a program may use its
own PSEcr for a save area provided that the
head of the PSECT is formatted as indicated
above. However, if PSECTs are used for
save areas, a called program will not use
its own PSECT to save registers, but rather
will use the save area (PSECT) of the call­
ing program.

Parameter List, Type I Linkage

whenever it is necessary for one program
to explicitly communicate information to
another program using Type I linkage, it
must do so by using a parameter list. A
parameter list is an ordered list of
addresses of information. At the time of
the CALL. the calling program places the
address of the parameter list in the param­
eter list register (PL). (This list is
most probably a list of address constants
residing in the PSECT.) See the CALL macro
expansion.

It should be noted that an active param­
eter of the CALL (a parameter which is set
by the called program) is also passed in
this manner.

Type I Linkage, Return and Entry Linkage
and Return Code

It is the calling program's responsibil­
ity to establish the return and entry link­
age at the time of a call. This will norm­
ally be accomplished by plaCing a V-type
Adcon in the entry point register using a
load instruction and then executing a
branch and store instruction which will
establish the return location in tne return
register and pass control to the indicated
program.

658

RESTRICTED LINKAGE CONVENTIONS

Scope and Applicability of Restricted
Linkage

A restricted linkage may only occur
between two programs if all the following
conditions are met.

1. The two programs involved must have
the same PSECT in common and it must
be contiguous; this area must be
covered at all times by the PSECT
cover register.

2. The invocation may not use or require
explicit dynamic linkage.

3. The invoked program may not be enter­
able at the same point by way of a
standard linkage.

4. The invoked program may not establish
a non-volatile register as a common
register (see below).

5. rhe programs involved must reside in
virtual (as opposed to real) storage.

6. The invoking and the invoked programs
must both be privileged or
non-privileged.

Reqister Usaqe and AsSignment in Restricted
Linkage

rhere are four classes of restricted
linkage registers: parameter, volatile,
non-volatile (including common), and link­
age. These classes are now described
individually.

1. Parameter Registers and Parameter List
Registers

These registers are used explicitly to
pass information in a restricted link­
age both from the inVOking to the
invoked program and from the invoked
to the invoking program. A parameter,
in this context, may be by name or
value. These registers may also be
used to address parameter lists.
Clearly, the content of these regis­
ters must be known by implicit agree­
ment among the programs involved.

Parameter registers are of the pseudo­
volatile class where it is generally
the responsibility of the invoking
program to insure their integrity as
necessary.

2. Volatile Registers

These registers may al~ays be changed
at ~ill by the invoked program. The
invoking program may never assume that
they contain any specific values after
an invocation is complete.

3. Non-Volatile (and Common) Registers

These registers are generally trans­
parent around an invocation: that is,
a non-volatile register must be STOREd
and RESUMEd in the invoKed program as
necessary to preserve their contents
(or the equivalent of STORE, RESUME).
It is possible, ho~ever, that some, or
all of the non-volatile registers may
be established as common registers. A
common register is a pseudo-parameter
~hich is kno~ to invoked programs and
may change from invocation to invoca­
tion; thus a common register need not
maintain constant value but must
retain constant function. When a non­
volatile register is established as a
common register, all programs invoc­
able by the establishing program
(directly or indirectly) must be
implicitly aware of this assignment.

In this context -Establish- means to
set aside or dedicate a register for a
particular use; this does not mean
that the register must be initialized
or modified. Common register usage
must conform to tne foll~ing rules:

a. A common register may not be
established by a program invoked
~th a restricted linkage; thus, a
common register may be established
only by a program CALLed .ith a
standard linkage.

b. Common registers may not be STOREd
and RESUMEd by a program invoked
~ith a restricted linkage unless
that program contains no linkage
to other programs.

c. The scope of common registers
shall extend only to those pro­
grams invoked while the establish­
ing program is active; further­
more, no common register defini­
tion is known to any program
CALLed ~th a standard linkage
from a program invoked ~ith a
restricted linkage.

4. Linkage Reqisters

The linkage registers are those regis­
ters ~hich must contain specific
information during an invocation.
There are three such registers ~hich
are now described individually.

a. PSECT cover register. This
register must cover the common
PSECT at all times (point to the
origin of the PSECT).

b. Return register. This register is
initialized by the invoking pro­
gram to the proper return location
in the invoking program. This
register must be used by the
invoked program upon completion to
return control (to the indicated
return location).

c. The entry point and return code
register. This register must be
initialized by the invoking pro­
gram to the entry point address in
the invoked program before the
linkage takes place; it may also
be used by the invoked program to
pass a Wreturn code- (see standard
linkage) to the invoking program.

The entry and return registers are vola­
tile in the sense that the act of invoca­
tion will cause their values to change.

The follo~ing register assignments have
been made for the above classes:

Function
Parameter (list) registers
Volatile registers
Non-Volatile registers

Common registers
sequentially from

PSECT cover register
Return and entry registers

Assiqnment
0-5
6-7
8-12
8

13
14-15

The floating-point register conventions,
PICA, and program mask requirements are as
described for standard linkage. No special
save area format or location is committed;
this fUnction is left to the user.

MACRO INSTRUCTION SUPPORT

The follo~ing macro instructions are
defined as support for restricted linkage.
These macro instructions are used exclu­
sively when effecting a restricted linkage.

INVOKE Macro Instruction

The INVOKE macro instruction transfers
control from one program to another with a
restricted linkage. It is not possible to
specify parameters of a linkage in the
INVOKE macro as in the CALL macro. This
fUnction is left to the user to accomplish
ho~ever he sees fit.

Appendix B: TSS/360 Linkage Conventions 659

General r'orm

(symbol] INVOKE aadr

symbol - Any programmer-defined label.

addr - specifies the address of a
full-word which contains the
address of the program to be
invoked.

Expansion

The expansion of this macro instruction
causes linkage register 15 to be loaded
with the address at addr, linkage register
14 to be set to the return location in the
invoking program, and control to be Fassed
to that location specified in linkage
register 15.

Examples:

1. INVJKE A
in line
L 15,A
BASR 14,15

2. INVOKE 8(3)
in line
L 15,B(3)
BASR 14,15

STORE MacroInstruction

The STORE macro instruction causes the
indicated non-volatile registers to be
stored in the specified area.

General Form
{symbol) STORE addr, Creg1-integer

(,reg 2 - integer])

syrrbol

addr

- Any programmer-defined
label.

- Specifies the address of
an area sufficient to
contain the indicated
registers.

reg1,reg2 - Integers specifying a
range of registers to be
stored at addr. If reg2
is not specified, only
reg1 will be stored.

Expansion

A STM (or ST, in the event that reg2 is
not specified) instruction is generated to
store the indicated register(s) at addr.

Notes:

1. It is possible to specify reg2 as 14
or 15 thus causing the linkage regis­
ters to be stored.

660

2. Reg1 must be greater than or equal to
8.

3. If reg 2 is 14 or 15, a single STM will
be generated spanning register 13.
Thus, the area at addr must be of such
size as to contain this register, and
it is stored redundantly.

Examples:

1. STORE A, (9,10)
in line
STM 9, 10, A

2. STORE B, (11)

in line
ST 11,B

RESUME Macro Instruction

This wacro instruction causes the indi­
cated non-volatile registers to be restored
from the specified area and control to be
passed via the return register.

General Form

[symbol] RESUME [addr, (reg1-integer
[, reg2-integer)]

symbol

addr

{, RC=integer]

- Any programmer-defined
label.

- Specifies the address of
an area from which the
indicated registers are
to be restored.

reg1, reg2 - Integers specifying the
range of registers to be
restored. If reg2 is not
specified, only reg1 will
be restored.

RC

Expansion

- Specifies an integer to
be used as a return code
(OSRCS4092). RC must be
a multiple of 4.

A LM (or L, if reg2 is not specified)
instruction is generated to load the indi­
cated registerCs) from addr, the return
code register is loaded as necessary with
the specified integer (using a LA instruc­
tion), and a BR 14 instruction is generated
to return control to the invoking program.

1. If the addr and register fields are
not specified, only the BR 14 instruc­
tion is generated.

2. It is possible. to specify re92 as 14
or 15 causing the linkage registers to
be loaded.

3. Reg1 must be greater than or equal to
8.

4. If reg2 is 14 or 15, a LM instruction
is generated spanning register 13
(thus loading it redundantly). The
user must use a certain amount of cau­
tion ~hen allowing this to happen in
order that the contents of register 13
are not destroyed.

Examples:

1- RESUME A, (9)
in line
L 9, A
BR 14

2. RESUME RC=4
in line
LA 15,4
BR 14

3. RES[JME
in line
BR 14

Appendix B: TSS/360 Linkage Conventions 661

~PPENDIX C: FORTRAN INTERNAL ~ACRO INSTRUCTION US~GE

The table below contains a brief description of the user macro instructions required
for assembly of compiler modules. These macro instructions are contained on the second
macro library provided the TSS/360 Assen~ler when assembling compiler modules. The first
macro library provided is that containing the system macro instructions, described in the
Assembler User Macro Instructions.

r------T----------------------------------,
I Name I Description I
t------~----------------------------------~
IEXECUTIVE Macro Instructions I
t------T----------------------------------~
ICEKT~ {Performs all operations concerned I
I I with calling a phase, including I
I I checking the return code, giving I
I I diagnostic option dumps if I
I I requested, and logging the phases I
I I on a nd of f. I
ICEKT7 !Moves an option from the F-option I
I I table passed from LPC to FORTRAN I
I I at the 'Initial' call to the I
I I Executive PSECT. If LPC passes I
I I neither an 'N' nor a 'Y', the I
I I default value assembled intc the I
I t phase controller module is used. I
\CEKT8 IExecutive intercom macro. I
ICEKT9 IIdentical to CEKT8, but contains I
I I DS rather than DC. Used by otherl
I I Executive programs, and the 5 I
I I phases. I
ICEKTG IDiagnostic option macro instruc- I
I I tion. Sets up calling list for I
! I module CEKTS, and calls that I
I I module. t
ICEKTT INull. I
ICEKTX IForms V-R can pairs, with the aid I
I I of the ADCON macro instruction. I
ICEKTY IChecks batch/conversation switch I
I I in the Executive, and LPC if in I
I I conversion. Resets switch as I
I I appropriate. I
ICEKUl !20nverts a binary number to zoned I
I I format, edits it un~er control ofl
I I a mask, and moves the result to al
I I user specified area. I
!CEKU3 IUsed to determine, from the limitsl
I I of a main storage file, the base I
t I and two- or four-byte offsets I
I I from the base to the limits. I
!CEKU4 INull. I
ICEKU5 IBranches to one of five places, I
I I depending upon the return code inl
I I register is. I
ICEKU6 !Establishes intercom cover in I
I I register N4 and cover for the I
I I Executives PSECT page 1 in gener-I
I I a1 register N3. I
ICEKU7 IMacro instruction for the Phase I
I I Controller PSECT. Used to gener-,
I I ate a DSECT in other Exec I
I I modules. I
I CEKU8 I ased where the test r.mst be made I
I I of a list data set exists, and, I
I I if so, OLR is c'llled. I l ______ i-_________________________________ J

662

r------T----------------------------------,
I Name I Description I
t------~----------------------------------~
IEXECUTIVE Macro Instructions (Continued) I
t------T----------------------------------~
ICEKU9 IUsed to edit the line number of a I
I I line for which a diagnostic mes- I
I I sage is to be given, move the I
I I number to a message area, call I
I I DIAGOUT to output the message, I
I I test the return code, and branch I
I I accordingly. I
ICEKUX ISets up FREEMAIN calls (usi~g I
I I CEKV9) for those parts of Phase 51
I I files not containing the output I
I I module. I
ICEKVl IMoves addresses and lengths of I
I I Phase S created tables to LPC I
I I prior to the 'Continue' call I
I I return. I
ICEKV2 IDetermines, for GNSS, if an END I
I I statement has been encountered. I
ICEKV3 IPerforms all operations concerned I
I I with checking to see if the diag-I
I I nostic mode is allowed, checking I
I I for the existence of the diag- I
I I nostic line, and, if it is pre- I
I I sent. processing the two diag- I
I I nostic request lines. ~lso sets I
I I up the interruption entries. I
ICEKVS IUsed in producing diagnostic out- I
I I put. Checks the 10-column fieldsi
I I provided for each phase on diag- I
I I nostic card 1 and gives dumps I
I I accordingly. I
ICEKV6 IUsed in producing diagnostic out- I
I I put. Loads a register with a I
I I two- or three-character code, I
I I then invokes a sequence of I
I I instructions that will dump this I
I I code plus contents of all general I
I I registers, if so requested on I
I I diagnostic card 1. I
ICEKV7 IUsed to establish a CSECT (for thel
I I initial entry to a module), USINGI
I I statement, PSECT cover, and code I
I I cover in register NS. I
ICEKV8 ISimilar to CEKV7, but establishes I
I I the PSECT and ENTRY statements, I
I I plus the 19-word save area. I
ICEKV9 IUsed for all FREEMAIN operations. I
I I In addition to the actual FREE- I
I I MAIN, records are kept in tne I
I I PSECT of main storage areas I
I I freed, and their size. I l ______ ~ __________________________________ J

r------T----------------------------------,
I Name I Description I
t------i----------------------------------~
IEXECUTIVE Macro Instructions I
t------~---------------------------------~
ICEKV~ IObtains the version of this compi-I
I I lation and moves it to appropri- I
I I ate edit areas. I
ICEKV8 IUsed in preparing diagnostic I
I I information. Reached by an I
I I INVOKE in macro instruction I
I I CEKV6. <. - I
ICEKVC IOsed for a11 GET MAIN operations. I
I I Obtains parameters from the PSECTI
I I giving the number of pages to I
I I obtain, obtains them, and keeps I
I I records in the Phase Controller (
I I PSECT of pages obtained and their I
I I location. I
ICEKVD IProduces a complete virtual I
I I storage dump. Used in diagnostic (
I I mode processing. (
!CEKVI (Contains code related to control I
I I of unexpected interruptions dur- I
I ling tne compilation process. I
I I Entered only in diagnostic mode. I
ICEKVU IThe data management operations I
I I OPEN, SETL, PUT, and CLOSE are I
I I all embedded in the macro (
(I instruction CEKVU. I
jCEKZD (Establishes PSECT cover, and back-\
I I ward and forward PSECT chains. I
t------~----------------------------------~
IPhase 1 Macro Instructions I
t------T----------------------------------1
ICEKHB ISaves a one- or two-byte Symbol I
I I Table field. I
ICEKHC iDSECT describing the Symbol Table I
I I fields for a variable entry. I
I CEKHD I Phase 1 PSECT. I
ICEKHF lupdates the Cross-Reference List. I
ICEKHG Icreates a two-oyte, signed Adcon I
I I for the error routine. I
ICEKHH ISets up INVOKE, tests the return I
I I code, branches conditional, and I
I I sets up RESUME. I
ICEKHI IDefines field used in internal I
I I tables and flags ",it.h EQU cards. I
ICEKHJ lseveral DSECTs defining some I
I I internal tables. I
ICEKHL IMakes an ROM entry for the error I
I I routine. I
ICEKHM ISaves a one-byte field of the Sym-I
I I bol Table. I
ICEKHN IUses CEKHG to create parameter I
I I lists for the error routine. I
t------~---------------------------------1
(Phase 2 Macro Instructions I
t------~---------------------------------~
ICEKJM IDefines the fields of internal I
j I tables by EQU cards. I
ICEKJO IPhase 2 PSECT. I
ICEKJl IChecks for a barrier bet",een the I
I I plateau values of a reference andl
I , a definition of a statement I
I I label. I
ICEKJ2 IMarks the materialization list. I L ______ ~ _________________________________ J

r------T----------------------------------,
I Name I Description I
~--_-__ i----------------------------------~
,Phase 2 Macro Instructions (Continued) I
~------T----------------------------------~
ICEKJ3 IChecks the inner loop table for a I
I , reference or a definition of a I
I I specified statement label. ,
ICEKJ4 IMarks the return list. I
ICEKJ5 IRelinks a specified chain in the I
I I opposite direction. I
ICEKJ6 ITests for a D-Loop or an E-Loop I
I I table entry between ILINK and I
I I POLINK. I
ICEKJ7 IDefines the fields of internal I
I I tables by EQO cards. I
ICEKJ8 Icreates the parameter list for thel
I , error routine, OX. I
ICEKJ9 IGenerates an invoke to the error I
I I routine, OX. I
t------L----------------------------------~
IPhase 3 Macro Instructions I
t------T----------------------------------~
I CEKKS I Phase 3 PSECT. I
ICEKKK IDSECTS describing the internal I
I I tables. I
ICEKZB ISets the DSECT or PSECT control I
I I and specifies print options. I
ILOPNT IConverts a pointer to an address I
I I and loads it into a register.' I
ISTPNT IConverts an address into a pointer I
I I and saves the result. I
IEKKSB I~ssembles an address as a pointer. I
IEKKSC ISets an origin to a specified I
I I boundary. I
ICEKKD Idiagnostic mode, provides dumps I
I I during Phase 3 processing. I
t------i----------------------------------~
IPhase 4 Macro Instructions I
t------T----------------------------------~
ICEKNY IPhase 4 PSECT. I
ICEKN2 ITests the return code, and I
I , branches conditionally to the I
I I error routine (PH4MER). I
ICEKN3 IGenerates the calling sequence to I
I I find a constant and its asso- I
I I ciated ~dcon in the Symbol Table. I
ICEKN4 IGenerates the calling sequences tol
I I obtain the location of an operandi
I I in the expression tree, make the I
I I appropriate entries in the I
I I internal tables, and insert the I
I I associated instructions into the I
I I Code File. I
ICEKN5 IInserts previously specified I
I I sequence of instructions (canned I
I I code) into the Code File. I
t------i----------------------------------~
IPhase 5 Macro Instructions ,
~------T----------------------------------~
ICEKSY IPhase 5 PSECT. I
ICEKSZ !EQU cards for the standard regist-I
I , er symbolic names. I
ICEKS2 IPicks up a specified number of I
I I characters from a table. I
ICEKS3 IDecrements the print control line I
I I count. I L ______ L __________________________________ J

Appendix C: FORTR~N Internal Macro Instruction Osage 663

'" '" +:

Pho~e 1

GKAB
C[KAC
CEKAD
(FKAE

CEKN
(EKAC

(EKAH
CEKAI
(EKAJ
(EKAK
(EKAl
CEKAM
CEKAN
(EKAO
CEKAR
CEKAS
CEKAT
(EKAU
CEKAV
CEKAW
CEKAX
CEKAY
CEKA2
CEKBA
CEKSB
CEKBC
CEKBD
CEKBE
CEKSF
CEKSG
CEKSH
CEKSI
(EKSJ
(EKBK
CEKSL
CEKBIv\
CEKBN
CEKBP
CEKBO
CEKBR
CEKSS
CEKST
CEKBU
CEKBV
CEKSVV
CEKex
CEKBY
CEKSZ
CFKCA
CEKCS
CFKCC
CEKCD
CEKeE
(EKCF
(EKCG
CEKCH
(EKCI

CEKCJ
CEKCK
([KCl
(EKCN

CEKCP
([KCQ
CEKCR
(EKeS

'x Slot: 0·· Rt::i<:J('(>CI:,d Oed;'

~~Qr'l€' i 'C

I " IS'
I 0: !

