IBM System /380 Time Bharing System
FORTRAN IV Compiler

This publication describes the internal
logic of the IBM System/360 Time Sharing
System (TSS/360) FORTRAN IV compiler.

This program logic manual is directed to
the IBM cystomeg engineer who is respons-
ible for prograw maintenance. It can be
used to locate specific azeas of the pro-
gram, and it enables the reader to telate
these areas to the corresponding program
listings. Program legic ipformation is not
negessary for program operatiom gnd use.

File No. S5360-25
Form ¥28-2019-1

Program Laogic

This is q-major revision of, and makes obgolete, Form Y28
2019-0 and Techriical Newsletters Yz3-3057, ¥28-3068, Y28-
3082, ¥Y28-3087, ¥Yz8-3091, and‘YZB‘jU@?. o

Changes om ths actual pages are indicated as follows: A
bullet {s} next to a page number indicates that the page has
been substantially revised and should'be reviewed in its
entirety. A bullet next to the caption of an illustration
indicates substantial revision of the illustration. A vert-
ical bar in the left margin shows the location of a specific
change; such revision bars are usually not shown on a page
having a bullet next to the page number.

This edition is current with Version 6, Modification 0, of
IBM System/360 Time Sharing System (TSS/360) and will remain
in effect for all subsequent versions or modifications of
TSS/360. Significant changes or additions to this publica-
tion will be provided in new editions or Technical Newslet-
ters. Before using this publication in connection with the
operation of IBM systems, refer to the latest edition of IBM
System/360 Time Sharing System: Addendum, Form C28-2043, for
the editions of publications that are applicable and current.

Specifications contained herein are subject to change from
time to time. Any such change will be reported in subsequent
revisions or Technical Newsletters.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print
chain.

Reguests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments appears at the back of this
publication. Address any additional comments concerning the
contents of this publication to IBM Corporation, Time Sharing
System/360 Programming Publications, Department 643, Neigh-
borhood Road, Kingston, N. Y. 12401

© Copyright International Business Machines Corporation 1967,
1970

This publication describes the internal
logic of the FORTRAN IV compiler.

Section 1 introduces the compiler's
structure, briefly explaining the primary
functions of each major division and
describing the interrelationships of these
divisions.

Sections 2 through 7 describe the six
major divisions; they explain the logic
required to implement the basic functions
and objectives and provide a frame of
reference for the program listings. Common
data, such as tables and woxk areas, are
discussed only to the extent required to
understand the logic of the major divi-
sions. Flowcharts compatible with the
level of coverage are also provided, as are
nesting charts which show the linkages
among the subroutines that compose a major
division; they show the called and calling
relationship among the subroutines. 1In
support of the nesting charts are decision
tables that show the calling relationship
among the subroutines and indicate the con-
ditions under which subordinate subroutines
are called.

All flowcharts for the routines are in
Section 8, grouped in the same order as the
routines are presented in the text.

The appendixes contain additional
reference material.

PREFACE

PREREQUISITE READING

Understanding the material contained in
this manual requires knowledge of the
information contained in the following
manuals:

IBM System/360 Time Sharing System: IBM
FORTRAN IV, Form C28-2007

IBM System/360 Time Sharing System:
Concepts and Facilities, Form
c28-2003

IBM System/360 Time Sharing System:
System Logic Summary, Form ¥28-2009

Manuals recommended for a fuller unde-
rstanding of this manual are:

IBM System/360 Time Sharing System:
Command System User's Guide, Form
Cc28-2001

IBM System/360 Time Sharing System:
Linkage Editor, Form C28-2005

IBM System/360 Time Sharing System:
Assembler Language, Form C28-2000

IBM System/360 Time Sharing System:
Assembler User Macro Instructions,
Form C28-2004 o ')

IBM Systens/360 Time Sharing System:
FORTRAN Programmer's Guide, Form
C28-2025") . ‘)

SECTION 1: INTRODUCTION
Object Program Modules
Subprogram Calls in OP!4 Text

Object Program Documentation
Compiler Interfaces « . .
Interface With LPC . . . - . .

Interface With Virtual Storage
Allocation « .« . + ¢ ¢ ¢ 4« + ¢ o o .
Interface With Data Management . . .
Compiler/Service Routines Interface
Organization of the Compiler
Compiler Executive Routine
Phase 1 .« « o ¢ o ¢ o o « o o« o o «
Phase 2 .« « ¢ & o o o« o o o s o o =
Phase 3 . <« . ¢ & ¢ o o o o o o = o
Phase 84 . . ¢ ¢ & o ¢ o o« o o o o o
Phase S . ¢ ¢ ¢ ¢ ¢ o o« 4 o o o o o

SECTION 2: EXECUTIVE . . ¢ « o o « o o
Introduction « « « <« ¢ ¢ ¢ 4 ¢ 4 . . .
General Information
Macro Instruction Usage
Linkage Conventions
Register Notation and Conventions .
Storage Map . . « « o o ¢ o 2+ ¢ o
Brief Routine Description
Use of the Phase Controller PSECT
(EXCOM) by Other Exec Routines . . .
Service External Interface
Source Statement Preparation
Phase and Interphase File Controller
The Compiler Work Areas and Intercom .
Compiler Edit Lines «
Compiler Diagnostic Information . . .
Miscellaneous . . « « o o « o o« 2 o

Routine Descriptions o e
CEKTA -- Phase Controller (PHC) .
CEKTC -- Get Next Source Statement
(GNSS) © v « o o o o o o o o o o =
CEKTD -- Process Terminal
Modifications (MOD)
CEKTE -- Receive Diagnostic
Message (RDM)
CEKTF -~ Constant Fllers (CONFIL)
CEKTH -- Master Input/Output (MIO)

FORTRAN to GETLINE Call
GETLINE EDETY =« « « « « o « = « .«
Line Number to GETLINE
Line Number From GETLINE
Length of Line« « « .
Source Line . . « e o a4 s s
Altered Line Table e o e o s e o a
GETLINE to FORTRAN Return
FORTRAN to PUTDIAG Call e o w o e
PUTDIAG Entry . . . e« 4 e e o
PUTDIAG to FORTRAN Return « e = @
operation . . « ¢ ¢« « ¢ e o o o o
CEKTI Analyze Console Source Line
(ANALYZ) . . « o « o « =« e o o =
CEKTJ -- Inspect a Console
Character (INSCON) « « .« .

NN EFEWwWwWwhhON NN B

(Ve JiVelRVogtvelte o Qe c e)

CONTENTS

CEKTK -- Move a Line to the List
Data Set (LDMOVE) .« e o o = .
CEKTL -- Build a List Data Set
Buffer (BUILD) . ¢« ¢ « o « o « «
CEKTM -- Flush a List Data Set
Buffer (FLUSH) . ¢« ¢« « « 2 « « =
CEKTQ -- Compiler File Dump
(COMDUMP) e e 2 e s e ° s e = @
CEKTS -- Compiler Line Dump
(LINDUMP) e e e 4 o e e o e o @

SECTION 3: PAASE 1 v ¢ ¢ o « o o« & «
Introduction . « ¢ « ¢ ¢« o « « 4 o«

Program Representation File (PRF)
Begin Program Entry . . « . . .
Subprogram Entry
Alternate Entry
Label Definition Entry .
Equation Entry
GO TO Entry . . « « « .
Assigned GO TO Entry . .
Computed GO TO Entry . . « « . «
ASSIGN ENtry . « « « « « « o + &
Arithmetic IF Entry
Logical IF Entry . . « « « « « «
CALL Entry e e e
Argument Deflnltlon Entry « o
RETURN Entry . . « +« « « o« o « &
Begin Loop Entry . . « .« < « < .
End Loop Entry « . .« « « « « « o
CONTIRNRUE Entry . . . « « « « . .
READ, READ Without Unit, and READ
With NAMELIST Entries
ARITE and WRITE With NAMELIST
Entries e e e e e e
PRINT and PUNCH Entrles o o o o
Input/Output List Representation
in the PRF Entry« . . .
End List Entry . . « « « « « o .
END FILE, REWIND, and BACKSPACE
Entries . <« . ¢« ¢ ¢ o ¢ ¢ o . .
STOP ENtXY + « « o « « o o o o o
PAUSE EREXY =« + o « « « = « «

¢ & o e
.
.
.

End Program Entry . . « « « &
Expression File

Subscript Expressions
Storage Specification Tables . . .
Dimension Table
Namelist Table «
Storage Class Table
Format Processing . . « « « « o =
Alphameric Constants
Data Processing . . . « o
Cross Reference Index Llst e e e =

Phase 1 Routines, Functional
Description ¢ ¢« « « « + < .

Pass 1 Statement Processors . .
Pass 2 Statement Processors . .
Expression Processing and

Translation .« . . « « « ¢« &« + «
Source Extraction and Conversion
Loop Processing Service Routines

35

36

36

36

I/0 Statement Processor Service

ROULINES . . « ' a 4 o « o & « = « &
Initial Value Processing Service
ROULINES ¢ 4 v v 4 o o o w o « o« =
Miscellaneous Service Routines . .
Routine Descriptions
CEKAD -- Phase 1 Main Locop (PH1M)
CERKAK -- Assignment Statement
Processor (EQUA) « e s e
CEEKAM -- EXTERNAL Statemen*
Processor (EXTE) e a e e s e e e s
CEKAQ -- GO TO Statement Processor
(GOTO) . v & © ¢ 4 & o s o o o « =
CEKAR -- IF Statement Processor
(IF) v 4« o o o o« o o « o« o s o o =
CEKAS -- Type Statements Processor
(TYPE) . . & & & o o o « « s o = =
CERAT —-- CONTINUE Statement
Processor (CONT)
CERKAU -- DIMENSION Statement
Processor (DIMN) « « .« + «
CEKAV -- COMMON Statement
Processor (COMM) o .
CEKAY -~ EQUIVALENCE Statement
Processor (EQUI) . . . « « ¢ « « .
CEKAZ -- DO Statement Processor
(DO « aa & = e =
CEEKBC -~ ASSIGN Statem@rt
Processor (ASSI) . o« « o o o « « =
CERKBD —-- File Control Statement
Processor (FCON) . . < o o o o « &
CEKBE -- Input/output,statement
Processor (RWIO) e . e .
CEKBF -- FORMAT Statement
Processor (FORM) . . « « ¢ v « « .
CEKBG —- PAUSE, STOP, RETURN
Statement Processor (PSR}
CEKBH -- NAMELIST Statement
Processor (NAML) . . . ¢ « « & «
CEKBI —-- BLOCK DATA Statement
Processor (BLDAY e e e .
CEKBM -- DATA Statement Prccessor
(DATA) - o - e
CEKBN -- IMPLICIT Statement
Processor (IMPL) . . . « « « « .« .
CEKBR -- Blank Statement Processor
(BINK) . & ¢ « & ¢ o o a a 2 = =« «
CEKBS -~ Subprogram Entry
Statements Processor (SUBEY . . .
CEKBU -~ CALL Statement Processcr
(CALL) . ¢ & « o o o a o o » a o @
CEKRL -- END Statement Processor
(END) . & &« 4 v o o o % = « « =
CEKAW -- Declaration Statements,
Pass 2 (DCL2Y . . . @« ¢ ¢ o « « =
CERAY -- Executable otatemenfs,
Pass 2 (EXEC2} . « « « « - « e e
CEKBJ —-- BLOCK DATA Statement,
Pass 2 (BLDA2) . « ¢« ¢ o« o o o o =
CEKBP -- IMPLICIT Statements, Pass
2 (IMPL2) . & 4 « o o o ¢ <« o o =
CEKBT -- Subprogram Entry
Statements, Pass 2 (SUBE2}«
CEKBV -- CALL Statement, Pass 2
(CALL2) © . & &+ i o « o a o s s o =
CEKBZ -- Statement Function
Definition, Pass 2 (STFN2j .

CEKAG -- Subscript Processor (SUBS)

56
56
56
56
56
57
57
57
57
57
58
58
58
59
60
60
60
60
60
61
61

61

61

61

62

62

62

62

63
63

SECTION 4:
Introduction .« .« ¢ ¢ ¢ @ « o ¢ o o .« .

CEKAI ~- Expression Processor
(EXPR) . ¢ v 4 v e e v e e e o«
H £to 8 Class v ¢« & 4 ¢ o o o o o«
S to HClass = v v « ¢ o o « o « =
G5 50 S Cl8SS v 4 4« o o o « o o o «
H to H Class . . . « a e e .
Functlon/Subroutlne Call « e .
CEKAN -- Conversion Subroutlne

. {CNVRT) e e o @ o e w = e 2 o «

" CEKBK -~ Statement Function
Definition (SFDEF) . . . « .+ « . .
CEKBL ~- Statement Function
Expansion (SFEXP)
CEKBX ~-- Function Classifier

(FNCLS) v & o o o o o 2 o o = = =
CEKBY -~ Library Function Selector
(LIBN) e e e e e e e e .

CEKCB -~ Cothant Arithmetic
Subroutine (ARITH} R
CEKCG -~ Term Processor (TRMPRO) .
CEKCR -- Actual Argument Service
Routine {(AARG) =+ + « o o « « =« o« «
CEKCS -~ Constant Arithmetic
Interrupt (CHKINT) . . « « « . . .
CEKAB -~ Extract Source Character
{ESC) « s e . . « e s e e a =
CEKAE -~ Assemble Components
(ACOMP)
CEKCH -- File Real Constant (FLRC)
CEKCI -- Insert Variable in Symbol
Table (IVST) e e e e e e
CEKCN -- Decimal to Blnary Integer
Conversion (ICNV) « e e e e e e .
CEKCP -- Decimal to Floating Binary
Conversion (FCNV)
CEKCQ -~ File Integer Constant
(FLIC) . ¢ ¢ ¢ o « o « o o « o « =
CEKBA -- Begin Loop Processor
(BGNLFP) e o o 8 s e e ® ° o & o
CEKBB -- End Loop Processor (ENDLP)
CEKCJ -~ Check Limits (CRLIM) « -
CEKCK -- Clear Limits (CLLIM) . .
CEKBW -- I/0 List Processor (IOLST)
CEKCD -—- Format Label Processor
for 1,0 Statements (FLABL)
CEKCE -- Read Transfer Processor
for 1/0 Statements (RTRAN)
CEKCF -- FORMAT or NAMELIST Name
Processor (FNAME)« e e .
CEKAH -- Initial Value Data
Specification Processor (IDATA) .
CEKCL -- Initial Value Processor
(IVAL) . ¢ ¢ ¢ @ « « o o o o« o « =«
CEKAF -- Array Dimension
Specification Processor (ARDIM) .
CERCC -- Label String Processor
{LBSTR) a e e 4w s s e = e e e s
- CERAC -- Statement of
Identification (SID)
CEKAJ -- Statement Label Processor
(LABL} . « o o « o o « o o o o + =
CEKBQ -- Fallthrough Determination
(FALTH) e s e x 2 = e 2 = s e s @
CEKCA -- Diagnostic Message
Generator (ERR)«
PHASE 2 = . '« « = « + « « &

-

-

»

.

69

70

70

70

71

-+
s

71

77

78

78

79

80

81
81

Routine Descriptions
CEKJA -- (PHASE2) c e e e e e e e
CEKJC -- Storage Assignments for
Variables (VSCAN) « . <« .
CERJB -- Process Label References
and Definitions (FSCAN)
Label Processing & <+ .« o .
Flow Processing . . .« W & « o «
DO Loop Processing . . o &« .« . . .
CEKJD -- Label Reference Processor
(RTNL) @ v 4 4 e v o 6 o d4-92 = = =
CEKJE -- Label Reference: Processor
(LAB) & & o @ ¢« o o o o.0 o o o =
CERJF -- Statement Label Reference
Inspection (ISP) . . . ¢ « « « o« @
CEKJG -- Format Reference
Inspection (FORMAT) . « « ¢« « «
CEKJH -- Diagnostic Message
Generator (DX) . ¢« o« v o 3 « o o @

SECTION 5: PHASE 3 . . & « v« 4 o« « «

Introduction « < < ¢ o 4 0 . .

Memory Reference Processing
Common EXPressionsS . « « « « o« « « o«
Removing Expressions From LOOps . .
Optimizing Subscript Computation . .
loop Variable Expressions
Global Register Assignment

Routine Descriptions . . . « e e s
CEKXS -- Phase 3 storage (PSECT) .
Phase 3 Loop Tables
Global Register List (GIRL)
(Linked, Permanent)
Link POINtErs .+ « « o o « o o « .
Operand Pushdown « + + « « =«
Triad Table Entry e 1 e e e e e e
Polish Insertion Entries
Compute and Removal Item Table .
Hash Table for Compute and Removal
Table (CRT) and Triad Entries
(HCRT) =« “ « e e o
Formal Argument Adcon Tanle e e .
CEKKR -- Phase 3 Master Control
Routine . . .+ ¢ o 4 o o o o o o =
CEKKU -- PRF Proce381ng Routine .
CEKKC -- End Loop PRF Entry Routine
CEKKV -- Begln~Loop 1 PRF Processor
CEKKW -- Begin Loop 2 PRF Processor

File EF and Point (FEFP) Subroutine
Delete the Undefined Level (DUNL)
Subroutine 4 ¢ e e . . .
CEKKE -- Expression Scan Routine .
CEKLF -- Copy and Edit an
EXPIeSSion ¢« « « o o o « « o « +
CEKKF -- Pushdown Primitive.

Operand Routine . . « + « «. .« +
"AT" Operator Insertion
Subscripted Variable Processing .

Loop Parameter Processing
CEKKG -- Variable Compute Point
and Removal Level Routine-
CEKKL -- Operand List Expression
Formation Routine- « « . .
CEKKH -- Triad File Manipulation
ROULINE o & v e e o o o o o o o =
CERKP -- Search and Insert Triads
CEKKN -- Canonical Form Routine .
CEKKI -- Expression Removal and

Commonality Determination Routine

.106

.106
-106
.107
.107
.108
.108

.109
.109

.109
.110
113
113
114
115

.115
-115

.116
.118
.118
.118
.119
.119
.119
.120
-120
.121

-121

CEKKJ -- Check Commonality122

CEKKK -- Establish Common

Expression Routine123

CEKLA -- Label Common Expressions .123

CEKLE -- File CRT Entries123

CEKLD —-- Expunge a Removable

Subexpression 124

CEKRM -- Subscript Expre531on

Revision Routine124

CEKKA -- Acquire Entry from

Compute and Removal Table125

CEKKB -- Polish Expression

Generation Routine125

CEKKO -- Save Popularity Counts for

Register Assignment126

CEKL3 -- File Constant and

Covering Adcon . « « « « . + « « . .126

CEKLI -~ 'Loop Test-Expression

Generator . . . « « o o + o o = o 127
SECTION 6: PHASE 4 « .+ . « 129
Introduction« . « « <129
Phase 4 Processing « « « + « « « « « « 129

Expression Generation130

Expression Storage132

Common-Expression Storage132
Register Storage133
General Register Selection134
Storage Reference Processing135
DO Lodp Processing « « . « « « . . .136

Routlne Descriptions « <« . 2139
CEKNX -- Phase 4 Master Control
(PHASU) « & ¢ ¢« o « o o o o o « o 153
CEKOD -~ Entry Point Processor
(ENT)153
CEKNU -- Referenced Label PF Entry
Processor (LABEL) . . . « « « .+ 2153
CEKMJ *-- Equation PF Entry

Processor (EQUAT) « « « « .155
GEKNK :~- Arithmetic IF PF Entry

Processor (AIF) «155
CEKNL -=-.Logical IF PF Entry
Processor (LIF) « « « . .155
CEEKNT'.-- GO TO PF Entry Processor
(GOTO) « e « o = o o o 2155
CEKNS '=- Assign PF Entry Processor
(ASSGN) « e e e e o e e e . «155
CEKNQ -- Assigned’ GO TO PF Entry
processor (AGO)156
CEKNR ~- Computed GO TO PF Entry
Processor (CGO) . =+« « o« « « « « o .156
< CEKOL -- CALL Statement Processor
(CALL) - . ‘. . . .156
CEKOE =- RETURN Processor (RTRN) . .156
CEXKNM -- Begin Loop 1 PF Entry
Processobr (BL1)-7156
CERNN -- Begin Loop 2 PF Entry
Processor (BL2)« . 157
CEKNO-. -- Begin lLoop 3 PF Entry
Processor (BL3)« « « . « « .157
CEKNP -- End Loop PF Entry

Processor (ENDLP) ¢ ¢ « . .157
CEKOH -- I/0 Statement PF Entry
Processor (RD) . ." . . K .« . 158
CEKOI -- I/0O List Element PF Entry
Protessor (OLIST) « - . « » « . 2158
CEK®6J:- +- End List PF Entry

Processor (NDLST) ‘. ¢ ¢ « &« « « - 158

CEKOK -- STOP and PAUSE Statement
PF Entry Processor (STOP)

CEKNW -- Arithmetic Expression
Generator (AGEN) . . v o ¢ « 4 « .
CEKML -- Expression Tree Builder
(TRBLD) « e e e « . -
CEKNE -- Weight bubroutlne (WGHm)
CEKOB -- Common Expression Usage
Count (CsSX) . . . e e e e e e
CEKMC -~ Real Flus Generdtor
(RPLUS) . . . - e 2 e s
CEKMB -- Real Multlply Generator
(RMUL) « e« s e o e e e &
CEKMA -- Real DlVlde Generator
(RDIV) . ¢ o o« o o o o o o o o o =
CEKMF -- Integer Plus Generator
(IPLUS) . . .« « « « = e e e e
CEKME -- Integer Multlply
Generator (IMPLY)
CERKMD -- Integer Divide Generator

{IDVDE) e e e o - o
CEKOV -- Add by Load Addresg
(LADDR) e e o s e a s e e e e

CEKMG -~ Complex Plus Generator
(CP1US) « + e e e o e e o o & =
CEKOF -~ Complex Multlply
Generator (CMULY« « « .
CEROG -- Complex Divide Generatocr
(CDIV) « a4 s e 2 e s
CEKMH -- Relatlonal Expression
Generator (RLTNL)« . < .
CEKMI -- logical Expression
Generator (ANDOR)
CERMJ -- Maximum Operator
Generator (MAX) « e . »
CEKMK -- External Functlon
Generator (FUNC)« . .
CEKNJ -- Comma Operator Processing
Subroutine (COMMA)
CEKCOM -- Open Function Control
Routine (DCOM) ¢« « « o « .
CEKOT -- Open Function Processing
Routine (OPEN1)« .
CEKOU -- Open function Processing
Routine (OPEN2) « . « .« .
CEKOX -- Open Function Processing
Routine (OPEN3) ¢ « « « .
CEKOY -~ Open Function Processing
Routine (OPEN4)+ .+ « + .
CEKOZ -- Open Function Processing
Routine (OPEN5)
CEKOM2 -- Open Function Processing
Routine (OPEN6)*
CEKMV -- Memory Access Routine
(MEMAC) © e e 4 s e e & s e o e @
CEKOP ~-- Load Covering Adcon
Routine (COVER) <« . . .
CEKMZ -- Local Branch Generator
{SADDR) . . e e o = -
CERNV -- Labeled Branch Generator
(LBL) ¢ e e o o @ e« o o e« *
CEKOS -~ Operand Fetch

Complement/Store Routine (FETCH) .
CEKND -~ Select Operand Routine

(SELOP) « .

CERKNF -- Select P051t10n for

Operation (SLPOS) . .

¢« s o e e =

.159
.159

.159
.161

-162
.162
.162
.163
.163
-1604
-164
.1le64
.165
.165
.166
.166
.167
.167
.168
.169
.170
.170
.171
171
-171
.171
.171
-172
172
172
.173
.173
.173

.175

CEKOW -- Select One Operand in a
Register (SLONE) . . . « «175
CEKNB -~ Determine Availability of
Register for Multiplication (SELGM) 176
CEKNA -- General Register
Availability for Integer Divide
(SELGD} - e . <. 177
CEKOC -- Operand Status Routlne
(KEY) « e . . e e e e . . L1177
CEKOR -- Slngle Operand Locating
Routine (REY1)177
CEKMR -- Search General Registers
(FNDAR) e 4 e e« 4+ . .178
CEKMS -- Search Floatlng Registers
(FNDFR) e o e & e s e e« =« o « <« 178
CEKMA -- Operand Processing
Routine (OPND)178
CEKMY -- Result-Register Operand
Processing Subroutine (RSLT)179
CEKNG -- Select Single General
Register (SELSR)180
CEKNH -- Select Evens/0dd General
Register Pair (SELDR)181
CEKMQ -- Select Floating Register
(SELFR) . & « ¢ ¢« & ¢ & &« « « . . 181
CEKMM -- Make Ynitial Assignment
to General Register (ASAR)181
CEKMN -- Make Synonym Assignment
to General Register (ASARS)182
CEKMO -- Make Initial Assignment to
Floating-Point Register (ASFR) . . .182
CEKMP -- Make Synonym Assignment to
Floating Register (ASFRS)182
CEKMT -- Find Temporary Storage
(FNDWS) e 4 s e e e e o + « s o o 183
CEKMX -- Release Temporary Storage
(RLSWS) e o o s e e e o e s s « o 183
CEKON -- Register Storage Clear
Routine (FLUSH) « « o+ . 183
CEKNI -- Code File Output
Subroutine (INSOT)184
CEKOQ -- Edit for Code File (EDIT) .184
SECTION 7: PHASE S « ¢« « » « & « « « « .186
Introduction « « < .« . .186
Object Program Module (OPM) e e o < « 2187
Program Module Dictionary (PMD) . . .187
PMD Heading . . «. . « .+« + « « « . .187
Control Section Dictionary (CSD) . .189
Internal Symbol Dictionary (ISD) . . .194
Heading . « . « ¢« &« o ¢« 4 ¢ « « « .194
Section Name Table194
Statement Number Table194
Symbol Table194
Routine Descriptions <195
CEKSA -- FORTRAN Compller Output
Generator (PHASES)« « 195
CEKSB -- Object Program Module
Builder (BUILD) e o e o o o « « o <198
CERSC -- Common Control Section
Generator (CMSEC)199
CEKSF -- Code Control Section
Generator (COSEC)200
CEKSG —-- PSECT Builder (PRSEC) . « .203
CEKSD -- Preset Data Processor
(SPECS) « o . . . e .« . . 206
CEKSH -- Internal Symbol chtlonary
Generator (ASSIST) . . . «206

CEKSI -- Object Program
Documentation (EDIT) « . . .207
CEKSJ -- Symbol Table Sort (S5YMSRT) 211
CEKSE -- Output Page Heading
(PHEAD) « s e * 4 a « e« = e = o a
CEKSL -- Constant Conwversion
(CONCV) v 4 ¢ v &« o « o« 2 + o o
CEKSK -- Cross Reference List
Routine (CRFSRT) . . . <« . .« . « .

212
.212
.212

SECTION 8: FLOWCHARTS . . . + + « « . .214
APPENDIX A: INTERPHASE TABLE AND FILE
FORMATS .« & 4 o« o o o o 2 « a « o « «
Program Representation File (PRF) .
Storage Specification Tables
Preset Data Tables ¢« « « « « «
Entry Formats . . « & +« o « & «
Storage Class Table (STCLTB) . « . . .
Program File (PF) Formats Output by
Phase 3 .« ¢ ¢ o ¢ ¢ o « o o« o o v o =
Field Identifier « e e e e e e
Entry Formats « . « .
Code File Format . « +. ¢« &+ o « o « o &
Symbol Table . . . ¢« ¢« .« « ¢« ¢« « « «
General Format « ¢« + « o o«
Specific Descriptive Part Formats
of Intrinsic and Library Functions
Constant Format . . .« « ¢ « « « &
Label Format .« . « « ¢« « ¢ o« .+ .« .
Address Constant Format
Intercom Table « « « .« .

.631
.631
.636
.639
.639
.641

.641
.642
.642
.6U5
.6U5
.645

.646
.648
.649
. 649
.650

APPENDIX B:
Introduction « . « « ¢ « « ¢ +« o . .
Conventions For Type I Linkages
(Standard) . « « « « o ¢« o ¢ o 2 . .
Register Conventions
SAvVe AYea . . < ¢ s e o s e e
Parameter List, Type I Linkage .
Type I Linkage, Return and Entry
Linkage and Return Code
Restricted Linkage Conventions . . .
Scope and Applicability of
Restricted Linkage « « .
Register Usage and Assignment in
Restricted Linkage
Macro Instruction Support
INVOKE M2CYO o« « o o o o « o =« »
STORE MacCro .« « « o ¢ « o o <« &
RESUME MAacCro « « « « o o « = « &«

APPENDIX C: FORTRAN INTERNAL MACRO
INSTRUCTION USAGE .« &+ « ¢ « « o =«

APPENDIX D: LIST OF MAJOR TABLES
REFERENCED BY FORTRAN ROUTINES . . .

APPENDIX E: MODULE DICTIONARY . . .
APPENDIX F: LINKAGE EDITED COMPILER
ROUTINES LISTED BY CODED LABELS

(MODULE NAMES) . . .« &« ¢ &« o & « « &

INDEX . & o o o o o o o o« o a o « =

TSS/360 LINKAGE CONVENTIONS 657

.657
.657
-657
. 657
.658

.658
.658

.658
.658
. 659
.659

. 660
.660

.662

.664

.667

.679

.684

ILLUSTRATIONS

FIGURES

Figure 1. FORTRAN IV Compiler
External References « + . .
Figure 2. Compiler Component
Organization . . . « . .+ . & . & . o . .
Figure 3. Compiler Information Flow .
Figure 4. Compiler Interfaces
Figure 5. Source-Statement-
Preparation Modules
Figure 6. Summary of Phase and
Interphase File Control Activities . .
Figure 7. Symbol Table Storage Layout
Figure 8. Process Compiler Edit Line

. s s =

Function « « « ¢ ¢« 4« ¢ o ¢ o« o o« o s o
Figure 9. Compiler Diagnostic
Features ¢ ¢ ¢ o o o ¢ o o o « =

Figure 10. Testing for Diagnostic
Input and Processing Diagnostic
Information Lines . . . « « « « « o o .
Figure 11. Processing Diagnostic
Information Following Return From Each
PhaS€@ .« ¢« 4 ¢ o 4 2o o o o o o « o o « =
Figure 12. Processing of Unexpected
Interruptions During Compilation
Figure 13. Phase 1 Interface
Figure 14. Phase 1 Storage
Figure 15. Phase 1 Nesting Chart . . .
Figure 16. Symbol Table Save Area . . .
Figure 17. Component Storage Area . .
Figure 18. Phase 2 Nesting Chart . . .
Figure 19. Phase 2 General Flow .« . .
Figure 20. Sort Table Entry

Figure 21. Variable List, Group
Connection List, and Group Table
Entries . . . < ¢ 4 4« a4 e e e ..
Figure 22. Phase 3 Nesting Chert . .
Figure 23. Phase 3 Storage Map . . .
Figure 24. Expression Tree
Figure 25. Name Table
Figure 26. MRM Table
Figure 27. MRMFR Table
Figure 28. Loop Table e e e e .
Figure 29. Phase 4 Nesting Chart . .
Figure 30. Phase 4 Master Control .
Figure 31. 1I/0 Initialization
Parameter List s e s e e e e e e e s
Figure 32. I/0 Initialization Control
Bytes . . . < o ¢ ¢ 4 4 s e e e 4 e
Figure 33. Stack Table Entry « o .
Figure 38. INSOT Input Parameters . .
Figure 35. Format of PMD Entry . . .
Figure 36. FORTRAN Internal Symbol
Dictionary . « « o ¢ « o 4 o« « o « o« =
Figure 37. Phase 5 Nesting Chart . .
Figure 38. Phase 5 General Flow . . .
Figure 39. Output Listing Format
(Part 1 of 2) . ¢ ¢ « v & o « o« « & =
Figure 40. CEKTD, Compiler Exec
Process Terminal Modifications (Part 1
of 4) e e e e e e e e e e e e e e
Figure 41. Alphabetically Sorted

Listing of Intercom Items, With
Displacements (Part 1 of 2) . . .

. 85
.102
.106
.131
.133
.133
-134
.137
.140
.154
-158
.158
.160
.184
.188
.194
.196
.199

. 209
.651

.655

Executive

Table 1. Storage Map . . .
Table 2. Work Area A Storage Layout
Table 3. Work Area B Storage Layout
Table 4. Work Area C Storage Layout
Table 5. Preparation of Constant
Receiving Area by CONFIL . . . « . .« .
Table 6. Constant Chain Anchors and
Table BaseS . o « o o o o o o o o o =
Table 7. CONFIL Storage Assignment
No-Hole Branch Table TFNOHO
Table 8. CONFIL Storage Assignment
Hole Availability Table
Table 9. CONFIL Storage Assignment

Byte Alignment Branch Table TFBAL . .

Table 10.
(Part 1 of
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Character
Table 17.

Phase 1 Decision Table
8) i i e e i e e e e e e
Encoding of FORMAT Symbols
Translation of Format Codes
Operator Precedence
EXPF Entries (Real Base) .
Library Furiction Names . .
Assemble Components
Table . . « ¢« « « ¢ o & « «
Assemble Components

Decision Table ¢ ¢« ¢« ¢ & « « &

-

30

30

31

TABLES

Table 18. Assignment/Nonassignment -
Character Table <« . « .« . . . 78
Table 19. Assignment/Nonassignment
Precedence Table« « . « . 78
Table 20. Nonassignment Type Statement
Identification . . . « 79
Table 21. Statement ID Numbers 79
Table 22. Phase 2 Decision Table . . . 83
Table 23. Phase 3 Decision Table

(Part 1 of 4) . . . ¢« . « ¢ < « < . . .102
Table 24. Phase 4 Decision rable

(Part 1 of 12) « . ¢ < < . . 181
Table 25. Operand Conversion Function
Decision Table «160
Table 26. Complex Division Left

Operand Conversion Function Decision

Table .+ ¢ ¢ ¢« ¢ ¢ ¢« e ¢ o« o« o o + « « 2161
Table 27. Operand Types Processed by

CMUL « & & v o o o « o« s o = o s+ « o« « 165
Table 28. Operand Types Processed by

CDIV 4 v 4« 4 o o o o o o o =« « o« o« « » 166
Table 29. Phase 5 Decision Table

(Part 1 of 3) . . . <« &« ¢ « « + « s » 2196

CHARTS

Chart AA. Executive Overall Flow --

CERUA (Page 1 of 2} e o . 216
Chart AB. Phase Controller (PHC) -—

CEKTA (Page 1 of 5) <« . « . .218
Chart AC. Get Next Source Statement

(GNSS) =-- CEKTC (Page 1 of #)223
Chart AD. Process Terminal

Modifications (MOD) -- CEKTD (Page 1

O0Ff 2) 4 i e e e e e e e e s e s e e $227
Chart AE. Receive Diagnostic Message

(RDM) —= CERTE . . + =« o = o « « a s » 229
Chart AF. Constant Filers (CONFIL) --
CEKTF (Page 1 of 8) . . ¢ « « « « « . .230
Chart AG. Master Input/Output Routine
(MIO) -- CEKTH (Page 1 of 2)238
Chart AH. Analyze Console Source Line
(ANALYZ) -- CEKTI (Page 1 of 2) « « o« 2080
Chart AI. Inspect a Console Character
(INSCON) == CEKTJT .« « 2 o o a « « 2 « 202
Chart AJ. Move a Line to a List Data

Set (LDMOVE) —-- CEKTK . . . « + « « « .23
Chart AK. Build a List Data Set

Buffer (BUILD) -- CEKTL « « . .2u4
Chart AL. Flush a List Data Set

Buffer (FILUSH) -- CERTM245
Chart AM. Phase 1 Main Loop (PH1M) --

CEKAD (Page 1 of 4) « « <« . . .2U6

Chart AN. Assignment Statement

Processor (EQUA) -- CEKAK « . .250
Chart AO. EXTERNAL Statement

Processor (EXTE) -- CEKAM251
Chart AP. GO TO Statement Processor

(GOTO) -- CERAQ (Page 1 of 4) e« s s 252
Chart AQ. IF Statement Processor (IF)

-- CEKAR (Page 1 of 2) «256

Chart AR. Type Statements Processor

(TYPE) -- CEKAS (Page 1 of 4)258
Chart AS. DIMENSION Statement

Processor (DIMN) -- CEKAU262
Chart AT. COMMON Statement Processor
(COMM) ~-- CEKAV (Page 1 of 3)262
Chart AU. EQUIVALENCE Statement

Processor (EQUI) -- CEKAY (Page 1 of 2) 26%

Chart AV. DO Statement Processor (DO)

== CEKAZ : o ¢ o « o« 2 o s o« a s « « « «268
Chart AW. ASSIGN Statement Processor
(ASSI) —-- CEKBC (Page 1 of 2) e e = « +269
Chart AX. File Control Statement

Processor {(FCON) -- CEKBD (Page 1 of 2) 271
Chart AY. Input/Output Statement

Processor (RWNIO) ~-- CEKBE (Page 1 of 6) 273
Chart AZ. FORMAT Statement Processor
(FORM) -~ CEKBF (Page 1 of 6) e e« « « 279
Chart BA. PAUSE, STOP, RETURN

Statement Processor (PSR) -- CEKBG

(Page 1 of 4)« e « = a2 . 285
Chart BB. NAMELIST Statement

Processor (NAML) -- CEKBH (Page 1 of 2) 289
Chart BC. BLOCK DATA Statement

Processor (BLDA) -- CEKBI291
Chart BD. DATA Statement Processor

(DATA) == CEKBM . .+ & ¢ « o = o« » « » 2292

Chart BE. IMPLICIT Statement

Processor (IMPL) -- CEKBN (Page 1 of 3} 293
Chart BF. Subprogram Entry Statement
Processor (SUBE) -- CEKBS (Page 1 of 5) 296
Chart BG. END Statement Processor

(END) -- CEKAL e « s e o « « <301
Chart BH. Executable Statements, Pass

2 (EXEC2) =- CERAX . + « = « 2 « « « « 2302
Chart BI. Subprogram Entry

Statements, Pass 2 (SUBE2) -- CEKBT . .303
Chart BJ. CALL Statement, Pass 2

(CALL2) -- CEKBV . . ¢ « + « « « & . .304
Chart BK. Subscript Processor (SUBS)

-- CEKAG (Page 1 of 6)305
Chart BL. Expression Processor (EXPR)

-- CEKAI (Page 1 of 13)311
Chart BM. Conversion Subroutine

(CNVRT) -- CEKAN (Page 1 of 3)324
Chart BN. Statement Function

Definition (SFDEF) -- CEKBK327
Chart BO. Statement Function

Expansion (SFEXP) -- CEKBL (Page 1 of

2) i 4 4 4 4 s s e e s a e e « e = « =« 328
Chart BP. Function Classifier (FNCLS)
~= CEKBX . . 4 4 « « o + 2 2 « « =« « » 2330

Chart BQ. Library Function Selector

(LIBN) == CERKBY . « 4 « « « « « « « » .331
Chart BR. Constant Arithmetic

Subroutine (ARITH) -- CEKCB332
Chart BS. Term Processor (TEMPRO) --

CEKCG « 4 e s e e = s s w e e & s« o =« =333
Chart BT. Actual Argument Service

Routine (AAR3) -- CERCR . +« « « . =« « 334
Chart BU. Constant Arithmetic

Interrupt (CHKINT) -- CEKCS335
Chart BV. Extract Source Character

(ESC) -- CEKAB . . . « o« « « o a« <336
Chart BW. Assemble Components (ACOMP)

-- CEKAE (Page 1 of 8) « - . <337

Chart BX. File Real Constant (FLRC)

-- CERKCH « « . .« .« .« o » « « « « « 2385
Chart BY. Insert Variable in Symbol

Table (IVST) -- CEKCI346
Chart BZ. Decimal to Binary Integer
Conversion (ICNV) -- CEKCN347
Chart CA. Decimal to Floating Binary
Conversion (FCNV) -- CEKCP3u8
Chart CB. Begin Loop Processor

(BGNLP) -- CEKBA (Page 1 of 2)349
Chart CC. End Loop Processor (ENDLP)

== CEKBB &« « &« o o « o s o « « « « . « 351

Chart CD. Check Limits (CKLIM) --
CEKCT & o 4 « o o « a o « « o« « o« o =« 2352

Chart CE. I/0 List Processor (IOLST)

-~ CEKBW (Page 1 of 4)353
Chart CF. Format Label Processor for

I/0 Statements (FLABL) -- CEKCD357
Chart CG. Read Transfer Processor for

I/0 Statements (RTRAN) -- CERCE358
Chart CH. FORMAT or NAMELIST

Processor (FNAME) -- CEKCF359

Chart CI. Initial Value Data
Specification Processor (IDATA) --
CEKAH (Page 1 of 2)
Chart CJ. 1Initial Value Processor
(IVAL} -- CEKCL (Page 1 of 6) « o e
Chart CK. Array Dimension
Specification Processor (ARDIM) --
CEKAF (Page 1 of 2) « « « .

Chart CL. Label String Prccessor
(LBSTR) -- CEKCC v e o s e
Chart CM. Statement of Identlflcatlon
(SID) == CEKAC v « v o« o o &+ o 2 « « =
Chart CN. Statement Label Processor
(LABL) -- CEKAJ (Page 1 of 2)

Chart CO. Fallthrough Determination
(FALTH) -— CEKBQ . <« & « « « « s o o« «
Chart CP. Diagnostic Message
Generator (ERR) -- CEKCA (Page 1 of 4)
Chart CQ. Memory Assignments for
Variables (VSCAN) -- CEKJC (Page 1 of
s)
Chart CR. Process Label References

and Definitions (FSCAN) -- CEKJB (Page
1 0f 8) & ¢ 4 @ o o o o o o s a2 s e
Chart CS. Label Reference Processor
(RTN1) == CERJID =« & o 2 « = 2 o« o o =«
Chart CT. Label Reference Processor
(LAB) -- CEKJE (Page 1 of 2)

Chart CU. Diagnostic Message
Generator (DX) -- CEKJH (Page 1 of 2)
Chart CV. Phase 3 Master Control

Routine -- CEKKR (Page 1 of 4)
Chart CW. PRF Processing Routine --
CERKU (Page 1 of 12) e e
Chart CX. End Loop PRF Entry Routlne
-— CEKKC (Page 1 of 2) .« . « « « o o
Chart CY. Begin Loop 1 PRF Processor
-- CERKKRV (Page 1 of 3) . . . « . « .« .
Chart CZ. Begin Loop 2 PRF Processor
-- CEKKW (Page 1 of 3)
Chart DA. Expression Scan Routine --
CERKKE (Page 1 of 3) . . ¢« « &« « & o @
Chart DB. Copy and Edit an Expression
-- CEKLF (Page 1 0of 5)

Chart DC. Push Primitive Operand
Routine -- CEKKF (Page 1 of 2)
Chart DD. Variable Compute Point and
Remove Level Routine -- CEKKG {(Page 1
OF 2) & i 4 v e e e e e e e s e e .
Chart DE. Operand List Expression
Formation Routine -— CEKKL
Chart DF. Triad File Manipulation
Routine -- CEKKH (Page 1 of 2)
Chart DG. Search and Insert Triads --

CERRKP .+ ¢ ¢ ¢ o o o o a o o « s o« o

Chart DH. Canonical Form Routine ~--
CERKN (Page 1 of 2
Chart DI. Expression Removal and

Commonality Determination Routine --

CEKKI (Page 1 of 5 « . .
Chart DJ. Establish Common Expression
== CERRK . ¢ ¢ o o ¢ o o o « o o o « =

Chart DK. Check Commonality -- CEKKJ
Chart DL. Label Common Expressions --
CEKLA ¢ & ¢ o ¢ o o o o 2 =« o « o« o =
Chart DM. File CRT Entries -- CEKLE .
Chart DN. Expunge a Removabie

Expression =— CEKLD « o« +« «

.360

. 362

.368
.370
.371
<372
. 374

.375

.379

-390
.398
. 399
401
.403
. 407
<419
421
424
427
. 430

. 435

437
439
. 440
442

443

445

. 450
451

452
. 453

. 454

Chart DO. Subscript Expression

Revision Routine -- CEKKM (Page 1 of 3) 455

Chart DP. Acquire Entry From Compute

and Removal Table -- CEKKAu458
Chart DQ. Polish Expression

Generation Routine -- CEKKB (Page 1 of

5) @ 4 e i e e e e s e e e e e e + e . U459
Chart DR. Save Popularity Counts for
Register Assignment -- CEKKOU464
Chart DS. File Constant and Covering

Adcon -- CEKLB . « « « « « « « « « » « U65
Chart DT. Loop Test-Expression

Generator -- CEKLI (Page 1 of 6)466
Chart DU. Entry Point Processor (ENT)

-- CEKOD (Page 1 of 2)472
Chart DV. Referenced Label PF Entry
Processor (LABEL) -- CEKNU47u4
Chart DW. Equation PF Entry Processor
(EQUAT) == CEKMJ . « ¢ ¢ « « o = « « o U475
Chart DX. Arithmetic IF PF Entry

Processor (AIF) -- CEKNR (Page 1 of 5) .u476
Chart DY. Logical IF PF Entry

Processor (LIF) -- CERNLu481
Chart DZ. ASSIGN PF Entry Processor
(ASSGN) -- CEKNS « « « . « . oUu82
Chart EA. Assigned GO TO PF Entry
Processor (AGD) -- CEEKNQ . . +«u483
Chart EB. Computed GO TO PF Entry
Processor {CGO) -- CERNRust
Chart EC. CALL Statement Processor

(caLL) -- CEKOL e <« U485
Chart ED. RETURN Processor (RTRN) --

CEKOE (Page 1 of 3)u8é6
Chart EE. Begin Loop 1 PF Entry

Processor (BL1) -- CEKNM489
Chart EF. Begin Loop 2 PF Entry

Processor (BL2) -- CEKNN (Page 1 of 9) .490
Chart EG. Begin Loop 3 PF Entry

Processor (BL3) -- CEKNO (Page 1 of 3) .u499
Chart EH. End Loop PF Entry Processor
(ENDLP) -- CERNP (Page 1 of 6)502
Chart EXI. I/0 Statement PF Entry

Processor (RD) -- CEKOH « . .508
Chart EJ. I/0 List Element PF Entry
Processor (ILIST) -- CEKOI (Page 1 of

2) i i i e 4 e e 4 e e e e e e e s e « <509
Chart EK. End List PF Entry Processor
(NDLST) -- CEKOJ « « « 511
Chart EL. STOP and PAUSE Statement PF
Entry Processor (STOP) -- CEKOK512
Chart EM. Arithmetic Expression

Generator (AGEN) -- CEKNW (Page 1 of 2) 513
Chart EN. Expression Tree Builder

(TRBLD) -- CEKML (Page 1 of 2)515
Chart EO. Weight Subroutine (WGHT) --
CERNE . & & o o o o« o o o o o« =« =« o« « 517
Chart EP. Common Expression Usage

Count (CSX) -- CEKOB (Page 1 of 3) . . .518
Chart EQ. Real Plus Generator (RPLUS)

-- CEKMC (Page 1 of 3)521
Chart ER. Real Multiply Generator

(RMUL) -- CERMB (Page 1 of 2)524
Chart ES. Real Divide Generator

(RDIV) -- CEKMA (Page 1 of 2)526
Chart ET. Integer Plus Generator

{(IPLUS) —-- CERKMF « o « « o o« 2528
Chart EU. Integer Multlply Generator
(IMPLY) -- CEKME (Page 1 of 3)529

Chart EV. Integer Divide Generator

(IDVDE) -— CEKMD . . ¢« « « « « + « - « «532
Chart EW. Add by Load Address (LADDR)

-- CEKOV (Page 1 of 2 « . .533
Chart EX. Complex Plus Generator

(CPLUS) ~- CEKMG (Page 1 of 3)535
Chart EY. Complex Multiply Generator
(CMUL) -- CEKOF (Page 1 of 2)538
Chart EZ. Complex Divide Generator

(CDIV) -- CEKOG (Page 1 of 2)540
Chart FA. Relational Expression

Chart FB. Logical Expression Generator
(ANDOR)-CEKMI+ . . . « « . » . 5427
Generator {(RILTNL) -- CEKMH542
Chart FC. Maximum Operator Generator

(MAX) == CEKMU . ¢ ¢ +. 4 « o« o « « « o 2543
Chart FD. External Function Generator
(FUNC) ~-- CEKMK (Page 1 of 3)544
Chart FE. Comma Operator Processing
Subroutine (COMMA) -- CEKNJ (Page 1 cof

3 1Y)
Chart FF. Open Function Control

Routine (DCOM) -- CEKOM550
Chart FG. Open Function Processing

Routine (OPEN1) -- CEROT {(Page 1 of 6) .551
Chart FH. Open Function Processing

Routine (OPEN2) -- CEROU {(Page 1 of 3) .557
Chart FI. Open Function Processing

Routine (OPEN3) -- CEKOX {(Page 1 of 3) .560
Chart FJ. Open Function Processing
Routine (OPEN4) ~-- CEKOY (Page 1 of 4) .563
Chart FK. Open Function Processing
Routine (OPENS) -- CEKOZ (Page 1 of $) .567
Chart FL. Open Function Processing
Routine (OPEN6) -- CERKOM2 (Page 1 of 2) 573
Chart FM. Memory Access Routine

(MEMAC) -~ CERMV (Page 1 of 2)575
Chart FN. Local Branch Generator

(SADDR) == CEKMZ . . . <« « « « « « = « 2577
Chart FO. Labeled Branch Generator

(LBL) == CERNV . . ¢ ¢ « « « « « « « « .578
Chart FP. Operand Fetch

Complement/Store Routine (FETCH) ~--

CEKOS c 4 a4 e o a s s s » s s e s« =« « <579
Chart FQ. Select Operand Routine

(SELOP) -- CEKND (Page 1 of 2)580
Chart FR. Select Position for Operand
(SLPOS) -~ CEKNF (Page 1 of 2)582
Chart FS. Select One Operand in a
Register (SLONE) -- CEROW (Page 1 of 4) 584
Chart FT. Determine Availability of
Register for Multiplication (SELGM) --
CEKNB (Page 1 of 2)588
Chart FU. General Register

Availability for Integer Divide

(SELGD) ~= CEKNA . < . + « « « « « « « 590

Chart FV. Operand Status Routine

(KEY) == CEKOC ¢« ¢ + 4 « & 4 « « o - « 4591
Chart FW. Single Operand Locating

Routine (KEY1) -- CEKOR592
Chart FX. Search General Registers

(FNDAR) -- CEKMR « ¢« « « <« « . .593
Chart FY. Search Floating Registers
(FINDFR) -- CEEMS . . ¢ ¢ ¢ « « « « « 594
Chart FZ. Operand Processing Routine
(OPND) -- CEKNW (Page 1 of 2595
Chart GA. Result-Register Operand
Processing Subroutine (RSLT) -- CEKMY .597
Chart GB. Select Single General

Register (SELSR) -- CEKNG (Page 1 of 2) 598
Chart GC. Select Evens/0dd General

Register Pair (SELDR) —-- CEKNH (Page 1

Of 2) ¢ 4 ¢ 4 4 4 i d e 4 4 e e 4« o o 600
Chart GD. Select Floating Register

(SELFR) —-- CEEMQ (Page 1 of 3)602
Chart GE. Make Initial Assignment to
General Register (ASAR) -- CEKMM605
Chart GF. Make Synonym Assignment to
General Register (ASARS) -- CEKMN . . .606
Chart GG. Make Synonym Assignment to
Floating Register (ASFRS) —-- CEKMP . . .607
Chart GH. Find Temporary Storage

(FNDWS) —- CEREMT « « . . .608
Chart GI. Release Temporary Storage
(RLSWS) —- CEEMX . . « « « « & « « » « .609
Chart GJ. Register Memory Clear

Routine (FLUSH) -- CEKON610
Chart GK. Code File Output Subroutine
(INSOT) -- CEKNI . +« « ¢« « o =« « « « o+ .611
Chart GL. Object Program Module

Builder (BUILD) -- CEKSB . . +« « « . . .612
Chart GM. Common Control Section

Generator (CMSEC) -- CEKSC613
Chart GN. Code Control Section

Generator (COSEC) -- CEKSF (Page 1 of

3) i e et e e e 4 e e e e e s e w e o 614
Chart GO. PSECT Builder (PRSEC) --

CEKSG & o v « o « o o o s o » « = » « <617
Chart GP. Present Data Processor

(SPECS) == CEKSD <« 4 « « » « = =+ « « » 4618
Chart GQ. Internal Symbol Dictionary
Generator (ASSIST) -- CEKSH619
Chart GR. Object Program

Documentation (EDIT) -- CEKSI (Page 1

Of 3) v 4 4 v 4 4 e 4 e e e+ . e = . 5620
Chart GS. Symbol Table Sort (SYMSRT)

== CEKSJT 4 o« o o o« o o « o = « s « « « 623
Chart GT. Constant Conversion (CONCV)

~= CEKSL « « ¢ 2 o o « s = « « « « « « 624
Chart GU. Cross Reference List

Routine (CRFSRT) -- CEKSK (Page 1 of 5) 625

The TSS/360 FORTRAN IV compiler is
implemented in accordance with the conven-
tions and requirements for systems programs
in the TSS/360 environment. It is relocat-
able, reenterable, closed, nonprivileged,
and nonresident.

The compiler organization and informa-
tion flow are designed particularly for
processing in the time-sharing environment.
Wherever possible, to reduce the "page-
turning™ load on TSS/360, the intermediate
data is organized and processed serially,
in file form, rather than in a form requir-
ing random access. The presence of the
entire file in virtual storage ensures fast
access to its contents; repeated references
to the same virtual storage page, inherent
in serial processing, reduces the number of
pages needed in rapid succession.

While primarily a conventional batch-
processor, the compiler contains special
features making it especially suitable for
conversational, terminal-oriented opera-
tion. The compiler syntax analysis per-
forms statement-by-statement error checking
of the source program as it is input
through the Language Processor Control pro-
gram (LPC). Diagnostic messages are
returned to the user's terminal via LPC,
and each appears at the terminal following
the listing of the statement in which the
error was detected. LPC gives the user the
opportunity to correct the error, whether
it be in the last statement processed, or
in some earlier statement. Then LPC in-
forms the compiler of whether a change was
made and if so, whicnh lines are affected.
If only the last statement was changed, the
compiler "forgets®™ the effect of the last
statement and begins compilation with the
statement replacing it. Otherwise, the
compiler, under direction of LPC, restarts
compilation from the beginning of the
source program mocdule. 1In this manner the
most common errors, those local to the last
statement processed, may be corrected with
minimum loss of time.

After the END statement has been pro-
cessed by the first phase, the compiler's
second phase may detect errors of a more
global nature (undefined statement labels,
illegal DO-loop flow, etc.). The resulting
error messages are passed to LPC, but now
LPC does not allow the user to supply
correction lines. When the compiler's
second phase is complete, LPC gives the
user the opportunity to correct errors or
to go on. If errors are corrected, the
compiler will recompile from the beginning

SECTION 1: INTRODUCTION

of the stored source data set, and another
conversation is possible. Otherwise, com-
pilation proceeds to termination through
the remaining compiler phases.

Detailed information concerning the con-
versation between terminal user and compil-
er is included in the description of the
Compiler Executive routine (Exec), which
interfaces with LPC.

OBJECT PROGRAM MODULES

The compiler produces an object program
module (OPM) consisting of a program module
dictionary (PMD), an optional internal sym-
bol dictionary (ISD), text (the binary
instructions and constants), and a list of
external names.

The PMD contains heading information,
used to identify the module, and a control
section dictionary (CSD) for each control
section occurring in the module. The CSD
specifies which text entries require loader
address computations or satisfaction of ex-
ternal references or references to other
control sections. A complete specification
of the PMD format is given in Section 7.

The ISD is a table of source language
symbols (not subprogram references), the
attributes associated with those symbols,
and the control section and relative loca-
tion within control section assigned to
each. The ISD information is used by the
Program Control System (PCS) to relate the
user symbols with the definitions in the
OPM. 2 complete specification of the ISD
format is given in Section 7.

SUBPROGRAM CALLS IN COPM TEXT

The text does not contain the machine
instructions that actually perform the
input/output of data; nor does it contain
the machine instructions to perform the
more invcoclved mathematical calculations
such as those for finding the square root
or the logarithm. The text also does not
contain the machine instructions that actu-
ally perform such services as handling
sense lights, overflows, underflows, excep-
tions, dumps, and the STOP, PAUSE, and CALL
EXIT statements. The set of binary
instructions produced by a compilation con-
tains code for calls to library subprograms
to perform these functions.

Section 1: Introduction 1

These subprograms are all permanently
stored in SYSLIB, and consist of:

e FORTRAN I/0 library subprograms.
TRAN I/0 source statements (READ,
WRITE, BACKSPACE, ENDFILE, REWIND,
PRINT or PUNCH) cause the compiler to
insert, in the object code, calls to
the appropriate FORTRAN I/O0 Library
subprograms. Other FORTRAN I/O subpro-
grams are used to execute the CALL
DUMP, CALL PDUMP; «ALL EXIT, STOP and
PAUSE statements. Note: There are
several service subprograms (STOP,
PAUSE, CALL DUMP, CALL PDUMP, CALL
EXIT) in the FORTRAN 1/0 group which do
not, strictly speaking, perform I/0.
These subprograms, however, were
included in the FORTRAN I1I/0 group
because they use the FORTRAN data con-
version routines. These subprograms are
described under “"Service Subprograms”
in FORTRAN IV Library Subprograms.

FOR~

o Mathematical Subprograms. These sub-
programs are used for the more compli-
cated mathematical procedures. They
are used to perform the explicitly
referenced functions (for example, the
sine function in X=SIN(Y) as well as to
do the more involved computations for
mathematical statements which do not
explicitly reference a function (for
example, the exponentiation in the
statement X=Y**I). See FORTRAN IV
Library Subprograms for information on
these subprograms.

e The Service Subprograms that handle
exceptions, pseudo-sense lights, over-
flows, underflows, and divide checks.
For information on these, see FORTRAN
IV Library Subprograms.

OBJECT PROGRAM DOCUMENTATION

In accordance with user-specified or
defaulted options, the compiler produces
the following documentation:

e A listing of the source program.

* An object program storage map giving
the storage layout of the object
prograrm.

e A list of source program symbols and
their storage equipments.

e A cross-reference listing relating sym-
bols and statement numbers to the
source line numbers of the statements
in which they were referenced or
defined.

e A listing of the object module in a
representation very nearly in a form

that might have been produced by the
assembler.

Phase 5 of the compiler either places this

information in the list data set, which is
stowed by LPC, or writes it on SYSOUT.

COMPILER INTERFACES

All interface with LPC and other exter-
nal routines is in the Compiler Executive
routine (Exec).

INTERFACE WITH LPC

The Compiler Executive routine may be
called by LPC at either of two points and
may itself call LPC at either of two points
(see Figure 1).

The two compiler entries are called INI-
TIAL and CONTINUE. LPC calls the INITIAL
entry to pass the user options to the com-
piler and to initiate the first stage of
the compilation (Phases 1 and 2). LPC
calls CONTINUE to complete the compilation
after the first stage is finished. The
compiler return from CONTINUE informs LPC
of the size of the OPM's elements, so that
LPC can dispose of them.

The compiler calls LPC at either of two
places during the first stage (before the
compiler returns to LPC from the INITIAL
call). The first, GETLINE, is used to
obtain a source line. The second, PUTDIAG,
is used to pass a source error diagnostic
message to LPC. PUTDIAG may also be used
after the first stage.

INTERFACE WITH VIRTUAL STORAGE ALLOCATION

The compiler obtains virtual storage for
the symbol table and other interphase files
via GETMAIN; to release the storage, it
uses FREEMAIN. (See Appendix A for a
description of the interphase files,
including the symbol table.)

INTERFACE WITH DATA MANAGEMENT

The compiler maintains the list data set
by means of the virtual access method
(VAM). The compiler issues OPEN, SETL,
PUT, and CLOSE macro instructions to pro-
duce this data set.

COMPILER/SERVICE ROUTINES INTERFACE

The compiler “time-stamps”™ (includes the
relative calendar time in} each object pro-
gram module (OPM) control section that it
produces. It also includes the date and

GETLINE PUTDIAG LPC

4

Continue
Entry

initial
Enfry

FORTRAN

Compiler

i
GETMAIN |

| FREEMAIN
| |
|

OPEN

Other Routines
External to

EBCDTIME |
! the Compiler

SETL PUT CLOSE REDTIM

§
i

Virtual Memory Allocation

Data Management (VAM)

Service Routines

{ Direction of arrow indicates sense of subroutine calt,)}

Figure 1.

time as identification on each sheet of
listing that it produces. To do this,
compiler calls two service routines:
REDTIM and EBCDTIME. REDTIM returns the
time (in milliseconds elapsed since March
1, 1900), which is used to time-stamp the
control sections and as input to EBCDTIME,
which edits it into the EBCDIC representa-
tion of time of day for inclusion in the
listing.

the

ORGANIZATION OF THE COMPILER

The compiler has six major components:
a multifunction compiler executive and five
compiler phases. The major functions of
each component are summarized here; later
sections describe each component in detail.

COMPILER EXECUTIVE ROUTINE

Compiler Executive (Exec) has six
functions:

1. Interface with the compiler's
environment.

2. Prepare the source statements for pro-
cessing by Phase 1.

3. Control and order the operation of the
phases (see Figure 2).

4. Prepare edited lines for output.

FORTRAN IV Compiler External References

5. Provide compiler diagnostic
information.

6. Provide miscellaneous services.

During a compilation, various tables and
lists are constructed to contain the
results of the operation of each phase and
to serve as input to the next phase (see
Figure 3).

PHASE 1

Phase 1 performs the source program syn-
tactic analysis, detection and diagnosis of
errors, and translation of the source pro-
gram into a multitabular representation.
Each identifier or constant is given an
entry in the symbol table (format is shown
in Appendix A). Initial values from DATA
and type statements, dimension information
for arrays, NAMELIST information, and
alphameric constants are stored in the pre-
set data table (Appendix A). Information
concerning references to, and definitions
of, symbols and statement numbers is stored
in the cross reference table. Information
collected from COMMON and EQUIVALENCE
statements is stored in the storage speci-
fication list.

The most significant processing, from
the point of view of later optimization and
code generation, concerns the treatment of
executable statements, statement numbers,
and arithmetic expressions.

Section 1: Introduction 3

—_—

Executive Phase
Controller -
Continue Entry

Executive Prose
Controller -
initicl Entry

e T - TN

\ 14 \
: Enter ; { Enter ;
\ \

~TBLOCK e
DATA Sub-

“._Program ?

Initiclize
Compiler. i
Open List

Cata Set.

S (SR §

-

‘ND

___PHASE3

Perform Global
Optimizations

Generate Code

Transiate Source.|
Find Errors.

PHASE 5]

=
| Build OPM,
Prepare Object
Program Listing.

| Wrap-up
i

| Compiler.
|
|

Make Srorage
Assignment.
Find Glooel
Errors.

U v———

Close List
Data Set.

‘ Exit }
B
to LPC

{ Exit {
\ /

to LPC

Figure 2. Compiler Component Organization

Each executable statement and statement
number is placed in the program representa-
tion file (PRF) which, when scanned in the
order it was formed, is a skeletal outline-
representation of the source program. In
addition to the fields that distinguish the
items from each other, the PRF entries con-
tain pointers to the appropriate expression
representation file (ERF) entries (see
below), to symbol table entries for
variables, constants, and statement num-
bers, and to other PRF entries as appropri-
ate to the individual type of entry.
Detailed formats of the PRF and ERF are in
Appendix A.

Each expression is placed in the expres-
sion representation file (ERF) in tabular
form. The ERF form of the expression is a
parenthesis-free notation in which, reading
from left to right, each operand occurs in
the order in which it occurred in the orig-
inal expression; each operation follows its
associated operand pair. The form is

referred to as "right-hand Polish,"™ or
simply "Polish.®™ See "CEKAI -- Expression
Processor (EXPR)," in Section 3.

Each of the operator items includes
information about its type and a code to
indicate which operation is represented.
Each variable or constant item includes
information about its type and a symbol
table pointer. This pointer is the means
of reaching the associated symbol table
entry and serves to associate the item with
other items representing the same variable
or constant while distinguishing it from
other items.

The detailed description of Phase 1 is
in Section 3.

PHASE 2
Phase 2 has five functions:

.. Make storage assignments in the OPM to
all variables that are not formal
arguments of a subprogram.

2. Detect and diagnose illegal flow in DO
nests.

3. Indicate that the DO-loop index vari-
able requires materialization {(must be
maintained in its storage cell) in a
loop that contains an exit.

4. Detect and diagnose references to
undefined statement numbers (labels).

Determine definition points (points at
which a value may be changed) of COM-
MON variables and subprogram
arguments.

COMMON variables are assigned storage in
the order dictated by their appearance in
the source program, in their appropriate
COMMON blocks, and are given as much space
as indicated by their individual DIMENSION/
type combinations.

Non-COMMON variables that do not appear
in EQUIVALENCE statements are assigned
storage such that all scalars appear first,
followed by all one- then two-dimensional
arrays, etc. For any given dimensionality,
variables of the same type appear together;
those requiring less storage precede those
requiring more. In this way, a maximum of
address-constant sharing is obtained in the
object program.

The relative relationships of storage
assignments of variables appearing in EQUI-
VALENCE statements is determined, and these
variables are assigned storage within the
appropriate COMMON block, or at the end of
the non-COMMON group, as required.

! ? |
H ! ¢]
© Symbol | | ~ i I
Tasle i ERF i [PRF
L L | 1
N 4 4 4
i i e
| Source :
i v £ $
rrogram | PHASE 1 >
) Y h §
[! | - T i ; | 1
| Symbol : 1l Stora'g.e | ') U Preset ‘ Sterage %Cross— !
Table I ! SPec:FI.ca- ‘ | PRF i Data | Specifica- | | Reference }
| tion List | | i ; | tion List | ; Table |
i i J | | | { | i i
i { | | — _Ak,_,J H { J i i
ol
1 1 i
/ / PHASE 2
4 Y
| : | : | ; |
| ; ; ; | Symbol | |
| Symbol ! ! : I ; : PRF |
1 Table ; ERF ! | PRF ‘ z Table ,‘ : i
L J]] L L J
V \ 1
v A i PHASE 3 |
]
o
i ! |
‘ l | g | Formal l | Formal
Symbol | oF | | Argument [i Symbal | PE | Argoment
1 | i Adcon | | Table | |
Table : l | | i | | Adcon
‘ | [List ; % ‘ | List
| ! ! | i | I is
{ } L ; ¢ i L L
7
4 y Y > PHASE 4
e e J Y
i | i
i Cross- i | Symbol | Cod
| Symbol Reference | Table I ooe
i Table | | File
| Table i
| I
\ i
A A PHASE 5
3 |
|
\) J
| T 1
! : i | Object
i Code | Preset ; OFM % Program
i File : | Data | | Docu- |
| i | ! | | mentation |
u | % i f ? j
Figure 3. Compiler Information Flow

Section 1:

Introduction

5

Variables that do not appear in COMMON
statements but appear in EQUIVALENCE state-
ments in conjunction with COMMON variables
are flagged as appearing in COMMON.

After a storage assignment is made, its
assignment (SLOC) within storage class
(STCL)} is recorded in the symbol table.
Non-COMMON variables are assigned storage
class 6, blank COMMON storage class 9, and
labeled COMMON storage class 10 to as high
as 127 in the order of first appearance of
the corresponding labeled blocks in the
source program.

In the OPM storage, classes 3 through 8
will be accumulated by Phase 5 and become
the module’s PSECT in the object program.
These classes include alphameric constants,
address constants, NAMELISTs and parameter
lists, non-COMMON variables, global (unre-
leasable) temporary storage, and local tem—
porary storage, in that order. The COMMON
blocks (storage classes greater than 8)
become individual control sections in the
OPM where the block name becomes the con-
trol section name. Such control sections
are combined with control sections of like
name from other modules, before execution
(during linkage editing or loading).

Information concerning the remaining
functions of Phase 2 is in Section 4.

PHASE 3

Phase 3 performs the global optimiza-
tions to be done in the code generated by
Phase 4 and establishes address coverage
for all quantities referred to from
storage.

Phase 3 determines which arithmetic
expressions can be computed only once and
then saved for later uses. It also deter-
mines the range of statements over which
expressions are not redefined by the
definition of one or more of their com-
ponents. If the occurrence of an expres-
sion in that range is contained in one or
more DO loops which are also entirely con-
tained in that range, Phase 3 determines
the outermost such loop outside which such
an expression may be computed, and moves
the expression to the front of that DO
loop. Only the evaluation process is
removed from the loop; any statement number
and/or store process is retained in its
original position. The moved expression is
liinked to a place reserved for that purpose
in the program-representation-file entries
corresponding to the beginnings of DO
loops.

In the statements

1 A = B+C
2 ¥ = A+B
3 A = A%¥2
4 Z = A+B
5 X = B#C

the occurrences of expression B+C in state-
ments 1 and 5 are determined to be common
because neither B nor C has an intervening
definition. The expression identification
corresponding to the plus operator will be
changed from "operator"™ to “common expres-
sion®™ (CSX). A CSX has the properties of
the original operator (e.g., here the plus
operator code is retained), with the addi-
tional property that it represents a
"named™ expression. The CSX item contains
a field reserved for the expression name
(this name is actually a monotonically
increased number), that is identical only
for identical expressions. In statements 2
and 4 above, the expression A+B is not a
CSX because of the intervening definition
of A in statement number 3. Both plus
operators retain their "operator™ identity;
neither becomes a "named" expression.

Consider the statements

Do1I1I=1, 10

A = B+C
Y = E+F
1 F = A

Because there are definitions of neither
B nor C within the DO loop, the expression
B+C is given a "name®, and the named ex-
pression is linked to the beginning of the
DO statement, so that Phase 4 generates the
expression once, outside the loop. The
occurrence of the expression inside the
loop is replaced by a "residue item" (see
ERF description in Appendix A) that has the
same "name" as the removed expression.
Note that expression E+F is neither named
nor removed because of the definition of F
in statement 1.

Phase 3 creates two new operators, both
arising only from subscripts. The first is
called a basesindex split operator or "?
operator™; its right operand is a residue
{computed outside a DO loop), and its left
operand is an expression that is local to
the DO loop. Phase 4 places one quantity
in a base register and the other in an
index register when generating a storage
reference to the subscripted gquantity.

The second operator is called the recur-
sive operator or "! operator®; its right
operand is the initial value of a subscript
(induction variable dependent) constituent
that is to be computed recursively over a
DO loop, and its left operand is the "step

expression®, a quantity to be added to the
recursive expression after each pass
through the loop. -(The induction variable
is the variable referenced in the DO state-
ment of the loop. In the DO statement
shown above, 1 is the induction variable.)

Phase 3 merges the ERF and PRF with some
modification to form the PF (see Appendix
A). This file is the primary output of
Phase 3.

Detailed informasion about the functions
of Phase 3 is in Section 5.

PHASE 4

Phase 4§ performs the code generation
function. Its input consists primarily of
the PF and symbol table, and its output is
the code file which represents, completed
machine instructions and additional editing
information.

Phase 4 performs a scan of the PF. Pro-
cessing is triggered by the various PF
items and by the expressions they may
reference. A set of tables is maintained
that reflects the contents of the various
general and floating registers at any time.
When the generation of an expression is
required, the register tables are searched,
and if any constituent operand of the ex-
pression is in a register, it is generally
used from that register, rather than from
storage. Partial results are stored in
temporary storage only when a register is
needed for some other purpose and there is
no better choice of register than the one
containing the partial result, or when the
partial result is a CSX that has later uses
and the operation about to be performed
will change the value of the register con-
taining the common expression.

Phase 4 is a collection of PF entry pro-
cessing routines, arithmetic generators

tailored to the various operators and ex-
pression types; and service routines to
maintain register storage, partial result
storage, and CSX storage, to select and
assign registers, to determine when
operands are no longer needed, to assign
and release temporary storage, etc. The
detailed description of Phase 4 (in Section
6) indicates the relationships among these
routines and provides a much more compre-
hensive description of the operation of
this phase.

PHASE 5

Phase 5 collects the information from
the various compiler-generated storage
classes and forms a code/numeric-constant-
sharable CSECT, a PSECT, and as many COMMON
CSECTs as there are declared COMMON blocks.
This information, and information (obtained
from the Symbol Table) making up the
optional ISD, constitutes the object pro-
gram module.

Optionally, Phase 5 also produces an
assembler-like listing of the object pro-
gram code obtained from the Code File, a
storage map, and a cross reference listing
indicating the various source-program iden-
tifiers and the lines in which they were
referenced or defined. The user's selec-
tion of these options is passed from LPC to
the Compiler Executive and thence through
the INTERCOM table to Phase 5.

Section 7 contains the detailed descrip-
tion of Phase 5.

Note: Routine descriptions in Sections 2
through 7 occasionally refer to registers
as "pP1", "P2", "P3", etc. Such register
notations are taken directly from the list-
ing, where they appear in EQU instructions
and other instructions.

Section 1: Introduction 7

SECTION 2: EXECUTIVE

INTRODUCTION

The compiler executive (Exec) contains
all routines in the compiler that either
provide an interface between the compiler
and the environment in which it resides or
provide a service needed by more than one
compiler phase (Chart AA). Functions per-
formed by the Exec routines fall logically
into the following categories:

1. Service external interfaces.
2. Prepare source statements.

3. Control the compiler phases and inter-
phase files.

4. Process compiler edit lines.

5. Provide compiler diagnostic informa-
tion.

6. Provide miscellaneous services.

This discussion of the Exec is divided
into seven sections: an initial section
entitled "General Information," followed by
sections dealing individually with the
above six categories.

GENERAL INFORMATION

This section contains gemeral informa-
tion of value to understanding the computer
executive. Topics discussed are:

1. Macro instruction usage.
2. Linkage conventions.
3. Register notation and conventions.
4. Storage map.
5. Brief routine description.
6. Use of the phase controller PSECT by
other Exec routines.
MACRO INSTRUCTION USAGE
The Exec routines, like all compiler
routines, make heavy use of macro instruc-
tions: both "user™ macro instructions
{such as CALL, SAVE, RETURN -- those
described in Assembler User Macro Instruc-
tions) and "system"™ macro instructions

(those used only by the exec). User macro
instructions are not discussed here. The

term macro instructions as used in this
discussion means "system macro
instruction.”

Appendix C lists a brief summary of all
exec macro instructions; the following
paragraphs group them by function.

1. Macro instructions concerned with the
compiler diagnostics features: CERTO,
CEKTG, CEKV3 and CEKVS.

2. Macro instructions written to provide
module PSECTs and DSECTs: CEKU7,
CEKT8, and CEKT9.

3. The CEKVU macro instruction contains
all VAM macros.

4., All uses of the GETMAIN and FREEMAIN
macro instructions are contained in
the macro instructions CEKVC and
CEKV9Y9, respectively.

5. The macro instruction CEKVA issues the
system macro instractions EBCDTIME and
REDTIM.

6. The CEKU9 macro instruction simplifies
the processing associated with output
of a message describing a source
statement error detected by any Exec
modules.

7. The macro instructions CEKTX, CEKV7,
and CEKV8 define all V-R con pairs and
issue the CSECT and PSECT lines, for
all Exec modules.

Use of all other Exec macro instructions
is obvious upon inspection of Appendix C
and the assembly listings.

LINKAGE CONVENTIONS

21l linkages by the compiler are Type I.
(See Appendix B, "TSS/360 Linkage Conven-
tions®). The linking mechanism is either
by means of the CALL, SAVE, and RETURN
macro instructions or by the INVOKE, STORE,
and RESUME macro instructions; there are no
hand-coded linkages. All exec routines,
linked to by other exec or compiler rou-
tines through a CALL macrec instruction, set
return codes in general register 15 before
returning. These codes are:

Code Description
0 Normal return.
4 If a phase suspects a system error,

it returns to the phase controller
with a code of 4. No phase current-
ly issues this return code.

8 The "Compiler cannot continue --
Abort" code. Table overflow is the
usual cause. The phase will return
to the phase controller with a
return code of 8, causing the phase
controller to make a "FORTRAN cannot
continue®™ return to LPC.

16 A compiler restart is to be executed
{see comment below). Programs
called by the phase controller are
to return with this code if, upon
calling an exec subroutine, a code
of 16 was returned by the
subroutine.

A return code of 12 is treated identi-
cally to a code of 8. Return code of 16 is
expected only during Phase 1 processing; in
all other places it is treated as a code of
8. A return code from a compiler module
greater than 16 is never expected, is not
tested for, and will produce unpredictable
results.

REGISTER NOTATION AND CONVENTIONS

The TSS/360 register notation standards
(see also Appendix B) describe a division
of registers into parameter registers (P1
through P6), wvolatile registers (V1 and
V2), nonvolatile registers (N1 through N5),
and linkage registers (L1 through L3).

This standard is fcollowed in all Exec
modules, with the minor exception that
absolute register notation is used where it
should be made clear that other registers
may not be used. Examples are registers 0
and 1 in the ED instruction and registers
loaded by the system macro instructions and
macro processors.

Use of all registers is summarized in
the prologue contained at the beginning of
each assembly listing.

The CEKSZ macro instruction issues all
EQUs for general and floating registers.

STORAGE MAP

Table 1 shows the approximate size of
each control section in the Exec and the
GETMAIN areas used for interphase files.
The manner in which the compiler modules
are link-edited will, of course, dictate
the order in which modules are loaded and
the storage required.

BRIEF ROUTINE DESCRIPTION

The routines in the Executive are
described briefly below. The description
includes the documentation module name
(five characters, in parentheses, with the
letters CEKT as the first four characters),
preceded by the name generally used
throughout the Executive documentation.

The type of linkage to the routine is
described, and a note is given describing
conditions if the routine is an assembly
module (is assembled separately from all
other modules), as well as a documentation
module. (A documentation module may or may
not represent a separate assembly.)

1. Phase Controller -- PHC (CEKTA, docu-
mentation and assembly module).

The Phase Controller is a Type I link-
age subroutine and is the interface
between the (LPC) and the five compil-
er phases. All LPC calls enter PHC,
and the phases may be called only by
PHC. PHC initializes the work area
and communication mcdule as required
for each phase, furnishing addresses
of tables, pointers in these tables,
etc. PHC prepares all parameters for
return from the LPC to FORTRAN calls.

PHC does not call the LPC entries GET-
LINE or PUTDIAG, nor does it operate
on the list data set in any way.

These operations are all performed by
the master input/output module (see

below).

2. Get Next Source Statement -- GNSS
(CEKTC, documentation and assembly
module).

This Type I linkage subroutine obtains
complete source statements for Phase 1
of the compiler. The source state-
ments are composed of lines furnished
GNSS by the LPC GETLINE entry. Facil-
ity is included for conversational
modification of statements already
received. GNSS uses restricted link-
ages internally.

3. Process Terminal Modification -- MOD
(CEKTD, documentation and assembly
module).

MOD is a Type I linkage subroutine
whose purpose is to assist GNSS in the
formation of source statements when
conversational corrections have been
made to the source statement. It
accomplishes this by analyzing the
relation between the line number of a
line to be corrected (or inserted) and
the line numbers of statements already
received by the compiler.

Section 2: Executive 9

Table

[e e e

1. Executive Storage Map

Module

Code

PSECT

Phase Controller (CEKTA),
(PSECT for CEKTA is the
Work Area and Communica-
tion Module, CEKTB)

(16,000 bytes)

Save Area
(76 bytes)

Inter-Exec
Communication

and work area and
Intercom (13,000 bytes)

Symbol Table#*
(20 pages -- 81,920 bytes)

Work Area A*
(60 pages)

Work Area B#*
(60 pages)

Work Area C*, %%
(32 pages)

Get-Next-Source Statement
(CERKTC)

(1600 bytes)

Save Area, misc.
(128 bytes)

Process Terminal Modifica-
tions (CEKTD)

(2048 bytes)

Save Area, misc.

(128 bytes)

Receive Diagnostic Message
(CEKTE)

{300 bytes)

Save Area, miscC.
(128 bytes)

Constant Filers (CEKTF)

(4096 bytes)

Save Area, misc.
(128 bytes)

]
!
}
+
|
|
|
|
i
+
|
|
LR
L}
|
|
1
r
|
]
4
L]
|
|
]
T
|
|
iR
1
|
|
i
L]
|
|
4
+
]
|
L
1
]
I
i
13
|
|
4
1
|
i

Master Input/Output (CEKTH)

(4096 bytes)

e e e e s e i s e e e et s i o i e s s st i e e e o s, S b e i e e St e <t o i

(600 bytes)

,.-_.—w-——r-.—...-—-—-.V.——-——q;——-——-q-—-.-—qp-—-—qp—.—-.q,_.—-.—-y-—m.r-—»—-qr-—»——T—-——.—_._.,P-.

* These areas are obtained using GETMAIN.

*% See Table 4 for the allocation of Work Area C for the Output Module.

Mo s s suline, s iy e e it e e et e . bt v e kit s, s e ot e bt . s et . s it st e, e S s b . . o s, by st

=
s

10

Receive Diagnostic Message —— RDM
(CEKTE, documentation and assembly
module).

Any module in the compiler (including
Exec modules) that adds a diagnostic
message to the user's output does so
through RDM. The message may go to
the list data set, the conversational
console, or both. The LPC entry PUT-
DIAG is used for console messages.

Constant Filers -- CONFIL (CEKTF,
documentation and assembly module).

Several of the compiler phases must
add information concerning numeric,
address, and label constants to the
symbol table. The filing of these
constants is performed for the phases
by CONFIL, through a Type I linkage.
CONFIL also includes an entry which

creates numbers used to mark points in
the code for the phases and then files
these numbers as label constants.

Master Input/Output -- MIO (CEKTH,
documentation and assembly module).

All input/output operations are con-
trolled by MIO. These operations

include:

a. Calling GETLINE for source lines

b. Calling PUTDIAG for diagnostic
message output to the conversa-
tional console

c. Opening, closing, and adding

source and diagnostic messages to
the list data set

10.

11.

12.

MIO contains six Type I linkage
entries and uses restricted linkages
internally.

Analyze Console Source Line -- ANALYZ
(CEKTI, documentation module).

This restricted linkage subroutine is
invoked by GNSS to determine where the
statement number and first text
character are in a conscle line, and
how many text characters are included
in the line. ANALYZ is assembled into
GNSS.

Inspect a Console Character —- INSCON
(CERTJ, documentation mcdule).

This restricted linkage subroutine is
invoked by ANALYZ to determine if a
console character is a tab, numeric,
blank, or other character. INSCON is
assembled into GNSS.

Move a Line to the List Data Set --
LDMOVE {(CEKRTK, documentation module).

LDMOVE is a restricted liinkage subrou-
tine, invoked by MIO to move a line
from a buffer to the list data set.
LDMOVE counts lines in the current
page and, when required, restores the
page and adds a page heading. LDMOVE
is assembled into MIO.

Build the List Data Set Buffer --
BUILD (CEKTL, documentation module).

BUILD is a restricted linkage subrou-
tine, invoked by MIO to move a line to
either a list data set buffer or the
list data set. The buffer will be
emptied when its capacity is exceeded,
or when information contained will not
be replaced due to conversational
corrections. BUILD is assembled into
MIO.

Flush the List Data Set Buffer --
FLUSH (CEKTM, documentation module).

This restricted linkage subroutine is
invoked by MIO, to move all lines in a
list data set buffer to the list data
set. FLUSH is also invoked by GNSS,
through the BFLUSH entry to MIO.

FLUSH is assembled into MIO.

Compiler Dump -- COMDUMP {(CEKTQ, docu-
mentation and assembly module).

This Type I linkage module is called
by the Phase Controller when a file is
to be dumped in hexadecimal. Such
dumps are produced only when the com-
piler is in the diagnostic mode.

13. Dump Line Preparation and Output --
LINDUMP (CEKTS, documentation and
assembly module).

LINDUMP is called in diagnostic-mode
processing only, using a Type I link-
age. LINDUMP prepares one line of
information and adds it to the list
data set.

USE OF THE PHASE CONTROLLER PSECT (EXCOM)
BY OTHER EXEC ROUTINES

The first two pages of the Phase Con-
troller PSECT contain information required
by other routines in the Exec. A defini-
tion of this PSECT is supplied to all Exec
routines by including a DSECT for the Phase
Controller PSECT. Cover for this DSECT is
obtained by loading the address of the
Phase Controller PSECT from a word in
intercom (Exec modules are always passed
the location of intercom when called). The
term 'excom' (Exec communication region) is
used by Exec routines to refer to the Phase
Controller's PSECT.

SERVICE EXTERNAL INTERFACE

The compiler's external interfaces are:

1. Entrances from Language Processor Con-
trol (LPC)

2. Calls on LPC to get a source line or
produce a diagnostic line

3. Macro instructions to get and free
main storage

4. Macro instructions to operate on a VAM
data set

5. Macro instructions to obtain the time
at which the compilation is beginning

Figure 4 shows the above interfaces.
For each interface, the Exec routine
involved is identified. Note that all
calls on LPC are centralized in the Master
Input/Output (MIO) routine as are all calls
on VAM (except one, the call by LINDUMP,
which is issued only if the compiler is in
the diagnostic mode, as discussed in the
section "Compiler Diagnostic Information").