-r-~---t-

(fSC) I I
(SID) I I
(PH1Mi X I X
(ACOMP) j , X
(ARDIM) I X
(SUBSI I X
(IDATAI . X
(EXPRI I X X X
(LABl) X X
(EQUA) X
(END) X
(EXTE) X
((NVRTl 0
(GOTO) X X X
(IFI X X
(TYPE) X
(CONT) X
(DIMNI
(COMMI X
(DCl21
([XEC21 X
(EOUI) X
(DO) X
(SGNLPI X X
(ENDLP) X
(ASSI) X X
(FCONI X X
(RWIO) X X
(FORM) X
(PSR) X X
(NAMl) X
(BLDA)
(SLDAZ)
(SFDEF) X
(SFEXPI X
(DATA)
(lMPL)
(lMPl2)
(FALTH) X
(BLNK)
(SUSE) X
(SUBE2) X
(CALL) X
(CALl2) X X X
(IOLST) X X
(FNCLS) X
(LlSN) X
(STEN2) X
(ERR) 0
(ARITH)
(U)STR) X X
(fLABL) X X X
(RTRAN) X X
(FNAMEI X X
(TRMPRO)
(FLRC)
(IVITI X X
(CKLIMi X
(ClLlM) X
(IVAL) X
(ICNV)
(FCNV)
(FLlC)
IAARC) X X
(CHKINTI

E c

U
if,. . "-

0

g'.J: ,.
? .-g

...... 11-" [:;

X 0
X

X 0

X X
0

X X X
X

X

X
X

X
0

X
X
X

X X
X X X

X X
X X X

0
X

X

X

0

0

X X

(:<

f'101'i:t

CEKJA

CEKJil (FICA")

elK JC (V5CAN'

CEKJD (RTNI)

CEKJf (LAB)

CEKJf (lSP)

CEKJG (FORMAT)

CEKJH (DX)

o
o
o
o

i

(J

()

o
o

Phme 3 (X -..;:: Set; 0 - Referenced On!y)

u ,
J-.
~l

G

G

"'-
o

x :<

~

'" '"

x

--r--'---'---r---'--~--'---~~

, I '" 1 ~ gr-. 8'-.". -"!
o ~ I 0 -l Q... 0 ", .-~ L,L' t- c: -..l ~ '-'-

E~g: - -;- ---- E
2 ~~! .2 =;.. ~a; e_~.

Name

8~~1~' ~:g 5i; e~ o...ec::LL"''1 a...r- U-l Cl.~.

~-----r-1
CEKKA I I o
CEKKB I X
CEKKC I
CEKKE I X
CEKKF I
CEKKG I

CEKKH ! II

CEKKI I
CEKKJ
(EKKK
CEKKL I
(EKKM I
CEKKN
CEKKO
CEKKP
CEKKR
CEKKS

o

x X

x

x
x

x
X

o
X
X

CEKKU
CFKKV
CEKKW
(EKLA

x X

CEKlS
CEKED
CEKEE
CEKLF
CEK II

X
X X

o

X
X X

X

X

X
X

x
X

o

x

X

X

o

X

o

o

o
X
o

X
X

o

o

o

o

x
X

X

x

x

x

x

X

x

-" o
~

-n
o

,.'::
i------

o
X

x

x
X
o
o
o

o
o

x

x

L " . "-:0
-0 0
c;-_

~~§ 0,,_

x

x
o

x
X
X

~
"0
tTl
Z
C;
H
~

o

t""
H
til
>-3

o
"l

~
o
::0

..,;
;J>'
til
t""
tTl
fiJ

~
"l
ttl

~
~
tTl
t:I

til
..;

"l o
:t!
t-:I

~
~
C
1-3
H
Z

fa

rhme 4 IX e! 0 Rderenced I P!'(j~P 4

I
::>
l
0 ..,

:0 . .::' t Name -"
~ .!! ~ 0 ~

-" -~ • i3 . ! . .::' c~

:0 . ·0 :f
.::' U u: :;; c :;; ~'"

,~ c
,~ ~~ _ 'V E

~ J I g [~ • g. ·8 :E

I
l . Z ~ I - j - (~ _9 _ 0

V> V> ~ ~ ,-

~-~!::~-~:I~~) - ----- - -T~-l------l----
.... -"------ t- ---- .. - ... '---_ -

0 0

0 0

"'MC "n~, I I I 0 0

CEKMO (lOVDFl 0 0 0

CEKME (lMPL YI I I 0 0 0

ctKMF (lPLUS) I I ! 0 0 0

CEKMG (CPLUS) 1ft 0 0

CEKMH (RLTNL) I 0 0 0 0

ctKMI (At,DORi I I ' 0

I
0

I CEKMJ (EQ UA n 0 I X

CEKMK (EUNC) I I i
I

!
X

CtKML (TRBLD) X I I X X X

CEKMM (ASAR) t X 0 0

CfKNM

CEKNN

CEKNa

CEKNP

CEKNQ

CEKNR

CEKN$

CEKNT

CEKNU

CEKNV

CEKNW

CEKNX

CEKOB

CFKMN (ASARS) I 0 0 0

ctKMO (ASFR) 0 0 X

CEKOC

CEWD

CFKMP (ASERS) 0 0 0 CEKor

CEKMQ (SELER) 0 0 0 ([KOF

CEKMR (FNDAR) 0

CEKMS (ENDER)

I
0

CEKMT (FNDWS)

CEKOG

CEKOH

CEKOI

CEKMU (MAX) 0 a

I
0

CEKMV (MEMAC) X a 0

CEKOJ

CEKOK

CEKMW ,OPNUI X X I X I I I
!

CEKOI.

CEKMX (RLSWS) 0 0 CFKOM

CEKMY (RSLTi X 0 CEKOM2

CEKMZ (5ADDR) 0 (EKON

C[K~iA (SElGDl 0 0 0 ClKOP

CEKNB (SFlGM) 0 a a CEKOQ

(EKND (SELOP) 0 a a CEKOR

CEKNE (WGHT) X (EKOS

(fKNI (SLPOS) 0 0 a a 0 CtKOT

CEKNG (SfLSR) 0 a 0 0 CfKOU

CEKNH (SElDR) 0 0 a CEKOV

CfKNI (iNSOl) X CEKOW

CEKNJ (COMMA' X X

CfKNK (AiEl

I
0

CEKNl (lif I I 0

CFKOX

(EKOY

CFKOZ

(X S" r; 0 RefNAr~U'd \

~
,~ .
::0

Nome . .!! :0
.::' ~ . ~

~ . ! . .D 0

.::' u u: ~
] 1l, § "2

~
0, ~ E

1 cf () c
z

(SU) -t-·-- T: (Bl2) I

(Bl3)

I
X

(ENDlP) X X

(AGO) X

(CCO) X X

(ASSGN) X

(GO TO) 0

(LABE L)
I

I
X

I ILSl) I 0

(AGfNI X

(PHAS4) 0

«(SX) X

(KEY) 0 0

(ENT) 0 0

(RTRN) 0 0

(CMULI 0 0

(CDIVI 0

(RD) 0 X

(OUSTl 0 X

(NDlS!) 0 X

(STOP) 0

I
X

(CAW I

(DCOM) I
(OPE NO X

(flUSH) 0 0

(CQVFR) 0

(EDIT)

(KEYI) 0

(FETCH) X X

(OPEN I) X 0

(OPEN2) X

(lADDR) X X

(SLONE) 0 0

(OPEN3) X

(OPEN41 X

(OP[NS) X

.
.0, . t

:D _O?
.'2 c~

g~ 8
.

::c ~6 .::' .
a.. ',,:: 4.l

! 0 ~~ .3

X X

X

X 0

X X

X

0

0

0

X

X

X

X

i

0 0
,

0 0

I

I

If'I
\0
\0

Ul
Q)

c:
+J
::1 o
0::

~
0::
E-<
0::

~

~
'C
(I)
t.l c:
(I)
~
(I)

4-4
Q)
0::

!Jl
Q)

:d
III

E-<

~
o
'n

~
4-4
o
+J
Ul

j

Cl

><
'n
'tj
c:
~
0.

I<C

Phase 5 (X 00_ Set; 00-; Referenced Onl,,)

i
t'~cme

::fKSA (PHASE5)

CEKSB (BUILD)

CEKSC ((MSEC)

CEKSD (SPECS) o

(EKSE (PHEAD)

(EKSF {COSEC) 0

(EKSG iPRSEC) 0

crKSH (ASSIST) 0

(EKSI (EDIT) 0

eEKSJ (SYMSRT) 0

(EKSK (CRFSRT) 0

(EKSl (CONCV) 0

Execvtive

Ali Exec routines set the Intercom and txcom.

CEKTF 01$0 SI'!'I"S the Symbol Tobie.

666

]~

I

Gt O
-~

E- i~
$c ~ " _ 0

E g a C

~ .~ ~.~
." u

o:~ .Eo

I

~--

X 0 o
I

o I 0

0 o 0 X X

0 o

0 0

0 o o

0

o

i

APPENDIX E: MODULE DICTIONARY

The ~RTR~N routines bear coded labels as well as mnemonic titles. The 5-character
coded label begins witn the letters CEK; the fourth and fifth identify the specific rou­
tine. The entry points to a routine are specified by a sixth character appended to the
coded label; for example, the coded label for the Master Input/Output routine is CEKTH,
and there are entry points CEKTH~, CEKTHB, etc.

FORTR~N ROUTINES LISTED BY CODED LABELS (Part 1 of 6)

r----------T--------T---T----------T-------T-------,
I Routine I Entry I I I I Chart I
I ID Label I Point I Purpose I Mnemonic I Phase I 1D I
1-----------+--------+--------------------------------------+----------+-------+-------~
I CEK~B I I Obtain-next-character I ESC I 1 I BV I
I I CEKABl I Get next non-blank character I ESC I I I
I I CEKAB2 I Get next character (including blanks> I ESCB I I I
I CEK~C I CEKACl I Statement identification I SID I 1 I CM I
I CEK~D I CEKADl I Phase 1 main loop I PHIM I 1 I ~ I
I CEKAE I CEKAEl I Assemble components I ~COMP I 1 I BW I
I CEK~F I CEKAFA! Process array dimension specification I ARDIM I 1 I CK I
I CEK~G I CEKAGl I Process subscripts I SUBS I 1 I AQ I
I CEKAH I I Process initial value data I 1DATA I 1 I CI I
I I I specification I I I I
I I CEKABl I Entry for Type statements I TDATA I I I
I I CEKAH2 I Entry for DATA statements I DDATA I I I
I CEKA1 I CEKAIl I Process expression I EXPR I 1 I BL I
I CEKAJ I CEKAJA I Process statement label I L~L I 1 I CN I
I CEK~K I CEKAKl I Process assignment statement I EQUA 1 1 I AN I
I CEK~L I CEKALl I Process END statement I END I 1 I BG I
I CEK~M I CEKAMA I Process EXTERNAL statement I EXTE I 1 I AO I
I CEK~N I I Conversion I C~VRT I 1 I BM I
I I CEKANl I Converts constants to new I CNVRT I I I
I I I type and checks legal type I I I I
I I I mixes for expressions I I I I
I I CEKAN2 I Converts constants to new type I CNVRTD I I I
I CEKAQ I CEKAQA I Process GO TO statement I GOTO I 1 I AP I
I CEKAR I CEKARA I Process IF statement I IF I 1 I AQ I
I CEKAS I I Process Type statement I TYPE I 1 I AR I
I I CEKASl I Entry for INTEGER statements I INTE I I I
I I CEKASR I Entry for REAL statements I REAL I I I
I I CEKASC I Entry for COMPLEX statements I COMP I I I
I I CEKASL I Entry for LOGIC~ statements I LOGL I
I I CEKASD I Entry for DOUBLE PRECISION statements I DOBP I
I CEKAT I CEKATl I Process CONTINUE statement I CONT 1 I None
I CEKAU I CEKAUA I Process DIMENSION Statement I DIMN 1 I AS
I CEKAV I CEKAVl I Process COMMON statement I COMM 1 I AT
I CEK~W I I Process declatation I DCL2 1 I None
I I I statements in Pass 2 I I
I I CEKAWl I Entry for COMMO~ statements I COMM2 I
11 CEKAW2 I Entry for other declaration I DeL2 I
I I I statements I I
I CEKAX I I Process executable statements I EXEC2 1 I BH
I I lin Pass 2 I I
I I CEKAXl I Entry for no-flow statements I NF2 I
I I CEKAX2 I Entry for flow-thru statements I FL2 I
I CEKAY I CEKAY~ I Process EQUIV~LENCE statement I EQOI 1 I CA
I CEK~Z I CEKAZl I Process DO statement I DO 1 I CC
I CEKBA I CEKBAl I Analyzes and encodes begin I BGNLP 1 I FM
I I I loop information I I
I CEKBB I CEKBBl I Encodes the end loop entries I ENDLP 1 I CC
I CEKBC I CEKBCA I Process ASSIGN statement I ASS1 1 I AW
I CEKBD I I Process file control statements I FCON I 1 I AX I L _________ .1. _______ .L _________________________________ .L _________ .L ______ .L _______ J

Appendix E: Module Dictionary 667-

FORrRAN ROUTINES LISTED BY CnDED LABELS (Part 2 of 6)
r----------T--------T--T----------T-------T-------,
I Routine I Entry 1 I I I Chart I
I 10 Label I Point I Purpose I Mnemonic I Phase I 10 I
t----------t--------t--+----------+-------t-------1
I I CEKBDl I Entry for BACKSPACE statement I BXSP I I I
I I CEKBD2 I Entry for END FILE statement I ENDF I I I
I I CEKBD3 I Entry for REWIND statement I REWI I I I
I CEKBE I I Process input/output statements I RNIO I 1 I AY I
I I CEKBEl I Entry for READ statement I READ I I I
I I CEKBE2 I Entry for wRITE statement I WRIr I I I
I I CEKBE3 I Entry for PRINT statement I PRNT I I I
I I CEKBE4 I Entry for PUNCH statement I PUNCH I I I
I CEKBF I CEKBFl I Process FORMAT statement I FORM I 1 I AZ I
I CEKBG I I Process PAUSE, STOP, RETURN I PSR I 1 I BA I
I I I statements I I I I
I I CEKBGl I Entry for PAUSE statement I PAUS I I I
I I CEKBG2 I Entry for STOP statement I srop I I I
I i CEKBG3 I Entry for RETURN statement I RETU I I I
I I CEKBG4 I Stop when execution flows into END I Esrop I I I
I CEKBH I CEKBHl I Process NAMELIST statement I NAML I 1 I BB I
I CEKBI I CEKBll I Process BLOCK DATA statement J BLDA I 1 I BC I
I CEKBJ I CEKBJl I Sets the program type for I BLDA2 I 1 I None I
I I I the BLOCK DATA statement I I I I
I CEKBK I CEKBKl I Enables EXPR to translate I SFDEF I 1 I BN I
I I I a statement function expression I I I I
I CEKBL I I Expan~-statement-functions I SFEXP I 1 I BO I
I I CEKBLl I Statement function expansion I SFEXPI I I I
I I I initialization I I I I
I I CEKBL2 I Statement function expansion I SFEXPC I I I
I I I continuation I I I I
I CEKBM I CEKBMl I Process DATA statement I DATA I 1 I BD I
I CEKBN I CEKBN1' Process IMPLICIT statement I IMPL I 1 I BE I
I CEKBP I CEKBPl I Perform final IMPLICIT I IMPL2 I 1 I None I
I I I statement housekeeping I I I I
I CEKBQ I CEKBQA I Determine if a label reference refers I FALTH I 1 I CO I
I I I to the current statement I I I I
I CEKBR I CEKBRl I Process a blank source statement I BLNK I 1 I None I
I CEKBS I I Process subprogram entry statements I SUBE I 1 I BF I
I I CEKES! I Process ENTRY statement I ENTR I ! I
I I CEKBS2 I Process FUNCTION statement I FUNC I I ,
I I CEKBS3 I Process SUBROUTINE I SUBR I I I
I CEKBT I I Process subprogram entry I SUBE2 ! 1 I 51 I
I I I statements in Pass 2 I I I I
I I CEKBTl I Process ENTRY statement I ENTR2 I I I
i I CEKBT2 I Process FUNCTION statement I FUNC2 I I I
I I CEKBT3 I Process SUBROUTINE statement I SUBR2 I I I
I CEKBU I CEKBUl I Process CALL statement I CALL I 1 I None I
I CEKBV I CEKBVl I Process CALL statement in Pass 2 I CALL2 I 1 I BJ I
I CEKBW I CEKBWl I Analyze and encode list elements for I IOLST I liCE I
I I I READ, wRITE, PRINT, and PUNCH I I I I
I I I statements I I I [
I CEKBX I CEKBXl I Determine the proper class I FNCLS I 1 I BP I
I I I of a function I I I I
i CEKBY I I Select-library-functions I LIBN I 1 I BQ I
I I CEKBYl I Functions with automatic typing I LIBN I I I
I I CEKBY2, Functions used as arguments I LIBNA I I I
I I CEKBY3 I Exponential library function I LIBNX I I I
I I I selection I I I I
I CEKBZ I CEKBZl I Determine statement function I STFN2 I 1 I None I
I I I in Pass 2 I I I I
I CEKCA I I Generate diagnostic messages , ERR I 1 I CP I
I I CEKCAA I warning messages (error level 1) I ERRl I I I
I I CEKCAB I Serious messages (error level 2) I ERR2 I I I
I I CEKCAC I Serious messages associated I ERRD I I I
I I I with statement deletion I I I I
I I I (error level 2) I I I I L __________ ~ _______ ~ __ ~ __________ ~ _______ ~ _______ J

FORTRAN ROUTINES LISTED BY CODED LABELS (Part 3 of 6)

r----------r------~-T--T----------T-------T-------,
I Routine I Entry I I I I Chart I
I 10 Label I Point I purpose I Mnemonic I Phase I 10 I
t----------+--------+--+----------+-------+-------~
I I CEKCAD I Fatal messages (error level 3) I ERR3 I I I
I CEKCB I CEKCBl I Perform constant arithmetic I ARITH I 1 BR I
I CEKCC I CEKCCA I Process label string I LBSTR I 1 CL I
I CEKCD I CEKCDl I Process format label for I FLABL I 1 CF I
I I I input/output statements I I I
I CEKCE I CEKCEl I Process ERR and END labels I RTRAN I 1 CG I
I I I for input/output statements I I I
I CEKCF I CEKCFl I Process FORMAT or NAMELIST name I FNAME I 1 CH I
I CEKCG I CEKCGl I Process subscript term I TRMPRO I 1 BS I
I CEKCH I CEKCHl I File real and complex I FLRC I 1 BX I
I I I constants in Symbol Table I I I
I CEKCI I CEKCIl I Insert variable in Symbol Table I IVSr I 1 BY I
I CEKCJ I CEKCJl I Check loop lillii ts I CKL1M I 1 CD I
I CEKCK I CEKCKl I Clear loop limits I CLLIM I 1 None I
I CEKCL I I Process initial value I IVAL I 1 I
I I CEKCLl I First value in type statement group I IVAL I CJ I
I I CEKCL2 I Other than first value in I IVAL1 I AI I
I I I type statement group I I I
I CEKCN I CEKCN1 I convert decimal to binary integer I 1CNV I 1 BZ I
I CEKCP I CEKCPl I Convert decimal to floating binary I FCNV I 1 CA I
I CEKCQ I CEKCQ1 I File integer constant I FLIC I 1 None I
I CEKCR I CEKCR1 I Provide service in processing actual I AARG I 1 BT I
I I I a rgument I I I
I CEKCS I I Provide for treatment of interruptions I CHKINT I 1 80 I
I I CEKCS1 I Divide check I CERCS1 I I
I I CEKCS2 I Exponent overflow I CEKCS1 I I
I I CEKCS3 I Return flags I CHKINT I I
I I CEKCS4 I Enable 3 interruptions I CHKINT I BO I
I I CEKCS5 I Disable 3 interruptions I CEKINT I BU I
I CEKJA I CEKJA1 I Control Phase 2 I PHASE2 I 2 Fig.191
I CEKJB I CEKJB1 I Process label references I FSCAN I 2 CR I
I I I and definitions I I I
I CEKJC I CEKJCl I Make storage assignments I VSCAN I 2 CQ I
I I I for all variables I I I
I CEKJD I CEKJD1 I Process label references I RrN1 I 2 CS I
I CEKJE I CEKJE1 I Process label references I LAB I 2 CT I
I CEKJF I CEKJF1 I Inspect statement label references I ISP I 2 None I
I CEKJG I CEKJGl I Inspect format reference I FORMAT I 2 None I
I CEKJH I I Generate diagnostic messages I DX I 2 CU I
I I CEKJH1 I Warning messages I DXW I 2 I
I I CEKJH2 I Serious messages I DXF I 2 I
I I CEKJH3 I Abort. messages I OXA I 2 I
I CEKKA I CEKKAA I Acquire entry from Compute I - I 3 DP I
I I I and Removal Table I I I
I CEKKB I CEKKBA I Generate Polish expression I - I 3 DQ I
I CEKKC I CEKKCA I Process End Loop entries in PRF Table I - I 3 CX I
I CEKKE I CEKKEA I Scan entry in the Expression File I - I 3 DA I
I CEKKF I CEKKFA I Pushdown primitive operator I - I 3 DC I
I CEKKG I CEKKGA I Determine the forward I - I 3 DD I
I I I compute point and removal I I I
I I I level for a variable I I I
I CEKKH I CEKKHA I Manipulate Triad File I - I 3 OF I
I CEKKI I CEKKIA I Determine commonality or I - I 3 DB I
I I I removability of an expresRion I I I
I CEKKJ I CEKKJA I Determine whether entries I - I 3 OK I
I I I in tne PRF are common I I I
I CEKKK I CEKKKA I Establish common expression I - I 3 DJ I
I CEKKL I CEKKLA I Form operand list expression I - I 3 DE I
I CEKKM I CEKKMA I Revise subscript expression I - I 3 DO I
I CEKKN I CEKKNA I Put expression into cannonical form I - I 3 DH I
I CEKKO I CEKKOA I Save popularity counts for I - I I
I I I register assignment I I I I l __________ ~ ________ ~ __ ~ __________ ~ _______ ~ _______ J

Appendix E: Module Dictionary 669-

FORTRAN ROUTINES LISTED BY CODED LABELS (Part 4 of 6)
r----------r--------r--T----------T-------T-------,
I Routine I Entry f I I I Chart I
I 10 Label I Point I Purpose I Mnemonic I Phase I 10 I
~----------+--------+--+----------+-------+-------~
I CEKKP I CEKKPA I Search and insert triad I - I 3 I DG I
t CEKKR I I Control Phase 3 I I 3 I CV I
I I CEKKRA I standard entry by EXEC I - I 3 I I
I I CEKKRE I Error exit by all Phase 3 routines I - I 3 I I
I CEKKS I - I Phase 3 storage I PSECT I 3 I None I
I CEKKU I CEKKUA I Manipulates the PRF entry I - I 3 I CW I
I I I into its proper PF format I I I !
I CEKKV I CEKKVA I Process the Begin Loop ~ I - I 3 I CY I
I I I entries in PRF I I I I
I CEKKW I CEKKWA I Process the Begin Loop 2 I - I 3 I CZ I
I I I entries in PRF I I I I
I CEKLA I CEKLAA I Label common expression I - I 3 I DL I
I CEKLB I CEKLBA I File a constant, compute I - I 3 I IW I
I I I and file its covering I I I I
I I I Adcon. and compute displacement I I I I
I CEKLD I CEKLDA I Expunge a removable subexpression I - I 3 I ON I
I CEKLE I CEKLEA I File CRT entries I - I 3 I DM I
I CEKLF I CEKLFA I Copy and edit an expression I - I 3 I DB I
I CEKLI I CEKLIA I Generate loop text-expression I - I 3 I DT I
I CEKMA I CEKMAl I Genera te real divide I RDIV I 4 I ES I
I CEKMB I CEKMBl I Generate real multiply I RMUL I 4 I ER I
I CEKMC I CEKMCl I Generate real plus I RPLUS I 4 I KM I
I CEKMD I CEKMDl I Generate integer divide I IDVDE I 4 I EV I
I CEKME I CEKMEl I Generate integer multiply I IMPLY ! 4 I EW I
I CEKMF I CEKMFl I Generate integer plus I IPLUS I 4 I ET I
I CEKMG I CEKMGl I Generate complex plus I CPLUS I 4 I EX I
I CEKM.H I CEKMHl I Generate relational expression I RLTNL I 4 I FA I
I CEKMI I CEKMIl I Generate logical expression I ANDOR I 4 I FB I
I CEKMJ I CEKMJl I Process equation program file entry I EQUAT I 4 I DW I
I CEKMK I CEKMKl I Generate external function I FUNC I 4 I FD I
I I CEKML2 I Generate tree entries for a con- I I 4 I None I
I ! I version function I I I I
I CEKML I CEKMLl I Build expression tree I TRBLD I 4 I EN I
I CEKMM I CEKMMl I Make initial assignment to I ASAR I 4 I GE I
I I I General Register I I I I
I CEKMN I CEKMN~ I Assign to Arithmetic Register I ASARS I 4 I GF i
I CEKMO I CEKMO~ I Make initial assignment to I ASFR I 4 I None I
I I I .Floating-Point Register I I I I
I CEKMP I CEKMPl I Make synonym assignment I ASFRS I 4 I GG ,
I I I to Floating Register I I I i
I CEKMQ I CEKMQl I Select Floating Register I SELFR I 4 I GD I
I CEKMR I CEKMRl I Search General Registers I FNDAR I 4 I FX I
I CEKMS I CEKMEl I Search Floating Registers I FNDFR I 4 I FY I
I CEKMT I CEKMTl I Find temporary storage I FND"S I 4 I GH I
I CEKM.U I CEKMUl I Generate maximum operator I MAX I 4 I FC I
I CEKMV I CEKMVl I Access storage I MEMAC I 4 I FM I
I I CEKMV2 I I LSUB I 4 I None I
I CEKMW I CEKMW I Process operands I OPND I I FZ i
I I CEKMWl I Process variable or constant I OPND I 4 I I
I I CEKMW2 I Process operator I TROP I 4 I NK I
I I CEKMW3 I Process common expression I CSOP I 4 I NK I
I CEKMW I CEKMWl I Process operand I OPND I 4 I FZ I
I CEKMX I CEKMXl I Release temporary storage I RLSWS I 4 I GI I
I CEKMY I CEKMYl I Process Result-Register operand I RSLT I 4 I GA I
I CEKMZ I CEKMZl I Generate local branch I SADDR I 4 I FN I
I CEKNA I CEKNAl I Determine whether division I SELGD I 4 I FU I
I I I may take place in register I I I I
I I I pair containing numerator I I I I
I CEKNB I CEKNBl I Determine availability of I SELGM I 4 I FT I
I I I register for multiplication I I I I
I CEKND I CEKNDl I Select operand I SELOP I 4 I FQ I L __________ L-_______ ~ __ ~ _______ ---~-------~-------J

e610

FORTRAN ROUTINES LISTED BY CODED LABELS (Part 5 of 6)
r----------T--------T--T----------T-------T-------,
I Routine I Entry I I I , Chart ,
I ID Label ,Point I Purpose , Mnemonic I Phase' ID ,
t----------+--------+--+----------+-------+-------~
I CEKNE 1 CEKNEl I Assign a weight to each non- 1 wGHr I 4 I EO I
I I 'primitive mode of the I",
I I I expression tree "I I
I CEKNF ,CEKNFl I Select position for operation I SLPOS I 4 'FR ,
,CEKNG ,CEKNGl I Select single General Register I SELSR I 4 I GB I
I CEKNH I CEKNH1, Select even/odd General ,SELDR I 4 'GC I
I I 1 Regh;ter pair I I I I
I CEKNI I CEKNIl I Output code file I INSOT I 4 I GK I
, I CEKNI2 1 Error processing for code I * I 4 I None I
I , I file overflow I' I I
I CEKNJ I I Process comma operator I COMMA I 4 I FE ,
I I CEKNJl I Entry for other cases I COMMA I I I
I I CEKNJ2, Entry for CEKl'lK when ,COMA2 I I I
I I I function has only one argument I I I ,
I CEKNK I CEKNK I Process arithmetic IF PF entry I AIF ,4, DX ,
I CEKNL I CEKNLl I Process logical IF PF entry , LIF I 4 I DY ,
,CEKNM I CEKNM1 I Process begin loop 1 PF entry I BLl ,4 I EE ,
,CEKNN ,CEKNNl I Process begin loop 2 PF entry I BL2 I 4 'EF I
I CEKNO I CEKN01, Process begin loop 3 PF entry , BL3 I 4 I EG I
,CEKNP I CEKNPl I Process end loop PF entry I ENDLP , 4 'EH I
,CEKNQ I CEKNQ1 I Process assigned GO TO PF entry I AGO I 4 I EA I
,CEKNR I CEKNR1 I Process computed GO TO PF entry I CGO I 4 'EB I
,CEKNS ,CEKNSl I Process ASSIGN PF entry I ASSGN I 4 I DZ ,
,CEKNT ,CEKNTl I Process GO TO PF entry I GO TO , 4 I None ,
I CEKNU I CEKNUl I Process referenced label PF entry I LABEL I 4 I DV I
,CEKNV I CEKNV1, Genera te labeled branch I LBL I 4 I FO I
I CEKNW ,CEKNWl I Generate arithmetic expression I AGEN I 4 ,EM I
I CEKNX I CEKNXl I Control Phase 4 I PHAS ,4 I Fig.30,
I CEKOB I CEKOBl I Count common expression usage , CSX I 4 'EP I
I CEKOC I CEKOCl I Determine the location of I KEY I 4 'FV I
, I 'Doth operands of the I'"
I I I current operation 'I I I
I CEKOD ,CEKODl I Process entry point I ENT I 4 I DU I
I CEKOE ,CEKOEl I Process RETURN I RTRN ,4 I ED I
! CEKDF I CEKOF1, Generate complex multiply I CMUL I 4 I EY ,
I CEKOG I CEKOGl I Generate complex divide I CDIV I 4 I EZ ,
,CEKOH ,CEKOHl I Process input/output I RD ,4 I EI I
I I 'statement PF entry I I I I
,CEKDI I CEKOI1, Process input/output list ,IOLIST I 4 I EJ I
, , I element PF entry I I I I
,CEKOJ I I Process and list PF entry I NDLST I 4 I EK I
I I CEKOJl I Process an end list program 'NDLST I I I
I , I f He entry I' I ,
I I CEKOJ2 I Generate a standard call linkage I LINK , I I
I CEKOK I CEKOK1, Process STOP and PAUSE I STOP I 4 I EL I
I I I statement PF entry I' I ,
,CEKDL ,CEKOLl I Process CALL statement I CALL I 4 'EC I
I CEKOM ,OCOM I Control selection of open , DCOM I 4 I FF I
, I I function processing 'I I I
I CEKOM2 ,OPEN6 I Process function numbers I OPEN6 , 4 'FL I
I I I 3, 4, 6-11, 16, 21, 24, I I I ,
I I ,25, 28-32 'I I I
I CEKON ,CEKONl I Clear register I FLUSH , 4 I GS I
I CEKOP I CEKOPl I Obtain Adcon cover for I COVER I 4 I None I
I I I generation of a reference , I I I
I CEKOQ I CEKOQ1 I Edit for code file I EDIT ,4 I None I
I CEKOR I CEKORl I Locate single operand I KEY1 , 4 I FW ,
I CEKOS ,CEKOS1, Ensure that each argument of a I FETCH I 4 I FP I
, I I function or subroutine is in memory I , , I
I I I with desired sign I' I I
I CEKOT I CEKOTl I Process open function I OPENl I 4 I FG I l __________ ~ ________ ~ __ ~ __________ ~ _______ ~ _______ J

Appendix E: Module Dictionary 671-

FORTRAN ROUTINES LISTED EY CODED LABELS (Part 6 of 6)
r----------T--------T--T----------T-------T-------,
I Routine I Entry I I I I Chart I
I 1D Label I Point I Purpose I Mnemonic 1 Phase I ID I
~----------+--------+--+----------+-------+-------~
I CEKOO I CEKOUl I Process open function ,OPEN2 I 4 I FH I
I CEKOV I CEKOVl I Add by load address I LADDR I 4 I EW I
I CEKOW I CEKOWl I Select one operand in a register I SLONE I 4 I FS I
I CEKOX I CEKOXl I Process open function OPEN3 I 4 I FI I
I CEKOY I CEKOYl I Process open function OPEN4 I 4 I FJ I
I CEKOZ I CEKOZl I Process open function OPENS I 4 I FK I
I CEKSA I CEKSAl I Generate FORTRAN compiler output PHASES I 5 I None I
I CEKSB I CEKSBl I Build object program ffiodule BuILD I 5 I GL I
I CEKSC I CEKSCl I Generate common control section CMSEC I 5 I GM I
I CEKSD I CEKSDl I Process preset data SPECS I 5 f GP I
I CEKSE I CEKSEl I Produce page headings for PHEAD I 5 I None f
I I I each Phase S output page I I I
I CEKSF I CEKSFl I Generate code control section COSEC I 5 I GN I
I CEKSG I CEKSGl I Build PSECT PRSEC I 5 I GO I
I CEKSH I CEKSHl I Generate Internal Symbol Dictionary ASSIST I 5 I GQ I
I CEKSI I CEKSIl I Document object program EDIT I S I GR I
I CEKSJ I CEKSJl I Sort symbol table SYMSRT I 5 I GS 1
I CEKSK I CEKSKl I List cross-reference CRFSRT I 5 1 GO I
I CEKSL I CEKSLl I convert constant CONCV I 5 I GT I
I CEKr A I I Control compiler phases PHC I Exec I AB I
I I CEKTA/>. I LPC to FORTRAN initial I I I I
I I CEKTAB I LPC to FORTRAN continue I I I I
I I CEKTAC I LPC to FORTRAN early-end I I I I
I CEKrc I CEKTCA I Get next source statement I GNSS I Exec I AC I
I I I (contains CEKTI and CEKTJ) I I I I
I CEKro I CEKTOA I Process terminal modification I MOD I Exec I AD I
I CEKTE I CEKTEA I Receive diagnostic messages I RDM I Exec I AE I
I CEKTF I I Constant filers I CONFIL I Exec I AF I
I I CEKTFB I File 1*2 constants I CONI2 I I I
I I CEKTFC I File I*4 constants I CONI4 I I I
I I CEKTFD I File K*4 constants I CONR4 I I I
I I CEKTFE I File R*8 constants I CONR8 I I I
I I CEKTFF I File C*8 constants I CONCa I I I
I I CEKTFG I File C*16 constants I CONC16 I I I
I I CEKTFI I File storage Class 4 I FLAD4 I I I
I i I other than R-cons I I I I
I I CEKTFJ I File storage Class 5 constants I FLAD5 I I I
I I CEKTFK I File V-con, R-con pairs I FLADVR I I I
I I CEKTFL I File labels I FLL I I I
I I CEKTFM I Create and file labels I CRL I AN I I
I CEKrs I I Provide communication I MIO I Exec I AG I
I I I between interface programs I I I I
I I I (contains CEKTK, CEKTL. and CEKTM) I I I I
I I CEKTHI!. I Open the list data set I LOOPEN I I AW I
I I CEKTBB I Close the list data set I LOCLOSE I I I
I I CEKTBC I Obtain a line for GNSS I LINEIN I I I
I I CEKTBD I Output diagnostic lines I DIAGOOT I I I
I I CEKTBE I Add lines to list data set I OLR I I I
I I CEKTHF I Flush a statement buffer I BFLUSB I I I
I CEKTI I CEKTIA I Analyze console source line I ANALYZ I Exec I Ali I
I CEKTJ I CEKTJA I Inspect a console character I INS CON I Exec I AI I
I CEKrK I CEKTKA I Move a line to a list data set I LDMOVE I Exec I AJ I
I CEKTL I CEKTLA I Build a list data set buffer I BUILD I Exec I A.K I
I CEKrM I CEKTMA I Flush a list data set buffer I FLUSH I Exec I AL I
I CEKTQ I CEKTQl t Prepare hexadecimal I COMDOMP I Exec I None I
I I I dumps of internal files I J I I
I CEKTS I CEKTSA I Form lines and issue them I LINDUMP I Exec I None I
I I I via PUT macro instruction I I I I L-_________ 4-_______ ~ __ ~ __________ ~ _______ ~ _______ J