Routines concerned with external inter-
faces are:

1. Phase Controller (PHC,CEKTA).
2. Master Input/Output (MIO,CEKTH).

3. Dump Line Preparation and Output
(LINDUMP, CEKTS).

Section 2: Executive 11

i LPC VAM PRCCESSING PROGRAMS

! = f I

|

| G

v CETLINE PUTDIAG OPEN and CLOSE 5 PUT

| {Entry Point (Entry Point is SETL M |

i in CFADBI) CFADCT) acros Macro Macro

Q &) 3 4 4
jlnitial|___ §Continue] | (Eaﬂy— _
{Call Calt |End Call
% s)\
PHCINIT | PHCCONT | PHCEE The The The The (T,:;Mmd PD;m L,”;
(Entry (Entry (Entry LINEIN | DIAGOUT | LDOPEN | LDCLOSE | ‘(708 e
Point is Point is Point is (CEKTHC) | (CEKTHD) | {CEKTHA) | (CEKTHB) | | 0mue N
CEKTAA]) CEKTAB) CEKTAQ) Entry to Entry to Entry to Entry to Enf.ry ‘o (LINTDTJMP !
MIO MIO MIO MIO MO ekt |
Phase Controiler (PHC, CEKTAY | Master inpit/Ourpur Module (MIQ, CEKTH)
Y 4 Y ¥
GETMAIN | FREEMAIN | EBCDTIME REDTIM
Macro Macro Macro Macro
Macro Processing Programs, Excluding VAM Macros

Figure 4. Compiler Interfaces

Details concerning activities of the
Executive routines that use and prepare
information passed across the interfaces
are given under "Routine Descriptions,” in
this section.

SQURCE STATEMENT PREPARATION

The purpose of the routines described in
this section is to prepare complete FORTRAN
source statements for processing by Phase 1
of the compiler. This preparation is
accomplished by obtaining lines through the
services of the LPC entry GETLINE, combin-
ing these lines as appropriate (continua-
tion lines may exist), and informing Phase
1 of the location of a complete source
statement, and the statement label (if
any). If the compiler is in conversational
mode, the terminal user may request that
changes be made to a line (or lines) pre-
viously sent to the compiler. In such an
event, the Process Terminal Modifications
routine (MOD) determines if the correction
was such that the entire program must be
recompiled, or if the preceding or current
statement is to be ignored or modified and

12

compilation continued. Two routines par-
ticipate in the preparation of source state
ments: Get Next Source Statement (GNSS,
CEKTC) and Process Terminal Modification
Lines (MOD,CEKTD). These routines have no
other functions.

Figure 5 illustrates the general rela-
tionship between the source-statement-
preparation routines and other routines in
the compiler.

PHASE AND INTERPHASE FILE CONTROLLER:
COMPILER WORK AREAS AND INTERCOM

THE

The Phase Controller (PHC,CEKTA) per-
forms the functions of calling the five
compiler phases. Associated with each call
on a phase are a number of miscellaneous
operations concerning the files used by the
phases as their medium of information
exchange; these operations are also per-
formed by PHC. The phase control operation
is a simple one and consists principally of
calling each phase in its turn, checking
the return code to see if the following

Compiler
Phase 1

|
L

-~ GNSS

| Reauest for o |

i Singie Line

LINEIN
{ CEKTHC
Entry to

MIO
— | {
I

il
iRequest fora |
iSingIe Line | -

| GETLINE
{ CFADBI)
Entry to LPC

4

Control
Passes Back
to GNSS

/ L\\\
e Any S Yes

- Conversational ™. MOD

. Corractions ? "
™
-

No

e ~.

" Obtained No
Complete Source 1

" st.2
.

Return to
_ Phose !)

Source-Statement-Preparation
Modules

Figure 5.

phase should be called, and returning pa-
rameters to LPC following the calls on
Phases 2 and 5.

Figure 6 summarizes the order and condi-
tions of calls on the phases and shows the
GETMAIN and FREEMAIN activities. In Figure
6 and in other figures below the abbrevia-

tions for interphase files are used. These

abbreviations are:

CF Code file

CRL Cross reference list

EF{(or ERF) Expression (representation)
file

ENL External name list

ISD Internal symbol dictionary

oPM Output module (text)

PF Program file

PMD Program module dictionary
PRF Program representation file
SPL Storage specification list

Work areas See below

Note that all file descriptions given
below are for the purpose of summarizing
the obtaining, use, and freeing of storage.
For detailed descriptions of the contents
of all fileu, see Appendix A.

The term "work area" is used to refer to
an area in virtual storage that is logical-
ly reused; that is, one phase uses the
area, and PHC then makes an area of the
same size available to the next phase, etc.
Tables in this work area are cleared out
when they are no longer needed. The number
of pages obtained for each work area is
determined by a constant assembled into the
PHC PSECT; this number was also given in
the storage map description.

Tables 2, 3, and 4 give miscellaneous
information concerning the three work
areas. Figure 7 shows the symbol table
storage layout.

Probably the most important interphase
file in the compiler is the file referred
to as intercom. A detailed description of
the contents of intercom is given in Appen-
dix A; general information on use of this
area follows. The intercom area contains
512 bytes. Aall information required by the
Executive and any phase, or to be passed
between phases (excluding large lists,
files, etc.), is passed by means cf the
intercom area. Intercom is not obtained by
a GETMAIN, but is assembled into the phase
controller PSECT. The sequence of intercom
use is as follows:

1. The phase controller initializes
intercom as required before each call
on a phase and makes the location of
intercom known to the phase via the
calling sequence.

2. The phases move the 512 bytes to
intercom from the phase controller to
an area within the phase. The phases
modify this area during their opera-
tion. If a phase calls an executive
routine, it furnishes the executive
routine with the location (in the
phase) of intercom, so that intercom
may be updated by the executive rou-
tine called.

3. Before returning to the phase con-
troller, the phase moves the up-to-
date intercom from the area within the
phase back to its original area in the
phase controller.

Section 2: Executive 13

I r

m -
e e e e — e LPC nitial Call
L _
. T
N | Get Main
- Conversoﬁonol\\y% N |
Mode 2 - | forMIO
e | Buffers
Blo
SR A
r Get Main far ;
i Work Area 8
| Get Main for ’
i Work Area A |
S S
|
i !
i Get Main for !
| Symbol Table
Y
Get Main for !)

Work Area C

Get Main for
the Phases'
T Internal Files

]

Caoll Phase 1
I SE
Coll Phose 2
.
(Return
N

Figure 6.

14

— = ~[LPC Conti

Py
- -~

/ <

S X-Ref 7

e

No

nue Call]

Add Size of
Work Area A to

~BLOCK DATA ™~ Yes

“~.__Subprogram? _-
. e

No

i _,W
Clear SPL

-

!
|
|
w

(Work Area B)

SIS, SSUDE

initialize Format
Argument ADCOMN
Information for |

Phase 3

4

Call Phase 3

Clear PRF |
and EF |
{Work Area A) !

\

R |
Calt Phose 4

\
£

(=)

Pages Available
for Object
| Module Text

N V

~ N
e
P
s e

T Symbol e
———D(Tabh——"\

Clear PF

_ Requested ? -~
.

"

No

L

j

‘ Add Pages Normally
Allocated to ISD to

Text

Summary of Phase and Interphase File Control Activities

(Work Area 8)

Call Phase 5

e

Free All Main Except
that Port of the

Used oy Phase 3

Object Mocuie Area |

{

Page of GY28-20139-1, Issued September 30, 1971 by TNL GN28-3190

Table 2. Work Area A Storage Layout

Table 4. Work Area C Storage Layout

Nom]e Phase | i Phase 2 | Phase 3 Phase 4 | Phase 5 Name Phase 1 Phase 2 Phase 3 Phase 4 | Phase 5
,3 . -
TABLO EF6 EF EF CF ! CF 1,5 |Preset Data | Preset Dara| Preset Doto |Preset DatalPreset Data
(Base ond | i 1 T8CLO (?cse‘cnd (Not Used)| (Not Used} {{ Not ’Used) !
2-byte top in op
7 (Base, Top ' Intercom)
{ntercom) ! and Upper |
| Limit in TBCM v Y
intercom}
(Base ‘and 2 Formal
2-byte top in | { Not wsed TBCM Argument
lntercom)4'5 by Phase 2) (Aédccns 4
ase an
T8AHIZ PRF PRF PRF \ Top in
Intercom)
NOTES: TBCM3 1
1. TBALO is the CF Base and the initial CF Top. See Intercom TECFB, TECFT. 4 (Base and ? + T 3 f
2. TBAHI is the CF Upper Limit. See Intercom TECFU. rech 'll'o'p " \ L
ntercom) i i
3. Direction of i i i l i
of increasing addresses is from the top to the bottom of the table. (Used) | (N 4 ¢ Used)
- Not Used ot Use Not Use
4. The EF and PRF bases are identical, and are located approximately midway g;::ence
between TBALO and TBAHI. See Intercom TEEF8, TEPRFT, TEEFT, TEPRFT.
i ') Listd/ 6 CRL CRL CRL CRL
5. The oddress of the first word filed in the PRF is in TEWAAH in Intercom. TBCHI
The EF is also referred to as the ERF.
NOTES:

Table 3. Work Area B Stcrage Layout

1. TBCLO is the Preset Data Base ond (initially) Top. See Intercom
TEPSDB, TEPSDT.
2. TBCHI is the CRL Bose ond (initially) Top. See Intercom TECRLB, TECRLT,
3. The Forma! Argument Adcon Base and Top are set by PHC prior to entering
Phase 3. See Intercom TEFAAB, TEFAAT.
4. This area is not required if the cross-reference-list option is not chosen
by the problem programmer.
5. Direction of increasing addresses is from the top to the bottom of the table.

6. Must stert on o double-word boundary .

Name Phase 1 Phase 2 Phase 3 | Phase 4 Phase 5

T8BLO | Storage Storage ? PF External
Soecification | Specification Name List
List (Base, List (Base and Top
Top and in Intercom)
Limit in

788M1 | Intercom)

TBBMZ PF PMD
(Base and (Base and
2-byte Top Top in
and Upper Intercom}

TBBMS Limit 3,9

4 linintercom)i -
TBBM? —T OPM
1 (Base and
| Top in
T88M5 i Intercom)
—_— e L
TBBMS ; 15D
; (Base and
TBBHI ! Top in
i Intercom}
Y 4
NOTES:

1.

O N W

~0

TBBLO is the SPL and PMD Base. It is also the initial SPL and PMD Top.
See Intercom TESPLB, TEPMDB, TESPLT.

TBBHI is the SPL ond ISD Upper Limit. See Intercom TESPLU.

Computed by PHC.

If required, PHC will GETMAIN rather than use Work Area B.

Must Start on a Page Boundary.

Not needed if no ISD is requested by the problem programmer.

Direction of increasing addresses is from the top to the bottom of the table.

The allocation of Wark Area B to the four Phase 5 Areas is:

PMD -- 12 pages ENL -~ 2 pages

OPM ~- 80 pages ISD =~ 20 pages

The PF top is initially set to TBBLO. The PF upper {imit is TBBHI.

Symbolic Name Description

Symbol Tables entries for the 49
TBSIF Intrinsic Functions (assembled in)

Symbol Table Low -- first item
filled will have the first word of
its descriptive part put here

TBSLO

Descriptive Part Entries, next avail-
able word referenced with TEDES T!

D, FLAGS,ETC Direction of :
' fncreas- |Descriptive Name
SLOC, STCL ing Part Part
Addresses Filing Filing
VALUE l l
LINK, DPP T

Name Part entries, last used word
referenced with TENAMTZ

Symbol Table High -- first item
TBSHI filed will have the first word of its
name part put here

1 The oddress of the fist "1D, FLAGS, ETC" word filed is in TEDESB in Intercom.
2 The address of the first "LINK/DPP" word filed is in TENAMB in Intercom.

Figure 7. Symbol Table Storage Layout

Section 2: Executive 15

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

{ Enter
This Poth is Followed c.;ﬂ

i Messoges Processed F——=~==1 Additicn of o sourca Line
an This Porh i ¥ L the Output Listing

H Phase 1

GNSS to Form
o Source
y Statement

| All Diagrastic

Curpat

Diagnestic

e —_—
{ borer “\/ (e _\) Conversationai Mode
A SR
\d [1
— Get - Mex: -
i tose Controller f ource Statement l
| Routine | Routire -
| | Compiler Line Just Comritred
I CEKTA) {GNS EKT |
ia’?HC, CEKTA} % GNSS, CEKTC) i Shase 5 Will Be the New
Tentative Line. Con-
versational Corrections
S { May Have Caused the
- Yy - N .
. ! - [All Output Lines Other | Previous Line Pased 1o
| Outpot ! - e e T . Phase | to Be er
Jestic [t Line ~1 Thon Diagnostic Messages; F N i
" 1 ! ver Entry { Processed on This Path Forgetten or Lommitted
; | Y L - for Compilation. Test
| I o mic i 1o See Which.
H {OLR, CEKTHE) L .
[
) - Forget
1 BUILD-- Forget or 1
Restricted Commit to Compit
pitation
l Linkage Entry in Y~
| 810, Builds me
i Cutput Line
L —

P — Flush Qutput |
{ Return Line Entry to !

N o e MIC (BFLUSH, |
CEKTHF) J

Lonversational Mode

Line using the

7 Macro

4
Flush
Restricted
Add Line to a Linkage Entry
Past No MIO Buffer, for to MIC
" Phase I Yet Qutputting When
. Line is Committed
. 9(/-* to Compilation .
] _ Yes \
Will Invoke
' LDMOVE 1o Move
T LOMOVE — Lines in Previous
§ Restricted SOU(CC Sratement
} Linkage Entry to 'rovaiO Buffer
5 MIO, Output the to List Data Set.
|
|
|

Figure 8. Process Compiler Edit Line Function

i6

Page of GY28-2019-1,

COMPILER EDIT LINES

The compiler produces two types of out-
put: edited lines, to be transmitted to
the terminal, list data set, or both; and
the object module, constituting the com-
piled program ready for loading and execu-
tion. Output of the first type is prepared
in the following places in the compiler:
RDM (diagnostic messages from phases), PHC
(heading lines and warning diagnostics
associated with diagnostic mode process-
ing), GNSS (SOURCE™ I'ines and associated
diagnostic messages), CONFIL (file overflow
diagnostics), and OLR (Phase 5 edit lines).
Figure 8, "Process Compiler Edit Line Func-
tion" describes the path of compiler edit
lines in more detail. Output of the second
type is prepared completely by the compiler
Phase 5 and is passed to LPC at the phase
controller's return to the LPC continue
calli. Preparation of this output is
described in Section 7 "Phase 5%; the man-
ner of returning the information to LPC was
described earlier in "Phase and Interphase
File Controller.”

The use of the MIO buffers deserves spe-
cial mention. If the compilation is con-
versational, the phase controller (using
GETMAIN) obtains two pages for the MIO
buffers. These buffers will contain the
source lines in the source statement cur-
rently being formed by GNSS and in the
statement previously passed to Phase 1, but
not yet committed to compilation. When a
statement is committed to compilation, the
associated source lines are added to the
user's listing (if any). Following return
from Phase 1 to the phase controller, these
two pages are released.

COMPILER DIAGNOSTIC INFORMATION

The compiler contains built-in facili-
ties for diagnosing compilation problems.
These facilities consist principally of the
ability to request hexadecimal dumps of
interphase files and phase PSECTs following
return from each phase. These dumps may
not be directed to the terminal; they are
issued to the list data set by use of a PUT
macro. If the user has requested no edit
options, there will be no list data set.

In this case the diagnostic mode may not be

Issued September 30, 1971 by TNL GN28-3190

entered. If the user attempts to do so the
message "DIAGNOSTIC MODE NOT ALLOWED AS NO
EDIT OPTIONS SELECTED" will be printed at
the terminal.

It is also possible to alter the size of
the main storage obtained prior to compila-
tion, in order to measure the effect of
large, unused pages of virtual storage, and
to exercise the file-overflow tests of the
compiler. These features are all contained
within macros in the Exec routines and,
thus, may be removed from the compiler by
modification of these macro instructions.
(See the General Information section for a
description of all macros.) The diagnostic
features do not affect the reenterable
characteristic of the compiler. It is
nearly impossible for a user to inadver-
tently request diagnostic output from the
compiler, as information not normally
available to the user must be known to pro-
duce such output. If the diagnostic mode
is entered, the warning message "COMPILER
IS IN THE DIAGNOSTIC MODE" will be produced
at the terminal (if in conversation) and on
the list data set. Figure 9 describes the
diagnostic features.

The procedure for requesting diagnostic
information is:
1. Load the Phase Controller {(PHC),
new PSECT for PHC, with the PCS
statement:

and a

LOAD CEKTAR
2. Set the PHC PSECT byte TEDIAG to 'Y’
(diagnostic mode allowed) with the PCS
statement:
1 SET CERKTAR. (X'11C5*') = 'Y’
3. The first source line supplied to the
compiler must be:

Col. Col. Col.
1 -6 7 17 - end
(blank) DIAGNOSTIC Anything

4. The two lines following the DIAGNOSTIC
line contain dump and other request
information. The content of the second
and third lines is described below.

Section 2: Executive 17

Page of GY28-2019-1, Issued September 30, 1971 by TNL GN28-3190

Diagnostic Line 2:

be terminated.

|
I
|
|
|
|
|
|
|
|
|
|
|
]

|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
1
|
|
|
|
I
|

r T —— e e e o e e e
iColumn; Name * | Description
4

————e- ———=—t - -~ -- S — —
11 |{TDPHAZ (1) |If 0, compilation will terminate prior to calling Phase 1.2

| !
|2 |TDPHAZ (2) {If 0, compilation will terminate prior to calling Phase 2.2

l |
|3 |TDPHAZ (3) [If O, compilation will terminate prior to calling Phase 3.2
|]
|4 |TDPHAZ (4) |If 0, compilation will terminate prior to calling Phase 4.2
! |
|5 |TDPHAZ (5) |{If 0, compilation will terminate prior to calling Phase 5.2
| | |
{10 | TDLOG |If Y, a message will be written when each phase is called, and when
| | | return is made from each phase.
| |]
|31-40 |TDBUG1 |Requests file edits upon return from a Phase, as follows (the numbers
{ { {1 through 10 correspond to columns 31-40 for Phase 1, 41-50 for Phase
| | |2, etc).
| | !
| | | No. Description
| | i1 If Y, edit Intercom; edit the EF and PRF, after Phases 1
| | | through 3; the CF after Phase 4 and 5.
| | I

| i 12 If Y, edit the Symbol Table.
| |]
| { i3 If ¥, edit Storage Class Table.
| | |

| | 14 If Y, edit the phase's PSECT and the contents of the internal
| | | file used by the phase (Phase 5 does not use this file).
| | | If blank or 0 produce no PSECT edit. If X, edit the
} } | (3 pages) PHC PSECT.
I I |

| i 15 Edit the SPL and PF in Phases 1 through 4, the PMD, OPM, ENL
| | | and ISD if in Phase 5.
|] |
i | |6 Edit the Preset Data, Formal Argument Adcons, and the Cross

| | i Reference List.
| I |

{ I |7 If Y, do not give file edits for RC = 0 return from each phase
| { | (will only give edits if RC#0 or an unexpected interruption

|] i occurs).
| { |

| | |8-10 Not used.
| | |

| | |
| | |
{41-50 | |Same as 31-40, but inspected after return from Phase 2.
| | I
j51-60 | jsame as 31-40, but inspected after return from Phase 3.

I |]

|61-70 | }Same as 31-40, but inspected after return from Phase 4.

| | |

{71-80 | |Same as 31-40, but inspected after return from Phase 5.

. e e o e e o e e 8 8 2 2 2 2 2 o e e
l1. Label of field in PHC PSECT in which the wvalue punch in the corresponding columns
{ is stored.

{2. If the column is blank or any character other than 0 (zero), compilation will not
|

L

a
1
1
!

18

Diagnostic Line 3: Allows the user to al-
ter the number of lines to be obtained by
PHC in its GETMAINs. The relation between
columns in line 3 and the files for which
main storage is obtained is given pelow.
If the four columns associated with a file
are blank, the number of pages obtained
will be the number assembled into the PHC
PSECT.

St B T e 1
] | PHC PSEC l
| Column] Name | File i
b R dom oo 1
15-18	TDAPAG	Pages in Work Area A
	{	
19-22	TDBPAG	Pages in Wdork Area B
{		
23-26	TDCPAG	Pages in Work Area C
! I		
27-30	TDPPAG	Pages in PMD i
I		
31-34	TDOPAG	Pages in OPM
35-38	TDEPAG	Pages in ENL
{ I		
39-42	TDIPAG	Pages in I5D
!		
43-46	TDMIOP	Pages in M10 Buffers
I !		
47-50	TDSYMP	Pages in Symbol Tablej
L —_—) I e e 4

Note that, following the processing of
the three diagnostic information lines, the
source lines are read as in a normal
compilation.

Figure 10 summarizes the determination
of diagnostic mode and the initialization
performed if in this mode. Figqure 11 sum-
marizes the processing performed at each
phase call. Figure 12 shows compiler
action if in the diagnostic mode and an
unexpected interruption occurs.

MISCELLANEQOUS

The miscellaneous modules are those used
by any routine in the compiler that causes
a diagnostic message to be added to the
user's terminal and/or listing output,
files information concerning a numeric,
label, or address constant in the symbol
table.

and

The Receive Diagnostic Message (RDM,
CEKTE) routine is passed information
describing a diagnostic message to be pro-
duced. RDM will send this message to the
terminal if the user is in conversational
mode and will add the message to the user's
listing if he has regquested any list out-
put. Figure 8 shows the general relation-
ship between RDM and other modules in the
compiler.

Ready to Call
a Compiler
Phase |

Phase On ?

Output a
Message
Saying the
Phase Was

Called

S
\\
Logging the \\\\\\\PJO

I Call the

Phase

Logging the
Phase Off ?

I

| the Phase Returned, qnd
% Giving the Return Code

Output a Message Saying

o

Any

File Edits

Requested
?

No

Yes
4
Produce The
Edits
‘3 Continve w?fh_l___ <
[Processing | y
Exit)
N

Figure 9.

Section 2:

Compiler Diagnostic Features

Executive

19

Enter

Y

the First
Source Line

Set TDBUGA to
0, to Note Not
in Diagnostic

! Mode

Obtain and Edit

f

_ | that Interrupts

Line ™
Just Read
Diagnostic Line

1

End of Diognostic
Mode Initiation

f

Figure 10.

The Constant Filers (CONFIL,

\\ Not in
Diagnostic
Mode

T will Send Control

' {ssue Macros Such 3

itatASOO
]

T i
Set TDBUGA to |
i. Note Now

i in Diagnostic

Mode .

|

T oM

Qutput “In
Diagnostic Mode"
Message

|

Read and Edit
Diagnostic
Line 1

/

Move Columns ®
from This Line to

the PHC PSECT

Y

LINEIN

Read the First
Source Line to
Be Compiled.

L

RE—

C e)

j

Read ond Edit
Diagnostic

.
Line 2

¥

Check Fields of 4
Columns Each Be-
ginning in Col. 15,
If the Fields Are
Non-Blank, Con-
vert Them to Binary
and Move to the
PHC PSECT.

Testing for Diagnostic Input
and Processing Diagnostic

Information Lines

CEKTF) rou-

tine is called when information concerning
a oonstant is to be filed in the symbol
table for use by a later compiler phase.

20

ROUTINE DESCRIPTIONS

Exec routines bear mnemonic titles as
well as coded labels. The S-character
coded labels begin with the letters CEKT;
the fifth letter identifies a specific
module. Various entry points to a routine
are identified by a sixth letter added to
the coded label; for example, the coded
label for the Master Input/Output routine
is CEKTH, and there are entry points CEK-
THA, CEKTHEB, etc.

There are no hardware configuration
requirements for any of the Exec routines.
All these routines are reenterable, nonres-
ident, nonprivileged, and closed.

CEKTA -- Phase Controller (PHC)

The Phase Controller is the interface
between the outside world and the compiler
phases. It receives the LPC to FORTRAN
initial, continue, and early-end calls,
prepares for the compiling run, calls the
phases as subroutines, and returns to LPC
when compilation is terminated (successful-
ly or unsuccessfully). See Chart AB.

ENTRIES: The Phase Controller has three
external entry points:

LPC to FORTRAN Initial
(ENTRY name is CEKTA3a)

Register 1 contains the address of the
parameter list.

Register 13 contains the address of
the LPC save area to be used by
FORTRAN.

Register 14 contains the return
address.

Register 15 contains the V-type Adcon
for the FORTRAN initial entry initial-
ization routine (i.e., the entry point
address).

{Symbol] CALL FORTRAN initial entry-symbol
(15)

{, {module name - addr,
batch/conversational
indicator - addr, F option
table - addr,

list data set

DCB - addr)l

Phase |

Set TDCACT

No to | to Mark
TDPHAZ2(1) the Phase fo

AN
1S Re-02 >

8e Called . /
~.
Yes N
No
= TDSTOP
Skip t+) Invoke to Give
Caﬁ o:e </RC: 16 ™ Diagnostic | Edits and
This Phase \\\\Resrcrt) e Mode 2 Terminate
N2 Compilation
No
Y]
(Exit) TDTIMN(TA7Z 10! //—::rﬁj
Invoke to N
Log the
Phase On
Inspect
> Column 7 of
y Phase 10
Columns
Call Phase |
Save Return
Code in
No
. Toomex_ |
i Give Any >
iFile Edits
| Regquested
y
TOTIME(TA720)]
Continue
Invoke to With
Log the Processing
Phase Off
- y
A Exit)
Restore
Return
Code (RC)

83)
N

Figure 11. Processing Diagnostic Information Following Return From Each Phase

Section 2: Executive 21

TAB00

{ Enter i
. /

,,,,, i

rOutpuf a Message
i Giving The Type |
} of Interrupt

‘ That Occurred,

1‘ Where, and Other‘;

[Misc Information |

| TDDMPX

' as Directed by
:The 10 Columns
i"or The Last
‘{P‘hcse Cotled

Terminate
Compilation

|
|
|
|

L Exit)
Figure 12. Processing of Unexpected Inter-
ruptions During Compilation

FORTRAN Initial Entry
Entry point name for FORTRAN initial
entry.

List Data Set Name
Specifies the address of the module
name.

Batch/Conversational Indicator
Specifies the address of a l-byte
field which contains 00000000 (for
batch) or 00000001 (for conversa-
tional).

F Option Table
Specifies the address of an 8-byte
option table, where each byte may be
Y, N, or other. The default chosen by
FORTRAN is shown in parentheses:

byte 1 ISD option (produce) (N)

byte 2 source listing option (Y)

byte 3 object listing cption (N)

byte 4 cross reference listing
option (N)

byte 5 symbol table edit option (N)

byte 6 storage map option (N)

byte 7 BCD option (N)

byte 8 public CSECT attribute (N)

byte 9 List Data Set option (N)

List Data Set DCB
Specifies the address of the data con-
trol block for the list data set.

22

LPC _to FORTRAN Continue
(ENTRY name is CEKTAB)

{Symbol]l CALL FORTRAN continue entry -
symbol
(15)

[, (list data set exists
indicator - addr,

length of PMD - addr, PMD -
addr, length of TXT - addr,
TXT - addr, length of ISD -
addr, ISD -~ addr, external
name list - addr)]

FORTRAN Continue Entry
Entry point name for FORTRAN continue
entry.

List Data Set Exists Indicator
Specifies the address of a 1-byte
field which will contain 00000000 (for
no list exists) or 00000001 (for 1list
exists) when FORTRAN returns to LPC
normally.

Length of PMD
Specifies the address of a pointer to
a l-word field that contains a binary
number when FORTRAN returns to LPC
normally. This will be a count of the
number of bytes in the PMD which FOR-
TRAN is giving to LPC.

PMD
Specifies the address of a pointer to
the area which will contain the PMD
when FORTRAN returns to LPC normally.

Length of TXT
Specifies the address of a pointer to
a l-word field that will contain a
binary number when FORTRAN returns to
LPC normally. This will be a count of
the number of bytes in the TXT which
FORTRAN is passing to LPC.

TXT
Specifies the address of a pointer to
the area which will contain the TXT
when FORTRAN returns to LPC normally.

Length of ISD
Specifies the address of a pointer to
a l-word field that will contain a
binary number when FORTRAN returns to
LPC normally. This will be a count of
the number of bytes in the TXT which
FORTRAN is passing to LPC.

ISD
Specifies the address of a pointer to
the area which will contain the ISD
when FORTRAN returns to LPC normally.

External Name List
Specifies the address of a pointer to
the area which contains the external
name list when FORTRAN returns to LPC
normally. (Each external name in the
list is an 8-byte field.}

LPC to FORTRAN Early End Call
(ENTRY name is CEKTAC)

Register 1 contains the address of the
parameter list, if any.

Register 13 contains the address of the LPC
save area to be used by FORTRAN.

Register 14 contains the return address.

Register 15 contains the V-type Adcon for
FORTRAN early end (i.e., the entry point
address).

[Symbol}l CALL FORTRAN early-end
entry-symbol
(15)

[,(list exists indicator -
addr)]

FORTRAN Early-End Entry
Entry point name for FORTRAN early—end
entry.

List Exists Indicator
Specifies the address of a 1-byte
field which will contain 00000000 (for
no list exists) or 00000001 (for list
exists) when FORTRAN returns to LPC
normally.

ROUTINES CALLED: The phase controller
calls the five compiler phases, MIO, and
CONFIL.

The calling sequence from the phase con-
troller to these programs is a standard
call with the address within PHC of the
intercom area in the parameter list.

EXITS: The phase controller has three
exits which correspond to the three
entries.

Return ILinkage to LPC from FORTRAN Initial

[Symbol] RETURN

Upon return from FORTRAN initial,
register 15 contains a code which LPC
interprets as follows:

Code Type of Return
0 Normal. LPC will query user
before continuing if in conver-
sational mode. LPC will call
FORTRAN continue if in noncon-
versational mode.

4 FORTRAN cannot continue. LPC
will query user, if in conver-
sational mode, but will not
allow him to continue unless he
first modifies the source data
set. LPC will call FORTRAN's
early-end routine in both con-
versational and nonconversa-
tional modes.

8 Abnormal end LPC will not query
user and will not call FORTRAN
again. FORTRAN never issues
this return.

Return Linkage to LPC from FORTRAN Continue

{Symbol] RETURN
Upon this return, register 15 contains a
code which LPC interprets as follows:

Parameter
Information
Filled In
List exists
indicator
Length of
PMD
PMD-length
of TXT
TXT-length
of ISD
ISD-exter-
nal name
list
Same as for
code = 0

Code Type of Return
0 NO errors

g Minor errors (chance
of a correct source
program still gquite
high)

8 Major errors (all or
parts of source state-
ments were omitted)

12 No object module {(prob-
ably table overflow
within the compiler)

16 Any highly abnormal
condition -- partial
object module may have
been produced. FORTRAN
never issues this
return.

Same as for
code = 0

List exists
indicator

Indetermi-
nate

Return Linkage to LPC from FORTRAN

Early-End

{Symboll RETURN

Upon return from FORTRAN's early-end

routine,

register 15 contains a code which

is interpreted by LPC as follows:

Code Type of Return
0 Normal
4 A normal condition

Section 2:

Parameter
Information
Filled In
List exists
indicator
Indetermi-
nate

Executive 23

OPERATION: At the initial call, the Phase
controller fetches the compiler parameters
from the LPC parameter 1list, obtains
storage for the work areas using GETMAIN,
and initializes the excom and intercom
regions of the Phase Controller's PSECT.
(The information furnished by LPC is
described above under "entries.™ Items
initialized in excom and intercom are
described in the description of these
regions.) The items initialized include
compiler options; module, main entry point,
and deck identification names; list data
set items (this and all interfacing between
Exec and Data Management is performed by
the Master Input/Cutput module MIO); and
various flags, switches, and pointers.

Next, initialization for other executive
modules and Phase 1 is done. This is also
the point at which control may be returned
by Exec if conversational corrections to
the source program were extensive enough to
require a restart of compilation. After
initialization, Phase 1 is called.

Following appropriate initialization,
Phase 2 is called, followed by the return
to LPC from FORTRAN Initial. LPC now
enters the Phase Controller at the FORTRAN-
continue entry if the user continues. If
the program is a BLOCK DATA program, Phase
5 is entered. Otherwise, Phases 3 and 4
are successively initialized and entered.

Phase 5 is then called, produces its
output (using MIO's OLR subroutine for list
data set lines), and returns to the Phase
Controller.

Following terminal processing, such as
data set closing, preparing return parame-
ters for LPC, and freeing main storage, the
compilation is ended by a return to LPC.

Return parameters to LPC were described
under "Exits.™ These parameters are pre-
pared prior to returning to the initial
call and the continue call. At return to
the initial call, the parameter may
specify:

1. Normal return. This return will be
made even if serious program errors
occurred; terminal users will, of
course, have been advised of any such
errors.

2. FORTRAN wants to abort the compilation
due to table overflow or some other
condition that makes continuing the
compilation inadvisable without modi-
fying the source program.

3. An abnormal condition -- FORTRAN may
not be called again.

24

At return to the continue call, the return
parameter may specify:

1. No errors in the source program.
2. Minoxr errors.

3. Major errors (source lines probably
truncated or omitted).

4. Table overflow.
5. An abnormal condition.

The early-end entry to the Phase Con-
troller may be reached from LPC if the com-
pilation cannot continue or if the user
does not want to continue. Reasons for
inability of the compiler to continue
include:

1. Source errors so serious that follow-
ing phases cannot reasonably operate.

2. Storage overflow in a compiler table.
3. BAn abnormal condition.
In all these cases, appropriate error mes-
sages are given. Terminal processing, such
as closing data sets and freeing main
storage, is then performed and return is
made to LPC.

CERTC -- Get Next Source Statement (GNSS)

GNSS obtains a source statement from the
input data set, using the services of LPC,
and presents it to Phase 1 for processing.
Modifications to lines already received are
taken into account in determining what
source statement is fetched. See Chart AC.

RESTRICTIONS: Several assumptions underlie
the processing done by GNSS: A line in
card form is assumed to be in the tradi-
tional FORTRAN format; a C in column 1
means a comment; a nonblank or nonzero
character in column 6 means a continuation;
the statement number is in columns 1-5; and
the body of the line is in columns 7-72.
Columns 73-80 may contain card identifica-
tion, etc., and will be contained in the
source deck edit on the list data set.

The required format for keyboard input
is described in the documentation of the
ANALYZ subroutine (module CEKTI), given
later in this chapter.

An END statement is a line whose body
consists only of the letters E, N, and D.
Embedded blanks are allowed. A line meet-
ing this description that is in fact con-
tinued (END FILE, for example, with FILE in
a second line) will be treated as an END
statement, and further FORTRAN statements
will be ignored.

ENTRIES: The only entry point (CEKTCA) to
GNSS is standard subroutine call from Phase
1. Phase 1 obtains the required V-con/R-
con pair from intercom. The parameter list
furnished GNSS by Phase 1 contains one
address -- the location within Phase 1
where the phase moved intercom when called
by Phase Controller. This address is
required by GNSS, as GNSS will change items
in intercom.

ROUTINES CALLED: GNSS calls the MIO sub-
routine LINEIN for source lines. LINEIN
places all information required by GNSS in
excom. The GETLINE, CALL, and RETURN
statements are described in the MIO
documentation.

GNSS calls the executive subroutine MOD
when GETLINE specifies the terminal user
has requested that lines be altered. The
MOD R-con and V-con are in excom. The
linkage to MOD is standard; the parameter
list is as follows:

LIST DC A(PINCOM) Location of intercom
in Phase 1.

MOD places a number in register 15 des-
ignating the action to be taken by GNSS:

Code Action
0 Obtain a new statement.

4, 8, 12 Not expected -- GNSS will
return to caller if these codes
are present.

16 Restart required. Return to
caller with a return code of
16.

20 The current statement must be
reformed completely.

24 MOD got the first line of the
new statement and left informa-
tion concerning this line in
eXCOm.

28 MOD met end-of-data-set in

reading a line.

Using a standard call, GNSS calls the
executive subroutine RDM when an error mes-
sage is to be issued. The RDM V-con/R-con
pair is in intercom. The linkage is stan-
dard with the following parameter list:
LIST DC A(PINCOM) Location of intercom

in Phase 1.
. Specify the message
. {see the RDM docu-
. mentat ion).

GNSS calls the OLR entry to subroutine
MIO when a line is to be added to the
source listing. The MIO V-con/R-con pair
is in excom. The linkage to MIO is stan-
dard. The parameter list is as follows:

LIST DC A(PINCOM) Location of intercom
in Phase 1

Location of output
line

Line length

Line number, PL4

format

DC A(TEXT)

DC A(LENGTH)
DC A(LINENO)

GNSS calls the MIO subroutine BFLUSH, to
flush a buffer by adding its contents to
the list data set. The linkage is stan-
dard. The parameter list contains the
address of intercom in Phase 1 and the
flushing parameter.

EXITS: The only exit from GNSS is a stan-
dard return to Phase 1, with the return
code in register 15 set as described in the
executive module.

OPERATION: The primary responsibility of
GNSS is to set the necessary information
for Phase 1 to process a statement. This
information consists of the line number and
statement number fields in the intercom
area and the text character string in the
area indicated by the intercom text
pointer.

Certain internal flags and switches con-
trol the flow of GNSS:

TDTERM - This excom flag is raised (set to
1) before the first line of a
statement is obtained and lowered
(set to 0) until the terminal line
of a statement is detected.

TDFORM

This excom switch indicates the
form (C for card, K for keyboard)
of the preceding line of a state-
ment. It is set by the first line
of a statement and reset when a
statement started in keyboard form
switches to card form.

TDOVER This excom flag is raised when a
single statement runs over 1320
characters. Subsequent lines of
such a statement are not passed to

Phase 1.

TEMEC

i

This intercom item, maximum error
code, will be set to 8 if input
lines are ignored due to an error
detected by GNSS.

Using the LINEIN entry of MIO, GNSS
calls the LPC subroutine GETLINE repeatedly
for source lines until a complete statement
has been assembled. In addition to
assembling a source statement, GNSS sets
the intercom items: the line number of the
first line (TESLNO) and the statement num-
ber (TESTNO). GNSS also detects END state-
ments (and sets the intercom item TEEND to
mark this) and sets the excom indicators

Section 2: Executive 25

TDbU, TDPU, TDAPU, TDPUF, and TDAPUF for use
by the process terminal modifications sub-
routine (MOD).

Card and keyboard lines are processed
differently, due to their different con-
tinuation conventions and formats. The
processing of the first line of a statement
is also different from the processing of a
continuation line. For the latter, the
initial character (TDLE) and the length
(TDNUMC) of the body of the line text must
be found. For an initial line, this is
done only after the line number and state-
ment number have been placed in intercom.
As the input lines are received from GET-
LINE, they are added to the internal files
area TCTEX1. When a complete source state-
ment has been formed in this area, the end-
of-statement character X'FF' is added to
the statement in this area, and the inter-
com item TEVSTB is set to the address of
TCTEX1 for the use of Phase 1.

Calls on GETLINE in conversational mode
may result in the terminal user's request-
ing that one or more lines be altered. If
so, subroutine MOD is called to determine
appropriate action. MOD may raise the FOR-
GET flag to inform Phase 1 that the state-
ment currently held in a tentative status
by Phase 1 should be removed from all
tables, as it will be replaced. In this
case, GNSS will call GETLINE again to
obtain a source statement for Phase 1,
If the tentative statement is to be
accepted, MOD will direct GNSS to ask for
new lines without having raised the FORGET
flag. MOD may also direct GNSS to return
to the Phase Controller requesting a
restart. This occurs when the terminal
user wants to alter a line that Phase 1
cannot “"forget®™ -- a line permanently added
to the Phase 1 tables. 1In such a case, the
next call on GETLINE will again reguest the
first source statement of the program.

etc.

When GNSS is initially entered in con-
versational compilation, the current values
of TDBOLD and TDBNEW are interchanged.
after the exchange, TDBOLD contains the
address of the buffer filled with source
lines, and corresponding diagnostic mes-
sages, for the statement obtained on the
previous GNSS call. TDBNEW is the buffer
address for the buffer to be filled on the
current call.

At exit from GNSS in conversational
operation, the FORGET flag is checked. If
its value is zero, the statement is not to
be "forgotten" so the statement in the
buffer whose index is TDBOLD is to be added
to the list data set. If the FORGET flag
is 1, the line is to be forgotten and is
not added to the list data set.

26

If GNSS encounters an end-of-data-set
return code from GETLINE, the user omitted
the END card from his source code. GHNSS
creates an END statement and returns to
Phase 1 normally.

As an example of GNSS operation, consid-
er the case where input is card only. A
card is obtained, via LINEIN. If the line
is a comment line, it is added to a list
data set buffer via OLR; LINEIN is then
called for another line. If the card is
not a comment line, the status of the
TDTERM flag is inspected. This flag is set
to one upon entry to GNSS so that the line
is written via OLR. Inspection for a con-
tinuation line is made. If the card is not
a continuation card, several operations are
performed, then inspection for an END card
is made. If the card is an END card, two
flags are raised. The text is then moved
to the Phase 1 buffer. The TDTERM flag is
then tested again. If down, LINEIN is
called for a new line, and the chart is
reentered. If TDTERM is up, the EOS (end-
of-source-statement) sequence is entered,
at which point the end-of-statement
character is added and return made to
Phase 1.

Certain tests made by the code are not
shown in the flowchart, due to their repet-
itive nature:

1. Before OLR is called to add a line to
a list data set buffer, the TESLO flag
is checked. If TESLO is not equal to
Y, no source listing was requested and
the call is not made.

2. All executive subroutines called by
GNSS return with a return code of O,
4, 8, or 16, as described earlier in
the General Information section. GNSS
tests this code, and if it is nonzero,
return is made to Phase 1 at once,
with the return code unchanged.

Continuation inconsistencies (a con-
tinuation card line received as the initial
line of a statement, or a noncontinuation
card line received after a keyboard line
indicating continuation) produce diagnostic
messages and cause the line in guestion to
be ignored. If a statement contains too
many characters, a diagnostic message is
produced and trailing lines of the state-
ment are ignored.

CEKTD -- Process Terminal Modifications
(MoD)

MOD is called by GNSS when GNSS is
informed by LPC that a modified line has
been entered from the terminal.

MOD will determine the effect of this
request upon the obtaining of a source
statement by GNSS. MOD nmay:

1. Direct GNSS to replace part or all of
the statement currently being formed
for Phase 1.

2. Raise the FORGET flag to inform Phase
1 that the statement currently held by
it in tentative status should be
removed from the Phase 1 tables (in
this case, GNSS will obtain a
replacement).

3. Direct Phase 1 to return to the Phase
Controller requesting a restart of the
entire compilation.

See Chart AD.

ENTRIES: MOD has a single entry point
(CEKTDA) and is currently reached only by
GNSS, via a standard call. The parameter
list contains only the address of intercom
within the phase calling GNSS.

ROUTINES CALLED: MOD calls the LINEIN
entry of MIO when an altered line must be
inspected to see if it is a continuation
line.

EXITS: MOD returns to the calling program
using a standard RETURN. A return code is

set in register 15 by MOD, as follows:

Code Description
0 A new statement is to be
obtained from LINEIN using the
current value at TDU {(see
"operation®, below) as the line
number following which a line is

desired.
4 Suspected system error.
8 Compiler error.
12 Suspected system error.
16 The compiler must restart.
20 The current statement will be
reobtained.
24 A line obtained by MOD is to be
used by GNSS.
28 MOD met the end-of-data-set

(also referred to as "EOS®™ and
"ECDS"™) in obtaining a line.