FORTRAN ROUTINES LISTED BY MNEHONICS (Part 1 of 6)

r----------T--------T--------------------------------,---------T-------T-------,
I I Entry ! I Routine I I Chart I
I ~.nemonic I Point I Purpose I ID Labell Phase I ID I
r----------t--------t--------------------------------t---------t-------t-------~
I AARG I CEKCRl I Provide service in processing I CEKCRI 1 I BT I
I I I actual argument I I I I
! ACOMP I CEKAEl I Asserr~le components I CEKAE I 1 I Bw I
I AGEN I CEK~wl I Generate arithmetic expression I CEKNW I 4 I EM I
I AGO I CEKNQl ! ?rocess assigned GO TO I CEKNQ I 4 I EA I
I I I PF ent ry I I I I
I AIF I CEKNK1., Process arithmetic IF PE' entry I CEKNK I 4 I DX I
I ANALYZ I CEKTIA I Analyze console source line I CEKTI I Exec I AH I
I ANDOR I CEKMIl I Generate logical expression I CEKMI I 4 I FB I
I ARDHI I CEKAFA I Process array dimension I CEKAF I 1 I CK I
I I I speCification I I I I
I ARITH I CEKCBl I Perform constant arithmetic I CEKCB I 1 I BR I
I ASAR I CEKMMl 1 Make initial assignment to I CEKMM I 4 I GE I
I I I General Register I I I I
I ASARS ! CEKMNl I Assign to Arithmetic Register I CEKMN I 4 I GF I
I ASFR I CEKMOl I Make initial assignment to I CEKMO I 4 I None I
I I I Floating-Point Register I I I I
I ASFRS I CEKMPl I Make synonym assignment I CEKMP I 4 I GG I
I I I to Floating Register I I I I
I ASSGN I CEKNSl I Process ASSIGN PF entry I CEKNS I 4 I DZ I
I ASSI I CEKBCA I Process ASSIGN statement I CEKBC I 1 I AW I
I ASSIST I CEKSHl I Generate Internal Symbol I CEKSH I 5 I GQ I
I I I Dictionary I I I I
I BGNLP I CEKBAl I Analyzes and encodes begin I CEKBA I 1 I CB I
I I I loop informa tion I I I I
I BLDA I CEKBIl I Process BLOCK DATA statement I CEKBl I 1 I BC I
I BLDA2 I CEKBJl I Sets the program type for I CEKBJ I 1 I None I
I I I tne BLOCK DATA statement I I I I
t -,~'i~.. l -- :1\- ,~!<)cC:. ,~, a. " ;.:_. ~-;c ::-ce 1 '-E.K01'\. I 1 ~~f 1~

I I st6.tEo.ec.t I I
! E~l I CEKN~l ~r~ces~ 0e~i~ lao~ 1 PF entry I CEK~~ I
I EL2 I CEKNNl 2racess begin ... oop 2 PF entry I CBF:'lN I
I BLJ I CEKNOl ?ruccss 0e9~n loop J PF entry I CEK,m I

4
4
4

I :O.'-'IL:' I C"'::':;- u" l- .;.i:t::'c r . .-, set: D<lffer I r-. "-I::" I' Y.2C
I PGlLD ! CSKS31 . uiL1 ObjeCt; pro-Jrar.. module I C:LKSi3 I
I C~LL 1 CEKBUl Process CALL state~ent I CEKRU I
I CALL I CEKOLl Process CALL statement I CEKOL I
I CALL2 I CEKBVl Process CALL statement in I CEKBV I
I I Pass 2 I I
I CDIV I CEKOGl Generate complex divide I CEKOG I
I CGO I CEKNRl Process computed GO TO I CEKNR I
I I PF entry I I
I CHKINT I Provide for treatment of I CEKCS I
I I interrupts I I
I I CEKCSl Divide check I I
I I CEKCS2 Exponent overflow I I
I I CEKCS3 Return flags I I
I CKLIM I CEKCJl Check loop limits I CEKCJ I
I CLLIM I CEKCKl Clear loop limits I CEKCK I
I CMSEC I CEKSCl Generate common control sectionl CEKSC I
I CMOL I CEKOFl Generate complex multiply I CEKOF I
I CNVRT I Conversion I CEKAN I
I CNVRT I CEKANl Converts constants to new I I
I I type and checks legal type I I
I I IT: <:~s for Eo"-fJrEcssions . I I
I C::V:<'~J I C2K?~L :'O~lVrL.~ cor,cotdr,ts to new ty;'s I I
I :c· LF.1P I '::·~t("l'C '(i",P CV ... t:'~Le.r J.~";'e i Cf Kr~. 1:S .

5
1
4
1

4
4

1

1
1
5
4
1

I CO~~ I CEKAVl Process COMMON statement I CEKAV I 1
I COt-:Mrl I Process corr .. "na operator I CEK'U I 4
I I CEK~Jl ~n~ry ~or other ca~es I I
I i CEKNJ2 C:ntry or CEKfY,f when function 1 I

Er.
EF
EG

;z
GL
None
EC
BJ

EZ
EB

BO

CD
None
GM
EY
BM

RT
FE

I I h':.s ellj en2 :,.r;ument t I I I
L __________ .1. ________ .1.____________ _ _________________ .J. __________ .J. __ .. __ .. _.1. __ . _____ J

Appendix E: Module Dictionary 673-

FORTPAt-; EOUTINES LISI'E") iY M:':sr.:ONICS (Part 2 of 6)
r----------T--------T~-------------------------------T---------T-------T-------,

! I Entry I ! i{outine I I Chart I
I ~1ne!nonic I Point ! purpcse I 10 Labell Phase I ID I
r----------t--------t--------------------------------t---------t-------+-------~
! CJNCV I CEKSLl I Convert constant I CEKSL I 5 I GT I
I CONFIL I I Constant filErs I CEKI'F I Exec I AF I
I I CEKTFB I File 1* 2 constants I ! ! I
I I CEKTFC ! Fi~e 1*4 constants I I I !
I ! CFKTFD I File R*4 constants I I I I
I I CEKTFE I File R*8 constants I ! I I
I ! CEKTFF + .ile C* 8 constants I I I i
I I CEKTFG I File C*16 constants I I i I
I I CEKTFI ! File storage Class 4 con- I ! I !
I I I stants other than i{- cons I I I I
I I CEKTFJ I File storage Class 5 ! ! I I
I I I constants I I I I
I I CEKTFK I File V-con, ~-con pairs I I I !
I I CEKTFL , File Labels I I I I
j I CEKTFM I Create an:] file labels ! I I I
I CONI' I CEKATl I Proces3 CONTINUE statement I CEKAr I 1 I Non€ I
I COSEC I CEKSFl I ~enerate co~e control section I CEKSF I 5 i GN I
I COVER I CEKOPl I Obtain adcon cover for I CEKJP I 4 I None I
I I I genen tion of a storage I I I I
I I I reference I I ! i
I CPLUS I CEKM:;l I :':'e'1erate comflex plus I CEKMG I 4 I EX I
i CRFSRT I CEKSKl I List cross-reference I CEKSK I 5 I GU I
I CSX I CEKORl I Count common expression usage I CEKOB I 4 I EP I

DATA. I CEKBMl I Precess :;ATA statement I CEKB:-f I 1 I BD I
DCL2 I I 2rocess ,jeclaration state- I CEKAW I 1 I I

DIMN
DJ
DX

EDlr
EDIT
END
ENDLP
ENDLP
E~r

E;JUA
EQUAT
E,JUI
ERR

ESC

I I mE-nts in Pass 2 I I I I
I CEKA"'l I Lntry ;: or COi·,MON statements I I I None I
I CEKAW2 I entry tor otner declaration I I I None I
I I statements I I I I
I DCOM ! Control selection of open I CEKOM I 4 ! FF I
I I function processing I I I I
I C2KOM2 I OP:C'N6 function I I I I
I CEKAUA I Process DIM.E·'SIO~ statement I CEKAU I 1 I A.S I
I CEKAZl I Process 00 statement I CEKAZ I 1 I AV !
I I Generate diagnostic messages I CEKJH I 2 I CU I
I CEKJHl t tlarning messages I I 2 I I
i CEKJH2 I Serious rr,essages I I 2 I I
I CEKJH3 I i'JJort 'l.essages I I 2 I I
I CEKOQl I Edit for code file I CEKOQ I 4 I None I
I CEKSIl I Document object program I CEKSI I 5 I GR I
I CEKALl I Precess U'W statement I CEKAL I 1 I BG I
I CEKBBl I Encodes the ~nd loop entries I CEKBB I 1 I CC I
! CERNPl I Precess and loop PF entry I CEKNP I 4 ! Etl I
! CEKODl I Process entry ~oint I CEKJD I 4 I DU I
t CEKAKl I ?rocess assignrr.ent statement I CEKAK I 1 I A..~ I
j CEKMJl I Process equation PF entry I CEKMJ I 4 I D~ 1
I CEKAYA I Process LQUIVALENCE statement I CEKAY I 1 I AU I
I I Generate diagnostic messages I CEKCA I 1 I CP I
I CEKCAA I Warning messages (error I I I I
I I level 1) I I I I
I CEKCAB I Serious messages (error I I I GO I
I ! level 2) I I I I
I CEKCACCI Serious messages associate:] I I I I
I I with statement :]eletion I I I I
I I (error level 2) I I I I
I CEKCAD I Fat al ;r,essages (error I I I I
! I level 3) I I I I
I I Obtain next character I CEKAB I 1 I BV I
I CEKABl , Get next non-blank character I I I 1
I CEKAB2 I Get next character (including I I I I

I I I blanks) I I I I L __________ ~ ________ ~ ________________________________ ~ _________ ~ _______ ~ _______ J

FORTRAN ROUTINBS LISTED BY MN2MONICS (Part 3 of 6)
r----------T--------T--------------------------------T---------T-------T-------,
I I Entry- I I Routine I I Chart I
I ~nemonic I Point I Purpose I 10 Labell Phase I 10 I
~----------t--------+--------------------------------+---------+-------+-------~
I EXEC2 I ! Process executable statements I CEKAX I 1 I BH I
Iii n Pas s 2 I I I I
I i CEKAX1 Entry for no-flow statements I I I I
I I CEKAX2 £ntry for flow-tnru I I I I
I I statements I I I I
I EXPR I CEKAIl Process expression I CEKAI I 1 I BL I
I EXTE I CEKAMA Process EXTERNAL statement I CEKAM I 1 I AO I
I FALTH I CEKB~A Determine if a label rei- I CEKBQ I 1 I CO I
I I erence refers to the current I I I t
1 I statement I I I I
I FCNV I CEKCP1 Convert jecimal to floatinq I CERCP t 1 I I
I I binary I I I I
I FCON I Process file control I CEKBD I 1 I AX I
I I stateme:1ts I I I I
1 I CEKBDl Entry for BACKSPACE statement I I I I
I I CEKBD2 Entry for END FILE statement I I I I
I I CEKBD3 Entry for REwIND statement I I I I
I FETCH I CEKOSl Ensure that each argument I CEKOS I 4 I FP I
I I of a function or subroutine I I I I
(I is in storage with desired I I I I
I I sign I I I I
I FLABL I CEKCDl Process format label for I CEKCD I 1 I CF I
I I input/output statements I I I I
I FLIC I CEKCQl File integer constant I CEKCQ I 1 I None I
I FLRC I CEKCal File real ana complex con- I CEKCH I 1 I BX I
I I stants in Symbol Table I I I I
I FLusa I CEKTMA Flush a list data set buffer I CEKTM I Exec I AL I
I FLUSH I CEKONl Clear register storage I CEKON I 4 I GJ I
I FNAME I CEKCFl ProceS3 FO~~AT or NAMELIST I CEKCF I 1 I CH I
I I name I I I I
I FONCLS I CEKBXl Determine the proper class I CEKBX I 1 I BP I
I I of a f unction I I I I
I FNDAR I CEKMRl 3earch General Register I CEKMR I 4 I FX I
I FNDFR I CEKMSl 3earch Floating Register I CERMS I 4 I FY I
I FND~S I CEKMTl Find temporary storage I CEKMT I 4 i GH I
I F8RM I CEKBFl Process FORMAT statement I CEKBF I 1 I AZ I
I FORMAl' I CEKJGl Ins pect FORMAT reference I CEKJG I 2 I None I
! FSCA.N I CEKJBl Process label references and I CEKJB I 2 I CR I
I I definitions I I I I
I FUNC I CEKMKl Generate external function I CEKMK I 4 I FD I
I GNSS I CEKTCA Get next source statement I GEKrC I Exec I AC I
! I (cont3.ins CEKTI and CEKTJ) I I I I
I Goro I CEKAQA Process GO TO statement I CEKAQ I 1 I AP I
I GOr8 I CEKNTl Process GO TO PF entry I CEKNT I 4 I None I
I ICNV I CEKCNl Convert decimal to binary I CEKCN I 1 I BZ I
I I integer I I I I
I IDATA I Process initial value data I CEKAH I 1 I CI I
\ I specificiation I I I I
I I CEKAHl Entry for Type statements I I I I
I I CEKAH2 Entry for nATA statements I I I I
I IOVDE I CEKMDl Generate integer divide I CEKMD I 4 I EV I
I IF I CEKARA Process IF statement I CEKAR I 1 I A~ I
I IMPL I CEKBNl Process IMPLICIT statement I CEKBN I 1 I BE I
I IMPLY I CEKMEl Generate integer multiply I CEKME I 4 I I
I IMPL2 I CEKBPl Perform final IMPLICIT I CEKBP I 1 I None I
I I statement housekeeping I I I I
I INSCON I CEKTJA Inspect a console character I CEKTJ I Exec I AI I
I INSOT I CEKNIl Output code file I CEKNI I 4 I GK I
I I CEKNI2 Error processing for code I I I I
I I file overflow I I I I
I IOLIST I CEKOIl Process input/output list I CEKOI I 4 I EJ I
I I I element PF entry I I I I l __________ ~ ________ ~ ________________________________ ~ ________ ~ _______ ~ _______ J

Appendix E: Module Dictionary 675-

FORrRI\N ROUTINES LISTED BY Ml'l"EMOt-;ICS (Part 4 ot 6)
r----------T--------T---------------------------------T---------T-------T-------,
I I Entry I I Routine I I Chart I
I Mnemonic I Point I Purpose I ID Label! Phase I 10 I
~----------+--------t--------------------------------+---------+-------+-------~
! IOLST I CEKBWI I Analyze and encode list I CEKBW I 1 I CE I
I I I elements for kEAD, RITE, I I I I
I I I PRINT, and PUNCH sta tements I I I I
i IPLUS I CEKMFI I Generate integer plus I CEKMF I 4 I ET I
IISP ! CEKJFl I Inspect statement label I CEKJF I 2 I None I
I I I references I I I I
I IVAL I I Process initial. value I CEKCL I 1 I I
I I CEKCLI I First value in type statement I I I CJ I
I I I group I I I I
I I CEKCL2 I Other than first value in type I I I AI I
I I I statement group I I I I
I I~Sr I CEKCIl I Insert variable in Symbol I CEK2I I 1 I BY I
I I I Table I! I I
I KEY I CEKOCI I Determine the location of I CEKOC I 4 I FV I
I I I both operands of the I I I I
I I I current operation I I I !
I KEY 1 I CEKORI I Locate single operand I CEKOR ! 4 I F.... I
I LAB I CEKJEl I Process label references I CEKJE I 2 I CT I
I LABEL I CEKNUl I Process referenced label I CEKNU I 4 I OV I
I I I PF entry I I I I
I LABL I CEKAJA I Process statement label I CEKAJ I 1 I CN I
I h~DDR I CEKOVI I Add by load address I CEKDV I 4 I Ew I
I LBL I CEKNVI I Generate labeled branch I CEKNV I 4 I FO I
I LBSrR I CEKCCA I Process label string I CEKCC I 1 I CL I
I LDM3VE I CEKTKA I Move a line to a list data set I CEKTK I Exec I AJ I
I LIBN I I Select library functions I CEKBY I 1 I BQ I
I I CEKBYl I Fllilctions with automatic I I I I
I I I typing I I I I
I I CEKBY2 I Functions used as arguments I I I I
1 I CEKBY3 I Exponential library function I I I I
I I I selection I I I I
I LIF I CEKNLl I Process logical IF PF I CEKNL I 4 I OY I
i LINDUMP I CEKTSA I DUITlP compiler module entry I CEKTS I Exec I None I
I MAX I CEKMUI I Generate maximum operator I CEKMU I 4 I FC I
I ME~~C I CEKMVI I Access storage I CEKMV I 4 I FM I
I I CEKMV2 I I I I I
I MID I I Provide communication I CEKTH I Exec I AG I
I I I between interface pro- I I I I
I I I grams (contains CEKTK, I I I I
I I I CEKTL and CEKTM) I I I I
I I CEKTHA I Open the list data set I I I I
I I CEKTHB I Close the list data set I I I I
I I CEKTHC I Obtain a line for GNSS I I I I
I I CEKTHD I Output diagnostic lines I I I I
I I CEKTHE , Add lines to list data set I ! I I
I I CEKTHF I Flush a statement buffer I I I I
I MJD I CEKTDA I Process terminal I CEKTD I Exec I AD I
I I I modification I I I I
I N~ I CERBHl I Process NAMELIST statement I CEKBH I 1 I BB I
I NDLST I I Process and list PF entry I CEKOJ I 4 I I
I I CEKOJI I Process an end list program I I I EK I
I I I file entry I I I I
I I CEKOJ2 I I I I I
I I ! Generate a standard call I I I EK I
I I I linkage I I I I
I OPEN1 I CEKOTl I Process open function I CEKOr I 4 I FG I
I OPEN2 I CEKDUI I Process open function I CEKOU I 4 I FH I
I OPEN3 I CEKOXI I Process open function I CEKOX I 4 I FI I
I OPEN4 I CEKOYl I Process open function I CEKOY I 4 I FJ I
I OPENS I CEKOZl I Process open function I CEKOZ I 4 I FK I
I CEKOM2 I OPEN6 I Process function numbers 3, 4, I CEKOM2 I 4 I FL I
I I I 6-11, 16, 21, 24, 25, 28-32 I I I ! L __________ ~ _______ i ________________________________ i _________ i _______ ~ _______ J

-676

FORTR~N ROUTINES LISTED BY MNEMONICS (Part 5 of 6)
r----------T--------T--------------------------------'"---------T-------T-------,
I I Entry I I Routine I I Chart I
I Mnemonic I Point I Purpose , ID Labell Phase I ID I
r----------+--------+--------------------------------+---------+-------+-------~
l OPNO i CEKMWl I Process operand I CEKMW I 4 I FZ
I I CEKMW"2 I Operator processing I I i
I I CEKMW3 I Common expression operand I I I
I I I processing ! I I
I PHAS4 I CEKNXl I Control Phase 4 I CEKNX I 4 I Fig.3D
I PHASE2 I CEKJ~l ! Control Phase 2 I CEKJA I 2 I Fig.19
I PH~SES I CEKSAl I Generate FORrRAN compiler I CEKS~ I 5 I None
I I I output I I I
I PrlC ! I Control compiler phases I CEKr~ I Exec AB
f I CEKT~~ I LPC to FORTRAN initial I I
I I CEKTAB I LPC to FORTRAN continue I I
I I CEKT~C I LPC to FORTRAN early-end I I
I PHEAD I CEKSEl I Prcduce page headings for I CEKSE I 5 None
I I I e3.ch I?hase 5 output page I I
I PdIM I CEKADl I Phase 1 rr~in loop I CEKAD I 1 AM
1 PSR ! I Process PAUSE, STOP, and I CEKBG I 1 BA
I I I RETURN statements I I
l PAUS I CEKBGl I Entry for PAUSE statement I I
I STOP I CEKBG2 I Entry for STOP statement I I
I RETU I CEKBG3 I Entry for RErURN statement I I
I ESTOP I CEKBG4 I Stop wnen execution flows I I
I I I into ""NO I I
I PRSEC I CEKSGl I Sui ld PSECT I CEKSG I 5 GO
I PSECT I - I Phase 3 storage I CEKKS I 3 None
I RO I CEKOHl I Process input/output I CEKOH I 4 EI
I I I statemen~ PF entry I I
[ROIV I CEKMAl I Generate real divide I CEK¥LA I 4 ES
I RDM I CEKTEA I Receive diagnostic messages I CEKTE I Exec ~
I RLSWS I CEKMXl I Release temporary storage I CEK~~ I 4 GI
I RLTNL I CEKMEl I Generate relational expression I CEKMH I 4 FA
I RMUL I CEKMEl I Generate real multiply I CEKMB I 4 ER
I RPLUS I CEEQCl I Generate real plus I CEEQC I 4 KM
I RSLT I CEKMYl I Process ~esult - Register I CEKMY I 4 GA
I I I operand I I
I RTN I CEKJOl I Process label references I CEKJD I 2 CS
I RrRAN I CEKCEl I Process ERR ana END labels I CEKCE I 1 CG
I I I for input/output statements I I
I RTRN I CEKOEl I Process RETURN I CEKOE I 4 ED
t RWIO I I Process input/output I CEKBE I 1 AY
I I I statements I I
I ! CEKBEl I Entry for READ statement I I
I I CEKBE2 I Entry for WRITE statement I I
I I CEKBE3 I Entry for PRINT statement I I
I I CEKBE4 I Ent ry for PUNCH statement I I
I S~DDR I CEKMZl I Generate local branch I CEKMZ I 4 FN
I SELOR I CEKNHl I Select even/odd General- I CEKNH I 4 GC
I I I Register pair I I
I SELFR I CEKMQl I Select Floating Register I CEKMQ I 4 GO
! SELGD I CEKNAl I Determine whether division I CEKNA I 4 FU
I I I may take place in register I I
l I I pair containing numerator I I
I SELGM I CEKNBl I Determine availability of I CEKNB 14FT
~ I I register for multiplication I I
I SELOP I CEKNDl I Select operand I CEKND I 4 FQ
I SELSR I CEKNGl I Select single Ceneral I CEKNG 14GB
I I I Register I I
! SFDEF I CEKBKl I Enables EXPR to translate I CEKBK I 1 BN
I I I a statement function I I
I I I expression I I
I SFEXP I I Expand statement functions I CEKBL I 1
I i CEKBLl I Statement function expansion I I BO
I I I initialization I I I I l __________ ~ ________ ~ ________________________________ ~ _________ ~ _______ ~ _______ J

Appendix E: Module Dictionary 677-

FORTRAN ROUTINES LISTED bY ~~EMONI2S (Part 6 of 6)
r----------r--------T-------------------------------T----------T-------T-------,
I I Entry I I Routinel I Chart I
! r-inemoni c I Point I ?urpose I ID Labell Phase I 10 I
r----------+--------+-------------------------------+----------+-------+-------~
I I CEKBL2 I Statement fUnction expansion I I I BO I
I I I continuation I t I I
I SID I CEKACl I Statement identification I CEKAC I 1 I CM I
t SLONE I CEKOWl I select one operand in a I CEKOW I 4 t FS t
I I I register I I ! I
! SLPOS I CEKNFl I Select position for operation I CEKNF I 4 FR I
I SPECS I CEKSDl I Process preset data I CEKSD I 5 GP I
I STFN2 t CEKBZl I Determine statement function I CEKBZ I 1 None I
I I lin Pas s 2 I I I
I STOP I CEKOKl I ?rocess STOP and PAUSE I CEKOK I 4 EL I
! I I statement PF entry I I I
I SUBE I I ?rocess subproc;ram entry I CEKBS I 1 BF I
I I I statements I I I
I I CEKBSl I Process ENTRY statement I I I
I I CEKBS2 I Process FUNC'I'ION statement I I I
I I CEKBS3 I Process SUBROUTINE statement I ! I
I SUBE2 I I Process subprogram entry I CEKBr I 1 BI I
I I I statements in Pass 2 I I I
I I CEKBTl I Process ~TRf statement I I I
I I CEKBT2 I Process FUNCrION statement I I I
I I CEKBT3 I Process SUBROUTINE statement I I I
I SUBS i CEKAGl I Pr~cess subscripts I CEKAG I 1 AQ I
I SYMSRT I CEKSJl I Sort SymDOl Table I CEKSJ I 5 GS I
I TRBLD ! CEKMLl I 3uild expression tree I CEKML I 4 EN I
I I CEKML2 I Generate tree entries for I I I
I I I conversion function I I I
I TRMPRO I CEKCGl I Process subscript term I CEKCG I 1 BS I
I TYPE i I Process Type statement I CEKAS I 1 AR I
I I CEKASl I Entry ~or INTEGER statements I I I
I I CEKASR I Entry for REAL statements I I I
I I CEKASC I .E:nt ry for COr-.2LEX statements I I I
I I CEKAS~ I Entry for LOGICAL statements I I I
I I CEKASD lEnt ry f or DOUBLE I I I
I I I PRECISION statements I I I
I VSCA.N I CEKJCl I ~lake storage assignments I CEKJC I 2 CQ I
t I I for all variables I I I
I IJGHr I CEKNEl I Assign a weight to each non- I CEKNE I 4 EO I
I I I primitive mode of the I I I
I I I expression tree I I I I l __________ i-_______ ~ _______________________________ ~ __________ L _______ L _______ J

APPENDIX F: LINKAGE EDITED CO~~ILER ROUTINES LISTED BY C~OEO LABELS (MODULE Nfu~S)

r------------------T-------------------~--------T--------------------------------------,
I I I I Rename Information I
I ! I .--------------------T-----------------i
I I I I External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine 10 Label I IModules I References Prior I Names Following I
I (Module Name) I OEescription I Included I to Linkage Editing I Linkage Editing I
r------------------+--------------------+--------t--------------------t-----------------i
I CEKWX* I Compiler E,xecuti ve I CEKTA I I I
I (EXECFTN) I I CEKTC I I I
I I I CEKTD I I I
I I I CEKTE I I I
I I I CEKTF I I I
I I I CEKTH I I I
I I I CEKTQ I I I
I I I CEKTS I I I
I I I I I I
I CEKW1* I compiler Phase 1 I CEKAB I I I
I (PHASED I I CEKAC I I I
I I I CEKAD I I I
I I I CEKAE I I I
I I I CEKAF I I I
I I I CEKAG I I I
I I I CEKAH I I I
I I I CEKA! I I I
I I I CEKAJ I I I
t I I CEKAK I I I
I I I CEKAL I I I
! I I CEKAI~ I I I
I I I CEKAN I I I
I I I CEKAO I I I
I I I CEKAR I I I
I I I CEKAS I I I
I I I CEKAT I I I
I I I CEKAU I I I
I I CEKAV I I I
t I CEKAW I I I
1 I CEKAX I I I
I I CEKAY I I I
I I CEKAZ I I I
I I CEKBA I I I
I I CEKBB I I I
I I CEKBC I I I
I I CEKBO I I I
! I CEKBE I I I
I I CEKBF I I I
I I CEKBG I I I
I I CEKBd I I I
I I CEKBI I I I
I I CEKBJ I I I
I I CEKBK I I I
I I CEKBL I I I
I I CEKBM I I I
I I CEKBN I I I
I I CEKBP I I I
I I CEKBQ I I I
I I CEKBR I I I
I I CEKBS I I I
I I CEKBT I I I
I I CEKBU I I I
I I I CEKBV I I I l __________________ ~ ____________________ ~ ________ ~ ____________________ ~ _________________ J

Appendix F: Linkage Edited compiler Routines 679

(Part 2 of 5)

r------------------T-------------------~--------T--------------------------------------,
I I I I Rename Information I
I I I ~--------------------T-----------------~
I I I I External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine ID Label I I Modules I References Prior I Names Followiing I
I (Module Name) I Description I Included I To Linkage Editing I Linkage Editing I
t------------------t--------------------f--------+--------------------t-----------------~
I I I CEKBW I I I
I I I CEKBX I I I
I I I CEKBY I I I
I I I CEKBZ I I I
I I i CEKCA I ! I
I I I CEKCB I CHCBGA I CEKUGA I
I I I I CHCBIA I CEKUIA I
I I I I CHCBKA I CEKlJKA I
I I I I CHCBKC I CEKUKC I
I I I CHCBMA I I CEKUMA I
I I I CEKCC I I I
I I I CEKCD I I I
I I I CEKCE I I I
I I I CEKCF I I I
I I I CEKCG I I !
I I I CEKCH I I I
I I I CEKCI I I I
I I I CEKCJ I I I
I I I CEKCK I I I
I I I CEKCL I I I
I I I CEKCN I I I
I I ! CEKCP ! I I
I I I CEKCQ I I I
I I I CEKCR I I I
I I I CEKCS I I I
I CEKW2 I Compiler Phases 2 I CEKJA I I I
I (Phase 23) I and 3 I CEKJB I I !
I I I CEKJC I I I
I I I CEKJD I I I
I ! I CEKJE I I I
I I I CEKJF I I I
I I I CEKJG I I I
I I I CEKJH I I I
I I I CEKKA I I I
I I I CEKKB I I I
I I I CEKKC I I I
I I I CEKKE I I I
I I I CEKKF I I I
I I I CEKKG I I I
I I I CEKKH I I I
I I I CEKKI ! I I
I I I CEKKJ I I I
I I I CEKKL I I I
I I I CEKKM I I I
I I I CEKKN I I I
I I I CEKKO I I I
I I I CEKKP I I I
I I I CEKKU I I I
I I I CEKKV I I I
I I I CEKKW I I I
I I I CEKLA I I I
I I I CEKLB I I I
I I I CEKW I I I
I I I CEKLE I I I
I I I CEKLF I I I
I I I CEKLI I I ! l __________________ ~ ___________________ -L ________ ~ ____________________ ~ _________________ J

680

(Part 3 of 5)

r------------------T--------------------T--------T--------------------------------------,
I I I I Rename Information ,

I I 't--------------------T-----------------~
, I I' External Symbol I !
I Linkage Edited , I I Definitions and I I
I Routine ID Label I ,Modules I References Prior I Names Followiingl
, (Module Name) 'Description I Included I To Linkage Editing, Linkage Editing,
t----'-~-------------+--------------------+--------+--------------------+-----------------~
I CEKW4* I Compil.er Phase 4 ,CEKMA, I I
, (PH~SE4) I I CEKMB I I ,
I I ,CEKMC I I I
I I I CEKMD I I I
I I I CEKME I I I
I I I CEKMF I I I
I I I CEKMG I , ,
I I I CEKMH I I I
I I ,CEKMI I I I
I I I CEKMJ I I I
I I I CEKMK I I I
I I I CEKML I I I
I I I CEKMM I I I
I I I CEKMN I I I
I I I CEKMO I I ,
I I I CEKMP I I I
, I I CEKMQ I I I
I I I CEKMR I I I
I I I CEKMS , I I
, I I CEKMT I I ,
I I I CEKM(] I , I
I I I CEKMV I I I
I I I CEKMW I I I
I I I CEKMX , I I
I , I CEKMY I I I
I I I CEKMZ I I I
, ! ,CEKNA , , !
I I I CEKNB I , ,
I I I CEKND I I I
I I I CEKNE , , I
I I I CEKNF I , ,
I I I CEKNG I I I
I I I CEKNH I I I
I I I CEKNI I I I
I I I CEKNJ I I I
, I I CEKNK I I I
I I I CEKNL I I ,
I I I CEKNM I , ,
, I I CEKNN I I I
I I I CEKNO , I I
I , I CEKNP I I I
I I ,CEKNQ , I I
I I I CEKNR I , ,
, I I CEKNS I I ,
I I I CEKNT I I I
I I I CEKNU I I I
I I I CEKNV , , I
I I I CEKNW I , I
I I I CEKNX I , I
I I I CEKOB 1 1 I
I I 1 CEKOC I , I
I I I CEKOD 1 I I
I I I CEKOE I I I
1 I I CEKOF 1 I I
I I ,CEKOG I I I
I I I CEKOH I I I
I I I CEKOI I I I L ___ ~~ _____________ ~ ______ • _____________ ~ ________ ~ ____ --______________ ~ _________________ J

~ppendix F: Linkage Edited compiler Routines 681

(Part 4 of 5)

r------------------T--------------------T--------T--------------------------------------,
I I I I Rename Information I
I I I ~--------------------T-----------------~
I I I i External Symbol I I
I Linkage Edited I I I Definitions and I I
I Routine ID Label I I Modules I References Prior I Names Followiing I
I (Module Name) I Description I Included I To Linkage Editing I Linkage Editing I
~------------------+--------------------+--------+--------------------+-----------------~
I I I CEKOJ I I I
I I I CEKOK I I I
I I I CEKOL I I I
I I I CEKOM I I I
I I I CEKON I I I
I I I CEKOP I I I
! I I CEKOQ I I !
I I I CEKOR I I I
I I I CEKOS I I I
I I I CEKOT I I I
I I I CEKOU i I I
I I I CEKOV I I I
I I I CEKOW I I I
I I I CEKOX I I I
I I I CEKOY I I I
I I I CEKOZ I I I
I I I I I I
i CEKW5* I Compiler Phase 5 I CEKSA I I I
I <CEKPH5) I I CEKSB I I I
I I I CEKSC I I I
I I I CEKSD I I I
I I I CEKSE I I I
I I I CEKSF I I I
I I I CEKSG I I I
I j I CEKSH I I I
I ! I CEKSI I I I
I I I CEKSJ I I I
I I I CEKSK I I I
I I I CEKSL I I I
I I I I I I
I CEKUX* I contains all math- I CHCAO I CHC~I I CEKUQI I
I (PHASE6) I ematical library I I CHC~R I CEKUQR I
I I modules required I I CHCADW I CEKUQW I
I I by the compiler. I I CHCBD4 I CEKUD4 I
I I I I CHCBD5* I CEKBDS I
I I I I (BOOOS) I I
I I I I CHCBZA I CEKUZA I
I I I I OEXP I CEKUX1* I
I I I I I (DEXPU) I
I I I CHCAF I CHCAFR I CEKUFR I
I I I' CHCAF~ I CEKUFW I
I I I I CHCBZA I CEKUZA I
I I I I DLOG I CEKUX2* I
I I I I I (OLOGU) I
I I I I DLOG10 I CEKUX3* I
I I I I I (DLOG10U) I
I I I CHeBD I CHCBDR I CEKUDR I
I I I I CHCBDW I CEKUDW I
f I I I CHCBDl I CEKUOl I
I I I I CHCBD2 I CEKUD2 I
I I I I CHCBD3 I CEKU03 I
I I I I CHCBD4 I CEKUD4 I
I I I I CHCBDS I CEKUD5 I
I I I I CHCBDS * I CEKBDS I
I I I I (BDOOS) I I
I I I I CHCBE! I CEKUEl I
I I I I CHCBZA I CEKUZA I L _________________ ..L ____________________ ..L ________ ..L ____________________ ..L _________________ J

682

(Part 5 of 5)

r------------------T-------------------~--------T--------------------------------------,
I I I t Rename Information I
I I t .--------------------T-----------------i
I I I I External Symbol I I
I Linka:;re Edited ! I I Definitions and I I
I Routine 10 Label I 'Modules I References Prior I Names Followiing I
I (Module Name) I Description I Included , To Linkage Editing I Linkage Editing I
~------------------+--------------------+--------+--------------------+-----------------i
I I I I DIJCHK I CEKUX5 I
I I I I I (DVCHKU) I
I ~ +- I I OIJERFL I CEKUX4* I
! I I I I (OVERFLU)!
I I I I SLUE I CEKUX6 I
I I I I I (SLITEU) I
I , I I SLITEr I CEKUX7* I
I I I I I (SLITETU) I
I I I caCBE I CffCBER I CEKUER I
I I I I CHCBEW I CEKUEW I
I I I I CHCBEl I CEKUEl I
I I I CHCBG I CHCBGA. I CEKUGA. I
I I I I CHCBGB I CEKUGB I
I I I I CHCBGC I CEKUGC I
I I I I CHCBGD I CEKUGD I
I I I' CffCBGR I CEKUGR I
I I I I CHCBGW I CEKUGW I
I I I I CHCBZA. I CEKUZA. I
I I I CHCBI I CHCBIA. I CEKUlA I
I I I I CHCB1B I CEKUlB I
I I I I CHCBIR I CEKUlR I
I I I I CHCBlW I CEKUlW I
I I I I CHCBZA. I CEKUZA. I
I I I CHCBK I CHCBKA. I CEKUKA. I
I I I' CECBKB I CEKUKB I
I I I I CHCBKC I CEKUKC I
I I I I CHCBKD I CEKUKD I
I I I I CHCBKE I CEKUKE I
I I I I CBCBKR I CEKUKR I
I I I I C8CBKW I CEKUKW I
I I I I CHCBZA. I CEKUZA I
I I I I DEXP I CEKUX1* I
I I I I I (DEXPU) I
I I I I DLOG I CEKUX2* I
I I I I I (DLOGU) I
I I I CHCBM I CBCBMA. I CEKUMA I
I , I I CHCBMB I CEKUMB I
I I I I CBCBMR I CEKUMR I
I I I I CHCBMW . I CEKUMW I
I I I I CHCBZA I CEKUZA I
I I I CHCBZ I CHCBZA I CEKUZA I
I I I I CHCBZR I CEKUZR I
I I I I CHCBZW I CEKUZW I
.------------------~--------------------~-------~--------------------~-----------------~
I*Names given in parentheses are temporary names and will be replaced by the preceding I
I name as soon as is feasible. Thus, module EXECFrN will become module CEKWX, module I
I PHASE6 will become module CEKUX, entry point DEXPU will become entry point CEKUX1, I
I etc. I L ___ J

A.ppendix F: Linkage Edited Compiler Routines 683

When more than one page reference is
given. the major reference is first.