OPERATION: MOD uses the following excom
items to determine its response:

1. TDU. When GNSS is called, TDU equals
TDPU and also equals the line number
of the last line of the statement
passed to Phase 1 on the previous GNSS
call. During GNSS operations, TDU is
the line number of the last line
received from GETLINE (the excom item
TDLINF, referred to in the flowchart
as "line number").

When returning to Phase 1, TDU will
equal the line number of the last line
of the statement passed to Phase 1.

2. TDPU. When GNSS is called, TDPU
equals the line number of the last
line of the statement passed to Phase
1 on the previous call. When GNSS is
finished, TDPU is changed to the line
number of the last line now being
passed to Phase 1.

3. TDAPU. When GNSS is called, TDAPU
equals the line number of the last
line of the statement prior to that
last passed to Phase 1. BAs only the
last passed statement can be forgot-
ten, the statement containing TDAPU is
committed for processing.

When GNSS returns to Phase 1, a new
statement is being furnished. Both
TDU and TDPU contain the line number
of the last line of the statement now
being passed. TDAPU is set to the
line number of the last line of the
statement previously passed. The FOR-
GET flag directs Phase 1 to keep or
discard this previously passed
sStatement.

Note: TDPU is never less than TDU;
TDAPU is never less than TDPU.

4. TDPUF¥, the format of line TDPU.
5. TADPUF, the format of line TDAPU.

6. TDLINO, the line number of the altered
line -- the line to replace a line in
or be inserted into the source
program.

As an example of MOD operation, consider
the case where the line number altered is
less than or equal to a line number already
committed by Phase 1 (TDLINO < TDAPU). A
restart must occur, and MOD sets a return
code accordingly for GNSS.)

For a second example, assume the order
is (in sequence of increasing line
numbers) :

TDAPU = TDLINO
TDU = TDPU

Another possibility is one in which the
order of increasing statement numbers is:

TDAPU
TDLINO
TDPU
TDU

If line TDAPU was in card form (TDAPUF =
C) the new line could extend TDPU. The new
line is inspected. If it is in card format

Section 2: Executive 27

and a continue line, a restart is required,
as TDAPU is committed. If TDAPU was in
keyboard form, or if the new line is not in
card format and a continue line, TDLINO
cannot modify TDAPU, so no restart is
required. The next line to be requested by
GNSS will be the line following TDAPU. MOD
thus sets TDU to TDAPU and directs GNSS to
obtain a new line. The insertion of a line
preceding TDPU means that TDPU -- currently
held in a tentative status by Phase 1 --
must be "forgotten;" therefore, MOD raises
the FORGET flag.

CEKTE -- Receive Diagnostic Message (RDM)

RDM accepts a diagnostic message in the
form of a list of pointers to pieces of
text, assembles the pieces into a line
image, adds the message to the source list-
ing, and -- in conversational operation --
sends it to the terminal. See Chart AE.

ENTRIES: RDM has one entry point (CEKTERA),
the V-con and R-con for which are found in

intercom. RDM is reached only via a stan-

dard call. The parameter list is described
below with an example containing strings of
length 12 and 37 characters to be combined

into a message by RDM:

LIST DC A(PINCOM) The location within
the current active
phase of intercom

pc A{L1) String 1 length
DC A(T1) String 1 text
DC A(L2) String 2 length
DCc A(T2) String 2 text
DC A(ZERO) End-of-string

1 DC FL1°'12°

T1 DC CL12'...°

L2 DC FL1'37°

T2 DC CL37°'...°

ZERO DC FL1'0°

ROUTINES CALLED: RDM calls only the master
input/output module (MIC), at its DIAGOUT
entry. The DIAGOUT V-con and R-con are in
excom. Standard linkage is used. The
parameter list contains:

LIST DC A(Intercom)Same as in RDM calls
DC A{Text) Message text
DC A{Length) Message length, bytes
EXITS: Standard return linkage is executed
to the calling program. The return code
set is whatever code was returned by MIO.

28

RESTRICTIONS:

ENTRIES:

OPERATION: RDM first assembles the diag-
nostic message as a line image from the
indicated pieces of text. The DIAGOUT
entry to MIO is then called to add the nmes-
sage to the source listing, and, if the
compiler is running in conversational
operation, to transmit the message to the
terminal via PUTDIAG.

If a diagnostic message is greater than
80 characters, a diagnostic message is
added to the source listing and only the
first 80 characters of the message are sent
to MIO.

CEKTF -- Constant Filers (CONFIL)

CONFIL receives numeric address and
statement label constants, ensures that
they have a symbol table entries, and pro-
vides symbol table pointers to the con-
stants. See Chart AF.

CONFIL's CRL subroutine creates an
internal statement number and files this
number as a label. These labels may be
used by compiler phases to mark points in
the code.

Several references are made
in text and tables to the filing of con-
stants of one-byte length {(referred to as
*1 constants) and of length 16 (*16 con-
stants). Currently, no compiler phases
require that the Constant Files be able to
file *1 constants, and no code is included
for such filings, although space is left in
various tables. For *16 constants, the
only constant of such length currently is a
C#*16 constant. For such constants, only *8
alignment is required. In this case, the
*16 alignment (not space creation) code
exists, but is not entered. Similarly, C*8
constant filing uses *4 alignment code.

The planning for these constants is based
on the possibility that future modifica-
tions to the compiler would require the
ability to file them.

The CONFIL subroutines are
reached via a standard call. The V-con and
R~-con values are available to the calling
programs in intercom. Prior to calling a
CONFIL routine (CRL excluded), the calling
program places the constant to be filed in
the intercom area TECONS. Upon return,
CONFIL will have filled in the intercom
item TEPNTR and will have set TEGNU (and,
for CRL, TELINO).

The CONFIL entry points, entry symbol,
and corresponding TECONS initialization are
given in Table 5.

Table 5.

Preparation of Constant Receiving Area by CONFIL

S T - S T -1
| Entry | CONFIL | CONFIL V-Con | i !
| Symbol | Name | (Intercom)] Description | TECONS Contents |
e s " 4 1
T CEKTFB | CONI2 | TEVI2 |Files I#*2 constants | Constant to TECNS1 |
CEKTFC	CONIU4	TEVIUY [Files I*4 constants	Constant to TECNS1	
CEKTFD	CONR4	TEVRY	Files R*U4 constants	Constant to TECNS1
CEKTFE	CONRS8	TEVRS	Files R#8 constants	High Order 4 to TECNS1
		}	Low Order 4 to TECNS2	
CEKTFF	CONC8	TEVCS	Files C*8 constants	Real 4 to TECNS1
i =	{ Imag. 4 to TENCNS2 i			
CERTFG	CONC16	TEVC16	Files C#*16 constants	High Order real 4 to TECNS1
i]			Low Order real 4 to TECNS2	
				High Order imag. 4 to TECNS3
{			Low Order imag. 4 to TECNS4	
CEKTFI	FLAD4	TEVFL4	Files storage class 4	Constant to TECNS1
			constants other than {	
1	z	R-cons	l	
CEKTFJ	FLADS	TEVFLS5	Files storage class 5	Constant to TECNS1
			constants]	
CEKTFK	FLADVR	TEVVR	Files V-con, R-con pairs	Constant to TECNS1
CEKTFL	FLL { TEVFLL	Files labels	Label to TECNS1	
CEKTFM	CRL { TEVCRL	{Creates & files labels	--	
L - L L i ——]

ROUTINES CALLED: CONFIL calls RDM if over-
flow occurred in the symbol table storage
class table.

EXITS: CONFIL executes a standard return
linkage to the calling program. A return
code is set in register 15 as follows:

Code Meaning
0 Normal
8 Symbol table or storage class 4

(the adcon page) overflow

CONFIL returns with register 15 contain-
ing zero or, if RDM was called, containing
whatever code was returned by RDM.

OPERATION: CONFIL initially determines if
a constant of the type being filed has pre-
viously been filed. This determination is
made by inspecting the appropriate anchor
for the chain in which the constant would
be included. The constant types, their
anchors, and the base of the tables con-
taining the anchors are shown in Table 6.

If the appropriate anchor is empty (con-
tains X'80~--' meaning End-of-Chain), the
constant is added to the symbol table, the
storage class table is updated, and the
anchor is made to point to the new entry.
(This pointer, like all pointers in the
symbol table, is a 2-byte offset from the
symbol table base).

If the anchor is not empty, the chain to
which it points is searched until either an
identical constant is found or an end-of-
chain indicator is found. If the constant
has previously been filed, return is made
with a pointer to the descriptive part of

the previously filed constant. If the con-
stant is not already in the chain, it is
added, the storage class table is updated,
and the previous end-of-chain entry is
altered to point to the new entry.

Much of the code in CONFIL is shared by
all constant filers. ©Not all constants are
created identically, however. The major
differences are:

1. The value part of the name part
entries for 8- and 16-byte constants
are longer (by 4 and 12 bytes, respec-
tively) than for 2- and 4~byte
constants.

2. The descriptive part for label con-
stants is 12 bytes, rather than 8
bytes.

3. Adcons in storage class 5 \(list-entry
adcons) are added to the end of the
chain, without searching for an iden-
tical previous occurrence.

4. The code that searches the chains is
divided into three sections for great-
er speed. The sections search chains
for constants of length 2 and 4, 8,
and 16 bytes, respectively.

5. One constant filer (FLADVR) files two
identical constants -- a V-con and an
R-con. The V-con is filed in the
adcon storage class 4 chain; the R-con
is filed in the R-con chain. The V-
and R-cons will occupy adjacent loca-
tions in storage class 4, in the order
V-con, R-con.

Section 2: Executive 29

6. Create Label (CRL) creates a label,
stores it in TECNS1, then files this
label. :

The possibility exists that constants in
storage class 4 could be given locations in
the storage class such that "holes"™ would
exist. For example, addition to the
Storage class of three constants of 16
bytes, 4 bytes, and 16 bytes, respectively,
in that order and with byte alignment,

e

would create a 12-byte "hole™. CONFIL
£ills such holes with items filed later, as
described in Tables 7, 8, and 9.

CONFIL checks for symbol table overflow
and storage class overflow, which can occur
only in storage class 4. If either occurs,
the TEOFLO item is set in intercom and
return is made to the calling program with
a return code of 8. A message is given by
CONFIL in such an event.

Table 6. Constant Chain Anchors and Table Bases

r -7 - - T T 1
| CONFIL | | | Table Base |
| Name | Constant Type Filed | Anchors (in Excom) | (in Intercom) |
[N 4 i 4

| T L) T *
] CONI2 1 I*2 | TCCHT (1)] TECHTB |
| CONI4] I*y i TCCHT (2) i |
| CONRY4 | R*4 | TCCHT (3) | i
CONRS	R*8	TCCHT (4)	
CONC8	C*8	TCCHT (5) i	
CONC16	C*16	TCCHT (6)	
FLADVR	R-Cons (STCL = 4) % i TCCHT (7)]		
FLAD4G	Adcons (STCL = 4) } TCCHT (8)		
i FLADS	Adcons (STCL = 5)] TCCHT (9)	i	
FLL,CRL	Labels] TCLHT (1-16)	TELHTB	
%' i — i 1 e . e e i e i e s e {			
*3TCL means Storage class			
L o e e e e e e e J
Table 7. CONFIL Storage Assignment No-Hole Branch Table TFNOHO

r — T T - T T T 1
| Length Constant Being Filed | *1 | *2 | *q | *8 | *16 |
- 4 i + } + .
i Corresponding Register P-3 Value | 0 | 4 | 8 i 12 | 16 |
t — . + -4 t e pommmmm o 1
| Current Alignment of | | | i { | |
| Next Space in Storage | | i 1 | | |
| Class 2 | *1 | TF610 | TF620 | TF630 | TF640 | TF650

| F + + } $ 4 i
| | *2 | TF610 | TF610 | TF660 | TF665 | TF670 |
| = t + + ¢ ¥ 4
| | *4 | TF610 | TF610 | TF610 | TF675 | TF680 |
| b } + + } $ommmmammy
{ | *8 | TF610 | TF610 | TF610 | TF610 | TF685 |
| F ¢ 4 t — e
| | *16 | TF610 | TF610 | TF610 | TF610 | TF610 |
i_ _____ L L ——e i 4. i ___‘}
|

| Examples of Table Use: |
| |
| 1. An *4 constant is being filed and the alignment in Storage Class 2 is also *4. |
| Branch to TF610. (No holes produced in Storage Class.)} |
| : !
| 2. An *4 is being filed, and the alignment is #*8. Branch to TF610. (No holes |
| produced) . }
|

| 3. An #8 is being filed and alignment is *2. Branch to TF665, at which point an #*2 |
i (and *4 if six bytes are required to create #8 alignment) hole will be made |
| available as a result of *8 alignment being produced for the constant. |
L —_ - - _— —

30

- T h S e T 1
| Length Constant Being Filed | *¥12 | *23 *4 | *8 |
I T fommmmm g $ R 1
| Corresponding Register P-3 Value i 0 | L } 8 | 12 |
b S — Tm———————— - T _—t S —— S — b 4
| Available Hole | *8 | 4 | *2 | *1 |
pommmm o e R e - e

| TDHOLE = 0 I | i | TF590 TF590 TF590 TF590 |
| e e - pommmm —— oo 1
i 1 | {] i X TFS511 TF590 TF590 TF590 |
| prmm- e - i
| 2 i ! | x| TF521 TF522 TF590 TF590 |
| S oo t---—- fommmm - e

| 3 | | | *X | *X TF511 TF522 TF590 TF590 |
l S $-—- + } - i
| 4 |] b4] i TF541 TF542 TFS44 TF590 |
! R T -4
| 5 | | X |] X TF511 TF542 TFS544 TF590 |
| o e S— - - - i
| 6 | | X 1 X | TF521 TF522 TFS44 TF590 |
| R +- } e e e

| 7 | | X | X | X TF511 TF522 TF544 TF590 |
l —— e 4 e

l 8 | X i [[TF581 TF582 TF584 TF588 |
| p-———+ A A - i
| 9 | x| I I X TFS11 TF582 TF584 TF588 |
l p-——- oo bt 3
| 10 | X | | x| TF521 TF522 TFS84 TF588 |
| bt $ - -—- -——{
| 11 | X | I x| X TF511 TF522 TF584 TF588 |
l e 4]
| 12 | X i X | i TF581 TF542 TFS44 TF588 |
| T e - - 1
| 13 [G X | | X TF511 TFS542 TFS5u44 TF588 |
| pm—m e - - :
| 14 | X | X | X | TF521 TF522 TF544 TF588 |
| b ¢ ¢ - - - |
| 15 | x| X | x| X TF511 TF522 TFS544 TF588 |
i L L L Y S, «{
] i
| Examples of Table Use: |
| |
| 1. An #*U4 constant is being filed, no *4 constant hole is available (no X under #*4 in |
| the Available Hole columns), and no *8 hole is available. Branch to TF590, where |
| space will be taken by increasing the size of the Storage Class.]
| |
| 2. An #*2 constant is being filed, no *2 hole is available, but an #*4 hole is avail- |
| able. Branch to TF542, at which point part of the *4 hole will be used, with the |}
| unused part of the hole assigned to the *2 hole. |
I |
| 3. Not implemented. |
L - J

Section 2: Executive 31

Table 9. CONFIL Storage Assignment Byte

Alignment Branch Table TFBAL

r T e o e e e T —————
| Alignment of Next | }
i Available Byte | |
—————————————— R [
| Address Bits | | Number |
~-v---t-—-¢——-4 Constant | Loaded |
|8 14 2| 1| Length | Into N4 |
i S e + 1
| | i | | *16 | 80 |
] | | P X *1 | 0 |
! | I X |] *2 | 20 |
	P X X *1	0			
	X			*4	4o
	X		X	*1	0
i	X X}	*2	20		
]	X	X	X	*1	0
X				*8	60
X			X	*1	0
X		X		*2	20
X		X	X	*1	0]
X	X]	*4	40	
X	X	X	*1	0	
P X | X | X | | *2 | 20 |
X1 X1 x| x| *1 | 0 I
(SN U U | L L 1
CEKTH -- Master Input/Qutput (MIO)

All communication between interface pro-
grams supplying source line input to and
producing edited line output for the com-
piler is accomplished my MIO. The compiler
I/0 operations are:

1. Calls on LPC GETLINE
2. Calls on LPC PUTDIAG

3. Opening of, additions to, and closing
of the list data set

See Chart AG.

ENTRIES: The entry points to MIO are
listed below. All are reached by standard
calls.
List in Parameter List
Gntry Name (Address)
LDOPEN CEKTHA Intercom
LDCLOSE CEKTHB Intercom
LINEIN CEKTHC Intercom
DIAGOUT CKTHD Intercom, line address,
4~-byte character count.
OLR CEKTHE Intercom, line address,

4-byte character count,
and flag.

The flag item will be zero
or a PL4 format line num-
ber, with the following
results.

Zero. The output line

will begin in column 1 of
the list data set line.

32

Lines presented are
expected to be preceded by
a carriage control
character.

PI4. The output line will
begin in column 10 of a
list data set line. The
first nine characters will
be XXXXXXXBB, where X = a
numeric digit, and B =
blank. A carriage control
character of a blanks is
associated with this line.
BFLUSH CEKTHF Intercom, Flag. Flag is
4, 8, or 12 for flushing
old, new, or both buffers,
respectively.

ROUTINES CALLED: MIO calls the LPC entries
GETLINE and PUTDIAG and uses data manage-
ment through VISAM I/O macro instructions.

The CALL and RETURN statements for MIO
calling GETLINE and PUTDIAG are given
below.

FORTRAN to GETLINE Call

Register 1 contains the address of the
parameter list.

Register 13 contains the address of the
FORTRAN save area to be used by GETLINE.

Register 14 contains the return address.

Register 15 contains the V-type Adcon
for GETLINE (i.e., the entry point
address).

{symboll CALL GETLINE entry-symbol, (line
number
(15)
to GETLINE-addr, line number
from GETLINE-addr, length of
line-addr, source-addr,
altered line number-addr)

GETLINE Entry

Entry point name for GETLINE.

Line Number tc GETLINE

Specifies the address of a 1-word field
containing a packed decimal number. (FORTRAN
is requesting a source line which follows
the line with this number.)

Line Number From GETLINE

Specifies the address of a 1-word field
which will contain a packed decimal number
when GETLINE returns to FORTRAN normally
{i.e., return code = 0). This will be the

line number of the source line which GET-
LINE is giving to FORTRAN.

Length of Line

Specifies the address of a 1-word field
which will contain a binary number when
GETLINE returns to FORTRAN normally. This
will be a count of the number of characters
in the source line which GETLINE is giving
to FORTRAN. This count will include the
format character (see source line below).

Source Line

Specifies the address of a field which
will contain the address of the source line
when GETLINE returns to FORTRAN normally.
This line will contain a maximum of 150
characters. The first character will be 0
or 1 (hexadecimal), depending upon whether
the line is card or keyboard, respectively.

Altered Line Table

Specifies the address of a 1-word field
which will contain (in packed decimal for-
mat) the line number of the lowest line
modified when GETLINE returns to FORTRAN
with a return code of 4.

GETLINE to FORTRAN Return

{Symboll RETURN

Upon return from GETLINE, register 15
contains a code which may be interpreted as
follows:

Parameter
Information
Code Type of Return Filled In
0 Normal (source line Line number
has been obtained). from
GETLINE.
Length of
line.
Source line
4 Lines have been Altered
altered. Line number
8 Batch -- EDOS (End-of- None.
Data-Set. GETLINE was
asked for a line after
the last line in the
data set).
12 "abend-type"” Indetermi-
nate.

FORTRAN to PUTDIAG Call

Register 1 contains the address of the
parameter list.

Register 13 contains the address of the
LP save area to be used by PUTDIAG.

Register 14 contains the return address.

Register 15 contains the V-type adcon
for PUTDIAG (i.e., entry point address).

[symbol]l CALL PUTDIAG, entry - symbol
(15)
[, (message-addr, length of
message-addr, correction
request indicator-addr)]

PUTDIAG Entry

Entry point for PUTDIAG.
Message

Specifies the address of an area which
contains the message.

Length of Message

Specifies the address of a 1-word field
which contains, in binary, the number of
bytes in the message.

Correction Request Indicator

Specifies the address of a 1-byte field
which indicates whether the message is to
go to SYSOUT immediately (00000000) or is
to be stacked by LPC and output as a
correction reguest at the next entry to
GETLINE (00000001).

PUTDIAG to FORTRAN Return

{Symbol]l RETURN

Upon return from PUTDIAG, register 15
contains a code which may be interpreted as
follows:

code Type of Return
0] normal
12 "abend-type"
EXITS: MIO exits to the calling program

using a standard linkage. A return code is
set in register 15 as follows:

Code Description
0 Normal return.

4 GETLINE or PUTDIAG returned with
an "abend-type" value in regis-
ter 15. The program calling MIO
will return to its caller with a
return code of 4, until the
phase controller is reached.

The phase controller will then
return to LPC with a return code
of 4.

OPERATION

MIO has six entry points. These are

described below.

Section 2: Executive 33

34

List Data Set Open Entry -- LDOPEN

The phase controller enters at LDOPEN
to open the list data set. Opening
will not occur again, unless FORTRAN
is reached at its initial entry or a
restart occurs. Restart will cause
the list data set to be closed, and
then reopened, thus discarding the
contents of the previous list data
set.

List Data Set Close Entry -- LDCLOSE

The phase controller enters at LDCLOSE

to close the list data set. Lines 5.
held in the list data set buffer (see

ORL below) are output before closing.

Get a Line From LPC Entry -- LINEIN

This entry is used by the exec subrou-
tine CEKTC (GNSS) when a source state-
ment is being formed for Phase 1 of
the compiler. LINEIN will call the
LPC subroutine GETLINE and pass the
results to GNSS wvia excom.

When processing card lines, GNSS
requests the first line of each state-
ment twice, once to determine that the
previous statement is not to be con-
tinued, and once to cbtain the first
line of the new statement. LINEIN
does not issue two calls on GETLINE
under such circumstances. Rather,
LINEIN saves the line after the first
request, in anticipation of the second
request.

If GETLINE sets register 14 to note an
abnormal end condition, LINEIN returns
to GNSS with a return code that will
force an abnormal end return by Phase
1 to the phase controller, followed by
an abnormal end return by the phase
controller to LPC.

Output a Diagnostic Message Entry --
DIAGQUT

Any executive subroutine or any phase
wishing to output a diagnostic message
may do so by calling the receive diag-
nostic message subroutine, RDM. RDM
forms the message and adds it to the
terminal (unless in batch operation)
and list data set (if any), using the
DIAGOUT entry to MIO. 1In cases where O
executive modules have access to a
complete line, they call DIAGOUT
directly, for increased efficiency.

During Phase 1 operation, diagnostic
messages will frequently be output
concurrently with addition of source
lines to the list data set by the MIO
entry OLR (see below).

If the computer is running in conver-
sational mode, OLR does not output
source lines as soon as they are
received, as a terminal correction may
require deletion of lines. Instead,
lines are stacked in one of the two
MIO buffers (obtained by a PHC GET-
MAIN). Diagnostic messages concerning
these lines are also stacked, in the
same buffers, and added to the list
data set only when the source line
causing the diagnostic is added to the
list data set.

Output Line Receiver -- OLR

This entry is used by PHC (Phase Con-
troller), GNSS, and Phase 5 of the
compiler to add source lines to the
list data set.

OLR operation when called from any-
where except GNSS is guite simple, as
lines to be added to the list data set
will never be replaced. GNSS use, on
the other hand, is more complex, since
both the previous statement processed
by Phase 1 and the current statement
being prepared for Phase 1 may be
deleted, due to conversational correc-
tions. In such a case, the source
lines for these statements must not be
added to the list data set. This pur-
pose could be accomplished by retain-
ing the entire source program in vir-
tual storage. The procedure adopted
by OLR is to stack source lines (with
diagnostic messages and comment lines
received concurrently) in buffers
until the source statement is irrevo-
cably committed to inclusion in the
Phase 1 tables and, thus, to further
processing by following phases.

The possibility exists that the capac-
ity of any reasonably-sized buffer
will be exceeded, due to an abnormally
large number of comment lines con-
tained within a source statement. In
such a case, a message will be added
to the list data set, to the effect
that the statement will be repeated if
corrected at the terminal.

Flush the Buffer -- BFLUSH

This entry is used by GNSS to move a
source statement and associated diag-
nostic messages from an output buffer
to the 1list data set. This operation
is performed only when it is deter-
mined that the statement cannot be
replaced through conversational
corrections.

CEKTI Analyze Console Source Line (ANALYZ)

ANALYZ, which is assembled into GNSS
(CEKTC), analyzes a console-furnished
source line to determine the location in
the string of the statement number (if any)
and the text. The statement number is
moved to intercom; the location of the
first text character and the number of text
characters are returned to the calling pro-
gram GNSS. See Chart AH.

ENTRIES: ANALYZ is reached cnly from GNSS,
via a restricted linkage INVOKE. All
information required by ANALYZ is in inter-
com. ANALYZ returns with TDLE in N3, and
TDNUMC in V2.

ROUTINES CALLED: ANALYZ invokes subroutine
INSCON {(CEKTJ) for inspection of individual
characters.

Information placed in registers for
INSCON is:

Register Contents
P2 LASTC, the address of the first

character beyond the last text
character.

v2 I, the address of the last
character inspected by INSCON.

ANALYZ initializes V2, which is updated

by INSCON. P2 is used, but not changed by
INSCON.
£2XITS: ANALYZ returns to GNSS via a

RESUME, with no registers set. All infor-
mation required by GNSS is in excom.

OPERATION: ANALYZ is invoked by GNSS with
information in excom giving the line length
(TDLONG) and the address of the area con-
taining the line (TDLADD). There are too
many possible legitimate combinations of
text characters to describe all ANALYZ
operations in writing, but the ANALYZ flow-
chart (Chart AY) gives all logic paths.

Refer to FORTRAN Programmer's Guide,
"Appendix A: Entry and Correction of FOR-
TRAN Source Statements,®™ for information
concerning the format of source statements.

CERTJ ~-- Inspect a Console Character
(INSCON)

INSCON is assembled into GNSS; its func-
tion is to inspect a character in a console
source line to determine if it is tab, nu-
meric, blank, or other. See Chart AI.

ENTRIES: INSCON is invoked by subroutine
ANALYZ via restricted linkage. Information
required by INSCON is all in registers pre-
pared by ANALYZ, as follows:

Register Contents
P2 LASTC, the address of the first
character beyond the last text
character.
V2 I, the address of the last

character inspected prior to
INSCON entry.

INSCON alters P1 and P3 for use by the
calling program.

ROUTINES CALLED: None

EXITS: INSCON returns to the calling pro-
gram with a RESUME, with a code in RC as
follows:

Code Description

0 Not used.

4 INSCON could not inspect a
character, as the end of line
was exceeded.

8 The next character was a tab.
12 The next character was numeric.
11 The next character was blank.
20 The next character was not tab,

numeric, or blank.
OPERATION: INSCON tests the address next

character in the console line to see if the
line end has been reached. If so, the RC =
4L return is taken; if not, the character is
converted, inspected, and return made with

the RC code set appropriately.

CEKTK -- Move a Line to the List Data Set
(LDMOVE)

LDMOVE is assembled as part of the mas-
ter input/output module and is invoked by
MIO via restricted linkage to move a line
from a buffer to the list data set. LDMOVE
counts lines moved, restores the page, and
adds a page heading when required. See
Chart AJ.

ENTRIES: LDMOVE is reached from the MIO
subroutines FLUSH and BUILD, via an INVOKE.
All information required by LDMOVE is in
excom, intercom, the MIO PSECT, or regis-
ters N1 and N2:

N1
N2

text address
character count

o

ROQUTINES CALLED: LDMOVE uses the VISAM PUT
macro instruction to add lines to the list
data set.

ZXITS: LDMOVE sets no registers for invok-
ing programs. Return is via a RESUME.

OPERATION: LDMOVE determines whether a new
page is to be started, and, if so, moves
the page heading from the internal files
area to the list data set. The new page
number is included in this heading.

Section 2: Executive 35

LDMOVE adds the line to the list data
set, updates line counters, and returns.

CEKTL -- Build a List Data Set Buffer
(BUILD)

BUILD is assembled as part of the master
input/output module and is invoked by MIO
via restricted linkage to move a line to a
list data set buffer or the list data set.
This buffer is emptied using FLUSH (see
CEKTM) when full, when the list data set is
to be closed, or when a source statement is
committed to further compilation. (See
Chart AK.)

ENTRIES: BUILD is reached from the DIAGOUT
and OLR entries to MIO, via an INVOKE.
Programs, invoking BUILD, set registers as
follows:

I

N1 the address of the line to be
processed
the number of characters in this

line

it

N2

ROUTINES CALLED: BUILD may enter LDMOVE or
FLUSH via an INVOKE. No registers are set
for, or expected to be set by, these
subroutines.

EXITS: BUILD returns to its caller via a
RESUME, with no registers set.

OPERATION: When BUILD is called in batch
mode, it invokes LDMOVE at once, to move
the line directly to the list data set.

In conversation, BUILD checks first to
see if the list data set buffer currently
being built is full; if it is, FLUSH is
called. The line is then added to one of
the MIO buffers.

CEKTM -—- Flush a List Data Set Buffer
{(FLUSH)

FLUSH is assembled as part of the Master
Input/Output module and is invoked to flush
one or both of the list data set buffers by
moving all lines resident in the buffers to
the list data set. See Chart AL.

RESTRICTIONS: Register P6 must be set for
FLUSH, as follows:

Pé6 Description
4 Flush the old buffer
8 Flush the new buffer
12 Flush both buffers
ENTRIES: FLUSH is reached from the MIO
entry BFLUSH, LDCLOSE, and BUILD via an
INVOKE. All items required by FLUSH are in
excom, intercom, or the MIO PSECT.

36

ROUTINES CALLED: FLUSH invokes LDMOVE. No
registers are set for, or expected from,
this invocation.

EXITS: FLUSH returns via a RESUME, with no
registers set for the calling program.

OPERATION: FLUSH determines if the buffer
contains any lines to be removed; if it
does, FLUSH repeatedly invokes LDMOVE until
the buffer is empty. Otherwise, FLUSH
returns at once.

CEKTQ -- Compiler File Dump (COMDUMP)

COMDUMP prepares hexadecimal dumps of
compiler internal files, as part of the
compiler diagnostic feature processing.

ENTRIES:
CEKTQA.

COMDUMP contains one entry point,

ROUTINES CALLED: COMDUMP calls LINDUMP at
its CEKTSA entry, by means of the CEKTG
macro.

EXITS: COMDUMP always makes a RETURN to
the calling program, with no return code
set.

OPERATION: COMDUMP is called with three
parameters: the address of intercom and
the low and high addresses of the area for
which a hexadecimal dump is to be prepared.
The COMDUMP output lines are issued via the
CEKTG macro instruction. This macro
instruction issues a call on the LINDUMP
module, which in turn issues a VISAM PUT to
pass the line to the compiler user.

An error message is given and no dump is

produced if the parameters have the second
address greater than the third.

CEKTS —-- Compiler Line Dump (LINDUMP)

LINDUMP is called by the macro CEKTG,
after CEKTG sets up parameters for the
call. LINDUMP then forms one or more lines
in accordance with parameters passed, and
issues these via the VISAM PUT macro
instruction.

ENTRIES: LINDUMP contains one entry point,
CEKTSA.

ROUTINES CALLED: The PUT macro instruc-
tion, issued by LINDUMP, leads to an
external call.

EXITS: COMDUMP always makes a RETURN, with
no return code set.

OPERATION: Before describing LINDUMP, a
description of the CEKTG macro instruction
will be given.

Use of CEKTG

CEKTG can be used by macrc instruction,
in the forms:

1. CEKTG AREA, FORMAT,SIZE
(one area, one format)
where:
AREA - may be any symbol defined

in the program or a term
such as D(RN), where D is
any displacement and RN
any register.

FORMAT - may be:

0 or X for hexadecimal

1 or F for fullword integer

2 or H for halfword integer

3 or C for character

4 or Q for gquarter-word integer
5 or B for binary

SIZE - may be any absolute or

relocatable expression of
up to eight characters.
It is the byte size of
AREA.

If FORMAT is C and SIZE is 133, only
132 characters are printed, and the
first character is used to control
printer skipping and spacing as
follows:

1 = Skip to new page before print-
ing the line

0 = Space one line before printing
the line

+ = Space two lines before printing
the line

...and any other character is ignored.

If AREA falls in the range 0 to 15, it
is assumed to relate to an index reg-
ister (general-purpose)}. SI1IZE then
means the number of bytes, starting at
the left-most (high-order) byte of
that register. Wrap-around takes
place, and the registers are printed
as they were before the macro instruc-
tion was executed.

2. CEKTG Al,Fl1,A2,F2,....R6,F6

(up to six areas and formats)

where:

Al,A2,...A6 —-- may be as specified
for AREA above.

F1,F2,...F6 -- consist of a single
letter, followed by an integer
number in the range 1 to 999. The
letter may be:

for hexadecimal

for fullword integer

for halfword integer

for quarter-word integer

for character

for binary

for name-indicator (see comment
below)

ZW0omEa X

Unless, and until, an N-type format is
encountered, each area is printed
separately on one or more lines, with
the address of the area indicated, and
the format letter shown. The area
associated with the N-type format is
printed in characters, starting at
print position number 1. Other areas
following the N-type format are
printed alongside, up to a print line
limit of 120 characters; additional
lines are used if required. There
will be spaces between individual
items (bytes, halfwords, or full-
words) of multiple areas.

Al,n2,...86 may refer to general-
purpose registers, if they fall in the
range 0-15. (See discussion on using
the single-area CEKTG, above.)

There is no print control option with
multiple areas.

The format parameters always specify
length in bytes.

The standard CEKTG output line starts
with REF, followed by the hexadecimal
return address in the calling program, fol-
lowed by ADR, followed by the decimal
address of the area being printed, followed
by the hexadecimal address of the area
being printed, followed by a format letter
(X, F, H, Q, or B), followed by data items.
The data items are separated by spaces,
except in the case of the Q format.

When a single area is printed in
character format, or when multiple areas
follow a name area (see above), the stan-
dard indication is dropped, and data starts
at print position 1.

Except when using character format,
there is always one space between the out-
put of successive entries to CEKTG.

The CEKTG macro instruction saves and
restores all registers around the call.

This is the initial PRF entry generated
at the initialization of Phase 1
CEKTG =-- Calling Seguence
1. The calling sequence for the single-

area CEKTG is as follows:

Section 2: Executive 37

PARAM

LA
LA

L
CALL

bC
DC

0,N SET FORMAT CONTROL
1,PARAM POINT TO LIST
15, ADCEKT

(15) ,MF=(E, (1))

A(ARER)
A(SIZE)SIZE IS IMMEDIATE
VALUE

ADCEKT ADCON IMPLICIT, EP=CEKTSA

. ..where the parameter N is a number
in the range 0-5 {(see notes on single-
area CEKTG macro instruction above).

The calling sequence for the multiple-
area CEKTG is as follows:

PARAM

LA

CALL

0,6 SET MULTIPLE AREA
1,PARAM POINT TO LIST
15,ADCEKT

(15) ,MF=(E, (1))

A(Al) FIRST AREA
CL4'F1' FIRST FORMAT
A(A2) SECOND AREA
CL4°"F2' SECOND FORMAT

NOPR 0 END OF LIST
ADCEKT ADCON IMPLICIT,EP=CEKTSA

The parameters required for LINDUMP to

prepare line(s) as described above are

stored by CEKTG in intercom. CEKIG then
calls LINDUMP.
parameters, and builds one line of output.
This output is issued via a VISAM PUT, a

second line is prepared if requested, and
SO on.

38

LINDUMP inspects these

INTRODUCTION

Phase 1 performs the initial scan of the
source program, analyzes it for syntactical
correctness, and encodes the information
for subsequent pro<essing. Figure 13 il-
lustrates the operation cf Phase 1.

On entrance from the compiler executive,
Phase 1 initializes itself, calls GNSS to
get the first source statement, and enters
its main loop.

The main loop is traversed once for each
source statement. It classifies the state-
ment and calls an appropriate subroutine to
process the statement. On return from an
individual statement processor, GNSS is
called for the next source statement. GNSS
indicates, by the forget flag, whether the
statement just processed should be compiled

e

\ Enter J
S~

\4

—

i Initialize |

| |

L]

N\
/ Get Next \
(Source)
Y, Statement

<

SECTION 3: PHASE 1

or ignored due to action by a conversation-
al user. In the latter case or if the
statement just processed contained serious
errors, the results of processing that
statement are expunged from all tables and
output files, and the loop is reentered at
the top to process the new statement just
obtained. Otherwise, final housekeeping
appropriate to the old statement is per-
formed, and the loop is reentered at the
top.

The processing for a statement includes
producing appropriate output. Executable
statements cause entries in the program
representation file (PRF). Declarations
may set fields in symbol table entries or
produce output in the stoage specification
list or preset data file. In addition,
certain statements may affect Phase 1
internal tables and flags.

4

Statement

End Statement Y

e

f\ Return)

~N—

Source

\\ Statement /

FORGET

No

Flag or Serious
Error ?

Delete

Y

Statement

Figure 13. Phase 1 Interface

Section 3: Phase 1 39

Access to the source text is through two
subroutines: ESC and ACOMP. ESC supplies
the next character on request. ACOMP sup-
plies a pair of consecutive items: the
first is a variable name, function name,
constant, or statement number (label); the
second is a delimiter. ACOMP calls subrou-
tines to make symbol table entries, convert
constants to binary, etc.

Statements containing arithmetic or log-
ical expressions call fhe subroutine EXPR
to process these expressions into Polish
notation, which is output in the expression
representation file (ERF). The subroutine
SUBS processes subscripts, as a special
category of expressions for EXPR and the
statement processors.

When source program errors are detected
by Phase 1, the subroutine ERR is called to
prepare a diagnostic message and transmit
it to the executive subroutines RDM. The
message is determined by the parameters
presented to ERR. A parameter may indicate
a piece of prestored text to be included in
the message or may direct the subroutine to
obtain information from the compiler's
tables (e.g., a name from a symbol table
entry) and insert it in the message.
Depending on the entrance used, ERR will
also set the local maximum error code and
may raise the delete flag.

After recognizing and processing the
source program END statement, Phase 1
returns control to the executive.

Phase 1 has one PSECT that provides
working storage for all Phase 1 modules.
This PSECT is contained in module PHIM
{CEKAI}) and is organized as shown in
Figure 1%4.

Phase 1 creates entries in the inter-
phase files and tables listed below.

PROGRAM REPRESENTATION FILE (PRF)

The PRF consists of the executable ele-
ments of a source program. PRF entries are
iinked ({(chained) together in the sequence
of their generation. Additional linking
connects PRF entries by types.

Definition point analysis connects each
definition point of each variable, connects
the definition points of any formal argu-
ments, and connects the definition points
of all COMMON variables. Variables are
defined when used as:

1. The expression to the left of an equal

sign in an arithmetic or logical
statement.

40

PSECT

—
SAVE AREA (19 Words)
1 Page Phase 1 Working Storage
(3508 Bytes)
Exec Intercom
_ (512 Bytes)

Phase 1 Internal Working Storage

HSTCK (Operator Stack for EXPR)
LEVTAB (Level Table for ICL:T)
(3328 Bytes)

Page 1 <

SXS { Subexpression Stack for EXPR)
LPTAB (Left Parenthesis Table for IOLST)
(768 Bytes)

Naunan

Poge 2 Symbol Table Save Area
CSTK (Constant Stock for EXPR)
(256 Bytes)
TTRM { Tentative Term Table for SUBS)
(768 Bytes)
Page 3 <

DOSTCK (Do Loop Stack for BGNLP)
(1024 Bytes)

LBLTBL { Alternate Return Lasels for CALL)
{ 2048 Bytes)

SFEF { Stotement Function Expansion Area)
(110,480 Bytes)

N
Page 4-8 {

Figure 14.

Phase 1 Storage

2. An induction variable of a DO
statement.

3. A variable in an input list.
4. An argument of an external subprogram.

(A1l COMMON variables are defined when an
external subprogram reference occurs in the
source program.)

Statement number processing establishes
the branching structure of the source pro-
gram. Statement number definitions are
entered in the PRF and are linked. All
statement numbers referenced as branch
points are linked.

DO statement processing establishes the
looping structure of the source program.
The beginning and terminating points of
each loop are connected to each other and
to other loop delimiting points. In addi-
tion to the loops specified by the source

program, a false loop is indicated before
the first executable statement of the
source program. This provides a position
in the PRF for computation of expressions
that are effectively constants in the
program.

The program representation file, as
generated by Phase 1, consists of the fol-
lowing types of entries. Additional
entries are added by succeeding phases.

Begin Program Entry

This is the initial PRF entry generated
at the initialization of Phase 1. Program
type is set to indicate a main program.
This setting is changed by the occurrence
of a subprogram (SUBROUTINE or FUNCTION)
statement. This entry is the terminal
entry of the LINK chain.

Subprogram Entry

This multiple-purpose entry is a global
(external) entry point. As such, it is
linked into the label definition chain
within the PRF. It has a pointer to the
symbol table entry of a subroutine or func-
tion name and a pointer to a list of symbol
table entries of the formal parameters of
the subprogram. This list specifies the
order of occurrence of the formal parame-
ters. This is a false loop level entry.

It is the primary entry point of a program.

Alternate Entry

This entry is generated for each occur-
rence of an ENTRY source statement and
identifies a secondary entry point for a
program. It is a global (external) entry
point. As such, it is linked into the
label definition chain within the PRF. It
is a false loop level entry. It has point-
ers to the symbol table for the entry name
and for entries of the formal parameters.

Label Definition Entry

The label definition entry is generated
for each occurrence of a statement number
in the source language and for each
compiler-generated statement number. Label
definition PRF entries mark possible entry
points for local (internal) flow control.
To facilitate the flow analysis by Phase 2,
they are linked to the preceding entry
point.

Equation Entry

This entry is generated from a FORTRAN
assignment statement (arithmetic or logi-

cal). It contains a pointer to the expres-
sion representation file (ERF) entry repre-
senting the expression to the left, and
another for the expression to the right, of
the equal sign. An assignment statement is
a variable definition point for the
assigned-to identifier; it may be a common
definition point if the defining expression
contains a reference to an abnormal func-
tion. An "abnormal®™ function subprogram is
one which does any of the following:

1. Refers to or changes the value of any
COMMON variable.

2. Changes the value of any of its
arguments.

3. Causes input or output.

4. Does not always return the same value
when called with the same arguments.

All external functions are treated as
abnormal by the compiler.

GO TO Entry

A GO TO entry is generated for each
occurrence of a GO TO source statement.
Each is linked to the preceding label
referencing PRF item, forming the
referenced label chain used by Phase 2.

Assigned GO TO Entry

This entry is generated for each occur-
rence of an assigned GO TO source statement
and contains a list of the statement num-
bers which may be assigned to the variable.
Each statement number in the list is pre-
sumed to be referenced at this entry and,
therefore, is linked to the preceding label
referencing PRF item for analysis by Phase
2.

Computed GO TO Entry

Each occurrence of a computed GO TO
source statement causes an entry that con-
tains a list of the statement numbers to
which control can be transferred. Each
label in this list is assumed to be
referenced at this entry and therefore, is
linked to the preceding label referencing
PRF item for analysis by Phase 2.

ASSIGN Entry

This entry is generated for each occur-
rence of an ASSIGN source statement. It is
considered neither a reference to the label
specified nor a redefinition of the
assigned variable. Hence, the PRF entry is

Section 3: Phase 1 41

not linked into the label reference chain
or into the definition point chain. This
entry is applicable to code generation
only.

Arithmetic IF Entry

This entry is generated for each occur-
rence of an arithmetic IF source statement.
Each label specified is assumed to be
referenced at this entry. This item is
linked to the preceding label-referencing
PRF item. A label value of zero indicates
fall-through to the next executable state-
ment. If the expression contains a
reference to an abnormal function, this
item serves as a redefinition point for all
COMMON variables and is linked into the
common definition chain within the PRF.

The test expression is in the ERF.

Logical I¥ Entry

This entry, generated for each occur-
rence of a logical IF source statement,
combines the logical expression part with a
conditional branch part to make the PRF
entry very similar to the arithmetic IF.

If the conditional statement is not a
simple GO TO source statement, the expres-
sion is negated, a label is generated, and
a transfer true to the generated label is
indicated. This item is linked to the pre-
ceding label referencing PRF item. If the
expression contains a reference to an
abnormal function, this item serves as a
redefinition point for all COMMON variables
and is linked into the COMMON definition
chain within the PRF.

CALL Entry

Statement numbers specified as actual
arguments of a CALL source statement are
entered into a list in a PRF entry. Each
label in the list is assumed to be
referenced at this PRF entry. Hence, CALL
PRF entries are linked to the preceding
label referencing PRF entry. The occur-
rence of a CALL source statement, which is
a reference to an abnormal function, is a
redefinition point for all COMMON variables
and is linked into the COMMON definition
chain within the PRF.

The occurrence of a CALL source state-
ment also effects the generation of an
argument definition point PRF entry for
each actual argument of the call that is a
simple or subscripted variable. Each of
these PRF entries is linked to the previous
definition point of the argument.

42

Arqument Definition Entry

This entry is generated for each actual
argument of an external reference (a call)
that is a simple or subscripted variable.
Each entry is linked into the definition
chain of the particular variable.

RETURN Entry

This entry is generated for each occur-
rence of a RETURN source statement within a
subprogram. STOP PRF entries are generated
for RETURN statements occurring within a
main program. These entries are either
explicit or implicit references to global
(external) labels. As such, they are
linked to the preceding label referencing
PRF entry.

Begin Loop Entry

For each DO statement, each implied DO
statement, and around the total PRF exclud-
ing global (external) entry points, there
are begin and end loop PRF entries. For
each begin loop three successive PRF
entries are made. Having three entries
facilitates the optimization processing of
Phase 3. Loop PRF entries are interlinked.
Each begin loop links to the previous begin
loop and end loop PRF entries. The begin
loop entry is also linked to its own end
loop PRF entry.

End Loop Entry

This entry is generated upon completion
of the processing of a statement with a
iabel that matches the last label in the DO
pushdown list. An end loop entry is linked
to the corresponding begin loop and to the
previous loop PRF entry, begin or end.

CONTINUE Entry

An entry is included only to show pres-
ence of CONTINUE statements in the source
program.

READ, READ Without Unit, and READ With
NAMELIST Entries

An entry is generated for these source
input statements. READ statements having
either an EOF label or an ERR label speci-
fied are linked into the label reference
chain of the PRF.

WRITE and WRITE With NAMELIST Entries

These are generated by WRITE source
statements.

PRINT and PUNCH Eniries

These are degenerate (particular) cases
of WRITE source statements.

Input/Output List Representation in the PRF
Entry

Each entry is a redefinition point when
the list is associated with a READ state-
ment. Begin and End Loop PRF entries from
implied DOs are appropriately interspersed.
A list sequence of PRF entries follows the
I/0 PRF entry with which they are to be
associated.

End List Entry

This is a control entry in the PRF
sequence to indicate the termination of an
I/0 list sequence to the code generation
phase.

END FILE, REWIND, and BACKSPACE Entries

An entry is generated upon occurrence of
each of these statements in the source
program.

STOP Entry
This entry is generated upon occurrence
of a STOP statement in the source program

or for a RETURN statement appearing in a
main program.

PAUSE Entry

This entry is generated upon occurrence
of a PAUSE in the source program.

End Program Entry

PRF control entry to indicate the end of
the PRF.

EXPRESSION FILE

The expression file consists of individ-
ual strings of entries which are operands
and operators in the usual right-hand
Polish notation. These strings represent
all arithmetic and logical expressions
occurring in the source prcgram and any
subscripts that are not constants. Expres-
sion file entries are generated by the fol-
lowing statements: equation, arithmetic
and logical IF, READ, WRITE, PRINT, PUNCH,
RETURN with variable index, ASSIGN,
assigned and computed GO TO, and CALL. An

entry may consist only of an operand, as is
the case with the entries for ASSIGN, GO
TO, RETURN, etc., statements.

Subscript Expressions

For subscript expressions, especially
those containing loop variables, the occur-
rence of a loop variable causes its initial
value to be incorporated into the expres-
sion. Also, the array item length is in-
corporated into the expression, so that the
expression can be used directly in address
computation. Wherever possible, terms are
combined in order to increase efficiency.
Finally, two additional plus operators are
included before the special subscript
operator to facilitate processing by Phase
3.

Special representations in the ERF are
shown below.

Function and subroutine references:

F(x) b ¢
Fix,y) X
F(x,y,2) x

-

- u
N

o T -

Max and Min function references:

AMAX1 (X,Y, 2)
AMAXO0(I, J, K)

X Y MAX 2 MAX
I J MAX K MAX FLOAT ;

Subscripts:

array - variable item with offset
and flag

subscript - sum of products
expression

subscript - :
operator

STORAGE SPECIFICATION TABLES

The storage specification tables consist
of two types of entries: a common entry
and an equivalence entry. A common entry
is made for each occurrence of a COMMON
statement in the source program and repre-
sents each variable and its particular
storage class (blank or named COMMON) in
the statement. An equivalence entry is
made for each occurrence of an EQUIVALENCE
statement in the source program and repre-
sents the variables in each EQUIVALENCE
group and their offsets, if any.

Section 3: Phase 1 43

The way an equivalence entry is made
depends on the dimension information pre-
ceding or focllowing the equivalence
statement.

In the event that dimension information
for a particular variable (DIMENSION, COM-
MON or TYPE statement) or that a sub-
scripted variable in the EQUIVALENCE state-
ment contains only a single subscript, the
offset in EEl1 or EE6 is computed.

EE2-5 or EE7-10 are not used.

The type field in EE1l or EE6 indicates
the type of variable.

When dimension information dces not pre-
cede the EQUIVALENCE statement and a sub-
scripted variable in the EQUIVALENCE state-
ment contains more than one subscript, EEl1
or EE6 contains the number of subscripts.
In this case EE2 or EE7 are required, and
EE3-5 or EEB8-10 may be required.

The type field in EEl or EE6 is set to
*FF'. indicating that this variable con-
tains the number of subscripts in EEl1l or
EE6 followed by EE2 or EE7 and possibly
EE3-5 or EE8-10.

DIMENSION TABLE

The dimension table consists of entries
in the preset data reference set. An entry
is made for each array dimension specifica-
tion occurring in the source program.

These specifications may occur in DIMEN-
SION, COMMON, or explicit type statements.
If the array is not a formal argument, the
entry represents the number of dimensions,
total size, and the dimension products of
the array. If the array is a formal argu-
ment, the entry represents the number of
dimensions and the individual size specifi-
cations (value for a constant or symbol
table pointer for a variable).

NAMELIST TABLE

The namelist table consists of entries
in the preset data reference set. Each
entry consists of a set of symbol table
pointers to the variables in a given NAME-
LIST. An entry is made for each occurrence
of a namelist name in a NAMELIST statement.

STORAGE CLASS TABLE

Phase 1 also adds certain information to
the storage class table. Each COMMON block
name occurring in a COMMON statement is
entered into the storage class table and
causes the count containing the number of
COMMON block names to be updated. Also,

44

for each occurrence of a FORMAT statement
or a literal constant (except as initial
values in a DATA or Type statement), the
alphameric storage class counter is incre-
mented by the number of bytes in the format
or literal constant.

FORMAT PROCESSING

Format labels are entered into the sym-
bol table and marked as defined. The cur-
rent value of the alphameric storage class
counter is entered as the storage location
in the descriptive part of the symbol table
entry.

The alphameric format information,
including the initial open parenthesis and
the terminal closing parenthesis, is output
as an alphameric table entry in the preset-
data-reference set. The location of this
entry is entered into the descriptive part
cf the label symbol table entry. The
alphameric storage class counter is incre-
mented by the number of bytes of alphameric
information.

The alphameric table entry consists of
an identification element, an alphameric
element, and either a termination element
or a continuation element. All alphameric
table entries are linked together. As each
new entry is made after the initial entry,
the terminal ID is changed to continuation,
and the new entry location is entered as
the continuation link.

ALPHAMERIC CONSTANTS

A label is generated for each occurrence
of an alphameric constant as an actual
argument of a subroutine call. This label
is entered into the symbol table, in a
manner analogous to a format label. The
entrance constitutes both the definition
and the reference of this label. The
storage class is set to 3, and the current
value of the class-3 location counter is
entered into the label symbol table entry.
The location counter is incremented by the
size of the literal constant. An alphamer-
ic entry is made in the alphameric table
{see "Format Processing®).

Literal constants occurring as preset
data are processed in the same manner as
numeric constants occurring as preset data.

DATA PROCESSING

Each DATA statement and each data speci-
fication within a type statement produces a
data entry in the preset data reference set
transmitted to Phase 5. Each data entry
consists of a variable element, one or more

value elements, and a continuation or ter-
minal element. The variable elements have
a pointer to the variable symbol table
entry. The variable elements within a data
entry are linked together. The continua-
tion element links the data entries togeth-
er. The address of the first data entry is
in the intercom region.

CROSS REFERENCE INDEX LIST

If the user has selected the cross
reference option, each occurrence of a
statement number or variable identifier in
a program causes an entry to be made in the
cross reference index list. Each entry in
this list consists of a symbol table point-
er to the element name or label value, the
line number of the occurrence, and an indi-
cator. The indicator specifies that the
occurrence is an assignment or a defini-
tion, rather than the usage of or reference
to the element.

A variable identifier entry is marked as
assigned when it occurs, as follows:

1. To the left of the equal sign in an
assignment statement.

2. To the left of the equal sign in a DO
statement.

3. In an ASSIGN statement.
4. As an element of an input list.

S. As an element of a NAMELIST referenced
by a READ statement.

Statement number entries are marked as
defined when the label PRF entry is made.
All other occurrences of elements are usage
or reference entries.

PHASE 1 ROUTINES, FUNCTIONAL DESCRIPTION

Phase 1 routines can be grouped accord-
ing to the function they perform. A brief
description of the function of each group
and the routines belonging in each group
follow.

Pass 1 Statement Processors

These modules control the analysis and
encoding of each of the various FORTRAN
source statements. The modules are EQUA,
EXTE, GOTO, IF, TYPE, CONT, DIMN, COMM,
EQUI, DO, ASSI, FCON, RWIO, FORM, PSR,
NAMIL, BLDA, DATA, IMPL, BLNK, SUBE, CALL,
and END.

Pass 2 Statement Processors

Due to the conversational nature of the
compiler, certain operations pertaining to
the processing of a statement are best
delayed until it is sure the statement will
not be deleted. These modules perform the
final encoding and housekeeping operations
for each of the various FORTRAN source
statements. The modules are DCL2, EXEC2Z,
BLDA2, IMPL2, SUBE2, CALL2, and STFN2.

ExXpression Processing and Translation

These routines perform the analysis and
encoding of arithmetic and logical expres-
sions wherever they may occur. Two of
these routines are devoted exclusively to
subscript processing. They are SUBS and
TRMPRC. The other routines are EXPR,
CNVRT, SFDEF, SFEXP, FNCLS, LIBN, ARITH,
AARG, and CHKINT.

Source Extraction and Conversion

These routines perform the character-by-
character source analysis of the basic lan-
guage elements (variables, constants, and
labels) and any conversions required. They
also file these elements in the symbol
table as required. The routines are ESC,
ACOMP, FLRC, IVST, ICNV, FCNV, and FLIC.

Loop Processing Service Routines

The routines that perform the analysis
and encoding of loops whenever they occur
are BGNLP, ENDLP, CKLIM, and CLLIM.

1/0 Statement Processor Service Routines

These routines perform analysis and
encoding of parts of I/0 statements for
RWIO. The routines are IOLST, FLABL,
RTRAN, and FNAME.

Initial Value Processing Service Routines

These routines analyze and encode the
initial wvalues occurring in the explicit
type and DATA statements; they are IDATA
and IVAL.

Miscellaneous Service Routines

There are a number of routines that per-
form specific functions as required by
various statement processors and other rou-
tines. These routines and their functions
are as follows:

Section 3: Phase 1 45

ARDIM

LBSTR

SID

LABL

FALTH

ERR

analyze and enccde the dimension
specifications for an array when
encountered in a dimension, common
or type statement.

process the label string as encoun-
tered in the assigned and computed
GO TO statement.

classify each source statement and
assign its ID number.

encode statement labels and deter-
mine if any loops are ended.

determine if a statement number
reference was to the next sequen-
tial statement and mark the
reference for possible later
optimization.

generate a diagnostic message and
add it to the output data set.

ROUTINE DESCRIPTIONS

Phase 1 routines bear mnemonic titles as

well as coded labels.

The five-character

coded labels begin with the letters CEK;
the fourth and fifth letters identify a

be

specific routine. Various entry points to
a4 routine are identified by a sixth
character appended to the coded label.
mnemonic name beginning with the letters
TEV refers to an Executive routine or entry
point, rather than to a Phase 1 routine.
The corresponding coded label is given in
parentheses immediately following the
mnemonic.

Any

There are no hardware configuration
requirements for any of the Phase 1 rou-
tines. All these routines are reentrant,
nonresident, nonprivileged, and closed.
Zxcept for entry to the Constant Arithmetic
Interrupt routine (CEKRCS), which uses stan-
dard linkage, all entries must be by
restricted linkage conventions. Each Phase
1 routine has only one exit; there are no
special exits for error conditions.

Phase 1 is composed of 65 routines. The
relationships of these routines are shown
in the following nesting chart (Figure 15)
and decision table (Table 10). The rela-
tionships are shown in terms of levels; a
called routine is considered to be one
level lower than the calling routine. The
nesting chart is drawn to show only link-
ages to the fourth level. Phase 1 main
loop is considered to be level 1.

1g UOTI3O09S

1 sseyd

*GT 2anbta

3IxeyD butzseaN T aseud

r——w

! BLDAZ

]' ASS|

SUBE2 i [IMPL ‘l ’ FCON

B v) i
[TZ)IMN EOMN\ TYPE] FORM J NAML DATA RWIO BLDA EQUIJ [SID [SUBE
hALLZ GOTO ‘1 IMPL2 END STEN2Z
'
| 1 L l]
. . A BN . N BN - . A
IVEXE(? LBSTR J ARDIM PSR‘J { IOLST‘] FLABL RTRANJ FNAME [EXPR I IDATA
]]]
FALTH ENDLP BGNLP] SFDEF SFEXP SUBS ! LABL
/
N3 J
lfNCLS {AAKG? CHKINT} !‘ IVAL J

Table 10. Phase 1 Decision Table (Part 1 of 8)

Routines—————meee—eePhase l—— e e e e Level: lo-e—mmmme o
| B T T T T - 1
| i jcalled] |
|Routine | Usage jRoutines | Calling Conditions |
pm— g e $-—= N T .
PH1M	Phase 1 Main Loop	SID	To identify the type of source statement.
		EQUA	To process logical and arithmetic assign-
i		ment statements.	
{		EXTE	To process EXTERNAL statements.
i }	GOTO	To process GO TO statements.	
		IF	To process Arithmetic and Logical IF
			statements.
		TYPE	To process type declaration statements.
		CONT	To process CONTINUE statements.
		DIMN	To process DIMENSION statements.
		COMM	To process COMMON statements.
		EQUI	To process EQUIVALENCE statements.
{ i { DO JTo process DO statements.			
]	ASSI	To process ASSIGN statements.	
i]	FCON	To process BACKSPACE, END FILE, and REWIND	
]			statements.
] i	RWIO	To process READ, WRITE, PRINT, and PUNCH	
; i I	statements.		
]	FORM	To process FORMAT statements.	
{	PSR	To process PAUSE, STOP, and RETURN	
			statements.
{ i	NAML	To process NARMELIST statements.	
		BLDA	To process BLOCK DATA statements.
		DATA	To process DATA statements.
		IMPL	To process IMPLICIT statements.
		BLNK	To process blank source statements.
		SUBE {To process ENTRY, FUNCTION, and SUBROUTINE	
{ {		statements.	
i {	CALL	To process CALL statements.	
{	END	To process END statements.	
i	DCL2	To terminate processing of various	
			declaration statements.
i	EXEC2	To terminate processing of executable	
		statements.	
]		BLDAZ	{To set program type for BLOCK DATA
i			statements.
		IMPL2	To perform final housekeeping for IMPLICIT
i]	statements. I		
]		SUBE2	To make PRF entries for ENTRY, FUNCTION,
			and SUBROUTINE statements.
i	CALL2	To adjust the CALL PRF entry.	
i }	STFN2 [To terminate processing of Statement		
i		Functiomns.]	
		ESC	To obtain next source character.
	{IVST	To make Symbol Table entry for alphameric	
i]	names. I		
]	ERR [To generate diagnostic messages.		
{	TEVGNS	To get next source statement.	
		(CEKTC)	
L e e R AL i R 3

48

Table 10. Phase 1 Decision Table

Routine:———————vcw——— Phase 1--

(Part 2 of 8)

-—— Level: 2————m——ee
r=——-— T -TTTTTT =TT TeTTmTmTT T T T === 1
| | |Called | |
|Routine | Usage |Routines | Calling Conditions |
; —+ $ $=mm e .
|SID | Source statement |ESC |To obtain next source character. |
| | identification { ERR |To generate diagnostic messages. |
e = — R St o - -
EQUA {Equation statement	LABL	To process statement label.	
	processor =~	EXPR	To translate source language expressions
			into Polish Notation.
		ERR	To generate diagnostic messages.
t + } T :			
EXTE	EXTERNAL statement	ACOMP	To assemble source characters into basic
	processor		components.
		ERR	To generate diagnostic messages.
e +-—- 4 i			
GOTO }GO TO statement	ESC {To obtain next source character. i		
	processor	AcoMP	To assemble source characters into basic
			components.
		LABL	To process statement labels.
		LBSTR	To process a string of labels.
		ERR	To generate diagnostic messages.
F + - + + 1			
IF	IF statement processor	ESC {To obtain next source character.	
]		ACOMP	To assemble source characters into basic
			components.
		EXPR	To translate source language expressions
			into Polish Notation.
		LABL	To process statement labels.
		ERR {To generate diagnostic messages.	
H	TEVCRL jExec routine that creates a label for a		
I		(CEKTFM)	code file.
—— 1 $ - ———- —mmm o 4			
TYPE	Explicit type statement	ESC	To obtain next source character.
	processor	ACOMP	To assemble source characters into basic
		components.	
		ARDIM	To process dimension specifications for anj
	[array.	
I	IDATA	To process initial value data for type and	
			DATA statements.
		ERR	To generate diagnostic messages.
b + : + ——mmmmm—mee :			
CONT	CONTINUE statement	ESC	To obtain next source character.
	processor	LABL	To process statement labels. i
		ERR	To generate diagnostic messages.
e o + + :			
DIMM	DIMENSION statement	ACOMP	To assemble source characters into basic
i	processor	components.	
1	ARDIM	To process dimension specifications for anj	
[[array.	
		ERR	To generate diagnostic messages.
b -—4 4 T 4			
COMM	COMMON statement	ACOMP	To assemble source characters into basic
	processor	components.	
		ARDIM	To process dimension specifications for an
[[array. l	
]	ERR	To generate diagnostic messages.	
; t -— —- 1 1 1			
EQUI JEQUIVALENCE	ESC	To obtain next source character.	
	statement processor	ACOMP	To assemble source characters into basic
! l] } components.			
{	SUBS {To translate subscript expressions into		
			Polish Notation.
		ERR	To generate diagnostic messages.
L -1 i 1 3

Section 3: Phase 1 49

Table 10. Phase 1 Decision Table (Part 3 of 8)

Routin€i———————w——m- Phase 1o e e e e e e e e e Level: 2--(Cont'd)--
=== T = - T D B e 1
| | {Called | |
|Routine | Usage |Routines | Calling Conditions |
S e e e - -
DO	DO statement	ACcoOMP	To assemble source characters into basic
	processor		components.
		LABL	To process statement labels.
i		BGNLP	To process Begin Loop information.
H	ERR	To generate diagnostic messages.	
e + § T :			
ASSI	ASSIGN statement	ESC	To obtain next source character.
	processor	ACOMP	To assemble source characters into basic

| i | } components. |
| | | LABL |To process statement labels. i
| | | ERR | To generate diagnostic messages. |
i { | TEVFLL |Exec routine that makes Symbol Table entry|
| i | (CEKTFL)J for created labpel.

e $--- + R T 1
FCON	File control statements	ACOMP	To assemble source characters into basic
	processor (BACKSPACE,		components.
	END, FILE, REWIND)	LABL	To process statement labels.
i		ERR	To generate diagnostic messages.
{	jTVsT	To make Symbol Table entries for alphamer-	
i i	ic names.		
T —4 + oo 1			
RWIO	I/0 statements	ACOMP	To assemble source characters into basic

| | processor (READ, NRITE, | | components. |
| | PRINT, PUNCH) | LABL |To process statement labels. i
i	IOLST {To process list elements for READ, WRITE,		
			PRINT, and PUNCH statements.
H	ERR	To generate diagnostic statements.	
		FLABL	To process FORMAT statements.
		RTRAN	To process ERR and END labels.
		FNAME	To process variable FORMAT designators or
		NAMELIST names.	
		IVST	To make Symbol Table entries for alphamer-
	i	ic names.	
i	TEVIY {Exec routine that files an Integer *4		
! { (CERTFC)	constant.		
b= == —- + 1 - - :			
FORM	FORMAT statement	ESC	To obtain next source character.
	processor	ERR [To generate diagnostic messages.	
{		TEVFLL	Exec routine that makes Symbol Table
		(CEKTFL)l entries for created labels.	
pomm e - + e i			
NAML	NAMELIST statement { ACOMP]To assemble source characters into basic		
]		components.	
		ERR lTo generate diagnostic messages.	
t —+ + —- e .			
BLDA	BLOCK DATA {ESC	To obtain next source character.]	
	statement processor	ERR]To generate diagnostic messages.	
T + -—-- O 4			
DATA	DATA statement	ACOMP [To assemble source characters into basic	

{ processor		components.	
		suUBS	To translate subscript expressions into
			Polish Notation.
		IDATA	To process initial value data for type and
]	DATA statements. I	
{	ERR	To generate diagnostic messages.	
e + + -1			
IMPL {IMPLICIT statement	ESC	To obtain next source character.	
	processor {ACoOMP	To assemble source characters into basic	
l	1	components.	
	ERR	To generate diagnostic messages.	
L

|
i

[

A e e ——————— -

50

Table 10. Phase 1 Decision Table (Part 4 of 8

Routine;-——————————~Phase 1

)

—— Level: 2--(Cont'd)--
[m——————— e To———————— T T T T T T T T T T T T e 1
| {called | |
|Routine | Usage | Routines | Calling Conditions |
R S G fo—— oo S i
| BLNK |Blank statement | ERR |To generate diagnostic messages. |
| | processor | | |
———————————————————————————— —4-- o — - e
SUBE {Subprogram entry	ACOMP	To assemble source characters into basic	
	statements processor		components.
	(ENTRY, FUNCTION,	ERR	To generate diagnostic messages.
	SUBROUTINE)	TEVCRL	Execute routine that creates a label for
		(CEKTFM)	the code file.
e - e (e e 1			
CALL {CALL statement	LABL	To process statement 1labels.	
	processor	EXPR	To translate source language expressions
]	into Polish Notation.	
pm———1t S 1 T 3			
END	END statement	ENDLP	To encode the End Loop entries.
	processor	PSR	To process PAUSE, STOP, and RETURN
i			statements.
]		ERR	To generate diagnostic messages. i
—— oo + ¥ - 1			
DCL2	[Declaration statements	none	
	final processing		
1 e e e e e e e e e e e oo e e e e o o i e o . i e e e . o . e e e i e i e i A . o B e e i i e e i e e e . . S0 e S e et e e S T e o e			
b , + 1 1			
BLDAZ2 {BLOCK DATA statement	none		
	final processing		
e p—— S 1			
IMPL2 JIMPLICIT statement	none		
	final processing		f
e e e e t - 1			
SUBE2	Subprogram entry	none	
	statements final		
	processing]
G T - + + e oo 1			
CALL2	CALL statement final	EXEC2	To terminate processing of executable
	processing		statements. j
4 4 4			
Db S - T B I -= R			
STFN2	Statement function	none]	
	statement final		
	processing		{
IR S— i i J			
Section 3: Phase 1 51

Table 10. Phase 1 Decision

Table (Part 5 of 8)

Routine:————m e PhaSe 1 e e e e e e Level: 33—
Fm———— = B e it T e i s g
| | : jcalled | |
{Routine | Usage |Routines | Calling Conditions |
b o -+ T —— 4
PSR	PAUSE, STOP, RETURWN	ACOMP	To assemble source characters into basic
	statement processor		components.
		LABL	To process statement labels.
		ERR	To generate diagnostic messages.
i		TEVCRL	Exec routine that creates a label for the
{	(CEKTFM)	code file.	
v e I :			
EXEC2	Executable statements	ENDLP	To encode the End Loop entries.
	final processing	FALTH	To check for references to current labasl.
— t -+ ———- I 1			
EXPR	Process expression	ACOMP	To assemble source character into basic
			components.
		SUBS	To translate subscript expressions into
	!	Polish Notation.	
		CNVRT jTo convert constants to new type.	
{		FNCLS jTo determine proper class of a function.	
		LIBN	To select appropriate Library Function
			name.
		SFDEF	[To make entries in the Statement Function
			Expression File.
i	SFEXP	To make entries in the Expression File.	
		AARG	To make Argument Definition entries in thej
l 1 [PRF. 1		
i	ERR	To generate diagnostic messages.	
		CHKINT	To treat floating point overflow and
i			divide checks.
F —1 N 1 } —- T 1			
ARDIM [Process array dimension	ESC	To obtain next source character.	
{	specification	ACOMP	To assemble source character into basic
	{	components.	
{	ERR	To generate diagnostic message.	
et S + i T 1			
IDATA	Process initial data	ERR	To generate diagnostic message.
	specifications	IVAL	To process constants as initial values in
			type or DATA statements.
T frmm + } 4			
IOLST	Process I/0 statement	ESC	To obtain next source character.
	1list	ACOMP	To assemble source character into basic
]	components.	
		SUBs	To translate subscript expressions into
			Polish Notation.
		BGNLP	To process Begin Loop information.
i	{ ENDLP	To encode End Loop entries.	
		ERR	To generate diagnostic messages.]
} { | IVST { To make Symbol Table entries for alphamer-|
{ { | | 1ic names.

b -—4 — - - T .
FLABL	Process FORMAT state-	ERR	To generate diagnostic message.
	ment number in I/O	TEVFLL	Exec routine that makes Symbol Table
	statement	(CEKTFL)	entry for created label.
et T .			
RTRAN	Process END and ERR	ACOMP	To assemble source characters into basic
i } statement numbers i	components.		
{ { in READ statements	ERR	To generate diagnostic message.	
Gy - + + :			
FNAME	Process FORMAT an	ERR	To generate diagnostic message.
	NAMELIST name in		
] { I/0 statements]		
———————— — e -+ T			
LBSTR	Process label string in	{ESC	To obtain next source character.
{ Assigned and Computed	ACOMP	To assemble source characters into basic	
{	GO TO statements		components.
1	ERR	To generate diagnostic message.	
b B 1 B O i

52

Table 10. Phase 1 Decision Table {(Part 6 of 8)

Routinet ——————mue Phase lo—emem e e ———————— Level: Yoo
P T lcallea | T i
calle }

|Routine | Usage jRoutines | Calling Conditions |
O e T O ST, ot
| SUBS |Process subscripts | ACOMP {To assemble source characters into basic |
| | | | components. i
| | |ERR {To generate diagnostic message.]
1 | | TEMPRO jTo process a tentative subscript term pre-|
	i pared by SUBS.		
		TEVI4	Exec routine that files an Integer#*4
		(CEKTFC)	constant.
k- e ——————t + o - i			
LABL	Process statement number	ERR	To generate diagnostic message.
		TEVCRL {Exec routine that creates a label for the	
}	(CEKTFM)	«code file.	
G -- " ——t- G			
BGNLP	Process and generate	ACOMP {To assemble source characters into basic	
	Begin Loop elements		components. i
		CKLIM {To check loop parameters for validity.	
i		ERR	To generate diagnostic message.
]	TEVCRL {Exec routine that creates a label for the		
		(CEKTFM)] code file.	
e —4 -— + —1 T —			
ENDLP	Generate End Loop	CLLIM {To remove loop parameter information from	
		Symbol Table.]	

L S P - 4 -+ —— 4
r T T Ry 1
iFALTH |Determine fall- through | ERR {To generate diagnostic message. |
| | on GO TO and IF | | |
| | statements.] { |
T T I - 1
| SFDEF |Initialize for statement |ESC |To obtain next source character.]
| | function definition |ACOMP {To assemble source characters into basic |
| | | | components. I
| | |ERR {To generate diagnostic message. |
e — o + -+ - 1
| SFEXP | Expand Statement | ACOMP |To assemble source characters into basic |
| | Function reference { { components. |
1 i iERR }To generate diagnostic messages. |
— —_— e e e e o 22 e et i e o e e o 7 e e ' 4

r T T 1 1
| FNCLS |classify function name | none | |
; ——1- - ——4- -1
IVAL	Process initial values in	ESC	To obtain next source characters.
	DATA or type	ACoOMP [To assemble source characters into basic	
	statements	components	
		CNVRT jTo convert constants to new type.	
		ERR	To generate diagnostic message.
r — - - 1 e 1			
AARG	Process function	none	
L	argument 1 l J		
JERER SE—— - 4 S S			
CHKINT	[Check for arithmetic	none	
} interrupt during)	
	expression processing		
_ _— 1 L —_— _—			

Section 3: Phase 1 53

Table 10. Phase 1 Decision Table (Part 7 of 8)
Routine@:————meee e —PhasSe 1= e e Level: S—mmemmmmee
[e - T T e B i |
| l {Called] |
|Routine | Usage |Routines | Calling Conditions |
Y o 1
| ACOMP |Assemble component | ESC |To obtain next source character. |
| | (operand-operator pair) |{FLRC |To file real and complex constants in Sym-|
| { | { bol Table. I
{ { |IVST |To make Symbol Table entries for alphamer-|
| | | i ic names. |
| i {ICNV |To convert a decimal integer to a binary |
| l 1 | integer. [
		FLIC	To file integer constants in the Symbol
]		Table.	
i	ERR [To generate diagnostic message.		
i	TEVCRL	Exec routine that creates a label for the	
		(CERTFM)	code file.
b + 4 $-—- T			
CNVRT {Checks types and converts	LIBN	To select appropriate Library Function	
	constants		name.
		ARITH jTo perform all constant arithmetic.	
		ERR	To generate diagnostic message.
N St 1 } -y			
TEMPRO	Process subscript term	ERR	To generate diagnostic message.
t 4 - 1 - 1			
CKLIM	Check loop parameters	acomp	To assemble source characters into basic
	for correctness and		components.
	validity	ERR	To generate diagnostic message.
I —— + } :			
CLLIM	Clear flags on loop	none	
	parameters at End Loop	i	
L JE— N 4 1 U 4			
Routine:—————mmm e Phase 1 Level: 6—————m————			
T T -T 1			
ESC	Extract source character	none i	
} -—+ 4 —- 4			
LIBN	Select Library Function	IVST	To make Symbol Table entries for {
{	name		alphameric names.
{		ERR {To generate diagnostic message.	
F 1 + + - i			
FLRC	File real constant in {FCNV	To convert a decimal constant to floating	
	Symbol Table		binary.
i		ERR	To generate diagnostic message.
		TEVRY	Exec routine to file a Real*4 constant.
i	(CEKTFD)		
		TEVRS	BExec routine to file a Real*8 constant.
} {	(CEKTFE)		
}	TEVCS	Exec routine to file a Complex*8 constant.	
		(CEKRTFF)	
{ i	TEVC16	Exec routine to file a Complex*16	
			constant.
		(CEKTFG)	
k -+ + + —————- B			
FLIC	File integer constant in	ICNV	To convert a decimal integer to a binary
{	Symbol Table.		1integer.
i		ERR	To generate diagnostic message.
i	TEVIY	Exec routine to file an Integer*4	
		(CEKTFC)	constant.
—— 1 ¥			
ARITH	Perform constant	ERR	To generate diagnostic message.
} arithmetic during	CHCBGA		
{	expression scan	CHCBRC	
	{CHCBIA	FORTRAN Math Library exponentiation	
H {	CHCBKA	routines.	
{		CHCBMC	
I L e i 1 4			

Table 10. Phase 1 Decision Table (Part 8 of 8)
Routinei—we——mm—e e Phase e e e e e e e e Level: Tow—emomeee—
———————- B [e T | - 1
| | {Called | |
|Routine | Usage |Routines | Calling Conditions |
——————— frmmm e + + - 1
| IVST |File variable name in | ERR |To generate diagnostic message. |
| | Symbol Table { | |
v $——- - + $- 1
FCNV {Convert floating-point	ICNV	To convert a decimal integer to a binary	
	number from decimal		integer.
	to binary.	ERR	To generate diagnostic message.
PV SN _— 1o__ L J			
Routine:--—-——~——————--Phase 1 - Level: 8————emmmmme			
[y - T T 1			
ICNV	Convert integer from { none		
	decimal to binary. {] i		
% -—1 -——1 $ i			
ERR	Generate diagnostic	TEVRDM	Exec routine that issues a diagnostic
	message	(CEKTE)	message.
S § L L - J			
CERAD -- Phase 1 Main lLoop (PHIM)
BKPB, BPNTR,
PH1M controls the identification, analy-
sis, and encoding of source data in Phase
1. See Chart AM.
BKPB, BPNTR
2
ENTRIES: PH1M has one entry point CEKADI1.
Exec intercom base is expected in parameter
register P2. Q%%i
EXIT: No output parameters.
BKPB, | BPNTR,
OPERATION: PH1M performs all initializa-
tion for Phase 1. This includes generation

of a begin program PRF item, followed by
the begin loop PRF items for the false
loop. Following initialization, a source
statement is read, identified, analyzed,
and encoded by calling appropriate subrou-
tines. At this point, the next source
statement is read, and the forget and
delete flags are tested. If either the
forget flag (set by GNSS) or the delete
flag (set by any of the statement process-
ing subroutines) is raised, the previously
encoded statement is deleted. The state-
ment deletion is accomplished by resetting
appropriate items in intercom from their
respective backup values. These backups
are set for each statement prior to state-
ment processing. The symbol table is
restored for variable items, through use of
a symbol table save area (Figure 16).
Backups for all variable symbol table
entries except the NAME, DPP, LINK, TYPE,
and LINKF items are entered into the save
area, and if deletion is required, these
backups are used to restore the symbol
table entries. After deletion, the next
statement is processed.

BKPB - Backup Byte for Symbol Table change
BPNTR - Byte Pointer into Symbol Table for BKPB

Figure 16. Symbol Table Save Area

If the statement is not deleted, the
appropriate subroutine is called to com-
plete the processing for that statement.
All tables which may have been updated are
then checked for overflow. If no overflow
occurred and the statement just processed
was not an END statement, control is trans-
ferred to the beginning of the loop, to
process the next statement.

CEKAK -- Assignment Statement Processor

(EQUA)

EQUA analyzes and encodes logical and
arithmetic assignment statements. See
Chart AN.

ENTRIES: EQUA has one entry point (CEKAK1)
and no input parameters.
55

Section 3: Phase 1

EXIT: No output parameters.

OPERATION: EQUA generates an equation PRF
entry and than calls the Expression Scan
subroutine. If the expression is a state-
ment function definition, the PRF entry is
deleted, and the statement ID number is
changed from assignment to statement
function.

CERAM -- EXTERNAL Stafement Processor
(EXTE)

EXTE analyzes and encodes the EXTERNAL
statement. See Chart AO.

ENTRIES: EXTE has one entry point (CEKAMA)
and no input parameters.

EXIT: No output parameters.

OPERATION: EXTE checks to see that the
statement is not in a BLOCK DATA program
and is not the conditional statement of a
logical IF. If not, the statement is
scanned, and the variables listed are
marked as "external function" in the symbol
table. If the statement is in a BLOCK DATA
program or is the conditional statement of
a logical IF, an error message is produced
and the scan is terminated.

CERAQ -~ GO TO Statement Processor (GOTO)

GOTO analyzes and encodes all forms of
the GO TO statement. See Chart AP.

ENTRIES: GOTO has one entry point (CEKA-
QA), with no input parameters

EXIT: No output parameters.

OPERATION: After calling the Label Pro-
cessing routine, GOTO determines whether
the statement is an unconditional GO TO,
assigned GO TO, or computed GO TO. In each
case, the appropriate PRF entry is made.

If an unconditional GO TO is the condition-
al statement of a logical IF, the sign of
the ERF entry for the logical IF is
changed, and the GO TO label value is
inserted as the true transfer label in the
logical IF PRF entry. For the assigned and
computed GO TO, internal subroutine LBSTR
is called to process the label list into
the PRF entry.

CEKAR =-- IF Statement Processor (IF)

IF analyzes and encodes the arithmetic
and logical IF statements. See Chart AQ.

ENTRIES: IF has one entry point (CEKARA),
with no input parameters.

EXIT: No output parameters.

56

OPERATION: After calling the label pro-
cessing routine, IF generates an arithmetic
IF PRF entry. It then calls upon the
Expression Processing routine to analyze
and encode the conditional expression. If
the expression type is logical, the
logical-IF indicator is set and the PRF
entry ID is changed to logical IF. A non-
source label is created and entered as the
"true®" transfer label in the PRF entry. If
the expression type is arithmetic, the
three transfer labels are entered in the
PRF entry.

CEKAS -- Type Statements Processor (TYPE)

TYPE analyzes and encodes the type
statements, including INTEGER, REAL, COM-
PLEX, LOGICAL, and DOUBLE PRECISION. See
Chart AR.

ENTRIES: TYPE has five entry points, each
of which requires no input parameters. The
five entry points are INTE (CEKASI) for the
INTEGER statement, REAL (CEKASR) for the
REAL statement, COMP (CEKASC) for the COM-
PLEX statement, LOGL (CERASL) for the LOGI-
CAL statement, and DOBP (CEKASD) for the
DOUBLE PRECISION statement.

EXIT: No output parameters.

OPERATION: A type switch is set to show
which type statement is used. Where the
statement is not DOUBLE PRECISION, TYPE
scans it for a length indication; if there
is a length indication, the type switch is
adjusted to show the length. TYPE then
continues the scan, picking up variables
and making entries in the symbol table to
specify the variable type. If the variable
is dimensioned, TYPE also makes entries in
the dimension table to specify array
length. If a dimension specification is
encountered (indicated by a variable fol-
lowed by a left parenthesis), the Dimension
Scan routine is called to process the
dimension. If an initial value specifica-
tion is encountered (indicated by a slash),
the Data Scan routine is called to process
the initial values.

CEKAT -~ CONTINUE Statement Processor
{CONT).

CONT analyzes and encodes the CONTINUE
statement.

ENTRIES: CONT has one entry point (CEKAT1)
and no input parameters.

EXIT: No output parameters.

OPERATION: CONT calls the label processing
subroutine to convert the label, if any,
and to see if any loops are ended. The

logical IF indicator is tested to see if
this is the conditional statement of a log-

ical IF statement, and a warning message is
issued if it is. A CONTINUE PRF entry is
made, and the statement scanned to see that
the remainder of the statement is blank.

CEKAU -- DIMENSION Statement Processor
(DIMN)

DIMN analyzes and encodes the DIMENSION
statement. See Chart AS.

ENTRIES: DIMN has one entry
no input parameters.

(CEKAUA), with

EXIT:

No output parameters.

OPERATION: DIMN first checks to see that
the DIMENSION statement is not a condition-
al statement of a Logical IF. It then pro-
ceeds to scan the statement calling the
dimension specification processing routine,
to process the dimension values as they are
encountered for each variable. Appropriate
diagnostics are generated if any source
errors or incongruities are encountered.

CEKAV —-- COMMON Statement Processor (COMM)

COMM analyzes and encodes the COMMON
statement. See Chart AT

ENTRIES: COMM has one entry point (CEKAV1)
with no input parameters.

EXIT: No output parameters.

OPERATION: COMM first checks to see that
the COMMON statement is not a conditional
statement of a logical IF. If this is the
case, it then opens the common list entry
and begins the scan of the statement. Com-
ponents are acquired with the assemble com-
ponents routine, and variables are entered
into the common list. The symbol table
entry common flag is raised, and, if the
variable is followed by a left parenthesis,
the array dimension specification processor
routine is called to process the dimension
values.

Variables enclosed in slashes initiate a
search of the storage class table for named
COMMON blocks, and if any are found, the
storage class is appropriately set. Other-
wise, the name is entered as a named COMMON
block, and a new storage class is estab-
lished. 1If there are two slashes without
an intervening variable, the storage class
will be set to 9 for blank COMMON.

Appropriate diagnostics are generated if
any source errors or incongruities are
encountered.

CEKAY -- EQUIVALENCE Statement Processor
{EQUD)

EQUI performs the analysis and encoding

for the EQUIVALENCE statement. See Chart
AU.
ENTRIES: EQUI has one entry point (CEKAYA)

and no input parameters.

EXIT: No output parameters.

OPERATION: EQUI determines that the state-
ment 1s not the conditional statement of a
logical IF. If this is the case, the head-
ing information for the equivalence table
is entered into the storage specification
table. Source elements are acquired with
ACOMP and analyzed for syntactical correct-
ness. Variables are entered into the
equivalence table as they are encountered,
and subroutine SUBS is called to determined
any offsets indicated by a left parenthesis
following a variable. If an offset cannot
be completed because the dimension informa-
tion (TYPE, COMMON, or DIMENSION statement)
has not yet been specified for an equiva-
lence variable, the actual subscripts are
stored in the Storage Specification List.

Appropriate diagnostics are generated if
any source errors or incongruities are
encountered.

CEKAZ -~ DO Statement Processor (DO)

DO analyzes and encodes the DO state-
ment. See Chart AV.

ENTRIES: DO has one entry point (CEKAZ1)
and no input parameters.

EXIT: No output parameters.