AARG
(see: Actual Argument Service Routine)

ACOMP
(see: Assemble Components)

Acquire Entry from Compute and Removal
Table

decision table 104
flowchart 458
routine description 125

Actual Argument Service Routine
flowchart 334
routine description 71-72

Add by Load Address
decision table 145
flowchart 533-534
routine description 104-165

AGEN
(see: Arithmetic Expression Generator)

AGO
(see: Assigned GO to PF Entry
Processor)

AIF
(see: Ari thmetic IF PF Entry Processor)

AlphameriC constant processing 44
ANALYZ

(see: Analyze Console Source Line)
Analyze Console Source Line

flowchart 240-241
overview 11
routine description 35

ANDOR
(see: Logical Expression Generator)

ARDIM
(see: Array Dimension Specification
Processor)

Argument Definition Point Entry
in PF 643
in PRF 42

ARITB
(see: Constant Arithmetic Subroutine)

Arithmetic Expression Generator
decision table 144
flowchart 513-514
routine description 159

Arithmetic IF entry
in PF 643
in PRF 634,42

Arithmetic IF PF Entry Processor
decision table 142
flowchart 476-480
routine description 155

Array Dimension Specification Processor
flowchart 368-369
routine description 17

ASAR

684

(see: Make Initial Assignment to
General Register)

ASARS
(see: Make Synonym Assignment to
General Register)

ASFR
(see: Make Initial Assignment to
Floating-Point Register)

ASFRS
(see: Make Synonym Assignment to
Floating Register)

ASSGN
(see: Assign PF Entry Processor)

Assemble Components
character table 74
decision table 75,54
flowchart 337-344
routine description 13-74

ASS I
(see: ASSIGN statement processor)

ASSIGN entry
in PF 643
in PRF 634,41

ASSIGN PF Entry Processor
flowchart 482
routine description 155-156

ASSIGN Statement Processor
decision table 142
flowchart 269-270
routine description 57-58

AsSigned GO TO entry
in PF 643
in PRF 634,41

Assigned GO TO PF Entry Processor
decision table 142
flowchart 483
routine description 156

Assignment Character Table 78
AsSignment Precedence Table 78
Assignment Statement Processor

flowchart 250
routine description 55-56

ASSIST
(see: Internal Symbol Dictionary
Generator)

BACKSPACE entry in PRF 43
Begin Loop Processor

flowchart 349-350
routine description 15

Begin Loop 1 entry
in PF 644
in PRF 634,42

Begin Loop 1 PF Entry Processor
decision table 143
flowchart 489
routine description 156-157

Begin Loop 1 PRF Processor
decision table 103
flowchart 421-423
routine description 113-114

Begin Loop 2 Entry
in PF 644
in PRF 634

Begin Loop 2 PF Entry Processor
decision table 143
flowchart 490-498
routine description 157

Begin Loop 2 PRF Processor
decision table 103
flowchart 424-426
routine description 114-115

Begin Loop 3 Entry
in PF 644
in PRF 634

Begin Loop 3 PF Entry Processor
decision table 143
flowchart 499-501
routine description 157

Begin Program Entry in PRF 633,41
BGNLP

(see: Begin Loop Processor)
Blank Statement Processor

decision table 51
routine description 60

BLDA
(see: BLOCK DATA Statement Processor)

BLDA2
(see: BLOCK DATA Statement, Pass 2)

BLNK
(see: Blank Statement processor)

BLOCK DATA Statement Processor
decision table 50,51
flowchart 291
routine description 60-62

BLl
(see: Begin Loop 1 PF Entry Processor)

BL2
(see: Begin Loop 2 PF En1:ry Processor)

BL3
(see: Begin Loop 3 PF Entry Processor)

Build a List Data Set Buffer
flowchart 244
overview 11
routine description 36

BUILD
(see: Object Program Module Builder,
Build a List Data Set Buffer)

CALL
(see: CALL Statement Processor)

CALL Entry in PF 643
Call

function 67-68
subroutine 67-68

CALL Entry in PRF 634,42
CALL Statement Final Processing

decision table 51
CALL Statement, Pass 2

flowchart 304
routine description 62

CALL Statement Processor
decision table 51,142
flowchart 485
routine description 62,156

CALL2
(see: CALL Statement Pass 2)

canonical Form Routine
decision table 105
flowchart 443-444
routine description 121

CDIV
(see: Complex Divide Generator)

CEKAB
(see: Extract Source Character)

CEKAC
(see: Statement of Identification)

CEKAD
(see: Phase 1 Main Loop)

CEKAE
(see: Assemble Components)

CEKAF
(see: Array Dimension Specification
Processor)

CEKAG
(see: Subscript Processor)

CEKAB
(see: Initial Value Data Specification
Processor)

CEKAI
(see: Expression Processor)

CEKAJ
(see: Statement Label Processor)

CEKAK
(see: Assignment Statement Processor)

CEKAL
(see: END Statement Processor)

CEKAM
(see: EXTERNAL Statement Processor)

CEKAN
(see: Conversion subroutine)

CEKAQ
(see: GO TO Statement Processor)

CEKAR
(see: IF Statement Processor)

CEKAS
(see: Type Statements Processor)

CEKAT
(see: CONTINUE Statement Processor)

CEKAU
(see: DIMENSION Statement Processor)

CEKAV
(see: COMMON Statement Processor)

CEKAW
(see: Declaration Statement, Pass 2)

CEKAX
(see: Executable Statements, Pass 2)

CEKAY
(see: EQUIVALENCE Statement Processor)

CEKAZ
(see: DO Statement Processor)

CEKBA
(see: Begin Loop Processor)

CEKBB
(see: End Loop Processor)

CEKBC
(see: ASSIGN Statement Processor)

CEKBD
(see: File Control Statement Processor)

CEKBE
(see: Input/Output Statement Processor)

CEKBF
(see: FORMAT Statement Processor)

CEKBG
(see: PAUSE. STOP, RETURN Statement
Processor)

CEKBH
(see: NAMELIST Statement Processor)

CEKBI

Index 685

(see: BLOCK DATA Statement Processor)
CEKBJ

(see: BLOCK DATA Statement. Pass 2)
CEKBK

(see: Statement Function Definition)
CEKBL

(see: statement Function Expansion)
CEKBM

(see: DATA Statement Processor)
CEKBN

(see: IMPLICIT Statement Processor)
CEKBP

(see: IMPLICIT Statements, Pass 2)
CEKBQ

(see: Fall Through Determination)
CEKBR

(see: Blank Statement Processor)
CEKBS

(see: Subprogram Entry Statements
Processor)

CEKBT
(see:
2)

CEKBU
(see:

CEKBV
(see:

CEKBW
(see:

CEKBX
(see:

CEKBY
{see:

CEKBZ
(see:
Pass

CEKCB
(see:

CEKCC

subprogram Entry Statements, Pass

CALL Statement Processor)

CALL Statement, Pass 2)

I/O List Processor)

Function Classifier)

Library Function Selector)

Statement Function Definition.
2)

Constant Arithmetic Subroutine)

(see: Label String Processor>
CEKCD

(see: Format Label Processor for I/O
Statements)

CEKCE
(see: Read Transfer Processor for I/O
Statements)

CEKCF
(see: FORMAT or NAMELIST Name
Processor)

CEKCG
(see: Term Processor)

CEKCB
(see: File Real Constant)

CEKCI
(see: Insert Variable in Symbol Table)

CEKCJ
(see: Check Limits)

CEKCK
(see: Clear Limits)

CEKCL
(see: Initial Value Processor)

CEKCN
(see: Decimal to Binary Integer
Conversion)

CEKCP
(see: Decimal to Floating Binary
Conversion)

CEKCQ

686

(see: File Integer Constant)
CEKCR

(see: Actual Argument Service Routine)
CEKCS

(see: Constant Arithmetic Interrupt)
CEKHB macro instruction 663
CEKBC macro instruction 663
CEKHD macro instruction 663
CEKHF macro instruction 663
CEKHG macro instruction 663
CEKBH macro instruction 663
CEKHI macro instruction 663
CEKBJ macro instruction 663
CEKHL macro instruction 663
CEKHM macro instruction 663
CEKHN macro instruction 663
CEKJA

(see: PHASE2)
CEKJB

(see: Process Label References and
Definitions)

CERJC
(see: Storage Assignments for
Variables)

CERJD
(see: Label Reference Processor)

CERJE
(see: Label Reference Processor)

CEKJF
(see: Statement Label Reference
Inspection)

CEKJG
(see: Format Reference Inspection)

CEKJH
(see: Diagnostic Message Generator)

CEKJM macro instruction 663
CEKJO macro instruction 663
CEKJl macro instruction 663
CEKJ2 macro instruction 663
CEKJ3 macro instruction 663
CEKJ4 macro instruction 663
CEKJ5 macro instruction 663
CEKJ6 macro instruction 663
CERJ7 macro instruction 663
CEKJ8 macro instruction 663
CEKJ9 macro instruction 663
CERKA

(see: Acquire Entry from Compute and
Removal Table)

CEKKB
(see: Polish ExpreSSion Generation
Routine)

CEKKC
(see: End Loop PRF Entry Routine)

CEKKD macro instruction 663
CEKKE

(see: Expression Scan Routine)
CEKKF

(see: Pushdown Primitive Operand
Rootine)

CEKKG
(see: Variable Compute Point and
Removal Level Routine)

CERKB
(see: Triad File Manipulation Routine)

CERKI
(see: Expression Removal and
Commonality Determination Routine)

CEKKJ
(see: Check Commonality)

CEKKK
(see: Establish Common Expression
Routine)

CEKKK macro instruction 663
CEKKL

(see: operand List Expression Formation
Routine)

CEKKM
(see: subscript Expression Revision
Routine)

CEKKN
(see: Canonical Form Routine)

CEKKO
(see: Save Popularity Counts for
Register Assignment)

CEKKP
(see: Search and Insert Triads)

CEKKR
(see: Phase 3 Master Control Routine)

CEKKS
(see: Phase 3 storage PSECT)

CEKKS macro instruction 663
CEKKU

(see: PRF Processing Routine)
CEKKV

(see: Begin Loop 1 PRF Processor)
CEKKW

(see: Begin Loop 2 PRF Processor)
CEKLA

(see: Label Common Expressions)
CEKLB

(see: File Constant and covering Adcon)
CEKLD

(see: Expunge a Removable Expression)
CEKLE

(see: File CRT Entries)
CEKLF

(see: Copy and Edit an Expression)
CEKLI

(see: Loop Test-Expression Generator)
CEKMA

(see: Real Divide Generator)
CEKMB

(see: Real Multiply Generator)
CEKK:

{see: Real Plus Generator}
CEKMD

(see: Integer Divide Generator)
CEKME

(see: Integer Multiply Generator)
CEKMF

(see: Integer Plus Generator)
CEKMG

(see: Complex Plus Generator)
CEKMB

(see: Relational Expression Generator)
CEKMI

(see: Logical Expression Generator)
CEKMJ

(see: Equation PF Entry Processor)
CEKMK

(see: External Function Generator)
CEKML

(see: Expression Tree Builder)
CEKMM

(see: Make Initial Assignment to

General Register)
CEKMN

(see: Make Synonym AsSignment to
General Register)

CEKMO
(see: Make Initial ASSignment to
Floating-Point Register)

CEKMP
(see: Make Synonym Assignment to
Floating Register)

CEKMQ
(see: Select Floating Register)

CEKMR
(see: Search General Registers)

CEKMS
(see: Search Floating Registers)

CEKMT
(see: Find Temporary Storage)

CEKMU
(see: Maximum Operator Generator)

CEKMV
(see: Memory Access Routine)

CEKMW
(see: Operand processing Routine)

CEKMX
(see: Release Temporary Storage)

CEKMY
(see: Result-Register Operand
Processing Subroutine)

CEKMZ
(see: Local Branch Generator)

CEKNA
(see: General Register Availability for
Integer Divide)

CEKNB
(see: Determine Availability of
Register for Multiplication)

CEKND
(see: Select Operand Routine)

CEKNE
(see: Weight Subroutine)

CEKNF
(see: Select Position for Operation)

CEKNG
(see: Select Single General Register)

CEKNH
(see: Select EVen/Odd General Register
Pair)

CEKNI
(see: Code File Output Subroutine)

CEKNJ
(see: Comma Operator ProceSSing
Subroutine)

CEKNK
(see: Arithmetic IF PF Entry Processor)

CEKNL
(see: Logical IF PF Entry Processor)

CEKNM
(see: Begin Loop 1 PF Entry Processor)

CEKNN
(see: Begin Loop 2 PF Entry Processor)

CEKNO
(see: Begin Loop 3 PF Entry Processor)

CEKNP
(see: End Loop PF Entry processor)

CEKNQ
(see: Assigned GO TO PF Entry
Processor)

Index 687

CEKNR
(see: computed GO TO PF Entry
Processor)

CEKNS
(see: Assign PF Entry Processor)

CEKNT
(see: GO TO PF Entry Processor)

CEKNU
(see: Referenced Label PF Entry
Processor)

CEKNV
(see: Labeled Branch Generator)

CEKNW
(see: Arithmetic Expression Generator)

CEKNX
(see: Phase 4 Master

CEKNY macro instruction
CEKN2 macro instruction
CERN3 macro instruction
CEKN4 macro instruction
CEKN5 macro instruction
CEKOB

Control)
663
663
663
663
663

(see: Common Expression Usage Count)
CEKOC

(see: Operand Status Routine)
CEKOD

(see: Entry Point Processor)
CEKOE

(see: RETURN Processor)
CEKOF

(see: complex M~ltiply Generator)
CEKOG •

(see: Complex Divide Generator)
CEKOH

(see: I/O Statement PF Entry Processor)
CEKOI

(see: I/O List Element PF Entry
Processor)

CEKOJ
(see: End List PF Entry Processor)

CEKOK
(see: STOP and PAUSE Statement PF Entry
Processor)

CEKOL
(see: CALL Statement Processor)

CEKOM
(see: Open Function Control Routine)

CEKOM2
(see: open Function Processing Routine)

CEKON
(see: Register Storage Clear Routine)

CEKOP
(see: Load covering Adcon Routine)

CEKOQ
(see: Edit for Code File)

CEKOR
(see: Single Operand Locating Routine)

CEKOS
(see: Operand Fetch Complement/Store
Routine)

CEKOT
(see: Open FUnction Processing Routine)

CEKOU
(see: Open Function Processing Routine)

CEKOV
(see: Add by Load Address)

CEKOW
(see: Select One Operand in a Register)

688

CEKOX
(see: Open Function Processing

CEKOY
(see: Open Function processing

CEKOZ
(see: Open Function Processing

CEKSA
(see: FORTRAN Compiler OUtput
Generator)

CEKSB

Routine)

Routine)

Routine)

(see: Object Program Module Builder)
CEKSC

(see: Common Control Section Generator)
CEKSD

(see: Preset Data Processor)
CEKSE

(see: Output Page Heading)
CEKSF

(see: Code Control Section Generator)
CEKSG

(see: PSECT Builder)
CEKSH

(see: Internal Symbol Dictionary
Generator)

CEKSI
(see: Object Program Documentation)

CEKSJ
(see: Symbol Table Sort)

CEKSK
(see: Cross Reference List Routine)

CEKSL
(see: Constant conversion)

CEKSY macro instruction 663
CEKSZ macro instruction 663
CEKS2 macro instruction 663
CEKS3 macro instruction 663
CEKTA

(see: Phase Controlle.t')
CEKTAA

(see: LPC to FORTRAN Initial)
CEKTAB

(see: LPC to FORTRAN Continue)
CEKTAC

(see: LPC to FORTRAN Early End Call)
CEKTC

(see: Get Next Source Statement)
CEKTD

(see: Process Terminal Modification)
CEKTE

(see: Receive Diagnostic Message)
CEKTF

(see: Constant Filers)
CEKTG macro instruction 662
CEKTH

(see: Master Input/Output)
CEKTI

(see: Analyze Console Source Line)
CEKTJ

(see: Inspect a Console Character)
CEKTK

(see: Move a Line to the List Data Set)
CERTL

(see: Build the List Data Set Buffer)
CERTO macro instruction 602
CEKTQ

(see: compiler Dump)
CEKTS

(see: Dump Line Preparation and output)

CEK'rl' macro instruction 662
CERTX macro instruc;tion 662
CEKTY macro instruction 662
CERT7 macro instruction 662
CEKTB macro instruction 662
CEKT9 macro instruction 662
CEKUY macro instruction 662
CE.KUl macro instruction 662
CEKU3 macro instruction 662
CEKU4 macro instruction 662
CEKU5 macro instruction 662
CEKU6 macro instruction 662
CEKU7 macro instruction 662
CEKUB macro instruction 662
CEKU9 macro instruction 662
CEKVA macro instruction 663
CEKVB macro instruction 663
CEKVC macro instruction 663
CEKVD macro instruction 663
CEKVI macro instruction 663
CEKVU macro instruction 663
CEKVl macro instruction 662
CEKV2 macro instruction 662
CEKV3 macro instruction 662
CEKV5 macro instruction 662
CEKV6 macro instruction 662
CEKV7 macro instruction 662
CEKV8 macro instruction 662
CEKV9 macro instruction 662
CEKZB macro instruction 663
CEKZD macro instructiob 663
CGO

(see: computed GO TO PF .Entry
Processor)

Check commonality
decision table 105
flowchart 451
routine description 122-123

Check for Arithmetic Interrupt during
Expression Processing 53

Check Limits
decision table 54
flowchart 352
routine description 76

CHKINT
(see: Constant Arithmetic Interrupt)