OPERATION: DO determines that the state-
ment is not the conditional statement of a
logical IF. If it is not, A COMP is called
to acquire the label for the end loop. If
the label value is satisfactory, BGNLP is
called to process the loop variable, range,
and increment. Appropriate diagnostics are
generated if any source errors or incon-
gruities are encountered.

CEKBC -- ASSIGN Statement Processor (ASSI)

ASSI analyzes and encodes the ASSIGHN
statement. See Chart AW.

ENTRIES: ASSI has one entry point (CEKBCA)
and no input parameters.

EXIT: ©No output parameters.

OPERATION: ASSI generates a PRF entry for
the ASSIGN statement and then scans the

source characters. ACOMP is called to
acquire the assigned label and the vari-

Section 3: Phase 1 57

able. The intervening characters "TO" are
checked individually after calls on ESC.

Appropriate diagnostics are printed if
any source errxors oOr incongruities are
encountered.

CEKBD -- File Control Statement rProcessor
(FCON)

FCON analyzes and enccdes the BACKSPACE,

END FILE, and REWIND statements. See Chart
AX.
ENTRIES: FCON has three entry points:

BKSP (CEKBD1), ENDF (CEKBD2), and REWI
(CEKBD3) for the BACKSPACE, END FILE, and
REWIND statements, respectively. ¥FCON has
no input parameters.

EXIT: ©No output parameters.

OPERATION: FCON has three entry points & i
sets a switch to one of three values,
depending upon which entry was taken. A
PRF entry is generated and the switch set-
ting entered in that entry, to indicate
whether the source statement was BACKSPACE,
END FILE, or REWIND. ACOMP is called to
acquire the unit number, which is entered
into the PRF entry. The I/O initialization
library routine entry name (CHCIAl) is
filed in the symbol table and marked as
class external.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBE -- Input/Output Statement Processor
(RWIO)

RWIO analyzes and enccdes the READ,
WRITE, PRINT, and PUNCH statements. See
Chart AY.

ENTRIES: RWIO has four entry points: READ
(CEKBE1), WRIT (CEKBE2), PRNT (CEKBE3), and
PUNC (CEKBEW4), for the READ, WRITE, PRINT,
and PUNCH statements, respectively. RWIO
has no input parameters.

EXIT: No output parameters.

OPERATION: RWIO has four entry points.
Each entry point generates a PRF entry
corresponding to the type of source state-
ment. For the READ statement, RWIO first
determines whether or not it is a READ
without unit statement. For all state-
ments, the Assemble Components routine is
called to acquire statement components as
required. If no FORMAT reference is given,
the FORMAT pointer in the PRF entry is set
to X'8000°'.

If a NAMELIST reference is given in
place of a FORMAT reference, the PRF ENTRY

58

ID is changed accordingly. For the READ
statement, END and ERR condition transfer
options are checked and entered into the
PRF if present. If they are not given, the
statement number items in the PRF are set
to zero. Suproutine IOLST is called to
process the list elements if required. The
I/0 Initialization Library routine's entry
name (CHCIAl) is 1led in the symbol table
and marked as class external.

Appropriate diagnostics are printed if
any source errors Or incongruities are
encountered.

CERBF -- FORMAT Statement Processor {(FORM)

FORM analyzes and encodes the FORMAT
statement. See Chart AZ.

ENTRIES: FORM has two entry points:
CEKBF1, for Phase 1 FORMAT statement pro-
cessing, and SYSPFMT, for FORTRAN I/O-time
FORMAT statement processing. CEKBF1l has no
input parameters; SYSPFMT has the following
input parameters:

P2 -- FIO Translate Table
P3 -- Address of FORMAT statement
P4 -- FORMAT table output area
EXITS: Only the normal exit is made, with

no output parameters.

OPERATION: FORM begins by determining that
the statement is not the conditional state-
ment of a logical IF statement and not
inside a BLOCK DATA program. If this is
the case, the statement label is then con-
verted to its binary value and filed in the
symbol table (see Table 11).

The FORMAT table is initialized in the
Preset Data area, and encoding of the FOR-
MAT statement begins.

Table 11. Encoding of FORMAT Symbols

r————= - T - =1
| Character | ID Code |
t - -—-1 B it 1
| 0-9 | 1 |
| A,I,L,Z | 2 |
I D,E,F | 3 |
I G ! b I
| B | 5 |
I P | 6 |
| T I 7 |
| X [8 |
] e | 9 |
| / | 10 |
I (| 11 |
|) | 12 |
| .] i3 I
| . | 14 |
| ! I 15 I
| EOS i 16 |
| Other { 17 |
b SR, B

The encoding consists of f£illing out a
FORMAT table (see Table 12), through which
the compiler communicates format informa-
tion to FORTRAN I/0 routines. An entry is
placed in the table whenever a valid FORMAT
statement code is found. In addition, syn-
tax is checked, and diagnostics are issued
for errors. FORMAT statement processing
continues after diagnostics.

FORM terminates-tRke scan wnen it finds a
level-zero right parenthesis.

Table 12. Translation of Format Codes

CEKBG -- PAUSE, STOP, RETURN S

tatement

Processor {(PSR)

PSR analyzes and encodes the PAUSE,
STOP, and RETURN statements.

ENTRIES: PSR has four entry points:
(CEKBGl1), STOP (CEKBG2),

for the PAUSE,

respectively, and ESTOP (CEKBGY4) for the

sToP,

See Chart BA.

PAUS
and RETU (CEKBG3)

and RETURN statements,

call by the END statement processor (END).
None of the entry pcints has input

parameters.

FORMAT
CODE FORMAT TABLE ENTRY
SIZE 3YTE BYTE 3vTE WTE | BYTE BYTE
(BYTES) 0 1 2 3 4 5
STRING CHARACTER STRING
H LENGTH+2 X'0! LENGTH AS MANY BYTES AS NEEDED (MAX 255)
| 1 X
! | REPEAT
X 2 ; X2 . COUNT
T 2 Loxe o
i
1 SCALE
P 2 LoX4r FACTOR
L ONEST
) 2 X'5¢ ! LEVEL
]
. NEST REPEAT
{ 3 X6 i LEVEL COUNT
REPEAT
A 3 X7 COUNT w-1
| REPEAT
z 3 Xx'8’ | COUNT Wl
[i
| REPEAT
L 3 X L COUNT w-1
REPEAT
1 3 XA COUNT W-1
! REPEAT
3 G 4 X'B' COUNT W=l D
E i
| REPEAT
F 4 X'C! COUNT w-1 D
! REPEAT
) 4 oxo COUNT w-1 D
REPEAT
3 4 ©X'E COUNT w=1 D
SPECIAL ADDRESS OF CHARACTER
H & X'F LENGTH STRING

Section 3:

Phase 1

59

EXIT: No output parameters.

OPERATION: PSR has four entry points, one
each for the PAUSE, STCOP, and RETURN state-
ments, and one for a call from the END
statement processor {(to generate a stop
when there is flow into an END statement).
A PRF entry is generated for the PAUSE,
STOP, and RETURN statements, respectively.
An appropriate literal constant is filed
for the pause and stop entries and for a
return entry in a main program. A call
from the END statement processor causes a
stop PRF entry to be generated. The pause
and stop library routine entry names are
filed in the symbol table and marked as
class external.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBH —-- NAMELIST Statement Processor
{NAML)

NAML analyzes and encodes the NAMELIST
statement. See Chart BB.

ENTRIES: WNAML has one entry point (CEKBH1)
and no input parameters. :

EXIT: No output parameters.

OPERATION: NAML first checks to see that
the statement is not the conditiocnal state-
ment of a logical IF or in a BLOCK DATA
program. NAML then gets the Namelist name,
which must be enclosed in slashes. After
the Namelist name :3 checked for correct
class; a Namelist table entry is made and
the symbol table pointer for each variable
in the list is entered into the table.
Appropriate diagnostics are printed for any
source errors or incongruities encountered.

CEKBI -— BLOCK DATA Statement Processor
(BLDA)

BLDA analyzes and encodes the BLOCK DATA
statement. See Chart 3C.

ENTRIES: BLDA has one entry point (CEKBI1)
and no input parameters.

EXIT: HNo output parameters.

OPERATION: BLDA first determines that the
statement is not the conditional statement
of a logical IF. If this is the case, BLDA
checks the program type code to determine
whether it is unknown. If it is, a normal
exit is taken; otherwise, BLDA prints a
diagnostic and exits.

If the statement is the conditional

statement of a logical IF, BLDA prints a
diagnostic and exits.

60

CEKBM -- DATA Statement prrocessor (DATA)

DATA analyzes and encodes the DATA
statement. See Chart BD.
ENTRIES: DATA has one entry point (CEKBM1)
and no input parameters.
EXIT: No output parameters.
OPERATION: DATA first checks to see that
the statement is not the conditional state-
ment of a logical IF statement. The
variables in the statement are then
extracted and entered into a parameter
list, until a slash is encountered. Sub-
routine IDATA is called at entry DDATA to
process the initial value specifications
for the list of variables. The process is
repeated until an end of statement or a
source error is encountered. Appropriate
diagnostics are printed if any source
errors or incongruities are encountered.

CEKBN -- IMPLICIT Statement Processor
(IMPL)

IMPL analyzes and encodes the IMPLICIT
statement. See Chart BE.
ENTRIES: IMPL has one entry point (CEKBN1)
and no input parameters.
EXIT: No output parameters.
OPERATION: IMPL first determines that the
statement is not the conditional statement
of a logical IF statement. The implicit
type table is then copied into a temporary
hold area, where it can be modified without
destroying the current status of the table.
The type specification is extracted from
the source statement and identified, and
the corresponding type code is established.
The letters being typed are then extracted
and used as a index to modify the implicit
type table in the temporary hold area.

CEKBR -- Blank Statement Processor (BLNK)

BLNK processes a blank source statement.

ENTRIES: BLNK has one entry point (CEKBR1)
and no input parameters.

EXIT: No output parameters.

OPERATION: BLNK first checks the logical
IF indicator. 1If it is nonzero, a diag-
nostic is printed to the effect that no
conditional statement is given for a logi-
cal IF statement. If the logical IF indi-
cator is zero, the label field is checked
to see if it was blank. If so, a normal
exit is taken; otherwise, a diagnostic mes-
sage is printed.

CEKBG -- Subprogram Entry Statements
Processor {(SUBE)

SUBE analyzes and encodes the ENTRY,
FUNCTION, and SUBROUTINE statements. See
Chart BF.

ENTRIES: SUBE has two entry points: ENTR
(CEKBS1) and FUNC and SUBR (CEKBS2) for the
ENTRY FUNCTION, and SUBROUTINE statements,
respectively. None of the entry points has
input parameters.

pXIT: No output parameters.

OPERATION: SUBE has an entry point for
each of the three statements it processes.
For the ENTRY statement, the program type
is checked to ensure that it is a subpro-
gram. If the no flow flag is down (indi-
cating that the previous executable state-
ment transfers control only to the current
statement), a label is created and filed,
and the symbol table pointer is entered
into the PRF. This is done so that a
branch around the ENTRY statement can be
generated. The DO level is also checked
for zero, to ensure that the ENTRY state-
ment does not occur within a DO loop.

For FUNCTION and SUBROUTINE statements
the program type is checked to ensure that
it is unknown, thus indicating that no
statement except an IMPLICIT statement has
preceded it.

The PRF entries for these statements are
built in a temporary area, due to their
variable length. The entries assembled by
this routine are then copied into the PRF
as permanent entries during Pass 2, in sub-
routine SUBE2.

The entry name is acquired and classi-
fied. For the FUNCTION statement the type
option is processed and coded if given.
The dummy arguments are then scanned and
entered into the PRF. The symbol table
entries for each argument are flagged, and
the symbol table pointers are entered into
the storage class table.

Appropriate diagnostics are printed if
any source errors or incongruities are
encountered.

CEKBU -- CALL Statement Processor (CALL)

CALL analyzes and encodes the CALL
statement.

ENTRIES: CALL has one entry point (CEKBU1)
and no output parameters.
£EXIT: No output parameters.

OPERATION: CALL first calls LABL to pro-
cess the statement label, ifone is pre-

sent. CALL then generates a PRF entry for
the CALL statement. Finally, the expres-
sion scan routine (EXPR) is called to ana-
lyze and encode the subroutine name and the
arguments.

CEKAL -- END Statement Processor (END)

END performs the required processing for
an END statement. See Chart BG.

ZNTRIES: END has one entry point {(CERALL)
and no input parameters.

EXIT: No output parameters.
OPERATION: If the statement is the condi-

tional statement of a logical IF statement,
a diagnostic is produced and control is
returned to the caller. If the program
type is BLOCK DATA, the data flag is
checked and control is returned to the
caller. For all other conditions the
executable flag and the DO loop level are
checked. If the DO loop level is nonzero,
enough end loop PRF entries are generated
to reduce it to zero. Then the end loop
for the false loop is generated. If the
ISD option is on, the false loop is set to
"unsafe." The no flow flag is checked to
see if execution flow has been terminated.
If it has not, a stop PRF item is
generated. Finally, an end program PRF
item is generated and control is returned
to the caller.

CEKAW -- Declaration Statements, Pass 2
(DCL2)

DCL2 performs the housekeeping opera-
tions and terminates the processing for the

following declaration statements: COMMON,
DIMENSION, EQUIVALENCE, EXTERNAL, NAMELIST,
COMPLEX, DOUBLE PRECISION, INTEGER, LOGI-

CAL, REAL, FORMAT, and DATA.

ENTRIES: DCL2 has two entry points, COMM2
(CEKAW1) and DCL2 (CEKAWZ), neither of
which has an input parameter.

EXIT: WNo output parameters.

OPERATION: DCL2 sets the program type to
"main® if it was unknown. In any case, the
implicit flag is set to 1 before returning
to the caller. A special entry for the
COMMON statement also updates the total
number of named COMMON blocks in the
storage class table before joining the path
for other declaration statements.

CERAX -- Executable Statements, Pass 2
(EXEC2)

EXEC2 performs the housekeeping opera-
tions and terminates the processing for the
executable statements. See Chart BH.

Section 3: Phase 1 61

ENTRIES: EXEC2 has two entry points, FL2
(CEKAX2) and NF2 (CEKAX1), neither of which
requires any input parameters. FL2 is the
entry point for the following statements:
assignment, ASSIGN, BACKSPACE, CONTINUE,
END FILE, PAUSE, PRINT, PUNCH, REWIND,
WRITE, DO, READ, and CALL. NF2 is tne
entry point for the following statements:
STOP, RETURN, GO TO, and arithmetic IF.

EXIT: ©No output parameters.

OPERATION: EXEC2 has two entry points:

1. For statements that do not transfer
control to statements other than the
ones immediately following them.

2. For statements that do transfer con-
trol to statements other than the ones
immediately following.

If the logical IF indicator is not on,
the entry for the second class (above)
raises the no-flow flag, indicating that
the next executable statement must have a
label or there is a logical flaw in the
source program. The remaining operations
are common to both entries.

If the executable statement flag is
down, it is raised and the program type is
checked. If the program type is unknown,
it is set to "main" before EXEC2 returns to
the caller. If the executable statement
flag was up, the fall-through processing
routine is called to optimize the code in
case fall-through occurs from any statement
which causes branching. The logical IF
indicator is then tested. If it is on, the
created label for the conditiomal GO TO
statement is entered into the PRF. The end
loop processing routine is called to test
for and process any end loops.
CERKBJ -- BLOCK DATA Statement, Pass 2
(BLDA2)

BLDAZ sets the program type for the
BLOCK DATA statement.

ENTRIES: BLDA2 has one entry (CEKBJ1l) and

no input parameters.
EXIT: No ocutput parameters.

OPERATION: BLDA2 sets the program type
code to BLOCK DATA and exits.

CEKBP -- IMPLICIT Statements, Pass 2
(IMPL2)

IMPL2 performs the final housekeeping
for the IMPLICIT statement after it is
accepted.

ENTRIES: IMPL2Z has one entry point
(CEKBP1) and no input parameters.

62

EXIT: No output parameters.

OPERATION: IMPL2 copies the implicit type
table back from a temporary hold area where
it was updated by IMPL and sets the implic-
it flag to 2.

CEKBT -- Subprogram Entry Statements, Pass
2 (SUBE2)

SUBE2 sets the program type code and
makes the permanent PRF entries for the
ENTRY, FUNCTION, and SUBROUTINE statements.
See Chart BI.

ENTRIES: SUBE2 has three entry points:
ENTR2 (CEKBT1), FUNC2 (CEKBT2), and SUBR2
(CEKBT3); none of which has input

parameters.

EXIT: No output parameters.

OPERATION: SUBE2 has a unique entry point
for ENTRY, FUNCTION, and SUBROUTINE state-
ments. For the ENTRY statement the number
of entry points total is incremented. The
FUNCTION and SUBROUTINE statements set the
program type code to the appropriate value.
The remaining operations are performed for
all three of the possible statement
entries.

An end loop for the false loop is
generated, after which the PRF entry is
copied from its temporary area into the
PRF. A new begin loop for a false loop is
then generated, and the number of alternate
returns total is updated.

CEKBV -- CALL Statement, Pass 2 (CALL2)

CALL2 adjusts the CALL PRF entry to
insert the statement numbers for the
alternate returns. See Chart BJ.

ENTRIES: CALL2 has one entry point
(CEKBV1) and no input parameters.
EXIT: No output parameters.

OPERATION: If the count of alternate
returns in intercom (TENAR) is zero, a
normal return is taken. If the count is
nonzero, the PRF entries for the argument
definition points and the CALL are moved up
by the appropriate number of words. The
statement numbers are then inserted in the
CALL PRF entry. During the pass through
the argument definition point PRF entries,
the FDP fields in the symbol table are
updated if required. The statement numbers
are also entered into the cross reference
list.

CEKBZ —- Statement Function —efinition,
Pass 2 (STFN2)

STFN2 performs the housekeeping opera-
tions and terminates the processing for the
Statement Function.

ENTRIES: STFN2 has one entry point
(CEKBZ1) with no input parameters.

EXIT: ©No output parameters.

OPERATION: STFN2 restores symbol table
class and flag fields of variables which
were used as statement function arguments.
It then checks the program type and, if it
is unknown, sets it to "main.™ Then STFN2
returns to the caller.

CERAG ~- Subscript Processor (SUBS)

SUBS scans subscripted variables and
translates the subscript expressions into
the internal language (Polish notation)
form. See Chart BK.

ENTRIES: SUBS has one entry point (CEKAG1)
with no input parameters.
EXIT: No output parameters.

OPERATION:
form:

A subscripted variable has the

A (Sy4,S54¢4++,5n)
where:
S = C ¥V 3C ¥V 4+, .. 2Ch*Vp

SUBS expands the subscripts into a single
expression of the form:

S*L-L+35,*L*d, ~-L*d, +...+Sp*L*dy*...%*dn_,
-L*dy%...%dn_s

where:
L = length in bytes of an array element
d = ith dimension of N-dimensional array

Constant terms and like variable terms
are combined, and the resultant expression
is translated into Polish notation for out-
put to the expression representation file
(ERF).

SUBS operates in two stages. The first
stage scans the source, term by term, and
makes up tentative output terms which are
stored in an area called TTRM. A subrou-
tine called TRMPRO checks TTRM and adds the
contents to a list (TERMS) if it cannot
combine the new term with one already in
TERMS.

The second stage (PUTOUT) translates the
terms of TERMS into Polish notation and
puts them in ERF.

Each tentative output term of TTRM has
the following format:

0 8 16 31
Constant
4-bit . Symbol Table Pointer to
Type Code Variable or O
4-bi . R .
Type (;ode Variable Dimension or 0

% A

4-bit

Type Code Voriable Dimension or 0

* |f Induction Variable = ULEV; otherwise = 0

Each entry of a term is one word. The
number of entries per term is

NUMDM+1
where:
NUMDM = number of dimensions.
A typical term of subscript S is
C *#V *L#*d,*...*d, ,

The "constant"™ entry is the product of all
the constant factors of the term. The
variable entry is the symbol table pointer
to V, or to zero if V 1is missing from
term. The variable dimension entries are
symbol table pointers to any of the 4 (i =
1, ---, K-1) that are variable.

Terms of TERMS have the same format as
TTRM, except that all nonzero entries are
moved to the top of a term.

During the course of processing a sub-
script, branches are made to NEWTRM, SCAN,
and LOOP within the main loop of SUBS.

NEWTRM updates the dimension product
(DMPR) with an entry from dimension table,
if the entry is a constant: otherwise;
NEWTRM enters the symbol table pointer of
the variable dimension in TTRM. NEWTRM
then branches to SCAN.

Section 3: Phase 1 63

SCAN puts DMPR in TTRe: and calls subrou-
tine TRMPRO, which adds constant terms to
offset of array name entry in ERF or pro-
cesses variable terms as expiained earlier.
SCAN then calls ACOMP (assemble component
routine) for the next operand-operator
pair.

LOOP tests all operators that separate
terms in a subscript expression. If a
right parenthesis is found, LOOP branches
to PUTOUT. If a comma is found, LOOP
branches to NEWTRM. If a plus or minus
sign is found, TNEG is set accordingly.
LOOP then calls ACOMP.

SUBS begins processing by entering the
array name in ERF. Various flags and coun-
ters are initialized, and a branch is made
to SCAN. ACOMP is called, and a subscript
term put in TERMS. If the term contains a
loop variable, a new term is generated,
containing the lower limit of the loop
variable in place of the loop variable. A
branch is made to LOOP to check the opera-
tor. This process is repeated until the
loop finds a right parenthesis which sig-
nals end of subscript, and a branch is made
to PUTQUT.

If the statement ID is DATA or EQUIVA-
LENCE, PUTOUT determines that there are no
entries in TERMS. Otherwise, PUTOUT puts
the entries from TERMS into the ERF. If a
term contains a loop variable, the variable
is entexred into ERF ahead of the constant.
If the statement ID is EQUIVALENCE and
dimension information from a TYPE, COMMON
or DIMENSION statement had not yet been
specified for an equivalence variable, SUBS
processes each subscript on an equivalence
variable, and saves the subscript and sign,
if any, for subsequent processing by EQUI.

CEKAI -- Expression Processor (EXPR)

EXPR translates the source language
expression into the internal language

(Polish notation) expression. See Chart
BL.
ENTRIES: EXPR has one entry point (CEKAIL)

with no input parameters.

EXIT: No output parameters.

OPERATION: Subroutine EXPR is the arith-
metic and logical expression scanner, and
produces in the Expression File (EF) the
internal-language equivalent of a FORTRAN
IV expression in the source program. EBEXPR
scans expressions on the laft and right
side of equation statements, the condition-
al expression in IF statements, and the
subroutine name and argument list in CALL
statements.

64

EXPR sees the source language through
ACOMP (assemble components) wnich provides
EXPR with an operand-operator pair {(com-
ponent) each time it is called.

The internal-language expression is con-
tained in EF as a string of operators
(delimiters) and operands in right-hand
Polish notation. An oversimplified state-
ment, then, of EXPR's task is "to transfer
operators from their position between their
operands to a position following their
cperands.” This implies that, in scanning
over the source expression and putting the
internal form in EF, an operator must be
held back during the scanning and putting
out of its second operand (which may be a
large expression itself). Two main tables,
HSTCK and 3XS, are used by the subroutine
largely for just this purpose. Each incom-
ing operator is placed in the HSTCK until
required for output. SXS contains informa-
tion about the operands that have been put
out.

To oversimplify again, the syntax of
algebraic expression requires that opera-
tors and operands should alternate, as in
"X*Y+Z". This is reflected in EXPR in that
the subroutine is always in one of two
states, controlled by the condition of a
cell HS. The H state means, roughly, that
the last item scanned went into the HSTCK
(i.e., was an operator) so an operand can
be expected next. The S state means that
the last item scanned caused an entry in
SXS (i.e., was an operand} so an operator
can be expected next. Clearly, the scan
should begin in the H state and end in the
S state.

The situation is, in reality, much com-
plicated by the presence in expressions of
unary operators (such as the logical nega-
tive .NOT.), function calls, subscripted
variables, and parentheses. These compli-
cations are best described by examining
EXPR's methods for handling them. These
methods are variations on, or elaborations
of, the basic idea.

The main loop of EXPR begins with a call
on ACOMP for the next component of the
source-language expression. The charac-
teristics of the next component determine
the processing it receives, after which the
subroutine returns to the top of the main
loop to obtain the next component. Some
objects are illegal if received when the
subroutine is in the H state; some are
illegal in the S state; and, a few are le-
gal in either state, but have their meaning
determined by the state during which they
arrive. Each object processed sets the
state for the next. From this viewpolnt,
there are four classes of objects: H to S,
those that are legal in the H state and
leave the subroutine in the S state; H to

H, those tnat are legal in the H state and
leave the subroutine in the + state; S to
S, those that are legal in the S state and
leave the subroutine in the 35 state; and S
to d, those that are legal in the S state
and leave the subroutine in the H state.

The two basic classes most easily
handled by EXPR are £ to S and S to r. The
other two classes handle the more compli-
cated situations involving functions
(except functions as arguments), and spe-
cial operators (i.e., parentheses, unary
operators, equal sign, and end of
statement).

H to S Class

Constant: When a constant item is
received from ACOMP, a constant entry is
made in EF and SXS with the appropriate
type.

Simple Variable: A simple variable is
processed like a constant.

Array Variable: When an array item is
received, the next operator is checked for
a left parenthesis. If one is not found,
the array is treated like a siwmple vari-
able. If the parenthesis is found, &=XPR
calls the subroutine SUBS, which processes
the subscript and enters the array variable
into EF.

Function as Argqument: Wnen a function
item is received and is not the first item
of a CALL statement, it may be a function
used as an argument to another subprogram.
The item is accepted as such if the next
operator is either a comma or a right
parenthesis, and the top item in dSTCK is a
comma or semicolon (see function call in “H
to H Class™ below). If the function is
subject to automatic typing, it is checked,
and the function name changed, if neces-
sary, before outputting to EF and 3XS.

S to H Class

This class contains the comma and all
the binary operators: arithmetic, rela-
tional, and logical. When an item for one
of these operators is received by EXPR, it
is compared with the top item of HSTCK. If
this new item represents an operator of
lesser precedence than the top item, the
HSTCK operator is output tc TF and is
appropriately processed. It is then
removed from the HSTCK, and the new item is
compared with the new HSTCK top item. This
process continues until an item of less
precedence is brought to the top of the
HSTCK {(the bottom of the HSTCK will always
look like such an item), at which point the
new item is added to become the top item of
the HSTCK, unless it is a comma or equal
sign, in which case it receives special

treatment. Comparisons include a check for
illegal pairs.

Table 13 explains operator precedence
table, czlled PRECTAB. The operators that
appear at the top of each column are the
new itexrs that can legally come from ACOMP.
The operators that appear at the beginning
of each row are the items that can appear
at the top of HSTCK. Indexes to the action
taken when a new item is compared with a
HSTCK item are given as elements of the:
table. The various actions taken are dis-
cussed after the table.

S to S Class

Right parenthesis and end of statement
(EOS) are the only items which are received
from ACOMP is the S state and leave EXPR in
the same state. See Table 13 for further
discussion.

H to H Class

Left parenthesis, .NOT., and unary + or
- are the only legal operators that can be
received from ACOMP in the H state. See
Table 13 for further discussion.

Explanation of PRECTAB

DD1:
Illegal operator pair.

DD2:
New operator has greater precedence
than HSTCK item. New operator is put
in HSTCK.

DD3:
New) meets (. Left parenthesis is
deleted from HSTCK.

DD4 :
New EOS meets =. This indicates that
the right side of the equation state-
ment has been processed. EXPR calls
subroutine CNVRT, which uses the last
two entries in S5XS and EF to check for
legal type mix and enters a conversion
function in EF so that the expression
type on the right side will conform to
the variable type on the left side.
If expression is a constant, it is
converted to variable type.

DDS:
New = meets BOT. This indicates that
the variable on the left side of the
equation statement has been processed.
The equation PRF entry is updated and
the variable is linked into VDP chain.
The = operator is put in HSTCK.

DD6:
New) meets BOT. This indicates that
an IF statement has been processed.

Section 3: Phase 1 65

Operatocr Precedence

Table 13.

NEW OPERATOR

+ -) , = (EOS CLT.{LLE. {.EQ. |.NE. JGE. | .GT. [.NOT. [.AND,| .OR. | UN+ | UN-
+ DpD13| DD13 | DD2 | DD2 | DD2 | DD13 | DD13 | DD1 | DD2 | DD13 | DD13 | pD13 | DD13 | DDI3 | D13 [pp13 | DD | DD13a| Pmi3| ppi | pp1

- 14 14 2 2 2 14 14 1 2 14 14 14 14 14 14 14 1 14 14 1
/ 13 1] 13 13 2 13 13 1 2 13 13 13 13 13 13 13 1 13 13 1 1
* 13 13 13 13 2 13 13 1 2 13 13 13 13 13 13 13 1 13 13 1 1
* ¥ 131 13 13 13 2 13 13 1 2 13 13 13 13 13 13 13 1 1a 13) 1
, 2 2 2 2 2 11 10 1 2 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 11 10 1 2 1 2 2 2 2 2 2 2 2 2 2 2
= 2 2 2 2 2 1 1 1 2 4 2 2 2 2 2 2 2 2 9 2 2
(2 2 2 2 2 3 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2
z| BOT 2 2 2 2 2 6 1 5 2 7 2 2 2 2 2 2 2 2 2 2 2
1T 2 2 2 2 2 16 16 1 2 16 1 1 1 1 1 1 1 16 16 2 2
ﬁ LE 2 2 2 2 2 18 18 1 2 18 1 1 1 1 1 1 1 18 18 2 2
; .EQ, 2 2 2 2 2 16 16 1 2 16 1 1 1 1 1 1 1 16 16 2 2
Tl NE 2 2 2 2 2 17 17 1 2 17 1 1 1 1 1 1 1 17 11 2 2
. GE. 2 2 2 2 19 19 1 2 19 1 1 1 1 1 1 1 19 19 2 2
.GT 2 i 2 2 2 16 16 1 2 16 1 1 1 1 1 1 1 16 16 2 2
.NOT, 2 2 2 2 2 21 21 1 2 21 2 2 2 2 2 2 2 21 21 2 2
AND, 2 2 2 2 2 20 20 1 2 20 2 2 2 2 2 2 2 20 20 2 2
. OR, 2 2 2 2 2 20 20 1 2 20 2 2 2 2 2 2 2 2 20 2 2
UN + 221 22 22 22 2 22 22 1 2 22 22 22 22 22 22 22 1 20 22 1 1
UN - 23] 23 23 23 2 23 23 1 2 23 23 23 23 23 23 23 1 23 23 1 1
: 2 2 2 2 2 12 8 1 2 1 2 2 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 12 9 1 2 J 2 2 2 9 2 2 2 2 2 2 2
SF 2 2 2 2 2 24 24 1 1 2 2 P 2 9 2 2 2 2 2 2
MAX 2 2 2 2 2 25 26 1 2 1 1 1 1 1 1 1 1 1 2 2 2

66

DD7:

New EOS meets BOT. This indicates
that a CALL statement has been
processed.

DD8 AND DD9:

DD10:

DD11

DD13

New , meets ; or This indicates
that the first of several arguments
has been processed. The . 1is put in
HSTCK (,, for intrinsic functions).
Subroutine AARG is called to determine
if argument should be linked into VDP
chain. ARG type is put in SXS.

..
re .

New , meets , or ,,. This indicates
that the N'th argument of a function
call has been processed. Subroutine
BAARG is called (see DD8) to check
argument type, increment the argument
count, and output, or ,, to EF.

and DD12:

New) meets . or This indicates
that the last argument has been pro-
cessed (only one argument in function-
call if HSTCK item is ;. Subroutine
AARG is called (see DD8 and DD10).

The correct number and type of argu-
ments are checked. Functions with
class LIBA call subroutine LIBN, which
selects a function name based on the
argument type. Functions with class
OPEN A use table FNUM to select a
function number. The function is out-
put to the EF followed by a ; or EF
entry.

HES

.
r

through DD23:

New operator has less or equal prece-
dence. This means that the HSTCK item
is to be output to EF. The HSTCK item
may be one of the following:

Unary + or - or .NOT.
Binary arithmetic,
logical operator.

operator.
relational, or

The unary +, -, and .NOT. are the
simplest to output. The top item in
SXS is their operand and is checked
for legal type:; then, the last EF
entry has its sign changed for unary -
and .NOT.

For a binary arithmetic, relational,
or a logical operator, the top two
entries in SXS represent its operands.
In addition to putting an operator
item in EF, the processing requires
replacing the two operands in SXS with
a single entry for the result of the
cperations.

The types of the operands are checked
for legal combinations. The top SXS
item is deleted, and the next SXS item
is given a subexpression class with

DD24:

DD25:

DD26:

the maximum type of the two operands.
A relational operator is assigned
Logical*4 type.

A binary arithmetic operator is also
checked for constant operands. If
both SXS operand entries are class
constant, the arithmetic called for by
this operator will be done on the last
two EF entries. The subroutine CNVRT
does constant arithmetic and type
checking for binary-arithmetic
operators.

If the HSTCK item is a -,
or .GE., it is changed to a +, .EQ.,.
GT. or .LT., respectively, and the
sign of the last EF entry is changed.
Then the above processing is done.

.NE., .LE.

New , or) meets SF. This indicates
that an argument of a statement func-
tion has been processed. EXPR calls
subroutine SFEXP (at entry point
SFEXPC) which continues processing the
statement function expression.

New) meets MAX. This indicates that
all arguments have been processed in a
MAX/MIN function. The argument type
is checked and the last MAX operator
is put in EF. Tire top three bytes of
the multiple byte entry for MAX/MIN
function are deleted from HSTCK. The
top item of HSTCK is now (, unary -,
or a conversion function which was
entered in HSTCK by the function-call
processing.

New , meets MAX. This indicates that
an argument of MAX/MIN function has
been processed. The argument type is
compared with the type in HSTCK. If
this is first argument processed, and
automatic typing is called for, the
argument type is put in HSTCK. The
comma flag is set, and the sign of
last EF entry is changed if the MIN
flag is set. The MAX operator is put
in EF, except after the first
argument.

Function/Subroutine Call

A

function call is recognized if one of

the following conditions exists:

1.

The item is an external, intrinsic, or
library function with the next item a
left parenthesis. Six bytes are added
to HSTCK. Bytes 1 and 2 contain Sym-
bol Table pointer to function entry.
Byte 3 contains type of arguments
observed. Byte 4 contains number of
arguments observed. Byte 5 contains

Section 3: Phase 1 67

68

flag for argument definition PRFs (set
to 1 if abnormal function). Byte 6
contains semicolon operator.

For external functions, the ABN flag
is set in the PRF entries for IF and
equation statements. This flag is
used by Phase 2 to find common defini-
tion points. EXPR then calls ACOMP
for the next component.

The item is the first item of a CALL
statement. The subroutine flag is
raised in the symbol table, and the
function is handled the same as case 1
if the next item is a left parenthe-
sis. If the next item is EOS, the
function is entered in EF as a no-
parameter function.

The item's class is "unknown" or
"unknown function™ and the next item
is a left parenthesis. EXPR calls the
subroutine FNCLS, which determines the
class of the function (OPEN, OPENA,
external, LIB, LIBA, or MAX). FNCIS
sets the function flag and appropriate
class in the symbol table and returns
to EXPR. If the function class is
external, library or intrinsic the
function is processed like case 1. If
the function is a member of the MAX-
MIN family, it is processed as
described in case 4.

The item is a member of the MAX-MIN
family. Members of the MAX-MIN family
require special treatment. They are
interpreted not as functions, but in
terms of a new operator, MAX, which is
like + in that it takes two operands
and has its type determined by the
type of its operands. MIN is ex-—
pressed by changing the signs of MAX
and its operands. A conversion func-
tion is entered in HSTCK per case 1,
if needed; otherwise, a left parenthe-
sis is put in HSTCK. Either of these
HSTCRK items will correctly terminate
the MAX function processing after the
last argument has been processed. A
unary - is then put in HSTCK if func-
tion is MIN. This will negate the
last MAX operator in EF. The next
HSTCK byte contains two flags: a MIN
flag (set if MIN function), and a
comma flag (set after first argument
processed). The next byte contains
argument type required by function (FS
if automatic typing). The top byte
contains the operator MAX. EXPR then
calls ACOMP for the next component.

The item is a statement function.

EXPR calls the subroutine SFEXP (at
entry point SFEXPI), which initializes
and controls the statement function
processing. EXPR's machinery is used

to process the statement function
arguments.

CEKAN -- Conversion Subroutine (CNVRT)

CNVRT converts constants to new type, if
specified, and checks legal type mixes for
arithmetic and logical expressions, and
across the equal sign in assignment state-

ments. See Chart BM.
ENTRIES: CNVRT has two entry points:
CNVRT (CEKAN1), which is called by EXPR to

perform all functions mentioned above, and
CNVRTD (CEKANZ2) which is called by IVAL and
is concerned only with converting constants
to the type of the variables into which
they will be stored.

Input Parameters:

P2 -- Variable Symbol Table Pointer
(CNVRTD entry only)

P5 -- HSTCK address (CNVRT antry only)

P6 -- SX5 address (CNVRT entry only)
EXIT: P5 contains the HSTCK address, and
P6 contains the SXS address.
OPERATION: The types of the top two
operands in SXS, SXS(J) and SXS(J+1), are

compared by using the table CNVTAB, and
appropriate action is taken. The action
taken depends on whether the top HSTCK item
is = or +, /, * oOr *x,

If the HSTCK item is =, then SXS(J) is
the operand on the left side in an assign-
ment statement or a variable of a DATA
statement, and SXS(J+1) is converted to the
type of SX5(J), if they are different. If
SXS(J+1) is a constant, CNVRT converts the
constant, and files the new constant in the
symbol table and EF. If SXS(J+1) is not a
constant, the appropriate conversion func-
tion is entered in EF. Symbol table and EF
entries are not made for DATA statement.

If the top HSTCK item is an arithmetic
operator (except*#*), the two operands are
checked to see if they are constant. If
just one operand is constant, it is con-
verted to the maximum type of the two, if
different. If both operands are constant,
one is converted to the maximum type, 1if
different, and subroutine ARITH is called.
It combines the constants according to the
HSTCK operator. The new constant is filed
in the symbol table and EF. A special case
occurs if the operand types are R*8 and

C*8. The maximum type in this case is
Cc*16, and all constants are converted to
this type.

There are three cases to consider if the
HSTCK item is:

1. Both exponent and base are constant.

2. The base is a real or integer variable
and the exponent is an integer con-
stant in the range O through 16 for
integer base, or -16 through +16 for
real base.

3. Neither of the above cases.

For case 1, the:§3proutine ARITH is
called and constant arithmetic is
performed.

For case 2, a series of one or more spe-
cial open functions are entered in the EF
from a table called EXPF (Table 14). This,
in effect, causes the power to be expanded
as a series of products of the base multi-
plied by itself. Another special open
function (RECIP) is also entered in EF, to
take the reciprocal of the power if the
exponent is negative and the base is real.

For case 3, the subroutine LIBN is
called {(at entry point LIBNX) w«hich selects
the appropriate exponential library func-
tion. Upon return from LIBN, the function
is entered in the EF.

CEKBK -- Statement Function Definition
(SFDEF)

SFDEF enables EXPR to translate a state-
ment function expression into Polish nota-
tion and to store the translated expression
in the statement function expression file
(SFEF). See Chart BN.

ENTRIES: SFDEF has one entry point
(CEKBK1) with PS5 = HSTCK(I) address and Pé6

= SXS(J) address as input parameters.

EXIT: PS5 contains the HSTCK address,
P6 contains the SXS address.

and

OPERATION: SFDEF scans the argument list
and temporarily changes the class and flag
fields of all symbol table entries whose
names are the same as the dummy arguments.
The class is changed to "statement function
argument®” and the flag field to contain an
offset to be used in locating the argument
in ARGSTCK (see SFEXP routine). These
fields are restored after EXPR finishes
scanning the expression. In scanning the
argument list, SFDEF checks for legal argu-
ments and maximum number of arguments.

Table 14. EXPF Entries (Real Base)
r T == - == - - - h
| Exponent | Entries {
fom————————— $—————- i - R T T——————- T—————-- To————— T—————— 4
| 2 | SQ | ;i | Term. | | | | | | |
pmmmm o= pommmm e g o= oo o e ¥ e 1
| 3 [Cube | ;¢ | Term. | | | | | | |
F e o S e D D D pmmmmmm pommmmome 1
| 4 | so | H | S i ; | Term. | | | [|
pommmm oot 4 S oo fommmmmm e +- : i
| 5 { FIFTH | ; ¢+ | Term. | | | | | {]
k- + e e o e e e 1
| 6 | 80 { i i | Cube | i | Term. | l f f |
G e St = 1 -—4- + e i
| 7 | SEVEN | i ¢+ | Term. | | | | | |]
I pommmmmm pommmm + + -4 + ——4- -4- ommmmmm 1
! 8 | sg [;) s] PR <16 i ;5 1 | Term. | I |
S (ot S T S o $ommm :
i 9 | Cube | ; i | Cube | : | Term. | | | { |
pommmmmmm e o e S oo D T fomm——t $-- i
| 10 | sQ | ; ; | FIFTH | ;| Term. |] |] |
T o e pommm e i -+ ¥ + .
i 11 | 11 | * * | Term. | | | | | | |
————————————— O e s S
| 12 | SQ | i 1 oso | i | Cube | ;i | Term. | i i
S S e } + $ 3
| 13 | 13 | * * | Term. | | | | | | |
e T S e T pommm e pommmmmmm 1
{ 14 | so | ; ; | SEVEN | ; | Term. | | | | |
—————————————— e S e et M
| 15 | Cube | ; ¢+ | FIFTH | ; | Term. | | | }]
—— G S - e e e $ommmm e !
| 16 I S0 | A 10 | ;| sQ] ;1] sQ | ;5 | Term. |
______________ SO NS SEU o i _— S S S SS— |

Section 3: Phase 1 69

After completion of argument scanning,
SFDEF alters the EF pointer and base, so
that EXPR will enter the expression into
SFEF. SFDEF then returns to EXPR, which
processes the statement function expres-
sion. Upon completion of expression pro—
cessing, the EF pointer and base are
restored.

CEKBL -~ Statement Function Expansion
(SFEXP)

SFEXP inserts a statement function
expression into EF when the function is
referenced in arithmetic or logical expres-

sion, and uses EXPR to process the actual
arguments. See Chart 30.
ENTRIES: SFEXP has two entry points: SFE-

XPI (CEKBL1) and SFEXPC {(CEKBL2). The
input parameters are P5 = HSTCK(I) address
and P6 = SX5(J) address.

EXIT: P5 contains the HSTCK address, and
P6 contains the SXS address.

OPERATION: There are two entry points to
SPEXP: SFEXPI, which is the entry to the
initializing portion, and SFEXPC, which is
the entry to the expansion portiom.