CKLIM
(see: Check Limits)

Classify Function Name
Clear Limits

decision table 54
routine description

CLLIM
(see: Clear Limits)

CMSEC

53

76

(see: Common Control Section Generator)
C!«JL

(see: complex Multiply Generator)
CNVRT

(see: Conversion Subroutine)
Code Control Section Generator

decision table 197
flowcbart 614
routine description 200-203

Code File 645
Code File output Subroutine

decision table 152
flowchart 611

routine description 184
COMDUMP

(see: compiler Dump)
COMM

(see: COMMON statement processor)
Comma operator Processing Subroutine

decision table 147
flowchart 547-549
routine description 169-170

COMMA
(see: Comma Operator Processing
Subroutine)

Common Control Section Generator
decision table 197
flowchart 613
routine description 199-200

Common Expressions 96
Common-Expression Storage 132
Common ExpreSSion Usage Count

decision table 144
flowchart 518-520
routine description 162

COMMON Statement Processor
decision table 49
flowchart 263-265
routine description 57

compiler oriqanization 3
compiler executive 8,2

description 8,2
flowchart 216-217

compiler File Dump 36
Compiler Line Dump 36-38
Compiler Dump 11
complex Divide Generator

decision table 147
flowchart 540-541
routine description 166

Complex Multiply Generator
decision table 146
flowchart 538-539
routine description 165-166

Complex Plus Generator
decision table 145
flowchart 535-531
routine description 165

Compute and Remove Item Table 108,109
COBlputed GO TO entry

in PF 643
in PRF 634, 41

Computed GO TO PF Entry Processor
decision table 142
flowchart 484
routine description 156

CONCV
(see: Constant Conversion)

CONFIL
(see: Constant Filers)

Constant Arithmetic Interrupt
decision table 54
flowchart 335
routine description 72

Constant Arithmetic Subroutine
flowchart 332
routine description 71

Constant Conversion
decision table 197
flowchart 624
overview 68-69

Index 689

routine description 212
Constant Filers (CONFIL)

decision table 20
flowchart 230-237
overview 10
routine description 28-32

CONT
(see: CONTINUE statement Processor)

CONTINUE entry
in PF 644
in PRF 635,42

CONTINUE entry to Compiler Executive 2
CONTINUE Statement Processor

decision table 49
routine description 56-57

Control Section Dictionary 189-191,1
conversion

decimal to binar'Y integer 74
decimal to floating binary 74

Conversion Subroutine
decision table ~4
flowchart 324-3~6
routine description 68-69

Copy and Edit on Expl:ession
decision table 104
flowchart 430-434
routine description 116-117

COSEC
(see: Code Cont~ol section Generacor)

COVER
(see: Load Covering Adcon Routine)

CPLOS
(see: Complex Plus Generator)

CRFSRT
(see: Cross Refexeuce List Routine}

Cross Reference Index List 45
Cross Reference List Routine

decision table 197
flOWchart 625-629
routine description 212-213

CSD
(see: control section dictionary>

CSX
(see: Common Ex~ression Usage Count)

DATA
(see: DATA Statement Processor)

data management interface 2
DATA statement processor

decision table 50
flOWchart 292
overview 44
routine description 60

DeL2
(see: Declaration Statements. Pass 2)

DeOM
(see: Open Function Control Routine)

Decimal to Binary Integer Conversion
decision table 55
flowchart 347
routine description 74

Decimal to Floating Binary Conversion
decision table 55
flowchart 348
routine description 74

Declaration statements final proces&ing 51
Declaration statements, Pass 2 61

690

Definition table 191-192
Determine Availability of Register for
Multiplication

decision table 151
flowchart 588-589
routine decription 176-177

Delete the Undefined Level Subroutine 115
Determine Fall-Through on GO TO and IF
Statements 53

diagnostic information 17-19,21
Diagnostic Message Generator

decision table 83
flo~charc 375-378,401-402
routine description 91

DIMENSION Sca:tement Processor
decision table 49
flowchart 262
routine description 57

Dimension Tabl~ 44
DIMN

(~~e: DIMENSION statement processor)
DO

(~ee: DO statement processor)
DO loop processing 136
DO Statement Processor

decision table 50
flowchart 26f:l
routine description 57

documentation, object program 2
Dump Line Preparaticn and Output 11
DUNL Subr~utina 115
DX

~G~~: Diagnostic Message Generator}

EDIT
(see: Edit for Code l"l.le; Object
Program Documentation)

EDIT for Code File
decision table 151
routine description 184-185

edit iiLe$ 17,16
EF

(see: Expression File)
EKKSB macro instruction 663
EKKSC macro instruction 663
END

(see: END Statement Processor)
END FILE ent:ty in PRF 43
End List entry

in Pi!' 644
i.::1 PRF 635,43

End List PF Entry Processor
decision table 14_
flowchart 511
routine description 158-159

End Loop entry
in PF 644
in PRF 635,42

End Loop PF Entry Processor
decision table 103
flowchart 502-507
routine description 157-158

End Loop PRF Entry Routine
flowchart 419-420
routine description 113

End Loop Processor
decision table 143

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

flowchart 351
routine description 75-76

ENDLP
(see: End Loop Processor)

End Program Entry
in PF 645
in PRF 636,43

END statement processor
decision table 51
flowchart 301
routine description 61

ENDLP
(see: ENDLOOP PF Entry Processor)

ENT
(see: Entry Point Processor)

Entry Point Pr.ocessor
decision table 141
flowchart 412-413
routine description 153

EQUA
(see: Assignment Statement Prqcessor)

EQUAT
(see: Equation PF Entry Processor)

Equation entry
in PF 642
in PRF 633,41

Equation PF Entry Processor
decision table 141
flowchart 475
routine description 155

EqUation Statement Processor 49
EQUI

{see: EQUIVALENCE Statement Processor}
EQUIVALENCE Statement Processor

decision table 49
flowchart 266-261
routine description 58

ERF
(see: Expression File)

ESC
(see: Extract Source Character)

Establish Common Expression Routine
decision table 105
flowchart 450
routine description 123

EXCOM
(see: Phase Controller PSECT)

EXEC
(see: compiler Executive)

EXEC2
(see: Executable Statement, pass 2)

Executable statements final proceSSing 52
Executable Statements, pass 2

flowchart 302
routine description 61-62

Executive
flowchart 216-217
routine description 8,2

Expand Statement Function Reference 53
EXPF entries 69
Explicit Type Statement Processor 49
EXPR

(see: Expression Processor)
Expression File 43,640-641
Expression Processor

flowchart 311-323
routine description 64-68

Expression Removal and Commonality
Determination Routine

decision table 104
flowchart 445-449
routine description 121-122

Expression Scan Routine
decision table 103
flowchart 427-429
routine description 115-116

Expression Storage 132
Expression Tree 131
Expression Tree builder

flowchart 515-516
routine description 159-161

Expunge a Removable Expression
decision table 105
flowchart 454
routine description 124

EXTE
(see: EXTERNAL Statement Processor)

External Function Generator
decision table 147
flowchart 544-546
routine description 168

EXTERNAL statement processor
decision table 49
flowchart 251
routine description 56

Extract Source Character
decision table 54
flowchart 336
routine description 12-73

Fallthrough Determination
flowchart 374
routine description 79

FALTH
(see: Fallthrough Determination)

FCNV
(see: Decimal to Floating Binary
Conversion)

FCON
(see: File Control Statement Processor)

FEEP Subroutine 115
. FETCH

(see: Operand Fetch Complement/Store
Routine)

File Constant and covering Adcon
flowchart 465

File Constant and Covering Adcon
decision table 105
flowchart 465
routine description 126-127

File Control entry
in PF 644
in PRF 635

File Control Statement Processor
flowchart 211-212
routine description 58

File CRT Entries
decision table 105
flowchart 453
routine description 123-124

File EF and Point Subroutine 115
File Integer Constant

decision table 54
routine description 14-15

Index 691

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

File Real constant
decision table 5q
flowchart 345
routine description 74

Find Temporary st,orage
decision table 152
f1ow-=hart 1:>08 ;
routine description 183

FL.'illL
(see:Format Label Processor for I/O
Statements)

FLIC
(see: File Integer Constant)

FLRC
(see: File Real Constant)

FLUSH
(see: Flush the List Data Set Ruffer;
Register Stora'j,~ Clear Ront..i.llel

Flush the List Data'Set Buffel:'
decision table 152
flowchart 245
overview 1:'.
routine description 36

FNAME
(see: FORMAT or: NAMl':l.IST Name
Processor)

FNCLS
(see: Function Class ifier)

FNDAR
(see: Search Genei:iiI Registers)

FNDFR
(3ee: Search ~~loat.i:n'J Registers)

FNDWS
(see: Find TehlpolCa.ry Stonl'Je)

FORM
(see: FORMAT State,nent P:c:o::.:eosor)

Formal Argument. AdC:£1tl Ta"bIe 109
FORMAT

(see: Form~-\t Refe;c(:,nce Inspection)
Format Label Processor for I/O Stateinents

flowchart 357
routine de~lCriptioll 76

FORMAT or NAMELIST Name Processor
flowchart 359.,'
routine description 76

Format processing'44'
FORMAT Reference Inspection

deci3ion tabl~ 83
routine descri~ti~n 91

FORMAT Statement Processor
decision table 60
flowchart 279~~84
routine descLiption 58-59

FORMAT Symbols " ,
encoding of 58-,59

translation of- 59
FORTRAN Compiler Output Generator

decision table 196
routine description 195

FSCAN
(see: Process Label References and
Definitions)

FUNC
(see: External i'unction Generator)

function call 67-68
Function Classifier

flowchart 330
routinede~criptiof.70

General Register Availability for Integer
Divide

decision table 150
flowchart 590
routine description 177

Genera,te End r.cop 53
Get Next. SOUt"ces Stiitement

flowchart 223- 226
overview 9
routine description 24-26

GIRL 106-107
global registe:tassignment 101
Global Register list 106-101
Genera1.Register Selection 134
GNSS

(seR: Get Next Source Statement)
GOTO

(see: GO TO' PF Entry Pl:'ocessor: GO TO
Sta.tement Processor}

GO TO entry in PF
Assigned 643:
Computed 643
Unconditional 6q3

GO TO Entry in PRF
Assigned 634'
Computed 634
Unconditional 633

GO TO PF Entry Processor 155
GO TO Statement Processor

decision table 49,142
flowchart 252-255
routine description 56

I/O library subprogram3 2
I/O List Element PF En~LY Processor

decision table 143
flowchart 509-510

'rout,ille description 158
I/O List Entry inPRF 43
I/O List Processor

decision table 143
flowchart 353-356
routine description 76

I/O Statement" PE'Entry Processor
flowchart 50~
routine d*",scription 158

I/O statement processor
decision table' 50
flowchart 273-278
routine description 58

I/O statement processor routines 45
ICNV .'

(see: Decimal to Binary Integer
Conversion)

IDATA
(see: Initial Value Data Specification
Processor)

IDVD:e' ':' ·:i .'

{see: Integer Divide Generation)
IF

(see: IF statement processor)
IF entry in PF

arithmetic 643
logical 643

IF Entry in PRF
Arithmetic 634
Logical 634

IF statement processor ...
decision table 49 c,'

flowchart 256-257
routine description 56.

IMPL
(see: IMPLICIT StatemetttPro-cessor)

IMPLICIT statement fina1'p:codessing 51
IMPLICIT Statement Processor ,"

decision table 50
flowchart 293-295
routine description 60,

IMPLICIT StatementS',-Pass.2: 'il2
IMPLY " "

(see: Integer Multipl¥,_ Generator),
IMPL2

(see: IMPLICIT StatelDents. Pass, 2)
INITIAL entry to compiler Executiva 2
Initial Value Data Specitrica.tion,Processor

flowchart 360-361, ' < '.

routine description , 7(1..c j. ~
Initial Value Processing, ,ro~s' 45
Initial Value Processor ~;-

flowchart 362-367",,:
routine description; 7It "

Initialize for Statement' ;F\lnCt,ion,
Definition 53 l • .

Input List Entry "L '

in PF 6"5
in PRF 636

input/output
(see I/O)

;' ... ' ,

';,. . \..

INSCON f;" , .

(see: Inspect a Console Character)
Insert Variable in Symbol Table

decision table 55 '- ('
flowchart 346 " ,,'-;',' ,
routine description 74" "

INSOT ' , , ' ','" ,
(see: Code FileOut~t Sub~9~~ine)

Inspect a Console Chara~~, , ,_.
flowchart 242,;' ,
overview 11
routine descrip~ion. 35 ~. J :c,",

INTBLE format 87"", , ",
Integer Divide Genei:at.or. ;,'

decision table 146-147
flowchart ,532, " ,"', 'c,
routine descrij;itiori'"i64,

Integer Multiply Generator:
decision table '146'
flowchart 529-531,
routine description' 164

Integer Plus Generator
decision table 145
flowchart 528
routine description 163-164

Intercom Table 650
Internal Symbol Dictionary 194-195',2
Internal Symbol Dictionary Generato:r; , .

decision table 197
flowchart 619
routine description 206-207

Interphase file controller 12-13,14
INVOKE macro instruction 659-660 '
IOLST

(see: I/O List Processor)
I PLUS

(see: Interger Plus Generator)

ISP
(see: Statement Label Reference
Inspection)

ISO
(see: internal :Symbol dictionary)

IVAL
(see: Initial Value Processor)

IVST
(see: Insert Variable in Symbol Table)

KEY
(see: Operand status Routine)

KEY1
(see: Single Operand Locating Routine)

LAB
(see: Label Reference Processor)

Label common Expres'$:i.on
decision table ~05
flowchart 452
routine description 123

Label Definition Entry in PRF 41
Label Entry in PF 642
Label Reference Processor

decision table ,83
flowchart 398-400
routine description 90

Label String Processor
flowchart 370
routine description 77

LABEL
(see: Referenced: Label PF Entry
Processor)

Labeled Branch Generator
decision table 150
flowchart 378
routine description 173

LABL
(see: Statement" Label Processor)

LAO.DR
(see: Add by Load Address)

language processor controller 2
LBL

(see: Labeled Branch Generator)
LBSTR

(see: Label String Processor
LDMOVE ',.

(see: Move a Line to the List Data Set)
LDPNT lIBcro instruction 663
LIBN _

(see: Library FUnction Selector)
Library Function Naaes 71
Library Function Selector

decision table 54
flowchart 331
routine description 70-71

LIF
(see: Logical IF PF Entry Processor)

LINDUMP
(see: Dump Line Preparation and Output)

linkaqe conventions. 657,8
Load Covering Adcon Routine

decision table 151
routine descripti.on

Local Branch Generator
decision table 151
flowchart 577
routine descrigtion 112-173

Index 693

Logical Expression Generator
decision table 1.110)'
routine description't67

Logical IF entry
in PF 643:c:
in PRF 634~ 42 :, L, ' <

Logical IF PF Entry P~ess~r
decision table! 14a,:,,~' -"
flowchart' 431(j ,-, "
routine description 155

loop 'T. ,

table 131 ,. ~j,
processib.<j rOutines' ",25 .
remonng .exprelSS'iOWls'" frOM 9a
variable expressions 100" ",

Loop Test-Expression Generator
decision table 1~-'
flowchart 466-471
routine description 127-128

LPC i"1: ." ."

(see t lanquage processor controlle4")
LPC to FORTRAN Continue· 22-23 "
LPC to FORTRAN Early End Call 23-24
LPC to FORTRAN Ini tiali" 20, 22'

macro insu,uctions" :6&Z-663y 8
Make Initial AssicpultEmt to Floa1:.ing-Point
Register U'

decision table 15l.
routine description:Ul2.\

Make Initial AssiqnJl1en,'t. to: .,General R~ister
des cis ion table 152
flowchart 60S' ;";'0.: ~~'.

routine descr-ipt.i<m,1.e,l"r"l.8 2
Make Synonym Assignment to Floating

Reg'is ter <1';"" ,
decision table l~A:;' . ..,. .
flowchart 607
routine des cript ioo 182-183 ," "

Make Synonym Assig~llt :to 'G;a;neral :Reqister
decision table 144 "",
flowc:bart 606
routine description 122

Master InpuUOUtpQi:..ReUbilJ'le
flowchart 238-239
overview 10 " '"
routine descript:io'n' ., 2-34

mathematical subproqrams]"'_'
MAX " ,

(see: MaxiJawB OP*at_(>:t~ C:.eT~a.tor)
Maximum Operator Generator

decision table 1/l8
flowchart 543 :''',,'r','
routine description 167-168

MEMAC ,,'
(see: Memory AccessRo'llt.in",~'·

Memory Access Routine.: , ,
:deci-sion tabl~ ,151,
f~lowchart 575-576,
routine description 172,,,

Memo~ Assignmenu.:folli' VariabLes
f10wchart 379-389

Memory Reference Proecossinq 96 ..
KIO

(see: ilast.al.' Iuput./Gutput);
MOD

(see:
'" II. > '.

Processoz;~~rminal'~Modifipi!tion)

Move a Line to a List oata Set
flowch!il~;; Z4~ "
overview 11
routine description " 35-36

MRM Table 133
~~ Table 13~

,',
Name Table 133
NJI .. '4I. ,

(see: NAMELIST statement Processor)
NJ\Mli!LI.ST, N~me J?~QCelil~or

(see: ~~.or"N~IST Name
Processor)

NAMELIST statement processor
decision table 5.0,u,
flo~x;:, ,~'9-2~Qt!., _
routine descripti~l 60

NAMELIST Table 4'1 .
ND1.ST ."

(see: End L~t p~F~ii:y P:r.ocessor)
Nonassignment

Character Table 78
PrecedenoeTable78
Type Statement Ide~tification 79

Object Program;Documentation
decision table ;1,91 '
flowchart 620-622
overview 2 .-" ",
routine deScription 20':"211

Object prP9':r:>am~~~, 187,1
Object Program MQdule.. B¢,lder

decision table .. l,.9;:1
flowchart 612"" !

routine description 198-1'9·9
OLIST .' '. '!'

(see: I/O List ElfemEmt PP Entry
Processor), . J i, .. _" .. ,

Open Function Control Routine
decision table 148
flowchart 550
routine;desc~p.t:ip~!j110 .. ~ . "

Open Functj,Qn ~;rr~~~iD~t ~~l.J.~i.Jle (OPEN1)
decision tab1e 149
flowchart 551-556
routine description 17.1).~ .