The initializing part scans the arqu-
ments and stores a pocinter to the first
character of each argument in the source
statement. It also stores a pointer (SFEP)
to the function expression in SFEF, and a
pointer to show EXPR where to resume scan-
ning the source after the statement func-
tion has been expanded. These pointers are
stored in a portion of the SFEF called
ARGSTCK. An "SF" item is entered in HSTCK,
which enables EXPR to process the function
arguments one at a time. After the ini-
tializing is complete, SFEXP begins expand-
ing the function by entering SFEF entries
into EF, using SFEP as a pointer. When a
statement function argument entry is found,
the offset of this of this entry is used to
obtain the correct argument pointer from
ARGSTCK. This pointer is stored in SOURCE,
and SFEXP returns to EXPR, which processes
the argument. When a ", " or ")" meets the
"SF" item in HSTCK, the argument has been
processed and EXPR calls SFEXP (via SFEXPC
entry). SFEXP checks the actual argument
type with the dummy argument type. If the
type is correct, SFEXP resumes transferring
SFEF entries to EF until another argument
entry is found. This cycle is repeated
until an end of expression entry is found
in SFEF. This terminates expansion, and
SFEXP returns to EXPR with the SOURCE
pointer set to scan the remainder of the
statement following the statement function
reference.

70

CEKBX -- Function Classifier (FNCLS)

FNCLS determines the proper class of a
function whose class was originally

"unknown"™ or "unknown function."™ See Chart
BP.
ENTRIES: FNCLS has one entry point

(CEKBX1) and no input parameters.

EXIT: No output parameters.

OPERATION: A function with "“unknown" or
"unknown function" class is assigned one of
the following classes: LIBA, LIB, OPEN,
OPENA, MAX, or external.

If the function name is found in the
LIBA name 1list (library function with auto-
matic typing) and its type is not frozen,
it is given LIBA class. If its type is
frozen, then it is classed external.

If the function name is found in the LIB
name list, and its type is not frozen or
its type is the same as the library func-
tion, then it is classed LIB. If the type
is different, it is classed external.

If the function name is not in the LIBA
or LIB name lists and its class is unknown
function (i.e., delcared in an EXTERNAL
statement), it is classed external.

If the function is in the intrinsic
function name list (includes OPEN, OPENA,
and MAX class functions), and its type is
not frozen or its type is the same as the
intrinsic function, then the symbol table
name part of the function is linked to the
intrinsic function descriptive part. If
the function type is different, it is
classed external.

If the function name is not found in any

of the three lists, LIBA, LIB, or intrin-
sic, it is classed external.

CEKBY -~ Library Function Selector (LIBN)

LIBN selects the appropriate library
function name, based on the argument type.
See Chart BQ.

ENTRIES: There are three entry points:
LIBN (CEKBY1), LIBNA (CEKBY2), and LIBNX

(CEKBY3). P = SXS(J) address is the input
parameter.
EXIT: P6 contains the SXS address.

OPERATION: LIBN has three entry points,
LIBN, LIBNA, and LIBNX. LIBN and LIDNA are
the entry points for functions with auto-
matic typing. LIBNA is tne entry for auto-
matic functions being used as arguments.
LIBNX is the entry point for exponential
library function selection.

Using the argument type and the function
index, the proper function name is selected
(see Table 15). The function name is
inserted in the symbol table, and the
descriptive part entries filled if class is
unknown.

Table 15. Library Function Nanes
r-———————= i 1
| Automatic] Argument Type i
| Function }p—————-—- p————— P ———— P ———— 4
| Name | R*4 | R#*8 | C*x8 | C*1l6 |
...... 3 — —_— e 4 ——
} + + 4 i
| EXP | EXP | DEXP | CEXP |CDEXP |
e e e e O
| LOG | ALOG | DLOG | CLOG |CDLOG |
SRS S5 1SS S,
| LoGIO | ALOGIO| DLOGIO| CLOGIO|CDLOGIO|
e + o s T
| ATAN | ATAN | DATAN | 0 | © i
b e S e S £
| SIN | sIn | DSIN | CSIN |CDSIN |
e + +-— + :
| cos | cos | DCOS | CcCOS |CDCOS |
e — + $omm—mmt 4
| SQRT | SORT | DSQRT | CSQRT |CDSQRT |
et —-- + i
| TANH | TANH | DTANH | 0] i
i_ ________ 41 -4 Ao B I _,‘
| Implicit Exponential Functions |
p-—-m— —-r-- - — :
| Base | Exponent Type |
I Type |p-—————- Tomom—- L S Sttt
| | I*2 I*y | R*4 | R*8 i
p----—- —-4 ey G
| I*+2 | FIXPJ | FJIXPI | FJXPR |FJXPD |
p-mmm - fommo- e — — :
| I+y | FIXPJ | FIXPI | FIXPR |FIXPD |
pommmo—- + ¥ e v
i R* Y4 | FRXPJ | FRXPI | FRXPR |FRXPD |
pomm e e e pommmme ~
| R*8 | FDXPJ { FDXPI | FDXPR |FDXPD |
o $- + + :
| C*8 | FCXPJ | FCXPI | 0 | O i
S St fommmme Fommmmme 4
| c*16 | FCDXJ | FCDXI | O | © |
b L__ L I —1_ -1
CERCB_-—- Constant Arithmetic Subroutine
(ARITH)

ARITH performs all constant arithmetic.
See Chart BR.

ENTRIES: ARITH has one entry point
(CEKCB1) with input parameters as follows:

P2, P3 -- Integer Constants
FO, F2 -- Real Constants
FO, F2 -- Complex Constants of
type C*8
FO thru F6 -- Complex Constants of
type C*16
EXIT: No output parameters.
OPERATION: If the operator is #**, the

appropriate FORTRAN library function is
called, based on the type of the base and
exponent. If the operator is +, *, or /,
ARITH does the arithmetic necessary based
on operator and operand type.

ARITH may be called upon to perform
arithmetic which will cause overflow or
divide check exceptions to occur. In order
to diagnose these situations properly, sys-
tem macrc SIR is called to enable module
CEKCS to trap these interruptions and set
appropriate flags. Prior to exit, system
macro instruction DIR is called to disable
these interruptions.

CERCG =-- Term Processor (TRMPRO)

TRMPRO processes a tenative subscript
term prepared by SUBS and either combines
it with a previous term or adds it to the
TERMS list. See Chart BS.

ENTRIES: TRMPRO has one entry point
(CEKCG1), with the address of TTRM and
TERMS in PS5 as input parameter.

EXIT: There is a single output parameter:
the address of TERMS in P5.

OPERATION: If the tentative term has no
variable factors, its constant factor is
combined with OFFSET. If the tentative
term has the same variable factors as a
previous term already in TERMS, the terms
are combined by adding their constant fac-
tors. Otherwise, the tentative term is
added to TERMS as a new term.

TRMPRO checks for too large a subscript

expression.

CEKCR ~-- Actual Argument Service Routine
(AARG)

AARG performs certain functions in con-
nection with actual arguments of function
and subroutine calls. See Chart BT.

ENTRIES: AARG has one entry point (CEKCR1l)
and two input parameters: the address of
last HSTCK entry in PS5, and the last SXS
entry in Pé6.

EXIT: P5 contains the address of HSTCK,
and P6 contains the address of SXS.

Section 3: Phase 1 71

OPERATION: AARG puts an arqument defini-
tion entry in the PRF for a variable as
argument of an abnormal cubprogram. If
this is not the first argument (comma flag
up), the type is checked and a comwa (,) or
double comma {(,,) operator is put out to
the EF.

CEKCS -- Constant Arithmetic Interruct
(CHKINT)

CHKINT provides for treatment of inter-
ruptions from ARITH and sets flags for

issuance of a proper diagnostics. See
Chart BU.
ENTRIES: This routine is called by the

standard linkage convention. There are

three entry points:

CEKCS1 -- Set flag for divide
check interruptions
CEKCS2 -- Set flag for exponent
overflow interruptions
CEKCS3 -- Return flags
(CHKINT) to caller

Entry CERCS3 returns the interruption
flags to the fields specified in the param-
eter list, which is one word long and con-
tains the address at which to store the two
flag words. ©No other input or output pa-
rameters are used.

EXIT: No output parameters.

OPERATION: The CHXINT routine is called by
ARITH to enable and disable CEKS, for
fielding of exponent overflow and divide
check interruptions during constant arith-
metic. Any interruptions due to divide
checks or exponent overflow cause the sys-
tem interruption processor to enter CHKINT
at entries CEKCS1 or CEKCS2, where a flag
will be set, indicating that an interrup-
tion has occurred. On an exponent over-
flow, the contents of the R1 register in
the ISA save area is set to infinity before
exiting.

This routine is called at entry CEKCS3
by EXPR after a complete expression has
been processed, to see if any of the above
interruptions occurred.

CEKAB -- Extract Source Character (ESC)

ESC is used to obtain the next source
character. See Chart BV.

ENTRIES: There are two entry points: ESC
(CEKAB1) returns the next nonblank source
character; ESCB (CEKAB2) returns the next
source character, including blanks. One
input parameter, the address of the next
available character in the source string,
is passed by value in parameter register
P3. The high-order 24 bits of parameter

72

register Pl are expected to be zeros. This
routine uses only registers P1l, P2, and P3.
The contents of any other registers except

the linkage registers are not destroyed.

oXIT: Output parameters are:

1. Original source character, in register
P1.

2. Internal code source character, in
register P2.

3. Updated source pointer,
P3.

in register

OPERATION: Input source data stored in the
compiler intercom region is transmitted to
the requesting routine, one character at a
time. As each source character 1is
extracted from the source input data, a
translation is made from either EBCDIC or
BCD character codes. This translated
character set is a dense set value and is
used for identification purposes only. The
original character set is used for wvariable
names in the symbol table and preset data
in the object program. Values of the dense
set are as follows:

Character Dense Code

WR NN E WO

KXACAH OO -OZIMRUHAIONMEBUOUODPOOdINOFWNORO
o
~J

Z 35
S 36
Blank 37 ;
¥ 38 Cib CTvyp CFLG | CLMNG
- 39 !
/ 40 g
* 41 csTP CHSH | DM
(Not Used) 42 |
) 43 :
, 4y
= us CVAL
(46
EOS 47 \/\ A
. 48 A s
, 49 \/ /!
(Not Used) 50
3 51
Others 52 CVAL (Cont.}
CEKAE -- Assemble Components {(ACOMP) Figure 17. Component Storage Area
ACOMP assembles source characters into Legend for Figure 17
basic components for syntactical analysis.
See Chart BW. Field Description
CID Component ID:
Null =0
ENTRIES: ACOMP has one entry point Variable = 1
(CEKAE1l) with no input parameter. Constant = 2
Label =3
EXIT: No output parameters. ’ CTYP Operand Type Code in Hexadecimal
Unknown = 00
Integer *2 = 12
OPERATION: Each reguest for next com- Integer *4 = 32
ponents returns an operand and the operand Real =*4 = 33
delimiter. The possible operand types are Real *8 = 73
variable, constant, label, and null. The Complex *8 = 74
delimiter may be any of the arithmetic, Complex *16 = FUu
logical, or relational operators, the right Logical *1 = 01
or left parenthesis, the comma, the end-of- Logical *4 = 31
statement, or the label terminator Literal = 02
delimiter.

CFLG Flags

The assembled elements are placed in the CLNG Length of CVAL in bytes

component storage area of intercom (see (maximam = 256)
Figure 17). Source characters, both origi-
nal and converted forms, are acquired by CSTP Symbol Table Pointer for Operand

request to the extract source routine. The
converted internal code is used as an index CHSH Variable Hash Total
into the assemble components character

table (see Table 16). By branching upon CDLM Component Delimiter Code
the value derived from the components + = 0
character table, using the decision table - = 1
status as the base, the appropriate action /7 = 2
may be effected (see Table 17). * = 3
*% = 4
) = 5
As variables are assembled, a symbol ’ = 6
table hash index from the variable hash = = 7
table is derived for use by INVST in filing = 8
the name in the symbol table. EOS = 9
LT, =10
.LE. = 11
As constants are assembled, their type .EQ. = 12
is determined and appropriate filing rou- .NE. = 13
tines invoked. .GE. = 14

Section 3: Phase 1 73

.GT. =15

LNOT. = 16

.AND. = 17

.Ok. = 18

a = 19 (Label Delimiter)
CVAL Component Operand -- Value or

Name

Table 16. Assemble Components Character

Table
| et S 1
| Internal Code i Component Code |
tomm e 1
! 0 f 1 I
| 1-9 i 2 |
{ A-% | 0 |
| + ! b4 |
! - | 5 !
| * { 6 |
i . | 3 |
| ' | 7 |
| & e 8 |
| / = () , EOS] 9 |
| Others] 10 {
b e 4 — 1
CEKCH -- File Real Constant (FLRC)

FLRC files real
the symbol table.

and complex constants in
See Chart BX.

ENTRIES: FLRC has one entry point (CEKCH1)
and no input parameters.

EXIT: ©No ocutput parameters.

OPERATION: FLRC calls FCNV to convert the
constant to floating binary. If the con-
stant is not part of a complex constant and

the "don't file"™ flag is down, the constant
is filed in the symbol table.

If the constant is the real part of a
complex constant, the value is saved and
the routine returns to the caller. If the
constant is the imaginary part of a complex
constant, the real and imaginary parts are
combined as a single constant. If the
"don't file™ flag is down, the real and
imaginary parts are also filed in the sym-
bol table.

Appropriate diagnostics are generated if
the types of the two parts of a complex
constant do not agree. The parts are made
to agree with the larger type.

CEKCI -- Insert Variable
{(IVST)

in Symbol Table

IVST finds or makes a
for an alphameric name.

symbol table entry
3ee Chart BY.

ENTRIES: IVST has one entry point (CEK-
CI1), with no input parameters.

74

EXIT: No output parameters.

OPERATION: IVST uses the name hash value
to select a chain anchor in the variable
hash table. If the chain is not empty, the
chain entries are searched for one with the
present name. If the chain is empty or an
entry is not found, a new entry is made for
this name and added to the chain. The sym-
bol table descriptive part pointer for the
found or made entry is set in CSTP.

CEKCN -- Decimal to Binary Integer
Conversion (ICNV)

ICNV converts a decimal to a

binary integer. See Chart

integer
BZ.

ENTRIES: ICNV has one entry point
and no input parameters.

(CEKCN1)

EXIT: No output parameters.

OPERATION: ICNV performs the conversion by
extracting the digits from left to right,
multiplying the intermediate value by 10
for each digit, and adding that digit to
the intermediate value. A maximum of 16
digits is allowed, and the result is a dou-
bleword binary integer. The first word of
the result is placed in the second word of
CVAL, and the second word of the result is
placed in the first word of CVAL.

CEKCP -- Decimal to Floating Binary
Conversion (FCNV)

FCNV converts a decimal constant to
floating binary. See Chart CA.

ENTRIES: FCNV has one entry point (CEKCP1)
and no input parameters.

EXIT: No output parameters.

OPERATION: FCNV calls ICNV to convert the
decimal digits to a binary integer. This
integer is then converted to floating point
and normalized. The number is then scaled,
to account for the exponential and frac-
tional portions. Appropriate diagnostics
are generated if the exponent and magnitude
ranges are exceeded.

CEKCQ -- File Integer Constant (FLIC)

FLIC files integer constants in the sym-
bol table.

ENTRIES:
(CEKCQ1) .

FLIC has one entry point

EXIT: No output parameters.

OPERATION: FLIC calls ICNV to convert the
constant to integer binary. If the "don't
file" flag is down, the integer is then

Table 17.

Assemble Components Decision Table

] 1 I [i | i 1 i | | TNon |
EOS Non |
| Code | A-$ | 0 | 1-9 | A * L & |/=(,) |FORTRAN |
<<—-+ + + 1 + 1 -+ t ¥ + ——————{
S is Cl 0 i 1 i 2 1 3 i 4 i 5 1 6 1 7 ! 8 i 9 | 10 |
4
_—— ¥ T T T T T T T T "—"
T | o | A | D | F | I | Zz | Z | 22 | Az | AC | Z | E i
b + + + + t t + + 4 e 1
A | 1] B | B | B | u | c | c | cc | E | E | c | E |
b+t + + + + 4 + } 1 t t :
T | 2 | G | D | F | v | H | H | cC | E | E | H | E]
L _+ 1 4 3 __+ 1 __-+ ______ + ______ + ______ +__ X 4
T T T T T + A
U | 3 | G | FF | FF | v o] H | B | cc | E | E | H | E |
S St S } + + 4 ¥ + + % 1
s | &« | J | M | M| E| E | E | E | E | E | E | E |
1 -t t + 1 + + + + —pmmmmm - 1
| 5 | K | E | E | L | E | E | E | E | E | E | E |
e S St + + } } } 4 ¥ : 4
| 6 | N | MM | MM} s | T | T | cC | E | E | T | E |
"7 5] o o =1 ® 1 e = =1 5] 51 & |
E E E
e T + + } + 4 } ¥ ¥ + 1
| 8 | | o | o | E | E | E | E | E | E | E | E |
p--———t ¥ + $ + 4 + + + + + 1
| 9 | E | R | R | s | T | T | cc | E | E | T | E |
— —+ + 1 } $ + + + . $ 1
i 10 | E | E | E |} s | T | T | cc | E | E | T | E]
i 4 1 e 1 1 4 i 1
¥ -+ T T T T T T T T ———+ —————— + ------- "
| 1 | x (| E | €| E | E | E | E | E | E | E | E |
p--———1 1 t 1 $ $ $ + 4 } -1
I 12 | W M | M| s | T | T | c¢Cc | E | E | T | E |
‘___ 1 L 1 3 i 4 4 4 4 i 3 J
T T ¥ ¥ v T 1 Ll T T r)
{ 13 1 E i E 1 E l AB ! Z l Z i 22 l E i E i Z | E |
i
- T T T T T T T T T T T "‘*
| 14 | Y | o | o | E | ®? | o | E | E | E | E | E |
t + + + + t + + + + + ¥ {
| 15 | AY | AY | AY | AY | AY | AY | AY | AX | AY | AY | AY |
pm———t—————4 4 + $ + + + } + + 1
| 16 | AT | AT | AT | AT | AT | AT |} AU | AT | AT | AT | E |
bt + + 1 t t + + s oo 1
P17 | E | E | E | E | av | AV | &av | E | E | AV | E]
p--———t + + + 4 + + ¥ 1 4 + i
| 18 | E | E | E | AB | zZ | Z | 2z | E | E | Z | E t
b L i i i 1 L1 1 i i i 4 |
filed in the symbol table. A diagnostic is loop. <Calls are then made on subroutine
generated if the constant exceeds 231-1. CKLIM to acquire, analyze, and appropriate-
1y code the lower loop limit, upper loop
CEKBA -- Begin Loop Processor (BGNLP) limit, and the loop increment, if present.
If the loop increment is not given, the
BGNLP analyzes and encodes the begin pointer for integer 1 is supplied. A non-
loop information for the DO statement and source label is created and filed in the
for implied loops within an I/0O list. See Symbol Table for the loop top, and the

Chart CB.

ENTRIES: BGNLP has one entry point (CEK-
BAl) and no input parameters.

EXIT:

No output parameters.

OPERATION: BGNLP begins by making a call
on ACOMP to acquire the induction variable
for the loop. If the characteristics of
the induction variable are satisfactory,
flags are set to indicate the special use
of this variable for the duration of the

begin loop PRF entries are generated.
Appropriate diagnostics are printed if

any source errors or incongruities are
encountered.

CEKBB -- End Loop Processor (ENDLP)

ENDLP encodes the end loop entries for
explicit loops specified by a DO statement
and for implied loops within an I/O list.
See Chart CC.

Section 3: Phase 1 75

ENTRIES: ENDLP has one entry point
{CEKBB1) and no input parameters.

EXIT: ©No output parameters.
OPERATION: The end loop PRF entry is
generated, and successive calls for the

four loop parameters are made on Subroutine
CLLIM. If the loop parameter is a vari-
able, CLLIM determines whether this is the
lowest loop in which if is active. If it
is, CLLIM clears the symbol table flags and
indicators which distinguish the variable
for the duration of a loop.

CEKCJ -- Check Limits (CKLIM)

CKLIM checks DO loop parameters for
validity. See Chart CbD.

ENTRIES: CKLIM has one entry point
(CEKCJ1) and one input parameter: symbol
table pointer to loop induction variable in
Pl.
EXIT: ©No output parameters.

OPERATION: For each lower limit, upper
limit, and increment of a DO statement or
I/0 loop, CKLIM verifies that the limit is
either a variable or constant integer. For
a variable the symbol table entry is marked
to indicate the level of end loop at which
the unredefinable property of a loop limit
should be terminated.

CEKCK -- Clear Limits (CLLIM)

CLLIM removes information from the sym-
bol table entries for loop parameters at
the loop end.

ENTRIES: CLLIM has one entry point
(CEKCK1) and one input parameter: symbol
table pointer to loop parameter in P2.
EXIT: No output parameters.

OPERATION: For a variable loop parameter,
if the loop being ended is the outermost
loop in which this variable is a parameter,
CLLIM clears the ULEV field and lowers the
*must not be defined™ flag in the wvariable
symbol table entry.

CEKBW -- I/0 List Processor (IOLST)

IOLST analyzes and encodes the list ele-
ments for READ, WRITE, PRINT, and PUNCH
statements. See Chart CE.

ENTRIES: IOLST has one entry (CEKBW1) and

no input parameters.

EXIT: ©No output parameters.

76

OPERATION: IOLST makes two scans over the
list elements. The first scan detects and
codes the presence of any implied loops.
The second pass classifies the variables
(if required), generates the EF and PRF
entries, and generates the begin and end
loop entries, as required. The I/0 trans-—
mission and end transmission library rou-
tine entry names are filed in the symbol
table and marked as class external.

Appropriate diagnostics are printed if
any source errors oOr incongruities are
encountered.

CEKCD -~ Format i.abel Processor for I/0
Statements (FLABL)

FLABL processes a FORMAT statement num-
ber, as used in an I/0 statement. See
Chart CF.

ENTRIES: FLABL has one entry point
{CEKCD1) and no input parameters.

EXIT:

No output parameters.

OPERATION: FLABL checks the label, files
it in the symbol table, and fills in the
LABF field in the PRF entry being built.

CEKCE -- Read Transfer Processor for I/0
Statements (RTRAN)

RTRAN processes ERR and END labels, as
used in I/0 statements. See Chart CG.

ENTRIES: RTRAN has one entry point (CEK-
CEl1), with no input parameters.

EXIT: No output parameters.

OPERATION: RTRAN performs the necessary
checking and sets the PRF entry fields for
the error (ERR) and end of file (END) con-
dition transfer labels.

CEKCF -- FORMAT or NAMELIST Name Processor
(FNAME)

FNAME processes variable FORMAT designa-
tors or NAMELIST names, as used in I/O
statements. See Chart CH.

ENTRIES: FNAME has one entry point
(CEKCF1), with no input parameters.
EXIT: No output parameters.

OPERATION: For a namelist name FNAME sets
the ID and LABN fields in the PRF entry
being built. For a variable FORMAT, FNAME
sets the LABF field.

CEKAH -- Initial Value Data Specification
Processor (IDATA)

IDATA analyzes and encodes initial value
data for the type {(integer, real, complex,
and logical) and DATA statement processors.
See Chart CI.

ENTRIES: IDATA has two entry points, TDATA
(CEKAH1) and DDATA (CEKAH2), for calls by
the type and DATA statements processors,
respectively. The input parameter for
TDATA is a symbol table pointer for the
variable in parameter regyister P2. The
input parameters for DDATA are a parameter
list address in parameter register P2 and
the number of items in the parameter list
as fullword, right-justified binary value
in parameter register Pl. The parameter
list is made up of 2-word items. The first
word is a symbol table pointer, and the
second word is a fullword offset value.

EXIT: No output parameters.

OPERATION: IDATA has two entry points, one
for calls by the type statements and one
for calls by the DATA statement. After
initialization, each entry point calls on
internal subroutine IVAL, which processes
the actual value specifications.

Appropriate diagnostics are printed if

any source errors or incongruities are
encountered.

CEKCL =-- Initial Value Processor (IVAL)

IVAL processes constants used as initial
values in Type or DATA statements. See
Chart CJ.

ENTRIES: IVAL has two entry points, IVAL
(CEKCL1) and IVAL1l (CEKCL2). Input parame-
ters are the symbol table pointer of vari-
able in P2 and the current preset data top
in P6.

EXIT: Output parameters are
PS5 = 0 if constant not entered into data
table
= 1 if constant successfully entered
into data table
P6 = Updated Preset Data Top
OPERATION: IVAL first checks the variable

to which the initial value is being
assigned and opens the preset data entry.
It then joins with entry point IVAL1l to
process the initial data. If a repetition
factor is present, it is converted and
placed in the preset data entry. The ini-
tial value constant is then processed, con-
verted, and added to the preset data entry.

CEKAF -- Array Dimension Specification
Processor (ARDIM)

ARDIM analyzes and encodes the dimension
specifications for an array, when encoun-
tered with a DIMENSION, COMMON, or type
statement. See Chart CK.

ENTRIES: ARDIM has one entry point (CEKA-
FA) and one input parameter. The symbol
table pointer of the array name is required
in parameter register P2.

EXIT: ARDIM returns with parameter regis-
ter P2 unchanged. No other parameters are
returned.

OPERATION: If the array name class is
"unknown" or "simple variable," it is
changed to "array variable,"™ and the dimen-
sion values are scanned. If the class is
already array variable, the source charac-
ters, through the next right parenthesis,
are spaced over before returning to the
caller.

The dimension values may be either
integer constants or integer variables. If
they are constants, the appropriate dimen-
sion table entry is made, depending upon
whether the array name is a subprogram
argument. If they are variables, the
dimension values and the array name must
both be subprogram arguments. If so, the
symbol table flags are appropriately set to
reflect the use of this variable as a vari-
able dimension, and a dimension table entry
for a variable dimension is made.

CEKCC -- Label String Processor (LBSTR)

LBSTR processes a string of labels, as
encountered in assigned and computed GO TO
instructions. See Chart CL.

ENTRIES: LBSTR has one entry point (CEKC-
CA) and one input parameter: P2 contains
the PRF address of the line number field of
the PRF entry being formed.

EXIT: Output parameters are

P2 = contains the source character fol-

lowing the right parenthesis of
label string.

P3 = contains the PRF address of the
last label added.

P4 = contains the count of the number of
labels in the string.

OPERATION: For each label ACOMP is called
for the label value. The value is checked
and added to the PRF entry being built.
When a right parenthesis is found, LBSTR
returns.

Section 3: Phase 1 77

CEKAC -- Statement of Identification (SID)

SID is used to identify the type of
source statement. See Chart CM.

ENTRIES: SID has one entry point (CEKAC1),
and no input parameters are required.

EXIT: One output parameter, the statement
ID number, is returned in parameter regis-
ter P2.

OPERATION: An initial recognition is made
to identify the statement as either an
assignment or a nonassignment sStatement
(see Table 18). A precedence table (Table
19) is used, from which new status values
are extracted and used for branching. Non-
assignment statements are analyzed further,
until a unique identification is made.
This is done in two steps. First, the
first two characters of the name are
matched against List 1 (see Table 20).
this does not yield a unigque identifica-
tion, the first four characters of the name
are matched against List 2 (see Table 20).
The resulting ID numbers are shown in

Table 21.

If

CEKAJ -- Statement Label Processor (LABL)

LABL processes the statement label and
determines if any loops are ended. See
Chart CN.

ENTRIES: LABL has one entry point (CEKA-
JA), with no input parameters required.

Table 18. Assignment/Nonassignment
Character Table

r——- - I s 1
| Internal Code | Identification Code |
b + -—= 1
| A-G | 2 |
| H I 1 !
I I | 2 |
| J-K [1 |
| L i 2 I
i M | 1 |
i N | 2 |
|) | 1 |
I P I 2 |
| 0 | 1 |
| R-S | 2 |
| T-v I 1 |
i A | 2 |
| X-2,% | 1 I
| 0-9 I 3 !
[(| 4 |
|) I 5 I
| . | 6 !
| = | 7 |
i EOS* | 8 |
| ! | 10 |
| All Others | 9 |
3 L - 1
| #*EOS -~ End of Statement]
[1
OPERATION: ILABL checks to ensure that the

statement to be processed is not a condi-
tional statement of a Logical IF and is not
inside a BLOCK DATA program. If this is
the case, the label is converted to its
binary value. If the statement is in a
BLOCK DATA program or is a conditional
statement of a Logical IF, an error message

EXIT: No output parameters. is produced, and the scan is terminated.
Table 19. Assignment/Nonassignment Precedence Table
r T T T T T T T T T T hl
| ID | S| 2 | 3 1 b S | 6 | 7 | 8 | 9 | 10 |
| Code |] ! | | | | I] | l
pomm -t 1 + 4 } + 4 + + -4
S | | | I I |] | 1 ! | |
T | T 9 | 2 | 10 | 10 | 10 { 210 | 10 | 11 | 10 | 10 |
o e + oy S 4 ¥ ¥ + -4
T | 2 | 2 1 2 1 2 1 31 8 | 8 | 7 | 8 | 8 | 8 |
L $ + + t f-——- -+ 1 + -4
s | 3 | 4 LI 5 1 8 | 6 | 3 | 8 | 8 | 3 8 |
p-—-—-1 t $————t $ + 1 4 ¢ =i
| 4 L 8 | 6 | 3 | 8 | 8 | 3 1 8 |
I e o b + + + f--——{
| 5 | 8 | 8 | 5 | 8 | 6 | 3 | 8 | 8 | 3 8 |
e + bt 1 po—m——t——t $ + 1
| 6 | 8 | 8 | s | 8 | 8 | 8 | 9 | 8 | g8 | 8 |
e S et 1 + + to—---—t t oo e {
| 7 7 | 7 7 | s { 9t 8 { 9 { 9 | 2 | 9 |
| R 1 PR T 1 L v e v el e e e e 4 1 L —de e -
8 - Nonassignment Exit
9 - Assignment Exit
10 - Error Exit
11 - Blank Statement

78

Table 20. Nonassignment Type Statement

Identification
r T T i |
| | | # Characters |
| List 1 | Statement Name | in Name |
b + —t- -
| IF | IF | 2 |
| GO | GO TO | 4 |
| Do | * | !
| co | =* | |
| WR | WRITE | 5 |
| RE | # - | I
| FO | FORMAT] 6 {
| CA | CALL | 4 |
| DI | DIMENSION | 9 |
[AS | ASSIGN | 6 |
| NA | NAMELIST | 8]
| EQ { EQUIVALENCE | 11 |
i LO | LOGICAL | 7]
| IN | INTEGER i 7]
M	IMPLICIT	8
EX	EXTERNAL	8
EN	=	
BA	BACKSPACE i 9]	
suU	SUBROUTINE	10
i FU	FUNCTION	8 i
PR	PRINT	5
PU	PUNCH	5
BL	BLOCK DATA	9 [
DA	DATA	4 i
ST	sTop [y	
PA	PAUSE	5
k —+1 -t {		
		# Characters
List 2	Statement Name	in Name
b —t } —		
READ	READ	4
END Eos	END	3
comMm	COMMON	6 (
RETU	RETURN	6
REWI	REWIND i 6 {	
conT	CONTINUE	8
ENDF { END FILE	7	
REAL	REAL	4
coMmp	COMPLEX	7
ENTR	ENTRY	5
pouB	DOUBLE PRECISION	15
L L 4 J		
3 1		
*# Not unique.		
L —_ J

If the label field is nonzero, a label
definition PRF entry is generated, and the
DO loop pushdown list is scanned to see if
any loops are terminated. If the no-flow
flag is aup, the no-flow indicator in the
PRF entry is set.

If the label field is blank and if the
no-flow flag is up, a diagnostic is
printed, indicating that the statement is
not accessible. If the ISP option is on,
TEVCRIL is called to create a label, and
processing continues with forming the PRF
entry.

OPERAT ION:

CEKBQ -- Fallthrough Determination (FALTH)

FALTH is called by EXEC2 to determine if
a label reference in the statement preced-
ing the current one refers to the current
statement. See Chart CO.

ENTRIES: FALTH has one entry point (CEKB-
QA) and no input parameters.

EXIT: No output parameters.

FALTH checks to see if the cur-
rent statement was labeled. If it was not,
a normal exit is taken. If it was labeled,
the PRF links are followed until the label
definition entry is reached. The statement
number in the label definition PRF entry is
saved, and the link followed to the pre-
vious PRF entry. If that PRF entry is a
label definition or an argument definition
entry, the link is followed to the next
entry, and so on. If the PRF entry is any
of the GO TO entries, or a CALL, arithmetic
IF, READ, or READ with namelist entry, the
label references in the statement are
matched with the statement number saved
from the label definition. If a match is
found, the label reference number is set to
negative.

The occurrence of a negative statement
number in succeeding phases results in
object code optimization. If the PRF entry
is other than those mentioned above, a
normal exit is taken.

Table 21. Statement ID Numbers

r T T 1
] | l | ID |
| Executab1e| No | Nonexecutable | No.|
b $——nt ==—{
| BLANK { 0 | BLOCK DATA | 18 |
| ASSIGNMENT|{ 1 | COMMON { 19 |
{ ASSIGN | 2 | pata | 20 |
BACKSPACE	3	DIMENSION [21	
CONTINUE	4	END i 22	
END FILE	5	ENTRY	23
PAUSE	6	EQUIVALENCE	24
PRINT	7	EXTERNAL	25
PUNCH	8	FORMAT	26
REWIND	9	FUNCTION {27	
WRITE	10	IMPLICIT { 28	
READ	11	NAMELIST	29
CALL { 12	SUBROUTINE	30	
sToP	13	COMPLEX	31
RETURN	14	DOUBLE PRECISION	32
GO TO	15	INTEGER	33
IF	16	LOGICAL	30
DO	17	REAL	35
i	STATEMENT FUNCTION	36%	
l__ L 1 i ,!			
*This ID is never set by SID, but is set			
by FYPR.			
L J

Section 3: Phase 1 79

CEKCA -- Diagnostic Message Generator (ERR)

ERR generates diagnostic messages for
the statement processors wanenever any
source errors are encountered. See Chart
CP.

ENTRIES: FRR has four entry points. ERR1
(CEKCAA) is used for warning messages, ERR2
(CEKCAB) is used for ssrious error mes-
sages. ERRD (CEKCAC) is used for serious
error messages associated with statement
deletion, and ERR3 (CEKCAD) is used for
fatal error messages associated with abor-
tive end of compilation. The input parame-
ter for all entry points is the message
number in register P2.

EXIT: No output paramdcters.

OPERATION: This routine prepares a parame-
ter list for the compiler executive subrou-
tine RDM (CEKTE), and calls ®DM to put out
a diagnostic message. The parameters for
RDM are determined by the message number
presented to this routine. Each message
number indicates a list of four halfword
indicators. Each nonzero indicator either
specifies a piece of prepared text, whose
length and location are to be added to the
RDM parameter list, or specifies a code
branch to perform a special operation to
obtain material for the RDM parameter list.
A message number for which indicators have
not been provided causes a special RDM pa-
rameter list to be prepared, giving the
message number.

The local maximum error code is updated by
this routine, according to the entry used.
The delete flag is raised when the ERRD
entry is used.

80

INTRODUCTION

Phase 2 performs several major func-
tions. Storage assignments are made for
all source program variables, taking into
account the effects of COMMON, EQUIVALENCE,
and DIMENSION statements. The source pro-
gram flow and DO loop structure are ana-
lyzed to verify that all referenced labels
are defined, to determine that all flow
across loop boundaries is legal and to mark
loops for materialization of the loop vari-
able (keeping it in its memory cell), or
for marking the loop unsafe (minimum opti-
mization) when flow conditions demand it.

ROUTINE DESCRIPTIONS

Phase 2 routines bear mnemonic titles as
well as coded labels. The 5-character
coded labels begin with the letters CEKJ;
the fifth letter identifies a specific rou-
tine. Various entry points to a routine
are identified by a sixth character, a
digit, added to the coded label; for
example, the coded label for the diagnostic
message generator variable routine is
CERJH, and there are entry points CERJH1,
CEKJH2, and CEKJH3. When reference is made
to a compiler executive routine or entry
point, the mnemonic title is used, followed
immediately by the corresponding coded
label enclosed with parentheses.

There are no hardware configuration
requirements for any of the Phase 2 rou-
tines. All these routines are reenterable,
nonresident, nonprivileged, and closed.
Except for PHASE2 (CEKJA), which uses stan-
dard, type I linkage, all Phase 2 routines
use restricted linkage.

The relationships of routines in this
phase are shown in the following nesting
chart (Figure 18) and decision table (Table
22). The relationships are shown in terms
of levels; a called routine is considered
to be one level lower than the calling rou-
tine. Phase 2 controller PHASE2 is consid-
ered to be level 1.

CEKJA -- (PHASE2)

PHASE2 controls the overall processing
of Phase 2. See Figure 19.

ENTRIES: This routine is entered using
standard, type I linkage. It calls the
other routines used in Phase 2 by

SECTION 4: PHASE 2

restricted linkages. It has one entry
point, CEKJAl, and one parameter, the
executive intercom region.

EXITS: PHASE2 has one normal exit to Exec.

Abnormal exits are converged to the Exec
with return codes (RC) 8 and 4. Return
code 8 specifies an irrecoverable condition
and is referred to mnemonically as the
ABORT return code. Machine or compiler
errors {(MCERR) are indicated by return code
4.

OPERATION: On entrance from Exec, PHASE2
initializes itself and invokes the two main
routines: VSCAN and FSCAN. (See Figure
19). VSCAN makes storage assignments using
the storage specification list for informa-
tion about COMMON and BQUIVALENCE state-
ments. FSCAN scans the PRF to perform the
flow and loop analysis.

CEKJC -- Storage Assignments for Variables
(VSCAN)

VSCAN makes storage assignments for all
variables in a source program, and consists
of three parts: VSCAN1l, VSCAN2, and
VSCAN3. See Chart CQ.

ENTRIES: VSCAN has one entry point
(CEKJC1) and is invoked by PHASE2.
are no input parameters.

There

EXITS: VSCAN returns to the Phase 2 execu-
tive with the normal, ABORT, or MCERR
return codes.

OPERATION: VSCAN assigns storage space for
all variables. Assignments are made in
certain storage classes. The status of
each storage class is kept up to date in
its storage class table entry (see Appendix
A). Non-COMMON variables are assigned in
storage class 6, blank COMMON in storage
class 9, and named COMMON in as many of
classes 10-127 as are needed. Each symbol
table variable entry has its STCL field
filled with the appropriate storage class
and its SLOC field filled with an assign-
ment relative to the base of that storage
class. The storage class table entry for
each class includes the number of bytes
already assigned in that class; the entry
also indicates the next available space.

Section 4: Phase 2 81

Level

1 PHASE 2
S
N ¥
] ¥
r
» I vscan FSCAN
|
L
- Y
| Y |
3 FORMAT LAB RTNI
A
f Y
P U S
4 ISP (’ FLL { FLL
L)
—] y
t1 ¥y v
- i DX -
5 !
!
4 wm)
N /

Figure 18. Phase 2 Nesting Chart

82

Table 22. Phase 2 Decision Table

Routine:————————eeePhase 2-mmmm—m—— e - - ———-Level: 1 ——cmmm———
[——————— TS - X 5 - 1
| | |Called | |
|Routine | Usage |Routines | : Calling Conditions |

4 1 4
——————— T =TT T _—+——_‘_-“———__--—_-°_——__—_--—- 1
PHASE2	Controls the operation of	VSCAN	Entered unconditionally to make the memory
	Phase 2.		assignments.
]	FSCAN	Entered unconditionally to scan the PRF to	
] | i | perform the flow and loop analysis. |
b O - o B _— 4
Routin@immeme e e e cPHASE 2 e e e e e e e e e e e e e Level: 2 ——emmmmm e

T

=T = =" T === - . Z5 1
|

VSCAN |Makes the memory assign- |DX |If an error condition is found, entered |
| | ments for all wvariables. | | to print the error message. |
———————— O e ¥ -— - -]
FSCAN	Does the flow and loop	RTN1	Entered for each label reference to place
	analysis including label}	an entry in the Symbol Table.	
	processing, illegal	LAB jEntered for each label reference toc check	
	transfers, unsafe loops,		the legality of transfers into and out
	and COMMON and formal		of loops.
	argument definition	ISP	Entered for each label reference to check
	points.		for a proper Symbol Table entry.
		FORMAT	Entered for each I/0 statement reference
			to a FORMAT number to check for a proper
			Symbol Table entry.
i		TEVFLL	An Exec routine entered for each label
		(CEKTFG)	definition to file an entry in the
			symbol table.
		DX	Entered when an error condition is found
			to print the error message.
L. L 1 i —_ J			
Routinei———————————e Phase 2-- - - -Level: 3 ———emmmm—			
——————== B S T --T B 1			
RTN1	Places label references	TEVFLL	An Exec routine entered to make the label
{ in the Symbol Table.	(CEKTFL)	entry in the Symbol Table.	
e 1 -—+ 1			
LAB	Checks the flow as	ISP	Entered for each label reference tc de-
	related to DO loops.		termine if a legitimate Symbol Table
	{	entry exits.	
		DX	Entered if an error condition is found to
			print out the error message.
fmm——— - t S e 1			
FORMAT	[Checks to see that refer-	DX	Entered if an error condition is found to
	enced FORMAT statements		print out the error message.
	are properly defined		i
	in the Symbol Table.]
L ——— L —— - PR J			
Routine:=——m——e———e——PhaSe 2————— Level: 4§ ———eeme—			
S S ——-- T T S - 1			
ISP	Checks to see that refer-	DX	Entered if an error condition is found to
	enced statement labels		print out the error message.
	are properly defined in		
	the symbol table.		
b b - 1 [1			
Routine —————————-—— Phase 2-- Level: 5 ——————mee-—			
r T St e - ————————————			
DX	To generate the error	RDM	An Exec routine entered for each error
	message	(CEKTE)	to print the line.
S S ! ! ;

Section 4: Phase 2 83

Phase 2 i
lr\ifiai?z”.r?an\l

—
L

[Varigbles

I

y U P
/\RC =0 "/,__c’__.& Exit

\\

Yes

[FSCAN
| Locel and

; Loop 3ourdary
! !

Error i

Processing |

Figure 19. Phase 2 General %low

All symbol table entries except con-
stants and labels are relinked from the
hash-table~based chains used in Phase 1.
The variables of each storage class now
form a chain, linked in order of assign-
ment. External reference, namelist, and
entry entries form three additional chains.

Description (VSCANl1): All chains based on
the variable hash table are scanned, and
each entry is examined. Those marked as
external reference, namelist, or entry are
linked into their appropriate chains.

Those marked variable but flagged as COMMON
or EQUIVALENCE are ignored, since they will
be processed later. Those marked variable
but flagged as formal argument are also
ignored. BAll other nonvariable entries are
ignored.

For each non-COMMON, non-EQUIVALENCE,
non-formal-argument variable encountered,
an entry in a sort table is made (see
Figure 20) containing the number of dimen-
sions, the type size mask, the amount of
storage required, the type indicator, and
the symbol table pointer. When all symbol
table entries have been scanned, the sort
table is sorted to increasing value of
these fields. The result is that all

84

0 4 8 16 31
I s 1
| ND | T™M | 57 |
e e T 1
| TY | Unused i VAR |
R U N ———— 4
ND Number of dimensions (0-7)
™ Type/size mask:

0 Logical*l 3 Real*y

1 Integer*? 7 Real*8

3 Logical#y 7 Complex*8

3 Integer*y F Complex*16

SZ Total storage requirement
TY Type: 1 Logical
2 Integer
3 Real
4 Complex
VAR Symbol Table name part pointer

Figure 20. Sort Table Entry

simple (undimensioned) variables come
first, then all 1-dimensional arrays, etc.
Within a dimensionality, variables of the
same type fall together, those requiring
less storage preceding those needing more.

The variables are then assigned in the
sorted order, to maximize the possibility
for sharing address constant cover and sub-
scripts between variables. The assignments
are made in storage class 6, with each
variable being assigned to the next avail-
able byte on a boundary suitable for the
type. At the same time, the variable sym-
bol table entries are linked into the vari-
able chain.

Description (VSCAN2): VSCAN2 scans the
storage specification list, processing the
COMMON variables and providing preliminary
processing for variables appearing in EQUI-
VALENCE statements. The information from
COMMON statements filed in the storage
specification list is scanned. Each vari-
able is given an assignment (STCL and SLOC)
in the storage class for its COMMON block
and linked into the symbol table chain for
that block. The size of the block is
increased for each variable by the space
required for the variable.

If the available assignment for a COMMON
variable is not at the proper boundary
(halfword, fullword, doubleword) for the
type, a warning message is produced. {In
the object program storage layout all
storage classes will start on a doubleword
boundary.)

As the storage specification list is
being scanned and COMMON variables arz pro-
cessed, the information from EQUIVALENCE
statements also receives preliminary pro-
cessing. The material appearing in a set
of parentheses in an EQUIVALENCE statement
is called a group; group numbers are

assigned to groups sequentially, in order
of occurrence. As an =QUIVALENCE entry 1is
encountered, VSCANZ2 must determine whether
a variable is of tne type 'FF'. If so,
VSCAN2 computes the offset by searching for
dimension information in the Dimension
Table (whose specifications may occur in
DIMENSION, COMMON or explicit TYPE state-
ments). If insufficient or no dimension
information is found, an E level diagnostic
is issued and an offset is computed by
defaulting to the first subscript. pPro-
cessing continues to the next variable or
group, if any, until all groups in the
EQUIVALENCE statement are exhausted.

If a variable is of the type 'Fi' and
dimension information permits an offset to
be computed, VSCAN2 overlays the last sub-
script entry (EE2, EE3, EE4 or EE5) with
the newly formed EEl. With this technique
VSCAN2 can consistently step through tae
EQUIVALENCE entries by an increment of one
(1). For each occurrence of a variable in
an EQUIVALENCE statement, an entry is made
in the variable list (see Appendix A for
variable list format). The entry consists
of the symbol table pointer, the group
number, and the offset in bytes, and repre-
sents the equation

(base of group) = (base of variable) +
offset

Base-of-group and base-of-variable are
unknowns. Base-of-variable represents the
eventual storage assignment to be made for
the variable. Base-of-group represents the
assignment which would be made to a vari-
able appearing in the group with no
subscript.

Description (VSCAN3): After the storage
specification list scan is completed, the
variable list is sorted by increasing or-
der, with the symbol table pointer as the
major key and the group, there will be con-
secutive entries for that variable in the
sorted list. These consecutive entries in-
dicate connections between different
groups. See Figure 21.

The sorted list of variables is scanned.
In the case of consecutive pairs involving
the same variable, each such pair repre-
sents a pair of equations:

(base of group;) = (base of
variable) + offset, ,

{(base of group,;) = (base of
variable) + offset,,

where the number of group, 2= number of
groups; -

Variable List Entry

0 16 31
r————="—77="77 T == I 2 1
| VAR | GPV |
- A 1
| OFS |

VAR Gymbol Table name part pointer
GPV EQUIVALENCE group number
OFS Offset in bytes

Group Connection List Entry

0 16 31
r———— T - - 1
| GF1 | GP2 i
pom e e :
| DSPL]
b e e e e e e 1
GP1, GP2 Group numbers

DSPL Displacement

Group Table Entry

0 16 24 31
T - I S H I
| GP1 | STCL | MAXS |
¢ - -1 i 1
H DSPL |
i e e e e e e e e e et et e ot e ot e e e o e o o e e e o 4

GP1 Group number

STCL Storage class
MAXS Maximum byte boundary over group
DSPL Displacement

Figure 21. Variable List, Group Connection

List, and Group Table Entries

Eliminating the base-of-variable gives
the equation

(base of group,) = (base of group;) +
(cffset,-offset,) ,

which is represented by an entry in a new
list, the group connection list, consisting
of group number,, group number,, and a dis-
placement computed as offset, minus
offset, .

After completion of this scan, the group
table is initialized. It contains one
entry per group, and will eventually indi-
cate, for each group, the lowest numbered
group with which it is connected and its
displacement from the base of tht group.
Each entry consists of a group number and
displacement, representing the equation

(base of group;) = (base of group) +
displacement ,

Section 4: Phase 2 85

and is initialized to

{base of group;) = (base of group;) +
o .

Each group connection entry is processed
against the group table. The grocuop
connection entry gives the equation

{base of groupgl.= (base of group,) +
displacement,

and the group table entry for group gives
the equation

(base of groupy) = (base of group;) +
displacement, .

Comparing the numbers of group; and
group,, there are three possible cases.

Case 1. 1i<j The group connection entry
relates group, to a lower—-numbered group
than that with which it is already con-
nected. Group; and displacement, are
saved, and the group table entry for
group.is changed to indicate

(base of group«) = (base of group;) +
displacementy .

If k = j (as initially), no further pro-
cessing is needed. However, if k > 7j,
eliminating base-of-group, from our two
equations gives a new group connection
entry representing

(base of group;) = (base of group,) +
(displacement, - displacement,) .

This entry is formed and processed against
the group table entry for group;.

Case 2. i = j. If displacement; = displa-
cement,, this entry is consistent but
redundant, and needs no processing.

Case 3. 1 > j. The group table entry
relates group,; to a lower-numbered group
than the group connection entry. Elimina-
ting base-of-groupx from the two equations
gives a new group connection entry
representing

(base of group;) = (base of group;) +
(displacement, - displacement,) .

This entry is formed and processed against
the group table entry for group;.

After the group connection list has been
processed, a final pass is made over the
group table. Each entry represents an
equation

(base of group,) = (base of groups) +
displacement,

86

If the earlier entry for
groups indicates

(base of group;) = (base of group,) +
displacement, ,

then substitution yields

(base of group,) = (base of group,) +
(displacement, + displacement,) .

This substitution is carried out for each
entry to which it applies.

The group table is now in final form and
ready for use. The variable list is
scanned again. Each entry represents

{base of variable) = (base of groupnm)
- offset .

The group table entry for
group, represents

(base of group,) = (base of group.) +
displacement .

Substitution yields

(base of variable) = (base of group.)
- (offset - displacement)

and the variable entry is changed to repre-
sent this equation. (If two consecutive
entries for the same variable occur, both
must transform to the same new entry.)

This entry now relates the variable to the
base of the lowest-numbered group in the
connected set of groups in which the vari-
able occurs.

During this scan the STCL field in the
symbol table entry for each variable is
checked. This field is zero for a non-
COMMON variable, but indicates the COMMON
block for a variable which has already been
assigned in the COMMON processing. If any
variable in a group is in a COMMON block,
the group table entry receives the appro-
priate storage class; otherwise, this entry
is set to storage class 6. Also during
this scan, the size of the largest variable
in a group (1, 2, 4, 8, or 16 bytes) is
associated with the group.

The variable list is sorted by decreas-
ing order, with the group number as the
major key and the offset as the minor key.
(The offset may be negative, so the sort
must use algebraic comparisons.) This sort
brings together the wvariables within the
same group and arranges them in order of
storage assignment.

Now the 1list is scanned, and assignments
are made for each variable. For each non-
COMMON group the current size of storage
class 6 is adjusted to the proper byte

boundary for the largest variable in the
group. The first variable in the group
(the one with the largest offset) is given
this assignment, and each successive vari-
able is assigned to this location plus the
difference of maximum-offset minus the
-variable's-offset. Also for each vari-
able, its size (total size if an array) is
added to its assignment, and tne maximum of
these over each group is used to update the
size of storage class 6 when all the group
variables have been processed. Ekach vari-
able is linked to the end of the non-COMMON
variable chain.

For a group including a COMMON variable,
that variable is located and its existing
assignment is taken as a group base.

Each variable is given, as an assign-
ment, the assignment of the base COMMON
variable plus the difference of COMMON-
variable-offset minus variable-offset. A
check is made for negative assignments and
assignments to improper byte boundaries.
Each variable assigned is linked into the
chain for the COMMON block, in order of
increasing assignment. If the size of the
COMMON block is increased by these assign-
ments, the storage class table entry is
updated.

In addition, as the assignments are made
for common variables, checks are made to
ensure that those appearing in DATA state-
ments are permissible.

VSCAN detects and issues diagnostic mes-
sages for source program errors related to
storage assignments for variables. These
include inconsistencies in EQUIVALENCE
relations and assignments forced by COMMON
or EQUIVALENCE statements that place
variables on byte boundaries which are not
proper for the variable type.

VSCAN may issue a diagnostic message and
branch to PHASE2 with the ABORT code if the
internal tables used for sorting exceed the
maximum available space. VSCAN may branch
to the Phase 2 executive with the MCERR
code if certain conditions are detected
which must be due to machine or compiler
error.

If the ISD option is OFF, another symbol
table scan is made to find interfering
variables. 1In each storage class, the
variables are scanned in order of storage
assignment by following the existing chains
built by VSCAN. For each variable, the
storage assignment plus the size is com-
pared with the storage assignments of suc-
ceeding variables. When overlap is
detected, the "Equivalence Flag" in the
symbol table description part is raised and
the variables are linked, using the FDP
anchor field in the symbol table entries,
in a chain of interfering variables for
that storage class. At the end of VSCAN,
these chains are anchored in a new table,
"Intble”, which has the format below.

0 16 31
INTBLE FORMAT [——————m e 1
| No. of named | Not used |
| commons | here !
vy o - i
| SYMTAB Anchor i 8000 |
| Storage Class 6 | (flag for later use) | NON-COMMON VARIABLES
F - o e 1
| SYMTAB Anchor | 8000 |
| Storage Class 9 | | BLANK COMMON VARIABLES
t + e i
| SYMTAB Anchor | 8000 |
| Storage Class 10 | | FIRST NAMED COMMON
e a—— e :
I I |
| | |
frm——m +-- 1
| SYMTAB Anchor | 8000 |
| Storage Class N | | LAST NAMED COMMON
Tttt 1
| SYMTAB | PRF
| <em—m—- D Rt ettt >
| PART | PART
| I
! |
| |
| !

Section 4: Phase 2 87

CEKJB -- Process Label References and
Definitions (FSCAN)

FSCAN is in two parts:

FSCAN1 - is concerned with labels which
must be entered into the symbol
table and marked if referenced in
the source program.

FSCAN2 - is5 concerned with the following:
undefined label references and
illegal flow conditions across DO
loop boundaries, unsafe loops and
the need for materialization, and
definition points for COMMON and
formal argumentc.

See Chart CR.
ENTRIES: FSCAN has one entry point

(CEKJB1) and is invoked by the Phase 2
executive.

EXITS: FSCAN returns to the Phase 2 execu-
tive with the normal, ABORT, or MCERR
return codes. There are no parameters.

OPERATION: FSCAN1 constructs symbol table
entries from label references and label
definitions, together with information per-
taining to each label. One scan is made
over the PRF, by simultaneously progressing
along three separate chains. These chains
are as follows:

1. CLNK chain -- Links all transfer of
control statements in the PRF. For
each different place to which control
can be transferred, there is a label
reference.

2. LLNK chain -- Link label definition
entries in the PRF.

3. PDLNK chain -- All DO statements have
a begin loop (BL3}) and a special entry
end loop (ENDL) in the PRF, just prior
to the next executable statement out-
side the loop. These are the loop
boundary items, and all such items in
the PRF are linked into a loop bounda-
ry chain called the PDLNK chain.

After any chain entry has been pro-
cessed, the three links ‘one for each
chain) are compared. T7:: chain having its
next entry closest to the present scan
position in the PRF is selected for pro-

cessing next.

When a GLNK chain entry is selected,
each label reference (there are NOEL of
them) is placed in the symbol table and
denoted as a reference:d label. The number
of references is given b, the NOEL field.
The LLNO field in the PRF is changed to
contain the pointer to the label entry in

88

the symbol table. A negative label wvalue
indicates a reference to the next statement
and is not marked "referenced."®

When an LLNK chain entry is selected,
the label is placed in the symbol table,
together with corresponding level and pla-
teau values, and the LLNO field in the PRF
is changed to contain the label address in
the symbol table. Multiply defined labels
are detected in this scan.

When a PDLNK chain is selected, the
level and plateau values are incremented
and saved, and tne level value is placed
into the LEV field of the PRF.

Two tables, formed during FSCAN1l, are
used during FSCAN2 for detection of illegal
flow conditions:

The Barrier Table

O 15 16 31
f - -7T
| PLAT | LEV |

| S,

The Innermost Loop Table

0 15 16 31
r——== B J 1
	Symbol Table Pointer
PLAT	(May be 0; entered
	during scan number
z 12) |
b R 1

The plateau value is entered into the
innermost loop table whenever a BL3 entry
is preceded by an ENDL entry. The level
and plateau values are entered into the
barrier table whenever a BL3 entry is fol-
lowed by an ENDL entry.

A plateau is any area between loop
boundary entries. The PRF link to a loop
boundary entry (End Loop or BL3) is used as
a name for the plateau which starts with
that entry.

FSCAN2 is concerned primarily with three
things:

1. Discovering any label references which
are not defined.

2. Processing DO loop items for flow
conditions.

3. Forming the CDP and ADP chains.

These three processes are carried out si-
multaneously while FSCAN2 is scanning the
PRF along the ILNK chain (which links
together successive PRF items).

Label Processing

If the current item in the PRF scan is a
label reference item, each symbol table
pointer associated with the label reference
is used to locate the define bit in the
symbol table for that particular label
reference. If the define bit is not on,
this particular label is not defined, and
an appropriate error diagnostic is given.
This particular PRF item is then deleted
from the ILNK chairr. =

Label definition items are similarly
checked, to see if they have been
referenced (i.e., the reference bit is set
in the symbol table). If not, this item is
deleted from the LLNK chain. After this
scan the LLNK chain will link together suc-
cessive label definitions for referenced
labels only. Label definition items which
have been referenced are checked for the
no-flow condition. If the no-flow bit is
set in the symbol table, a diagnostic is
issued indicating that the statement cannot
be reached.

Flow Processing

If the current item in the PRF scan may
cause an illegal flow condition to occur,
the item will be investigated for all such
conditions, and a diagnostic given if any
is found.

The flow processing is broken into two
areas for investigation. These conditions
are described below. "Level zero" denotes
a plateau not inside any DO loop.

1. Jumps from or to Level Zerxo

Jumps from Level Zero. If the jump is
not to an innermost loop or to level
zero, a diagnostic is given. If the
jump is to an innermost loop, the pla-
teau and symbol table pointer of the
definition are entered into the E loop
list.

Jumps to Level Zero. If a jump is
made to level zero from an innermost
loop, the plateau value of the label
reference is entered into the X Loop
List. In this case, all intervening
levels from the label reference to the
level preceding the label definition
are marked as materialized in the
"Materialization List."

2. Jumps Other than those from or to
Level Zero

Jumps into lLoops (Jumps to Higher
Levels). A jump from a level other
than level zero to a label definition
whose level is greater than that of
the label reference is an illegal jump

intoc a loop, and an appropriate diag-
nostic message is given.

Jumps Out of Loops (Jumps to the Same
or Iower Levels). If a jump is made
(from a reference level other than
level zero) to a label definition
whose level is less than or equal to
that of the label reference, the bar-
rier table must be inspected for any
plateau values with level lower than
that of the definition intervening
between the plateau value of the label
reference and that of the label
definition. If there are no such pla-
teau values between these limits, the
jump is legal. If there is such an
intervening plateau value between
these limits, a diagnostic message is
given, indicating an illegal jump into
a loop. All loops from the reference
level to the definition level are
marked "materialize."

DO Loop Processing

1. Unsafe Loops
Two lists are formed during FSCAN2:

E Loop List -- consists of plateau
values of label definitions which
occur at an innermost loop, and
are referenced from level zero.

X Loop List -- consists of plateau
values of label references which
occur at an innermost loop.

Every entry in the E loop list should
also be in the X lcoop list; therefore,
each innermost loop entered from level
zexo also has a jump out of this
innermost loop to level zero. If this
condition is not met, an appropriate
diagnostic is given. A third scan is
made over the PDLNK chain. If any
entries exist in the E loop list,
those end loop entries which lie
between the plateau values of the
label reference and the label defini-
tion are marked as unsafe.

2. RETURN Loops

Loops containing RETURN statements are
marked "materialize™ if the loop vari-
able is in COMMON or is a formal argu-
ment called by name.

3. Definition Point Chains

The CDP chain connects PRF entries
which must be considered as definition
points for all COMMON variables or
formal arguments. An entry is linked
in this chain if the statement
involves a call on an abnormal func-

Section 4: Phase 2 89

tion or subroutine (one which may
redefine COMMON), or if a formal argu-
ment is explicitly assigned a new
value.

The ADP chain connects PRF entries
which must be considered as definition
points for all formal arguments. An
entry is linked in this chain if a
COMMON variable is explicitly assigned
a new value {and the entry is not
already in the CDP chain).

The processing of interfering variables
takes place during the second PRF scan.
Chains of the interfering variables within
each storage class are formed within the
PRF and ancnored in the second halfword
(the PRF part) of the corresponding Intble
entries. When a variable is being defined,
that is, wherever ID = 5 (equation), ID = D
(argument definition point), ID = 10 (Begin
Loop 2}, or ID = 21 (Input list Element),
the equivalence flag in the symbol table
descriptive part for the variable is
checked. If the flag is raised, the
storage class of the variable is used to
locate the correct Intble entry. The vari-
able is added to its chain by setting the
VDP field to the PRF part of the Intble
entry, and the chain's anchor is updated by
setting the PRF part of the Intble entry to
the ILNK field.

The interfering variable chains are
reversed during the reversing of the CDP
and PDLNK chains. Another table of the
same size as Intble, LNKSAVE, is used to
hold the saved links. During the chain
reversal, the chain whose current 1link is
in the highest location is chosen for
reversal at each step. The set of inter-
fering variable chains is searched to find
the highest link, and the result is com-
pared with the current CDP and PDLNK links
to find the highest current chain link.

After the chain reversals, Intble is
scanned for storage classes containing in-
terfering variables. These symbol table
chains of variables are followed and FDP
anchor fields are set to the beginning of
the PRF VDP chain for that storage class.

2 halfword cell "LXT" is used to hold a
symbol table pointer and a flag "ACGTFL" is
used to indicate that the current PRF item
is either an assigned or a computed GO TO
statement.

ACGTFL is lowered before starting FSCAN2
and raised at each computed (ID 8) or
assigned (ID 7) GO TO item before calling
LAB (CEKJE) and lowered when returning from
LAB.

LXT is set to 8001 at each end-loop item
(ID12) unless the global flag is raised

90

(i.e., loop is flagged "Innermost no
calls®™). In this case, LXT eyguals 8000.

At each begin-loop-2 item (ID 10), the cur-
rent value of LXT is put into the EXITLE
field and the LXT is set to 8001.

CERJD -- Label Reference Processor (RTH1)

RTN1 places label references in the sym-

bol table. See Chart CS.
ENTRIES: RTN1 has one entry point, CEKJD1.
Input parameters are
Pl -- Number of label references in
PRF item
P2 -- Index to first label number in
PRF item

EXITS: RTN1 returns to the invoking rou-
tine with the normal or ABORT return code.

OPERATION: RTN1 checks the sign of the
label number. If the sign is positive, it
is replaced by the pointer to the cor-
responding symbol table entry, and the sym-
bol table entry is marked as "referenced.”
If the sign is negative, indicating a
reference to the next statement, it is
replaced by the symbol table pointer, but
is not marked as "referenced.”

Negative values appearing in arithmetic
IF statements are simply replaced with
X'8000' to indicate fall-through.

CEKJE -- Label Reference Processor (LAB)

ILAB checks flow as related to DO loops.
See Chart CT.

ENTRIES: LAB has one entry point, CEKJEl.
Input parameters are
P1 -- Number of label references in
PRF item
P2 -- PRF index to first symbol table
pointer
P5 —-- Pointer to PRF item

EXITS: Only the normal exit is made, with
no output parameters.

OPERATION: LAB checks the legality of
jumps from and into DO loops, as described
under "Flow Processing” in FSCAN.

The materialization list is marked as
required, the necessary X loop and E loop
list additions are made, and appropriate
diagnostics are given when illegal fiow
conditions are detected.

LXT and ACGTFL are processed at the two
points where a branch out of a loop is
detected to a level of zero or greater than
zero. If LXT equals 8000 or if LXT equals

the Symbol Table pointer for tne current
lapel, and if ACGTFL is5 down, then set LXT
to equal the Symbol Table pointer for the
current label, and omit marking the AT
stack for the currently innermost level.
Otherwise set LXT to 8001.

CEKJF -- Statement Label Reference
Inspection (ISP)

ISP determines whetuner referenced state-
ment labels are properly defined.

ENTRIES: ISP has one e2ntry point, CEKJF1.
Input parameter is

P2 -- PRF index to symbol table
pointer

OPERATION: The symbol table item of the
referenced label is checked to see if it is
marked "defined." If it is not, a diag-
nostic is issued and the undefined flag is
raised. ISP is not entered to check the
validity of FORMAT label references. A
diagnostic is issued and the undefined flag
is raised when erroneous references to FOR-~
MAT lables are encountered.

CEKJG -- Format Reference Inspection
(FORMAT)

FORMAT determines whether referenced
FORMAT statements are properly defined.

ENTRIES: FORMAT has one entry point,
CEKJG1. Input parameters are
P2 -- PRF index to symbol table
pointer
PS5 -- Pointer to PRF item
OPERATION: The associated symbol table

entry of the referenced label is checked to
see if it is marked "defined.™ If it is
not, a diagnostic is issued and the unde-
fined flag is raised. A diagnostic is also
issued and the undefined flag is raised if
the class of the label item is not FORMAT.

CEKJH -- Diagnostic Message Generator (Dx)

DX generates diagnostic messages whenev-
er error conditions are encountered. See
Chart CU.

ENTRIES: DX has three entry points:
CEKJH1, CEKJH2, CEKJH3. The input parame-

ters, for all three entry points, are
Pl -- The Phase 2 diagnostic code
P2,P3 -- Pointers to the symbol table
or PRF item from which infor-
mation is to be extracted.
EXITS: 0Only the normal exit is made, with

no output parameters.

OPERATION: DX generates a diagnostic mes-
sage by operating on a parameter list, from
which another parameter list is generated
for RD!M. An input parameter may be one of
two types. The first type is a parameter
which merely points to a piece of prepared
text. In this case, the address of a word
containing the text length in characters
and the address of the text are entered
into a parameter list for RDM.

The second type is a parameter which
specifies that a certain predefined opera-
tion is to be performed. In this case, an
indexed branch on the parameter is made to
the operation to be performed. £ach of the
operations extracts specified information
from some table or file, such as the symbol
table, performs any conversions required,
and makes appropriate entries in the param-
eter list for RDM.

A parameter word containing zeros indi-
cates the end of the input parameter 1list,
and RDM is called to output the diagnostic
message.

Section 4: Phase 2 91

SECTICON 5: PHASE 3

INTRODUCT ION

The major function of Phase 3 is global
optimization, which is the process of mini-
mizing the number of object code instruc-
tions to be generated by Phase 4. There
are four categories of global optimization.

1. Removable Expressions. A "removable
expression”™ is one whose individual
operands do not have "definition
points™ inside the loop. A definition
point is a statement in which the
variable has, or may have, a new value
stored in it (e.g., appears on the
left-hand side of an equal sign). In
removing an expression, Phase 3 does
not remove the left-hand side of an
assignment statement nor a label. The
"store®™ operation remains inside the
loop.

In the following example the expres-
sion (B+C) is removable from the indi-
cated loops, but the expression (A+D)
is not, since the variable A has a
definition point inside the loop
(statement 10).

-

DO 30 I=1,N

10 A=B+C
20 E=A+D
30 CONTINUE

2. Common Expressions. Two occurrences
of an expression are considered to be
common if the value of the expression
cannot change between the occurrences,
i.e., there are no definition points
for any of the variables involved and
there is no intervening referenced
label.

In the following example, the occur-
rences of A+B in statements 10 and 30
are considered common with each other,
but not with the occcurrence in state-
ment 40 because there is an interven-
ing referenced label. That is, state-
ment label 40 (which is referenced
from statement 60) intervenes between
the occurrence of A+B in statement 30
and its occurrence in statement 40.
Labels 20 and 30 intervene between the
occurrence of A+B in statement 10 and
its next occurrence; however, since
neither label 20 or 30 is referenced,
the occurrences are considered to be

92

common. The expression (C+(A+B)) can-
not be marked common in statements 10
and 30 because the value of C changes
(i.e., has a definition joint) in
between, at statement 20.

-

10 D=C+(A+B)

20 C=D+F

30 E=C+(A+B)

40 IF(A+B)50,10,70
50 A=F+E

60 GO TO 40

Subscript Expressions. Subscript ex-
pressions determine which individual
element of a dimensioned array is
referenced. The expression may con-
tain four types of constituents:

a. An address constant (adcon)
b. Induction variable parts

c. Removable parts

d. Nonremovable parts

Each subscript has exactly one asso-
ciated adcon. It is determined from
the base address of the array variable
itself and the collection of constant
terms (done by Phase 1).

The induction variable is the variable
referenced in the DO statement of the
loop. 1In the statement

DO 10 I=1,N

I is the induction variable (also
referred to as the loop variable).

For the removable and nonremovable
parts the same criteria are applied,
as described in "Removable Expres-
sions™ above.

In the following example, the terms of
the subscripts involving I and J are
induction variable parts (statements
30 and 40). Removable terms are found
in statement 30. The terms involving
N are removable from both loops, and
the terms involving I are removable
from the inner loop (statement 2
loop).

The subscript terms invcolving M in recursive must be a positive

statement 20 are nonremcvable because constant.
cf the M definition point in statement
10. The following is an example of a

BXLE on recursive loop:

-

REAL*4 A (10)

1 DO 50 I=1,k REAL*8 B (10)

2 DC 40 J=1,4 DO 10 I = 1,10
10 M=J+3 10 B(I) = B{(I)+A(I)
20 Z (M) =A+M
30 X(D)=Z(N)Y+Y (V) In the example, both recursives
40 Y(I)=Y(J)+M are candidates for the BXLE, but
50 CONTINUE the recursive on B, having more

uses in the loop is selected.

b. BCTR loop.
DO loop control. It is a Phase 3

responsibility to determine the method This loop is controlled by a BCTR
that is going to be used by Phase 4 to instruction of the form:

generate the loop control instruc-

tions. The following are the types of BCTR 15,14

loop control and the criteria for

each. where register 15 has been ini-

a.

BXLE on recursive.

This loop is controlled by a BXLE
instruction of the form:

BXLE R1,14,LOOPTOP

where R1 contains tne recursive
expressicon that has been initial-
ized to zero at the loop top,
register 14 contains the increment
to be added to the recursive, and
register 15 contains the test
value.

The requirements for this type of
loop are:

e There must be no reason to
materialize the induction vari-
able; e.g., the ISD option must
be off, and the induction vari-
able must not appear in the loop
outside of a subscript.

e Loop must be save, innermost,
with no external calls. This is
necessary since Phase 4 is going
to globally assign registers 14 c.
and 15.

e There must not be branches out
of the loop to more than one
label. If there is a branch to
only one label, the induction
variable is materialized on the
exit path.

e There must appear in the loop at
least one subscript expression
containing the induction vari-
able as the least-removable
term. The coefficient of the

tialized at the loop top with the
count of times through the loop,
and register 14 contains the
address of the loop top.

The BCTR loop requirements are:

s Induction variable does not need
materialization.

* Loop must be save, innermost,
with no external calls.

The BCTR instruction is never
selected if the loop also contains
the recursive requirements to
qualify for a BXLE on recursive
loop.

An example of a BCTR loop is:

DO 10 I=J,K,L
10 B(I) = B(I)+A(I)

Since the loop step (and hence the
recursive increment) is not a con-
stant, the loop does not gqualify
for BXLE on recursive.

Materialize and BXLE on induction
variable.

This loop is controlled by a BXLE
instruction of the form:

BXLE 1,14, looptop

where register 1 contains the
induction variable, registexr 14
contains the loop step, and
register 15 contains the test
value that has been created by
Phase 4. The instruction at LOOP-
TOP is always a store out of

Section 5: Phase 3 93

9

register 1 intco the induction
variable. The prime requirement
of this loop is that the induction
variable must be materialized;
when a loop fails the requirements
for the other loop control
methods, it is always material-
ized, since there is no other way
to count the loop.

Phase 4 recognizes two versions of
this loop. One, when the loop is
innermost, safe, and has no
external calls. In this case reg-
isters 14 and 15 can be globally
assigned in the loop. Otherwise
temporary storage must be used to
save and restore the registers.
Two examples of the BXLE-on-
induction-variable loop are:

DO 10 I = 1,10
IF (I .EQ. 1) GO TO 10
A(I) = 0.
10 CONTINUE
DO 20 I = 1,10
IF (I .EQ. 1) GO TO 20
A(I) = SQRT (A(I))
20 CONTINUE

In both cases, I must be material-
ized since it is referenced out-
side of a subscript. In the first
example, registers 14 and 15 can
be globally assigned. 1In the
second, they cannot be because of
the call to the SQRT function.

Compare and Test Recursive.

This loop is controlled by a com-
pare and branch-not-equal (BNE) of
the form:

CLR R1,R2
BNE LOOPTOP

where Rl contains a recursive
value; R2 contains the test value
initialized outside the loop and
{in this example) is globally
assigned. If R2 did not have
enough weight to be globally
assigned, then the compare would
be to temporary storage.

The only reguirements for this
loop is that there must be no need
for materialization, and there
must be at least one recursive ex-
pression (a subscript term con-
taining the induction variable).
An example is:

DO 10 J 1,10
DO 10 I 1,10
10 A(I,J) = 0.0

LI

The outer loop, where j is the
induction variable, will be con-
trolled by a compare and branch.

Global Register Assignment. In order
to facilitate minimizing generated
instructions, Phase 3 considers cer-
tain items for permanent assignment to
registers across a loop. The selec-
tions are made by maintaining a popu-
larity count for each item. The count
is weighted for each type of candi-
date, considering the value of having
it 3lobally assigned versus the value
of not having it globally assigned.
a. Adcons. Aeight = 5.
b. Removable integer expressions.
Weight = 5.

c. Recursive expressions.
10.

Weight =

d. Constant steps on recursive ex-
pressions. Weight = 3.

e. Expressions for testing the end of
a compare-and-branch loop. Weight
= 5.
Some items that are used for generat-
ing loop control instructions do not
follow the normal selection methods.
For example, in a loop where registers
14 and 15 will be globally assigned by
Phase 4, the items in those registers
will mot be considered for assignment
by Phase 3. In a BXLE on-recursive
loop, Phase 3 always gives global
assignment to the recursive expres-
sion, but never to the constant step
on the recursive or to the test value.

Phase 3 also considers one floating
point quantity to be pseudo-globally
assigned into FP register 6.

This assignment can take two forms.

a. Where the variable or subscripted
variable on the left of the equal
sign can be kept in FP register 6
through the loop, and stored when
the loop is completed.

The requirements for this assign-
ment are:

¢ Loop must be innermost, with no
external calls.

e ISD option must be off.

s Loop must contain only one assi-
gnment statement, plus any num-
ber of blank or CONTINUE
statements.

Loop must contain no complex
nonremovable operation or 2-
argument intrinsic function.

Assignment variable must be real
and must not be flagged "inter-
fering” in the symbol table.

If the assignment variable is
subscripted, the subscript must
be removable to at least BL1 of
the inner loop.

If the assignment wvariable is an
array element, references on the
right side of the equal sign
must be to the same element, or
to an element which is known to
never be the same. The loop is
flagged only if all references
are to elements known to be
either the same element or never
the same element. For example:

A(I) = A(I) + A(I+1)

On the right of the egual sign
A(I) is flagged as being in FP
register 6, but A{I+l) is not

flagged. The loop is flagged

for global assignment, since A
(I+1) can never reference the

same element as A(I).

In the following examples, the
loop is not flagged:

A(I)
A(J)

A(3)
A(I)

Won

In this case, since it is not
known whether I can equal 3 or
whether I can equal J, the loop
is disqualified.

The reason for this restriction
is that the array element on the
left will not be updated in
storage if it is globally
assigned. Therefore, it is
necessary to know at compile
time which references to array
elements on the right should
obtain values from storage and
which should obtain values from
the globally assigned registers.
If this determination cannot be
made, a global assignment is not
made.

The first 3 requirements are
determined by Phase 1, the last
4 by Phase 3. If all require-
ments are met, the begin-loop
entries are flagged for Phase 4,
along with each EF item on the
right-hand side that matches the
assignment variable.

b. When a loop does not meet the
requirements of (a), one optimiza-
tion which might still be per-
formed is to select a floating
point quantity that can be loaded
into FP register 6 outside the
loop.

The requirements for this optimi-
zation are that the loop must be
innermost, safe, with no external
calls.

In its backward scan over the
loop, Phase 3 selects the candi-
date that is last processed. This
candidate is deleted if a
referenced label is reached, or if
tne current candidate appears as
an assignment variable. 1In all
cases, the candidate must be a
simple, real variable or a simple,
real constant.

In addition to the major function of

Phase 3, many other functions are per-

formed.

A more complete description of

Phase 3 is listed below.

1.

The program file (PRF) is scanned

backwards. The expression file (ERF)
is scanned, when required, for the PRF
item; and, a triad table is created

for internal use with one entry for
each unique expression. An operand
pushdown table (OPT1) is created to
assist in scanning the ERF. The PRF
and ERF are modified to form the PF
and EF, which are treated separately
by Phase 3. These files are relinked
in the forward direction and inter-
leaved into a new program file (PF)
that is the input for Phase 4.

All variable and constant entries in
the ERF are changed, with the OFFSET
field replaced by a reference to an
address constant and an immediate
value of the displacement. The adcon
is represented by a new type of entry
introduced into the symbol table.

All subscripts are rearranged. The
adcon for the variable is placed in
the expression, which is rearranged to
remove the largest subexpression from
loops, to handle loop variables by
recursion, and to make use of double
indexing.

Common expressions are recognized and
named. The point at which they are
last used is marked.

Section S5: Phase 3 95

5. Expressions that can be computed out-
side of loops for use inside
("removed™) are recognized and named.
They are inserted in tne EF at the
loop top and removed from the EF
inside, leaving a short "residue"”
entry there.

6. Expressions that can be computed by
recursive additions around a ioop are
identified, and one (for each loop)
for use as a test of the loop is
determined. Th& initial value, step
values, and test value expressions are
formed and treated as other expres-
sions (see items 4 and 5 above).

7. Quantities that are to be placed in
registers and kept there over loops
are determined and specified. These
may be integer arithmetic operations,
subscript expressions, or address con-
stants. They are determined on the
basis of total time saved and number
of registers that can be used for such
purposes.

8. Each statement label entry in the sym—
bol table is changed to contain a
reference to an address constant (see
item 2 above). The adcon entry is
given an estimated value based on the
estimated location, which is then
cleared.

9. The formal arguments have variable
adcons that must be computed at the
preamble of a subprogram. These are
listed in the formal argument adcon
table (FAAT) for Phase 4. (The format
of FAAT is explained in the module
description "CEKKS Phase 3 storage
(PSECT)."™)

A general descripticn of the procedures
used by Phase 3 to carry out its functions
is given in the following paragraphs.

Phase 3 makes a backwards scan over the
PRF, rewriting it. By means of the links
in the PRF, each value a variable assumes
can be analyzed to determine the loops from
which that variable can be removed and a
point at which it can be first used in com-
putation. This point is preliminary and
can be moved if the PRF scan reaches a
peint where the value may change. Each
reference to the ERF string from PRF
entries causes a local forward scan over
the ERF. An operand pushdown table is
built and used during this scan. All
operators are entered into the triad table
for commonality determinations. Certain
operators are put in a compute and removal
item table (CRT). Subscript expressions in
the ERF are scanned twice. First, deter-
minations of computation points, removal
levels, and use of loop variables are made.

96

Then the ERF is sorted into a new order,
new operators are introduced, and the
address constant is introduced into the
expression. Finally, this new ERF is
ccanned again, and entries are made in the
triad table and the compute and removal
item table, as for other expressions.

For DO loop processing, Phase 3 main-
tains a set of loop tahies for use in
determining global register assignments,
identifying loop variables, and determining
removal levels.

MEMORY REFERENCE PROCESSING

During the processing of Phase 3, all
references to variables and constants
(including address constants) are replaced
by references to an address constant and a
displacement. Adcons are supplied for each
storage class, with one separate adcon for
each 4080 bytes. Adcons are supplied only
when needed and are entered into the symbol
table to be shared with all other parts of
the program. Negative adcons (e.g.,
storage class base -4080) are allowed.

In computing the values for adcon and
displacement, Phase 3 uses the storage
class, the assigned location within that
class, and, in some cases, the offset from
that location supplied by Phase 1. At all
times the FORTRAN object program makes use
of one register that can cover the special
page, part of which is assigned to adcons.

The adcon reference and displacement are
placed in the Polish string for the vari-
able. In addition, the reference to the
original variable entry in the symbol table
is kept for purposes of editing in Phase 5.
When a subscript expression modifies a
variable and the adcon is referenced in
that expression, the adcon reference from
the variable in the Polish string remains
Zero.

Whenever constant subscripts result in a
reference to other than the first byte of
an array but no subscript expression
occurs, a special subscripting operator is
entered in the triad table. This operator
is called the "a"™ or "Addressing" operator.
This operator is strictly internal to Phase
3; it is used only in the triad, not in the
EF, to distinguish between references to
other than the first byte of an array.

COMMON EXPRESSIONS

A common expression is one that is used
more than once, but needs to be computed
only once. Phase 3 determines the exis-
tence of these in most cases; it gives each
a distinct identifying number (name) and

marks one occurrence of this expression in
the last Polish string in wnich it occurs
as "last use." Three sepvarate determina-
tions must be made:

1. It must be determined which expres-
sions are identical in form.

2. It must be determined that occurrences
are necessary or "valid" (i.e., two
occurrences as part of the same larger
common expression require only one use
of the smaller expression).

3. It must be determined that the expyres-
sion cannot change in value between
occurrences.

Identity is determined by the triad
table. Every expression is changed to a
triad (operator plus references to its two
operands) that is identical for identical
expressions. For each expression the triad
table is searched to determine whether the
expression is already there; if it is not,
it is inserted. If the expression is
already in the table, it may be a common
expression, depending upon the results of
the other two determinations.

The determination of the occurrence of
two valid uses is made by another
algorithm: whenever an expression occurs
after the first time and either is part of
a larger expression that is occurring for
the first time or stands alone in a state-
ment, this is the second valid occurrence.
When this situation exists, it becomes
necessary to mark previous occurrences
(sometimes, in a previous larger expres-
sion, there may be more than one that were
not all valid). This is done by keeping a
pointer in the Triad Table entry to the
"last occurrence.” Whenever an unnamed
expression is entered or located in the
triad table, a reference to the triad is
made in the ERF string entry. Then, when
an ERF string entry is copied into the EF
without receiving a name, the pointer in
the triad table is set to point to this EF
string. At the time an expression is
named, the EF string pointed to by the
triad table entry is scanned, and the
occurrences of this expression in that str-
ing are recognized by the reference to the
triad. The field used for tnat triad
reference is now used for thz name.
Whenever a name is entered in an EF entry,
the expression is changed to indicate a
named expression; and, if this is "last
occurrence,® the "last use™ flag is turned
on. If a second valid occurrence occurred
in the same string as the first, tne "last
occurrence®™ field is X'8000'. 1In this
case, the "last use® bit is turned on in
the current EF, and other occurrences are
named later when the ERF string is copied
into the EF.

In orxrder to determine that the value of
an expression does not change, Phase 3 must
consider the component of each expression.
Every variable entry in the symbol table
has pointers (FDP and BDP) to forward-and
backward-linked chains in the PRF of its
definition points. There are also linked
chains for definitions of COMMON variables
and definitions of arguments. COMMON
variables are defined at their own defini-
tion points. Arguments are defined at
every definition point for any argument and
for COMMON definition points. Every vari-
able is also marked when it is a loop para-
meter over any loop in the current nest,
and it is, therefore, of fixed value over
that loop. The loop tables indicate the
range of every loop in the current nest (in
terms of PRF entries) and indicate which
loops are "unsafe"™ (have entry points from
an outer loop). By scanning this informa-
tion, Phase 3 can determine which loop, if
any, is the outermost loop from which ex-
pressions containing only this variable can
be removed. This level is entered in the
symbol table entry for the variable as the
RLEV field (removal level). If the nearest
definition point (forward) lies outside a
loop from which the variable cannot be
removed, the forward compute point (FCP) is
set just inside that loop; otherwise, it is
set at the nearest definition point
forward.

This determiration does not take into
account all possibilities that may limit
the range of commonality. The other limi-
tations are the occurrence of referenced
labels, the occurrence of loop endings of
unsafe loops, and the occurrence of the FCP
(determined above) inside a new loop.

These are determined as the PRF is scanned
further and are used to terminate the range
of the commonality if it has been set up or
to prevent its being set up.

The mechanism for keeping track c¢f the
range and terminating commonality is the
compute and remove item table. Here every
named expression has an entry that is keyed
to the FCP (or the removal point) in the
PRF. These are scanned in parallel with
the PRF. For compute point entries the
range of commonality is terminated when the
point is reached. Whenever a loop end or a
referenced label is reached that might
limit the range of commonality of some
entries, this table is consulted and the
commonality terminated. Commonality is
terminated by removing the name from the
triad table entry and appropriately marking
that entry.

When a common expression is named, it
must be determined that referenced labels

Section 5: Phase 3 97

or terminating loop ends have not inter-
vened between the "last occurrence®™ and
this one. This can be checked by the loop
tables and the backward chain of referenced
labels. If such intervention has occurred,
the expression is not named, and the cur-
rent EF string becomes the last occurrence.

REMOVING EXPRESSIONS FROM LOOPS

Computing time can be saved when an
expression that occurs within a loop can be
computed outside that loop for use inside.
Expressions that contain the loop variable
and are common over the loop comprise a
special case. Since a new occurrence is
introduced at the point of removal, expres-
sions that are removed are aiways treated
as common, even if they occur only once
within the loop