Open Function, p,rocessincj.,'Rout:tne (OPEN2)
.' decit!~,~ < .~~\ ,h',,' s:'" .

flowchart 557-559
~1;.l;Q.~ desp~i.,p~j..Qp 1,~~1' ,

Open Function Proces~iJl9 ",Rqutine (OPEM3)
decision table 1'" .. ' -" .'
flowchart ;5'O-5~~,.: .:J.:;',
routine description 171

Open Function Proc~si,IN;,~outine (OPEN4)
decision tab1e 149 " •. ,
flowchart 563-566 :." ... ,. ;, ... "
routine descriptioii" i71. ,

Open FlJ.nCt.ion 'Processi~Rout.~ne (OPENS)
decis:1on table 1SQ .' .~; J .:"
flowchart 567-572 (.i')

routine description 171., '. :
Open Function procesdJl9,~q1j1;h~e (OPEN6)

decision table 1~O ,: ... ;,,';,'
flowchart 573-57~ ,",_
routine description 171-172,

OPENl
(see:

.. ::~ .. ,I J ~ ;_~ ,

Open F1ln~ion processing:'Routine)
OPEN 2

(see: Open FUnctioaProcessin9 Routine)
OPEN3 ~. J ~ :-j i. ~~

see:
OPEN~

(see:

Open FUnction Processing('RQutit1eJ

Open FUnction P~essing Routine)
OPENS

(see:
OPEN6

Open Function ~roc~ssing Rout~e)
,,! ;

(see: Open Function Processing; RoK'ifie)
Operand Fetch Compl'eilu!ntVs~e' Routiil~

decision table 150 '. i:" .. ,

flowchart 579 , ..•• :: tVi

routine description 173' ,. .,',' t ' .. , '.
operand List Expression F~tion'Routine

decision table 10"4 ,'~,. "'. . •.
flowchart 439 l· , .. J ,".:C.::: '
routine descriJ1tion 119-120 "

Operand Processing' Routiile: c: br.:3 "", '}
decision table 151 :·'L~r:i.e';;, '1','

flowchart 595-596' .;,,' .><. ~ !i,'

routine description'i17S-1 'if9=''':t'
Operand Status RoUtir.Hi! ,:"',,,, .:.'" "'. '

decision table 151
flowchart 591
routine descriptio.i'l'JI'171 '

Operator precedence - '66, 0':,'

OPM
(see: object program module')

OPND,0 ,', '." .
(see: Operand pr~lnci'ROu1:ine)": ,.: '

Optimizing subscript,s98'
OUtput List Element 'Entrt'"

in PF 6~4
in PRF 635

output Page Heading
decision table 198

I'j

routine descriptio~ 212 ',.

Pass 1 Statement Proees80rs45'
Pass 2 Statement Proc1eSsors-'S - ., ..
PAUSE Entry c-

in PF 6 .. 5
in PRF, 636,"3

PAUSE statementPF "~ry :-proCessor
(see: STOP and .JlUSESt.at.eJfieB~Pf' Entry
Processor) I':,' .",'

PAUSE. STOP. RE'riJ:RR' tJtaEemettt p:r.-dCe8'SOr
decision table . :S::t
flowchart 285-287'
routine desc:;ription "'59-60 f ~"",

,I ~ {,.,." ... , _~ ... : '~. , PF
(see: PrograJll rl'i.:l~Y

Phase ccm.troller ?:. •
flowchart 218-222':­
overview 9 t, L .n;";;

.' - ~ .

routine descriPtion ''1.2~13 ~ U. 20 " :
Phase Controller PSBCT 11' ,
Phase 1 3,39-~9 .
Phase 1 Main loop

"decisiontiiSle' 118
flowchart 2116-249
routine desq~ption 55'

Phase 2 ... \. r,'

, ,~ .
' .. (

PHASE2 ." "
decision table 83:
routine description 82

Phase 3 92,6
Phase 3 Master Control Routine

decision table 102
flowchart' 403-40'6' '" ".'
routine descriptiOA ~49-110·

Phase 3 Storage PSECT 106~109

Phase 4 129.7 . ",
Phase 4 Master Control

decision table 141
routine descriptiea ; 153'~ 15~. ,

PHASE4 (see:Phase'.4, Master -Control)·
Phase 5 186,7 .er:' .

PHASES ,,=.' r
(see: FORTRAN compiler OUtpPt
Generator) , ,

PBC :K

(see: Phase Controller)
PRl!:M> ,:;:.-::; .

(see: output Page; Beadinq)
PH1M~'i ,

(see: Phase ,1 Ma!.<n, loop) ." ",
PlIO

(see: program module dictionary)
Polish Expression· Generation Ro:util'le :' .

. decision table'l1l::a·
flowchart 459-463
routine descriptiOn 125,..126

Preset Data Proc:essor"
7" decision, tab1:e' ,111&:.

flowchart 618
routine description 206

Preset Data Tahl.es ,-n3'9--,640.;"
PRF . ii~..r~r ~,'

(see: Program Representation Pile):.
PRF processiD9 Routi-ne:

decision table 103
flowchart 1I07-1I11h.:: :

'··routine 'descripti:oD" '.' 110-113
PRINT entry .. "

in PF 6'"
in PRF 635,43 '1 . .

Process and Generate··Beciin Loop
Elements 53 ~:'

Process Array demension specifica~ion 52
Process END and ERR 's:t:ateaent nUlilben. in

READ sta.tement 52":;:i:"
Process expression 52
Process'FOIUWr and"lQIIEL:IST naae in I/O
stateaent ' '," ';,

decision table 5~
Process FORMAT statement number in I/O

statement .~ . ,"t{', , ,.'

decision table 52
Process FUDCtion:Argiaaent 53
Process I/O statement, list 52 ' . .'-.
Process initial data ::.specifications 52
Process initial values in DATA OX' type
statement 53 ·f,: ..

Process Label References and Defi.nitiQnS
decision table 8B::
flowchart 39O-3~~'
routine description 88

Process Label:· St:.rlll9t'in Assigned aaCl"
Computed GO 'l'O statement 52

. Proc:ess 'Stateaent.:.:::N1lflber ' .. ,S3 .

">;f '~ 1

Index ,'695

Process Subscripts 53
Process Terminal"Modificiltions

flowchart 227-228 i.

overview 9 ;
routine descript':ion ·26-28.&51:"'~54

Program File 641-645' ..
Proqram moudl~ diCti~naty 18'1-189 .. 1'
ProqramRepresentati0ipFtle··40-43:,6::U.-.'633
PRSEC , ..

(see: PSECT BUilde~)
PSECT Builder '. :', .

decision table 1~7~
flowchart 617' ,~..-

routine description 203-206
PSR

(see: PAUSE, STOP~ RETIJRN Statement-'
'Prbce$sOt) >,::1' ' "",

PUNCH entry
,cin:PF "4~" l).::.~n'· .,,~. ;"",. ,·.·,.i

in PRF 635, 43 ~'~' , C:', '

Pushdown Premitive Operand Rout.:1ne7,
decision table: 10'4 ,"
flowchart 1135-436 "T' "',£,

routine description 118-119'

RD
(see: I/O statement PF Ent:ty:Processor)

RDIV
(see:· Real Oiv,ide· Generauod ,""

RDM
(see: Receive DialJno$ti:C':Message~

READ entry . . .' } .. ~ ..
in PF 64" .', ,. :":',,r
in PBF 635,42, c' I ,: ~;" ..

Read Transfer': PribCe'Sst!lt"' fO]:,JIl'O· stat~ts
flowchart 3,58;; ;""»" , ';' e, ""
routine' descri:pt'iorl : 7ti'

Real Divide Genei-ato:t"
decision taMe~""···
flowchart 526-527
rout'ihe 4Htti.ptl'On '163"

~eal Multiply Generator
~acision table 146
l.; ... ,·"art 52 $;25
routih~ ~escription 162-163

Real Plus Generator
decision table 145
flowchart 521-523
routine description 162 "

,~ " ":'
,.~ j ,}. ,'"

,- :':':,;'

Receive . Diagntist1c.h Message "H .. '; ".' .". '.:.

flowchart 229 .
overview 10 ".i '.:;;::.""

routine description 28 ..
Reference. ll'ablec ,1'92":>;;' ,'" I'IH·.· ... ~,.

Referenced Label PF Entry p:coceesor.
decisim tabl(!"'l:fl.'1,. .' .~: I>:
flowchart 474 '.~'"

routine descriPtiion. .. ~: 1SS,..1.S5 .
register

con".-entions 9
notation . 9 "'. ''>'' ,t:

storage 133,;<.' .,: '"c;

Regist~r: storage< Cl:eax·-:·}toutil1e
flowchart 610 " .
routine descriptio!:,'" 1,,8:3'-184.; ':"'1>

Relational ExpressiOft~:' G~.erator
decision table':' 148<Lr?~

696

flowchart 542
routine description 166-167

Release'Temporirry'Storage
decision table 1S2
flowchart 609
routine description 183

Relocation Dictionary' 192-194
restricted linkage conventions 658
Result-Register operand Processing
Subroutine

decision table 151
flowchart 597
routine desc~iption 179-180

RESUME macro instruction 660
Rl!.'TURN entry

in PF 641
in PRF 634,42

RETURN Processor
decision table 142
flowchart.' '48~-488
routine description ';7156

RETURN statement processor
(see: PAUSE, STOP~ ;'RE'rU~B statement
processor) ,

RlNIND Entry i:n.PlUL 43·,;
RLD

(see: Relocation Dictionary>.·
RLSWS

(see: Release Temporary Storage)
RI.TNL

(see:
RHJL

~,)~, ,t

Relational Expression Generator)
.~~-, ';") t J::

(see: Real Multiply·. G-aneratrut)
RPLUS

(see: Real Pilus'Genercltor)
RSLT -fe.~ ..

(see: Result-Register operand
processing,:6U1»toutillE!)

RTNl
(see: Label.:'Reference Processor)

RTRA.N '/ ,'h ' ~~. ~.' ".:~- -:-' j .•

(see: Read TransfercProaessor for I/O
Statements)

R'l'RJJ:' ,.' ." J " ~."'.,. .. _ ;-', .-"~--_

(see: RETURN Processor)
RWIO ~ i;.;' ~,< .'·':nu;

(see: Input/output Statement Processor)
., ... -:::.

SADDR ':" , ' <, ' .,'
(see: Local Branch' Generator)

Save area format 657-658'<;'
save popularit.y' Counts. for, Reg,ister
Assignment

. decision table 'lIOS",,'
flowchart 464
,routine ,.' descriptitllil;..,·< '.126

Search and Insert Triads .'
decision tab:Le· .100{1 :,'
floWchart 4_.2~ .~: ,'e":" ., .:
routine descript~"":12a,~121. .'<

Search Floatinq Registers
decision.: ·Ubl:'e~ 151.." ."'"
flowchart 59IiL ..• ' "<:: '::.'~j-}

routine description 178
Search General R'4!!cJisters.; L 1J~

.. decision tahle:.:1.1S<2'~l .T:;;',··

flowchart '5:9.3';,lb(7·'Y ',;); .'.
routine description"; 1~8

:1':: '

SELDR
(see:
Pair)

Select EVen/Odd General RE!CjJisterpaix-'
decision table 151, : 1 ,- •

flowchart 600-601
routine description 1.~1.

Select Floating Register:
decision table 151
flowchart 602-604
routine description 181.

Select One Operand in a.'Reg-ister
decision table 159,:,,1;,
flowchart 5811-587 .. :;
routine description 175-176

Select Operand Routine ",'.,

f'

decision table 150 h., 'T'

flowchart 580-581' S ,'., 1

J'I'

routine description ,:113,.175", ,,,.
Select Position, for Operation' "_'

decision table .150'~"}":O(J~·;,
flowchart 582-583 ",:.
routine description 1 75 ' ""

Select Single General Register ': '
decision table 152
flowchart 598-599 ::» .. "
routine description 180-181

SELFR :F,'f

(see: Select Floating Register)
SELGD <::9:1' '" , h:~ ~:, :', r '

(see: General Register Availabilit¥'~or
Integer Divide), i.,,'

SELGM
(see: Determine, Avai.labilit¥ of,
Register for Multiplication)

SELOP 'J" ' '" {';

(see: Select. operand; Rtiutine)
SELSR

(see: Select Single~General Register)
service routine interface 11,12,2
service subprograllS\,: 2;:,i ;f' '; ,

SIDE!'
(see: Statement Function Definition

SFEXP "
(see: Statement Function Expansion)

',S1D-,
(see: statement of Identification)

Single Operand Locating Routine
decision tab lee, • 151.
flowchart 592', ' '
routine descrip~ion;~ 177-118

SLONE
(see:

SLPOS
Select One'Oper.and·ina. Register)

(see: Select" POsition, for Operation)
Source conversion routines ~5
Source Extraction roflt:ines." ;4 5 :
source statement preparation 141:3 '
Source statementL Id~ifci.cati.on , 149,:
SPECS ; :":- ;

(see: Preset Data Proc,essor)
Statement Function Definition

flowchart 327 _
routine descri~i.on:·'~ 6+-70

statement Function De.finition, ,Pass, 2, ' 63
Statement Function Expans,ion

flowchart 328-329
routine description 70

i, :(~_!L' ' ~ "J. ~,' ,.,'

Statement Function S~'!eJDen~, F~~l " ,
Processing' 51" , ,f 0, , ,:,.'j,

Statement 10 numbers 79 ., ,~\' ~"
Statement Label Proc~sor ,t, ,,_ .. ,

flowchart 372-373;;;: ", ";: '0'

routine desc;:riptiPD, "l(l~7,~ ,-:' (':J "

Statement :r.abel"Refe:r;~I1~~Ji£p§~~io~;,,: '
decision table 83 '
routine descriptiol1, .'l4 , ..

Statement of Identification
flowchart 371 ','
routi.ne description 78"

STCLTB "cl~(' J :,,;:c,' ,,', ':)' ,',
(see: Storage Class Table)

STFN2 ' , qt"} , -,,',
(see: Statement Function, D~tilliti.on,
Pass 2) ;r-:; :', .. "

STOP and PAUSE Statement PF EJlt:J:y Pro~~ssor
decision table 1414 'iii?

flowchart 51iZ" "q(," ',~"'" .!'F'~:i"'<
rout,ine descripti~l 159 :"C.; "',' ·,l

STOP Entry .:tiC' .. , ': •• ; ..
in PF 645 i)C'.i ",,: .i. : -;,
in PRF 43

STOP statement processor
(see: PAUSE, STOP, RETURN statement,.;,

", ; processor) ~':"~:'!" '.,: c

STOP " ..
', .. ,

(see: STOP,:sand;PAII6BvStat.~t~ Irg"Entry
Processor) 1>',

Storag-e Assj.~t$.: to~ : V..«i...w.es ,. ~ " "
decision table 83 't'':;':; r;,

routine description 81 fJ V ,';-:: r'
Storage Class Table 641,,,11, ,,-', -,',PC ,

:;;~ilge ,map~~tivi~-aJ:'~:i..e, ... 9r-a.O'f: j·O:

Storage Reference ProcessiM i1~S .. :.,. : .. L
Storage Specification: T.bl-es :636-;pl,thll3,44
STORE macro instructi~! ,C: ~6,O • ' ..
STPNT macro instructill>n 663, ,
SUBE " " ";,' :,,;. ,

(see: Subprogr~' f!!ntq .. St.a~_ents
Processor) ":1'::;",' .. ',':," ,', •• "

SUBE2 "
(see: Subprogram £tl.try; StatelBents .. Pass
2) ,'0: ;:; .. '.: : ,. ...

subprogram calls 1 ::;'U'

Subprogram Entry " ~ :
i.nPF 6142 • ~-"
in PRF 633,41 tv:;.'::, ... :::.;'C: .-

Subprogram Entry .. Sta~t:.' f!r.oce~$or "
decision table 51"
flowchart 296-300
routine descriptioa.:\.~J.·.,',

Subprogram entry stateJlleb.ts; f,inal,,;-
proceSsing 51 '; ',::C: '",'

SUbpx'ogram Entry StateaeQts;, PCl.$$2:
flowchart 303
routine descrj.pti. ... ~,j~,~!"' I"

subroutine call 67-68
SUBS ", ,,",.'

(see: Subscript Processox-) f' ",'

subscript optiDdzation 98 '" [
Subscript Expr.essi~:m.L&eYj.s:i..on, Routin,e ...,L'

decision table 1014 _, .. :
flowchart:, 455-145r:1QJ 7~'L r,
routine des.cript:j..Qa;c: J;2~.,; ,

Subscript Expressione.;) 113,,,,: L, '

Subscript Processor

:'i .'~: \.,

Index 697

flow.t;lh~t. 305-31:0
rOJ,ltine des(utlpt~on 63-·.64

Sy~1 Table 6'f4S .
S~l 'ftbl~" Soft

dec,w.i ~Il' tabl~ 19c7
floVCh~.!:t; 623
rouUn. dee~r,ip'U()n 211.-2'; a,

SYMSRtt
(e~t!i S~l 1'ab.t\t. Sort)

TD$f«) 5';
Tent. !trt\i!i~d\Or

fl'6~art 333
rc;~utMJi.ed~scripti~ 11.

TEVClUi. 1."'2
TEVCHf 152
TEVfj':t! 15,1l
T~ 1.52
T~ 152
T~ 152
TEV}'2 152
'l'EVI1.& 152
TEVRDJiI' 152
TEVRlI} 152
TEV'M 152
TEVVR 152
TeLD U~
T'RBlJ) .

(see: E~ion~,1're~. B\aJ..~)
Triad' File. ~P4I!lit.i,~')Q .. ROUUa

deeisi.cmt:able 104~~
£l:oW<:$1art 440--:4"i·.
routine deso::i~~ l~

'lri,a41Table l.07~lCW
'!l~

(s~e::, Te~ ProCl!1U!.oZ:)
TlP»',

('see:, ~. S'tate_~s proceSsor)
Type Stat~s: P~es.so~\'

flo~hart 258,;"261.
ro~trtlll:e description. 56

Uncondjiti.oRitl. 00 '1'0 entry
in PF 6li3
in PltF 633'

VC').l:iable Co~*e PPint atld ReBionlo ... Level
Routine

decisic.Hli tab!'e 1J)5
flowcha.rt· 437-"'3'9
routine, ~ption 11.;9

VSCAN
(see: St~e As$J;gJUMmts f(;<1:'
V'ariiilbles~

VSC'1IrN1 84
VSCAN2 84·
VSCAN3 83

Weight Subroutir~
decision tahl..e 144
flowchart !f1T
routine d~iption 161

WGBT
(sfife: Weiqht Subroutine)

workareas 12-1:l .. 1/ir15
muTE entry

in PF '".
in pRJ' 635:w'''''£:

